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Preface

The present volume was devoted to the third edition of the International Sympo-
sium on Algorithmic Game Theory (SAGT), an interdisciplinary scientific event
intended to provide a forum for researchers as well as practitioners to exchange
innovative ideas and to be aware of each other’s efforts and results. SAGT 2010
took place in Athens, on October 18-20, 2010. The present volume contains
all contributed papers presented at SAGT 2010 together with the distinguished
invited lectures of Amos Fiat (Tel-Aviv University, Israel), and Paul Goldberg
(University of Liverpool, UK). The two invited papers are presented at the be-
ginning of the proceedings, while the regular papers follow in alphabetical order
(by the authors’ names).

In response to the call for papers, the Program Committee (PC) received 61
submissions. Among the submissions were four papers with at least one coauthor
that was also a PC member of SAGT 2010. For these PC-coauthored papers,
an independent subcommittee (Elias Koutsoupias, Paul G. Spirakis, and Xiaotie
Deng) made the judgment, and eventually two of these papers were proposed for
inclusion in the Scientific Program. For the remaining 57 (non-PC-coauthored)
papers, the PC of SAGT 2010 conducted a thorough evaluation (at least 3,
and on average 3.9 reviews per paper) and electronic discussion, and eventually
selected 26 papers for inclusion in the Scientific Program.

An additional tutorial, “Games Played in Physics”, was also provided
in SAGT 2010, courtesy of the academic research network Algogames
(AXyomaryvio) of the University of Patras.

We wish to thank the creators of the EasyChair System, a free conference
management system provided and supported by the group of Andrei Voronkov,
which significantly assisted the work of the PC.

August 2010 Spyros Kontogiannis
Elias Koutsoupias
Paul G. Spirakis
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When the Players Are Not Expectation
Maximizers

Amos Fiat! and Christos Papadimitriou?

1 School of Computer Science
Tel Aviv University
fiat@tau.ac.il
2 Computer Science Division
University of California at Berkeley
christos@cs.berkeley.edu

Abstract. Much of Game Theory, including the Nash equilibrium con-
cept, is based on the assumption that players are expectation maximiz-
ers. It is known that if players are risk averse, games may no longer have
Nash equilibria ([I1I6]. We show that
1. Under risk aversion (convex risk valuations), and for almost all games,
there are no mixed Nash equilibria, and thus either there is a pure
equilibrium or there are no equilibria at all, and,
2. For a variety of important valuations other than expectation, it is
NP-complete to determine if games between such players have a
Nash equilibrium.

1 Introduction

In 1950 John Nash proved that every game has a mixed equilibrium. Myerson
[17] gives a plethora of reasons as to why Nash’s theorem (and his proposed
framework of rationality in normal form games) underlies the foundations of
modern economic thought. In recent years a computationally inspired challenge
to the concept of mixed Nash equilibrium has arisen, see, e.g., [14], and the
universality of the concept has become questionable in face of intractability
results. In this paper we pursue another line of critique of the Nash equilibrium.
In particular, we show that Nash’s Theorem does not hold if the players are
not expectation maximizers, in that almost all games fail to have a mixed Nash
equilibrium (Theorem []), and that it is NP-hard! to tell those that do from
those that do not (Theorem [l). To understand our results in context, we begin
by reviewing the rich literature on risk in Economics.

1.1 A Brief History of Risk

In many ways, risk is a defining characteristic of the modern world, and the
analytical problems associated with it were pointed out early. Nicolas Bernoulli

! NP-hardness is stronger evidence of intractability than the PPAD-completeness of
finding a Nash Equilibrium ([7/4]).

S. Kontogiannis, E. Koutsoupias, P.G. Spirakis (Eds.): SAGT 2010, LNCS 6386, pp. 1-{I4 2010.
© Springer-Verlag Berlin Heidelberg 2010



2 A. Fiat and C. Papadimitriou

(1687 — 1759) posed the famous “St. Petersburg Paradox” [22], exposing the
inadequacy of expectation in decision-making, and some decades later his nephew
Daniel Bernoulli (1700 — 1782) [2] provided a solution by proposing to distinguish
between money and the wutility of money, and to model risk aversion by a utility
function that is concave.

Two centuries later, Emil Borel [3] and John von Neumann [19] initiated the
study of strategic behavior, and, two dacades later, von Neumann and Oskar
Morgenstern published their “Theory of Games and Economic Behavior” [20],
where they expounded their Expected Utility Theory (EUT). They postulated
that the risk behavior of an agent can be modeled as a (risk) valuation V mapping
lotteries (distributions over the reals) to the realdd. If this valuation satisfies
some plausible axioms equivalent to linearity, then the agent’s behavior can be
captured by a utility function, and the agent behaves as a maximizer of the
expectation of his utility. A few years later, John Nash extended the work of
von Neumann and Morgenstern to non-zero sum non-cooperative games [I8],
and showed that a mixed strategy equilibrium always exists; note that Nash’s
Theorem is stated in the context of EUT. EUT can capture both risk-seeking
and risk-averting agent behavior by having a valuation function that is convex
or concave, respectively.

In 1948, Friedman and Savage [§] attempted to deal with criticism of expected
utility and considered models where utility is either a concave or convex function
of money. Portfolio theory, developed in much more empirical and less princi-
pled/axiomatic manner from 1950 onwards by Marschak [16], Markowitz [I5/14]
and many others [24127], considered valuations (functions from distributions to
the reals) of the form “expectation minus variance” or “expectation minus stan-
dard deviation” as a model of agent behavior in the face of financial risk. E.g.,
the optimal portfolio for a given expected value is the one with minimum vari-
ance. There is no way to cast such behavior within the framework of Expected
Utility Theory.

Independently, in 1951 Maurice Allais [I] suggested that there are problems
with “the American School”, i.e., he raised issues with the von Neumann-
Morgenstern EUT. One of his examples was indeed the “expectation minus vari-
ance” valuation, but he also gave other empirical arguments (the Allais paradoz)
strongly suggesting that real human behavior cannot be modeled within EUT
(and, consequently, certainly not by assuming that agents are expectation
maximizers).

After Allais, many non-EUT valuations were proposed to address problems
such as the Allais paradox, see the expository articles [26]12T3]. One such model

2 Actually, instead of risk valuations, von Neumann and Morgenstern postulated, and
axiomatized, preferences between any two distributions; but the valuation formalism
used in this paper is essentially equivalent.

3 There is a point of possible confusion here. By “concave” valuation we mean a
function from lotteries to the reals that is concave in the probabilities, and not in the
values. For example, the variance is concave in the probabilities but convex in the
values.



When the Players Are Not Expectation Maximizers 3

in wide use today is prospect theory due to Kahneman and Tversky [10]. Prospect
theory predicts that a loss of z is much more painful than a gain of x is pleas-
ant, and, importantly, that probabilities undergo subjective modifications in the
agents’ calculation of expectations, not unlike our example valuations V° and
V6 below.

More directly related to our work, Ritzberger [23] showed that for expected
utilities with rank dependent probabilities reflected risk aversion, mixed Nash
Equilibria will disappear. Chen and Neilson [9] considered the flip side of this
phenomena and gave conditions under which a pure strategy must exist (but
this requires a compact set of pure strategies).

1.2 Nash Equilibria and Risk

Whereas EUT was proposed by von Neumann and Morgenstern as a preamble
to their theory of games and strategic behavior, non-EUT approaches to risk
were primarily considered in non-strategic settings such as finance. The ques-
tion of how non-EUT valuations impact non-cooperative game theory and Nash
equilibria in particular was raised only in the 1990s by Crawford [6], who noted
that, while Nash’s theory holds when the agents’ valuations are concave (see our
Theorem 1, stated and proved here for completeness and computational empha-
sis), there are simple games, such as the 2 x 2 zero-sum game shown in (1) below,
that have no Nash equilibria if the agents have convex risk valuations.

To understand the broad range of possible attitudes of strategic agents to-
wards risk, consider the following six valuations (functions mapping distributions
to the reals) modeling plausible attitudes of agents towards risk:

V! If an agent is a pure expectation mazimizer, then his valuation V' maps
any distribution to its expected value. This is the framework used in
virtually all of Game Theory.

V2 Most people are risk averse. One way to capture this would be valuation
V2, which assigns to each distribution over the reals the expectation mi-
nus the variance; this was proposed by Marschak, Markowitz, Allais, and
others. We use V5, as an exemplar of risk averse valuations; there are many
variants of V2 in which one subtracts from the expectation the standard
deviation or some other increasing function of the variance, or a small
multiple thereof.

V3 Some agents may be risk-seeking; for example, valuation V? evaluates a
distribution by its expectation plus (an increasing function of) the variance.

V4[0] An agent may be facing a costly life-saving medical procedure and his
only interest in the game is to maximize the probability that the payoff
is above the cost 6. This defines valuation V4[¢].

V5[p] Another agent may be interested in maximizing her “almost certain bot-
tom line:” the amount of money she gets with probability at least p = .95,
say. Let us call this valuation V®[p).

V6 Finally, somebody else evaluates any discrete distribution over the reals by
the average between the maximum and the minimum value which occur
with a nonzero probability. We call this V6.



4 A. Fiat and C. Papadimitriou

Note: We are not proposing these six valuations as the only possible attitudes
toward risk, or even as plausible or reasonable ones; they are here only to demon-
strate the range of possibilities and fix ideas. Our three results hold for very broad
classes of such valuations, delimited in their statement or the discussion following
the proof. Also, the last two valuations fall into a very important class proposed
in Kahneman and Tversky’s Prospect Theory [10], in which expected utility is
maximized, albeit with the probabilities modified. Briefly, in Prospect Theory
valuations are of the form V =), u(x;)m;, where u is an ordinary utility func-
tion, but the m;’s are modified probabilities. The modification is done through an
increasing function G : [0, 1] — [0,1] with G(0) = 0 and G(1) = 1 that modifies
the cumulative probabilities. That is, if we assume that 1 < 29, < - <2y, ™
is defined as G(Z;Zl pi) — G(Z;;ll pi). It is easy to see that V®[p] corresponds
to the modifier function G(z) = 0 if # < 1 —p, and G(x) = 1 otherwise. And V¢
corresponds to G(z) = ; for 0 < z < 1. Kahneman and Tversky speculate that
“real” modifier functions, consistent with experiments, are steeply increasing at
0 and at 1, go through the (;, ;) point, and are flat around it. The effect is that
small probabilities of extreme payoffs are exaggerated. Notice that our function
G defining V¢ is a stylized and exaggerated function of this form (7 = 7, = é)

Of these six risk valuations, V! is the one considered throughout Game Theory
and, naturally, Nash’s Theorem holds in it. Of the others, V4(f) falls squarely
within the purvey of EUT: Just map the agent’s payoffs to zero if they are less
than 6 and to one otherwise, and solve the resulting game. As it turns out, Nash’s
Theorem is valid under the risk-seeking valuation V3 as well (see Theorem [l and
Proposition 2); the reason is, V3 is concave in the probabilities.

The other three valuations, however, break Nash’s Theorem. For example,
consider the following game proposed by Crawford, which we call I":

1,—1 0,0
0,0 r,—r (1)

If the agents evaluate any distribution of payoffs by a convex valuation such as
V2, then Crawford observes that there are no Nash equilibria in this game, pure
or mixed. This holds for r # 1; interestingly, if 7 = 1 then there is a mixed Nash
equilibrium with both players V2 (or even with one player with valuation V?2
and the other player is an expectation maximizer).

1.3 Our Results

1. In terms of ubiquity of the Nash Equilibria, we show that

(a) Almost all games have no mized Nash equilibria if the players are risk
averse (Theorem B]). By “almost all” we mean that games that do have
mixed Nash equilibria form a set of measure zero in the space of all
games, with utilities drawn at random; for example, any such games
must have equality between certain payoff values. Moreover, even e-Nash
equilibria will not exist. Pure Nash equilibria may still exist; but only
al-— i fraction of games have them [25]. This was known for rank
dependent expected utility functions (Ritzberger, 1996, [23]).
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(b) Even if the underlying game has a mixed Nash equilibrium, arbitrarily
small random errors by the players in interpreting the payoff matrix will
lead to instability with high probability (Observation M.

2. Any given game may not have a Nash equilibrium. We show that

(a) It is NP-complete to determine if a two-person game with non-EUT
player valuations has a Nash Equilibm’un@. We show this for functions
such as V2, V®[p], and V%, and we lay out broad conditions on the risk
valuations under which our proof works (Corollary [@]).

(b) In contrast, for concave valuations such as V3 — Nash equilibria are
guaranteed to exist and are PPAD-complete, i.e., the same complexity
as Nash Equilibria under the expected utility theory (Theorem [J).

1.4 The Model

To avoid confusion, we use the terminology of payoffs and valuations rather than
utility. Under expected utility theory, our “payoffs” are considered utilities and
some of our valuation functions are also utilities, whereas others cannot be so
expressed.

A k-player game G, where k > 1, consists of k finite sets of strategies S1, ..., Sk
and k payoff functions p1,...,p, mapping S =[], S; to R. We denote by A[S;]
the set of mized strategies for player 1.

Given a k-tuple of mixed strategies © = (z1,...,zx) € [[; A[S;], for any com-
bination of pure strategies s = (s1, $2, ..., k) € [[ S define g, (s) = Hle 2 (84),
where z;(s;) is the probability player i plays pure strategy s;. Every k-tuple of
mixed strategies, z, defines a strategy distribution, S(x), over [[.S;, where the
probability of s € [ S; being played is g, (z).

Let G be a k-player game, and V7, ..., Vi be valuations. Given a payoff func-
tion p;, let R; = pi(s),s € [[; Si- Ry is the range of possible payoffs for agent i
over all combinations of pure strategies.

Given a k-tuple of mixed strategies x = (z1,...,xy), for every player i the
strategy-distribution S(z) implies a payoff-distribution, P;(z), the support of
P;(z) is a subset of R;, and the probability of a € R; is

Giala)= Y qu(s).

s€Spi(s)=a

Again, for any 1 <i <k we have ), cp giz(a) =1

A (risk) valuation is any function from payoff distributions to the reals. The
functions V1, V2 V3 V4[6], V°[p], and V® mentioned in the introduction are
indicative examples of important valuations in the literature. Ergo, if agent
¢ has risk valuation V; then the value of a k tuple of mixed strategies z =
(z1,22,...,2k) to player i is V;(P;(x)).

4 Our NP-completeness proof uses a new gadget, based on a generalized rock-paper-
scissors game, which is arguably simpler than the construction in [5], we suspect
that this gadget may prove useful in other contexts as well.
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Fix ¢ and the mixed strategies of all players but that of player i, x_; €
[T A(S;). For fixed x—; € [];,; A(S)), zi € A(S;), we use the shorthand
notation

Finally, a k-tuple of mixed strategies = (z1,...,2) € [], AlSi] is called
a (Vi,...,Vk)-Nash equilibrium if for every player ¢ and every mixed strategy
z} € A[Si],
Vi (@) < VT ().

?

That is, changing i’s mixed strategy in any way, and keeping all other mixed
strategies the same, results in a distribution over payoffs whose valuation, with
respect to player 4, is no better than the valuation of the current distribution.

Ezamples: Consider the valuations V1, ..., V% introduced above, and let us con-
centrate on the risk averse valuation V3, expectation minus variance. Analyzing
mixed Nash equilibria when players behave this way (or in any of the other
five V¥’s save V!, expectation) is very tricky. Pure strategies in a mixed Nash
equilibrium are not necessarily individually best responses to the other players’
strategies. Also, because of the nonlinearity of the valuations considered, games
are not invariant under translation or scaling by positive constants.

Suppose that Crawford’s game (see Equation () is played by a row player
with valuation V2, and a column player who is an expectation maximizer (i.e.,
the column player is risk neutral). If » = 1, then a mixed Nash equilibrium
exists in which both players randomize uniformly. As we shall see, this situation
is a singular exception (see the proof of Theorem [3)). But suppose that r > 1.
From the point of view of the expectation maximizer (column player), as the
probability that the row player plays down is increased from zero, playing left
is the best response, up to a point in which left and right — and any mizture
in between — are at a tie. From then on, right is the best response. A similar
behavior is observed of the V2 (row) player — with an important difference. As
the column player increases from zero the probability of playing right, the row
player prefers up, and at some point there is a tie between up and down.

The catch is that, because of the convexity of V2, the points in between are
not best responses, and there is a discontinuous jump from up to down. As a
result, the trajectories of the dynamics of the two players (the two best response
maps) do not intersect, and the game has no equilibrium. The same behavior
is observed if the row player’s valuation is expectation minus any increasing
function of the variance (say, a small multiple, or square root), and if both
players are risk averse.

Intuitively, the reason that » = 1 is a singularity (and a mixed Nash Equilib-
rium does in fact exist) is because the payoff-distributions don’t depend on the
mixed strategy chosen by the row player. So, although the strategy-distributions
are in fact different, the payoff-distributions are invariant to changes in the row
strategy, and the valuation to the row player is therefore also invariant to changes
in the row strategy. , i.e., VZ=row (z,.4,) = VE=row (2. ), for any z,0,, = (¢, 1—¢q),
T =(¢,1-¢),0<¢q,¢ <1
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2 Valuation Convexity and Concavity

Valuation functions are defined on payoff distributions. We require (and use) a
limited form of convexity /concavity, that of valuation V; convex (resp. concave)
with respect to mixed strategies of player i, x; € A(S;).

A valuation function V; is said to be convex (resp. concave) with respect to x;
if for every k —1 tuple of mixed strategies x—; € [[,; A(S;), for any two mixed
strategies x;, z} € A(S;), and for any 0 < o < 1.

VP i(ax; + (1 — a)z}) < aVP i (z;) + (1 — a) V=i (x});
VPi(ax; + (1 — a)z;) > oV i(z;) + (1 — a)V*i(2});

A valuation function V; is said to be strictly convex, or strictly concave, re-
spectively, if for any two payoff distributions P;(z;,x_;) # P;(z},z_;), and for
any 0 < a < 1,

VP ilax; + (1 — a)z;) < aV*i(z;) + (1 — a)V*-i(2));

V(o + (1 — a)x)) > aVTi(x;) + (1 — )V (a));

We say that V; is efficiently concave in x; € A(S;), if, for any xz_;, and for any

strictly concave polynomial ¢(z;), the (unique) point argmax, V*~#(x;) + t(x;)

can be computed in time polynomial in |S;|, the representation of ¢, the total

number of bits in the coefficients of V(z;), and the number of bits of precision
required.

3 Computing Nash Equilibria

We now give a sufficient condition on the V;’s for (Vi,...,Vi)-Nash equilibria
to exist and be as easy to compute as ordinary Nash equilibria: it suffices for
each V; to be efficiently concave in x;. This result is well known to economists;
for example, von Neumann stated his minmax Theorem in terms of concave
functions. Here we restate and prove it for computational emphasis and contrast
with our main result that follows.

Theorem 1. Let G be a k player game and let V1, ..., Vi be valuations, where
k > 1. If each V; is concave in x;, then any k-player game has an (Vq,...,V)-
Nash equilibrium. If in addition the V;’s are efficiently concave, then the problem
of finding an an (V1,...,Vi)-Nash equilibrium is in PPAD.

Proof. Define the following function ¢ from [], A[S;] to itself: ¢(x1,...,2) =
(y1,...,Yk), where for each i y; is defined as follows:

yi = argmax,, c s Vi (i) = ||z — ;|

Since V; is concave in z;, and —||z; — 2;||? is a strictly concave polynomial in
zi, the argmax exists and is unique, and continuous as a function of x. There-
fore ¢ is a continuous function from a compact convex set to itself, and so, by
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Brouwer’s fixpoint theorem, ¢ has a fixpoint. It is now easy to see, arguing by
contradiction, that this fixpoint is an (V4,..., V})-Nash equilibrium of G. The
computational elaboration of the theorem follows easily from the fact that ap-
proximating Brouwer fixpoints is in PPAD [21]. O

We next point out that three of our original six valuation examples fall into this
benign category.

Proposition 2. The valuations V', V3, and V*[0] are efficiently concave.

Proof. Tt is easy to see that V! and V#[f] are actually linear, and thus trivially
efficiently concave. For V2 we need to establish that the variance of the distribu-
tion P;(x) is concave in ;. Recall that for any random variable X the variance
is E(X?) — (E(X))?. Since the first term is linear in z;, we concentrate on the
second term. It is easy to see that, if X is the random variable for the payoff to
player i, the Hessian of —(E(X))? with respect to x; (variables z;[s], s € S;) is

PI(EX?) _

Ozlsi|om[s]] — s

where hs, = E,[X|s;], and similarly for h,,. Now it is clear that the Hessian
is the tensor product of vector (hs, : $; 3 S;) with itself, negated, and thus
it is trivially a negative semi-definite matrix. Hence the variance is indeed a
concave function of the probabilities, and so is risk seeking valuation V3. That
it is efficiently concave is straightforward. O

Note: There is a point of confusion here. It is well known, and often useful, that
the variance is a conver function of the values. However, it turns out that it is
also a concave function of the probabilities.

Notice that adding to the expectation, instead of the variance, a positive
multiple, or any concave function, of the variance (such as the standard devia-
tion), preserves the valuation’s concavity. Hence the positive result stated in the
theorem applies to a broad variety of risk-seeking valuations.

4 Games with No Equilibria

But what if the valuations are not concave — for example, convex like V2? Risk
averse agents typically have strictly convex valuations. We know from Crawford
that Nash equilibria may not exist, but two questions come up immediately:
How prevalent are such pathologies? And even if they are prevalent, can they
at least be characterized and excluded? In this and the next section we answer
both questions in the negative.

For a pure strategy s € 5; let z7 be the strategy for agent 7 that plays s
deterministically. Call a game in general position if for any player i, for any
mixed strategy of the other players x_;, and for any two pure strategies s, s’ €
S;, the payoff distributions P;(xzf,x_;) # Pi(z?,x_;). Note that P;(xf,x_;) #

’

P;(z%",z_;) does not imply that V Hag) £V (x).

1 7
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Our first negative result states that, if the players are risk-averse, then a game
in general position cannot have a mixed Nash equilibrium. This result has an
evocative probabilistic interpretation: In the space of all games considered as
tuples of tensors, games with mixed Nash equilibria form a set of measure zero,
a lower-dimensional manifold. Since it is known that the probability that a game
has a pure Nash equilibrium in this space is asymptotically 1 — i, this means
that about 37% of all games have no Nash equilibrium when the players are risk
averse.

Theorem 3. Let I' be a game in general position, and suppose that player i’s
valuation is strictly convex (as a function of x; € A[S;]). Then in any Nash
equilibrium this player plays a pure strategy. In particular, if all agent valuations
are strictly convex, there is no mired Nash equilibrium.

Proof. Fix the (possibly mixed) strategies of all agents but i, ~¢. Assume that
agent ¢ has a strictly mixed strategy, which, along with all other agent strategies,
is in Nash Equilibrium.

As x; is a strictly mixed strategy, then for all s € S;, z;(s) < 1, and for at
least two distinct s,s" € S;, 2;(s) > 0 and z;(s") > 0. It follows that

VI () = VI (Z zf .ms)) < 3 @)V (@) < max Vi (a).

cs;
s€S SES; s

This is in contradiction to the assumption that z; was in Nash Equilibrium
(alternately that z; = argmaxZieA(Si)Vf’i(zi)). O

Theorem B]is in no way a converse of Theorem [T} there are many valuations that
are neither concave nor strictly convex — valuations V° and VO, for example.
However, it is not hard to see that for these two there are games in which there
are no Nash equilibria. Generalizing Theorem 2 so that it comes close to being
a converse of Theorem 1 is an interesting open question.

It now remains to ask: when is a game in general position? A game is not in
general position if for some player ¢, there exists a k — 1 tuple of mixed strategies
for the other players, x_;, such that for two different pure strategies for player i,
Si, S; € S;, we have that P;(z%,z_;) = PZ-(xSQ,x,Z-). Ergo, the two distributions
don’t depend on the choice between s; and s;. The k — 1 tuple, x_;, determines
at most N =[], [5;| probabilities for the various payoffs available if player
plays s and at most N probabilities for the various payoffs if player ¢ plays s’.

Observation 4. A sufficient condition for the game to be in general position
is if all payoffs for player i are distinct, i.e., p;i(Si,S—;) # pi(s,s—i) for all
8,87 € S; and s—; € [[;4; S;. The two distributions P;(zf,2—;) and Pz x_;)
cannot be the same because the support sets are different. This is not a necessary
condition, e.g., Crawford’s game with r # 1 is in general position.

This also implies that if a small random error is added to every payoff value
then the game will be in general position with high probability. O
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5 The Complexity of Risk Aversion

Theorem 5. Given a 2-player game and non-concave valuations V,V', it is
NP-complete to tell if the game has an (V,V')-Nash equilibrium.

Proof. We give below the proof for the case in which both players’ valuations
are V2; Subsequently, we give extensions and generalizations.

NP-completeness is via reduction from 3SAT. Given a 3SAT instance ¢ with
n variables x1,...,z, and a set of clauses C = {c1,...,¢m}, where each ¢; is
a subset of size three of the set of literals L = {+x1,—x1,+22,...,—ZTpn}, We
construct a 2-player game G, as follows. Both players have the same strategy
set S; = Sy = LUC U{f1, f2}, and their utilities are as follows (M = 4n?):

— For every variable x; € V,

p1(+xi, +x;) = pa(+xs, +2i) = p1(—zi, —x;)
= po(—x;, —x;) = M.

However,

P1(+$i, *Ii) = pz(JrIi, *fﬂi) = pl(*xz‘, +$i)
= po(—ax;,+x;) = M — 2n.

Also, for every two variables z;,z; € V with i # j, p1(f£x;, £z;) = M +
g(i,7), and po(£x;, £x;) = M — g(4, j), where ¢g(i,7) = 1 if j = 1+ 1 mod n,
—1if j =i — 1 mod n, and 0 otherwise.

The game restricted to L is a generalized rock-paper-scissors zero-sum game
(with payoffs translated by M) in which the signs of the literals do no matter,
except that both players are incentivized not to play opposite literals of the
same variable. It is easy to see that there are 2" (V2,V?)-Nash equilibria
of this game. In each, the two players choose the same truth assignment (n
literals, one for each variable) and play every literal with probability 71L The
V5 valuation for this payoff distribution is M — 2

— The purpose of the strategies in C' is to force the truth assignment chosen by
the equilibrium in L to satisfy ¢; if it does not, there is a strategy in C (the vi-
olated clause) that breaks the equilibrium by presenting a better alternative.
The utilities are as follows: For any ¢, ¢’ € C,p1(c, ') = pa(c’,¢) = M —2n (it
is disadvantageous for both players to both play in C'). Also, for any literal A
and any clause ¢, p1 (A, ¢) = p2(c,A\) = M — 2n (it is also disadvantageous to
play a literal if the opponent is playing a clause.) Now, to encode the 3SAT
instance, for any literal A and clause ¢ such that A € ¢, p1(¢, \) = p2(\,¢) =
M — 2, whereas if A ¢ ¢ we have p1(c,\) = pa(A\,c) = M +n— 2.

— Finally, the last two strategies fi, fo provide an alternative game, to be
played if an equilibrium does not exist in LUC — but this game is essentially
Crawford’s game I (see Equation (), known to have no Nash equilibria for
risk averse players. In particular,
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o pi(z, fj) = p2(fy, )—OforallmELUC,j:1,2;

o pi(fj,x) =palz, f;) = —ZforalleLUC,j:LQ;
e pi(fi, i)=Y +1;

o pi(f1, f2) =1

e pi(fo, f1) =2

o pi(fa, f2) = +2.

o pa(fi, 1) =" —1;

e po(fi, fo) =

o pa(fo, f1) =1

o Pz(f2,f2) =M _2

— Each player can choose either to play the strategies in L U C (we call this
“playing ¢”), or choose one of the strategies f1, fo (called “playing f7). If
both players play f, notice that they end up playing a version of the game
I' described above, translated upwards by 1\2/1

— Suppose that the two players play f with probability z and y, respectively.
Then it is easy to see that the V2 value of the first player is approximately

M - M? .
o WY+ M1—y) =" ay—(1-y)M*

M? - -
+ 7, P ML - y)? = MPay(l - ),
where by M we denote M (1£0(})). By looking at the polynomial in « that
results if we ignore O( ) terms and normalize by M?

Y@ ey,

we notice (just by looking at the quadratic term) that, for all values of

€ (0,1], it attains its maximum (in x) at either x = 0 or « = 1. Hence, for
large enough n, and if y > 0, player 1 either chooses purely ¢, or purely f.
If y = 0, then it is easy to see that x = 0 as well, because otherwise player
2 would be better off playing f (y = 1). Hence, player 1 plays either purely
¢ or purely f. By symmetry, the same holds for player 2. We conclude that,
for large enough n, the only possible (V2,V?)-Nash equilibria have either
both players playing ¢, or both playing f.

— But of course, since both players choosing f entails playing a translated
version of game I, there can be no (V2,V?)-Nash equilibria in which both
players play f. Also, one player playing ¢ and the other f cannot be an
equilibrium (it is a disaster for the player playing ¢). We conclude that in
any (V2,V?)-Nash equilibrium both players must play ¢.

— So, let us assume that both players play ¢. If one of them plays a strategy
in C, then the other player cannot be playing strategies in L (because the f
strategies would fare better for the other player than those in L, which now
have V? payoff strictly less than M — L) Hence, the other player must be
playing only C, and so the first player’s payoff with the strategy in c is again
lower than that of the f strategies, and this cannot be an equilibrium.
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— We conclude that if an equilibrium exists its support is a subset of L, and
hence it is a truth assignment. We claim that it is satisfying. Because, if not,
there is a clause ¢ that is not satisfied — that is, no literal in it is played
by both players. In this case, ¢ has V2 payoff equal to M + n — Z, and

so the players should rather play c¢. We conclude that if the game has an
(V2,V?)-equilibrium, then ¢ is satisfiable.

— Conversely, if ¢ is satisfiable, we claim that both players playing the literals
in the satisfying truth assignment with probability TIL is an (V?2,V?)-Nash
equilibrium. The (V?2,V?) payoff of each player is M — Z Playing the f
strategies instead would have the same payoff. And playing any strategy in
C would have (V2,V?) payoff at most M — TZL, because at least one literal in
the clause is played with probability 711, and this brings the payoff down to
M-2. 0

Other Valuations. Looking at the proof of Theorem [B] we note that the following

holds:

Corollary 6. Suppose that V and V' are risk valuations with the following
properties:

— There are games with arbitrarily large payoffs that have no (V,V')-Nash
equilibria;
— The only (V,V')-Nash equilibrium of the generalized rock-paper-scissors
game, even if shifted by M, is the uniform play;
— For large enough M and for any game whose payoff matrices are within Lo
distance one from
M, M 0,M
M,0 M,M

the only (V,V’)-Nash equilibria are pure.

Then it is NP-complete to tell if a game has a (V,V')-Nash equilibrium. O

6 Discussion and Open Problems

No equilibria means that agents may be in a state of constant flux, and NP-
completeness implies that they can’t even realize their predicament. For a game
matrix I' and valuation functions {V;}, if Nash Equilibria do not exist then
there is some f(I,{V;}) such that for all ¢ < f(I,{V;}) no e-Nash equilibrium
exists. Thus, f(I,{Vi}) is a measure of the instability of the player dynamics
and large values may help explain dramatic instabilities in certain games. It is
easy to choose r for Crawford’s game or jittered versions of matching pennies,
with risk valuations V2, for which f(I',{V?}) equal to some 10% of the total
value — very strong motivation for chaotic behavior. Measuring the instability
of a game played by risk-averse players, and comparing this to observed behavior
in strategic games, even markets, seems interesting.
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Also, as pointed out in Observation] incomplete or partial information about
the payoffs, if interpreted as making some random error about the value of the
payoffs, results in games in general position and no mixed equilibria. It seem
promising to characterize the instability of the resulting game as a function of
the magnitude of error. Intuitively, instability should grow with error size.

The possibility that mixed Nash equilibria may not exist makes weaker solu-
tion concepts, such as the correlated equilibrium, more attractive. Unfortunately,
it is easy to see that even those may not exist. For example, Crawford’s uneven
matching pennies game played by players whose risk valuation is Vg has no cor-
related equilibria. We conjecture that the circumstances under which correlated
equilibria fail to exist are much less common, but that it is still NP-complete to
tell if one exists or not.

One technical open problem suggested by this work is to determine the extent
of the valuations for which NP-completeness holds. We have not strived to state
the most general theorem possible here, but we believe that our proof can be
generalized in many directions. Note that, by the corollary, NP-completeness
holds even even when all players except for one are expectation maximizers.
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Abstract. The PPAD-completeness of Nash equilibrium computation
is taken as evidence that the problem is computationally hard in the
worst case. This evidence is necessarily rather weak, in the sense that
PPAD is only know to lie “between P and NP”, and there is not a strong
prospect of showing it to be as hard as NP. Of course, the problem of
finding an equilibrium that has certain sought-after properties should be
at least as hard as finding an unrestricted one, thus we have for example
the NP-hardness of finding equilibria that are socially optimal (or indeed
that have various efficiently checkable properties), the results of Gilboa
and Zemel [6], and Conitzer and Sandholm [3]. In the talk I will give an
overview of this topic, and a summary of recent progress showing that
the equilibria that are found by the Lemke-Howson algorithm, as well as
related homotopy methods, are PSPACE-complete to compute. Thus we
show that there are no short cuts to the Lemke-Howson solutions, subject
only to the hardness of PSPACE. I mention some open problems.

1 Overview

There are two ways to view any algorithm for computing Nash equilibria. First,
simply as a way to find a Nash equilibrium, one that is hopefully fast in practice,
even though it may take exponential time in the worst case. Second, as a criterion
for equilibrium selection, i.e. choosing some equilibrium that is considered to
be preferable to others, in some sense a more plausible outcome. The latter
viewpoint is especially relevant if the algorithm in question is somehow simple
or decentralized. We can consider the problem of computing an equilibrium that
is found by some specified algorithm, noting that we are not restricted to using
that particular algorithm in order to find the equilibrium.

By way of example, in [7] we analyzed the classical Lemke-Howson algorithm
for bimatrix games, in this context. The computational challenge is: Given a
bimatrix game, find one of the solutions that could be computed using Lemke-
Howson. Note that we are not asking about the complexity of the algorithm
itself, which is already well-known to take exponential time in the worst case [9].

* Currently supported by EPSRC Grant EP/G069239/1.
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Just consider the complexity of finding the Lemke-Howson solutions. Of course,
the problem is PPAD-hard, simply due to the PPAD-completeness of finding
any equilibrium, but in fact we show that restricting to the Lemke-Howson so-
lutions makes the problem PSPACE-complete, and thus in a sense even harder
to compute than the restricted equilibria of [G3].

Homotopy methods. The survey paper [8] discusses homotopy methods in detail,
including the Lemke-Howson algorithm, which falls within this framework. The
general idea is that in trying to solve a game G, start by constructing a “starting
game” Gy which is a version of G where the numerical payoffs have been changed
so that there is some “obvious” Nash equilibrium. Then consider a continuum of
games that lie between Gy and G. (The usual choice of a continuum of interme-
diate games has games whose payoffs are weighted averages of those in Gy and
G.) Within these games, there exists a continuous path of Nash equilibria that
starts at the one for Gy and ends at an equilibrium of G. Thus, we have specified
a unique equilibrium of G, and implicitly a natural path-following algorithm for
finding it.

As an equilibrium selection theory, homotopy methods are attractive since the
starting game Gy can be considered as representing some kind of “prior belief”
about the behaviour of the other player(s). However, we showed in [7] that the
equilibrium identified by this procedure is PSPACE-complete to compute, and
moreover, the result extends to Lemke-Howson, in which the choice of initially
dropped label corresponds to a particular choice of Gy.

Path-following algorithms. The PSPACE-completeness result for Lemke-Howson
solutions uses, quite intensively, the ideas developed in [4]. The problem END
OF THE LINE that is used to characterise the complexity class PPAD, has a
PSPACE-complete version in which you are required to compute the end-of-line
obtained by following the path that begins at the known starting vertex of the
graph. (Notice that this version is no longer (apparently) in NP since there is
no obvious efficient test that a solution is correct.) This problem, called in [7]
OTHER END OF THIS LINE, or OEOTL for short, is the one we reduce from. The
proof proceeds by showing that a homotopy method —itself a path-following
algorithm— captures the path-following approach to solving OEOTL.

The extension to Lemke-Howson requires us to design the game in such a
way that all alternative solutions that might be produced, share features that
efficiently encode a solution to generic instances of OEOTL.

Fictitious play. We conclude with an interesting open problem that is inspired
by the PSPACE-completeness results described above. Fictitious Play is a good
algorithm to consider in the capacity of equilibrium selection. This simple and
intuitive procedure (see e.g. [B] or indeed Wikipedia) is known to converge to
Nash equilibrium under certain sufficient conditions, although for some games
it fails to converge. See [2] for a detailed discussion of why it is a natural and
appealing algorithm to consider. The following problem looks natural and simple
to state:
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Input. A bimatrix game G

Question. Does Fictitious Play converge, when applied to G? Assume both
players start at their first strategies.

Further question. Compute the equilibrium, if indeed FP converges.

The results of [I] indicate that a naive simulation of FP requires exponential
time, but it does not rule out the possibility of “short cuts” alluded to in the
abstract to this talk, in the context of Lemke-Howson. On the other hand, 1
know of no upper bound for the above questions, not even an exponential one.

References

1. Brandt, F., Fischer, F., Harrenstein, P.: On the Rate of Convergence of Fictitious
Play. In: Kontogiannis, S., Koutsoupias, E., Spirakis, P. (eds.) SAGT 2010. LNCS,
vol. 6386, pp. 103-114. Springer, Heidelberg (2010)

2. Conitzer, V.. Approximation Guarantees for Fictitious Play. In: Proceedings of
the 47th Annual Allerton Conference on Communication, Control and Computing
(Allerton 2009), pp. 636-643 (2009)

3. Conitzer, V., Sandholm, T.: Complexity results about Nash equilibria. In: 18th
International Joint Conference on Artificial Intelligence, IJCAI (2003)

4. Daskalakis, C., Goldberg, P.W., Papadimitriou, C.H.: The Complexity of Computing
a Nash Equilibrium. STAM Journal on Computing 39(1), 195-259 (2009)

5. Fudenberg, D., Levine, D.K.: The Theory of Learning in Games. MIT Press, Cam-
bridge (1998)

6. Gilboa, I., Zemel, E.: Nash and correlated equilibria: Some complexity considera-
tions. Games and Economic Behavior 1, 80-93 (1989)

7. Goldberg, P.W., Papadimitriou, C.H., Savani, R.: The Complexity of the Homo-
topy Method, Equilibrium Selection, and Lemke-Howson Solutions, Arxiv technical
report 1006.5352 (2010)

8. Herings, P.J.-J., Peeters, R.: Homotopy methods to compute equilibria in game
theory. Economic Theory 42(1), 119-156 (2010)

9. Savani, R., von Stengel, B.: Hard-to-Solve Bimatrix Games. Econometrica 74(2),
397-429 (2006)



A Simplex-Like Algorithm for Fisher Markets

Bharat Adsul', Ch. Sobhan Babu?, Jugal Garg?,
Ruta Mehta!, and Milind Sohoni!

! Indian Institute of Technology, Bombay
{adsul, jugal,ruta,sohoni}@cse.iitb.ac.in
2 Indian Institute of Technology, Hyderabad
sobhan@iith.ac.in

Abstract. We propose a new convex optimization formulation for the
Fisher market problem with linear utilities. Like the Eisenberg-Gale for-
mulation, the set of feasible points is a polyhedral convex set while the
cost function is non-linear; however, unlike that, the optimum is always
attained at a vertex of this polytope. The convex cost function depends
only on the initial endowments of the buyers. This formulation yields an
easy simplex-like pivoting algorithm which is provably strongly polyno-
mial for many special cases.

1 Introduction

Fisher and Arrow-Debreu market models are the two fundamental market mod-
els in mathematical economics. In this paper, we focus on the Fisher market
model with linear utilities. An instance of this model consists of a set of buy-
ers, a set of divisible goods, initial endowments, also referred to as the money
owned by the buyers, quantities of the goods and (linear) utility functions of the
buyers. The problem is to determine market equilibrium prices and allocation
of the goods to buyers such that the market clears and the utility function for
each buyer is maximized. Towards this, Eisenberg and Gale [6/10] formulated
a remarkable convex optimization program whose optimal solution, more pre-
cisely, values of the primal and dual variables at an optimal solution, captures
equilibrium allocation and prices.

Recently, many algorithmic results [4/5[9/11] pertaining to the computation of
market equilibrium prices and allocation for the linear case of Fisher and Arrow-
Debreu market models have been obtained. In [4], Deng et al. gave a strongly
polynomial time algorithm for the Fisher market with either constant number of
goods or constant number of buyers. Building on the Eisenberg-Gale program,
Devanur et al. [5] developed a primal-dual type first polynomial time algorithm
to solve the Fisher market model. A polynomial time algorithm for the more
general Arrow-Debreu market is also presented in [9]. More recently, a strongly
polynomial time algorithm for the Fisher market was given by Orlin [I1]. A
tantalizing open question is to formulate a linear program that captures the
Fisher solution. A positive resolution of this question would, of course, imply a
simplex-like algorithm for computing the same. This paper is an attempt towards
this objective.

S. Kontogiannis, E. Koutsoupias, P.G. Spirakis (Eds.): SAGT 2010, LNCS 6386, pp. 18-Z9] 2010.
© Springer-Verlag Berlin Heidelberg 2010
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In this paper, we propose a novel convex optimization formulation for the
Fisher market problem. In the Eisenberg-Gale formulation [6JT0], the set of fea-
sible points is a convex polytope which merely models the packing constraints
and is oblivious to the parameters of the problem. Like the Eisenberg-Gale for-
mulation, the set of feasible points in our formulation is also a convex polytope.
However, unlike that, our convex polytope is defined in terms of the input pa-
rameters, specifically utilities and money, and is rich enough so as to ensure that
the optimum is always attained at a vertex of this polytope. Furthermore, the
convex cost function in our formulation depends only on the initial endowments
of the buyers. There is another formulation, which maximizes a convex func-
tion under flow constraints, obtained by Shmyrev [12] and Birnbaum et al. [2],
however this formulation also does not guarantee the optimum to be at a vertex.

We define special vertices in our polytope and every such vertex corresponds
to the Fisher solution with a different endowment vector. We give a combinato-
rial characterization of special vertices and show that starting from any special
vertex, there is a simplex-like path of special vertices where the cost function
monotonically increases and it ends at a vertex corresponding to the Fisher so-
lution. There may be many such paths of special vertices in the polytope. Using
a simple pivoting rule, we give an algorithm, which traces one such path and
show that this algorithm is strongly polynomial for many special cases. Two
interesting cases are:

— Either the number of buyers or the goods is fixed.
— All the non-zero utilities are of the type a¥, where o > 0 and 0 < k < M
(M is bounded by a polynomial in the number of buyers and goods).

This algorithm is conceptually simple, much easier to implement and runs very
fast in practice. In fact, these special cases seem sufficient to handle most practical
situations. This is because, firstly, in practice, utilities are hardly exactly known,
and secondly, as shown in [I] buyers have every reason to strategize and report
fictitious utilities. The events that may occur in the algorithm, while finding the
adjacent special vertex, are similar as in the DPSV algorithm [5], however one
crucial difference is that the prices, DPSV algorithm computes at intermediate
stages, may not occur at a vertex in the polytope. The DPSV algorithm may be
interpreted as an interior point method in our formulation. Further, the utility of
our formulation is also illustrated by its easy extension to incorporate transporta-
tion costs as well [8]. There seems no way to modify Eisenberg-Gale or Shmyrev
formulations to capture the equilibrium solution for this extended model. Inde-
pendently, Chakrabarty et al. [3] also give a similar formulation for this extended
model along with an algorithm to compute e-approximate equilibrium prices and
allocations. However, the Fisher market with transportation cost may have irra-
tional solutions, so the optimum solution may not be at a vertex.

Organization. The rest of the paper is organized as follows. In Section 2 we
give a precise formulation of the Fisher market problem and introduce the new
convex optimization program and analyze it. In Section[3 we discuss the simplex-
like algorithm. In Section [l we show that the algorithm is provably strongly
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polynomial for many special cases. In Section Bl we summarize the number of
pivoting steps taken by the algorithm on random instances of the Fisher market.
Finally we conclude in Section [6l

2 New Convex Optimization Formulation

We begin with a precise description of the Fisher market model.

2.1 Problem Formulation

The input to the Fisher market problem is a set of buyers B, a set of goods G,
a utility matrix U = [u;]ieB,jeg, a quantity vector ¢ = (g;)jeg and a money
vector m = (m;)ien, where u;; is the utility derived by buyer ¢ from a unit
amount of good j, g; is the quantity of good j, and m; is the money possessed
by buyer i. Let |B| = m and |G| = n. We assume that for every good j, there is
a buyer i such that u;; > 0 and for every buyer 7, there is a good j such that
u;; > 0, otherwise we may discard those goods and buyers from the market.

The problem is to compute equilibrium prices p = [p;]jeg and allocations
X = [zij]ieB,jeg such that they satisfy the following two constraints:

— Market Clearing: The demand equals the supply of each good, i.e., Vj € G,
ZiEB xij = Qj and VZ e B, Zjeg pjfrij = mM;.

— Optimal Goods: Every buyer buys only those goods, which give her the
maximum utility per unit of money (bang per buck), i.e., if z;; > 0 then
Uqj

i Uik
= max ik
P keG p,

Note that, by scaling u;;’s appropriately, we may assume that g¢;’s are unit.

2.2 Convex Program

In this section, we introduce the new convex optimization program whose op-
timal solution captures the Fisher market equilibrium. Our convex program is
described in Table [II where p; corresponds to the price of good j and z;; cor-
responds to the money spent by buyer ¢ on good j. At optimum, yl is the bang
per buck of buyer i. We refer to the ambient space as the y-p-z-space.

Note that the feasible set O is a convex polytope in y-p-z-space and the cost
function is independent of the variables z;;. Let Ouu. be the auxiliary polytope
in the y-p-space defined by the constraints 1 to 4 and the related convex program
(with the same cost function) be the auxiliary convex program.

Claim. Pr(O) = Oayz, where Pr(O) is the projection of O onto the y-p-space.

Proof. Clearly, Pr(O) C Ogus, and for Ogyue € Pr(O), Z = [z;;] should be
constructed for a given (y,p) € Oguz. One way to do this is by constructing a
max-flow network, where there is an edge from the source to every good j € G
with capacity p; and from every buyer ¢ € B to the sink with capacity m;.
Further, there is an edge from every good j € G to every buyer ¢ € B with oo
capacity. Clearly, the max-flow gives the required z;;’s. a
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Table 1. New Convex Program

maximize Z m;log y;
i€B
subject to
Vie B,Vjeg : UijYi < Py (1
Do <y m (2
jEG i€B
vieB i y>0 3)
Vjeg : p;>0 (4)
Vie B : Z Zijg < my (5)
JjE€G
Vieg Z Zij = pj (6)
i€B
VieBYjeG i z; >0 (7

Therefore, in order to understand the optimality conditions, we may as well work
with the KKT conditions for the auxiliary convex program. Let x;;,q, 15, A; be
the Lagrangian (dual) variables corresponding to the equations (1-4). An optimal
solution must satisfy the KKT conditions in Table

Table 2. KKT conditions

VieB : T;: = Z UijTij — i (8)
 jeg
Vi e B,Vj cg : (u”yl — pj)xij =0 (9)
Vjieg : 7Zx¢jf)\j+q20 (10)
i€eB
O opi=Y mi)g=0 (11)
j€g i€B
Vie BVjeg : Tij, Aj, i, q > 0 (12)
Vjieg : —pjA; =0 (13)
Vie B : —Yifbi = 0 (14)

Claim. At any optimum, p; =0, Vi € Band A\; =0, Vj € G.

Proof. p; # 0 = y; = 0 = the optimal solution has cost —oco. However, we
may easily construct a feasible point in the polytope, where the cost is some real
value, therefore all p;’s are zero. Similarly, A; # 0 = p; = 0 = y; = 0, for some
i € B. Hence, all A;’s are zero. a
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Putting p; = 0 and A; = 0 in the KKT conditions (8-12), we get,

Jj€G
Vie B,Vj€G o (ugjyi —pj)ri; =0 (16)
Vjeg : Zl‘u =q (17)
i€B
(D_pi =Y mig=0 (18)
JjEG ieB
Vie B,Vjeg D @ij,q>0 (19)
From (15-18), Zm2 = Zijxij = ZZP;’%‘;‘ = ijq =q=1
i€B i€B jeG jEG ieB Jj€G

Proposition 1. Let (y,p) € Ogus be an optimal solution to the auxiliary convex
program. Then p is a market equilibrium price.

Proof. As ¢ =1, interpreting X = [x;;] as an allocation, we see that conditions
(15-17) imply that the market clearing constraint holds at the price vector p.
Further, using condition 2, we have z;; > 0 = y;u;; = pj. As (y,p) € Ogya, We
also have, Vi € B,Vj € G : u;;5; < p;. Putting these two together, it is easily
verified that the optimal goods constraint is also satisfied. a

Proposition 2.

(i) The auziliary convex program admits a unique optimal solution.
(i1) Equilibrium prices are unique and allocations form a polyhedral set.

Proof. Part (i) follows from the fact that the cost function is strictly concave,
and part (ii) follows from the KKT conditions. O

Let (y,p) € Ouuz be the unique optimum solution to the auxiliary convex pro-
gram. Let X = {X = [zi;]ieB,jeg | (Y, p, X) satisfies (8-14)}. Note that X is a
convex set. As argued in the proof of Proposition[I] we may think of X € X as an
equilibrium allocation and p as the equilibrium price. Now, we define Z = [z;;]
wrt. X € X as 25 = xy;pj, Vi € B,Vj € G. In other words, z;; is the money
spent by buyer ¢ on good j at the equilibrium allocation X. We refer to Z as
an equilibrium money allocation. It easily follows that (y,p, Z) is an optimum
solution to the main convex program. Note that there is an X € X such that the
bipartite graph G = (B, G, E), where E = {(i,j) € Bx G | zf; > 0}, is acyclic.
Let Z® be the equilibrium money allocation w.r.t. X*. The next proposition
asserts that (y,p, Z%) is in fact a vertex of O.

Proposition 3. The point (y,p, Z%) is a vertex of O.

Proof. There are mn+m+n variables in the convex program, and we show that
there are mn + m + n linearly independent tight constraints at (y, p, Z%) (vefer
to Theorem 3.3.3 in [7] for details).

Remark 4. The auxiliary program itself captures the equilibrium prices at the
optimal solution, though not necessarily at one of its vertices. [7] has the detailed
analysis of both the polytopes.
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3 A Simplex-Like Algorithm

We begin with some notation. Henceforth, we denote the input to the Fisher
market problem by (U, m). The set of buyers and the set of goods are implicit.
We use g; and b; to denote the good j and buyer i respectively. For convenience,
we assume that u;; > 0,Vi € B,Vj € G.

Now, we turn our attention to the polytope O defined in the previous section.
We have shown that there exists a vertex v = (y, p, Z) of the polytope O which
captures the equilibrium prices and an equilibrium money allocation. An impor-
tant property of v is that Vi € B, Vj € G, z;j(u;j¥; — p;) = 0. In other words,
every buyer spends money only on her optimal goods.

Definition 5. A vertex v = (y,p,Z) of O is called special if z;;j(wijy; — pj) =
0, VieB,Vjeqg.

It is easy to see that if v = (y,p, Z) is a special vertex, then it corresponds to
a solution for an instance of the Fisher market problem. Namely, let B = {i €
B |y #0},G =G and U’ be U restricted to B’ x G'. Further, for ¢ € B’, let
mj =3¢ #ij- Clearly, v corresponds to a solution of (U', m’).

3.1 Characterization of Special Vertices

Let v = (y,p, Z) be a special vertex of O. W.l.o.g., we may assume that all y;’s
and all p;’s are non-zero at v, because if p; = 0 for some j € G at v, then v is
a trivial point, i.e., all coordinates are zero, and if y; = 0 for some k € B at v,
then there is an adjacent vertex v/ = (y’,p’,Z’) to v, where p’ = p, Z' = Z,
Yl =i, Vi # k, and yj, = minjcg 5;]

Now we describe a combinatorial characterization of v. Towards this, we define
E(v) and F(v) as follows:

E(v)={(i,j) € BxG | uijy; =p;} and F(v) ={(i,j) € BxG | z; >0}

The elements in F(v) and F'(v) are called tight and non-zero edges respectively.
By definition, F'(v) C E(v). Let G(E(v), F'(v)) be the graph, whose vertices are
the connected components Cy,Cs,... of the bipartite graph (B,G, F(v)), and
there is an edge between C; and C; in G(E(v), F(v)), if there is at least one
edge in F(v) — F(v) between the corresponding components of (B,G, F(v)).

We say that buyer i belongs to a vertex C' of G(E(v), F(v)), if buyer 4 lies in
the corresponding component of (B,G, F'(v)). We call a connected component of
G as simply a component of G.

Definition 6. W.r.t. v = (y,p, Z),

— surplus of buyer i is defined to be the non-negative value m; — Ejeg Zij-

— a buyer is called a zero surplus buyer if its surplus is zero, otherwise it is
called a positive surplus buyer.

— a component of (B,G, F(v)) is called saturated if all buyers in that compo-
nent are zero surplus buyers, otherwise it is called unsaturated.
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— avertex of G(E(v), F(v)) is called saturated if the corresponding component
of (B,G, F(v)) is saturated, otherwise it is called unsaturated.

Theorem 7. v has following properties:

— FEvery component of (B,G, F(v)) contains at most one positive surplus buyer.
— Every component of G(E(v), F(v)) has at least one saturated vertex.

Proof. If a component of (B,G, F(v)) contains more than one positive surplus
buyers, then the z;;’s in that component may be modified such that the same set
of inequalities are tight before and after the modification, i.e., v is not a vertex.

Similarly, if a component of G(E(v), F(v)) does not have a saturated vertex,
then the p;’s in that component may be scaled uniformly such that the same set
of inequalities are tight before and after the scaling, hence a contradiction. 0O

Corollary 8. If (U, m) are algebraically independent, then

— the bipartite graph (B,G, E(v)) is a forest. Hence there is at most one edge
in E(v) — F(v) between any two components of (B, G, F(v)).
— every component of G(E(v), F(v)) has exactly one saturated vertex.

Lemma 9. Let v be a special vertex of O. Then

(i) (B,G,F(v)) is acyclic.
(i) If (U,m) are algebraically independent, then (B,G, E(v)) is acyclic and the
number of positive surplus buyers is |E(v) — F(v)].

Proof. Since v is a vertex of O, therefore (B, G, F(v)) is acyclic. Part (i7) follows
from Theorem [7] and Corollary [l O

3.2 Algorithm

In general, a simplex-like pivoting algorithm moves from a vertex to an adjacent
vertex such that the cost function increases. Therefore, we first describe the
AdjacentVertex procedure for the main convex program.

We assume that (U, m) are algebraically independen. The AdjacentVertex
procedure, given in Table[3] takes a special vertex v and outputs another special
vertex v’ adjacent to v, such that the cost function increases. If v is optimum,
then it outputs v’ = v. Otherwise, there is a component C' of G(E(v), F(v))
containing an unsaturated vertex. Clearly C' is a tree and there is exactly one
saturated vertex, say Cs, in C' (Corollary [§]). We consider C' as the rooted tree
with root Cs. We pick an edge e between Cs and an unsaturated vertex, say C,,
in C. Let (b;, g;) be the edge in E(v) — F(v) corresponding to e. There are two
cases depending on where b; belongs: Cs (Case 1) or C,, (Case 2).

Case 1: We get a new vertex v’, adjacent to v in O, by relaxing the inequal-
ity wi;y; < pj, which is tight at v. Let T, be the subtree of C' rooted at C,
and J,, be the set of goods in the components of (B, G, F(v)) corresponding to
the vertices of T),. v’ may also be obtained by increasing the prices of the goods in

! For the general (U, m), AdjacentVertex may be easily modified.
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Table 3. AdjacentVertex Procedure

AdjacentVertex(v)
v — v
if v is optimum then
return v’;
endif
C' «— component of G(E(v), F(v)) containing an unsaturated vertex;
Cs «— saturated vertex in C
C, < unsaturated vertex, adjacent to Cs, in C;
e «— edge between C;s and Cy;
(bi, g;) < edge in E(v) — F(v) corresponding to e;
if (bs, g;) is from Cs to Cy then
v’ « adjacent vertex obtained by relaxing u;;y; < pj;
else v’ +— adjacent vertex obtained by relaxing z;; > 0;
endif
return v’;

Table 4. Different cases for the new tight inequality

1. A non-zero edge (by, g;) becomes zero, i.e., zr > 0 becomes tight.

2. A non-tight edge (b, g:) becomes tight, i.e., ugiyr < p; becomes tight.

3. An unsaturated vertex in C' becomes saturated, i.e., Zleg 2zt < my becomes tight,
where buyer k is a positive surplus buyer w.r.t. v.

Ju uniformly and by modifying y;’s and z;;’s accordingly till a new inequality
becomes tight. Table ] lists the three possible cases for the new inequality.

Case 2: We get a new vertex v’, adjacent to v in O, by relaxing the inequality
z;j > 0, which is tight at v. Let J be the set of goods in the components of
(B,G, F(v)) corresponding to the vertices of C. v' may also be obtained by
increasing the prices of the goods in J uniformly and by modifying the y;’s
and z;;’s accordingly till a new inequality becomes tight. Table [ lists the three
possible cases for the new inequality.

Both the cases result in the new vertex v adjacent to v in O, where p as well
as y increase monotonically and > jegPj as well as > . py; increase strictly
going from v to v’. Hence the cost function value increases strictly going from v
to v’. Note that v’ is also a special vertex of O.

From the above discussion, the following lemma is straightforward.

Lemma 10. If a special vertex v is not optimum, then there exists an adjacent
special vertex v’ such that the value of cost function is more at v’ than v.

There may be many simplex-like paths in O to reach at the optimum vertex using
different pivoting rules. Algorithm 1 traces a particular simplex-like path in O,
where the pivoting rule is such that there is at most one buyer with a positive
surplus at every vertex on the path. In this algorithm, we do not consider the
components, which contain only a single buyer.
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Algorithm 1. A Simplex-like Pivoting Algorithm

U' — (uit, ..., uin); m’ — (ma);
v « special vertex corresponds to the solution of (U, m/’);
i — 2;
while i < m do
/* Note that the inequality y; > 0 is tight at v */
v «— vertex adjacent to v obtained by relaxing y; > 0;
while surplus of buyer ¢ w.r.t. v is non-zero do
v« AdjacentVertex(v);
endwhile
i — 1+ 1;
endwhile

There are two types of iterations of the inner while loop, one in which we relax
the inequality zx; > 0 (Type 1) and the other in which we relax the inequality
upyr < pi (Type 2) for some (by, g1).

Remark 11. Algorithm 1 provides a polyhedral interpretation to a sequential run
of the so called Basic Algorithm in [5], where buyers are added one at a time.

Lemma 12. Algorithm 1 takes at most (m + n * 2™ jterations.

Proof. Consider the iterations of Type 2 of the inner while loop, where we relax
the tight inequality ugiyx < p; for some (b, g;). Let CJ be the component con-
taining buyer k in the j** such iteration. Note that C7 is a saturated component.
Let BJ be the set of buyers and G be the set of goods in €7, and S7 = B/ UGY.
Since prices monotonically increase, therefore all S7’s are distinct. The total
number of distinct $7’s are clearly bounded by 2™*" and in every n iterations
of inner while loop, one iteration has to be of Type 2, therefore the number of
iterations of the algorithm is bounded by (m + n * 2m+"). g

Remark 13. A more refined bound is 2m+7+1,

4 Analysis

In this section, we describe the main idea of Algorithm 1 and show that it is
strongly polynomial for many special cases.

Main Idea of Algorithm 1. Consider the inner while loop for buyer ¢ and let
v be the current special vertex. The component C of G(E(v), F(v)) containing
buyer ¢ has exactly two vertices, one saturated (Cs) and one unsaturated (C),
and an edge (bg, g;) between them. Note that buyer ¢ belongs to Cy, and z; =
0. Now, consider the tree T in (B,G, E(v)) rooted at buyer i. The edges are
directed downwards, i.e., away from the root. We increase the prices of the
goods uniformly in 7" in order to decrease the surplus of buyer 7. This increases
the flow on the edges, which are from a buyer to a good (forward) and decreases
the flow on the edges, which are from a good to a buyer (backward).
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Therefore, when (by, g;) be such that g; € C,, and b, € Cs, we need to relax
uryr < p1, and when g; € Cs and by € C,, we need to relax zg; > 0 in order to
increase the prices. It is also clear that during the price increase, only backward
edges may be deleted. Moreover, since the prices of the goods in T increase,
buyers in T may become interested in the goods outside T, and it implies that
only forward edges may be added.

Theorem 14. Algorithm 1 is strongly polynomial when either the number of
buyers or goods is constant.

Proof. W.l.o.g., we assume that (U, m) are algebraically independen.

It is enough to show that the inner while loop takes a strongly polynomial
number of iterations for every buyer i. Let CV be the component of G(E(v), F (v)),
which contains buyer i in the j** iteration of the inner while loop for buyer i.
If surplus of buyer i is not zero, then C7 contains exactly one saturated vertex,
say C7, and one unsaturated vertex, say CJ. Note that buyer i belongs to C3.

Let (b, gi) be the edge between CJ and C?7, and P; be the path starting from
buyer ¢ and ending with the edge (bx, ;) in (B,G, E(v)).

Claim. All P;’s are distinct.

Proof. Recall that when the edge (by, g;) is such that buyer k belongs to C7, we
relax the inequality upyr < pi, and when buyer k belongs to CJ, we relax the
inequality zx; > 0. In other words, we add the edge (by, g;) when buyer k belongs
to CJ and delete it when buyer k belongs to C7.

We show that all P;’s, which end in a good, are distinct, and a similar argu-
ment may be worked out for the case when they end in a buyer. A path P; may
repeat only when the last edge, say e, is deleted and added again, and this is
possible only if some other edge more near to buyer ¢ than e in P; is deleted.
The induction on the length of P; proves the claim, because the edges between

buyer i and the goods never break (buyer i always lies in CY). g

Since the length of any P; is at most 2smin(m, n), therefore it is a constant when
either m or n is constant. Hence the total number of distinct P;’s are bounded
by a polynomial in either m (if n is constant) or n (if m is constant). Hence the
length of the simplex-like path in the Algorithm 1 is strongly polynomial when
either the number of buyers or goods is constant. a

Theorem 15. Algorithm 1 is strongly polynomial when Vi € B, Vj € G, u;; =
a¥ii | where 0 < k;; < poly(m,n) and a > 0.

Proof. We only need to show that for every buyer ¢, the inner while loop takes a
strongly polynomial number of iterations. Consider the iterations of inner while
loop for a buyer a. We monitor the values of 3;‘; ,Vb € G. Note that g‘; for a
good b remains same until both buyer a and good b are in the same component

2 For the general (U,m), a similar proof may be worked out.
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of G(E(v), F(v)), otherwise it strictly increases. Let C7 be the component of
G(E(v), F(v)), which contains buyer a in the j** iteration. If surplus of buyer
a is not zero, then C7 contains exactly one saturated vertex, say C?, and one
unsaturated vertex, say C7. Note that buyer a belongs to C4.

Let (bg, gi) be the edge between C7 and C?. There are two types of iterations,
one in which we relax the inequality zx; > 0 (Type 1) and the other in which
we relax the inequality uryr < p;r (Type 2). Let z; > 0 is relaxed in the jth
iteration,uand bg,gjl,b,»1 sy Gjr» biy g1 be the path from b, to g; in C7. Clearly,
Yo _  Wirgpee-Ukgy,

= (using the tight inequalities w;;y; < p;), and the value

D1 Uagy - Wip 5y, Ukl
of Z‘; strictly increases when iteration of Type 1 occurs. Now, we consider the
values of log,, g‘?, Vj € G. Clearly, these values monotonically increase when an
J
iteration of Type 1 occurs. Since for every j € G, the value of log, g‘? might be
J

at most n * poly(m,n), therefore for every buyer i, the number of iterations of
inner while loop is bounded by n?  poly(m,n). O

Theorem [I5] may be easily generalized to handle the case when some u;;’s are
zero. Many easy cases like all utilities are 0/1, non-zero utilities form a tree etc.
may also be easily shown to be strongly polynomial in Algorithm 1.

5 Experimental Results

In this section, we report the experimental results of Algorithm 1. We ran Al-
gorithm 1 on random instances of the Fisher market (i.e., (U, m) are generated
uniformly at random), while keeping the number of buyers and goods same (i.e.,
m = n). For each value of m € {4,8,12,16,20,24}, we ran 100 experiments.
Table [l summarizes the results in terms of the minimum (best), maximum
(worst) and mean (average) number of pivoting steps taken by Algorithm 1.

Table 5. Number of Pivoting Steps Taken by Algorithm 1

# buyers/goods 4 8 12 16 20 24
min 6 31 84 136 245 223
max 24 80 168 235 320 514

mean 12.5 50.9 113.1 186.9 279.8 408.9

Clearly, the number of steps seem to increase quadratically with the size of
instances, and even the worst case instance for each value of m requires fewer
than 2m? steps. Therefore, Algorithm 1 should have a much better bound.

6 Conclusion

We have presented a novel convex optimization formulation for the Fisher market
problem whose feasible set is a polytope and it is guaranteed that there is a vertex
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of this polytope which is an optimal solution. Exploiting this, we have developed
a simplex-like vertex-marching algorithm which runs in strongly polynomial time
for many special cases.

We feel that the strongly polynomial algorithm by Orlin [I1] is neither poly-
topal nor very intuitive. The algorithms, which are polytopal and simplex-like
are generally easier to understand, simpler to implement using standard math li-
braries, and run faster in practice. Therefore, an obvious open problem is to give
a strongly polynomial, simplex-like algorithm; even a polynomial bound will be
interesting. Another open problem is to give a linear programming formulation
that captures the equilibrium prices for the Fisher market. Therefore, it will be
interesting to construct a linear cost function on our polytope so that optimum
vertex gives the equilibrium prices.
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Abstract. Much work has been done on the computation of market
equilibria. However due to strategic play by buyers, it is not clear whether
these are actually observed in the market. Motivated by the observation
that a buyer may derive a better payoff by feigning a different utility
function and thereby manipulating the Fisher market equilibrium, we
formulate the Fisher market game in which buyers strategize by posing
different utility functions. We show that existence of a conflict-free al-
location is a necessary condition for the Nash equilibria (NE) and also
sufficient for the symmetric NE in this game. There are many NE with
very different payoffs, and the Fisher equilibrium payoff is captured at a
symmetric NE. We provide a complete polyhedral characterization of all
the NE for the two-buyer market game. Surprisingly, all the NE of this
game turn out to be symmetric and the corresponding payoffs constitute
a piecewise linear concave curve. We also study the correlated equilib-
ria of this game and show that third-party mediation does not help to
achieve a better payoff than NE payoffs.

1 Introduction

A fundamental market model was proposed by Walras in 1874 [2I]. Indepen-
dently, Fisher proposed a special case of this model in 1891 [3], where a market
comprises of a set of buyers and divisible goods. The money possessed by buyers
and the amount of each good is specified. The utility function of every buyer
is also given. The market equilibrium problem is to compute prices and alloca-
tion such that every buyer gets the highest utility bundle subject to her budget
constraint and that the market clears. Recently, much work has been done on
the computation of market equilibrium prices and allocation for various utility
functions, for example [GITUTTITS].

The payoff (i.e., happiness) of a buyer depends on the equilibrium allocation
and in turn on the utility functions and initial endowments of the buyers. A
natural question to ask is, can a buyer achieve a better payoff by feigning a
different utility function? It turns out that a buyer may indeed gain by feigning!
This observation motivates us to analyze the strategic behavior of buyers in the
Fisher market. We analyze here the linear utility case described below.

S. Kontogiannis, E. Koutsoupias, P.G. Spirakis (Eds.): SAGT 2010, LNCS 6386, pp. 30-[41] 2010.
© Springer-Verlag Berlin Heidelberg 2010
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Let B be the set of buyers, and G be the set of goods, and |B| = m,|G| = n.
Let m; be the money possessed by buyer i, and g; be the total quantity of
good j in the market. The utility function of buyer i is represented by the non-
negative utility tuple (u;1,...,un), where u;; is the payoff, she derives from
a unit amount of good j. Thus, if z;; is the amount of good j allocated to
buyer i, then the payoff she derives from her allocation is > jeg WijTij- Market
equilibrium or market clearing prices (p1, ..., pn), where p; is the price of good
Jj, and equilibrium allocation [x;;];eB,jeg satisty the following constraints:

— Market Clearing: The demand equals the supply of each good, i.e., Vj €
g, ZiGB xij = Qj, and VZ S B, Zjegpjfij = mM;.
— Optimal Goods: Every buyer buys only those goods, which give her the
maximum utility per unit of money, i.e., if z;; > 0 then ';” = maXkeg ‘;;:
J

In this market model, by scaling u;;’s appropriately, we may assume that the
quantity of every good is one unit, i.e., ¢; = 1, Vj € G. Equilibrium prices are
unique and the set of equilibrium allocations is a convex set [14]. The following
example illustrates a small market.

Ezxample 1. Consider a 2 buyers, 2 goods market with m; = my = 10, ¢; =
g2 = 1, (u11,u12) = (10,3) and (u21,u22) = (3,10). The equilibrium prices
of this market are (p1,p2) = (10,10) and the unique equilibrium allocation is
(x11, 12, T21,T22) = (1,0,0,1). The payoff of both the buyers is 10.

In the above market, does a buyer have a strategy to achieve a better payoff?
Yes indeed, buyer 1 can force price change by posing a different utility tuple,
and in turn gain. Suppose buyer 1 feigns her utility tuple as (5,15) instead of
(10, 3), then coincidentally, the equilibrium prices (p1, p2) are also (5,15). The
unique equilibrium allocation (z11, 212, 221, Z22) is (1, ;’,O, g) Now, the payoff
of buyer 1 is u11 * 1 4+ u1g % é = 11, and that of buyer 2 is ugo * 3 = 230. Note
that the payoffs are still calculated w.r.t. the true utility tuples.

This clearly shows that a buyer could gain by feigning a different utility tuple,
hence the Fisher market is susceptible to gaming by strategic buyers. Therefore,
the equilibrium prices w.r.t. the true utility tuples may not be the actual oper-
ating point of the market. The natural questions to investigate are: What are
the possible operating points of this market model under strategic behavior?
Can they be computed? Is there a preferred one? This motivates us to study
the Nash equilibria of the Fisher market game, where buyers are the players and
strategies are the utility tuples that they may pose.

Related work. Shapley and Shubik [I8] consider a market game for the ex-
change economy, where every good has a trading post, and the strategy of a
buyer is to bid (money) at each trading post. For each strategy profile, the
prices are determined naturally so that market clears and goods are allocated
accordingly, however agents may not get the optimal bundles. Many variants [2/8]
of this game have been extensively studied. Essentially, the goal is to design a
mechanism to implement Walrasian equilibrium (WE), i.e., to capture WE at a
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NE of the game. The strategy space of this game is tied to the implementation
of the market (in this case, trading posts). Our strategy space is the utility tuple
itself, and is independent of the market implementation. It is not clear that bids
of a buyer in the Shapley-Shubik game correspond to the feigned utility tuples.

In word auction markets as well, a similar study on strategic behavior of buy-
ers (advertisers) has been done [4J9I19].

Our contributions. We formulate the Fisher market game, the strategy sets
and the corresponding payoff function in Section @l Every (pure) strategy pro-
file defines a Fisher market, and therefore market equilibrium prices and a set
of equilibrium allocations. The payoff of a buyer may not be same across all
equilibrium allocations w.r.t. a strategy profile, as illustrated by Example [ in
Section 2l Furthermore, there may not exist an equilibrium allocation, which
gives the maximum possible payoffs to all the buyers. This behavior causes a
conflict of interest among buyers. A strategy profile is said to be conflict-free, if
there is an equilibrium allocation which gives the maximum possible payoffs to
all the buyers.

A strategy profile is called a Nash equilibrium strategy profile (NESP), if no
buyer can unilaterally deviate and get a better payoff. In Section B, we show
that all NESPs are conflict-free. Using the equilibrium prices, we associate a
bipartite graph to a strategy profile and show that this graph must satisfy certain
conditions when the corresponding strategy profile is a NESP.

Next, we define symmetric strategy profiles, where all buyers play the same
strategy. We show that a symmetric strategy profile is a NESP iff it is conflict-
free. It is interesting to note that a symmetric NESP can be constructed for a
given market game, whose payoff is the same as the Fisher payoff, i.e., payoff
when all buyers play truthfully. Example [[I] shows that all NESPs need not
be symmetric and the payoff w.r.t. a NESP need not be Pareto optimal (i.e.,
efficient). However, the Fisher payoff is always Pareto optimal (see First Theorem
of Welfare Economics [20]).

Characterization of all the NESPs seems difficult; even for markets with only
three buyers. We study two-buyer markets in Section[d and the main results are:

— All NESPs are symmetric and they are a union of at most 2n convex sets.

— The set of NESP payoffs constitute a piecewise linear concave curve and
all these payoffs are Pareto optimal. The strategizing on utilities has the
same effect as differing initial endowments (see Second Theorem of Welfare
Economics [20]).

— The third-party mediation does not help in this game.

Some interesting observations about two-buyer markets are:

— The buyer i gets the maximum payoff among all Nash equilibrium payoffs
when she imitates the other, i.e., when they play (u_;, u_;), where u_; is
the true utility tuple of the other buyer.

— There may exist NESPs, whose social welfare (i.e., sum of the payoffs of
both the buyers) is larger than that of the Fisher payoff (Example [T).
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— For a particular payoff tuple, there is a convex set of NESPs and hence
convex set of equilibrium prices. This motivates a seller to offer incentives to
the buyers to choose a particular NESP from this convex set, which fetches
the maximum price for her good. Example [I8 illustrates this behavior.

Most qualitative features of these markets may carry over to oligopolies, which
arise in numerous scenarios. For example, relationship between a few manufac-
turers of aircrafts or automobiles and many suppliers. Finally, we conclude in
Section [l that it is highly unlikely that buyers will act according to their true
utility tuples in Fisher markets and discuss some directions for further research.

2 The Fisher Market Game

As defined in the previous section, a linear Fisher market is defined by the tuple
(B, G, (u;)ic, m), where B is a set of buyers, G is a set of goods, u; = (uij5)jeg
is the true utility tuple of buyer i, and m = (m;);cp is the endowment vector.
We assume that |B| = m, |G| = n and the quantity of every good is one unit.

The Fisher market game is a one-shot non-cooperative game, where the buyers
are the players, and the strategy set is all possible utility tuples that they may
pose, i.e., S; = {(si1,8i2,- .., Sin) | 855 = 0, D 5cg 85 # 0}, Vi € B. Clearly,
the set of all strategy profiles is S = S x -+ x S,,. When a strategy profile
S = (81,...,8m) is played, where s; € S;, we treat s1,..., Sm as utility tuples
of buyers 1, ..., m respectively, and compute the equilibrium prices and a set of
equilibrium allocations w.r.t. S and m.

Further, using the equilibrium prices (p1, . .., pn), we generate the correspond-
ing solution graph G as follows: Let V(G) = BUG. Let b; be the node corre-
sponding to the buyer ¢, Vi € B and g; be the node corresponding to the good
J, Vj € G in G. We place an edge between b; and g; iff é” = maxgeg S““, and
call the edges of the solution graph as tight edges. Note that when the solutlon
graph is a forest, there is exactly one equilibrium allocation, however this is not
so, when it contains cycles. In the standard Fisher market (i.e., strategy of every
buyer is her true utility tuple), all equilibrium allocations give the same payoff
to a buyer. However, this is not so when buyers strategize on their utility tuples:
Different equilibrium allocations may not give the same payoff to a buyer. The
following example illustrates this scenario.

Ezample 2. Consider the Fisher market of Example [II Consider the strategy
profile S = ({1,19), (1,19)). Then, the equilibrium prices (p1, p2) are (1,19) and
the solution graph is a cycle. There are many equilibrium allocations and the
allocations [z11, %12, %13, 214] achieving the highest payoff for buyers 1 and 2
are [1, 199707 }8] and [0, ig, 1, 199] respectively. The payoffs corresponding to these
allocations are (11.42,5.26) and (1.58,7.74) respectively. Note that there is no
allocation, which gives the maximum possible payoff to both the buyers.

Let p(S) = (p1,-..,pn) be the equilibrium prices, G(S) be the solution graph,
and X(S) be the set of equilibrium allocations w.r.t. a strategy profile S.
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The payoff w.r.t. X € X(S) is defined as (u1(X),...,umn (X)), where u;(X) =
Zjeg Ui Tij - Let wZ(S) = maxxex(s) UL(X),VZ eB.

Definition 3. A strategy profile S is said to be conflict-free if X € X(S5),
st ui(X) = w;(S), Vi € B. Such an X is called a conflict-free allocation.

When a strategy profile S = (81,..., 8m) is not conflict-free, there is a conflict
of interest in selecting a particular allocation for the play. If a buyer, say k,
does not get the same payoff from all the equilibrium allocations, i.e., 3X €
X(S), urp(X) < wg(S), then we show that for every 6 > 0, there exists a strategy
profile 8" = (s},...,s).), where s; = s;, Vi # k, such that uy(X') > wi(S5) —

0,vX' € X(S") (Section Bl). The following example illustrates the same.

Ezample J. In Example [ for 6 = 0.1, consider S’ = ({1.1,18.9), (1,19)), i.e.,
buyer 1 deviates slightly from S. Then, p(S’) = (1.1,18.9), and G(S’) is a tree;
the cycle of Example[2is broken. Hence there is a unique equilibrium allocation,
and wq(9') = 11.41, wy(S") = 5.29.

Therefore, if a strategy profile S is not conflict-free, then for every choice of
allocation X € X(5) to decide the payoff, there is a buyer who may deviate
and assure herself a better payoff. In other words, when S is not conflict-free,
there is no way to choose an allocation X from X(S) acceptable to all the buyers.
This suggests that only conflict-free strategies are interesting. Therefore, we may
define the payoff function P; : S — R for each player ¢ € B as follows:

VS eSS, Pi(S) = u;i(X), where X = argmaXHui(X’). (1)
X/EX(S) (o

Note that the payoff functions are well-defined and when S is conflict-free,
Pi(S) = w;(S), Vi€ B.

3 Nash Equilibria: A Characterization

In this section, we prove some necessary conditions for a strategy profile to
be a NESP of the Fisher market game defined in the previous section. Nash
equilibrium [I3] is a solution concept for games with two or more rational players.
When a strategy profile is a NESP, no player benefits by changing her strategy
unilaterally.

For technical convenience, we assume that u;; > 0 and s;; > 0, Vi € B,Vj €
G. The boundary cases may be easily handled separately. Note that if S =
(81,---,8m) is a NESP then S’ = (a181,...,@mSm), Where aq,...,am, > 0,
is also a NESP. Therefore, w.l.o.g. we consider only the normalized strategies
8i = (Si1y- .-, Sin), Where Ejeg Sij = 7 Vi € B. As mentioned in the previous
section, the true utility tuple of buyer i is (u1,. .., u;,). For convenience, we
may assume that > . ;u;; =1and 3, gm; =1 (w.lo.g.).

! For simplicity, we do use non-normalized strategy profiles in the examples.
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We show that all NESPs are conflict-free. However, not all conflict-free strate-
gies are NESPs. A symmetric strategy profile, where all players play the same
strategy (i.e., Vi,j € B, s; = s;), is a NESP iff it is conflict-free. If a strategy
profile S is not conflict-free, then there is a buyer a such that P,(S) < w(S).
The ConflictRemoval procedure in the next section describes how she may de-
viate and assure herself payoff almost equal to w,(.5).

3.1 Conflict Removal Procedure

Definition 5. Let S be a strategy profile, X € X(S) be an allocation, and P =
V1,02, 03, ... be a path in G(S). P is called an alternating path w.r.t. X, if the
allocation on the edges at odd positions is non-zero, i.e., Tyy, ,vy; > 0,Vi > 1.
The edges with non-zero allocation are called non-zero edges.

Table 1. Conflict Removal Procedure

ConflictRemoval(S, ba, d)

while b, belongs to a cycle in G(S) do
J — {j € G | the edge (ba, g;) belongs to a cycle in G(S)};
gp — argmax "7

jeg P

X « an allocation in X(.S) such that u.(X) = wa(S) and zqp is maximum;
S «— Perturbation(S, X, ba, gs, 2);

endwhile

return S;

Perturbation(S, X, ba, gs, )
S — S
if (ba, g») does not belong to a cycle in G(S) then
return S';
endif
J1 < {v | there is an alternating path from b, to v in G(S5)
J2 « {v | there is an alternating path from g to v in G(S)
(1, opn) = P(S); L= Dy cp Pii T DX e, Pis
W.r.t. a, define prices of goods to be
Vg; € Ju: (L—a)pj; Vg; € Jo: (L4 )pss Vg € G\ (1 UJ2) : pjs
Raise « infinitesimally starting from 0 such that none of the three events occur:
Event 1: a new edge becomes tight;
Event 2: a non-zero edge becomes zero;

Event 3: payoff of buyer a becomes uq(X) — ;
) (+ley o,
Sab < Sab (1_q) i Sa T Y6 aj

(ba, gp) wrt. X}
b

\
\ (ba,gp) wrt. X};

)

return S’;

The ConflictRemoval procedure in Table[I] takes a strategy profile S, a buyer
a and a positive number J, and outputs another strategy profile S’, where s, =
si, Vi # a such that VX' € X(57), uq(X’) > we(S) — 0. The idea is that if a
buyer, say a, does not belong to any cycle in the solution graph of a strategy
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profile S, then u,(X) = w,(S), VX € X(S). The procedure essentially breaks
all the cycles containing b, in G(S) using the Perturbation procedure iteratively
such that the payoff of buyer a does not decrease by more than 4.

The Perturbation procedure takes a strategy profile S, a buyer a, a good b,
an allocation X € X(S5), where x4, is maximum among all allocations in X(S)
and a positive number 7, and outputs another strategy profile S’ such that
s, = 83, Vi # a and wa(S") > ue(X) — 7. It essentially breaks all the cycles
containing the edge (bq, g») in G(S5).

A detailed explanation of both the procedures is given in [I]. In the next
theorem, we use the ConflictRemoval procedure to show that all the NESPs in

the Fisher market game are conflict-free.
Theorem 6. If S is a NESP, then

(i) 3X € X(S) such that u;(X) = w;(S),Vi € B, i.e., S is conflict-free.
(i1) the degree of every good in G(S) is at least 2.

(i11) for every buyer i € B, 3k; € K; s.t. x;,, > 0, where K; = {j € G | 1;] =
J
maxgeg 1;7: b (p1, .. pn) = p(S) and [zi5] is a conflict-free allocation.

Proof. Suppose there does not exist an allocation X € X(S) such that u;(X) =
w;(S), Vi € B, then there is a buyer k € B, such that Px(S) < wi(S). Clearly,
buyer k£ has a deviating strategy (apply ConflictRemoval on the input tuple
(S, k,d), where 0 < § < (wg(S) — Px(S))), which is a contradiction.

For part (ii), if a good b is connected to exactly one buyer, say a, in G(S5),
then buyer ¢ may gain by reducing s, so that price of good b decreases and
prices of all other goods increase by the same factor.

For part (iii), if there exists a buyer i such that xz;;, = 0, Vk; € K;, then she
may gain by increasing the utility for a good in K;. O

The following example shows that the above conditions are not sufficient.

Ezample 7. Consider a market with 3 buyers and 2 goods, where m = (50, 100,
50), w1 = (2,0.1),u2 = (4,9), and ug = (0.1,2). Consider the strategy profile
S = (u1,u2,us) given by the true utility tuples. The payoff tuple w.r.t. S is
(1.63,6.5,0.72). Tt satisfies all the necessary conditions in the above theorem,
however S is not a NESP because buyer 2 has a deviating strategy s = (2,3)
and the payoff w.r.t. strategy profile (s, s}, s3) is (1.25,6.75,0.83).

3.2 Symmetric and Asymmetric NESPs

Recall that a strategy profile S = (s1,. .., Sxm, ) is said to be a symmetric strategy
profile if 81 = -+ = s, i.e., all buyers play the same strategy.

Proposition 8. A symmetric strategy profile S is a NESP iff it is conflict-free.

Proof. (=) is easy (Theorem [l). For (<), suppose a buyer ¢ may deviate and
gain, then the prices have to be changed. In that case, all buyers except buyer ¢
will be connected to only those goods, whose prices are decreased. This leads to
a contradiction (refer to [1] for details). O
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Let ST = [s;5] be a strategy profile, where s;; = u;;,Vi € B,Vj € G, i.e., true
utility functions. All allocations in X(S/) give the same payoff to the buyers (i.e.,
Vi € B,ui(X) = wi(S7), VX € X(51)), and we define Fisher payoff (u!, ... uf,)
to be the payoff derived when all buyers play truthfully.

Corollary 9. A symmetric NESP can be constructed, whose payoff is the same
as the Fisher payoff.

Proof. Let S = (s,...,s) be a strategy profile, where s = p(S7). Clearly S is a
symmetric NESP, whose payoff is the same as the Fisher payoff (refer to [I] for
details). O

Remark 10. The payoff w.r.t. a symmetric NESP is always Pareto optimal. For
a Fisher market game, there is exactly one symmetric NESP iff the degree of
every good in G(S7) is at least two [10].

The characterization of all the NESPs for the general market game seems hard;
even for markets with only three buyers. The following example illustrates an
asymmetric NESP, whose payoff is not Pareto optimal.

Ezample 11. Consider a market with 3 buyers and 2 goods, where m = (50, 100,
50), w1 = (2,3),u2 = (4,9), and uz = (2,3). Consider the two strategy pro-
files given by S; = (s1,82,83) and Sy = (s,s,8), where s31 = (2,0.1),82 =
(2,3),83 = (0.1,3), and s = (2,3). The payoff tuples w.r.t. S; and Sy are
(1.25,6.75,1.25) and (1.25,7.5,1.25) respectively. Note that both S; and Sy are
NESPs for the above market (refer to [1] for details).

4 The Two-Buyer Markets

A two-buyer market consists of two buyers and a number of goods. These markets
arise in numerous scenarios. The two firms in a duopoly may be considered as
the two buyers with a similar requirements to fulfill from a large number of
suppliers, for example, relationship between two big automotive companies with
their suppliers.

In this section, we study two-buyer market game and provide a complete
polyhedral characterization of NESPs, all of which turn out to be symmetric.
Next, we study how the payoffs of the two buyers change with varying NESPs
and show that these payoffs constitute a piecewise linear concave curve. For a
particular payoff tuple on this curve, there is a convex set of NESPs, hence a
convex set of equilibrium prices, which leads to a different class of non-market
behavior such as incentives. Finally, we study the correlated equilibria of this
game and show that third-party mediation does not help to achieve better payoffs
than any of the NESPs.

Lemma 12. All NESPs for a two-buyer market game are symmetric.

Proof. If a NESP S = (s1, 82) is not symmetric, then G(S) is not a complete
bipartite graph. Therefore there is a good, which is exclusively bought by a
buyer, which is a contradiction (Theorem [0 part (ii)). O
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4.1 Polyhedral Characterization of NESPs

In this section, we compute all the NESPs of a Fisher market game with two

buyers. Henceforth we assume that the goods are so ordered that Z;J > Z;E’ii; ,
J J

for j = 1,...,n — 1. Chakrabarty et al. [5] also use such an ordering to design
an algorithm for the linear Fisher market with two agents. Let S = (s, s) be
a NESP, where s = (s1,...,8,) and (p1,...,pn) = p(S). The graph G(S) is
a complete bipartite graph. Since m; + mo = 1 and Z;—;l s; = 1, we have
p; = s;,¥j € G. In a conflict-free allocation X € X(S5), if z1; > 0 and z9; > 0,
then clearly “!i > "' apd “2i < "7
Pi pj Pi pj

Definition 13. An allocation X = [z;;] is said to be a nice allocation, if it
satisfies the property: x1; > 0 and x9; >0 = i < j.

The main property of a nice allocation is that if we consider the goods in order,
then from left to right, goods get allocated first to buyer 1 and then to buyer 2
exclusively, however they may share at most one good in between. Note that a
symmetric strategy profile has a unique nice allocation.

Lemma 14. FEvery NESP has a unique conflict-free nice allocation.

Proof. The idea is to convert a conflict-free allocation into a nice allocation
through an exchange s.t. payoff remains same (refer to [I] for details). O

The non-zero edges in a nice allocation either form a tree or a forest containing
two trees. We use the properties of nice allocations and NESPs to give the
polyhedral characterization of all the NESPs. The convex sets By for all 1 < k <
n, as given in Table Bl correspond to all possible conflict-free nice allocations,
where non-zero edges form a tree, and the convex sets B), forall1 <k <n-—1, as
given in Table Bl correspond to all possible conflict-free nice allocations, where
non-zero edges form a forest. Let B = U'_, ByUpZ{ By and SVE = {(a, @) | a =

(ai,...,an) € B}. Note that SNV¥ is a connected set.
Table 2. By Table 3. B,
Zf;ll a; < my Zk o =m
g1 Qi < M2 s i=1 O; = m1
Yor i =m1+ma i=h1 70 702 .
'LL1jO(¢*U117;Oéj<O Vi<k,Vj>k‘ uljai_uliajgo VZSk’,V]ZkJ-i—l
uzicy — ugjo; < 0 Vi< k> k uzioy —uzje; SO0 Vi< k,Vj 2 k41
o >0 vieg @20 Vieg

Lemma 15. A strategy profile S is a NESP iff S € SNE.

Proof. (<) is easy by the construction and Proposition8 For the other direction,
we know that every NESP has a conflict-free nice allocation (Lemma [I4]), and
B corresponds to all possible conflict-free nice allocations. a

2 In both the tables a;’s may be treated as price variables.
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4.2 The Payoff Curve

In this section, we consider the payoffs obtained by both the players at various
NESPs. Recall that whenever a strategy profile S is a NESP, P;(S) = w;(S), Vi €
B. Henceforth, we use w;(S) as the payoff of buyer i for the NESP S. Let
F = {(wi(S),w2(S)) | S € SNF} be the set of all possible NESP payoff tuples.

Let X be the set of all nice allocations, and H = {(u1(X),u2(X)) | X € X}.
For o € [0,1], let t(a) = ((S1,---,5n), (S1,---,Sn)), where §; = u1;+a(uz; —u1,),
and G = {(w1(8), w2(9)) | S = t(a),a € 0,1]}.

Proposition 16. F is a piecewise linear concave (PLC) curve.
Proof. The proof is based on the following steps (refer to [I] for details).

1. His a PLC curve with (0,1) and (1,0) as the end points.

2. Va €[0,1], t(a) € SV, then clearly G C H. Since the nice allocation w.r.t.
t(«) changes continuously as a moves from 0 to 1, so we may conclude that G
is a PLC curve with the end points (wq(S!), wo(S)) and (wy(S?), w2(S?)),
where S! = ¢(0) and S? = t(1).

3. F=G. |

The next example demonstrates the payoff curve for a small market game.

Ezxample 17. Consider a market with 3
goods and 2 buyers, where m = (7,3),
uy = (6,2,2), and uz = (0.5,2.5,7). The
payoff curve for this game is shown in the
figure. The first and the second line seg-
ment of the curve correspond to the shar-
ing of good 2 and 3 respectively. The pay- L,
offs corresponding to the boundary NESPs (9.14, 3)
St = t(0) and S? = t(1) are (7,8.25) and
(9.14, 3) respectively. Payoff of buyer 1
Furthermore, the Fisher payoff (8,7) may be achieved by a NESP ¢(0.2). Note
that in this example the social welfare (i.e., sum of the payoffs of both the buyers)
from the Fisher payoff (15) is lower than that of the NESP St (15.25).

(7,8.25)

Ly (8,7) Fisher Payoff

Payoff of buyer 2

4.3 Incentives

For a fixed payoff tuple on the curve I, there is a convex set of NESPs and hence
a convex set of prices, giving the same payoffs to the buyers, and these may be
computed using the similar inequalities as defined in Tables 2l and Bl This leads
to a different class of behavior, i.e., motivation for a seller to offer incentives to
the buyers to choose a particular NESP from this convex set, which fetches the
maximum price for her good. The following example illustrates this possibility.

Ezample 18. Consider a market with 2 buyers and 4 goods, where m = (10, 10),
ur = (4,3,2,1), and us = (1,2,3,4). Consider the two NESPs given by S; =
(s1,81) and Sy = (s2, s2), where 81 = <230, 230, 130, 130> and 89 = <230, 230, g, 131>.
Both S; and S» gives the payoff (5.5,8), however the prices are different, i.e.,
p(S1) = (2307 230, 1307 130> and p(S3) = (230, 230, g, 131>. Clearly in Ss, good 3 is
penalized and good 4 is rewarded (compared to Sy).
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4.4 Correlated Equilibria

We have seen in Section that the two-buyer market game has a continuum
of Nash Equilibria, with very different and conflicting payoffs. This makes it
difficult to predict how a particular game will actually play out in practice, and
if there is a different solution concept which may yield an outcome liked by both
the players.

We examine the correlated equilibria framework as a possibility. Recall that
according to the correlated equilibria, the mediator decides and declares a proba-
bility distribution 7 on all possible pure strategy profiles (s1, 82) € S1 xSy before-
hand. During the play, she suggests what strategy to play to each player privately,
and no player benefits by deviating from the advised strategy. The question we
ask: Is there a correlated equilibrium 7 such that the payoff w.r.t. w lies above

. . . ; u i .
the curve H? We continue with our assumption that Z;J > u;]ii; ,Vi < n.
J J

Lemma 19. For any strategy profile S = (81, 82), for every allocation X €
X(S), there exists a point (x1,x2) on H such that x1 > u1(X) and x2 > uz(X).

Proof. Any allocation X may be converted to a nice allocation through an ex-
change such that no buyer worse off (refer to [1] for details). O

Corollary 20. The correlated equilibrium does not give better payoff than any
NE payoff to all the buyers.

Remark 21. [10] extends this result for the general Fisher market game.

5 Conclusion

The main conclusion of the paper is that Fisher markets in practice will rarely
be played with true utility functions. In fact, the utilities employed will usually
be a mixture of a player’s own utilities and her conjecture on the other player’s
true utilities. Moreover, there seems to be no third-party mediation which will
induce players to play according to their true utilities so that the true Fisher
market equilibrium may be observed. Further, any notion of market equilibrium
should examine this aspect of players strategizing on their utilities. This poses
two questions: (i) is there a mechanism which will induce players into revealing
their true utilities? and (ii) how does this mechanism reconcile with the ”invisible
hand” of the market? The strategic behavior of agents and the question whether
true preferences may ever be revealed, has been of intense study in economics
[I2/T720]. The main point of departure for this paper is that buyers strategize
directly on utilities rather than market implementation specifics, like trading
posts and bundles. Hopefully, some of these analysis will lead us to a more
effective computational model for markets.

On the technical side, the obvious next question is to completely characterize
the NESPs for the general Fisher market game. We assumed the utility functions
of the buyers to be linear, however Fisher market is gameable for the other class
of utility functions as well. It will be interesting to do a similar analysis for more
general utility functions.
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Partition Equilibrium Always Exists
in Resource Selection Games*

Elliot Anshelevich, Bugra Caskurlu, and Ameya Hate

Department of Computer Science, Rensselaer Polytechnic Institute, Troy, NY

Abstract. We consider the existence of Partition Equilibrium in Re-
source Selection Games. Super-strong equilibrium, where no subset of
players has an incentive to change their strategies collectively, does not
always exist in such games. We show, however, that partition equilib-
rium (introduced in [4] to model coalitions arising in a social context)
always exists in general resource selection games, as well as how to com-
pute it efficiently. In a partition equilibrium, the set of players has a
fixed partition into coalitions, and the only deviations considered are by
coalitions that are sets in this partition. Our algorithm to compute a
partition equilibrium in any resource selection game (i.e., load balanc-
ing game) settles the open question from [4] about existence of partition
equilibrium in general resource selection games. Moreover, we show how
to always find a partition equilibrium which is also a Nash equilibrium.
This implies that in resource selection games, we do not need to sacrifice
the stability of individual players when forming solutions stable against
coalitional deviations. In addition, while super-strong equilibrium may
not exist in resource selection games, we show that its existence can be
decided efficiently, and how to find one if it exists.

1 Introduction

In multi-agent systems, it is common to assume that the agents will change their
existing behavior if they can reduce their cost by doing so. This assumption is
at the heart of the study of Nash equilibrium in various settings. The concept
of Nash equilibrium, however, becomes relevant only in scenarios where agents
cannot form coalitions, and change their behavior as a group. The Strong Equi-
librium [I] solution concept, where any subset of agents can form a coalition and
deviate together if it is beneficial to all of them, addresses the weaknesses of the
Nash equilibrium solution concept for the settings where players can form coali-
tions. A strong equilibrium represents the scenario where any group of players
could form a coalition, and everyone has to strictly benefit from a deviation. In
this paper, we relax these assumptions, and consider the cases where only some
of the subsets of players could group themselves together into a deviating coali-
tion, and where not everyone in a coalition has to strictly improve their utility
in order to deviate.

* This work supported in part by NSF CCF-0914782.

S. Kontogiannis, E. Koutsoupias, P.G. Spirakis (Eds.): SAGT 2010, LNCS 6386, pp. 42-[53] 2010.
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We study these solution concepts in the context of Resource Selection Games
(RSGs). RSGs model a wide range of scenarios, where a set of players are select-
ing exactly one of various resources, with the cost of using a resource depending
on the type of the resource, as well as the number of players selecting this partic-
ular resource. They present a framework that can be used to model the problems
of various communities like operations research, economics, computing systems,
transportation, and communication networks. The atomic selfish routing game
[206T3IT4] on parallel link networks and selfish machine assignment [3U5IT0JT4]
for identical jobs are among various problems modeled as RSGs in the algorith-
mic game theory community. RSGs fall into the class of potential games [T1J12]
for which existence of a pure Nash equilibrium is guaranteed. Holzman and Law-
Yone [8[9] proved the existence of strong equilibrium in RSGs as well. However,
Super-Strong Equilibrium (see below) is not guaranteed to exist in RSGs, which
led Feldman and Tennenholtz [4] to define a concept of Partition Equilibrium and
study its existence in the context of Resource Selection Games. In this paper,
we greatly extend their results by showing the existence of partition equilibrium
in every Resource Selection Game, as well as how to compute it.

1.1 Related Solution Concepts

The Strong Equilibrium (SE) solution concept assumes a coalition will deviate
only if the deviation is strictly profitable to all members of the coalition. In a
strong equilibrium, no subset of players is able to deviate with every player in
the group strictly improving their utility.

Super-Strong Equilibrium (SSE) considers weakly-profitable deviations, where
a coalition will deviate provided that no member of the coalition becomes worse
off, and at least one member of the coalition strictly benefits. A super-strong
equilibrium is a solution where no subset of players has such a deviation. This
solution concept makes more sense in many settings, especially if agents will
somewhat care about the utility of other agents (which perfectly make sense if
the agents are friends, colleagues, family members). While strong equilibrium
is guaranteed to exist in RSGs, there are RSG instances where super-strong
equilibrium may not exist, even with 2 identical machines and 3 players [4].
Additionally, if we consider the formation of player coalitions as arising from a
social context (i.e., a group of friends decide to form a coalition together), then
the assumption that any subset of players can form a coalition is quite strong.

Partition Equilibrium was first defined in [4] as an attempt to model coali-
tions that arise from a social context. In this setting, the specification of the
game contains a fixed partition T over the set of players. This partition divides
the players into non-overlapping coalitions. In this solution concept, the only
permissible deviations are the ones where a coalition is one of the sets in the
fixed partition 7. A solution is a stable solution if no coalition has an weakly-
profitable deviation, i.e., a deviation where at least one member of the coalition
strictly benefits and no member of the coalition becomes worse off. [4] called
such a stable solution a T-SSFE, since a partition equilibrium is a super-strong
equilibrium, but with the only coalitions that are allowed to deviate being the
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sets of partition T'. Also observe that unlike strong equilibrium or super-strong
equilibrium, partition equilibrium solutions are not a subset of Nash equilibrium
solutions.

Feldman and Tennenholtz [4] studied the existence of partition equilibrium
in the context of resource selection games and proved that partition equilibrium
exists in the following special cases:

— All the resources are identical, i.e., they share the same latency function, or
— There are only 2 resources in the system, or
— Each coalition is composed of 1 or 2 players.

Note that partition equilibrium is a solution concept in a non-transferable utility
game, i.e., money transfers among the players are not allowed. The Collusion
Equilibrium solution concept [7l0] is the analogue of partition equilibrium in
transferable utility games. In this solution concept, there is also a fixed partition
over the players which forms the non-overlapping coalitions. The only difference
is that money transfers among the players are permitted, and therefore a devi-
ation is an improving deviation if it reduces the total cost of the players in the
coalition. Observe that collusion equilibrium is a stronger solution concept in
the sense that an allocation of players to resources that constitutes a collusion
equilibrium (no coalition can reduce its total cost by deviating) is also a parti-
tion equilibrium allocation but not vice versa. Hayrapetyan, Tardos and Wexler
[7] studied the existence and computation of collusion equilibrium in the context
of resource selection games. They proved the existence of collusion equilibrium
(and therefore, partition equilibrium) in the special case where the latency func-
tions of the resources are convex. Their proof is constructive, i.e., they give an
algorithm that produces a collusion equilibrium solution which may not be a
Nash equilibrium solution.

1.2 Our Results

Our main result is the proof of existence (and efficient computation) of an allo-
cation A of players to resources such that A is both a partition equilibrium and
a Nash equilibrium allocation. This result holds for general resource allocation
games, with no assumptions about the latency functions of different resources
(except them being increasing), on the size of the coalitions, or on the number of
machines. This resolves an open question from [4] about the existence of parti-
tion equilibrium for general RSGs. Moreover, our results provide the interesting
insight that for every partition 7' there exists a solution where no coalition of
T would gain by deviating (i.e., it is a T-SSE), and no single player would gain
by deviating (i.e., it is a Nash equilibrium). This implies that we do not need to
sacrifice the stability of individual players when forming solutions stable against
coalitional deviations.

In Section 2] we present a formal definition of resource selection games and
give a complete characterization of Nash equilibrium solutions for these games.
In Section Bl we give a set of sufficient conditions for coalitions such that if a
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coalition satisfies the given conditions on a Nash equilibrium allocation, then
that coalition does not have an improving deviation. In Section [ we give an
algorithm that produces a Nash equilibrium allocation of players to resources
such that all coalitions satisfy the sufficient conditions given in Section [l In
Section Bl we show that for any resource selection game instance, the existence of
super-strong equilibrium is efficiently decidable, and if super-strong equilibrium
exists, then we can compute one efficiently.

In summary, this paper shows that we can always find a SSE if one exists, but
even for games which do not admit a SSE, we can find a solution that is stable
for any set in a given partition 7', as well as for any individual player.

2 Model and Preliminaries

We now formally define the resource selection game. We have n players (jobs)
and m resources (machines). The strategy of each player is to select exactly one
of the m machines. Each machine ¢ has a strictly increasing latency function
fi(n;) which only depends on the number of players n; that select machine i.
The cost of each player that selected machine i is f;(n;).

In this paper we will consider partition equilibrium and super-strong equi-
librium (SSE), both of which are solution concepts involving stability against
coalitional deviations. Specifically, by an improving deviation by a coalition of
players C, we will mean a weakly-profitable deviation, i.e., a deviation where no
player in C increases their cost, and at least one player of C strictly decreases
their cost.

A SSE is an allocation of jobs to machines, so that no subset of jobs has an
improving deviation. As shown in [4], a SSE does not always exist, although
a strong equilibrium (where a deviation will only occur if every member of a
coalition strictly profits) always exists in resource selection games [8[9].

Now suppose that we have a fixed partition T" = Ti,...,T, over the set of
players such that T; N T; = 0, i.e., the sets are not overlapping. Each set T;
represents a coalition of players that are willing to deviate as a group. Then,
a partition equilibrium or T-SSE is an allocation of jobs to machines such that
no set of jobs in partition 7" has an improving deviation. Then, it is clear that
a SSE is also a T-SSE for every partition 7', as well as a Nash equilibrium. A
T-SSE, on the other hand, is not necessarily a Nash equilibrium.

2.1 Nash Equilibrium

Since we are going to show that the existence of an allocation that is a T-SSE and
a Nash equilibrium, we first give a complete characterization of Nash equilibrium
solutions.

Let u be the minimum makespan of our system, i.e., the minimum value of
max; f;(n;) that can be achieved for any allocation of jobs to machines. Notice
that since the latency of a machine depends only on the number of jobs assigned
to this machine, then u is easily computable using a greedy algorithm. We classify
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the machines into two groups. A resource i is called a ’type 1’ resource if there
exists a positive integer z such that f;(z) = u. In other words, a resource is a
‘type 1’ resource if it can attain a latency of u. We say that a resource i is a 'type
2’ resource if it cannot attain a latency of u, i.e., there is no positive integer z
such that f;(z) = u.

For each machine 7, define m; as the maximum number of jobs a machine can
accept while ¢ attains a latency at most u, i.e., m; = max.{fi(z) < u}.

Proposition 1. An allocation A of jobs onto machines is a Nash equilibrium if
and only if each type 2 machine i is allocated exactly m; jobs and each type 1
machine i is allocated either m; or m; — 1 jobs, with at least one type 1 machine
1 allocated exactly m; jobs.

Proof. if: Note that when a job deviates it has to move to another machine,
thereby increasing the number of jobs on that machine. If the number of jobs on
any machine increases, then that machine will experience a latency of at least w.
Since all jobs are currently experiencing a cost of at most u, the latency of any
job after moving to a different machine will not decrease. This proves that if all
the above conditions are satisfied then the allocation is a Nash equilibrium.

only if: If the makespan of a solution is more than u, say «, then this means
that some machine ¢ has more than m; jobs on it. This implies that there exists
a machine j that has less than m; jobs on it. Then by transferring a job from
machine i to j we can reduce the latency faced by that job from a to at most
u. Hence a Nash equilibrium will always have a makespan of u. Also if any type
2 machine has less than m; jobs, or a type 1 machine has less than m; — 1 jobs
on it, then by moving a job that faces a latency of u to this machine, we can
reduce its latency. It is trivial to see that any type 2 machine will not have more
than m; jobs on it since that will increase the makespan to more than u. Hence
any such allocation will not form a Nash equilibrium. This proves that in order
for an allocation to be a Nash equilibrium, all the above conditions must be
fulfilled.

By Proposition [Il some type 1 machines i are allocated m; jobs and therefore
the jobs on them are experiencing a cost of u, and some type 1 machines are
(possibly) allocated m; — 1 jobs and the jobs on those machines are experiencing
a cost strictly less than u. Given a Nash equilibrium solution, we use the term
high machine to refer to a type 1 machine 7 that has m; jobs and use H to
denote this set of machines. We use the term low machine to refer to all other
type 1 machines and use L to denote this set of machines throughout the paper.
We use R to denote the set of type 2 machines.

Given a game instance (i.e., the set of machines with their latency functions,
the set of players, and the partition specified on it), the set of type 1 and type
2 machines can be readily decided, i.e., the same set of machines will be type
1 machines and the same set of machines will be type 2 machines in any Nash
equilibrium allocation A. However, the splitting of type 1 machines into high
machines H and low machines L depends on the Nash equilibrium solution
selected. Let A and A’ be two different Nash equilibrium allocations and let
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H,H' and L,L’' be the corresponding high and low machines for these Nash
equilibrium allocations. Observe that |H| = |H'| (and therefore |L| = |L'|) even
though H and H' (and therefore L and L’) may be different sets of machines.
The number of high machines in any Nash equilibrium will be same.

3 Sufficient Conditions for Stability

In this paper, we want to construct a Nash equilibrium solution that is also
a partition equilibrium for any given partition of the players. So, we want to
construct a Nash equilibrium allocation such that none of the coalitions has an
improving deviation. Given a Nash equilibrium allocation A, whether a coalition
Tr has an improving deviation or not depends on the number of jobs of this
coalition allocated to each machine. In this section, we will give a set of sufficient
conditions for a coalition T} not to have an improving deviation. Observe that
if all the coalitions satisfy these sufficient conditions then none of the coalitions
will have an improving deviation, which implies that the allocation A is also a
partition equilibrium. For a type 1 machine i, we use [; to denote f;(m; — 1),
i.e., the latency that it would experience if it were a low machine.

Following lemmas, the proofs which are not included due to lack of space, will
help in finding the sufficient conditions for stability:

Lemma 1. If the number of jobs on a machine k is the same before and after
an improving deviation, then there exists an equivalent improving deviation (i.e.,
with the same number of jobs on each machine) where no jobs move to or from
machine k.

Lemma 2. If a coalition T}, that has 0 or 1 jobs on a high machine ¢ in a Nash
equilibrium allocation A, has an improving deviation D, then Ty has another
improving deviation D', where no jobs move to or from 1.

Theorem 1. Given a Nash equilibrium allocation A and a coalition Ty, let x;
denote the number of jobs of the coalition Ty, allocated to machine i in A. Then
coalition Ty, does mot have an improving deviation if for every high machine i
such that x; > 2 the following conditions are satisfied:

— for every low machine j such that l; > l;, we have that x; > z; and
— for every low machine j such that l; <1;, we have that x; > x; — 1.

Proof. For the purpose of contradiction, assume there exists a coalition T} that
satisfies all the conditions and yet has an improving deviation D. Let A’ denote
the allocation of jobs to machines if coalition T} takes its improving deviation
D, and z be the number of jobs T}, has on machine 7 in allocation A’. Since the
allocation of the jobs of all coalitions except T} are the same in both A and A’,
the change in the number of jobs on any machine 7 is as much as the change in
the number of jobs coalition T} has on . No machine ¢ can have more than m;
jobs allocated to it in allocation A’ since otherwise, the jobs on i (at least one
of which is a member of T}) will experience a latency more than u, which will
imply that the deviation is not an improving deviation.
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If coalition T} has 0 or 1 jobs on a high machine ¢ in allocation A then
there exists another improving deviation D’, where no jobs move to or from ¢
by Lemma 2l We will assume that D has this property. Notice that if z; < 2
for a high machine 4, then ¢ is also a high machine in allocation A’. Let zj, =
max;cg{x;}. We will first show that z, > 2. Otherwise, all machines in H
remain high after the deviation. If any other machine j ¢ H became high after
deviation D, then jobs on j would experience a cost of u. However, all jobs with
cost of u in A are on machines of H after the deviation, which means that the
jobs on j have strictly increased their cost due to deviation D, and therefore
D could not be an improving deviation. Thus, if x; < 2, then the set of high
machines is the same before and after D. In addition, if any machine j ¢ H
has less jobs in A’ than it did in A, then another machine must have more jobs,
which would cause those jobs to experience a cost of at least u. By the argument
above, this cannot happen, and so z;, > 2.

Lemma 3. Let H' be the set of machines with latency of exzactly u in allocation
A’. Then, |H'| < |H|.

Proof. In allocation A, coalition T} has ), x; jobs experiencing a latency
of u, whereas in allocation A’, coalition T} has ), . ; jobs experiencing a
latency of u. Let x;, = max;ey{z;} and let x; = min;ep{x;}. The sufficient
conditions state that x; > x; — 1, since z;, > 2 as shown above. If i € H' was
a low machine before the deviation, then x} = x; + 1, and so it has at least as
many jobs of T in A’ as any high machine of allocation A. If i € H' was a
high machine before the deviation, then z; = x;. Thus |H'| > |H| would imply
that ), @7 > i iy ©i, which means that coalition T} has more jobs that are
experiencing a latency of u in allocation A’ than allocation A. However, that
would contradict with D being an improving deviation, and so it has to be that
H'| < |H]|

Note that the total number of jobs in any Nash equilibrium allocation A can be
expressed as ) ;. pMi + > ey Mi + Y _cp (my — 1). If a type 2 machine i € R
has less than m; jobs in A’ then the number of machines that has latency of
u would be strictly more than |H|, i.e., |H’| > |H|. Therefore, the number of
jobs coalition Ty has on any type 2 machine in allocation A’ is exactly x;. Since
deviation D does not change the number of jobs T} has on any type 2 machine,
there exists an equivalent improving deviation where the jobs of type 2 machines
do not change by Lemma [Tl and we will assume that D has this property.

Observe that if a type 1 machine ¢ has less than m; — 1 jobs in allocation A’,
then |H'| > |H|, thus violating Lemma [Bl Therefore, every type 1 machine has
either m; or m; — 1 jobs in allocation A’. In other words, by Proposition[I] A’ is
also a Nash equilibrium allocation.

Since A’ is a Nash equilibrium, we can assume without loss of generality that
deviation D made a certain number of high machines become low, and the same
number of low machines become high. Using Lemma [Tl we can assume that the
machines on which the number of jobs did not change also did not take part
in deviation D. Let the set of machines the become low after the deviation be
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H~ and the set of machines that become high after the deviation be Lt. We
know that |H | = |L*|. Now consider the total latency faced by jobs on machines
belonging to H~ U LT before deviation, say «, and after the deviation, say 3.

o= Z ux; + lexj

i€EH— 'GLJr
B= > (@-Dli+ Y (zj+1u
i€H~ jELT

We now prove the following lemma:

Lemma 4. For every perfect matching P between the machines of H~ and LT
that pairs i € H- with j € Lt, it must be true that l; <l; and z; = z; — 1.

Proof. Let P be any perfect matching between the machines of H~ and LT
(note that |H~| = |L™|). Consider a pair of machines (i,7) € P such thati € H~
and j € LT. If l; > l; then we know that x; > x;. This means that the total
number of jobs facing a latency u on machines 4, j after deviation: (z; + 1) is
strictly more than before: (x;). If {; < I; then we know that «; > x; — 1. This
would mean that the total number of jobs facing a latency u on machines i, j
after deviation: (x; + 1) is at least as much as before: (z;).

This implies that if there exists even one pair of machines (i,j) such that
l; > l;, then the total number of jobs facing a latency of u after deviation will
strictly increase. On the other hand if I; < I; but z; > x; — 1 then too it is
easy to see that the number of jobs facing a latency of u after deviation strictly
increases.

Hence D is a valid deviation only if for every (i,j) € P, I; < l; and
Ij::$i4*L

Consider any perfect matching P between the machines of H~ and L*. We can
now compare the values of o and 3:

o= Z ux; + lexj

ieH- jeL+
:Z u(z; + 1)+ lej ... (Lemma [))
jeLt jeLt
= Z u(z; + 1)+ Z Li(z; —1) ...(Lemmald)
JeL+ (i,5)epP
< Z u(zj + 1)+ Z li(x; —1) ...(For every (i,5) € P, l; <1;)
jeL+ i€H-
=0

This means that the total cost faced by jobs of machines of H~ U L™ will at
best remain the same. If the latency of some job decreases then the latency of
some other has to increase in order to keep the sum constant. This means that
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the latency faced by every job can at best remain the same. But an improving
deviation requires that D must strictly improve the latency of some job. Hence
an improving deviation D does not exist.

4 Partition Equilibrium

We now present an algorithm that constructs an allocation of jobs such that all
the sufficient conditions of Theorem [I] are satisfied. Thus we will create a Nash
equilibrium that is also a partition equilibrium. For this purpose we will use the
properties of Nash equilibrium as described in Section 2l Particularly we will use
the fact that, given the total number of jobs, every Nash equilibrium will have
the same number of high machines, which we denote by ¢g. The algorithm gives
an allocation of jobs over all type-1 machines. Since the sufficient conditions
do not have restrictions on jobs of the type-2 machines, remaining jobs can be
arbitrarily allocated to them so that each machine has m; jobs. We also define
a set of active machines as all machines ¢ that have less than m; jobs on them.
Let ¢ = |H| be the number of high machines in any Nash equilibrium allocation.
The algorithm is as follows:

— Begin with an empty allocation. Note that all machines are active at this
time.

— Obtain an ordering on the set of all active machines based on non-increasing
values of their ;.

— For every coalition, place jobs sequentially starting from the first active ma-
chine according to the above ordering. If the number of jobs in this coalition
exceeds the number of active machines then rollover and continue placing
jobs from the first active machine in the ordering.

— If at any step a machine ¢ has m; jobs placed on it, i.e. ¢ becomes high, then
remove it from the set of active machines.

— When ¢ machines become high, place remaining jobs on the active machines
arbitrarily such that they have m; — 1 jobs on them.

Ezample. Consider an example with 4 machines and 2 coalitions in Figure [l
Coalition 1 has 6 jobs and coalition 2 has 4 jobs. All the machines in this example
are of type-1. Also they have been sorted in non-increasing order of their [;-
values. The blocks represent the jobs and height of the j’th block on machine
i is given by fi(j) — fi(j — 1). Figure [ illustrates various stages during the
implementation of the algorithm. Observe that in any Nash equilibrium for this
input exactly ¢ = 2 machines will be high.

Notice that making sure that our algorithm places no more than m; jobs on
any machine is crucial not only to create a Nash equilibrium, but also to create
a partition equilibrium. For example, in Figure[l] if we did not stop adding jobs
to machines once they have m; jobs, then we would end up with 3 = mo+1 jobs
on machine 2. If f2(3) > f4(3), then this would not be a partition equilibrium,
since Coalition 1 would have an improving deviation by moving two of its jobs
to machine 4 from machine 2, and one job to machine 2 from machine 4.



Partition Equilibrium Always Exists in Resource Selection Games 51

[ Coalition 1 Coalition 2

1 2 3 4 1 2 3 4

(a) Active Machines: 1,2,3,4 (b) Active Machines: 1,3,4

Fig. 1. (a) In the beginning all machines are active. (b) Jobs of coalition 1 are placed
and machine 2 becomes inactive. (c¢) 3 out of 4 jobs of coalition 2 have been placed
and ¢ = 2 machines have become high. (d) The remaining job is placed on machine 3
making it low. Sufficiency conditions of Theorem [ are now satisfied.

Theorem 2. The above algorithm produces a partition equilibrium and a Nash
equilibrium.

Proof. The algorithm makes exactly ¢ machines high hence due to the property
of NE we know that there are sufficient jobs to make rest of the machines low,
i.e., put m;—1 jobs on them. Consider a coalition C. If this coalition has only 0 or
1 jobs on every high machine then the conditions of Theorem [ are fulfilled, and
so C' has no improving deviation. Consider a high machine ¢ on which coalition
C' has more than one jobs. Let us look at the time-step when the algorithm
has put « jobs of coalition C' on i. Now before putting the (o + 1)’th job on i
the algorithm puts one job on every low machine. This is true because the low
machines are exactly the ones that do not run out of space for jobs until the
high machines are completely filled. This implies that for every low machine 7,
Also if a low machine j is such that [; > [; then the algorithm puts one job on
every such machine j before i. This follows from the ordering obtained on the
machines on the basis of the l;-values. This means that if [; > [; then z; > z;.
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This proves that both sufficient conditions of Theorem [ are fulfilled by the
final allocation, which is also a Nash equilibrium by Proposition [[l Hence the
allocation obtained by the algorithm is a partition equilibrium.

5 Existence and Computation of SSE

For a resource selection game, SSE may or may not exist (see [4] for an example
where it does not exist). In this section, we show that for a given instance of a
resource selection game, we can efficiently determine whether there exists a SSE
or not. We also give an algorithm that finds a SSE if it exists.

Theorem 3. Given a resource selection game G, there is a polynomial time
algorithm that returns a SSE allocation if it exists, and returns “no” if G does
not have a SSE.

Proof. Since every SSE is also a Nash equilibrium, then each type 2 machine
¢ has to have exactly m; jobs in any SSE allocation.

Recall that the total number of jobs in the system is exactly as much as
Yoier™i + 2 e (mi—1) 4+ > ,cp (mi — 1) + ¢ in any Nash equilibrium allo-
cation, with ¢ being the number of high machines in any Nash equilibrium. If
all type 1 machines are high machines, i.e., L = (), then all the machines in the
system will have exactly m; jobs and no coalition can have an improving devi-
ation. This is because any non-trivial deviation would require moving a job so
that its resulting latency is strictly more than u, and so cannot be an improving
deviation. Therefore, if L = () then any Nash equilibrium allocation is also a SSE
allocation. So, a SSE allocation can be obtained simply by assigning m; jobs to
all machines.

Consider the case, where L # (). Assume that a high machine ¢ has 2 or more
jobs. Consider a coalition composed of 2 jobs such that both are allocated to
i. If one of the jobs of this coalition moves to a low machine, then the cost of
the moving job will not change, while the other member of the coalition strictly
benefits. Therefore, an allocation where a high machine ¢ has 2 or more jobs is
not a SSE if L # (). Thus, G does not have a SSE if L # () and G does not have
at least g type 1 machines for which m; = 1.

If there are at least ¢ type 1 machines for which m; = 1 then any Nash
equilibrium allocation A where ¢ of the type 1 machines, for which m; = 1 are
high machines, is a SSE. This is because no subset of players has more than
1 job on any high machine in A, and therefore no coalition has an improving
deviation by Theorem [l SSE allocation then can simply be obtained by placing
1 job on g machines for which m; = 1 and assigning the remaining jobs to all
other machines in a way that every type 2 machine has exactly m; jobs and
every remaining type 1 machine has exactly m; — 1 jobs allocated to it.
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Abstract. We study logit dynamics [Blume, Games and Economic Be-
havior, 1993] for strategic games. At every stage of the game a player is
selected uniformly at random and she plays according to a noisy best-
response dynamics where the noise level is tuned by a parameter 3. Such
a dynamics defines a family of ergodic Markov chains, indexed by 3, over
the set of strategy profiles. Our aim is twofold: On the one hand, we are
interested in the expected social welfare when the strategy profiles are
random according to the stationary distribution of the Markov chain,
because we believe it gives a meaningful description of the long-term
behavior of the system. On the other hand, we want to estimate how
long it takes, for a system starting at an arbitrary profile and running
the logit dynamics, to get close to the stationary distribution; i.e., the
mixing time of the chain.

In this paper we study the stationary expected social welfare for
the 3-player congestion game that exhibits the worst Price of Anarchy
[Christodoulou and Koutsoupias, STOC’05], for 2-player coordination
games (the same class of games studied by Blume), and for a simple n-
player game. For all these games, we give almost-tight upper and lower
bounds on the mixing time of logit dynamics.

1 Introduction

The evolution of a system is determined by its dynamics and complex systems are
often described by looking at the equilibrium states induced by their dynamics.
Once the system enters an equilibrium state, it stays there and thus it can
be rightly said that an equilibrium state describes the long-term behavior of the
system. In this paper we are mainly interested in selfish systems whose individual
components are selfish agents. The state of a selfish system is fully described by a
vector of strategies, each controlled by one agent, and each state assigns a payoff
to each agent. The agents are selfish in the sense that they pick their strategy so
to maximize their payoff, given the strategies of the other agents. The notion of
a Nash equilibrium is the classical notion of equilibrium for selfish systems and
it corresponds to the equilibrium induced by the best-response dynamics. The
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observation that selfish systems are described by their equilibrium states (that
is, by the Nash equilibria) has motivated the notion of Price of Anarchy [I5]
(and Price of Stability [I]) and the efficiency analysis of selfish systems based on
such notions.

The analysis based on Nash equilibria inherits some of the shortcomings of
the concept of a Nash equilibrium. First of all, the best-response dynamics as-
sumes that the selfish agents have complete knowledge of the current state of
the system; that is, of the payoff associated with each possible choice and of the
strategies chosen by the other agents. Instead, in most cases, agents have only
an approximate knowledge of the system state. Moreover, in presence of multiple
equilibria, it is not clear which equilibrium will be reached by the system as it
may depend on the initial state of the system. The notion of Price of Anarchy
solves this problem by considering the worst case equilibrium whereas Price of
Stability focuses on the best case equilibrium. Finally, Nash equilibria are hard
to compute [75] and thus for some system it might take very long to enter a
Nash equilibrium. In this case using equilibrium states to describe the system
performance is not well justified. Rather, one would like to analyze the perfor-
mance of a system by using a dynamics (and its related equilibrium notion) that
has the following three properties: the dynamics takes into account the fact that
the system components might have a perturbed or noisy knowledge of the sys-
tem; the equilibrium state exists and is unique for every system; independently
from the starting state; the system enters the equilibrium very quickly.

In this paper, we consider noisy best-response dynamics in which the behavior
of the agents is described by a parameter 5 > 0 ([ is sometimes called the inverse
temperature). The case 8 = 0 corresponds to agents picking their strategies
completely at random (that is, the agents have no knowledge of the system) and
the case § = oo corresponds to the best-response dynamics (in which the agents
have full and complete knowledge of the system). The intermediate values of 3
correspond to agents that are roughly guided by the best-response dynamics but
can make a sub-optimal response with some probability that depends on 5 (and
on the associated payoff). We will study a specific noisy best-response dynamics
for which the system evolves according to an ergodic Markov chain for all 5 > 0.
For these systems, it is natural to look at the stationary distribution (which is
the equilibrium state of the Markov chain) and to analyze the performance of
the system at the stationary distribution. We stress that the noisy best-response
dynamics well models agents that only have approximate or noisy knowledge of
the system and that for ergodic Markov chains (such as the ones arising in our
study) the stationary distribution is known to exist and to be unique. Moreover,
to justify the use of the stationary distribution for analyzing the performance of
the system, we will study how fast the Markov chain converges to the stationary
distribution.

Related Works and Our Results. Several dynamics, besides the best re-
sponse dynamics, and several notions of equilibrium, besides Nash equilibria,
have been considered to describe the evolution of a selfish system and to analyze
its performance. See, for example, [1T20/19].
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Equilibrium Concepts Based on the Best-Response. In case the game does not
possess a Pure Nash equilibrium, the best-response dynamics will eventually
cycle over a set of states (in a Nash equilibrium the set is a singleton). These
states are called sink equilibria [12]. Sink equilibria exist for all games and, in
some context, they seem a better approximation of the real setting than mized
Nash equilibria. Unfortunately, sink equilibria share two undesirable properties
with Nash equilibria: a game can have more that one sink equilibrium and sink
equilibria seem hard to compute [9]. Other notions of equilibrium state associated
with best-response dynamics are the unit-recall equilibria and component-wise
unit-recall equilibria (see [9]). We point out though that the former does not
always exist and that the latter imposes too strict limitations on the players.

No-Regret Dynamics. Another broadly explored set of dynamics are the no-regret
dynamics (see, for example, [I1]). The regret of a user is the difference between
the long term average cost and average cost of the best strategy in hindsight. In
the no-regret dynamics the regret of every player after ¢ step is o(t) (sublinear
with time). In [T0/T14] it is showed that the no-regret dynamics converges to the
set of Correlated Equilibria. Note that the convergence is to the set of Correlated
Equilibria and not to a specific correlated equilibrium.

Our Work. In this paper we consider a specific noisy best-response dynamics
called the logit dynamics (see [4]) and we study its mixing time (that is, the time
it takes to converge to the stationary distribution) for various games. Specifically,

— We start by analyzing the logit dynamics for a simple 3-player linear con-
gestion game (the CK game [6]) which exhibits the worst Price of Anarchy
among linear congestion games. We show that the convergence time to sta-
tionarity of the logit dynamics is upper bounded by a constant independent
of 3. Moreover, we show that the expected social cost at stationarity is
smaller than the cost of the worst Nash equilibrium for all 3.

— We then study the 2x2 coordination games studied by [4]. Here we show that,
under some conditions, the expected social welfare at stationarity is better
than the social welfare of the worst Nash equilibrium. We give exponential
in B upper and lower bounds on the convergence time to stationarity for all
values of (3.

— Finally, we apply our analysis to a simple n-player game, the OR-game,
and give upper and lower bound on the convergence time to stationarity. In
particular, we prove that for 5 = O(log n) the convergence time is polynomial
in n.

The logit dynamics has been first studied by Blume [4] who showed that, for 2 x 2
coordination games, the long-term behaviour of the Markov chain is concentrated
in the risk dominant equilibrium (see [I3]) for sufficiently large 8. Ellison [§]
studied different noisy best-response dynamics for 2 x 2 games and assumed
that interaction among players were described by a graph; that is, the utility of
a player is determined only by the strategies of the adjacent players. Specifically,
Ellison [§] studied interaction modeled by rings and showed that some large
fraction of the players will eventually choose the risk dominant strategy. Similar
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results were obtained by Peyton Young [21] for the logit dynamics and for more
general families of graphs. Montanari and Saberi [I7] gave bounds on the hitting
time of the risk dominant equilibrium states for the logit dynamics in terms of
some graph theoretic properties of the underlying interaction network. Asadpour
and Saberi [2] studied the hitting time for a class of congestion games. We
notice that none of [4f821] gave any bound on the convergence time to the risk
dominant equilibrium. Montanari and Saberi [I7] were the first to do so but their
study focuses on the hitting time of a specific configuration.

From a technical point of view, our work follows the lead of [4IRI21] and
extends their technical findings by giving bounds on the mixing time of the
Markov chain of the logit dynamics. We stress that previous results only proved
that, for sufficiently large 3, eventually the system concentrates around certain
states without further quantifying the rate of convergence nor the asymptotic
behaviour of the system for small values of 3. Instead, we identify the stationary
distribution of the logit dynamics as the global equilibrium and we evaluate the
social welfare at stationarity and the time it takes the system to reach it (the
mixing time) as explicit functions of the inverse temperature 3 of the system. For
B — 00, the logit dynamics tends to the best response dynamics. It should came
to no surprise than that for large 3 the mixing time could be super-polynomial.

We choose to start our study from the class of coordination games considered
in [4] for which we give tight upper and lower bound on the mixing time and
then look also at other 2-player games and a simple n-player game (the OR-
game). Despite its game-theoretic simplicity, the analytical study of the mixing
time of the Markov chain associated with the OR-game as a function of 3 is
far from trivial. Also we notice that the results of [I7] cannot be used to derive
upper bounds on the mixing time as in [I7] the authors give a tight estimation
of the hitting time only for a specific state of the Markov chain. The mixing time
instead is upper bounded by the mazimum hitting time.

From a more conceptual point of view, our work tries (similarly to [T2I9/T8])
to introduce a solution concept that well models the behaviour of selfish agents,
is uniquely defined for any game and is quickly reached by the game. We propose
the stationary distribution induced by the logit dynamics as a possible solution
concept and exemplify its use in the analysis of the performance of some 2 x 2
games (as the ones considered in [4J821]), in games used to obtain tight bounds
on the Price of Anarchy and on a simple multiplayer game.

Organization of the Paper. In Section 2l we formally describe the logit dynamics
Markov chain for a strategic game. In Sections[Bl [ and Bl we study the stationary
expected social welfare and the mixing time of the logit dynamics for CK game,
coordination games, and the OR-game respectively. Due to lack of space, the
proofs are omitted and are available in the full version [3]. Finally, in Section
we present conclusions and some open problems.

Notation. We write S for the complementary set of a set S and | S| for its size. We
use bold symbols for vectors, when x = (z1,...,2,) € {0,1}" we write |x| for
the number of 1s in x; i.e., |x| = [{i € [n] : ; = 1}|. We use the standard game
theoretic notation (x_;,y) to mean the vector obtained from x by replacing the
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i-th entry with y, i.e. (x—;,y) = (€1, .., Ti-1,Y, Tit1,-..,2Ln). We use standard
Markov chain terminology (see [16]).

2 The Model and the Problem

A strategic game is a triple ([n],S,U), where [n] = {1,...,n} is a finite set of
players, S = {S1,...,S,} is a family of non-empty finite sets (S; is the set of
strategies for player i), and U = {u,...,u,} is a family of utility functions (or
payoffs), where u; : S1 X -+ x S, — R is the utility function of player i.
Consider the following noisy best-response dynamics, introduced in [4] and
known as logit dynamics: At every time step

1. Select one player i € [n] uniformly at random;
2. Update the strategy of player i according to the following probability
distribution over the set S; of her strategies. For every y € S;

g

1 e
iy |%) = g ) 1

where x € S§7 X --- x S, is the strategy profile played at the current time
step, Ti(x) = ). cq, efui(x-i:2) is the normalizing factor, and 3 > 0 is the
1nverse noise.

From () it is easy to see that, for 3 = 0 player 7 selects her strategy uniformly at
random, for § > 0 the probability is biased toward strategies promising higher
payoffs, and for § — oo player 7 chooses her best response strategy (if more than
one best response is available, she chooses uniformly at random one of them).
Moreover observe that probability o;(y|x) does not depend on the strategy x;
currently adopted by player i.

The above dynamics defines an ergodic finite Markov chain with the set of
strategy profiles as state space, and where the transition probability from profile
x = (21,...,%,) to profile y = (y1,...,¥n) is zero if the two profiles differ at
more than one player and it is |o;(y; |x) if the two profiles differ exactly at
player i. More formally, we have the following definition.

Definition 1 (Logit dynamics [4]). Let G = ([n],S,U) be a strategic game
and let B > 0 be the inverse noise. The logit dynamics for G is the Markov chain
Mg = {X; : t € N} with state space 2 =51 x --- x Sy, and transition matriz

1 X eBui(x—iv:)
I, _ R (2)
n T(x) {y;=a; for every j#i}

i=1

P(x,y) =

It is easy to see that, if ([n],S,U) is a potential game with exact potential @,
then the Markov chain given by () is reversible and its stationary distribution
is the Gibbs measure

m(x) = ;eﬁqs(x) (3)



Mixing Time and Stationary Expected Social Welfare of Logit Dynamics 59

where Z = ZyG Syx xS, eP?) is the normalizing constant (the partition
function in physicists’ language). Except for the Matching Pennies example in
Subsection 2111 all the games we analyse in this paper are potential games.

Let W : Sy x---xS, — Rbe a social welfare function (in this paper we assume
that W is simply the sum of all the utility functions W (x) = Y7, u;(x), but
clearly any other function of interest can be analysed). We study the stationary
expected social welfare, i.e. the expectation of W when the strategy profiles are
random according to the stationary distribution 7 of the Markov chain,

E. W= Y  Wxn®x).

XEST XX Sp

Since the Markov chain defined in (2]) is irreducible and aperiodic, from every
initial profile x the distribution P’(x, ) of chain X; starting at x will eventually
converge to 7 as t tends to infinity. We will be interested in the mixing time tix
of the chain, i.e. the time needed to have that P!(x,-) is close to 7 for every
initial configuration x. More formally, we define

s t
tmix(€) = %1§gleag{||P (x,-) = 7||lrv < 5}

where | P!(x, ) —7|Tv = > oyen |PH(x,y)—7(y)| is the total variation distance,
and we set tmix = tmix(1/4).

2.1 An Example: Matching Pennies
As an example consider the classical Matching Pennies game:

H T
H +1,-1-1, +1 (4)
T -1, 4141, -1
The update probabilities () for the logit dynamics are, for every x € {H, T}

o1(H | (z, H)) = o1 (T | (2,T)) = = 02T |(H, ) = o2(H | (T, 7))

1
1+e—28

oi(T | (z, H)) = on(H | (2, T)) = = oa(H|[(H,x)) = oo(T | (T, x)) .

1
1+e28
So the transition matrix (@) is

HH HT TH TT

HH 1/2 b/2 (1-b)/2 0
p=| HT (1-b)/2 1/2 0 b/2

TH b/2 0 12 (1-1b)/2

TT 0 (1—-b)/2 b2 1/2

where we named b = for readability sake.

1
1+4+e—28
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Since every column of the matrix adds up to 1, the uniform distribution 7 over
the set of strategy profiles is the stationary distribution for the logit dynamics.
The expected stationary social welfare is thus 0 for every inverse noise 3.

As for the mixing time, it is easy to see that it is upper bounded by a
constant independent of . Indeed, a direct calculation shows that, for every
x € {HH, HT, TH, TT} and for every 8 > 0, it holds that

7001
P3(x,) — < .
[P (x, ) — 7|z 16 < 9

3 Warm Up: A 3-Player Congestion Game

In this section we study the CK game, a simple 3-player linear congestion game
introduced in [0] that exhibits the worst Price of Anarchy of the average social
welfare among linear congestion games with 3 or more players. This game has
two equilibria: one with social welfare —6 (which is also optimal) and one with
social welfare —15. As we shall see briefly, the stationary expected social welfare
of the logit dynamics is always larger than the social welfare of the worst Nash
equilibrium and, for large enough 3, players spend most of the time in the best
Nash equilibrium. Moreover, we will show that the mixing time of the logit
dynamics is bounded by a constant independent of (; that is, the stationary
distribution guarantees a good social welfare and it is quickly reached by the
system.

Let us now describe the CK game. We have 3 players and 6 facilities divided
into two sets: G = {go, 91,92} and H = {hg, h1, ha}. Player i € {0,1,2} has
two strategies: Strategy “0” consists in selecting facilities (g;, h;); Strategy “1”
consists in selecting facilities (g;t1,hi—1,hi+1) (index arithmetic is modulo 3).
The cost of a facility is the number of players choosing such facility, and the cost
of a player is the sum of the costs of the facilities she selected. It easy to see
that this game has two pure Nash equilibria: when every player plays strategy 0
(each player pays 2, which is optimal), and when every player plays strategy 1
(each player pays 5). The game is a congestion game, and thus a potential game
with following potential function:

L ()
Dx)= > > i
JEGUH i=1

where Ly(j) is the number of players using facility j in configuration x.

Stationary FEzpected Social Welfare and Mizing Time. The logit dynamics for
the CK game gives the following update probabilities (see Equation ()

oi(0][x-i| =0) = |, s oi(1|[x-il = 0) = | Lus
oi(0]|x—i[=1) = 1+el—2ﬁ oi(1||x—i| =1) = 1+1626
oi(0]|x—s|=2)= oi(l]|x—s|=2)= ;.
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It is easy to check that the following distribution is stationary for the logit
dynamics:

r((0,0,0)] = 4
7[(0,0,1)] = 7[(0,1,0)] = #[(1,0,0)] = % 5
7[(0,1,1)] = 7[(1,1,0)] = m{(1,0,1)] = m[(1,1, )] = s

where Z(3) = 798 4 3¢710% 4 47125 Let k be the number of players playing

strategy 1; the social welfare is —6 when k = 0, it is —13 if £ = 1, it is —16 if

k =2, and —15 when k£ = 3. Thus the stationary expected social welfare is

E W 6e757 + 39¢7108 4 (48 + 15)e 12/ 32+ 13e 10 + 21~ ]

W)= e=08 + 3¢=108 4 4¢—128 N 1+ 3e=4F + 4e=68

For 8 = 0, we have E; [W] = —27/2 which is better than the social welfare of

the worst Nash equilibrium. As 8 tends to co, E, [W] approaches the optimal

social welfare. Furthermore, we observe that E, [IW] increases with 5 and thus

we can conclude that the long-term behavior of the logit dynamics gives a better

social welfare than the worst Nash equilibrium for any g > 0.

Theorem 1 (Mixing time of CK game). There exists a constant T such that
the mixing time t of the logit dynamics of the CK game is upper bounded by
T for every 8 = 0.

4 Coordination Games

Coordination Games are two-player games in which the players have an advan-
tage in selecting the same strategy. They are often used to model the spread
of a new technology [21]: two players have to decide whether to adopt or not
a new technology. We assume that the players would prefer choosing the same
technology and that choosing the new technology is risk dominant.

We analyse the mixing time of the logit dynamics for 2 x 2 coordination games
and compute the stationary expected social welfare of the game as a function
of 8. We show that, for large enough 3, players will spend most of the time in
the risk dominant equilibrium and the expected utility is better than the one
associated with the worst Nash equilibrium. Similar results can be obtained for
anti coordination games (see [3]).

We denote by 0 the NEW strategy and by 1 the OLD strategy. The game is
formally described by the following payoff matrix

0 1

0 (a,a) (¢,d) (5)
1 (d,c) (b,b)

We assume that a > d and b > ¢ (meaning that they prefer to coordinate) and
that @ — d > b — ¢ (meaning that strategy 0 is the risk dominant strategy [11]
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for each player). Notice that we do not make any assumption on the relation
between a and b. It is easy to see that this game is a potential game and the
following function is an exact potential for it:

®(0,0)=a—d &0,1)=d(1,00=0 S(1,1)=b—c.

This game has two pure Nash equilibria: (0,0), where each player has utility a,
and (1, 1), where each player has utility b. As d + ¢ < a + b, the social welfare
is maximized in correspondence of one of the two equilibria and the Price of
Anarchy is equal to max{b/a,a/b}.

Stationary Expected Social Welfare and Mixing Time. The logit dynamics for the
game defined by the payoffs in Table [l gives the following update probabilities
for any strategy = € {0,1} (see Equation ()

01(0](2,0)) =02(0[(0,2)) = || _fe—ays  1(1[(2,0) = 2(1](0,2)) = || a_ays

10| (2,1)) =02(0[(L2)) = | o0p  or(l](z, 1) =2(1[(La)) = | _(1-cps-

q

Theorem 2 (Expected social welfare). The stationary expected social
welfare B, [W] of the logit dynamics for the coordination game is

a + be~((a=d)=(b=0)B | (¢ 4 g)e—(a=a)8

BelWl=2 " | (@a--0) 4 2p-(a-a)s

The following observation gives conditions on 3 and the players’ utility for which
the expected social welfare E, [W] obtained by the logit dynamics is better than
the social welfare SWy of the worst Nash Equilibrium.

Observation 2. For the coordination game described in Table [3, we have

—ifa>b and b < max{**5t? T4} then B [W] > SWy for all B;

—ifa > b and b > max{ TSt T} then B (W] > SWy for all sufficiently
large B;

— ifa <b and a < max{*T5T4 T4} then B [W] > SWy for all 3;

—ifa <b and a > max{®TST4 39} then B (W] > SWy for all sufficiently
large B3;

— if a =0 then E, [W] < SWy for any ,a,c and d.

Theorem 3 (Mixing Time of Coordination Games). The mizing time of

the logit dynamics with parameter (B for the coordination game of Table [4 is
6 (ct=0)5Y.

5 A Simple n-Player Game: OR-Game

In this section we consider the following simple n-player potential game that we
here call OR-game. For the upper bound we use the path coupling technique on
the Hamming graph with carefully chosen edge weights. Every player has two
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strategies, say {0, 1}, and each player pays the OR of the strategies of all players
(including herself). More formally, the utility function of player ¢ € [n] is

wi(x) = 0, ifx=0;
ST —1,  otherwise.

Notice that the OR-game has 2" — n Nash equilibria. The only profiles that are
not Nash equilibria are the n profiles with exactly one player playing 1. Nash
equilibrium 0 has social welfare 0, while all the others have social welfare —n.
Despite its simplicity, the analysis of the mixing time is far from trivial (see full
version [3]).

In Theorem [ we show that the stationary expected social welfare is always
better than the social welfare of the worst Nash equilibrium, and it is significantly
better for large 8. Unfortunately, in Theorem [ we show that, if 3 is large enough
to guarantee a good stationary expected social welfare, then the time needed to
get close to the stationary distribution is exponential in n. Finally, in Theorem [G]
we give upper bounds on the mixing time showing that, if § is relatively small
then the mixing time is polynomial in n, while for large 3 the upper bound is
exponential in n and it is almost-tight with the lower bound.

Theorem 4 (Expected social welfare). The stationary expected social wel-

fare of the logit dynamics for the OR-game is E,[W] = —an where a@ =
_ (@'-1ef
a(n, B) = 1427 —1)e—8

In the next theorem we show that the mixing time can be polynomial in n only
if B < clogn for some constant c.

Theorem 5 (Lower bound on mixing time). The mizing time of the logit
dynamics for the OR-game is

1. Q(eP) if B < log(2" — 1);
2. Q(27) if B> log(2™ — 1).

In the next theorem we give upper bounds on the mixing time depending on
the value of 8. The theorem shows that, if 3 < clogn for some constant ¢, the
mixing time is effectively polynomial in n with degree depending on c. The use
of the path coupling technique in the proof of the theorem requires a careful
choice of the edge-weights.

Theorem 6 (Upper bound on mixing time). The mizing time of the logit
dynamics for the OR-game is

1. O(nlogn) if B < (1 —¢€)logn, for an arbitrary small constant € > 0;
2. O(nt3logn) if B < clogn, where ¢ > 1 is an arbitrary constant.

Moreover the mizing time is O(n®/22") for every [3.
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6 Conclusions and Open Problems

In this paper we studied strategic games where at every run a player is selected
uniformly at random and she is assumed to choose her strategy for the next run
according to a noisy best-response, where the noise level is tuned by a parameter
(. Such dynamics defines a family of ergodic Markov chains, indexed by 3, over
the set of strategy profiles. We study the long-term behavior of the system by
analysing the expected social welfare when the strategy profiles are random
according to the stationary distribution of such chains, and we compare it with
the social welfare at Nash equilibria.

In order for such analysis to be meaningful we are also interested in the mizing
time of the chains, i.e. how long it takes, for a chain starting at an arbitrary
profile, to get close to its stationary distribution. The analysis of the mixing time
is usually far from trivial even for very simple games.

We study several examples of applications of this approach to games with two
and three players and to a simple n-players game. We started by showing that
the social welfare at stationarity for the 3-player linear congestion game that
attains the maximum Price of Anarchy is larger than the social welfare of the
worst Nash equilibrium. This result is made significant by the fact that, for all
0, the logit dynamics converges at the stationary distribution in constant time.
For 2-player coordination games the mixing time turns out to be exponential in
[ and we give conditions for the expected social welfare at stationarity to be
smaller than the social welfare of the worst Nash equilibrium. In the n-player
OR-game, the mixing time is O(nlogn) for S up to logn; if B < clogn with
¢ > 1 constant, the mixing time is polynomial in n with the degree depending
on the constant c¢; finally, for large 8 the mixing time is exponential in n.

We leave several questions for further investigation. For example, we would
like to close gaps between upper and lower bounds for the mixing time of the
OR-game. Moreover, we would like to investigate logit dynamics for notable
classes of n-player games.

Acknowledgements

We thank Paolo Penna and Carmine Ventre for helpful discussions and pointers
to the literature.

References

1. Anshelevich, E., Dasgupta, A., Kleinberg, J.M., Tardos, E., Wexler, T., Roughgar-
den, T.: The price of stability for network design with fair cost allocation. STAM
Journal on Computing 38(4), 1602-1623 (2008)

2. Asadpour, A., Saberi, A.: On the inefficiency ratio of stable equilibria in congestion
games. In: Leonardi, S. (ed.) WINE 2009. LNCS, vol. 5929, pp. 545-552. Springer,
Heidelberg (2009)

3. Auletta, V., Ferraioli, D., Pasquale, F., Persiano, G.: Mixing time and stationary
expected social welfare of logit dynamics. CoRR abs/1002.3474 (2010)



10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

Mixing Time and Stationary Expected Social Welfare of Logit Dynamics 65

. Blume, L.E.: The statistical mechanics of strategic interaction. Games and Eco-

nomic Behavior 5, 387-424 (1993)

. Chen, X., Deng, X., Teng, S.-H.: Settling the complexity of computing two-player

Nash equilibria. Journal of the ACM 56(3) (2009)

. Christodoulou, G., Koutsoupias, E.: The price of anarchy of finite congestion

games. In: Proc. of the 37th Annual ACM Symposium on Theory of Computing
(STOC 2005), pp. 67-73. ACM, New York (2005)

. Daskalakis, C., Goldberg, P.W., Papadimitriou, C.H.: The complexity of computing

a Nash equilibrium. STAM Journal on Computing 39(1), 195-259 (2009)

. Ellison, G.: Learning, local interaction, and coordination. Econometrica 61(5),

1047-1071 (1993)

. Fabrikant, A., Papadimitriou, C.H.: The complexity of game dynamics: BGP os-

cillations, sink equilibria, and beyond. In: Proc. of the 19th Annual ACM-STAM
Symposium on Discrete Algorithms (SODA 2008), pp. 844-853. ACM, New York
(2008)

Foster, D.P., Vohra, R.V.: Calibrated learning and correlated equilibrium. Games
and Economic Behavior 21(1-2), 40-55 (1997)

Fudenberg, D., Levine, D.K.: The Theory of Learning in Games. MIT, Cambridge
(1998)

Goemans, M., Mirrokni, V., Vetta, A.: Sink equilibria and convergence. In: Proc.
of the 46th Annual IEEE Symposium on Foundations of Computer Science (FOCS
2005), pp. 142-154. IEEE, Los Alamitos (2005)

Harsanyi, J.C., Selten, R.: A General Theory of Equilibrium Selection in Games.
MIT Press, Cambridge (1988)

Hart, S., Mas-Colell, A.: A simple adaptive procedure leading to correlated equi-
librium. Econometrica 68(5), 1127-1150 (2000)

Koutsoupias, E., Papadimitriou, C.H.: Worst-case equilibria. Computer Science
Review 3(2), 6569 (2009); Preliminary version in STACS 1999

Levin, D., Peres, Y., Wilmer, E.L.: Markov Chains and Mixing Times. American
Mathematical Society, Providence (2008)

Montanari, A., Saberi, A.: Convergence to equilibrium in local interaction games.
In: Proc. of the 50th Annual Symposium on Foundations of Computer Science
(FOCS 2009). IEEE, Los Alamitos (2009)

Roth, A., Balcan, N., Kalai, A., Mansour, Y.: On the equilibria of alternating move
games. In: Proc. of ACM-SIAM Symposium on Discrete Algorithms, SODA 2010
(2010)

Sandholm, W.H.: Population Games and Evolutionary Dynamics. MIT Press,
Cambridge (2010)

Peyton Young, H.: Individual Strategy and Social Structure: An Evolutionary The-
ory of Institutions. Princeton University Press, Princeton (1998)

Peyton Young, H.: The diffusion of innovations in social networks. Economics
Working Paper Archive number 437, Johns Hopkins University, Department of
Economics (2000)



Pareto Efficiency and Approximate Pareto
Efficiency in Routing and Load Balancing Games

Yonatan Aumann and Yair Dombb

Department of Computer Science, Bar-Ilan University, Ramat Gan 52900, Israel
aumann@cs.biu.ac.il, yair.biu@gmail.com

Abstract. We analyze the Pareto efficiency, or inefficiency, of solutions
to routing games and load balancing games, focusing on Nash equilibria
and greedy solutions to these games. For some settings, we show that the
solutions are necessarily Pareto optimal. When this is not the case, we
provide a measure to quantify the distance of the solution from Pareto
efficiency. Using this measure, we provide upper and lower bounds on the
“Pareto inefficiency” of the different solutions. The settings we consider
include load balancing games on identical, uniformly-related, and unre-
lated machines, both using pure and mixed strategies, and nonatomic
routing in general and some specific networks.

1 Introduction

Efficiency, and the efficient utilization of resources, is a key interest in economics.
Efficiency can be defined in many ways, depending on the situation and goals,
but perhaps one of the most rudimentary and basic efficiency notions is that of
Pareto Efficiency. Pareto efficiency captures the idea that an outcome is clearly
inefficient if it is possible to achieve an improvement “on all fronts” simultane-
ously; for example, in game theory an outcome of a game is (weakly) Pareto
optimal if there is no other outcome in which all players are (strictly) better off.
Unfortunately, it is well known that strategic behavior by players can frequently
lead to Pareto inefficient outcomes, such as in the famous Prisoner’s Dilemma.
Thus, Nash equilibrium may be Pareto inefficient.

In this work, we study the Pareto efficiency, or inefficiency, of two well known
games: routing games and load balancing games (also known as job scheduling
games). These games have received a lot of attention in the past decade, mainly
in the context of the Price of Anarchy and the Price of Stability, measures that
quantify the loss in social welfare due to selfishness and inability of players
to coordinate. We analyze these games with respect to the Pareto efficiency
of solutions to the games. Specifically, we focus on Nash equilibria and greedy
solutions, and analyze their Pareto efficiency. In some cases we can show that
the solutions are necessarily Pareto optimal. When this is not the case, we wish
to quantify how far the solution is from Pareto efficiency, since it would be
different if all players can improve their outcome ten-fold or just by 10%. Thus,
we introduce the notion of approzximate Pareto efficiency, defined shortly. With

S. Kontogiannis, E. Koutsoupias, P.G. Spirakis (Eds.): SAGT 2010, LNCS 6386, pp. 66-[T7] 2010.
© Springer-Verlag Berlin Heidelberg 2010
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this definition in hand, we show that while Pareto optimality is not always
guaranteed, the inefficiency in the settings we consider can frequently be bounded
by a constant.

Approximate-Pareto-FEfficiency. We now present the formal definition for quan-
tifying the distance of an outcome from Pareto efficiency. Conceptually, an out-
come is a-Pareto-deficient if there is a different outcome which improves all
players by at least an « factor.

Definition 1. Let G be a game with a set P of players, and A a possible out-
come of G. We denote by cost(i, A) the cost of player i in the outcome All. For
outcomes A, A, we say that A’ a-Pareto-dominates A if it holds that

Vie P: «-cost(i, A") < cost(i, A) .

We say that A is a-Pareto-deficient if there exists an alternative outcome A’
of G that a-Pareto-dominates A.

We say that outcome A is a-Pareto-efficient (a-PE) if it is not 3-Pareto-
deficient for any B > «.

Thus, in an a-Pareto-deficient outcome, all players can simultaneously improve
their outcome by a factor of at least a. In an a-Pareto-efficient outcome, it is
impossible to improve all players simultaneously by more than «. Note that for
a =1, 1-Pareto-efficient coincides with Pareto optimality.

This Work. As mentioned, in this work we consider routing and load balancing
games, with several flavors of each. For each class of games, we consider the
following issues:

1. Bounding the Pareto inefficiency of any Nash equilibrium: we seek
the smallest possible o such that every Nash equilibrium in any game of the
class is a-Pareto-efficient.

2. Bounding the Pareto inefficiency of the “best” Nash equilibrium:
we seek the smallest possible a such that for any game in the class there
exists a Nash equilibrium that is a-Pareto-efficient.

3. Bounding the Pareto inefficiency of a greedy assignment process:
The greedy solution is defined as follows. Assume that the players are (ar-
bitrarily) ordered, and each player, in its turn, chooses a strategy that min-
imize her cost at the time of choosing (ties are broken arbitrarily). We seek
the smallest o such that every outcome achieved by a greedy solution is
a-Pareto-efficient.

Results. We consider selfish load balancing and selfish routing games. For load
balancing games we consider the settings of identical machines, uniformly-related
machines, and unrelated machines. In addition, we consider both the case where
only pure strategies are permitted and the case that mixed strategies are also
allowed. We obtain:

! Due to the nature of the routing and load balancing games we consider, we use a cost
formulation of the notions. Analogous definitions can be defined for value/utility.
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— Pure strategies only: If only pure strategies are allowed, any Nash equilib-

rium is necessarily Pareto optimal for both identical and uniformly-related
machines. For unrelated machines, the Pareto-deficiency of a Nash equilib-
rium can be arbitrarily large, but there necessarily exists a Nash equilibrium
which is Pareto optimal.

The greedy solution is Pareto optimal for identical machines, and necessarily
2-Pareto-efficient for uniformly-related machines. We were unable to show a
bound on the Pareto-deficiency of the greedy solution for unrelated machines,
but it can be shown that the upper bound of 2 does not hold for this case
(i.e. there are cases in which the Pareto-deficiency of the greedy solution is
strictly larger than 2).

Mixed strategies: If mixed strategies are allowed, then on identical machines
any Nash equilibrium is necessarily (2 — %)—Pareto—efﬁcienﬁ where m is the
number of machines. This bound is tight, in the sense that for any m, there
exists a setting with m machines that exhibits a Nash equilibrium which is
(2— %)—Pareto—deﬁcient. For uniformly-related machines with mixed strate-
gies, we show that any Nash equilibrium is necessarily 4-Pareto-efficient. We
do not know to say if this bound is tight, and suspect that it is not. For
unrelated machines, the worst Nash can be arbitrarily Pareto-deficient.

For the best Nash equilibrium in mixed strategies, we do not have any tight
bounds (of course, the upper bounds for the worst Nash apply for the best
Nash as well). The greedy process is not well defined for such strategies.

For selfish routing games we consider the case of nonatomic games with
monotone cost functions. We show:

— For general networks, for any family of cost functions, the Pareto efficiency of

any Nash equilibrium is necessarily bounded by the Price of Anarchy for this
class of functions. This bound is tight, in the sense that there exists a game
for which the only Nash equilibrium exhibits this level of Pareto-deficiency.
Hence, the same bound also holds for the best Nash.

For the special case of networks with only parallel edges between a single
source and a single sink (which we call parallel-edge networks), we show that
any equilibrium is Pareto Optimal. Also, any greedy solution is necessarily
Pareto optimal, as is any solution that uses all edges.

The results are summarized in Table [II Unfortunately, due to the strict page
limit in these proceedings, most of the proofs are omitted from this extended
abstract. They all appear in the full version of the paper.

1.1 Related Work

Pareto efficiency is a desirable property for solutions of games. In cooperative
games, such as in Nash’s bargaining game [I3], it is usually required that solu-
tions be Pareto optimal. In non-cooperative game theory, it is well known that
Nash equilibria are frequently Pareto inefficient, as illustrated by the famous
prisoner’s dilemma. Several works aimed at developing a deeper understanding
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Table 1. Summary of results (PO stands for Pareto Optimal, and PE for Pareto
Efficient)

Setting Any Nash Best Nash Greedy Section
gzggﬁ 1:Tetworks POE%E? ltshtehilass open 21
gg;laflllz%lgdge Networks PO PO
st o w0 m
%J?l?g)?rjll}?—nlijlftég 1;\;"[Ez)i)cl;ines PO 2-PE B
Load Balancing (Pure) — ~ PO open

Unrelated Machines

Load Balancing (Mixed) — 1
Identical Machines (2= ,)-PE open N/A 4
Load Balancing (Mixed) — 4-PE o
Uniformly-Related Machines (not tight)

Load Balancing (Mixed) —
Unrelated Machines o0 open N/A

open N/A

of this phenomenon. Examples include [5], which gives sufficient conditions for
inefficiency of equilibria, [3], which computes the probability of inefficient (pure)
Nash equilibria in finite random games, and [8I12], which consider the Pareto
optimality of different social choice rules.

Pareto efficient solutions are also sought in multi-objective optimization prob-
lems. In this case, the Pareto front is defined as the set of solutions from which
not all objectives can be improved simultaneously. Several works (for exam-
ple [IT/I54T0]) have considered various approximation notions of the Pareto
front, by additive or multiplicative terms, and provided algorithms for finding
such solution sets.

Also related is the line of research on the Price of Anarchy [9] and the Price of
Stability [I]. The Price of Anarchy bounds the distance of any Nash equilibrium
from an optimal outcome, defined using a social welfare function. Likewise, the
Price of Stability bounds the distance of the “best” Nash equilibrium from the
optimal social welfare. Some of the issues we consider in this work (namely
the Pareto inefficiency of any/the “best” equilibrium) resemble these concepts,
although our Paretian efficiency concept is distinct from social welfare efficiency,
and cannot be expressed using any real-valued social welfare (or cost) function.
It is worth noting that if the utilitarian social welfare function is considered, it
can be shown that the Pareto-deficiency of the worst and best equilibria provide
lower bounds for the POA and POS (resp.). The same holds for the egalitarian
social welfare function, in the case that only pure strategies are allowed.

Finally, while our “worst/best Nash” questions cannot be expressed as spe-
cial cases of the classical POA/POS, they can be formulated using the IR,,n
measure, presented by Feldman and Tamir in [7]. Using the notation therein,
the worst Nash is a-Pareto-deficient iff & = supgcg I Rmin(E, P), and the best



70 Y. Aumann and Y. Dombb

Nash is §-Pareto-deficient iff 5 = inf geg I Rpmin(E, P), where P is the set of all
players and £ the set of of equilibria. However, while the results in [7] aim at
bounding the simultaneous improvement of the players in any possible coalition,
we focus on the special case of the “grand coalition”, involving all the players.
In addition, we consider routing games, and various settings in load balancing
games (including mixed strategies, uniformly-related machines and unrelated
machines), whereas [7] focuses on load balancing games with pure strategies on
identical machines.

2 Selfish Routing Games

A multi-commodity network is a directed multigraph N = (V, E) (possibly con-
taining parallel edges) together with a collection {(s1,t1),..., (Sk, )} CV XV
of source-sink vertex pairs, called commodities. We denote the set of edges E by
[m] (where [m] = {1,...,m}), and with each edge j € [m] we associate a cost
function ¢;(-), and denote ¢ = (¢1(-),...,cm(-)). (We assume throughout that
¢;(+) is continuous for all j; for the results of Section we additionally assume
that ¢;(-) is nondecreasing.) Finally, for each commodity ¢ there is some amount
r; of traffic that needs to be routed from s; to t;. Thus, a multi-commodity selfish
routing game is simply a triple (N, r, c).

The players in a selfish routing game are infinitesimally-small “traffic units”
that make independent routing decisions, possibly using different paths to go
from the commodity’s source to its sink. A flow f in (N, r, c) is a vector, indexed
by all the s; —t; paths for all 4, indicating the amount of traffic using each path.
We denote by f; the total amount of traffic traversing edge j. We say that a
flow f is feasible if for every i, it routes an amount r; of traffic from s; to ¢;. The
cost incurred to a player p using a path P in the flow f is simply cost(p, f) =
> jep ¢;(f;); an equilibrium flow (sometimes termed Wardrop equilibrium, first
presented in [I7]) is defined naturally as a flow in which no unit of traffic can
decrease its cost by unilaterally changing its path. A useful characterization of a
Wardrop equilibrium is that all paths with nonzero flow of the same commodity
¢ have the same cost v, and all other paths from s; to ¢; have cost of at least ~.
It is also well known that equilibrium flows exist for every network, and that all
equilibrium flows on a network have the exact same cost (see [2] and Chapter 18
n [I4]). Since equilibrium is unique in this sense, there is no distinction between
“worst Nash” and “best Nash” in routing games.

2.1 General Networks

Our bounds for Pareto efficiency on general networks relate to the Price of Anar-
chy for such networks. Let P be the set of all s; —¢; paths for every commodity ¢,
and let fp be the amount of traffic using the path P € P. The utilitarian social

cost of flow fis C(f) = X pep 2 jep ¢i(fi)fP = X jem ¢i(fi)fj- The Price of
Anarchy for a game (N, r, ¢) is defined as POA(N, r, c) = maxy C(/E{fE)), where fF
is an equilibrium flow, and the maximum is taken over all feasible flows f. We
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now show that the POA of a class of games tightly bounds the Pareto-efficiency
for the class. We start with the single commodity case.

Theorem 1. Let C be a class of continuous cost functions, and let G(C) be the
set of single commodity selfish routing games with cost functions from C. If there
exists p(C) = supgeg(c) POA(G), then in any G € G(C) any equilibrium is p(C)-
Pareto-efficient, and for every e > 0 there exists G € G(C) in which equilibria
are (p(C) — €)-Pareto-deficient. If POA(G(C)) is unbounded, then equilibria of
games in G(C) may be arbitrarily Pareto-deficient.

Proof. We provide only a sketch of the proof, and the full details appear in
the full version of this paper. First, if p(C) exists, then for any game G €
G(C), there is no feasible flow with average cost smaller by factor > p(C) than
the average cost in equilibrium. This implies that in G, any equilibrium is
p(C)-Pareto-efficient.

For the lower bound (whether the Price of Anarchy of the class is bounded or
unbounded) it suffices to show that for any game G € G(C) with POA(G) = p
and every € > 0 there exists G’ € G(C) in which equilibria are (p — €)-Pareto-
deficient. Let P, ..., Py be an enumeration of the s — ¢ paths in N (a flow f is
thus a non-negative vector in R*) and w.l.o.g. assume that the amount to that
needs to be routed is 1, and so in an equilibrium flow f¥ all players pay C(fF).

The idea behind the construction of G’ = (N’,7'¢’) is as follows. We create
a new network N’ by “concatenating” ¢ copies of N (for some large enough q),
connecting every two adjacent copies by placing a zero-cost edge going from the
sink of the first to the source of the second. A flow that routes all the traffic
exactly as in equilibrium in each copy is an equilibrium in N’, and its cost is
g-times that of the original equilibrium flow. We now look at the optimal flow in
N;; since the total cost function C(-) is continuous, there is a flow (..., p;”)
(for large enough ¢) routing rational amounts on the paths in N, and having a
total cost larger than that of the optimal flow by at most e. We can now use that
latter flow in every copy of N in N’, keeping the amounts routed on each path
the same in every copy, but changing the sets of players routed on these paths.
This can be done to achieve a flow in N’ with total cost of g-times the optimum
(up to an additive factor of €) in which all players are incurred the same cost. It
then follows that this flow (p — €)-Pareto-dominates the equilibrium flow.

For the multi-commodity case, Roughgarden, in [I6], proves that under some
additional conditions on the class of allowable cost functions, the worst POA for
multi-commodity instances can be achieved (up to an arbitrarily small additive
factor) on single-commodity “Pigou network” instances. We therefore immedi-
ately get that under the same conditions (namely that the class of allowable cost
functions is both standard and diverse, and that all cost functions are monotone)
the Pareto-deficiency of a Nash equilibrium in multi-commodity instances can-
not be significantly worse than that of a single-commodity instance with cost
functions from the same class.
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2.2 Parallel-Edge Networks

Consider the special case of single-commodity networks with no nodes except
a single source and a single sink, and only parallel edges connecting the two.
We call such networks parallel-edge networks, and further assume that all cost
functions in these networks are nondecreasing. Interestingly, while such networks
exhibit the worst case examples of POA (as proven in [16]), the next theorem
shows that all equilibrium flows in such networks are Pareto-optimal.

Theorem 2. Let (N,r,c) be a selfish routing game on a parallel-edge network,
where the cost functions of all edges are nondecreasing. Then if f is an
equilibrium flow for (N,r,c), f is Pareto optimal.

The following lemma is straightforward:

Lemma 1. Let (N,r,c) be a selfish routing game on a parallel-edge network,
where the cost functions of all edges are nondecreasing. Then if f is a flow
obtained by a greedy online process, f is an equilibrium flow.

Corollary 1. Let (N,r,c) be a selfish routing game on a parallel-edge network,
where the cost functions of all edges are mondecreasing. Then if f is a flow
obtained by a greedy online process, f is Pareto optimal.

For the case of parallel-edge networks with linear cost functions, we can show
an even stronger result, that will also be used in the analysis of load balancing
games with pure strategies.

Theorem 3. Let N be a parallel-edge network with linear cost functions. Let f
be a flow on N, and let I be the set of edges with positive flow in f. Let f* be
another flow obtained from f by shifting at most an « fraction of each edge in I
to edges not in I. Then, if f* ~v-Pareto-dominates f, then v < 17104'

When I = [m] it is immediate to observe that & = 0 and we obtain:

Corollary 2. Let G be a parallel-edge network with linear cost functions, and
f a flow such that f; > 0 for all i € [m]. Then f is Pareto optimal.

Thus, every flow on a parallel-edge network that uses all the edges is Pareto
optimal, even if it is not an equilibrium flow.

3 Load Balancing Games — Pure Strategies

A load balancing game is defined by a set [m] of machines and a set [n] of
tasks, where each task is associated with a weight function w; : [m] — R such
that w;(j) is the weight of task ¢ on machine j. We say that the machines are
uniformly-related if there are constants {w; }ic[,) and {s;}e[m) such that for all
i,7 it holds that w;(j) = :’] The machines are identical if this holds with all
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s; = 1. If the machines are not uniformly-related, we say that the game is played
on unrelated machines.

A pure strategy profile is a function A : [n] — [m] assigning every task i to a
single machine j = A(4). The cost incurred to a task k assigned by A to machine
j is cost(k, A) = 32, 4)—; wi(j) (i.e. we assume that on every machine, the
tasks are executed in parallel). An assignment A is thus in Nash equilibrium if no
player can benefit by unilaterally moving to another machine, i.e. if for every task
k € [n] and machine j # A(k) it holds that cost(k, A) < wk(f) + ;. ()=, wi(d)-

Theorem 4. Let G be a load balancing game, then G has a Pareto optimal Nash
equilibrium in pure strategies.

The theorem is a direct consequence of the fact that the (egalitarian) POS in
such games is 1 (as shown in [6]), and the detailed argument is given in the full
version of this paper. However, while the best Nash is always Pareto optimal,
the worst Nash on unrelated machines may be arbitrarily Pareto-deficient, as the
following example shows: Let ¢ > 0 be arbitrarily small and consider an instance
with m machines and n = m tasks, such that for all 4, w;(i) = 1 and for all
i # 7, wi(j) = €. It is easy to observe that the identity assignment A(i) =i is a
Nash equilibrium that is 1—Pareto—deﬁcient.

3.1 Uniformly-Related and Identical Machines

Load balancing games on uniformly-related machines can be viewed as atomic
routing games (where each player controls a non-negligible amount of traffic) on
parallel-edge networks with linear cost functions. Interestingly, we can use the
results for nonatomic selfish routing games to derive bounds for load balancing
games.

Theorem 5. Let G be a load balancing game on uniformly-related machines,
and let A : [n] — [m]. If either

1. A is an equilibrium assignment, or,
2. the machines of [m] are identical and A is the result of a greedy online
asstgnment process,

then A is Pareto optimal.

Proof. Let {w;};c[n) be the set of job weights and s = {s;}jc[m] be the machine
speeds. Denote W = Zie[n] w;. We define a selfish routing game G'(W,s) =
(N,r,¢) on a parallel-edge network by creating a set of edges [m] with cost
function ¢;(z) = f] for every j € [m], and r = W. Every assignment A : [n] —
[m] for G induces a feasible flow 4 on G’(W,s) in which the flow on an edge
Jis Yy . A(i)=j Wi furthermore, every player in the routing game originates from
a single task 4 € [n] in the load balancing game, and pays cost(i, A) in f4.
Therefore, if an assignment A* Pareto dominates A, then f4~ Pareto dominates
f4 by the same factor.
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Assume that A is an equilibrium assignment, and define I = {j € [m] | i :
A(i) = j} as the set of machines j that some task uses. Then in G'(W,s), I is
the set of edges with nonzero flow in f4. Assume by contradiction that A is not
Pareto optimal, so there exists another assignment A* that Pareto dominates
A. Define I* = {j € [m] | Ji : A*(i) = j}, then clearly, I* C I; otherwise let
j € I*\ I and let i be such that A*(i) = j. Since A is an equilibrium, it holds that
cost(i, A) < ‘;’J’ < cost(i, A*), and thus A* does not Pareto dominate A because
player ¢ pays in it at least as much as it payed in A. However, if I* C I then the
flow 4" routes all the traffic on the edges of I, and thus by applying Theorem [
with o = 0 we get that A* cannot Pareto dominate A; a contradiction.

Now, assume that A is a result of a greedy online assignment process on
identical machines, and define I as above. There are two cases: If I = [m], then
by Corollary 2l we are done. Otherwise, there are machines that are not used by
any of the tasks; however, since A was obtained by a greedy process and the
machines have identical speeds, it has to be that on every machine j € I there
is only a single task (or the second task that arrived to j would have preferred
to use some vacant machine ¢ € [m] \ I). Thus, every task pays the minimum
possible cost (of its weight divided by the uniform speed) and there is no way
to reduce the cost of any of the tasks, so again A is Pareto optimal.

Unlike with identical machines, if A is the result of a greedy online assignment
process on non-identical machines, A may be Pareto dominated by another as-
signment. For example, assume that we have three machines with speeds 2,1
and 1, and three tasks with weights 1,1 and 2. Consider the following scenario:
A task of weight 1 arrives first, and chooses the fast (speed 2) machine. Then
arrives the other unit weighted task, and (being indifferent about which machine
to choose) chooses the fast machine as well. Finally, the heavy (weight 2) task
arrives, and again chooses the fast machine (as it too would have the same cost
on all the machines). In this assignment all the tasks pay a cost of H;H = 2;
however, if we assign each of the light tasks to a (distinct) slow machine and
the heavy task to the fast machine we get that every task pays only 1. Thus,
the online greedy assignment is 2-Pareto-deficient. The following theorem, whose
proof again utilizes Theorem [3] establishes that this is the worst possible case.

Theorem 6. Let G be a load balancing game on uniformly-related machines,
and let A be the result of a greedy online assignment process. Then A is
2-Pareto-efficient.

4 Load Balancing Games — Mixed Strategies

A mixed strategy of a player i € [n] in a load balancing game is a distribu-
tion p; = (p},...,p") over the set of machines, so that i chooses to use ma-

chine j with probability p]. The expected cost for player i is thus cost(i,p) =
Y icim] pl- (wi(j) + 2 hem)_s pibwh(j)). As one would expect, a profile p is in
equilibrium if no player can benefit by unilaterally switching to a different distri-
bution p;. Note that mixed strategies are a superset of pure strategies; therefore,
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we immediately obtain that for unrelated machines the worst Nash in mixed
strategies may be arbitrarily Pareto-deficient. We were unable to give any tight
bounds for the best Nash equilibria in mixed strategies.

We will thus focus on bounding the distance of the worst Nash from Pareto
optimality for uniformly-related and identical machines. We will denote the ex-
pected weight on machine j in the strategy profile p by E,[W;] = Zhe[n] Py wh,
and thus we can also write:

. i Zl npzwh+( 1* w;
cost(i,p) = Y pl - T => - =

Sj S5

j€[m] j€[m)]

For a load balancing game with identical machines we show that every equi-
librium profile is (2 — T}l)—Pareto—eﬂicient, and that this is tight, i.e. the worst
equilibrium in a game may indeed be (2 — T}l)—Pareto—deﬁcient.

Theorem 7. In load balancing games on identical machines with mized
strategies, all Nash equilibria are (2 — 7}L)—Pareto—eﬁ%ciemﬁ, and this bound is
tight.

For the case of uniformly-related machines with mixed strategies, we show that
every equilibrium is 4-Pareto-efficient; however, we do not know to show that
this bound is tight.

Theorem 8. In load balancing games on uniformly-related machines with mized
strategies, all Nash equilibria are 4-Pareto-efficient.

Proof. Assume that there exist a set [m] of machines, a set [n] of tasks, and
strategy profiles p, ¢ such that for every player i € [n], cost(i,q) < Allcost(i,p).
The idea is to show that there exists a task k that can unilaterally improve its
cost from the profile p, implying that p cannot be an equilibrium. To that end,
we first define another strategy profile 7, which is a variation of the profile q.
For a task ¢ in the profile ¢, let B; be the set of “bad” machines to which ¢
gives nonzero probability and on which it pays over twice its expected cost, i.e.,

Eq[Wj] + (1 - ¢ Jw;

> 2 - cost(i, q)}
Sj

Bi:{j‘qzj>0/\

We also denote the remaining (“good”) machines to which i gives nonzero
probability by G;, so

Eq Wil + (1~ df)w

P <. cost(z',q)} .
Sj

G; = { jla >0 A
Since all q{ are non-negative, it holds that the total probability every ¢ gives
to bad machines is b; = > jeB; q < ; (or the expected cost for ¢ would have
exceeded cost(i,q)). We create the new strategy profile 7 as follows. First, for
every i,j with ¢/ = 0 we set ] = 0 as well. For every 4, j such that j € B;, we
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also set rf = 0. However, in order to keep the vector r; a distribution, we add
the total “missing” probability b; to the machines in G;; specifically, for every

qaj

i,J with j € G; we set r{ = 1.

We now have

> BlW. szZpl Dlwi=dwi yrl= 0 EWl,

j€[m] i€ln]  j€[m)] i€[n] i€[n]  j€[m] j€[m]

so there is bound to be a machine ¢ with E,.[W,] > 0 and E,[W,] < E,.[W,]. Let
k be a task with rﬁ > 0.

We now show that in the strategy profile p, player k can reduce its cost to
less than 4 - cost(k, ¢), by choosing to use machine ¢ with probability 1. The cost

incurred to k when doing so is
Ep[Wel + (1 —pf)wk _ BrWi +wp _ iefn_, Tiwi + 2wk

Se Se St

Recall that for every 4,j it holds that rf < % and that b; < L

' ' 1%, »; this implies
that r] < 2¢]. Thus,

D icn] riw; + 2w, <3. il qjw; + wy,

<2-2-cost(k,q),
Sy Se

¢
> hen]_p, dhWhtWe

where the last inequality holds since is exactly the cost k pays

Se

on machine ¢ in the profile g. We chose k such that rﬁ > 0 and so it must be
that ¢ € Gy; this implies that in the profile ¢, k pays on ¢ at most 2 - cost(, q).

Combining the two inequalities above we get that E‘”[WEHS(kai)wk < 4-cost(k, q);
however, we assumed that the original cost of k in the profile p was cost(k,p) >
4 - cost(k, q), so unilaterally moving to ¢ is beneficial for k in the profile p. We
thus conclude that if some profile ¢ 4-Pareto-dominates another profile p, then
p cannot be an equilibrium.

5 Open Problems

A natural direction for further research is the analysis of the Pareto efficiency/
deficiency of solutions in other games, as well as other solution concepts in
these and other games. In addition, there are a few cases left open in this work,
including:

— Flows obtained by greedy online processes on gemeral routing networks. Un-
like with parallel-edge networks, such flows in general networks need not be
equilibrium flows, even in single-commodity instances. However, the lower
bound of the POA value p still holds for such flows.

— Online greedy assignments for load balancing on unrelated machines. It can
be shown that there are instances in which greedy assignments are not 2-
Pareto-efficient. What is the Pareto efficiency/deficiency this case?
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— (Worst) mized equilibrium for load balancing on uniformly-related machines.

We have shown that such equilibria are always 4-PE, but suspect that the
real bound may be lower.

References

10.

11.

12.

13.
14.

15.

16.

17.

. Anshelevich, E., Dasgupta, A., Kleinberg, J.M., Tardos, E., Wexler, T., Rough-

garden, T.: The price of stability for network design with fair cost allocation. In:
FOCS, pp. 295-304 (2004)

. Beckmann, M., McGuire, C.B., Winsten, C.B.: Studies in the economics of trans-

portation. Yale University Press, New Haven (1956)

. Cohen, J.E.: Cooperation and self-interest: Pareto-inefficiency of Nash equilibria

in finite random games. Proceedings of the National Academy of Sciences of the
United States of America 95(17), 9724-9731 (1998)

. Diakonikolas, I., Yannakakis, M.: Small approximate pareto sets for biobjective

shortest paths and other problems. STAM Journal on Computing 39(4), 1340-1371
(2009), http://link.aip.org/1link/?7SMJ/39/1340/1

. Dubey, P.: Inefficiency of nash equilibria. Mathematics of Operations Re-

search 11(1) (1986)

. Even-Dar, E., Kesselman, A., Mansour, Y.: Convergence time to nash equilibria.

In: Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.) ICALP 2003.
LNCS, vol. 2719, pp. 502-513. Springer, Heidelberg (2003)

. Feldman, M., Tamir, T.: Approximate strong equilibrium in job scheduling games.

In: Monien, B., Schroeder, U.-P. (eds.) SAGT 2008. LNCS, vol. 4997, pp. 58-69.
Springer, Heidelberg (2008)

. Hurwicz, L., Schmeidler, D.: Construction of outcome functions guaranteeing ex-

istence and pareto optimality of nash equilibria. Econometrica 46(6) (1978)

. Koutsoupias, E., Papadimitriou, C.H.: Worst-case equilibria. In: STACS, pp.

404413 (1999)

Legriel, J., Guernic, C.L., Cotton, S., Maler, O.: Approximating the pareto front of
multi-criteria optimization problems. In: Esparza, J., Majumdar, R. (eds.) TACAS
2010. LNCS, vol. 6015, pp. 69-83. Springer, Heidelberg (2010)

Loridan, P.: e-solutions in vector minimization problems. Journal of Optimization
Theory and Applications 43(2) (1984)

Maskin, E.: Nash equilibrium and welfare optimality. The Review of Economic
Studies, Special Issue: Contracts 66(1) (1999)

Nash, J.F.: The bargaining problem. Econometrica 18(2) (1950)

Nisan, N., Roughgarden, T., Tardos, E., Vazirani, V.V.: Algorithmic Game Theory.
Cambridge University Press, New York (2007)

Papadimitriou, C.H., Yannakakis, M.: On the approximability of trade-offs and
optimal access of web sources (extended abstract). In: Proceedings 41st Annual
Symposium on Foundations of Computer Science, pp. 86-92 (2000)

Roughgarden, T.: The price of anarchy is independent of the network topology.
Journal of Computer and System Sciences, 428-437 (2002)

Wardrop, J.G.: Some theoretical aspects of road traffic research. Proceedings of
the Institution of Civil Engineers, Part II 1(36), 352-362 (1952)


http://link.aip.org/link/?SMJ/39/1340/1

On Nash-Equilibria of Approximation-Stable Games*

Pranjal Awasthi®, Maria-Florina Balcan?, Avrim Blum!,
Or Sheffet!, and Santosh Vempala?

! Carnegie Mellon University, Pittsburgh, Pennsylvania
2 Georgia Institute of Technology, Atlanta, Georgia

Abstract. One reason for wanting to compute an (approximate) Nash equilib-
rium of a game is to predict how players will play. However, if the game has
multiple equilibria that are far apart, or e-equilibria that are far in variation dis-
tance from the true Nash equilibrium strategies, then this prediction may not
be possible even in principle. Motivated by this consideration, in this paper we
define the notion of games that are approximation stable, meaning that all e-
approximate equilibria are contained inside a small ball of radius A around a true
equilibrium, and investigate a number of their properties. Many natural small
games such as matching pennies and rock-paper-scissors are indeed approxi-
mation stable. We show furthermore there exist 2-player n-by-n approximation-
stable games in which the Nash equilibrium and all approximate equilibria have
support §2(logn). On the other hand, we show all (e, A) approximation-stable
games must have an e-equilibrium of support O( Az; w log n), yielding an im-

. O( a2=o®) logn) . . . .
mediate n e2 -time algorithm, improving over the bound of [11] for

games satisfying this condition. We in addition give a polynomial-time algorithm
for the case that A and e are sufficiently close together. We also consider an in-
verse property, namely that all non-approximate equilibria are far from some true
equilibrium, and give an efficient algorithm for games satisfying that condition.

1 Introduction

One reason for wanting to compute a Nash equilibrium or approximate equilibrium of
a game is to predict how players will play. However, if the game has multiple equilibria
that are far apart, or e-equilibria that are far from the true Nash equilibrium strategies,
then this prediction may not be possible even in principle. Motivated by this considera-
tion, in this paper we define the notion of games that are (e, A)-approximation stable,
meaning that all e-approximate equilibria are contained inside a small ball of radius A
(in variation distance) around a true equilibrium, and investigate a number of their prop-
erties. If a game is approximation-stable for small A, then this means that even if play-
ers are only approximately best-responding, or even if the game matrix is not a perfect
description of players’ true payoffs, stationary play should in principle be predictable.
Many natural small 2-player games such as matching pennies and rock-paper-scissors
are indeed approximation-stable for A close to e. In this paper we analyze fundamental
properties of approximation-stable games.

* This work was supported in part by NSF grants CCF-0830540 and CCF-0953192, ONR grant
N00014-09-1-0751, and AFOSR grant FA9550-09-1-0538.
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We show first that all (e, A) approximation-stable games must have an e-

equilibrium of support at most O(A2 1og(€£+1/ 4) logn), yielding an immediate

O(A21og(1+1/A) logn) . . . ciep . .
n 2 &™) _time algorithm for finding an e-equilibrium, improving by a fac-

tor O(A? log(1+1/A)) in the exponent over the bound of [[11]] for games satisfying this
condition (and reducing to the bound of [11] in the worst case when A = 1). Note that
by assumption, this approximate equilibrium is also A-close to a true Nash equilibrium.
We in addition give improved bounds yielding polynomial-time algorithms for the case
that A and e are sufficiently close together. Specifically, for A < 2e — 6€2 we give an
algorithm for finding O(e)-equilibria in time n°?(1/€). On the other hand, we show that
for A = O(y/€), there exist n-action approximation-stable games in which the Nash
equilibrium and all approximate equilibria have support £2(log n), extending results of
Feder et al. [10]. We also consider an inverse property, namely that all non-approximate
equilibria are far from some true equilibrium, and give an efficient algorithm for finding
approximate equilibria in games satisfying that condition.

Note that the classic notion of a stable Nash equilibrium is substantially more restric-
tive than the condition we consider here: it requires that (1) any infinitesimal deviation
from the equilibrium by any player should make the deviating player strictly worse off
(a strict equilibrium, implying that the equilibrium must be in pure strategies) and (2)
such a deviation should not give the other player any incentive to deviate. Our condition
can be viewed in a sense as a weaker, approximation version of requirement (1), namely
any deviation by distance A from the equilibrium should make at least one of the two
players have at least € incentive to deviate.

Related Work: There has been substantial work exploring the computation of Nash
equilibria in 2-player n X n general-sum games. Unfortunately, the complexity results
in this area have been almost uniformly negative. A series of papers has shown that it is
PPAD complete to compute Nash equilibria, even in 2 player games, even when payoffs
are restricted to lie in {0, 1} [Z/1l6].

A structural result of Lipton et al. [[11] shows that there always exist e-approximate
equilibria with support over at most O((log n)/e?) strategies: this gives an immediate
n©OUoen/€*) time algorithm for computing e-approximate equilibria and has also been
shown to be essentially tight [[10]. There has also been a series of results [8/12J5] on
polynomial-time algorithms for computing approximate equilibria for larger values of
€. The best polynomial-time approximation guarantee known is 0.3393 [12].

For special classes of games, better results are known. For example, Barany et al.
considered two player games with randomly chosen payoff matrices, and showed that
with high probability, such games have Nash equilibria with small support [4].

Our work is also motivated by that of Balcan et al. [2]] who consider clustering prob-
lems under approximation stability — meaning that all near-optimal solutions to the ob-
jective function should be close in the space of solutions — and give efficient algorithms
for stable instances for several common objectives. Results relating incentive to deviate
and distance to equilibria in general games appear in [9].

2 Definitions and Preliminaries

We consider 2-player n-action general-sum games. Let R denote the payoff matrix to
the row player and C' denote the payoff matrix of the column player. We assume all
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payoffs are scaled to the range [0, 1]. We say that a pair of mixed strategies (p, ¢) is an
e-equilibrium if for all rows i, we have el Rq < p” Rq + ¢, and for all columns j, we
have p” Ce; < pTCq + €. We will typically use (p*, ¢*) to denote a Nash equilibrium,
which is an e-equilibrium for € = 0. Note that in a Nash equilibrium (p*, ¢*), all rows ¢
in the support of p* satisfy e/ Rg* = p* Rq* and similarly all columns j in the support
of ¢* satisfy p*TC’ej =p Loy

We also are interested in the distance between mixed strategies. For probability dis-
tributions in this context, the most natural notion is variation distance, which we use
here. Specifically we define:

1
dig.q") = Y la —djl = max(qi — g/, 0). )

We then define the distance between two strategy pairs as the maximum of the
row-player’s and column-player’s distances, that is:

d((p.q), (¥',q")) = max[d(p,p’),d(q,q")]. (2)

We now present our main definition, namely that of a game being approximation stable.

Definition 1. A game satisfies (e, A)-approximation stability if there exists a Nash
equilibrium (p*, ¢*) such that any (p, q) that is an e-equilibrium is A-close to (p*, q*),
ie.d((p,q), (p*.q")) < A.

So, fixing €, a smaller A means a stronger condition and a larger A means a weaker con-
dition. Every game is (¢, 1)-approximation stable, and as A gets smaller, we might ex-
pect for the game to exhibit more useful structure. Many natural games such as matching
pennies and rock-paper-scissors satisfy (e, A)-approximation stability for A = O(e);
see Section[2.2for analysis of a few simple examples. We note that this definition is very
similar to a condition used in Balcan et al. [2] in the context of clustering problems.

All our results also apply to a weaker notion of approximation stability that allows
for multiple equilibria, so long as moving distance A from any equilibrium produces a
solution in which at least one player has € incentive to deviate. Specifically,

Definition 2. A game satisfies (e, A)-weak approximation stability if, for any Nash
equilibrium (p*, ¢*) and any (p, q) such that d((p, q), (p*,q*)) = A, (p,q) is not an
€' -equilibrium for any €’ < e.

Organization of This Paper: We now begin with a few useful facts about the re-
gion around Nash equilibria and the relation between € and A in any game, as well
as a few simple examples of games satisfying (e, A)-approximation stability for A ~
€. We then in Section [3] analyze properties of approximation-stable games, showing
that every (e, A)-approximation stable game must have an e-equilibrium of support

5 ) o . . A2 log(1+1/A) log(n)y .
o 10g(1+€12/ Aloe(m)y " yielding an immediate n° 2 )_time algorithm.

Note that for large A this exponent simply reduces to the 0(1022”)) bound of [11],
but improves as A approaches e. In Section [5] we give a near-matching lower bound,
showing that there exist approximation-stable games with all approximate equilibria
having support 2(logn). In Section ] we analyze games where A is especially close
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to €, and give polynomial-time algorithms for finding approximate equilibria when
A < 2¢ — O(€?). Finally, in Section [l we consider the inverse condition that all strate-
gies within distance A of some Nash equilibrium are e-equilibria, and give an efficient
algorithm for computing (e/A)-approximate equilibria in this case.

2.1 Preliminaries
We begin with a few preliminary facts that apply to any 2-player general-sum game.

Claim 1. [f (p, q) is a-close to a Nash equilibrium (p*, ¢*) (i.e., if d((p, q), (p*, q*)) <
a), then (p, q) is a 3a-Nash equilibrium.

Proof. (omitted)

Claim[Tlis useful because while it may be hard to determine how close some pair (p, q)
is to a true equilibrium, it is easy to check how much incentive players have to deviate.
Say that a Nash equilibrium (p*, ¢*) is non-trivial if at least one of p* or ¢* does not
have full support over all the rows or columns. Notice trivial Nash equilibria, if they
exist, can be computed in polynomial-time using Linear programming. We then have:

Claim 2. For any nontrivial Nash equilibrium (p*,q*) and any a > 0, there exists
(p, q) such that d((p, q), (p*,q*)) > « and (p, q) is an a-approximate equilibrium.

Proof. Without loss of generality, assume that p* does not have full support. Let e;
be a row not in the support of p*. Consider a pair of distributions (p, ¢*) where p =
(1 — a)p* + ae;. Since i was not in the support of p*, (p, ¢*) has variation distance «
from (p*, ¢*). Yet, in (p, ¢*), with probability (1 — «) both the players are playing best
responses to each other. Hence, no player has more than « incentive to deviate. g

Corollary 1. Assume that the game G satisfies (e, A)-approximation stability and has
a non-trivial Nash equilibrium. Then we must have A > e.

2.2 Some Simple Examples

A number of natural small games satisfy (e, A)-approximation stability for every e > 0
and for A = O(e). Here, we give a few simple examples.

Game 1: The row and the column matrices are 2 x 2 as follows:
11 10
w-foo] o= [ii)
Here, the only Nash equilibrium (p*, ¢*) is for the row player to play row 1 and the col-
umn player to play column 1, which are dominant strategies. Any deviation by distance
A from p* will give the row player A incentive to deviate, regardless of the strategy of
the column player. Similarly, any deviation of A from ¢* will give the column player

a A incentive to deviate regardless of the strategy of the row player. Hence, for every
€ € [0, 1], this game is (e, A)-stable for A = e.
Game 2: This game is simply matching pennies:
10 01
n=lor] o= [)

01
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Denoting the indicator vectors as e; and eg, the Nash equilibrium (p*, ¢*) is equal to
(3(e1 + €2), 2(e1 + €2)). We now show that for any strategy which is A far from

A (1+24)
(1444)°
Specifically, let (p, ¢) be A-far from (p*, ¢*), and without loss of generality assume
d(p,p*) = A. We may further assume without loss of generality (by symmetry) that
p=(5+ A+ (5 —Aes. Letq= (5 — A)er + (5 + A)ea for A’ € [-A, Al In
this case the row player is getting a payoff p” Rq = (; — 2AA’). Furthermore, he can

move to row 2 and get payoff el Rq = (} + A’). Hence, the incentive to deviate (es —
p)TRq > A'(1 4 2A). Similarly, the column player has payoff p” Cq = (} + 2A4’),
whereas p”'Ce; = (} + A), and hence has at least A(1—2A’) incentive to deviate. The
A (1424) Ay

(1+44) 1+44/)
Therefore, the incentive to deviate in any (p, ¢) that is A-far from (p*, ¢*) is at least
this large. Solving for A as a function of e, this game is (e, A)-approximation stable for

A=¢e+ O(e?).

Game 3: Rock, Paper, Scissors.

(p*, ¢*), at least one player must have € incentive to deviate for e =

maximum of these two is at least (with this value occuring at A’ =

050 1 051 0
R=11050 C=10051
0 105 1 0 05

A case analysis (omitted) shows that this game is (e, A)-approximation stable for A =
4e, forany e < |.

3 The Support of Equilibria in Stable Games

We now show that approximation-stable games have structure that can be used to im-
prove the efficiency of algorithms for computing approximate equilibria.

Theorem 1. For any game satisfying (e, A)-approximation stability, there exists an e-
equilibrium where each player’s strategy has support O((A/e)? log(1 + 1/A) logn).

Corollary 2. There is an algorithm to find e-equilibria in games satisfying
(e, A)-approximation stability, running in time nO(4/9)? log(1+1/4)logn),

Let S = ¢(A/¢)? logn for some absolute constant ¢, and let (p*, ¢*) denote the Nash
equilibrium such that all e-equilibria lie within distance A of (p*,¢*). Theorem [Tl is
proven in stages. First, in Lemmal Il we show that given a pair of distributions (p, q), if
p is near-uniform over a large support then p can be written as a convex combination
p = xp1 + (1 — z)ps where p; and po have disjoint supports, and for every column j,
j’s performance against p; is close to its performance against ps. This implies p* itself
cannot be near-uniform over a large sized support, since otherwise we could write it in
this way and then shift A probability mass from ps to p;, producing a new distribution
p’ such that under (p’, ¢*), the column player has less than € incentive to deviate (and the
row player has zero incentive to deviate since supp(p’) C supp(p*)). This contradicts
the fact that the game is (e, A)-approximation stable. We then build on this to show that
if p* is not near-uniform and does have a large support, it must be well-approximated by
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a distribution of small support (roughly O(S log i)) This analysis combines Lemma
[[l together with the sampling idea of Lipton et al. [11]]. The same, of course, applies to
q*. For the rest of this section we assume that A < 1/4.

Lemma 1. For any distributions p and q, if p satisfies ||p||3 < & where S =
c(A/€)? log n for sufficiently large constant c, then p can be written as a convex combi-
nation p = xp1 + (1 — x)p2 of two distributions p1 and pa over disjoint supports such
that:

(Jx<3/4<1— A

(ii) Vj, (pr —p)"Clej —q) < &

The point of Lemmal[Tlis that by (i) and (ii), modifying p by moving A probability mass
from po to p; can improve the performance of e; relative to ¢ for the column player by
at most €. The proof of Lemma[Il makes extensive use of the Hoeffding Bound:

Theorem 2 (Hoeffding Bound). Ler X;, ©« = 1,2,...,n, be n random variables, s.t.
Vi, X; € [ai, b Let u; = E[X;]. Then for every t > 0 we have that:

Pr(y, X > t+ Y <exp (— g (7,0 ) 3)

Proof (Lemmall)). Letr be arandom subset of the support of p; that s, for every element
in supp(p), add it to r with probability 1/2. Also, let C; denote the ith entry of C'q. The
idea of the proof is just to argue that for any column j, by the Hoeffding bound, with
high probability over the choice of r, the distribution p; induced by p restricted to 7
satisfies the desired condition that p{ C(e; — ¢) is within ,, of p”C(e; — ¢). We then
simply perform a union bound over j.

Fix column e;. Let Y;; be the random variable defined as 21%(01 - C; ) if element 4
was added to 7, and 0 otherwise. Observe that E[Y", Yi;] = 13, 2p;(Ci; — C;) =
pTC(ej — q). Let Z; be the random variable defined as 2p; with probability 1/2 (if
element ¢ was added to ), and 0 otherwise. Observe E[) ", Z;] = 1. Observe also that
for every i we have that Z;,Y;; € [—2p;, 2p;].

The obvious reason for defining Y;; and Z; is that by denoting the distribution p
restricted to 7 (renormalized to have L; norm equal to 1) as p,., we have:

> ier Pi(Cij—Ci) Yij
prTC(ej B q) - Egia» Pi - %L Zi (4)

so by bounding the numerator from above and the denominator from below, we can
hope to find r for which p,7C(e; — q) < E[Y,Y;;] + (¢/44), thus decomposing p
into the desired p; = p, and ps = pr. We can do this using the Hoeffding bound and
plugging the value of S:

Pr (32, Yy > p7Cle; — )+ 15a) < exp (3003 ) Sexp (655, ) < b

where the last inequality is by definition of S. Thus, Pr[3j,>", Y;; > pTC(e; —q) +
104) < 1/2. Similarly (and even simpler), we have that Pr[}, Z; <1 — ,5,] < 1/2,
and so the existence of r for which both events do not hold is proven. Observe that for
this specific r we have that
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> Y TC(ej—q)+€/10A 5A
zizf <? 1eie/qm£ <p"Clej —q) + lfe//l(JA <p"Clej —q) + aA

using the fact that p” C (e; —q) < 1. Thus, we have the desired decomposition of p. O

Proof (Theorem[I)). We begin by partitioning p* into its heavy and light parts. Specifi-
cally, greedily remove the largest entries of p* and place them into a set H (the heavy
elements) until either (a) Pr[H] > 1 — 4A, or (b) the remaining entries L (the light
clements) satisfy the condition that Vi € L, Pr[i] < ¢Pr[L] for S as in Lemmal[ll
whichever comes first. We analyze each case in turn.

If case (a) occurs first, then clearly H has at most Slog(1/4A) elements. We now
simply apply the sampling argument of Lipton et al [11] to L and union the result with
H. Specifically, decompose p* as p* = Bpy + (1 — 8)pr, where (3 denotes the total
probability mass over H. Applying the sampling argument of [[L1] to pr, we have that
by sampling a multiset X’ of S elements from supp(p;) = L, we are guaranteed, by
definition of S, that for any column e, [(Ux)?Ce; — pLCe;| < (¢/8A), where Uy
is the uniform distribution over X. This means that for p = Bpy + (1 — 3)Ux, all
columns e; satisfy [p** Ce; — pT Ce;| < €/2. We have thus found (the row portion of)
an e-equilibrium with support of size S(1 + log(1/4A)) as desired, and now simply
apply the same argument to g*.

If (b) occurs first, we show that the game cannot satisfy (e, A)-approximation sta-
bility. Specifically, let p;, denote the induced distribution produced by restricting p* to
L and renormalizing so that 3", (pr); = 1, then Y_,(pr)? < &> .(pr)i = §. Using
Lemmal[ll we deduce we can write py, as a convex combination py, = zp1 + (1 — x)ps
of p; and py satisfying the properties of Lemma (Il Again, by denoting 3 as the total
probability mass over H, we have:

p* = 0Opa + (1 —Bxpr + (1 - F)(1 —z)p2 (5)

where py is the induced distribution over H. We now consider the transition from p*
to p’ defined as

p'=Ppr + (L= B)z+ A)pr + (1 = B)(1 — z) — A)p, (6)
Notice that by Lemmalll z < % and hence (1—8)(1—2)—A > (1-8)/4—A > 0,s0
p’ is a valid probability distribution. Also, since p; and po are distributions over disjoint
support, p’ is A far from p*. Note that since p’ is obtained from an internal deviation
within the support of p*, the row player has no incentive to deviate when playing p’
against ¢*. So, if the game is (¢, A)-approximation stable, then playing p’ against ¢*
must cause the column player to have more then € incentive to deviate. However, by
transitioning from p* to p’ the expected gain of switching from ¢* to any e, is

PrCej—q) = (" + Alpr = p2))" Cle; — )
< A(pr —p2)"Cle; — ¢7) (since p** Cq* > p** Ce;)
From Lemma[Il we know that for every column j, (p1 — pr)" C(e; — ¢*) < 5. Also
. (pL — xp1). Using this we can write A(py — p2)TC(e; — ¢*) =
2 —p)TC(ej —q) < 2, (,5) < € where the last step follows from 2 < 3/4.

So the column player has less than € incentive to deviate which contradicts the fact that
the game is (e, A)-approximation stable. O

we have that p, =
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4 Polynomial-Time Algorithms When A and € Are Close

We now show that if A < 2e — 6€2, then there must exist an O(€)-equilibrium where
each player’s strategy has support O(1/¢). Thus, in this case, for constant €, we have a
polynomial-time algorithm for computing O(¢)-equilibria.

Theorem 3. For any game satisfying (e, A)-approximation stability for A < 2e —
6¢2, there exists an O(€)-equilibrium where each player’s strategy has support O(1/e).
Thus, O(¢)-equilibria can be computed in time n®/€).

Proof. Let (p*, ¢*) be a Nash equilibrium of the game. First, if there is no set .S of
rows having a combined total probability mass x € [A, A + €] in p*, then this implies
that except for rows of total probability mass less than A, all rows in the support of p*
have probability greater than e. Therefore, p* is A-close to a distribution of support at
most 1/e. If this is true for ¢* as well, then this implies (p*, ¢*) is A-close to a pair of
strategies (p, ¢) each of support < 1/e, which by Claim[Il and the assumption A < 2e,
is an O(e)-equilibrium as desired. So, to prove the theorem, it suffices to show that
if such a set S exists, then the game cannot satisfy (e, A)-approximation stability for
A < 2e — 6€2.

Therefore, assume for contradiction that p* can be written as a convex combination
p* =axp1 + (1 — x)pe, (N

where p1, p2 have disjoint supports and z € [A, A + ¢€]. Let v = pl Cq* — pfCq*
and let Vo = p*7 C'¢*. We now consider two methods for moving distance A from p*:
moving probability from p; to p2, and moving probability from p, to p;. Let

p'=(x—A)p1+(1—a+ A)ps (®)

=1+ 200" = (2P ©)

Since p’ has distance A from p* and its support is contained in the support of p*, by
approximation-stability, there must exist some column e; such that p'” Ce; > p'TCq*+
€. By 8) we have p'T Cq* = Vo — A(p1 —p2)T Cq* = Vo — Av. By (@) and the fact that
p*TCej < V¢ we have that p'"'Ce; < Vo (1 + fx). Therefore we have the constraint

Ve(l+ ,2) > Ve — Ay +e (10)

Now, consider moving A probability mass from ps to p;. Specifically, let
pl=(@+A)p+(1—a—A)ps (11)
=120+ (2 (12)

Again, there must exist some column ey, such that p”?Ce;, > p""TCq* + €. By (I)
we have p"TCq* = Vo + A(p1 — p2)TCq* = Vo + Ay. By (I2) and the fact that
p*TCei, < Ve we have that p”"7 Cep, < V(1 — lfz) + lfm. Therefore we have the
constraint

Ve@l— 2 )+ 2, > Ve + Ay +e (13)

From constraint (I0) we have Vi ( lfm) > ¢ — A~y and from constraint (I3) we have
Ve ( 161-) < A — Ay — e Therefore, 161- > 2¢, contradicting A < 2¢ — 6€2. O

1—x
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S Stable Games of Large Support

We now give a near-matching lower bound to the results of Section Bl showing that
there exist stable games in which the Nash equilibrium and all approximate equilibria
have support 2(logn).

Theorem 4. For any A < 1/2, there exist n-by-n games satisfying (e, A)-
approximation stability for e = A? /32 such that all e-Nash equilibria have supports of
size at least (1 — A)1g(n).

Thus, Theorem @ implies the following near-matching lower bound to Theorem /il

Corollary 3. Forany A < 1/2 there exists an (e, A)-approximation stable game G for
some € > 0 such that all e-equilibria have support §2( f; logn).

Proof. The proof builds on a construction in Feder et al. [10] exhibiting a game in
which all approximate equilibria have support of size {2(logn). However, the game
in [10] does not satisfy stability and so a more involved construction and argument is
needed. We now present the construction of the matrix R. The game will be constant
sum with C =1 — R. Let k = log,(n) and let @« = A/4. The matrix R looks like:

b

— X is k by k with all entries equal to 0.5.
— Wisn — k by n — k with all entries equal to 0.5.
— Zisn — k by k where each row has (0.5 — «)k entries equal to 1 and (0.5 4+ o)k

entries equal to 0. Specifically, all ( (©. 55 ) k) different such rows appear. We can

add multiple copies of these rows if needed to fill out the matrix.
- Y is k by n— k where each column has (0.5 — )k entries equal to 0 and (0.5+ )k

entries equal to 1. Specifically, all ((0_ Eﬁa) k) different such columns appear. We can
add multiple copies of these columns if needed to fill out the matrix.

Where:

We begin with two observations about the above construction:

Observation 1: This game has a Nash equilibrium (p*, ¢*) which is uniform over the
first k rows and columns.

Observation 2: The minimax value of this game is 1/2 to each player. So any (p, ¢) in
which one player gets less than 1/2 — € is not e-Nash.

We now prove that this game satisfies (e, A) approximation-stability for e = A2?/32.
Let (p, q) be some pair of distributions such that d((p, ¢), (p*,¢*)) > A. Recall that
d((p,q), (p*,¢*)) = max[d(p, p*), d(q, ¢*)] and assume without loss of generality that
d(q,q*) > A. We want to show that this is not an e-Nash equilibrium. It will be conve-
nient to write ¢ = ¢’ + ¢’ where ¢’ is nonzero only over the first k£ columns and ¢” is
nonzero only over the remaining n — k columns.

Case 1: Suppose that |¢”'| > § for 3 = A/4. Then, one possible response of the row
player is to play p*, achieving a payoff p*” Rq greater than:

0.5(1— B8) + (0.5 + )3 = 0.5 + af. (14)
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Thus, if p" Rg < 0.5 + af then this is not an 0‘25 -equilibrium (since the row player
would have more than ”25 incentive to deviate to p*) and if p” Rg > 0.5 + ”25 then
af -equilibrium (since p”Cq = 1 — p"Rq < 0.5 — af
pTCq* > 0.5 by Observation 2, so now the column player has more than incentive
to deviate). Plugging in o = 3 = A/4, we get e = a3/2 = A? /32 as desired.

this is also not an and yet

af
2

Case 2: |¢"'| < f. Define d'(q,¢*) = Zle max(g; — ¢, 0). So, d'(¢,¢*) > A— .
For conceptual convenience, let us sort the entries of ¢’ (i.e., the first k entries of ¢) in
decreasing order. We now claim that

Ok 0 > 1/2+ af. (15)

This will imply at least one player has more than e incentive to deviate since one pos-
sible response of the row player is to play the row in matrix Z with 1’s in the first
(0.5 — )k entries, gaining a value greater than 1/2+ a3. Thus, if p? Rq < 0.5+ a3/2
then the row-player has more than «/3/2 incentive to deviate to that row in Z, and if
pT'Rq > 0.5 + 3/2 then the column player has more than «/3/2 incentive to deviate
to ¢*). So, all that remains is to prove inequality (I3). Let ¢ = q(g.5—a)k-

Case 2a: ¢ > 1/k. In this case we simply use the fact that since the columns
are sorted in decreasing order of ¢;, at least an (0.5 — «v) fraction of the quantity
d'(q,q*) = Zle max(q; — ¢}, 0) (think of this as the “excess” of ¢’ over ¢*)
must be in the first (0.5 — a)k columns. In addition, we have the remaining
“non-excess” Ei‘i’_a)k min(g;, qf) = [(0.5 — a)k](1/k) = 0.5 — a. So,
summing these two and using d'(q,¢*) > A — 3 we get: Zgif_a)k q >
(0.5—a)(1+A-p3) =0.54+a8+(0.5A-0.58—a—aA) > 0.5+, where
the last inequality comes from our choice of « = 3 = A/4 and assumption
that A < 1/2.

Case 2b: ¢ < 1/k. This implies that all the d(q,¢*) — 3 “excess” of ¢’ over
¢* must be in the first (0.5 — o)k columns. In addition, these columns must

contain at least a (0.5 — «) fraction of the “non-excess” Zle min(gq;, ¢} ).
This latter quantity in turn equals 1 — d(g, ¢*), by using the fact d(q,¢*) =
Zle max[g; — g, 0]. Putting this together we have: Zgif_”)k g > (A -
B)+(05—-a)(1-A)=05—-—a+adA—F+ A/2> 05+ ad, where the
last inequality comes from our choice of @ = 3 = A/4.

This completes Case 2 and the proof. g

This example can be extended if desired to make the game be non-constant sum and
also so that the sum R + C' of the two matrices does not have a constant rank.

6 Inverse Conditions

In this section we consider an inverse condition to approximation-stability, namely that
for some true equilibrium (p*, ¢*), all non-approximate equilibria are far from (p*, ¢*).
In particular,
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Definition 3. A game is (¢, A)-smooth if for some equilibrium (p*, q*), all strategy
pairs (p, q) such that d((p, q), (p*,q*)) < A are e-equilibria.

We now show that games that are (e, A)-smooth for A large compared to € have the
property that good approximate equilibria can be computed efficiently. (Recall by Claim
[[ that all games are (e, A)-smooth for A < €/3.)

Theorem 5. There is a polynomial-time algorithm to find an (e/A)-approximate
equilibrium in any game that is (¢, A)-smooth.

We prove Theorem[3l through a series of claims as follows.

Claim. Let G be (e, A)-smooth for equilibrium (p*, ¢*). Then for every row i we have
el Rg* > p*TRg* — ¢/ A.

Proof. Let Vi = p*T Rq*. Since (p*, ¢*) is a Nash equilibrium, any row e; € supp(p™*)
will get an expected payoff of Vi against ¢* as well. Now consider arow e; ¢ supp(p*).
Letp = (1 — A)p* + Ae; and consider the pair (p, ¢*). This pair is A-close to (p*, ¢*)
and hence, by the assumption that the game is (e, A)-smooth, must be an e-equilibrium.
This means that p” Rg* > Vi — €. So we get (1 — A)p*T Rg* + Ael'Rg* > Vi — ¢,
and using the fact that p*TRg* = Vg, this implies that el Rq* > Vi — A

Similarly, we have:

Claim. Let G be (e, A)-smooth for equilibrium (p*, ¢*). Then for every column j we
havep*TC’ej >pTCq* — €/ A.

Using these claims, we can efficiently compute an § -approximate equilibrium in
smooth games.

Proof (Theorem[3): Solve the following linear program for a pair of strategies p, g and
values Vg, Vo

¢TRq > Vi — Z, Vi (16)
el Rq < Vg, Vi (17)
pTCe; = Vo= |\ Vi (18)
p"Ce; < Vo, Vj (19)

From the previous claims we have that (p*,¢*, Vg = p*TRq*7 Vo = p*TCq*) isa
feasible solution to the above LP. Also, when playing (p, ¢), the row and the column
players are getting expected payoff at least Vg — ; and Vo — § respectively. Fur-
thermore, by deviating from p, the row player can get a payoff of at most V' and by
deviating from ¢, the column player cannot get more than V. Hence, (p, ¢) is an § -

approximate Nash equilibrium. O
7 Open Questions and Conclusions

In this work we define and analyze a natural notion of approximation-stability for 2-
player general-sum games, motivated by the goal of finding approximate equilibria for
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predictive purposes. We show that one can improve over the general Lipton et al. [[11]
bound based on the extent to which the given game satisfies this condition. Further-
more, if A < 2¢ — O(e?) we show there must exist approximate equilibria of small
support, yielding an algorithm to find them in time n°(*/€), On the other hand, we show
that approximation-stable games with A = O(/e€) can have all approximate equilibria
of support §2(logn). We also analyze an inverse condition for which we show finding
(e/A)-approximate equilibria can be done efficiently. One open problem is to better un-
derstand for what values of A (as a function of €) one can find O(¢)-approximate equi-
libria efficiently under the assumption of (e, A)-approximation-stability. For instance,
can one extend the n©1/€)-time algorithm from A < 2¢ — O(e?) to A = poly(e)?
Recently Balcan and Braverman [3]] have shown this may be intrinsically hard: specifi-
cally, for A = €'/%, they show an n?°?%(1/€) algorithm to find e-equilibria in such games
would imply a PTAS in general games. In fact, [3]] motivates the following interesting
question: could there be an algorithm that for every (e, A) finds a A-equilibrium in time
O(nrov/ 6))? This may be solvable even if a PTAS is hard for general games, which
itself still remains an open question.
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Abstract. Bounding the price of stability of undirected network de-
sign games with fair cost allocation is a challenging open problem in the
Algorithmic Game Theory research agenda. Even though the generaliza-
tion of such games in directed networks is well understood in terms of
the price of stability (it is exactly H, the n-th harmonic number, for
games with n players), far less is known for network design games in
undirected networks. The upper bound carries over to this case as well
while the best known lower bound is 42/23 ~ 1.826. For more restricted
but interesting variants of such games such as broadcast and multicast
games, sublogarithmic upper bounds are known while the best known
lower bound is 12/7 ~ 1.714. In the current paper, we improve the lower
bounds as follows. We break the psychological barrier of 2 by showing
that the price of stability of undirected network design games is at least
348/155 ~ 2.245. Our proof uses a recursive construction of a network
design game with a simple gadget as the main building block. For broad-
cast and multicast games, we present new lower bounds of 20/11 ~ 1.818
and 1.862, respectively.

1 Introduction

Network design is among the most well-studied problems in the combinatorial
optimization literature. A natural definition is as follows. We are given a graph
consisting of a set of nodes and edges among them representing potential links.
Each edge has an associated cost which corresponds to the cost for establishing
the corresponding link. We are also given connectivity requirements as pairs of
source-destination nodes. The objective is to compute a subgraph of the original
graph of minimum total cost that satisfies the connectivity requirements. In other
words, we seek to establish a network that satisfies the connectivity requirements
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at the minimum cost. This optimization problem is known as Minimum Steiner
Forest and generalizes well-studied problems such as the Minimum Spanning
Tree and Minimum Steiner Tree.

In this paper, we consider a game-theoretic variant of network design that
was first considered in [2]. Instead of considering the connectivity requirements
as a global goal, we assume that each connectivity requirement is desired by a
different player. The players participate in a non-cooperative game; each of them
selects as her strategy a path from her source to the destination and is charged for
part of the cost of the edges she uses. According to the fair cost sharing scheme
we consider in the current paper, the cost of an edge is shared equally among
the players using the edge. The social cost of an assignment (i.e., a snapshot of
players’ strategies) is the cost of the edges contained in at least one path. An
optimal assignment would contain a set of edges of minimum cost so that the
connectivity requirements of the players are satisfied. Unfortunately, this does
not necessarily mean that all players are satisfied with this assignment since a
player may have an incentive to deviate from its path to another one so that her
individual cost is smaller. Eventually, the players will reach a set of strategies
(and a corresponding network) that satisfies their connectivity requirements and
in which no player has any incentive to deviate to another path; such outcomes
are known as Nash equilibria. Interestingly, even though the optimal solution is
always a forest, Nash equilibria may contain cycles.

The non-optimality of the outcomes of network design games (which is typical
when selfish behavior comes into play) leads to the following question that has
been a main line of research in Algorithmic Game Theory: How is the system
performance affected by selfish behavior? The notion of the price of anarchy
(introduced in [8]; see also [I0]) quantifies the deterioration of performance. In
general terms, it is defined as the ratio of the social cost of the worst possible
Nash equilibrium over the optimal cost. Hence, it is pessimistic in nature and (as
its name suggests) provides a worst-case guarantee for conditions of total anar-
chy. Instead, the notion of the price of stability (introduced in [2]) is optimistic
in nature. It is defined as the ratio of the social cost of the best equilibrium over
the optimal cost and essentially asks: What is the best one can hope for the
system performance given that the players are selfish?

The aim of the current paper is to determine better lower bounds on the price
of stability for network design games in an attempt to understand the effect
of selfishness on the efficiency of outcomes in such games. We usually refer to
network design games as multi-source network design games in order to capture
the most general case in which players may have different sources. An interesting
variant is when each player wishes to connect a particular common node, which
we call the root, with her destination node; we refer to such network design
games as multicast games. An interesting special case of multicast games is the
class of broadcast games: in such games, there is a player for each non-root node
of the network that has this node as her destination.

The existence of Nash equilibria in network design games is guaranteed by a
potential function argument. Rosenthal [I1] defined a potential function over all
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assignments of a network design game so that the difference in the potential of
two assignments that differ in the strategy of a single player equals the difference
of the cost of that player in these assignments; hence, an assignment that locally
minimizes the potential function is a Nash equilibrium. So, the price of stability is
well-defined in network design games. Anshelevich et al. [2] considered network
design games in directed graphs and proved that the price of stability is at
most H,. Their proof considers a Nash equilibrium that can be reached from
an optimal assignment when the players make arbitrary selfish moves. The main
argument used is that the potential of the Nash equilibrium is strictly smaller
than that of the optimal assignment and the proof follows due to the fact that
the potential function of Rosenthal approximates the social cost of an assignment
within a factor of at most H,. This approach suggests a general technique for
bounding the price of stability and has been extended to other games as well;
see [3I5]. For directed graphs, the bound of H, was also proved to be tight
[2]. Although the upper bound proof carries over to undirected network design
games, the lower bound does not. The bound of H,, is the only known upper
bound for multi-source network design games in undirected graphs. Better upper
bounds are known for single-source games. For broadcast games, Fiat et al. [7]
proved an upper bound of O(loglogn) while Li [9] presented an upper bound
of O(logn/loglogn) for multicast games. These bounds are not known to be
tight either and, actually, the gap with the corresponding lower bounds is large.
For single-source games, in the full version of [7] Fiat et al. present a lower
bound of 12/7 ~ 1.714; their construction uses a broadcast game. This was
the best lower bound known for the multi-source case as well until the recent
work of Christodoulou et al. [6] who presented an improved lower bound of
42/23 ~ 1.826. Higher (i.e., super-constant) lower bounds are only known for
weighted variants of network design games (see [1/4]).

In this paper, we present better lower bounds for general undirected network
design games, as well as for the restricted variants of broadcast and multicast
games. For the general case, we present a game that has price of stability at least
348/155 & 2.245, improving the previously best known lower bound of [6]. Our
proof uses a simple gadget as the main building block which is augmented by
a recursive construction to our lower bound instance. The particular recursive
construction of the game has two advantages. Essentially, the recursive con-
struction blows up the price of stability of the gadget used as the main building
block. Furthermore, recursion allows to handle successfully the technical diffi-
culties in the analysis. We believe that our construction could be extended to
use more complicated gadgets as building blocks that would probably lead to
better lower bounds on the price of stability For multicast games, we present
a lower bound of 1.862. Our proof uses a game on a graph with a particular
structure. For this game, we prove sufficient conditions on the edge costs of the
graph so that a particular assignment is the unique Nash equilibrium. Then,
the construction that yields the lower bound is the solution of a linear program
which has the edge costs as variables, the sufficient conditions as constraints, an
additional constraint that upper-bounds the optimal cost by 1, and its objective
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is to maximize the cost of the unique Nash equilibrium. The particular lower
bound was obtained in a game with 100 players using the linear programming
solver of Matlab. A slight variation of this construction yields our lower bound
for broadcast games. In this case, we are able to obtain a more compact set of
sufficient conditions so that there is a unique Nash equilibrium. As a result, we
have a formal proof that the price of stability approaches 20/11 ~ 1.818 when
the number of players is large.

2 Preliminaries

In an undirected network design game, we are given an undirected graph G =
(V, E) in which each edge e € E has a non-negative cost c.. There are n players;
player i wishes to establish a connection between two nodes s;,t; € V called
the source and destination node of player i, respectively. The set of strategies
available to player ¢ consists of all paths connecting nodes s; and ¢; in G. We
call an assignment any set of strategies o, with one strategy per player. Given
an assignment o, let n.(c) be the number of players using edge e in o. Then,
the cost of player i in o is defined as costi(0) = > c,. n:’(ﬂg). Let G(o) be the
subgraph of G which contains the edges of G that are used by at least one player
in assignment o. The social cost of the assignment o is simply the total cost of
the edges in G(o) which coincides with the sum of the costs of the players.

An assignment o is called a Nash equilibrium if for any player ¢ and for any
other assignment ¢’ that differs from o only in the strategy of player 7, it holds
cost; () < cost;(0’). It can be easily seen that any Nash equilibrium is a proper
assignment, in the sense that the edges used by any pair of players do not form
any cycle. The price of stability of a network design game is defined as the ratio
of the minimum social cost among all Nash equilibria over the optimal cost.

Network design games with s; = s for any player i are called multicast games.
We refer to node s as the root node. Multicast games in which there is one player
for any non-root node that has this node as destination are called broadcast
games. We also use the term multi-source games to refer to the general class of
undirected network design games and the term single-source games in order to
refer to multicast and broadcast games.

3 The Lower Bound for Multi-source Games

In this section, we prove the following theorem.

Theorem 1. For any § > 0, there exists an undirected network design game
with price of stability at least 348/155 — 0.

We will construct a network design game on a connected undirected graph so
that there is a distinct player associated with each edge of the graph that wishes
to connect the endpoints of the edge. The construction uses integer parameters
k > 3 and t > 2. We start with the gadget construction depicted in Figure [Th.
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We use the terms left and right gadget player for the players associated with the
left and right gadget edge of a gadget, respectively. We also use the term floor
players for the players associated with floor edges. Given an edge e, we build a
block under this edge by putting k gadgets so that the leftmost node of the first
gadget coincides with the left endpoint of e, the rightmost node of i-th gadget
coincides with the leftmost node of the (i + 1)-th gadget for ¢ = 1,...,k — 1, and
the rightmost node of the k-th gadget coincides with the right endpoint of e (see
Figure [Ib). We refer to e as the ceiling edge of the block.

left gadget edge

k middle floor edges k right floor edges

@ k left floor edges

right gadget edge

ceiling edge

Fig. 1. (a) The gadget used in the proof of Theorem[l (b) The construction of a block
under a ceiling edge (with k£ = 3).

We set z = 28/109, y = 33/109, z = 30/109 — ¢, w = 35/109 — ¢, and
a = 63/218 — ¢, where € is a negligibly small but strictly positive number. If g
denotes the cost of the ceiling edge, then the cost of the edges in each gadget
of the block under it are defined as follows: 5,52 for each of the left floor edges,

(l_szy)g for each of the middle floor edges, Y%, for each of the right floor edges,
9 for the left gadget edge, and "7 for the right gadget edge. So, the total cost
of the floor edges of the block is g/a while the total cost of all edges of the block
is g(l+z4+w)/a.

Now, our construction starts with a roof edge of cost 1 (and an associated roof
player) and a block under it. The roof edge has level ¢ and the block under it
has level t — 1. We build blocks of level t — 2 by building a block under each of
the floor edges of the block of level ¢ — 1. We continue recursively and define all
blocks down to level 1. Clearly, for j = 1, ...,t—1, the total cost of the floor edges
of level j is ga/~t while the total cost of all edges of level j is g(1+ 2z +w)a/ ¢,

Hence, the total cost of the edges in the graph is

t—1

1—|—Z(1+z+w)ofi

i=1

348 436ea1,t 193 — 654e
T 1554 218¢ 155 + 218¢
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while the cost of the floor edges of level 1 is o't and upper-bounds the optimal
cost (since the floor edges of level one constitute a spanning tree of the whole
graph). For any 6 > 0, we can set ¢t and e appropriately so that the ratio of the
total cost of edges over the optimal cost is at least 348/155 — 4.

In order to complete the proof of the theorem, it suffices to prove that the
assignment in which each player uses her direct edge is the unique Nash equi-
librium; the rest of this section is devoted to proving this claim. We will refer
to the players associated to floor edges (respectively, gadget edges) at blocks of
level j as the floor players of level j (respectively, the gadget players of level j).
A floor player of level j follows a non-increasing strategy if she uses neither a
gadget edge of her gadget nor any edge of level 7' > j. A gadget player of level
j follows a non-increasing strategy if she does not use any edge of level 5/ > j.
In the opposite case, we say that the player follows an increasing strategy.

In an assignment, a player may use a floor edge or connect its endpoints by
being routed through the block under the edge. In the latter case, we say that
the player crosses the floor edge. We also say that a player is external to a gadget
(respectively, external to a block) if she does not correspond to any edge of the
gadget (respectively, block) and uses or crosses its edges.

In a proper assignment, the sets of non-increasing strategies of the gadget
players of a gadget can belong to one of the following types (Figure [); any
other set of non-increasing strategies violates the fact that the assignment is
proper.

— Type A: Both gadget players use their direct edges.

— Type B: The left gadget player uses her direct edge and the right gadget
player uses or crosses the middle and right floor edges.

— Type C: Both gadget players use the left gadget edge. The right gadget
player uses or crosses the left and right floor edges as well.

— Type D: The right gadget player uses her direct edge and the left gadget
player uses or crosses the left and middle floor edges.

— Type E: Both gadget players use the right gadget edge. The left gadget
player uses or crosses the left and right floor edges as well.

— Type F: The left gadget player uses or crosses the left and middle floor edges
and the right gadget player uses or crosses the middle and right floor edges.

We are ready to significantly restrict the structure of assignments we have to
consider as candidates to be Nash equilibria.

Lemma 1. At any Nash equilibrium, all players besides the roof player follow
non-increasing strategies. Furthermore, at each block: either there are no external
players and the gadget players have strategies of type A or there are h > 0
external players and each of them experiences cost more than g/h, where g is
the cost of the ceiling edge of the block.

Proof. Consider a Nash equilibrium. We will prove the claim inductively (on the
block level). We will first prove it for the blocks of level 1. In this case, there is
no block under any floor edge and players do not cross the floor edges.
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Fig. 2. The six possible types for the players of a gadget that follow non-increasing
strategies. The dashed lines denote the paths used by the left and the right gadget
player. Only the gadget edges that are used by some player are shown.

Consider a block of level 1 and assume that a floor player p follows an increasing
strategy. Then, she should connect the endpoints of her floor edge to the two
closest gagdet edge endpoints by using k — 1 floor edges. Furthermore, observe
that neither a gadget player of the same gadget nor an external player to this
gadget uses these floor edges (since this would imply that they also use the direct
edge of player p and the assignment would not be proper). Similarly, the players
associated to the k — 1 floor edges use their direct edges. Hence, player p uses
each of the k£ — 1 floor edges together with one floor player. Since k£ > 3, this
means that the cost she experiences at the k—1 > 2 floor edges plus the non-zero
cost she experiences at the other edges she uses is strictly larger than the cost
of her direct edge and she would have an incentive to move to its direct edge.
So, all floor players of the block follow non-increasing strategies.

Now, assume that a gadget player p follows an increasing strategy, i.e., her
path contains the endpoints of her gadget. This means that there are no external
players to the current block nor other gadget players within the current block
that follow increasing strategies (any such player should connect the endpoints
of the gadget of p and the assignment would not be proper). So, there are at least
k — 1 gadgets whose gadget (and floor) players follow non-increasing strategies.

We focus on such a gadget of the current block and assume that there are
h > 0 external players; these can be players that are external to the block or a
player from another gadget of the same block that follows an increasing strategy.
In the inequalities below, we use the following claim.

Claim. Let (,n be positive integers. Then, C-il-h > (Cﬁf]n)h for any integer h > 1.

We consider the six different cases for the strategies of the gadget players. If the
strategies of the gadget players are of type A, then all the external players (if
any) are routed either through the left gadget edge and the right floor edges of
the gadget, or through the left floor edges and the right gadget edge, or through
the left gadget edge, the middle floor edges, and the right gadget edge (any other
case violates the fact that the assignment is proper). In the first subcase, the
cost of each external player at the edges of the gadget is

g ( = y g (2 y\_ g (63 €\_ g
> — - .
ak(1+h+1+h)_akh(2+2) akh<218 2)>kh
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In the second subcase, the cost of each external player is

g T w g [T W g 63 € g
> = — .
ak<1+h+1+h>_akh(2+2) akh<218 2>>kh

In the third subcase, the cost of each external player is again

g z 1l—x—y w g w l—z—y w g
> > .
ak(1+h+ 1+ h +1+h>—akh(2+ 2 +2) kh
If the strategies of the gadget players are of type B, all the external players are
routed through the left gadget edge and the right floor edges. We will first show

that A > 2. Indeed, if at most one external player is routed through the gadget,
the cost of the right gadget player would be at least

g (l—=xz—y y\ g 35 quw
ak( 2 +3>_ak 100~ ak’

i.e., this player would have an incentive to move and use her direct edge. So,
since h > 2, the cost of each external player at the edges of the gadget is

g z+y Zg 2z+y:g 73_26>g.

ak \1+h 2+4+h akh \ 3 2 akh \ 218 3 kh
If the strategies of the gadget players are of type C, all the external players are
routed through the left gadget edge and the right floor edges. We will show again

that h > 2. Indeed, if at most one external player is routed through the gadget,
the cost of the right gadget player would be at least

g(m z y):g 35 e qw

ak \2 T37T 3 ak<109 3) 7 ak’

i.e., this player would have an incentive to move. So, since h > 2, the cost of
each external player at the edges of the gadget is

g z Zg(ery):g 63 e\ 9

ak \2+h  2+4+h akh \2 2 akh \ 218 2 kh
If the strategies of the gadget players are of type D, all the external players are
routed through the left floor edges and the right gadget edge. We will show again

that h > 2. Indeed, if at most one external player is routed through the gadget,
the cost of the left gadget player would be at least

g (z 1-xz—y\ g 100 gz
odc(za+ 2 )ak 327 7 ak’

i.e., this player would have an incentive to move. So, since h > 2, the cost of
each external player at the edges of the gadget is

g T w g r 2w g 112 2e g
+ > + = - Z
ak \24+h 1+4+h akh \ 2 3 akh \ 327 3 kh
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If the strategies of the gadget players are of type E, then all the external players
are routed through the left floor edges and the right gadget edge. We will show
again that h > 2. Indeed, if at most one external player is routed through the
gadget, the cost of the left gadget player would be at least

g(x w y):g [CIC gz

ak\3 319 ak<218 3) 7 ak’

i.e., this player would have an incentive to move. So, since h > 2, the cost of
each external player at the edges of the gadget is

g x w g [T  w g 63 € g
+ > (G4 = -5)> 0
ak \2+h 2+h akh \2 = 2 akh \ 218 2 kh
If the strategies of the gadget players are of type F, then all the external players
are routed through the floor edges. We will show that h > 0 in this case. Indeed,

if there were no external players that are routed through the gadget, the cost of
the left gadget player would be

g (z l—xz—y y g 93 gz
= . >

ak (2+ 3 +2) ak 218~ ak’

i.e., this player would have an incentive to move. So, the cost of each external

player at the edges of the gadget is

9 T l—z—y Yy g (v  l-z—-y 'y 9
> .
ak<2+h+ 34 h +2+h>‘akh(3+ 4 +3>>kh

Now, consider again the gadget player p which follows an increasing strategy.
In each of the other k — 1 gadgets of the same block, the gadget players have
strategies of types A or F and the cost player p experiences at the edges of the
gadget is more than {. Her total cost through the edges of the k —1 > 2 gadgets

different than her own one would be 7 (kk_ D> g max{z,w}, i.e., she would have
an incentive to move and use her direct edge instead. So, all gadget players of
the block follow non-increasing strategies as well.

Now, assume that no external player is routed through the block. Then, by
the above discussion, the only case in which the gadget players of a gadget do not
have an incentive to move is when they follow strategies of type A. If one external
player is routed through the block, then the gadget players follow strategies of
type A or F and the cost experienced by the external player at each gadget is
more than g/k, i.e., more than g in total. If h > 2 external players are routed
through the block, then each of them experiences cost more than  at each
gadget, i.e., more than g/h in total.

We have completed the proof of the base of the induction. Now, assuming that
the statement is true for blocks of levels up to j, we have to prove it for blocks
of level j + 1. The proof of the induction step is almost identical to the proof of
the induction base. The only difference is that, now, a player may cross a floor
edge in order to connect its endpoints. Then, when h players cross a floor edge,
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they are external to the block under the edge and (by the induction hypothesis)
the cost they experience when crossing the edge is more than its cost over h (as
opposed to exactly its cost over h which we had in the induction base). This
inequality (instead of equality) does not affect any of the inequalities above and
the proof of the induction step completes in the very same way. a

Lemma 2. At any Nash equilibrium, there are no external players at any block.

Proof. Assume that this is not the case and consider a Nash equilibrium with
external players at some block. Consider the block of highest level that has some
external player routed through it. Then, it is either the block of level ¢t — 1 or (by
Lemma [I]) some block under a floor edge of a gadget of the higher-level block
whose gadget players follows strategies of type A. In both cases, exactly one
player is routed through the block (i.e., the player corresponding to its ceiling
edge) and, by Lemmal/[I] her cost at the edges of the block is more than the cost
of the ceiling edge of the block. Hence, this player has an incentive to move and
use the ceiling edge instead. The lemma follows. a

Now, Theorem [I] follows by Lemmas[Iland Plsince they imply that the assignment
in which every player uses her direct edge is the unique Nash equilibrium.

4 Lower Bounds for Single-Source Games

In this section, we present our lower bounds for multicast and broadcast games.
We note that since all players have a common source node in such games, in
any proper assignment the set of edges that are used by at least one player
is a tree that is rooted at the source node and spans the destinations of all
players. Also, any such tree defines in a unique way the strategies of the players
in a proper assignment. So, when considering Nash equilibria in multicast or
broadcast games, it suffices to restrict our attention to assignments defined by
trees spanning the root node and the destination nodes of all players. We refer
to them as multicast or broadcast trees depending on whether the game is a
multicast or a broadcast game.

Our lower bound for multicast games uses the graph M, depicted in Figure
Bl There are n players; player ¢ wishes to connect node s to node t;. The cost
of the edges is defined by the tuple C = (a,...,Zn, Y1,y Yn, 215+ -+, 2n). We
denote by 7 the multicast tree formed by the edges (s,t;) for ¢ = 1,...,n. The
next lemma provides a sufficient condition so that the assignment defined by
tree 7 is the unique Nash equilibrium of the multicast game on M, ; its formal
proof is omitted due to lack of space.

Lemma 3. The assignment defined by tree T is the unique Nash equilibrium
of the multicast game on graph M, if C is such that for i = 2,...,n and for
k=1,...,i—1 it holds

i—k—1
Ti—p
7 —

Zi Yi

k—
<
“k min{2i — 2k,n — k} +1 * min{2i — 2k,n — k} * = p + Yk
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Fig. 3. The graphs M,, (left) and B,, (right)

and fori=1,...n—1 and for j =i+ 1,...,n it holds
j—i

Zi Yi Tit+p
P <
“i min{?j—Qi,j}+min{2j—2i,j}—1+p§1j7ifp+l

+Y;-

Now, we can use Lemma [3] to obtain lower bounds on the price of stability of
multicast games by solving the following linear program. The variables of the
linear program are the edge costs of the tuple C'. The objective is to maximize the
cost .1 | z of tree T subject to the two sets of constraints in the statement of
Lemma[Bland the additional constraint z1 4+ ;o @i+ > 1, ¥; < 1 which upper-
bounds the optimal cost by 1 (observe that the left-hand side of this constraint
is the cost of the multicast tree containing all edges of M,, besides (s,t;) for
i = 2,...,n). Then, the objective value of this linear program denotes the price
of stability of the multicast game on M,, for the particular values of the edge costs
that correspond to the solution of the linear program. We obtained our lower
bound on the price of stability using the linear programming solver of Matlab.
Note that we have used n = 100 and have simulated the strict inequalities in
the conditions of Lemma [3] by using standard inequalities and adding a constant
of 1075 on their left-hand side. The following statement summarizes our best
observed lower bound.

Theorem 2. There exists a multicast game with price of stability at least 1.862.

Our lower bound for broadcast games uses the graph B, depicted at the right
part of Figure Bl In this case, the cost of the edges is defined by the tuple
C = (xza,...,Zn,21,.-.,2n). Again, there are n players; player ¢ wishes to connect
node s to node t;. Denote by 7 the broadcast tree formed by the edges (s, t;) for
i1 =1,...,n. Observe that the graph B, is obtained from M, by contracting the
edges (t;,v;). Hence, any Nash equilibrium of the multicast game on graph M,
with y; = 0 for ¢ = 1,...,n corresponds to a Nash equilibrium of the broadcast
game on graph B,, of the same cost (and vice versa) while the cost of the optimal
assignment is the same in both cases. So, we can apply the same technique we
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used above by further constraining the variable y; to be zero for i = 1,...,n.
Fortunately, we are able to define a much more compact set of conditions for
C in order to guarantee that the assignment defined by 7 is the unique Nash
equilibrium of the broadcast game on B,,. Our related result is the following;
due to lack of space, the formal proof is omitted.

Theorem 3. For any § > 0, there exists a broadcast game with price of stability
at least 20/11 — 4.

We remark that the graph B, has the same structure with the lower bound
construction of [7] albeit with a different definition of the edge costs that yields
the improved lower bound on the price of stability.
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Abstract. Fictitious play is a simple learning algorithm for strategic
games that proceeds in rounds. In each round, the players play a best
response to a mixed strategy that is given by the empirical frequencies of
actions played in previous rounds. There is a close relationship between
fictitious play and the Nash equilibria of a game: if the empirical frequen-
cies of fictitious play converge to a strategy profile, this strategy profile is
a Nash equilibrium. While fictitious play does not converge in general, it
is known to do so for certain restricted classes of games, such as constant-
sum games, non-degenerate 2 X n games, and potential games. We study
the rate of convergence of fictitious play and show that, in all the classes
of games mentioned above, fictitious play may require an exponential
number of rounds (in the size of the representation of the game) before
some equilibrium action is eventually played. In particular, we show the
above statement for symmetric constant-sum win-lose-tie games.

1 Introduction

A common criticism of Nash equilibrium, the most prominent solution concept
of the theory of strategic games, is that it fails to capture how players’ delibera-
tion processes actually reach a steady state. When considering a set of human or
artificial agents engaged in a parlor game or a more austere decision-making sit-
uation, it is somewhat hard to imagine that they would after some deliberation
arrive at a Nash equilibrium, a carefully chosen probability distribution over all
possible courses of action. One reason why this behavior is so hard to imagine is
that Nash equilibrium rests on rather strong assumptions concerning the ratio-
nality of players and the ability to reliably carry out randomizations. Another
concern is that in many settings finding a Nash equilibrium is computationally
intractable.

A more reasonable scenario would be that agents face a strategic situation by
playing the game in their heads, going through several rounds of speculation and
counterspeculation as to how their opponents might react and how they would
react in turn. This is the idea underlying fictitious play (FP). FP proceeds in
rounds. In the first round, each player arbitrarily chooses one of his actions. In
subsequent rounds, each player looks at the empirical frequency of play of their
respective opponents in previous rounds, interprets it as a probability distribu-
tion, and myopically plays a pure best response against this distribution. FP

S. Kontogiannis, E. Koutsoupias, P.G. Spirakis (Eds.): SAGT 2010, LNCS 6386, pp. 102-{I13] 2010.
© Springer-Verlag Berlin Heidelberg 2010
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can also be seen as a learning algorithm for games that are played repeatedly,
such that the intermediate best responses are actually played. This interpreta-
tion rests on the simplifying assumption that the other players follow a fixed
strategy.

FP was originally introduced by [7] as an algorithm to approximate the
value of constant-sum games, or equivalently compute approximate solutions to
linear programs |10]. Shortly after, it was shown that FP does indeed converge
to the desired solution [24]. While convergence does not extend to arbitrary
games, as illustrated by [25], it does so for quite a few interesting classes of
games, and much research has focussed—and still focusses—on identifying such
classes (|3], and the references therein). Both as a linear program solver and as a
learning algorithm, FP is easily outperformed by more sophisticated algorithms.
However, FP is of captivating simplicity and therefore is considered as one of
the most convincing explanations of Nash equilibrium play. As| put it: “Brown’s
results are not only computationally valuable but also quite illuminating from
a substantive point of view. Imagine a pair of players repeating a game over
and over again. It is plausible that at every stage a player attempts to exploit
his knowledge of his opponent’s past moves. Even though the game may be too
complicated or too nebulous to be subjected to an adequate analysis, experience
in repeated plays may tend to a statistical equilibrium whose (time) average
return is approximately equal to the value of the game” [16, p. 443].

In this paper, we show that in virtually all classes of games where FP is
known to converge to a Nash equilibrium, it may take an exponential number
of rounds (in the representation of the game) before any equilibrium action is
played at all. While it was widely known that FP does not converge rapidly, the
strength of our results is still somewhat surprising. They do not depend on the
choice of a metric for comparing probability distributions. Rather, we show that
the empirical frequency of FP after an exponential number of rounds can be
arbitrarily far from any Nash equilibrium for any reasonable metric. This casts
doubt on the plausibility of FP as an explanation of Nash equilibrium play.

2 Related Work

As mentioned above, FP does not converge in general. | showed this using a
variant of Rock-Paper-Scissors and argued further that “if fictitious play is to
fail, the game must contain elements of both coordination and competition” |28,
p. 24]. This statement is perfectly consistent with the fact that FP is guaranteed
to converge for both constant-sum games [24] and identical interest games, i.e.,
games that are best-response equivalent (in mixed strategies) to a common payoff
game [20]. Other classes of games where FP is known to converge include two-
player games solvable by iterated elimination of strictly dominated strategies |21]
and non-degenerate 2 x 2 games [17]. While the proof of | was initially thought
to apply to the class of all 2 x 2 games, this was later shown to be false [18]. The
result was recently extended to non-degenerate 2 x n games |2]. Since every non-
degenerate 2 x 2 game is best-response equivalent to either a constant-sum game



104 F. Brandt, F. Fischer, and P. Harrenstein

or a common payoff game [20], the result of | follows more easily by combining
those of [24] and [20].

To our knowledge, the rate of convergence of FP has so far only been studied in
2 x 2 games. For this class of games, FP converges at a rate of O(T '), where T'
is the number of rounds, as soon as both players have played an equilibrium
action at least once [13]. We will see, however, that even in 2 x 2 games the
latter may only happen after an exponential number of rounds.

Von Neumann [27] proposed a variant of FP and compared it to Dantzig’s
Simplex method. Indeed, there are some interesting similarities between the two.
[8] recently studied the ability of FP to find approximate Nash equilibria. In
addition to worst-case guarantees on the approximation ratio—which are rather
weak— showed that in random games a good approximation is typically achieved
after a relatively small number of rounds. Similarly, the Simplex method is known
to work very well in practice. As we show in this paper, FP also shares one of the
major shortcomings of the Simplex method—its exponential worst-case running
time.

Since FP is one of the earliest and simplest algorithms for learning in games,
it inspired many of the algorithms that followed: the variant due to |, a simi-
lar procedure suggested by [1l], improvements like smooth FP [11], the regret
minimization paradigm [15], and a large number of specialized algorithms put
forward by the artificial intelligence community (e.g., [22, 19]).

Despite its conceptual simplicity and the existence of much more sophisticated
learning algorithms, FP continues to be employed successfully in the area of arti-
ficial intelligence. Recent examples include equilibrium computation in Poker [12]
and in anonymous games with continuous player types [23], and learning in
sequential auctions [2§].

3 Preliminaries

An accepted way to model situations of strategic interaction is by means of a
normal-form game (see, e.g., [16]). We will focus on games with two players.

A two-player game I' = (P, Q) is given by two matrices P, Q € R™*™ for pos-
itive integers m and n. Player 1, or the row player, has a set A ={1,...,m} of
actions corresponding to the rows of these matrices, player 2, the column player,
a set B = {1,...,n} of actions corresponding to the columns. To distinguish
between them, we usually denote actions of the row player by a',...,a™ and
actions of the column player by b',...,b". Both players are assumed to simulta-
neously choose one of their actions. For the resulting action profile (i, j) € Ax B,
they respectively obtain payoffs p;; and g;;.

A strategy of a player is a probability distribution s € A(A) or t € A(B) over
his actions, i.e., a nonnegative vector s € R™ or t € R™ such that ), s, =1 or
Zj t; = 1, respectively. In a slight abuse of notation, we write p,; and g4 for the
expected payoff of players 1 and 2 given a strategy profile (s,t) € A(A) x A(B).
A strategy is called pure if it chooses some action with probability one, and the
set of pure strategies can be identified in a natural way with the set of actions.
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A two-player game is called a constant-sum game if p;; + ;5 = pij + qirj for
all i,7/ € A and j,j’ € B. Since all results in this paper hold invariably under
positive affine transformations of the payoffs, such games can conveniently be
represented by a single matrix P containing the payoffs of player 1; player 2
is then assumed to minimize the values in P. A constant-sum game is further
called symmetric if P is a skew-symmetric matrix. In symmetric games, both
players have the same set of actions, and we usually denote these actions by
al,a?,...,a™. A game is a common payoff game if p;; = q;j for all i € A and
j € B. Finally, a game is non-degenerate if for each strategy, the number of best
responses of the other player is at most the support size of that strategy, i.e.,
the number of actions played with positive probability.

An action ¢ € A of player 1 is said to strictly dominate another action i’ € A
if it provides a higher payoff for every action of player 2, i.e., if for all j € B,
Dij > pij. Dominance among actions of player 2 is defined analogously. A game
is then called solvable via iterated strict dominance if strictly dominated actions
can be removed iteratively such that exactly one action remains for each player.

A pair (s,t) of strategies is called a Nash equilibrium if the two strategies are
best responses to each other, i.e., if pss > p;; for every ¢ € A and go > ¢4; for
every j € B. A Nash equilibrium is quasi-strict if actions played with positive
probability yield strictly more payoff than actions played with probability zero.
By the minimax theorem [26], every Nash equilibrium (s,¢) of a constant-sum
game satisfies min; ). p;js; = max; Zj pijt; = w for some w € R, also called
the value of the game.

Fictitious play (FP) was originally introduced to approximate the value of
constant-sum games, and has subsequently been studied in terms of its con-
vergence to Nash equilibrium in more general classes of games. It proceeds in
rounds. In the first round, each player arbitrarily chooses one of his actions.
In subsequent rounds, each player looks at the empirical frequency of play of
his respective opponents in previous rounds, interprets it as a probability dis-
tribution, and myopically plays a pure best response against this distribution.
Fix a game I' = (P, Q) with P,Q € R™*™. Denote by w; and v; the ith unit
vector in R™ and R"™, respectively. Then, a learning sequence of I is a sequence
(20,99, (2%, y1), (2,92),. .. of pairs of non-negative vectors (z¢,3%) € R™ x R"
such that 2% =0, y° = 0, and for all k > 0,

aFHl =k 4y, where i is the index of a maximum component of Py* and
YR =k 4 v where j is the index of a maximum component of z*Q.
A learning sequence (2°,9°), (z!,y'), (z2,52),... of a game I is said to converge

if for some Nash equilibrium s of I,

i LIJk yk:
1m =
ko \ k7 k %

where both division and limit are to be interpreted component-wise. We then
say that FP converges for I' if every learning sequence of I" converges to a Nash
equilibrium.
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An alternative definition of a learning sequence, in which players update their
beliefs alternatingly instead of simultaneously, can be obtained by replacing z*Q
by z¥+1(Q in the last condition above. [3] distinguishes between simultaneous and
alternating FP, and points out that| actually introduced the latter variant, while
almost all subsequent work routinely uses the former. We henceforth concentrate
on simultaneous FP, or simply FP, but note that with some additional work all
of our results can be shown to hold for alternating FP as well.

4 Results

We now present several results concerning the convergence rate of FP. Taken
together, they cover virtually all classes of games for which FP is known to
converge.

4.1 Symmetric Constant-Sum Games and Games Solvable by
Iterated Strict Dominance

Let us first consider games with arbitrary payoffs. Our first result concerns two
large classes of games where FP is guaranteed to converge: constant-sum games
and games solvable by iterated strict dominance.

Theorem 1. In symmetric two-player constant-sum games, FP may require ex-
ponentially many rounds (in the size of the representation of the game) before
an equilibrium action is eventually played. This holds even for games solvable
via iterated strict dominance.

Proof. Consider the symmetric two-player constant-sum game I' = (P, Q) with
payoff matrix P for player 1 as shown in Figure [l where 0 < € < 1. It is readily
appreciated that (a3, a?) is the only Nash equilibrium of this game, as it is the
only action profile that remains after iterated elimination of strictly dominated
actions. Consider an arbitrary integer k > 1. We show that for ¢ = 27%, FP may
take 2* rounds before either player plays action a®. Since the game can clearly
be encoded using O(k) bits in this case, the theorem follows.

Let FP start with both players choosing action a!. Since the game is sym-
metric, we can assume the actions for each step of the learning sequence to be
identical for both players. After the first round Py! = (0,1,27%), and both play-
ers will play a? in round 2. We claim that they will continue to do so at least
until round 2*. Too see this, observe that for all ¢ with 1 < i < 2¥, we have
Py’ = (—i+1,1,27%i). As 27%i < 1, both players will choose a? round i + 1.

Table [l summarizes this development. It follows that the action sequence

(a',a') (a*,a%),..., (a% a*)
~ ~ -

28 — 1 times

gives rise to a learning sequence that is exponentially long in k& and in which no
equilibrium action is played. a
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Fig. 1. Symmetric constant-sum game used in the proof of Theorem [l Player 1 chooses
rows, player 2 chooses columns. Outcomes are denoted by the payoff of player 1.

Table 1. A learning sequence of the game depicted in Figure [l where ¢ = 27*

Round i (a%,a’) Py’
0 - (05050)
1 (al,a))  (0,1,27%)
2 (a?a®)  (—1,1,27%2)
3 (a®,a®)  (=2,1,27%3)
2k (a%a®) (—2F+1,1,1)

This result is tight in the sense that FP converges very quickly in symmetric
2 x 2 games. Up to renaming of actions, every such game can be described by a
matrix 1 2

for some o > 0. If a = 0, every strategy profile is a Nash equilibrium. Otherwise,
action a! is strictly dominated for both players, and both players will play the
equilibrium action a? from round 2 onwards.

4.2 Non-degenerate 2 X n Games and Identical Interest Games

Another class of games where FP is guaranteed to converge are non-degenerate
2 xn games. We again obtain a strong negative result concerning the convergence
rate of FP, which also applies to games with identical interests.

Theorem 2. In non-degenerate 2x3 games, F'P may require exponentially many
rounds (in the size of the representation of the game) before an equilibrium action
1s eventually played. This holds even for games with identical interests.

Proof. Consider the 2 x 3 game I' = (P, Q) shown in Figure 2] where 0 < e < 1.
It is easily verified that I' is non-degenerate and that the players have identi-
cal interests. The action profile (a?,b3) is the only action profile that remains
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bt b2 b3
at (1,1) (2,2) (0,0)
a®> (0,00 2+&2+¢€ (3,3)

Fig. 2. Non-degenerate two-player game with identical interests used in the proof of
Theorem 21 Outcomes are denoted by a pair of payoffs for the two players.

Table 2. A learning sequence of the game shown in Figure Bl where ¢ = 27F

Round i (a%,b") Pyt z'Q
0 - (0,0) (0,0,0)
1 (a',b") (1,0) (1,2,0)
2 (at,b?) (3,2427") (2,4,0)
3 (@) (5,4 +2752) (3,6,0)
2k: (al,bQ) (2k:+1 _ 172k:+1 -1 _2—k) (2k72k+1,0)

after iterated elimination of strictly dominated actions, and thus the only Nash
equilibrium of the game.

Now consider an integer k > 1. We show that for e = 27%, FP may take 2*
rounds before actions a? or b3 are played. Since in this case the game can clearly
be encoded using O(k) bits, the theorem follows.

Let FP start with both players choosing action a'. Then, Py' = (1,0) and
2'Q = (1,2,0). Accordingly, in the second round, the row player will choose a®,
and the column player 2. Hence, Py? = (3,2 +27%) and 22Q = (2,4,0). Here-
after, for at least another 2¥ — 1 rounds, the players will choose the same
actions as in round 2, because for all i with 2 < i < 2% 2'Q = (4,2i,0),
Pyt =(2i—1,2i—1+27%4—1)), and 2i — 1 > 2i — 1 +27%(i — 1). Accordingly,
the sequence of pairs of actions

(a',b") (a*,0?),..., (a*,b?),
- ~ -
2% times
which contains no equilibrium actions, gives rise to a learning sequence that is
exponentially long in k. Figure 2 illustrates both sequences. O

This result is again tight: in any 2 x 2 game, one of the players must always
play an equilibrium action almost immediately. Indeed, given that the initial
action profile is not itself an equilibrium, one of the players plays his second
action in the following round. But what about the other player? By looking at
the subgame of the game in Figure 2l induced by actions {a',a?} and {b!, 5%},
and at the learning sequence used to obtain Theorem [, we find that it might
still take exponentially many rounds for one of the two players until he plays an
equilibrium action for the first time.
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Theorem [2 also applies to potential games |19], which form a superclass of
games with identical interests. For the given ordering of its actions, the game of
Figure[2 further has strategic complementarities and diminishing returns}t which
implies results analogous to Theorem [Plfor classes of games in which convergence
of FP was respectively claimed by [14] and shown by [4].

4.3 Games with Constant Payoffs

The proofs of the previous two theorems crucially rely on exponentially small
payoffs, so one may wonder if similar results can still be obtained if additional
constraints are imposed on the payoffs. While this is certainly not the case for
games where both the payoffs and the number of actions are constant, we find
that a somewhat weaker version of Theorem [I] holds for games with constant
payoffs, and in particular for symmetric constant-sum win-lose-tie games, i.e.,
symmetric constant-sum games with payoffs in {—1,0,1}.

For each integer k we define a symmetric constant-sum game I'* with a unique
(mixed) Nash equilibrium and show that FP may take a number of rounds ex-
ponential in k before an equilibrium action is played. In contrast to the previous
result, however, this result not only assumes a worst-case initial action profile,
but also a worst-case learning sequence.

Theorem 3. In symmetric constant-sum win-lose-tie games, FP may require
exponentially many rounds (in the size of the game) before an equilibrium action
1s eventually played.

Proof. Fix an integer k > 1. We construct a symmetric constant-sum win-lose-
tie game I'* = (P* Q%) with a (2k + 1) x (2k + 1) payoff matrix P* = (pfj) for
player 1 such that for all 7,7 with 1 < j <14 <2k +1,

1 ifj=land2<i<k+1,o0r
ifj=1landi=2k+1,or
Pl = ifj#1andi=j+k,
—1 ifj#1landi>j+Ek,
0 otherwise.

For ¢ < j, let pfj = —p;?i. Thus I'* clearly is a symmetric constant-sum game.
To illustrate the definition, I'* is shown in Figure B

Further define, for each k, a strategy profile (s*, s*) of I'* such that for all i
with 1 <i < 2k + 1,

g

G 22k+1=i J(oF _ 1) if i >k +1,
o otherwise.

L' A two-player game with totally ordered sets of actions is said to have strategic
complementarities if the advantage of switching to a higher action, according to
the ordering, increases when the opponent chooses a higher action, and diminishing
returns if the advantage of increasing one’s action is decreasing.

2 The proof of this claim later turned out to be flawed [3].
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J1:-1 -1 -1 1: 0 0 0 0

Fig. 3. Symmetric constant-sum game I'* used in the proof of Theorem Bl The game
possesses a quasi-strict equilibrium (s*, s*) with s* = (0,0,0,0,0, 185, 145, 125, 115).
It is not hard to see that (s*,s*) is a quasi-strict equilibrium of I'¥. Moreover,
since I'* is both a symmetric and a constant-sum game, the support of any
equilibrium strategy of I'* is contained in that of s* (cf. [6]). We will now show
that, when starting with (a!,a'), FP in 'k may take at least 2* rounds before
an equilibrium action is played for the first time.

Consider the sequence ay, . .., ayr with a; = a' 18271 for all j with 1 < j <
2k i.e., the sequence

1 .2 3 3 % % k+1 k+1

a,a",a",a",...,0,...,a ,...,Q sy @ .
N S ~ -~ -
2872 times 2F=1 times

The length of this sequence is clearly exponential in k. Further define vectors
z°, ... ,xgk of dimension 2k + 1 such that 2° = 0, and for ¢ with 1 < j < 2k +1,
It = 27 + u; when ajq1 = i.

We now claim that (2°,29),..., (xgk,ka) is a learning sequence of I'*, i.e.,
that j 4 1 is the index of a maximal component of both P*y’ and 27 Q*. Table Bl
shows the development of this sequence for k = 4.

By symmetry of I'* it suffices to prove the claim for P*y’. After the first

round, we have for all ¢ with 1 <7 <2k + 1,

(Pkyl)- _ 1 ifl<i<k+1,
! 0 otherwise.

Furthermore, since {as, ...,asx} C {a?,..., a1}, we have that (P*y7); =1 for
all i with 1 <i < k+1 and all j with 1 < j < 2F. It, therefore, suffices to show



On the Rate of Convergence of Fictitious Play 111

Table 3. A learning sequence of the game I shown in Figure

Round 4 (a?,a?) Pyt
0 - (0, 0,0,0,0, 0, 0, 0, 0)
1 (a',al) (0, 1,1,1,1, 0, 0, 0, 1)
2 (a?,a?) (-1, 1,1,1,1, 1,-1,-1, 0)
3 (a®,a®) (-2, 1,1,1,1, 1, 0,-2,—-1)
4 (CL3,G,3) (737 15171715 1a 1573772)
5 (a*,a*) (-4, 1,1,1,1, 1, 1,-2,-3)
6 (a*,a*) (=5, 1,1,1,1, 1, 1,—1,—4)
7 (a4,a4) (767 15171715 1a 1a 0575)
8 (a*,a*) (-7, 1,1,1,1, 1, 1, 1,-6)
9 (a®, a®) (-8, 1,1,1,1, 1, 1, 1,-5)
10 (a®, a®) (-9, 1,1,1,1, 1, 1, 1,—4)
11 (a®,a®) (=10, 1,1,1,1, 1, 1, 1,-3)
12 (a®, a®) (=11, 1,1,1,1, 1, 1, 1,-2)
13 (a®, a®) (=12, 1,1,1,1, 1, 1, 1,-1)
14 (a®,a®) (=13, 1,1,1,1, 1, 1, 1, 0)
15 (a®, a®) (=14, 1,1,1,1, 1, 1, 1, 1)
16 (a®, a®) (=15, 1,1,1,1, 1, 1, 1, 2)

that (P*y7); for all i withi =1or k+1<i<2k+1and all j with 1 < j < 2k,
Since, p1; = —1 for all i with 1 < i < k+ 1, the former is obvious. For the latter,
it can be shown by a straightforward if somewhat tedious induction on j that
for all ¢ with 1 <4 < k and all j with 1 < j < 2F,

1 7] lf] S 22’717
(Pryd)pn = 1+ —20 if 271 < j <20,
1 otherwise, and
j 2—j if j <2kt
Pk — > )
Py )k {2 + 5 —2F otherwise.

It follows that (P*y7); < 1 for all i with 1 <i < 2k+1and all j with 1 < j < 2k,
thus proving the claim. O

5 Conclusion

We have studied the rate of convergence of fictitious play, and obtained mostly
negative results: for almost all of the classes of games where FP is known to
converge, it may take an exponential number of rounds before some equilibrium
action is eventually played. These results hold already for games with very few
actions, given that one of the payoffs is exponentially small compared to the
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others. Slightly weaker results can still be salvaged for symmetric constant-sum
games and games solvable by iterated strict dominance, even if payoffs are in the
set {—1,0,1}. It is an open question whether this result can be strengthened to
match that for games with arbitrary payoffs, and whether a similar result can
be obtained for the classes of games covered by Theorem [ i.e., for potential
games and identical interest games.

While it was known that fictitious play does not converge rapidly, the strength
of our results is still somewhat surprising. They do not depend on the choice of a
metric for comparing probability distributions. Rather, the empirical frequency
of FP after an exponential number of rounds can be arbitrarily far from any
Nash equilibrium for any reasonable metric. This casts doubt on the plausibility
of fictitious play as an explanation of Nash equilibrium play.
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Abstract. Can learning algorithms find a Nash equilibrium? This is a natural
question for several reasons. Learning algorithms resemble the behavior of play-
ers in many naturally arising games, and thus results on the convergence or non-
convergence properties of such dynamics may inform our understanding of the
applicability of Nash equilibria as a plausible solution concept in some settings.
A second reason for asking this question is in the hope of being able to prove
an impossibility result, not dependent on complexity assumptions, for computing
Nash equilibria via a restricted class of reasonable algorithms. In this work, we
begin to answer this question by considering the dynamics of the standard multi-
plicative weights update learning algorithms (which are known to converge to a
Nash equilibrium for zero-sum games). We revisit a 3 X 3 game defined by Shap-
ley [10]] in the 1950s in order to establish that fictitious play does not converge in
general games. For this simple game, we show via a potential function argument
that in a variety of settings the multiplicative updates algorithm impressively fails
to find the unique Nash equilibrium, in that the cumulative distributions of players
produced by learning dynamics actually drift away from the equilibrium.

1 Introduction

In complexity, once a problem is shown intractable, research shifts towards two di-
rections] (a) polynomial algorithms for more modest goals such as special cases and
approximation, and (b) exponential lower bounds for restricted classes of algorithms.
In other words, we weaken either the problem or the algorithmic model. For the prob-
lem of finding Nash equilibria in games, the first avenue has been followed extensively
and productively, but, to our knowledge, not yet the second. It has been shown that a
general and natural class of algorithms fails to solve multiplayer games in polynomial
time in the number of players [4] — but such games have an exponential input anyway,
and the point of that proof is to show, via communication complexity arguments, that,
if the players do not know the input, they have to communicate large parts of it, at least
for some games, in order to reach equilibrium.

We conjecture that a very strong lower bound result, of sweeping generality, is pos-
sible even for bimatrix games. In particular, we suspect that a broad class of algorithms
that maintains and updates mixed distributions in essentially arbitrary ways can be shown

! In addition, of course, to the perennial challenge of collapsing complexity classes. . .

S. Kontogiannis, E. Koutsoupias, P.G. Spirakis (Eds.): SAGT 2010, LNCS 6386, pp. 114123 2010.
(© Springer-Verlag Berlin Heidelberg 2010
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to fail to efficiently find Nash equilibria in bimatrix games, as long as these algorithms
cannot identify the matrices — since our ambition here falls short of proving that P £
NP, such restriction needs to be in place. In this paper we start on this path of research.

In targeting restricted classes of algorithms, it is often most meaningful to focus on
algorithmic ideas which are known to perform well under certain circumstances or in
related tasks. For games, learning is the undisputed champion among algorithmic styles.
By learning we mean a large variety of algorithmic ways of playing games which main-
tain weights for the strategies (unnormalized probabilities of the current mixed strategy)
and update them based on the performance of the current mixed strategy, or single strat-
egy sampled from it, against the opponent’s mixed strategy (or, again, sampled strategy).
Learning algorithms are known to converge to the Nash equilibrium in zero-sum games
[2], essentially because they can be shown to have diminishing regret. Furthermore, in
general games, a variant in which regret is minimized explicitly [5] is known to always
converge to a correlated equilibrium. Learning is of such central importance in games
that it is broadly discussed as a loosely defined equilibrium concept — for example, it
has been recently investigated viz. the price of anarchy [1/719].

There are three distinct variants of the learning algorithmic style with respect to
games: In the first, which we call the distribution payoff setting, the players get feedback
on the expected utility of the opponent’s mixed strategy on all of their strategies — in
other words, in a bimatrix game (R, C), if the row player plays mixed strategy = and
the column player y, then the row player sees at each stage the vector Cy” while the
column player sees 27 R. In the second variant which we call the stochastic setting, we
sample from the two mixed strategies and both players learn the payoffs of all of their
strategies against the one chosen by the opponent — that is, the row player learns the
C}, the whole column corresponding to the column player’s choice, and vice-versa. A
third variant is the multi-armed setting, introduced in [2]], in which the players sample
the distributions and update them according to the payoff of the combined choices. In
all three cases we are interesting in studying the behavior of the cumulative distribu-
tions of the players, and see if they converge to the Nash equilibrium (as is the case for
Zero-sum games).

An early fourth kind of learning algorithm called fictitious play does not fall into our
framework. In fictitious play both players maintain the opponent’s histogram of past
plays, adopt the belief that this histogram is the mixed strategy being played by the
opponent, and keep best-responding to it. In 1951 Julia Robinson proved that fictitious
play (or more accurately, the cumulative distributions of players resulting from ficti-
tious play) converges to the Nash equilibrium in zero-sum games. Incidentally, Robin-
son’s inductive proof implies a convergence that is exponentially slow in the number
of strategies, but Karlin [6] conjectured in the 1960s quadratic convergence; this con-
jecture remains open. Shapley [10] showed that fictitious play fails to converge in a
particular simple 3 x 3 nonzero-sum game (it does converge in all 2 X n games).

But how about learning dynamics? Is there a proof that this class of algorithms fails
to solve the general case of the Nash equilibrium problem? This question has been
discussed in the past, and has in fact been treated extensively in Zinkevich’s thesis [14].
Zinkevich presents extensive experimental results showing that, for the same 3 x 3 game
considered by Shapley in [10] (and which is the object of our investigation), as well as
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in a variant of the same game, the cumulative distributions do not converge to a Nash
equilibrium (we come back to Zinkevich’s work later in the last section). However,
to our knowledge there is no actual proof in the literature establishing that learning
algorithms fail to converge to a Nash equilibrium.

Our main result is such a non-convergence proof; in fact, we establish this for each of
the variants of learning algorithms. For each of the three styles, we consider the standard
learning algorithm in which the weight updates are multiplicative, that is, the weights
are multiplied by an exponential in the observed utility, hence the name multiplicative
experts weight update algorithms. (In the multi-armed setting, we analyze the variant
of the multiplicative weights algorithm that applies in this setting, in which payoffs are
scaled so as to boost low-probability strategies). In all three settings, our results are
negative: for Shapley’s 3 x 3 game the learning algorithms fail, in general, to converge
to the unique Nash equilibrium. In fact, we prove the much more striking result that in
all settings, the dynamics lead the players’ cumulative distributions away from the equi-
librium exponentially quickly. The precise statements of the theorems differ, reflecting
the different dynamics and the analytical difficulties they entail.

At this point it is important to emphasize that most of the work on the field focuses
on proving the non-convergence of private distributions of the players, i.e. the distri-
bution over strategies of each player at each time-step. In general, this is easy to do.
In sharp contrast, we prove the non-convergence of the cumulative distributions of the
players; the cumulative distribution is essentially the time-average of the private dis-
tributions played up to some time-step. This is a huge difference, because this weaker
definition of convergence (corresponding to a realistic sense of what it means to play
a mixed strategy in a repeated game) yields a much stronger result. Only Shapley in
his original paper [[10] (and Benaim and Hirsch [[15] for a more elaborate setting) prove
non-convergence results for the cumulative distributions, but for fictitious play dynam-
ics. We show this for multiplicative weight updates, arguably (on the evidence of its
many other successes, see the survey [12]) a much stronger class of algorithms.

2 The Model

We start by describing the characteristics of game-play; to do that we need to specify
the type of information that the players receive at each time step. In this section we
briefly describe the three “learning environments” which we consider, and then for each
environment describe the types of learning algorithms which we consider.

2.1 Learning Environments

The first setting we consider is the distribution payoff setting, in which each player
receives a vector of the expected payoffs that each of his strategies would receive, given
the distribution of the other player. Formally, we have the following definition:

Definition 1. [Distribution payoff setting] Given mixed strategy profiles ¢ =
(c1,...ycn), andry = (r1,...,r0)T with .1, = 3. ¢; = 1 for the column and row
player, respectively, and payoff matrices C, R of the underlying game,

rey1 = f(RCtT,"t)7 Ciy1 = g(r?C,ct),
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where f, g are update functions of the row, and column player, respectively, with the
condition that ry41,cyy1 are distributions.

It may seem that this setting gives too much information to the players, to the point
of being unrealistic. We consider this setting for two reasons; first, intuitively, if learn-
ing algorithms can find Nash equilibria in any setting, then they should in this setting.
Since we will provide largely negative results, it is natural to consider this setting that
furnishes the players with the most power. The second reason for considering this set-
ting is that in this setting, provided f, g are deterministic functions, the entire dynamics
is deterministic, simplifying the analysis. Our results and proof approaches for this set-
ting provide the guiding intuition for our results in the more realistic learning settings.

The second setting we consider, is the stochastic setting, in which each player selects
a single strategy to play, according to their private strategy distributions, r; and ¢;, and
each player may update his strategy distribution based on the entire vector of payoffs
that his different strategies would have received given the single strategy choice of the
opponent. Formally, we have:

Definition 2. [Stochastic setting] Given mixed strategy profiles ry, and cy for the row
and column player; respectively, at some time t, and payoff matrices R, C of the under-
lying game, the row and column players select strategies i, and j according to ry and
¢y, respectively, and

riv1 = f(R.j,re), €1 = 9(Ci. ce),

where f,qg are update functions of the row and column player, respectively, and
rit1,C¢41 are required to be distributions, and M; ., M. ;, respectively, denote the ith
row and column of matrix M.

Finally, we will consider the multi-armed setting, in which both players select strategies
according to their private distributions, knowing only the single payoff value given by
their combined choices of strategies.

Definition 3. [Multi-armed setting] Given mixed strategy profiles ry, and c; for the
row and column player, respectively, at some time t, and payoff matrices R, C of the
underlying game, the row and column players select strategies i, and j according to r,
and ¢y, respectively, and

roe1 = f(Rijre), o1 =9(Cij,ct),

where f,g are update functions of the row, and column player, respectively, and
Fi4+1,Cey1 are distributions.

While the multi-armed setting is clearly the weakest setting to learn in, it is also, ar-
guably, the most realistic and closely resembles the type of setting in which many ev-
eryday games are played.

Almost all of the results in this paper refer to the non-covergence of the cumulative
distributions of the players, defined as:

t t
Z]:o Ti,j = ijo Cij

R, = ,C;
,t ¢ 7,1 ¢
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2.2 Learning Algorithms

For each game-play setting, the hope is to characterize which types of learning algo-
rithms are capable of efficiently converging to an equilibrium. In this paper, we tackle
the much more modest goal of analyzing the behavior of standard learning models that
are known to perform well in each setting. For the distribution payoff setting, and the
stochastic setting, we consider the dynamics induced by multiplicative weight updates.
Specifically, for a given update parameter € > 0, at each timestep ¢, a player’s distribu-
tion w; = (wy ¢, ..., Wy ) is updated according to

w B wi (1 + €)F
L+l = Zz wi7t(1 + E)Pz: ’

where P; is the payoff that the i*" strategy would receive at time ¢. We focus on this

learning algorithm as it is extraordinarily successful, both practically and theoretically,
and is known to have vanishing regret (which, by the min-max theorem, guarantees
that cumulative distributions Zthl " converge to the Nash equilibrium for zero-sum
games|[12]).

For the multi-armed setting, the above weight update algorithm is not known to per-
form well, as low-probability strategies are driven down by the dynamics. There is a
simple fix, first suggested in [L1]; one scales the payoffs by the inverse of the proba-
bility with which the given strategy was played, then applies multiplicative weights as
above with the scaled payoffs in place of the raw payoff. Intuitively, this modification
gives the low-weight strategies the extra boost that is needed in this setting. Formally,
given update parameter €, and distribution wy, if strategy s is chosen at time ¢, and
payoff P is received, we update according to the following:

Wi = ws (1 + )P v

* — .
w’i;ﬁs = Wit

w*

W = T
re >k Wk
We note that this update scheme differs slightly from the originally proposed scheme
in [[L1], in which a small drift towards the uniform distribution is explicitly added. We
omit this drift as it greatly simplifies the analysis; additionally, arguments from [[13] can
be used to show that our update scheme also has the guarantee that the algorithm will
have low-regret in expectation (and thus the dynamics converge for zero-sum games).

2.3 The Game

For all of our results, we will make use of Shapley’s 3 x 3 bimatrix game with row and
column payoffs given by

012 021
R=|201],c=[102
120 210

This game has a single Nash equilibrium in which both players play each strategy with
equal probabilities. It was originally used by Shapley to show that fictitious play does
not converge for general games.
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3 Distribution Payoff Setting

In this section we consider the deterministic dynamics of running the experts weights
algorithm in the distribution payoff setting. We show that under these dynamics, pro-
vided that the initial distributions satisfy r # ¢, the cumulative distributions R;, C; tend
away from the Nash equilibrium. The proof splits into three main pieces; first, we define
a potential function, which we show is strictly increasing throughout the dynamics, and
argue that the value of the potential cannot be bounded by any constant. Next, we ar-
gue that given a sufficiently large value of the potential function, eventually the private
row and column distributions r;, ¢; must become unbalanced in the sense that for some
i€ {1,2,3},r; > .999 and ¢; < .001 (or r; < .001,¢; > .999). Finally, given this
imbalance, we argue that the dynamics consists of each player switching between es-
sentially pure strategies, with the amount of time spent playing each strategy increasing
in a geometric progression, from which it follows that the cumulative distributions will
not converge.

Each of the three components of the proof, including the potential function argument,
will also apply in the stochastic, and multi-armed settings, although the details will
differ.

Before stating our main non-convergence results, we start by observing that in the
case that both players perform multiplicative experts weight updates with parameters
€r = €c, and start with identical initial distributions r = ¢, the dynamics do converge
to the equilibrium. In fact, not only do the cumulative distributions R;, C; converge, but
so do the private distributions ry, ¢;.

Proposition 1. If both players start with a common distribution r = ¢ and perform
their weight updates with e = e = ¢ < 3 /b, then the dynamics of r, ¢, converge to
the Nash equilibrium exponentially fast.

The proof is simple and is delegated to the full version of this paper. We now turn our
attention to the main non-convergence result of this section—if the initial distributions
are not equal, then the dynamics diverge.

Theorem 1. In the distribution payoff setting, with a row player performing experts
weight updates with parameter 1 + €gr, and column player performing updates with
parameter 1 + €c, the cumulative distributions Ry = ZE:O G = Zf:o ‘% diverge,

provided that the initial weights do not satisfy r; = ¢, with o = }gigizgg :

The first component of the proof will hinge upon the following potential function for
the dynamics:

P(r,c) :=log (maX(Z; )> —log (m_in( Z; )) , (1)

log(1+€r)
log(1+ec)
learning settings as well. The following lemma argues that ¢(r;, ¢;) increases unbound-

edly.

with a = . We are going to use the same potential function for the other two

Lemma 1. Given initial private distributions ro,co such that ®(ro,co) # 0, then
D(ry,ct) is strictly increasing, and for any constant k, there exists some to such that

Qi(rto,cto) > k.
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Proof. We consider the change in @ after one step of the dynamics. For convenience,
we give the proof in the case that eg = e¢c = ¢; without this assumption identical
arguments yield the desired general result. Also note that without loss of generality,
by the symmetry of the game, it suffices to consider the case when 71, > ¢y ;. The
dynamics define the following updates:

<T1,t+1 T2, t4+1 T3,t+1> _om <T1,t(1 +e)2t2es pg (14 ¢)2c1tes TS,t(1+€)cl+262>
- b

et eaur eserr/ o \ene(L+e)m2T2a e (14 €)21Fra " ez (1 4 e)ritarz

for some positive normalizing constants 11, no. By the symmetry of the game, it suffices
to consider the following two cases: when argmax; (r; /¢;) = 1 and argmin, (r;/¢;) = 2,
and the case when argmax, (r; /c;) = 1 and argmin, (r; /¢c;) = 3. We start by considering
the first case:

B(ri1,¢i41) = log (max(z )) — log (m}n(” ))

Ci
(1) e (2)
1 2

= log(ni/n2) + log (Zt
t

’

) + (c2,t +2¢3,t — 12+ — 2r3,¢) log(1l + €)

—log(ni/n2) — (log (TZ’t) + (c3,t +2c1,t — 73t — 2r1,¢) log(1 + e))

C2,t
(re,ee) + (—201,t + cop +C30 — 1o — T3+ 2r1,) log(l + 6)
(re,e0) +3(r1,e —c1,e) log(1 +€)

In the case second case, where argmax, (r;/¢;) = 1 and argmin,(r; /¢;) = 3, a similar
calculation yields that

D(ris1,¢i41) > D(re, ¢t) + 3(cs e — r3) log(1l + €).

In either case, note that & is strictly increasing unless r; /c; = 1 for each ¢, which can
only happen when &(r;, ¢;) = 0.

To see that ¢ is unbounded, we first argue that if the private distributions r, ¢ are
both sufficiently far from the boundary of the unit cube, then the value of the potential
function will be increasing at a rate proportionate to its value. If r or ¢ is near the
boundary of the unit cube, and max; |r; — ¢;| is small, then we argue that the dynamics
will drive the private distributions towards the interior of the unit cube. Thus it will
follow that the value of the potential function is unbounded.

Specifically, if r, ¢ € [.1,1]3, then from the derivative of the logarithm, we have

30 max |[r; — ¢;| > &(r,¢)

and thus provided r, ¢; are in this range ®(rs11,¢41) > D(ry, ;) (1 + loggl(;re)) JIf

r,c ¢ [.1,1]3, then arguments from the proof of Proposition[Tlcan be used to show that
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after some time to, either ry,, ¢, € [.2,1]3, or for some time ¢’ < to, max; |r; — ¢;| >
.01, in which case by the above arguments the value of the potential function must have
increased by at least .01 log(1 + €), and thus our lemma holds. g

The above lemma guarantees that the potential function will get arbitrarily large. We
now leverage this result to argue that there is some time ¢y and a coordinate ¢ such that
74,1, 18 very close to 1, whereas c; 1, is very close to zero. The proof consists of first
considering some time at which the potential function is quite large. Then, we argue
that there must be some future time at which for some 4, j with ¢ # j, the contributions
of coordinates ¢ and j to the value of the potential function are both significant. Given
that | log(r;/c;)| and |log(r;/c;)| are both large, we then argue that after some more
time, we get the desired imbalance in some coordinate &, namely that r, > .999 and
¢ < .001 (or vice versa).

Lemma 2. Given initial distributions ro = (11,0,72,0,73,0), €0 = (€1,0,¢2,0,€3,0)5
with ®(ro,co) > 40log; .. (2000), assuming that the cumulative distributions con-
verge to the equilibrium, then there exists to > 0 and i such that either r; 1, > .999 and
Cito < .001, 0r7; 4, < .001, and c; 4, > .999.

Proof. For convenience, we will assume all logarithms are to the base 1 + €, unless
otherwise specified. For ease of notation, let k = [log; , .. (2000)]. Also, for simplicity,
we give the proof in the case that eg = e = ¢; as above, the proof of the general case
is nearly identical.

Assuming for the sake of contradiction that the cumulative distributions converge to
the equilibrium of the game, it must be the case that there exists some time ¢ > 0 for
which arg max; | log(r; +/ci )| # arg max; | log(rio/ci0)|, and thus, without loss of
generality, we may assume that at time 0, for some 4, j with ¢ £ 7,

|10g< )|>13k and|log< )|>13k‘
€i,0 C4,0

Without loss of generality, we may assume that r; > c;. We will first consider the cases
in which log(r;/c;) > 13k and log(r;/c;) > 13k, and then will consider the cases
when log(r;/c;) > 13k and log(r; /¢;) < —13k.

Consider the case when log(r1/c1) > 13k and log(ra/c2) > 13k. Observe that
c3 > rg and that & = In(2000)/ In(1+4 eg) > In(2000)/eg. Let to be the smallest time
at which log(rs 4,) — max(log(r1,4,),log(r2.4,)) < k. We argue by induction, that

log(cs,¢) — max(log(cy ¢), log(ea,)) — (log(rs:) — max(log(ri,t), log(res))) > 12k,

forany t € {0,...,to0 — 1}. When ¢t = 0, this quantity is at least 13%. Assummg the
claim holds for all t < t/, for some fixed ¢’ < tg — 1, we have that Zi JBI rie <

2623, 2000 » Where the factor of 2 in the numerator takes into account the fact that the pay-

offs are shghtly different than 2, 1, 0, for the three row strategies. Similarly, tho T2t

2
< n 2000 Thus we have that

4 1
2er 2000
> log(cs o) —log(cio) —2(' +1) — k

log(cs,tr41) — log(ci,p41) > log(es0) —log(cr,0) — 2(t' 4+ 1) —
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Similarly, we can write a corresponding expression for log(cs ¢/41) — log(ca p41),
from which our claim follows.

Thus we have that log(cs ¢, ) — max(log(ci ¢, ), log(c2.4,)) > 12k, and log(rs 4,) —
max(log(ri ¢, ),10g(r2¢,)) < k. After another 2.1k timesteps, we have that log(rs +,)—
max(log(ri¢,),1log(ras,)) < —k, and log(cs +,) — max(log(ci ¢, ), log(ce,t,)) > Tk.
If log(r1 to4+2.1k) — log(72,to+2.1%) < —k, then we are done, since r2 ¢y+2.1%x > -999,
2 to4+2.1k < -001. If log(r1 to+2.1k) — log(r2 to+2.1%) > —k, then it must be the case
that log(r1,¢y+4.2x) —1og(r2 to+4.2k) > k, at which point we still have log(cs 1, +4.2k) —
max(log(cy ty+a.25),l0g(ca t4a.25)) > 2k, so we have 71 ¢ 1a.2k > 999, €1 19+4.2k
< .001. The case when log(ri/c1) > 13k and log(rs/c3) > 13k is identical.

In the case when log(ri/c1) > 13k and log(ra/c2) < —13k, we let ¢ be the first
time at which either log(r1 ¢,) — log(rs.+,) > —k orlog(cas,) — log(csi,) > —k. As
above, we can show by induction that log(ra , — max(log(r1.4,),10g(rs,4,)) < —12k,
and log(c1 4, — max(log(cat, ), log(cs s, )) < —12k. After another 2.1k timesteps, ei-
ther 71 > .999, and ¢; < .001 or ¢2,4,+2.1% > .1, in which case after an additional 2.1k
timesteps, co > .999 and 5 < .001.

The remaining case when log(r1/c1) > 13k and log(r3/c3) < —13k, is identical,
as can be seen by switching the players and permuting the rows and columns of the
matrix. a

The following lemma completes our proof of Theorem[dl

Lemma 3. Given initial distributions ro = (11,0,72,0,73,0), €0 = (€1,0,¢2,0,€3,0)5
such that for some i, r; 0 > .999 and c; o < .001, the cumulative distributions defined

by
t t
R 2g=0Thi o 2j=0Ci
,t — y Y, t —
t t
do not converge, as t — oo.

Proof. As above, for the sake of clarity we present the proof in the case that e = ¢ =
€. Throughout the following proof, all logarithms will be taken with base 1 + €.

Assume without loss of generality that r; o > .999 and ¢; 0 < .001. First note that
if cor < 1/2 then r; will must increase and ¢; will decrease, and thus without loss
of generality, we may assume that 1o > .999, c1 9 < .001, and co 90 > 1/2. For
some k < log 10, it must be the case that after k timesteps we have cp ;, > .9, and
log(r1,5) — log(ri k) > log 999 — k, for i = 2, 3. At this point log(cz/c3), log(cs/c1),
and log(r1 /72),log(rs/r2) will all continue to increase until rg > 1/3 — .001. Let ¢;
denote the number of steps before 1 < .9, and note that

t1 >10g999 — k — log 10.
At this point, we must have

log(r1/ra) > .9t1,log(ca/c3) > 9t1,1log(cs/c1) > .9ty

After another at most log 10 steps, r3 > .9, and r3 will continue to increase until
co < .9. Let to denote the time until co < .9, which must mean that ¢; ~ .1 since c3 is
decreasing, and note that

to > 1.8t; — 2log 10,
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where the last term is due to the steps that occur when neither r; nor r3 were at least .9.
At this time point, we must have that

log(ca/c3) > .9ta,log(rs/r1) > .9ta,log(r1/r2) > .9ta.

After another at most k2 steps, ¢; > .9, and we can continue arguing as above, to yield
that after another t3 > 1.8t2 — 2log 10 steps, r3 < .9, ro & .1, and log(c1/c2) >
.Ots,log(cz2/c3) > .9ts. Inductively applying these arguments shows that the amount
of time during which the weight of a single strategy is held above .9, increases by a
factor of at least 1.8 in each iteration, and thus the cumulative distributions Z§=1 ri/t
cannot converge. O

4 Stochastic Setting

In this section we prove an analog of Theorem[Il for the multiplicative weights learning
algorithm in the stochastic setting. We show that in this setting, no matter the initial
configuration, with probability tending towards 1, the cumulative distributions of the
row and column player will be far from the Nash equilibrium. To show this, we will
make use of the same potential function (1) as in the proof of Theorem[I] and analyze
its expected drift. Although the expectation operator doesn’t commute with the appli-
cation of the potential function (and thus we cannot explicitly use the monotonicity of
the potential function as calculated above), unsurprisingly, in expectation the potential
function increases. While the drift in the potential function vanished at the equilibrium
in the distribution payoff setting, in this setting, the randomness, together with the non-
negativity of the potential function allow us to bound the expected drift by a positive
constant when the distributions are not near the boundary of the unit cube. Given this,
as in the previous section we will then be able to show that for any constant, with prob-
ability 1 after a sufficiently long time the value of the potential function will be at least
that constant. Given this, analogs of Lemmas[2land 3 then show that the cumulative dis-
tributions tend away from the equilibrium with all but inverse exponential probability.
Our main theorem in this setting is the following.

Theorem 2. [f the row player uses multiplicative updates with update parameter (1 +
€r), and the column player uses multiplicative updates with update parameter (1+€c),
then from any initial pair of distributions, after t time steps, either the dynamics have
left the simplex r;,c; € (1/3 — .2,1/3 + .2) at some time step to < t, or with all but
inverse exponential probability will be at distance exp(§2(t)) from the equilibrium.

To prove the theorem, we need the following lemma —whose proof is deferred to the
full version— that establishes the desired drift of potential (IJ).

Lemmad. Ifr;,¢; € (1/3—.2,1/3+ .2), then

&(ry,c¢)log(l+er) (log(l+ eR))2)

]E[@(rt+1,ct+1)\rt7ct] Z ¢(rt7ct) + max ( 240 y 24000
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We are now prepared to finish our proof of Theorem[2l We do so by analyzing the one-
dimensional random walk defined by the value of the potential function over time. As
long as our pair of distributions has probability values in (1/3 — .2,1/3 + .2), there
is a constant (a function of er) drift pushing us away from the equilibrium (which
corresponds to the minimum of the potential function). Using martingale arguments we
can show then that with all but inverse exponential probability the value of the potential
function will be 4t for some constant v, independent of ¢, unless we have exited the ball
of radius 0.2 around the equilibrium.

Proof of theorem 2l We wish to analyze the random walk (rg, ¢o), (r1,¢1), ..., where
the evolution is according to the stochastic dynamics. To do this analysis, we’ll consider
the one dimensional random walk Xo, X1, . .., where X; = &(ry, ¢;), assuming that the
walk starts within the ball r;, ¢; € (1/3 —.2,1/3 + .2). Note first that | X; 1 — X¢| <
4log(1 4 €g). Next, from the X;’s, we can define a martingale sequence Yp, Y7, ...
where Y() = X(), and for ¢ Z ]., Y;'Jrl = Y; -+ Xi+1 — ]E[X1+1|Xl}

Clearly the sequence Y; has the bounded difference property, specifically |Y;11 —
Y:| < 8log(1l + €g), and thus we can apply Azuma’s inequality{é) to yield that with
probability at least 1 — 2 exp(—t*/?/2),Y; > Y — t/68log(1 + €g).

Notice next that, from our definition of the martingale sequence {Y; }; and Lemma[d]
it follows that, as long as the distributions are contained within the ball r;, ¢; € (1/3 —

2,1/34.2), X; >V, 4t . (os{len)®,
Let us then define T to be the random time where the distributions exit the ball
for the first time, and consider the sequence of random variables {Y; 1 }+. Clearly, the

new sequence is also a martingale, and from the above we get Xiar > Yiar + (¢ A
2
T) - (log(1+<r))™ " and. with probability at least 1 — 2exp(—t%/3/2), Yiar > Yy —

24000
t5/6810g(1 + €r). Hence, with probability at least 1 — 2 exp(—t%/3/2), Xiar > Yy —
2
t5/681og(1 + €g) + (t AT) - 1B E<R)™ and the theorem follows. [ |

5 Multi-armed Setting

Perhaps unsurprising in light of the inability of multiplicative weight updates to con-
verge to the Nash equilibrium in the stochastic setting, we show the analogous result
for the multi-armed setting. The proof very closely mirrors that of Theorem ] and, in
fact the only notable difference is in the calculation of the expected drift of the potential
function. The analogous of Lemma M can be easily shown to hold and the rest of the
proof follows easily; we defer details to the full version.

6 Conclusions and Open Problems

We showed that simple learning approaches which are known to solve zero-sum games
cannot work for Nash equilibria in general bimatrix games; we did so by considering
the simplest possible game. Some of our non-convergence proofs are rather daunting; it

2 Azuma’s inequality: Let X1, X5, . .. be a martingale sequence with the property that for all ¢,
2
| Xt — X¢41]| < ¢; then for all positive ¢, and any v > 0, Pr[|X; — X1| > cyv/t] < 2e77 /2,
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would be interesting to investigate whether considering more complicated games results
in simpler (and easier to generalize to larger classes of algorithms) proofs. In particular,
Shapley’s game has a unique Nash equilibrium; intuitively, one algorithmically nasty
aspect of Nash equilibria in nonzero-sum games is their non-convexity: there may be
multiple discrete equilibria. Zinkevich [14]] has taken an interesting step in this direc-
tion, defining a variant of Shapley’s game with an extra pure Nash equilibrium. How-
ever, after quite a bit of effort, it seems to us that a non-convergence proof in Zinkevich’s
game may not be ultimately much easier that the ones presented here.

Despite the apparent difficulties, however, we feel that a very strong lower bound,
valid for a very large class of algorithms, may ultimately be proved.
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Abstract. The class of weakly acyclic games, which includes potential
games and dominance-solvable games, captures many practical appli-
cation domains. Informally, a weakly acyclic game is one where natural
distributed dynamics, such as better-response dynamics, cannot enter in-
escapable oscillations. We establish a novel link between such games and
the existence of pure Nash equilibria in subgames. Specifically, we show
that the existence of a unique pure Nash equilibrium in every subgame
implies the weak acyclicity of a game. In contrast, the possible existence
of multiple pure Nash equilibria in every subgame is insufficient for weak
acyclicity.

1 Introduction

In many domains, convergence to a pure Nash equilibrium is a fundamental
problem. In many engineered agent-driven systems that fare best when steady
at a pure Nash equilibrium, convergence to equilibrium is expected [7,[9] to hap-
pen via better-response (best-response) dynamics: Start at some strategy profile.
Players take turns, in some arbitrary order, with each player making a better
response (best response) to the strategies of the other players, i.e., choosing
a strategy that increases (maximizes) their utility, given the current strategies
of the other players. Repeat this process until no player wants to switch to a
different strategy, at which point we reach a pure Nash equilibrium.

For better-response dynamics to converge to a pure Nash equilibrium regard-
less of the initial strategy profile, a necessary condition is that, from every strategy
profile, there exist some better-response improvement path (that is, a sequence of
players’ better responses) leading from that strategy profile to a pure Nash equi-
librium. Games for which this property holds are called “weakly acyclic games”
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[L0,17[. Both potential games [I2J15] and dominance-solvable games [13] are spe-
cial cases of weakly acyclic games.

In games that are not weakly acyclic, under better-/best-response dynamics,
there are starting states from where the game is guaranteed to oscillate indefi-
nitely. Moreover, the weak acyclicity of a game implies that natural decentral-
ized dynamics (e.g., randomized better-/best-response, or no-regret dynamics)
are stochastically guaranteed to reach a pure Nash equilibrium [8[I7]. Thus, weakly
acyclic games capture the possibility of reaching pure Nash equilibria via simple,
local, globally-asynchronous interactions between strategic agents, independently
of the starting state. We assert this is the realistic notion of “convergence” in most
distributed systems.

1.1 A Motivating Example

We now look at an example inspired by interdomain routing that has this natural
form of convergence despite it being, formally, possible that the network will
never converge. In keeping with results that we study here, we consider best-
response dynamics of a routing model in which each node can see each other
node’s current strategy, i.e., its “next hop” (the node to which it forwards its data
en route to the destination), as contrasted with models where nodes depending on
path announcements to learn this information. (Levin et al. [7] formalized routing
dynamics in which nodes learn about forwarding through path announcements.)
Consider the network on four nodes shown

in Fig. [l Each of the nodes 1, 2, and 3 is
trying to get a path for network traffic to the
destination node d. A strategy of a node i is
a choice of a neighbor to whom ¢ will forward
traffic; the strategy space of node i, S;, is its
neighborhood in the graph.. The utility of d
is independent of the outcome, and the utility
u; of node i # d depends only on the path
that ¢’s traffic takes to the destination (and
is —oo if there is no path). We only need to

132d

O
13d

213d 321d
2d 3d
21d e e 32d

Fig. 1. Instance of the interdomain
routing game that is weakly acyclic
and has a best-response cycle

consider the relationships between the values

of u; on all possible paths; the actual values

of the utilities do not make a difference. Using 132d to denote the path from
1 to 2 to 3 to d, and similarly for other paths, here we assume the following:
u1(132d) > ui(1d) > u1(13d) > —o0; u2(213d) > ua(2d) > ug(21d) > —oc;
u3(321d) > u3(3d) > u3(32d) > —oo; and u;(P) = —oo for all other paths P,
e.g., u1(12d) = —oo. These preferences are indicated by the lists of paths in order
of decreasing preference next to the nodes in Fig.[Il (d, d, d) is a the unique pure

! In some of the economics literature, the terms “weak finite-improvement path prop-
erty” (weak FIP) and “weak finite best-response path property” (weak FBRP) are
also used, for weak acyclicity under better- and best-response dynamics, respectively.
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Nash equilibrium in this game, and, ideally, the dynamics would always converge
to it. However, there exists a best-response cycle:

1d 132d 13d 13d 1d 1d 1d
2d 2 2d % 24 2 213d = 21d -2 21d 2 2d A ...
32d 32d 3d 3d 3d 321d 32d

Here, each triple lists the paths that nodes 1, 2, and 3 get; the nodes’ strategies
correspond to the second node in their respective paths. The node above the
arrow between two triples is the one that makes a best response to get from one
triple to the next.

Once the network is in one of these statesg7 there is a fair activation sequence
(i-e., in which every node is activated infinitely often) such that each activated
node best responds to the then-current choices of the other nodes and such that
the network never converges to a stable routing tree (a pure Nash equilibrium).

Although this cycle seems to suggest that the network in Fig. [l would be
operationally troublesome, it is not as problematic as we might fear. From every
point in the state space, there is a sequence of best-response moves that leads to
the unique pure Nash equilibrium. We may see this by inspection in this case, but
this example also satisfies the hypotheses of our main theorem below. So long as
each node has some positive probability of being the next activated node, then,
with probability 1, the network will eventually converge to the unique stable
routing tree, regardless of the initial configuration of the network.

1.2 Our Results

Weak acyclicity is connected to the study of the computational properties of sink
equilibria [2,[], minimal collections of states from which best-response dynamics
cannot escape: a game is weakly acyclic if and only if all sinks are “singletons”,
that is, pure Nash equilibria. Unfortunately, Mirrokni and Skopalik [IT] found that
reliably checking weak acyclicity is extremely computationally intractable in the
worst case (PSPACE-complete) even in succinctly-described games. This means,
inter alia, that not only can we not hope to consistently check games in these cate-
gories for weak acyclicity, but we cannot even hope to have general short “proofs”
of weak acyclicity, which, once somehow found, could be tractably checked.

With little hope of finding robust, effective ways to consistently check weak
acyclicity, we instead set out to find sufficient conditions for weak acyclicity:
finding usable properties that imply weak acyclicity may yield better insights
into at least some cases where we need weak acyclicity for the application.

In this work, we focus on general normal-form games. Potential games, the
much better understood subcategory of weakly acyclic games, are known to have

2 For example, this might happen if the link between 2 and d temporarily fails. 2
would always choose to send traffic to 1 (if anywhere); 1 would eventually converge
to sending traffic directly to d (with 2 sending its traffic to 1), and 3 would then be
able to send its traffic along 321d. Once the failed link between 2 and d is restored,
2’s best response to the choices of the other nodes is to send its traffic directly to d,
resulting in the first configuration of the cycle above.
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the following property, which we will refer to as subgame stability, abbreviated
SS: not only does a pure Nash equilibrium exist in the game, but a pure Nash
equilibrium exists in each of its subgames, i.e., in each game obtained from the
original game by the removal of players’ strategies. Subgame stability is a useful
property in many contexts. For example, in network routing games, subgame
stability corresponds to the important requirement that there be a stable routing
state even in the presence of arbitrary network malfunctions [5]. We ask the
following natural question: When is the strong property of subgame stability
sufficient for weak acyclicity?
Yamamori and Takahashi [16] prove the following two resultsd:

Theorem: [16] In 2-player games, subgame stability implies weak acyclicity,
even under best response.

Theorem: [16] There exist 3 x 3 x 3 games for which subgame stability holds
that are not weakly acyclic under best response.

Thus, subgame stability is sufficient for weak acyclicity in 2-player games, yet
is not always sufficient for weak acyclicity in games with n > 2 players. Our
goal in this work is to (1) identify sufficient conditions for weak acyclicity in the
general n-player case; and (2) pursue a detailed characterization of the boundary
between games for which subgame stability does imply weak acyclicity and games
for which it does not.

Our main result for n-player games shows that a constraint stronger than SS,
that we term “unique subgame stability” (USS), is sufficient for weak acyclicity:

Theorem: If every subgame of a game I' has a unique pure Nash equilibrium
then I' is weakly acyclic, even under best response.

This result casts an interesting contrast against the negative result in [16]: unique
equilibria in subgames guarantee weak acyclicity, but the existence of more pure
Nash equilibria in subgames can lead to violations of weak acyclicity. Hence,
perhaps counter-intuitively, too many stable states can potentially result in per-
sistent instability of local dynamics.

We consider SS games, USS games, and also the class of strict and subgame
stable games SSS, i.e., subgame stable games which have no ties in the util-
ity functions. We observe that these three classes of games form the hierarchy
USS C SSS C SS. We examine the number of players, number of strategies, and
the strictness of the game (the constraint that there are no ties in the utility
function), and give a complete characterization of the weak acyclicity implica-
tions of each of these. Our contributions are summarized in Table [l

1.3 Other Related Work

Weak acyclicity has been specifically addressed in a handful of specially-structured
games: in an applied setting, BGP with backup routing [I], in a game-theoretical

3 Yamamori and Takahashi use the terms quasi-acyclicity for weak acyclicity under
best response, and Pure Nash Equilibrium Property (PNEP) for subgame stability.
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Table 1. Results summary: The impact of USS/SSS/SS on weak acyclicity: v' marks
classes with guaranteed weak acyclicity, even under best response; 7 marks classes
which admit counter-examples which are not weakly acyclic even under better response.
*: only for strict games.

2 players 3 players 4+ players
2xM  3xM 2x2x2 gigi% 2x4x4 3x8x3  2Xx2x2x2
3 pNE v (Lma[) # (easy) v'* (LmalB) #(easy)
SS v [16] #(Thm 2) #(Thm P & [16]) #(Thm B)
SSS vV (LmaB) v (ThmB) #(Thm@) #(Thm @& [16]) 7 (Thm B)
uss v (Thm [

setting, games with “strategic complementarities” [BL[6] (a supermodularity con-
dition on lattice-structured strategy sets), and in an algorithmic setting, in sev-
eral kinds of succinct games [I1]. Milchtaich [I0] studied Rosenthal’s congestion
games [15] and proved that, in interesting cases, such games are weakly acyclic
even if the payoff functions (utilities) are not universal but player-specific. Mar-
den et al. [9] formulated the cooperative-control-theoretic consensus problem as
a potential game (implying that it is weakly acyclic); they also defined and inves-
tigated a time-varying version of weak acyclicity.

1.4 Outline of Paper

In the following, we recall the relevant concepts and definitions in Section [2]
present our sufficient condition for weak acyclicity in Section Bl and our charac-
terization of weak acyclicity implications in Section [l

2 Weakly Acyclic Games and Subgame Stability

We use standard game-theoretic notation. Let I'" be a normal-form game with
n players 1,...,n. We denote by S; be the strategy space of the i*" player. Let
S=51x...x8,,and let S_; =51 X...x 5,21 X S;4+1 X...x S, be the cartesian
product of all strategy spaces but .S;. Each player i has a utility function u; that
specifies i’s payoff in every strategy-profile of the players. For each strategy
s; € 5;, and every (n — 1)-tuple of strategies s_; € S_;, we denote by u;(s;,s—;)
the utility of the strategy profile in which player ¢ plays s; and all other players
play their strategies in s_;. We will make use of the following definitions.

Definition 1 (better-response strategies). A strategy s, € S; is a better-
response of player i to a strategy profile (s;,s—;) if wi(s;,s—i) > wi(s;, $—4).

Definition 2 (best-response strategies). A strategy s; € S; is a best re-
sponse of player i to a strategy profile s_; € S_; of the other players if s; €
argmaxy ¢ g, Ui (s}, S—i)
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Definition 3 (pure Nash equilibria). A strategy profile s is a pure Nash
equilibrium if, for every player i, s; is a best response of i to s_;

Definition 4 (better- and best-response improvement paths). A better-
response (best-response) improvement path in a game I is a sequence of strategy
profiles s',...,s* such that for every j € [k — 1] (1) s7 and s7+ only differ in
the strategy of a single player i and(?# 1’s strategy in s?+1 is a better response to
7, (best response to s’ ; and u;(s]', 87 ;) > ui(s!,s”;)). The better-response
dynamics (best-response dynamics) graph for I' is the graph on the strategy
profiles in I' whose edges are the better-response (best-response) improvement

paths of length 1.

We will use ARpr(s) and BRp(s) to denote the set of all states reachable by,
respectively, better and best responses when starting from s in I

We are now ready to define weakly acyclic games [I7]. Informally, a game
is weakly acyclic if a pure Nash equilibrium can be reached from any initial
strategy profile via a better-response improvement path.

Definition 5 (weakly acyclic games). A game I' is weakly acyclic if, from
every strategy profile s, there is a better-response improvement path st .,sk
such that s* = s, and s* is a pure Nash equilibrium in I'. (Le., for each s,
there’s a pure Nash equilibrium in ARp(s).)

We also coin a parallel definition based on best-response dynamics.

Definition 6 (weak acyclicity under best response). A game I is weakly
acyclic under best response if, from every strategy profile s, there is a best-
response improvement path st .. .7sk such that s' = s and s* is a pure Nash
equilibrium in I'. (Le., for each s, there’s a pure Nash equilibrium in BRp(s).)

Weak acyclicity of either kind is equivalent to requiring that, under the respective
dynamics, the game has no “non-trivial” sink equilibria [4l[2], i.e., sink equilibria
containing more than one strategy profile. Conventionally, sink equilibria are
defined with respect to best-response dynamics, but the original definition by
Goemauns et al. [4] takes into account better-response dynamics as well.

The following follows easily from definitions:

Claim. If a game is weakly acyclic under best response then it is weakly acyclic.

On the other hand, the game in Figure[2] mentioned, e.g., in [§], is weakly acyclic,
but not weakly acyclic under best response.

Curiously, all of our results apply both to weak acyclicity in its conventional
better-response sense and to weak acyclicity under best response. Thus, unlike
weak acyclicity itself, the conditions presented in this paper are “agnostic” to the
better-/best-response distinction (like the notion of pure Nash equilibria itself).

We now present the notion of subgame stability.

Definition 7 (subgames). A subgame of a game I' is a game I obtained
from I' via the remowal of players’ strategies.
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H T X Co C1
H 2,0 0,2 0,0 bo b1 bo b1
T 0,2 2,0 0,0 ap 2,22 1,22 21,2 22,1
X 0,0 1,0 3,3 a1 2,2,1 2,12 1,2,2 0,0,0

Fig. 2. Matching pennies with a “better-response” Fig. 3. 2 x 2 X 2 subgame-stable
escape route, but a best response persistent cycle = game with a non-trivial sink

Definition 8 (subgame stability). Subgame stability is said to hold for a
game I' if every subgame of I' has a pure Nash equilibrium. We use SS to denote
the class of subgame stable games.

Definition 9 (unique subgame stability). Unique subgame stability is said
to hold for a game I' if every subgame of I' has a unique pure Nash equilibrium.
We use USS to denote the class of such games.

We will also consider games in which no player has two or more equally good
responses to any fixed set of strategies played by the other players. Following,
e.g., [14], we define strict games as follows.

Definition 10 (strict game). A game I' is strict if, for any two distinct

strategy profiles s = (s1,...,8n) and 8" = (s},...,s)) such that there is some

1 n

j € [n] for which 8" = (s,s-;) (i.e., s and s’ differ only in j’s strategy), then

w;(s) # uy(s').

Definition 11 (SSS). We use SSS to denote the class of games that are both
strict and subgame stable.

It’s easy to connect unique subgame stability and strictness. To do so, we use
the next definition, which will also play a role in our main proofs.

Definition 12 (subgame spanned by profiles). For game I' with n players
and profiles s*,...,s* in I', the subgame spanned by s', ey s* is the subgame
I'" of I' in which the strategy space for player i is S} = {s}|1 < j < k}.

Claim. The categories USS, SSS, and SS form a hierarchy: USS € SSS C SS

Proof. SSS C SS by definition. To see that USS C SSS observe the following.
If a game is not strict, there are s;, s’ € S; and s_; such that u;(s;,s—;) =
u;j(s},s—j). Both strategy profiles in the subgame spanned by (s;,s-;) and

(s},5-;) are pure Nash equilibria, violating unique subgame stability.

3 Sufficient Condition for Weak Acyclicity with n Players

When is weak acyclicity guaranteed in n-player games for n > 37 We prove that
the existence of a unique pure Nash equilibrium in every subgame implies weak
acyclicity. We note that this is not true when subgames can contain multiple
pure Nash equilibria [16]. Thus, while at first glance, introducing extra equilibria
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might seem like it would make it harder to get “stuck” in a non-trivial component
of the state space with no “escape path” to an equilibrium, this intuition is false;
allowing extra pure Nash equilibria in subgames actually enables the existence
of non-trivial sinks.

Theorem 1. FEvery game I' that has a unique pure Nash equilibrium in every
subgame I'" C T is weakly acyclic under best-response (as are all of its subgames).

We shall need the following technical lemma:

Lemma 1. If s is a strategy profile in I', and I’ is the subgame of I" spanned by
BRp(s), then any best-response improvement path s,s', ..., s* in I'" that starts
at s is also a best-response improvement path in I'. x

Proof. We proceed by induction on the length of the path. The base case is
tautological. Inductively, assume s, ..., s; is a best-response improvement path
in I'. The strategy s°T! is a best response to s’ in I"” by some player j. This
guarantees that s’ is not a best response by j to s‘_J in IV, let alone in I", so
I'" O BRr(s) 2 BRr(s') must contain a best-response §§ to s* . in I, and since
st must be a best-response in I.

. . 12 (ot A _ (1
s is a best-response in I, we are guaranteed that u; (3}, s’ ;) = u;(s'™), so

J

We may now prove Theorem [I1

Proof (Proof of Theorem [). To prove Theorem [l assume that I" is a game
satisfying the hypotheses of the theorem, and for a subgame A C I'; denote by
s the unique pure Nash equilibrium in A. We will proceed by induction up the
semilattice of subgames of I'. The base cases are trivial: any 1 x - - - x 1 subgame
is weakly acyclic for lack of any transitions. Suppose that for some subgame I’
of game I we know that every strict subgame I'" C I is weakly acyclic.

Suppose that I is not weakly acyclic: it has a state s from which its unique
pure Nash equilibrium sy cannot be reached by best responses. Let I be the
game spanned by BR(s). Consider the cases of (i) sp» € I and (ii) sy ¢ I'":

Case (i): sy € I'". This requires that, for an arbitrary player j with more
than 1 strategy in I/, there be a best-response improvement path from s to some
profile § where j plays the same strategy as it does in sp~. Take one such j, and
let IV be the subgame of I where j is restricted to playing §; only. Since sp is
in I'7, the inductive hypothesis guarantees a best-response improvement path in
I'V from 3§ to sps. By construction, that path must only involve best responses
by players other than j, who have the same strategy options in IV as they did
in I, so that path is also a best-response improvement path in I, assuring a
best-response improvement path in I from s to sy via 8.

Case (ii): spr ¢ I'"'. Then, I'"’s unique pure equilibrium sy~ must be distinct
from sp. Since sy is the only pure equilibrium in I/, s~ must have an outgoing
best-response edge to some profile § in I'. But the inductive hypothesis ensures
that sp» € BRpn(s); by Lemmalll sp» € BRy/(s), which then ensures that §
must also be in BRp/(s), and hence in I'”| so sy~ isn’t an equilibrium in I'”.
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4 Characterizing the Implications of Subgame Stability

[16] establishes that in 2-player games, subgame stability implies weak acyclicity,

even under best response, yet this is not true in 3x3x3 games. We now present
a a complete characterization of when subgame stability is sufficient for weak
acyclicity, as a function of game size and strictness. Our next result shows that
the two-player theorem of [16] is maximal:

Theorem 2. Subgame stability is not sufficient for weak acyclicity even in non-
strict 2 X 2 X 2 games.

Proof. The game in Fig. [3 can be seen to provide the needed counterexample.

However, if we require the games to be strict, subgame stability turns out to be
somewhat useful in 3-player games:

Theorem 3. In any strict 2 x 2 x M or 2 x 3 x M game, subgame stability
implies weak acyclicity, even under best response.

The proof of the theorem rests on several technical lemmas:

Lemma 2. In strict games, neither a pure Nash equilibrium and strategy profiles
differing from it in only one player’s action can be part of a non-trivial sink of
the best-response dynamics.

Proof. A pure Nash equilibrium always forms a 1-node sink. If the game is strict,
profiles differing by one player’s action have to give that one player a strictly
lower payoff, requiring a best-response transition to the equilibrium’s sink. Any
node connected to either cannot be in a sink.

Lemma 3. The profiles of a game that constitute a non-trivial sink of the best-
response dynamics cannot be all contained within a subgame which is weakly
acyclic under best-response.

Proof (sketch). The lemma comes from considering, for a sink of I" contained
in a weakly acyclic subgame I, a best response path in I from the sink to an
equilibrium. The first transition on that path that is not a best response in I"
(or, in absence of such, the transition from the equilibrium of I'” that makes it
a non-equilibrium in I"), will have to lead out of I'"” but remain in the sink.

We then consider the corner cases of 3-player, 2 x 2 x 2 strict games, and 2-player,
2 x m games, where weak acyclicity requires even less than subgame stability.
The former result forms the base case for Theorem Bl and both might also be of
independent interest.

Lemma 4 (proof in the full version). In any 2 x m game, and if there is a
pure Nash equilibrium, the game is weakly acyclic, even under best response.

Lemma 5. In any strict 2 x 2 X 2 game, if there is a pure Nash equilibrium, the
game is weakly acyclic, even under best response.



On the Structure of Weakly Acyclic Games 135

Proof. In strict 2 X 2 x 2 games, Lemma [2] leaves 4 other strategy profiles, with
the possible best-response transitions forming a star in the underlying undirected
graph. Since best-response links are antisymmetric (s — s’ and ' — s cannot
both be best-response moves), there can be no cycle among those 4 profiles, and
thus no non-trivial sink components.

Proof (sketch of Theorem[3). The full proof is long and technical, and is relegated
to the full version of the paper.

We treat the 2 x 2 x M case first. Naming the equilibrium of the game
(a0, bo, co), Lemmas Pl and Bl guarantee that the sink must contain a profile where
player 3 plays ¢, yet the only such profile that can be in the sink is (a1, b1, co),
the total degree of which in the best-response directed graph is at most 1 (also
by Lemma [2I), which cannot happen for a node in a non-trivial sink.

The 2 x 3 x M case is much more complex. The proof operates inductively
on M. From the inductive hypothesis, the 2 x 2 x M result, and Lemma [3, we
get that the smallest 2 x 3 x M game I' that is not weakly acyclic under best
response must have a non-trivial sink spanning I". Given such a sink, we then
use Lemma [2] and a similar result that excludes from the non-trivial sink any
profiles adjacent to the equilibrium of the 2 x 2 x M subgame that does not
contain the global equilibrium. The proof concludes by a detailed examination
of the possible structures of such a sink under all those constraints, which yield
a contradiction in every case.

Theorem [3] is maximal. All bigger sizes of 3-player games admit subgame-
stable counter-examples that are not weakly acyclic:

Theorem 4. In non—degenemtc@ strict 3-player games, the existence of pure
Nash equilibria in every subgame is insufficient to guarantee weak acyclicity, for
any game with at least 3 strategies for each player, and any game with at least
4 strategies for 2 of the players.

Proof (sketch). The first half of the theorem follows directly from a specific
counterexample game in [I6]. There, the strict 3-player, 3 x 3 x 3 game in question
is stated to demonstrate that SSS does not imply weak acyclicity under best
response. However, their very same counter-example is not even weakly acyclic
under better response. Here, we give a 2 x 4 x 4 counter-example to establish the
second half of the theorem, and a 3 x 3 x 3 counterexample slightly cleaner than
the one in [16]. Close inspection of the games I's 33 and I'y 42 shown in Figure
M reveals that these are not weakly acyclic but are strict and subgame stable.

With 4 or more players, a more mechanistic approach produces analogous ex-
amples even with just 2 strategies per player:

Theorem 5. In a strict n-player game for an arbitrary n > 4, the existence of
pure Nash equilibria in every subgame is insufficient to guarantee weak acyclicity,
even with only 2 strategies per player.

4 Each player has 2 or more strategies.
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co C1 C2
bo b1 vb_z bo.. . b1 bz R bO . bl b2
ao 0,0,0 575744”"‘5&,‘-5 4757.5..07,1.»_.1_..072,7,_1.”..5.:.5»4,_'_"' 5,45  0,2,2
ar 5,45 1,1,0 4,55 1,01 555 1,21 1,02 112 1,22
az 4,55 21,0 220 550 21,1 221 202 21,2 222
Cco C1
bo biobe s bo b b2 bs
a0 5,55 0,1,0 0,20 03,0 554 01,1545 0,31
a1 1,0,0 11,0 554 545 1,01 1,11 455 1,31
az 2,0,0 54,5 22,0 4,55 20,1 21,1 2,21 23,1
az 5,43 4,5,5 3,2,0 3,30 3,0,1 3,1,1 3,2,1 55,5

Fig. 4. 3-player strict subgame stable games that are not weakly acyclic, even under
better-response dynamics

Proof. For strategy profiles in {0, 1}", using indices mod n, set the utilities to:

4,...,4) at s =(1,...,1)
(3,...,3,1’%}1,3,...,3) when s; 1 =s; =1,5_(;_1,;) =0

(3,...,3, 2 ,3,...,3) whens;=1,5_,=0
i+ 1'th
s else (for the “sheath”).

u(s) =

Similarly to Theorem [ this plants a global pure Nash equilibrium at (1,...,1),
and creates a “fragile” better-response cycle. Here, the cycle alternates between
profiles with edit distance n—1 and n—2 from the global pure Nash equilibrium. At
every point of the cycle, the only non-sheath profiles 1 step away are its predecessor
and successor on the cycle, so the cycle is persistent. Since each profile with edit
distance n — 1 from the equilibrium is covered, removing any player’s 1 strategy
breaks the cycle, thus guaranteeing a pure Nash equilibrium in every subgame by
the same reasoning as above.

We note that, in the counter-example results — Theorems[2 Fl and[Bl— the counter-
example games of fixed size easily extend to games with extra strategies for some or
all players, or with extra players, by “padding” the added part of the payoff table
with negative, unique values that, for the added profiles, make payoffs indepen-
dent of the other players, such as, e.g., u;(s) = —s;. This preserves SS, SSS, and
USS properties without changing weak acyclicity. Thus, this completes our clas-
sification of weak acyclicity under the three subgame-based properties, as shown
in Table[Il

5 Concluding Remarks

The connection between weak acyclicity and unique subgame stability that we
present is surprising, but not immediately practicable: in most succinct game
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representations, there is no reason to believe that checking unique subgame sta-
bility will be tractable in many general settings. In a complexity-theoretic sense,
USS is closer to tractability than weak acyclicity: Any reasonable game repre-
sentation will have some “reasonable” representation of subgames, i.e., one in
which checking whether a state is a pure Nash equilibrium is tractable, which
puts unique subgame stability in a substantially easier complexity class, II3P,
than the class PSPACE for which weak acyclicity is complete in many games.

We leave open the important question of finding efficient algorithms for check-
ing unique subgame stability, which may well be feasible in particular classes of
games. Also open and relevant, of course, is the question of more broadly appli-
cable and tractable conditions for weak acyclicity. In particular, there may well
be other levels of the subgame stability hierarchy between SSS and USS that
could give us weak acyclicity in broader classes of games.
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Abstract. We present a direct reduction from k-player games to 2-
player games that preserves approximate Nash equilibrium. Previously,
the computational equivalence of computing approximate Nash equilib-
rium in k-player and 2-player games was established via an indirect re-
duction. This included a sequence of works defining the complexity class
PPAD, identifying complete problems for this class, showing that com-
puting approximate Nash equilibrium for k-player games is in PPAD,
and reducing a PPAD-complete problem to computing approximate Nash
equilibrium for 2-player games. Our direct reduction makes no use of the
concept of PPAD, eliminating some of the difficulties involved in follow-
ing the known indirect reduction.

1 Introduction

This manuscript addresses the computation of Nash equilibrium for games rep-
resented in normal form. It is known that for 2-player games this problem is
PPAD-complete [5], and for k players it is in PSPACE [I1]. Moreover, for suffi-
ciently small €, computing e-well-supported Nash equilibrium for 2-player games
remains PPAD-complete [6], and for k players it is in PPAD [8]. It follows that,
for appropriate choices of €, e-well-supported Nash in k-player games reduces
to e-well-supported Nash in 2-player games. However, this chain of reductions is
indirect, passing through intermediate notions other than games, and also rather
complicated.

In this manuscript we present a direct, ”game theoretic” polynomial-time
reduction from k-player to 2-player games. In our reduction, every pure strategy
of each of the k players is represented by a corresponding pure strategy of one of
the 2 players. Previously, a direct reduction preserving exact Nash equilibrium
was known from k-player to 3-player games [3]. Such a reduction cannot exist to
2-player games due to issues of irrationality [21], hence the need to consider the
notion of e-well-supported Nash in this context. Our reduction guarantees that

* A full version of this paper is available at http://arxiv.org/abs/1007.3886. Work
supported in part by The Israel Science Foundation (grant No. 873/08).

** The author holds the Lawrence G. Horowitz Professorial Chair at the Weizmann
Institute.

S. Kontogiannis, E. Koutsoupias, P.G. Spirakis (Eds.): SAGT 2010, LNCS 6386, pp. 138-{I49] 2010.
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for appropriate choices of €5 and €, given any es-well-supported Nash for the 2-
player game, normalizing its probabilities according to the above correspondence
gives an €i-well-supported Nash for the k-player game.

The direct reduction makes no use of the concept of PPAD. This eliminates
some of the difficulties involved in following the known indirect reduction. It is
inevitable that unlike the indirect reduction, our reduction by itself does not
establish the PPAD-completeness of computing (or approximating) Nash equi-
libria. Nevertheless, the new gadgets we introduce are relevant to the notion
of PPAD-completeness, as they can be used in other reductions among PPAD
problems. Moreover, our reduction provides an alternative to the proof of [§]
that finding an approximate Nash equilibrium in k-player games is in PPAD.

The first step of our reduction ”linearizes” a k-player game by replacing the
multilateral interactions among the k players with bilateral interactions among
pairs of players. In the next step, two representative ”super-players” replace
the multiple players, resulting in a 2-player game. In terms of techniques, the
first step of the reduction uses and extends the machinery of gadget games
developed by Goldberg and Papadimitriou [13]. We introduce a new gadget
for performing approximate multiplication using linear operations, in order to
bridge the gap between multiplicative and linear games. The second step of
the reduction uses similar methods to [I3] and [20] in order to replace multiple
players by 2 players, resulting in a combination of a generalized Matching Pennies
game and an imitation game.

1.1 Preliminaries

Let [n] = {1,...,n}. Let |[v|| = Y, |vi|, and let v—% be the vector obtained from
v by removing the i’th entry. For vectors u and v of length n, let u ® v denote
their tensor product written as a vector of length n?, where entry (i — 1)n + j
is u;v;. We write £ = y £+ z to denote y — z < & < y + z. For vectors, t =y £ 2
denotes y; — z < x; < y; + z for every 1.

Normal Form Games. G, is a normal form game with player set [k], where each
player’s pure strategy set is [n]. A pure strategy profile s € [n] X - - - X [n] contains
one pure strategy per player, and a mized strategy profile p = (pt,...,p"*) is
defined analogously. Let p = p' @ --- ® p* be the corresponding joint mized
strategy distribution, such that for every pure strategy profile s, entry p[s] =
IL pg is the probability that for every i player 7 plays pure strategy s;. Unless
stated otherwise, payoffs are rationals in [0, 1]. Let M* (sometimes denoted M¢, )
be player i’s n x n*~! payoff matrix, where M?[j, s7%] is the payoff for playing
pure strategy j against s—¢. Given a mixed strategy profile p—%, the expected
payoff vector uick = M'p~% contains player i’s expected payoffs uick [4] for
playing pure strategy j against p—*. The expected payoffs are algebraic functions
in the probabilities played by the others.

Polymatriz (Linear) Games. Games in which every player plays bilaterally
against others, and receives the sum of payoffs obtained from the bilateral in-
teractions. Thus, polymatrix games are actually collections of 2-player games
in which every player plays the same strategy in every game she participates
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in. Unlike normal form games, the size of polymatrix games is polynomial in
n even when the number of players is non-constant. G, is a polymatrix game
with player set [m }, where player ¢ has 2 < n; < n pure strategies and m — 1
payoff matrices M 4 of size nl X 1. Entry M [7,7'] is the payoff to player 4
for playing j against player ¢ who plays j'. If the interaction between 4 and 7’
does not exist or does not influence ¢’s payoff, M is set to be all-zeros. Given a
pure strategy profile s, the total payoff for playing j is Zi,# M [, s ¢[i']].
Given a mixed strategy profile p~%, the expected payoff vector of player i is
uy, = D i M p¥ | Equivalently, let M? = (M?%!...M"™) be a matrix
containing all of ¢’s payoff matrices as submatrices, then uiGm = M'p—*. The
expected payoffs are thus linear functions in the probabilities of the others.

Nash Equilibrium. A mixed strategy profile whose supports include only best
response pure strategies. Given a mixed strategy profile p~¢, j is a best response
for player i if it maximizes the expected payoff, i.e., u%, [j] = max; ¢ {us[i']}; j
is an e-best response if it maximizes the expected payoff up to an addltlve factor
of €. In the context of reductions from k-player to 2-player games, the following
fact motivates consideration of approximate rather than exact Nash equilibrium:
2-player games always have a rational Nash equilibrium, while k-player games
do not [2I]. Out of several possible notions of approximation, we focus on e-
well-supported Nash equilibrium, whose supports contain only e-best responses.
We shall primarily be interested in small, non-constant values of €, namely € =
1/poly(n) and € = 1/exp(n). A related weaker notion is e-Nash equilibrium,
from which deviating unilaterally cannot improve the expected payoff by more
than e (see [11] for a discussion).

Definition 1 (e;-kNASH and ¢,-LINEAR-NASH). Given a pair of nor-
mal form game Gy and accuracy parameter €y, the problem ex-kNASH is to find
an ex-well-supported Nash equilibrium of Gy. The problem €,,-LINEAR-NASH
is the same for polymatriz game G,, and accuracy parameter €,.

1.2 Our Results

Let (G s €my)s (Gimg, €m,) be two pairs of games and accuracy parameters. The
games have mj,mg players respectively; player i has n},n? pure strategies re-

spectively. The following is based on Bubelis’s notion of reduction scheme [3].

Definition 2 (Mapping between Games). A mapping includes:
e A function g : [m1] — [ma] mapping players of G, to players of G, ;
e For every i € [m1], an injective function h; : [n}] — [ni(i)] mapping pure

strategies of player i to distinct pure strategies of player g(3).

Definition 3 (Direct Reduction). A direct reduction from (G, ,€m,)
to (Gmyy €msy) 18 a mapping from G, to G, such that for every €,,-well-
supported Nash equlibrium (q*,...,q™2) of Gum,, an €m, -well-supported Nash
equilibrium (p yee s ™) of Gy can be obtained by renormalizing probabilities
as follows: p*[j] = (1/2)q9 D [hi(4)] (where z is a normalization factor).
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Theorem 4 (Main). For every e, < 1, there exists a direct reduction from
e,-kNASH to e3-2NASH, where e3 = poly(er/|Gr|). The reduction runs in poly-
nomial time in |Gy| and in log(1/ek).

Corollary 5. There is a direct, polynomial time reduction from (1/exp(n))-
ENASH to (1/exp(n))-2NASH, and from (1/poly(n))-kNASH to (1/poly(n))-
2NASH.

Proof of Theorem [& By combining Theorem [[H (linearizing reduction) with
Theorem (reduction from linear to bimatrix games), and plugging in the
parameters of Lemma [§ (logarithmic-sized linear multiplication gadget). O

The proof of Lemma[] appears in the full version. For simplicitly of presentation
we prove here the slightly weaker Lemma [7] (polynomial-sized gadget), resulting
in a reduction that’s polynomial time in 1/ej instead of log(1/ex).

1.3 Related Work

Bubelis [3] shows a direct reduction from k-player to 3-player games. This re-
duction relies heavily on the multiplicative nature of 3-player games. Examples
of direct reductions involving 2-player games include symmetrization [12], and
reduction to imitation games [20]. We use imitation games in Section [l

PPAD-completeness. PPAD is the class of total search problems polynomial-
time reducible to the abstract path-following problem END OF THE LINE [22].
The known results can be summarized by the two following chains of reductions,
each forming an indirect reduction (according to Definition Bl of directness) from
k-player games to 2-player games:

e 1/exp(n)-kNASH < END OF THE LINE < 3D-BROUWER <
ADDITIVE GRAPHICAL NASH < 1/ exp(n)-2NASH
e 1/exp(n)-kNASH < END OF THE LINE < 2D-BROUWER <
nD-BROUWER < 1/poly(n)-2NASH

Reductions in chain 1 are by [I7I8], [2218], [5I8] and []], respectively, and in chain
2 they are by [I7I8], [4], [6] and [6], respectively. For an overview of these cele-
brated results see [23]. In comparison, our reduction can be written as: e;-kNASH
< €,,-LINEAR-NASH < €2-2NASH, where €, €,,, €2 can either all be 1/ exp(n)
or 1/poly(n). Note there is gap between the second chain of reductions and our
results - the second chain achieves a stronger reduction from 1/ exp(n)-kNASH
to 1/poly(n)-2NASH. Achieving a direct version of this result by [6] is an inter-
esting open problem. Note also that our reduction from ¢,,-LINEAR-NASH to
€2-2NASH is somewhat similar to the reduction from ADDITIVE GRAPHICAL
NASH to 1/exp(n)-2NASH, however our reduction does not require the input
game to be bipartite nor does it limit the number of interactions per player.

Constant Approximations. Another open question is the complexity of eg-
kENASH and €3-2NASH for constant values of €, es. As a quasi-polynomial al-
gorithm is known [IJTI9], these problems are not believed to be PPAD-complete.
The current state-of-the-art is a polynomial-time algorithm for e2-2NASH where
€2 &~ 0.667 [16]. For finding eo-Nash equilibrium rather than es-well-supported
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Nash equilibrium, there is an algorithm where €z ~ 0.339 [24] (see also [91225]).
On the negative side, several algorithmic techniques have been ruled out [I5I10].

Reductions to 2 players and linearization. The empirical success of the Lemke-
Howson algorithm [I8] for finding Nash equilibrium in 2-player games has mo-
tivated research on extending it to a more general class of games. Daskalakis et
al. show an indirect reduction from succinct games to 2-player games [7]. Govin-
dan and Wilson present a non-polynomial linearizing reduction, which reduces
multiplayer games to polymatrix games while preserving approximate Nash equi-
librium [I4]. Linearization is also related to the formulation of PPAD as the class
of fixed-point problems for piecewise-linear functions [11].

2 A Linear Multiplication Gadget

Theorem 6 (Linear Multiplication Gadget). There exist constants ey <
1,¢,d and an increasing polynomial function f such that the following holds.
For every € < €, there exists a linear multiplication gadget G, = G.(€) of size
O(m~f(1)), such that in an e-well-supported Nash equilibrium, the output of G,
equals the product of its m inputs up to an additive error of £dme®.

Lemma 7 (Polynomial-Sized Construction). Theoreml[f holds with the fol-

lowing parametersl] eg = 1, c =1, d =19 and f(z) = 2*.

Lemma 8 (Logarithmic-Sized Construction). Theorem [@ holds with the
following parameters: ey = 1(1)5 ,c= ;, d=3 and f(z) =logz.

Both constructions use standard gadgets as building blocks. The second con-
struction gives a smaller gadget with size O(mlog!) instead of O("}), but is
also more complicated. Its details appear in the full version. The rest of this
section describes the first construction and proves Lemma [7l

2.1 Linear Gadgets

Goldberg and Papadimitriou developed the framework of gadgets [13], carefully-
engineered games that simulate arithmetic calculations and are useful in many
PPAD-completeness results. Gadget players are typically binary.

Definition 9 (Binary Player). A binary player P is a player that has exactly
two pure strategies 0 and 1. We say P represents the numerical value p € [0, 1]
if her mized strategy is p, i.e. she plays pure strategy 1 with probability p.

Gadget games have three kinds of binary players - one or more input playersE
one output player, and one or more auxiliary players. The size of a gadget is
the number of its auxiliary and output players. The values represented by the

! The choice of d = 19 simplifies the proof, but can be replaced with a smaller value.
2 Gadgets can also have non-binary input players, in which case the input values are
the probabilities with which they play certain predetermined pure strategies.
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input and output players are the inputs and output of the gadget. In every e-well-
supported Nash equilibrium of the gadget game, the output is equal to the result
of an arithmetic operation on the inputs (up to small error). This arithmetic
relation between the inputs and output is the guarantee of the gadget, and is
achieved by choosing appropriate payoffs for the auxiliary and output players.
Our reductions require gadgets with linear guarantees, which differ slightly from
the graphical and additive-graphical gadgets used in previous works.

Definition 10 (Linear Gadgets). A linear gadget is a polymatriz gadget game
with payoffs in [0,1]. Linear gadgets simulate linear arithmetic operations, i.e.
their guarantee is a linear relation between the input and output values.

Several gadgets can be combined into a single game, much like arithmetic gates
are combined into a circuit to carry out involved calculations. We represent a
combination of gadgets by a series of calculations on the inputs and outputs:
For example, if the output player P of gadget G is set to be an input player of
gadget G’ whose output player is P’, then we write p’ = G’(p) (where in turn
p = G(...)). Auxliary players are never shared among gadgets. The following
fact explains why the same player can be an input player of multiple gadgets, but
can ounly be the output player of a single gadget (which determines her payoffs).

Fact 11 (Combining Gadgets). For every game in which no player is the
output player of more than one gadget, the guarantees of all gadgets hold simul-
tanuously when the game is in e-well-supported Nash equilibrium.

Lemma 12 (Standard Linear Gadgets [8]).

o For every rational ¢ € [0,1], there exists a linear threshold gadget G¢ of
size O(1) with input p1, such that in an e-well-supported Nash equilibrium
the output is 1 if p1 > ( 4+ € and 0 if p1 < ( — € (and otherwise is in [0,1]).

o There exists a linear AND gadget G of size O(1) with inputs p1,p2, such
that in an e-well-supported Nash equilibrium where € < }1 the output is 1 if
p1=p2=1and 0if (pr =0)V (p2 = 0) (and otherwise is in [0,1]).

e For every rational ¢ € [0,1], there exists a linear scaled-summation gadget
Gy «¢ of size O(1) with inputs pi1,...,pm, such that in an e-well-supported
Nash equilibrium the output is min{¢(p1 + -+ + pm), 1} L €.

2.2 Construction and Correctness

We describe the construction of G, that we shall use to prove Lemma [l We
show a construction for multiplying 2 inputs, and multiplying m inputs can be
achieved by connecting m—1 copies of G, serially. Let P;, P; be the input players
representing values p1, p2, and let P be the output player representing value p.
Let 7 = 3¢, and for simplicity assume that 1/7 is integral. The construction first
finds an encoding of every input in unary representation, up to precision of +7.
This requires two sets {V;'} and {V;?} of 1/7 auxiliary players each. The vec-

tors v = (vi,...,v},) and v* = (vf,...,27 ) of values represented by {V;'}

3 There also exist standard, inherently nonlinear gadgets for multiplication.
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and {VZZ} are the unary encodings of p; and ps respectively. The value of v,il,
the #’th unary bit of pq, is set by applying the threshold gadget G (Lemma
M2) as follows: v} = Gs;r(p1). Similarly, v = G~;-(p2). The next component
of GG’s construction is performing unary multiplication among the two vectors
v!, v? using the AND gadget G (Lemma [[2). Another set of 1/72 auxiliary
players {U; ;} stores the result. Let U be a matrix of the values they represent,
then u; ; = G/\(vil, v]2) The construction is complete by summing up and scal-
ing U’s entries using the scaled-summation gadget G4 . (Lemmal[I2)) as follows:
p =G4 wr2(ur1,u1,2, ..., U1 /71/7). Note that the payoffs of all players are deter-
mined by the standard gadgets. We now show that the described construction
establishes the guaranteed relation between inputs p;, p2 and output p of G..

Proof of Lemma [Tt First we observe that G, is a combination of linear gadgets
and is thus itself linear. The size of G, is O(1/72), since this is the total size of the
standard gadgets it combines (2/7 threshold gadgets Gs¢, 1/7%> AND gadgets
G, and 1 scaled-summation gadget G .¢, all of size O(1)). Now assume G,
is in e-well-supported Nash equilibrium where € < 1/4. We write the input
values p1,p2 as integer multiples of 7 plus a small error: Let p; = i*7 4+ é; and
p2 = §*T + 02, where 0 < ¢*,j* < 1/7 and 0 < 01,62 < 7. The following claim
follows directly from the guarantee of the threshold gadget (Lemmal[I2]). It states
that while this gadget is brittle in the sense that for a small range of inputs it
returns an arbitrary output, this cannot be the case for more than one unary
bit of p; or ps. The proof of the claim utilizes the choice of 7 = 3¢ (see full
version). The rest of the proof of Lemma [7is a straightforward corollary of the
other gadget guarantees.

Claim 13 (Unary Encoding). v! is of the form (1,...,1,7,0,...,0), where
vt = i* £ 1 and 7’ denotes any value in [0,1]. The same holds for v? and j*.

Example 1. Let py = 7t+¢/4 and pa = 27+ (7—¢€/8). First G finds their unar?/
encodings: v! = (1,1,1,1,1,1,2,0,...,0) and v = (1,1,?,0,...,0). Then it
performs unary multiplication and finds U (see below). Summing up and scaling
U’s entries gives the output p = 1272 + O(e), which is close to p1p2 up to O(e).

11111170

? !
U — 111111720 ’U<(é8>
1/7x1/7

00000000

3 Linearizing Multiplayer Games

In this section we show a direct reduction from k-player games to polymatrix
games. Let Gy denote the input game to the reduction, and let G,, denote
the corresponding output game. The first k& players of G, have the same pure
strategies as the players of G,. The reduction relies on the fact that, although
G'.’s expected payoffs are nonlinear in its players’ probabilities, they are linear in
products of its players’ probabilities. A key component of our reduction is a linear
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multiplication gadget for computing these products, which exists according to
Theorem Bl Let f be an increasing polynomial function as in Theorem [6l

Theorem 15 (A Linearizing Reduction). For every e, < 1, there exists a di-
rect reduction from ey-k NASH to €,,-LINEAR-NASH, where €., = poly(ex/|Gkl).
The reduction runs in polynomial time in |G| and in f(1/€r).

Lemma 16 (Recovering ¢;-Well-Supported Nash). Let (pt,...,p™) be
an €, -well-supported Nash equilibrium of G,,. Then the first k mized strategies
pt, ..., p" form an e-well-supported Nash equilibrium of Gj,.

The following lemma will be useful in desiging the linearizing reduction.

Lemma 17 (Preserving Expected Payoffs). If for every player i € [k|, the
expected payoff vectors uiGm and uin are entry-wise equal up to an additive
factor of 6, and (p*,...,p™) is an €n-well-supported Nash equilibrium of G.,,
then (pt,...,p*) is an e-well-supported Nash of Gy where €, = 25 + €p,.

Proof. Let j € [n] be a pure strategy in the support of player ¢ (pj > 0). We
know that j is an €,,-best response in G,,. Assume for contradiction that j is not
an €x-best response in Gy, i.e. there is a pure strategy j' € [n],j’ # 7 such that
u’ck(j’? > ug, (7) + ek Soug, (j')+0>ug, (i) — 0+ ek Since e — 25 = €,
then ug, (4" > ug, (4) + €m, contradiction. O

3.1 The Linearizing Reduction and Correctness

Given an input pair (Gy, €), we find an output pair (G, €,,) as follows. Let g <
1, ¢, d be the constant parameters of TheoremBl Then €, = min{(ex/3n*~dk)"/¢,
€o}. The players of G, are:

e Original players - the first k players of G, have the same pure strategies as
G}’s players. p* denotes the mixed strategy of original player i.

e Mediator players - for every i € [k], there is a set of n*~! binary players that
corresponds to the set of n*~! pure strategy profiles of all original players
except i. We denote by @ —: the mediator player corresponding to pure
strategy profile s™* and by g —: the represented value.

e Gadget players - all auxiliary players belonging to knF~! copies of the linear
multiplication gadget G..

Every mediator player is set to be the output player of a gadget G, as follows:
qg—i = G*(pi_i[l], e ,p’;_i[k]). Thus, q,—: will be approximately equal to the
probability with which the original players play the pure strategy profile s—*.
Let g* be the vector of values {q4—i}, then it’s approximately equal to P, the
joint mixed strategy distribution of all original players except i.

To complete the description of G, it remains to specify the non-zero payoff
matrices of the original players (all other payoffs are determined by the gad-
gets). In Gy, the expected payoff vector of player i is uly, = M} p~* In Gy,
the payoff of original player ¢ will be influenced only by the i’th set of mediator
players {Q,—:} who play q*. Instead of describing every payoff matrix MH@a—i
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separately, we describe one large payoff matrix Mén that contains all the oth-
ers (or more precisely, all their nonzero columns) as submatrices. We want the
expected payoffs in G, to be as close as possible to those of Gj. Thus, we set
M¢, = M, . This concludes the contruction.

Original player 1 Original player 2
pp'2] - Pl [pA1pR2]] - [pAin]

Layer of .G*. .G- G- s G*
gadgets &_
":I*:;‘"’e‘r‘;’ Mediator Q; ;) Mediator Q, ,
|1'q ) qli"' |1'Q<qmlq1nn;|

Original player 3 L
- Melan
Payoff matrix M?

M j(n,n)]

Fig. 1. Linearization of a 3-Player Game - Partial View of G,
The arrows indicate how the probabilities of original players 1 and 2 influence the
expected payoff of original player 3 via a layer of gadgets and mediator players.

Correctness. First note that the reduction runs in time polynomial in |G| =
O(kn*) and in f(1/ex): The running time depends on the size of the polyma-
trix game G,,, which is polynomial in the number of its players. There are k
original players, kn*~! mediator players and kn*~'O(|G.|) auxiliary players.
By Theorem [ |G.| = O(k - f(1/€y,)). Since f is a polynomial function and
em = poly(ex/|Gkl|), the total number of players is indeed polynomial in |G|
and in f(1/ex). As described above, the expected payoff vector of original player
t in Gy, is ugm = Mém q*. The linear multiplication gadget G, guarantees that
vectors g and p~* are close to each other, and since all payoffs are in [0, 1], the
expected payoffs uf; = M{, p~* are preserved u, = M, q*. The proof of
Lemma [T is then immediate by preservation of expected payoffs (Lemma [T).

4 Reducing Linear Games to Bimatrix Games

In this section we show how to replace the multiple players of a polymatrix game
by two representative ”super-players” of a bimatrix game. Let G,, denote the
input game to the reduction, and let G5 denote the corresponding output game.

Theorem 18 (Linear to Bimatrix). For every e, < 1, there exists a direct
reduction from €,,-LINEAR-NASH to e3-2NASH, where €3 = poly(em/|Gml).
The reduction runs in polynomial time in |Gy,| and in log(1/epy,).

Lemma 19 (Recovering Approximate Nash). For every es-well-supported
Nash (z,y) of Ga, partitioning y into subvectors of lengths n; and normalizing
gives an €, -well-supported Nash equilibrivm (y* /||yt ..., y™/|ly™I) of Gm.
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4.1 Imitation Games and Block e-Uniform Games

The following definitions and lemmas will be useful in proving Theorem [I8
An imitation game is a bimatrix game in which player 2’s payoff matrix is the
identity matrix. The following was proved in [20] for the case of exact Nash.

Lemma 20 (Imitation). Let (x,y) be an ez-well-supported Nash equilibrium
of an imitation game Ga where e < 1/N. Then support(y) C support(x).

A bimatrix game is block e-uniform if player 1’s payoff matrix A is as follows:
e Block matriz: A is composed of m? blocks AT of size n; X n; each;
e Very negative diagonal: The i’th diagonal block A%% is equal to —aE,,,, where
a = 8m?/e and E,, is the all-ones matrix of size n; x n;;
e [0,1] entries: All other entries of A are arbitrary values in [0, 1].

For a similar construction see the generalized Matching Pennies game of [13].
Let (x,y) be a mixed strategy profile of an e-block-uniform game. We denote by
zl,...,z™ and y',...,y™ its separation to blocks of size ni,...,n,. We say
block i belongs to the support of « if there is some pure strategy in block i that
belongs to it. The following lemma shows that in a block e-uniform game, the
weight of player 2 is e-uniformly divided among all blocks in support().

Lemma 21 (e-Uniform Weights). Let x,y be an es-well-supported Nash equi-
librium of a block ea-uniform game Gg. If block i € [m] belongs to the support of
x, then for every i’ € [m], |[y*|| < |ly* || + (1 4+ €2)/c.

Proof. The expected payoff vector ubQ of player 1 is Ay. By construction of

matrix A, the expected payoff vector for playing pure strategies in block 7 is
> ireim) A"y The domininant vector in this sum is A%y, whose entries are
all —a||y?||. The entries of every other vector A»"y* in the sum are in the
range [0, ||y ||], and since y is a distribution vector, the total contribution to
the sum is at most Zi’e[m] ||yzl|| = 1. Thus, the expected payoff for playing
any pure strategy in block 4 is in the range [—al|y®||, —a|ly?| + 1]. Assume for
contradiction that [|y?| > ||y¥|| + (1 + €2)/a. Then the expected payoff for
playing a pure strategy in block 4 is at most —a(]|y? || + (1 + €2)/) + 1, while
the expected payoff for playing in block 7’ is at least fa(||yi' . The difference
is more than ey, contradicting the assumption that ¢ belongs to support(x). O

Corollary 22 (Imitation and Block e-Uniform). Let x,y be an ex-well-
supported Nash equilibrium of a block ez-uniform imitation game Ga, where €3 <
1/N. Then for every two blocks i,i' € [m], ||y?]| = |ly* || £ (1 + €2)/cx.

Proof. We show that if a game is both imitation and block e-uniform, the weight
of player 2 is divided e-uniformly among all blocks in [m]. Since y is a distribution
vector, there exists a block i € [m] such that |ly*| > 1/m. So i belongs to
the support of ¢, and by Lemma 20, ¢ also belongs to the support of x. By
Iref[Lemmallem:uniform-weights, 1/m < |y¢| < |v¥| + .Ql + €2)/a for every
i’ € [m]. Since (1 + €2)/a < 1/m we conclude that 0 < ||y* || for every ¢’. Thus
by Lemma 20 all blocks are in support(x) and get almost uniform weight. O
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4.2 The Reduction and Correctness

Given an input pair (Gm,€y), we find an output pair (G, €2), where Gy has
payoffs in the range [—a, 1]. To complete the reduction, G5 can then be normal-
ized by adding « to all payoffs and scaling by 1/(c + 1) (e is also scaled). Let
N = Z:’;l n; be the total number of pure strategies in G,,, and let M be the
payoff matrix of player ¢ for interacting with player i’. Set e2 = €,,/N. The pure
strategies of every player in Gy are the set [N]. The payoffs are chosen such that
G2 is both an imitation game and a block es-uniform game:

—ak,, M2 ... pMLm I,, 0 --- 0
A M21 —aokb,, M2Zm 0 I, 0
== . . . aB: . . .
ml Am2 L. o ) 0 I

M M ab,, NxN 0 O L, NxN

Correctness. The reduction runs in time polynomial in |G,,| = O(N?) and in
log(1/€,,): The running time depends on the size of the bimatrix game G5, whose
payoff matrices are of size N? with entries of size O(loga). It’s left to prove
Lemma for the unnormalized game Gy and €2 = €, /N; this immediately
gives a proof for €3 = €,,/N(a + 1) after normalizing the payoffs from [—a, 1]

o [0,1]13 Since €,,/N (o + 1) = poly(emn/N), Theorem [I§ immediately follows.
To prove Lemma [[9 we define for every player ¢ of G, a mapping h;, which
maps the j’th pure strategy of ¢ to the j’th pure strategy in block ¢ of G3. When
strategy profiles (z,y) and (y/[|yt], ..., y™/|ly™]) are played in G and G,,
respectively, then player 1’s expected payoff for playing h;(j) in Gs is closely
related to player i’s expected payoff for playing j in G,,. In fact, the expected
payoffs are the same up to shifting by «||y?|| (the contribution from the diagonal
of A), scaling by m (the number of blocks on which y is uniformly distributed),
and small additive errors (proof appears in the full version). As in Section [3
the fact that the expected payoffs are preserved, even up to shift and scale, is
enough for one game’s e-well-supported Nash equilibrium to imply the other’s.
Thus, if (x,y) is an ez-well-supported Nash equilibrium of G, then (y*/[|y}],

. y™/|ly™])) is an €p-well-supported Nash equilibrium of G,,.
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Abstract. Given a set of alternatives and a single player, we introduce
the notion of a responsive lottery. These mechanisms receive as input
from the player a reported utility function, specifying a value for each
one of the alternatives, and use a lottery to produce as output a probabil-
ity distribution over the alternatives. Thereafter, exactly one alternative
wins (is given to the player) with the respective probability. Assuming
that the player is not indifferent to which of the alternatives wins, a lot-
tery rule is called truthful dominant if reporting his true utility function
(up to affine transformations) is the unique report that maximizes the
expected payoff for the player. We design truthful dominant responsive
lotteries. We also discuss their relations with scoring rules and with VCG
mechanisms.

1 Introduction

We consider a setting where there are n alternatives Aj,..., A, and a single
player. We assume that the player has a cardinal utility function over the al-
ternatives, in the sense of Von-Neumann and Morgenstern. Namely, the player
has a utility vector U = (uq,...,u,), with utility value u; associated with the
respective alternative A;, and this utility vector determines the preference of
the player over different lotteries. Formally, given two lotteries, one that asso-
ciates probabilities p; with the respective alternative A;, and the other associates
probabilities ¢; with the respective alternative A;, the player prefers the former
lottery if > p;u; > > qiu;, the latter lottery if > piu; < > giug, and is indiffer-
ent over the choice of lotteries if > p;u; = > giu;. Recall that Von-Neumann and
Morgenstern show that if all that the player knows is his preferences over every
conceivable pair of lotteri! es, and that these preferences are consistent in the
sense that they satisfy a certain set of axioms (these axioms are natural, though
there is a well known debate whether they actually reflect human behavior), then
this in fact defines a utility function that is unique up to positive affine transfor-
mations (shift by a scalar and multiplication by a positive scalar — game theory
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literature often calls these linear transformations). We shall assume throughout
that the player is not indifferent to the alternatives, namely, that there are at
least two alternatives A; and A; with u; # ;. As utility functions are defined
only up to affine transformations, we shall often represent utility functions in
one of two canonical forms: either as unit range, meaning that min; u; = 0 and
max; u; = 1, or as unit sum, meaning that min; u; = 0 and ZZ u; = 1.

We introduce here a concept that we call a responsive lottery.

Definition 1. Given a set of alternatives Ai,..., A, and a single player, a
responsive lottery is a mechanism that operates as follows:

1. The player provides a report X = (x1,...,2,), where X € R™.

2. Using a function f from R™ to R™, which is called the lottery rule, one
computes a probability vector f(X) = P = (p1,...,Pn), with p; > 0 and
ZZ‘ p; = 1.

3. A lottery is held and alternative A; wins with probability p;.

The lottery is responsive in the sense that the corresponding probabilities are
not given in advance, but rather determined in response to the report of the
player. The notion of an alternative winning the lottery should be aligned with
what the utility function of the player refers to. For example, if the alternatives
are the choice of seat in a certain flight (say, a window seat, an aisle seat, or
a middle seat) and the utility function refers to the value the player associates
with sitting in such a seat, then following the lottery the player should be seated
in a seat corresponding to the winning alternative.

Given a responsive lottery and a utility vector U for the player, we say that
the report X of the player is honest if X = U. Note that since utility functions
are defined only up to affine transformations, we assume here that both X and
U are given in the same canonical form (say, unit-sum). We say that the report
X of the player is rational if X is such that f(X)U = > p,u; is maximized.
Namely, the player chooses a report that maximizes his expected payoff.

Definition 2. A lottery rule for a responsive lottery is truthful dominant if it
has the property that for every utility function of the player, the honest report
is rational, and every rational report is honest (or equivalently, given the first
condition, the second condition is that the rational report is unique).

The truthful dominance property can be seen to combine three properties.

1. Rational invertibility. For every report X there is at most one utility function
U for which X is a rational report.

2. Rational uniqueness. For every utility function U, there is a unique rational
report X.

3. Incentive compatibility. For every utility function U, the report X = U is
rational.

Observe that rational invertibility and rational uniqueness are properties of the
range of the lottery rule. Given a lottery rule f that is rational invertible, ob-
taining a truthful dominant lottery out of it involves only appending in front of
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it an appropriate permutation mapping 7, that maps a report X to the report
Y = m(X) such that Z = f(Y) maximize ZX. By rational invertibility, this now
implies that given a utility function U, the unique rational report is X = U.
This idea is similar to the revelation principle in mechanism design (see [5], for
example). Note on the other hand that given a lottery rule that is incentive
compatible, there does not seem to be a straightforward way to turn it into a
truthful dominant rule. For example, the lottery rule that assigns p; = 1 for the
index ¢ for which z; is largest is incentive compatible, but there are many ratio-
nal reports that give out no information beyond which is the preferred altern!
ative for the player. Truthful dominance requires much more — that the rational
report reveals the whole utility function.

A responsive lottery with a truthful dominant lottery rule may be viewed as a
mechanism for elicitation of the utility function of the player. Recall that the work
of Von-Neumann and Morgenstern already implies that utility functions can be
inferred by observing preferences over lotteries. However, the procedure implicit
in [7] involves a (potentially infinite) sequence of comparisons between pairs of
lotteries (or a comparison among infinitely many lotteries, which is not feasible in
practice). The mere fact that lottery comparisons are performed more than once
is problematic for elicitation of utility functions. If the winning alternative is not
actually given to the player after each lottery, the player might not have incentives
to report the truth. And if the winning alternative is given to the player after each
lottery (assuming that this can be practically done), then the issue of complemen-
tarities among the alternatives might distort the original utility functi! on of the
player. We circumvent these difficulties by having only a single lottery. The aspect
of this lottery that allows the elicitation of the utility function (if the player is ra-
tional) is its responsive nature. In a sense, the player is choosing among infinitely
many lotteries. The rational invertibility property implies that the choice of the
player allows one to infer his utility function (assuming that the player is ratio-
nal). The incentive compatibility property makes it easy for the rational player to
choose one lottery out of the infinite set of lotteries.

We assume infinite precision in the values of the utility function, in the reports
and in the probabilities assigned by the lottery rule to the alternatives. Namely,
they are real numbers. Employing our lottery rules with finite precision will
obviously introduce rounding errors. We ignore this issue in this paper.

1.1 Related Work

This manuscript refers only to utility functions as defined by Von-Neumann and
Morgenstern [7]. It may be interesting to extend this work (if possible) to other
notions of utility function (for the need for other notions, see for example [5]
or [4]), but this is beyond the scope of the current work.

As far as we know, our notion of truthful dominant responsive lotteries is new.
However, it is related to some other mechanisms for eliciting information from
players.

Strictly proper scoring rules provide a mechanism for eliciting the belief of
a player regarding the probabilities of future events. This is done by giving
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monetary rewards that depend on the predictions of the player, and on the actual
realization of the future events. See for example [6], [9], [1] and [3]. Our notion of
truthful dominant lottery rules is related to the notion of strictly proper scoring
rules for categorical variables. There is no immediate equivalence between these
two concepts, but there are certain algebraic transformations between them.
Moreover, there are geometric characterizations of scoring rules in a spirit similar
to that of our geometric approach of Section[2l In particular, our spherical lottery
rule is based on a high dimensional sphere, and so is the spherical scoring rule
(though these are two different spheres).

VCG mechanisms are a method for eliciting the true value that a bidder has
for items that are sold in an auction. The incentives are built into the monetary
payments that the bidder makes if he wins the item.

Due to lack of space, most details on the relation between scoring rules, VCG
mechanisms and responsive lotteries are deferred to the full version of this paper.

1.2 Our Results

We view the introduction of the concept of truthful dominant responsive lotteries
as one of the contributions of this work. Our main results are as follows:

1. We present a geometric approach for designing truthful dominant responsive
lotteries, and use it to design what we call the spherical lottery rule. This
lottery rule is continuous — a small change in the reports results in a small
change in the probabilities of the alternatives. See Section

2. For three alternatives we present an algebraic approach for designing truthful
dominant lottery rules. These rules are continuous. See Section [3l

3. We present methodologies for transforming any truthful dominant lottery
rule over three alternatives to a truthful dominant lottery rule over n > 3
alternatives. The resulting lottery rule is not continuous. See Section 3.1l

Additional results discussed in the full version of this paper include:

1. We show a transformation from bounded proper scoring rules for n events to
truthful dominant lottery rules for n alternatives. The resulting lottery rule
is not continuous. The transformation does not apply if the scoring rule is
unbounded (such as the logarithmic score).

2. We show how the VCG mechanism (which involves money and multiple
agents) can be used to design truthful dominant lottery rules (that involves
only one player and no money). Also here, the resulting lottery rules are not
continuous.

3. We show a transformation from truthful dominant lottery rules for n + 2
alternatives to proper scoring rules for n events. By way of example, we use
this transformation to derive a well known proper scoring rule, the quadratic
score. We also show a transformation from truthful dominant lottery rules
for n 4+ 1 alternatives to proper scoring rules for n events. Combining this
with item (5) implies a methodology for deriving strictly proper scoring rules
from the VCG mechanism.
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1.3 Some Remarks

In our lotteries exactly one alternative wins. Our lottery mechanisms do not
assume that if no alternative wins then the player gets 0 utility. If we wish to
encompass situations in which valid outcomes include the possibility that no
alternative wins, or that more than one alternative wins, the lottery mechanism
needs to add these possible outcomes as additional alternatives.

The way of providing incentives to the player is by the choice of the winning
alternative. There is no transfer of money involved in our mechanisms. Money
can be introduced into our mechanisms by specifying alternatives that involve
receiving or paying money.

The incentives in a truthful dominant lottery rule only refer to reporting the
exact true utility function. In our mechanisms, there will also be some correlation
between how close a report is to the true utility function and the expected value
of the report. However, we make no formal claims regarding the nature of this
correlation, and do not exclude the possibility that among two different reports,
the one “further away” from the true utility function (according to some metric
to be chosen by the reader) results in higher expected payoffs.

Some of the lottery rules that we design are continuous — a small change
in the reports results in a small change in the probabilities of the alternatives.
We view continuity as a desirable property for lottery rules, if one wishes them
to be used in practice. Discontinuity of the lottery rule might have negative
psychological effects on players who are not sure about their utility functions.
They might spend too much time deliberating among reports that are almost
identical but that lead to very different probability vectors. We note that for all
our lottery rules, even the discontinuous ones, the value of their expected payoff
is continuous (even though the probability vector might not be continuous),
provided that the reports are honest.

An important aspect of a lottery mechanism is its economic efficiency. Namely,
we want the winning alternative to be the one that is actually preferred by the
player. For more than two alternatives, there are no economically efficient lottery
rules that are truthful dominant. However, we remark that there are truthful
dominant lottery rules that achieve almost perfect economic efficiency, though
we do not advocate using them (see Section H).

Our lottery rules provide ex-ante incentives to reveal the true utility function.
However, this does not exclude the possibility that the player will experience
ex-post regret. This issue too will be discussed in Section [l

1.4 Ordinal Utilities

Though our work is concerned with cardinal utilities, it may be instructive to
consider first the case of ordinal utilities. In this case a responsive lottery is
truthful dominant if the unique optimal report for the player is to report the
alternatives in his order of preference (and specify ties, if there are any).

If n = 1, the problem is not interesting. The winning alternative is determined
regardless of what the voter reports. If n = 2, the voter may report his preferred
alternative, and the winning alternative is the reported alternative. If n > 3,
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there is no deterministic lottery with the rational uniqueness property. There are
n! different ranking orders (in fact more, if one allows ties), and only n possible
winners. For any deterministic mechanism with n > 3, there are different orders
that result in the same winner. Even if with respect to both orders reporting the
truth gives the best payoff to the player, there is no incentive to the player in
distinguishing between these two orders in the report.

This motivates considering randomized mechanisms (lotteries). Given a report
that ranks the alternatives from 1 to n, we may let the jth alternative win with

(n

probability (nil)(_nle) (or any other probability distribution that decreases with
rank). If the player possesses a complete order over the alternatives, then the
dominant strategy for the player is to report his true ranking.

Note however what happens if the player views two of the alternatives as
being equivalent (a tie). Then asking the player to report a total order (with no
ties) forces the player not to be truthful. Hence we should allow the player to
report a tie among some alternatives. It is natural in this case to redistribute
the probability of winning equally among the tied alternatives. Note however
that by now we lost both the rational uniqueness property and the rational
invertibility property. In case of a tie in the ranking, reporting a tie is not the
unique best strategy. Reporting an arbitrary order among the tied alternatives
gives the same expected payoff to the player as reporting a tie. This illustrates
part of the challenges in designing truthful dominant mechanisms.

In this work we shall be interested not only in learning ordinal utilities, but
cardinal utilities. Hence we wish to learn more than just the ranking, but we also
have greater control of the rewards. The player can be incentivized not only by
the choice of order among winning alternatives (which alternatives have higher
probability of winning then others), but also by the choice of the actual values
of these probabilities.

2 A Geometric View of Truthful Dominant Lottery Rules

We present here a geometric view of truthful dominant lottery rules. We use it to
design what we call the spherical lottery rule (which shares some common prin-
ciples with the spherical scoring rule). More generally, the approach presented
here leads to a geometric characterization of a wide class of truthful dominant
lottery rules.

We shall use the following notation. The number of alternatives is n, the util-
ity vector of the player is U = (uq, ..., u,), the report vector is X = (z1,...,z,),
and the probability vector is P = (p1,...,pn), taken from an infinite set P of
feasible probability vectors (P is the range of f for the lottery rule). Observe
that all vectors P € P are nonnegative and lie on the hyperplane Y p; = 1. Let
1= \/ln (1,...,1) denote the unit vector in the direction of the n-dimensional all 1

vector. Given an arbitrary vector Y, it can be decomposed into Y = ay 1+8y Y1,
where Y+ is a unit vector orthogonal to 1, ay = (Y, 1) and By = (Y, Y1). We
assume w.l.o.g. that the sign of Y+ is chosen so that 3y > 0. Observe that for
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all P € P we have that ap = \/1n. Given a utility function U = ayl + ByU~+
and a probability vector P = \/1ni + Bp Pt for the responsive lottery, the payoff

to the player is (U, P) = ay/v/n + BuBp(UL, P1). The rational report X for
the player is the one for which P = f(X) maximizes (U, P), and hence the
maximum expected payoff attainable by the player is maxpep{(U, P)}. Observe
that the optimal choice of P € P is the one maximizing Bp (U, P+) (since By
is positive). The optimal P is preserved under positive affine transformations to
U, because these transformations only change oy and Sy (without flipping its
sign) but not U~.

We now describe a methodology for deriving truthful dominant lottery rules.
(Presumably this methodology characterizes all continuous truthful dominant
rules. Proving this appears to be an exercise in formalities that does not add
interesting insights, and hence will not be pursued here.) A compact convex body
K will be called nice if (1) for every point z on its boundary 9K there is a unique
hyperplane H such that H N K = z, and (2) for every two points on 0K, the
line joining them lies entirely within K. For example, balls, ellipsoids and eggs
are nice convex bodies, whereas polyhedrons are not. For nice convex bodies,
for every vector v, there is a unique value ¢(v) such that the closed halfspace
H(v) = {z|{xz,v) <t} (whose defining hyperplane is orthogonal to v) contains
K and 0H N 0K # (). Moreover, 9H and OK interset in exactly one point.

Consider the (n — 1)-dimensional subspace of R™ defined by the hyperplane
> p; = 1. Within its nonnegative orthant (satisfying p; > 0 for every i) consider
an arbitrary nice convex body K. Let P (the set of feasible probability vectors for
a responsive lottery) be precisely K. Given a report X, consider the halfspace
H(X") as described above, and choose P = f(X) to be the unique point z € 9K
intersecting OH (X*). This maximizes the projection of P on X+, and hence
maximizes (P, X). For this choice of lottery rule f, given a utility vector U,
reporting X = U maximizes the expected payoff. Moreover, for any report X #
U, the probability vector P = f(X) will be one that is strictly inferior to f(U)
in terms of the expected payoff.

It is natural to require (though not necessary) that the nice convex body K
has geometric symmetries that reflect the intention that a-priori, all alternatives
are treated symmetrically. In particular, in this case the center of mass of K
will be at \/1”1. Of all convex bodies, the most symmetric one is the ball, and its
boundary is a sphere. Our spherical lottery rule uses a sphere centered at \/1n 1. To
maximize the the variability in expected payoffs, this sphere has maximum possi-
ble radius. This radius is governed by the need to stay in the nonnegative orthant.
A closest point P on the boundary of this orthant to the center of the sphere is
(0,1/(n—1),...,1/(n—1)) for which P+ = (-1/n,1/n(n—1),...,1/n(n—1)).
Hence the radius of the sphere is 1/ \/ n(n — 1) (implying among other things
that no entry in P is larger than 2/n). Observe that using the spherical lottery
rule, given a report X! = ax1+ Bx X", the probability vector P is derived sim-
ply by projecting X+ on the sphere (along the line connecting X to the center of
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the sphere). We can assume that X+ # 0, by the assumption that the player is
not indifferent. Hence

1 1

_ 14 1 1 1
Vn \/n(n—l)

N X+
n n)+ Vn(n—1)

f(X) Xt =

One readily observes that P (= f(X)) is an affine transformation of the report
X. Hence the spherical lottery rule can be viewed as a normalization of the
utility vector U with ay = 1/y/n and By = 1/y/n(n — 1), and following this
normalization one simply takes P = U.

Theorem 1. The spherical lottery rule described above is truthful dominant.

The proof of Theorem [l is implicit in the discussion preceding it. But let us
sketch here yet another proof. Observe that for the spherical lottery rule, all
vectors in P have the same norm 1/y/n — 1. Hence the inner product (U, P) is
maximized by the vector in P that minimizes the angle with U. This vector is
precisely the projection of U on the sphere, and f(X) is this projection if and
only X is a positive affine transformation of U.

3 Three Alternatives

In this section we design truthful dominant responsive lottery mechanisms for
three alternatives. We assume that the utility function of the player is normalized
to be unit range 0 = u; < ug < ug = 1, and so are his reports.

If all reports are identical, then we set p; = 1/3 for every alternative. If the
reports are not identical, let the reports (after normalization) be 0 = 1 < 29 <
x3 = 1. For simplicity of notation, let x = z5.

Theorem 2. Any responsive lottery over three alternatives satisfying all the
following conditions is truthful dominant.

1. p; >0 forie{1,2,3}.

2. > pi=1.

3. p1 < p2 < p3, with p1(z) = p2(z) iff © =0 and p2(x) = ps(z) iff z = 1.
4. p2 is strictly increasing in x and p1 and ps3 are strictly decreasing in x.
5. The derivatives satisfy xph(x) + p5(x) = 0 for every 0 < z < 1.

Proof. Conditions 1 and 2 are satisfied by every responsive lottery. Condition 3
ensures that in the optimal reports, the alternatives are ranked in their true
order of preference (satisfy the ordinal aspect of the utility function). Specifically,
uy < ug < ugz, with u; = ug iff z;1 = 9 and us = ug iff x5 = x3. Note that we
assume that the player is not indifferent, and hence u; < us. After normalization
to unit range, we have 0 = u; < us < uz = 1. For simplicity of notation, let
u = uz. We need to prove that the optimal report = is x = w.

The payoff to the voter is v = uip1(x) + uap2(x) + usps(z) = upa(z) + ps(x).
The derivative of v with respect to z is up)(z)+p5(x) which equals 0 if x = u, by
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Condition 5, and only if = u, by Condition 4 that implies that the derivatives
are nonzero. This is the unique extremum for v. Condition 4 implies that this is
a maximum rather than a minimum. g

We remark that replacing condition 5 in Theorem [2] by the weaker condition
that —p5(x)/ph(x) is strictly increasing in z, from 0 to 1, will result in a rational
invertible mechanism, though not necessarily incentive compatible.

Theorem [2 allows for many truthful dominant mechanisms. It is natural to
limit the possible choices by normalizing the rewards such that there is some
report for which p; = 0. It is easy to see that in conjunction with Theorem
this amounts to postulating that when 2 = 1 we have p; = 0 and p2 = p3 = 1/2.
By way of example, we present two mechanisms that satisfy Theorem ] and
this additional requirement. They are named after the largest degree in the
polynomials that are involved.

1—2z+x2
6

— The 3-alternative quadratic lottery rule: p; = y P2 = ST p3 =
4—2?
o . ; ; 1-3z>+22° 1+32° 6—22°
— The 3-alternative cubic lottery rule: p; = *~ x8+ T py = ‘*‘8” b3 = """

3.1 Extension to More Than Three Alternatives

Here we present two approaches for extending truthful dominant responsive lot-
teries over three alternatives to truthful dominant responsive lotteries with n > 3
alternatives.

The first of these approaches is as follows. Given the report of the player,
pick uniformly at random three alternatives. If all three have the same reported
utility, let each one of them win with probability 1/3. Otherwise, normalize the
part of the report of the player that refers to these three alternatives so that
it becomes unit sum, and apply a 3-alternative truthful dominant responsive
lottery on these three alternatives. It is not hard to see that this gives a truthful
dominant responsive lottery.

In the full version of this paper we present another approach in more detail.
When there are n + 2 alternatives Ao, ..., A,+1 and the reports are 0 = z¢ <
1 <... <z, <zpyr = 1, it will give the ((n 4+ 2)-alternative) quadratic lottery
rule for Which the probabilities are derived from the following expressions after
dividing by n? + 3n + 2:

Dbo :n_zl 12331'1'22 1(37z) ;
p; =n+2x; for 1 <i<mn;
Prnt1=2n+2-3 1" 1(:@)2.

4 Convex Combinations

In general, given one truthful dominant mechanism, one can generate others
by the method of taking conver combinations. We say that a mechanism is a
convex combination of two mechanisms M; and Ms if there is some probability
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0 < ¢ < 1 such that with probability ¢ the mechanism employs M; and with
probability 1 — q it employs M. Equivalently, given the reports, the probability
of a given alternative to win is the convex combination (with weights ¢ and 1—gq)
of the respective probabilities in M7 and Ms. The following proposition is self
evident.

Proposition 1. A convex combination of a truthful dominant responsive lottery
with an incentive compatible responsive lottery is truthful dominant.

As an example for the use of Proposition [I] the following responsive lottery is
truthful dominant. Choose the alterative with highest reported value as a winner
with probability ¢, and with the remaining probability employ the spherical
lottery rule. Observe that as ¢ approaches 1, this voting rule converges to optimal
economic efficiency, but at the cost of weakening the incentives for the player to
distinguish in his report between the less desirable alternatives.

As another example, consider the issue of ex-post regret involved in responsive
lotteries. Even though reporting the true utility function is optimal for the player
ex-ante, the player may suffer ex-post regret after the lottery is held. For the
3-player quadratic lottery rule, given any report other than (0,1,1) the least
desirable alternative might win the lottery, and then the player may regret not
having reported (0,1,1) which would have avoided this possibility. To prevent
this ex-post regret, one may take a convex combination of the quadratic rule
with the uniform rule (each alternative equally likely to win), which ensures
that regardless of the report of the player, the least desirable alternative has
some probability of winning. This decrease in ex-post regret comes at the cost
of economic efficiency (among other things).

The availability of several (infinitely many) mechanisms that are truthful
dominant allows one to introduce some additional objective function, and select
the mechanism that optimizes this additional property. For example, among all
truthful dominant mechanisms one may want to select the mechanism minimiz-
ing the maximum probability with which the least desirable alternative wins.
(This probability is 1/6 for the 3-player quadratic lottery rule.) However, for
this particular objective function, there is no truthful dominant mechanism that
minimizes it. For every truthful dominant mechanism, the value of this objective
function is strictly positive. But then it can be lowered by taking a convex com-
bination with an incentive compatible mechanism. This relates to the fact that
the notion of truthful dominant mechanisms is defined using strict inequalities,
and its closure is the incentive compatible mechanisms.

5 Applications

The notion of truthful dominant responsive lotteries is a mathematical construct
that may have practical applications. We believe that in choosing a truthful dom-
inant lottery rule for a practical application, one would need to strike a careful
balance among several considerations (such as ex-post regret, economic efficiency
and the strength of the incentives, see Section ), and this will be possible only if
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the number of alternatives is fairly small (four alternatives appears to be a good
number). Also, we believe that a carefully designed user interface may help the
players understand the concept of responsive lotteries and the effect of the choice
of report on the expected reward. For example, one may imagine an interface
which includes sliding bar controls for each alternative, and a screen showing a
pie chart for the relative probability of each alternative winning. As the player
moves the sliding bars to indicate to which extent he values each alternativ! e,
the pie chart changes dynamically. Having such a user interface in mind is one of
the reasons why we wish lottery rules to be continuous (and among our lottery
rules for more than three alternative, only the spherical one is continuous).

Though the purpose of this manuscript is mainly to develop the mathematical
theory of truthful dominant responsive lotteries, we briefly and informally discuss
some potential applications. A formal treatment of these and other potential
applications will hopefully be undertaken elsewhere. In all cases below we assume
that the winning alternative can actually be given to the player after the lottery
is held (or at least, that the player believes that this is what will happen).

Experimental Psychology. If one wishes to gain a quantitative understanding
of preferences of people over a set of alternatives, one may in principle use truth-
ful dominant responsive lotteries. For example, a psychophysical experiment may
study the relative sensation of pleasure or pain associated with various temper-
atures, and the alternatives may be those of putting one’s hand in containers of
water of various (possibly unpleasant but not harmful) temperatures. One may
not want to repeat such an experiment many times with the same subject, due to
effects of adaptation, and responsive lotteries may serve as a way of eliciting more
information in fewer experiments. As always in experimental settings, caution is
needed in performing experiments and in interpreting the results (which at best
indicate what were the true preferences of the subject under the conditions of
the experiment).

Market Research. A company may use responsive lotteries to gain under-
standing of the preferences of its potential costumers. For example, an airline
company may offer some passengers on a flight a responsive lottery over the
choice of seat (say, a window seat, an aisle seat, or a middle seat) so as to get a
sense of what the true preferences of costumers are.

Multiple-agent Mechanism Design. In many settings one is interested in
designing a mechanism in which agents report their utilities, and then some
global decision is taken so as to optimize some objective function that depends on
the true utilities of the agents. The difficulty is often in incentivizing the agents
to reveal their true utilities. Mechanisms based on statistical approaches often
take a small sample of agents, ask them for their utility function, and use this
output so as to reach a global decision that effects the agents not in the sample.
In such a setting (and assuming no externalities), the agents in the sample
have no incentive to not tell the truth, and hence are sometimes assumed to
be truthful. See for example [2] for the use of a statistical approach in the design
of combinatorial auctions. If this statistical approach is combined with truthful
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dominant responsive lotteries then there is more justification in assuming that
the agents in t! he sample are truthful. Let us provide a hypothetical example.

Suppose a company wants to reward each one of its employees with a $100
gift certificate to some store chain. There are two store chains that are being
considered (say one specializes in electronics, one in sports). However, (almost)
all gift certificates should be to the same store chain, as then the company gets a
big discount from the store chain. How can the company decide among the store
chains? One option is to sample at random a small number of employees and
offer each one of them a truthful dominant responsive lottery over four alterna-
tives, where two of them are the gift certificates to the two chains, and the other
two alternatives are $50 and $100 in cash (for calibration). Each employee in
the sample actually does get the alternative that wins the respective lottery. All
remaining employees get gift certificates to just one store chain, and this store
chain is determined based on the information elicited by the responsive lotteries
(and on the objective of the company, which may be for example to maximize
welfare). Arguably, employees in the sample will actually reveal their true refer-
ences. If the total number of employees is large, then with high probability this
mechanism leads to almost optimal economic efficiency: the sample size may be
chosen to be large enough to be representative, yet small enough to make the
marginal inefficiencies small (inefficiencies resulting from giving sampled employ-
ees more expensive rewards, and from occasionally giving sampled employees less
favorable rewards, due to the random nature of responsive lotteries).
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Abstract. We consider network congestion games in which a finite num-
ber of non-cooperative users select paths. The aim is to mitigate the
inefficiency caused by the selfish users by introducing taxes on the net-
work edges. A tax vector is strongly (weakly)-optimal if all (at least one
of) the equilibria in the resulting game minimize(s) the total latency.
The issue of designing optimal tax vectors for selfish routing games has
been studied extensively in the literature. We study for the first time
taxation for networks with atomic users which have unsplittable traffic
demands and are heterogeneous, i.e., have different sensitivities to taxes.
On the positive side, we show the existence of weakly-optimal taxes for
single-source network games. On the negative side, we show that the
cases of homogeneous and heterogeneous users differ sharply as far as
the existence of strongly-optimal taxes is concerned: there are parallel-
link games with linear latencies and heterogeneous users that do not
admit strongly-optimal taxes.

1 Introduction

We consider atomic network congestion games with unsplittable traffic demands,
where a finite number of non-cooperative users select each a path from a specified
source to a sink in an underlying network. The users experience a load-dependent
latency on their chosen paths. Being selfish, they want to choose a minimum-
latency path. The solution concept we study is that of a pure Nash equilibrium,
where no user has an incentive to unilaterally switch to a different path. It is
well-known that this type of game always has at least one pure Nash equilibrium
[13].
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The users induce a social cost to the system, which in this work we define
as the total latency. Selfish behavior leads typically to suboptimal social cost at
equilibrium. A long series of papers has studied the inefficiency of Nash equilibria
for congestion games as quantified by the price of anarchy. See the surveys [T0/8]
for an introduction to the very rich literature on the topic.

In order to offset the inefficiency of uncoordinated users, a common approach
is to introduce fixed tazes (or tolls) on the edges of the network. The users will
experience the taxes as part of their individual disutility, in addition to their
latency. The aim is to design an optimal tax vector steering the selfish users to
an equilibrium with desirable characteristics; in our case the desired target is
minimum total latency.

Related Work. In the non-atomic setting, where there is an infinite number
of users and each user controls an infinitesimal amount of traffic demand, the
problem of designing optimal tax vectors has been studied extensively. A classic
result going all the way back to Pigou [12] states that marginal cost taxes induce
the optimal traffic pattern for homogeneous users [2]. A significant volume of re-
cent work on optimal taxes for non-atomic congestion games considers the more
intriguing and realistic case of heterogeneous users, which may have different
valuations of time (latency) in terms of money (taxes). Yang and Huang [17]
established the existence of optimal taxes for non-atomic asymmetric network
congestion game with heterogeneous users. Subsequently, their result was re-
discovered by Fleischer, Jain, and Mahdian [5], and Karakostas and Kolliopoulos
[9). Previously the the single-source special case had been investigated by Cole,
Dodis, and Roughgarden [4]. The existence of optimal taxes for non-atomic con-
gestion games with heterogeneous users follows from Linear Programming du-
ality, and thus an optimal tax vector can be computed efficiently by solving a
linear program.

For non-atomic games, under mild assumptions on the latency functions the
edge flow at equilibrium is unique. Hence the taxes of [2/[4U5J9I17] induce the opti-
mal solution as the unique edge flow of the equilibria of the game with taxes. On
the other hand, atomic congestion games, even with splittable traffic, may ad-
mit many different Nash equilibria, possibly with different edge flows. Therefore,
when considering atomic games, one has to distinguish between weakly-optimal
tax vectors, for which at least one Nash equilibrium of the game with taxes
minimizes the total latency, and strongly-optimal tax vectors, for which all Nash
equilibria of the game with taxes minimize the total latency.

For atomic congestion games with splittable traffic and heterogeneous players,
Swamy [I4] proved that weakly-optimal tax vectors exist and can be computed
efficiently by solving a convex program. As for atomic congestion games with
unsplittable traffic, the existence and efficient computation of optimal taxes has
been studied only in the restricted setting of homogeneous users. Caragiannis,
Kaklamanis, and Kanellopoulos [3] considered atomic games with linear latency
functions and homogeneous users, and investigated how much taxes can improve

L' A network congestion game is symmetric if all users share the same source and sink
and, in the case of atomic games, have the same traffic demand.
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the price of anarchy. On the negative side, they established that if the users either
do not share the same source and sink or have different traffic demands, then
strongly-optimal taxes may not exist. In particular, Caragiannis et al. presented
a non-symmetric game for which any tax vector induces a Nash equilibrium of
total latency at least 6/5 times the optimum, and a parallel-link game with user-
specific traffic demands for which any tax vector induces an equilibrium of total
latency at least 9/8 times the optimum. On the positive side, they presented an
efficient construction of strongly-optimal taxes for parallel-link games with linear
latencies and unit-demand users. Subsequently, Fotakis and Spirakis [7] proved
that weakly-optimal taxes exist and can be computed efficiently for atomic sym-
metric network congestion games, and that such taxes are strongly-optimal if
the network is series-parallel.

Contribution. Despite the considerable interest in optimal taxes for non-atomic
games with heterogeneous users and for atomic games with homogeneous users,
it is unknown whether weakly- or strongly-optimal taxes exist for atomic network
games with heterogeneous users. The case of heterogeneous users is substantially
different, and more complicated, than that of homogeneous users, since the game
with taxes is a congestion game with player-specific additive constants [11].

In this work, we study for the first time the existence of optimal taxes for
atomic network games with heterogeneous users, and present two complemen-
tary and essentially best-possible results. On the positive side, we prove the
existence of weakly-optimal taxes in single-source network congestion games
with heterogeneous users (cf. Section B]). To establish this result, we follow the
proof technique of [9], and show that any acyclic traffic pattern is induced as a
Nash equilibrium of the game with the taxes calculated as in [0, Theorem 1].
Our result is significantly stronger that any previously known positive result
on weakly-optimal taxes for atomic congestion games. In particular, our result
generalizes previous results of [37] not only in the direction of considering het-
erogeneous users, but also in the direction of considering non-symmetric games
on single-source multiple-sink networks.

On the negative side, we show that users’ heterogeneity precludes the exis-
tence of strongly-optimal taxes even on the simplest topology of parallel-link
networks. More specifically, we present a parallel-link game with linear latency
functions and heterogeneous users for which any tax vector induces an equilib-
rium with total latency at least 28/27 times the optimum. Hence, we establish
a dichotomy between the general case of heterogeneous users and the special
case of homogeneous ones, as far as the existence of strongly-optimal taxes is
concerned.

To the best of our knowledge, this is the first time in congestion games that a
dichotomy is established (i) between the cases of homogeneous and heterogeneous
users with respect to the existence of optimal taxes, and (ii) between the cases
of non-atomic and atomic users on parallel links with respect to the efficiency of
a price-of-anarchy-reducing mechanism. For the latter, we note that the worst-
case price of anarchy for atomic games on parallel links is the same as the
worst-case price of anarchy for non-atomic congestion games (see e.g. [15]6]), and
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that the two classes of congestion games have similar behaviour with respect to
their worst-case price of anarchy under some common price-of-anarchy-reducing
mechanisms, such as Stackelberg strategies (see e.g. the bounds in [I4/6] on the
efficiency of Stackelberg strategy LLF for non-atomic and atomic parallel-link
games) and taxes for homogeneous users.

2 Preliminaries

We consider a network congestion game G(I) defined on a directed graph G =
(V, E) with a nondecreasing latency function . : IRy — IR on each edge e € E.
A set N of users is given, each with an amount of traffic (flow) to be routed
from an origin node to a destination node of G. The users are non-atomic if
each has infinitesimal demand and atomic otherwise. The game is single-source
(resp. single-sink) if all users share the same origin (resp. destination) node, and
symmetric if all users share the same origin-destination pair and have the same
traffic demand.

Each user « has a positive taz-sensitivity factor a(a) > 0. We will assume
that the tax-sensitivity factors for all users come from a finite set of possible
positive values. We call the users heterogeneous if there are at least two distinct
sensitivity values and homogeneous otherwise. Unless we declare them explicitly
to be heterogeneous, the users are assumed to be homogeneous. We can bunch
together into a single user class all the users with the same origin-destination pair
and with the same tax-sensitivity factor; let k£ be the number of different such
classes. We denote by d;, P;,a(i) the total traffic demand of class i, the paths
that can be used by class ¢, and the tax-sensitivity of class ¢, for alli=1,... )k
respectively. Thus each user in class i selects a path in P; and routes her traffic
though it. We set P = U;—1,... xP; the union of paths used by all classes. In the
following, we assume that the game is single-source and the users are atomic and
have unit demands, unless it is stated otherwise.

A configuration f is a tuple f = (f7)jen consisting of a path f7 from the
corresponding origin node to the corresponding destination node for each user
j. Given a configuration f, we let fp denote the total traffic routed through any
path P € P, and let f. = ) . p fp denote the total traffic routed through any
edge e € E. Given a configuration f, we refer to the traffic vector (fe)cecr as
the (edge-)flow induced by f. We note that different configurations may induce
the same edge-flow. We say that a flow f is feasible (with respect to an atomic
network congestion game G(1)) if there is a configuration f of G(I) which routes
traffic f. through any edge e. We slightly abuse the notation by letting the
same symbol denote both a configuration and the feasible flow induced by it. A
configuration (or the corresponding flow) f is acyclic if for any cycle C' in the
underlying network G, there is an edge e € C with f. = 0.

The latency function l. : Ry — IRy assigned to each edge e gives the latency
experienced by any user on e due to the congestion caused by the traffic routed
through e. We assume that the functions [, are nondecreasing, and that l.(f.) >
0 when f. > 0, i.e., the function [, is positive.
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For any configuration f and path P € P, the latency of P is Ip(f) =
>eeple(fe)- The individual cost of a user j in a configuration f is ¢/(f) =
Zeefj le(fe), ie., the latency on her path in f. A configuration f is a pure
Nash equilibrium of G(1) if no user can improve her individual cost by uni-
laterally deviating from f. Formally, for a tuple © = (z1,...,2,), let z_; =
(T15+ e Tim1, Tig1s - @) and (T4, @) = (T, .+, Tim1, 25, Tig1, - - -, Tn). Con-
figuration f is a pure Nash equilibrium if ¢/(f) < ¢/(f_;, P) for any user j in
any class ¢ and any path P € P;.

A flow f satisfies the Wardrop principle [16] if for each class i, the latency on
all paths in P; used by f is no greater than the latency on any other path in P;.
A non-atomic (atomic) Wardrop equilibrium is a (feasible) flow f that satisfies
the Wardrop principle. We distinguish between atomic and non-atomic Wardrop
equilibria, depending on whether the users are atomic or not. An atomic Wardrop
equilibrium is also a pure Nash equilibrium, while the converse may not be true.

If every edge is assigned a tax (also called toll) 8. > 0, the resulting game is
denoted as G(I + ). Given a configuration f in G(I + (), the individual cost of
a user j included in a class i is: ¢j(f) = 30 ¢ pi le(fe) + (i) Do c 1 Be-

Let f be a configuration that minimizes the total latency >, fele(fe) over
all configurations of G(I). Although in certain cases (e.g., when the functions
fele(fe) are convex) the flow f can be computed efficiently, for more general
latency functions it may be intractable to compute f . We will assume that f is
given to us off-line and that it induces a finite latency on every edge. A tax vector
0 weakly induces a feasible (non-atomic) flow f if f is a pure Nash (non-atomic
Wardrop) equilibrium of G(I + ). A tax vector 3 is called weakly-optimal if it
weakly induces a pure Nash equilibrium f whose total latency ) ., fele(fe) is
equal to the optimal total latency >, fule ( fe) A tax vector (3 is called strongly-
optimal, if every pure Nash equilibrium it induces in G(I + ) has total latency
equal to the optimal total latency . fele(fe).

Let F(x) = (Fi(x), Fa(z), ..., F,(x)) be a vector-valued function from the
n-dimensional space R™ into itself. Then the nonlinear complementarity problem
of mathematical programming is to find a vector x that satisfies the following
system:

3 Existence of Weakly-Optimal Taxes

In this section we consider networks with a single-source s and heterogeneous
users. Each user class ¢ consists of a single user who wishes to route d; units of
traffic through a single s — ¢; path. We show that if d; = 1 (or more generally, if
d; are arbitrary and the optimal configuration is acyclic), there exists a vector
of weakly-optimal taxes. In particular, we establish the existence of a tax vector
that weakly induces any acyclic flow f as an atomic Wardrop equilibrium. Since
single-source network congestion games with unit-demand users admit an acyclic
optimal flow f , this implies the existence of weakly optimal taxes for such games.
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The proof follows closely [9], where the existence of weakly-optimal taxes is
shown for the non-atomic case, and here we give a sketch with the new elements
added for our case. In [9], it is shown that, if we add to the network artificial
capacity constraints, f. < fe, Ve € FE, there is a tax-vector §* that induces
as a non-atomic Wardrop equilibrium a flow f* that satisfies demands d; and
respects the capacities. In particular, [9] shows that the following nonlinear com-
plementarity problem always has a solution (details omitted). Moreover, if f is
given offline, this solution can be computed in polynomial time.

fo(Tp(f) —u) =0 Vi, YP € P; (BIG CP)
Tp(f) >u; Vi, VP eP;
ul(z fp—di)zo Vi
PeP;
Y fpzdi Vi
PeP;

ﬂe(feffe)zo Ve e E
fo<f. YeeE
fP7ﬁ67u’i20 VP7€7i
Here the function Tp(f) is set to lp(f)/a(i) + > .cp Bt, VP € P;, Vi.

Lemma 1. Letf be an acyclic feasible flow for demands d;, and let (f*, 3*,u*)
be any solution of (BIG-CB). Then Y pcp. fp = di, Vi and fi = f, Ve € E.

Proof. The proof of the first part is essentially the same as the proof by
contradiction of Proposition 4.1 in [I] and is omitted.
Vector f* is a non-atomic flow, that satisfies the following set of constraints:

pr:dl Vi6{17...,]{)} (1)

PeP;
fe= > fp Ve€E (2)
PcP:ecP
fe < Je Vee E (3)
fP>0 VP eP (4)

Consider the network which consists only of the edges e of G with fe > 0.
Augment this network by adding a super-sink ¢ and an edge (¢;,t) from each
of the old sinks to ¢t. Call G 7 the resulting network. Extend f* to an s-t flow
in Gf by setting f(*t“t) = d;. Let (S,T) be any cut that separates s from t in
G ;. Since f is acyclic, it must be that Zeeé(s) fe= Zle d;. Because of (), it
must be that Zeeé(s) fr> Zle d; = Zeeé(s) fe. By the capacity constraints

@), we conclude that 2665(5) fi= 2665(5) fe, and in particular, that f* = f.
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for all edges e that cross the cut. The only edges of G on which f* might send
positive flow are the edges of G i Any such edge e belongs to at least one s-t
cut in G 7 By applying the previous argument to such a cut, it follows that

f&=/fe, Ye€ E. |

€

Then [J] establishes that we can use 3* as a tax vector to weakly induce f* as
a non-atomic Wardrop equilibrium in the original network without the capacity
constraints. This follows from the fact that we can use #* as a tax vector to
ensure that (f*,u*) is also a solution to the following complementarity problem:

(Tp(f) —wi)fp =0 Vi, VPP, (CP)
Tp(f)—u; >0 Vi, VP eP;

ul(z fp—di)zo Vi
PeP;

Z fp>d; Vi

PeP;
[iu>0

If the path latency functions are continuous and positive, Aashtiani and Mag-
nanti [I] show that the Wardrop equilibria of the game G(I+ ) can be described
as the solutions to ([CP)). T» above denotes the cost of a user that uses path P, fp
is the flow through path P, and w = (uq,...,ug) is the vector of shortest travel
times for the commodities. The first two equations model Wardrop’s principle
by requiring that for any origin-destination pair ¢, the travel cost for all paths
in P; with nonzero flow is the same and equal to u;. The remaining equations
ensure that the demands are met and that the variables are nonnegative.

The fact that for alle € E, f; = fe proves that the tax vector §* we compute
weakly induces as an equilibrium the atomic solution f as well. We have thus
shown the following theorem, which is the main result of this section.

Theorem 1. Let all atomic heterogeneous users share the same source, and let
f be any acyclic feasible flow. If for every edge e € E, I.() is a nondecreasing

positive function, then there is a tax vector § € RLEI such that, there is an atomic
Wardrop traffic equilibrium f for the game G(I + 3), where fo = fe, Ve € E.
Given f, B can be computed in polynomial time.

If the latency functions are strictly increasing, the uniqueness results from [I]
yield that f is the only Wardrop atomic equilibrium induced by the tax vector
of the theorem.

Single-source network congestion games with unit-demand users and nonde-
creasing latency functions admit an acyclic optimal flow f . Moreover, if for all
e € E, zl.(x) are convex, such an optimal flow can be computed in polyno-
mial time by a min-cost flow computation. Therefore, we obtain the following
corollary of Theorem [Tk
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Corollary 1. Let G(I) be an atomic network congestion with nondecreasing
latency functions and heterogeneous users, where all users share the same source
and have the same traffic demand. Then G(I) admits a weakly-optimal tax vec-
tor 8. Furthermore, if for all edges e, xl.(x) is convezr, B can be computed in
polynomial time.

Theorem [[] states that computing the weakly-optimal tax vector p for an acyclic
optimal flow f is not substantially harder than computing f if f can be com-
puted in polynomial time, # can also be computed in polynomial time. An
interesting question is whether computing the tax vector 3 of Theorem [ is
substantially easier than computing the corresponding acyclic optimal flow f .
The following theorem practically excludes this possibility. In particular, we
show that given the weakly-optimal tax vector 3 of Theorem [Il we can decide
in polynomial time whether the optimal total latency is bounded from above by
a given number. So the problem of computing the weakly-optimal tax vector
is at least as difficult as the problem of determining the optimal total latency.

Theorem 2. For atomic games with user-specific demands, if the optimal flow
f s not given, it is N P-hard to compute the taxes whose existence is established
by Theorem [l This holds even for parallel-link games with homogeneous users.

Proof. We employ a Turing reduction from PARTITION. We consider an instance
of the decision version of PARTITION, i.e., a set of integers {a1,...,a,} whose
total sum is 2B for some B > (. For every integer a;, we create a user with
demand a; and tax-sensitivity 1. Every partition of the users into two sets, one
with total sum B — T and the other with total sum B + T for some T > 0,
induces in the network with two parallel links and latency function I(z) = z, a
corresponding acyclic routing of the users whose total cost is

(B—T)*+ (B+T)*=2B%+ 27"

This quantity is minimized for 7" = 0, i.e., when the PARTITION instance is
a YES-instance. Assume now that you can compute in polynomial time the
taxes of Theorem [II Because the latency functions are strictly increasing, the
Wardrop equilibrium is unique in terms of edge flows [I]. Moreover, it is well-
known that the equilibrium solution f can be computed in polynomial time
by solving a convex quadratic mathematical program [2]. By Theorem [ on
each of the two parallel edges, the value of f will be equal to value of the
optimal unsplittable solution. Checking these values, we can determine whether
the PARTITION instance is a YES-instance. (]

Unfortunately, it is known that the taxes of Theorem [l are not in general
strongly-optimal. Note that for homogeneous users, our taxes are cost-balancing
in the sense of Fotakis and Spirakis [7]. They give an example of a symmet-
ric network congestion game, with homogeneous users, where the cost-balancing
taxes induce an a pure Nash equilibrium of total latency 1.13 times the opti-
mum. In the full version of the paper we give another such example where the
cost-balancing taxes induce a pure Nash equilibrium of total latency (1.2 — ¢)
times the optimum.
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4 Inexistence of Strongly-Optimal Taxes

We proceed to show that that atomic congestion games with heterogeneous users
may not admit strongly-optimal taxes, even for parallel-link games with linear
latencies and unit-demand users.

Theorem 3. There exists a parallel-link game with linear latencies and hetero-
geneous unit-demand users, for which any tax vector induces an equilibrium with
total latency at least 28 /27 times the optimal total latency.

Proof. We consider a game G(1) on 3 parallel links with latency functions Iy (z) =
7, lo(z) = 2z, and l3(x) = = + 1. There are 6 unit-demand users, 2 users with
tax-sensitivity 1 and 4 users with tax-sensitivity 1/2. The unique optimal flow
assigns a single user to link 1, 2 users to link 2, and 3 users to link 3, and achieves
a total latency of 27. Any other feasible flow has total latency at least 28. In the
following, we show that any weakly-optimal tax vector # induces an equilibrium
of total latency at least 28, and thus this game does not admit strongly-optimal
taxes. The proof proceeds by considering different cases depending on the 5
optimal allocations of heterogeneous users.

Case I: We consider an optimal flow that assigns a user with tax-sensitivity 1
to link 1, the other user with tax-sensitivity 1 and a user with tax-sensitivity 1/2
to link 2, and 3 users with tax-sensitivity 1/2 to link 3 (we denote such a con-
figuration as ((1), (1,1/2),(1/2,1/2,1/2))). Let 8 = (61, B2, B3) be any (weakly-
optimal) tax vector that induces the particular configuration as an equilibrium
of G(I + ). No user has an incentive to deviate from its assigned link; writing
down the corresponding inequalities, we obtain that 8 must satisfy the following:

1+61<B2<3+0 (5)
P2—1<f3 <440 (6)
2401 <B3<6+ 0 (7)

If 8 is strongly-optimal, configuration ((1,1),(1/2,1/2),(1/2,1/2)) is not an
equilibrium of G(I + (). Therefore at least one user in that configuration has
an incentive to deviate, and 3 must satisfy at least one of the following:

Bo <14 (8) Bs < B2 (11)
B3 <34 1 (9) 8+ 01 < B3 (12)
6+ 31 < [o (10) 6+ B2 < fs (13)

We observe that () contradicts (&), (I0) contradicts (&), (I2) contradicts (@),
and ([3) contradicts (B]). Hence, if 3 is strongly optimal, either 83 < 3 4 31 or
O3 < (B2 (ie. B3 must be “small”).
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Moreover, if 3 is strongly-optimal, ((),(1,1),(1/2,1/2,1/2,1/2)) is not an
equilibrium of G(I 4+ ), and 5 must satisfy at least one of the following:

3+ 61 < B2 (14) 4+ 51 < B3 (16)
B3 < B2 —2 (15) 24 B2 < B3 (17)

We observe that ([[4) contradicts (&) and (IH) contradicts (@]). Hence, if 5 is
strongly optimal, either O3 > 4 + 51 or 83 > 2 + (2 (ie. O3 must be “large”).

If B3 < 3+, neither B3 > 4+ 61 nor B3 > 2+ 35 is possible (note that 3+5; >
B3 > 2+ 2, which contradicts (B]) ). If 33 < 2, neither 33 > 24 (5 nor 83 > 4+0;
is possible (note that 82 > 5 > 4 + (31, which contradicts (&) ). Therefore, any
tax vector that induces optimal configuration ((1),(1,1/2),(1/2,1/2,1/2)) as
an equilibrium of G(I 4+ §) also induces either ((1,1),(1/2,1/2),(1/2,1/2))) or
((),(1,1),(1/2,1/2,1/2,1/2)) (both of total latency 28) as an equilibrium.
Case IT: We consider optimal configuration {((1), (1/2,1/2), (1,1/2,1/2)). Work-
ing as in Case I, we obtain that any tax vector 8 = (1, B2, #3) that induces this
configuration as an equilibrium of G(I 4+ ) must satisfy the following:

1+81 <P <5+ 05 (18)
B2 —2< B3 <24 By (19)
2401 <PB3<3+ 0 (20)

In fact, the right-hand side of ({I8)) follows from G — 2 < 33 < 3 + ;.

Considering configuration ((1,1),(1/2,1/2),(1/2,1/2)) and working as in
Case I, we obtain that if 8 is strongly-optimal, either 83 < 3 4+ (31 or 83 < [2.
Considering configuration ((), (1,1),(1/2,1/2,1/2,1/2)), we obtain that if 3 is
strongly-optimal, either 8 > 3 + 31 (note that ([I4)) does not contradict (IJ])),
or B3 >4+ (31, or B3 > 2+ 5.

Working as in Case I, we show that if 3 is strongly-optimal, it must satisfy
both B2 > 3+ 31 and (3 < B2 (since B2 > 3+ (1, B3 < 3+ B1 implies (B3 < Ba,
so 3 must be smaller than 35 in any case), in addition to ({IJ]), (I9), 20).

Moreover, if § is strongly-optimal, configuration ((1,1),(1/2),(1/2,1/2,1/2))
is not an equilibrium of G(I+ (), and 8 must satisfy at least one of the following:

Bo <3461 (21) 6+ 083 < B2 (24)
53 <24+ 51 (22) 6+ ﬂl < 53 (25)
10+ 51 < Bo (23) B2 < B3 (26)

We observe that (2I) contradicts Sz > 3+ 01, [22)) contradicts 20), 23]) contra-
dicts (I8), (28) contradicts 20), and 26]) contradicts 83 < [2. Furthermore, (I8)
and (I9) imply that B < 5+ 1 < 3+ f3, which contradicts ([24]). Hence, any
tax vector that induces optimal configuration ((1),(1/2,1/2),(1,1/2,1/2)) as
an equilibrium also induces either configuration ((1,1),(1/2,1/2),(1/2,1/2))),
or {(),(1,1),(1/2,1/2,1/2,1/2)), or {(1,1),(1/2),(1/2,1/2,1/2)) (all of total
latency 28) as an equilibrium.
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Case ITI: We consider optimal configuration ((1/2), (1,1), (1/2,1/2,1/2)). Any
tax vector 8 = (f1, B2, 03) that induces this configuration as an equilibrium of
G(I + ) must satisfy the following:

2451 <P <3+ 5 (27)
Bo—1<B3<4+4 By (28)
44+ 61 <B3<6+ B (29)

Therefore, any tax vector that induces ((1/2),(1,1),(1/2,1/2,1/2)) as an equi-
librium of G(I + B) must satisfy (&), (@), and (@), and by Case I, is not
strongly-optimal.

Cases IV and V: Optimal configurations ((1/2),(1,1/2),(1,1/2,1/2)) and
((1/2),(1/2,1/2),(1,1,1/2)) are not induced as an equilibrium of G(I + 3) by
any tax vectors. In particular, applying the inequalities for possible deviations
between link 1 and link 3, we obtain that any tax vector § that induces any of
the configurations above as an equilibrium must satisfy 4 4+ 31 < 83 < 3+ (1.
Thus we have considered all optimal allocations of heterogeneous users and
all weakly-optimal tax vectors 3, and have shown that any of them induces a
configuration of total latency at least 28 as an equilibrium of G(I + ). (]

Remark 1. For the atomic game with homogeneous users corresponding to the
parallel-link game in the proof of Theorem [ the tax vector (0,3 — 6,3 — ¢),
for a sufficiently small § > 0, is a strongly-optimal tax vector (a slightly dif-
ferent strongly-optimal tax vector is given by [3, Theorem 1]). For the corre-
sponding non-atomic game with heterogeneous users, the tax vector (0,3,3) is a
strongly-optimal one.

5 Open Problems

It is known that for homogeneous users with unit-demands on multicommodity
networks there exist no strongly-optimal taxes [3]. Series-parallel networks is
the largest class for which such taxes have been shown so far to exist [7]. In
this work, we established that when the users are heterogeneous, there are no
strongly-optimal taxes even on the very specialized topology of parallel links.
The challenging open problem stated in [3] remains for future work: determine
the largest class of network congestion games for which strongly-optimal taxes
exist. The candidate class is that of symmetric network games [3], i.e., when
users are homogeneous, have identical demands, and share the same source and
destination on a general-topology network.

Acknowledgement. G. Karakostas and S. Kolliopoulos thank Ioannis Caragiannis
for introducing them to the problem and for valuable discussions.
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Abstract. We study the computational complexity of finding stable
outcomes in symmetric additively-separable hedonic games. These coali-
tion formation games are specified by an undirected edge-weighted graph:
nodes are players, an outcome of the game is a partition of the nodes into
coalitions, and the utility of a node is the sum of incident edge weights
in the same coalition. We consider several natural stability requirements
defined in the economics literature. For all of them the existence of a sta-
ble outcome is guaranteed by a potential function argument, so local im-
provements will converge to a stable outcome and all these problems are
in PLS. The different stability requirements correspond to different local
search neighbourhoods. For different neighbourhood structures, our find-
ings comprise positive results in the form of polynomial-time algorithms
for finding stable outcomes, and negative (PLS-completeness) results.

1 Introduction

Hedonic games were introduced in the economics literature as a model of coali-
tion formation where each player cares only about those within the same coali-
tion [9]. Such games can be used to model a variety of settings ranging from
multi-agent coordination to group formation in social networks. This paper stud-
ies the computational complexity of finding stable outcomes in hedonic games.
We consider the stability requirements introduced in [5], which includes a de-
tailed discussion of real-life situations in which hedonic models are reasonable.
The literature has focused almost exclusively on the issue of the existence
of stable outcomes. When computational complexity has been addressed, it has
been in the context of deciding whether a stable outcome exists. This has been
done under different utility functions and stability requirements [5, 13, [18]. An
outcome is called Nash-stable if no player prefers to be in a different coalition.
This is the most stringent stability requirement we consider: here a deviation
depends only on the preferences of the deviating player. Less stringent stability
requirements are achieved by restricting feasible deviations: a coalition may try
to hold on to an attractive player or block the entry of an unattractive player.
We consider the case of hedonic games with additively-separable utilities, as
they allow a succinct representation which is suitable for studying computational
complexity. In this representation, a game is specified by an edge-weighted graph.
In general this graph is directed, which allows non-symmetric preferences, but

S. Kontogiannis, E. Koutsoupias, P.G. Spirakis (Eds.): SAGT 2010, LNCS 6386, pp. 174-{I85] 2010.
© Springer-Verlag Berlin Heidelberg 2010
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then a stable outcome might not exist 3, [3]. In the sequel, a hedonic game is an
undirected edge-weighted graph, so that preferences are symmetric. Every node
is a player, and an outcome is a partition of the players into coalitions. For a
given outcome, the utility of a player is the sum of the edges weights of the inci-
dent edges to nodes in the same coalition. For a symmetric additively-separable
hedonic game, a Nash-stable outcome always exists by a simple potential func-
tion argument: the potential function is the total happiness of an outcome, i.e.,
the sum of players’ utilities. Nash-deviations improve the potential. We define
the problem NASHSTABLE as that of computing a Nash-stable outcome for an
additively-separable hedonic game.

We also consider a less stringent stability requirement, called individual sta-
bility. Here the set of all feasible deviations for a given outcome is a subset of
Nash deviations: a player can deviate to another coalition only if everyone in
this coalition is happy to have her. We also consider an even less stringent sta-
bility requirement, called contractual individual stability. Here the set of all fea-
sible deviations for a given outcome is a subset of individually-stable deviations:
(in addition to the above requirement) a player can deviate only if everyone
in the coalition she leaves is happy for her to leave. These stability require-
ments were introduced in [5]. The same potential function argument shows that
individually-stable outcomes and contractually-individually-stable outcomes ex-
ist for symmetric additively-separable hedonic games, and indeed every Nash-
stable outcome is also individually-stable and contractually-individually-stable.
In each case, local improvements will find a stable outcome, and all the prob-
lems we consider are in the complexity class PLS (polynomial local search) [12].
Local search dynamics are desirable because they are distributed. Are they also
efficient for hedonic games? If not, can we find efficient dynamics or centralized
algorithms for finding stable outcomes?

Symmetric additively-separable hedonic games are closely related to party af-
filiation games, which are also specified by an undirected edge-weighted graph.
In a party affiliation game each player must choose between one of two “parties”;
each player’s happiness is the sum of her edges to nodes in the same party; in
a stable outcome no player would prefer to be in the other party. The prob-
lem PARTYAFFILIATION is to find a stable outcome in such a game. If such an
instance has only negative edges then it is equivalent to the problem LOCAL-
MaxCuT, which is to find a stable outcome of a local max-cut game. In party
affiliation games there are at most two coalitions, while in hedonic games any
number of coalitions is allowed. Thus, whereas PARTYAFFILIATION for instances
with only negative edges is PLS-complete [16], NASHSTABLE is trivial in this
case, as the outcome where all players are in singleton coalitions is Nash-stable.
Both problems are trivial when all edges are non-negative, in which case the
grand coalition of all players is Nash-stable. Thus, interesting hedonic games
contain both positive and negative edges.

Our Contribution. In this paper, we examine the complexity of computing
stable outcomes in symmetric additively-separable hedonic games. We observe
that NASHSTABLE, i.e., the problem of computing a Nash-stable outcome, is
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PLS-complete. Here, we give a simple reduction from PARTYAFFILIATION, which
was shown to be PLS-complete in [16]. Our reduction relies on a method to en-
sure that all stable outcomes use exactly two coalitions (where in general there
can be as many coalitions as players). In contrast, the problem CIS of finding a
contractually-individually-stable outcome can be solved in polynomial time.

Moreover, we study IS, i.e., the problem of finding an individually-stable out-
come. We show that if the outcome is restricted to contain at most two coalitions,
an individually-stable outcome can be found in polynomial time. This suggests
that a reduction showing PLS-hardness for IS cannot be as simple as for NASH-
STABLE: one would need to construct hedonic games that allow three or more
coalitions. In order to prove a hardness result, we increase the size of the neigh-
bourhood, defining the search problem ISWITHSWAPS, which is similar to IS,
but in addition to one-player deviations, two players can switch coalitions.

We define a restricted version of PARTYAFFILIATION, called ONEENEMY-
PARTYAFFILIATION, in which each player dislikes at most one other player.
Our main result is that ONEENEMYPARTYAFFILIATION is PLS-complete. This
reduction is from CIRCUITFLIP and is rather involved. We reduce ONEENEMY-
PARTYAFFILIATION to ISWITHSWAPS, which shows it is PLS-complete; we leave
the complexity of IS open.

Related Work. Hedonic coalition formation games were first considered by [9].
[11] later surveyed coalition structures in game theory and economics. Based on
[9], [5] formulated different stability concepts in the context of hedonic games,
which are the basic definitions we use here. The general focus in the game theory
community has been on characterizing the conditions for which stable outcomes
exist. [6] showed that additively-separable and symmetric preferences guarantee
the existence of a Nash-stable partition. They also showed that under certain
different conditions on the preferences, the set of Nash-stable partitions can be
empty but the set of individually-stable partitions is always non-empty.

[7] surveys algorithmic problems related to stable partitions. [3] showed that
for hedonic games represented by an individually rational list of coalitions, the
complexity of checking whether core-stable, Nash-stable or individual-stable par-
titions exist is NP-complete, and that every hedonic game has a contractually-
individually-stable solution. Recently, [18] showed that for additively-separable
hedonic games checking whether a core-stable, strict-core-stable, Nash-stable or
individually-stable partition exists is NP-hard. [10] characterize the complexity
of problems related to coalitional stability for hedonic games represented by he-
donic nets, a succinct, rule-based representation based on marginal contribution
nets.

The definition of party affiliation games we use appears in [2]. Recent work
on local max cut and party affiliation games has focused on approximation [4, 8];
see also [15]. For surveys on the computational complexity of local search and the
complexity class PLS, see |1,[14]. Our main PLS-completeness result (Theorem[2))
uses ideas from |19] which in turn builds on [16].
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2 Preliminaries

A symmetric additively-separable hedonic game is an undirected edge-weighted
graph G = (V, E,w). Every node i € V is a player. An outcome is a partition p
of V into coalitions. Denote by p(¢) the coalition to which ¢ € V' belongs under
p, and by E(p(i)) the set of edges {{i,j} € E | j € p(i)}. The utility of i € V
under p is the sum of edges to others in the same coalition, ZeeE(p(i)) w(e). We
consider different levels of restrictions for player deviations; see |4].

Definition 1. Consider an outcome p of a game G = (V, E,w). The outcome is
Nash-stable if and only if there exists no player i and coalition ¢ # p(i), possibly
empty, such that

S owe< Y w{ig). (1)

e€E(p(4)) HigeE | jeck

The outcome is individually-stable if and only if there exists no player i and
coalition ¢ # p(i), possibly empty, such that [l) holds and

w({i,j}) >0, Vjec. (2)

The outcome is contractually-individually-stable if and only if there exists no
player i and coalition ¢ # p(i), possibly empty, such that @) and @) hold and

w({i,j}) <0 for all j € p(i).

The search problems NASHSTABLE, IS, and CIS are to find a stable outcome of
a hedonic game for the corresponding definition of stability. For Nash-stability, a
player is allowed to deviate based only on her own utility, irrespective of others.
Individual stability allows any player to block an unattractive individual from
entering her coalition, i.e., a single negative edge to a coalition prevents a player
switching to that coalition (although a stable outcome may contain negative
edges). Contractual individual stability also allows any player to prevent an
attractive player leaving her coalition, i.e., a single positive edge prevents a player
leaving a coalition. Recall that all games we consider contain both positive and
negative edges, else the problem of finding a stable outcome is easy.

3 Computational Complexity of Finding Stable Outcomes

We start with the least restrictive condition under which player deviations are
allowed, i.e., Nash deviations. Here a player is allowed to change her coalition
whenever this improves her utility. By a very simple reduction from PARTYAF-
FILIATION we observe the following:

Observation 1. NASHSTABLE is PLS-complete.

Proof. Consider an instance of PARTYAFFILIATION which is represented as an
edge weighted graph G = (V, E,w). We augment G by introducing two new
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players, called supermodels. Every player ¢ € V has an edge of weight W >
Y ec i |We| to each of the supermodels. The two supermodels are connected by an
edge of weight —M, where M > |V|-W. By the choice of M the two supermodels
will be in different coalitions in any Nash-stable outcome of the resulting hedonic
game. Moreover, by the choice of W, each player will be in a coalition with one
of the supermodels. The fact that edges to supermodels have all the same weight
directly implies a one-to-one correspondence between the Nash-stable outcomes
in the hedonic game and in the party affiliation game. O

Now that we have PLS-completeness under the least restrictive deviation condi-
tion, it is natural to ask about stable outcomes under more restrictive conditions.
We proceed with the most restrictive version that we consider.

Proposition 1. CIS can be solved in O(|E|) time. Moreover, local improve-
ments converge in at most 2|V| steps.

It is easy to construct stable CIS partitions. The reason for this comes from the
very restrictive conditions under which deviations are allowed. We now study
deviation conditions which are less restrictive than in CIS but more restrictive
than Nash deviations. Recall that in an individually-stable outcome a player is
always allowed to leave a coalition but only allowed to enter if no player in the
new coalition is connected to her by a negative edge. It is an interesting open
problem whether IS is PLS-hard. The following result implies that for a PLS-
hardness reduction we need to use at least three coalitions (unless PLS C P),
unlike the reduction for NASHSTABLE (Observation[I]). Let 2-IS be the problem
of computing an individually-stable outcome when at most two coalitions are
allowed.

Proposition 2. 2-IS can be solved in polynomial time.

Proof. We assume that there is at least one negative edge. Otherwise, the grand
coalition is Nash-stable. The algorithm goes as follows:

Start with any bipartition. Move nodes with incident negative edges so
that they have a negative edge to the other coalition. In each of the two
coalitions, contract all nodes with negative incident edges into a single
node and call the contracted nodes s and . For any other node the new
edge weights to s and ¢ are the sum of the original edge weights. Now
(ignoring all edges between s and t) compute a min cut between s and ¢
via a max flow algorithm and assign the nodes accordingly.

After the first stage, all nodes that we are about to contract have a negative
edge to the other coalition. So they are not allowed to join the other coalition.
This property is preserved by contraction. Afterwards, the flow algorithm oper-
ates only on positive edges and computes a global minimum cut between s and
t. Thus, the cut also maximizes the total happiness of all non-contracted nodes,
so none of these nodes has an incentive to switch coalitions. All performed steps
of the algorithm can be done in polynomial time. a
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What makes the problem easy in the case of two coalitions? The reason is simple:
negative edges block deviations. This leads to an interesting question. What
happens when we allow players to swap coalitions? Certainly, this increases the
PLS-neighbourhood, and (in general) reduces the number of stable outcomes.
We define an extended neighbourhood that includes swaps.

Definition 2. In a swap two players swap coalitions. A swap is improving if at
least one of the players becomes strictly better off and neither gets worse off.

The new neighbourhood is comprised of single-player (IS type) deviations and
swaps. Observe that in a solution where no player can improve by a single-player
deviation, only swaps of two players connected by a negative edge can give rise
to local improvements. With this larger neighbourhood we prove the following,
which is the main result.

Theorem 2. ISWITHSWAPS is PLS-complete.

We prove this in two parts. We use the fact that in ONEENEMYPARTYAF-
FILIATION every node is incident to at most one negative edge to reduce this
problem to ISWITHSWAPS by replacing negative edges with a simple local gad-
get (Lemma[I]). Then our main result is that ONEENEMYPARTY AFFILIATION is
PLS-complete (Theorem [I).

Lemma 1. ONEENEMYPARTYAFFILIATION can be reduced in polynomial time
to ISWITHSWAPS.

Proof. We start with a party affiliation game where every player dislikes at
most one other player. We add supermodels to enforce only two coalitions.
We replace a negative edge (a,b) of weight —w with the following gadget.

Here M is sufficiently large so that a and a’ (as well as b
and ') have to be in different coalitions and thus can only
swap coalitions. Thus, if a = b, then both a and b receive a
payoff of —w from the original edge and 0 from the gadget.

On the other hand, if a # b, then both a and b receive a payoff of 0 from the
original edge and w from the gadget. So we shifted the payoffs of a and b by w.
Observe that the payoff of @’ and b’ is always w. So they will never block a swap.
Thus, we didn’t change the PLS neighbourhood of a and b. g

In order to complete the proof of Theorem[] we show that ONEENEMYPARTY AF-
FILIATION is PLS-complete. Our proof is by reduction from the well known PLS-
complete CIRCUITFLIP problem (cf. [16]).

Definition 3. An instance of CIRCUITFLIP is a boolean circuit with n inputs
and n outputs. A feasible solution is an assignment to the inputs and the value
of a solution is the output treated as a binary number. The neighbourhood of an
assignment consists of all assignments obtained by flipping exactly one input bit.
The objective is to maximise the value.
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Theorem 3. ONEENEMYPARTYAFFILIATION is PLS-complete.

Proof. We reduce from CIRCUITFLIP. Let C be an instance of CIRCUITFLIP
with inputs Vi,...,V,, outputs Cy,...,C,, and gates Gy,...,Gxn. We make
the following simplifying assumptions about C': (i) The gates are topologically
ordered so that if the output of G; is an input to G, then ¢ > j. (ii) All gates
are NOR gates with fan-in 2. (iii) G1, ..., G, is the output and Gy 41, ..., G2y, is
the (bitwise) negated output of C' with G; and G,, 11 being the most significant
bits. (iv) Gant1,--.,Gs, outputs a (canonical) better neighbouring solution if
Vi,...,V, is not locally optimal.

We use two complete copies of C'. One of them represents the current solution
while the other ones represents the next (better) solution. Each copy gives rise
to a graph. We will start by describing our construction for one of the two copies
and later show how they interact. Given C construct a graph G¢ as follows:

We have nodes vy, . .., v, representing the inputs of C', and nodes g; represent-
ing the output of the gates of C. We will also use g; to refer to the whole gate.
For i € [n], denote by w; := ga,4; the nodes representing the better neighbour-
ing solution. Recall that gy, ..., g, represent the output of C while g,4+1,- .., 92n
correspond to the negated output.

In our party affiliation game we use 0 and 1 to denote the two coalitions. We
slightly abuse notation by using u = & for x € {0, 1} to denote that node w is in
coalition x. In the construction, we assume the existence of nodes with a fixed
coalition. This can be achieved as in the proof of Observation [l with the help of
supermodels. We use 0 and 1 to refer to those constant nodes. In the graphical
representation (cf. Figure [I]), we represent those constants by square nodes.

We follow the exposition of [16] and [19] and use types to introduce our
construction. Nodes may be part of multiple types. In general types are ordered
w.r.t. decreasing edge weights. So earlier types are more important. Different
types will serve different purposes.

Type 1: Check Gates. For each gate g; we have a three-part component as de-
picted in Figure The inputs of g;, denoted I(g;) and I1(g;), are either
inputs of the circuit or outputs of some gate with larger index. The main pur-
pose of this component is to check if g; is correct, i.e., g; = =(I1(g;) A 12(g:)),
and to set z; = 1 if g; is incorrect. The «, (3, v, 6 and A nodes are local nodes
for the gate. A gate can be in two operational modes, called gate push regimes.
Type 7 will determine in which of the following push regimes a gate is.

Definition 4 (Gate push regimes). In the RESET GATE regime a1, o2,
Yi,1 and Yi,2 get a bias towards 1 while )\,‘71,)\i72,ﬁi71,ﬁ¢72,ﬁ¢737(5,‘717(5,‘72 and Yi,3
get a bias towards 0. In the FIX GATE regime we have opposite biases.

Type 2: Propagate Flags. In order to propagate incorrect values for the z vari-
ables we interconnect them as in Figure by using the topological order on
the gates. Observe that for any locally optimal solution z; = 1 enforces z; = 1
for all j < i. The component is also used to (help to) fix the gates in order and
to RESET them in the opposite order. Node zy 41 is for technical convenience.
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Type 1 and 2 components are the same for both copies. In the following we
describe how the copies interact. We denote the two copies of C by C° and C*
and also use superscripts to distinguish between them for nodes of type 1 and 2.

Type 3: Set/Reset Circuits. The component of type 3 interconnects the z-flags
from the two circuits C°,C'. This component is depicted in Figure and
has multiple purposes. First, it ensures that in a local optimum d° and d' are
not both 1. Second, at the appropriate time, it triggers to reset the circuit with
smaller output. And third, it locks d° or d' to 1 and resets them back to 0 at
the appropriate times.

The z and y nodes can also be in two different operational modes called
COMPUTE regime and RESET regime which is determined by Type 6.

Definition 5 (Circuit push regimes). Let k € {0,1}. In the COMPUTE
regime for 2™ all zf get a bias to 0 for all 0 <i < N +1 and y" gets a bias to 1.
In the RESET regime for 2" we give opposite biases.

Type 4: Check Outputs. This component compares the current output of the
two circuits and gives incentive to set one of the nodes d° or d' to 1 for which
the output of the corresponding circuit is smaller. For all ¢ € [n], we have

edges (do7 g?z+i)7 (do7 gz‘l)v (d17grlL+z‘)7 (d17 g?) and (0, g?z+i)7 (1791‘1)7 (ngrlL-i-z‘)v (1, g?)

of weight 22" +1=¢ To break symmetry we have edges (0,d°), (1, d") of weight 2".

Type 5: Feedback Better Solution. This component is depicted in Figure
It is used to feedback the improving solution of one circuit to the input of the
other circuit. Its operation is explained in Lemma [3

For the remaining types we use the following lemma and definition which are
analogous to those in [19, [13].

Lemma 2. For any polynomial-time computable function f : {0,1}F — {0,1}™
one can construct a graph Gy (Vy, Ef, w) having the following properties: (i) there
exist 81, ..., Sk, t1, ..., tm € Vy with no negative incident edge, (#) each node in
Vr is only incident to at most one negative edge, (i) f(s) =t in any Nash-stable
solution of the party affiliation game defined by G.

Definition 6. For a polynomial-time computable function f : {0,1}¥ — {0,1}™
we say that G ¢ as constructed in Lemmal2@is a graph that looks at s1,...,s, € Vy
and biases t1,...,ty € Vi according to the function f.

In the final three types we look at and bias nodes from the lower types already
defined. For the final types we do not give explicit edge weights. In order that
the “looking” has no side-effects on the operation of the lower types, we scale
edge weights in these types such that any edge weight of lower type is larger than
the sum of the edge weights of all higher types. More precisely, for j € {5,6,7},
the weight of the smallest edge of type j is larger than the sum of weights of all
edges of types (j +1),...,8.

In the following, denote by C(v) the value of circuit C' of the CIRCUITFLIP
instance on input v = (v;);e[n) and w(v) the better neighbouring solution. Both
are functions as in Definition [6l
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Type 6: Change Push Regimes for z. The component of type 6 looks at v0, v!
d®, d*, n° and n' (type 5) and biases 2!, 2}, 4" and y' as follows. z° is put in
the COMPUTE regime if at least one of the following 3 conditions is fulfilled:
(i) C(%) > C(vY), (i) ww!) = °, or (iii) w(v!) # nt Ad® = 1. Else 2° is
put into the RESET regime. Likewise z! is put in the COMPUTE regime if at
least one of the following three conditions is fulfilled: (i) C(v°) < C(v'), (ii)
w(v®) = v, or (iii) w(v®) # n° Ad' = 1. Else 2! is put into the RESET regime.
Note that conditions (i) and (ii) are important for normal computation, while
(iii) is needed to overcome bad starting configurations.

Type 7: Change Push Regimes for Gates. For each ¢ € [N] and k € {0,1}, if
zft 1 = 0 we put the local variable of g/ in the FIX GATE regime and in the
RESET GATE regime otherwise.

Type 8: Fix Incorrect Gate. For each i € [N] and x € {0, 1}, the components of
type 8 give a tiny offset to g for computing correctly. For each gate g we look
at afy, afy and bias gf to =(af; A afy).

This completes our construction. We proceed by showing properties of Nash-
stable outcomes. Each of the following six lemmas should be read with the
implicit clause: “In every Nash-stable outcome.”

Lemma 3. Let € {0,1}, then the following holds for all i € [n]:
(a) If d" = 0 then w! is indifferent w.r.t. edges of type 5.
(b) If d® =1 then nf = wf.

Lemma 4. If g is incorrect then z;' = 1. If 2f =1 then 2§ =1 for all0 < j <1
and y* = 0.

Lemma 5. If 2" | = 1 then the inputs I,(g") and I>(g}") are indifferent with
respect to the type 1 edges of gate gf.

Lemma 6. Suppose z% | =0 and z[' = 1 for some index 1 <i < N.

(a) If gf is correct then vy = yfy =0 and 7’3 = 1.

(b) If gf is not correct then g is indifferent w.r.t. edges of type 1 but w.r.t. the
edges only in type 8 deviating would improve her happiness.

Lemma 7. Ifd" =1 and d” = 0 then for all 1 <1 < 2n, node g} is indifferent
w.r.t. edges in type 4.

Lemma 8. Suppose d* =1 and d* = 0.
(a) If 2% is in the COMPUTE regime then zf = 0 for all0 < i < N +1 and

y® = 1.
(b) If 2% is in the RESET regime then zf =1 for all0 <i < N+1 and y* = 0.

We now continue with the proof of Theorem [Bl Suppose we are in a Nash-
stable outcome of the party affiliation game. For our proof we assume C(v") >
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C(v'). We will point out the small differences of the other case afterwards. Since
C(v°%) > C(vh), 20 is in the COMPUTE regime, i.e., all z? are biased to 0 and
y° is biased to 1 (by type 6). Thus, 2% ,, = 0.

The remainder of the proof splits depending on the coalition of 2¥ and z{. By
Lemma [] we know that 2§ = 0 implies that all gates in C* are correct.
29 = 1: By LemmaHl we have 20 = 1 and y° = 0. If d° = d' = 0 then d° is better
off changing to 1 (by inspection of type 3 edges). If d° = 1 then Lemma [§(a)
implies z{ = 0, a contradiction. If d* = 1 and 2! is in the RESET regime then by
Lemma R(b) and Lemma 5l v! is indifferent w.r.t. type 1 edges. Thus v! = n°.
But then either condition (ii) or (iii) for putting z! in the COMPUTE regime
(cf. type 6) are fulfilled. So 2! has to be in the COMPUTE regime. Lemma [B[a)
then implies z# = 0. But then the neighbourhood of d' in type 3 is dominated
by 0, a contradiction to d* = 1.
29 =0 and 21 = 1: By LemmaM] we have z{ = 1 and y! = 0. Since C(v°) > C(v?!)
we know that 2° is in the COMPUTE regime. So z) = 0 enforces 2§ = 0 and
y® = 0. By inspection of type 3 edges we have d’° = 0 and thus d' = 1. First
assume that 2! is in the RESET regime, then 2} =1 for all 0 <4 < N + 1 and
Lemma [§] says that the inputs of all gates g} are indifferent w.r.t. type 1 edges.

In particular this holds for v! = (v} );e[n], s0 v* = 7. By Lemmal[(b), n° = w°.

Since 2{ = 0, C° is computing correctly and thus w® = w(v"). Combining
this we get v; = w(v®) which contradicts our assumption that z! is in the
RESET regime. Thus 2! is in the COMPUTE regime. Since d' = 1 we can
apply Lemma B(a) to conclude z{ = 0, a contradiction.

29 =0 and 2] = 0: By LemmaH we have 2J = 2§ = 0 and y° = y! = 1. Moreover
we know that both circuits are computing correctly. If d° = 1 then d' = 0 and d°
is indifferent w.r.t. type 3 edges. Since both circuits are computing correctly and
C(v°) > C(vl), the type 4 edges enforce d® = 0. But then d' is indifferent w.r.t.
type 3 edges and the type 4 edges enforce d* = 1. So, d° = 0 and d' = 1. If 2! is
in the RESET regime then Lemma [R(b) gives z{ = 1, a contradiction. Thus, 2*
is in the COMPUTE regime. Since d' = 1 we can apply Lemma [Bi(b). This and
the fact that C° is computing correctly implies 7° = w(v?). So z! can only be
in the COMPUTE regime if v! = w(v°). Since C(v°) > C(v!) this implies that
v = vl is a local optimum for the circuit C.

This finishes the proof in case C'(v?) > C(v!). The case C(v°) < C(v!) is com-
pletely symmetric except here the conclusion v = v! in the very last sentence
contradicts C'(v°) < C(v°). So this case can’t happen in a local optimum.

Note that throughout the construction we made sure that no node is incident

to more than one negative edge. This completes the proof of Theorem [3 a

The instance produced by this reduction has the property that no node is indif-
ferent between the two coalitions. This might be useful for other reductions.

Corollary 1. ONEENEMYPARTYAFFILIATION is PLS-complete even if re-
stricted to instances where no player is ever indifferent between the two
coalitions.
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Theorem [3 and Lemma [l together establish that ISWITHSWAPS is PLS-complete
(Theorem [2)). Throughout the proof we used only two coalitions. Since 2-IS can
be solved in polynomial time (Proposition[2)), a PLS-hardness result for IS would
require more then two coalitions (unless PLS C P). We leave the complexity of
IS as an interesting open problem.
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Abstract. Recent results showed PPAD-completeness of the problem
of computing an equilibrium for Fisher’s market model under additively
separable, piecewise-linear, concave utilities. We show that introducing
perfect price discrimination in this model renders its equilibrium poly-
nomial time computable. Moreover, its set of equilibria are captured by
a convex program that generalizes the classical Eisenberg-Gale program,
and always admits a rational solution.

We also introduce production into our model; our goal is to carve
out as big a piece of the general production model as possible while still
maintaining the property that a single (rational) convex program cap-
tures its equilibria, i.e., the convex program must optimize individually
for each buyer and each firm.

1 Introduction

The search for efficient algorithms for computing market equilibria started with
much interest within theoretical computer science about a decade ago. The
goal was not only academic, i.e., providing an algorithmic ratification of Adam
Smith’s “invisible hand of the market,” but was also motivated by potential ap-
plications to the plethora of new and highly lucrative markets that have emerged
on the Internet.

This study started with the simple case of linear utility functions, for which
polynomial time algorithms were obtained [7, [I1], and gradually moved on to
more general and realistic utility functions. However, the latter program had
limited success (most notably, an efficient algorithm for approximating equilib-
ria for the Fisher model under Leontief utilities [6, 21]), and was recently dealt
a serious blow, with results showing that the problem of computing an equi-
librium under even additively separable, piecewise-linear, concave utilities (plc
utilities) is PPAD-complete for both Arrow-Debreu and Fisher market models
[4,5,19]. Assuming P # PPAD, this effectively rules out the existence of efficient
algorithms for almost all general and interesting classes of “traditional” market
models.
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On the other hand, markets in the West, based on Adam Smith’s free market
principle, seem to do a good job of finding prices that maintain parity between
supply and demandl. This has prompted the question (see [I8]) of whether we
have failed to capture some essential elements of real markets in our models, and
what is the “right” model which is not only realistic and admits equilibria but
is also amenable to efficient computation of equilibria.

In this context, we show that Fisher markets with plc utilities can be rendered
computationally efficient by introducing perfect price discriminatior. Addition-
ally, we introduce firms into our model which act as sellers of goods, suppliers of
labor and producers of goods, or any combination of these activities. These firms
have initial endowments of goods and labor, and their goal is to maximize prof-
its by optimally producing and selling goods. Traditionally in economics, and in
the model studied by Arrow and Debreu [2], production satisfies non-increasing
returns to scale. This is the case in our model as well, though it is imposed in
a “piecewise-linear manner”. As a consequence of linearity, for given prices of
goods, the optimal operation of a firm is captured by an LP.

We show that equilibrium production and allocation for this market model is
captured via a single convex program, a generalization of the classic Eisenberg-
Gale convex program. The optimal dual of this program yields equilibrium prices.
Two interesting theorems are the following. First, each buyer gets a utility maxi-
mizing bundle of goods under the rules of price discrimination we have assumed.
Second, for each firm, the operation specified by the optimal solution to this
convex program is also the optimal solution for its LP, with the equilibrium
prices substituted into it. The idea behind the latter theorem goes back to [12];
however, our model of production is considerably more general than that in [12].

The notion of a rational convex program was introduced recently in [16], i.e.,
a nonlinear convex program that always has a rational solution of polynomial
bit size, if all its parameters are rational numbers. Starting with the celebrated
Eisenberg-Gale program, several convex programs arising in mathematical eco-
nomics and game theory are now known to be rational, see details in [I7].

We prove that the program capturing our market model is also rational. In
particular, this implies that the ellipsoid method will yield the exact equilibrium
in polynomial time [I0]. For the special case that firms act only as sellers of
goods, in the full paper, we will give a combinatorial polynomial time algorithm
as well. We will also generalize this model and assume that buyers have utility
for money, given by a piecewise-linear, concave function for each buyer. Now,
at equilibrium, a buyer may choose to not spend all of her money. We show
how to extend our polynomial time algorithm to this case as well. The solution
still turns out to be rational; however, we do not know of a convex program

! For example, in the West, it is hard to see a sight that was commonplace in the
Soviet Union, with massive surpluses of some goods and empty shelves of others.

2 The model described in this paper was obtained in the process of attempting the
open problem, posed in [I6], of obtaining a combinatorial algorithm for solving the
extension of game ADNB to plc utilities; linear utilities were assumed in ADNB.
Combinatorial insights obtained in the process led to the model.
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that captures this enhanced model. By exploiting the combinatorial structure
discovered in obtaining our algorithm, we will give a characterization of the
entire set of equilibria of this market. This will reveal the range of equilibrium
prices of each good and the range of profit that the middleman can accrue from
each buyer.

Using our convex program for the model with production, in the full paper,
we obtain surprisingly simple proofs of both welfare theorems — simpler even
than those for a normal Arrow-Debreu market model. We now give the key idea
behind our convex program. First, consider the simpler version of our model in
which firms are simply sellers of goods. Our convex program for this model is
the “natural” generalization of the Eisenberg-Gale program from linear to plc
utilities; however, it does not capture equilibria for Fisher markets with these
utility functions. The latter statement follows directly from the observation that
equilibria in the latter market model can be disconnected, however, the optimal
solutions of a convex progam form a convex set. Intuitively, introducing price
discrimination in this market model renders the set of equilibria convex. The
situation is somewhat analogous to that of Nash equilibrium. The set of optimal
strategies of the pure equilibria of a bimatrix game can be disconnected; however,
by introducing mixed strategies, it is rendered a convex set and hence suitable
for study with the Kakutani fixed point theorem.

Regarding extending the model to include production, our main goal was to
carve out as big a piece of the general production model as possible while main-
taining the property stated above, i.e., that a single convex program optimizes
individually for each firm, and at the same time, all constraints of the convex
program are linear (this leads to a proof of its rationality). We leave the open
problem of extending our combinatorial algorithm to the model with production.

2 The Market Model

2.1 Perfect Price Discrimination

Most businesses today charge different prices from different consumers for es-
sentially the same goods or services in order to maximize their revenues. This
practice is called price discrimination. It is not only widespread but also essential
for survival of certain businesses, e.g., in the airline industry. Price discrimina-
tion has been extensively studied in economics from many different angles; see
[20, 15, 14, @, 8, [T, B [I3] for just a small sampling of papers on this topic.

A monopolistic situation in which the business separates the market into
individual consumers and charges each one prices that they are willing and able
to pay is called perfect price discrimination. Of course, the business needs to have
complete information about each consumer’s preferences. An interesting feature
of our model is that in it, it is the consumers who decide at what rate they want
utility.

Our market model consists of buyers, firms and a middleman. As stated in the
Introduction, buyers have initial endowments of money with which they wish to
buy goods and maximize the utility accrued, and firms act as sellers of goods,
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suppliers of labor, producers of goods or any combination of these activities. The
firms have initial endowments of goods and labor, and their goal is to produce
and sell goods in a way that maximizes their profits at current prices of goods.

The middleman buys goods from the firms, which charge the middleman in
accordance with the prices set and the amounts bought. As stated above, buyers
decide at what rate they want utility, and the middleman sells to them goods
accordingly, with the only condition that he never sells any part of any good at
a loss — the fact that the middleman knows the buyer’s utility function enables
him to do this. We show below that under these circumstances, for any given
prices of goods, there is a unique optimal rate for each buyer. This is also the rate
that ensures that the marginal utility accured by the buyer per unit of money
spent is equal to the marginal cost of the goods she is receiving, as desired under
perfect price discrimination.

Thus, in our model, the elasticity among consumers leads to profit for the
middleman. If all buyers had linear utility functions for goods, then the mid-
dleman will make no profit. In our model we assume that the buyers have plc
utilities.

Prices for goods and labor are said to be equilibrium prices if with optimal op-
eration of each firm at these prices and optimal rates for each buyer, the market
clears, i.e., all the goods get sold to buyers and all of their money gets spent.

The set of all goods and types of labor in the system is denoted by G, |G| = ng.
Each good is asumed to be divisible, as is each unit of labor. Let B denote the
set of buyers, |B| = np, and F denote the set of firms, |F| = np. Assume that
the buyers are numbered from 1 to np and are indexed by i, goods are numbered
from 1 to ng and are indexed by j, and the firms are numbered from 1 to ng
and are indexed by f.

An application to online display advertising marketplaces. Currently,
there are companies that sell ad slots on web sites to advertisers. In keeping
with our model, we will view such a company as the middleman, the owners
of web sites as sellers and the advertisers as buyers. We will view ad slots on
different web sites as different items, which need to be priced. An advertiser’s
utility for a particular ad slot is determined by the probability that her ad will
get clicked if it is shown on that slot; her total utility is additive over all the
slots she is allocated. Advertisers typically pay at fixed rate to the middleman
for the expected number of clicks they get, i.e., they are paying at fixed rate for
every unit of utility they get. Using knowledge of the utility function of buyers,
the middleman is able to price discriminate. Clearly, this setup is captured by
our model.

2.2 The Buyers and Their Utility Functions

Let m; € QT dollars denote the initial amount of money possessed by buyeri € B.
For each buyer ¢ and good j we are specified a function fj : R+ — R which gives
the utility that ¢ derives as a function of the amount of good j that she receives.
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Each function f JZ is a non-negative, non-decreasing, piecewise-linear, concave func-
tion. The overall utility of buyer 4, u;() for a bundle & = (z1,...,z4) of goods,
is additively separable over the goods, i.e., ui(x) = ;¢ fixy).

We will call each piece of f} a segment. Number the segments of each function
in order of decreasing slope. Let s;jx, k = 1,2,... denote the kth segment of
f]‘ Let l;; denote the amount of good j represented by segment s;;, and u;jx
denote the rate at which buyer i accrues utility per unit of good j received,
when she is getting an allocation corresponding to segment s;j;. Clearly, the
maximum utility she can receive corresponding to segment s;;z is g - lijn. We
will assume that w;j; and l;j, are rational numbers. Let S;; denote the set of
segments of function fj and let S; denote the set of all segments of buyer 1, i.e.,
S; = U?:l Sl]

2.3 The Middleman and Determining Buyers’ Rates

Assume that the prices of goods are set at p = (p1, ..., pgy). Define the bang-per-
buck of segment s;;1, to be u;ji/p; and denote it by bpb(s;jx); clearly, this is the
amount of utility accured by i per dollar spent for an allocation corresponding
to segment sk

Suppose buyer ¢ fixes her rate at r; which is the amount of utility she wants
per dollar. Then, for an allocation corresponding to segment s;;, the middle-
man is effectively charging the buyer uf’“ dollars per unit of j. In particular, if
bpb(s;jx) < 7, then the middleman will be allocating this segment at a loss, i.e.,
at a price smaller than p; dollars per unit of j. Moreover, the larger bpb(s;;x) /7
is, the higher is the profit the middleman can make from allocations correwspond-
ing to this segment. Therefore, once ¢ announces her rate, the middleman removes
from consideration all segments s € S; such that bpb(s) < r;, and allocates to
1 goods corresponding to segments that gives him the highest profit, until ¢
exhausts her money.

Now, given how the middleman responds to prices and rates, what rate max-
imizes the utility of a buyer ¢? We will define a rate ), which we will call the
optimal rate of buyer , as a function of prices p, and show that this rate maxi-
mizes buyer 4’s utility. The overall objective is to find prices for goods such that
if the buyers report their optimal rates, the market clears under above transac-
tions, i.e., there is no surplus or deficiency of any good. This is our notion of
equilibrium for the market.

Rate r} is obtained as follows. Sort all segments in S; by decreasing bang-
per-buck and start with a sufficiently large number «. Consider all segments
s € S; such that bpb(s) > «, and add up their total utilities. We will denote this
by t(a), Le., ta) = >0 g bpb(s)>a utility(s). Now the cost of buying goods
corresponding to all these segments at rate « is t(«)/«a. When « is very large,
this will be less than m;. Observe that as « is decreased, this number increases
monotonically. Now 7} is the largest value of « such that this number is > m,.



A Perfect Price Discrimination Market Model 191

Formally,

t(c)
ri(p) = argmoa}x{ N > m,»} .
We will denote 75 (p) by simply r} when its meaning is clear from the context.
The following lemma is straightforward.

Lemma 1. Rate r; equals v} if and only if when buyer ¢ picks r; as her rate,
each segment s such that bpb(s) > r; is fully allocated to her, and corresponding
to segments s such that bpb(s) = r;, i is allocated just the right amount of goods
so that her total utility adds up to r; - m;.

Lemma 2. For any prices p, rate r; mazimizes the utility for buyer i.

Proof. If the rate is fixed at a < r}, then o - m; < rf - m; and therefore ¢ will
be allocated smaller utility. Next consider fixing the rate at § > r}. Let s be
the smallest bang-per-buck of an allocated segment at rate r;. If bpb(s) = 77,
then at rate 8 she will accrue smaller utility. Otherwise, for bpb(s) > 8 > r}, i
will still be allocated r} - m; utility and for 5 > bpb(s), she will accrue strictly
smaller utility. This proves the lemma.

2.4 The Firms and Their Capabilities

Our model allows firms to have a rich set of capabilities, in particular, allowing
them to model non-increasing returns to scale as was assumed in the Arrow-
Debreu model. For sake of clarity, we first present the model assuming constant
returns to scale. In this model, each firm f € F has variables y;¢ corresponding
to each good j € G which represent the amount of this good that it sells or
buys in the market; y;r is positive if the firm sells good j, negative if it buys
it, and zero otherwise. The objective of the firm is to maximize its profit, which
at prices p = (p1,...,py) will be Zjerj -y, Let ¢;¢ denote this firm’s initial
endowment of good j. In our model there is no need to partition the goods into
raw materials and manufactured goods or to differentiate between goods and
labor.

In order to formally state the various production processes of this firm, we will
use auxiliary variables which are local to this firm. We will denoted these by z;,
i.e., they are indexed by [. The constraints imposed on production are all assumed
to be linear and are indexed by m. Thus the set of constraints for firm f are:

Ym : Za?}wyjf—&-Zb?}wlf Sd?,
jeG l

where ajt, bl”} and d}” are constants determined by the production processes
of firm f. In particular, some of the d¥'"’s may be the initial endowments, i.e.,
cjt’s. The variables y;¢ are unconstrained; however, z;7’s are constrained to be
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nonnegative. Clearly, the optimal operation of a firm can be stated as a linear
program.

Next, we give some illustrative examples. First, consider a firm that does not
produce anything but only acts as a seller. It sells its initial endowment of goods
in the market at the going prices. Clearly, its LP only needs constraints of the
form y;r < cjy.

Second, consider a firm that has an initial endowment, c;¢ of good 1, and is
able to produce goods 8 and 9. However, for this, it will need to buy goods 2
and 3. The production also requires good 1. If the amount of good 1 needed for
production is less than ciy, firm f sells the excess in the market, and if it is
greater than ¢y, firm f will need to buy additional amounts of good 1 from the
market. Assume that good 8 is produced using goods 1 and 2, and that good
9 is produced using goods 1 and 3. However, goods 8 and 9 are produced via
qualitatively different processes. To produce a unit of good 8, the firm uses up «
units of good 1 and [ units of good 2. On the other hand, good 9 can be produced
using either good 1 or good 3, with a unit of good 1 producing v units of good 9
and a unit of good 3 producing ¢ units of good 9. These production constraints
are captured by the following linear constraints, using auxiliary variables z; 5 and
zopryiftaiptaop <o, yYsp S aczif, ysp < Bryap, and yoy < yzop+0-ysy The
objective of this firm is to maximize py -y1f +p2-yor +P3-Y3f +Ps-Ysf +Po-Yof-

Next, we introduce non-increasing returns to scale in our model, though in a
“piecewise-linear” manner. Thus the production of good j by firm f is partitioned
into schedules, as a function of the amount of j produced. The schedules are
indexed by r. Let ¥, ¢, denote the amount of good j produced in the rth schedule
and let p¢; denote the total number of schedules for producing good j in firm
f. For each schedule, possibly other than the last one, there is a bound on the
amount of good that can be produced in that schedule, i.e., a constraint of the
form y; ¢ < a, for some constant o. Each raw material and labor required is non-
decreasing as a function of the schedule, so that the earlier schedules produce
goods at higher profits. The enhanced constraints now required are:

Vmos Y afyis kYL g vae+ D by ay < df
JEG jGG,TSpjf 1

where €7, ’s are constants. Since the overall goal of the firm is to maximize
profit, it will produce good j up to capacity in earlier schedules before starting

production in the next schedule.

3 A Rational Convex Program for the Fixed Supply Case

In this section we give a convex program whose optimal primal and dual variables
capture the equilibrium prices p and rates r for the price discrimination market
model when the goods are given in a fixed supply. Then we will show the existence
of equilibrium prices and rates that can be represented using rational numbers.

Let x;j; denote the amount of good j that is allocated to buyer ¢ from the
kth segment 8451 of S;j. Consider the following convex program:
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maximize Z m; log(u;) (1)
i€B
subject to Vie B: u; = Z Z Uik Tijk
JEG kES;;
VjEGI Z Z l’ijkgl
i€B kES;;

Vi e B, Vj € G,Vk € Sz‘j DTk < lz‘jk
Vi € B, Vj EG,VkGSij D Tk >0

Here the first constraint is ensuring that u; is the total utility of buyer ¢, the
second constraint is saying that the total good sold should not be more than one,
and the third constraint is saying that the amount allocated from each segment
should not exceed its size.

Let p; be the dual variable corresponding to good j in the second set of
constraints above. We will prove the following theorem in this section:

Theorem 1. Prices p are equilibrium prices if and only if they form an optimal
dual solution to convex program [

We will make two mild assumptions:

1. For every good 7, sz g >0 lijr > 1; that is, the supply of every good is
limited w.r.t the total demand of the buyers if there were no prices.

2. Each buyer ¢ desires some good; that is, u;;z > 0 for some segment s;;;, of
every buyer 1.

Note that, because of the 2™¢ assumption, in the optimal solution of the above
convex program, u; > 0 for every buyer i. Also the optimal solution satisfies
the following property: x;jr > 0 = ;5 = l;j: V¢ < k. This is so because if the
property is not true, we can transfer some quantity from the segment s;;, to a
segment s;;; (for some ¢ < k) and get a strictly higher objective function value.
Thus the final allocation obtained is a valid allocation.

The KKT conditions for the above convex program are:

(1) VjeG: p; >0,

(2) Vi € B, vj € G, Vk € Sij D Qijk > O,

(3) VJ eqG: pj > 0= ZZEB Zkes,;j Tijk = 1.
(4) Vie B, VjeG, Vk e Sij D Qe > 0= T = lijk,
(5) Vie B, Vj € GVk € Sij:pj + qijic > mi’;Zijk.
(6) Vi € B, V]’EGVRESZ‘]‘:a’,‘ijk>0=>pj—|—qijk:

mi.Uijk
U :

We will call p; to be the price of good j, and g;j1 to be the price differential,
which is unique for each buyer ¢, good j, and segment k € S;;. Also define the
rate of a buyer i (r;) to be . Note that from equation (6), for any segment

sijic for which @, is positive: r; = i = p;jf;’;k < U;J]’“ Thus if a segment s is

allocated, fully or partially, to buyer ¢, its bang-per-buck value is at least r;.
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Lemma 3. Corresponding to prices p given by the KKT conditions, the rate
Ty = ;2’ s optimal for each buyer i.

Proof. Suppose that for some segment s;;z, upj" >y = :zv then from the 5
KKT condition, we get that g¢;; is strictly positive, which from the 4th KKT
condition implies that z;;x = l;j5. Thus, from lemma [I] and lemma 2] we get
that the rate r; = :j;l is optimal for each buyer 1.

Lemma 4. Under assumption 1, for every good j, p; is strictly positive and j
is exactly sold, i.e., sz Tk = 1.

Proof. Suppose that the price of some good j is zero. Then from the 5! condition
above, g;;r > 0 for every segment s;j; for which wu;;, > 0. Thus along with
4th condition, this will imply that Zl & Tijk > 1 which violates the constraint
Zi’k Zijr < 1 in the convex program. Thus the price of every good is strictly
positive. Using 3"¢ condition, this implies that every good is completely sold,
i.e., Zi,k Tijk = 1.

From the above observations, finding an optimal solution of the above convex
program () is equivalent to finding a price vector p, a rate vector r, and alloca-
tions of the goods to the buyers (vector &) that satisfy the following equilibrium
conditions.

Us

1. For prices p, the rate r; = 18 optimal for each buyer i. Moreover, since
u; > 0, buyer ¢ spends his money completely.

2. No portion of a segment s is sold to a buyer i, if bpb(s) < r;.

3. All goods are sold out completely.

Thus, if prices p are optimal dual variables of the above convex program then
these prices are also equilibrium prices.

Now, suppose we are given equilibrium prices p; we will show that these prices
are also optimal dual variables. Given equilibrium prices, there exists optimal
rates r of buyers and allocation of goods x to the buyers, so that a segment s
is allocated to buyer 4 only if bpb(s) > r;. Moreover, if bpb(s) > r;, then the
segment s is fully allocated to buyer i. We will show the existence of variables
gijx’s such that the KK'T conditions are satisfied: if upJJ" > ;fl, set g;j1 so that
pﬁ;;’ik = :fji, else set ¢;jr = 0. It is not difficult to see that these ¢;;x’s along
with p,r, and x satisfies the KKT conditions. Thus prices p are optimal dual
variables. This finishes the proof of theorem [l

Theorem 2. If all the utilities u;;r ’s are rational, then there exists prices which
are rational and the rates are rational. Moreover, they can be written using poly-
nomially many bits in the length of the instance.

4 Introducing Production into the Convex Program

In this section we will introduce production into the convex program. Instead of
assuming that there is a fixed supply of goods, we will assume that the goods
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are produced by firms as discussed in section 1 and 2. We will show that a
single convex program can still be used to simultaneously optimize for each
firm’s objective function. For the ease of exposition, we will first assume constant
returns to scale. All the results can easily be extended for non-increasing returns
to scale. Suppose given prices ¢, firm f is optimizing the following linear program:

maximize Z CiYif (2)
jea
subject to  Vm : Z ajy - yir + Zb};ﬁ sy < df
JjeG l

Let x5, denote the amount of good j which is allocated to buyer ¢ corre-
sponding to the k" segment 8451 of S;;. Consider the following convex program:

maximize Z m; log(u;) (3)
i€B
subject to Vie B: u; = Z Z Uik Tijk
JEG kES;j
VjieG: Z Z xijkézyjf
i€B kES;; fEF
VfeF, Ym: Za}'} ~yjf—|-Zb};ﬁ-zzf <dy
jeG l

Vi € B, VjEG7 Vk‘ESZ‘jZ .’L‘Z‘jkgl,‘jk
VieB,VjEG,VkGSij:xijkz()
VfeF, VYl: zi5 >0

Here the first constraint is ensuring that wu; is the total utility of buyer 4,
the second constraint is ensuring that the total amount of any good sold to
the buyers should not be more than what is produced by the firms, the third
constraint is capturing the production constraints of the firms, and the fourth
constraint is saying that the amount allocated in each segment should not exceed
its size.

Our main theorem is the following:

Theorem 3. Prices p are equilibrium prices if and only if they form an optimal
dual solution to convex program (3). Moreover, equilibrium production is captured
by an optimal solution to primal variables y;;’s.

To prove the above theorem, we will again consider KKT equations. We will show
that the KKT equations have two different components, one which corresponds
to optimization of the buyers as was shown in previous section and other which
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corresponds to optimization of the firms. Following are the KKT conditions of
convex program (3.

(1) Vjed: p; >0,

(2) Vf € F,Vm: offt >0,

(3) Vi e B7 V] S C;7 Vk € Sl] D Qijk >0,

(A VjeG: pj>0= 3 icp es, Tijk = 2rer Yif-

(5) Vie B, Vj€G, Vk € Sl] D Qijk > 0= Tijk = l,‘jk,
(B)Vfe F,Ym: of >0= Y, ,al} ‘yjf.‘i’.zl by} - zip = A,
(7) Vi€ B, Vj € GVk € Sij : pj + qije > ™.

(8) Vie B, Vj e GVk € SZJ (i > 0= pj 4+ qijr = mi;‘jijk.
(9 VfeF VLY baf >0

(10) Vf e F\Vl:zip > 0= 3 bl}.aff =0

(A1) VjeGvVfeF: ) ajy.offt = p;

As earlier, we will call p; to be the price of good j, and g;jx to be the price
differential which is unique for each buyer ¢, good j, and segment k € S;;.

Lemma 5. Convex program (3) optimizes each firm’s profit at equilibrium.

Since the supply of goods is not fixed, we won’t make an assumption similar
to the first assumption in the previous section. Instead, we will work with a
slightly different, but standard, definition of equilibrium that if a good is not
sold completely, then its price must be zero. Following lemma easily follows from
the 4" KKT condition.

Lemma 6. For every good j, either price p; is zero or j is exactly sold, i.e.,
> ik Tijk = L. For prices p given by the KKT conditions, the rate r; = ' s
optimal for each buyer i.

Thus we have shown that optimal solution of the convex program satisfies the
following equilibrium conditions:

1. For prices p, the rate r; = #L’ is optimal for each buyer i. Moreover, since
u; > 0, buyer ¢ spends his money completely.

2. No portion of a segment s is sold to a buyer 4, if bpb(s) < ;.

3. If the price of some good is strictly positive, it is sold out completely.

4. Each firm’s production optimizes its profit.

The proof of the other direction, that any equilibrium solution is also a solution
to the convex program, is similar to that in Section [Bl This completes the proof
of Theorem Bl The following theorems will be proved in the full paper.

Theorem 4 (First Welfare). The utilities accrued by buyers at quilibrium
prices p and rates T are Pareto efficient.

Theorem 5 (Second Welfare). For any Pareto efficient utilities u*, there
exists a choice of money vector of buyers under which equilibrium utilities are

*

u".
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Abstract. The king of refinements of Nash equilibrium is trembling
hand perfection. We show that it is NP-hard and SQRT-SUM-hard to
decide if a given pure strategy Nash equilibrium of a given three-player
game in strategic form with integer payoffs is trembling hand perfect.
Analogous results are shown for a number of other solution concepts, in-
cluding proper equilibrium, (the strategy part of) sequential equilibrium,
quasi-perfect equilibrium and CURB.

The proofs all use a reduction from the problem of comparing the
minmax value of a three-player game in strategic form to a given rational
number. This problem was previously shown to be NP-hard by Borgs et
al., while a SQRT-SUM hardness result is given in this paper. The latter
proof yields bounds on the algebraic degree of the minmax value of a
three-player game that may be of independent interest.

1 Introduction

Celebrated recent results [TOJ6JT3] concern the computational hardness of finding
a Nash equilibrium of a given finite game in strategic form, i.e., a game given
by a finite payoff matrix for each of the players. In contrast, the problem of
deciding whether a given strategy profile of a game in strategic form is a Nash
equilibrium is trivial to solve efficiently. This latter fact can be regarded as an
important feature of Nash equilibrium as a scientific concept: It is feasible to
verify or falsify that a particular pure strategy profile we observe “in nature” is
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in equilibrium. The main message of the present paper is that this feature is not
shared by standard refinements of Nash equilibrium.

Arguably [0], the most important refinement of Nash equilibrium for games
in strategic form is Selten’s [25] notion of trembling hand perfection. The set of
trembling hand perfect equilibria is in general a subset of the Nash equilibria
of a game and many “unreasonable” Nash equilibria are not trembling hand
perfect, thus justifying the notion. However, we prove that this added degree
of rationality of the solution concept comes at a cost. We prove: It is NP-hard
to decide if a given pure strateqy Nash equilibrium of a given three-player game
in strategic form is trembling hand perfect. In particular, unless P=NP, there
is no polynomial time algorithm for deciding if a given equilibrium of a given
three-player game in strategic form is trembling hand perfect. In contrast to the
above hardness result, one may efficiently determine if a given equilibrium of a
two-player game is trembling hand perfect. Indeed, for the two-player case, an
equilibrium is trembling hand perfect if and only if it is undominated [9] and
this can be checked by linear programming in polynomial time.

The hardness result is extended to a number of other refinements, including
properness [24], sequential equilibriund}] [21] and quasi-perfect equilibrium [§] of
extensive form games, and the discrete solution concept CURB (Closed Under
Rational Behavior) [I], where the proof yields coNP-hardness. In all cases, the
hardness result is shown for games with three players. As is the case with trem-
bling hand perfection, CURB sets of two-player game can be verified and found
in polynomial time, using linear programming techniques [3].In contrast, we do
not know if the two-player case is easy for properness and quasi-perfection, and
leave this as an open problem.

After establishing the NP-hardness result, we next ask if the problem of de-
ciding whether an equilibrium is trembling hand perfect (or satisfies any of the
other refinements notions we consider) is even in NP. An NP-membership re-
sult would be somewhat beneficial for the status of an equilibrium concept as
a useful scientific concept, as it would mean that we can at least, with some
ingenuity, verify that a situation is in equilibrium, even if we can not in general
falsify this efficiently. For deciding trembling hand perfection, it seems that an
obvious nondeterministic algorithm would be to guess and verify a lexicographic
belief structure and appeal to the characterizations of Blume et al [4] and Govin-
dan and Klumpp [I5] of trembling hand perfection in terms of these. However,
it is not clear if the real numbers involved in such a belief structure can be
represented as polynomial length strings over a finite alphabet in a way that
yields to efficient verification. To argue that it is fact not possible to do so using
current knowledge, we apply the notion of SQRT-SUM hardness introduced by
Etessami and Yannakakis [12]. In particular, we show that deciding trembling
hand perfection (and all the other refinements considered) is SQRT-SUM hard
and therefore not in NP unless SQRT-SUM is in NP. Hence, devising a compact
representation of belief structures witnessing trembling hand perfection would
solve a long standing open problem of numerical analysis.

1 To be precise, the “strategy part” of a sequential equilibrium.
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The hardness proofs all use a reduction from the problem of comparing the
minmax value of a game in a strategic form to a given rational number. This
problem was previously shown to be NP-hard by Borgs et al., [5], while the
SQRT-SUM hardness result is given in this paper. The latter proof yields bounds
on the algebraic degree of the minmax value of a three-player game that may be
of independent interest.

1.1 Related Work

As mentioned, there is a lot of work on hardness of finding equilibria when the
game is given as input, or checking whether equilibria with certain properties
exists when the game is given as input. In contrast, we are not aware of much
previous work on the complexity of determining whether a given equilibrium
satisfies a refined stability notion. An exception is Etessami and Lochbihler [I1]
who show that it is NP-hard to determine if a given strategy in a symmetric
game in strategic form is an evolutionarily stable strategy.

2 NP-hardness of Trembling Hand Perfect and Proper
Equilibrium

We recall the definitions of Selten [25]. For a motivation and discussion of the
solution concept, we refer to the excellent monograph of van Damme [9].

Definition 1 (e-perfect equilibrium). A strategy profile o is an e-perfect
equilibrium iff it assigns strictly positive probability to all pure strategies, and
only pure strategies that are best replies get probability more than €.

Definition 2 (Trembling hand perfect equilibrium). A strategy profile o
is a trembling hand perfect equilibrium iff is the limit point of a sequence of
e-perfect equilibria with € — 0+.

Theorem 1. [t is NP-hard to decide if a given pure strategy Nash equilibrium
of a given three-player game in strategic form is trembling hand perfect.

Proof. Our proof is a reduction from the problem of approximately computing
minmax values of 3-player games with 0-1 payoffs. The minmax value of a 3-
player game is the smallest number v so that player 2 and player 3 can guarantee,
using uncorrelated mixed strategies, that player 1 does not get an expected payoff
larger than v. The problem of approximately computing this value was recently
shown to be NP-hard by Borgs et al [5]. In particular, it follows from Borgs et
al. that the following promise problem MINMAX is NP-hard:

MINMAX:

1. YES-instances: Pairs (G, r) for which the minmax value for Player 1 in the
3-player game G is strictly smaller than the rational number r.

2. NO-instances: Pairs (G, r) for which the minmax value for Player 1 in G is
strictly greater than r.
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In fact, by multiplying the payoffs of the game with the denominator of r,
we can without loss of generality assume that r is an integer. We now reduce
MINMAX to deciding trembling hand perfection.

Let G be a three-player game in strategic form and let » be an integer. We
define G’ be the game where the strategy space of each player is as in G, except
that it is extended by a single pure strategy, L. The payoffs of G’ are defined
as follow. The payoff to Players 2 and 3 are 0 for all strategy combinations.
The payoff to Player 1 is r for all strategy combinations where at least one
player plays L. For those strategy combinations where no player plays L, the
payoff to player 1 is the same as it would have been in the game G. Obviously,
w=(L,L,1)is a Nash equilibrium of G'.

We claim that if the minmax value for Player 1 in G is strictly smaller than
r, then p is a trembling hand perfect equilibrium of G'. Indeed, let (72, 73) be a
minmax strategy profile of Players 2 and 3 in G. Let 7 be any profile of G’ where
Players 2 and 3 play (72, 73). Also, let u be the strategy profile of G’ where each
player mixes all pure strategies uniformly. Now define

1 1 1 1
op=(1= = St T+ Lu

We have that o is a fully mixed strategy profile of G’ converging to p as
k — oo. Also, for sufficiently large k, the strategies of p are best replies to
ok. This follows from the fact that Players 2 and 3 are indifferent about the
outcome and the fact that Player 1 gets payoff r by playing | while he gets a
payoff strictly smaller than r for large values of k by playing any other strategy.
We conclude, using Theorem 2.2.5 in van Damme [J], that u is trembling hand
perfect, as desired.

On the other hand, we claim that if the minmax value for Player 1 in G is
strictly greater than r, then u is a not a trembling hand perfect equilibrium of
G'. Indeed, let (ok.1,0k2,0k,3)x be any sequence of fully mixed strategy profiles
converging to (L, L, 1). Since oy 2 and o 3 do not put all their probability mass
on L, Player 1 has a reply to (o 2, 0% 3) with an expected payoff strictly greater
than r. Therefore, L is not a best reply of Player 1 to (0,2, 0% 3) and we conclude
that (L, L, 1) is not trembling hand perfect.

That is, we have reduced the promise problem MINMAX to deciding trembling
hand perfection and are done. g

We now refine the proof so that it applies to proper equilibrium. Proper equilib-
rium was introduced by Myerson [24] as a further refinement of trembling hand
perfect equilibrium. For a motivation and discussion of the solution concept, we
refer to the excellent monograph of van Damme [9] or the survey of Hillas and
Kohlberg [18].

Definition 3 (e-proper equilibrium). A strategy profile o is an e-proper equi-
librium iff it assigns strictly positive probability to all pure strategies, and the fol-
lowing condition holds: Given two pure strategies, p; and p;, of the same player.
If p; is a worse reply against o than p;, then o must assign a probability to p;
that is at most € times the probability it assign to p;.
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Definition 4 (Proper equilibrium). A strategy profile o is a proper equilib-
rium iff is the limit point of a sequence of e-proper equilibria with ¢ — 0+.

Theorem 2. [t is NP-hard to decide if a given pure strategy Nash equilibrium
of a given three-player game in strategic form is proper.

Proof. We only need to make minor changes to the proof of NP-hardness of
trembling hand perfection to get the same result for proper equilibria. Construct
the game in the same way, with a new strategy L for each player. Define the strat-
egy 71,1 for Player 1 to be a permutation of (1 — > k=% k=1 k=2, ... kT,
such that worse replies against (72, 73) get more negative powers of k. In case two
pure strategies are equal against (72,73), compare against the uniform mix v of
Players 2 and 3, again with the worse reply getting the more negative powers of
k. This can be achieved by sorting the strategies of Player 1 lexicographically on
payoff against (72, 73) and the uniform strategy u, and then assigning powers in
decreasing order to the lower indices. Define 7 = (71,72, 73), Uk = (T1,k, U, U),
and p= (L, L1, 1). Now define

1 11
BT e e

oy is fully mixed of all finite k. Furthermore, if the minmax value for Player 1 in
G is less than r, then for any sufficiently large k, better replies of Player 1 gets
k' times higher probability than worse replies, thus satisfying the condition for
being a kl, -proper equilibrium, with ¥ = k/(1 -3, k™). Since oy, tends towards
w as k — oo, we therefore have that p is a proper equilibrium. If the minmax
value for Player 1 in G is greater than r, u is not even trembling hand perfect,
and therefore not proper either. u is therefore proper if and only if the minmax
value for Player 1 in G is less than r. O

O’k:(lf

3 NP-hardness of Refinements of Nash Equilibria for
Extensive form Games

An extensive form game is given by a finite tree with payoffs for each player at
the leaves, information sets partitioning nodes of the tree and with some of the
nodes having predefined moves of chance. An information set is a collection of
nodes of the same player, where the player cannot distinguish between them.
This can be used to model information hidden from the player, both as actively
hidden information in a game over time, and as a way of modelling simultaneous
moves. A player is said to have perfect recall if for each of the player’s information
sets, all nodes in the set share the same sequence of actions and information sets
of the player on the path from the root to the nodes. A game is said to be of
perfect recall, if all players have perfect recall. This is a standard assumption to
make, and one that the game produced by our reduction will satisfy.

Actions of a player are denoted by labels on edges of the tree. A behavior
strategy assigns probabilities to actions such that it forms probability distribu-
tions over the actions for each of the information sets. A Nash equilibrium in
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behavior strategies is a profile of behavior strategies so that no player wants to
deviate, given that other players play according to the profile. As is the case of
games in strategic form, it is straightforward to verify in polynomial time that
a given profile is a Nash equilibrium. For details, see e.g., Koller, Megiddo and
von Stengel [20] or any textbook on game theory.

The most important refinement of Nash equilibrium for game in sequential
form is the notion of sequential equilibrium due to Kreps and Wilson [21] is based
on the notion of beliefs. Formally, a belief of a player is a probability distribution
on each of his information sets. Intuitively, the belief should indicate the sub-
jective probability of the player of being in each of the nodes in the information
set, given that he has arrived at this information set. An assessment (p, p) is a
strategy profile p, and a belief profile u: a belief for each of the players. A se-
quential equilibrium is an assessment which is (1) consistent and (2) a sequential
best reply against itself, the former notion capturing that the beliefs are sensi-
ble given the strategies, and the latter notion capturing that the strategies are
sensible given the beliefs. We define these two notions formally next.

We first define consistency for fully mized strategy profiles, i.e., ones where
every action in every information set has a strictly positive probability of be-
ing taken. For such a strategy profile, the induced belief profile is the unique one
consistent with the strategy profile: The strategies being played out against each
other induces a probability distribution on possible plays; the induced belief as-
signs to information set u the conditional probability distribution on u derived
from this probability distribution. This is well-defined as at most one node in
u may be reached during each particular play (due to the perfect recall prop-
erty) and u has a non-zero probability of being reached (as the strategies are
fully mixed). The contribution of Kreps and Wilson is a generalization of this
consistency notion to strategy profiles where some of the information sets may
be reached with probability 0: For this general case, we say that an assessment
is consistent if it is the limit point of a sequence of consistent assessments with
fully mixed strategy profiles.

We next define what it means to be a sequential best reply against itself. For
each player, a strategy profile will assign an expected value to each node of the
tree, which is the expectation over the leaves given than play starts at that node
and follows the given probabilities of play. Given a belief as well, we can assign
an expected value to each action, being the expected value of the node reached
by taking the action for each node, weighted by the probability given by the
belief. An assessment is said to be a sequential best reply against itself, if all
players only assign positive probability to actions with maximal expected payoff,
given the strategy profile and belief.

Note that a sequential equilibrium is an assessment, i.e., a behavior strategy
profile and a belief profile. Our NP-hardness result applies when the input is the
“strategy-part” only.

Theorem 3. Given a pure strategy profile of an extensive form three-player
game, it is NP-hard to decide if it is part of an assessment that is a sequential
equilibrium.
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Proof. The reduction is again similar to that of trembling hand perfection. Given
a game (G in strategic form, construct an extensive form game G’ where the
players choose an action of G in turn, but without revealing the choice to the
other players. Player 2 chooses first, then Player 3, and finally Player 1. Each
Player now has a single information set, and the game is strategically equivalent
to G. Now give each player a new action L. If this action is chosen, the game
ends immediately without having the remaining players choose and action. If 1
is chosen by either player, the payoff to Player 1 is r, otherwise it is simply the
payoff from G.

_____

A e —m — — s

ru(l,1,1) ‘u(n,l,l) r u(l,n,n)’ ‘u(n,n,n)

Fig. 1. The extensive form game G’

We now argue that ¢ = (L, L, 1) is part of a sequential equilibrium iff the
minmax value of Player 1 in G is less than r.

Define 7 to be some strategy profile where Players 2 and 3 play minmax
against Player 1, and let u be the strategy profile with all players playing the
uniform distribution. As in the previous proofs, let

1 1 1 1
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o is fully mixed of all finite k. Furthermore, if the minmax value for Player 1
in G is less than r, then for any sufficiently large k, L will be the unique best
reply of Player 1 against . This also means that the expected value for Player
1 of choosing L given the induced belief of o will be strictly higher than for all
other actions, and this will also hold for the limit.

On the other hand, if the minmax value is greater than r, no strategy of
Players 2 and 3 will make 1 be the best reply of Player 1. Therefore, no belief
(consistent with a strategy of Players 2 and 3) will give a maximal expected
payoff to Player 1 playing 1.

1 is therefore part of a sequential equilibrium if and only if the minmax value
for Player 1 in G is less than r. g

op=(1-

Theorem [3] begs the following question: Can one check in polynomial time if
an entire assessment (a strategy profile and a belief profile) given as input is a
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sequential equilibrium? Kohlberg and Reny [19] present a finite-step algorithm
performing this task, but as they state it, their algorithm is exponential. It is
not clear to us if this problem is in P or if it is NP-hard and we consider this an
interesting open problem. It is interesting to note that this is in some contrast
with the situation for strategic form games: Perfect and proper equilibrium of
strategic form games can also be “backed up” by belief structures [4/15] and if a
rational-valued belief structure is given as part of the input, it is straightforward
to verify the equilibrium condition (however, as we argue in Section Bl a given
perfect strategy profile may require belief structures with no polynomial-size
representation - in particular, using algebraic numbers of very high degree may
be necessary).

A refinement of (the strategy part of) sequential equilibrium is quasi-perfect
equilibrium [§]. Despite the fact that quasi-perfect equilibrium is a lesser known
refinement that sequential equilibrium, it has been argued strongly by Mertens
[22] (see also [18]) that quasi-perfect equilibrium is the “right” equilibrium no-
tion of extensive form games. We omit the technically involved definition of
quasi-perfection, but note that it is straightforward to check that the reduction
in the proof of Theorem Bl maps “yes”-instance to equilibria that are not only se-
quential but also quasi-perfect. Since quasi-perfect equilibrium refines sequential
equilibrium, we also have that the reduction maps “no”-instances to equilibria
that are not quasi-perfect. Therefore we have the following corollary.

Corollary 1. It is NP-hard to decide if a given pure strateqy Nash equilibrium
of a given three-player game in extensive form is quasi-perfect.

4 coNP-hardness of CURB Sets

A set valued solution concept is Strategy Sets Closed Under Rational Behavior
(CURB) [1I.

Definition 5 (CURB set). In an m-player game, a family of sets of pure
strategies, S1,S2,...,Sm with S; being a subset of the strategy set of player i, is
closed under rational behavior (CURB) iff for all pure strategies x of Player i
so that x is a best reply to some product distribution on S1 X Sg X -+ X S;_1 X
Sit1 X -+ X Sy, we have that x € S;.

CURB sets are guaranteed always to exist, as the set of all pure strategies is
trivially CURB, as there are no pure strategies outside the set. The CURB
condition is usually paired with a minimality condition, so as not to get unnec-
essarily large solutions. This minimality condition would be the obvious place
to look for coNP-hardness, but we show here that simply checking the CURB
condition is coNP-hard. This also implies that it is not obvious that minimality
should even be contained in coNP.

Theorem 4. [t is coNP-hard to check whether a set of n pure strategies of each
player is CURB in an (n+ 1) x n x n strategic form game with integer payoffs.
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Proof. We again reduce from MINMAX, so let G be a three-player game in
strategic form and let r be an integer. We define G’ be the game where the
strategy space of each player is as in G, except that Player 1 gets an additional
strategy, 1. The payoffs of G’ are defined as follow. The payoff to Players 2 and
3 are 0 for all strategy combinations. The payoff to Player 1 is r, if he plays L,
and otherwise the payoff to player 1 is the same as it would have been in the
game G.

Now, the minmax value of G is less than r iff the set of all pure strategies
except L is CURB in G’. Indeed, if the minmax value of G is less than 7, then
Player 1’s best reply to the optimal treat of Players 2 and 3 is | in G’. The set
of all pure strategies except L is therefore not CURB. If the minmax value of
G is greater than r, then | is never a best reply in G, and the set of all other
strategies is CURB. O

5 Sqrt-Sum-hardness

SQRT-SUM is the following decision problem [16/14]: Given positive integers
ai1,az, ..., an, k, decide whether 7 | \/a; < k.

Though it is not unlikely that this problem is in P, we do not even know
if it is in NP at the moment. A decision problem is called SQRT-SUuM-hard if
SQRT-SUM reduces to it by a polynomial time many-one reduction. Etessami and
Yannakakis [12] pioneered the use of SQRT-SUM-hardness to argue that certain
problems are hard “given current state of the art”. It is important to notice that
unlike NP-hardness, SQRT-SUM-hardness should not be used as an indication
that a problem is actually hard, only as an indication that we do not know if it
is easy. In this section we show SQRT-SUM-hardness of the minmax value of a 3-
player game and thus by the previously described reductions give evidence that
it is not possible to decide the refined solution concepts in NP “given current
state of the art”.

Lemma 1. For every pair of probability distributions x and y on {1,...,n}
there exists another probability distribution z such that x;y; < 22 for all i.

Proof. If z;y; = 0 for all i we may pick z arbitrarily. Otherwise, define w; =
/iy for all i. By the Cauchy-Schwarz inequality we have

n

n n n
Zwi:Z\/xi\/yiS sz Z%‘Zl .
i=1 i1 i1

i=1
We may thus obtain the required z by letting z; = w; /(Y i, w;). |

Given positive numbers a1, ..., a, define the payoff to player 1 inann xn xn
game G(aq,...,a,) by letting uq(i,j,k) = —1/a; if i = j =k and uq(¢,7,k) =0
otherwise.

Proposition 1. The minmaz value for player 1 in the game G(aq,...,ay,) is

/(D Vai).
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Proof. If player 2 and player 3 play strategies p and ¢, player 1 may obtain payoff
max; —p;q;/a;. Let v be the minmax value for player 1. For optimal strategies
for player 2 and 3 we may assume by Lemma [I] that p = ¢, and furthermore
we must then have that v = —p?/a; for all 4, and thus p; = Vv —vy/a; for all i.
Summing over ¢ gives

n n n
1= Zpi = Z\/fv\/ai = \/fvz\/ai .
i=1 i=1 i=1
Squaring and rearranging gives

1
(i va)?

as stated. O

v=—

Theorem 5. Deciding whether the minmaz value for player 1 in an xXn xn
game is less than a given rational k is SQRT-SUM hard.

Proof. Deciding whether Z?:l \/a; < k reduces to decide for the minmax value
v for player 1 in the game G(ay,...,a,) whether v < — k12 by Proposition[l 0O

Corollary 2. It is SQRT-SUM hard to determine whether a given pure equilib-
rium in a 3-player game in strategic form with integer payoffs is trembling-hand
perfect or proper and whether a given pure equilibrium in a 3-player game in
extensive form with integer payoffs is quasi-perfect or the strategy part of a se-
quential equilibrium. It is also SQRT-SUM hard to test whether a given set of
pure strategies is not CURB. In particular, neither of these problems are in NP
unless SQRT-SUM is in NP.

Finally, we show that our reduction can also be used to give lower bounds on
the algebraic degree of the minmax value of a 3-player game. Such a result is
interesting for computational reasons: They indicate that if we want to compute
the eract minmax value of a 3-player game and want to represent the exact
irrational but algebraic answer in, say, a standard representation such as Thom
encoding [7], exponential space is needed even to represent the output.

For providing the lower bound of the algebraic degree of the minmax value
we use basic results from the theory of field extensions.

Proposition 2. The algebraic degree of the minmaz value for player 1 in a
n xnxn game can be 271,

Proof. Let aq,...,a, be arbitrary relatively prime positive integers, and let v
be the minmax value of the game G(a1,...,a,). We shall calculate the degree
[Q(v) : Q] of the field extension Q(v) of Q. It is well known that for relatively
prime positive integers ay, ..., a, we have [Q(\/a1,...,/an) : Q] = 2" (e.g. [23,
Example 11.5]). Furthermore, we have Q(y/a1 +---+/an) = Q(y/a1, ..., \/an).
By Proposition [l we have that —1/y/v = > | \/a;, and thus [Q(v/v) : Q] = 2.
Finally using [Q(v2) : Q] = [Q(v) : Q(][Q(r) - Q) < 2(Q(v) : Q) the result

follows. O
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One can give an almost matching upper bound using the general tool of quantifier
elimination for the first order theory of the reals.

Proposition 3. The algebraic degree of the minmax value for player 1 in a
nxmnxn game is 200

Proof. We may describe the minmax value by a first order formula P(v) with
free variable v, as P(v) := A(v) A B(v), where

n n n
A@)i=@pg € RY) N\ [ 2D wilijkipsae <v | ACK.a)
=1 \ j=1k=1

n n n
B(v) := (Vp,q € R") \/ SN waliyg k)pjar > v | AC(p.q)

j=1k=1

and C(p.q) = (N 21 = 0) A (Simy 2 = 1) A ALy 45 > 0) A (i 45 = 1),
We note that the degree of each polynomial in the formula is at most 2.
Thus applying the quantifier elimination procedure of Basu, Pollack and Roy [2]
to each of the formulas A(v) and B(v) yields equivalent quantifier free formu-
las A’(v) and B’(v) wherein each polynomial is of degree 2°(™). Tt follows that
A’(v) A B'(v) is quantifier free formula equivalent to P(v) wherein each poly-
nomial are univariate polynomials in v of degree 2°("). Now, since the actual
minmax value v is an isolated solution to this formula, it must satisfy one of the
polynomial equations involving a nonconstant polynomial with equality. We can
thus conclude it must be a root of a polynomial of degree 20(™), O

Remark 1. The above bound is especially relevant for the special case of kxn xn
games, where k is considered a constant [I7]. For this case one may find the
minmax value by considering all k x k x k subgames and the minmax value of
those. This also means that for fixed k one can in polynomial time compute
the Thom encoding of the minmax value of a given k X n x n game, employing
general algorithms for the first-order theory of the reals [2].
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Abstract. We investigate the computational aspects of safe manipulation, a new
model of coalitional manipulation that was recently put forward by Slinko and
White [10]. In this model, a potential manipulator v announces how he intends
to vote, and some of the other voters whose preferences coincide with those of
v may follow suit. Depending on the number of followers, the outcome could be
better or worse for v than the outcome of truthful voting. A manipulative vote
is called safe if for some number of followers it improves the outcome from v’s
perspective, and can never lead to a worse outcome. In this paper, we study the
complexity of finding a safe manipulative vote for a number of common voting
rules, including Plurality, Borda, k-approval, and Bucklin, providing algorithms
and hardness results for both weighted and unweighted voters. We also propose
two ways to extend the notion of safe manipulation to the setting where the fol-
lowers’ preferences may differ from those of the leader, and study the computa-
tional properties of the resulting extensions.

1 Introduction

Computational aspects of voting, and, in particular, voting manipulation, is an active
topic of current research. While the complexity of the manipulation problem for a sin-
gle voter is quite well understood (specifically, this problem is known to be efficiently
solvable for most common voting rules with the notable exception of STV [112]), the
more recent work has mostly focused on coalitional manipulation, i.e., manipulation
by multiple, possibly weighted voters. In contrast to the single-voter case, coalitional
manipulation tends to be hard. Indeed, it has been shown to be NP-hard for weighted
voters even when the number of candidates is bounded by a small constant [3]]. For un-
weighted voters, nailing the complexity of coalitional manipulation proved to be more
challenging. However, Faliszewski et al. [4] have recently established that this problem
is hard for most variants of Copeland, and Zuckerman et al [[12]] showed that it is easy
for Veto and Plurality with Runoff. Further, a very recent paper [11] makes substantial
progress in this direction, showing, for example, that unweighted coalitional manipula-
tion is hard for Maximin and Ranked Pairs, but easy for Bucklin (see Section 2] for the
definitions of these rules).

All of these papers (as well as the classic work of Bartholdi et al. [[1]) assume that
the set of manipulators is given exogenously, and the manipulators are not endowed
with preferences over the entire set of candidates; rather, they simply want to get a
particular candidate elected, and select their votes based on the non-manipulators’ pref-
erences that are publicly known. That is, this model abstracts away the question of how
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the manipulating coalition forms. However, to develop a better understanding of coali-
tional manipulation, it is desirable to have a plausible model of the coalition formation
process. In such a model the manipulators would start out by having the same type of
preferences as sincere voters, and then some agents—those who are not satisfied with
the current outcome and are willing to submit an insincere ballot—would get together
and decide to coordinate their efforts.

However, it is quite difficult to formalize this intuition so as to obtain a realistic
model of how the manipulating coalition forms. In particular, it is not clear how the
voters who are interested in manipulation should identify each other, and then reach an
agreement as to which candidate to promote. Indeed, the latter decision seems to call
for a voting procedure, and therefore is itself vulnerable to strategic behavior. Further,
even assuming that suitable coalition formation and decision-making procedures exist,
their practical implementation may be hindered by the absence of reliable two-way
communication among the manipulators.

In a recent paper [10]], Slinko and White put forward a model that provides a partial
answer to these questions. They consider a setting where a single voter v announces
his manipulative vote L (the truthful preferences of all agents are, as usual, common
knowledge) to his set of associates F/, i.e., the voters whose true preferences coincide
with those of v. As a result, some of the voters in F' switch to voting L, while others (as
well as all voters not in F') vote truthfully. This can happen if, e.g., v’s instructions are
broadcast via an unreliable channel, i.e., some of the voters in F' simply do not receive
the announcement, or if some voters in F' consider it unethical to vote non-truthfully.
Such a situation is not unusual in politics, where a public figure may announce her
decision to vote in a particular manner, and may be followed by a subset of like-minded
voters. That is, in this model, the manipulating coalition always consists of voters with
identical preferences (and thus the problem of which candidate to promote is trivially
resolved), and, moreover, the manipulators always vote in the same way. Further, it
relies on minimal communication, i.e., a single broadcast message. However, due to
lack of two-way communication, v does not know how many voters will support him
in his decision to vote L. Thus, he faces a dilemma: it might be the case that if x voters
from F' follow him, then the outcome improves, while if some y # x voters from
F switch to voting L, the outcome becomes even less desirable to v than the current
alternative (we provide an example in Section). If v is conservatively-minded, in such
situations he would choose not to manipulate at all. In other words, he would view L
as a successful manipulation only if (1) there exists a subset U C F' such that if the
voters in U switch to voting L, the outcome improves; (2) for any W C F, if the
voters in W switch to voting L the outcome does not get worse. Paper [10] calls any
manipulation that satisfies (1) and (2) safe. The main result of [[10] is a generalization
of the Gibbard—Satterthwaite theorem [[6l9] to safe manipulation: the authors prove that
any onto, non-dictatorial voting rule with at least 3 alternatives is safely manipulable,
i.e., there exists a profile in which at least one voter has a safe manipulation. However,
paper [10] does not explore the computational complexity of the related problems.

In the first part of this paper, we focus on algorithmic complexity of safe manipu-
lation, as defined in [[10]. We first formalize the relevant computational questions and
discuss some basic relationships between them. We then study the complexity of these
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questions for several classic voting rules, such as Plurality, Veto, k-approval, Bucklin,
and Borda, for both weighted and unweighted voters. For instance, we show that find-
ing a safe manipulation is easy for k-approval and for Bucklin, even if the voters are
weighted. In contrast, for Borda, finding a safe manipulation—or even checking that
a given vote is safe—turns out to be hard for weighted voters even if the number of
candidates is bounded by a small constant.

We then explore whether it is possible to extend the model of safe manipulation
to settings where the manipulator may be joined by voters whose preferences differ
from his own. Indeed, in real life a voter may follow advice to vote in a certain way
if it comes from a person whose preferences are similar (rather than identical) to hers,
or simply because she thinks that voting in this manner can be beneficial to her. For
instance, in politics, a popular personality may influence many different voters at once
by announcing his decision to vote in a particular manner. We propose two ways of
formalizing this idea, which differ in their approach to defining the set of a voter’s
potential followers, and provide initial results on the complexity of safe manipulation
in these models.

In our first extension, a manipulator v may be followed by all voters who rank the
same candidates above the current winner as v does. That is, in this model a voter u
may follow v if any change of outcome that is beneficial to v is also beneficial to u. We
show that some of the positive algorithmic results for the standard model also hold in
this more general setting. In our second model, a voter u may follow a manipulator v
that proposes to vote L, if, roughly, there are circumstances when voting L is beneficial
to . This model tends to be computationally more challenging: we show that finding a
safe strategic vote in this setting is hard even for very simple voting rules.

We conclude the paper by summarizing our results and proposing several directions
for future research. Due to space constraints, most of the proofs are omitted.

2 Preliminaries and Notation

An election is given by a set of candidates (or, alternatives) C' = {c1,...,¢n} and a
set of voters V' = {1,...,n}. Each voter i is represented by his preference R;, which
is a total order over C'; we will also refer to total orders over C' as votes. For readability,
we will sometimes denote the order R; by ;. The vector R = (Ry,..., R,) is called
a preference profile. We say that two voters ¢ and j are of the same type if R; = R;; we
write V; = {j | R; = R;}. A voting rule F is a mapping from the set of all preference
profiles to the set of candidates; if F(R) = ¢, we say that ¢ wins under F in R. A
voting rule is said to be anonymous if F(R) = F(R'), where R’ is a preference profile
obtained by permuting the entries of R. To simplify the presentation, in this paper we
consider anonymous voting rules only. In addition, we restrict ourselves to voting rules
that are polynomial-time computable. During the election, each voter ¢ submits a vote
L;; the outcome of the election is then given by F(Ly, ..., L,). We say that a voter i
is truthful if L; = R;. For any U C V and a vote L, we denote by R_y (L) the profile
obtained from R by replacing R; with L foralli € U.

Voting rules. We will now define the voting rules considered in this paper. All of these
rules assign scores to all candidates; the winner is then selected among the candidates
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with the highest score using a tie-breaking rule, i.e., a mapping T' : 2¢ — C that
satisfies T'(S) € S. Unless specified otherwise, we assume that the tie-breaking rule is
lexicographic, i.e., given a set of tied alternatives, it selects one that is maximal with
respect to a fixed ordering >.

Given a vector @ = (aq, ..., Q) With g >+ > quy, the score s,(c) of a candi-
date ¢ € C'under a positional scoring rule F, is givenby » .\, a;(; oy, Where j (i, c) is
the position in which voter ¢ ranks candidate c. Many classic voting rules can be repre-
sented using this framework. Indeed, Plurality is the scoring rule with & = (1,0, .. ., 0),
Veto (also known as Antiplurality) is the scoring rule with & = (1, ..., 1,0), and Borda
is the scoring rule with « = (m—1,m —2,...,1,0). Further, k-approval is the scoring
rule with o givenby a; = -+ - = ax = 1, ag4+1 = - - - = a,, = 0; we will also refer to
(m — k)-approval as k-veto.

Bucklin rule can be viewed as an adaptive version of k-approval. We say that k,
1 < k < m, is the Bucklin winning round if for any j < k no candidate is ranked in
top j positions by at least [n/2] voters, and there exists some candidate that is ranked
in top k positions by at least [n/2] voters. We say that the candidate ¢’s score in round
Jj is his j-approval score, and his Bucklin score sg(c) is his k-approval score, where
k is the Bucklin winning round. The Bucklin winner is the candidate with the highest
Bucklin score. Observe that the Bucklin score of the Bucklin winner is at least [n/2].

Weighted voters. Our model can be extended to the situation where not all voters are
equally important by assigning an integer weight w; to each voter ¢. To compute the
winner on a profile (Ry, ..., R,) under a voting rule F given voters’ weights w =
(wr,...,wy), we apply F on a modified profile which for each ¢ = 1,...,n contains
w; copies of R;. As an input to our problems we usually get a voting domain, i.e., a
tuple S = (C, V, w, R), together with a specific voting rule. When w = (1,...,1), we
say that the voters are unweighted. For each U C V, let |U| be the number of voters in
U and let w(U) be the total weight of the voters in U.

Safe manipulation. We will now formally define the notion of safe manipulation. For
the purposes of our presentation, we can simplify the definitions in [10] considerably.

As before, we assume that the voters’ true preferences are given by a preference
profile R = (Ry,..., Ry).

Definition 1. We say that a vote L is an incentive to vote strategically, or a strategic
vote for i at R under F, if L # R; and for some U C V; we have F(R_y (L)) >
F(R). Further, we say that L is a safe strategic vote for a voter ¢ at R under F if
L is a strategic vote at R, and for any U C V; either F(R_y (L)) »=; F(R) or
F(R-v(L)) = F(R).

To build intuition for the notions defined above, consider the following example.

Example 1. Suppose C = {a,b,c,d},V = {1,2, 3,4}, the first three voters have pref-
erence b > a > ¢ > d, and the last voter has preference ¢ > d > a > b. Suppose
also that the voting rule is 2-approval. Under truthful voting, a and b get 3 points, and
c and d get 1 point each. Since ties are broken lexicographically, a wins. Now, if voter
1 changes his vote to L = b > ¢ > a > d, b gets 3 points, a gets 2 points, and c gets
2 points, so b wins. As b =1 a, L is a strategic vote for 1. However, it is not a safe
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strategic vote: if players in V4 = {1, 2,3} all switch to voting L, then ¢ gets 4 points,
while b still gets 3 points, so in this case ¢ wins and a > c.

3 Computational Problems: First Observations

The definition of safe strategic voting gives rise to two natural algorithmic questions.
In the definitions below, F is a given voting rule and the voters are assumed to be
unweighted.

— ISSAFE(F): Given a voting domain, a voter ¢ and a linear order L, is L a safe
strategic vote for ¢ under F?

— EXISTSAFE(F): Given a voting domain and a voter ¢, can voter ¢ make a safe
strategic vote under F?

The variants of these problems for weighted voters will be denoted, respectively, by
WISSAFE(F) and WEXISTSAFE(F). Note that, in general, it is not clear if an effi-
cient algorithm for (W)EXISTSAFE(F) can be used to solve (W)ISSAFE(F), or vice
versa. However, if the number of candidates is constant, (W)EXISTSAFE(F) reduces
to (W)ISSAFE(F). We state the following two results (the easy proofs are omitted) for
weighted voters; clearly, they also apply to unweighted voters.

Proposition 1. Consider any voting rule F. For any constant k, if |C| < k, then a
polynomial-time algorithm for WISSAFE(F) can be used to solve WEXISTSAFE(F) in
polynomial time.

A similar reduction exists when each voter only has polynomially many “essentially
different” votes.

Proposition 2. Consider any scoring rule F., that satisfies either (i) a; = 0 for all
Jj > kor(ii)a; = 1forall j < m—k, where k is a given constant. For any such rule, a
polynomial-time algorithm for WISSAFE(F,,) can be used to solve WEXISTSAFE(F,,)
in polynomial time.

Observe that the class of rules considered in Proposition 2]includes Plurality and Veto,
as well as k-approval and k-veto when k is bounded by a constant.
Further, for unweighted voters it is easy to check if a given manipulation is safe.

Proposition 3. The problem ISSAFE(F) is in P for any (anonymous) voting rule F.

Together with Propositions[Iland 2] Proposition Blimplies that EXISTSAFE(F) is in P
for Plurality, Veto, k-veto and k-approval for constant k, as well as for any voting rule
with a constant number of candidates.

Note that when voters are weighted, the conclusion of Proposition[3]no longer holds.
Indeed, in this case the number of subsets of V; that have different weights (and thus
may have a different effect on the outcome) may be exponential in n. However, it is not
hard to show that the problem remains easy when all weights are small (polynomially
bounded).
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4 Plurality, Veto, and k-approval

We will now show that the easiness results for k-approval and k-veto extend to arbitrary
k < m and weighted voters (note that the distinction between k-veto and (m — k)-
approval only matters for constant k).

Theorem 1. For k-approval, the problems WISSAFE and WEXISTSAFE are in P.

Proof. Fix a voter v € V. To simplify notation, we renumber the candidates so that v’s
preference order is given by ¢; > ... >, ¢m. Denote v’s truthful vote by R. Recall that
V., denotes the set of voters who have the same preferences as v. Suppose that under
truthful voting the winner is ¢;. For i = 1,...,m, let s;(R’) denote the k-approval
score of ¢; given a profile R’, and set s; = s;(R).

We start by proving a useful characterization of safe strategic votes for k-approval.

Lemma 1. A vote L is a safe strategic vote for v if and only if the winner in R _v,, (L)
is a candidate c; with 1 < j.

Proof. Suppose that L is a safe strategic vote for v. Then there exists an ¢ < j and a
U C V, such that the winner in R _¢; (L) is ¢;. It must be the case that each switch from
R to L increases c;’s score or decreases c¢;’s score: otherwise ¢; cannot beat c; after the
voters in U change their vote from 2 to L. Therefore, if ¢; beats c; when the preference
profile is R_y; (L), it continues to beat ¢; after the remaining voters in V;, switch, i.e.,
when the preference profile is R _v, (L). Hence, the winner in R _v;, (L) is not ¢;; since
L is safe, this means that the winner in R_v,, (L) is ¢, for some £ < j.

For the opposite direction, suppose that the winner in Ry, (L) is ¢; for some i < j.
Note that if two candidates gain points when some subset of voters switches from R to
L, they both gain the same number of points; the same holds if both of them lose points.

Now, if j > k, a switch from R to L does not lower the score of c;, so it must
increase the score of ¢; for it to win in R_y, (L). Further, if a switch from R to L
grants points to some ¢y # ¢;, then either sy < s; or s, = s; and the tie-breaking rule
favors ¢; over ¢;: otherwise, ¢; would not be the winner in R_y, (L).

Similarly, if j < k, a switch from R to L does not increase the score of ¢;, so it
must lower the score of c;. Further, if some c¢; # ¢; does not lose points from a switch
from R to L, then either sy < s; or sy = s; and the tie-breaking rule favors c; over c;:
otherwise, ¢; would not be the winner in R_y,, (L).

Now, consider any U C V,,. If s;(R_y(L)) > s;(R_u(L)), then ¢; is the winner.
If s;(R_u (L)) > s;(R_y(L)), then ¢; is the winner. Finally, suppose s;(R_y (L)) =
sj(R—u(L)). By the argument above, no other candidate can have a higher score. So,
suppose that sg(R_y7(L)) = s;(R_u(L)), and the tie-breaking rule favors ¢, over ¢;
and c;. Then this would imply that ¢, wins in R or R_y, (L) (depending on whether
a switch from R to L causes ¢y to lose points), a contradiction. Thus, in this case, too,
either ¢; or ¢; wins. O

Lemma [I] immediately implies an algorithm for WISSAFE: we simply need to check
that the input vote satisfies the conditions of the lemma. We now show how to use it to
construct an algorithm for WEXISTSAFE. We need to consider two cases.
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Jj > k: In this case, the voters in V,, already do not approve of ¢; and approve of all
¢;, © < k. Thus, no matter how they vote, they cannot ensure that some ¢;, i < k, gets
more points than ¢;. Hence, the only way they can change the outcome is by approving
of some candidate ¢;, k < ¢ < j. Further, they can only succeed if there exists an
i=k+1,...,5 — 1such thateither s; + w(V,) > s; or s; + w(V,) = s; and the tie-
breaking rule favors c¢; over c;. If such an 7 exists, v has an incentive to manipulate by
swapping c; and ¢; in his vote. Furthermore, it is easy to see that any such manipulation
is safe, as it only affects the scores of ¢; and ¢;.

j <k: In this case, the voters in V,, already approve of all candidates they prefer to
¢;, and therefore they cannot increase the scores of the first j — 1 candidates. Thus, their
only option is to try to lower the scores of ¢; as well as those of all other candidates
whose score currently matches or exceeds the best score among s1,...,5;_1.

Set Cy = {c1,...,¢j—1}, Cy = {¢j,...,cm}. Let Cy be the set of all candidates
in Cy whose k-approval score is maximal, and let sy,ax be the k-approval score of the
candidates in Cjy. For any ¢, € Cb, let 52 denote the number of points that ¢, gets from
all voters in V' '\ V,; we have sj = s, fork < £ < mand s, = s, — w(V,) for

= j,..., k. Now, it is easy to see that v has a safe manipulation if and only if the
following conditions hold:

— Forall ¢; € Cy either s < Smax, OF S) = Smax and there exists a candidate ¢ € Cy
such that the tie-breaking rule favors c over c¢y;

— There exist a set Csage C Ch, |Csate] = k — j + 1, such that for all ¢; € Ciage either
sp+ w(Vy) < Smax OF 8y + w(V,,) = smax and there exists a candidate ¢ € Cj
such that the tie-breaking rule favors c over cy.

Note that these conditions can be easily checked in polynomial time by computing s,
and s forall/ =1,...,m.

Indeed, if such a set Ci,5 exists, voter v can place the candidates in Cl,¢e in positions
J,--.,k in his vote; denote the resulting vote by L. Clearly, if all voters in V,, vote
according to L, they succeed to elect some ¢ € Cp. Thus, by Lemma Il L is safe.
Conversely, if a set Csafe With these properties does not exist, then for any vote L # R
the winner in R_y, (L) is a candidate in Cj, and thus by Lemma 1 L is notsafe. O

We remark that Theorem[lcrucially relies on the fact that we break ties based on a fixed
priority ordering over the candidates. Indeed, it can be shown that there exists a (non-
lexicographic) tie-breaking rule such that finding a safe vote with respect to k-approval
combined with this tie-breaking rule is computationally hard (assuming k is viewed as
a part of the input). As the focus of this paper is on lexicographic tie-breaking, we omit
the formal statement and the proof of this fact.

In contrast, we can show that any scoring rule with 3 candidates is easy to manipulate
safely, even if the voters are weighted and arbitrary tie-breaking rules are allowed.

Theorem 2. WISSAFE(F) is in P for any voting rule F obtained by combining a po-
sitional scoring rule with at most three candidates with an arbitrary tie-breaking rule.
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5 Bucklin and Borda

Bucklin rule is quite similar to k-approval, so we can use the ideas in the proof of
Theorem [Tl to design a polynomial-time algorithm for finding a safe manipulation with
respect to Bucklin. However, the proof becomes significantly more complicated.

Theorem 3. For the Bucklin rule, WEXISTSAFE is in P.

Interestingly, despite the intuition that WISSAFE should be easier than WEXISTS AFE,
it turns out that WISSAFE for Bucklin is coNP-hard.

Theorem 4. For the Bucklin rule, WISSAFE is coNP-hard, even for a constant number
of candidates.

For Borda, unlike k-approval and Bucklin, both of our problems are hard when the
voters are weighted.

Theorem 5. For the Borda rule, WISSAFE and WEXISTSAFE are coNP-hard. The
hardness result holds even if there are only 5 candidates.

6 Extensions of the Safe Strategic Voting Model

So far, we followed the model of [[10] and assumed that the only voters who may change
their votes are the ones whose preferences exactly coincide with those of the manipu-
lator. Clearly, in real life this assumption does not always hold. Indeed, a voter may
follow a suggestion to vote in a certain way as long as it comes from someone he trusts
(e.g., a well-respected public figure), and this does not require that this person’s pref-
erences are completely identical to those of the voter. For example, if both the original
manipulator v and his would-be follower u rank the current winner last, it is easy to see
that following v’s recommendation that leads to displacing the current winner is in u’s
best interests.

In this section, we will consider two approaches to extending the notion of safe
strategic voting to scenarios where not all manipulators have identical preferences. In
both cases, we define the set of potential followers for each voter (in our second model,
this set may depend on the vote suggested), and define a vote L to be safe if, when-
ever a subset of potential followers votes L, the outcome of the election does not get
worse (and sometimes gets better) from the manipulator’s perspective. However, our
two models differ in the criteria they use to identify a voter’s potential followers.

Preference-Based Extension. Our first model identifies the followers of a given voter
based on the similarities in voters’ preferences.

Fix a preference profile R and a voting rule F, and let ¢ be the winner under truthful
voting. Forany v € V, let I (v, ¢) denote the set of candidates that v ranks strictly above
c. We say that two voters u and v are similar if I(u,c) = I(v,c). A similar set S, of
a voter v for a given preference profile R and a voting rule F is given by S, = {u |
I(u,c¢) = I(v,c)}. (The set S, depends on R and F; however, for readability we omit
‘R and F from the notation).
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Note that if v and v are similar, they rank c in the same position. Further, a change
of outcome from c to another alternative is positive from wu’s perspective if and only if
it is positive from v’s perspective. Thus, intuitively, any manipulation that is profitable
for u is also profitable for v. Observe also that similarity is an equivalence relation, and
the sets S, are the corresponding equivalence classes. In particular, this implies that for
any u,v € V either S, = S, or S, N S, = 0.

We can now adapt Definition [Tl to our setting by replacing V;, with S,,.

Definition 2. A vote L is a strategic vote in the preference-based extension for v at R
under F if for some U C S, we have F(R_y(L)) =, F(R). Further, we say that L
is a safe strategic vote in the preference-based extension for a voter v at R under F if
L is a strategic vote at R under F, and for any U C S,, either F(R_y (L)) >, F(R)
or F(R_uy(L)) = F(R).

Observe that if L is a (safe) strategic vote for v at R under F, then it is also a (safe)
strategic vote for any v € S,. Indeed, u € S, implies S,, = 5, and for any a € C we
have a >=,, F(R) if and only if @ >, F(R). Note also that we do not require L # R,;:
indeed, in the preference-based extension . = R, may be a non-trivial manipulation,
as it may induce voters in S, \ {v} to switch their preferences to R,,. That is, a voter
may manipulate the election simply by asking other voters with similar preferences to
vote like he does. Finally, it is easy to see that for any voter v, the set .S,, of similar
voters is easy to compute.

The two computational problems considered throughout this paper, i.e., the safety of
a given manipulation and the existence of a safe manipulation remain relevant for the
preference-based model. We will refer to these problems in this setting as ISSAFEP”
and EXISTSAFE?", respectively, and use prefix W to denote their weighted variants. The
problems (W)ISSAFEP” and (W)EXISTSAFEP" appear to be somewhat harder than their
counterparts in the original model. Indeed, while voters in .S,, have similar preferences,
their truthful votes may be substantially different, so it now matters which of the voters
in S, decide to follow the manipulator (rather than just how many of them, as in the
original model). In particular, it is not clear if [SSAFEP" (F) is polynomial-time solvable
for any voting rule F. However, it turns out that both of our problems are easy for k-
approval, even with weighted voters.

Theorem 6. For k-approval, the problems WISSAFEP” and WEXISTSAFEP” are in P.

In the preference-based model, a voter v follows a recommendation to vote in a partic-
ular way if it comes from a voter whose preferences are similar to those of v. However,
this approach does not describe settings where a voter follows a recommendation not
so much because he trusts the recommender, but for pragmatic purposes, i.e., because
the proposed manipulation advances her own goals. Clearly, this may happen even if
the overall preferences of the original manipulator and the follower are substantially
different. We will now propose a model that aims to capture this type of scenarios.

Goal-Based Extension. If the potential follower’s preferences are different from those
of the manipulator, his decision to join the manipulating coalition is likely to depend on
the specific manipulation that is being proposed. Thus, in this subsection we will define
the set of potential followers F' in a way that depends both on the original manipulator’s
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identity ¢ and his proposed vote L, i.e., we have F' = F;(L). Note, however, that it is
not immediately obvious how to decide whether a voter j can benefit from following i’s
suggestion to vote L, and thus should be included in the set F;(L). Indeed, the benefit to
Jj depends on which other voters are in the set F; (L), which indicates that the definition
of the set F;(L) has to be self-referential.

In more detail, for a given voting rule F, an election (C, V') with a preference profile
R,avoter ¢ € V and a vote L, we say that a voter j is pivotal for a set U C 'V with
respect to (i, L) if j ¢ U, R; # L and F(R_(yug,y) (L)) =5 F(R_u(L)). Thatis, a
voter j is pivotal for a set U if when the voters in U vote according to L, it is profitable
for j to join them. Now, it might appear natural to define the follower set for (i, L) as
the set that consists of ¢ and all voters j € V that are pivotal with respect to (¢, L) for
some set U C V. However, this definition is too broad: a voter is included as long as
it is pivotal for some subset U C V, even if the voters in U cannot possibly benefit
from voting L. To exclude such scenarios, we need to require that U itself is also drawn
from the follower set. Formally, we say that F;(L) is a follower set for (i, L) if it is a
maximal set F’ that satisfies the following condition:

Vie F[(j=1t) Vv (3U C Fs.t. jis pivotal for U with respect to (¢, L))]  (*)

Observe that this means that F;(L) is a fixed point of a mapping from 2" to 2V, i.e., this
definition is indeed self-referential. To see that the follower set is uniquely defined for
any i € V and any vote L, note that the union of any two sets that satisfy condition )
also satisfies (®); note also that we always have i € F;(L).

We can now define what it means for L to be a strategic vote in the goal-based ex-
tension and a safe strategic vote in the goal-based extension by replacing the condition
U C S; in DefinitionRlwith U C F;(L). We will denote the computational problems of
checking whether a given vote is a safe strategic vote for a given voter in the goal-based
extension and whether a given voter has a safe strategic vote in the goal-based extension
by ISSAFEY and EXISTSAFEY!, respectively, and use the prefix W to refer to weighted
versions of these problems.

Two remarks are in order. First, it may be the case that even though ¢ benefits from
proposing to vote L, he is never pivotal with respect to (¢, L) (this can happen, e.g.,
if 2’s weight is much smaller that that of the other voters). Thus, we need to explicitly
include 7 in the set F;(L), to avoid the paradoxical situation where ¢ ¢ F;(L). Second,
our definition of a safe vote only guarantees safety to the original manipulator, but not
to her followers. In contrast, in the preference-based extension, any vote that is safe for
the original manipulator is also safe for all similar voters.

The definition of a safe strategic vote in the goal-based extension captures a number
of situations not accounted for by the definition of a safe strategic vote in the preference-
based extension. However, computationally it is considerably harder to deal with than
the preference-based extension. Indeed, it is not obvious how to compute the set F; (L),
as its definition is non-algorithmic in nature. While one can consider all subsets of V'
and check whether they satisfy condition (#), this approach is obviously inefficient. We
can avoid full enumeration if have access to a procedure A(i, L, j, W) that for each
pair (i, L), each voter j € V and each set W C V can check if j = i or there is a set
U C W such that j is pivotal for U with respect to (¢, L). Indeed, if this is the case, we
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can compute F;(L) as follows. We start with W =V, run A(4, L, j, W) forall j € W,
and let W’ to be the set of all voters for which A(%, L, j, W) outputs “yes”. We then
set W = W, and iterate this step until W = W”’. In the end, we set F;(L) = W. The
correctness of this procedure can be proven by induction on the number of iterations and
follows from the fact that if a set I contains no subset U that is pivotal for j, then no
smaller set W/ C W can contain such a subset. Moreover, since each iteration reduces
the size of W, the process converges after at most n iterations. Thus, this algorithm runs
in polynomial time if the procedure A(4, L, j, W) is efficiently implementable. We will
now show that this is indeed the case for Plurality (with unweighted voters).

Theorem 7. Given an election (C, V') with a preference profile R and unweighted vot-
ers, a manipulator i, and a vote L, we can compute the set F;(L) with respect to Plu-
rality in time polynomial in the input size.

We can use Theorem [7] to show that under Plurality one can determine in polynomial
time whether a given vote L is safe for a player ¢, as well as find a safe strategic vote
for 7 if one exists, as long as the voters are unweighted.

Theorem 8. ISSAFEY and EXISTSAFEY are polynomial-time solvable for Plurality.

For weighted voters, computing the follower set is hard even for Plurality. While this
result does not directly imply that WISSAFEY' and WEXISTSAFEY are also hard for
Plurality, it indicates that these problems are unlikely to be easily solvable.

Theorem 9. Given an instance (C,V,w, R) of Plurality elections, voters i,j € V and
avote L, it is NP-hard to decide whether j € F;(L).

Just a little further afield, checking whether a given vote is safe with respect to 3-
approval is computationally hard even for unweighted voters. This is in contrast with
the standard model and the preference-based extension, where safely manipulating k-
approval is easy for arbitrary k.

Theorem 10. ISSAFEY is coNP-hard for 3-approval.

Thus, while the preference-based extension appears to be