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Preface

The present volume was devoted to the third edition of the International Sympo-
sium on Algorithmic Game Theory (SAGT), an interdisciplinary scientific event
intended to provide a forum for researchers as well as practitioners to exchange
innovative ideas and to be aware of each other’s efforts and results. SAGT 2010
took place in Athens, on October 18–20, 2010. The present volume contains
all contributed papers presented at SAGT 2010 together with the distinguished
invited lectures of Amos Fiat (Tel-Aviv University, Israel), and Paul Goldberg
(University of Liverpool, UK). The two invited papers are presented at the be-
ginning of the proceedings, while the regular papers follow in alphabetical order
(by the authors’ names).

In response to the call for papers, the Program Committee (PC) received 61
submissions. Among the submissions were four papers with at least one coauthor
that was also a PC member of SAGT 2010. For these PC-coauthored papers,
an independent subcommittee (Elias Koutsoupias, Paul G. Spirakis, and Xiaotie
Deng) made the judgment, and eventually two of these papers were proposed for
inclusion in the Scientific Program. For the remaining 57 (non-PC-coauthored)
papers, the PC of SAGT 2010 conducted a thorough evaluation (at least 3,
and on average 3.9 reviews per paper) and electronic discussion, and eventually
selected 26 papers for inclusion in the Scientific Program.

An additional tutorial, “Games Played in Physics”, was also provided
in SAGT 2010, courtesy of the academic research network Algogames
(Aλγoπaιγνιo) of the University of Patras.

We wish to thank the creators of the EasyChair System, a free conference
management system provided and supported by the group of Andrei Voronkov,
which significantly assisted the work of the PC.

August 2010 Spyros Kontogiannis
Elias Koutsoupias
Paul G. Spirakis
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When the Players Are Not Expectation
Maximizers

Amos Fiat1 and Christos Papadimitriou2

1 School of Computer Science
Tel Aviv University
fiat@tau.ac.il

2 Computer Science Division
University of California at Berkeley

christos@cs.berkeley.edu

Abstract. Much of Game Theory, including the Nash equilibrium con-
cept, is based on the assumption that players are expectation maximiz-
ers. It is known that if players are risk averse, games may no longer have
Nash equilibria ([11,6]. We show that
1. Under risk aversion (convex risk valuations), and for almost all games,

there are no mixed Nash equilibria, and thus either there is a pure
equilibrium or there are no equilibria at all, and,

2. For a variety of important valuations other than expectation, it is
NP-complete to determine if games between such players have a
Nash equilibrium.

1 Introduction

In 1950 John Nash proved that every game has a mixed equilibrium. Myerson
[17] gives a plethora of reasons as to why Nash’s theorem (and his proposed
framework of rationality in normal form games) underlies the foundations of
modern economic thought. In recent years a computationally inspired challenge
to the concept of mixed Nash equilibrium has arisen, see, e.g., [7,4], and the
universality of the concept has become questionable in face of intractability
results. In this paper we pursue another line of critique of the Nash equilibrium.
In particular, we show that Nash’s Theorem does not hold if the players are
not expectation maximizers, in that almost all games fail to have a mixed Nash
equilibrium (Theorem 3), and that it is NP-hard1 to tell those that do from
those that do not (Theorem 5). To understand our results in context, we begin
by reviewing the rich literature on risk in Economics.

1.1 A Brief History of Risk

In many ways, risk is a defining characteristic of the modern world, and the
analytical problems associated with it were pointed out early. Nicolas Bernoulli
1 NP-hardness is stronger evidence of intractability than the PPAD-completeness of

finding a Nash Equilibrium ([7,4]).

S. Kontogiannis, E. Koutsoupias, P.G. Spirakis (Eds.): SAGT 2010, LNCS 6386, pp. 1–14, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



2 A. Fiat and C. Papadimitriou

(1687 – 1759) posed the famous “St. Petersburg Paradox” [22], exposing the
inadequacy of expectation in decision-making, and some decades later his nephew
Daniel Bernoulli (1700 – 1782) [2] provided a solution by proposing to distinguish
between money and the utility of money, and to model risk aversion by a utility
function that is concave.

Two centuries later, Emil Borel [3] and John von Neumann [19] initiated the
study of strategic behavior, and, two dacades later, von Neumann and Oskar
Morgenstern published their “Theory of Games and Economic Behavior” [20],
where they expounded their Expected Utility Theory (EUT). They postulated
that the risk behavior of an agent can be modeled as a (risk) valuation V mapping
lotteries (distributions over the reals) to the reals2. If this valuation satisfies
some plausible axioms equivalent to linearity, then the agent’s behavior can be
captured by a utility function, and the agent behaves as a maximizer of the
expectation of his utility. A few years later, John Nash extended the work of
von Neumann and Morgenstern to non-zero sum non-cooperative games [18],
and showed that a mixed strategy equilibrium always exists; note that Nash’s
Theorem is stated in the context of EUT. EUT can capture both risk-seeking
and risk-averting agent behavior by having a valuation function that is convex
or concave, respectively3.

In 1948, Friedman and Savage [8] attempted to deal with criticism of expected
utility and considered models where utility is either a concave or convex function
of money. Portfolio theory, developed in much more empirical and less princi-
pled/axiomatic manner from 1950 onwards by Marschak [16], Markowitz [15,14]
and many others [24,27], considered valuations (functions from distributions to
the reals) of the form “expectation minus variance” or “expectation minus stan-
dard deviation” as a model of agent behavior in the face of financial risk. E.g.,
the optimal portfolio for a given expected value is the one with minimum vari-
ance. There is no way to cast such behavior within the framework of Expected
Utility Theory.

Independently, in 1951 Maurice Allais [1] suggested that there are problems
with “the American School”, i.e., he raised issues with the von Neumann-
Morgenstern EUT. One of his examples was indeed the “expectation minus vari-
ance” valuation, but he also gave other empirical arguments (the Allais paradox )
strongly suggesting that real human behavior cannot be modeled within EUT
(and, consequently, certainly not by assuming that agents are expectation
maximizers).

After Allais, many non-EUT valuations were proposed to address problems
such as the Allais paradox, see the expository articles [26,12,13]. One such model

2 Actually, instead of risk valuations, von Neumann and Morgenstern postulated, and
axiomatized, preferences between any two distributions; but the valuation formalism
used in this paper is essentially equivalent.

3 There is a point of possible confusion here. By “concave” valuation we mean a
function from lotteries to the reals that is concave in the probabilities, and not in the
values. For example, the variance is concave in the probabilities but convex in the
values.
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in wide use today is prospect theory due to Kahneman and Tversky [10]. Prospect
theory predicts that a loss of x is much more painful than a gain of x is pleas-
ant, and, importantly, that probabilities undergo subjective modifications in the
agents’ calculation of expectations, not unlike our example valuations V 5 and
V 6 below.

More directly related to our work, Ritzberger [23] showed that for expected
utilities with rank dependent probabilities reflected risk aversion, mixed Nash
Equilibria will disappear. Chen and Neilson [9] considered the flip side of this
phenomena and gave conditions under which a pure strategy must exist (but
this requires a compact set of pure strategies).

1.2 Nash Equilibria and Risk

Whereas EUT was proposed by von Neumann and Morgenstern as a preamble
to their theory of games and strategic behavior, non-EUT approaches to risk
were primarily considered in non-strategic settings such as finance. The ques-
tion of how non-EUT valuations impact non-cooperative game theory and Nash
equilibria in particular was raised only in the 1990s by Crawford [6], who noted
that, while Nash’s theory holds when the agents’ valuations are concave (see our
Theorem 1, stated and proved here for completeness and computational empha-
sis), there are simple games, such as the 2×2 zero-sum game shown in (1) below,
that have no Nash equilibria if the agents have convex risk valuations.

To understand the broad range of possible attitudes of strategic agents to-
wards risk, consider the following six valuations (functions mapping distributions
to the reals) modeling plausible attitudes of agents towards risk:

V 1 If an agent is a pure expectation maximizer, then his valuation V 1 maps
any distribution to its expected value. This is the framework used in
virtually all of Game Theory.

V 2 Most people are risk averse. One way to capture this would be valuation
V 2, which assigns to each distribution over the reals the expectation mi-
nus the variance; this was proposed by Marschak, Markowitz, Allais, and
others. We use V2 as an exemplar of risk averse valuations; there are many
variants of V 2 in which one subtracts from the expectation the standard
deviation or some other increasing function of the variance, or a small
multiple thereof.

V 3 Some agents may be risk-seeking; for example, valuation V 3 evaluates a
distribution by its expectation plus (an increasing function of) the variance.

V 4[θ] An agent may be facing a costly life-saving medical procedure and his
only interest in the game is to maximize the probability that the payoff
is above the cost θ. This defines valuation V 4[θ].

V 5[p] Another agent may be interested in maximizing her “almost certain bot-
tom line:” the amount of money she gets with probability at least p = .95,
say. Let us call this valuation V 5[p].

V 6 Finally, somebody else evaluates any discrete distribution over the reals by
the average between the maximum and the minimum value which occur
with a nonzero probability. We call this V 6.
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Note: We are not proposing these six valuations as the only possible attitudes
toward risk, or even as plausible or reasonable ones; they are here only to demon-
strate the range of possibilities and fix ideas. Our three results hold for very broad
classes of such valuations, delimited in their statement or the discussion following
the proof. Also, the last two valuations fall into a very important class proposed
in Kahneman and Tversky’s Prospect Theory [10], in which expected utility is
maximized, albeit with the probabilities modified. Briefly, in Prospect Theory
valuations are of the form V =

∑
i u(xi)πi, where u is an ordinary utility func-

tion, but the πi’s are modified probabilities. The modification is done through an
increasing function G : [0, 1] �→ [0, 1] with G(0) = 0 and G(1) = 1 that modifies
the cumulative probabilities. That is, if we assume that x1 ≤ x2,≤ · · · ≤ xn, πi

is defined as G(
∑i

j=1 pi)−G(
∑i−1

j=1 pi). It is easy to see that V 5[p] corresponds
to the modifier function G(x) = 0 if x ≤ 1− p, and G(x) = 1 otherwise. And V 6

corresponds to G(x) = 1
2 for 0 < x < 1. Kahneman and Tversky speculate that

“real” modifier functions, consistent with experiments, are steeply increasing at
0 and at 1, go through the (1

2 , 1
2 ) point, and are flat around it. The effect is that

small probabilities of extreme payoffs are exaggerated. Notice that our function
G defining V 6 is a stylized and exaggerated function of this form (π1 = πn = 1

2 ).
Of these six risk valuations, V 1 is the one considered throughout Game Theory

and, naturally, Nash’s Theorem holds in it. Of the others, V 4(θ) falls squarely
within the purvey of EUT: Just map the agent’s payoffs to zero if they are less
than θ and to one otherwise, and solve the resulting game. As it turns out, Nash’s
Theorem is valid under the risk-seeking valuation V 3 as well (see Theorem 1 and
Proposition 2); the reason is, V 3 is concave in the probabilities.

The other three valuations, however, break Nash’s Theorem. For example,
consider the following game proposed by Crawford, which we call Γ :

1,−1 0, 0
0, 0 r,−r

(1)

If the agents evaluate any distribution of payoffs by a convex valuation such as
V 2, then Crawford observes that there are no Nash equilibria in this game, pure
or mixed. This holds for r �= 1; interestingly, if r = 1 then there is a mixed Nash
equilibrium with both players V 2 (or even with one player with valuation V 2

and the other player is an expectation maximizer).

1.3 Our Results

1. In terms of ubiquity of the Nash Equilibria, we show that
(a) Almost all games have no mixed Nash equilibria if the players are risk

averse (Theorem 3). By “almost all” we mean that games that do have
mixed Nash equilibria form a set of measure zero in the space of all
games, with utilities drawn at random; for example, any such games
must have equality between certain payoff values. Moreover, even ε-Nash
equilibria will not exist. Pure Nash equilibria may still exist; but only
a 1 − 1

e fraction of games have them [25]. This was known for rank
dependent expected utility functions (Ritzberger, 1996, [23]).
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(b) Even if the underlying game has a mixed Nash equilibrium, arbitrarily
small random errors by the players in interpreting the payoff matrix will
lead to instability with high probability (Observation 4).

2. Any given game may not have a Nash equilibrium. We show that
(a) It is NP-complete to determine if a two-person game with non-EUT

player valuations has a Nash Equilibrium4. We show this for functions
such as V 2, V 5[p], and V 6, and we lay out broad conditions on the risk
valuations under which our proof works (Corollary 6).

(b) In contrast, for concave valuations such as V 3 — Nash equilibria are
guaranteed to exist and are PPAD-complete, i.e., the same complexity
as Nash Equilibria under the expected utility theory (Theorem 1).

1.4 The Model

To avoid confusion, we use the terminology of payoffs and valuations rather than
utility. Under expected utility theory, our “payoffs” are considered utilities and
some of our valuation functions are also utilities, whereas others cannot be so
expressed.

A k-player game G, where k > 1, consists of k finite sets of strategies S1, . . . , Sk

and k payoff functions p1, . . . , pk mapping S =
∏

i Si to �. We denote by Δ[Si]
the set of mixed strategies for player i.

Given a k-tuple of mixed strategies x = (x1, . . . , xk) ∈∏i Δ[Si], for any com-
bination of pure strategies s = (s1, s2, . . . , sk) ∈∏Si define qx(s) =

∏k
i=1 xi(si),

where xi(si) is the probability player i plays pure strategy si. Every k-tuple of
mixed strategies, x, defines a strategy distribution, S(x), over

∏
Si, where the

probability of s ∈∏Si being played is qx(x).
Let G be a k-player game, and V1, . . . , Vk be valuations. Given a payoff func-

tion pi, let Ri = pi(s), s ∈
∏

i Si. Ri is the range of possible payoffs for agent i
over all combinations of pure strategies.

Given a k-tuple of mixed strategies x = (x1, . . . , xk), for every player i the
strategy-distribution S(x) implies a payoff-distribution, Pi(x), the support of
Pi(x) is a subset of Ri, and the probability of a ∈ Ri is

qi,x(a) =
∑

s∈S|pi(s)=a

qx(s).

Again, for any 1 ≤ i ≤ k we have
∑

a∈Ri
qi,x(a) = 1

A (risk) valuation is any function from payoff distributions to the reals. The
functions V 1, V 2, V 3, V 4[θ], V 5[p], and V 6 mentioned in the introduction are
indicative examples of important valuations in the literature. Ergo, if agent
i has risk valuation Vi then the value of a k tuple of mixed strategies x =
(x1, x2, . . . , xk) to player i is Vi(Pi(x)).

4 Our NP-completeness proof uses a new gadget, based on a generalized rock-paper-
scissors game, which is arguably simpler than the construction in [5], we suspect
that this gadget may prove useful in other contexts as well.
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Fix i and the mixed strategies of all players but that of player i, x−i ∈∏
j �=i Δ(Sj). For fixed x−i ∈

∏
j �=i Δ(Sj), xi ∈ Δ(Si), we use the shorthand

notation
V x−i(xi) = V (Pi(xi, x−i)).

Finally, a k-tuple of mixed strategies x = (x1, . . . , xk) ∈ ∏
i Δ[Si] is called

a (V1, . . . , Vk)-Nash equilibrium if for every player i and every mixed strategy
x′

i ∈ Δ[Si],
V

x−i

i (x′
i) ≤ V

x−i

i (xi).

That is, changing i’s mixed strategy in any way, and keeping all other mixed
strategies the same, results in a distribution over payoffs whose valuation, with
respect to player i, is no better than the valuation of the current distribution.

Examples: Consider the valuations V 1, . . . , V 6 introduced above, and let us con-
centrate on the risk averse valuation V2, expectation minus variance. Analyzing
mixed Nash equilibria when players behave this way (or in any of the other
five V i’s save V 1, expectation) is very tricky. Pure strategies in a mixed Nash
equilibrium are not necessarily individually best responses to the other players’
strategies. Also, because of the nonlinearity of the valuations considered, games
are not invariant under translation or scaling by positive constants.

Suppose that Crawford’s game (see Equation (1)) is played by a row player
with valuation V 2, and a column player who is an expectation maximizer (i.e.,
the column player is risk neutral). If r = 1, then a mixed Nash equilibrium
exists in which both players randomize uniformly. As we shall see, this situation
is a singular exception (see the proof of Theorem 3). But suppose that r > 1.
From the point of view of the expectation maximizer (column player), as the
probability that the row player plays down is increased from zero, playing left
is the best response, up to a point in which left and right — and any mixture
in between — are at a tie. From then on, right is the best response. A similar
behavior is observed of the V 2 (row) player — with an important difference. As
the column player increases from zero the probability of playing right, the row
player prefers up, and at some point there is a tie between up and down.

The catch is that, because of the convexity of V 2, the points in between are
not best responses, and there is a discontinuous jump from up to down. As a
result, the trajectories of the dynamics of the two players (the two best response
maps) do not intersect, and the game has no equilibrium. The same behavior
is observed if the row player’s valuation is expectation minus any increasing
function of the variance (say, a small multiple, or square root), and if both
players are risk averse.

Intuitively, the reason that r = 1 is a singularity (and a mixed Nash Equilib-
rium does in fact exist) is because the payoff-distributions don’t depend on the
mixed strategy chosen by the row player. So, although the strategy-distributions
are in fact different, the payoff-distributions are invariant to changes in the row
strategy, and the valuation to the row player is therefore also invariant to changes
in the row strategy. , i.e., V x−row(xrow) = V x−row(x′

row), for any xrow = (q, 1−q),
x′

row = (q′, 1− q′), 0 ≤ q, q′ ≤ 1.
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2 Valuation Convexity and Concavity

Valuation functions are defined on payoff distributions. We require (and use) a
limited form of convexity/concavity, that of valuation Vi convex (resp. concave)
with respect to mixed strategies of player i, xi ∈ Δ(Si).

A valuation function Vi is said to be convex (resp. concave) with respect to xi

if for every k− 1 tuple of mixed strategies x−i ∈
∏

j �=i Δ(Sj), for any two mixed
strategies xi, x

′
i ∈ Δ(Si), and for any 0 ≤ α ≤ 1.

V x−i(αxi + (1− α)x′
i) ≤ αV x−i(xi) + (1− α)V x−i(x′

i);
V x−i(αxi + (1− α)x′

i) ≥ αV x−i(xi) + (1− α)V x−i(x′
i);

A valuation function Vi is said to be strictly convex, or strictly concave, re-
spectively, if for any two payoff distributions Pi(xi, x−i) �= Pi(x′

i, x−i), and for
any 0 < α < 1,

V x−i(αxi + (1− α)x′
i) < αV x−i(xi) + (1− α)V x−i(x′

i);
V x−i(αxi + (1− α)x′

i) > αV x−i(xi) + (1− α)V x−i(x′
i);

We say that Vi is efficiently concave in xi ∈ Δ(Si), if, for any x−i, and for any
strictly concave polynomial t(xi), the (unique) point argmaxxi

V x−i(xi) + t(xi)
can be computed in time polynomial in |Si|, the representation of t, the total
number of bits in the coefficients of V (xi), and the number of bits of precision
required.

3 Computing Nash Equilibria

We now give a sufficient condition on the Vi’s for (V1, . . . , Vk)-Nash equilibria
to exist and be as easy to compute as ordinary Nash equilibria: it suffices for
each Vi to be efficiently concave in xi. This result is well known to economists;
for example, von Neumann stated his minmax Theorem in terms of concave
functions. Here we restate and prove it for computational emphasis and contrast
with our main result that follows.

Theorem 1. Let G be a k player game and let V1, . . . , Vk be valuations, where
k > 1. If each Vi is concave in xi, then any k-player game has an (V1, . . . , Vk)-
Nash equilibrium. If in addition the Vi’s are efficiently concave, then the problem
of finding an an (V1, . . . , Vk)-Nash equilibrium is in PPAD.

Proof. Define the following function φ from
∏

i Δ[Si] to itself: φ(x1, . . . , xk) =
(y1, . . . , yk), where for each i yi is defined as follows:

yi = argmaxzi∈Δ(Si)V
x−i

i (zi)− ||zi − xi||2.

Since Vi is concave in xi, and −||zi − xi||2 is a strictly concave polynomial in
zi, the argmax exists and is unique, and continuous as a function of x. There-
fore φ is a continuous function from a compact convex set to itself, and so, by
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Brouwer’s fixpoint theorem, φ has a fixpoint. It is now easy to see, arguing by
contradiction, that this fixpoint is an (V1, . . . , Vk)-Nash equilibrium of G. The
computational elaboration of the theorem follows easily from the fact that ap-
proximating Brouwer fixpoints is in PPAD [21]. 	

We next point out that three of our original six valuation examples fall into this
benign category.

Proposition 2. The valuations V 1, V 3, and V 4[θ] are efficiently concave.

Proof. It is easy to see that V 1 and V 4[θ] are actually linear, and thus trivially
efficiently concave. For V 3 we need to establish that the variance of the distribu-
tion Pi(x) is concave in xi. Recall that for any random variable X the variance
is E(X2) − (E(X))2. Since the first term is linear in xi, we concentrate on the
second term. It is easy to see that, if X is the random variable for the payoff to
player i, the Hessian of −(E(X))2 with respect to xi (variables xi[s], s ∈ Si) is

∂2[−(E(X))2]
∂xi[si]∂xi[s′i]

= −hsi · hs′
i
,

where hsi = Ex[X |si], and similarly for hs′
i
. Now it is clear that the Hessian

is the tensor product of vector (hsi : si ∈ Si) with itself, negated, and thus
it is trivially a negative semi-definite matrix. Hence the variance is indeed a
concave function of the probabilities, and so is risk seeking valuation V 3. That
it is efficiently concave is straightforward. 	


Note: There is a point of confusion here. It is well known, and often useful, that
the variance is a convex function of the values. However, it turns out that it is
also a concave function of the probabilities.

Notice that adding to the expectation, instead of the variance, a positive
multiple, or any concave function, of the variance (such as the standard devia-
tion), preserves the valuation’s concavity. Hence the positive result stated in the
theorem applies to a broad variety of risk-seeking valuations.

4 Games with No Equilibria

But what if the valuations are not concave — for example, convex like V 2? Risk
averse agents typically have strictly convex valuations. We know from Crawford
that Nash equilibria may not exist, but two questions come up immediately:
How prevalent are such pathologies? And even if they are prevalent, can they
at least be characterized and excluded? In this and the next section we answer
both questions in the negative.

For a pure strategy s ∈ Si let xs
i be the strategy for agent i that plays s

deterministically. Call a game in general position if for any player i, for any
mixed strategy of the other players x−i, and for any two pure strategies s, s′ ∈
Si, the payoff distributions Pi(xs

i , x−i) �= Pi(xs′
i , x−i). Note that Pi(xs

i , x−i) �=
Pi(xs′

i , x−i) does not imply that V
x−i

i (xs
i ) �= V

x−i

i (xs′
i ).
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Our first negative result states that, if the players are risk-averse, then a game
in general position cannot have a mixed Nash equilibrium. This result has an
evocative probabilistic interpretation: In the space of all games considered as
tuples of tensors, games with mixed Nash equilibria form a set of measure zero,
a lower-dimensional manifold. Since it is known that the probability that a game
has a pure Nash equilibrium in this space is asymptotically 1 − 1

e , this means
that about 37% of all games have no Nash equilibrium when the players are risk
averse.

Theorem 3. Let Γ be a game in general position, and suppose that player i’s
valuation is strictly convex (as a function of xi ∈ Δ[Si]). Then in any Nash
equilibrium this player plays a pure strategy. In particular, if all agent valuations
are strictly convex, there is no mixed Nash equilibrium.

Proof. Fix the (possibly mixed) strategies of all agents but i, x−i. Assume that
agent i has a strictly mixed strategy, which, along with all other agent strategies,
is in Nash Equilibrium.

As xi is a strictly mixed strategy, then for all s ∈ Si, xi(s) < 1, and for at
least two distinct s, s′ ∈ Si, xi(s) > 0 and xi(s′) > 0. It follows that

V
x−i

i (xi) = V
x−i

i

(∑
s∈S

xs
i · xi(s)

)
<
∑
s∈Si

xi(s)V
x−i

i (xs
i ) ≤ max

s∈Si

V
x−i

i (xs
i ).

This is in contradiction to the assumption that xi was in Nash Equilibrium
(alternately that xi = argmaxzi∈Δ(Si)V

x−i

i (zi)). 	


Theorem 3 is in no way a converse of Theorem 1; there are many valuations that
are neither concave nor strictly convex — valuations V 5 and V 6, for example.
However, it is not hard to see that for these two there are games in which there
are no Nash equilibria. Generalizing Theorem 2 so that it comes close to being
a converse of Theorem 1 is an interesting open question.

It now remains to ask: when is a game in general position? A game is not in
general position if for some player i, there exists a k−1 tuple of mixed strategies
for the other players, x−i, such that for two different pure strategies for player i,
si, s

′
i ∈ Si, we have that Pi(xsi , x−i) = Pi(xs′

i , x−i). Ergo, the two distributions
don’t depend on the choice between si and s′i. The k− 1 tuple, x−i, determines
at most N =

∏
j �=i |Sj | probabilities for the various payoffs available if player i

plays s and at most N probabilities for the various payoffs if player i plays s′.

Observation 4. A sufficient condition for the game to be in general position
is if all payoffs for player i are distinct, i.e., pi(si, s−i) �= pi(s′i, s−i) for all
si, s

′
i ∈ Si and s−i ∈

∏
j �=i Sj. The two distributions Pi(xs

i , x−i) and Pi(xs′
i , x−i)

cannot be the same because the support sets are different. This is not a necessary
condition, e.g., Crawford’s game with r �= 1 is in general position.

This also implies that if a small random error is added to every payoff value
then the game will be in general position with high probability. 	
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5 The Complexity of Risk Aversion

Theorem 5. Given a 2-player game and non-concave valuations V, V ′, it is
NP-complete to tell if the game has an (V, V ′)-Nash equilibrium.

Proof. We give below the proof for the case in which both players’ valuations
are V 2; Subsequently, we give extensions and generalizations.

NP-completeness is via reduction from 3SAT. Given a 3SAT instance φ with
n variables x1, . . . , xn and a set of clauses C = {c1, . . . , cm}, where each cj is
a subset of size three of the set of literals L = {+x1,−x1, +x2, . . . ,−xn}, we
construct a 2-player game Gφ as follows. Both players have the same strategy
set S1 = S2 = L ∪ C ∪ {f1, f2}, and their utilities are as follows (M = 4n2):

– For every variable xi ∈ V ,

p1(+xi, +xi) = p2(+xi, +xi) = p1(−xi,−xi)
= p2(−xi,−xi) = M.

However,

p1(+xi,−xi) = p2(+xi,−xi) = p1(−xi, +xi)
= p2(−xi, +xi) = M − 2n.

Also, for every two variables xi, xj ∈ V with i �= j, p1(±xi,±xj) = M +
g(i, j), and p2(±xi,±xj) = M − g(i, j), where g(i, j) = 1 if j = 1 + 1 mod n,
−1 if j = i− 1 mod n, and 0 otherwise.
The game restricted to L is a generalized rock-paper-scissors zero-sum game
(with payoffs translated by M) in which the signs of the literals do no matter,
except that both players are incentivized not to play opposite literals of the
same variable. It is easy to see that there are 2n (V 2, V 2)-Nash equilibria
of this game. In each, the two players choose the same truth assignment (n
literals, one for each variable) and play every literal with probability 1

n . The
V2 valuation for this payoff distribution is M − 2

n .
– The purpose of the strategies in C is to force the truth assignment chosen by

the equilibrium in L to satisfy φ; if it does not, there is a strategy in C (the vi-
olated clause) that breaks the equilibrium by presenting a better alternative.
The utilities are as follows: For any c, c′ ∈ C, p1(c, c′) = p2(c′, c) = M−2n (it
is disadvantageous for both players to both play in C). Also, for any literal λ
and any clause c, p1(λ, c) = p2(c, λ) = M − 2n (it is also disadvantageous to
play a literal if the opponent is playing a clause.) Now, to encode the 3SAT
instance, for any literal λ and clause c such that λ ∈ c, p1(c, λ) = p2(λ, c) =
M − 2

n , whereas if λ /∈ c we have p1(c, λ) = p2(λ, c) = M + n− 2
n .

– Finally, the last two strategies f1, f2 provide an alternative game, to be
played if an equilibrium does not exist in L∪C — but this game is essentially
Crawford’s game Γ (see Equation (1)), known to have no Nash equilibria for
risk averse players. In particular,
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• p1(x, fj) = p2(fj , x) = 0 for all x ∈ L ∪ C, j = 1, 2;
• p1(fj , x) = p2(x, fj) = M − 2

n for all x ∈ L ∪C, j = 1, 2;
• p1(f1, f1) = M

2 + 1;
• p1(f1, f2) = M

2 ;
• p1(f2, f1) = M

2 ;
• p1(f2, f2) = M

2 + 2.
• p2(f1, f1) = M

2 − 1;
• p2(f1, f2) = M

2 ;
• p2(f2, f1) = M

2 ;
• p2(f2, f2) = M

2 − 2.
– Each player can choose either to play the strategies in L ∪ C (we call this

“playing φ”), or choose one of the strategies f1, f2 (called “playing f”). If
both players play f , notice that they end up playing a version of the game
Γ described above, translated upwards by M

2 .
– Suppose that the two players play f with probability x and y, respectively.

Then it is easy to see that the V 2 value of the first player is approximately

M̃

2
xy + M̃(1 − y)− M̃2

4
xy − (1 − y)M̃2

+
M̃2

4
x2y2 + M̃2(1 − y)2 − M̃2xy(1 − y),

where by M̃ we denote M(1±O( 1
n )). By looking at the polynomial in x that

results if we ignore O( 1
n ) terms and normalize by M2

(
y2

4
) · x2 + (y2 − 3y

4
) · x− y(1− y),

we notice (just by looking at the quadratic term) that, for all values of
y ∈ (0, 1], it attains its maximum (in x) at either x = 0 or x = 1. Hence, for
large enough n, and if y > 0, player 1 either chooses purely φ, or purely f .
If y = 0, then it is easy to see that x = 0 as well, because otherwise player
2 would be better off playing f (y = 1). Hence, player 1 plays either purely
φ or purely f . By symmetry, the same holds for player 2. We conclude that,
for large enough n, the only possible (V 2, V 2)-Nash equilibria have either
both players playing φ, or both playing f .

– But of course, since both players choosing f entails playing a translated
version of game Γ , there can be no (V 2, V 2)-Nash equilibria in which both
players play f . Also, one player playing φ and the other f cannot be an
equilibrium (it is a disaster for the player playing φ). We conclude that in
any (V 2, V 2)-Nash equilibrium both players must play φ.

– So, let us assume that both players play φ. If one of them plays a strategy
in C, then the other player cannot be playing strategies in L (because the f
strategies would fare better for the other player than those in L, which now
have V 2 payoff strictly less than M − 2

n ). Hence, the other player must be
playing only C, and so the first player’s payoff with the strategy in c is again
lower than that of the f strategies, and this cannot be an equilibrium.
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– We conclude that if an equilibrium exists its support is a subset of L, and
hence it is a truth assignment. We claim that it is satisfying. Because, if not,
there is a clause c that is not satisfied — that is, no literal in it is played
by both players. In this case, c has V 2 payoff equal to M + n − 2

n , and
so the players should rather play c. We conclude that if the game has an
(V 2, V 2)-equilibrium, then φ is satisfiable.

– Conversely, if φ is satisfiable, we claim that both players playing the literals
in the satisfying truth assignment with probability 1

n is an (V 2, V 2)-Nash
equilibrium. The (V 2, V 2) payoff of each player is M − 2

n . Playing the f
strategies instead would have the same payoff. And playing any strategy in
C would have (V 2, V 2) payoff at most M − 2

n , because at least one literal in
the clause is played with probability 1

n , and this brings the payoff down to
M − 2

n . 	


Other Valuations. Looking at the proof of Theorem 5 we note that the following
holds:

Corollary 6. Suppose that V and V ′ are risk valuations with the following
properties:

– There are games with arbitrarily large payoffs that have no (V, V ′)-Nash
equilibria;

– The only (V, V ′)-Nash equilibrium of the generalized rock-paper-scissors
game, even if shifted by M , is the uniform play;

– For large enough M and for any game whose payoff matrices are within L2
distance one from

M, M 0, M
M, 0 M, M

the only (V, V ′)-Nash equilibria are pure.

Then it is NP-complete to tell if a game has a (V, V ′)-Nash equilibrium. 	


6 Discussion and Open Problems

No equilibria means that agents may be in a state of constant flux, and NP-
completeness implies that they can’t even realize their predicament. For a game
matrix Γ and valuation functions {Vi}, if Nash Equilibria do not exist then
there is some f(Γ, {Vi}) such that for all ε < f(Γ, {Vi}) no ε-Nash equilibrium
exists. Thus, f(Γ, {Vi}) is a measure of the instability of the player dynamics
and large values may help explain dramatic instabilities in certain games. It is
easy to choose r for Crawford’s game or jittered versions of matching pennies,
with risk valuations V 2, for which f(Γ, {V 2}) equal to some 10% of the total
value — very strong motivation for chaotic behavior. Measuring the instability
of a game played by risk-averse players, and comparing this to observed behavior
in strategic games, even markets, seems interesting.
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Also, as pointed out in Observation 4, incomplete or partial information about
the payoffs, if interpreted as making some random error about the value of the
payoffs, results in games in general position and no mixed equilibria. It seem
promising to characterize the instability of the resulting game as a function of
the magnitude of error. Intuitively, instability should grow with error size.

The possibility that mixed Nash equilibria may not exist makes weaker solu-
tion concepts, such as the correlated equilibrium, more attractive. Unfortunately,
it is easy to see that even those may not exist. For example, Crawford’s uneven
matching pennies game played by players whose risk valuation is V6 has no cor-
related equilibria. We conjecture that the circumstances under which correlated
equilibria fail to exist are much less common, but that it is still NP-complete to
tell if one exists or not.

One technical open problem suggested by this work is to determine the extent
of the valuations for which NP-completeness holds. We have not strived to state
the most general theorem possible here, but we believe that our proof can be
generalized in many directions. Note that, by the corollary, NP-completeness
holds even even when all players except for one are expectation maximizers.
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Abstract. The PPAD-completeness of Nash equilibrium computation
is taken as evidence that the problem is computationally hard in the
worst case. This evidence is necessarily rather weak, in the sense that
PPAD is only know to lie “between P and NP”, and there is not a strong
prospect of showing it to be as hard as NP. Of course, the problem of
finding an equilibrium that has certain sought-after properties should be
at least as hard as finding an unrestricted one, thus we have for example
the NP-hardness of finding equilibria that are socially optimal (or indeed
that have various efficiently checkable properties), the results of Gilboa
and Zemel [6], and Conitzer and Sandholm [3]. In the talk I will give an
overview of this topic, and a summary of recent progress showing that
the equilibria that are found by the Lemke-Howson algorithm, as well as
related homotopy methods, are PSPACE-complete to compute. Thus we
show that there are no short cuts to the Lemke-Howson solutions, subject
only to the hardness of PSPACE. I mention some open problems.

1 Overview

There are two ways to view any algorithm for computing Nash equilibria. First,
simply as a way to find a Nash equilibrium, one that is hopefully fast in practice,
even though it may take exponential time in the worst case. Second, as a criterion
for equilibrium selection, i.e. choosing some equilibrium that is considered to
be preferable to others, in some sense a more plausible outcome. The latter
viewpoint is especially relevant if the algorithm in question is somehow simple
or decentralized. We can consider the problem of computing an equilibrium that
is found by some specified algorithm, noting that we are not restricted to using
that particular algorithm in order to find the equilibrium.

By way of example, in [7] we analyzed the classical Lemke-Howson algorithm
for bimatrix games, in this context. The computational challenge is: Given a
bimatrix game, find one of the solutions that could be computed using Lemke-
Howson. Note that we are not asking about the complexity of the algorithm
itself, which is already well-known to take exponential time in the worst case [9].
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Just consider the complexity of finding the Lemke-Howson solutions. Of course,
the problem is PPAD-hard, simply due to the PPAD-completeness of finding
any equilibrium, but in fact we show that restricting to the Lemke-Howson so-
lutions makes the problem PSPACE-complete, and thus in a sense even harder
to compute than the restricted equilibria of [6,3].

Homotopy methods. The survey paper [8] discusses homotopy methods in detail,
including the Lemke-Howson algorithm, which falls within this framework. The
general idea is that in trying to solve a game G, start by constructing a “starting
game” G0 which is a version of G where the numerical payoffs have been changed
so that there is some “obvious” Nash equilibrium. Then consider a continuum of
games that lie between G0 and G. (The usual choice of a continuum of interme-
diate games has games whose payoffs are weighted averages of those in G0 and
G.) Within these games, there exists a continuous path of Nash equilibria that
starts at the one for G0 and ends at an equilibrium of G. Thus, we have specified
a unique equilibrium of G, and implicitly a natural path-following algorithm for
finding it.

As an equilibrium selection theory, homotopy methods are attractive since the
starting game G0 can be considered as representing some kind of “prior belief”
about the behaviour of the other player(s). However, we showed in [7] that the
equilibrium identified by this procedure is PSPACE-complete to compute, and
moreover, the result extends to Lemke-Howson, in which the choice of initially
dropped label corresponds to a particular choice of G0.

Path-following algorithms. The PSPACE-completeness result for Lemke-Howson
solutions uses, quite intensively, the ideas developed in [4]. The problem End
of the line that is used to characterise the complexity class PPAD, has a
PSPACE-complete version in which you are required to compute the end-of-line
obtained by following the path that begins at the known starting vertex of the
graph. (Notice that this version is no longer (apparently) in NP since there is
no obvious efficient test that a solution is correct.) This problem, called in [7]
Other end of this line, or Oeotl for short, is the one we reduce from. The
proof proceeds by showing that a homotopy method —itself a path-following
algorithm— captures the path-following approach to solving Oeotl.

The extension to Lemke-Howson requires us to design the game in such a
way that all alternative solutions that might be produced, share features that
efficiently encode a solution to generic instances of Oeotl.

Fictitious play. We conclude with an interesting open problem that is inspired
by the PSPACE-completeness results described above. Fictitious Play is a good
algorithm to consider in the capacity of equilibrium selection. This simple and
intuitive procedure (see e.g. [5] or indeed Wikipedia) is known to converge to
Nash equilibrium under certain sufficient conditions, although for some games
it fails to converge. See [2] for a detailed discussion of why it is a natural and
appealing algorithm to consider. The following problem looks natural and simple
to state:
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Input. A bimatrix game G
Question. Does Fictitious Play converge, when applied to G? Assume both
players start at their first strategies.
Further question. Compute the equilibrium, if indeed FP converges.

The results of [1] indicate that a naive simulation of FP requires exponential
time, but it does not rule out the possibility of “short cuts” alluded to in the
abstract to this talk, in the context of Lemke-Howson. On the other hand, I
know of no upper bound for the above questions, not even an exponential one.
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Abstract. We propose a new convex optimization formulation for the
Fisher market problem with linear utilities. Like the Eisenberg-Gale for-
mulation, the set of feasible points is a polyhedral convex set while the
cost function is non-linear; however, unlike that, the optimum is always
attained at a vertex of this polytope. The convex cost function depends
only on the initial endowments of the buyers. This formulation yields an
easy simplex-like pivoting algorithm which is provably strongly polyno-
mial for many special cases.

1 Introduction

Fisher and Arrow-Debreu market models are the two fundamental market mod-
els in mathematical economics. In this paper, we focus on the Fisher market
model with linear utilities. An instance of this model consists of a set of buy-
ers, a set of divisible goods, initial endowments, also referred to as the money
owned by the buyers, quantities of the goods and (linear) utility functions of the
buyers. The problem is to determine market equilibrium prices and allocation
of the goods to buyers such that the market clears and the utility function for
each buyer is maximized. Towards this, Eisenberg and Gale [6,10] formulated
a remarkable convex optimization program whose optimal solution, more pre-
cisely, values of the primal and dual variables at an optimal solution, captures
equilibrium allocation and prices.

Recently, many algorithmic results [4,5,9,11] pertaining to the computation of
market equilibrium prices and allocation for the linear case of Fisher and Arrow-
Debreu market models have been obtained. In [4], Deng et al. gave a strongly
polynomial time algorithm for the Fisher market with either constant number of
goods or constant number of buyers. Building on the Eisenberg-Gale program,
Devanur et al. [5] developed a primal-dual type first polynomial time algorithm
to solve the Fisher market model. A polynomial time algorithm for the more
general Arrow-Debreu market is also presented in [9]. More recently, a strongly
polynomial time algorithm for the Fisher market was given by Orlin [11]. A
tantalizing open question is to formulate a linear program that captures the
Fisher solution. A positive resolution of this question would, of course, imply a
simplex-like algorithm for computing the same. This paper is an attempt towards
this objective.
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In this paper, we propose a novel convex optimization formulation for the
Fisher market problem. In the Eisenberg-Gale formulation [6,10], the set of fea-
sible points is a convex polytope which merely models the packing constraints
and is oblivious to the parameters of the problem. Like the Eisenberg-Gale for-
mulation, the set of feasible points in our formulation is also a convex polytope.
However, unlike that, our convex polytope is defined in terms of the input pa-
rameters, specifically utilities and money, and is rich enough so as to ensure that
the optimum is always attained at a vertex of this polytope. Furthermore, the
convex cost function in our formulation depends only on the initial endowments
of the buyers. There is another formulation, which maximizes a convex func-
tion under flow constraints, obtained by Shmyrev [12] and Birnbaum et al. [2],
however this formulation also does not guarantee the optimum to be at a vertex.

We define special vertices in our polytope and every such vertex corresponds
to the Fisher solution with a different endowment vector. We give a combinato-
rial characterization of special vertices and show that starting from any special
vertex, there is a simplex-like path of special vertices where the cost function
monotonically increases and it ends at a vertex corresponding to the Fisher so-
lution. There may be many such paths of special vertices in the polytope. Using
a simple pivoting rule, we give an algorithm, which traces one such path and
show that this algorithm is strongly polynomial for many special cases. Two
interesting cases are:

– Either the number of buyers or the goods is fixed.
– All the non-zero utilities are of the type αk, where α > 0 and 0 ≤ k ≤ M

(M is bounded by a polynomial in the number of buyers and goods).

This algorithm is conceptually simple, much easier to implement and runs very
fast in practice. In fact, these special cases seem sufficient to handle most practical
situations. This is because, firstly, in practice, utilities are hardly exactly known,
and secondly, as shown in [1] buyers have every reason to strategize and report
fictitious utilities. The events that may occur in the algorithm, while finding the
adjacent special vertex, are similar as in the DPSV algorithm [5], however one
crucial difference is that the prices, DPSV algorithm computes at intermediate
stages, may not occur at a vertex in the polytope. The DPSV algorithm may be
interpreted as an interior point method in our formulation. Further, the utility of
our formulation is also illustrated by its easy extension to incorporate transporta-
tion costs as well [8]. There seems no way to modify Eisenberg-Gale or Shmyrev
formulations to capture the equilibrium solution for this extended model. Inde-
pendently, Chakrabarty et al. [3] also give a similar formulation for this extended
model along with an algorithm to compute ε-approximate equilibrium prices and
allocations. However, the Fisher market with transportation cost may have irra-
tional solutions, so the optimum solution may not be at a vertex.

Organization. The rest of the paper is organized as follows. In Section 2, we
give a precise formulation of the Fisher market problem and introduce the new
convex optimization program and analyze it. In Section 3, we discuss the simplex-
like algorithm. In Section 4, we show that the algorithm is provably strongly
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polynomial for many special cases. In Section 5, we summarize the number of
pivoting steps taken by the algorithm on random instances of the Fisher market.
Finally we conclude in Section 6.

2 New Convex Optimization Formulation

We begin with a precise description of the Fisher market model.

2.1 Problem Formulation

The input to the Fisher market problem is a set of buyers B, a set of goods G,
a utility matrix U = [uij ]i∈B,j∈G , a quantity vector q = (qj)j∈G and a money
vector m = (mi)i∈B, where uij is the utility derived by buyer i from a unit
amount of good j, qj is the quantity of good j, and mi is the money possessed
by buyer i. Let |B| = m and |G| = n. We assume that for every good j, there is
a buyer i such that uij > 0 and for every buyer i, there is a good j such that
uij > 0, otherwise we may discard those goods and buyers from the market.

The problem is to compute equilibrium prices p = [pj]j∈G and allocations
X = [xij ]i∈B,j∈G such that they satisfy the following two constraints:

– Market Clearing: The demand equals the supply of each good, i.e., ∀j ∈ G,∑
i∈B xij = qj and ∀i ∈ B,

∑
j∈G pjxij = mi.

– Optimal Goods: Every buyer buys only those goods, which give her the
maximum utility per unit of money (bang per buck), i.e., if xij > 0 then
uij

pj
= maxk∈G

uik

pk
.

Note that, by scaling uij ’s appropriately, we may assume that qj ’s are unit.

2.2 Convex Program

In this section, we introduce the new convex optimization program whose op-
timal solution captures the Fisher market equilibrium. Our convex program is
described in Table 1, where pj corresponds to the price of good j and zij cor-
responds to the money spent by buyer i on good j. At optimum, 1

yi
is the bang

per buck of buyer i. We refer to the ambient space as the y-p-z-space.
Note that the feasible set O is a convex polytope in y-p-z-space and the cost

function is independent of the variables zij . Let Oaux be the auxiliary polytope
in the y-p-space defined by the constraints 1 to 4 and the related convex program
(with the same cost function) be the auxiliary convex program.

Claim. Pr(O) = Oaux, where Pr(O) is the projection of O onto the y-p-space.

Proof. Clearly, Pr(O) ⊆ Oaux, and for Oaux ⊆ Pr(O), Z = [zij ] should be
constructed for a given (y, p) ∈ Oaux. One way to do this is by constructing a
max-flow network, where there is an edge from the source to every good j ∈ G
with capacity pj and from every buyer i ∈ B to the sink with capacity mi.
Further, there is an edge from every good j ∈ G to every buyer i ∈ B with ∞
capacity. Clearly, the max-flow gives the required zij ’s. 	
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Table 1. New Convex Program

maximize
∑
i∈B

mi log yi

subject to
∀i ∈ B,∀j ∈ G : uijyi ≤ pj (1)∑

j∈G
pj ≤

∑
i∈B

mi (2)

∀i ∈ B : yi ≥ 0 (3)
∀j ∈ G : pj ≥ 0 (4)

∀i ∈ B :
∑
j∈G

zij ≤ mi (5)

∀j ∈ G :
∑
i∈B

zij = pj (6)

∀i ∈ B,∀j ∈ G : zij ≥ 0 (7)

Therefore, in order to understand the optimality conditions, we may as well work
with the KKT conditions for the auxiliary convex program. Let xij , q, μi, λj be
the Lagrangian (dual) variables corresponding to the equations (1-4). An optimal
solution must satisfy the KKT conditions in Table 2.

Table 2. KKT conditions

∀i ∈ B : mi
yi

=
∑
j∈G

uijxij − μi (8)

∀i ∈ B,∀j ∈ G : (uijyi − pj)xij = 0 (9)

∀j ∈ G : −
∑
i∈B

xij − λj + q = 0 (10)

(
∑
j∈G

pj −
∑
i∈B

mi)q = 0 (11)

∀i ∈ B,∀j ∈ G : xij , λj , μi, q ≥ 0 (12)
∀j ∈ G : −pjλj = 0 (13)
∀i ∈ B : −yiμi = 0 (14)

Claim. At any optimum, μi = 0, ∀i ∈ B and λj = 0, ∀j ∈ G.

Proof. μi �= 0 ⇒ yi = 0 ⇒ the optimal solution has cost −∞. However, we
may easily construct a feasible point in the polytope, where the cost is some real
value, therefore all μi’s are zero. Similarly, λj �= 0 ⇒ pj = 0 ⇒ yi = 0, for some
i ∈ B. Hence, all λj ’s are zero. 	
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Putting μi = 0 and λj = 0 in the KKT conditions (8-12), we get,

∀i ∈ B : mi =
∑
j∈G

uijxijyi (15)

∀i ∈ B, ∀j ∈ G : (uijyi − pj)xij = 0 (16)
∀j ∈ G :

∑
i∈B

xij = q (17)

: (
∑
j∈G

pj −
∑
i∈B

mi)q = 0 (18)

∀i ∈ B, ∀j ∈ G : xij , q ≥ 0 (19)

From (15-18),
∑
i∈B

mi =
∑
i∈B

∑
j∈G

pjxij =
∑
j∈G

∑
i∈B

pjxij =
∑
j∈G

pjq ⇒ q = 1

Proposition 1. Let (y, p) ∈ Oaux be an optimal solution to the auxiliary convex
program. Then p is a market equilibrium price.

Proof. As q = 1, interpreting X = [xij ] as an allocation, we see that conditions
(15-17) imply that the market clearing constraint holds at the price vector p.
Further, using condition 2, we have xij > 0 ⇒ yiuij = pj . As (y, p) ∈ Oaux, we
also have, ∀i ∈ B, ∀j ∈ G : uijyi ≤ pj . Putting these two together, it is easily
verified that the optimal goods constraint is also satisfied. 	

Proposition 2.

(i) The auxiliary convex program admits a unique optimal solution.
(ii) Equilibrium prices are unique and allocations form a polyhedral set.

Proof. Part (i) follows from the fact that the cost function is strictly concave,
and part (ii) follows from the KKT conditions. 	

Let (y, p) ∈ Oaux be the unique optimum solution to the auxiliary convex pro-
gram. Let X = {X = [xij ]i∈B,j∈G | (y, p, X) satisfies (8-14)}. Note that X is a
convex set. As argued in the proof of Proposition 1, we may think of X ∈ X as an
equilibrium allocation and p as the equilibrium price. Now, we define Z = [zij ]
w.r.t. X ∈ X as zij = xijpj , ∀i ∈ B, ∀j ∈ G. In other words, zij is the money
spent by buyer i on good j at the equilibrium allocation X . We refer to Z as
an equilibrium money allocation. It easily follows that (y, p, Z) is an optimum
solution to the main convex program. Note that there is an Xa ∈ X such that the
bipartite graph G = (B,G, E), where E = {(i, j) ∈ B × G | xa

ij > 0}, is acyclic.
Let Za be the equilibrium money allocation w.r.t. Xa. The next proposition
asserts that (y, p, Za) is in fact a vertex of O.

Proposition 3. The point (y, p, Za) is a vertex of O.

Proof. There are mn+m+n variables in the convex program, and we show that
there are mn + m + n linearly independent tight constraints at (y, p, Za) (refer
to Theorem 3.3.3 in [7] for details).

Remark 4. The auxiliary program itself captures the equilibrium prices at the
optimal solution, though not necessarily at one of its vertices. [7] has the detailed
analysis of both the polytopes.
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3 A Simplex-Like Algorithm

We begin with some notation. Henceforth, we denote the input to the Fisher
market problem by (U, m). The set of buyers and the set of goods are implicit.
We use gj and bi to denote the good j and buyer i respectively. For convenience,
we assume that uij > 0, ∀i ∈ B, ∀j ∈ G.

Now, we turn our attention to the polytope O defined in the previous section.
We have shown that there exists a vertex v = (y, p, Z) of the polytope O which
captures the equilibrium prices and an equilibrium money allocation. An impor-
tant property of v is that ∀i ∈ B, ∀j ∈ G, zij(uijyi − pj) = 0. In other words,
every buyer spends money only on her optimal goods.

Definition 5. A vertex v = (y, p, Z) of O is called special if zij(uijyi − pj) =
0, ∀i ∈ B, ∀j ∈ G.

It is easy to see that if v = (y, p, Z) is a special vertex, then it corresponds to
a solution for an instance of the Fisher market problem. Namely, let B′ = {i ∈
B | yi �= 0},G′ = G and U ′ be U restricted to B′ × G′. Further, for i ∈ B′, let
m′

i =
∑

j∈G zij . Clearly, v corresponds to a solution of (U ′, m′).

3.1 Characterization of Special Vertices

Let v = (y, p, Z) be a special vertex of O. W.l.o.g., we may assume that all yi’s
and all pj ’s are non-zero at v, because if pj = 0 for some j ∈ G at v, then v is
a trivial point, i.e., all coordinates are zero, and if yk = 0 for some k ∈ B at v,
then there is an adjacent vertex v′ = (y′, p′, Z ′) to v, where p′ = p, Z ′ = Z,
y′

i = yi, ∀i �= k, and y′
k = minj∈G

pj

uij
.

Now we describe a combinatorial characterization of v. Towards this, we define
E(v) and F (v) as follows:

E(v) = {(i, j) ∈ B × G | uijyi = pj} and F (v) = {(i, j) ∈ B × G | zij > 0}
The elements in E(v) and F (v) are called tight and non-zero edges respectively.

By definition, F (v) ⊆ E(v). Let G(E(v), F (v)) be the graph, whose vertices are
the connected components C1, C2, . . . of the bipartite graph (B,G, F (v)), and
there is an edge between Ci and Cj in G(E(v), F (v)), if there is at least one
edge in E(v)− F (v) between the corresponding components of (B,G, F (v)).

We say that buyer i belongs to a vertex C of G(E(v), F (v)), if buyer i lies in
the corresponding component of (B,G, F (v)). We call a connected component of
G as simply a component of G.

Definition 6. W.r.t. v = (y, p, Z),

– surplus of buyer i is defined to be the non-negative value mi −
∑

j∈G zij.
– a buyer is called a zero surplus buyer if its surplus is zero, otherwise it is

called a positive surplus buyer.
– a component of (B,G, F (v)) is called saturated if all buyers in that compo-

nent are zero surplus buyers, otherwise it is called unsaturated.
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– a vertex of G(E(v), F (v)) is called saturated if the corresponding component
of (B,G, F (v)) is saturated, otherwise it is called unsaturated.

Theorem 7. v has following properties:

– Every component of (B,G, F (v)) contains at most one positive surplus buyer.
– Every component of G(E(v), F (v)) has at least one saturated vertex.

Proof. If a component of (B,G, F (v)) contains more than one positive surplus
buyers, then the zij ’s in that component may be modified such that the same set
of inequalities are tight before and after the modification, i.e., v is not a vertex.

Similarly, if a component of G(E(v), F (v)) does not have a saturated vertex,
then the pj ’s in that component may be scaled uniformly such that the same set
of inequalities are tight before and after the scaling, hence a contradiction. 	

Corollary 8. If (U, m) are algebraically independent, then

– the bipartite graph (B,G, E(v)) is a forest. Hence there is at most one edge
in E(v)− F (v) between any two components of (B,G, F (v)).

– every component of G(E(v), F (v)) has exactly one saturated vertex.

Lemma 9. Let v be a special vertex of O. Then

(i) (B,G, F (v)) is acyclic.
(ii) If (U, m) are algebraically independent, then (B,G, E(v)) is acyclic and the

number of positive surplus buyers is |E(v)− F (v)|.
Proof. Since v is a vertex of O, therefore (B,G, F (v)) is acyclic. Part (ii) follows
from Theorem 7 and Corollary 8. 	


3.2 Algorithm

In general, a simplex-like pivoting algorithm moves from a vertex to an adjacent
vertex such that the cost function increases. Therefore, we first describe the
AdjacentVertex procedure for the main convex program.

We assume that (U, m) are algebraically independent1. The AdjacentVertex
procedure, given in Table 3, takes a special vertex v and outputs another special
vertex v′ adjacent to v, such that the cost function increases. If v is optimum,
then it outputs v′ = v. Otherwise, there is a component C of G(E(v), F (v))
containing an unsaturated vertex. Clearly C is a tree and there is exactly one
saturated vertex, say Cs, in C (Corollary 8). We consider C as the rooted tree
with root Cs. We pick an edge e between Cs and an unsaturated vertex, say Cu,
in C. Let (bi, gj) be the edge in E(v) − F (v) corresponding to e. There are two
cases depending on where bi belongs: Cs (Case 1) or Cu (Case 2).

Case 1: We get a new vertex v′, adjacent to v in O, by relaxing the inequal-
ity uijyi ≤ pj , which is tight at v. Let Tu be the subtree of C rooted at Cu

and Ju be the set of goods in the components of (B,G, F (v)) corresponding to
the vertices of Tu. v′ may also be obtained by increasing the prices of the goods in

1 For the general (U,m), AdjacentVertex may be easily modified.
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Table 3. AdjacentVertex Procedure

AdjacentVertex(v)
v′ ← v;
if v is optimum then

return v′;
endif
C ← component of G(E(v), F (v)) containing an unsaturated vertex;
Cs ← saturated vertex in C;
Cu ← unsaturated vertex, adjacent to Cs, in C;
e← edge between Cs and Cu;
(bi, gj)← edge in E(v)− F (v) corresponding to e;
if (bi, gj) is from Cs to Cu then

v′ ← adjacent vertex obtained by relaxing uijyi ≤ pj ;
else v′ ← adjacent vertex obtained by relaxing zij ≥ 0;
endif
return v′;

Table 4. Different cases for the new tight inequality

1. A non-zero edge (bk, gl) becomes zero, i.e., zkl ≥ 0 becomes tight.
2. A non-tight edge (bk, gl) becomes tight, i.e., uklyk ≤ pl becomes tight.
3. An unsaturated vertex in C becomes saturated, i.e.,

∑
l∈G zkl ≤ mk becomes tight,

where buyer k is a positive surplus buyer w.r.t. v.

Ju uniformly and by modifying yi’s and zij ’s accordingly till a new inequality
becomes tight. Table 4 lists the three possible cases for the new inequality.

Case 2: We get a new vertex v′, adjacent to v in O, by relaxing the inequality
zij ≥ 0, which is tight at v. Let J be the set of goods in the components of
(B,G, F (v)) corresponding to the vertices of C. v′ may also be obtained by
increasing the prices of the goods in J uniformly and by modifying the yi’s
and zij ’s accordingly till a new inequality becomes tight. Table 4 lists the three
possible cases for the new inequality.

Both the cases result in the new vertex v′ adjacent to v in O, where p as well
as y increase monotonically and

∑
j∈G pj as well as

∑
i∈B yi increase strictly

going from v to v′. Hence the cost function value increases strictly going from v
to v′. Note that v′ is also a special vertex of O.

From the above discussion, the following lemma is straightforward.

Lemma 10. If a special vertex v is not optimum, then there exists an adjacent
special vertex v′ such that the value of cost function is more at v′ than v.

There may be many simplex-like paths in O to reach at the optimum vertex using
different pivoting rules. Algorithm 1 traces a particular simplex-like path in O,
where the pivoting rule is such that there is at most one buyer with a positive
surplus at every vertex on the path. In this algorithm, we do not consider the
components, which contain only a single buyer.
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Algorithm 1. A Simplex-like Pivoting Algorithm

U ′ ← 〈u11, . . . , u1n〉; m′ ← 〈m1〉;
v ← special vertex corresponds to the solution of (U ′, m′);
i← 2;
while i ≤ m do

/* Note that the inequality yi ≥ 0 is tight at v */
v ← vertex adjacent to v obtained by relaxing yi ≥ 0;
while surplus of buyer i w.r.t. v is non-zero do

v ← AdjacentVertex(v);
endwhile
i← i + 1;

endwhile

There are two types of iterations of the inner while loop, one in which we relax
the inequality zkl ≥ 0 (Type 1) and the other in which we relax the inequality
uklyk ≤ pl (Type 2) for some (bk, gl).

Remark 11. Algorithm 1 provides a polyhedral interpretation to a sequential run
of the so called Basic Algorithm in [5], where buyers are added one at a time.

Lemma 12. Algorithm 1 takes at most (m + n ∗ 2m+n) iterations.

Proof. Consider the iterations of Type 2 of the inner while loop, where we relax
the tight inequality uklyk ≤ pl for some (bk, gl). Let Cj

s be the component con-
taining buyer k in the jth such iteration. Note that Cj

s is a saturated component.
Let Bj be the set of buyers and Gj be the set of goods in Cj

s , and Sj = Bj ∪Gj .
Since prices monotonically increase, therefore all Sj ’s are distinct. The total
number of distinct Sj’s are clearly bounded by 2m+n, and in every n iterations
of inner while loop, one iteration has to be of Type 2, therefore the number of
iterations of the algorithm is bounded by (m + n ∗ 2m+n). 	

Remark 13. A more refined bound is 2m+n+1.

4 Analysis

In this section, we describe the main idea of Algorithm 1 and show that it is
strongly polynomial for many special cases.

Main Idea of Algorithm 1. Consider the inner while loop for buyer i and let
v be the current special vertex. The component C of G(E(v), F (v)) containing
buyer i has exactly two vertices, one saturated (Cs) and one unsaturated (Cu),
and an edge (bk, gl) between them. Note that buyer i belongs to Cu and zkl =
0. Now, consider the tree T in (B,G, E(v)) rooted at buyer i. The edges are
directed downwards, i.e., away from the root. We increase the prices of the
goods uniformly in T in order to decrease the surplus of buyer i. This increases
the flow on the edges, which are from a buyer to a good (forward) and decreases
the flow on the edges, which are from a good to a buyer (backward).
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Therefore, when (bk, gl) be such that gl ∈ Cu and bk ∈ Cs, we need to relax
uklyk ≤ pl, and when gl ∈ Cs and bk ∈ Cu, we need to relax zkl ≥ 0 in order to
increase the prices. It is also clear that during the price increase, only backward
edges may be deleted. Moreover, since the prices of the goods in T increase,
buyers in T may become interested in the goods outside T , and it implies that
only forward edges may be added.

Theorem 14. Algorithm 1 is strongly polynomial when either the number of
buyers or goods is constant.

Proof. W.l.o.g., we assume that (U, m) are algebraically independent2.
It is enough to show that the inner while loop takes a strongly polynomial

number of iterations for every buyer i. Let Cj be the component of G(E(v), F (v)),
which contains buyer i in the jth iteration of the inner while loop for buyer i.
If surplus of buyer i is not zero, then Cj contains exactly one saturated vertex,
say Cj

s , and one unsaturated vertex, say Cj
u. Note that buyer i belongs to Cj

u.
Let (bk, gl) be the edge between Cj

u and Cj
s , and Pj be the path starting from

buyer i and ending with the edge (bk, gl) in (B,G, E(v)).

Claim. All Pj ’s are distinct.

Proof. Recall that when the edge (bk, gl) is such that buyer k belongs to Cj
s , we

relax the inequality uklyk ≤ pl, and when buyer k belongs to Cj
u, we relax the

inequality zkl ≥ 0. In other words, we add the edge (bk, gl) when buyer k belongs
to Cj

u and delete it when buyer k belongs to Cj
s .

We show that all Pj ’s, which end in a good, are distinct, and a similar argu-
ment may be worked out for the case when they end in a buyer. A path Pj may
repeat only when the last edge, say e, is deleted and added again, and this is
possible only if some other edge more near to buyer i than e in Pj is deleted.
The induction on the length of Pj proves the claim, because the edges between
buyer i and the goods never break (buyer i always lies in Cj

u). 	

Since the length of any Pj is at most 2∗min(m, n), therefore it is a constant when
either m or n is constant. Hence the total number of distinct Pj ’s are bounded
by a polynomial in either m (if n is constant) or n (if m is constant). Hence the
length of the simplex-like path in the Algorithm 1 is strongly polynomial when
either the number of buyers or goods is constant. 	


Theorem 15. Algorithm 1 is strongly polynomial when ∀i ∈ B, ∀j ∈ G, uij =
αkij , where 0 ≤ kij ≤ poly(m, n) and α > 0.

Proof. We only need to show that for every buyer i, the inner while loop takes a
strongly polynomial number of iterations. Consider the iterations of inner while
loop for a buyer a. We monitor the values of ya

pb
, ∀b ∈ G. Note that ya

pb
for a

good b remains same until both buyer a and good b are in the same component
2 For the general (U,m), a similar proof may be worked out.
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of G(E(v), F (v)), otherwise it strictly increases. Let Cj be the component of
G(E(v), F (v)), which contains buyer a in the jth iteration. If surplus of buyer
a is not zero, then Cj contains exactly one saturated vertex, say Cj

s , and one
unsaturated vertex, say Cj

u. Note that buyer a belongs to Cj
u.

Let (bk, gl) be the edge between Cj
u and Cj

s . There are two types of iterations,
one in which we relax the inequality zkl ≥ 0 (Type 1) and the other in which
we relax the inequality uklyk ≤ pl (Type 2). Let zkl ≥ 0 is relaxed in the jth

iteration, and ba, gj1 , bi1 , . . . , gjk
, bk, gl be the path from ba to gl in Cj . Clearly,

ya

pl
= ui1j1 ...ukjk

uaj1 ...uik−1jk
ukl

(using the tight inequalities uijyi ≤ pj), and the value

of ya

pl
strictly increases when iteration of Type 1 occurs. Now, we consider the

values of logα
ya

pj
, ∀j ∈ G. Clearly, these values monotonically increase when an

iteration of Type 1 occurs. Since for every j ∈ G, the value of logα
ya

pj
might be

at most n ∗ poly(m, n), therefore for every buyer i, the number of iterations of
inner while loop is bounded by n2 ∗ poly(m, n). 	

Theorem 15 may be easily generalized to handle the case when some uij ’s are
zero. Many easy cases like all utilities are 0/1, non-zero utilities form a tree etc.
may also be easily shown to be strongly polynomial in Algorithm 1.

5 Experimental Results

In this section, we report the experimental results of Algorithm 1. We ran Al-
gorithm 1 on random instances of the Fisher market (i.e., (U, m) are generated
uniformly at random), while keeping the number of buyers and goods same (i.e.,
m = n). For each value of m ∈ {4, 8, 12, 16, 20, 24}, we ran 100 experiments.
Table 5 summarizes the results in terms of the minimum (best), maximum
(worst) and mean (average) number of pivoting steps taken by Algorithm 1.

Table 5. Number of Pivoting Steps Taken by Algorithm 1

# buyers/goods 4 8 12 16 20 24

min 6 31 84 136 245 223
max 24 80 168 235 320 514
mean 12.5 50.9 113.1 186.9 279.8 408.9

Clearly, the number of steps seem to increase quadratically with the size of
instances, and even the worst case instance for each value of m requires fewer
than 2m2 steps. Therefore, Algorithm 1 should have a much better bound.

6 Conclusion

We have presented a novel convex optimization formulation for the Fisher market
problem whose feasible set is a polytope and it is guaranteed that there is a vertex
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of this polytope which is an optimal solution. Exploiting this, we have developed
a simplex-like vertex-marching algorithm which runs in strongly polynomial time
for many special cases.

We feel that the strongly polynomial algorithm by Orlin [11] is neither poly-
topal nor very intuitive. The algorithms, which are polytopal and simplex-like
are generally easier to understand, simpler to implement using standard math li-
braries, and run faster in practice. Therefore, an obvious open problem is to give
a strongly polynomial, simplex-like algorithm; even a polynomial bound will be
interesting. Another open problem is to give a linear programming formulation
that captures the equilibrium prices for the Fisher market. Therefore, it will be
interesting to construct a linear cost function on our polytope so that optimum
vertex gives the equilibrium prices.
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Abstract. Much work has been done on the computation of market
equilibria. However due to strategic play by buyers, it is not clear whether
these are actually observed in the market. Motivated by the observation
that a buyer may derive a better payoff by feigning a different utility
function and thereby manipulating the Fisher market equilibrium, we
formulate the Fisher market game in which buyers strategize by posing
different utility functions. We show that existence of a conflict-free al-
location is a necessary condition for the Nash equilibria (NE) and also
sufficient for the symmetric NE in this game. There are many NE with
very different payoffs, and the Fisher equilibrium payoff is captured at a
symmetric NE. We provide a complete polyhedral characterization of all
the NE for the two-buyer market game. Surprisingly, all the NE of this
game turn out to be symmetric and the corresponding payoffs constitute
a piecewise linear concave curve. We also study the correlated equilib-
ria of this game and show that third-party mediation does not help to
achieve a better payoff than NE payoffs.

1 Introduction

A fundamental market model was proposed by Walras in 1874 [21]. Indepen-
dently, Fisher proposed a special case of this model in 1891 [3], where a market
comprises of a set of buyers and divisible goods. The money possessed by buyers
and the amount of each good is specified. The utility function of every buyer
is also given. The market equilibrium problem is to compute prices and alloca-
tion such that every buyer gets the highest utility bundle subject to her budget
constraint and that the market clears. Recently, much work has been done on
the computation of market equilibrium prices and allocation for various utility
functions, for example [6,7,11,15].

The payoff (i.e., happiness) of a buyer depends on the equilibrium allocation
and in turn on the utility functions and initial endowments of the buyers. A
natural question to ask is, can a buyer achieve a better payoff by feigning a
different utility function? It turns out that a buyer may indeed gain by feigning!
This observation motivates us to analyze the strategic behavior of buyers in the
Fisher market. We analyze here the linear utility case described below.

S. Kontogiannis, E. Koutsoupias, P.G. Spirakis (Eds.): SAGT 2010, LNCS 6386, pp. 30–41, 2010.
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Let B be the set of buyers, and G be the set of goods, and |B| = m, |G| = n.
Let mi be the money possessed by buyer i, and qj be the total quantity of
good j in the market. The utility function of buyer i is represented by the non-
negative utility tuple 〈ui1, . . . , uin〉, where uij is the payoff, she derives from
a unit amount of good j. Thus, if xij is the amount of good j allocated to
buyer i, then the payoff she derives from her allocation is

∑
j∈G uijxij . Market

equilibrium or market clearing prices (p1, . . . , pn), where pj is the price of good
j, and equilibrium allocation [xij ]i∈B,j∈G satisfy the following constraints:

– Market Clearing: The demand equals the supply of each good, i.e., ∀j ∈
G,
∑

i∈B xij = qj , and ∀i ∈ B,
∑

j∈G pjxij = mi.
– Optimal Goods: Every buyer buys only those goods, which give her the

maximum utility per unit of money, i.e., if xij > 0 then uij

pj
= maxk∈G

uik

pk
.

In this market model, by scaling uij ’s appropriately, we may assume that the
quantity of every good is one unit, i.e., qj = 1, ∀j ∈ G. Equilibrium prices are
unique and the set of equilibrium allocations is a convex set [14]. The following
example illustrates a small market.

Example 1. Consider a 2 buyers, 2 goods market with m1 = m2 = 10, q1 =
q2 = 1, 〈u11, u12〉 = 〈10, 3〉 and 〈u21, u22〉 = 〈3, 10〉. The equilibrium prices
of this market are 〈p1, p2〉 = 〈10, 10〉 and the unique equilibrium allocation is
〈x11, x12, x21, x22〉 = 〈1, 0, 0, 1〉. The payoff of both the buyers is 10.

In the above market, does a buyer have a strategy to achieve a better payoff?
Yes indeed, buyer 1 can force price change by posing a different utility tuple,
and in turn gain. Suppose buyer 1 feigns her utility tuple as 〈5, 15〉 instead of
〈10, 3〉, then coincidentally, the equilibrium prices 〈p1, p2〉 are also 〈5, 15〉. The
unique equilibrium allocation 〈x11, x12, x21, x22〉 is 〈1, 1

3 , 0, 2
3 〉. Now, the payoff

of buyer 1 is u11 ∗ 1 + u12 ∗ 1
3 = 11, and that of buyer 2 is u22 ∗ 2

3 = 20
3 . Note

that the payoffs are still calculated w.r.t. the true utility tuples.
This clearly shows that a buyer could gain by feigning a different utility tuple,

hence the Fisher market is susceptible to gaming by strategic buyers. Therefore,
the equilibrium prices w.r.t. the true utility tuples may not be the actual oper-
ating point of the market. The natural questions to investigate are: What are
the possible operating points of this market model under strategic behavior?
Can they be computed? Is there a preferred one? This motivates us to study
the Nash equilibria of the Fisher market game, where buyers are the players and
strategies are the utility tuples that they may pose.

Related work. Shapley and Shubik [18] consider a market game for the ex-
change economy, where every good has a trading post, and the strategy of a
buyer is to bid (money) at each trading post. For each strategy profile, the
prices are determined naturally so that market clears and goods are allocated
accordingly, however agents may not get the optimal bundles. Many variants [2,8]
of this game have been extensively studied. Essentially, the goal is to design a
mechanism to implement Walrasian equilibrium (WE), i.e., to capture WE at a
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NE of the game. The strategy space of this game is tied to the implementation
of the market (in this case, trading posts). Our strategy space is the utility tuple
itself, and is independent of the market implementation. It is not clear that bids
of a buyer in the Shapley-Shubik game correspond to the feigned utility tuples.

In word auction markets as well, a similar study on strategic behavior of buy-
ers (advertisers) has been done [4,9,19].

Our contributions. We formulate the Fisher market game, the strategy sets
and the corresponding payoff function in Section 2. Every (pure) strategy pro-
file defines a Fisher market, and therefore market equilibrium prices and a set
of equilibrium allocations. The payoff of a buyer may not be same across all
equilibrium allocations w.r.t. a strategy profile, as illustrated by Example 2 in
Section 2. Furthermore, there may not exist an equilibrium allocation, which
gives the maximum possible payoffs to all the buyers. This behavior causes a
conflict of interest among buyers. A strategy profile is said to be conflict-free, if
there is an equilibrium allocation which gives the maximum possible payoffs to
all the buyers.

A strategy profile is called a Nash equilibrium strategy profile (NESP), if no
buyer can unilaterally deviate and get a better payoff. In Section 3, we show
that all NESPs are conflict-free. Using the equilibrium prices, we associate a
bipartite graph to a strategy profile and show that this graph must satisfy certain
conditions when the corresponding strategy profile is a NESP.

Next, we define symmetric strategy profiles, where all buyers play the same
strategy. We show that a symmetric strategy profile is a NESP iff it is conflict-
free. It is interesting to note that a symmetric NESP can be constructed for a
given market game, whose payoff is the same as the Fisher payoff, i.e., payoff
when all buyers play truthfully. Example 11 shows that all NESPs need not
be symmetric and the payoff w.r.t. a NESP need not be Pareto optimal (i.e.,
efficient). However, the Fisher payoff is always Pareto optimal (see First Theorem
of Welfare Economics [20]).

Characterization of all the NESPs seems difficult; even for markets with only
three buyers. We study two-buyer markets in Section 4 and the main results are:

– All NESPs are symmetric and they are a union of at most 2n convex sets.
– The set of NESP payoffs constitute a piecewise linear concave curve and

all these payoffs are Pareto optimal. The strategizing on utilities has the
same effect as differing initial endowments (see Second Theorem of Welfare
Economics [20]).

– The third-party mediation does not help in this game.

Some interesting observations about two-buyer markets are:

– The buyer i gets the maximum payoff among all Nash equilibrium payoffs
when she imitates the other, i.e., when they play (u−i, u−i), where u−i is
the true utility tuple of the other buyer.

– There may exist NESPs, whose social welfare (i.e., sum of the payoffs of
both the buyers) is larger than that of the Fisher payoff (Example 17).
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– For a particular payoff tuple, there is a convex set of NESPs and hence
convex set of equilibrium prices. This motivates a seller to offer incentives to
the buyers to choose a particular NESP from this convex set, which fetches
the maximum price for her good. Example 18 illustrates this behavior.

Most qualitative features of these markets may carry over to oligopolies, which
arise in numerous scenarios. For example, relationship between a few manufac-
turers of aircrafts or automobiles and many suppliers. Finally, we conclude in
Section 5 that it is highly unlikely that buyers will act according to their true
utility tuples in Fisher markets and discuss some directions for further research.

2 The Fisher Market Game

As defined in the previous section, a linear Fisher market is defined by the tuple
(B,G, (ui)i∈B, m), where B is a set of buyers, G is a set of goods, ui = (uij)j∈G
is the true utility tuple of buyer i, and m = (mi)i∈B is the endowment vector.
We assume that |B| = m, |G| = n and the quantity of every good is one unit.

The Fisher market game is a one-shot non-cooperative game, where the buyers
are the players, and the strategy set is all possible utility tuples that they may
pose, i.e., Si = {〈si1, si2, . . . , sin〉 | sij ≥ 0,

∑
j∈G sij �= 0}, ∀i ∈ B. Clearly,

the set of all strategy profiles is S = S1 × · · · × Sm. When a strategy profile
S = (s1, . . . , sm) is played, where si ∈ Si, we treat s1, . . . , sm as utility tuples
of buyers 1, . . . , m respectively, and compute the equilibrium prices and a set of
equilibrium allocations w.r.t. S and m.

Further, using the equilibrium prices (p1, . . . , pn), we generate the correspond-
ing solution graph G as follows: Let V (G) = B ∪ G. Let bi be the node corre-
sponding to the buyer i, ∀i ∈ B and gj be the node corresponding to the good
j, ∀j ∈ G in G. We place an edge between bi and gj iff sij

pj
= maxk∈G

sik

pk
, and

call the edges of the solution graph as tight edges. Note that when the solution
graph is a forest, there is exactly one equilibrium allocation, however this is not
so, when it contains cycles. In the standard Fisher market (i.e., strategy of every
buyer is her true utility tuple), all equilibrium allocations give the same payoff
to a buyer. However, this is not so when buyers strategize on their utility tuples:
Different equilibrium allocations may not give the same payoff to a buyer. The
following example illustrates this scenario.

Example 2. Consider the Fisher market of Example 1. Consider the strategy
profile S = (〈1, 19〉, 〈1, 19〉). Then, the equilibrium prices 〈p1, p2〉 are 〈1, 19〉 and
the solution graph is a cycle. There are many equilibrium allocations and the
allocations [x11, x12, x13, x14] achieving the highest payoff for buyers 1 and 2
are [1, 9

19 , 0, 10
19 ] and [0, 10

19 , 1, 9
19 ] respectively. The payoffs corresponding to these

allocations are (11.42, 5.26) and (1.58, 7.74) respectively. Note that there is no
allocation, which gives the maximum possible payoff to both the buyers.

Let p(S) = (p1, . . . , pn) be the equilibrium prices, G(S) be the solution graph,
and X(S) be the set of equilibrium allocations w.r.t. a strategy profile S.
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The payoff w.r.t. X ∈ X(S) is defined as (u1(X), . . . , um(X)), where ui(X) =∑
j∈G uijxij . Let wi(S) = maxX∈X(S) ui(X), ∀i ∈ B.

Definition 3. A strategy profile S is said to be conflict-free if ∃X ∈ X(S),
s.t. ui(X) = wi(S), ∀i ∈ B. Such an X is called a conflict-free allocation.

When a strategy profile S = (s1, . . . , sm) is not conflict-free, there is a conflict
of interest in selecting a particular allocation for the play. If a buyer, say k,
does not get the same payoff from all the equilibrium allocations, i.e., ∃X ∈
X(S), uk(X) < wk(S), then we show that for every δ > 0, there exists a strategy
profile S′ = (s′

1, . . . , s′
m), where s′

i = si, ∀i �= k, such that uk(X ′) > wk(S) −
δ, ∀X ′ ∈ X(S′) (Section 3.1). The following example illustrates the same.

Example 4. In Example 2, for δ = 0.1, consider S′ = (〈1.1, 18.9〉, 〈1, 19〉), i.e.,
buyer 1 deviates slightly from S. Then, p(S′) = 〈1.1, 18.9〉, and G(S′) is a tree;
the cycle of Example 2 is broken. Hence there is a unique equilibrium allocation,
and w1(S′) = 11.41, w2(S′) = 5.29.

Therefore, if a strategy profile S is not conflict-free, then for every choice of
allocation X ∈ X(S) to decide the payoff, there is a buyer who may deviate
and assure herself a better payoff. In other words, when S is not conflict-free,
there is no way to choose an allocation X from X(S) acceptable to all the buyers.
This suggests that only conflict-free strategies are interesting. Therefore, we may
define the payoff function Pi : S → R for each player i ∈ B as follows:

∀S ∈ S, Pi(S) = ui(X), where X = arg max
X′∈X(S)

∏
i∈B

ui(X ′). (1)

Note that the payoff functions are well-defined and when S is conflict-free,
Pi(S) = wi(S), ∀i ∈ B.

3 Nash Equilibria: A Characterization

In this section, we prove some necessary conditions for a strategy profile to
be a NESP of the Fisher market game defined in the previous section. Nash
equilibrium [13] is a solution concept for games with two or more rational players.
When a strategy profile is a NESP, no player benefits by changing her strategy
unilaterally.

For technical convenience, we assume that uij > 0 and sij > 0, ∀i ∈ B, ∀j ∈
G. The boundary cases may be easily handled separately. Note that if S =
(s1, . . . , sm) is a NESP then S′ = (α1s1, . . . , αmsm), where α1, . . . , αm > 0,
is also a NESP. Therefore, w.l.o.g. we consider only the normalized strategies
si = 〈si1, . . . , sin〉, where

∑
j∈G sij = 11, ∀i ∈ B. As mentioned in the previous

section, the true utility tuple of buyer i is 〈ui1, . . . , uin〉. For convenience, we
may assume that

∑
j∈G uij = 1 and

∑
i∈B mi = 1 (w.l.o.g.).

1 For simplicity, we do use non-normalized strategy profiles in the examples.
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We show that all NESPs are conflict-free. However, not all conflict-free strate-
gies are NESPs. A symmetric strategy profile, where all players play the same
strategy (i.e., ∀i, j ∈ B, si = sj), is a NESP iff it is conflict-free. If a strategy
profile S is not conflict-free, then there is a buyer a such that Pa(S) < wa(S).
The ConflictRemoval procedure in the next section describes how she may de-
viate and assure herself payoff almost equal to wa(S).

3.1 Conflict Removal Procedure

Definition 5. Let S be a strategy profile, X ∈ X(S) be an allocation, and P =
v1, v2, v3, . . . be a path in G(S). P is called an alternating path w.r.t. X, if the
allocation on the edges at odd positions is non-zero, i.e., xv2i−1v2i > 0, ∀i ≥ 1.
The edges with non-zero allocation are called non-zero edges.

Table 1. Conflict Removal Procedure

ConflictRemoval(S, ba, δ)
while ba belongs to a cycle in G(S) do

(p1, . . . , pn)← p(S);
J ← {j ∈ G | the edge (ba, gj) belongs to a cycle in G(S)};
gb ← arg max

j∈J

uaj

pj
;

X ← an allocation in X(S) such that ua(X) = wa(S) and xab is maximum;
S ← Perturbation(S, X, ba, gb,

δ
n
);

endwhile
return S;

Perturbation(S, X, ba, gb, γ)
S′ ← S;
if (ba, gb) does not belong to a cycle in G(S) then

return S′;
endif
J1 ← {v | there is an alternating path from ba to v in G(S) \ (ba, gb) w.r.t. X};
J2 ← {v | there is an alternating path from gb to v in G(S) \ (ba, gb) w.r.t. X};
(p1, . . . , pn)← p(S); l←∑

gj∈J1
pj ; r ←∑

gj∈J2
pj ;

W.r.t. α, define prices of goods to be
∀gj ∈ J1 : (1− α)pj ; ∀gj ∈ J2 : (1 + lα

r
)pj ; ∀gj ∈ G \ (J1 ∪ J2) : pj ;

Raise α infinitesimally starting from 0 such that none of the three events occur:
Event 1: a new edge becomes tight;
Event 2: a non-zero edge becomes zero;
Event 3: payoff of buyer a becomes ua(X)− γ;

s′ab ← sab
(1+ lα

r
)

(1−α)
; s′

a ← s′
a∑

j∈G s′aj
;

return S′;

The ConflictRemoval procedure in Table 1 takes a strategy profile S, a buyer
a and a positive number δ, and outputs another strategy profile S′, where s′

i =
si, ∀i �= a such that ∀X ′ ∈ X(S′), ua(X ′) > wa(S) − δ. The idea is that if a
buyer, say a, does not belong to any cycle in the solution graph of a strategy
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profile S, then ua(X) = wa(S), ∀X ∈ X(S). The procedure essentially breaks
all the cycles containing ba in G(S) using the Perturbation procedure iteratively
such that the payoff of buyer a does not decrease by more than δ.

The Perturbation procedure takes a strategy profile S, a buyer a, a good b,
an allocation X ∈ X(S), where xab is maximum among all allocations in X(S)
and a positive number γ, and outputs another strategy profile S′ such that
s′

i = si, ∀i �= a and wa(S′) > ua(X) − γ. It essentially breaks all the cycles
containing the edge (ba, gb) in G(S).

A detailed explanation of both the procedures is given in [1]. In the next
theorem, we use the ConflictRemoval procedure to show that all the NESPs in
the Fisher market game are conflict-free.

Theorem 6. If S is a NESP, then

(i) ∃X ∈ X(S) such that ui(X) = wi(S), ∀i ∈ B, i.e., S is conflict-free.
(ii) the degree of every good in G(S) is at least 2.
(iii) for every buyer i ∈ B, ∃ki ∈ Ki s.t. xiki > 0, where Ki = {j ∈ G | uij

pj
=

maxk∈G
uik

pk
}, (p1, . . . , pn) = p(S) and [xij ] is a conflict-free allocation.

Proof. Suppose there does not exist an allocation X ∈ X(S) such that ui(X) =
wi(S), ∀i ∈ B, then there is a buyer k ∈ B, such that Pk(S) < wk(S). Clearly,
buyer k has a deviating strategy (apply ConflictRemoval on the input tuple
(S, k, δ), where 0 < δ < (wk(S)− Pk(S))), which is a contradiction.

For part (ii), if a good b is connected to exactly one buyer, say a, in G(S),
then buyer a may gain by reducing sab, so that price of good b decreases and
prices of all other goods increase by the same factor.

For part (iii), if there exists a buyer i such that xiki = 0, ∀ki ∈ Ki, then she
may gain by increasing the utility for a good in Ki. 	

The following example shows that the above conditions are not sufficient.

Example 7. Consider a market with 3 buyers and 2 goods, where m = 〈50, 100,
50〉, u1 = 〈2, 0.1〉, u2 = 〈4, 9〉, and u3 = 〈0.1, 2〉. Consider the strategy profile
S = (u1, u2, u3) given by the true utility tuples. The payoff tuple w.r.t. S is
(1.63, 6.5, 0.72). It satisfies all the necessary conditions in the above theorem,
however S is not a NESP because buyer 2 has a deviating strategy s′

2 = 〈2, 3〉
and the payoff w.r.t. strategy profile (s1, s′

2, s3) is (1.25, 6.75, 0.83).

3.2 Symmetric and Asymmetric NESPs

Recall that a strategy profile S = (s1, . . . , sm) is said to be a symmetric strategy
profile if s1 = · · · = sm, i.e., all buyers play the same strategy.

Proposition 8. A symmetric strategy profile S is a NESP iff it is conflict-free.

Proof. (⇒) is easy (Theorem 6). For (⇐), suppose a buyer i may deviate and
gain, then the prices have to be changed. In that case, all buyers except buyer i
will be connected to only those goods, whose prices are decreased. This leads to
a contradiction (refer to [1] for details). 	
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Let Sf = [sij ] be a strategy profile, where sij = uij , ∀i ∈ B, ∀j ∈ G, i.e., true
utility functions. All allocations in X(Sf ) give the same payoff to the buyers (i.e.,
∀i ∈ B, ui(X) = wi(Sf ), ∀X ∈ X(Sf )), and we define Fisher payoff (uf

1 , . . . , uf
m)

to be the payoff derived when all buyers play truthfully.

Corollary 9. A symmetric NESP can be constructed, whose payoff is the same
as the Fisher payoff.

Proof. Let S = (s, . . . , s) be a strategy profile, where s = p(Sf ). Clearly S is a
symmetric NESP, whose payoff is the same as the Fisher payoff (refer to [1] for
details). 	

Remark 10. The payoff w.r.t. a symmetric NESP is always Pareto optimal. For
a Fisher market game, there is exactly one symmetric NESP iff the degree of
every good in G(Sf ) is at least two [10].

The characterization of all the NESPs for the general market game seems hard;
even for markets with only three buyers. The following example illustrates an
asymmetric NESP, whose payoff is not Pareto optimal.

Example 11. Consider a market with 3 buyers and 2 goods, where m = 〈50, 100,
50〉, u1 = 〈2, 3〉, u2 = 〈4, 9〉, and u3 = 〈2, 3〉. Consider the two strategy pro-
files given by S1 = (s1, s2, s3) and S2 = (s, s, s), where s1 = 〈2, 0.1〉, s2 =
〈2, 3〉, s3 = 〈0.1, 3〉, and s = 〈2, 3〉. The payoff tuples w.r.t. S1 and S2 are
(1.25, 6.75, 1.25) and (1.25, 7.5, 1.25) respectively. Note that both S1 and S2 are
NESPs for the above market (refer to [1] for details).

4 The Two-Buyer Markets

A two-buyer market consists of two buyers and a number of goods. These markets
arise in numerous scenarios. The two firms in a duopoly may be considered as
the two buyers with a similar requirements to fulfill from a large number of
suppliers, for example, relationship between two big automotive companies with
their suppliers.

In this section, we study two-buyer market game and provide a complete
polyhedral characterization of NESPs, all of which turn out to be symmetric.
Next, we study how the payoffs of the two buyers change with varying NESPs
and show that these payoffs constitute a piecewise linear concave curve. For a
particular payoff tuple on this curve, there is a convex set of NESPs, hence a
convex set of equilibrium prices, which leads to a different class of non-market
behavior such as incentives. Finally, we study the correlated equilibria of this
game and show that third-party mediation does not help to achieve better payoffs
than any of the NESPs.

Lemma 12. All NESPs for a two-buyer market game are symmetric.

Proof. If a NESP S = (s1, s2) is not symmetric, then G(S) is not a complete
bipartite graph. Therefore there is a good, which is exclusively bought by a
buyer, which is a contradiction (Theorem 6, part (ii)). 	
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4.1 Polyhedral Characterization of NESPs

In this section, we compute all the NESPs of a Fisher market game with two
buyers. Henceforth we assume that the goods are so ordered that u1j

u2j
≥ u1(j+1)

u2(j+1)
,

for j = 1, . . . , n − 1. Chakrabarty et al. [5] also use such an ordering to design
an algorithm for the linear Fisher market with two agents. Let S = (s, s) be
a NESP, where s = (s1, . . . , sn) and (p1, . . . , pn) = p(S). The graph G(S) is
a complete bipartite graph. Since m1 + m2 = 1 and

∑n
j=1 sj = 1, we have

pj = sj , ∀j ∈ G. In a conflict-free allocation X ∈ X(S), if x1i > 0 and x2j > 0,
then clearly u1i

pi
≥ u1j

pj
and u2i

pi
≤ u2j

pj
.

Definition 13. An allocation X = [xij ] is said to be a nice allocation, if it
satisfies the property: x1i > 0 and x2j > 0 ⇒ i ≤ j.

The main property of a nice allocation is that if we consider the goods in order,
then from left to right, goods get allocated first to buyer 1 and then to buyer 2
exclusively, however they may share at most one good in between. Note that a
symmetric strategy profile has a unique nice allocation.

Lemma 14. Every NESP has a unique conflict-free nice allocation.

Proof. The idea is to convert a conflict-free allocation into a nice allocation
through an exchange s.t. payoff remains same (refer to [1] for details). 	

The non-zero edges in a nice allocation either form a tree or a forest containing
two trees. We use the properties of nice allocations and NESPs to give the
polyhedral characterization of all the NESPs. The convex sets Bk for all 1 ≤ k ≤
n, as given in Table 2, correspond to all possible conflict-free nice allocations,
where non-zero edges form a tree, and the convex sets B′

k for all 1 ≤ k ≤ n−1, as
given in Table 3, correspond to all possible conflict-free nice allocations, where
non-zero edges form a forest2. Let B = ∪n

k=1Bk∪n−1
k=1B′

k and SNE = {(α, α) |α =
(α1, . . . , αn) ∈ B}. Note that SNE is a connected set.

Table 2. Bk∑k−1
i=1 αi < m1∑n

i=k+1 αi < m2∑n
i=1 αi = m1 + m2

u1jαi − u1iαj ≤ 0 ∀i ≤ k,∀j ≥ k
u2iαj − u2jαi ≤ 0 ∀i ≤ k,∀j ≥ k

αi ≥ 0 ∀i ∈ G

Table 3. B′
k∑k

i=1 αi = m1∑n
i=k+1 αi = m2

u1jαi − u1iαj ≤ 0 ∀i ≤ k,∀j ≥ k + 1
u2iαj − u2jαi ≤ 0 ∀i ≤ k,∀j ≥ k + 1

αi ≥ 0 ∀i ∈ G

Lemma 15. A strategy profile S is a NESP iff S ∈ SNE.

Proof. (⇐) is easy by the construction and Proposition 8. For the other direction,
we know that every NESP has a conflict-free nice allocation (Lemma 14), and
B corresponds to all possible conflict-free nice allocations. 	

2 In both the tables αi’s may be treated as price variables.
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4.2 The Payoff Curve

In this section, we consider the payoffs obtained by both the players at various
NESPs. Recall that whenever a strategy profile S is a NESP, Pi(S) = wi(S), ∀i ∈
B. Henceforth, we use wi(S) as the payoff of buyer i for the NESP S. Let
F = {(w1(S), w2(S)) | S ∈ SNE} be the set of all possible NESP payoff tuples.

Let X be the set of all nice allocations, and H = {(u1(X), u2(X)) | X ∈ X}.
For α ∈ [0, 1], let t(α) = (〈s1, . . . , sn〉, 〈s1, . . . , sn〉), where si = u1i+α(u2i−u1i),
and G = {(w1(S), w2(S)) | S = t(α), α ∈ [0, 1]}.
Proposition 16. F is a piecewise linear concave (PLC) curve.

Proof. The proof is based on the following steps (refer to [1] for details).
1. H is a PLC curve with (0, 1) and (1, 0) as the end points.
2. ∀α ∈ [0, 1], t(α) ∈ SNE, then clearly G ⊂ H. Since the nice allocation w.r.t.

t(α) changes continuously as α moves from 0 to 1, so we may conclude that G
is a PLC curve with the end points (w1(S1), w2(S1)) and (w1(S2), w2(S2)),
where S1 = t(0) and S2 = t(1).

3. F = G. 	

The next example demonstrates the payoff curve for a small market game.

Example 17. Consider a market with 3
goods and 2 buyers, where m = 〈7, 3〉,
u1 = 〈6, 2, 2〉, and u2 = 〈0.5, 2.5, 7〉. The
payoff curve for this game is shown in the
figure. The first and the second line seg-
ment of the curve correspond to the shar-
ing of good 2 and 3 respectively. The pay-
offs corresponding to the boundary NESPs
S1 = t(0) and S2 = t(1) are (7, 8.25) and
(9.14, 3) respectively. Payoff of buyer 1

P
ay

off
of

bu
ye

r
2

(7, 8.25)

(8, 7) Fisher Payoff

(9.14, 3)

L1

L2

Furthermore, the Fisher payoff (8, 7) may be achieved by a NESP t(0.2). Note
that in this example the social welfare (i.e., sum of the payoffs of both the buyers)
from the Fisher payoff (15) is lower than that of the NESP S1 (15.25).

4.3 Incentives

For a fixed payoff tuple on the curve F, there is a convex set of NESPs and hence
a convex set of prices, giving the same payoffs to the buyers, and these may be
computed using the similar inequalities as defined in Tables 2 and 3. This leads
to a different class of behavior, i.e., motivation for a seller to offer incentives to
the buyers to choose a particular NESP from this convex set, which fetches the
maximum price for her good. The following example illustrates this possibility.

Example 18. Consider a market with 2 buyers and 4 goods, where m = 〈10, 10〉,
u1 = 〈4, 3, 2, 1〉, and u2 = 〈1, 2, 3, 4〉. Consider the two NESPs given by S1 =
(s1, s1) and S2 = (s2, s2), where s1 = 〈20

3 , 20
3 , 10

3 , 10
3 〉 and s2 = 〈20

3 , 20
3 , 9

3 , 11
3 〉.

Both S1 and S2 gives the payoff (5.5, 8), however the prices are different, i.e.,
p(S1) = 〈20

3 , 20
3 , 10

3 , 10
3 〉 and p(S2) = 〈20

3 , 20
3 , 9

3 , 11
3 〉. Clearly in S2, good 3 is

penalized and good 4 is rewarded (compared to S1).
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4.4 Correlated Equilibria

We have seen in Section 4.2 that the two-buyer market game has a continuum
of Nash Equilibria, with very different and conflicting payoffs. This makes it
difficult to predict how a particular game will actually play out in practice, and
if there is a different solution concept which may yield an outcome liked by both
the players.

We examine the correlated equilibria framework as a possibility. Recall that
according to the correlated equilibria, the mediator decides and declares a proba-
bility distribution π on all possible pure strategy profiles (s1, s2) ∈ S1×S2 before-
hand. During the play, she suggests what strategy to play to each player privately,
and no player benefits by deviating from the advised strategy. The question we
ask: Is there a correlated equilibrium π such that the payoff w.r.t. π lies above
the curve H? We continue with our assumption that u1j

u2j
≥ u1(j+1)

u2(j+1)
, ∀j < n.

Lemma 19. For any strategy profile S = (s1, s2), for every allocation X ∈
X(S), there exists a point (x1, x2) on H such that x1 ≥ u1(X) and x2 ≥ u2(X).

Proof. Any allocation X may be converted to a nice allocation through an ex-
change such that no buyer worse off (refer to [1] for details). 	

Corollary 20. The correlated equilibrium does not give better payoff than any
NE payoff to all the buyers.

Remark 21. [10] extends this result for the general Fisher market game.

5 Conclusion

The main conclusion of the paper is that Fisher markets in practice will rarely
be played with true utility functions. In fact, the utilities employed will usually
be a mixture of a player’s own utilities and her conjecture on the other player’s
true utilities. Moreover, there seems to be no third-party mediation which will
induce players to play according to their true utilities so that the true Fisher
market equilibrium may be observed. Further, any notion of market equilibrium
should examine this aspect of players strategizing on their utilities. This poses
two questions: (i) is there a mechanism which will induce players into revealing
their true utilities? and (ii) how does this mechanism reconcile with the ”invisible
hand” of the market? The strategic behavior of agents and the question whether
true preferences may ever be revealed, has been of intense study in economics
[12,17,20]. The main point of departure for this paper is that buyers strategize
directly on utilities rather than market implementation specifics, like trading
posts and bundles. Hopefully, some of these analysis will lead us to a more
effective computational model for markets.

On the technical side, the obvious next question is to completely characterize
the NESPs for the general Fisher market game. We assumed the utility functions
of the buyers to be linear, however Fisher market is gameable for the other class
of utility functions as well. It will be interesting to do a similar analysis for more
general utility functions.
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Partition Equilibrium Always Exists
in Resource Selection Games�

Elliot Anshelevich, Bugra Caskurlu, and Ameya Hate

Department of Computer Science, Rensselaer Polytechnic Institute, Troy, NY

Abstract. We consider the existence of Partition Equilibrium in Re-
source Selection Games. Super-strong equilibrium, where no subset of
players has an incentive to change their strategies collectively, does not
always exist in such games. We show, however, that partition equilib-
rium (introduced in [4] to model coalitions arising in a social context)
always exists in general resource selection games, as well as how to com-
pute it efficiently. In a partition equilibrium, the set of players has a
fixed partition into coalitions, and the only deviations considered are by
coalitions that are sets in this partition. Our algorithm to compute a
partition equilibrium in any resource selection game (i.e., load balanc-
ing game) settles the open question from [4] about existence of partition
equilibrium in general resource selection games. Moreover, we show how
to always find a partition equilibrium which is also a Nash equilibrium.
This implies that in resource selection games, we do not need to sacrifice
the stability of individual players when forming solutions stable against
coalitional deviations. In addition, while super-strong equilibrium may
not exist in resource selection games, we show that its existence can be
decided efficiently, and how to find one if it exists.

1 Introduction

In multi-agent systems, it is common to assume that the agents will change their
existing behavior if they can reduce their cost by doing so. This assumption is
at the heart of the study of Nash equilibrium in various settings. The concept
of Nash equilibrium, however, becomes relevant only in scenarios where agents
cannot form coalitions, and change their behavior as a group. The Strong Equi-
librium [1] solution concept, where any subset of agents can form a coalition and
deviate together if it is beneficial to all of them, addresses the weaknesses of the
Nash equilibrium solution concept for the settings where players can form coali-
tions. A strong equilibrium represents the scenario where any group of players
could form a coalition, and everyone has to strictly benefit from a deviation. In
this paper, we relax these assumptions, and consider the cases where only some
of the subsets of players could group themselves together into a deviating coali-
tion, and where not everyone in a coalition has to strictly improve their utility
in order to deviate.
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We study these solution concepts in the context of Resource Selection Games
(RSGs). RSGs model a wide range of scenarios, where a set of players are select-
ing exactly one of various resources, with the cost of using a resource depending
on the type of the resource, as well as the number of players selecting this partic-
ular resource. They present a framework that can be used to model the problems
of various communities like operations research, economics, computing systems,
transportation, and communication networks. The atomic selfish routing game
[2,6,13,14] on parallel link networks and selfish machine assignment [3,5,10,14]
for identical jobs are among various problems modeled as RSGs in the algorith-
mic game theory community. RSGs fall into the class of potential games [11,12]
for which existence of a pure Nash equilibrium is guaranteed. Holzman and Law-
Yone [8,9] proved the existence of strong equilibrium in RSGs as well. However,
Super-Strong Equilibrium (see below) is not guaranteed to exist in RSGs, which
led Feldman and Tennenholtz [4] to define a concept of Partition Equilibrium and
study its existence in the context of Resource Selection Games. In this paper,
we greatly extend their results by showing the existence of partition equilibrium
in every Resource Selection Game, as well as how to compute it.

1.1 Related Solution Concepts

The Strong Equilibrium (SE) solution concept assumes a coalition will deviate
only if the deviation is strictly profitable to all members of the coalition. In a
strong equilibrium, no subset of players is able to deviate with every player in
the group strictly improving their utility.

Super-Strong Equilibrium (SSE) considers weakly-profitable deviations, where
a coalition will deviate provided that no member of the coalition becomes worse
off, and at least one member of the coalition strictly benefits. A super-strong
equilibrium is a solution where no subset of players has such a deviation. This
solution concept makes more sense in many settings, especially if agents will
somewhat care about the utility of other agents (which perfectly make sense if
the agents are friends, colleagues, family members). While strong equilibrium
is guaranteed to exist in RSGs, there are RSG instances where super-strong
equilibrium may not exist, even with 2 identical machines and 3 players [4].
Additionally, if we consider the formation of player coalitions as arising from a
social context (i.e., a group of friends decide to form a coalition together), then
the assumption that any subset of players can form a coalition is quite strong.

Partition Equilibrium was first defined in [4] as an attempt to model coali-
tions that arise from a social context. In this setting, the specification of the
game contains a fixed partition T over the set of players. This partition divides
the players into non-overlapping coalitions. In this solution concept, the only
permissible deviations are the ones where a coalition is one of the sets in the
fixed partition T . A solution is a stable solution if no coalition has an weakly-
profitable deviation, i.e., a deviation where at least one member of the coalition
strictly benefits and no member of the coalition becomes worse off. [4] called
such a stable solution a T -SSE, since a partition equilibrium is a super-strong
equilibrium, but with the only coalitions that are allowed to deviate being the
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sets of partition T . Also observe that unlike strong equilibrium or super-strong
equilibrium, partition equilibrium solutions are not a subset of Nash equilibrium
solutions.

Feldman and Tennenholtz [4] studied the existence of partition equilibrium
in the context of resource selection games and proved that partition equilibrium
exists in the following special cases:

– All the resources are identical, i.e., they share the same latency function, or
– There are only 2 resources in the system, or
– Each coalition is composed of 1 or 2 players.

Note that partition equilibrium is a solution concept in a non-transferable utility
game, i.e., money transfers among the players are not allowed. The Collusion
Equilibrium solution concept [7,6] is the analogue of partition equilibrium in
transferable utility games. In this solution concept, there is also a fixed partition
over the players which forms the non-overlapping coalitions. The only difference
is that money transfers among the players are permitted, and therefore a devi-
ation is an improving deviation if it reduces the total cost of the players in the
coalition. Observe that collusion equilibrium is a stronger solution concept in
the sense that an allocation of players to resources that constitutes a collusion
equilibrium (no coalition can reduce its total cost by deviating) is also a parti-
tion equilibrium allocation but not vice versa. Hayrapetyan, Tardos and Wexler
[7] studied the existence and computation of collusion equilibrium in the context
of resource selection games. They proved the existence of collusion equilibrium
(and therefore, partition equilibrium) in the special case where the latency func-
tions of the resources are convex. Their proof is constructive, i.e., they give an
algorithm that produces a collusion equilibrium solution which may not be a
Nash equilibrium solution.

1.2 Our Results

Our main result is the proof of existence (and efficient computation) of an allo-
cation A of players to resources such that A is both a partition equilibrium and
a Nash equilibrium allocation. This result holds for general resource allocation
games, with no assumptions about the latency functions of different resources
(except them being increasing), on the size of the coalitions, or on the number of
machines. This resolves an open question from [4] about the existence of parti-
tion equilibrium for general RSGs. Moreover, our results provide the interesting
insight that for every partition T there exists a solution where no coalition of
T would gain by deviating (i.e., it is a T -SSE), and no single player would gain
by deviating (i.e., it is a Nash equilibrium). This implies that we do not need to
sacrifice the stability of individual players when forming solutions stable against
coalitional deviations.

In Section 2, we present a formal definition of resource selection games and
give a complete characterization of Nash equilibrium solutions for these games.
In Section 3, we give a set of sufficient conditions for coalitions such that if a
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coalition satisfies the given conditions on a Nash equilibrium allocation, then
that coalition does not have an improving deviation. In Section 4, we give an
algorithm that produces a Nash equilibrium allocation of players to resources
such that all coalitions satisfy the sufficient conditions given in Section 3. In
Section 5, we show that for any resource selection game instance, the existence of
super-strong equilibrium is efficiently decidable, and if super-strong equilibrium
exists, then we can compute one efficiently.

In summary, this paper shows that we can always find a SSE if one exists, but
even for games which do not admit a SSE, we can find a solution that is stable
for any set in a given partition T , as well as for any individual player.

2 Model and Preliminaries

We now formally define the resource selection game. We have n players (jobs)
and m resources (machines). The strategy of each player is to select exactly one
of the m machines. Each machine i has a strictly increasing latency function
fi(ni) which only depends on the number of players ni that select machine i.
The cost of each player that selected machine i is fi(ni).

In this paper we will consider partition equilibrium and super-strong equi-
librium (SSE), both of which are solution concepts involving stability against
coalitional deviations. Specifically, by an improving deviation by a coalition of
players C, we will mean a weakly-profitable deviation, i.e., a deviation where no
player in C increases their cost, and at least one player of C strictly decreases
their cost.

A SSE is an allocation of jobs to machines, so that no subset of jobs has an
improving deviation. As shown in [4], a SSE does not always exist, although
a strong equilibrium (where a deviation will only occur if every member of a
coalition strictly profits) always exists in resource selection games [8,9].

Now suppose that we have a fixed partition T = T1, . . . , Tk over the set of
players such that Ti ∩ Tj = ∅, i.e., the sets are not overlapping. Each set Ti

represents a coalition of players that are willing to deviate as a group. Then,
a partition equilibrium or T -SSE is an allocation of jobs to machines such that
no set of jobs in partition T has an improving deviation. Then, it is clear that
a SSE is also a T -SSE for every partition T , as well as a Nash equilibrium. A
T -SSE, on the other hand, is not necessarily a Nash equilibrium.

2.1 Nash Equilibrium

Since we are going to show that the existence of an allocation that is a T -SSE and
a Nash equilibrium, we first give a complete characterization of Nash equilibrium
solutions.

Let u be the minimum makespan of our system, i.e., the minimum value of
maxi fi(ni) that can be achieved for any allocation of jobs to machines. Notice
that since the latency of a machine depends only on the number of jobs assigned
to this machine, then u is easily computable using a greedy algorithm. We classify
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the machines into two groups. A resource i is called a ’type 1’ resource if there
exists a positive integer z such that fi(z) = u. In other words, a resource is a
’type 1’ resource if it can attain a latency of u. We say that a resource i is a ’type
2’ resource if it cannot attain a latency of u, i.e., there is no positive integer z
such that fi(z) = u.

For each machine i, define mi as the maximum number of jobs a machine can
accept while i attains a latency at most u, i.e., mi = maxz{fi(z) ≤ u}.
Proposition 1. An allocation A of jobs onto machines is a Nash equilibrium if
and only if each type 2 machine i is allocated exactly mi jobs and each type 1
machine i is allocated either mi or mi− 1 jobs, with at least one type 1 machine
i allocated exactly mi jobs.

Proof. if: Note that when a job deviates it has to move to another machine,
thereby increasing the number of jobs on that machine. If the number of jobs on
any machine increases, then that machine will experience a latency of at least u.
Since all jobs are currently experiencing a cost of at most u, the latency of any
job after moving to a different machine will not decrease. This proves that if all
the above conditions are satisfied then the allocation is a Nash equilibrium.

only if: If the makespan of a solution is more than u, say α, then this means
that some machine i has more than mi jobs on it. This implies that there exists
a machine j that has less than mj jobs on it. Then by transferring a job from
machine i to j we can reduce the latency faced by that job from α to at most
u. Hence a Nash equilibrium will always have a makespan of u. Also if any type
2 machine has less than mi jobs, or a type 1 machine has less than mi − 1 jobs
on it, then by moving a job that faces a latency of u to this machine, we can
reduce its latency. It is trivial to see that any type 2 machine will not have more
than mi jobs on it since that will increase the makespan to more than u. Hence
any such allocation will not form a Nash equilibrium. This proves that in order
for an allocation to be a Nash equilibrium, all the above conditions must be
fulfilled.

By Proposition 1, some type 1 machines i are allocated mi jobs and therefore
the jobs on them are experiencing a cost of u, and some type 1 machines are
(possibly) allocated mi−1 jobs and the jobs on those machines are experiencing
a cost strictly less than u. Given a Nash equilibrium solution, we use the term
high machine to refer to a type 1 machine i that has mi jobs and use H to
denote this set of machines. We use the term low machine to refer to all other
type 1 machines and use L to denote this set of machines throughout the paper.
We use R to denote the set of type 2 machines.

Given a game instance (i.e., the set of machines with their latency functions,
the set of players, and the partition specified on it), the set of type 1 and type
2 machines can be readily decided, i.e., the same set of machines will be type
1 machines and the same set of machines will be type 2 machines in any Nash
equilibrium allocation A. However, the splitting of type 1 machines into high
machines H and low machines L depends on the Nash equilibrium solution
selected. Let A and A′ be two different Nash equilibrium allocations and let
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H, H ′ and L, L′ be the corresponding high and low machines for these Nash
equilibrium allocations. Observe that |H | = |H ′| (and therefore |L| = |L′|) even
though H and H ′ (and therefore L and L′) may be different sets of machines.
The number of high machines in any Nash equilibrium will be same.

3 Sufficient Conditions for Stability

In this paper, we want to construct a Nash equilibrium solution that is also
a partition equilibrium for any given partition of the players. So, we want to
construct a Nash equilibrium allocation such that none of the coalitions has an
improving deviation. Given a Nash equilibrium allocation A, whether a coalition
Tk has an improving deviation or not depends on the number of jobs of this
coalition allocated to each machine. In this section, we will give a set of sufficient
conditions for a coalition Tk not to have an improving deviation. Observe that
if all the coalitions satisfy these sufficient conditions then none of the coalitions
will have an improving deviation, which implies that the allocation A is also a
partition equilibrium. For a type 1 machine i, we use li to denote fi(mi − 1),
i.e., the latency that it would experience if it were a low machine.

Following lemmas, the proofs which are not included due to lack of space, will
help in finding the sufficient conditions for stability:

Lemma 1. If the number of jobs on a machine k is the same before and after
an improving deviation, then there exists an equivalent improving deviation (i.e.,
with the same number of jobs on each machine) where no jobs move to or from
machine k.

Lemma 2. If a coalition Tk, that has 0 or 1 jobs on a high machine i in a Nash
equilibrium allocation A, has an improving deviation D, then Tk has another
improving deviation D′, where no jobs move to or from i.

Theorem 1. Given a Nash equilibrium allocation A and a coalition Tk, let xi

denote the number of jobs of the coalition Tk allocated to machine i in A. Then
coalition Tk does not have an improving deviation if for every high machine i
such that xi ≥ 2 the following conditions are satisfied:

– for every low machine j such that lj > li, we have that xj ≥ xi and
– for every low machine j such that lj ≤ li, we have that xj ≥ xi − 1.

Proof. For the purpose of contradiction, assume there exists a coalition Tk that
satisfies all the conditions and yet has an improving deviation D. Let A′ denote
the allocation of jobs to machines if coalition Tk takes its improving deviation
D, and x′

i be the number of jobs Tk has on machine i in allocation A′. Since the
allocation of the jobs of all coalitions except Tk are the same in both A and A′,
the change in the number of jobs on any machine i is as much as the change in
the number of jobs coalition Tk has on i. No machine i can have more than mi

jobs allocated to it in allocation A′ since otherwise, the jobs on i (at least one
of which is a member of Tk) will experience a latency more than u, which will
imply that the deviation is not an improving deviation.
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If coalition Tk has 0 or 1 jobs on a high machine i in allocation A then
there exists another improving deviation D′, where no jobs move to or from i
by Lemma 2. We will assume that D has this property. Notice that if xi < 2
for a high machine i, then i is also a high machine in allocation A′. Let xh =
maxi∈H{xi}. We will first show that xh ≥ 2. Otherwise, all machines in H
remain high after the deviation. If any other machine j �∈ H became high after
deviation D, then jobs on j would experience a cost of u. However, all jobs with
cost of u in A are on machines of H after the deviation, which means that the
jobs on j have strictly increased their cost due to deviation D, and therefore
D could not be an improving deviation. Thus, if xh < 2, then the set of high
machines is the same before and after D. In addition, if any machine j �∈ H
has less jobs in A′ than it did in A, then another machine must have more jobs,
which would cause those jobs to experience a cost of at least u. By the argument
above, this cannot happen, and so xh ≥ 2.

Lemma 3. Let H ′ be the set of machines with latency of exactly u in allocation
A′. Then, |H ′| ≤ |H |.
Proof. In allocation A, coalition Tk has

∑
i∈H xi jobs experiencing a latency

of u, whereas in allocation A′, coalition Tk has
∑

i∈H′ x′
i jobs experiencing a

latency of u. Let xh = maxi∈H{xi} and let xl = mini∈L{xi}. The sufficient
conditions state that xl ≥ xh − 1, since xh ≥ 2 as shown above. If i ∈ H ′ was
a low machine before the deviation, then x′

i = xi + 1, and so it has at least as
many jobs of Tk in A′ as any high machine of allocation A. If i ∈ H ′ was a
high machine before the deviation, then x′

i = xi. Thus |H ′| > |H | would imply
that

∑
i∈H′ x′

i >
∑

i∈H xi, which means that coalition Tk has more jobs that are
experiencing a latency of u in allocation A′ than allocation A. However, that
would contradict with D being an improving deviation, and so it has to be that
|H ′| ≤ |H |.
Note that the total number of jobs in any Nash equilibrium allocation A can be
expressed as

∑
i∈R mi +

∑
i∈H mi +

∑
i∈L (mi − 1). If a type 2 machine i ∈ R

has less than mi jobs in A′ then the number of machines that has latency of
u would be strictly more than |H |, i.e., |H ′| > |H |. Therefore, the number of
jobs coalition Tk has on any type 2 machine in allocation A′ is exactly xi. Since
deviation D does not change the number of jobs Tk has on any type 2 machine,
there exists an equivalent improving deviation where the jobs of type 2 machines
do not change by Lemma 1, and we will assume that D has this property.

Observe that if a type 1 machine i has less than mi − 1 jobs in allocation A′,
then |H ′| > |H |, thus violating Lemma 3. Therefore, every type 1 machine has
either mi or mi − 1 jobs in allocation A′. In other words, by Proposition 1 A′ is
also a Nash equilibrium allocation.

Since A′ is a Nash equilibrium, we can assume without loss of generality that
deviation D made a certain number of high machines become low, and the same
number of low machines become high. Using Lemma 1 we can assume that the
machines on which the number of jobs did not change also did not take part
in deviation D. Let the set of machines the become low after the deviation be
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H− and the set of machines that become high after the deviation be L+. We
know that |H−| = |L+|. Now consider the total latency faced by jobs on machines
belonging to H− ∪ L+ before deviation, say α, and after the deviation, say β.

α =
∑

i∈H−
uxi +

∑
j∈L+

ljxj

β =
∑

i∈H−
(xi − 1)li +

∑
j∈L+

(xj + 1)u

We now prove the following lemma:

Lemma 4. For every perfect matching P between the machines of H− and L+

that pairs i ∈ H− with j ∈ L+, it must be true that lj ≤ li and xj = xi − 1.

Proof. Let P be any perfect matching between the machines of H− and L+

(note that |H−| = |L+|). Consider a pair of machines (i, j) ∈ P such that i ∈ H−

and j ∈ L+. If lj > li then we know that xj ≥ xi. This means that the total
number of jobs facing a latency u on machines i, j after deviation: (xj + 1) is
strictly more than before: (xi). If lj ≤ li then we know that xj ≥ xi − 1. This
would mean that the total number of jobs facing a latency u on machines i, j
after deviation: (xj + 1) is at least as much as before: (xi).

This implies that if there exists even one pair of machines (i, j) such that
lj > li, then the total number of jobs facing a latency of u after deviation will
strictly increase. On the other hand if lj ≤ li but xj > xi − 1 then too it is
easy to see that the number of jobs facing a latency of u after deviation strictly
increases.

Hence D is a valid deviation only if for every (i, j) ∈ P , lj ≤ li and
xj = xi − 1.

Consider any perfect matching P between the machines of H− and L+. We can
now compare the values of α and β:

α =
∑

i∈H−
uxi +

∑
j∈L+

ljxj

=
∑

j∈L+

u(xj + 1) +
∑

j∈L+

ljxj . . . (Lemma 4)

=
∑

j∈L+

u(xj + 1) +
∑

(i,j)∈P

lj(xi − 1) . . . (Lemma 4)

≤
∑

j∈L+

u(xj + 1) +
∑

i∈H−
li(xi − 1) . . . (For every (i, j) ∈ P, lj ≤ li)

= β

This means that the total cost faced by jobs of machines of H− ∪ L+ will at
best remain the same. If the latency of some job decreases then the latency of
some other has to increase in order to keep the sum constant. This means that
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the latency faced by every job can at best remain the same. But an improving
deviation requires that D must strictly improve the latency of some job. Hence
an improving deviation D does not exist.

4 Partition Equilibrium

We now present an algorithm that constructs an allocation of jobs such that all
the sufficient conditions of Theorem 1 are satisfied. Thus we will create a Nash
equilibrium that is also a partition equilibrium. For this purpose we will use the
properties of Nash equilibrium as described in Section 2. Particularly we will use
the fact that, given the total number of jobs, every Nash equilibrium will have
the same number of high machines, which we denote by q. The algorithm gives
an allocation of jobs over all type-1 machines. Since the sufficient conditions
do not have restrictions on jobs of the type-2 machines, remaining jobs can be
arbitrarily allocated to them so that each machine has mi jobs. We also define
a set of active machines as all machines i that have less than mi jobs on them.
Let q = |H | be the number of high machines in any Nash equilibrium allocation.
The algorithm is as follows:

– Begin with an empty allocation. Note that all machines are active at this
time.

– Obtain an ordering on the set of all active machines based on non-increasing
values of their li.

– For every coalition, place jobs sequentially starting from the first active ma-
chine according to the above ordering. If the number of jobs in this coalition
exceeds the number of active machines then rollover and continue placing
jobs from the first active machine in the ordering.

– If at any step a machine i has mi jobs placed on it, i.e. i becomes high, then
remove it from the set of active machines.

– When q machines become high, place remaining jobs on the active machines
arbitrarily such that they have mi − 1 jobs on them.

Example. Consider an example with 4 machines and 2 coalitions in Figure 1.
Coalition 1 has 6 jobs and coalition 2 has 4 jobs. All the machines in this example
are of type-1. Also they have been sorted in non-increasing order of their li-
values. The blocks represent the jobs and height of the j’th block on machine
i is given by fi(j) − fi(j − 1). Figure 1 illustrates various stages during the
implementation of the algorithm. Observe that in any Nash equilibrium for this
input exactly q = 2 machines will be high.

Notice that making sure that our algorithm places no more than mi jobs on
any machine is crucial not only to create a Nash equilibrium, but also to create
a partition equilibrium. For example, in Figure 1, if we did not stop adding jobs
to machines once they have mi jobs, then we would end up with 3 = m2 +1 jobs
on machine 2. If f2(3) > f4(3), then this would not be a partition equilibrium,
since Coalition 1 would have an improving deviation by moving two of its jobs
to machine 4 from machine 2, and one job to machine 2 from machine 4.
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1

(b) Active Machines: 1,3,4

Coalition 1 Coalition 2

u

432

(a) Active Machines: 1,2,3,4

(c) (d)

1 432

1 432 1 432

Fig. 1. (a) In the beginning all machines are active. (b) Jobs of coalition 1 are placed
and machine 2 becomes inactive. (c) 3 out of 4 jobs of coalition 2 have been placed
and q = 2 machines have become high. (d) The remaining job is placed on machine 3
making it low. Sufficiency conditions of Theorem 1 are now satisfied.

Theorem 2. The above algorithm produces a partition equilibrium and a Nash
equilibrium.

Proof. The algorithm makes exactly q machines high hence due to the property
of NE we know that there are sufficient jobs to make rest of the machines low,
i.e., put mi−1 jobs on them. Consider a coalition C. If this coalition has only 0 or
1 jobs on every high machine then the conditions of Theorem 1 are fulfilled, and
so C has no improving deviation. Consider a high machine i on which coalition
C has more than one jobs. Let us look at the time-step when the algorithm
has put α jobs of coalition C on i. Now before putting the (α + 1)’th job on i
the algorithm puts one job on every low machine. This is true because the low
machines are exactly the ones that do not run out of space for jobs until the
high machines are completely filled. This implies that for every low machine j,
xj ≥ xi − 1.

Also if a low machine j is such that lj > li then the algorithm puts one job on
every such machine j before i. This follows from the ordering obtained on the
machines on the basis of the li-values. This means that if lj > li then xj ≥ xi.
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This proves that both sufficient conditions of Theorem 1 are fulfilled by the
final allocation, which is also a Nash equilibrium by Proposition 1. Hence the
allocation obtained by the algorithm is a partition equilibrium.

5 Existence and Computation of SSE

For a resource selection game, SSE may or may not exist (see [4] for an example
where it does not exist). In this section, we show that for a given instance of a
resource selection game, we can efficiently determine whether there exists a SSE
or not. We also give an algorithm that finds a SSE if it exists.

Theorem 3. Given a resource selection game G, there is a polynomial time
algorithm that returns a SSE allocation if it exists, and returns “no” if G does
not have a SSE.

Proof. Since every SSE is also a Nash equilibrium, then each type 2 machine
i has to have exactly mi jobs in any SSE allocation.

Recall that the total number of jobs in the system is exactly as much as∑
i∈R mi +

∑
i∈H (mi − 1) +

∑
i∈L (mi − 1) + q in any Nash equilibrium allo-

cation, with q being the number of high machines in any Nash equilibrium. If
all type 1 machines are high machines, i.e., L = ∅, then all the machines in the
system will have exactly mi jobs and no coalition can have an improving devi-
ation. This is because any non-trivial deviation would require moving a job so
that its resulting latency is strictly more than u, and so cannot be an improving
deviation. Therefore, if L = ∅ then any Nash equilibrium allocation is also a SSE
allocation. So, a SSE allocation can be obtained simply by assigning mi jobs to
all machines.

Consider the case, where L �= ∅. Assume that a high machine i has 2 or more
jobs. Consider a coalition composed of 2 jobs such that both are allocated to
i. If one of the jobs of this coalition moves to a low machine, then the cost of
the moving job will not change, while the other member of the coalition strictly
benefits. Therefore, an allocation where a high machine i has 2 or more jobs is
not a SSE if L �= ∅. Thus, G does not have a SSE if L �= ∅ and G does not have
at least q type 1 machines for which mi = 1.

If there are at least q type 1 machines for which mi = 1 then any Nash
equilibrium allocation A where q of the type 1 machines, for which mi = 1 are
high machines, is a SSE. This is because no subset of players has more than
1 job on any high machine in A, and therefore no coalition has an improving
deviation by Theorem 1. SSE allocation then can simply be obtained by placing
1 job on q machines for which mi = 1 and assigning the remaining jobs to all
other machines in a way that every type 2 machine has exactly mi jobs and
every remaining type 1 machine has exactly mi − 1 jobs allocated to it.
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Abstract. We study logit dynamics [Blume, Games and Economic Be-
havior, 1993] for strategic games. At every stage of the game a player is
selected uniformly at random and she plays according to a noisy best-
response dynamics where the noise level is tuned by a parameter β. Such
a dynamics defines a family of ergodic Markov chains, indexed by β, over
the set of strategy profiles. Our aim is twofold: On the one hand, we are
interested in the expected social welfare when the strategy profiles are
random according to the stationary distribution of the Markov chain,
because we believe it gives a meaningful description of the long-term
behavior of the system. On the other hand, we want to estimate how
long it takes, for a system starting at an arbitrary profile and running
the logit dynamics, to get close to the stationary distribution; i.e., the
mixing time of the chain.

In this paper we study the stationary expected social welfare for
the 3-player congestion game that exhibits the worst Price of Anarchy
[Christodoulou and Koutsoupias, STOC’05 ], for 2-player coordination
games (the same class of games studied by Blume), and for a simple n-
player game. For all these games, we give almost-tight upper and lower
bounds on the mixing time of logit dynamics.

1 Introduction

The evolution of a system is determined by its dynamics and complex systems are
often described by looking at the equilibrium states induced by their dynamics.
Once the system enters an equilibrium state, it stays there and thus it can
be rightly said that an equilibrium state describes the long-term behavior of the
system. In this paper we are mainly interested in selfish systems whose individual
components are selfish agents. The state of a selfish system is fully described by a
vector of strategies, each controlled by one agent, and each state assigns a payoff
to each agent. The agents are selfish in the sense that they pick their strategy so
to maximize their payoff, given the strategies of the other agents. The notion of
a Nash equilibrium is the classical notion of equilibrium for selfish systems and
it corresponds to the equilibrium induced by the best-response dynamics. The
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observation that selfish systems are described by their equilibrium states (that
is, by the Nash equilibria) has motivated the notion of Price of Anarchy [15]
(and Price of Stability [1]) and the efficiency analysis of selfish systems based on
such notions.

The analysis based on Nash equilibria inherits some of the shortcomings of
the concept of a Nash equilibrium. First of all, the best-response dynamics as-
sumes that the selfish agents have complete knowledge of the current state of
the system; that is, of the payoff associated with each possible choice and of the
strategies chosen by the other agents. Instead, in most cases, agents have only
an approximate knowledge of the system state. Moreover, in presence of multiple
equilibria, it is not clear which equilibrium will be reached by the system as it
may depend on the initial state of the system. The notion of Price of Anarchy
solves this problem by considering the worst case equilibrium whereas Price of
Stability focuses on the best case equilibrium. Finally, Nash equilibria are hard
to compute [7,5] and thus for some system it might take very long to enter a
Nash equilibrium. In this case using equilibrium states to describe the system
performance is not well justified. Rather, one would like to analyze the perfor-
mance of a system by using a dynamics (and its related equilibrium notion) that
has the following three properties: the dynamics takes into account the fact that
the system components might have a perturbed or noisy knowledge of the sys-
tem; the equilibrium state exists and is unique for every system; independently
from the starting state; the system enters the equilibrium very quickly.

In this paper, we consider noisy best-response dynamics in which the behavior
of the agents is described by a parameter β � 0 (β is sometimes called the inverse
temperature). The case β = 0 corresponds to agents picking their strategies
completely at random (that is, the agents have no knowledge of the system) and
the case β = ∞ corresponds to the best-response dynamics (in which the agents
have full and complete knowledge of the system). The intermediate values of β
correspond to agents that are roughly guided by the best-response dynamics but
can make a sub-optimal response with some probability that depends on β (and
on the associated payoff). We will study a specific noisy best-response dynamics
for which the system evolves according to an ergodic Markov chain for all β � 0.
For these systems, it is natural to look at the stationary distribution (which is
the equilibrium state of the Markov chain) and to analyze the performance of
the system at the stationary distribution. We stress that the noisy best-response
dynamics well models agents that only have approximate or noisy knowledge of
the system and that for ergodic Markov chains (such as the ones arising in our
study) the stationary distribution is known to exist and to be unique. Moreover,
to justify the use of the stationary distribution for analyzing the performance of
the system, we will study how fast the Markov chain converges to the stationary
distribution.

Related Works and Our Results. Several dynamics, besides the best re-
sponse dynamics, and several notions of equilibrium, besides Nash equilibria,
have been considered to describe the evolution of a selfish system and to analyze
its performance. See, for example, [11,20,19].
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Equilibrium Concepts Based on the Best-Response. In case the game does not
possess a Pure Nash equilibrium, the best-response dynamics will eventually
cycle over a set of states (in a Nash equilibrium the set is a singleton). These
states are called sink equilibria [12]. Sink equilibria exist for all games and, in
some context, they seem a better approximation of the real setting than mixed
Nash equilibria. Unfortunately, sink equilibria share two undesirable properties
with Nash equilibria: a game can have more that one sink equilibrium and sink
equilibria seem hard to compute [9]. Other notions of equilibrium state associated
with best-response dynamics are the unit-recall equilibria and component-wise
unit-recall equilibria (see [9]). We point out though that the former does not
always exist and that the latter imposes too strict limitations on the players.
No-Regret Dynamics. Another broadly explored set of dynamics are the no-regret
dynamics (see, for example, [11]). The regret of a user is the difference between
the long term average cost and average cost of the best strategy in hindsight. In
the no-regret dynamics the regret of every player after t step is o(t) (sublinear
with time). In [10,14] it is showed that the no-regret dynamics converges to the
set of Correlated Equilibria. Note that the convergence is to the set of Correlated
Equilibria and not to a specific correlated equilibrium.
Our Work. In this paper we consider a specific noisy best-response dynamics
called the logit dynamics (see [4]) and we study its mixing time (that is, the time
it takes to converge to the stationary distribution) for various games. Specifically,

– We start by analyzing the logit dynamics for a simple 3-player linear con-
gestion game (the CK game [6]) which exhibits the worst Price of Anarchy
among linear congestion games. We show that the convergence time to sta-
tionarity of the logit dynamics is upper bounded by a constant independent
of β. Moreover, we show that the expected social cost at stationarity is
smaller than the cost of the worst Nash equilibrium for all β.

– We then study the 2×2 coordination games studied by [4]. Here we show that,
under some conditions, the expected social welfare at stationarity is better
than the social welfare of the worst Nash equilibrium. We give exponential
in β upper and lower bounds on the convergence time to stationarity for all
values of β.

– Finally, we apply our analysis to a simple n-player game, the OR-game,
and give upper and lower bound on the convergence time to stationarity. In
particular, we prove that for β = O(log n) the convergence time is polynomial
in n.

The logit dynamics has been first studied by Blume [4] who showed that, for 2×2
coordination games, the long-term behaviour of the Markov chain is concentrated
in the risk dominant equilibrium (see [13]) for sufficiently large β. Ellison [8]
studied different noisy best-response dynamics for 2 × 2 games and assumed
that interaction among players were described by a graph; that is, the utility of
a player is determined only by the strategies of the adjacent players. Specifically,
Ellison [8] studied interaction modeled by rings and showed that some large
fraction of the players will eventually choose the risk dominant strategy. Similar
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results were obtained by Peyton Young [21] for the logit dynamics and for more
general families of graphs. Montanari and Saberi [17] gave bounds on the hitting
time of the risk dominant equilibrium states for the logit dynamics in terms of
some graph theoretic properties of the underlying interaction network. Asadpour
and Saberi [2] studied the hitting time for a class of congestion games. We
notice that none of [4,8,21] gave any bound on the convergence time to the risk
dominant equilibrium. Montanari and Saberi [17] were the first to do so but their
study focuses on the hitting time of a specific configuration.

From a technical point of view, our work follows the lead of [4,8,21] and
extends their technical findings by giving bounds on the mixing time of the
Markov chain of the logit dynamics. We stress that previous results only proved
that, for sufficiently large β, eventually the system concentrates around certain
states without further quantifying the rate of convergence nor the asymptotic
behaviour of the system for small values of β. Instead, we identify the stationary
distribution of the logit dynamics as the global equilibrium and we evaluate the
social welfare at stationarity and the time it takes the system to reach it (the
mixing time) as explicit functions of the inverse temperature β of the system. For
β →∞, the logit dynamics tends to the best response dynamics. It should came
to no surprise than that for large β the mixing time could be super-polynomial.

We choose to start our study from the class of coordination games considered
in [4] for which we give tight upper and lower bound on the mixing time and
then look also at other 2-player games and a simple n-player game (the OR-
game). Despite its game-theoretic simplicity, the analytical study of the mixing
time of the Markov chain associated with the OR-game as a function of β is
far from trivial. Also we notice that the results of [17] cannot be used to derive
upper bounds on the mixing time as in [17] the authors give a tight estimation
of the hitting time only for a specific state of the Markov chain. The mixing time
instead is upper bounded by the maximum hitting time.

From a more conceptual point of view, our work tries (similarly to [12,9,18])
to introduce a solution concept that well models the behaviour of selfish agents,
is uniquely defined for any game and is quickly reached by the game. We propose
the stationary distribution induced by the logit dynamics as a possible solution
concept and exemplify its use in the analysis of the performance of some 2 × 2
games (as the ones considered in [4,8,21]), in games used to obtain tight bounds
on the Price of Anarchy and on a simple multiplayer game.

Organization of the Paper. In Section 2 we formally describe the logit dynamics
Markov chain for a strategic game. In Sections 3, 4, and 5 we study the stationary
expected social welfare and the mixing time of the logit dynamics for CK game,
coordination games, and the OR-game respectively. Due to lack of space, the
proofs are omitted and are available in the full version [3]. Finally, in Section 6
we present conclusions and some open problems.
Notation. We write S for the complementary set of a set S and |S| for its size. We
use bold symbols for vectors, when x = (x1, . . . , xn) ∈ {0, 1}n we write |x| for
the number of 1s in x; i.e., |x| = |{i ∈ [n] : xi = 1}|. We use the standard game
theoretic notation (x−i, y) to mean the vector obtained from x by replacing the
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i-th entry with y, i.e. (x−i, y) = (x1, . . . , xi−1, y, xi+1, . . . , xn). We use standard
Markov chain terminology (see [16]).

2 The Model and the Problem

A strategic game is a triple ([n],S,U), where [n] = {1, . . . , n} is a finite set of
players, S = {S1, . . . , Sn} is a family of non-empty finite sets (Si is the set of
strategies for player i), and U = {u1, . . . , un} is a family of utility functions (or
payoffs), where ui : S1 × · · · × Sn → R is the utility function of player i.
Consider the following noisy best-response dynamics, introduced in [4] and
known as logit dynamics : At every time step

1. Select one player i ∈ [n] uniformly at random;
2. Update the strategy of player i according to the following probability

distribution over the set Si of her strategies. For every y ∈ Si

σi(y |x) =
1

Ti(x)
eβui(x−i,y) (1)

where x ∈ S1 × · · · × Sn is the strategy profile played at the current time
step, Ti(x) =

∑
z∈Si

eβui(x−i,z) is the normalizing factor, and β � 0 is the
inverse noise.

From (1) it is easy to see that, for β = 0 player i selects her strategy uniformly at
random, for β > 0 the probability is biased toward strategies promising higher
payoffs, and for β →∞ player i chooses her best response strategy (if more than
one best response is available, she chooses uniformly at random one of them).
Moreover observe that probability σi(y |x) does not depend on the strategy xi

currently adopted by player i.
The above dynamics defines an ergodic finite Markov chain with the set of

strategy profiles as state space, and where the transition probability from profile
x = (x1, . . . , xn) to profile y = (y1, . . . , yn) is zero if the two profiles differ at
more than one player and it is 1

nσi(yi |x) if the two profiles differ exactly at
player i. More formally, we have the following definition.

Definition 1 (Logit dynamics [4]). Let G = ([n],S,U) be a strategic game
and let β � 0 be the inverse noise. The logit dynamics for G is the Markov chain
Mβ = {Xt : t ∈ N} with state space Ω = S1 × · · · × Sn and transition matrix

P (x,y) =
1
n

n∑
i=1

eβui(x−i,yi)

Ti(x)
I{yj=xj for every j �=i} . (2)

It is easy to see that, if ([n],S,U) is a potential game with exact potential Φ,
then the Markov chain given by (2) is reversible and its stationary distribution
is the Gibbs measure

π(x) =
1
Z

eβΦ(x) (3)
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where Z =
∑

y∈S1×···×Sn
eβΦ(y) is the normalizing constant (the partition

function in physicists’ language). Except for the Matching Pennies example in
Subsection 2.1, all the games we analyse in this paper are potential games.
Let W : S1×· · ·×Sn −→ R be a social welfare function (in this paper we assume
that W is simply the sum of all the utility functions W (x) =

∑n
i=1 ui(x), but

clearly any other function of interest can be analysed). We study the stationary
expected social welfare, i.e. the expectation of W when the strategy profiles are
random according to the stationary distribution π of the Markov chain,

Eπ [W ] =
∑

x∈S1×···×Sn

W (x)π(x) .

Since the Markov chain defined in (2) is irreducible and aperiodic, from every
initial profile x the distribution P t(x, ·) of chain Xt starting at x will eventually
converge to π as t tends to infinity. We will be interested in the mixing time tmix
of the chain, i.e. the time needed to have that P t(x, ·) is close to π for every
initial configuration x. More formally, we define

tmix(ε) = min
t∈N

max
x∈Ω

{‖P t(x, ·)− π‖TV � ε
}

where ‖P t(x, ·)−π‖TV = 1
2

∑
y∈Ω |P t(x,y)−π(y)| is the total variation distance,

and we set tmix = tmix(1/4).

2.1 An Example: Matching Pennies

As an example consider the classical Matching Pennies game:

H T

H +1, −1 −1, +1
T −1, +1 +1, −1

(4)

The update probabilities (1) for the logit dynamics are, for every x ∈ {H, T }

σ1(H | (x, H)) = σ1(T | (x, T )) = 1
1+e−2β = σ2(T | (H, x)) = σ2(H | (T, x))

σ1(T | (x, H)) = σ1(H | (x, T )) = 1
1+e2β = σ2(H | (H, x)) = σ2(T | (T, x)) .

So the transition matrix (2) is

P =

⎛⎜⎜⎜⎜⎜⎝
HH HT TH TT

HH 1/2 b/2 (1− b)/2 0

HT (1− b)/2 1/2 0 b/2

TH b/2 0 1/2 (1− b)/2

TT 0 (1− b)/2 b/2 1/2

⎞⎟⎟⎟⎟⎟⎠
where we named b = 1

1+e−2β for readability sake.
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Since every column of the matrix adds up to 1, the uniform distribution π over
the set of strategy profiles is the stationary distribution for the logit dynamics.
The expected stationary social welfare is thus 0 for every inverse noise β.

As for the mixing time, it is easy to see that it is upper bounded by a
constant independent of β. Indeed, a direct calculation shows that, for every
x ∈ {HH, HT, TH, TT } and for every β � 0, it holds that

‖P 3(x, ·)− π‖tv � 7
16

<
1
2

.

3 Warm Up: A 3-Player Congestion Game

In this section we study the CK game, a simple 3-player linear congestion game
introduced in [6] that exhibits the worst Price of Anarchy of the average social
welfare among linear congestion games with 3 or more players. This game has
two equilibria: one with social welfare −6 (which is also optimal) and one with
social welfare −15. As we shall see briefly, the stationary expected social welfare
of the logit dynamics is always larger than the social welfare of the worst Nash
equilibrium and, for large enough β, players spend most of the time in the best
Nash equilibrium. Moreover, we will show that the mixing time of the logit
dynamics is bounded by a constant independent of β; that is, the stationary
distribution guarantees a good social welfare and it is quickly reached by the
system.

Let us now describe the CK game. We have 3 players and 6 facilities divided
into two sets: G = {g0, g1, g2} and H = {h0, h1, h2}. Player i ∈ {0, 1, 2} has
two strategies: Strategy “0” consists in selecting facilities (gi, hi); Strategy “1”
consists in selecting facilities (gi+1, hi−1, hi+1) (index arithmetic is modulo 3).
The cost of a facility is the number of players choosing such facility, and the cost
of a player is the sum of the costs of the facilities she selected. It easy to see
that this game has two pure Nash equilibria: when every player plays strategy 0
(each player pays 2, which is optimal), and when every player plays strategy 1
(each player pays 5). The game is a congestion game, and thus a potential game
with following potential function:

Φ(x) =
∑

j∈G∪H

Lx(j)∑
i=1

i

where Lx(j) is the number of players using facility j in configuration x.

Stationary Expected Social Welfare and Mixing Time. The logit dynamics for
the CK game gives the following update probabilities (see Equation (1))

σi(0 | |x−i| = 0) = 1
1+e−4β σi(1 | |x−i| = 0) = 1

1+e4β

σi(0 | |x−i| = 1) = 1
1+e−2β σi(1 | |x−i| = 1) = 1

1+e2β

σi(0 | |x−i| = 2) = 1
2 σi(1 | |x−i| = 2) = 1

2 .
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It is easy to check that the following distribution is stationary for the logit
dynamics:

π[(0, 0, 0)] = e−6β

Z(β)

π[(0, 0, 1)] = π[(0, 1, 0)] = π[(1, 0, 0)] = e−10β

Z(β)

π[(0, 1, 1)] = π[(1, 1, 0)] = π[(1, 0, 1)] = π[(1, 1, 1)] = e−12β

Z(β)

where Z(β) = e−6β + 3e−10β + 4e−12β. Let k be the number of players playing
strategy 1; the social welfare is −6 when k = 0, it is −13 if k = 1, it is −16 if
k = 2, and −15 when k = 3. Thus the stationary expected social welfare is

Eπ [W ] = −6e−6β + 39e−10β + (48 + 15)e−12β

e−6β + 3e−10β + 4e−12β
= −3[2 + 13e−4β + 21e−6β]

1 + 3e−4β + 4e−6β
.

For β = 0, we have Eπ [W ] = −27/2 which is better than the social welfare of
the worst Nash equilibrium. As β tends to ∞, Eπ [W ] approaches the optimal
social welfare. Furthermore, we observe that Eπ [W ] increases with β and thus
we can conclude that the long-term behavior of the logit dynamics gives a better
social welfare than the worst Nash equilibrium for any β � 0.

Theorem 1 (Mixing time of CK game). There exists a constant τ such that
the mixing time tmix of the logit dynamics of the CK game is upper bounded by
τ for every β � 0.

4 Coordination Games

Coordination Games are two-player games in which the players have an advan-
tage in selecting the same strategy. They are often used to model the spread
of a new technology [21]: two players have to decide whether to adopt or not
a new technology. We assume that the players would prefer choosing the same
technology and that choosing the new technology is risk dominant.

We analyse the mixing time of the logit dynamics for 2×2 coordination games
and compute the stationary expected social welfare of the game as a function
of β. We show that, for large enough β, players will spend most of the time in
the risk dominant equilibrium and the expected utility is better than the one
associated with the worst Nash equilibrium. Similar results can be obtained for
anti coordination games (see [3]).

We denote by 0 the NEW strategy and by 1 the OLD strategy. The game is
formally described by the following payoff matrix

0 1
0 (a, a) (c, d)
1 (d, c) (b, b)

(5)

We assume that a > d and b > c (meaning that they prefer to coordinate) and
that a − d > b − c (meaning that strategy 0 is the risk dominant strategy [11]
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for each player). Notice that we do not make any assumption on the relation
between a and b. It is easy to see that this game is a potential game and the
following function is an exact potential for it:

Φ(0, 0) = a− d Φ(0, 1) = Φ(1, 0) = 0 Φ(1, 1) = b− c .

This game has two pure Nash equilibria: (0, 0), where each player has utility a,
and (1, 1), where each player has utility b. As d + c < a + b, the social welfare
is maximized in correspondence of one of the two equilibria and the Price of
Anarchy is equal to max{b/a, a/b}.

Stationary Expected Social Welfare and Mixing Time. The logit dynamics for the
game defined by the payoffs in Table 5 gives the following update probabilities
for any strategy x ∈ {0, 1} (see Equation (1))

σ1(0 | (x, 0)) = σ2(0 | (0, x)) = 1

1+e−(a−d)β σ1(1 | (x, 0)) = σ2(1 | (0, x)) = 1

1+e(a−d)β

σ1(0 | (x, 1)) = σ2(0 | (1, x)) = 1

1+e(b−c)β σ1(1 | (x, 1)) = σ2(1 | (1, x)) = 1

1+e−(b−c)β .

Theorem 2 (Expected social welfare). The stationary expected social
welfare Eπ [W ] of the logit dynamics for the coordination game is

Eπ [W ] = 2 · a + be−((a−d)−(b−c))β + (c + d)e−(a−d)β

1 + e−((a−d)−(b−c))β + 2e−(a−d)β .

The following observation gives conditions on β and the players’ utility for which
the expected social welfare Eπ [W ] obtained by the logit dynamics is better than
the social welfare SWN of the worst Nash Equilibrium.

Observation 2. For the coordination game described in Table 5, we have

– if a > b and b � max{a+c+d
3 , c+d

2 } then Eπ [W ] > SWN for all β;
– if a > b and b > max{a+c+d

3 , c+d
2 } then Eπ [W ] > SWN for all sufficiently

large β;
– if a < b and a � max{ b+c+d

3 , c+d
2 } then Eπ [W ] > SWN for all β;

– if a < b and a > max{ b+c+d
3 , c+d

2 } then Eπ [W ] > SWN for all sufficiently
large β;

– if a = b then Eπ [W ] < SWN for any β, a, c and d.

Theorem 3 (Mixing Time of Coordination Games). The mixing time of
the logit dynamics with parameter β for the coordination game of Table 5 is
Θ
(
e(b−c)β

)
.

5 A Simple n-Player Game: OR-Game

In this section we consider the following simple n-player potential game that we
here call OR-game. For the upper bound we use the path coupling technique on
the Hamming graph with carefully chosen edge weights. Every player has two
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strategies, say {0, 1}, and each player pays the OR of the strategies of all players
(including herself). More formally, the utility function of player i ∈ [n] is

ui(x) =
{

0, if x = 0;
−1, otherwise.

Notice that the OR-game has 2n − n Nash equilibria. The only profiles that are
not Nash equilibria are the n profiles with exactly one player playing 1. Nash
equilibrium 0 has social welfare 0, while all the others have social welfare −n.
Despite its simplicity, the analysis of the mixing time is far from trivial (see full
version [3]).

In Theorem 4 we show that the stationary expected social welfare is always
better than the social welfare of the worst Nash equilibrium, and it is significantly
better for large β. Unfortunately, in Theorem 5 we show that, if β is large enough
to guarantee a good stationary expected social welfare, then the time needed to
get close to the stationary distribution is exponential in n. Finally, in Theorem 6
we give upper bounds on the mixing time showing that, if β is relatively small
then the mixing time is polynomial in n, while for large β the upper bound is
exponential in n and it is almost-tight with the lower bound.

Theorem 4 (Expected social welfare). The stationary expected social wel-
fare of the logit dynamics for the OR-game is Eπ [W ] = −αn where α =
α(n, β) = (2n−1)e−β

1+(2n−1)e−β .

In the next theorem we show that the mixing time can be polynomial in n only
if β � c log n for some constant c.

Theorem 5 (Lower bound on mixing time). The mixing time of the logit
dynamics for the OR-game is

1. Ω(eβ) if β < log(2n − 1);
2. Ω(2n) if β > log(2n − 1).

In the next theorem we give upper bounds on the mixing time depending on
the value of β. The theorem shows that, if β � c logn for some constant c, the
mixing time is effectively polynomial in n with degree depending on c. The use
of the path coupling technique in the proof of the theorem requires a careful
choice of the edge-weights.

Theorem 6 (Upper bound on mixing time). The mixing time of the logit
dynamics for the OR-game is

1. O(n log n) if β < (1− ε) log n, for an arbitrary small constant ε > 0;
2. O(nc+3 log n) if β � c log n, where c � 1 is an arbitrary constant.

Moreover the mixing time is O(n5/22n) for every β.
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6 Conclusions and Open Problems

In this paper we studied strategic games where at every run a player is selected
uniformly at random and she is assumed to choose her strategy for the next run
according to a noisy best-response, where the noise level is tuned by a parameter
β. Such dynamics defines a family of ergodic Markov chains, indexed by β, over
the set of strategy profiles. We study the long-term behavior of the system by
analysing the expected social welfare when the strategy profiles are random
according to the stationary distribution of such chains, and we compare it with
the social welfare at Nash equilibria.

In order for such analysis to be meaningful we are also interested in the mixing
time of the chains, i.e. how long it takes, for a chain starting at an arbitrary
profile, to get close to its stationary distribution. The analysis of the mixing time
is usually far from trivial even for very simple games.

We study several examples of applications of this approach to games with two
and three players and to a simple n-players game. We started by showing that
the social welfare at stationarity for the 3-player linear congestion game that
attains the maximum Price of Anarchy is larger than the social welfare of the
worst Nash equilibrium. This result is made significant by the fact that, for all
β, the logit dynamics converges at the stationary distribution in constant time.
For 2-player coordination games the mixing time turns out to be exponential in
β and we give conditions for the expected social welfare at stationarity to be
smaller than the social welfare of the worst Nash equilibrium. In the n-player
OR-game, the mixing time is O(n log n) for β up to log n; if β < c log n with
c > 1 constant, the mixing time is polynomial in n with the degree depending
on the constant c; finally, for large β the mixing time is exponential in n.

We leave several questions for further investigation. For example, we would
like to close gaps between upper and lower bounds for the mixing time of the
OR-game. Moreover, we would like to investigate logit dynamics for notable
classes of n-player games.
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Abstract. We analyze the Pareto efficiency, or inefficiency, of solutions
to routing games and load balancing games, focusing on Nash equilibria
and greedy solutions to these games. For some settings, we show that the
solutions are necessarily Pareto optimal. When this is not the case, we
provide a measure to quantify the distance of the solution from Pareto
efficiency. Using this measure, we provide upper and lower bounds on the
“Pareto inefficiency” of the different solutions. The settings we consider
include load balancing games on identical, uniformly-related, and unre-
lated machines, both using pure and mixed strategies, and nonatomic
routing in general and some specific networks.

1 Introduction

Efficiency, and the efficient utilization of resources, is a key interest in economics.
Efficiency can be defined in many ways, depending on the situation and goals,
but perhaps one of the most rudimentary and basic efficiency notions is that of
Pareto Efficiency. Pareto efficiency captures the idea that an outcome is clearly
inefficient if it is possible to achieve an improvement “on all fronts” simultane-
ously; for example, in game theory an outcome of a game is (weakly) Pareto
optimal if there is no other outcome in which all players are (strictly) better off.
Unfortunately, it is well known that strategic behavior by players can frequently
lead to Pareto inefficient outcomes, such as in the famous Prisoner’s Dilemma.
Thus, Nash equilibrium may be Pareto inefficient.

In this work, we study the Pareto efficiency, or inefficiency, of two well known
games: routing games and load balancing games (also known as job scheduling
games). These games have received a lot of attention in the past decade, mainly
in the context of the Price of Anarchy and the Price of Stability, measures that
quantify the loss in social welfare due to selfishness and inability of players
to coordinate. We analyze these games with respect to the Pareto efficiency
of solutions to the games. Specifically, we focus on Nash equilibria and greedy
solutions, and analyze their Pareto efficiency. In some cases we can show that
the solutions are necessarily Pareto optimal. When this is not the case, we wish
to quantify how far the solution is from Pareto efficiency, since it would be
different if all players can improve their outcome ten-fold or just by 10%. Thus,
we introduce the notion of approximate Pareto efficiency, defined shortly. With

S. Kontogiannis, E. Koutsoupias, P.G. Spirakis (Eds.): SAGT 2010, LNCS 6386, pp. 66–77, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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this definition in hand, we show that while Pareto optimality is not always
guaranteed, the inefficiency in the settings we consider can frequently be bounded
by a constant.

Approximate-Pareto-Efficiency. We now present the formal definition for quan-
tifying the distance of an outcome from Pareto efficiency. Conceptually, an out-
come is α-Pareto-deficient if there is a different outcome which improves all
players by at least an α factor.

Definition 1. Let G be a game with a set P of players, and A a possible out-
come of G. We denote by cost(i, A) the cost of player i in the outcome A1. For
outcomes A, A′, we say that A′ α-Pareto-dominates A if it holds that

∀i ∈ P : α · cost(i, A′) ≤ cost(i, A) .

We say that A is α-Pareto-deficient if there exists an alternative outcome A′

of G that α-Pareto-dominates A.
We say that outcome A is α-Pareto-efficient (α-PE) if it is not β-Pareto-

deficient for any β > α.

Thus, in an α-Pareto-deficient outcome, all players can simultaneously improve
their outcome by a factor of at least α. In an α-Pareto-efficient outcome, it is
impossible to improve all players simultaneously by more than α. Note that for
α = 1, 1-Pareto-efficient coincides with Pareto optimality.

This Work. As mentioned, in this work we consider routing and load balancing
games, with several flavors of each. For each class of games, we consider the
following issues:

1. Bounding the Pareto inefficiency of any Nash equilibrium: we seek
the smallest possible α such that every Nash equilibrium in any game of the
class is α-Pareto-efficient.

2. Bounding the Pareto inefficiency of the “best” Nash equilibrium:
we seek the smallest possible α such that for any game in the class there
exists a Nash equilibrium that is α-Pareto-efficient.

3. Bounding the Pareto inefficiency of a greedy assignment process:
The greedy solution is defined as follows. Assume that the players are (ar-
bitrarily) ordered, and each player, in its turn, chooses a strategy that min-
imize her cost at the time of choosing (ties are broken arbitrarily). We seek
the smallest α such that every outcome achieved by a greedy solution is
α-Pareto-efficient.

Results. We consider selfish load balancing and selfish routing games. For load
balancing games we consider the settings of identical machines, uniformly-related
machines, and unrelated machines. In addition, we consider both the case where
only pure strategies are permitted and the case that mixed strategies are also
allowed. We obtain:
1 Due to the nature of the routing and load balancing games we consider, we use a cost

formulation of the notions. Analogous definitions can be defined for value/utility.
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– Pure strategies only: If only pure strategies are allowed, any Nash equilib-
rium is necessarily Pareto optimal for both identical and uniformly-related
machines. For unrelated machines, the Pareto-deficiency of a Nash equilib-
rium can be arbitrarily large, but there necessarily exists a Nash equilibrium
which is Pareto optimal.
The greedy solution is Pareto optimal for identical machines, and necessarily
2-Pareto-efficient for uniformly-related machines. We were unable to show a
bound on the Pareto-deficiency of the greedy solution for unrelated machines,
but it can be shown that the upper bound of 2 does not hold for this case
(i.e. there are cases in which the Pareto-deficiency of the greedy solution is
strictly larger than 2).

– Mixed strategies: If mixed strategies are allowed, then on identical machines
any Nash equilibrium is necessarily (2− 1

m)-Pareto-efficient, where m is the
number of machines. This bound is tight, in the sense that for any m, there
exists a setting with m machines that exhibits a Nash equilibrium which is
(2− 1

m )-Pareto-deficient. For uniformly-related machines with mixed strate-
gies, we show that any Nash equilibrium is necessarily 4-Pareto-efficient. We
do not know to say if this bound is tight, and suspect that it is not. For
unrelated machines, the worst Nash can be arbitrarily Pareto-deficient.
For the best Nash equilibrium in mixed strategies, we do not have any tight
bounds (of course, the upper bounds for the worst Nash apply for the best
Nash as well). The greedy process is not well defined for such strategies.

For selfish routing games we consider the case of nonatomic games with
monotone cost functions. We show:

– For general networks, for any family of cost functions, the Pareto efficiency of
any Nash equilibrium is necessarily bounded by the Price of Anarchy for this
class of functions. This bound is tight, in the sense that there exists a game
for which the only Nash equilibrium exhibits this level of Pareto-deficiency.
Hence, the same bound also holds for the best Nash.

– For the special case of networks with only parallel edges between a single
source and a single sink (which we call parallel-edge networks), we show that
any equilibrium is Pareto Optimal. Also, any greedy solution is necessarily
Pareto optimal, as is any solution that uses all edges.

The results are summarized in Table 1. Unfortunately, due to the strict page
limit in these proceedings, most of the proofs are omitted from this extended
abstract. They all appear in the full version of the paper.

1.1 Related Work

Pareto efficiency is a desirable property for solutions of games. In cooperative
games, such as in Nash’s bargaining game [13], it is usually required that solu-
tions be Pareto optimal. In non-cooperative game theory, it is well known that
Nash equilibria are frequently Pareto inefficient, as illustrated by the famous
prisoner’s dilemma. Several works aimed at developing a deeper understanding
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Table 1. Summary of results (PO stands for Pareto Optimal, and PE for Pareto
Efficient)

Setting Any Nash Best Nash Greedy Section
Routing – Equals the

open 2.1General Networks POA for the class
Routing – PO PO 2.2Parallel-Edge Networks
Load Balancing (Pure) – PO PO 3.1Identical Machines
Load Balancing (Pure) – PO 2-PE 3.1Uniformly-Related Machines
Load Balancing (Pure) – ∞ PO open 3Unrelated Machines
Load Balancing (Mixed) – (2− 1

m
)-PE open N/A 4Identical Machines

Load Balancing (Mixed) – 4-PE
open N/A 4Uniformly-Related Machines (not tight)

Load Balancing (Mixed) – ∞ open N/A 3Unrelated Machines

of this phenomenon. Examples include [5], which gives sufficient conditions for
inefficiency of equilibria, [3], which computes the probability of inefficient (pure)
Nash equilibria in finite random games, and [8,12], which consider the Pareto
optimality of different social choice rules.

Pareto efficient solutions are also sought in multi-objective optimization prob-
lems. In this case, the Pareto front is defined as the set of solutions from which
not all objectives can be improved simultaneously. Several works (for exam-
ple [11,15,4,10]) have considered various approximation notions of the Pareto
front, by additive or multiplicative terms, and provided algorithms for finding
such solution sets.

Also related is the line of research on the Price of Anarchy [9] and the Price of
Stability [1]. The Price of Anarchy bounds the distance of any Nash equilibrium
from an optimal outcome, defined using a social welfare function. Likewise, the
Price of Stability bounds the distance of the “best” Nash equilibrium from the
optimal social welfare. Some of the issues we consider in this work (namely
the Pareto inefficiency of any/the “best” equilibrium) resemble these concepts,
although our Paretian efficiency concept is distinct from social welfare efficiency,
and cannot be expressed using any real-valued social welfare (or cost) function.
It is worth noting that if the utilitarian social welfare function is considered, it
can be shown that the Pareto-deficiency of the worst and best equilibria provide
lower bounds for the POA and POS (resp.). The same holds for the egalitarian
social welfare function, in the case that only pure strategies are allowed.

Finally, while our “worst/best Nash” questions cannot be expressed as spe-
cial cases of the classical POA/POS, they can be formulated using the IRmin

measure, presented by Feldman and Tamir in [7]. Using the notation therein,
the worst Nash is α-Pareto-deficient iff α = supE∈E IRmin(E, P ), and the best
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Nash is β-Pareto-deficient iff β = infE∈E IRmin(E, P ), where P is the set of all
players and E the set of of equilibria. However, while the results in [7] aim at
bounding the simultaneous improvement of the players in any possible coalition,
we focus on the special case of the “grand coalition”, involving all the players.
In addition, we consider routing games, and various settings in load balancing
games (including mixed strategies, uniformly-related machines and unrelated
machines), whereas [7] focuses on load balancing games with pure strategies on
identical machines.

2 Selfish Routing Games

A multi-commodity network is a directed multigraph N = (V, E) (possibly con-
taining parallel edges) together with a collection {(s1, t1), . . . , (sk, tk)} ⊆ V × V
of source-sink vertex pairs, called commodities. We denote the set of edges E by
[m] (where [m] = {1, . . . , m}), and with each edge j ∈ [m] we associate a cost
function cj(·), and denote c = (c1(·), . . . , cm(·)). (We assume throughout that
cj(·) is continuous for all j; for the results of Section 2.2 we additionally assume
that cj(·) is nondecreasing.) Finally, for each commodity i there is some amount
ri of traffic that needs to be routed from si to ti. Thus, a multi-commodity selfish
routing game is simply a triple (N, r, c).

The players in a selfish routing game are infinitesimally-small “traffic units”
that make independent routing decisions, possibly using different paths to go
from the commodity’s source to its sink. A flow f in (N, r, c) is a vector, indexed
by all the si− ti paths for all i, indicating the amount of traffic using each path.
We denote by fj the total amount of traffic traversing edge j. We say that a
flow f is feasible if for every i, it routes an amount ri of traffic from si to ti. The
cost incurred to a player p using a path P in the flow f is simply cost(p, f) =∑

j∈P cj(fj); an equilibrium flow (sometimes termed Wardrop equilibrium, first
presented in [17]) is defined naturally as a flow in which no unit of traffic can
decrease its cost by unilaterally changing its path. A useful characterization of a
Wardrop equilibrium is that all paths with nonzero flow of the same commodity
i have the same cost γ, and all other paths from si to ti have cost of at least γ.
It is also well known that equilibrium flows exist for every network, and that all
equilibrium flows on a network have the exact same cost (see [2] and Chapter 18
in [14]). Since equilibrium is unique in this sense, there is no distinction between
“worst Nash” and “best Nash” in routing games.

2.1 General Networks

Our bounds for Pareto efficiency on general networks relate to the Price of Anar-
chy for such networks. Let P be the set of all si−ti paths for every commodity i,
and let fP be the amount of traffic using the path P ∈ P . The utilitarian social
cost of flow f is C(f) =

∑
P∈P

∑
j∈P cj(fj)fP =

∑
j∈[m] cj(fj)fj . The Price of

Anarchy for a game (N, r, c) is defined as POA(N, r, c) = maxf
C(fE)
C(f) , where fE

is an equilibrium flow, and the maximum is taken over all feasible flows f . We
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now show that the POA of a class of games tightly bounds the Pareto-efficiency
for the class. We start with the single commodity case.

Theorem 1. Let C be a class of continuous cost functions, and let G(C) be the
set of single commodity selfish routing games with cost functions from C. If there
exists ρ(C) = supG∈G(C) POA(G), then in any G ∈ G(C) any equilibrium is ρ(C)-
Pareto-efficient, and for every ε > 0 there exists G ∈ G(C) in which equilibria
are (ρ(C) − ε)-Pareto-deficient. If POA(G(C)) is unbounded, then equilibria of
games in G(C) may be arbitrarily Pareto-deficient.

Proof. We provide only a sketch of the proof, and the full details appear in
the full version of this paper. First, if ρ(C) exists, then for any game G ∈
G(C), there is no feasible flow with average cost smaller by factor > ρ(C) than
the average cost in equilibrium. This implies that in G, any equilibrium is
ρ(C)-Pareto-efficient.

For the lower bound (whether the Price of Anarchy of the class is bounded or
unbounded) it suffices to show that for any game G ∈ G(C) with POA(G) = ρ
and every ε > 0 there exists G′ ∈ G(C) in which equilibria are (ρ − ε)-Pareto-
deficient. Let P1, . . . , PM be an enumeration of the s− t paths in N (a flow f is
thus a non-negative vector in RM ) and w.l.o.g. assume that the amount to that
needs to be routed is 1, and so in an equilibrium flow fE all players pay C(fE).

The idea behind the construction of G′ = (N ′, r′c′) is as follows. We create
a new network N ′ by “concatenating” q copies of N (for some large enough q),
connecting every two adjacent copies by placing a zero-cost edge going from the
sink of the first to the source of the second. A flow that routes all the traffic
exactly as in equilibrium in each copy is an equilibrium in N ′, and its cost is
q-times that of the original equilibrium flow. We now look at the optimal flow in
N ; since the total cost function C(·) is continuous, there is a flow (p1

q , . . . , pM

q )
(for large enough q) routing rational amounts on the paths in N , and having a
total cost larger than that of the optimal flow by at most ε. We can now use that
latter flow in every copy of N in N ′, keeping the amounts routed on each path
the same in every copy, but changing the sets of players routed on these paths.
This can be done to achieve a flow in N ′ with total cost of q-times the optimum
(up to an additive factor of ε) in which all players are incurred the same cost. It
then follows that this flow (ρ− ε)-Pareto-dominates the equilibrium flow.

For the multi-commodity case, Roughgarden, in [16], proves that under some
additional conditions on the class of allowable cost functions, the worst POA for
multi-commodity instances can be achieved (up to an arbitrarily small additive
factor) on single-commodity “Pigou network” instances. We therefore immedi-
ately get that under the same conditions (namely that the class of allowable cost
functions is both standard and diverse, and that all cost functions are monotone)
the Pareto-deficiency of a Nash equilibrium in multi-commodity instances can-
not be significantly worse than that of a single-commodity instance with cost
functions from the same class.
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2.2 Parallel-Edge Networks

Consider the special case of single-commodity networks with no nodes except
a single source and a single sink, and only parallel edges connecting the two.
We call such networks parallel-edge networks, and further assume that all cost
functions in these networks are nondecreasing. Interestingly, while such networks
exhibit the worst case examples of POA (as proven in [16]), the next theorem
shows that all equilibrium flows in such networks are Pareto-optimal.

Theorem 2. Let (N, r, c) be a selfish routing game on a parallel-edge network,
where the cost functions of all edges are nondecreasing. Then if f is an
equilibrium flow for (N, r, c), f is Pareto optimal.

The following lemma is straightforward:

Lemma 1. Let (N, r, c) be a selfish routing game on a parallel-edge network,
where the cost functions of all edges are nondecreasing. Then if f is a flow
obtained by a greedy online process, f is an equilibrium flow.

Corollary 1. Let (N, r, c) be a selfish routing game on a parallel-edge network,
where the cost functions of all edges are nondecreasing. Then if f is a flow
obtained by a greedy online process, f is Pareto optimal.

For the case of parallel-edge networks with linear cost functions, we can show
an even stronger result, that will also be used in the analysis of load balancing
games with pure strategies.

Theorem 3. Let N be a parallel-edge network with linear cost functions. Let f
be a flow on N , and let I be the set of edges with positive flow in f . Let f∗ be
another flow obtained from f by shifting at most an α fraction of each edge in I
to edges not in I. Then, if f∗ γ-Pareto-dominates f , then γ ≤ 1

1−α .

When I = [m] it is immediate to observe that α = 0 and we obtain:

Corollary 2. Let G be a parallel-edge network with linear cost functions, and
f a flow such that fi > 0 for all i ∈ [m]. Then f is Pareto optimal.

Thus, every flow on a parallel-edge network that uses all the edges is Pareto
optimal, even if it is not an equilibrium flow.

3 Load Balancing Games – Pure Strategies

A load balancing game is defined by a set [m] of machines and a set [n] of
tasks, where each task is associated with a weight function wi : [m] → R such
that wi(j) is the weight of task i on machine j. We say that the machines are
uniformly-related if there are constants {wi}i∈[n] and {sj}j∈[m] such that for all
i, j it holds that wi(j) = wi

sj
. The machines are identical if this holds with all
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sj = 1. If the machines are not uniformly-related, we say that the game is played
on unrelated machines.

A pure strategy profile is a function A : [n] → [m] assigning every task i to a
single machine j = A(i). The cost incurred to a task k assigned by A to machine
j is cost(k, A) =

∑
i:A(i)=j wi(j) (i.e. we assume that on every machine, the

tasks are executed in parallel). An assignment A is thus in Nash equilibrium if no
player can benefit by unilaterally moving to another machine, i.e. if for every task
k ∈ [n] and machine j �= A(k) it holds that cost(k, A) ≤ wk(j)+

∑
i:A(i)=j wi(j).

Theorem 4. Let G be a load balancing game, then G has a Pareto optimal Nash
equilibrium in pure strategies.

The theorem is a direct consequence of the fact that the (egalitarian) POS in
such games is 1 (as shown in [6]), and the detailed argument is given in the full
version of this paper. However, while the best Nash is always Pareto optimal,
the worst Nash on unrelated machines may be arbitrarily Pareto-deficient, as the
following example shows: Let ε > 0 be arbitrarily small and consider an instance
with m machines and n = m tasks, such that for all i, wi(i) = 1 and for all
i �= j, wi(j) = ε. It is easy to observe that the identity assignment A(i) = i is a
Nash equilibrium that is 1

ε -Pareto-deficient.

3.1 Uniformly-Related and Identical Machines

Load balancing games on uniformly-related machines can be viewed as atomic
routing games (where each player controls a non-negligible amount of traffic) on
parallel-edge networks with linear cost functions. Interestingly, we can use the
results for nonatomic selfish routing games to derive bounds for load balancing
games.

Theorem 5. Let G be a load balancing game on uniformly-related machines,
and let A : [n] → [m]. If either

1. A is an equilibrium assignment, or,
2. the machines of [m] are identical and A is the result of a greedy online

assignment process,

then A is Pareto optimal.

Proof. Let {wi}i∈[n] be the set of job weights and s = {sj}j∈[m] be the machine
speeds. Denote W =

∑
i∈[n] wi. We define a selfish routing game G′(W, s) =

(N, r, c) on a parallel-edge network by creating a set of edges [m] with cost
function cj(x) = x

sj
for every j ∈ [m], and r = W . Every assignment A : [n] →

[m] for G induces a feasible flow fA on G′(W, s) in which the flow on an edge
j is

∑
i:A(i)=j wi; furthermore, every player in the routing game originates from

a single task i ∈ [n] in the load balancing game, and pays cost(i, A) in fA.
Therefore, if an assignment A∗ Pareto dominates A, then fA∗

Pareto dominates
fA by the same factor.
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Assume that A is an equilibrium assignment, and define I = {j ∈ [m] | ∃i :
A(i) = j} as the set of machines j that some task uses. Then in G′(W, s), I is
the set of edges with nonzero flow in fA. Assume by contradiction that A is not
Pareto optimal, so there exists another assignment A∗ that Pareto dominates
A. Define I∗ = {j ∈ [m] | ∃i : A∗(i) = j}, then clearly, I∗ ⊆ I; otherwise let
j ∈ I∗\I and let i be such that A∗(i) = j. Since A is an equilibrium, it holds that
cost(i, A) ≤ wi

sj
≤ cost(i, A∗), and thus A∗ does not Pareto dominate A because

player i pays in it at least as much as it payed in A. However, if I∗ ⊆ I then the
flow fA∗

routes all the traffic on the edges of I, and thus by applying Theorem 3
with α = 0 we get that A∗ cannot Pareto dominate A; a contradiction.

Now, assume that A is a result of a greedy online assignment process on
identical machines, and define I as above. There are two cases: If I = [m], then
by Corollary 2 we are done. Otherwise, there are machines that are not used by
any of the tasks; however, since A was obtained by a greedy process and the
machines have identical speeds, it has to be that on every machine j ∈ I there
is only a single task (or the second task that arrived to j would have preferred
to use some vacant machine � ∈ [m] \ I). Thus, every task pays the minimum
possible cost (of its weight divided by the uniform speed) and there is no way
to reduce the cost of any of the tasks, so again A is Pareto optimal.

Unlike with identical machines, if A is the result of a greedy online assignment
process on non-identical machines, A may be Pareto dominated by another as-
signment. For example, assume that we have three machines with speeds 2, 1
and 1, and three tasks with weights 1, 1 and 2. Consider the following scenario:
A task of weight 1 arrives first, and chooses the fast (speed 2) machine. Then
arrives the other unit weighted task, and (being indifferent about which machine
to choose) chooses the fast machine as well. Finally, the heavy (weight 2) task
arrives, and again chooses the fast machine (as it too would have the same cost
on all the machines). In this assignment all the tasks pay a cost of 1+1+2

2 = 2;
however, if we assign each of the light tasks to a (distinct) slow machine and
the heavy task to the fast machine we get that every task pays only 1. Thus,
the online greedy assignment is 2-Pareto-deficient. The following theorem, whose
proof again utilizes Theorem 3, establishes that this is the worst possible case.

Theorem 6. Let G be a load balancing game on uniformly-related machines,
and let A be the result of a greedy online assignment process. Then A is
2-Pareto-efficient.

4 Load Balancing Games – Mixed Strategies

A mixed strategy of a player i ∈ [n] in a load balancing game is a distribu-
tion pi = (p1

i , . . . , p
m
i ) over the set of machines, so that i chooses to use ma-

chine j with probability pj
i . The expected cost for player i is thus cost(i, p) =∑

j∈[m] p
j
i ·
(
wi(j) +

∑
h∈[n]−i

pj
hwh(j)

)
. As one would expect, a profile p is in

equilibrium if no player can benefit by unilaterally switching to a different distri-
bution p′i. Note that mixed strategies are a superset of pure strategies; therefore,
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we immediately obtain that for unrelated machines the worst Nash in mixed
strategies may be arbitrarily Pareto-deficient. We were unable to give any tight
bounds for the best Nash equilibria in mixed strategies.

We will thus focus on bounding the distance of the worst Nash from Pareto
optimality for uniformly-related and identical machines. We will denote the ex-
pected weight on machine j in the strategy profile p by Ep[Wj ] =

∑
h∈[n] p

j
hwh,

and thus we can also write:

cost(i, p) =
∑

j∈[m]

pj
i ·
∑

h∈[n] p
j
hwh + (1− pj

i )wi

sj
=
∑

j∈[m]

pj
i ·

Ep[Wj ] + (1 − pj
i )wi

sj

For a load balancing game with identical machines we show that every equi-
librium profile is (2 − 1

m )-Pareto-efficient, and that this is tight, i.e. the worst
equilibrium in a game may indeed be (2− 1

m )-Pareto-deficient.

Theorem 7. In load balancing games on identical machines with mixed
strategies, all Nash equilibria are (2 − 1

m )-Pareto-efficient, and this bound is
tight.

For the case of uniformly-related machines with mixed strategies, we show that
every equilibrium is 4-Pareto-efficient; however, we do not know to show that
this bound is tight.

Theorem 8. In load balancing games on uniformly-related machines with mixed
strategies, all Nash equilibria are 4-Pareto-efficient.

Proof. Assume that there exist a set [m] of machines, a set [n] of tasks, and
strategy profiles p, q such that for every player i ∈ [n], cost(i, q) ≤ 1

4cost(i, p).
The idea is to show that there exists a task k that can unilaterally improve its
cost from the profile p, implying that p cannot be an equilibrium. To that end,
we first define another strategy profile r, which is a variation of the profile q.

For a task i in the profile q, let Bi be the set of “bad” machines to which i
gives nonzero probability and on which it pays over twice its expected cost, i.e.,

Bi =
{

j
∣∣ qj

i > 0 ∧ Eq[Wj ] + (1− qj
i )wi

sj
> 2 · cost(i, q)

}
.

We also denote the remaining (“good”) machines to which i gives nonzero
probability by Gi, so

Gi =
{

j
∣∣ qj

i > 0 ∧ Eq[Wj ] + (1− qj
i )wi

sj
≤ 2 · cost(i, q)

}
.

Since all qj
i are non-negative, it holds that the total probability every i gives

to bad machines is bi =
∑

j∈Bi
qj
i < 1

2 (or the expected cost for i would have
exceeded cost(i, q)). We create the new strategy profile r as follows. First, for
every i, j with qj

i = 0 we set rj
i = 0 as well. For every i, j such that j ∈ Bi, we
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also set rj
i = 0. However, in order to keep the vector ri a distribution, we add

the total “missing” probability bi to the machines in Gi; specifically, for every
i, j with j ∈ Gi we set rj

i = qj
i

1−bi
.

We now have∑
j∈[m]

Ep[Wj ] =
∑
i∈[n]

wi

∑
j∈[m]

pj
i =

∑
i∈[n]

wi =
∑
i∈[n]

wi

∑
j∈[m]

rj
i =

∑
j∈[m]

Er[Wj ] ,

so there is bound to be a machine � with Er[W�] > 0 and Ep[W�] ≤ Er[W�]. Let
k be a task with r�

k > 0.
We now show that in the strategy profile p, player k can reduce its cost to

less than 4 · cost(k, q), by choosing to use machine � with probability 1. The cost
incurred to k when doing so is

Ep[W�] + (1− p�
k)wk

s�
≤ Er[W�] + wk

s�
≤
∑

i∈[n]−k
r�
iwi + 2wk

s�
.

Recall that for every i, j it holds that rj
i ≤ qj

i

1−bi
and that bi < 1

2 ; this implies
that rj

i < 2qj
i . Thus,∑

i∈[n]−k
r�
iwi + 2wk

s�
< 2 ·

∑
i∈[n]−k

q�
iwi + wk

s�
≤ 2 · 2 · cost(k, q) ,

where the last inequality holds since
∑

h∈[n]−k
q�

hwh+wk

s�
is exactly the cost k pays

on machine � in the profile q. We chose k such that r�
k > 0 and so it must be

that � ∈ Gk; this implies that in the profile q, k pays on � at most 2 · cost(i, q).
Combining the two inequalities above we get that Ep[W�]+(1−p�

k)wk

s�
< 4·cost(k, q);

however, we assumed that the original cost of k in the profile p was cost(k, p) ≥
4 · cost(k, q), so unilaterally moving to � is beneficial for k in the profile p. We
thus conclude that if some profile q 4-Pareto-dominates another profile p, then
p cannot be an equilibrium.

5 Open Problems

A natural direction for further research is the analysis of the Pareto efficiency/
deficiency of solutions in other games, as well as other solution concepts in
these and other games. In addition, there are a few cases left open in this work,
including:

– Flows obtained by greedy online processes on general routing networks. Un-
like with parallel-edge networks, such flows in general networks need not be
equilibrium flows, even in single-commodity instances. However, the lower
bound of the POA value ρ still holds for such flows.

– Online greedy assignments for load balancing on unrelated machines. It can
be shown that there are instances in which greedy assignments are not 2-
Pareto-efficient. What is the Pareto efficiency/deficiency this case?
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– (Worst) mixed equilibrium for load balancing on uniformly-related machines.
We have shown that such equilibria are always 4-PE, but suspect that the
real bound may be lower.
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Abstract. One reason for wanting to compute an (approximate) Nash equilib-
rium of a game is to predict how players will play. However, if the game has
multiple equilibria that are far apart, or ε-equilibria that are far in variation dis-
tance from the true Nash equilibrium strategies, then this prediction may not
be possible even in principle. Motivated by this consideration, in this paper we
define the notion of games that are approximation stable, meaning that all ε-
approximate equilibria are contained inside a small ball of radius Δ around a true
equilibrium, and investigate a number of their properties. Many natural small
games such as matching pennies and rock-paper-scissors are indeed approxi-
mation stable. We show furthermore there exist 2-player n-by-n approximation-
stable games in which the Nash equilibrium and all approximate equilibria have
support Ω(log n). On the other hand, we show all (ε, Δ) approximation-stable

games must have an ε-equilibrium of support O(Δ2−o(1)

ε2
log n), yielding an im-

mediate n
O( Δ2−o(1)

ε2
log n)-time algorithm, improving over the bound of [11] for

games satisfying this condition. We in addition give a polynomial-time algorithm
for the case that Δ and ε are sufficiently close together. We also consider an in-
verse property, namely that all non-approximate equilibria are far from some true
equilibrium, and give an efficient algorithm for games satisfying that condition.

1 Introduction

One reason for wanting to compute a Nash equilibrium or approximate equilibrium of
a game is to predict how players will play. However, if the game has multiple equilibria
that are far apart, or ε-equilibria that are far from the true Nash equilibrium strategies,
then this prediction may not be possible even in principle. Motivated by this considera-
tion, in this paper we define the notion of games that are (ε, Δ)-approximation stable,
meaning that all ε-approximate equilibria are contained inside a small ball of radius Δ
(in variation distance) around a true equilibrium, and investigate a number of their prop-
erties. If a game is approximation-stable for small Δ, then this means that even if play-
ers are only approximately best-responding, or even if the game matrix is not a perfect
description of players’ true payoffs, stationary play should in principle be predictable.
Many natural small 2-player games such as matching pennies and rock-paper-scissors
are indeed approximation-stable for Δ close to ε. In this paper we analyze fundamental
properties of approximation-stable games.
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We show first that all (ε, Δ) approximation-stable games must have an ε-

equilibrium of support at most O(Δ2 log(1+1/Δ)
ε2 log n), yielding an immediate

nO( Δ2 log(1+1/Δ)
ε2

log n)-time algorithm for finding an ε-equilibrium, improving by a fac-
tor O(Δ2 log(1+1/Δ)) in the exponent over the bound of [11] for games satisfying this
condition (and reducing to the bound of [11] in the worst case when Δ = 1). Note that
by assumption, this approximate equilibrium is also Δ-close to a true Nash equilibrium.
We in addition give improved bounds yielding polynomial-time algorithms for the case
that Δ and ε are sufficiently close together. Specifically, for Δ ≤ 2ε − 6ε2 we give an
algorithm for finding O(ε)-equilibria in time nO(1/ε). On the other hand, we show that
for Δ = O(

√
ε), there exist n-action approximation-stable games in which the Nash

equilibrium and all approximate equilibria have support Ω(log n), extending results of
Feder et al. [10]. We also consider an inverse property, namely that all non-approximate
equilibria are far from some true equilibrium, and give an efficient algorithm for finding
approximate equilibria in games satisfying that condition.

Note that the classic notion of a stable Nash equilibrium is substantially more restric-
tive than the condition we consider here: it requires that (1) any infinitesimal deviation
from the equilibrium by any player should make the deviating player strictly worse off
(a strict equilibrium, implying that the equilibrium must be in pure strategies) and (2)
such a deviation should not give the other player any incentive to deviate. Our condition
can be viewed in a sense as a weaker, approximation version of requirement (1), namely
any deviation by distance Δ from the equilibrium should make at least one of the two
players have at least ε incentive to deviate.

Related Work: There has been substantial work exploring the computation of Nash
equilibria in 2-player n × n general-sum games. Unfortunately, the complexity results
in this area have been almost uniformly negative. A series of papers has shown that it is
PPAD complete to compute Nash equilibria, even in 2 player games, even when payoffs
are restricted to lie in {0, 1} [7,1,6].

A structural result of Lipton et al. [11] shows that there always exist ε-approximate
equilibria with support over at most O((log n)/ε2) strategies: this gives an immediate
nO(log n/ε2)-time algorithm for computing ε-approximate equilibria and has also been
shown to be essentially tight [10]. There has also been a series of results [8,12,5] on
polynomial-time algorithms for computing approximate equilibria for larger values of
ε. The best polynomial-time approximation guarantee known is 0.3393 [12].

For special classes of games, better results are known. For example, Barany et al.
considered two player games with randomly chosen payoff matrices, and showed that
with high probability, such games have Nash equilibria with small support [4].

Our work is also motivated by that of Balcan et al. [2] who consider clustering prob-
lems under approximation stability – meaning that all near-optimal solutions to the ob-
jective function should be close in the space of solutions – and give efficient algorithms
for stable instances for several common objectives. Results relating incentive to deviate
and distance to equilibria in general games appear in [9].

2 Definitions and Preliminaries

We consider 2-player n-action general-sum games. Let R denote the payoff matrix to
the row player and C denote the payoff matrix of the column player. We assume all
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payoffs are scaled to the range [0, 1]. We say that a pair of mixed strategies (p, q) is an
ε-equilibrium if for all rows i, we have eT

i Rq ≤ pT Rq + ε, and for all columns j, we
have pT Cej ≤ pT Cq + ε. We will typically use (p∗, q∗) to denote a Nash equilibrium,
which is an ε-equilibrium for ε = 0. Note that in a Nash equilibrium (p∗, q∗), all rows i
in the support of p∗ satisfy eT

i Rq∗ = p∗Rq∗ and similarly all columns j in the support
of q∗ satisfy p∗T Cej = p∗T Cq∗.

We also are interested in the distance between mixed strategies. For probability dis-
tributions in this context, the most natural notion is variation distance, which we use
here. Specifically we define:

d(q, q′) =
1
2

∑
i

|qi − q′i| =
∑

i

max(qi − q′i, 0). (1)

We then define the distance between two strategy pairs as the maximum of the
row-player’s and column-player’s distances, that is:

d((p, q), (p′, q′)) = max[d(p, p′), d(q, q′)]. (2)

We now present our main definition, namely that of a game being approximation stable.

Definition 1. A game satisfies (ε, Δ)-approximation stability if there exists a Nash
equilibrium (p∗, q∗) such that any (p, q) that is an ε-equilibrium is Δ-close to (p∗, q∗),
i.e. d((p, q), (p∗, q∗)) ≤ Δ.

So, fixing ε, a smaller Δ means a stronger condition and a larger Δ means a weaker con-
dition. Every game is (ε, 1)-approximation stable, and as Δ gets smaller, we might ex-
pect for the game to exhibit more useful structure. Many natural games such as matching
pennies and rock-paper-scissors satisfy (ε, Δ)-approximation stability for Δ = O(ε);
see Section 2.2 for analysis of a few simple examples. We note that this definition is very
similar to a condition used in Balcan et al. [2] in the context of clustering problems.

All our results also apply to a weaker notion of approximation stability that allows
for multiple equilibria, so long as moving distance Δ from any equilibrium produces a
solution in which at least one player has ε incentive to deviate. Specifically,

Definition 2. A game satisfies (ε, Δ)-weak approximation stability if, for any Nash
equilibrium (p∗, q∗) and any (p, q) such that d((p, q), (p∗, q∗)) = Δ, (p, q) is not an
ε′-equilibrium for any ε′ < ε.

Organization of This Paper: We now begin with a few useful facts about the re-
gion around Nash equilibria and the relation between ε and Δ in any game, as well
as a few simple examples of games satisfying (ε, Δ)-approximation stability for Δ ≈
ε. We then in Section 3 analyze properties of approximation-stable games, showing
that every (ε, Δ)-approximation stable game must have an ε-equilibrium of support

O(Δ2 log(1+1/Δ) log(n)
ε2 ), yielding an immediate nO( Δ2 log(1+1/Δ) log(n)

ε2
)-time algorithm.

Note that for large Δ this exponent simply reduces to the O( log(n)
ε2 ) bound of [11],

but improves as Δ approaches ε. In Section 5 we give a near-matching lower bound,
showing that there exist approximation-stable games with all approximate equilibria
having support Ω(log n). In Section 4 we analyze games where Δ is especially close
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to ε, and give polynomial-time algorithms for finding approximate equilibria when
Δ ≤ 2ε−O(ε2). Finally, in Section 6 we consider the inverse condition that all strate-
gies within distance Δ of some Nash equilibrium are ε-equilibria, and give an efficient
algorithm for computing (ε/Δ)-approximate equilibria in this case.

2.1 Preliminaries

We begin with a few preliminary facts that apply to any 2-player general-sum game.

Claim 1. If (p, q) is α-close to a Nash equilibrium (p∗, q∗) (i.e., if d((p, q), (p∗, q∗)) ≤
α), then (p, q) is a 3α-Nash equilibrium.

Proof. (omitted)

Claim 1 is useful because while it may be hard to determine how close some pair (p, q)
is to a true equilibrium, it is easy to check how much incentive players have to deviate.
Say that a Nash equilibrium (p∗, q∗) is non-trivial if at least one of p∗ or q∗ does not
have full support over all the rows or columns. Notice trivial Nash equilibria, if they
exist, can be computed in polynomial-time using Linear programming. We then have:

Claim 2. For any nontrivial Nash equilibrium (p∗, q∗) and any α > 0, there exists
(p, q) such that d((p, q), (p∗, q∗)) ≥ α and (p, q) is an α-approximate equilibrium.

Proof. Without loss of generality, assume that p∗ does not have full support. Let ei

be a row not in the support of p∗. Consider a pair of distributions (p, q∗) where p =
(1 − α)p∗ + αei. Since i was not in the support of p∗, (p, q∗) has variation distance α
from (p∗, q∗). Yet, in (p, q∗), with probability (1−α) both the players are playing best
responses to each other. Hence, no player has more than α incentive to deviate. 	

Corollary 1. Assume that the game G satisfies (ε, Δ)-approximation stability and has
a non-trivial Nash equilibrium. Then we must have Δ ≥ ε.

2.2 Some Simple Examples

A number of natural small games satisfy (ε, Δ)-approximation stability for every ε > 0
and for Δ = O(ε). Here, we give a few simple examples.

Game 1: The row and the column matrices are 2× 2 as follows:

R =
[
1 1
0 0

]
C =

[
1 0
1 0

]
Here, the only Nash equilibrium (p∗, q∗) is for the row player to play row 1 and the col-
umn player to play column 1, which are dominant strategies. Any deviation by distance
Δ from p∗ will give the row player Δ incentive to deviate, regardless of the strategy of
the column player. Similarly, any deviation of Δ from q∗ will give the column player
a Δ incentive to deviate regardless of the strategy of the row player. Hence, for every
ε ∈ [0, 1], this game is (ε, Δ)-stable for Δ = ε.

Game 2: This game is simply matching pennies:

R =
[
1 0
0 1

]
C =

[
0 1
1 0

]
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Denoting the indicator vectors as e1 and e2, the Nash equilibrium (p∗, q∗) is equal to
(1
2 (e1 + e2), 1

2 (e1 + e2)). We now show that for any strategy which is Δ far from

(p∗, q∗), at least one player must have ε incentive to deviate for ε = Δ (1+2Δ)
(1+4Δ) .

Specifically, let (p, q) be Δ-far from (p∗, q∗), and without loss of generality assume
d(p, p∗) = Δ. We may further assume without loss of generality (by symmetry) that
p = (1

2 + Δ)e1 + (1
2 −Δ)e2. Let q = (1

2 −Δ′)e1 + (1
2 + Δ′)e2 for Δ′ ∈ [−Δ, Δ]. In

this case the row player is getting a payoff pT Rq = (1
2 − 2ΔΔ′). Furthermore, he can

move to row 2 and get payoff eT
2 Rq = (1

2 + Δ′). Hence, the incentive to deviate (e2 −
p)T Rq ≥ Δ′(1 + 2Δ). Similarly, the column player has payoff pT Cq = (1

2 + 2ΔΔ′),
whereas pT Ce2 = (1

2 +Δ), and hence has at least Δ(1−2Δ′) incentive to deviate. The

maximum of these two is at least Δ (1+2Δ)
(1+4Δ) (with this value occuring at Δ′ = Δ

1+4Δ ).
Therefore, the incentive to deviate in any (p, q) that is Δ-far from (p∗, q∗) is at least
this large. Solving for Δ as a function of ε, this game is (ε, Δ)-approximation stable for
Δ = ε + O(ε2).

Game 3: Rock, Paper, Scissors.

R =

⎡⎣0.5 0 1
1 0.5 0
0 1 0.5

⎤⎦ C =

⎡⎣0.5 1 0
0 0.5 1
1 0 0.5

⎤⎦
A case analysis (omitted) shows that this game is (ε, Δ)-approximation stable for Δ =
4ε, for any ε ≤ 1

6 .

3 The Support of Equilibria in Stable Games

We now show that approximation-stable games have structure that can be used to im-
prove the efficiency of algorithms for computing approximate equilibria.

Theorem 1. For any game satisfying (ε, Δ)-approximation stability, there exists an ε-
equilibrium where each player’s strategy has support O((Δ/ε)2 log(1 + 1/Δ) log n).

Corollary 2. There is an algorithm to find ε-equilibria in games satisfying
(ε, Δ)-approximation stability, running in time nO((Δ/ε)2 log(1+1/Δ) log n).

Let S = c(Δ/ε)2 log n for some absolute constant c, and let (p∗, q∗) denote the Nash
equilibrium such that all ε-equilibria lie within distance Δ of (p∗, q∗). Theorem 1 is
proven in stages. First, in Lemma 1 we show that given a pair of distributions (p, q), if
p is near-uniform over a large support then p can be written as a convex combination
p = xp1 + (1 − x)p2 where p1 and p2 have disjoint supports, and for every column j,
j’s performance against p1 is close to its performance against p2. This implies p∗ itself
cannot be near-uniform over a large sized support, since otherwise we could write it in
this way and then shift Δ probability mass from p2 to p1, producing a new distribution
p′ such that under (p′, q∗), the column player has less than ε incentive to deviate (and the
row player has zero incentive to deviate since supp(p′) ⊆ supp(p∗)). This contradicts
the fact that the game is (ε, Δ)-approximation stable. We then build on this to show that
if p∗ is not near-uniform and does have a large support, it must be well-approximated by
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a distribution of small support (roughly O(S log 1
Δ)). This analysis combines Lemma

1 together with the sampling idea of Lipton et al. [11]. The same, of course, applies to
q∗. For the rest of this section we assume that Δ ≤ 1/4.

Lemma 1. For any distributions p and q, if p satisfies ‖p‖2
2 ≤ 1

S where S =
c(Δ/ε)2 log n for sufficiently large constant c, then p can be written as a convex combi-
nation p = xp1 + (1 − x)p2 of two distributions p1 and p2 over disjoint supports such
that:

(i) x ≤ 3/4 ≤ 1−Δ.
(ii) ∀j, (p1 − p)T C(ej − q) < ε

4Δ

The point of Lemma 1 is that by (i) and (ii), modifying p by moving Δ probability mass
from p2 to p1 can improve the performance of ej relative to q for the column player by
at most ε. The proof of Lemma 1 makes extensive use of the Hoeffding Bound:

Theorem 2 (Hoeffding Bound). Let Xi, i = 1, 2, . . . , n, be n random variables, s.t.
∀i, Xi ∈ [ai, bi]. Let μi = E[Xi]. Then for every t > 0 we have that:

Pr [
∑

i Xi > t +
∑

i μi] ≤ exp
(
− t2∑

i(bi−ai)2

)
(3)

Proof (Lemma 1). Let r be a random subset of the support of p; that is, for every element
in supp(p), add it to r with probability 1/2. Also, let Ci denote the ith entry of Cq. The
idea of the proof is just to argue that for any column j, by the Hoeffding bound, with
high probability over the choice of r, the distribution p1 induced by p restricted to r
satisfies the desired condition that pT

1 C(ej − q) is within ε
4Δ of pT C(ej − q). We then

simply perform a union bound over j.

Fix column ej . Let Yij be the random variable defined as 2pi(Cij − Ci) if element i
was added to r, and 0 otherwise. Observe that E[

∑
i Yij ] = 1

2

∑
i 2pi(Cij − Ci) =

pT C(ej − q). Let Zi be the random variable defined as 2pi with probability 1/2 (if
element i was added to r), and 0 otherwise. Observe E[

∑
i Zi] = 1. Observe also that

for every i we have that Zi, Yij ∈ [−2pi, 2pi].
The obvious reason for defining Yij and Zi is that by denoting the distribution p

restricted to r (renormalized to have L1 norm equal to 1) as pr, we have:

pr
T C(ej − q) =

∑
i∈r pi(Cij−Ci)∑

i∈r pi
=

∑
i Yij∑
i Zi

(4)

so by bounding the numerator from above and the denominator from below, we can
hope to find r for which pr

T C(ej − q) < E[
∑

i Yij ] + (ε/4Δ), thus decomposing p
into the desired p1 = pr and p2 = pr̄. We can do this using the Hoeffding bound and
plugging the value of S:

Pr
[∑

i Yij > pT C(ej − q) + ε
10Δ

]
< exp

(
−(ε/10Δ)2∑

i(4pi)2

)
≤ exp

(
−Sε2

(40Δ)2

)
< 1

2n ,

where the last inequality is by definition of S. Thus, Pr[∃j,∑i Yij > pT C(ej − q) +
ε

10Δ ] < 1/2. Similarly (and even simpler), we have that Pr[
∑

i Zi < 1− ε
10Δ ] < 1/2,

and so the existence of r for which both events do not hold is proven. Observe that for
this specific r we have that
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∑
i Yij∑
i Zi

≤ pT C(ej−q)+ε/10Δ
1−ε/10Δ ≤ pT C(ej − q) + ε/5Δ

1−ε/10Δ ≤ pT C(ej − q) + ε
4Δ ,

using the fact that pT C(ej−q) ≤ 1. Thus, we have the desired decomposition of p. 	

Proof (Theorem 1). We begin by partitioning p∗ into its heavy and light parts. Specifi-
cally, greedily remove the largest entries of p∗ and place them into a set H (the heavy
elements) until either (a) Pr[H ] ≥ 1 − 4Δ, or (b) the remaining entries L (the light
elements) satisfy the condition that ∀i ∈ L, Pr[i] ≤ 1

S Pr[L] for S as in Lemma 1,
whichever comes first. We analyze each case in turn.

If case (a) occurs first, then clearly H has at most S log(1/4Δ) elements. We now
simply apply the sampling argument of Lipton et al [11] to L and union the result with
H . Specifically, decompose p∗ as p∗ = βpH + (1 − β)pL, where β denotes the total
probability mass over H . Applying the sampling argument of [11] to pL, we have that
by sampling a multiset X of S elements from supp(pL) = L, we are guaranteed, by
definition of S, that for any column ej ,

∣∣(UX )T Cej − pT
LCej

∣∣ ≤ (ε/8Δ), where UX
is the uniform distribution over X . This means that for p̃ = βpH + (1 − β)UX , all
columns ej satisfy |p∗T Cej − p̃T Cej | ≤ ε/2. We have thus found (the row portion of)
an ε-equilibrium with support of size S(1 + log(1/4Δ)) as desired, and now simply
apply the same argument to q∗.

If (b) occurs first, we show that the game cannot satisfy (ε, Δ)-approximation sta-
bility. Specifically, let pL denote the induced distribution produced by restricting p∗ to
L and renormalizing so that

∑
i(pL)i = 1, then

∑
i(pL)2i ≤ 1

S

∑
i(pL)i = 1

S . Using
Lemma 1, we deduce we can write pL as a convex combination pL = xp1 + (1− x)p2
of p1 and p2 satisfying the properties of Lemma 1. Again, by denoting β as the total
probability mass over H , we have:

p∗ = βpH + (1− β)xp1 + (1− β)(1 − x)p2 (5)

where pH is the induced distribution over H . We now consider the transition from p∗

to p′ defined as

p′ = βpH + ((1 − β)x + Δ)p1 + ((1 − β)(1 − x)−Δ)p2 (6)

Notice that by Lemma 1, x ≤ 3
4 and hence (1−β)(1−x)−Δ ≥ (1−β)/4−Δ ≥ 0, so

p′ is a valid probability distribution. Also, since p1 and p2 are distributions over disjoint
support, p′ is Δ far from p∗. Note that since p′ is obtained from an internal deviation
within the support of p∗, the row player has no incentive to deviate when playing p′

against q∗. So, if the game is (ε, Δ)-approximation stable, then playing p′ against q∗

must cause the column player to have more then ε incentive to deviate. However, by
transitioning from p∗ to p′ the expected gain of switching from q∗ to any ej is

p′T C(ej − q) = (p∗ + Δ(p1 − p2))T C(ej − q∗)

≤ Δ(p1 − p2)T C(ej − q∗) (since p∗T Cq∗ ≥ p∗T Cej)

From Lemma 1 we know that for every column j, (p1 − pL)T C(ej − q∗) < ε
4Δ . Also

we have that p2 = 1
1−x(pL− xp1). Using this we can write Δ(p1− p2)T C(ej − q∗) =

Δ
1−x(p1 − pL)T C(ej − q∗) < Δ

1−x( ε
4Δ) ≤ ε where the last step follows from x ≤ 3/4.

So the column player has less than ε incentive to deviate which contradicts the fact that
the game is (ε, Δ)-approximation stable. 	
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4 Polynomial-Time Algorithms When Δ and ε Are Close

We now show that if Δ ≤ 2ε − 6ε2, then there must exist an O(ε)-equilibrium where
each player’s strategy has support O(1/ε). Thus, in this case, for constant ε, we have a
polynomial-time algorithm for computing O(ε)-equilibria.

Theorem 3. For any game satisfying (ε, Δ)-approximation stability for Δ ≤ 2ε −
6ε2, there exists an O(ε)-equilibrium where each player’s strategy has support O(1/ε).
Thus, O(ε)-equilibria can be computed in time nO(1/ε).

Proof. Let (p∗, q∗) be a Nash equilibrium of the game. First, if there is no set S of
rows having a combined total probability mass x ∈ [Δ, Δ + ε] in p∗, then this implies
that except for rows of total probability mass less than Δ, all rows in the support of p∗

have probability greater than ε. Therefore, p∗ is Δ-close to a distribution of support at
most 1/ε. If this is true for q∗ as well, then this implies (p∗, q∗) is Δ-close to a pair of
strategies (p, q) each of support ≤ 1/ε, which by Claim 1 and the assumption Δ < 2ε,
is an O(ε)-equilibrium as desired. So, to prove the theorem, it suffices to show that
if such a set S exists, then the game cannot satisfy (ε, Δ)-approximation stability for
Δ ≤ 2ε− 6ε2.

Therefore, assume for contradiction that p∗ can be written as a convex combination

p∗ = xp1 + (1 − x)p2, (7)

where p1, p2 have disjoint supports and x ∈ [Δ, Δ + ε]. Let γ = pT
1 Cq∗ − pT

2 Cq∗

and let VC = p∗T Cq∗. We now consider two methods for moving distance Δ from p∗:
moving probability from p1 to p2, and moving probability from p2 to p1. Let

p′ = (x−Δ)p1 + (1− x + Δ)p2 (8)

= (1 + Δ
1−x )p∗ − ( Δ

1−x)p1. (9)

Since p′ has distance Δ from p∗ and its support is contained in the support of p∗, by
approximation-stability, there must exist some column ej such that p′T Cej ≥ p′T Cq∗+
ε. By (8) we have p′T Cq∗ = VC−Δ(p1−p2)T Cq∗ = VC−Δγ. By (9) and the fact that
p∗T Cej ≤ VC we have that p′T Cej ≤ VC(1 + Δ

1−x). Therefore we have the constraint

VC(1 + Δ
1−x ) ≥ VC −Δγ + ε. (10)

Now, consider moving Δ probability mass from p2 to p1. Specifically, let

p′′ = (x + Δ)p1 + (1− x−Δ)p2 (11)

= (1− Δ
1−x)p∗ + ( Δ

1−x )p1. (12)

Again, there must exist some column ek such that p′′T Cek ≥ p′′T Cq∗ + ε. By (11)
we have p′′T Cq∗ = VC + Δ(p1 − p2)T Cq∗ = VC + Δγ. By (12) and the fact that
p∗T Cek ≤ VC we have that p′′T Cek ≤ VC(1 − Δ

1−x ) + Δ
1−x . Therefore we have the

constraint

VC(1− Δ
1−x ) + Δ

1−x ≥ VC + Δγ + ε. (13)

From constraint (10) we have VC( Δ
1−x) ≥ ε − Δγ and from constraint (13) we have

VC( Δ
1−x ) ≤ Δ

1−x −Δγ − ε. Therefore, Δ
1−x ≥ 2ε, contradicting Δ ≤ 2ε− 6ε2. 	
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5 Stable Games of Large Support

We now give a near-matching lower bound to the results of Section 3, showing that
there exist stable games in which the Nash equilibrium and all approximate equilibria
have support Ω(log n).

Theorem 4. For any Δ ≤ 1/2, there exist n-by-n games satisfying (ε, Δ)-
approximation stability for ε = Δ2/32 such that all ε-Nash equilibria have supports of
size at least (1−Δ) lg(n).

Thus, Theorem 4 implies the following near-matching lower bound to Theorem 1.

Corollary 3. For any Δ ≤ 1/2 there exists an (ε, Δ)-approximation stable game G for
some ε > 0 such that all ε-equilibria have support Ω(Δ4

ε2 log n).

Proof. The proof builds on a construction in Feder et al. [10] exhibiting a game in
which all approximate equilibria have support of size Ω(log n). However, the game
in [10] does not satisfy stability and so a more involved construction and argument is
needed. We now present the construction of the matrix R. The game will be constant
sum with C = 1−R. Let k = log2(n) and let α = Δ/4. The matrix R looks like:[

X Y
Z W

]
Where:

– X is k by k with all entries equal to 0.5.
– W is n− k by n− k with all entries equal to 0.5.
– Z is n− k by k where each row has (0.5− α)k entries equal to 1 and (0.5 + α)k

entries equal to 0. Specifically, all
(

k
(0.5−α)k

)
different such rows appear. We can

add multiple copies of these rows if needed to fill out the matrix.
– Y is k by n−k where each column has (0.5−α)k entries equal to 0 and (0.5+α)k

entries equal to 1. Specifically, all
(

k
(0.5−α)k

)
different such columns appear. We can

add multiple copies of these columns if needed to fill out the matrix.

We begin with two observations about the above construction:

Observation 1: This game has a Nash equilibrium (p∗, q∗) which is uniform over the
first k rows and columns.

Observation 2: The minimax value of this game is 1/2 to each player. So any (p, q) in
which one player gets less than 1/2− ε is not ε-Nash.
We now prove that this game satisfies (ε, Δ) approximation-stability for ε = Δ2/32.
Let (p, q) be some pair of distributions such that d((p, q), (p∗, q∗)) > Δ. Recall that
d((p, q), (p∗, q∗)) = max[d(p, p∗), d(q, q∗)] and assume without loss of generality that
d(q, q∗) > Δ. We want to show that this is not an ε-Nash equilibrium. It will be conve-
nient to write q = q′ + q′′ where q′ is nonzero only over the first k columns and q′′ is
nonzero only over the remaining n− k columns.

Case 1: Suppose that |q′′| > β for β = Δ/4. Then, one possible response of the row
player is to play p∗, achieving a payoff p∗T Rq greater than:

0.5(1− β) + (0.5 + α)β = 0.5 + αβ. (14)
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Thus, if pT Rq ≤ 0.5 + αβ
2 then this is not an αβ

2 -equilibrium (since the row player
would have more than αβ

2 incentive to deviate to p∗) and if pT Rq > 0.5 + αβ
2 then

this is also not an αβ
2 -equilibrium (since pT Cq = 1 − pT Rq < 0.5 − αβ

2 and yet
pT Cq∗ ≥ 0.5 by Observation 2, so now the column player has more than αβ

2 incentive
to deviate). Plugging in α = β = Δ/4, we get ε = αβ/2 = Δ2/32 as desired.

Case 2: |q′′| ≤ β. Define d′(q, q∗) =
∑k

i=1 max(qi − q∗i , 0). So, d′(q, q∗) > Δ − β.
For conceptual convenience, let us sort the entries of q′ (i.e., the first k entries of q) in
decreasing order. We now claim that∑(0.5−α)k

i=1 qi > 1/2 + αβ. (15)

This will imply at least one player has more than ε incentive to deviate since one pos-
sible response of the row player is to play the row in matrix Z with 1’s in the first
(0.5−α)k entries, gaining a value greater than 1/2+αβ. Thus, if pT Rq ≤ 0.5+αβ/2
then the row-player has more than αβ/2 incentive to deviate to that row in Z , and if
pT Rq > 0.5 + αβ/2 then the column player has more than αβ/2 incentive to deviate
to q∗). So, all that remains is to prove inequality (15). Let c = q(0.5−α)k.

Case 2a: c ≥ 1/k. In this case we simply use the fact that since the columns
are sorted in decreasing order of qi, at least an (0.5−α) fraction of the quantity
d′(q, q∗) =

∑k
i=1 max(qi − q∗i , 0) (think of this as the “excess” of q′ over q∗)

must be in the first (0.5 − α)k columns. In addition, we have the remaining
“non-excess”

∑(0.5−α)k
i=1 min(qi, q

∗
i ) = [(0.5 − α)k](1/k) = 0.5 − α. So,

summing these two and using d′(q, q∗) > Δ − β we get:
∑(0.5−α)k

i=1 qi >
(0.5−α)(1+Δ−β) = 0.5+αβ+(0.5Δ−0.5β−α−αΔ) ≥ 0.5+αβ, where
the last inequality comes from our choice of α = β = Δ/4 and assumption
that Δ ≤ 1/2.

Case 2b: c ≤ 1/k. This implies that all the d(q, q∗) − β “excess” of q′ over
q∗ must be in the first (0.5 − α)k columns. In addition, these columns must
contain at least a (0.5 − α) fraction of the “non-excess”

∑k
i=1 min(qi, q

∗
i ).

This latter quantity in turn equals 1 − d(q, q∗), by using the fact d(q, q∗) =∑k
i=1 max[q∗i − qi, 0]. Putting this together we have:

∑(0.5−α)k
i=1 qi > (Δ −

β) + (0.5− α)(1 −Δ) = 0.5− α + αΔ− β + Δ/2 ≥ 0.5 + αΔ, where the
last inequality comes from our choice of α = β = Δ/4.

This completes Case 2 and the proof. 	

This example can be extended if desired to make the game be non-constant sum and
also so that the sum R + C of the two matrices does not have a constant rank.

6 Inverse Conditions

In this section we consider an inverse condition to approximation-stability, namely that
for some true equilibrium (p∗, q∗), all non-approximate equilibria are far from (p∗, q∗).
In particular,
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Definition 3. A game is (ε, Δ)-smooth if for some equilibrium (p∗, q∗), all strategy
pairs (p, q) such that d((p, q), (p∗, q∗)) ≤ Δ are ε-equilibria.

We now show that games that are (ε, Δ)-smooth for Δ large compared to ε have the
property that good approximate equilibria can be computed efficiently. (Recall by Claim
1 that all games are (ε, Δ)-smooth for Δ ≤ ε/3.)

Theorem 5. There is a polynomial-time algorithm to find an (ε/Δ)-approximate
equilibrium in any game that is (ε, Δ)-smooth.

We prove Theorem 5 through a series of claims as follows.

Claim. Let G be (ε, Δ)-smooth for equilibrium (p∗, q∗). Then for every row i we have
eT

i Rq∗ ≥ p∗T Rq∗ − ε/Δ.

Proof. Let VR = p∗T Rq∗. Since (p∗, q∗) is a Nash equilibrium, any row ei ∈ supp(p∗)
will get an expected payoff of VR against q∗ as well. Now consider a row ei /∈ supp(p∗).
Let p = (1−Δ)p∗ + Δei and consider the pair (p, q∗). This pair is Δ-close to (p∗, q∗)
and hence, by the assumption that the game is (ε, Δ)-smooth, must be an ε-equilibrium.
This means that pT Rq∗ ≥ VR − ε. So we get (1 −Δ)p∗T Rq∗ + ΔeT

i Rq∗ ≥ VR − ε,
and using the fact that p∗T Rq∗ = VR, this implies that eT

i Rq∗ ≥ VR − ε
Δ .

Similarly, we have:

Claim. Let G be (ε, Δ)-smooth for equilibrium (p∗, q∗). Then for every column j we
have p∗T Cej ≥ p∗T Cq∗ − ε/Δ.

Using these claims, we can efficiently compute an ε
Δ -approximate equilibrium in

smooth games.

Proof (Theorem 5): Solve the following linear program for a pair of strategies p, q and
values VR, VC :

eT
i Rq ≥ VR − ε

Δ
, ∀i (16)

eT
i Rq ≤ VR, ∀i (17)

pT Cej ≥ VC − ε

Δ
, ∀j (18)

pT Cej ≤ VC , ∀j (19)

From the previous claims we have that (p∗, q∗, VR = p∗T Rq∗, VC = p∗T Cq∗) is a
feasible solution to the above LP. Also, when playing (p, q), the row and the column
players are getting expected payoff at least VR − ε

Δ and VC − ε
Δ respectively. Fur-

thermore, by deviating from p, the row player can get a payoff of at most VR and by
deviating from q, the column player cannot get more than VC . Hence, (p, q) is an ε

Δ -
approximate Nash equilibrium. 	


7 Open Questions and Conclusions

In this work we define and analyze a natural notion of approximation-stability for 2-
player general-sum games, motivated by the goal of finding approximate equilibria for
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predictive purposes. We show that one can improve over the general Lipton et al. [11]
bound based on the extent to which the given game satisfies this condition. Further-
more, if Δ < 2ε − O(ε2) we show there must exist approximate equilibria of small
support, yielding an algorithm to find them in time nO(1/ε). On the other hand, we show
that approximation-stable games with Δ = O(

√
ε) can have all approximate equilibria

of support Ω(log n). We also analyze an inverse condition for which we show finding
(ε/Δ)-approximate equilibria can be done efficiently. One open problem is to better un-
derstand for what values of Δ (as a function of ε) one can find O(ε)-approximate equi-
libria efficiently under the assumption of (ε, Δ)-approximation-stability. For instance,
can one extend the nO(1/ε)-time algorithm from Δ < 2ε − O(ε2) to Δ = poly(ε)?
Recently Balcan and Braverman [3] have shown this may be intrinsically hard: specifi-
cally, for Δ = ε1/4, they show an npoly(1/ε) algorithm to find ε-equilibria in such games
would imply a PTAS in general games. In fact, [3] motivates the following interesting
question: could there be an algorithm that for every (ε, Δ) finds a Δ-equilibrium in time
O(npoly(1/ε))? This may be solvable even if a PTAS is hard for general games, which
itself still remains an open question.
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Abstract. Bounding the price of stability of undirected network de-
sign games with fair cost allocation is a challenging open problem in the
Algorithmic Game Theory research agenda. Even though the generaliza-
tion of such games in directed networks is well understood in terms of
the price of stability (it is exactly Hn, the n-th harmonic number, for
games with n players), far less is known for network design games in
undirected networks. The upper bound carries over to this case as well
while the best known lower bound is 42/23 ≈ 1.826. For more restricted
but interesting variants of such games such as broadcast and multicast
games, sublogarithmic upper bounds are known while the best known
lower bound is 12/7 ≈ 1.714. In the current paper, we improve the lower
bounds as follows. We break the psychological barrier of 2 by showing
that the price of stability of undirected network design games is at least
348/155 ≈ 2.245. Our proof uses a recursive construction of a network
design game with a simple gadget as the main building block. For broad-
cast and multicast games, we present new lower bounds of 20/11 ≈ 1.818
and 1.862, respectively.

1 Introduction

Network design is among the most well-studied problems in the combinatorial
optimization literature. A natural definition is as follows. We are given a graph
consisting of a set of nodes and edges among them representing potential links.
Each edge has an associated cost which corresponds to the cost for establishing
the corresponding link. We are also given connectivity requirements as pairs of
source-destination nodes. The objective is to compute a subgraph of the original
graph of minimum total cost that satisfies the connectivity requirements. In other
words, we seek to establish a network that satisfies the connectivity requirements
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at the minimum cost. This optimization problem is known as Minimum Steiner
Forest and generalizes well-studied problems such as the Minimum Spanning
Tree and Minimum Steiner Tree.

In this paper, we consider a game-theoretic variant of network design that
was first considered in [2]. Instead of considering the connectivity requirements
as a global goal, we assume that each connectivity requirement is desired by a
different player. The players participate in a non-cooperative game; each of them
selects as her strategy a path from her source to the destination and is charged for
part of the cost of the edges she uses. According to the fair cost sharing scheme
we consider in the current paper, the cost of an edge is shared equally among
the players using the edge. The social cost of an assignment (i.e., a snapshot of
players’ strategies) is the cost of the edges contained in at least one path. An
optimal assignment would contain a set of edges of minimum cost so that the
connectivity requirements of the players are satisfied. Unfortunately, this does
not necessarily mean that all players are satisfied with this assignment since a
player may have an incentive to deviate from its path to another one so that her
individual cost is smaller. Eventually, the players will reach a set of strategies
(and a corresponding network) that satisfies their connectivity requirements and
in which no player has any incentive to deviate to another path; such outcomes
are known as Nash equilibria. Interestingly, even though the optimal solution is
always a forest, Nash equilibria may contain cycles.

The non-optimality of the outcomes of network design games (which is typical
when selfish behavior comes into play) leads to the following question that has
been a main line of research in Algorithmic Game Theory: How is the system
performance affected by selfish behavior? The notion of the price of anarchy
(introduced in [8]; see also [10]) quantifies the deterioration of performance. In
general terms, it is defined as the ratio of the social cost of the worst possible
Nash equilibrium over the optimal cost. Hence, it is pessimistic in nature and (as
its name suggests) provides a worst-case guarantee for conditions of total anar-
chy. Instead, the notion of the price of stability (introduced in [2]) is optimistic
in nature. It is defined as the ratio of the social cost of the best equilibrium over
the optimal cost and essentially asks: What is the best one can hope for the
system performance given that the players are selfish?

The aim of the current paper is to determine better lower bounds on the price
of stability for network design games in an attempt to understand the effect
of selfishness on the efficiency of outcomes in such games. We usually refer to
network design games as multi-source network design games in order to capture
the most general case in which players may have different sources. An interesting
variant is when each player wishes to connect a particular common node, which
we call the root, with her destination node; we refer to such network design
games as multicast games. An interesting special case of multicast games is the
class of broadcast games: in such games, there is a player for each non-root node
of the network that has this node as her destination.

The existence of Nash equilibria in network design games is guaranteed by a
potential function argument. Rosenthal [11] defined a potential function over all
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assignments of a network design game so that the difference in the potential of
two assignments that differ in the strategy of a single player equals the difference
of the cost of that player in these assignments; hence, an assignment that locally
minimizes the potential function is a Nash equilibrium. So, the price of stability is
well-defined in network design games. Anshelevich et al. [2] considered network
design games in directed graphs and proved that the price of stability is at
most Hn. Their proof considers a Nash equilibrium that can be reached from
an optimal assignment when the players make arbitrary selfish moves. The main
argument used is that the potential of the Nash equilibrium is strictly smaller
than that of the optimal assignment and the proof follows due to the fact that
the potential function of Rosenthal approximates the social cost of an assignment
within a factor of at most Hn. This approach suggests a general technique for
bounding the price of stability and has been extended to other games as well;
see [3,5]. For directed graphs, the bound of Hn was also proved to be tight
[2]. Although the upper bound proof carries over to undirected network design
games, the lower bound does not. The bound of Hn is the only known upper
bound for multi-source network design games in undirected graphs. Better upper
bounds are known for single-source games. For broadcast games, Fiat et al. [7]
proved an upper bound of O(log log n) while Li [9] presented an upper bound
of O(log n/ log log n) for multicast games. These bounds are not known to be
tight either and, actually, the gap with the corresponding lower bounds is large.
For single-source games, in the full version of [7] Fiat et al. present a lower
bound of 12/7 ≈ 1.714; their construction uses a broadcast game. This was
the best lower bound known for the multi-source case as well until the recent
work of Christodoulou et al. [6] who presented an improved lower bound of
42/23 ≈ 1.826. Higher (i.e., super-constant) lower bounds are only known for
weighted variants of network design games (see [1,4]).

In this paper, we present better lower bounds for general undirected network
design games, as well as for the restricted variants of broadcast and multicast
games. For the general case, we present a game that has price of stability at least
348/155 ≈ 2.245, improving the previously best known lower bound of [6]. Our
proof uses a simple gadget as the main building block which is augmented by
a recursive construction to our lower bound instance. The particular recursive
construction of the game has two advantages. Essentially, the recursive con-
struction blows up the price of stability of the gadget used as the main building
block. Furthermore, recursion allows to handle successfully the technical diffi-
culties in the analysis. We believe that our construction could be extended to
use more complicated gadgets as building blocks that would probably lead to
better lower bounds on the price of stability For multicast games, we present
a lower bound of 1.862. Our proof uses a game on a graph with a particular
structure. For this game, we prove sufficient conditions on the edge costs of the
graph so that a particular assignment is the unique Nash equilibrium. Then,
the construction that yields the lower bound is the solution of a linear program
which has the edge costs as variables, the sufficient conditions as constraints, an
additional constraint that upper-bounds the optimal cost by 1, and its objective
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is to maximize the cost of the unique Nash equilibrium. The particular lower
bound was obtained in a game with 100 players using the linear programming
solver of Matlab. A slight variation of this construction yields our lower bound
for broadcast games. In this case, we are able to obtain a more compact set of
sufficient conditions so that there is a unique Nash equilibrium. As a result, we
have a formal proof that the price of stability approaches 20/11 ≈ 1.818 when
the number of players is large.

2 Preliminaries

In an undirected network design game, we are given an undirected graph G =
(V, E) in which each edge e ∈ E has a non-negative cost ce. There are n players;
player i wishes to establish a connection between two nodes si, ti ∈ V called
the source and destination node of player i, respectively. The set of strategies
available to player i consists of all paths connecting nodes si and ti in G. We
call an assignment any set of strategies σ, with one strategy per player. Given
an assignment σ, let ne(σ) be the number of players using edge e in σ. Then,
the cost of player i in σ is defined as costi(σ) =

∑
e∈σi

ce

ne(σ) . Let G(σ) be the
subgraph of G which contains the edges of G that are used by at least one player
in assignment σ. The social cost of the assignment σ is simply the total cost of
the edges in G(σ) which coincides with the sum of the costs of the players.

An assignment σ is called a Nash equilibrium if for any player i and for any
other assignment σ′ that differs from σ only in the strategy of player i, it holds
costi(σ) ≤ costi(σ′). It can be easily seen that any Nash equilibrium is a proper
assignment, in the sense that the edges used by any pair of players do not form
any cycle. The price of stability of a network design game is defined as the ratio
of the minimum social cost among all Nash equilibria over the optimal cost.

Network design games with si = s for any player i are called multicast games.
We refer to node s as the root node. Multicast games in which there is one player
for any non-root node that has this node as destination are called broadcast
games. We also use the term multi-source games to refer to the general class of
undirected network design games and the term single-source games in order to
refer to multicast and broadcast games.

3 The Lower Bound for Multi-source Games

In this section, we prove the following theorem.

Theorem 1. For any δ > 0, there exists an undirected network design game
with price of stability at least 348/155− δ.

We will construct a network design game on a connected undirected graph so
that there is a distinct player associated with each edge of the graph that wishes
to connect the endpoints of the edge. The construction uses integer parameters
k ≥ 3 and t ≥ 2. We start with the gadget construction depicted in Figure 1a.
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We use the terms left and right gadget player for the players associated with the
left and right gadget edge of a gadget, respectively. We also use the term floor
players for the players associated with floor edges. Given an edge e, we build a
block under this edge by putting k gadgets so that the leftmost node of the first
gadget coincides with the left endpoint of e, the rightmost node of i-th gadget
coincides with the leftmost node of the (i + 1)-th gadget for i = 1, ..., k− 1, and
the rightmost node of the k-th gadget coincides with the right endpoint of e (see
Figure 1b). We refer to e as the ceiling edge of the block.

(b)

left gadget edge

k middle floor edges

k left floor edges

k right floor edges

right gadget edge

ceiling edge

(a)

Fig. 1. (a) The gadget used in the proof of Theorem 1. (b) The construction of a block
under a ceiling edge (with k = 3).

We set x = 28/109, y = 33/109, z = 30/109 − ε, w = 35/109 − ε, and
α = 63/218− ε, where ε is a negligibly small but strictly positive number. If g
denotes the cost of the ceiling edge, then the cost of the edges in each gadget
of the block under it are defined as follows: xg

αk2 for each of the left floor edges,
(1−x−y)g

αk2 for each of the middle floor edges, yg
αk2 for each of the right floor edges,

zg
αk for the left gadget edge, and wg

αk for the right gadget edge. So, the total cost
of the floor edges of the block is g/α while the total cost of all edges of the block
is g(1 + z + w)/α.

Now, our construction starts with a roof edge of cost 1 (and an associated roof
player) and a block under it. The roof edge has level t and the block under it
has level t− 1. We build blocks of level t− 2 by building a block under each of
the floor edges of the block of level t− 1. We continue recursively and define all
blocks down to level 1. Clearly, for j = 1, ..., t−1, the total cost of the floor edges
of level j is gαj−t while the total cost of all edges of level j is g(1 + z + w)αj−t.

Hence, the total cost of the edges in the graph is

1 +
t−1∑
i=1

(1 + z + w)α−i =
348− 436ε

155 + 218ε
α1−t − 193− 654ε

155 + 218ε



Improved Lower Bounds on the Price of Stability 95

while the cost of the floor edges of level 1 is α1−t and upper-bounds the optimal
cost (since the floor edges of level one constitute a spanning tree of the whole
graph). For any δ > 0, we can set t and ε appropriately so that the ratio of the
total cost of edges over the optimal cost is at least 348/155− δ.

In order to complete the proof of the theorem, it suffices to prove that the
assignment in which each player uses her direct edge is the unique Nash equi-
librium; the rest of this section is devoted to proving this claim. We will refer
to the players associated to floor edges (respectively, gadget edges) at blocks of
level j as the floor players of level j (respectively, the gadget players of level j).
A floor player of level j follows a non-increasing strategy if she uses neither a
gadget edge of her gadget nor any edge of level j′ > j. A gadget player of level
j follows a non-increasing strategy if she does not use any edge of level j′ > j.
In the opposite case, we say that the player follows an increasing strategy.

In an assignment, a player may use a floor edge or connect its endpoints by
being routed through the block under the edge. In the latter case, we say that
the player crosses the floor edge. We also say that a player is external to a gadget
(respectively, external to a block) if she does not correspond to any edge of the
gadget (respectively, block) and uses or crosses its edges.

In a proper assignment, the sets of non-increasing strategies of the gadget
players of a gadget can belong to one of the following types (Figure 2); any
other set of non-increasing strategies violates the fact that the assignment is
proper.

– Type A: Both gadget players use their direct edges.
– Type B: The left gadget player uses her direct edge and the right gadget

player uses or crosses the middle and right floor edges.
– Type C: Both gadget players use the left gadget edge. The right gadget

player uses or crosses the left and right floor edges as well.
– Type D: The right gadget player uses her direct edge and the left gadget

player uses or crosses the left and middle floor edges.
– Type E: Both gadget players use the right gadget edge. The left gadget

player uses or crosses the left and right floor edges as well.
– Type F: The left gadget player uses or crosses the left and middle floor edges

and the right gadget player uses or crosses the middle and right floor edges.

We are ready to significantly restrict the structure of assignments we have to
consider as candidates to be Nash equilibria.

Lemma 1. At any Nash equilibrium, all players besides the roof player follow
non-increasing strategies. Furthermore, at each block: either there are no external
players and the gadget players have strategies of type A or there are h > 0
external players and each of them experiences cost more than g/h, where g is
the cost of the ceiling edge of the block.

Proof. Consider a Nash equilibrium. We will prove the claim inductively (on the
block level). We will first prove it for the blocks of level 1. In this case, there is
no block under any floor edge and players do not cross the floor edges.
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Type E

Type C

Type F

Type A

Type D

Type B

Fig. 2. The six possible types for the players of a gadget that follow non-increasing
strategies. The dashed lines denote the paths used by the left and the right gadget
player. Only the gadget edges that are used by some player are shown.

Consider a block of level 1 and assume that a floor player p follows an increasing
strategy. Then, she should connect the endpoints of her floor edge to the two
closest gagdet edge endpoints by using k − 1 floor edges. Furthermore, observe
that neither a gadget player of the same gadget nor an external player to this
gadget uses these floor edges (since this would imply that they also use the direct
edge of player p and the assignment would not be proper). Similarly, the players
associated to the k − 1 floor edges use their direct edges. Hence, player p uses
each of the k − 1 floor edges together with one floor player. Since k ≥ 3, this
means that the cost she experiences at the k−1 ≥ 2 floor edges plus the non-zero
cost she experiences at the other edges she uses is strictly larger than the cost
of her direct edge and she would have an incentive to move to its direct edge.
So, all floor players of the block follow non-increasing strategies.

Now, assume that a gadget player p follows an increasing strategy, i.e., her
path contains the endpoints of her gadget. This means that there are no external
players to the current block nor other gadget players within the current block
that follow increasing strategies (any such player should connect the endpoints
of the gadget of p and the assignment would not be proper). So, there are at least
k − 1 gadgets whose gadget (and floor) players follow non-increasing strategies.

We focus on such a gadget of the current block and assume that there are
h ≥ 0 external players; these can be players that are external to the block or a
player from another gadget of the same block that follows an increasing strategy.
In the inequalities below, we use the following claim.

Claim. Let ζ, η be positive integers. Then, 1
ζ+h ≥ η

(ζ+η)h for any integer h ≥ η.

We consider the six different cases for the strategies of the gadget players. If the
strategies of the gadget players are of type A, then all the external players (if
any) are routed either through the left gadget edge and the right floor edges of
the gadget, or through the left floor edges and the right gadget edge, or through
the left gadget edge, the middle floor edges, and the right gadget edge (any other
case violates the fact that the assignment is proper). In the first subcase, the
cost of each external player at the edges of the gadget is

g

αk

(
z

1 + h
+

y

1 + h

)
≥ g

αkh

(z

2
+

y

2

)
=

g

αkh

(
63
218

− ε

2

)
>

g

kh
.
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In the second subcase, the cost of each external player is

g

αk

(
x

1 + h
+

w

1 + h

)
≥ g

αkh

(x

2
+

w

2

)
=

g

αkh

(
63
218

− ε

2

)
>

g

kh
.

In the third subcase, the cost of each external player is again

g

αk

(
z

1 + h
+

1− x− y

1 + h
+

w

1 + h

)
≥ g

αkh

(
w

2
+

1− x− y

2
+

w

2

)
>

g

kh
.

If the strategies of the gadget players are of type B, all the external players are
routed through the left gadget edge and the right floor edges. We will first show
that h ≥ 2. Indeed, if at most one external player is routed through the gadget,
the cost of the right gadget player would be at least

g

αk

(
1− x− y

2
+

y

3

)
=

g

αk
· 35
109

>
gw

αk
,

i.e., this player would have an incentive to move and use her direct edge. So,
since h ≥ 2, the cost of each external player at the edges of the gadget is

g

αk

(
z

1 + h
+

y

2 + h

)
≥ g

αkh

(
2z

3
+

y

2

)
=

g

αkh

(
73
218

− 2ε

3

)
>

g

kh
.

If the strategies of the gadget players are of type C, all the external players are
routed through the left gadget edge and the right floor edges. We will show again
that h ≥ 2. Indeed, if at most one external player is routed through the gadget,
the cost of the right gadget player would be at least

g

αk

(x

2
+

z

3
+

y

3

)
=

g

αk

(
35
109

− ε

3

)
>

gw

αk
,

i.e., this player would have an incentive to move. So, since h ≥ 2, the cost of
each external player at the edges of the gadget is

g

αk

(
z

2 + h
+

y

2 + h

)
≥ g

αkh

(z

2
+

y

2

)
=

g

αkh

(
63
218

− ε

2

)
>

g

kh
.

If the strategies of the gadget players are of type D, all the external players are
routed through the left floor edges and the right gadget edge. We will show again
that h ≥ 2. Indeed, if at most one external player is routed through the gadget,
the cost of the left gadget player would be at least

g

αk

(
x

3
+

1− x− y

2

)
=

g

αk
· 100
327

>
gz

αk
,

i.e., this player would have an incentive to move. So, since h ≥ 2, the cost of
each external player at the edges of the gadget is

g

αk

(
x

2 + h
+

w

1 + h

)
≥ g

αkh

(
x

2
+

2w

3

)
=

g

αkh

(
112
327

− 2ε

3

)
>

g

kh
.
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If the strategies of the gadget players are of type E, then all the external players
are routed through the left floor edges and the right gadget edge. We will show
again that h ≥ 2. Indeed, if at most one external player is routed through the
gadget, the cost of the left gadget player would be at least

g

αk

(x

3
+

w

3
+

y

2

)
=

g

αk

(
75
218

− ε

3

)
>

gz

αk
,

i.e., this player would have an incentive to move. So, since h ≥ 2, the cost of
each external player at the edges of the gadget is

g

αk

(
x

2 + h
+

w

2 + h

)
≥ g

αkh

(x

2
+

w

2

)
=

g

αkh

(
63
218

− ε

2

)
>

g

kh
.

If the strategies of the gadget players are of type F, then all the external players
are routed through the floor edges. We will show that h > 0 in this case. Indeed,
if there were no external players that are routed through the gadget, the cost of
the left gadget player would be

g

αk

(
x

2
+

1− x− y

3
+

y

2

)
=

g

αk
· 93
218

>
gz

αk
,

i.e., this player would have an incentive to move. So, the cost of each external
player at the edges of the gadget is

g

αk

(
x

2 + h
+

1− x− y

3 + h
+

y

2 + h

)
≥ g

αkh

(
x

3
+

1− x− y

4
+

y

3

)
>

g

kh
.

Now, consider again the gadget player p which follows an increasing strategy.
In each of the other k − 1 gadgets of the same block, the gadget players have
strategies of types A or F and the cost player p experiences at the edges of the
gadget is more than g

k . Her total cost through the edges of the k−1 ≥ 2 gadgets
different than her own one would be g(k−1)

k ≥ g
αk max{z, w}, i.e., she would have

an incentive to move and use her direct edge instead. So, all gadget players of
the block follow non-increasing strategies as well.

Now, assume that no external player is routed through the block. Then, by
the above discussion, the only case in which the gadget players of a gadget do not
have an incentive to move is when they follow strategies of type A. If one external
player is routed through the block, then the gadget players follow strategies of
type A or F and the cost experienced by the external player at each gadget is
more than g/k, i.e., more than g in total. If h ≥ 2 external players are routed
through the block, then each of them experiences cost more than g

kh at each
gadget, i.e., more than g/h in total.

We have completed the proof of the base of the induction. Now, assuming that
the statement is true for blocks of levels up to j, we have to prove it for blocks
of level j + 1. The proof of the induction step is almost identical to the proof of
the induction base. The only difference is that, now, a player may cross a floor
edge in order to connect its endpoints. Then, when h players cross a floor edge,
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they are external to the block under the edge and (by the induction hypothesis)
the cost they experience when crossing the edge is more than its cost over h (as
opposed to exactly its cost over h which we had in the induction base). This
inequality (instead of equality) does not affect any of the inequalities above and
the proof of the induction step completes in the very same way. 	

Lemma 2. At any Nash equilibrium, there are no external players at any block.

Proof. Assume that this is not the case and consider a Nash equilibrium with
external players at some block. Consider the block of highest level that has some
external player routed through it. Then, it is either the block of level t−1 or (by
Lemma 1) some block under a floor edge of a gadget of the higher-level block
whose gadget players follows strategies of type A. In both cases, exactly one
player is routed through the block (i.e., the player corresponding to its ceiling
edge) and, by Lemma 1, her cost at the edges of the block is more than the cost
of the ceiling edge of the block. Hence, this player has an incentive to move and
use the ceiling edge instead. The lemma follows. 	

Now, Theorem 1 follows by Lemmas 1 and 2 since they imply that the assignment
in which every player uses her direct edge is the unique Nash equilibrium.

4 Lower Bounds for Single-Source Games

In this section, we present our lower bounds for multicast and broadcast games.
We note that since all players have a common source node in such games, in
any proper assignment the set of edges that are used by at least one player
is a tree that is rooted at the source node and spans the destinations of all
players. Also, any such tree defines in a unique way the strategies of the players
in a proper assignment. So, when considering Nash equilibria in multicast or
broadcast games, it suffices to restrict our attention to assignments defined by
trees spanning the root node and the destination nodes of all players. We refer
to them as multicast or broadcast trees depending on whether the game is a
multicast or a broadcast game.

Our lower bound for multicast games uses the graph Mn depicted in Figure
3. There are n players; player i wishes to connect node s to node ti. The cost
of the edges is defined by the tuple C = (x2, . . . , xn, y1, . . . , yn, z1, . . . , zn). We
denote by τ the multicast tree formed by the edges (s, ti) for i = 1, ..., n. The
next lemma provides a sufficient condition so that the assignment defined by
tree τ is the unique Nash equilibrium of the multicast game on Mn; its formal
proof is omitted due to lack of space.

Lemma 3. The assignment defined by tree τ is the unique Nash equilibrium
of the multicast game on graph Mn if C is such that for i = 2, ..., n and for
k = 1, ..., i− 1 it holds

zk <
zi

min{2i− 2k, n− k}+ 1
+

yi

min{2i− 2k, n− k} +
i−k−1∑

p=0

xi−p

i− k − p
+ yk,
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Fig. 3. The graphs Mn (left) and Bn (right)

and for i = 1, ..., n− 1 and for j = i + 1, ..., n it holds

zj <
zi

min{2j − 2i, j} +
yi

min{2j − 2i, j} − 1
+

j−i∑
p=1

xi+p

j − i− p + 1
+ yj .

Now, we can use Lemma 3 to obtain lower bounds on the price of stability of
multicast games by solving the following linear program. The variables of the
linear program are the edge costs of the tuple C. The objective is to maximize the
cost

∑n
i=1 zi of tree τ subject to the two sets of constraints in the statement of

Lemma 3 and the additional constraint z1 +
∑n

i=2 xi +
∑n

i=1 yi ≤ 1 which upper-
bounds the optimal cost by 1 (observe that the left-hand side of this constraint
is the cost of the multicast tree containing all edges of Mn besides (s, ti) for
i = 2, ..., n). Then, the objective value of this linear program denotes the price
of stability of the multicast game on Mn for the particular values of the edge costs
that correspond to the solution of the linear program. We obtained our lower
bound on the price of stability using the linear programming solver of Matlab.
Note that we have used n = 100 and have simulated the strict inequalities in
the conditions of Lemma 3 by using standard inequalities and adding a constant
of 10−6 on their left-hand side. The following statement summarizes our best
observed lower bound.

Theorem 2. There exists a multicast game with price of stability at least 1.862.

Our lower bound for broadcast games uses the graph Bn depicted at the right
part of Figure 3. In this case, the cost of the edges is defined by the tuple
C = (x2, . . . , xn, z1, . . . , zn). Again, there are n players; player i wishes to connect
node s to node ti. Denote by τ the broadcast tree formed by the edges (s, ti) for
i = 1, ..., n. Observe that the graph Bn is obtained from Mn by contracting the
edges (ti, vi). Hence, any Nash equilibrium of the multicast game on graph Mn

with yi = 0 for i = 1, ..., n corresponds to a Nash equilibrium of the broadcast
game on graph Bn of the same cost (and vice versa) while the cost of the optimal
assignment is the same in both cases. So, we can apply the same technique we
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used above by further constraining the variable yi to be zero for i = 1, ..., n.
Fortunately, we are able to define a much more compact set of conditions for
C in order to guarantee that the assignment defined by τ is the unique Nash
equilibrium of the broadcast game on Bn. Our related result is the following;
due to lack of space, the formal proof is omitted.

Theorem 3. For any δ > 0, there exists a broadcast game with price of stability
at least 20/11− δ.

We remark that the graph Bn has the same structure with the lower bound
construction of [7] albeit with a different definition of the edge costs that yields
the improved lower bound on the price of stability.
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Abstract. Fictitious play is a simple learning algorithm for strategic
games that proceeds in rounds. In each round, the players play a best
response to a mixed strategy that is given by the empirical frequencies of
actions played in previous rounds. There is a close relationship between
fictitious play and the Nash equilibria of a game: if the empirical frequen-
cies of fictitious play converge to a strategy profile, this strategy profile is
a Nash equilibrium. While fictitious play does not converge in general, it
is known to do so for certain restricted classes of games, such as constant-
sum games, non-degenerate 2×n games, and potential games. We study
the rate of convergence of fictitious play and show that, in all the classes
of games mentioned above, fictitious play may require an exponential
number of rounds (in the size of the representation of the game) before
some equilibrium action is eventually played. In particular, we show the
above statement for symmetric constant-sum win-lose-tie games.

1 Introduction

A common criticism of Nash equilibrium, the most prominent solution concept
of the theory of strategic games, is that it fails to capture how players’ delibera-
tion processes actually reach a steady state. When considering a set of human or
artificial agents engaged in a parlor game or a more austere decision-making sit-
uation, it is somewhat hard to imagine that they would after some deliberation
arrive at a Nash equilibrium, a carefully chosen probability distribution over all
possible courses of action. One reason why this behavior is so hard to imagine is
that Nash equilibrium rests on rather strong assumptions concerning the ratio-
nality of players and the ability to reliably carry out randomizations. Another
concern is that in many settings finding a Nash equilibrium is computationally
intractable.

A more reasonable scenario would be that agents face a strategic situation by
playing the game in their heads, going through several rounds of speculation and
counterspeculation as to how their opponents might react and how they would
react in turn. This is the idea underlying fictitious play (FP). FP proceeds in
rounds. In the first round, each player arbitrarily chooses one of his actions. In
subsequent rounds, each player looks at the empirical frequency of play of their
respective opponents in previous rounds, interprets it as a probability distribu-
tion, and myopically plays a pure best response against this distribution. FP

S. Kontogiannis, E. Koutsoupias, P.G. Spirakis (Eds.): SAGT 2010, LNCS 6386, pp. 102–113, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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can also be seen as a learning algorithm for games that are played repeatedly,
such that the intermediate best responses are actually played. This interpreta-
tion rests on the simplifying assumption that the other players follow a fixed
strategy.

FP was originally introduced by [7] as an algorithm to approximate the
value of constant-sum games, or equivalently compute approximate solutions to
linear programs [10]. Shortly after, it was shown that FP does indeed converge
to the desired solution [24]. While convergence does not extend to arbitrary
games, as illustrated by [25], it does so for quite a few interesting classes of
games, and much research has focussed—and still focusses—on identifying such
classes ([3], and the references therein). Both as a linear program solver and as a
learning algorithm, FP is easily outperformed by more sophisticated algorithms.
However, FP is of captivating simplicity and therefore is considered as one of
the most convincing explanations of Nash equilibrium play. As put it: “Brown’s
results are not only computationally valuable but also quite illuminating from
a substantive point of view. Imagine a pair of players repeating a game over
and over again. It is plausible that at every stage a player attempts to exploit
his knowledge of his opponent’s past moves. Even though the game may be too
complicated or too nebulous to be subjected to an adequate analysis, experience
in repeated plays may tend to a statistical equilibrium whose (time) average
return is approximately equal to the value of the game” [16, p. 443].

In this paper, we show that in virtually all classes of games where FP is
known to converge to a Nash equilibrium, it may take an exponential number
of rounds (in the representation of the game) before any equilibrium action is
played at all. While it was widely known that FP does not converge rapidly, the
strength of our results is still somewhat surprising. They do not depend on the
choice of a metric for comparing probability distributions. Rather, we show that
the empirical frequency of FP after an exponential number of rounds can be
arbitrarily far from any Nash equilibrium for any reasonable metric. This casts
doubt on the plausibility of FP as an explanation of Nash equilibrium play.

2 Related Work

As mentioned above, FP does not converge in general. showed this using a
variant of Rock-Paper-Scissors and argued further that “if fictitious play is to
fail, the game must contain elements of both coordination and competition” [25,
p. 24]. This statement is perfectly consistent with the fact that FP is guaranteed
to converge for both constant-sum games [24] and identical interest games, i.e.,
games that are best-response equivalent (in mixed strategies) to a common payoff
game [20]. Other classes of games where FP is known to converge include two-
player games solvable by iterated elimination of strictly dominated strategies [21]
and non-degenerate 2 × 2 games [17]. While the proof of was initially thought
to apply to the class of all 2×2 games, this was later shown to be false [18]. The
result was recently extended to non-degenerate 2×n games [2]. Since every non-
degenerate 2×2 game is best-response equivalent to either a constant-sum game
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or a common payoff game [20], the result of follows more easily by combining
those of [24] and [20].

To our knowledge, the rate of convergence of FP has so far only been studied in
2×2 games. For this class of games, FP converges at a rate of O(T−1), where T
is the number of rounds, as soon as both players have played an equilibrium
action at least once [13]. We will see, however, that even in 2 × 2 games the
latter may only happen after an exponential number of rounds.

Von Neumann [27] proposed a variant of FP and compared it to Dantzig’s
Simplex method. Indeed, there are some interesting similarities between the two.
[8] recently studied the ability of FP to find approximate Nash equilibria. In
addition to worst-case guarantees on the approximation ratio—which are rather
weak— showed that in random games a good approximation is typically achieved
after a relatively small number of rounds. Similarly, the Simplex method is known
to work very well in practice. As we show in this paper, FP also shares one of the
major shortcomings of the Simplex method—its exponential worst-case running
time.

Since FP is one of the earliest and simplest algorithms for learning in games,
it inspired many of the algorithms that followed: the variant due to , a simi-
lar procedure suggested by [1], improvements like smooth FP [11], the regret
minimization paradigm [15], and a large number of specialized algorithms put
forward by the artificial intelligence community (e.g., [22, 9]).

Despite its conceptual simplicity and the existence of much more sophisticated
learning algorithms, FP continues to be employed successfully in the area of arti-
ficial intelligence. Recent examples include equilibrium computation in Poker [12]
and in anonymous games with continuous player types [23], and learning in
sequential auctions [28].

3 Preliminaries

An accepted way to model situations of strategic interaction is by means of a
normal-form game (see, e.g., [16]). We will focus on games with two players.

A two-player game Γ = (P, Q) is given by two matrices P, Q ∈ Rm×n for pos-
itive integers m and n. Player 1, or the row player, has a set A = {1, . . . , m} of
actions corresponding to the rows of these matrices, player 2, the column player,
a set B = {1, . . . , n} of actions corresponding to the columns. To distinguish
between them, we usually denote actions of the row player by a1, . . . , am and
actions of the column player by b1, . . . , bn. Both players are assumed to simulta-
neously choose one of their actions. For the resulting action profile (i, j) ∈ A×B,
they respectively obtain payoffs pij and qij .

A strategy of a player is a probability distribution s ∈ Δ(A) or t ∈ Δ(B) over
his actions, i.e., a nonnegative vector s ∈ Rm or t ∈ Rn such that

∑
i si = 1 or∑

j tj = 1, respectively. In a slight abuse of notation, we write pst and qst for the
expected payoff of players 1 and 2 given a strategy profile (s, t) ∈ Δ(A)×Δ(B).
A strategy is called pure if it chooses some action with probability one, and the
set of pure strategies can be identified in a natural way with the set of actions.
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A two-player game is called a constant-sum game if pij + qij = pi′j′ + qi′j′ for
all i, i′ ∈ A and j, j′ ∈ B. Since all results in this paper hold invariably under
positive affine transformations of the payoffs, such games can conveniently be
represented by a single matrix P containing the payoffs of player 1; player 2
is then assumed to minimize the values in P . A constant-sum game is further
called symmetric if P is a skew-symmetric matrix. In symmetric games, both
players have the same set of actions, and we usually denote these actions by
a1, a2, . . . , am. A game is a common payoff game if pij = qij for all i ∈ A and
j ∈ B. Finally, a game is non-degenerate if for each strategy, the number of best
responses of the other player is at most the support size of that strategy, i.e.,
the number of actions played with positive probability.

An action i ∈ A of player 1 is said to strictly dominate another action i′ ∈ A
if it provides a higher payoff for every action of player 2, i.e., if for all j ∈ B,
pij > pi′j . Dominance among actions of player 2 is defined analogously. A game
is then called solvable via iterated strict dominance if strictly dominated actions
can be removed iteratively such that exactly one action remains for each player.

A pair (s, t) of strategies is called a Nash equilibrium if the two strategies are
best responses to each other, i.e., if pst ≥ pit for every i ∈ A and qst ≥ qsj for
every j ∈ B. A Nash equilibrium is quasi-strict if actions played with positive
probability yield strictly more payoff than actions played with probability zero.
By the minimax theorem [26], every Nash equilibrium (s, t) of a constant-sum
game satisfies minj

∑
i pijsi = maxi

∑
j pijtj = ω for some ω ∈ R, also called

the value of the game.
Fictitious play (FP) was originally introduced to approximate the value of

constant-sum games, and has subsequently been studied in terms of its con-
vergence to Nash equilibrium in more general classes of games. It proceeds in
rounds. In the first round, each player arbitrarily chooses one of his actions.
In subsequent rounds, each player looks at the empirical frequency of play of
his respective opponents in previous rounds, interprets it as a probability dis-
tribution, and myopically plays a pure best response against this distribution.
Fix a game Γ = (P, Q) with P, Q ∈ Rm×n. Denote by ui and vi the ith unit
vector in Rm and Rn, respectively. Then, a learning sequence of Γ is a sequence
(x0, y0), (x1, y1), (x2, y2), . . . of pairs of non-negative vectors (xi, yi) ∈ Rm ×Rn

such that x0 = 0, y0 = 0, and for all k ≥ 0,

xk+1 = xk + ui where i is the index of a maximum component of Pyk and

yk+1 = yk + vj where j is the index of a maximum component of xkQ.

A learning sequence (x0, y0), (x1, y1), (x2, y2), . . . of a game Γ is said to converge
if for some Nash equilibrium s of Γ ,

lim
k→∞

(
xk

k
,
yk

k

)
= s,

where both division and limit are to be interpreted component-wise. We then
say that FP converges for Γ if every learning sequence of Γ converges to a Nash
equilibrium.
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An alternative definition of a learning sequence, in which players update their
beliefs alternatingly instead of simultaneously, can be obtained by replacing xkQ
by xk+1Q in the last condition above. [3] distinguishes between simultaneous and
alternating FP, and points out that actually introduced the latter variant, while
almost all subsequent work routinely uses the former. We henceforth concentrate
on simultaneous FP, or simply FP, but note that with some additional work all
of our results can be shown to hold for alternating FP as well.

4 Results

We now present several results concerning the convergence rate of FP. Taken
together, they cover virtually all classes of games for which FP is known to
converge.

4.1 Symmetric Constant-Sum Games and Games Solvable by
Iterated Strict Dominance

Let us first consider games with arbitrary payoffs. Our first result concerns two
large classes of games where FP is guaranteed to converge: constant-sum games
and games solvable by iterated strict dominance.

Theorem 1. In symmetric two-player constant-sum games, FP may require ex-
ponentially many rounds (in the size of the representation of the game) before
an equilibrium action is eventually played. This holds even for games solvable
via iterated strict dominance.

Proof. Consider the symmetric two-player constant-sum game Γ = (P, Q) with
payoff matrix P for player 1 as shown in Figure 1, where 0 < ε < 1. It is readily
appreciated that (a3, a3) is the only Nash equilibrium of this game, as it is the
only action profile that remains after iterated elimination of strictly dominated
actions. Consider an arbitrary integer k > 1. We show that for ε = 2−k, FP may
take 2k rounds before either player plays action a3. Since the game can clearly
be encoded using O(k) bits in this case, the theorem follows.

Let FP start with both players choosing action a1. Since the game is sym-
metric, we can assume the actions for each step of the learning sequence to be
identical for both players. After the first round Py1 = (0, 1, 2−k), and both play-
ers will play a2 in round 2. We claim that they will continue to do so at least
until round 2k. Too see this, observe that for all i with 1 ≤ i < 2k, we have
Pyi = (−i + 1, 1, 2−ki). As 2−ki < 1, both players will choose a2 round i + 1.

Table 1 summarizes this development. It follows that the action sequence

(a1, a1) (a2, a2), . . . , (a2, a2)︸ ︷︷ ︸
2k − 1 times

gives rise to a learning sequence that is exponentially long in k and in which no
equilibrium action is played. 	
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a1 a2 a3

a1 0 −1 −ε

a2 1 0 −ε

a3 ε ε 0

Fig. 1. Symmetric constant-sum game used in the proof of Theorem 1. Player 1 chooses
rows, player 2 chooses columns. Outcomes are denoted by the payoff of player 1.

Table 1. A learning sequence of the game depicted in Figure 1, where ε = 2−k

Round i (ai, ai) Pyi

0 − (0, 0, 0)
1 (a1, a1) (0, 1, 2−k)
2 (a2, a2) (−1, 1, 2−k2)
3 (a2, a2) (−2, 1, 2−k3)

...
...

2k (a2, a2) (−2k + 1, 1, 1)

This result is tight in the sense that FP converges very quickly in symmetric
2× 2 games. Up to renaming of actions, every such game can be described by a
matrix a1 a2

a1 0 −α

a2 α 0

for some α ≥ 0. If α = 0, every strategy profile is a Nash equilibrium. Otherwise,
action a1 is strictly dominated for both players, and both players will play the
equilibrium action a2 from round 2 onwards.

4.2 Non-degenerate 2 × n Games and Identical Interest Games

Another class of games where FP is guaranteed to converge are non-degenerate
2×n games. We again obtain a strong negative result concerning the convergence
rate of FP, which also applies to games with identical interests.

Theorem 2. In non-degenerate 2×3 games, FP may require exponentially many
rounds (in the size of the representation of the game) before an equilibrium action
is eventually played. This holds even for games with identical interests.

Proof. Consider the 2× 3 game Γ = (P, Q) shown in Figure 2, where 0 < ε < 1.
It is easily verified that Γ is non-degenerate and that the players have identi-
cal interests. The action profile (a2, b3) is the only action profile that remains
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b1 b2 b3

a1 (1, 1) (2, 2) (0, 0)

a2 (0, 0) (2 + ε, 2 + ε) (3, 3)

Fig. 2. Non-degenerate two-player game with identical interests used in the proof of
Theorem 2. Outcomes are denoted by a pair of payoffs for the two players.

Table 2. A learning sequence of the game shown in Figure 2, where ε = 2−k

Round i (ai, bi) Pyi xiQ

0 − (0, 0) (0, 0, 0)
1 (a1, b1) (1, 0) (1, 2, 0)
2 (a1, b2) (3, 2 + 2−k) (2, 4, 0)
3 (a1, b2) (5, 4 + 2−k2) (3, 6, 0)

...
...

...
2k (a1, b2) (2k+1 − 1, 2k+1 − 1− 2−k) (2k, 2k+1, 0)

after iterated elimination of strictly dominated actions, and thus the only Nash
equilibrium of the game.

Now consider an integer k > 1. We show that for ε = 2−k, FP may take 2k

rounds before actions a2 or b3 are played. Since in this case the game can clearly
be encoded using O(k) bits, the theorem follows.

Let FP start with both players choosing action a1. Then, Py1 = (1, 0) and
x1Q = (1, 2, 0). Accordingly, in the second round, the row player will choose a1,
and the column player b2. Hence, Py2 = (3, 2 + 2−k) and x2Q = (2, 4, 0). Here-
after, for at least another 2k − 1 rounds, the players will choose the same
actions as in round 2, because for all i with 2 ≤ i ≤ 2k, xiQ = (i, 2i, 0),
Pyi = (2i− 1, 2i− 1 + 2−k(i− 1)), and 2i− 1 > 2i− 1 + 2−k(i− 1). Accordingly,
the sequence of pairs of actions

(a1, b1) (a1, b2), . . . , (a1, b2)︸ ︷︷ ︸
2k times

,

which contains no equilibrium actions, gives rise to a learning sequence that is
exponentially long in k. Figure 2 illustrates both sequences. 	

This result is again tight: in any 2 × 2 game, one of the players must always
play an equilibrium action almost immediately. Indeed, given that the initial
action profile is not itself an equilibrium, one of the players plays his second
action in the following round. But what about the other player? By looking at
the subgame of the game in Figure 2 induced by actions {a1, a2} and {b1, b2},
and at the learning sequence used to obtain Theorem 2, we find that it might
still take exponentially many rounds for one of the two players until he plays an
equilibrium action for the first time.



On the Rate of Convergence of Fictitious Play 109

Theorem 2 also applies to potential games [19], which form a superclass of
games with identical interests. For the given ordering of its actions, the game of
Figure 2 further has strategic complementarities and diminishing returns,1 which
implies results analogous to Theorem 2 for classes of games in which convergence
of FP was respectively claimed by [14]2 and shown by [4].

4.3 Games with Constant Payoffs

The proofs of the previous two theorems crucially rely on exponentially small
payoffs, so one may wonder if similar results can still be obtained if additional
constraints are imposed on the payoffs. While this is certainly not the case for
games where both the payoffs and the number of actions are constant, we find
that a somewhat weaker version of Theorem 1 holds for games with constant
payoffs, and in particular for symmetric constant-sum win-lose-tie games, i.e.,
symmetric constant-sum games with payoffs in {−1, 0, 1}.

For each integer k we define a symmetric constant-sum game Γ k with a unique
(mixed) Nash equilibrium and show that FP may take a number of rounds ex-
ponential in k before an equilibrium action is played. In contrast to the previous
result, however, this result not only assumes a worst-case initial action profile,
but also a worst-case learning sequence.

Theorem 3. In symmetric constant-sum win-lose-tie games, FP may require
exponentially many rounds (in the size of the game) before an equilibrium action
is eventually played.

Proof. Fix an integer k > 1. We construct a symmetric constant-sum win-lose-
tie game Γ k = (P k, Qk) with a (2k + 1)× (2k + 1) payoff matrix P k = (pk

ij) for
player 1 such that for all i, j with 1 ≤ j ≤ i ≤ 2k + 1,

pk
ij =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1 if j = 1 and 2 ≤ i ≤ k + 1, or
if j = 1 and i = 2k + 1, or
if j �= 1 and i = j + k,

−1 if j �= 1 and i > j + k,
0 otherwise.

For i < j, let pk
ij = −pk

ji. Thus Γ k clearly is a symmetric constant-sum game.
To illustrate the definition, Γ 4 is shown in Figure 3.

Further define, for each k, a strategy profile (sk, sk) of Γ k such that for all i
with 1 ≤ i ≤ 2k + 1,

sk
i =

{
22k+1−i/(2k − 1) if i > k + 1,
0 otherwise.

1 A two-player game with totally ordered sets of actions is said to have strategic
complementarities if the advantage of switching to a higher action, according to
the ordering, increases when the opponent chooses a higher action, and diminishing
returns if the advantage of increasing one’s action is decreasing.

2 The proof of this claim later turned out to be flawed [5].
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a1 a2 a3 a4 a5 a6 a7 a8 a9

a1 0 −1 −1 −1 −1 0 0 0 −1

a2 1 0 0 0 0 −1 1 1 1

a3 1 0 0 0 0 0 −1 1 1

a4 1 0 0 0 0 0 0 −1 1

a5 1 0 0 0 0 0 0 0 −1

a6 0 1 0 0 0 0 0 0 0

a7 0 −1 1 0 0 0 0 0 0

a8 0 −1 −1 1 0 0 0 0 0

a9 1 −1 −1 −1 1 0 0 0 0

Fig. 3. Symmetric constant-sum game Γ 4 used in the proof of Theorem 3. The game
possesses a quasi-strict equilibrium (s4, s4) with s4 = (0, 0, 0, 0, 0, 8

15
, 4

15
, 2

15
, 1

15
).

It is not hard to see that (sk, sk) is a quasi-strict equilibrium of Γ k. Moreover,
since Γ k is both a symmetric and a constant-sum game, the support of any
equilibrium strategy of Γ k is contained in that of sk (cf. [6]). We will now show
that, when starting with (a1, a1), FP in Γ k may take at least 2k rounds before
an equilibrium action is played for the first time.

Consider the sequence a1, . . . , a2k with aj = a1+
log2 j� for all j with 1 ≤ j ≤
2k, i.e., the sequence

a1, a2, a3, a3, . . . , ai, . . . , ai︸ ︷︷ ︸
2i−2 times

, . . . , ak+1, . . . , ak+1︸ ︷︷ ︸
2k−1 times

.

The length of this sequence is clearly exponential in k. Further define vectors
x0, . . . , x2k

of dimension 2k + 1 such that x0 = 0, and for i with 1 ≤ j ≤ 2k + 1,
xj+1 = xj + ui when aj+1 = i.

We now claim that (x0, x0), . . . , (x2k

, x2k

) is a learning sequence of Γ k, i.e.,
that j +1 is the index of a maximal component of both P kyj and xjQk. Table 3
shows the development of this sequence for k = 4.

By symmetry of Γ k it suffices to prove the claim for P kyj . After the first
round, we have for all i with 1 ≤ i ≤ 2k + 1,

(P ky1)i =

{
1 if 1 < i ≤ k + 1,
0 otherwise.

Furthermore, since {a2, . . . , a2k} ⊆ {a2, . . . , ak+1}, we have that (P kyj)i = 1 for
all i with 1 < i ≤ k + 1 and all j with 1 < j ≤ 2k. It, therefore, suffices to show
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Table 3. A learning sequence of the game Γ 4 shown in Figure 3

Round i (aj , aj) P 4yi

0 − (0, 0, 0, 0, 0, 0, 0, 0, 0)

1 (a1, a1) (0, 1, 1, 1, 1, 0, 0, 0, 1)

2 (a2, a2) (−1, 1, 1, 1, 1, 1,−1,−1, 0)

3 (a3, a3) (−2, 1, 1, 1, 1, 1, 0,−2,−1)
4 (a3, a3) (−3, 1, 1, 1, 1, 1, 1,−3,−2)

5 (a4, a4) (−4, 1, 1, 1, 1, 1, 1,−2,−3)
6 (a4, a4) (−5, 1, 1, 1, 1, 1, 1,−1,−4)
7 (a4, a4) (−6, 1, 1, 1, 1, 1, 1, 0,−5)
8 (a4, a4) (−7, 1, 1, 1, 1, 1, 1, 1,−6)

9 (a5, a5) (−8, 1, 1, 1, 1, 1, 1, 1,−5)
10 (a5, a5) (−9, 1, 1, 1, 1, 1, 1, 1,−4)
11 (a5, a5) (−10, 1, 1, 1, 1, 1, 1, 1,−3)
12 (a5, a5) (−11, 1, 1, 1, 1, 1, 1, 1,−2)
13 (a5, a5) (−12, 1, 1, 1, 1, 1, 1, 1,−1)
14 (a5, a5) (−13, 1, 1, 1, 1, 1, 1, 1, 0)
15 (a5, a5) (−14, 1, 1, 1, 1, 1, 1, 1, 1)
16 (a5, a5) (−15, 1, 1, 1, 1, 1, 1, 1, 2)

that (P kyj)i for all i with i = 1 or k + 1 < i < 2k + 1 and all j with 1 < j ≤ 2k.
Since, p1i = −1 for all i with 1 < i ≤ k +1, the former is obvious. For the latter,
it can be shown by a straightforward if somewhat tedious induction on j that
for all i with 1 ≤ i < k and all j with 1 < j ≤ 2k,

(P kyj)i+k+1 =

⎧⎪⎨⎪⎩
1− j if j ≤ 2i−1,
1 + j − 2i if 2i−1 < j ≤ 2i,
1 otherwise, and

(P kyj)2k+1 =

{
2− j if j ≤ 2k−1,
2 + j − 2k otherwise.

It follows that (P kyj)i ≤ 1 for all i with 1 ≤ i ≤ 2k+1 and all j with 1 ≤ j < 2k,
thus proving the claim. 	


5 Conclusion

We have studied the rate of convergence of fictitious play, and obtained mostly
negative results: for almost all of the classes of games where FP is known to
converge, it may take an exponential number of rounds before some equilibrium
action is eventually played. These results hold already for games with very few
actions, given that one of the payoffs is exponentially small compared to the
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others. Slightly weaker results can still be salvaged for symmetric constant-sum
games and games solvable by iterated strict dominance, even if payoffs are in the
set {−1, 0, 1}. It is an open question whether this result can be strengthened to
match that for games with arbitrary payoffs, and whether a similar result can
be obtained for the classes of games covered by Theorem 2, i.e., for potential
games and identical interest games.

While it was known that fictitious play does not converge rapidly, the strength
of our results is still somewhat surprising. They do not depend on the choice of a
metric for comparing probability distributions. Rather, the empirical frequency
of FP after an exponential number of rounds can be arbitrarily far from any
Nash equilibrium for any reasonable metric. This casts doubt on the plausibility
of fictitious play as an explanation of Nash equilibrium play.
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Abstract. Can learning algorithms find a Nash equilibrium? This is a natural
question for several reasons. Learning algorithms resemble the behavior of play-
ers in many naturally arising games, and thus results on the convergence or non-
convergence properties of such dynamics may inform our understanding of the
applicability of Nash equilibria as a plausible solution concept in some settings.
A second reason for asking this question is in the hope of being able to prove
an impossibility result, not dependent on complexity assumptions, for computing
Nash equilibria via a restricted class of reasonable algorithms. In this work, we
begin to answer this question by considering the dynamics of the standard multi-
plicative weights update learning algorithms (which are known to converge to a
Nash equilibrium for zero-sum games). We revisit a 3×3 game defined by Shap-
ley [10] in the 1950s in order to establish that fictitious play does not converge in
general games. For this simple game, we show via a potential function argument
that in a variety of settings the multiplicative updates algorithm impressively fails
to find the unique Nash equilibrium, in that the cumulative distributions of players
produced by learning dynamics actually drift away from the equilibrium.

1 Introduction

In complexity, once a problem is shown intractable, research shifts towards two di-
rections1 (a) polynomial algorithms for more modest goals such as special cases and
approximation, and (b) exponential lower bounds for restricted classes of algorithms.
In other words, we weaken either the problem or the algorithmic model. For the prob-
lem of finding Nash equilibria in games, the first avenue has been followed extensively
and productively, but, to our knowledge, not yet the second. It has been shown that a
general and natural class of algorithms fails to solve multiplayer games in polynomial
time in the number of players [4] — but such games have an exponential input anyway,
and the point of that proof is to show, via communication complexity arguments, that,
if the players do not know the input, they have to communicate large parts of it, at least
for some games, in order to reach equilibrium.

We conjecture that a very strong lower bound result, of sweeping generality, is pos-
sible even for bimatrix games. In particular, we suspect that a broad class of algorithms
that maintains and updates mixed distributions in essentially arbitrary ways can be shown

1 In addition, of course, to the perennial challenge of collapsing complexity classes. . .

S. Kontogiannis, E. Koutsoupias, P.G. Spirakis (Eds.): SAGT 2010, LNCS 6386, pp. 114–125, 2010.
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to fail to efficiently find Nash equilibria in bimatrix games, as long as these algorithms
cannot identify the matrices — since our ambition here falls short of proving that P �=
NP, such restriction needs to be in place. In this paper we start on this path of research.

In targeting restricted classes of algorithms, it is often most meaningful to focus on
algorithmic ideas which are known to perform well under certain circumstances or in
related tasks. For games, learning is the undisputed champion among algorithmic styles.
By learning we mean a large variety of algorithmic ways of playing games which main-
tain weights for the strategies (unnormalized probabilities of the current mixed strategy)
and update them based on the performance of the current mixed strategy, or single strat-
egy sampled from it, against the opponent’s mixed strategy (or, again, sampled strategy).
Learning algorithms are known to converge to the Nash equilibrium in zero-sum games
[2], essentially because they can be shown to have diminishing regret. Furthermore, in
general games, a variant in which regret is minimized explicitly [5] is known to always
converge to a correlated equilibrium. Learning is of such central importance in games
that it is broadly discussed as a loosely defined equilibrium concept — for example, it
has been recently investigated viz. the price of anarchy [1,7,9].

There are three distinct variants of the learning algorithmic style with respect to
games: In the first, which we call the distribution payoff setting, the players get feedback
on the expected utility of the opponent’s mixed strategy on all of their strategies — in
other words, in a bimatrix game (R, C), if the row player plays mixed strategy x and
the column player y, then the row player sees at each stage the vector CyT while the
column player sees xT R. In the second variant which we call the stochastic setting, we
sample from the two mixed strategies and both players learn the payoffs of all of their
strategies against the one chosen by the opponent — that is, the row player learns the
Cj , the whole column corresponding to the column player’s choice, and vice-versa. A
third variant is the multi-armed setting, introduced in [2], in which the players sample
the distributions and update them according to the payoff of the combined choices. In
all three cases we are interesting in studying the behavior of the cumulative distribu-
tions of the players, and see if they converge to the Nash equilibrium (as is the case for
zero-sum games).

An early fourth kind of learning algorithm called fictitious play does not fall into our
framework. In fictitious play both players maintain the opponent’s histogram of past
plays, adopt the belief that this histogram is the mixed strategy being played by the
opponent, and keep best-responding to it. In 1951 Julia Robinson proved that fictitious
play (or more accurately, the cumulative distributions of players resulting from ficti-
tious play) converges to the Nash equilibrium in zero-sum games. Incidentally, Robin-
son’s inductive proof implies a convergence that is exponentially slow in the number
of strategies, but Karlin [6] conjectured in the 1960s quadratic convergence; this con-
jecture remains open. Shapley [10] showed that fictitious play fails to converge in a
particular simple 3× 3 nonzero-sum game (it does converge in all 2× n games).

But how about learning dynamics? Is there a proof that this class of algorithms fails
to solve the general case of the Nash equilibrium problem? This question has been
discussed in the past, and has in fact been treated extensively in Zinkevich’s thesis [14].
Zinkevich presents extensive experimental results showing that, for the same 3×3 game
considered by Shapley in [10] (and which is the object of our investigation), as well as
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in a variant of the same game, the cumulative distributions do not converge to a Nash
equilibrium (we come back to Zinkevich’s work later in the last section). However,
to our knowledge there is no actual proof in the literature establishing that learning
algorithms fail to converge to a Nash equilibrium.

Our main result is such a non-convergence proof; in fact, we establish this for each of
the variants of learning algorithms. For each of the three styles, we consider the standard
learning algorithm in which the weight updates are multiplicative, that is, the weights
are multiplied by an exponential in the observed utility, hence the name multiplicative
experts weight update algorithms. (In the multi-armed setting, we analyze the variant
of the multiplicative weights algorithm that applies in this setting, in which payoffs are
scaled so as to boost low-probability strategies). In all three settings, our results are
negative: for Shapley’s 3× 3 game the learning algorithms fail, in general, to converge
to the unique Nash equilibrium. In fact, we prove the much more striking result that in
all settings, the dynamics lead the players’ cumulative distributions away from the equi-
librium exponentially quickly. The precise statements of the theorems differ, reflecting
the different dynamics and the analytical difficulties they entail.

At this point it is important to emphasize that most of the work on the field focuses
on proving the non-convergence of private distributions of the players, i.e. the distri-
bution over strategies of each player at each time-step. In general, this is easy to do.
In sharp contrast, we prove the non-convergence of the cumulative distributions of the
players; the cumulative distribution is essentially the time-average of the private dis-
tributions played up to some time-step. This is a huge difference, because this weaker
definition of convergence (corresponding to a realistic sense of what it means to play
a mixed strategy in a repeated game) yields a much stronger result. Only Shapley in
his original paper [10] (and Benaim and Hirsch [15] for a more elaborate setting) prove
non-convergence results for the cumulative distributions, but for fictitious play dynam-
ics. We show this for multiplicative weight updates, arguably (on the evidence of its
many other successes, see the survey [12]) a much stronger class of algorithms.

2 The Model

We start by describing the characteristics of game-play; to do that we need to specify
the type of information that the players receive at each time step. In this section we
briefly describe the three “learning environments” which we consider, and then for each
environment describe the types of learning algorithms which we consider.

2.1 Learning Environments

The first setting we consider is the distribution payoff setting, in which each player
receives a vector of the expected payoffs that each of his strategies would receive, given
the distribution of the other player. Formally, we have the following definition:

Definition 1. [Distribution payoff setting] Given mixed strategy profiles ct =
(c1, . . . , cn), and rt = (r1, . . . , rn)T with

∑
ri =

∑
ci = 1 for the column and row

player, respectively, and payoff matrices C, R of the underlying game,

rt+1 = f(RcT
t , rt), ct+1 = g(rT

t C, ct),
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where f, g are update functions of the row, and column player, respectively, with the
condition that rt+1, ct+1 are distributions.

It may seem that this setting gives too much information to the players, to the point
of being unrealistic. We consider this setting for two reasons; first, intuitively, if learn-
ing algorithms can find Nash equilibria in any setting, then they should in this setting.
Since we will provide largely negative results, it is natural to consider this setting that
furnishes the players with the most power. The second reason for considering this set-
ting is that in this setting, provided f, g are deterministic functions, the entire dynamics
is deterministic, simplifying the analysis. Our results and proof approaches for this set-
ting provide the guiding intuition for our results in the more realistic learning settings.

The second setting we consider, is the stochastic setting, in which each player selects
a single strategy to play, according to their private strategy distributions, rt and ct, and
each player may update his strategy distribution based on the entire vector of payoffs
that his different strategies would have received given the single strategy choice of the
opponent. Formally, we have:

Definition 2. [Stochastic setting] Given mixed strategy profiles rt, and ct for the row
and column player, respectively, at some time t, and payoff matrices R, C of the under-
lying game, the row and column players select strategies i, and j according to rt and
ct, respectively, and

rt+1 = f(R·,j, rt), ct+1 = g(Ci,·, ct),

where f, g are update functions of the row and column player, respectively, and
rt+1, ct+1 are required to be distributions, and Mi,·, M·,i, respectively, denote the ith

row and column of matrix M .

Finally, we will consider the multi-armed setting, in which both players select strategies
according to their private distributions, knowing only the single payoff value given by
their combined choices of strategies.

Definition 3. [Multi-armed setting] Given mixed strategy profiles rt, and ct for the
row and column player, respectively, at some time t, and payoff matrices R, C of the
underlying game, the row and column players select strategies i, and j according to rt

and ct, respectively, and
rt+1 = f(Ri,j , rt), ct+1 = g(Ci,j , ct),

where f, g are update functions of the row, and column player, respectively, and
rt+1, ct+1 are distributions.

While the multi-armed setting is clearly the weakest setting to learn in, it is also, ar-
guably, the most realistic and closely resembles the type of setting in which many ev-
eryday games are played.

Almost all of the results in this paper refer to the non-covergence of the cumulative
distributions of the players, defined as:

Ri,t =

∑t
j=0 ri,j

t
, Ci,t =

∑t
j=0 ci,j

t
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2.2 Learning Algorithms

For each game-play setting, the hope is to characterize which types of learning algo-
rithms are capable of efficiently converging to an equilibrium. In this paper, we tackle
the much more modest goal of analyzing the behavior of standard learning models that
are known to perform well in each setting. For the distribution payoff setting, and the
stochastic setting, we consider the dynamics induced by multiplicative weight updates.
Specifically, for a given update parameter ε > 0, at each timestep t, a player’s distribu-
tion wt = (w1,t, . . . , wn,t) is updated according to

wi,t+1 =
wi,t(1 + ε)Pi∑
i wi,t(1 + ε)Pi

,

where Pi is the payoff that the ith strategy would receive at time t. We focus on this
learning algorithm as it is extraordinarily successful, both practically and theoretically,
and is known to have vanishing regret (which, by the min-max theorem, guarantees
that cumulative distributions

∑T
t=1

wt

T converge to the Nash equilibrium for zero-sum
games[12]).

For the multi-armed setting, the above weight update algorithm is not known to per-
form well, as low-probability strategies are driven down by the dynamics. There is a
simple fix, first suggested in [11]; one scales the payoffs by the inverse of the proba-
bility with which the given strategy was played, then applies multiplicative weights as
above with the scaled payoffs in place of the raw payoff. Intuitively, this modification
gives the low-weight strategies the extra boost that is needed in this setting. Formally,
given update parameter ε, and distribution wt, if strategy s is chosen at time t, and
payoff P is received, we update according to the following:

w∗
s = ws,t(1 + ε)P/ws,t

w∗
i�=s = wi,t

wj,t+1 =
w∗

j∑
k w∗

k

.

We note that this update scheme differs slightly from the originally proposed scheme
in [11], in which a small drift towards the uniform distribution is explicitly added. We
omit this drift as it greatly simplifies the analysis; additionally, arguments from [13] can
be used to show that our update scheme also has the guarantee that the algorithm will
have low-regret in expectation (and thus the dynamics converge for zero-sum games).

2.3 The Game

For all of our results, we will make use of Shapley’s 3× 3 bimatrix game with row and
column payoffs given by

R =

⎛⎝0 1 2
2 0 1
1 2 0

⎞⎠ , C =

⎛⎝0 2 1
1 0 2
2 1 0

⎞⎠ .

This game has a single Nash equilibrium in which both players play each strategy with
equal probabilities. It was originally used by Shapley to show that fictitious play does
not converge for general games.
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3 Distribution Payoff Setting

In this section we consider the deterministic dynamics of running the experts weights
algorithm in the distribution payoff setting. We show that under these dynamics, pro-
vided that the initial distributions satisfy r �= c, the cumulative distributions Rt, Ct tend
away from the Nash equilibrium. The proof splits into three main pieces; first, we define
a potential function, which we show is strictly increasing throughout the dynamics, and
argue that the value of the potential cannot be bounded by any constant. Next, we ar-
gue that given a sufficiently large value of the potential function, eventually the private
row and column distributions rt, ct must become unbalanced in the sense that for some
i ∈ {1, 2, 3}, ri > .999 and ci < .001 (or ri < .001, ci > .999). Finally, given this
imbalance, we argue that the dynamics consists of each player switching between es-
sentially pure strategies, with the amount of time spent playing each strategy increasing
in a geometric progression, from which it follows that the cumulative distributions will
not converge.

Each of the three components of the proof, including the potential function argument,
will also apply in the stochastic, and multi-armed settings, although the details will
differ.

Before stating our main non-convergence results, we start by observing that in the
case that both players perform multiplicative experts weight updates with parameters
εR = εC , and start with identical initial distributions r = c, the dynamics do converge
to the equilibrium. In fact, not only do the cumulative distributions Rt, Ct converge, but
so do the private distributions rt, ct.

Proposition 1. If both players start with a common distribution r = c and perform
their weight updates with εR = εC = ε ≤ 3/5, then the dynamics of rt, ct converge to
the Nash equilibrium exponentially fast.

The proof is simple and is delegated to the full version of this paper. We now turn our
attention to the main non-convergence result of this section–if the initial distributions
are not equal, then the dynamics diverge.

Theorem 1. In the distribution payoff setting, with a row player performing experts
weight updates with parameter 1 + εR, and column player performing updates with
parameter 1 + εC , the cumulative distributions Rt =

∑t
i=0

ri

t , Ct =
∑t

i=0
ci

t diverge,

provided that the initial weights do not satisfy ri = cα
i , with α = log(1+εR)

log(1+εC) .

The first component of the proof will hinge upon the following potential function for
the dynamics:

Φ(r, c) := log
(

max
i

(
ri

cα
i

)
)
− log

(
min

i
(
ri

cα
i

)
)

, (1)

with α = log(1+εR)
log(1+εC) . We are going to use the same potential function for the other two

learning settings as well. The following lemma argues that Φ(rt, ct) increases unbound-
edly.

Lemma 1. Given initial private distributions r0, c0 such that Φ(r0, c0) �= 0, then
Φ(rt, ct) is strictly increasing, and for any constant k, there exists some t0 such that
Φ(rt0 , ct0) > k.
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Proof. We consider the change in Φ after one step of the dynamics. For convenience,
we give the proof in the case that εR = εC = ε; without this assumption identical
arguments yield the desired general result. Also note that without loss of generality,
by the symmetry of the game, it suffices to consider the case when r1,t ≥ c1,t. The
dynamics define the following updates:

(
r1,t+1

c1,t+1
,
r2,t+1

c2,t+1
,
r3,t+1

c3,t+1

)
=

n1

n2

(
r1,t(1 + ε)c2+2c3

c1,t(1 + ε)r2+2r3
,
r2,t(1 + ε)2c1+c3

c2,t(1 + ε)2r1+r3
,
r3,t(1 + ε)c1+2c2

c3,t(1 + ε)r1+2r2

)
,

for some positive normalizing constants n1, n2. By the symmetry of the game, it suffices
to consider the following two cases: when argmaxi(ri/ci) = 1 and argmini(ri/ci) = 2,
and the case when argmaxi(ri/ci) = 1 and argmini(ri/ci) = 3. We start by considering
the first case:

Φ(rt+1, ct+1) = log
(

max
i

(
ri

ci
)
)
− log

(
min

i
(
ri

ci
)
)

≥ log
(

r1

c1

)
− log

(
r2

c2

)
= log(n1/n2) + log

(
r1,t

c1,t

)
+ (c2,t + 2c3,t − r2,t − 2r3,t) log(1 + ε)

− log(n1/n2)−
(

log
(

r2,t

c2,t

)
+ (c3,t + 2c1,t − r3,t − 2r1,t) log(1 + ε)

)
= Φ(rt, ct) + (−2c1,t + c2,t + c3,t − r2,t − r3,t + 2r1,t) log(1 + ε)

= Φ(rt, ct) + 3(r1,t − c1,t) log(1 + ε)

In the case second case, where argmaxi(ri/ci) = 1 and argmini(ri/ci) = 3, a similar
calculation yields that

Φ(rt+1, ct+1) ≥ Φ(rt, ct) + 3(c3,t − r3,t) log(1 + ε).

In either case, note that Φ is strictly increasing unless ri/ci = 1 for each i, which can
only happen when Φ(rt, ct) = 0.

To see that Φ is unbounded, we first argue that if the private distributions r, c are
both sufficiently far from the boundary of the unit cube, then the value of the potential
function will be increasing at a rate proportionate to its value. If r or c is near the
boundary of the unit cube, and maxi |ri − ci| is small, then we argue that the dynamics
will drive the private distributions towards the interior of the unit cube. Thus it will
follow that the value of the potential function is unbounded.

Specifically, if r, c ∈ [.1, 1]3, then from the derivative of the logarithm, we have

30 max
i
|ri − ci| ≥ Φ(r, c)

and thus provided rt, ct are in this range Φ(rt+1, ct+1) ≥ Φ(rt, ct)
(
1 + log(1+ε)

30

)
. If

r, c �∈ [.1, 1]3, then arguments from the proof of Proposition 1 can be used to show that



On Learning Algorithms for Nash Equilibria 121

after some time t0, either rt0 , ct0 ∈ [.2, 1]3, or for some time t′ < t0, maxi |ri − ci| ≥
.01, in which case by the above arguments the value of the potential function must have
increased by at least .01 log(1 + ε), and thus our lemma holds. 	

The above lemma guarantees that the potential function will get arbitrarily large. We
now leverage this result to argue that there is some time t0 and a coordinate i such that
ri,t0 is very close to 1, whereas ci,t0 is very close to zero. The proof consists of first
considering some time at which the potential function is quite large. Then, we argue
that there must be some future time at which for some i, j with i �= j, the contributions
of coordinates i and j to the value of the potential function are both significant. Given
that | log(ri/ci)| and | log(rj/cj)| are both large, we then argue that after some more
time, we get the desired imbalance in some coordinate k, namely that rk > .999 and
ck < .001 (or vice versa).

Lemma 2. Given initial distributions r0 = (r1,0, r2,0, r3,0), c0 = (c1,0, c2,0, c3,0),
with Φ(r0, c0) ≥ 40 log1+εR

(2000), assuming that the cumulative distributions con-
verge to the equilibrium, then there exists t0 > 0 and i such that either ri,t0 > .999 and
ci,t0 < .001, or ri,t0 < .001, and ci,t0 > .999.

Proof. For convenience, we will assume all logarithms are to the base 1 + εR, unless
otherwise specified. For ease of notation, let k = �log1+εR

(2000)�. Also, for simplicity,
we give the proof in the case that εR = εC = ε; as above, the proof of the general case
is nearly identical.

Assuming for the sake of contradiction that the cumulative distributions converge to
the equilibrium of the game, it must be the case that there exists some time t > 0 for
which arg maxi | log(ri,t/ci,t)| �= arg maxi | log(ri,0/ci,0)|, and thus, without loss of
generality, we may assume that at time 0, for some i, j with i �= j,

| log
(

ri,0

ci,0

)
| > 13k, and | log

(
rj,0

cj,0

)
| > 13k.

Without loss of generality, we may assume that ri > ci. We will first consider the cases
in which log(ri/ci) > 13k and log(rj/cj) > 13k, and then will consider the cases
when log(ri/ci) > 13k and log(ri/ci) < −13k.

Consider the case when log(r1/c1) > 13k and log(r2/c2) > 13k. Observe that
c3 > r3 and that k = ln(2000)/ ln(1+ εR) ≥ ln(2000)/εR. Let t0 be the smallest time
at which log(r3,t0 )−max(log(r1,t0 ), log(r2,t0)) ≤ k. We argue by induction, that

log(c3,t)−max(log(c1,t), log(c2,t))− (log(r3,t)−max(log(r1,t), log(r2,t))) ≥ 12k,

for any t ∈ {0, . . . , t0 − 1}. When t = 0, this quantity is at least 13k. Assuming the

claim holds for all t < t′, for some fixed t′ < t0 − 1, we have that
∑t′+1

t=0 r1,t ≤
2

2εR

1
2000 , where the factor of 2 in the numerator takes into account the fact that the pay-

offs are slightly different than 2, 1, 0, for the three row strategies. Similarly,
∑t′+1

t=0 r2,t

≤ 2
εR

1
2000 . Thus we have that

log(c3,t′+1)− log(c1,t′+1) ≥ log(c3,0)− log(c1,0)− 2(t′ + 1)− 4
2εR

1
2000

≥ log(c3,0)− log(c1,0)− 2(t′ + 1)− k
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Similarly, we can write a corresponding expression for log(c3,t′+1) − log(c2,t′+1),
from which our claim follows.

Thus we have that log(c3,t0)−max(log(c1,t0), log(c2,t0)) ≥ 12k, and log(r3,t0)−
max(log(r1,t0), log(r2,t0)) ≤ k. After another 2.1k timesteps, we have that log(r3,t0 )−
max(log(r1,t0), log(r2,t0)) ≤ −k, and log(c3,t0) − max(log(c1,t0), log(c2,t0)) ≥ 7k.
If log(r1,t0+2.1k) − log(r2,t0+2.1k) < −k, then we are done, since r2,t0+2.1k > .999,
c2,t0+2.1k < .001. If log(r1,t0+2.1k) − log(r2,t0+2.1k) > −k, then it must be the case
that log(r1,t0+4.2k)−log(r2,t0+4.2k) > k, at which point we still have log(c3,t0+4.2k)−
max(log(c1,t0+4.2k), log(c2,t0+4.2k)) > 2k, so we have r1,t0+4.2k > .999, c1,t0+4.2k

< .001. The case when log(r1/c1) > 13k and log(r3/c3) > 13k is identical.
In the case when log(r1/c1) > 13k and log(r2/c2) < −13k, we let t0 be the first

time at which either log(r1,t0)− log(r3,t0 ) > −k or log(c2,t0)− log(c3,t0) > −k. As
above, we can show by induction that log(r2,t0 −max(log(r1,t0), log(r3,t0)) < −12k,
and log(c1,t0 −max(log(c2,t0), log(c3,t0)) < −12k. After another 2.1k timesteps, ei-
ther r1 > .999, and c1 < .001 or c2,t0+2.1k > .1, in which case after an additional 2.1k
timesteps, c2 > .999 and r2 < .001.

The remaining case when log(r1/c1) > 13k and log(r3/c3) < −13k, is identical,
as can be seen by switching the players and permuting the rows and columns of the
matrix. 	

The following lemma completes our proof of Theorem 1.

Lemma 3. Given initial distributions r0 = (r1,0, r2,0, r3,0), c0 = (c1,0, c2,0, c3,0),
such that for some i, ri,0 > .999 and ci,0 < .001, the cumulative distributions defined
by

Ri,t =

∑t
j=0 ri,j

t
, Ci,t =

∑t
j=0 ci,j

t

do not converge, as t →∞.

Proof. As above, for the sake of clarity we present the proof in the case that εR = εC =
ε. Throughout the following proof, all logarithms will be taken with base 1 + ε.

Assume without loss of generality that r1,0 > .999 and c1,0 < .001. First note that
if c2,t < 1/2 then r1 will must increase and c1 will decrease, and thus without loss
of generality, we may assume that r1,0 ≥ .999, c1,0 < .001, and c2,0 ≥ 1/2. For
some k ≤ log 10, it must be the case that after k timesteps we have c2,k ≥ .9, and
log(r1,k)− log(ri,k) ≥ log 999− k, for i = 2, 3. At this point log(c2/c3), log(c3/c1),
and log(r1/r2), log(r3/r2) will all continue to increase until r3 ≥ 1/3 − .001. Let t1
denote the number of steps before r1 < .9, and note that

t1 ≥ log 999− k − log 10.

At this point, we must have

log(r1/r2) ≥ .9t1, log(c2/c3) ≥ .9t1, log(c3/c1) ≥ .9t1.

After another at most log 10 steps, r3 > .9, and r3 will continue to increase until
c2 < .9. Let t2 denote the time until c2 ≤ .9, which must mean that c1 ≈ .1 since c3 is
decreasing, and note that

t2 ≥ 1.8t1 − 2 log 10,
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where the last term is due to the steps that occur when neither r1 nor r3 were at least .9.
At this time point, we must have that

log(c2/c3) ≥ .9t2, log(r3/r1) ≥ .9t2, log(r1/r2) ≥ .9t2.

After another at most k3 steps, c1 > .9, and we can continue arguing as above, to yield
that after another t3 ≥ 1.8t2 − 2 log 10 steps, r3 < .9, r2 ≈ .1, and log(c1/c2) ≥
.9t3, log(c2/c3) ≥ .9t3. Inductively applying these arguments shows that the amount
of time during which the weight of a single strategy is held above .9, increases by a
factor of at least 1.8 in each iteration, and thus the cumulative distributions

∑t
j=1 ri/t

cannot converge. 	


4 Stochastic Setting

In this section we prove an analog of Theorem 1 for the multiplicative weights learning
algorithm in the stochastic setting. We show that in this setting, no matter the initial
configuration, with probability tending towards 1, the cumulative distributions of the
row and column player will be far from the Nash equilibrium. To show this, we will
make use of the same potential function (1) as in the proof of Theorem 1, and analyze
its expected drift. Although the expectation operator doesn’t commute with the appli-
cation of the potential function (and thus we cannot explicitly use the monotonicity of
the potential function as calculated above), unsurprisingly, in expectation the potential
function increases. While the drift in the potential function vanished at the equilibrium
in the distribution payoff setting, in this setting, the randomness, together with the non-
negativity of the potential function allow us to bound the expected drift by a positive
constant when the distributions are not near the boundary of the unit cube. Given this,
as in the previous section we will then be able to show that for any constant, with prob-
ability 1 after a sufficiently long time the value of the potential function will be at least
that constant. Given this, analogs of Lemmas 2 and 3 then show that the cumulative dis-
tributions tend away from the equilibrium with all but inverse exponential probability.
Our main theorem in this setting is the following.

Theorem 2. If the row player uses multiplicative updates with update parameter (1 +
εR), and the column player uses multiplicative updates with update parameter (1+εC),
then from any initial pair of distributions, after t time steps, either the dynamics have
left the simplex ri, ci ∈ (1/3 − .2, 1/3 + .2) at some time step t0 ≤ t, or with all but
inverse exponential probability will be at distance exp(Ω(t)) from the equilibrium.

To prove the theorem, we need the following lemma –whose proof is deferred to the
full version– that establishes the desired drift of potential (1).

Lemma 4. If ri, ci ∈ (1/3− .2, 1/3 + .2), then

E[Φ(rt+1, ct+1)|rt, ct] ≥ Φ(rt, ct) + max
(

Φ(rt, ct) log(1 + εR)
240

,
(log(1 + εR))2

24000

)
.
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We are now prepared to finish our proof of Theorem 2. We do so by analyzing the one-
dimensional random walk defined by the value of the potential function over time. As
long as our pair of distributions has probability values in (1/3 − .2, 1/3 + .2), there
is a constant (a function of εR) drift pushing us away from the equilibrium (which
corresponds to the minimum of the potential function). Using martingale arguments we
can show then that with all but inverse exponential probability the value of the potential
function will be γt for some constant γ, independent of t, unless we have exited the ball
of radius 0.2 around the equilibrium.

Proof of theorem 2: We wish to analyze the random walk (r0, c0), (r1, c1), . . . , where
the evolution is according to the stochastic dynamics. To do this analysis, we’ll consider
the one dimensional random walk X0, X1, . . . , where Xi = Φ(rt, ct), assuming that the
walk starts within the ball ri, ci ∈ (1/3− .2, 1/3 + .2). Note first that |Xt+1 −Xt| ≤
4 log(1 + εR). Next, from the Xi’s, we can define a martingale sequence Y0, Y1, . . .
where Y0 = X0, and for i ≥ 1, Yi+1 := Yi + Xi+1 − E[Xi+1|Xi].

Clearly the sequence Yi has the bounded difference property, specifically |Yi+1 −
Yi| ≤ 8 log(1 + εR), and thus we can apply Azuma’s inequality2 to yield that with
probability at least 1− 2 exp(−t2/3/2), Yt ≥ Y0 − t5/68 log(1 + εR).

Notice next that, from our definition of the martingale sequence {Yt}t and Lemma 4,
it follows that, as long as the distributions are contained within the ball ri, ci ∈ (1/3−
.2, 1/3 + .2), Xt ≥ Yt + t · (log(1+εR))2

24000 .
Let us then define T to be the random time where the distributions exit the ball

for the first time, and consider the sequence of random variables {Yt∧T }t. Clearly, the
new sequence is also a martingale, and from the above we get Xt∧T ≥ Yt∧T + (t ∧
T ) · (log(1+εR))2

24000 , and, with probability at least 1 − 2 exp(−t2/3/2), Yt∧T ≥ Y0 −
t5/68 log(1 + εR). Hence, with probability at least 1− 2 exp(−t2/3/2), Xt∧T ≥ Y0 −
t5/68 log(1 + εR) + (t ∧ T ) · (log(1+εR))2

24000 and the theorem follows. �

5 Multi-armed Setting

Perhaps unsurprising in light of the inability of multiplicative weight updates to con-
verge to the Nash equilibrium in the stochastic setting, we show the analogous result
for the multi-armed setting. The proof very closely mirrors that of Theorem 2, and, in
fact the only notable difference is in the calculation of the expected drift of the potential
function. The analogous of Lemma 4 can be easily shown to hold and the rest of the
proof follows easily; we defer details to the full version.

6 Conclusions and Open Problems

We showed that simple learning approaches which are known to solve zero-sum games
cannot work for Nash equilibria in general bimatrix games; we did so by considering
the simplest possible game. Some of our non-convergence proofs are rather daunting; it

2 Azuma’s inequality: Let X1, X2, . . . be a martingale sequence with the property that for all t,
|Xt −Xt+1| ≤ c; then for all positive t, and any γ > 0, Pr[|Xt −X1| ≥ cγ

√
t] ≤ 2e−γ2/2.
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would be interesting to investigate whether considering more complicated games results
in simpler (and easier to generalize to larger classes of algorithms) proofs. In particular,
Shapley’s game has a unique Nash equilibrium; intuitively, one algorithmically nasty
aspect of Nash equilibria in nonzero-sum games is their non-convexity: there may be
multiple discrete equilibria. Zinkevich [14] has taken an interesting step in this direc-
tion, defining a variant of Shapley’s game with an extra pure Nash equilibrium. How-
ever, after quite a bit of effort, it seems to us that a non-convergenceproof in Zinkevich’s
game may not be ultimately much easier that the ones presented here.

Despite the apparent difficulties, however, we feel that a very strong lower bound,
valid for a very large class of algorithms, may ultimately be proved.
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Abstract. The class of weakly acyclic games, which includes potential
games and dominance-solvable games, captures many practical appli-
cation domains. Informally, a weakly acyclic game is one where natural
distributed dynamics, such as better-response dynamics, cannot enter in-
escapable oscillations. We establish a novel link between such games and
the existence of pure Nash equilibria in subgames. Specifically, we show
that the existence of a unique pure Nash equilibrium in every subgame
implies the weak acyclicity of a game. In contrast, the possible existence
of multiple pure Nash equilibria in every subgame is insufficient for weak
acyclicity.

1 Introduction

In many domains, convergence to a pure Nash equilibrium is a fundamental
problem. In many engineered agent-driven systems that fare best when steady
at a pure Nash equilibrium, convergence to equilibrium is expected [7,9] to hap-
pen via better-response (best-response) dynamics : Start at some strategy profile.
Players take turns, in some arbitrary order, with each player making a better
response (best response) to the strategies of the other players, i.e., choosing
a strategy that increases (maximizes) their utility, given the current strategies
of the other players. Repeat this process until no player wants to switch to a
different strategy, at which point we reach a pure Nash equilibrium.

For better-response dynamics to converge to a pure Nash equilibrium regard-
less of the initial strategy profile, a necessary condition is that, from every strategy
profile, there exist some better-response improvement path (that is, a sequence of
players’ better responses) leading from that strategy profile to a pure Nash equi-
librium. Games for which this property holds are called “weakly acyclic games”
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[10,17]1. Both potential games [12,15] and dominance-solvable games [13] are spe-
cial cases of weakly acyclic games.

In games that are not weakly acyclic, under better-/best-response dynamics,
there are starting states from where the game is guaranteed to oscillate indefi-
nitely. Moreover, the weak acyclicity of a game implies that natural decentral-
ized dynamics (e.g., randomized better-/best-response, or no-regret dynamics)
are stochastically guaranteed to reach a pure Nash equilibrium [8,17]. Thus, weakly
acyclic games capture the possibility of reaching pure Nash equilibria via simple,
local, globally-asynchronous interactions between strategic agents, independently
of the starting state. We assert this is the realistic notion of “convergence” in most
distributed systems.

1.1 A Motivating Example

We now look at an example inspired by interdomain routing that has this natural
form of convergence despite it being, formally, possible that the network will
never converge. In keeping with results that we study here, we consider best-
response dynamics of a routing model in which each node can see each other
node’s current strategy, i.e., its “next hop” (the node to which it forwards its data
en route to the destination), as contrasted with models where nodes depending on
path announcements to learn this information. (Levin et al. [7] formalized routing
dynamics in which nodes learn about forwarding through path announcements.)

21d
2d
213d 321d 

32d
3d

13d
1d
132d

2 3

1

d

Fig. 1. Instance of the interdomain
routing game that is weakly acyclic
and has a best-response cycle

Consider the network on four nodes shown
in Fig. 1. Each of the nodes 1, 2, and 3 is
trying to get a path for network traffic to the
destination node d. A strategy of a node i is
a choice of a neighbor to whom i will forward
traffic; the strategy space of node i, Si, is its
neighborhood in the graph.. The utility of d
is independent of the outcome, and the utility
ui of node i �= d depends only on the path
that i’s traffic takes to the destination (and
is −∞ if there is no path). We only need to
consider the relationships between the values
of ui on all possible paths; the actual values
of the utilities do not make a difference. Using 132d to denote the path from
1 to 2 to 3 to d, and similarly for other paths, here we assume the following:
u1(132d) > u1(1d) > u1(13d) > −∞; u2(213d) > u2(2d) > u2(21d) > −∞;
u3(321d) > u3(3d) > u3(32d) > −∞; and ui(P ) = −∞ for all other paths P ,
e.g., u1(12d) = −∞. These preferences are indicated by the lists of paths in order
of decreasing preference next to the nodes in Fig. 1. (d, d, d) is a the unique pure

1 In some of the economics literature, the terms “weak finite-improvement path prop-
erty” (weak FIP) and “weak finite best-response path property” (weak FBRP) are
also used, for weak acyclicity under better- and best-response dynamics, respectively.
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Nash equilibrium in this game, and, ideally, the dynamics would always converge
to it. However, there exists a best-response cycle:

1d
2d
32d

1−→
132d
2d
32d

3−→
13d
2d
3d

2−→
13d
213d
3d

1−→
1d
21d
3d

3−→
1d
21d
321d

2−→
1d
2d
32d

1−→ · · ·

Here, each triple lists the paths that nodes 1, 2, and 3 get; the nodes’ strategies
correspond to the second node in their respective paths. The node above the
arrow between two triples is the one that makes a best response to get from one
triple to the next.

Once the network is in one of these states2, there is a fair activation sequence
(i.e., in which every node is activated infinitely often) such that each activated
node best responds to the then-current choices of the other nodes and such that
the network never converges to a stable routing tree (a pure Nash equilibrium).

Although this cycle seems to suggest that the network in Fig. 1 would be
operationally troublesome, it is not as problematic as we might fear. From every
point in the state space, there is a sequence of best-response moves that leads to
the unique pure Nash equilibrium. We may see this by inspection in this case, but
this example also satisfies the hypotheses of our main theorem below. So long as
each node has some positive probability of being the next activated node, then,
with probability 1, the network will eventually converge to the unique stable
routing tree, regardless of the initial configuration of the network.

1.2 Our Results

Weak acyclicity is connected to the study of the computational properties of sink
equilibria [2,4], minimal collections of states from which best-response dynamics
cannot escape: a game is weakly acyclic if and only if all sinks are “singletons”,
that is, pure Nash equilibria. Unfortunately, Mirrokni and Skopalik [11] found that
reliably checking weak acyclicity is extremely computationally intractable in the
worst case (PSPACE-complete) even in succinctly-described games. This means,
inter alia, that not only can we not hope to consistently check games in these cate-
gories for weak acyclicity, but we cannot even hope to have general short “proofs”
of weak acyclicity, which, once somehow found, could be tractably checked.

With little hope of finding robust, effective ways to consistently check weak
acyclicity, we instead set out to find sufficient conditions for weak acyclicity:
finding usable properties that imply weak acyclicity may yield better insights
into at least some cases where we need weak acyclicity for the application.

In this work, we focus on general normal-form games. Potential games, the
much better understood subcategory of weakly acyclic games, are known to have
2 For example, this might happen if the link between 2 and d temporarily fails. 2

would always choose to send traffic to 1 (if anywhere); 1 would eventually converge
to sending traffic directly to d (with 2 sending its traffic to 1), and 3 would then be
able to send its traffic along 321d. Once the failed link between 2 and d is restored,
2’s best response to the choices of the other nodes is to send its traffic directly to d,
resulting in the first configuration of the cycle above.
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the following property, which we will refer to as subgame stability, abbreviated
SS: not only does a pure Nash equilibrium exist in the game, but a pure Nash
equilibrium exists in each of its subgames, i.e., in each game obtained from the
original game by the removal of players’ strategies. Subgame stability is a useful
property in many contexts. For example, in network routing games, subgame
stability corresponds to the important requirement that there be a stable routing
state even in the presence of arbitrary network malfunctions [5]. We ask the
following natural question: When is the strong property of subgame stability
sufficient for weak acyclicity?

Yamamori and Takahashi [16] prove the following two results3:

Theorem: [16] In 2-player games, subgame stability implies weak acyclicity,
even under best response.

Theorem: [16] There exist 3 × 3 × 3 games for which subgame stability holds
that are not weakly acyclic under best response.

Thus, subgame stability is sufficient for weak acyclicity in 2-player games, yet
is not always sufficient for weak acyclicity in games with n > 2 players. Our
goal in this work is to (1) identify sufficient conditions for weak acyclicity in the
general n-player case; and (2) pursue a detailed characterization of the boundary
between games for which subgame stability does imply weak acyclicity and games
for which it does not.

Our main result for n-player games shows that a constraint stronger than SS,
that we term “unique subgame stability” (USS), is sufficient for weak acyclicity:

Theorem: If every subgame of a game Γ has a unique pure Nash equilibrium
then Γ is weakly acyclic, even under best response.

This result casts an interesting contrast against the negative result in [16]: unique
equilibria in subgames guarantee weak acyclicity, but the existence of more pure
Nash equilibria in subgames can lead to violations of weak acyclicity. Hence,
perhaps counter-intuitively, too many stable states can potentially result in per-
sistent instability of local dynamics.

We consider SS games, USS games, and also the class of strict and subgame
stable games SSS, i.e., subgame stable games which have no ties in the util-
ity functions. We observe that these three classes of games form the hierarchy
USS ⊂ SSS ⊂ SS. We examine the number of players, number of strategies, and
the strictness of the game (the constraint that there are no ties in the utility
function), and give a complete characterization of the weak acyclicity implica-
tions of each of these. Our contributions are summarized in Table 1.

1.3 Other Related Work

Weak acyclicity has been specifically addressed in a handful of specially-structured
games: in an applied setting, BGP with backup routing [1], in a game-theoretical

3 Yamamori and Takahashi use the terms quasi-acyclicity for weak acyclicity under
best response, and Pure Nash Equilibrium Property (PNEP) for subgame stability.
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Table 1. Results summary: The impact of USS/SSS/SS on weak acyclicity: � marks
classes with guaranteed weak acyclicity, even under best response; �⇒ marks classes
which admit counter-examples which are not weakly acyclic even under better response.
∗: only for strict games.

2 players 3 players 4+ players

2 × M 3 × M 2 × 2 × 2 2 × 2 × M
2 × 3 × M

2 × 4 × 4 3 × 3 × 3 2 × 2 × 2 × 2

∃ pNE �(Lma 4) �⇒(easy) �∗ (Lma 5) �⇒(easy)

SS � [16] �⇒(Thm 2) �⇒(Thm 2 & [16]) �⇒(Thm 2)

SSS �(Lma 5) �(Thm 3) �⇒(Thm 4) �⇒(Thm 4 & [16]) �⇒(Thm 5)

USS �(Thm 1)

setting, games with “strategic complementarities” [3, 6] (a supermodularity con-
dition on lattice-structured strategy sets), and in an algorithmic setting, in sev-
eral kinds of succinct games [11]. Milchtaich [10] studied Rosenthal’s congestion
games [15] and proved that, in interesting cases, such games are weakly acyclic
even if the payoff functions (utilities) are not universal but player-specific. Mar-
den et al. [9] formulated the cooperative-control-theoretic consensus problem as
a potential game (implying that it is weakly acyclic); they also defined and inves-
tigated a time-varying version of weak acyclicity.

1.4 Outline of Paper

In the following, we recall the relevant concepts and definitions in Section 2,
present our sufficient condition for weak acyclicity in Section 3, and our charac-
terization of weak acyclicity implications in Section 4.

2 Weakly Acyclic Games and Subgame Stability

We use standard game-theoretic notation. Let Γ be a normal-form game with
n players 1, . . . , n. We denote by Si be the strategy space of the ith player. Let
S = S1× . . .×Sn, and let S−i = S1× . . .×Si−1×Si+1× . . .×Sn be the cartesian
product of all strategy spaces but Si. Each player i has a utility function ui that
specifies i’s payoff in every strategy-profile of the players. For each strategy
si ∈ Si, and every (n− 1)-tuple of strategies s−i ∈ S−i, we denote by ui(si, s−i)
the utility of the strategy profile in which player i plays si and all other players
play their strategies in s−i. We will make use of the following definitions.

Definition 1 (better-response strategies). A strategy s′i ∈ Si is a better-
response of player i to a strategy profile (si, s−i) if ui(s′i, s−i) > ui(si, s−i).

Definition 2 (best-response strategies). A strategy si ∈ Si is a best re-
sponse of player i to a strategy profile s−i ∈ S−i of the other players if si ∈
argmaxs′

i∈Si
ui(s′i, s−i)
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Definition 3 (pure Nash equilibria). A strategy profile s is a pure Nash
equilibrium if, for every player i, si is a best response of i to s−i

Definition 4 (better- and best-response improvement paths). A better-
response (best-response) improvement path in a game Γ is a sequence of strategy
profiles s1, . . . , sk such that for every j ∈ [k − 1] (1) sj and sj+1 only differ in
the strategy of a single player i and (2) i’s strategy in sj+1 is a better response to
sj
−i (best response to sj

−i and ui(s
j+1
i , sj

−i) > ui(s
j
i , s

j
−i)). The better-response

dynamics (best-response dynamics) graph for Γ is the graph on the strategy
profiles in Γ whose edges are the better-response (best-response) improvement
paths of length 1.

We will use ΔRΓ (s) and BRΓ (s) to denote the set of all states reachable by,
respectively, better and best responses when starting from s in Γ .

We are now ready to define weakly acyclic games [17]. Informally, a game
is weakly acyclic if a pure Nash equilibrium can be reached from any initial
strategy profile via a better-response improvement path.

Definition 5 (weakly acyclic games). A game Γ is weakly acyclic if, from
every strategy profile s, there is a better-response improvement path s1 . . . , sk

such that s1 = s, and sk is a pure Nash equilibrium in Γ . (I.e., for each s,
there’s a pure Nash equilibrium in ΔRΓ (s).)

We also coin a parallel definition based on best-response dynamics.

Definition 6 (weak acyclicity under best response). A game Γ is weakly
acyclic under best response if, from every strategy profile s, there is a best-
response improvement path s1 . . . , sk such that s1 = s and sk is a pure Nash
equilibrium in Γ . (I.e., for each s, there’s a pure Nash equilibrium in BRΓ (s).)

Weak acyclicity of either kind is equivalent to requiring that, under the respective
dynamics, the game has no “non-trivial” sink equilibria [4,2], i.e., sink equilibria
containing more than one strategy profile. Conventionally, sink equilibria are
defined with respect to best-response dynamics, but the original definition by
Goemans et al. [4] takes into account better-response dynamics as well.

The following follows easily from definitions:

Claim. If a game is weakly acyclic under best response then it is weakly acyclic.

On the other hand, the game in Figure 2, mentioned, e.g., in [8], is weakly acyclic,
but not weakly acyclic under best response.

Curiously, all of our results apply both to weak acyclicity in its conventional
better-response sense and to weak acyclicity under best response. Thus, unlike
weak acyclicity itself, the conditions presented in this paper are “agnostic” to the
better-/best-response distinction (like the notion of pure Nash equilibria itself).

We now present the notion of subgame stability.

Definition 7 (subgames). A subgame of a game Γ is a game Γ ′ obtained
from Γ via the removal of players’ strategies.



132 A. Fabrikant, A.D. Jaggard, and M. Schapira

H T X
H 2,0 0,2 0,0
T 0,2 2,0 0,0
X 0,0 1,0 3,3

Fig. 2. Matching pennies with a “better-response”
escape route, but a best response persistent cycle

c0 c1

b0 b1 b0 b1

a0 2,2,2 1,2,2 2,1,2 2,2,1
a1 2,2,1 2,1,2 1,2,2 0,0,0

Fig. 3. 2×2×2 subgame-stable
game with a non-trivial sink

Definition 8 (subgame stability). Subgame stability is said to hold for a
game Γ if every subgame of Γ has a pure Nash equilibrium. We use SS to denote
the class of subgame stable games.

Definition 9 (unique subgame stability). Unique subgame stability is said
to hold for a game Γ if every subgame of Γ has a unique pure Nash equilibrium.
We use USS to denote the class of such games.

We will also consider games in which no player has two or more equally good
responses to any fixed set of strategies played by the other players. Following,
e.g., [14], we define strict games as follows.

Definition 10 (strict game). A game Γ is strict if, for any two distinct
strategy profiles s = (s1, . . . , sn) and s′ = (s′1, . . . , s

′
n) such that there is some

j ∈ [n] for which s′ = (s′j , s−j) (i.e., s and s′ differ only in j’s strategy), then
uj(s) �= uj(s′).

Definition 11 (SSS). We use SSS to denote the class of games that are both
strict and subgame stable.

It’s easy to connect unique subgame stability and strictness. To do so, we use
the next definition, which will also play a role in our main proofs.

Definition 12 (subgame spanned by profiles). For game Γ with n players
and profiles s1, . . . , sk in Γ , the subgame spanned by s1, . . . , sk is the subgame
Γ ′ of Γ in which the strategy space for player i is S′

i = {sj
i |1 ≤ j ≤ k}.

Claim. The categories USS, SSS, and SS form a hierarchy: USS ⊂ SSS ⊂ SS

Proof. SSS ⊂ SS by definition. To see that USS ⊂ SSS observe the following.
If a game is not strict, there are sj , s

′
j ∈ Sj and s−j such that uj(sj , s−j) =

uj(s′j , s−j). Both strategy profiles in the subgame spanned by (sj , s−j) and
(s′j , s−j) are pure Nash equilibria, violating unique subgame stability.

3 Sufficient Condition for Weak Acyclicity with n Players

When is weak acyclicity guaranteed in n-player games for n ≥ 3? We prove that
the existence of a unique pure Nash equilibrium in every subgame implies weak
acyclicity. We note that this is not true when subgames can contain multiple
pure Nash equilibria [16]. Thus, while at first glance, introducing extra equilibria
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might seem like it would make it harder to get “stuck” in a non-trivial component
of the state space with no “escape path” to an equilibrium, this intuition is false;
allowing extra pure Nash equilibria in subgames actually enables the existence
of non-trivial sinks.

Theorem 1. Every game Γ that has a unique pure Nash equilibrium in every
subgame Γ ′ ⊆ Γ is weakly acyclic under best-response (as are all of its subgames).

We shall need the following technical lemma:

Lemma 1. If s is a strategy profile in Γ , and Γ ′ is the subgame of Γ spanned by
BRΓ (s), then any best-response improvement path s, s1, . . . , sk in Γ ′ that starts
at s is also a best-response improvement path in Γ . x

Proof. We proceed by induction on the length of the path. The base case is
tautological. Inductively, assume s, . . . , si is a best-response improvement path
in Γ . The strategy si+1 is a best response to si in Γ ′ by some player j. This
guarantees that si is not a best response by j to si

−j in Γ ′, let alone in Γ , so
Γ ′ ⊇ BRΓ (s) ⊇ BRΓ (si) must contain a best-response ŝi

j to si
−j in Γ , and since

si+1
j is a best-response in Γ ′, we are guaranteed that uj(ŝi

j , s
i
−j) = uj(si+1), so

si+1 must be a best-response in Γ .

We may now prove Theorem 1.

Proof (Proof of Theorem 1). To prove Theorem 1, assume that Γ is a game
satisfying the hypotheses of the theorem, and for a subgame Δ ⊆ Γ , denote by
sΔ the unique pure Nash equilibrium in Δ. We will proceed by induction up the
semilattice of subgames of Γ . The base cases are trivial: any 1×· · ·×1 subgame
is weakly acyclic for lack of any transitions. Suppose that for some subgame Γ ′

of game Γ we know that every strict subgame Γ ′′ � Γ ′ is weakly acyclic.
Suppose that Γ ′ is not weakly acyclic: it has a state s from which its unique

pure Nash equilibrium sΓ ′ cannot be reached by best responses. Let Γ ′′ be the
game spanned by BR(s). Consider the cases of (i) sΓ ′ ∈ Γ ′′ and (ii) sΓ ′ �∈ Γ ′′:

Case (i): sΓ ′ ∈ Γ ′′. This requires that, for an arbitrary player j with more
than 1 strategy in Γ ′, there be a best-response improvement path from s to some
profile ŝ where j plays the same strategy as it does in sΓ ′′ . Take one such j, and
let Γ j be the subgame of Γ ′ where j is restricted to playing ŝj only. Since sΓ ′ is
in Γ j , the inductive hypothesis guarantees a best-response improvement path in
Γ j from ŝ to sΓ ′ . By construction, that path must only involve best responses
by players other than j, who have the same strategy options in Γ j as they did
in Γ ′, so that path is also a best-response improvement path in Γ ′, assuring a
best-response improvement path in Γ ′ from s to sΓ ′ via ŝ.

Case (ii): sΓ ′ �∈ Γ ′′. Then, Γ ′′’s unique pure equilibrium sΓ ′′ must be distinct
from sΓ ′ . Since sΓ ′ is the only pure equilibrium in Γ ′, sΓ ′′ must have an outgoing
best-response edge to some profile ŝ in Γ ′. But the inductive hypothesis ensures
that sΓ ′′ ∈ BRΓ ′′(s); by Lemma 1, sΓ ′′ ∈ BRΓ ′(s), which then ensures that ŝ
must also be in BRΓ ′(s), and hence in Γ ′′, so sΓ ′′ isn’t an equilibrium in Γ ′′.
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4 Characterizing the Implications of Subgame Stability

[16] establishes that in 2-player games, subgame stability implies weak acyclicity,
even under best response, yet this is not true in 3x3x3 games. We now present
a a complete characterization of when subgame stability is sufficient for weak
acyclicity, as a function of game size and strictness. Our next result shows that
the two-player theorem of [16] is maximal:

Theorem 2. Subgame stability is not sufficient for weak acyclicity even in non-
strict 2× 2× 2 games.

Proof. The game in Fig. 3 can be seen to provide the needed counterexample.

However, if we require the games to be strict, subgame stability turns out to be
somewhat useful in 3-player games:

Theorem 3. In any strict 2 × 2 × M or 2 × 3 × M game, subgame stability
implies weak acyclicity, even under best response.

The proof of the theorem rests on several technical lemmas:

Lemma 2. In strict games, neither a pure Nash equilibrium and strategy profiles
differing from it in only one player’s action can be part of a non-trivial sink of
the best-response dynamics.

Proof. A pure Nash equilibrium always forms a 1-node sink. If the game is strict,
profiles differing by one player’s action have to give that one player a strictly
lower payoff, requiring a best-response transition to the equilibrium’s sink. Any
node connected to either cannot be in a sink.

Lemma 3. The profiles of a game that constitute a non-trivial sink of the best-
response dynamics cannot be all contained within a subgame which is weakly
acyclic under best-response.

Proof (sketch). The lemma comes from considering, for a sink of Γ contained
in a weakly acyclic subgame Γ ′, a best response path in Γ ′ from the sink to an
equilibrium. The first transition on that path that is not a best response in Γ
(or, in absence of such, the transition from the equilibrium of Γ ′ that makes it
a non-equilibrium in Γ ), will have to lead out of Γ ′ but remain in the sink.

We then consider the corner cases of 3-player, 2×2×2 strict games, and 2-player,
2 × m games, where weak acyclicity requires even less than subgame stability.
The former result forms the base case for Theorem 3, and both might also be of
independent interest.

Lemma 4 (proof in the full version). In any 2×m game, and if there is a
pure Nash equilibrium, the game is weakly acyclic, even under best response.

Lemma 5. In any strict 2×2×2 game, if there is a pure Nash equilibrium, the
game is weakly acyclic, even under best response.
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Proof. In strict 2× 2× 2 games, Lemma 2 leaves 4 other strategy profiles, with
the possible best-response transitions forming a star in the underlying undirected
graph. Since best-response links are antisymmetric (s → s′ and s′ → s cannot
both be best-response moves), there can be no cycle among those 4 profiles, and
thus no non-trivial sink components.

Proof (sketch of Theorem 3). The full proof is long and technical, and is relegated
to the full version of the paper.

We treat the 2 × 2 × M case first. Naming the equilibrium of the game
(a0, b0, c0), Lemmas 2 and 3 guarantee that the sink must contain a profile where
player 3 plays c0, yet the only such profile that can be in the sink is (a1, b1, c0),
the total degree of which in the best-response directed graph is at most 1 (also
by Lemma 2), which cannot happen for a node in a non-trivial sink.

The 2 × 3 × M case is much more complex. The proof operates inductively
on M . From the inductive hypothesis, the 2 × 2 ×M result, and Lemma 3, we
get that the smallest 2 × 3 ×M game Γ that is not weakly acyclic under best
response must have a non-trivial sink spanning Γ . Given such a sink, we then
use Lemma 2 and a similar result that excludes from the non-trivial sink any
profiles adjacent to the equilibrium of the 2 × 2 × M subgame that does not
contain the global equilibrium. The proof concludes by a detailed examination
of the possible structures of such a sink under all those constraints, which yield
a contradiction in every case.

Theorem 3 is maximal. All bigger sizes of 3-player games admit subgame-
stable counter-examples that are not weakly acyclic:

Theorem 4. In non-degenerate4 strict 3-player games, the existence of pure
Nash equilibria in every subgame is insufficient to guarantee weak acyclicity, for
any game with at least 3 strategies for each player, and any game with at least
4 strategies for 2 of the players.

Proof (sketch). The first half of the theorem follows directly from a specific
counterexample game in [16]. There, the strict 3-player, 3×3×3 game in question
is stated to demonstrate that SSS does not imply weak acyclicity under best
response. However, their very same counter-example is not even weakly acyclic
under better response. Here, we give a 2×4×4 counter-example to establish the
second half of the theorem, and a 3× 3× 3 counterexample slightly cleaner than
the one in [16]. Close inspection of the games Γ3,3,3 and Γ4,4,2 shown in Figure
4 reveals that these are not weakly acyclic but are strict and subgame stable.

With 4 or more players, a more mechanistic approach produces analogous ex-
amples even with just 2 strategies per player:

Theorem 5. In a strict n-player game for an arbitrary n ≥ 4, the existence of
pure Nash equilibria in every subgame is insufficient to guarantee weak acyclicity,
even with only 2 strategies per player.

4 Each player has 2 or more strategies.
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c0 c1 c2

b0 b1 b2 b0 b1 b2 b0 b1 b2

a0 0, 0, 0 5, 5, 4 5, 4, 5 4, 5, 5 0, 1, 1 0, 2, 1 5, 5, 4 5, 4, 5 0, 2, 2

a1 5, 4, 5 1, 1, 0 4, 5, 5 1, 0, 1 5, 5, 5 1, 2, 1 1, 0, 2 1, 1, 2 1, 2, 2

a2 4, 5, 5 2, 1, 0 2, 2, 0 5, 5, 4 2, 1, 1 2, 2, 1 2, 0, 2 2, 1, 2 2, 2, 2

c0 c1

b0 b1 b2 b3 b0 b1 b2 b3

a0 5, 5, 5 0, 1, 0 0, 2, 0 0, 3, 0 5, 5, 4 0, 1, 1 5, 4, 5 0, 3, 1

a1 1, 0, 0 1, 1, 0 5, 5, 4 5, 4, 5 1, 0, 1 1, 1, 1 4, 5, 5 1, 3, 1

a2 2, 0, 0 5, 4, 5 2, 2, 0 4, 5, 5 2, 0, 1 2, 1, 1 2, 2, 1 2, 3, 1

a3 5, 4, 5 4, 5, 5 3, 2, 0 3, 3, 0 3, 0, 1 3, 1, 1 3, 2, 1 5, 5, 5

Fig. 4. 3-player strict subgame stable games that are not weakly acyclic, even under
better-response dynamics

Proof. For strategy profiles in {0, 1}n, using indices mod n, set the utilities to:

u(s) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(4, . . . , 4) at s = (1, . . . , 1)
(3, . . . , 3, 2

i’th
, 3, . . . , 3) when si−1 = si = 1, s−(i−1,i) = 0

(3, . . . , 3, 2
i + 1’th

, 3, . . . , 3) when si = 1, s−i = 0

s else (for the “sheath”).

Similarly to Theorem 4, this plants a global pure Nash equilibrium at (1, . . . , 1),
and creates a “fragile” better-response cycle. Here, the cycle alternates between
profiles with edit distance n−1 and n−2 from the global pure Nash equilibrium. At
every point of the cycle, the only non-sheath profiles 1 step away are its predecessor
and successor on the cycle, so the cycle is persistent. Since each profile with edit
distance n − 1 from the equilibrium is covered, removing any player’s 1 strategy
breaks the cycle, thus guaranteeing a pure Nash equilibrium in every subgame by
the same reasoning as above.

We note that, in the counter-example results — Theorems 2, 4, and 5 — the counter-
example games of fixed size easily extend to games with extra strategies for some or
all players, or with extra players, by “padding” the added part of the payoff table
with negative, unique values that, for the added profiles, make payoffs indepen-
dent of the other players, such as, e.g., ui(s) = −si. This preserves SS, SSS, and
USS properties without changing weak acyclicity. Thus, this completes our clas-
sification of weak acyclicity under the three subgame-based properties, as shown
in Table 1.

5 Concluding Remarks

The connection between weak acyclicity and unique subgame stability that we
present is surprising, but not immediately practicable: in most succinct game
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representations, there is no reason to believe that checking unique subgame sta-
bility will be tractable in many general settings. In a complexity-theoretic sense,
USS is closer to tractability than weak acyclicity: Any reasonable game repre-
sentation will have some “reasonable” representation of subgames, i.e., one in
which checking whether a state is a pure Nash equilibrium is tractable, which
puts unique subgame stability in a substantially easier complexity class, Π3P ,
than the class PSPACE for which weak acyclicity is complete in many games.

We leave open the important question of finding efficient algorithms for check-
ing unique subgame stability, which may well be feasible in particular classes of
games. Also open and relevant, of course, is the question of more broadly appli-
cable and tractable conditions for weak acyclicity. In particular, there may well
be other levels of the subgame stability hierarchy between SSS and USS that
could give us weak acyclicity in broader classes of games.
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Abstract. We present a direct reduction from k-player games to 2-
player games that preserves approximate Nash equilibrium. Previously,
the computational equivalence of computing approximate Nash equilib-
rium in k-player and 2-player games was established via an indirect re-
duction. This included a sequence of works defining the complexity class
PPAD, identifying complete problems for this class, showing that com-
puting approximate Nash equilibrium for k-player games is in PPAD,
and reducing a PPAD-complete problem to computing approximate Nash
equilibrium for 2-player games. Our direct reduction makes no use of the
concept of PPAD, eliminating some of the difficulties involved in follow-
ing the known indirect reduction.

1 Introduction

This manuscript addresses the computation of Nash equilibrium for games rep-
resented in normal form. It is known that for 2-player games this problem is
PPAD-complete [5], and for k players it is in PSPACE [11]. Moreover, for suffi-
ciently small ε, computing ε-well-supported Nash equilibrium for 2-player games
remains PPAD-complete [6], and for k players it is in PPAD [8]. It follows that,
for appropriate choices of ε, ε-well-supported Nash in k-player games reduces
to ε-well-supported Nash in 2-player games. However, this chain of reductions is
indirect, passing through intermediate notions other than games, and also rather
complicated.

In this manuscript we present a direct, ”game theoretic” polynomial-time
reduction from k-player to 2-player games. In our reduction, every pure strategy
of each of the k players is represented by a corresponding pure strategy of one of
the 2 players. Previously, a direct reduction preserving exact Nash equilibrium
was known from k-player to 3-player games [3]. Such a reduction cannot exist to
2-player games due to issues of irrationality [21], hence the need to consider the
notion of ε-well-supported Nash in this context. Our reduction guarantees that
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for appropriate choices of ε2 and εk, given any ε2-well-supported Nash for the 2-
player game, normalizing its probabilities according to the above correspondence
gives an εk-well-supported Nash for the k-player game.

The direct reduction makes no use of the concept of PPAD. This eliminates
some of the difficulties involved in following the known indirect reduction. It is
inevitable that unlike the indirect reduction, our reduction by itself does not
establish the PPAD-completeness of computing (or approximating) Nash equi-
libria. Nevertheless, the new gadgets we introduce are relevant to the notion
of PPAD-completeness, as they can be used in other reductions among PPAD
problems. Moreover, our reduction provides an alternative to the proof of [8]
that finding an approximate Nash equilibrium in k-player games is in PPAD.

The first step of our reduction ”linearizes” a k-player game by replacing the
multilateral interactions among the k players with bilateral interactions among
pairs of players. In the next step, two representative ”super-players” replace
the multiple players, resulting in a 2-player game. In terms of techniques, the
first step of the reduction uses and extends the machinery of gadget games
developed by Goldberg and Papadimitriou [13]. We introduce a new gadget
for performing approximate multiplication using linear operations, in order to
bridge the gap between multiplicative and linear games. The second step of
the reduction uses similar methods to [13] and [20] in order to replace multiple
players by 2 players, resulting in a combination of a generalized Matching Pennies
game and an imitation game.

1.1 Preliminaries

Let [n] = {1, . . . , n}. Let ‖v‖ =
∑

i |vi|, and let v−i be the vector obtained from
v by removing the i’th entry. For vectors u and v of length n, let u⊗ v denote
their tensor product written as a vector of length n2, where entry (i − 1)n + j
is uivj . We write x = y ± z to denote y − z ≤ x ≤ y + z. For vectors, x = y ± z
denotes yi − z ≤ xi ≤ yi + z for every i.

Normal Form Games. Gk is a normal form game with player set [k], where each
player’s pure strategy set is [n]. A pure strategy profile s ∈ [n]×· · ·× [n] contains
one pure strategy per player, and a mixed strategy profile p = (p1, . . . , pk) is
defined analogously. Let p̃ = p1 ⊗ · · · ⊗ pk be the corresponding joint mixed
strategy distribution, such that for every pure strategy profile s, entry p̃[s] =∏

i pi
si

is the probability that for every i player i plays pure strategy si. Unless
stated otherwise, payoffs are rationals in [0, 1]. Let M i (sometimes denoted M i

Gk
)

be player i’s n × nk−1 payoff matrix, where M i[j, s−i] is the payoff for playing
pure strategy j against s−i. Given a mixed strategy profile p−i, the expected
payoff vector ui

Gk
= M ip̃−i contains player i’s expected payoffs ui

Gk
[j] for

playing pure strategy j against p−i. The expected payoffs are algebraic functions
in the probabilities played by the others.

Polymatrix (Linear) Games. Games in which every player plays bilaterally
against others, and receives the sum of payoffs obtained from the bilateral in-
teractions. Thus, polymatrix games are actually collections of 2-player games
in which every player plays the same strategy in every game she participates
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in. Unlike normal form games, the size of polymatrix games is polynomial in
n even when the number of players is non-constant. Gm is a polymatrix game
with player set [m], where player i has 2 ≤ ni ≤ n pure strategies and m − 1
payoff matrices M i,i′ of size ni × ni′ . Entry M i,i′ [j, j′] is the payoff to player i
for playing j against player i′ who plays j′. If the interaction between i and i′

does not exist or does not influence i’s payoff, M i,i′ is set to be all-zeros. Given a
pure strategy profile s−i, the total payoff for playing j is

∑
i′ �=i M i,i′ [j, s−i[i′]].

Given a mixed strategy profile p−i, the expected payoff vector of player i is
ui

Gm
=
∑

i′ �=i M i,i′pi′
. Equivalently, let M i = (M i,1 · · ·M i,m) be a matrix

containing all of i’s payoff matrices as submatrices, then ui
Gm

= M ip−i. The
expected payoffs are thus linear functions in the probabilities of the others.

Nash Equilibrium. A mixed strategy profile whose supports include only best
response pure strategies. Given a mixed strategy profile p−i, j is a best response
for player i if it maximizes the expected payoff, i.e., ui

G[j] = maxj′∈[n]{ui
G[j′]}; j

is an ε-best response if it maximizes the expected payoff up to an additive factor
of ε. In the context of reductions from k-player to 2-player games, the following
fact motivates consideration of approximate rather than exact Nash equilibrium:
2-player games always have a rational Nash equilibrium, while k-player games
do not [21]. Out of several possible notions of approximation, we focus on ε-
well-supported Nash equilibrium, whose supports contain only ε-best responses.
We shall primarily be interested in small, non-constant values of ε, namely ε =
1/poly(n) and ε = 1/ exp(n). A related weaker notion is ε-Nash equilibrium,
from which deviating unilaterally cannot improve the expected payoff by more
than ε (see [11] for a discussion).

Definition 1 (εk-kNASH and εm-LINEAR-NASH). Given a pair of nor-
mal form game Gk and accuracy parameter εk, the problem εk-kNASH is to find
an εk-well-supported Nash equilibrium of Gk. The problem εm-LINEAR-NASH
is the same for polymatrix game Gm and accuracy parameter εm.

1.2 Our Results

Let (Gm1 , εm1), (Gm2 , εm2) be two pairs of games and accuracy parameters. The
games have m1, m2 players respectively; player i has n1

i , n
2
i pure strategies re-

spectively. The following is based on Bubelis’s notion of reduction scheme [3].

Definition 2 (Mapping between Games). A mapping includes:
• A function g : [m1] → [m2] mapping players of Gm1 to players of Gm2 ;
• For every i ∈ [m1], an injective function hi : [n1

i ] → [n2
g(i)] mapping pure

strategies of player i to distinct pure strategies of player g(i).

Definition 3 (Direct Reduction). A direct reduction from (Gm1 , εm1)
to (Gm2 , εm2) is a mapping from Gm1 to Gm2 , such that for every εm2-well-
supported Nash equlibrium (q1, . . . , qm2) of Gm2 , an εm1-well-supported Nash
equilibrium (p1, . . . , pm1) of Gm1 can be obtained by renormalizing probabilities
as follows: pi[j] = (1/z)qg(i)[hi(j)] (where z is a normalization factor).
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Theorem 4 (Main). For every εk < 1, there exists a direct reduction from
εk-kNASH to ε2-2NASH, where ε2 = poly(εk/|Gk|). The reduction runs in poly-
nomial time in |Gk| and in log(1/εk).

Corollary 5. There is a direct, polynomial time reduction from (1/ exp(n))-
kNASH to (1/ exp(n))-2NASH, and from (1/poly(n))-kNASH to (1/poly(n))-
2NASH.

Proof of Theorem 4: By combining Theorem 15 (linearizing reduction) with
Theorem 18 (reduction from linear to bimatrix games), and plugging in the
parameters of Lemma 8 (logarithmic-sized linear multiplication gadget). 	

The proof of Lemma 8 appears in the full version. For simplicitly of presentation
we prove here the slightly weaker Lemma 7 (polynomial-sized gadget), resulting
in a reduction that’s polynomial time in 1/εk instead of log(1/εk).

1.3 Related Work

Bubelis [3] shows a direct reduction from k-player to 3-player games. This re-
duction relies heavily on the multiplicative nature of 3-player games. Examples
of direct reductions involving 2-player games include symmetrization [12], and
reduction to imitation games [20]. We use imitation games in Section 4.

PPAD-completeness. PPAD is the class of total search problems polynomial-
time reducible to the abstract path-following problem END OF THE LINE [22].
The known results can be summarized by the two following chains of reductions,
each forming an indirect reduction (according to Definition 3 of directness) from
k-player games to 2-player games:
• 1/ exp(n)-kNASH ≤ END OF THE LINE ≤ 3D-BROUWER ≤

ADDITIVE GRAPHICAL NASH ≤ 1/ exp(n)-2NASH
• 1/ exp(n)-kNASH ≤ END OF THE LINE ≤ 2D-BROUWER ≤

nD-BROUWER ≤ 1/poly(n)-2NASH
Reductions in chain 1 are by [17,8], [22,8], [5,8] and [8], respectively, and in chain
2 they are by [17,8], [4], [6] and [6], respectively. For an overview of these cele-
brated results see [23]. In comparison, our reduction can be written as: εk-kNASH
≤ εm-LINEAR-NASH ≤ ε2-2NASH, where εk, εm, ε2 can either all be 1/ exp(n)
or 1/poly(n). Note there is gap between the second chain of reductions and our
results - the second chain achieves a stronger reduction from 1/ exp(n)-kNASH
to 1/poly(n)-2NASH. Achieving a direct version of this result by [6] is an inter-
esting open problem. Note also that our reduction from εm-LINEAR-NASH to
ε2-2NASH is somewhat similar to the reduction from ADDITIVE GRAPHICAL
NASH to 1/ exp(n)-2NASH, however our reduction does not require the input
game to be bipartite nor does it limit the number of interactions per player.

Constant Approximations. Another open question is the complexity of εk-
kNASH and ε2-2NASH for constant values of εk, ε2. As a quasi-polynomial al-
gorithm is known [1,19], these problems are not believed to be PPAD-complete.
The current state-of-the-art is a polynomial-time algorithm for ε2-2NASH where
ε2 ≈ 0.667 [16]. For finding ε2-Nash equilibrium rather than ε2-well-supported
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Nash equilibrium, there is an algorithm where ε2 ≈ 0.339 [24] (see also [9,2,25]).
On the negative side, several algorithmic techniques have been ruled out [15,10].

Reductions to 2 players and linearization. The empirical success of the Lemke-
Howson algorithm [18] for finding Nash equilibrium in 2-player games has mo-
tivated research on extending it to a more general class of games. Daskalakis et
al. show an indirect reduction from succinct games to 2-player games [7]. Govin-
dan and Wilson present a non-polynomial linearizing reduction, which reduces
multiplayer games to polymatrix games while preserving approximate Nash equi-
librium [14]. Linearization is also related to the formulation of PPAD as the class
of fixed-point problems for piecewise-linear functions [11].

2 A Linear Multiplication Gadget

Theorem 6 (Linear Multiplication Gadget). There exist constants ε0 <
1, c, d and an increasing polynomial function f such that the following holds.
For every ε < ε0, there exists a linear multiplication gadget G∗ = G∗(ε) of size
O(m ·f(1

ε )), such that in an ε-well-supported Nash equilibrium, the output of G∗
equals the product of its m inputs up to an additive error of ±dmεc.

Lemma 7 (Polynomial-Sized Construction). Theorem 6 holds with the fol-
lowing parameters:1 ε0 = 1

4 , c = 1, d = 19 and f(x) = x2.

Lemma 8 (Logarithmic-Sized Construction). Theorem 6 holds with the
following parameters: ε0 = 1

105 , c = 1
2 , d = 3 and f(x) = log x.

Both constructions use standard gadgets as building blocks. The second con-
struction gives a smaller gadget with size O(m log 1

ε ) instead of O(m
ε2 ), but is

also more complicated. Its details appear in the full version. The rest of this
section describes the first construction and proves Lemma 7.

2.1 Linear Gadgets

Goldberg and Papadimitriou developed the framework of gadgets [13], carefully-
engineered games that simulate arithmetic calculations and are useful in many
PPAD-completeness results. Gadget players are typically binary.

Definition 9 (Binary Player). A binary player P is a player that has exactly
two pure strategies 0 and 1. We say P represents the numerical value p ∈ [0, 1]
if her mixed strategy is p, i.e. she plays pure strategy 1 with probability p.

Gadget games have three kinds of binary players - one or more input players,2

one output player, and one or more auxiliary players. The size of a gadget is
the number of its auxiliary and output players. The values represented by the
1 The choice of d = 19 simplifies the proof, but can be replaced with a smaller value.
2 Gadgets can also have non-binary input players, in which case the input values are

the probabilities with which they play certain predetermined pure strategies.
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input and output players are the inputs and output of the gadget. In every ε-well-
supported Nash equilibrium of the gadget game, the output is equal to the result
of an arithmetic operation on the inputs (up to small error). This arithmetic
relation between the inputs and output is the guarantee of the gadget, and is
achieved by choosing appropriate payoffs for the auxiliary and output players.
Our reductions require gadgets with linear guarantees, which differ slightly from
the graphical and additive-graphical gadgets used in previous works.

Definition 10 (Linear Gadgets). A linear gadget is a polymatrix gadget game
with payoffs in [0, 1]. Linear gadgets simulate linear arithmetic operations, i.e.
their guarantee is a linear relation between the input and output values.

Several gadgets can be combined into a single game, much like arithmetic gates
are combined into a circuit to carry out involved calculations. We represent a
combination of gadgets by a series of calculations on the inputs and outputs:
For example, if the output player P of gadget G is set to be an input player of
gadget G′ whose output player is P ′, then we write p′ = G′(p) (where in turn
p = G(. . . )). Auxliary players are never shared among gadgets. The following
fact explains why the same player can be an input player of multiple gadgets, but
can only be the output player of a single gadget (which determines her payoffs).

Fact 11 (Combining Gadgets). For every game in which no player is the
output player of more than one gadget, the guarantees of all gadgets hold simul-
tanuously when the game is in ε-well-supported Nash equilibrium.

Lemma 12 (Standard Linear Gadgets [8]). 3

• For every rational ζ ∈ [0, 1], there exists a linear threshold gadget G>ζ of
size O(1) with input p1, such that in an ε-well-supported Nash equilibrium
the output is 1 if p1 > ζ + ε and 0 if p1 < ζ − ε (and otherwise is in [0, 1]).
• There exists a linear AND gadget G∧ of size O(1) with inputs p1, p2, such
that in an ε-well-supported Nash equilibrium where ε < 1

4 the output is 1 if
p1 = p2 = 1 and 0 if (p1 = 0) ∨ (p2 = 0) (and otherwise is in [0, 1]).
• For every rational ζ ∈ [0, 1], there exists a linear scaled-summation gadget
G+,∗ζ of size O(1) with inputs p1, . . . , pm, such that in an ε-well-supported
Nash equilibrium the output is min{ζ(p1 + · · ·+ pm), 1} ± ε.

2.2 Construction and Correctness

We describe the construction of G∗ that we shall use to prove Lemma 7. We
show a construction for multiplying 2 inputs, and multiplying m inputs can be
achieved by connecting m−1 copies of G∗ serially. Let P1, P2 be the input players
representing values p1, p2, and let P be the output player representing value p.
Let τ = 3ε, and for simplicity assume that 1/τ is integral. The construction first
finds an encoding of every input in unary representation, up to precision of ±τ .
This requires two sets {V 1

i } and {V 2
i } of 1/τ auxiliary players each. The vec-

tors v1 = (v1
1 , . . . , v1

1/τ ) and v2 = (v2
1 , . . . , v2

1/τ ) of values represented by {V 1
i }

3 There also exist standard, inherently nonlinear gadgets for multiplication.



144 U. Feige and I. Talgam-Cohen

and {V 2
i } are the unary encodings of p1 and p2 respectively. The value of v1

i ,
the i’th unary bit of p1, is set by applying the threshold gadget G>ζ (Lemma
12) as follows: v1

i = G>iτ (p1). Similarly, v2
i = G>iτ (p2). The next component

of G∗’s construction is performing unary multiplication among the two vectors
v1, v2 using the AND gadget G∧ (Lemma 12). Another set of 1/τ2 auxiliary
players {Ui,j} stores the result. Let U be a matrix of the values they represent,
then ui,j = G∧(v1

i , v2
j ). The construction is complete by summing up and scal-

ing U ’s entries using the scaled-summation gadget G+,∗ζ (Lemma 12) as follows:
p = G+,∗τ2(u1,1, u1,2, . . . , u1/τ,1/τ ). Note that the payoffs of all players are deter-
mined by the standard gadgets. We now show that the described construction
establishes the guaranteed relation between inputs p1, p2 and output p of G∗.
Proof of Lemma 7: First we observe that G∗ is a combination of linear gadgets
and is thus itself linear. The size of G∗ is O(1/τ2), since this is the total size of the
standard gadgets it combines (2/τ threshold gadgets G>ζ , 1/τ2 AND gadgets
G∧, and 1 scaled-summation gadget G+,∗ζ , all of size O(1)). Now assume G∗
is in ε-well-supported Nash equilibrium where ε < 1/4. We write the input
values p1, p2 as integer multiples of τ plus a small error: Let p1 = i∗τ + δ1 and
p2 = j∗τ + δ2, where 0 ≤ i∗, j∗ ≤ 1/τ and 0 ≤ δ1, δ2 < τ . The following claim
follows directly from the guarantee of the threshold gadget (Lemma 12). It states
that while this gadget is brittle in the sense that for a small range of inputs it
returns an arbitrary output, this cannot be the case for more than one unary
bit of p1 or p2. The proof of the claim utilizes the choice of τ = 3ε (see full
version). The rest of the proof of Lemma 7 is a straightforward corollary of the
other gadget guarantees.

Claim 13 (Unary Encoding). v1 is of the form (1, . . . , 1, ?, 0, . . . , 0), where
‖v1‖ = i∗± 1 and ’?’ denotes any value in [0, 1]. The same holds for v2 and j∗.

	

Example 14. Let p1 = 7τ+ε/4 and p2 = 2τ+(τ−ε/8). First G∗ finds their unary
encodings: v1 = (1, 1, 1, 1, 1, 1, ?, 0, . . . , 0) and v2 = (1, 1, ?, 0, . . . , 0). Then it
performs unary multiplication and finds U (see below). Summing up and scaling
U ’s entries gives the output p = 12τ2 + O(ε), which is close to p1p2 up to O(ε).

U ′ =

⎛⎜⎜⎝
1 1 1 1 1 1 ? 0
1 1 1 1 1 1 ? 0
? ? ? ? ? ? ? 0
0 0 0 0 0 0 0 0

⎞⎟⎟⎠ , U =
(

U ′ 0
0 0

)
1/τ×1/τ

3 Linearizing Multiplayer Games

In this section we show a direct reduction from k-player games to polymatrix
games. Let Gk denote the input game to the reduction, and let Gm denote
the corresponding output game. The first k players of Gm have the same pure
strategies as the players of Gk. The reduction relies on the fact that, although
Gk’s expected payoffs are nonlinear in its players’ probabilities, they are linear in
products of its players’ probabilities. A key component of our reduction is a linear



A Direct Reduction from k-Player to 2-Player Nash 145

multiplication gadget for computing these products, which exists according to
Theorem 6. Let f be an increasing polynomial function as in Theorem 6.

Theorem 15 (A Linearizing Reduction). For every εk < 1, there exists a di-
rect reduction from εk-kNASH to εm-LINEAR-NASH, where εm = poly(εk/|Gk|).
The reduction runs in polynomial time in |Gk| and in f(1/εk).

Lemma 16 (Recovering εk-Well-Supported Nash). Let (p1, . . . , pm) be
an εm-well-supported Nash equilibrium of Gm. Then the first k mixed strategies
p1, . . . , pk form an εk-well-supported Nash equilibrium of Gk.

The following lemma will be useful in desiging the linearizing reduction.

Lemma 17 (Preserving Expected Payoffs). If for every player i ∈ [k], the
expected payoff vectors ui

Gm
and ui

Gk
are entry-wise equal up to an additive

factor of δ, and (p1, . . . , pm) is an εm-well-supported Nash equilibrium of Gm,
then (p1, . . . , pk) is an εk-well-supported Nash of Gk where εk = 2δ + εm.

Proof. Let j ∈ [n] be a pure strategy in the support of player i (pi
j > 0). We

know that j is an εm-best response in Gm. Assume for contradiction that j is not
an εk-best response in Gk, i.e. there is a pure strategy j′ ∈ [n], j′ �= j such that
ui

Gk
(j′) > ui

Gk
(j) + εk. So ui

Gm
(j′) + δ > ui

Gm
(j)− δ + εk. Since εk − 2δ = εm,

then ui
Gm

(j′) > ui
Gm

(j) + εm, contradiction. 	


3.1 The Linearizing Reduction and Correctness

Given an input pair (Gk, εk), we find an output pair (Gm, εm) as follows. Let ε0 <
1, c, dbe the constant parameters of Theorem 6. Then εm = min{(εk/3nk−1dk)1/c,
ε0}. The players of Gm are:
• Original players - the first k players of Gm have the same pure strategies as

Gk’s players. pi denotes the mixed strategy of original player i.
• Mediator players - for every i ∈ [k], there is a set of nk−1 binary players that

corresponds to the set of nk−1 pure strategy profiles of all original players
except i. We denote by Qs−i the mediator player corresponding to pure
strategy profile s−i and by qs−i the represented value.

• Gadget players - all auxiliary players belonging to knk−1 copies of the linear
multiplication gadget G∗.

Every mediator player is set to be the output player of a gadget G∗ as follows:
qs−i = G∗(p1

s−i[1]
, . . . , pk

s−i[k]
). Thus, qs−i will be approximately equal to the

probability with which the original players play the pure strategy profile s−i.
Let qi be the vector of values {qs−i}, then it’s approximately equal to p̃−i, the
joint mixed strategy distribution of all original players except i.

To complete the description of Gm it remains to specify the non-zero payoff
matrices of the original players (all other payoffs are determined by the gad-
gets). In Gk, the expected payoff vector of player i is ui

Gk
= M i

Gk
p̃−i. In Gm,

the payoff of original player i will be influenced only by the i’th set of mediator
players {Qs−i} who play qi. Instead of describing every payoff matrix M i,Q

s−i
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separately, we describe one large payoff matrix M i
Gm

that contains all the oth-
ers (or more precisely, all their nonzero columns) as submatrices. We want the
expected payoffs in Gm to be as close as possible to those of Gk. Thus, we set
M i

Gm
= M i

Gk
. This concludes the contruction.

Fig. 1. Linearization of a 3-Player Game - Partial View of Gm

The arrows indicate how the probabilities of original players 1 and 2 influence the
expected payoff of original player 3 via a layer of gadgets and mediator players.

Correctness. First note that the reduction runs in time polynomial in |Gk| =
Θ(knk) and in f(1/εk): The running time depends on the size of the polyma-
trix game Gm, which is polynomial in the number of its players. There are k
original players, knk−1 mediator players and knk−1O(|G∗|) auxiliary players.
By Theorem 6, |G∗| = O(k · f(1/εm)). Since f is a polynomial function and
εm = poly(εk/|Gk|), the total number of players is indeed polynomial in |Gk|
and in f(1/εk). As described above, the expected payoff vector of original player
i in Gm is ui

Gm
= M i

Gm
qi. The linear multiplication gadget G∗ guarantees that

vectors qi and p̃−i are close to each other, and since all payoffs are in [0, 1], the
expected payoffs ui

Gk
= M i

Gk
p̃−i are preserved ui

Gm
= M i

Gm
qi. The proof of

Lemma 16 is then immediate by preservation of expected payoffs (Lemma 17).

4 Reducing Linear Games to Bimatrix Games

In this section we show how to replace the multiple players of a polymatrix game
by two representative ”super-players” of a bimatrix game. Let Gm denote the
input game to the reduction, and let G2 denote the corresponding output game.

Theorem 18 (Linear to Bimatrix). For every εm < 1, there exists a direct
reduction from εm-LINEAR-NASH to ε2-2NASH, where ε2 = poly(εm/|Gm|).
The reduction runs in polynomial time in |Gm| and in log(1/εm).

Lemma 19 (Recovering Approximate Nash). For every ε2-well-supported
Nash (x, y) of G2, partitioning y into subvectors of lengths ni and normalizing
gives an εm-well-supported Nash equilibrium (y1/‖y1‖, . . . , ym/‖ym‖) of Gm.
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4.1 Imitation Games and Block ε-Uniform Games

The following definitions and lemmas will be useful in proving Theorem 18.
An imitation game is a bimatrix game in which player 2’s payoff matrix is the
identity matrix. The following was proved in [20] for the case of exact Nash.

Lemma 20 (Imitation). Let (x, y) be an ε2-well-supported Nash equilibrium
of an imitation game G2 where ε2 ≤ 1/N . Then support(y) ⊆ support(x).

A bimatrix game is block ε-uniform if player 1’s payoff matrix A is as follows:
• Block matrix: A is composed of m2 blocks Ai,i′ of size ni × ni′ each;
• Very negative diagonal: The i’th diagonal block Ai,i is equal to −αEni , where

α = 8m2/ε and Eni is the all-ones matrix of size ni × ni;
• [0, 1] entries: All other entries of A are arbitrary values in [0, 1].
For a similar construction see the generalized Matching Pennies game of [13].

Let (x, y) be a mixed strategy profile of an ε-block-uniform game. We denote by
x1, . . . , xm and y1, . . . , ym its separation to blocks of size n1, . . . , nm. We say
block i belongs to the support of x if there is some pure strategy in block i that
belongs to it. The following lemma shows that in a block ε-uniform game, the
weight of player 2 is ε-uniformly divided among all blocks in support(x).

Lemma 21 (ε-Uniform Weights). Let x, y be an ε2-well-supported Nash equi-
librium of a block ε2-uniform game G2. If block i ∈ [m] belongs to the support of
x, then for every i′ ∈ [m], ‖yi‖ ≤ ‖yi′‖+ (1 + ε2)/α.

Proof. The expected payoff vector u1
G2

of player 1 is Ay. By construction of
matrix A, the expected payoff vector for playing pure strategies in block i is∑

i′∈[m] A
i,i′yi′

. The domininant vector in this sum is Ai,iyi, whose entries are
all −α‖yi‖. The entries of every other vector Ai,i′yi′

in the sum are in the
range [0, ‖yi′‖], and since y is a distribution vector, the total contribution to
the sum is at most

∑
i′∈[m] ‖yi′‖ = 1. Thus, the expected payoff for playing

any pure strategy in block i is in the range [−α‖yi‖,−α‖yi‖ + 1]. Assume for
contradiction that ‖yi‖ > ‖yi′‖ + (1 + ε2)/α. Then the expected payoff for
playing a pure strategy in block i is at most −α(‖yi′‖+ (1 + ε2)/α) + 1, while
the expected payoff for playing in block i′ is at least −α(‖yi′‖). The difference
is more than ε2, contradicting the assumption that i belongs to support(x). 	

Corollary 22 (Imitation and Block ε-Uniform). Let x, y be an ε2-well-
supported Nash equilibrium of a block ε2-uniform imitation game G2, where ε2 ≤
1/N . Then for every two blocks i, i′ ∈ [m], ‖yi‖ = ‖yi′‖ ± (1 + ε2)/α.

Proof. We show that if a game is both imitation and block ε-uniform, the weight
of player 2 is divided ε-uniformly among all blocks in [m]. Since y is a distribution
vector, there exists a block i ∈ [m] such that ‖yi‖ ≥ 1/m. So i belongs to
the support of y, and by Lemma 20, i also belongs to the support of x. By
�lref[Lemma]lem:uniform-weights, 1/m ≤ ‖yi‖ ≤ ‖yi′‖ + (1 + ε2)/α for every
i′ ∈ [m]. Since (1 + ε2)/α < 1/m we conclude that 0 < ‖yi′‖ for every i′. Thus
by Lemma 20 all blocks are in support(x) and get almost uniform weight. 	
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4.2 The Reduction and Correctness

Given an input pair (Gm, εm), we find an output pair (G2, ε2), where G2 has
payoffs in the range [−α, 1]. To complete the reduction, G2 can then be normal-
ized by adding α to all payoffs and scaling by 1/(α + 1) (ε2 is also scaled). Let
N =

∑m
i=1 ni be the total number of pure strategies in Gm, and let M i,i′ be the

payoff matrix of player i for interacting with player i′. Set ε2 = εm/N . The pure
strategies of every player in G2 are the set [N ]. The payoffs are chosen such that
G2 is both an imitation game and a block ε2-uniform game:

A =

⎛⎜⎜⎜⎝
−αEn1 M1,2 · · · M1,m

M2,1 −αEn2 M2,m

...
. . .

...
Mm,1 Mm,2 · · · −αEnm

⎞⎟⎟⎟⎠
N×N

, B =

⎛⎜⎜⎜⎝
In1 0 · · · 0
0 In2 0
...

. . .
...

0 0 · · · Inm

⎞⎟⎟⎟⎠
N×N

Correctness. The reduction runs in time polynomial in |Gm| = Θ(N2) and in
log(1/εm): The running time depends on the size of the bimatrix game G2, whose
payoff matrices are of size N2 with entries of size O(log α). It’s left to prove
Lemma 19 for the unnormalized game G2 and ε2 = εm/N ; this immediately
gives a proof for ε2 = εm/N(α + 1) after normalizing the payoffs from [−α, 1]
to [0, 1].4 Since εm/N(α + 1) = poly(εm/N), Theorem 18 immediately follows.
To prove Lemma 19, we define for every player i of Gm a mapping hi, which
maps the j’th pure strategy of i to the j’th pure strategy in block i of G2. When
strategy profiles (x, y) and (y1/‖y1‖, . . . , ym/‖ym‖) are played in G2 and Gm

respectively, then player 1’s expected payoff for playing hi(j) in G2 is closely
related to player i’s expected payoff for playing j in Gm. In fact, the expected
payoffs are the same up to shifting by α‖yi‖ (the contribution from the diagonal
of A), scaling by m (the number of blocks on which y is uniformly distributed),
and small additive errors (proof appears in the full version). As in Section 3,
the fact that the expected payoffs are preserved, even up to shift and scale, is
enough for one game’s ε-well-supported Nash equilibrium to imply the other’s.
Thus, if (x, y) is an ε2-well-supported Nash equilibrium of G2, then (y1/‖y1‖,
. . . , ym/‖ym‖) is an εm-well-supported Nash equilibrium of Gm.
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Abstract. Given a set of alternatives and a single player, we introduce
the notion of a responsive lottery. These mechanisms receive as input
from the player a reported utility function, specifying a value for each
one of the alternatives, and use a lottery to produce as output a probabil-
ity distribution over the alternatives. Thereafter, exactly one alternative
wins (is given to the player) with the respective probability. Assuming
that the player is not indifferent to which of the alternatives wins, a lot-
tery rule is called truthful dominant if reporting his true utility function
(up to affine transformations) is the unique report that maximizes the
expected payoff for the player. We design truthful dominant responsive
lotteries. We also discuss their relations with scoring rules and with VCG
mechanisms.

1 Introduction

We consider a setting where there are n alternatives A1, . . . , An and a single
player. We assume that the player has a cardinal utility function over the al-
ternatives, in the sense of Von-Neumann and Morgenstern. Namely, the player
has a utility vector U = (u1, . . . , un), with utility value ui associated with the
respective alternative Ai, and this utility vector determines the preference of
the player over different lotteries. Formally, given two lotteries, one that asso-
ciates probabilities pi with the respective alternative Ai, and the other associates
probabilities qi with the respective alternative Ai, the player prefers the former
lottery if

∑
piui >

∑
qiui, the latter lottery if

∑
piui <

∑
qiui, and is indiffer-

ent over the choice of lotteries if
∑

piui =
∑

qiui. Recall that Von-Neumann and
Morgenstern show that if all that the player knows is his preferences over every
conceivable pair of lotteri! es, and that these preferences are consistent in the
sense that they satisfy a certain set of axioms (these axioms are natural, though
there is a well known debate whether they actually reflect human behavior), then
this in fact defines a utility function that is unique up to positive affine transfor-
mations (shift by a scalar and multiplication by a positive scalar – game theory
� Work done at Microsoft R&D Center, Herzelia, Israel.
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literature often calls these linear transformations). We shall assume throughout
that the player is not indifferent to the alternatives, namely, that there are at
least two alternatives Ai and Aj with ui �= uj. As utility functions are defined
only up to affine transformations, we shall often represent utility functions in
one of two canonical forms: either as unit range, meaning that mini ui = 0 and
maxi ui = 1, or as unit sum, meaning that mini ui = 0 and

∑
i ui = 1.

We introduce here a concept that we call a responsive lottery.

Definition 1. Given a set of alternatives A1, . . . , An and a single player, a
responsive lottery is a mechanism that operates as follows:

1. The player provides a report X = (x1, . . . , xn), where X ∈ Rn.
2. Using a function f from Rn to Rn, which is called the lottery rule, one

computes a probability vector f(X) = P = (p1, . . . , pn), with pi ≥ 0 and∑
i pi = 1.

3. A lottery is held and alternative Ai wins with probability pi.

The lottery is responsive in the sense that the corresponding probabilities are
not given in advance, but rather determined in response to the report of the
player. The notion of an alternative winning the lottery should be aligned with
what the utility function of the player refers to. For example, if the alternatives
are the choice of seat in a certain flight (say, a window seat, an aisle seat, or
a middle seat) and the utility function refers to the value the player associates
with sitting in such a seat, then following the lottery the player should be seated
in a seat corresponding to the winning alternative.

Given a responsive lottery and a utility vector U for the player, we say that
the report X of the player is honest if X = U . Note that since utility functions
are defined only up to affine transformations, we assume here that both X and
U are given in the same canonical form (say, unit-sum). We say that the report
X of the player is rational if X is such that f(X)U =

∑
piui is maximized.

Namely, the player chooses a report that maximizes his expected payoff.

Definition 2. A lottery rule for a responsive lottery is truthful dominant if it
has the property that for every utility function of the player, the honest report
is rational, and every rational report is honest (or equivalently, given the first
condition, the second condition is that the rational report is unique).

The truthful dominance property can be seen to combine three properties.

1. Rational invertibility. For every report X there is at most one utility function
U for which X is a rational report.

2. Rational uniqueness. For every utility function U , there is a unique rational
report X .

3. Incentive compatibility. For every utility function U , the report X = U is
rational.

Observe that rational invertibility and rational uniqueness are properties of the
range of the lottery rule. Given a lottery rule f that is rational invertible, ob-
taining a truthful dominant lottery out of it involves only appending in front of
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it an appropriate permutation mapping π, that maps a report X to the report
Y = π(X) such that Z = f(Y ) maximize ZX . By rational invertibility, this now
implies that given a utility function U , the unique rational report is X = U .
This idea is similar to the revelation principle in mechanism design (see [5], for
example). Note on the other hand that given a lottery rule that is incentive
compatible, there does not seem to be a straightforward way to turn it into a
truthful dominant rule. For example, the lottery rule that assigns pi = 1 for the
index i for which xi is largest is incentive compatible, but there are many ratio-
nal reports that give out no information beyond which is the preferred altern!
ative for the player. Truthful dominance requires much more – that the rational
report reveals the whole utility function.

A responsive lottery with a truthful dominant lottery rule may be viewed as a
mechanism for elicitation of the utility function of the player. Recall that the work
of Von-Neumann and Morgenstern already implies that utility functions can be
inferred by observing preferences over lotteries. However, the procedure implicit
in [7] involves a (potentially infinite) sequence of comparisons between pairs of
lotteries (or a comparison among infinitely many lotteries, which is not feasible in
practice). The mere fact that lottery comparisons are performed more than once
is problematic for elicitation of utility functions. If the winning alternative is not
actually given to the player after each lottery, the player might not have incentives
to report the truth. And if the winning alternative is given to the player after each
lottery (assuming that this can be practically done), then the issue of complemen-
tarities among the alternatives might distort the original utility functi! on of the
player. We circumvent these difficulties by having only a single lottery. The aspect
of this lottery that allows the elicitation of the utility function (if the player is ra-
tional) is its responsive nature. In a sense, the player is choosing among infinitely
many lotteries. The rational invertibility property implies that the choice of the
player allows one to infer his utility function (assuming that the player is ratio-
nal). The incentive compatibility property makes it easy for the rational player to
choose one lottery out of the infinite set of lotteries.

We assume infinite precision in the values of the utility function, in the reports
and in the probabilities assigned by the lottery rule to the alternatives. Namely,
they are real numbers. Employing our lottery rules with finite precision will
obviously introduce rounding errors. We ignore this issue in this paper.

1.1 Related Work

This manuscript refers only to utility functions as defined by Von-Neumann and
Morgenstern [7]. It may be interesting to extend this work (if possible) to other
notions of utility function (for the need for other notions, see for example [5]
or [4]), but this is beyond the scope of the current work.

As far as we know, our notion of truthful dominant responsive lotteries is new.
However, it is related to some other mechanisms for eliciting information from
players.

Strictly proper scoring rules provide a mechanism for eliciting the belief of
a player regarding the probabilities of future events. This is done by giving
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monetary rewards that depend on the predictions of the player, and on the actual
realization of the future events. See for example [6], [9], [1] and [3]. Our notion of
truthful dominant lottery rules is related to the notion of strictly proper scoring
rules for categorical variables. There is no immediate equivalence between these
two concepts, but there are certain algebraic transformations between them.
Moreover, there are geometric characterizations of scoring rules in a spirit similar
to that of our geometric approach of Section 2. In particular, our spherical lottery
rule is based on a high dimensional sphere, and so is the spherical scoring rule
(though these are two different spheres).

VCG mechanisms are a method for eliciting the true value that a bidder has
for items that are sold in an auction. The incentives are built into the monetary
payments that the bidder makes if he wins the item.

Due to lack of space, most details on the relation between scoring rules, VCG
mechanisms and responsive lotteries are deferred to the full version of this paper.

1.2 Our Results

We view the introduction of the concept of truthful dominant responsive lotteries
as one of the contributions of this work. Our main results are as follows:

1. We present a geometric approach for designing truthful dominant responsive
lotteries, and use it to design what we call the spherical lottery rule. This
lottery rule is continuous – a small change in the reports results in a small
change in the probabilities of the alternatives. See Section 2

2. For three alternatives we present an algebraic approach for designing truthful
dominant lottery rules. These rules are continuous. See Section 3.

3. We present methodologies for transforming any truthful dominant lottery
rule over three alternatives to a truthful dominant lottery rule over n > 3
alternatives. The resulting lottery rule is not continuous. See Section 3.1.

Additional results discussed in the full version of this paper include:

1. We show a transformation from bounded proper scoring rules for n events to
truthful dominant lottery rules for n alternatives. The resulting lottery rule
is not continuous. The transformation does not apply if the scoring rule is
unbounded (such as the logarithmic score).

2. We show how the VCG mechanism (which involves money and multiple
agents) can be used to design truthful dominant lottery rules (that involves
only one player and no money). Also here, the resulting lottery rules are not
continuous.

3. We show a transformation from truthful dominant lottery rules for n + 2
alternatives to proper scoring rules for n events. By way of example, we use
this transformation to derive a well known proper scoring rule, the quadratic
score. We also show a transformation from truthful dominant lottery rules
for n + 1 alternatives to proper scoring rules for n events. Combining this
with item (5) implies a methodology for deriving strictly proper scoring rules
from the VCG mechanism.
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1.3 Some Remarks

In our lotteries exactly one alternative wins. Our lottery mechanisms do not
assume that if no alternative wins then the player gets 0 utility. If we wish to
encompass situations in which valid outcomes include the possibility that no
alternative wins, or that more than one alternative wins, the lottery mechanism
needs to add these possible outcomes as additional alternatives.

The way of providing incentives to the player is by the choice of the winning
alternative. There is no transfer of money involved in our mechanisms. Money
can be introduced into our mechanisms by specifying alternatives that involve
receiving or paying money.

The incentives in a truthful dominant lottery rule only refer to reporting the
exact true utility function. In our mechanisms, there will also be some correlation
between how close a report is to the true utility function and the expected value
of the report. However, we make no formal claims regarding the nature of this
correlation, and do not exclude the possibility that among two different reports,
the one “further away” from the true utility function (according to some metric
to be chosen by the reader) results in higher expected payoffs.

Some of the lottery rules that we design are continuous – a small change
in the reports results in a small change in the probabilities of the alternatives.
We view continuity as a desirable property for lottery rules, if one wishes them
to be used in practice. Discontinuity of the lottery rule might have negative
psychological effects on players who are not sure about their utility functions.
They might spend too much time deliberating among reports that are almost
identical but that lead to very different probability vectors. We note that for all
our lottery rules, even the discontinuous ones, the value of their expected payoff
is continuous (even though the probability vector might not be continuous),
provided that the reports are honest.

An important aspect of a lottery mechanism is its economic efficiency. Namely,
we want the winning alternative to be the one that is actually preferred by the
player. For more than two alternatives, there are no economically efficient lottery
rules that are truthful dominant. However, we remark that there are truthful
dominant lottery rules that achieve almost perfect economic efficiency, though
we do not advocate using them (see Section 4).

Our lottery rules provide ex-ante incentives to reveal the true utility function.
However, this does not exclude the possibility that the player will experience
ex-post regret. This issue too will be discussed in Section 4.

1.4 Ordinal Utilities

Though our work is concerned with cardinal utilities, it may be instructive to
consider first the case of ordinal utilities. In this case a responsive lottery is
truthful dominant if the unique optimal report for the player is to report the
alternatives in his order of preference (and specify ties, if there are any).

If n = 1, the problem is not interesting. The winning alternative is determined
regardless of what the voter reports. If n = 2, the voter may report his preferred
alternative, and the winning alternative is the reported alternative. If n ≥ 3,
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there is no deterministic lottery with the rational uniqueness property. There are
n! different ranking orders (in fact more, if one allows ties), and only n possible
winners. For any deterministic mechanism with n ≥ 3, there are different orders
that result in the same winner. Even if with respect to both orders reporting the
truth gives the best payoff to the player, there is no incentive to the player in
distinguishing between these two orders in the report.

This motivates considering randomized mechanisms (lotteries). Given a report
that ranks the alternatives from 1 to n, we may let the jth alternative win with
probability 2(n−j)

(n−1)(n−2) (or any other probability distribution that decreases with
rank). If the player possesses a complete order over the alternatives, then the
dominant strategy for the player is to report his true ranking.

Note however what happens if the player views two of the alternatives as
being equivalent (a tie). Then asking the player to report a total order (with no
ties) forces the player not to be truthful. Hence we should allow the player to
report a tie among some alternatives. It is natural in this case to redistribute
the probability of winning equally among the tied alternatives. Note however
that by now we lost both the rational uniqueness property and the rational
invertibility property. In case of a tie in the ranking, reporting a tie is not the
unique best strategy. Reporting an arbitrary order among the tied alternatives
gives the same expected payoff to the player as reporting a tie. This illustrates
part of the challenges in designing truthful dominant mechanisms.

In this work we shall be interested not only in learning ordinal utilities, but
cardinal utilities. Hence we wish to learn more than just the ranking, but we also
have greater control of the rewards. The player can be incentivized not only by
the choice of order among winning alternatives (which alternatives have higher
probability of winning then others), but also by the choice of the actual values
of these probabilities.

2 A Geometric View of Truthful Dominant Lottery Rules

We present here a geometric view of truthful dominant lottery rules. We use it to
design what we call the spherical lottery rule (which shares some common prin-
ciples with the spherical scoring rule). More generally, the approach presented
here leads to a geometric characterization of a wide class of truthful dominant
lottery rules.

We shall use the following notation. The number of alternatives is n, the util-
ity vector of the player is U = (u1, . . . , un), the report vector is X = (x1, . . . , xn),
and the probability vector is P = (p1, . . . , pn), taken from an infinite set P of
feasible probability vectors (P is the range of f for the lottery rule). Observe
that all vectors P ∈ P are nonnegative and lie on the hyperplane

∑
pi = 1. Let

1̄ = 1√
n
(1, . . . , 1) denote the unit vector in the direction of the n-dimensional all 1

vector. Given an arbitrary vector Y , it can be decomposed into Y = αY 1̄+βY Y ⊥,
where Y ⊥ is a unit vector orthogonal to 1̄, αY = 〈Y, 1̄〉 and βY = 〈Y, Y ⊥〉. We
assume w.l.o.g. that the sign of Y ⊥ is chosen so that βY ≥ 0. Observe that for
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all P ∈ P we have that αP = 1√
n
. Given a utility function U = αU 1̄ + βUU⊥

and a probability vector P = 1√
n
1̄ + βP P⊥ for the responsive lottery, the payoff

to the player is 〈U, P 〉 = αU/
√

n + βUβP 〈U⊥, P⊥〉. The rational report X for
the player is the one for which P = f(X) maximizes 〈U, P 〉, and hence the
maximum expected payoff attainable by the player is maxP∈P{〈U, P 〉}. Observe
that the optimal choice of P ∈ P is the one maximizing βP 〈U⊥, P⊥〉 (since βU

is positive). The optimal P is preserved under positive affine transformations to
U , because these transformations only change αU and βU (without flipping its
sign) but not U⊥.

We now describe a methodology for deriving truthful dominant lottery rules.
(Presumably this methodology characterizes all continuous truthful dominant
rules. Proving this appears to be an exercise in formalities that does not add
interesting insights, and hence will not be pursued here.) A compact convex body
K will be called nice if (1) for every point z on its boundary ∂K there is a unique
hyperplane H such that H ∩ K = z, and (2) for every two points on ∂K, the
line joining them lies entirely within K. For example, balls, ellipsoids and eggs
are nice convex bodies, whereas polyhedrons are not. For nice convex bodies,
for every vector v, there is a unique value t(v) such that the closed halfspace
H(v) = {x|〈x, v〉 ≤ t} (whose defining hyperplane is orthogonal to v) contains
K and ∂H ∩ ∂K �= ∅. Moreover, ∂H and ∂K interset in exactly one point.

Consider the (n − 1)-dimensional subspace of Rn defined by the hyperplane∑
pi = 1. Within its nonnegative orthant (satisfying pi ≥ 0 for every i) consider

an arbitrary nice convex body K. Let P (the set of feasible probability vectors for
a responsive lottery) be precisely ∂K. Given a report X , consider the halfspace
H(X⊥) as described above, and choose P = f(X) to be the unique point z ∈ ∂K
intersecting ∂H(X⊥). This maximizes the projection of P on X⊥, and hence
maximizes 〈P, X〉. For this choice of lottery rule f , given a utility vector U ,
reporting X = U maximizes the expected payoff. Moreover, for any report X �=
U , the probability vector P = f(X) will be one that is strictly inferior to f(U)
in terms of the expected payoff.

It is natural to require (though not necessary) that the nice convex body K
has geometric symmetries that reflect the intention that a-priori, all alternatives
are treated symmetrically. In particular, in this case the center of mass of K
will be at 1√

n
1̄. Of all convex bodies, the most symmetric one is the ball, and its

boundary is a sphere. Our spherical lottery rule uses a sphere centered at 1√
n
1̄. To

maximize the the variability in expected payoffs, this sphere has maximum possi-
ble radius. This radius is governed by the need to stay in the nonnegative orthant.
A closest point P on the boundary of this orthant to the center of the sphere is
(0, 1/(n− 1), . . . , 1/(n− 1)) for which P⊥ = (−1/n, 1/n(n− 1), . . . , 1/n(n− 1)).
Hence the radius of the sphere is 1/

√
n(n− 1) (implying among other things

that no entry in P is larger than 2/n). Observe that using the spherical lottery
rule, given a report X ! = αX 1̄+βXX⊥, the probability vector P is derived sim-
ply by projecting X⊥ on the sphere (along the line connecting X⊥ to the center of
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the sphere). We can assume that X⊥ �= 0, by the assumption that the player is
not indifferent. Hence

f(X) =
1√
n

1̄ +
1√

n(n− 1)
X⊥ = (

1
n

, . . . ,
1
n

) +
1√

n(n− 1)
X⊥

One readily observes that P (= f(X)) is an affine transformation of the report
X . Hence the spherical lottery rule can be viewed as a normalization of the
utility vector U with αU = 1/

√
n and βU = 1/

√
n(n− 1), and following this

normalization one simply takes P = U .

Theorem 1. The spherical lottery rule described above is truthful dominant.

The proof of Theorem 1 is implicit in the discussion preceding it. But let us
sketch here yet another proof. Observe that for the spherical lottery rule, all
vectors in P have the same norm 1/

√
n− 1. Hence the inner product 〈U, P 〉 is

maximized by the vector in P that minimizes the angle with U . This vector is
precisely the projection of U on the sphere, and f(X) is this projection if and
only X is a positive affine transformation of U .

3 Three Alternatives

In this section we design truthful dominant responsive lottery mechanisms for
three alternatives. We assume that the utility function of the player is normalized
to be unit range 0 = u1 ≤ u2 ≤ u3 = 1, and so are his reports.

If all reports are identical, then we set pi = 1/3 for every alternative. If the
reports are not identical, let the reports (after normalization) be 0 = x1 ≤ x2 ≤
x3 = 1. For simplicity of notation, let x = x2.

Theorem 2. Any responsive lottery over three alternatives satisfying all the
following conditions is truthful dominant.

1. pi ≥ 0 for i ∈ {1, 2, 3}.
2.
∑

pi = 1.
3. p1 ≤ p2 ≤ p3, with p1(x) = p2(x) iff x = 0 and p2(x) = p3(x) iff x = 1.
4. p2 is strictly increasing in x and p1 and p3 are strictly decreasing in x.
5. The derivatives satisfy xp′2(x) + p′3(x) = 0 for every 0 ≤ x ≤ 1.

Proof. Conditions 1 and 2 are satisfied by every responsive lottery. Condition 3
ensures that in the optimal reports, the alternatives are ranked in their true
order of preference (satisfy the ordinal aspect of the utility function). Specifically,
u1 ≤ u2 ≤ u3, with u1 = u2 iff x1 = x2 and u2 = u3 iff x2 = x3. Note that we
assume that the player is not indifferent, and hence u1 < u3. After normalization
to unit range, we have 0 = u1 ≤ u2 ≤ u3 = 1. For simplicity of notation, let
u = u2. We need to prove that the optimal report x is x = u.

The payoff to the voter is v = u1p1(x) + u2p2(x) + u3p3(x) = up2(x) + p3(x).
The derivative of v with respect to x is up′2(x)+p′3(x) which equals 0 if x = u, by
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Condition 5, and only if x = u, by Condition 4 that implies that the derivatives
are nonzero. This is the unique extremum for v. Condition 4 implies that this is
a maximum rather than a minimum. 	

We remark that replacing condition 5 in Theorem 2 by the weaker condition
that −p′3(x)/p′2(x) is strictly increasing in x, from 0 to 1, will result in a rational
invertible mechanism, though not necessarily incentive compatible.

Theorem 2 allows for many truthful dominant mechanisms. It is natural to
limit the possible choices by normalizing the rewards such that there is some
report for which p1 = 0. It is easy to see that in conjunction with Theorem 2
this amounts to postulating that when x = 1 we have p1 = 0 and p2 = p3 = 1/2.
By way of example, we present two mechanisms that satisfy Theorem 2 and
this additional requirement. They are named after the largest degree in the
polynomials that are involved.

– The 3-alternative quadratic lottery rule: p1 = 1−2x+x2

6 , p2 = 1+2x
6 , p3 =

4−x2

6 .
– The 3-alternative cubic lottery rule: p1 = 1−3x2+2x3

8 , p2 = 1+3x2

8 , p3 = 6−2x3

8 .

3.1 Extension to More Than Three Alternatives

Here we present two approaches for extending truthful dominant responsive lot-
teries over three alternatives to truthful dominant responsive lotteries with n > 3
alternatives.

The first of these approaches is as follows. Given the report of the player,
pick uniformly at random three alternatives. If all three have the same reported
utility, let each one of them win with probability 1/3. Otherwise, normalize the
part of the report of the player that refers to these three alternatives so that
it becomes unit sum, and apply a 3-alternative truthful dominant responsive
lottery on these three alternatives. It is not hard to see that this gives a truthful
dominant responsive lottery.

In the full version of this paper we present another approach in more detail.
When there are n + 2 alternatives A0, . . . , An+1 and the reports are 0 = x0 ≤
x1 ≤ . . . ≤ xn ≤ xn+1 = 1, it will give the ((n+2)-alternative) quadratic lottery
rule for which the probabilities are derived from the following expressions after
dividing by n2 + 3n + 2:
p0 = n−∑n

i=1 2xi +
∑n

i=1(xi)2;
pi = n + 2xi for 1 ≤ i ≤ n;
pn+1 = 2n + 2−∑n

i=1(xi)2.

4 Convex Combinations

In general, given one truthful dominant mechanism, one can generate others
by the method of taking convex combinations. We say that a mechanism is a
convex combination of two mechanisms M1 and M2 if there is some probability
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0 < q < 1 such that with probability q the mechanism employs M1 and with
probability 1− q it employs M2. Equivalently, given the reports, the probability
of a given alternative to win is the convex combination (with weights q and 1−q)
of the respective probabilities in M1 and M2. The following proposition is self
evident.

Proposition 1. A convex combination of a truthful dominant responsive lottery
with an incentive compatible responsive lottery is truthful dominant.

As an example for the use of Proposition 1, the following responsive lottery is
truthful dominant. Choose the alterative with highest reported value as a winner
with probability q, and with the remaining probability employ the spherical
lottery rule. Observe that as q approaches 1, this voting rule converges to optimal
economic efficiency, but at the cost of weakening the incentives for the player to
distinguish in his report between the less desirable alternatives.

As another example, consider the issue of ex-post regret involved in responsive
lotteries. Even though reporting the true utility function is optimal for the player
ex-ante, the player may suffer ex-post regret after the lottery is held. For the
3-player quadratic lottery rule, given any report other than (0, 1, 1) the least
desirable alternative might win the lottery, and then the player may regret not
having reported (0, 1, 1) which would have avoided this possibility. To prevent
this ex-post regret, one may take a convex combination of the quadratic rule
with the uniform rule (each alternative equally likely to win), which ensures
that regardless of the report of the player, the least desirable alternative has
some probability of winning. This decrease in ex-post regret comes at the cost
of economic efficiency (among other things).

The availability of several (infinitely many) mechanisms that are truthful
dominant allows one to introduce some additional objective function, and select
the mechanism that optimizes this additional property. For example, among all
truthful dominant mechanisms one may want to select the mechanism minimiz-
ing the maximum probability with which the least desirable alternative wins.
(This probability is 1/6 for the 3-player quadratic lottery rule.) However, for
this particular objective function, there is no truthful dominant mechanism that
minimizes it. For every truthful dominant mechanism, the value of this objective
function is strictly positive. But then it can be lowered by taking a convex com-
bination with an incentive compatible mechanism. This relates to the fact that
the notion of truthful dominant mechanisms is defined using strict inequalities,
and its closure is the incentive compatible mechanisms.

5 Applications

The notion of truthful dominant responsive lotteries is a mathematical construct
that may have practical applications. We believe that in choosing a truthful dom-
inant lottery rule for a practical application, one would need to strike a careful
balance among several considerations (such as ex-post regret, economic efficiency
and the strength of the incentives, see Section 4), and this will be possible only if
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the number of alternatives is fairly small (four alternatives appears to be a good
number). Also, we believe that a carefully designed user interface may help the
players understand the concept of responsive lotteries and the effect of the choice
of report on the expected reward. For example, one may imagine an interface
which includes sliding bar controls for each alternative, and a screen showing a
pie chart for the relative probability of each alternative winning. As the player
moves the sliding bars to indicate to which extent he values each alternativ! e,
the pie chart changes dynamically. Having such a user interface in mind is one of
the reasons why we wish lottery rules to be continuous (and among our lottery
rules for more than three alternative, only the spherical one is continuous).

Though the purpose of this manuscript is mainly to develop the mathematical
theory of truthful dominant responsive lotteries, we briefly and informally discuss
some potential applications. A formal treatment of these and other potential
applications will hopefully be undertaken elsewhere. In all cases below we assume
that the winning alternative can actually be given to the player after the lottery
is held (or at least, that the player believes that this is what will happen).

Experimental Psychology. If one wishes to gain a quantitative understanding
of preferences of people over a set of alternatives, one may in principle use truth-
ful dominant responsive lotteries. For example, a psychophysical experiment may
study the relative sensation of pleasure or pain associated with various temper-
atures, and the alternatives may be those of putting one’s hand in containers of
water of various (possibly unpleasant but not harmful) temperatures. One may
not want to repeat such an experiment many times with the same subject, due to
effects of adaptation, and responsive lotteries may serve as a way of eliciting more
information in fewer experiments. As always in experimental settings, caution is
needed in performing experiments and in interpreting the results (which at best
indicate what were the true preferences of the subject under the conditions of
the experiment).

Market Research. A company may use responsive lotteries to gain under-
standing of the preferences of its potential costumers. For example, an airline
company may offer some passengers on a flight a responsive lottery over the
choice of seat (say, a window seat, an aisle seat, or a middle seat) so as to get a
sense of what the true preferences of costumers are.

Multiple-agent Mechanism Design. In many settings one is interested in
designing a mechanism in which agents report their utilities, and then some
global decision is taken so as to optimize some objective function that depends on
the true utilities of the agents. The difficulty is often in incentivizing the agents
to reveal their true utilities. Mechanisms based on statistical approaches often
take a small sample of agents, ask them for their utility function, and use this
output so as to reach a global decision that effects the agents not in the sample.
In such a setting (and assuming no externalities), the agents in the sample
have no incentive to not tell the truth, and hence are sometimes assumed to
be truthful. See for example [2] for the use of a statistical approach in the design
of combinatorial auctions. If this statistical approach is combined with truthful
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dominant responsive lotteries then there is more justification in assuming that
the agents in t! he sample are truthful. Let us provide a hypothetical example.

Suppose a company wants to reward each one of its employees with a $100
gift certificate to some store chain. There are two store chains that are being
considered (say one specializes in electronics, one in sports). However, (almost)
all gift certificates should be to the same store chain, as then the company gets a
big discount from the store chain. How can the company decide among the store
chains? One option is to sample at random a small number of employees and
offer each one of them a truthful dominant responsive lottery over four alterna-
tives, where two of them are the gift certificates to the two chains, and the other
two alternatives are $50 and $100 in cash (for calibration). Each employee in
the sample actually does get the alternative that wins the respective lottery. All
remaining employees get gift certificates to just one store chain, and this store
chain is determined based on the information elicited by the responsive lotteries
(and on the objective of the company, which may be for example to maximize
welfare). Arguably, employees in the sample will actually reveal their true refer-
ences. If the total number of employees is large, then with high probability this
mechanism leads to almost optimal economic efficiency: the sample size may be
chosen to be large enough to be representative, yet small enough to make the
marginal inefficiencies small (inefficiencies resulting from giving sampled employ-
ees more expensive rewards, and from occasionally giving sampled employees less
favorable rewards, due to the random nature of responsive lotteries).
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Abstract. We consider network congestion games in which a finite num-
ber of non-cooperative users select paths. The aim is to mitigate the
inefficiency caused by the selfish users by introducing taxes on the net-
work edges. A tax vector is strongly (weakly)-optimal if all (at least one
of) the equilibria in the resulting game minimize(s) the total latency.
The issue of designing optimal tax vectors for selfish routing games has
been studied extensively in the literature. We study for the first time
taxation for networks with atomic users which have unsplittable traffic
demands and are heterogeneous, i.e., have different sensitivities to taxes.
On the positive side, we show the existence of weakly-optimal taxes for
single-source network games. On the negative side, we show that the
cases of homogeneous and heterogeneous users differ sharply as far as
the existence of strongly-optimal taxes is concerned: there are parallel-
link games with linear latencies and heterogeneous users that do not
admit strongly-optimal taxes.

1 Introduction

We consider atomic network congestion games with unsplittable traffic demands,
where a finite number of non-cooperative users select each a path from a specified
source to a sink in an underlying network. The users experience a load-dependent
latency on their chosen paths. Being selfish, they want to choose a minimum-
latency path. The solution concept we study is that of a pure Nash equilibrium,
where no user has an incentive to unilaterally switch to a different path. It is
well-known that this type of game always has at least one pure Nash equilibrium
[13].
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The users induce a social cost to the system, which in this work we define
as the total latency. Selfish behavior leads typically to suboptimal social cost at
equilibrium. A long series of papers has studied the inefficiency of Nash equilibria
for congestion games as quantified by the price of anarchy. See the surveys [10,8]
for an introduction to the very rich literature on the topic.

In order to offset the inefficiency of uncoordinated users, a common approach
is to introduce fixed taxes (or tolls) on the edges of the network. The users will
experience the taxes as part of their individual disutility, in addition to their
latency. The aim is to design an optimal tax vector steering the selfish users to
an equilibrium with desirable characteristics; in our case the desired target is
minimum total latency.

Related Work. In the non-atomic setting, where there is an infinite number
of users and each user controls an infinitesimal amount of traffic demand, the
problem of designing optimal tax vectors has been studied extensively. A classic
result going all the way back to Pigou [12] states that marginal cost taxes induce
the optimal traffic pattern for homogeneous users [2]. A significant volume of re-
cent work on optimal taxes for non-atomic congestion games considers the more
intriguing and realistic case of heterogeneous users, which may have different
valuations of time (latency) in terms of money (taxes). Yang and Huang [17]
established the existence of optimal taxes for non-atomic asymmetric network
congestion games1 with heterogeneous users. Subsequently, their result was re-
discovered by Fleischer, Jain, and Mahdian [5], and Karakostas and Kolliopoulos
[9]. Previously the the single-source special case had been investigated by Cole,
Dodis, and Roughgarden [4]. The existence of optimal taxes for non-atomic con-
gestion games with heterogeneous users follows from Linear Programming du-
ality, and thus an optimal tax vector can be computed efficiently by solving a
linear program.

For non-atomic games, under mild assumptions on the latency functions the
edge flow at equilibrium is unique. Hence the taxes of [2,4,5,9,17] induce the opti-
mal solution as the unique edge flow of the equilibria of the game with taxes. On
the other hand, atomic congestion games, even with splittable traffic, may ad-
mit many different Nash equilibria, possibly with different edge flows. Therefore,
when considering atomic games, one has to distinguish between weakly-optimal
tax vectors, for which at least one Nash equilibrium of the game with taxes
minimizes the total latency, and strongly-optimal tax vectors, for which all Nash
equilibria of the game with taxes minimize the total latency.

For atomic congestion games with splittable traffic and heterogeneous players,
Swamy [14] proved that weakly-optimal tax vectors exist and can be computed
efficiently by solving a convex program. As for atomic congestion games with
unsplittable traffic, the existence and efficient computation of optimal taxes has
been studied only in the restricted setting of homogeneous users. Caragiannis,
Kaklamanis, and Kanellopoulos [3] considered atomic games with linear latency
functions and homogeneous users, and investigated how much taxes can improve
1 A network congestion game is symmetric if all users share the same source and sink

and, in the case of atomic games, have the same traffic demand.
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the price of anarchy. On the negative side, they established that if the users either
do not share the same source and sink or have different traffic demands, then
strongly-optimal taxes may not exist. In particular, Caragiannis et al. presented
a non-symmetric game for which any tax vector induces a Nash equilibrium of
total latency at least 6/5 times the optimum, and a parallel-link game with user-
specific traffic demands for which any tax vector induces an equilibrium of total
latency at least 9/8 times the optimum. On the positive side, they presented an
efficient construction of strongly-optimal taxes for parallel-link games with linear
latencies and unit-demand users. Subsequently, Fotakis and Spirakis [7] proved
that weakly-optimal taxes exist and can be computed efficiently for atomic sym-
metric network congestion games, and that such taxes are strongly-optimal if
the network is series-parallel.

Contribution. Despite the considerable interest in optimal taxes for non-atomic
games with heterogeneous users and for atomic games with homogeneous users,
it is unknown whether weakly- or strongly-optimal taxes exist for atomic network
games with heterogeneous users. The case of heterogeneous users is substantially
different, and more complicated, than that of homogeneous users, since the game
with taxes is a congestion game with player-specific additive constants [11].

In this work, we study for the first time the existence of optimal taxes for
atomic network games with heterogeneous users, and present two complemen-
tary and essentially best-possible results. On the positive side, we prove the
existence of weakly-optimal taxes in single-source network congestion games
with heterogeneous users (cf. Section 3). To establish this result, we follow the
proof technique of [9], and show that any acyclic traffic pattern is induced as a
Nash equilibrium of the game with the taxes calculated as in [9, Theorem 1].
Our result is significantly stronger that any previously known positive result
on weakly-optimal taxes for atomic congestion games. In particular, our result
generalizes previous results of [3,7] not only in the direction of considering het-
erogeneous users, but also in the direction of considering non-symmetric games
on single-source multiple-sink networks.

On the negative side, we show that users’ heterogeneity precludes the exis-
tence of strongly-optimal taxes even on the simplest topology of parallel-link
networks. More specifically, we present a parallel-link game with linear latency
functions and heterogeneous users for which any tax vector induces an equilib-
rium with total latency at least 28/27 times the optimum. Hence, we establish
a dichotomy between the general case of heterogeneous users and the special
case of homogeneous ones, as far as the existence of strongly-optimal taxes is
concerned.

To the best of our knowledge, this is the first time in congestion games that a
dichotomy is established (i) between the cases of homogeneous and heterogeneous
users with respect to the existence of optimal taxes, and (ii) between the cases
of non-atomic and atomic users on parallel links with respect to the efficiency of
a price-of-anarchy-reducing mechanism. For the latter, we note that the worst-
case price of anarchy for atomic games on parallel links is the same as the
worst-case price of anarchy for non-atomic congestion games (see e.g. [15,6]), and
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that the two classes of congestion games have similar behaviour with respect to
their worst-case price of anarchy under some common price-of-anarchy-reducing
mechanisms, such as Stackelberg strategies (see e.g. the bounds in [14,6] on the
efficiency of Stackelberg strategy LLF for non-atomic and atomic parallel-link
games) and taxes for homogeneous users.

2 Preliminaries

We consider a network congestion game G(l) defined on a directed graph G =
(V, E) with a nondecreasing latency function le : IR+ → IR+ on each edge e ∈ E.
A set N of users is given, each with an amount of traffic (flow) to be routed
from an origin node to a destination node of G. The users are non-atomic if
each has infinitesimal demand and atomic otherwise. The game is single-source
(resp. single-sink) if all users share the same origin (resp. destination) node, and
symmetric if all users share the same origin-destination pair and have the same
traffic demand.

Each user α has a positive tax-sensitivity factor a(α) > 0. We will assume
that the tax-sensitivity factors for all users come from a finite set of possible
positive values. We call the users heterogeneous if there are at least two distinct
sensitivity values and homogeneous otherwise. Unless we declare them explicitly
to be heterogeneous, the users are assumed to be homogeneous. We can bunch
together into a single user class all the users with the same origin-destination pair
and with the same tax-sensitivity factor; let k be the number of different such
classes. We denote by di,Pi, a(i) the total traffic demand of class i, the paths
that can be used by class i, and the tax-sensitivity of class i, for all i = 1, . . . , k
respectively. Thus each user in class i selects a path in Pi and routes her traffic
though it. We set P .= ∪i=1,...,kPi the union of paths used by all classes. In the
following, we assume that the game is single-source and the users are atomic and
have unit demands, unless it is stated otherwise.

A configuration f is a tuple f = (f j)j∈N consisting of a path f j from the
corresponding origin node to the corresponding destination node for each user
j. Given a configuration f , we let fP denote the total traffic routed through any
path P ∈ P , and let fe =

∑
e�P fP denote the total traffic routed through any

edge e ∈ E. Given a configuration f , we refer to the traffic vector (fe)e∈E as
the (edge-)flow induced by f . We note that different configurations may induce
the same edge-flow. We say that a flow f is feasible (with respect to an atomic
network congestion game G(l)) if there is a configuration f of G(l) which routes
traffic fe through any edge e. We slightly abuse the notation by letting the
same symbol denote both a configuration and the feasible flow induced by it. A
configuration (or the corresponding flow) f is acyclic if for any cycle C in the
underlying network G, there is an edge e ∈ C with fe = 0.

The latency function le : IR+ → IR+ assigned to each edge e gives the latency
experienced by any user on e due to the congestion caused by the traffic routed
through e. We assume that the functions le are nondecreasing, and that le(fe) >
0 when fe > 0, i.e., the function le is positive.
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For any configuration f and path P ∈ P , the latency of P is lP (f) =∑
e∈P le(fe). The individual cost of a user j in a configuration f is cj(f) =∑
e∈fj le(fe), i.e., the latency on her path in f . A configuration f is a pure

Nash equilibrium of G(l) if no user can improve her individual cost by uni-
laterally deviating from f . Formally, for a tuple x = (x1, . . . , xn), let x−i =
(x1, . . . , xi−1, xi+1, . . . , xn) and (x−i, x

′
i) = (x1, . . . , xi−1, x

′
i, xi+1, . . . , xn). Con-

figuration f is a pure Nash equilibrium if cj(f) ≤ cj(f−j , P ) for any user j in
any class i and any path P ∈ Pi.

A flow f satisfies the Wardrop principle [16] if for each class i, the latency on
all paths in Pi used by f is no greater than the latency on any other path in Pi.
A non-atomic (atomic) Wardrop equilibrium is a (feasible) flow f that satisfies
the Wardrop principle. We distinguish between atomic and non-atomic Wardrop
equilibria, depending on whether the users are atomic or not. An atomic Wardrop
equilibrium is also a pure Nash equilibrium, while the converse may not be true.

If every edge is assigned a tax (also called toll) βe ≥ 0, the resulting game is
denoted as G(l + β). Given a configuration f in G(l + β), the individual cost of
a user j included in a class i is: cj

β(f) =
∑

e∈fj le(fe) + a(i)
∑

e∈fj βe.

Let f̂ be a configuration that minimizes the total latency
∑

e fele(fe) over
all configurations of G(l). Although in certain cases (e.g., when the functions
fele(fe) are convex) the flow f̂ can be computed efficiently, for more general
latency functions it may be intractable to compute f̂ . We will assume that f̂ is
given to us off-line and that it induces a finite latency on every edge. A tax vector
β weakly induces a feasible (non-atomic) flow f if f is a pure Nash (non-atomic
Wardrop) equilibrium of G(l + β). A tax vector β is called weakly-optimal if it
weakly induces a pure Nash equilibrium f whose total latency

∑
e∈E fele(fe) is

equal to the optimal total latency
∑

e f̂ele(f̂e). A tax vector β is called strongly-
optimal, if every pure Nash equilibrium it induces in G(l + β) has total latency
equal to the optimal total latency

∑
e f̂ele(f̂e).

Let F (x) = (F1(x), F2(x), . . . , Fn(x)) be a vector-valued function from the
n-dimensional space Rn into itself. Then the nonlinear complementarity problem
of mathematical programming is to find a vector x that satisfies the following
system:

xT F (x) = 0, x ≥ 0, F (x) ≥ 0.

3 Existence of Weakly-Optimal Taxes

In this section we consider networks with a single-source s and heterogeneous
users. Each user class i consists of a single user who wishes to route di units of
traffic through a single s− ti path. We show that if di = 1 (or more generally, if
di are arbitrary and the optimal configuration is acyclic), there exists a vector
of weakly-optimal taxes. In particular, we establish the existence of a tax vector
that weakly induces any acyclic flow f̂ as an atomic Wardrop equilibrium. Since
single-source network congestion games with unit-demand users admit an acyclic
optimal flow f̂ , this implies the existence of weakly optimal taxes for such games.
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The proof follows closely [9], where the existence of weakly-optimal taxes is
shown for the non-atomic case, and here we give a sketch with the new elements
added for our case. In [9], it is shown that, if we add to the network artificial
capacity constraints, fe ≤ f̂e, ∀e ∈ E, there is a tax-vector β∗ that induces
as a non-atomic Wardrop equilibrium a flow f∗ that satisfies demands di and
respects the capacities. In particular, [9] shows that the following nonlinear com-
plementarity problem always has a solution (details omitted). Moreover, if f̂ is
given offline, this solution can be computed in polynomial time.

fP (TP (f)− ui) = 0 ∀i, ∀P ∈ Pi (BIG CP)
TP (f) ≥ ui ∀i, ∀P ∈ Pi

ui(
∑

P∈Pi

fP − di) = 0 ∀i
∑

P∈Pi

fP ≥ di ∀i

βe(fe − f̂e) = 0 ∀e ∈ E

fe ≤ f̂e ∀e ∈ E

fP , βe, ui ≥ 0 ∀P, e, i

Here the function TP (f) is set to lP (f)/a(i) +
∑

e∈P β∗
e , ∀P ∈ Pi, ∀i.

Lemma 1. Let f̂ be an acyclic feasible flow for demands di, and let (f∗, β∗, u∗)
be any solution of (BIG CP). Then

∑
P∈Pi

f∗
P = di, ∀i and f∗

e = f̂e, ∀e ∈ E.

Proof. The proof of the first part is essentially the same as the proof by
contradiction of Proposition 4.1 in [1] and is omitted.

Vector f∗ is a non-atomic flow, that satisfies the following set of constraints:∑
P∈Pi

fP = di ∀i ∈ {1, . . . , k} (1)

fe =
∑

P∈P:e∈P

fP ∀e ∈ E (2)

fe ≤ f̂e ∀e ∈ E (3)
fP ≥ 0 ∀P ∈ P (4)

Consider the network which consists only of the edges e of G with f̂e > 0.
Augment this network by adding a super-sink t and an edge (ti, t) from each
of the old sinks to t. Call Gf̂ the resulting network. Extend f∗ to an s-t flow
in Gf̂ by setting f∗

(ti,t) = di. Let (S, T ) be any cut that separates s from t in

Gf̂ . Since f̂ is acyclic, it must be that
∑

e∈δ(S) f̂e =
∑k

i=1 di. Because of (1), it

must be that
∑

e∈δ(S) f∗
e ≥ ∑k

i=1 di =
∑

e∈δ(S) f̂e. By the capacity constraints

(3), we conclude that
∑

e∈δ(S) f∗
e =

∑
e∈δ(S) f̂e, and in particular, that f∗

e = f̂e
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for all edges e that cross the cut. The only edges of G on which f∗ might send
positive flow are the edges of Gf̂ . Any such edge e belongs to at least one s-t
cut in Gf̂ . By applying the previous argument to such a cut, it follows that
f∗

e = f̂e, ∀e ∈ E. �

Then [9] establishes that we can use β∗ as a tax vector to weakly induce f∗ as
a non-atomic Wardrop equilibrium in the original network without the capacity
constraints. This follows from the fact that we can use β∗ as a tax vector to
ensure that (f∗, u∗) is also a solution to the following complementarity problem:

(TP (f)− ui)fP = 0 ∀i, ∀P ∈ Pi (CP)
TP (f)− ui ≥ 0 ∀i, ∀P ∈ Pi

ui(
∑

P∈Pi

fP − di) = 0 ∀i
∑

P∈Pi

fP ≥ di ∀i

f, u ≥ 0

If the path latency functions are continuous and positive, Aashtiani and Mag-
nanti [1] show that the Wardrop equilibria of the game G(l+β) can be described
as the solutions to (CP). TP above denotes the cost of a user that uses path P , fP

is the flow through path P , and u = (u1, . . . , uk) is the vector of shortest travel
times for the commodities. The first two equations model Wardrop’s principle
by requiring that for any origin-destination pair i, the travel cost for all paths
in Pi with nonzero flow is the same and equal to ui. The remaining equations
ensure that the demands are met and that the variables are nonnegative.

The fact that for all e ∈ E, f∗
e = f̂e proves that the tax vector β∗ we compute

weakly induces as an equilibrium the atomic solution f̂ as well. We have thus
shown the following theorem, which is the main result of this section.

Theorem 1. Let all atomic heterogeneous users share the same source, and let
f̂ be any acyclic feasible flow. If for every edge e ∈ E, le() is a nondecreasing
positive function, then there is a tax vector β ∈ R|E|

+ such that, there is an atomic
Wardrop traffic equilibrium f̄ for the game G(l + β), where f̄e = f̂e, ∀e ∈ E.

Given f̂ , β can be computed in polynomial time.

If the latency functions are strictly increasing, the uniqueness results from [1]
yield that f̂ is the only Wardrop atomic equilibrium induced by the tax vector
of the theorem.

Single-source network congestion games with unit-demand users and nonde-
creasing latency functions admit an acyclic optimal flow f̂ . Moreover, if for all
e ∈ E, xle(x) are convex, such an optimal flow can be computed in polyno-
mial time by a min-cost flow computation. Therefore, we obtain the following
corollary of Theorem 1:
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Corollary 1. Let G(l) be an atomic network congestion with nondecreasing
latency functions and heterogeneous users, where all users share the same source
and have the same traffic demand. Then G(l) admits a weakly-optimal tax vec-
tor β. Furthermore, if for all edges e, xle(x) is convex, β can be computed in
polynomial time.

Theorem 1 states that computing the weakly-optimal tax vector β for an acyclic
optimal flow f̂ is not substantially harder than computing f̂ : if f̂ can be com-
puted in polynomial time, β can also be computed in polynomial time. An
interesting question is whether computing the tax vector β of Theorem 1 is
substantially easier than computing the corresponding acyclic optimal flow f̂ .
The following theorem practically excludes this possibility. In particular, we
show that given the weakly-optimal tax vector β of Theorem 1, we can decide
in polynomial time whether the optimal total latency is bounded from above by
a given number. So the problem of computing the weakly-optimal tax vector β
is at least as difficult as the problem of determining the optimal total latency.

Theorem 2. For atomic games with user-specific demands, if the optimal flow
f̂ is not given, it is NP -hard to compute the taxes whose existence is established
by Theorem 1. This holds even for parallel-link games with homogeneous users.

Proof. We employ a Turing reduction from Partition. We consider an instance
of the decision version of Partition, i.e., a set of integers {a1, . . . , an} whose
total sum is 2B for some B > 0. For every integer ai, we create a user with
demand ai and tax-sensitivity 1. Every partition of the users into two sets, one
with total sum B − T and the other with total sum B + T for some T ≥ 0,
induces in the network with two parallel links and latency function l(x) = x, a
corresponding acyclic routing of the users whose total cost is

(B − T )2 + (B + T )2 = 2B2 + 2T 2.

This quantity is minimized for T = 0, i.e., when the Partition instance is
a YES-instance. Assume now that you can compute in polynomial time the
taxes of Theorem 1. Because the latency functions are strictly increasing, the
Wardrop equilibrium is unique in terms of edge flows [1]. Moreover, it is well-
known that the equilibrium solution f can be computed in polynomial time
by solving a convex quadratic mathematical program [2]. By Theorem 1, on
each of the two parallel edges, the value of f will be equal to value of the
optimal unsplittable solution. Checking these values, we can determine whether
the Partition instance is a YES-instance. �
Unfortunately, it is known that the taxes of Theorem 1 are not in general
strongly-optimal. Note that for homogeneous users, our taxes are cost-balancing
in the sense of Fotakis and Spirakis [7]. They give an example of a symmet-
ric network congestion game, with homogeneous users, where the cost-balancing
taxes induce an a pure Nash equilibrium of total latency 1.13 times the opti-
mum. In the full version of the paper we give another such example where the
cost-balancing taxes induce a pure Nash equilibrium of total latency (1.2 − ε)
times the optimum.
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4 Inexistence of Strongly-Optimal Taxes

We proceed to show that that atomic congestion games with heterogeneous users
may not admit strongly-optimal taxes, even for parallel-link games with linear
latencies and unit-demand users.

Theorem 3. There exists a parallel-link game with linear latencies and hetero-
geneous unit-demand users, for which any tax vector induces an equilibrium with
total latency at least 28/27 times the optimal total latency.

Proof. We consider a game G(l) on 3 parallel links with latency functions l1(x) =
7, l2(x) = 2x, and l3(x) = x + 1. There are 6 unit-demand users, 2 users with
tax-sensitivity 1 and 4 users with tax-sensitivity 1/2. The unique optimal flow
assigns a single user to link 1, 2 users to link 2, and 3 users to link 3, and achieves
a total latency of 27. Any other feasible flow has total latency at least 28. In the
following, we show that any weakly-optimal tax vector β induces an equilibrium
of total latency at least 28, and thus this game does not admit strongly-optimal
taxes. The proof proceeds by considering different cases depending on the 5
optimal allocations of heterogeneous users.

Case I: We consider an optimal flow that assigns a user with tax-sensitivity 1
to link 1, the other user with tax-sensitivity 1 and a user with tax-sensitivity 1/2
to link 2, and 3 users with tax-sensitivity 1/2 to link 3 (we denote such a con-
figuration as 〈(1), (1, 1/2), (1/2, 1/2, 1/2)〉). Let β = (β1, β2, β3) be any (weakly-
optimal) tax vector that induces the particular configuration as an equilibrium
of G(l + β). No user has an incentive to deviate from its assigned link; writing
down the corresponding inequalities, we obtain that β must satisfy the following:

1 + β1 ≤ β2 ≤ 3 + β1 (5)
β2 − 1 ≤ β3 ≤ 4 + β2 (6)
2 + β1 ≤ β3 ≤ 6 + β1 (7)

If β is strongly-optimal, configuration 〈(1, 1), (1/2, 1/2), (1/2, 1/2)〉 is not an
equilibrium of G(l + β). Therefore at least one user in that configuration has
an incentive to deviate, and β must satisfy at least one of the following:

β2 < 1 + β1 (8)
β3 < 3 + β1 (9)

6 + β1 < β2 (10)

β3 < β2 (11)
8 + β1 < β3 (12)
6 + β2 < β3 (13)

We observe that (8) contradicts (5), (10) contradicts (5), (12) contradicts (7),
and (13) contradicts (6). Hence, if β is strongly optimal, either β3 < 3 + β1 or
β3 < β2 (ie. β3 must be “small”).
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Moreover, if β is strongly-optimal, 〈( ), (1, 1), (1/2, 1/2, 1/2, 1/2)〉 is not an
equilibrium of G(l + β), and β must satisfy at least one of the following:

3 + β1 < β2 (14)
β3 < β2 − 2 (15)

4 + β1 < β3 (16)
2 + β2 < β3 (17)

We observe that (14) contradicts (5) and (15) contradicts (6). Hence, if β is
strongly optimal, either β3 > 4 + β1 or β3 > 2 + β2 (ie. β3 must be “large”).

If β3 < 3+β1, neither β3 > 4+β1 nor β3 > 2+β2 is possible (note that 3+β1 >
β3 > 2+β2, which contradicts (5) ). If β3 < β2, neither β3 > 2+β2 nor β3 > 4+β1
is possible (note that β2 > β3 > 4 + β1, which contradicts (5) ). Therefore, any
tax vector that induces optimal configuration 〈(1), (1, 1/2), (1/2, 1/2, 1/2)〉 as
an equilibrium of G(l + β) also induces either 〈(1, 1), (1/2, 1/2), (1/2, 1/2))〉 or
〈( ), (1, 1), (1/2, 1/2, 1/2, 1/2)〉 (both of total latency 28) as an equilibrium.
Case II: We consider optimal configuration 〈(1), (1/2, 1/2), (1, 1/2, 1/2)〉. Work-
ing as in Case I, we obtain that any tax vector β = (β1, β2, β3) that induces this
configuration as an equilibrium of G(l + β) must satisfy the following:

1 + β1 ≤ β2 ≤ 5 + β1 (18)
β2 − 2 ≤ β3 ≤ 2 + β2 (19)
2 + β1 ≤ β3 ≤ 3 + β1 (20)

In fact, the right-hand side of (18) follows from β2 − 2 ≤ β3 ≤ 3 + β1.
Considering configuration 〈(1, 1), (1/2, 1/2), (1/2, 1/2)〉 and working as in

Case I, we obtain that if β is strongly-optimal, either β3 < 3 + β1 or β3 < β2.
Considering configuration 〈( ), (1, 1), (1/2, 1/2, 1/2, 1/2)〉, we obtain that if β is
strongly-optimal, either β2 > 3 + β1 (note that (14) does not contradict (18)),
or β3 > 4 + β1, or β3 > 2 + β2.

Working as in Case I, we show that if β is strongly-optimal, it must satisfy
both β2 > 3 + β1 and β3 < β2 (since β2 > 3 + β1, β3 < 3 + β1 implies β3 < β2,
so β3 must be smaller than β2 in any case), in addition to (18), (19), (20).

Moreover, if β is strongly-optimal, configuration 〈(1, 1), (1/2), (1/2, 1/2, 1/2)〉
is not an equilibrium of G(l+β), and β must satisfy at least one of the following:

β2 < 3 + β1 (21)
β3 < 2 + β1 (22)

10 + β1 < β2 (23)

6 + β3 < β2 (24)
6 + β1 < β3 (25)

β2 < β3 (26)

We observe that (21) contradicts β2 > 3+β1, (22) contradicts (20), (23) contra-
dicts (18), (25) contradicts (20), and (26) contradicts β3 < β2. Furthermore, (18)
and (19) imply that β2 ≤ 5 + β1 ≤ 3 + β3, which contradicts (24). Hence, any
tax vector that induces optimal configuration 〈(1), (1/2, 1/2), (1, 1/2, 1/2)〉 as
an equilibrium also induces either configuration 〈(1, 1), (1/2, 1/2), (1/2, 1/2))〉,
or 〈( ), (1, 1), (1/2, 1/2, 1/2, 1/2)〉, or 〈(1, 1), (1/2), (1/2, 1/2, 1/2)〉 (all of total
latency 28) as an equilibrium.
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Case III: We consider optimal configuration 〈(1/2), (1, 1), (1/2, 1/2, 1/2)〉. Any
tax vector β = (β1, β2, β3) that induces this configuration as an equilibrium of
G(l + β) must satisfy the following:

2 + β1 ≤ β2 ≤ 3 + β1 (27)
β2 − 1 ≤ β3 ≤ 4 + β2 (28)
4 + β1 ≤ β3 ≤ 6 + β1 (29)

Therefore, any tax vector that induces 〈(1/2), (1, 1), (1/2, 1/2, 1/2)〉 as an equi-
librium of G(l + β) must satisfy (5), (6), and (7), and by Case I, is not
strongly-optimal.

Cases IV and V: Optimal configurations 〈(1/2), (1, 1/2), (1, 1/2, 1/2)〉 and
〈(1/2), (1/2, 1/2), (1, 1, 1/2)〉 are not induced as an equilibrium of G(l + β) by
any tax vectors. In particular, applying the inequalities for possible deviations
between link 1 and link 3, we obtain that any tax vector β that induces any of
the configurations above as an equilibrium must satisfy 4 + β1 ≤ β3 ≤ 3 + β1.

Thus we have considered all optimal allocations of heterogeneous users and
all weakly-optimal tax vectors β, and have shown that any of them induces a
configuration of total latency at least 28 as an equilibrium of G(l + β). �

Remark 1. For the atomic game with homogeneous users corresponding to the
parallel-link game in the proof of Theorem 3, the tax vector (0, 3 − δ, 3 − δ),
for a sufficiently small δ > 0, is a strongly-optimal tax vector (a slightly dif-
ferent strongly-optimal tax vector is given by [3, Theorem 1]). For the corre-
sponding non-atomic game with heterogeneous users, the tax vector (0, 3, 3) is a
strongly-optimal one.

5 Open Problems

It is known that for homogeneous users with unit-demands on multicommodity
networks there exist no strongly-optimal taxes [3]. Series-parallel networks is
the largest class for which such taxes have been shown so far to exist [7]. In
this work, we established that when the users are heterogeneous, there are no
strongly-optimal taxes even on the very specialized topology of parallel links.
The challenging open problem stated in [3] remains for future work: determine
the largest class of network congestion games for which strongly-optimal taxes
exist. The candidate class is that of symmetric network games [3], i.e., when
users are homogeneous, have identical demands, and share the same source and
destination on a general-topology network.

Acknowledgement. G. Karakostas and S. Kolliopoulos thank Ioannis Caragiannis
for introducing them to the problem and for valuable discussions.
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vol. 4708, pp. 633–644. Springer, Heidelberg (2007)

12. Pigou, A.C.: The Economics of Welfare. Macmillan and Co., London (1920)
13. Rosenthal, R.W.: A class of games posessing pure Nash strategy equilibria. Inter-

national Journal of Game Theory 2, 65–67 (1973)
14. Swamy, C.: The effectiveness of Stackelberg strategies and tolls for network con-

gestion games. In: Proceedings of the 18th ACM-SIAM Symposium on Discrete
Algorithms (SODA), pp. 1133–1142 (2007)

15. Roughgarden, T.: The price of anarchy is independent of the network topology.
Journal of Computer and System Sciences 67(2), 341–364 (2003)

16. Wardrop, J.G.: Some theoretical aspects of road traffic research. Proc. Inst. Civil
Engineers, Part II 1, 325–378 (1952)

17. Yang, H., Huang, H.-J.: The multi-class, multi-criteria traffic network equilibrium
and systems optimum problem. Transportation Research B 38, 1–15 (2004)



Computing Stable Outcomes in Hedonic Games

Martin Gairing and Rahul Savani

Department of Computer Science
University of Liverpool

{m.gairing,rahul.savani}@liverpool.ac.uk

Abstract. We study the computational complexity of finding stable
outcomes in symmetric additively-separable hedonic games. These coali-
tion formation games are specified by an undirected edge-weighted graph:
nodes are players, an outcome of the game is a partition of the nodes into
coalitions, and the utility of a node is the sum of incident edge weights
in the same coalition. We consider several natural stability requirements
defined in the economics literature. For all of them the existence of a sta-
ble outcome is guaranteed by a potential function argument, so local im-
provements will converge to a stable outcome and all these problems are
in PLS. The different stability requirements correspond to different local
search neighbourhoods. For different neighbourhood structures, our find-
ings comprise positive results in the form of polynomial-time algorithms
for finding stable outcomes, and negative (PLS-completeness) results.

1 Introduction

Hedonic games were introduced in the economics literature as a model of coali-
tion formation where each player cares only about those within the same coali-
tion [9]. Such games can be used to model a variety of settings ranging from
multi-agent coordination to group formation in social networks. This paper stud-
ies the computational complexity of finding stable outcomes in hedonic games.
We consider the stability requirements introduced in [5], which includes a de-
tailed discussion of real-life situations in which hedonic models are reasonable.

The literature has focused almost exclusively on the issue of the existence
of stable outcomes. When computational complexity has been addressed, it has
been in the context of deciding whether a stable outcome exists. This has been
done under different utility functions and stability requirements [5, 3, 18]. An
outcome is called Nash-stable if no player prefers to be in a different coalition.
This is the most stringent stability requirement we consider: here a deviation
depends only on the preferences of the deviating player. Less stringent stability
requirements are achieved by restricting feasible deviations: a coalition may try
to hold on to an attractive player or block the entry of an unattractive player.

We consider the case of hedonic games with additively-separable utilities, as
they allow a succinct representation which is suitable for studying computational
complexity. In this representation, a game is specified by an edge-weighted graph.
In general this graph is directed, which allows non-symmetric preferences, but
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then a stable outcome might not exist [5, 3]. In the sequel, a hedonic game is an
undirected edge-weighted graph, so that preferences are symmetric. Every node
is a player, and an outcome is a partition of the players into coalitions. For a
given outcome, the utility of a player is the sum of the edges weights of the inci-
dent edges to nodes in the same coalition. For a symmetric additively-separable
hedonic game, a Nash-stable outcome always exists by a simple potential func-
tion argument: the potential function is the total happiness of an outcome, i.e.,
the sum of players’ utilities. Nash-deviations improve the potential. We define
the problem NashStable as that of computing a Nash-stable outcome for an
additively-separable hedonic game.

We also consider a less stringent stability requirement, called individual sta-
bility. Here the set of all feasible deviations for a given outcome is a subset of
Nash deviations: a player can deviate to another coalition only if everyone in
this coalition is happy to have her. We also consider an even less stringent sta-
bility requirement, called contractual individual stability. Here the set of all fea-
sible deviations for a given outcome is a subset of individually-stable deviations:
(in addition to the above requirement) a player can deviate only if everyone
in the coalition she leaves is happy for her to leave. These stability require-
ments were introduced in [5]. The same potential function argument shows that
individually-stable outcomes and contractually-individually-stable outcomes ex-
ist for symmetric additively-separable hedonic games, and indeed every Nash-
stable outcome is also individually-stable and contractually-individually-stable.
In each case, local improvements will find a stable outcome, and all the prob-
lems we consider are in the complexity class PLS (polynomial local search) [12].
Local search dynamics are desirable because they are distributed. Are they also
efficient for hedonic games? If not, can we find efficient dynamics or centralized
algorithms for finding stable outcomes?

Symmetric additively-separable hedonic games are closely related to party af-
filiation games, which are also specified by an undirected edge-weighted graph.
In a party affiliation game each player must choose between one of two “parties”;
each player’s happiness is the sum of her edges to nodes in the same party; in
a stable outcome no player would prefer to be in the other party. The prob-
lem PartyAffiliation is to find a stable outcome in such a game. If such an
instance has only negative edges then it is equivalent to the problem Local-
MaxCut, which is to find a stable outcome of a local max-cut game. In party
affiliation games there are at most two coalitions, while in hedonic games any
number of coalitions is allowed. Thus, whereas PartyAffiliation for instances
with only negative edges is PLS-complete [16], NashStable is trivial in this
case, as the outcome where all players are in singleton coalitions is Nash-stable.
Both problems are trivial when all edges are non-negative, in which case the
grand coalition of all players is Nash-stable. Thus, interesting hedonic games
contain both positive and negative edges.

Our Contribution. In this paper, we examine the complexity of computing
stable outcomes in symmetric additively-separable hedonic games. We observe
that NashStable, i.e., the problem of computing a Nash-stable outcome, is
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PLS-complete. Here, we give a simple reduction from PartyAffiliation, which
was shown to be PLS-complete in [16]. Our reduction relies on a method to en-
sure that all stable outcomes use exactly two coalitions (where in general there
can be as many coalitions as players). In contrast, the problem CIS of finding a
contractually-individually-stable outcome can be solved in polynomial time.

Moreover, we study IS, i.e., the problem of finding an individually-stable out-
come. We show that if the outcome is restricted to contain at most two coalitions,
an individually-stable outcome can be found in polynomial time. This suggests
that a reduction showing PLS-hardness for IS cannot be as simple as for Nash-
Stable: one would need to construct hedonic games that allow three or more
coalitions. In order to prove a hardness result, we increase the size of the neigh-
bourhood, defining the search problem ISwithSwaps, which is similar to IS,
but in addition to one-player deviations, two players can switch coalitions.

We define a restricted version of PartyAffiliation, called OneEnemy-
PartyAffiliation, in which each player dislikes at most one other player.
Our main result is that OneEnemyPartyAffiliation is PLS-complete. This
reduction is from CircuitFlip and is rather involved. We reduce OneEnemy-
PartyAffiliation to ISwithSwaps, which shows it is PLS-complete; we leave
the complexity of IS open.

Related Work. Hedonic coalition formation games were first considered by [9].
[11] later surveyed coalition structures in game theory and economics. Based on
[9], [5] formulated different stability concepts in the context of hedonic games,
which are the basic definitions we use here. The general focus in the game theory
community has been on characterizing the conditions for which stable outcomes
exist. [6] showed that additively-separable and symmetric preferences guarantee
the existence of a Nash-stable partition. They also showed that under certain
different conditions on the preferences, the set of Nash-stable partitions can be
empty but the set of individually-stable partitions is always non-empty.

[7] surveys algorithmic problems related to stable partitions. [3] showed that
for hedonic games represented by an individually rational list of coalitions, the
complexity of checking whether core-stable, Nash-stable or individual-stable par-
titions exist is NP-complete, and that every hedonic game has a contractually-
individually-stable solution. Recently, [18] showed that for additively-separable
hedonic games checking whether a core-stable, strict-core-stable, Nash-stable or
individually-stable partition exists is NP-hard. [10] characterize the complexity
of problems related to coalitional stability for hedonic games represented by he-
donic nets, a succinct, rule-based representation based on marginal contribution
nets.

The definition of party affiliation games we use appears in [2]. Recent work
on local max cut and party affiliation games has focused on approximation [4, 8];
see also [15]. For surveys on the computational complexity of local search and the
complexity class PLS, see [1, 14]. Our main PLS-completeness result (Theorem 2)
uses ideas from [19] which in turn builds on [16].
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2 Preliminaries

A symmetric additively-separable hedonic game is an undirected edge-weighted
graph G = (V, E, w). Every node i ∈ V is a player. An outcome is a partition p
of V into coalitions. Denote by p(i) the coalition to which i ∈ V belongs under
p, and by E(p(i)) the set of edges {{i, j} ∈ E | j ∈ p(i)}. The utility of i ∈ V
under p is the sum of edges to others in the same coalition,

∑
e∈E(p(i)) w(e). We

consider different levels of restrictions for player deviations; see [5].

Definition 1. Consider an outcome p of a game G = (V, E, w). The outcome is
Nash-stable if and only if there exists no player i and coalition c �= p(i), possibly
empty, such that ∑

e∈E(p(i))

w(e) <
∑

{{i,j}∈E | j∈c}
w({i, j}) . (1)

The outcome is individually-stable if and only if there exists no player i and
coalition c �= p(i), possibly empty, such that (1) holds and

w({i, j}) > 0 , ∀j ∈ c . (2)

The outcome is contractually-individually-stable if and only if there exists no
player i and coalition c �= p(i), possibly empty, such that (1) and (2) hold and
w({i, j}) < 0 for all j ∈ p(i).

The search problems NashStable, IS, and CIS are to find a stable outcome of
a hedonic game for the corresponding definition of stability. For Nash-stability, a
player is allowed to deviate based only on her own utility, irrespective of others.
Individual stability allows any player to block an unattractive individual from
entering her coalition, i.e., a single negative edge to a coalition prevents a player
switching to that coalition (although a stable outcome may contain negative
edges). Contractual individual stability also allows any player to prevent an
attractive player leaving her coalition, i.e., a single positive edge prevents a player
leaving a coalition. Recall that all games we consider contain both positive and
negative edges, else the problem of finding a stable outcome is easy.

3 Computational Complexity of Finding Stable Outcomes

We start with the least restrictive condition under which player deviations are
allowed, i.e., Nash deviations. Here a player is allowed to change her coalition
whenever this improves her utility. By a very simple reduction from PartyAf-
filiation we observe the following:

Observation 1. NashStable is PLS-complete.

Proof. Consider an instance of PartyAffiliation which is represented as an
edge weighted graph G = (V, E, w). We augment G by introducing two new
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players, called supermodels. Every player i ∈ V has an edge of weight W >∑
e∈E |we| to each of the supermodels. The two supermodels are connected by an

edge of weight −M , where M > |V |·W . By the choice of M the two supermodels
will be in different coalitions in any Nash-stable outcome of the resulting hedonic
game. Moreover, by the choice of W , each player will be in a coalition with one
of the supermodels. The fact that edges to supermodels have all the same weight
directly implies a one-to-one correspondence between the Nash-stable outcomes
in the hedonic game and in the party affiliation game. 	

Now that we have PLS-completeness under the least restrictive deviation condi-
tion, it is natural to ask about stable outcomes under more restrictive conditions.
We proceed with the most restrictive version that we consider.

Proposition 1. CIS can be solved in O(|E|) time. Moreover, local improve-
ments converge in at most 2|V | steps.

It is easy to construct stable CIS partitions. The reason for this comes from the
very restrictive conditions under which deviations are allowed. We now study
deviation conditions which are less restrictive than in CIS but more restrictive
than Nash deviations. Recall that in an individually-stable outcome a player is
always allowed to leave a coalition but only allowed to enter if no player in the
new coalition is connected to her by a negative edge. It is an interesting open
problem whether IS is PLS-hard. The following result implies that for a PLS-
hardness reduction we need to use at least three coalitions (unless PLS ⊆ P),
unlike the reduction for NashStable (Observation 1). Let 2-IS be the problem
of computing an individually-stable outcome when at most two coalitions are
allowed.

Proposition 2. 2-IS can be solved in polynomial time.

Proof. We assume that there is at least one negative edge. Otherwise, the grand
coalition is Nash-stable. The algorithm goes as follows:

Start with any bipartition. Move nodes with incident negative edges so
that they have a negative edge to the other coalition. In each of the two
coalitions, contract all nodes with negative incident edges into a single
node and call the contracted nodes s and t. For any other node the new
edge weights to s and t are the sum of the original edge weights. Now
(ignoring all edges between s and t) compute a min cut between s and t
via a max flow algorithm and assign the nodes accordingly.

After the first stage, all nodes that we are about to contract have a negative
edge to the other coalition. So they are not allowed to join the other coalition.
This property is preserved by contraction. Afterwards, the flow algorithm oper-
ates only on positive edges and computes a global minimum cut between s and
t. Thus, the cut also maximizes the total happiness of all non-contracted nodes,
so none of these nodes has an incentive to switch coalitions. All performed steps
of the algorithm can be done in polynomial time. 	
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What makes the problem easy in the case of two coalitions? The reason is simple:
negative edges block deviations. This leads to an interesting question. What
happens when we allow players to swap coalitions? Certainly, this increases the
PLS-neighbourhood, and (in general) reduces the number of stable outcomes.
We define an extended neighbourhood that includes swaps.

Definition 2. In a swap two players swap coalitions. A swap is improving if at
least one of the players becomes strictly better off and neither gets worse off.

The new neighbourhood is comprised of single-player (IS type) deviations and
swaps. Observe that in a solution where no player can improve by a single-player
deviation, only swaps of two players connected by a negative edge can give rise
to local improvements. With this larger neighbourhood we prove the following,
which is the main result.

Theorem 2. ISwithSwaps is PLS-complete.

We prove this in two parts. We use the fact that in OneEnemyPartyAf-
filiation every node is incident to at most one negative edge to reduce this
problem to ISwithSwaps by replacing negative edges with a simple local gad-
get (Lemma 1). Then our main result is that OneEnemyPartyAffiliation is
PLS-complete (Theorem 3).

Lemma 1. OneEnemyPartyAffiliation can be reduced in polynomial time
to ISwithSwaps.

Proof. We start with a party affiliation game where every player dislikes at
most one other player. We add supermodels to enforce only two coalitions.
We replace a negative edge (a, b) of weight −w with the following gadget.

w

w

w−M

−M

a

a′

b

b′

Here M is sufficiently large so that a and a′ (as well as b
and b′) have to be in different coalitions and thus can only
swap coalitions. Thus, if a = b, then both a and b receive a
payoff of −w from the original edge and 0 from the gadget.

On the other hand, if a �= b, then both a and b receive a payoff of 0 from the
original edge and w from the gadget. So we shifted the payoffs of a and b by w.
Observe that the payoff of a′ and b′ is always w. So they will never block a swap.
Thus, we didn’t change the PLS neighbourhood of a and b. 	

In order to complete the proof of Theorem 2, we show that OneEnemyPartyAf-
filiation is PLS-complete. Our proof is by reduction from the well known PLS-
complete CircuitFlip problem (cf. [16]).

Definition 3. An instance of CircuitFlip is a boolean circuit with n inputs
and n outputs. A feasible solution is an assignment to the inputs and the value
of a solution is the output treated as a binary number. The neighbourhood of an
assignment consists of all assignments obtained by flipping exactly one input bit.
The objective is to maximise the value.
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Theorem 3. OneEnemyPartyAffiliation is PLS-complete.

Proof. We reduce from CircuitFlip. Let C be an instance of CircuitFlip
with inputs V1, . . . , Vn, outputs C1, . . . , Cn, and gates G1, . . . , GN . We make
the following simplifying assumptions about C: (i) The gates are topologically
ordered so that if the output of Gi is an input to Gj then i > j. (ii) All gates
are NOR gates with fan-in 2. (iii) G1, . . . , Gn is the output and Gn+1, . . . , G2n is
the (bitwise) negated output of C with G1 and Gn+1 being the most significant
bits. (iv) G2n+1, . . . , G3n outputs a (canonical) better neighbouring solution if
V1, . . . , Vn is not locally optimal.

We use two complete copies of C. One of them represents the current solution
while the other ones represents the next (better) solution. Each copy gives rise
to a graph. We will start by describing our construction for one of the two copies
and later show how they interact. Given C construct a graph GC as follows:

We have nodes v1, . . . , vn representing the inputs of C, and nodes gi represent-
ing the output of the gates of C. We will also use gi to refer to the whole gate.
For i ∈ [n], denote by wi := g2n+i the nodes representing the better neighbour-
ing solution. Recall that g1, . . . , gn represent the output of C while gn+1, . . . , g2n

correspond to the negated output.
In our party affiliation game we use 0 and 1 to denote the two coalitions. We

slightly abuse notation by using u = κ for κ ∈ {0, 1} to denote that node u is in
coalition κ. In the construction, we assume the existence of nodes with a fixed
coalition. This can be achieved as in the proof of Observation 1 with the help of
supermodels. We use 0 and 1 to refer to those constant nodes. In the graphical
representation (cf. Figure 1), we represent those constants by square nodes.

We follow the exposition of [16] and [19] and use types to introduce our
construction. Nodes may be part of multiple types. In general types are ordered
w.r.t. decreasing edge weights. So earlier types are more important. Different
types will serve different purposes.

Type 1: Check Gates. For each gate gi we have a three-part component as de-
picted in Figure 1(a). The inputs of gi, denoted I1(gi) and I2(gi), are either
inputs of the circuit or outputs of some gate with larger index. The main pur-
pose of this component is to check if gi is correct, i.e., gi = ¬(I1(gi) ∧ I2(gi)),
and to set zi = 1 if gi is incorrect. The α, β, γ, δ and λ nodes are local nodes
for the gate. A gate can be in two operational modes, called gate push regimes.
Type 7 will determine in which of the following push regimes a gate is.

Definition 4 (Gate push regimes). In the RESET GATE regime αi,1, αi,2,
γi,1 and γi,2 get a bias towards 1 while λi,1, λi,2, βi,1, βi,2, βi,3, δi,1, δi,2 and γi,3
get a bias towards 0. In the FIX GATE regime we have opposite biases.

Type 2: Propagate Flags. In order to propagate incorrect values for the z vari-
ables we interconnect them as in Figure 1(b) by using the topological order on
the gates. Observe that for any locally optimal solution zi = 1 enforces zj = 1
for all j < i. The component is also used to (help to) fix the gates in order and
to RESET them in the opposite order. Node zN+1 is for technical convenience.
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Type 1 and 2 components are the same for both copies. In the following we
describe how the copies interact. We denote the two copies of C by C0 and C1

and also use superscripts to distinguish between them for nodes of type 1 and 2.

Type 3: Set/Reset Circuits. The component of type 3 interconnects the z-flags
from the two circuits C0, C1. This component is depicted in Figure 1(c) and
has multiple purposes. First, it ensures that in a local optimum d0 and d1 are
not both 1. Second, at the appropriate time, it triggers to reset the circuit with
smaller output. And third, it locks d0 or d1 to 1 and resets them back to 0 at
the appropriate times.

The z and y nodes can also be in two different operational modes called
COMPUTE regime and RESET regime which is determined by Type 6.

Definition 5 (Circuit push regimes). Let κ ∈ {0, 1}. In the COMPUTE
regime for zκ all zκ

i get a bias to 0 for all 0 ≤ i ≤ N + 1 and yκ gets a bias to 1.
In the RESET regime for zκ we give opposite biases.

Type 4: Check Outputs. This component compares the current output of the
two circuits and gives incentive to set one of the nodes d0 or d1 to 1 for which
the output of the corresponding circuit is smaller. For all i ∈ [n], we have
edges (d0, g0

n+i), (d
0, g1

i ), (d1, g1
n+i), (d1, g0

i ) and (0, g0
n+i), (1, g1

i ), (0, g1
n+i), (1, g0

i )
of weight 22n+1−i. To break symmetry we have edges (0, d0), (1, d1) of weight 2n.

Type 5: Feedback Better Solution. This component is depicted in Figure 1(d).
It is used to feedback the improving solution of one circuit to the input of the
other circuit. Its operation is explained in Lemma 3.

For the remaining types we use the following lemma and definition which are
analogous to those in [19, 13].

Lemma 2. For any polynomial-time computable function f : {0, 1}k �→ {0, 1}m

one can construct a graph Gf (Vf , Ef , w) having the following properties: (i) there
exist s1, . . . , sk, t1, . . . , tm ∈ Vf with no negative incident edge, (ii) each node in
Vf is only incident to at most one negative edge, (iii) f(s) = t in any Nash-stable
solution of the party affiliation game defined by Gf .

Definition 6. For a polynomial-time computable function f : {0, 1}k �→ {0, 1}m

we say that Gf as constructed in Lemma 2 is a graph that looks at s1, . . . , sk ∈ Vf

and biases t1, . . . , tm ∈ Vf according to the function f .

In the final three types we look at and bias nodes from the lower types already
defined. For the final types we do not give explicit edge weights. In order that
the “looking” has no side-effects on the operation of the lower types, we scale
edge weights in these types such that any edge weight of lower type is larger than
the sum of the edge weights of all higher types. More precisely, for j ∈ {5, 6, 7},
the weight of the smallest edge of type j is larger than the sum of weights of all
edges of types (j + 1), . . . , 8.

In the following, denote by C(v) the value of circuit C of the CircuitFlip
instance on input v = (vi)i∈[n] and w(v) the better neighbouring solution. Both
are functions as in Definition 6.
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Fig. 1. Components of type 1,2,3, and 5. Edge weights have to be multiplied by the
factors given above.
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Type 6: Change Push Regimes for z. The component of type 6 looks at v0, v1,
d0, d1, η0 and η1 (type 5) and biases z0

i , z1
i , y0 and y1 as follows. z0 is put in

the COMPUTE regime if at least one of the following 3 conditions is fulfilled:
(i) C(v0) ≥ C(v1), (ii) w(v1) = v0, or (iii) w(v1) �= η1 ∧ d0 = 1. Else z0 is
put into the RESET regime. Likewise z1 is put in the COMPUTE regime if at
least one of the following three conditions is fulfilled: (i) C(v0) < C(v1), (ii)
w(v0) = v1, or (iii) w(v0) �= η0 ∧ d1 = 1. Else z1 is put into the RESET regime.
Note that conditions (i) and (ii) are important for normal computation, while
(iii) is needed to overcome bad starting configurations.

Type 7: Change Push Regimes for Gates. For each i ∈ [N ] and κ ∈ {0, 1}, if
zκ

i+1 = 0 we put the local variable of gκ
i in the FIX GATE regime and in the

RESET GATE regime otherwise.

Type 8: Fix Incorrect Gate. For each i ∈ [N ] and κ ∈ {0, 1}, the components of
type 8 give a tiny offset to gκ

i for computing correctly. For each gate gκ
i we look

at ακ
i,1, α

κ
i,2 and bias gκ

i to ¬(ακ
i,1 ∧ ακ

i,2).

This completes our construction. We proceed by showing properties of Nash-
stable outcomes. Each of the following six lemmas should be read with the
implicit clause: “In every Nash-stable outcome.”

Lemma 3. Let κ ∈ {0, 1}, then the following holds for all i ∈ [n]:
(a) If dκ = 0 then wκ

i is indifferent w.r.t. edges of type 5.
(b) If dκ = 1 then ηκ

i = wκ
i .

Lemma 4. If gκ
i is incorrect then zκ

i = 1. If zκ
i = 1 then zκ

j = 1 for all 0 ≤ j ≤ i
and yκ = 0.

Lemma 5. If zκ
i+1 = 1 then the inputs I1(gκ

i ) and I2(gκ
i ) are indifferent with

respect to the type 1 edges of gate gκ
i .

Lemma 6. Suppose zκ
i+1 = 0 and zκ

i = 1 for some index 1 ≤ i ≤ N .
(a) If gκ

i is correct then γκ
i,1 = γκ

i,2 = 0 and γκ
i,3 = 1.

(b) If gκ
i is not correct then gκ

i is indifferent w.r.t. edges of type 1 but w.r.t. the
edges only in type 8 deviating would improve her happiness.

Lemma 7. If dκ = 1 and dκ = 0 then for all 1 ≤ i ≤ 2n, node gκ
i is indifferent

w.r.t. edges in type 4.

Lemma 8. Suppose dκ = 1 and dκ = 0.

(a) If zκ is in the COMPUTE regime then zκ
i = 0 for all 0 ≤ i ≤ N + 1 and

yκ = 1.
(b) If zκ is in the RESET regime then zκ

i = 1 for all 0 ≤ i ≤ N + 1 and yκ = 0.

We now continue with the proof of Theorem 3. Suppose we are in a Nash-
stable outcome of the party affiliation game. For our proof we assume C(v0) ≥
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C(v1). We will point out the small differences of the other case afterwards. Since
C(v0) ≥ C(v1), z0 is in the COMPUTE regime, i.e., all z0

i are biased to 0 and
y0 is biased to 1 (by type 6). Thus, z0

N+1 = 0.
The remainder of the proof splits depending on the coalition of z0

1 and z1
1 . By

Lemma 4 we know that zκ
1 = 0 implies that all gates in Cκ are correct.

z0
1 = 1: By Lemma 4 we have z0

0 = 1 and y0 = 0. If d0 = d1 = 0 then d0 is better
off changing to 1 (by inspection of type 3 edges). If d0 = 1 then Lemma 8(a)
implies z0

1 = 0, a contradiction. If d1 = 1 and z1 is in the RESET regime then by
Lemma 8(b) and Lemma 5, v1 is indifferent w.r.t. type 1 edges. Thus v1 = η0.
But then either condition (ii) or (iii) for putting z1 in the COMPUTE regime
(cf. type 6) are fulfilled. So z1 has to be in the COMPUTE regime. Lemma 8(a)
then implies z1

1 = 0. But then the neighbourhood of d1 in type 3 is dominated
by 0, a contradiction to d1 = 1.
z0
1 = 0 and z1

1 = 1: By Lemma 4 we have z1
0 = 1 and y1 = 0. Since C(v0) ≥ C(v1)

we know that z0 is in the COMPUTE regime. So z0
1 = 0 enforces z0

0 = 0 and
y0 = 0. By inspection of type 3 edges we have d0 = 0 and thus d1 = 1. First
assume that z1 is in the RESET regime, then z1

i = 1 for all 0 ≤ i ≤ N + 1 and
Lemma 5 says that the inputs of all gates g1

i are indifferent w.r.t. type 1 edges.
In particular this holds for v1 = (v1

i )i∈[n], so v1 = η0. By Lemma 3(b), η0 = w0.
Since z0

1 = 0, C0 is computing correctly and thus w0 = w(v0). Combining
this we get v1 = w(v0) which contradicts our assumption that z1 is in the
RESET regime. Thus z1 is in the COMPUTE regime. Since d1 = 1 we can
apply Lemma 8(a) to conclude z1

1 = 0, a contradiction.
z0
1 = 0 and z1

1 = 0: By Lemma 4 we have z0
0 = z1

0 = 0 and y0 = y1 = 1. Moreover
we know that both circuits are computing correctly. If d0 = 1 then d1 = 0 and d0

is indifferent w.r.t. type 3 edges. Since both circuits are computing correctly and
C(v0) ≥ C(v1), the type 4 edges enforce d0 = 0. But then d1 is indifferent w.r.t.
type 3 edges and the type 4 edges enforce d1 = 1. So, d0 = 0 and d1 = 1. If z1 is
in the RESET regime then Lemma 8(b) gives z1

1 = 1, a contradiction. Thus, z1

is in the COMPUTE regime. Since d1 = 1 we can apply Lemma 3(b). This and
the fact that C0 is computing correctly implies η0 = w(v0). So z1 can only be
in the COMPUTE regime if v1 = w(v0). Since C(v0) ≥ C(v1) this implies that
v0 = v1 is a local optimum for the circuit C.

This finishes the proof in case C(v0) ≥ C(v1). The case C(v0) < C(v1) is com-
pletely symmetric except here the conclusion v0 = v1 in the very last sentence
contradicts C(v0) < C(v0). So this case can’t happen in a local optimum.

Note that throughout the construction we made sure that no node is incident
to more than one negative edge. This completes the proof of Theorem 3. 	


The instance produced by this reduction has the property that no node is indif-
ferent between the two coalitions. This might be useful for other reductions.

Corollary 1. OneEnemyPartyAffiliation is PLS-complete even if re-
stricted to instances where no player is ever indifferent between the two
coalitions.
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Theorem 3 and Lemma 1 together establish that ISwithSwaps is PLS-complete
(Theorem 2). Throughout the proof we used only two coalitions. Since 2-IS can
be solved in polynomial time (Proposition 2), a PLS-hardness result for IS would
require more then two coalitions (unless PLS ⊆ P). We leave the complexity of
IS as an interesting open problem.
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Abstract. Recent results showed PPAD-completeness of the problem
of computing an equilibrium for Fisher’s market model under additively
separable, piecewise-linear, concave utilities. We show that introducing
perfect price discrimination in this model renders its equilibrium poly-
nomial time computable. Moreover, its set of equilibria are captured by
a convex program that generalizes the classical Eisenberg-Gale program,
and always admits a rational solution.

We also introduce production into our model; our goal is to carve
out as big a piece of the general production model as possible while still
maintaining the property that a single (rational) convex program cap-
tures its equilibria, i.e., the convex program must optimize individually
for each buyer and each firm.

1 Introduction

The search for efficient algorithms for computing market equilibria started with
much interest within theoretical computer science about a decade ago. The
goal was not only academic, i.e., providing an algorithmic ratification of Adam
Smith’s “invisible hand of the market,” but was also motivated by potential ap-
plications to the plethora of new and highly lucrative markets that have emerged
on the Internet.

This study started with the simple case of linear utility functions, for which
polynomial time algorithms were obtained [7, 11], and gradually moved on to
more general and realistic utility functions. However, the latter program had
limited success (most notably, an efficient algorithm for approximating equilib-
ria for the Fisher model under Leontief utilities [6, 21]), and was recently dealt
a serious blow, with results showing that the problem of computing an equi-
librium under even additively separable, piecewise-linear, concave utilities (plc
utilities) is PPAD-complete for both Arrow-Debreu and Fisher market models
[4, 5, 19]. Assuming P �= PPAD, this effectively rules out the existence of efficient
algorithms for almost all general and interesting classes of “traditional” market
models.
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On the other hand, markets in the West, based on Adam Smith’s free market
principle, seem to do a good job of finding prices that maintain parity between
supply and demand1. This has prompted the question (see [18]) of whether we
have failed to capture some essential elements of real markets in our models, and
what is the “right” model which is not only realistic and admits equilibria but
is also amenable to efficient computation of equilibria.

In this context, we show that Fisher markets with plc utilities can be rendered
computationally efficient by introducing perfect price discrimination2. Addition-
ally, we introduce firms into our model which act as sellers of goods, suppliers of
labor and producers of goods, or any combination of these activities. These firms
have initial endowments of goods and labor, and their goal is to maximize prof-
its by optimally producing and selling goods. Traditionally in economics, and in
the model studied by Arrow and Debreu [2], production satisfies non-increasing
returns to scale. This is the case in our model as well, though it is imposed in
a “piecewise-linear manner”. As a consequence of linearity, for given prices of
goods, the optimal operation of a firm is captured by an LP.

We show that equilibrium production and allocation for this market model is
captured via a single convex program, a generalization of the classic Eisenberg-
Gale convex program. The optimal dual of this program yields equilibrium prices.
Two interesting theorems are the following. First, each buyer gets a utility maxi-
mizing bundle of goods under the rules of price discrimination we have assumed.
Second, for each firm, the operation specified by the optimal solution to this
convex program is also the optimal solution for its LP, with the equilibrium
prices substituted into it. The idea behind the latter theorem goes back to [12];
however, our model of production is considerably more general than that in [12].

The notion of a rational convex program was introduced recently in [16], i.e.,
a nonlinear convex program that always has a rational solution of polynomial
bit size, if all its parameters are rational numbers. Starting with the celebrated
Eisenberg-Gale program, several convex programs arising in mathematical eco-
nomics and game theory are now known to be rational, see details in [17].

We prove that the program capturing our market model is also rational. In
particular, this implies that the ellipsoid method will yield the exact equilibrium
in polynomial time [10]. For the special case that firms act only as sellers of
goods, in the full paper, we will give a combinatorial polynomial time algorithm
as well. We will also generalize this model and assume that buyers have utility
for money, given by a piecewise-linear, concave function for each buyer. Now,
at equilibrium, a buyer may choose to not spend all of her money. We show
how to extend our polynomial time algorithm to this case as well. The solution
still turns out to be rational; however, we do not know of a convex program

1 For example, in the West, it is hard to see a sight that was commonplace in the
Soviet Union, with massive surpluses of some goods and empty shelves of others.

2 The model described in this paper was obtained in the process of attempting the
open problem, posed in [16], of obtaining a combinatorial algorithm for solving the
extension of game ADNB to plc utilities; linear utilities were assumed in ADNB.
Combinatorial insights obtained in the process led to the model.
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that captures this enhanced model. By exploiting the combinatorial structure
discovered in obtaining our algorithm, we will give a characterization of the
entire set of equilibria of this market. This will reveal the range of equilibrium
prices of each good and the range of profit that the middleman can accrue from
each buyer.

Using our convex program for the model with production, in the full paper,
we obtain surprisingly simple proofs of both welfare theorems – simpler even
than those for a normal Arrow-Debreu market model. We now give the key idea
behind our convex program. First, consider the simpler version of our model in
which firms are simply sellers of goods. Our convex program for this model is
the “natural” generalization of the Eisenberg-Gale program from linear to plc
utilities; however, it does not capture equilibria for Fisher markets with these
utility functions. The latter statement follows directly from the observation that
equilibria in the latter market model can be disconnected, however, the optimal
solutions of a convex progam form a convex set. Intuitively, introducing price
discrimination in this market model renders the set of equilibria convex. The
situation is somewhat analogous to that of Nash equilibrium. The set of optimal
strategies of the pure equilibria of a bimatrix game can be disconnected; however,
by introducing mixed strategies, it is rendered a convex set and hence suitable
for study with the Kakutani fixed point theorem.

Regarding extending the model to include production, our main goal was to
carve out as big a piece of the general production model as possible while main-
taining the property stated above, i.e., that a single convex program optimizes
individually for each firm, and at the same time, all constraints of the convex
program are linear (this leads to a proof of its rationality). We leave the open
problem of extending our combinatorial algorithm to the model with production.

2 The Market Model

2.1 Perfect Price Discrimination

Most businesses today charge different prices from different consumers for es-
sentially the same goods or services in order to maximize their revenues. This
practice is called price discrimination. It is not only widespread but also essential
for survival of certain businesses, e.g., in the airline industry. Price discrimina-
tion has been extensively studied in economics from many different angles; see
[20, 15, 14, 9, 8, 1, 3, 13] for just a small sampling of papers on this topic.

A monopolistic situation in which the business separates the market into
individual consumers and charges each one prices that they are willing and able
to pay is called perfect price discrimination. Of course, the business needs to have
complete information about each consumer’s preferences. An interesting feature
of our model is that in it, it is the consumers who decide at what rate they want
utility.

Our market model consists of buyers, firms and a middleman. As stated in the
Introduction, buyers have initial endowments of money with which they wish to
buy goods and maximize the utility accrued, and firms act as sellers of goods,
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suppliers of labor, producers of goods or any combination of these activities. The
firms have initial endowments of goods and labor, and their goal is to produce
and sell goods in a way that maximizes their profits at current prices of goods.

The middleman buys goods from the firms, which charge the middleman in
accordance with the prices set and the amounts bought. As stated above, buyers
decide at what rate they want utility, and the middleman sells to them goods
accordingly, with the only condition that he never sells any part of any good at
a loss – the fact that the middleman knows the buyer’s utility function enables
him to do this. We show below that under these circumstances, for any given
prices of goods, there is a unique optimal rate for each buyer. This is also the rate
that ensures that the marginal utility accured by the buyer per unit of money
spent is equal to the marginal cost of the goods she is receiving, as desired under
perfect price discrimination.

Thus, in our model, the elasticity among consumers leads to profit for the
middleman. If all buyers had linear utility functions for goods, then the mid-
dleman will make no profit. In our model we assume that the buyers have plc
utilities.

Prices for goods and labor are said to be equilibrium prices if with optimal op-
eration of each firm at these prices and optimal rates for each buyer, the market
clears, i.e., all the goods get sold to buyers and all of their money gets spent.

The set of all goods and types of labor in the system is denoted by G, |G| = nG.
Each good is asumed to be divisible, as is each unit of labor. Let B denote the
set of buyers, |B| = nB, and F denote the set of firms, |F | = nF . Assume that
the buyers are numbered from 1 to nB and are indexed by i, goods are numbered
from 1 to nG and are indexed by j, and the firms are numbered from 1 to nF

and are indexed by f .

An application to online display advertising marketplaces. Currently,
there are companies that sell ad slots on web sites to advertisers. In keeping
with our model, we will view such a company as the middleman, the owners
of web sites as sellers and the advertisers as buyers. We will view ad slots on
different web sites as different items, which need to be priced. An advertiser’s
utility for a particular ad slot is determined by the probability that her ad will
get clicked if it is shown on that slot; her total utility is additive over all the
slots she is allocated. Advertisers typically pay at fixed rate to the middleman
for the expected number of clicks they get, i.e., they are paying at fixed rate for
every unit of utility they get. Using knowledge of the utility function of buyers,
the middleman is able to price discriminate. Clearly, this setup is captured by
our model.

2.2 The Buyers and Their Utility Functions

Let mi ∈ Q+ dollars denote the initial amount of money possessed by buyer i ∈ B.
For each buyer i and good j we are specified a function f i

j : R+ → R+ which gives
the utility that i derives as a function of the amount of good j that she receives.
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Each function f i
j is a non-negative, non-decreasing, piecewise-linear, concave func-

tion. The overall utility of buyer i, ui(x) for a bundle x = (x1, . . . , xg) of goods,
is additively separable over the goods, i.e., ui(x) =

∑
j∈G f i

j(xj).
We will call each piece of f i

j a segment. Number the segments of each function
in order of decreasing slope. Let sijk, k = 1, 2, . . . denote the kth segment of
f i

j . Let lijk denote the amount of good j represented by segment sijk and uijk

denote the rate at which buyer i accrues utility per unit of good j received,
when she is getting an allocation corresponding to segment sijk. Clearly, the
maximum utility she can receive corresponding to segment sijk is uijk · lijk. We
will assume that uijk and lijk are rational numbers. Let Sij denote the set of
segments of function f i

j and let Si denote the set of all segments of buyer i, i.e.,
Si = ∪g

j=1Sij .

2.3 The Middleman and Determining Buyers’ Rates

Assume that the prices of goods are set at p = (p1, . . . , pg). Define the bang-per-
buck of segment sijk to be uijk/pj and denote it by bpb(sijk); clearly, this is the
amount of utility accured by i per dollar spent for an allocation corresponding
to segment sijk.

Suppose buyer i fixes her rate at ri which is the amount of utility she wants
per dollar. Then, for an allocation corresponding to segment sijk, the middle-
man is effectively charging the buyer uijk

ri
dollars per unit of j. In particular, if

bpb(sijk) < ri, then the middleman will be allocating this segment at a loss, i.e.,
at a price smaller than pj dollars per unit of j. Moreover, the larger bpb(sijk)/ri

is, the higher is the profit the middleman can make from allocations correwspond-
ing to this segment. Therefore, once i announces her rate, the middleman removes
from consideration all segments s ∈ Si such that bpb(s) < ri, and allocates to
i goods corresponding to segments that gives him the highest profit, until i
exhausts her money.

Now, given how the middleman responds to prices and rates, what rate max-
imizes the utility of a buyer i? We will define a rate r∗i , which we will call the
optimal rate of buyer i, as a function of prices p, and show that this rate maxi-
mizes buyer i’s utility. The overall objective is to find prices for goods such that
if the buyers report their optimal rates, the market clears under above transac-
tions, i.e., there is no surplus or deficiency of any good. This is our notion of
equilibrium for the market.

Rate r∗i is obtained as follows. Sort all segments in Si by decreasing bang-
per-buck and start with a sufficiently large number α. Consider all segments
s ∈ Si such that bpb(s) ≥ α, and add up their total utilities. We will denote this
by t(α), i.e., t(α) =

∑
s∈Si: bpb(s)≥α utility(s). Now the cost of buying goods

corresponding to all these segments at rate α is t(α)/α. When α is very large,
this will be less than mi. Observe that as α is decreased, this number increases
monotonically. Now r∗i is the largest value of α such that this number is ≥ mi.
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Formally,

r∗i (p) = arg max
α

{
t(α)
α

≥ mi

}
.

We will denote r∗i (p) by simply r∗i when its meaning is clear from the context.
The following lemma is straightforward.

Lemma 1. Rate ri equals r∗i if and only if when buyer i picks ri as her rate,
each segment s such that bpb(s) > ri is fully allocated to her, and corresponding
to segments s such that bpb(s) = ri, i is allocated just the right amount of goods
so that her total utility adds up to ri · mi.

Lemma 2. For any prices p, rate r∗i maximizes the utility for buyer i.

Proof. If the rate is fixed at α < r∗i , then α · mi < r∗i · mi and therefore i will
be allocated smaller utility. Next consider fixing the rate at β > r∗i . Let s be
the smallest bang-per-buck of an allocated segment at rate r∗i . If bpb(s) = r∗i ,
then at rate β she will accrue smaller utility. Otherwise, for bpb(s) ≥ β ≥ r∗i , i
will still be allocated r∗i · mi utility and for β > bpb(s), she will accrue strictly
smaller utility. This proves the lemma.

2.4 The Firms and Their Capabilities

Our model allows firms to have a rich set of capabilities, in particular, allowing
them to model non-increasing returns to scale as was assumed in the Arrow-
Debreu model. For sake of clarity, we first present the model assuming constant
returns to scale. In this model, each firm f ∈ F has variables yjf corresponding
to each good j ∈ G which represent the amount of this good that it sells or
buys in the market; yjf is positive if the firm sells good j, negative if it buys
it, and zero otherwise. The objective of the firm is to maximize its profit, which
at prices p = (p1, . . . , pg) will be

∑
j∈G pj · yjf . Let cjf denote this firm’s initial

endowment of good j. In our model there is no need to partition the goods into
raw materials and manufactured goods or to differentiate between goods and
labor.

In order to formally state the various production processes of this firm, we will
use auxiliary variables which are local to this firm. We will denoted these by zlf ,
i.e., they are indexed by l. The constraints imposed on production are all assumed
to be linear and are indexed by m. Thus the set of constraints for firm f are:

∀m :
∑
j∈G

am
jf · yjf +

∑
l

bm
lf · zlf ≤ dm

f ,

where am
jf , bm

lf and dm
f are constants determined by the production processes

of firm f . In particular, some of the dm
f ’s may be the initial endowments, i.e.,

cjf ’s. The variables yjf are unconstrained; however, zlf ’s are constrained to be
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nonnegative. Clearly, the optimal operation of a firm can be stated as a linear
program.

Next, we give some illustrative examples. First, consider a firm that does not
produce anything but only acts as a seller. It sells its initial endowment of goods
in the market at the going prices. Clearly, its LP only needs constraints of the
form yjf ≤ cjf .

Second, consider a firm that has an initial endowment, c1f of good 1, and is
able to produce goods 8 and 9. However, for this, it will need to buy goods 2
and 3. The production also requires good 1. If the amount of good 1 needed for
production is less than c1f , firm f sells the excess in the market, and if it is
greater than c1f , firm f will need to buy additional amounts of good 1 from the
market. Assume that good 8 is produced using goods 1 and 2, and that good
9 is produced using goods 1 and 3. However, goods 8 and 9 are produced via
qualitatively different processes. To produce a unit of good 8, the firm uses up α
units of good 1 and β units of good 2. On the other hand, good 9 can be produced
using either good 1 or good 3, with a unit of good 1 producing γ units of good 9
and a unit of good 3 producing δ units of good 9. These production constraints
are captured by the following linear constraints, using auxiliary variables z1f and
z2f : y1f +z1f +z2f ≤ c1f , y8f ≤ α ·z1f , y8f ≤ β ·y2f , and y9f ≤ γz2f +δ ·y3f The
objective of this firm is to maximize p1 ·y1f +p2 ·y2f +p3 ·y3f +p8 ·y8f +p9 ·y9f .

Next, we introduce non-increasing returns to scale in our model, though in a
“piecewise-linear” manner. Thus the production of good j by firm f is partitioned
into schedules, as a function of the amount of j produced. The schedules are
indexed by r. Let yjfr denote the amount of good j produced in the rth schedule
and let ρfj denote the total number of schedules for producing good j in firm
f . For each schedule, possibly other than the last one, there is a bound on the
amount of good that can be produced in that schedule, i.e., a constraint of the
form yjfr ≤ α, for some constant α. Each raw material and labor required is non-
decreasing as a function of the schedule, so that the earlier schedules produce
goods at higher profits. The enhanced constraints now required are:

∀m :
∑
j∈G

am
jf · yjf +

∑
j∈G,r≤ρjf

em
jfr · yjfr +

∑
l

bm
lf · zlf ≤ dm

f ,

where em
jfr’s are constants. Since the overall goal of the firm is to maximize

profit, it will produce good j up to capacity in earlier schedules before starting
production in the next schedule.

3 A Rational Convex Program for the Fixed Supply Case

In this section we give a convex program whose optimal primal and dual variables
capture the equilibrium prices p and rates r for the price discrimination market
model when the goods are given in a fixed supply. Then we will show the existence
of equilibrium prices and rates that can be represented using rational numbers.

Let xijk denote the amount of good j that is allocated to buyer i from the
kth segment sijk of Sij . Consider the following convex program:
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maximize
∑
i∈B

mi log(ui) (1)

subject to ∀i ∈ B : ui =
∑
j∈G

∑
k∈Sij

uijkxijk

∀j ∈ G :
∑
i∈B

∑
k∈Sij

xijk ≤ 1

∀i ∈ B, ∀j ∈ G, ∀k ∈ Sij : xijk ≤ lijk

∀i ∈ B, ∀j ∈ G, ∀k ∈ Sij : xijk ≥ 0

Here the first constraint is ensuring that ui is the total utility of buyer i, the
second constraint is saying that the total good sold should not be more than one,
and the third constraint is saying that the amount allocated from each segment
should not exceed its size.

Let pj be the dual variable corresponding to good j in the second set of
constraints above. We will prove the following theorem in this section:

Theorem 1. Prices p are equilibrium prices if and only if they form an optimal
dual solution to convex program 1.

We will make two mild assumptions:

1. For every good j,
∑

i,k: uijk>0 lijk > 1; that is, the supply of every good is
limited w.r.t the total demand of the buyers if there were no prices.

2. Each buyer i desires some good; that is, uijk > 0 for some segment sijk of
every buyer i.

Note that, because of the 2nd assumption, in the optimal solution of the above
convex program, ui > 0 for every buyer i. Also the optimal solution satisfies
the following property: xijk > 0 ⇒ xijt = lijt ∀t < k. This is so because if the
property is not true, we can transfer some quantity from the segment sijk to a
segment sijt (for some t < k) and get a strictly higher objective function value.
Thus the final allocation obtained is a valid allocation.

The KKT conditions for the above convex program are:

(1) ∀j ∈ G : pj ≥ 0,
(2) ∀i ∈ B, ∀j ∈ G, ∀k ∈ Sij : qijk ≥ 0,
(3) ∀j ∈ G : pj > 0 ⇒ ∑

i∈B

∑
k∈Sij

xijk = 1.
(4) ∀i ∈ B, ∀j ∈ G, ∀k ∈ Sij : qijk > 0 ⇒ xijk = lijk,
(5) ∀i ∈ B, ∀j ∈ G ∀k ∈ Sij : pj + qijk ≥ mi.uijk

ui
.

(6) ∀i ∈ B, ∀j ∈ G ∀k ∈ Sij : xijk > 0 ⇒ pj + qijk = mi.uijk

ui
.

We will call pj to be the price of good j, and qijk to be the price differential,
which is unique for each buyer i, good j, and segment k ∈ Sij . Also define the
rate of a buyer i (ri) to be ui

mi
. Note that from equation (6), for any segment

sijk for which xijk is positive: ri = ui

mi
= uijk

pj+qijk
≤ uijk

pj
. Thus if a segment s is

allocated, fully or partially, to buyer i, its bang-per-buck value is at least ri.
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Lemma 3. Corresponding to prices p given by the KKT conditions, the rate
ri = ui

mi
is optimal for each buyer i.

Proof. Suppose that for some segment sijk, uijk

pj
> ri = ui

mi
, then from the 5th

KKT condition, we get that qijk is strictly positive, which from the 4th KKT
condition implies that xijk = lijk. Thus, from lemma 1 and lemma 2, we get
that the rate ri = ui

mi
is optimal for each buyer i.

Lemma 4. Under assumption 1, for every good j, pj is strictly positive and j
is exactly sold, i.e.,

∑
i,k xijk = 1.

Proof. Suppose that the price of some good j is zero. Then from the 5th condition
above, qijk > 0 for every segment sijk for which uijk > 0. Thus along with
4th condition, this will imply that

∑
i,k xijk > 1 which violates the constraint∑

i,k xijk ≤ 1 in the convex program. Thus the price of every good is strictly
positive. Using 3rd condition, this implies that every good is completely sold,
i.e.,

∑
i,k xijk = 1.

From the above observations, finding an optimal solution of the above convex
program (1) is equivalent to finding a price vector p, a rate vector r, and alloca-
tions of the goods to the buyers (vector x) that satisfy the following equilibrium
conditions.

1. For prices p, the rate ri = ui

mi
is optimal for each buyer i. Moreover, since

ui > 0, buyer i spends his money completely.
2. No portion of a segment s is sold to a buyer i, if bpb(s) < ri.
3. All goods are sold out completely.

Thus, if prices p are optimal dual variables of the above convex program then
these prices are also equilibrium prices.

Now, suppose we are given equilibrium prices p; we will show that these prices
are also optimal dual variables. Given equilibrium prices, there exists optimal
rates r of buyers and allocation of goods x to the buyers, so that a segment s
is allocated to buyer i only if bpb(s) ≥ ri. Moreover, if bpb(s) > ri, then the
segment s is fully allocated to buyer i. We will show the existence of variables
qijk’s such that the KKT conditions are satisfied: if uijk

pj
≥ ui

mi
, set qijk so that

uijk

pj+qijk
= ui

mi
, else set qijk = 0. It is not difficult to see that these qijk ’s along

with p, r, and x satisfies the KKT conditions. Thus prices p are optimal dual
variables. This finishes the proof of theorem 1.

Theorem 2. If all the utilities uijk’s are rational, then there exists prices which
are rational and the rates are rational. Moreover, they can be written using poly-
nomially many bits in the length of the instance.

4 Introducing Production into the Convex Program

In this section we will introduce production into the convex program. Instead of
assuming that there is a fixed supply of goods, we will assume that the goods
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are produced by firms as discussed in section 1 and 2. We will show that a
single convex program can still be used to simultaneously optimize for each
firm’s objective function. For the ease of exposition, we will first assume constant
returns to scale. All the results can easily be extended for non-increasing returns
to scale. Suppose given prices c, firm f is optimizing the following linear program:

maximize
∑
j∈G

cj · yjf (2)

subject to ∀m :
∑
j∈G

am
jf · yjf +

∑
l

bm
lf · zlf ≤ dm

f

Let xijk denote the amount of good j which is allocated to buyer i corre-
sponding to the kth segment sijk of Sij . Consider the following convex program:

maximize
∑
i∈B

mi log(ui) (3)

subject to ∀i ∈ B : ui =
∑
j∈G

∑
k∈Sij

uijkxijk

∀j ∈ G :
∑
i∈B

∑
k∈Sij

xijk ≤
∑
f∈F

yjf

∀f ∈ F, ∀m :
∑
j∈G

am
jf · yjf +

∑
l

bm
lf · zlf ≤ dm

f

∀i ∈ B, ∀j ∈ G, ∀k ∈ Sij : xijk ≤ lijk

∀i ∈ B, ∀j ∈ G, ∀k ∈ Sij : xijk ≥ 0

∀f ∈ F, ∀l : zlf ≥ 0

Here the first constraint is ensuring that ui is the total utility of buyer i,
the second constraint is ensuring that the total amount of any good sold to
the buyers should not be more than what is produced by the firms, the third
constraint is capturing the production constraints of the firms, and the fourth
constraint is saying that the amount allocated in each segment should not exceed
its size.

Our main theorem is the following:

Theorem 3. Prices p are equilibrium prices if and only if they form an optimal
dual solution to convex program (3). Moreover, equilibrium production is captured
by an optimal solution to primal variables yjk’s.

To prove the above theorem, we will again consider KKT equations. We will show
that the KKT equations have two different components, one which corresponds
to optimization of the buyers as was shown in previous section and other which
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corresponds to optimization of the firms. Following are the KKT conditions of
convex program (3).

(1) ∀j ∈ G : pj ≥ 0,
(2) ∀f ∈ F, ∀m : αm

f ≥ 0,
(3) ∀i ∈ B, ∀j ∈ G, ∀k ∈ Sij : qijk ≥ 0,
(4) ∀j ∈ G : pj > 0 ⇒ ∑

i∈B

∑
k∈Sij

xijk =
∑

f∈F yjf .
(5) ∀i ∈ B, ∀j ∈ G, ∀k ∈ Sij : qijk > 0 ⇒ xijk = lijk,
(6) ∀f ∈ F, ∀m : αm

f > 0 ⇒ ∑
j∈G am

jf · yjf +
∑

l b
m
lf · zlf = dm

f ,
(7) ∀i ∈ B, ∀j ∈ G ∀k ∈ Sij : pj + qijk ≥ mi.uijk

ui
.

(8) ∀i ∈ B, ∀j ∈ G ∀k ∈ Sij : xijk > 0 ⇒ pj + qijk = mi.uijk

ui
.

(9) ∀f ∈ F, ∀l :
∑

m bm
lf .αm

f ≥ 0
(10) ∀f ∈ F, ∀l : zlf > 0 ⇒ ∑

m bm
lf .αm

f = 0
(11) ∀j ∈ G, ∀f ∈ F :

∑
m am

jf .αm
f = pj

As earlier, we will call pj to be the price of good j, and qijk to be the price
differential which is unique for each buyer i, good j, and segment k ∈ Sij .

Lemma 5. Convex program (3) optimizes each firm’s profit at equilibrium.

Since the supply of goods is not fixed, we won’t make an assumption similar
to the first assumption in the previous section. Instead, we will work with a
slightly different, but standard, definition of equilibrium that if a good is not
sold completely, then its price must be zero. Following lemma easily follows from
the 4th KKT condition.

Lemma 6. For every good j, either price pj is zero or j is exactly sold, i.e.,∑
i,k xijk = 1. For prices p given by the KKT conditions, the rate ri = ui

mi
is

optimal for each buyer i.

Thus we have shown that optimal solution of the convex program satisfies the
following equilibrium conditions:

1. For prices p, the rate ri = ui

mi
is optimal for each buyer i. Moreover, since

ui > 0, buyer i spends his money completely.
2. No portion of a segment s is sold to a buyer i, if bpb(s) < ri.
3. If the price of some good is strictly positive, it is sold out completely.
4. Each firm’s production optimizes its profit.

The proof of the other direction, that any equilibrium solution is also a solution
to the convex program, is similar to that in Section 3. This completes the proof
of Theorem 3. The following theorems will be proved in the full paper.

Theorem 4 (First Welfare). The utilities accrued by buyers at quilibrium
prices p and rates r are Pareto efficient.

Theorem 5 (Second Welfare). For any Pareto efficient utilities u∗, there
exists a choice of money vector of buyers under which equilibrium utilities are
u∗.
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Abstract. The king of refinements of Nash equilibrium is trembling
hand perfection. We show that it is NP-hard and Sqrt-Sum-hard to
decide if a given pure strategy Nash equilibrium of a given three-player
game in strategic form with integer payoffs is trembling hand perfect.
Analogous results are shown for a number of other solution concepts, in-
cluding proper equilibrium, (the strategy part of) sequential equilibrium,
quasi-perfect equilibrium and CURB.

The proofs all use a reduction from the problem of comparing the
minmax value of a three-player game in strategic form to a given rational
number. This problem was previously shown to be NP-hard by Borgs et
al., while a Sqrt-Sum hardness result is given in this paper. The latter
proof yields bounds on the algebraic degree of the minmax value of a
three-player game that may be of independent interest.

1 Introduction

Celebrated recent results [10,6,13] concern the computational hardness of finding
a Nash equilibrium of a given finite game in strategic form, i.e., a game given
by a finite payoff matrix for each of the players. In contrast, the problem of
deciding whether a given strategy profile of a game in strategic form is a Nash
equilibrium is trivial to solve efficiently. This latter fact can be regarded as an
important feature of Nash equilibrium as a scientific concept: It is feasible to
verify or falsify that a particular pure strategy profile we observe “in nature” is
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in equilibrium. The main message of the present paper is that this feature is not
shared by standard refinements of Nash equilibrium.

Arguably [9], the most important refinement of Nash equilibrium for games
in strategic form is Selten’s [25] notion of trembling hand perfection. The set of
trembling hand perfect equilibria is in general a subset of the Nash equilibria
of a game and many “unreasonable” Nash equilibria are not trembling hand
perfect, thus justifying the notion. However, we prove that this added degree
of rationality of the solution concept comes at a cost. We prove: It is NP-hard
to decide if a given pure strategy Nash equilibrium of a given three-player game
in strategic form is trembling hand perfect. In particular, unless P=NP, there
is no polynomial time algorithm for deciding if a given equilibrium of a given
three-player game in strategic form is trembling hand perfect. In contrast to the
above hardness result, one may efficiently determine if a given equilibrium of a
two-player game is trembling hand perfect. Indeed, for the two-player case, an
equilibrium is trembling hand perfect if and only if it is undominated [9] and
this can be checked by linear programming in polynomial time.

The hardness result is extended to a number of other refinements, including
properness [24], sequential equilibrium1 [21] and quasi-perfect equilibrium [8] of
extensive form games, and the discrete solution concept CURB (Closed Under
Rational Behavior) [1], where the proof yields coNP-hardness. In all cases, the
hardness result is shown for games with three players. As is the case with trem-
bling hand perfection, CURB sets of two-player game can be verified and found
in polynomial time, using linear programming techniques [3].In contrast, we do
not know if the two-player case is easy for properness and quasi-perfection, and
leave this as an open problem.

After establishing the NP-hardness result, we next ask if the problem of de-
ciding whether an equilibrium is trembling hand perfect (or satisfies any of the
other refinements notions we consider) is even in NP. An NP-membership re-
sult would be somewhat beneficial for the status of an equilibrium concept as
a useful scientific concept, as it would mean that we can at least, with some
ingenuity, verify that a situation is in equilibrium, even if we can not in general
falsify this efficiently. For deciding trembling hand perfection, it seems that an
obvious nondeterministic algorithm would be to guess and verify a lexicographic
belief structure and appeal to the characterizations of Blume et al [4] and Govin-
dan and Klumpp [15] of trembling hand perfection in terms of these. However,
it is not clear if the real numbers involved in such a belief structure can be
represented as polynomial length strings over a finite alphabet in a way that
yields to efficient verification. To argue that it is fact not possible to do so using
current knowledge, we apply the notion of Sqrt-Sum hardness introduced by
Etessami and Yannakakis [12]. In particular, we show that deciding trembling
hand perfection (and all the other refinements considered) is Sqrt-Sum hard
and therefore not in NP unless Sqrt-Sum is in NP. Hence, devising a compact
representation of belief structures witnessing trembling hand perfection would
solve a long standing open problem of numerical analysis.

1 To be precise, the “strategy part” of a sequential equilibrium.
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The hardness proofs all use a reduction from the problem of comparing the
minmax value of a game in a strategic form to a given rational number. This
problem was previously shown to be NP-hard by Borgs et al., [5], while the
Sqrt-Sum hardness result is given in this paper. The latter proof yields bounds
on the algebraic degree of the minmax value of a three-player game that may be
of independent interest.

1.1 Related Work

As mentioned, there is a lot of work on hardness of finding equilibria when the
game is given as input, or checking whether equilibria with certain properties
exists when the game is given as input. In contrast, we are not aware of much
previous work on the complexity of determining whether a given equilibrium
satisfies a refined stability notion. An exception is Etessami and Lochbihler [11]
who show that it is NP-hard to determine if a given strategy in a symmetric
game in strategic form is an evolutionarily stable strategy.

2 NP-hardness of Trembling Hand Perfect and Proper
Equilibrium

We recall the definitions of Selten [25]. For a motivation and discussion of the
solution concept, we refer to the excellent monograph of van Damme [9].

Definition 1 (ε-perfect equilibrium). A strategy profile σ is an ε-perfect
equilibrium iff it assigns strictly positive probability to all pure strategies, and
only pure strategies that are best replies get probability more than ε.

Definition 2 (Trembling hand perfect equilibrium). A strategy profile σ
is a trembling hand perfect equilibrium iff is the limit point of a sequence of
ε-perfect equilibria with ε → 0+.

Theorem 1. It is NP-hard to decide if a given pure strategy Nash equilibrium
of a given three-player game in strategic form is trembling hand perfect.

Proof. Our proof is a reduction from the problem of approximately computing
minmax values of 3-player games with 0-1 payoffs. The minmax value of a 3-
player game is the smallest number v so that player 2 and player 3 can guarantee,
using uncorrelated mixed strategies, that player 1 does not get an expected payoff
larger than v. The problem of approximately computing this value was recently
shown to be NP-hard by Borgs et al [5]. In particular, it follows from Borgs et
al. that the following promise problem MINMAX is NP-hard:
MINMAX:

1. YES-instances: Pairs (G, r) for which the minmax value for Player 1 in the
3-player game G is strictly smaller than the rational number r.

2. NO-instances: Pairs (G, r) for which the minmax value for Player 1 in G is
strictly greater than r.
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In fact, by multiplying the payoffs of the game with the denominator of r,
we can without loss of generality assume that r is an integer. We now reduce
MINMAX to deciding trembling hand perfection.

Let G be a three-player game in strategic form and let r be an integer. We
define G′ be the game where the strategy space of each player is as in G, except
that it is extended by a single pure strategy, ⊥. The payoffs of G′ are defined
as follow. The payoff to Players 2 and 3 are 0 for all strategy combinations.
The payoff to Player 1 is r for all strategy combinations where at least one
player plays ⊥. For those strategy combinations where no player plays ⊥, the
payoff to player 1 is the same as it would have been in the game G. Obviously,
μ = (⊥,⊥,⊥) is a Nash equilibrium of G′.

We claim that if the minmax value for Player 1 in G is strictly smaller than
r, then μ is a trembling hand perfect equilibrium of G′. Indeed, let (τ2, τ3) be a
minmax strategy profile of Players 2 and 3 in G. Let τ be any profile of G′ where
Players 2 and 3 play (τ2, τ3). Also, let u be the strategy profile of G′ where each
player mixes all pure strategies uniformly. Now define

σk = (1 − 1
k
− 1

k2 )μ +
1
k

τ +
1
k2 u

We have that σk is a fully mixed strategy profile of G′ converging to μ as
k → ∞. Also, for sufficiently large k, the strategies of μ are best replies to
σk. This follows from the fact that Players 2 and 3 are indifferent about the
outcome and the fact that Player 1 gets payoff r by playing ⊥ while he gets a
payoff strictly smaller than r for large values of k by playing any other strategy.
We conclude, using Theorem 2.2.5 in van Damme [9], that μ is trembling hand
perfect, as desired.

On the other hand, we claim that if the minmax value for Player 1 in G is
strictly greater than r, then μ is a not a trembling hand perfect equilibrium of
G′. Indeed, let (σk,1, σk,2, σk,3)k be any sequence of fully mixed strategy profiles
converging to (⊥,⊥,⊥). Since σk,2 and σk,3 do not put all their probability mass
on ⊥, Player 1 has a reply to (σk,2, σk,3) with an expected payoff strictly greater
than r. Therefore, ⊥ is not a best reply of Player 1 to (σk,2, σk,3) and we conclude
that (⊥,⊥,⊥) is not trembling hand perfect.

That is, we have reduced the promise problem MINMAX to deciding trembling
hand perfection and are done. �
We now refine the proof so that it applies to proper equilibrium. Proper equilib-
rium was introduced by Myerson [24] as a further refinement of trembling hand
perfect equilibrium. For a motivation and discussion of the solution concept, we
refer to the excellent monograph of van Damme [9] or the survey of Hillas and
Kohlberg [18].

Definition 3 (ε-proper equilibrium). A strategy profile σ is an ε-proper equi-
librium iff it assigns strictly positive probability to all pure strategies, and the fol-
lowing condition holds: Given two pure strategies, pi and pj, of the same player.
If pi is a worse reply against σ than pj, then σ must assign a probability to pi

that is at most ε times the probability it assign to pj.
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Definition 4 (Proper equilibrium). A strategy profile σ is a proper equilib-
rium iff is the limit point of a sequence of ε-proper equilibria with ε → 0+.

Theorem 2. It is NP-hard to decide if a given pure strategy Nash equilibrium
of a given three-player game in strategic form is proper.

Proof. We only need to make minor changes to the proof of NP-hardness of
trembling hand perfection to get the same result for proper equilibria. Construct
the game in the same way, with a new strategy⊥ for each player. Define the strat-
egy τ1,k for Player 1 to be a permutation of (1 −∑i k−i, k−1, k−2, . . . , k−n+1),
such that worse replies against (τ2, τ3) get more negative powers of k. In case two
pure strategies are equal against (τ2, τ3), compare against the uniform mix u of
Players 2 and 3, again with the worse reply getting the more negative powers of
k. This can be achieved by sorting the strategies of Player 1 lexicographically on
payoff against (τ2, τ3) and the uniform strategy u, and then assigning powers in
decreasing order to the lower indices. Define τk = (τ1,k, τ2, τ3), νk = (τ1,k, u, u),
and μ = (⊥,⊥,⊥). Now define

σk = (1 − 1
k
− 1

k2 )μ +
1
k

τk +
1
k2 νk

σk is fully mixed of all finite k. Furthermore, if the minmax value for Player 1 in
G is less than r, then for any sufficiently large k, better replies of Player 1 gets
k′ times higher probability than worse replies, thus satisfying the condition for
being a 1

k′ -proper equilibrium, with k′ = k/(1−∑i k−i). Since σk tends towards
μ as k → ∞, we therefore have that μ is a proper equilibrium. If the minmax
value for Player 1 in G is greater than r, μ is not even trembling hand perfect,
and therefore not proper either. μ is therefore proper if and only if the minmax
value for Player 1 in G is less than r. �

3 NP-hardness of Refinements of Nash Equilibria for
Extensive form Games

An extensive form game is given by a finite tree with payoffs for each player at
the leaves, information sets partitioning nodes of the tree and with some of the
nodes having predefined moves of chance. An information set is a collection of
nodes of the same player, where the player cannot distinguish between them.
This can be used to model information hidden from the player, both as actively
hidden information in a game over time, and as a way of modelling simultaneous
moves. A player is said to have perfect recall if for each of the player’s information
sets, all nodes in the set share the same sequence of actions and information sets
of the player on the path from the root to the nodes. A game is said to be of
perfect recall, if all players have perfect recall. This is a standard assumption to
make, and one that the game produced by our reduction will satisfy.

Actions of a player are denoted by labels on edges of the tree. A behavior
strategy assigns probabilities to actions such that it forms probability distribu-
tions over the actions for each of the information sets. A Nash equilibrium in



The Computational Complexity of Trembling Hand Perfection 203

behavior strategies is a profile of behavior strategies so that no player wants to
deviate, given that other players play according to the profile. As is the case of
games in strategic form, it is straightforward to verify in polynomial time that
a given profile is a Nash equilibrium. For details, see e.g., Koller, Megiddo and
von Stengel [20] or any textbook on game theory.

The most important refinement of Nash equilibrium for game in sequential
form is the notion of sequential equilibrium due to Kreps and Wilson [21] is based
on the notion of beliefs. Formally, a belief of a player is a probability distribution
on each of his information sets. Intuitively, the belief should indicate the sub-
jective probability of the player of being in each of the nodes in the information
set, given that he has arrived at this information set. An assessment (ρ, μ) is a
strategy profile ρ, and a belief profile μ: a belief for each of the players. A se-
quential equilibrium is an assessment which is (1) consistent and (2) a sequential
best reply against itself, the former notion capturing that the beliefs are sensi-
ble given the strategies, and the latter notion capturing that the strategies are
sensible given the beliefs. We define these two notions formally next.

We first define consistency for fully mixed strategy profiles, i.e., ones where
every action in every information set has a strictly positive probability of be-
ing taken. For such a strategy profile, the induced belief profile is the unique one
consistent with the strategy profile: The strategies being played out against each
other induces a probability distribution on possible plays; the induced belief as-
signs to information set u the conditional probability distribution on u derived
from this probability distribution. This is well-defined as at most one node in
u may be reached during each particular play (due to the perfect recall prop-
erty) and u has a non-zero probability of being reached (as the strategies are
fully mixed). The contribution of Kreps and Wilson is a generalization of this
consistency notion to strategy profiles where some of the information sets may
be reached with probability 0: For this general case, we say that an assessment
is consistent if it is the limit point of a sequence of consistent assessments with
fully mixed strategy profiles.

We next define what it means to be a sequential best reply against itself. For
each player, a strategy profile will assign an expected value to each node of the
tree, which is the expectation over the leaves given than play starts at that node
and follows the given probabilities of play. Given a belief as well, we can assign
an expected value to each action, being the expected value of the node reached
by taking the action for each node, weighted by the probability given by the
belief. An assessment is said to be a sequential best reply against itself, if all
players only assign positive probability to actions with maximal expected payoff,
given the strategy profile and belief.

Note that a sequential equilibrium is an assessment, i.e., a behavior strategy
profile and a belief profile. Our NP-hardness result applies when the input is the
“strategy-part” only.

Theorem 3. Given a pure strategy profile of an extensive form three-player
game, it is NP-hard to decide if it is part of an assessment that is a sequential
equilibrium.
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Proof. The reduction is again similar to that of trembling hand perfection. Given
a game G in strategic form, construct an extensive form game G′ where the
players choose an action of G in turn, but without revealing the choice to the
other players. Player 2 chooses first, then Player 3, and finally Player 1. Each
Player now has a single information set, and the game is strategically equivalent
to G. Now give each player a new action ⊥. If this action is chosen, the game
ends immediately without having the remaining players choose and action. If ⊥
is chosen by either player, the payoff to Player 1 is r, otherwise it is simply the
payoff from G.

2

r 3 3

r 1 1

r u(1, 1, 1) u(n, 1, 1) r u(1, n, n) u(n, n, n)

Fig. 1. The extensive form game G′

We now argue that μ = (⊥,⊥,⊥) is part of a sequential equilibrium iff the
minmax value of Player 1 in G is less than r.

Define τ to be some strategy profile where Players 2 and 3 play minmax
against Player 1, and let u be the strategy profile with all players playing the
uniform distribution. As in the previous proofs, let

σk = (1 − 1
k
− 1

k2 )μ +
1
k

τ +
1
k2 u

σk is fully mixed of all finite k. Furthermore, if the minmax value for Player 1
in G is less than r, then for any sufficiently large k, ⊥ will be the unique best
reply of Player 1 against σk. This also means that the expected value for Player
1 of choosing ⊥ given the induced belief of σk will be strictly higher than for all
other actions, and this will also hold for the limit.

On the other hand, if the minmax value is greater than r, no strategy of
Players 2 and 3 will make ⊥ be the best reply of Player 1. Therefore, no belief
(consistent with a strategy of Players 2 and 3) will give a maximal expected
payoff to Player 1 playing ⊥.

μ is therefore part of a sequential equilibrium if and only if the minmax value
for Player 1 in G is less than r. �
Theorem 3 begs the following question: Can one check in polynomial time if
an entire assessment (a strategy profile and a belief profile) given as input is a
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sequential equilibrium? Kohlberg and Reny [19] present a finite-step algorithm
performing this task, but as they state it, their algorithm is exponential. It is
not clear to us if this problem is in P or if it is NP-hard and we consider this an
interesting open problem. It is interesting to note that this is in some contrast
with the situation for strategic form games: Perfect and proper equilibrium of
strategic form games can also be “backed up” by belief structures [4,15] and if a
rational-valued belief structure is given as part of the input, it is straightforward
to verify the equilibrium condition (however, as we argue in Section 5, a given
perfect strategy profile may require belief structures with no polynomial-size
representation - in particular, using algebraic numbers of very high degree may
be necessary).

A refinement of (the strategy part of) sequential equilibrium is quasi-perfect
equilibrium [8]. Despite the fact that quasi-perfect equilibrium is a lesser known
refinement that sequential equilibrium, it has been argued strongly by Mertens
[22] (see also [18]) that quasi-perfect equilibrium is the “right” equilibrium no-
tion of extensive form games. We omit the technically involved definition of
quasi-perfection, but note that it is straightforward to check that the reduction
in the proof of Theorem 3 maps “yes”-instance to equilibria that are not only se-
quential but also quasi-perfect. Since quasi-perfect equilibrium refines sequential
equilibrium, we also have that the reduction maps “no”-instances to equilibria
that are not quasi-perfect. Therefore we have the following corollary.

Corollary 1. It is NP-hard to decide if a given pure strategy Nash equilibrium
of a given three-player game in extensive form is quasi-perfect.

4 coNP-hardness of CURB Sets

A set valued solution concept is Strategy Sets Closed Under Rational Behavior
(CURB) [1].

Definition 5 (CURB set). In an m-player game, a family of sets of pure
strategies, S1, S2, . . . , Sm with Si being a subset of the strategy set of player i, is
closed under rational behavior (CURB) iff for all pure strategies x of Player i
so that x is a best reply to some product distribution on S1 × S2 × · · · × Si−1 ×
Si+1 × · · · × Sm, we have that x ∈ Si.

CURB sets are guaranteed always to exist, as the set of all pure strategies is
trivially CURB, as there are no pure strategies outside the set. The CURB
condition is usually paired with a minimality condition, so as not to get unnec-
essarily large solutions. This minimality condition would be the obvious place
to look for coNP-hardness, but we show here that simply checking the CURB
condition is coNP-hard. This also implies that it is not obvious that minimality
should even be contained in coNP.

Theorem 4. It is coNP-hard to check whether a set of n pure strategies of each
player is CURB in an (n + 1) × n× n strategic form game with integer payoffs.
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Proof. We again reduce from MINMAX, so let G be a three-player game in
strategic form and let r be an integer. We define G′ be the game where the
strategy space of each player is as in G, except that Player 1 gets an additional
strategy, ⊥. The payoffs of G′ are defined as follow. The payoff to Players 2 and
3 are 0 for all strategy combinations. The payoff to Player 1 is r, if he plays ⊥,
and otherwise the payoff to player 1 is the same as it would have been in the
game G.

Now, the minmax value of G is less than r iff the set of all pure strategies
except ⊥ is CURB in G′. Indeed, if the minmax value of G is less than r, then
Player 1’s best reply to the optimal treat of Players 2 and 3 is ⊥ in G′. The set
of all pure strategies except ⊥ is therefore not CURB. If the minmax value of
G is greater than r, then ⊥ is never a best reply in G, and the set of all other
strategies is CURB. �

5 Sqrt-Sum-hardness

Sqrt-Sum is the following decision problem [16,14]: Given positive integers
a1, a2, . . . , an, k, decide whether

∑n
i=1

√
ai < k.

Though it is not unlikely that this problem is in P, we do not even know
if it is in NP at the moment. A decision problem is called Sqrt-Sum-hard if
Sqrt-Sum reduces to it by a polynomial time many-one reduction. Etessami and
Yannakakis [12] pioneered the use of Sqrt-Sum-hardness to argue that certain
problems are hard “given current state of the art”. It is important to notice that
unlike NP-hardness, Sqrt-Sum-hardness should not be used as an indication
that a problem is actually hard, only as an indication that we do not know if it
is easy. In this section we show Sqrt-Sum-hardness of the minmax value of a 3-
player game and thus by the previously described reductions give evidence that
it is not possible to decide the refined solution concepts in NP “given current
state of the art”.

Lemma 1. For every pair of probability distributions x and y on {1, . . . , n}
there exists another probability distribution z such that xiyi ≤ z2

i for all i.

Proof. If xiyi = 0 for all i we may pick z arbitrarily. Otherwise, define wi =√
xiyi for all i. By the Cauchy-Schwarz inequality we have

n∑
i=1

wi =
n∑

i=1

√
xi
√

yi ≤
√√√√ n∑

i=1

xi

√√√√ n∑
i=1

yi = 1 .

We may thus obtain the required z by letting zj = wj/(
∑n

i=1 wi). �
Given positive numbers a1, . . . , an define the payoff to player 1 in an n × n × n
game G(a1, . . . , an) by letting u1(i, j, k) = −1/ai if i = j = k and u1(i, j, k) = 0
otherwise.

Proposition 1. The minmax value for player 1 in the game G(a1, . . . , an) is
−1/(

∑n
i=1

√
ai)2.
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Proof. If player 2 and player 3 play strategies p and q, player 1 may obtain payoff
maxi −piqi/ai. Let v be the minmax value for player 1. For optimal strategies
for player 2 and 3 we may assume by Lemma 1 that p = q, and furthermore
we must then have that v = −p2

i /ai for all i, and thus pi =
√−v

√
ai for all i.

Summing over i gives

1 =
n∑

i=1

pi =
n∑

i=1

√−v
√

ai =
√−v

n∑
i=1

√
ai .

Squaring and rearranging gives

v = − 1
(
∑n

i=1
√

ai)2
,

as stated. �
Theorem 5. Deciding whether the minmax value for player 1 in a n × n × n
game is less than a given rational k is Sqrt-Sum hard.

Proof. Deciding whether
∑n

i=1
√

ai < k reduces to decide for the minmax value
v for player 1 in the game G(a1, . . . , an) whether v < − 1

k2 by Proposition 1. �
Corollary 2. It is SQRT-SUM hard to determine whether a given pure equilib-
rium in a 3-player game in strategic form with integer payoffs is trembling-hand
perfect or proper and whether a given pure equilibrium in a 3-player game in
extensive form with integer payoffs is quasi-perfect or the strategy part of a se-
quential equilibrium. It is also Sqrt-Sum hard to test whether a given set of
pure strategies is not CURB. In particular, neither of these problems are in NP
unless Sqrt-Sum is in NP.

Finally, we show that our reduction can also be used to give lower bounds on
the algebraic degree of the minmax value of a 3-player game. Such a result is
interesting for computational reasons: They indicate that if we want to compute
the exact minmax value of a 3-player game and want to represent the exact
irrational but algebraic answer in, say, a standard representation such as Thom
encoding [7], exponential space is needed even to represent the output.

For providing the lower bound of the algebraic degree of the minmax value
we use basic results from the theory of field extensions.

Proposition 2. The algebraic degree of the minmax value for player 1 in a
n × n × n game can be 2n−1.

Proof. Let a1, . . . , an be arbitrary relatively prime positive integers, and let v
be the minmax value of the game G(a1, . . . , an). We shall calculate the degree
[Q(v) : Q] of the field extension Q(v) of Q. It is well known that for relatively
prime positive integers a1, . . . , an we have [Q(

√
a1, . . . ,

√
an) : Q] = 2n (e.g. [23,

Example 11.5]). Furthermore, we have Q(
√

a1 + · · ·+√
an) = Q(

√
a1, . . . ,

√
an).

By Proposition 1 we have that −1/
√

v =
∑n

i=1
√

ai, and thus [Q(
√

v) : Q] = 2n.
Finally using [Q(

√
v) : Q] = [Q(

√
v) : Q(v)][Q(v) : Q] ≤ 2[Q(v) : Q] the result

follows. �
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One can give an almost matching upper bound using the general tool of quantifier
elimination for the first order theory of the reals.

Proposition 3. The algebraic degree of the minmax value for player 1 in a
n × n × n game is 2O(n).

Proof. We may describe the minmax value by a first order formula P (v) with
free variable v, as P (v) := A(v) ∧ B(v), where

A(v) := (∃p, q ∈ Rn)
n∧

i=1

⎛⎝ n∑
j=1

n∑
k=1

u1(i, j, k)pjqk ≤ v

⎞⎠ ∧ C(p, q) ,

B(v) := (∀p, q ∈ Rn)
n∨

i=1

⎛⎝ n∑
j=1

n∑
k=1

u1(i, j, k)pjqk ≥ v

⎞⎠ ∧ C(p, q) ,

and C(p, q) := (
∧n

i=1 pi ≥ 0) ∧ (
∑n

i=1 pi = 1) ∧ (
∧n

i=1 qi ≥ 0) ∧ (
∑n

i=1 qi = 1).
We note that the degree of each polynomial in the formula is at most 2.

Thus applying the quantifier elimination procedure of Basu, Pollack and Roy [2]
to each of the formulas A(v) and B(v) yields equivalent quantifier free formu-
las A′(v) and B′(v) wherein each polynomial is of degree 2O(n). It follows that
A′(v) ∧ B′(v) is quantifier free formula equivalent to P (v) wherein each poly-
nomial are univariate polynomials in v of degree 2O(n). Now, since the actual
minmax value v is an isolated solution to this formula, it must satisfy one of the
polynomial equations involving a nonconstant polynomial with equality. We can
thus conclude it must be a root of a polynomial of degree 2O(n). �
Remark 1. The above bound is especially relevant for the special case of k×n×n
games, where k is considered a constant [17]. For this case one may find the
minmax value by considering all k × k × k subgames and the minmax value of
those. This also means that for fixed k one can in polynomial time compute
the Thom encoding of the minmax value of a given k × n × n game, employing
general algorithms for the first-order theory of the reals [2].

References

1. Basu, K., Weibull, J.W.: Strategy subsets closed under rational behavior. Eco-
nomics Letters 2(36), 141–146 (1991)

2. Basu, S., Pollack, R., Roy, M.F.: On the combinatorial and algebraic complexity
of quantifier elimination. Journal of the ACM 43(6), 1002–1045 (1996)

3. Benisch, M., Davis, G.B., Sandholm, T.: Algorithms for closed under rational be-
havior (CURB) sets. Journal of Artificial Intelligence Research (Forthcoming 2010)

4. Blume, L., Brandenburger, A., Dekel, E.: Lexicographic probabilities and equilib-
rium refinements. Econometrica 59, 81–98 (1991)

5. Borgs, C., Chayes, J.T., Immorlica, N., Kalai, A.T., Mirrokni, V.S., Papadimitriou,
C.H.: The myth of the folk theorem. In: Proceedings of the 40th Annual ACM
Symposium on Theory of Computing, pp. 365–372. ACM, New York (2008)



The Computational Complexity of Trembling Hand Perfection 209

6. Chen, X., Deng, X.: Settling the complexity of two-player Nash equilibrium. In:
Proceedings of 47th Annual IEEE Symposium on Foundations of Computer Science
(FOCS 2006), pp. 261–272 (2006)

7. Coste, M., Roy, M.: Thom’s lemma, the coding of real algebraic numbers and the
computation of the topology of semi-algebraic sets. Journal of Symbolic Compu-
tation 5(1-2), 121–129 (1988)

8. van Damme, E.: A relation between perfect equilibria in extensive form games and
proper equilibria in normal form games. International Journal of Game Theory 13,
1–13 (1984)

9. van Damme, E.: Stability and Perfection of Nash Equlibria, 2nd edn. Springer,
Heidelberg (1991)

10. Daskalakis, C., Goldberg, P.W., Papadimitriou, C.H.: The complexity of computing
a Nash equilibrium. In: Procedings of the 38th Annual ACM Symposium on the
Theory of Computing (STOC 2006), pp. 71–78 (2006)

11. Etessami, K., Lochbihler, A.: The computational complexity of evolutionarily sta-
ble strategies. International Journal of Game Theory 31(1), 93–113 (2008)

12. Etessami, K., Yannakakis, M.: Recursive markov decision processes and recursive
stochastic games. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung,
M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 891–903. Springer, Heidelberg (2005)

13. Etessami, K., Yannakakis, M.: On the complexity of Nash equilibria and other fixed
points (extended abstract). In: Proc. 48th Annual IEEE Symposium on Founda-
tions of Computer Science (FOCS 2007), pp. 113–123 (2007)

14. Garey, M.R., Graham, R.L., Johnson, D.S.: Some NP-complete geometric prob-
lems. In: Proceedings of the 8th Annual ACM Symposium on Theory of Comput-
ing, STOC 1976, Hershey, PA, May 3-5, pp. 10–22. ACM Press, New York (1976)

15. Govindan, S., Klumpp, T.: Perfect equilibrium and lexicographic beliefs. Interna-
tional Journal of Game Theory 31(2), 229–243 (2003)

16. Graham, R.L.: 10 - Problems and Solutions. In: P73: Euclidian Minimum Spanning
Trees. Bulletin of the EATCS, vol. 24, pp. 205–206. EATCS (October 1984)

17. Hansen, K.A., Hansen, T.D., Miltersen, P.B., Sørensen, T.B.: Approximability and
parameterized complexity of minmax values. In: Papadimitriou, C., Zhang, S. (eds.)
WINE 2008. LNCS, vol. 5385, pp. 684–695. Springer, Heidelberg (2008)

18. Hillas, J., Kohlberg, E.: Foundations of strategic equilibria. In: Aumann, R.J.,
Hart, S. (eds.) Handbook of Game Theory, ch. 42, vol. 3, pp. 1597–1663. Elsevier
Science, Amsterdam (2002)

19. Kohlberg, E., Reny, P.J.: Independence on relative probability spaces and consis-
tent assessments in game trees. Journal of Economic Theory 75(2), 280–313 (1997)

20. Koller, D., Megiddo, N., von Stengel, B.: Efficient computation of equilibria for
extensive form games. Games and Economic Behavior 14, 247–259 (1996)

21. Kreps, D.M., Wilson, R.: Sequential equilibria. Econometrica 50(4), 863–894 (1982)
22. Mertens, J.F.: Two examples of strategic equilibrium. Games and Economic Be-

havior 8, 378–388 (1995)
23. Morandi, P.: Field and Galois Theory. Graduate Texts in Mathematics, vol. 167.

Springer, Heidelberg (1996)
24. Myerson, R.B.: Refinements of the Nash equilibrium concept. International Journal

of Game Theory 15, 133–154 (1978)
25. Selten, R.: A reexamination of the perfectness concept for equilibrium points in

extensive games. International Journal of Game Theory 4, 25–55 (1975)



Complexity of Safe Strategic Voting

Noam Hazon1 and Edith Elkind2

1 Department of Computer Science, Bar Ilan University, Israel
2 School of Physical and Mathematical Sciences,

Nanyang Technological University, Singapore

Abstract. We investigate the computational aspects of safe manipulation, a new
model of coalitional manipulation that was recently put forward by Slinko and
White [10]. In this model, a potential manipulator v announces how he intends
to vote, and some of the other voters whose preferences coincide with those of
v may follow suit. Depending on the number of followers, the outcome could be
better or worse for v than the outcome of truthful voting. A manipulative vote
is called safe if for some number of followers it improves the outcome from v’s
perspective, and can never lead to a worse outcome. In this paper, we study the
complexity of finding a safe manipulative vote for a number of common voting
rules, including Plurality, Borda, k-approval, and Bucklin, providing algorithms
and hardness results for both weighted and unweighted voters. We also propose
two ways to extend the notion of safe manipulation to the setting where the fol-
lowers’ preferences may differ from those of the leader, and study the computa-
tional properties of the resulting extensions.

1 Introduction

Computational aspects of voting, and, in particular, voting manipulation, is an active
topic of current research. While the complexity of the manipulation problem for a sin-
gle voter is quite well understood (specifically, this problem is known to be efficiently
solvable for most common voting rules with the notable exception of STV [1,2]), the
more recent work has mostly focused on coalitional manipulation, i.e., manipulation
by multiple, possibly weighted voters. In contrast to the single-voter case, coalitional
manipulation tends to be hard. Indeed, it has been shown to be NP-hard for weighted
voters even when the number of candidates is bounded by a small constant [3]. For un-
weighted voters, nailing the complexity of coalitional manipulation proved to be more
challenging. However, Faliszewski et al. [4] have recently established that this problem
is hard for most variants of Copeland, and Zuckerman et al [12] showed that it is easy
for Veto and Plurality with Runoff. Further, a very recent paper [11] makes substantial
progress in this direction, showing, for example, that unweighted coalitional manipula-
tion is hard for Maximin and Ranked Pairs, but easy for Bucklin (see Section 2 for the
definitions of these rules).

All of these papers (as well as the classic work of Bartholdi et al. [1]) assume that
the set of manipulators is given exogenously, and the manipulators are not endowed
with preferences over the entire set of candidates; rather, they simply want to get a
particular candidate elected, and select their votes based on the non-manipulators’ pref-
erences that are publicly known. That is, this model abstracts away the question of how
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the manipulating coalition forms. However, to develop a better understanding of coali-
tional manipulation, it is desirable to have a plausible model of the coalition formation
process. In such a model the manipulators would start out by having the same type of
preferences as sincere voters, and then some agents—those who are not satisfied with
the current outcome and are willing to submit an insincere ballot—would get together
and decide to coordinate their efforts.

However, it is quite difficult to formalize this intuition so as to obtain a realistic
model of how the manipulating coalition forms. In particular, it is not clear how the
voters who are interested in manipulation should identify each other, and then reach an
agreement as to which candidate to promote. Indeed, the latter decision seems to call
for a voting procedure, and therefore is itself vulnerable to strategic behavior. Further,
even assuming that suitable coalition formation and decision-making procedures exist,
their practical implementation may be hindered by the absence of reliable two-way
communication among the manipulators.

In a recent paper [10], Slinko and White put forward a model that provides a partial
answer to these questions. They consider a setting where a single voter v announces
his manipulative vote L (the truthful preferences of all agents are, as usual, common
knowledge) to his set of associates F , i.e., the voters whose true preferences coincide
with those of v. As a result, some of the voters in F switch to voting L, while others (as
well as all voters not in F ) vote truthfully. This can happen if, e.g., v’s instructions are
broadcast via an unreliable channel, i.e., some of the voters in F simply do not receive
the announcement, or if some voters in F consider it unethical to vote non-truthfully.
Such a situation is not unusual in politics, where a public figure may announce her
decision to vote in a particular manner, and may be followed by a subset of like-minded
voters. That is, in this model, the manipulating coalition always consists of voters with
identical preferences (and thus the problem of which candidate to promote is trivially
resolved), and, moreover, the manipulators always vote in the same way. Further, it
relies on minimal communication, i.e., a single broadcast message. However, due to
lack of two-way communication, v does not know how many voters will support him
in his decision to vote L. Thus, he faces a dilemma: it might be the case that if x voters
from F follow him, then the outcome improves, while if some y �= x voters from
F switch to voting L, the outcome becomes even less desirable to v than the current
alternative (we provide an example in Section 2). If v is conservatively-minded, in such
situations he would choose not to manipulate at all. In other words, he would view L
as a successful manipulation only if (1) there exists a subset U ⊆ F such that if the
voters in U switch to voting L, the outcome improves; (2) for any W ⊆ F , if the
voters in W switch to voting L the outcome does not get worse. Paper [10] calls any
manipulation that satisfies (1) and (2) safe. The main result of [10] is a generalization
of the Gibbard–Satterthwaite theorem [6,9] to safe manipulation: the authors prove that
any onto, non-dictatorial voting rule with at least 3 alternatives is safely manipulable,
i.e., there exists a profile in which at least one voter has a safe manipulation. However,
paper [10] does not explore the computational complexity of the related problems.

In the first part of this paper, we focus on algorithmic complexity of safe manipu-
lation, as defined in [10]. We first formalize the relevant computational questions and
discuss some basic relationships between them. We then study the complexity of these
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questions for several classic voting rules, such as Plurality, Veto, k-approval, Bucklin,
and Borda, for both weighted and unweighted voters. For instance, we show that find-
ing a safe manipulation is easy for k-approval and for Bucklin, even if the voters are
weighted. In contrast, for Borda, finding a safe manipulation—or even checking that
a given vote is safe—turns out to be hard for weighted voters even if the number of
candidates is bounded by a small constant.

We then explore whether it is possible to extend the model of safe manipulation
to settings where the manipulator may be joined by voters whose preferences differ
from his own. Indeed, in real life a voter may follow advice to vote in a certain way
if it comes from a person whose preferences are similar (rather than identical) to hers,
or simply because she thinks that voting in this manner can be beneficial to her. For
instance, in politics, a popular personality may influence many different voters at once
by announcing his decision to vote in a particular manner. We propose two ways of
formalizing this idea, which differ in their approach to defining the set of a voter’s
potential followers, and provide initial results on the complexity of safe manipulation
in these models.

In our first extension, a manipulator v may be followed by all voters who rank the
same candidates above the current winner as v does. That is, in this model a voter u
may follow v if any change of outcome that is beneficial to v is also beneficial to u. We
show that some of the positive algorithmic results for the standard model also hold in
this more general setting. In our second model, a voter u may follow a manipulator v
that proposes to vote L, if, roughly, there are circumstances when voting L is beneficial
to u. This model tends to be computationally more challenging: we show that finding a
safe strategic vote in this setting is hard even for very simple voting rules.

We conclude the paper by summarizing our results and proposing several directions
for future research. Due to space constraints, most of the proofs are omitted.

2 Preliminaries and Notation

An election is given by a set of candidates (or, alternatives) C = {c1, . . . , cm} and a
set of voters V = {1, . . . , n}. Each voter i is represented by his preference Ri, which
is a total order over C; we will also refer to total orders over C as votes. For readability,
we will sometimes denote the order Ri by �i. The vector R = (R1, . . . , Rn) is called
a preference profile. We say that two voters i and j are of the same type if Ri = Rj ; we
write Vi = {j | Rj = Ri}. A voting rule F is a mapping from the set of all preference
profiles to the set of candidates; if F(R) = c, we say that c wins under F in R. A
voting rule is said to be anonymous if F(R) = F(R′), where R′ is a preference profile
obtained by permuting the entries of R. To simplify the presentation, in this paper we
consider anonymous voting rules only. In addition, we restrict ourselves to voting rules
that are polynomial-time computable. During the election, each voter i submits a vote
Li; the outcome of the election is then given by F(L1, . . . , Ln). We say that a voter i
is truthful if Li = Ri. For any U ⊆ V and a vote L, we denote by R−U (L) the profile
obtained from R by replacing Ri with L for all i ∈ U .

Voting rules. We will now define the voting rules considered in this paper. All of these
rules assign scores to all candidates; the winner is then selected among the candidates
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with the highest score using a tie-breaking rule, i.e., a mapping T : 2C → C that
satisfies T (S) ∈ S. Unless specified otherwise, we assume that the tie-breaking rule is
lexicographic, i.e., given a set of tied alternatives, it selects one that is maximal with
respect to a fixed ordering �.

Given a vector α = (α1, . . . , αm) with α1 ≥ · · · ≥ αm, the score sα(c) of a candi-
date c ∈ C under a positional scoring rule Fα is given by

∑
i∈V αj(i,c), where j(i, c) is

the position in which voter i ranks candidate c. Many classic voting rules can be repre-
sented using this framework. Indeed, Plurality is the scoring rule with α = (1, 0, . . . , 0),
Veto (also known as Antiplurality) is the scoring rule with α = (1, . . . , 1, 0), and Borda
is the scoring rule with α = (m−1, m−2, . . . , 1, 0). Further, k-approval is the scoring
rule with α given by α1 = · · · = αk = 1, αk+1 = · · · = αm = 0; we will also refer to
(m − k)-approval as k-veto.

Bucklin rule can be viewed as an adaptive version of k-approval. We say that k,
1 ≤ k ≤ m, is the Bucklin winning round if for any j < k no candidate is ranked in
top j positions by at least �n/2� voters, and there exists some candidate that is ranked
in top k positions by at least �n/2� voters. We say that the candidate c’s score in round
j is his j-approval score, and his Bucklin score sB(c) is his k-approval score, where
k is the Bucklin winning round. The Bucklin winner is the candidate with the highest
Bucklin score. Observe that the Bucklin score of the Bucklin winner is at least �n/2�.

Weighted voters. Our model can be extended to the situation where not all voters are
equally important by assigning an integer weight wi to each voter i. To compute the
winner on a profile (R1, . . . , Rn) under a voting rule F given voters’ weights w =
(w1, . . . , wn), we apply F on a modified profile which for each i = 1, . . . , n contains
wi copies of Ri. As an input to our problems we usually get a voting domain, i.e., a
tuple S = 〈C, V,w,R〉, together with a specific voting rule. When w = (1, . . . , 1), we
say that the voters are unweighted. For each U ⊆ V , let |U | be the number of voters in
U and let w(U) be the total weight of the voters in U .

Safe manipulation. We will now formally define the notion of safe manipulation. For
the purposes of our presentation, we can simplify the definitions in [10] considerably.

As before, we assume that the voters’ true preferences are given by a preference
profile R = (R1, . . . , Rn).

Definition 1. We say that a vote L is an incentive to vote strategically, or a strategic
vote for i at R under F , if L �= Ri and for some U ⊆ Vi we have F(R−U (L)) �i

F(R). Further, we say that L is a safe strategic vote for a voter i at R under F if
L is a strategic vote at R, and for any U ⊆ Vi either F(R−U (L)) �i F(R) or
F(R−U (L)) = F(R).

To build intuition for the notions defined above, consider the following example.

Example 1. Suppose C = {a, b, c, d}, V = {1, 2, 3, 4}, the first three voters have pref-
erence b � a � c � d, and the last voter has preference c � d � a � b. Suppose
also that the voting rule is 2-approval. Under truthful voting, a and b get 3 points, and
c and d get 1 point each. Since ties are broken lexicographically, a wins. Now, if voter
1 changes his vote to L = b � c � a � d, b gets 3 points, a gets 2 points, and c gets
2 points, so b wins. As b �1 a, L is a strategic vote for 1. However, it is not a safe
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strategic vote: if players in V1 = {1, 2, 3} all switch to voting L, then c gets 4 points,
while b still gets 3 points, so in this case c wins and a �1 c.

3 Computational Problems: First Observations

The definition of safe strategic voting gives rise to two natural algorithmic questions.
In the definitions below, F is a given voting rule and the voters are assumed to be
unweighted.

– ISSAFE(F): Given a voting domain, a voter i and a linear order L, is L a safe
strategic vote for i under F?

– EXISTSAFE(F): Given a voting domain and a voter i, can voter i make a safe
strategic vote under F?

The variants of these problems for weighted voters will be denoted, respectively, by
WISSAFE(F) and WEXISTSAFE(F). Note that, in general, it is not clear if an effi-
cient algorithm for (W)EXISTSAFE(F) can be used to solve (W)ISSAFE(F), or vice
versa. However, if the number of candidates is constant, (W)EXISTSAFE(F) reduces
to (W)ISSAFE(F). We state the following two results (the easy proofs are omitted) for
weighted voters; clearly, they also apply to unweighted voters.

Proposition 1. Consider any voting rule F . For any constant k, if |C| ≤ k, then a
polynomial-time algorithm for WISSAFE(F) can be used to solve WEXISTSAFE(F) in
polynomial time.

A similar reduction exists when each voter only has polynomially many “essentially
different” votes.

Proposition 2. Consider any scoring rule Fα that satisfies either (i) αj = 0 for all
j > k or (ii) αj = 1 for all j ≤ m−k, where k is a given constant. For any such rule, a
polynomial-time algorithm for WISSAFE(Fα) can be used to solve WEXISTSAFE(Fα)
in polynomial time.

Observe that the class of rules considered in Proposition 2 includes Plurality and Veto,
as well as k-approval and k-veto when k is bounded by a constant.

Further, for unweighted voters it is easy to check if a given manipulation is safe.

Proposition 3. The problem ISSAFE(F) is in P for any (anonymous) voting rule F .

Together with Propositions 1 and 2, Proposition 3 implies that EXISTSAFE(F) is in P
for Plurality, Veto, k-veto and k-approval for constant k, as well as for any voting rule
with a constant number of candidates.

Note that when voters are weighted, the conclusion of Proposition 3 no longer holds.
Indeed, in this case the number of subsets of Vi that have different weights (and thus
may have a different effect on the outcome) may be exponential in n. However, it is not
hard to show that the problem remains easy when all weights are small (polynomially
bounded).
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4 Plurality, Veto, and k-approval

We will now show that the easiness results for k-approval and k-veto extend to arbitrary
k ≤ m and weighted voters (note that the distinction between k-veto and (m − k)-
approval only matters for constant k).

Theorem 1. For k-approval, the problems WISSAFE and WEXISTSAFE are in P.

Proof. Fix a voter v ∈ V . To simplify notation, we renumber the candidates so that v’s
preference order is given by c1 �v . . . �v cm. Denote v’s truthful vote by R. Recall that
Vv denotes the set of voters who have the same preferences as v. Suppose that under
truthful voting the winner is cj . For i = 1, . . . , m, let si(R′) denote the k-approval
score of ci given a profile R′, and set si = si(R).

We start by proving a useful characterization of safe strategic votes for k-approval.

Lemma 1. A vote L is a safe strategic vote for v if and only if the winner in R−Vv (L)
is a candidate ci with i < j.

Proof. Suppose that L is a safe strategic vote for v. Then there exists an i < j and a
U ⊆ Vv such that the winner in R−U (L) is ci. It must be the case that each switch from
R to L increases ci’s score or decreases cj’s score: otherwise ci cannot beat cj after the
voters in U change their vote from R to L. Therefore, if ci beats cj when the preference
profile is R−U (L), it continues to beat cj after the remaining voters in Vv switch, i.e.,
when the preference profile is R−Vv (L). Hence, the winner in R−Vv (L) is not cj ; since
L is safe, this means that the winner in R−Vv (L) is c� for some � < j.

For the opposite direction, suppose that the winner in R−Vv (L) is ci for some i < j.
Note that if two candidates gain points when some subset of voters switches from R to
L, they both gain the same number of points; the same holds if both of them lose points.

Now, if j > k, a switch from R to L does not lower the score of cj , so it must
increase the score of ci for it to win in R−Vv (L). Further, if a switch from R to L
grants points to some c� �= ci, then either s� < si or s� = si and the tie-breaking rule
favors ci over c�: otherwise, ci would not be the winner in R−Vv (L).

Similarly, if j ≤ k, a switch from R to L does not increase the score of ci, so it
must lower the score of cj . Further, if some c� �= ci does not lose points from a switch
from R to L, then either s� < si or s� = si and the tie-breaking rule favors ci over c�:
otherwise, ci would not be the winner in R−Vv (L).

Now, consider any U ⊆ Vv . If sj(R−U (L)) > si(R−U (L)), then cj is the winner.
If si(R−U (L)) > sj(R−U (L)), then ci is the winner. Finally, suppose si(R−U (L)) =
sj(R−U (L)). By the argument above, no other candidate can have a higher score. So,
suppose that s�(R−U (L)) = si(R−U (L)), and the tie-breaking rule favors c� over ci

and cj . Then this would imply that c� wins in R or R−Vv (L) (depending on whether
a switch from R to L causes c� to lose points), a contradiction. Thus, in this case, too,
either ci or cj wins. �
Lemma 1 immediately implies an algorithm for WISSAFE: we simply need to check
that the input vote satisfies the conditions of the lemma. We now show how to use it to
construct an algorithm for WEXISTSAFE. We need to consider two cases.
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j > k: In this case, the voters in Vv already do not approve of cj and approve of all
ci, i ≤ k. Thus, no matter how they vote, they cannot ensure that some ci, i ≤ k, gets
more points than cj . Hence, the only way they can change the outcome is by approving
of some candidate ci, k < i < j. Further, they can only succeed if there exists an
i = k + 1, . . . , j − 1 such that either si + w(Vv) > sj or si + w(Vv) = sj and the tie-
breaking rule favors ci over cj . If such an i exists, v has an incentive to manipulate by
swapping c1 and ci in his vote. Furthermore, it is easy to see that any such manipulation
is safe, as it only affects the scores of c1 and ci.

j ≤ k: In this case, the voters in Vv already approve of all candidates they prefer to
cj , and therefore they cannot increase the scores of the first j−1 candidates. Thus, their
only option is to try to lower the scores of cj as well as those of all other candidates
whose score currently matches or exceeds the best score among s1, . . . , sj−1.

Set Cg = {c1, . . . , cj−1}, Cb = {cj, . . . , cm}. Let C0 be the set of all candidates
in Cg whose k-approval score is maximal, and let smax be the k-approval score of the
candidates in C0. For any c� ∈ Cb, let s′� denote the number of points that c� gets from
all voters in V \ Vv; we have s′� = s� for k < � ≤ m and s′� = s� − w(Vv) for
� = j, . . . , k. Now, it is easy to see that v has a safe manipulation if and only if the
following conditions hold:

– For all c� ∈ Cb either s′� < smax, or s′� = smax and there exists a candidate c ∈ C0
such that the tie-breaking rule favors c over c�;

– There exist a set Csafe ⊆ Cb, |Csafe| = k− j +1, such that for all c� ∈ Csafe either
s′� + w(Vv) < smax or s′� + w(Vv) = smax and there exists a candidate c ∈ C0
such that the tie-breaking rule favors c over c�.

Note that these conditions can be easily checked in polynomial time by computing s�

and s′� for all � = 1, . . . , m.
Indeed, if such a set Csafe exists, voter v can place the candidates in Csafe in positions

j, . . . , k in his vote; denote the resulting vote by L. Clearly, if all voters in Vv vote
according to L, they succeed to elect some c ∈ C0. Thus, by Lemma 1, L is safe.
Conversely, if a set Csafe with these properties does not exist, then for any vote L �= R
the winner in R−Vv (L) is a candidate in Cb, and thus by Lemma 1 L is not safe. �

We remark that Theorem 1 crucially relies on the fact that we break ties based on a fixed
priority ordering over the candidates. Indeed, it can be shown that there exists a (non-
lexicographic) tie-breaking rule such that finding a safe vote with respect to k-approval
combined with this tie-breaking rule is computationally hard (assuming k is viewed as
a part of the input). As the focus of this paper is on lexicographic tie-breaking, we omit
the formal statement and the proof of this fact.

In contrast, we can show that any scoring rule with 3 candidates is easy to manipulate
safely, even if the voters are weighted and arbitrary tie-breaking rules are allowed.

Theorem 2. WISSAFE(F) is in P for any voting rule F obtained by combining a po-
sitional scoring rule with at most three candidates with an arbitrary tie-breaking rule.
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5 Bucklin and Borda

Bucklin rule is quite similar to k-approval, so we can use the ideas in the proof of
Theorem 1 to design a polynomial-time algorithm for finding a safe manipulation with
respect to Bucklin. However, the proof becomes significantly more complicated.

Theorem 3. For the Bucklin rule, WEXISTSAFE is in P.

Interestingly, despite the intuition that WISSAFE should be easier than WEXISTSAFE,
it turns out that WISSAFE for Bucklin is coNP-hard.

Theorem 4. For the Bucklin rule, WISSAFE is coNP-hard, even for a constant number
of candidates.

For Borda, unlike k-approval and Bucklin, both of our problems are hard when the
voters are weighted.

Theorem 5. For the Borda rule, WISSAFE and WEXISTSAFE are coNP-hard. The
hardness result holds even if there are only 5 candidates.

6 Extensions of the Safe Strategic Voting Model

So far, we followed the model of [10] and assumed that the only voters who may change
their votes are the ones whose preferences exactly coincide with those of the manipu-
lator. Clearly, in real life this assumption does not always hold. Indeed, a voter may
follow a suggestion to vote in a certain way as long as it comes from someone he trusts
(e.g., a well-respected public figure), and this does not require that this person’s pref-
erences are completely identical to those of the voter. For example, if both the original
manipulator v and his would-be follower u rank the current winner last, it is easy to see
that following v’s recommendation that leads to displacing the current winner is in u’s
best interests.

In this section, we will consider two approaches to extending the notion of safe
strategic voting to scenarios where not all manipulators have identical preferences. In
both cases, we define the set of potential followers for each voter (in our second model,
this set may depend on the vote suggested), and define a vote L to be safe if, when-
ever a subset of potential followers votes L, the outcome of the election does not get
worse (and sometimes gets better) from the manipulator’s perspective. However, our
two models differ in the criteria they use to identify a voter’s potential followers.

Preference-Based Extension. Our first model identifies the followers of a given voter
based on the similarities in voters’ preferences.

Fix a preference profile R and a voting rule F , and let c be the winner under truthful
voting. For any v ∈ V , let I(v, c) denote the set of candidates that v ranks strictly above
c. We say that two voters u and v are similar if I(u, c) = I(v, c). A similar set Sv of
a voter v for a given preference profile R and a voting rule F is given by Sv = {u |
I(u, c) = I(v, c)}. (The set Sv depends on R and F ; however, for readability we omit
R and F from the notation).
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Note that if u and v are similar, they rank c in the same position. Further, a change
of outcome from c to another alternative is positive from u’s perspective if and only if
it is positive from v’s perspective. Thus, intuitively, any manipulation that is profitable
for u is also profitable for v. Observe also that similarity is an equivalence relation, and
the sets Sv are the corresponding equivalence classes. In particular, this implies that for
any u, v ∈ V either Su = Sv or Su ∩ Sv = ∅.

We can now adapt Definition 1 to our setting by replacing Vv with Sv.

Definition 2. A vote L is a strategic vote in the preference-based extension for v at R
under F if for some U ⊆ Sv we have F(R−U (L)) �v F(R). Further, we say that L
is a safe strategic vote in the preference-based extension for a voter v at R under F if
L is a strategic vote at R under F , and for any U ⊆ Sv either F(R−U (L)) �v F(R)
or F(R−U (L)) = F(R).

Observe that if L is a (safe) strategic vote for v at R under F , then it is also a (safe)
strategic vote for any u ∈ Sv. Indeed, u ∈ Sv implies Su = Sv and for any a ∈ C we
have a �u F(R) if and only if a �v F(R). Note also that we do not require L �= Rv:
indeed, in the preference-based extension L = Rv may be a non-trivial manipulation,
as it may induce voters in Sv \ {v} to switch their preferences to Rv . That is, a voter
may manipulate the election simply by asking other voters with similar preferences to
vote like he does. Finally, it is easy to see that for any voter v, the set Sv of similar
voters is easy to compute.

The two computational problems considered throughout this paper, i.e., the safety of
a given manipulation and the existence of a safe manipulation remain relevant for the
preference-based model. We will refer to these problems in this setting as ISSAFEpr

and EXISTSAFEpr , respectively, and use prefix W to denote their weighted variants. The
problems (W)ISSAFEpr and (W)EXISTSAFEpr appear to be somewhat harder than their
counterparts in the original model. Indeed, while voters in Sv have similar preferences,
their truthful votes may be substantially different, so it now matters which of the voters
in Sv decide to follow the manipulator (rather than just how many of them, as in the
original model). In particular, it is not clear if ISSAFEpr (F) is polynomial-time solvable
for any voting rule F . However, it turns out that both of our problems are easy for k-
approval, even with weighted voters.

Theorem 6. For k-approval, the problems WISSAFEpr and WEXISTSAFEpr are in P.

In the preference-based model, a voter v follows a recommendation to vote in a partic-
ular way if it comes from a voter whose preferences are similar to those of v. However,
this approach does not describe settings where a voter follows a recommendation not
so much because he trusts the recommender, but for pragmatic purposes, i.e., because
the proposed manipulation advances her own goals. Clearly, this may happen even if
the overall preferences of the original manipulator and the follower are substantially
different. We will now propose a model that aims to capture this type of scenarios.

Goal-Based Extension. If the potential follower’s preferences are different from those
of the manipulator, his decision to join the manipulating coalition is likely to depend on
the specific manipulation that is being proposed. Thus, in this subsection we will define
the set of potential followers F in a way that depends both on the original manipulator’s



Complexity of Safe Strategic Voting 219

identity i and his proposed vote L, i.e., we have F = Fi(L). Note, however, that it is
not immediately obvious how to decide whether a voter j can benefit from following i’s
suggestion to vote L, and thus should be included in the set Fi(L). Indeed, the benefit to
j depends on which other voters are in the set Fi(L), which indicates that the definition
of the set Fi(L) has to be self-referential.

In more detail, for a given voting rule F , an election (C, V ) with a preference profile
R, a voter i ∈ V and a vote L, we say that a voter j is pivotal for a set U ⊆ V with
respect to (i, L) if j �∈ U , Rj �= L and F(R−(U∪{j})(L)) �j F(R−U (L)). That is, a
voter j is pivotal for a set U if when the voters in U vote according to L, it is profitable
for j to join them. Now, it might appear natural to define the follower set for (i, L) as
the set that consists of i and all voters j ∈ V that are pivotal with respect to (i, L) for
some set U ⊆ V . However, this definition is too broad: a voter is included as long as
it is pivotal for some subset U ⊆ V , even if the voters in U cannot possibly benefit
from voting L. To exclude such scenarios, we need to require that U itself is also drawn
from the follower set. Formally, we say that Fi(L) is a follower set for (i, L) if it is a
maximal set F that satisfies the following condition:

∀j ∈ F [ (j = i) ∨ (∃ U ⊆ F s. t. j is pivotal for U with respect to (i, L))] (*)

Observe that this means that Fi(L) is a fixed point of a mapping from 2V to 2V , i.e., this
definition is indeed self-referential. To see that the follower set is uniquely defined for
any i ∈ V and any vote L, note that the union of any two sets that satisfy condition (*)
also satisfies (*); note also that we always have i ∈ Fi(L).

We can now define what it means for L to be a strategic vote in the goal-based ex-
tension and a safe strategic vote in the goal-based extension by replacing the condition
U ⊆ Si in Definition 2 with U ⊆ Fi(L). We will denote the computational problems of
checking whether a given vote is a safe strategic vote for a given voter in the goal-based
extension and whether a given voter has a safe strategic vote in the goal-based extension
by ISSAFEgl and EXISTSAFEgl , respectively, and use the prefix W to refer to weighted
versions of these problems.

Two remarks are in order. First, it may be the case that even though i benefits from
proposing to vote L, he is never pivotal with respect to (i, L) (this can happen, e.g.,
if i’s weight is much smaller that that of the other voters). Thus, we need to explicitly
include i in the set Fi(L), to avoid the paradoxical situation where i �∈ Fi(L). Second,
our definition of a safe vote only guarantees safety to the original manipulator, but not
to her followers. In contrast, in the preference-based extension, any vote that is safe for
the original manipulator is also safe for all similar voters.

The definition of a safe strategic vote in the goal-based extension captures a number
of situations not accounted for by the definition of a safe strategic vote in the preference-
based extension. However, computationally it is considerably harder to deal with than
the preference-based extension. Indeed, it is not obvious how to compute the set Fi(L),
as its definition is non-algorithmic in nature. While one can consider all subsets of V
and check whether they satisfy condition (*), this approach is obviously inefficient. We
can avoid full enumeration if have access to a procedure A(i, L, j, W ) that for each
pair (i, L), each voter j ∈ V and each set W ⊆ V can check if j = i or there is a set
U ⊆ W such that j is pivotal for U with respect to (i, L). Indeed, if this is the case, we
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can compute Fi(L) as follows. We start with W = V , run A(i, L, j, W ) for all j ∈ W ,
and let W ′ to be the set of all voters for which A(i, L, j, W ) outputs “yes”. We then
set W = W ′, and iterate this step until W = W ′. In the end, we set Fi(L) = W . The
correctness of this procedure can be proven by induction on the number of iterations and
follows from the fact that if a set W contains no subset U that is pivotal for j, then no
smaller set W ′ ⊂ W can contain such a subset. Moreover, since each iteration reduces
the size of W , the process converges after at most n iterations. Thus, this algorithm runs
in polynomial time if the procedure A(i, L, j, W ) is efficiently implementable. We will
now show that this is indeed the case for Plurality (with unweighted voters).

Theorem 7. Given an election (C, V ) with a preference profile R and unweighted vot-
ers, a manipulator i, and a vote L, we can compute the set Fi(L) with respect to Plu-
rality in time polynomial in the input size.

We can use Theorem 7 to show that under Plurality one can determine in polynomial
time whether a given vote L is safe for a player i, as well as find a safe strategic vote
for i if one exists, as long as the voters are unweighted.

Theorem 8. ISSAFEgl and EXISTSAFEgl are polynomial-time solvable for Plurality.

For weighted voters, computing the follower set is hard even for Plurality. While this
result does not directly imply that WISSAFEgl and WEXISTSAFEgl are also hard for
Plurality, it indicates that these problems are unlikely to be easily solvable.

Theorem 9. Given an instance (C, V,w,R) of Plurality elections, voters i, j ∈ V and
a vote L, it is NP-hard to decide whether j ∈ Fi(L).

Just a little further afield, checking whether a given vote is safe with respect to 3-
approval is computationally hard even for unweighted voters. This is in contrast with
the standard model and the preference-based extension, where safely manipulating k-
approval is easy for arbitrary k.

Theorem 10. ISSAFEgl is coNP-hard for 3-approval.

Thus, while the preference-based extension appears to be similar to the original model
of [10] from the computational perspective, the goal-based extension is considerably
more difficult to work with.

7 Conclusions

In this paper, we started the investigation of algorithmic complexity of safe manipu-
lation, as defined by Slinko and White [10]. We showed that finding a safe manipu-
lation is easy for k-approval for an arbitrary value of k and for Bucklin, even with
weighted voters. Somewhat surprisingly, checking whether a given manipulation is safe
appears to be a more difficult problem, at least for weighted voters: while this prob-
lem is polynomial-time solvable for k-approval, it is coNP-hard for Bucklin. For the
Borda rule, both checking whether a given manipulation is safe and identifying a safe
manipulation is hard when the voters are weighted.
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We also proposed two ways of extending the notion of safe manipulation to hetero-
geneous groups of manipulators, and initiated the study of computational complexity
of related questions. Our first extension of the model of [10] is very simple and natural,
and seems to behave similarly to the original model from the algorithmic perspective.
However, arguably, it does not capture some of the scenarios that may occur in prac-
tice. Our second model is considerably richer, but many of the associated computational
problems become intractable.

A natural open question is determining the complexity of finding a safe strategic vote
for voting rules not considered in this paper, such as Copeland, Ranked Pairs, or Max-
imin. Moreover, for some of the voting rules we have investigated, the picture given by
this paper is incomplete. In particular, it would be interesting to understand the compu-
tational complexity of finding a safe manipulation for Borda (and, more generally, for
all scoring rules) for unweighted voters. The problem for Borda is particularly intrigu-
ing as this is perhaps the only widely studied voting rule for which the complexity of
unweighted coalitional manipulation in the standard model is not known.

Other exciting research directions include formalizing and investigating the problem
of selecting the best safe manipulation (is it the one that succeeds more often, or one
that achieves better results when it succeeds?), and extending our analysis to other types
of tie-breaking rules, such as, e.g., randomized tie-breaking rules. However, the latter
question may require modifying the notion of a safe manipulation, as the outcome of a
strategic vote becomes a probability distribution over the alternatives.
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Abstract. We study bottleneck congestion games where the social cost is de-
termined by the worst congestion on any resource. In the literature, bottleneck
games assume player utility costs determined by the worst congested resource in
their strategy. However, the Nash equilibria of such games are inefficient since the
price of anarchy can be very high and proportional to the number of resources.
In order to obtain smaller price of anarchy we introduce exponential bottleneck
games, where the utility costs of the players are exponential functions of their
congestions. In particular, the delay function for any resource r isMCr , where
Cr denotes the number of players that use r, andM is an integer constant. We
find that exponential bottleneck games are very efficient and give the following
bound on the price of anarchy: O(log |R|), where R is the set of resources. This
price of anarchy is tight, since we demonstrate a game with price of anarchy
Ω(log |R|). We obtain our tight bounds by using two novel proof techniques:
transformation, which we use to convert arbitrary games to simpler games, and
expansion, which we use to bound the price of anarchy in a simpler game.

1 Introduction

We consider non-cooperative congestion games with n players, where each player has a
pure strategy profile from which it selfishly selects a strategy that minimizes the player’s
utility cost function (such games are also known as atomic or unsplittable-flow games).
We focus on bottleneck congestion games where the objective for the social outcome
is to minimize C, the maximum congestion on any resource. Typically, the congestion
on a resource is a non-decreasing function on the number of players that use the re-
source; here, we consider the congestion to be simply the number of players that use
the resource.

Bottleneck congestion games have been studied in the literature [1,4,3] in the context
of routing games, where each player’s utility cost is the worst resource congestion on
its strategy. In particular, player i has utility cost function Ci = maxr∈Si Cr, where Si

is the strategy of the player and Cr denotes the congestion of resource r. Note that C =
maxi Ci. In [1] the authors observe that bottleneck games are important in networks for
various practical reasons. In networks, each resource corresponds to a network link, each
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player corresponds to a packet, and a strategy represents a path for the packet. In wireless
networks, the maximum congested link is related to the lifetime of the network since the
nodes adjacent to high congestion links transmit large number of packets which results
to higher energy utilization. High congestion links also result to congestion hot-spots
which may slow-down the network throughput. Hot spots also increase the vulnerability
of the network to malicious attacks which aim to to increase the congestion of links in
the hope to bring down the network. Thus, minimizing the maximum congested edge
results to hot-spot avoidance and more load-balanced and secure networks.

In networks, bottleneck games are also important from a theoretical point of view
since the maximum resource congestion is immediately related to the optimal packet
scheduling. In a seminal result, Leighton et al. [13] showed that there exist packet
scheduling algorithms that can deliver the packets along their chosen paths in time
very close to C + D, where D is the maximum chosen path length. When C � D, the
congestion becomes the dominant factor in the packet scheduling performance. Thus,
smaller C immediately implies faster packet delivery time.

A natural problem that arises concerns the effect of the players’ selfishness on the
welfare of the whole system measured with the social cost C. We examine the con-
sequence of the selfish behavior in pure Nash equilibria which are stable states of the
game in which no player can unilaterally improve her situation. We quantify the ef-
fect of selfishness with the price of anarchy (PoA) [12,18], which expresses how much
larger is the worst social cost in a Nash equilibrium compared to the social cost in the
optimal coordinated solution. The price of anarchy provides a measure for estimating
how closely do Nash equilibria of bottleneck routing games approximate the optimal
C∗ of the respective coordinated optimization problem.

Ideally, the price of anarchy should be small. However, the current literature results
have only provided weak bounds for bottleneck games. In [1] it is shown that if the
resource congestion delay function is bounded by some polynomial with degree k (with
respect to the packets that use the resource) then PoA = O(|R|k), where R is the set of
links (resources) in the graph. In [4] the authors consider bottleneck routing games for
the case k = 1 and they show that PoA = O(L + log |V |), where L is the maximum
path length (maximum number of resources) in the players’ strategies and V is the set of
nodes in the network. This bound is asymptotically tight since there are game instances
with PoA = Ω(L). Note that L can be proportional to |R| (when L = |R| = O(|V |)),
and thus the price of anarchy can be large.

1.1 Contributions

The lower bound in [4] suggests that in order to obtain better price of anarchy in bottle-
neck games (where the social cost is the bottleneck congestion C), we need to consider
alternative player utility cost functions. Towards this goal, we introduce exponential
bottleneck games where the social cost is the bottleneck C and the player cost func-
tions are exponential expressions of the congestions along the resources. In particular,
the player utility cost function for player i is: C′

i =
∑

r∈Si
MCr , for some integer

constant M ≥ 2. Note that the new utility cost is a sum of exponential terms on the
congestion of the resources in the chosen strategy (instead of the max that we described
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earlier). For the bottleneck social cost C we prove that the price of anarchy of exponen-
tial games is:

PoA = O(log |R|).
We show that this bound is tight by providing an instance of an exponential bottleneck
game with PoA = Ω(log |R|). Our price of anarchy bound is a significant improvement
over the price of anarchy from the regular utility cost functions described above.

Exponential games are interesting variations of bottleneck games not only because
they can provide good price of anarchy but also because they represent real-life prob-
lems. It is well shown that in wireless communication networks the power used by
individual nodes to transmit messages along an edge with guaranteed rate is exponen-
tially proportional to the flow of the link. Thus, exponential game equilibria represent
power game equilibria in wireless networks, where small price of anarchy translates to
small power utilization by the nodes. Exponential cost functions on resource congestion
have been used before in a different context for online routing optimization problems
[2][Chapter 13]. However, here we use the exponential functions for the first time in the
context of congestion games.

In our analysis, we obtain the price of anarchy upper bound by developing two new
techniques: transformation and expansion. Consider a game G with a Nash equilibrium
S and congestion C. We identify two kinds of players in S: type-A players which
use only one resource in their strategies, and type-B players which use two or more
resources. In our first technique, transformation, we show how to convert G to a simpler
game G̃, having a Nash equilibrium S̃ with congestion C̃, such that C̃ = O(C), and all
players in S̃ with congestion above a threshold T are of type-A; that is, we transform
type-B players to type-A players. Having type-A players is easier to bound the price of
anarchy. Then, we develop a second technique, expansion, that is used to give an upper
bound on the price of anarchy of game G̃, which implies an upper bound on the price
of anarchy of the original game G.

1.2 Related Work

Congestion games were introduced and studied in [17,19]. In [19], Rosenthal proves
that congestion games have always pure Nash equilibria. Koutsoupias and Papadim-
itriou [12] introduced the notion of price of anarchy in the specific parallel link networks
model in which they provide the bound PoA = 3/2. Roughgarden and Tardos [22] pro-
vided the first result for splittable flows in general networks in which they showed that
PoA ≤ 4/3 for a player cost which reflects to the sum of congestions of the resources
of a path. Pure equilibria with atomic flow have been studied in [4,5,14,24] (our work
fits into this category), and with splittable flow in [20,21,22,23]. Mixed equilibria with
atomic flow have been studied in [7,9,11,12,15,16,18], and with splittable flow in [6,8].

Most of the work in the literature uses a cost metric measured as the sum of con-
gestions of all the resources of the player’s path [5,21,22,23,24]. Our work differs from
these approaches since we adopt the exponential metric for player cost. The vast ma-
jority of the work on congestion games has been performed for parallel link networks,
with only a few exceptions on network topologies [4,5,6,20], which we consider here.

In [4], the authors consider bottleneck routing games in networks with player cost Ci

and social cost C. They prove that the price of stability is 1. They show that the price of
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anarchy is bounded by O(L + log |V |), where L is the maximum allowed path length,
and V is the set of nodes. They also prove that κ ≤ PoA ≤ c(κ2 + log2|V |), where
κ is the size of the largest resource-simple cycle in the graph and c is a constant. That
work was extended in [3] to the C +D routing problem. Bottleneck routing games have
also been studied in [1], where the authors consider the maximum congestion metric in
general networks with splittable and atomic flow (but without considering path lengths).
They prove the existence and non-uniqueness of equilibria in both the splittable and
atomic flow models. They show that finding the best Nash equilibrium that minimizes
the social cost is a NP-hard problem. Further, they show that the price of anarchy may
be unbounded for specific resource congestion functions. In [10], the authors prove the
existence of strong Nash equilibria (which concern coalitions of players) for games with
the lexicographic improvement property; such games include Bottleneck congestion
games and our exponential games.

2 Definitions

A congestion game is a strategic game G = (ΠG, R, S, (dr)r∈R, (pcπ)π∈ΠG) where:

– ΠG = {π1, . . . , πn} is a non-empty and finite set of players.
– R = {r1, . . . , rz} is a non-empty and finite set of resources.
– S = Sπ1 × Sπ2 × · · · × Sπn , where Sπi is a strategy set for player πi, such that

Sπi ⊆ powerset(R); namely, each strategy Sπi ∈ Sπi is pure, and it is a collection
of resources. A game state (or pure strategy profile) is any S ∈ S. We consider
finite games which have finite S (finite number of states).

– In any game state S, each resource r ∈ R has a delay cost denoted dr(S).
– In any game state S, each player π ∈ ΠG has a player cost pcπ(S) =∑

r∈Sπ
dr(S).

Consider a game G with a state S = (Sπ1 , . . . , Sπn). The (congestion) of a resource
r is defined as Cr(S) = |{πi : r ∈ Sπi}|, which is the number of players that use
r in state S. The (bottleneck) congestion of a set of resources Q ⊆ R is defined as
CQ(S) = maxr∈Q Cr(S), which is the maximum congestion over all resources in
Q. The (bottleneck) congestion of state S is denoted C(S) = CR(S), which is the
maximum congestion over all resources in R. The length of state S is defined to be
L(S) = maxi |Sπi |, namely, the maximum number of resources used in any player.
When the context is clear, we will drop the dependence on S. We examine exponential
congestion games:

– Exponential games: The delay cost function for any resource r is dr = MCr , for
some integer constant M ≥ 2.

For any state S, we use the standard notation S = (Sπi , S−πi) to emphasize the depen-
dence on player πi. Player πi is locally optimal (or stable) in state S if pcπi(S) ≤
pcπi((S′

πi
, S−πi , )) for all strategies S′

πi
∈ Sπi . A greedy move by a player πi is

any change of its strategy from S′
πi

to Sπi which improves the player’s cost, that
is, pcπi((Sπi , S−πi)) < pcπi((S′

πi
, S−πi)). Best response dynamics are sequences of

greedy moves by players. A state S is in a Nash Equilibrium if every player is locally
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optimal. Nash Equilibria quantify the notion of a stable selfish outcome. In the games
that we study there could exist multiple Nash Equilibria.

For any game G and state S, we will consider a social cost (or global cost) which is
simply the bottleneck congestion C(S). A state S∗ is called optimal if it has minimum
attainable social cost: for any other state S, C(S∗) ≤ C(S). We will denote C∗ =
C(S∗). We quantify the quality of the states which are Nash Equilibria with the price
of anarchy (PoA) (sometimes referred to as the coordination ratio). Let P denote the
set of distinct Nash Equilibria. Then the price of anarchy of game G is:

PoA(G) = sup
S∈ P

C(S)
C∗ ,

We continue with some more special definitions that we use in the proofs. Consider a
game G with a socially optimal state S∗ = (S∗

π1
, . . . , S∗

πn
), and let S = (Sπ1 , . . . , Sπn)

denote the equilibrium state. We consider two special kinds of players with respect to
states S and S∗:

– Type-A players: any player πi with |Sπi | = 1.
– Type-B players: any player πi with |Sπi | ≥ 2.

For any resource r ∈ R, we will let Πr and Π∗
r denote the set of players with r in their

equilibrium and socially optimal strategies respectively, i.e Πr = {πi ∈ ΠG|r ∈ Sπi}
and Π∗

r = {πi ∈ ΠG|r ∈ S∗
πi
}.

Let G = (ΠG, R, S, d, (pcπ)π∈ΠG) and G̃ = (ΠG̃, R̃, S̃, d̃, (p̃cπ)π∈ΠG̃
) be two

games. We say that G dominates G̃ if the following conditions hold between them for
the highest cost Nash equilibrium and optimal states and : |R̃| ≤ |R|, d = d̃, C̃ = C,
C̃∗ ≤ C∗M2, where C, C∗ and C̃, C̃∗ represent the bottleneck congestions in the
highest cost Nash equilibrium and optimal states of G and G̃, respectively.

Corollary 1. PoA(G) ≤ M2 ·PoA(G̃) for an arbitrary game G and dominated game
G̃.

Let S, S∗, S̃, S̃∗ denote the equilibrium and socially optimal states of G and G̃. Hence-
forth for notational convenience and when there is no ambiguity, for player specific
states, we will drop the π subscript and use Si, S̃i, . . . for Sπi , S̃πi . . .. In the next sec-
tion, we will describe how an arbitrary game G in Nash equilibrium state S can be
transformed into a dominated game G̃ containing type A players of arbitrary cost and
type B players restricted to costs below a given threshold in Nash equilibrium state S̃.

3 Type-B to Type-A Game Transformation

We first state our main result in this section.

Theorem 1. Every game G with arbitrary type-B players can be transformed into a
dominated game G̃ where all players with costs ≥ ψ = M(M+2)C∗

are exclusively
type-A.
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In order to prove Theorem 1, we first require the following results on base M arithmetic
and resource partitioning.

Lemma 1. Let a, i1, i2, . . . ia be non-negative integers such that
∑a

j=1 ijMa−j ≥
Ma. Then ∃k, lk with k ≤ a, lk ≤ ik such that

∑k−1
j=1 ijMa−j + lkMa−k = Ma.

We will use this lemma in the following context: For any integer a, given a collection
of ij ≥ 0 resources of cost Ma−j , for 1 ≤ j ≤ a and total cost at least Ma, we can
always select a subset of resources whose cost will add up to exactly Ma.

Let πi ∈ ΠG be a arbitrary type B-player using k resources r1, r2, . . . , rk in its
equilibrium strategy Si that are distinct from the m resources r∗1 , . . . , r∗m in its socially
optimal strategy S∗

i , with Crj (S), Cr∗
j
(S) denoting the congestion on these resources

in equilibrium state S
Define procedure PMS−Partition(πi) as follows:

Procedure 1 Partition Si and S∗
i into t pairs (L1, L

∗
1), (L2, L

∗
2), . . . , (Lt, L

∗
t ) where

1) the Lj’s form a disjoint resource partition of Si, i.e Lk

⋂
Ll = ∅ with

⋃t
j=1 Lj = Si,

2) the L∗
j ’s are disjoint subsets of S∗

i , i.e L∗
k

⋂
L∗

l = ∅ with
⋃t

j=1 L∗
j ⊆ S∗

i , and 3)∑
r∗∈L∗

j

MCr∗+1 ≥
∑
r∈Lj

MCr , 1 ≤ j ≤ t (1)

Lemma 2. There exists an implementation of PMS−Partition(πi) in which either
|Lj| = 1 or |L∗

j | = 1 or both, j = 1, 2, . . . , t. In the case |Lj | > 1 and |L∗
j | = 1 with

L∗
j = {r∗p} for some r∗p ∈ S∗

i , we must have Cr∗
p
≥ max{Crq |rq ∈ Lj}.

Due to space considerations, we omit the proof above.
Procedure PMS−Partition() forms the basic step in our transformation of G to G̃.

We start with a restricted version of game G labeled G̃ and iteratively transform it by
using procedure PMS−Partition() to convert type-B players of cost ψ ≥ M(M+2)C∗

into type-A players, one at a time in decreasing order of player costs until all type-B
players remaining either fall below the threshold cost function ψ or no type-B players
exist. We add and delete players/resources from G̃ iteratively and have a working set
of players. However G̃ will always remain in equilibrium state S̃ at every step of the
transformation process. Note that when a new player πk is created, we assign two strat-
egy sets to πk: an ‘equilibrium’ strategy S̃k and a socially optimal strategy S̃∗

k . Thus
S̃ = S̃

⋃
S̃k and S̃∗ = S̃∗⋃ S̃∗

k .
We are now ready to prove our main result.

Proof of Theorem 1: We assume that our input is the restricted version G̃ of game G
with exactly two strategies per player: S̃π = Sπ and S̃∗

π = S∗
π. We also assume that

each type-B player π has distinct resources in its equilibrium and optimal strategies i.e
S̃π

⋂
S̃∗

π = ∅. If not already true, this can be achieved by creating |S̃π

⋂
S̃∗

π| new type-
A players with identical and one type-B player with disjoint equilibrium and optimal
strategies for each original player π.

Let K = maxπj∈ΠG̃ of type−B{pcπj(S̃)}, where K ≥ ψ. This implies that

all players with cost > K in G̃ are type-A players. To begin the transformation,
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choose any type-B player πi with cost K . Let S̃i = (r1, r2, . . . , rk) and S̃∗
i =

(r∗1 , . . . , r∗m) denote the distinct resources in πi’s equilibrium and optimal strategies
and let (L1, L

∗
1), . . . , (Lt, L

∗
t ) denote the output of PMS−Partition(πi).

Consider the case when the number of partitions t > 1. First, delete the strategies of
πi from G̃ i.e S̃ = S̃ − S̃i and S̃∗ = S̃∗ − S̃∗

i . The equilibrium congestion on S̃i and
optimal congestion on S̃∗

i now decrease by one in G̃. For each partition member Lq,
with |Lq| = 1, 1 ≤ q ≤ t, we now add a new type-A player πLq to G̃ with two strategy
sets: equilibrium strategy S̃πLq

= {ra} where Lq = {ra}, for some a, 1 ≤ a ≤ k and

optimal strategy S̃∗
πLq

= L∗
q , where L∗

q ⊆ S̃∗
i . By claim 2, M·∑r∈L∗

q
MC∗

r ≥ MCra

and thus πLq is in equilibrium in state S̃πLq
. Similarly, for each partition member Lq ⊆

S̃i with |Lq| > 1, 1 ≤ q ≤ t, we add a new type-B player πLq to G̃ with equilibrium
strategy S̃πLq

= Lq and socially optimal strategy S̃∗
πLq

= {ra} where L∗
q = {ra}.

Note that since t > 1, the cost pcπLq
(S̃) < K for all 1 ≤ q ≤ t and thus πi has

been transformed into new type-A and type-B players of lower cost. The new type-B
players will be considered for further transformation during subsequent iterations. Also
note that congestion in the equilibrium and socially optimal states on resources in G̃ is
unchanged after adding these new players.

Now consider the case t = 1 where there is only one partition pair (L1, L
∗
1) with

L1 = S̃πi and L∗
1 = {r∗l } = S̃∗

πi
. Let |L1| = α, where 1 ≤ α ≤ |R|. We can

replace πi with α new type-A players each containing a distinct resource in L1 in their
equilibrium strategies and r∗l as their optimal strategy. However this might increase the
optimal congestion C̃∗ of G̃ to as much as C∗+|R|, thereby violating the domination of
G̃. Thus we need to find a larger optimal strategy set from among existing resources and
assign them to these players without increasing the optimal congestion beyond C∗M2.
Finding such a set forms the core of our transformation algorithm.

We first note that Cr∗
l
≥ �logM K − 1� and every resource r with Cr > Cr∗

l
must

be occupied only by type-A players in equilibrium. Let Πr∗
l

and Π∗
r∗

l
denote the players

in G̃ with r∗l in their equilibrium and optimal strategy sets respectively, where |Πr∗
l
| =

Cr∗
l

and |Π∗
r∗

l
| ≤ C∗. Let Π ′

r∗
l

= Πr∗
l
−Π∗

r∗
l

denote the set of players in Πr∗
l

for whom
r∗l is not also in their optimal strategy, where |Π ′

r∗
l
| ≥ Cr∗

l
−C∗+1 > (M+1)C∗. We

will obtain a larger optimal strategy set for πi by considering the optimal strategy sets
of some of these Π ′

r∗
l

players. Let Π ′
r∗

l
== {πi1 , πi2 , . . . πir}, where r > (M+ 1)C∗.

We will construct a resource chain that yields a larger optimal strategy set for πi from
one out of these r players. Without loss of generality, we describe the chain for player
π(i1).

Let PMS−chain(r∗l , πi1) = rj1 → rj2 → . . . → rjq denote a chain of q distinct
resources starting from rj1 = r∗l and satisfying the following constraints:

1. rjk
and rjk+1 , 1 ≤ k ≤ q−1, are in partition pairs (La, L∗

a), with |La| > 1, |L∗
a| =

1 in the PMS−Partition of some type-B player π̂jk
∈ Πrjk

, where Πrjk
de-

notes the set of players for whom rjk
is in the equilibrium strategy. Specifically, in

PMS−Partition(π̂jk
), we must have partition pairs L∗

a = {rjk+1} and rjk
∈ La,

where |La| > 1 and Crjk
= Cr∗

l
, 1 ≤ k ≤ q − 1.
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2. Πrjq
has < (M2 − 1)C∗ marked players and an unmarked player π̂jq which is

either a type-A player or PMS−Partition(π̂jq ) contains rjq as a singleton resource
(We will define marked players below). Specifically, in PMS−Partition(π̂jq ), we
must have partition pairs (Lb, L

∗
b) where Lb = {rjq}, Crjq

≥ Cr∗
l

and |L∗
b | ≥ 1

with r∗l /∈ L∗
b . Note that if πi1 on resource rj1 = r∗l itself satisfies condition (b)

then the chain terminates with q = 1 and π̂jq = πi1 . Essentially the chain continues
as long as condition 2 is not met for players on rjk

.

First, note that since |La| > 1, |L∗
a| = 1 in the partition pairs above, we must have

Crjk+1
≥ Crjk

≥ Cr∗
l
, 1 ≤ k ≤ q − 1, by lemma 2. Second, note that the chain

consists only of q − 1 type-B players from rj1 up to rjq−1 . No type-B player in G̃ can
have a resource with congestion ≥ Cr∗

l
+ 1 in its equilibrium strategy. Such a player π

would have cost pcπ(S̃) > MCr∗
l
+1 ≥ K , which is a contradiction. Thus the first q−1

resources on the chain must have congestion exactly Cr∗
l
. For the chain to terminate

at some resource rjq , we either need a type-A player whose equilibrium strategy is rjq

and socially optimal strategy does not contain rjq , or a type-B player whose equilib-
rium strategy contains rjq but has a partition pair in which rjq is a singleton set. If the
terminating player is a type-A player, then it is possible that the congestion on rjq is
Crjq

> Cr∗
l
, otherwise if a type-B player then Crjq

= Cr∗
l
. In both cases, by lemma 2,

we must have

M·
∑
r∈L∗

b

MCr ≥ MCrjq ≥ MCr∗
l ≥ MCrp , (2)

where Crp = max{Crq |rq ∈ L1} and the last inequality arises from the fact that
|L1| > 1, |L∗

1| = 1 and lemma 2.
L∗

b is distinct from r∗l as specified in condition 2 above. The optimal strategy for
player πi is now updated to S̃πi = {r∗l , L∗

b}. We claim that this is a better optimal
strategy set for πi than the previous singleton set r∗l because any PMS−partition of
πi will yield at least 2 partitions: one matching L∗

b with at least one resource from L1
(by Eq. 2) and another matching r∗l with the rest of the resources.

The player set ΠG̃ is further modified in the following manner. Let π̂d ∈ Πrjq

denote the player whose PMS−partition resulted in L∗
b . Remove rjq and L∗

b from its
equilibrium and socially optimal strategy sets, i.e

S̃π̂d
= S̃π̂d

− {rjq} S̃∗
π̂d

= S̃∗
π̂d

− L̃∗
b (3)

If player π̂d was a type-A player, it will disappear from G̃, otherwise it will remain as a
lower-cost player in equilibrium in G̃ after this.

Finally, we create a new marked type-A player π̃d and add it to ΠG̃ along with the
following strategies:

S̃π̃d
= S̃∗

π̃d
= {rjq}, (4)

Note that the equilibrium congestion on rjq is now the same as before and thus
all players π with rjq ∈ S̃∗

π remain in equilibrium in S̃. Also note that the optimal
congestion on resources in L∗

b does not increase on being added to S̃∗
πi

due to their
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simultaneous removal from S̃∗
π̂d

. The optimal congestion on non-terminal resources in
the chain, rjk

, 1 ≤ k ≤ q − 1 also does not change. The number of marked players
on terminal resource rjq increases by one simultaneously with its optimal congestion.
Since a resource can be marked at most (M2−1)C∗ times, the final optimal congestion
on any resource and hence G̃ is bounded by C̃∗ ≤ M2C∗. The number of resources in
G̃ does not increase over G in any step and hence G̃ is dominated by G.

The algorithm now continues onto the next iteration where we repeat the transfor-
mation process as before, starting with the highest cost type-B player remaining in G̃.
Eventually the algorithm terminates when the cost of all type-B players in G̃ is bounded
by threshold ψ. �.

Due to space considerations, we leave the proof of the following lemma which com-
pletes the proof above, for the expanded version of the paper.

Lemma 3. For any resource r∗l and player πij , there always exists a
PMS−chain(r∗l , πij ) which terminates at a resource rjq with < (M2 − 1)C∗

marked players.

4 Price of Anarchy

4.1 Price of Anarchy for Type-A Players

Let τ = (M + 2)C∗ be a threshold congestion value. Consider a game with optimal
solution S∗ = (S∗

π1
, . . . , S∗

πn
) and congestion C∗. Consider also a Nash equilibrium

state SE = (Sπ1 , . . . , Sπn) which has the highest congestion C among all Nash equi-
libria states, and all players on resources r with Cr ≥ τ are of type-A. We will give a
price of anarchy result by bounding the ratio C/C∗.

We define the expansion tree T for state S, which will help us to obtain the price of
anarchy bound. We first define a set of nodes V which will be used in the construction
of tree T . Each resource r ∈ R corresponds to C∗

r distinct nodes Vr = {xr
1, . . . , x

r
C∗

r
},

one node for each player πi whose strategy S∗
πi

contains r (there are C∗
r such play-

ers); thus, each xr
j ∈ Vr has a respective owner player. Note that for any two distinct

resources ri, rj ∈ R, where ri �= rj , the respective node sets are distinct, that is,
Vri ∩ Vrj = ∅. The set V consists of the union of all the sets Vr, that is, V =

⋃
r∈R Vr.

For convenience, for any node x ∈ V we denote by rx the respective resource of x.
Let Πr denote the set of players that use the resource r in SE . Let Π ′

r be the
set of players that use r in SE and their optimal strategy in S∗ does not contain r.
Note that |Π ′

r| ≥ |Πr| − C∗
r . We divide Π ′

r into C∗
r (almost) equal size disjoint sets

Π ′
xr
1
, . . . , Π ′

xr
C∗

r

, where each set consists of at least �|Π ′
r|/C∗

r � ≥ �|Πr|/C∗
r − 1� =

�Cr/C∗
r − 1� players. We say that the players in Π ′

xr
j

are assigned to node xr
j ∈ Vr.

The expansion of a node x ∈ V is a tree of two levels rooted at x such that for every
player π assigned to node x, that is, π ∈ Π ′

x, we add as children to x all the nodes
y ∈ V where the optimal strategy of π in S∗ contains ry and π is the owner of y. We
build the expansion tree T starting with an arbitrary root node ρ ∈ V with Crρ = C,
and we recursively expand all nodes x with Crx ≥ τ . The final tree T is obtained by
removing any link that points to the root ρ (note that there could be at most one such
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link). Thus, all leaves y of the tree have the property Cry < τ . We define a proper
subtree of T to be a subtree where each node is either fully expanded or not expanded
at all (and does not contain a link to the root).

Lemma 4. For any node x ∈ T with Crx ≥ τ , it holds that
∑

y∈A MCry ≥ MCrx ,
where A are the children of x in T .

Proof. Let πρ be the owner player of root ρ. Let Π ′
x be the set of players that are

assigned to x. Let Π ′′
x = Π ′

x \ {πρ}. By construction of the expansion tree, |Π ′
x| ≥

�Crx/C∗ − 1� > τ/C∗ − 2 = M; hence, |Π ′
x| ≥ M + 1, and |Π ′′

x | ≥ M. For every
player π ∈ Π ′′

x , let Aπ denote the respective set of nodes in A that are owned by π.
Note that Aπi ∩ Aπj = ∅ for any πi, πj ∈ Π ′′

x , and
⋃

π∈Π′′
x

Aπ ⊆ A. Since any player
π ∈ Π ′′

x is locally optimal in Nash equilibrium SE and also of type-A, it holds that∑
y∈Aπ

MCry+1 ≥ MCrx . Therefore:∑
y∈A

MCry+1 ≥
∑

π∈Π′′
x

∑
y∈Aπ

MCry+1 ≥ |Π ′′
x | ·MCrx ≥ M ·MCrx ≥ MCrx+1.

The result follows by factoring out M in the above expressions.

We can then prove by induction the following lemma, the proof of which we omit for
space considerations.

Lemma 5. For any proper subtree of T with leaves H , it holds:
∑

y∈H MCry ≥ MC .

Theorem 2 (Price of Anarchy for Type-A players). The price of anarchy is PoA =
O(log |R|).
Proof. Let H be the leaves of T . Since each resource in R corresponds to at most
C∗ nodes in T , we have that |H | ≤ C∗|R|. For any leaf x ∈ H it holds Crx < τ .
¿From Lemma 5,

∑
y∈H MCry ≥ MC . For every y ∈ H it holds that Cry < τ .

Thus, |H | ·Mτ >
∑

y∈H MCry . Consequently, |H | ·Mτ > MC . Equivalently |H | >

MC−τ . Thus, logM |H | ≥ C−(M+2)C∗. Hence, logM(C∗|R|) ≥ C−(M+2)C∗.
Therefore,

PoA =
C

C∗ ≤ 3 + M + logM(|R|).

4.2 Price of Anarchy for Arbitrary Games

We can consider now an arbitrary game. Note that if all player costs are less than
ψ = M(M+2)C∗

then it then PoA = O(1) since the base M is a constant. There-
fore, by Theorem 1, we only need to consider games with type-A players with costs
above ψ, which implies that the congestion on any resource of these players is at least
the threshold value τ (which is is necessary for Theorem 2). Finally, by combining
Theorem 1, Theorem 2, and Corollary 1 we obtain the main result for price of anarchy:

Theorem 3 (Price of Anarchy for Arbitrary Exponential Games). The price of
anarchy is PoA = O(log |R|).
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5 Lower Bound

We show that the upper bound of O(log |R|) in the price of anarchy is tight by demon-
strating a congestion game with a lower bound on the price of anarchy of Ω(log |R|).
We construct a game instance represented as a graph in the figure below, such that
each edge in the graph corresponds to a resource, and each player πi has two strate-
gies available: either the path from u to v through the direct edge e = (u, v), or
an alternative path pi = (u, xi, . . . , yi, v) (note that different player paths are edge-
disjoint). Each path has length |pi| = Mn−1 edges and the number of players is
n = logM |R| − logM logM |R|.

x1 y1

u v

xn yn

x2 y2

x1 y1

u v

xn yn

x2 y2

p1

pn

p2

Nash Equilibrium Routing with optimal social cost 1

Let S be the state depicted on the left part of the figure, where each player chooses
the first strategy, and let S∗ be the state on the right part of the figure, where each
player chooses the alternative path. We have that C(S∗) = 1, which is the smallest
congestion possible. Thus, S∗ represents a socially optimal solution. For state S we
have that C(S) = n, since all players use edge (u, v). Note that S is a Nash Equilib-
rium, since each player πi has cost pcπi(S) = Mn = |R|/ logM |R|, and the cost of
switching to path pi would be M1 · |pi| = Mn = |R|/ logM |R|, which is the same
at the cost of using edge (u, v). Consequently, a lower bound on the price of anarchy is
C(S)/C(S∗) = n/1 = logM |R| − logM logM |R| = Ω(log |R|).

References

1. Banner, R., Orda, A.: Bottleneck routing games in communication networks. IEEE Journal
on Selected Areas in Communications 25(6), 1173–1179 (2007); Also appears in INFOCOM
2006

2. Borodin, A., El-Yaniv, R.: Online computation and competitive analysis. Cambridge Univer-
sity Press, New York (1998)

3. Busch, C., Kannan, R., Vasilakos, A.V.: Quality of routing congestion games in wireless
sensor networks. In: Proc. 4th International Wireless Internet Conference (WICON), Maui,
Hawaii (November 2008)

4. Busch, C., Magdon-Ismail, M.: Atomic routing games on maximum congestion. Theoretical
Computer Science 410(36), 3337–3347 (2009)

5. Christodoulou, G., Koutsoupias, E.: The price of anarchy of finite congestion games. In:
Proceedings of the 37th Annual ACM Symposium on Theory of Computing (STOC), pp.
67–73. ACM, Baltimore (May 2005)

6. Correa, J.R., Schulz, A.S., Moses, N.E.S.: Computational complexity, fairness and the price
of anarchy of the maximum latency problem. In: Bienstock, D., Nemhauser, G.L. (eds.) IPCO
2004. LNCS, vol. 3064, pp. 59–73. Springer, Heidelberg (2004)



Bottleneck Congestion Games with Logarithmic Price of Anarchy 233

7. Czumaj, V.: Tight bounds for worst-case equilibria. In: ACM Transactions on Algorithms
(TALG), vol. 3. ACM, New York (2007)

8. Fotakis, D., Kontogiannis, S.C., Spirakis, P.G.: Selfish unsplittable flows. Theoretical Com-
puter Science 348(2-3), 226–239 (2005)

9. Gairing, M., Lücking, T., Mavronicolas, M., Monien, B.: Computing Nash equilibria for
scheduling on restricted parallel links. In: Proceedings of the 36th Annual ACM Symposium
on the Theory of Computing (STOC), Chicago, Illinois, USA, pp. 613–622 (June 2004)
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Abstract. We consider the problem of designing truthful auctions,
when the bidders’ valuations have a public and a private component. In
particular, we consider combinatorial auctions where the valuation of an
agent i for a set S of items can be expressed as vif(S), where vi is a pri-
vate single parameter of the agent, and the function f is publicly known.
Our motivation behind studying this problem is two-fold: (a) Such valu-
ation functions arise naturally in the case of ad-slots in broadcast media
such as Television and Radio. For an ad shown in a set S of ad-slots, f(S)
is, say, the number of unique viewers reached by the ad, and vi is the val-
uation per-unique-viewer. (b) From a theoretical point of view, this fac-
torization of the valuation function simplifies the bidding language, and
renders the combinatorial auction more amenable to better approxima-
tion factors. We present a general technique, based on maximal-in-range
mechanisms, that converts any α-approximation non-truthful algorithm
(α ≤ 1) for this problem into Ω( α

log n
) and Ω(α)-approximate truthful

mechanisms which run in polynomial time and quasi-polynomial time,
respectively.

1 Introduction

A central problem in computational mechanism design is that of combinatorial
auctions, in which an auctioneer wants to sell a heterogeneous set of items J
to interested agents. Each agent i has a valuation function vi(.) which describes
her valuation vi(S) for every set S ⊆ J of items. In its most general form,
the entire valuation function is assumed to be private information which may
not be revealed truthfully by the agents. Maximizing the social welfare in a
combinatorial auction with an incentive-compatible mechanism is an important
open problem. However, recent results [5, 4] have established polynomial lower
bounds on the approximation ratio of maximal-in-range mechanisms - which
account for a majority of positive results in mechanism design - even when all
the valuations are assumed to be submodular. On the other hand, in the non-
game-theoretic case, if all the agents’ valuations are public knowledge and hence
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truthfully known, then we can maximize the social welfare to much better factors
[6, 7, 17], under varying degree of restrictions on the valuations. In this paper,
we introduce a model that lies in between these two extremes.

We wish to explore the setting when some inherent property of the items
induces a common and publicly known partial information about the valuation
function of the buyers. For instance, in position auctions in sponsored search,
the agents’ valuation for a position consists of a private value-per-click as well as
a public click-through rate, that is known to the auctioneer. Another situation
where such private/public factorization of valuations arises is advertisements in
broadcast media such as Television and Radio. Suppose we are selling TV ad-
slots on a television network. There are m ad-slots and n advertisers interested
in them. Let us define a function f : 2[m] → Z+, such that for any set S of
ad-slots f(S) is the number of unique viewers who will see the ad1 if the ad is
shown on each slot in S. If an advertiser i is willing to pay vi dollars per unique
viewer reached by her ad, then her total valuation of the set S is vif(S).

With this background, we define the following class of problems which we call
single-parameter combinatorial auctions with partially public valuations: We are
given a set J of m items and a global public valuation function2 f : 2J → R.
The function f can either be specified explicitly or via an oracle which takes a
set S as input and returns f(S). In addition, we have n agents each of whom
has a private multiplier vi such that the item set S provides vif(S) amount of
utility to agent i. The goal is to design a truthful mechanism which maximizes∑

i vif(Si), where S1 · · ·Sn is a partition of J .
One can think of this model as combinatorial auctions with simplified bid-

ding language. The agents only need to specify one parameter vi as their bid.
Moreover, our problem has deeper theoretical connections to the area of single-
parameter mechanism design in general. For single-parameter domains such as
ours, it is known that monotone allocation rules characterize the set of all truth-
ful mechanisms. An allocation rule or algorithm is said to be monotone if the
allocation parameter of an agent (f(Si) in our case) is non-decreasing in his
reported bid vi. Unfortunately, often it is the case that good approximation al-
gorithms known for a given class of valuation functions are not monotonic. It is
an important and well-known open question in algorithmic mechanism design to
resolve whether the design of monotone algorithms is fundamentally harder than
the non-monotone ones. In other words, it is not known if, for single-parameter
problems, we can always convert any α-approximation algorithm into a truth-
ful mechanism with the same factor. We believe that our problem is a suitable

1 For a single ad-slot j, the function f({j}) is nothing but the television rating for that
slot as computed by rating agencies such as Nielsen. In fact, their data collection
through set-top boxes results in a TV slot-viewer bipartite graph on the sample
population, from which f(S) can be estimated for any set S of ad slots.

2 We do not make any explicit assumptions such as non-negativity or free disposal
about the function f . We provide a method to convert any non-truthful black-box
algorithm into a truthful mechanism. This black-box algorithm may make some
implicit assumptions about f .
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candidate to attack this question as it gives a lot of flexibility in defining the
complexity of function f . From this discussion, it follows that the only lower
bound known for the approximation factor of a truthful mechanism in our setting
is the hardness of approximation of the underlying optimization problem.

Our Results and techniques. We give a general technique which accepts
any (possibly non-truthful) α-approximation algorithm for our problem as a
black-box and uses it to construct a truthful mechanism with an approximation
factor of Ω

(
α

log n

)
. We also give a truthful mechanism with factor Ω(α) which

runs in time O
(
nlog log n · poly(m)

)
. Both these results are corollaries obtained

by setting parameters appropriately in Theorem 1 to achieve desired trade-off
between the approximation factor and the running time. Our results can also be
interpreted as converting non-monotone algorithms into monotone ones for the
above model.

Our mechanisms are maximal-in-range, i.e., they fix a range R of allocations
and compute the allocation S ∈ R that maximizes the social welfare. The tech-
nical core of our work lies in careful construction of this range.

While the black-box algorithm may be randomized, our mechanism does not
introduce any further randomization. Depending upon whether the black-box
algorithm is deterministic or randomized, our mechanism is deterministically
truthful or universally truthful respectively (See [8] for definitions). The ap-
proximation factor of our mechanism is deterministic (or with high probability
or in expectation) if the black-box algorithm also provides the approximation
guarantees deterministically (or with high probability or in expectation).

Note that we don’t need to worry about how the public valuation function
f is specified. This is plausible since the function is accessed only from within
the black-box algorithm. Hence, our mechanism can be applied to any model of
specification - whether it is specified explicitly or through a value or demand
oracle - using the corresponding approximation algorithm from that model.

Submodular valuations arise naturally in practice from economies of scale or
the law of diminishing returns. Hence, we make a special note of our results when
the public valuation is submodular. Using the algorithm of [17] as black-box,
our results imply a Ω (1/ logn) and Ω(1) approximation factors in polynomial
time and quasi-polynomial time, respectively. We would like to note that the
standard greedy algorithm for submodular welfare maximization is not monotone
(See [8] for a simple example) and hence, not truthful. Similarly, the optimal
approximation algorithm of [17] is also not known to be non-monotone. The
best known truthful mechanism for combinatorial auctions with entirely private
submodular valuations [6] has Ω(1/

√
m) approximation factor.

Future Directions. As shown in [5, 4], it seems that designing a truthful mech-
anism with good approximation factor for maximizing social welfare is a difficult
problem. In light of this, our work suggests an important research direction to
pursue in combinatorial auctions- to divide the valuation function into a part
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which is common among all the agents and can be estimated by the auctioneer
and a part which is unique and private to individual agents.

Also, it would be interesting to see if for submodular public functions (or
even more specifically, for coverage functions), which have concrete motivation
in TV ad auctions, one can design a constant factor polynomial time truthful
mechanism.

Related Work. When agents have a general multi-parameter valuation func-
tion, the best known truthful approximation of social welfare in the value oracle
model is Ω(

√
log m/m) [10]. Under subadditive valuation functions, [6] gave

Ω(1/
√

m)-approximate truthful mechanism. It is known that no maximal-in-
range mechanism making polynomially many calls to the value oracle can have
an approximation factor better than Ω(1/m1/6)[5] even for the case of submodu-
lar valuation functions. A similar Ω(1/

√
m) hardness result for maximal-in-range

algorithms based on NP � P/poly appears in [4]. See [3] for a comprehensive
survey of the results, and [16, 4] for other more recent work. Previous work
on the single-parameter case of combinatorial auctions have primarily focused
on the single-minded bidders. In this setting, any bidder i is only interested in
single set Si and has a valuation vi for it. Lehmann et al. [12] gave a truthful
mechanism which achieves an essentially best-possible approximation factor of
Ω(1/

√
m). For other results in single-minded combinatorial auction, see [14, 1].

When the desired set is publicly known and only the valuation is private, [2]
gave a general technique which converts any α-approximation algorithm into a
truthful mechanism with factor α/ log(vmax). This result is very much in spirit
to our work, however the model and the techniques used in the two papers are
very different. Similarly, [11] present a general framework which uses a gap-
verifying linear program as black-box to construct mechanisms that are truthful
in expectation.

For the non-truthful optimization, we note that our problem is hard up to a
constant factor (see [13]) even when all the agents have private value equal to
1 and with common valuation function being submodular. For designing mono-
tone algorithms from non-monotone algorithms in the Bayesian setting, see [9].
We also note that TV ad auctions are in use by Google Inc. (see [15]), although
currently they treat the valuations for a set of ad-slots as additive with budget
constraints, which yields a multi-parameter auction.

Organization: The full version of this paper [8] provides preliminary section
containing a brief introduction to mechanism design with a few concepts rele-
vant to our work, such as different notions of truthfulness and maximal-in-range
mechanisms. In Section 2 in which we state some basic properties and assump-
tions about single parameter combinatorial auctions. Section 3 introduces our
vector-fitting technique and presents our main result, a vector-fitting mechanism
formalized by Theorem 1. Due to space constraints, we omit the proofs of Ob-
servation 3 and 4, as well as Lemma 1 here. These proofs follow largely from the
definitions and can be found in the full version of this paper [8].
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2 Notations and Basic Properties

By boldface v, we will denote a vector of private multipliers of the agents, where
vi is the multiplier of agent i. For a constant β ≥ 0, let βv = (βv1, βv2, ..., βvn).
By boldface S, we will denote the vector of allocations, where Si is the set of
items allocated to agent i. We will overload the function symbol f to express
the social welfare as: f(v,S) =

∑
i vif(Si). An allocation S is optimal for a

multiplier vector v if it maximizes f(v,S).
We begin by observing two simple properties of our problem and its solutions:

symmetry and scale-freeness. Our problem and its solutions are symmetric, i.e.,
invariant under relabeling of agents in the following sense: Let v be any multiplier
vector, S be any allocation and π be any permutation of [n]. Let u and T be such
that ui = vπ(i) and Ti = Sπ(i). Then clearly, f(v,S) = f(u,T). The problem and
its solutions are also invariant under scaling, since we have f(βv,S) = β·f(v,S).

The above properties lead us to:

Observation 1. Without loss of generality, every multiplier vector v has non-
increasing entries v1 ≥ v2 ≥ ... ≥ vn such that

∑
i vi = 1.

Given a multiplier vector v, let A(v) be the optimal allocation for v and OPT(v)
= f(v, A(v)). Moreover, if f(v,S) ≥ α · OPT(v) for some α ≤ 1 then the
allocation S is said to be α-optimal or α-approximate for v.

We note a simple property of A(v): Let v be a multiplier vector with v1 ≥
v2 ≥ ... ≥ vn. Let S be any allocation. If T is a permutation of S such that
f(T1) ≥ f(T2) ≥ ... ≥ f(Tn), then f(v,T) ≥ f(v,S). In particular, if S = A(v)
then f(S1) ≥ f(S2) ≥ ... ≥ f(Sn).

Finally, we assume the existence of a poly-time black-box algorithm that com-
putes an α-approximate allocation B(v) for the multiplier vector v. We express
the performance guarantees of our truthful mechanisms in terms of α and other
parameters of the problem. Although the output allocation S of such an al-
gorithm may not obey f(S1) ≥ f(S2) ≥ ... ≥ f(Sn), it is easy to construct
a non-decreasing permutation of S which only improves the objective function
value, as discussed above.

Observation 2. Without loss of generality, any allocation S output by the
black-box algorithm obeys f(S1) ≥ f(S2) ≥ ... ≥ f(Sn).

Henceforth, we enforce assumptions from Observation 1 and 2.

Definition 1 (u dominates w). We say that a multiplier vector u dominates
w if there exists an index i such that for k < i, uk ≥ wk and for k ≥ i, uk ≤ wk.

Lemma 1. If u dominates w, then f(u,S) ≥ f(w,S) for any allocation S
satisfying f(S1) ≥ f(S2) ≥ ... ≥ f(Sn).

Proof. Refer to the full version of this paper [8].

Staircase Representation: Suppose we represent a multiplier vector v as a
histogram, which consists of n vertical bars corresponding to v1, ..., vn, in that
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order from left to right. Since multiplier vectors have non-increasing components,
such a histogram looks like a staircase descending from left to right (Refer to
Figure 1 for an example). We will refer to it as the staircase representation of v
and use it mainly as a visual tool.

v1 v2

vn
vj

v3

Fig. 1. The staircase representation of v = (v1, ..., vn)

3 A Vector-Fitting Mechanism

Consider the following candidate approach to single parameter combinatorial
auctions with partially public valuations: Fix a set U of some multiplier vectors.
Using the black-box algorithm, compute an α-approximate allocation B(v) for
each vector v ∈ U and populate the range R = { B(v) : v ∈ U }. Run
the maximal-in-range mechanism which given a multiplier vector v, chooses the
allocation S ∈ R that maximizes f(v,S).

Let’s consider the merits and demerits of this mechanism. If the input multi-
plier vector happens to be in U , then the mechanism will indeed return an output
allocation that is at least α-approximate. But we have no guarantees otherwise.
If U consisted of all possible vectors, we would have an α-approximate truthful
mechanism that could be computationally infeasible due to the size of U . We
handle this trade-off with vector-fitting. The intuition behind vector-fitting is
as follows: If two multiplier vectors u and v are ‘very similar’ to each other,
then B(u) and B(v) should be ‘similar’ as well. In particular, B(u) should be a
reasonably good allocation for v and vice versa.

Our mechanism will be the same as the candidate mechanism outlined above,
except that we will construct the set of vectors U very carefully. For any input
vector of multipliers v, we will guarantee that a reasonably similar vector v′ can
be found in U , and hence and allocation S′ is in the range R with provably large
objective value f(v,S′). We will prove the following theorem:

Theorem 1. There exists a truthful mechanism for maximizing welfare in a
single parameter combinatorial auction with partially public valuations that runs
in time O((loga n)logb n ·poly(m, n)) and produces an allocation with total welfare
at least 3α

4ab · OPT(v) - where α is the approximation factor of the black-box
optimization algorithm and a, b > 1 are parameters of the mechanism.

Setting a = b = 2 we get: (Henceforth, all logarithms are to base 2)
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Corollary 1. There exists a 3α
16 -factor truthful mechanism running time

O
(
nlog log n · poly(m)

)
, i.e. quasi-polynomial time.

Similarly, setting a = 2 and b = log n we get:

Corollary 2. There exists a truthful mechanism with factor Ω
(

α
log n

)
and poly-

nomial running time.

When the public valuation f is submodular, we have α =
(
1 − 1

e

)
and the above

corollaries yield factors Ω(1) and Ω
(

1
log n

)
respectively.

3.1 Constructing the Range R
Overview: Recall the staircase representation of a multiplier vector v, such as
in Figure 1. Depending upon the entries of v, the steps of the staircase may have
varying heights. We can construct a discretization of the space of all multiplier
vectors by restricting the values the height of any step can take. That is, we
populate the initial set U with all vectors whose components take values of the
form b−k for some constant b > 1 and for all k ≥ 0. Now given any input vector
v, we can find a vector u ∈ U such that ui is at most a multiplicative factor b
away from vi. Thus, u can serve as a vector ‘similar’ to v. We need more complex
machinery to ensure that the size of U does not blow up, and that the vectors
in U still have unit norm.

Let a, b > 1 be suitably chosen parameters of the mechanism. Let Q = { b−k :
0 ≤ k < logb n } be a set of values discretizing the interval ( 1

n , 1] and q be the
minimum element of Q. For a multiplier vi ≥ q, we define �vi� to be the largest
element of Q that is no greater than vi. For a multiplier vector v we define the
floor of v, �v� as follows:

Definition 2 (Floor �v�). The floor �v� of a multiplier vector v is the vector
u constructed by Algorithm 1.

In short, to find the ‘floor’ of a multiplier vector, we successively round down
the ‘large’ components into elements of Q, until we need to set all the remaining
components equal due the monotonicity and unit norm requirement or only
‘small’ components are remaining. When represented as a staircase (Refer Figure
1), all the steps of �v� except the last one must have height that belongs to Q.

Observation 3. The floor of a vector v is a valid multiplier vector itself, i.e. it
has non-increasing components and unit l1 norm. Moreover, v dominates �v�.
Proof. Refer to the full version of this paper [8].

Intuitively, the floor of a vector is (in a sense formalized by Lemma 2) ‘similar’
to the vector, and the similarity is parametrized by b.

Lemma 2. For any multiplier vector v and allocation S, f(�v�,S) ≥ 3
4b ·f(v,S).
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Algorithm 1. ConstructFloor
for i = 1 to n do

r ←
(
1−∑i−1

k=1 uk

)
(n− i + 1)

;

/* r is the minimum

permissible value of

ui due to

monotonicity. */

if vi ≥ q and �vi� > r
then

ui ← �vi�;
else

for j = i to n do
uj ← r;

break

Algorithm 2. ConstructCore
i1 ← 1; j1 ← 1;
while i1 ≤ n do

r ←
(
1−∑j1−1

i=1 ui

)
/(n−j1 +1);

if vi1 > r then
Find the largest index i2
such that vi1 = vi2 ;

Find largest integer k such
that �ak� ≤ (i2 − j1 + 1);
for i = j1 to j1 + �ak� − 1
do

ui ← vi1 ;
i1 ← i2 + 1;
j1 ← j1 + �ak�;

else
for i = j1 to n do

ui ← r;
break

Proof. Refer to Appendix A.

We will construct our preliminary set of vectors U ′ as

U ′ = { u : u = �v� for some multiplier vector v }
It turns out that U ′ is too large for our purposes. Hence we construct a subset
U ⊆ U ′, which is small enough. Referring back to the staircase representation of
a multiplier vector (Figure 2), we constructed U ′ by discretizing the ‘height’ of
each step - by fitting the vectors vertically. Since rounding down the components
of v might lead to many components of u = �v� having the same value, u also
looks like a staircase, perhaps with ‘wider’ steps. Each step of u may have any
integral width - at most n.

1

b−1

b−2

q

1/n

v1 v2 vn

v
�v�

Rounded down

Equalized

Fig. 2. Vertical fitting of v

1

b−1

b−2

q

1/n

v1 v2 vn

Last step

←−v
v

Fig. 3. Horizontal fitting of v
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We construct U from U ′ by further restricting how wide a step can be -
by horizontal fitting (See Figure 3). We allow each step (except the last) to
be of width �ak� for some integer k ≥ 0 - where a > 1 is a suitably chosen
parameter of the mechanism. To this end, we need to slightly formalize the
staircase representation of a multiplier vector, which till now we only used as
a visual aid. By a step of the staircase of v, we will mean a maximal interval
[i1, ..., i2] ⊆ [1, ..., n] such that vi1 = vi2 . All the indices i1 ≤ i ≤ i2 will be said
to belong to the step, whereas i1 and i2 and the first and last indices of the step.
The height of the step is given by vi1 and the width by i2 − i1 + 1.

Remark: Notice that just as a multiplier vector can be specified by the n-tuple
(v1, ..., vn), it can also be identified by specifying the height and width of each
step of its staircase representation. In fact, specifying all but the last step of a
staircase fixes the last step due to the unit norm requirement.

For a multiplier vector v, we define the core ←−v of v as:

Definition 3 (Core ←−v ). The core ←−v of a multiplier vector v is the vector u
constructed by Algorithm 2.

Operation of Algorithm 2: Each iteration of the while loop processes one
step of v and u. i1 and j1 hold the first index of the current step of v and u
respectively. r is the minimum height of the current step of u by monotonicity.
If r ≥ vi1 , then the requirement for unit l1 norm forces us to introduce the last
step of the staircase of u. Otherwise, [i1, ..., i2] is the current step of v and we
set the width of the current step of u to be �ak�.
Observation 4. The core of a vector v is a multiplier vector itself, i.e. it has
non-increasing components and unit l1 norm. Moreover, v dominates ←−v .

Proof. Refer to the full version of this paper [8].

Lemma 3. For any multiplier vector v and allocation S, f(←−v ,S) ≥ f(v,S)/a.

Proof. Refer to Appendix B.

We now define our set of vectors U as follows: U = { ←−v : v ∈ U ′ }. We
populate the range R of allocations as R = { B(v) : v ∈ U } where B(v) is
the α-approximate allocation returned by the black box algorithm.

3.2 Proof of Theorem 1

We run the following maximal-in-range mechanism: Given an input multiplier
vector v we return the allocation T ∈ R that maximizes f(v,T). We need to
prove that f(v,T) ≥ 3α

4ab · OPT(v)

Let S = A(v) be the optimal allocation for v and
←−�v� be the core of the floor

of v. Combining Lemmas 2 and 3, we conclude that f(
←−�v�,S) ≥ 3

4ab ·OPT(v).

Since
←−�v� ∈ U , there exists an allocation X ∈ R such that

f(
←−�v�,X) ≥ α · OPT(

←−�v�) ≥ α · f(
←−�v�,S) ≥ 3α

4ab
· OPT(v) (1)
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Since v dominates �v� which in turn dominates
←−�v� (Refer to Observation 3

and 4), application of Lemma 1 yields:

f(v,X) ≥ f(�v�,X) ≥ f(
←−�v�,X) (2)

Using equations (1) and (2),

f(v,T) ≥ f(v,X) ≥ f(
←−�v�,X) ≥ 3α

4ab
· OPT(v)

The running time of the mechanism is established by Lemma 4, which finishes
the proof of Theorem 1.

Lemma 4. |R| = O
(
(loga n)logb n

)
Proof. |R| is bounded by |U|. U consists of only those vectors which are cores of
floors of some multiplier vectors. We have seen that each step of the staircase of
v ∈ U except the last must be of width w = �ak� for some integer k. Moreover,
there can be only |Q| = O(logb n) such steps and at most one of each height.
We have also remarked that specifying all but the last step of a staircase fixes
it. Therefore there can be at most O

(
(loga n)logb n

)
distinct staircases in U .
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A Proof of Lemma 2

Define u = �v�. Let p be the highest index such that vp is rounded down by
the procedure that constructs u, i.e. up = �vp� and up > r = up+1. Since,∑p

i=1 ui ≤ ∑p
i=1 vi, it is clear that p < n. Now for i ≤ p, we have ui = �vi� ≥

vi/b. Consider two cases about vp+1:
Case 1 - vp+1 ≥ q: In this case, up+1 = r ≥ �vp+1� ≥ vp+1/b. For

i ≥ p + 1, we have vi ≤ vp+1 and ui = up+1 implying ui ≥ vi/b. Therefore,

f(u,S) =
n∑

i=1

uif(Si) ≥ 1
b

n∑
i=1

vif(Si) =
1
b
· f(v,S)

Case 2 - vp+1 < q: Let h =
p∑

i=1

vi and H =

(
p∑

i=1

vif(Si)

)
/f(v,S). From

the monotonicity of S, we conclude that

H · f(v,S) =
p∑

i=1

vif(Si) ≥ h · f(v,S)

and hence H ≥ h.
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Since ui ≤ vi for all i ≤ p, and both u and v must have unit l1 norm, we
have

∑
i>p ui ≥ ∑

i>p vi = (1 − h). Hence, ui ≥ 1−h
n for i > p. By definition,

vi < q ≤ b
n for i > p. Together, these imply ui ≥ (1 − h)vi/b. Finally, using

H ≥ h, we conclude

∑
i>p

uif(Si) ≥ 1 − h

b

⎛⎝∑
i>p

vif(Si)

⎞⎠ ≥ 1 − H

b
[(1 − H)f(v,S)]

Combining these pieces together, we get:

f(�v�, S) =
p∑

i=1

uif(Si) +
∑
i>p

uif(Si)

≥ 1
b

p∑
i=1

vif(Si) +
(1 − H)2

b
· f(v,S)

=
H + (1 − H)2

b
· f(v,S) ≥ 3

4b
· f(v,S)

B Proof of Lemma 3

Suppose the staircase of v has s1 steps and that of u = ←−v has s2 steps. Then
the following four properties follow directly from the algorithm:

1. s2 ≤ s1
2. For 1 ≤ i < s2, the i’th step of v is at most a times as wide as the i’th step

of u and both have the same height.
3. For 1 ≤ i ≤ s2, let i1 and j1 be the first indices of the i’th steps of v and u

respectively. Then i1 ≥ j1.
4. If [j, ..., n] is the last step of u then ui ≥ vi for i ≥ j.

To prove the lemma, we will compare the the contributions of corresponding
steps of the staircases of v and u to the objective functions.

For i < s2, let [i1, ..., i2] be the i’th step of v, [j1, ..., j2] be the i’th step of u
and h = vi1 = uj1 be their common height. We have

j2∑
k=j1

ukf(Sk) = h

j2∑
k=j1

f(Sk) ≥ h

ii+j2−j1∑
k=i1

f(Sk)

by the third property. The monotonicity of S and the second property then imply
j2∑

k=j1

ukf(Sk) ≥ 1
a

i2∑
k=i1

vkf(Sk)

So the i’th step of v contributes at most a times value to f(v,S) as the i’th step
of u contributes to f(u,S), where i < s2.

Finally by the fourth property, the step s2 of u contributes more to f(u,S)
than the corresponding contribution of steps s2, ..., s1 of v to f(v,S) combined.
The result therefore follows.
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Abstract. We analyze the performance of resource allocation mech-
anisms for markets in which there is competition amongst both con-
sumers and suppliers (namely, two-sided markets). Specifically, we ex-
amine a natural generalization of both Kelly’s proportional allocation
mechanism for demand-competitive markets [9] and Johari and Tsitsik-
lis’ proportional allocation mechanism for supply-competitive markets
[7].

We first consider the case of a market for one divisible resource. As-
suming that marginal costs are convex, we derive a tight bound on the
price of anarchy of about 0.5887. This worst case bound is achieved when
the demand-side of the market is highly competitive and the supply-side
consists of a duopoly. As more firms enter the market, the price of an-
archy improves to 0.64. In contrast, on the demand side, the price of
anarchy improves when the number of consumers decreases, reaching a
maximum of 0.7321 in a monopsony setting. When the marginal cost
functions are concave, the above bound smoothly degrades to zero as
the marginal costs tend to constants. For monomial cost functions of the
form C(x) = cx1+ 1

d , we show that the price of anarchy is Ω( 1
d2 ).

We complement these guarantees by identifying a large class of two-
sided single-parameter market-clearing mechanisms among which the
proportional allocation mechanism uniquely achieves the optimal price
of anarchy. We also prove that our worst case bounds extend to general
multi-resource markets, and in particular to bandwidth markets over ar-
bitrary networks.

1 Introduction

How to produce and allocate scarce resources is the most fundamental question
in economics1. The standard tool for guiding production and allocation is a pric-
ing mechanism. However, different mechanisms will have different performance
attributes: no two mechanisms are equal. Of particular interest to computer sci-
entists is the fact that there will typically be an inherent trade-off between the
economic efficiency of a mechanism (measured in terms of social welfare) and its
� The authors were supported in part by NSERC grant 28833.
1 In fact, economics is often defined as “the study of scarcity”.
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computational efficiency (both time and communication complexity). Socially
optimal allocations can be achieved using pricing mechanisms based on classical
VCG results, but implementing such mechanisms generally induces excessively
high informational and computational costs [12]. In this paper, we study this
tradeoff from the opposite viewpoint: we examine the level of social welfare that
can be achieved by mechanisms performing minimal amounts of computation.
In particular, we restrict our attention to so-called scalar-parametrized pricing
mechanisms. Each participant submits only a single scalar bid that is used to
set a unique market-clearing price for each good. Evidently, such mechanisms
are computationally trivial to handle; more surprisingly, they can produce high
welfare.

The chief practical motivation for considering scalar-parametrized mecha-
nisms (both in our work and in the existing literature) is the problem of band-
width sharing. Namely, how should we allocate capacity amongst users that want
to transmit data over a network link? The use of market mechanisms for this
task has been studied in Asynchronous Transfer Mode (ATM) networks [15] and
the Internet [14]. The Internet is made up of smaller interconnected networks
that buy capacities from each other, and the market mechanisms we consider
are closely inspired by the structure of the Internet. Specifically, we are restrict-
ing our attention to mechanisms that are scalable to very large networks. This
requirement for scalability forces us consider only simple mechanisms, such as
those that set a unique market clearing price. The computational requirements
of more complex systems, e.g. mechanisms that perform price discrimination,
become impractical on large networks [1].

We remark that unique price mechanisms are also intuitively “fair”, as every
participant is treated equally. This fairness is appealing from a social and polit-
ical perspective, and indeed these systems are used in many real-world settings,
such as electricity markets [16].

1.1 Background and Previous Work

A basic method for resource allocation is the proportional allocation mechanism
of Kelly [9]. In the context of networks, it operates as follows: each potential
consumer submits a bid bq; bandwidth is then allocated to the consumers in
proportion to their bids. This simple idea has also been studied within economics
by Shapley and Shubik [13] as a model for understanding pricing in market
economies. In a groundbreaking result, Johari and Tsitsiklis [5] showed that the
welfare loss incurred by this mechanism is at most 25% of optimal.

Observe that Kelly’s is a scalar-paramterized mechanism for a one-sided mar-
ket: every participant is a consumer. Johari and Tsitsiklis [7] also examined one-
sided markets with supply-side competition only. There, under a corresponding
single-parameter mechanism, the welfare loss tends to zero as the level of competi-
tion increases. We remark that we cannot simply analyze supply-side competition
by trying to model suppliers as demand-side consumers [3].
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Of course, competition in markets typically occurs on both sides. Conse-
quently, understanding the efficiency of two-sided market2 mechanisms is an
important problem. In this work, we analyze the price of anarchy in a mecha-
nism for a two-sided market in which consumers and producers compete simul-
taneously to determine the production and allocation of goods. This mechanism
was first proposed by Neumayer [10] and is the natural generalization of both
the demand-side model of Kelly [9] and the supply-side model of Johari and
Tsitsiklis [7].

In order to examine how the generalized proportional allocation mechanism
performs in a two-sided market, it is important to note that there are three
primary causes of welfare loss. First, the underlying allocation problem may be
computationally hard. In other words, in some settings (such as combinatorial
auctions, for example), it may be hard to compute the optimal allocation even
when the players’ utilities are known. Secondly, even if the allocation problem
is computationally simple, the mechanism itself may still be insufficiently so-
phisticated to solve it. Thirdly, the mechanism may be susceptible to gaming;
namely, the mechanism may incentivize selfish agents to behave in a manner
that produces a poor overall outcome. As we will see in Section 4, the first two
causes do not arise here: as long as the users do not behave strategically, the
proportional allocation mechanism can quickly find optimal allocations in two-
sided markets. Thus, we are concerned only with the third factor: how adversely
is the proportional allocation mechanism affected by gaming agents? That is,
the mechanism may be capable of producing an optimal solution, but how will
the agents’ selfish behaviour affect social welfare at the resultant equilibria?

In this paper we prove that the proportional allocation mechanism does per-
form well in two-sided markets. Specifically, under quite general assumptions,
the mechanism admits a constant factor price of anarchy guarantee. Moreover,
there exists a large family of mechanisms among which the proportional alloca-
tion mechanism uniquely achieves the best possible price of anarchy guarantee.
We state our exact results in Section 3, after we have described the model and
our assumptions.

2 The Model

2.1 The Two-Sided Proportional Allocation Mechanism

We now formally present the two-sided proportional allocation mechanism due to
Neumayer [10]. There are Q consumers and R suppliers in the market. Each con-
sumer q has a valuation function Vq(dq), where dq is the amount of the resource
allocated to consumer q, and each supplier r has a cost function Cr(sr), where
sr is the amount produced by supplier r. Consumers and suppliers respectively

2 It should be noted that “two-sided market” often has a different meaning in the
economics literature than the one we use here. There it refers to a specific class of
markets where externalities occur between groups on the two sides of the market.
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input bids bq and br to the mechanism. Doing so, consumers are implicitly select-
ing bq-parametrized demand functions of the form D(bq, p) = bq

p , and suppliers
are selecting br-parametrized supply functions of the form S(br, p) = 1− br

p . We
can also interpret a high consumer bid as an indicator of high willingness to
pay for the product, and a low supplier bid as an indicator of a high willingness
to supply (alternatively, a high bid indicates a high cost supplier). The actual
choice of constant used for the supply functions does not affect our results, and
so we choose it to be 1.

Observe that the parametrized demand functions are identical to the ones in
the demand-side mechanism of Kelly [9], and the supply functions are identi-
cal to the ones in the supply-side mechanism of Johari and Tsitsiklis [7]. The
peculiar form of the supply functions comes from the interesting fact that for
most scalar-parametrized mechanisms, in order to have a non-zero welfare ratio,
the supply functions have to be bounded from above. In other words, suppliers’
strategies must necessarily be constrained in order to obtain high welfare; see
the full version of the paper for the precise statement of this fact. This rules
out, for instance, Cournot-style mechanisms where suppliers directly submit the
quantities they wish to produce.

More detailed justifications for this choice of model can be found in [10], as well
as in [9] and [7]. Further justification for the mechanism will be provided by our
results. Specifically, the proportional allocation mechanism generally produces
high welfare allocations and, in addition, it is the optimal mechanism amongst
a class of single-parameter mechanisms for two-sided markets.

Given the bids, the mechanism sets a price p(b) that clears the market; i.e.
that satisfies the supply equals demand equation:

∑Q
q=1

bq

p =
∑R

r=1(1− br

p ). The

price therefore gets set to p(b) =
∑

q bq+
∑

r br

R . Consumer q then receives dq units
of the resource, and pays pdq, while supplier r produces sr units and receives a
payment of psr. In the game induced by this mechanism, the payoff (or utility)
to consumer q placing a bid bq is defined to be

Πq(bq) =

⎧⎪⎨⎪⎩Vq

(
bq∑

q∈Q bq +
∑

r br∈R
R

)
− bq if bq > 0

Vq(0) if bq = 0

and the payoff to supplier r placing a bid br is defined as

Πr(br) =

⎧⎪⎪⎨⎪⎪⎩
∑

q∈Q bq +
∑

r∈R br

R
− br −Cr

(
1− br∑

q∈Q bq +
∑

r∈R br
R

)
if br > 0∑

q �=r bq +
∑

r∈R br

R
−Cr(1) if br = 0
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2.2 The Welfare Ratio

Given a vector of bids b, the social welfare at the resulting mechanism allocation
is defined to be

W(b) =
Q∑

q=1

Vq(dq(b)) −
R∑

r=1

Cr(sr(b))

If the agents do not strategically anticipate the effects of their actions on the
price, that is if they act as “price-takers”, we show in Section 4 that the mecha-
nism maximizes social welfare. However, since the price is a function of their bid,
each agent is a “price-maker”. If agents attempt to exploit this market power,
then a welfare loss may occur at a Nash equilibrium. Consequently we are in-
terested in maximizing (over all equilibria) the welfare ratio, more commonly
known as the price of anarchy, WNE

WOPT . Equivalently, we wish to minimize the
welfare loss, 1 − WNE

WOPT .

2.3 Assumptions

We make the following assumption on the valuation and cost functions.

Assumption 1. For each consumer q, the valuation function Vq(dq) : R+ →
R+ is strictly increasing and concave. For each supplier r, the cost function
Cr(sr) : R+ → R+ is strictly increasing and convex.

Assumption 1 corresponds to decreasing marginal valuations and increasing
marginal costs. The assumption is standard in the literature. It certainly may
not hold in every market3, but without it there will be a natural incentive for
the number of agents to decline on both sides of the market. In this paper, we
will also assume that our functions are differentiable over their entire domain;
this property is assumed primarily for clarity and is not essential.

Assumption 1, however, is not sufficient to ensure a large welfare ratio. In
fact, the welfare ratio depends upon the curvature of the marginal cost functions.
Specifically, if the marginal cost functions are convex, then we show in Section
4 that the welfare ratio is at least 0.58. Concave marginal cost functions also
exhibit constant welfare ratios, provided the corresponding total cost function is
sufficiently non-linear. However, in the limit as the total cost functions become
linear, the welfare ratio degrades to zero (see Section 5 for more details).

Our main result thus concerns convex marginal cost functions. Formally, for
most of the paper, we assume that

Assumption 2. For each supplier r, the marginal cost function C′
r(sr) is con-

vex. Furthermore, we assume that Cr(0) = C′
r(0) = 0.

Convex marginal cost functions are extremely common in both the theoretical
and the practical literature on industrial theory [17], so this assumption is not

3 For example, in markets exhibiting economies of scale.
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particularly restrictive. In Assumption 2 we also set C′
r(0) = 0, but as we show in

the full version of the paper, constant welfare ratios still arise whenever C′
r(0) is

bounded below one (it cannot be higher than one or the firm is uncompetitive).
We also remark that Assumption 2 was used in Johari, Mannor and Tsitsiklis

[4] in their analysis of the demand-side proportional allocation mechanism with
elastic supply. Most of the results of Johari and Tsitsiklis [6] and Tobias and
Harks [2] on demand-side Cournot competition with elastic supply also hold
under the assumption of convex marginal costs.

3 Our Results

Our first results are concerned with the performance of the mechanism when the
users act as price-takers. Under Assumption 1, we prove that:

Theorem 1. A unique competitive equilibrium exists for the two-sided propor-
tional allocation mechanism. The social welfare attained at the competitive equi-
librium is optimal.

This property was exhibited by Kelly’s original proportional allocation mech-
anism, and has been a feature of all subsequent generalizations by Johari and
Tsitsiklis. It is very appealing from a practical point of view, as in actual net-
works, users are likely to have little information about each other, making it
difficult to manipulate the system.

In many other settings however, users will be incentivized to act strategically.
In that case, we need to use the stronger solution concept of a Nash equilibrium
to analyze the resulting game. Our second result establishes the existence and
uniqueness of such equilibria under Assumption 1.

Theorem 2. The two-sided proportional allocation mechanism has a unique
Nash equilibrium for R ≥ 2.

Our main result measures the loss of welfare at that unique Nash equilibrium
under Assumption 2.

Theorem 3. The worst case welfare ratio for the mechanism involving R ≥ 2
suppliers equals

s2((R − 1)2 + 4(R − 1)s + 2s2)
(R − 1)(R − 1 + 2s)

where s is the unique positive root of the quartic polynomial γ(s) = 16s4 + (R−
1)s2(49s− 24)+10(R− 1)2s(3s− 2)+ (R− 1)3(5s− 4). Furthermore, this bound
is tight.

It follows that the mechanism admits a constant bound on the price of anarchy.
Moreover, Theorem 3 allows us to measure the effects of market competition on
social welfare. The following two corollaries are concerned with that relationship.
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Corollary 1. The worst possible price of anarchy is achieved when the supply
side is a duopoly (R = 2). It evaluates numerically to about 0.588727.

Corollary 2. When the supply side is fully competitive (R → ∞) the price of
anarchy equals precisely 0.64.

Consequently, as supply-side competition increases, the welfare ratio improves.
In contrast, the welfare ratio decreases as demand-side competition increases.
Although this fact may seem surprising at first, it turns out to have a simple
intuitive explanation. The optimal demand-side allocation consists in giving the
entire production to the user which derives from it the highest utility. When
more consumers are present in the market, they selfishly request more of the
resource for themselves, leaving less for the most needy user and reducing the
overall social welfare.

The best welfare ratios thus arise when there is only one consumer (Q = 1),
that is, in the case of a monopsony. In the two-sided proportional allocation
mechanism, the best possible price of anarchy over all possible values of Q and
R is given by the next corollary.

Corollary 3. In a market in which a monopsonist faces a fully competitive sup-
ply side, the price of anarchy equals

√
3 − 1, which is about 0.7321.

Recall that in the one-sided proportional allocation mechanism for suppliers
facing a fixed demand, the welfare loss tends to zero when the supply side is
fully competitive [7]. In contrast, Corollary 3 implies that in two-sided markets,
that result no longer holds and that full efficiency cannot be achieved.

So far, our results assumed the convexity of marginal costs. Dropping that
assumption, we find that the welfare ratio equals zero when the providers’ total
cost functions are linear. However, the price of anarchy remains bounded for a
class of concave marginal cost functions, and degrades smoothy to zero as the
total costs become linear.

Corollary 4. The welfare ratio for cost functions Cr(sr) = crs
1+ 1

d
r where cr > 0

and d ≥ 1 is Ω( 1
d2 ).

Like its one-sided versions, the two-sided mechanism can be generalized to multi-
resource markets. An important multi-resource setting is that of bandwidth
shared on a network of links. The same guarantees as in the single-resource
setting hold for the network version of our market, as well as for more general
multi-resource markets (see the full version of the paper for more details).

Theorem 4. The welfare ratio in networks equals that of the single-resource
model.

Theorem 5. The welfare guarantees hold for more general multi-resource
markets.

Finally, we show that the proportional allocation mechanism is optimal in the
following way:
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Theorem 6. In two-sided markets, the proportional allocation mechanism pro-
vides the best welfare ratio amongst a class of single-parameter market-clearing
mechanisms.

Our proof techniques are inspired by the approaches and techniques developed
to analyze single-sided markets by Johari [3], Johari and Tsitsiklis ([5], [8] and
[7]), Johari, Mannor and Tsitsiklis [4], Tobias and Harks [2], and Roughgarden
[11]. Due to space limitations, most of our results will be deferred to the full
version of the paper. Here, we will focus upon the proof of Theorem 3.

4 Optimization in Eight Steps

The proof of the main result, Theorem 3, is presented below in eight steps. We
formulate the efficiency loss problem as an optimization program in Step III. To
be able to formulate this we first need to understand the structure of optimal solu-
tions and of equilibria under this mechanism. This we do in Steps I and II, where
we give necessary and sufficient conditions for optimal solutions and for equilib-
rium. This leads us to an optimization problem that initially appears slightly
formidable, so we then attempt to simplify it. In Steps IV and V, we show how
to simplify the demand constraints in the program, and in Steps VI and VII, we
simplify the supply constraints. This produces an optimization program in a form
more amenable to quantitive analysis; we perform this analysis in Step VIII.

Step I: Optimality Conditions. The best possible allocation is the solution
to the system:

(OPT) max
Q∑

q=1

Vq(dOPT
q ) −

R∑
r=1

Cr(sOPT
r )

s.t
Q∑

q=1

dOPT
q =

R∑
r=1

sOPT
r

0 ≤ sOPT
r ≤ 1

dOPT
q ≥ 0

Since the constraints are linear, there exists an optimal solution at which the
Karush-Kuhn-Tucker (KKT) conditions hold. As the objective function is con-
cave, the following first order conditions are both necessary and sufficient:

C′
r

(
sOPT

r

) ≤ λ if 0 < sOPT
r ≤ 1

C′
r

(
sOPT

r

) ≥ λ if 0 ≤ sOPT
r < 1

V ′
q

(
dOPT

q

) ≤ λ if dOPT
q = 0

V ′
q

(
dOPT

q

)
= λ if dOPT

q > 0

We have used λ to denote the dual variable corresponding to the equality
constraint.
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Step II: Equilibria Conditions. Here we describe necessary and sufficient
conditions for a set of bids b to form Nash equilibrium.

First, observe that there must be at least two suppliers, that is R ≥ 2. If
not, then we have a monopolist k whose payoff is is strictly increasing in bk.
Specifically,

Πk(bk, b−k) =
∑

q

bq − Ck(1 − bk

bk +
∑

q bq
) =

∑
q

bq − Ck(

∑
q bq

bk +
∑

q bq
)

Next, we show that if b is a Nash equilibrium, then at least two bids must be
positive. Suppose for a contradiction that we have a supplier k and

∑
r �=k br =∑

q bq = 0. Then Πk(0) = −Ck(1), and Πk(bk) = −R−1
R bk when bk > 0. For the

second expression, we used the fact that Ck(x) = 0 for any x ≤ 0. Observe that
if bk = 0 then the firm can profitably deviate by increasing bk infinitesimally; on
the other hand, if bk > 0 then the firm should infinitesimally decrease bk. Thus,
there is no equilibrium in which either all bids are zero, or a single supplier is
the only agent to make a positive bid. Thus there must be at least two positive
bids at equilibrium.

Since at least two bids are positive, the payoffs Πk are differentiable and con-
cave, and the following conditions are necessary and sufficient for the existence
of a Nash equilibrium. For the suppliers,

C′
r(sr)

(
1 +

sNE
r

R− 1

)
≥ p if 0 < br ≤ p C′

r(sr)
(

1 +
sNE

r

R− 1

)
≤ p if 0 ≤ br < p

For the consumers, V ′
q (0) ≤ p and V ′

q (dNE
q )

(
1 − dq

R

)
= p if dNE

q > 0.

Step III: An optimization problem. We can now formulate the welfare ratio
as an optimization problem.

min

∑Q
q=1 Vq(dNE

q ) −∑R
r=1 Cr(sNE

r )∑Q
q=1 Vq(dOPT

q ) −∑R
r=1 Cr(sOPT

r )
(1)

s.t. V ′
q (dNE

q )

(
1 − dNE

q

R

)
≥ p ∀q s.t. dNE

q > 0 (2)

V ′
q (dNE

q )

(
1 − dNE

q

R

)
≤ p ∀q (3)

C′
r(s

NE
r )

(
1 +

sNE
r

R − 1

)
≤ p ∀r s.t. 0 < sNE

r ≤ 1 (4)

C
′
r(s

NE
r )

(
1 +

sNE
r

R − 1

)
≥ p ∀r s.t. 0 ≤ sNE

r < 1 (5)

Q∑
q=1

dNE
q =

R∑
r=1

sNE
r (6)
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C′
r(s

OPT
r ) ≤ λ ∀r s.t. 0 < sOPT

r ≤ 1 (7)

C′
r(s

OPT
r ) ≥ λ ∀r s.t. 0 ≤ sOPT

r < 1 (8)

V ′
q (dOPT

q ) ≤ λ ∀q s.t. dOPT
q = 0 (9)

V ′
q (dOPT

q ) = λ ∀q s.t. dOPT
q > 0 (10)

Q∑
q=1

dOPT
q =

R∑
r=1

sOPT
r (11)

dOPT
q , dNE

q ≥ 0 ∀q (12)

0 ≤ sNE
r , sOPT

r ≤ 1 ∀q, r (13)
p, λ ≥ 0 (14)

Given the cost and valuation functions, the constraints (2)-(6) are necessary and
sufficient conditions for a Nash equilibrium by Step II, and constraints (7)-(11)
are the optimality conditions from Step I. We now want to find the worst-case
cost and valuation functions for the mechanism.

Step IV: Linear Valuation Functions. To evaluate this intimidating looking
program we attempt to simplify it. First, efficiency loss is worst when each con-
sumer has a linear valuation function. This is simple to show using a standard
trick (see, for example, [5]). Thus, we restrict ourselves to linear functions of the
form Vq(dq) = αqdq. Without loss of generality, we may assume that α1 ≥ α2 ≥
... ≥ αQ and that maxq αq = 1 after we normalize the functions by 1/ maxq αq.
Observe that this implies that dOPT

1 =
∑

r sOPT
r and dOPT

q = 0 for q > 1. As

a result the objective function becomes
(
dNE
1 +

∑Q
q=2 αqd

NE
q −∑R

r=1 Cr(sNE
r )

)
/(∑R

r=1 sOPT
r −∑R

r=1 Cr(sOPT
r )

)
, and the optimality constraints become

C′
r(s

OPT
r ) ≤ 1, ∀r s.t. 0 < sOPT

r ≤ 1 and C′
r(s

OPT
r ) ≥ 1, ∀r s.t. 0 ≤ sOPT

r < 1.
With linear valuations, the new optimality constraints ensure sOPT

r is optimal
by setting the marginal cost of each supplier to the marginal valuation, α1 = 1,
of the first consumer.

Step V: Eliminating the Demand Constraints. In this step, we describe
how to eliminate the demand constraints from the program. First we show that
we can transform constraint (14) into 0 ≤ p < 1. Since αq ≤ 1, ∀q, we see that
constraint (2) implies that p ≤ 1. Furthermore, if p = 1, then (2) can never be
satisfied, and so we must have dNE

q = 0, ∀q. The supply equals demand constraint
(6) then gives sNE

r = 0, ∀r. This gives a contradiction as the resulting allocation
is not a Nash equilibrium: any supplier can increase its profits by providing a
bid slightly smaller than p (remember that C′

r(0) = 0 by Assumption 2). Thus
p < 1. This, in turn, implies that dNE

1 > 0. To see this, note that if dNE
1 = 0

then (3) cannot be satisfied for q = 1. Consequently, constraints (2) and (3)
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must hold with equality for q = 1. In fact, without loss of generality, constraints
(2) and (3) hold with equality for q > 1. If constraint (2) does not hold with
equality, we can reduce αq, and this does not increase the value of the objective
function. If dNE

q = 0 and constraint (3) does not hold with equality, we can set
αq = p and the objective function will be unaffected. So, αq = p

1−dNE
q /R for all

q. Substituting into the objective function:

min
dNE
1 + p

∑Q
q=2

dNE
q

1−dNE
q /R

−∑R
r=1 Cr(sNE

r )∑R
r=1 sOPT

r −∑R
r=1 Cr(sOPT

r )
(15)

s.t.
(

1 − dNE
1

R

)
= p (16)

C′
r(s

NE
r )

(
1 +

sNE
r

R − 1

)
≤ p ∀r s.t. 0 < sNE

r ≤ 1 (17)

C
′
r(s

NE
r )

(
1 +

sNE
r

R − 1

)
≥ p ∀r s.t. 0 ≤ sNE

r < 1 (18)

Q∑
q=1

dNE
q =

R∑
r=1

sNE
r (19)

C′
r(s

OPT
r ) ≤ 1 ∀r s.t. 0 < sOPT

r ≤ 1 (20)

C′
r(s

OPT
r ) ≥ 1 ∀r s.t. 0 ≤ sOPT

r < 1 (21)

dNE
q ≥ 0 ∀q ≥ 2 (22)

dNE
1 > 0 (23)

0 ≤ sNE
r , sOPT

r ≤ 1 ∀r (24)
0 ≤ p < 1 (25)

Now, observe that the objective function is convex and symmetric in the
variables d2, ..., dQ, when all the other variables are held fixed. Convexity holds

because our function is a sum of functions dNE
q

1−dNE
q /R

, q = 2, ..., Q, that are convex

on the range [0, R]; note that dNE
q ≤ R by (6), (12) and (13). Therefore, for any

given fixed assignment to the other variables, we must have d2 = ... = dQ := x.
Otherwise, we could reshuffle the variable labels and obtain a second minimum,
which is impossible by the convexity of the objective function. So, after replac-
ing every dq by x, constraint (19) becomes x =

(∑R
r=1 sNE

r − dNE
1

)
/ (Q − 1).

After inserting constraint (16) and the new constraint (19), the numerator of
the objective function (15) becomes

(1 − p)R + p(Q − 1)
x

1 − x/R
−

R∑
r=1

Cr(sNE
r )
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= (1 − p)R + p(Q − 1)

(∑R
r=1 sNE

r − dNE
1

)
/ (Q − 1)

1 − 1
R

(∑R
r=1 sNE

r − dNE
1

)
/ (Q − 1)

−
R∑

r=1

Cr(sNE
r )

= (1 − p)R + p

∑R
r=1 sNE

r − (1 − p)R

1 −
(∑R

r=1 sNE
r − dNE

1

)
/R (Q − 1)

−
R∑

r=1

Cr(sNE
r )

Finally, observe that if we increase Q by one, the objective function (1) cannot
increase, since we can set dQ+1 = 0 and at least keep the same objective function
value as before. Therefore, without loss of generality, we can take the limit as
Q → ∞. Note that this only changes the objective function, as all the constraints
that contained Q have been inserted into the function and can be eliminated.
After these changes, the optimization problem becomes

min
(1 − p)2R + p

∑R
r=1 sNE

r −∑R
r=1 Cr(sNE

r )∑R
r=1 sOPT

r −∑R
r=1 Cr(sOPT

r )
(26)

s.t. C′
r(s

NE
r )

(
1 +

sNE
r

R − 1

)
≤ p ∀r s.t. 0 < sNE

r ≤ 1 (27)

C
′
r(s

NE
r )

(
1 +

sNE
r

R − 1

)
≥ p ∀r s.t. 0 ≤ sNE

r < 1 (28)

C′
r(s

OPT
r ) ≤ 1 ∀r s.t. 0 < sOPT

r ≤ 1 (29)

C′
r(s

OPT
r ) ≥ 1 ∀r s.t. 0 ≤ sOPT

r < 1 (30)

0 ≤ sNE
r , sOPT

r ≤ 1 ∀r (31)
0 ≤ p < 1 (32)

Hence, we have achieved our goal and completely eliminated the demand side
of the optimization problem. Specifically, all the demand constraints have been
replaced with an expression that is a function of the supply-side allocation. Now
we must find the worst such allocation.

Step VI: Linear Marginal Cost Functions. The next step is to show that,
in searching for a worst case allocation, we can restrict our attention to linear
marginal cost functions of the form C′

r(sr) = βrsr where βr > 0. In this section,
we briefly sketch the proof of this fact and defer the full treatment to the full
version of the paper. Our proof technique is based on the work of Johari, Mannor
and Tsitsiklis on demand-side markets with elastic supply [4], [6].

The proof consists in exhibiting, for any family of cost functions Cr(sr), r ∈ R,
two new families Ĉr() and C̄r() with the property that the Cr have a better
performance ratio than the C̄r which, in turn, have a a better performance ratio
than the Ĉr. Furthermore, the Ĉr will be a family with linear marginal costs, as
desired. The cost functions are defined as
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C̄′
r(sr) =

⎧⎨⎩C′
r(sr) if sr < sNE

r

C′
r(s

NE
r )

sNE
r

sr if sr ≥ sNE
r

and

Ĉ′
r(sr) =

C′
r(sNE

r )
sNE

r

sr

where sNE
r is the Nash equilibrium allocation to supplier r when the cost func-

tions are Cr(sr). Observe that the sNE
r still satisfy the Nash equilibrium condi-

tions (27) and (28) for both C̄r and Ĉr. Thus s̄NE
r = ŝNE

r = sNE
r . The heart of

the proof consists in showing that the optimal welfare can only improve when
going from one family to the next.

Step VII: Eliminating the Supply Constraints. Assuming linear marginal
cost functions, the optimization problem (26)-(32) becomes

min
(1 − p)2R + p

∑R
r=1 sNE

r − 1
2

∑R
r=1 βr(sNE

r )2∑R
r=1 sOPT

r − 1
2

∑R
r=1 βr(sOPT

r )2
(33)

s.t. βrs
NE
r

(
1 +

sNE
r

R − 1

)
≤ p ∀r s.t. 0 < sNE

r ≤ 1 (34)

βrs
NE
r

(
1 +

sNE
r

R − 1

)
≥ p ∀r s.t. 0 ≤ sNE

r < 1 (35)

βrs
OPT
r ≤ 1 ∀r s.t. 0 < sOPT

r ≤ 1 (36)

βrs
OPT
r ≥ 1 ∀r s.t. 0 ≤ sOPT

r < 1 (37)

0 ≤ sNE
r , sOPT

r ≤ 1 ∀r (38)
βr > 0 ∀r (39)
0 ≤ p < 1 (40)

with the new variables βr, r = 1, ..., R. From sOPT
r ≥ sNE

r , we can then deduce
that (34) and (35) hold with equality. Suppose they don’t for some r. Then
sNE

r = sOPT
r = 1. Constraint (34) is βr < p

1+1/(R−1) < p < 1. Hence, βr =
p

1+1/(R−1) will be a feasible solution (i.e. constraint (36) will still be satisfied).
Furthermore, increasing βr to p

1+1/(R−1) will only decrease the objective function
since this is equivalent to subtracting a positive number from the numerator and
the denominator. We can further simplify the system by replacing constraints
(36) and (37) with sOPT

r = min(1/βr, 1). It is easy to see that sOPT
r and βr

satisfy the equation above if and only if they satisfy (36) and (37). The reduced
optimization problem now becomes:

min
(1 − p)2R + p

∑R
r=1 sNE

r − 1
2

∑R
r=1 βr(sNE

r )2∑R
r=1 sOPT

r − 1
2

∑R
r=1 βr(sOPT

r )2
(41)
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s.t. βrs
NE
r

(
1 +

sNE
r

R − 1

)
= p ∀r (42)

sOPT
r = min(1/βr, 1) ∀r (43)

0 < sNE
r , sOPT

r ≤ 1 ∀r (44)
βr > 0 ∀r (45)
0 ≤ p < 1 (46)

We can insert the equality constraints (42) and (43) into the objective function
(41) to obtain:

min
(1 − p)2R + p

∑R
r=1 sNE

r − p
2

∑R
r=1

sNE
r

1+sNE
r /(R−1)∑R

r=1 min(1/βr, 1) − p
2

∑R
r=1

min(1/βr,1)2
sNE

r (1+sNE
r /(R−1))

(47)

s.t. 0 < sNE
r ≤ 1 ∀r (48)

βr =
p

sNE
r (1 + sNE

r /(R − 1))
∀r (49)

0 ≤ p < 1 (50)

The objective function (47) can be rewritten as:∑R
r=1

(
(1 − p)2 + psNE

r − p
2

sNE
r

1+sNE
r /(R−1)

)
∑R

r=1

(
min(1/βr, 1) − p

2
min(1/βr,1)2

sNE
r (1+sNE

r /(R−1))

)
Consequently, the minimum of the optimization problem (47)-(50) is greater
than or equal to

min
(1 − p)2 + ps − p

2
s

1+s/(R−1)

min( s(1+s/(R−1))
p , 1) − p

2s(1+s/(R−1)) min( s(1+s/(R−1))
p , 1)2

(51)

s.t. 0 < s ≤ 1 (52)
0 ≤ p < 1 (53)

We have now reduced the system (33)-(40) to a two-dimensional minimization
problem. The next step is to try to explicitly find the minimum.

Step VIII: Computing the Worst Case Welfare Ratio. To obtain Theo-
rem 3 we need to solve the optimization problem (51)-(53) with R as a parameter.
We show how to do this in the full version of the paper. Thus we have proved
our main result. It has several ramifications. Firstly, the worst case welfare ratio
occurs with duopolies, that is when R = 2. There we obtain s = 0.566812 · · ·
which gives a worst case welfare ratio of 0.588727 · · · . Moreover, observe that this
bound is tight. Our proof is essentially constructive; costs and valuations can be
defined to to create an instance that produces the bound. Secondly, the welfare
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ratio improves as the number of supplies increases. Specifically as R → ∞, the
bound tends to 16

25 . Thus we obtain Corollaries 1 and 2.
So, as supply-side competition increases, the welfare ratio does improves. The

opposite occurs as demand-side competition increases. Specifically, adapting our
approach gives Corollary 3.

5 Concave Marginal Cost Functions

The welfare ratio tends to zero if the cost function is linear, that is if the marginal
cost function is a constant; for an example see the full version of the paper. We
can get some idea of how the welfare ratio tends to zero for concave marginal
cost functions by considering a class of polynomial cost functions with degree
1+ 1

d . These functions give a welfare ratio of Ω( 1
d2 ), for any constant d. A proof

of this (Corollary 4) is given in the full version of the paper. See Neumayer [10]
for another example of inefficiency in the presence of linear cost functions.

6 Extensions to Networks and Arbitrary Markets

We can generalize our results for bandwidth markets over a single network con-
nection to the case where bandwidth is shared over an entire network. In that
model, each consumer q is associated with a source-sink pair, and providers at
associated with edges of the network at which they can offer bandwidth. A con-
sumer’s payoff is a function of the maximum (sq, tq)-flow it can obtain using the
bandwidth it has purchased in the network.

The welfare guarantees for the network model are the same as for the single-
link case. A formal description of the network model and a proof of Theorem 4
is given in the full version of the paper. Moreover, if we identify links e ∈ E with
arbitrary resources, then our results extend to a general class of markets with
any number of resources. The exact definition of these markets and a proof of
Theorem 5 are also given in the full version of the paper.

7 Smooth Market-Clearing Mechanisms

It was shown in [3] and [8] that in one-sided markets, the proportional alloca-
tion mechanism uniquely achieves the best possible welfare ratio within a broad
class of so-called smooth market-clearing mechanisms. This family has a natu-
ral extension to the case of two-sided mechanisms, and we show that, given a
symmetry condition, the two-sided proportional allocation mechanism is opti-
mal amongst that class of single-parameter mechanisms. A description of smooth
market-clearing mechanisms and a proof of Theorem 6 is given in the full version
of the paper.
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Abstract. We study the properties of Braess’s paradox in the context
of the model of congestion games with flow over time introduced by Koch
and Skutella. We compare them to the well known properties of Braess’s
paradox for Wardrop’s model of games with static flows. We show that
there are networks which do not admit Braess’s paradox in Wardrop’s
model, but which admit it in the model with flow over time. Moreover,
there is a topology that admits a much more severe Braess’s ratio for this
model. Further, despite its symmetry for games with static flow, we show
that Braess’s paradox is not symmetric for flows over time. We illustrate
that there are network topologies which exhibit Braess’s paradox, but
for which the transpose does not. Finally, we conjecture a necessary and
sufficient condition of existence of Braess’s paradox in a network, and
prove the condition of existence of the paradox either in the network or
in its transpose.

Keywords: Flows over time, Braess’s paradox, Dynamic flows, Selfish
routing, Congestion games.

1 Introduction

Selfish routing and congestion games on networks have been analyzed mainly
with respect to only static flows. The most prevalent model of congestion games
with static flows is Wardrop’s model [7,18] extensively studied by Roughgarden
and Tardos [15,16]. A game in Wardrop’s model is played by an infinite set of
players each of which is selfishly routing only a negligible amount of his traffic.
In various applications, e.g. road traffic control and communication networks,

however, flow variation over time is a crucial feature. Flow congestion on links
and the time to traverse them may change over time in such applications and
the flow does not reach its destination instantaneously, but it travels through
the network at a certain speed determined by link transit times. We model these
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phenomena by flows over time (also known as dynamic flows) introduced by
Ford and Fulkerson [5,6].
Nash equilibria for flows over time were introduced by Vickrey [17] and Yagar

[19] and mainly studied within the traffic community. For a survey see, e.g. [13].
In 2009, Koch and Skutella [9], defined a new variant of flows over time and
introduced the notion of the price of anarchy for them. This model is based on
the deterministic queueing model introduced by Vickrey [17], in which if at some
point in time, more flow tries to enter a link than its capacity allows, the flow
queues up at the link tail and waits until it may actually enter the link. The
total time spent by a flow particle to traverse a single link is then the sum of
the waiting time in the link queue and the actual time to traverse the link. In
the model with flow over time introduced by Koch and Skutella, every link of a
given network has a fixed capacity and a fixed free flow transit time. The link
capacity bounds the maximal rate at which the flow may traverse the link and
the link free flow transit time expresses the time a flow particle spends traveling
from the link tail to its head.
It is a well known property of selfish routing with static flows that adding

a new link to a network does not necessarily decrease the congestion in Nash
equilibrium, but, paradoxically, it may even increase it, and so increase the cost
of routing through the network. This phenomenon, discovered by Braess [2], is
called Braess’s paradox. For a survey see, e.g. [14].
For Wardrop’s model of static flows, it is known [10,14] that the ratio by which

the efficiency of a network may improve by removing any number of its links,
i.e. Braess’s ratio, is at most 	n/2
, where n is the number of network nodes.
This bound is tight [8,14] for Wardrop’s model. In this paper, we will prove that
this bound does not generalize for the model of games with flow over time, and
that there is a topology which admits a much more severe Braess’s ratio. For
flows over time nothing was known in this respect. Akamatsu and Heydecker [1]
considered similar paradoxes for flows over time from a different point of view.
In principle, the only kind of topology that admits Braess’s paradox in static

flows is the Wheatstone network, see Fig. 1(a), also known as the θ-network.
For Wardrop’s model of static flows, it is known [12] that Braess’s paradox
may arise on and only on networks which contain the Wheatstone network as
a topological minor. Recall, that a network H is called a topological minor of a
network G if a subdivision of H is isomorphic to a subgraph of G. The networks
that do not contain the Wheatstone network as a topological minor are usually
called series-parallel [4], as they can be inductively composed by a number of
series and parallel compositions from an edge. In other words, a network admits
Braess’s paradox in Wardrop’s model if and only if it is not series-parallel.We will
show that there are networks which do not admit Braess’s paradox in Wardrop’s
model, but which admit it in the model with flow over time. Thus, we will
introduce a class of series-parallel networks, for which there are instances of the
model with flow over time that admit Braess’s paradox. An example of such a
network is shown in Fig. 1(b). Actually, all these networks are even extension-
parallel.
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Fig. 1. (a) The Wheatstone network, in principle the only topology that admits
Braess’s paradox in static flows; (b) The new topology for Braess’s paradox in flows
over time

As the Wheatstone network is symmetric, or more precisely, as it is isomorphic
to its transpose, a network G admits Braess’s paradox in Wardrop’s model if and
only if its transposeGT admits Braess’s paradox as well. Moreover, we know that
an instance of Wardrop’s model on a network G admits Braess’s paradox if and
only if the instance on the transpose networkGT with the same latency functions
and the same flow supply admits it as well.
We will illustrate that in the model with flow over time there exist network

topologies which exhibit Braess’s paradox, but for which the transpose does not.
Also, we will show that there is an infinite set of instances of the model with flow
over time, which admit Braess’s paradox, but none of the corresponding instances
on their transpose networks with the same traffic supply and capacities and the
same free flow transit times admits it any more. At the end of this paper, we
conjecture a necessary and sufficient condition of existence of Braess’s paradox
in a network, and prove the condition of existence of the paradox either in the
network or in its transpose.
The structure of this paper is as follows: In Section 2, we provide the formal

definition of Koch’s and Skutella’s model of games with flow over time and define
all notations we use later in this paper. Then, in Section 3, we prove the lower
bound on Braess’s ratio for the model of games with flow over time, and we
show that there are networks which admit Braess’s paradox in this model, but
which do not admit it in Wardrop’s model. In Section 4, we show that Braess’s
paradox is not symmetric in this model. And finally, in Section 5, we provide the
necessary and sufficient conditions of existence of Braess’s paradox in a network.
Due to space limitations, we omit all proofs in this extended abstract and

refer to the full version1 of the paper. More details can also be found in Macko’s
PhD thesis [11].

2 The Model

In this section, following its original definition introduced by Koch and Skutella
[9], we define the model of games with flow over time.

1 The full version of the paper with all proofs included can be found at
http://arxiv.org/pdf/1007.4864
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An instance of a game with flow over time is given by a tuple (G, c, τ, s, t, d),
where G is a network modeled by a directed graph G = (V, E), s ∈ V and t ∈ V
are source and sink nodes of G, respectively, c = {ce}e∈E is a vector of link
capacities with all ce > 0, τ = {τe}e∈E is a vector of link free flow transit times
with all τe ≥ 0, and d > 0 is an amount of the game input supply. We assume
that there is at least one path from s to t in G. Let Ps,t denote the set of all
s-t-paths in G. Note that by the term path we mean a simple path.
The fundamental concept to this model are waiting queues that accumulate

at the tails of network links if more flow wants to traverse a link than its capacity
allows. Therefore, the link capacity bounds its outflow, that is the rate at which
the flow leaves the link. The total transit time of a flow particle through a
network link e at time θ is the sum of the waiting time qe(θ) in the link queue
at time θ and the link free flow transit time τe. The link free flow transit time
determines the time the flow particle needs to traverse the link after leaving its
waiting queue. The term flow particle represents an infinitesimally small flow
unit that traverses the network along a single path.
For a given link e, the actual link inflow f+

e (θ) is a function that determines
the flow rate at which the flow enters the link e at its tail at time θ ≥ 0. Similarly,
the actual link outflow f−

e (θ) is a function that determines the flow rate at which
the flow leaves the link e at its head at time θ ≥ 0. We have f+

e (θ) ≥ 0 and
f−

e (θ) ≥ 0 for all θ ≥ 0. We usually omit the word actual and write just the
link in- and outflow. Further, the cumulative link inflow F+

e (θ) is a function
that determines the total amount of flow that entered the link e until θ ≥ 0,
and the cumulative link outflow F−

e (θ) is a function that determines the total
amount of flow that left the link e until θ ≥ 0. Thus, F+

e (θ) =
∫ θ

0 f+
e (ϑ)dϑ and

F−
e (θ) =

∫ θ

0 f−
e (ϑ)dϑ for all θ ≥ 0. Note that all cumulative in- and outflows are

continuous and nondecreasing. A flow over time is a vector f = {(f+
e , f−

e )}e∈E

of pairs of the in- and outflows of all network links.
We say that a flow over time f is feasible if it satisfies the following conditions.

The outflow of every link e ∈ E is upper bounded by its capacity, therefore

f−
e (θ) ≤ ce, (1)

for all θ ≥ 0. The flow leaves a link e after and only after it waits in its waiting
queue and then it traverses the whole link, so for all e ∈ E and θ ≥ 0 we have

F+
e (θ) − F−

e (θ + qe(θ) + τe) = 0. (2)

All flow that enters a node v continues immediately into node v out-links, and
obviously, only flow that just entered the node v may continue into its out-links.
This condition has two exceptions, namely the source node and the sink node.
The amount of flow that leaves the source node through its out-links is always
larger than the amount of flow that enters it through its in-links. This difference
is exactly the network supply d. Reciprocally, the amount of flow that enters
the sink node through its in-links may be larger than the amount of flow that
leaves it through its out-links. This difference at time θ ≥ 0 is called the actual



266 M. Macko, K. Larson, and Ľ. Steskal

sink flow and expresses the amount of flow that successfully finished its route
from the source to the sink node at time θ. We denote it by γ(θ), and again, we
usually omit the word actual and write just the sink flow. The cumulative sink
flow Γ (θ) is a function that determines the total amount of flow that finished its
route until θ ≥ 0, hence Γ (θ) =

∫ θ

0 γ(ϑ)dϑ. Therefore, for all θ ≥ 0 the following
condition must hold:

∑
e∈δ−

v

f−
e (θ) −

∑
e∈δ+

v

f+
e (θ) =

⎧⎪⎨⎪⎩
0 for v ∈ V \ {s, t},
−d if v = s,

γ(θ) if v = t,

(3)

where δ−v and δ+
v are the sets of all in- and out-links of the node v, respectively.

Finally, the waiting time on any link e may not be negative, and if there is
a nonempty waiting queue on the tail of the link e, the rate, at which the flow
leaves the queue, must utilise the entire link capacity. If a flow particle leaves
the waiting queue on the link e at time θ, then by condition (2), it will leave
the link e at time θ + τe. Therefore, if a flow particle enters the link e at time
θ, the cumulative amount of flow that entered the waiting queue until now is
F+

e (θ) and the cumulative amount of flow that left the waiting queue until now
is F−

e (θ + τe). Hence, F+
e (θ) − F−

e (θ + τe) is the amount of flow waiting in the
queue at time θ. So, the current waiting time in the queue of the link e ∈ E at
time θ ≥ 0 is

qe(θ) =
F+

e (θ) − F−
e (θ + τe)

ce
,

and for all e ∈ E and all θ ≥ 0 the following condition must hold:

qe(θ) ≥ 0 and qe(θ) > 0 ⇒ f−
e (θ + τe) = ce. (4)

Note that the function θ → θ + qe(θ) is increasing and continuous. This means
that no flow particle may overtake any other flow particle in the link waiting
queue. Similarly, it may not overtake any other flow particle in the rest of the
link as well, as the link free flow transit time is constant for all flow particles.
This means that every link in a feasible flow is FIFO.
A game with flow over time is a strategic game, in which every flow particle is

an independent player with an infinitesimally small amount of traffic. The flows
of particular players enter the network at the source node such that the total
amount of flow that entered the network at any point of time θ ≥ 0 is equal
to the game input supply d. Every player, before his piece of flow enters the
network, independently chooses his strategy, that is a path from the source to
the sink node his flow will route along. Then his flow enters the network and
follows this path as quickly as possible. For every network s-t-path p, let fp(θ)
denote the amount of flow that entered the network at time θ ≥ 0 and is going
to follow the path p. We know that

∑
p∈Ps,t

fp(θ) = d for all θ ≥ 0.
Koch and Skutella [9] defined a feasible flow over time to be a Nash equilib-

rium, or in other words to be a Nash flow over time, if and only if the flow is
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sent only over currently shortest paths, or equivalently, if and only if no flow
overtakes any other flow.
For a fixed flow over time, let v(θ) denote the earliest point in time when a

flow particle that entered the network at time θ may arrive at the node v. Then

s(θ) = θ and

w(θ) = min{v(θ) + qe(v(θ)) + τe | e = vw ∈ δ−w}
for every node w ∈ V \ {s} and all θ ≥ 0. We call these functions label functions.
Note that the label functions are nondecreasing and continuous.
We say that a flow is sent only over currently shortest paths if for every link

e = vw ∈ E and all θ ≥ 0 we have

w(θ) < v(θ) + qe(v(θ)) + τe ⇒ f+
e (v(θ)) = 0.

Similarly, we say that no flow overtakes any other flow if, for every flow particle,
the amount of flow that entered the network before this flow particle equals
the amount of flow that left the network before this flow particle. That is, if
d · θ = Γ (t(θ)) for all θ ≥ 0.
Koch and Skutella showed that flow over time is sent only over currently

shortest paths if and only if no flow overtakes any other flow. This gives us a
pair of handy characterizations of Nash equilibria for flows over time. Finally,
they showed that for every instance of the model of games with flow over time
there exists a flow in a Nash equilibrium.
For convenience in the rest of this paper, let λp(θ) denote the time spent

by a flow particle traveling along a network path p if the flow particle entered
the queue at the first link of p at time θ ≥ 0. We know that if the path p
consists only of one link e ∈ E, then λe(θ) = qe(θ) + τe. If p contains more
links, let e1 denote its first link and p′ the rest of the path p, that is p = e1p

′.
Then λp(θ) = λp′ (θ + qe1(θ) + τe1). We call these functions latency functions or
latencies.
Further, let λv(θ) denote the shortest time in which a flow particle may get

to a node v ∈ V if the flow particle entered the network source node at time
θ ≥ 0. That is, λv(θ) = minp∈Ps,v{λp(θ)}. Notice that λv(θ) = v(θ) − θ.

In this paper we investigate Braess’s paradox with respect to the social cost
function SC, which expresses the maximum experienced latency of a flow particle.
For a feasible flow f of an instance A of a game with flow over time, it is defined
as follows:

SC(f) = sup
θ≥0

max
p∈Ps,t

(
[fp(θ) > 0] · λp(θ)

)
.

So, we are taking into account the supremum of the latencies of all paths over
the points in time in which a non-negligible amount of flow used the particular
path. By a non-negligible amount of flow we mean a strictly positive amount of
flow.
For every instance of a game with flow over time, we believe, that all its Nash

flows are in principle equivalent, in the sense that their social costs are equal.
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However, this has not yet been proven. So we define the Braess’s ratio with
respect to the worst case Nash flow, where by the worst Nash flow we mean the
Nash flow with the highest social cost. Nevertheless, all instances of games with
flow over time we use in our proofs have all their Nash flows provably equivalent.
Let A = (G, c, τ, s, t, d) be an instance of a game with flow over time on a

network G and f∗ its worst Nash flow. We say that BR(A) is Braess’s ratio
of the instance A with respect to the social cost function SC, and define it as
follows:

BR(A) = max
{

SC(f∗)
SC(f∗

H)

∣∣∣∣ H ⊆ G

}
,

where f∗
H is the worst Nash flow of the instance (H, c, τ, s, t, d) on the subgraph

H . Braess’s ratio of a nonempty class of instances of games with flow over time
is the supremum of Braess’s ratios of particular instances.
We say that an instance admits Braess’s paradox if its Braess’s ratio is strictly

greater than one. Similarly, we say that a network admits Braess’s paradox if
there is an instance on this network with its Braess’s ratio strictly greater than
one.
For simplicity, we will write the value of the social cost SC(f∗) of the worst

Nash flow f∗ of an instance A as SC∗(A).

3 Lower Bound on Braess’s Ratio

In this section we provide a lower bound on Braess’s ratio for the model of games
with flow over time, and we show that there is a topology which admits Braess’s
paradox in this model, but which does not admit it in games with static flows.
Let’s consider an instance An := (Mn, c, τ, s, t, d) of a game with flow over

time on the network Mn, for n ≥ 2, as shown in Fig. 2 with the source node
s = v1 and the sink node t = vn. The input supply of the network is d = α0.
The free flow transit times and the capacities of the network links are defined
as follows: τek

= 0, τfk
= T and cek

= αk, for 1 ≤ k ≤ n − 1, cfk
= αk−1 − αk,

for 1 ≤ k ≤ n − 2 and cfn−1 = αn−2, where T > 0 and 0 < αn−1 < · · · < α2 <
α1 < α0 = d. Let p1 denote the s-t-path consisting of the single link f1, pk the
s-t-path e1e2 . . . ek−1fk, for 2 ≤ k < n, consisting of several e-links and the link
fk, and finally let p0 denote the path e1e2 . . . en−1 that uses only e-links, but no
f -link. We will show that Braess’s ratio of such an instance may be arbitrarily
close to n − 1, depending only on α’s we choose.
In every Nash equilibrium at time zero, all first flow particles follow only the

path p0, as it is the only s-t-path with zero free flow transit time and so the only
s-t-path with zero latency. As d > ce1 > ce2 > · · · > cen−1 , a linearly increasing
waiting queue accumulates on every e-link and the total transit times on the
path p0 and all paths pk (k ≥ 2) linearly increase with the time when a flow
particle entered the network. Since the queue accumulates on every e-link and
the free flow transit times of all f -links are equal, the latency on every path pk

is strictly greater than the latency on the path pk−1 at any positive time θ when
a flow particle entered the network, until time θ1 when the latency on the path
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�
v1 = s

�
v2

�
v3

�
vn−1

�
vn = t

e1 e2
. . .

en−1

f1

f2

f3

fn−1
. . .

Fig. 2. The networkMn. The network topology which admits a severe Braess’s Paradox
for congestion games with flows over time, but which does not admit the paradox for
Wardrop’s model. All these networks are series-parallel, and even extension-parallel.

p0 reaches T . At this time, the latency on the path p0 is equal to the latency on
the path p1. Therefore, any flow particle that enters the network at time θ1 may
follow either the path p0 or the path p1, but not any other path.
After time θ1, if n ≥ 3, the network supply splits between the paths p0 and p1

in such a way that the latency on the path p1 begins to increase uniformly with
the latency on the path p0. In particular, the path p0 will gain the amount of
αn−1/(α0−α1+αn−1) and the path p1 the amount of (α0−α1)/(α0−α1+αn−1)
portions of the supply d. As d · αn−1/(α0 − α1 + αn−1) < α1, the latency on
the link e1 decreases and the waiting queue on the link shortens after time θ1.
If we are able to choose α’s such that the link e1 never drains, the link outflow
stays constant and equal to α1 forever, and the flow on the network induced by
the nodes v2 to vn behaves the same way as a flow on the network Mn−1 of the
instance An−1 with an input supply equal to α1.
Indeed, if we choose α’s such that none of the e-links ever drains, the latency

on the link en−1 will increase up to T , eventually, with the latencies on all
other e-links positive. Therefore, the maximum experienced transit time of a
flow particle will be strictly greater than T . The next lemma shows that there
are α’s such that the maximum experienced transit time of a flow particle in the
instance An is almost (n − 1) · T .
Lemma 1. Let n ≥ 2, 0 < ε < 1/2n, j ≥ 1 and αk = 1+εj+k, for 0 ≤ k ≤ n−1.
In every Nash equilibrium, the transit time λt(θ) of a flow particle that entered
the instance An at time θ > T/εj+n is:

λt(θ) > (1 − 2nε) · (n − 1) · T.

The previous lemma shows that the maximum experienced transit time of a flow
particle, in a Nash equilibrium of An, may be arbitrarily close to (n − 1) · T ,
where n is the number of network nodes. The following theorem shows that
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there is a subgraph of Mn, for which the maximum experienced transit time of
a flow particle in every Nash equilibrium is almost n − 1 times better than in
the original graph.

Theorem 2. For every ε > 0 and n ≥ 3, the network Mn has a subgraph H
such that, for the instance An = (Mn, c, τ, s, t, d) we have:

SC∗(Mn, c, τ, s, t, d) > (1 − ε) · (n − 1) · SC∗(H, c, τ, s, t, d).

Therefore, if we choose a sufficiently small ε, Braess’s ratio of the instance An

gets arbitrarily close to n − 1.

Corollary 3 (Lower bound on Braess’s ratio). For every n ≥ 3, Braess’s
ratio of the class In of all instances of the game with flow over time on networks
with n nodes is BR(In) ≥ n − 1.

Corollary 4 (A new topology for Braess’s paradox). For every n ≥ 3,
there is a network with n nodes, which admits Braess’s paradox in the model of
games with flow over time, but which does not admit it in Wardrop’s model. In
particular, it is the network Mn.

The construction in Lemma 1 also works if we restrict the model to instances
with only integer link capacities. For a given ε from the lemma, take the smallest
integer a such that 1/2a ≤ ε, and let αk = 2a(n+j) + 2a(n−k). By a proof similar
to the proof of Lemma 1, we can show that in a Nash equilibrium the transit
time of a flow particle that entered the network at time θ > T · 2a(j+n) is more
than (1 − n/2a−1) · (n − 1) · T .
If we restrict the model only to instances with unit link capacities, the lower

bound on Braess’s ratio as a function of the number of network nodes still holds.
We only need to replace every network link with integer capacity c by a set of c
parallel links with unit capacities. However, in this case, the number of network
links grows exponentially with n and polynomially with 1/ε.

4 Asymmetry of Braess’s Paradox

For every n ≥ 3, we have shown that the instance An as defined in the previous
section has Braess’s ratio arbitrarily close to n−1 for sufficiently small ε, and so
it admits Braess’s paradox. Now, we will show that the instance on the transpose
network with the same traffic supply and the same link capacities and free flow
times has Braess’s ratio equal to 1.
Consider an instance AT

n := (MT
n , c, τ, s′, t′, d) on the networkMT

n , for n ≥ 2,
as shown in Fig. 3, with an input supply d = α0. The networkMT

n is a transpose
of the network Mn, that is the network Mn with all its links reversed and its
source and sink nodes swapped. Therefore, the MT

n source and sink nodes are
s′ = vn and t′ = v1, respectively, and the free flow transit times and the capacities
of its links are defined as follows: τek

= 0, τfk
= T and cek

= αk, for 1 ≤ k ≤ n−1,
cfk

= αk−1 − αk, for 1 ≤ k ≤ n − 2 and cfn−1 = αn−2, where T > 0 and
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Fig. 3. The transpose MT
n of the network Mn, which admits no Braess’s paradox in

the model of games with flow over time

0 < αn−1 < · · · < α2 < α1 < α0 = d. Similarly, denote pT
k as the reverse

of the path pk. Therefore, pT
0 is the path en−1en−2 . . . e1 and pT

k is the path
fkek−1ek−2 . . . e1, for k ≥ 1.
We will show, that for all n ≥ 2 the instance AT

n does not admit Braess’s
paradox. That is, there is no subgraph H of the network MT

n , for which the
maximum experienced transit time of a flow particle in any Nash equilibrium of
the instance (H, c, τ, s′, t′, d) would be smaller than the maximum experienced
transit time of a flow particle in any Nash equilibrium of the instance AT

n .

Lemma 5. For every n ≥ 2, Braess’s ratio of the instance AT
n is BR(AT

n ) = 1.

We have proved, that none of the instances AT
n admits Braess’s paradox. In fact,

it is possible to show that there is no Braess’s paradox even for the instance
(MT

n , c, τ, s′, t′, d) with any d ≤ α0, not just d = α0.
By Theorem 2, for every n ≥ 3, we know that Braess’s ratio of the instance

An is arbitrarily close to n − 1, and so the instance An admits a rather severe
Braess’s paradox. Thus, together with the previous lemma, we get the following
theorem:

Theorem 6 (Braess’s paradox asymmetry). For every n ≥ 3, there is an
instance of a game with flow over time on a network G with n nodes, which ad-
mits Braess’s paradox, but for which the corresponding instance on the transpose
network GT does not admit it. In particular, it is the instance An.

So, there is an instance on the network M3, see Fig. 4(a), namely A3, that ad-
mits Braess’s paradox, and we have shown that the instance AT

3 on the transpose
network MT

3 , see Fig. 4(b), with the same flow supply and the same link capac-
ities and free flow times does not admit it. In fact, for this particular transpose
network, there is no instance which would have Braess’s ratio strictly larger than
1, and so, which would admit Braess’s paradox.
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Fig. 4. (a) M3; (b) MT
3 ; (c) M ′

3; (d) M ′′
3

Theorem 7 (Braess’s paradox asymmetry for networks). There is a net-
work G with an instance of the game with flow over time that admits Braess’s
paradox, for which there is no instance of the game with flow over time on its
transpose GT that would admit the paradox. In particular, it is the network M3.

5 Necessary and Sufficient Condition for Braess’s
Paradox

In this section, we would like to answer the question, which topologies in general
admit Braess’s paradox in the model of games with flow over time. So, we would
like to characterize the class of all such networks in this model. Foremost, we
show that every network which contains either the networkM3, or its variations,
the networkM ′

3 (see Fig. 4(c)) or the networkM ′′
3 (see Fig. 4(d)) as a topological

minor admits Braess’s paradox in this model, and then we conjecture that these
three networks are essentially the only topologies that admit Braess’s paradox
in this model in general.
The networks M ′

3 and M ′′
3 are very similar to M3. If we set the free flow

transit times and the link capacities in these two networks the same way as in
the network M3 with the only difference that τg = 0 and cg = d, where d is the
network supply, the instances on the networks M ′

3, M ′′
3 and M3 act the same

way, and their social costs and Braess’s ratios are equal. Therefore, both M ′
3

and M ′′
3 admit Braess’s paradox, since M3 admits it. Notice that despite their

similarity, the networksM3,M ′
3 andM ′′

3 are not topological minors of each other.
The conjecture that these three networks are essentially the only topologies that
admit Braess’s paradox is motivated by the result, we investigate at the end of
this section, that these three networks together with the network MT

3 are the
only topologies that admit Braess’s paradox if we use the network both ways,
the forward and also the reverse.

Theorem 8 (Sufficient condition for Braess’s paradox). If a network G
contains either the networkM3,M ′

3 orM ′′
3 as a topological minor, then it admits

Braess’s paradox in the model of games with flow over time.

Conjecture 9 (Necessary and sufficient condition for Braess’s paradox). A net-
work G admits Braess’s paradox in the model of games with flow over time if and
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only if the network G contains either the networkM3,M ′
3 orM

′′
3 as a topological

minor.

Another natural question to ask is, which topologies admit Braess’s paradox
if we would like to use the networks in both directions. That is, if every network
could be used in the way it is defined to route the traffic from its source to
its sink, and also if we could transpose it and use it to route the traffic in the
opposite direction from the original sink to the original source traveling along
reversed links.
A network in Wardrop’s model admitted Braess’s paradox if and only if its

transpose admitted it. However, as we have shown, this is not the case for the
model of games with flow over time. So, for the model of games with flow over
time, we would like to characterize the class of networks which admit Braess’s
paradox either in their original or in their reverse direction.
By Theorem 8, for every network G, we know that either the network G

or its transpose GT admits Braess’s paradox in the model of games with flow
over time if the network G contains either the network M3, M ′

3 or M ′′
3 as a

topological minor or its transpose GT contains a transpose of any of these three
networks as a topological minor. This is equivalent to the condition that the
network G contains either the network M3, MT

3 , M ′
3 or M ′′

3 as a topological
minor, since the networks M ′

3 and M ′′
3 are symmetric, i.e., they are isomorphic

to their transposes.
Call a network a chain of parallel paths if it can be constructed from a chain

of parallel links by a number of link subdivisions, see Fig. 5 for illustration. We
say that two nodes u and v of a network use a chain of parallel paths if the
union of all paths from u to v is a chain of parallel paths, or there is no path
from u to v in the network. Further, we say that a network uses only chains of
parallel paths if every pair of the network nodes uses a chain of parallel paths.

� � � � �
� �

��
� �

�
� �

� � �
�

� � �
�

�

(a)

� � � � �

(b)

Fig. 5. (a) Example of a chain of parallel paths; (b) and the corresponding chain of
parallel links

We will show that the networks that use only chains of parallel paths are
the only networks that contain neither the network M3, MT

3 , M ′
3 nor M ′′

3 as
a topological minor. Then we will show that no network that uses only chains
of parallel paths admits Braess’s paradox in the model of games with flow over
time. This will give us a necessary and sufficient condition of existence of Braess’s
paradox either in a network or in its transpose.
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Lemma 10. A network G uses only chains of parallel paths if and only if it
does not contain any of the networks M3, MT

3 , M ′
3 and M ′′

3 as a topological
minor.

Lemma 11. If a network G uses only chains of parallel paths, then it does not
admit Braess’s paradox in the model of games with flow over time.

Thus, from the previous lemmas and the fact that a network admits Braess’s
paradox in the model of games with flow over time if it contains either M3, M ′

3
or M ′′

3 as a topological minor, we get the following theorem:

Theorem 12 (Necessary and sufficient condition for Braess’s paradox
both-ways). For any network G, the following statements are equivalent:

(i) Either the network G or its transpose GT admits Braess’s paradox in the
model of games with flow over time.

(ii) The network G contains either M3, MT
3 ,M

′
3 orM ′′

3 as a topological minor.
(iii) The network G does not use only chains of parallel paths.

6 Conclusion

We have proved several new properties of Braess’s paradox for congestion games
with flow over time. However, a number of questions have been left open.
We showed that there are networks which do not admit Braess’s paradox in

games with static flows, but which admit it in the model with flow over time.
We showed that these networks admit a much more severe Braess’s ratio for this
model. In particular, we showed that Braess’s ratio of the class of all instances
of games with flow over time on networks with n nodes is at least n − 1. What
is the upper bound on Braess’s ratio for this model?
Then, we illustrated that Braess’s paradox is not symmetric for flows over

time, although it is symmetric for the case of static flows. We showed that
there are network topologies which exhibit Braess’s paradox, but for which the
transpose does not. Is this asymmetry of Braess’s paradox inherent for flows over
time? What are the properties of Braess’s paradox for different models of games
with flows over time?
Finally, we conjectured a necessary and sufficient condition of existence of

Braess’s paradox in a network, and proved the condition of existence of the
paradox either in the network or in its transpose. Is this conjecture valid in
general?
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The Price of Anarchy in Network Creation
Games Is (Mostly) Constant
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Institute of Theoretical Computer Science, ETH Zurich, Switzerland

Abstract. We study the price of anarchy and the structure of equilibria
in network creation games. A network creation game (first defined and
studied by Fabrikant et al. [4]) is played by n players {1, 2, . . . , n}, each
identified with a vertex of a graph (network), where the strategy of player
i, i = 1, . . . , n, is to build some edges adjacent to i. The cost of building
an edge is α > 0, a fixed parameter of the game. The goal of every
player is to minimize its creation cost plus its usage cost. The creation
cost of player i is α times the number of built edges. In the SumGame
(the original variant of Fabrikant et al. [4]) the usage cost of player i is
the sum of distances from i to every node of the resulting graph. In the
MaxGame (variant defined and studied by Demaine et al. [3]) the usage
cost is the eccentricity of i in the resulting graph of the game. In this
paper we improve previously known bounds on the price of anarchy of the
game (of both variants) for various ranges of α, and give new insights
into the structure of equilibria for various values of α. The two main
results of the paper show that for α > 273 ·n all equilibria in SumGame
are trees and thus the price of anarchy is constant, and that for α > 129
all equilibria in MaxGame are trees and the price of anarchy is constant.
For SumGame this (almost) answers one of the basic open problems in
the field – is price of anarchy of the network creation game constant for
all values of α? – in an affirmative way, up to a tiny range of α.

1 Introduction

Network creation game, as defined and introduced by Fabrikant et al. in [4], is a
game that models the process of building large autonomous computer and com-
munication networks (such as the Internet). In this game, as in the reality, these
networks are built and maintained by entities (players in the game-theoretic jar-
gon) that pursue their own goals that may be different from the goals of other
players – the players do not necessarily cooperate, they are selfish (we leave the
meaning of this on an intuitive level). Network creation games is a well-studied
and well-known research topic which is covered by many lectures and courses on
algorithmic game theory and related subjects.

Network creation game is a strategic game with n players where each player
is identified with a vertex (of a to be built graph/network). Every player i has to
decide what edges incident to i the player creates (or buys, or builds). Building
one edge costs the player α > 0, which is a fixed parameter of the game. The

S. Kontogiannis, E. Koutsoupias, P.G. Spirakis (Eds.): SAGT 2010, LNCS 6386, pp. 276–287, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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edges that the players buy form a graph (network) which is the result of the game.
The players pursue two incompatible goals: pay as little as possible (minimize
the creation cost), and have a good connection to other nodes of the network
(maximize the usage utility). The usage utility of player i has been originally
expressed as the following usage cost: the sum of distances to all other players in
the resulting network [4] (where naturally players want to minimize this sum).
Recently, the game where the usage cost of player i is expressed as the maximum
distance of i to any node of G has been studied [3]. In this paper we consider
both variants.

The central question that motivated the study of network creation games is:
what do we lose in terms of quality of a network, if the communication network
is built autonomously by selfish agents, as opposed to a communication network
that is centrally planned and built? The price of anarchy of a game is a way to
express this in that one compares the cost of a worst Nash equilibrium1 (worst
in the sense of the cost of the network) with the cost of an optimum network –
the ratio of these two values is the price of anarchy of the game.

Definition of the game and related concepts. Let G = (V, E) be an undi-
rected graph (and we shall only consider undirected graphs in the following).
For u, v ∈ V we denote by dG(u, v) the length of a shortest u-v-path in G, and
by DG(v) the eccentricity of the vertex v, i.e., the maximum distance between
v and any other vertex of G. If G is not connected we define dG(u, v) := ∞.
We denote the degree of vertex v ∈ V in G by degG(v). The average degree of
G is deg(G) := 1

|V |
∑

v∈V degG(v) = 2|E|
|V | . We sometimes omit the index G and

write simply d(u, v), D(v), or deg(v) if the underlying graph G is clear from
the context. For k ∈ N we define the k-neighborhood of a vertex v ∈ V as the
set Nk(v) := {w ∈ V : d(v, w) ≤ k} (observe that v belongs to Nk), and the
boundary of the k-neighborhood as the set N=

k (v) := {w ∈ V : d(v, w) = k}.
Furthermore we define the set of all eccentric vertices of v by E(v) := N=

D(v)(v).
We denote the diameter of G by diam(G), and the radius of G by rad(G). Recall
that diam(G) = maxu,v∈V d(u, v) and rad(G) = minv D(v). A central vertex is
a vertex v for which D(v) = rad(G). Graph G is a star if it is a tree and all
edges of G are incident to one vertex. Recall that a biconnected graph is a graph
that does not contain a cut vertex, i.e. a vertex whose removal makes the graph
disconnected, and that a biconnected component (or block) of a graph G is a
maximal biconnected subgraph of G.

We consider n players N = {1, . . . , n} in our setting. Let α > 0 be a real
number which we shall call the edge price. The set of strategies of player i ∈ N
is the set Si = 2N\{i} (i.e., Si contains all subsets of the set N \ {i}). A strategy
si ∈ Si corresponds to a set of players to which i buys (or builds) an edge. We
define S := S1×S2×· · ·×Sn and call the elements of S the strategy profiles. For
every strategy profile s ∈ S we define the graph G(s) := (N,

⋃n
i=1

⋃
j∈si

{{i, j}}),
and a cost function ci(s) for every player i (to be specified later). The triple
(N, S, c), where c : S −→ Rn is given by c(s) := (c1(s), . . . cn(s)), naturally
1 In Nash equilibrium no player can unilaterally change its strategy and improve.
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defines a non-cooperative n-player strategic game. Depending on the form of ci(·)
we distinguish two games. Sum-Unilateral Network Creation Game, or shortly
SumGame, is the game given by (N, S, c) where for s ∈ S, i ∈ N ,

ci(s) = α · |si| +
∑

j=1,...,n

dG(s)(i, j).

Max-Unilateral Network Creation Game, or shortly MaxGame, is the game
given by (N, S, c) where for s ∈ S, i ∈ N ,

ci(s) = α · |si| + max
j=1,...,n

dG(s)(i, j).

We call the term α · |si| in both cost functions the creation cost, and the term∑
j=1,...,n dG(s)(i, j) or maxj=1,...,n dG(s)(i, j) in the respective cost function the

usage cost of player i. A Nash equilibrium (NE for short) of the game (N, S, c)
is a strategy-profile s ∈ S such that for every player i ∈ N and every strategy
s̃i ∈ Si we have ci(s) ≤ ci(s1, . . . , si−1, s̃i, si+1, . . . , sn), i.e. no player can lower
her cost by changing her strategy when all other players keep their strategies
unchanged. Observe therefore that for every finite α every NE is a connected
graph, and in every NE any edge is bought by at most one player. If s ∈ S is
a Nash equilibrium of the game (N, S, c), we call G(s) an equilibrium graph or
sometimes a stable graph. The social cost C of a strategy-profile s ∈ S is defined,
for the respective cost function of player i, as the sum of the individual costs of
the players under this strategy-profile, i.e.:

C(s) =
n∑

i=1

ci(s) =

{
α ·∑n

i=1 |si|+∑n
i=1

∑n
j=1 dG(s)(i, j) in SumGame,

α ·∑n
i=1 |si|+

∑n
i=1 maxj=1,...,n dG(s)(i, j) in MaxGame.

Since for every graph G = (V, E) on n vertices there is a strategy-profile inducing
this graph, the social cost function generalizes for any graph G on n vertices:
C(G) = α · |E|+∑v∈V DG(v), or C(G) = α · |E|+∑v∈V

∑
w∈V dG(v, w) for the

respective cost function. We call a graph GOPT minimizing the respective social
cost function a social optimum. The price of anarchy (PoA for short) of a game
(SumGame or MaxGame) is defined as maxs∈S;s is NE

C(G(s))
C(GOPT) .

Related work. Networks have been an important research topic in the eco-
nomical and social sciences, as networks naturally model relationships between
interacting entities. As such, a link between two entities is usually created upon
mutual consensus (“if entity A knows entity B then entity B knows entity A” is
a common assumption). For an overview of economical and social studies from
this perspective we refer to the book by Jackson [5] and to the references therein.
Strategic network formation in this framework has been studied with tools from
cooperative game theory. The trade-off between efficiency and stability for these
kind of networks has been studied in Jackson and Wolinski [6].

We study networks where links can be created unilaterally (i.e., without an
explicit agreement of both players at the ends of the respective edges) and where
the payoff of the players reflects the cost for building the edges as well as the



The Price of Anarchy in Network Creation Games Is (Mostly) Constant 279

quality of the resulting network in terms of the players’ distances in the network.
The first game of this nature studied in the literature is SumGame.

Fabrikant et al. introduced and defined SumGame in [4]. They proved an
upper bound O(

√
α) on PoA (by showing that PoA is bounded by the diameter

of the equilibrium graph), and showed that every NE which is a tree has constant
PoA (we will use this result later on). Albers et al. [1] showed that PoA is
constant for α = O(

√
n) (this was also independently and earlier discovered

by Lin [7]) and for α ≥ 12n lgn. The latter result is achieved by showing that
for α ≥ 12n lgn all NE are trees. Albers et al. also show the general bound
15(1 + (min{α2/n, n2/α})1/3) for all α, which shows that PoA is O(n1/3) for all
α. Demaine et al. [3] show that PoA is constant already for α = O(n1−ε) for any
fixed ε, and show the general bound 2O(

√
lg n) on PoA for all α.

Demaine et al. introduced and defined MaxGame in [3] as a natural variant
of the network creation games, and showed that PoA is at most 2 for α ≥ n,
O(min{4

√
lg n, (n/α)1/3}) for 2

√
lg n ≤ α ≤ n, and O(n2/α) for α < 2

√
lg n.

Recently, a related model has been introduced by Alon et al. in [2] where
players do not buy edges, but only swap the endpoints of existing edges. Alon et
al. claim some implications of their model to the models studied in this paper;
this, however, seems not to be the case in the claimed extent (but it is not easy
to argue as Alon et al. do not state any such claim formally). We refer to [8],
the full version of this paper, for a detailed discussion.

Our results. For MaxGame we show that PoA is constant for α > 129 and α =
O(n−1/2), and also prove that PoA is 2O(

√
log n) for any α > 0 in Section 2. The

result for α > 129 is obtained as a corollary of the more general result (proved in
Section 2.1) showing that in MaxGame for α > 129 all equilibrium graphs are
trees. This is proved by new techniques which establish and use estimates on the
average degree of biconnected components of equilibrium graphs. In Section 3
we adopt the new techniques for SumGame to prove that for α > 273n all
equilibrium graphs are trees. This result implies a constant upper bound on
PoA for α > 273n which shrinks the range of edge-prices for which we do not
know a constant upper bound to α = Θ(n). A comparison and overview of the
previously known bounds and the new bounds on PoA in both game variants
are summarized in Table 1 and Table 2.

2 Bounding the Price of Anarchy in MaxGame

In this section we consider MaxGame. First we classify social optima. This is
rather a folklore and resembles in many aspects the previously shown character-
ization of social optima in SumGame. We use this to bound PoA in MaxGame
for small values of α.

Proposition 1. For α ≤ 2
n−2 the complete graph is a social optimum. For

α ≥ 2
n−2 the star is a social optimum.
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Table 1. Comparison of the previously known bounds for the price of anarchy in
MaxGame (due to [3]) and the bounds proved in this paper. The abbreviations T. and
C. stand for Theorem and Corollary, respectively.

α = 0 1
n−2

O(n− 1
2 ) 129 2

√
log n n ∞

new 1 (T. 1) Θ(1) (C. 2) 2O(
√

log n) (T. 3) < 4 (C. 4) ≤ 2

old O(n2/α) O(min{4
√

log n, (n/α)1/3}) ≤ 2

Table 2. Summary of the best known bounds for the price of anarchy in SumGame

α = 0 1 2 3
√

n/2
√

n/2 O(n1−ε) 273n 12n lg n ∞

PoA 1 ≤ 4
3

([4]) ≤ 4 ([3]) ≤ 6 ([3]) Θ(1) ([3]) 2O(
√

log n) ([3]) < 5 (T. 6) ≤ 1.5 ([1])

Theorem 1. For α < 1
n−2 the price of anarchy is 1. For α < 2

n−2 the price of
anarchy is at most 2.

The proofs of the two statements can be found in the full version of this paper [8].
Next we relate the diameter of an equilibrium graph with PoA of the game,
where the following lemma is the key ingredient. The lemma exploits that a
breadth-first search tree (BFS-tree) of an equilibrium graph already contains
much information about the whole graph. For SumGame a similar result with
a similar proof is known [1].

Lemma 1. If G = (V, E) is an equilibrium graph then C(G) ≤ (2α + 1)(n −
1) + n · rad(G).

Proof. Let T be a BFS-tree of G rooted in a central vertex v0 of G. Let v ∈
V \ {v0}. Let Ev be the edges built by v in T . Consider the following strategy
of v: Buy all edges of Ev plus buy the edge to v0. The creation cost of v in this
strategy is at most α(|Ev|+ 1) and the usage cost is at most D(v0) + 1. As G is
an equilibrium, every vertex (player) achieves in G the best possible cost, given
what other players do. Thus, the above mentioned strategy upper-bounds the
cost of v in equilibrium, i.e., cv(G) ≤ α(|Ev | + 1) + rad(G) + 1. For vertex v0
we have cv0(G) = α|Ev0 |+ rad(G). Summing the obtained inequalities for every
vertex of G yields the claimed inequality. �
Corollary 1. Let G be a worst NE for α ≥ 2

n−2 . The price of anarchy is

O
(
1 + diam(G)

α+1

)
.

Proof. By Proposition 1 and Lemma 1 we get

PoA ≤ (2α + 1)(n− 1) + n · rad(G)
(α + 2)(n− 1) + 1

≤ 2α + 1
α + 2

+
n · rad(G)

(n− 1)(α + 2)
≤ 2 +

2 · rad(G)
α + 2

�
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Demaine et al. showed in [3] that the diameter of equilibrium graphs is bounded
by O(1+α4

√
lg n) and by O(1+(nα2)1/3).2 Combining these results with Corol-

lary 1 yields an improved bound for the price of anarchy:

Lemma 2 ([3]). The diameter of an equilibrium graph is O(1 + (nα2)1/3).

Theorem 2. For α = O(1) the price of anarchy is O(1 + (nα2)1/3).

Corollary 2. For α = O(n−1/2) the price of anarchy is constant.

Lemma 3 ([3]). The diameter of an equilibrium graph is O(1 + α · 4
√

lg(n)).

Theorem 3. The price of anarchy is 2O(
√

log(n)).

In the following we show that equilibrium graphs that are trees have cost at most
a constant times bigger than the cost of a social optimum. Thus if for given α all
equilibrium graphs are trees then PoA is constant. We note that a similar result
for SumGame has been shown by Fabrikant et al. in [4]. We show in Section 2.1
that for α > 129 all equilibrium graphs are trees which shows that PoA for this
range of α is constant.

Theorem 4. The cost of an equilibrium graph that is a tree is less than 4 times
the cost of a social optimum.

Proof. Observe that the claim is trivial when n ≤ 2, or when α < 2/(n − 2) (as
then, by Theorem 1, PoA is at most 2). We therefore assume that n ≥ 3 and
α ≥ 2/(n − 2). Let T = (V, E) be a tree on n ≥ 3 vertices that is NE. We first
show that diam(T ) ≤ 2α + 3. Let v ∈ V be a vertex with D(v) = �diam(T )/2�
(observe that there exists such a vertex). Consider T rooted at v. Let l be a
leaf of T at depth D(v). Consider the strategy of l where l buys, additionally to
what it does in the equilibrium strategy profile, an edge to v. The usage cost of
l is at most 1 + D(v) using the new strategy. Its usage cost in the equilibrium
strategy is D(l) = diam(T ). As T is NE we can conclude that buying the edge
to v is not beneficial and therefore α ≥ D(l) − (D(v) + 1) ≥ 	diam(T )/2
 − 1.
Hence, diam(T ) ≤ 2α+3. We now compare the cost of T with the cost of a social
optimum GOPT. As α ≥ 2/(n − 2), a star is a social optimum (Proposition 1).
Hence, as C(GOPT) = (α + 2)(n − 1) + 1,

C(T )
C(GOPT)

≤ α(n − 1) + diam(T ) · n
(α + 2)(n − 1)

≤ α

α + 2
+

(2α + 3) · n
(α + 2)(n − 1)

< 1 + 2 · 3
2

= 4,

which proves the claim. �
2 In fact, [3] claims a bound of O(α4

√
lg n) resp. O((nα2)1/3) on the diameter, which

does not make sense for very small α. The arguments given in [3] show a bound of
O(1 + α4

√
lg n) resp. O(1 + (nα2)1/3) on the diameter.
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2.1 For α > 129 Every Equilibrium Graph Is a Tree

In this section we present the main result for MaxGame, namely, we show that
for α > 129 every equilibrium graph is a tree. This, together with Theorem 4,
shows that PoA is smaller than 4 for this range of α. The main idea is to show
that an arbitrary (non trivial) biconnected component of an equilibrium graph
has average degree c > 2 and at the same time smaller than 2 + c′

α for some
constants c, c′. For big enough α these inequalities become contradicting and
thus we know that this cannot happen, i.e., every NE for such α contains no
biconnected component other than bridges and therefore no cycle – it has to be
a tree.

For the entire section let G = (V, E) be a graph on n vertices that contains
at least one cycle and let H ⊆ G be an (arbitrary) biconnected component of
G of size |H | ≥ 3. Furthermore we use the following definitions. For a vertex
v ∈ V and a set X ⊆ V we call a path starting in v and ending in a vertex
in X a v-X-path. For every vertex v in H we define S(v) to be the set of all
vertices x ∈ V such that a shortest x-H-path ends in v. Note that by definition:
S(v) �= ∅ since v ∈ S(v); v is the only vertex from H in S(v); S(u) ∩ S(v) = ∅
for u ∈ V (H), u �= v; for every w ∈ S(v) every shortest u-w-path contains v. We
start with the observation of Demaine et al. [3] stating that there are no “short”
cycles in equilibrium graphs.

Lemma 4 ([3]). Every equilibrium graph has no cycle of length less than α+2.

The following lemma shows that the usage cost of vertices in H differ by at most
4 and “tends to be lower” for a vertex that buys an edge in H .

Lemma 5. If G is an equilibrium graph and v ∈ V (H) then DG(v) ≤ rad(G)+3
if v buys an edge in H and DG(v) ≤ rad(G) + 4 otherwise.

Proof. We show that for every edge {u, v} ∈ E(H) bought by u we have DG(u) ≤
rad(G) + 3 and DG(v) ≤ rad(G) + 4. The claim then follows. Consider a BFS-
tree T rooted in some central vertex v0 of G. First we consider the case that
{u, v} ∈ E(H) \ E(T ). Trivially, DG(u) ≤ rad(G) + 1 (as otherwise u could
buy an edge {u, v0} instead of {u, v} and thus improve its cost) and therefore
DG(v) ≤ rad(G) + 2. Next we consider the case that {u, v} ∈ E(T )∩E(H). We
note that the edge either leads “up” the tree to v0, or it leads “down” the tree
such that there is a vertex s ∈ V (H) below or at v which is incident to an edge
in E(H) \ E(T ) (if not then u would be a cut vertex of H). In the first case we
have DG(u) ≤ rad(G) + 1 (as otherwise u could buy an edge {u, v0} instead of
{u, v} and thus improve its cost). In the second case we have, as shown before,
DG(s) ≤ rad(G) + 2 and therefore DG(u) ≤ rad(G) + 3 (as otherwise u could
buy an edge {u, s} instead of {u, v} and thus improve its cost). So in general we
have DG(u) ≤ rad(G) + 3 and therefore DG(v) ≤ rad(G) + 4. �
In the following lemmata we show that for every vertex in a biconnected com-
ponent H of an equilibrium graph G there is a vertex of degree at least 3 in H
in a constant-size neighborhood of v.
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Lemma 6. If G is an equilibrium graph for α > 0 then for every vertex v in H
and every vertex w ∈ S(v): dG(v, w) ≤ rad(G) + 7−α

2 .

Proof. By Lemma 4, H has no cycle of length less than α + 2. Thus, as every
vertex of H is contained in at least one cycle, there is a vertex u ∈ V (H)
with dG(u, v) = dH(u, v) ≥ 	α+2

2 
 ≥ α+1
2 . Every shortest u-w-path contains

vertex v (by definition of S(v)). Therefore dG(u, w) = dG(u, v) + dG(v, w) ≥
α+1

2 + dG(v, w). By Lemma 5 we have dG(u, w) ≤ DG(u) ≤ rad(G) + 4. Hence
dG(v, w) ≤ rad(G) + 7−α

2 . �
Lemma 7. If G is an equilibrium graph for α > 11, then for every vertex v in H
that buys at least two edges in H there is a vertex w ∈ N1(v) with degH(w) ≥ 3.

Proof. Let us refer to v by x2 and let x1 and x3 be two vertices to which x2 buys
edges in H . Assume for contradiction that degH(xi) = 2 for i = 1, 2, 3. Denote
the x1’s other neighbor in H by x0 and the x3’s other neighbor in H by x4. Note
that, as α > 11, the girth of H is at least 14 (Lemma 4) and therefore xi �= xj

for i �= j. Also by Lemma 6 we have dG(x2, w) < rad(G) − 1 ≤ DG(x2) − 1 for
w ∈ ⋃

i=1,2,3 S(xi). Thus, all shortest x2-E(x2)-paths contain either x0 or x4.
Hence, by buying edges to x0 and x4 instead of x1 and x3, x2 would decrease its
distance to the vertices in E(x2), increase its distance to the vertices in S(x1) and
S(x3) by at most 1 and it would not increase its distance to any other vertex.
Therefore (as dG(x2, w) < DG(x2) − 1 for w ∈ S(x1) ∪ S(x3)), by changing its
strategy x2 could improve. But this contradicts equilibrium and hence we have
degH(xi) ≥ 3 for some i ∈ {1, 2, 3}. �
Lemma 8. If G is an equilibrium graph for α > 13 then any path x0, x1, . . . , xk

in H with degH(xi) = 2 for 0 ≤ i ≤ k such that for 0 ≤ i < k, {xi, xi+1} is
bought by xi, has length at most k ≤ 4.

Proof. Consider a maximal path x0, x1, . . . , xk in H of the form from the state-
ment and assume for contradiction k ≥ 5. By Lemma 5 we have |DG(xi) −
DG(xj)| ≤ 3 for 0 ≤ i, j ≤ k−1 and therefore, by the pigeonhole principle, there
is 0 ≤ i0 ≤ 3 such that DG(xi0 ) ≥ DG(xi0+1). Denote the xi0+2’s other neigh-
bor in H by xi0+3 (if not already so denoted). For every vertex w ∈ S(xi0+j),
j = 0, 1, 2, we have (using Lemma 6) dG(xi0+j , w) < rad(G) − 3, and therefore
E(xi0 ) ∩ S(xi0+j) = ∅ for j = 0, 1, 2.

We consider the strategy where xi0 buys an edge to xi0+3 instead of the edge
to xi0+1 and show that xi0 improves in this strategy, which is a contradiction.
We split the vertices of E(xi0 ) into two parts: set S where for every z ∈ S
no shortest xi0 -z-path contains xi0+1, and set E(xi0 )\S where for every vertex
z ∈ E(xi0 ) \ S there is a shortest xi0 -z-path that contains xi0+1 (and therefore
also xi0+2 and xi0+3). Observe that in the new strategy xi0 decreases its distance
to vertices in E(xi0 ) \ S by 2, and increases its distance to vertices in S(xi0+1)
by at most 2, and does not increase its distance to any other vertex of V but
perhaps to those in S. We show that xi0 actually decreases its distance to every
vertex in S by at least one, which shows that xi0 improves in the new strategy
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(recall that dG(xi0 , y) < DG(xi0 ) − 2 for every y ∈ S(xi0+1)). To show that
xi0 improves its distance to every vertex z ∈ S, we first observe that because
DG(xi0 ) ≥ DG(xi0+1) no shortest xi0+1-z-path contains xi0 . Thus, all shortest
xi0+1-z-paths contain xi0+3. Hence, in the new strategy, xi0 decreases its distance
to z, which finishes the proof. �
Lemma 9. If G is an equilibrium graph for α > 13 then for every vertex v in
H there is a vertex w ∈ N5(v) with degH(w) ≥ 3.

Proof. Let {u, v} be an arbitrary edge in H and assume without loss of generality
that u bought the edge. Let C be a cycle containing {u, v} and note that by
Lemma 4 it has at least 16 vertices. Denote the vertices after v and u (in that
order) in C by x0, x1, x2, . . .. We distinguish two cases. Assume first that there
is a vertex y ∈ {u, x0, x1, x2} that buys both its edges in C. Then, by Lemma 7,
there is vertex w ∈ N1(y) ⊆ N4(u) ⊆ N5(v) with degH(w) ≥ 3. Assume now
that there is no vertex y ∈ {u, x0, x1, x2} that buys both its edges in C. But
then, as u buys an edge to v, we have a path x3, x2, x1, x0, u, v of length 5 where
one vertex buys the edge to the next one. Thus, by Lemma 8, the vertices of the
path cannot have all degree 2 in H , and the lemma follows. �
Corollary 3. If G is an equilibrium graph for α > 13 then deg(H) ≥ 2 + 1

16 .

Proof. We assign every vertex v ∈ H to its closest vertex c ∈ H with degH(c) ≥ 3
(thus, c is assigned to itself), breaking ties arbitrarily (by Lemma 9 we know
that there is a vertex of degree at least 3 in H). Consider the subgraph of
H formed by a vertex c of degree at least 3 and by vertices assigned to it.
Observe that these subgraphs form a partition of H . We show that the average
degree of every such subgraph is at least 2 + 1

16 which proves the claim. The
subgraph consists of degH(c) induced paths {pi(c)}degH (c)

i=1 that all meet in c. Let
length(pi(c)) denote the length of path pi(c). By Lemma 9 this length is at most

5. The average degree of the subgraph is then degH(c)+2
∑degH (c)

i=1 length(pi(c))

1+
∑degH (c)

i=1 length(pi(c))
=

2 + degH(c)−2

1+
∑degH (c)

i=1 length(pi(c))
≥ 2 + degH (c)−2

1+5·degH(c) ≥ 2 + 1
16 . �

Next we prove the last ingredient for our approach – we show an upper bound
for deg(H) involving α:

Lemma 10. If G is an equilibrium graph for α > 1 then deg(H) ≤ 2 + 8
α−1 .

Proof. Consider a BFS-tree T of G rooted in a central vertex v0 ∈ V and let T̃ :=
T∩H . Note that T̃ is a spanning tree of H . Then deg(H) = 2|E(T̃ )|+2|E(H)\E(T̃ )|

|V (T̃ )| ≤
2 + 2|E(H)\E(T̃ )|

|V (T̃ )| , and hence we have to bound |E(H) \ E(T̃ )| (the number of

edges outside T̃ ). To do that, we consider vertices of H that buy an edge in
E(H) \ E(T̃ ). Let us call such a vertex a shopping vertex. First observe that
every shopping vertex u buys exactly one edge in E(H) \ E(T̃ ), as otherwise u
could opt not to buy these edges and buy one edge to v0 instead, thus saving at
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least α on creation cost, and having usage cost at most DG(v0)+1 ≤ DG(u)+1,
which (for α > 1) would be an improvement, a contradiction. This immediately
shows that there are at most |V (T̃ )| edges in E(H) \ E(T̃ ). To get a better
bound, we bound the number of shopping vertices. We show that the distance
in T̃ between any two shopping vertices is at least α−1

2 . The upper bound on
the number of shopping vertices follows: Assign every node v of H to the closest
shopping vertex (closest according to the distance in T̃ ; breaking ties arbitrar-
ily); Observe that this assignment forms a partition of H (and that every part
contains exactly one shopping vertex); As the distance in T̃ between any two
shopping vertices is at least α−1

2 , the size of every part is at least α−1
4 . Thus,

there are at most 4|V (T̃ )|
α−1 shopping vertices and thus at most that many edges

in E(H) \ E(T̃ ); The desired bound deg(H) ≤ 2 + 8
α−1 now easily follows.

We are left to prove that the distance in T̃ between any two shopping vertices
is at least α−1

2 . Assume for contradiction that there are two shopping vertices
u1 �= u2 for which dT̃ (u1, u2) < α−1

2 . Let u1 = x1, x2, . . . , xk = u2 be the shortest
u1-u2-path in T̃ and let us call it P . Let {u1, v1} and {u2, v2} be the edges that
u1 and u2 buy in E(H) \ E(T̃ ). Observe that v1 and v2 are not descendant of
any vertex xi, i = 1, . . . , k, in P ; If vj , j = 1, 2, is descendant of xi, then the
vj-xi-path in T̃ , the xi-uj-path in T̃ , and the edge {uj, vj} form a cycle of length
at most 2(dT̃ (u1, u2) + 1) < α + 1 which contradicts Lemma 4. In particular, vj

is not part of P , and therefore x0 = v1, x1, . . . , xk, xk+1 = v2 is a path in H .
Also by Lemma 4, uj , j = 1, 2, has distance at least α−1

2 from v0, and therefore
v0 is not in P . Now, since x1 buys {x0, x1} and xk buys {xk, xk+1}, there has to
be 1 ≤ i∗ ≤ k such that xi∗ buys both {xi∗−1, xi∗} and {xi∗ , xi∗+1}. Consider
the following modification of xi∗ ’s strategy: Buy edge {xi∗ , v0} instead of edges
{xi∗−1, xi∗} and {xi∗ , xi∗+1}. In this new strategy, xi∗ decreases its creation cost
by α. We now show that xi∗ ’s new usage cost is Dnew(xi∗) < DG(xi∗) + α thus
implying that the new strategy improves xi∗ ’s cost, a contradiction.

First note that Dnew(xi∗) ≤ 1 + Dnew(v0) (where the subscript “new” always
corresponds to the situation in a graph where xi∗ is using the modified strategy).
To bound Dnew(v0) we note that only the vertices in P and their descendants in
T can have increased distance to v0 by the strategy change. Let y be one of these
vertices with possibly increased distance and let 1 ≤ j ≤ k be such that xj is the
closest ancestor of y, i.e., an ancestor with dG(xj , y) = minx∈P dG(x, y). If j = i∗

it is easy to see that dnew(v0, y) ≤ dG(v0, y) and therefore for such a vertex y
there is no increase in usage cost of v0. Consider now the case j �= i∗ and as-
sume (without loss of generality, as we shall see) that j < i∗. Then dnew(v0, y) ≤
dnew(v0, x0) + dnew(x0, xj) + dnew(xj , y) = dG(v0, x0) + dG(x0, xj) + dG(xj , y)
(since x0 is not a descendant of a vertex in P and x0, . . . , xj is still a path
in Gnew), and dG(v0, y) = dG(v0, xj) + dG(xj , y). Then the increase of usage
cost of v0 is: dnew(v0, y) − dG(v0, y) = dG(v0, x0) + dG(x0, xj) − dG(v0, xj) ≤
2 · dG(x0, xj) ≤ 2 · dG(u1, u2) ≤ 2 · dT̃ (u1, u2) < α − 1, where the last inequal-
ity follows from our assumption dT̃ (u1, u2) < α−1

2 . As y was chosen arbitrary,
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we have that the increase of usage cost of v0 is less than α − 1 and therefore
Dnew(v0) < DG(v0) + α − 1, which shows Dnew(xi∗) < DG(xi∗ ) + α. �
Using this result we show that only tree equilibria appear for certain α.

Theorem 5. For α > 129 every equilibrium graph is a tree.

Proof. If G is a non-tree equilibrium for α > 129 and H a block in G with
|H | ≥ 3 then we have by Lemma 10 that deg(H) ≤ 2 + 8

α−1 < 2 + 1
16 , which

contradicts Corollary 3 stating that deg(H) ≥ 2 + 1
16 . �

This bound is asymptotically tight. Indeed there is a constant c > 0 such that
for α < c we have non-tree equilibrium graphs. E.g., for α ≤ 1, the triangle is
an equilibrium graph (we can generalize this to any size n ≥ 3 of vertices: three
stars of size n/3, where the three centers of the stars are connected in a triangle,
form an equilibrium graph, too). Theorems 5 and 4 thus show the following.

Corollary 4. For α > 129 the price of anarchy is smaller than 4.

3 Bounding the Price of Anarchy in SumGame

In this section we consider SumGame. Adapting the methods that we have
developed for MaxGame in Section 2.1 we are able to show that in SumGame
for α > 273n every equilibrium graph is a tree. This improves the best known
bound of α ≥ 12n logn from [1] and is asymptotically the best obtainable bound
as for α < n/2 there exist non-tree equilibrium graphs [1]. As a corollary we
obtain constant PoA for α > 273n. We omit most of the proofs and refer to [8],
the full version of this paper, for missing details. We use the same conventions
and notation as in Section 2.1.

Similarly to MaxGame we can show in the following lemmata that in a
constant-size neighborhood of every vertex v in a biconnected component H of
an equilibrium graph G there is a vertex of degree at least 3 in H . The details
of the proofs are for SumGame a bit different though.

Lemma 11 ([1]). Any equilibrium graph has no cycle of length less than α
n +2.

Lemma 12. If G is an equilibrium graph and u, v ∈ V (H) are two vertices in H
with d(u, v) ≥ 3 such that u buys the edge to its adjacent vertex x in a shortest
u-v-path and v buys the edge to its adjacent vertex y in that path then either
degH(x) ≥ 3 or degH(y) ≥ 3.

Proof. Assume for contradiction that degH(x) = 2 = degH(y). Assume without
loss of generality that |S(x)| ≤ |S(y)|. Let z be the other vertex in H adjacent
to x. Consider a modified strategy of u where u buys an edge to z instead of the
edge to x. In this strategy u shortens its distance to the vertices in S(y) and S(v)
by at least 1 and increases its distance to the vertices in S(x) by 1. Furthermore
it does not increase its distance to any other vertex in the graph. Since |S(x)| <
|S(v) ∪ S(y)| (S(v) �= ∅ by definition), we conclude that u decreases its cost in
the modified strategy, a contradiction. �



The Price of Anarchy in Network Creation Games Is (Mostly) Constant 287

The proof of the following lemma is relatively technical (and most different
from the techniques used for MaxGame) and it has been omitted due to space
reasons.

Lemma 13. If G is an equilibrium graph then any path x0, x1, . . . , xk in H,
where degH(xi) = 2 for 0 ≤ i ≤ k and xi buys {xi, xi+1} for 0 ≤ i ≤ k − 1, has
length at most k ≤ 8.

Using the previous two lemmas we can show the following.

Lemma 14. If G is an equilibrium graph for α > 19n then for every vertex v
in H there is a vertex w ∈ N11(v) with degH(w) ≥ 3.

Now, quite in the same way as for MaxGame, we can prove the claims that
show the main result of the section.

Corollary 5. If G is an equilibrium graph for α > 19n then deg(H) ≥ 2 + 1
34 .

Lemma 15. If G is an equilibrium graph for α > n then deg(H) ≤ 2 + 8n
α−n .

Theorem 6. For α > 273n every equilibrium graph is a tree.

Theorem 7 ([4]). The cost of an equilibrium graph that is a tree is less than 5
times the cost of a social optimum.

Corollary 6. For α > 273n the price of anarchy is smaller than 5.
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Abstract. We address the problem of fair division, or cake cutting,
with the goal of finding truthful mechanisms. In the case of a general
measure space (“cake”) and non-atomic, additive individual preference
measures - or utilities - we show that there exists a truthful “mechanism”
which ensures that each of the k players gets at least 1/k of the cake.
This mechanism also minimizes risk for truthful players. Furthermore, in
the case where there exist at least two different measures we present a
different truthful mechanism which ensures that each of the players gets
more than 1/k of the cake.

We then turn our attention to partitions of indivisible goods with
bounded utilities and a large number of goods. Here we provide similar
mechanisms, but with slightly weaker guarantees. These guarantees con-
verge to those obtained in the non-atomic case as the number of goods
goes to infinity.

Keywords: Fair division, cake cutting, truthful mechanisms.

1 Introduction

The basic setting of fair partition problems includes a “cake” - some divisible
resource - and a number of players, each with different preferences with regards
to the different “pieces” of the cake. The task is to divide the cake among the
players in a way that would be “fair” according to some fairness notion. This
applies to numerous situations, from divorce trials to nuclear arms reduction,
see e.g. [1].

This problem has been studied extensively both in the non-atomic case and in
the case of indivisible goods. In this paper we take a fresh look at fair division,
by approaching it from the mechanism design point of view, and in particular in
search of truthful partition mechanisms.

1.1 Background

The problem of fair division, or cake cutting, is a central and classical problem
in economics. A fair partition is one where each of k players receives at least
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1/k of the cake, each according to her own measure (this is also known as a
proportional partition). Fair partition into two parts has long been known to be
possible using a “cut-and-choose” procedure: a cake is guaranteed to be fairly
divided in two if one player cuts it and the other picks a piece.

Fair partition to more than two players requires non-trivial mathematics. The
founding work in this field was done by Steinhaus, Knaster and Banach in the
forties (e.g. [7], [12], [13]). They and others (e.g. [10]) proved existence theorems
for fair division on general measure spaces and non-atomic measures, where
“fairness” was again, in general, taken to mean that each of k players receives
at least 1/k of the cake, each according to her own measure. These proofs are
not constructive, but nevertheless were useful in generalizing “cut-and-choose”
to more than two players.

Another natural approach is “moving knife algorithms”, first described by
Dubins and Spanier [4]. These are not algorithms in the modern Turing Machine
sense of the word (as “cut-and-choose” and its generalizations aren’t), but still
provide a “practical” way to cut actual cakes, if nothing else, by the same fairness
criterion mentioned above.

A stronger concept of fairness is that of “envy-free” partitions ([6],[14]). In an
envy free partition there is no player who would trade her allocation with one
given to another player. Such partitions have been studied extensively (e.g., see
[1]).

Partitioning indivisible goods is a more recently studied variant, which places
the problem in a standard algorithmic setup. However, it is easy to see that
fairness or envy-freeness could not be achieved in every setup as the example of
one good demonstrates. Still, the results of Lipton et al. [8] show that almost
envy free partitions exist. These are partitions where no player envies another
player by more than the value of a single good.

Classical cake cutting mechanisms such as “cut-and-choose” usually require
the players to choose a piece of a subset of the cake or make a cut in it, according
to their preferences. Alternatively, the mechanism queries the player about her
valuation of a particular piece of the cake. We take an approach which is more
prevalent in the modern mechanism design world: each player declares their
preference (i.e., their entire measure on the cake) to some “third party”, which
then proceeds to divide the cake according to a predetermined algorithm.

While circulating a draft of this paper, it was brought to our attention that
similar questions are discusses in a recent working paper by Chen et al. [3]. They
restrict themselves to a particular class of measures: “the case where the agents
hold piecewise uniform valuation functions, that is, each agent is interested in a
collection of subintervals of [0, 1] with the same marginal value for each fractional
piece in each subinterval.” In this setting, they show a truthful, deterministic,
polynomial-time, fair and envy-free mechanism. For the more general setting
which we study they independently derive our mechanism 1.

Truthfulness. The notion of truthfulness is very natural in partitioning prob-
lems. Why would a player declare her true measure if declaring a different
measure would result in a better partition for her?
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The “cut-and-choose” method is in some sense truthful: the players don’t
have to trust each other to be guaranteed a half of the cake. However, it is
not truthful in the sense that players have incentive to “strategize” in order to
increase the value of the piece they receive. For example, assume that the players’
preferences differ, and that the first player (the “cutter”) knows, or guesses, the
second player’s (the “chooser”) preference. She may then cut the cake into two
pieces such that the first piece is worth much more than one half to herself, and
1
2 − ε to the chooser. This would, perhaps, secure her a large piece of the cake,
and leave the chooser with the feeling that dealings were not completely fair. To
further confound matters we note that the chooser may realize, in this setting,
that she could gain a larger piece by manipulating the cutter’s perception of her
preferences.

As noted in [1], many of the partition mechanisms which were discovered in the
non-atomic case have this same weaker truthfulness property; for fair partitions
- they have the property that truthful players are guaranteed to receive at least
1/k of their total value of the cake. Similarly for envy free partitions every
truthful player is guaranteed not to envy any of the other players.

Still the question remains as to why is it beneficial for a player to declare her
true value?

A work which addresses this question is a paper by Lipton et al. [8] who
analyze a truthful mechanism for allocating a set of indivisible goods: simply give
each good to each of k players with probability 1/k. This mechanism is further
analyzed in [2], who showed that this partition results, with high probability, in
O(α

√
n ln k) envy, where n is the number of goods, k is the number of players,

and α is the maximum utility over all goods and players.
The strongest possible notion of truthfulness is the following: a mechanism is

truthful if it is always the case that a player’s utility when declaring the truth is
as high as her utility when lying. The notion of [8,2] is weaker. They focus, as
we do, on truthfulness in expectation: the expected value of a player’s utility is
maximal when telling the truth.

1.2 Our Results

Non Atomic Measures. Although our “third party” approach is one of mod-
ern mechanism design, our work in the non-atomic setup lies in the realm of
classical fair division, in that it does not consider the computational aspects of
the mechanisms: in some cases, an infinite amount of information would have to
be conveyed to the third party. Even when not, the calculations required may
be intractable or even not recursive.

We first consider the problem of a truthful fair partition with non-atomic
measures. For this problem, using a result of Steinhaus [13], we show that such
a partition always exists. Furthermore, our mechanism particularly incentivizes
risk averse players to play truthfully.

We next ask if it is possible to devise a truthful mechanism that guarantees
that each player gets more than 1/k of the cake. Obviously the answer is negative
if all the measures are the same. However, as mentioned by Steinhaus [12] and
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proved by Dubins and Spanier [4], if the measures are not all identical, then
there exists a partition where each player gets more than 1/k of the entire cake.

Our main result is a truthful in expectation mechanism which guarantees that
each player gets at least 1/k of the cake, and furthermore the expected size of
the piece each player gets is strictly larger than 1/k.

We further show that there exists no deterministic and truthful mechanism
that gives these guarantees and so only in the weaker notion of truthfulness it
is possible to obtain such results.

An additional argument in favor of randomized mechanisms is that a deter-
ministic mechanism cannot be symmetric: when all the players declare the same
preferences, it must arbitrarily break the symmetry and assign different players
different slices of the cake. A randomized algorithm can avoid this.

Indivisible Goods. Our results presented in the case of non-atomic measures
are existential; we do not provide protocols for implementing them. To address
the computational aspect of the problem we consider partitions of a large number
of indivisible goods where the number of goods n is exponential in the number
of players, and the utility of a single good is bounded. We give efficient versions
of all of our mechanisms in this setup, with guarantees that are slightly weaker
than those provided in the continuous case. The guarantees hold in expectation,
and moreover there is a deterministic guarantee for each player to receive a
share of the goods which is at least (1 − ε) of the expected value, where ε =
O(Mk/n) where k is the number of players, n is the number of goods and M is
the maximum utility of a single good.

More generally, we prove a discrete analogue to a theorem of Dubins and
Spanier [4]. They show that the space of partition utilities is convex. We show
that the same is true in the discrete case, again up to a factor of (1 − ε), as
defined above.

2 Continuous Truthful Mechanisms

2.1 Existence Theorems for Fair Divisions

Dubins and Spanier [4], rephrasing Fisher [5], provide the following description
of what they call “The problem of the Nile”:

“Each year the Nile would flood, thereby irrigating or perhaps devastating
parts of the agricultural land of a predynastic Egyptian village. The value of
different portions of the land would depend upon the height of the flood. In
question was the possibility of giving to each of the k residents a piece of land
whose value would be 1/k of the total land value no matter what the height of
the flood.”

Neyman [10] showed that this is possible, given that there are a finite number
of levels that the Nile can rise to.

Let C be a “cake” (a set), and C a set of “slices” (a σ-algebra of subsets of C).
Let there be k players, and let μ1, . . . , μk be non-atomic probability (additive)
measures on (C, C), so that the value of a slice C ∈ C to player i is μi(C). Then
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Neyman’s theorem establishes that there exists a partition of the cake C1, . . . , Ck

such that for all players i and slices j it holds that μi(Cj) = 1/k. Hence all the
slices are equal, by all the player’s measures.

Dubins and Spanier [4] show that a better partition is always possible when
at least two of the players have different measures. Their theorem implies that
in this case a partition is possible for which, for all players and slices i, it holds
that μi(Ci) > 1/k, and so each player gets strictly more than 1/k of the cake,
by his or her own measure.

2.2 Truthful Mechanisms

Fair division We present a simple truthful “mechanism” for distributing the
cake among k players, which assures that each player gets precisely 1/k of the
cake, by all the players’ measures. It is a “mechanism” in quotes since it is as
constructive as Neyman’s theorem, which is not constructive. Note that this
mechanism also appears in [3].

Mechanism 1. Assume the players’ true measures are μ1, . . . , μk, and that
they each declare some measure νi. Find a partition C1, . . . , Ck such that ∀i, j :
νi(Cj) = 1/k. Then choose a random permutation τ of size k, from the
uniform distribution, and give Cτ(i) to player i.

Proposition 1. Mechanism 1 is truthful in the following sense: No player can
increase her expected utility by playing non-truthfully. Further, a player who
plays truthfully minimizes the risk/variance of the measure of the piece she gets.

Proof. The expected size of the slice for player i is
∑

j μi(Cj)P[τ(i) = j] =∑
j μi(Cj)/k = μi(∪Cj)/k = 1/k. Since it is independent of νi then player i has

no incentive to declare untruthfully. Furthermore, a player that declares νi = μi

is guaranteed a slice of size 1/k, and so the truth minimizes the variance (or
risk), to zero.

Super-Fair Division. For this result we set C = [0, 1) ∈ R and let C be the
Borel σ-algebra. While this result can be extended to more general classes of
spaces and algebras, we present it in this restricted form for clarity. We consider
the case where at least one pair of measures are not equal, i.e. the case in which
“super-fair” partitions exist — partitions in which μi(Ci) > 1/k.

We first provide motivation for our usage of “truthfulness in expectation”, by
showing that deterministic “super-fair” mechanisms cannot be truthful:

Theorem 2. Any deterministic mechanism that gives each player 1/k of the
cake when all declared measures are equal and more than 1/k of the cake other-
wise is not truthful.

Proof. Consider the case where all players declare the same arbitrary measure
μ. Then they receive slices Ci such that ∀i : μ(Ci) = 1/k. Now, consider the
case where player 1’s true measure ν is such that ν(C1) = 1. Then player 1’s
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utility for declaring μ is 1. We propose that her utility for declaring ν (i.e., being
truthful) is less than one, and therefore the mechanism is not truthful.

Assume by way of contradiction that her utility for declaring ν is one. Then
in this case she must also receive slice C1, since that is the only slice worth one
to her. But if player 1 receives C1 then the rest of the players have, by their
measure μ, exactly (k − 1)/k of the cake left to share, and so it is impossible
that they all receive more than 1/k of it. This contradicts the hypothesis, since
μ(C1) = 1/k and ν(C1) = 1, and therefore μ �= ν and all players must receive
more than 1/k.

We now describe a randomized mechanism that is “super-fair” and truthful in
expectation.

Mechanism 3. Assume again that μ1, . . . , μk are the players’ true measures,
and that they each declare some measure νi. To distribute the cake, pick a parti-
tion C1, . . . , Ck from a distribution D over partitions, which we describe below.
If it so happens that νi(Ci) > 1/k for all i, then distribute the slices accordingly.
Otherwise distribute by mechanism 1, that is, give a slice of value 1/k to all
players.

Proposition 2. In mechanism 3 the expected utility of a truthful player is larger
than 1/k if super-fair partitions are picked with positive probability.

Proof. If C1, . . . , Ck is super-fair and the players are truthful, then this partition
is recognized as super-fair, and the players each get strictly more than 1/k. In
the event that the picked partition is not super-fair, and the players are truthful,
then the mechanism reverts to giving the players precisely 1/k of the cake. Thus
the expectation for truthful players is more than 1/k.

Proposition 3. In mechanism 3 playing truthfully maximizes a player’s ex-
pected utility.

Proof. Consider again two cases: the first, in which C1, . . . , Ck is super-fair, and
the second, in which it isn’t.

In the first event, a truthful player’s expected share is more than 1/k. Playing
untruthfully could either have no effect, leaving the utility as is, or else the only
other possibility is that the partition is misconstrued not to be super-fair, in
which case the player’s utility is reduced to 1/k.

In the second event, in which the partition picked is not super-fair, playing
untruthfully may again have no effect, leaving the utility at 1/k. However, if,
to some player, the share allocated by this partition was worth less than 1/k,
playing untruthfully may make it seem to be valued at more then 1/k, turning
the partition into super-fair by the declared preferences, and resulting in a utility
less than 1/k for that player.

Thus, for any random choice of C1, . . . , Ck the truthful player’s expected util-
ity is maximal, and the proposition follows.

To assure that this mechanism results in a slice of expected size strictly greater
than 1/k, we must find a distribution D (from which we draw the partition) such
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that for any set of measures, where at least one pair is not equal, with positive
probability μi(Ci) > 1/k for all i. To this end we make the following definition:

Definition 1. Denote by Q the set of partitions C1, . . . , Ck of [0, 1) ∈ R for
which each Ci is a finite union of half-open intervals with rational endpoints.

We note that Q is countable. D now need only be some distribution with support
Q:

Theorem 4. Let μ1, . . . , μk be non-atomic probability measures on [0, 1) ∈ R
and the Borel σ-algebra, such that there exist i, j for which μi �= μj. Let D be
a distribution over the partitions C1, . . . , Ck of [0, 1) into k sets, such that the
support of D is Q. Then

PD[∀i : μi(Ci) > 1/k] > 0.

The proof appears in Appendix A.

3 Indivisible Goods

Let C = {a1, . . . , an} be a finite set of indivisible goods (“discrete cake”). Let
there be k players, where each has an additive bounded measure (utility) on
the algebra of subsets of C, μi, such that for all i, j it holds that μi({aj}) ∈
{1, 2, . . . , M}.

We focus on the regime where the number of players is small, so that n �
Mk, and in particular Mk · Mk/n < ε for some ε. Then it also holds that
Mk · Mk/μi(C) < ε.

3.1 Truthful Fair Division

Let ν1, . . . , νk be the set of declared measures.

Definition 2. Let S = (s1, . . . , sk) ∈ {1, 2, . . . , M}k be some vector. Let the bin
BS ⊆ C be the set of goods a for which, for each player i, it holds that a ∈ BS

iff νi(a) = si:
BS = {a ∈ C s.t. ∀i : νi(a) = si} (1)

Let B be the set of bins.

We propose the following mechanism:

Mechanism 5. For each bin BS, pick from the uniform distribution a partition
of it into k parts of equal size B1

S , . . . , Bk
S, with perhaps some left over elements

which number at most k− 1. Let C′
i =

⋃
BS∈B Bi

S and give C′
i to player i. Then,

give each leftover good to some player, uniformly at random.

Denote by Ci the set that player i got, i.e. C′
i union any leftovers given to

player i. Then it is easy to see that this mechanism is truthful, since player i’s
expectation is μi(C)/k, independently of her declared measure νi:
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Proposition 4.
E[μi(Cj)] = μi(C)/k

Proof. This follows from the fact that every al ends up in Cj with probability
1/k.

Truthfulness, however, could have been more simply achieved by, for example,
giving each player the entire set C with probability 1/k. This mechanism’s merit
is that it ensures low risk for truthful players:

Theorem 6. When νi = μi then for all j it holds that μi(Cj) ≥ (1− ε)μi(C)/k.

when i = j this implies low risk for truthful players.

Proof. By definition of the Cj ’s

μi(Cj) ≥ μi(C′
j) = μi

( ⋃
BS∈B

Bj
S

)
.

Since the different Bi
S ’s are disjoint, and by the definition of BS

μi(Cj) ≥
∑

BS∈B
μi(B

j
S) ≥

∑
BS∈B

si|Bj
S |.

We denote the number of left over elements rS , so that |BS | = k|Bi
S | + rS for

all i. Then

μi(Cj) ≥ μi(C)
k

− 1
k

∑
BS∈B

sirS ,

since rS < k and si ≤ M , and by the definition of ε we finally have that

μi(Cj) ≥ μi(C)
k

− Mk · Mk

k
≥ (1 − ε)μi(C)/k. (2)

We conclude that assuming players are averse to risk, they may find actual
advantage in playing truthfully, since that will result in a utility that is with
probability one greater than (1− ε)μi(C)/k. Other strategies, on the other hand,
may run the risk of resulting in lower utility.

3.2 Truthful Super-Fair Division

We can naturally adapt mechanism 3 to the discrete case, by letting D be the
uniform (for example) distribution over the partitions of C = {a1, . . . , an} into
k subsets. We then use what is essentially the same mechanism:

Mechanism 7. Pick a random partition from D, keep it iff everyone was allo-
cated strictly more than 1/k, and otherwise give everyone 1/k using
mechanism 5.

In this discrete case it is easy to see that if super-fair divisions exist then they
are picked with positive probability. The proofs that this mechanism results in
expected utility larger than 1/k, and that it is truthful, are identical to the ones
for the continuous case, 2 and 3.
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3.3 Extending Continuous Fair Division Existence Results

Let M be the space of k-by-n matrices M such that for measures μ1, . . . , μk and
some division C1, . . . , Cn it holds that Mij = μi(Cj). Dubins and Spanier [4],
using a theorem of Lyapunov [9], prove that M is compact and convex when the
measures μi are non-atomic. From this follow a plethora of existence theorems
for partitions of different characteristics. For example, as mentioned above, this
fact can be used to show that there exists a division where each of the k players
gets a share worth 1/k by everyone’s measure (for probability measures). It can
also be used to show that some players have different measures then a division
exists in which every player gets more than 1/k, by her own measure.

This result obviously does not apply to the discrete case; the set of partitions
is finite and it is difficult to speak of convexity. Accordingly, in the general
case no fair partition exists, and a super-fair partition may not exist even when
the preferences are different. A simple example of two goods and three players
suffices to illustrate this point.

One could, however, imagine that all this could be achieved if the players were
somehow able to share the goods. In fact, if we allow, for example, that one player
has a third of a good and another two thirds of it (with appropriate utilities),
then Dubins and Spanier’s results apply again, and a wealth of partitions with
different qualities is possible again. We refer to this as the continuous extension
of the discrete problem.

However, indivisible goods must by nature remain indivisible. To overcome
this, we propose a randomized partition, similar to the one used in mechanism 5,
that makes possible, in expectation, any partition values possible in the continu-
ous extension. Moreover, it assures that each player not only receives the correct
utility in expectation, but that in the worst case she will not receive less than
1 − ε of what she expects.

We thus consider again a set of indivisible goods C = {a1, . . . , al}, k players,
and their additive measures μi, where μi({aj}) ∈ {1, 2, . . . , M}. We now imagine
that each good can be continuously subdivided, and so define a∗

j to be copy of
[0, 1] ∈ R, and let C∗ = {a∗

1, . . . , a
∗
l }. Let F be the standard Borel σ-algebra on

C∗, and let ν be the Lebesgue measure on F. Define μ∗
i , a measure on F, as a

continuous extension of μi by

μ∗
i (A) =

∑
j

μi({aj}) · ν(A ∩ a∗
j ),

for any A ∈ F. We refer to C∗ and μ∗
i as the continuous extension of C and μi.

We are now ready to state the main result of this section:

Theorem 8. Consider the problem of partitioning indivisible goods as defined
above, and its continuous extension. Let M be the space of k-by-n matrices M
such that for some C∗

1 , . . . , C∗
n it holds that Mij = μ∗

i (C
∗
j ).
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Then for every element M ∈ M there exists a randomized partition C1, . . . , Cn

satisfying E[μi(Cj)] = Mij, and moreover

μ∗
i (C

∗
j )

μ∗
i (C∗)

+ kε ≥ μi(Cj)
μ∗

i (C∗)
≥ μ∗

i (C
∗
j )

μ∗
i (C∗)

− ε,

where ε, as before, is O(Mk/n).

Proof. Given a division C∗
1 , . . . , C∗

n of the divisible C∗, we would like to divide
the discrete C in a way that approximates this division as closely as possible.
That is, we would like to find a division C1, . . . , Cn such that μi(Cj) ≈ μ∗

i (C
∗
j ).

We propose two schemes to do this: the random scheme and the binned scheme.
For both of them, we define an n-by-l matrix D (l being the number of indivisible
goods), where Dij is the fraction of good a∗

j that belongs to C∗
i : Dij = ν(C∗

i ∩a∗
j ).

The random scheme. In the random scheme, we simply give player i good aj

with probability Dij (note that by the definition of D, Di· is a distribution).
Then

E[μi(Cj)] =
∑
m

μi({am}) · P[am ∈ Cj ] =
∑
m

μi({am}) · Djm = μ∗
i (C

∗
j )

and its standard deviation is O
(√

μ∗
i (C

∗
j )
)
.

The binned scheme. In the binned scheme, we bin the elements of C into bins
{BS} as above. Without loss of generality, let there be, for each player i and bin
BS , a single value DiS such that Dim = DiS for all m. No generality is indeed
lost: because all elements of a bin are equivalent to all the players, then for any
partition C∗

j there exists an equivalent partition, in the sense of the utilities of
the players, for which such DiS ’s exist.

Let nS be the number of elements in bin BS . From each bin BS , we give player
i a number of goods equal to 	nSDiS
, picked from the uniform distribution over
such partitions. Any leftover am we give according to the random scheme, i.e.
to player i with probability DiS .

The expectation for μi(Cj) clearly remains μ∗
i (C

∗
j ). However, here we can

bound it from below:

μi(Cj)
μ∗

i (C∗)
≥ 1

μ∗
i (C∗)

∑
BS∈B

(nSDiS − 1)si ≥
μ∗

i (C
∗
j )

μ∗
i (C∗)

− ε.

We can also bound it from above, by noting that the most a player can get
beyond μi(Cj) is what’s lost by the rest of the players:

μ∗
i (C

∗
j )

μ∗
i (C∗)

+ kε ≥ μi(Cj)
μ∗

i (C∗)
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A Existence of a Distribution on Partitions with Positive
Probability for Super-Fair Division

Let R be the set of finite unions of half-open intervals of [0, 1) ∈ R with rational
endpoints. Let Q be defined to be the class of partitions of [0, 1) ∈ R such that
each part of the partition is in R.

The main lemma we want to prove is the following:

Lemma 1. Let μ1, . . . , μk be non-atomic Borel measures on [0, 1) ∈ R and the
Borel σ-algebra B. Let B1, . . . , Bk be a partition of the interval, where Bi ∈ B and
δ > 0. Then there exists a partition Q1, . . . , Qk in Q such that μi(Bi�Qi) < δ
for all i.

Proof. The proof uses the fact that Q is an algebra, i.e., it is closed under finite
unions, intersections and taking of complements. Let δ′ be chosen later. Since
all of the measures are Borel we can find open sets Oi,j so that Bj ⊂ Oi,j and
μi(Oi,j�Bj) < δ′ (see, e.g., theorem 2.17 in [11]). Taking Oj = ∩iOi,j , we get
open sets such that Bj ⊂ Oj and μi(Bj�Oj) < δ′ for all i and j.

Fix j and note that Oj = ∪∞
n=1Ij,n, where Ij,n are open intervals with rational

end-points. Take m sufficiently large so that μi(Oj \ ∪m
n=1Ij,n) < δ′ for all i. Let
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Jj,n be the same as Ij,n except that the left-end point of the interval is added and
let P̃j = ∪m

n=1Jj,n. Since the measures are non-atomic we have μi(∪m
n=1Jj,n) >

μi(Oj)− δ′. Note that the P̃j ’s are all unions of half-open intervals with rational
end-points. Moreover, for all i and j,

μi(P̃j�Bj) ≤ μi(P̃j�Oj) + μi(Oj�Bj) ≤ 2δ′.

Note further that for all i it holds that:

μi[0, 1) ≥ μi(∪jP̃j) ≥ μi(∪jOj) −
∑

j

μi(Oj \ ∪m
n=1Ij,n) ≥ μi[0, 1) − kδ′,

so
μi([0, 1) \ ∪jP̃j) ≤ kδ′.

Now take Pi = P̃i for i > 1 and P1 = P̃1 ∪ ([0, 1) \ ∪jP̃j). Then ∪Pi = [0, 1) and

μi(Pj�Bj) ≤ (k + 2)δ′

for all i and j. The Pi are almost the desired partition. They satisfy all the needed
properties except that they are not a partition. We now take Qj = Pj \∪j′<jPj′ .
Qj is obviously a partition. Moreover:

μi(Qj�Bj) ≤ μi(Pj�Bj) +
∑
j′ �=j

μi(Pj′�Bj)

≤ μi(Pj�Bj) +
∑
j′ �=j

μi(Bj′�Bj) +
∑
j′ �=j

μi(Pj′�Bj′ )

≤ 2k(k + 2)δ′.

Taking δ′ = δ/(2k(k + 2)) concludes the proof.

Theorem 9. Let μ1, . . . , μk be non-atomic probability measures on [0, 1) ∈ R
and the Borel σ-algebra, such that there exist i, j for which μi �= μj. Let D be
a distribution over the partitions C1, . . . , Ck of [0, 1) into k sets, such that the
support of D is Q. Then

PD[∀i : μi(Ci) > 1/k] > 0.

Proof. By Dubins and Spanier’s theorem, there exists a partition B1, . . . , Bk of
measurable sets such that for all i it holds that μi(Bi) > 1/k. Let ε > 0 be such
that μi(Bi) > 1/k + ε.

By the lemma above there exists a partition Q1, . . . , Qk in Q such that ∀i, j :
μi(Qj�Bj) < 1

2ε. This, in particular, implies for all i that μi(Qi) > 1/k + 1
2ε.
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Abstract. Cournot and Bertrand oligopolies constitute the two most
prevalent models of firm competition. The analysis of Nash equilibria
in each model reveals a unique prediction about the stable state of the
system. Quite alarmingly, despite the similarities of the two models, their
projections expose a stark dichotomy. Under the Cournot model, where
firms compete by strategically managing their output quantity, firms
enjoy positive profits as the resulting market prices exceed that of the
marginal costs. On the contrary, the Bertrand model, in which firms
compete on price, predicts that a duopoly is enough to push prices down
to the marginal cost level. This suggestion that duopoly will result in
perfect competition, is commonly referred to in the economics literature
as the “Bertrand paradox”.

In this paper, we move away from the safe haven of Nash equilibria
as we analyze these models in disequilibrium under minimal behavioral
hypotheses. Specifically, we assume that firms adapt their strategies over
time, so that in hindsight their average payoffs are not exceeded by any
single deviating strategy. Given this no-regret guarantee, we show that
in the case of Cournot oligopolies, the unique Nash equilibrium fully
captures the emergent behavior. Notably, we prove that under natu-
ral assumptions the daily market characteristics converge to the unique
Nash. In contrast, in the case of Bertrand oligopolies, a wide range of
positive average payoff profiles can be sustained. Hence, under the as-
sumption that firms have no-regret the Bertrand paradox is resolved and
both models arrive to the same conclusion that increased competition is
necessary in order to achieve perfect pricing.

1 Introduction

Oligopoly theory deals with the fundamental economic problem of competition
between two or more firms. In this work we study the conditions under which
an oligopoly arrives at stability. We focus on the two most notable models in
oligopoly theory: Cournot oligopoly[7], and Bertrand oligopoly[5]. In the Cournot
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model, firms control their production level, which influences the market price.
In the Bertrand model, firms choose the price to charge for a unit of product,
which affects the market demand.

Competition among firms in an oligopolistic market is a setting of strategic in-
teraction, and is therefore analyzed within a game theoretic framework. Cournot
and Bertrand oligopolies are modeled as strategic games, with continuous action
sets (either production levels or prices). In both models the revenues of a firm
are the product of the firm’s part of the market times the price; In addition, a
firm incurs a production cost, which depends on its production level.

In the most simple oligopoly model, the firms play a single game, where they
all take actions simultaneously. All the firms produce the same good; the demand
for this product is a linear in the total production; the cost of production is
fixed per unit of production. In this oligopolistic market, a Nash equilibrium
in pure strategies exists in both Cournot and Bertrand models. Interestingly,
despite the strong similarity between these models, the Nash equilibrium points
are very different: in Bertrand oligopoly, Nash equilibrium drives prices to their
competitive levels, that is, the price equals the cost of production, while in
Cournot oligopoly, the price in the unique Nash equilibrium is strictly above
its competitive level. Liu [14] showed that the uniqueness of equilibrium in the
linear demand, linear cost model, carries on to correlated equilibrium. Yi [23]
have extended Liu’s work to the case of Cournot oligopoly where firms produce
different products, that are strategic substitutes, and to the case of weakly convex
production cost functions.

Equilibrium analysis alone, however, cannot capture the dynamic nature of
markets. In the real world, trading is performed over long periods of time, which
gives firms the chance to adjust their actions e.g, their prices or production
levels. If we assume that the essential market attributes remain unchanged, then
this situation gives rise to a repeated game, obtained by repeated play of the
original simultaneous, one shot game.

One approach for analyzing the repeated oligopolistic game, is through study-
ing the Nash equilibrium of the repeated game. This models a situation where
the firms “commit” to a strategy, and their joint commitment forms an equi-
librium (see [15], Chapter 12.D). In practice however, an important feature of
an oligopolistic market is that different firms are not perfectly informed about
different aspects of the market, e.g., the attributes of the other participants, and
cannot pre-compute, or agree on a Nash equilibrium of the repeated game before
they begin interacting.

A more pragmatic approach for studying such repeated interactions is through
the analysis of adaptive behavior dynamics (see, [12,24]). The goal here is to
investigate the evolution of the repeated game, when the agents (firms) play in
accordance to some “natural” rule of behavior. In the setting of an oligopolistic
market, we would want a natural behavior to comply with “rationality” and
hopefully give rise to some sort of profit maximization on the side of a firm.
Another natural aspiration is that our behavior rules should be “distributed”,
which means that firms should be able to make their choices in each period based
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only on their own payoffs, and independently of other firms (in most markets, a
firm cannot tell with certainty what are the payoffs, and costs of other firms).
The central question, in such a setting, is whether the behavior dynamics finally
converge, as this would imply long term stability of the market.

Dynamic behavior in Cournot and Bertrand oligopolies have been studied
before. Cournot [7] considered the simple best response dynamics, where at every
step of the repeated game, firms react to what happened in the market on the
previous step. Cournot showed that in the case of a duopoly, the simultaneous
best response dynamics converges to the unique Nash equilibrium of the one
shot game, i.e., after sufficiently many steps the two firms will play their Nash
equilibrium strategies on every subsequent step. However, this result does not
generalize to an arbitrary number of firms, as shown by Theocharis [20].

Milgrom and Roberts [16,17] were the first to explore connections between
Cournot competition and super-modular games as a way to show convergence
results for learning dynamics. In their work (as well as in followup papers [2,21])
Cournot duopolies as well as specific models of Cournot oligopolies are shown to
exhibit strategic complementarities. This identifying property of supermodular
games is shown to imply convergence to Nash equilibrium for a specific class
of learning dynamics, known as adaptive choice behavior. This class of learn-
ing dynamics encompasses best-response dynamics and Bayesian learning but is
generally orthogonal to the class of dynamics that we will be focusing on.

In this paper we are interested in dynamic behaviors where firms minimize
their long term regret1. Regret compares the firm’s average utility to that of
the best fixed constant action (e.g., constant production level in Cournot, and
constant price in Bertrand). Having no-regret means that no deviating action
would significantly improve the firm’s utility (see [6]). Several learning algorithms
[25], [13],are known to offer such guarantees, as their average regret bounds are
o(T ), where T is the number of time steps.

Regret minimization procedures prescribe to some rather desirable require-
ments in regards to modeling market behavior. Firstly, they are rational, in the
sense that an agent is given guarantees on her own utility regardless of how
the other agents act. Moreover, they are distributed, since an agent needs to be
aware only of her own utility. Many of the no regret procedures[11] are rather
intuitive, as they share the idea that agents increase the probability of choosing
actions that have been performing well in the past. Several learning procedures
are known to be of no-regret, but more importantly, the assumption is not tied
to any specific algorithmic procedure, but merely captures successful long-term
behavior. Lastly, no-regret guarantees can be achieved even in the “multi-armed
bandit” setting[3,10,1], where the input for the algorithm consists only of the
payoffs received. This feature is important in the case that firms are not fully
aware of the market structure (i.e., demand function), and are maybe even un-
certain regarding their own production costs.

In the most relevant result to our work, Even-Dar et al.[9] study no regret
dynamics in a class of games that includes Cournot competition with linear

1 Regret is sometimes also referred to as external regret.
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inverse market demand function, and convex costs functions. They show that the
average production level of every firm, as well as it’s average profits, converge
to the ones in the unique Nash equilibrium of the one shot game.

1.1 Our Results

In this work we examine the behavior of no regret dynamics in Cournot and
Bertrand oligopoly models.

In the classic model of Bertrand oligopoly [5], it is well known that oligopolies
with more than two firms exhibit several trivial Nash equilibria but in all of
them the prices are equal to the marginal costs and all players make zero profit
(Bertrand paradox). This phenomenon has been verified for correlated equilibria
only for the case of a duopoly2, where correlated equilibria are unique[16]. In
our work, we show that under no-regret behavior the zero-profit postulate does
not hold even in the case of two players. In fact, we show that not only does the
market not necessarily converge to zero profit outcomes, but that the players
can actually enjoy significant profits. In summary, our main results for Bertrand
oligopolies under no-regret have as follows:

1. The Bertrand paradox does not hold anymore; firms enjoy non-zero profits
under no-regret behavior.

2. Moreover, the identified profits can be rather significant when the number of
players is small (e.g. 17% of optimal profits in the case of a duopoly). Profits
however, tend to go to zero quickly as the number of firms increases.

Interestingly, our observations about no-regret behavior in Bertrand oligopolies
agree to a large extent both with experimental work [8], as well as with empirical
observations about real world oligopolistic markets [19].

The study of correlated equilibria [14,23] as well as of no-regret dynamics in [9]
in Cournot oligopolies, has been an area of interest in both economics as well as
computer science. In our work, we analyze a model of Cournot equilibria, which
is a strict generalization of the models in [14,23,9], under no-regret dynamics. In
fact, our results can be extended to all dynamics, in which each player’s average
payoff dominates the one they would receive if they always deviated to their
respective Nash equilibrium strategy. This is a strict generalization of no-regret
dynamics, since no-regret dynamics must fare well against all fixed strategies. In
a novel approach in this line of work, we consider the evolution of the market not
only from the perspective of the firms (individual production levels, profits), but
also from the consumers’ perspective (aggregate production level, prices) which
leads to new insights. As a result, we can prove a single unifying message for all
models examined: the daily prices converge to their level at Nash equilibrium.

In summary, our main results for Cournot oligopolies under no-regret have as
follows:

2 In [22] it is claimed that the correlated equilibria of Bertrand games are unique under
some special cases.
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1. In Cournot oligopoly with linear inverse demand function, and weakly convex
costs, when every firm experiences no-regret, the empirical distribution of
the daily overall production level, as well as of the daily prices, converges
to a single point that corresponds to the Nash equilibrium of the one shot
game.

2. When the firms produce products that are not perfect substitutes i.e., when
even the tiniest of product differentiation is introduced, the empirical distri-
butions of all market characteristics including the daily production levels of
every firm converge to their levels in Nash equilibrium.

3. Some product differentiation is necessary in order to alleviate the
nondeterminism of the day-to-day behavior on the side of the firms.

Table 1 summarizes what is known about equilibrium, and no-regret in Cournot
and Bertrand oligopolies.

Table 1. Overview of results

Bertrand Cournot with per-
fect substitutes

Cournot with prod-
uct differentiation

Nash equilibria Infinite,
Unique prices,
Unique profits

Unique Unique

Correlated equilibria Infinite2 Unique Unique
No Regret Infinite,

Different prices,
Different profits

Infinite,
Unique prices,
Different profits

Unique

2 Preliminaries

2.1 Models of Oligopoly

We formally define Cournot oligopoly, and Bertrand oligopoly, as strategic
games, with continuous action space.

Definition 1. A Cournot oligopoly is a game between n firms, where the strat-
egy space Si of firm i is the span of its production level qi. Typically, Si is de-
fined to be the interval [0,∞). The utility function for firm i is ui(q1, . . . , qn) =
Pi(q1, . . . , qn)qi − ci(qi), where Pi is the market inverse demand function for the
good of firm i, which maps the vector of production levels to a market clearing
price in R+.

Our focus is on the case of linear inverse demand function. The utility of a firm
i as a function of the firms’ production levels is ui(q1, . . . , qn) = (a − bQ)qi −
ci(qi), where a and b are positive constants, and Q =

∑
i qi denotes the total

product supply. In Section 4 we consider an extension of Cournot oligopoly with
perfect substitutes, to the case of product differentiation, where the price of
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firm i depends in an asymmetric manner on his own production level, and the
production levels of the other firms. In this case the market inverse demand
function P i(q) is given by P i(q) = ai − biqi − biγiQ−i = ai − bi(1−γi)qi − biγiQ,
where γi denotes the degree of product differentiation between products, 0 <
γi ≤ 1, bi > 0.

Definition 2. A Bertrand oligopoly is a strategic game between n firms, where
the strategy space Pi of firm i is its declared price pi, which lies in the in-
terval of all possible prices [0,∞), and its utility function is ui(p1, . . . , pn) =
Di(p1, . . . , pn)pi − ci(Di(p1, . . . , pn)), where Di is the market demand function
of firm i, that maps from the vector of firms prices to a demand in R+.

We consider Bertrand oligopoly with a linear demand function, in which the
market demand is equally shared among the firms with the least price:

Di(p1, . . . , pn) =

{
0 pi > pj , for some j

a−pi

b(m+1) pi ≤ pj for all j, and m = |{j �= i|pj = pi}|

Intuitively, this means that the market demand goes down linearly as the min-
imal announced price increases. If the minimal price has been offered by more
than one firms, these firms share the market demand equally.

2.2 Regret Minimization

Having no-regret in an online sequential problem is defined as follows:

Definition 3. An online sequential problem consists of a feasible set F ∈ Rm,
and an infinite sequence of functions {f1, f2 . . . , }, where f t : Rm → R.

At each time step t, an online algorithm selects a vector xt ∈ Rm. After the
vector is selected, the algorithm receives f t, and collects a payoff of f t(xt). All
decisions must be made online, in the sense that an algorithm does not know f t

before selecting xt, i.e., at each time t, a (possibly randomized) algorithm can be
thought of as a mapping from a history of functions up to time t, f1, . . . , f t−1,
to the set F .

Given an algorithm A and an online sequential problem (F, {f1, f2, . . .}), if
{x1, x2, . . .} are the vectors selected by A, then the payoff of A until time T

is
∑T

t=1 f t(xt). The payoff of a static feasible vector x ∈ F , is
∑T

t=1 f t(x).
Regret compares the performance of an algorithm with the best static action in
hindsight:

Definition 4. The external regret of algorithm A, at time T is defined as

R(T ) = max
x∈F

T∑
t=1

f t(x) −
T∑

t=1

f t(xt).

An algorithm is said to have no-external regret, if for every online sequential
problem, its regret at time T is o(T ).
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The regret of a firm in a repeated oligopoly game: Consider the case of
n firms that engage in a repeated Cournot (alternatively Bertrand) oligopoly
game, and suppose that {xt}∞t=1 is a sequence of vectors, where xt represents the
production levels (alternatively, prices), set by the firms at time t. The regret of
firm i at time T is defined as Ri(T ) = maxy∈Si

∑T
t=1 ui(y, xt

−i)−
∑T

t=1 (ui(xt)),
where ui is the utility function of firm i, and Si is the strategy set of i.

3 Bertrand Oligopolies

We will be focusing on the case where are the all firms share the same linear
cost function (i.e. Ci(x) = cx for all i). The set of Nash equilibria of this game
consists of all price vectors such that the prices of at least two firms are equal
to c, whereas all others are greater than c. Although there exist multiple Nash
equilibria, all of them imply the same market prices where the firms sell at
marginal cost and hence no profit is being made. On the contrary, we will show
that firms can achieve positive payoffs while experiencing no-regret. Moreover,
we will show that infinitely many positive profit vectors are sustainable under
no-regret guarantees.

We will show that by producing a probability distribution on outcomes of
Bertrand oligopolies such that when the market outcomes are chosen according
to this distribution, then each player’s expected payoff is at least as large as the
expected payoff of her best deviating strategy, given that all other players follow
the distribution. More formally, we will produce a probability measure F on (P ,
Σ),4 such that for all i, p′i

∫
P [ui(pi, p−i) − ui(p′i, p−i)]dF (p) ≥ 0 Such probabil-

ity distributions are referred to as coarse correlated equilibria (CCE)[24]. It is
straightforward to check that, any market history whose empirical distribution
of outcomes converges to a CCE imposes no regret on the involved players. In-
deed, the average profits of the players, will converge to their expected values,
which by definition of the CCE exhibit no-regret. Conversely, any CCE can give
rise to such a history, merely by infinitely choosing outcomes according to it.
Therefore it suffices to prove that we can achieve positive payoffs payoffs in a
CCE. Our constructions are inspired by observations regarding the structure of
Nash in Bertrand games made in [4].

Theorem 1. All symmetric linear Bertrand games exhibit coarse correlated
equilibria (CCE) in which all players exhibit positive profits.

Proof. We denote (p − c)(a − p)/b by π(p), which is equal to the utility func-
tion when the winning player is unique. This function in strictly increasing in
[c, (a+c)/2]. As a result, we can define the following distribution:

F0(p) =

⎧⎪⎨⎪⎩
0 p ≤ β

1 − (π(β)
π(p) )

1
n−1 β < p < γ

1 p ≥ γ

(1)

4 P is the set of all strategy (price) profiles and Σ is the Borel σ-algebra on it.
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where β > c and γ ≤ (a + c)/2. Before, we construct the CCE, we will examine
some properties of the mixed strategy profile where each player chooses a strategy
according to F0(p). We will show that each action in the support of the mixed
strategy F0(p) is optimal 3 except from β.

The probability distribution F0(p) sets p = γ with probability (π(β)
π(γ) )

1
n−1 .

The rest of the probability distribution is atomless, that is Pr(p = x|x < γ) =
0. Suppose that the rest n-1 players play according to this distribution. The
expected payoff for playing price β ≤ p < γ would be equal to:

E[u] = [1 − F0(p)]n−1π(p) = π(β)

Next, we will compute the expected payoff for playing γ. The only way for
someone to win when playing γ is for everyone else to be playing γ. However, in
this case they share the pot. So,

E[u] = [(
π(β)
π(γ)

)
1

n−1 ]n−1 π(γ)
n

=
π(β)

n

Also, just to complete the picture, the expected cost for playing p > γ is 0 and
the expected profit for playing p < β is less than π(β). Lastly, let us compute the
expected utility of the players when all of them play according to this strategy
distribution. In this case and if we denote (π(β)

π(γ) )
1

n−1 as ρ, we have

E[u] = (1 − ρ)π(β) + ρ
π(β)

n
= (1 − n − 1

n
ρ)π(β).

Now, we will define a probability distribution over outcomes of the Bertrand
games and we will prove that it is a CCE. We will be using three prices α, β, γ
such that c < α < β < γ ≤ (a+c)/2. With probability 1/2 all players play α and
with probability 1/2 all players play according to F0. Regarding the expected
payoff for each player, we have that with probability 1/2 they all share the
profit at price α and with probability 1/2 they gain the precomputed payoff of
the defined mixed strategy profile. Specifically,

E[u] = 1/2
π(α)

n
+ 1/2[(1 − n − 1

n
ρ)π(β)]

In order for this to be a CCE it must be the case any deviating player cannot
increase his payoff by deviating to a single strategy given that the rest of the
players keep playing according to this distribution. Let us examine what are the
best deviating strategies for a player. First a player can deviate and play α−ε for
some small ε > 0. Her expected payoff in that case is essentially π(α) since she
will always be winning the competition. It is obvious that any strategy less than
that is clearly worse for him since π is increasing in the range [0, α] ⊂ [0, (a+c)/2].
Another good deviating strategy for the player is to play a strategy in [β, γ) since
this is a best response to the second probability distribution. Actually, given that
a player deviates to a price which is greater than α her best choice is to deviate

3 Given that all players play according to F0(p).
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to any price in the [β, γ) range. This is true because the only way to incur payoff
at this point is to maximize her payoff when her opponents play according to
F0(p). As we have seen, the player achieves a maximum expected payoff of π(β)
when playing within that range. So, the best deviating strategy is either α− ε or
something in the range [β, γ). If our current expected payoff exceeds the payoffs
at these points then our distribution is a CCE. So, we wish to have:

1/2
π(α)

n
+ 1/2[(1 − n − 1

n
ρ)π(β)] ≥ π(α),

and
1/2

π(α)
n

+ 1/2[(1 − n − 1
n

ρ)π(β)] ≥ 1/2 π(β) .

Let us try to analyze each relation separately:

1/2
π(α)

n
+ 1/2[(1− n − 1

n
ρ)π(β)] ≥ π(α) ⇔

1/2[(1 − n − 1
n

ρ)π(β)] ≥ (1 − 1
2n

)π(α) ⇔

(1 − n − 1
n

ρ)
n

2n − 1
≥ π(α)

π(β)

Similarly, from the second inequality we have:

1/2
π(α)

n
+ 1/2[(1− n − 1

n
ρ)π(β)] ≥ 1/2 π(β) ⇔

π(α)
n

+ [(1 − n − 1
n

ρ)π(β)] ≥ π(β) ⇔
π(α)
π(β)

≥ (n − 1)ρ

So, in order for our probability distribution over outcomes to be a CCE, it suffices
that we choose α, β so that:

(n − 1)ρ ≤ π(α)
π(β)

≤ (1 − n − 1
n

ρ)
n

2n − 1

However π(α), π(β) are positive payoffs in the range (0, (a−c)2

4b ] with π(α) < π(β).
By choosing proper α, β we can reproduce any number in the range (0, 1). Hence,
all we have to do is show that we can choose ρ appropriately such that:

(n − 1)ρ ≤ (1 − n − 1
n

ρ)
n

2n − 1

as well as (n − 1)ρ < 1 and 0 < (1 − n−1
n ρ) n

2n−1 . Again, by manipulating the
given inequality we get:

(n − 1)ρ ≤ (1 − n − 1
n

ρ)
n

2n − 1
⇔ (n − 1 +

n − 1
2n − 1

)ρ ≤ n

2n− 1

It suffices to choose ρ = 1
2n−1 and π(α)

π(β) = n−1
2n−1 to satisfy all inequalities. How-

ever, ρ = (π(β)
π(γ) )

1
n−1 . So, we have that we need to choose β and γ such that
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π(β)
π(γ) = ( 1

2n−1 )n−1. So, given any π(γ) ∈ (0, π(a+c
2 )] = (0, (a−c)2

4b ], we can define
β, α such that the distribution we have defined is a CCE. The expected payoffs
of all players are positive in this CCE and can vary widely. Hence, no regret
behavior can support infinitely many different positive average payoff profiles,
in contrast to Bertrand’s paradox. Finally, this construction establishes that
increased competition is necessary for converging to marginal cost pricing.

The profitability of the families of Bertrand no-regret histories we have iden-
tified, decreases much faster than the profitability of the no-regret histories in
the Cournot oligopolies as the number of agents (firms) increases. In fact, for
n = 4 players we see that essentially the prices reach the level of marginal costs
as profitability drops to zero. This theoretical projection is in perfect agreement
both with experimental work in the case of Bertrand games [8], as well as with
empirical observations about real world oligopolistic markets [19]. Specifically,
“the rule of three”, as is presented in [19], states that in most markets three ma-
jor players will emerge (e.g. ExxonMobil, Texaco and Chevron in petroleum).
In order for the smaller companies to be successful they need to specialize and
address niche markets. Our works suggests a possible quantitative explanation
behind this phenomenon, as a result of the steep drop in profitability in the case
of Bertrand markets.

4 Cournot Oligopolies

We will be analyzing a generalization of the Cournot model with product differ-
entiation that was introduced by Yi[23]. By exploring ideas from that work,
we will show how we can generalize its results and prove tight convergence
guarantees in the case of no-regret algorithms. Our model will be the Cournot
competition in the case of linear demand functions with symmetric product
differentiation, where the inverse demand function P i(q) is given by P i(q) =
ai − biqi − biγiQ−i = ai − bi(1 − γi)qi − biγiQ, where γi denotes the degree of
product differentiation between products, 0 < γi ≤ 1, bi > 0 and Q =

∑
i qi

denotes the total product supply. We will assume that the cost functions are
convex and twice continuously differentiable. We denote by q∗ = (q∗1 , . . . , q∗n) a
pure Nash equilibrium of the one-shot game, which is known to exist by [18].
Finally, Q∗ denotes the aggregate production level at the Nash.

Lemma 1. Let qτ
i , Qτ denote respectively the production level of company i and

the aggregate production level in period τ of a differentiated Cournot market with
differentiation levels γi for each product. If each player’s regret converges to zero,
then

lim sup
t→∞

1
t

t∑
τ=1

(
γi − 1

γi

∑
i

(qτ
i − q∗i )2 − (Qτ − Q∗)2

)
= 0

Depending on the details of the Cournot model, we have the following cases:

A) Perfect Substitutes

This is to the simplest case of Cournot competition and was the model analyzed
by Even-Dar et. al. in [9]. We have that γi = 1 and C′′

i (qi) ≥ 0 for all i, qi.
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Theorem 2. Suppose that n firms participate in a homogeneous Cournot
oligopoly game of perfect substitutes with linear demand (P i(q) = ai − biQ, )
and convex cost functions. If all firms experience no-regret as t grows to infinity,
then given any ε > 0, for all but o(t) periods τ in [1, t] we have that |Qτ−Q∗| < ε.

We should stress here that this is a statement about the day-to-day behavior (i.e.
aggregate production levels) instead of average behavior as in [9](Theorem 3.1.).
In particular, this statement implies that the average action vector and the average
utility of each player converge to their respective levels at the Nash equilibrium, a
result that has been shown in [9]. Given the convergence of the day-to-day charac-
teristics of the market prices and total supply, it is rather tempting to try to prove
a similar statement about the convergence of the action vector and utilities of the
firms and not merely of their averages. Here, we show that this cannot be the case
by providing sufficient conditions for a market history to be of no-regret.

This is essentially a negative result, so it suffices to prove that this holds for
as simple a model as possible. Therefore, we will focus on the special case of the
fully symmetric Cournot oligopoly (ai = a and bi = b) with linear cost functions.
It is well known that these games exhibit a unique Nash q∗ = (q∗1 , q∗2 , . . . , q∗2)
where q∗i = (a − (n + 1)ci −

∑
j∈N cj)/((n + 1)b).

Theorem 3. Suppose that n firms participate in a homogeneous Cournot
oligopoly game with linear demand (P i(q) = a − bQ, ) and linear cost func-
tions and let q∗ denote the unique Nash of this game. Any market history, where
for all time periods τ , Qτ = Q∗ and where the time average q̂i of each player’s
actions converges to her Nash strategy q∗i does not induce regret to any player.

An immediate corollary of the above theorem is that one cannot hope to prove
convergence of the day-to-day action profiles in any model that generalizes the
basic linear Cournot model. Surprisingly, if we introduce product differentiation
in the market, then we can actually prove convergence of all attributes (i.e. action
profiles, profits, prices e.t.c) of the market.

B) Symmetric Product Differentiation

In the case that 0 < γi < 1 we have convergence of the daily quantities of each
player to Nash equilibrium.

Theorem 4. Suppose that n firms participate in a differentiated good Cournot
oligopoly game with linear demand (P i(q) = ai − qi − γQ, 0 < γ < 1). If all firms
experience no-regret, then given any ε > 0, as t grows to infinity, for all but o(t)
periods τ in [1, t] we have that |qτ

i −q∗i | < ε, where q∗ is the unique Nash equilibrium.
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Abstract. We consider the computational complexity of coalitional so-
lution concepts in scenarios related to load balancing such as anony-
mous and congestion games. In congestion games, Pareto-optimal Nash
and strong equilibria, which are resilient to coalitional deviations, have
recently been shown to yield significantly smaller inefficiency. Unfortu-
nately, we show that several problems regarding existence, recognition,
and computation of these concepts are hard, even in seemingly special
classes of games. In anonymous games with constant number of strate-
gies, we can efficiently recognize a state as Pareto-optimal Nash or strong
equilibrium, but deciding existence for a game remains hard. In the case
of player-specific singleton congestion games, we show that recognition
and computation of both concepts can be done efficiently. In addition,
in these games there are always short sequences of coalitional improve-
ment moves to Pareto-optimal Nash and strong equilibria that can be
computed efficiently.

1 Introduction

A central theme of (algorithmic) game theory is the study and analysis of equi-
libria to predict the outcomes of interacting rational agents. Insights about the
nature of equilibria yield numerous benefits, e.g., for the design and implemen-
tation of regulations such as laws in society or protocols in distributed systems.
In strategic games the most frequently studied concept of stability is the Nash
equilibrium (NE) – a state, in which no agent has an incentive to unilaterally
deviate. The analysis of Nash equilibrium has occupied a central place in game
theory since its beginning. More recently, the computational complexity of Nash
equilibrium has been analyzed to determine whether the concept is reasonable
from a computational point of view [1, 11].

Much of the attractiveness of Nash equilibrium stems from its elegance and
simplicity and (in the mixed case) from guaranteed existence. However, Nash
equilibrium is only resilient against unilateral deviations. It neglects the aspect
of cooperation or coordination between agents. Obviously, in many scenarios

� Supported by DFG through UMIC Research Center at RWTH Aachen University
and grant Ho 3831/3-1.

�� Supported in part by the German Israeli Foundation (GIF) under contract 877/05.

S. Kontogiannis, E. Koutsoupias, P.G. Spirakis (Eds.): SAGT 2010, LNCS 6386, pp. 312–322, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



On the Complexity of Pareto-optimal Nash and Strong Equilibria 313

agents have an incentive to cooperate, as cooperation often allows to dramati-
cally improve the situation of every participant. In these cases, the negligence of
cooperation in Nash equilibrium significantly hurts the predictive value of the
concept in practice.

This shortcoming of Nash equilibrium has been addressed already in the 1950s,
most notably by Aumann [3] who introduced the strong equilibrium (SE) – a
state, from which no coalition of agents can jointly deviate and thereby strictly
improve all members of the coalition. Strong equilibria include the consider-
ation of cooperation, but this comes at the expense of guaranteed existence.
Hence, using strong equilibria we can make better predictions about the out-
come in many but not all games. In addition, strong equilibria have recently
been shown to exhibit a significantly smaller inefficiency in congestion and load
balancing games [2,7]. Similar results have been obtained for a weaker concept of
Pareto-optimal Nash equilibria (PoNE) [17], in which only unilateral deviations
or deviations of the whole player set are allowed. From a designer perspective,
it thus appears attractive to design (distributed) algorithms for cooperation be-
tween agents that allow to reach these states if they exist. The analysis of the
computational complexity of SE and PoNE has been posed as an open problem
in [7] and is the subject of this paper.

Related Work and New Results. In this paper, we examine the compu-
tational complexity of SE and PoNE in games related to congestion and load
balancing. In particular, we consider problems of the following types. Existence:
Does a given game have a SE? Recognition: Is a given state of a game a SE?
Computation: If a game has a SE, can we compute it in polynomial time? We
consider these problems for SE and PoNE and other related variants. In gen-
eral, our results shed light on the inherent complexity of cooperation. While in
some cases, we can give efficient algorithms, most of our insights turn out to be
hardness results.

In Section 3 we study anonymous games [4,5], in which the cost of a player does
not depend on the identity of the other players. A notable case are games with a
constant number of strategies, in which the existence of pure NE can be decided
efficiently [6], and for mixed NE there exists an FPTAS [8,9]. In this case, we can
decide the recognition problem efficiently for SE and PoNE. Our algorithm uses
computation of perfect matchings together with careful enumeration to find a
coalition and a profitable deviation if they exist. Deciding the existence problem
for SE and PoNE for a given anonymous game, however, is strongly NP-complete,
even for a small constant number of strategies. Note that this is in contrast to
general graphical games, where the existence problem is even ΣP

2 -complete and
thus at the second level of the polynomial hierarchy [12].

An important class of anonymous games are cases of load balancing, i.e.,
player-specific singleton congestion games [19]. Previous work has shown exis-
tence [16] for such games with non-decreasing cost functions. However, we are
not aware of any result providing efficient algorithms to compute SE or PoNE.
We show in Section 4 how to obtain a SE in polynomial time and how to recog-
nize a given state as a SE or PoNE. Interestingly, our results imply that there
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always exist sequences of coalitional improvement moves to SE and PoNE that
are of polynomial length. We show how to obtain these moves for the players
efficiently.

In Section 5 we consider standard congestion games [20] with special structure.
In congestion games it has been shown that SE can be absent [15], and a charac-
terization result has been given that describes structures of strategy spaces that
always allow SE for any set of non-decreasing latency functions. An extension of
SE to correlated strategies has been considered in [21]. More recently, it has been
shown that in a bottleneck variant of congestion games SE exist [14], and that
SE in symmetric network and matroid games can be computed in polynomial
time [13]. In standard matroid and symmetric network games NE can be com-
puted efficiently [1,11]. In addition, there is a plethora of work on the complexity
of NE in standard, weighted or integer-splittable congestion games [10, 18], or
local-effect games [18].

We here treat standard congestion games and aim to draw a more detailed
picture beyond the characterization of [15]. Unfortunately, even when the strat-
egy space has simultaneously a symmetric network and matroid structure, the
existence problem for SE is strongly Co-NP-hard. This is particularly interesting
in light of the positive results in related work mentioned above. Additionally,
we can even show weak NP-hardness for such games that have only 2 players.
This directly implies the hardness result also for PoNE, and k-SE (in which only
coalitions of size at most k are allowed), for any k ≥ 2.

All proofs missing from this extended abstract are deferred to the full version
of the paper.

2 Definitions

Strategic games. A strategic game Γ = (N, (Si)i∈N , (ui)i∈N ) has a finite set
N = {1, . . . , n} of players. Player i ∈ N has a set Si of strategies. A state
s ∈ S = S1 ×· · ·×Sn is sometimes referred to as a strategy profile or profile. The
cost function of player i is ci : S → R, which maps each state s ∈ S to a real
number. We here denote by s−i = (s1, . . . , si−1, si+1, . . . , sn). A state s ∈ S is a
k-strong equilibrium (k-SE) if no subset of the players I ⊆ N with |I| ≤ k can
benefit from jointly deviating from their strategies. Formally, there is no tuple
(s′, I) ∈ S × 2N with s′ �= s and |I| ≤ k such that ∀i ∈ I we have ci(s′) < ci(s)
and ∀i ∈ N \ I it holds si = s′i. A n-SE is called strong equilibrium (SE), and a
1-SE is a Nash equilibrium (NE). A Pareto-optimal Nash equilibrium (PoNE) is
a NE s, in which there is no other state s′ with ci(s′) < ci(s) for every i ∈ N .

Anonymous games. An anonymous game is a tuple (N, E, (ci)i∈N ), where E
is a set of resources and the strategy space of every player, i.e., Si = E for all
i ∈ N . The cost function of player i depends only on the numbers of players that
have chosen the strategies, but not their identities. More formally, for a state
s = (s1, . . . , sn), we define the load le(s) on resource e by le(s) = |{i|e ∈ si}|,
that is le(s) is the number of players that selected resource e as strategy in s.
We call the tuple (le(s))e∈E the load profile of s. Let L be the set of all load
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profiles. The cost function of player i is ci : E ×L → R, which maps the strategy
of player i and the load profile of s to a real number. The function of player i
depends only on numbers of other players but not on their identity (i.e., which
set of other players he shares his resource with). However, two players i and j
choosing the same resource e can suffer a different cost, as ci and cj might map
l(s) to a different cost value. An interesting subclass are anonymous games with
a constant-size strategy set in which the size of E is a fixed constant, which we
study in this paper. Another subclass of anonymous games that we study are
player-specific singleton congestion games. While we assume that these
games can have an arbitrary number of strategies, the crucial adjustment is that
the cost function of player i is ci(lsi(s)) ∈ R. Thus, it depends only on lsi(s) of the
resource chosen by player i. We assume that cost functions are non-decreasing.

Congestion Games. A congestion game is a tuple (N, E, (Si)i∈N ,
(de)e∈E), where E is a set of resources, Si ⊆ 2E is the strategy space of player
i ∈ N , and de : N → Z is a delay function associated with resource e ∈ E. As
above, we define the load on e ∈ E in state s as le(s) = |{i|e ∈ si}|. The cost
(or delay) ci(s) of player i in s is ci(s) =

∑
e∈si

de(le(s)). Note that symmetric
congestion games can seen as another subclass of anonymous games (albeit with
a number of strategies that is possibly exponential in |E|), in which the cost
functions have a special structure. In terms of SE and PoNE we can also equiva-
lently view asymmetric congestion games as anonymous games with strategy set⋃

i∈N Si, where player i has a prohibitively large cost when he chooses a strategy
si �∈ Si.

3 Anonymous Games

In this section we start by considering the case of anonymous games with a
constant number of strategies. In this case we can decide efficiently if a given
state s is a SE.

Theorem 1. A state s of an anonymous game with a constant number of strate-
gies can be recognized as a Pareto-optimal Nash or a strong equilibrium in poly-
nomial time.

Proof. We show here that we can efficiently compute a profitable deviation if
it exists. For the given state s let l(s) denote the load profile of s. For a given
(possibly different) load profile l we present an algorithm that checks in polyno-
mial time if there exists a profitable joint deviation from s to a state that has
load profile l. The algorithm repeatedly tries to compute a perfect matching in
a bipartite graph. By running this algorithm for s and all polynomially many
load profiles l, the theorem follows.

For a given state s and a given load profile l, we construct a bipartite de-
viation graph G and search for a perfect matching. The vertex set of graph
G = (A ∪ B, F ) is defined by A = {vi | for all 1 ≤ i ≤ n} and B = {ve,j |
for all e ∈ E and 1 ≤ j ≤ le}. For each 1 ≤ i ≤ n and resource e ∈ E, we add
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all the edges (vi, ve,j) for all 1 ≤ j ≤ le if and only if ci(e, l) < ci(si, l(s)). In
addition, there are edges (vi, vsi,j) for every player 1 ≤ i ≤ n and his current
strategy si, for every 1 ≤ j ≤ lsi .

Note that a perfect matching in this graph yields an assignment of players to
strategies. From this we can derive a new state s′ by setting s′i = e iff (vi, ve,j) is
in the matching for some 1 ≤ j ≤ le. s′ represents an improvement for all players
i with si �= s′i. Therefore, if there is a profitable coalitional deviation from s to
a state s′ with l(s) �= l(s′), the algorithm finds at least one such deviation.
Observe, that for l = l(s) the algorithm may return s itself. To check if there is
a deviation to a strategy s′ �= s with l(s) = l(s′), we run the algorithm n times
with s and l as input. However, in the i-th run, we force player i to change his
strategy by removing all edges (vi, vsi,j). Thus, if there is a profitable deviation
to a state s′ �= s with l(s) = l(s′), then there will exist a perfect matching in at
least one of the runs, and thereby we will find such a deviation. This proves the
result for SE.

For Pareto-optimal Nash equilibria we first check if all unilateral deviations
are unprofitable. For deviations of the complete set of players to a state with
load profile l we use the above construction, but we add edges (vi, vsi,j) if and
only if they represent a strict improvement for player i, i.e., ci(si, l) < ci(si, l(s)).
This implies that for each load profile l we only have to examine exactly one
graph for a perfect matching. There is a perfect matching for some load profile
l if and only if s is not a PoNE. This proves the result for PoNE. 
�

We can decide for a given state whether it is a SE or not, which implies that the
existence problem for PoNE and SE is in NP. In fact, deciding the existence of
SE and PoNE is strongly NP-complete.

Theorem 2. It is strongly NP-complete to decide if an anonymous game with a
constant number of strategies has a Pareto-optimal Nash or strong equilibrium.

Proof. We first prove the result for SE and present a reduction from 3Sat. Given
a formula ϕ with the variables x1, . . . , xn and clauses c1, . . . , cm, we construct
an anonymous game Γϕ with players X0

i , X1
i (for 1 ≤ i ≤ n), Ck

j (for 1 ≤ j ≤ m

and 1 ≤ k ≤ 10j), V k
i (for 1 ≤ i ≤ n and 1 ≤ k ≤ 10i + 10m), Prisoner1,

and Prisoner2. The set of strategies is {On, Off, Verify, False, Wait, Cooperate,
Defect}, costs are shown in Fig. 1.

If ϕ is satisfiable, let b1, . . . , bn be a satisfying assignment. The following state
is a SE. For each 1 ≤ i ≤ n, the player Xbi

i plays On and the player X1−bi

i plays
Off. All players Ck

j and V k
i play Verify and players Prisoner1 and Prisoner2 play

Cooperate.
We show that there is no coalition that can improve by jointly deviating to

another state. The players X1−bi

i are playing Off and have the minimal possi-
ble cost of 1. Thus, they cannot be part of a deviating coalition. The players
Prisoner1 and Prisoner2 can improve only if some other players move to False.
We will show, this cannot happen.

For the remaining players, i.e., Xbi

i , Ck
j , V k

i , the only possible profitable de-
viation is to deviate to False. Clearly, if there is a deviation of a subset of these
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Player Strategy Load profile Cost
Xb

i On |On| = n and |Off| = n 2
1 ≤ i ≤ n On Otherwise 3
b ∈ {0, 1} Off |On| = n and |Off| = n 1

Off Otherwise 3
False |False| ∈ {10j + 3 | if xi appears in clause cj

and xi = b does not satisfy cj} 1
False |False| = 10m + 10i + 2 1
False Otherwise 4

Ck
j Verify 2

1 ≤ j ≤ m False |False| = 10j + 3 1
1 ≤ k ≤ 10j False Otherwise 3
V k

i Verify 2
1 ≤ i ≤ n False |False| = 10m + 10i + 2 1
1 ≤ k ≤ 10i + 10m False Otherwise 3
Prisoner1, Prisoner2 Cooperate |False| = 0 5

Cooperate |False| �= 0 and |Cooperate| = 2 2
Cooperate |False| �= 0 and |Cooperate| �= 2 4
Defect |False| = 0 5
Defect |False| �= 0 and |Defect| = 2 3
Defect |False| �= 0 and |Cooperate| �= 2 1

Fig. 1. Description of the cost functions in the game Γϕ. Strategies that are not listed
here have cost of 6 and, therefore, are never played in equilibrium.

players, it must result in 10j+3 (for 1 ≤ j ≤ m) or 10m+10i+2 (for 1 ≤ i ≤ n)
players on False. We consider the former case. Assume there is a deviation of a
coalition of some of the players that results in 10j′ + 3 many player on False.
The coalition must contain the players C1

j′ , . . . , C
10j′
j′ and the three players Xbi

i

with xi appearing in clause cj′ . However, let xi∗ be a variable that satisfies cj

with xi∗ = bi∗ . Player X
b∗i
i∗ does not improve by deviation to False. Therefore,

no such deviation can exist. Similarly, there is no deviation of a coalition that
yields 10m + 10i′ + 2 (for 1 ≤ i′ ≤ n) players on False. This is only possible if
both players X0

i′ and X1
i′ are on strategy On.

Now, assume ϕ is not satisfiable, and there is a strategy profile s that is a
SE. We first show that in s no player is on False. If some player is on False,
the players Prisoner1 and Prisoner2 play a game corresponding to the prisoners
dilemma. This game does not admit a SE and implies that in s no player can be
on False.

Now since s is a equilibrium, there are exactly n players Xb
i on On and exactly

n players Xb
i on Off because otherwise they would have cost of 3. There is no

1 ≤ i′ ≤ n with both players X0
i′ and X1

i′ being on strategy On. Otherwise,
those two players and and the players V 1

i′ , . . . , V
10m+10i′
i′ could jointly change

to False and decrease their costs. Now, let Xb1
1 , . . . , Xbn

n be the players on On.
Since ϕ is not satisfiable, the assignment b1, . . . , bn implied by the players on
On creates at least one clause cj′ that is not satisfied. Let xi′ , xi′′ , and xi′′′ be
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the three variables of this clause. Then, the players X
bi′
i′ , X

bi′′
i′′ , X

bi′′′
i′′′ , and the

players C1
j′ , . . . , C

10j′
j′ could jointly change to False and decrease their costs. This

is a contradiction to the assumption that s is a SE and completes our reduction.
We can easily modify the arguments and obtain a similar result for the com-

plexity of PoNE. 
�

Note that this implies that further restrictions on the games are necessary in
order to decide existence or compute a SE or PoNE efficiently. We consider
games with a constant number of player types, i.e., where each player has one
out of a constant number of different cost functions.

Corollary 1. In anonymous games with constant number of strategies that are
(1) symmetric or (2) have only a constant number of different player types we can
decide efficiently if Pareto-optimal Nash or strong equilibria exist and compute
one efficiently if it exists.

Note that for symmetric games the assignment of players in a load profile is
irrelevant, hence we can use our algorithm from Theorem 1 above to check each
of the polynomial number of profiles for being a SE or PoNE. For a constant
number of player types, the number of essentially different assignments that can
be derived from a single load profile is a polynomial number. Again, by enumer-
ation and application of our algorithm we can decide existence and compute SE
and PoNE efficiently.

4 Player-Specific Singleton Congestion Games

In this section we treat player-specific singleton congestion games. For games
with non-decreasing cost functions it is known that SE always exist [16]. Here
we provide efficient algorithms to compute a SE and decide whether a given
state is a SE or PoNE. To the best of our knowledge these results have not been
described in the literature before.

Theorem 3. In player-specific singleton congestion games with non-decreasing
cost functions we can in polynomial time (1) decide whether a given state is a
Pareto-optimal Nash or strong equilibrium and (2) compute a strong equilibrium
in polynomial time.

Proof. Obviously, a state s that is a SE or PoNE must be a NE. Consider a
NE s and the corresponding load profile l(s). Because cost functions are non-
decreasing, every profitable coalitional deviation must result in a state s′ with the
same load profile l(s). In particular, if the load profile changes to l(s′) �= l(s),
there must be a resource e with higher load le(s′) > le(s). Consider a player
moving to e. Any player moving to e does not make a strict improvement, because
otherwise he could move there unilaterally – a contradiction to s being a NE.
Hence, whenever we have a NE, there must be a SE with the same load profile,
a fact that was observed in [16]. Every profitable coalitional deviation represents
a circular switch of players and thereby decreases the sum of player costs.
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We use our algorithm presented for anonymous games in Theorem 1 to decide
for a given state s whether it is a SE or PoNE. Note that due to the arbitrary
number of strategies, there is a possibly exponential number of load profiles. We
make sure that s is a NE, then we only have to check one load profile – namely
l(s) – to verify that no coalitional deviation exists. In this way, we can efficiently
check whether a state is a SE or PoNE.

For the task of computing a SE, we note that there are efficient algorithms
to compute a NE in these games [19]. This allows us to obtain a NE s and
load profile l(s) in polynomial time. To compute a SE, we construct a bipartite
deviation graph G for state s and target profile l(s) as in the proof of Theorem 1.
Here we also add costs to the edges, and let the cost of edge (vi, ve,j) be ci(le(s)),
for all 1 ≤ j ≤ le(s). Now consider any other state s′ with l(s), in which ci(s) =
ci(s′) for every player i with si = s′i and ci(s) > ci(s′) for every i with si �= s′i. For
every such state we can find a corresponding perfect matching in G. In particular,
we construct a minimum cost perfect matching. This matching yields a state s′

and we now argue that s′ is indeed a SE.
Suppose for contradiction that there is a coalitional deviation from s′ to a state

s′′. s is a NE and ci(s) ≥ ci(s′) ≥ ci(s′′) for every i ∈ N , with at least one in-
equality for a moving player. s′′ must also have load profile l(s), and a deviation
from s′ is a circular switch of players. This switch does not increase the cost of any
player but decreases the cost of the moving players. Therefore, the assignment s′′

is such that ci(s) = ci(s′′) for every player i with si = s′′i and ci(s) > ci(s′′) for
every i with si �= s′′i . Note that s′′ corresponds to a perfect matching in G, and
the sum of costs

∑
i∈N ci(s′′) <

∑
i∈N ci(s′). This is a contradiction to s′ being

derived from a minimum cost perfect matching in G. 
�

Interestingly, our proof shows that for every NE there is a single coalitional
deviation that turns the state into a SE. Milchtaich [19] proved that from every
state s there is a sequence of unilateral deviations with length at most |E| ·

(
n+1

2

)
that leads to a NE. Our result implies that even SE can be reached via short
sequences of improvement moves from every state of the game. In these sequences
we only need one coalitional move which is efficiently computable. A similar
result can be derived for PoNE, where we adjust the deviation graph to allow
only coalitional improvement moves where all players strictly improve.

Corollary 2. For every state s of a player-specific singleton congestion game
with non-decreasing cost functions there is a sequence of coalitional improve-
ment moves that leads to a strong equilibrium. Each move can be computed in
polynomial time. The length of the sequence is at most |E| ·

(
n+1

2

)
+ 1.

5 Congestion Games

In this section, we consider the complexity of computing SE and PoNE in general
congestion games. The class of singleton congestion games is a special case of
the games we treated in the previous section, and for which we could establish a
variety of positive results. Here we extend the combinatorial structure of strategy
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s v1 v3m t
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1
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1
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1

a0
3m

a−
3m

a+
3m

Fig. 2. Construction that proves hardness of the existence and recognition problems
of SE in congestion games

spaces only slightly to matroids. This allows to obtain a set of quite strong
hardness results concerning the existence and recognition of SE and PoNE. Note
that all our results in this section hold even for symmetric games, in which
strategy spaces are simultaneously matroids and networks.

Theorem 4. It is strongly Co-NP-hard to decide (1) if a congestion game has
a strong equilibrium and (2) if a given state of a game is a strong equilibrium.

Proof. We reduce from 3-Partition. An instance is given by a multiset of in-
tegers a1, . . . , a3m. Let b = 1

m

∑3m
i=1 ai. An instance I = (a1, . . . , a3m) ∈ 3-

Partition if and only if there exists a partition of A = {1, . . . , 3m} into m
subsets A1, . . . , Am such that the sum

∑
i∈Aj

ai = b for all 1 ≤ j ≤ m. Without
loss of generality, we can assume that every integer b/2 > ai > b/4. Therefore,
each subset Ai is forced to consist of exactly three elements.

Given an instance I, we construct a symmetric matroid network congestion
game ΓI as follows. The network is G = (V, E) with vertices V = {s, v1, . . . , v3m, t}
and and a series of parallel edges as depicted in Figure 2. There are m+1 players.
Each players’ source node is s and his target node is t. The delay functions are de-
fined as follows. Let M = 2B and 1 > ε > 0. The delay of an edge a−

i is M −ai for
one player and M for more than one player. Delay of an edge a+

i is always M +ai.
The delay of an edge a0

i is M for at most m − 1 players and 2M for m or more
players. Delay of edge b− is M − b − ε for at most m players and M for more than
m players. Delay of an edge b+ is always M + b − ε.

If I ∈ 3-Partition, we show that no SE exists. Observe that for a single
agent it is never optimal to choose one of the edges a+

i or b+. Thus, no SE exists
in which these edges are used. Thus, in every SE every player has delay of (at
least) (m + 1)M . However, there is a joint deviation of all players which yields
delay of (m + 1)M − ε for each of them. Let A1, . . . , Am be a solution of the 3-
Partition-instance I. Player m+1 choses edge b+ and edges a−

1 , . . . , a−
3m. Each

player 1 ≤ j ≤ m chooses edge b− and the following edges: For each 1 ≤ i ≤ 3m,
if i ∈ Aj player j plays edge a+

i otherwise he players a0
i . As argued above, the

resulting state is not a SE either. Thus, no SE exists.
If I �∈ 3-Partition, all players choosing path b−, a−

1 , a−
2 , . . . , a−

3m is a SE.
Details of this argument will be given in the full version of this paper.
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Obviously, the above implies that s with all players choosing path
b−, a−

1 , a−
2 , . . . , a−

3m is a SE if and only if I �∈ 3-Partition. This proves Co-
NP-hardness of deciding whether a given state is a SE. 
�

Theorem 5. It is weakly Co-NP-hard to decide (1) if a congestion game with
two players has a strong equilibrium and (2) if a given state of a game is a strong
equilibrium.

This implies the same result for PoNE, as for two players SE and PoNE coincide.
Additionally, it implies the result for k-SE, for any k ≥ 2.

Corollary 3. It is weakly Co-NP-hard to decide for a congestion game (1) if it
has a k-strong equilibrium, (2) if it has a Pareto-optimal Nash equilibrium, (3)
if a given state is a k-strong equilibrium, (4) if a given state is a Pareto-optimal
Nash equilibrium, for any k ≥ 2.
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Abstract. The solution to a Nash or a nonsymmetric bargaining game
is obtained by maximizing a concave function over a convex set, i.e., it
is the solution to a convex program. We show that each 2-player game
whose convex program has linear constraints, admits a rational solution
and such a solution can be found in polynomial time using only an LP
solver. If in addition, the game is succinct, i.e., the coefficients in its
convex program are “small”, then its solution can be found in strongly
polynomial time. We also give non-succinct linear games whose solution
can be found in strongly polynomial time.

1 Introduction

In game theory, 2-player games occupy a special place – not only because numer-
ous applications involve two players but also because 2-player games often have
remarkable properties that are not possessed by extensions to more players.

For instance, in the case of Nash equilibrium, the 2-player case is the most
extensively studied and used, and captures a rich set of possibilities, e.g., those
encapsulated in canonical games such as prisoner’s dilemma, battle of the sexes,
chicken, and matching pennies. In terms of properties, 2-player Nash equilibrium
games always have rational solutions whereas games with three or more players
may have only irrational solutions; an example of the latter, called “a three-man
poker game,” was given by Nash [14]).

From a computational viewpoint, the difference is even more stark. The prob-
lem of finding a Nash equilibrium is PPAD-complete for two players [4] and
FIXP-complete for three or more players [6]. Note that whereas PPAD is in
NP ∩ co-NP, the only fact known about FIXP is that P ⊆ FIXP ⊆ PSPACE.
Next, let us restrict to zero-sum games. For two players, von Neumann’s min-
imax theorem yields a polynomial time algorithm using LP [15]. On the other
hand, 3-player zero-sum games are PPAD-hard, since any 2-player non-zero-sum
game can be reduced to a 3-player zero-sum game [15].

John Nash’s seminal paper defining the bargaining game dealt only with the
case of 2-players [13]. Later, it was observed that his entire setup, and theorem
characterizing the bargaining solution, easily generalize to the case of more than
2 players, e.g., see [10]. Today, Nash bargaining is regarded as a central solution
concept within game theory for “fair” allocation of utility among competing
players in the presence of complete information, e.g., see [11, 18, 16].
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Recently, Vazirani [20] initiated a systematic algorithmic study of Nash bar-
gaining games and also carried this program over to solving nonsymmetric bar-
gaining games of Kalai [10]. In this paper we carry the program further, though
only for the case of 2-player games. The solution to a Nash or a nonsymmetric
bargaining game is obtained by maximizing a concave function over a convex set,
i.e., it is the solution to a convex program. As defined in [20], NB is the class of
Nash and nonsymmetric bargaining games that can be solved in polynomial time,
and LNB is the subclass of NB consisting of games all of whose constraints are
linear. Let NB2 and LNB2 be the restrictions of these classes to 2-player games.

We show that for solving any game in LNB2, it is not essential to solve a
convex program – an LP solver suffices. As a consequence, all games in LNB2
have rational solutions; this property does not hold for 3-player games in LNB.
Following [20], let us say that a nonlinear convex program is rational if it
always has a rational solution that can be written using polynomially many
bits, if all parameters are rational. Rational convex programs form a surprisingly
rich class, see [20, 5, 21, 9, 3, 1, 7]. Next, we define a subclass of LNB2 called
SLNB2, consisting of succinct games, see Section 4. We show that all games
in SLNB2 admit strongly polynomial algorithms; however, these algorithms are
not combinatorial. This class includes nontrivial and interesting games, e.g., the
game DG2, which consists of a directed graph with edge capacities and each
player is a source-sink pair desiring flow (see Section 4 for definition). This game
is derived from Kelly’s flow markets [12].

This raises the question of whether there are games in (LNB2 - SLNB2) that
admit strongly polynomial time algorithms. The answer turns out to be “yes”.
In the full paper, we will show that the 2-player version of the game ADNB,
for which a combinatorial polynomial time algorithm is given in [20], admits
a combinatorial strongly polynomial algorithm. The game ADNB was derived
from the linear case of the Arrow-Debreu market model.

Building on the Eisenberg-Gale program, [9] gave the notion of Eisenberg-
Gale markets, see Section 3. In answering an open question of [9] affirmatively,
[3] showed that EG(2) markets, i.e., the restriction of Eisenberg-Gale markets
to 2 buyers, always admit a rational solution and it can be found using only
an LP solver. Our result is obtained by extending their algorithm. The exact
relationship of EG(2) and LNB2 is explained in Section 3.

Finally, the class (NB2 - LNB2) needs to be properly explored and understood,
both structurally and algorithmically. As an example of interesing games it may
contain, we introduce the circle game. This game can be solved in polynomial
time, even without a convex program solver; its solution reduces to solving a
degree 4 equation. Alternatively, it also admits an elegant geometric solution.

2 Nash and Nonsymmetric Bargaining Games

An n-person Nash bargaining game consists of a pair (N , c), where N ⊆ Rn
+ is

a compact, convex set and c ∈ N . Set N is the feasible set and its elements give
utilities that the n players can simultaneously accrue. Point c is the disagreement
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point – it gives the utilities that the n players obtain if they decide not to
cooperate. The set of n agent will be denoted by B and the agents will be
numbered 1, 2, . . . n. Game (N , c) is said to be feasible if there is a point v ∈
N such that ∀i ∈ B, vi > ci. The solution to a feasible game is the point
v ∈ N that satisfies the four axioms: Pareto optimality, Invariance under affine
transformations, symmetry, and independence of irrelevant alternatives.

Theorem 1. Nash [13] If game (N , c) is feasible then there is a unique point
in N satisfying the axioms stated above. This is also the unique point that max-
imizes Πi∈B(vi − ci) over all v ∈ N .

Since the log of Πi∈B(vi − ci), i.e.,
∑

i∈B log(vi − ci), is a concave function,
Nash’s solution involves maximizing a concave function over a convex domain,
and is therefore the optimal solution to the convex program that maximizes∑

i∈B log(vi−ci) subject to v ∈ N . Therefore, if for a specific game, a separation
oracle can be implemented in polynomial time, then using the ellipsoid algorithm
one can get as good an approximation to the solution as desired [8].

Kalai [10] generalized Nash’s bargaining game by removing the axiom of sym-
metry and showed that any solution to the resulting game is the unique point
that maximizes Πi∈B(vi − ci)pi , over all v ∈ N , for some choice of positive num-
bers pi, for i ∈ B, such that

∑
i∈B pi = 1. Thus, any particular nonsymmetric

bargaining solution is specified by giving the pi’s satisfying the two conditions,
i.e., ∀i ∈ B, pi > 0 and

∑
i∈B pi = 1. For the purposes of computability, we will

restrict to nonsymmetric games in which the pi’s are rational. Equivalently, let
us define the n-person nonsymmetric bargaining game as follows. Assume that
B, N , c are as defined above. In addition, we are given the clout of each player:
a positive integer wi for each player i.

Assuming the game is feasible, the solution to this nonsymmetric bargaining
game is the unique point that maximizes Πi∈B(vi − ci)wi over all v ∈ N . As
before, we will view this as the solution to a convex program by maximizing∑

i∈B wi log(vi − ci) over all v ∈ N . One more remark is in order. As shown by
Kalai [10], any nonsymmetric game can be reduced to a Nash bargaining game
over a larger number of players. However, this reduction is not useful for our
purpose because once the number of players increases, the special properties of
2-player games are lost.

3 Fisher and Eisenberg-Gale Market Models

We will first state Fisher’s market model for the case of linear utility functions
[2]. Consider a market consisting of a set of n buyers B = {1, 2, . . . , n}, and a
set of g divisible goods, G = {1, 2, . . . , g}; we may assume w.l.o.g. that there is
a unit amount of each good. Let mi be the money possessed by buyer i, i ∈ B;
w.l.o.g. assume that each mi > 0. Let uij be the utility derived by buyer i on
receiving one unit of good j. Thus, if xij is the amount of good j that buyer i
gets, for 1 ≤ j ≤ g, then the total utility derived by i is vi(x) =

∑g
j=1 uijxij .
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The problem is to find prices p = {p1, p2, . . . , pg} for the goods so that when
each buyer is given her utility maximizing bundle of goods, the market clears,
i.e., each good having a positive price is exactly sold, without there being any
deficiency or surplus. Such prices are called equilibrium prices.

The following is the Eisenberg-Gale convex program. Using KKT conditions,
one can show that its optimal solution is an equilibrium allocation for Fisher’s
linear market and the Lagrange variables corresponding to the inequalities give
equilibrium prices of goods (e.g., see Theorem 5.1 in [19]).

maximize
∑
i∈B

mi log vi (1)

subject to ∀i ∈ B : vi =
∑
j∈G

uijxij

∀j ∈ G :
∑
i∈B

xij ≤ 1

∀i ∈ B, ∀j ∈ G : xij ≥ 0

Next, we state the definition of Eisenberg-Gale markets as given in [9]. Let
us say that a convex program is an Eisenberg-Gale-type convex program if its
objective function is of the form max

∑
i mi log vi, subject to linear packing

constraints, i.e., constraints of the form Ax ≤ b, where matrix A and vector b
are non-negative and the vector of variables x is constrained to be non-negative.
Let M be a Fisher market, with an arbitrary utility function, whose set of
feasible allocations and buyers’ utilities form a polytope Π . We will assume that
the linear constraints defining Π are packing constraints. As a result, M satisfies
the free disposal property or is downward closed, i.e., if v is a feasible utility vector
then so is any vector dominated by v. We will say that an allocation x1, . . . , xn

made to the buyers is a clearing allocation if it uses up all goods exactly to the
extent they are available in M. Finally, we will say that M is an Eisenberg-Gale
market if any clearing allocation x1, . . . , xn that maximizes max

∑
i mi log vi(xi)

is an equilibrium allocation, i.e., there are prices p1, . . . pg for the goods such that
for each buyer i, xi is a utility maximizing bundle for i at these prices. The class
EG(2), defined in [3], is essentially the restriction of Eisenberg-Gale markets to
the case of 2 buyers; see [3] for the precise definition. Finally, we point out the
relationship between EG(2) and LNB2. If a game G in LNB2 is such that its
feasible set, N , is downward closed, then the instances of this game in which the
disagreement utilities are zero form an EG(2) market.

4 The Class LNB2 and Some Basic Procedures

The classes NB2 and LNB2 were defined in the Introduction. We will assume
w.l.o.g. that the convex program for a game G in LNB2 has the following form:
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maximize
∑

i=1,2

wi log(vi − ci) (2)

subject to Ax + b1v1 + b2v2 ≤ e

for i = 1, 2 : vi ≥ ci

x ≥ 0

where A is an m×r matrix, x is a vector consisting of a total of r allocation and
auxiliary variables, and b1, b2, e are m-dimensional vectors. We will say that G
is succinct if all the entries in A, b1, b2 are polynomially bounded in m and r; if
so, G lies in SLNB2.

As an example of a game that lies in SLNB2, consider DG2 : We are given a
directed graph G = (V, E), with ce ∈ Q+ specifying the capacity of edge e ∈ E.
Two source-sink pairs are also specified, (s1, t1) and (s2, t2). Each source-sink
pair represents a player in the game and has its own disagreement utility (flow
value) ci, for i = 1, 2; ci can be thought of as a strict lower bound on the amount
of flow player i desires (perhaps because of the resources player i has invested in
building the network). In the nonsymmetric version, we are also given the clouts
w1 and w2 of the two players. The object is to find the Nash or nonsymmetric
bargaining solution. Let G denote the given instance of DG2.

Next, we give a convex program that captures the solution to G. The flow
going from si to ti will be referred to as commodity i, for i = 1, 2, and fi

will denote the total flow of commodity i. For each edge e ∈ E, we have 2
variables, f1

e and f2
e which denote the amount of each commodity flowing through

e. The constraints ensure that the total flow going through an edge does not
exceed its capacity and that for each commodity, at each vertex, other than the
source-sink pair of this commodity, flow conservation holds. For vertex v ∈ V ,
out(v) = {(v, u) | (v, u) ∈ E} and in(v) = {(u, v) | (u, v) ∈ E}. The constraints
of this program are simply ensuring that (f1, f2) lies in the feasible set N .

maximize
∑

i=1,2

wi log(fi − ci) (3)

subject to for i = 1, 2 : fi =
∑

e∈out(si)

f i
e

∀e ∈ E : f1
e + f2

e ≤ ce

for i = 1, 2 : ∀v ∈ V − {si, ti} :
∑

e∈in(v)

f i
e =

∑
e∈out(v)

f i
e

for i = 1, 2 : ∀e ∈ E : f i
e ≥ 0

Next, assume that G is a generic game that lies in LNB2 We can test if G is
feasible by solving the following LP:
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maximize t (4)

subject to v1 ≥ c1 + t

v2 ≥ c2 + t

subject to Ax + b1v1 + b2v2 ≤ e

x ≥ 0

Now, G is feasible iff the optimal value of t > 0. Henceforth, assume that G
is feasible. Next, we make the following change of variables, for i = 1, 2 : yi =
vi − ci, hence obtaining the following program which is equivalent to (2).

maximize
∑

i=1,2

wi log yi (5)

subject to Ax + b1(y1 + c1) + b2(y2 + c2) ≤ e

for i = 1, 2 : yi ≥ 0

x ≥ 0

Henceforth, we will denote (e − c1b1 − c2b2) by d. We will denote by Π the
polyhedron in Rn+2 which is defined by the constraints of program (5). In this
paper, we will write the constraints of (5) concisely as follows. This notation will
also be used for LP’s optimizing over the polytope Π .

maximize
∑

i=1,2

wi log yi (6)

subject to (x, y1, y2) ∈ Π

The projection of Π onto the coordinates y1, y2 gives a polytope, N in R2,
which we will call the feasible polytope. In this section, we will describe its useful
faces, i.e., faces on which the solution to game G can lie, and we will give some
basic procedures for operating on these faces. We first compute the point (l1, l2)
by first maximizing y1 over Π to get l1 and then maximizing y2 over Π , subject
to y1 = l1, to get l2. Similarly, compute the point (h1, h2) by first maximizing y2
over Π to get h2 and then maximizing y1 over Π , subject to y2 = h2, to get h1.
Clearly, both these points are vertices of N . Finally, the set of faces encountered
in moving, on the boundary of N , from (l1, l2) to (h1, h2), by increasing the
second coordinate are the useful faces. If polytope N is not full dimensional, we
will already obtain the vertex or facet on this the solution lies. For the rest of
this section, assume that N is full dimensional.

Each of the useful facets has the form y1 + αy2 ≤ β, where α > 0 and β > 0.
We will denote the vertex at the intersection of the two facets y1 + α1y2 ≤
β1 and y1 + α2y2 ≤ β2, by (α1, α2); we will assume α1 < α2. Let α1 and β1

(α2 and β2) be the α and β values of the first (last) facet encountered in moving
from (l1, l2) to (h1, h2); clearly, α1 < α2. Our binary search will be performed
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on the interval [α1, α2]. In Procedure 3 below, we show how to compute α1 and
α2. The solution to G must lie on a face which is either a useful facet or a vertex
at the intersection of 2 useful facets. These 2 possibilities give rise to distinct
procedures and proofs throughout.

(l1, l2)

(h1, h2)

y1 + α1y2 ≤ β1

y1 + α2y2 ≤ β2

4.1 Procedure 1: Given α, Find the Face It Lies on

We give an algorithm for the following task: Given a number α s.t. α1 ≤ α ≤ α2,
determine which of the following possibilities holds: 1. α defines a facet of N ,
y1 + αy2 ≤ β, for a suitable value of β. If so, find this facet. 2. There is a vertex
of N , (α1, α2), such that α1 < α < α2. If so, find this vertex.

Let β be the optimal objective function value of the following LP and let a
and b denote the optimal values of y1 and y2, respectively.

maximize y1 + αy2 (7)

subject to (x, y1, y2) ∈ Π

Next, solve the following LP and let its value be denoted by a1.

minimize y1 (8)

subject to y1 + αy2 = β

(x, y1, y2) ∈ Π

Next, change the objective in LP (8) to maximize y1, and let its optimal
objective function value be a2. If a1 < a2, we are in the first case. Define b1 =
(β−a1)/α and b2 = (β−a2)/α. Then, the endpoints of the facet y1+αy2 = β are
(a1, b1) and (a2, b2). Otherwise, a1 = a2 = a, say, and we are in the second case.
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Let b be the value of y2 computed in LP (8). Then, the vertex has coordinates
(a, b). Next, we need to find α1 and α2 for this vertex. Let us begin by writing
the dual for LP (7).

minimize
∑

j

djpj (9)

subject to
∑

j

b1jpj ≥ 1

∑
j

b2jpj ≥ α

for 1 ≤ i ≤ n :
∑

j

Ajipj ≥ 0

for 1 ≤ j ≤ m : pj ≥ 0

Let (x∗, y∗
1 , y∗

2) be an optimal solution to LP (7). Since G has been assumed
to be feasible, y∗

1 > 0 and y∗
2 > 0. The next LP is derived from LP (9) by adding

constraints on pj which are implied by the complementary slackness conditions
of the primal and dual pair of LP’s (7) and (9). It is not optimizing any function,
since we are only concerned with its feasible solutions.

∑
j

b1jpj = 1 (10)

∑
j

b2jpj = r

for 1 ≤ i ≤ n :
∑

j

Ajipj ≥ 0

for 1 ≤ i ≤ n s.t. x∗
i > 0 :

∑
j

Ajipj = 0

for 1 ≤ j ≤ m s.t.
∑

i

Ajix
∗
i + bijy

∗
1 + b2jy

∗
2 < dj : pj = 0

for 1 ≤ j ≤ m : pj ≥ 0

The next lemma follows from the complementary slackness conditions of the
primal and dual pair of LP’s (7) and (9).

Lemma 1. {α | LP (7) attains its optimal solution at (a, b)}
= {r | ∃ a feasible solution to LP (10) in which

∑
j b2jpj = r}.

By Lemma 1, we can obtain α1 and α2 as follows. First, minimize r subject
to the constraints of LP (10); this gives α1. Next, maximize r subject to the
constraints of LP (10); this gives α2.
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4.2 Procedure 2: Given (a, b), Find the Face It Lies on

Given a point (a, b) on the boundary of N , we give a procedure for finding the
facet or vertex it lies on. First, solve LP (11):

y1 = a (11)

y2 = b

(x, y1, y2) ∈ Π

Next, solve the minimization and maximization versions, with objective func-
tion r, of LP (10) to find α1 and α2, respectively. If α1 = α2 = α, (a, b) lies on
the facet y1 + αy2 ≤ a + αb. Otherwise, α1 < α2 and (a, b) lies on the vertex
(α1, α2).

4.3 Procedure 3: Computing α1 and α2

We now show how to compute α1 and α2, defined at the beginning of this section.
As stated there, our binary search will be performed on the interval [α1, α2].

First, use Procedure 2 to find the vertex, say (α1, α2), on which (l1, l2) lies.
Set, α1 ← α1. Next, use Procedure 2 to find the vertex, say (α1, α2), on which
(h1, h2) lies. Set, α2 ← α2.

5 Binary Search on Parameter z

We first give some crucial definitions. Let (f1, f2) be the solution to game G.
For player i define γi = fi

wi
. Define parameter z to be z = γ1

γ2
. The next lemma

relates z to the point where the solution lies.

Lemma 2. If the solution to game G lies on the facet y1 +αy2 ≤ β, then z = α,
and if it lies on the vertex (α1, α2), then α1 < z < α2.

Proof. In the first case, the objective function of the convex program (3), g =
w1 log y1 +w2 log y2 must be tangent to the facet at the solution point, say (a, b).
Equating the ratio of the partial derivatives of g and the line y1 +αy2 = β w.r.t.
y2 and y1, we get a/w1

b/w2
= α. But the l.h.s. is γ1/γ2 = z, thereby giving z = α. In

the second case, the tangent to g at the solution must be intermediate between
the slopes of the adjacent facets, giving α1 < z < α2.

Our algorithm will conduct a binary search on z, on the interval [α1, α2], to find
the right face on which the solution lies. The test given in the next lemma helps
determine, in each iteration, if the current face is the right one.
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Algorithm 2 (Binary Search)

1. (Initialization:) l ← α1 and h ← α2.

Let r ← w1

w1 + w2
.

2. α ← � l + h

2
�κ.

3. Using Procedure 1 (Section 4.1), determine if α lies on:

Case 1: A facet, say y1 + αy2 ≤ β, with endpoints (a1, b1) and (a2.b2).
If r < (a2/β) then l ← α and go to step 2.
Else if r > (a1/β) then h ← α and go to step 2.

Else if r ∈
[
a1

β
,
a2

β

]
, then solve for y1 and y2 :

y1 + αy2 = β and
y1/w1

y2/w2
= α.

If the solution is y1 = a, y2 = b, output the solution to game G:
v1 = a + c1 and v2 = b + c2, and HALT.

Case 2: A vertex, say (α1, α2), with coordinates (a, b),
If r ≤ (a/β2) then l ← α2 and go to step 2.
Else if r ≥ (a/β1) then h ← α1 and go to step 2.

Else if r ∈
(

a

β2
,

a

β1

)
,

then output the solution to game G: v1 = a + c1 and v2 = b + c2,
and HALT.

4. End.

Our algorithm will conduct a binary search on z, on the interval [α1, α2], to
find the right face on which the solution lies. The test given in the next lemma
helps determine, in each iteration, if the current face is the right one.

Lemma 3. 1. The solution to game G lies on the facet y1 + αy2 ≤ β, having
endpoints (a1, b1) and (a2, b2), with a1 < a2, iff w1

w1+w2
∈

[
a1

β
, a2

β

]
.

2. The solution to game G lies on the vertex (α1, α2), having coordinates (a, b),
which is at the intersection of facets y1 + α1y2 ≤ β1 and y1 + α2y2 ≤ β2, iff

w1
w1+w2

∈
(

a

β2
, a

β1

)
.
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Proof. In the first case, substituting wi = fi/γi and α = γ1/γ2 (this follows from
Lemma 2), we get w1

w1+w2
= f1

f1+αf2
= f1

β
∈

[
a1

β
, a2

β

]
. For the other direction,

if w1/(w1 + w2) lies in the interval given, then by the equation given above,
f1 ∈ [a1, a2], thereby showing that the solution lies on the facet y1 + αy2 ≤ β.
In the second case, by Lemma 2, γ1/γ2 ∈ (α1, α2), and this leads to the interval
in which w1/(w1 + w2) lies. The proof of the other direction also follows in the
same manner.

Theorem 3. Every game in LNB2 has a rational solution; moreover, such a
solution can be found in polynomial time using only an LP solver.

Next assume that the coefficients in the constraints of convex program (2) are
“small”, i.e., polynomially bounded in n. Then all LP’s that need to be solved
will also have “small” coefficients (the objective function and right hand side
don’t need to be “small”). By [17] we get:

Theorem 4. Every game in SLNB2 can be solved in strongly polynomial time.

In particular, the game DG2, which lies in SLNB2, can be solved in strongly
polynomial time. [9] give examples of Eisenberg-Gale markets with 3 buyers
which do not have rational solutions. In particular, let DG3 be the extension
of DG2 to three players, with 3 source-sink pairs. Consider instances of DG3
in which each player’s disagreement utility is zero. As stated in Section 3, these
instances correspond to an Eisenberg-Gale market. [9] show that this market,
with 3 buyers, does not have rational solutions. Hence the game DG3, which is
in (LNB - LNB2), does not admit a rational convex program.

6 The Circle Game

The circle game lies in (NB2 - LNB2). Its feasible set is the intersection of the
unit disk with the positive orthant. We will consider only its Nash bargaining
version. Its convex program is:

maximize
∑

i=1,2

log(vi − ci) (12)

subject to v2
1 + v2

2 ≤ 1

∀i = 1, 2 : vi ≥ 0

Using the KKT conditions for this program, it is easy to see that the Nash
bargaining solution (x, y) satisfies the following equations: (2y2 − c2y − 1)2 =
c2
1(1 − y2) and x2 + y2 = 1. On the other hand, the problem also has a simple

geometric solution. Let Q be a point on the unit circle in the positive orthant.
Let O denote the origin and P denote the point (c1, c2). Let θ1 be the angle
made by PQ with the x-axis and θ2 be the angle made by OQ with the y-axis.
Then one can show that Q is the Nash bargaining solution iff θ1 = θ2.
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Abstract. We study the inefficiency of equilibrium outcomes in bottle-
neck congestion games. These games model situations in which strategic
players compete for a limited number of facilities. Each player allocates
his weight to a (feasible) subset of the facilities with the goal to minimize
the maximum (weight-dependent) latency that he experiences on any of
these facilities. We derive upper and (asymptotically) matching lower
bounds on the (strong) price of anarchy of linear bottleneck congestion
games for a natural load balancing social cost objective (i.e., minimize
the maximum latency of a facility). We restrict our studies to linear
latency functions. Linear bottleneck congestion games still constitute a
rich class of games and generalize, for example, load balancing games
with identical or uniformly related machines with or without restricted
assignments.

1 Introduction

Load balancing games constitute an important class of strategic games that
capture many applications of practical relevance. These games model situations
in which a set of strategically acting players (or jobs) compete for a limited
number of resources (or machines). Every player chooses one of the resources
available to him and assigns his weight (or load) to this resource. The latency of
a resource depends on the total weight of the players using it. The goal of each
player is to select a resource such that the latency that he experiences on this
resource is minimized.

The study of load balancing games is motivated by the need for quantifying
the inefficiency caused by selfish behavior of a set of autonomous players that
utilize distributed processors upon which a system is built. The social cost ob-
jective of an assignment of loads to processors is measured by the makespan,
i.e., the completion time of the most loaded machine, which reflects the distance
from equi-distribution (balancing) of the load to the machines. Load balancing
games have recently been studied extensively for a variety of different machine
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environments, including identical [15], uniformly related [9,11,14,15], restricted
assignment [5,11], and unrelated machines [2].

A natural extension of load balancing games are the bottleneck congestion
games (BCGs) [6,12]. Here, every player chooses a subset of the resources (also
called facilities in this context) from a set of feasible facility allocations and
assigns his weight to each of these facilities. The goal of each player is to select a
subset of the facilities such that the maximum latency over the chosen facilities is
minimized. Bottleneck congestion games generalize, for example, load balancing
games and network routing games, and have several applications in practice. De-
spite their importance, bottleneck congestion games have received only very little
attention in the literature and are far from being well-understood. In this paper
we study the inefficiency of stable outcomes in bottleneck congestion games.

Bottleneck congestion games essentially generalize the context of load bal-
ancing games by modeling the activity of each selfish player upon complexes of
interrelated resources. This generalization brings the model closer to practice, as
in most large scale computing systems the workload of a player occupies different
components of the system simultaneously. For example, instantiations of such
games emerge if the components form paths in networks, or if they correspond to
parallel processors, etc. It is natural to assume that each player wants to balance
his load across the different components available to him and hence attempts to
minimize the maximum latency of a facility that he uses.

One of the most prominent solution concepts for the prediction of outcomes
of rational behavior in strategic games is the Nash equilibrium concept. It de-
scribes outcomes that are resilient to unilateral player deviations. Throughout
this paper we will focus exclusively on pure Nash equilibria. A more general
solution concept is the strong equilibrium concept introduced by Aumann [3]. It
describes outcomes of strategic games that are stable with respect to pure devi-
ations of player subsets (also called coalitions). More precisely, an outcome of a
strategic game is a strong equilibrium if no coalition of the players can deviate
such that every member of the coalition strictly benefits. An outcome is said to
be a k-strong equilibrium if this property holds for all coalitions of size at most
k. Strong equilibria thus generalize the pure Nash equilibrium concept (k = 1).
Very recently, Harks, Klimm and Möhring [12] showed that (under rather general
assumptions) bottleneck congestion games always admit strong equilibria.

It is well known that equilibrium outcomes might be inefficient in the sense
that they are suboptimal with respect to some socially desirable objective func-
tion. The price of anarchy (PoA) [15,16,17] has become the standard measure
to assess the inefficiency of equilibrium outcomes. It is defined as the worst-case
ratio (over all instances) of the maximum cost of a Nash equilibrium outcome
and the cost of a socially optimal outcome. The strong price of anarchy (SPoA)
and the k-strong price of anarchy (k-SPoA) [2] refer to the natural adaptations
of this measure to strong and k-strong equilibrium outcomes, respectively.
Contribution. We study the inefficiency of both pure Nash equilibria and strong
equilibria of BCGs , under the natural assumption that the social cost of an
outcome refers to the maximum latency of a facility. We restrict our studies to
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Table 1. Summary of the bounds obtained for the SPoA and the k-SPoA of linear
BCGs. The PoA of linear BCGs is at most 2m − 1 and there is an asymptotically
matching lower bound showing SPoA ≥ m− 1.

id. facilities arb. facilities (SPoA)
k-SPoA (lower) SPoA id. players arb. players

symmetric max
{
2, �m

2k
�+ 1

}
2 2 O(m)

asymmetric max
{√

2m + 1
4
− 1

2
, 	 m

k−1

 − 1

}
Θ(
√

m) O(
√

n) Θ(m)

linear bottleneck congestion games, where the latency of each facility is a linear
function of the total weight assigned to it. These games still constitute a rich
class of games and generalize, for example, load balancing games with identical or
uniformly related machines with or without restricted assignments. We provide
upper and lower bounds on the (strong) price of anarchy for symmetric and
asymmetric linear BCGs (definitions will be given below). A summary of the
results that we obtain in this paper is given in Table 1. Here, we use n and m
to refer to the number of players and facilities, respectively.

1. We show that both the PoA and the SPoA of linear BCGs is Θ(m). More
precisely, we show that m ≤ PoA ≤ 2m − 1 and m − 1 ≤ SPoA ≤ m.

2. We derive better bounds for identically weighted players. We prove that
SPoA = 2 for symmetric linear BCGs and at most O(

√
n) and O(

√
mγ∗) for

asymmetric linear BCGs, where γ∗ refers to the cost of a socially optimal
outcome.

3. We consider the case of identical facilities, i.e., all facilities have identical
linear latency functions, and show that SPoA = Θ(

√
m).

4. We also give elaborate lower bounds on the k-SPoA for symmetric and asym-
metric BCGs with identical facilities (see Table 1).

We remark that we also provide asymptotically tight worst-case examples for
(directed) network congestion games (definitions will be given below).

Related Work. Network BCGs were considered first by Banner and Orda in [6].
The authors showed existence of pure Nash equilibria and provided an Θ(m)
bound on the PoA for identical network links. Busch and Magdon-Ismail studied
in [7] the PoA of network BCGs for identically weighted players. Very recently,
Harks, Klimm and Möhring introduced general bottleneck congestion games and
showed that strong equilibria are guaranteed to exist in these games.

As mentioned above, bottleneck congestion games generalize load balancing
games, which have been studied intensively in recent years. Load balancing
games were first studied by Koutsoupias and Papadimitriou [15]. Among other
results, the authors provided a lower bound on the PoA of mixed Nash equilibria
for the case of identical machines. Koutsoupias, Mavronicolas and Spirakis [14]
and, independently, Czumaj and Vöcking [9], proved a matching upper bound.
Czumaj and Vöcking also proved that PoA = Θ(log m/ log log m) for pure Nash
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equilibria. The same bound on the PoA was shown by Awerbuch et al. [5] for
restricted assignments and identical machines. Gairing et al. [11] obtained in-
dependently the same bounds and proved m − 1 ≤ PoA ≤ m for restricted
assignments and uniformly related machines.

Andelman, Feldman and Mansour [2] were the first to study strong and k-
strong equilibria in the context of load balancing games. They proved that
m ≤ SPoA ≤ 2m − 1 for the case of unrelated machines, which was tight-
ened to exactly m by Fiat et al. [10]. In this latter work it was also shown
that the SPoA of strong equilibria for uniformly related machines is exactly
Θ(log m/(log log m)2). For results in the context of more general scheduling
games and associated scheduling policies (termed coordination mechanisms), the
interested reader is referred to [13] and the references therein.

Bottleneck congestion games owe their name to their similarity to congestion
games, which were introduced by Rosenthal [18]. In these games, the latency
on each facility depends on the number of players using it (i.e., players have
unit weights). The goal of each player is to minimize his cost which is defined
as the sum (as opposed to the maximum for BCGs) of the latencies over the
facilities used by the player. Rosenthal [18] proved the existence of pure Nash
equilibria in congestion games. The price of anarchy of pure Nash equilibria
for congestion games was resolved by Christodoulou and Koutsoupias [8] and,
independently, by Awerbuch, Azar and Epstein [4]. It is shown in [8] that PoA =
Θ(

√
n) for asymmetric linear congestion games and the social cost being the

maximum over the players’ cost, and PoA = 5
2 for (symmetric and asymmetric)

linear congestion games and the social cost being the sum of the players’ costs.
Bounds for polynomial latency functions were also derived in [8]. Exact bounds
for polynomial latencies and also for weighted players were developed in [1].

2 Preliminaries

In a bottleneck congestion game, we are given a set N = [n] of n players that
want to utilize (non-cooperatively) a set E = [m] of m resources, which we also
call facilities.1 Every player i ∈ N has a positive weight (or load) wi > 0 and
a strategy set Σi ⊆ 2E of feasible facility subsets from which he can choose. If
player i chooses facility subset Si ∈ Σi, he allocates his entire weight wi to each
facility e ∈ Si. Let Σ = (Σ1, . . . , Σn) be the set of all possible strategy choices
of the players. A strategy profile S = (S1, . . . , Sn) ∈ Σ specifies for each player
i ∈ N a strategy Si ∈ Σi that he has chosen. We define Ne(S) as the set of players
that have chosen facility e ∈ E under S, i.e., Ne(S) = {i ∈ N | e ∈ Si}. The total
weight of facility e ∈ E with respect to S is defined as we(S) =

∑
i∈Ne(S) wi.

Every facility e ∈ E has a latency function le : Σ → R+ which satisfies the
following three properties (see also [12]):

1. Non-negativity: le(S) ≥ 0 for all S ∈ Σ.

1 We use notation [k] to refer to the set {1, . . . , k} for some positive integer k.
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2. Independence of irrelevant alternatives: le(S) = le(S′) for all S, S′ ∈ Σ
with Ne(S) = Ne(S′).

3. Monotonicity: le(S) ≥ le(S′) for all S, S′ ∈ Σ with Ne(S) ⊇ Ne(S′).

Given a strategy profile S ∈ Σ, every player i ∈ N experiences an individual
cost ci(S) equal to the latency of the most loaded facility that he uses, i.e.,
ci(S) = maxe∈Si le(S). We assume that every player i ∈ N acts strategically
and chooses his strategy Si ∈ Σi in order to minimize his own individual cost
ci(S).

Aumann [3] introduced the notion of a strong equilibrium. Here we consider
the refined notion of k-strong equilibrium. We use the standard notation S−i to
refer to (S1, . . . , Si−1, Si+1, . . . , Sn). Similarly, we use SI and S−I to refer to the
strategy profiles of S induced by the players in I and N \ I, respectively.

Definition 1. A strategy profile S ∈ Σ is a k-strong equilibrium if for every
non-empty player set I ⊆ N with |I| ≤ k and every possible joint deviation S′

I

of I there is at least one player i ∈ I whose cost with respect to S′ = (S−I , S
′
I)

is not better than with respect to S, i.e., ci(S−I , S
′
I) ≥ ci(S).

With this definition, a strong equilibrium is a k-strong equilibrium with k = n,
and a pure Nash equilibrium is a k-strong equilibrium with k = 1. Very recently,
Harks, Klimm and Möhring [12] showed that strong equilibria always exist in
BCGs satisfying Properties 1–3 above.

We are interested in characterizing the inefficiency of k-strong equilibria for
BCGs. We assess the efficiency of a strategy profile S by the maximum load of
a facility under S. That is, the social cost C(S) of a strategy profile S ∈ Σ is
defined as the maximum latency over all facilities, which is equivalent to the
maximum cost over all players, i.e., C(S) = maxe∈E le(S) = maxi∈N ci(S). We
will use S∗ to refer to an optimal strategy profile that minimizes C(S) and
denote its cost by γ∗ = C(S∗).

The k-strong price of anarchy (k-SPoA) [2,15] refers to the worst-case ratio
over all possible input instances of the maximum cost of a k-strong equilibrium
and the cost γ∗ of the social optimum. We will simply refer to the price of
anarchy (PoA) and strong price of anarchy (SPoA) for the 1-SPoA and the n-
SPoA, respectively. One can easily make an example to show that the SPoA is
unbounded in general. This motivates our studies of linear BCGs: We assume
that the latency function le of each facility e ∈ E is a linear function of the
total weight assigned to it, i.e., le(S) = aewe(S) for some ae ≥ 0. Linear BCGs
constitute an important class of BCGs because they generalize, for example,
various load balancing games as outlined in the Introduction.

A BCG is called a network BCG if there exists a directed graph G = (V, E)
such that every player i ∈ N is associated with a source si ∈ V and a sink ti ∈ V
and i’s strategy set Σi refers to the set of all directed paths from si to ti in G.
We call a game symmetric if all players have the same strategy set, i.e., Σi = Σj

for all i, j ∈ N ; we call a game asymmetric otherwise. Observe that the above
example corresponds to a network BCG, but is not symmetric.
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Unless stated otherwise, we assume subsequently that all player weights are
at least one, i.e., wi ≥ 1 for every i ∈ N , and that the coefficient of each latency
function is at least one, i.e., le(S) = aewe(S) with ae ≥ 1 for every e ∈ E. These
assumptions are without loss of generality as we can always enforce them by
scaling the weights and coefficients appropriately.

3 Arbitrary Facilities

In this section, we derive bounds on the PoA and SPoA of linear BCGs. We
consider both the general and the identical player case.

3.1 Arbitrary Players

We first consider the most general case of arbitrary linear latency functions and
arbitrary player weights. We show that the PoA is at most 2m − 1 in this case.
We obtain a better bound of m on the SPoA and present an almost tight lower
bound.

Theorem 1. The price of anarchy of linear BCGs is at most 2m − 1 and at
least m.

Proof. Let S be a pure Nash equilibrium with cost C(S) = αγ∗ for some α ≥ 1.
We prove by induction that for every integer k, 1 ≤ k < α+1

2 + 1, there is a set
Ek of k distinct facilities such that for every e ∈ Ek, le(S) ≥ (α − k + 1)γ∗.

The claim holds true for k = 1 because there must exist a facility e ∈ E
with latency le(S) = αγ∗. Suppose that the induction hypothesis holds true for
k < α+1

2 . We will prove that there exists a set Ek+1 of k + 1 distinct facilities
such that le(S) ≥ (α − k)γ∗ for every e ∈ Ek+1. Choose from Ek a facility ê
with smallest ae, i.e., ê = argmine∈Ek

ae. By the induction hypothesis, we have
lê(S) ≥ (α − k + 1)γ∗ > kγ∗. Let Iê = Nê(S) be the set of players choosing ê
under S. Note that wê(S) ≥ lê(S)/aê > kγ∗/aê. Consider the strategies that the
players in Iê choose under S∗ and suppose for the sake of a contradiction that
for every i ∈ Iê, S∗

i ∩ Ek �= ∅. Then there is a facility e ∈ Ek with we(S∗) ≥
wê(S)/k > γ∗/aê. By the choice of ê, we have le(S∗) = aewe(S∗) > γ∗, which
is a contradiction to the definition of γ∗. Thus there is a player j ∈ Iê that
chooses a strategy S∗

j that is disjoint from Ek. Note that for every e ∈ S∗
j we

have aewj ≤ γ∗. Since S is a pure Nash equilibrium, player j cannot decrease
his cost by deviating to S∗

j and thus there is some facility e′ ∈ S∗
j such that:

le′(S) = (ae′we′(S) + ae′wj) − ae′wj ≥ ci(S) − ae′wj ≥ lê(S) − γ∗ ≥ (α − k)γ∗

The inductive step follows by setting Ek+1 = Ek ∪ {e′}. By choosing k =
�α+1

2 � < α+1
2 + 1, we obtain that there is a set Ek ⊆ E with |Ek| ≥ k and thus

m ≥ |Ek| ≥ k ≥ α+1
2 . We conclude that PoA = α ≤ 2m − 1.

The following instance shows that PoA ≥ m, even for symmetric BCGs with
identical facilities and identical players. Consider a BCG with player set N = [n]
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and facility set E = [m] with m = n. Every player i ∈ N has unit weight wi = 1
and the latency function le(S) of every e ∈ E is the identity function, i.e.,
le(S) = we(S). Suppose that each player i ∈ N has strategy set Σi = 2E. If
every player chooses a distinct facility we obtain an optimal strategy profile
S∗ with γ∗ = 1. On the other hand, consider the strategy profile S in which
every player allocates all facilities in E. This is a pure Nash equilibrium of cost
C(S) = m. 
�

We derive a better upper bound on the SPoA for linear BCGs. The following
key lemma will be used several times in the paper.

Lemma 1. Let S be a strong equilibrium and let Iλ ⊆ I be a non-empty subset
of the players such that for every i ∈ Iλ we have ci(S) ≥ λγ∗, for some λ ≥ 1.

1. Then there is a player i ∈ Iλ and a facility e ∈ S∗
i such that le(S−Iλ

) ≥
(λ − 1)γ∗.

2. Suppose that Iλ is maximal. Then there is a player set Tλ ⊆ N \ Iλ with
w(Tλ) ≥ λ − 1 and for every i ∈ Tλ we have (λ − 1)γ∗ ≤ ci(S) < λγ∗.

Proof. We first prove the first part of the lemma. Note that for every player
i ∈ Iλ and every e ∈ S∗

i we have

le(S∗
Iλ

) ≤ le(S∗) ≤ γ∗. (1)

Suppose for the sake of a contradiction that for every player i ∈ Iλ and for
every e ∈ S∗

i it holds that le(S−Iλ
) < (λ − 1)γ∗. Consider the strategy profile

S′ = (S−Iλ
, S∗

Iλ
) in which the players in Iλ deviate to their optimal strategies in

S∗. Using (1), we obtain for every i ∈ Iλ and for every e ∈ S∗
i :

le(S′) = le(S∗
Iλ

) + le(S−Iλ
) < γ∗ + (λ − 1)γ∗ = λγ∗. (2)

Thus, for every i ∈ Iλ, ci(S′) = maxe∈S∗
i

le(S′) < λγ∗, which is a contradiction
to S being a strong equilibrium.

We next prove the second part of the lemma. Let i ∈ Iλ be a player and e ∈ S∗
i

be a facility satisfying le(S−Iλ
) ≥ (λ − 1)γ∗. Define Tλ as the set of players that

choose e under S but are not contained in Iλ, i.e., Tλ = Ne(S)\ Iλ ⊆ N \ Iλ. We
have

aew(Tλ) = le(STλ
) = le(S−Iλ

) ≥ (λ − 1)γ∗. (3)

Since e ∈ S∗
i and wi ≥ 1 for every i ∈ N , we have ae ≤ γ∗. Thus, w(Tλ) ≥

λ−1. Consider an arbitrary player i ∈ Tλ. By the above we have, ci(S) ≥ le(S) ≥
le(STλ

) ≥ (λ − 1)γ∗. Moreover, by the maximality of Iλ and since i �∈ Iλ, we
have ci(S) < λγ∗. 
�
Remark 1. Observe that in the above proof we exploit the linearity of the latency
functions only in (2). In fact, we can draw exactly the same conclusion if all
latency functions are sub-additive, i.e., for every e ∈ E, le(x + y) ≤ le(x) + le(y)
for every x, y ∈ R+. As a consequence, all our upper bounds on the SPoA (which
exploit Lemma 1) hold for sub-additive latency functions.
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Theorem 2. The strong price of anarchy of linear BCGs is at most m.

Proof. Let S be a strong equilibrium with cost C(S) = αγ∗ for some α > 1.
For an arbitrary real value 1 < λ ≤ α, let Iλ be the maximal non-empty set
of players Iλ = {i ∈ N | ci(S) ≥ λγ∗}. Applying Lemma 1, we obtain a player
set Tλ such that for every i ∈ Tλ we have (λ − 1)γ∗ ≤ ci(S) < λγ∗. Moreover,
w(Tλ) ≥ λ−1 > 0 because λ > 1 and thus Tλ is non-empty. We can thus identify
a family F = {Tα, Tα−1, . . . , Tα−k} of k + 1 player sets that are non-empty and
pairwise disjoint, where k is the largest integer satisfying α − k > 1. Every set
Tλ ∈ F identifies at least one distinct facility e ∈ E with (λ−1)γ∗ ≤ le(S) < λγ∗.
Moreover, there is one facility e ∈ E with le(S) = αγ∗. We conclude that
m ≥ |F | + 1 = k + 2 ≥ α and thus SPoA = α ≤ m. 
�

Theorem 3. The strong price of anarchy is at least m − 1 in general linear
BCGs and at least m+1

3 in single-sink linear network BCGs.

The proof of this result is deferred to the full version. The lower bound of m − 1
can also be derived by a construction in [11].

3.2 Identical Players

We next derive an upper bound on the SPoA for linear BCGs if the weights of
all players are identical. In this subsection, we assume without loss of generality
that the weight of each player i ∈ N is wi = 1.

Theorem 4. The strong price of anarchy is at most O(min{
√

n,
√

mγ∗}) for
linear BCGs with identical players and 2 for linear symmetric BCGs with iden-
tical players.

Proof. We prove the first part of the theorem. Let S be a strong equilibrium
with cost C(S) = αγ∗ for some α > 1. As in the proof of Theorem 2, we can
apply Lemma 1 to identify a family F = {Tα, Tα−1, . . . , Tα−k} of k + 1 player
sets that are non-empty and pairwise disjoint, where k is the largest integer
satisfying α − k > 1. Each such set Tλ ∈ F contains at least λ − 1 players, i.e.,
|Tλ| ≥ �λ − 1� for every α − k ≤ λ ≤ α. Moreover, there is at least one player
that experiences a congestion of αγ∗. Thus

n ≥ 1 +

α−1�∑
λ=1

λ ≥ 1 +
α(α − 1)

2
.

Solving for α we obtain α ≤ 1
2 +

√
2n − 3/2. Recall that we assume without

loss of generality that ae ≥ 1 for every e ∈ E and thus γ∗ ≥ n/m. We therefore
also obtain α ≤ 1

2 +
√

mγ∗ − 3/2. Thus SPoA ≤ α = O(min{
√

n,
√

mγ∗}).
We next prove the second part of the theorem. In a strong equilibrium S,

at least one player i ∈ N must have cost ci(s) ≤ γ∗ since otherwise the grand
coalition could deviate to the socially optimal strategy profile. Suppose there
is a player j ∈ N whose cost is more than two times larger than the cost of i.
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Consider the deviation S′ = (S−j , Si) where player j deviates to the strategy of
player i. Then cj(S′) ≤ maxe∈Si ae(we(S) + 1) ≤ maxe∈Si 2aewe(S) ≤ 2ci(S),
which is a contradiction to S being a strong equilibrium.

The following example establishes the tightness of this bound: Let N = [3]
and E = [6]. The strategy set of every player is {σ1 = {1}, σ2 = {2, 3}, σ3 =
{4, 5}, σ4 = {2, 5, 6}}. The social optimum is S∗

i = σi for every player i ∈ [3]
with γ∗ = 1. A strong equilibirum is given by S1 = σ4 and S2 = S3 = σ1. The
cost of S is C(S) = 2. It is easy to see that this example is a network BCG . 
�

4 Identical Facilities

In this section, we study the SPoA for the case of linear BCGs with identical
facilities, i.e., the latency function of every facility e ∈ E is le(S) = we(S).

Theorem 5. The strong price of anarchy of linear BCGs with identical facilities

is at most − 1
2 +

√
2m + 1

4 in general and exactly 2 in case of symmetric games.

Proof. For the symmetric case we claim that in any stronf equilibrium configu-
ration S, there is at least one player i0 with ci0(S) ≤ γ∗. Indeed, if ci(S) > γ∗ for
all players, then the grand coalition would deviate to S∗. Now for any player i we
have γ∗ ≥ wi. Let i be any player with e ∈ Si such that ci(S) = le(S) = C(S).
Consider unilateral deviation S′

i = Si0 of i. Then, because S is also a pure Nash
equilibrium, C(S) = ci(S) ≤ ci0(S)+wi ≤ 2γ∗. A tight lower bound has already
been presented in Theorem 4.

For the asymmetric case let the cost of a strong equilibrium S be C(S) = αγ∗,
for some α > 1. Similar to the proof of Theorem 2, let Iλ be the maximal
non-empty set of players Iλ = {i ∈ N | ci(S) ≥ λγ∗} for some 1 < λ ≤ α.
By Lemma 1, we obtain a player set Tλ such that for every i ∈ Tλ we have
(λ − 1)γ∗ ≤ ci(S) < λγ∗. We can refine the argument given in the proof of
Lemma 1 to bound the weight of Tλ for identical facilities as follows: By in-
equality (3), we have w(Tλ) ≥ (λ − 1)γ∗/ae = (λ − 1)γ∗, where the last equal-
ity holds because for identical facilities ae = 1 for every e ∈ E. Moreover,
w(Tλ) ≥ (λ − 1)γ∗ > 0 because λ > 1 and thus Tλ is non-empty. That is,
we can identify a family F = {Tα, Tα−1, . . . , Tα−k} of k + 1 player sets that
are non-empty and pairwise disjoint, where k is the largest integer satisfying
α − k > 1. Moreover, by construction we have Iα ∩ Tλ = ∅ for every Tλ ∈ F and
w(Iα) ≥ αγ∗ since facilities are identical. The total weight w(N) is then:

w(N) ≥ αγ∗ +
α∑

λ=α−k

w(Tλ) ≥ αγ∗ +
α∑

λ=α−k

(λ − 1)γ∗ ≥ αγ∗ +
α−1∑
λ=0

λγ∗

The latter equals 1
2αγ∗(1 + α). Observe that γ∗ ≥ w(N)/m because facilities

are identical. We obtain 2m ≥ α(1 + α) or equivalently α ≤ − 1
2 +

√
2m + 1/4.

Since SPoA ≤ α the claim follows. 
�
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Theorem 6. The strong price of anarchy of linear BCGs with identical players

and identical facilities is at least − 1
2 +

√
2m + 1

4 in general and at least − 1
4 +

1
2

√
2 + 2m in single-sink network BCGs .

Proof. We give a family of instances with m facilities and n = Θ(m) unweighted
players, which we turn into a family of network instances subsequently. Consider
a partition of the set of players N into q subsets, N =

⋃q
j=1 Pj , where |Pj | = j,

j ∈ [q]. Denote players in Pj by pji, i ∈ [j]. For each subset Pj make a new
set of j distinct facilities Ej = {ej

1, . . . , e
j
j}. Define Eq+1 = E1. For every player

pji ∈ Pj , i ∈ [j], set the strategy space of pji to:

Σpji =
{
{e} | e ∈ Ej

}
∪ {Ej+1}

For the socially optimal configuration set S∗
pji

= {ej
i}. Then C(s∗) = 1.

Now consider the configuration S where Spji = Ej+1 for i ∈ [j], j ∈ [q]. The
cost of S is defined by the latency of the unique facility e = e1

1 ∈ E1 and is
C(S) = le(S) = |Pq| = q. For every player p ∈ Pj , we have cp(S) = j. We claim
that S is a strong equilibrium. Consider any deviation of any coalition I ⊆ N .
Denote by S′

p the novel strategy that any player p ∈ I adopts and let S′ denote
the resulting configuration. Notice that for the unique player p ∈ P1 we have
cp(S) = 1, hence no deviation may lessen his cost and P1 ∩ I = ∅.

Let j = min{j′ | Pj′ ∩ I �= ∅}; then j ≥ 2, and S′
j ∩ Ej �= ∅. For all j − 1

players pj−1,i ∈ Pj−1 it holds that Spj−1,i = Ej , because I ∩ Pj−1 = ∅. Hence,
cj(S′) = j − 1 + 1 = j = cj(S). In any deviation of any coalition I, at least one
player does not have incentive to deviate jointly with I and hence SPoA ≥ q. Now
for q we have m = |∪jEj | =

∑q
j=1 j = q(q+1)

2 , which yields q ≥ − 1
2+

√
2m + 1/4.

We convert the example into a network BCG . To grant access to players in
Pj−1 to facilities in Ej , we make a path of length 3, {(sj , uji), (uji, vji), (vji, t)},
for every facility ej

i ∈ Ej , i ≤ j − 1 and a length-2 path {(sj , ujj), (ujj , t)}
for ej

j . Let Aj be the set of arcs in these paths. Node sj is the source of all
players in Pj and t is a common sink for all players. Now we add auxiliary arcs
A′

j = {(vji, uj,i+1) | i ∈ [j − 1]}. And, finally, an arc (sj−1, uj1), j ∈ {2, . . . , q},
by which players Pj−1 gain access to Aj . For the last group of players we add
an arc (sq, t). Let us illustrate the analog of configuration S on the constructed
network. All players in pji ∈ Pj , i ∈ [j], play the same path strategy:

Sji = {(sj , uj+1,1}
∪ {(uj+1,r, vj+1,r), (vj+1,r , uj+1,r+1) | r ∈ [j − 1]}
∪ {(uj+1,j , vj+1,j), (vj+1,j , t)}

and Siq = (sq, t) for i ∈ [q]. See Fig. 1a for an example with q = 4. The proof
that S is strong is analogous to the proof given for the non-network example.
For the optimal configuration we set S∗

ji = {(sj , uji), (uji, vji), (vji, t)}, for each
player pij ∈ Pj , i < j, and Sjj = {(sj , ujj), (ujj , t)}. The number of links m is:
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(a) SPoA on identical links.
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(b) 2-SPoA for 6 identical players on
identical links; player indices mark
links used by each player.

Fig. 1. Lower bound constructions for Strong and 2-Strong Equilibria on identical links

m =
q∑

j=1

(|Aj | + |A′
j |) + q =

q∑
j=1

(3j − 1 + (j − 1)) + q − 1 = 2q2 + q − 1

which yields q ≥ − 1
4 + 1

2

√
2 + 2m. 
�

4.1 Lower Bounds On k-Strong Equilibria

For the k-SPoA of symmetric and general BCGs with identical facilities we show:

Theorem 7. The k-strong price of anarchy of linear BCGs is at least:

1. � m
2k � + 1 for symmetric BCGs and �m+2

6k � for symmetric network BCGs,
when 2 ≤ k ≤ m

2 .

2. � m
k−1� − 1 in general, when 2 ≤ k ≤ 3

4 + 1
2

√
1
4 + 2m.

The proofs of these results are deferred to the full version. Figure 1b presents a
2-strong equilibrium for 6 identical players and 34 identical links. The maximum
latency over all links under this configuration is 3. The social optimum has cost
1 and emerges when all players use link-disjoint paths to reach t from s.
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Abstract. A key solution concept in cooperative game theory is the core. The
core of an expense sharing game contains stable allocations of the total cost to
the participating players, such that each subset of players pays at most what it
would pay if acting on its own. Unfortunately, some expense sharing games have
an empty core, meaning that the total cost is too high to be divided in a stable
manner. In such cases, an external entity could choose to induce stability using
an external subsidy. We call the minimal subsidy required to make the core of a
game non-empty the Cost of Stability (CoS), adopting a recently coined term for
surplus sharing games.

We provide bounds on the CoS for general, subadditive and anonymous games,
discuss the special case of Facility Games, as well as consider the complexity of
computing the CoS of the grand coalition and of coalitional structures.

1 Introduction

We begin with a motivating example. Three hospitals plan to purchase an X-ray ma-
chine. A standard machine costs $5 million, and can fulfill the needs of up to two hos-
pitals. An advanced machine capable of serving all three hospitals costs $9 million. The
hospital managers understand that the right thing to do is to buy the more expensive ma-
chine, which can serve all three hospitals and costs less than two standard machines, but
cannot agree on how to allocate the cost of the expensive machine among the hospitals.
There will always be a pair of hospitals that together need to pay at least $6 million, and
would then rather split off and buy the cheaper machine for themselves. The generous
mayor solves the problem by subsidizing the expensive machine: she contributes $3
million, and lets each hospital add $2 million. Pairs of hospitals now have no incentive
to buy the less efficient machine, as each pair together pays only $4 million.

The example shows how external monetary funding can increase cooperation among
self-interested parties. Clearly, a high enough subsidy can always induce cooperation.
For example, if the mayor would decide to have the city pay for the entire expensive X-
ray machine on its own, then the hospitals’ (zero) costs would be irrelevant. However,
we would like to consider the minimal external intervention needed to induce coopera-
tion; in the scenario above, for example, a subsidy of $1.5 million would suffice.

The concepts of stable payoffs, cost allocation, and subsidies have received much
attention in economics, decision-making, and recently also computer science. While
some papers concentrate on the fair allocation of payments, strategyproofness, and

S. Kontogiannis, E. Koutsoupias, P.G. Spirakis (Eds.): SAGT 2010, LNCS 6386, pp. 347–358, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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other requirements, we focus on finding the minimal subsidy that guarantees cooper-
ation among all parties. We model situations such as the example above as Transferable
Utility (TU) Expense games. In such games, every subset of agents has a fixed cost.
An imputation is an allocation of the cost of the grand coalition containing all agents,
and it is stable if no coalition can do better (i.e., pay less) on its own. The set of all
stable imputations is known as the core, and unfortunately it may be empty (as the ex-
ample above illustrates). The Cost of Stability (CoS) of an expense game is the minimal
external payment, or subsidy, required to stabilize a game with an empty core.

Related Work. The term “Cost of Stability” for TU games was coined by Bachrach et
al. [3,4]. They defined it as the minimal monetary infusion required to stabilize a surplus
game (where agents try to distribute a positive surplus, rather than a negative cost),
focusing on computational problems in Weighted Voting games. Resnick et al. [23]
extended the results to Threshold Network Flow games (suggested in [6]). The CoS in
expense games, which are the complementary class of surplus games, has a more natural
interpretation as the necessary proportion of subsidy, or “how much of the total expense
should be subsidized?” The answer ranges between 0% (when the core is non-empty)
and 100% (when no agent is willing to contribute). The relative part of the cost covered
by the agents, i.e., the complement of the CoS, is called the cost recovery ratio.

Using different terms, several other researchers studied subsidies in expense games,
and in facility games in particular (described below), sometimes adding requirements on
top of the minimization of subsidies. A common assumption is that players gain some
private utility from their participation.1 Devanur et al. [12] suggested a mechanism that
covers at least a fraction of 1

ln(n)+1 in facility games, and a constant fraction of 0.462 in
Metric Facility Location games—with the additional requirement of strategyproofness.

An application that has drawn much attention is routing in networks, which was
initially formulated as a Minimum Spanning Tree game [11]. In this game, agents are
nodes on a graph, and each edge is a connection that has a fixed price. The cost of a
coalition is the price of the cheapest tree that connects all participating nodes to the
source node. The CoS in this particular game is always 0, as its core is nonempty [13].
However, there is a more realistic variant of routing scenarios known as the Steiner
Tree game, where nodes are allowed to route through nodes that are not part of their
coalition. Meggido [19] showed that the core of the Steiner Tree game may be empty,
and therefore its CoS is nontrivial. Jain and Vazirani [16] proposed a mechanism for the
Steiner Tree game with a cost recovery ratio of 1/2, under the stronger requirements of
group strategyproofness.2 Other research [24] suggested a cost sharing mechanism for
Steiner Trees that does not consider strategyproofness, and showed empirically that it
allocates at least 92% of the cost on all tested instances.

Other cost sharing mechanisms for many different games have been suggested; see
Pal and Tardos [21], and Immorlica et al. [15] for an overview. Some proofs in this pa-
per use similar techniques. Some of the proposed mechanisms pose strong requirements

1 Our model drops this assumption, which is equivalent to assuming that participation is manda-
tory, or that the utility is sufficiently high to guarantee participation at any cost.

2 To be exact, Jain and Vazirani demanded full cost recovery, and relaxed stability constraints.
The bound on the CoS is achieved if we divide their proposed payments by 2.
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such as group strategyproofness, in addition to stability. Therefore it is quite likely that
tighter bounds on the CoS can be derived once these requirements are relaxed.

While we focus mainly on bounds, there has also been interest in the complexity of
computing the CoS [3,2]. Stability bounds regarding the ratio between the optimal social
welfare and a core-stable social welfare were examined in affinity games [9]. External
subsidies have also been suggested as a means of stabilizing normal form games [20],
including a normal form version of the facility game [10].

Our Contribution. We analyze bounds on the CoS in the general and the anonymous
case, and compare them to surplus games. We then focus on a particular class of expense
games called Facility Games (more widely known as Set-Cover Games). We provide
a tight bound on the CoS in facility games based on a known relation between the
CoS and combinatorial properties of the Set-Cover problem, and discuss some related
computational issues. We show that the bounds on facility games apply to all games
whose cost function is subadditive. Interestingly, subadditivity can be further exploited
to bound the subsidy even in games that are not subadditive. We conclude with an
efficient algorithm for stabilizing coalitional structures in anonymous games.

2 Preliminaries

We denote by I the set of n agents, and by S the set of all possible coalitions, i.e.,
S = 2I \ {∅}. I ∈ S is referred to as the grand coalition. An expense game G = 〈I, c〉
is characterized by a cost function c : S → R+, where c(S) is the cost of coalition
S. An imputation p ∈ Rn

+ is a vector whose sum is the total cost c(I), which defines
the amount each agent pays when the grand coalition is formed. A coalition S blocks
imputation p if it can guarantee a lower payment for itself, i.e., if c(S) < p(S) =∑

i∈S pi. The core is the set of all imputations that are stable, i.e., not blocked by any
coalition. We emphasize that the concept of the core refers only to stability of games in
which only a single coalition is allowed. We discuss cases where several coalitions may
exist in Section 6. For a detailed background treatment of coalitional games, see [22].

Monotonicity. We say that an expense sharing game 〈I, c〉 is monotone if c(S) ≥ c(T )
for all T ⊂ S. Monotonicity means that adding agents to a coalition can only increase
its expenses. We will limit our attention to monotone games.

Subadditivity. The game 〈I, c〉 is subadditive, if c(S ∪ T ) ≤ c(S) + c(T ) for all S, T
s.t. S ∩ T = ∅. Intuitively, in subadditive expense games larger coalitions are better
off, and should therefore be easier to stabilize. Like superadditivity in surplus sharing
games [3], subadditivity means it is always best to form the grand coalition.

The Cost of Stability. In many games, the core is empty. However an external subsidy
lowers the cost of the grand coalition, thus creating a different game, possibly with
a nonempty core. Formally, the adjusted game is an expense sharing game G(Δ) =
〈I, c′〉 where c′(I) = c(I) − Δ, and c′(S)=c(S) for all S �= I . A payment vector
whose sum is less than c(I) is referred to as a subimputation. Thus, imputations in the
adjusted game are subimputations of the original game. Also, the imputation p in G(Δ)
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is blocked by coalition S iff the subimputation p in G is blocked by S. In the example
given in the introduction, c(I) was reduced from 9 (million) to c′(I) = 6, while for
all S � I , c′(S) = c(S) = 5. Naturally, we would like the external payment to be
as small as possible. The Cost of Stability (CoS) in an expense sharing game is the
minimal non-negative payment Δ s.t. the game G(Δ) has a non-empty core.3 Thus the
CoS can be formulated as the optimal solution of a linear program with exponentially
many constraints, similarly to the approach in surplus sharing games; see [3] for details.

From the definition, we have that 0 ≤ CoS(G) ≤ c(I). The worst case (CoS(G) =
c(I)) occurs when the cost of any coalition (other than I) is 0. We can derive a closed
form for the Cost of Stability using balanced collections. Let δS ∈ R+ be the coefficient
of coalition S. δ = {δS}S∈S is called balanced if for every agent i,

∑
S:i∈S δS = 1.

Theorem 1 (Bondareva-Shapley theorem). The game G = 〈I, c〉 has a non-empty
core iff any balanced collection of coefficients satisfies:

∑
S∈S δS · c(S) ≥ c(I).

For a proof and more detailed discussion, see for example [22]. By applying the theorem
on the adjusted game, we can write the CoS of games with empty cores as follows:

CoS(G) = c(I) − min
balanced δ

∑
S∈S

δS ·c(S) (1)

If the righthand-side term is negative (nonempty core), then CoS(G) = 0. Unfortu-
nately, in the general case (1) does not provide an efficient way to compute the CoS.

3 Expense Games vs. Surplus Games

We refer to transferable utility games with positive utilities as surplus games. In a sur-
plus game Gv = 〈I, v〉, v(S) ∈ R+ is the utility that coalition S can generate, and
an imputation is a division of v(I) among all agents. There has been much interest in
solution concepts for surplus games, as well as in their relation to expense games.

Duality. The dual (not to be confused with linear duality) of the surplus game Gv =
〈I, v〉 is the expense game Gc defined as:

c(S) =
{

v(S) , S = I
v(I) − v(I \ S) , S �= I

Gv’s core is empty iff Gc’s core is empty [8]. Duality also preserves monotonicity.
As in expense games, the CoS of a surplus game is the minimal amount that needs

to be added to v(I), so that the adjusted game has a non-empty core. Surplus games
have already been studied [3,23,2], so one might ask whether expense games deserve
special treatment. Further, we might conjecture that it is possible to derive the CoS of
an expense game by analyzing its dual, i.e., that there is some function f such that
CoS(Gc) = f(CoS(Gv)). Unfortunately, some important properties are not preserved

3 Following [3], we define the CoS w.r.t. the additive difference between c(I) and c′(I). Related
papers use the multiplicative ratio between the costs; the transformation is straightforward.



Minimal Subsidies in Expense Sharing Games 351

in the dual. For example, a game Gv can be superadditive, while its dual Gc is not sub-
additive nor superadditive. Furthermore, although CoS(Gc) = 0 implies CoS(Gv) = 0
(and vice versa), the following example shows that the CoS of one problem does not re-
veal much information about the CoS of its dual. Consider Gv, Gc s.t. c(I) = v(I) = 1,
and the cost of all singletons in Gc is c({i}) = 0. This means that CoS(Gc) = 1, as no
agent has any incentive to contribute anything. This only constrains the value of coali-
tions of size n − 1 in the dual game Gv to 1. CoS(Gv) can still be as low as 1

n−1 (if all
other values are 0), or as high as n − 1 (if v({i}) = 1 for all agents).

4 Anonymous Games

An anonymous expense sharing game is characterized by a cost function c : [n] → R+,
i.e., the cost of S is c(|S|). In the anonymous case, Equation (1) can be simplified:

Theorem 2. Let G be an anonymous game. CoS(G) = c(n) − n · mink≤n
c(k)

k .

Proof. We first show that there is an optimal subimputation (i.e., whose sum is minimal)
in which all agents pay the same amount. Let p∗ be an optimal subimputation, and
define a new subimputation q, with qj = 1

n

∑
i∈I p∗i for all j. For each coalition S, we

have that q(S) = |S|
n

∑
i∈I p∗i . Denote by Sk the set of all coalitions of size k; then

from the stability of p∗,

∀S ∈ Sk, q(S) ≤ max{p∗(S′) ≤ c(k) : S′ ∈ Sk},

Thus q is also stable, and therefore a legal subimputation (q(I) = p∗(I)).
Since a coalition of size k has to pay at least c(k), every agent i has to pay at least

its fair share in the best possible coalition, i.e., qi = mink≤n
c(k)

k . 
�

Without further assumptions, the CoS of an anonymous game can still reach the trivial
upper bound of c(n), for example if n = 2, c(1) = 0; c(2) = 1.

We now consider subadditivity in anonymous games, i.e., assume that c(s + t) ≤
c(s) + c(t). The following theorem shows that in such games the subsidy (CoS) will
be approximately half of the total cost. This is similar to the corresponding result on
superadditive anonymous surplus games, in which the CoS was shown to be roughly
twice the value of the grand coalition [3].

Theorem 3. Let G be a subadditive anonymous expense game.

CoS(G) ≤
(

1
2 − 1

2n−2

)
c(n), and this bound is tight. That is, there is a subadditive

anonymous expense game for which this is exactly the CoS.

Proof. For n ≤ 2 the theorem is trivial. Thus assume n ≥ 3. c(n) = c(n
k · k) ≤⌈

n
k

⌉
c(k), which means that n c(k)

k ≥ n
k

1
�n

k �c(n) for any k, and in particular for k∗ =

argminc(k)
k .

We denote n
k∗ by a. Note that a ≥ n

n−1 > 1, thus �a� ≥ 2. We first look at the case
�a� ≥ 3. This means that a > 2, and thus (for n ≥ 4)
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a

�a� ≥ a

a + 1
≥ 2

3
≥ n

2n − 2
.

The alternative case is �a� = 2. Here, a = n
n−1 minimizes the expression a


a� (since

the denominator is fixed), and we get that a

a� ≥ n/(n−1)

2 = n
2n−2 . Note that for n = 3

we are either in the second case, or k∗ = 1, and thus a

a� = 3

3 = 1 > n
2n−2 also holds.

We showed that in any case a

a� ≥ n

2n−2 , thus:

n
c(k∗)
k∗ ≥ n

k∗
1⌈
n
k∗

⌉c(n) =
a

�a�c(n) ≥ n

2n − 2
c(n) ⇒

CoS(G) = c(n) − n
c(k∗)
k∗ ≤

(
1 − n

2n − 2

)
c(n) =

(
1
2

− 1
2n − 2

)
c(n).

For tightness, consider a game where c(n) = 2, and c(k) = 1 for any k < n. In this
game k∗ = n − 1, and by using Theorem 2,

CoS(G) = c(n) − n
1

n − 1
= c(n) − c(n)

(
n

2(n − 1)

)
= c(n)

(
1 − n

2n − 2

)

�

5 Facility Games

We now describe a specific domain on which we demonstrate our approach. Later, we
use results for this domain to derive general results for expense games.

Facility Games (also known as Set-Cover Games) are closely related to the MinSet-
Cover problem. In the MinSetCover problem, we are given a set I = {1, . . . , n}, a
family of subsets F = {A1, . . . , Am} ⊆ S, and a weight function w : F → R+. We
are asked to find the lightest group J s.t.

⋃
j∈J Aj = I . We denote the the optimal set

cover by F ∗(I) and its value by opt(I, F ) = w(F ∗(I)) =
∑

j∈F∗(I) wj . We assume
that each element is contained in at least one set, so opt(I, F ) is well-defined.

This algorithmic problem has a natural variant as an expense game: the agents are
the elements, and each set represents a facility capable of giving service to the agents
(corresponding to the elements in the set). The expense of a coalition is the minimal
total price of facilities it must buy so that all of its members are served.

Formally, a facility game is a tuple G = 〈I, F,w〉. The cost function is defined
as c(S) = opt(S, F |S), where F |S = {Aj ∩ S s.t. Aj ∈ F}. We also denote by
F ∗(S) ⊆ F the optimal cover of S; thus w(F ∗(S)) = c(S).

The hospital example given in the introduction is a facility game with three agents
(the hospitals). As the following lemma shows, facility games are highly expressive.

Lemma 1. Facility games are subadditive. Furthermore, any subadditive expense game
can be described as a facility game.

Proof. We first prove subadditivity. Let S, T ∈ S be distinct coalitions; then F ∗(S) ∪
F ∗(T ) is a cover of S ∪ T . Thus c(S ∪ T ) ≤ w(F ∗(S) ∪ F ∗(T )) ≤ w(F ∗(S)) +
w(F ∗(T )) = c(S) + c(T ).
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In the other direction, every subadditive game has a naı̈ve formulation as a facility
game with an exponential number of facilities: we add a facility for each coalition,
whose price is the cost of the coalition. As the original game is subadditive, the cost of
a coalition in the new game is exactly the price of its corresponding facility. 
�

The CoS is tightly coupled with the key concept of the integrality gap. Consider the
cost of the grand coalition c(I). This is the optimal solution of the MinSetCover prob-
lem 〈I, F,w〉, which can be written as the following integer linear program, over the
variables {yj}Aj∈F :

min
∑

Aj∈F

wjyj subject to:

∑
j:i∈Aj

yj ≥ 1 for each i ∈ I,

yj ∈ {0, 1} for each Aj ∈ F.

In any returned solution, the facility Aj is part of the cover F ∗(I) if yj = 1. The linear
relaxation of this program is obtained by relaxing the last condition and allowing yj ∈
[0, 1]. The difference between the optimal integer solution and the optimal fractional
solution is known as the integrality gap of the problem.4

Formally, we denote by ILP (G) (= c(I)) and LP (G) the value of the optimal
integer and fractional solutions of the linear program corresponding to the facility game
G = 〈I, F,w〉, and define the integrality gap of G as IG(G) = ILP (G) − LP (G).
We use the following equality, which is a known folk theorem; and also supply a simple
proof, demonstrating how the optimal subimputation can be computed efficiently.

Theorem 4. Let G be a facility game. CoS(G) = IG(G).

Proof. We define the following linear program over the variables {pi}i∈I , which is the
dual program of LP (G):

max
∑
i∈I

pi subject to:

pi ∈ [0, 1] for each i ∈ I,∑
i∈Aj

pi ≤ wj for each Aj ∈ F.

Denote by p∗ the optimal assignment to the dual variables {pi}i∈I , and their sum
(which is the optimal value of the dual) by L̂P (G). From strong duality we have that:∑

i∈I

p∗i = L̂P (G) = LP (G) =
∑

Aj∈F

wjy
∗
j , (2)

where y∗ is the optimal solution vector of the primal linear (fractional) program. We
can read the dual LP as “the maximal sum of payments, such that all agents belonging to

4 We use the term “integrality gap” to denote the difference between the solutions, rather than
their ratio. See also Footnote 3.
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a set Aj pay at most wj together”. Consider a coalition S with cost c(S). By definition
of the cost function, there is a partial cover F ′(S) = {A1, . . . , Ak} whose cost is
c(S) = w(F ′(S)) =

∑k
r=1 wr . Note that:∑

i∈S

p∗i ≤
k∑

r=1

∑
i∈Ar

p∗i ≤
k∑

r=1

wr = c(S).

That is, the vector p∗ is a legal subimputation in G, as it is not blocked by any coali-
tion S. Furthermore, any other subimputation p must obey the constraints of the dual
program (otherwise there is a coalition S = Aj that pays more than the cost of its cor-
responding facility), and therefore

∑
i∈I pi ≥

∑
i∈I p∗i must hold, so it is not possible

that there are better solutions (subimputations).
By definition, the CoS is the gap between the c(I) and the maximal payment. Thus,

from (2): CoS(G) = c(I) −
∑

i∈I p∗i = IG(G). 
�

The proof also reveals the connection with the Bondareva-Shapley theorem: if all agents
pay something, then due to complementary slackness, the optimal solution vector y is a
balanced collection of coefficients (if there is an agent that pays 0, we can remove him
and obtain a solution y′).

The integrality gap of integer programs, and of MinSetCover in particular, is well-
studied in the literature. We can therefore use known bounds on the IG, and apply them
to the CoS. The following, for example, it due to Lovász [17]:

IG(G) ≤ c(I)
(

1 − 1
ln(d) + 1

)
, (3)

where d is the size of the largest set in F .5

By joining (3) and Lemma 1 to Theorem 4, we have the first part of the following
corollary:

Theorem 5. For any subadditive game G = 〈I, c〉, CoS(G) ≤ c(I)
(
1 − 1

ln(n)+1

)
,

and this bound is tight, up to a constant.

The tightness is due to an example by Vazirani [25], showing that the integrality gap of
MinSetCover can be as high as log2(n)

2 .
It is interesting to compare this bound to the corresponding bound for superadditive

surplus games, which depends on the square root of n, rather than on the logarithm [3].

6 Coalition Structures

Although the CoS of subadditive games is bounded, not all expense games are subad-
ditive. Furthermore, in such games it is not guaranteed that forming the grand coalition
is optimal (cheapest). For example, we can think of variants of facility/routing games,
where there is an additional cost for using fewer facilities, or for constructing networks
with a high branching factor due to increased congestion.

5 The greedy cost-sharing scheme of [12] obtains a similar cost-recovery ratio in the worst case
(and is also strategyproof), but is inferior to the result of the dual in other cases.
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In such cases, the external authority may be interested in stabilizing the structure
that minimizes the social cost, i.e., the total expenses. It is not hard to see that the same
structure also minimizes the subsidy, as stability constraints for each coalition remain
the same. See [3] for further discussion of this point.

Formally, a coalition structure is a partition of I to distinct coalitions CS = {Tj}k
j=1

s.t.
⋃

Tj∈CS Tj = I . The set T (A) contains all partitions of the set A, thus for A = I ,
we get the set of all coalition structures CS = T (I). The cost of a coalition structure
CS ∈ CS(I) in the game G = 〈I, c〉 is c(CS) =

∑
Tj∈CS c(Tj). The CS-core of G

(denoted by CORE(G, CS)) contains all subimputations such that: (a) c(S) ≥ p(S)
for all coalitions (i.e., p is stable); and (b) for each Tj ∈ CS, p(Tj) = c(Tj) (i.e.,
no transfer of payments between coalitions). In the adjusted game G(CS,Δ) the cost
of each Tj ∈ CS is subsidized by Δj ≥ 0, whereas the cost of any other coalition or
coalition structure remains the same. As in the case of the grand coalition, CoS(CS, G)
is the minimal sum of Δ = (Δ1, . . . , Δk) s.t. the CS-core of G(CS,Δ) is nonempty.

Finally, let ĈS ∈ CS be the structure that minimizes the cost c(ĈS). Then the
minimal amount required to stabilize the cheapest structure in the game, is defined as
CoSCS(G) = CoS(ĈS, G).

Theorem 6. For any expense game G = 〈I, c〉, CoSCS(G) ≤ c(ĈS)
(
1 − 1

ln(n)+1

)
.

Proof. We define the subadditive closure of a game G = 〈I, c〉, as a coalitional game
G∗ = 〈I, c∗〉, whose cost function is c∗(S) = minT∈T (S) c(T ). In particular, for S = I
we get:

c∗(I) = min
CS∈T (I)

c(CS) = c(ĈS). (4)

It is easy to see that 〈I, c∗〉 is a subadditive coalitional game, since any non-
overlapping coalitions S1, S2 are a partition of the coalition S1 ∪ S2.

Lemma 2 (Aumann and Dréze [1]). Let G = 〈I, c〉 be a coalitional game, and let
CS ∈ CS be a coalitional structure.6

1. If c∗(I) = c(CS) then the CS-core of G is equal to the core of G∗.
2. Otherwise (i.e., if c∗(I) < c(CS)), then the CS-core of G is empty.

Let Δ be some fixed subsidy vector whose sum is Δ ≥ 0, and consider the opti-
mal coalition structure ĈS. From 4 we have that c∗(I) − Δ = c(ĈS) − Δ, and thus
from Lemma 2 CORE(G(Δ)∗) = CORE(G(ĈS,Δ), ĈS). In particular, Δ stabi-
lizes G(Δ)∗ iff Δ stabilizes G(ĈS,Δ). Finally, from Theorem 5,

CoSCS(G) = CoS(G, ĈS) = CoS(G∗) ≤
(

1 − 1
ln(n) + 1

)
c∗(I)

=
(

1 − 1
ln(n) + 1

)
c(ĈS), (from (4))

since G∗ is a subadditive expense game. 
�
6 Aumann and Dréze treated superadditive surplus games. However, a slight variation of their

work proves the lemma.
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Our final result in this section shows that the subadditivity condition in Theorem 5 can
in fact be weakened. Since {I} is also a coalition structure, we get the following result
for non-subadditive games as a corollary of Theorem 6.

Theorem 7. If c(I) ≤ c(CS) for all CS ∈ CS , then CoS(G) ≤ c(I)
(
1 − 1

ln(n)+1

)
.

7 Some Notes on Computational Complexity

In some seemingly simple TU games, such as weighted voting games and threshold
network flow games, finding (or even testing) if a subimputation is stable proved to be
NP-hard, while computing the value of a coalition was trivial. In particular, computing
the CoS was hard in these games [3,23].

Facility games present a situation opposite to that in the above mentioned surplus
games: it is NP-hard to compute the cost of a coalition, and in particular to know if
some set of facilities F ′ ⊆ F is optimal for the grand coalition. This follows directly
from the hardness of the MinSetCover problem [25]. However, the optimal subimputa-
tion p∗ can be computed efficiently by solving L̂P (G).

The computational complexity results regarding the CoS lead to an interesting trade-
off between the computational power of the center and the size of the subsidy. Since
the maximal costs the agents can safely pay (p∗) do not depend on the quality of the
selected set of facilities, faster computers can assist the city council in finding cheaper
solutions (better F ′) and thereby save money on subsidies (i.e., lower w(F ′) −

∑
i p∗i ).

It is important to note that the runtime of the mechanism would be polynomial in
the description size of the game, i.e., in the number of facilities. Therefore we cannot
efficiently compute optimal payments for arbitrary subadditive expense games with the
dual method, as the linear program might contain an exponential number of constraints.

The optimal coalition structure in anonymous games. Recall that for anonymous games
the characteristic function is given by c : [n] → R+, and for every coalition structure,
c(CS) =

∑
C∈CS c(|C|). Computing the CoS of a given coalition structure is easy.

As in general games, p∗ is easy to compute. In the anonymous case, it has the form
p∗i = minj≤n

c(j)
j for all i. Thus for any given CS we can compute CoS(G, CS) as

CoS(G, ĈS) = c(CS) − n · min
j≤n

c(j)
j

. (5)

The proof is the same as the proof of Theorem 2, which is a special case for CS = {I}.
However, finding the optimal coalition structure might be difficult. That is, we know

how much money each agent should pay in total, but we do not know how much they
can make by themselves, and therefore we are not sure how much to subsidize.

Proposition 1. Computing CoSCS(G) for anonymous games is in P .

We note here that Proposition 1 also holds for surplus sharing games, as defined in [3].

Proof. From (5) it is sufficient to find the optimal coalition structure ĈS.
Our key observation is that the problem of finding ĈS in an anonymous game is

equivalent to solving KNAPSACK with bounded weights.



Minimal Subsidies in Expense Sharing Games 357

In the KNAPSACK problem, we are given n pairs 〈wi, xi〉, and a threshold t. We can
select any pair ai ∈ N times, in order to minimize the total weight of the sack

∑
i ai ·wi,

while maintaining the total value above the threshold, i.e.,
∑

i ai · xi ≥ t.7 While
the general KNAPSACK problem is NP-hard, it can be solved by a simple dynamic
algorithm, provided that either the weights (wi) or the values (xi) are polynomially
bounded (see e.g., [18]).

Consider an anonymous cost game, with a characteristic function c. We construct a
KNAPSACK instance KN with the pairs {〈c(i), i〉}n

i=1, and a threshold t = n (hence
the values are bounded). As wi = c(i), and xi = i, we have that

CoSCS(G) = min
∑
i≤n

ai · wi s.t.
∑
i≤n

ai · xi = n = t ,

which is the optimal knapsack solution.
Thus for anonymous coalitional games we have a dynamic algorithm that finds ĈS

and computes CoSCS(G) efficiently. 
�

8 Discussion

Our study of minimal subsidies in expense sharing games joins together two lines of
work: the ongoing study of cost sharing mechanisms with different requirements for
specific game classes, and the clean formulation of bounds on the Cost of Stability that
depend on the cost function’s properties.

We have focused on the subadditivity property, and were able to provide tight bounds
on the CoS for broad families of games, even in the absence of an efficient cost sharing
mechanism. Our work also complements previous work on the Cost of Stability, high-
lighting the similarities and differences between cost sharing games and surplus games
in terms of the magnitude of the required subsidy for achieving stability.

Several issues remain open for future research. First, better bounds on the CoS should
be developed for specific classes of games, such as those suggested in [14,5,7,9,2]. It
is particularly interesting if dropping all requirements except stability (such as strate-
gyproofness or computational efficiency) can result in mechanisms that are better than
the existing cost sharing mechanisms described in the related work section.

Another question for future research is whether the CoS of more coalitional games,
other than Set-cover and Steiner-tree games, can also be derived from the integrality
gap of their underlying combinatorial problem (when there is one).

Finally, we plan to further investigate the relation between the CoS and other solution
concepts, such as the Shapley Value, the nucleolus, and the least core.
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Bilò, Vittorio 90
Blum, Avrim 78
Brandt, Felix 102
Busch, Costas 222

Caragiannis, Ioannis 90
Caskurlu, Bugra 42

Daskalakis, Constantinos 114
de Keijzer, Bart 335
Dombb, Yair 66

Elkind, Edith 210

Fabrikant, Alex 126
Fanelli, Angelo 90
Feige, Uriel 138, 150
Ferraioli, Diodato 54
Fiat, Amos 1
Fischer, Felix 102
Fotakis, Dimitris 162
Frongillo, Rafael 114

Gairing, Martin 174
Garg, Jugal 18, 30
Goel, Gagan 186, 234
Goldberg, Paul W. 15

Hansen, Kristoffer Arnsfelt 198
Harrenstein, Paul 102
Hate, Ameya 42
Hazon, Noam 210
Hoefer, Martin 312

Jaggard, Aaron D. 126

Kannan, Rajgopal 222
Karakostas, George 162

Karande, Chinmay 234
Kolliopoulos, Stavros G. 162
Kuleshov, Volodymyr 246

Larson, Kate 262

Macko, Martin 262
Mehta, Ruta 18, 30
Meir, Reshef 347
Mihalák, Matúš 276
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