
Context-Aware Usage Control for Android

Guangdong Bai, Liang Gu, Tao Feng, Yao Guo�, and Xiangqun Chen

Key Laboratory of High Confidence Software Technologies (Ministry of Education),
Institute of Software, School of EECS, Peking University, Beijing, China

{baigd08,guliang05,fengtao09,yaoguo,cherry}@sei.pku.edu.cn

Abstract. The security of smart phones is increasingly important due to their
rapid popularity. Mobile computing on smart phones introduces many new charac-
teristics such as personalization, mobility, pay-for-service and limited resources.
These features require additional privacy protection and resource usage constraints
in addition to the security and privacy concerns on traditional computers. As one
of the leading open source mobile platform, Android is also facing security chal-
lenges from the mobile environment. Although many security measures have been
applied in Android, the existing security mechanism is coarse-grained and does
not take into account the context information, which is of particular interest be-
cause of the mobility and personality of a smart phone device.

To address these challenges, we propose a context-aware usage control model
ConUCON, which leverages the context information to enhance data protection
and resource usage control on a mobile platform. We also extend the existing
security mechanism to implement a policy enforcement framework on the An-
droid platform based on ConUCON. With ConUCON, users are able to employ
fine-grained and flexible security mechanism to enhance privacy protection and
resource usage control. The extended security framework on Android enables
mobile applications to run with better user experiences. The implementation of
ConUCON and its evaluation study demonstrate that it can be practically adapted
for other types of mobile platform.

Keywords: security, access control, mobile platform, context-aware, Android.

1 Introduction

During the past few years, smart phones, combining the functionalities of traditional
mobile phone and increasing computing and storage capabilities, have become preva-
lent. They are serving more and more individuals and organizations as extensions of
desktop computers. As a result, many critical applications are moved to smart phones.
Unfortunately, security risks and attacks on traditional PCs have since shifted to smart
phones as well [19,12,15].

Compared to the security of traditional computing platforms, the security of mo-
bile devices faces more challenges [21] because they possess many unique features, in-
cluding Personalization, Mobility, Pay-for-service and Limited resources. These distinct
features require special privacy protection and resource usage constraints compared to

� Corresponding author.

S. Jajodia and J. Zhou (Eds.): SecureComm 2010, LNICST 50, pp. 326–343, 2010.
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2010

Context-Aware Usage Control for Android 327

PCs. Personalization increases the requirement for data confidentiality and privacy. Mo-
bility increases the risk of device loss and theft, which leads to privacy exposure, as well
the risk of classified information theft in a confidential environment, a business meeting
and a military conference, for instance. Pay-for-service and limited resources make the
phone prone to overcharge attacks and DoS attacks.

Android [18], a Google-led open source mobile platform, is one of the most popu-
lar mobile platforms. A series of security mechanisms such as UIDs, permission label,
application signing and sandbox have been adopted into Android to enhance its secu-
rity [26]. However, the permission model of Android is coarse-grained and incomplete
[22]. For example, an Android application requests a list of permissions at installation;
the user can only choose to either allow all these permissions or none. In addition, the
user cannot revoke or change the permissions of an application once he grants the per-
missions, unless the application is re-installed. It cannot provide data protection and re-
source usage constraints in a fine-grained manner. Furthermore, there is no mechanism
for the user to enforce context-aware constraints on data and resources on Android.

Some approaches have attempted to enhance the security of Android (or similar
smart phone platforms) through malware detection [8,9,29], application certification
[14] and access control [22]. However, to the best of our knowledge, no existing studies
have combined context information to provide fine-grained security/privacy measures
on smart phone platforms, especially on Android.

To address these challenges, we propose a context-aware usage control mechanism
for the Android platform. We first present a Context-aware Usage CONtrol model
(ConUCON) based on the previously proposed UCON model [27]. By taking into ac-
count the context information, such as the spatial and temporal data during runtime
enforcement, ConUCON is able to support flexible data protection and resource usage
constraints. Based on ConUCON, we also extend the existing security mechanism to
implement a new policy enforcement framework on the Android platform. The new
framework offers several new security features, such as allowing the user to grant per-
missions in a fine-grained manner, and supporting revocations and modifications on an
application’s permission at runtime.

We make the following main contributions in this paper.

– We propose a context-aware usage control model ConUCON, extending the UCON
model to support context-ware protection for mobile platforms. It enables smart
phone users to employ fine-grained and flexible security mechanisms to enhance
the privacy protection and resource usage control.

– ConUCON provides continuous usage control because its usage decisions are not
only performed prior to the access, but also during the access.

– We extend the policy specification interface of Android according to the proposed
ConUCON model to provide an interface for the user to express his policy on data
and resources in a context-aware and fine-grained manner. As a result it could pro-
vide better user experiences with this extended framework.

– Finally, as our extended mechanism is implemented by introducing minimal changes
to the existing one, it is transparent and could easily support existing applications.

The rest of this paper is organized as follows: Section 2 describes the background, in-
cluding the motivating scenarios, UCON model and Android security. Section 3 presents

328 G. Bai et al.

the ConUCON model formally. Section 4 shows the framework based on the ConUCON
model. Section 5 presents the implementation and evaluation. Section 6 introduces the
related works, and finally, Section 7 concludes this paper.

2 Background

2.1 Motivating Scenarios

Confidentiality and Privacy Protection. A smart phone user may store private data such
as photos and calendar on his/her phone. Assume that a user Alice loses her smart phone
and it is picked up (or maybe stolen) by Bob. Then Bob takes it home (We can safely
assume that it is a strange location) and tries to browse the data for malicious purpose
(or just out of curiosity). If this unfamiliar context is detected, or Alice has ever enforced
context constraints on her privacy data, an authentication will be required, which would
prevent the exposure of Alice’s privacy.

Resources Usage Constraints. Some services such as GPRS and voice calls may charge
extra fees according to the usage time and user’s location, that is, incurring significantly
more expenses at a certain time in the day, or if the user roams out of a certain area.
Thus, the user may tend to restrict applications’ usage on these resources during specific
periods or at locations with higher charge rate.

In a government or military meeting, in which confidentiality is specially concerned,
the participants are required to disable certain functions of the phone such as audio
capture. If the participants’ phones can detect the meeting-related contexts (time and
location), it would be possible to disable corresponding functions automatically.

2.2 UCON Model

UCON [24,27,23,34] is a generalized security model proposed by Sandhu et. al to cover
a variety of security aspects including obligations, conditions, continuity and mutabil-
ity, etc. The UCON model consists of eight components: subjects, subject attributes,
objects, object attributes, rights, authorizations, obligations, and conditions. The first
five hold similar meanings with the concepts in traditional access control models, while
authorizations, obligations and conditions impact on the usage decisions. Authoriza-
tions permit or deny an access from a subject to an object with a particular right based
on attributes of subject and object. Obligations require the subject to perform specific
actions before (pre) or during (ongoing) an access. Conditions are environmental fac-
tors.

2.3 Android Security

Android is a software stack for mobile devices, and it contains an operating system,
middleware and key applications. The applications in Android consist of four differ-
ent types of components: activities, services, broadcast receivers and content providers.
Most security mechanisms on Android are enforced at the application level. Each appli-
cation is assigned with a unique UID at install-time. At runtime, by adopting a sandbox

Context-Aware Usage Control for Android 329

mechanism to run applications as separate processes, Android protects them from mod-
ifying or controlling each other.

To use some protected resources, such as the dialer or GPRS, an application must
include a file named AndroidManifest.xml, which contains several <uses-
permission> tags to declare the required permissions. During installation, the pack-
age installer will list these permissions to the user, who can then choose to grant all
permissions to the application, or deny all permission requests and withdraw the in-
stallation. Once all permissions are granted, the application will be allowed to use the
resources without reminding the user all the time. The user cannot revoke the permis-
sions unless the application is reinstalled.

3 ConUCON: A Context-Aware Usage Control Model

This section presents the proposed context-aware usage control model ConUCON,
which consists of three major parts: model components, user policy specifications and
runtime usage decisions. ConUCON can leverage the context information to enhance
the security of mobile computing platforms, and it serves as the foundation of our ex-
tended security framework for Android platform.

3.1 Model Components

ConUCON contains the following components: subjects, objects, states (which include
subject attributes and object attributes), rights, permissions, obligations, and contexts.
We will introduce the definitions and descriptions of these components in this section.

The concepts of subjects and objects remain similar with those in traditional access
control models as well as the UCON model.

Definition 1. (Subjects and Objects) A subject is an entity that holds and exercises
certain rights on objects. An object is an entity that subjects can access or use. Subject
set and object set are denoted by S and O, respectively.

Example 1. For example, subjects can be applications and components in Android,
while objects can be files, resources, and services.

Definition 2. (Attributes) An attributes is a property used in usage decisions, such as
UID, software producer, permission label and path of an object. All attributes are con-
tained in the attribute set (AT).

Each subject or object is associated with a corresponding attribute set, which can be
queried with the function τ : S ∪ O → P(AT). For a subject or object so ∈ S ∪ O
that holds an attribute at ∈ τ(so), the value of the attribute so.at can be retrieved with
the function υ : (S ∪ O) × τ(S ∪ O) → ran(τ(S ∪ O)), where ran(a) is the value of
attribute a.

Example 2. A Telecom Provider may provide a specific number of free SMSes for users
every day, and will charge fees for any extra message. As a result, the user may wish
to prohibit the corresponding applications to send messages once the quota for a day is
exhausted. Thus, the usage history of the SMS service should be recorded as an attribute
of the object and be involved in the usage decision process.

330 G. Bai et al.

Definition 3. (States) A state is defined as a set, whose elements are triples

(so, at, val), where so ∈ S ∪ O, at ∈ τ(so) and val = υ((so, at)).

A state element consists of an attribute set, the owner of the attribute set, and the values
of these attributes in the set. A state is a subset of the State Set(ST), which contains all
the attributes and their values.

An update action is defined as a function μ : P(ST) → P(ST).

Definition 4. (Rights) A right is an operation that a subject can perform on an object.
All Rights comprise the Right set(R).

Rights can be divided into several functional categories. For files and other data,
the rights include read, write, delete, etc.; while for resources and services, the rights
include use, disable, etc. The Right set is defined by users.

Definition 5. (Permission Labels) A permission label is a credential to allow a subject
to perform a specific right on corresponding objects, which are assigned to subjects and
objects. All permission labels comprise the Permission label set(P).

For a subject, its permission labels determine which objects it can access, while
the labels for an object determine which subjects can access it. Each subject owns a
permission label set, which can be retrieved using the function ϕs : S → P(P).

Each resource object and service object can be attached with a permission label [26]
to declare the permission required to use it. The function ϕo : O → P is defined to
query the label.

It is a bit more complex for data objects. Each of the objects has two labels, one
for confidentiality and the other for integrity. The confidentiality label is an element of
the confidentiality label set(CL), while all integrity labels comprise the integrity label
set(IL). A subject is also associated with these two labels to indicate its confidential-
ity level and integrity level, respectively. The orders of the confidentiality level and
integrity level are denoted by {�c, �c} and {�i, �i}, respectively.

The functions ϕc : S ∪ O → CL and ϕi : S ∪ O are defined to retrieve the confi-
dentiality and integrity labels of a data object or a subject, respectively.

Definition 6. (Obligations) An obligation is a mandatory action that must be per-
formed before or during an access. It is an element of the obligation set(OB).

Example 3. To avoid privacy exposure caused by trojans such as Pbstealer.A [16], a
user may require all applications that access the contacts to disable Bluetooth before
and during the access. Thus the obligation for these applications is to disable Bluetooth
by themselves or to agree the usage control decision process to disable it.

Definition 7. (Contexts) A context is defined as a property of environment and system.
The type of a property is the context type, which is an element of context type set(CT).

The examples of context types are CPU rate, battery, device location and time. For
ConUCON, We focus on the contexts related with the system and environment. In ad-
dition, there is a subtle difference between context and attribute: a context is a property
of systems or physical environment, whereas an attribute is a property directly related
to a subject or an object.

Context-Aware Usage Control for Android 331

Continuous evaluation is critical on mobile platforms because of their features men-
tioned before. Thus, the evaluation of context constraint in ConUCON is performed
before (pre) and during (ongoing) an access. For example,

Example 4. A user has required the permission to read a confidential article which is
restricted to be read only in a specific area. While browsing the article, the user roams
out of the restricted area unconsciously. The smart phone should trigger a warning as
soon as it detects this situation.

3.2 Environment Contexts

For a smart phone platform, environment contexts such as spatial and temporal contexts
are especially important.

Spatial Context. A spatial context is defined as a spatial property. Spatial context ∈
CT. We adopt the geometric model of GEO-RBAC [13] to model the positions.

Definition 8. (Features and Feature Types) A feature is an object which indicates an
entity that occupies a space in real world, which is identified by feature name. The
features are included in feature set(F). Each feature has a feature type contained in
feature type set(FT).

A feature can be mapped to a geometry on Earth. A geometry is an object in Eu-
clidean space with a coordinate, which is an element in the geometry set(GEO).

The functions γ : F → FT and ξ : F → GEO are used to get the feature type and
the geometry of a feature.

Definition 9. (Feature Order and Feature Type Order)

– feature type order (�ft) : ft1 �ft ft2 iff ∀f1 ∈ F ∧ γ(f1) = ft1, ∃f2 ∈
F ∧ γ(f2) = ft2, ξ(f1) ⊆ ξ(f2)

– feature order (�f) : f1 �f f2 iff γ(f1) �ft γ(f2) ∧ ξ(f1) ⊆ ξ(f2)

Example 5. Office 2E315, Pentagon, Arlington, Virginia are examples of features, whose
feature types are Room, Building, County, State, respectively. The Room and Building
satisfy the �ft order, while Arlington and Virginia satisfy the �f order.

Definition 10. (Real Position and Logical Position) A real position is a position on
the Earth and can be obtained using a device such as a GPS based equipment, while a
logical position is a semantic representation of a position. Real position set and logical
position set are denoted as RP and LP , respectively.

Obviously, a real position corresponds to a geometry and a logical position corre-
sponds to a feature. A real position may correspond to one or more logical positions
under different feature types. For example, a region may correspond to a room or part
of a city, when assigning it with these two feature types.

The function ρft : RP → LP is used to map a real position to the corresponding
logical position under feature type ft.

Thus, we can define the inclusion relation between a real position and a logical po-
sition 	p: rp 	p lp, where rp ∈ RP ∧ lp ∈ LP iff ργ(lp)(rp) �f lp.

332 G. Bai et al.

Temporal Context. A temporal context is defined as a temporal property. Temporal
context ∈ CT.

Definition 11. (Time Instants) A time instant is a time point that has the form
TI := mm/dd/yy hh : ii : ss where

mm ∈ {1, 2, ..., 12} ∧ dd ∈ {1, 2, ..., 31} ∧ yy ∈ IN ∧ hh ∈ {0, 1, ..., 23} ∧ ii, ss ∈
{0, 1, ..., 59}.
The definition of the periodic expression in ConUCON is based on past studies in
[6,31,5]:

Definition 12. (Periodic Expression) The periodic expression is defined as
PE := Y |W
Y := R.years|R.years � S.years|R.years + M
W := weeks|weeks + D
M := R.months|R.months � S.months|R.months + D
D := R.days|R.days � S.days|R.days + H
H := R.hours|R.hours � S.hours|R.hours + M
M := R.minutes|R.minutes � S.minutes
where R ∈ 2IN ∪ {all}, S ∈ IN.

Example 6. We can use the periodic expression years + 7.months � 6.months to
indicate the second half of every year and the expression weeks + {1, 2, ...5}Days +
9.hours � 8.hours to indicate working hours of every week.

As a result, we can define the inclusion relation between a time instance and a peri-
odic time [6] 	t: ti 	t 〈[begin, end], P 〉 if and only if there exists a time interval
it ∈ Π(P) such that ti ∈ it and begin � ti � end, where 〈[begin, end], P 〉 is a
periodic time, begin and end are two time instants, Π(P) is the set of time intervals
corresponding to the periodic expression P .

Example 7. PT =〈 [01/01/2010 00:00:00, 12/31/2012 23:59:59], weeks+{1, 2, ...5}.
Days +9.hours � 8.hours〉 indicates the working hours during the year 2010 and
year 2012. A time instant 4/19/2010 14:30:00 	t PT.

3.3 User Policy Specification

The policy specification allows a user to specify his security policies on usage, i.e. data
and resources. The security policies describe:

– Which permission label should be assigned to a resource object? Which confiden-
tiality label and integrity label should be assigned to a data object? Which permis-
sion label set should be assigned to a subject?

– If a subject requests to perform a specific action (right) on an object, what au-
thorizations, obligations and contexts should be satisfied before (pre) and during
(ongoing) the access?

Context-Aware Usage Control for Android 333

Definition 13. (Label Policies) Define function 	o1 : O → P to impose a permission
label to a resource object, function 	o2 : O → CL × IL to impose confidentiality
label and integrity label to a data object, and function 	s : S → P(P) to grant a
permission label set to a subject.

Definition 14. (Usage Control Policy) The usage control policy is used to specify au-
thorizations, obligations and contexts that should be satisfied before (pre) and during
(ongoing) a subject performing a specific action (right) on an object. All the usage
control policies are included in the usage control policy set (UP).

UP ⊆ S × O × R × PreOb × OnOb × StateConstraint × PreContext ×
OnContext × Update, where

– PreOb, OnOb ∈ P(OB)
– StateConstraint := (StatePredicate) | ¬ StateConstraint | StateConstraint ∨ State-

Constraint | StateConstraint ∧ StateConstraint. (StatePredicate is a relational ex-
pression, with form of f(P(S∪O×AT))relator〈value〉, where f is an operation
expression using the attributes as operands, while relator is a logical operator.)

– PreContext, OnContext ⊆ ContextConstraint, where ContextConstraint :=
(ContextPredicate) | ¬ ContextConstraint | ContextConstraint ∨ ContextConstraint
| ContextConstraint ∧ ContextConstraint
ContextPredicate := 〈CT 〉relator〈value〉 | PeriodicT ime | LP

Example 8. Let’s consider the Resources Usage Constraint scenario in Section 2.1 to
illustrate the User Policy Specification. At first, a smart phone user Alice may restrict
the usage of the camera in her phone as following:

– To prevent conflict, all applications that apply for using the camera must close or
remind the user to close the other application that are using the camera.

– To keep privacy, all applications that are recording video must pause recording
when an incoming call comes.

– To preserve battery for more critical functions, the camera should be disabled when
the remaining battery power is blow 30%.

– If one application was denied a short time ago(one minute, for instance), its request
should be denied automatically.

Now suppose there is a confidential meeting in the company where Alice works during
10:00 to 12:00 every Wednesday and Thursday in 2010, and video recording is not
allowed at the meeting. We can specify the policy as in Table 1.

3.4 Runtime Usage Decisions

We employ the Bell-LaPadula model [4] for confidentiality and the Biba model [7]
for integrity to express the authorizations in ConUCON. The other appropriate security
models can be used to express specific application constraints in ConUCON.

Definition 15. (Authorizations) Authorizations are used to check whether a subject
is allowed to perform an action on an object, according to specified security model,

334 G. Bai et al.

Table 1. An example of usage control policy

Components Constraints
Subject All
Object Camera
Right Use

Pre-obligation
ObligationID1 (predefined as closing or reminding user
to close the other application that is using the camera)

On-obligation ObligationID2 (predefined as pausing recording if an incoming call comes)
State currentT ime− lastForbiddenT ime � 1minute

Pre-context
(batterypower � 30%)

∧((¬〈[01/01/2010 00 : 00 : 00, 12/31/2010 23 : 59 : 59], weeks+
{3, 4}.day + 10hours � 2hours〉) ∨ (¬meetingroom))

Ongoing-context
(batterypower � 30%)

∧((¬〈[01/01/2010 00 : 00 : 00, 12/31/2010 23 : 59 : 59], weeks+
{3, 4}.day + 10hours � 2hours〉) ∨ (¬meetingroom))

Update if(forbidden)lastForbiddenT ime = currentT ime

such as integrity models and confidentiality models. The function Ω : S × O × R →
{true, false}, which is used to get the authorization result, is defined as:

Ω(s, o, r) ⇒

⎧
⎪⎨

⎪⎩

ϕo(o) ∈ ϕs(s), if o is a resource object

ϕc(s) �c ϕc(o) ∧ ϕi(s) �c ϕi(o), if o is a data object, and r = read

ϕc(s) �c ϕc(o) ∧ ϕi(s) �c ϕi(o), if o is a data object, and r = write

Definition 16. (Usage Decision) The usage decision determines whether an access
should be permitted or an ongoing access should be revoked based on authorizations,
obligations, contexts, and states. The usage decision is performed as below:

– allow(s, o, r) ⇒ Ω(s, o, r) ∧ fulfill(preOb) ∧ fulfill(preContext) ∧
fulfill(stateConstraint)

– revoke(s, o, r) ⇐ ¬fulfill(onOb)∨ ¬fulfill(onContext)
– update(state)

4 A Usage Control Framework for Android

Based on the above ConUCON model, we developed a continuous context-aware usage
control framework for Android.

4.1 Framework Overview

Figure 1 describes the architecture of the framework. The framework consists of a Pol-
icy Enforcement Point (PEP), a Policy Decision Point (PDP), a Policy Information Point
(PIP) and a Policy Administration Point (PAP). These components communicate with
each other with the messaging mechanism listed in Table 2.

Context-Aware Usage Control for Android 335

Usage Control Framework

User

PEP

Policy Resolver

Obligation
Evaluation Engine

State
Evaluation Engine

Context Evaluation Engine

PDP PIP State
Repository

Policy
Repository

PAP

data flow control flow control flow return

App

Label
Repository

Obligation
Repository

Context
Repository

Fig. 1. ConUCON Framework

Table 2. Message types transmitted among components

Message Source Destination Meaning

request(s, o, r) PEP PDP
The subject s is requesting to perform the right r
on the object o.

permit(s, o, r) PDP PEP The request(s, o, r) is permitted.
deny(s, o, r) PDP PEP The request(s, o, r) is denied.

terminate(s,o, r) PEP PDP The subject s terminates access to the subject o.
revoke(s, o, r) PDP PEP Revoke the request(s, o, r).

evaluate(s, o, r) PDP PIP Perform obligation, state and context evaluation.

fulfill(s, o, r) PIP PDP
The obligation, state and context policies are en-
forced.

violate(s, o, r) PIP PDP
Not all obligations, state and context policies are
enforced.

withdraw(s, o, r) PDP PIP Withdraw all continuous evaluations.

The circled numbers in the figure indicate the processing flow during one usage de-
cision process. When an application tries to access an object, the PEP perceives the re-
quest and invokes the PDP using request(s, o, r). Then the PDP performs authorization
and activates the PIP with evaluate(s, o, r). The PIP then invokes the Policy Resolver
to resolve predefined policies related to s and o, and then invokes the Evaluation En-
gines to check the pre-policies. After that, the PIP sends a result(i.e. a fulfill(s, o, r)
or violate(s, o, r) message) to the PDP, which synthesizes the received result and the
authorization result to decide whether the access should be permitted or denied, and
notifies the PEP of the decision by a permit(s, o, r) or a deny(s, o, r) message. The
State Evaluation Engine also updates the states accordingly.

336 G. Bai et al.

Two cases are not illustrated in Figure 1 for the sake of simplicity. The first case
is continuous evaluation. After permitting the access, the Evaluation Engines begin to
evaluate ongoing policies continuously. Once a violation is detected, the Engines notify
the PIP, which then sends a violate(s, o, r) message to the PDP. And the PDP will send
a revoke(s, o, r) message to the PEP immediately to revoke the access at once. The
other case occurs when an application terminates the access. The PEP notifies the PDP
by a terminate(s, o, r) message, which then sends a withdraw(s, o, r) message to the
PIP to withdraw the continuous evaluation on this session.

Notice that the PDP can send a revoke(s, o, r) message to the PEP on its own ini-
tiative before the PEP sends a terminate(s, o, r) message. Similarly, the PIP can send
a violate(s, o, r) message to the PDP once the Engines detect a violation, no matter
whether the PDP sends an evaluate(s, o, r) message or not. This is an important im-
provement upon existing access control research, whose usage decision only occurs
before the access.

4.2 Framework Components

Policy Enforcement Point (PEP). The PEP takes charge of perceiving access request
and termination, invoking the PDP to perform the usage decision and enforcing the
usage control according to the PDP’s response.

When the PEP captures a request, it invokes the PDP with a request(s, o, r) mes-
sage. The PEP allows the access only if the PDP responds a permit(s, o, r) message.
After permitting the access, the PEP shifts to a listening state. If any of the ongoing
policies is violated, the PEP will be noticed by PDP with a revoke(s, o, r) message to
terminates the access. In addition, The PEP should perceive the termination of the ac-
cess. Once a subject terminates the access, the PEP sends a terminate(s, o, r) message
to the PDP, and then the PDP stops monitoring policies.

To capture the access requests to all objects, the PEP should be integrated in the
relatively low level, the application framework layer of Android platform, for instance.
It should also implement specific messaging mechanism to communicate with the PDP.

Policy Decision Point (PDP). The PDP is the component that performs usage decisions.
The PDP is responsible for activating the Policy Resolver and the PIP, authorizing (i.e.
checking the permission labels), and notifying the PEP of the usage decision result
after merging the authorization result and the responding result of the PIP. The PDP is
invoked by the PEP when access actions including request and termination occur.

The PDP is invoked by the PEP using a request(s, o, r) message. After being in-
voked, the PDP retrieves the permission labels of s and o from label repository and
performs authorization based on Definition 15. If the result is true, the PDP then in-
vokes the PIP to gather information related with usage decision (i.e. pre-policy evalua-
tion result). If any policy is violated, the PDP responds a deny(s, o, r) message to the
PEP to deny the access. Otherwise, it returns the PEP a permit(s, o, r) message, and
listens on both the PEP and the PIP to process the violate(s, o, r) from the PIP and
terminate(s, o, r) from the PEP.

Policy Information Point (PIP). The PIP is the component that provides the PDP with
evaluation information on obligation, state and context both before (pre) and during

Context-Aware Usage Control for Android 337

(ongoing) the access, with the aid of the Obligation Evaluation Engine, the State Eval-
uation Engine and the Context Evaluation Engine.

The PIP is invoked by the PDP with an evaluate(s, o, r) message. The PIP then calls
Policy Resolver to resolve policies that contain pre-policies and ongoing-policies. After
that, the PIP invokes Evaluation Engines to evaluate pre-policies at first. If any engines
returns false, the PIP responds a violate(s, o, r) to the PDP. Otherwise, the PIP returns
fulfill(s, o, r), then invokes Evaluation Engines to fork daemons to evaluate ongoing
polices continuously. If any of ongoing policies is violated, the PIP notifies the PDP
of a violate(s, o, r) message. The PIP also listens on the PDP after the pre-policies
evaluation. When it receives a withdraw(s, o, r) message from the PDP, it withdraws
the ongoing evaluation.

Evaluation Engines. The Evaluation Engines are invoked by the PIP to perform corre-
sponding policy evaluation for obligation, state and context.

The Obligation Evaluation Engine monitors the execution of obligations. If the obli-
gation is an action that can be carried out by the Engine directly, the Engine can require
the subject to perform the obligation or carry out directly. Recall Example 8. The En-
gine can ask for the application to remind the user to close another application that is
using the video recorder, or just close it directly. If the obligation can only be observed,
the Engine does not return true until the obligation is observed. The obligations defined
by Definition 6 are stored in the Obligation Repository, which can be accessed using
their obligation IDs or paths specified by the user.

The State Evaluation Engine is invoked to evaluate the state constraints. It first re-
solves the attribute type from the state constraint expressions, and retrieves the cor-
responding attribute values from the State Repository. Then it evaluates whether the
constraint is satisfied, and notifies the PIP of the evaluation result. Besides, the State
Evaluation Engine will update the state values into the state repository if needed.

The Context Evaluation Engine evaluates the context policies and monitors the
change of the context. Similarly with the State Evaluation Engine, it first resolves the
context types from context constraint expressions. Then it interacts with underlying sys-
tems and sensors to retrieve context value such as the coordinate, CPU utilization and
battery power.

Policy Administration Point (PAP). The PAP is a component that interacts with the user,
which allows the user to administrate the usage policies for the data and resources in
his smart phone. The user can impose or deprive the permission labels, confidentiality
labels and integrity labels to a subject or an object as Definition 5.

The PAP then formats the user’s policy specification and stores the policies into
the Label Repository and Policy Repository, respectively. The policies are formatted in
XML, which will be discussed in Section 4.3.

4.3 Policy Specification

Through the PAP, the user specifies his usage policies on his data and resources accord-
ing to Definition 13 and 14. In order to facilitate policy storage and transmission among
the components, the policies are represented in an XML format. The primary tags used
are listed as follows.

338 G. Bai et al.

– <Subject>, <Object> and <Right> specify the subject, object and right
associated with the policy.

– <Obligation> tag specifies an obligation. The ObligationTime specifies
whether the obligation must be performed before (pre) or during (ongoing) the
access, while the ObligationID specifies the ID of the obligation, the Obligation
Evaluation Engine retrieves the action stored in Obligation Repository using this
ID. The user can specify a new obligation by assigning the action path to the Obli-
gationID, and use several < Parameter > tags to specify the parameters to
execute the action.

– <State> tag specifies the state constraint in the policy. The <Attribute> tag
indicates the attribute in this state constraint, while the attribute Owner indicates
owner of this attribute and the Type is the attribute type. The <Expression> tag
specifies the logic expression expected, which is defined in Definition 14.

– <Context> tag specifies the context constraint in the policy. The meaning
of ContextTime is similar with ObligationTime. The context consists of several
< ContextComposition > tags, which are connected with “∧”. Each <
ContextComposition > consists of several < Factor > tags, connected
with the Operator. The <Factor> is a context predicate defined in Definition
14, the Type specifies the context type defined in Definition 7.

– <Update> tag specifies an update policy. The UpdateTime declares the
time to perform this update, which is in {Allow, Deny, Ongoing, Post}. The
<Attribute> tag indicates the attribute to be modified. It is stored in State
Repository and identified by Name, while the default value of the attribute is De-
fault. An <Expression> tag specifies an assignment expression that is executed
to update the state.

Figure 2 illustrates the XML representation of Example 8. The root node
<Policies> contains all the policies. It includes several <Policy> tags, each
indicates a user-specified policy defined in Definition 14.

<Policies>
 <Policy Effect="Permit">
 <Subject>All</Subject>
 <Object>Camera</Object>
 <Right>Use</Right>
 <Obligations>
 <Obligation ObligationTime="Previous" ObligationID =

"com:android:conUcon:obligationID1"></Obligation>
 <Obligation ObligationTime="Ongoing" ObligationID=

"com:android:conUcon:obligationID2"></Obligation>
 </Obligations>
 <States>
 <State>
 <Attribute Owner="Camera"

Type = "lastForbiddenTime"></Attribute>
 <Expression>System.currentTime-

Camera.lastForbiddenTime>=1</Expression>
 </State>
 </States>
 <Contexts>
 <Context ContextTime="Previous">
 <ContextComposition Operator="~">

<Fator Type="Temporal">[01/01/2010_00:00:00,
12/31/2010_23:59:59], weeks + {3, 4}.day + 10 hours ->
2hours</Fator>

 <Fator Type="Spatial">Meeting Room</Fator>
 </ContextComposition>
 <ContextComposition>
 <Fator Type="BatteryPower">batteryPower >= 30%</Fator>
 </ContextComposition>
 </Context>
 <Context ContextTime="Ongoing">...</Context>
 </Contexts>
 <Updates>
 <Update UpdateTime="Deny">
 <Attribute Owner="Camera" Name = "lastForbiddenTime"

Default="01/01/1900_00:00:00"></Attribute>
 <Expression>Camera.lastForbiddenTime

=System.currentTime</Expression>
 </Update>
 </Updates>
 </Policy>
</Policies>

Fig. 2. XML representation of Example 8 in Section 3.3

Context-Aware Usage Control for Android 339

5 Implementation and Evaluation

We have implemented the above framework on Android, which will be described in this
section. The framework monitors the accesses to the resources, data and files (i.e. the
Objects in ConUCON) performed by the applications and application components (i.e.
the Subjects in ConUCON). The identities of subjects and objects, i.e. a subject’s UID
and an Object’s URI, are included in their attribute sets. The attribute sets also contain
other information such as the software producer, usage times and attributes defined by
the user, like lastForbiddenTime in Example 9. The attributes can be retrieved
and maintained by the usage decision process. Some frequently used obligations are
predefined and hard-coded in the Obligation Evaluation Engine, an interface is also
provided to the user to assign a new obligation in the way described in section 4.3.
Context types are confined to frequently used property in our implementation, such as
temporal, spatial, battery, signal strength, acceleration, Bluetooth state, WiFi state, CPU
utilization, and memory amount, which can be easily retrieved in Android.

The framework components are implemented and deployed according to their re-
sponsibility. The PEP, PDP and PIP are integrated in the application framework layer
on Android. We implement the Policy Resolver as a parser to resolve the xml file
which stores the policies. The Evaluation Engines are implemented as daemon threads
to monitor and evaluate the ongoing policies continuously. The messages described in
Section 4.1 can be implemented as procedure calls and inter component communica-
tions (ICC). The Repositories are stored in the \system directory on Android and are
managed using the Content Provider component, which provides inherent isola-
tion and protection.

5.1 Usage Decision

The applications in Android retrieve the resources and data using an ICC mechanism.
Intent is used to encapsulate the information related to the ICC. An Intent object
is passed to Context.startActivity(), Context.startService(), or
other limited number of methods. These methods are implemented by the Applica-
tionContext class, which then transmits control to the ActivityManager-
Service class, where the Intent is resolved to determine the component which will
handle it. Then the UID and permission required for accessing the component are used
as parameters to call the checkComponentPermission(). The checkPermi-
ssion() in ActivityManagerService, which is claimed (by the comments in
source code) as the only public entry point [22], actually calls the checkComponent-
Permission() to perform permission check. Thus, we hook this function to insert
our usage decision conUconPDP().

After performing the existing permission check in the checkComponentPer-
mission(), the conUconPDP() takes over the control. It first extracts and analyzes
the object information from the Intent. If the object is a file object (including the pic-
tures, contacts, and regular files), it retrieves the confidentiality and integrity labels of
the subject and object from the label repository and checks the permission. After that, it
invokes the conUconPIP() to perform evaluation on obligations, states and contexts.

340 G. Bai et al.

The conUconPIP() calls the Policy Resolver to get the policies. For the obli-
gations, the conUconPIP() executes the hard-coded instructions according to the
obligationID or calls the routine specified by the user. For the states, it checks
whether the constraint is fulfilled. It also creates representations for the new attributes
and maintains them in the State Repository. For contexts, it invokes different managers
to get the context information and evaluates it. If the evaluation is passed, it returns true.
Meanwhile, if necessary, it may create daemon threads to evaluate the ongoing policies
before returning. The daemons periodically check whether the constraints are violated.
If a violation is identified, the daemons will terminate the session.

5.2 Policy Specification

An activity com.android.conUcon.contextDefine is implemented to pro-
vide a usable interface for the user to define his context information such as exam-
ples illustrated in Table 3. Besides, we modify the PackageInstallerActivity
to allow a user to impose his policies on an application at install-time. The existing
framework lists the permission that the application requires. We modify this interface
to enable the user to set his obligation, state and context constraints on this permission.
An activity com.android.conUcon.policyAdministrator is implemented
to enable the user to specify his policies after installation. This activity lists all the in-
stalled applications, all the resources and all the data (i.e. contacts, pictures, files and
so on). The user can associate the confidentiality and integrity labels to the subjects
and data objects and specify the policy on these applications, resources and data. The
specifications are resolved by the activity, which then generates the corresponding data
and stores them in the Repositories. The activity even provides an interface for expert
users to specify his policies by editing the policy file.

Table 3. A context information stored in the Context Repository

Context Type Context Name Context Value

temporal weekday
periodic expression =
′′ < [0,∞], weeks + {1, 2, , 5}.days >′′

logic position my university
featuretype =′′ school′′, realposition =
′′(o = (39.99◦N, 116.30◦E), r = 1530m)′′

battery power low power ′′batterypower � 10%′′

5.3 Performance Evaluation

Because the usage decision in ConUCON framework performs extra actions to evaluate
the obligation, state and context policies, an overhead will be introduced. To evaluate
this overhead, we carry out some experiments on the Android emulator to measure the
execution time. The actions we choose are frequently used in the daily life.

To keep authenticity, we associate different policies on these actions. For example,
The applications starting dialer must perform the obligation to check whether the au-
dio capture is closed. The call duration should be maintained as a state, meanwhile, its

Context-Aware Usage Control for Android 341

constraint should consider restrictions on location and time. The constraints on all these
actions come into three categories: Obligation, State and Context in Table 4. If an ex-
periment with ConUCON considers specific types of constraints in its security policy,
the corresponding column are marked as“

√
”. The performance contrast between exist-

ing mechanism and our framework are illustrated in Table 4. The overhead caused by
our usage decision is quite acceptable when we restrict context types within what can
be retrieved locally, such as temporal, WiFi and battery power. Other information such
as location that needs to be retrieved by querying network or satellite will consume a
little longer time (the numbers within parentheses in Table 4). However, if the data and
resources are extremely important, it is worthwhile sacrificing a little performance.

Table 4. Performance Comparisons

Actions
Existing
mechanism (ms)

ConUCON framework
Obligation State Context Time (ms)

sarting WiFi 102.5
√

-
√

117.3 (195.3)
sending SMS 69.8 -

√ √
76.0

starting dialer 49.7
√ √ √

80.6(150.8)
accessing a contact 95.3 -

√ √
116.5

accessing a picture 55.8
√ √ √

68.5(153.8)

6 Related Work

Some literatures have proposed solutions for enhancing the security on smart phone
platforms. Malware detection on smart phone is already widely concerned [8,9,29,32].
Zhang et al. [33] proposed an isolation technique for mobile platform by realizing the
TCG’s Trusted Mobile Phone specification and by leveraging SELinux which provides
a generic domain isolation concept at the kernel level. Schmidt et al. [29] demonstrated
how to monitor a smart phone running Symbian and Windows Mobile in order to extract
features for anomaly detection.

Access control models play an important role in security mechanisms. Some re-
searchers have extended the RBAC model [28], the most popular access control model
nowadays, to include context information in authorization decisions. Damiani et.al pro-
posed GEO-RBAC [13] to support spatial roles. Bertino et al. proposed TRBAC [6]
to support temporal roles. Other extensions include GRBAC [20,11], STARBAC [1]
and LRBAC [25]. Context-awareness has attracted much attention in the security issues
of mobile platforms as well, some literatures have already focused on context-aware
access control in the networks [10,3,2].

Android security is also widely concerned in recent researches. Asaf Shabtai et.al
analyzed and assessed the security mechanisms incorporated in Android by identify-
ing the threats and potential dangers, as well as solutions in Android platform [30].
SCANDROID [17] is a tool for reasoning automatically about the security applications,
which checks whether data flows through an application are consistent with its specifi-
cations. Enck et al. [14] proposed Kirin security service for Android, which performs
lightweight certification of applications to mitigate malware at install-time. Apex [22]

342 G. Bai et al.

presents a policy enforcement framework to enable the the user grant permissions in a
fine-grained manner and enforces policy user defined at runtime. However, the context
information is not taken into consideration in these approaches. Our work refers to the
Apex [22] in policy specification and implementation, yet we focus on performing a
continuous usage decision including obligations, states and contexts.

7 Conclusion

The existing security mechanism on the Android platform is facing great challenges
because of the mobility and openness of mobile computing environment. This paper
proposes a context-aware usage control mechanism to enhance data protection and
resource usage constraints on Android. We propose a context-aware Usage CONtrol
model ConUCON, which is able to take obligations, states and contexts into consider-
ation at usage decisions. Based on ConUCON, we extend the existing security mech-
anism to implement a policy enforcement framework on Android, which enables the
user to grant permissions in a fine-grained manner and to support revocations and mod-
ifications on an application’s permissions at runtime. We also evaluate our mechanism
with some frequently used actions, which shows that the overhead introduced by the
proposed scheme is acceptable. We will further study the application of our ConUCON
model on other types of mobile platform.

Acknowledgements. This work is supported by the National Basic Research Pro-
gram of China (973) under Grant No. 2009CB320703, the Science Fund for Creative
Research Groups of China under Grant No. 60821003, National Key S & T Special
Projects under Grant No. 2009ZX01039-001-001 and the National High-Tech Research
and Development Plan of China under Grant No. 2007AA010304.

References

1. Aich, S., Sural, S., Majumdar, A.K.: STARBAC: Spatio temporal role based access con-
trol. In: Meersman, R., Tari, Z. (eds.) OTM 2007, Part II. LNCS, vol. 4804, pp. 1567–1582.
Springer, Heidelberg (2007)

2. Al-Muhtadi, J., Ranganathan, A., Campbell, R.H., Mickunas, M.D.: Cerberus: A context-
aware security scheme for smart spaces. In: PerCom, p. 489 (2003)

3. Bandinelli, M., Paganelli, F., Vannuccini, G., Giuli, D.: A contextaware security framework
for next generation mobile networks. In: MobiSec. Springer, Heidelberg (2009)

4. Bell, D., LaPadula, L.: Secure computer systems: Mathematical foundations. Technical Re-
port ESD-TR-73-278, MITRE Corporation (1973)

5. Bertino, E., Bettini, C., Ferrari, E., Samarati, P.: An access control model supporting period-
icity constraints and temporal reasoning. ACM Trans. Database Syst. 23(3), 231–285 (1998)

6. Bertino, E., Bonatti, P.A., Ferrari, E.: TRBAC: A temporal role-based access control model.
In: RBAC 2000, July 26-27, pp. 21–30. ACM Press, New York (2000)

7. Biba, K.J.: Integrity considerations for secure computer systems. MTR-3153, Rev. 1, The
Mitre Corporation (1977)

8. Bose, A., Hu, X., Shin, K.G., Park, T.: Behavioral detection of malware on mobile handsets.
In: MobiSys 2008, pp. 225–238. ACM, New York (2008)

Context-Aware Usage Control for Android 343

9. Cheng, J., Wong, S.H.Y., Yang, H., Lu, S.: Smartsiren: virus detection and alert for smart-
phones. In: MobiSys 2007, pp. 258–271. ACM, New York (2007)

10. Covington, M.J., Fogla, P., Zhan, Z., Ahamad, M.: A contextaware security architecture for
emerging applications. In: ACSAC, pp. 249–260 (2002)

11. Covington, M.J., Moyer, M.J., Ahamad, M.: Generalized role-based access control for secur-
ing future applications (November 03, 2000)

12. Dagon, D., Martin, T., Starner, T.: Mobile phones as computing devices: the viruses are
coming! IEEE Pervasive Computing 3(4), 11–15 (2004)

13. Damiani, M.L., Bertino, E., Catania, B., Perlasca, P.: Geo-rbac: A spatially aware RBAC.
ACM Trans. Inf. Syst. Secur. 10(1), 2 (2007)

14. Enck, W., Ongtang, M., McDaniel, P.D.: On lightweight mobile phone application certifica-
tion. In: Proceedings of CCS 2009, pp. 235–245. ACM, New York (2009)

15. F-Secure. Cabir, http://www.f-secure.com/v-descs/cabir.shtml
16. F-Secure. Pbstealer. A.,

http://www.f-secure.com/v-descs/pbstealer_a.shtml
17. Fuchs, A.P., Chaudhuri, A., Foster, J.S.: Scandroid: Automated security certification of an-

droid applications
18. Google. Android, http://www.android.com
19. Hypponen, M.: Mobile Malware. In: USENIX Security Symposium (August 2007),

http://www.usenix.org/events/sec07/tech/hypponen.pdf (Invited Talk)
20. Moyer, M.J., Abamad, M.: Generalized role-based access control. In: 21st International Con-

ference on Distributed Computing Systems, pp. 391–398 (April 2001)
21. Mulliner, C.: Security of Smart Phones. Master’s thesis, Department of Computer Science,

University of California Santa Barbara (June 2006)
22. Nauman, M., Khan, S., Alam, M., Zhang, X.: Apex: Extending android permission model

and enforcement with user-defined runtime constraints. In: ASIACCS 2010, Beijing, China,
April 13-16. ACM, New York (2010)

23. Park, J., Sandhu, R.: The UCONABC usage control model. ACM Transactions on Informa-
tion and System Security 7(1), 128–174 (2004)

24. Park, J., Sandhu, R.S.: Towards usage control models: beyond traditional access control. In:
SACMAT, pp. 57–64 (2002)

25. Ray, I., Kumar, M., Yu, L.: LRBAC: A location-aware role-based access control model.
In: Bagchi, A., Atluri, V. (eds.) ICISS 2006. LNCS, vol. 4332, pp. 147–161. Springer,
Heidelberg (2006)

26. Android reference. Develope Guide,
http://developer.android.com/guide/index.html

27. Sandhu, R.S., Park, J.: Usage control: A vision for next generation access control. In:
MMMACNS (2003)

28. Sandhu, R.S.: Role-based access control. Advances in Computers 46, 238–287 (1998)
29. Schmidt, A.-D., Peters, F., Lamour, F., Albayrak, S.: Monitoring smartphones for anomaly

detection. In: MOBILWARE 2008. ICST (2007)
30. Shabtai, A., Fledel, Y., Kanonov, U., Elovici, Y., Dolev, S., Glezer, C.: Google android: A

comprehensive security assessment. IEEE Security & Privacy (2010)
31. Stevenne, J., Niezette, M.: An efficient symbolic representation of periodic time. In: Finin,

T.W., Yesha, Y., Nicholas, C. (eds.) CIKM 1992. LNCS, vol. 752. Springer, Heidelberg (1993)
32. Xie, L., Zhang, X., Chaugule, A., Jaeger, T., Zhu, S.: Designing system-level defenses against

ellphone malware. In: SRDS 2009, pp. 83 –90 (September 2009)
33. Zhang, X., Aciiçmez, O., Seifert, J.-P.: A trusted mobile phone reference architecture via

secure kernel. In: STC, pp. 7–14. ACM, New York (2007)
34. Zhang, X., Parisi-Presicce, F., Sandhu, R., Park, J.: Formal model and policy specification of

usage control. TISSEC 8(4), 351–387 (2005)

http://www.f-secure.com/v-descs/cabir.shtml
http://www.f-secure.com/v-descs/pbstealer_a.shtml
http://www.android.com
http://www.usenix.org/events/sec07/tech/hypponen.pdf
http://developer.android.com/guide/index.html

	Context-Aware Usage Control for Android
	Introduction
	Background
	Motivating Scenarios
	UCON Model
	Android Security

	ConUCON: A Context-Aware Usage Control Model
	Model Components
	Environment Contexts
	User Policy Specification
	Runtime Usage Decisions

	A Usage Control Framework for Android
	Framework Overview
	Framework Components
	Policy Specification

	Implementation and Evaluation
	Usage Decision
	Policy Specification
	Performance Evaluation

	Related Work
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 290
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 290
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.03333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 800
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037002e000d00500072006f00640075006300650073002000500044004600200062006f006f006b00200069006e006e006500720077006f0072006b002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

