

Lecture Notes of the Institute
for Computer Sciences, Social-Informatics
and Telecommunications Engineering 50

Editorial Board

Ozgur Akan
Middle East Technical University, Ankara, Turkey

Paolo Bellavista
University of Bologna, Italy

Jiannong Cao
Hong Kong Polytechnic University, Hong Kong

Falko Dressler
University of Erlangen, Germany

Domenico Ferrari
Università Cattolica Piacenza, Italy

Mario Gerla
UCLA, USA

Hisashi Kobayashi
Princeton University, USA

Sergio Palazzo
University of Catania, Italy

Sartaj Sahni
University of Florida, USA

Xuemin (Sherman) Shen
University of Waterloo, Canada

Mircea Stan
University of Virginia, USA

Jia Xiaohua
City University of Hong Kong, Hong Kong

Albert Zomaya
University of Sydney, Australia

Geoffrey Coulson
Lancaster University, UK

Sushil Jajodia Jianying Zhou (Eds.)

Security and Privacy
in Communication
Networks

6th Iternational ICST Conference
SecureComm 2010
Singapore, September 7-9, 2010
Proceedings

13

Volume Editors

Sushil Jajodia
George Mason University
Center for Secure Information Systems
4400 University Drive, Fairfax, VA, 22030-4422, USA
E-mail: jajodia@gmu.edu

Jianying Zhou
Institute for Infocomm Research
1 Fusionopolis Way, 21-01 Connexis, South Tower
138632 Singapore
E-mail: jyzhou@i2r.a-star.edu.sg

Library of Congress Control Number: Applied for

CR Subject Classification (1998): C.2, K.6.5, D.4.6, E.3, H.4, D.2

ISSN 1867-8211
ISBN-10 3-642-16160-X Springer Berlin Heidelberg New York
ISBN-13 978-3-642-16160-5 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

springer.com

© ICST Institute for Computer Science, Social Informatics and Telecommunications Engineering 2010
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper 06/3180 5 4 3 2 1 0

Preface

These proceedings contain the papers selected for presentation at the 6th In-
ternational Conference on Security and Privacy in Communication Networks -
SecureComm 2010 - held on September 7–9, 2010 in Singapore.

In response to the call for papers, 112 papers were submitted to the confer-
ence. These papers were evaluated on the basis of their significance, novelty, and
technical quality. Each paper was reviewed by at least three members of the
program committee. The program committee meeting was held electronically,
with intensive discussions over a period of two weeks. Finally, 28 papers were
selected for presentation at the conference, giving an acceptance rate of 25%.

There is a long list of people who volunteered their time and energy to put
together the symposium and who deserve acknowledgment. Success of any con-
ference depends on the quality of the selected papers. We are grateful to the
members of the program committee and external reviewers for all their hard work
during the review and the selection process. Feng Bao, SecureComm 2010 Gen-
eral Chair, deserves our special thanks for his support and suggestions. Thanks
are due also to our keynote speakers, Pierangela Samarati and Robert H. Deng,
and to Ying Qiu for managing the submission/review system and the confer-
ence website. Last, but certainly not least, our thanks go to all the authors who
submitted papers and all the attendees.

We hope that you will find the contributions stimulating and a source of
inspiration for future research.

September 2010 Sushil Jajodia
Jianying Zhou

SecureComm 2010

6th International Conference on
Security and Privacy in Communication Networks

Singapore
September 7–9, 2010

Organized and Sponsored by

Institute for Computer Sciences, Social-Informatics
and Telecommunications Engineering (ICST)

General Chair

Feng Bao Institute for Infocomm Research, Singapore

Technical Program Chairs

Sushil Jajodia George Mason University, USA
Jianying Zhou Institute for Infocomm Research, Singapore

Publicity Chair

Sara Foresti UniMi, Italy

Workshop Chair

Javier Lopez University of Malaga, Spain

Local Arrangements Chair

Shen Tat Goh Institute for Infocomm Research, Singapore

Web Coordinator

Ying Qiu Institute for Infocomm Research, Singapore

VIII Organization

Technical Program Committee

Claudio Ardagna UniMi, Italy
Vijay Atluri Rutgers University, USA
Steve Barker King’s College London, UK
Raheem Beyah Georgia State University, USA
Marina Blanton University of Notre Dame, USA
Carlo Blundo University of Salerno, Italy
David Chadwick University of Kent, UK
Ee-Chien Chang NUS, Singapore
Hao Chen UC Davis, USA
Kefei Chen Shanghai Jiao Tong University, China
Mauro Conti VU Amsterdam, The Netherlands
Frederic Cuppens Télécom Bretagne, France
Nora Cuppens-Boulahia Télécom Bretagne, France
Anupam Datta Carnegie Mellon University, USA
Sabrina De Capitani

di Vimercati UniMi, Italy
Roberto Di Pietro Università di Roma Tre, Italy
Tassos Dimitriou AIT, Greece
Xuhua Ding SMU, Singapore
Josep Ferrer-Gomila UIB, Spain
Joe Giordano Utica College, USA
Dieter Gollmann TU Hamburg-Harburg, Germany
Vanessa Gratzer Uni. Pantheon Sorbonne, France
Yong Guan Iowa State University, USA
Lucas Hui University of Hong Kong, China
Michiharu Kudo IBM Research Tokyo, Japan
Miroslaw Kutylowski Wroclaw Uni. of Tech., Poland
Brian LaMacchia Microsoft Research, USA
Costas Lambrinoudakis Uni. of Piraeus, Greece
Jun Li University of Oregon, USA
Yingjiu Li SMU, Singapore
Dongdai Lin Institute of Software, China
Peng Liu Penn State University, USA
John Mitchell Stanford University, USA
Yi Mu University of Wollongong, Australia
David Naccache ENS, France
Leonardo Oliveira University of Campinas, Brazil

Organization IX

Jose Onieva University of Malaga, Spain
Raphael Phan Loughborough University, UK
Radha Poovendran University of Washington, USA
Indrakshi Ray Colorado State University, USA
Rodrigo Roman University of Malaga, Spain
Chunming Rong University of Stavanger, Norway
Rei Safavi-Naini University of Calgary, Canada
Kouichi Sakurai Kyushu University, Japan
Shiuhpyng Shieh NCTU, Taiwan
Krishna Sivalingam Uni. Maryland Baltimore, USA
Jessica Staddon Google, USA
Angelos Stavrou George Mason University, USA
Vipin Swarup The MITRE Corporation, USA
Patrick Tague Carnegie Mellon University, USA
Tsuyoshi Takagi Kyushu University, Japan
Patrick Traynor Georgia Tech, USA
Vijay Varadharajan Macquarie University, Australia
Guilin Wang University of Birmingham, UK
Haining Wang College of William and Mary, USA
Duncan Wong City University of Hong Kong, China
Avishai Wool Tel Aviv University, Israel
Yanjiang Yang I2R, Singapore
Zhenyu Zhong McAfee, USA
Bo Zhu Concordia University, Canada
Sencun Zhu Penn State University, USA

External Reviewers

Tolga Acar
Mina Askari
Mira Belenkiy
Przemyslaw Blaskiewicz
Jeremiah Blocki
Shaoying Cai
Gabriel Cavalcante
Sambuddho Chakravarty
Patrick Chan
Kefei Chen
Tat Chim
Yoon-Ho Choi
Tom Chothia
Eleni Darra
Bruce DeBruhl
Prokopios Drogkaris
Eduardo Ellery

Roberto Gallo
Deepak Garg
Maciek Gebala
Dimitris Geneiatakis
Steven Gianvecchio
Amy He
Islam Hegazy
Yoshiaki Hori
Henry Jerez
Yoon-Chan Jhi
Limin Jia
Quan Jia
Zoe Jiang
Henrique Kawakami
Dilsun Kaynar
Marcin Kik
Jongsung Kim

Przemyslaw Kubiak
Hoi Leh
Hao Lei
Fagen Li
Hui Li
Yan Li
Zhichun Li
Yiyuan Luo
Xianping Mao
Luciana Marconi
Krystian Matusiewicz
Jose A. Montenegro
Eduardo Morais
Lan Nguyen
Son T. Nguyen
Takashi Nishide
Yossi Oren

X Organization

Stefano Ortolani
Indrajit Ray
Edmar Rezende
Tom Roeder
Nashad Safa
Josh Schiffman
Steffen Schulz
Shin SeongHan
Jun Shao
Tomasz Struminski
Kenichi Takahashi
Hongying Tang
Michael Carl Tschantz

Uday Tupakula
Nino Vincenzo Verde
Nikos Vrakas
Jie Wang
Yongtao Wang
Jian Weng
John N. Whitley
Tomasz Wiktor

Wlodarczyk
Dinghao Wu
Zhenyu Wu
Ji Xiang
Fubiao Xiao

Mengjun Xie
Xi Xiong
Wei Xu
Toshihiro Yamauchi
Qiang Yan
Junfeng Yu
Chuan Yue
Echo Zhang
Fangfang Zhang
Mingwu Zhang
Fangming Zhao
Benwen Zhu

Table of Contents

Malware and Email Security

SAS: Semantics Aware Signature Generation for Polymorphic Worm
Detection . 1

Deguang Kong, Yoon-Chan Jhi, Tao Gong, Sencun Zhu,
Peng Liu, and Hongsheng Xi

Analyzing and Exploiting Network Behaviors of Malware 20
Jose Andre Morales, Areej Al-Bataineh, Shouhuai Xu, and
Ravi Sandhu

Inexpensive Email Addresses An Email Spam-Combating System 35
Aram Yegenian and Tassos Dimitriou

Anonymity and Privacy

Privacy Administration in Distributed Service Infrastructure 53
Nabil Ajam, Nora Cuppens-Boulahia, and Frederic Cuppens

On the Formation of Historically k-Anonymous Anonymity Sets in a
Continuous LBS . 71

Rinku Dewri, Indrakshi Ray, Indrajit Ray, and Darrell Whitley

Securing Personal Health Records in Cloud Computing: Patient-Centric
and Fine-Grained Data Access Control in Multi-owner Settings 89

Ming Li, Shucheng Yu, Kui Ren, and Wenjing Lou

Wireless Security

A Study on False Channel Condition Reporting Attacks in Wireless
Networks . 107

Dongho Kim and Yih-Chun Hu

Characterizing the Security Implications of Third-Party Emergency
Alert Systems over Cellular Text Messaging Services 125

Patrick Traynor

Saving Energy on WiFi with Required IPsec . 144
Youngsang Shin, Steven Myers, and Minaxi Gupta

XII Table of Contents

Systems Security – I

Transparent Protection of Commodity OS Kernels Using Hardware
Virtualization . 162

Michael Grace, Zhi Wang, Deepa Srinivasan, Jinku Li,
Xuxian Jiang, Zhenkai Liang, and Siarhei Liakh

A Generic Construction of Dynamic Single Sign-on with Strong
Security . 181

Jinguang Han, Yi Mu, Willy Susilo, and Jun Yan

DeCore: Detecting Content Repurposing Attacks on Client’ Systems 199
Smitha Sundareswaran and Anna C. Squicciarini

Network Security – I

Realizing a Source Authentic Internet . 217
Toby Ehrenkranz, Jun Li, and Patrick McDaniel

Partial Deafness: A Novel Denial-of-Service Attack in 802.11
Networks . 235

Jihyuk Choi, Jerry T. Chiang, Dongho Kim, and Yih-Chun Hu

Attacking Beacon-Enabled 802.15.4 Networks . 253
Sang Shin Jung, Marco Valero, Anu Bourgeois, and Raheem Beyah

Supporting Publication and Subscription Confidentiality in Pub/Sub
Networks . 272

Mihaela Ion, Giovanni Russello, and Bruno Crispo

Security Protocols – I

CED2: Communication Efficient Disjointness Decision 290
Luciana Marconi, Mauro Conti, and Roberto Di Pietro

Impossibility of Finding Any Third Family of Server Protocols
Integrating Byzantine Quorum Systems with Threshold Signature
Schemes . 307

Jingqiang Lin, Peng Liu, Jiwu Jing, and Qiongxiao Wang

Context-Aware Usage Control for Android . 326
Guangdong Bai, Liang Gu, Tao Feng, Yao Guo, and Xiangqun Chen

System Security – II

Efficient Isolation of Trusted Subsystems in Embedded Systems 344
Raoul Strackx, Frank Piessens, and Bart Preneel

Table of Contents XIII

Enhancing Host Security Using External Environment Sensors 362
Ee-Chien Chang, Liming Lu, Yongzheng Wu, Roland H.C. Yap, and
Jie Yu

FADE: Secure Overlay Cloud Storage with File Assured Deletion 380
Yang Tang, Patrick P.C. Lee, John C.S. Lui, and Radia Perlman

Security Protocols – II

A New Information Leakage Measure for Anonymity Protocols 398
Sami Zhioua

Hidden Markov Models for Automated Protocol Learning 415
Sean Whalen, Matt Bishop, and James P. Crutchfield

Epistemic Model Checking for Knowledge-Based Program
Implementation: An Application to Anonymous Broadcast 429

Omar I. Al-Bataineh and Ronr van der Meyden

Network Security – II

Surveying DNS Wildcard Usage among the Good, the Bad, and the
Ugly . 448

Andrew Kalafut, Minaxi Gupta, Pairoj Rattadilok, and
Pragneshkumar Patel

The Hitchhiker’s Guide to DNS Cache Poisoning . 466
Sooel Son and Vitaly Shmatikov

A Formal Definition of Online Abuse-Freeness . 484
Ralf Küsters, Henning Schnoor, and Tomasz Truderung

Author Index . 499

SAS: Semantics Aware Signature Generation for
Polymorphic Worm Detection

Deguang Kong1,3, Yoon-Chan Jhi2, Tao Gong1, Sencun Zhu2,
Peng Liu3, and Hongsheng Xi1

1 School of Information Science & Technology, University of Science & Technology of China,
Hefei, China

{kdg,jiangt}@mail.ustc.edu.cn, xihs@ustc.edu.cn
2 Dept. of Computer Sicence and Engineering, Pennsylvania State University,

University Park, PA 16802
{jhi,szhu}@cse.psu.edu

3 College of Information Sciences and Technology, Pennsylvania State University,
University Park, PA 16802
pliu@ist.psu.edu

Abstract. String extraction and matching techniques have been widely used in
generating signatures for worm detection, but how to generate effective worm
signatures in an adversarial environment still remains challenging. For example,
attackers can freely manipulate byte distributions within the attack payloads and
also can inject well-crafted noisy packets to contaminate the suspicious flow pool.
To address these attacks, we propose SAS, a novel Semantics Aware Statistical
algorithm for automatic signature generation. When SAS processes packets in a
suspicious flow pool, it uses data flow analysis techniques to remove non-critical
bytes. We then apply a Hidden Markov Model (HMM) to the refined data to gen-
erate state-transition-graph based signatures. To our best knowledge, this is the
first work combining semantic analysis with statistical analysis to automatically
generate worm signatures. Our experiments show that the proposed technique
can accurately detect worms with concise signatures. Moreover, our results indi-
cate that SAS is more robust to the byte distribution changes and noise injection
attacks comparing to Polygraph and Hamsa.

Keywords: Worm Signature Generation, Machine Learning, Semantics, Data
Flow Analysis, Hidden Markov Model.

1 Introduction

The computer worm is a great threat to modern network security despite various tech-
niques that have been proposed so far. To thwart worms spreading out over Internet,
pattern based signatures have been widely adopted in many network intrusion detection
systems; however, existing signature-based techniques are facing fundamental coun-
termeasures. Polymorphic and metamorphic worms (for brevity, hereafter, we mean
both polymorphic and metamorphic when we say polymorphic) can evade traditional
signature-based detection methods by either eliminating or reducing invariant patterns

S. Jajodia and J. Zhou (Eds.): SecureComm 2010, LNICST 50, pp. 1–19, 2010.
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2010

2 D. Kong et al.

in the attack payloads through attack-side obfuscation. In addition, traditional signature-
based detection methods are forced to learn worm signatures in an adversarial envi-
ronment where the attackers can intentionally inject indistinguishable noisy packets to
misled the classifier of the malicious traffic. As a result, low quality signatures would
be generated.

Although a lot of efforts have been made to detect polymorphic worms [1], existing
defenses are still limited in terms of accuracy and efficiency. To see the limitations in
detail, let us divide existing techniques against polymorphic worms into two categories.
The first type of approach is the pattern based signature generation, which uses patterns
to identify the worm traffic from the normal traffic as a signature of the invariant part
of malicious packets, such as substring and token sequence, etc. For example, systems
such as Autograph [2], Honeycomb [3], EarlyBird [4], Polygraph [5], and Hamsa [6]
extract common byte patterns from the packets collected in the suspicious flow pool.
This approach enables fast analysis on live traffic, but can be evaded by polymorphic
worms since the instances of a well-crafted polymorphic worm could share few or no
syntactic patterns in common. Moreover, such a syntactic signature generation process
can be misled by the allergy attack [7], the red herring and pool positioning attacks [8],
and also by the noisy packets injected into the suspicious flow pool [9]. The second
approach is to identify the semantics-derived characteristics of worm payloads, as in
Cover [10], TaintCheck [11], ABROR [12], Sigfree [13], Spector [14], and STILL [15].
Existing techniques in this approach perform static analysis and/or dynamic analysis
(e.g., emulation-based analysis [16]) on the packet payloads to detect the invariant char-
acteristics reflecting semantics of malicious codes (e.g., behavioral characteristics of
the decryption routine of a polymorphic worm). This approach is robust to the above
evasion attempts because it considers more about semantics. However, the semantics
analysis [17] may introduce non-trivial performance overheads, which is often intolera-
ble in network-based on-line detection. Also, the payload analysis could be hindered by
anti-static techniques [15] or anti-emulation techniques [18,19]. Our technique aims at
a novel signature that is more robust than the pattern-based signatures and lighter than
the prior behavior-based detection methods.

In this paper, we focus on the polymorphic worms can be locally or remotely injected
using the HTTP protocol. To generate high quality signatures of such worms, we pro-
pose SAS, a novel Semantics Aware Statistical algorithm that generates semantic-aware
signatures automatically. SAS introduces low overhead in signature matching process,
thus it is suitable for the network-based worm detection. When SAS processes packets
in the suspicious flow pool, it uses data flow analysis techniques to remove non-critical
bytes irrelevant to the semantics of the worm code. We then apply a Hidden Markov
Model (HMM) to the refined data to generate our state-transition-graph (STG) based
signatures. Since modern polymorphic engines can completely randomize both the en-
crypted shellcode and the decryptor, we use a probability STG signature to defeat the
absence of syntactic invariants. STG, as a probability signature, can adaptively learn to-
ken changes in different packets, correlate token distributions with states, and clearly
express the dependence among tokens in packet payloads. Besides this, after a signa-
ture is generated, the detector is free of making sophisticated semantic analysis, such
as emulating executions of instructions on the incoming packets to match attacks. Our

SAS: Semantics Aware Signature Generation for Polymorphic Worm Detection 3

experiments show that our technique exhibits good performance with low false positives
and false negatives, especially when attackers can indistinguishably inject noisy bytes
to mislead the signature extractor. SAS places itself between the pattern-based signa-
tures and the semantic-derived detection methods, by balancing between security and
the signature matching speed. As a semantic-based technique, SAS is more robust than
most pattern-based signatures, sacrificing a little speed in signature matching. Based on
the statistical analysis, SAS might sacrifice subtle part of security benefits of in-depth
semantic analysis, for which SAS gains enough acceleration to be a network-based IDS.

Our contribution is in three-fold.

– To our best knowledge, our work is the first one combining semantic analysis with
statistical analysis in signature generation process. As a result, the proposed tech-
nique is robust to the (crafted) noisy packets and the noisy bytes.

– We present a state-transition-graph based method to represent different byte distri-
butions in different states. We explore semantics-derived characteristics beyond the
byte patterns in packets.

– The signature matching algorithm used in our technique introduces low overhead,
so that we can apply SAS as a network-based worm detection system.

The rest of this paper is organized as follows. In Section 2, we summarize the attacks
to prior automated signature generation techniques. We then present our semantics-
aware polymorphic worm detection technique in Section 3. In Section 4, we discuss the
advantages and limitations of SAS, before presenting the evaluation results in Section 5.
The related works are reviewed in Section 6, followed by the conclusion in Section 7.

2 Attacks on Signature Generation

2.1 Techniques to Evade Detection

Metamorphism and polymorphism are two typical techniques to obfuscate the mali-
cious payload to evade the detection. Metamorphism [20] uses instruction replacement,
equivalent semantics, instruction reordering, garbage (e.g., NOP) insertion, and/or reg-
ister renaming to evade signature based detectors. Polymorphism [20] usually uses a
built-in encoder to encrypt original shellcode, and stores the encrypted shellcode and
a decryption routine in the payload. The encrypted shellcode will be decrypted dur-
ing its execution time at a victim site. The decryption routine can be further obfus-
cated by metamorphic techniques; the attack code generated by polymorphic engine
TAPION [21] is such an example. We note that traditional signature based detection
algorithm is easily to be misled by applying byte substitution or reordering. We also
doubt if the invariants always exist in all the malicious traffic flows. In fact, we found
that for the instances of the polymorphic worm Slammer [22] mutated by the CLET
polymorphic engine, the only invariant token (byte) in all of its mutations is “\x04”,
which is commonly found in all SQL name resolution requests.

2.2 Techniques to Mislead Signature Generation

Besides the obfuscation techniques which aim to cause false negatives in signature
matching, there are also techniques attempting to introduce false positives and false

4 D. Kong et al.

t11 t12 t13

tat22 t23 t21

t11 t12 t13

t22 t23 t21

N1

N2

W1

W2

True invariant t1j t2j Fake invariant

ta

ta

tb

tb

tb

Fig. 1. Suspicious packet flow pool

signatures. For example, the allergy attack [7] is a denial of service (DoS) attack that
misleads automatic signature generation systems to generate signatures matching nor-
mal traffic flows. Signature generation systems such as Polygraph [5] and Hamsa [6]
include a flow classifier module and a signature generation module. The flow classifier
module separates the network traffic flows during training period into two pools, the
innocuous pool and the suspicious pool. The signature generation module extracts sig-
natures from the suspicious flow pool. A signature consists of tokens, where each token
is a byte sequence found across all the malicious packets that the signature is target-
ing. The goal of a signature generation algorithm is to generate signatures which match
the maximum fraction of network flows in the suspicious flow pool while matching the
minimum fraction of network flows in the innocuous pool. Generally, existing signature
generation systems have two limitations. First, the flow classifier module is not perfect;
thus, noise can be introduced into the suspicious flow pool. Second, in reality, the suspi-
cious flow pool often contains more than one type of worms, thus a clustering algorithm
is needed to first cluster the flows that contain the same type of worm. Polygraph [5]
uses a hierarchical clustering algorithm to merge flows to generate a signature which
introduces the lowest false positive rate at every step of clustering process. Hasma [6]
uses a model-based greedy signature generation algorithm to select those tokens as a
signature which has the highest coverage over the suspicious flow pool.

Let us illustrate the vulnerability of signature generators such as Polygraph and
Hamsa when crafted noises are injected in the training traffic as shown in Figure 1.
Here Ni denotes normal packets and Wi (1 ≤ i ≤ 2) denotes the true worm packets.
Let us assume the malicious invariant (i.e., the true signature) in the worm packets con-
sists of two independent tokens ta and tb, and each of them has the same false positive
rate p (0 < p < 1) if taken as a signature. Let the worm packets also include the tokens
tij (1 ≤ j ≤ 3), each of which has the same false positive rate p as a token in a true
signature, thus an attacker can craft normal packets Nis to contain tij (1 ≤ j ≤ 3).
If all these four flows end up being included in a suspicious flow pool, the signature
generation process would be misled.

Setting 1: Let the ratio of the four flows (W1, W2, N1, N2) in the suspicious flow pool
be (99:99:1:1). That is, there is only 1% noise in the suspicious flow pool. According
to the clustering algorithm in Polygraph, it will choose to merge the flows that will
generate a signature which has the lowest false positive rate. In this example shown
in Figure 1, the false positive rate of using signature (ti1, ti2, ti3) by merging flows
(Wi, Ni) is p3 and that of signature (ta, tb) by merging flows (W1, W2) is p2. The

SAS: Semantics Aware Signature Generation for Polymorphic Worm Detection 5

Payload
Extraction

Disassemble

Useful
instruction
distilling

Signature
generation

New Traffic
Flow

Useful
instructions

Useful
instructions

Useful
instructions

Useful
instructions

Suspicious
Flow Pool
Suspicious
Flow Pool

State-transition-
graph signature

BLOCK
or PASS

Clustering

Signature
matching

State-transition-
graph signature

State-transition-
graph signature

New Traffic
Flow

New Traffic
Flow

Suspicious
Flow Pool

Suspicious
Flow Pool

S0:
 Control Flow

Change

S3:
GetPC

S2:
Iteration

S1:
Decryption

Fig. 2. (a) System architecture. (b) State-transition-graph (STG) model.

former is smaller and thus the hierarchical clustering algorithm will merge the flows of
Wi with Ni, and it will terminate with two signatures (ti1, ti2, ti3).

Setting 2: Let the ratio of the flows (W1, W2, N1, N2) in the suspicious flow pool be
(99:99:100:100). According to Hasma’s model-based greedy signature generation algo-
rithm, Hamsa selects the tokens with the highest coverage in the suspicious flow pool. In
our example, the coverages for signature (ti1, ti2, ti3) and (ta, tb) are 50% and 49.7%,
respectively. Thus, Hamsa first selects token (ti1), then (ti1, ti2), and (ti1, ti2, ti3) as a
signature as long as the false positive rate of signature (ti1, ti2, ti3) is below a threshold.

From the above two cases, we can clearly see that if an attacker injects noises into
the suspicious flow pool, the wrong signatures will be generated.

3 Our Approach

3.1 Why STG Based Signature Can Help?

The fake blending packets mixed in a suspicious flow pool usually do not have many
useful instruction code embedded in the packet unless they are truly worms. It is found
that byte sequences that look like code sequences are highly likely to be dummies (or
data) if the containing packet has no code implying function calls [13]. We use se-
mantic analysis to filter those “noisy” padding and substitution bytes and thus improve
the signature quality. Under some conditions, the suspicious flow pool can contain no
invariants if we compute the frequency of each token by simply counting them. We
find the distributions of different tokens are influenced by the positions of the tokens in
packets, which are instruction-level exhibitions of semantics and syntax of the packets.
In order to capture such semantics, we use different states to express different token
distributions in different positions in the packets. It is more robust to the token changes
in different positions of the packets, which correlates the tokens’ distributions with a

6 D. Kong et al.

state, making token dependency relationships clear. One issue we want to emphasize
here is that different from but not contrary to the claim in [23], our model is based on
the remaining code extracted from the whole packets instead of on the whole worm
packets.

3.2 System Overview

In Figure 2, we describe the framework of our approach. Our framework consists of
two phases, semantic-aware signature extraction phase and semantic-aware signature
matching phase. The signature extraction phase consists of five modules: payload ex-
traction, payload disassembly, useful instruction distilling, clustering, and signature
generation. The signature matching phase is comprised of two modules: payload extrac-
tion and signature matching module. Payload extraction module extracts the payload
which possibly implements the malicious intent, from a a flow which is a set of packets
forming a message. For example, in a HTTP request message, a malicious payload only
exists in Request-URI and Request-Body of the whole flow. We extract these two parts
from the HTTP flows for further semantics analysis. Disassembly module disassem-
bles an input byte sequence. If it finds consecutive instructions in the input sequence,
it generates a disassembled instruction sequence as output. An instruction sequence is
a sequence of CPU instructions which has only one entry point. A valid instruction
sequence should have at least one execution path from the entry point to another in-
struction within the sequence. Since we do not know the entry point of the code when
the code is present in the byte sequences, we exploit an improved recursive traversal
disassembly algorithm introduced by Wang et al. [13] to disassemble the input. For an
N -byte sequence, the time complexity of this algorithm is O(N). Useful instruction
distilling module extracts useful instructions from the instruction sequences. Useless
instructions are identified and pruned by control flow and data flow analysis. Payload
clustering module clusters the payloads containing similar set of useful instructions
together. Signature generation module computes STG based signatures from the pay-
load clusters. Upon completion of training, Signature matching module starts detect-
ing worm packets by matching STG signatures against input packets. Shortly we will
discuss these four modules in detail.

3.3 Useful Instruction Extraction

The disassembly module generates zero, one, or multiple instruction sequences, which
do not necessarily correspond to real code. From the output of the disassembly mod-
ule, we distill useful instructions by pruning useless instructions. Useless instruc-
tions are those illegal and redundant byte sequences using the technique introduced in
SigFree [13]. Basically, the pruned useless byte sequences correspond to three kinds of
dataflow anomalies: define-define, define-undefine, and undefine-reference. When there
is an undefine-reference anomaly (i.e., a variable is referenced before it is ever assigned
with a value) in an execution path, the instruction which causes the “reference” is a
useless instruction. When there is a define-define anomaly (i.e., a variable is assigned
a value twice) or define-undefine anomaly (i.e., a defined variable is later set by an un-
defined variable), the instruction that caused the former “define” is also considered as

SAS: Semantics Aware Signature Generation for Polymorphic Worm Detection 7

Useful instructions (assembly code)……….
300: jmp short 00000357
306: mov esi,[ss:esp]
310: xor ecx,ecx
319: push 8B4973EE
31E:pop ebx
325: xchg eax,ebx
326: xor [ds:esi],eax
328: xchg eax,ebx
32E:add esi,1
33B:xchg eax,esi
33C:inc eax
33D:xchg eax,esi
342:inc esi
346:xchg eax,esi
347:inc eax
348:xchg eax,esi
34E:loopd short 00000325
357:call 00000306
………..

……….
49 91 9C 46 4A 96 50 98 5D 91 99 44 55 4A 4F 5D
EB 55 8C E0 8C E0 8B 34 24 83 EC 04 92 9E 8C C0
31 C9 B0 C3 90 40 C1 C0 6D 68 EE 73 49 8B 5B 8C
EB 3F B1 23 27 93 31 06 93 27 8C C0 85 C0 83 C6
01 F5 C1 C0 49 8C E0 B0 D8 9F F8 96 40 96 37 83
E0 77 46 B0 97 9B 96 40 96 37 C1 C8 13 98 E2 D5
47 83 E0 AA 47 EB 06 E8 AA FF FF FF 7E FA AC BA

………..

Origin packet contents
……….
EB 55
8B3424
31C9
68 EE73498B
5B
93
3106
93
83C6 01
96
40
96
46
96
40
96
E2 D5
E8 AAFFFFFF
……….

350: inc edi
351: add eax,-56
354: inc edi
355: jmp 0000035D

………..

35C: jle 0000011C
35E: lods [esi]
35F: mov edx,22FC13C

………..

Useful instructions (binary code)

Pruned instructions

(a) (b) (c)

Fig. 3. (a) Original packet contents. (b) Useful instructions (assembly code). (c) Useful instruc-
tions (binary code).

a useless instruction. Since normal packets and crafted noisy packets typically do not
contain useful instructions, such packets injected in the suspicious flow pool are filtered
out after the useful instruction extraction phase. The remaining instructions are likely
to be related to the semantics of the code contained in the suspicious packets. An ex-
ample of polymorphic payload analysis is shown in Figure 3. Here the leftmost part
is the original packet content in binary, the middle one is the disassembly code of the
useful instructions after removing the useless one, and the rightmost part is its corre-
sponding binaries. For example, in Figure 3, the disassembly code inc edi appeared in
address 350 is pruned because edi is referenced without being defined to produce an
undefine-reference anomaly.

3.4 Payload Clustering

The useful instruction sequences extracted from polymorphic worms normally contain
the following features: (F1) GetPC: Code to get the current program counter. GetPC
code should contain opcode “call” or “fstenv.” We explain the rationale shortly; (F2)
Iteration: Obviously, a polymorphic worm needs to perform iterations over encrypted
shellcode. The instructions that can characterize this feature include loop, rep and the
variants of such instructions (e.g., loopz, loope, loopnz); (F3) Jump: A polymorphic
code highly likely to contain conditional/unconditional branches (e.g., jmp, jnz, je);
(F4) Decryption: Since the shellcode of a polymorphic worm is encrypted when it is
sent to a victim, a polymorphic worm should decrypt the shellcode during or before ex-
ecution. We note that certain machine instructions (e.g., or, xor) are more often found
in decryption routine. The reason why we use these four features is that from our ob-
servations, nearly all self-modifying polymorphic worm packets contain such features
even after complicated obfuscations.

A decryption routine needs to read and write the encrypted code in the payload, there-
fore, a polymorphic worm needs to know where the payload is loaded in the memory.
To our best knowledge, the only way for a shellcode to get the absolute address of the
payload is to read the PC (Program Counter) register [15]. Since the IA-32 architecture

8 D. Kong et al.

does not provide any instructions to directly access PC, attackers have to play a trick
to obtain the value in the PC register. As far as we know, currently three methods are
known in the attacker community: one method uses fstenv, and the other two use relative
calls to figure out the values in PC.

In a suspicious flow pool, there are normally multiple types of worm packets. For
a given packet, we first extract the instructions indicating each of the four features
of polymorphic worms. However, simply counting such instructions is not sufficient
to characterize a polymorphic shellcode. In reality, some feature may appear multiple
times in a specific worm instance, while some others may not appear at all. This makes
it complicated for us to match a worm signature to a polymorphic shellcode. If we mea-
sure the similarity between a signature and a shellcode based on the bare sequence of
the feature identifying instructions, an attacker may evade our detection by distributing
dummy features in different byte positions within the payload or by reordering instruc-
tions in the execution path. On the other hand, if we ignore the structural (or sequent)
order of the feature-identifying instructions and consider them as a histogram, it might
result in an inaccurate detection. So in this work we consider both of the structural
and statistical informations in packet classification, and use a parameter δ to balance
between them.

Specifically, we define two types of distances: (D1) the feature distance; and (D2) the
histogram distance. We keep the sequent order of the features appearing in an instruc-
tion sequence, in a feature vector. Let D1(v1, v2) denote the feature distance between
two feature vectors v1, v2. When v1 and v2 are of the same length, we define D1(v1, v2)
as the Hamming distance of v1 and v2. For example, the feature vector of the instruc-
tion sequence shown in Figure 3 is S = {F3, F4, F2, F1}. Given another feature vector
S′ = {F3, F4, F1, F1}, the distance between S and S′ is computed as D1(S, S′) = 1.
When two feature vectors are of different lengths, we define the distance of the
two feature vectors as D1(v1, v2) = max(length(v1), length(v2)) − LLCS(v1, v2),
where LLCS(v1, v2) denotes the length of the longest common subsequence of v1
and v2 and length(v1) denotes the length of v1. For example, if we are given S′′ =
{F3, F4, F1, F3, F1}, distance D1(S, S′′) = 1. We also measure the histogram dis-
tance, the similarity based on the histograms of two feature vectors. Let D2(v1, v2)
denotes the histogram distance between two feature vectors v1, v2. For example, the
histogram of S above is (1, 1, 1, 1) because every feature appears exactly once. Let us
assume that the histogram of feature vector S′ is given as (1, 2, 0, 1). Then, we define
D2(S, S′) as the Hamming distance of S and S′, which is 2.

Given two useful instruction sequences, we use both D1 and D2 to determine their
similarity. We define the distance between two useful instruction sequences as D =
δD1 +(1− δ)D2, where δ is a value minimizing the clustering error. Suppose there are
M clusters in total. Let Lm be the number of packets in cluster m, where m (1 ≤ m ≤
M) denotes the index of each cluster. When a new packet in a suspicious flow pool is
being clustered, we determine whether to merge the packet into an existing cluster or to
create a new cluster to contain the packet. We start by calculating the distance between
the new packet and every packet in existing clusters. If we find one or more clusters
with average distance below threshold θ, we add the new packet to the cluster with the

SAS: Semantics Aware Signature Generation for Polymorphic Worm Detection 9

Algorithm 1. State-Transition-Graph Model Learning Algorithm
Input: A cluster of the useful instructions of the payload O[1..T]
Output: STG Signature λ = {π, A, B} for the input cluster
Procedure:
1: map tokens Ot ∈ X(1 ≤ t ≤ T) to the corresponding states Si ∈ {S0, S1, S2, S3}(0 ≤ i ≤ N − 1)
2: calculate initial probability distribution π based on the probabilities of the first token O1 being on each state Si ∈
{S0, S1, S2, S3} // get π

3: generate the frequent token set for each state Si ∈ {S0, S1, S2, S3} and calculate bi(k)(1 ≤ k ≤ |X|) // get B
4: for i = 0 to N − 1 do
5: for j = 0 to N − 1 do

6: aij ← number(Ot∈Si∧Ot+1∈Sj)
number(Ot∈Si)

// get A, here predicate number denotes the frequency of a token

minimum distance among them. Otherwise, we create a new cluster for the new packet.
We repeat this process until all packets in the suspicious flow are clustered.

3.5 STG Based Signature Generation

After clustering all the packets in the suspicious pool, we build a signature from each of
the clusters. Unlike prior techniques, our signature is based on a state transition graph
in which each state is mapped to each of the four features introduced above (Figure 2).
In our approach, the tokens (either opcode or operands in a useful instruction sequence)
are directly visible. The tokens can be the output of any state, which means each state
has a probability distribution over the possible output tokens. For example, in Figure 3,
“EB” and “55” are tokens observed in different states. This matches exactly with the
definition of Hidden Markov Model (HMM) [24], thus we use HMM to represent the
state transition graph for our signature.

More formally, our STG model consists of four states (N = 4), which forms state
space S = {S0, S1, S2, S3}. Let λ = {π, A, B} denote this model, where A is the
state transition matrix, B is a probability distribution matrix, and π is the initial state
distribution. When a STG model is constructed from a polymorphic worm, we use the
model as our STG-based signature. Our STG model is defined as follows:

– State space S = {S0, S1, S2, S3}, where state S0 is the control flow change state,
which correspond to the feature F3. State S1 is the decryption state, which corre-
sponds to the feature F4. State S2 is the iteration state, which corresponds to the
feature F2. State S3 is the GetPC state, corresponding to F1.

– Transition matrix A = (aij)N×N =

⎛
⎜⎜⎝

a00 a01 a02 a03
a10 a11 a12 a13
a20 a21 a22 a23
a30 a31 a32 a33

⎞
⎟⎟⎠where aij =

P (next state is Sj |
current state is Si), aij ∈ {S × S → [0, 1]}, and aij satisfies

∑
j

aij = 1 (0 ≤
i, j ≤ N − 1).

– Let Y be the set of a single byte and Y i denote the set of i-byte sequences.
X = {Y, Y 2, Y 3, Y 4} is the token set in our system because a token in a useful
instruction contains at most four bytes (e.g., “AAFFFFFF”), which corresponds to
the word size of a 32-bit system. Let Ot (1 ≤ t ≤ |X |) be a token that is visible

10 D. Kong et al.

S0:
Execution
Changing

S1:
Decryption S2:

Iteration
S3:

GetPC

92EC 048324348BE08C55EB5D4F4A55 9E44 8CIncoming packet

STG model

Signature
matching

symbol probability

match
?

match?match
?

match?

EB 0.5
55 0.01065
58 0.00814
...

pos

symbol probability
09D8 0.01393

01 0.03234
09 0.00006
...

symbol probability
E2 0.49020
E7 0.01593
D9 0.01961
...

symbol probability
057A10B9 0.00407

E8 0.03253
EB 0.06311
...

44
44 55

44 55 4A
44 55 4A 4F

55
55 4A

55 4A 4F
55 4A 4F 5D

Fig. 4. STG signature matching process

at a certain state, and O = {Ot|Ot ∈ X} be the visible token set at the state. For
a real instruction sequence with T tokens in the useful instruction sequence, the t-
length visible output sequence is defined as O[1..t] = {O1, O2, ..., Ot} (t ≤ T).
Then, we can define the probability set B as B = {bi(k)}, where bi(k) =
P (visible token is Ok|current state is Si). bi(k) is the probability of
Xk on state Si, thus satisfying

∑
1≤k≤|X|

bi(k) = 1.

– Initial state distribution π={π0, π1, π2, π3}, where πi =P (the first state is Si) .

Algorithm 1 is adopted from the segment K-means algorithm [24] to learn the structure
of Hidden Markov Model. As the same token can appear at different states with different
probabilities, we manage our model to satisfy Ot ∈ Si if bi(Ot) > bj(Ot) for all j �= i
(step 2 and step 3). We also remove noises by setting a threshold to discard less-frequent
tokens. For example, if max

i
bi(Ot) is below the threshold (e.g.,θ0), we ignore this token

Ot while constructing a STG model.

3.6 Semantics Aware Signature Matching Process

After we extract STG-based signatures from the suspicious flow pool, we can use them
to match live network packets. Given a new packet to test, our detector first retrieves
the payload of the packet. Assuming that the payload length is m bytes, the detector
checks whether this m-byte payload matches any of the existing signatures. If it does
not match any signature (i.e., their deviation distance is above a threshold θ2), it is
considered as a benign packet. If it matches a single signature of certain type of a
worm, it will be classified as the type of worm associated with the signature. If the
packet matches multiple signatures, the detector classifies the packet as the one with
the smallest distance among the matching signatures. An advantage of our approach is
that we need not make complicated analysis on the live packets but match the packets
byte after byte.

To measure the distance between an m-byte (input) payload and a signature, we try
to identify the first token, starting from the first byte of the payload. We form four
candidate tokens of length i (i=1, 2, 3, 4), where the i-th candidate token consists of

SAS: Semantics Aware Signature Generation for Polymorphic Worm Detection 11

Table 1. Comparison of SAS with Polygraph and Hamsa

Comparison Polygraph Hamsa SAS
Content (behavior) detection content content content

Semantic related semantic free semantic free semantic related
On-line detection speed fast fast fast
(Crafted) noise tolerance some medium good
Token-fit attack resilience nearly no medium good

Coincidental attack resilience nearly no medium good
Allergy attack resilience some some good

Signature simplicity simple simple complicated

the first i bytes of the payload. As is shown in Figure 4, we first select (44), (44,55),
(44,55,4A), (44,55,4A,4F) as the candidate tokens. Then, for each candidate token Ot,
we calculate its probability to appear in each of the four states in our STG model, and
assign it to the state which gives the largest probability bi(Ot). Let max(Pi) denotes
the maximum of the four bi(Ot). If max(Pi) is above a threshold θ1, we choose the
candidate token yielding max(Pi) as the real token, and ignore the others. Otherwise,
all of the four candidate tokens are ignored. In either case, we move to the next four
bytes of the payload. As for the case in Figure 4, we will start to check the next four
tokens (55), (55,4A), (55,4A,4F), (55,4A,4F,5D). We will repeat the above process until
all m bytes are processed. Finally, we sum up the max(Pi) and calculate its distance
from the signature. The deviation distance D is defined as D = || log P [O[1...m]|λ] −
mean|| where log P [O[1...m]|λ] is the matching probability value for a m-byte packet,
mean is an average matching value for a certain type of training packets. Assuming that
there are l packets in a cluster of the same type, and the byte length for each packet is

Ti (1 ≤ i ≤ l), we have mean = 1
l

l∑
k=1

log P [O[1...Tk]|λ]. We do not show the detailed

algorithm here due to the limited space.

4 Security Analysis

4.1 Strength

Our semantic based signatures can filter the noises in the suspicious flow pool and
prune the useless instructions which are otherwise possibly learned as signature, thus
it has good noise tolerance. As the STG signature is more complicated than previous
signatures (e.g., token-sequence signature), it is much harder for attackers to ruin our
automatic signature generation by crafting packets bearing both the tokens of normal
and attack packets compared with previous signatures. Moreover, even if the hackers
change the contents of the attack packets a lot, they can hardly evade our detection
since our signature is not based on syntactic patterns but based on semantic patterns. In
addition, the STG signature can match unknown polymorphic worms (which our detec-
tor has not been trained with) since it has learned certain semantics of the decryption
routine from existing polymorphic worms. Our STG signature matching algorithm in-
troduces low overhead (analysis throughput is more than 10Mbps), thus our detector
is fast enough to match live packets. Some anti-disassemble techniques like junk byte

12 D. Kong et al.

……….
sub cl,2
dec ecx
dec ecx
je short 00000261
jmp short 00000206
call 00000201
………..

……….
80E9 02
49
49
74 07
EB AA
E8
A0FFFFFF
………..

Useful instruction (assembly code) Bianry code

Fig. 5. STG signature example. The bytes used by the signature are marked in red color.

insertion, opaque predicate, and code overlap all aim to immobilize linear sweep dis-
assembly algorithms. The disassembler of the STG signature generation approach is a
recursive traversal algorithm, which makes our approach robust to such types of anti-
disassemble techniques. In Table 1, we summarize our benefit in comparison with other
signature generation approaches. For STG, it is robust to the attacks filling crafted bytes
in the wildcard bytes of the packets (e.g., coincidental-pattern attack [5] and the token-
fit attack [6]) since these packets usually fail to pass our semantic analysis process. It
is robust to the innocuous pool poisoning [5] attack and allergy attack [7] because our
technique can filter the normal packets out for signature generation. As it is a prob-
ability based algorithm, the long-tail attack [5] will not thwart our matching process.
Finally, by discovering meanings of each token (i.e., which token is exhibiting which
feature), our approach explores beyond traditional signatures which leverage only the
syntactic patterns to match worm packets.

4.2 Limitations

Here we discuss about the limitations of the proposed technique and possible meth-
ods to mitigate these limitations. First, based on static analysis which can not handle
some state-of-the-art code obfuscation techniques (e.g., branch-function obfuscation,
memory access obfuscation), we can not generate appropriate signatures if the seman-
tic analysis fails to analyze the suspicious flow pool. This can be solved through more
sophisticated semantic analysis such as symbolic execution and abstract interpretation
techniques. Second, our technique can be evaded if smart attackers use more sophisti-
cated encryption and obfuscation techniques such as doubly encrypted shellcode with
invariant substitution. Also, for the non self-contained code [16], there may be absence
of features for clustering to generate the signatures. To address these issues, emulation-
based payload analysis techniques can be used in the signature extractor and the attack
detector, however, state-of-the-art emulation-based techniques are still lack of perfor-
mance to be used in a live packet analysis. Although one may doubt the utility of byte-
level signatures (e.g., it could not handle the packed code), its performance is good for
practical deployment compared with the emulation based approaches.

5 Evaluation

We test our system offline on massive polymorphic packets generated by real poly-
morphic engines used by attackers (i.e., CLET, ADMmutate, PexFnstenvMov) and on

SAS: Semantics Aware Signature Generation for Polymorphic Worm Detection 13

normal HTTP request/reply traces collected at out lab PCs. Both CLET and ADM-
mutate are advanced polymorphic engines which obfuscate the decryption routines by
metamorphism such as instruction replacement and garbage insertion. CLET also uses
spectrum analysis to counterattack the byte distribution analysis. PexFnstenvMov is a
polymorphic engine included in Metaspoit [25] framework. Opcode of the “xor” in-
struction is frequently found in the decryption routine of PexFnstenvMov. PexFnstenv-
Mov also uses the “fnstenv” instruction for the GetPC code.

In evaluation, we also use 100,000 non-attack HTTP requests/responses for two pur-
poses: to compute false positive rate and to derive noisy flows to attack signature extrac-
tion. The normal HTTP traffic contains 100,000 messages collected for three weeks at
seven workstations owned by seven different individuals. To collect the traffic, a client-
side proxy monitoring incoming and outgoing HTTP traffic is deployed underneath the
web server. Those 100,000 messages contain various types of non-attack data including
JavaScript, HTML, XML, PDF, Flash, and multimedia data, which render diverse and
realistic traffic typically found in the wild. The total size of the traces is over 1.77GB.
We run our experiments on a 2.4GHz Intel Quad-Core machine with 2GB RAM, run-
ning Windows XP SP2.

5.1 Comparison with Polygraph and Hamsa

In this section, we evaluate the accuracy (in terms of false positives and false negatives)
of our algorithm in comparison with Polygraph and Hamsa. We compare the three sys-
tems in two cases: without noise injection attack, with noise injection attack.

Parameter Settings. The parameters of Polygraph are set as follows. The minimum
token length α is set to 2, the minimum cluster size is set to 2, and the maximum ac-
ceptable false positive rate during the signature generation process is set to 1%. Hamsa
in our experiments is built from the source that we downloaded from the Hamsa hom-
page. The minimum acceptable false positive rate of Hamsa is set to u = 0.01 during the
signature generation process. In our approach, the parameters θ0,θ1 are used to prune
the tokens which have little probability to match with the STG signature; and parameter
θ2 is used to label the deviation distance during the packet matching process. These
parameters are configured as follows: θ0 = 0.016, θ1 = 0.016, θ2 = 12.000.

Polymorphic Engine. In this experiment, we use CLET because it implements spec-
trum analysis to attack the byte distribution analysis performed by existing signature
extractors. We generate 1,000 worm instances from CLET, among which 400 instances
are used as the training data to generate signatures, and 600 instances are used to com-
pute the false negative rate. We also use 100,000 non-attack HTTP requests/responses
to compute false positive rate.

Comparison Without Noise Injection. We compare our method with Polygraph and
Hamsa, without considering noise injection. Fed with the same 400 attack messages, the
signatures generated by Hamsa and the conjunction signature generated by Polygraph
are all ‘\x8b’:1,‘\xff\xff\xff’:1,‘\x07\xeb’:1.The state transition path of our signature
is (S0 → S1 → S0 → S3). Token sequences ‘\xff\xff\xff’ and ‘\x07\xeb’ are the
only invariant tokens appearing in the useful instruction sequences (Figure 5).

14 D. Kong et al.

0 20 40 600

0.2

0.4

0.6

0.8

1

False negative(%)

Fa
ls

e
po

si
tiv

e(
%

)

Polygraph without noise
SAS
Polygraph with noise

0 20 40 600

0.2

0.4

0.6

0.8

1

False negative(%)

Fa
ls

e
po

si
tiv

e(
%

)

Hamsa without noise
SAS
Hamsa with noise

0 0.2 0.4 0.6 0.80.06

0.08

0.1

0.12

0.14

0.16

0.18

False negative(%)

Fa
ls

e
po

si
tiv

e(
%

)

PexFnstenvMov
CLet
Admutate

Fig. 6. (a) Comparison of SAS and Polygraph (b) Comparison of SAS and Hamsa (c) Impact of
parameters

Comparison Under Noise Injection. We compare SAS, Polygraph, and Hamsa, as-
suming 1:1 attack-to-noise ratio in the suspicious flow pool. To add the crafted noise
to the suspicious flow pool, we adopt the method used by Perdisci et. al. [9]. For each
malicious packet wi, we create the associated fake anomalous packet fi by modifying
the corresponding packet wi. The way to make crafted noisy packet fi is divided into
the following six steps. (Step 1) f0

i : create a copy of wi. (Step 2) f1
i : permute bytes f0

i

randomly. (Step 3) a[]: copy k substrings of length l from wi to array a, but do not copy
the true invariant. (Step 4) f2

i : copy the fake invariant substring into f1
i . (Step 5) f3

i :
inject m-length substring of string v into (f2

i), we generate n (n > m) bytes of string
v = {v1, v2, ..., vn} by selecting the contiguous bytes in the innocuous packet which
satisfy 0.05 < P(v|innocuous packets) < 0.20. (Step 6) f4

i : obfuscate the true in-
variant by substituting the true invariant bytes in the packet.

To craft non-attack derived noises, we use our 10,000 normal HTTP messages. The
suspicious flow pool are composed of 400 CLET-mutated instances and 400 crafted
noises. We configure the parameters of noise generator as k = 3, l = 5, n = 6, and
m = 3. The parameters for SAS, Polygraph, and Hamsa are set as the same as in
Case-1.

When we compare SAS with Polygraph, we ignore “true invariants” in Step 3 and
6 because we do not know the true invariants until the signature is generated. Instead,
we permute the bytes more randomly to separate and distribute contiguous bytes before
copying substrings of wi in Step 3. Atop this, we use even more sophisticated noise
injection when we compare SAS with Hamsa. Specifically, in Step 5, we choose a
string v which satisfies P(v|innocuous packets) < u (u is parameter). Since we set
u as described above, Hamsa’s false positive rate will not exceed u even if the injected
noises are taken as signatures.

Comparison Results. Figure 6(a) and Figure 6(b) show the false positive and false
negative rates of SAS, Polygraph, and Hamsa in both experiment cases. In Case-1 ex-
periment (i.e., without noise injection), all the three systems show similar accuracy.
Although SAS shows slightly higher false positive rate than Polygraph and Hamsa, the

SAS: Semantics Aware Signature Generation for Polymorphic Worm Detection 15

false positive rates of all three systems are already very low (< 0.0008). In Case-2
experiment (i.e., with noise injection), the false positive and the false negative rates of
SAS has not been affected by the crafted noise injected to the suspicious flow pool.
In contrast, the signature generation process of Polygraph and Hamsa has been greatly
misled to add fake invariants taken from the crafted noises, which results in extremely
high false negative rate. As a result, the signatures generated by Polygraph and Hamsa
miss more than 20% of attack messages. The false positive and false negative rates of
Polygraph and Hamsa are still lower than 1%, which is because they have a threshold
of maximum false positive rate (say 1%).

5.2 Per-polymorphic Engine Evaluation

In this experiment, we evaluate the impact of different parameter settings on our ap-
proach. We use 3,000 worm instances generated by CLET, Admutate, and PexFnstenv-
Mov. We feed our signature extractor with 1,200 out of the 3,000 worm instances
(400 instances from each type of worm) to generate STG-based signatures. Then, we
use the remaining worm instances to evaluate the extracted signatures. We also inject
10,000 normal packets into the suspicious flow pool to make the packet clustering more
difficult.

The parameter δ is first set to an initial value, and then adjusted until all the packets
are clustered correctly. In our setting, we find the structural information is more impor-
tant than statistical information. When we set parameter δ = 0.8, all the packets in the
suspicious pool are grouped in the right cluster. We aim to find an appropriate δ for the
right clustering. The δ can be tuned based on the feedback of clustering result. We test
the false negative and false positive rates using the remaining 1,800 attack instances
and the 100,000 normal HTTP messages respectively (Table 2). We also evaluate the
influence of parameter changes on signature matching as shown in Figure 6(c), where
each data point stands for one group of parameter settings. We change the value of
θ1, θ2 to see how false positive rate and false negative rate vary. In our experiment,
we observe the lowest false positve rate when we set the parameters as θ1 = 0.018,
θ2 = 12.000. Altough we do not present entire results due to page limit, our experiment
results show that the false negative rate decreases as θ1 increases. Also, the false pos-
itive rate increases as θ2 increases. These observations are confirmed from the design
of our Algorithm, as higher θ1 would filter more noises while a higher θ2 would block
more normal packets. The parameters, in practice, can be tuned based on the feedback
from training and testing datasets, so that we get a locally optimized false positive rate.
Table 2 shows the best configurations obtained by the above method.

Table 2. Accuracy of the STG-based signatures generated by SAS

Polymorphic engine False positive False negative State transition path of STG-based signature
PexFnstenvMov 0.075% 0.40% (S3 → S1 → S2)

CLet 0.072% 0.42% (S0 → S1 → S0 → S3)

Admutate 0.062% 0.55% (S0 → S1 → S2 → S3)

16 D. Kong et al.

Table 3. Performance evaluation

Polymorphic engine Training time(sec) Matching time(sec) Analysis throughput(Mbps)
PexFnstenvMov 22.901 1.783 10.534

CLet 31.237 2.879 13.655
Admutate 24.833 1.275 12.901

5.3 Performance Evaluation

The time complexity of the signature learning algorithm is O(N2TP), where T is the
length of token sequence, P is the number of the suspicious packets in a clustering, and
N is the number of states. The time complexity of our signature matching algorithm is
O(N2S · L), where L is the average length of token sequences in a signature, S is the
total length of input packets to match, N is the number of states. The signature matching
algorithm can be easily adapted to satisfy the requirements of online detection. The
training time, matching time, and analysis throughput for each polymorphic engine are
shown in Table 3. The training time includes the time to extract useful instructions from
packets. The matching time is the total elapsed time to match 600 mutations generated
by each polymorphic engine.

6 Related Work

Pattern Extraction Signature Generation. There are a lot of work on pattern based
signature generation, including honeycomb [3], earlybird [4], and autograph [2], which
had been shown not to be able to handle polymorphic worms. Polygraph [5] and
Hamsa [6] are pattern based signature generation algorithms, and they are more capa-
ble of detecting polymorphic worms, but vulnerable to different kinds of noise injection
attacks. There are also rich researches on attacks against pattern-extraction algorithms.
Perdisci et al. [9] present an attack which adds crafted noises into the suspicious flow to
confuse the signature generation process. Paragraph [8] demonstrates that Polygraph
and Hamsa are vulnerable to attacks as long as attackers can construct the labeled
samples randomly to mislead the training classifier, and this attack can also prevent
or severely delay generation of an accurate classifier. Allergy attacks [7] force the sig-
nature generation algorithm to generate signatures that could match the normal traffic,
thus introducing high false positive rate. Gundy et al. [26] present a class of feature
omission attacks on signature generation process that are poorly addressed by Auto-
graph and Hamsa. Polymorphic blending attacks [27] are presented by matching the
byte frequency statistics with normal traffic to evade detection. Theoretical analysis of
limits of different signature generation algorithms are given in [28]. Gundy et al. [29]
show that web based polymorphic worms do not necessarily have invariant bytes. A
game-theoretical analysis on how a detection algorithm and an adversary could adapt to
each other in an adversarial environment is introduced in [30]. Song et al. [23] studied
the possibility of deriving a model for representing the general class of code that corre-
sponds to all possible decryption routines, and concludes that it is infeasible. Our work
combines the semantic analysis with the signature generation process, making it robust
to many noise-injection attacks (e.g., allergy attack, red herring attack).

SAS: Semantics Aware Signature Generation for Polymorphic Worm Detection 17

Semantic Analysis. Researches have presented semantic based techniques by making
static and dynamic analysis on the binary code. Polychronakis et al. [16] have presented
emulation-based approach to detect polymorphic payloads by emulating the code and
detecting decryption routines through dynamic analysis. Libemu [17] is another attempt
to achieve shellcode analysis through code emulations. Compared with their works,
our approach has higher throughput and can not be attacked by anti-emulation tech-
niques. Brumley et al. [31] propose to automatically create vulnerability signatures for
software. Cover [10] exploits the post-crash symptom diagnosis and address space ran-
domization techniques to extract signatures. TaintCheck [11] exploits dynamic dataflow
and taint analysis techniques to help find the malicious input and infer the properties
of worms. ABROR [12] automatically generates vulnerability-oriented signatures by
identifying typical characteristics of attacks in different program contexts. Sigfree [13]
detects the malicious code embedded in HTTP packets by disassembling and extracting
useful code from the packets. Spector [14] is a shellcode analysis system that uses sym-
bolic execution to extract the sequence of library calls and low-level execution traces
generated by shellcode. Christodorescu et al. [32] present a malware detection algo-
rithm by incorporating instruction semantics to detect malicious program traits. Our
motivation is similar, but our work is specific to network packet analysis instead of for
file virus. STIIL [15] uses static taint and initialization analysis to detect exploit code
embedded in data streams/requests targeting at web services. Kruegel et al. [33] present
a technique based on the control flow structural information to identify the structural
similarities between different worm mutations. Contrast to their work, our work is to
generate signatures based on semantic and statistic analysis.

7 Conclusion

In this paper, we have proposed a novel semantic-aware probability algorithm to address
the threat of anti-signature techniques including polymorphism and metamorphism. Our
technique distills useful instructions to generate state transition graph based signatures.
Since our signature reflects certain semantics of polymorphic worms, the proposed sig-
nature is resilient to the noise injection attacks to thwart prior techniques. Our experi-
ment have shown that our approach is both effective and scalable.

Acknowledgments. The authors would like to thank Dinghao Wu for his help in revis-
ing the paper. The work of Zhu was supported by CAREER NSF-0643906. The work of
Jhi and Liu was supported by ARO W911NF-09-1-0525 (MURI), NSF CNS-0905131,
AFOSR FA 9550-07-1-0527 (MURI), NSF CNS-0916469, and AFRL FA8750-08-C-
0137. The work of Kong, Xi was supported by Chinese High-tech R&D (863)Program
2006AA01Z449, China NSF-60774038.

References

1. Moser, A., Kruegel, C., Kirda, E.: Limits of static analysis for malware detection. In: Pro-
ceedings of the 23rd Annual Computer Security Applications Conference (2007)

2. Kim, H.A., Karp, B.: Autograph: Toward automated, distributed worm signature detection.
In: Proceedings of the 13th Usenix Security Symposium (2004)

18 D. Kong et al.

3. Kreibich, C., Crowcroft., J.: Honeycomb: creating intrusion detection signatures using hon-
eypots. In: Proceedings of the Workshop on Hot Topics in Networks, HotNets (2003)

4. Singh, S., Estan, C., Varghese, G., Savage, S.: Earlybird system for real-time detection of
unknown worms. Technical report, Univ. of California, San Diego (2003)

5. Newsome, J., Karp, B., Song, D.: Polygraph: Automatic signature generation for polymor-
phic worms. In: IEEE Symposium on Security and Privacy (2005)

6. Li, Z., Sanghi, M., Chen, Y., Kao, M.Y., Chavez, B.: Hamsa: Fast signature generation for
zero-day polymorphic worms with provable attack resilience. In: IEEE Symposium on Se-
curity and Privacy (2006)

7. Chung, S.P., Mok, A.K.: Advanced allergy attacks: Does a corpus really help. In: Kruegel,
C., Lippmann, R., Clark, A. (eds.) RAID 2007. LNCS, vol. 4637, pp. 236–255. Springer,
Heidelberg (2007)

8. Newsome, J., Karp, B., Song, D.: Paragraph: Thwarting signature learning by training ma-
liciously. In: Zamboni, D., Krügel, C. (eds.) RAID 2006. LNCS, vol. 4219, pp. 81–105.
Springer, Heidelberg (2006)

9. Perdisci, R., Dagon, D., Lee, W.: Misleading worm signature generators using deliberate
noise injection. In: Proceedings of the 2006 IEEE Symposium on Security and Privacy (2006)

10. Liang, Z., Sekar., R.: Fast and automated generation of attack signatures: A basis for build-
ing self-protecting servers. In: Proceedings of the 12th ACM Conference on Computer and
Communications Security (2005)

11. Newsome, J., Song, D.: Dynamic taint analysis for automatic detection, analysis, and sig-
nature generation of exploits on commodity software. In: Proceedings of Network and Dis-
tributed System Security Symposium (2005)

12. Liang, Z., Sekar., R.: Automatic generation of buffer overflow attack signatures: An approach
based on program behavior models. In: Proceedings of the Annual Computer Security Ap-
plications Conference (2005)

13. Wang, X., Pan, C.C., Liu, P., Zhu, S.: Sigfree: A signature-free buffer overflow attack blocker.
In: 15th Usenix Security Symposium (2006)

14. Borders, K., Prakash, A., Zielinski., M.: Spector:automatically analyzing shell code. In:
Proceedings of the 23rd Annual Computer Security Applications Conference, pp. 501–514
(2007)

15. Wang, X., Jhi, Y.C., Zhu, S., Liu, P.: Still: Exploit code detection via static taint and ini-
tialization analyses. In: Proceedings of Anual Computer Security Applications Conference,
ACSAC (2008)

16. Krügel, C., Lippmann, R., Clark, A.: Emulation-based detection of non-self-contained poly-
morphic shellcode. In: Kruegel, C., Lippmann, R., Clark, A. (eds.) RAID 2007. LNCS,
vol. 4637, pp. 87–106. Springer, Heidelberg (2007)

17. Baecher, P., Koetter, M.: Getting around non-executable stack (and fix),
http://libemu.carnivore.it/

18. Szor, P.: The Art of Computer Virus Research and Defense, pp. 112–134. Addison-Wesley,
Reading (2005)

19. Bania, P.: Evading network-level emulation,
http://www.packetstormsecurity.org/papers/bypass/
pbania-evading-nemu2009.pdf

20. Collberg, C., Thomborson, C., Low, D.: A taxonomy of obfuscating transformations. Tech-
nical Report 148, University of Auckland (1997)

21. Detristan, T., Ulenspiegel, T., Malcom, Y., Superbus, M., Underduk, V.: Polymorphic shell-
code engine using spectrum analysis,
http://www.phrack.org/show.php?p=61&a=9

22. Ray, E.: Ms-sql worm,
http://www.sans.org/resources/malwarefaq/ms-sql-exploit.php

http://libemu.carnivore.it/
http://www.packetstormsecurity.org/papers/bypass/pbania-evading-nemu2009.pdf
http://www.packetstormsecurity.org/papers/bypass/pbania-evading-nemu2009.pdf
http://www.phrack.org/show.php?p=61&a=9
http://www.sans.org/resources/malwarefaq/ms-sql-exploit.php

SAS: Semantics Aware Signature Generation for Polymorphic Worm Detection 19

23. Song, Y., Locasto, M.E., Stavrou, A., Keromytis, A.D., Stolfo., S.J.: On the infeasibility of
modeling polymorphic shellcode. In: Proceedings of the 14th ACM conference on Computer
and communications security (CCS), pp. 541–551 (2007)

24. Rabiner, L.R.: A tutorial on hidden markov models and selected applications in speech recog-
nition. Proceedings of the IEEE 77(2), 257–286 (1999)

25. Moore, H.: The metasploit project, http://www.metasploit.com
26. Gundy, M.V., Chen, H., Su, Z., Vigna, G.: Feature omission vulnerabilities: Thwarting sig-

nature generation for polymorphic worms. In: Proceeding of Annual Computer Security Ap-
plications Conference, ACSAC (2007)

27. Fogla, P., Sharif, M., Perdisci, R., Kolesnikov, O., Lee, W.: Polymorphic blending attacks.
In: Proceedings of the 15th USENIX Security Symposium (2006)

28. Venkataraman, S., Blum, A., Song., D.: Limits of learning-based signature generation with
adversaries. In: Proceedings of the 15th Annual Network and Distributed System Security
Symposium (2008)

29. Gundy, M.V., Balzarotti, D., Vigna, G.: Catch me, if you can: Evading network signatures
with web-based polymorphic worms. In: Proceedings of the First USENIX Workshop on
Offensive Technologies (WOOT), Boston, MA (2007)

30. Pedro, N.D., Domingos, P., Sumit, M., Verma, S.D.: Adversarial classification. In: 10th ACM
SIGKDD Conference On Knowledge Discovery and Data mining, pp. 99–108 (2004)

31. Brumley, D., Caballero, J., Liang, Z., Newsome, J., Song, D.: Towards automatic discovery
of deviations in binary implementations with applications to error detection and fingerprint
generation. In: Proceedings of the 16th USENIX Security (2007)

32. Christodorescu, M., Jha, S., Seshia, S., Song, D., Bryant, R.: Semantics-aware malware de-
tection. In: 2005 IEEE Symposium on Security and Privacy (2005)

33. Krugel, C., Kirda, E.: Polymorphic worm detection using structural information of executa-
bles. In: 2005 International Symposium on Recent Advances in Intrusion Detecion (2005)

http://www.metasploit.com

Analyzing and Exploiting Network Behaviors of
Malware

Jose Andre Morales1, Areej Al-Bataineh2, Shouhuai Xu1,2, and Ravi Sandhu1

1 Institute for Cyber Security, University of Texas at San Antonio
{jose.morales,ravi.sandhu}@utsa.edu

2 Department of Computer Science, University of Texas at San Antonio
{aalbata,shxu}@cs.utsa.edu

Abstract. In this paper we address the following questions: From a networking
perspective, do malicious programs (malware, bots, viruses, etc...) behave dif-
ferently from benign programs that run daily for various needs? If so, how may
we exploit the differences in network behavior to detect them? To address these
questions, we are systematically analyzing the behavior of a large set (at the mag-
nitude of 2,000) of malware samples. We present our initial results after analyzing
1000 malware samples. The results show that malicious and benign programs be-
have quite differently from a network perspective. We are still in the process of
attempting to interpret the differences, which nevertheless have been utilized to
detect 31 malware samples which were not detected by any antivirus software
on Virustotal.com as of 01 April 2010, giving evidence that the differences be-
tween malicious and benign network behavior has a possible use in helping stop
zero-day attacks on a host machine.

1 Introduction

The ever growing sophistication of malware, especially zero-day attacks, with faster
distribution and stealthier execution has forced signature based detection in an uphill
battle that is difficult to win. Behavior based detection is increasingly being used by
commercial software vendors with some success but is partially reliant on understand-
ing the behavior of known malware to attempt detecting future attacks.

This research analyzes known malicious and benign samples in an attempt to exploit
differences in their network behavior to accomplish accurate behavior based malware
detection. The data set consisted of 1000 malware samples, including 31 not detected
by any antivirus software on Virustotal.com on 01 April 2010 and 123 benign samples.
The analyzed data included DNS, NetBIOS, TCP, UDP, ICMP and other network traf-
fic. For each analyzed malware and benign sample, we collected occurrence amounts
of basic network functions such as total number of DNS queries and NetBIOS query
requests. Observations of captured network activity and occurrence amounts were an-
alyzed and correlated to identify network behaviors occurring mostly in malware. We
use clustering and classification algorithms to evaluate how effectively our observed
network behaviors can differentiate malware from benign samples.

Given our observed network behaviors, our clustering and classification produced
minimal false positives and false negatives. In addition, 31 malware samples not

S. Jajodia and J. Zhou (Eds.): SecureComm 2010, LNICST 50, pp. 20–34, 2010.
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2010

Analyzing and Exploiting Network Behaviors of Malware 21

identified by any antivirus software on Virustotal.com on 01 April 2010 were correctly
clustered and classified using our observed network behaviors. These results give ev-
idence that the observed differences between malicious and benign network behavior
can be useful in stopping zero-day attacks on a host machine.

The principal contributions of this research are:

1. Identification of network behaviors occurring mostly in malware usable in behavior
based malware detection.

2. Discovery of novel malicious uses of network services by malware.
3. Evaluating the effectiveness of observed network behaviors in identifying malware

and benign processes with clustering and classification.

This research presents early results of one perspective of an ongoing project dealing
with malware behavior based on a sample size of 1000 malware and 41 benign pro-
cesses. The benign processes were executed three times each for a total of 123 instances
which were used as samples for our analysis. The goal of this ongoing research is a real
time behavior based malware detection system incorporating several perspectives capa-
ble of detecting known and unknown malware on host machines.

The rest of this paper is organized as follows: Section 2 gives related work, Section
3 describes our data set, Section 4 presents our network behaviors, Section 5 gives
our clustering and classification results, Section 6 discusses our approach and results,
Section 7 gives limitations and Section 8 is conclusions and future work.

2 Related Work

The research of Bayer et. al. [3] presents a dynamic malware analysis platform called
Anubis which is used to collect behaviors of known malware samples in a controlled en-
vironment. This system inputs a binary executable and records API invocation, network
activity, and data flows. The results are used to report observed behaviors principally
on the file system, registry, and network activity. The reported network activity only
provides data on usage of protocol traffic, connections to remote servers, file down-
loads, port scanning and other typical network tasks. The results give direction as to
which forms of network activity should be monitored closely for malicious events. Us-
ing Bayer et. al. as motivation, we analyzed and produced occurrence amounts of basic
network functions which were used to aid in defining our set of network behaviors.

Malware binary analysis platforms such as Anubis [1], Malheur [13], Bitblaze [4]
and CwSandbox [24] are designed primarily to run known malware samples in a con-
trolled environment and record execution behavior. Recording is done via various tech-
niques from API hooking to monitoring modifications and data flows in various OS
components. These platforms record general network activity behavior which are re-
ported to the user. The reports do not include sufficient detailed information to identify
malware’s precise implementation and use of network services making it difficult to dis-
cover novel malicious acts captured in network activity. Our research fills this gap by
capturing finely grained network behavior facilitating detailed analysis which was key
in our discovery of novel network behaviors that successfully detected several malware
samples.

22 J.A. Morales et al.

The research presented by Morales et. al. [15] analyzes a specific form of network
activity behavior called RD-behavior which is based on a combination of DNS activity
and TCP connection attempts. The authors found bot processes often use reverse DNS
queries (rDNS) possibly to harvest new domain names. The rDNS often fails and is then
followed by a TCP connection attempt to the input IP address of the failed rDNS, the
authors regard this as an anomalous behavior. This anomalous behavior is successfully
used by the authors to detect bots and non-bot malware. The approach in [15] was
limited when the authors removed one of their defined behavior: a failed connection
attempt to the returned IP address of a successful DNS query. Our results revealed
an almost total absence of rDNS usage and several instances where malware used the
removed behavior. Using this behavior helped raise our detection accuracy.

The research of Zhu et. al. [28] detected bots with a host-based technique based
on high number of failed connection attempts. Measuring the connection failure rate of
bots and benign processes showed that successful bot detection is achievable using only
this metric. Measuring failed connection attempts may only be effective with bots that
are totally or partially inactive while fully active up to date bots and other malware with
little or no failed connection attempts may go undetected by this approach. Our research
relates failed connection attempts with DNS, NetBIOS and other network behaviors
creating a more robust approach to malware analysis and detection.

A broad corpus of research exists analyzing and detecting malware samples, fam-
ilies and categories [8,17,11,9,22,6,14,12,16,18,7,2,23]. All use different perspectives
to measure, analyze and detect malware using host-based, network-based and hybrid
approaches. Our research enhances the current literature by relating different specific
network activities together to define network behaviors mostly used by malware.

3 Data Set Analysis

Our analysis is based on 1000 known malware samples and 41 benign samples. The
benign samples were executed three times each for a total of 123 instances which were
used as samples for our analysis. The malware samples were acquired by downloading
the first 969 samples from the CWSandbox sample feed on 27 October 2009 [24]. The
upload date was arbitrarily chosen. The set contains a broad range of malware types
including: bots, backdoors, malware downloaders, keyloggers, password stealers and
spyware amongst others, Table 1 lists prominent malware in the data set. Uploading
the MD5 sums to Virustotal.com provided malware names from Kaspersky, McAfee
and Symantec. We also downloaded 31 malware samples from the 31 March 2010 up-
load on CWSandbox malware repository. These 31 were chosen because their MD5
sums, listed in Table 2, were reported as undetected by all antivirus software used by
Virustotal.com on 01 April 2010 and we were capable of executing and capturing their
network behavior in our testing environment. The majority of our malware samples had
successful network activity during the collection period connecting with remote hosts
and conducting malicious deeds.

The benign test set, also listed in Table 1, covered a wide range of popular and daily
used network active applications including: web browsers, FTP clients, RSS readers,
social network clients, antivirus software, Peer-to-Peer (P2P) clients and standard net-
work tools amongst others. We captured network activity in VMWare Workstation with

Analyzing and Exploiting Network Behaviors of Malware 23

Table 1. Prominent malware and benign samples in data set

Prominent malware samples in data set
Downloaders Bots Worms Hybrids
Bifrose.bmzp Koobface.d Iksmas.bqs Krap.n
PcClient.ahqy Padobot.m Mydoom.m PolyCrypt.b
Poison.pg Virut.by Allaple.a Refroso.qj
Turkojan.il Zbot.acnd Bacteraloh.h Scar.hez
Genome.cehu Buzus.amsz Palevo.ddm
CodecPack.ill
Lipler.fhm
Adware Scareware Rootkits Viruses
FenomenGame SystemSecurity.cc Tdss.f Sality.aa
BHO.nby XpPoliceAV.apd
Monderd.gen

Benign samples in data set
Adobe Reader Ares Avant BitTorrent
Chrome CuteFtp DeskTube Facebook

Desktop
FileZilla FireFox FlickRoom Flock
Google Talk Google Update IE explorer Kaspersky

Security
K-Meleon LimeWire Ping PPLive
PPStream RSSBandit Skype Snarfer
Snitter SopCast Spyware Dr. Stream Torrent
Streamer radio TortoiseSVN Traceroute TVants
Tvkoo TVUPlayer TweetDeck Twhirl
uTorrent UUSee Win Player Win Update
Zultrax

Windows XP SP2 using Windows Network Monitor along with proprietary network
layer monitors to record the network activity for an execution period of 10 minutes for
each data set sample. The individual samples were manually executed one at a time in
VMWare Workstation with our monitors collecting all network traffic and the captured
data was saved to a local repository for analysis. The benign processes were installed,
used under normal conditions and updated (when available) during testing.

The network activity of the group of 969 malware samples was collected between 27
October 2009 and 01 November 2009, the network activity of the group of 31 malware
samples was collected on 01 April 2010, and the network activity of the group of 41
benign samples was collected between 01 April 2010 and 03 April 2010. Collecting
network behavior of the malware samples was done immediately after downloading
the samples to assure the samples were still active, meaning the malware would still
connect with remote hosts and conduct malicious deeds producing network traffic. The
vast majority of our malware samples, over 95%, produced network traffic which was
the basis of our analysis.

24 J.A. Morales et al.

Table 2. MD5 sums of data set malware samples not detected on VirusTotal.com

31 malware not detected on Virustotal.com - 01 April 2010
732e014e309ffab8ed9a05198d060a0b ce1cd380910e28092f880643ec1f809d
94004413140e2022c0880f3828a1c0ee cbed573de18b900cd91cc9e4558fb645
bcebf381a36099f697d2e00f3ec4f26e 7a84fd3ff0aa487ae2142e7130c78d9f

2fbea182c4c7d47419b2c25d72eb64bc 6d25e4a5db130cda772e09d458afacad
8a98176d289e099ccf359aaed06daf9e bdd7bd56d65471b594c0822dd434a84f
037629b54b5714457ff2abefdab0c349 6b24b3779730f4add8d562daa1bc0ddf
7407c24f17d7c582901623c410ab7a91 8189e6f967b612e5ee7a74981278de4a
36a256686620fa7d3b9433af19cf57a2 5cfb57eac56c8639329d9ecab7b7f4ac
cde17b3c02d6143a9c1fa22eedad65ac fbc377f7010b6a3216f7fd330dcfe69e
2e3108689a758c629286ef552e89b858 0b15d6658f306cfea3fe20bd32c91a0d
ae7d5ad001c26bbda2f32610f28484b9 9207e79e1f2191d3d44343482ab58a4e
25181c8ed97357b52ea775bc5dca353c 2bbb004cc926a071bda327ca83bf03fb
b0c89519569ce2e310958af0e5932ed1 e73da6feae4fabd251bb19f39c1a36d3
d2ebbc7609672d46e7bb8b233af585aa e38c4a027b5a570eae8c57de8e26fcbb
bc8aa3e072fbec4045bf94375ac53be9 018197ab7020625864e6f4ff65611fc7
5dae2c8bf87e6a9ad44e52d38ac3411e

4 Network Behavior

This research analyzes known malware and benign samples in an attempt to exploit
differences in their network behavior to accomplish accurate behavior based malware
detection. Differences in network behavior were identified through manual post analysis
of collected network traffic. The captured network activity of our data set contained
typical protocols such as TCP, UDP, and DNS but they were not always used in the
normal expected way, most notably in our malware samples. We were able to collect
occurrence totals of basic network functions and correlate together different occurrence
amounts of specific network activity to identify network behaviors which, according
to our results, occurred more often in malware than benign samples. The identified
network behaviors, defined as Bn where n is an identification number, are described
below.

4.1 DNS and NetBIOS

The Domain Name System (DNS) and Network Basic Input/Output System (NetBIOS)
provide services to acquire IP addresses when a domain name is provided and vice
versa [5,19]. Coarse-grain occurrence amounts of both protocols by known malware
has been previously shown [3,15]. Table 3 summarizes our occurrence amounts for DNS
queries, reverse DNS queries and NetBIOS name requests. The analysis revealed 100%
of benign processes and 77% malware issuing DNS queries mostly due to malware’s
use of other network services, such as NetBIOS and ICMP, to acquire IP addresses for
connection attempts. The benign samples with failed DNS queries were web browsers
unable to reach third party content and P2P video and audio streamers unable to locate

Analyzing and Exploiting Network Behaviors of Malware 25

remote hosts for a specific stream. Several malware samples had failed DNS queries,
most were domain names of malware servers that were either not active or previously
discovered and shut down. Reverse DNS queries (rDNS) were notably absent with only
2% of malware and no benign samples. This contradicts the findings of [15] which
documented bots and non-bot malware performing rDNS and conjectured these queries
were an essential component to establish malicious network activity. It can be inferred,
from testing our samples, that the current generation of malware may possibly be less
reliant on rDNS in favor of other techniques providing the same IP address and domain
name related information.

Analyzing the occurrence totals of NetBIOS name requests (NBTNS) revealed 56%
of malware and 4% of benign samples implemented this activity. The benign sam-
ples with NetBIOS name requests were the web browsers Google Chrome with fifteen
name requests and Firefox with six name requests. Further analysis revealed the domain
names used in the NetBIOS name request of Google Chrome and Firefox had first been
used in a DNS query with some failing and others succeeding. The malware samples
revealed two distinct forms of NetBIOS name request usage: (i) expected usage, same
as benign, and (ii) performing NetBIOS name requests on domain names that were
not part of a captured DNS or rDNS query. To our knowledge, the second form is a
novel observation of NetBIOS use by malware not presented in previous research. Of
the 1000 malware samples, 49% exhibited the second NetBIOS usage described here.
We concluded this was a network behavior occurring mostly in malware and usable for
detection. Based on this, we define the following network behavior:

– B1: A process performs a NetBIOS name request on a domain name that is not part
of a DNS or rDNS query.

Table 3 shows B1 occurring only in malware, with 49%. Using online malware
databases such as MalwareURL.com, we found many domain names used by our mal-
ware samples in B1 identified as malware servers, but several other domains did not
show up leading us to believe they were recently created and registered, inactive, had
avoided detection, were infected hosts, or newly activated servers. We conjecture mal-
ware uses behavior B1 in an attempt to acquire remote host information while avoiding
detection by anti-malware that may not monitor NetBIOS but most probably does mon-
itor DNS.

Table 3. Samples with DNS, NetBIOS, & B1

Samples Malware Benign
with 1000 samples 123 samples
DNS queries 77% 100%
Reverse DNS
queries 2% 0%
NetBIOS
name requests 56% 4%
Behavior B1 49% 0%

26 J.A. Morales et al.

4.2 RD-Behavior

This network behavior as originally defined [15] was primarily based on frequent usage
of reverse DNS queries (rDNS) by bots. The authors defined four network behavior
paths of which three included rDNS. Their results implied rDNS combined with TCP
connection attempts was sufficient to detect malware and eliminated false positives by
omitting the only behavior path dealing solely with DNS queries. Our analysis revealed
a notable absence of rDNS and a high occurrence of DNS queries, see Table 3, many of
which exhibited the omitted behavior. We conjecture better detection can be achieved
by including all four behaviors from [15] redefined as follows:

– B2: Failed connection attempt to an IP address obtained from a successful DNS
query.

– B3: Failed connection attempt to the input IP address of a successful rDNS query.
– B4: Connection attempt to the input IP address of a failed rDNS query.

In [15] behavior path P5 is defined as: A successful connection to an IP address used
in a failed rDNS query and behavior path P6 is defined as: A failure to connect with
an IP address used in a failed rDNS query. We reduced the number of network behav-
iors by combining behavior paths P5 and P6 into one network behavior B4. Behavior
B2 implies a successful connection should occur to IP addresses obtained in successful
DNS queries, a failed connection attempt indicates something is not right and should
be investigated. Malware can exhibit this behavior when domain names have been shut
down or taken offline and their DNS records have not been updated or removed. Behav-
ior B3 has the same implication as B2 but with the input IP address of rDNS queries.
Behavior B4 is assumed to only occur in malware. We assuem an input IP address
failing an rDNS query as unreachable and should not be used for connection attempts.
Table 4 shows total number of processes with behaviors B2, B3 and B4. Our occurrence
amounts showed 21% of malware and no benign samples with B2 and no occurrences
of B3 and B4 due to very low rDNS usage. These results imply rDNS may be used less
often by malware in favor of other techniques providing the same information in a more
clandestine manner.

Table 4. Samples with behaviors B2, B3 & B4

Samples Malware Benign
with 1000 samples 123 samples
Behavior B2 21% 0%
Behavior B3 0% 0%
Behavior B4 0% 0%

4.3 UDP and ICMP

Traffic between local and remote hosts using captured User Datagram Protocol (UDP)
[25] did not serve a significant role, except for DNS and rDNS, in our analysis due
to similar occurrence amounts of network activity in both malware and benign. Previ-
ous research [3] has documented coarse-grain UDP occurrence amounts by malware,

Analyzing and Exploiting Network Behaviors of Malware 27

but does not include a comparison with benign processes. Identifying network activity
behaviors in the UDP protocol is part of our ongoing research.

The occurrence amounts of Internet Control Message Protocol (ICMP) [10] activ-
ity, which focused on ICMP echo requests and replies, revealed an elevated usage by
the malware samples in comparison to the benign samples. Further analysis concluded
that malware was using ICMP echo requests in the same manner as the Ping network
utility [20] to decide if a remote host was reachable, thus being a candidate for a con-
nection attempt. Malware use of ICMP has been previously observed [27] but was not
distinguished as a behavior frequently used by malware in comparison to benign. Our
analysis showed malware never attempted connections to IP addresses not receiving a
reply to an ICMP echo request and almost always attempted to connect with IP ad-
dresses that did have a successful reply. Furthermore, the input IP address of the echo
requests were never part of a DNS or rDNS query or NetBIOS name request leading
to conclude these IP addresses were hardwired, dynamically generated, or downloaded
from a malware server. Based on these observations, we define two network behaviors
as follows:

– B5: ICMP only activity, ICMP echo requests for a specific non-local network IP
address with no reply or a returned error message.

– B6: TCP/ICMP activity, TCP connection attempts to non-local IP addresses that
received a successful reply to their ICMP echo requests.

We assume the IP addresses used in B5 and B6 are never part of DNS, rDNS or Net-
BIOS activity. This assumption is supported by our observations of the captured net-
work activity. The results of this analysis are listed in Table 5. B5 occurred more often
in benign than malware but the benign samples also used ICMP less than malware,
perhaps favoring other similar and more conventional services such as DNS queries,
see Table 3. B6 was exhibited in 11% of malware and only 2% benign samples. This
supports our claim that malware frequents ICMP use to identify IP addresses for con-
nection attempts. Our observations of B5 and B6 are, to our knowledge, novel in the
literature not being previously reported.

Table 5. Samples with behaviors B5 & B6

Samples Malware Benign
with 1000 samples 123 samples
Behavior B5 3% 4%
Behavior B6 11% 2%

4.4 Other Network Activity

This encapsulates other less occurring activities which were considered significant since
they rarely occurred in any of our data set samples or were implemented in a non-
conventional way. We consider these network activities to be anomalous and not nec-
essarily malicious behaviors. The value of recording occurrences of these behaviors is
in cases where a novel and never before observed, or rarely used malicious behavior
occurs in a malware sample. We encompass this idea with the following behavior:

28 J.A. Morales et al.

Table 6. Samples with behavior B7

Samples Malware Benign
with 1000 samples 123 samples
TCP connection attempts to IP addresses
never used in DNS, NetBIOS, ICMP 10% 2%
Listen connections on
non-typical port numbers 2% 7%
Successful DNS queries returning
local network IP addresses 1% 0%
Use of non-typical network
protocols and commands 4% 0%
Behavior B7 18% 9%

– B7: Network activity that is rarely occurring or implemented in an anomalous
manner.

Table 6 lists the amount of samples exhibiting the different types of observed network
activity and B7. TCP connection attempts to IP addresses which were not part of DNS,
NetBIOS or ICMP activity were the most prominent in this group with 10% in malware
and only 2% in benign. These malware, upon initial execution, immediately attempted
connections to IP addresses ranging from a few to over one hundred different addresses
which appeared to have been hardwired or dynamically generated. The benign sample
with this activity was the video chat program Skype which connected to a server during
installation.

Second most prevalent network activity was use of non-typical protocols and net-
work commands with 4% in malware none in benign. The malware attempted connec-
tions using either FTP or SMB or RTCP. These were the only samples from our data set
using these protocols except for FTP which is a typical protocol; the reason we docu-
mented FTP usage is the malware had a very small amount of FTP activity download
from a remote server along with a much lager amount of TCP and UDP traffic.

One malware sample used the authentication system KerebosV5 and one other mal-
ware sample used the network command suite Andx. Interestingly, the Andx com-
mands were attempting to authenticate and access local network IP addresses in search
of a file server perhaps to host inappropriate content. Listening TCP connections
using non-typical port numbers occurred in 2% malware and 7% benign samples.
Malware listened on non-typical or private ports [21] such as port numbers: 19178,
24450, 25254, 27145 and 36975; benign also listened on non-typical or private ports
such as port numbers: 19396, 33680, 36363 and 58480. Two malware samples per-
formed successful DNS queries on domain names returning local network IP addresses:
gogog029.100webspace.net - 127.0.0.1 and probooter2009.no-ip.org - 0.0.0.0. It is
unclear if these DNS query results were modified by the malware or if these were inten-
tionally returned by the DNS server. B7 was exhibited in 18% malware and 9% benign,
suggesting rarely or anomalous occuring network activity may be useful in differentiat-
ing malware and benign.

Analyzing and Exploiting Network Behaviors of Malware 29

5 Clustering and Classification

To evaluate how effectively our observed network behaviors can differentiate between
malicious and benign samples, we input the data through clustering and classification
algorithms using the Weka data mining software [26]. Clustering and classification al-
gorithms are extensively used in the literature to evaluate proposed host, network and
hybrid detection approaches and are well established as accurate indicators of effec-
tiveness and efficiency of a proposed detection approach. Our data set consisted of the
occurrence amounts of network behaviors B1 through B7, discussed in Section 4, for
each malware and benign sample. The complete data set was used for clustering; for
classification, the training set contained the first 700 malware samples and 40 benign
with the test set containing the remaining samples. The 31 undetected malware samples
were not part of the training set. Some of the samples in the test set not found in the
training set are listed in Table 7.

Table 7. Some of the malware and benign samples in test set and not in training set

Malware samples Benign samples
BHO.nby Adobe Reader
Mabezat.b BitTorrent

Monderd.gen Chrome
Poison.pg CuteFtp

Swizzor.a (2) Facebook Desktop
Turkojan.il FlickRoom

VB.bfo Kaspersky Security
VB.vr Skype

31 undetected malware SopCast
TVants

Table 8. Top three clustering results with 1000 malware and 123 benign samples

Clustering Number of True True False False FP FN
algorithm clusters positives negatives positives negatives rate rate
DBScan 8 119 1000 4 0 0.4% 0%
Expectation
maximization (EM) 4 123 988 0 12 0% 1%
Xmeans 3 123 1000 0 0 0% 0%

5.1 Clustering Results

The data set was input to the complete suite of clustering algorithms in Weka. The top
three results are listed in Table 8. False positives and false negatives were determined
by observing if the majority of a cluster was composed of malware or benign samples.
If malware was the majority then the benign samples were classified as false positives;
if benign was the majority then the malware samples were classified as false negatives.

30 J.A. Morales et al.

DBScan and EM algorithms produced encouraging results with no false negatives
in the first and no false positives in the second algorithm. The four false positives pro-
duced by DBScan were SopCast, TVUPlayer, UUsee media center, and TVants. All of
these are video streamers whose content source comes from several IP addresses which
are constantly changed and removed, making it difficult to keep up to date. This is
very similar to IP addresses used by malware authors, especially in botnets [18], which
constantly change primarily to avoid detection. All four were grouped in one cluster
with many different classes of malware, the samples in this cluster exhibited many in-
stances of behaviors B1, B2 and B7. The main reason why the four false positives were
grouped in this cluster was due to having between 3 and 8 instances of behavior B2.
In each case, we attempted to access several video streams. Many of these were un-
reachable and analyzing the network activity showed the failed connection attempts to
IP addresses of successful DNS queries. Further investigation into these IP addresses
revealed they were temporary video content servers where the specific video streams
were no longer available. The IP was taken offline but the records pointing to them had
not been removed from the software’s database of active streamers.

The twelve false negatives produced by the EM algorithm consisted of nine mal-
ware downloaders, three of which belong to the packed.win32.krap family, one worm,
one bot (koobface) and one of the 31 undetected malware samples with MD5 hash
value 7407c24f17d7c582901623c410ab7a91. Three samples: koobface and two mal-
ware downloaders were seemingly inactive having no successful connection attempts
with remote hosts and only four samples exhibited at most a single instance of just one
of the following behavior symptoms: B1, B2, B6, B7. The small amount of network
behaviors produced by these malware led to their false negative production since their
network traffic was very similar to the benign samples.

The Xmeans algorithm produced no false positives and no false negatives, with all
malware grouped in two clusters and benign in one cluster. The 31 undetected malware
samples, see Table 2, were correctly clustered by both Xmeans and DbScan while EM
correctly clustered 30 implying our network behaviors can detect malware missed by
commercial antivirus software and may be usable in stopping zero-day attacks. Overall,
the clustering suggest our network behaviors are capable of detecting malware with
minimal false positives and false negatives.

5.2 Classification Results

Several classification algorithms were applied on the test set with BayesNet, NNge,
Random Forest and Rotation Forest producing the best results listed in Table 9. The
false negative rates for all four algorithms were low ranging from 0.6% to 1%, the
false positives were also very low ranging between 0% to 2%. All the algorithms had
the same two malware samples, VB.vr and one of the 31 undetected malware (MD5
hash value 25181c8ed97357b52ea775bc5dca353c) as false negatives. Both of these
malware were not part of the training set, exhibited 3 or less instances of behavior
B5 with different IP addresses and had successful network activity with remote hosts
whose IP addresses were acquired through successful DNS queries. The third false
negative produced by BayesNet was one of the 31 undetected malware (MD5 hash value

Analyzing and Exploiting Network Behaviors of Malware 31

cbed573de18b900cd91cc9e4558fb645) which was active, had two instances of behav-
ior B5 on two different IP addresses and was not in the training set.

TVants and SopCast were the only two processes flagged as false positives. These
two samples were also clustered as false positives. The reason was again their failed
connection attempts to IP addresses which were no longer online hosting a video stream
thus producing instances of behavior B2. Only one of the 31 undetected malware was
flagged as false negative by all four of our algorithms, with one more being flagged
by BayesNet. The other 29 undetected malware were all correctly classified by all four
algorithms. This result further confirms the capability of our behaviors and occurrence
amounts to detect malware not detected by commercial antivirus software and gives
further evidence to their use in helping stop zero-day attacks. Overall, the classification
results further suggest our network behaviors can correctly classify both known and
unknown malware.

Table 9. Top four classification test set results with 300 malware and 83 benign samples

Classification False False FP FN
algorithm positives negatives rate rate
BayesNet 1 3 1% 1%
NNge 1 2 1% 0.6%
Random forest 0 2 0% 0.6%
Rotation forest 2 2 2% 0.6%

6 Discussion

According to our results in Section 4, of the seven defined behaviors, B1 occurred the
most in the malware samples with 49% followed by B2 with 21% and B7 with 18%.
All three are considered behaviors more likely to occur in malware than in benign pro-
cesses with B7 initially assumed anomalous and not necessarily malicious. Behaviors
B1, B5 and B6 are, to our knowledge, novel observations implemented by malware to
locate active remote hosts for connection attempts and, in our tests, occurred more in
malware than benign. Behavior B7 is particularly interesting due to its subjective nature
which can encapsulate any network activity considered significant and rarely occurring.
Therefore it is easy to add activities which degrade detection accuracy. A knowledge
expert is best suited to compose activities which comprise this behavior.

Our clustering results were better than expected with perfect results in the case of
Xmeans, implying our network behaviors are capable of providing accurate malware
detection. Our data set covered a wide spectrum of known malware and benign classes
and was able to train our classifiers to correctly identify the majority of malware in the
test set with minimal false positives and false negatives.

The most interesting aspect of the results was the highly accurate clustering and
classification of the 31 undetected malware. The MD5 sums of all 31 samples were not
detected by any antivirus software on Virustotal.com on 01 April 2010 yet our testing
correctly identified them with minimal exceptions. This detection accuracy gives strong
evidence that our behaviors can help stop zero-day attacks on a host machine, especially
in cases where signature-based detectors fail to identify a zero-day attack.

32 J.A. Morales et al.

A robust detection system encompasses several malware detection perspectives. This
research has only studied one of these perspectives, network activity, in a behavior based
way to avoid implementing a detection methodology dependent on malware signatures.
Part of our ongoing research is to combine our findings of the network activity per-
spective with other perspectives to produce a more complete behavior based malware
detection system.

7 Limitations

Several protocols such as ARP and SMB were not studied. Their value to enhance our
detection accuracy is being analyzed and added to current results. All analysis was done
in a virtual machine which forcibly excluded interesting malware samples that are VM
aware and ceased to execute or masqueraded as benign upon VM detection. The data
set consisted only of malware samples which are initially executed by a mouse double
click. Malware packaged as a dll file, kernel system service, or non-executable were not
used. We are developing tools allowing the execution of any malware sample regardless
of its format.

8 Conclusion and Future Work

This research analyzes known malware and benign samples in an attempt to exploit
differences in their network activity behavior to accomplish accurate behavior based
malware detection. By analyzing and comparing known malware and benign processes,
we have successfully exploited differences in their network activity behavior and pro-
duced accurate and effective malware detection with minimal false positives and false
negatives. This was accomplished by producing a set of behaviors which occurred most
often in our analyzed malware samples during which two novel behaviors frequently
used by malware were discovered.

Our analysis results successfully clustered a diverse group of malware and benign
process with very high accuracy and minimal false positives and false negatives. Clas-
sification algorithms correctly detected newly introduced malware samples also with
minimal false negatives and false positives. Most interestingly, our data set included
31 malware samples whose MD5 sums were not detected by any antivirus software on
Virustotal.com on 01 April 2010. These undetected malware were correctly identified
using our analysis in both clustering and classification algorithms with few exceptions.
This provides strong evidence that our identified behaviors can be used together with
existing anti-malware solutions, especially signature-based antivirus software, to help
stop zero-day attacks on a host machine. This research has presented early results on
one perspective, namely network activity, of a larger ongoing project to develop a be-
havior based malware detection system.

Future work includes examining a suite of protocols for yet-to-be observed activity
usable in creating new behaviors and refining our current behavior set and evaluation
methodology to further increase detection effectiveness. Alos implementing our net-
work behaviors in a real time detection prototype to measure the efficiency of such an
approach including resource usage in collecting data in heavy traffic flows and precise
measurements of elapsed time used to detect a malicious process.

Analyzing and Exploiting Network Behaviors of Malware 33

Acknowledgement

This work is partially supported by grants from AFOSR, ONR, AFOSR MURI, and the
State of Texas Emerging Technology Fund.

References

1. http://anubis.iseclab.org/
2. Balatzar, J., Costoya, J., Flores, R.: The real face of koobface: The largest web 2.0 botnet

explained. Technical report, Trend Micro (2009)
3. Bayer, U., Habibi, I., Balzarotti, D., Kirda, E., Kruegel, C.: A view on current malware

behaviors. In: LEET 2009: Usenix Workshop on Large-scale Exploits and Emergent Threats
(2009)

4. http://bitblaze.cs.berkeley.edu/
5. http://tools.ietf.org/html/rfc1034
6. Ellis, D.R., Aiken, J.G., Attwood, K.S., Tenaglia, S.D.: A behavioral approach to worm de-

tection. In: WORM 2004: Proceedings of the 2004 ACM workshop on Rapid malcode, pp.
43–53. ACM Press, New York (2004)

7. Gu, G., Perdisci, R., Zhang, J., Lee, W.: BotMiner: Clustering analysis of network traffic for
protocol- and structure-independent botnet detection. In: Proceedings of the 17th USENIX
Security Symposium, Security 2008 (2008)

8. Gupta, A., Kuppili, P., Akella, A., Barford, P.: An empirical study of malware evolution. In:
COMSNETS 2009: Proceedings of the First international conference on COMmunication
Systems And NETworks, pp. 356–365. IEEE Press, Piscataway (2009)

9. Holz, T., Steiner, M., Dahl, F., Biersack, E., Freiling, F.: Measurements and mitigation of
peer-to-peer-based botnets: a case study on storm worm. In: LEET 2008: Proceedings of
the 1st Usenix Workshop on Large-Scale Exploits and Emergent Threats, pp. 1–9. USENIX
Association, Berkeley (2008)

10. http://tools.ietf.org/html/rfc792
11. Jiang, X., Xu, D.: Profiling self-propagating worms via behavioral footprinting. In: WORM

2006: Proceedings of the 4th ACM workshop on Recurring malcode, pp. 17–24. ACM, New
York (2006)

12. Kolbitsch, C., Comparetti, P.M., Kruegel, C., Kirda, E., Zhou, X., Wang, X.: Effective and
efficient malware detection at the end host. In: 18th Usenix Security Symposium (2009)

13. http://www.mlsec.org/malheur/
14. Moore, D., Shannon, C., Claffy, K.: Code-red: a case study on the spread and victims of

an internet worm. In: IMW 2002: Proceedings of the 2nd ACM SIGCOMM Workshop on
Internet measurment, pp. 273–284. ACM, New York (2002)

15. Morales, J.A., Al-Bataineh, A., Xu, S., Sandhu, R.: Analyzing dns activities of bot processes.
In: MALWARE 2009: Proceedings of the 4th International Conference on Malicious and
Unwanted Software, pp. 98–103 (2009)

16. Morales, J.A., Clarke, P.J., Deng, Y., Kibria, B.G.: Identification of file infecting viruses
through detection of self-reference replication. Journal in Computer Virology Special EICAR
conference invited paper issue (2008)

17. Moskovitch, R., Elovici, Y., Rokach, L.: Detection of unknown computer worms based on
behavioral classification of the host. Comput. Stat. Data Anal. 52(9), 4544–4566 (2008)

18. Nazario, J., Holz, T.: As the net churns: Fast-flux botnet observations. In: 3rd International
Conference on Malicious and Unwanted Software, MALWARE 2008, pp. 24–31 (2008)

19. http://tools.ietf.org/html/rfc1001#ref-2

http://anubis.iseclab.org/
http://bitblaze.cs.berkeley.edu/
http://tools.ietf.org/html/rfc1034
http://tools.ietf.org/html/rfc792
http://www.mlsec.org/malheur/
http://tools.ietf.org/html/rfc1001#ref-2

34 J.A. Morales et al.

20. http://en.wikipedia.org/wiki/Ping
21. http://en.wikipedia.org/wiki/List_of_TCP_and_UDP_port_numbers
22. Rabek, J.C., Khazan, R.I., Lewandowski, S.M., Cunningham, R.K.: Detection of injected,

dynamically generated, and obfuscated malicious code. In: WORM 2003: Proceedings of
the 2003 ACM workshop on Rapid malcode, pp. 76–82. ACM Press, New York (2003)

23. Stinson, E., Mitchell, J.C.: Characterizing bots’ remote control behavior. In: Hämmerli, B.M.,
Sommer, R. (eds.) DIMVA 2007. LNCS, vol. 4579, pp. 89–108. Springer, Heidelberg (2007)

24. http://www.sunbeltsoftware.com/
Malware-Research-Analysis-Tools/Sunbelt-CWSandbox/

25. http://tools.ietf.org/html/rfc768
26. Witten, I.H., Frank, E.: Data Mining: Practical machine learning tools and techniques, 2nd

edn. Morgan Kaufmann, San Francisco (2005)
27. Yin, H., Song, D., Egele, M., Kruegel, C., Kirda, E.: Panorama: capturing system-wide in-

formation flow for malware detection and analysis. In: CCS 2007: Proceedings of the 14th
ACM conference on Computer and communications security, pp. 116–127. ACM, New York
(2007)

28. Zhu, Z., Yegneswaran, V., Chen, Y.: Using failure information analysis to detect enterprise
zombies. In: 5th International ICST Conference on Security and Privacy in Communication
Networks, Securecomm 2009 (2009)

http://en.wikipedia.org/wiki/Ping
http://en.wikipedia.org/wiki/List_of_TCP_and_UDP_port_numbers
http://www.sunbeltsoftware.com/Malware-Research-Analysis-Tools/Sunbelt-CWSandbox/
http://www.sunbeltsoftware.com/Malware-Research-Analysis-Tools/Sunbelt-CWSandbox/
http://tools.ietf.org/html/rfc768

Inexpensive Email Addresses
An Email Spam-Combating System

Aram Yegenian and Tassos Dimitriou

Athens Information Technology,

19002, Athens, Greece

aramyegenian@alumni.cmu.edu, tdim@ait.edu.gr

Abstract. This work proposes an effective method of fighting spam by

developing Inexpensive Email Addresses (IEA), a stateless system of Dis-

posable Email Addresses (DEAs). IEA can cryptographically generate

exclusive email addresses for each sender, with the ability to re-establish

a new email address once the old one is compromised. IEA accomplishes

proof-of-work by integrating a challenge-response mechanism to be com-

pleted before an email is accepted in the recipient’s mail system. The

system rejects all incoming emails and instead embeds the challenge in-

side the rejection notice of Standard Mail Transfer Protocol (SMTP)

error messages. The system does not create an out-of-band email for

the challenge, thus eliminating email backscatter in comparison to other

challenge-response email systems. The system is also effective in iden-

tifying spammers by exposing the exact channel, i.e. the unique email

address that was compromised, so misuse could be traced back to the

compromising party. Usability is of utmost concern in building such a

system by making it friendly to the end-user and easy to setup and

maintain by the system administrator.

Keywords: Email spam, disposable email addresses, stateless email sys-

tem, proof-of-work, email backscatter elimination.

1 Introduction

Unsolicited bulk emails, or more commonly known as spam, reached 180 billion
emails of total emails sent per day in June 2009 [1]. The cost of handling this
amount of spam can be as much as 130 billion dollars [2]. These costs are borne
by the email receivers and the enterprises in the form of lost productivity and/or
taxing the network for unproductive bandwidth.

Existing anti-spam systems can be successful in combating spam until the
moment spammers adapt and find a way around them. Other anti-spam systems
add cost to each sent email such that spam would be economically infeasible.
However until now these efforts have not seen wide scale adoption and it is
believed that they will not be effective in combating spam even if deployed on a
large scale. The merits and costs associated with each such method are outlined
below:

S. Jajodia and J. Zhou (Eds.): SecureComm 2010, LNICST 50, pp. 35–52, 2010.
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2010

36 A. Yegenian and T. Dimitriou

Email Filtering: Email filters examine emails after they have been accepted into
the local mail system to find patterns of a spam email. The costs [2] involved
with this solution include: False negatives, False positives, Help desk running
costs for handling complaints about spam or lost emails, and Storage/Processing
costs since i) emails have to be accepted into the local queue, and ii) have to be
processed by the filters, consuming both CPU and IO resources.

Domain Name System Blacklist : Email servers consult a published list of the IPs
of suspected servers and determine if an incoming email is originating from a
spam generating server [3]. However, the operators of such systems are criticized
of being too aggressive, listing legitimate email servers by mistake or on purpose,
or lacking clear guidelines in listing and de-listing a server. Any of these actions
would destroy the trust that is required to make such a system useful.

Greylisting: This is a method of fighting spam by temporarily rejecting incom-
ing emails from a server that the mail server does not recognize [4]. Properly
functioning mail servers would retry delivery of the email contrary to spammers
who can not afford wasting the time to retry delivery of a failed email. The main
advantage of greylisting is that the incoming email is never accepted into the
local mail system.

Proof-of-Work systems: There have been proposals to attach cost to each email
sent. Hashcash [9] and Microsoft’s Penny Black [10] are two such systems by
which an email sender would expend an amount of CPU time to calculate a
computationally-expensive puzzle before an email is accepted. This, however
has two implications: i) Computer processing power varies immensely between
different machines. ii) Spammers have access to botnets, which can be used as
computing clouds, or rather spam generating clouds. In this work, we argue
that proof-of-work functions could be very effective in fighting spam; however,
having challenges based on image recognition instead of computational effort
would make it harder for spammers to automate email delivery.

Our Contribution: Email addresses are expensive in the sense that they are tied
to a person’s identity. It would be impractical for people to change their email
address once it is compromised since that would entail informing all of their
contacts, updating their business card and updating their web site in order to
reflect the change.

IEA, Inexpensive Email Addresses, is a system that successfully uncouples a
person’s identity from their email address. An exclusive email address is crypto-
graphically generated per sender that is used instead of a regular email address.
However this exclusive email address can be easily disposed of and re-established
once it has been compromised.

The system extends the use of Disposable Email Addresses (DEAs) by inte-
grating a proof-of-work function into the standard mail protocol. The username
part of the IEA system serves as a publicly known token whereby an email sender
would query to generate an exclusive email address, provided that a proof-of-work
function is solved before revealing that exclusive address. Meanwhile incoming
emails are rejected during the SMTP session header transmission, ensuring that

Inexpensive Email Addresses: An Email Spam-Combating System 37

emails are not bounced at a later stage, something which would constitute email
backscatter. IEA has been developed as a proxy server, relaying messages to the
SMTP server once all validity checks has passed, thus making the system easily
pluggable to existing e-mail infrastructure. Finally, the system is user friendly,
since creating new disposable email addresses is easy and transparent, requiring
minor intervention from the email recipient.

The rest of the paper is organized as follows. Sections 2 and 3 unravel the
design details of IEA. Implementation details and experimental results can be
found in Section 4. Section 5 contains a comparative study of our system against
existing work. Section 6 offers a discussion and critique of IEA, while Section 7
concludes the paper.

2 Inexpensive Email Addresses: IEA

Before we delve into the details of the system, we give a high level overview of
IEA. IEA makes it easy for a person to publish an email address for the entire
world to use but still retain control of what is delivered to their inbox. The
username of an IEA user is used as a token to be queried. An email sender would
send an email to this token to establish a new and a unique email communication
channel for themselves, however, the new custom email address is only revealed
after going through a proof-of-work process.

Incoming emails are rejected with a notice containing a challenge-response
function that, when solved, reveals a customized email address per email sender.
The challenge is embedded in the description of the SMTP error message, which
is parsed by the sending MTA, eliminating email backscatter. The challenge-
response process limits the number of incoming unsolicited emails since proof-
of-work is integrated into the mail protocol. If an email address is compromised,
a user has the option to “Roll” or “Ban” the email address which disposes that
email address and forces any incoming mails to that address to go through a
new challenge-response process.

Outgoing emails that are generated by a user of the IEA system are processed
by the IEA daemon to replace the original user’s email address by a DEA gener-
ated specifically to that recipient. The DEA is then committed to the database
of DEA-to-email mappings. Incoming emails using this new DEA are not subject
to a challenge-response process, since the IEA user was responsible for initiating
the communication channel with the other party.1

IEA is transparent to the end-users of the system in the sense that it is
compatible with any Mail User Agent (MUA), without any changes needed.
Essentially any mail client can be used with IEA, because the IEA daemon is a
compliant SMTP server and would handle all emails and perform any required
processing transparently. The only case that a user might need to interact with
1 Some critics of challenge-response email systems point out the counter-intuitive pro-

cess of forcing an email receiver to go through a challenge-response mechanism when

the email initiator is the other party, this is why we have opted to allow incoming

emails to go through when the email is initiated from the local system.

38 A. Yegenian and T. Dimitriou

the system is when a user decides to “Roll” or “Ban” an email address. Currently,
we have extended an open source webmail client, SquirrelMail [5], to provide that
functionality to the user, however, most popular desktop mail clients, like Mozilla
Thunderbird or Microsoft Outlook, can also be extended to have the ability to
interact with the IEA system.

2.1 How IEA Makes Use of SMTP

SMTP is the standard protocol used by all mail servers to relay emails across
the Internet. SMTP is a simple text-based protocol and has preset error codes to
handle abnormal circumstances. The IEA system uses the SMTP error messages
to embed the challenge inside it. The following is an SMTP session showing
an email sent from alice@example.com to bob@iea system.com. Alice has not
established proof-of-work yet (the sender’s MTA is signified by text in italics
and the lines are numbered for demonstration purposes).

1. 220 smtp.iea system.com ESMTP

2. HELO smtp.example.com

3. 250 Hello smtp.example.com, pleased to meet you

4. MAIL FROM:<alice@example.com>

5. 250 Ok

6. RCPT TO:<bob@iea system.com>

7. 553 <bob@iea system.com>: Hello, a custom email address has been created

for you, please resubmit your email to this new email address. Please visit

the following URL to access it:

http://mailhide.recaptcha.net/d?k=01G n x4ZFpi4A0gYj6phwbg==&c=C2HSZaHRWBC

vz-9zzfqlsDsZ9Ko8NdH5SXgclfm9QQSy4jAYLT6nv0P7UrK8oMRTiS-iBmyF3 RyGBuIzm-cT

w==

8. QUIT

9. 221 BYE

It should be emphasized that at step number 7, the IEA system rejects the
email with an SMTP error code, 553 which means “Requested action not taken
- Mailbox name invalid” [6], and embeds the challenge inside the description
notice. The sending MTA would close the connection since it has encountered an
error message, and deliver the notice to the sender. Also note that the sending
MTA never reached the data sending part, which can be used to deliver huge
attachments in an effort to waste bandwidth or to be used as an attack vector.

2.2 IEA Step-by-Step Walkthrough

Now we present a typical use case of a person sending/receiving an email to/from
an IEA system user. When alice@example.com sends an email to an IEA sys-
tem user with the email address bob@iea system.com, the sender’s MTA would
initiate the SMTP session with the IEA daemon. The IEA daemon system would
receive the following email headers:

Inexpensive Email Addresses: An Email Spam-Combating System 39

. . .
From: "Alice" <alice@example.com>
To: "Bob" <bob@iea system.com>
. . .

At this stage the IEA system checks if the recipient exists in its database and
the sender is allowed to use this address, otherwise it checks if the alias used
is a valid one by decrypting it. In this case "bob" is a token used to generate
a custom DEA, so it should be rejected and a challenge is embedded in the
rejection notice. The IEA daemon generates a new DEA as previously discussed
resulting in an exclusive email address, much like the following:

jTYtOowmrE omtyfMTNSWrT32gyRR-HT@iea system.com

The IEA daemon then creates a URL that would only reveal the DEA after
a CAPTCHA is solved, by using the Mailhide API[13] to encrypt the newly
created DEA inside the URL:

http://mailhide.recaptcha.net/d?k=01G n x4ZFpi4A0gYj6phwbg==&c=C2HSZaHRWBC

vz-9zzfqlsDsZ9Ko8NdH5SXgclfm9QQSy4jAYLT6nv0P7UrK8oMRTiS-iBmyF3 RyGBuIzm-cT

w==

The IEA daemon then embeds this URL in the description part of the re-
jection notice and delivers it to the sender’s MTA and ends the connection. In
turn the sender’s MTA delivers the rejection notice immediately to the sender,
alice@example.com. The sender would receive a message in their inbox from the
MTA, the “Mail Delivery Subsystem”, stating that the email was not delivered
with the subject: “Returned mail: see transcript for details”.

Upon opening the email, the following message will be displayed, although
the exact message may be different depending on the sender’s MTA.

· · ·
This is the Postfix program at host iea system.com. I’m sorry to have

to inform you that your message could not be delivered to one or more

recipients. It’s attached below. For further assistance, please send mail

to <postmaster> If you do so, please include this problem report. You can

delete your own text from the attached returned message.

The Postfix program <bob@iea system.com>: host iea system.com said:

553 <bob@iea system.com>: Hello, a custom email address has been created

for you, please resubmit your email to this new email address. Please

visit the following URL to access it:

http://mailhide.recaptcha.net/d?k=01G n x4ZFpi4A0gYj6phwbg==&c=C2HSZaHRWB

Cvz-9zzfqlsDsZ9Ko8NdH5SXgclfm9QQSy4jAYLT6nv0P7UrK8oMRTiS-iBmyF3 RyGBuIzm-

cTw==
(in reply to RCPT TO command)

· · ·
It must be noted that this process is stateless, as the DEA is not yet stored

in a database. Only after the CAPTCHA is solved and an email is resubmitted
using this new DEA would the IEA daemon commit the alias into its database.
We can clearly see that the email was never accepted in the local mail queue,

40 A. Yegenian and T. Dimitriou

(a) (b)

Fig. 1. (a) Mailhide displaying the challenge. (b) Mailhide displaying the DEA.

since the SMTP header transmission was never completed to reach the data
transfer stage thus eliminating any possible attacks or email backscatter.

The sender could now establish proof-of-work by solving the CAPTCHA that
is presented to her when she accesses the Mailhide URL (Figure 1(a)). If the
sender successfully solves the reCAPTCHA challenge, Mailhide will display the
DEA for the sender (Figure 1(b)).

When the sender resubmits the email with the new recipient address, the
sender’s MTA would reconnect to the IEA daemon to deliver the email, as fol-
lows:

. . .
From: "Alice" <alice@example.com>

To: "Bob" <jTYtOowmrE omtyfMTNSWrT32gyRR-HT@iea system.com>

. . .

The IEA daemon would check the validity of the alias and decrypt it to reveal
the original recipient of the email. The email would only be accepted if the sender
information passes the validity checks. The IEA daemon then changes the email
headers back to the real recipient’s email address, as follows:

. . .
From: "Alice" <alice@example.com>
To: "Bob" <bob@iea system.com>
. . .

After applying the changes to the email headers then the IEA daemon relays
the email to the back-end MTA for delivery to the user’s mailbox, bob. Since
the IEA daemon acts an SMTP proxy and relays emails to the back-end MTA it
never stores email locally, therefore extra storage is not required for the proper
functioning of the IEA daemon.

If the IEA sender replies to the message it will also go through the IEA
daemon, since it is configured as the default SMTP server for outgoing emails.

Inexpensive Email Addresses: An Email Spam-Combating System 41

The IEA daemon processes the headers of the incoming email that is generated
from bob to alice.
. . .
From: "Bob" <bob@iea system.com>
To: "Alice" <alice@example.com>
. . .

The IEA daemon will first search its database for a DEA associated with
alice@example.com and use that if available, otherwise it would create a DEA
for alice and store it in the database. Next the IEA daemon would process the
headers by changing the “From” field to the DEA that is associated with alice,
as follows:
. . .
From: <jTYtOowmrE omtyfMTNSWrT32gyRR-HT@iea system.com>
To: "Alice" <alice@example.com>
. . .

This guarantees that when the other party receives the email, the return
addresses are correct such that if the receiver is to reply then the correct DEA
address is used, and the sender is not subjected to a further challenge-response
process.

2.3 Rolling and Banning

An IEA user has a choice of either rolling or banning a DEA once it has been
compromised. Rolling a DEA would force only the sender of the email to re-
establish a new DEA by going through a proof-of-work process again. A new
key (this will become clear in Section 3.2) is generated for that sender and that
key is used to generate the new DEA for that sender.

Banning on the other hand would dispose of that DEA for all senders that
were allowed to use it and would generate new keys for everyone using that
DEA, thereby forcing all the senders of that DEA to go through a proof-of-work
process. This would channelize mail communication with all parties, by having
the option to only dispose of a DEA per sender, or for everyone that is using it.

3 System Design

3.1 The IEA Sub-systems

IEA is composed of three sub-systems as illustrated in Figure 2(a). A daemon
that is responsible for mail reception, mail processing, DEA creation, and sub-
mission to a back-end MTA for mail delivery. A web interface, which exposes the
features of the system to the end-user in a user-friendly manner, and a database
containing validated DEAs and encryption keys used to generate the DEAs.

42 A. Yegenian and T. Dimitriou

The IEA Daemon: The IEA daemon acts as a proxy SMTP server which
handles incoming and outgoing emails and processes them according to the rules
in its database. IEA was designed such that the daemon would be a standalone
server, as opposed to be being a mail filter that extends the functionality of the
MTA.

This design was chosen for two reasons. First, having a standalone server
that uses SMTP to communicate with other MTA servers would make the IEA
daemon inter-operable with any MTA server running in the back-end. Second,
IEA extends the SMTP protocol error message descriptions by embedding the
challenge inside the rejection notice that is delivered to a sender’s MTA. MTAs
do not expose that ability through an API to developers since extending the
error descriptions of a mail server is an unorthodox requirement.

The IEA daemon relays the emails that pass the validity checks to the back-
end MTA for final delivery. The validity checks are performed during the SMTP
session header transmission, and email destined to invalid DEAs would be re-
jected before the sending MTA reaches the data transmission stage. This would
ensure that no emails are accepted in the local queue before the sender has solved
the proof-of-work function.

Regarding incoming emails, the IEA daemon rejects all of them and a chal-
lenge is embedded in the rejection notice in response. When the challenge is
solved, the new DEA is revealed to the sender and will be stored in a database
when the sender resubmits the email using the new DEA. On the other hand,
senders who are responding to emails that originated from users of the IEA sys-
tem are not subjected to a challenge-response mechanism and their emails are
accepted for delivery.2 This is accomplished by generating a DEA when an email
is originated from the local system that specifies a new external recipient. The
new DEA is substituted in place of the user’s email address in the “From” field
and it is also committed to the database so that further communication with
that party does not result in a challenge-response request.

The IEA Database. The IEA database contains the DEA-to-sender mapping
and their corresponding keys. Since almost 90% of all emails are spam [7], storing
a DEA for each incoming email would overwhelm the database in the long run.
This can be used as an attack vector by generating a large number of forged
email senders and targeting such a system. However, IEA generates a stateless
DEA by embedding inside the DEA all the data needed to deliver an email. The
database is only populated with the new DEA after a sender has established
proof-of-work.

The database also contains the encryption keys used to generate the DEAs. We
distinguish between two keys: i) a master encryption key that is used initially
per IEA user (say bob) to generate all new DEAs for that user, and ii) roll
encryption keys that get stored in the database only after the user (Bob) has
decided to roll an existing DEA.
2 This is useful when the IEA user wants to generate DEAs on demand, for example

to register to a conference or obtain access to a news site. This allows the user to

receive emails to that DEA for as long it is desired.

Inexpensive Email Addresses: An Email Spam-Combating System 43

(a) (b)

Fig. 2. (a) IEA sub-systems. (b) DEA generation flow.

The master encryption key is associated with Bob’s account and is generated
when a new account is first created for that user. The key is used to produce
the initial DEAs for the conversation between Bob and external correspondents.
When bob chooses to “Roll” an existing email address, a new encryption key
(roll key) is generated for that sender only (say alice), a new DEA is generated
using that key and alice has to re-establish proof-of-work (alternatively, instead
of a new key an increasing counter value can be used to generate the new DEA in
association with the master key). It is only at this point that this new roll key is
committed to the database of DEAs already kept by Bob. Similarly, when a user
chooses the “Ban” option, the IEA system generates new keys for all the senders
that are using that DEA, and they are required to re-establish proof-of-work.

The IEA Web Module. The IEA web module is an interface for users to
manage the IEA system. The web module was built as an extension to the pop-
ular SquirrelMail webmail client (figure omitted due to space restrictions). How-
ever, any MUA could be used instead and extended to implement the required
features, including desktop email clients like Mozilla Thunderbird or Microsoft
Outlook, since the IEA daemon is a fully compliant SMTP server.

The SquirrelMail interface implements the following features:

– Rolling of a DEA: A user can choose to tag an incoming email as compro-
mised and “Roll” it. The sender would have to establish a new DEA.

– Banning of a DEA: A user can choose to ban a DEA thereby all parties
using that DEA would have to re-establish a new DEA.

– DEA creation: A user of this system can create a DEA that would be used
as an alias to give out to senders or to be used at e-commerce sites. Also the
user would have the option to create a DEA that has an exclusive user, or

44 A. Yegenian and T. Dimitriou

a DEA that allows all senders to deliver emails which is the default (this is
used in conjunction with banning above).

– Specifying an expiration date for a DEA: This is useful for users who would
like to have an email address expire after a certain time has passed.

3.2 The DEAs

A DEA that is generated by the IEA server constitutes an encrypted byte array
of the data needed to validate an alias and successfully deliver the email to
its intended recipient. The encrypted string is the result of concatenating the
username of the recipient with the hashed value of the sender address along with
the username of the recipient. The hashed value is used to verify the integrity of
the alias at later stages. Each user has a master key that is used to generate the
DEAs. The master key is only changed if the user chooses to “Roll” an email
address, whereby a new key is generated for that specific sender thus making
the old DEA invalid. Figure 2(b) describes how a DEA is generated by the IEA
system.

– At first, the domain name part of the recipient email address is stripped
away to get the username.

– The hashed value is created by concatenating the sender’s email address with
the username of the email recipient. MD5 is used to generate the hash value.
The hashed value is used to check the integrity of a DEA since we need to
verify that an incoming email address is a valid DEA for that specific user.

– The hashed value is then concatenated with the username of the email re-
cipient, a time stamp, and a byte array that contains the option settings for
that specific DEA. It is necessary to embed the username of the recipient
within the generated DEA because the system is stateless and does not store
a DEA-to-username mapping before the challenge is solved; otherwise the
intended recipient would be lost. The timestamp is used to determine if the
challenge is expired, by default IEA allows a grace period of four days to
solve the challenge and resubmit an email using the newly created DEA.
The byte array contains option settings (Table 1) that could be used to
signify that a DEA is an exclusive one per user, or to verify the domain
name of the sender instead of the email address, which is used in the case of
correspondence with an e-commerce site.

Table 1. Option settings for a DEA

Options Values

sender info type 0: Sender’s e-mail address

(default: 0) 1: Sender’s e-mail domain

2: mailing list address

dea type 0: exclusive per sender

(default: 1) 1: allow all senders

Inexpensive Email Addresses: An Email Spam-Combating System 45

– The concatenated byte array is encrypted using a master encryption key that
was generated per IEA user when the user’s account was first created. The
master encryption key is used to generate all incoming emails per user. Only
when the user chooses to “Roll” or “Ban” an email address a new encryption
key is generated thus invalidating the old DEA and generating a new DEA
for that sender. The encryption scheme used for the IEA system is Blowfish,
however any encryption scheme could be used instead. Authenticated en-
cryption, as discussed in [8], was investigated as a faster mode of operation
but was not implemented in the current version of the IEA system.

– Finally, the encrypted form is transformed to a string by encoding it using
base 64 encoding. It should be noted that we use a safe base 64 encoding
that is suitable for the SMTP protocol. Since the characters ‘+’ and ‘/’ are
not safe to use with SMTP, they are substituted with ‘-’ and ‘ ’ respectively.

4 Implementation

The system was developed and deployed on a virtual machine instance running
Linux. The test machine had 64MB of RAM dedicated to it with 128MB of swap
space and was powered by an Intel Core 2 CPU running at 2.1GHz.

The prototype IEA system was built using the Python language. The standard
Python library smptd module was extended to implement the IEA daemon. The
IEA system does not require much memory or disk space since it does not accept
emails in its local queue. The database to store the generated DEAs and keys
was MySQL.

Postfix was used as the back-end MTA to deliver the emails to the user’s
mailbox and handle outgoing emails. Postfix was setup to run on the same
machine as the test machine, although it could be setup to run on a separate
machine.

An Apache server was used to run the webmail client. The webmail client,
SquirrelMail, is a popular open source client. SquirrelMail is easy to extend and
we developed the features required for the IEA system as a plug-in for it.

It should be noted that none of the components used are tightly coupled to
the IEA system. Apache, MySQL, Postfix, SquirrelMail and even the operat-
ing system, Linux, can be easily replaced with similar functioning components.
Although the IEA system was not explicitly designed to be multi-platform or
have pluggable architecture, we did rely on standard protocols which make the
replacement of components possible.

4.1 Benchmarks

The IEA daemon was benchmarked to measure how many SMTP connections
would it be able to handle per unit of time. The IEA daemon was subjected
to incoming emails such that it would generate a DEA and create a Mailhide
URL for it as we believe that this condition would expose the daemon to the
most possible load. The IEA daemon was able to process 252 SMTP sessions

46 A. Yegenian and T. Dimitriou

per second. It should be noted that the running IEA system is a development
version, which contains debug code and is not optimized for performance.

For comparison reasons we subjected the Postfix server to a similar test. We
configured Postfix such that it rejects all incoming emails, as the IEA daemon
previously did. The Postfix server was able to process 951 SMTP sessions per
second on the same machine. Of course Postfix is a high performance optimized
mail server and was configured to reply with just a rejection notice for testing
purposes; whereas the IEA daemon is a prototype that had to go through an
SQL query, generate a DEA then encrypt the DEA inside a URL. We believe
that proper optimization would significantly increase the performance of the IEA
system.

While benchmarking the performance of the IEA daemon we noticed that the
MySQL server was undergoing increased load. This behavior is understandable
since the IEA daemon consults the database to check if the alias already exists
as a legitimate alias for a recipient. However, we decided to replace the MySQL
server with a lighter database system and to run the benchmarks again to see
the difference. SQLite was chosen as a lightweight alternative to MySQL. SQLite
is not a standalone client-server SQL server, instead the SQLite library is linked
within the Python library thus the overhead of connecting to a back-end SQL
does not exist. The benchmarks were performed again, and the IEA daemon was
able to process 294 SMTP sessions per second. That constitutes a 16% increase
in performance versus using the MySQL server. This further proves that proper
optimization could be made to the IEA daemon and better performance would
be achieved.

The encryption and decryption speed of DEAs by the IEA daemon was also
measured. Test results showed that roughly 6950 encryption and 8720 decryption
operations can be performed per second, respectively. This indicates that DEA
generation has very little impact on the system as a whole. The validation speed
of a DEA was also measured. MD5 was used to create the hash values to verify
the integrity of the DEA. Test results showed that roughly 414900 integrity check
operations can be performed per second. This also indicates that DEA validation
has no impact on the system as a whole.

5 Related Work

In this section, we compare IEA with existing approaches to limit spam. The
IEA system borrows some characteristics from these works, however, it refines
them and adds some of its own to create a unique and more viable spam-limiting
system. What particularly distinguishes IEA is that it does not generate out-of-
band emails in the challenge-response process, it is not susceptible to a Denial-
of-Service (DoS) attack and cannot be used as an attack vector to generate spam
and/or email backscatter. We hope this list of desired properties will prove the
viability of IEA and stimulate further research in the area.

Hashcash [9] and the Penny Black Project [10] propose the inclusion of cryp-
tographic puzzles in the SMTP protocol to limit the speed at which spammers

Inexpensive Email Addresses: An Email Spam-Combating System 47

deliver emails. However a proof-of-work challenge that relies on computer in-
tensive puzzles will make spammers use botnets to generate and deliver spam.3

Another problem with this approach is the need for all MUAs and MTAs to
be compatible with the protocol. The IEA system uses a human solvable puzzle
rather than a cryptographic challenge. Also, the IEA system does not require
that the MTA or MUA on the other end to be modified, since it relies on hu-
man effort to solve the challenge and it is delivered using the standard SMTP
protocol.

Similarly, in [12], the authors propose a system in which a challenge contained
inside a URL is distributed alongside one’s email address, to be solved prior
to sending the email. One critique of this system is that emails that lack the
solution to the challenge are silently discarded, which could mean that two users
of such a system would get into a deadlock as they do not get any notices
about it (the authors, however, propose an alternative solution whereby all MTAs
must be modified to cater for discarding emails). In contrast, IEA delivers the
challenge through the sending MTA, thereby being compatible with the current
mail protocol while also being instantaneous.

Mailhide [13] is a subset of Carnegie Mellon’s reCAPTCHA project. Mailhide
is very effective in hiding an email address from spambots that scan the web
for addresses, however, once the email address has been compromised there is
no way back to a safe, no-spam state. The IEA system incorporates Mailhide
to deliver the challenge that contains the newly generated DEA. be directly
connected to the Mailhide servers. It should be noted, however, that the IEA
system could be easily modified to use any CAPTCHA generating component.

Rolling Email Address Protocol or REAP [14], is based on a very interesting
concept called “Rolling”. Rolling basically means that a user has the capability
to dispose of an email address and agree upon a new one with the sending party
once the current one is compromised and starts receiving spam. The problem
with REAP, however, is that it requires too much manual intervention from
both parties. Therefore what we propose is once a user tags an email address as
compromised, all incoming emails to that alias be challenged and a new DEA
be created instead. This would channelize the email communication such that
each sender would have a unique DEA for itself.

Tagged Message Delivery Agent [15], is an open source mail system that em-
ploys a challenge-response function to reduce spam. Three main drawbacks of
this system include the generation of an out-of-band email and hence the pos-
sibility of email backscatter, the storage of emails into the local queue which
may be used as DoS attack vector, and finally the possibility of recovering the
challenge (simply a random character array) by spambots.

3 Laurie and Clayton in [11] presented an economic study of the effectiveness of using

cryptographic puzzles to fight spam. In their paper they conclude that spammers will

not be affected by these systems, instead legitimate email senders would be harmed

the most. However, they suggest puzzles based on human effort, CAPTCHAs, as a

viable solution to attaching a “cost” to emails.

48 A. Yegenian and T. Dimitriou

A “Remailer” component has been presented in [16] that automatically creates
new aliases for incoming emails and either bounces or relays emails based on accep-
tance criteria for that alias in order to fight spam. The Remailer system is respon-
sible for storing all incoming emails that are undeliverable in a special mailbox
until the Remailer goes through them and bounces invalidated emails. This, how-
ever, opens the system for abuse by senders with forged email addresses to send
emails to non-existing aliases which in effect would be bounced by the Remailer,
generating email backscatter. The IEA system never accepts any incoming emails
that could later be bounced by the back-end MTA. Validity checks are performed
during the SMTP session header transmission, and emails are rejected before the
sender is allowed to transmit the actual data part of the message.

MIDEA [17], proposes a method of eliminating lookup tables for DEA man-
agement on the server side by embedding the data needed for the DEA manage-
ment into the email address. The paper mainly considers limited functionality
devices, as mobile phones, to send emails, however it does not delve into spam
control.

In addition to the characteristics outlined above, IEA achieves a unique set
of properties that distinguish it from past work. These are summarized below:

– Stateless System: IEA is a stateless system by avoiding storing a sender’s email
address at the beginning of establishing a DEA so as to conserve resources
and avoid DoS attacks. The DEA is effectively used as a cookie to distinguish
a sender that has solved the challenge. Only well intentioned users would go
through a challenge-response process, and the DEA would be committed to a
database after the new DEA has been used for the first time.

– Email Backscatter Elimination: Email Backscatter [18,19] is a side-effect of
spam emails that get accepted in a mail system having forged sender identity
then bounced by the email server back to the forged address. This happens
since mail filtering checks are done after an email is accepted into the queue.
IEA was designed to eliminate backscatter by rejecting all incoming emails.
The challenge is delivered to the sender by simply embedding it inside the
description part of the rejection notice of SMTP error messages.

– Traceability: When a DEA starts receiving spam, IEA allows the user to dis-
pose of that particular DEA and tag it as compromised. This would make the
system start the challenge-response mechanism on the compromised DEA, en-
suring all parties that were using it would establish a new one. If one of these
new DEAs is also compromised, that DEA would expose the spamming party
since each new party has established a new unique DEA for its own channel.

– Guaranteed Delivery: Current challenge-response mail systems generate an
out-of-band email that contains the challenge-response function in response
to an incoming email. Thus the mail server could be abused to generate
backscatter as described before. Also the challenge email is not guaranteed
to be delivered since it is effectively an unknown server to the sending mail
server. More importantly two users of such a system could end up in a
deadlock, where each user’s Mail Transport Agent (MTA), sends a challenge
email in response of the other party’s challenge email.

Inexpensive Email Addresses: An Email Spam-Combating System 49

Fig. 3. Summary of features per system

IEA was designed to reject all new emails and instead embed the challenge
function inside the SMTP rejection notice during the mail protocol’s header
transmission. This would guarantee delivery of the challenge-response notice
to the sender’s inbox since it is handled by the MTA of the sending party
and it is the only authority that can successfully deliver emails into a user’s
inbox without going through spam filters. Also since the email is rejected and
the challenge-response function is embedded in the rejection notice, there is
no fear of entering a deadlock between two users of this system.

– Overhead Mail Queue Elimination: Current challenge-response mail systems
accept all incoming emails to the local mail queue and store the email locally
until the generated challenge-response is solved. This constitutes wasted stor-
age and could also be used to attack a mail infrastructure by mail bombing
the mail server with numerous emails having large attachments..

IEA avoids this problem by rejecting any incoming email that is not a
valid DEA, before the actual data of the message is transmitted.

– Usability: The system limits spam in a non-obtrusive way for the end-user.
The system is user friendly, and creating new disposable email addresses
is easy and transparent. Switching to a new disposable email address, if
the original were compromised, requires minor intervention from the email
recipient. Most of that burden is shifted to the sender of the email.

– Ease of Implementation and Deployment: The IEA system easily integrates
with existing email infrastructure. IEA has been developed as a proxy server
that operates as a front-end and only relays emails back to the SMTP server
once all the validity checks have been passed, therefore making this system
easily pluggable into an existing mail infrastructure.

Finally, the system was designed such that emails are kept on the sender’s
side as much as possible, so an email is not accepted in the local mail queue
unless the sender has solved the challenge function. This would relieve the lo-
cal mail system, and the administrator, from the resources needed for storing
the mail in the local queue.

A summary of these properties and a comparison with existing systems is shown
in Figure 3. It should be noted that some systems, like TMDA and Remailer,
generate backscatter and do nothing to eliminate it.

50 A. Yegenian and T. Dimitriou

6 Discussion and Critique of the IEA System

As previously discussed, IEA is a challenge-response system where the challenge
is delivered to the sender by embedding it into the description part of the SMTP
error message. Strictly speaking this does not follow the SMTP specification since
the error codes were implemented to return error messages as opposed to be used
in a challenge-response mechanism. However, this was chosen to overcome the
problem of generating an out-of-band email or generating email backscatter in
response of an incoming email. It must be noted that some mail providers also
use the description part of the error code to deliver information, notably Yahoo!
Mail servers [20] specify a URL to be visited in the description part of the error
message in an effort to enforce Greylisting [4].

IEA incorporates proof-of-work into the standard SMTP protocol, but unlike
Hashcash and the Penny Black Project IEA uses the existing mail infrastructure
(MTAs and MUAs) to achieve its goals and does not require the other end to
be upgraded or changed to fully utilize the protocol.

IEA uses the sender’s email address that is sent during the SMTP header
transmission as a token to be embedded in the generated DEA. IEA could be
criticized as relying on information that can easily be forged to create this token.
However, it must be noted that IEA does not generate an email using a forged
email address which would constitute email backscatter. Instead, the challenge is
immediately delivered to the sender’s MTA and does not rely on the return path
of the MTA or the sender to be correct: the challenge will be delivered to the
sending party whether the sender is forged or not. IEA could also make use of
frameworks like [21,22] to identify a sender. Although it is not strictly necessary
for the successful operation of IEA, it could be used to lessen the load on IEA
by identifying the sender before the IEA system process the sender information.

A critical note about IEA is the ability to sign up in mailing lists, or automated
systems which might not have a human operator to solve the challenge. Users
who are using the IEA system can generate a DEA for specific senders that
would pass through to their mailbox without having to go through the challenge-
response process, as in the case where a sender wants to send a broadcast email
(say) to a class of 100 students.

The inclusion of a challenge-response mechanism in the SMTP protocol
whereby proof-of-work is established before accepting emails slows down spam-
mers crippling their operation. However, it will also slow down mail delivery for
legitimate users, until they solve the CAPTCHA. Users have come to expect
a near-instantaneous operation of email, although email was never designed to
function like that. Email was designed to be relayed across servers until it reaches
its destination without any specification in the protocol for instantaneous deliv-
ery. Some users would object to the delay exhibited by the IEA system, but
we believe that users would accept the idea of a little delay knowing that their
inbox would be clear of spam, and they would not spend time on filtering their
legitimate emails from spam.

Inexpensive Email Addresses: An Email Spam-Combating System 51

7 Conclusions and Future Work

In this work we proposed Inexpensive Email Addresses (IEA), a stateless system of
Disposable Email Addresses (DEAs) that can be used to channelize email commu-
nication in order to fight spam. A challenge-response mechanism is applied to the
SMTP protocol such that proof-of-work is established before emails are accepted
into the local queue and delivered to the mail recipient. DEAs are cryptographi-
cally generated per sender and can be used to trace compromising parties.

During the design of the IEA system similar systems were studied and their
drawbacks revealed in an effort to design a system that does not generate email
backscatter or that is vulnerable to Denial-of-Service attacks. We believe that
decoupling a person’s identity from their email address would make establishing
and disposing email addresses an effective mechanism to fight spam.

The system we developed uses the description notice of SMTP error messages
to embed the challenge, thereby using existing mail infrastructure to achieve
better spam control. We believe that subjecting mail senders to proof-of-work
before accepting an email is better than traditional mail filters that could gen-
erate false negatives and/or false positives. A challenge-response system would
stifle the operation of spammers by increasing the cost and slowing down the
effectiveness of sending mass mail.

There are, however, certain possible expansions and works that can be added
to the system to enhance its functionality. Currently the IEA prototype is tightly
coupled to the email domain of the user; a user has to have a local mailbox on the
IEA system server. A more general solution would have the ability to decouple
a user’s domain from the IEA system; this way any user at any domain could
sign up to an IEA service and an IEA username could be created for that user
that acts as a proxy and relays valid emails to the subscriber’s address. This
would make the system more viable for commercial deployment, providing it as
a service for any email user.

Desktop mail applications could be extended to have the features necessary
for the IEA system that are currently implemented by the webmail client. Having
those options inside the desktop mail application would also make it easier for
the users to fully utilize the system.

References

1. Messaging Anti-Abuse Working Group: Email Metrics Program: The Network

Operators’ Perspective. Report #11 – First and Second Quarter 2009 (2008),

http://www.maawg.org/sites/maawg/files/news/

MAAWG 2009-Q1Q2 Metrics Report 11.pdf (Retrieved October 27, 2009)

2. Ferris Research: Industry Statistics (2009),

http://www.ferris.com/research-library/industry-statistics (Retrieved

October 27, 2009)

3. Cole, W.K.: DNS-Based Lists: an overview (2007),

http://www.scconsult.com/bill/dnsblhelp.html#2-7 (Retrieved November 5,

2009)

http://www.maawg.org/sites/maawg/files/news/MAAWG_2009-Q1Q2_Metrics_Report_11.pdf
http://www.maawg.org/sites/maawg/files/news/MAAWG_2009-Q1Q2_Metrics_Report_11.pdf
http://www.ferris.com/research-library/industry-statistics
http://www.scconsult.com/bill/dnsblhelp.html#2-7

52 A. Yegenian and T. Dimitriou

4. Harris, E.: The Next Step in the Spam Control War: Greylisting (2003),

http://projects.puremagic.com/greylisting/whitepaper.html (Retrieved Oc-

tober 20, 2009)

5. SquirrelMail. SquirrelMail - Webmail for Nuts!, http://www.squirrelmail.org/

(Retrieved September 15, 2009)

6. RFC-1893. Enhanced Mail System Status Codes (1996),

http://www.ietf.org/rfc/rfc1893.txt (Retrieved September 10, 2009)

7. Symantec. The State of Spam A Monthly Report (October 2008),

http://eval.symantec.com/mktginfo/enterprise/other resources/

b-state of spam report 10-2008.en-us.pdf (Retrieved Sepember 4, 2009)

8. Rogaway, P., Bellare, M., Black, J.: OCB: A block-cipher mode of operation for

efficient authenticated encryption. In: ACM TISSEC (November 2001)

9. Back, A.: Hashcash - a denial of service counter-measure (2002),

http://hashcash.org/papers/hashcash.pdf (Retrieved October 10, 2009)

10. Microsoft: The Penny Black Project (2003),

http://research.microsoft.com/research/sv/PennyBlack/ (Retrieved October

10, 2009)

11. Laurie, B., Clayton, R.: ‘Proof of work’ proves not to work. In: Workshop on

Economics and Information Security, Minneapolis, MN (May 2004)

12. Roman, R., Zhou, J., Lopez, J.: An Anti-Spam Scheme Using Pre-Challenges.

Computer Communications 29(15), 2739–2749 (2006)

13. Mailhile: Carnegie Mellon University. reCAPTCHA Mailhide: Free Spam Protec-

tion, http://mailhide.recaptcha.net/ (Retrieved September 30, 2009)

14. Seigneur, J.M., Jensen, C.D.: Privacy Recovery with Disposable Email Addresses.

IEEE Security and Privacy 1(6), 35–39 (2003)

15. Mastaler, J.: Tagged Message Delivery Agent (TMDA) Homepage,

http://www.tmda.net/ (Retrieved Sepember 30, 2009)

16. Gburzynski, P.,Maitan, J.: Fighting the spamwars:A remailer approachwith restric-

tive aliasing. ACM Transactions on Internet Technology (TOIT) 4(1), 1–30 (2004)

17. Ochi, D.: MIDEA: Management of Disposable E-Mail Addresses for Mobile Sys-

tems. In: International Symposium on Applications and the Internet Workshops,

SAINTW 2007 (2007)

18. Postfix: Postfix Backscatter Howto,

http://www.postfix.org/BACKSCATTER_README.html (Retrieved September 31,

2009)

19. Frei, S., Ollmann, G., Silvestri, I.: Mail DDoS Attacks through Non-Delivery

Messages (2004),

http://www.techzoom.net/papers/

mail non delivery notice attacks 2004.pdf (Retrieved October 24, 2009)

20. Yahoo: 421 Message temporarily deferred - [numeric code],

http://help.yahoo.com/l/us/yahoo/mail/postmaster/errors/ (Retrieved Oc-

tober 17, 2009)

21. Sender Policy Framework: SPF: Project Overview (2008),

http://www.openspf.org/ (Retrieved October 17, 2009)

22. DKIM.org. DomainKeys Identified Mail (DKIM), http://www.dkim.org/ (Re-

trieved October 17, 2009)

http://projects.puremagic.com/greylisting/whitepaper.html
http://www.squirrelmail.org/
http://www.ietf.org/rfc/rfc1893.txt
http://eval.symantec.com/mktginfo/enterprise/other_resources/b-state_of_spam_report_10-2008.en-us.pdf
http://eval.symantec.com/mktginfo/enterprise/other_resources/b-state_of_spam_report_10-2008.en-us.pdf
http://hashcash.org/papers/hashcash.pdf
http://research.microsoft.com/research/sv/PennyBlack/
http://mailhide.recaptcha.net/
http://www.tmda.net/
http://www.postfix.org/BACKSCATTER_README.html
http://www.techzoom.net/papers/mail_non_delivery_notice_attacks_2004.pdf
http://www.techzoom.net/papers/mail_non_delivery_notice_attacks_2004.pdf
http://help.yahoo.com/l/us/yahoo/mail/postmaster/errors/
http://www.openspf.org/
http://www.dkim.org/

Privacy Administration in Distributed Service
Infrastructure

Nabil Ajam, Nora Cuppens-Boulahia, and Frederic Cuppens

Institut Télécom
Telecom Bretagne, 2 rue de la Chataigneraie Cesson-Sevigne 35576

LUSSI Department
{nabil.ajam,nora.cuppens,frederic.cuppens}@telecom-bretagne.eu

Abstract. In this paper, we propose a framework to administrate pri-
vacy policies in distributed service infrastructure. We define new ad-
ministrative capabilities that model user preferences and specify how
data owners can access to them. We investigate a distributed adminis-
tration of the privacy policy where three different administrative policies
can coexist and one can dominate the other. We define the data collec-
tor practices, the legal organisation policies, such as emergency service’s
policies, and the negotiated policy between the data collector and ser-
vices providers. We finally specify how to manage these three distributed
privacy administration policies.

Keywords: Privacy administration, privacy policy model, access control
model, legal policy, user preferences, interoperability, SLA.

1 Introduction

Privacy can be defined as the demands from individuals, groups and institutions
to determine by themselves when, how and to what extent information about
them is to be communicated to others [1]. By personal data we mean any in-
formation that can be used to identify directly or indirectly a person, who is
the data subject or the owner of the information. Privacy concerns raise more
and more scientist’s attention, especially in infrastructures of distributed service
providers, such as location-based service (LBS) providers. We stress that the
data controller, which collects sensitive information, is different from the service
provider, which is the requestor that uses this information to offer services.

Access control models provide a scalable solution to specify privacy policies.
Related works mainly proposed an extended RBAC model based on the defini-
tion of purposes and obligations [6,17,21]. They chose RBAC to integrate privacy
policy because it is a widely deployed model in information systems. However,
since RBAC is intrinsically not expressive to handle privacy requirements, this
leads to many extensions of RBAC that handle different aspects of privacy. By
contrast, we argue that the OrBAC model [8] is natively expressive enough to
handle dynamic privacy parameters thanks to contexts in order to implement

S. Jajodia and J. Zhou (Eds.): SecureComm 2010, LNICST 50, pp. 53–70, 2010.
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2010

54 N. Ajam, N. Cuppens-Boulahia, and F. Cuppens

user privacy preferences. In [3], we have focused on the specification of the pri-
vacy policy based on the data owner’s preferences. In this paper, we propose an
administration model of privacy policies.

Administration tasks of a security policy refer to the specification of the priv-
ileges and rules that monitor the whole policy. For example in OrBAC policies,
administration capabilities are defined through different administrative views
that are responsible for specifying who can add or remove new roles or new priv-
ileges to the security policy. Usually, only the policy administrator has access
to those views, so the administration is centralized. In our case study, we have
three different entities that may handle administrative capabilities, namely the
data owners, the data collector and the requestors. The data owners are the
subscribers that the collected sensitive data refer to. The data collector is the
mobile operator that collects the data, stores it and manages the privacy policy.
The requestors are the service providers that need that sensitive information
to offer their services, such as location-based services (LBS), or legal organisa-
tion that needs the information for security purpose or for legal interception.
Each of these actors has its specific privacy requirements. We define and show
how to manage this distributed administration, which is composed of different
requirements defined by different entities.

Fig. 1. The distributed administration

This paper is organised as follows. Second section introduces a concrete ex-
ample to motivate our approach. Third section briefly recalls our privacy-aware
approach based on the OrBAC model. Section four is dedicated to our new ad-
ministration approach of privacy policies. Section five introduces related works.
Concluding remarks are presented in section six.

2 Motivating Example

LBS are services that make use of sensitive location information. We can catego-
rize them in two types: the services that use the location information computed
and stored within the mobile terminal and the services that need the position
collected and managed by the mobile networks. Available positioning techniques
depend on the mobile equipment features and the mobile network architecture.

Privacy Administration in Distributed Service Infrastructure 55

If the location is computed by the mobile equipment itself, a privacy policy can
be managed thanks to the P3P framework. However, if the mobile organisation
computes and holds these sensitive data, we proposed to use the OrBAC model
to define the privacy policy [3].

Let us consider the following example. Suppose that Alice and Bob are mobile
subscribers. Alice owns a location-enabled mobile device. The Alice location can
be computed locally thanks to its equipment. However, Bob is only located by the
mobile network, so the location is stored and managed by the mobile operator.
Alice uses the P3P framework to control which third parties may access to her
location. For this, she stores her privacy preferences in her user agent, her mobile
device in this example, through the APPEL language [20]. And when a third
party submits an access request to the user agent, it declares its privacy policy
through the P3P language. Next, Alice’s user agent will evaluate and compare
the privacy preferences with the third party policy and if they are consistent then
it discloses the location information to the requestor. Notice that the sensitive
information is still under the control of the data owner until the policy check.
So, the data owner has full control over her data since she stores the data until
the privacy verification.

By contrast, Bob’s privacy data protection is slightly different. The mobile
operator controls Bob’s data until the privacy verification. We need to assume
that mobile subscribers trust this mobile operator. An agreement is signed be-
tween them to provide the location service. A trustworthy relation exists be-
tween them since they already signed an agreement for voice services. But this
framework provides an interesting security pledge to the owners. The mobile
operator naturally enforces stronger security mechanisms to protect subscriber’s
data compared to the mobile device. The location data can be easily stolen from
the mobile device if it is hijacked, especially when users install unknown appli-
cations from Internet. The mobile operator can also prevent data owners from
specifying weak privacy policies since user behaviours sometimes do not reflect
their needs of privacy protection and they may ignore privacy protection when
service are provided to them [2,18]. So, we argue that an intermediary authority
like the mobile operator can prevent users from disclosing excessive information.
The last point that motivates our approach, using an intermediary entity, is that
when Bob’s sensitive data must be used for emergency cases or for legal inter-
ception. In this case, Alice’s privacy policy can prohibit the access to her data
even if it is useful for security purposes that can save lives. She manipulates the
device’s firmware to prohibit access to the location information. By contrast,
Bob’s preferences can be bypassed by the mobile operator according to a legal
procedure such as legal interception (which is a requirement in many countries),
since the operator controls such data. Users must trust the operator to allow
such privacy exceptions and we assumed that in our case.

In this paper, we are concerned about the privacy policy administration in
that context, namely how the mobile operator will integrate data owner’s prefer-
ences within its fair information practices. The legal procedures and data owner
preferences must coexist without conflict generation. Moreover, does the service

56 N. Ajam, N. Cuppens-Boulahia, and F. Cuppens

requestor has the opportunity to negotiate some privacy parameters with the
mobile operator?

We opted for three possible administration enforcements due to the specificity
of the privacy requirements. Mobile users can subscribe to the location service, so
the privacy preferences can be embedded to this agreement or administrated on
the fly through the management of the privacy views. Requestors can also spec-
ify some privacy requirements. The privacy policy is a trade-off between those
requirements and the operator’s fair practices. Furthermore, the trustworthy re-
lation is a relevant parameter. It impacts the administration model of privacy
policies. In our case study, mobile operators are trusted enough to provide users
with confidence on the manner that their privacy policies are managed. So, we
can propose such a privacy framework based on these trusted entities.

We identify three cases of privacy administration enforcement. First, the op-
erator organisation will define and enforce its policy that other actors must agree
with. Second, the legal organisations, such as emergency services and intelligence
departments, can bypass the operator policy and impose their policy without
generating policy conflicts since they have prioritised privileges for security pur-
poses. Third case is when the operator looks for a compromise between the
different requirements. This case is modeled using the interoperability approach
O2O (Organization to Organization) [10] between service provider’s organisa-
tions and the operator to negotiate the resulting policy. The privacy policy is a
deal between the mobile operator and the service provider based on data owner
preferences.

3 The Privacy-Aware OrBAC Model

3.1 The OrBAC Model

In the Organization-Based Access Control model (OrBAC) [15], security policies
of an organisation org are specified at the abstract organisational level through
four privileges: permission, prohibition, obligation and dispensation. Instead of
directly specifying security policies using concrete subject, action and object
entities, these privileges are applied to three abstract entities: roles, activities
and views. Moreover, every privilege may depend on some context. For example,
Permission(org, r, a, v, c) means that the role r is permitted to perform the
activity a on the view v in context c. To derive the concrete security rules, the
model introduces three basic built-in predicates:

– Empower is a predicate over domains Org ×S× R. If org is an organisation,
s a subject and r a role, then Empower(org, s, r) means that s is assigned
to the role r within org,

– Consider is a predicate over domains Org×A× A. If org is an organisation,
α an action and a an activity, then Consider(org, α, a) means that org
considers that α is implementing the activity a,

– Use is a predicate over domains Org ×O× V. If org is an organization, o
is an object and v is a view, then Use(org, o, v) means that org uses the
object o in the view v.

Privacy Administration in Distributed Service Infrastructure 57

The correspondent derived concrete privileges are Is_permitted, Is_prohibited,
Is_obliged and Is_dispensed. They apply to the concrete entities: subjects, ac-
tions and objects. Is_obliged means that the subject is obliged to perform the ac-
tion. It has two contexts: activation context and violation context. Is_dispensed
is the dual of Is_obliged.

Contexts are introduced to take into account the dynamic parameters of the
security policy, such as the spatial location of subjects. An OrBAC built-in
predicate Hold is used to specify contexts:

– Hold is a predicate over domains Org ×S×A×O×C. If org is an organization,
s is a subject, α is an action, o is an object and c is a context, then Hold(org,
s, α, o, c) means that context c holds between subject s, action α and object
o within org.

The OrBAC model defines five types of contexts [8]:

– Spatial context: that depends on the subject position,
– Temporal context: that depends on the time of the subject request,
– User-declared context: that depends on parameters declared by the subject,
– Prerequisite context: that depends on a relation between the subject, the

action and the object,
– Provisional context: that depends on the previous actions of the subject.

3.2 OrBAC Administration

The OrBAC model is self-administrated, i.e. the OrBAC model may be used
to specify administrative security policies. Initially, the administration model
AdOrBAC [9] consists in the definition of roles and the corresponding privi-
leges. AdOrBAC defines two administrative views for that. An assignment of a
subject to a role is modelled by an insert of an object in the role_assignment
view. Similarly, granting a privilege to a role is modelled by an insert of an
object in the licence view. The administrator in AdOrBAC specifies which role
is permitted to access those administrative views and in which contexts.

Objects belonging to the role_assignment view have two attributes: assignee
is the subject to which the role is assigned and assignment is the role to be
assigned. Objects belonging to the licence view have four attributes: grantee is
the subject (or role) to which the licence is granted, privilege is the action (or
activity) permitted by the licence, target is the object (or view) to which the
licence grants an access to and context is the condition that must be satisfied to
use the licence.

Delegation model is based on AdOrBAC and aims to transfer privileges and
rights from one role to another [4]. We distinguish between the partial delegation
and total delegation. The former delegates some rights whereas the latter dele-
gates roles. So, two more administrative views are defined the licence_delegation
view and the role_delegation view. Objects belonging to these views have the
same attributes as licence and role_assignment objects. But, they have an extra

58 N. Ajam, N. Cuppens-Boulahia, and F. Cuppens

attribute, the grantor, which represents the subject who is creating the licence
or the role. Inserting objects in these views allows a grantor to respectively dele-
gate permission and role to a grantee. The administrator manages access to the
delegation views and to the administrative views. So, a subject may delegate her
rights only if some administrator grants her permission to delegate these rights
by creating a license delegation (and similarly for the delegation of roles through
the role delegation view).

Administrators are also responsible for managing conflict. Conflicts are solved
in OrBAC thanks to the prioritised-OrBAC model [11]. The assignment of pri-
orities is still under the control of the administrator. When a conflict is detected
by the model and cannot be solved since two opposite privileges, prohibition
and permission, are assigned to the same subjects and for the same actions on
objects, the administrator has the privileges to specify the precedence of one
policy over the other.

3.3 Privacy Contextual Management

In order to specify and manage privacy requirements, we need to model subject’s
consent over its personal data, accuracy of location objects and purpose for which
some access is performed. We proposed in [3] to respectively model the subject’s
consent as a context, object’s hierarchy based on the accuracy of objects, the
purpose as a user-declared context and provisional obligation following the access
to some sensitive information. Also, we propose to add a current state context
and an enhanced spatial context.

Fig. 2. Contextual privacy management in the OrBAC model

The idea behind our proposal is to include the subject’s privacy preferences
into the contexts of the security policy of the organisation. The result is one
policy for the access control and the privacy management.

A new context type, called consent, is used to model if the object owner gives
its consent to the subject, who requests the access to that object. Users store
their consent preferences in the consent_preference view. Each object in this
view corresponds to a particular data owner preference and has three attributes:
Requestor, who is the subject who requests the access to the object, Target,
which is the requested object, and NeedConsent, which is a Boolean parameter

Privacy Administration in Distributed Service Infrastructure 59

and if its value is true so the consent is needed. The user consent context is
specified as follows:
Ruleconsent: ∀org ∈ Org, ∀s ∈ S, ∀α ∈ A, ∀o ∈ O, ∀v ∈ V, ∀cp ∈ O,
Hold(org, s, α, o, Consent_context) ← Use(org, cp, Consent_preference) ∧
Requestor(cp, s) ∧ Target(cp, v) ∧ Use(org, o, v) ∧ NeedConsent(cp)

Then, we suggested that private objects, of each data owner, have different
accuracy levels. A private object has four attributes: data-owner, longitude, lat-
itude and accuracy. A hierarchy is established between the root view, which
contains the collected private data, and sub-views consisting of derived objects
based on different accuracies. Those accuracies are defined by the data owner, so
she can define different privacy preferences based on the accuracy of the object.
The accuracy is specified by the couple (anonymity level, k). Anonymity level
defines the accuracy of the identity attribute of location information. However,
k determines the accuracy of the location attributes, which are the longitude
and the latitude. So, the operator can apply k-anonymity algorithms ([12], [16]
and [14]) to derive the longitude and the latitude of the derived objects. The
issue of choosing the optimal algorithm is out of the scope of this work.

We modeled the purpose of the access request by a user-declared context.
Each data owner can create purpose objects to specify the purposes for which
access to private objects are allowed. The purpose objects are grouped in a
Purpose view. Each purpose object has two attributes [8]. Recipient defines who
takes advantage of the declared purpose (a service provider in our case), and
declared_purpose associates a purpose value with the declared purpose object.
Purpose values range over the purpose value domain PV. On the other hand,
the service provider declares the purpose to be provided. So, user_declared is a
function over the PV domain. It returns the value of the context entered by the
service provider.
Rulepurpose ∀org ∈ Org, ∀s ∈ S, ∀α ∈ A, ∀o ∈ O, ∀po ∈ PO, ∀pv ∈ PV,
Hold(org, s, α, o, user_declared(pv))←Use(org, po, Purpose)∧Recipient(po, s)
∧ Declared_purpose(po, pv)
That is, in organisation org, subject s performs action α on object o in the user
declared context user_declared(pv), if there is a purpose object po used in view
Purpose by organisation org such that s is the recipient associated with po and
pv is the declared purpose associated with po.

Provisional obligations [5] are introduced to oblige subjects to perform some
action following its access to the location information. We need obligations to
enforce privacy principles of accountability. So, an obligation may be automati-
cally triggered as a counterpart of the access to some private information. The
obligation is expressed thanks to two types of contexts context_activation and
context_violation:
Obligation(org, r, a, v, context_activation, context_violation)
meaning that subjects empowered in role r are obliged to perform actions imple-
menting activity a on objects used in view v when context_activation is activated.
This actually corresponds to an organizational obligation. Concrete obligations
that apply to subjects, actions and objects are derived when context_activation is

60 N. Ajam, N. Cuppens-Boulahia, and F. Cuppens

activated. If subjects actually do not perform the obliged actions on the objects be-
fore context_violation is activated, then the obligation is violated. See [5] for more
details about expression and management of obligations in the OrBAC model.

The current state context is used for location privacy policy when the data
owner allows service provider to access her location only if she initiated a call
or a session data with it. It is necessary to evaluate the current state in this
context. The current state indicates if the user has initiated a call or a session
to the service provider or not. We assume that preferred-states view contains
data owner’s preferences regarding authorized current states. The data owner
specifies its preference by adding new entry to that view. Objects belonging to
that view have three attributes: calling, state-type and called.

Physical and logical spatial contexts are relevant features for privacy policy. In
addition to using it to locate the subject who asks for an access, spatial contexts
are also useful to locate objects. As suggested by [13], we extend the semantic
of spatial context to include the possibility to consider the object positions.
The predicate Is_within determines if a given object or subscriber is within a
location area or not. Is_within is a predicate over the domains O × LA, where
LA is a set of location areas. So, Is_within(o, la) means that the object o is
within the location area la. The spatial context can now be defined using this
new predicate.
RuleSpatialObject ∀org ∈ Org, ∀s ∈ S, ∀α ∈ A, ∀o ∈ O, ∀la ∈ LA
Hold(org, s, α, o, position(la)) ← Is_within(o, la)

4 The Privacy Distributed Administration

We propose in this section three administration enforcement approaches of the
privacy policies. Before, we shall present the new administrative views related
to the management of these privacy policies. Based on privacy principles, the
owners would have access to these views to specify their privacy preferences.
However, this is actually not the case for the two first approaches. In the first
case, the dominant operator policy is deployed and the mobile subscribers dele-
gate all privacy administrative tasks to the operator. This alternative ensures a
consistent privacy policy with minimal policy updates. We model this alterna-
tive through regular administrative tasks: role assignment, licence definition and
delegation. The characteristic of this alternative is the delegation of the man-
agement of the privacy administrative views to the operator. When the mobile
subscriber signs an SLA with the operator, it implicitly delegates its rights to
the operator. By doing so, the operator can define an optimal privacy policy by
enabling or disabling privacy contexts. The operator can offer premium services
based on the level of the privacy. This will increase its productivity (for example,
it offers a cheaper service to subscribers who accept to be located by advertisers).

The second alternative states that there are prioritised policies. Our objective
is to assign a higher priority to the policy defined by legal organisations, for
legal interception. This case is useful to enforce security laws that override other
privacy requirements. All mobile operators should authorize such conflicts, so we

Privacy Administration in Distributed Service Infrastructure 61

propose a conflict management solution based on the prioritised-OrBAC model
[11] to manage conflicts when third parties override user’s preferences.

The third alternative proposes an enhanced management of the privacy pref-
erences. Privacy preferences are propagated to the service provider. The estab-
lished SLA between the mobile subscriber and the operator includes privacy
preferences and how the requestors must protect the sensitive data. For exam-
ple, if the data owner specifies that purpose context must be declared before
accessing the location information, this preference must be propagated to the
service provider organisation. When another requestor asks for location infor-
mation from the service provider, the purpose context will be checked. This
alternative provides a single privacy policy definition that can be propagated to
the service provider. So, it offers the simplest way for data owners to define a
universal privacy policy that is enforced by all the interoperable organisations.
For this purpose, we use the O2O approach [10]. So, O2O must be supported by
the service providers to allow this generalised privacy protection.

4.1 Privacy Administrative Views

Our privacy policy model is mainly based on the definition of contexts. The op-
erator organisation, which enforces privacy preferences of its subscribers, has to
administrate the access to those views. In this section, we list the views related
to the privacy preferences. Access to these views is controlled by the OrBAC
model itself.
Definition Privacy-administrative views
Data owners’ preferences are implemented in the privacy-aware OrBAC thanks
to the views:
- Consent_preference: is responsible for storing if a consent is needed or not,
- Purpose: contains the available purposes that can be declared,
- Preferred-states: contains the preferred states of the connection between the re-
questor and the data owner at the moment of the access request,
- Spatial_preferences: contains the location areas where data owners can be lo-
cated.
Logically, data owners have the full privileges over those views when they act
in the owner role. We define the management activity allowing them to add,
insert, modify or suppress objects on these privacy administrative views.
RulepreferenceAdministration

Permission(org, owner, management, Consent_preference, consent_owner)
Permission(org, owner, management, Purpose, subscription)
Permission(org, owner, management, Preferred_states, subscription)
Permission(org, owner, management, Spatial_preferences, default)
where the consent_owner and the subscription contexts are defined as follows:
∀org ∈ Org, ∀s ∈ S, ∀s′ ∈ S, ∀α ∈ A, ∀o ∈ O, ∀position ∈ O, ∀po ∈ PO,
Hold(org, s, α, o, consent_owner) ← use(org, o, Consent_preference) ∧
Target(o, position) ∧ Data-owner(position, s)
Hold(org, s, α, po, subscription) ← Use(org, po, Purpose) ∧ Recipient(po, s′) ∧
Subscribed(s, s′)

62 N. Ajam, N. Cuppens-Boulahia, and F. Cuppens

consent_owner context is triggered if the consent object o belongs to the pri-
vacy view consent_preference and it has the attribute position as target. This
position is owned by s, who is the data owner.

subscription context is triggered when a subject s performs action α on a
purpose object po and if this purpose object po has s′ as a recipient and where
s′ is subscribed to s. This is represented by the application-dependent predicate
Subscribed.

On the other hand, data owners have the right to modify their locations.
Precisely, they can define several accuracies of their locations to define different
privileges to service providers depending on the location accuracy. This is mod-
eled as follows:
Permission(org, owner, modify, location, owning)
owning is a provisional context defined as:
∀org ∈ Org, ∀s ∈ S, ∀α ∈ A, ∀o ∈ O
Hold(org, s, α, o, owning) ← Data-owner(o, s) ∧ Consider(org, α, modify)
∧ Empower(org, s, owner)
It means that in organisation org the subject s performs α, which is consid-
ered a modify activity, on the object o only if s is owning the sensitive object.
The data owner can modify only the Accuracy attribute of the location. Then,
the operator will apply the obfuscation algorithms to compute the new Identity,
Longitude and Latitude attributes. Note that Data-owner is an attribute of the
location data.

4.2 First Case: Dominance of the Mobile Operator Policy

When users subscribe to a location service, an agreement is established between
them and the operator. The latter, which is the data collector, proposes its fair
practices. They include the privacy policy that will be enforced by the mobile op-
erator. In other terms, that policy specifies how privacy contexts are managed by
the data controller. If the user accepts this management, she delegates the con-
textual management of her privacy policy to the operator. The mobile operator
organisation defines its access control policy based on its privacy fair practices
without the intervention of data owners. The data owner tasks are implicitly del-
egated to the data controller when the agreement is established between them. To
specify this procedure, we define first the delegation privilege given to the owners
then we specify the licence delegation. The owners are permitted to delegate their
rights to the mobile operator. It is ensured by the next privilege:
Permission(org, owner, delegate, licence_delegation, default)
That is in the organisation org, subjects who act in the owner role have the right
to delegate licences in the default context.

The operator organisation can be divided into several departments, each of
them being responsible for providing one service, such as the location service. Let
administrator_location be the administrator role of the location service depart-
ment. When owners sign an SLA with the operator, the following delegations
are performed transparently. For example, the permission derived from the del-
egation on the Purpose view is specified by:

Privacy Administration in Distributed Service Infrastructure 63

RuledelegationPurpose

Permission(operator,administrator_location,management,Purpose,default)
← use(L, licence_delegation)∧grantor(L, data-owner)∧privilege(L, manage-
ment) ∧ target(L, Purpose) ∧ grantee(L, administrator_location)
That is, the administrator_location is permitted to perform the management ac-
tivity on thePurpose view if there is a licenceL, belonging to the licence_delegation,
where the grantor is the data-owner role, the target is the Purpose view and the
grantee is the administrator_location.

Fig. 3. Privacy policy delegation

Similarly, data owners delegate to the data collector the management of other
privacy views, Consent_preference, Preferred-states and Spatial_preferences,
when they subscribe to the location service of the operator. The operator pro-
vides several privacy packages to the users. Each package defines how the user
privacy will be managed and which contexts will be activated.

For example, when the user delegates the management of the Con-
sent_preference view to the administrator_location, the data owner will no
longer be notified for its consent. The mobile operator can fix consent to false
by default. However, the management of the Spatial_preferences by the mobile
operator is useful since it can reuse its existing location areas without defining
new ones according to subscriber preferences (its existing location areas are zone
areas used for the mobility management of the voice service).

4.3 Second Case: Prioritised Third Party Policy

Some legal organisations have the right to access sensitive information and to
override the operator policy and user preferences. But to be effective, operator
organisations have to define how and in which cases that policies are prioritised.
Let legal_org be the role of legal organisations. Operator assigns those organi-
sations to that role thanks to the rule:
Rulerole_assignment

Use(mobile-operator, legal_org, role_assignment)
Data collector shall define the contexts when those organisations are allowed
to enforce their policies. Two contexts correspond to this situation: legal inter-
ception and emergency. The former represents the case where there is a legal
decision made by a court. The requestor should justify that decision before ac-
cessing the sensitive information. The emergency state requires an immediate

64 N. Ajam, N. Cuppens-Boulahia, and F. Cuppens

access to the sensitive information. The proof of emergency can be delayed after
the access since the location information can be used for example to save lives
or prevent unwanted effects. Emergency is a provisional context because it im-
plies an obligation to be fulfilled by the legal organisations after accessing private
data. The obligation consists of a proof of the emergency, such as voice records of
an emergency call. Thanks to the Rulelicence, the administrator_location adds
the legal licence:
Permission(mobile-operator, legal_org, read, location, emergency) ←
use(mobile-operator, legal, licence) ∧ authority(legal, mobile-operator) ∧
grantee(legal, legal_org) ∧ privilege(legal, read) ∧ target(legal, location) ∧
context(legal, emergency)
That is the providers that act in legal_org role, can read the objects belonging
to the location view in the emergency. A similar rule applies to manage the legal
interception context.

This latter permission can introduce conflicts with the data owner preferences.
For example, suppose that Bob is a privacy fundamentalist who refuses to let any
requestor read its location information. The OrBAC model derives the privilege:
Prohibition(mobile-operator, service-provider, read, Bob-location, default)
That is all subjects assigned to the service-provider role are prohibited to read
objects in Bob-location view. This will lead to a conflict between the privileges
given to the legal organisations and the data owner preferences. We propose
to manage such conflicts through the Prioritised OrBAC model [8]. The strat-
egy to solve conflicts in OrBAC is the assignment of priorities to security rules.
Privileges with higher priority take precedence over the other security privi-
leges. We first consider a set Π of priority levels associated with a partial order
relation ≺. The OrBAC model is then enriched by the following predicates.
O − Permission(org, r, a, v, c, p) and O −Prohibition(org, r, a, v, c, p) define an
organization permission or prohibition respectively and are associated with a
priority p. The legal organisations have a policy that overrides the data owner
preferences and take precedence over the mobile operator policy itself.

Let Π be {p1, p2}, the set of priority levels. In the prioritised OrBAC, privacy
fundamentalist preferences are expressed as follows:
∀r ∈ R, ∀a ∈ A,
O − Prohibition(mobile-operator, r, a, fundamentalist-location, default, p1)
This privilege prohibits any role to access their location information. However,
the legal-organisation policy has to override such preferences. The following priv-
ilege defines their policy:
∀a ∈ A, ∀v ∈ V
O − permission(mobile-operator, legal-organisation, a, v, emergency, p2)
By applying the separation constraints and the potential conflict condition, there
is a conflict between previous rules. To prevent such case, priorities will be:
p1 ≺ p2.

The priority assignment is ensured by the administrator. When a legal or-
ganisation specifies its policy, the mobile operator shall accept it but it replaces
privileges predicates by adding the priority component which is higher than the
priorities assigned to data owners.

Privacy Administration in Distributed Service Infrastructure 65

4.4 Third Case: Policy Negotiation through the O2O Approach

In this section, we will use the interoperability approach to allow the mobile
operator to negotiate the access control policy of the location information with
service providers based on the privacy preferences of the data owners. We will
consider that data owners are the managers of Virtual Private Organizations
(VPOs). Each VPO controls the sensitive information of one data owner. As for
the first case, the service level agreement (SLA) signed between users and the
mobile operator will be used. It guides how the interoperability is controlled.

O2O Basis. O2O is based on virtual organisations. When an organisation aims
to cooperate with another organisation, it creates a VPO. Each organisation,
that needs to interoperate with other organisations, has to manage the access
control and has to administrate its VPO. So, the administration of a VPO is
totally decentralized [7].

First, in O2O we mention that there are three kinds of organisations:

– O_grantor : it is the organisation that owns the resource. We name its policy
the local policy,

– O_grantee: it is the organisation that requires resource access,
– VPO : it is the organisation that administrates the interoperability policy be-

tween two organisations. The VPO controls the privileges of the O_grantee
when accessing O_grantor resources.

Always, the organisation that provides the resource is the one that adminis-
trates the security policy of the VPO. This represents its authority space. We
differentiate between the authority and the managing spaces:

– Authority space: an O_grantee organisation is in the authority space of
another O_grantor organisation if the security policy, enforced by the
O_grantee, is defined and administrated by the O_grantor,

– Managing space: by default, the O_grantor organisation manages its in-
teroperability policy but it can delegate this task to another entity. So the
managing space includes the entities that manage the interoperability poli-
cies of an organisation.

Assigning subjects to roles, actions to activities and objects to views, must com-
ply with the following constraints to preserve the O_grantor control:

– The subjects belong to the O_grantee organisation. Thus, the VPO is de-
fined to control the access of subjects, which belong to O_grantee, and re-
quire resources from O_grantor,

– The objects belong to the O_grantor organisation,
– The actions are under the control of the organisation that provides the access.

This organisation is the O_grantor, but O_grantee can initiate them [7].

The goal of the VPO is to extend the authority of the grantor organisation to
resources that need interoperability with other organisations. So, the security

66 N. Ajam, N. Cuppens-Boulahia, and F. Cuppens

Fig. 4. The O2O approach

policy of the VPO is derived from the local policy of the O_grantor. This pol-
icy will manage the access requests coming from other organisations, named
O_grantee. Since OrBAC enables the definition of hierarchies, the VPOs can be
seen as sub-organisations of the O_grantor.

Proposed Interoperability Approach for Distributed Privacy Policy
Management. From the point of view of the operator, each subscriber can
be seen as an organisation, called subscriber organisation. We argue that the
mobile operator is the central trusted entity that manages all subscribers’ policies
because it holds the sensitive information of its subscribers. Each subscriber
organisation will create a VPO for each service provider. Service providers are the
organisations that require the access to the VPOs of the subscriber organisations.

Fig. 5. Management of the subscriber organisation within the operator organisation

According to the O2O approach, the O_grantor is the operator organisation
and the O_grantee is the service provider. Each data owner constitutes its own
VPO. It defines its privacy policy thanks to the privacy administrative views de-
fined before. The operator also specifies the interoperability policy of that user
thanks to the SLA signed with her when she subscribes to the location service.
It is a decentralised manner to define the privacy policy. However, the manage-
ment of the VPOs, belonging to the subscribers of the organisation, is centralized
since the operator is the central entity (it is a trusted one).

Privacy Administration in Distributed Service Infrastructure 67

Policy Propagation and VPO Hierarchy. We stressed the fact that the
policies of the VPOs are deduced from the local policy of the O_grantor, which
is the mobile operator in our case. This means that the dominant policy, which
is the local policy that we specified in the first administration, is the root pol-
icy of those VPOs. A VPO encompasses the privacy preferences of one mobile
subscriber according to the privacy package fixed by the SLA. When, the ser-
vice provider, which is the O_grantee, will access the VPO, it has to enforce
the policy of this VPO. By this manner, when another requestor connects to the
service provider organisation, the privacy policy of the subscriber will be applied
to it. So, it is propagated to the O_grantee. The first administration and O2O
approach cooperate to spread user preferences.

The definition of a hierarchy of VPOs simplifies the management of the
VPOs of the data owner and the specification of the SLA agreement. The
data owner will define common privacy preferences within the root VPO, say
data_ownertoProvider that is derived from the local policy. The remaining pri-
vacy parameters, which depend on the service provider organisation (and are
based on the SLA), will be entered to a dedicated VPO, which is a sub-VPO of
that data_ownertoProvider. So, the data owner specifies a fine-grained privacy
policy for those sub-VPOs.

For example, the data owner can define different accuracies for sensitive data
whereas other policy parameters, such as consent requirement and purpose spec-
ification, are the same for all service providers. Let Alice be a data owner within
the operator organisation. She has three different privacy policies depending on
the service provider a, b or c. So, Alice’s root VPO has three sub-VPOs allowing
the data owner to define different data accuracies depending on service providers.

Fig. 6. VPOs hierarchy

This approach simplifies the spreading of the privacy requirements thanks
to O2O. By contrast, related works fail to propose a complete framework to
propagate user’s preferences. In next section, we compare our administration
proposal to related works.

5 Related Works

Existing privacy models and languages focused on the definition of the pri-
vacy components and how they are expressed but fail to propose a distributed

68 N. Ajam, N. Cuppens-Boulahia, and F. Cuppens

administration model to allow the interoperation between user preferences, data
collector practices and legal interception.

The Platform for Privacy Preferences (P3P) [19] is a declarative language that
allows web sites specify the fair information practices. The web sites indicate
through P3P which personal information is collected and how it will be used. The
privacy policy can be attached to some web resources, like web pages and cookies.
User agent will compare the P3P privacy policy to client preferences and decides
about the access of web sites to client data. P3P defines a standard base data
schema, which is a set of data elements that all P3P user agents should under-
stand [19]. P3P defines also a vocabulary for defining privacy practices and state-
ments. It allows essentially web sites to publish their privacy practices in both
machine and human readable formats that can be treated by user agents. The ul-
timate goal of P3P is the automation of the decision in client side through P3P
user agent instead of reading privacy policy at every site’s visit. It does not provide
means to negotiate user preferences and fair information practices. User agent,
on behalf of users, uses the P3P Preference Exchange Language (APPEL) [20] to
compare user preferences with the fair information practices of web sites. A user
can express her preferences in a set of preference-rules, known as ruleset. So, user
agent can run the semi-automated or automated decision about the privacy policy
from P3P enabled web sites. User agent could be Web browsers, browser plug-ins
or proxy servers. The policy evaluation is made by the user agent locally, so the
approach does not consider the distributed administration tasks neither a whole
policy that includes web site’s practices and the user’s preferences.

Qui Ni et al. proposed RBAC extensions to incorporate constraints and con-
ditions that are related to privacy. They define a family of privacy-aware RBAC
(P-RBAC) models. Privacy policies are expressed thanks to permission assign-
ments. Those permission assignments differ from permissions in RBAC because
of the presence of new components: purposes and conditions of the access. A
customized language, LC0, was proposed to allow the definition of conditions. A
privacy permission explicitly defines: the intended purposes of the action, under
which conditions, and what obligations have to be performed after the access.
This work also develops conflict analysis algorithms to detect conflicts among
different permission assignments. So, the three main extensions are: purpose
component, obligation definition and a dedicated language for conditions. The
privacy permission assignment is modelled through privileges, which have the
general form: role × action × data × purpose × conditions × obligation.

In our work, we reason differently about contexts. We explicitly define several
types of contexts that belong to different administrative privacy views. We pro-
posed also a distributed administration to take into account operator and requestor
requirements. To our best knowledge, these issues were not addressed before.

6 Conclusion

In this paper, we proposed an administration framework of privacy policies. We
identified three cases where a privacy policy is administrated differently. The

Privacy Administration in Distributed Service Infrastructure 69

resulting administration is distributed since requirements are issued by different
entities. The three alternatives are not mutually exclusive. It means that the data
collector can deploy all of them simultaneously. Each of them provides precise
functionalities and cooperates to provide all privacy needs.

In this paper, we assumed that owners trust the mobile operator since there is
already an agreement between them. We should investigate the case where there
is no agreement, and if the data owners can sign an SLA on the fly to define
how their privacy preferences will be managed. The specification of the SLA is
planned in future work.

References

1. 3rd Generation Partnership Project: Open Service Access; Application Program-
ming Interface (API); Part 3: Framework, 3GPP TS 29.198-3

2. Acquisti, A., Grossklags, J.: Privacy Rationality in Individual Dicision Making.
IEEE Security and Privacy 1(1), 26–33 (2005)

3. Ajam, N., Cuppens, N., Cuppens, F.: Contextual Privacy Management in Extended
Role based Access Control Model. In: The Proceedings of the DPM workshop,
DPM-ESORICS, Saint-Malo, France (September 2009)

4. Ben Ghorbel-Talbi, M.: Decentralized Administration of Security Policies, PhD
thesis, Télécom Bretagne (2009)

5. Ben Ghorbel-Talbi, M., Cuppens, F., Cuppens-Boulahia, N., Bouhoula, A.: An
Extended Role-Based Access Control Model for Delegating Obligations. In: Fischer-
Hübner, S., Lambrinoudakis, C., Pernul, G. (eds.) Trust, Privacy and Security in
Digital Business. LNCS, vol. 5695, pp. 127–137. Springer, Heidelberg (2009)

6. Byun, J., Bertino, E., Li, N.: Purpose Based Access Control of Complex Data for
Privacy Protection. In: Symposium on Access Control Models and Technologies
(SACMAT), Stockholm, Sweden, pp. 102–110 (2005)

7. Coma, C.: Interopérabilité et Cohérence de politiques de sécurité pour les Systèmes
Auto-organisant, PhD thesis, Télécom Bretagne (2009)

8. Cuppens, F., Cuppens-Boulahia, N.: Modeling Contextual Security Policies. Inter-
national Journal of Information Security 7(4), 285–305 (2007)

9. Cuppens, F., Miège, A.: An Administration Model for Or-BAC. International Jour-
nal of Computer Systems Science and Engineering 19(3), 151–162 (2004)

10. Cuppens, F., Cuppens-Boulahia, N., Coma, C.: O2O: Virtual Private Organizations
to Manage Security Policy interoperability. In: Bagchi, A., Atluri, V. (eds.) ICISS
2006. LNCS, vol. 4332, pp. 101–120. Springer, Heidelberg (2006)

11. Cuppens, F., Cuppens-Boulahia, N., Ben Ghorbel, M.: High Level Conflict Man-
agement Strategies in Advanced Access Control Models. Electronics Notes in The-
oretical Computer Science, vol. 186, pp. 3–26. Elsevier, V., Amsterdam (2007)

12. Duckham, M., Kulik, L.: Location Privacy and Location-aware Computing. In:
Dynamic and Mobile GIS: Investigating Change in Space and Time, pp. 34–51.
CRC press, Boca Raton (2006)

13. Gabillon, A., Capolsini, P.: Dynamic Security Rules for Geo Data. In: Garcia-
Alfaro, J., Navarro-Arribas, G., Cuppens-Boulahia, N., Roudier, Y. (eds.) Data
Privacy Management and Autonomous Spontaneous Security. LNCS, vol. 5939,
pp. 136–152. Springer, Heidelberg (2009)

70 N. Ajam, N. Cuppens-Boulahia, and F. Cuppens

14. Gedik, B., Liu, L.: Protecting Location Privacy with Personalized k-Anonymity:
Architecture and Algorithms. IEEE Transactions on Mobile Computing 7(1), 1–18
(2008)

15. Abou El Kalam, A., El Baida, R., Balbiani, P., Benferhat, S., Cuppens, F.,
Deswarte, Y., Miège, A., Saurel, C., Trouessin, G.: Organization Based Access
Control. In: Proceedings of the 4th International Workshop on Policies for Dis-
tributed Systems and Networks (Policy 2003), Como, Italy (June 2003)

16. Krumm, J.: A Survey of Computational Location Privacy. Journal: Personal and
Ubiquitous Computing 13(6), 391–399 (2008)

17. Ni, Q., Trombetta, A., Bertino, E., Lobo, J.: Privacy-aware Role Based Access
Control. In: 12th ACM symposium on Access control models and technologies,
Session Privacy management, pp. 41–50 (2007)

18. Spiekermann, S., Grossklags, J., Berendt, B.: E-Privacy in Second Generation E-
Commerce: Privacy Preferences versus Actual Behaviour. In: Proceedings of the
ACM Conference Electronic Commerce (EC 2001), Florida, USA, pp. 38–47 (Oc-
tober 2001)

19. World Wide Web Consortium (W3C), The Platform for Privacy Preferences 1.0
(P3P) Specification (April 2002)

20. World Wide Web Consortium (W3C), A P3P Preference Exchange Language 1.0
(APPEL), Working draft (April 2002)

21. Yang, N., Barringer, H., Zhang, N.: A Purpose-Based Access Control Model. In:
The third International Symposium on Information Assurance and Security, pp.
143–148 (2007)

On the Formation of Historically k-Anonymous
Anonymity Sets in a Continuous LBS

Rinku Dewri1, Indrakshi Ray2, Indrajit Ray2, and Darrell Whitley2

1 University of Denver, Denver, CO 80208, USA
rdewri@cs.du.edu

2 Colorado State University, Fort Collins CO 80523, USA
{iray,indrajit,whitley}@cs.colostate.edu

Abstract. Privacy preservation in location based services (LBS) has
received extensive attention in recent years. One of the less explored
problems in this domain is associated with services that rely on contin-
uous updates from the mobile object. Cloaking algorithms designed to
hide user locations in single requests perform poorly in this scenario. The
historical k-anonymity property is therefore enforced to ensure that all
cloaking regions include at least k objects in common. However, the mo-
bility of the objects can easily render increasingly bigger cloaking regions
and degrade the quality of service. To this effect, this paper presents an
algorithm to efficiently enforce historical k-anonymity by partitioning of
an object’s cloaking region. We further enforce some degree of directional
similarity in the k common peers in order to prevent an excessive expan-
sion of the cloaking region.

Keywords: historical k-anonymity, continuous LBS, anonymity sets.

1 Introduction

Application domains are potentially endless with location-tracking technology.
These applications deliver customized information based on the location of a mo-
bile object. The services can be classified into two types – snapshot LBS where
the current location of the mobile object is sufficient to deliver the service, and
continuous LBS where the mobile object must periodically communicate its
location as part of the service agreement. For example, a Pay-As-You-Drive in-
surance service must receive location updates from the mobile object to bill the
consumer accurately. A serious concern surrounding their acceptance is the po-
tential usage of the location data to infer sensitive personal information about
the mobile users. With access to the location data, sender anonymity can be
violated even without the capability to track a mobile object. We refer to this
class of adversaries as location-unaware adversaries. Such adversaries use exter-
nal information to perform attacks resulting in restricted space identification,
observation identification and location tracking [1].

S. Jajodia and J. Zhou (Eds.): SecureComm 2010, LNICST 50, pp. 71–88, 2010.
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2010

72 R. Dewri et al.

1.1 Motivation

Location obfuscation is one of the widely researched approaches to safeguard
location anonymity. This technique guarantees that the location data received
at the LBS provider can be associated back to more than one object – to at
least k objects under the location k-anonymity model [1]. For this, a cloaking
region is communicated to the service provider instead of the actual location.
A k-anonymous cloaking region contains at least k − 1 other mobile objects
besides the service user. However, this approach is not sufficient to preserve
privacy in a continuous LBS. In the continuous case, an object maintains an
ongoing session with the LBS, and successive cloaking regions may be correlated
to associate the session back to the object. Such session associations reveal
the trajectory of the involved object, and any sensitive information thereof.
Assuring that every cloaking region contains k objects is not sufficient since the
absence of an object in one of the regions eliminates the possibility that it is the
session owner. Performing such elimination is much easier for a location-aware
adversary who has the capability to monitor users. This class of adversaries
has exact location information on one or more objects and uses it to eliminate
possibilities and probabilistically associate the session to consistently existing
objects. It may seem that these attacks can be avoided by using a different
identifier for every cloaking region. However, location data can still be correlated
using techniques such as multi-target tracking [2]. Besides, the provider needs to
be able to distinguish updates from the same object in order to maintain service
quality [3].

Session association attacks can be avoided if it can be assured that every
cloaking region in a session contains k common objects. This is referred to as
historical k-anonymity [4]. However, as a result of the movement of objects, a
historically k-anonymous cloaking region is very likely to grow in size over time,
thereby deteriorating service quality. Without the proper strategies to control the
size of the cloaking region, historical k-anonymity is only a theoretical extension
of k-anonymity for continuous LBS. The work presented in this paper is the
first known attempt that identifies the issues in effectively enforcing historical
k-anonymity.

1.2 Related Work

While significant research has gone into algorithms that enforce k-anonymity
[1,5,6,7], very few of them address historical k-anonymity. Gruteser and Liu
specifically investigate privacy issues in continuous LBS [8]. They introduce the
location inference problem where an adversary can infer supposedly hidden lo-
cations from prior or future location updates. Hoh and Gruteser propose a per-
turbation algorithm to cross paths of objects (by exchanging their pseudonyms)
when they are close to each other [9]. Kido et al. use false dummies to simulate
the movement of mobile nodes in order to hide the trace of an actual object [10].
Xu and Cai propose using historical traces of objects to derive a spatio-temporal
cloaking region that provides trajectory protection [11].

Anonymity Sets in a Continuous LBS 73

Bettini et al. first introduced historical k-anonymity and proposed a spatio-
temporal generalization algorithm to enforce it [4]. The generalization algorithm
enlarges the area and time interval of the request to increase the uncertainty
about the real location, while including k common objects. The method fails to
account for mobility of the objects, without which the generalized area can easily
cross acceptable limits. Chow and Mokbel argue that spatial cloaking algorithms
should satisfy the k-sharing and memorization properties to be robust against
session associations [12]. Although the focus of their work is query privacy, the
two properties together imply historical k-anonymity. Their algorithm maintains
groups of objects based on the two properties, along with query types involved
with the objects. However, a query may not be equally significant at all locations
occupied by a group’s members. Xu and Cai propose an information theoretic
measure of anonymity for continuous LBS [13]. They define a k-anonymity area
as the cloaking region whose entropy is at least k. However, the algorithm is prone
to inversion attacks where an adversary uses knowledge of the anonymizing
algorithm to breach privacy. The most recent of algorithms in this domain is
ProvidentHider [14]. It uses a maximum perimeter constraint to ensure that
cloaking regions are not too large, and the starting set of objects is as big as
possible (to take care of leaving objects). This algorithm is later used in our
comparative study.

1.3 Contributions

The drawbacks present in the above algorithms point out three issues that must
be addressed before historical k-anonymity can be efficiently enforced. Our first
contribution in this paper is the identification of these issues, namely defunct
peers, diverging trajectories and locality of requests. Our second contribution is
an anonymization algorithm, called Continuous ANONymizer (CANON), that
implements explicit strategies to resolve each of the three identified issues. In
particular, we argue that a cloaking region should be determined using direction
information of the objects and show how this restricts the inferences that can be
made about the issuer of the request. Large cloaking regions are also avoided by
this process. Further, we propose using multiple cloaking regions while issuing a
query in order to maintain better service quality.

The remainder of the paper is organized as follows. Section 2 highlights the
issues related to historical k-anonymity. Our approach to resolve the issues, the
CANON algorithm, is presented in section 3. Section 4 details the experimental
setup and results from the comparative study. Finally, section 5 concludes the
paper.

2 System Architecture

Figure 1 depicts our system consisting of three layers – (i) mobile objects, (ii) a
trusted anonymity server, and (iii) a continuous LBS provider. The trusted ano-
nymity server acts as a channel for any communication between mobile objects

74 R. Dewri et al.

co
nt
in
uo
us
 L
BS
 p
ro
vi
de
r

mobile objects

anonymizer

query processor

location
+

request

O.sid

suppressed

multiple cloaking regions multiple
range
queries
O.sid

candidate
result
set

filtered
result(s)

 trusted anonymity server

Fig. 1. Schematic of the system architecture

and continuous LBS providers. A mobile object O initiates a service session by
registering itself with the anonymity server. The registration process includes the
exchange of current location information (O.loc) and service parameters signi-
fying the request to forward to the LBS provider, as well as the anonymity level
(O.k) to enforce while doing so. The anonymity server issues a pseudo-identifier
and uses it both as a session identifier (O.sid) with the mobile object and as an
object identifier when communicating with the LBS provider. A set of cloaking
regions is then generated for the requesting object and multiple range queries
are issued to the LBS provider for these regions. Communication between the
anonymity server and the LBS provider is always referenced using the object
identifier so that the LBS can maintain service continuity. The candidate re-
sults retrieved from the LBS provider are filtered at the anonymity server and
then communicated to the mobile object. Subsequent location updates from the
mobile object are handled in a similar fashion (with the pre-assigned session
identifier) until the anonymity level cannot be satisfied or the service session is
terminated. A request is suppressed (dropped) when the anonymity requirements
can no longer be met within the same service session. A new identifier is then
used if the mobile object re-issues the same request. We further assume that
an object does not change its service parameters during a session. A separate
session is started if a request with different service parameters is to be made.
Therefore, an object can have multiple sessions running at the same time, each
with a different session identifier.

2.1 Historical k-Anonymity

The primary purpose of a cloaking region is to make a given mobile object O in-
distinguishable from a set of other objects. This set of objects, including O, forms
the anonymity set of O. Objects in the anonymity set shall be referred to as peers
of O and denoted by O.peers. A cloaking region for O is usually characterized by
the minimum bounding rectangle (MBR) of the objects in O.peers. Larger ano-
nymity sets provide higher privacy, while at the same time can result in reduced
service quality owing to a larger MBR. Therefore, the cloaking region is typically
required to achieve an acceptable balance between anonymity and service quality.

Anonymity Sets in a Continuous LBS 75

requesting object

time t1

time t2

time t3

3-anonymous MBR
Historically 3-anonymous MBR

O3

O1
O2

time t2

time t3

Fig. 2. Conventional k-anonymity and historical k-anonymity

As demonstrated in a number of prior works [5,6,7], achieving reasonable levels
of anonymity and service quality is not difficult in the case of a snapshot LBS.
However, in our assumed architecture for a continuous LBS system, maintaining
the two properties is significantly difficult.

Consider the movement pattern of the objects depicted in figure 2. A 3-
anonymous MBR is computed for O1 during three consecutive location updates.
If O1’s requests at the three time instances are mutually independent from each
other (as in a snapshot LBS), then the privacy level of O1 is maintained at
3-anonymity across the different MBRs. However, when the same identifier is
associated with all the MBRs (as in a continuous LBS), it only requires an ad-
versary the knowledge of O1, O2 and O3’s positions at time t1, t2 and t3 to infer
that the requests are being issued by object O1. This is because O1 is the only
object common across the anonymity sets induced by the cloaking regions. We
refer to this as a case of full disclosure. Assuming that each object is equally
likely to be included in another object’s cloaking region, the probability of full
disclosure is unacceptably high.

Remark 1: Let A1, . . . , An be a sequence of anonymity sets corresponding to
n > 1 consecutive k-anonymous cloaking regions for a mobile object O, generated
from a collection of N mobile objects. Then, the probability that the intersection
of the anonymity sets Sn = ∩

i
Ai has at least p objects, p > 1, is

(∏p−1
i=1

k−i
N−i

)n

.

Remark 2: If k ≤ N+1
2 then the probability of full disclosure is at least 3

4 . The full
disclosure risk is given as Dfull = Pr(|Sn| = 1) = Pr(|Sn| ≥ 1) − Pr(|Sn| ≥ 2).
Since intersection of the anonymity sets contain at least one object, we have
Pr(|Sn| ≥ 1) = 1. Hence, Dfull = 1 − (k−1

N−1)n. With k ≤ N+1
2 , or k−1

N−1 ≤ 1
2 , we

have Dfull ≥ 1 − 1
2n ≥ 1 − 1

22 = 3
4 .

We also observe in figure 2 that it does not require knowledge on the objects’
locations at all three time instances in order to breach O1’s privacy. In fact,
location knowledge at time instances t1 and t2 is sufficient to lower O1’s privacy

76 R. Dewri et al.

to 2-anonymity. This is referred to as a partial disclosure. Such disclosures occur
when the intersection of anonymity sets (corresponding to the same object)
contain less than the desired number of peers (the anonymity level k).

A straightforward extension of the conventional k-anonymity model that can
counter risks of full and partial disclosures in a continuous LBS is to ensure that
all anonymity sets within a service session contain at least k common objects.

Remark 3: Historical k-anonymity. Let A1, . . . , An be a sequence of anony-
mity sets corresponding to the cloaking regions with the same identifier and at
time instants t1, . . . , tn, ti > tj for i > j, respectively. The anonymity set Ai is
then said to satisfy historical k-anonymity if |A1 ∩ . . . ∩ Ai| ≥ k.

In other words, the sequence of anonymity sets preserve historical k-anonymity
if all subsequent sets after A1 contain at least k same objects from A1. Figure
2 depicts how the cloaking regions should change over time in order to ensure
that object O1 always has historical 3-anonymity.

2.2 Implications

The privacy guarantees of historical k-anonymity in a continuous LBS is similar
to that of k-anonymity in a snapshot LBS. In addition, historical k-anonymity
also impedes session association attacks by location-aware adversaries. However,
maintaining acceptable levels of service can become increasingly difficult in case
of historical k-anonymity. We have identified three issues for consideration that
impact the practical usage of historical k-anonymity.

1) Defunct peers: A defunct peer in an anonymity set is an object that is
no longer registered with the anonymity server. As a result, it can no longer be
ascertained that a cloaking region includes the peer. If the first cloaking region
generated during a particular session contains exactly k objects, then every other
anonymity set in that session must contain the same k objects for it to be
historically k-anonymous. A defunct peer in this case does not allow subsequent
cloaking regions to satisfy historical k-anonymity and introduces possibilities of
partial disclosure.

2) Diverging peer trajectories: The trajectories of peers influence the
size of a cloaking region (satisfying historical k-anonymity) over time. Refer
to figure 2. The MBR for object O1 becomes increasingly larger owing to the
trajectory of object O3. Bigger cloaking regions have a negative impact on service
quality. In general, the more divergent the trajectories are, the worse is the effect.
Algorithms that use a maximum spatial resolution will not be able to facilitate
service continuity as spatial constraints will not be met.

3) Locality of requests: The significance of a particular service request
can often be correlated with the locality where it originated. For instance, let
us assume that the region shown in figure 2 corresponds to a urban locality.
Further, object O1 issues a request to periodically update itself with information
(availability, price, etc.) on the nearest parking garage. At time instance t1, an
adversary cannot infer which object (out of O1, O2 and O3) is the actual issuer
of the request. However, as O3 moves away from the urban locality (suspiciously
ignoring the high concentration of garages if it were the issuer), an adversary

Anonymity Sets in a Continuous LBS 77

Procedure 1. CANON(Object O)
Input: Mobile object O (includes all associated data).
Output: A set of peer groups (one of them includes O); null if request is suppressed

(cannot satisfy anonymity).
1: if (O.sid = null) then
2: O.peers = CreatePeerSet(O)
3: O.sid = new session identifier
4: else
5: remove defunct objects in O.peers
6: end if
7: if (|O.peers| < O.k) then
8: O.sid = null
9: return null

10: end if
11: peerGroups = PartitionPeerSet(O)
12: if (∃g ∈peerGroups such that |g| < 2) then
13: O.sid = null
14: return null
15: end if
16: return peerGroups

can infer that the issuer of the request is more likely to be O1 or O2. We say that
these two objects are still in the locality of the request. If historical k-anonymity
is continued to be enforced, O3 (and most likely O2 as well) will be positioned
in different localities, thereby allowing an adversary infer with high confidence
that O1 is the issuer of the request.

Note that these three issues are primarily applicable in the context of a con-
tinuous LBS. Defunct peers is not an issue in snapshot LBS since the set of
peers can be decided on a per request basis. Further, since the same peers need
not be present in subsequent anonymity sets, their trajectories do not influence
the size of the next privacy preserving cloaking region. Differences in locality
also do not provide additional inferential power to an adversary. However, in a
continuous LBS, these three issues are direct residues of providing privacy by
historical k-anonymity.

3 The CANON Algorithm

CANON is an anonymization algorithm that enforces historical k-anonymity for
use with a continuous LBS. The algorithm defines explicit procedures to handle
each of the three potential issues identified in the previous section. An overview
of the algorithm is shown in Procedure 1.

CANON is initiated by the anonymity server whenever it receives a request
from a mobile object O. The algorithm starts by first checking if O has an open
session with respect to the current request. If it finds one then the set of peers
is updated by removing all defunct peers from the set. Otherwise, a peer set is

78 R. Dewri et al.

generated for O through the procedure CreatePeerSet and a session identifier
is assigned. The newly generated (or updated) peer set must have at least O.k
objects in order to continue to the next step; otherwise the request is suppressed
and the session is terminated. Historical k-anonymity is ensured at the end of
Line 10 since at least k objects inserted into O.peers by CreatePeerSet are still
registered with the anonymity server. The next step is to divide the peer set into
groups over which the range queries will be issued. A peer group is defined as a
subset of O.peers. PartitionPeerSet divides O.peers into disjoint peer groups.
We shall often use the term “object’s peer group” to signify the group that
contains O. Each peer group defines a smaller cloaking region than that defined
by the entire peer set and reduces the impact of diverging trajectories on service
quality. The peer groups returned by CANON are used to issue multiple range
queries (one for each) with the same object identifier. Line 12 checks that each
peer group contains at least two objects in order to avoid the disclosure of exact
location information (of any object) to location-unaware adversaries.

All object agglomerations, namely into peer sets and then into peer groups,
are performed so that the reciprocity property is satisfied. This property states
that the inclusion of any two objects in a peer set (group) is independent of the
location of the object for which the peer set (groups) is being formed. Reciprocity
prevents inversion attacks where knowledge of the underlying anonymizing al-
gorithm can be used to identify the actual object. The Hilbert Cloak algorithm
[7] was first proposed in this context for the conventional k-anonymity model.
Hilbert Cloak orders the objects according to their Hilbert indices (index on a
space filling curve) and then groups them into buckets of size k. The peer set
of an object is the bucket that contains the object. The peer set is the same for
any object in the same bucket. Further, objects close to each other according
to their Hilbert indices also tend to generate smaller (not necessarily optimal)
cloaking regions. CreatePeerSet and PartitionPeerSet thus use Hilbert-sorted
lists to incorporate these properties.

3.1 Handling Defunct Peers

As mentioned earlier, defunct peers can influence the lifetime of a service ses-
sion by reducing the peer set size to below the limit that satisfies historical
k-anonymity. The resolution is to include more than k objects in the first peer
set. An indirect way to achieve this is to specify a maximum spatial boundary
around the requesting object’s location and then include all objects within that
boundary into the peer set. This is the method used in ProvidentHider. However,
this approach cannot account for the varying density of objects across time and
space. Using spatial boundaries also cannot account for the relative differences
in MBR sizes corresponding to varying anonymity requirements. For example,
an area of 1 km2 may be sufficient to have enough peers to satisfy a historical
2-anonymity requirement, but may not be so to satisfy a stronger requirement
(say historical 50-anonymity).

A more direct method to resolve the issue is to specify the desired peer set size
explicitly. This removes any dependency on how the objects are distributed and

Anonymity Sets in a Continuous LBS 79

the area required to cover a reasonable number of them. We can specify the size
as a sufficiently big constant. However, this strategy favors objects with weaker
anonymity requirements as their peer sets are allowed a comparatively higher
number of peers to defunct. For instance, a constant peer set size of 20 would
allow the anonymizer to tolerate up to 18 defunct peers to preserve historical
2-anonymity, but only 5 defuncts to preserve historical 15-anonymity. Therefore,
the strategy adopted in CANON uses an oversize factor τ that relatively specifies
the number of extra peers that must be included in the peer set. The minimum
initial size of the peer set of an object O is equal to (1+τ)×O.k with this strategy.
We say “minimum” because other parameters introduced later can allow more
peers to be included. Use of an oversize factor prevents the problem associated
with constant peer set sizes. Note that since CANON partitions the peer set into
further groups before issuing a query, the area of the cloaking region defined by
the enlarged peer set has little or no influence on service quality. However, we
would still not want the area to expand extensively in order to curb the issue of
request locality.

3.2 Deciding a Peer Set

The CreatePeerSet procedure determines the initial peer set for an object. At
this point, we need to ensure that majority of the objects in the peer set are in
the locality of the request. We believe there are two requirements to address in
this regard.

1. Objects in the peer set should define an area where the request is equally
significant to all the peers.

2. Objects in the peer set should move so that the defined area does not expand
too much.

The first requirement will prohibit the inclusion of peers that are positioned in a
locality where the issued request is unlikely to be made. The second requirement
addresses locality of requests in the dynamic scenario where the trajectories of
the peers could be such that they are positioned in very different localities over
time. Preventing the MBR of the peer set from expanding prohibits peers from
being too far away from each other. The first requirement can be fulfilled by
choosing peers according to the Hilbert Cloak algorithm. Peers chosen according
to Hilbert indices will induce a small MBR, thereby ensuring that they are more
likely to be in the same locality. However, a peer set generated by this process
cannot guarantee that the second requirement will be fulfilled for long. This is
because the neighbors of an object (according to Hilbert index) may be moving
in very different directions.

It is clear from the above observation that the direction of travel of the ob-
jects should be accounted for when selecting peers. The direction of travel is
calculated as a vector from the last known location of the object to its current
location, i.e. if O.loc1 = (x1, y1) and O.loc2 = (x2, y2) are the previously and
currently known positions of O respectively, then the direction of travel is given
as O.dir = O.loc2 −O.loc1 = (x2 − x1, y2 − y1). O.dir is set to (0, 1) (north) for

80 R. Dewri et al.

Procedure 2. CreatePeerSet(Object O)
Input: Mobile object O (includes all associated data), and system globals τ , θ and

αfull.
Output: A set of peer objects (including O).
1: L = set of available mobile objects sorted by their Hilbert index
2: kof = (1 + τ) ×O.k ; P = φ
3: repeat
4: Lc = φ
5: for all (l ∈ L in order) do
6: if (|Lc| ≥ kof and AreaMBR(Lc ∪ {l})> αfull) then
7: break
8: end if
9: Lc = Lc ∪ {l}

10: end for
11: Pprev = P ; f = 1;Opivot = first object in Lc

12: repeat
13: P = (fθ)-neighbors of Opivot in Lc

14: f = f + 1

15: until (|P| ≥ min(kof , |Lc|))
16: L = L −P
17: until (O ∈ P)
18: if (|P| < kof) then
19: P = P ∪ Pprev

20: else if (|L| < kof) then
21: P = P ∪ L
22: end if
23: return P

newly registered objects. A θ-neighborhood for O is then defined as the set of
all objects whose direction of travel is within an angular distance θ (say in de-
grees) from O.dir. Therefore, a 0◦-neighborhood means objects traveling in the
same direction, while a 180◦-neighborhood contains all objects. If all peers are
chosen within a 0◦-neighborhood then it is possible that the area defined by the
initial peer set will more or less remain constant over time. However, the initial
area itself could be very large due to the non-availability of such peers within a
close distance. On the other hand, using a 180◦-neighborhood essentially allows
all objects to be considered and hence the area can be kept small by includ-
ing close objects. Of course, the area may increase unwantedly over time. Peer
set generation is therefore guided by two system parameters in CANON - the
neighborhood step size θ and the full-MBR resolution αfull. The neighborhood
step size specifies the resolution at which the θ-neighborhood is incremented
to include dissimilar (in terms of travel direction) peers. The full-MBR reso-
lution specifies some area within which the issued request is equally likely to
have originated from any of the included objects, thereby making it difficult for
an adversary to eliminate peers based on position and request significance. For
small values of θ and some αfull, all objects in a peer set would ideally move

Anonymity Sets in a Continuous LBS 81

in a group, in and out of a locality. Procedure 2 outlines the pseudo-code of
CreatePeerSet. We assume the existence of a function AreaMBR that returns
the area of the minimum bounding rectangle of a set of objects.

CreatePeerSet first creates a sorted list L of all registered objects according
to their Hilbert indices. It then continues to divide them into buckets (starting
from the first one in the sorted list) until the one with O is found (Lines 3-17).
Every time a bucket is formed, L is updated by removing all objects in the bucket
from the list (Line 16). Lines 5-10 determine a set Lc of candidate objects that
can potentially form a bucket. Starting from the first available object in L, we
continue to include objects in Lc as long as the minimum peer set size (denoted
by kof and decided by the oversize factor) is not met, or the area of the MBR
of included objects is within the full-MBR resolution. Note that, as a result of
this condition (Line 6), the minimum required size of the peer set receives more
prominence than the resulting area. Hence, the full-MBR resolution is only a
guiding parameter and not a constraint. Next, Lines 12-15 select kof objects
from the candidate set to form a bucket. The first object in Lc is chosen as
a pivot and all objects in the θ-neighborhood of the pivot are included in the
bucket. If the bucket is not full up to its capacity (kof) and more objects are
present in Lc, then the neighborhood is increased by the step size θ. By the end
of this process, the bucket would either contain kof objects or there are less than
kof objects in Lc. The latter is only possible when list L contains less than kof

objects, i.e. the last bucket is being created. Note that object O is not explicitly
used anywhere to decide the buckets, thereby guaranteeing reciprocity. Once the
bucket with O is found, two more checks are required (Lines 18-22). First, if O’s
bucket has less than kof objects (possible if it is the last one), then it is merged
with the previous bucket. Second, if the number of objects remaining in L is less
than kof (implying O’s bucket is second to last), then the remaining objects are
included into O’s bucket to maintain reciprocity.

CreatePeerSet uses θ-neighborhoods and the full-MBR resolution to balance
between dissimilar peers and the resulting MBR area. While the step size θ
allows incremental selection of dissimilar peers, αfull guides the extent of incre-
ment admissible to generate a localized peer set. Note that the creation of a peer
set is a one time procedure every service session. Hence, a good estimation of the
direction of travel is required to avoid diverging trajectories. One possibility is to
obtain destination points of objects and generate an average direction of travel.
An average direction can also be calculated based on the displacement vector of
the object from its starting position. One can also estimate a direction of travel
based on a set of last known locations. CANON uses an instantaneous direc-
tion vector. We believe this method performs reasonably well in road networks,
although the efficacy of other techniques remains to be determined.

3.3 Handling a Large MBR

The full-MBR resolution parameter is used to control breaches related to re-
quest localities. Typical values are in the range of 10 to 50 km2. The parameter
is therefore not intended to help generate cloaking regions with small MBRs.

82 R. Dewri et al.

Procedure 3. PartitionPeerSet(Object O)
Input: Mobile object O (includes all associated data) and system global αsub.
Output: A set of peer groups.
1: Sort objects in O.peers by their Hilbert index
2: peerGroups = φ
3: bucket = φ
4: for all (l ∈ O.peers in order) do
5: if (AreaMBR(bucket∪{l}) ≤ αsub) then
6: bucket = bucket∪{l}
7: else
8: peerGroups = peerGroups ∪ {bucket}
9: bucket = {l}

10: end if
11: end for
12: peerGroups = peerGroups ∪ {bucket}
13: return peerGroups

A continuous LBS would require a much finer resolution to deliver any reason-
able service. Further, depending on variations in velocity and the underlying
road network, some extent of expansion/contraction of the MBR is very likely.
The MBR of a peer set is therefore not a good candidate to issue the range
queries. Instead, the peer set is partitioned into multiple disjoint groups by Par-
titionPeerSet. Partitioning of the peer set eliminates empty spaces between peers
(introduced in the first place if trajectories diverge) and produces smaller MBRs
for the range queries [15]. This partitioning can be done either in a way such
that each peer group has a minimum number of objects or each peer group has
a maximum spatial resolution. The former approach cannot guarantee that the
resulting MBR will have an acceptable area. The latter method is adopted in
CANON where the maximum spatial resolution of a peer group is specified as the
sub-MBR resolution αsub. αsub is relatively much smaller than αfull. Procedure
3 outlines the partitioning method.

The partitioning is performed in a manner similar to Hilbert Cloak, with the
difference that each bucket now induces an area of at most αsub instead of a
fixed number of objects. Starting from the first object in the Hilbert-sorted peer
set, an object is added to a bucket as long as the sub-MBR resolution is met
(Line 6); otherwise the current bucket is a new peer group (Line 8) and the
next bucket is created (Line 9). Reciprocity is preserved as before. Note that the
pseudo-code in Procedure 3 does not handle the case when a peer group contains
only one object. Procedure 1 checks that such groups do not exist (safeguard
against location-unaware adversaries); otherwise the request is suppressed. How-
ever, the partitioning algorithm itself can relax the sub-MBR resolution when a
peer group with a single object is found. One possible modification is to merge
any peer group having a single object with the group generated prior to it. An-
other parameter-less technique is to create partitions that result in the minimum
average peer group MBR with the constraint that each group must have at least
two objects. We have kept these possibilities open for future exploration.

Anonymity Sets in a Continuous LBS 83

4 Empirical Study

The experimental evaluation compares the performance of CANON with the
ProvidentHider algorithm. For every new request, ProvidentHider first groups
all available objects from a Hilbert-sorted list such that each bucket holds O.k
objects; more if adding them does not violate a maximum perimeter (Pmax)
constraint. The peer set of an object is the bucket that contains the object.
A range query is issued over the area covered by the objects in the peer set
only if the maximum perimeter constraint is satisfied; otherwise the request is
suppressed. Refer to [14] for full details on the algorithm. We measure a number
of statistics to evaluate the performance.

– service continuity: average number of requests served in a session
– service failures: percentage of suppressed requests
– safeguard against location-unaware adversaries: average size of the peer group

to which the issuing object belongs

4.1 Experimental Setup

We have generated trace data using a simulator [6] that operates multiple mo-
bile objects based on real-world road network information available from the
National Mapping Division of the US Geological Survey. We have used an area
of approximately 168km2 in the Chamblee region of Georgia, USA for this study.
Three road types are identified based on the available data – expressway, arte-
rial and collector. Real traffic volume data is used to determine the number of
objects in the different road types [1].

The used traffic volume information (table 1) results in 8,558 objects with
34% on expressways, 8% on arterial roads and 58% on collector roads. The trace
data consists of multiple records spanning one hour of simulated time. A record
is made up of a time stamp, object number, x and y co-ordinates of object’s
location, and a status indicator. The status indicator signifies if the object is
registered to the anonymity server. An object’s status starts off randomly as be-
ing active or inactive. The object remains in the status for a time period drawn
from a normal distribution with mean 10 minutes and standard deviation 5 min-
utes. The status is randomly reset at the end of the period and a new time period
is assigned. The granularity of the data is maintained such that the Euclidean
distance between successive locations of the same object is approximately 100
meters. Each object has an associated k value drawn from the range [2, 50] by
using a Zipf distribution favoring higher values and with the exponent 0.6. The
trace data is sorted by the time stamp of records.

During evaluation, the first minute of records is used only for initialization.
Subsequently, the status of each record is used to determine if the object issues a
request. Only an active object is considered for anonymization. If the object was
previously inactive or its prior request was suppressed, then it is assumed that a
new request has been issued. Otherwise, the object is continuing a service session.
The anonymizer is then called to determine the cloaking region(s), if possible.

84 R. Dewri et al.

Table 1. Mean speed, standard deviation and traffic volume on the three road types

road type traffic volume mean speed standard deviation
expressway 2916.6 cars/hr 90 km/hr 20 km/hr

arterial 916.6 cars/hr 60 km/hr 15 km/hr
collector 250 cars/hr 50 km/hr 10 km/hr

The process continues until the object enters an inactive (defunct) state. Over
2,000,000 anonymization requests are generated during a pass of the entire trace
data.

Default values of other algorithm parameters are set as follows: τ = 0.0,
αfull = 25km2, αsub = 1km2, θ = 180◦ and Pmax = 5000m. A 5000m perimeter
constraint for ProvidentHider is approximately an area of 1.6km2. Compared to
that, αsub has a smaller default value. The precision is around 1000m (assuming
a square area) which serves reasonably well for a Pay-As-You-Drive insurance
service. The full-MBR resolution of 25km2 evaluates to a locality about 1

32
th the

size of New York City. The entire map is assumed to be on a grid of 214 × 214

cells (a cell at every meter) while calculating the Hilbert indices [16]. Objects in
the same cell have the same Hilbert index.

4.2 Comparative Performance

Figure 3a shows the average number of requests served in a session for differ-
ent anonymity requirements. ProvidentHider demonstrates poor performance for
higher k values, almost to the extent of one request per session. Comparatively,
CANON maintains much better service continuity. As mentioned earlier, using
a fixed area for varying anonymity requirements makes it difficult for Providen-
tHider to keep the peer set within the required size. The task is more difficult for
bigger peer sets as the algorithm does not consider the issue of diverging trajec-
tories. In fact, more than 50% of the requests are suppressed for k > 25 (figure
3b). CANON’s performance also seems to fluctuate depending on the oversize
factor. In general, a maximum peer set size slightly larger than the minimum
required (for example τ = 0.25) gives the best performance, while any further
increase degrades it. While a few extra peers is useful to handle defunct peers,
having a much larger peer set implies having objects over a larger area and of-
ten far away from each other (over time). Therefore, it is possible that some
peer groups are formed with a single object owing to the sub-MBR constraint.
Requests are then suppressed in the absence of a strategy to handle such peer
groups. This is also corroborated by the similar trend in request suppression.

4.3 Impact of Parameters

Each parameter in CANON is intended to address a specific issue with the use of
historical k-anonymity. We performed some parametric studies to demonstrate
the consequences of varying these parameters. The neighborhood step size is

Anonymity Sets in a Continuous LBS 85
av

g.
 n

o.
 o

f
re

qs
. s

er
ve

d
in

 a
 s

es
si

on

%
 o

f
su

pp
re

ss
ed

 r
eq

s.

k

τ=0.25

τ=0.5

τ=1.0

τ=2.0

τ=0.0

PH

τ=0.0

τ=2.0

τ=1.0

τ=0.5

τ=0.25

PH

(a) (b)

k

Fig. 3. Comparative performance of CANON with ProvidentHider (PH) for different
anonymity requirements (k) and oversize factors (τ). (a) Average number of requests
served in a session. (b) Percentage of requests suppressed.

av
g.

 n
o.

 o
f

re
qs

. s
er

ve
d

in
 a

 s
es

si
on

av
g.

 s
iz

e
of

 o
bj

ec
t'

s
pe

er
 g

ro
up

θ=1°θ=15°

θ=180°θ=90°

θ=30°

θ=45°

k

θ=1
80°

θ=90°

θ=45°

θ=30°
θ=15°

θ=1°

(a) (b)

k

Fig. 4. Impact of different neighborhood step size θ on CANON. (a) Average number
of requests served in a session. (b) Average size of requesting object’s peer group.

varied between 1◦ and 180◦, and performance is observed for three different
settings of the sub-MBR (αsub = 0.25, 1.0 and 4 km2) and full-MBR (αfull =
10, 25 and 50 km2) resolutions. Note that increasing/decreasing the full-MBR
resolution will have no impact on peer sets if the required number of objects is
always present within a small area. We therefore use a neighborhood step size
of 15◦ while observing the impact of αfull. All parameters other than the ones
mentioned take their default values.

Neighborhood Step Size θ. Performance in terms of service continuity does
not differ a lot for varying step size (figure 4a). Some differences are observed
for lower ranges of k (2− 15) where larger step sizes show a better performance.
Differences are more prominent in terms of peer group size where a bigger neigh-
borhood improves the safeguard against location-unaware adversaries (figure 4b).
This behavior is expected since bigger neighborhood sizes allow the inclusion of
more dissimilar peers, thereby inducing bigger peer groups due to the possibly

86 R. Dewri et al.

av
g.

 s
iz

e
of

 o
bj

ec
t'

s
pe

er
 g

ro
up

av
g.

 n
o.

 o
f

re
qs

. s
er

ve
d

in
 a

 s
es

si
on

k

%
 o

f
su

pp
re

ss
ed

 r
eq

s.

α =0.25 kmsub 2
α =1.00 kmsub 2
α =4.00 kmsub 2

α =10.0 kmfull 2
α =25.0 kmfull 2
α =50.0 kmfull 2

(a) (b) (c)

Fig. 5. Impact of spatial resolution parameters on CANON – top: sub-MBR area αsub

and bottom: full-MBR area αfull with θ = 15◦. (a) Average number of requests served
in a session. (b) Average size of requesting object’s peer group. (c) Percentage of sup-
pressed requests.

close proximity of objects. The statistic of interest is the size of the MBR area
defined by the objects in the peer set. We found that this area remains almost
constant for the smaller step sizes, specifically for the more frequently requested
anonymity levels (higher k), implying that the objects in a peer set move to-
gether as a group. Further, the area increases by more than two folds (across
different anonymity requirements) when direction of travel is ignored (θ = 180◦).

Sub-MBR Resolution αsub. Smaller sub-MBR resolutions mean higher preci-
sion in the range queries. However, they also mean higher chances of smaller peer
groups, often ones with a single object. With reference to figure 5 (top row), a
smaller αsub results in a higher rate of failures, inducing shorter service sessions.
Services requiring high location precision will therefore fail to provide longer
service continuity. An object’s peer group size is also comparatively smaller.
Improvements in service continuity is more prominent for weaker anonymity re-
quirements as αsub is increased. However, improvements in peer group size is
more noticeable in higher k values. In effect, finding a suitably balanced αsub

can help achieve good overall performance. αsub is decided by the service require-
ments in most cases. Nonetheless, depending on how stringent the requirement
is, both privacy (from location-unaware adversaries) and service quality may
have scope for improvement.

Full-MBR Resolution αfull. The full-MBR resolution is observed to have lit-
tle or no influence on the average number of requests served in a session (figure
5 bottom row). However, larger areas tend to have higher percentage of failures.
A possible explanation is as follows. A larger area with a small step size means
similar objects are preferred over the proximity of objects. As a result, a peer set
includes objects distributed far apart. This leads to the suppression of requests
when the sub-MBR constraint is imposed on the formation of peer groups. Ob-
jects far apart cannot be grouped without violating the constraint. This also
results in a comparatively smaller peer group size. On the other hand, a smaller

Anonymity Sets in a Continuous LBS 87

area allows inclusion of close proximity objects at the expense of similarity. The
sub-MBR constraint is therefore easier to meet and suppression rate is lower.

4.4 Summary

The following points summarize the results from the experimental study.

– CANON has a superior performance compared to ProvidentHider in main-
taining longer service sessions across a wide range of anonymity require-
ments. More requests are also successfully anonymized by CANON.

– Including a small number of extra objects in a peer set is advantageous in han-
dling defunct peers. However, extremely large peer sets can be detrimental.

– Use of direction information during the formation of a peer set does help
avoid peers drifting away from each other over time. Choice of a too small
neighborhood affects service quality, but is not necessary to balance perfor-
mance across different measures.

– Performance is better with larger sub-MBR resolutions. However, perfor-
mance in high precision services may be improved with a good strategy to
relax the constraint.

– Service continuity is marginally different for different full-MBR resolutions.
However, failure to serve new requests is much lower with smaller resolutions.

5 Conclusions

Owing to the limitations of k-anonymity in a continuous LBS, an extended notion
called historical k-anonymity has been recently proposed for privacy preservation
in such services. However, all known methods of enforcing historical k-anonymity
significantly affects the quality of service. In this paper, we identified the factors
that contribute towards deteriorated service quality and suggested resolutions.
We proposed the CANON algorithm that delivers reasonably good service qual-
ity across different anonymity requirements. The algorithm uses tunable param-
eters to adjust the size of a peer set, trajectories of peers and cloaking regions
over which range queries are issued. Immediate future work includes optimizing
the performance of CANON in terms of better usage of directional informa-
tion. We believe this optimization is crucial in order to have similar performance
across all levels of anonymity requirements. Merging location anonymity and
query privacy in a continuous LBS is a natural extension of this work.

Acknowledgment

This work was partially supported by the U.S. Air Force Office of Scientific
Research under contract FA9550-07-1-0042. The views and conclusions contained
in this document are those of the authors and should not be interpreted as
representing official policies, either expressed or implied, of the U.S. Air Force
or other federal government agencies.

88 R. Dewri et al.

References

1. Gruteser, M., Grunwald, D.: Anonymous Usage of Location-Based Services
Through Spatial and Temporal Cloaking. In: Proceedings of the First International
Conference on Mobile Systems, Applications, and Services, pp. 31–42 (2003)

2. Reid, D.: An Algorithm for Tracking Multiple Targets. IEEE Transactions on Au-
tomatic Control 24(6), 843–854 (1979)

3. Beresford, A.R., Stajano, F.: Location Privacy in Pervasive Computing. IEEE Se-
curity and Privacy 2, 46–55 (2003)

4. Bettini, C., Wang, X.S., Jajodia, S.: Protecting Privacy Against Location-Based
Personal Identification. In: Proceedings of the 2nd VLDB Workshop on Secure
Data Management, pp. 185–199 (2005)

5. Bamba, B., Liu, L., Pesti, P., Wang, T.: Supporting Anonymous Location Queries
in Mobile Environments with Privacy Grid. In: Proceedings of the 17th Interna-
tional World Wide Web Conference, pp. 237–246 (2008)

6. Gedik, B., Liu, L.: Protecting Location Privacy with Personalized k-Anonymity:
Architecture and Algorithms. IEEE Transactions on Mobile Computing 7(1), 1–18
(2008)

7. Kalnis, P., Ghinita, G., Mouratidis, K., Papadias, D.: Preventing Location-Based
Identity Inference in Anonymous Spatial Queries. IEEE Transactions on Knowledge
and Data Engineering 19(12), 1719–1733 (2007)

8. Gruteser, M., Liu, X.: Protecting Privacy in Continuous Location-Tracking Appli-
cations. IEEE Security and Privacy 2(2), 28–34 (2004)

9. Hoh, B., Gruteser, M.: Protecting Location Privacy Through Path Confusion. In:
Proceedings of the First International Conference on Security and Privacy for
Emerging Areas in Communication Networks, pp. 194–205 (2005)

10. Kido, H., Yanagisawa, Y., Satoh, T.: An Anonymous Communication Technique
Using Dummies for Location-Based Services. In: Proceedings of the IEEE Interna-
tional Conference on Pervasive Services 2005, pp. 88–97 (2005)

11. Xu, T., Cai, Y.: Exploring Historical Location Data for Anonymity Preservation
in Location-Based Services. In: IEEE INFOCOM 2008, pp. 1220–1228 (2008)

12. Chow, C.Y., Mokbel, M.: Enabling Private Continuous Queries for Revealed User
Locations. In: Papadias, D., Zhang, D., Kollios, G. (eds.) SSTD 2007. LNCS,
vol. 4605, pp. 258–275. Springer, Heidelberg (2007)

13. Xu, T., Cai, Y.: Location Anonymity in Continuous Location-Based Services. In:
Proceedings of the 15th International Symposium on Advances in Geographic In-
formation Systems, p. 39 (2007)

14. Mascetti, S., Bettini, C., Wang, X.S., Freni, D., Jajodia, S.: ProvidentHider: An
Algorithm to Preserve Historical k-Anonymity in LBS. In: Proceedings of the 10th
International Conference on Mobile Data Management: Systems, Services and Mid-
dleware, pp. 172–181 (2009)

15. Tan, K.W., Lin, Y., Mouratidis, K.: Spatial Cloaking Revisited: Distinguishing
Information Leakage from Anonymity. In: Mamoulis, N., Seidl, T., Pedersen, T.B.,
Torp, K., Assent, I. (eds.) Advances in Spatial and Temporal Databases. LNCS,
vol. 5644, pp. 117–134. Springer, Heidelberg (2009)

16. Liu, X., Schrack, G.: Encoding and Decoding the Hilbert Order. Software-Practice
and Experience 26(12), 1335–1346 (1996)

Securing Personal Health Records in Cloud
Computing: Patient-Centric and Fine-Grained
Data Access Control in Multi-owner Settings

Ming Li1, Shucheng Yu1, Kui Ren2, and Wenjing Lou1

1 Department of ECE, Worcester Polytechnic Institute, USA

{mingli,yscheng,wjlou}@ece.wpi.edu
2 Department of ECE, Illinois Institute of Technology, USA

kren@ece.iit.edu

Abstract. Online personal health record (PHR) enables patients to

manage their own medical records in a centralized way, which greatly

facilitates the storage, access and sharing of personal health data. With

the emergence of cloud computing, it is attractive for the PHR service

providers to shift their PHR applications and storage into the cloud,

in order to enjoy the elastic resources and reduce the operational cost.

However, by storing PHRs in the cloud, the patients lose physical con-

trol to their personal health data, which makes it necessary for each

patient to encrypt her PHR data before uploading to the cloud servers.

Under encryption, it is challenging to achieve fine-grained access control

to PHR data in a scalable and efficient way. For each patient, the PHR

data should be encrypted so that it is scalable with the number of users

having access. Also, since there are multiple owners (patients) in a PHR

system and every owner would encrypt her PHR files using a different

set of cryptographic keys, it is important to reduce the key distribution

complexity in such multi-owner settings. Existing cryptographic enforced

access control schemes are mostly designed for the single-owner scenarios.

In this paper, we propose a novel framework for access control to

PHRs within cloud computing environment. To enable fine-grained and

scalable access control for PHRs, we leverage attribute based encryption

(ABE) techniques to encrypt each patient’s PHR data. To reduce the

key distribution complexity, we divide the system into multiple security

domains, where each domain manages only a subset of the users. In this

way, each patient has full control over her own privacy, and the key

management complexity is reduced dramatically. Our proposed scheme

is also flexible, in that it supports efficient and on-demand revocation of

user access rights, and break-glass access under emergency scenarios.

Keywords: Personal health records, cloud computing, patient-centric

privacy, fine-grained access control, attribute-based encryption.

1 Introduction

In recent years, personal health record (PHR) has emerged as a patient-centric
model of health information exchange. A PHR service allows a patient to create,

S. Jajodia and J. Zhou (Eds.): SecureComm 2010, LNICST 50, pp. 89–106, 2010.
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2010

90 M. Li et al.

manage, and control her personal health data in a centralized place through
the web, from anywhere and at any time (as long as they have a web browser
and Internet connection), which has made the storage, retrieval, and sharing of
the the medical information more efficient. Especially, each patient has the full
control of her medical records and can effectively share her health data with a
wide range of users, including staffs from healthcare providers, and their family
members or friends. In this way, the accuracy and quality of care are improved,
while the healthcare cost is lowered.

At the same time, cloud computing has attracted a lot of attention because
it provides storage-as-a-service and software-as-a-service, by which software ser-
vice providers can enjoy the virtually infinite and elastic storage and computing
resources [1]. As such, the PHR providers are more and more willing to shift
their PHR storage and application services into the cloud instead of building
specialized data centers, in order to lower their operational cost. For example,
two major cloud platform providers, Google and Microsoft are both providing
their PHR services, Google Health1 and Microsoft HealthVault2, respectively.

While it is exciting to have PHR services in the cloud for everyone, there
are many security and privacy risks which could impede its wide adoption. The
main concern is about the privacy of patients’ personal health data and who
could gain access to the PHRs when they are stored in a cloud server. Since
patients lose physical control to their own personal health data, directly plac-
ing those sensitive data under the control of the servers cannot provide strong
privacy assurance at all. First, the PHR data could be leaked if an insider in
the cloud provider’s organization misbehaves, due to the high value of the sen-
sitive personal health information (PHI). As a famous incident, a Department
of Veterans Affairs database containing sensitive PHI of 26.5 million military
veterans, including their social security numbers and health problems was stolen
by an employee who took the data home without authorization [2]. Second, since
cloud computing is an open platform, the servers are subjected to malicious out-
side attacks. For example, Google has reported attacks on its Gmail accounts in
early 2010. Although there exist administrative regulations such as the Health
Insurance Portability and Accountability Act of 1996 (HIPAA) [3], technical pro-
tections that effectively ensure the confidentiality of and proper access to PHRs
are still indispensable.

To deal with the potential risks of privacy exposure, instead of letting the PHR
service providers encrypt patients’ data, PHR services should give patients (PHR
owners) full control over the selective sharing of their own PHR data. To this
end, the PHR data should be encrypted in addition to traditional access control
mechanisms provided by the server [4]. Basically, each patient shall generate her
own decryption keys and distribute them to her authorized users. In particular,
they shall be able to choose in a fine-grained way which users can have access
to which parts of their PHR; for the unauthorized parties who do not have
the corresponding keys, the PHR data should remain confidential. Also, the

1 https://www.google.com/health/
2 http://www.healthvault.com/

Securing Personal Health Records in Cloud Computing 91

patient should always retain the right to not only grant, but also revoke access
privileges when they feel it is necessary [5]. Therefore, in a “patient-centric”
PHR system, there are multiple owners who encrypt according to their own
ways, using different sets of cryptographic keys.

Essentially, realizing fine-grained access control under encryption can be trans-
formed into a key management issue. However, under the multi-owner setting,
this problem becomes more challenging. Due to the large scale of users and
owners in the PHR system, potentially heavy computational and management
burden on the entities in the system can be incurred, which will limit the PHR
data accessibility and system usability. On the one hand, for each owner her
PHR data should be encrypted so that multiple users can access at the same
time. But the authorized users may come from various avenues, including both
persons who have connections with her and who do not. Those users are of poten-
tial large number and their access requests are generally unpredictable. Should
all the users be directly managed by each owner herself, she will easily be over-
whelmed by a linear increase of the key management overhead with the number
of users. On the other hand, since there are multiple owners, each user may have
to obtain keys from every owner whose PHR she wants to read, limiting the ac-
cessibility since not every patient will be always online. Yet, in a straightforward
solution where all the users are managed by some central authority (CA) instead
of each owner, the CA will have the ability to decrypt all the owners’ data, such
that owners have no full control over their data and their privacy will still be at
risk. While various previous works proposed techniques for cryptographically en-
forced access control to outsourced data [4,6,7,8,9], they focused on single-owner
architecture which cannot directly solve the above challenges under multi-owner
scenario in PHR system. Therefore, a new framework for patient-centric access
control suitable for multi-owner PHR systems is necessary.

In this paper, we propose a novel and practical framework for fine-grained
data access control to PHR data in cloud computing environments, under multi-
owner settings. To ensure that each owner has full control over her PHR data, we
leverage attribute-based encryption (ABE) as the encryption primitive, and each
owner generates her own set of ABE keys. In this way, a patient can selectively
share her PHR among a set of users by encrypting the file according to a set of
attributes, and her encryption and user management complexity is linear to the
number of attributes rather than the number of authorized users in the system.

To avoid from high key management complexity for each owner and user, we
divide the system into multiple security domains (SDs), where each of them is as-
sociated with a subset of all the users. Each owner and the users having personal
connections to her belong to a personal domain, while for each public domain
we rely on multiple auxiliary attribute authorities (AA) to manage its users and
attributes. Each AA distributively governs a disjoint subset of attributes, while
none of them alone is able to control the security of the whole system. In ad-
dition, we discuss methods for enabling efficient and on-demand revocation of
users or attributes, and break-glass access under emergence scenarios.

92 M. Li et al.

2 Related Work

2.1 Traditional Access Control for EHRs

Traditionally, research on access control in electronic health records (EHRs)
often places full trust on the health care providers where the EHR data are
often resided in, and the access policies are implemented and enforced by the
health providers. Various access control models have been proposed and applied,
including role-based (RBAC) and attribute-based access control (ABAC) [10].
In RBAC [11], each user’s access right is determined based on his/her roles and
the role-specific privileges associated with them. The ABAC extends the role
concept in RBAC to attributes, such as properties of the resource, entities, and
the environment. Compared with RBAC, the ABAC is more favorable in the
context of health care due to its potential flexibility in policy descriptions [10].
A line of research aims at improving the expressiveness and flexibility of the
access control policies [12].

However, for personal health records (PHRs) in cloud computing environ-
ments, the PHR service providers may not be in the same trust domains with
the patients’. Thus patient-centric privacy is hard to guarantee when full trust
is placed on the cloud servers, since the patients lose physical control to their
sensitive data. Therefore, the PHR needs to be encrypted in a way that enforces
each patient’s personalized privacy policy, which is the focus of this paper.

2.2 Cryptographically Enforced Access Control for Outsourced
Data

For access control of outsourced data, partially trusted servers are often assumed.
With cryptographic techniques, the goal is trying to enforce that who has (read)
access to which parts of a patient’s PHR documents in a fine-grained way.

Symmetric key cryptography (SKC) based solutions. Vimercati et.al. proposed
a solution for securing outsourced data on semi-trusted servers based on symmet-
ric key derivation methods [13], which can achieve fine-grained access control.
Unfortunately, the complexities of file creation and user grant/revocation oper-
ations are linear to the number of authorized users, which is less scalable. In
[4], files in a PHR are organized by hierarchical categories in order to make key
distribution more efficient. However, user revocation is not supported. In [6], an
owner’s data is encrypted block-by-block, and a binary key tree is constructed
over the block keys to reduce the number of keys given to each user.

The SKC-based solutions have several key limitations. First, the key man-
agement overhead is high when there are a large number of users and owners,
which is the case in a PHR system. The key distribution can be very inconve-
nient when there are multiple owners, since it requires each owner to always be
online. Second, user revocation is inefficient, since upon revocation of one user,
all the remaining users will be affected and the data need to be re-encrypted.
Furthermore, users’ write and read rights are not separable.

Public key cryptography (PKC) based solutions. PKC based solutions were
proposed due to their ability to separate write and read privileges. Benaloh

Securing Personal Health Records in Cloud Computing 93

et. al. [4] proposed a scheme based on hierarchical identity based encryption
(HIBE), where each category label is regarded as an identity. However, it still has
potentially high key management overhead. In order to deal with the multi-user
scenarios in encrypted search, Dong et.al. proposed a solution based on proxy
encryption [14]. Access control can be enforced if every write and read operation
involve a proxy server. However, it does not support fine-grained access control,
and is also not collusion-safe.

Attribute-based encryption (ABE). The SKC and traditional PKC based solu-
tions all suffer from low scalability in a large PHR system, since file encryption
is done in an one-to-one manner, while each PHR may have an unpredictable
large number of users. To avoid such inconveniences, novel one-to-many encryp-
tion methods such as attribute-based encryption can be used [15]. In the seminal
paper on ABE [16], data is encrypted to a group of uses characterized by a
set of attributes, which potentially makes the key management more efficient.
Since then, several works used ABE to realize fine-grained access control for out-
sourced data [17,18,19,20]. However, they have not addressed the multiple data
owner settings, and there lacks a framework for patient-centric access control
in multi-owner PHR systems. Note that, in [21] a single authority for all users
and patients is adopted. However, this suffers from the key escrow problem, and
patients’ privacy still cannot be guaranteed since the authority has keys for all
owners. Recently Ibraimi et.al. [22] applied ciphertext policy ABE (CP-ABE)
[23] to manage the sharing of PHRs. However, they still assume a single public
authority, while the challenging key-management issues remain largely unsolved.

3 Patient-Centric Data Access Control Framework for
PHR in Cloud Computing

3.1 Problem Definition

We consider a PHR system where there exist multiple PHR owners and multiple
PHR users. The owners refer to patients who have full control over their own
PHR data, i.e., they can create, manage and delete it. The users include readers
and writers that may come from various aspects. For example, a friend, a care-
giver or a researcher. There is also a central server belonging to the PHR service
provider that stores all the owners’ PHRs, where there may be a large number
of owners. Users access the PHR documents through the server in order to read
or write to someone’s PHR. The PHR files can be organized by their categories
in a hierarchical way [4].

Security Model. In this paper, we consider honest but curious cloud server
as those in [13] and [20]. That means the server will try to find out as much
secret information in the stored PHR files as possible, but they will honestly
follow the protocol in general. The server may also collude with a few malicious
users in the system. On the other hand, some users will also try to access the
files beyond their privileges. For example, a pharmacy may want to obtain the
prescriptions of patients for marketing and boosting its profits. To do so, they

94 M. Li et al.

Fig. 1. The proposed multi-owner, multi-authority, and multi-user framework for access

control of PHR in cloud computing

may even collude with other users. In addition, we assume each party in our
system is preloaded with a public/private key pair, and entity authentication
can be done by challenge-response protocols.

Requirements. In “patient-centric privacy”, we envision that each patient
specifies her own privacy policy. The owners want to prevent the server and
unauthorized users from learning the contents of their PHR files. In particular,
we have the following objectives:

– Fine-grained access control should be enforced, meaning different users can
be authorized to read different sets of files. Also, we shall enable multiple
writers to gain write-access to contribute information to PHR with account-
ability.

– User revocation. Whenever it is necessary, a user’s access privileges should
be revoked from future access in an efficient way.

– The data access policies should be flexible, i.e., changes to the predefined
policies shall be allowed, especially under emergency scenarios.

– Efficiency. To support a large and unpredictable number of users, the system
should be highly scalable, in terms of complexity in key management, user
management, and computation and storage.

3.2 The Proposed Framework for Patient-Centric Data Access
Control

Since the cloud server is no longer assumed to be fully trusted, data encryp-
tion should be adopted which should enforce patient-specified privacy policies.

Securing Personal Health Records in Cloud Computing 95

To this end, each owner shall act as an authority that independently generates
and distributes cryptographic keys to authorized users. However, as mentioned
before, the management complexities may increase linearly with the number of
users and owners.

Our proposed framework can solve this problem well. The key idea is two-
fold. First, in order to lower the complexity of encryption and user management
for each owner, we adopt attribute-based encryption (ABE) as the encryption
primitive. Users/data are classified according to their attributes, such as profes-
sional roles/data types. Owners encrypt their PHR data under a certain access
policy (or, a selected set of attributes), and only users that possess proper sets
of attributes (decryption keys) are allowed to gain read access to those data.

Second, we divide the users in the whole PHR system into multiple security
domains (SDs), and for each SD we introduce one or more authorities which gov-
ern attribute-based credentials for users within that SD. There are two categories
of SDs: public domains (PUDs) and personal domains (PSDs). Each owner is in
charge of her PSD consisting of users personally connected to her. A PUD usu-
ally contains a large number of professional users, and multiple public attribute
authorities (PAA) that distributively governs a disjoint subset of attributes to
remove key escrow. An owner encrypts her PHR data so that authorized users
from both her PSD and PUDs may read it. In reality, each PUD can be mapped
to an independent sector in the society, such as the health care, education, gov-
ernment or insurance sector. Users belonging to a PUD only need to obtain
credentials from the corresponding public authorities, without the need to inter-
act with any PHR owner, which greatly reduces the key management overhead
of owners and users.

The framework is illustrated in Fig. 1, which features multiple SDs, multiple
owners (personal AAs), multiple PAAs, and multiple users (writers and readers).
Next, we describe the framework in a conceptual way.

Key distribution. Users first obtain attribute-based keys from their AAs. They
submit their identity information and obtain secret keys that bind them to
claimed attributes. For example, a physician in it would receive “hospital A,
physician, M.D., internal medicine” as her attributes, possibly from different
AAs. This is reflected by (1) in Fig. 1. In addition, the AAs distribute write keys
that permit users in their SD to write to some patients’ PHR ((2)). A user needs
to present the write keys in order to gain write access to the cloud server.

PHR Access. First, the owners upload ABE-encrypted PHR files to the cloud
server ((3)), each of them is associated with some personalized access policy, en-
forced by encryption. Only authorized users can decrypt the PHR files, exclud-
ing the server. For example, a policy may look like P :=“(profession=physician)∧
(specialty=internal medicine)∧(organization=hospital A)”. The readers down-
load PHR files from the server, and they can decrypt the files only if they have
suitable attribute-based keys ((5)). The writers will be granted write access to
someone’s PHR, if they present proper write keys ((4)).

96 M. Li et al.

User revocation. There are two types of user revocation. The first one is
revocation of a user’s attribute, which is done by the AA that the user belongs to,
where the actual computations can be delegated to the cloud server to improve
efficiency ((8)). The second one is update of an owner’s access policy for a specific
PHR document, based on information passed from the owner to the server ((8)).

Break-glass. When an emergency happens, the regular access policies may no
longer be applicable. To handle this situation, break-glass access is needed to
access the victim’s PHR. In our framework, each owner’s PHR’s access right is
also delegated to an emergency department (ED, (6)). To prevent from abuse
of break-glass option, the emergency staff needs to contact the ED to verify her
identity and the emergency situation, and obtain temporary read keys ((7)).
After the emergency is over, the patient can revoke the emergent access via
the ED.

4 Flexible and Fine-Grained Data Access Control
Mechanisms

In this section, we present mechanisms to achieve cryptographically enforced
fine-grained data access control for PHRs in cloud computing, under our patient-
centric access control framework. We adopt attribute-based encryption (ABE)
as the cryptographic tool. ABE [16,23] is a collusion resistant, one-to-many en-
cryption method, where only users possessing proper attributes can decrypt a
ciphertext. ABE potentially allows patients to define their own access policies
conveniently, eliminates the need to know the user list of each PHR file, and is
scalable with the number of users.

The central issue here is how to achieve strong privacy guarantee for the own-
ers. Consider a straightforward application of the CP-ABE scheme [23], where
each AA in a PUD corresponds to an organization such as a health care provider,
who defines all the attributes of its staffs and runs an independent ABE system.
It is simple for an owner to realize complex access policies. If she wants to allow
physicians from multiple hospitals to view one of her PHR file (e.g., Fig. 2 (a),
P), she can include multiple sets of ciphertext components, each set encrypted
using one of the hospital’s ABE public keys. However, if any of the authorities
(hospitals) misbehave, it can decrypt all the data of owners who allow access to
users in that hospital. This is clearly against the patient-centric privacy concept.
In addition, this method is not efficient since the policies for the three hospitals
are duplicated, which makes the ciphertext long. Ideally the same literals should
be collapsed into one (Fig. 2 (a), P ′).

To solve the above problems, we adopt the multi-authority ABE (MA-ABE)
proposed by Chase et.al. [24], where each authority governs a disjoint set of
attributes distributively. An independent MA-ABE system is ran for each PUD,
where there are multiple AAs in each of them; while each PSD (owner) runs the
KP-ABE proposed by Goyal et.al [16] (GPSW). In each PUD, there is no longer
a central authority (CA) and any coalition of up to corrupted N −2 AAs cannot
break the security of the system thanks to MA-ABE.

Securing Personal Health Records in Cloud Computing 97

P :=
(
physician∧internal medicine∧hospital A

)
∨(

physician∧internal medicine∧hospital B
)

∨(
physician∧internal medicine∧hospital C

)
...

P ′:=
(
physician∧internal medicine∧

(hospital A∨hospital B∨hospital C)
)

(a) (b)

Fig. 2. (a): A patient-defined access policy under the naive way of authority arrange-

ment. (b): An example policy realizable using MA-ABE under our framework.

Table 1. Frequently used notations

A The universe of data attributes

A The universe of role attributes

Au User u’s data attribute set

A
C
k A set of role attributes (from the kth AA) associated with a ciphertext

A
u
k A set of role attributes that user u obtained from the kth AA

P Access policy for a PHR file

P An access policy assigned to a user

MK, PK Master key of an AA and its public key for ABE

SK A user’s secret key

rki→i′ Re-encryption key for the server to update attribute i to its current version i′

However, in MA-ABE the access policies are enforced in users’ secret keys,
and the policies are fixed once the keys are distributed which is not convenient
for owners to specify their own policies. By our design, we show that by agreeing
upon the formats of the key-policies and specifying which attributes are required
in the ciphertext, the supported policy expressions enjoy some degree of flexibil-
ity from the encryptor’s point of view, such as the one in Fig. 2 (b). In addition,
it is a well-known challenging problem to revoke users/attributes efficiently and
on-demand in ABE. We adapt the most recent techniques in ABE revocation
[19,20], so that an owner/AA can revoke a user or a set of attributes on-demand
by updating the ciphertexts and (possibly) user’s secret keys, and part of these
operations can be delegated to the server which enhances efficiency.

4.1 Definitions, Notations and Preliminary

There are two types of attributes in the PHR system, namely data attribute and
role attribute. The former refers to the intrinsic properties of the PHR data, such
as the category of a PHR file. The latter represents the roles of the entities in
the system, such as the professional role of a user in an organization. The main
notations are summarized in Table. 1.

98 M. Li et al.

Key-policy Attribute-Based Encryption (KP-ABE) Schemes. The KP-
ABE associates a set of attributes with the ciphertext, and the access policies
are enforced in the keys distributed to each user.

First, we briefly review the multi-authority ABE (MA-ABE) [24] which will
used in this paper. Assume there are N AAs in total. The MA-ABE consists of
the following four algorithms:

Setup This algorithm is cooperatively executed by all of the N AAs. It takes
as input a security parameter λ, an attribute universe {Ak}k∈{1,...,N} where
Ak = {1, 2, ..., nk} and outputs public keys and a master key for each AA. It
defines common bilinear groups G1, G2 with prime order q and generators g1, g2
respectively, and a bilinear map e : G1 × G2 → GT . The PK and AAk’s master
key MKk are as follows:

MKMA−ABE
k = 〈mskk, {tk,i}i∈Ak

〉,
PKMA−ABE = 〈Y = e(g1, g2)

∑
k vk , {yk, {Tk,i = g

tk,i

2 }i∈Ak
}k∈{1,...,N}〉

where mskk is AAk’s master secret key used only in key issuing, yk is only
used by the AAs, and tk,i ∈ Zq and Tk,i ∈ G2 are attribute private/public key
components for attribute i.

Key issuing In this algorithm, the AAs collectively generate a secret key for a
user. For a user with ID3 u, the secret key is in the form

SKMA−ABE
u = 〈Du = gRu

1 , {Dk,i = g
pk(i)/tk,i

1 }k∈{1,...,N},i∈Au
k
〉,

where Ru is a random number for user u, and pk(·) is a dk degree polynomial
generated by the kth AA.

Encryption This algorithm takes as input a message M , public key PK, and
a set of attributes {AC

1 , ..., AC
N}, and outputs the ciphertext E as follows. The

encryptor first chooses an s ∈R Zq, and then returns

〈E0 = M · Y s, E1 = gs
2, {Ck,i = T s

k,i}i∈AC
k ,k∈{1,...,N}〉.

Decryption This algorithm takes as input a ciphertext E, PK, and a user
secret key SKu. If for each AA k, |AC

k ∩ Au
k | ≥ dk, the user pairs up Dk,i and

Ck,i and reconstructs e(g1, g2)spk(0). After multiplying all these values together
with e(Du, E1), u recovers the blind factor Y s and thus gets M .

Second, we use the GPSW KP-ABE scheme [16] for each PSD, where all the
attributes and keys come from single personal AA. There are also four algo-
rithms. The setup generates group G1 with generator g1, and e : G1×G1 → GT .
The MK/PK are as follows.

MKGPSW = 〈{y, ti}i∈{1,...,n}〉,
PKGPSW = 〈Y = e(g1, g1)y, {Ti = gti

1 }i∈{1,...,n}〉

where n = |A|. In key generation, the SKGPSW
u = 〈{Di = g

p(i)/ti

1 }i∈Au . The
encryption is the same except k = 1, while the decryption is similar.
3 This ID is a secret only known to u.

Securing Personal Health Records in Cloud Computing 99

Table 2. Sample attribute based keys for three public users in the health care domain

Attribute authority AMA ABMS AHA

Attribute type Profession License status Medical specialty Organization

A
u1 : user 1 Physician * M.D. * Internal medicine * Hospital A *

A
u2 : user 2 Nurse * Nurse license * Gerontology * Hospital B *

A
u3 : user 3 Pharmacist * Pharm. license * General * Pharmacy C *

Key policy 2-out-of-n1 1-out-of-n2 1-out-of-n3

4.2 Key Distribution

An essential function of key distribution is to enable patients’ control over their
own access policies. The owners distribute keys only to the users in their PSD,
while the AAs in a PUD distribute keys to their PUD. For the former, it is easy
for owner to generate each user’s key directly so that it enforces that user’s access
right based on a set of data attributes; however, for a PUD, the challenge is how
to allow different owners to specify different personalized user access policies
while each user’s secret key enforces a fixed access policy pre-distributed by the
PAAs. In our solution, the access policies in public users’ secret keys conform to
some predefined format agreed between the owners and the PAAs, which enables
an owner to enforce her own policy through choosing which set of attributes to
be included in the ciphertext.

For each PSD, there is the same, pre-defined data attribute universe A, where
each attribute is a category of the PHR files, such as “basic profile”, “medical
history”, “allergies”, and “prescriptions”. When an owner first registers in the
PHR system, an end-user software will run its own copy of GPSW’s setup al-
gorithm to generate a public key PK and a master key MK for herself, with
each component corresponding to one data attribute. After the owner creates
her PHR, she invites several person in her PSD to view it. For each invited user,
she defines an access policy based on the data attributes, and generates a corre-
sponding secret key SK and sends it securely. Those users are usually personally
known to the owner, such as her family member, friends or primary doctors. A
family member’s policy may look like “basic profile” ∨ “medical history”, which
gives access to files belonging to either categories. In order to enable the owner
themselves to decrypt all files in their PHRs, each owner retains only one secret
key component, the data attribute “PHR” which is the root of the category
hierarchy.

For each PUD, MA-ABE is adopted. The PAAs first generate the MKs and
PK using setup. Each AA k defines a disjoint set of role attributes Ak, which are
relatively static properties of the public users. These attributes are classified by
their types, such as profession and license status, medical specialty, and affiliation
where each type has multiple possible values. Basically, each AA monitors a dis-
joint subset of those types. For example, in the healthcare domain, the American
Medical Association (AMA) may issue medical professional licenses like “physi-
cian”, “M.D.”, “nurse”, “entry-level license” etc., the American Board of Medical
Specialties (ABMS) certifies specialties like “internal medicine”, “surgery” etc;

100 M. Li et al.

and the American Hospital Association (AHA) may define user affiliations such
as “hospital A” and “pharmacy D”. In order to represent the “do not care”
option for the owners, we add a wildcard attribute “*” in each type of the at-
tributes. The format of the key-policies is restricted to threshold gates, i.e., dk

out of nk where nk = |Au
k ∩AC

k | for the kth AA. Thus, there needs an agreement
between the AAs and the owners (encryptors) about what how to implement
owners’ policies. The AA’s part of the agreement is that:

at lease one attribute should be required from each category of attributes, and
the wildcard associated with each category shall always be included4.

After key distribution, the AAs can almost remain offline. A detailed key
distribution example is given in Table. 2.

In summary, a user u in an owner’s PSD has the following keys: SKGPSW
u =

〈{g
qi(0)

ti

1 }i∈Au〉 where qx(·) is the polynomial for node x in u’s access tree. For a
user u in a PUD, SKMA−ABE

u = 〈Du, {Dk,i}k∈{1,...,N},i∈Au
k
〉.

4.3 Enforcement of Access Privileges

Achieving Fine-grained Read Access Control through PHR Encryp-
tion. After an owner creates her PHR files, she will be allowed to specify her
own privacy policy. The personal users and public users are dealt with differ-
ently. For the former, since GPSW is adopted which is based on data attributes,
the policy is actually defined per personal user, i.e., what types of files each user
can access (denoted as Pper). For the latter, the policy is defined per file, i.e.,
what kinds of users can access each file (denoted as Ppub)

For the PSDs, the form of a user’s key-policy is unrestricted, i.e., can be any
tree structure consisting of threshold gates [16]. So for encryption, the owner
simply associates a set of intrinsic data attributes, AF , with the ciphertext of
each PHR file F . AF always includes all the data attributes of F on the branch
from the root to the leaf node in the category tree, in order to give hierarchical
read access to personal users. An example is “PHR, medical history, influenza
history”. In this way, a user with key corresponding to single attribute “medical
history” can view all files under this category.

However, for the public users, the problem is more intricate. Since in MA-
ABE it is the AAs that govern role attributes, and the key-policies are set by
the AAs rather than the owners, we shall also impose some rules on owners
when encrypting each file, to enforce their personalized Ppub. The owner’s part
of the agreement is, she must include at least one attribute value from each
attribute type (column) in the ciphertext. In this way, AND logic across attribute
types is realized by MA-ABE, while OR logic among different values within the
same attribute type is realized by including corresponding multiple attribute
components in the ciphertext.

For more expressivepolicies, the AA’s part of the protocol needs to be enhanced.
For example, if an owner includes {“physician”, “M.D.”, “internal medicine”,
4 Here we are assuming that each medical professional either possess one or none of

the attributes of each type.

Securing Personal Health Records in Cloud Computing 101

“hospital A”, “nurse”, “*”, “Gerontology nursing”, “hospital B”}, she meant the
following policy: ((“physician”∧“M.D.”∧“internal medicine”)∨(“nurse”∧“any
level”∧“Gerontologynursing”))∧(“hospital A”∨“hospital B”). However, since the
“*” is the only and same one for attribute type “license status”, a physician with-
out a “M.D.” attribute but with a “*” can also decrypt the message. To solve this
problem, we observe that the set of “license status” of different professions are dis-
joint in reality. Therefore we can further classify the wildcard attributes in “license
status” by its associated profession. For example, there would be a different “*” for
physicians and nurses. In this way, the policy in Fig. 2 can be realized.

We note that the expressibility of the above approach is somewhat limited by
MA-ABE, which only supports policies in the “AND” form. For example, if an
owner chooses hospital A and hospital B as organization attributes, the policies
over the rest of the attribute types have to be the same for the two hospitals.
However, our scheme does allow different policies for different organizations, in
which the owner needs to attach multiple sets of ciphertext components, each
corresponding to one organization. This may result in longer ciphertext lengths.
Nevertheless, we argue that in reality most patients will not differentiate access
policies across the same type of organizations.

If Ppub involves multiple PUDs, then Ppub = ∪pubj{Ppubj}, and multiple sets
of ciphertext components needs to be included. Since in reality, the number of
PUDs is usually small, our encryption method is much more efficient than the
straightforward way in which the length of ciphertexts grows linearly with the
number of organizations. Note that, for efficiency, each file is encrypted with a
randomly generated symmetric key (FSK), which is then encrypted by ABE.

In summary, the ciphertext for FSK of file F is:
EF (FSK) = 〈Eper(FSK), Epub(FSK)〉, where

Eper(FSK) = 〈AF , Eper
0 = MY s

per, E
per
1 = gs

1,per, {Cper
i = T s

per,i}i∈AF 〉
Epub(FSK) = 〈AF = ∪pubj{A

pubj

F }, {Epubj

0 = MY s
pubj

}, {Epubj

1 = gs
2,pubj

},
{Cpubj ,k,i = T s

pubj ,k,i}k∈{1,...,Nj},i∈AFk
〉

where pubj is the jth PUD, j ∈ {1, ..., m} and m is the number of PUDs.

Grant Write Access. If there is no restrictions on write access, anyone may
write to someone’s PHR using only public keys, which is undesirable. By granting
write access, we mean a writer should obtain proper authorization from the
organization she is in (and/or from the targeting owner), which shall be able to
be verified by the server who grants/rejects write access.

A naive way is to let each writer obtain a signature from her organization every
time she intends to write. Yet this requires the organizations be always online.
The observation is that, it is desirable and practical to authorize according to
time periods whose granularity can be adjusted. For example, a doctor should
be permitted to write only during her office hours; on the other hand, the doctor
must not be able to write to patients that are not treated by her. Therefore, we
combine signatures with the hash chain technique to achieve our goals.

102 M. Li et al.

Suppose the time granularity is set to Δt, and the time is divided into periods
of Δt. For each working cycle (e.g. a day), an organization generates a hash
chain H = {h0, h1, ..., hn}, where H(hi−1) = hi, 1 ≤ i ≤ n. At time 0, the
organization broadcasts a signature of the chain end hn (σorg(hn)) to all users
in its domain. After that it multicasts hn−i to the set of authorized writers
at each time period i. Note that, the above method enables timely revocation
of write access, i.e., the authority simply stops issuing hashes for a writer at
the time of revocation. In addition, an owner needs to distribute a time-related
signature: σowner(ts, tt) to the entities that requests write access (which can be
delegated to the organization), where ts is the start time of the granted time
window, and tt is the end of the time window. For example, to enable a billing
clerk to add billing information to Alice’s PHR, Alice can specify “8am to 5pm”
as the granted time window at the beginning of a clinical visit. Note that, for
writers in the PSD of the owner, they only need to obtain signatures from the
owner herself.

Generally, during time period j, an authorized writer w submits the following
to the server after being authenticated to it:

Ĕpkserver (ts||tt||σowner(ts||tt)||hn||σorg(hn)||hn−j ||r)

where Ĕpkserver is the public key encryption using the server’s public key, and
r is a nonce to prevent replay attack. The server verifies if the signatures are
correct using both org’s and owner’s public keys, and whether Hj(hn−j) = hn,
where Hj() means hash j times. Only if both holds, the writer is granted write
access and the server accepts the contents uploaded subsequently.

4.4 User Revocation

A user needs to be revoked on-demand when her attributes change or an owner
does not want the user to access parts of her PHR anymore. For the PAAs,
they revoke a user’s role attributes that deprive her all the read access privileges
corresponding to those attributes; an owner revokes data attributes possessed
by a user that prevent her from accessing all the PHR files labeled with those
attributes. In ABE, traditional revocation schemes [17,25] are not timely, which
require non-revoked users to frequently obtain key updates issued by the au-
thorities. Here we apply the revocation method proposed by Yu et.al. [19,20].
The idea is to let an authority actively update the affected attributes for all the
remaining users. To this end, the following updates should be carried out by the
AA: (1) all the public key components for those affected attributes; (2) all the
secret key components corresponding to those attributes of a remaining user.
(3) Also, the server shall update all the ciphertext components corresponding to
those attributes.

In order to reduce the potential computational burden for the AAs/servers,
based on [19,20] we adopt proxy re-encryption to delegate operations (2) and (3)
to the cloud server, and use lazy-revocation to reduce the overhead. In particular,
for GPSW used by each owner, each data attribute i is associated with a version

Securing Personal Health Records in Cloud Computing 103

number veri. Upon each revocation event, if i is an affected attribute, the owner
submits a re-key rki,i′ = t′i/ti to the server, who then updates the affected
ciphertexts and increases their version numbers. The remaining users’ secret key
components are updated similarly; note that a dummy attribute needs to be
additionally defined by the owner which is always ANDed with each user’s key-
policy to prevent secret key leakage. By lazy-revocation, we mean the affected
ciphertexts and user secret keys may only be updated when a user logs into
the system next time. And by the form of the re-key, all the updates can be
aggregated from the last login to the most current one. The process is done
similarly for MA-ABE. Due to space limitations, we do not present the details
in this paper.

In addition, for each specific PHR file, an owner can temporarily revoke one
type of user from accessing it after it is uploaded to the server, which can be
regarded as changing her access policy for that file. For example, a patient may
not want doctors to view her PHR after she finishes a visit to a hospital, she can
simply delete the ciphertext components corresponding to attribute “doctor”
in her PHR files. In order to restore the access right of doctors, she will need
to reconstruct those components. This can be achieved by keeping the random
number s used for each encrypted file on her own computer.

4.5 Handling Break-Glass

For certain parts of the PHR data, medical staffs need to have temporary access
when an emergency happens to a patient, who may become unconscious and is
unable to change her access policies. Since the data is encrypted, the medical
staffs need some trapdoor information to decrypt those data. Under our frame-
work, this can be naturally achieved by letting each patient delegate her trapdoor
to the emergency department (ED). The ED needs to authenticate the medical
staff who requests for a trapdoor. Specifically, a patient’s trapdoor for her PHR
is in the following form: TPD = gd

1 , where d is randomly chosen from Zq. For
each of her PHR file that she wants to be accessed under emergency, she appends
an additional ciphertext component: Ẽ = M · e(gs

1, TPD) = M · e(g1, g1)ds. The
patient then sends TPD to the ED who keeps it in a database of patient direc-
tory. Upon emergency, the medical staff requests and obtains the corresponding
patient’s TPD from ED (the ED encrypts TPD using the staff’s public key),
and then decrypts the PHR file by computing Ẽ/e(gs

1, TPD) = M . After the
patient recovers from the emergency, she can restore the normal access by com-
puting a re-key: d′/d, and then submit it to the ED and the server to update
TPD and Ẽ to their newest versions.

5 Scheme Analysis

5.1 Security Analysis

In this section, we analyze the security of proposed access control mechanisms.
First, the GPSW and MA-ABE schemes are proven to be secure in [16] and

104 M. Li et al.

Table 3. Scheme analysis and comparison

Our proposed scheme [22]

Privacy guarantee Resistant to AA collusion Only resistant to user collusion

Key distribution O(|PSD|) O(1) O(|PUDi|) O(|PSD|) O(1) O(
∑m

i=1 |PUDi|)
(Owner) (user) (PAA) (Owner) (user) (Public auth.)

Revocation Efficient and on-demand N/A

Public key size |A|k + Ni [24] |A| + 1
⋃ |A|k |A|

(PUDk) (Owner) (The PUD) (Owner)

Secret key size |Au| + 1 |Au| + 1 |Au| |Au|
(Public user) (personal user) (public user) (personal user)

Ciphertext length |AC | + |AC | + 2 × m ≥ |AC | + |AC | + 3

Decryption complexity O(1) (w/ delegation) O(Au ∩AC) or O(Au ∩ A
C)

Policy expressibility CNF, enhanced with wildcards Any monotonic boolean formula

[24], respectively. Especially, the encrypted data is confidential to non-authorized
users. Also, they are both resistant to user collusion, and MA-ABE is further
resistant to collusion among up to N − 2 AAs in one PUD. This implies that
strong privacy guarantee is achieved through file encryption. Second, for the
write access enforcement, the one-way property of the hash chain ensures that a
writer can only obtain write keys for the time period that she is authorized for.
Also, writer can hardly forge a signature of the hash chain end according to the
unforgeability of the underlying signature scheme. Third, the revocation scheme
is secure, which is proven in [20] under standard security assumptions. Finally,
for the break-glass access, an adversary is not feasible to obtain TPD given Ẽ
and gs

1, due to the security properties of bilinear pairing.

5.2 Performance Analysis

The performance analysis is summarized in Table. 3. We compare our solution
with that of [22] which uses CP-ABE, and a single public authority is used. m is
the number of PUDs, while Ni is the number of PAAs in the ith PUD. Note that,
the key management complexity is in terms of the number of interactions during
key distribution. For ciphertext length comparison, for our scheme the access
policy for each PUD is restricted to conjunctive form: Ppub := P1 ∧ ... ∧ Pm,
where each Pi is a boolean clause consisting of “∧” and “∨”. The number of
ciphertext components related to the PUDs is

|AC | =
m∑

j=1

(Ni∑
k=1

|AC
k,i|

)
,

which is linear to the number of PUDs and the number of PAAs. In practice,
there are usually a few PUDs (e.g., <5) and a few PAAs and types of attributes
in each of them (e.g., 5). Therefore the additional storage overhead for the server
created by each ciphertext (encryption of the file encryption key) is usually in
the order of tens of group elements, which typically equals to a few hundred
bytes if 160-bit ECC is adopted. This is acceptable compared with the length

Securing Personal Health Records in Cloud Computing 105

of a PHR document (usually in the order of KB). Apart from those, for each
owner, to change access policies and enable emergency access, 2 additional group
elements (s and d) shall be locally stored for each encrypted PHR file, which
is quite small. The result for [22]’s scheme is derived based on the same access
policy to that in our scheme; it is a lower bound due to the lack of wildcard.

Finally, the computational overhead in our scheme is low, since the decryption
operation can be mostly delegated to the server. A user can submit all the Dk,is
to the server and only computes one bilinear pairing: e(Du, E1). This is secure
because the server does not know Du.

6 Conclusion

In this paper, we have proposed a novel framework of access control to realize
patient-centric privacy for personal health records in cloud computing. Con-
sidering partially trustworthy cloud servers, we argue that patients shall have
full control of their own privacy through encrypting their PHR files to allow
fine-grained access. The framework addresses the unique challenges brought by
multiple PHR owners and users, in that we greatly reduce the complexity of key
management when the number of owners and users in the system is large. We
utilize multi-authority attribute-based encryption to encrypt the PHR data, so
that patients can allow access not only by personal users, but also various users
from different public domains with different professional roles, qualifications and
affiliations. An important future work will be enhancing the MA-ABE scheme
to support more expressive owner-defined access policies.

Acknowledgements. This work was supported in part by the US National
Science Foundation under grants CNS-0716306, CNS-0831628, CNS-0746977,
and CNS-0831963.

References

1. Armbrust, M., Fox, A., Griffith, R., Joseph, A.D., Katz, R., Konwinski, A., Lee, G.,

Patterson, D.A., Rabkin, A., Stoica, I., Zaharia, M.: Above the clouds: A berkeley

view of cloud computing (February 2009)

2. At risk of exposure – in the push for electronic medical records, con-

cern is growing about how well privacy can be safeguarded (2006),

http://articles.latimes.com/2006/jun/26/health/he-privacy26

3. The health insurance portability and accountability act of 1996 (1996),

http://www.cms.hhs.gov/HIPAAGenInfo/01_Overview.asp

4. Benaloh, J., Chase, M., Horvitz, E., Lauter, K.: Patient controlled encryption:

ensuring privacy of electronic medical records. In: CCSW 2009: Proceedings of the

2009 ACM workshop on Cloud computing security, pp. 103–114 (2009)

5. Mandl, K.D., Szolovits, P., Kohane, I.S.: Public standards and patients’ control:

how to keep electronic medical records accessible but private. BMJ 322(7281), 283

(2001)

6. Wang, W., Li, Z., Owens, R., Bhargava, B.: Secure and efficient access to outsourced

data. In: CCSW 2009, pp. 55–66 (2009)

http://articles.latimes.com/2006/jun/26/health/he-privacy26
http://www.cms.hhs.gov/HIPAAGenInfo/01_Overview.asp

106 M. Li et al.

7. Damiani, E., di Vimercati, S.D.C., Foresti, S., Jajodia, S., Paraboschi, S., Samarati,

P.: Key management for multi-user encrypted databases. In: StorageSS 2005, pp.

74–83 (2005)

8. Atallah, M.J., Frikken, K.B., Blanton, M.: Dynamic and efficient key management

for access hierarchies. In: CCS 2005, pp. 190–202 (2005)

9. Blundo, C., Cimato, S., De Capitani di Vimercati, S., De Santis, A., Foresti, S.,

Paraboschi, S., Samarati, P.: Managing key hierarchies for access control enforce-

ment: Heuristic approaches. In: Computers & Security (2010) (to appear)

10. Scholl, M., Stine, K., Lin, K., Steinberg, D.: Draft security architecture design

process for health information exchanges (HIEs). Report, NIST (2009)

11. Ferraiolo, D.F., Sandhu, R., Gavrila, S., Kuhn, D.R., Chandramouli, R.: Proposed

NIST standard for role-based access control. ACM TISSEC 4(3), 224–274 (2001)

12. Jin, J., Ahn, G.-J., Hu, H., Covington, M.J., Zhang, X.: Patient-centric autho-

rization framework for sharing electronic health records. In: SACMAT 2009, pp.

125–134 (2009)

13. di Vimercati, S.D.C., Foresti, S., Jajodia, S., Paraboschi, S., Samarati, P.: Over-

encryption: management of access control evolution on outsourced data. In: VLDB

2007, pp. 123–134 (2007)

14. Dong, C., Russello, G., Dulay, N.: Shared and searchable encrypted data for un-

trusted servers. In: DBSec 2008, pp. 127–143 (2008)

15. Li, M., Lou, W., Ren, K.: Data security and privacy in wireless body area networks.

IEEE Wireless Communications Magazine (February 2010)

16. Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-

grained access control of encrypted data. In: CCS 2006, pp. 89–98 (2006)

17. Boldyreva, A., Goyal, V., Kumar, V.: Identity-based encryption with efficient re-

vocation. In: CCS 2008, pp. 417–426 (2008)

18. Ibraimi, L., Petkovic, M., Nikova, S., Hartel, P., Jonker, W.: Ciphertext-policy

attribute-based threshold decryption with flexible delegation and revocation of

user attributes (2009), http://purl.org/utwente/65471

19. Yu, S., Wang, C., Ren, K., Lou, W.: Achieving secure, scalable, and fine-grained

data access control in cloud computing. In: IEEE INFOCOM 2010 (2010)

20. Yu, S., Wang, C., Ren, K., Lou, W.: Attribute based data sharing with attribute

revocation. In: ASIACCS 2010 (2010)

21. Liang, X., Lu, R., Lin, X., Shen, X.S.: Patient self-controllable access policy on phi

in ehealthcare systems. In: AHIC 2010 (2010)

22. Ibraimi, L., Asim, M., Petkovic, M.: Secure management of personal health records

by applying attribute-based encryption. Technical Report, University of Twente

(2009)

23. Bethencourt, J., Sahai, A., Waters, B.: Ciphertext-policy attribute-based encryp-

tion. In: IEEE S& P 2007, pp. 321–334 (2007)

24. Chase, M., Chow, S.S.: Improving privacy and security in multi-authority attribute-

based encryption. In: CCS 2009, pp. 121–130 (2009)

25. Liang, X., Lu, R., Lin, X., Shen, X.S.: Ciphertext policy attribute based encryption

with efficient revocation. Technical Report, University of Waterloo (2010)

http://purl.org/utwente/65471

A Study on False Channel Condition Reporting
Attacks in Wireless Networks�

Dongho Kim and Yih-Chun Hu

Electrical and Computer Engineering, University of Illinois at Urbana-Champaign

{dkim99,yihchun}@illinois.edu

Abstract. Wireless networking protocols are increasingly being

designed to exploit a user’s measured channel condition; we call such

protocols channel-aware. Each user reports its measured channel con-

dition to a manager of wireless resources and a channel-aware protocol

uses these reports to determine how resources are allocated to users. In

a channel-aware protocol, each user’s reported channel condition affects

the performance of every other user. A possible attack against channel-

aware protocols is false feedback of channel condition. The deployment

of channel-aware protocols increases the risks posed by false feedback. In

this paper, we study the potential impact of an attacker that falsely re-

ports its channel condition and propose a defense mechanism to securely

estimate channel condition. We analyze our mechanism and evaluate the

system performance deploying our mechanism through simulation. Our

evaluation shows that our mechanism effectively thwarts channel condi-

tion misreporting attack.

Keywords: Wireless Network, Opportunistic Scheduler, Cooperative

Relay.

1 Introduction

Many protocols in modern wireless networks treat a link’s channel condition
information as a protocol input parameter; we call such protocols channel-aware.
Examples include opportunistic schedulers [1, 2], cooperative relaying network
architectures [3, 4], and efficient ad hoc network routing metrics [5, 6]. Even
though each different application exploits the channel-condition information in
different ways, the main goal of a channel-aware protocol is to enhance system
throughput by selecting a user or a path with good channel condition in a given
time instance.

Most work on channel-aware protocols has mainly focused on how channel
condition information can be used to more efficiently utilize wireless resources.
An implicit assumption of most past study is that each user correctly reports
channel condition information. However, this assumption can induce a security
vulnerability since channel condition can be asymmetric [7]; specifically, due to
� This material is based upon work partially supported by USARO under Contract

No. W-911-NF-0710287 and the NSF under Grant No. CNS-0953600.

S. Jajodia and J. Zhou (Eds.): SecureComm 2010, LNICST 50, pp. 107–124, 2010.
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2010

108 D. Kim and Y.-C. Hu

possible channel condition asymmetry, channel condition to a user can only be
measured and reported by that user. An attacker that misreports its measured
channel condition might allow the attacker to steal another users’ service oppor-
tunities, for example in a setting where a centralized scheduler schedules each
user based on its channel condition. In another setting, a user chooses a next-hop
forwarder based on the relayer’s channel condition, in which case an attacker can
misreport its channel condition to generate a sinkhole [8] to lure packets to itself
possibly for the purpose of dropping those packets.

In this paper, we reveal the possible effects of false channel condition reporting
in various channel-aware network protocols and propose a defense mechanism
that provides secure channel condition estimation. Our contributions are:

– We propose a secure channel condition estimation algorithm that is generally
applicable to any channel-aware protocol.

– We analyze our algorithm in terms of performance and security, and we
perform a simulation study to verify our performance analysis.

– We analyze the effect of misreported channel condition on reference systems
with opportunistic schedulers and cooperative relaying protocols. We also
show through simulation that our defense mechanism thwarts the attack
effect on those systems.

The false channel condition reporting attack that we introduce in this paper is
difficult to identify by existing mechanisms, since our attack is mostly protocol
compliant; an attacker need to modify only the channel-condition measurement
mechanism. Our attack can thus be performed using modified user equipment
legitimately registered to a network.

To the best of our knowledge, we are the first to study the false channel
condition reporting attack in a variety of network settings. Racic et al. [9] con-
sider attacks based on false feedback to the PF scheduler. In their work, as in
our work, PF effectively resists false feedback, so their attack primarily works
by exploiting the handover process rather than the channel-aware nature of PF
scheduler. They propose a secure handover algorithm that is orthogonal to our
approach of secure channel condition estimation.

The rest of our paper is organized as follows. In Section 2, we introduce
the concept of our attack. Then, we develop a defense mechanism called secure
channel condition estimation against the false reporting attack in Section 3. We
evaluate our algorithm through analysis and simulation in Section 4. In Section 5,
we briefly review related work. Section 6 concludes this paper.

2 Attack Overview

Threat Model. Our study assumes that a network protocol exploits the chan-
nel condition information reported by each user and each user reports to enhance
network performance. In this setting, a user can falsely report its channel con-
dition. There are two different types of false reports: underclaiming (reporting
a channel condition that is worse than that actually measured by the user) and

A Study on False Channel Condition Reporting Attacks 109

overclaiming (reporting a channel condition that is better than that actually
measured by the user). The effectiveness of a false channel condition reporting
attack depends on the way the attacked protocol uses the reported channel con-
dition, and an attacker’s ability to exploit the protocol. We use the term ’channel
condition’ to refer to all aspects impacting a node’s ability to receive a packet.

Attack Purpose. Generally, an attacker’s goal in a network is to greedily raise
its own bandwidth share or to maliciously downgrade other users’ bandwidth
share without regard to its own bandwidth share. For these purposes, an under-
claiming action is not desirable since underclaiming merely forfeits an attacker’s
service opportunity. Hence, we focus only on overclaiming actions in this paper.
An overclaiming receiver may lose its throughput since the overclaiming receiver
may induce a higher order (more aggressive) modulation, possibly resulting in
excessive loss. As a result, this paper focuses on attackers that are malicious
rather than selfish. We demonstrate through simulation the attack’s effect on
specific systems in Section 4.3.

Attack Feasibility. An attacker can easily implement false channel condition
reporting attack by modifying only a subcomponent that reports channel con-
dition. This subcomponent of user equipment can be implemented in hardware
or software. One recent trend of user equipment implementation is to move
increasing amount of functionality into software in order to improve adaptabil-
ity [10, 11, 12]. The increasing software control of user equipment makes false
channel condition reporting attack an increasingly practical attack.

3 Defense

In this section, we discuss possible solutions for the false channel feedback attack
introduced in Section 2. We argue that to fundamentally defend against attacks
that involve false channel condition reports, we need a scheme to securely esti-
mate channel condition. Then, we develop our secure channel condition estima-
tion algorithm.

3.1 Solution Spectrum

To defend against an attack that misreports the channel condition, there are
possible approaches. One possible approach is anomaly detection. Anomaly de-
tection is a tool that monitors each user’s performance to identify attackers. A
response mechanism then disconnects the attacker from the network. A second
possible approach is to devise a fair scheduler to provide fair share of a network
bandwidth while exploiting channel-aware property. A third possible approach
is to measure throughput of a node and compare the measured throughput and
the theoretically calculated throughput based on reported channel condition.

Even though these approaches can mitigate the effectiveness of the attack,
they have fundamental drawbacks. Anomaly detection mechanisms are subject
to detection errors, which could result in incorrect termination of a normal user’s

110 D. Kim and Y.-C. Hu

service or failure to detect an attacker. When a fair scheduler is used to reduce the
effect of the attack, we can frustrate the original goal of channel-aware protocol
which is to use resources most efficiently. A scheduler considering fairness will
substantially reduce the efficiency when compared to the original protocol, since
fairness requires allocation of resources to less-capable channels. We will see
the throughput difference between most efficient scheduler and fair scheduler in
Section 4.3. In a setting where a sender chooses a relayer with good channel
condition, a receiver can calculate a theoretical throughput based on a relayer’s
reported channel condition and compare the theoretical throughput and actually
received throughput. However, this method assumes that a receiver is honest. A
receiver can be an attacker not acknowledging that an honest relayer does not
forward its packets.

To more effectively prevent the false channel condition reporting attack, we
need a mechanism that does not impede the efficiency of channel-aware protocols
even under the false reporting attack. We observe that the false reporting at-
tacks are possible because we allow a non-trustable entity to report the channel
condition. Our basic approach is to replace non-trustable-entity-driven channel-
condition reporting with trustable-entity-driven channel-condition estimation.
For example, in a cellular network, base station is a trustable entity and users
are non-trustable entities. In this paper, we do not develop whole specific pro-
tocols for such networks; rather, we develop a generic algorithm that can be
integrated into any channel-aware protocol. We leave protocol integration and
design as future work.

3.2 Scope of Our Algorithm

There are two cases to consider an channel condition misreporting attack. The
first case is that a trusted entity gets the report of a node’s channel condition
to the trusted entity. The second case is that a trusted entity can get the report
of a node’s channel condition to the other node from an untrusted node. The
latter case can happen in the deployment of an efficient ad hoc network routing
metrics [5,6]. In the first case, the trusted entity can securely examine the channel
condition using our algorithm. However, for the latter case, it is difficult for a
trusted entity to identify an attacker since the trusted entity may not trust the
reports from an untrusted node. In this paper, we focus on the first case as an
initial step toward a complete defense against an attack.

3.3 Secure Channel Condition Estimation

In this section, we present our secure channel estimation scheme to prevent an
attacker from overclaiming. We do not consider underclaiming, as explained in
Section 2, because an attacker gains no benefit from underclaiming, and because
an attacker can always reduce its actual channel condition, for example by modi-
fying his antenna. The purpose of this paper is not to propose a whole system but
to describe how our mechanism defends against an attacker that overclaims the
condition of a single link. We start by presenting the intuition of our approach.

A Study on False Channel Condition Reporting Attacks 111

SINR1 SINR2 SINRL

1

0

Success probability
of challenges

Lc1c 2c

(a) Ideal Challenge Config-

uration

Lc1c

SINR1 SINR2 SINRL

2c
Psref

1

0

Success probability
of challenges

(b) General Challenge

Configuration

0 0 0

1 1 1

0 1 0
0

1

0
0

1

1

1: challenge success
0: challenge failure

one slot

window = W slots

Lc
1−Lc

1c

challenges

∑ 0

W

3 sum < WT

sum >= WT

(c) Channel Estimation

Fig. 1. Secure Channel Estimation

Intuition. For convenience of presentation, we call the trustable entity a “base
station” and the non-trustable entity a “user”. The base station’s goal is to se-
curely and accurately estimate each user’s channel condition. We first present our
solution to a simplified problem in which a base station wants to know whether
or not a user experiences channel condition at least as good as some specified
SINR. To solve this simplified problem, the base station sends a challenge to a
user. This challenge is a packet that can be correctly decoded with high probabil-
ity only when the channel condition exceeds some specified SINR. The challenge
includes a value known only to the base station. Upon receiving the challenge,
a user returns the value in that challenge to the base station, which can then
compare the received value to the transmitted value. The base station considers
the channel condition to exceed the specified SINR if and only if the received
value is correct. This challenge mechanism prevents a user with poorer channel
condition than the specified SINR from correctly decoding the challenge packet.
Our channel condition estimation scheme extends this single challenge scheme
to multiple challenges in order to more finely estimate the channel condition.

System Model. We consider a network cell consisting of a base station and N
users served by the base station. N = {1, 2, . . . , N} denotes the set of all users
in the system. The base station estimates channel conditions of each user in each
time slot using L challenges. A time interval [dt− d, dt), t ∈ Z is called time slot
t where d is the duration of a time slot. At each time slot t, the base station
uses our channel condition estimation to determine a user’s channel condition
as an element in a set E = {E1, E2, . . . , EL+1} with cardinality L + 1. Each
element Ei ∈ E represents an SINR range of SINRi−1 ≤ SINR < SINRi, where
SINR0 = −∞ and SINRL+1 = ∞.

Construction of Challenges. In our scheme, the base station sends chal-
lenges to users so that users cannot overclaim their channel condition. To pre-
vent the overclaiming attack, a challenge must have the following properties:
unpredictability of the value included in a challenge and a well-designed success
probability curve of the challenge. If a user receiving a challenge is able to guess
the challenge value, the user can return the correct value even without success-
fully decoding the challenge. To make the challenge value unpredictable, we use
a pseudorandom number generator.

112 D. Kim and Y.-C. Hu

To make a challenge that can be successfully decoded only by users with chan-
nel condition above a specified SINR, the success probability curve of a challenge
must be appropriately designed. The ideal success probability curve would have
zero success probability for channel condition worse than a specified SINR and
zero error probability for channel condition better than that specified SINR as
shown in Fig. 1(a). The dotted lines represent the success probability of recep-
tion of challenges according to SINR. With these ideal challenges, the successful
reception of a challenge ci and the failure of the reception of ci+1 implies that a
given channel condition is SINRi ≤ SINR < SINRi+1. We could then estimate
the channel condition as Ei+1. These ideal challenges enable us to easily and
accurately estimate the channel condition with only a single transmission. How-
ever, ideal challenges require infinitely large challenges. Our scheme considers
non-ideal challenges, as shown in Fig. 1(b). For each challenge ci, a node with
channel condition as the threshold SINRi for that challenge will successfully
decode the challenge with probability Psref(i). Even though the shapes of the
success probabilities of each challenge look same in Fig. 1(b), our scheme does
not require the shape of each success probability to be the same. We discuss the
choice of Psref(i) for the optimal performance in Section 4.1.

An immediate method to construct multiple challenges having appropriate
success probability is to use different modulation and coding techniques for each
challenge. However, from a practical point of view, a particular system may
not provide various modulation and coding options. In such cases, we need a
method to construct challenges with the limited number of modulation and
coding options available. In order to not interrupt the flow of presentation, we
explain such methods in more detail in Section 3.5.

Transmission of Challenges. The base station periodically broadcasts a set of
challenges to users. The period is one parameter of our scheme. One extreme is to
send a set of challenges in a single time slot, which allows rapid channel condition
estimation and can respond to rapid variations in channel condition. However,
sending so many challenges results in significant overhead. In an environment
where the channel condition is slowly changing, we can reduce the frequency
with which a base station sends challenges.

Estimation. After the base station transmits a challenge to a user, the user
returns the challenge value to the base station to prove that the channel to
the user is good enough to receive the corresponding challenge. When the base
station receives the value from the user, the base station checks that the value is
identical to the one that it sent. Then, the base station stores the result of this
check. We denote a check result for challenge ci at time slot t by Fi(t).

Fi(t) =
{

0 if challenge ci failed
1 if challenge ci succeeded

With ideal challenges, only a single set of check results is enough to estimate
channel condition. Since our scheme uses non-ideal challenges, we need multi-
ple sets of check results to reduce the error in the estimated channel condition.

A Study on False Channel Condition Reporting Attacks 113

We call the set used for estimating channel condition a window, and we de-
note the window size as W . Intuitively, a larger window size results in more
accurate estimated channel condition but slower adaptation. In Section 4.1,
we theoretically analyze the impact of window size on the performance of our
algorithm. When a base station finishes collecting a window of check results
Fi(t−W +1), . . . , Fi(t), ∀i ∈ {1, . . . , L} at time slot t, the base station sums the
check results for each challenge ci, ∀i ∈ {1, 2, . . . , L} as follows.

Si(t) =
W−1∑
j=0

Fi(t − j) ∀i ∈ {1, 2, . . . , L}

Based on the values of Si(t), the base station estimates channel condition using
a decision function D. In other words, the base station decides which element
in the set E = {E1, E2, . . . , EL+1} most accurately characterizes corresponding
user’s channel condition. We denote the estimated channel condition at time slot
t by Ec(t).

Ec(t) = D(S1(t), S2(t), . . . , SL(t))

We use a simple threshold-based comparison for our decision function D. Fig. 1(c)
shows the comparison procedure. We choose a threshold T ∈ [0, 1]. First, we see
how any of the lowest rate challenges (c1s) are successfully received by a user;
it is likely that nearly all of these challenges are received by the user because it
checks the lowest SINR range. When all c1s are successfully received, S1(t) = W .
If S1(t) ≤ WT , we proceed to check S2(t). We repeat until we reach Si(t) < WT .
That is, we pick i = min j, s.t.Sj(t) < WT . The base station then estimates the
channel condition Ec(t) = Ei. For this threshold-based comparison, it is impor-
tant to choose a proper threshold T . We analyze the impact of T on performance
of our algorithm in Section 4.1.

3.4 Application of Our Secure Estimation Algorithm

There are two application types of our secure channel condition estimation al-
gorithm. First, our algorithm can be used to detect and penalize an attacker
by comparing reported channel condition to estimated channel condition. We
do not pursue this approach further since it suffers from false detection like
anomaly detection. Second, our algorithm can be used to select a node with
good channel condition. The purpose of this approach is not to penalize an at-
tacker but to provide a fair service to every node. After a node is chosen by our
secure estimation algorithm, a sender node can determine modulation order by
seeing reported channel condition to reduce loss probability. In this approach,
an overclaiming attacker does not gain any benefit since the attacker will the
same amount of service opportunity as other users (if all users experience same
channel condition) and loss probability will be higher than other users due to
higher modulation order.

114 D. Kim and Y.-C. Hu

3.5 Implementation of Multiple Challenges

As discussed in Section 3.3, we need a way to construct multiple challenges
having different success probability curves using the limited number of given
modulation and coding options. In this section, we introduce two methods to
reshape the success probability of a challenge.

The first method is processing gain [13] which improves SINR by transmitting
the same signal multiple times; when these copies add up, the signal energy in-
creases by more than the noise power, thus increasing the SINR and shifting the
success probability curve higher. To explain the concept of processing gain more
formally, we rely on communication theory. We assume that a signal s(t) is trans-
mitted through an Additive White Gaussian Noise (AWGN) channel n(t). The
AWGN channel is a channel model which distribution is normal distribution. We
assume that in our channel, mean is zero and variance is σ2 (∼ N(0, σ2)). The vari-
ance is considered to be noise power. SINR is calculated in symbol time (T) basis.
When two identical signals are transmitted, the signal energy is

∫ T

0 |2s(t)|2 dt =
4

∫ T

0 |s(t)|2 dt. Hence, the energy of two signals is four times (6dB) higher than that
of a single signal. The addition of two AWGN sources is considered to be the sum
of two normal distributions (N(0, σ2) + N(0, σ2) = N(0, 2σ2)). Hence, the noise
power (2σ2) of two signals is two times (3dB) higher than that (σ2) of a single
signal. Consequently, the ratio of signal energy to noise power of the sum of two
signals is two. With the addition of two signals, we can shift a success probability
curve of a challenge to left by 3dB. With the larger number of signal additions, we
can shift the success probability curve further to left.

The second method is to add noise in a signal at the transmitter. By adding
a noise to a signal, we can reduce the ratio of signal energy to noise power of a
signal. Hence, we can shift a success probability curve a challenge to right.

4 Evaluation

In this section, we evaluate the performance and the security of our algorithm.
First, we analyze the impact of algorithm parameters on the performance of
our algorithm. This analysis can be used to guide our parameter choices. We
then perform simulations and compare the result of our analysis to those of our
simulation. Second, we integrate our algorithm into a network simulator and
evaluate the effect of our algorithm on system performance. We show that our
algorithm securely and effectively estimates channel condition through most of
its parameter space. Third, we analyze the security of our algorithm. In this
analysis, we show that an attacker cannot, by guessing the value of a challenge,
cause the channel condition estimate to be higher than if the attacker decoded
the challenge in the same way as a normal user. In other words, regardless of
the length of a challenge value, an attacker and a normal user that experience
equivalent channel conditions will receive equal channel estimates in expectation.
This paper does not include an evaluation of the overhead that our algorithm
imposes. We leave as future work an exploration of the trade-off between the
accuracy of estimation and system overhead.

A Study on False Channel Condition Reporting Attacks 115

4.1 Performance Analysis

In this section, we analyze the effect of parameter choices on our channel con-
dition estimation algorithm. Specifically, we derive average estimation error
E[|CQI−ĈQI|] based on algorithm parameters such as window size (W), thresh-
old (T), the size of a challenge and Psref(i) of a challenge. CQI (Channel Quality
Indicator) in the average estimation error equation represents an actual CQI-
level. ĈQI represents an estimated CQI-level.

Assumptions. Our analysis assumes that the channel condition does not change.
To analyze variable channel condition, we need to enumerate all possible cases for
channel conditions in multiple slots. This analysis requires excessive amounts of
computing power. Hence, we use simulation to consider the effect of variable chan-
nel condition in Section 4.2. The equations in our analysis do not assume the same
values of challenge size and Psref(i) for each challenge. However, allowing differ-
ent values of challenge size and Psref(i) increases the parameter space substan-
tially. So when we plot figures, we use the same challenge size and Psref(i) for all
challenges.

Analysis. Given a target SINR which is mapped to a CQI, we calculate the
probability distribution on the estimated CQI (ĈQI), and then we calculate
average estimation error.

We start by assuming that we have functions Ri(SINR, P sref(i)), ∀i ∈
{1, 2, . . . , L} representing the probability that a bit of a challenge ci is suc-
cessfully received given an SINR. This function depends on the modulation and
coding method used for constructing challenges, and is well-understood in com-
munication theory [14]; we later illustrate numerical results with a specific modu-
lation and coding scheme. The probability Pcsi that a challenge ci is successfully
received is calculated as

Pcsi = Ri(SINR, P sref(i))SCi

where SCi is the length in bits of challenge ci. The number of successful chal-
lenges in a window of size W for challenge ci is binomially distributed with
probability Pcsi . Hence, the probability Pci(n) of exactly n successful challenges
can be expressed as

Pci(n) =
(

W

n

)
Pn

csi
(1 − Pcsi)

W−n

We can now calculate the probability Pec(i, SINR) that CQI is estimated to be i

given SINR. ĈQI = i represents that Ei+1 is chosen by our algorithm. Our algo-
rithm estimates CQI by comparing the number of successful challenge receptions
to the product of window size and threshold WT . Counting the number of suc-
cessful challenge receptions from the lowest CQI-level, our algorithm determines
ĈQI = i when the number of successful challenge receptions for CQI-level i is
less than WT . For CQI-level less than i, the number of successful challenge re-
ceptions is greater than or equal to WT . Hence, Pec(i, SINR), ∀i ∈ {0, . . . , L−1}
is calculated as

116 D. Kim and Y.-C. Hu

0 20 40 60 80 100
0

10

20

Size of a Challenge (bits)

A
ve

ra
ge

 E
st

im
at

io
n

E
rr

or

0 20 40 60 80 100
0

0.5

1

P
ro

b.
 o

f A
cc

ur
at

e
E

st
im

at
io

n

Average Estimation Error
Prob. of Accurate Estimation

0.9 0.92 0.94 0.96 0.98 1
0

5

10

Ps
ref

A
ve

ra
ge

 E
st

im
at

io
n

E
rr

or

0.9 0.92 0.94 0.96 0.98 1
0

0.5

1

P
ro

b.
 o

f A
cc

ur
at

e
E

st
im

at
io

n

0 50 100 150 200 250
0

0.8

1.6

Window Size

A
ve

ra
ge

 E
st

im
at

io
n

E
rr

or

0 50 100 150 200 250
0

0.5

1
P

ro
b.

 o
f A

cc
ur

at
e

E
st

im
at

io
n

0 0.2 0.4 0.6 0.8 1
0

5

10

Threshold

A
ve

ra
ge

 E
st

im
at

io
n

E
rr

or

0 0.2 0.4 0.6 0.8 1
0

0.5

1

P
ro

b.
 o

f A
cc

ur
at

e
E

st
im

at
io

n
Fig. 2. Average estimation error and estima-

tion accuracy for various parameters

Th
e

pr
ob

. t
ha

t t
he

 n
um

. o
f

su
cc

es
sf

ul
 c

ha
lle

ng
es

 >
 W

T

1

CQI-level

Increasing size of a challenge

Challenges

Overestimated point

Underestimated point
Accurate point

Increasing Psref

Increasing threshold

Fig. 3. Analyzing parameter design

Pec(i, SINR) =
i∏

j=1

(
Pcj (�WT �) + Pcj (�WT �+ 1) · · · + Pcj (W)

)
× (

1 − Pci+1(�WT �) − Pci+1(�WT � + 1) · · · − Pci+1(W)
)

For CQI-level L, we have a different form.

Pec(L, SINR) =
L∏

j=1

(
Pcj (�WT �) + Pcj (�WT �+ 1) + · · · + Pcj (W)

)

With Pec(i, SINR), we can obtain the average estimation error as follows.

E[|CQI − ĈQI|] =
L∑

i=0

|CQI − i|Pec(i, SINR)

Using this analysis on average estimation error, we now want to properly set win-
dow size, threshold, the size of a challenge, and reference probability Psref(i) of
a challenge so that the average estimation error is minimized. As discussed in
our assumptions, we use the same values of challenge size and Psref(i) for differ-
ent challenges for ease of performance comparison. To obtain specific numerical
results, we use the same definition of CQI as in the 3GPP standard [15].

CQI =

⎧⎨
⎩

0 SINR ≤ -16dB
�SINR

1.02 + 16.62� -16dB < SINR < 14dB
30 SINR ≥ 14dB

This CQI configuration is also used for following simulations. Since Pec has
a non-continuous function (ceil function), it is difficult to apply optimization
theory. To search for optimal parameters in the discontinuous space, we used

A Study on False Channel Condition Reporting Attacks 117

Table 1. block size (bits) for channel condition

cqiblock cqiblock cqiblock cqiblock cqiblock

1 137 2 173 3 233 4 317 5 377

6 461 7 650 8 792 9 931 10 1262

11 1483 12 1742 13 2279 14 2583 15 3319

16 3565 17 4189 18 4664 19 5287 20 5887

21 6554 22 7168 23 7168 24 7168 25 7168

26 7168 27 7168 28 7168 29 7168 30 7168

a hill-climbing approach [16]. First, we set initial values for each parameter
intuitively. We then iteratively picked a parameter, optimized this parameter
leaving all other parameters fixed, and repeated this process until we converged
on a locally optimal parameter set. In the following results, we started with
this parameter set and varied parameters one at a time to explore the impact
of each parameter on system performance. Our calculation uses the reception
probability for QPSK as Ri(SINR, P sref(i)). We choose target SINR to allow
for equal amounts of overestimation and underestimation in terms of CQI-level;
in UMTS, this corresponds to a CQI level of 15 and an SINR of -1.19dB.

Fig. 2 shows our calculated average estimation error and the probability of
accurate estimation. The results show an optimal point for each parameter:
the size of a challenge, reference probability of a challenge, window size, and
threshold. To demonstrate why the optimal points exist, we show the probability
that the number of successful challenge transmission is greater than WT for
each challenge in Fig. 3. As the size of a challenge increases, the probability
curve slides towards the direction of underestimation. Increasing the threshold
moves the probability curve in the same direction as the size of a challenge.
With increasing reference probability, the probability curve moves towards the
direction of overestimation. For window size, larger window size provides a better
accuracy. This is intuitively obvious, since the large window size provides larger
number of test samples for estimating channel condition.

4.2 Simulation

We performed a simulation study to verify our analysis and consider the effect of
variable channel condition on the performance of our algorithm. We start with
the case of a static channel condition.

Static Channel Condition. We implemented our algorithm in the NS-2 simu-
lator [17] patched with EURANE [18], a UMTS system simulator. Our reference
system is a UMTS system. To obtain specific numerical results, we use the same
CQI configuration as we used to obtain numerical results for our analysis. Ta-
ble 1 shows the transmission block sizes for each corresponding CQI [15]. As in
the numerical results of our analysis, we consider the verification process for an
SINR of -1.19dB which is a CQI of 15, and modulation using QPSK. We use the
same optimal parameter selection as we used in the analysis in Section 4.1. We
use the default UMTS time slot duration of 2ms, and our algorithm estimates
the channel condition in each time slot. We vary window size and threshold,

118 D. Kim and Y.-C. Hu

0 10 20 30 40 50 60 70 80 90 100 110
0

0.5

1

1.5

2

Window Size

A
ve

ra
ge

 E
st

im
at

io
n

E
rr

or

Indoor A
Pedestrian A
Vehicular A
Static Channel
Analysis

(a) Varying window size

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9
0

0.5

1

1.5

2

2.5

3

3.5

4

Threshold

A
ve

ra
ge

 E
st

im
at

io
n

E
rr

or

Indoor A
Pedestrian A
Vehicular A
Static Channel
Analysis

(b) Varying threshold

Fig. 4. Simulation results

fixing Psref(i) and the length of each challenge value. We perform five runs for
each value of window size and threshold.

For each estimation, we record the difference between actual CQI and esti-
mated CQI (in absolute value). Fig. 4(a) and Fig. 4(b) show the average value of
the differences, and validate the results of our analysis. As window size increases,
the average estimation error decreases as expected. For all values of window size,
the estimation error is below 1 CQI-level, and decreases to 0.05 CQI-levels as
the window size grows to 100. Even larger windows would further reduce the
error. However, our results show that our algorithm performs accurately with a
reasonable window size.

Variable Channel Condition. Even though we can adjust parameters to op-
timize estimation accuracy in environments with static channel condition, the
same parameter setting does not guarantee the same accuracy under a variable
channel condition. We use a variable condition channel model to evaluate the
effectiveness of our algorithm under a variable channel condition. We repeat the
previous simulations, replacing the static channel condition with three UMTS
channel models [19]: Indoor A with velocity 3km/h, Pedestrian A with velocity
15km/h and Vehicular A with velocity 120km/h. Fig. 4(a) shows the effect of
window size on average estimation error. The average estimation error in variable
channel conditions is greater than the error in a static channel condition, and
the window size has significantly less impact on accuracy than in a static channel
condition; this shows that the variability of the channel condition prevents our
algorithm from achieving arbitrary precision by indefinitely increasing the win-
dow size. Nonetheless, in most cases, our algorithm’s error is not greater than 1
CQI-level. Furthermore, both legitimate nodes and attacking nodes experience
similar errors, further reducing the effectiveness of overclaiming. Fig. 4(b) shows
the average estimation error for various values of threshold. Again, the estima-
tion error in a static channel condition is less than the errors in variable channel
conditions. However, our result shows that we can find a value of threshold that
limits the estimation error less than 1.5 CQI-levels, and that the optimal param-
eters for static channel condition confies to be effective under variable channel
conditions.

A Study on False Channel Condition Reporting Attacks 119

Sender

Receiver 2

Receiver 3Receiver 1

Data transfer
Channel condition reporting

(a) Opportunistic Sched-

uler: Scheduler chooses a

receiver in each time slot

based on users’ channel

conditions.

Sender

Direct
transmission

Forwarder

Receiver

Indirect
transmission

Relaying

(b) Relaying Network: A

sender forwards a packet

to a relayer when the

relayer has better chan-

nel condition than the re-

ceiver.

Fig. 5. Example Networks For System Performance Evaluation

1 2 3 4 5 6 7 8 9 10 11
0

0.5

1

1.5

2

2.5

Number of Users

A
ve

ra
ge

 T
hr

ou
gh

pu
t (

M
bp

s)

Pure MAX−SINR
PF
Defense with our algorithm

(a) Indoor A

1 2 3 4 5 6 7 8 9 10 11
0

0.5

1

1.5

2

2.5

Number of Users

A
ve

ra
ge

 T
hr

ou
gh

pu
t (

M
bp

s)

Pure MAX−SINR
PF
Defense with our algorithm

(b) Pedestrian A

1 2 3 4 5 6 7 8 9 10 11
0

0.5

1

1.5

2

2.5

Number of Users

A
ve

ra
ge

 T
hr

ou
gh

pu
t (

M
bp

s)

Pure MAX−SINR
PF
Defense with our algorithm

(c) Vehicular A

Fig. 6. The effect of our algorithm on opportunistic scheduler

4.3 System Performance

So far, we have evaluated the performance of our secure channel estimation algo-
rithm. Now, we evaluate the impact of our secure channel condition estimation
algorithm on system performance. This evaluation provides an understanding on
how much the estimation error of our algorithm affects the system performance.
Our reference system is the system that we used for the previous simulation in Sec-
tion 4.2. We implement opportunistic scheduler and cooperative relaying in this
reference system. As we mentioned in Section 3.2, our algorithm works in the case
where a trustable entity gets the report of channel condition of a node to the en-
tity. Hence, we consider single-hop cooperative relaying network where each user
reports its channel condition to base station. We do not consider an efficient rout-
ing metric [5,6] in ad hoc network where channel condition between intermediate
nodes are reported to a source node.

Opportunistic Scheduler. Figure 5(a) shows how opportunistic scheduler [1,2]
works in a wireless network. An opportunistic scheduler is a centralized resource
scheduler that exploits the channel condition information of each user for efficient

120 D. Kim and Y.-C. Hu

resource management. One simple example of an opportunistic scheduler is an
efficiency-oriented scheduler that allocates resources to only the user with the best
channel condition in a time slot. We call this scheduler MAX-SINR. It is obvious
that this scheduler achieves the maximum possible system throughput. However,
this scheduler may give so few opportunities to a user with poor channel condition
that it induces a fairness problem. The Proportional Fair (PF) scheduler [1] is a
widely known scheduler that addresses the fairness problem. The PF scheduler
collects channel condition information from each user at each time slot t. The PF
scheduler uses channel condition feedback from each user to determine which user
to serve by calculating metrics Ri(t)/Ti(t) for each user, where Ti(t) is user i’s
average throughput calculated as

Ti(t) =
{

(1 − 1/tc)Ti(t − 1) + 1/tcRi(t) if user i is chosen
(1 − 1/tc)Ti(t − 1) if user i is not chosen

and tc represents the time constant of a low pass filter. In each time slot, the PF
scheduler serves the user with the largest metric.

Our simulated network consists of one base station serving several users, half
of which are attackers. The attackers choose a simple attack: overclaiming their
channel condition to be the best possible condition. The base station reacts by
choosing a high bit-rate modulation for each transmission to any attacker, which
can induce a high error rate when the actual channel condition is poor. In EU-
RANE’s implementation, a node that is unable to receive a packet would not
send back an ack to the base station, triggering an internal control mechanism
in UMTS that stops any connection failing to acknowledge several contiguous
transmissions. We modified the attacker to send an ack for every received packet,
whether or not that packet was received without error. Our channel model for
each user is the same variable channel models (Indoor A, Pedestrian A, and
Vehicular A) that we used for performance analysis. We sourced 11 Mbps of
CBR traffic to each user. We measure the throughput of normal users under
three scheduling policies: PF, MAX-SINR without our algorithm and MAX-
SINR with our algorithm. In MAX-SINR with our algorithm, a base station does
not use user-reported CQI-level to pick which user has the best channel condi-
tion in a give time slot. Instead, the base station uses the CQI-level estimated
by our algorithm. Figure 6 shows that MAX-SINR is vulnerable to overclaim-
ing attack and PF prevents attackers from stealing normal users’ throughput.
However, our simulation results show that MAX-SINR with our algorithm can
achieve higher throughput than PF scheduler in most cases. Occasionally PF
outperforms MAX-SINR, because our algorithm occasionally overestimates the
receiver’s channel condition, in which case the base station may choose a mod-
ulation scheme that is too aggressive, resulting in packet loss.

Cooperative Relaying Network. In a mobile wireless network, mobile nodes
can experience different channel conditions due to their different locations. Though
a node experiences a channel condition too poor to receive packets from a source
node, a third node may have a good channel condition to both the source and the
intended destination.Cooperative relaying network architectures (e.g., [3,4,20,21])

A Study on False Channel Condition Reporting Attacks 121

shown inFigure 5(b)helpanode that has poor channel condition to route its packet
through a node with a good channel condition, thus improving system throughput.
In order to find such routes, a cooperative relaying protocol must distribute chan-
nel condition information for each candidate path, find the most appropriate relay
path, and provide incentives to motivate nodes to forward packets for other nodes.
Specifically, in UCAN [4], user equipment has two wireless adaptors, one High Data
Rate (HDR) cellular interface and one IEEE 802.11 interface. The HDR interface
is used for communication with a base station and the IEEE 802.11 interface is
used for peer-to-peer communication with other user equipment in a network.

In our simulated network, the base station is the traffic source. The victim
node chooses a relayer node if the relayer has a better channel condition. An
attacking relayer node overclaims its channel condition to intercept packets to
the victim node. As shown in Section 4.2, the channel model can affect the esti-
mation error of our algorithm. Hence, we use the three channel models (Indoor
A, Pedestrian A, and Vehicular A) that we used for the simulation of variable
channel condition. These results will show us how the estimation error due to
varying channel condition affects the system performance. As we vary the dis-
tance between the base station and the victim node, we measure the victim’s
throughput under the false channel condition reporting attack.

Figure 7 shows the measured results in the case of a single relayer for the
victim node. Hence, the attacker node is the only relayer for the victim node. In
Figure 8, there are two relayers and one relayer is an attacker node. We consider
three different cases: overclaiming by 1, overclaiming by 2 and defense with our
algorithm. For the cases of overclaiming by 1 and 2, we plot the results without
deployment of our algorithm. For the case of defense with our algorithm, we
deployed our algorithm to compare the cases with defense and without defense.
When the victim node is close to the base station, the throughput of the case
with defense is much greater than the throughput of the case without defense.
As the victim node is farther from the base station, the throughput difference
between defense case and non-defense case is reduced. It is because the degraded
channel condition for the victim node far from the base station induces small
capacity for the victim node. In the case of two relayers, we can see that due to
the redundant relayer, the attack effect is reduced. Over three different channel
models, we can see that the throughput results are similar to each other. With
these results, we believe that the estimation error of our algorithm does not
affect the system performance so much.

4.4 Security Analysis

The security of our scheme for securely estimating channel condition relies on the
assumption that the attacker cannot predict the challenge values generated by a
pseudo-random number generator. An attacker, then, has two strategies by which
he can generate replies: either the attacker can guess the challenge value, or the at-
tacker canattempt todecode the received challengevalueas anormaluserwould. In
this section, we will show that when the challenge values are chosen using a pseudo-
random number generator, decoding is the dominating strategy of an attacker.

122 D. Kim and Y.-C. Hu

50 100 150 200 250 300 350 400 450 500 550
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Distance Between BS and Victm node (m)

V
ic

tim
’s

 A
ve

ra
ge

 T
hr

ou
gh

pu
t (

M
bp

s)

Overclaiming by 1 CQI−level (Without Defense)
Overclaiming by 10 CQI−levels (Without Defense)
Defense with our algorithm

(a) Indoor A

50 100 150 200 250 300 350 400 450 500 550
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Distance Between BS and Victm node (m)

V
ic

tim
’s

 A
ve

ra
ge

 T
hr

ou
gh

pu
t (

M
bp

s)

Overclaiming by 1 CQI−level (Without Defense)
Overclaiming by 10 CQI−levels (Without Defense)
Defense with our algorithm

(b) Pedestrian A

50 100 150 200 250 300 350 400 450 500 550
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Distance Between BS and Victm node (m)

V
ic

tim
’s

 A
ve

ra
ge

 T
hr

ou
gh

pu
t (

M
bp

s)

Overclaiming by 1 CQI−level (Without Defense)
Overclaiming by 10 CQI−levels (Without Defense)
Defense with our algorithm

(c) Vehicular A

Fig. 7. The effect of our algorithm on a relaying network example (one relayer)

50 100 150 200 250 300 350 400 450 500 550

0

0.5

1

1.5

2

Distance Between BS and Victm node (m)

V
ic

tim
’s

 A
ve

ra
ge

 T
hr

ou
gh

pu
t (

M
bp

s)

Overclaiming by 1 CQI−level (Without Defense)
Overclaiming by 10 CQI−levels (Without Defense)
Defense with our algorithm

(a) Indoor A

50 100 150 200 250 300 350 400 450 500 550

0

0.5

1

1.5

2

Distance Between BS and Victm node (m)

V
ic

tim
’s

 A
ve

ra
ge

 T
hr

ou
gh

pu
t (

M
bp

s)

Overclaiming by 1 CQI−level (Without Defense)
Overclaiming by 10 CQI−levels (Without Defense)
Defense with our algorithm

(b) Pedestrian A

50 100 150 200 250 300 350 400 450 500 550

0

0.5

1

1.5

2

Distance Between BS and Victm node (m)

V
ic

tim
’s

 A
ve

ra
ge

 T
hr

ou
gh

pu
t (

M
bp

s)

Overclaiming by 1 CQI−level (Without Defense)
Overclaiming by 10 CQI−levels (Without Defense)
Defense with our algorithm

(c) Vehicular A

Fig. 8. The Effect of Our Algorithm on A Relaying Network Example (Two Relayers)

We assume that a data symbol experiences an Additive White Gaussian Noise
(AWGN) channel, which is a typical model. The optimal (maximum-likelihood)
decoder under AWGN takes the input signal and provides the data symbol most
likely to correspond to that signal. An attacker that guesses ignores the input
signal entirely, and as such, throws away any information contained in the input
signal. Discarding this information could not improve the attacker’s expected
performance, because otherwise the optimal decoder would not be optimal. In
other words, the attacker gains no advantage by guessing instead of decoding.

To illustrate, we consider BPSK coding with a received power level of 1 and
AWGN power σ. In this environment, the sender sends +1 to send a 1-bit and
-1 to send a 0-bit. The receiver receives the sender’s value plus a random value
drawn from N(0, σ2). The optimal decoder decodes a 1-bit if the received value
is greater than 0 and a 0-bit otherwise, which has probability of success Q(− 1

σ).
Since σ > 0, Q(− 1

σ) > 0.5. By simply guessing a bit, an attacker is successful
with probability 0.5. The success probability of decoding is always greater than
or equal to the success probability of guessing. Hence, if the challenge values are
randomly generated, the optimal strategy is to use the optimal decoder. This
result shows that an attacker cannot outperform a normal user.

5 Related Work

In this section, we review attacks related to our reference systems.

A Study on False Channel Condition Reporting Attacks 123

Attacks on Opportunistic Schedulers. Bali et al. [22] reveal a vulnerability
in the PF scheduler that can be induced by a malicious traffic pattern. Bursty
traffic enables a single flow to occupy several consecutive slots. They measure
this attack’s effect on real EV-DO network. The work by Racic et al. [9] on PF
scheduler is the closest work to ours in the sense that they consider the effect of
falsely reporting channel condition. They conclude that falsely reporting channel
condition alone does not do harm other users very much in networks using a
PF scheduler. They do find that falsely reporting combined with handover can
occupy many consecutive time slots, thereby stealing other user’s opportunity to
be served. Unlike this work, we find cases where false reporting channel condition
alone can significantly affect other user’s performance in other network settings.

Attacks on Hybrid Networks. A hybrid network is one that implements co-
operative relaying using two distinct data link technologies. Carbunar et al. [20]
propose JANUS for defending against selfish or malicious behavior in establish-
ing routes in hybrid networks. They consider the possibility of a rate inflation
attack in which a node reports a higher bandwidth to base station than the
node can provide. However, their attack overclaims the output rate of a link
rather than the channel quality. In JANUS a base station sends request packets
to nodes, and uses the fact that an overclaimed link will experience congestive
losses. However, JANUS’ request packets are not cryptographically secured, so
the attacker can guess when it needs to send a response packet to hide the at-
tack from the base station. Our approach differs from the JANUS’ in that our
algorithm uses cryptographic security to protect challenge messages. More fun-
damentally, because our verification is conducted at the physical layer, it allows
for a more fine-grained verification of channel condition. Haas et al. [21] pro-
pose SUCAN, which defends against Byzantine behaviors in hybrid networks.
However, they do not consider attacks that misreport channel condition.

6 Conclusion and Future Work

In this paper, we have studied the threat posed by attacks that falsely report their
channel condition. Our false channel-feedback attack can arise in any channel-
aware protocol where a user reports its own channel condition. To counter such
attacks, we propose a secure channel condition estimation algorithm to prevent
the overclaiming attack. Through analysis and simulations, we show that with
proper parameters, we can prevent the overclaiming attack.

The protocol we describe requires that a trusted entity sends each chal-
lenge message, and we present two case studies, the opportunistic scheduler
and the single-hop cooperative relaying, in which the trusted entity naturally
arises within the environment. In a multi-hop channel-aware protocol, an inter-
mediate hop may have no incentive to correctly estimate channel condition or
to correctly relay another link’s estimated channel condition. In this paper, we
have focused on the single-hop channel estimation environment as an initial step
towards defense against channel condition misreporting attack, and we leave
secure multi-hop estimation and reporting to future work.

124 D. Kim and Y.-C. Hu

References

1. Jalali, A., Padovani, R., Pankaj, R.: Data throughput of cdma-hdr a high efficiency-

high data rate personal communication wireless system. In: Proc. IEEE VTC,

vol. 3, pp. 1854–1858 (May 2000)

2. Viswanath, P., Tse, D.N.C., Laroia, R.: Opportunistic beamforming using dumb

antennas. IEEE Transactions on Information Theory 48(6), 1277–1294 (2002)

3. Sendonaris, A., Erkip, E., Aazhang, B.: Increasing uplink capacity via user cooper-

ation diversity. In: Proceedings of IEEE International Symposium on Information

Theory, p. 156 (August 1998)

4. Luo, H., Ramjee, R., Sinha, P., Li, L.E., Lu, S.: Ucan: a unified cellular and ad-hoc

network architecture. In: ACM MobiCom, pp. 353–367. ACM, New York (2003)

5. De Couto, D.S.J., Aguayo, D., Bicket, J., Morris, R.: A high-throughput path

metric for multi-hop wireless routing. In: ACM MobiCom, pp. 134–146. ACM,

New York (2003)

6. Draves, R., Padhye, J., Zill, B.: Comparison of routing metrics for static multi-hop

wireless networks. In: ACM SIGCOMM, pp. 133–144. ACM, New York (2004)

7. Jing, T., Wang, H.J., Hu, Y.C.: Preserving location privacy in wireless lans. In:

Proc. ACM MOBISYS (June 2007)

8. Karlof, C., Wagner, D.: Secure routing in wireless sensor networks: Attacks and

countermeasures. In: First IEEE International Workshop on Sensor Network Pro-

tocols and Applications, pp. 113–127 (2002)

9. Racic, R., Ma, D., Chen, H., Liu, X.: Exploiting opportunistic scheduling in cellular

data networks. In: NDSS (2008)

10. Odyssey 8500, http://www.wavesat.com/pdf/OD-8500-IC-PB.pdf

11. Airspan, http://www.airspan.com/products_wimax.aspx

12. Sdr, http://en.wikipedia.org/wiki/Software-defined_radio

13. Smith III, J.O.: Spectral Audio Signal Processing. In: Center for Computer Re-

search in Music and Acoustics, CCRMA (2009)

14. Proakis, J.: Digital Communications, 4th edn., McGraw-Hill Sci-

ence/Engineering/Math (August 2000)

15. Physical layer procedures (fdd), release 5. 3GPP TS25.214 V5.5.0 (June 2003),

http://www.3gpp.org/ftp/Specs/archive/25_series/25.214/25214-550.zip

16. Russell, S.J., Norvig, P.: Artificial Intelligence: A Modern Approach. Pearson Ed-

ucation, London (2003), http://portal.acm.org/citation.cfm?id=773294

17. ns-2: Network simulator, http://www.isi.edu/nsnam/ns/

18. eurane: Enhanced umts radio access network extensions for ns-2,

http://eurane.ti-wmc.nl/eurane/

19. Selection procedures for the choice of radio transmission technologies of the umts.

ETSI TS UMTS 30.03 V3.2.0

20. Carbunar, B., Ioannis, I., Nita-Rotaru, C.: Janus: A framework for scalable and

secure routing in hybrid wireless networks. IEEE Transactions on Dependable and

Secure Computing (2008)

21. Haas, J.J., Hu, Y.C.: Secure unified cellular ad hoc network routing. In: IEEE

Globecom (2009)

22. Bali, S., Machiraju, S., Zang, H., Frost, V.: A measurement study of scheduler-

based attacks in 3G wireless networks. In: Uhlig, S., Papagiannaki, K., Bonaven-

ture, O. (eds.) PAM 2007. LNCS, vol. 4427, pp. 105–114. Springer, Heidelberg

(2007)

http://www.wavesat.com/pdf/OD-8500-IC-PB.pdf
http://www.airspan.com/products_wimax.aspx
http://en.wikipedia.org/wiki/Software-defined_radio
http://www.3gpp.org/ftp/Specs/archive/25_series/25.214/25214-550.zip
http://portal.acm.org/citation.cfm?id=773294
http://www.isi.edu/nsnam/ns/
http://eurane.ti-wmc.nl/eurane/

Characterizing the Security Implications of Third-Party
Emergency Alert Systems over Cellular Text Messaging

Services

Patrick Traynor

Georgia Institute of Technology
traynor@cc.gatech.edu

Abstract. Cellular text messaging services are increasingly being relied upon to
disseminate critical information during emergencies. Accordingly, a wide range
of organizations including colleges, universities and large metropolises now part-
ner with third-party providers that promise to improve physical security by rapidly
delivering such messages. Unfortunately, these products do not work as advertised
due to limitations of cellular infrastructure and therefore provide a false sense of
security to their users. In this paper, we perform the first extensive investigation
and characterization of the limitations of an Emergency Alert System (EAS) using
text messages as a security incident response and recovery mechanism. Through
the use of modeling and simulation based on configuration information from ma-
jor US carriers, we show emergency alert systems built on text messaging not only
can not meet the 10 minute delivery requirement mandated by the WARN Act,
but also potentially cause other legitimate voice and SMS traffic to be blocked at
rates upwards of 80%. We then show that our results are representative of reality
by comparing them to a number of documented but not previously understood
failures. Finally, we discuss the causes of the mismatch of expectations and op-
erational ability and suggest a number of techniques to improve the reliability of
these systems. We demonstrate that this piece of deployed security infrastructure
simply does not achieve its stated requirements.

1 Introduction

Text messaging allows individuals to transmit short, alphanumeric communications for
a wide variety of applications. Whether to coordinate meetings, catch up on gossip, offer
reminders of an event or even vote for a contestant on a television game show, this dis-
creet form of communication is now the dominant service offered by cellular networks.
In the United States alone, over five billion text messages are delivered monthly [25].
While many applications of this service can be considered non-critical, the use of text
messaging during emergency events has proven to be far more utilitarian.

With millions of people attempting to contact friends and family on September 11th
2001, telecommunications providers witnessed tremendous spikes in cellular voice ser-
vice usage. Verizon Wireless, for example, reported voice traffic rate increases of up to
100% above typical levels; Cingular Wireless recorded an increase of up to 1000% on
calls destined for the Washington D.C. area [28]. While these networks are engineered
to handle elevated amounts of traffic, the sheer number of calls was far greater than

S. Jajodia and J. Zhou (Eds.): SecureComm 2010, LNICST 50, pp. 125–143, 2010.
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2010

126 P. Traynor

capacity for voice communications in the affected areas. However, with voice-based
phone services being almost entirely unavailable, SMS messages were still successfully
received in even the most congested regions because the control channels responsible
for their delivery remained available. Similar are the stories from the Gulf Coast during
Hurricanes Katrina and Rita. With a large number of cellular towers damaged or dis-
abled by the storms, text messaging allowed the lines of communication to remain open
for many individuals in need, in spite of their inability to complete voice calls in areas
where the equipment was not damaged and power was available.

Accordingly, SMS messaging is now viewed by many as a reliable method of com-
munication when all other means appear unavailable. In response to this perception, a
number of companies offer SMS-based emergency messaging services. Touted as able
to deliver critical information colleges, universities and even municipalities hoping to
coordinate and protect the physical security of the general public have spent tens of
millions of dollars to install such systems. Unfortunately, these products will not work
as advertised and provide a false sense of security to their users.

In this paper, we explore the limitations of third party Emergency Alert Systems
(EAS). In particular, we show that because of the currently deployed cellular infras-
tructure, such systems will not be able to deliver a high volume of emergency messages
in a short period of time. This identifies a key failure in a critical security incident re-
sponse and recovery mechanism (the equivalent of finding weaknesses in techniques
such as VM snapshots for rootkits and dynamic packet filtering rules for DDoS attacks)
and demonstrates its inability to properly function during the security events for which
it was ostensibly designed. The fundamental misunderstanding of the requirements nec-
essary to successfully deploy this piece of security infrastructure are likely to contribute
to real-world, human-scale consequences.

In so doing, we make the following contributions:

– Emergency Event Characterization: Through modeling and simulation based on
real provider deployments, we provide the first public characterization of the impact
of an emergency event on a cellular network. This contribution is novel in that it ex-
plores a range of realistic emergency scenarios and provides a better understanding
of their failure modes.

– Measure EAS over SMS for multiple emergency scenarios: We provide data to
debunk the common assertion made by many third-party vendors that large quan-
tities of text messages can be delivered within a short period of time (i.e., seconds
to minutes). We evaluate a number of different, realistic emergency scenarios and
explain why a number of college campuses have reported “successful” tests of their
systems. Finally, we provide a real-world example that very closely mirrors the
results of our simulations.

– Quantify Collateral Damage: We characterize the presence of the additional traf-
fic generated by third-party EAS over SMS and show that such traffic causes in-
creased blocking of normal calls and text message, potentially preventing those in
need of help from receiving it. We also discuss a number of ways in which these
networks can cause unexpected failures (e.g., message delay, message reordering,
alert spoofing).

Characterizing the Security Implications 127

VLR

MSC #7

HLR SS7 Network

1. Where is
999-999-9999?

SMSC

2. Last seen at
MSC #7

3. Text Message
for

999-999-9999

4. Where is
999-999-9999?

4. Where is
999-999-9999?

4.
Where is

999-999-9999?

5. 999-999-9999?

5. 999-999-9999?

5. 999-999-9999?

6. Hello

7.
Located
device -

Attempting
delivery

8. Message
Delivery Status

9. Discard
message or try

again later

Fig. 1. Before a message can be delivered, a mobile device must be located. To do so, the MSC
requests that towers within a given area all transmit paging requests. If an when a device is found,
the MSC forwards the message to the appropriate tower, which attempts to deliver it wirelessly.
The status of the delivery attempt is then returned to the SMSC. If delivery failed, the SMSC will
attempt delivery at a later time.

2 Network Architecture

We specifically examine GSM networks in these discussions as they represent the most
widely deployed cellular technology in the world; however, it should be noted that mes-
sage delivery for other technologies such as CDMA, IDEN and TDMA are very similar
and are therefore subject to similar problems.

2.1 Cellular Network Architecture

Sending a Message. While most users are only familiar with sending a text message
from their phone, known as Mobile Originated SMS (MO-SMS), service providers offer
an expanding set of interfaces through which messages can be sent. From the Internet,
for instance, it is possible to send text messages to mobile devices through a number
of webpages, email and even instant messaging software. Third parties can also access
the network using so-called SMS Aggregators. These servers, which can be connected
directly to the phone network or communicate via the Internet, are typically used to
send “bulk” or large quantities of text messages. Aggregators typically inject messages
on behalf of other companies and charge their clients for the service. Finally, most
providers have established relationships between each other to allow for messages sent
from one network to be delivered in the other.

After entering a provider’s network, messages are sent to the Short Messaging Ser-
vice Center (SMSC). SMSCs perform operations similar to email handling servers in
the Internet, and store and forward messages to their appropriate destinations. Because
messages can be injected into the network from so many external sources, SMSCs typi-
cally perform aggressive spam filtering on all incoming messages. All messages passing
this filtering are then converted and copied into the necessary SMS message format and
encoding and then placed into a queue to be forwarded to their final destination.

128 P. Traynor

Finding a Device. Delivering messages in a cellular network is a much greater chal-
lenge than in the traditional Internet. Chief in this difficulty is that users in a cellular
network tend to be mobile, so it is not possible to assume that users will be located
where we last found them. Moreover, the information about a user’s specific location is
typically limited. For instance, if a mobile device is not currently exchanging messages
with a base station, the network may only know a client’s location at a very coarse
level (i.e., the mobile device may be known to be in a specific city, but no finer-grained
location information would be known). Accordingly, the SMSC needs to first find the
general location for a message’s intended client before anything else can be done.

A server known as the Home Location Register (HLR) assists in this task. This
database acts as the permanent repository for a user’s account information (i.e., sub-
scribed services, call forwarding information, etc). When a request to locate a user is
received, the HLR determines whether or not that device is currently turned on. If a
mobile device is currently powered off, the HLR instructs the SMSC to store the text
message and attempt to deliver it at another time. Otherwise, the HLR tells the SMSC
the address of the Mobile Switching Center (MSC) currently serving the desired device.
Having received this location information, the SMSC then forwards the text message
on to the appropriate MSC.

Wireless Delivery. As mentioned earlier, even the MSC may not know more informa-
tion about a targeted device’s location. In order to determine whether or not the current
base station serving this device is known, the MSC queries the Visitor Location Register
(VLR), which temporarily stores information about clients while they are being served
by the MSC. In most cases, this information is not known, and so the MSC must begin
the extensive and expensive process of locating the mobile device. The MSC completes
this task by generating and forwarding paging requests to all of its associated base sta-
tions, which may number in the hundreds. This process is identical to locating a mobile
device for delivery of a voice call.

Upon receiving a paging request from the MSC, a base station attempts to determine
whether or not the targeted device is nearby. To achieve this, the base station attempts
to use a series of Control Channels to establish a connection with the user. First, the
base station broadcasts a paging request over the Paging Channel (PCH) and then waits
for a response. If the device is nearby and hears this request, it responds to the base
station via the Random Access Channel (RACH) to alert the network of its readiness to
receive information. When this response is received, the network uses the Access Grant
Channel (AGCH) to tell the device to listen to a specific Standalone Dedicated Control
Channel (SDCCH) for further exchanges. Using this SDCCH, the network is able to
authenticate the client, perform a number of maintenance routines and deliver the text
message. By limiting the operations necessary to deliver a text message to the control
channels used for call setup, such messages can be delivered when all call circuits,
known as Traffic Channels (TCHs) are busy.

When the attempt to deliver the message between the targeted device and the base
station is complete, the device either confirms the success or failure of delivery. This
status information is carried back through the network to the SMSC. If the message was
successfully delivered, the SMSC deletes it. Otherwise, the SMSC stores the message

Characterizing the Security Implications 129

until a later period, at which time the network re-attempts delivery. Figure 1 offers an
overview of this entire process.

2.2 Third-Party Provider Solutions

In the past few years, a significant number of third-parties offering to deliver alert mes-
sages (and other information services) via text messaging have appeared. Citing the
need for improved delivery targeted to a highly mobile population, many such services
advertise text messaging as an instant, targeted disseminator capable of delivering of
critical information to tens of thousands of mobile phones when it is most needed. These
systems have been extensively deployed on college and university campuses throughout
the United States.

The architecture of these systems is relatively simple. Whether activated through
a web interface [7,10,35,45,46], directly from a phone [18], or as software running
on a campus administrator’s computer [34,29], these services act as SMS aggregators
and inject large numbers of text messages into the network. Colleges and universities
subscribing to these services then collect mobile phone numbers from students, faculty
and staff. In the event of an alert, all or a subset of the collected numbers can be targeted.
While network providers may offer some limited information back to the third party,
aggregators are largely unaware of conditions in the network or the geographic location
of any specific individual.

3 Modeling Emergency Events in Real Environments

To determine whether there exists a mismatch between the current cellular text messag-
ing infrastructure and third party EAS, it is necessary to observe such systems during an
emergency. However, because large scale physical security incidents are rare, we apply
a number of modeling techniques to help characterize such events.

3.1 Location Selection and Characterization

The events that unfolded at the Virginia Polytechnic Institute and State University (“Vir-
ginia Tech”) on April 16, 2007 have become one of the primary motivations behind the
calls to use SMS as the basis of an emergency system. Many argue that had such a
system been in place during what became the deadliest campus shooting in US his-
tory, countless lives could have been saved. However, a thorough examination of such
claims has not been conducted. In particular, it is not clear whether or not the messages
transmitted by such a system would have reached all students before the Norris Hall
shootings. Accordingly, we have selected Virginia Tech as our location to characterize.

Located in southwestern Virginia, this land grant university is home to over 32,000
students, faculty and staff [48]. For the purposes of this work, we assume that just
under half (15,000) of these individuals subscribe to a GSM network. As is shown by
the red triangles in Figure 2, the major GSM provider in this area provides service to
the campus of Virginia Tech from four base stations.1 Given that each base station has

1 This is the actual configuration of the major GSM carrier in this area, as confirmed through
conversations with this provider.

130 P. Traynor

Virginia Tech University

0 mi 0.2 0.4 0.6 0.8

Fig. 2. The placement of base stations (red triangles) for a major GSM provider near Virginia
Tech. Given that each base station has three sectors, the campus itself receives service from
approximately eight total sectors.

three sectors (each covering a 120 degree range), we assume that the campus itself is
covered by 8 of the 12 total sectors in the area.

3.2 Mathematical Characterization of Emergencies

The first step in characterizing a cellular network during an emergency is determining
capacity. In particular, we are interested in understanding the minimum time required
to deliver emergency messages. If this time is less than the goal of 10 minutes set forth
in by the current public EAS policies and the WARN Act [40], then such a system may
indeed be possible. However, if this goal can not be met, current networks can not be
considered as good candidates for EAS message delivery.

Given that most sectors have a total of 8 SDCCHs, that it takes approximately four
seconds to deliver a text message in a GSM network [9,28] and the information above,
the capacity of the GSM network serving the campus of Virginia Tech would require
the following amount of time to deliver a single message to 15,000 recipients:

C = 15, 000 msgs × 1 campus
8 sectors

× 1 sector
8 SDCCHs

× 4 secs
1 message

≈ 938 sec

≈ 15.6 mins

Because the contents of emergency messages are likely to exceed the 160 character
limit of a single text message, providers and emergency management officials have
estimated the number of messages is likely to increase by at least four times:

C = 15, 000 msgs × 4 msgs
user

× 1 campus
8 sectors

Characterizing the Security Implications 131

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 10 20 30 40 50 60

P[
B

lo
ck

in
g]

Deadline (mins)

4 Messages
1 Message

Fig. 3. Calculated blocking probabilities versus delivery windows for emergency SMS traffic

Table 1. Simulation parameters

μ−1
TCH 120 sec [32]

μ−1
SDCCH,call 1.5 sec [32]

μ−1
SDCCH,SMS 4 sec [28,9]

λcall,regular 10,000 calls/campus/hr
.347 calls/sector/sec

λSMS,regular 21K msgs/campus/hr
0.75 msgs/sector/sec

× 1 sector
8 SDCCHs

× 4 secs
1 msg

≈ 3752 secs

≈ 62.5 mins

The above calculations represent an optimistic minimum time for the delivery of
all messages. For instance, it is highly unlikely that all eight SDCCHs will be avail-
able for delivering text messages as these channels are also used to establish voice calls
and assist with device mobility. Moreover, contention between emergency messages for
SDCCHs will also be a significant factor given that the SMSC is unaware of traffic con-
ditions in individual sectors. Finally, depending on conditions within the network, each
message is likely to experience different delays. To better characterize these factors, we
apply a simple Erlang-B queuing analysis of the system. In a system with n servers
and an offered load of A = λ

μ−1 , where λ is the intensity of incoming messages and
signaling traffic and μ is the rate at which a single server can service incoming requests,
the probability that an incoming emergency message is blocked is:

PB =
An

n!∑l=n−1
l=0

Al
l!

(1)

132 P. Traynor

Figure 3 compares an imposed deadline for delivering all SMS-based emergency mes-
sages against the expected blocking. We note that while Poisson arrival is not appro-
priate for modeling traffic on the Internet, it is regularly used in telecommunications.
Like the capacity equations, this calculation shows that such large volumes of messages
can not be delivered in a short period of time, even without the presence of traffic from
normal operations.

4 Simulating Emergency Events

EAS over SMS traffic may still improve the physical security of its intended recipients
even though it can not be delivered to the entire population within a 10 minute time period.
If such information can be sent without interfering with other traffic, it could be argued
that it would remain beneficial to at least some portion of the receiving population.

To better understand the impact of this security incident response and recovery mech-
anism on other traffic, we further characterize a number of emergency scenarios. While
the calculations provided in the previous section and a post-9/11 government study on
national text messaging capacity[28] are a good start, neither of these approximations
help us understand the complex dynamics of the range of emergency scenarios. We
therefore use a GSM simulator developed in previous work [41,42,44] and extend it
for our needs. This tool focuses on the wireless portion of the network and allows the
interaction between various resources to be characterized. This simulator was designed
according to 3GPP standards documents, input from commercial providers and given
optimal settings where applicable [22] so that our results are as conservative as pos-
sible.2 Table 1 provides a summary of additional parameters representing busy hour
load conditions (i.e., rush hour) and channel holding/service times. All experiments
represent the average of 500 runs, the inputs for which were generated according to
an exponential interarrival time using the Mersenne Twister Pseudo Random Number
Generator [16]. Confidence intervals of 95% for all runs were less than two orders of
magnitude from the mean, and are therefore too small to be shown. Given this system,
we are able to explore the details of an emergency without having to wait for such an
event occur or requesting log data from cellular providers. In the following subsections,
we offer views of normal operations, surges of messages and a full emergency situation
with EAS over SMS deployed.

4.1 Normal Traffic

Our first set of experiments represent normal network behavior. Figure 4 shows the
robustness of these networks to high traffic, illustrating very low SDCCH utilization
rates for all of the offered loads. This graph reinforces the case for using SDCCHs for
SMS delivery. Even in the 25,000 calls per hour case, during which nearly more than
55% of incoming calls can not be completed, SDCCHs are utilized at approximately
18%.

2 We note that some providers configure their network such that incoming text messages use
four of the eight SDCCHs to decrease delivery time. However, this configuration results in
higher blocking during busy periods, so we do not consider it further.

Characterizing the Security Implications 133

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000 2500 3000 3500 4000

U
til

iz
at

io
n

Time (sec)

25k calls/hr
15k calls/hr
10k calls/hr
5k calls/hr

Fig. 4. The average utilization of control channels (SDCCHs) for a variety of traffic intensities

 0

 0.2

 0.4

 0.6

 0.8

 1

10 20 30 40 50

P[
B

lo
ck

in
g]

Time (mins)

SDCCH (Voice & SMS)
TCH (Voice)

Fig. 5. The average blocking experienced during a large-scale emergency. Note that blocking on
TCHs remains steady in spite of increasing call loads due to increased blocking on the SDCCH.

4.2 Emergency Scenarios

Users having received notification of an emergency are unlikely to maintain normal
usage patterns. In particular, users are likely to attempt to contact their friends and/or
family soon after learning about such conditions. Whether by text message or phone
call, however, such instinctual communication leads to significant congestion in cel-
lular networks. This phenomenon lead to a spike in the number of attempted calls to
the Washington D.C. are by over 1000% percent on September 11th [28]. Accordingly,
increases of varying intensities and characteristics representing reactionary usage must
be considered when designing text messaging-based EAS. We explore two such sce-
narios, which assume that the third-party EAS over SMS provider has configured their
system to deliver all messages within the WARN Act’s 10 minute requirement [40],
that SMSCs retransmit previously undeliverable messages once every 15 minutes and
assume that 4 messages per user are transmitted by the EAS over SMS system when an
emergency occurs.

134 P. Traynor

 0

 0.2

 0.4

 0.6

 0.8

 1

10 20 30 40 50

U
til

iz
at

io
n

Time (mins)

SDCCH
TCH

Fig. 6. Channel utilization observed during a large-scale emergency. The network becomes satu-
rated almost immediately after the emergency event is realized.

Large-Scale Emergencies. Whereas small events may have a gradual increase in the
volume of traffic, large-scale emergencies are often characterized by substantial and
rapid spikes in usage, followed by continued gradual growth. We explore this worst
case to understand the full extent of the problems such third party solutions may cre-
ate. We therefore model a Virginia Tech-like event in which normal traffic increases by
1000% [28], with a 500% increase occurring over the course over a few minutes and the
outstanding 500% being distributed across the remaining hour. Like the previous sce-
nario, we conduct these experiments with and without the presence of EAS over SMS.

As expected, the sudden surge of traffic during the emergency almost immediately
makes communications difficult. Figure 5 shows blocking rates of approximately 47%
for TCHs and between 59% and 79% for SDCCHs. With both SDCCHs and TCHs
experiencing near total utilization as shown in Figure 6, the network is already signifi-
cantly overloaded and unable to deliver additional traffic.

The presence of traffic generated by an EAS over SMS system makes this scenario
considerably worse. As shown in Figure 7, call and SMS blocking on SDCCHs almost
immediately reaches between 80 and 85%. Like the previous scenario, call blocking
on TCHs actually decreases. Such a decrease can again be attributed to the elevated
blocking on the SDCCHs, as Figure 8 demonstrates that TCHs remain idle in spite of
an increased call volume.

4.3 Testing Campus Alert Systems

The discrepancy between the scenarios presented thus far and the reports of successful
tests of deployed systems is a result of a number of factors. As previously mentioned,
the 160 character limit per text message often requires the transmission of multiple text
messages during an emergency. Most system tests, however, typically involve send-
ing a single message. Traffic in these tests is therefore sent at one-forth the volume of
more realistic emergency scenarios. The second difference is the size of the affected
population. While many universities offer these systems as an optional service to their

Characterizing the Security Implications 135

 0

 0.2

 0.4

 0.6

 0.8

 1

10 20 30 40 50

P[
B

lo
ck

in
g]

Time (mins)

SDCCH (Voice & SMS)
TCH (Voice)

Fig. 7. Average blocking during a large-scale emergency in the presence of EAS over SMS. The
network experiences blocking rates of approximately 90% when EAS messages are transmitted.

 0

 0.2

 0.4

 0.6

 0.8

 1

10 20 30 40 50

U
til

iz
at

io
n

Time (mins)

SDCCH
TCH

Fig. 8. Channel utilization during a large-scale emergency with EAS over SMS. TCH utilization
falls significantly when EAS messages are sent, meaning fewer voice calls are delivered.

students, an increasing number are beginning to make enrollment mandatory. Accord-
ingly, current tests attempt to contact only a subset of students with a smaller volume
of traffic than would be used in a real emergency.

We use reports of successful tests as input for our final set of experiments. In partic-
ular, we attempt to recreate the environment in which these tests are occurring. We site
information from officials at the University of Texas Austin [20] and Purdue Univer-
sity [31], each of which have reported transmitting messages to approximately 10,000
participants. Note that this represents roughly 25% of the undergraduate student body
at these institutions. We therefore reduce the receiving population at Virginia Tech to
7,500, of which only half are subscribers to the GSM provider.

Figure 9 shows the probability of blocking for this scenario. With approximately
18% blocking, such a system would appear to replicate current deployments - over
80% of recipients are reached within the first 10-minute long transmission. However,
as is shown in Figure 10, by increasing the number of messages sent to this small group

136 P. Traynor

 0

 0.2

 0.4

 0.6

 0.8

 1

10 20 30 40 50

P[
B

lo
ck

in
g]

Time (mins)

TCH (Voice)
SDCCH (Voice & SMS)

Fig. 9. The average blocking observed during a test (one message) of a third-party EAS over SMS
system with only 25% of students registered

 0

 0.2

 0.4

 0.6

 0.8

 1

10 20 30 40 50

P[
B

lo
ck

in
g]

Time (mins)

TCH (Voice)
SDCCH (Voice & SMS)

Fig. 10. The average blocking observed when four messages are transmitted and all other traffic
remains constant

by a factor of four to allow for a longer emergency message, the probability of blocking
increases to 58%. Because the transmission of multiple messages is more likely, campus
emergency coordinators should test their systems based on this setting to gain a realistic
view of its performance and behavior.

These two cases provide a more complete picture of the issues facing these systems.
Whereas a third-party security response and recovery system may be able to deliver a
small number of messages to one quarter of the students on campus, attempts to send
more messages and therefore more meaningful communications quickly result in high
blocking. Such systems are simply unable to support the rapid delivery of emergency
messages to the entire population of the campus.

As corroboration of this final assertion and to further ground our results in reality, we
note the results of a campus alert system deployed on the campus of Simon Fraser Uni-
versity in Burnaby, British Columbia, Canada. In April 2008, the University attempted
to send test alert messages to 29,374 people; however, only 8600 were able to receive

Characterizing the Security Implications 137

these messages [37]. Only 6500 of those having received the message were able to do
so within five hours of it being sent, representing nearly an 80% rate of blocking. Worse
still, many students reported an elevated rate of busy signals for many hours. These re-
sults are very similar to those shown in Figure 7, which while showing a slightly higher
load, shows extremely close levels of blocking (approximately 85%). The analysis in
this paper, in concert with this real-life test, clearly explains the failure of this security
response and recovery mechanism to meet its requirement.

5 Discussion

5.1 3G Networks

We profiled the use of GSM networks in this work because they represent the most
widely used cellular technology in the world. However, much faster third generation
(3G) cellular systems are beginning to be deployed. With high speed data service avail-
able in many metropolitan areas, it would appear as if the analysis made in this paper
will not remain relevant.

The migration to these new systems will not address these issues for a number of rea-
sons. First, all cellular networks expend significant effort when establishing a connec-
tion. As demonstrated in Section 2, these operations include locating a targeted mobile
device and performing significant negotiations before a single packet can be delivered.
While the delivery rates of cellular data services have been steadily improving over the
past decade, this setup and delivery of the first bit of information remains a significant
bottleneck in the process. This means that while it is possible to download large files
relatively quickly using such networks, beginning the download remains expensive.
Second, many providers currently configure their 3G networks for the circuit switched
delivery of text messages. Accordingly, such messages will continue to compete with
voice calls for resources, leading to the same kinds of blocking conditions.

5.2 Message Delivery Order

Implicit in the misunderstanding of text messaging as a real-time service are misconcep-
tions about the order in which messages will be delivered to targeted devices. Specifi-
cally, it is often assumed that messages will be delivered in the order in which they were
injected by the sender. Message delivery order is in fact not always predictable.

The order in which messages are delivered can be affected by a number of factors.
For instance, Traynor et al [41] showed that the SMSCs of different providers imple-
ment a variety of service algorithms, including FIFO and LIFO service disciplines.
Accordingly, it is possible for two providers to deliver the same stream of messages in
opposite order. Even if all carriers implemented the same delivery algorithm, congestion
in the network can cause further disordering of packets. If an incoming text message
is unable to be delivered due to a lack of resources on the air interface, the SMSC will
store the message for a later attempt. However, if subsequent messages have been sent
before this message fails and manage to gain the required resources, they will be deliv-
ered out of the sender’s intended order. In an emergency such as a tornado, which may
frequently change directions, such out of order delivery may actually send subscribers
directly into the storm as opposed to away from it.

138 P. Traynor

There are a number of emergency scenarios in which the above has occurred. Dur-
ing a wildfire evacuation at Pepperdine University in 2007, multi-part messages were
transmitted to students and faculty to provide relocation instructions. However, some
reported that the messages were not useful. One student later noted that “Each notifica-
tion that was sent came through in six to eight text messages... And they were jumbled,
not even coming in in order” [4]. More serious conflicts in message delivery order
were noted at the Georgia Institute of Technology [6]. After a chemical spill in 2007,
a message alerting students and faculty to evacuate campus was transmitted. Later, in-
structions to ignore the evacuation notification were also sent. However, a number of
students noted receiving the messages out of order [36], adding greater confusion to the
situation. Similar problems have been reported at a number of other universities [8,14].

5.3 Message Delay

Examples of the delay that can be experienced during times of high volume are most
easily observed during New Years Eve celebrations or the most recent US Presiden-
tial Inauguration. As hundreds of millions of users around the globe send celebratory
greetings via SMS, service providers often become inundated with a flood of messages.
Accordingly, the delivery of such messages has been noted to exceed more than six
hours [11]. Even though providers often plan and temporarily deploy additional re-
sources to minimize the number of blocked calls, the sheer volume of messages during
such an event demonstrates the practical limitations of current systems. In spite of tem-
porarily deploying additional towers, such delays are experienced even when cellular
providers are aware that a high volume event will take place.

Why then has SMS been a successful means of communication during other na-
tional emergencies such as September 11th and Hurricanes Katrina and Rita? Numerous
sources cite SMS as an invaluable service when both man-made and natural disasters
strike [15,26]. The difference between these events and other emergencies is the mag-
nitude of messages sent. For instance, at the time of the attacks of September 11th,
text messaging was still largely a fringe service in the United States. Had most users
across the country attempted to communicate using SMS as their primary mode of com-
munication, however, a report by the National Communications System estimates that
current network capacities would need to be expanded by 100-fold [28] in order to sup-
port such a volume. The reliability of text messaging during Hurricane Katrina is due to
similar reasons. Because only a very small number of people were communicating via
text messaging, the towers undamaged by the storm were able to deliver such messages
without any significant competition from other traffic. Moreover, because the network
automatically attempted retransmission, users were more likely to receive text messages
than calls. If SMS use during these events approached emergency levels, it would have
experienced delays similar to those regularly observed on New Years Eve.

6 Improving Incident Response Communications

From the discussions, mathematical characterizations and simulations in the previous
sections, the mismatch between the current cellular infrastructure and current response

Characterizing the Security Implications 139

mechanisms is clear. Accordingly, such systems can not currently form the basis of a re-
liable alert system in the timescales required by the WARN Act, regardless of promises
made by third party systems. However, the ubiquity of cellular phones gives them a po-
tential role in the delivery of critical information during an emergency. This role would
be complementary to the other platforms of the Emergency Broadcasting System (Tele-
vision, radio, etc.).

There are a number of solutions currently under consideration that may help in this
space. The most well known is cell broadcast. Unlike the point to point operations re-
quired for the delivery of messages in current networks, cell broadcast would allow
the rapid dissemination of emergency information through point to multipoint com-
munications. Such a system could ideally reach the majority of cellular users in an
area and would not require knowledge of each particular user’s location. This option
is backed by the Commercial Mobile Service Alert Advisory Committee, which is cur-
rently working on developing standards documents. However, while cell broadcast will
significantly improve communications over current mechanisms, a number of critical
problems remain. First, like traditional text messaging, information delivered via cell
broadcast will not be authenticated. Second, the channels used for cell broadcast are
relatively bandwidth limited. The rate with which complex messages can be delivered
during highly dynamic situations (e.g., an on-campus gunman) may therefore be lower
than desired. Third, cell broadcast does little to address issues of coverage, which may
become exacerbated during an emergency. For instance, in the event of a natural disas-
ter or attack, it is highly likely that some cellular towers will be damaged or unpowered.
Third, cell broadcast does not currently provide special options for hearing or visually
impaired users. Finally, while cell broadcast is designed to deal with the overload of
many simultaneous point to point connections, this technology is still relatively imma-
ture (i.e., standards are pending) and has not been deployed and measured in any large
scale, public, scientific fashion. When this mechanism is deployed it may indeed im-
prove communications during such scenarios; however, it is critical to recognize that
our widely deployed current infrastructure is a deeply flawed information system when
used for emergency communications.

The increasing capabilities of mobile devices could potentially be leveraged to im-
prove the reach of communications during an emergency. For instance, cell broadcast
could potentially be used to signal mobile phones equipped with 802.11 wireless cards
to connect to a specific website containing regularly updated information. This infor-
mation could potentially include sound or video clips similar to traditional EAS broad-
casts to assist hearing and visually impaired users. The presence of 802.11 cards could
also assist in improving coverage. Borrowing techniques from delay tolerant network-
ing [13,19,50] may allow phones passing through areas with poor or no cellular re-
ception to inform other devices of the current alert. The recent addition of AM/FM
radio tuners in a variety of phones [30,17] may further assist in this process. Specifi-
cally, mobile devices could be used to immediately tune into the more traditional Emer-
gency Broadcast system, ensuring consistent dispersal of information. The presence of
AM/FM radios would also significantly improve the robustness of communications in
a large scale emergency as cellular or 802.11 outages in a user’s immediate vicinity
would not prevent information from continuing to be delivered.

140 P. Traynor

These suggestions also face a number of research questions. Like the cell broadcast
case, a strong method of authenticating incoming notifications would be necessary. This
issue may potentially be addressed by directing phones to an SSL-based webpage run
by the university. Moreover, studies focused on latency and data provenance for de-
lay tolerant networks in densely populated urban areas and campuses would also need
to be conducted. Until such systems are realized, however, legislators and the general
public should not rely upon text messaging or third party EAS providers for delivering
emergency information.

7 Related Work

Following the events of September 11th, 2001, curiosity about the ability to use text
messaging as the basis of a reliable communications system during times of crisis arose.
In response, the National Communications System (NCS) conducted an investigating
the use of text messaging during a nation-wide emergency, which through simple cal-
culations concluded that current systems would require “100 times more capacity to
meet [the] load” created by widespread use of text messaging [28]. A related study by
the European Telecommunications Standard Institute (ETSI) identified the increasing
prevalence of spam as a significant threat to the operation of cellular networks during
an emergency [12]. However, both studies were limited to high-level calculations of
a single emergency scenario and neither considered the use of third party EAS over
SMS systems. Our study conducted the first characterization and simulation of multi-
ple scenarios for EAS over cellular services and compared them directly to real-world,
on-campus testing.

The specific impacts on the reliability and security of such networks under torrents
of text messages have also been explored. Traynor el al. [41,43] noted that an attacker
could exploit connections between the Internet and cellular networks to cause signifi-
cant outages. With the bandwidth available to a cable modem, an attacker could send a
small but targeted stream of text messages to a specific geographic region and prevent
legitimate voice and text messages from being delivered. While subsequent research
was able to better characterize and provide mitigations against such attacks [42], it was
ultimately discovered that a more basic problem was responsible. Instead of simply be-
ing a matter of using a low-bandwidth channel to deliver data, the real cause of such
attacks was a result of fundamental tension between cellular networks and the Internet.
Specifically, because cellular networks can not amortize the significant cost of con-
nection establishment when delivering data, they are fundamentally vulnerable to such
attacks [44]. Accordingly, as long as text messages are delivered in the point to point
fashion as is done now, the expense of establishing connections with each and every
phone in an area will remain prohibitively expensive.

Whether as an unintended consequence or deliberate act, the flooding behavior ex-
hibited in this above work closely resembles Denial of Service (DoS) attacks on the
Internet. The research community has responded with attempts to classify [27] and mit-
igate [1,2,3,5,21,23,24,33,39,38,47,49] such attacks. However, such attacks are only
beginning to be understood in the context of cellular networks, making the direct appli-
cation of these solutions unsuitable.

Characterizing the Security Implications 141

8 Conclusion

Cellular networks are increasingly becoming the primary means of communication dur-
ing emergencies. Riding the widely-held perception that text messaging is a reliable
method of rapidly distributing messages, a large number of colleges, universities and
municipalities have spent tens of millions of dollars to deploy third-party EAS over cel-
lular systems. However, this security incident response and recovery mechanism simply
does not work as advertised. Through modeling, a series of experiments and corrobo-
rating evidence from real-world tests, we have shown that these networks can not meet
the 10 minute alert goal mandated by the public EAS charter and the WARN Act. More-
over, we have demonstrated that the extra text messaging traffic generated by third party
EAS will cause congestion in the network and may potentially block upwards of 80%
of normal requests, potentially including calls between emergency responders or the
public to 9-1-1 services. Accordingly, it is critical that legislators, technologists and the
general public understand the fundamental limitations of this mechanism to safeguard
physical security and public safety and that future solutions are thoroughly evaluated
before they are deployed.

Acknowledgements

This work was supported in part by 3G Americas. Any opinions, findings, conclusions
or recommendations expressed in this publication are those of the authors and do not
necessarily reflect the views of 3G Americas. We would also like to thank the cellular
providers that helped us more accurately model this issue. This work was also supported
in part by the US National Science Foundation (CNS-0916047). Any opinions, findings,
conclusions or recommendations expressed in this publication are those of the authors
and do not necessarily reflect the views of the National Science Foundation.

References

1. Andersen, D.: Mayday: Distributed Filtering for Internet Services. In: Proceedings of the
USENIX Symposium on Internet Technologies and Systems (USITS) (2003)

2. Anderson, T., Roscoe, T., Wetherall, D.: Preventing Internet Denial of Service with Capabil-
ities. In: Proceedings of ACM HotNets (2003)

3. Argyraki, K., Cheriton, D.R.: Scalable Network-layer Defense Against Internet Bandwidth-
Flooding Attacks. ACM/IEEE Transactions on Networking (TON) (2009)

4. Blons, S.: Emergency team aids efforts (2007), http://graphic.pepperdine.edu/
special/2007-10-24-emergencyteam.htm

5. Casado, M., Cao, P., Akella, A., Provos, N.: Flow Cookies: Using Bandwidth Amplification
to Defend Against DDoS Flooding Attacks. In: Proceedings of the International Workshop
on Quality of Service, IWQoS (2006)

6. Christensen, T.: Ga. Tech Building Cleared After Blast (2007), http://www.11alive.
com/news/article_news.aspx?storyid=106112

7. CollegeSafetyNet. Campus Alert, Campus Security, Emergency Warning, college safety Cri-
sis notification, Reverse 911, Mass emergency notification, Emergency Alert System, Cell
phone alerts, Email alerts, Text Message Alerts, Student warning system, Student notifica-
tion, campus notification, and Mass notification at CollegeSafetyNet.com (2008), http://
www.collegesafetynet.com/

http://graphic.pepperdine.edu/special/2007-10-24-emergencyteam.htm
http://graphic.pepperdine.edu/special/2007-10-24-emergencyteam.htm
http://www.11alive.com/news/article_news.aspx?storyid=106112
http://www.11alive.com/news/article_news.aspx?storyid=106112
http://www.collegesafetynet.com/
http://www.collegesafetynet.com/

142 P. Traynor

8. Courant.com. University Emergency SMS service doesn’t deliver,
http://www.courant.com (November 13, 2007).

9. Daly, B.K.: Wireless Alert & Warning Workshop, http://www.oes.
ca.gov/WebPage/oeswebsite.nsf/ClientOESFileLibrary/
Wireless%20Alert%20and%20Warning/file/ATT-OES-2

10. e2Campus. Mass Notification Systems for College, University & Higher Education Schools
by e2Campus: Info On The Go! (2008), http://www.e2campus.com/

11. Elliott, A.-M.: Texters to experience 6 hour delays on New Year’s Eve (2007),
http://www.pocket-lint.co.uk/news/news.phtml/11895/12919/
palm-new-years-text-delay.phtml

12. European Telecommunications Standards Institute. Analysis of the Short Message Service
(SMS) and Cell Broadcast Service (CBS) for Emergency Messaging applications; Emer-
gency Messaging; SMS and CBS. Technical Report ETSI TR 102 444 V1.1.1

13. Fall, K.: A Delay-Tolerant Network Architecture for Challenged Internets. In: Proceedings
of the Conference on Applications, Technologies, Architectures and Protocols for Computer
Communications, COMM (2003)

14. Ganosellis, L.: UF to test texting alerts after LSU glitch (2008), http://www.
alligator.org/articles/2008/01/08/news/uf_administration/lsu.
txt

15. Geer, D.: Wireless victories. Wireless Business & Technology, 2005 (September 11, 2001)
16. Hedden, J.: Math::Random::MT::Auto - Auto-seeded Mersenne Twister PRNGs. Version

5.01, http://search.cpan.org/˜jdhedden/Math-Random-MT-Auto-5.
01/lib/Math/Random/MT/Auto.pm

17. HTC Corporation. HTC Tattoo Specifications (2009) http://www.htc.com/europe/
product/tattoo/specification.html

18. Inspiron Logistics. Inspiron Logistics Corporation WENS - Wireless Emergency Notification
System for Emergency Mobile Alerts (2008), http://www.inspironlogistics.
com/

19. Jain, S., Fall, K., Patra, R.: Routing in a Delay Tolerant Network. In: Proceedings of the
Conference on Applications, Technologies, Architectures and Protocols for Computer Com-
munications, COMM (2004)

20. Jaramillo, E.: UT director: Text alerts effective (2008), http://www.
dailytexanonline.com/1.752094

21. Keromytis, A., Misra, V., Rubenstein, D.: SOS: Secure Overlay Services. In: Proceedings of
ACM SIGCOMM (2002)

22. Luders, C., Haferbeck, R.: The Performance of the GSM Random Access Procedure. In:
Vehicular Technology Conference (VTC), pp. 1165–1169 (June 1994)

23. Mahajan, R., Bellovin, S.M., Floyd, S., Ioannidis, J., Paxson, V., Shenker, S.: Controlling
High Bandwidth Aggregates in the Network. Computer Communications Review 32(3), 62–
73 (2002)

24. Mahimkar, A., Dange, J., Shmatikov, V., Vin, H., Zhang, Y.: dFence: Transparent Network-
based Denial of Service Mitigation. In: Proceedings of USENIX Networked Systems Design
and Implementation (NSDI) (2007)

25. Maney, K.: Surge in text messaging makes cell operators, http://www.usatoday.
com/money/2005-07-27-text-messaging_x.htm (July 27, 2005)

26. McAdams, J.: SMS does SOS (2006), http://www.fcw.com/print/12_11/news/
92790-1.html

27. Mirkovic, J., Reiher, P.: A Taxonomy of DDoS Attacks and DDoS Defense Mechanisms.
ACM SIGCOMM Computer Communication Review 34(2), 39–53 (2004)

28. National Communications System. SMS over SS7. Technical Report Technical Information
Bulletin 03-2 (NCS TIB 03-2) (December 2003)

http://www.courant.com
http://www.oes.ca.gov/WebPage/oeswebsite.nsf/ClientOESFileLibrary/Wireless%20Alert%20and%20Warning/file/ATT-OES-2
http://www.oes.ca.gov/WebPage/oeswebsite.nsf/ClientOESFileLibrary/Wireless%20Alert%20and%20Warning/file/ATT-OES-2
http://www.oes.ca.gov/WebPage/oeswebsite.nsf/ClientOESFileLibrary/Wireless%20Alert%20and%20Warning/file/ATT-OES-2
http://www.e2campus.com/
http://www.pocket-lint.co.uk/news/news.phtml/11895/12919/palm-new-years-text-delay.phtml
http://www.pocket-lint.co.uk/news/news.phtml/11895/12919/palm-new-years-text-delay.phtml
http://www.alligator.org/articles/2008/01/08/news/uf_administration/lsu.txt
http://www.alligator.org/articles/2008/01/08/news/uf_administration/lsu.txt
http://www.alligator.org/articles/2008/01/08/news/uf_administration/lsu.txt
http://search.cpan.org/~jdhedden/Math-Random-MT-Auto-5.01/lib/Math/Random/MT/Auto.pm
http://search.cpan.org/~jdhedden/Math-Random-MT-Auto-5.01/lib/Math/Random/MT/Auto.pm
http://www.htc.com/europe/product/tattoo/specification.html
http://www.htc.com/europe/product/tattoo/specification.html
http://www.inspironlogistics.com/
http://www.inspironlogistics.com/
http://www.dailytexanonline.com/1.752094
http://www.dailytexanonline.com/1.752094
http://www.usatoday.com/money/2005-07-27-text-messaging_x.htm
http://www.usatoday.com/money/2005-07-27-text-messaging_x.htm
http://www.fcw.com/print/12_11/news/92790-1.html
http://www.fcw.com/print/12_11/news/92790-1.html

Characterizing the Security Implications 143

29. National Notification Network (3n). 3n InstaCom Campus Alert - Mass Notification for Col-
leges and Universities (2008), http://www.3nonline.com/campus-alert

30. Nettles, C.: iPhone 3 to have Broadcom BCM4329, 802.11N/5GHzWireless, FM transmit-
ter/receiver (2009),
http://www.9to5mac.com/broadcom-BCM4329-iphone-802.11n-FM

31. Nizza, M.: This is only a (text messaging) test (2007), http://thelede.blogs.
nytimes.com/2007/09/25/this-is-only-a-text-messaging-test/?
scp=5&sq=Emergency%20Text%20Messaging&st=cse

32. Nyquetek, Inc. Wireless Priority Service for National Security (2002), http://
wireless.fcc.gov/releases/da051650PublicUse.pdf

33. Parno, B., Wendlandt, D., Shi, E., Perrig, A., Maggs, B.: Portcullis: Protecting Connection
Setup from Denial of Capability Attacks. In: Proceedings of ACM SIGCOMM (2007)

34. Reverse 911. Reverse 911 - The only COMPLETE notification system for public safety
(2008), http://www.reverse911.com/index.php

35. Roam Secure (2008), http://www.roamsecure.net/
36. shelbinator.com. Evacuate! Or Not (2007), http://shelbinator.com/2007/11/

08/evacuate-or-not/
37. Simon Fraser University. Special Report on the April 9th Test of SFU Alerts (2008),

http://www.sfu.ca/sfualerts/april08_report.html
38. Stavrou, A., Cook, D.L., Morein, W.G., Keromytis, A.D., Misra, V., Rubenstein, D.: Web-

SOS: An Overlay-based System For Protecting Web Servers From Denial of Service Attacks.
Journal of Computer Networks, special issue on Web and Network Security 48(5), 781–807
(2005)

39. Stavrou, A., Keromytis, A.: Countering DOS Attacks With Stateless Multipath Overlays. In:
Proceedings of ACM Conference on Computer and Communications Security (CCS) (2005)

40. The 109th Senate of the United States of America. Warning, Alert, and Response Network
Act (2005), http://thomas.loc.gov/cgi-bin/query/z?c109:H.R.1753:

41. Traynor, P., Enck, W., McDaniel, P., La Porta, T.: Exploiting Open Functionality in SMS-
Capable Cellular Networks. Journal of Computer Security (JCS) (2008)

42. Traynor, P., Enck, W., McDaniel, P., La Porta, T.: Mitigating Attacks on Open Functional-
ity in SMS-Capable Cellular Networks. IEEE/ACM Transactions on Networking (TON) 17
(2009)

43. Traynor, P., Lin, M., Ongtang, M., Rao, V., Jaeger, T., La Porta, T., McDaniel, P.: On Cellular
Botnets: Measuring the Impact of Malicious Devices on a Cellular Network Core. In: Pro-
ceedings of the ACM Conference on Computer and Communications Security (CCS) (2009)

44. Traynor, P., McDaniel, P., La Porta, T.: On Attack Causality in Internet-Connected Cellular
Networks. In: Proceedings of the USENIX Security Symposium (2007)

45. TXTLaunchPad. TXTLaunchPad provides Bulk SMS text message alerts to businesses,
schools, and advertisers (2007), http://www.txtlaunchpad.com/

46. Voice Shot. automated emergency alert notification call - VoiceShot (2008), http://www.
voiceshot.com/public/urgentalert.asp?ref=uaemergencyalert

47. Walfish, M., Vutukuru, M., Balakrishnan, H., Karger, D., Shenkar, S.: DDoS Offense by
Offense. In: Proceedings of ACM SIGCOMM (2006)

48. Wikipedia. Virginia Polytechnic Institute and State University (2008), http://en.
wikipedia.org/wiki/Virginia_Tech

49. Yang, X., Wetherall, D., Anderson, T.: TVA: A DoS-limiting Network Architecture.
IEEE/ACM Transactions on Networking (TON) (2009)

50. Zho, W., Ammar, M., Zegura, E.: A message ferrying approach for data delivery in sparse
mobile ad hoc networks. In: Proceedings of the International Symposium on Mobile Ad Hoc
Networking & Computing, MOBIHOC (2004)

http://www.3nonline.com/campus-alert
http://www.9to5mac.com/broadcom-BCM4329-iphone-802.11n-FM
http://thelede.blogs.nytimes.com/2007/09/25/this-is-only-a-text-messaging-test/?scp=5&sq=Emergency%20Text%20Messaging&st=cse
http://thelede.blogs.nytimes.com/2007/09/25/this-is-only-a-text-messaging-test/?scp=5&sq=Emergency%20Text%20Messaging&st=cse
http://thelede.blogs.nytimes.com/2007/09/25/this-is-only-a-text-messaging-test/?scp=5&sq=Emergency%20Text%20Messaging&st=cse
http://wireless.fcc.gov/releases/da051650PublicUse.pdf
http://wireless.fcc.gov/releases/da051650PublicUse.pdf
http://www.reverse911.com/index.php
http://www.roamsecure.net/
http://shelbinator.com/2007/11/08/evacuate-or-not/
http://shelbinator.com/2007/11/08/evacuate-or-not/
http://www.sfu.ca/sfualerts/april08_report.html
http://thomas.loc.gov/cgi-bin/query/z?c109:H.R.1753:
http://www.txtlaunchpad.com/
http://www.voiceshot.com/public/urgentalert.asp?ref=uaemergencyalert
http://www.voiceshot.com/public/urgentalert.asp?ref=uaemergencyalert
http://en.wikipedia.org/wiki/Virginia_Tech
http://en.wikipedia.org/wiki/Virginia_Tech

Saving Energy on WiFi with Required IPsec

Youngsang Shin, Steven Myers, and Minaxi Gupta

School of Informatics and Computing
Indiana University

Bloomington, IN 47405, USA
shiny@cs.indiana.edu, samyers@indiana.edu, minaxi@cs.indiana.edu

Abstract. The move to a pervasive computing environment, with the increas-
ing use of laptops, netbooks, smartphones and tablets, means that we are more
reliant on wireless networking and batteries for our daily computational needs.
Specifically, this includes applications which have sensitive data that must be se-
curely communicated over VPNs. However, the use of VPNs and mobile, wireless
computing creates conflicting needs: VPNs traditionally assume a stable network
connection, which is then secured; in contrast, wireless computing assumes a
transitory network connection due to mobility or energy-saving protocols. In this
work we study the ability to use traditional VPN protocols, specifically IPsec, in
mobile environments while permitting for energy savings. Energy savings come
from power-cycling the wireless radio when it is not in use.

More specifically, we develop a mathematical model for determining potential
power savings on mobile devices when power-cycling the radio in IPsec use set-
tings. Next, we perform performance measurements on IPsec session resumption
protocols IKEv2 [1], MOBIKE [2], and IPsec Gateway Failover (IGF) [3] to pro-
vide data for our model. We apply the model to over 3000 wireless sessions, and
determine the optimal power savings that could be achieved by power-cycling
the radio while maintaining an IPsec connection. We show that there is a high-
potential for energy savings in the best case. Finally, we develop an efficient and
simple real-world online scheduling algorithm that achieves near optimal results
for a majority of users.

Keywords: WiFi, VPN, IPsec, IPsec gateway failover, energy saving, security.

1 Introduction

Mobile devices such as laptops, netbooks, Personal Data Assistants (PDAs), tablets and
smartphones typically come equipped with WiFi and/or cellular network radios. This
allows them to easily connect to the Internet, motivating their pervasive use with IP-
based user applications in conducting business. According to [4], more than 50 million
US workers are spending more than 20 percent of the time away from their primary
workspace. Yet, with mobile users connecting over untrusted networks to organizations’
sensitive resources comes the need for secure communication. Virtual Private Networks
(VPN) are widely adopted and used for this purpose, and Internet Protocol Security
(IPsec) [5, 6] is perhaps the most commonly used VPN protocol. Most organizations
now require that mobile employees use a VPN connection for all connections to the
Internet via mobile devices for security and auditing reasons.

S. Jajodia and J. Zhou (Eds.): SecureComm 2010, LNICST 50, pp. 144–161, 2010.
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2010

Saving Energy on WiFi with Required IPsec 145

When an IPsec connection is built over WiFi in mobile devices, the usability of
secure communication is significantly affected by two important factors: battery power
and mobility. Mobile devices are presumed to be operated by battery power and studies
have shown that the power usage of the WiFi interface and radio is a major fraction
(≈ 18%) of the power used in mobile devices [7]. Further, VPNs often require intensive
use of the CPU in the computation of asymmetric cryptography while building the
IPsec connection, which is known to consume considerable power. Since mobility and
power-cycling radios can frequently force the asymmetric cryptographic operations to
be recomputed, examining power-saving opportunities in these scenarios is crucial.

1.1 Scenarios

To help visualize issues, we consider several scenarios:

Academic at a coffee shop: An academic is writing a paper at the coffee shop. She
occasionally needs access to the Internet to look up references, find papers, email, etc.,
but does not need continuous access, nor does she want to continuously re-authenticate
to the VPN server.

Roaming Tablet User: A user with a mobile tablet computer (e.g., iPad, iPod-Touch)
is traveling through a city, using available free WiFi connections whenever they appear.
Since open connections cannot be trusted, a VPN connection must be maintained.

Business at the Airport: While waiting between flights, a business user gets work done.
She needs to occasionally update and modify files on servers, but mostly uses local files
and apps. She may have to move locations several times due to eating or gate-changes.
There is no available power-plug. Her corporation requires all connections be through
the VPN.

In each of these cases, the users will need to continuously reestablish VPN con-
nections whether or not they use the VPN a frequent amount of the time. However,
manually turning off the WiFi radio is probably too time consuming and frustrating to
be done manually; this is especially true when a VPN connection must be re-established
with each cycling. Therefore, WiFi is left on, and battery life severely reduced.

1.2 Power Saving Mode (PSM)

The 802.11 standard defines two possible operating modes for wireless interfaces: ac-
tive mode and power saving mode (PSM). In active mode, wireless devices can ex-
change data while being in receive, transmit, or idle states. The PSM is an optional
mode. It lowers the energy consumption of the mobile device compared to the active
mode. If PSM is used, a mobile client’s wireless interface goes into PSM when the
device is idle. Upon doing so, it informs the access point (AP) so the AP can buffer
incoming data. Periodically, usually 100msec, the AP sends a special frame, called
the Beacon, which contains a Traffic Indication Map (TIM) to inform the client about
buffered frames. The clients periodically wake up and receive the Beacon to get buffered
frames. A more detailed description of PSM can be found in [8].

146 Y. Shin, S. Myers, and M. Gupta

Under our usage scenarios PSM has several problems. First, the power consumption
in PSM is still close to 250mW, which is around 30% of that in active mode [9]. It is
nontrivial and unnecessary when there is no network traffic. Second, it is hard to assume
that PSM can be continuously supported when users change their location. When users
move and transition across APs, the PSM support is not handed over between APs.
Further, the user can encounter various APs administrated by different organizations
and many old APs in use today do not support the PSM standard. For these reasons, we
do not consider PSM subsequently in this paper.

A number of research papers including [10], present techniques to utilize 802.11’s
PSM to reduce power use. Some works [11] have suggested using proxies at the AP
to look at incoming connections and respond to those connections that do not need to
wake the client, and can be trivially handled by the proxy. This clearly cannot be done
in the case that the data is encrypted, and the proxy is not trusted. Regardless, due to the
non-trivial power consumption and inefficiencies of WiFi’s PSM protocol, the works
of [12, 9, 7] suggest saving power by shutting-down the WiFi radio when the WiFi
interface is not actively used. These works use a lower powered radio to forewarn of an
incoming WiFi signal and to awaken the WiFi interface. However, in most deployments
today, such alternate low-power radios are not deployed on at least one, if not both sides
of the wireless connection. We consider a situation in which the radio is predictively
power-cycled, without the aid of a low-powered radio to warn of incoming traffic. This
may prevent the use of push-based protocols that attempt to access a client. Nonetheless,
based on our large number of wireless traces we show this is still an effective strategy for
a large number of users, and power savings are achievable without additional hardware.

1.3 Our Contributions

Shutting down the radio is an effective way to save energy, but it comes with important
side effects. Specifically, a disconnection in higher layer protocols and/or a change of
IP address. Mobility means that the device may be communicating with many different
APs over time with transition periods where no connection is available. This results in
exactly the same side effects. Since one’s IP address is used as a means of identification
at the network layer, its change may significantly affect higher layer protocols. We are
specifically interested in its effect on IPsec. When a device’s IP address is modified,
the IPsec connection needs to be reestablished, causing delay and energy consumption.
This is particularly true due to CPU-intensive asymmetric cryptographic operations.

To the best of the our knowledge, no prior works have investigated the time and
energy impacts of IPsec key reestablishment and session resumption on higher layer
energy preservation protocols that power-cycle the wireless radio. We consider three
protocols for IPsec session resumption: IKEv2 [1], MOBIKE [2] and IPsec Gateway
Failover (IGF) [3].

We develop a mathematical model for calculating the power savings possible with
the use of IPsec in the presence of radio cycling under clairvoyant scheduling. In or-
der to populate the model with appropriate parameters on timing and power usage, we
compute performance measurements for both clients and servers for IKEv2, MOBIKE
and IGF and measure power usage rates and costs for different hardware and proto-
col executions. Next, we apply this model to over 3000 wireless sessions from Indiana

Saving Energy on WiFi with Required IPsec 147

university’s campus. The results demonstrate that in the presence of an IPsec connec-
tion there is a strong potential for energy savings by power cycling the wireless radio.
In scenarios of interest, the hybridization of MOBIKE and IGF gives the best result,
implying IGF should be considered for mobility situations. We also show that a simple
and efficient algorithm can be deployed that predictively power-cycles the radio based
on past network usage. We show that this algorithm achieves near-optimal results for a
large fraction of users, while having minor power penalties for a negligible fraction.

Finally, we note that none of the protocols were designed for saving power on mobile
devices via power cycling radios, but all three can be used as such.

2 Background on IPsec and Related Protocols

The IPsec protocol allows for private and authenticated communication over an open
network. IPsec, as it is typically deployed, works in roughly two phases, a computa-
tionally intensive key-exchange phase in which asymmetric cryptographic operations
are performed to share secret random keys between the client and server. Other shared
state between the client and the server is also amassed and the collection is called the
the Security Association (SA). The SA is used to establish a secure session, through the
use of symmetric key cryptography, in a second phase. Importantly, the IP addresses of
the client and server are embedded in the SA, so historically any modifications to the
server’ or client’s IP address require recomputing the first, expensive, phase to acquire
a new SA.

2.1 Internet Key Exchange (IKE) Protocol

IKE is the name of the asymmetric cryptographic handshake most commonly used
in phase one of IPsec. Technically, there are two version of IKE: IKEv1 [13] and
IKEv2 [1]. IKEv1 is inefficient and is being deprecated, all references to IKE herein
refer to IKEv2. Other technical details of the protocol are beyond the scope of this
paper. Importantly, MOBIKE [2] and IGF [3]—the other protocols we consider— are
only designed to interact with IKEv2. IKE can itself use several asymmetric primi-
tives (e.g., RSA or Diffie-Hellman) with different security parameters, and the choice
of these parameters have an effect on performance. In our measurements we use RSA
keys with 2048 bits, as RSA is the more frequently deployed primitive, and a 2048-
bit key length is now considered required for many security objectives. RSA is also
preferable to Diffie-Hellman due to the ability to choose small exponents, decreasing
computation time at the mobile client at the expense of time on the powered server.

In regards to session resumption, by simply starting a new IPsec session from scratch
each time the radio is powered on, we can of course perform a primitive form of ‘session
resumption’.

Dead Peer Detection(DPD). In practice most IPsec servers run the dead peer detection
(DPD) [14] protocol, to determine when clients are no longer present in order to reclaim
resources dedicated to the IPsec connection. The DPD protocol is needed since many
IPsec clients do not actively notify of a disconnect. However, wireless clients can be
perceived as dead due to power cycling the radio or because they are in transit between

148 Y. Shin, S. Myers, and M. Gupta

APs. DPD determines whether a client is alive or not by waiting for a fixed amount of
time for a reply to a keep-alive query. If there is no response, it disconnects the session,
deletes any associated state and recovers any associated resources.

2.2 IPsec Gateway Failover (IGF)

IPsec Gateway Failover (IGF) [3] is an extension to IKEv2 designed for the fast, near
simultaneous, resumption of a large number of interrupted IPsec connections due to
server failures. It was designed to allow IPsec servers that have failed to quickly reestab-
lish the connections with many clients once the servers are back online. This is done
without needing to re-execute the computationally expensive IKE protocol with each
client. The IGF protocol was not designed with mobility in mind, and we believe we
are the first to recognize its potential application in mobility settings. The main scheme
is based on the stateless TLS session resumption protocol [15].

In IGF, the server sends a (symmetrically) encrypted and authenticated version of its
IKE SA information, called a ticket, to the client. The ticket’s cryptographic keys are
not known to the client; thus, the ticket can only be decrypted or modified by the server.
The client simply stores the ticket and presents it to the server when the client needs
to restore a failed connection, reestablishing the SA. Importantly, all encryption and
authentication of the ticket is done strictly with efficient symmetric key cryptographic
primitives, and thus, in a given time frame, a server can reactivate many more SAs
from tickets, than it could by repeating IKE protocols. Thus, in the scenarios of interest
herein, even if an IPsec server decides that a connection has been severed via the DPD
protocol and deletes the session’s SA, an IPsec session can be re-established via IGF.

2.3 MOBIKE

MOBIKE (IKEv2 Mobility and Multihoming Protocol) [2] is a mobility and multihom-
ing extension to IKE, allowing IP addresses in a previously established SA to change.
Thus, it enables a mobile IPsec client that has already established a SA via IKE or IGF
to keep a connection with a server alive while changing its IP address.

MOBIKE allows mobile IPsec clients who have previously established a SA through
other means, such as IKE or IGF, to change IP addresses while maintaining a con-
nection, instead of requiring the establishment of a new IPsec connection via IKEv2.
However, this protocol works only when both client and server maintain an existing
IPsec connection state. In cases where the connection is lost due to DPD (or some other
reason), MOBIKE cannot be used to resume a client’s IPsec session. In such situations,
MOBIKE can default to IKEv2 or IGF.

We therefore consider three cases relating to MOBIKE i) MOBIKE by itself, where
the state of every client would need to be maintained for each client more-or-less
indefinitely (i.e., we assume DPD is not run and connections live forever); ii) MO-
BIKE+IKEv2 and iii) MOBIKE+IGF, where in the latter two cases it is assumed that
sessions that are inactive for short periods of time (several minutes) are reinitiated with
MOBIKE, but sessions that are inactive for longer periods of time, and thus likely dis-
connected by the server, are resumed through IKEv2 or IGF respectively.

Saving Energy on WiFi with Required IPsec 149

dt0

Wi-Fi on Wi-Fi on

t0 t1 t3

Wi-Fi on

time

case 1

case 2

Traffic

dt
Wi-Fi off

2t

τ
Traffic

dt1 dt2

Fig. 1. Scenarios with WiFi on and off during idle times

3 Power Savings for Session-Resumption Protocols

We develop a deployable mathematical power-saving model for IPsec over WiFi for
different session resumption protocols. Next, we use it to analyze real world wireless
sessions to determine the potential for the power saving schemes. We show that in the
optimal case substantial power savings can be achieved using clairvoyant scheduling.
We realize that such omniscient optimal scheduling is not possible in real life, but if
optimal scheduling does not provide savings there is no potential for a more limited
algorithm. Our results provide an upper bound on potential power savings. Finally, we
present a practical online scheduler that achieves near optimal power-savings.

3.1 Mathematical Model

In Figure 1 we consider two cases. In case 1 the WiFi radio is on from time t0 to
t3 but has a large idle gap between t1 and t2, and therefore could have potentially
been switched off to save power. Equation 1 gives the cost of case 1 for time period
dt0 = t3 − t0, where WiFiM represents the maintenance cost per second of keeping
on the WiFi radio while it is idle.

We are interested in cases in which the WiFi radio is instantly switched off if it were
going to stay idle for some period longer than dtτ , where dtτ represents the minimal
amount of time a radio needs to be off for it to have been cost effective in terms of power
consumption. Note that the power savings have to account for the costs of cycling the
wireless radio off and on, and then reestablish an IPsec connection.

Let WiFiC , IPsecC , WiF iD and IPsecD represent the respective energy costs of
connecting and disconnecting WiFi and IPsec connections, where IPsecC and IPsecD

are dependent on the session resumption protocol in question. Equation 2 calculates the
break-even time, dtτ ′ of switching the wireless radio on and off and resuming an IPsec
session assuming that setting up IPsec and WiFi connections are instantaneous actions.
In reality, there is a time associated with each, call them WiFit and IPsect, and during
that time the device is wasting extra base-line power at a rate of WiFiM to remain on.
So, to truly capture the costs one calculates dtτ , as in Equation 3.

In Figure 1 case 2, we denote the same traffic scenario as case 1, but with a power
saving scheduler. The idle time occurs between t2 and t1, since (t2−t1) > dtτ the IPsec
connection is disconnected and the wireless radio is switched off to save power. At time
t2, the WiFi radio is enabled again as the client needs to use the WiFi connection again.
When the WiFi interface is enabled, the VPN connection needs to be reconnected. We
consider the reconnection costs of the IPsec connection via IKE, MOBIKE or IGF.

150 Y. Shin, S. Myers, and M. Gupta

dtτ idle-time/power savings cross over point
WiFiM idle WiFi maintenance cost per second
WiFiC & WiFiD WiFi startup and shutdown costs
IPsecC & IPsecD IPsec connection and disconnection costs
WiFit & IPsect time to establish WiFi and IPsec connections

dt0 ·WiFiM (1)

dtτ′ =
∑

i∈{C,D}(W iF ii+IPseci)

WiF iM
. (2)

dtτ = dtτ′ + (WiFit + IPsect). (3)∑
i∈{C,D}(WiFii + IPseci) (4)

+(dt1 + dt2) ·WiFiM

The cost of case 2 is given by Equation 4 where dt1 = t1 − t0 and dt2 = t3 − t2. We
do not charge for a user’s network traffic during dt1 and dt2 since they are the same in
both cases. Clearly, whenever Equation 4 is valued strictly smaller than Equation 1, the
power saving scheme is beneficial.

3.2 Patterns in Real-World WiFi Traffic

To investigate how effective radio-cycling power saving schemes can be, we collected
one day of anonymized NetFlow data from Indiana University’s wireless APs. The data
spans 3098 client connections to the wireless APs and contains packet headers, packet
sizes, and timing information for IP packets going through them. For privacy reasons,
the packet headers have source and destination IPs anonymized but port numbers are
intact. In cases where only the start and stop time for a flow of multiple packets is
known, we assume that the packets were distributed evenly over that time. This is a
worst-case assumption that underestimates the potential times the wireless radio can be
deactivated in any schedule. It should be noted that no effort was made to have any of
the clients run any traffic shaping protocols to optimize the amount of time the radio
could be disconnected. The data represents average wireless usage of mobile users at
our University.

In Figure 2 we present two sample idle-time patterns that we collected by subjecting
network traffic generated by a few real-world users using Wireshark. They show the
very different patterns wireless traffic can take for different users. We note that the idle
time between most packets, for almost all users, is well under a minute in each case but
there are large gaps of several minutes between some of the packets of many users’,
as is demonstrated by User 1 in the figure. This implies significant power savings are
conceivable for such users. With the longest gap between packets of User 2 being 21
seconds, power savings are less likely for users with such behavior. Our goal is to save
energy in the cases of users like 1, while not penalizing users with usage patterns similar
to 2.

3.3 Measuring Variables for the Mathematical Model

To estimate power savings with our model, we need to estimate the cost of each vari-
able in Equations 1 & 4. Works in [12, 9, 7] used multimeters to gauge power usage.
Instead, we determine the battery usage by querying the mobile device through the
Linux Advanced Configuration & Power Interface (ACPI) [16]. ACPI is an abstrac-
tion layer that enables OS-directed configuration, power, and thermal management of
mobile, desktop, and server platforms. ACPI does not provide as high a resolution of
energy measurement as multimeters, but it is simpler to measure and it might be argued

Saving Energy on WiFi with Required IPsec 151

0.1

1

10

100

1000

10000

100000

1000000

1

3
9

7
7

1
1
5

1
5
3

1
9
1

2
2
9

2
6
7

3
0
5

3
4
3

3
8
1

4
1
9

4
5
7

4
9
5

5
3
3

5
7
1

6
0
9

6
4
7

6
8
5

7
2
3

7
6
1

7
9
9

8
3
7

8
7
5

of

 O
cc

ur
re

nc
es

Idle Time between Packets (sec)

(a) User 1

0.1

1

10

100

1000

10000

100000

1000000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

of

 O
cc

ur
re

nc
es

Idle Time between Packets (sec)

(b) User 2

Fig. 2. Idle time between packets for two users over an hour period

Table 1. Configuration of machines used for measuring energy usage

Device CPU/RAM Network Connection Operating System

Client Pentium M 1.86Ghz/512M Intel Pro/Wireless 2200bg (802.11g) Linux kernel 2.6.18
Server Pentium IV 1.3Ghz/640M 10Mbps Ethernet Linux kernel 2.6.22

is a more effective tool for evaluating our benefits of power saving scheme, because it
represents the information that a typical operating system, and thus scheduling algo-
rithm, will have to measure power-usage. We use standard laptops to perform energy
measurements. Specifics of the configuration of devices are shown in Table 1.

The resolution of the Linux ACPI measurement may be deemed low due to the fact
that it cannot directly obtain the power usage of each operation independently. This is
due to overhead of the operating system, and other processes running on the machine
during calls to the API. Therefore, we measure the average energy usage over 25 iter-
ations for each of the operations. We measure what the API returns as the differential
between the battery life before and after the operation. Of course, we must normalize
these values to compensate for the fact that there is a base-line power consumption for
each mobile device. Through repeated measurements, we found that the baseline rate
of energy consumption for the laptop was approximately 18Watts when it was on with
the WiFi interface off, and when its LCD’s brightness was set to the highest value. This
baseline power-consumption is needed, since the proposed power saving scheme in-
curs an additional waiting time as the WiFi and IPsec connections are established and
torn-down and one must charge the power-saving schedule for the extra baseline power
consumed during these times. For WiFiM , we measure the energy usages with and
without the WiFi connection for 10 minutes. We conduct this experiment 25 times and
then calculate an average.

We measured the costs of WiFiC & WiFiD and WiFit at six different locations
and APs to determine if the costs depend on the configuration of APs. The locations
include libraries, restaurants, coffee houses, and book stores. The results are shown in
Figure 3. For 5 of the 6 locations the costs of WiFiC & WiFiD were within 46 ±1J
and WiFit was within 2 ±0.5 seconds. An outlying data point, at 61J for WiFiC &
WiFiD and at 4.5 seconds for WiFit, seemed to be due to the fact that there were
many APs with the same Service Set Identifier (SSID) at the location. Elsewhere, there
were many SSIDs, but each was served by only one AP. We assume that 46J for WiFiC
& WiFiD and 2 seconds for WiFit. Unlike the measurements for WiFiC & WiFiD

152 Y. Shin, S. Myers, and M. Gupta

Operations & Steady States Cost

WiFiM 2.29 W
IPsecC & IPsecD with IKE 13.14 J
IPsecC & IPsecD with IGF 9.2 J

IPsecC & IPsecD with MOBIKE 0.40 J
WiFiC & WiFiD 46 J

WiFit 2 seconds

Fig. 3. Energy usages obtained through Linux
ACPI and time for WiFi association with AP

0

10

20

30

40

50

60

70

80

1 10 20

T
h

re
sh

o
ld

 f
o
r
d
t

 (
se

c
)

Number of Clients

IKE IGF MOBIKE

Fig. 4. Changes in threshold dtτ for different
session resumption protocols as the number
of concurrent connections increase

and WiFit, we measured the cost of IPsecC & IPsecD at only one location because
these costs are independent of the WiFi client and its relation to the AP. These measure-
ments were averaged over 25 runs. Lastly for IPsect, we use the latency numbers in
Figure 10. Figure 3 presents the measured values of model variables.

We calculated the threshold value dtτ for IKE, IGF, and MOBIKE as defined by Equa-
tion 3 using the measured values for IPsecC , IPsecD, WiF iC , WiFiD, WiFiM ,
WiFit, and IPsect. The only location dependent values are WiFiC , WiFiD, and
WiFit, and since they do not appear to vary much, dtτ is effectively location invariant.
The value IPsect is dependent on the load on the IPsec server: the higher the server
load, the longer the latency experienced by the client (c.f. Sec. 4). While the client is
latent and waiting for a server response to the IPsec protocol, it pays a cost of energy
at the rate of WiFiM . Figure 4 summarizes the approximate thresholds for each pro-
tocol for 1, 10 and 20 simultaneous clients. As expected, the threshold increases with
the number of clients for all protocols but MOBIKE, which has no real computational
costs.

3.4 Power Savings under Optimal Scheduling

We investigated the optimal power savings for various session-resumption protocols
using the 3098 WiFi traffic logs. We assumed that the scheduler deactivates the wireless
card immediately upon detecting inactivity and invokes it so it is functioning just in time
for a packet to arrive, assuming such power-cycling saves power.

Recall that in our model, power savings depend on dtτ , which in turn depends on
both the number of concurrent connections the server is handling, and the AP that the
user is accessing. We consider three cases where the IPsec server is serving 1, 10, and
20 concurrent connections. We chose 20 as the maximal number of concurrent clients
due to the limitation of the strongSwan software1, which does not permit larger con-
figurations than 20. We consider five variants of session-resumption protocols: i) IKE,
ii) MOBIKE, iii) IGF, iv) MOBIKE+IKE and v) MOBIKE+IGF. With the hybrid pro-
tocols iv) and v) we assume that MOBIKE is used to resume sessions that are idle for

1 strongSwan is an open source IPsec implementation for Linux.

Saving Energy on WiFi with Required IPsec 153

0

~ 10

~ 20

~ 30

~ 40

~ 50

~ 60

~ 70

~ 80

~ 90

~ 99.99

 0 20 40 60 80 100

%
 E

ne
rg

y
S

av
in

g
du

rin
g

Id
le

 P
er

io
ds

CDF of Connections (%)

IKE
IGF

MOBIKE
MOBIKE with IKE
MOBIKE with IGF

Fig. 5. Energy savings for real-world WiFi
sessions under optimal scheduling with dif-
ferent session-resumption protocols

Wi-Fi on Wi-Fi on

t0 t1 t3
time

Traffic

dt
Wi-Fi off

2t

i

dt1 dt2

tc

dtc
Wi-Fi on

Fig. 6. Idle-time scenario for the prediction
algorithm

less than 2 minutes and then the alternate protocol (IKE or IGF respectively) is used
otherwise. We chose 2 minutes as it is the default disconnect time for the DPD protocol
in strongSwan. To compute model variables for hybrid cases, we use the appropriate
IPsecC , IPsecD, and IPsect dependent on the protocol for session resumption.

In the case where the VPN server is handling 20 concurrent session-resumption re-
quests, we note that 78% of WiFi connections reap some benefits of power savings.
The differences among the various session-resumption protocols is shown in Figure 5.
The cumulative distribution function (CDF) of the percentage of connections that reap
energy savings is given. As expected, MOBIKE has the best performance but this is
under the unrealistic assumption that the DPD protocol never terminates sessions. DPD
is in fact used to release sessions specifically so servers do not become overwhelmed
reserving resources for dead connections. However, when MOBIKE is combined with
IGF (and DPD), we get only slightly worse performance than MOBIKE by itself. We
skip presenting the results for 1 and 10 concurrent clients for brevity but note that as
the number of concurrent clients drops to one, the CDFs for all of the protocols cluster
close to the MOBIKE curve.

3.5 A Real-World Scheduler

Having shown that optimal scheduling permits potentially great energy savings, we
now provide a simple prediction algorithm that uses a user’s previous network usage
history to predict future network usage requirements, and to decide if and when the
radio should be power-cycled. When the radio is on but idle we estimate the probability
that the tentative remaining idle time is longer than dtτ , the minimal time period the
radio can be off to save power. If the estimated probability is higher than a given pre-
defined threshold α, the radio is power-cycled. In cases where there is no historical
data yet, say during device initiation, the protocol uses a threshold value determined by
calculating the average of users’ history on our real world data traces. We re-enable the
WiFi radio only when the client again attempts to send a packet. This can result in lost

154 Y. Shin, S. Myers, and M. Gupta

0.5

0.6

0.7

0.8

25

30

35

40

0.5
0.6

0.7
0.8

 %
 E

n
er

g
y

S
av

in
g

 d
u

ri
n

g
 Id

le
 P

er
io

d
s

(a) IKE

0.5

0.6

0.7

0.8

25

30

35

40

0.5
0.6

0.7
0.8

 %
 E

n
er

g
y

S
av

in
g

 d
u

ri
n

g
 Id

le
 P

er
io

d
s

(b) MOBIKE with IGF

Fig. 7. Average energy savings for 100 WiFi sessions using worst and best session-resumption
protocols under varying α and β

tc current time
mtc # of idle periods in user history where length≥ dtc.
ntc # of idle periods in user history where length minus dtc ≥ dtτ .
mavg tc # of idle periods in average user’s history where length≥ dtc.
navg tc # of idle periods where length minus dtc ≥ dtτ .

Ptc = ntc/mtc (5)

Pavg tc = navg tc/mavg tc (6)

Ptc > α (7)

Pavg tc > β (8)

incoming packets if the WiFi radio is off. We consider two scenarios: i) all such packets
are lost, and ii) the IPsec server acts as a proxy for basic networking protocols.

To help demonstrate the scheduler operation, we depict a scenario in Figure 6. Here,
an idle time starts at time t1. The current time is tc, and we must make a decision as to
whether or not to power-cycle the radio. The prediction algorithm estimates the prob-
ability, Ptc that the tentative remaining idle time dti will be longer than dtτ , based on
historical network usage patterns. If the estimated probability is greater than a threshold
value α the WiFi is turned off.

The probability, Ptc can be calculated in Equation 5. When it is greater than a thresh-
old, α in Equation 7, the WiFi radio is turned off. One issue with the proposed scheme
is that if a user’s network usage history does not contain any idle period whose length
is longer than at least dtτ , Ptc is always 0. For this case, we adopt a probability, Pavg tc

calculated from average users’ network usage history in Equation 6. Thus, when Ptc

is 0, the algorithm checks if Pavg tc is greater than a threshold, β in Equation 8. The
values are tabulated by taking into account all of the network trace-data we have, minus
100 traces we have randomly chosen and separated to use for independent performance
evaluation.

Scheduler Performance. To evaluate the scheduler, we chose 100 different sessions in
our wireless traces uniformly at random. We also calculated the average users’ network-
usage history from all the sessions excluding the 100 test sessions. We simulate α and
β with values 0.5, 0.6, 0.7, and 0.8, where the greater value the more conservative our
power-saving is. In Figure 7, we present the average energy savings for worst (IKE) and
second-best (IGF+MOBIKE) of the resumption protocol we considered. MOBIKE has
the best savings, but the need to keep an unlimited number of sessions open is unrealistic

Saving Energy on WiFi with Required IPsec 155

 0

 20

 40

 60

 80

 100

-70 <
-60 <
-50 <
-40 <
-30 <
-20 <
-10 <
0 < 10
< 20
< 30
< 40
< 50
< 60
< 70
< 80
< 90
< 99.99

C
D

F
 o

f C
on

ne
ct

io
ns

 (
%

)

% Energy Saving during Idle Periods

IKE
IGF

MOBIKE
MOBIKE with IKE
MOBIKE with IGF

(a) α = 0.8, β = 0.5

 0

 20

 40

 60

 80

 100

-70 <
-60 <
-50 <
-40 <
-30 <
-20 <
-10 <
0 < 10
< 20
< 30
< 40
< 50
< 60
< 70
< 80
< 90
< 99.99

C
D

F
 o

f C
on

ne
ct

io
ns

 (
%

)

% Energy Saving during Idle Periods

IKE
IGF

MOBIKE
MOBIKE with IKE
MOBIKE with IGF

(b) α = 0.5, β = 0.8

Fig. 8. CDF of percentage energy savings under the history-based scheduling with different re-
sumption protocols

and thus discounted as a potential protocol. As α increases, the average savings decrease.
This means that the conservative prediction misses energy-saving opportunities based on
user’s historical usage patterns. In contrast, as β increases (the threshold based on aver-
age user’s data), better average savings are achieved. This is because an average users’
network-usage history does not reflect each user’s usage accurately and the conservative
prediction avoids false positives.

In Figure 8, we show the percentage energy savings with different resumption pro-
tocols when α and β are 0.8 and 0.5, and 0.5 and 0.8 respectively. In Figure 8a, When
β is 0.5 , less than 15% of users actually spend more energy due to such false positives
in the prediction. However, when β is 0.8 in Figure 8b, only around 2% of users spend
less than 10% more energy under IKEv2 protocol. We get the best energy saving results
with α = 0.5 and β = 0.8. The prediction algorithm achieves energy savings that are
within 3.5% difference from the optimally-scheduled case. That is, it achieves over 90%
of the maximum energy savings which can be obtained in the optimal scheduling.

Estimating dtτ : The scheduler needs access to several measured values. The measured
energy usage values in Figure 3 are relatively constant and can be embedded in to the
client. On the other hand dtτ depends on the IPsec server’s load. To estimate an effec-
tive dtτ , the client should be able to approximate the server’s current load. However, it
makes the client implementation too complicated for the client to measure and maintain
such server’s response time. Instead, the IPsec server can efficiently measure statistics
on the number of concurrent clients it serves over time and broadcast this information
to the clients. For example, the server can generate semi-hourly statistics estimating its
loads based on previous usages on previous days and send them to the client when the
client establishes an IPsec connection to the server for the first time each day. How-
ever, the estimates might be off, resulting in over- or under-estimates due to sporadic
or unusual activities at the server. Thus, it is crucial to investigate what effect a false

156 Y. Shin, S. Myers, and M. Gupta

40

40.5

41

41.5

42

42.5

43

43.5

44

44.5

45

1 10 20

Av
er

ag
e

%
 E

ne
rg

y
Sa

vi
ng

 d
ur

in
g

Id
le

Pe

rio
ds

Estimated Number of Clients

1 10 20
Actual Number of Clients

Fig. 9. Average energy savings on real-world
WiFi session for potential misestimation of
the number of concurrent clients in MO-
BIKE+IGF

 0

 1

 2

 3

 4

 5

 6

 7

 0 2 4 6 8 10 12 14 16 18 20

La
te

nc
y

in
 C

lie
nt

s
(s

ec
)

Number of Clients

IKE
IGF

MOBIKE

Fig. 10. Client latencies for various session
resumption protocols

estimation of dtτ would have on the energy savings or costs for the client. Figure 9
shows the effects of such false estimation. Due to space restrictions, we show only
IGF+MOBIKE, which can be seen to be fairly immune to poor estimation of dtτ . This
is because an approximate threshold value for dtτ changes very slowly in IGF as the
number of concurrent clients is changed (Figure 4). Further, in MOBIKE, it is almost
invariable.

Efficiently Computing Variables for the Scheduler: In practice a network card could
not keep track of a data-structure that maintained all historical idle-times longer than
dtτ , and then compute Ptc on the fly. However, in practice there are only two issues one
cares about i) the value of tc for which Ptc = α, as a network card can just wait until it
is idle for such a time tc, and then power-off the radio; and ii) how to determine the new
value tc such that Ptc = α when a new idle period longer than dtτ is recorded. This can
be done by discretizing time, and making a set of buckets, one for each discrete time
interval. We have a counter for each bucket to represent the number of idle-times whose
length fell in to the interval defined by the bucket. When a new idle time of length t is
processed, we increment the bucket corresponding to t.

We must simultaneously keep track of which bucket has the α · N th element (and
thus which bucket corresponds to the time interval tc for which Ptc = α). For purposes
of example let α = 0.5. We need to keep track of the bucket containing the median.
This is done by keeping an index to the current bucket containing the median, the size
of that bucket, and the position within that bucket of the median. If a new idle length
is put in a smaller (larger) bucket than the median bucket, the relative position in the
bucket is increased (decreased resp.) by one. If the new idle length goes in the same
bucket as the median, then its index is increased by 1/2 and the bucket size is increased
by 1. Should the index go below 0, or above the bucket-size, the median is moved to the
next bucket and the process repeated.

Saving Energy on WiFi with Required IPsec 157

0

20

40

60

80

100

120

140

160

0

10

20

30

40

50

60

70

80

90

100

of

 M
is

si
ng

 C
as

es

Ra
te

 (%
)

Sessions

missing rate
missing rate w/ proxy
energy saving rate
of missing cases
of missing cases w/ proxy

Fig. 11. Comparative depiction of energy sav-
ings and missed packets in the 100 test
sessions

 50

 60

 70

 80

 90

 100

 0 20 40 60 80 100 120

P
er

ce
nt

ag
e

of
 S

es
si

on
s

(C
D

F
)

Number of False Positives per Session

alpha=0.8, beta=0.5
alpha=0.5, beta=0.8

Fig. 12. CDF for false positives per session

False Negatives & Positives: It is important to calculate the false positives (missed
opportunities to cycle the radio) and false negatives (the radio is power-cycled, but
incoming packets are dropped) of our scheduler. Due to space limitations, we provide
these for the MOBIKE+IGF scheduler only. The false positive rate is quite low and
depicted in missed power-cyclings per session in Figure 12, with 90% of the sessions
have fewer than 10 false positives. This leaves little room for improvement.

Since the radio is only power-cycled back on when the client sends packets, incom-
ing packets can be lost. They are the false negatives. We consider two scenarios: i) all
missed packets are simply dropped, and ii) the IPsec server acts as a simple proxy re-
sponding for the client to simple network protocols that do not actually need the client’s
presence. Specifically, it responds to DHCP, DNS, and MICROSOFT-DS. Such proxies
have been well studied when used at AP’s [11], but their use must be incorporated in
to the IPsec server due to the encrypted traffic. In Figure 11 we show the results. We
clearly see that 60% of users suffer no dropped packets in scenario i), and 70% of users
suffer no dropped packets in scenario ii) with the proxy. Without specific packet infor-
mation in the traces, it is impossible to determine how important the missed packets
were in the 30% to 40% of cases we missed at least one packet. However, it suggests
that a simple user-interface can be devised that allow users to quickly switch from an
energy-saving mode of IPsec to a performance mode, where users can quickly decide
if they want power-savings. In such scenarios, users can default to power-savings, and
if they notice performance issues they can toggle the device to an alternate mode. We
consider more advanced schedulers as future work.

4 Comparison of Performance of IPsec Session-Resumption
Protocols

We evaluate and compare the performance of the IGF, IKE and MOBIKE protocols,
from both the server and client perspectives, as the number of concurrent connections
that are actively trying to be established (or re-established) increases. This comparison

158 Y. Shin, S. Myers, and M. Gupta

Table 2. Configuration of machines for multiple client connection measurements

Device CPU/RAM NIC Operating System

Server 2.8Ghz, 2G 100Mbps Linux kernel 2.6.25
Client 1-20 3.2Ghz, 2G 100Mbps Linux kernel 2.6.18

not only provides the first performance data on concurrent use of the IGF protocol, it
also provides essential validated data on which to base the mathematical power saving
model in Section 3.

4.1 Methodology

We implemented the IGF protocol as an extension to strongSwan [17], which is an
open source IPsec implementation for Linux. StrongSwan already implements tradi-
tional IKE and its extension MOBIKE. For our evaluation, we use two different versions
of strongSwan: 4.2.4 for IPsec clients and 4.1.8 for an IPsec server2.

For the experiments, we used twenty one x86 Dell Optiplex GX Pentium IV ma-
chines which were connected through Ethernet switches. Table 2 shows their specifi-
cations. To observe the effects of connection (re)initiation on an overloaded server, we
chose an inferior hardware configuration for our server so it was easier to stress. Al-
though the measured latencies include message transfer times over the network, such
factors are not important for comparisons between different server loads as the commu-
nication costs stay essentially constant. This is because the network is far from capacity,
while the computational load of the server increases. We perform experiments over the
wired network to obtain (nearly) constant latencies. For IKE security settings, we used
a 2048-bit RSA key and a 128-bit AES key, a minimum requirement in today’s security
contexts. We considered cases of multiple clients simultaneously (re)connecting to the
IPsec server. We report average latency over 25 independent experiments.

4.2 Performance Evaluation

Figure 10 gives average client latencies for up to 20 concurrent connections in IKE,
IGF, and MOBIKE respectively. In the case of IKE and IGF, the data points represent
latencies incurred when concurrent connections are being formed or reformed respec-
tively. In the case of MOBIKE, we see latencies involved in updating the IP address
associated with a client without establishing a new session. MOBIKE incurs the least
latency. This is expected since MOBIKE needs to only update the client IP address and
does not perform any cryptographic operations, symmetric or asymmetric. Its very low
overhead enables the latency to stay essentially constant irrespective of the number of
concurrent clients. As a result of avoiding computationally expensive asymmetric key
cryptographic operations, the latency of IGF is also almost half that of IKE when only
a single client is connecting to the server. But the gap between IKE and IGF increases

2 We tested various versions of strongSwan between 4.1.8 and 4.2.5. However, only the given
combination allowed up to 20 simultaneously initiating clients.

Saving Energy on WiFi with Required IPsec 159

with the number of concurrent clients. This data shows that re-connection through IGF
easily outperforms IKE, with increasing performance benefits as the number of simul-
taneously initiating clients increases.

The server side processing times of the IPsec server for concurrent IPsec client con-
nections are not shown due to space constraints. However, as expected, they are nearly
identical to client latencies, but with tighter variance due to the lack of noise in the net-
work measurements. The processing times were measured by computing the difference
between time-stamps of the first network message to arrive from a client to the end of
last operation of the protocol for said client.

5 Related Work

A formal security analysis of IGF and a evaluation of the performance of a prototype
implementation is presented in [18]. The authors simulate a large number of connec-
tions with file transfer, as opposed to actual concurrent connections. Hence, the evalua-
tion does not effectively demonstrate the performance of IGF and IKE with concurrent
clients.

For fast IPsec reconnections, work in [19] introduced zero address-set functional-
ity (ZASF) for MOBIKE. ZASF allows a mobile client with a predicted long idle
period to notify the IPsec server that it will temporarily disable its radio. The server
acknowledges, and temporarily disables all related IPsec states, concurrently dropping
any packets destined to the client. This approach is similar to our approach (excluding
our proxy), but further requires indefinitely Security Association storage for each of
its clients and requires the disabling of DPD and the enabling of a local policy which
terminates connections that are disabled for too long of a period. The IPsec server must
also store all associated SA state information for all clients that are asleep. Our scheme,
in comparison would use IGF to recover from sessions terminated by DPD, and no SA
state information need be stored at the server when clients are disabled.

[20] proposes a scheme to transfer an IPsec connection state through Context Trans-
fer Protocol (CXTP) [21] when a mobile IPsec client needs to connect to a different
gateway due to changes in physical and thus network location. This scheme does not
consider the case where the initial gateway does not maintain an IPsec connection due
to transient connections on mobile clients. It therefore does not deal with mobile clients
as we consider herein.3

[22] extends Multi-Layered IPsec (ML IPsec) [23] to support mobility by integrating
ML IPsec with Mobile IP as presenting an efficient key distribution protocol between
Foreign Agents (FA) for Mobile IP. However, they do not discuss the issues in building
trust between FAs managed by different organizations; furthermore, they do not support
a fast IPsec reconnection after relatively long absence in network.

A number of research papers, such as [10], present a technique to effectively utilize
power saving mode (PSM) in the 802.11 WiFi standard [8] to reduce radio energy us-
age by clients. The work of [10] presents a scheme in which PSM can effectively be

3 In cases where both servers are for the same organization and implicitly trust each-other,
then by having a common secret keys between servers, IGF could resume sessions between
gateways.

160 Y. Shin, S. Myers, and M. Gupta

used to save time and energy costs by switching power modes. However, this work as-
sumes that each network application will provide somewhat accurate predictions about
its network usage. Based on the predictions the scheme decides when to activate the
PSM. However, due to non-trivial power consumption and inefficiencies of the PSM it-
self, [12,9,7] propose different power saving strategies that turn off the WiFi interface
when it is not used, and concurrently activate a lower power/lower bandwidth radio.
This radio is used to signal the activation of the WiFi radio when there is traffic to be
communicated. The work of [9] utilizes Bluetooth as the low power radio not only
for activating a WiFi connection, but also for low bandwidth data transfer where WiFi
is not needed. However, the power saving schemes in [12, 9, 7] require a dual access
point as an infrastructure, making incremental deployment difficult. Furthermore, none
of them have considered the effect on the connection-oriented security protocols such
as IPsec.

A number of research papers [11] have considered using proxies at APs to allow APs
to drop or respond to traffic that is destined for sleeping clients. In the IPsec scenario,
such proxies must be at the IPsec server, since the AP would be unable to read the
encrypted packets.

6 Conclusions

Our results show the clear and practical potential for energy savings on mobile devices
through power cycling the wireless radio, even in the presence of mandatory IPsec con-
nections. While IPsec allows some energy savings, servers that handle many clients do
much better when they consider more appropriate protocols. While using MOBIKE by
itself, without dead-peer detection (DPD), gives the best potential savings, this scenario
seems rather unlikely to be practical in large organizations due to the potentially large
state and committed resources a server would need to maintain with many clients. For
large organizations, MOBIKE+IGF hybrid represents a close second in terms of perfor-
mance, even when a server needs to continuously handle multiple concurrent session
resumptions. In fact, a simple implementation of our scheduling algorithm achieves
extremely rare energy-penalties, but over 50% of network sessions could save 20% or
more of their wireless energy costs for idle times! Further, the algorithm performs nearly
optimally in terms of potential energy savings. Simple modifications to the servers to
broadcast estimates on their load, and clients to predict when they power-cycle their
radios are relatively easy to implement in either hardware or software.

References

1. Kaufman, C.: Internet Key Exchange (IKEv2) Protocol. RFC4306 (December 2005)
2. Eronen, P.: IKEv2 Mobility and Multihoming Protocol (MOBIKE). RFC4555
3. Sheffer, Y., Tschofenig, H., Dondeti, L., Narayanan, V.: IPsec Gateway Failover Protocol.

draft-sheffer-ipsec-failover-04.txt (July 2008)
4. Palumbo, S., Dyer, N.: Maximizing Mobile Worker Productivity. Yankee Group Research,

Inc. (January 2008)
5. Kent, S., Seo, K.: Security Architecture for the Internet Protocol. RFC4301 (2005)

Saving Energy on WiFi with Required IPsec 161

6. Housley, R.: Using Advanced Encryption Standard (AES) CCM Mode with IPsec Encapsu-
lating Security Payload (ESP). RFC4309 (December 2005)

7. Agarwal, Y., Schurgers, C., Gupta, R.: Dynamic power management using on demand paging
for networked embedded systems. In: Asian and South Pacific Design Automation Confer-
ence, ASP-DAC (2005)

8. IEEE Computer Society: Wireless LAN medium access control (MAC) and physical layer
(PHY) specifications. IEEE Standard 802.11, 1999 Edition (1999)

9. Pering, T., Agarwal, Y., Gupta, R., Want, R.: CoolSpots: Reducing the Power Consumption
of Wireless Mobile Devices with Multiple Radio Interfaces. In: ACM MobiSys (2006)

10. Anad, M., Nightingale, E.B., Flinn, J.: Self-Tuning Wireless Network Power Management.
In: ACM MobiCom (2003)

11. Nedevschi, S., Chandrasheka, J., Liu, J., Nordman, B.: Skilled in the art of being idle: Re-
ducing energy waste in networked systems. In: ACM/USENIX Symposium on Networked
Systems Design & Implementation, NSDI (2009)

12. Shih, E., Bahl, P., Sinclair, M.J.: Wake on Wireless: An Event Driven Energy Saving Strategy
for Battery Operated Devices. In: ACM MobiCom (2002)

13. Harkins, D., Carrel, D.: The Internet Key Exchange (IKE). RFC2409 (November 1998)
14. Huang, G., Beaulieu, S., Rochefort, D.: A Traffic-Based Method of Detecting Dead Internet

Key Exchange (IKE) Peers. RFC3706 (February 2004)
15. Salowey, J., Zhou, H., Eronen, P., Tschofenig, H.: Transportation Layer Security (TLS) Ses-

sion Resumption without Server-Side State. RFC4507 (May 2006)
16. Linux/ACPI project: Linux ACPI, http://www.lesswatts.org/projects/acpi
17. strongSwan project: strongSwan, http://www.strongswan.org/
18. Tegeler, F.: Security analysis, prototype implementation, and performance evaluation of a

new IPSec session resumption method. Master’s thesis, University of Goettingen (2008)
19. Kivinen, T., Tschofenig, H.: Design of the IKEv2 Mobility and Multihoming Protocol

(MOBIKE). RFC4621
20. Allard, F., Bonnin, J.M.: An application of the context transfer protocol: IPsec in a IPv6 mo-

bility environment. Int’l. Journal of Communication Networks and Distributed Systems 1(1)
(2008)

21. Loughney, J., Nakhjiri, M., Perkins, C., Koodli, R.: Context Transfer Protocol (CXTP).
RFC4067 (July 2005)

22. Choi, H., Song, H., Cao, G., Porta, T.L.: Mobile multi-layered IPsec. In: IEEE Infocom
(March 2005)

23. Zhang, Y., Singh, B.: A multi-layer IPsec protocol. In: USENIX Security Symposium (Au-
gust 2000)

http://www.lesswatts.org/projects/acpi
http://www.strongswan.org/

Transparent Protection of Commodity OS Kernels
Using Hardware Virtualization

Michael Grace1, Zhi Wang1, Deepa Srinivasan1, Jinku Li1, Xuxian Jiang1,
Zhenkai Liang2, and Siarhei Liakh1

1 Department of Computer Science, North Carolina State University
2 School of Computing,

National University of Singapore

Abstract. Kernel rootkits are among the most insidious threats to computer se-
curity today. By employing various code injection techniques, they are able to
maintain an omnipotent presence in the compromised OS kernels. Existing pre-
ventive countermeasures typically employ virtualization technology as part of
their solutions. However, they are still limited in either (1) requiring modifying
the OS kernel source code for the protection or (2) leveraging software-based vir-
tualization techniques such as binary translation with a high overhead to imple-
ment a Harvard architecture (which is robust to various code injection techniques
used by kernel rootkits). In this paper, we introduce hvmHarvard, a hardware
virtualization-based Harvard architecture that transparently protects commodity
OS kernels from kernel rootkit attacks and significantly reduces the performance
overhead. Our evaluation with a Xen-based prototype shows that it can transpar-
ently protect legacy OS kernels with rootkit resistance while introducing < 5%

performance overhead.

Keywords: Virtualization, Harvard Architecture, Split Memory.

1 Introduction

Kernel rootkits are among the most insidious threats to computer security today. Em-
bedding themselves within the operating system kernel, these rootkits enjoy unfettered
access to the entire system and adopt various techniques to make themselves stealthy
and “sticky,” thus preventing them from being detected and removed. Given the effec-
tiveness of this approach, it is not surprising that there has been explosive growth in the
number of new rootkit families over recent years [2,4].

Kernel rootkit countermeasures have attracted a commensurate amount of attention
in the research community. In particular, there are two main categories of existing ef-
forts. The first category aims to detect the rootkit presence by looking for abnormalities
or symptoms of rootkit infection. For example, Copilot [28] uses a special PCI card to
grab a memory image of the kernel and then scans for any possible manipulation of
kernel code or system-critical data structures. The follow-up efforts [29,30] extend it to
detect any violation from semantic specifications of static and dynamic kernel data or

S. Jajodia and J. Zhou (Eds.): SecureComm 2010, LNICST 50, pp. 162–180, 2010.
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2010

Transparent Protection of Commodity OS Kernels Using Hardware Virtualization 163

deviation from the normal kernel control flow graph. However, these systems by design
are all based on detecting rootkits after they have already installed themselves in the
kernel.

In contrast, the second category strives to prevent rootkit infection in the first place
by enforcing some security property. For example, SecVisor enforces a W⊕X property
on kernel memory pages. The W ⊕X property states that a given memory page can be
either writable or executable, but not both at the same time. W⊕X enforcement is com-
plicated by legacy OS kernels that contain mixed kernel pages with both code and data
[20,21,22]. To handle such pages, SecVisor modifies the kernel source code to make the
OS kernel memory layout conform to the W ⊕ X property. From another perspective,
NICKLE [31] takes a software virtualization (i.e., binary translation) approach to emu-
late a Harvard architecture on x86, which essentially creates a separate memory space
to reliably store authorized kernel code. By transparently redirecting kernel instruction
fetches to the separate memory space, NICKLE is able to support unmodified kernels
and guarantee their kernel code integrity, which effectively defeats most existing rootk-
its. However, from another perspective, the presence of a dedicated code memory and
the need for transparent redirection of kernel instruction fetches require intercepting
and redirecting every single kernel instruction execution, which unfortunately causes
significant performance overhead [31].

In this paper, we introduce hvmHarvard, a hardware virtualization-based Harvard
architecture on x86 that can not only transparently support commodity OSs without
modification, but also effectively reduce the performance overhead. Specifically, we
observe that the high performance overhead of implementing software-based Harvard
architecture is mainly caused by instruction-level interception and redirection (of kernel
instruction fetches) to the code memory. As such, we propose page-level redirection in
hvmHarvard so that the performance overhead can be significantly reduced without
unnecessarily sacrificing the security guarantee.

There are two main challenges involved in changing from instruction-level redirec-
tion to page-level redirection of kernel instruction fetches. The first one comes from the
fact that x86 is not designed to support the Harvard architecture. To address that, we
make an unconventional use of split code and data TLBs on x86 in combination with
recent hardware-based tagged TLB support [3]. In particular, with separate code and
data TLBs, we can dynamically adjust the page table to virtualize the Harvard archi-
tecture on top of x86 (so that code and data each have its own memory address space).
The tagged TLB support is essential here as it avoids flushing the code/data TLBs in
a virtualized environment (e.g., VM exits – Section 3.1), thus allowing the hypervisor
to safely intervene and manipulate the guest page table in use for the Harvard archi-
tecture creation. With the separation of code memory and data memory, our Harvard
architecture can naturally handle the mixed code and data pages in commodity OS ker-
nels while still strictly enforcing W ⊕ X . In the meantime, we also observe that the
majority of existing kernel memory pages are not mixed. As a result, there is no need
for hvmHarvard to keep a shadow copy of these pages, nor does it need to intervene on
instruction fetches from them. By doing so, no processing overhead will be incurred on
these pages and no extra memory space will be wasted, as they no longer need to be
shadowed [31].

164 M. Grace et al.

The second challenge stems from the need to perform mode-sensitive page-level redi-
rection since we are interested in redirecting kernel instruction fetches only. In other
words, we need to first determine the current running mode and then decide whether
the corresponding instruction fetch should be redirected or not. This imposes a strict re-
quirement to intercept every mode-switching event (e.g., including system calls) in the
redirection logic. Intercepting these events at the hypervisor will cause significant per-
formance overhead. Our solution to this problem involves altering the guest’s view of
memory at each privilege level (or mode): all of user memory becomes non-executable
when a process is executing at the kernel mode, and vice versa. For brevity, we call this
a mode-sensitive view (Section 3.2). During the normal operation of the guest, hvmHar-
vard does not intercept and mediate the change between different views of memory. In-
stead, our system injects trampoline code to switch between these two views of memory
upon the mode-switching event inside the guest. The trampoline mechanism leverages
an Intel hardware virtualization extension called the CR3 Target Value List (Section 3.2)
to avoid being trapped by the hypervisor and to achieve better performance.

We have implemented a Xen[9]-based proof-of-concept prototype. The prototype
can transparently support a number of commodity systems including legacy Red Hat
8.0 (with a Linux 2.4.18 kernel) and recent Ubuntu 9.04 (running Linux 2.6.30-5). Our
evaluation shows that our system is effective in preventing eight kernel attacks (includ-
ing six real-world rootkits and two synthetic attacks) against legacy OS kernels that do
not have the W ⊕X support. Such protection is achieved with only a small performance
overhead (i.e., < 5%). To summarize, our paper has the following contributions:

– We propose a hardware virtualization-based Harvard architecture to effectively pro-
tect commodity OS kernels from kernel rootkit attacks. Compared with existing ap-
proaches, our system can not only achieve a similar protection guarantee, but also
significantly reduce the performance overhead suffered by previous approaches.

– The first key technique in our approach is page-level redirection of instruction
fetches, which departs from prior efforts that perform instruction-level redirection.
Our technique significantly reduces the performance overhead in the creation of the
Harvard architecture on top of x86.

– The second key technique enables mode-sensitive redirection by redirecting only
kernel instruction fetches. In this way, we can effectively avoid hypervisor inter-
vention in the guest’s mode-switching events. As these events occur frequently in-
side the guest, this technique also contributes to reducing the overall performance
overhead.

– Finally, we present a Xen-based system prototype. The evaluation results with the
prototype confirmed the practicality and effectiveness of our approach.

The rest of the paper is structured as follows. We briefly describe necessary background
on the Harvard architecture and hardware virtualization in Section 2. Our system design
and implementation are then presented in Section 3 and Section 4, respectively. After
that, we present the evaluation results in Section 5, which is followed by the discussion
on possible limitations and their improvement in Section 6. Finally, we discuss related
work in Section 7 and conclude our paper in Section 8.

Transparent Protection of Commodity OS Kernels Using Hardware Virtualization 165

2 Background

In this section, we briefly review some key concepts that are essential to our system
but may be unfamiliar to some readers: the Harvard architecture and shadow paging in
virtualization. Readers with sufficient background can safely skip this section.

2.1 Harvard Architecture

Modern computers use a single address space to refer to working memory. This model
of memory is commonly known as the von Neumann architecture. Interestingly, some
of the very earliest computers used two utterly separate working memories, one for
instructions and one for data. This arrangement is known as the Harvard architecture
(Figure 1). In a pure Harvard architecture machine, data accesses and instruction ac-
cesses are treated as accessing totally distinct address spaces. From a security stand-
point, this addressing scheme eliminates code injection attacks. For example, some
buffer overflow attacks use an overlong memory copy operation to overwrite memory
that will be executed as code. A pure Harvard architecture machine is not vulnerable
to this class of attacks, as their addressing scheme does not allow code and data to be
referred to interchangeably.

This work focuses on a widely deployed processor family, x86, which has a unified
address space for main memory and is thus a von Neumann architecture. However, x86
processors typically have separate caches for instructions and data. When executing
from cache, the processor behaves like a Harvard architecture machine1. Only when
main memory must be consulted, does x86 look like a von Neumann architecture. This
observation is the foundation of our page-level redirection technique for the creation of
the Harvard architecture on top of x86 (Section 3.1).

Fig. 1. The Harvard architecture

VA
GPA

Guest CR3

MA
Real CR3

Virtual Machine

Hardware

Guest Page Table

Shadow Page Table

Synchronize

Fig. 2. Guest page table vs. shadow page table

2.2 Virtualization and Shadow Paging

Virtualization involves running a guest operating system in an environment that pro-
vides the illusion of complete access to a physical machine. All the resources used
to construct such an illusory machine constitute a Virtual Machine (VM), while the

1 This hybrid architecture is known as a modified Harvard architecture; many processors with
the caching feature use such an arrangement today.

166 M. Grace et al.

software that maintains one or more VMs is known variously as a hypervisor or a Vir-
tual Machine Monitor (VMM). The hypervisor is commonly considered to be part of
Trusted Computing Base (TCB) as it is strictly isolated from the VMs it manages and
is often much smaller than modern operating systems.

There are several ways to virtualize a guest operating system. Since our work is
based on hardware virtualization, we focus on its operation here. In particular, based
on certain processor extensions, hardware virtualization operates a “trap-and-emulate”
model. When a guest OS wishes to perform a privileged operation, the hardware has two
options: either it can handle the request based on the processor extension for hardware
virtualization, or if that is not possible, it can pass control to the hypervisor for handling.
Handling the latter case constitutes a goodly portion of the hypervisor’s workload and
is typically an involved process.

Shadow paging is one such example. To better describe it, we first review how mem-
ory management works on an un-virtualized machine. Recall that x86 supports two
memory protection mechanisms: segmentation and paging. They protect memory in a
similar way by essentially permitting a higher-privilege piece of software to put blinders
on a lower-privilege program, thus restricting its view of memory to only those things
it is supposed to be able to access. Since segmentation support is being phased out in
the new 64-bit long mode, we focus on the paging protection mechanism. In essence,
paging uses page translation tables, or page tables for short, to remap memory for a
given process. Virtual addresses are translated into physical addresses by these tables.
These tables are also used by the hardware to enforce certain permissions policies (e.g.,
NX [1]) on the types of accesses allowed.

Virtualization has not changed this picture of the process; it has merely added another
layer underneath it. By leveraging paging, the hypervisor divides the machine’s memory
into distinct logical machine memories. The guest OS in a VM then treats the memory
it is given in the traditional way, dividing it up between the applications running in
the guest. Under hardware virtualization, however, the OS itself does not know the
real machine addresses that make up its allotted memory. With shadow paging, the
hypervisor solves this problem by introducing an extra layer of indirection. In particular,
a shadow table is created for a guest and maintained in the hypervisor. An unsuspecting
guest OS kernel is allowed to maintain its own page tables, but they are not actually
used by the hardware. Instead, the hypervisor marks these guest page tables read-only.
Any attempt to write to them therefore generates a page fault, which is trapped by the
hypervisor. The hypervisor, in turn, emulates the write request, eventually outputting
the equivalent entry into the “real” page table used by the hardware. The guest can
never see this real page table, which is assiduously kept synchronized with the one it
can see – thus the name “shadow page table.”

This arrangement is illustrated graphically in Figure 2. In the diagram, a virtual ad-
dress (VA) is translated through both the guest’s and the hardware’s page tables. The
guest’s page tables eventually lead to a guest physical address (GPA) – the address the
guest thinks of as being a hardware address. The shadow page tables instead translate
the same virtual address into the real machine address (MA). The tables are kept syn-
chronized by the hypervisor; this synchronization is represented by the dotted lines in
the figure.

Transparent Protection of Commodity OS Kernels Using Hardware Virtualization 167

3 Design

In this work, we aim to develop a hardware virtualization-based Harvard architecture
that can efficiently support unmodified legacy OS kernels and protect them from kernel
rootkit attacks. Specifically, the presence of two distinct memory spaces for code and
data in a Harvard architecture is useful for blocking code injection attacks and enforcing
the W ⊕X property. In this work, we propose to take a step further by enforcing mode-
sensitive W ⊕ X , also known as W ⊕ KX . Due to our focus on OS kernel protection,
W ⊕KX requires that a user-level memory page will not be executable from the kernel
mode and vice versa. Commodity hardware by default allows the execution of user-
level memory pages at kernel privilege, which opens up “interesting” opportunities for
kernel rootkit infection. As our defense, W ⊕KX is proposed to effectively block this
infection vector.

Threat Model and System Assumption. In this paper, we assume an adversary model
where attackers or kernel rootkits are able to exploit software vulnerabilities in an OS
kernel to launch code injection attacks. Accordingly, we also assume kernel rootkits
have the highest privilege level inside the victim VM (e.g., the root privilege in a UNIX
system) and have full access to the VM’s memory space (e.g., through /dev/mem
in Linux). However, the goal of a kernel rootkit is to stealthily maintain and hide its
presence in the victim system; to do so, it will need to execute its own (malicious) code
in the kernel space. We note that such a need exists in most kernel rootkits today, and
we will discuss possible exceptions in Section 6.

Guest virtual address

 data memory

Applications

Other memory accesses Guest kernel instruction fetch

 code memory

Auth. kernel code

Auth. kernel code

Xen hypervisor

Guest OS

Guest VM

kernel data

kernel data

kernel data

Page−level, mode−sensitive redirection

Fig. 3. Page-level mode-sensitive redirection enables an ef-
ficient implementation of the Harvard architecture on top of
x86

In the meantime, our sys-
tem assumes a trustworthy
hypervisor as the necessary
trusted computing base (TCB)
to provide strict VM isolation.
This assumption is shared
by many other hypervisor-
based security research efforts
[13,14,17,25,43] and be-
ing hardened by existing
hypervisor-protection solu-
tions [26,41]. We will discuss
possible attacks (e.g., VM
escape) in Section 6. With
this assumption, we consider
the threat from layer-below
attacks launched from physical
hosts outside of the scope of
this work.2

2 There exists another type of layer-below or specifically hardware DMA attack that is initiated
from within a guest VM. However, since the hypervisor itself virtualizes or mediates guest
DMA operations, recent hardware support for IOMMU can be readily adopted to intercede
and block them. Therefore, we do not consider them in this paper.

168 M. Grace et al.

3.1 Page-Level Redirection for W ⊕ X

The central scheme of our approach is to efficiently create a Harvard architecture (Fig-
ure 3) on x86 by virtualizing one memory space for code and another for data. To
achieve our goal, we observe the presence of separate TLBs for instruction fetches and
data accesses. Note that each TLB entry caches the translation result from a virtual ad-
dress to a physical address. When a memory access or an instruction fetch occurs, the
virtual address lookup will go through the corresponding TLB first. Should that TLB not
contain an entry for the requested translation (called a TLB miss), the hardware walks
through the page table entries in main memory to do the lookup, then constructs such
an entry. As a result, from the TLB’s perspective, the hardware itself thinks in terms of
two address spaces. However, in normal operation, these address spaces are kept syn-
chronized and thus describe a unified memory space. Fortunately, to our benefit, there
is no hardware requirement that this must be the case. In other words, to emulate a pure
Harvard architecture, we can take advantage of these two TLBs by desynchronizing
and loading them with two different page table entries for the same virtual address, thus
creating two distinct memory spaces for code and data.

Unfortunately, the de-synchronization of these two TLBs is a delicate process, which
is complicated by the fact that a TLB entry has a relatively limited lifespan. First, the
TLBs are not large enough to cache all translation results at the same time, which means
that older entries are eventually overwritten by newly-requested translations. Second,
when an OS kernel either alters a page table or switches address contexts, these caches
are implicitly flushed. Third, x86 provides very few instructions for interacting with
the TLBs. In fact, after enabling the paging mode, the provided instructions are mainly
used for removing one or all entries from both TLBs, which means the only way for
us to populate a TLB entry will be by performing an address translation that eventually
winds up in that cache.

To deal with the above challenges, we need to effectively intercept the hardware’s
attempts to re-populate TLBs. In particular, for the virtual addresses of interest, when
there is a TLB miss, the hardware consults the page table and checks the permission bits
of the entry it loads. If those permissions are violated, a page fault (or #PF) exception
will be thrown. When there is a TLB hit, the cached entry’s permissions are directly
checked without consulting the page table. As a result, in the case of a TLB miss, we
need to carefully prepare the page table in a way that will load the desired translation
results as well as related permissions into respective TLBs.

There are three permission bits that can cause useful faults: the USER bit, the
PRESENT bit and the NX bit. The USER bit only faults when a user-mode instruction
fetch references a kernel page. With our focus on kernel protection, we are not inter-
ested in using this bit. The PRESENT bit, if not set, traps any access – which would
lead to many expensive world switches. The NX bit causes a fault on any instruction
fetch from pages with this bit set. In our system, we naturally leverage the NX bit.

In particular, to use the NX bit to cause one virtual address to map to two context-
sensitive memory pages, we map the address to its data memory page and set its NX bit.
If execution branches to an address within the page, the page fault handler substitutes
its entry to code memory page and clears the NX bit. In order to load the entry into
the instruction TLB (ITLB), the page fault handler must allow the guest to execute an

Transparent Protection of Commodity OS Kernels Using Hardware Virtualization 169

Algorithm 1. TLB de-synchronization algorithm
Input: Redirected Page Address (addr), Page table Entry for addr (pte)

/* handling NX-based page fault */ ; /* handling TF-based fault */ ;
pte = the code page (addr); pte = the data page (addr) ;
set trap flag (); unset trap flag ();
return to guest (); return to guest ();

instruction using this entry. However, once the code page entry has been loaded, the
system needs to regain control to restore the map back to the data memory page. If this
is not done, the data TLB (DTLB) may wind up being populated with the code page
entry, routing data reads to the code page and thus violating the Harvard architecture.
Note that the code page entry is marked as read-only and there is no way to cause a
page to be executable yet not readable on the x86 architecture.

To ensure that the page table is restored to the corresponding data entry as soon
as possible, our design relies on the x86 single-step execution feature. Specifically, by
setting the trap flag (or TF) of the EFLAGS register, the processor will generate an
exception after every instruction. This feature allows us to execute one instruction, and
then restore the data page entry in the TF handler. The process is shown in pseudo-code
in Algorithm 1.

In this way, our design can populate the ITLB with one record and DTLB with an-
other record without interfering each other. Here, we point out that if by trapping the
execution of a guest VM to the hypervisor, a VM exit (or VMEXIT) occurs. In some pro-
cessors, VM exits will flush the TLBs, which defeat our purpose of de-synchronizing
TLBs. In our prototype, we leverage a hardware feature called tagged TLB [3] that is
available in all recent hardware-virtualized AMD processors as well as Intel processors
based on the new Nehalem architecture. This hardware feature essentially adds an extra
field or an identification “tag” to each TLB entry that specifies the VM context within
which the entry is valid. When a VM exit occurs, these entries will not be flushed. More
details about our system will be presented in Section 4.1.

3.2 Mode-Sensitivity for W ⊕ KX

By effectively creating a Harvard architecture on x86, our page-level redirection tech-
nique is able to enforce W⊕X while accommodating mixed kernel pages in commodity
OS kernels. However, the W ⊕ X enforcement is still insufficient due to the need to
block the execution of user-level pages from the kernel level. In other words, we need
to enforce a stronger W ⊕ KX policy. As mentioned earlier, this is necessary as com-
modity OS kernels disallow the access of kernel memory pages from user mode, but do
permit the execution of user memory pages from kernel mode.

To elaborate on this, the x86 architecture has two related concepts in this vein: the
USER page table permission bit and the Current Privilege Level (CPL) bits in the CS
register. The CPL simply determines what instructions are valid – including access right
checking on instruction fetches. The most-privileged CPL (or ring 0 where the kernel
runs) has all the capabilities of the least-privileged CPL (or ring 3 where user-level
applications run). Therefore, while it is illegal for a program executing at the ring 3

170 M. Grace et al.

privilege to access kernel space, it is perfectly acceptable for a ring-0 kernel to branch
its execution to user space.

With W ⊕KX , we aim to define a new Kernel eXecute (KX) mode of operation. In
this mode, instruction fetches only succeed if the privilege level of the machine matches
the privilege level of the page table entry. In other words, if USER is cleared for a page
table entry, it is only executable at CPL=0, and when USER is set, it is only executable
at CPL=3.

To achieve this, we propose maintaining two shadow page tables instead of one in
the normal situation: one for user-privilege (or mode) execution and one for kernel-
privilege execution. Each has theNX bit set for the opposite privilege’s pages. A straight-
forward approach would require the hypervisor to intervene and swap the shadow page
table upon every mode switch, from user to kernel and vice versa. Unfortunately, this
scheme would induce a large number of costly VMEXITs – two for every system call.
To reduce this overhead, note that modern processors introduce special instructions –
sysenter/sysexit to enable fast transfers between user and kernel. As these instruc-
tions use registers to point to the entry point of the system call handler, by redirecting
that register to our trampoline code, we can handle a large number of mode switches in
a performance-efficient fashion. More specifically, our approach leverages a hardware
feature known as the “CR3 Target Value List.”[5] This feature is designed to allow a hy-
pervisor to whitelist a set of expected CR3 values: when a guest changes CR3 to one of
these values, the hypervisor is not consulted, saving a significant number of cycles that
would be wasted on a world switch. In our prototype, our system injects a trampoline
into the guest that simply switches page tables upon each mode switch, before the actual
OS system call handler is invoked. Similarly, we use this trampoline to switch the page
tables again before the system call handler returns back to user mode.

We assert that this optimization does not harm the W ⊕ KX security guarantee
offered by our system. Specifically, the trampoline code is located on a page that the
hypervisor prevents the guest from modifying. Also, if the guest invokes the trampo-
line code in an unintended way, it will always wind up either transferring control to
the sysenter/syscall handler or executing the corresponding return instruction.
From the OS kernel’s perspective, the W ⊕ X property is not violated. More detailed
discussion will be presented in Section 6.

Finally, it is worth mentioning that our system follows the same steps proposed in
NICKLE to support loadable kernel modules (LKMs) [31]. In particular, we simply
verify the hash signature of such drivers (and the main kernel) when they are being
loaded. For example, for Linux kernels, we leverage the fact that the kernel’s module
loader calls the init()method of a module when it is being loaded. As this will cause
a page fault due to our page-redirection technique, we can check the instruction pointer
(IP register) to see if it matches an address within the kernel’s module loader. If it
does, the system can locate the module definition structure and use that information to
determine how to verify the module. Falsifying the module structure information would
inevitably result in a hash signature inconsistent with the trusted version of the module,
causing the falsified module to be simply rejected by our system. Note that we do not
need to modify the guest operating system; our system simply needs to know how to
find the information it needs in the guest operating system’s memory. Such knowledge

Transparent Protection of Commodity OS Kernels Using Hardware Virtualization 171

can be provided in a number of ways, e.g., either directly compiled into the hypervisor,
loaded in the VM’s metadata or indirectly hinted to the hypervisor from a hypercall
within the VM.

4 Implementation

We have developed a proof-of-concept prototype on top of Xen 3.3.1, targeting fully-
virtualized 32-bit legacy guests running under a 32-bit PAE hypervisor. Our develop-
ment was tested against a Red Hat 8.0 image (running a Linux 2.4.18 kernel) and an
Ubuntu 9.04 image (running a Linux 2.6.30-5 kernel). Our development machine had a
Core i7-930 Nehalem processor with recent hardware virtualization support. Our cur-
rent prototype only supports a single virtual CPU for one guest and the support of SMPs
are left to future work. In the following, we present additional implementation details
for the two key techniques in our approach.

4.1 Page-Level Redirection

As mentioned earlier, our scheme virtualizes a pure Harvard architecture machine on
x86 by using a hypervisor to desynchronize the processor’s TLBs. Naturally, our pro-
totype mainly deals with various particulars of the x86 paging mechanism and related
TLB operations. In particular, our experience indicates that there is a strong correla-
tion between the frequency with which the TLBs must be fixed up and the performance
overhead of the system as a whole. Note the process of de-synchronizing or splitting a
page’s TLB entries is a costly operation. Each time a page needs to be split, there are
two associated VMEXITs: one caused by the NX-based page fault to populate the ITLB,
and another from the single step fault handler to populate the DTLB. Because of that, it
is critical to avoid generating these events if possible.

In our prototype, we implement an optimization that is akin to the traditional copy-
on-write (COW) technique. Recall that one main purpose of our system is to ensure
W ⊕ X . As such, if some kernel pages in commodity OSs are already amenable for
W ⊕ X enforcement, we can simply enforce it without needing to create two separate
copies (one for code and one for data) in the first place. By doing so, we can not only
avoid allocating additional memory spaces in storing copies, but also reduce the number
of VMEXITs that would otherwise be needed to maintain the separate presence of code
and data copies.

To further elaborate that, consider the impact of splitting a kernel page3. If the kernel
page is never used as code, the additional overhead will be incurred when generating
and maintaining the two copies, though there is little or no performance impact. How-
ever, if the kernel page is never used as data, then we will be splitting the page every
time it is executed and the translation is not cached in the ITLB (or already flushed
from the ITLB). As mentioned earlier, this process will involve the hypervisor and
cause VMEXITs, resulting in a high performance overhead.

3 Xen’s concept of kernel pages can be different than the guest OS’. For example, Xen does not
internally use 2M or 4M “superpages”; if the guest OS allocates these, Xen treats them as a
large number of normal 4K pages.

172 M. Grace et al.

In ourprototype, to determine the livenessofakernelpage,weperform basic reference-
counting and dynamically track the number of times a given kernel page is referenced
by the guest’s page tables. In addition, by counting the number of writable mappings to
a given kernel page, our system can intelligently choose not to split the page if that count
is zero. In this way, we can further avoid unnecessary VMEXITs for better performance.

4.2 Mode-Sensitivity Support

To make the page-level redirection mode-sensitive, we implement two shadow pages ta-
bles: one for guest user-mode and another for guest kernel-mode. As a result, every time
the guest OS wishes to make a change to its page tables, the hypervisor intercepts the
change and synchronizes it with the two shadow pages. As synchronization will require
the hypervisor to walk through the shadow page tables and make the corresponding
hardware-visible change, the presence of two shadow page tables will double the cost
of synchronization. To reduce the cost, our prototype opts to interleave two page tables;
this allows a single walk through them to find both entries related to a particular page
table update. Specifically, for each page table bifurcated in this way, twice the normal
amount of memory for shadow page tables is allocated. The low-order version of the
page table is used for the guest kernel mode, and the high-order version is for the guest
user mode. With that, one walk is needed to find the location to alter, followed by a
privilege-level check that determines which changes to make and where to look for the
second copy of that page.

Hardware CR3

Level 2

Level 1

Top−level

Level 2
Top−level

User−mode page table

Kernel−mode page table (USER−>NX)

Fig. 4. Two shadow page tables: the user-mode page table and the
kernel-mode page table share the same level-1 entries, but not top-
level and level-2 entries

With the two shadow
page tables in place,
our prototype further
takes another optimiza-
tion. Considering the
fact that page tables are
laid out in a layered hi-
erarchy, we can trade
granularity for ease of
updating, simply by hav-
ing two distinct top-
level page tables map
down to the same set of
level-1 page tables (see
Figure 4). The top lev-
els of the page table are
not altered as frequently as the lower levels are, leading to disproportionately less up-
date overhead. They are also smaller (as there are fewer such top-level entries), leading
to less cache pressure when compared to the case where all entries had to be maintained
separately. Using a 32-bit Linux guest as an example, the Linux kernel occupies the top
one gigabyte of address space. As the shadow page tables are 32-bit PAE tables, this
neatly corresponds to one of the four top-level entries. Though the top-level entries do
not have the NX permission bit, we can maintain two sets of the level-2 page tables
instead that have the NX permission bit.

Transparent Protection of Commodity OS Kernels Using Hardware Virtualization 173

Table 1. Effectiveness of our system

Rootkit Attack Vector Prevented? Result
adore-ng 0.56 LKM Yes Module fails to load

superkit /dev/kmem Yes Crashes
mood-nt 2.3 /dev/kmem Yes Crashes

sk2rc2 /dev/kmem Yes Crashes
eNYeLKM 1.2 LKM Yes Module fails to load

Phalanx b6 /dev/mem Yes Crashes
synthetic-1 LKM Yes Module fails to modify itself
synthetic-2 LKM Yes insmod crashes

Afterwards, the two shadow pages will be switched based on the current running
mode of the guest VM. In our prototype, we hook the handler for the sysenter in-
struction (by detouring the corresponding Model Specific Register or MSR content) to
capture the user-to-kernel mode switch. Similarly, we also detour the sysexit execu-
tion by performing a kernel-to-user switch. We point out that such detouring happens
inside the guest context with a trampoline without involving the hypervisor, thus avoid-
ing unnecessary VMEXITs. However, from another perspective, our prototype can still
function properly without hijacking them because the hypervisor will simply step in
and switch page tables itself, though at a lower pace.

An astute reader may observe that the trampoline code will essentially change CR3,
the page table base address register. Changes to CR3 will typically be trapped by the
hypervisor. Fortunately, a recent hardware feature, i.e., the CR3 Target Value List, al-
lows our page table switch without being trapped by the hypervisor if the new CR3
value is on the target value list. However, the CR3 update is still considered a context
switch, which unfortunately causes an unnecessary TLB flush – purging any split entries
from the instruction TLB. Interestingly, the related level-1 page table entries contain a
GLOBAL bit that can prevent a TLB flush from purging a particular entry.

There is a subtle issue in the interplay between the CR3 Target Value List and the
GLOBAL bit. By definition, the hypervisor is not alerted if CR3 is changed to a value on
the list. Likewise, if a split entry in the TLB is not purged, the page tables will not be
consulted upon an instruction fetch to its virtual address. Therefore, if our user-mode
CR3 value is loaded from a page that is marked GLOBAL, execution could branch to
user land while still at high privilege! Fortunately, there are only two ways that CR3
can take a new value: via hardware task switching (ltr) or through the explicit assign-
ment (mov cr3, <general register>). Hardware task switching is not used
by either Windows or Linux.4 For the more common mov cr3 operation, we ensure
that the instruction pointer, after a mov cr3, <register> operation, will always
point to a virtual address that does not map to a TLB entry with the GLOBAL bit set.
To assure that, we can scan each page as it is being split, ensuring that the opcode for
this dangerous operation does not occur. In other words, we look for that string of bytes

4 Note that even if it is used, the ltr operation acts on tables that are privileged and hard-
ware virtualization allows for trapping the ltr operation. In other words, we can still prevent
hardware task switching from breaking our W ⊕ KX guarantee.

174 M. Grace et al.

throughout the split page. If it is found, the split code will ensure that upon every in-
sertion to the ITLB, that split page’s entry will not have the GLOBAL permission bit
set.5

5 Evaluation

To test the effectiveness of our prototype, we run six real-world rootkits and two syn-
thetic exploits (both violate W ⊕ KX) against a default Ubuntu 9.0.4 system. These
attacks were selected as representative of the infection vectors used by existing ker-
nel rootkits. In every case, our system was able to defeat the infection and protect the
system. In the following, we present details of two representative experiments.

Mood-NT Rootkit Experiment. Some rootkits install themselves by directly writing
to mixed pages in kernel memory. In this experiment, the mood-nt rootkit [31] uses the
/dev/kmem interface to access kernel memory through the file system. Specifically,
the rootkit uses the interface to copy its resident logic into kernel memory, and then
overwrites function pointers to hijack the kernel’s control flow.

When the test system is protected under our prototype, code injection appears to
work fine as the injected content is directly written into the data page. However, when
one of the rootkit’s function pointers is called, our page-level redirection technique
immediately causes the resulting instruction fetch to a code page, not the data page
that contained the injected content. As a result, instead of fetching the rootkit’s code,
the processor attempts to execute whatever is in the code page, eventually leading to a
crash in our experiment.

Synthetic Attacks. In this experiment, we intentionally play with the W ⊕ KX pro-
tection by redirecting kernel control flow to user-space code. Since we do not have
a rootkit sample that was developed in this way, we simply synthesize an attack that
would execute user code at kernel privilege.

Specifically, we implemented a branch-to-userspace exploit as a loadable kernel
module. In the module’s initialization function, we create a pointer to an address within
insmod’s address space. This address in user space contains an instruction sequence
that copies the top of the stack into EBX and then returns. Therefore, after successfully
executing it, EBX should equate to EIP. Running under hvmHarvard, the execution
faults to the hypervisor when the first user instruction is fetched. From the page fault
handler, it reports the fault as a NX violation and relays it to the guest OS kernel, which
then terminates the insmod process.

Performance Overhead. To evaluate the impact on system performance, we have per-
formed benchmark-based measurements. In particular, we use two application-level
benchmarks and one microbenchmark to evaluate the system. They are (1) a normal

5 Note that there are a few corner cases worth mentioning. The mov cr3, <register>
instruction is translated to 0f 22 d? in machine code. If the split page ends neatly with 0f
22 d?, then it would put the instruction pointer onto the next page, whose GLOBAL property
is uncertain. Fortunately, that case does not occur in the Linux kernels we have examined. Such
a special case can also be handled upon insertion into the TLB, by proactively re-populating
the next page’s TLB entry as ¬GLOBAL.

Transparent Protection of Commodity OS Kernels Using Hardware Virtualization 175

Table 2. Software configuration for performance evaluation

Item Version Configuration
Ubuntu 9.0.4 Using Linux 2.6.30
Apache 2.0.59 Using the default high-performance configuration file
Kernel 2.6.30 Standard kernel compilation
ApacheBench 2.0.40-dev ab -c3 -t 60 <url/file>
LMbench 3.0alpha Using the default configuration

compilation of the Linux 2.6.30 kernel, (2) network throughput test on the Apache web
server using the ApacheBench [8], and (3) a standard system benchmark toolkit called
LMbench [24]. Our tests were performed on a Dell Optiplex, which runs the Ubuntu
8.04 system and has an Intel Core i7-920 (2.66GHz) CPU and 4GB RAM. The guest
VM runs Ubuntu 9.04 with Linux kernel 2.6.30-5 and 1GB of memory. For compari-
son, we run the guest VM on Xen 3.3.1 twice, with and without protection. The software
configuration for our evaluation is shown in Table 2. The benchmark programs were run
ten times and averaged. Our results are shown in Table 3.

Table 3. Application benchmark results. For make, lower is better; for Apache, higher is better.

Benchmark Without protection with protection Overhead
make kernel 41.289 s 43.312 s 4.9%
ApacheBench 11728.68 req/s 11497.24 req/s 2.0%

In our first application benchmark, we compiled our guest VM’s kernel with the com-
mand ‘make kernel‘, using time to measure how long the process took. The sys-
tem under protection takes 44.275 seconds to complete, which is 4.9% longer than the
compilation time in an unprotected system. In our next application benchmark, we set
up an Apache [7] web server. The ApacheBench program, ab, was run against a small
(15K) html file on that server. We then collected the network throughput and the re-
sults show a 2.0% slowdown. We also evaluated our system with LMbench [24], which
is a micro-benchmark for OS kernel performance. The tasks include process creation,
basic arithmetic operations, context switching, file system operation, local communica-
tion, and memory latency. Among these results, the maximum overhead of our system
is 4.70% when doing context switching. The overhead comes from updating the CR3
Target Value List that is used for later switching of the two shadow page tables. Other
tasks such as performing basic arithmetic or floating-point operations incur the lowest
overhead, which is nearly zero.

6 Discussion

In this section, we discuss several issues related to our system. First, our goal here is to
efficiently create a Harvard architecture on x86 and enable W ⊕ KX for kernel code
integrity protection. As a result, our system is not able to protect the kernel control-flow
integrity. In other words, an attacker could possibly launch a “return-into-libc” style
attack or the so-called return-oriented attack [10,16,37] within the kernel by leveraging

176 M. Grace et al.

only the existing authenticated kernel code. Fortunately, solutions exist for protecting
control flows [6,15,30,42] and data flow integrity [11] for user-level applications, which
could be potentially extended to complement our system for kernel protection.

Second, as with existing systems for kernel code integrity, our current implemen-
tation does not support self-modifying kernel code. This limitation can be removed
by intercepting the self-modifying behavior (e.g., by trapping and validating the self-
modification behavior) and re-authenticating and updating the kernel code in the code
memory after the modification.

Third, our system currently does not support kernel page swapping. Linux does not
swap out kernel pages, but Windows does have this capability when under heavy mem-
ory pressure. Supporting kernel page swapping would require intercepting swap-out and
swap-in events and ensuring that the page being swapped in has not been maliciously
tampered with.

Fourth, hvmHarvard cannot take advantage of the hardware-assisted paging mecha-
nisms built into modern AMD and Intel processors [3,5]. These schemes do not require
the hypervisor to intervene when the guest wishes to alter its page table (as in shadow
paging), resulting in superior performance. Unfortunately, our page-level redirection
scheme requires page table updates be registered with the hypervisor. Consequently,
further work would be required to adapt our scheme to use hardware-assisted paging.

Finally, we point out that our scheme assumes a trustworthy hypervisor to enforce
W ⊕KX . This assumption is needed because it essentially establishes the root-of-trust
of the entire system and secures the lowest-level system access. We also acknowledge
that a VM environment can potentially be fingerprinted and exploited [18,33] by attack-
ers. Fortunately, recent solutions on hypervisor protection [19,23,41] can be employed
to thwart these attacks. Also notice that as virtualization continues to gain popularity,
the concern over VM detection may become less significant as attackers’ incentive and
motivation to target VMs increase.

7 Related Work

Kernel Rootkit Detection. A number of systems have been proposed to detect the
presence of kernel rootkits. Some of them passively validate kernel code and examine
kernel data for signs of infection. For example, System Virginity Verifier [34] validates
the integrity of the Windows instance that it runs within. As running inside a compro-
mised operating system is dangerous, Copilot [28] copies operating system memory
onto a PCI card for analysis by a dedicated co-processor. Further extensions allow it
to detect breaches of kernel data semantic integrity [29] and state-based control flow
integrity [30]. Strider GhostBuster [40] and VMwatcher [17] aim to look for discrep-
ancies between an internal and external view of a system to detect the hiding behavior
from rootkits.

Recently, Lares [27] and its in-VM equivalent, SIM [38], attempt to create secure
kernel hooks that can be used to monitor system events. In particular, SIM is capable of
installing hooks into a virtualized guest that run code safely without hypervisor inter-
vention. SIM uses the same Intel CR3 Target Value List feature that our work does, but
uses it to create a safe introspection environment instead of a new paging feature as in
our system.

Transparent Protection of Commodity OS Kernels Using Hardware Virtualization 177

Kernel Rootkit Prevention. Rather than detecting rootkits already resident in an OS
kernel, other systems attempt to protect the kernel from being infected in the first place.
Livewire [14] is among the first in using virtualization techniques for this purpose,
though the system mainly focuses on the protection of static kernel code and data struc-
tures. SecVisor [36] is a small security hypervisor that aims to securely enforce a W⊕X
guarantee over memory but it requires modifying the OS kernel for the support. In other
words, it is not able to support legacy OSs such as Redhat 8.0. Also note that SecVisor
implemented a similar KX paging mode, but its shadow page table implementation uses
a single page table per process, which leads to considerable performance overhead [36].
Instead, our approach proposes two page tables. Further, with the CR3 Target Value List
hardware virtualization feature, our system allows a guest running under our system to
switch between these two page tables without hypervisor intervention. In the same vein,
NICKLE [31] aims to protect the integrity of the kernel code with a software-based
implementation of the Harvard architecture. The software implementation is based on
instruction-level redirection, which has a high performance overhead. In comparison,
our approach proposes a page-level, mode-sensitive redirection that substantially re-
duces the performance overhead.

More recently, Overshadow [12] is another related system. Its basic premise is that
the kernel cannot be trusted with sensitive user data, even if it is not compromised or ac-
tively malicious. Like our system, Overshadow captures the mode-switching changes to
alter the view of memory inside a protected VM. However, the differences are twofold:
(1) First, our system switches between user and kernel page tables on each mode switch
but do not attempt to encrypt user memory pages. In comparison, Overshadow makes
the user memory appear encrypted to the operating system kernel, yet acts as normal
when at user privilege; (2) Second, the goal of our system is to protect the kernel from
malicious user applications while Overshadow does the exact reverse.

In addition to these techniques, there have been attempts to use lightweight virtual
machines in place of processes. For example, the Qubes [35] operating system uses Xen
to manage AppVMs each containing an application and a small Linux environment.
AppVMs are treated analogously to processes, instead of as full-on virtual machines:
functions such as storage and networking are handled centrally in dedicated, hardened
virtual machines. While the isolation guarantees from such methods are potentially very
strong, they are not a drop-in solution for legacy systems, due to their radically different
interface.

TLB Manipulation. Finally, the presence of separate TLBs has been recognized and
exploited in other contexts for different applications. For example, Wurster et al. [44]
proposes using different ITLB and DTLB mappings to attack self-checksumming code.
Almost simultaneously, Sparks and Butler [39] shows a rootkit prototype called Shadow
Walker that could elude existing detection using the de-synchronized TLB. Later, Rosen-
blum et al. [32] demonstrates a system that used a modified version of Xen to instrument
a tamper-resistant process within a VM. While the version of Xen used is unclear, it ap-
pears that their system operated on para-virtualized guests. In contrast, our system is
mainly concerned with fully-virtualized guests and aims to defeat existing kernel rootk-
its. To the best of our knowledge, no other system has exploited recent hardware virtual-
ization features to efficiently implement the Harvard architecture on x86, including the

178 M. Grace et al.

use of tagged TLBs to manipulate the TLBs of a guest from outside as well as the unique
hardware feature of the CR3 Target Value List.

8 Conclusion

In this paper, we present hvmHarvard, a hardware virtualization-based, efficient im-
plementation of the Harvard architecture on top of x86. The Harvard architecture has
two memory spaces (one for code and one for data) and is thus inherently robust to
code injection attacks employed by most existing kernel rootkits. Different from prior
efforts in using the instruction-level redirection to virtualize the Harvard architecture,
our approach proposes a page-level, mode-sensitive scheme to achieve the same goal
but with a significantly reduced performance overhead. We have implemented a Xen-
based prototype. Our evaluation shows that it allows for transparent support of legacy
OSs (without modification) as the guest and protects them from existing kernel rootkit
attacks with a small performance overhead (< 5%).

Acknowledgments. The authors would like to thank the anonymous reviewers for their
numerous, insightful comments that greatly helped improve the presentation of this pa-
per. This work was supported in part by the US Army Research Office (ARO) under
grant W911NF-08-1-0105 managed by NCSU Secure Open Systems Initiative (SOSI)
and the US National Science Foundation (NSF) under Grants 0852131, 0855297,
0855036, 0910767, and 0952640. Any opinions, findings, and conclusions or recom-
mendations expressed in this material are those of the authors and do not necessarily
reflect the views of the ARO and the NSF.

References

1. W∧X, http://en.wikipedia.org/wiki/W_xor_X
2. Rootkit Numbers Rocketing UP, McAfee Says (2006),

http://news.cnet.com/2100-7349_3-6061878.html
3. AMD Virtualization (AMD-V) Technology (2009),

http://sites.amd.com/us/business/it-solutions/usage-models/
virtualization/Pages/amd-v.aspx

4. Cooperation Grows in Fight Against Cybercrime (2010),
http://www.avertlabs.com/research/blog/index.php/category/
rootkits-and-stealth-malware/

5. Intel 64 and IA-32 Architectures Software Developers Manual, Volume 3B: System Pro-
gramming Guide (2010),
http://www.intel.com/assets/pdf/manual/253669.pdf

6. Abadi, M., Budiu, M., Erlingsson, U., Ligatti, J.: Control-Flow Integrity Principles, Imple-
mentations, and Applications. ACM Transactions on Information and System Security 13(1),
1–40 (2009)

7. Apache Http Server Project, http://httpd.apache.org/
8. ab - Apache Benchmarking Tool,

http://httpd.apache.org/docs/2.2/programs/ab.html
9. Barham, P., Dragovic, B., Fraser, K., Hand, S., Harris, T.L., Ho, A., Neugebauer, R., Pratt,

I., Warfield, A.: Xen and the Art of Virtualization. In: SOSP 2003: Proceedings of the 19th
ACM Symposium on Operating Systems Principles, pp. 164–177. ACM, New York (2003)

http://en.wikipedia.org/wiki/W_xor_X
http://news.cnet.com/2100-7349_3-6061878.html
http://sites.amd.com/us/business/it-solutions/usage-models/virtualization/Pages/amd-v.aspx
http://sites.amd.com/us/business/it-solutions/usage-models/virtualization/Pages/amd-v.aspx
http://www.avertlabs.com/research/blog/index.php/category/rootkits-and-stealth-malware/
http://www.avertlabs.com/research/blog/index.php/category/rootkits-and-stealth-malware/
http://www.intel.com/assets/pdf/manual/253669.pdf
http://httpd.apache.org/
http://httpd.apache.org/docs/2.2/programs/ab.html

Transparent Protection of Commodity OS Kernels Using Hardware Virtualization 179

10. Buchanan, E., Roemer, R., Shacham, H., Savage, S.: When Good Instructions Go Bad: Gen-
eralizing Return-Oriented Programming to RISC. In: CCS 2008: Proceedings of the 15th
ACM Conference on Computer and Communications Security, pp. 27–38. ACM, New York
(2008)

11. Castro, M., Costa, M., Harris, T.: Securing Software by Enforcing Data-Flow Integrity. In:
OSDI 2006: Proceedings of the 7th Symposium on Operating Systems Design and Imple-
mentation, pp. 147–160. USENIX Association, Berkeley (2006)

12. Chen, X., Garfinkel, T., Lewis, E.C., Subrahmanyam, P., Waldspurger, C.A., Boneh, D.,
Dwoskin, J., Ports, D.R.: Overshadow: A Virtualization-based Approach to Retrofitting Pro-
tection in Commodity Operating Systems. In: ASPLOS XIII: Proceedings of the 13th Inter-
national Conference on Architectural Support for Programming Languages and Operating
Systems, pp. 2–13. ACM, New York (2008)

13. Dunlap, G.W., King, S.T., Cinar, S., Basrai, M.A., Chen, P.M.: ReVirt: Enabling Intrusion
Analysis Through Virtual-Machine Logging and Replay. In: OSDI 2002: Proceedings of the
5th Symposium on Operating Systems Design and Implementation, pp. 211–224. ACM, New
York (2002)

14. Garfinkel, T., Rosenblum, M.: A Virtual Machine Introspection Based Architecture for In-
trusion Detection. In: Proceedings of the Network and Distributed Systems Security Sympo-
sium, pp. 191–206 (2003)

15. Grizzard, J.B.: Towards Self-Healing Systems: Re-establishing Trust in Compromised Sys-
tems. Ph.D. thesis, Georgia Institute of Technology (2006)

16. Hund, R., Holz, T., Freiling, F.C.: Return-Oriented Rootkits: Bypassing Kernel Code In-
tegrity Protection Mechanisms. In: Security 2009: Proceedings of the 18th USENIX Security
Symposium (2009)

17. Jiang, X., Wang, X., Xu, D.: Stealthy Malware Detection through VMM-based “Out-of-the-
Box” Semantic View Reconstruction. In: CCS 2007: Proceedings of the 14th ACM Confer-
ence on Computer and Communications Security, pp. 128–138. ACM, New York (2007)

18. Klein, T.: ScoopyNG (2010), http://www.trapkit.de/research/vmm/scoopyng/
19. Kortchinsky, K.: Honeypots: Counter Measures to VMware Fingerprinting (2004),

http://seclists.org/lists/honeypots/2004/Jan-Mar/0015.html
20. Liakh, S., Jiang, X.: [2/4,tip:x86/mm] Set First MB as RW+NX (2010),

https://patchwork.kernel.org/patch/90048/
21. Liakh, S., Jiang, X.: [3/4,tip:x86/mm] NX Protection for Kernel Data (2010),

https://patchwork.kernel.org/patch/90046/
22. Liakh, S., Jiang, X.: [4/4,tip:x86/mm] RO/NX Protection for Loadable Kernel Modules

(2010), https://patchwork.kernel.org/patch/90047/
23. Liston, T., Skoudis, E.: On the Cutting Edge: Thwarting Virtual Machine Detection (2006),

http://handlers.sans.org/tliston/
ThwartingVMDetection Liston Skoudis.pdf

24. LMbench - Tools for Performance Analysis (1998),
http://www.bitmover.com/lmbench/

25. Lombardi, F., Di Pietro, R.: KvmSec: A Security Extension for Linux Kernel Virtual Ma-
chines. In: SAC 2009: Proceedings of the 2009 ACM Symposium on Applied Computing,
New York, NY, pp. 2029–2034 (2009)

26. Murray, D.G., Milos, G., Hand, S.: Improving Xen Security through Disaggregation. In: VEE
2008: Proceedings of the 4th ACM SIGPLAN/SIGOPS International Conference on Virtual
Execution Environments, pp. 151–160. ACM, New York (2008)

27. Payne, B.D., Carbone, M., Sharif, M.I., Lee, W.: Lares: An Architecture for Secure Active
Monitoring Using Virtualization. In: Oakland 2008: IEEE Symposium on Security and Pri-
vacy (S&P 2008), pp. 233–247. IEEE Computer Society, Los Alamitos (2008)

http://www.trapkit.de/research/vmm/scoopyng/
http://seclists.org/lists/honeypots/2004/Jan-Mar/0015.html
https://patchwork.kernel.org/patch/90048/
https://patchwork.kernel.org/patch/90046/
https://patchwork.kernel.org/patch/90047/
http://handlers.sans.org/tliston/ThwartingVMDetection_Liston_Skoudis.pdf
http://handlers.sans.org/tliston/ThwartingVMDetection_Liston_Skoudis.pdf
http://www.bitmover.com/lmbench/

180 M. Grace et al.

28. Petroni Jr., N.L., Fraser, T., Molina, J., Arbaugh, W.A.: Copilot - A Coprocessor-based Ker-
nel Runtime Integrity Monitor. In: Security 2004: Proceedings of the 13th USENIX Security
Symposium, pp. 179–194. USENIX Association, Berkeley (2004)

29. Petroni, Jr., N.L., Fraser, T., Walters, A., Arbaugh, W.A.: An Architecture for Specification-
based Detection of Semantic Integrity Violations in Kernel Dynamic Data. In: Security 2006:
Proceedings of the 15th USENIX Security Symposium, pp. 289–304. USENIX Association,
Berkeley (2006)

30. Petroni, Jr., N.L., Hicks, M.: Automated Detection of Persistent Kernel Control-Flow At-
tacks. In: CCS 2007: Proceedings of the 14th ACM Conference on Computer and Commu-
nications Security, pp. 103–115 (2007)

31. Riley, R., Jiang, X., Xu, D.: Guest-Transparent Prevention of Kernel Rootkits with VMM-
Based Memory Shadowing. In: Lippmann, R., Kirda, E., Trachtenberg, A. (eds.) RAID 2008.
LNCS, vol. 5230, pp. 1–20. Springer, Heidelberg (2008)

32. Rosenblum, N.E., Cooksey, G., Miller, B.P.: Virtual Machine-provided Context Sensitive
Page Mappings. In: VEE 2008: Proceedings of the 4th ACM SIGPLAN/SIGOPS Interna-
tional Conference on Virtual Execution Environments, pp. 81–90. ACM, New York (2008)

33. Rutkowska, J.: Red Pill (2004),
http://invisiblethings.org/papers/redpill.html

34. Rutkowska, J.: System Virginity Verifier: Defining the Roadmap for Malware Detection on
Windows System (2005),
http://www.invisiblethings.org/papers/
hitb05 virginity verifier.ppt

35. Rutkowska, J., Wojtczuk, R.: Qubes OS Architecture (2010), http://qubes-os.org/
36. Seshadri, A., Luk, M., Qu, N., Perrig, A.: SecVisor: A Tiny Hypervisor to Provide Life-

time Kernel code Integrity for Commodity OSes. In: SOSP 2007: Proceedings of the 21st
ACM SIGOPS Symposium on Operating Systems Principles, pp. 335–350. ACM, New York
(2007)

37. Shacham, H.: The Geometry of Innocent Flesh on the Bone: Return-into-libc without Func-
tion Calls (on the x86). In: CCS 2007: Proceedings of the 14th ACM Conference on Com-
puter and Communications Security, pp. 552–561. ACM, New York (2007)

38. Sharif, M.I., Lee, W., Cui, W., Lanzi, A.: Secure In-VM Monitoring Using Hardware Virtu-
alization. In: CCS 2009: Proceedings of the 16th ACM Conference on Computer and Com-
munications Security, pp. 477–487. ACM, New York (2009)

39. Sparks, S., Butler, J.: Shadow Walker.: Raising the Bar for Rootkit Detection. In: Black Hat
Japan (2005)

40. Wang, Y.M., Beck, D., Vo, B., Roussev, R., Verbowski, C.: Detecting Stealth Software with
Strider GhostBuster. In: DSN 2005: Proceedings of the 2005 International Conference on De-
pendable Systems and Networks, pp. 368–377. IEEE Computer Society, Los Alamitos (2005)

41. Wang, Z., Jiang, X.: HyperSafe: A Lightweight Approach to Provide Lifetime Hypervisor
Control-Flow Integrity. In: Oakland 2010: IEEE Symposium on Security and Privacy (S&P
2010), pp. 380–398. IEEE Computer Society, Los Alamitos (2010)

42. Wang, Z., Jiang, X., Cui, W., Ning, P.: Countering Kernel Rootkits with Lightweight Hook
Protection. In: CCS 2009: Proceedings of the 16th ACM Conference on Computer and Com-
munications Security, pp. 545–554. ACM, New York (2009)

43. Wang, Z., Jiang, X., Cui, W., Wang, X.: Countering Persistent Kernel Rootkits through Sys-
tematic Hook Discovery. In: Lippmann, R., Kirda, E., Trachtenberg, A. (eds.) RAID 2008.
LNCS, vol. 5230, pp. 21–38. Springer, Heidelberg (2008)

44. Wurster, G., Oorschot, P.C.v., Somayaji, A.: A Generic Attack on Checksumming-Based
Software Tamper Resistance. In: Oakland 2005: Proceedings of the 2005 IEEE Symposium
on Security and Privacy (S&P 2005), pp. 127–138. IEEE Computer Society, Los Alamitos
(2005)

http://invisiblethings.org/papers/redpill.html
http://www.invisiblethings.org/papers/hitb05_virginity_verifier.ppt
http://www.invisiblethings.org/papers/hitb05_virginity_verifier.ppt
http://qubes-os.org/

A Generic Construction of Dynamic Single
Sign-on with Strong Security

Jinguang Han1,3, Yi Mu1, Willy Susilo1, and Jun Yan2

1 Centre for Computer and Information Security Research

School of Computer Science and Software Engineering
2 School of Information Systems and Technology

University of Wollongong, NSW2522, Australia
3 College of Science, Hohai University, Nanjing 210098, China

{jh843,ymu,wsusilo,jyan}@uow.edu.au

Abstract. Single Sign-On (SSO) is a core component in a federated

identity management (FIM). Dynamic Single Sign-on (DSSO) is a more

flexible SSO where users can change their service requirements dynami-

cally. However, the security in the current SSO and DSSO systems remain

questionable. As an example, personal credentials could be illegally used

to allow illegal users to access the services. It is indeed a challenging task

to achieve strong security in SSO and DSSO. In this paper, we propose

a generic construction of DSSO with strong security. We propose the

formal definitions and security models for SSO and DSSO, which enable

one to achieve the security of SSO and DSSO with the underlying (stan-

dard) security assumptions. We also provide a formal security proof on

our generic DSSO scheme.

Keywords: Single Sign-on, Authentication, Security.

1 Introduction

With an increasing use of personalized/protected services, users need to maintain
more and more usernames and the corresponding passwords in order to access the
entitled services. This imposes a burden on users. Single Sign-on (SSO) provides
a good remedy to this problem, as it allows a single password to be used to
access multiple services. A traditional SSO system comprises three entities: an
identity provider (IdP), a group of users (Us) and a group of service providers
(SPs). The IdP manages the user’s personally identifiable information (PII),
authenticates network users and issues credentials to them. SPs provide services
to users once they are authenticated by the IdP. SSO is a system where a user
authenticates himself to the IdP and can access the designated SPs without
the need for further authentication [24]. SSO can shift the great administrative
burden of the numerous users profiles from SPs to the IdP. Hence, SSO plays
a core role in the federated identity management (FIM) where the exchange of
the user’s identity-related information can be optimized [5].

Unfortunately, current SSO systems have some obvious flaws. For instance,
they are fragile to resist single point of failure [16,22,23]. The main reason for this

S. Jajodia and J. Zhou (Eds.): SecureComm 2010, LNICST 50, pp. 181–198, 2010.
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2010

182 J. Han et al.

is that the IdP must always be online, otherwise users cannot be granted services
from SPs. They are not well protected from illegally using a personal credential,
where a credential could be used for an illegitimate user to gain the services
which should not be accessed by him. These systems are subject to imperson-
ation attacks. When a password is compromised, the attacker can impersonate
the user and log in using the compromised account. This is mainly due to the
missing of individual participation principle provided in the thirteenth principle
of Organization for Economic CO-Operation and Development (OECD) [20] and
the missing of the user control and consent principle for the laws of identity [6].
All these flaws stem from the lack of active/dynamic control over the process
by the user, after the user has entered the correct password. In the following,
we review some existing SSO systems. Although those systems provide elegant
solutions to SSO, they suffer from various attacks.

Released 1999, Microsoft .NET Passport is one of the most widely deployed
SSO systems, where a passport server acts as the IdP [22]. It uses cookies to
store and convey user’s PII. When a user access to an SP, the SP redirects the
user to the passport server for authentication. After authentication, the passport
server creates three cookies: ticket cookie, profile cookie and visited sits cookie.
The ticket cookie contains the unique identifier and a timestamp. The profile
cookie consists of the user’s profile information. The visited sits cookie contains
the lists sites the user has accessed. All cookies created by the passport server
are encrypted with the triple DES encryption algorithm under the shared key
between the passport server and all SPs. The passport server sends these cookies
to the user. The user redirects them to the SP. The SP decrypts the cookies and
obtains the user’s authentication information. .Net Passport incurs some attacks,
such as single point of failure, key management failure, misuse of cookies, etc.
[16,22,23].

In September 2001, the Liberty Alliance Project was launched [17]. This
project was aimed to create an open, federated, SSO solution for the digital
economy via any device connected to the Internet. The Liberty project does not
use cookies to transfer information between IdPs and SPs. Instead, it transfers
information through HTTP redirects and URL encodings. In Liberty Alliance,
an SSO Service (SSOS) provides users an Identity Web Services Framework (ID-
WSF)-based means to obtain Liberty authentication assertions enabling them to
interact with SPs [18]. In this system, the user only shows his credentials to the
SP, without proving the ownership of them. Therefore, it is unable to prevent
credential transfer, namely the user can share his credentials with other illegal
users.

Proposed in 2005, OpenID is an open, decentralized standard for authenticat-
ing users. In OpenId, users are allowed to access to different services with the
same digital identity where the SPs trust the IdP. OpenID solves the problem
without relying on any centralized IdP to confirm digital identity. There are more
than one IdP in OpenID system, users can get their OpenID from any IdP in
the system. OpenID can be used as an effective mean for cross company authen-
tication as well as for SSO. OpenID has two major modes of operation: Dumb

A Generic Construction of Dynamic Single Sign-on with Strong Security 183

mode and Smart mode [21,28]. In the Dumb mode, the SP needs to compare
the authentication assertion received from the user with the initial one stored
in the IdP to prevent the malicious attackers. While in the Smart mode, the
IdP encrypts the authentication assertion under the shared key between the SP
and the IdP. Therefore, in both modes, the IdP must always be online to enable
users authentication.

In 2003, Pahalidis and Mitchell presented a taxonomy of SSO system [24].
They divided SSO systems into four categories: local pseudo-SSO systems, proxy-
based pseudo-SSO systems, local true SSO systems and proxy-based true SSO
systems. They designed two SSO systems based on trusted platforms and GSM/
UMTS, respectively [25,26]. In order to resolve the single point of failure, two
distributed SSO systems Cornell SSO (CorSSO) and Threshold Passport (Thres-
Passport) were proposed by Josephson and Chen in 2004 and 2005, respectively
[7,15]. In these systems, the authentication key is split into n different shares,
and each share is sent to an authentication server. Only authenticated by at least
t authentication servers, can the user get services from an SP. Recently, user-
centric federated identity management systems have been proposed to protect
user’s PII [30,27]. In 2009, based on a private credential mechanism, Suriadi and
Foo proposed a user-centric federated SSO system (UFed SSO), in which the
user can minimize the release of his PII [31]. Although, every system mentioned
above has its merits, they did not provide a security proof.

In 2006, Bhargav-Spantzel and Camenisch [30] proposed a taxonomy and
raised some open issues on user centric federated identity management systems.
They classified the existing systems into two predominant variants: credential-
focused systems and relation-focused systems. In credential-focused systems,
the IdPs must be offline and issue long-term credentials. While in relationship-
focused systems, users need to maintain the relationship with the online IdPs
that create short-term credentials for them during transactions. They defined an
universal user centric FIM which should have long-term as well as short-term cre-
dentials, online and offline IdP. However, this scheme has not been investigated
thoroughly.

Our Contribution
In this paper, we propose a novel dynamic SSO scheme, which resists against
all the previously described attacks. We formalize the definitions and the secu-
rity models for SSO and DSSO. It is the first time that the formal definitions
and security models for SSO and DSSO are formally defined. We give a generic
construction of DSSO systems based on three building blocks: (1) CCA-secure
broadcast encryption, (2) strongly existentially unforgeable signature, and (3)
zero knowledge proof. We provide a formal security proof for our generic con-
struction.

Paper Organization
The rest of this paper is organized as follows. In Section 2, we propose the formal
definitions and security models for SSO and DSSO. We review the three building
blocks which are used to construct DSSO in Section 3. In Section 4, a generic

184 J. Han et al.

construction for DSSO is described. In Section 5, we reduce the security of our
construction to the underlying assumptions. Section 6 concludes this paper.

2 Formal Definitions and Security Models

In this section, we provide a formal definition and a security model for SSO and
DSSO.

2.1 Single Sign-on

In SSO systems, a user needs to authenticate himself to the IdP once for access
to multiple SPs without the need to re-authentication. In order to protect the
PII of the user, an ideal SSO system should satisfy the basic requirement that
only the intended SPs can check the user’s PII. Now we formalise the definition
of SSO as follows:

Definition 1. A Single Sign-on system consists of five algorithms: system setup
algorithm Setup(·), enrollment algorithm Enrol(·), credential generation algo-
rithm CreGen(·), credential verification algorithm CreVer(·), and proof of knowl-
edge algorithm PK(·).
– Setup(λ): Taking as input a security parameter λ ∈ N, it returns public pa-

rameters PP and a public-secret key pair (KIP , KIS) ← G(1λ) for the IdP.
– Enrol(PP, RI): Taking as input public parameters PP, SPi’s registration infor-

mation RISPi or U ’s registration information RIU , it returns (IDSPi , KSPi) to
SPi, and (IDU , AU) to U , where IDSPi and IDU are the identifiers of SPi

and U in the circle of trust (CoT)1, KSPi is SPi’s verification key and AU

is U ’s access right which is a set consisting of the identifiers of the service
providers that the user has selected. U generates his public-secret key pair
(KUP , KUS) ← G(1λ).

– CreGen(KIS , MU , IDU , TU , KUP , PP): Taking as input the IdP’s secret key
KIS, an authentication assertion MU , user’s identifier IDU , user’s public
key KUP , a timestamp TU and public parameters PP, it returns a credential
CreU .

– CreVer(KSPi , CreU , MU , IDU , KUP , TU , KIP , PP): Taking as input the ser-
vice provider SPi’s verification key KSPi, the user’s credential CreU , the
authentication assertion MU , the user’s identifier IDU , user’s public key
KUP , IdP’s public key KIP , the timestamp TU and public parameters PP ,
it returns True if and only if the service provider IDSPi ∈ AU and the
credential CreU is created by the IdP. Otherwise it returns False.

– PK((KUS , KUP), γ): Taking as input the user’s public-secret key pair (KUP ,
KUS) and a random number γ, it returns a number s such that Accept ←
PKV er(s, KUP , γ) if and only if KUS is the user’s secret key corresponding
to the public key KUP , where PKV er(·) is the verification algorithm in the
proof of knowledge. Otherwise it returns Reject.

1 A circle of trust consists of the identity provider and service providers, where each

service provider trusts the identity provider.

A Generic Construction of Dynamic Single Sign-on with Strong Security 185

2.2 The Security of Single Sign-on

In SSO systems, three types of attacks should be considered: collusion credential
forging attacks, collusion impersonation attacks and coalition credential forging
attacks. In the collusion credential forging attacks, malicious users can collabo-
ratively forge a credential for the target user. They can impersonate the target
one to get services from the service providers whose identifiers are listed in the
forged credential. In the collusion impersonation attacks, we assume that the
malicious service providers have checked the credentials of a user and therefore
obtained the corresponding proof information on the user. Hence, malicious ser-
vice providers can collaboratively mimic the owner of the credentials. In the
coalition credential forging attacks, malicious users and service providers can
collaboratively forge a credential for the target user, in which the identifiers of
the malicious service providers are not included.

In order to formalise our notions of security for SSO systems, we define a
series of games between two Turing machines: Challenger and Adversary A.

Game 1: Collusion Credential Forging Attacks.

Init. Let A be all malicious users. A begins by outputting the target user U∗ for
whom it wants to forge a credential.

Setup. The challenger runs Setup(λ) to generate the public parameter PP and
the public-private key pair (KIP , KIS). It sends A the public parameter PP
and the public key KIP .

Enrollment queries. A can adaptively issue enrollment queries {RIU1 , RIU2 , · · · ,
RIUqe}, where RIUi �= RI∗U , qe ≤ (|U| − 1), U is the set consists of all users
in the CoT. The challenger returns {(IDU1 , AU1), (IDU2 , AU2), · · · , (IDUqe ,
AUqe)}.

Credential generation queries. A can adaptively issue credential generation queries
{(IDU1 , KUP1), (IDU2 , KUP2), · · · , (IDUqc1

, KUPqc1
)}, where (IDUi , KUPi) �=

(ID∗U , K∗UP). The challenger returns {CreU1 , CreU2 , · · · , CreUqc1
}.

Credential verification queries.A can adaptively issue credential verification queries
{(IDU1 , KUP1 , CreU1), (IDU2 , KUP2 , CreU2),· · · , (IDUqc2

, KUPqc2
, CreUqc2

)}.
Upon receiving a query, the challenger returns True or False.

Output. A outputs a credential Cre∗U for U∗. A wins the game if

1. True ← CreVer (KSPi , Cre∗U , ID∗U , K∗UP , T ∗U , KIP , PP) and
2. (ID∗U , Cre∗U) /∈ {(IDU1 , CreU1), (IDU2 , CreU2), · · · , (IDUqc1

, CreUqc1
)}.

Definition 2. A Single Sign-on system is (t, qe, qc1, qc2, ε)-secure against col-
lusion credential forging attacks if no t-time adversary, who makes at most qe
enrollment queries, qc1 credential generation queries and qc2 credential verifica-
tion queries, has advantage at least ε in Game 1.

Game 2. Collusion Impersonate Attacks.

186 J. Han et al.

Init. Let A be all malicious service providers in the CoT. A begins by outputting
a user U∗ whom it wants to impersonate.

Setup. The challenger runs Setup(λ) to obtain the public parameters PP and
the public-secret key pair (KIP , KIS). It sends A the public parameter PP
and the public key KIP .

Proof of Knowledge queries. A can adaptively issues proof of knowledge queries
{(KUP1 , γ1), (KUP2 , γ2), · · · , (KUPqp , γqp)}, where KUPi �= K∗UP . The chal-
lenger returns {s1, s2, · · · , sqp}.

Challenge. The challenger sends a challenge (K∗UP , γ∗) to A.

Output. A outputs s∗. A wins the game if

1. Accept ← PKV er(s∗, K∗UP , γ∗) and
2. K∗UP /∈ {KUP1 , KUP2 , · · · , KUPqp}.

Definition 3. A Single Sign-on system is (t, qp, ε)-secure against collusion im-
personation attacks if no t-time adversary, who makes at most qp proof of knowl-
edge queries, has advantage at least ε in Game 2.

Game 3: Coalition Credential Forging Attacks.

Init. Let A be the coalition, which consists of all malicious users and service
providers. A begins by outputting a user U∗ that it wants to impersonate and
a service provider SP ∗ that it wants to attack.

Setup. The challenger runs Setup(λ) to generate the public parameters PP and
the public-secret key pair (KIP , KIS). It sends A the public parameter PP
and the public key KIP .

Enrollment queries. A can adaptively issue enrollment queries {RIU1 , RIU2 , · · · ,
RIUqe1

} and {RISP1 , RISP2 , · · · , RISPqe2
}, where RIUi �= RI∗U , RISPi �=

RI∗SP , qe1 ≤ (|U| − 1), qe2 ≤ (|SP| − 1), SP is the set consists of all service
providers in the CoT, and qe1+qe2 = qe. The challenger returns {(IDU1 , AU1),
(IDU2 , AU2) · · · , (IDUqe1

, AUqe1
)} and {(IDSP1 , KSP1), (IDSP2 , KSP2), · · · ,

(IDSPqe2
, KSPqe2

)}.
Credential generation queries. A can adaptively issue credential generation queries

{(IDU1 , KUP1), (IDU2 , KUP2), · · · , (IDUqc1
, KUPqc1

)}, where (IDUi , KUPi) �=
(ID∗U , K∗UP). The challenger returns {CreU1 , CreU2 , · · · , CreUqc1

}.
Credential verification queries. A can adaptively issue credential verificationqueries

{(IDU1 , KUP1 , CreU1), (IDU2 , KUP2 , CreU2),· · · , (IDUqc2
, KUPqc2

, CreUqc2
)}.

The challenger returns True or False.

Output. A outputs a credential Cre∗U . A wins the game if

1. True ← CreV er(K∗SP , Cre∗U , M∗
U , ID∗U , K∗UP , T ∗U , KIP , PP).

A Generic Construction of Dynamic Single Sign-on with Strong Security 187

2. (ID∗U , Cre∗U) /∈ {(IDU1 , CreU1), (IDU2 , CreU2), · · · , (IDUqc1
, CreUqc1

)}.

3. ID∗SP ∈ A∗U and IDSP /∈ A∗U if SP ∈ A.

Definition 4. A Single Sign-on system is (t, qe, qc1, qc2, ε)-secure against coali-
tion credential forging attacks if no t-time adversary, who makes at most qe
enrollment queries, qc1 credential generation queries, and qc2 credential verifi-
cation queries, has advantage at least ε in the Game 3.

2.3 Dynamic Single Sign-on

DSSO is an SSO system in which the user can change his choice dynamically.
We formalise the definition of DSSO as follows:

Definition 5. A dynamic single sign-on system (DSSO) consists of seven al-
gorithms: Setup(·), Enrol(·), CreGen(·), CreVer(·), PK(·), an addition algorithm
A(·) and a deletion algorithm D(·). Where Setup(·), Enrol(·), CreGen(·), CreVer(·)
and PK(·) are the same as in definition 1.

– A (IDSP) : Taking as input the service provider SP ’s identifier IDSP , it
returns AU ← AU

⋃{IDSP }.
– D (IDSP) : Taking as input the service provider SP ’s identifier IDSP , it

returns AU ← AU\{IDSP}.

2.4 The Security of Dynamic Single Sign-on

In multiple parties communication and dynamic schemes, because the partic-
ipants can join or leave frequently, two special attacks should be addressed,
namely forward security and backward security. In DSSO, users can be added
to or revoked from a service dynamically; therefore a secure DSSO system can
resist these attacks. By forward security, we mean that the SP can not validate
the credentials, which were issued before he is added to the user’s access right
AU . By backward security, we mean that the service providers can not validate
the credentials, which are issued after he has been removed from the the user’s
access right AU . We formalise these two attacks by the following games.

Game 4: Forward Security.

Setup. LetA be malicious service providers. The challenger runs Setup(λ) to gen-
erate the public parameters PP and the public-secret key pair (KIP , KIS). It
sends A the public parameter PP and the public key KIP .

Credential verification queries. A can adaptively issue credential verification
queries {(IDU1 , KUP1 , CreU1), (IDU2 , KUP2 , CreU2), · · · , (IDUqc , KUPqc ,
CreUqc)}, which were issued after A has been joined to AU . The challenger
returns True or False.

Challenge. The challenger sends to A an old credential CreO
U , which was issued

before he is joined to AU .

188 J. Han et al.

Output. A outputs True or False. A wins the game if his answer on CreO
U is

correct.

Definition 6. A Dynamic Single Sign-on system is (t, qc, ε)-forward secure if
no t-time adversary, who makes at most qc credential verification queries, has
advantage at least ε in the Game 4.

Game 5: Backward Security.

Setup. LetA be malicious service providers. The challenger runs Setup(λ) to gen-
erate the public parameters PP and the public-secret key pair (KIP , KIS). It
sends A the public parameter PP and the public key KIP .

Credential verification queries. A can adaptively issue credential verification
queries {(IDU1 , KUP1 , CreU1), (IDU2 , KUP2 , CreU2), · · · , (IDUqc , KUPqc ,
CreUqc)}, which were issued before A is deleted from AU . The challenger
returns True or False.

Challenge. The challenger sends A a new credential CreN
U which was issued

after he has been deleted from AU .

Output. A outputs True or False. A wins the game if his answer on CreN
U is

correct.

Definition 7. A Dynamic Single Sign-on system is (t, qc, ε)-backward secure if
no t-time adversary, who makes at most qc credential verification queries, has
advantage at least ε in the Game 5.

3 Building Blocks

In this section, we provide three building blocks, which are used to construct
DSSO systems.

3.1 Broadcast Encryption System

The notion of broadcast encryption was proposed by Fiat and Naor in 1993 [10].
A broadcast encryption system consists of three randomized algorithms:

– Setup(n, λ): Taking as input the number of receivers n and security param-
eter λ, it outputs n secret keys KR1, KR2, · · · , KRn and public parameters
PPB.

– Encrypt(S, PPB): Taking as input a subset S ⊆ {ID1, ID2, · · · , IDn} and
public parameters PPB, it outputs a pair (Hdr, K), where Hdr is called the
header and K ∈ K is a message encryption key. (S, Hdr) is often called the
full header.

– Decrypt(Hdr, KRi, PPB): Taking as input the header Hdr, the secret key
KRi for the receiver IDi ∈ S and the public parameter PPB, it outputs the
message encryption key K ∈ K.

A Generic Construction of Dynamic Single Sign-on with Strong Security 189

3.2 Chosen Ciphertext Security of Broadcast Encryption System

The chosen ciphertext security of broadcast encryption system is defined using
the following game between a challenger and an adversary A [1,9].

Init. The adversary A outputs a receivers set S∗ ⊆ {ID1, ID2, · · · , IDn} which
he wants to attack.

Setup. The challenger runs Setup(n, λ) to generate secret keys KR1, KR2, · · · ,
KRn and public parameters PPB. It sends A all secret key KRi for IDi /∈ S∗.

Query phase 1. A issues decryption queries q1, q2, · · · , qt, where qi = (Hdr, IDl),
IDl ∈ S∗. The challenger responds with Decrypt(Hdr, KRl

, PPB).

Challenge. The challenger runs algorithm Encrypt(S∗, PPB) to obtain (Hdr∗, K),
where K ∈ K. The challenger chooses a random b ∈ {0, 1}. It sets Kb = K
and chooses a random K1−b ∈ K. It sends (Hdr∗, K0, K1) to A.

Query phase 2. A can adaptively issue decryption queries qt+1, qt+2, · · · qd, where
qj = (Hdr, IDl), IDl ∈ S∗. The only constraint is that Hdr �= Hdr∗. The
challenger returns Decrypt(Hdr, KRl

, PPB).

Guess. A outputs its guess b′ ∈ {0, 1} for b. A wins the game if b = b′.

Definition 8. A broadcast encryption system is (t, n, qd, ε) CCA-secure if no
t-time adversary A, who makes at most qd decryption queries, has advantage at
least ε in the above game.

3.3 Signature Scheme

Digital signature scheme was proposed by Diffie and Hellman [8]. A signature
scheme consists of four algorithms:

– Setup(γ): Taking as input the security parameter γ, it outputs the public
parameters PPS .

– KeyGen(γ, PPS): Taking as input the security parameter γ and the public
parameters PPS , it outputs a public-secret key pair (KS , KP).

– Sign(KS, m, PPS): Taking as input the secret key KS , a message m and the
public parameters PPS , it outputs a publicly verifiable signature σ.

– Ver(m, σ, KP , PPS): Taking as input the message m, the signature σ, the
public key KP and the public parameters PPS , it outputs True if the sig-
nature is correct. Otherwise it outputs False.

3.4 Strong Unforgeability of Signature

A digital signature system is said to be secure if it is existentially unforgeable
under a chosen-message attack [2,13]. The strong unforgeability of signature is
defined using the following game between a challenger and an adversary A.

190 J. Han et al.

Setup. The challenger runs Setup(γ) and KeyGen(γ, PPS) to generate the pub-
lic parameters PPS and a public-secret key pair (KP , KS). It sends public
parameters PPS and public key KP to A.

Signature queries. A can adaptively issue up to qs signature queries {m1, m2, · · · ,
mqs}. To each query mi, the challenger runs algorithm Sign(KS, mi, PPS)
to produce the corresponding signature σi. The challenger responds with
message-signature pairs {(m1, σ1), (m2, σ2), · · · , (mqs, σqs)}.

Output. A outputs a message-signature pair (m∗, σ∗). A wins the game if
1. True ← V er(m∗, σ∗, KP , PPS) and

2. (m∗, σ∗) /∈ {(m1, σ1), (m2, σ2), · · · , (mqs, σqs)}.
Definition 9. A signature is (t, qs, ε)-strongly existentially unforgeable under
adaptive chosen-message attacks if no t-time adversary, who makes at most qs
signature queries, has advantage at least ε in the above game.

3.5 Zero Knowledge Proof

Zero knowledge proof (ZKP) was introduced by Goldwasser, Micali and Rackoff
in 1985 [14]. It is an interactive protocol by which a prover P (Peggy) can
convince a verifier V (Victor) that he knows a secret without revealing any
information about it to V . The formal definition of zero knowledge proof is as
follows:

Definition 10. Let (P, V) be a pair of Turing machines and V is polynomially
bounded. P and V share the same input and can interact with each other. Let
L be a language. We say that a pair (P, V) is zero knowledge proof system, if P
and V satisfy the following properties:

– Completeness: For any input x ∈ L to (P, V), Pr[s ← (P, V)(x), V (x, s) =
1] ≥ 1 − 1

nk , for each k and sufficiently large n which denotes the length of
the input.

– Soundness: For any x /∈ L, and any prover P ′, Pr[s ← (P ′, V)(x), V (x, s) =
1] < 1

nk .

– Zero-knowledge: For any x ∈ L, and any verifier V ′, there exists a simula-
tor S such that two distribution SV ′(x) and VewV ′(x) are computationally
indistinguishable.

Any language in NP has an interactive zero knowledge proof system [11,12]. Let
(P, V) be an interactive zero knowledge proof system. By (P, V)(x) we denote
that the prover P executes an interactive zero knowledge proof protocol with
the verifier V to prove that he knows the secret corresponding to x.

4 Generic Construction for Dynamic Single Sign-on

Our generic construction for DSSO consists of three building blocks: a CCA-
secure broadcast encryption scheme BroEnc(·), a strongly unforgeable signature

A Generic Construction of Dynamic Single Sign-on with Strong Security 191

scheme Sign(·) and a zero knowledge proof scheme (P,V)(·). In our construction,
users can change their choices dynamically, while other participants (users and
SPs) in the system do not need to change their credentials. When the user logs
in, the IdP creates a credential for him. The user can then use this credential
to access all designated SPs, instead of sending different credentials to different
SPs. For each logging request, the IdP creates a new credential for the user. At
this point of time, a user can also be revoked due to expiry of his membership, for
instance. Our construction can prevent illegal credential sharing, which is defined
as all-or-nothing non-transferability. By all-or-nothing non-transferability, we
mean that all the credentials of a user are shared, once he shares one of them
with others [30,3,4,19]. Figure 1 provides the architecture of our construction.

2SP

1. Log in

3. Service Request

4. Verification
Request

5. Credential

6. Check
Credential

8. Service Grant

1SP
2. Credential

|| UASP

7. Owner
Identification

9. Request

10. New
Credential

IdP
User

Fig. 1. DSSO Architecture

1. System Set-up. Runs the Setup(λ) to generate the public parameters PP ,
which includes all public parameters in the three underlying building blocks,
and a public-secret key pair (KIP , KIS) ← G(1λ) for the IdP, where λ is the
security parameter.

2. Enrollment.

(a) Service providers enrollment. SPi submits his necessary registration infor-
mation RISPi to the IdP. The IdP issues an identifier IDSPi for SPi,
sends a verification key KSPi to him, which is regarded as the receiver
key in the broadcast encryption scheme, and stores (SPi, IDSPi, KSPi)
for him.

(b) User enrollment. U sends his necessary registration information RIU to
the IdP. The IdP issues an identifier IDU for him. The user generates
his public-secret key pair (KUP , KUS) ← G(1λ) and sends the public key
KUP to the IdP. The IdP decides the user’s access right AU , which is a
set that consists of the identifiers of the service providers that the user
can access, and stores (IDU , KUP , AU) for the user. Note that AU will
be regarded as the receiver set S in broadcast encryption.

192 J. Han et al.

3. Single Sign-on.
(a) Log in. U uses his username and corresponding password to log in the

system.

(b) Credential generation. The IdP runs BroEnc(|AU |) to generate the broad-
cast encryption key K which can only be computed by the service
providers whose identifiers are listed in AU , and encapsulates it in (AU ,
Hdr). IdP generates a signature δU = Sign(KIS , MU , IDU , KUP , TU),
where KIS is the secret key of IdP, MU is an authentication assertion,
IDU is the user’s identifier, KUP is the user’s public key and TU is a
timestamp. Then, IdP encrypts the signature δU under K. The credential
for the user is

CreU = (AU , Hdr, D), where D = EK(δU , MU , IDU , KUP , TU).

(c) Service request. U sends a service request to the service provider SPi

(IDSPi ∈ AU).

(d) Verification request. SPi asks U to show his credential to him.

(e) Credential verification. U sends CreU to SPi. SPi computes the broad-
cast encryption key K from (AU , Hdr) using his verification key KSPi,
decrypts D = EK(δU , MU , IDU , KUP , TU) and verifies the signature δU .
If δU is a valid signature on (MU , IDU , KUP , TU), SPi executes the next
step. Otherwise SPi aborts.

(f) Owner identification. U executes zero knowledge proof protocol (U, SPi)
(KUP) with SPi to prove that he knows the secret key KUS correspond-
ing the public key KUP included in CreU .

(g) Service grant. If the zero knowledge proof is successful, SPi grants the
services to the user. Otherwise, SPi rejects the services.

If the user wants to access to other SP s whose identifiers are listed in AU ,
he can send CreU to them directly, without having to request the IdP to
issue a new credential for him, namely step (a) and (b) can be omitted.

4. Dynamic Change.

If the user needs to change his access right, when he logs in, he must submit
a request to the IdP. After checking it, the IdP creates a new credential for
the user, according to his current status.
(a) Request. U must submit a request for changing AU to the IdP. After

checking the request, the IdP does the following two changes on AU .

(b) Add. The IdP adds a service provider SPj to the user’s access right AU

by setting AU ← AU

⋃{IDSPj}, and updates the broadcast encryption
key K.

(c) Delete. The IdP deletes a service provider SPj from AU by setting AU ←
AU\{IDSPj}, and updates the broadcast encryption key K.

(d) New credential generation. The IdP uses the updated broadcast encryp-
tion key K to generate a new credential for U .

A Generic Construction of Dynamic Single Sign-on with Strong Security 193

5 Security Analysis

In this section, we prove that our construction for DSSO is secure against col-
lusion credential forging attacks, collusion impersonate attacks and coalition
credential forging attacks, and provides forward security and backward security.

Theorem 1. Our generic construction for DSSO is (t, qe, qc1, qc2, ε) -secure
against collusion credential forging attacks if the broadcast encryption scheme
is (t, n, qc1, ε1) CCA-secure and the signature scheme is (t, qc2, ε.(1 − ε1)qc2)-
strongly existentially unforgeable.

Proof. Suppose there exists t-time malicious users A that (t, qe, qc1, qc2, ε) breaks
the collusion credential unforgeability of our generic construction for DSSO. We
will show that there exists an algorithm B who can (t, qc2, ε.(1 − ε1)qc2) breaks
the strongly existential unforgeability of the underlying signature scheme.

Init. Algorithm B runs A and receives a user U∗ for whom A wants to forge a
credential.

Setup. B sends the public parameters PP and the IdP’s public key KIP to A.

Enrollment queries. A can adaptively issues at most qe enrollment queries {RIU1 ,
RIU2 , · · · , RIUqe}, where RIUi �= RI∗U , qe ≤ (|U|−1). B returns {(IDU1 , AU1),
(IDU2 , AU2), · · · , (IDUqe, AUqe)}.

Credential generation queries. A can adaptively issue credential generation queries
{(IDU1 , KUP1), (IDU2 , KUP2), · · · , (IDUqc1

, KUPqc1
)}, where (IDUi , KUPi) �=

(ID∗U , K∗UP). B redirects these queries to the challenger. The challenger re-
turns {CreU1 , CreU2 , · · · , CreUqc1

}, where CreUi = (AUi , Hdri, Di), Di =
EKi(δi, MUi , IDUi , KUPi , TUi) and δi = Sign(KIS , MUi , IDUi , KUPi , TUi).

Credential verification queries. A canadaptively issue credential verificationqueries
{(IDU1 , KUP1 , CreU1), (IDU2 , KUP2 , CreU2), · · · , (IDUqc2

, KUPqc2
,

CreUqc2
)}. B redirects these queries to the challenger. The challenger returns

True or False.

Output. A outputs a credential Cre∗U = (A∗U , Hdr∗, D∗), where (ID∗U , Cre∗U) /∈
{(IDU1 , CreU1), (IDU2 , CreU2), · · · , (IDUqc1

, CreUqc1
)}

B sends Cre∗U to SPl (IDSPl
∈ A∗U). SPl returns the corresponding plaintext

(M∗
U , ID∗U , K∗UP , T ∗U) or ⊥ for meaningless ciphertext.

1. If ⊥ is responded, namely D∗ is not the corresponding ciphertext of (M∗
U ,

ID∗U , K∗UP , T ∗U) under the encryption key K∗ encapsulated in Hdr∗, B
aborts. The simulation fails.

2. If the corresponding plaintext (M∗
U , ID∗U , K∗UP , T ∗U) is responded, namely A

can get the broadcast encryption key K∗ from Hdr∗, B will abort. B can use
A to break the broadcast encryption scheme. Due to the broadcast encryp-
tion is (t, n, qc1, ε1) CCA-secure, the probability that (M∗

U , ID∗U , K∗UP , T ∗U)
is received is at most ε1.

194 J. Han et al.

3. If B does not abort, he can obtain a valid signature δ∗ on (M∗
U , ID∗U , K∗UP ,

T ∗) at the same advantage ε.

Now we compute the probability that B does not abort. If the broadcast encryp-
tion scheme is (t, n, qc1, ε1) CCA-secure, then B can abort at most ε1. Therefore,
the probability that B dose not abort during the qc2 credential verification queries
is at least (1− ε1)qc2 . Thus, the advantage that B can break the strongly existen-
tial unforgeability of the underlying signature scheme is at least ε.(1−ε1)qc2 which
contradicts the assumption that the underlying signature is (t, qc2, ε.(1− ε1)qc2)-
strongly existentially unforgeable.

Theorem 2. Our generic construction for DSSO is secure against collusion
impersonation attacks if the zero knowledge proofs scheme is secure.

Proof. Let A be malicious service providers to whom U has showed credentials
and proved the ownership of these credentials. If A can impersonate U , we
will show that there exists an algorithm B (knowledge extractor) can break the
security of the underlying zero knowledge scheme.

If A can impersonate U to prove that he is the owner of the credentials which
U has showed to him, he must execute the ZKP protocol with some service
providers to prove that he knows the secret key KUS corresponding to the public
key KUP . If A can do this, B (knowledge extractor) can use the rewinding
techniques to obtain the user’s secret key KUS from two different challenges
sent to U and A. So, B can use A to break the security of the underlying zero
knowledge proofs scheme.

Note that, in our generic construction, the user can not share his creden-
tials with others. Because, if he wants to share one credential with others, he
must reveal his secret key KUS to them and all credentials of the user will be
shared with others. This is the so-called all-or-nothing non-transferability prop-
erty mentioned at section 4.

Theorem 3. Our generic construction for DSSO is (t, qe, qc1, qc2, ε) -secure
against coalition credential forging attacks if the broadcast encryption scheme is
(t, n, qc1, ε1) CCA-secure, the signature scheme is (t, qc2, ε.(1 − ε1)qc2)-strongly
existentially unforgeable.

Proof. Suppose there exists t-time coalition A that (t, qe, qc1, qc2, ε) can forge
a credential for the target user, in which the identifiers of the malicious ser-
vice providers are not included. We will show that there exists an algorithm B
who can (t, qc2, ε.(1− ε1)qc2)- break the strongly existential unforgeability of the
underlying signature scheme.

Init. Algorithm B runs A and receives a target user U∗ for whom A wants to
forge a credential and a target service provider SP ∗ that A wants to attack.

Setup. B sends the public parameters PP and IdP’s public key KIP to A.

A Generic Construction of Dynamic Single Sign-on with Strong Security 195

Enrollment queries. A can adaptively issue enrollment queries {RIU1 , RIU2 , · · · ,
RIUqe1

}, where RIUi �= RI∗U , qe1 ≤ (|U| − 1), and {RISP1 , RISP2 , · · · ,
RISPqe2

}, where RISPi �= RI∗SP , qe2 ≤ (|SP| − 1), and qe1 +
qe2 = qe. B redirects these queries to the challenger. The
challenger returns {(IDU1 , AU1), (IDU2 , AU2) · · · , (IDUqe1

, AUqe1
)} and

{(IDSP1 , KSP1), (IDSP2 , KSP2), · · · , (IDSPqe2
, KSPqe2

)} respectively.

Credential generation queries. A can adaptively issue credential generation
queries {(IDU1 , KUP1), (IDU2 , KUP2), · · · , (IDUqc1

, KUPqc1
)}. B redirects

these queries to the challenger. The challenger returns {CreU1 , CreU2 , · · · ,
CreUqc1

}, where CreUi = (AUi , Hdri, Di), Di = EK(δi, MUi, IDUi , KUPi ,
Ti) and δi = Sign(KIS , MUi , IDUi , KUPi , TUi).

Credential verification queries. A can adaptively issue credential verification
queries {(IDU1 , KUP1 , CreU1), (IDU2 , KUP2 , CreU2), · · · , (IDUqc2

, KUPqc2
,

CreUqc2
)}. B redirects these queries to the challenger. The challenger returns

True or False by decrypting Di and verifying δi.

Output. A outputs a credential Cre∗U = (A∗U , Hdr∗, D∗), where (ID∗U , Cre∗U) /∈
{(IDU1 , CreU1), (IDU2 , CreU2), · · · , (IDUqc1

, CreUqc1
)}, ID∗SP ∈ A∗U and

IDSP /∈ A∗U if SP ∈ A.

B sends Cre∗U to SP ∗. SP ∗ returns the corresponding plaintext (M∗
U , ID∗U ,

K∗UP , T ∗) or ⊥ for meaningless ciphertext.

1. If ⊥ is responded, namely D∗ is not the corresponding ciphertext of (δ∗, M∗
U ,

ID∗U , K∗UP , T ∗) under encryption key K∗ encapsulated in Hdr∗, B aborts.
The simulation fails.

2. If the corresponding plaintext (M∗
U , ID∗U , K∗UP , T ∗U) is responded, namely A

can compute the broadcast encryption key K∗ from Hdr∗, B will abort. B
can use A to break the broadcast encryption scheme. Due to the assumption
that broadcast encryption is (t, n, qc1, ε1)CCA-secure, the advantage that
(M∗

U , ID∗U , K∗UP , T ∗U) is responded is at most ε1.

3. If B does not abort, he can obtain a valid signature δ∗ on (M∗
U , ID∗U , K∗UP , T ∗U)

at the same advantage ε.

Now, we compute the probability that B does not abort at the qc2 credential
verification queries. Due to the broadcast encryption scheme is (t, n, qc1, ε1)CCA-
secure, the probability of B aborts when he gets the corresponding ciphertext
is at most ε1 for each decryption query. Therefore the probability of B dose not
abort at the qc2 decryption queries is at least (1−ε1)qc2 . So, the probability that
B can break the strongly existential unforgeability of the underlying signature
scheme is at least ε.(1− ε1)qc2 which contradicts the assumption that the under-
lying signature scheme is (t, qc2, ε.(1− ε1)qc2)-strongly existentially unforgeable.

Theorem 4. Our generic construction for DSSO is (t, qc, ε)-forward secure if
the broadcast encryption scheme is (t, n, qc, ε)CCA-secure.

196 J. Han et al.

Proof. Suppose there exists a t-time malicious service provider A that (t, qc, ε)
breaks the forward security of our generic construction for DSSO. We will show
there exists an algorithm B who can (t, n, qc, ε) breaks the CCA security of the
broadcast encryption scheme. By AO

U , we denote the access right of U before A’s
identifier is listed in it.

Setup. B sends public parameter PP , and the IdP’s public key KIP to A.

Credential verification queries. A can adaptively issue credential verification
queries {(IDU1 , KUP1 , CreU1), (IDU2 , KUP2 , CreU2), · · · , (IDUqc , KUPqc ,
CreUqc), which are issued after his identifier has been added to AU . B redi-
rects these quires to the challenger. The challenger returns True or False.

Challenge. B sends A an old credential CreO
U , where CreO

U = (AO
U , HdrO, DO),

DO = EKO(δO, mU , IDU , KUP , TO) and IDA /∈ AO
U .

Output. A outputs a correct verification result True or Fals on credential CreO
U

at least ε.

If it is, A can decrypt DO = EKO(δO, mU , IDU , KUP , TO) at least ε. Namely,
A is not a receiver in the broadcast encryption scheme, but can compute the
broadcast encryption key KO from HdrO at least ε. So, B can use A to break
the CCA security of the broadcast encryption scheme at least ε.

Theorem 5. Our generic construction for DSSO is (t, qc, ε)-backward secure if
the broadcast encryption scheme is (t, n, qc, ε)CCA-secure.

The proof is similar to that of theorem 4. We omit the proof due to the page
constraint.

6 Conclusion

The current SSO systems suffer from various security issues such as illegally shar-
ing credentials and difficulties in user revocation. In this paper, we formalised
the definitions and security models for SSO and DSSO, and proposed a generic
scheme of DSSO. Our generic scheme provides a sound solution to these prob-
lems. We also provided a formal security proof of our scheme.

Acknowledgement

The first author was supported by PhD scholarships of Smart Services Cooper-
ative Research Centre (CRC) and University of Wollongong.

References

1. Boneh, D., Gentry, C., Waters, B.: Collusion resistant broadcast ecryption with

short ciphertexts and private keys. In: Shoup, V. (ed.) CRYPTO 2005. LNCS,

vol. 3621, pp. 258–275. Springer, Heidelberg (2005)

A Generic Construction of Dynamic Single Sign-on with Strong Security 197

2. Boneh, D., Shen, E., Waters, B.: Strongly unforgeable signatures based on compu-

tational diffie-hellman. In: Yung, M., Dodis, Y., Kiayias, A., Malkin, T.G. (eds.)

PKC 2006. LNCS, vol. 3958, pp. 229–240. Springer, Heidelberg (2006)

3. Camenisch, J., Herreweghen, E.V.: Design and Implementation of the idemix

Anonymous Credential System. In: Atluri, V. (ed.) ACM CCS 2001, pp. 93–118.

ACM, Innsbruck (2001)

4. Camenisch, J., Lysyanskaya, A.: An efficient system for non-transferable anony-

mous credentials with optional anonymity revocation. In: Pfitzmann, B. (ed.)

EUROCRYPT 2001. LNCS, vol. 2045, pp. 93–118. Springer, Heidelberg (2001)

5. Camenisch, J. and Pfitzmann, B.: Federated identity management. In: Petkovic,

M. and Jonker, W. (eds.), Preceedings: Security, Privacy, and Trust in Modern

Data Management. Data-Centric Systems and Applications, vol. 2851, pp 213–

238. Springer, Heidelberg (2007)

6. Cameron, K.: The laws of identity. Architect of Identity. Microsoft Corporation

(2005)

7. Chen, T., Zhu, B.B., Li, S., Cheng, X.: Threspassport-A distributed single sign-on

service. In: Huang, D.-S., Zhang, X.-P., Huang, G.-B. (eds.) ICIC 2005. LNCS,

vol. 3645, pp. 772–780. Springer, Heidelberg (2005)

8. Diffie, W., Hellman, M.E.: New directions in cryptography. IEEE Transactions on

Information Theory 22(6), 644–654 (1976)

9. Dodis, Y., Fazio, N.: Public key trace and revoke scheme secure against adaptive

chosen ciphertext attack. In: Desmedt, Y.G. (ed.) PKC 2003. LNCS, vol. 2567, pp.

100–115. Springer, Heidelberg (2002)

10. Fiat, A., Naor, M.: Broadcast encryption. In: Stinson, D.R. (ed.) CRYPTO 1993.

LNCS, vol. 773, pp. 480–491. Springer, Heidelberg (1994)

11. Fiege, U., Fiat, A., Shamir, A.: Zero knowledge proofs of identity. In: ACM STOC

1987, pp. 210–217. ACM, New York (1987)

12. Goldreich, O., Micali, S., Wigderson, A.: Proofs that yield nothing but their va-

lidity or all languages in NP have zero-knowledge proof systems. Journal of the

Association for Comptuing Machinery 38(1), 691–729 (1991)

13. Goldwasser, S., Micali, S., Rivest, R.L.: A digital signature scheme secure against

adaptive chosen-message attacks. SIAM Journal on Computing 17(2), 281–308

(1988)

14. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive

proof-systems. In: ACM STOC 1985, pp. 291–304. ACM, Providence (1985)

15. Josephson, W.K., Sirer, E.G., Schneider, F.B.: Peer-to-peer authentication with

a distributed single sign-on service. In: Voelker, G.M., Shenker, S. (eds.) IPTPS

2004. LNCS, vol. 3279, pp. 250–258. Springer, Heidelberg (2005)

16. Kormann, D.P., Rubin, A.D.: Risks of the passport single signon protocol. Com-

puter Networks 33(1), 51–58 (2000)

17. Liberty Alliance, http://www.projectliberty.org

18. Liberty Alliance. Liberty ID-WSF Authentication Service and Single Sign-On

Service Specification Version: v2.0,

http://www.projectliberty.org/liberty/content/download/871/6189/file/

liberty-idwsf-authn-svc-v2.0.pdf

19. Lysyanskaya, A., Rivest, R.L., Sahai, A., Wolf, S.: Pseudonym systems. In: Heys,

H.M., Adams, C.M. (eds.) SAC 1999. LNCS, vol. 1758, pp. 184–199. Springer,

Heidelberg (2000)

20. OECD. OECD Guidelines on the Protection of Privacy and Transborder Flows of

Personal Datal (1980), http://it.ojp.gov/documents/OECD-FIPs.pdf

http://www.projectliberty.org
http://www.projectliberty.org/liberty/content/download/871/6189/file/liberty-idwsf-authn-svc-v2.0.pdf
http://www.projectliberty.org/liberty/content/download/871/6189/file/liberty-idwsf-authn-svc-v2.0.pdf
http://it.ojp.gov/documents/OECD-FIPs.pdf

198 J. Han et al.

21. OpenID, http://openid.net

22. Oppliger, R.: Microsoft .Net passport: a security analysis. Computer 36(7), 29–35

(2003)

23. Oppliger, R.: Microsoft. Net passport and identity managemen. Information Secu-

rity Technical Report 9(1), 26–34 (2004)

24. Pashalidis, A., Mitchell, C.J.: A taxonomy of single sign-on systems. In:

Safavi-Naini, R., Seberry, J. (eds.) ACISP 2003. LNCS, vol. 2727, pp. 249–265.

Springer, Heidelberg (2003)

25. Pashalidis, A., Mitchell, C.J.: Single sign-on using trusted platforms. In:

Safavi-Naini, R., Seberry, J. (eds.) ISC 2003. LNCS, vol. 2851, pp. 54–68. Springer,

Heidelberg (2003)

26. Pashalidis, A., Mitchell, C.J.: Using GSM/UMTS for single sign-on. In: IEEE Sym-

poTIC 2003, pp. 138–145. IEEE, Bratislava (2003)

27. Perlman, R., Kaufman, C.: User-centric PKI. In: Seamons, K., McBurnett, N.,

Polk, T. (eds.) IDtrust 2008, pp. 59–71. ACM, Gaithersburg (2008)

28. Rehmant, R.U.: Get Ready for OpenID. Conformix Technologies Inc. (2008)

29. Sahai, A., Waters, B.: Fuzzy Identity-Based Encryption. In: Cramer, R. (ed.)

EUROCRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (2005)

30. Spantzely, A.B., Camenisch, J., Gross, T., Dieter Sommer, D.: User centricity: a

taxonomy and open issues. In: ACM DIM 2006, pp. 1–10. ACM, Alexandria (2006)

31. Suriadi, S., Foo, E., Jsang, A.: A user-centric federated single sign-on system.

Journal of Network and Computer Applications 32(2), 388–401 (2009)

http://openid.net

DeCore: Detecting Content Repurposing Attacks on
Clients’ Systems

Smitha Sundareswaran and Anna C. Squicciarini

College of Information Sciences and Technology,
The Pennsylvania State University
{sus263,acs20}@psu.edu

Abstract. Web 2.0 platforms are ubiquitously used to share content and personal
information, which makes them an inviting and vulnerable target of hackers and
phishers alike. In this paper, we discuss an emerging class of attacks, namely con-
tent repurposing attacks, which specifically targets sites that host user uploaded
content on Web 2.0 sites. This latent threat is poorly addressed, if at all, by current
protection systems, both at the remote sites and at the client ends. We design and
develop an approach that protects from content repurposing attacks at the client
end. As we show through a detailed evaluation, our solution promptly detects and
stops various types of attacks and adds no overhead to the user’s local machine or
browser where it resides. Further, our approach is light-weight and does not in-
vasively monitor all the user interactions with the browser, providing an effective
protection against these new and powerful attacks.

Keywords: Content Repurposing, Malware, Web 2.0, Same Origin Policy,
Information Flow.

1 Introduction

The emergence of Web 2.0 has brought with it an upsurge in the use of Web applications
and Web-based communities that allow their users to load, store and share their content
with others. These social computing platforms are an easy target of hackers and phishers
alike, to whom the user content represents a wealth of information.

User uploaded content may potentially include executable files or malware, which
have then the ability to access any other content which resides in the site’s domain.
Malicious files may harvest users’ remotely stored sensitive data, and send them back
to the hackers who triggered the attack. Further, when such malware is opened on the
browsers of the users, it has the ability to access all the information present on their
local machines, such as cookies or password files. To prevent these attacks, Web-sites
often prevent users from uploading any executables, such as EXE files, or files which
may potentially contain executables, such as XML files. These restrictions can be over-
come by subverting the legitimately allowed uploadable file types such as images and
text files to contain within them other executables. These attacks are referred to as re-
purposing attacks, and are nowadays proliferating. In fact, a number of attack vectors
can be crafted to exploit this vulnerability such as botnets [20], different forms of dis-
tributed denial of service attacks [28,2] and various forms of malware exploring the
internal structure of the Web 2.0 platform.

S. Jajodia and J. Zhou (Eds.): SecureComm 2010, LNICST 50, pp. 199–216, 2010.
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2010

200 S. Sundareswaran and A.C. Squicciarini

Content repurposing has, however, often been used to allow a particular type of file
to carry more information than it otherwise would. Examples are steganography [30],
where the image is modified to carry messages, and mimic functions [29], where a
file is modified to have the statistical properties of another file type. Hence, content
repurposing has very important and legitimate uses, even with respect to security of
files. A trivial solution such as never allowing repurposed content to be opened can be
detrimental to the usability of these methods.

In this work, we thoroughly investigate the effect of misusing content repurposing.
We conduct a preliminary analysis focusing on two specific examples of repurposing at-
tacks, which have gained attention from the media [4,3]. The first attack vector, namely
the Gifar [4], uses a form of steganography, combining images or any other file types
(such as word file or flash etc) with Jar files. The modified file is used to carry the
payloads of various attacks that can be triggered when posted on Web portals [9]. The
second attack vector consists of repurposing a Flash-file by modifying its ActionScript
and combining it with other file types enabling it to be uploaded to any online content
management sites [3]. While some patches have been proposed for the Gifar attack [25],
users need to update their system by installing the latest version of Java to install the
patch. This is often cumbersome for end users [18] and hence may not be a suitable
solution. Further, while specific solution exist for certain attacks, we are unaware of
any general solution addressing the class of content repurposing attacks. For example,
to date Flash-based attacks have not been patched.

We present a slew of attacks which can be launched easily using Gifars and Flash-file.
These attacks help us demonstrate the ability of the repurposed content to manipulate
and steal information from the local machine of the victim, when these files are opened
in the victim’s browser. Existing defense mechanisms do not recognize the repurposed
files as malicious, nor do they raise an alarm when the attacks are carried out. Our tests
also demonstrate that the Gifars and malicious Flash-files can be uploaded to numerous
popular Web-sites, including Picasa, Orkut and Friendster. Surprisingly, even common
antivirus or antispyware fail in detecting an ongoing attack.

In light of these observations, we propose a new approach to protect against generic
content repurposing attacks. Our approach is to silently monitor the content being
served to determine if it is repurposed, and subsequently determine whether the events
occurring signal an ongoing attack. An attack is detected based on the analysis of the
control flow graph, which given a set of inputs and the current state, can be used to
predict possible legitimate actions and thus identify illegitimate states. To capture the
users’ interactions with the browser we rely on DOM (Document Object Model) Events
[8], since the DOM forms a representation of the Web page as shown to the user and
accepts asynchronous input from the user.

We design the DeCore (Detecting Content Repurposing) system using a client-end
architecture, since it effectively allows us to monitor the user’s interactions with the
browser without invasively monitoring the specifics of the input. Further, if the protection
is at the server-end, the attacker can overcome server-based protection by hosting the
malicious file on a remote server and launching an attack on the end user’s system by
tricking the user into clicking the link which launches the applet in the malicious file.

DeCore: Detecting Content Repurposing Attacks on Clients’ Systems 201

We deploy the DeCore using an add-on for Mozilla Firefox, and Google Chrome. As
demonstrated by our test results, the add-on adds no overhead to the users local machine
or browser where it resides. It also does not invasively monitor all the user interactions
with the browser, in that it is not concerned about specific clicks or other input by the
user such as text, user ids or passwords.

The rest of the paper is organized as follows. In the next section, we elaborate on
the content repurposing attack, and discuss its applicability in existing Web-sites. In
Section 3 we present the design of the DeCore followed by the system’s implementation
in Section 4. DeCore’s evaluation and testing are discussed in Section 5. We discuss
related works in Section 6 and conclude in Section 7.

2 Content Repurposing Attacks

In this section, we describe how content repurposing attacks can harm users’ systems
and remote servers, by focusing on two representative types of attack vectors and on a
few examples of attacks. Next, we discuss how the current protection mechanisms fare
against these attacks.

2.1 Overview of the Content Repurposing Attacks

Content Repurposing attacks take some particular type of content or file type and then
modify it by combining it with active file types which contain executables. This mali-
ciously crafted content remains undetected for two main reasons. First, the repurposed
content masquerades itself as a benign file. Second, the operations performed by a re-
purposed file when it is loaded in the browsers are often the same type of operations
needed by the Web applications to genuinely perform their tasks. Two popular types
of content repurposing attacks are Gifar-based attacks [4] and Flash-based attacks [3].
While our analysis is intended to be general to all content repurposing attacks, we con-
duct our preliminary investigation with these attacks in mind, since these are the most
recent and harmful attacks identified. Other important attacks falling under the umbrella
of content repurposing are the recently announced attack utilizing zip files along with
steganography to launch malware via emails [22], and attacks on Flash crossdomain
policy files, and sniffing the MIME with images in Internet Explorer [25].

Both Java applets and Flash-files leverage the same origin policy (SOP) in Web
browsers. The SOP governs access control among different Web objects (such as HTTP
cookies, HTML documents, images, JavaScript, CSS files, XML files, etc) and prohibits
a Web object from one origin from accessing Web objects from a different origin[17].
By exploiting this rule, the attacker can upload content able to access all data and files
on the domain the repurposed content is served from. The malicious content can even
be given the capability to browse through the internal network structure of the domain
it is uploaded to and also to attack the local machine of a user via the browser.

In their most common form, Gifar-based attacks exploit the fact that when an image
file, such as a *.jpg or a *.gif file, is combined with a JAR file, the resulting file can
be rendered as a valid image by the browser, while the Java Virtual Machine is capable
of recognizing the same as a JAR file. The JAR files contained in the Gifars are ap-
plets, which can be used to exploit the victim whose browser the Gifars are running on.

202 S. Sundareswaran and A.C. Squicciarini

Specifically, the Gifar is created when the attacker combines some malicious applet in
the form of a JAR with an image using the command line’s copy command. For the at-
tack to be completed, the attacker needs to be able to invoke the applet using an HTML
file, like the one shown below:

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.org/TR/html4/loose.dtd">
<html>
<body bgcolor="#dddddd">
<applet code="localfile.class"
archive="file:///C:/Program%20Files/PostgreSQL/EnterpriseDB%20ApachePhp
/apache/www/ drupal/sites/default/files/images/gifar2.gif"
width="100" height="100">
</applet>
</body>
</html>

The browser then opens the image containing the applet as a JAR and executes the
code in it. The HTML file includes the Gifar the same way any non-malicious applet is
usually included, except that the applet tag refers to the Gifar file.

Gifar-based attacks succeed for a number of reasons. First, the Java Runtime Envi-
ronment does not check the extension of files before parsing the JARs. Further, browsers
run any file in the format specified by the underlying HTML code of a given Web page
without verifying what the actual extension of the given file is. Third, the other underly-
ing vulnerability which allows all these attacks to succeed is the fact that the most Web
portals allow unverified traffic to flow through it.

Flash-based attacks are similar in that they also exploit the fact that the type of file
rendered is not verified by the Flash plugin, and the ActionScript used by Flash-file can
be used to execute malicious code. The attackers therefore combine malicious Flash-
files with any type of zip files or even poorly formed image files, self-extracting exe-
cutables, Microsoft Office Open XML documents, XPI files, and, even JAR files. The
files are combined similarly as in the case of Gifar-based attacks, that is, by using the
command lines copy command.These files can then be uploaded to a large number of
sites, while remaining undetected. Zip files, for example, can be sent as attachments or
uploaded onto any Web-site which stores such files. In order to be executed, these files
are simply passed to an Adobe Flash Player, or in case they are sent as attachments,
they simply need to be opened by the recipient.

The attacks carried out by content repurposing attacks target integrity, confidentiality
and availability of the user’s data. We now provide a few examples of attacks, grouped
by the security property being violated.

Attacks to confidentiality: Attacks breaching confidentiality usually circumvent secu-
rity mechanisms which protect user’s data. To accomplish this task, content repurpos-
ing attacks can be launched to bypass the control of certain authentication protected
information in various ways. First, the Gifar can be used to bypass Web-sites’ authen-
tication. The user will have to download the JAR file which completes the attack, that
can be delivered using a Gifar image. This Gifar retrieves the saved cookies of the user
and subsequently uses them for login, using a second program. The program sending

DeCore: Detecting Content Repurposing Attacks on Clients’ Systems 203

the cookies to the attacker is the one which is delivered to the victim in the form of
the Gifar. The victim also needs to “launch” this JAR by clicking on a link. This could
be the link to an HTML file on a remote server, which has been posted on a social
network (SN) site. In order for the cookies based authentication to succeed, the vic-
tim should have persistent cookies (i.e. the “Remember me” option is selected on the
browser for any sites which require a password-based login). This attack can also be
adapted to send all the saved passwords of the victim to the attacker. If the cookies are
persistent, then the passwords are stored in easily reachable files in the end-user’s lo-
cal machine. For example, in Mozilla, the saved passwords Firefox are stored in a file
called “signons3.txt” (this file varies by the version of the browser the victim uses) -and
in Microsoft Credential File in Internet Explorer-. This file combined with
the “key.db” file of Firefox can be forwarded from the victims system to the attacker
in order to allow him to gain all passwords. The same attack can be perpetrated with
Flash-files, where the attacker needs also to ensure that user logs in to their account
after the malicious file has been loaded onto their browser.

Another type of attack which poses a threat to confidentiality is a remote intrusion
attack. By using a repurposed file, the attacker can open an explorer window which al-
lows him to explore the victim’s machine from his remote location. In case of a Gifar,
the JAR that allows him to open the window exploits the Java Remote Desktop (JRD)
so as to provide the attacker a control of the window. The attack begins when the vic-
tim opens the Web page which embeds the Gifar image as an applet. The applet then
executes and runs the JRD using the Runtime.exec() function, which opens a remote
window and connects to the attacker’s, allowing him to remotely explore the victim’s
system. In case of a Flash-based attack, the ActionScript file can be used to exploit the
JRD in a similar fashion. In this case too, the attack begins when the Flash-file is loaded
onto the browser.

Attacks to availability: In the context of content repurposing, attacks to availability are
of two types. One of them is command and control (C&C), where the attacker tries to
take over the victim’s system by using it as a bot. A C&C attack basically allows the
attacker a surreptitious channel to install and execute the files which turn a machine into
a bot. The C&C channels are used by the attacker to remotely control the botnets [10].
The Gifars or Flash-files could provide the attacker a distributed C&C channel for the
botnets owned by the attacker. The attackers can easily create and embed their server
and/or client programs as the JARS or ActionScript files, such that once the HTML page
invoking the applet embedded in the Gifar is loaded or the Flash-file is opened in the
browser, botnets receive their commands and begin to carry out the malicious operations.
The other type of attack is a form of denial of service, where the attacker tries to choke
the victim’s browser. The JAR file included in the Gifar launches a series of windows
to the victim’s profile. The page being opened can be a page on the Web site that the
attacker wishes. In case of Flash-based attacks, similar actions are carried out by using
an ActionScript based code. This attack can further be modified into a DDoS attack. The
Web server hosting the Gifar or the malicious Flash-file can be subjected to a DDoS if
the attacker posts a number of Gifars (or Flash-files) on different profiles and also sets
the number of windows being opened sufficiently high. The attack can be made more
disruptive by choosing a page with “heavy” elements like multiple multimedia files.

204 S. Sundareswaran and A.C. Squicciarini

Attacks to integrity: These attacks aim at changing the content of some of the user’s
files, and may result in the victim’s corrupted data, or in a denial of service of sorts.
For example, if the attacker modifies the password files of the victim, when the victim
tries to log in using a saved password, the authentication would fail. The attacker can
additionally issue the commands in the C&C attacks by modifying files stored on the
victim’s local machine. Another attack which falls under this category is when the at-
tacker tries to modify the remote profile (say in a social network site) or web space of
a user. For this attack to succeed, the attacker first needs to bypass the authentication,
which constitutes another attack in itself as discussed below.

To assess the potential of content repurposing attacks, we have extensively tested
the attacks in real-world settings. We successfully tried Gifar-based attacks on Orkut,
Friendster, LiveJournal, Facebook, the art community DeviantArt1. These sites allow
us to load the Gifar, directly or indirectly via remote links, and the Gifars are stored
without modification.

To test Flash-based attacks, we combined Flash-file with image and zip files. De-
viantArt allows both uploading modified images and embedding the files directly, as
does Orkut. Both DeviantArt and Orkut are the most susceptible to these types of at-
tacks. As with Gifars, Facebook was one of the most resilient sites against the attacks.
However, the malicious Flash-files can be directly embedded on a page, such as profile
page, or even by including them as part of an HTML based post by using “fb: swf”
tag. Therefore, it is not fully immune against such attacks. In LiveJournal, we cannot
embed the Flash-file directly, however, we can upload a modified image. Though the
attack is not launched without a Flash player (thus making LiveJournal the safest), it
leaves a vulnerability waiting to be exploited. Further, Flash-based attacks have been
successfully conducted also against email systems, such as Gmail [3].

Finally, we tested the top 5 Antiviruses and the top 5 AntiSpyware 2 as listed by
CNet [6,5], and found that none of these softwares detected any of the Gifar files as
malicious, nor were they able to recognize the attacks when they were actually going on.
The Antiviruses fail to recognize these attacks because these attacks perform functions
which are usually carried out by the browser while loading certain pages. For example,
the file modification based attacks are not easily recognized because the Password
Files are modified whenever the user changes a password or asks the browser to
remember another password. The AntiSpywares do not recognize content repurposing
attacks because the attacks do not necessarily require any visit to malicious sites or
to carry out other suspicious activity like displaying advertisements or scanning for
personal user information.

2.2 Existing Protection Mechanisms

Current systems try to cope with content-repurposing attacks in various ways, both at
the server end and the client end. However, none of these approaches is satisfactory, as

1 LiveJournal is available at www.livejournal.com, Orkut at www.orkut.com. Facebook’s site:
www.facebook.com, DevianArt is available at www.devianart.com

2 The programs tested by us were Lavasoft -Ad Aware, Zone Alarms, Tenebril Spycatcher, We-
broot Spy Sweeper (SpyCtacher Express -5.1.2), SpywareDoctor, Symantec Endpoint Protec-
tion, Kaspersky, Norton Antivirus, BitDefender, F-Secure Antivirus and Avast.

DeCore: Detecting Content Repurposing Attacks on Clients’ Systems 205

they all suffer from some significant vulnerabilities. Below is an overview of the most
common attack defenses currently implemented.

– Using a “throwaway” server for images. That is, the images and other user-uploaded
content are stored on a separate server which is not on the same domain as the rest
of the content. This approach thwarts content repurposing attack which exploit the
SOP as it does not allow for the SOP to be valid. However, this solution can be
adopted only by large popular portals as it is not cost effective for smaller ones.
Besides,the malicious repurposed files can still be uploaded to some remote site
which is owned by the attacker and the attack can be launched the end user’s local
machine from that site.

– Ensuring that only authenticated scripts can run in the server space. The server
can require any script which runs on the server side or searches the database to be
authenticated to it. This however does not ensure that authenticated scripts do no
leak data. It also does not prevent the repurposed malicious files from using the
stored cookies of the client or running scripts on the client’s system when the page
hosting the malicious content is visited.

– Scrubbing the images when uploaded. Filtering any content which is being up-
loaded to a Web application end involves eliminating any associated data with the
images such as any metadata and also stripping the images of any code embedded
in them. Such filtering of content can be performed at the client end when the con-
tent is being uploaded, as is done by Orkut, or it could be done after the content is
uploaded to the server. This technique applies only to Gifar-based attacks; its very
difficult to remove the content attached to zip files, since zip files as such are meant
to carry other file types. Resizing images often causes the embedded code in the
Gifar to be corrupted or lost. While filtering the content before it is saved ensures
that no malicious content is saved on the server, this approach could also result in
certain types of animation or multimedia files being corrupted or spoiled otherwise
as these files often have some sort of associated code in Java, JavaScript or PHP.
Besides, scrubbing may not always be sufficient to completely remove all the ma-
licious content attached with the image; a sophisticated attacker would be able to
still launch the attack by restoring the corrupted content.

Additionally, there are some easy-to-implement ‘shortcuts’ solutions [14,25], such as
avoid the use of persistent cookies to prevent an attacker from bypassing Web-sites
authentication. These approaches, however, cannot be deemed as practical solutions
because of the popularity of such persistent cookies. Web portals could also opt for
limiting/blocking the HTML links posted on their sites. This, however, is not a suitable
solution, since the ability to post arbitrary comments contributes largely to the popular-
ity of many content management portals.

As we return later in the paper, using secure browsers like Chrome does not hinder
content repurposing attacks because these browsers do not verify whether the content
being served is legitimate with respect to the plugins of the applications they are being
served by. Verifying the integrity of content uploaded at the front end or ensuring that
applications can only access data legitimately required by them is not sufficient either.
These checks can be easily circumvented by attackers who can always use different

206 S. Sundareswaran and A.C. Squicciarini

applications to upload malicious content and further attack applications to leak any
data legitimately gathered by them.

At all effects, what we are trying to tackle is an information flow problem rather than
simply an information integrity one. Hence, our approach is to detect the information
flow violations between the targeted Web site, the local systems and any external Web
site which is loaded while the original site is being viewed.

3 The DeCore System Design

To protect from repurposing attacks, we have designed a protection mechanism, re-
ferred to as DeCore (Detecting Content-Repurposing). While our protection system
implementation is primarily tailored for the known attacks described in Section 2.1, the
DeCore system design is modular, and constitutes a general protection mechanism for
both the victim’s local system and, to a certain extent, his remote data. The overall de-
sign principle of the DeCore system is to monitor the host’s observable properties, such
as internal state, state transitions (events), and I/O activity to detect and zero-in possible
attacks. The DeCore can be successfully deployed at the user-end, or as a component at
remote server. Since most of the content repurposing attacks aim at attacking resources
on a end-user’s machine, however, a client-based solution offers a higher degree of
visibility as it is integrated into the host it is monitoring, as an application.

Our architecture is characterized by two main logical components: the auditor, and
the detector.

The DeCore flow auditor. The DeCore System’s Auditor is responsible for sensing an
ongoing attack. To this extent, its main task is to detect anomalies in the information
flow rules that are originally intended by the Web Portal which is being accessed by
the user. These anomalies can either be with respect to the content being served or the
expected flow of operations.

The auditor detects anomalies by carrying out three main operations: (i) verifying
whether all the files being served on a page have the legitimate extensions supported
by the plugins, i.e. a Java Plugin is served only a JAR file while a Flash Plugin is
served only files with extensions *.swf, *. fxg, *.fla etc. (ii) capturing all the interactions
between the user and the browser (iii) matching these interactions with the changes in
the files at the end-user’s local machine and also checking the displayed content at the
Web server’s site.

Task (i) is completed by referring to a list of legitimate plugins, and then checking
whether the file type being served is the same as the one requested for. To obtain a
list of legitimate extensions supported by each of the plugins, the monitor periodically
searches the Web for a list of all possible extensions.

To carry out tasks (ii) and (iii), the auditor relies on a control-flow graph (CFG, for
short). The CFG is a finite labeled graph, constructed upon the user opening a given Web-
site. The CFG captures all the possible interactions between the browsed Web site, the
end-user’s machine and a remote site in order to identify flows which result in potentially
malicious code being run. The nodes represent various possible states the browser can
be in and the edges represent the required user input to make a transition between two

DeCore: Detecting Content Repurposing Attacks on Clients’ Systems 207

Fig. 1. Example of Control-Flow graph

legitimate states. The CFG is derived by considering all the possible DOM events and
JavaScript links by the DeCore after examining the source code of a Web-site.

Example 1. Figure 1 provides an example of a control-flow graph between a blog, the
user’s local system and an external Web site’s domain. In the figure, the edges which
are not crossed denote legitimate flows. A crossed edge between the comments or mes-
sages, and any entity indicates a malicious operation being performed.

For example, the edge F5 signals a new Web site being opened as a result of the
user’s click on the blog. A blog could contain a link to a legitimate Web site. Therefore
when a connection is launched by clicking the link on the scrap to the external Web site,
it may not necessarily be any malicious activity. However, when the external Web site
interacts with the user’s local machine files using any I/O operation (F6), it signals that
an external entity is trying to modify something on the user’s local machine.

Once the graph is loaded, the auditor calls the detector which verifies that the informa-
tion flows from and to legitimate states as prescribed by the graph.

The DeCore Detector. At the heart of the DeCore is the detector. This component
interprets CFG violations and reported events from the auditor, and decides whether
or not an attack is undergoing. If the system has been compromised, the detector is
responsible for responding in an appropriate manner.

The detector has, in turn, several logical subcomponents, each of which checks
whether a given type of attack is under progress, and takes some action to either prevent
the attack or block it, and to alert the victim. Due to the polymorphic nature of repur-
posing content attacks, a single approach may not suit all the possible ways according
to which this attack vector is exploited. Therefore, similar to an intrusion detection

208 S. Sundareswaran and A.C. Squicciarini

system, with DeCore it is possible to implement several security policies, zeroing-in
the different forms of these attacks.

Each policy module leverages the CFG developed by the auditor and runs in tandem
with it to detect a particular type of attack. Policy modules can be run stand-alone or
in concert with other policy modules. We provide a discussion of three sample policy
modules by classifying the attack according to the security property being violated. We
chose these policies as examples that illustrate more general paradigms of policy design
that can be supported by this architecture.

Attacks to the Integrity: The DeCore System’s security policy towards attacks on in-
tegrity is to constantly poll the user’s data and to notify the user of any seemingly
illegitimate change to the data. An illegitimate change is differentiated from a legiti-
mate one by checking if changes to the data take place without explicit input from the
user. To avoid false positives in cases where such data may be updated without user in-
teraction, the polling of the data is not done unless the data is located on some location
which can be updated only by the user such as the user’s local machine or a profile page
in a SN or a closed blog.

Attacks to availability: The security policy applied in the case of attacks to availability
are based on an event-triggered approach, where any event which can potentially disable
the user’s control on the system triggers an alarm which stops the event in question from
proceeding without the user’s approval. Events monitored by this module include the
browser choking denial of service attack discussed in Section 2.1.

Attacks to Confidentiality: The security policy for this type of attacks involves moni-
toring whether any access to the user’s data takes place once a page serving suspicious
content is opened. Should such an access be detected, the user is notified, to indicate
that an attack may be undermining the confidentiality of his documents.

4 The DeCore Implementation

To better understand the implementation difficulties, performance overhead, and practi-
cal effectiveness of our architecture, we implemented the DeCore System as a browser
plug-in. We purposely encoded most of the add-on in JavaScript and using JAR files, so
as to ensure its portability to any browser. All references to the files and file paths were
left platform independent, thus making it compatible with different platforms and file
systems. To port the DeCore onto a specific browser or OS, the files references must
be configured according to the chosen platform. Further, the DeCore is well compatible
with sandboxed environments, such as Google Chrome. As long as the source code of
the Web-site is visible to the add-on, the DeCore can monitor the response obtained
by the HTTP Servlet which allows the getHeader method to obtain a valid response.
Therefore it can detect when any repurposed content is being obtained in response to
the request.

4.1 The DeCore Auditor Implementation

The DeCore Auditor checks whether the file being served is repurposed by verifying
that the file has an extension type supported by the plugin requesting it.To obtain a

DeCore: Detecting Content Repurposing Attacks on Clients’ Systems 209

Algorithm 1. Algorithm to detect attacks launched using repurposed content
1: Send HTTP GET request
2: Response.type:= text/html
3: Enumeration headerNames:= request.getHeaderNames()
4: plugins − type: = pluginspage[type]
5: array extensions [] = “http://www.google.com/search?q=”.plugins-type.“+extensions”
6: for i ← 1 to length(extensions[]) do
7: if extensions[i] == headerNames then
8: status:= “No Attack”
9: else

10: status:= “Attack Suspected”
11: end if
12: end for

list of legitimate extensions supported by each of the plugins, the monitor periodically
searches the Web for a list of all possible extensions. It determines the type of file
being served to the page by running a small Java-based program which sends a request
to the domain serving the files on behalf of the Web site using the getHeader method
of the HttpServletRequest. The pseudo code for this type of validation is presented in
Algorithm 1.

As content repurposing attacks are carried out by completing a few seemingly normal
events such as redirection to an external Web site from a source site, or reading of the
password file, the auditor verifies that none of the possible states modeled by the CFG
is reached without the DOM events which are needed to ensure a legitimate transition
to the given state. The DOM is a platform-independent, event-driven interface which
accepts input from the user and allows programs and scripts to access and update the
content of the page. The CFG itself is derived by the DeCore using a Java program
which reads each line of the source code of a Web-site, considers all the JavaScript
links, buttons, boxes and form elements, and HTML links, buttons, checkboxes and
form elements to derive the CFG. The CFG takes into account all the possible actions
which require a user’s input and any actions which result in redirection to another page
or the opening of a new window or tab. DOM events that are not caused by the user’s
interaction or input are indicative of a possible attack3.

For example, the flow monitor checks that all the page load and window load events
are actually caused by other DOM events such as mouse clicks. The mouse clicks indi-
cate a user’s interaction with the elements on the Web browser.

If any of these two conditions are violated, that is, if the states in the CFG are reached
without the required DOM events or there is a violation in the flow, then an attack is
assumed to be ongoing. Further, to improve detection accuracy, the auditor, besides
correlating DOM events, checks whether DOM events such as keystrokes and mouse
clicks are carried on at a legitimate rate for a human user. While it is possible for an
attacker to simulate such keystrokes at a reasonable rate, these attacks would entail an

3 An exception to this rule occurs when the user has set some preferences which allow the
browser to carry out some actions automatically, such as to automatically launch a prefixed
number of tabs upon being opened the first time.

210 S. Sundareswaran and A.C. Squicciarini

unlikely level of sophistication. Such simulation requires the use of sophisticated HCI
models such as GOMS and UIMs besides a huge database of similar activity by a human
being [15,26]. Finally, in order to minimize possible attempts of this type, the system
requests feedback from the end user upon detecting an attack. For example, DeCore
notifies the user when a Gifar attack is suspected through event-delivery notifications.
These methods are discussed in detail below.

4.2 The DeCore Detector Implementation

We have four separate JavaScript components which enforce the security policy mod-
ules discussed in Section 3. Two of three sample policy modules of the detector consist
of an individual JavaScript component (i.e. a single file) that leverages the detector
framework, while one policy module is implemented using two JavaScript components.
The implementation details of the security policy for each module is given below.

Attacks to the Integrity: Our integrity checker attempts to detect if the victim system
files are being modified by periodically using nsIFile functions [23]. A nsIFile
instance allows for a cross-platform representation of a location in the file system. Once
an nsIFile instance is created, it can be used to navigate to ancestors or descendants of a
given file or directory without having to deal with the different path separators used on
different platforms. It can also be used to query the state of any file or directory at the
position represented by the nsIFile and create, move or copy items in the file system
independent of the platform on which the file is located. An nsIFile can be retrieved
by either instantiating an nsILocalFile using a platform specific path string or by using
cross-platform locations retrieved from the directory service. This approach is partic-
ularly well suited to securing files across multiple OS without intrusive monitoring of
the user’s file system. For example, if files are downloaded from the site which is sus-
pected to host a Gifar attack, and not correlated to the user’s event, the attack is deemed
as started. The user is then alerted of a possible attack and asked to close the Web site
hosting the Gifar. Further, if there is a change to the file system while the attack page is
opened, the user is alerted to the changes.

Another example of attack to the victim’s integrity is as follows. The attack can
target remotely stored user-generated content in social computing platforms, such as
SNs, and blogs. Once the malicious file is opened, it can, for example, add spamming
content malicious links or modify the user posted content. To prevent this attack, at
the time the monitor suspects an attack, the detector periodically checks for unexpected
(and not-user driven) modifications in the rendered content, while the Web page hosting
the suspected Gifar is open. To limit the scope of the monitoring, the DeCore detects
whether the page being served is the user’s profile in case of a SN, or some closed site
which cannot be modified without the user’s input (such as his blog). Specifically, when
one of such pages is accessed, a JavaScript-based component checks whether the last
modifications occurred upon the user submitting a form, on the Web site, and matches
the same to changes in the content. If the modification on the rendered content is not
corresponding to some user input and a Gifar is being detected by the monitor, the user
is alerted of a possible attack and asked to close the Web site hosting the suspicious
Gifar. Notice that this approach in turn helps tracking whether the SN’s database is
being modified by some external code, while not requiring any interaction with the

DeCore: Detecting Content Repurposing Attacks on Clients’ Systems 211

server, since the detection is based on data collected from the DeCore at the client-
end. For other types of sites, the user can create a list of such sites that the DeCore
should control, along with a list of sites to be excluded from the controls. In fact, the
user can also indicate sites which by nature refresh dynamically their content (without
generating DOM events), such as scoreboards or games, and therefore should not be
monitored.

Attacks to availability: The module addressing the security policy for this attack takes
a event-driven approach, by checking for page load events and mouse click events,
and taking action upon certain conditions are verified. To avoid false positives, this
detector’s module checks whether the number of mouse click events are not only the
same as the number of page events, but also that they were executed at the same rate
as the loaded pages. If the difference between the mouse click and page load events,
say x, is larger than a choking threshold μ (where μ << x), an attack is deemed under
way. A choking attack is also assumed to be going on if a very large number of pages
(where the number of pages y is greater than a threshold β) is opened within a very
short period of time (where the time is less than δ seconds)The user is then alerted to a
possible attack and asked whether he wants to continue opening multiple pages.

Attacks to Confidentiality: The DeCore enforces the general security policy for such at-
tacks by monitoring the file systems of the end user’s local machine for any access. We
use the FileSystemWatcher class in Java. This command is run in a loop till such
time the window hosting the suspicious files is closed. The FileSystemWatcher
class has an option called the notifyfilter. This option allows us to monitor
whether the last access time of any of the files on a file system is changed. Should
such a change occur, we notify the user, or depending on the user’s confirmation, take
more proactive actions such as encrypting the file. While possible to prevent access on
the basis of the process accessing the files, we choose not to because doing this requires
an invasive level of monitoring.

The JavaScript components used by DeCore are not dependent on the particular ap-
proach used by the attack but rather look for specific outcomes or effects produced by
an attack. For example, for the choking attack, we check for multiple requests open-
ing multiple pages from the user’s system. We do not check for specific pages being
opened, nor do we check for the signature of a particular DoS attack. In this way, the
DeCore covers the class of attacks where a victim’s browser is rendered useless to him
as it is taken over by a malicious script.

5 The DeCore Evaluation

Our experiments were performed on a Dell Latitude D630 Laptop, with 2G Ram and
a Intel(R) Core(TM)2 Duo CPU T7500 @ 2.20GHz processor. We conducted two sep-
arate set of tests. First, we tested the system’s overhead. Second, we assessed the ac-
curacy of the DeCore. Both the tests were conducted twice, once for Firefox and once
for Google Chrome. The results presented below apply to both the add-on for both the
browsers. This is because except the basic construction of the add-on itself, the rest of
the code for detecting the various attacks does not change.

212 S. Sundareswaran and A.C. Squicciarini

In the first set of tests, we compared the execution time for the browser with and
without the DeCore add-on. We specifically recorded the time for opening new
sessions with multiple tabs. We varied the number of tabs from 0 to 60 and the number
of windows from 1 to 6. In order to ensure accurate results, each test run was carried
out according to the following steps. First, we disabled the plugin, loaded a page over
a quiescent network, and determined how long the page took to load. Next, we cleared
the cache for the following run. When collecting data for the DeCore-enabled browser,
the same methodology was used, but we first enabled the plugin, at each run. We re-
ported no overhead caused by the DeCore and the exact same time was taken for the
operations both with and without the add-on. The time required for Firefox to start was
always around 1 ms. This time included only the time it takes for Firefox to start as a
process by the system, and did not factor in the time taken to make the Firefox available
for use. Further, we checked the maximum CPU usage and found that the difference
in the percentage of CPU usage was less than ± 2 ms (for example, for 0 tabs with
1 window, when the Firefox session is being restored the usage was 47 % with the
add-on and 46 % without the add-on. The usage for the Firefox session being restored
with 6 windows and 60 tabs was 56 % without the add-on and 54 % with the add-on).
We obtained similar results for Chrome. The major difference between the Firefox and
Chrome testing was that in Chrome we cannot open multiple windows as in Firefox, so
we just opened multiple tabs. Again, we reported no overhead in the case of Chrome
either and the same time was taken for the operation with and without the add-on.

Our second set of tests aimed at verifying the accuracy of the DeCore. To this ex-
tent, we carried out several different experiments of increasing complexity on both the
browsers. First, we begin with assessing false positive rates, i.e. whether the DeCore
would falsely detect a page with benign Java and/or JavaScript components as a page
hosting a Gifar. The tests were carried out by having the DeCore running while 100
different sites were visited to test the accuracy of our system when it is continuously
monitoring for content-repurposing attacks. The sites were selected based on their pop-
ularity and on the presence of active components. The sites visited by us included pop-
ular gaming sites (such as Games.com and Miniclip Games), which often utilize JAR
files and JVM to allow their users to run the games, magazines (such as Elle and Glam-
our) and blogs. With our second round of experiments, the page hosting the malicious
files had benign components. Specifically, we created 100 sites, each of which embed-
ded some variant of the attacks, such as the denial of service attacks or remote intrusion
attacks. The actual attack code varied for each try, so as to create polymorphic attack
code. To create the variations of the attack code, we introduced random NOP blocks
in each attack to introduce random delays. Further, we combined one or more attacks
with each other. Also, the page invoking the malicious content was different for each
try. The elements we included in each page consisted of one or more of the following:
images, videos, audio components such as wmv files, other benign JARs carried in ap-
plets but not embedded in images, text documents, hyperlinks, Java buttons, JavaScript
buttons, JavaScript forms, zip files, Microsoft Office Open XML documents, XPI files,
benign SWFs and simple games. The DeCore proved to be accurate in both set of tests,
detecting the attacks correctly, regardless of the attack type. Finally, we created a new
test case by launching multiple attacks at the same time. We crafted attacks so as to

DeCore: Detecting Content Repurposing Attacks on Clients’ Systems 213

combine more than one content-repurposing attack on a single HTML page. We con-
structed the attacks in two alternative forms: we either hosted multiple repurposed files
in a same page, or created a file which would carry out different attacks in a single file.
Both Gifar and Flash-attacks were tested. With this attack, we were not only interested
in checking whether the DeCore could identify and stop the launched attacks, but also
whether the detection of one attack could slow down the detection of the subsequent
ones. We tested 15 different attacks . The different types of attack were constructed by
combining the attacks discussed in Section 2.1 with one another. We focused on some
non-trivial attacks, namely five attacks with 2 repurposed files hosted at each page, five
attacks with 3 repurposed files and 2 combinations of all the 4 repurposed files, result-
ing a total of 15 different types of attacks. We ran this experiment by hosting web pages
on a secure remote PHP server and also on a server hosted on the same local machine
where the DeCore system was deployed as a plugin. None of the attacks were success-
ful. For example, the file modification attack was always detected with a delay less
than 1 ms. Subtler attacks, such as bypassing the authentication, fail as well, since the
victim’s hard drives are always protected before the attack can be completed, thereby
causing the attack to abort (hence, rendering the combination of attacks useless). The
time required to complete any single attack to execute is (order of 100 ms) significantly
higher than the time required for our detection script to run (order of 0.01 ms). The only
delay was recorded when testing the choking attack in combination with 2 or 3 other at-
tacks. Specifically, the attacks placing the choking attack as the last one being launched,
resulted in the attack being started before any warning was raised by the DeCore. We
found that unless the delay in detecting the attacks is a magnitude higher than 100ms
(which never happens with out implementation), the chance of this attack being suc-
cessful is negligible. Therefore, we conclude that the DeCore proves to be an effective
protection mechanism, with respect to all types of content repurposing attacks.

6 Related Work

In this section we summarize some of the most closely related approaches recently
proposed to thwart attacks similar to the ones we tackled in this paper. There are two
parallel lines of work that are of interest to us: monitoring-based systems [21,12] and
information flow control strategies [1,13].

In [11] an approach similar to ours has been proposed for Ajax intrusion detection.
The authors develop a monitor which matches if the series of requests received by
the server is similar to an abstract request graph previously derived. While similar to
our approach, Guha and colleagues focus on the response to the server from the client.
Therefore, they mainly address server-based attacks, while the DeCore is geared toward
attacks carried out at the client end. However, we also plan to enable our solution to
detect server-based attacks in the future. Further, the proposed system needs to run as
proxy between the server and the client, which evaluates the response from the client
machine. Our solution is less invasive and does not rely on the response from the client
to the server for its detection, thus succeeding at detecting attacks that affect only the
client machine and provide feedback to the victim.

A similar approach to the above is taken in [7] by Dhawan et al. The authors develop
a system which uses in-browser information tracking to analyze JavaScript extensions.

214 S. Sundareswaran and A.C. Squicciarini

We borrowed from this work the idea of using information flow by considering the
DOM events, to investigate whether sensitive data is being leaked. However, Dhawan’s
approach is applicable to JavaScript Extensions, and it does not monitor the malicious
behavior of any outside code, nor does it detect Java-based attacks. Also, unlike us, the
implemented prototype requires modifications to the interpreter of Firefox, viz. Spider-
Monkey.

The work by Karlof et al. also looks at attacks which sends the browser malicious
JavaScript [17]. The authors focus on Dynamic Pharming attacks, that exploit DNS-
rebinding vulnerabilities DNS and the name-based SOP to hijack a legitimate session
after authentication has taken place. The solution presented, however, is completely
different from ours. The authors propose two locked SOPs for web browsers. As op-
posed to the normal SOP, which regulates cross-object access control in browsers using
domain names, the locked SOPs enforce access using servers’ X.509 certificates and
public keys.

Since content-repurposing attacks can be classified as stemming from information
flow problems, the other way to tackle such attacks is by monitoring information flow.
One of the widely accepted approaches to information flow monitoring involves using
security typed languages such as JIF, Caml etc. JiF (Java - Information Flow) [13] is
a security-typed programming language that extends Java with support for information
flow control and access control, which is enforced at both compile and run time. Static
information flow control could be used to protect the confidentiality and integrity of
information as it is being manipulated by computing system. JiF can also be used to
reduce the exposure of data to online organizations [13]. However in order for this
approach to work, it is essential to know all the parties which are legitimately involved
in an exchange and further to know what each party is allowed to receive. Since it is
not possible for a third party application, which is situated at the client end, to know
about all the information flow requirements without access to the SN’s database or client
input, this approach is not suitable.

A reference monitor, such as the Shamon architecture[21], has been often used to reg-
ulate the flow of information within the system and the between the processes. With the
use of remote attestation and virtual machines [12], the traditional guarantees offered
by the reference monitor may be extended to provide the same guarantees on multiple
machines, and thereby on the Internet scale. The disadvantage with reference monitors
is that they are usually very heavy to implement due to their reliance on authentication.
Further, they monitor all the system processes, but afford little help in maintaining the
information flow in the browser. Sun released a patch to prevent Gifar attacks. Upon
testing by installing JRE 6 Update 13 on a Windows XP Dell Latitude D630 Laptop,
with 2G Ram and a Intel(R) Core(TM)2 Duo CPU T7500 @ 2.20GHz processor, we
found the patch to be ineffective against the attacks. Further, this patch does not solve
the general issue of content repurposing attacks and is directed only at attacks which
affect the Sun’s Java Plugins.

Finally, AjaxScope [19], BrowserShield [24], and CoreScript [31] secure the
browsers by rewriting HTML and JavaScript. They convert any embedded scripts into
safe equivalents by placing filters at run time to protect against known attacks. While
this approach could be adapted so as to include some content repurposing attacks in the

DeCore: Detecting Content Repurposing Attacks on Clients’ Systems 215

list of attacks checked for, it still cannot monitor, detect or prevent the actual attacks on
the end-user’s machine once an attack is launched.

7 Discussion and Concluding Remarks

In this paper we presented a light-weight and effective tool to protect against an emerg-
ing class of attacks, namely, content repurposing attacks. This latent threat is poorly if at
all addressed by current protection systems, both at the remote sites and locally by an-
tivirus and antispyware. We designed and developed the DeCore, which tool promptly
detects a number of possible content repurposing attacks and adds no overhead to the
users local machine or browser where it resides. It also does not invasively monitor all
the user interactions with the browser. Further, the DeCore effectively stops any ongo-
ing attack. Next, we will improve the accuracy of our system’s detection, by enabling
detection for subtle attacks. Currently, we cannot determine whether the malicious ap-
plet is trying to steal information from password files or whether it is simply scanning
the local machine’s file system. We are exploring how to supplement the add-on to
detect additional attacks by adding more JavaScript based components.

Acknowledgements. The work reported in this paper has been partially supported by
the NSF grant CNS 08-31247 (2008-2012).

References

1. Askarov, A., Sabelfeld, A.: Secure implementation of cryptographic protocols: A case study
of mutual distrust. In: di Vimercati, S.d.C., Syverson, P.F., Gollmann, D. (eds.) ESORICS
2005. LNCS, vol. 3679, pp. 197–221. Springer, Heidelberg (2005)

2. Auger, R., et al.: Threat classification - denial of service, http://www.Webappsec.
org/projects/threat/classes/denial_of_service.shtml

3. Bailey, M.: Foreground Security.Superior Security. Visible Results - Flash
Origin Policy Issues, http://foregroundsecurity.com/MyBlog/
flash-origin-policy-issues.html

4. Brandis, R.: Exploring below the surface of the gifar iceberg. Whitepaper (February 2009)
5. CNET. Cnet Antivirus Software, http://download.cnet.com/windows/

antivirus-software/?sort=editorsRating+asc&tag=mncol;pm
6. CNET. Top 10 Anti Spyware Software, http://www.top10list.com/top,10,

spyware,software/top-ten-spyware-protection.asp
7. Dhawan, M., Ganapathy, V.: Analyzing Information Flow in JavaScript-based Browser Ex-

tensions. In: ACSAC 2009: Proceedings of the 2009 Annual Computer Security Applications
Conference (December 2009)

8. Document object model (dom) level 2 events specification. W3C Specifications (November
2000), http://www.w3.org/TR/DOM-Level-2-Events/

9. Grossman, J.: Top ten Web hacking techniques of 2008 (official) (February 2009)
10. Gu, G., Zhang, J., Lee, W.: Botsniffer: Detecting botnet command and control channels

in network traffic. In: 15th Annual Network and Distributed System Security Symposium,
NDSS 2008 (February 2008)

http://www.Webappsec.org/projects/threat/classes/denial_of_service.shtml
http://www.Webappsec.org/projects/threat/classes/denial_of_service.shtml
http://foregroundsecurity.com/MyBlog/flash-origin-policy-issues.html
http://foregroundsecurity.com/MyBlog/flash-origin-policy-issues.html
http://download.cnet.com/windows/antivirus-software/?sort=editorsRating+asc&tag=mncol;pm
http://download.cnet.com/windows/antivirus-software/?sort=editorsRating+asc&tag=mncol;pm
http://www.top10list.com/top,10,spyware,software/top-ten-spyware-protection.asp
http://www.top10list.com/top,10,spyware,software/top-ten-spyware-protection.asp
http://www.w3.org/TR/DOM-Level-2-Events/

216 S. Sundareswaran and A.C. Squicciarini

11. Guha, A., Krishnamurthi, S., Jim, T.: Using static analysis for ajax intrusion detection. In:
WWW 2009: Proceedings of the 18th international conference on World wide Web. ACM,
New York (2009)

12. Haldar, V., Chandra, D., Franz, M.: Semantic remote attestation - a virtual machine directed
approach to trusted computing. In: Third virtual Machine Research and Technology Sympo-
sium. USENIX (2004)

13. Hicks, B., Ahmadizadeh, K., McDaniel, P.: From languages to systems: Understanding prac-
tical application development in security-typed languages. In: 22nd Annual Computer Secu-
rity Applications Conference (2006)

14. Inferno’s blog on application security. Easy server side fix for the gifar se-
curity issue (January 2009) http://securethoughts.com/2009/01/
easy-server-side-fix-for-the-gifar-security-issue/

15. John, B.E., Vera, A., Matessa, M., Freed, M., Remington, R.: Automating CPM-Goms. In:
Computing Human Interaction (2002)

16. Jackson, C., Bortz, A., Boneh, D., Mitchell, J.C.: Protecting browser state from web privacy
attacks. In: Proceedings of the 15th ACM World Wide Web Conference (2006)

17. Karlof, C., Shanka, U., Tygar, J.D., Wagner, D.: Dynamic pharming attacks and locked same-
origin policies for web browsers. In: 14th ACM Conference on Computer and Communica-
tions Security (2007)

18. Keizer, G.: Typical Windows user patches every 5 days Computer World, http://
www.computerworld.com/s/article/9165738/Typical_Windows_user_
patches_every_5_days

19. Kiciman, E., Livshits, B.: Ajaxscope: A platform for remotely monitoring the client-side be-
havior of Web 2.0 applications. In: ACM SOSP Symposium on Operating Systems Principles
(2007)

20. MacVittie, L.: The Web 2.0 botnet: Twisting twitter and automated collaboration,
http://devcentral.f5.com/Weblogs/macvittie/archive/2009/
04/13/the-Web-2.0-botnet-twisting-twitter-and-automated-
collaboration.aspx

21. McCune, J.M., Jaeger, T., Berger, S., Caceres, R., Sailer, R.: Shamon: A system for dis-
tributed mandatory access control. In: Computer Security Applications Conference (2006)

22. Mills, E.: Cnet news. Researchers warn of malware hidden in.zip files (April 2010),
http://news.cnet.com/8301-27080_3-20002542-245.html

23. nsIFile - Mozilla development center. Developer’s Guide (May 2009)
24. Reis, C., Dunagan, J., Wang, H.J., Dubrovsky, O., Esmeir, S.: Browsershield: Vulnerability-

driven filtering of dynamic html. In: USENIX OSDI Symposium on Operating Systems De-
sign and Implementation (2006)

25. Rios, B.: Billy (bk) Rios, Thoughts on security in an uncivilized world. Blog, http://
xs-sniper.com/blog/ (Last Accessed: February, 2010)

26. Ritter, F.E., Baxter, G.J., Jones, G., Young, R.M.: Supporting cognitive models as users.
ACM Transactions on Computer-Human Interaction 7 (2000)

27. Giffin, J., Sharif, M., Singh, K., Lee, W.: Understanding precision in host based intrusion
detection. In: Kruegel, C., Lippmann, R., Clark, A. (eds.) RAID 2007. LNCS, vol. 4637, pp.
21–41. Springer, Heidelberg (2007)

28. Ur, B.E., Ganapathy, V.: Evaluating attack amplification in online social networks. In: W2SP
2009: 2009 Web 2.0 Security and Privacy Workshop (May 2009)

29. Wayner, P.: Mimic Functions. Cryptologia XVI(3) (1992)
30. Wayner, P.: Disappearing cryptography. In: Information Hiding: Steganography & Water-

marking, 3rd edn. MK/Morgan Kaufmann Publishers, San Francisco (2009)
31. Yu, D., Chander, A., Islam, N., Serikov, I.: JavaScript instrumentation for browser security.

In: ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (2007)

http://securethoughts.com/2009/01/easy-server-side-fix-for-the-gifar-security-issue/
http://securethoughts.com/2009/01/easy-server-side-fix-for-the-gifar-security-issue/
http://www.computerworld.com/s/article/9165738/Typical_Windows_user_patches_every_5_days
http://www.computerworld.com/s/article/9165738/Typical_Windows_user_patches_every_5_days
http://www.computerworld.com/s/article/9165738/Typical_Windows_user_patches_every_5_days
http://devcentral.f5.com/Weblogs/macvittie/archive/2009/04/13/the-Web-2.0-botnet-twisting-twitter-and-automated-collaboration.aspx
http://devcentral.f5.com/Weblogs/macvittie/archive/2009/04/13/the-Web-2.0-botnet-twisting-twitter-and-automated-collaboration.aspx
http://devcentral.f5.com/Weblogs/macvittie/archive/2009/04/13/the-Web-2.0-botnet-twisting-twitter-and-automated-collaboration.aspx
http://news.cnet.com/8301-27080_3-20002542-245.html
http://xs-sniper.com/blog/
http://xs-sniper.com/blog/

Realizing a Source Authentic Internet�

Toby Ehrenkranz1, Jun Li1, and Patrick McDaniel2

1 Department of Computer and Information Science

University of Oregon

Eugene, OR 97403 USA

{tehrenkr,lijun}@cs.uoregon.edu
2 Department of Computer Science and Engineering

Pennsylvania State University

University Park, PA 16802 USA

mcdaniel@cse.psu.edu

Abstract. An innate deficiency of the Internet is its susceptibility to IP

spoofing. Whereas a router uses a forwarding table to determine where

it should send a packet, previous research has found that a router can

similarly employ an incoming table to verify where a packet should come

from, thereby detecting IP spoofing. Based on a previous protocol for

building incoming tables, SAVE, this paper introduces new mechanisms

that not only address a critical deficiency of SAVE when it is incremen-

tally deployed (incoming table entries becoming obsolete), but can also

push the filtering of spoofing packets towards the SAVE router that is

closest to spoofers. With these new mechanisms, and under the assump-

tion of incremental deployment, we further discuss the security of SAVE,

evaluate its efficacy, accuracy, and overhead, and look into its deployment

incentives. Our results show incoming-table-based IP spoofing detection

is a feasible and effective solution.

Keywords: IP spoofing, IP source address, IP spoofing detection,

incoming table, pushback.

1 Introduction

Attackers today can send packets pretending to be from any Internet address.
Any host on the Internet can be a victim of such “spoofing” attacks. Even in
today’s botnet infested Internet, an attacker prefers to use IP spoofing whenever
possible. While the attacker may simply spoof a victim’s address to hide the real
attack source, it is very likely the victim address is the focus of a targeted attack.
For example, only through IP spoofing can an attacker perform DNS amplifica-
tion (subverting DNS servers to perform a bandwidth-based DDoS attack [1,2]),

� This material is based upon work supported by the USA National Science Foundation

under Grant No. 0520326. Any opinions, findings, and conclusions or recommenda-

tions expressed in this material are those of the authors and do not necessarily reflect

the views of the National Science Foundation.

S. Jajodia and J. Zhou (Eds.): SecureComm 2010, LNICST 50, pp. 217–234, 2010.
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2010

218 T. Ehrenkranz, J. Li, and P. McDaniel

reset a victim’s TCP connections (sending spoofed TCP reset packets with in-
window sequence numbers [3]), poison a DNS cache (transparently redirecting
victims to the attacker’s server [4]), or circumvent spam filters (getting around
mail blocks an ISP may place on a botnet’s zombie machines [5,6]). Although the
underlying threat of IP spoofing is not new, the problem continues to worsen: at-
tackers persist in finding new ways of crafting attacks using spoofed IP packets,
and attackers can spoof from a greater portion of the Internet than before [6].

If every network in the world was able to coordinate a deployment of even
simple ingress filtering [7] and unicast reverse path forwarding [8] checks, the
threat would be all but eliminated. Unfortunately due to both technical and
logistical reasons, this is an unattainable goal [9]. When even a small percentage
of networks do not deploy such basic filtering methods, nobody is safe. Everyone’s
Internet address is still at risk of being spoofed. Researchers have proposed more
sophisticated spoofing prevention mechanisms over the years [9], but all have
failed to neutralize the threat of IP spoofing.

Fortunately there has been promising research, showing that if even a small
percentage of routers on the Internet deploy a more finely grained filtering table
to discard packets with a forged source address, a synergistic filtering effect can
be achieved to stop a large fraction of spoofed IP packets [10,11]. SAVE [12,13] is
a light-weight protocol to build such a filtering table, called an incoming table, at
routers. As a router has multiple physical interfaces to receive incoming packets,
every entry of the incoming table specifies the valid incoming interface for packets
from a specific IP address prefix to arrive at the router. A recent survey [9] has
further shown that compared to other IP spoofing prevention methods, using an
incoming table to filter spoofed packets is the most effective.

Although SAVE provides the incoming tables necessary for effective filtering
with only a small deployment, the SAVE protocol itself faces a serious challenge
when incrementally deployed. A router’s incoming table that is up-to-date at
time t may become obsolete at some time after t because of routing changes on
the Internet. We describe how a router’s incoming table becomes obsolete below.

In the SAVE protocol, every SAVE-capable router that is in charge of a source
address space periodically sends updates to its downstream routers about the
current incoming interface for the source address space. Furthermore, when a
routing change occurs at any downstream router, that router must send out
a new update immediately to ensure routers further downstream learn the new
valid incoming interface of the source address space in question. Otherwise, those
routers will stay out of date until the next periodical update. However, legacy
routers that do not run SAVE will simply do nothing when a routing change oc-
curs; legacy routers will never initiate a SAVE update! As shown by the example
in Figure 1(a) and 1(b), if R was a legacy router, the lack of SAVE update from
R after its routing change will cause the SAVE-capable router T ’s incoming ta-
ble about packets from router S to be out of date (until the next periodic SAVE
update from S reaches T).

As SAVE is incrementally deployed, there will be many legacy routers, prob-
ably even outnumbering SAVE-capable routers for a long time; it is highly likely

Realizing a Source Authentic Internet 219

(a) R is a SAVE router and initiates

a SAVE update when the link from R
to P is broken. T ’s incoming table is

updated to show that packets from S
should come from its lower left incom-

ing interface.

(b) R is a legacy router so it does not
initiate a SAVE update when the link

from R to P is broken. T ’s incoming ta-

ble is out of date, still showing packets

from S should come through upper left

incoming interface.

Fig. 1. An example showing how an incoming table can contain obsolete entries

that incoming tables at SAVE-capable routers will often contain obsolete entries.
While it is promising to use incoming tables to stop spoofed packets, it is also
difficult to use them if they carry obsolete entries.

In this paper we make the following fundamental contributions: We study if
we can introduce new mechanisms to enable SAVE-capable routers to reliably
discard spoofing packets, even though their incoming table may be obsolete.
In particular, we devise and evaluate three new elements that a SAVE-capable
router can employ: a blacklist data structure, an on-demand-update mechanism,
and a pushback mechanism.

– Blacklist : The blacklist complements the incoming table at a router in clas-
sifying an incoming packet, including determining if the packet is spoofed.

– On-demand update: A SAVE-capable router can request SAVE updates on
demand to verify possibly incorrect or outdated information.

– Pushback : SAVE-capable routers along the way of a spoofing flow can push
the filtering of spoofed packets to the router that is the closest to the spoofer.

In combination, these new elements allow SAVE to function properly even in the
presence of legacy routers. Referring back to the example in Figure 1(b), T can
request an on-demand update from S, essentially replacing the triggered SAVE
update in Figure 1(a). The blacklist gives a router more state information, so
the router does not need to request an on-demand update for every packet that
does not match the incoming table. Finally, the pushback mechanism serves two
purposes. First, it helps to reduce spoofing traffic by dropping spoofing packets
as close to the attacker as possible. Second, it tells a router in charge of a
source address space when downstream routers have incorrect information in
their blacklists regarding its address space.

Also of great importance is the security of SAVE with these new mechanisms.
SAVE must secure itself against all possible attacks. Not only may attackers try
to evade the IP spoofing detection at SAVE routers, they may also attempt to
introduce illegal control messages. For example, an attacker (or a bot machine

220 T. Ehrenkranz, J. Li, and P. McDaniel

it controls) could try to establish wrong incoming information at SAVE routers
by injecting a SAVE update about a source address it is going to spoof. In this
paper, we also discuss how security can be addressed.

Our evaluation demonstrates the viability of these new mechanisms. We per-
form a detailed simulation to evaluate their effectiveness at detecting spoofing
packets, and explore the relationship between efficacy and adoption rates. These
Internet-scale simulations show that with as little as 0.08% deployment, attack-
ers cannot spoof protected source addresses in over 90% of all cases. Moreover,
we evaluate the storage, traffic, and computational overhead of SAVE with the
new mechanisms, showing that the overhead is low.

The rest of the paper is organized as follows. We first describe how a SAVE
router can introduce a blacklist alongside the incoming table to help classify
incoming packets in Section 2. We then describe the on-demand-update mecha-
nism and the pushback mechanism in Sections 3 and 4, respectively. Section 5
discusses how SAVE can secure itself. We present our evaluation in Section 6,
with open issues discussed in Section 7. Finally, we discuss related work in Sec-
tion 8, and conclude our paper in Section 9.

2 Incoming Table, Blacklist, and Packet Classification

In addition to an incoming table described above, we add to every SAVE-capable
router a blacklist data structure. With both the incoming table and the blacklist,
a router classifies incoming packets into several different types, and takes some
action specific to each of those types. In this section we describe the blacklist
data structure and classification mechanism.

2.1 Blacklist

Whereas the incoming table of a router specifies the legitimate incoming in-
terfaces for different source address spaces, the blacklist indicates whether an
incoming packet is spoofing based on its source address, destination address,
and the incoming interface. More specifically, a router’s blacklist is maintained
through two separate blacklists corresponding to two different ways of matching
an incoming packet against a blacklist entry:

SI: Matches the source address and the incoming interface of the packet.
SD: Matches the source address and the destination of the packet.

A router receiving spoofing packets that match its SI blacklist could be on the
legitimate path from the spoofed source to the destination, but not from the
spoofing packet’s incoming direction. A router receiving spoofing packets that
match its SD blacklist should not be on the legitimate path from the spoofed
source to the destination, and so should never see a packet with such a source
and destination.

Realizing a Source Authentic Internet 221

2.2 Packet Classification

With both its incoming table and blacklist in place, a router classifies an incom-
ing packet as:

– Valid if it matches the incoming table but not the blacklist.
– Suspicious if it matches neither the incoming table nor the blacklist.
– Invalid if it matches the blacklist.
– Unknown if there is no information regarding the packet’s source address.

Only when the packet is classified as invalid will the router drop the packet. For
the other three types the router will forward the packet.

Furthermore, if a packet is suspicious, the router will initiate the on-demand-
update mechanism. The packet is suspicious either because the packet is spoof-
ing, or because the packet is legitimate but the router’s incoming direction infor-
mation is outdated. As we described in Section 1, the routing change at a legacy
router upstream will not lead to an immediate SAVE update for this router to
update its incoming table.

If a packet is invalid, the router will initiate the pushback mechanism. No
further actions are taken for valid or unknown packets.

We describe both on-demand-update and pushback in the following sections,
including how they deal with obsolete incoming table entries.

3 On-demand Update

When a router classifies a packet as suspicious, it still forwards the packet as
usual, but it will also initiate an on-demand update. From the incoming table
entry that matches the packet’s source address, the router determines the source
address space in question and the source router in charge of the source address
space. It then requests that the source router sends an on-demand update—
which is on behalf of the entire source address space—towards the destination
of the suspicious packet.

Following the same design as in SAVE [12,13], the on-demand update will
travel the same path as the legitimate packets that originate from the source
router’s address space. When the on-demand update arrives at the router from
a specific incoming interface, this interface is then also the legitimate interface
for the source address space in question. The router then makes sure its incoming
table records this interface as the legitimate incoming interface for the source
address space.

If the on-demand update does not arrive from the same incoming interface as
the suspicious packet, the suspicious packet was in fact spoofing. Furthermore,
the router updates its blacklists. Denote the spoofing packet’s spoofed source
address space as S and its incoming interface as i. It adds to the SI blacklist a new
entry 〈S, i〉. If in the future a packet matches the newly added blacklist entry, the
router will classify it as invalid. The router does not add a new entry to the SD
blacklist, because the router could legitimately see packets from the suspicious

222 T. Ehrenkranz, J. Li, and P. McDaniel

packet’s source to its destination—just not from the incoming interface that the
suspicious packet used.

If the on-demand update does arrive from the same direction as the suspicious
packet, the packet was not spoofing. Note the router already forwarded the
packet earlier so no false positive occurs.

It is also possible the on-demand update never reaches the router. This could
be because the router is not on the path from the source to the destination, or
because congestion caused the update request or the update itself to be dropped.
Since the router cannot know for sure, it takes no action. Assuming similar
suspicious packets continue to arrive, the router will continue to request updates.
We use a truncated binary exponential backoff scheme for subsequent requests.

4 Pushback of Spoofed Packets

The aim of the pushback is to push the filtering of spoofed packets all the way
toward the router that is the closest to the spoofer(s). The pushback procedure is
packet-driven and it is triggered when a SAVE router receives an invalid packet.

Once the pushback procedure is triggered by an invalid packet, the router
sends pushback messages to immediate upstream SAVE routers that the packet
possibly passed through. (The router uses incoming SAVE updates to record
upstream SAVE routers along every incoming interface, and can easily identify
those upstream along the incoming interface of the packet.) Assume the packet
is from source address space S to destination address d. When an upstream
SAVE router receives a pushback message, it adds an entry 〈S, d〉 to its SD
blacklist. The incoming interface does not matter—the upstream router is not
on the legitimate path from the packet’s inscribed source to its destination at
all. Upon receiving subsequent packets that match this new blacklist entry, the
upstream router will classify them as invalid and continue to propagate the
pushback further upstream.

Blacklist entries can become outdated if a routing change causes the legitimate
path from the spoofing victim to become the same as that of the spoofing packets.
If that happens, the pushback procedure will finally reach the source router in
charge of the victim source address space. The source router can in turn send
out an update that travels along the path and reaches every SAVE router en
route. Every SAVE router can then remove its outdated blacklist entries.

Fig. 2 shows a pushback example. An attacker at legacy router A sends spoof-
ing packets with a source from space SX (X ’s source address space) and a des-
tination dstZ (an address towards which Z is downstream from X and Y). The
spoofing packets arrive at router Y along the same interface as legitimate packets
from SX . Y classifies the packets as valid and forwards them. Z however expects
packets from SX to arrive on interface 1 according to its incoming table, so it
classifies the first spoofing packet arriving at incoming interface 2 as suspicious.
Z requests an on-demand update. Upon receipt of the requested update, Z con-
firms its incoming table information was correct, and the suspicious packet was
in fact invalid (Fig. 2(a)). Z then adds a new entry to its SI blacklist: Based on

Realizing a Source Authentic Internet 223

(a) Z receives a

suspicious packet

and requests an

on-demand update.

(b) Z receives an in-

valid packet and be-

gins the pushback

process.

(c) After routing

change, legitimate

packets trigger

pushback to X.

(d) X discovers le-

gitimate packets are

misclassified and

sends an update.

Fig. 2. A pushback example. An attacker, A, sends packets spoofing X’s address space,

SX , towards dstZ .

source SX and incoming interface 2 of the suspicious packet, the new blacklist
entry is 〈SX , 2〉.

Z classifies later spoofing packets as invalid, and initiates the pushback pro-
cess (Fig. 2(b)). Z knows Y is its neighbor along the spoofing packet’s incoming
interface. Z sends Y a pushback message, instructing Y to add an entry to its
SD blacklist for all packets from SX to dstZ . When Y receives a packet match-
ing the new blacklist entry, it classifies the packet as invalid and continues the
pushback. Y finds all neighbors along the spoofing packet’s incoming interface,
and propagates the pushback towards such neighbors. Y ’s neighbors do not see
matching packets, so do not further propagate the pushback. Y is the closest
SAVE router to the attacker.

Later, if there is a routing change at a legacy router which causes the originally
invalid “X · · ·Y · · ·Z” path to become valid and legitimate packets begin to flow
along the path, SAVE will quickly converge to correct the error. During the
transient period, router Y and Z will misclassify valid packets from SX towards
dstZ as invalid. But now that Y ’s upstream neighboring SAVE routers also
see packets matching the pushback request, the upstream routers will relay the
pushback all the way to the source router X (Fig. 2(c)). After X receives the
pushback, it realizes that downstream routers have incorrect blacklist entries
matching its legitimate traffic. X sends an update towards dstZ , causing all
routers along the newly valid “X · · ·Y · · ·Z” path to remove their incorrect
blacklist entries (Fig. 2(d)).

5 Security Considerations

SAVE must also be secure. The security of SAVE encompasses securing SAVE
itself against attack and keeping attackers from being able to use SAVE to launch
attacks. In addition to basic security functions such as confidentiality, integrity,
and replay prevention, we must consider (1) origin authentication to ensure

224 T. Ehrenkranz, J. Li, and P. McDaniel

a router is authorized to speak for a source address space, and (2) collusion
prevention to ensure attackers cannot collude to manipulate incoming direction
information at SAVE routers.

5.1 Origin Authentication

Origin authentication ensures SAVE routers are authorized to speak for their
corresponding source address space. This requires a trusted authority to sign a
certificate that an address space owner can present. A public key infrastructure
as described in [14] can provide such certificates of address ownership. The root
certificate authority can be ICANN, with regional Internet registries such as
ARIN or RIPE at the next level, and ISPs below. If SAVE is simply deployed
inside an AS, the AS can simply use its self-signed certificates.

5.2 Collusion Prevention

Attackers may attempt collusion to manipulate the incoming table stored at a
downstream SAVE router. They may collude by masquerading as each other or
copying an update from an upstream space to each other, causing downstream
routers to receive the update about a source address space along a wrong in-
coming interface.

Since the original update from the source address space still travels along
the correct path1, such manipulation by attackers can only be temporary. More
importantly, such manipulation cannot cause a router to drop legitimate packets.
If a router mistakenly classifies a legitimate packet as suspicious, an on-demand
update will verify that it is in fact legitimate and fix the incoming direction
information. Note the manipulation does not give the attackers further spoofing
capabilities either, since attackers can only copy existing upstream updates.

5.3 Confidentiality, Integrity, and Replay Prevention

With a public key infrastructure, confidentiality and integrity is straightforward.
If confidentiality is needed, a SAVE router can use the recipient’s public key to
encrypt its messages; or, it can establish a secure channel with the recipient,
and use the session key associated with the channel to encrypt the messages.
If integrity is needed, a SAVE router can uses its private key to create digital
signatures for its messages.

Replay attacks must be prevented in order to ensure that a previous update
cannot be copied and resent at a later time. Downstream routers must receive
the most up-to-date incoming direction information. Replay attacks can be pre-
vented by adding a counter to SAVE updates. The counter in an update must
be greater than the counter of earlier updates.
1 SAVE security does not encompass routing-level security, as that is the job of routing

protocols—we assume routers will route a packet correctly towards its destination,

and will not maliciously forward a packet in the wrong direction, nor maliciously

drop a packet en route. Every SAVE update is encapsulated inside an UDP packet.

Realizing a Source Authentic Internet 225

An implementation note. The security issues that SAVE faces are similar to
those faced by BGP. Both need to ensure that a router can speak for an address
space (SAVE’s source address space and BGP’s destination address space), both
need to prevent conclusion of attackers, and both need to provide integrity, replay
prevention, and sometimes confidentiality. In particular, to implement SAVE’s
security, we can borrow some ideas from IRV [15], an incrementally deployable
BGP security solution. Basically, each network can contain a validation server
to be responsible for security purposes, including keeping track of certificates
and keys, performing signature creation and validation for SAVE messages, and
managing security policies. Doing so would also maintain a lighter load on SAVE
routers, allowing them to focus on its main purpose of receiving, validating, and
forwarding packets.

6 Evaluation

In this section we discuss the performance of SAVE with the new mechanisms we
introduced in this paper. First we present SAVE’s efficacy in catching spoofed
packets. We then evaluate SAVE’s false positives. Finally we show that SAVE’s
storage, network, and computational overhead are reasonable.

6.1 Efficacy

Methodology. For efficacy evaluation we use a modified static distributed
packet filtering (DPF) [10] simulator. The DPF simulator allows us to evalu-
ate the efficacy of SAVE on Internet-scale topologies by calculating efficacies
based on the Internet AS graph and SAVE router locations. It uses Internet Au-
tonomous System (AS) topologies from Route Views [16]. The efficacy metrics
are similar to those in [10]. Specifically, we report:

– Φ2(1) that represents the percentage of ASes that an attacker cannot send
spoofing packets from—any spoofed packets from those ASes would be de-
tected and filtered out;

– Φ3(1) that represents the percentage of all attacker-victim AS pairs where
the attacker cannot send spoofed packets to the victim; and

– Ψ1(τ) that represents the fraction of target ASes which can narrow down an
attacker’s location to within τ possible attack ASes.

We consider a variety of placement strategies of SAVE routers. First, we deploy
SAVE routers so they form a vertex cover (as in the original DPF work [10]).
Then, we look at random deployments, with deployment percentages between
0% and 100% in 10% increments. Finally, we deploy SAVE routers at the top
ASes by degree.

Results and Analysis. The efficacy of SAVE in catching spoofed packets de-
pends upon both the deployment strategy and the percentage of deployment.
With a random deployment, the efficacy increases along with the deployment
percentage. With deployment at high-degree ASes or using a vertex cover for

226 T. Ehrenkranz, J. Li, and P. McDaniel

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0% 20% 40% 60% 80% 100%

P
er

ce
nt

ag
e

of
 A

S
es

 th
at

ca
nn

ot
 s

en
d

sp
oo

fe
d

pa
ck

et
s

Deployment Percentage

(a) Random deployments.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0.01% 0.1% 1%

P
er

ce
nt

ag
e

of
 A

S
es

 th
at

ca
nn

ot
 s

en
d

sp
oo

fe
d

pa
ck

et
s

Deployment Percentage

(b) Deployments at highest-degree ASes.

Fig. 3. Φ2(1): The percentage of ASes on an Internet AS topology from which an

attacker cannot send spoofed packets

deployment, the efficacy is much higher than a random deployment, even with
a much lower percentage of deployment.

Fig. 3 shows Φ2(1), the percentage of ASes on an Internet AS topology from
which an attacker cannot send any packets that spoof a protected source address.
We can clearly see that deployment strategies are an important factor. Φ2(1)
with a vertex cover deployment is around 99% (not shown), where the vertex
cover consisted of around 14.5% of all routers. Fig. 3(a) shows Φ2(1) for random
deployments; with 15% or less deployment percentage, Φ2(1) is even no more
than 10%. Fig. 3(b) shows Φ2(1) for deployments at ASes with the highest degree
on the same topology; as a sharp contrast to random deployment, even with less
than 1% of ASes deploying SAVE, over 40% of all ASes are unable to spoof any
protected source.

Fig. 4 shows Φ3(1), the percentage of attacker-victim AS pairs where the at-
tacker cannot send spoofed packets to the victim. Deployment strategy, again,
plays an important role. A random deployment is not very effective—high effi-
cacy requires high levels of deployment. More targeted deployments, however,
can be extremely effective. With a vertex cover deployment the efficacy is over
99.9% (not shown). Even very small targeted deployments can be effective: With
deployment at only the top 0.08% of ASes by degree (21 ASes in this case), ef-
ficacy is over 90%.

Fig. 5 shows Ψ1(τ) with again the same deployments as above. Ψ1(τ) is the
percentage of destination ASes that can narrow down an attacker’s location
to within τ source ASes, when intermediate routers were unable to filter the
spoofed packet. Note that this percentage is for instantly narrowing down an
attacker’s location based on the network topology, the location of SAVE routers,
and the fact that the spoofed packet reached its destination. Vertex cover deploy-
ments (not shown) and high-degree AS deployments have excellent performance,
generally being able to narrow down an attacker’s actual location to within 5
locations or fewer. More random deployments are not able to reliably narrow
down an attacker’s location, with possible attacker locations measured in the

Realizing a Source Authentic Internet 227

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0% 20% 40% 60% 80% 100%

P
er

ce
nt

ag
e

of
 A

S
 p

ai
rs

w
he

re
 s

po
of

in
g

is
 c

au
gh

t

Deployment Percentage

(a) Random deployments.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0.01% 0.1% 1%

P
er

ce
nt

ag
e

of
 A

S
 p

ai
rs

w
he

re
 s

po
of

in
g

is
 c

au
gh

t

Deployment Percentage

(b) Deployments at highest-degree ASes.

Fig. 4. Φ3(1): The percentage of attacker-victim AS pairs where the attacker cannot

send spoofed packets to the victim

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

 0 200 400 600 800 1000

P
er

ce
nt

ag
e

of
 A

S
es

 th
at

 c
an

na
rr

ow
 a

tta
ck

er
’s

 lo
ca

tio
n

to
 τ

 A
S

es

τ

90%
80%
70%

(a) Random deployments.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

 0 1 2 3 4 5 6 7 8 9 10

P
er

ce
nt

ag
e

of
 A

S
es

 th
at

 c
an

na
rr

ow
 a

tta
ck

er
’s

 lo
ca

tio
n

to
 τ

 A
S

es

τ

 25%
 20%
 15%
 10%

 5%

(b) Deployments at highest-degree ASes.

Fig. 5. Ψ1(τ): The percentage of destination ASes that can narrow down an attacker’s

location to within τ source ASes

hundreds. (SAVE includes additional location capabilities through the use of its
pushback mechanism, which we plan to evaluate further.)

Finally, the high efficacy with the highest-degree ASes (as shown in Figs. 3(b),
4(b), and 5(b)) shows that such ASes—if they deploy SAVE—can filter spoofing
packets and locate attackers very effectively. They thus will have a strong incen-
tive to deploy SAVE. Moreover, doing so provides an incentive for other ASes to
follow; with the highest-degree ASes deploying SAVE, when the followers also
deploy SAVE they will protect their own address space much more effectively.

6.2 False Positives

False positives only occur when the following conditions are all met:

– A pushback path that spoofing packets travel becomes a valid path due to
a sudden underneath routing change;

228 T. Ehrenkranz, J. Li, and P. McDaniel

– Legitimate packets begin to flow along the path;
– The SAVE update from the source router of the legitimate packets has not

reached SAVE routers along the path to void the blacklist entries that cause
the legitimate packets to be dropped.

The transient time that all three conditions are met is short-lived. Assume S is
the source router and R is a SAVE router on the path. False positives will occur
at R from the time the first legitimate packet arrives along the new valid path to
the time R’s blacklist is updated. Assuming there is a steady stream of packets
from S passing through R, it will take the following amount of time to update
R’s information:

rtt +
R∑

i=next(S)

Ci +
prev(R)∑

i=S

Pi +
R∑

i=next(S)

Ui (1)

rtt is the round trip time between R and S, next(S) is the SAVE router down-
stream from S towards R, Ci is the time it takes for router i to classify a packet,
prev(R) is the SAVE router upstream from R towards S, Pi is the time it takes
for router i to process a pushback message, and Ui is the time it takes for router
i to propagate an update.

The values of these parameters vary. Assuming values of 20ms for rtt, 100μs
for Ci, Pi, Ui, and 10 SAVE hops from S to R, the transient period will be 50ms.

6.3 Overhead

Here we discuss SAVE’s storage, network, and computational overhead.

Methodology. For overhead evaluation we use the J-Sim [17] network simu-
lation framework. (Note the DPF simulator cannot calculate SAVE storage or
network overheads.) The J-Sim framework simulates all routers, links, and mes-
sages in a network topology in order to conduct detailed overhead evaluation.
This, however, limits the size of the topology to generally 5,000 nodes—even with
our fairly high-end evaluation environment. (We performed all the evaluations
on a computer with 16 GB of RAM, dual 2.6 GHz AMD dual-core Opteron 285
CPUs, running CentOS Linux 4.6.) To solve this problem, we note that SAVE
can run at two separate levels: intra-AS level and inter-AS level, and we can
evaluate the overhead at these two separate levels. At the intra-AS level, al-
though a small number of ASes may have more than 5,000 routers, most ASes
will fall into the range that the J-Sim framework can simulate. At the inter-AS
level, all border routers of an AS can act as one “virtual router” with the entire
AS as its source address space, and therefore SAVE’s overhead at the inter-AS
level can be analyzed using a topology of all virtual routers—which is equivalent
to an Internet AS topology. As the Internet has approximately 26,000 ASes, a
detailed J-Sim simulation with up to 5,000 nodes should be close enough for us
to understand SAVE’s overhead at a large scale.

The overhead analyses at intra-AS level and inter-AS level are similar, except
that different topology models probably should be used. In this paper, we focus

Realizing a Source Authentic Internet 229

on the inter-AS level where each node is an AS (or a virtual router), and use
network topologies generated by shrinking AS topologies with Orbis [18]—such
topologies are smaller than the AS topology of the real Internet but they have
similar structure patterns.

Also, we again evaluate multiple placement strategies of SAVE routers. We
evaluate vertex cover deployments, deployments at the top 1% of routers by
degree, and biased 1% deployments consisting of a random half of the top 2%
of routers by degree. They are all effective from our efficacy analysis above. We
simulate networks ranging in size from 500 to 5,000 nodes (only up to 3,000
nodes for vertex cover deployments due to computation power limitation).

Storage Overhead: In this paper, the blacklist is the only new data structure.
We now implement it as a cache of fixed size that runs the Least Recently
Used (LRU) algorithm to replace old entries. Further work is needed to evaluate
how the size affects the efficacy of the system. We do not worry about losing
old blacklist entries; neighboring routers will still filter spoofing traffic, and the
on-demand-update mechanism can recreate entries if necessary in any case.

Network Traffic Overhead: Fig. 6 shows the per-router traffic during spoof-
ing attacks. As the network size increases, network overhead decreases—because
spoofing traffic, and thus control traffic, is more spread out (Figs. 6(a) and 6(d)).
With a fixed network size (1,000 nodes) and increasing spoofing traffic, the net-
work overhead increases linearly (Figs. 6(b), 6(c), 6(e), and 6(f)). This overhead
is offset significantly as the SAVE system is also removing spoofing traffic from
the network. Instead of the spoofing traffic overloading its target at the edge
of the network, routers drop the spoofing traffic and SAVE’s traffic overhead is
spread out inside the network. Note that due to simulation limitations we cannot
simulate a larger number of attackers, but results from Fig. 6 is still indicative
about the network overhead effects from the size of the network, the number of
attackers, and the number of spoofing packets.

Computational Overhead: SAVE’s most crucial computational overhead is
the time taken for a router to classify packets, which mainly consists of table
lookup operations (using a router’s incoming table and blacklist). We do not
have actual measurements for computational overhead since the system is only
implemented as a simulation, but we expect SAVE will impose only a minimal
computational cost. Today’s routers are designed for fast, efficient table lookups
(a router’s main function is forwarding table lookup).

7 Open Issues

Several issues related to incoming-table-based IP spoofing detection warrant fur-
ther investigation. These issues include incentives for deploying SAVE, spoofing
strategies attackers can employ to avoid SAVE, and false positives.

Incentives. AsSAVEcanonlybedeployed incrementally, for successful incremen-
tal deployment, domains mustwant to deploy SAVE. Theremust be incentives that

230 T. Ehrenkranz, J. Li, and P. McDaniel

 0

 5

 10

 15

 20

 25

 30

 35

 0 1000 2000 3000 4000 5000

O
n-

de
m

an
d

U
pd

at
e

T
ra

ffi
c

(K
B

)

Network Size

Vertex Cover
Top 1%

Random half of top 2%

(a) On-Demand Update Traffic

 0

 5

 10

 15

 20

 25

 30

 35

 0 20 40 60 80 100

O
n-

D
em

an
d

U
pd

at
e

T
ra

ffi
c

(K
B

)

Attackers

Vertex Cover
Top 1%

Random half of top 2%

(b) On-Demand Update Traffic (varying

attackers)

 0

 5

 10

 15

 20

 25

 30

 35

 0 50 100 150 200 250

O
n-

D
em

an
d

U
pd

at
e

T
ra

ffi
c

(K
B

)

Spoofing Packets per Attacker

Vertex Cover
Top 1%

Random half of top 2%

(c) On-Demand Update Traffic (varying

packets per attacker)

 0

 1

 2

 3

 4

 5

 6

 0 1000 2000 3000 4000 5000

P
us

hb
ac

k
T

ra
ffi

c
(K

B
)

Network Size

Vertex Cover
Top 1%

Random half of top 2%

(d) Pushback Traffic

 0

 1

 2

 3

 4

 5

 6

 0 20 40 60 80 100

P
us

hb
ac

k
T

ra
ffi

c
(K

B
)

Attackers

Vertex Cover
Top 1%

Random half of top 2%

(e) Pushback Traffic (varying attackers)

 0

 1

 2

 3

 4

 5

 6

 0 50 100 150 200 250

P
us

hb
ac

k
T

ra
ffi

c
(K

B
)

Spoofing Packets per Attacker

Vertex Cover
Top 1%

Random half of top 2%

(f) Pushback Traffic (varying packets per

attacker)

Fig. 6. Network traffic due to spoofing (with 95% confidence intervals)

Realizing a Source Authentic Internet 231

include a clear benefit for the deploying domain. “Early adopters” of the protocol
should be attracted when the deployment level is still low.

We already know the following incentives for deploying SAVE on a network:
Attackers are less likely to successfully spoof source addresses belonging to a
SAVE-protected domain, protecting a domain from misplaced blame and reflec-
tion style attacks. A protected domain will also allow fewer spoofing packets
to enter its network, protecting internal hosts from receiving spoofing packets.
Furthermore, SAVE routers can assign higher priorities to packets from SAVE-
protected source address spaces, giving clients with protected sources higher
quality of service.

What needs to be further studied is how highest-degree ASes can become
incentivized to deploy SAVE. From Section 6.1 we know that deployments at
highest-degree ASes will be mostly effective while random deployments will be
least. One driving force here could be that knowing the correct source of traffic
may help large ISPs monitor and manage their traffic more reliably according
to contractual agreements with their customers.

Spoofing Strategies. Attackers may employ peculiar spoofing strategies to
evade SAVE’s filtering. One such spoofing is random source spoofing in which
the attacker stamps a random source address on every packet it sends out. When
a SAVE router receives any such packet, it will locate the incoming table entry
that matches the inscribed source of the packet. Since for each such packet the
SAVE router probably has not seen its inscribed source before (i.e., no blacklist
entry established), it will treat everyone of them as suspicious, and still forward
them. The router will request on-demand updates, but only to confirm that its
incoming table is up-to-date.

Fortunately, the damage an attacker could cause with random spoofing is
limited. Random spoofing could hide the attacker’s true identity, but random
spoofing cannot be used in attacks such as DNS amplification [1,2], DNS cache
poisoning [4], in-window TCP resets [3], and spam filter circumvention [5,6]. Any
type of reflection attack cannot succeed, since traffic triggered by the spoofing
packets will spread out through the network instead of becoming concentrated
in one area. Similarly, the effect on the SAVE infrastructure is manageable since
any requests for on-demand updates will also be spread throughout the network.

We are investigating the most cost-effective way of addressing this spoofing
strategy. Our concern with random spoofing is the effect it might have on SAVE
itself, so our solution focuses on minimizing the overhead it could generate. In
our current solution, described only briefly for space considerations, a router
does not request an on-demand update for every suspicious packet. Instead,
routers use a truncated binary exponential back off strategy. Initially, a router
will request an on-demand update after it sees n = 1 suspicious packet. If the
requested update shows the incoming table was in fact correct, the router will not
request another on-demand update until it sees n = 2 more suspicious packets.
Every time a requested update arrives, if it agrees with the incoming table, the
router subsequently waits for n = 2n more suspicious packets before requesting
another on-demand update. We do not allow n to increase over 1024. On the

232 T. Ehrenkranz, J. Li, and P. McDaniel

other hand, if the requested update shows the incoming table was incorrect, the
router decreases the wait to n = 1 suspicious packet. In this manner, random
spoofing by attackers cannot cause too much network overhead nor fill up a
router’s blacklist; at the same time, SAVE can continue to quickly update its
incoming table.

False Positives. As discussed in Section 6.2, our pushback mechanism is subject
to false positives when certain conditions are met. Although the transient period
for false positives to occur is very short, further minimizing them is important
and we plan to study this issue further.

8 Related Work

Source address validation is comprised of end-host methods and router-based
methods. To validate the source address of newly received packets, an end-host
can either actively probe supposed sources, or passively observe the pattern of
packets from them [19]. However, although end-host-based detection is easier
to deploy, it cannot prevent spoofing packets from reaching their destinations.
Router-based solutions can be classified as preventive approaches (e.g., filtering)
or reactive approaches (e.g., traceback). Since SAVE is a router-based, filtering-
oriented solution, we focus on these below.

Filtering approaches attempt to identify invalid packets by examining certain
attributes of incoming packets at a router. Many approaches have been proposed.
Network ingress filtering [7] can stop a spoofing attack at its source, but is useless
against spoofing attacks once they enter the Internet. With unicast reverse path
forwarding (uRPF) [8], a router drops any packet from an address that does
not arrive on the interface that the router uses to reach that address. However,
Internet routing is frequently asymmetric: the path from a given address is not
necessarily the same as the path to that address [20].

SPM [21] proposes that packets from a source AS to a destination AS carry a
key bound with that AS pair, but losing the key to an attacker will enable the
attacker to successfully deliver spoofed packets from anywhere. As opposed to
SAVE, SPM is also specific to BGP and cannot help intermediate routers gain
source validity knowledge.

Passport [22] is also BGP specific and uses keys based on AS pairs. It uses
multiple keys based on the packet’s source AS and each AS along the path to
its destination. This allows intermediate ASes to perform validation, in addi-
tion to the destination AS. Passport has problems with packets fragmented in
the middle of the network; the fragmentation invalidates the Passport header.
Routers therefore forward fragmented packets, both legitimate and spoofed, all
the way to their destination. More importantly, intermediate ASes never drop
invalid packets, only lower their priority. An attacker’s spoofing packets will still
reach the destination AS.

The authors of the route-based distributed packet filtering (DPF) [10] studied
the benefits of DPF for attack prevention and traceback, as well as its partial
deployment strategies. Unfortunately, the work did not specify how routers can

Realizing a Source Authentic Internet 233

learn the incoming direction for different source addresses. IDPF [23] attempts
to address this gap. It relies on specific BGP forwarding policies and AS peering
relationships, but only to learn feasible paths, instead of actual paths, from a
given source. BASE [24] is another similar work that relies on BGP, and has yet
to effectively address commonly seen AS-level routing asymmetry.

Pi [25] and StackPi [26] provide a hybrid approach: routers mark each packet
with an identifier for the path that the packet travels, and end hosts examine
packets and classify which paths are attack paths and which are not. Pi/StackPi
cannot handle fragmented packets correctly, and a spoofing packet must reach
its destination before Pi/StackPi can detect it.

9 Conclusion

Research has shown that if a small percentage of routers throughout the Inter-
net deploy a filtering table to discard packets with a forged source address, a
synergistic filtering effect can be achieved to stop a large fraction of spoofed IP
packets. Such an approach to IP spoofing has also been found to be the most
effective. However, in building such a filtering table, specifically an incoming
table, we have found that the previously designed SAVE protocol is susceptible
to obsolete incoming table entries as it is incrementally deployed.

We introduce new mechanisms in this paper to address this deficiency. We
introduce blacklists at SAVE routers and use both the blacklist and the incoming
table to classify and filter incoming packets. Our on-demand mechanism enables
a SAVE router to deal with suspicious packets and update its incoming table, and
the pushback mechanism further pushes the filtering of spoofing packets toward
the SAVE router that is the closest to spoofers. With these new mechanisms, and
with both security and performance issues considered, we show that incoming-
table-based IP spoofing detection is a viable approach to addressing the critical
problem of IP spoofing, and that ASes (beginning with high-degree ASes) will
have incentives to deploy such a solution. Simulations show that, for example,
with deployment at only the top 0.08% of ASes by degree, the efficacy of catching
spoofing packets is over 90%.

References

1. Paxson, V.: An analysis of using reflectors for distributed denial-of-service attacks.

ACM Computer Communications Review (CCR) 31(3), 38–47 (2001)

2. Jackson, D.: DNS amplification variation used in recent DDoS attacks (February

2009), http://www.secureworks.com/research/threats/dns-amplification/
3. Touch, J.: Defending TCP against spoofing attacks. RFC 4953 (July 2007)

4. US-CERT: Multiple DNS implementations vulnerable to cache poisoning, Vulner-

ability Note VU 800113 (July 2008)

5. Morrow, C.: BLS FastAccess internal tech needed (January 2006),

http://www.merit.edu/mail.archives/nanog/2006-01/msg00220.html

6. Beverly, R., Berger, A., Hyun, Y., Claffy, K.: Understanding the efficacy of deployed

Internet source address validation filtering. In: Proceedings of the ACM Internet

Measurement Conference (November 2009)

http://www.secureworks.com/research/threats/dns-amplification/
http://www.merit.edu/mail.archives/nanog/2006-01/msg00220.html

234 T. Ehrenkranz, J. Li, and P. McDaniel

7. Ferguson, P., Senie, D.: Network ingress filtering: Defeating denial of service attacks

which employ IP source address spoofing. RFC 2827 (2000)

8. Baker, F., Savola, P.: Ingress Filtering for Multihomed Networks. RFC 3704 (2004)

9. Ehrenkranz, T., Li, J.: On the state of IP spoofing defense. ACM Transactions on

Internet Technology 9(2), 1–29 (2009)

10. Park, K., Lee, H.: On the effectiveness of route-based packet filtering for distributed

DoS attack prevention in power-law internets. In: Proceedings of ACM SIGCOMM

(2001)

11. Mirkovic, J., Kissel, E.: Comparative evaluation of spoofing defenses. IEEE Trans-

actions on Dependable and Secure Computing 99 (2009) (PrePrints)

12. Li, J., Mirkovic, J., Ehrenkranz, T., Wang, M., Reiher, P., Zhang, L.: Learning the

valid incoming direction of IP packets. Computer Networks 52(2), 399–417 (2008)

13. Li, J., Mirkovic, J., Wang, M., Reiher, P.L., Zhang, L.: SAVE: Source address

validity enforcement protocol. In: Proceedings of IEEE INFOCOM (June 2002)

14. Kent, S., Lynn, C., Mikkelson, J., Seo, K.: Secure border gateway protocol (S-BGP)

— real world performance and deployment issues. In: Proceedings of the Network

and Distributed System Security Symposium (2000)

15. Goodell, G., Aiello, W., Griffin, T., Ioannidis, J., McDaniel, P., Rubin, A.: Work-

ing around BGP: An incremental approach to improving security and accuracy

of interdomain routing. In: Proceedings of the Network and Distributed System

Security Symposium (February 2003)

16. University of Oregon: Route Views Project, http://www.routeviews.org/

17. Tyan, H.Y., Sobeih, A., Hou, J.C.: Towards composable and extensible network

simulation. In: Proceedings of the International Parallel and Distributed Processing

Symposium (2005)

18. Mahadevan, P., Hubble, C., Krioukov, D.V., Huffaker, B., Vahdat, A.: Orbis: rescal-

ing degree correlations to generate annotated Internet topologies. In: Proceedings

of ACM SIGCOMM (2007)

19. Templeton, S.J., Levitt, K.E.: Detecting spoofed packets. In: Proceedings of the

DARPA Information Survivability Conference and Exposition, vol. 1 (2003)

20. Paxson, V.: End-to-end routing behavior in the Internet. In: Proceedings of ACM

SIGCOMM (1996)

21. Bremler-Barr, A., Levy, H.: Spoofing prevention method. In: Proceedings of IEEE

INFOCOM (2005)

22. Liu, X., Li, A., Yang, X., Wetherall, D.: Passport: Secure and adoptable source

authentication. In: Proceedings of USENIX Symposium on Networked Systems

Design and Implementation (2008)

23. Duan, Z., Yuan, X., Chandrashekar, J.: Constructing inter-domain packet filters to

control IP spoofing based on BGP updates. In: Proceedings of IEEE INFOCOM

(2006)

24. Lee, H., Kwon, M., Hasker, G., Perrig, A.: BASE: An incrementally deployable

mechanism for viable IP spoofing prevention. In: Proceedings of the ACM Sympo-

sium on Information, Computer, and Communication Security (2007)

25. Yaar, A., Perrig, A., Song, D.: Pi: A path identification mechanism to defend

against DDoS attack. In: Proceedings of the IEEE Symposium on Security and

Privacy (2003)

26. Yaar, A., Perrig, A., Song, D.: StackPi: New packet marking and filtering mech-

anisms for DDoS and IP spoofing defense. IEEE Journal of Selected Areas in

Communications 24(10), 1853–1863 (2006)

http://www.routeviews.org/

Partial Deafness: A Novel Denial-of-Service
Attack in 802.11 Networks�

Jihyuk Choi, Jerry T. Chiang, Dongho Kim, and Yih-Chun Hu

University of Illinois at Urbana-Champaign, USA

{jchoi43,chiang2,dkim99,yihchun}@illinois.edu

Abstract. We present a new denial-of-service attack against 802.11

wireless networks. Our attack exploits previously discovered performance

degradation in networks with substantial rate diversity. In our attack,

the attacker artificially reduces his link quality by not acknowledging

receptions (which we call “partial deafness” because an attacker pre-

tends to have not heard some of the transmission), thereby exploiting

the retransmission and rate adaptation mechanisms to reduce Medium

Access Control (MAC)-layer performance. As compared to previously

proposed attacks, the partial deafness attack is particularly strong be-

cause the attacker does not necessarily need any advantage over nor-

mal users in terms of transmission power, computation resources, or

channel condition.

Previous work has shown that time fairness in sharing the wireless

medium can improve network throughput. We show that time-based reg-

ulation at the data queue of the access point can similarly mitigate the

negative impact of a partial deafness attacker.

Keywords: IEEE 802.11 DCF, MAC retransmission, Rate adaptation,

Denial of service attack.

1 Introduction

Wireless networks based on the IEEE 802.11 standard [1] are widely deployed to-
day for governmental, commercial, and personal uses. Attacks against the 802.11
standard can cause widespread security exploits ranging from mere inconvenience
to privacy breaches and machine compromise. Much attention is dedicated to
both possible attacks and their respective solutions. For example, the original
security scheme specified by 802.11, the Wired Equivalent Privacy (WEP), is
shown to be susceptible to various attacks against both the encryption mecha-
nism [2,3,4] and the authentication scheme [5]. Many protocols are proposed to
fix these weaknesses [6,7,8].

Other aspects of the 802.11 are also shown to be susceptible to attacks. For
example, the virtual carrier sense mechanism is susceptible to a type of Denial-
of-Service (DoS) attack where an attacker repeatedly reserves the channel for
� This material is based upon work partially supported by USARO under Contract

No. W-911-NF-0710287 and the NSF under Grant No. CNS-0953600.

S. Jajodia and J. Zhou (Eds.): SecureComm 2010, LNICST 50, pp. 235–252, 2010.
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2010

236 J. Choi et al.

long transmissions, thereby starving other users of any transmission opportu-
nities [5]. Many attacks target the backoff mechanism of the 802.11 standard
by not backing off as much as specified by the standard [9,10,11]. Backing off
less than specified allows the attackers to obtain more access opportunities, and
hence higher throughput, than legitimate users.

Heusse et al. demonstrate that even without any malicious intent or misbe-
havior, a slow connection can still significantly impact the transfer speed of a fast
connection because of the fairness mechanism implemented by the Distributed
Coordination Function (DCF) at the Medium Access Control layer (MAC) [12].
In particular, since the IEEE 802.11 DCF seeks to fairly grant access oppor-
tunities to each station, each station has an equal opportunity to be the next
station to transmit a data packet, thus a fast connection regularly has to wait
until a slow connection finishes its reception. This performance anomaly together
with excessive channel reservation can be viewed as head-of-queue blocking at
the wireless medium since the DCF cannot schedule the next station until the
current transmitter is finished.

In this paper, we present partial deafness attack, a novel DoS attack that
builds of Heusse et al.’s observation. Our attack is based on the realization
that most commercial access points are implemented with only a single data
queue since the 802.11 standard does not specify or recommend any queuing
behavior. Thus, if a transmitted packet is not acknowledged, the packet triggers
retransmissions and possible rate adaptation (i.e. slowing the data rate), thereby
creating head-of-queue blocking at the access point. The head-of-queue blocking
then drastically degrades the performance of the wireless network.

Like other DoS attacks, our attack does not aim to give better performance to
the attacker, but to reduce the performance of other users. In our attack, each
attacker artificially worsens his link quality by intentionally failing to acknowl-
edge packet receptions. Our attack impacts the system in a manner similar to
a legitimate user with a slow connection. However, by exploiting the retrans-
mission mechanism specified by the 802.11 standard, the impact of our attack
becomes much more devastating, especially to the Transport Control Protocol
(TCP) performance of other users.

Our work is novel and interesting for two reasons. First, the attacker can
carry out our attack targeting the MAC protocol without modifying the MAC
layer; second, our attack can consistently impact the system regardless of the
opportunistic nature of the physical layer.

Our proposed attack targets the MAC-layer protocol but does not require the
attacker to modify the MAC protocol implementation at his station. For exam-
ple, an attacker can suppress an acknowledgment by turning off the network
interface card any time between the start and completion of packet reception.
In contrast to many previously proposed attacks that require substantial modi-
fication of the firmware or the hardware and are thus often deemed impractical,
our attack can be easily implemented in several ways, including methods that do
not directly modify the MAC-layer implementation. For example, in Section 4,
we detail our implementation of a partial deafness attacker by enabling and

Partial Deafness: A Novel Denial-of-Service Attack in 802.11 Networks 237

disabling the acknowledgment function in the driver of a commercial Wireless
Local Area Network (WLAN) card. In other words, our attack works even when
the attacker abides by the same MAC rules as every other node.

An attacker can simply move farther away from the access point to physically
worsen his channel condition and impact other users. However, this approach
requires the attacker to find a location such that the channel condition is suffi-
ciently weak to regularly results in retransmission, and yet is not weak enough
to result in disassociation. If fading causes the attacker to be disconnected, then
the attacker cannot impact other users; on the other hand, if fading improves the
attacker’s channel condition intermittently, then other users can also experience
improved transfer rate intermittently. Our attack suppresses the acknowledg-
ment and thus allows an attacker to be able to consistently worsen his channel
condition over time, and cause significant degradation of service to other users.

Since the partial deafness attack relies on head-of-queue blocking at the access
point, there are many different methods that can mitigate the attack. We propose
implementing time-fairness at the access point instead of relying on a single First-
In-First-Out (FIFO) data queue. Our proposed solution can be implemented
entirely in software, and does not require any changes to the widely used 802.11
MAC protocol.

The rest of the paper is organized as follows: In Section 2 we review some
related work. In Section 3 we detail our attack and analytically show the effect
of our attack. We show in Section 4 that our attack is indeed practical and causes
severe degradation of network performance. In Section 5 we detail a time-fair
mechanism and show that this mechanism mitigates the partial deafness attack.
We conclude this paper in Section 6.

2 Related Work

The IEEE 802.11 standard is widely deployed due to the unlicensed spectrum in
which it operates and the low cost of client devices and access points. As a result,
the security of 802.11 attracts much attention. In particular, most research on
MAC security focuses on the requirements of confidentiality and integrity. The
original security protocol, WEP, is designed to provide privacy and authenticity
of data. However, Fluhrer et al. note that weakness in the encryption algorithm
used by WEP can be exploited to allow the discovery of session keys [2]. Numer-
ous related attacks exist in the literature [3,4].

While a cryptographic attack has strong adverse effects on users’ privacy
and protocol’s confidentiality and integrity, our work considers another type of
attack where the attacker seeks only to deny service to other users. That is,
the attacker aims to reduce a protocol’s availability. Specifically, we consider the
attacks against the MAC-layer protocol specified in 802.11 rather than the pure
resource consumption attacks such as the jamming attack (e.g. jamming attack
exploiting clear channel assessment [13]).

Attacks on the 802.11 MAC protocol can exploit management vulnerabili-
ties. Bellardo and Savage implement and demonstrate an attack that targets

238 J. Choi et al.

the authentication/association scheme of 802.11 [5]. Bellardo and Savage note
that the deauthentication and disassociation messages are not encrypted, thus
an attacker can easily forge these messages. The attacker can then send the
deauthentication message to the access point before client’s data is received, or
the attacker can send the disassociation message to the client before the client’s
data is transmitted. Ferreri et al. [14] describe DoS attacks against an access
point’s association and authentication mechanisms.

Attacks on the 802.11 MAC can also exploit media access vulnerabilities.
Bellardo and Savage also note that the 802.11 carrier sense mechanism can be
easily exploited. For example, in 802.11 networks, a node can only send data
during a certain time period after the channel stops being busy. In particular,
if not due to retransmission or fragmentation, a user can only transmit data
DCF InterFrame Space (DIFS) after channel is available; otherwise the user can
transmit data Short InterFrame Space (SIFS) after, where SIFS < DIFS. A very
simple method to deny service is to send a short burst every SIFS. Bellardo
and Savage present a more sophisticated scheme exploiting the virtual carrier
sense mechanism. The 802.11 standard specifies that the MAC frame header of
all packets should contain a duration field, which specifies how long others have
to wait before transmission is allowed in order to avoid collision. Users update
their Network Allocation Vector (NAV) with this duration information and keep
quiet for the specified duration. Thus an attacker can repeatedly request long
channel occupancy time, thereby starving normal clients of channel occupancy.

The benefit of attacking the duration field rather than sending a short burst
every SIFS is the amount of power used to carry out the attack. In the duration
field attack, an attacker simply initiates a Request to Send (RTS)/ Clear to Send
(CTS) handshake along with the specified duration. The handshake in theory
would keep the channel busy for roughly 30 ms. The short burst approach, on
the other hand, requires sending a short burst every SIFS, or 10 μs in 802.11b/g
networks. Our proposed attack performs even better in terms of power saving for
the attackers; in particular, our attack can easily occupy 100 ms of channel time
without having to send any messages. Moreover, our attack does not require the
attacker to have better service, higher power, or closer distance to the access
point. Finally, unlike our attack which works on each access point we tested, the
duration field attack does not work in many real systems because most vendors
do not implement the 802.11 specification correctly [5].

Heusse et al. point out that when a client uses a lower bit rate than others
in a 802.11 network, the performance of all clients is considerably degraded [12].
Tan and Guttag subsequently suggest that time fairness can mitigate this per-
formance anomaly and provide better throughput for the WLAN [15]. In this
paper, we present an attacker that exploits the conclusion of Heusse et al. by
artificially and intentionally creating rate disparities. We show that access point
retransmissions exacerbate the anomaly by creating head-of-queue blocking at
the access point’s data queue. We then adapt the principle of Tan and Guttag’s
solution and show how to mitigate our attack by implementing time fairness at
the access point’s data queue.

Partial Deafness: A Novel Denial-of-Service Attack in 802.11 Networks 239

AttackerAccess Point

Initial Attempt

n-1 th Transmission

Acknowledgement

n th Transmission

2nd Transmission Disable ACK

Enable ACK

Fig. 1. Partial Deafness Attack

3 The Partial Deafness Attack

3.1 Description

In this section, we present our novel partial deafness attack, which exploits the re-
transmission mechanism of the 802.11 protocol to reduce the bandwidth of non-
attacking nodes. In our attack, the attacker, upon receiving a unicast data frame
addressed to it, intentionally fails to send a timely acknowledgment for at least
a portion of those data frames. Though previous work has suggested denial-of-
service attacks against IEEE 802.11, our attack stands out because it substan-
tially reduces the bandwidth available to legitimate nodes without requiring the
attacker to have superior connection quality. That is, an attacker with lower trans-
mission power, fewer computation resources, located farther away than a normal
client, can still deny service to all the normal clients within the network.

As illustrated in Fig. 1, when a unicast transmission is not acknowledged, an
802.11 station will normally transmit a frame up to seven times before it gives
up and discards the frame. An attacker can thus fail to acknowledge the first
six transmissions. In addition, senders in 802.11 employ rate adaptation (e.g.
Auto Rate Fallback (ARF) [16], SampleRate [17]) to maximize the throughput
of the channel. When a receiver repeatedly fails to receive transmissions at one
bit rate, the sender chooses a lower bit rate in an attempt to successfully deliver
the packet. Eventually the sender will choose the lowest possible rate, called the
base rate, to deliver packets to the attacker.

Since most 802.11 networks are infrastructure networks in which clients con-
nect directly to an access point, and most traffic is directed to or received from
an access point, the behavior of an access point plays an important role in the
fairness perceived by a station. The 802.11 standard does not specify or recom-
mend any queuing behavior at the access point, so most commercial access points
use a single queue. Thus all packets are treated with the same priority and each
packet is completed before subsequent packets can be serviced, regardless of the
number of retransmissions, or the rate that is selected for those retransmissions.
The attacker can thus induce the access point to spend a large amount of time
to transmit to the attacker, thereby drastically decreasing the time allocated to
the normal clients, and reducing the overall throughput.

240 J. Choi et al.

3.2 Analysis

We will first analyze the impact of our attack in 802.11b, where the maximum
rate is 11 Mbps and the base rate is 1 Mbps. We then use a theoretical analysis
to show that rate diversity exacerbates the problem; thus, in commonly deployed
802.11b/g networks, where the maximum and base rates are 54 Mbps and 1 Mbps
respectively, are even more susceptible to our attack.

To quantify the degree of imbalance caused by the partial deafness attack, we
consider a case in which a normal client and a malicious client share one base
station. We call the normal client Alice; the malicious client, Mallory; and base
station, Bob. In our example, Alice and Mallory have the same link quality to
Bob, so when Mallory is not performing any attack, Bob can send to both Alice
and Mallory at 11 Mbps. That is, if Alice and Mallory started User Datagram
Protocol (UDP) downloads, they would each receive approximately half of the
available bandwidth.

Let us consider the particular rate adaptation algorithm implemented on a
Linksys WRT54G access point. Initially, Bob’s rate adaptation chooses 11 Mbps
for its first three transmissions and 2 Mbps for its last four retransmissions. If
Mallory acknowledges after the 3rd transmission, Bob determines that 11 Mbps
is too high an initial rate, and will send the subsequent packet at 5.5 Mbps for the
first three transmissions and 1 Mbps for the next four retransmissions. If Mallory
again acknowledges after the 3rd transmission, Bob determines that 5.5 Mbps is
again too high an initial rate, and will send the subsequent packet at 2 Mbps
for the first three transmissions and 1 Mbps for the next four retransmissions. If
Mallory again acknowledges after the 3rd transmission, Bob will determine that
2 Mbps is still too high and will send all subsequent packets at 1 Mbps.

If Mallory performs the partial deafness attack, and she does not acknowledge
receiving a packet until the 7th transmission, Bob would send packets to Mallory
at 1 Mbps in the steady state, but to Alice at 11 Mbps. Thus, it would take
Bob 11 times longer to send an identical packet to Mallory than to Alice. In
other words, if Bob sends an equal number of packets to Alice and Mallory,
without considering retransmission, Mallory is already allocated 11

12 = 91.7% of
the channel occupancy time as opposed to 50% in a time-fair scheme.

We now consider the additional effect of retransmissions. In the Direct Se-
quence Spread Spectrum (DSSS) mode of 802.11b, the slot time is 20μs, mini-
mum and maximum contention window size are 31 and 1023. Typically 802.11
networks are configured to allow a maximum transmission unit of around
2304 bytes. In 802.11, a station can fragment larger packets into smaller frag-
ments and transmit each fragment separately. In this case, Mallory allows Bob
to send each fragment the maximum number of times before Bob gives up on the
fragment. Thus each fragment of the packet is transmitted seven times, which
is nearly equivalent to transmitting the entire packet seven times. (There are
minor differences because of the interframe spacing used between fragments,
but seven retransmissions of one large frame should closely approximate seven
retransmissions of each of several smaller fragments).

Partial Deafness: A Novel Denial-of-Service Attack in 802.11 Networks 241

We now quantify Mallory’s per-packet channel occupancy time in steady-state.
We assume that every time the sender (in this case Bob) wishes to send a packet,
the medium is busy, so the 1st transmission experiences backoff. We further
assume that once the medium becomes idle, there are no further transmissions
on that medium except those initiated by Bob. We will validate the theoretical
results here with implementation results in Section 4, which show that these
assumptions provide results comparable to those seen in normal access point
behaviors. We will consider a single UDP packet containing 1470 bytes of data,
which, after UDP- and Internet Protocol (IP)-layer headers, comes to 1498 bytes.
The addition of MAC-layer headers brings the total to 1534 bytes.

If Alice and Mallory both acknowledge reception of a packet by the 3rd trans-
mission, the steady-state data rate is 11 Mbps. In this case, the 1st transmission
takes about 1571.6 μs in expectation: 50 μs for DIFS, 310 μs of expected back-
off, 96 μs of preamble, and 1115.6 μs of data. Bob would expect an acknowl-
edgment within 126 μs, which represents the sum of: the SIFS that Mallory
must wait following reception, the maximum propagation delay between Mal-
lory and Bob, which is defined in 802.11 to be one slot time, and the delay
that 802.11 allows between when the radio frequency energy starts impinging
on the receiver until that receiver starts receiving a message, which is defined to
be the length of the preamble. In expectation, a failed 1st transmission would
therefore be detected 1697.6 μs after the medium becomes idle. When the 1st

transmission is successful, Mallory waits SIFS and transmits a preamble and a
12 byte acknowledgment at 2 Mbps, which gives an expected time of 1725.6 μs
from when the medium is idle until the transmission is received. (We assume
the propagation time is negligible; the 20 μs slot time of 802.11 is sufficient
for a 6 km transmission, which is well in excess of typical 802.11 transmission
distances). In further retransmissions, the one thing that changes is the ex-
pected backoff value, which increases from 310 μs to 630 μs to 1270 μs within
these first three retransmissions. Also, Bob will not wait DIFS when Bob does
not receive an acknowledgment. Thus success after three retransmissions takes
1697.6+(1647.6+320)+(1675.6+320+640) = 6300.8 μs. If Mallory forces three
retransmissions for each packet while Alice acknowledges every 1st transmission,
then Mallory will capture 6300.8

6300.8+1725.6 = 78.5% of the channel occupancy time.
When Bob must regularly transmit each packet at least four times in order

to reach Mallory, Bob sends every packet to Mallory at 1 Mbps. Thus each data
transmission takes 12272 μs for data alone, which, after adding backoff, pream-
ble, and header for the 1st transmission takes 12678 μs. The acknowledgment
times out after the same 126 μs, giving a failure time for the 1st transmis-
sion of 12804 μs. Thereafter, each failure takes the same amount of time after
adjustment for backoff, and when the acknowledgment finally comes, it is trans-
mitted at 1 Mbps, so seven retransmissions takes 50 + 12678 ∗ 7 + 126 ∗ 6 +
backoff increases+202 (μs), where 50 μs is DIFS, 12678 μs is the time that each
packet transmission takes, 126 μs is the time to detect that an acknowledgment
is not forthcoming, and 202 μs is the time to finish receiving an acknowledgment.
The total additional backoff for seven retransmissions is 28160 μs in expectation,

242 J. Choi et al.

so the total transmission time is 117914 μs. If Mallory forces six retransmissions
(for a total of seven transmissions) for each packet while Alice acknowledges
every 1st transmission, then Mallory will capture 117914

117914+1725.6 = 98.6% of the
channel occupancy time.

Finally, we argue that rate diversification exacerbates the partial deafness
attack. In the same scenario, when Alice uses a 54 Mbps link in a 802.11b/g
network, Mallory’s transmissions take the same amount of time, but Alice’s
transmissions are now much faster. The DIFS and backoff take 360 μs as before
(because it is a mixed-mode 802.11b/g access point), 802.11g does not require a
preamble, and Alice’s data transmission is now 227.3 μs, for a forward transmis-
sion time of 587.3 μs; after a 10 μs 802.11g SIFS and a 30 μs 802.11g acknowl-
edgment, each Alice’s packets take 627.3 μs in expectation. Thus Alice’s channel
occupancy time drops further to 0.53%.

4 Implementation and Evaluation of the Partial Deafness
Attack

In this section, we detail our implementation of a partial deafness attacker and
observe that the attack does in fact impact the data rate greatly.

4.1 Implementation

We implemented a partial deafness attacker to see the effect of the attack on an
802.11 network. Our implementation uses commercial off-the-shelf 802.11 Net-
work Interface Cards (NICs). Most commodity 802.11 NICs generate and send
acknowledgment frames automatically in firmware whenever a packet is received,
because of the hard real-time deadlines on generating acknowledgments. The
partial deafness attack can then be implemented by building custom hardware,
modifying the firmware to defer acknowledgments, or turning off the network
interface card any time between the start and completion of packet reception.

In order to simplify the task of deferring packet acknowledgments, we choose
to modify the MadWifi driver, which is a Linux kernel device driver for Atheros-
based WLAN devices. The Atheros chipset does not load a firmware onto the
card, but instead relies on a Hardware Abstraction Layer (HAL) module that is
part of the driver. The HAL module defines the interface between the hardware
and other software in the device driver to manage many of the chip-specific
operations and to enforce any relevant regulations.

We modified MadWifi to control a particular register in the HAL module
that allows us to enable and disable packet acknowledgments. As illustrated in
Fig. 1, we suppressed acknowledgements from the first n− 1th transmissions by
switching the HAL register.

Our evaluation network consists of a traffic source connected to an IEEE
802.11b/g access point. A normal user and an attacker use 802.11 to connect
to the access point. This topology is illustrated in Fig. 2. We use two different
kinds of access points in our experiment. When we do not need to modify the

Partial Deafness: A Novel Denial-of-Service Attack in 802.11 Networks 243

Traffic
sender

Access
point

Nomal
reciever

Attacker

Fig. 2. Network Topology

access point queuing algorithms, we use commercial off-the-shelf access points
such as Linksys WRT54G, which uses the Broadcom BCM5352EKPB chipset
and supports 802.11b/g mixed mode, because it shows how the rate adaption is
practically implemented in real 802.11 system. When we do need to modify the
access point queuing algorithms, we use HostAP on a Pentium-III 1 GHz laptop
running Linux 2.6.24 because we cannot control queuing behavior in the commer-
cial products to which we have access. The Pentium-III laptop has an Ethernet
interface and an Atheros 802.11a/b/g card. We use MadWifi and configure the
Atheros NIC to operate in 802.11 master mode. We then use kernel-level bridging
to bridge between the 802.11 network interface card and the Ethernet network
interface card. For traffic generation, we use iperf; the traffic source generates
traffic as an iperf client, which was then sunk at iperf servers running on the
normal user and the attacker. We collect our data through an additional machine
(not shown in Fig. 2), which captures all 802.11 frames sent on the network.

4.2 Evaluation

Maximum Throughput of Attacker. In order to determine the bit rate that
an attacker needs to send to saturate the channel, we first examine the maximum
throughput of the attacker using 802.11b when the attacker is the only user of
the access point. We perform these measurements and theoretical analysis using
UDP because UDP is a non-conforming load and will allow us to set our load
regardless of the route’s capability to handle that load. When Mallory forces Bob
to transmit each packet n times, we compute the amount of time required per
packet as described in Section 3; we then translate this into an application-layer
rate and present it in Table 1.

As described in Section 3, the rate adaptation mechanism at the access point
selects an 11 Mbps rate for users that acknowledge at least once every 3 trans-
missions and selects a 1 Mbps rate for users that acknowledge less frequently
than every 3 transmissions. This contributes to the sharp reduction in maxi-
mum throughput between a user who acknowledges every 3 packets and a user
who acknowledges every 4 packets.

We then implemented the partial deafness attacker that requires 1 to 7 trans-
missions before it will send an acknowledgment. We could not consistently

244 J. Choi et al.

require 2 transmissions because the driver we used to enable and disable acknowl-
edgments could not consistently set the register within the real-time requirement
between the first and the second transmissions. We ran this attacker both in an
outdoor environment without measurable 802.11 interference and in an indoor
environment where the 802.11 interference was uncontrolled. Some experimen-
tal results are greater than the calculated theoretical values because the access
point, in violation of the specification, interleaves a beacon transmission between
retransmissions of the original data packet. Because beacons are broadcast, and
because broadcast messages are always considered successful, they reset the con-
tention window size to minimum without resetting the retry count. Appendix A
provides further details. Our results show that a partial deafness attacker receiv-
ing about 115 kbps of traffic can exhaust the entire forwarding capability of an
access point.

Impact on UDP victim. We consider the impact on the throughput of a
normal client that uses UDP against a partial deafness attacker that only ac-
knowledges the 7th transmission of each packet. Theoretically, if the access point
receives α packets destined to the normal user for every packet destined to the
attacker, then we would expect that the normal user would get a α

1+α share of
the overall throughput, since the access point treats all packets equally.

To test this hypothesis, we gave the attacker a UDP source rate of 200 kbps,
which is sufficient to saturate the access point’s wireless link under the par-
tial deafness attack; and the normal user, a UDP source rate of 100, 200, then
400 kbps. The resulting throughput is shown in Table 2. As expected, the ratio
of throughputs is equal to the ratio of the UDP source rates.

Table 1. Maximum UDP throughput of an attacker. n is the number of transmissions

required before the attacker sends an acknowledgment; this table shows results in a

theoretical analysis as described in Section 3 and an actual outdoor/indoor experiment

without/with any detectable 802.11 interference.

n Theoretical Outdoor Indoor

1 6814.9 (kbps) 6049.0 (kbps) 5782.0 (kbps)

2 3184.2 (kbps) N/A N/A

3 1866.4 (kbps) 1563.0 (kbps) 1282.0 (kbps)

4 214.4 (kbps) 209.1 (kbps) 193.3 (kbps)

5 162.3 (kbps) 163.2 (kbps) 159.4 (kbps)

6 123.5 (kbps) 128.8 (kbps) 123.2 (kbps)

7 99.7 (kbps) 115.0 (kbps) 114.0 (kbps)

Table 2. UDP throughputs under partial deafness attack. Attacker’s source rate is

200 kbps. Results are averaged over 20 runs.

Normal user’s source rate Normal user’s throughput Attacker’s throughput

100 (kbps) 55.7 (kbps) 112.0 (kbps)

200 (kbps) 111.8 (kbps) 111.7 (kbps)

400 (kbps) 219.1 (kbps) 109.3 (kbps)

Partial Deafness: A Novel Denial-of-Service Attack in 802.11 Networks 245

-10 0 10 20 30 40 50
0

1

2

3

4

5

6

7

8

M
A

C
-L

ay
er

 U
sa

ge
 (

M
bp

s)

Time (sec)

Attacker (UDP)
User (TCP)

(a) Impact on 802.11b normal user

-10 0 10 20 30 40 50
0

5

10

15

20

25

M
A

C
-L

ay
er

 U
sa

ge
 (

M
bp

s)

Time (sec)

Attacker (UDP)
User (TCP)

(b) Impact on 802.11g normal user

Fig. 3. MAC-layer utilization by TCP under the partial deafness attacker. The shaded

region (0-30 sec) shows the time of attack; results are averaged over 20 runs, with the

error bars (95% confidence interval).

-10 0 10 20 30 40 50
0

1

2

3

4

5

6

7

8

M
A

C
-L

ay
er

 U
sa

ge
 (

M
bp

s)

Time (sec)

Sample 1
Sample 2

Fig. 4. The differences of TCP re-

covery time. The shaded region (0-

30 sec) shows the time of attack.

-10 0 10 20 30 40 50
0

1

2

3

4

5

6

7

8

M
A

C
-L

ay
er

 U
sa

ge
 (

M
bp

s)

Time (sec)

Attacker (ICMP)
User (TCP)

Fig. 5. Partial deafness attack using

ICMP ping. The shaded region (0-30

sec) shows the time of attack.

Impact on TCP victim. We now consider a normal TCP user competing for
bandwidth against a partial deafness attacker. The attacker again uses a UDP
source rate of 200 kbps. To show the impact of the attack, we allow TCP to
warm up for a period of time before the attack starts; then perform the attack
for a period of time, and finally turn off the attack and allow TCP to return to
its steady-state behavior. Because we are interested in how nodes share the avail-
able bandwidth on the wireless link, we measure MAC-layer bandwidth usage,
counting each retransmission as additional channel usage. As shown previously,
each transmission to the attacker theoretically takes around 118 ms. We thus
quantized each protocol’s usage into 500 ms slots so that the normal user has
a chance to receive data in each slot, and each slot conveys the granularity of
MAC-layer usage. We plotted the MAC-layer usage over time for each scenario.
Because we allow a warm-up and cool-down period where the attacker does not
perform the partial deafness attack, each plot includes a shaded box covering
the 30-second time interval (from 0 to 30) during which the attack took place.

Fig. 3(a) shows the MAC-layer usage when a partial deafness attacker com-
petes against a normal user’s TCP flow when both clients use 802.11b. As shown

246 J. Choi et al.

-10 0 10 20 30 40 50
0

1

2

3

4

5

M
A

C
-L

ay
er

 U
sa

ge
 (

M
bp

s)

Time (sec)

Attacker (UDP)
User 1 (TCP)
User 2 (TCP)

Fig. 6. Partial deafness attack on

the network with two 802.11b nor-

mal users. The shaded region (0-30

sec) shows the time of attack.

-10 0 10 20 30 40 50
0

1

2

3

4

5

6

7

8

M
A

C
-L

ay
er

 U
sa

ge
 (

M
bp

s)

Time (sec)

Attacker (UDP)
User (TCP)

Fig. 7. Partial deafness attack on

an access point with fixed rate,

11 Mbps. The shaded region (0-30

sec) shows the time of attack.

in Table 1, a UDP attacker only needs to transmit 115 kbps in order to saturate
the link and cause congestion; by allowing the attacker to send 200 kbps traf-
fic would cause the attacker to experience a 43% loss rate without considering
a sharing normal user. When a normal TCP user shares the channel with the
attacker, the access point treats and drops an equal fraction of UDP and TCP
packets, hence the TCP user would experience similar loss rate as the attacker.
That is, the normal TCP user would experience at least a 43% loss rate; since
TCP is a conforming transport layer protocol, such a high loss rate causes re-
peated TCP time-out and results in minimal throughput for the normal user, as
shown in Fig. 3(a). We observe that TCP has substantial variance in the MAC
layer usage during recovery (Fig. 3(a)); to show the cause of this large variance,
we plot two sample runs in Fig. 4 and show that the TCP flow in each sample
run recovers at substantially different time.

We examined the impact of a partial deafness attacker in the scenario where a
normal user connects to the access point using the 802.11g standard. The normal
user enjoys a faster connection when the attacker is silent; however, when the
attacker carries out the partial deafness attack, the transfer speed of the normal
802.11g user is not significantly faster than that of a normal 802.11b user. This
result is consistent with our analysis of rate diversity in a 802.11b/g network at
the end of Section 3.

Partial deafness can even be carried out by an unauthenticated station when
an access point uses a captive portal to authenticate end points. To attack such
an access point, the attacker guests traffic to itself by sending Internet Control
Message Protocol (ICMP) ping messages to the captive portal. Fig. 5 shows the
impact of the data rate of a normal user when an attacker performs a flood ping
(using the ‘-f’ option) where each ping packet contains 1470 bytes of data. Our
results shows that an attacker can deny an access point’s service, even if the
access point uses a captive portal to authenticate users.

The partial deafness attack creates head-of-queue blocking by using retrans-
mission and rate adaptation; thus, a normal user will experience an even higher
loss rate when other normal users are also present. This is intuitive since all

Partial Deafness: A Novel Denial-of-Service Attack in 802.11 Networks 247

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

T
C

P
 G

oo
dp

ut
 p

er
 u

se
r

(M
bp

s)

of normal TCP user

Before attack
During attack

(a) UDP attacker

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

T
C

P
 G

oo
dp

ut
 p

er
 u

se
r

(M
bp

s)

of normal TCP user

Before attack
During attack

(b) TCP attacker

Fig. 8. ns-2 simulation of the partial deafness attack on a network with multiple

802.11b normal users; results are averaged over 20 runs, with the error bars show-

ing 95% confidence interval

users are going to compete for the limited amount of remaining bandwidth. We
performed our partial deafness attack in a network with 2 normal users, and
show our results in Fig. 6.

We also performed an ns-2 simulation on the impact of the partial deafness
attack in a network with 1 to 10 normal users in addition to the attacker. In
our simulation, all users (normal and attacker) are located on a circle 1 m away
from the access point. The normal users and the attacker are given identical
properties (such as signal and noise power levels), except the acknowledgment
policy. That is, the attacker is identical to a normal user except he does not
acknowledge receiving a packet until the 7th transmission.

We present our simulation results in Fig. 8. Fig. 8(a) and Fig. 8(b) show the
effectiveness of the partial deafness attack when the attacker uses UDP with
source rate of 200 kbps and TCP respectively. In both cases, we see the goodput
per normal user during attack is minuscule compared to the fair goodput each
normal user enjoys without the attack.

The partial deafness attack works by exploiting the retransmission mechanism
specified by 802.11 and the rate adaptation implemented at an access point. We
thus examined the effectiveness of the partial deafness attack in the scenario
where the access point does not support rate diversity. Since a fast connection is
impacted by the slow connection partially due to the transfer speed, we expect
the impact of partial deafness attack to be alleviated in the case where the access
point does not provide rate adaptation. We show our result in Fig. 7.

We examined the effectiveness of the partial deafness attack on two other
access points that use different chipsets from that of Linksys WRT54G. Specifi-
cally, we examined a Linksys WRT54GC, and a Trendnet TEW-432BRP access
points. We present our results in Fig. 9. We observe that both access points
are also susceptible to the partial deafness attack. Even though rate adapta-
tion mechanisms of these two access points are different from that of Linksys
WRT54G, the partial deafness attack still makes the attacker’s traffic use the
base rate during attack period. For the Linksys WRT54GC, each packet is

248 J. Choi et al.

-10 0 10 20 30 40 50
0

1

2

3

4

5

6

7

8

M
A

C
-L

ay
er

 U
sa

ge
 (

M
bp

s)

Time (sec)

Attacker (UDP)
User (TCP)

(a) Linksys WRT54GC

-10 0 10 20 30 40 50
0

1

2

3

4

5

6

7

8

M
A

C
-L

ay
er

 U
sa

ge
 (

M
bp

s)

Time (sec)

Attacker (UDP)
User (TCP)

(b) Trendnet TEW-432BRP

Fig. 9. MAC-layer utilization by TCP under the partial deafness attacker. The shaded

region (0-30 sec) shows the time of attack.

retransmitted only 4 times (we discuss this behavior in Appendix A.3). The rate
adaptation mechanism in Trendnet TEW-432BRP decreases the rate slowly as
compared to the Linksys WRT54G. This difference results in slower performance
degradation, as shown in Fig. 9(b).

5 Countermeasure

In this section, we propose a countermeasure that mitigates the partial deafness
attack. The partial deafness attack is based on head-of-queue blocking at the
access point that results in starvation of normal users. Thus our intuition for
mitigating the attack is to use time fairness to prevent starvation. Time fairness
has also been suggested in previous work [15] to increase throughput in a network
with rate diversity.

Time fairness can be enforced at the access point by implementing a Time-
Based Regulator (TBR) that times each transmission: if user A is allocated time
duration tn in the nth round, then all other users are allocated the same time
duration.

We implemented a TBR on HostAP as described in Section 4.1. In particular,
we implemented a priority queue at the access point that allows us to select
the next client to serve. We also emulated the rate adaptation of the Linksys
WRT54G access point in order to obtain consistent comparisons of the data
rates between our attack scenarios and our mitigation implementation.

Table 3. UDP throughput of normal user and partial deafness attacker with Time-

Based Regulator (TBR). The source rate of attacker and normal user is 11 Mbps.

Results are averaged over 20 runs.

Attacker Normal user

Normal user only 6.07 (Mbps)

Without TBR 110.9 (kbps) 107.9 (kbps)

With TBR 52.5 (kbps) 2.93 (Mbps)

Partial Deafness: A Novel Denial-of-Service Attack in 802.11 Networks 249

-10 0 10 20 30 40 50
0

1

2

3

4

5

6

7

8

M
A

C
-L

ay
er

 U
sa

ge
 (

M
bp

s)
Time (sec)

Attacker (UDP)
User (TCP)

Fig. 10. The TCP user’s MAC-layer channel utilization with the countermeasures. The

shaded region (0-30 sec) shows the time of attack; results are averaged over 20 runs,

with the error bars (95% confidence interval).

We first consider the case where a normal UDP user shares the wireless link
with a partial deafness attacker. We gave both the partial deafness attacker and
the normal user a UDP source rate of 11 Mbps. The partial deafness attacker
is configured to only acknowledge the 7th transmission of every packet. The
resulting throughput is shown in Table 3. When there is no attacker, the user
can receive 6.07 Mbps of traffic, which is consistent with our previous result in
Table 1. Moreover, when the attacker is present, the user still enjoys almost half
of this rate, at 2.93 Mbps, which shows a significant improvement over using
access opportunity fairness.

We applied a TBR to a TCP user in the presence of a partial deafness attacker
who uses UDP at the transport layer. Fig. 10 shows that a TBR allows the user
to obtain significantly better service when under attack. In particular, the TCP
user ceases to experience heavy packet losses when a TBR is deployed at the
access point.

Time fairness can be implemented with 802.11e by choosing appropriate traf-
fic category for each node according to their fair share of channel occupancy
time [15]. However, 802.11e itself (i.e. 802.11e without TBR) might not be ef-
fective as a countermeasure since 802.11e specifies only four traffic categories
(i.e. four queues). As multiple partial deafness attackers can connect to a single
access point, the attackers can collectively block all four queues used by 802.11e.

6 Conclusions

In this paper, we presented a denial-of-service attack, called partial deafness,
against current IEEE 802.11 wireless networks. Our attack targets the 802.11
MAC protocol without modifying the MAC-layer implementation. Furthermore,
our attack does not require the attacker to have better resources than a normal
user; the attacker can have lower signal strength, slower computation, and be
farther from the base station and still negatively impact the normal users. We
showed that our attack substantially degrades the performance of normal users
that use UDP and can almost completely deny service to users using TCP.

250 J. Choi et al.

We then proposed and evaluated a countermeasure based on time fairness that
mitigates the partial deafness attack. We use time-based regulation to ensure
that each client gets an equal fraction of the service provided by the access point.
We experimentally showed that this mechanism restores a reasonable level of
performance for normal users, whether they use UDP or TCP, when an attacker
performs the partial deafness attack.

References

1. IEEE Std. 802.11: Wireless LAN Medium Access Control (MAC) and Physical

Layer (PHY) Specifications (2007)

2. Fluhrer, S., Mantin, I., Shamir, A.: Weaknesses in the key scheduling algorithm of

RC4. In: Vaudenay, S., Youssef, A.M. (eds.) SAC 2001. LNCS, vol. 2259, pp. 1–24.

Springer, Heidelberg (2001)

3. Stubblefield, A., Ioannidis, J., Rubin, A.D.: A key recovery attack on the 802.11b

wired equivalent privacy protocol (WEP). ACM Transactions on Information and

System Security 7(2), 319–332 (2004)

4. Bittau, A., Handley, M., Lackey, J.: The final nail in WEP’s coffin. In: 27th IEEE

Symposium on Security and Privacy, pp. 386–400. IEEE Computer Society, Los

Alamitos (2006)

5. Bellardo, J., Savage, S.: 802.11 denial-of-service attacks: Real vulnerabilities and

practical solutions. In: 12th USENIX Security Symposium, pp. 15–27. USENIX

Association, Berkeley (2003)

6. Wi-Fi Alliance: Wi-Fi Protected Access: Strong, standards-based, interoperable

security for today’s Wi-Fi networks (2003)

7. IEEE Std. 802.11i: Medium Access Control (MAC) Security Enhancements (2004)

8. IEEE Std. 802.1X: Port-Based Network Access Control (2004)

9. Kyasanur, P., Vaidya, N.H.: Selfish MAC layer misbehavior in wireless networks.

IEEE Transactions on Mobile Computing 4(5), 502–516 (2005)

10. Cardenas, A.A., Radosavac, S., Baras, J.S.: Performance comparison of detection

schemes for MAC layer misbehavior. In: 26th IEEE Conference on Computer Com-

munications, pp. 1496–1504. IEEE Communication Society, Piscataway (2007)

11. Raya, M., Hubaux, J.P., Aad, I.: DOMINO: A system to detect greedy behavior

in IEEE 802.11 hotspots. In: 2nd International Conference on Mobile Systems,

Applications, and Services, pp. 84–97. ACM, New York (2004)

12. Heusse, M., Rousseau, F., Berger-Sabbatel, G., Duda, A.: Performance anomaly of

802.11b. In: 22nd IEEE Conference on Computer Communications, pp. 836–843.

IEEE Communication Society, Piscataway (2003)

13. Denial of service vulnerability in IEEE 802.11 wireless devices,

http://www.auscert.org.au/render.html?it=4091

14. Ferreri, F., Bernaschi, M., Valcamonici, L.: Access points vulnerabilities to DoS

attacks in 802.11 networks. In: IEEE Wireless Communications and Networking

Conference, pp. 634–638. IEEE Communication Society, Piscataway (2004)

15. Tan, G., Guttag, J.: Time-based fairness improves performance in multi-rate

WLANs. In: USENIX Annual Technical Conference, pp. 269–282. USENIX As-

sociation, Berkeley (2004)

16. Kamerman, A., Monteban, L.: WaveLAN-II: A high-performance wireless lan for

the unlicensed band. Bell Labs Technical Journal 2(3), 118–133 (1997)

http://www.auscert.org.au/render.html?it=4091

Partial Deafness: A Novel Denial-of-Service Attack in 802.11 Networks 251

17. Bicket, J.C.: Bit-rate Selection in Wireless Networks. Master’s thesis,

Massachusetts Institute of Technology (2005)

18. Han, B., Schulman, A., Gringoli, F., Spring, N., Bhattacharjee, B., Nava, L., Ji, L.,

Lee, S., Miller, R.: Maranello: Practical partial packet recovery for 802.11. In: 7th

USENIX Symposium on Networked Systems Design and Implementation. USENIX

Association, Berkeley (2010)

A Time Distribution of Beacon-Induced Backoff

Each access point periodically broadcasts beacons. Since beacons are broadcast
messages, they are not acknowledged, so the 802.11 standard considers all bea-
con transmissions successful. However, when beacons are transmitted between
retransmissions, the perceived success from the broadcast causes the access point
to choose a contention window on the interval between [0, CWmin]. Furthermore,
since the packet waiting for retransmission has not yet been acknowledged, the
access point does not reset the retry limit counter. This creates significant dis-
crepancies in the backoff process between what the standard specifies and what
actually happens using commercial products.

To demonstrate the discrepancies caused by the periodic beacons, we examine
the latency between the 6th and 7th transmission. The 802.11 standard speci-
fies that the 7th transmission wait Short InterFrame Space (SIFS) (10 μs) and
then backoff with a value uniformly distributed over [0, CW[7]]. However, if the
contention window were reset between the mth and the (m + 1)st transmission,
the resulting backoff between the 6th and 7th transmission would be off by a fac-
tor of 2m−1. (We use m − 1 instead of m because CW[6] = CW[7] in 802.11b.)
Therefore, given the beacons are transmitted periodically, we should expect the
latency to be distributed geometrically.

A.1 Broadcom Chipset

We examined a Linksys WRT54G (ver. 5) using a Broadcom chipset. By default,
this access point sends a beacon message every 100 ms. However, as shown in
Section 3, the total time required to send 7 transmissions almost always takes
longer than 100 ms. Thus, we change the beacon interval to 200 ms in order to
demonstrate the effect of the beacon messages.

Fig. 11(a) shows a histogram of the latency between the 6th and 7th packet
transmission with each bin size 100 μs, equaling 5 slot time. We categorized
transmissions into two sets: one set contains all the transmissions where a beacon
packet had been interleaved between the 1st transmission of this packet and the
7th; the other set contains all the transmissions for which no beacon packet had
been interleaved between the 1st transmission of this packet and the 7th. The
thin line shows the latency of the second set; that is, when no beacon has been
interleaved. In the non-interleaved case, the latency is uniformly distributed, as
would be expected from reading the 802.11 standard. The bold line shows our
observation of latency from the first set; that is, for packets into which beacons
have been interleaved. In this case, the latency is exponentially/geometrically

252 J. Choi et al.

0 5 10 15 20 25 30
0.00

0.01

0.02

0.03

0.04

0.05

0.06
Beacon interleaved
No beacon interleaved

R
el

at
iv

e
F

re
qu

en
cy

Latency (msec)

(a) Linksys WRT54G

0 1 2 3 4 5
0.0

0.2

0.4

0.6

0.8

1.0
Beacon interleaved
No beacon interleaved

R
el

at
iv

e
F

re
qu

en
cy

Latency (msec)

(b) MadWifi

Fig. 11. Latency between the 2nd to last and last retransmissions of the same packet

distributed, which shows that beacons are interleaved and this interleaving does
affect the backoff values chosen.

A.2 MadWifi Driver

As described in Section 4.1, the Hardware Abstraction Layer (HAL) module
operates between the hardware and the device driver and is implemented to
manage many of the chip-specific operations. The HAL module is distributed
with the driver. Thus, the same Atheros Network Interface Card (NIC) may
exhibit different behaviors when using different drivers that contain different
HALs.

With the same scenario as described in previous section, we tested the Mad-
Wifi driver and the Atheros NIC by using HostAP. We observed that the Mad-
Wifi driver does not increase its contention window when retransmitting packets
as shown in Fig. 11(b). There had been suspicions that MadWifi driver is not
backing off properly [18]; moreover, when we used Windows and a Windows
driver with the same Atheros NIC in an ad-hoc connection, we did not observe
the improper backoff behavior. We thus conclude that MadWifi driver does not
perform exponential backoff properly.

A.3 Marvell ARM914 Chipset

We also tested the Linksys WRT54GC access point, which uses the Marvell
ARM914 chipset.We found that the maximum number of retransmissions was 4
instead of 7. The 802.11 standard specifies that packets with payload longer than
Request to Send (RTS) threshold are transmitted up to the long retry count of
4, and with payload shorter than RTS threshold are transmitted up to the short
retry count of 7. Most access points, including the Linksys WRT54GC, set the
RTS threshold so that all packets are sent without RTS/Clear to Send (CTS),
and thus each packet should be retransmitted up to 7 times. We thus conclude
that the WRT54GC improperly set the short retry count to 4.

Attacking Beacon-Enabled 802.15.4 Networks

Sang Shin Jung, Marco Valero, Anu Bourgeois, and Raheem Beyah

CAP Research Group

Department of Computer Science, Georgia State University

Atlanta, GA 30303, USA

{sangsin,mvalero,abourgeois,rbeyah}@cs.gsu.edu
http://www.cs.gsu.edu/cap

Abstract. The IEEE 802.15.4 standard has attracted time-critical appli-

cations in wireless sensor networks (WSNs) because of its beacon-enabled

mode and guaranteed time slots (GTSs). However, the GTS management

scheme’s built-in security mechanisms still leave the 802.15.4 MAC

vulnerable to attacks. Further, the existing techniques in the literature

for securing 802.15.4 either focus on non beacon-enabled mode 802.15.4 or

cannot defend against insider attacks for beacon-enabled mode 802.15.4.

In this paper we illustrate this by demonstrating attacks on the availabil-

ity and integrity of a beacon-enabled 802.15.4 sensor network. To confirm

the validity of the attacks, we implement the attacks using Tmote Sky

Motes for sensor nodes, where the malicious node is deployed as an inside

attacker. We show that the malicious node can easily exploit informa-

tion retrieved from the beacon frames to compromise the integrity and

availability of the network. We also discuss possible defense mechanisms

against these attacks.

Keywords: Insider attacks, Beacon-enabled 802.15.4, wireless sensor

networks, MAC misbehavior.

1 Introduction

Wireless sensor networks (WSNs) have emerged quickly and attracted a num-
ber of diverse applications. The use of these applications ranges from residen-
tial to government. For example, AlertMe home monitoring [1] is a residential
system that enables secure indoor and outdoor home environment monitoring
with simple contact and passive infrared (PIR) sensors. If AlertMe detects in-
truders, it immediately reports the intrusion to the homeowner. The military
is also using WSNs to detect an adversary’s behavior and location. For exam-
ple, seismic sensors can be used to detect the movement of heavy artillery (e.g.,
tanks) in the battlefield. In either case, not receiving information about the
environment in a time-sensitive manner can have significant consequences. To
provide support for time-sensitive communication, the IEEE 802.15.4 standard
provides a beacon-enabled mode. Unlike non beacon-enabled mode, the beacon-
enabled mode in 802.15.4 networks facilitates real-time delivery of data using the
GTS management scheme during the contention free period (CFP) [2,3,4,5,6,7].

S. Jajodia and J. Zhou (Eds.): SecureComm 2010, LNICST 50, pp. 253–271, 2010.
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2010

254 S.S. Jung et al.

In the beacon-enabled mode, a centralized node (i.e., personal area network
(PAN) coordinator) broadcasts beacon frames to synchronize the nodes in the
network, manages GTS allocation/de-allocation requests from the end devices,
and assigns dedicated slots for transmission from these nodes. Many researchers
have focused on improving the performance or energy efficiency of beacon-
enabled 802.15.4. For example, the IPP-HURRY research group has analyzed
the delay bound of GTS allocation to maximize the throughput of each GTS al-
location for real-time sensor networks [3,4]. In addition, in [5] the authors present
a case study of Siemens Industry Automation Division that requires real-time
delivery of short alarms/messages. The case study evaluates GTS allocation to
maximize low latency of its scheme. Although there has been a significant em-
phasis on improving the performance of the beacon-enabled 802.15.4 protocol,
there has been little work on securing this mode of the 802.15.4 protocol. This is
significant, given that the GTS management scheme in beacon-enabled 802.15.4
networks does not verify the ID of each sensor node that requests GTSs. There-
fore, an inside attacker can easily compromise the guaranteed data transmissions
from the time-sensitive applications in the beacon-enabled network by either im-
personating existing legitimate nodes’ IDs or creating IDs for nodes that do not
exist (i.e., implement a Sybil attack [8] at the MAC layer).

In this paper, we demonstrate four attacks that are possible by an inside at-
tacker who impersonates legitimate nodes or generates multiple fake IDs. This
is accomplished by the inside attacker targeting the vulnerabilities of the GTS
management scheme in a beacon-enabled 802.15.4 network. The contributions of
this paper include the discovery of vulnerable properties of the beacon-enabled
mode in the IEEE 802.15.4 standard, the implementation and analysis of four
potential insider attacks associated with those vulnerabilities, and the presenta-
tion of defense mechanisms against the attacks.

The rest of this paper is organized as follows. We review some related works
including several security protocols for WSNs and attacks on beacon-enabled
IEEE 802.15.4 in Section 2. In Section 3, we explain the GTS management
scheme and its vulnerabilities. In Section 4, we define the network and attack
model used to implement four potential attacks. In Section 5, we introduce our
four attacks against the GTS management scheme. In Section 6, we describe the
implementation of the attacks. In Section 7, we show the result of each attack
based on the collected data. We briefly mention possible defenses against these
attacks in Section 8 and conclude our work in Section 9.

2 Related Work

In this section we categorize current 802.15.4 defense mechanisms into beacon-
less mode and beacon-enabled mode according to the literature and highlight
their limitations. We also discuss the difference between our attacks on beacon-
enabled 802.15.4 networks and others previously demonstrated.

Attacking Beacon-Enabled 802.15.4 Networks 255

Defense Mechanisms in Beacon-Less Mode
In [9,10,11], the received signal strength indication (RSSI) was proposed to iden-
tify nodes conducting a Sybil attack. The basic idea of RSSI-based methods is
that sensor nodes at different locations can be differentiated by the different
RSSIs. In [10], M. Demirbas et al. calculate the ratio of RSSIs to improve tra-
ditional RSSI-based solutions. In [9], J. Yang et al. propose K-means cluster
analysis that can be applied to RSSI readings. However, RSSI-based solutions
can be evaded by malicious nodes with mobility. Another defense method is a
cryptographic approach. Most of these approaches presents either light-weight
methods such as light-weight identity certificates [12] or key distribution and
management algorithms [13,14,15,16] to distinguish between legitimate nodes
and malicious nodes using multiple stolen or forged IDs. However, it is not prac-
tical for resource constrained sensor devices to utilize highly expensive key distri-
bution methods. Some link layer secure protocols such as SPINS, TinySec, and
MiniSec [17,18,19] respectively are designed specifically for energy constrained
sensor nodes and provide data authentication and secrecy at the link layer.
However, these protocols are susceptible to failures when a compromised node
in the network acquires a shared pair-wise or network-wide secret key. Although
the aforementioned protocols have merit, they do not apply to beacon-enabled
802.15.4 networks. Further, they cannot be directly applied to beacon-enabled
mode because it utilizes many different features such as time-sensitive GTSs.

Defense Mechanisms in Beacon-Enabled Mode
Few defense methods have been proposed for beacon-enabled mode. One RSSI-
based solution for beacon-enabled mode was proposed by F. Amini et al. in
[11]. The authors proposed an RSSI solution where they introduced the use of
a disc number and a device ID. However, if a malicious node is close enough
to a legitimate node in the same personal area network (PAN), its RSSI may
be confused with the RSSI of the legitimate node. The IEEE 802.15.4 stan-
dard [20] also has built-in security features to provide data secrecy and data
authenticity. However, in [21], N. Sastry et al. point out that these security
features have vulnerabilities related to the initial vector (IV) management, key
management, and integrity protection. Another link layer secure protocol imple-
mentation for beacon-enabled mode was presented in [22]. Alim et al. introduce
EAP-Sens which provides entity authentication and key management to validate
each device ID with an extensible authentication protocol (EAP) [23] and EAP-
generalized pre-shared key (EAP-GPSK) [24]. Even though Alim et al. mention
that EAP-Sens is not vulnerable to a man-in-the-middle attack due to its shared
key method, EAP-Sens is still vulnerable to attacks when there is an inside at-
tacker. Overall, neither the aforementioned detection mechanisms nor secure link
layer protocols in beacon-enabled mode are effective in the case of compromised
nodes acting as inside attackers.

Attacks on Beacon-Enabled 802.15.4 Networks
In [25], R. Sokullu et al. use ns-2 simulations to demonstrate GTS attacks
on the 802.15.4 MAC, particularly in beacon-enabled mode. The GTS attacks

256 S.S. Jung et al.

were divided into four different scenarios: One Intelligent Attacker (OIA), One
Random Attacker (ORA), Two Intelligent Attackers (TIAs), and Two Random
Attackers (TRAs). Both the OIA and TIAs scenarios target the maximum num-
ber of GTSs assigned to one legitimate node. In contrast, the ORA and TRAs
scenarios attack just one randomly chosen GTS. The main goal of the GTS at-
tacks in [25] is to create collisions during the CFP to deny the use of GTSs. In
contrast, our four attacks seek to exploit the beacon-enabled 802.15.4 MAC by
providing scenarios of unfairness and exhaustion [26,27].

In addition to presenting different types of attacks compared to those dis-
cussed in [25], our attacks were implemented on real devices (i.e., Tmote Sky
Motes) rather than in simulation. This latter point is extremely important for
802.15.4 MAC layer attacks, because in addition to the challenge of accurately
modeling physical layer interference, simulations do not take into account con-
straints imposed by the hardware, operating system, and applications, which can
lead to simplified attack scenarios. This is especially pronounced in resource-
constrained devices (e.g., Tmote Sky Motes). For example, to implement the
Sybil attack (at the MAC layer) in TinyOS, we modified the timer function of
TinyOS (in TimerC.nc) to make it multithreaded so each fake node could use an
instance. Each instance now has to compete internally (within TinyOS) to gain
access to the node’s resources (e.g., processor, transceiver), making this attack
much more difficult to conduct. This small, but noticeable nuance is not present
in simulation tools.

3 Problem Statement

In this section, we briefly explain the GTS management scheme of the IEEE
802.15.4 standard and we state three vulnerabilities of the scheme.

3.1 GTS Management Scheme

The IEEE 802.15.4 standard [20] operating in beacon-enabled mode defines the
superframe (SF) that consists of contention access period (CAP), contention
free period (CFP), and inactive period as shown in Figure 1. According to the
standard, the personal area network (PAN) coordinator periodically transmits
beacon frames at intervals defined by the aBeaconOrder variable. The beacon
frames contain the number of GTSs and these directions used by nodes to trans-
mit data during the CFP. The structure of the beacon frame and the GTS field
are shown in Figure 2 (a) and (b) respectively. As shown in Figure 1, the PAN
coordinator defines that each superframe can have maximum of seven GTSs
for the CFP other than aMinCAPLength in [20]. The slots of GTSs must be
assigned to legitimate nodes issuing GTS allocation requests to the PAN coordi-
nator. Then, the assigned slots should be released by the PAN coordinator after
receiving a GTS deallocation request from the same legitimate node.

Below we briefly explain the normal GTS allocation and deallocation
processes.

Attacking Beacon-Enabled 802.15.4 Networks 257

Fig. 1. GTSs in Superframe structure

Fig. 2. Details of MAC frame structure: (a) beacon frame structure and (b) GTS field

structure in beacon frame

Fig. 3. GTS allocation and deallocation procedure

GTS Allocation: If a legitimate node has data to transmit, it generates a
GTS allocation request. The PAN coordinator will allocate an available GTS to
the legitimate node, and all subsequent beacon frames will contain the GTS de-
scriptor defining the device address, GTS slot and direction. Upon receiving the
beacon with the GTS descriptor, the legitimate node will schedule the pending
packet to be transmitted at the allocated GTS. The GTS allocation process is
shown in Figure 3.

GTS Deallocation: The GTS deallocation occurs after the GTS descriptor
has been transmitted for aGTSDescPersistenceT ime beacons by the PAN co-
ordinator or when the legitimate node using the GTS sends an explicit GTS
deallocation request. The GTS deallocation process is shown in Figure 3.

258 S.S. Jung et al.

3.2 Vulnerabilities of GTS Management Scheme

The PAN coordinator manages a list of GTSs to control the network access dur-
ing the CFP. However, the GTS management scheme has the following
vulnerabilities.

CAP Maintenance: According to the IEEE 802.15.4 standard, the PAN co-
ordinator can perform several preventative actions to keep aMinCAPLength.
One of these actions is to deallocate unused GTSs within every 2 ∗ n SFs,
where n is defined as either 2(8−macBeaconOrder) (0 ≤ macBeaconOrder ≤ 8)
or (9 ≤ macBeaconOrder ≤ 14). However, if a malicious node keeps constantly
sending either GTS requests or data at the assigned GTSs during the CFP, the
preventative action is ineffective.

Verification of Sensor Nodes’ IDs: In the802.15.4GTSmanagement scheme,
the PAN coordinator manages the Identities (IDs) of legitimate nodes requesting
one or more GTSs. The PAN coordinator assigns GTSs to the nodes, deallocates
the assigned slots, and avoids duplicated GTS requests from the same legitimate
node. However, as shown in Figure 4 the PAN coordinator only checks the sensor
nodes’ IDs (a short 2-octet address) and the sequence number of the packets.
Thus, a malicious node can easily evade the verification process for sensor nodes’
IDs by using new forged IDs or impersonating legitimate nodes in the network.

Fig. 4. A malicious node impersonating the IDs of legitimate node A and B

4 Experiment Design

In this section, we present the network design, the attack model, and the hard-
ware and software components used in this work.

4.1 Network Design

In this paper, we use sensor nodes supporting the IEEE 802.15.4 standard in
beacon-enabled mode. The nodes performing legal activities in the network are
called legitimate nodes, while the bad nodes are called malicious nodes. The
nodes are organized in a cluster which has a base station (i.e., PAN coordinator)

Attacking Beacon-Enabled 802.15.4 Networks 259

collecting messages from each sensor. We use Tmote Sky Motes [28] as sensor
nodes and PAN coordinator. Tmote Sky Mote has a CC2420 radio chip [29]
and supports the 802.15.4 standard [20] in both beacon-less and beacon-enabled
mode.

4.2 Attack Model

Similar to the threat models defined in [26] and [30], we assume that a ma-
licious node behaves badly as a mote-class, inside, and active attacker. As a
mote-class adversary, a malicious node has the same capabilities as that of any
legitimate node. Therefore, we use Tmote Sky Motes for the malicious node. As
an inside and active attacker, a malicious node listens to broadcasting beacons
and interferes with the communication between legitimate nodes and the PAN
coordinator.

4.3 Hardware and Software Components

We used four Tmote Sky Motes [28]: one PAN coordinator, two legitimate nodes,
and one malicious node. Our attack experiments use the IEEE 802.15.4 open-ZB
open source implementation [31]. In particular, we used version 1.2 of the source
code in conjunction with TinyOS v1.15 [32]. In addition, we used the Texas
Instruments (TI) CC2420 Evaluation Board/Evaluation Module (EB/EM) [33]
in conjunction with the TI Chipcon packet sniffer [34] to capture and analyze
packet traffic in the network. Only four nodes were used because the open source
implementation used became unstable above four nodes in the network. However,
it is important to note that these attacks are independent of the number of nodes
deployed in the network. Figure 5 shows examples of captured packets from
the TI Chipcon packet sniffer. Figure 6 shows Tmote Sky Motes and CC2420
EB/EM.

5 Overview of Attacks

We divided the four attacks into two categories depending on the types of IDs
that the malicious node uses to perform the illicit activities. The first category
is existing IDs in the PAN where a malicious node uses the ID of a legitimate
node in the PAN. The second category is non-existing IDs in the PAN where
malicious nodes use any non-existing ID in the PAN and pretend to be newly
deployed nodes in the network. In the former category, the malicious node can
affect exhaustion of legitimate nodes. In the latter, it causes exhaustion and
unfairness against legitimate nodes.

5.1 Existing Identities in the PAN

In this category, a malicious node impersonates the existing legitimate nodes in
the PAN. The attack is of the form of DoS against data transmissions during the

260 S.S. Jung et al.

Fig. 5. Captured packets from TI Chipcon packet sniffer

Fig. 6. Tmote Sky Motes and CC2420 EB/EM

CFP. The idea is to block data transmission of legitimate nodes, which denies
legitimate nodes requiring GTSs access to the link.

DoS against Data Transmissions during CFP
If a malicious node is in the transmission range of the PAN coordinator, it can
eavesdrop on the messages sent by legitimate nodes and also intercept the bea-
cons sent by the PAN coordinator. Since the beacons include the GTS list (Figure
2 (b)), the malicious node can recognize not only how many legitimate nodes
are in the PAN, but also what legitimate nodes request and use GTSs to send
data during the CFP. In this attack, a malicious node sends GTS deallocation
requests using legitimate nodes’ IDs to the PAN coordinator. Figure 7 shows an
example of this attack where two legitimate nodes send GTS allocation requests

Attacking Beacon-Enabled 802.15.4 Networks 261

Fig. 7. A malicious node blocking a legitimate node sending data during CFP

before sending data during the CFP of the next SF. However, a malicious node
knowing that the two nodes are in the GTS list can terminate the data trans-
missions of the legitimate nodes by sending a GTS deallocation request with the
legitimate nodes’ IDs.

False Data Injection
While a legitimate node is not in the GTS list, a malicious node can send a GTS
allocation request and try to send data using the legitimate node’s ID. Having
checked the node’s IDs and sequence number, the PAN coordinator accepts the
data sent by the malicious node that contain false information. Figure 8 shows
how this attack works; if a legitimate node is transmitting current temperature
data during the CAP, the malicious node sends a GTS allocation request with
the spoofed ID, and pretends to be the legitimate node to inject false data during
CFP.

PAN coordinator

Legitimate node

Malicious node

CAP

CFP

CAP

CFP

SF N

SF N+1

...

Temperature: 77 °F

Temperature: 77 °F

…

Temperature: 28 °F

...

...

Temperature: 77 °F

Temperature: 77 °F

…

Temperature: 28 °F

…

Data from a legitimate node
False data from a malicious node
Received data on PAN coordinator

Fig. 8. A malicious node sending false temperature to the PAN coordinator

5.2 Non-existing Identities in the PAN

In this category of attacks, a malicious node forges 7 different IDs depending on
the maximum number of available GTSs. Two attacks herein perform exhaus-
tion and unfairness attacks by occupying all 7 GTSs and not allowing legitimate
nodes to reserve GTSs.

DoS against GTS Requests
To perform this attack, a malicious node keeps monitoring the available GTS
slots with the intent of completely occupying them. Then, the attacker sends

262 S.S. Jung et al.

Fig. 9. A malicious node filling up all 7 GTSs. 1: the malicious node sends five GTS

allocation requests. 2 and 3: legitimate node A and B send GTS deallocation requests.

4: the malicious node sends the rest of GTS allocation requests.

several GTS allocation requests to fill up all the available GTSs in the SF.
The advantage of this attack is that the malicious node can reduce its energy
consumption because once it occupies all 7 GTSs, it does not need to send
out any data or commands. The malicious node simply dissects beacon frames
to see if the PAN coordinator performs the preventative action for the CAP
maintenance. Figure 9 shows that after legitimate node A and B send GTS
deallocation requests, the malicious node completely fills all 7 GTSs with two
additional GTS allocation requests. The goal of this attack is not for the attacker
to use the bandwidth requested, rather it is to prevent the legitimate nodes from
transmitting.

Stealing Network Bandwidth
Similar to the DoS against GTS requests, in this attack, an attacker observes
the GTS list in order to eventually occupy the available GTS slots. However,
in this attack, the malicious node sends data at the assigned time slots. The
purpose of data transmission is to prevent the PAN coordinator from dropping
the assigned GTSs. As shown in Figure 10, the second CFP has data transmit-
ted from both legitimate nodes and a malicious node. However, since legitimate
nodes send GTS deallocation requests during the second CAP, the malicious
node sends a GTS allocation requests to occupy the new free GTS. Eventually,
only the malicious node sends data during the fourth CFP. The time slots will
never be vacant during the CFP of every SF, which can cause both exhaustion
and unfairness against legitimate nodes. This also affects the PAN coordinator
who cannot go into sleep mode (denial of sleep attack [35]).

Fig. 10. A malicious node stealing all 7 GTSs during CFP

Attacking Beacon-Enabled 802.15.4 Networks 263

6 Implementation of Attacks

6.1 Existing Identities in the PAN

We assume that there is one PAN coordinator, two legitimate nodes: LN2 and
LN6, and one malicious node: MN4 as shown in Figures 11 and 12. MN4 imper-
sonates the IDs of LN2 and LN6 after eavesdropping on beacon frames.

DoS against Data Transmissions during CFP
As shown in Figure 11, this attack works through two SFs. In the first SF, LN2
and LN6 send GTS allocation requests to the PAN coordinator to reserve one
GTS. Then, the PAN coordinator broadcasts the beacon with the GTS list to
inform LN2 and LN6 of their assigned slots. Along with LN2 and LN6, MN4 also
receives the beacon. Therefore, MN4 knows how many legitimate nodes are in
the GTS list and what their IDs are. In the second SF, MN4 sends GTS dealloca-
tion requests with the impersonated LN2 and LN6’s IDs. The PAN coordinator
removes LN2 and LN6 from the GTS list and will not receive data during the
CFP of the next SF. Since LN2 and LN6 have no allocated GTSs anymore, they
will not able to send their messages during the CFP of the third SF.

Fig. 11. The sequences of DoS against Data Transmissions During CFP

False Data Injection
Unlike DoS against Data Transmissions During CFP, this attack exploits GTS
allocation requests to transmit false data. Figure 12 shows such a case that LN2
has already been assigned to one GTS. In this case, MN4 starts after LN2 sends
a GTS deallocation request in the first SF. Then, the PAN coordinator removes
LN2’s ID on the GTS list of the next beacon. Since MN4 is aware that LN2 is
not in the GTS list, it immediately tries to get one GTS by sending a GTS al-
location request with LN2’s ID. Once MN4 successfully takes the GTS, it starts
sending false data with LN2’s ID in the third SF.

264 S.S. Jung et al.

Fig. 12. The sequence of False Data Injection

6.2 Non-existing Identities in the PAN

For forging non-existing IDs, we also have one PAN coordinator, two legitimate
nodes: LN2 and LN6, and one malicious node: MN4 that pretends to be a differ-
ent ID from ones of LN2 and LN6. In this case, MN4 eavesdrops on the beacons
to learn what IDs do not belong in the PAN.

DoS against GTS Requests
As shown in Figure 13, this attack needs several superframes to allow MN4 to
fill all 7 GTSs. In each SF, MN4 knows how many GTSs are available and sends
GTS allocation requests in order to reserve the remaining slots of GTSs. Once
MN4 takes all 7 GTSs, it stops sending GTS allocation requests to reduce its

Fig. 13. The sequence of DoS against GTS request

Attacking Beacon-Enabled 802.15.4 Networks 265

energy consumption and monitors the beacons to start sending GTS allocation
requests again if the PAN coordinator drops the unused GTSs by a preventative
action for the CAP maintenance.

Stealing Network Bandwidth
Figure 14 shows that a malicious node takes the last slot out of GTSs, 6 slots
of which were already assigned to the malicious node. Then, it can utilize all 7
GTSs during the CFP to transmit data. The difference from the previous DoS
against GTS Requests is that since this attack continues to transmit data at
each time slot of the CFP, the PAN coordinator will not take a preventative
action for the CAP maintenance.

Fig. 14. The sequence of Stealing Network Bandwidth

7 Attack Analysis

We have verified our implementation with the packet sniffer [34] to monitor the
packet transmission while each attack is executing. We utilize the PAN coordi-
nator to log humidity and temperature sent by a legitimate node during both
the CAP and the CFP. In addition, the throughputs in Figures 15, 16, and 17
are based on the total number of data in bytes divided by the elapsed time. The
total data is counted only during the CFP. For each test of the four attacks,
we measured the packet transmission for 100 to 400 seconds depending on the
complexity of each attack.

DoS against Data Transmission during CFP
Figure 15 shows the decline of data throughputs on LN2 and LN6 while MN4
is sending GTS deallocation requests with LN2 and LN6’s IDs. Around the
50-second mark of the experiment, a malicious node sends two GTS dealloca-
tion requests back to back. It also sends the same two GTS deallocation requests
whenever it receives a beacon-notification. Therefore, the data throughputs from

266 S.S. Jung et al.

0 10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

Time (s)

Th
ro

ug
hp

ut
 (b

ps
)

0 20 40 60 80 100
OFF

ON

G
TS

 D
ea

llo
ca

tio
n

RE
Q

s

LN2 DAT
LN6 DAT
MN4 GTS

Fig. 15. Legitimate nodes (LN2 and LN6) data throughput during CFP by a malicious

node (MN4). LN2 DAT and LN6 DAT: Data from LN2 and LN6 and MN4 GTS: GTS

deallocation requests from MN4.

LN2 and LN6 during the CFP are dropped to 0bps. During the moment after
50-second mark, even though LN2 and LN6 try to send GTS allocation requests,
the requests cannot be accomplished because of continuously sending GTS deal-
location requests from MN4.

False Data Injection
Figure 16 shows the change of humidity and temperature from LN2. We tested
this attack inside of a building, the humidity and temperature conditions were
approximately 41% and 72◦F respectively. However, since MN4 sends false data
readings of 90% of humidity and 28◦F temperature during the CFP, this results
in many fluctuations of data for 20 seconds around the 73 to 93-second mark.
Since 28◦F is below the freezing point, the false data of temperature might lead
to a warning sign in a practical situation.

0 10 20 30 40 50 60 70 80 90 100
40

50

60

70

80

90

Time (s)

Hu
m

id
ity

 (%
)

0 10 20 30 40 50 60 70 80 90 100
0

20

40

60

80

100

Te
m

pe
ra

tu
re

 (
o F

)

Temperature
Humidity

Fig. 16. Fluctuation of humidity and temperature

DoS against GTS Requests
Figure 17 shows two instances of this attack. LN2 and MN4 are started at the
same time (around the 20-second mark). By sending a GTS request, LN2 quickly
occupies one GTS and transmits data during the CFP. Similarly, MN4 quickly
occupies the remaining 6 of the 7 GTSs. While LN2 is transmitting data, MN4
continuously sends GTS allocation requests in an attempt to occupy the last

Attacking Beacon-Enabled 802.15.4 Networks 267

0 50 100 150 200 250 300
0

10

20

Time (s)

Th
ro

ug
hp

ut
 (b

ps
)

0 50 100 150 200 250 300
OFF

ON

G
TS

 (D
e)

Al
lo

ca
tio

n
RE

Q
s

L2 GTS AL
L2 GTS DE
MN4 GTS AL
L2 DAT

Fig. 17. A malicious node (MN4) filling up all 7 GTSs. LN2 DAT: LN2 Data, LN2

GTS AL: LN2 GTS allocation request, LN2 GTS DE: LN2 GTS deallocation request,

and MN4 GTS AL: GTS allocation requests from MN4.

GTS. Once LN2 releases its GTS at the 50-second mark, the coordinator allows
MN4 to occupy the last GTS. MN4 now stops sending GTS allocation requests
to conserve energy. LN2 sends a GTS allocation request around the 60-second
mark and the 90-second mark, but the coordinator does not assign LN2 a GTS
(because MN4 has them all). To see another iteration of this, we turn off the PAN
coordinator around the 130-second mark to force it to perform the preventative
CAP maintenance action manually (this is because the IEEE 802.15.4 source
code from the open-ZB does not handle this situation as it should). Accordingly,
the PAN coordinator does not have any requested GTSs. Around the 140-second
mark, we turn on the PAN coordinator and LN2 successfully is allocated one
GTS and it transmits data during the corresponding CFP for about 70 seconds.
MN4 now begins sending GTS allocation requests between the 150-second mark
and 200-second mark and is able to occupy 6 GTSs. Also, when LN2 releases its
GTS around the 200-second mark, MN4 immediately occupies all 7 GTSs again.

Stealing Network Bandwidth
Figure 18 shows the data throughputs of LN2 and MN4 and the GTS alloca-
tion requests of MN4. While LN2 has one GTS and transmits data during the
CFP, MN4 starts sending GTS allocation requests with 7 forged IDs around
20-second mark and transmits data at the assigned GTSs. One of 7 GTSs

0 10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

Time (s)

Th
ro

ug
hp

ut
 (b

ps
)

LN2 DAT
MN4 DAT
MN4 GTS

0 10 20 30 40 50 60 70 80 90 100
OFF

ON

G
TS

 A
llo

ca
tio

n
RE

Q
s

fro
m

 M
N4

Fig. 18. A malicious node (MN4) stealing GTSs during CFP. LN2 DAT and MN4

DAT: Data from LN2 and MN4 respectively and MN4 GTS: GTS allocation requests

from MN4.

268 S.S. Jung et al.

allocation requests of MN4 is discarded at the first attempt because one GTS is
already assigned to LN2. However, as soon as LN2 releases its GTS around the
50-second mark, MN4 occupies the last GTS immediately and has all 7 GTSs.
MN4 probably consumes its energy by itself. However, LN2 and the PAN coor-
dinator can use a lot of energy because LN2 attempts a GTS allocation request
to get one GTS, and the PAN coordinator needs to receive data from the nodes.

8 Possible Countermeasures

We can consider several countermeasures against an inside attacker launching
attacks in a beacon-enabled 802.15.4 network. 1 Even though light-weight au-
thentication for each node might be a viable solution, authentication with a
reliable key distribution and management is a expensive method for resource
limited sensor nodes. In addition, the 802.15.4 standard states that key manage-
ment and entity (e.g., sensor node) authentication can be implemented on top
of the MAC layer [20]. Therefore, we present less expensive methods that can
defend against our implemented attacks.

Reliable GTS Management Scheme: According to the 802.15.4 standard
[20], its security features already have an access control list (ACL) mode. How-
ever, the functionality of the ACL mode does not cover the GTS management
scheme. The access control should be extended to restrict the available numbers
of GTSs to each node and keep track of thine reserved GTSs. The access control
mechanism should exam the frequency of sending GTS (de)allocation requests
from each node. If the frequency of GTS requests is too high from one node,
it may become suspicious that a malicious node is trying to hold the CAP by
sending a number of GTS requests (one of the commands in the 802.15.4) be-
cause all the commands can be sent during the CAP if there is no contention. In
addition, the access control mechanism should keep track of the interval between
GTS requests from the same node. If the interval of the same GTS request is
too short, this could be an indication that a malicious node is interfering with a
legitimate node sending GTS requests.

Multiple Channels: Another possible prevention against an inside attacker
either impersonating legitimate nodes or forging new nodes’ IDs is that the
PAN coordinator might use different pre-defined channels for each legitimate
node that may be changed after a short period of time (i.e., frequency hopping).
Then, a malicious node would need to take a while to scan the communication
channel with each change. Even though the malicious node discovers one proper
channel, it can pretend to be a legitimate node for a very short time since the
legitimate node can change the communication channel with the PAN coordina-
tor. Moreover, the malicious node will have to spend a large amount of time to
scan other channels for other legitimate nodes.
1 Due to space constraints, the countermeasures will be addressed in detail in our

future work.

Attacking Beacon-Enabled 802.15.4 Networks 269

9 Conclusion and Future work

In this paper, we first described some existing vulnerabilities of the GTS man-
agement scheme in the IEEE 802.15.4 standard. We also investigated security
protocols proposed in the recent years and security features adopted in the stan-
dard. However, to date, no method considers insider attacks against beacon-
enabled 802.15.4 networks. Therefore, we have targeted the GTS management
scheme in a beacon-enabled IEEE 802.15.4 network and implemented four pos-
sible attacks on integrity and availability: (1) DoS against sending data during
CFP, (2) False data injection, (3) DoS against GTS requests, and (4) Stealing
network bandwidth. We also analyzed the results for each attack. For our future
work, we will consider ways for malicious nodes to save energy while attacking,
develop other types of attacks in the MAC layer, and implement the defense
mechanisms discussed in Section 8.

Acknowledgements

This work was partly supported by NSF Grant No. CAREER-CNS-844144.

References

1. Alert Me homepage, http://www.alertme.com/products/home-monitoring

2. Mishra, A., Na, C., Rosenburgh, D.: On Scheduling Guaranteed Time Slots for

Time Sensitive Transactions in IEEE 802.15.4 Networks. In: Military Communica-

tions Conference, MILCOM 2007, pp. 1–7. IEEE, Los Alamitos (2007)

3. Koubaa, A., Alves, M., Tovar, E.: i-GAME: an implicit GTS allocation mechanism

in IEEE 802.15.4 for time-sensitive wireless sensor networks. In: 18th Euromicro

Conference on Real-Time Systems, vol. 10, pp. 183–192 (2006)

4. Koubaa, A., Alves, M., Tovar, E.: GTS allocation analysis in IEEE 802.15.4 for

real-time wireless sensor networks. In: 20th International Parallel and Distributed

Processing Symposium, IPDPS 2006, 8p. (2006)

5. Chen, F., Talanis, T., German, R., Dressler, F.: Real-time enabled IEEE 802.15.4

sensor networks in industrial automation. In: IEEE International Symposium on

Industrial Embedded Systems, SIES 2009, pp. 136–139 (2009)

6. Park, P., Fischione, C., Johansson, K.H.: Performance Analysis of GTS Allocation

in Beacon Enabled IEEE 802.15.4. In: 6th Annual IEEE Communications Society

Conference on Sensor, Mesh and Ad Hoc Communications and Networks, SECON

2009, pp. 1–9 (2009)

7. Mehta, A., Bhatti, G., Sahinoglu, Z., Viswanathan, R., Zhang, J.: Performance

analysis of beacon-enabled IEEE 802.15.4 MAC for emergency response applica-

tions. In: 2009 IEEE 3rd International Symposium on Advanced Networks and

Telecommunication Systems (ANTS), pp. 1–3 (2009)

8. Douceur, J.R.: The Sybil Attack. In: Druschel, P., Kaashoek, M.F., Rowstron, A.

(eds.) IPTPS 2002. LNCS, vol. 2429, p. 251. Springer, Heidelberg (2002)

9. Yang, J., Chen, Y., Trappe, W.: Detecting sybil attacks in wireless and sensor

networks using cluster analysis. In: 5th IEEE International Conference on Mobile

Ad Hoc and Sensor Systems, MASS 2008, 29-October 2, pp. 834–839 (2008)

http://www.alertme.com/products/home-monitoring

270 S.S. Jung et al.

10. Demirbas, M., Song, Y.: An rssi-based scheme for sybil attack detection in wireless

sensor networks. In: International Symposium on a World of Wireless, Mobile and

Multimedia Networks, WoWMoM 2006, p. 5, p. 570 (2006)

11. Amini, F., Misic, J., Pourreza, H.: Detection of sybil attack in beacon enabled IEEE

802.15.4 networks. In: International Conference on Wireless Communications and

Mobile Computing, IWCMC 2008, pp. 1058–1063 (August 2008)

12. Zhang, Q., Wang, P., Reeves, D., Ning, P.: Defending against Sybil attacks in sen-

sor networks. In: 25th IEEE International Conference on Distributed Computing

Systems Workshops, pp. 185–191 (June 2005)

13. Du, W., Deng, J., Han, Y.S., Varshney, P.K.: A pairwise key predistribution scheme

for wireless sensor networks. In: CCS 2003: Proceedings of the 10th ACM confer-

ence on Computer and communications security, pp. 42–51. ACM, New York (2003)

14. Liu, D., Ning, P.: Establishing pairwise keys in distributed sensor networks. In: CCS

2003: Proceedings of the 10th ACM conference on Computer and communications

security, pp. 52–61. ACM, New York (2003)

15. Du, W., Deng, J., Han, Y., Chen, S., Varshney, P.: A key management scheme

for wireless sensor networks using deployment knowledge. In: INFOCOM 2004.

Twenty-third AnnualJoint Conference of the IEEE Computer and Communications

Societies, vol. 1, p. 597 (March 2004)

16. Eschenauer, L., Gligor, V.D.: A key-management scheme for distributed sensor

networks. In: CCS 2002: Proceedings of the 9th ACM conference on Computer

and communications security, pp. 41–47. ACM, New York (2002)

17. Perrig, A., Szewczyk, R., Wen, V., Culler, D., Tygar, J.D.: SPINS: security pro-

tocols for sensor networks. In: MobiCom 2001: Proceedings of the 7th annual in-

ternational conference on Mobile computing and networking, pp. 189–199. ACM,

New York (2001)

18. Karlof, C., Sastry, N., Wagner, D.: Tinysec: a link layer security architecture for

wireless sensor networks. In: SenSys 2004: Proceedings of the 2nd international

conference on Embedded networked sensor systems, pp. 162–175. ACM, New York

(2004)

19. Luk, M., Mezzour, G., Perrig, A., Gligor, V.: MiniSec: a secure sensor network

communication architecture. In: IPSN 2007: Proceedings of the 6th international

conference on Information processing in sensor networks, pp. 479–488. ACM, New

York (2007)

20. Wireless medium access control and physical layer specications for low-rate wireless

personal area networks. IEEE Standard, 802.15.4-2003 (May 2003), ISBN 0-7381-

3677-5

21. Sastry, N., Wagner, D.: Security considerations for ieee 802.15.4 networks. In: WiSe

2004: Proceedings of the 3rd ACM workshop on Wireless security, pp. 32–42. ACM,

New York (2004)

22. Alim, M.A., Sarikaya, B.: EAP-Sens: a security architecture for wireless sensor net-

works. In: WICON 2008: Proceedings of the 4th Annual International Conference

on Wireless Internet, Brussels, Belgium, Belgium, pp. 1–9. ICST (2008)

23. Aboba, L.B.B., Vollbrecht, J.C.J., Levkowetz, H.: Extensible Authentication Pro-

tocol EAP (June 2004), http://tools.ietf.org/html/rfc3748
24. Clancy, T., Tschofenig, H.: Extensible Authentication Protocol Generalized Pre-

Shared Key EAP-GPSK method (February 2009),

http://tools.ietf.org/html/rfc5433
25. Sokullu, R., Dagdeviren, O., Korkmaz, I.: On the IEEE 802.15.4 MAC layer at-

tacks: GTS attack. In: Second International Conference on Sensor Technologies

and Applications, SENSORCOMM 2008, pp. 673–678 (August 2008)

http://tools.ietf.org/html/rfc3748
http://tools.ietf.org/html/rfc5433

Attacking Beacon-Enabled 802.15.4 Networks 271

26. Roosta, T., Shieh, S., Sastry, S.: Taxonomy of security attacks in sensor networks

and countermeasures. In: The First IEEE International Conference on System In-

tegration and Reliability Improvements, Hanoi, pp. 13–15 (2006)

27. Wood, A.D., Stankovic, J.A.: Denial of service in sensor networks. Computer 35,

54–62 (2002)

28. Moteiv Corporation, tmote-sky-datasheet (2006), http://www.moteiv.com

29. Chipcon product from Texas Instruments, CC2420,

http://focus.ti.com/lit/ds/symlink/cc2420.pdf

30. Karlof, C., Wagner, D.: Secure routing in wireless sensor networks: Attacks and

Countermeasures. In: Proceedings of the First 2003 IEEE International Workshop

on Sensor Network Protocols and Applications, pp. 113–127 (May 2003)

31. Open-zb homepage, http://www.open-zb.net/

32. TinyOS homepage, http://www.tinyos.net/

33. Chipcon Products from Texas Instruments, User Manual Rev. 1.0 CC2420DK De-

velopment Kit, http://focus.ti.com/lit/ug/swru045/swru045.pdf

34. Texas Instruments Incorporated, SmartRFPacket Sniffer User Manual Rev. 1.9,

http://focus.ti.com/docs/toolsw/folders/print/packetsniffer.html

35. Wood, A.D., Stankovic, J.A.: A Taxonomy for Denial-of-Service Attacks. In: Wire-

less Sensor Networks. CRC Press, Boca Raton (2004)

http://www.moteiv.com
http://focus.ti.com/lit/ds/symlink/cc2420.pdf
http://www.open-zb.net/
http://www.tinyos.net/
http://focus.ti.com/lit/ug/swru045/swru045.pdf
http://focus.ti.com/docs/toolsw/folders/print/packetsniffer.html

Supporting Publication and Subscription
Confidentiality in Pub/Sub Networks�

Mihaela Ion1, Giovanni Russello1, and Bruno Crispo2

1 CREATE-NET International Research Center,

via alla Cascata 56D, 38123 Trento, Italy

{mihaela.ion,giovanni.russello}@create-net.org
2 Department of Information Engineering and Computer Science,

University of Trento, Trento, Italy

crispo@disi.unitn.it

Abstract. The publish/subscribe model offers a loosely-coupled

communication paradigm where applications interact indirectly and asyn-

chronously. Publisher applications generate events that are sent to inter-

ested applications through a network of brokers. Subscriber applications

express their interest by specifying filters that brokers can use for rout-

ing the events. Supporting confidentiality of messages being exchanged

is still challenging. First of all, it is desirable that any scheme used for

protecting the confidentiality of both the events and filters should not

require the publishers and subscribers to share secret keys. In fact, such

a restriction is against the loose-coupling of the model. Moreover, such a

scheme should not restrict the expressiveness of filters and should allow

the broker to perform event filtering to route the events to the interested

parties. Existing solutions do not fully address those issues. In this paper,

we provide a novel scheme that supports (i) confidentiality for events and

filters; (ii) filters can express very complex constraints on events even if

brokers are not able to access any information on both events and filters;

(iii) and finally it does not require publishers and subscribers to share

keys.

1 Introduction

The publish/subscribe (pub/sub) model is an asynchronous communication
paradigm where senders, known as publishers, and receivers, known as sub-
scribers, exchange messages in a loosely coupled manner, i.e. without estab-
lishing direct contact. The messages that publishers generate are called events.
Publishers do not send events directly to subscribers, instead a network of in-
terconnected brokers is responsible for delivering the events to the interested
subscribers. In fact, publishers do not know who receives their events and sub-
scribers are not aware of the source of information. In order to receive events,
subscribers need to register their interest with a broker through a filter. When
� This work was supported by the EU FP7 programme, Research Grant 214859

(project Consequence) and Research Grant 216917(project MASTER).

S. Jajodia and J. Zhou (Eds.): SecureComm 2010, LNICST 50, pp. 272–289, 2010.
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2010

Supporting Publication and Subscription Confidentiality 273

a new event is published, brokers forward it to all subscribers which expressed
a filter that matches the event.

The pub/sub communication paradigm has the advantage of allowing the full
decoupling of the communicating entities [8] which enables dynamic and flexible
information exchange between a large number of entities. The communicating
parties do not need to know each other or establish contacts in order to exchange
content. Moreover, if durable subscription is enabled, publisher and subscribers
do not need to actively participate in the interaction at the same time. If a
subscriber is offline when a publisher creates an event, the broker will store the
event until the subscriber becomes online and the event can be delivered.

Pub/sub is an open communication model, however, in many cases it may be
desirable to protect the content of publications and subscriptions from unautho-
rized accesses. Only intended subscribers should be able to read the events. At
the same time, subscribers may wish to keep the details of their filters private.
For example, a subscriber may ask to be notified when the price of the quotes
of a certain company is below a certain threshold. This information could reveal
the subscriber’s strategy to a competitor, thus the subscriber will wish to keep
it private.

One of the main challenges that pub/sub systems are still facing is protecting
the confidentiality of the exchanged information without limiting the decoupling
of the paradigm. Publishers and subscribers do not establish contact so they
cannot exchange keying material. Moreover, protecting the confidentiality from
malicious brokers is very difficult. Brokers should be able to route events by
matching them against filters expressed by the subscribers without having access
to the actual content of events and filters.

Current solutions for confidentiality in pub/sub systems achieve only partially
these goals. For example, in order to support routing based on expressive filters,
[12] and [14] encrypt only certain event fields while other fields are left as clear-
text so that they can be used for routing. Other solutions [14] require publishers
and subscribers to share a group key which hampers the loosely coupling and
scalability of pub/sub model. [16] provides confidentiality of events and filters
but the filter is restricted to equality with one keyword.

The main contribution of this paper is to present an approach catering for
the confidentiality in pub/sub systems such that: (i) it provides confidentiality of
events and filters, (ii) it does not require publishers and subscribers to share keys,
and (iii) it allows subscribers to express filters that can define any monotonic
and non-monotonic conditions. To achieve this, our solution combines attribute-
based encryption and an encrypted search scheme.

This paper is structured as follows: Section 2 introduces the pub/sub com-
munication model and provides an example of an application where pub/sub
confidentiality is required. Section 3 describes the problem of confidentiality and
the properties achieved by our solution and Section 4 introduces the relevant
encryption mechanisms. The details of our solution are provided in Section 5.
Section 6 revises the application example described in Section 2 implemented

274 M. Ion, G. Russello, and B. Crispo

with our approach. Section 7 provides the security analysis. Section 8 describes
the related work and Section 9 concludes the paper.

2 The Publish/Subscribe Communication Paradigm

Several pub/sub implementations that differ in the granularity used in the defi-
nition of the filters have been proposed in the literature. The most simple one is
topic-based, in which subscribers subscribe to a topic identified by a keyword [20].
A topic-based scheme is similar to the notion of group communication. When
subscribing to a topic T , a subscriber becomes a member of group T . When
an event for topic T is published, the event is broadcasted to all the members
of that group. Organizing topics in hierarchies allows a better management of
subscriptions [17]. For example, by registering to a topic, a subscriber is also
registered to all subtopics.

Topic-based schemes are easy to implement but they offer limited expressive-
ness. Content-based schemes are more flexible and allow expressing subscriptions
based on the actual content of the event. To express a filter on the content of
an event, subscribers need a query language and understanding of the data
formats. For example, in Gryphon [2] and Siena [5] events consist of sets of
(attributename = attributevalue) pairs and filters are specified as SQL WHERE
clauses. Java Message Service (JMS) [11] does not allow filtering on the content
of the event, but instead, events carry properties in their headers and subscribers
can define filters on them. Filters that apply to the composition of simple events
have also been proposed (such as in [1]). When expressing such a filter, sub-
scribers are notified upon the occurrence of the composite event.

Because of its generality and expressiveness, we will focus on content-based
filtering. We assume that filters define constrains in the form of name-op-value
where op can be one of the comparison operators such as =,≤, <,≥, >. Con-
strains can be logically combined using AND, OR and NOT to form complex
subscription patterns.

We motivate the need for confidentiality in pub/sub systems through an
example.

2.1 A Case for Pub/Sub Confidentiality

In this section we present an example of an application built using a pub/sub
system where confidentiality is of paramount importance. In particular, Figure 1
shows an example of a Financial News Service implemented using a pub/sub
system for information delivery. The publishers P are different stock exchanges
and financial news agencies which use the Financial News Service to sell their
content to customers S. To subscribe to particular content, a customer specifies
a filter and contacts the News Service to pay the fee and obtain a token. It then
subscribes with a broker B to receive notifications and the broker registers the
filter only after the token is verified with the Financial News Service. When a
publisher publishes some new content, the network of brokers will deliver the

Supporting Publication and Subscription Confidentiality 275

Fig. 1. An attacker who is able to corrupt a broker can listen on filters and events

content to the authorized subscribers. The publisher receives the payment from
the Financial News Service without contacting the subscribers directly.

In a typical pub/sub system where confidentiality is not implemented, an
attacker who is able to corrupt a broker could read the traffic that comes in and
out the broker. The attacker would be able to read the events without paying
the fee and then resell them, and read the filters expressed by the subscribers.
To protect from this kind of attacks, it is necessary to protect the content of
notifications and filters.

3 Confidentiality in Publish/Subscribe Systems

Providing the publication confidentiality property ensures that the content of
the events is hidden from the broker or any unauthorized third party listening
on the network. Only legitimate subscribers should be able to decrypt an event.
Providing the subscription confidentiality property ensures that the details of
the filters are hidden from the brokers (or other unauthorized parties). The
broker should be able only to tell if an event matches a filter but gain no other
information about the event and the filter. It has already been discussed in [16]
that both publication and subscription confidentiality are required to effectively
reduce the risk of leaking event or filter information in a pub/sub system. For
instance, in providing only subscription confidentiality an attacker who knows
the content of the event may infer the subscription filter.

However, providing both publication and subscription confidentiality in pub/
sub systems it is still an open issue. On the one hand, a basic encryption scheme
would require publisher and subscribers to share a secret key. This is not desirable
because it would weaken the referential decoupling property of the paradigm. On
the other hand, brokers would need to execute matching operations on encrypted
events and filters which is not simple using basic techniques.

The main contribution of this paper is to propose an encryption scheme for
pub/sub systems in which the following properties are supported:

276 M. Ion, G. Russello, and B. Crispo

(P1) confidentiality of events;
(P2) confidentiality of filters;
(P3) a simplified key management that does not require publishers and sub-

scribers to share keys, hence fully supporting the loosely-coupled model of the
pub/sub paradigm;

(P4) allowing brokers to execute matching of encrypted events against com-
plex encrypted filters.1

Confidentiality of events (P1) and filters (P2) can be achieved by means of en-
cryption. Encryption mechanisms usually require that publishers and subscribers
share a key which means they need to establish contact. However, this is not de-
sirable in pub/sub systems where publisher and subscribers do not communicate
with each other directly (loose coupling). What is required is a mechanism that
allows authorized subscribers to decrypt events without establishing shared keys
with the publishers (e.g., group keys). In our approach, publishers encrypt the
content of the event using an attribute-based encryption scheme (such as in [10])
specifying the characteristics that subscribes must satisfy to obtain the cleartext
of the event. In this way, we are effectively decoupling the encryption of events
at the publisher site from its decryption at the subscriber site and simplifying
the key management process (P3).

Because events and filters are encrypted, event filtering at the broker side
becomes a more complex task. Indeed, brokers should be able to decide whether
an event matches a filter or not, without having access to neither the content of
the event nor the filter. In our approach we combine the expressive access con-
trol structures supported by attribute-base encryption scheme with encrypted
search. This allows our scheme to support encrypted event filtering against com-
plex filters. The only information that the broker can access is which filters are
matched by an event (P4).

In the following section, we describe the techniques used in our approach for
supporting the above properties.

4 Background

This section provides background information on the techniques that we have
combined to achieve confidentiality in pub/sub systems without compromising
the loosely-coupled property of the paradigm.

4.1 Attribute-Based Encryption (ABE)

The concept of attribute-based encryption (ABE) was first introduced in [15]. In
their construction, both ciphertext and keys are labeled with sets of attributes.
A key is able to decrypt a ciphertext if at least k attributes match between key
and ciphertext.

1 With complex encrypted filters we mean filters that can express conjunctions and

disjunctions of equalities, inequalities and negations in an encrypted form.

Supporting Publication and Subscription Confidentiality 277

[10] extended this construction and introduced Key-Policy ABE (KP-ABE)
in which ciphertexts are labelled with sets of attributes and private keys are
associated with access structures. A key is able to decrypt a ciphertext if its
associated access structure is satisfied by the attributes of the ciphertext. The
access structure, represented as a tree, allows expressing any monotone access
formula consisting of AND, OR, or threshold gates.

[13] proposed a KP-ABE scheme that can additionally handle negations (i.e.,
NOT). The data can be decrypted only if a given attribute (embedded in the
key) is not present among the attributes of the ciphertext.

[4] proposed a construction for ciphertext policy ABE (CP-ABE) in which
policies (access structures) are associated with data and attributes are associated
with keys. This is similar to the capability model in access control. A key can
decrypt some data if its associated attributes satisfy the policy associated with
the data. They also show how to construct the access tree in order to additionally
handle inequalities.

4.2 Encrypted Search

[18] proposed a mechanism for equality tests on data encrypted with a symmetric
key. The advantages are that the searched keyword remains secret and the server
cannot learn anything more about the data than the search results. However,
the scheme works only for matching single words. The solution of [9] addresses
the problem of conjunctions. Documents are stored encrypted together with a
list of keywords, also encrypted. To retrieve a document, the user computes a
capability for the list of keywords of interest. The server uses the capability to
search for documents. The disadvantage of this method is that the server can
learn the keywords from the capabilities.

[7] propose a data encryption scheme that allows an untrusted server to per-
form encrypted searches on data without revealing the data or the keywords
to the server. The advantage of this method is that it allows multi-user access
without the need for a shared key between users. Each user in the system has
a unique set of keys. The data encrypted by one user can be decrypted by any
other authorized user. The scheme is built on top of proxy encryption schemes.
The idea is that a user defines a set of keywords for each document. The key-
words and document are encrypted using proxy encryption and stored on the
server. When a user wants to search for a document, it needs to create a trap-
door for each keyword. The trapdoor is used by the server to match the search
keywords against the keywords of the stored document. The server can identify
a match without learning the keyword.

5 Solution Details

In this section, we discuss in details our scheme for providing confidentiality
in pub/sub systems. We assume an honest-but-curious model for publishers,
brokers and subscribers, as in [19,16]. This means that the entities follow the

278 M. Ion, G. Russello, and B. Crispo

protocol, but may be curious to find out information by analysing the messages
that are exchanged. For example, a broker may try to read the content of an
event or try to learn the filtering constrains of subscribers. Subscribers may want
to read the events delivered to other subscribers. We also assume that a passive
attacker outside the pub/sub system may be able to listen on the communication
and invade the privacy of the participants.

In our approach an event E consists of:(i) the message M that represents the
content of the event and (ii) a set of attributes ai that characterise M and are
used for event filtering by the brokers.

To support confidentiality of events (P1), the message M is encrypted using
CP-ABE [4]. CP-ABE allows a publisher to specify which attributes a decrypter
must have. The goal is to allow only authorised subscribers to decrypt mes-
sages. So, a publisher could specify that only who subscribed to IBM market
data should read the message. In using CP-ABE to encrypt M , publishers and
subscribers do not need to share any secret key (thus achieving property P4).

Filter confidentiality (P2) is achieved by combining KP-ABE [10] with multi-
user searchable data encryption (SDE) scheme [7]. In particular, a subscriber Sj

can define a filter Fj as KP-ABE access trees. The set of attributes ai that the
publisher defined on an event E is used by the brokers against the filters. When
the event E reaches a broker, if the set of attributes associated with the event
satisfy the filter Fj , then the broker knows that the event can be forwarded to
Sj . However, the broker does not gain any information on the actual content of
the event because M is encrypted with CP-ABE.

However, if the KP-ABE scheme is used as proposed in [10], then the bro-
ker is still able to obtain information on the filters and attributes associated
with events, thus violating the confidentiality of events and filters. In fact, the
KP-ABE scheme requires that attributes associated with the ciphertext are not
encrypted. To circumvent this limitation, we propose the following modification
to the KP-ABE scheme: the set of attributes associated with an event and the
access tree representing the filter are encrypted using the scheme from [7]. The
scheme supports encrypted search, so it can be used to verify if the encrypted
attributes specified by the publisher are the same as those specified by the sub-
scriber in the filter. With this modification, our scheme supports confidentiality
of filters (P2) and allows the brokers to perform encrypted event filtering (P4).
It should be noted that both KP-ABE and the multi-user SDE do not require
that publishers and subscribers share keys thus simplifying the key management
and respecting the referential decoupling of the pub/sub paradigm (P3).

In the following, we show the steps that are performed in our scheme.

5.1 Init(1k)

The initialisation is run by a trusted authority and defines the security param-
eters for KP-ABE and El Gamal based SDE schemes.

On input 1k, output two prime numbers p and q such that q = (p − 1)/2
and |q| = k, and a cyclic group G1 with generator g such that G1 is the unique
order q subgroup of Z

∗
p. Let e : G1 x G1 → G2 be a bilinear map. In addition,

Supporting Publication and Subscription Confidentiality 279

γγγ ∈∈ ====

=γ =γ

=γ

γ

γγγ ∈∈ ====

γ

Fig. 2. Event encryption

define the Lagrange coefficient Δi,S for i ∈ Zp and a set S of elements in Zp:
Δi,S(x) =

∏
j∈S,j
=i

x−j
i−j . Each attribute will be mapped to a number in Z∗p by

using a collision resistant function H1 : {0, 1}∗ → Z∗p. This allows using arbitrary
strings as attributes and adding them to a user’s private key. The event will be
encrypted using a set of n2 elements of Z∗p.

Choose a random y ∈ Zp and compute g1 = gy. Also choose a random element
g2 from G1. Let N be the set {1, 2..., n + 1}, where n is the number of attributes
used for event encryption. Choose t1, ..., tn+1 uniformly at random from G1.
Define a function T as:

T (X) = gXn

2

n+1∏
i=1

t
Δi,N (X)
i .

Publish the public parameters as: PKKP : g1, g2, t1, ..., tn, and keep securely the
master key MKKP : y.

We define the parameters for the El Gamal based SDE scheme in group G1 as
in [7]. Let x be chosen uniformly at random from Z∗p and compute h = gx. Let
H be a collision resistant hash function, f a pseudorandom function and s1 a
random key for f . Output the public and secret parameters for El Gamal based
SDE: publish PKSE = (G1, g, p, h, H, f), and keep securely MKSE = (x, s1).

For every user (publisher or subscriber), run Keygen(MKSE, i) as in SDE,
where i is the identity of the user. This function chooses xi1 random from Zp

and gives it to the user (publisher or subscriber) and computes xi2 = x − xi1
and gives to the broker connected to the user the key (i,xi2).

2 With minor modifications, KP-ABE can encrypt to all sets of size ≤ n.

280 M. Ion, G. Russello, and B. Crispo

5.2 Event Encryption

Figure 2 shows the steps needed to encrypt an event. The publisher specifies a
set of attributes γ under which the content M ∈ G2 of the event will be en-
crypted.

Step 1. To provide confidentiality of M , the publisher encrypts it using the
CP-ABE scheme. We call the message encrypted in this way M ′.

Step 2. To provide confidentiality of attributes, the publisher encrypts them us-
ing the multi-user SDE. A new set γ∗p will be generated as follows: every attribute
ai of γ is encrypted using KEnc-U(xp1, ai). KEnc-U(xp1, ai) performs the follow-
ing operations. Choose ri at random from Zp and compute c∗(ai) = (ĉ1, ĉ2, ĉ3)
where ĉ1 = gri+σi , σi = fs1(ai), c2 = ĉ

xp1
1 , ĉ3 = H(hri). The encrypted set of

attributes γ∗p contains all c∗(ai).

Step 3. For every attribute a ∈ γ, the publisher computes a trapdoor by calling
Trapdoor((xp1, s1), a) as in multi-user SDE . Trapdoor() chooses a random r in
Zq and computes TDp(a) = (td1, td2) for each attribute such that td1 = g−rgσa

and td2 = hrg−xp1rgxp1σa = gxp2rgxp1σa where σa = fs1(a).

Step 4. The publisher encrypts the message M ′ under γ as in KP-ABE. Choose
a random s ∈ Zp and compute the ciphertext as:

E∗ = Encrypt(M’, γ, PKKP)= (γ∗p , E’=M ′e(g1, g2)s, E”=gs,
{Ea = T (a)s)}a∈γ)

Note that we replaced the unencrypted set of attributes γ (as it appears in KP-
ABE) with the encrypted set γ∗p . The values E’, E” and Ea are computed as in
KP-ABE.

Step 5. The publisher sends the encrypted event E∗ together with the trapdoors
for matching event attributes to the broker:

E∗p=(γ∗p ,{TDp(a)}a∈γ ,E’=M ′e(g1, g2)s, E”=gs, {Ea = T (a)s)}a∈γ).

Step 6. The broker locates the key (p, xp2) corresponding to the publisher and
re-encrypts γ∗p to γp by calling KEnc-B(p,xp2, c

∗(a)) for each attribute c∗a of γ∗p .
KEnc-B() transforms each encrypted attribute c∗(a) in c(a) = (c1, c2) so that
c1 = ĉ

xp2
1 ĉ2 = ĉ

xp2+xp1
1 = (gr+σ)x = hr+σ where σ = fs1(a) and c2 = ĉ3 =

H(hr). The final encrypted event is:

Ep=(γp,{TDp(a)}a∈γ ,E’=M ′e(g1, g2)s, E”=gs, {Ea = T (a)s)}a∈γ).

The above operations provide confidentiality of the message and attributes for
an event, thus achieving property P1.

Supporting Publication and Subscription Confidentiality 281

=

==

⎪
⎩

⎪
⎨

⎧

=
=

=
=

+ σ

⎪⎩

⎪
⎨
⎧

=
==

+ σ

Fig. 3. Filter generation and encryption

5.3 Filter Generation

Figure 3 shows the main steps for generating and encrypting the filter.

Step 1. The subscriber defines the filter as an access tree F . Each non-leaf node
of the tree represents a threshold gate described by a value and its children. Let
x be a node with numx children. The threshold value kx represents the number
of children subtrees that need to be satisfied, hence 1 ≤ kx ≤ numx. When
kx = 1 the threshold gate is an OR and when kx = numx, the threshold gate
is an AND. Each leaf node x is described by an attribute and a threshold value
kx = 1.

We additionally define the following functions on the tree: parent(x) returns
the parent of a node x and att(x) is defined only for a leaf node and returns the
attribute associated with x. Further, we define an ordering between the children
of every node x and give each child an index from 1 to numx. The function
index(x) returns the index associated to node x.

Step 2. As in KP-ABE, the subscriber sends the filter F to a trusted authority
and requests a decryption key DF . When applying to an event the filter DF ,
the result will be a secret value (used for partially decrypting the content M)
only if the attributes associated with the event match the filter. Otherwise the
returned value will be a null value (⊥).

282 M. Ion, G. Russello, and B. Crispo

Choose a polynomial qx for each node x in the tree F ∗s . The polynomials are
chosen in a top down manner, starting from the root node r. For each node x in
the tree, set the degree dx of the polynomial qx to be one less than the threshold
value kx of that node, that is, dx = kx−1. Now for the root node r, set qr(0) = y
and dr other points of the polynomial qr randomly to define it completely. For
any other node x, set qx(0) = qparent(x)(index(x)) and choose dx other points
randomly to completely define qx.

Once the polynomials have been decided, for each leaf node x, the authority
gives the following secret values to the subscriber:

Dx = g
qx(0)·T (a)rx

2 , where a=att(x)
Rx = grx

where rx is chosen uniformly at random from Zp for each node x. The set of the
above values is the filter DF , corresponding to a decryption key in KP-ABE.

Step 3. Encrypt the leaf nodes of the filter using multi-user SDE. For every
leaf node x in F run KEnc-U(xs1, a), where a=att(x). Choose r at random from
Zp and compute c∗(a) = (ĉ1, ĉ2, ĉ3) where ĉ1 = gr+σ, σ = fs1(a), c2 = ĉxs1

1 ,
ĉ3 = H(hr).

Step 4. The subscriber sends DF together with F ∗s to the broker. The bro-
ker locates the key (s1, xs2) corresponding to the subscriber and re-encrypts the
leaf-node attributes of F ∗s . For each attribute c∗(a) run KEnc-B(s1, xs2, c

∗(a)).
First compute c(a) = (c1, c2) such that c1 = ĉxs2

1 ĉ2 = ĉxs2+xs1
1 = (gr+σ)x = hr+σ

where σ = fs1(a) and c2 = ĉ3.
The above operations provide confidentiality of the filter, thus achieving prop-

erty P2. At the same time, the filter is able to express any access formula. We
only give the details for expressing any monotone access formula consisting of
AND, OR, or threshold gates, bur by extending the construction as in [13] and
[4] we are able to represent inequalities and non-monotone access structures,
thus achieving property P3.

5.4 Filtering of Events

When a new event Ep is published, for every filter DF the broker will run the
decryption algorithm from KP-ABE to verify if DF decrypts Ep.

Step 1. Figure4 shows the operations necessary in this step. For each leaf node
in DF check if it belongs to the set of attributes specified by the publisher. In
KP-ABE this step is straightforward since the attributes are not encrypted. We
will use multi-user SDE to check if the encrypted attributes match the encrypted
filters. For every leaf node x with attribute a encrypted as (cb1, cb2) in the fil-
ter Fs, check if it is contained in the set of attributes γp as follows. For every
attribute a in γp, the broker retrieves the trapdoor TDp(a) and the secrete key
(p,xp2) and computes TD=td

xp2
1 td2 = gxσ. Then it checks if cb2 = H(cb1 ·TD−1).

If this is the case, we will have that

Supporting Publication and Subscription Confidentiality 283

⎩
⎨
⎧

=
==

+ σ

γγγ ∈∈ ====

⎩
⎨
⎧

=
==

−

σ

σ

σ==
−= ⊥

Fig. 4. Event filtering

DecryptNode(Ep, DF , x) = e(Dx,E”)
e(Rx,Ea) = e(gqx(0)

2 ·T (a)rx ,gs)
e(grx ,T (a)s) =

e(gqx(0)
2 ,gs)·e(T (a)rx ,gs)

e(grx ,T (a)s) = e(g, g2)sqx(0)

otherwise, DecryptNode(E,DF ,x)=⊥.
We now consider the recursive case when x is a non-leaf node. The algorithm

DecryptNode(E,DF ,x) then proceeds as follows. For all nodes z that are children
of x, it calls DecryptNode(E,DF ,z) and stores the output as Fz . Let Sx be an
arbitrary kx-sized set of child nodes z such that Fz �=⊥. If no such set exists then
the node was not satisfied and the function returns ⊥. Otherwise, we compute:

Fx =
∏
z∈Sx

F
Δi,S′

x(0)

z

{
where i = index(z),

S′ = {index(z) : z ∈ Sx}

=
∏
z∈Sx

(e(g, g2)
s·qz(0))Δi,S′

x
(0)

=
∏
z∈Sx

(e(g, g2)
s·qparent(z)(index(z)))Δi,S′

x
(0) (by construction)

=
∏
z∈Sx

(e(g, g2)
s·qx(0))Δi,S′

x
(0) = e(g, g2)

sqx(0) (using polynomial interpolation)(1)

and return the result. The broker calls the DecryptNode function on the root
node of the encrypted filter. DecryptNode(E, DF , r) = e(g, g2)ys = e(g1, g2)s if
and only if the attributes of the event satisfy the filter. If the result equals ⊥, it
means that the content does not match the filter.

Step 2. In case of a successful match, the broker obtains M’ from E′ = M ′e(g1,
g2)s by dividing it with e(g1, g2)s and forwards it to the subscriber.

284 M. Ion, G. Russello, and B. Crispo

Fig. 5. Key and message exchange for filter generation

5.5 Decryption of the Content

When the subscriber receives M’, if its attributes satisfy the requirements defined
by the publisher by means of CP-ABE, the subscriber is able to obtain the con-
tent M. It should be stressed that although publishers select the attributes, they
do not know the subscribers. Publishers are only characterizing the subscribers
so it could be the case that a subscriber who receives the event is not able to
decrypt the content because it does not satisfy the properties specified by the
publisher. For example, a publisher may want to send an event only to people
belonging to a particular organization. Subscribers interested in the information
but not belonging to that organization will not be able to decrypt the event.

6 Revisiting the Stock Quote Example

In the following we show how the example in Section 2.1 can be extended with
the solution described above to provide confidentiality of events and filters.

As part of the initialization (see Section 5.1), the Trusted Authority generates
the public(PK) and master (MK) keys for KP-ABE, CP-ABE and SDE. The
public keys are published while the master keys are kept securely.

In our example, publisher P and subscriber S register with the Financial News
Service. The Service contacts the Trusted Authority to generate the secret keys

Supporting Publication and Subscription Confidentiality 285

of the publisher and subscriber that will be used for SDE. The Trusted Authority
sends these keys on a secure channel to the publisher (i), subscriber (ii) and also
to the brokers (iii, iv). These steps are shown in Figure 5.

Subscriber S expresses the subscription filter: ”Sym=IBM” AND ”Price>10”.
The following operations need to be performed (see Figure 5):

1. Construct the access tree corresponding to the filter. The tree representing
the filter is shown in Figure 6. To represent the inequality ”Price>10” we
use the representation introduced in [4] and construct the access tree by
expressing conditions on the bit values of the attribute. The threshold values
of the nodes represent the number of sub-trees that need to be satisfied. In
our example, 2 corresponds to an AND and 1 to an OR.

2. The subscriber sends this filter to the Trusted Authority which will generate
a key DF . This key is able to decrypt any event whose attributes satisfy the
filter.

3. To ensure confidentiality of the filter, the attributes expressed in the leaf
nodes are encrypted using SDE.

4. The subscriber sends the filter which contains DF and the encrypted tree to
broker B2. The broker further distributes the encrypted filter in the pub/sub
network.

Fig. 6. Access tree for ”Sym=IBM” AND ”Price>10”

Next, publisher P generates an event with the following attributes: ”Sym=IBM”
AND ”Price=11”. This event is to be received only by subscribers with the
attribute ”Premium customer”. The publisher performs the following operations,
as shown in Figure 7.

1. Request a CP-ABE key for ”Premium customer” from the Trusted
Authority.

2. Encrypt the message content M with the received key. This ensure that only
subscribers who possess this attribute will be able to read the message.

3. To allow comparisons of numerical values, the publisher creates an at-
tribute for each bit of the numerical attribute (as introduced in [4]). For
Price=11 (1011), the attributes are: Price=1***, Price=*0**, Price=**1*
and Price=***1.

286 M. Ion, G. Russello, and B. Crispo

Fig. 7. Key and message exchange for event generation

4. Encrypt the message M using KP-ABE under the defined attributes.
5. To provide confidentiality of the attributes, encrypt all attributes using SDE.

Also compute a trapdoor for each attribute (see section 5.2).
6. Send to broker B1 M encrypted under CP-ABE and KP-ABE and the en-

crypted attributes with their trapdoors computed as in SDE.

Broker B1 matches the received event against the stored filters and based on
the matching result, it forwards the event to broker B2. Broker B2 matches the
event against the filter from subscriber S. The matching corresponds to a KP-
ABE decryption for which we additionally encrypted the ciphertext attributes
and key access tree. When the event from publisher P is matched against the
filter from subscriber S, the broker is able to remove the KP-ABE encryption
without learning neither the attributes nor the filter. The matching result is
the message content M expressed by the publisher encrypted with CP-ABE. B2
then forwards the matching result to S. The subscriber S is able to decrypt the
message only if it possesses the attribute ”Premium customer”.

7 Security Analysis

This section evaluates the security of the scheme. To ensure confidentiality of
events our scheme encrypts both messages and associated attributes to prevent
attackers to infer an event from its attributes. Messages are encrypted using
CP-ABE encryption [4]; the attributes are encrypted using the multi-user SDE

Supporting Publication and Subscription Confidentiality 287

scheme, then encrypted messages are further encrypted by the publisher under
the set of attributes by using KP-ABE with non-monotonic filters.

All the used encryption schemes are proved to be at least indistinguishable
under chosen plaintext attack (IND-CPA). [6] proves CP-ABE to be chosen
plaintext (CPA) secure under the Decisional bilinear Diffie-Hellmann (DBDH)
assumption, generally considered a hard problem. About multi-user SDE [7]
proves that the concrete construction, our scheme uses, built upon El Gamal-
based proxy encryption is indistinguishable under chosen plaintext attack (IND-
CPA) under the assumption the Decisional Diffie-Hellmann problem is hard
relative to the group on which El Gamal is defined. Hence the encryption scheme
that protects events is IND-CPA secure. About the KP-ABE scheme, [13] proves
that the IND-CPA security of KP-ABE with non-monotonic access structures
in the attribute-based selective-set model reduces to the hardness of the Deci-
sional bilinear Diffie-Hellmann (DBDH) assumption, generally considered a hard
problem.

All encryption primitives used by our scheme are IND-CPA secure, what is left
is to show their combination is still secure. The different mechanisms are used
as multiple layer of encryption and [3] shows that if a cryptosystem is secure in
the sense of indistinguishability, then the cryptosystem in the multi-user setting,
where related messages are encrypted using different keys, is also secure. In our
case each encryption layer uses an independent key so the combination is at least
as secure as any individual encryption. Thus, the scheme is at least IND-CPA
secure.

Filters’ confidentiality is achieved by using KP-ABE with multi-user SDE.
Thus, using the same argument used for the case of events’ confidentiality also
in case of filters the multiple layer encryption is IND-CPA secure.

8 Related Work

Current solutions for ensuring confidentiality in publish/subscribe systems pro-
vide only some of the properties satisfied by our solution, but not all of them at
the same time. For example, [12] proposes a scheme that does not require pub-
lishers and subscribers to share a key, but does not achieve full confidentiality of
events and confidentiality of filters. Events are encoded in XML format, but only
specific fields (e.g., price) are encrypted with a symmetric key k. The publisher
then encrypts k with its public key. The brokers forward the event based on the
fields left unencrypted and a proxy service changes the encryption of k to an
encryption with the public key of the subscriber.

In [14] Raiciu and Rosenblum achieve partial confidentiality but they require
that publishers and subscribers share a group key which is used to encrypt
events and filters. In their model, notifications are composed of (name, value)
pairs where only value is encrypted which in some scenarios may not provide a
sufficient level of confidentiality.

In [19], Srivartsa & Liu propose a specific key management scheme and a
probabilistic multi-path event routing to prevent frequency inferring attacks.

288 M. Ion, G. Russello, and B. Crispo

The method achieves confidentiality of events and filters, however, filtering is
done based on only one keyword. A centralized trusted authority distributes en-
cryption keys to publishers and authorization keys to subscribers. Inequalities
are supported by using a hierarchical key structure where each key corresponds
to an interval. However, the inequality condition cannot be checked by the bro-
kers, instead, after receiving an event corresponding to the specified keyword, a
subscriber will be able to decrypt it only if the numerical value of the event’s
attribute is in the range corresponding to the subscriber’s authorization key.

In [16], Shikfa et al. propose a solution based on multiple layer commuta-
tive encryption that achieves content and filter confidentiality, and routing of
encrypted data. The advantage of this method is that key management is local
and publisher and subscribers do not need to share keys. However, the filter is
limited to equality filter with only one keyword.

9 Conclusions and Future Work

In this paper, we presented a solution for providing confidentiality in pub/sub
systems. Our solution is an encryption scheme based on CP-ABE, KP-ABE and
multi-user SDE. Our scheme supports both the publication and the subscription
confidentiality properties while at the same time does not require publishers and
subscribers to share secret keys. Although events and filters are encrypted, bro-
kers can still perform event filtering without learning any information. Finally,
our scheme allows subscribers to express filters that can define any monotonic
and non-monotonic constraints on events.

As future work, we are working on a more formal proof to evaluate the security
of the scheme. At the same time, we are planning to implement our scheme and to
include it in one of the mainstream implementations of the pub/sub model. This
would allow us to assess the impact in performance that such scheme imposes
on the resources of the pub/sub system.

Acknowledgements

The work of the second author is supported by the EU project Consequence
Research Grant FP7-214859. The work of the third author is partially funded
by the EU project MASTER contract no. FP7-216917.

References

1. Bacon, J., Moody, K., Bates, J., Hayton, R., Ma, C., McNeil, A., Seidel, O., Spiteri,

M.: Generic support for distributed applications. IEEE Computer 33(3), 68–76

(2000)

2. Banavar, G., Chandra, T., Mukherjee, B., Nagarajarao, J., Strom, R., Sturman,

D.: An efficient multicast protocol for content-based publish-subscribe systems. In:

International Conference on Distributed Computing Systems, vol. 19, pp. 262–272.

IEEE Computer Society Press, Los Alamitos (1999)

Supporting Publication and Subscription Confidentiality 289

3. Bellare, M., Boldyreva, A., Staddon, J.: Multi-recipient encryption schemes: Se-

curity notions and randomness re-use. In: Desmedt, Y.G. (ed.) PKC 2003. LNCS,

vol. 2567. Springer, Heidelberg (2002)

4. Bethencourt, J., Sahai, A., Waters, B.: Ciphertext-policy attribute-based en- cryp-

tion. In: IEEE Symposium on Security and Privacy, pp. 321–334 (2007) (Citeseer)

5. Carzaniga, A., Rosenblum, D.S., Wolf, A.L.: Design and evaluation of a wide- area

event notification service. ACM Transactions on Computer Systems (TOCS) 19(3),

332–383 (2001)

6. Cheung, L., Newport, C.: Provably secure ciphertext policy abe. In: CCS 2007: Pro-

ceedings of the 14th ACM conference on Computer and communications security,

pp. 456–465. ACM, New York (2007)

7. Dong, C., Russello, G., Dulay, N.: Shared and searchable encrypted data for un-

trusted servers. In: Atluri, V. (ed.) DAS 2008. LNCS, vol. 5094, pp. 127–143.

Springer, Heidelberg (2008)

8. Eugster, P.T., Felber, P.A., Guerraoui, R., Kermarrec, A.M.: The many faces of

publish/subscribe. ACM Computing Surveys (CSUR) 35(2), 131 (2003)

9. Golle, P., Staddon, J., Waters, B.: Secure conjunctive keyword search over en-

crypted data. In: Jakobsson, M., Yung, M., Zhou, J. (eds.) ACNS 2004. LNCS,

vol. 3089, pp. 31–45. Springer, Heidelberg (2004)

10. Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-

grained access control of encrypted data. In: Proceedings of the 13th ACM confer-

ence on Computer and communications security, p. 98. ACM, New York (2006)

11. Burridge, R., Sharma, R., Fialli, J., Hapner, M., Stout, K.: Java message service.

Sun Microsystems Inc., Santa Clara (2002)

12. Khurana, H.: Scalable security and accounting services for content-based pub-

lish/subscribe systems. In: Proceedings of the 2005 ACM symposium on Applied

computing, p. 807. ACM, New York (2005)

13. Ostrovsky, R., Sahai, A., Waters, B.: Attribute-based encryption with non- mono-

tonic access structures. In: Proceedings of the 14th ACM conference on Computer

and communications security, p. 203. ACM, New York (2007)

14. Raiciu, C., Rosenblum, D.S.: Enabling confidentiality in content-based pub-

lish/subscribe infrastructures. In: Securecomm and Workshops. vol. 28, pp. 1–11

(2006)

15. Sahai, A., Waters, B.: Fuzzy identity-based encryption. In: Cramer, R. (ed.)

EUROCRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (2005)

16. Shikfa, A., Onen, M., Molva, R.: Privacy-Preserving Content-Based Pub-

lish/Subscribe Networks. In: Proceedings of Emerging Challenges for Security, Pri-

vacy and Trust: 24th Ifip Tc 11 International Information Security Conference, SEC

2009, Pafos, Cyprus, May 18-20, p. 270. Springer, Heidelberg (2009)

17. Singhera, Z.U.: A workload model for topic-based publish/subscribe systems (2008)

18. Song, D.X., Wagner, D., Perrig, A.: Practical techniques for searches on encrypted

data. In: Proceedings of 2000 IEEE Symposium on Security and Privacy, SP 2000,

pp. 44–55 (2000)

19. Srivatsa, M., Liu, L.: Secure event dissemination in publish-subscribe networks.

In: Proceedings of the 27th International Conference on Distributed Computing

Systems, p. 22 (2007) (Citeseer)

20. Zhuang, S.Q., Zhao, B.Y., Joseph, A.D., Katz, R.H., Kubiatowicz, J.D.: Bayeux:

An architecture for scalable and fault-tolerant wide-area data dissemination. In:

Proceedings of the 11th international workshop on Network and operating systems

support for digital audio and video, p. 20. ACM, New York (2001)

CED2: Communication Efficient
Disjointness Decision

Luciana Marconi1, Mauro Conti2, and Roberto Di Pietro3

1 ”Sapienza” Università di Roma, Department of Computer Science,

Roma 00198, Italy

marconi@di.uniroma1.it
2 Vrije Universiteit Amsterdam, Department of Computer Science,

Amsterdam HV 1081, The Netherlands

mconti@few.vu.nl
3 Università di Roma Tre, Department of Mathematics,

Roma 00146, Italy

dipietro@mat.uniroma3.it

Abstract. Enforcing security often requires the two legitimate parties

of a communication to determine whether they share a secret, without

disclosing information (e.g. the shared secret itself, or just the existence

of such a secret) to third parties—or even to the other party, if it is

not the legitimate party but an adversary pretending to impersonate

the legitimate one. In this paper, we propose CED2 (Communication

Efficient Disjointness Decision), a probabilistic and distributed protocol

that allows two parties—each one having a finite set of elements—to

decide about the disjointness of their sets. CED2 is particularly suitable

for devices having constraints on energy, communication, storage, and

bandwidth. Examples of these devices are satellite phones, or nodes of

wireless sensor networks. We show that CED2 significantly improves the

communication cost compared to the state of the art, while providing the

same degree of privacy and security. Analysis and simulations support

the findings.

Keywords: sets disjointness test, communication complexity, privacy,

security, probabilistic algorithms.

1 Introduction

Secure communications often require the involved parties to share a secret. As an
example, two parties can use a pre-loaded shared symmetric key to encrypt the
communication between them [4]. However, a problem arising in such scenarios
is for the parties to determine whether they share such a secret. In this paper, we
deal with this problem. In particular, we aim at minimizing the communication
effort needed by the two parties to discover whether they share any common
element from a given set. Note that this approach is mandatory where the com-
munication cost is a driving system parameter. For instance, this is usually the
case in satellite communications—where bandwidth can be limited or it has to

S. Jajodia and J. Zhou (Eds.): SecureComm 2010, LNICST 50, pp. 290–306, 2010.
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2010

CED2: Communication Efficient Disjointness Decision 291

be shared between multiple users at the same time—or when elements exchange
is unfeasible because of the set or elements size.

Note that in this paper we present the problem of deciding whether there is
an intersection between two sets for a security purpose. However, set intersection
operations are required in a wide range of applications, particularly in the area of
information integration across databases [1,9]. Further examples of applications
are: finding common volumes between large libraries; finding common friends
or interests in social networks without exchanging the corresponding lists; and,
public welfare survey establishing how many welfare recipients are treated for a
specific illness [1,9].

For the majority of these applications, there are often privacy and security
concerns requiring the use of privacy-preserving techniques that usually relies
on expensive asymmetric cryptographic primitives and a considerable commu-
nication cost [8,15]. However, there are scenarios that call for inexpensive cryp-
tographic primitives and reduced communication cost, such as the ones cited
before; these are the niche applications where CED2 comes at hand.

Contribution. In this work, we propose CED2 (Communication Efficient Dis-
jointness Decision): a probabilistic and distributed protocol for deciding set in-
tersection. We assume that each of the two parties of a communication has a set
of secrets (or more generally, elements): the sets being A and B, with elements
from a domain D. CED2 is particularly concerned in minimizing the commu-
nication cost. Hence, focusing on communication complexity means to reduce
the bits of information that the two parties exchange until at least one of them
discovers whether A∩B = ∅. The proposed solution does not require the parties
to actually send any element of the set. CED2 leads to a global communication
saving compared to the state of the art—that, to the best of our knowledge, is
represented by the algorithm by Kurtz and Manber [10] (we later refer to this al-
gorithm as KM). Finally, this improvement is achieved providing the same level
of privacy and security of KM—our solution does not disclose more information.
The main contribution of this work is in the reduced communication overhead
compared to KM, that is a building block protocol for many security settings
where two parties need to know (efficiently) whether they share a secret.

Roadmap. The rest of the paper is organized as follows. Section 2 describes
the related work in the area. Section 3 presents our solution, that is the CED2

protocol. Section 4 provides the analysis of CED2, while Section 5 is devoted to
the protocol evaluation and comparison with the state of the art. Finally, Section
6 reports some concluding remarks.

2 Related Work

The literature on set intersection decision problem makes available a wide range
of applications from set theory, combinatorial optimization, database searching,
circuit complexity and applied cryptography [2,3,5,15]. In this paper, we focus
on the evaluation of communication complexity of the disjointness problem. This
problem is characterized as follows: two parties, Alice (A) and Bob (B), hold sub-
sets A and B respectively, both of n elements from a given domain D. Alice and

292 L. Marconi, M. Conti, and R. Di Pietro

Bob follow a protocol to jointly decide whether they share some elements or not.
That corresponds to the computation of the disjointness function Disj(A,B),
defined as follows:

Disj(A,B) =

{
1, if A∩ B = ∅
0, otherwise

(1)

The two parties do not know each other’s input. To determine the output value,
they alternatively exchange bits according to the protocol. In a deterministic
protocol, their answer must always be correct, i.e., equal to Disj(A,B) for ev-
ery input pair A,B. In a probabilistic protocol, the algorithms of the parties
depend on unbiased coin tosses, and are required to be correct with a bounded
probability (1/2) on every input. Interested readers can refer to [11] for a survey.

We briefly remind the notion of the communication complexity, introduced
by Yao [14]. The communication complexity of a protocol P is the number of
bits exchanged by the involved parties during the protocol run. In general, the
communication complexity of a function f is that of the best possible protocol
that computes f . The probabilistic communication complexity, denoted by R(f),
takes into account also the coin tosses used. Two access models to the random
bits distinguish the private coin model, in which each party tosses his private
coin, from the common randomness model, in which both parties share a common
random bit string. It is known that R(Disj) is Θ(n): the lower bound Ω(n) is
given in [7], [11]; the upper bound corresponds for both parties of just sending all
of their input. More recently, H̊astad and Widgerson studied the communication
complexity of the disjoint function [6]. They proved that in the model of common
randomness:

– R(Disjk
n) = O(n), for all n;

– R0(Disjk
n) = O(n), for instances of disjoint sets, and R0(Disjk

n) = O(n +
log k) for not-disjoint sets. R0(f) represents the number of bits exchanged
to compute f with the Las-Vegas type probabilistic algorithm, where the
answer is required to be always correct (zero-error) [13].

Disjk
n(A, B) indicates the disjoint function of sets of size n whose elements are

represented as bit strings of length k.
Thus computing |A ∩B| requires Θ(n) communication. Therefore, even with-

out taking any other requirement into consideration (e.g. privacy), the commu-
nication complexity of any set intersection algorithm is at least proportional to
the input size. Moreover, Freedman et al. [5] showed a reduction from disjoint-
ness, proving that the communication cost of an approximation algorithm for
the intersection size is lower-bounded by Ω(n).

The cited works study the formal properties of the disjointness problem con-
sidered as a communication problem. However, in order to evaluate the design of
our solution and compare its performance, we consider a specific solution to the
disjointness problem. This solution is provided by the algorithm from Kurtz and
Manber appeared in 1987 [10]. The authors describe a distributed probabilistic al-
gorithmthat solves the disjointness problem inO(log2 log2 n) rounds. The solution

CED2: Communication Efficient Disjointness Decision 293

requires to exchange a message of O(cn) bits at each round (where c is the number
of bits (O(log2 n)) for the representation of the vector’s indexes (see Section 4).

The basic idea of their solution is to reduce setsA andB at each round, eliminat-
ing all elements that are not in the intersection. The algorithm terminates when
either i) no more elements are left—in which case the sets are guaranteed to be
disjoint—or ii) when, with high probability, a set of candidates belonging to the in-
tersection is left. The core of the KM solution is to use random hash functions taken
from a pre-determined class of hash functions, to establish which elements are not
in the intersection. The KM solution can be summarized as follows. At a generic
round i > 0, the parties agree on a randomhash function Hi. The agreement can be
reached in several ways. For instance, we can assume that only one party chooses
(uniformly at random) the function from the family, and then it sends a descrip-
tion of the function to the other party. Alternatively, if we suppose that the family
of hash functions is an ordered set, one party can send to the other just the index
of the selected function . Let be x a vector of size n with all values initialized to
false, and let Ai denote the elements of A that are not eliminated after round i. A
computes Hi(as) for each as ∈ Ai and set x[j] = x[j]∨(Hi(as) = j). Note that x[j]
is true iff there exists at least one element as ∈ Ai such that Hi(as) = j (i.e. as is
hashed into the jth position). The party B executes the same computation using a
vector y. The corresponding vectors x and y (of length n) are then exchanged. This
requires sending n bits. A can now eliminate all elements of Ai that were hashed
into position j, such that y[j] = false; B does the same for Bi. Intuitively, this is
equivalent to a bins and balls model where balls are the set elements and bins are
the vector positions. Hashing is assumed to be equivalent to random throwing balls
in bins (A throwing in vector x and B throwing in vector y). At each round, the al-
gorithm eliminates all the balls for which the corresponding bin of the other party
is an empty bin.

In our solution we use similar techniques. That is, the same probabilistic
model (bins and balls) and the same simulation technique of the model (hashing).
Exploiting a result on the bins and balls model contained in [12], we consider at
each round only the maximum loaded bin. Thus, exchanging only one index at
each round we build a protocol that computes the disjointness function with a
global saving in the number of bits exchanged.

3 Our Solution: CED2

In this section, we propose CED2 (Communication Efficient Disjointness Deci-
sion), a communication efficient protocol for deciding whether there are elements
in the intersection of two given sets. Section 3.1 introduces the system model and
the notation used in the paper. Section 3.2 gives an overview of the proposed
solution, while the protocol description can be found in Section 3.3.

3.1 System Model and Notation

Let us consider two sets A = {a1, a2, ..., an} and B = {b1, b2, ..., bm}, with n, m ∈
N. We can assume w.l.o.g that A,B ⊆ {0, 1, ..., 2k − 1} with k ∈ N and m = n.

294 L. Marconi, M. Conti, and R. Di Pietro

A and B are stored at two different parties, A and B respectively, that can
exchange messages.

We would like to establish whether A∩B = ∅ or not. Moreover, we would like
to establish what is the communication cost payed in terms of total numbers of
exchanged bits. Table 1 summarizes the notation used in this paper.

Table 1. Notation Table

A input set

B input set

A (Alice); protocol party

B (Bob); protocol party

X A ∩ B
H family of hash functions

Hi hash function randomly selected from H at round i
jM index of the max loaded bin

Ai elements not eliminated from A after round i
Bi elements not eliminated from B after round i
U i

A[j] elements from A hashed, at round i, in position j
UA[j] configuration of j-th bin of A at a generic round

U i
B[j] elements from B hashed, at round i, in position j

UB[j] configuration of j-th bin of B at a generic round

log n natural logarithm

log2 n base 2 logarithm

R0(f) communication complexity of a Las-Vegas probabilistic pro-

tocol for function f
R(f) communication complexity of a Monte Carlo probabilis-

tic protocol for function f

Disjk
n the disjointness function: Disjk

n(A,B) = 1 iff A ∩ B = ∅,
A and B having n elements

KM Kurtz and Manber algorithm [10]

3.2 Protocol Overview

CED2 works through different rounds. In particular, similarly to KM [10], the
idea of CED2 is to reduce the sets A and B at each subsequent protocol round.
CED2 also uses the bins and balls concept and, at the beginning of each protocol
step, the remaining set’s elements (balls) are assigned to bins accordingly to
a hash function—different for each round. The basic idea is to eliminate, at
each round, elements that are not in the intersection, exchanging the minimum
number of bits for this purpose. To achieve the goal, we focus only on one
particular bin at each round, the most loaded one. This allows us to cut the
maximum number of balls possible with the minimum communication cost (just
one index at each time).

Using this technique, we can save a significant amount of communication in
the single round, as shown later in the paper. In fact, we exchange a single index
(the one of the bin with the max load) instead of the whole vector (pairs index,

CED2: Communication Efficient Disjointness Decision 295

load), as done by KM. The simple fact that the cost of a single round is less than
the one of a single round of KM does not directly implies that the overall cost
of CED2 is less than the one of KM. In fact, the overall cost depends also on the
number of steps, that it is different for the two considered protocols. Analysis
and the experimental results show that CED2 outperforms KM.

3.3 Protocol Description

CED2 can be described via the bins and balls model. At every round i, we assign
(throw) the n elements (balls) of each set in n indexes of a vector (bins). The
launches are simulated by a hash function Hi, mapping elements of the sets into
the vector indexes. In the following, the two vectors UA and UB denote bins,
while U i

A[j] (U i
B[j]) denotes the set of values ai ∈ A (bi ∈ B) mapped to the j-th

position at round i. At each round, the parties agree on the hash function Hi—
chosen uniformly at random from a family H of hash functions. In particular,
we consider H = {H ≡ �ax + b(modp)	(modn)}, where a, b < p (a
= 0) are
chosen at random, p is a prime > 2k, and n is the sets cardinality—we remind
that we assume that the two sets have the same cardinality. We denote with
Hi the hash function randomly selected at round i. Furthermore, Ai and Bi

denote the elements not eliminated after round i, from A and B respectively.
Notation Hi(ak) = j indicates that the item ak ∈ A has been assigned to
the bin j, for the round i. Each of the parties involved in the protocol computes
the assignment independently—without requiring any communication. However,
using both parties the same hash function (even if different for each round)
guarantees that elements belonging to A ∩ B map to the same position. Let us
assume that for a given j, UA[j] contains v elements (of A) and the corresponding
bin (same vector’s index j) UB[j] is empty. This assure that the v elements of
A mapped into UA[j] do not belong to the intersection A ∩ B. From the hash
function definition we have the following two properties:

as = bt ∈ A ∩ B =⇒ Hi(as) = Hi(bt) = j (2)

Hi(as) = Hi(bt) = j
=⇒ as = bt ∈ A ∩ B. (3)

Equation 3 justifies the need for using different hash functions in the subsequent
protocol rounds. In fact, let us assume that, at a given round, the randomly
selected hash function induces a configuration of the bins such that bin UA[j]
contains elements of A that are not in A∩B, and bin UB[j] contains elements of
B that are not in A∩B (hash collisions). Intuitively, changing the hash function
at the next round gives a different distribution for the balls in the bins. Thus,
we have a chance to eliminate the balls that do not belong to the intersection—
using randomly chosen functions at each round permits to have launches behave
differently at each round.

The behaviour of CED2 is described in Algorithm 1. First, A randomly select
the hash function used in the current iteration i (line 1). Hence, A maps all the
elements A into the n elements vector, using the hash function (line 2). Then, A

296 L. Marconi, M. Conti, and R. Di Pietro

sends to B the vector index, jM , with the maximum number of elements mapped
into (line 3). B sends back to A the information whether its own vector is empty
at position jM . If this is the case (line 5), A cuts all the elements mapped in
jM (line 6). Then, it checks whether there are remaining elements (line 7). In
the negative case, A can conclude that the intersection is empty, and terminate
with output 1 (line 8). Otherwise, if the B vector is not empty at position jM

(line 10), A checks for how many are the consecutive rounds it was not able to
eliminate elements (line 11). If these consecutive rounds are more than a pre-
determined constant q (its value is discussed in Section 5), A terminates with
output 0 (line 12). If neither of the two termination conditions are verified (lines
8, 12), A iterates the procedure (line 14).

Algorithm 1. CED2

Round i; computation made by A

1: A chooses a random Hi from H and sends a description of Hi (i.e. function

parameters a, b, p) to B
2: A computes Hi(a) = j for each a ∈ Ai−1 and stores a in U i

A[j]
3: A sends to B the jM index, the maximum loaded bin

4: A receives from B the information whether the U i
B[jM] is empty or not

5: if U i
B[jM] = ∅ then

6: Ai = Ai−1 \ {as | as ∈ A and Hi(as) = jM}
7: if (Ai = ∅) then
8: output 1: Disjoint

9: end if
10: else
11: if i satisfy the condition Ai−q = Ai−q+1 = ... = Ai then
12: output 0: Not-Disjoint

13: else
14: i = i + 1; throwing again

15: end if
16: end if

In figures 1 and 2, we depict the two possible scenarios for CED2: disjoint
sets (Figure 1) and not-disjoint sets (Figure 2). For the sake of clarity we do not
show the configuration of the entire bins vectors U i

A and U i
B but just a sample

of them.
Figure 1 shows an example of disjoint sets instances, presented in Figure 1a.

Considering these sets, an example of a cutting round is shown in Figure 1b
and a not cutting round in Figure 1c. Looking at Figure 1b, let us suppose that
position 4 of the A vector is the maximum loaded bin jM . We can observe that
the corresponding position in the vector of B (U i

B[4]) is empty. Thus, at the
subsequent round i + 1, Ai+1 = {0, 1, 3, 5, 6, 7, 8}. Instead, in the case depicted
in Figure 1c the corresponding position in the vector of B is not empty. In fact,
U i
B[4] contains the element labeled 16. Hence, at the subsequent round i + 1,

Ai+1 = Ai = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}.

CED2: Communication Efficient Disjointness Decision 297

(a) Sets A and B (b) a cutting round (c) a not cutting round

Fig. 1. Example of Disjoint Instances

(a) Sets Aand B (b) a cutting round (c) a not cutting round

Fig. 2. Example of Not-Disjoint Instances

Similarly to Figure 1, Figure 2 shows an example of two not-disjoint sets,
presented in Figure 2a; the green balls indicating elements belonging to the in-
tersection. Considering this case, a cutting launch is shown in Figure 2b and
a not cutting launch in Figure 2c. In Figure 2b, the position 4 is the max-
imum loaded bin jM of A, it does not contain any intersection element and
the corresponding bin U i

B[4] is empty. Hence, at the subsequent round i + 1,
Ai+1 = {0, 1, 3, 5, 6, 7, 8, 9}. Instead, in the case depicted in Figure 2c the green

298 L. Marconi, M. Conti, and R. Di Pietro

ball labeled 1 makes U i
B[4] not empty. This produces, at the subsequent round

i+1, Ai+1 = Ai = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}. In fact, the green ball belongs to the
intersection and falls in the bin jM = 4.

4 Analysis

In this section, we analyze the communication cost of CED2 and KM. The anal-
ysis given in this section only considers the scenario where the two sets are
actually disjoint.

We start analyzing the cost for CED2. The overall result is given in Lemma
4. However, we need the following intermediate results: Lemma 1, Lemma 2 and
Lemma 3. Lemma 1 is a result from [12].

Lemma 1. When n balls are thrown into n bins, the maximum number of balls
in any bin is O(log n

log log n) with high probability, i.e., 1 − 1
n .

Lemma 2. When n balls are thrown into n bins the probability of a particular
bin being empty is 1

e for large n.
Proof. The probability that a ball does not fall into a particular bin is 1 − 1

n .
Therefore: Pr[bin j is empty] =

(
1 − 1

n

)n ≈ 1
e . �

Lemma 3. Given two sets A and B with | A |=| B |= n, if A∩B = ∅ then the
average number of messages exchanged for CED2 (Algorithm 1) is O(n · log log n

log n).

Proof. From Lemma 1, we know that if at each round it is possible to cut log n
log log n

elements. Hence, the expected number of rounds to cut all the elements is n· log log n
log n .

The expected trials to find empty a given box j is e (Lemma 2). Thus, the total
expected number of rounds needed to cut all the elements is e · n · log log n

log n . �
We can now give the following Lemma for CED2.
Lemma 4. Given two sets A and B with | A |=| B |= n, if A ∩ B = ∅ then
the average number of bits exchanged for CED2 is O(n · log log n).
Proof. From Lemma 3, we know that e · n · log log n

log n is the expected number of
rounds required by CED2 to cut all the elements. At each round CED2 exchanges
a message of O(log2 n) bits. Indeed, each party sends one single index using log2 n
bits for its representation. Hence, the expected CED2 total bits expenditure is:

e · n · log log n

log n
· log2 n. (4)

Substituting log2 n = log n
log 2 in (4), the claim follows. �

The communication complexity of KM is given by the following Lemma, provided
in [10].

Lemma 5. Given two sets A and B with | A | = | B |= n, if A ∩ B = ∅ then
the average number of bits exchanged for KM is O(n(log2 n)(log2 log2 n)).

Comparing Lemma 4 to Lemma 5, we conclude that CED2 communication com-
plexity (Lemma 4) is lower than KM communication complexity (Lemma 5) by
a factor O(log2 n).

CED2: Communication Efficient Disjointness Decision 299

5 Protocol Evaluation

In the previous section we have provided the analysis of both CED2 and KM for
the disjointness case. In this section, we evaluate our solution leveraging both
the previous analysis and the results of the simulations we run. We consider
both disjointness and not-disjointness cases—and discuss them separately. We
compare our solution to the one of Kurtz and Manber that, to the best of our
knowledge, is the most efficient solution in the literature. In order to run the
simulations shown in this section, we implemented a simulator using Python.
The inputs sets are generated as random integers using the Python libraries
for randomness. The same libraries have been also employed to implement the
family of hash functions described both for CED2 and KM. Each point plotted
in the graphs shown in this section represents the average computed over 500
run of the algorithms.

5.1 Disjoint Sets Instances

We first consider disjoint sets instances as input for the algorithms. Both algo-
rithms work over subsequent rounds by removing elements (“cutting”) from the
starting sets. The two algorithms both terminate when all elements are removed.
Hence, we start investigating how the size of the remaining sets vary with the
number of rounds. The results are shown in figures 3a and 3b for CED2 and KM,
respectively. We specify that data for Figure 3b has been obtained fixing a value
for the number of rounds, and calculating the average number of elements cut
(y-axis value) for that value. Comparing the results for the two protocols, we ob-
serve that CED2 requires a significant higher number of rounds to complete with
respect to KM. As an example, for sets of n = 1000 elements, CED2 requires
some 600 protocol rounds to complete, while KM terminates in 3 iterations.

From just these results, one might conclude that the communication cost of
CED2 is higher than the one of KM. However, we still need to investigate what

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 0 100 200 300 400 500 600 700 800 900 1000

re
m

ai
ne

d
se

t i
te

m
s

iterations

n=600
n=1000
n=1400
n=1800

(a) CED2

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 0 1 2 3 4 5 6

re
m

ai
ne

d
se

t i
te

m
s

iterations

n= 600
n=1000
n=1400
n=1800

(b) KM

Fig. 3. Disjoint Sets: Cuts Trend

300 L. Marconi, M. Conti, and R. Di Pietro

 0

 5000

 10000

 15000

 20000

 600 800 1000 1200 1400 1600 1800 2000

bi
ts

 p
er

 r
ou

nd

cardinality

 KM
 CED2

Fig. 4. Disjoint Sets: Average Bits per Round

is the communication cost of each single protocol iteration. Hence, we run our sim-
ulator to collect the number of bits exchanged in each single protocol round and we
considered the average of all the rounds. The results are shown in Figure 4.

From Figure 4, we observe that the key difference between the two algorithms
is the communication bits payed in each single iteration. In fact, while CED2

requires more rounds than KM (figures 3a and 3b), each round has a very small
communication cost—almost negligible compared to a round of KM. In particu-
lar, for the sets cardinality considered in the simulation (x-axis of Figure 4), the
communication cost of CED2 varies from 12 to 15 bits per round. Whereas, the
cost of KM varies from 4113 bits (for sets of 600 elements), up to some 17276
bits (for sets of size 2000).

We note that “cutting” all the elements provides an answer to the question
whether the sets intersect. Hence, this is a zero-error termination criteria for
both algorithms. Unfortunately, we do not have the same characterization for
the not-disjoint sets, as discussed in Section 5.2.

In the following graph (Figure 5) we report the overall communication com-
plexity for the two protocols; that is, the number of bits required for the two
protocols to complete. More specifically, in Figure 5, we give a global view of
analysis and simulations for both algorithms showing:

– the expected behaviour from analysis, respectively from Lemma 4 for CED2

and from Lemma 5 for KM;
– the results of simulations of the two algorithms.

Observing the results shown in Figure 5, we can draw the conclusion that CED2

(Algorithm 1) performs better than KM algorithm. We underline that the aim of
these results is to show a qualitative behaviour without taking into consideration
any specific communication protocol. In fact, one might argue that when our
solution is used in a practical scenario, the size of the exchanged message might
be bigger than the one shown in the figure—due to the message header of the
communication protocol used. However, we observe that the advantage provided

CED2: Communication Efficient Disjointness Decision 301

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 600 800 1000 1200 1400 1600 1800 2000

bi
ts

 e
xc

ha
ng

ed

sets cardinality

KM (sim)
CED2 (sim)

KM (an)
CED2 (an)

Fig. 5. Disjoint Sets: Analysis (an) and Simulations (sim) of Communication Com-

plexity

by our solution is preserved even when a practical message header is considered.
For example, let us consider sets of 1400 elements. Our solution would require
an average of 843 messages (see Figure 3a) each of 15 bits of payload (Figure
4). The KM solution would require an average of 5 messages (see Figure 3b),
each of 73654 bits of payload (Figure 4). Let us consider a message header of 10
bits—that is a practical choice for setting like WSN, where the header can have
a small size that includes the bits required to identify the receiver (e.g. among
some 1000 nodes). With 10 bits of header our solution would send about 843
messages, each of 25 bits, while KM would use 5 messages of 73664 bits. Hence,
the overall number of bits would be 21075 for our solution, compared to the
368320 required by KM. This example shows that the advantage of our solution
compared to KM remains even in practical scenario.

The simulations confirmed that the number of bits sent in the two solutions
differs of a O(log2 n) factor, as predicted in Lemma 4 and Lemma 5. We note that
KM analysis gives an upper bound on the number of exchanged bits based on
the O(log2(n)) bits representation for bins indexes (see Lemma 5). Running the
KM simulation produces averaged values for indexes representation expenditure,
� log2(n)+1

2 	. This motivates the gap between the two KM curves. Similar argu-
ment justifies the fact that indexes representation cost in bits does not affect our
solution. In fact, as each party in the protocol sends just one index at a time, the
upper bound from analysis (see Lemma 3) and the result of the simulation are
likely to be close to each other. We also observe that in the experiment shown in
Figure 5 we used an optimized implementation of the KM algorithm. In fact, we
send just empty bins indexes to the other party, saving on the total transmitted
bits. Actually, the KM algorithm would send the entire vector of size n. In the
latter case, the difference between the two compared communication costs would
be larger. The conclusion is that in case of disjoint sets instances, choosing to
reduce the exchanged bits in the single round provides a global saving in the
total communication complexity.

302 L. Marconi, M. Conti, and R. Di Pietro

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 0 10 20 30 40 50 60 70

bi
ts

 e
xc

ha
ng

ed

intersection percentage

n= 500
n=1000
n=1500
n=2000

(a) Bits exchanged

 3

 3.5

 4

 4.5

 5

 5.5

 6

 0 10 20 30 40 50 60 70

ro
un

ds

intersection percentage

n= 500
n=1000
n=1500
n=2000

(b) Rounds

Fig. 6. Not-Disjoint Sets: KM; q = 2

5.2 Not-disjoint Instances

For not-disjoint instances, let us first analyze KM termination that authors left
as an open issue. In KM the termination condition occurs at round r when
Ar−q = Ar−q+1 = ... = Ar, for a pre-determined constant q (not specified in
[10]). This condition is similar to the one used in CED2 (see Algorithm 1, line
11), but the value of q is influenced by different underneath stochastic processes.
In fact, even though the two algorithms use the same hashing strategy, the
stochastic process produced by the choice of the maximum loaded bin at each
round (CED2), is not equal to the one produced by the exchange of all the empty
bin indexes (KM).

We argue that q = 2 would be a good choice for KM to establish if two sets
are disjoint or not. In fact, KM algorithm is likely to cut elements at each round.
The only adverse circumstance is the configuration in which all not empty bins
indexes, for one party, match all not empty bins indexes for the other party. As it
is unlikely that KM algorithm does not cut elements at a given round, if for two
rounds it is not possible to cut elements, this means that, with high probability,
KM cut all the elements not belonging to the intersection. We report in Figure
6 both the amount of exchanged bits (Figure 6a) and the total rounds employed
(Figure 6b) with this termination criteria. From Figure 6b, we can observe that
the numbers of rounds employed to end, for all the cardinalities considered, vary
in a short range from some 3.8 for n = 500 and 50% of common elements between
the input sets, up to some 5.4 for n = 2000 and 20% of common elements. From
Figure 6a, we can observe that the bits expenditure is ranged between some
22000 bits, obtained for n = 500 up to nearly 160000 for n = 2000. The second
hypothesis from KM is to run the algorithm for c · (log2 log2 n) rounds, with
constant c > 1. If not all the elements are eliminated, then the sets are not
disjoint with an error probability depending on c.

For comparisons with CED2 we choose this latter hypothesis and set c = 1.1
for the simulations. The reason is twofold: on the one hand, as we are focusing

CED2: Communication Efficient Disjointness Decision 303

 0

 200

 400

 600

 800

 1000

 1200

 0 500 1000 1500 2000 2500 3000

re
m

ai
ni

ng
 s

et
 it

em
s

rounds

(a) Intersection Percentage 10%

 200

 400

 600

 800

 1000

 1200

 0 500 1000 1500 2000 2500 3000

re
m

ai
ni

ng
 s

et
 it

em
s

rounds

(b) Intersection Percentage 30%

Fig. 7. Not-Disjoint Sets: CED2; Cuts Trend with respect to Intersection Cardinality;

n = 1000

on the amount of exchanged bits, we are interested in the scenario in which KM
saves more—setting c = 1.1 means to have the minimum rounds and thus the
minimum bits expenditure for KM. On the other hand, the approach to cut all
the elements not belonging to the intersection (like in the first KM hypothesis)
is not applicable to CED2. In fact, for not-disjoint instances, if CED2 reaches, at
some round, a configuration where elements not in the intersection are less than
the bin maximum load (see Lemma 1), it will never be able to cut those elements
(it would be impossible to find them in the maximum loaded bin). Even if CED2

may not be able to cut all the elements not belonging to the intersection, still
the cuts trend shows meaningful information.

We start observing that the convergence rate to the intersection cardinality
is slow (see Figure 7) and goes slower as the intersection cardinality increases.
The phenomenon is captured in figures 7a and 7b where we compare the cuts
trend—using different intersection percentage—to the real intersection size.

The behaviour of the curves can be explained by observing that the possi-
bility to cut elements, at a certain round, depends on the probability that: no
intersection elements fall in the max loaded bin and the corresponding bin of the
other party is empty. It is possible to check that this probability is ≤ e−(|X|

n +1)

and that this is congruent with the simulations results depicted in Figure 7.
We also observe that, for all the curves in Figure 7, increasing the protocol
round number (x-axis), the cardinality of the remaining set (y-axis) decreases
slowly than the case for the empty intersection (or disjointness) curve—this is
shown in Figure 3a (see the curve for n = 1000). This behaviour can be ob-
served even for a small intersections size (e.g. 10% of common elements; see
Figure 7a). A direct comparison of these curves can be found in Figure 8a.
Looking at Figure 8b, we can check that a similar phenomenon can be recog-
nized in KM, even if it appears a bit less marked. We test CED2 termination
simulating the algorithm with q = 11. That is, if for 11 consecutive iterations
it is not possible to cut elements, then we conclude that the intersection is not

304 L. Marconi, M. Conti, and R. Di Pietro

empty and terminate the execution. From simulations results, the choice of the
value q resulted to be a good one. In fact (see Figure 10), setting q = 11 pro-
duces an error rate less than 20%. That is, we obtain the correct answer with a
probability > 4/5. The optimal value for q and the related error rate appears to
be an interesting matter for further investigations.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 500 1000 1500 2000 2500 3000 3500

re
m

ai
ni

ng
 s

et
 it

em
s

rounds

Inters. Perc. 0%
Inters. Perc. 10%
Inters. Perc. 30%
Inters. Perc. 60%

(a) CED2

 0

 200

 400

 600

 800

 1000

 1200

 0 1 2 3 4 5 6 7 8 9

re
m

ai
ni

ng
 s

et
 it

em
s

rounds

Inters. Perc. 0%
Inters. Perc. 10%
Inters. Perc. 30%
Inters. Perc. 60%

(b) KM

Fig. 8. Not-Disjoint Sets: Cuts Trend; n = 1000

Figure 9 shows iterations (see Figure 9b) and communication bits (see Figure
9a) reported by CED2 simulations to decide if the two sets in input are not
disjoint. Since, we want also to be able to avoid errors when disjoint instances
are provided as input, we tested the two protocols providing in input to our
simulator 50% of disjoint sets input pairs and 50% of not disjoint sets. In such
a testing environment, CED2 terminated with a wrong decision on 4.21% of the
input pairs. This value is not plotted in Figure 9.

 5400

 5500

 5600

 5700

 5800

 5900

 6000

 6100

 6200

 6300

 6400

 0 10 20 30 40 50 60

bi
ts

 e
xc

ha
ng

ed

intersection percentage

(a) Bits exchanged

 280
 285
 290
 295
 300
 305
 310
 315
 320
 325
 330
 335

 0 10 20 30 40 50 60

ro
un

ds

intersection percentage

(b) Rounds

Fig. 9. Not-Disjoint Sets: CED2; n = 1000; q = 11

Figure 10 compares CED2 and KM simulations results using the termination
criteria discussed above. In both cases, fixed a protocol parameter (q for CED2

CED2: Communication Efficient Disjointness Decision 305

and c for KM) we can observe that the error rate increases as the cardinality of
the sets increases. On the KM side, it is possible to check that setting c = 1.1 is
equivalent to set the number of rounds for termination to 4. This can be verified
substituting the values of the cardinality tested in the termination condition.
As we can see in Figure 3b, the average number of rounds required to cut all
the elements is at least 6 for n = 2000, while it is just 3 considering n = 1000.
This justifies why, with 4 rounds, KM makes more errors for n = 2000 than for
n = 1000 on disjoint sets instances. On the CED2 side, the probability to find

empty the bin corresponding to the max loaded one at round i, is e−
|Ai|

n . This
value decreases as n increases. This justifies why, as the sets cardinality increases,
the number of consecutive launches before cutting elements also increases. As a
consequence, also CED2 makes more errors for n = 2000 than for n = 1000.

From the performances perspective, Figure 10 shows that even if we consider
the scenario with the minimum bits expenditure for KM (i.e. c = 1.1), still
CED2 obtains a lower error rate. In fact, in the majority of the cardinality
considered, with a single exception, CED2 requires much less communication
bits. This allows us to conclude that the CED2 strategy to consider a single bin
at each round produces a global saving in the communication bits expenditure
for both disjoint and not-disjoint input instances.

 0

 5

 10

 15

 20

 25

 30

 1000 10000 100000

er
ro

r
ra

te

exchanged bits (logscale 10)

KM, c=1.1
CED2, q=11

n=500

n=1000
n=1500

n=2000

n=500 n=1000
n=1500

n=2000

Fig. 10. Not-Disjoint Sets: KM and CED2 Relation Between Communication Cost and

Error Rate

6 Conclusions

In this paper we presented CED2 (Communication Efficient Disjointness Deci-
sion), a probabilistic and distributed protocol that allows two parties to decide
about whether they share a secret. CED2 has been showed to be particularly
suitable for devices having constraints on energy, communication, storage, and
bandwidth. In particular, CED2 significantly improves the communication cost
compared to the work in the literature, having a communication complexity of
O(n log log n)—improving by O(log2 n) the state of the art. While in this paper

306 L. Marconi, M. Conti, and R. Di Pietro

we focused on the (probabilistic) discovery of shared secrets, our results can be
applied to any scenario where two parties need to determine the disjnointness of
their sets. Finally, this improvement has been achieved providing the same level
of privacy and security of the state of the art solution.

Further ongoing work focus on relaxing the termination criteria—introducing
probabilistic termination—and providing probabilistic assurance on the inter-
section size.

References

1. Agrawal, R., Evfimievski, A., Srikant, R.: Information sharing across private

databases. In: Proceedings of the 22th ACM SIGMOD international conference

on Management of data (SIGMOD 2003), pp. 86–97 (2003)

2. Barbay, J., López-Ortiz, A., Lu, T., Salinger, A.: An experimental investigation of

set intersection algorithms for text searching. Journal of Experimental Algorithmics

14, 3.7–3.24 (2009)

3. Demaine, E.D., López-Ortiz, A., Ian Munro, J.: Adaptive set intersections, unions,

and differences. In: Proceedings of the Eleventh Annual ACM-SIAM Symposium

on Discrete Algorithms (SODA 2000), pp. 743–752 (2000)

4. Eschenauer, L., Gligor, V.: A key-management scheme for distributed sensor net-

works. In: Proceedings of the 9th ACM Conference on Computer and Communi-

cations Security (CCS 2002), pp. 267–282 (2002)

5. Freedman, M.J., Nissim, K., Pinkas, B.: Efficient private matching and set intersec-

tion. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027,

pp. 1–19. Springer, Heidelberg (2004)

6. H̊astad, J., Wigderson, A.: The randomized communication complexity of set dis-

jointness. Journal Theory of Computing 3(1), 211–219 (2007)

7. Kalyanasundaram, B., Schnitger, G.: The probabilistic communication complexity

of set intersection. SIAM Journal on Discrete Mathematics 5(4), 545–557 (1992)

8. Kiayias, A., Mitrofanova, A.: Testing disjointness of private datasets. In: S. Patrick,

A., Yung, M. (eds.) FC 2005. LNCS, vol. 3570, pp. 109–124. Springer, Heidelberg

(2005)

9. Kissner, L., Song, D.X.: Privacy-preserving set operations. In: Shoup, V. (ed.)

CRYPTO 2005. LNCS, vol. 3621, pp. 241–257. Springer, Heidelberg (2005)

10. Kurtz, T.G., Manber, U.: A probabilistic distributed algorithm for set intersection

and its analysis. Journal of Theoretical Computer Science 49(2-3), 267–282 (1987)

11. Kushilevitz, E., Nisan, N.: Communication complexity. Cambridge University

Press, New York (1997)

12. Mitzenmacher, M., Upfal, E.: Probability and Computing: Randomized Algorithms

and Probabilistic Analysis. Cambridge University Press, New York (2005)

13. Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press,

Cambridge (1997)

14. Yao, A.C.-C.: Some complexity questions related to distributive computing. In:

Proceedings of the eleventh annual ACM symposium on Theory of computing

(STOC 1979), pp. 209–213 (1979)

15. Ye, Q., Wang, H., Pieprzyk, J., Mo Zhang, X.: Unconditionally secure disjointness

tests for private datasets. International Journal of Applied Cryptography 1(3),

225–235 (2009)

Impossibility of Finding Any Third Family of
Server Protocols Integrating Byzantine Quorum

Systems with Threshold Signature Schemes�

Jingqiang Lin1,2, Peng Liu2, Jiwu Jing1, and Qiongxiao Wang1

1 The State Key Laboratory of Information Security, Graduate University of CAS,

Beijing 100049, China
2 The Pennsylvania State University, University Park, PA 16802, USA

Abstract. In order to tolerate servers’ Byzantine failures, a distributed

storage service of self-verifying data (e.g., certificates) needs to make

three security properties be Byzantine fault tolerant (BFT): data con-

sistency, data availability, and confidentiality of the (signing service’s)

private key. Building such systems demands the integration of Byzantine

quorum systems (BQS), which only make data consistency and availabil-

ity be BFT, and threshold signature schemes (TSS), which only make

confidentiality of the private key be BFT. Two families of correct or valid
TSS-BQS systems (of which the server protocols carry all the design op-

tions) have been proposed in the literature. Motivated by the failures

in finding a third family of valid server protocols, we study the reverse

problem and formally prove that it is impossible to find any third family

of valid TSS-BQS systems. To obtain this proof, we develop a validity
theory on server protocols of TSS-BQS systems. It is shown that the only

two families of valid server protocols, “predicted” (or deduced) by the

validity theory, precisely match the existing protocols.

Keywords: Byzantine fault tolerance, Byzantine quorum systems,

threshold signature schemes.

1 Introduction

Malicious codes, software bugs or operator mistakes can cause servers’ Byzantine
(or arbitrary) failures [12], and then compromise the services of network systems.
As a result, BFT (Byzantine fault tolerant) systems, which run correctly in the
presence of failures and do not have any assumptions about the behavior of
faulty entities, are increasingly important. Several techniques [5,6,8,12,13] are
proposed to provide BFT properties, such as integrity, consensus, consistency,
availability and confidentiality. Of these techniques, BQS (Byzantine quorum
systems) [13] and TSS (threshold signature schemes) [6] are remarkable.
� Jingqiang Lin, Jiwu Jing and Qiongxiao Wang were supported by National Nat-

ural Science Foundation of China grant 70890084/G021102 and National Science

& Technology Pillar Program of China grant 2008BAH22B01. Peng Liu was sup-

ported by AFOSR FA9550-07-1-0527 (MURI), ARO W911NF-09-1-0525 (MURI),

NSF CNS-0905131, NSF CNS-0916469 and AFRL FA8750-08-C-0137.

S. Jajodia and J. Zhou (Eds.): SecureComm 2010, LNICST 50, pp. 307–325, 2010.
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2010

308 J. Lin et al.

BQSprovide distributed storage services by replicating data onmultiple servers,
despite the Byzantine failures of (a certain number of) servers. To ensure data con-
sistency and data availability, each read/write operation is performed on some quo-
rum of servers (every quorum is a subset of servers; any two quorums have at least
one server in common). In particular, in order to tolerate up to f faulty servers,
3f + 1 servers are needed to compose a dissemination BQS storing self-verifying
data, and every quorum contains 2f + 1 servers (i.e., each operation is performed
on at least 2f + 1 servers; the intersection of quorums masks the impact of faulty
servers and enables clients to obtain the right replica).

TSS are also proposed to tolerate servers’ Byzantine failures by distributing
a private key among n servers. Each server holds a share (or partition) of the
private key. A threshold number (denoted h, 1 < h ≤ n) of servers can coopera-
tively use the distributed private key to sign messages, while any subset of fewer
than h servers cannot. Every server partially signs a message (i.e., uses its key
share to generate a partial signature), and h partial signatures can be combined
into a fully signed message.

Essentially, a) the goal of BQS is to make data consistency and data avail-
ability be BFT; and b) TSS can be viewed as a measure to make confidentiality
of the (signing service’s) private key be BFT. This key observation provides an
intuitive understanding about the merits of integrating BQS with TSS, two BFT
techniques holding different security properties. In a nutshell, traditional BQS
[13,14] make two properties (i.e., data consistency and availability) be BFT,
while the integration of BQS and TSS yields three BFT properties (i.e., confi-
dentiality of the private key, data consistency and availability). More specifically,
this integration benefits the services that demand Byzantine fault tolerance on
all of the three properties instead of two.

Given these nice properties of TSS-BQS systems, people have been trying to
design TSS-BQS systems. COCA [26] is a TSS-BQS system for BFT certificate
query/update services, and its protocol is adopted in CODEX [15] to store secret
data. [10] proposed another server protocol. Their study shows that when BQS
(e.g., public key infrastructures or publish/subscribe systems) need to support
write operations (e.g., create or update) on self-verifying data, the third property
is much useful. From the user point of view, letting confidentiality of the signing
service’s private key BFT ensures non-repudiation of service signatures; so clients
can have full trust in the service. Besides, proactive recovery, not implemented
in traditional BQS, is enabled by the integration with TSS [15,26]: the service’s
private key keeps unchanged while servers are recovered periodically.

This integration provides more assurance than the “sum” of BQS and TSS.
In particular, it is recognized that an integrated storage service in this manner
shall and can ensure two “upgraded” security properties:

Service Availability. In the presence of Byzantine failures, a read/write re-
quest from authorized clients still gets a response to it, which is signed using the
distributed service private key.

Impossibility Theory on Server Protocols Integrating BQS with TSS 309

Service Integrity. Each fully signed response guarantees that the requested
read/write operation has been performed on some quorum of servers.

These two integrated properties are beyond both BQS and TSS, and cannot be
satisfied automatically even when confidentiality of the service private key, data
consistency and availability are all ensured. Compared to traditional BQS [13,14],
clients can directly update self-verifying data without the assistance of external
signing services. Compared to TSS, the implication of a signed response is beyond
asserting that the request has been processed by the signing service itself; it also
asserts that the requested operation has been performed on a quorum of servers
and that Byzantine failures won’t affect the correctness.

At first glance, there appear to be lots of options in designing a valid TSS-BQS
system. For example, a) the threshold to sign might be any number between 2
and 3f + 1; and b) integrated with TSS, BQS might construct a response when
less than 2f + 1 servers are examined to have performed the requested opera-
tion. Moreover, the comparison of existing TSS-BQS systems [10,26] in terms
of communication costs, computation costs and the ability to handle concurrent
operations (see Section 6) shows that these options can affect performance of
TSS-BQS systems, and suggests that there might be different optimized options
or tradeoffs when TSS-BQS systems are applied for specific applications.

However, only two valid server protocols [10,26] are proposed in the literature
(they have roughly the same client protocol). We had tried to design a different or
better one, but the outcome is always similar to [10,26]. The failures suggest that
there may not exist any third family of valid server protocols! This suggestion is
hard to believe, but our research shows that this conjecture should be true.

Our main contribution is a formalization of this impossibility conjecture and
a proof asserting that it is true. In particular, we propose a validity theory on
server protocols of TSS-BQS systems. To the best of our knowledge, it is the first
validity theory on this problem. Using this theory, we prove that there are only
two families of valid server protocols of TSS-BQS systems. The representatives of
these two families are that of COCA [26] (denoted SP-I in this paper) and that
of [10] (denoted SP-II), respectively. The validity theory also shows that SP-I
and SP-II are the only two efficient (and valid) protocols. Our conclusion advises
researchers to a) apply TSS-BQS systems through one of these two protocols,
and b) improve TSS-BQS systems by more efficient TSS, task schedulers or
resource management of servers, but not by server protocol designs.

The rest of this paper is organized as follows. Section 2 describes the TSS-BQS
system model. The problem of server protocol design is formulated in Section 3,
followed by the main results of the validity theory in Section 4. In Section 5,
we deduce the two existing server protocols based on the proposed theory. Per-
formance is analyzed in Section 6, and related work is presented in Section 7. We
conclude in Section 8.

2 System Model

A TSS-BQS system consists of n servers, and an arbitrary number of clients
that are distinct from the servers. Servers can be correct or faulty. A correct

310 J. Lin et al.

server always follows its protocol, while a faulty one can arbitrarily deviate
from its protocol (i.e., Byzantine failure). Assume up to f servers can be faulty
throughout this paper. We assume that clients always behave correctly.

Data Replication. TSS-BQS systems are demanded by the security requirements
arising in maintaining self-verifying data (e.g., certificates), whose authenticity
(or origin) and integrity can be verified by any entity (server or client). Before
being replicated on servers of a TSS-BQS system, each data item is signed by
the system to make it self-verifying; thus any modification (by faulty servers or
other attackers) can be detected by any entity.

To tolerate servers’ Byzantine failures, data are replicated on multiple servers,
which can be regarded as variables supporting read/write operations. For a vari-
able x, each server (denoted Si, 1 ≤ i ≤ n) independently stores its replica
(consisting of a value v and a timestamp t, which are signed together as one
replica), denoted [x, vi, ti]. Timestamps are assigned by a client when it writes
the variable, and each client c has its own timestamp set TSc, not intersecting
other TSc′ for any other client c′ [13]. For example, timestamps can be formed
as ascending sequence numbers appended with the name of clients [14].

Quorum. In order to tolerate up to f faulty servers, a dissemination BQS is
composed of n = 3f + 1 servers, and each quorum contains 2f + 1 servers [13].
Then, every pair of quorums intersect on at least f + 1 servers. This “perva-
sive intersection” feature enables BQS to achieve data consistency; i.e., a read
operation returns the right replica, which is written by the most recent write
operation. To leverage this feature, a new data item [x, v, t] must be delivered to
some quorum of 2f +1 servers before the write operation ends. The right replica
of variable x is obtained out of the (different) replicas stored on 2f + 1 servers,
by choosing the unmodified one with the highest timestamp [13].

Service Key. A TSS-BQS system holds one system-wide key pair, the service
private key and the service public key. The service private key is split into ser-
vice key shares based on TSS, and distributed among the same 3f + 1 servers
composing the dissemination BQS. Any h (1 < h ≤ n) servers can use their
service key shares to sign messages cooperatively. Conspiracies by fewer than h
servers cannot compromise the service private key or use it to sign any messages.

The service public key is known to every entity, and clients accept responses
and replicas only if they are verifiable using the service public key. That is,
servers can use the service private key to sign a) a response to clients, and b)
each data item stored in TSS-BQS systems.

Server Key. To prevent outside attackers from impersonating servers of TSS-
BQS systems and for secure communications among servers, each server also
holds a key pair denoted server key, which has nothing to do with the service
key pair. A server knows others’ public keys, and server keys are used to sign
and verify messages only among servers.

Clients only (need to) know the service public key but not any server keys. As a
further benefit, they aren’t disturbed by proactive recovery [8,27] (i.e., periodic

Impossibility Theory on Server Protocols Integrating BQS with TSS 311

refreshment of service key shares and server keys) against mobile adversaries
[19] (which attack and compromise one server for a limited period of time before
moving on to another), because the service key pair keeps unchanged while
service key shares are refreshed.

Uniformity. All servers are uniform. Given a TSS-BQS system, all (correct)
servers follow one same protocol. If a message is delivered to two correct servers,
they process it following the same protocol. Servers are not assumed to run iden-
tically. Each server runs independently according to its own state and messages
received, and then they may run to different branches of the same protocol.
However, there is no sentence with any special servers’ identities in the protocol.
Note that this uniformity assumption has not any constraints on faulty servers,
which always run in an arbitrary way.

This assumption is generalized from usual threshold cryptographic schemes
and quorum systems. Assuming that all servers are uniform, the threshold to
sign and the size of a quorum can depict the condition to fully sign a messages
by TSS and to finish a read/write operation in BQS, respectively.

Asynchronous Fair Link. A fair link [15,26] is a channel that doesn’t deliver all
messages sent, but if an entity sends infinitely many messages to another entity
then infinitely many of these messages are correctly delivered. In addition, the
link is asynchronous; i.e., there is no bound on message delivery delay or server
execution speed.

We assume that only asynchronous fair links are provided among all entities.
Adversaries may eavesdrop, delay, delete or alter messages in transmit, and re-
play or insert messages. However, a message sent sufficiently often by an entity
to another will be delivered eventually.

3 Problem Formulation

The problem is to formally prove that it is impossible to design any third family
of valid server protocols. To make this problem tangible, we need to define the
notion of “validity” and firstly model the activities of clients and servers.

3.1 Client Protocol

When reading/writing variable x, an authorized client of TSS-BQS systems peri-
odically sends a request to at least f +1 servers until it receives a signed response
verifiable using the service public key. Because up to f servers could be faulty,
sending a request to f + 1 servers guarantees that at least one correct server
receives it eventually, and starts the server protocol.

A credential is generated and included in the read/write request, authorizing
this operation. To prevent attackers from replaying the past signed responses,
a nonce (e.g., the name of the client and an ascending sequence number) is
included in each request and also the corresponding response. For reading, only
the right replica is returned in each fully signed response. For writing, a client

312 J. Lin et al.

firstly reads the variable to obtain its current timestamp t′, and chooses a higher
timestamp t > t′ [13]. Then, the new value v and the timestamp t compose the
write request, and its response is a signed acknowledgement to it.

3.2 General Model of Server Protocols

We present a general model of server protocols to enable the design space iden-
tification for TSS-BQS systems, showing both the flexible and the fixed parts.
In our model, every server is abstracted to implement three functions as follows.

Storage. As a server of BQS firstly, Si maintains its replica of variable x in-
dependently. On receiving a read request, Si replies with its replica [x, vi, ti].
On receiving a request writing [x, v, t], Si acknowledges it, and only updates its
replica if the data item being written is unmodified (i.e., verifiable using the
service public key) and has a higher timestamp than its own (i.e., t > ti).

Delegate. Since clients only know the service public key, some servers shall be-
come delegates for each request, performing the requested read/write operation
among servers on behalf of the client sending the request [26]. Note that a dele-
gate is not a special or additional server; otherwise it will be a vulnerable com-
ponent not tolerating failures. On receiving a request from clients, each (correct)
server becomes a delegate for it. Since each request is sent to f +1 servers, there
may be more than one delegate for each operation. These delegates will return
same responses, unless there are concurrent read/write operations.

On receiving a request from clients, a delegate constructs a response, cooper-
ates with h servers to sign it, and then sends this signed response to clients. The
response (to be signed) is constructed as below: a) in the case of read operations,
the delegate lets the response be the right replica determined (or chosen) out of
the 2f + 1 replicas read from some quorum of servers; b) in the case of write
operations, the delegate firstly cooperates with h servers to sign the data item
being written to make it self-verifying, writes it to 2f + 1 servers, and lets the
response be an acknowledgement to this write request.

Partial-Signing. The service key pair is used to communicate with clients and
create self-verifying data. So, servers can generate partial signatures for a) a
response to clients, or b) a data item being written (to make it self-verifying).

Si can use its service key share to partially sign a response, when receiv-
ing a partial-signing request for it. However, since the delegate sending this
request may be faulty, the response (to be signed) may: a) be constructed when
the requested read/write operation has not been performed on enough servers;
sometimes, the corresponding request doesn’t even exist; or b) return an out-of-
date but self-verifying replica, even though the faulty delegate has read 2f + 1
replicas. To avoid signing such a fake response, before partially signing each re-
sponse, a (correct) server Si shall process the corresponding read/write request
by itself, and/or carry out some examinations. Messages that are signed using
server keys, indicating that some servers have processed the read/write request,
can be sent along with the partial-signing request as evidences to convince Si to
partially sign a response.

Impossibility Theory on Server Protocols Integrating BQS with TSS 313

S1

Client
S3 S7

S5

S2

S6
S4

Response

Storage
Partial-Signing

Request

Fig. 1. General Model of Server Protocols

Si can also generate a partial signature for each data item to make it self-
verifying, before delegates write it to some quorum. This data-signing requires
that: a) the service private key is available, and b) at least one correct server is
involved in checking that the write request is generated by an authorized client
(i.e., h ≥ f + 1). For a valid server protocol, these two requirements of data-
signing must be satisfied as well as service availability and service integrity (see
Section 1). Fortunately, they are satisfied automatically when service availability
and integrity are ensured. Otherwise, service availability isn’t ensured if the
service private key is unavailable, or service integrity isn’t ensured if h ≤ f and
then faulty servers can conspire to sign responses arbitrarily.

So, we skip this data-signing in the remainder due to limited space, focus on
how to ensure service availability and integrity, and assume that each data item
[x, v, t] has been self-verifying when a client sends the write request.

Figure 1 shows the relationship of these three functions when f = 2 and h = 3,
not showing the data-signing. A client sends a request to f + 1 servers. Then,
S3 assumes the role of delegate, performs the requested read/write operation on
2f + 1 servers (including S3), cooperates with h servers (also including S3) to
sign a response, and sends it to the client. It can be seen that in this flexible
model, the server subset of partial-signing can differ from that of storage, though
they may be the same in some instances or for some server protocols.

3.3 Defining the Validity of Server Protocols

As mentioned in Section 1, to provide BFT storage services as traditional BQS,
an integrated TSS-BQS system must provide two upgraded security properties:

Service Availability. A read/write request from authorized clients gets a
signed response to it, which is signed using the service private key.

Service Integrity. Each signed response guarantees that the requested opera-
tion has been performed on some quorum of servers. That is, a write response
is signed only if the request has been delivered to at least 2f + 1 servers; and
a signed read response is derived from (different) replicas of 2f + 1 servers,
returning the right replica which is written by the most recent write operation.

These two security properties produce the definition of valid server protocols.
On receiving a read/write request from clients, a delegate starts the valid server
protocol to perform the requested operation on some quorum of servers, get a
response fully signed, and return the signed response to clients.

314 J. Lin et al.

Definition 1 (Valid Server Protocol). A valid server protocol guarantees that
a response is fully signed using the service private key if and only if a read/write
request (generated by an authorized client) is delivered to some correct server
(i.e., a delegate) and the requested read/write operation is performed on each
server in some quorum. �

3.4 Existing Valid Server Protocols

Two valid server protocols are proposed in [10,26], ensuring service integrity
through different mechanisms. Based on these protocols, we can design similar
ones, leading to two families of TSS-BQS systems.

SP-I. COCA [26] is the first system integrating BQS with TSS: a) 3f +1 servers
compose a dissemination BQS to provide certificate query/update services; b)
the service private key is distributed among the exactly same 3f + 1 servers;
c) the threshold to sign certificates or responses is f + 1; and d) before using
its service key share to partially sign a response, each server examines that the
corresponding read/write operation has been performed on 2f +1 servers. Since
up to f servers can be faulty, at least one correct server carries out the necessary
examinations before partially signing it, ensuring service integrity.

By increasing the threshold to sign of COCA, we can get a family of similar
server protocols, where service integrity is still ensured through the examinations
by the correct server(s) partially signing responses. For example, h = f +2 while
all other features keep unchanged. Then, service integrity is ensured repeatedly,
because there are at least two correct servers carrying out the examinations.

SP-II. Another valid protocol (SP-II) is suggested in [10]: a) the threshold to
sign is equal to the size of a quorum (i.e., h = 2f + 1); and b) each server
processes the read/write request itself before partially signing a response. Thus,
when a response is fully signed, 2f +1 servers must have performed the requested
operation; and service integrity is ensured through the threshold to sign.

By requiring servers of SP-II to carry out additional examinations, we can get
another family of server protocols, where service integrity is ensured through
the threshold to sign. For example, before partially signing the response, each
server processes the read/write request itself and examines that the requested
operation has been performed on d (d < 2f+1) servers. However, service integrity
is still ensured through the threshold to sign (but not the examinations), because
the d servers may be a subset of the h servers signing responses and multiple
examinations together don’t guarantee that the operation has been performed
on more than h servers.

3.5 Is It Possible to Find Any Third Family of Valid Protocols?

SP-I and SP-II ensure service integrity of TSS-BQS systems through different
mechanisms. Some questions appear when we analyze these protocols. Firstly, are
there any valid server protocols ensuring service integrity through mechanisms
essentially different from SP-I and SP-II? We had tried to design a different

Impossibility Theory on Server Protocols Integrating BQS with TSS 315

one, but the outcome is always similar to SP-I or SP-II. Secondly, can we design
valid server protocols with a combined mechanism requiring fewer examinations
than SP-I while having a smaller threshold to sign than SP-II? Such combined
protocols might have advantages of both SP-I and SP-II, and offer balanced per-
formance. Finally, (if such a combined mechanism exists) can we discover the
relationship of these two mechanisms to ensure service integrity? The relation-
ship may lead to parameterized TSS-BQS systems with flexible configurations.

4 Main Results

In this section, we present the validity theory on TSS-BQS systems. The “soul” of
this theory is to identify the “bonds” between the validity definition (Definition
1) and the design space for server protocols in a mathematically rigorous way so
that a formal proof of our impossibility conjecture is derived. In particular, we
prove that: a) there exist only two families of valid server protocols integrating
BQS with TSS; b) service integrity is ensured through either the threshold to
sign or the examinations by the correct server(s) partially signing responses; and
c) nobody can design a combined mechanism, e.g., a server protocol requiring
fewer examinations than SP-I and having a smaller threshold than SP-II.

4.1 Design Space for Server Protocols

Based on the general model in Section 3.2, it can be seen that the design flex-
ibilities of server protocols are mainly associated with how servers validate the
correctness of a response (to be signed) and partially sign it. We find that the
design flexibilities can be “captured” by a rather simple concept called signing-
condition (i.e., the condition to satisfy when a server partially signs a response).

For example, following some server protocol, a correct server Si can partially
sign a response only if it receives messages indicating that the corresponding
read/write request has been processed by certain servers, e.g., replicas or ac-
knowledgements signed using their server keys. So, when Si partially signs a
response, it is asserted that the operation has been performed on these servers.
However, it doesn’t mean that all these servers strictly serve the storage func-
tion. A read/write operation is defined to be performed on a server of BQS [13],
if it receives the request and replies with a replica or acknowledgement.

Definition 2 (Signing-Condition). Given a server protocol, whenever Si (ei-
ther correct or faulty) uses its service key share to partially sign a response, it
is asserted that the corresponding read/write operation has been performed on
some subset of servers. This specific subset is called one signing-condition of Si,
denoted C(Si). �

Given one server protocol, the condition enabling a server to partially sign a
response can be not unique. Rather, alternative signing-conditions exist. In Fig-
ure 1, for example, S5 uses its service key share to partially sign a response

316 J. Lin et al.

after it is convinced that {S1, S2, S3, S4, S7} have processed the read/write re-
quest. However, if the delegate S3 performs the operation on another quorum
of servers (e.g., {S1, S2, S3, S4, S5} or {S2, S3, S4, S5, S6}), S5 will also partially
sign it. Thus, there are at least three alternative signing-conditions of S5.

Definition 3 (Signing-Condition-Set). Given a server protocol, the set of
all signing-conditions C(Si) of Si is called the signing-condition-set C (Si) of Si;
i.e., C (Si) = {C(Si)}. �

Correct and faulty servers often have different signing-condition-sets, because
faulty servers can partially sign either correct or fake responses (without satis-
fying the conditions as correct servers must follow).

4.2 Properties of Valid Server Protocols

Assumption 1. For a valid server protocol, the read/write request from clients
is included in the partial-signing request (sent by a delegate to servers).

Justification. When requesting servers to partially sign a response, a delegate
shall firstly convince them that an authorized client has sent the corresponding
request. Otherwise, if a response is signed even when clients don’t send the
request, this response can be cached by faulty servers to launch attacks later.
For example, if faulty servers can (convince others to) sign responses returning
the current right replica with “potential” nonce when there doesn’t exist a read
request, these signed responses can be accepted by clients later, even when the
returned “right” replica is updated by some write operation.

So, it is necessary for (correct) servers to check that the corresponding request
exists before they partially sign a response. A safe and straightforward way is to
include the intact read/write request in each partial-signing request, and then
any server can authenticate it1. �

Assumption 2. On receiving a read/write request, either forwarded by delegates
directly or sent along with a partial-signing request, a correct server performs
the requested read/write operation.

Justification. Each correct server Si of TSS-BQS systems is firstly a server of
BQS and serves the basic storage function. On receiving a read/write request
forwarded by delegates, Si acts as a server of BQS [13,14]: it replies with its
replica or an acknowledgement signed using its server key, and only updates its
replica if the data item being written has a higher timestamp than its own.

On receiving a read/write request sent along with a partial-signing request
(to sign a replica to be returned or an acknowledgement)2, Si uses its service
1 We can require clients to sign the read/write request; then each server can use clients’

public keys to authenticate it. And each client’s public key (or certificate) can also

be stored in the TSS-BQS system as a self-verifying variable and servers can (act as

read-only clients to) read it, making the system self-contained.
2 In the meantime, some signing-condition of Si must be satisfied.

Impossibility Theory on Server Protocols Integrating BQS with TSS 317

key share to partially sign a) the replica to be returned if it is identical with its
own3, or b) the acknowledgement. Si also updates its replica if the data item
being written has a higher timestamp than its own. In this case, Si actually
acts the same as that of BQS: serves the storage function and signs the same
messages, except that one is signed using its server key and the other is done
using its service key share, which are both held by Si only. �
Because TSS-BQS systems assume asynchronous channels, this assumption
doesn’t harm the security. Moreover, it allows more flexible and efficient server
protocols. Firstly, it doesn’t require a strict order between the read/write opera-
tion and the partial-signing of each server. Secondly, the read/write request can
be sent along with the partial-signing request to reduce communication costs.
In addition, a correct delegate also “sends” the request to itself, then serves the
storage function and performs the requested read/write operation.

Lemma 1. For a valid server protocol, ∀C(Si) ∈ C (Si) : Si ∈ C(Si).

Proof. This lemma can be directly concluded from Assumptions 1 and 2. When
Si (either correct or faulty) accepts a partial-signing request and replies with a
partial signature, this partial-signing means that Si has a) received the corre-
sponding read/write request according to Assumption 1, and b) performed the
requested operation according to Assumption 2. So, Si ∈ C(Si). �
In BQS (and TSS-BQS systems), “an operation performed on each server in some
quorum” doesn’t mean that all these servers strictly follow the server protocol
and serve the storage function. As long as 2f +1 servers reply with their replicas
or acknowledgements (and the correct ones of them have accepted and processed
the read/write request), data consistency is ensured. Although up to f faulty
servers may send fake replicas or acknowledge write requests without updating
their replicas, the negative impact of faulty servers and their replies are masked
by (the correct ones in) any quorum of 2f + 1 servers.

Lemma 2. For a valid server protocol, C (Si) = {C : Si ∈ C} if Si is faulty.

Proof. If Si is faulty, it can uses its service key share to partially sign a response
arbitrarily, whether with any process or not. Then, a partial signature by Si may
ensure no operations on any other servers except itself according to Lemma 1.
So, any subset C containing Si (Si ∈ C) can be a signing-condition of Si. �

Theorem 41. C (·) of valid server protocols satisfies the following signing-
condition-inequality:
For any h-server set H = {Si1 , Si2 , · · · , Sih

} (|H | = h), ∀C(Sie) ∈ C (Sie : 1 ≤
e ≤ h) :

⋃
H C(Sie) = C(Si1)∪C(Si2)∪· · ·∪C(Sih

) contains some quorum of
2f + 1 servers; that is, |⋃H C(Sie)| ≥ 2f + 1.

3 If the replica to be returned is unmodified and has a higher timestamp than its own,

Si also partially signs it. This case can be explained as two steps: firstly Si updates

its replica with the one to be returned (which must be written by a more recent

write operation), and then partially signs the response returning its replica.

318 J. Lin et al.

Proof. To prove this theorem by contradiction, assume a server protocol not sat-
isfying the inequality, and then we will find that service integrity is not ensured
either. If the signing-condition-inequality is not satisfied, there must exist an h-
server set (denoted H ′), ∃C′(Sie) ∈ C (Sie : Sie ∈ H ′) : |⋃H′ C′(Sie)| < 2f + 1.

On receiving a read/write request, a faulty server can serve as a delegate:
1. Perform the requested operation on servers in

⋃
H′ C′(Sie), and construct

a response to be signed;
2. Request Si1 ∈ H ′ to partially sign the response, and Si1 (either correct or

faulty) will partially sign it because the operation has been performed on servers
in C′(Si1) ⊆

⋃
H′ C′(Sie);

3. Request Si2 , Si3 , · · · , Sih
∈ H ′ to partially sign the response, and collect

the partial signatures generated by these h servers; and
4. Combine these h partial signatures into a signed response.
Then, this signed response will be accepted by the client even when the re-

quested operation is performed on fewer than 2f + 1 servers, i.e.,
⋃

H′ C′(Si).
Hence, service integrity is not ensured. So, the signing-condition-inequality is a
necessary condition of valid server protocols. �

Theorem 42. A server protocol is valid if and only if the following conditions
are satisfied:
A. There exists an h-server set H∗ (|H∗| = h) consisting of correct servers only;
and ∃C∗(Si) ∈ C (Si) for all Si ∈ H∗ : |⋃H∗ C∗(Si)| ≤ n − f = 2f + 1.
B. Every signing-condition-set C (·) satisfies the signing-condition-inequality.

Proof. Necessity. Firstly, an h-server set H∗ consisting of correct servers only,
is necessary to sign responses using the service private key, when faulty servers
don’t partially sign any messages. Secondly, the subset that performs the re-
quested read/write operation (i.e.,

⋃
H∗ C∗(Si)), shall be available if f servers

are crash, so it cannot contain more than n-f servers. Thus, Condition-A is a
necessary condition as well as the signing-condition-inequality.

Sufficiency. On receiving a read/write request from clients, a (correct) dele-
gate can perform the requested operation on servers in

⋃
H∗ C∗(Si), cooperate

with the h correct servers in H∗ to sign the response, and send it to clients.
So, the service is available. Service integrity is also ensured because the signing-
condition-inequality is satisfied and

⋃
H∗ C∗(Si) contains some quorum. �

Lemma 3. For a valid server protocol, f + 1 ≤ h ≤ 2f + 1.

Proof. Firstly, there exists an h-server set consisting of correct servers only
according to Theorem 42, and up to f out of n servers can be faulty, so
h ≤ n − f = 2f + 1. Secondly, let’s prove f + 1 ≤ h by contradiction. As-
sume h < f + 1; there exists an h-server set consisting of faulty servers only
(denoted H̄). For each Sj ∈ H̄ , {Sj} is a signing-condition of Sj according to
Lemma 2. Then, |⋃H̄ C(Sj)| = |⋃H̄{Sj}| = |H̄ | = h < f + 1, and the signing-
condition-inequality is not satisfied. Thus, h ≥ f + 1; i.e., faulty servers cannot
conspire to use the service private key to sign responses arbitrarily. �

Impossibility Theory on Server Protocols Integrating BQS with TSS 319

4.3 Two Families of Valid Server Protocols

We investigate C (Si) of valid server protocols under the uniformity assumption.

Lemma 4. Assuming that servers are uniform and Si is correct, if C ∈ C (Si)
and Sj ∈ C, then C ∈ C (Sj), where j
= i.

Proof. According to Lemma 2, C is a signing-condition of Sj (Sj ∈ C) if Sj

is faulty. Let’s assume Sj is correct. Since C is a signing-condition of Si, Si

uses its service key share to partially sign a response after examining that the
requested operation has been performed on servers in C (Si ∈ C). Following
the same server protocol as Si, Sj also partially signs it after examining that
the requested operation has been performed on the same subset C (Sj ∈ C; the
relationship between C and Si is the same as that between C and Sj). Thus, C
is also a signing-condition of Sj ; i.e., C ∈ C (Sj). �

Lemma 5. Assuming that servers are uniform and Si is correct, if C ∈ C (Si)
and Sj
∈ C, then {Sj} ∪ C′ ∈ C (Sj), where C′ = C \ {Si}.

Proof. According to Lemma 2, {Sj}∪C′ is a signing-condition of Sj if Sj is faulty.
Let’s assume Sj is correct. Since C = {Si}∪C′ is a signing-condition of Si, Si uses
its service key share to partially sign a response, after it processes the request
itself and examines that the requested operation has been performed on servers
in C′ (Si
∈ C′). Following the same server protocol as Si, Sj also partially signs
the response, after it processes the request itself and examines that the requested
operation has been performed on the same subset C′ (Sj
∈ C′; the relationship
between C′ and Si is the same as that between C′ and Sj). Thus, {Sj} ∪ C′ is
a signing-condition of Sj ; i.e., {Sj} ∪ C′ ∈ C (Sj). �

Theorem 43. Assuming that servers are uniform, there are only two families
of valid server protocols as listed below, and it is impossible to find any third
family:
1. 2f + 1 > h ≥ f + 1, and for any h-server set H, ∃S∗ ∈ H : C (S∗) = {C :
S∗ ∈ C ∧ |C| ≥ 2f + 1}.
2. h = 2f + 1, and ∀C(Si) ∈ C (Si) : Si ∈ C(Si).

Proof. Two cases are analyzed to find h and C (·) of valid server protocols. Note
that these complementary cases cover all possible scenarios.

1. For any h-server set H , ∃S∗ ∈ H, ∀C(S∗) ∈ C (S∗) : |C(S∗)| ≥ 2f + 1.
The signing-condition-inequality is satisfied without additional constraints be-

cause |⋃H C(Si)| ≥ |C(S∗)| ≥ 2f + 1. Furthermore, since Si ∈ C(Si) according
to Lemma 1, C (S∗) = {C : S∗ ∈ C ∧ |C| ≥ 2f + 1}.
2. There exists an h-server set (denoted H̃), ∀Si ∈ H̃, ∃C̃ ∈ C (Si) : |C̃| < 2f +1.

According to Lemma 3, h ≥ f + 1 and there is at least one correct server
S̃ ∈ H̃ . There exists C̃ ∈ C (S̃) : |C̃| < 2f + 1. For each Sj ∈ C̃, C̃ is a
signing-condition of Sj according to Lemma 4. Select all servers in C̃, and then

320 J. Lin et al.

|⋃C̃ C(Sj)| = |C̃ ∪ · · · ∪ C̃| = |C̃| < 2f + 1. So, in order to satisfy the signing-
condition-inequality, more servers than C̃ are needed to compose a valid h-server
set, i.e., h > |C̃|. Then, we can find an h-server set H̃∗ ⊃ C̃.

For each Sk ∈ H̃∗ \ C̃, {Sk} ∪ C̃′ is a signing-condition of Sk according to
Lemma 5, where C̃′ = C̃ \ {S̃}; and |⋃H̃∗ C(·)| = |⋃C̃ C(Sj)

⋃
H̃∗\C̃ C(Sk)| =

|C̃ ∪ · · · ∪ C̃
⋃

H̃∗\C̃({Sk}∪ C̃′)| = |C̃ ⋃
H̃∗\C̃{Sk}| = |H̃∗| = h. So, h ≥ 2f + 1 to

satisfy the signing-condition-inequality.
Thus, h = 2f + 1 because 2f + 1 ≥ h according to Lemma 3; and the signing-

condition-inequality is satisfied: |⋃H C(Si)| ≥ |⋃H{Si}| = |H | = h = 2f + 1.
These two solutions cover all possible scenarios and there is no other solution

for the signing-condition-inequality (i.e., Condition-B of Theorem 42), and it can
be verified that these solutions also satisfy Condition-A. Therefore, according to
Theorem 42, they are the all solutions (or valid server protocols) of TSS-BQS
systems, and no other valid protocol exists. �
These solutions correspond to two families of valid server protocols, respectively.
The first family satisfies the signing-condition-inequality (i.e., ensures service in-
tegrity) through the examinations by correct server S∗ (|C(S∗)| ≥ 2f + 1), and
the second does through the threshold to sign (h = 2f + 1). There is no valid
protocol with combined mechanisms requiring fewer examinations than 2f + 1
while having a threshold h < 2f + 1. Although we can design a protocol where
|C(·)| ≥ 2f + 1 for correct servers and h = 2f + 1, service integrity is ensured
repeatedly through each of these two mechanisms, instead of a combined one.

5 Efficient Server Protocols

In this section, two existing server protocols [10,26] are deduced by minimizing
the computation costs of the solutions predicted in Theorem 43. Two types of
computations are reflected in these solutions as follows:

Partial-signing using service key shares. The computation cost is measured
by h: h partial signatures are needed to fully sign a response.

Examinations that the requested read/write operation has been performed
on certain servers. The computation cost is measured by |C(·)|: before partially
signing a response, a (correct) server Si verifies messages which are signed using
server keys, to examine that servers in C(Si) have processed the read/write
request. In fact, since Si ∈ C(Si), it can verify only |C(Si)| − 1 messages from
other servers.

By minimizing the amount of computations (i.e., choosing the minimal h and
|C(·)| allowable), we find two solutions of efficient (and valid) server protocols:

1. h = f + 1, and for any h-server set H , there exists a (correct) server
S∗ ∈ H : C (S∗) = {{S∗} ∪ C′ : |C′| = 2f + 1} (C′ may contain S∗ or not).

2. h = 2f + 1, and C (Si) = {{Si}} if Si is correct.

Based on the efficient solutions, we design two server protocols as below. They
are essentially the same as SP-I [26] and SP-II [10], which may have additional
design details for specific applications (e.g., the means of generating timestamps).

Impossibility Theory on Server Protocols Integrating BQS with TSS 321

5.1 Server Protocol I

The service private key is shared by 3f + 1 servers, and the threshold to sign is
f + 1. Servers use the following protocol, and Sd is a delegate.

A. On receiving a read/write request from clients, Sd forwards it to all servers.
B. On receiving a read/write request from Sd, Si uses its server key to sign

a reply and sends it to Sd. The reply is its replica for reading. For writing, Si

replies with an acknowledgement, and only updates its replica if the data item
being written has a higher timestamp than its own.

C. Sd repeats Step-A periodically until it receives replies from 2f +1 servers.
D. Sd generates a partial-signing request and sends it to all servers. The

partial-signing request includes: the read/write request, the response (to be
signed), and those 2f + 1 replies collected in Step-C. For reading, the response
is the right replica (i.e., the unmodified one with the highest timestamp out of
those 2f + 1 replicas). For writing, the response is an acknowledgement.

E. On receiving a partial-signing request from Sd, Si uses its service key
share to generate a partial signature for the response and sends it to Sd, after
examining that those included replies are generated by 2f + 1 servers for the
included read/write request. For reading, Si also examines that the replica to
be returned a) is the unmodified one with the highest timestamp out of those
included 2f + 1 replicas, and b) has a timestamp higher than or identical with
its own. Otherwise, Si replies to Sd with a rejection. For writing, Si also updates
its replica if the data item being written has a higher timestamp than its own.

F. Sd repeats Step-D periodically until it receives partial signatures from
f + 1 servers, or re-starts from Step-A if it receives f + 1 rejections for reading
(happening when a write operation overlaps the read operation). Sd combines
these f +1 partial signatures into a fully signed response and sends it to clients.

5.2 Server Protocol II

The threshold to sign of SP-II is equal to the size of a quorum (i.e., h = 2f +1).
Steps for reading and writing are described separately, and Sd is a delegate.

Read
A. On receiving a read request from clients, Sd generates a partial-signing

request and sends it to all servers. The partial-signing request includes: the read
request, and the response (to be signed) which includes the right replica to be
returned. Sd sets the “right” replica to its own replica tentatively.

B. On receiving a partial-signing request from Sd, Si uses its service key share
to generate a partial signature for the response and sends it to Sd, after checking
that the replica (to be returned) is unmodified and has a timestamp higher than
or identical with its own. Otherwise, Si replies to Sd with a rejection.

C. Sd repeats Step-A periodically until it receives partial signatures from
2f + 1 servers, or breaks to Step-D if it receives f + 1 rejections. Sd combines
these 2f +1 partial signatures into a fully signed response and sends it to clients.

322 J. Lin et al.

Sd Si

Request

Replica/Ack

Request

PS Request

PS
Response

SP-I Read/Write

Sd Si

SP-II Write

Request

Response
PS

PS Request

Sd Si
Request

PS Request

Replica

Response

Sd Si

SP-II Read
Delegates store the right replica

Request

Response
PS

PS Request

Rejection

Request

PS Request

PS

SP-II Read
Delegates store an out-of-date replica

Fig. 2. Communication Costs of SP-I and SP-II

D. Sd forwards the read request (from clients) to all servers. Step-D is exe-
cuted only if Sd receives f + 1 rejections, happening when it doesn’t store the
right replica and shall collects replicas from other servers to update its own.

E. On receiving a read request from Sd, Si replies with its replica.
F. Sd repeats Step-D periodically until it receives replicas from 2f +1 servers.

Sd obtains the right replica out of these 2f + 1 replicas, updates its own, and
re-starts from Step-A.

Write
A. On receiving a write request from clients, Sd generates a partial-signing

request and sends it to all servers. The partial-signing request includes: the write
request, and the response (to be signed) which is an acknowledgement.

B. On receiving a partial-signing request from Sd, Si uses its service key
share to generate a partial signature for the response and sends it to Sd. Si also
updates its replica if the data item being written has a higher timestamp.

C. Sd repeats Step-A periodically until it receives partial signatures from
2f + 1 servers. Sd combines these 2f + 1 partial signatures into a fully signed
response and sends it to clients.

6 Performance

In this section, SP-I and SP-II are compared in terms of communication costs,
computation costs and the read responses on concurrent read/write operations.

6.1 Communication

Assuming that there are no concurrent read/write operations, Figure 2 shows
the communication costs of SP-I and SP-II. It can be seen that SP-I always needs
two rounds of communications among servers, while SP-II-write needs only one
round, because SP-II doesn’t need to collect process results from some quorum
as SP-II does before delegates request other servers to partially sign responses.

The communication cost of SP-II-read varies whether delegates store the right
replica or not. If Sd stores the right replica, one round is enough. Otherwise, three
rounds are needed: after receiving f +1 rejections, Sd collects replicas to update
its own, and requests other servers to partially sign the response again.

Impossibility Theory on Server Protocols Integrating BQS with TSS 323

6.2 Computation

The major computation costs of TSS-BQS systems are public key cryptographic
computations [15,26]: signing using server keys and partial-signing using service
key shares. Firstly, the computation costs of server key depend on the commu-
nications among servers, because they are used to sign messages among servers.

Secondly, while SP-II always needs partial signatures by more f servers than
SP-I, the cost of each partial-signing varies with different TSS. The following
analysis is specific to the scheme used in [15,26,27]: each partial-signing includes
Ln,h = l(n− h + 1)/n modular exponentiations of long integer (e.g., 1024 bits),
where l =

(
n

h−1

)
. It can be verified that L3f+1,f+1 = L3f+1,2f+1, i.e., each

partial-signing of SP-I and SP-II costs approximately equal resources.

6.3 Concurrent Read/Write Operations

Since each read/write operation must be performed on 2f + 1 servers and may
last a long time, concurrent operations can happen usually in TSS-BQS systems.
We analyze the responses of the read operations overlapped by a concurrent write
operation, and firstly define the windows of operations:

Read. A read operation returning [x, vr , tr] from some quorum starts (denoted
Trs) when the first server in this quorum receives the read request and replies
with its replica, and ends (denoted Tre) when the delegate determines to return
[x, vr, tr], which is eventually signed and sent to clients. Note that the delegate
may determine and be rejected for several times before the operation ends.

Write. An operation writing [x, vw, tw] on some quorum starts (denoted Tws)
when the first correct server in this quorum receives the write request and up-
dates its replica, and ends (denoted Twe) when the last correct one in this quorum
does. Variable x really starts to change only when a correct server receives the
write request, because even if faulty servers receive the request before Tws, they
can drop it maliciously.

Assume that [x, v0, t0] is the right replica before the concurrent operation writ-
ing [x, vw , tw] and tw > t0. All situations of concurrent operations are analyzed
as below.
1. Tws < Trs < Twe < Tre or Trs < Tws < Twe < Tre

SP-I may return [x, vw , tw] or [x, v0, t0], while SP-II always returns [x, vw, tw]
at the cost of (possible) more rounds of communications among servers. Following
SP-I, the 2f +1 replicas sent along with the partial-signing request as evidences,
may be collected before Twe and contain [x, v0, t0] only (e.g., these replicas are
collected when only one correct server has updated its replica). And the f + 1
servers signing the read response, may contain only another correct server which
doesn’t receive the concurrent write request or update its replica.

Following SP-II, the 2f+1 servers signing the read response, must contain one
correct server which has received [x, vw, tw] when Twe, because BQS guarantee
that the intersection of any two quorums contains at least one correct server.
This correct server partially signs the response only if the replica to be returned
has a timestamp higher than or identical with its own (i.e., tr ≥ tw); otherwise,
it rejects to sign it, leading to two more rounds of communications.

324 J. Lin et al.

2. Tws < Trs < Tre < Twe or Trs < Tws < Tre < Twe

Both SP-I and SP-II may return [x, vw, tw] or [x, v0, t0]. Although at least one
correct server has received [x, vw, tw] after Tws, it may not be involved in the
concurrent read operation at all. It is possible that all servers involved in the read
operation, store [x, v0, t0] only; and then the read response returns [x, v0, t0].

7 Related Work

BQS of self-verifying data over asynchronous, authenticated and reliable chan-
nels are proposed in [13]; variations of other data or over different channels can
be found in [4,13,17]. Dynamic BQS [1,11,16] can reconfigure the number of
servers and faulty ones (i.e., dynamic n and f).

Several distributed storage systems [7,9,22,24,25] apply threshold cryptogra-
phy (e.g., secret sharing, erasure code, etc.) to protect data integrity and confi-
dentiality. In [18] and [23], secret sharing is integrated with quorum systems and
BQS, respectively, to provide fault-tolerant storage services.

TSS are utilized to sign messages in state machine replication [2,3,20,21]
and distributed storage systems [9,22]: signatures by TSS indicate that enough
servers agree with the content of signed messages or have performed the re-
quested operations, masking the impact of faulty servers. COCA [26] is the first
work to integrate BQS with TSS, and its protocol is adopted in CODEX [15] to
store secret data. [10] proposed another server protocol of TSS-BQS systems.

8 Conclusions

To provide self-contained BFT storage services of self-verifying data, traditional
BQS are no longer sufficient. Achieving this goal demands the integration of
BQS and TSS, and only two valid TSS-BQS systems have been proposed in
the literature. Based on these two systems, we can find similar server protocols,
leading to two families of TSS-BQS systems. We develop a validity theory on
server protocols of TSS-BQS systems and formally prove that it is impossible to
find any third family of valid TSS-BQS systems. It is also shown that the only
two families of valid server protocols “predicted” (or deduced) by the proposed
theory precisely match the existing protocols.

References

1. Alvisi, L., Dahlin, M., et al.: Dynamic Byzantine quorum systems. In: Int’l. Conf.

Dependable Systems and Networks, pp. 283–292 (2000)

2. Amir, Y., Coan, B., et al.: Customizable fault tolerance for wide-area replication.

In: IEEE Symp. Reliable Distributed Systems, pp. 65–82 (2007)

3. Amir, Y., Danilov, C., et al.: Scaling Byzantine fault-tolerant replication to wide

area networks. In: Int’l. Conf. Dependable Systems and Networks, pp. 105–114

(2006)

4. Bazzi, R.: Synchronous Byzantine quorum systems. Distributed Computing 13(1),

45–52 (2000)

Impossibility Theory on Server Protocols Integrating BQS with TSS 325

5. Castro, M., Liskov, B.: Practical Byzantine fault tolerance and proactive recovery.

ACM Trans. Computer Systems 20(4), 398–461 (2002)

6. Desmedt, Y.: Society and group oriented cryptography: A new concept. In: Pomer-

ance, C. (ed.) CRYPTO 1987. LNCS, vol. 293, pp. 120–127. Springer, Heidelberg

(1988)

7. Goodson, G., Wylie, J., et al.: Efficient Byzantine-tolerant erasure-coded storage.

In: Int’l. Conf. Dependable Systems and Networks, pp. 135–144 (2004)

8. Herzberg, A., Jakobsson, M., et al.: Proactive public key and signature systems.

In: ACM Conf. Computer Communications Security, pp. 100–110 (1997)

9. Iyengar, A., Cahn, R., et al.: Design and implementation of a secure distributed

data repository. In: IFIP Int’l. Information Security Conference, pp. 123–135 (1998)

10. Jing, J., Wang, J., et al.: Research on server protocols of Byzantine quorum systems

implemented utilizing threshold signature schemes (accepted to appear). Chinese

Journal of Software

11. Kong, L., Subbiah, A., et al.: A reconfigurable Byzantine quorum approach for the

Agile Store. In: IEEE Symp. Reliable Distributed Systems, pp. 219–228 (2003)

12. Lamport, L., Shostak, R., et al.: The Byzantine generals problem. ACM Trans.

Programming Languages and Systems 4(3), 382–401 (1982)

13. Malkhi, D., Reiter, M.: Byzantine quorum systems. Distributed Computing 11(4),

203–213 (1998)

14. Malkhi, D., Reiter, M.: Secure and scalable replication in Phalanx. In: IEEE Symp.

Reliable Distributed Systems, pp. 51–60 (1998)

15. Marsh, M., Schneider, F.: CODEX: A robust and secure secret distribution system.

IEEE Trans. Dependable and Secure Computing 1(1), 34–47 (2004)

16. Martin, J.-P., Alvisi, L.: A framework for dynamic Byzantine storage. In: Int’l.

Conf. Dependable Systems and Networks, pp. 325–334 (2004)

17. Martin, J.-P., Alvisi, L., et al.: Small Byzantine quorum systems. In: Int’l. Conf.

Dependable Systems and Networks, pp. 374–383 (2002)

18. Naor, M., Wool, A.: Access control and signatures via quorum secret sharing. IEEE

Trans. Parallel and Distributed Systems 9(9), 909–922 (1998)

19. Ostrovsky, R., Yung, M.: How to withstand mobile virus attacks. In: ACM Symp.

Principles of Distributed Computing, pp. 51–59 (1991)

20. Reiter, M., Birman, K.: How to securely replicate services. ACM Trans. Program-

ming Languages and Systems 16(3), 986–1009 (1994)

21. Reiter, M., Franklin, M., et al.: The Ω key management service. In: ACM Conf.

Computer and Communications Security, pp. 38–47 (1996)

22. Rhea, S., Eaton, P., et al.: Pond: the OceanStore prototype. In: USENIX Conf.

File and Storage Technologies, pp. 1–14 (2003)

23. Subbiah, A., Ahamad, M., et al.: Using Byzantine quorum systems to manage

confidential data. Technical Report GIT-CERCS-04-13, Georgia Institute of Tech-

nology (2004)

24. Subbiah, A., Blough, D.: An approach for fault tolerant and secure data storage

in collaborative work environments. In: ACM Workshop on Storage Security and

Survivability, pp. 84–93 (2005)

25. Wylie, J., Bigrigg, M., et al.: Survivable information storage systems. IEEE Com-

puter 33(8), 61–68 (2000)

26. Zhou, L., Schneider, F., et al.: COCA: A secure on-line certification authority.

ACM Trans. Computer Systems 20(4), 329–368 (2002)

27. Zhou, L., Schneider, F., et al.: APSS: Proactive secret sharing in asynchronous

systems. ACM Trans. Information and System Security 8(3), 259–286 (2005)

Context-Aware Usage Control for Android

Guangdong Bai, Liang Gu, Tao Feng, Yao Guo�, and Xiangqun Chen

Key Laboratory of High Confidence Software Technologies (Ministry of Education),
Institute of Software, School of EECS, Peking University, Beijing, China

{baigd08,guliang05,fengtao09,yaoguo,cherry}@sei.pku.edu.cn

Abstract. The security of smart phones is increasingly important due to their
rapid popularity. Mobile computing on smart phones introduces many new charac-
teristics such as personalization, mobility, pay-for-service and limited resources.
These features require additional privacy protection and resource usage constraints
in addition to the security and privacy concerns on traditional computers. As one
of the leading open source mobile platform, Android is also facing security chal-
lenges from the mobile environment. Although many security measures have been
applied in Android, the existing security mechanism is coarse-grained and does
not take into account the context information, which is of particular interest be-
cause of the mobility and personality of a smart phone device.

To address these challenges, we propose a context-aware usage control model
ConUCON, which leverages the context information to enhance data protection
and resource usage control on a mobile platform. We also extend the existing
security mechanism to implement a policy enforcement framework on the An-
droid platform based on ConUCON. With ConUCON, users are able to employ
fine-grained and flexible security mechanism to enhance privacy protection and
resource usage control. The extended security framework on Android enables
mobile applications to run with better user experiences. The implementation of
ConUCON and its evaluation study demonstrate that it can be practically adapted
for other types of mobile platform.

Keywords: security, access control, mobile platform, context-aware, Android.

1 Introduction

During the past few years, smart phones, combining the functionalities of traditional
mobile phone and increasing computing and storage capabilities, have become preva-
lent. They are serving more and more individuals and organizations as extensions of
desktop computers. As a result, many critical applications are moved to smart phones.
Unfortunately, security risks and attacks on traditional PCs have since shifted to smart
phones as well [19,12,15].

Compared to the security of traditional computing platforms, the security of mo-
bile devices faces more challenges [21] because they possess many unique features, in-
cluding Personalization, Mobility, Pay-for-service and Limited resources. These distinct
features require special privacy protection and resource usage constraints compared to

� Corresponding author.

S. Jajodia and J. Zhou (Eds.): SecureComm 2010, LNICST 50, pp. 326–343, 2010.
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2010

Context-Aware Usage Control for Android 327

PCs. Personalization increases the requirement for data confidentiality and privacy. Mo-
bility increases the risk of device loss and theft, which leads to privacy exposure, as well
the risk of classified information theft in a confidential environment, a business meeting
and a military conference, for instance. Pay-for-service and limited resources make the
phone prone to overcharge attacks and DoS attacks.

Android [18], a Google-led open source mobile platform, is one of the most popu-
lar mobile platforms. A series of security mechanisms such as UIDs, permission label,
application signing and sandbox have been adopted into Android to enhance its secu-
rity [26]. However, the permission model of Android is coarse-grained and incomplete
[22]. For example, an Android application requests a list of permissions at installation;
the user can only choose to either allow all these permissions or none. In addition, the
user cannot revoke or change the permissions of an application once he grants the per-
missions, unless the application is re-installed. It cannot provide data protection and re-
source usage constraints in a fine-grained manner. Furthermore, there is no mechanism
for the user to enforce context-aware constraints on data and resources on Android.

Some approaches have attempted to enhance the security of Android (or similar
smart phone platforms) through malware detection [8,9,29], application certification
[14] and access control [22]. However, to the best of our knowledge, no existing studies
have combined context information to provide fine-grained security/privacy measures
on smart phone platforms, especially on Android.

To address these challenges, we propose a context-aware usage control mechanism
for the Android platform. We first present a Context-aware Usage CONtrol model
(ConUCON) based on the previously proposed UCON model [27]. By taking into ac-
count the context information, such as the spatial and temporal data during runtime
enforcement, ConUCON is able to support flexible data protection and resource usage
constraints. Based on ConUCON, we also extend the existing security mechanism to
implement a new policy enforcement framework on the Android platform. The new
framework offers several new security features, such as allowing the user to grant per-
missions in a fine-grained manner, and supporting revocations and modifications on an
application’s permission at runtime.

We make the following main contributions in this paper.

– We propose a context-aware usage control model ConUCON, extending the UCON
model to support context-ware protection for mobile platforms. It enables smart
phone users to employ fine-grained and flexible security mechanisms to enhance
the privacy protection and resource usage control.

– ConUCON provides continuous usage control because its usage decisions are not
only performed prior to the access, but also during the access.

– We extend the policy specification interface of Android according to the proposed
ConUCON model to provide an interface for the user to express his policy on data
and resources in a context-aware and fine-grained manner. As a result it could pro-
vide better user experiences with this extended framework.

– Finally, as our extended mechanism is implemented by introducing minimal changes
to the existing one, it is transparent and could easily support existing applications.

The rest of this paper is organized as follows: Section 2 describes the background, in-
cluding the motivating scenarios, UCON model and Android security. Section 3 presents

328 G. Bai et al.

the ConUCON model formally. Section 4 shows the framework based on the ConUCON
model. Section 5 presents the implementation and evaluation. Section 6 introduces the
related works, and finally, Section 7 concludes this paper.

2 Background

2.1 Motivating Scenarios

Confidentiality and Privacy Protection. A smart phone user may store private data such
as photos and calendar on his/her phone. Assume that a user Alice loses her smart phone
and it is picked up (or maybe stolen) by Bob. Then Bob takes it home (We can safely
assume that it is a strange location) and tries to browse the data for malicious purpose
(or just out of curiosity). If this unfamiliar context is detected, or Alice has ever enforced
context constraints on her privacy data, an authentication will be required, which would
prevent the exposure of Alice’s privacy.

Resources Usage Constraints. Some services such as GPRS and voice calls may charge
extra fees according to the usage time and user’s location, that is, incurring significantly
more expenses at a certain time in the day, or if the user roams out of a certain area.
Thus, the user may tend to restrict applications’ usage on these resources during specific
periods or at locations with higher charge rate.

In a government or military meeting, in which confidentiality is specially concerned,
the participants are required to disable certain functions of the phone such as audio
capture. If the participants’ phones can detect the meeting-related contexts (time and
location), it would be possible to disable corresponding functions automatically.

2.2 UCON Model

UCON [24,27,23,34] is a generalized security model proposed by Sandhu et. al to cover
a variety of security aspects including obligations, conditions, continuity and mutabil-
ity, etc. The UCON model consists of eight components: subjects, subject attributes,
objects, object attributes, rights, authorizations, obligations, and conditions. The first
five hold similar meanings with the concepts in traditional access control models, while
authorizations, obligations and conditions impact on the usage decisions. Authoriza-
tions permit or deny an access from a subject to an object with a particular right based
on attributes of subject and object. Obligations require the subject to perform specific
actions before (pre) or during (ongoing) an access. Conditions are environmental fac-
tors.

2.3 Android Security

Android is a software stack for mobile devices, and it contains an operating system,
middleware and key applications. The applications in Android consist of four differ-
ent types of components: activities, services, broadcast receivers and content providers.
Most security mechanisms on Android are enforced at the application level. Each appli-
cation is assigned with a unique UID at install-time. At runtime, by adopting a sandbox

Context-Aware Usage Control for Android 329

mechanism to run applications as separate processes, Android protects them from mod-
ifying or controlling each other.

To use some protected resources, such as the dialer or GPRS, an application must
include a file named AndroidManifest.xml, which contains several <uses-
permission> tags to declare the required permissions. During installation, the pack-
age installer will list these permissions to the user, who can then choose to grant all
permissions to the application, or deny all permission requests and withdraw the in-
stallation. Once all permissions are granted, the application will be allowed to use the
resources without reminding the user all the time. The user cannot revoke the permis-
sions unless the application is reinstalled.

3 ConUCON: A Context-Aware Usage Control Model

This section presents the proposed context-aware usage control model ConUCON,
which consists of three major parts: model components, user policy specifications and
runtime usage decisions. ConUCON can leverage the context information to enhance
the security of mobile computing platforms, and it serves as the foundation of our ex-
tended security framework for Android platform.

3.1 Model Components

ConUCON contains the following components: subjects, objects, states (which include
subject attributes and object attributes), rights, permissions, obligations, and contexts.
We will introduce the definitions and descriptions of these components in this section.

The concepts of subjects and objects remain similar with those in traditional access
control models as well as the UCON model.

Definition 1. (Subjects and Objects) A subject is an entity that holds and exercises
certain rights on objects. An object is an entity that subjects can access or use. Subject
set and object set are denoted by S and O, respectively.

Example 1. For example, subjects can be applications and components in Android,
while objects can be files, resources, and services.

Definition 2. (Attributes) An attributes is a property used in usage decisions, such as
UID, software producer, permission label and path of an object. All attributes are con-
tained in the attribute set (AT).

Each subject or object is associated with a corresponding attribute set, which can be
queried with the function τ : S ∪ O → P(AT). For a subject or object so ∈ S ∪ O
that holds an attribute at ∈ τ(so), the value of the attribute so.at can be retrieved with
the function υ : (S ∪ O) × τ(S ∪ O) → ran(τ(S ∪ O)), where ran(a) is the value of
attribute a.

Example 2. A Telecom Provider may provide a specific number of free SMSes for users
every day, and will charge fees for any extra message. As a result, the user may wish
to prohibit the corresponding applications to send messages once the quota for a day is
exhausted. Thus, the usage history of the SMS service should be recorded as an attribute
of the object and be involved in the usage decision process.

330 G. Bai et al.

Definition 3. (States) A state is defined as a set, whose elements are triples

(so, at, val), where so ∈ S ∪ O, at ∈ τ(so) and val = υ((so, at)).

A state element consists of an attribute set, the owner of the attribute set, and the values
of these attributes in the set. A state is a subset of the State Set(ST), which contains all
the attributes and their values.

An update action is defined as a function μ : P(ST) → P(ST).

Definition 4. (Rights) A right is an operation that a subject can perform on an object.
All Rights comprise the Right set(R).

Rights can be divided into several functional categories. For files and other data,
the rights include read, write, delete, etc.; while for resources and services, the rights
include use, disable, etc. The Right set is defined by users.

Definition 5. (Permission Labels) A permission label is a credential to allow a subject
to perform a specific right on corresponding objects, which are assigned to subjects and
objects. All permission labels comprise the Permission label set(P).

For a subject, its permission labels determine which objects it can access, while
the labels for an object determine which subjects can access it. Each subject owns a
permission label set, which can be retrieved using the function ϕs : S → P(P).

Each resource object and service object can be attached with a permission label [26]
to declare the permission required to use it. The function ϕo : O → P is defined to
query the label.

It is a bit more complex for data objects. Each of the objects has two labels, one
for confidentiality and the other for integrity. The confidentiality label is an element of
the confidentiality label set(CL), while all integrity labels comprise the integrity label
set(IL). A subject is also associated with these two labels to indicate its confidential-
ity level and integrity level, respectively. The orders of the confidentiality level and
integrity level are denoted by {�c, �c} and {�i, �i}, respectively.

The functions ϕc : S ∪ O → CL and ϕi : S ∪ O are defined to retrieve the confi-
dentiality and integrity labels of a data object or a subject, respectively.

Definition 6. (Obligations) An obligation is a mandatory action that must be per-
formed before or during an access. It is an element of the obligation set(OB).

Example 3. To avoid privacy exposure caused by trojans such as Pbstealer.A [16], a
user may require all applications that access the contacts to disable Bluetooth before
and during the access. Thus the obligation for these applications is to disable Bluetooth
by themselves or to agree the usage control decision process to disable it.

Definition 7. (Contexts) A context is defined as a property of environment and system.
The type of a property is the context type, which is an element of context type set(CT).

The examples of context types are CPU rate, battery, device location and time. For
ConUCON, We focus on the contexts related with the system and environment. In ad-
dition, there is a subtle difference between context and attribute: a context is a property
of systems or physical environment, whereas an attribute is a property directly related
to a subject or an object.

Context-Aware Usage Control for Android 331

Continuous evaluation is critical on mobile platforms because of their features men-
tioned before. Thus, the evaluation of context constraint in ConUCON is performed
before (pre) and during (ongoing) an access. For example,

Example 4. A user has required the permission to read a confidential article which is
restricted to be read only in a specific area. While browsing the article, the user roams
out of the restricted area unconsciously. The smart phone should trigger a warning as
soon as it detects this situation.

3.2 Environment Contexts

For a smart phone platform, environment contexts such as spatial and temporal contexts
are especially important.

Spatial Context. A spatial context is defined as a spatial property. Spatial context ∈
CT. We adopt the geometric model of GEO-RBAC [13] to model the positions.

Definition 8. (Features and Feature Types) A feature is an object which indicates an
entity that occupies a space in real world, which is identified by feature name. The
features are included in feature set(F). Each feature has a feature type contained in
feature type set(FT).

A feature can be mapped to a geometry on Earth. A geometry is an object in Eu-
clidean space with a coordinate, which is an element in the geometry set(GEO).

The functions γ : F → FT and ξ : F → GEO are used to get the feature type and
the geometry of a feature.

Definition 9. (Feature Order and Feature Type Order)

– feature type order (�ft) : ft1 �ft ft2 iff ∀f1 ∈ F ∧ γ(f1) = ft1, ∃f2 ∈
F ∧ γ(f2) = ft2, ξ(f1) ⊆ ξ(f2)

– feature order (�f) : f1 �f f2 iff γ(f1) �ft γ(f2) ∧ ξ(f1) ⊆ ξ(f2)

Example 5. Office 2E315, Pentagon, Arlington, Virginia are examples of features, whose
feature types are Room, Building, County, State, respectively. The Room and Building
satisfy the �ft order, while Arlington and Virginia satisfy the �f order.

Definition 10. (Real Position and Logical Position) A real position is a position on
the Earth and can be obtained using a device such as a GPS based equipment, while a
logical position is a semantic representation of a position. Real position set and logical
position set are denoted as RP and LP , respectively.

Obviously, a real position corresponds to a geometry and a logical position corre-
sponds to a feature. A real position may correspond to one or more logical positions
under different feature types. For example, a region may correspond to a room or part
of a city, when assigning it with these two feature types.

The function ρft : RP → LP is used to map a real position to the corresponding
logical position under feature type ft.

Thus, we can define the inclusion relation between a real position and a logical po-
sition �p: rp �p lp, where rp ∈ RP ∧ lp ∈ LP iff ργ(lp)(rp) �f lp.

332 G. Bai et al.

Temporal Context. A temporal context is defined as a temporal property. Temporal
context ∈ CT.

Definition 11. (Time Instants) A time instant is a time point that has the form
TI := mm/dd/yy hh : ii : ss where

mm ∈ {1, 2, ..., 12} ∧ dd ∈ {1, 2, ..., 31} ∧ yy ∈ IN ∧ hh ∈ {0, 1, ..., 23} ∧ ii, ss ∈
{0, 1, ..., 59}.
The definition of the periodic expression in ConUCON is based on past studies in
[6,31,5]:

Definition 12. (Periodic Expression) The periodic expression is defined as
PE := Y |W
Y := R.years|R.years � S.years|R.years + M
W := weeks|weeks + D
M := R.months|R.months � S.months|R.months + D
D := R.days|R.days � S.days|R.days + H
H := R.hours|R.hours � S.hours|R.hours + M
M := R.minutes|R.minutes � S.minutes
where R ∈ 2IN ∪ {all}, S ∈ IN.

Example 6. We can use the periodic expression years + 7.months � 6.months to
indicate the second half of every year and the expression weeks + {1, 2, ...5}Days +
9.hours � 8.hours to indicate working hours of every week.

As a result, we can define the inclusion relation between a time instance and a peri-
odic time [6] �t: ti �t 〈[begin, end], P 〉 if and only if there exists a time interval
it ∈ Π(P) such that ti ∈ it and begin � ti � end, where 〈[begin, end], P 〉 is a
periodic time, begin and end are two time instants, Π(P) is the set of time intervals
corresponding to the periodic expression P .

Example 7. PT =〈 [01/01/2010 00:00:00, 12/31/2012 23:59:59], weeks+{1, 2, ...5}.
Days +9.hours � 8.hours〉 indicates the working hours during the year 2010 and
year 2012. A time instant 4/19/2010 14:30:00 �t PT.

3.3 User Policy Specification

The policy specification allows a user to specify his security policies on usage, i.e. data
and resources. The security policies describe:

– Which permission label should be assigned to a resource object? Which confiden-
tiality label and integrity label should be assigned to a data object? Which permis-
sion label set should be assigned to a subject?

– If a subject requests to perform a specific action (right) on an object, what au-
thorizations, obligations and contexts should be satisfied before (pre) and during
(ongoing) the access?

Context-Aware Usage Control for Android 333

Definition 13. (Label Policies) Define function �o1 : O → P to impose a permission
label to a resource object, function �o2 : O → CL × IL to impose confidentiality
label and integrity label to a data object, and function �s : S → P(P) to grant a
permission label set to a subject.

Definition 14. (Usage Control Policy) The usage control policy is used to specify au-
thorizations, obligations and contexts that should be satisfied before (pre) and during
(ongoing) a subject performing a specific action (right) on an object. All the usage
control policies are included in the usage control policy set (UP).

UP ⊆ S × O × R × PreOb × OnOb × StateConstraint × PreContext ×
OnContext × Update, where

– PreOb, OnOb ∈ P(OB)
– StateConstraint := (StatePredicate) | ¬ StateConstraint | StateConstraint ∨ State-

Constraint | StateConstraint ∧ StateConstraint. (StatePredicate is a relational ex-
pression, with form of f(P(S∪O×AT))relator〈value〉, where f is an operation
expression using the attributes as operands, while relator is a logical operator.)

– PreContext, OnContext ⊆ ContextConstraint, where ContextConstraint :=
(ContextPredicate) | ¬ ContextConstraint | ContextConstraint ∨ ContextConstraint
| ContextConstraint ∧ ContextConstraint
ContextPredicate := 〈CT 〉relator〈value〉 | PeriodicT ime | LP

Example 8. Let’s consider the Resources Usage Constraint scenario in Section 2.1 to
illustrate the User Policy Specification. At first, a smart phone user Alice may restrict
the usage of the camera in her phone as following:

– To prevent conflict, all applications that apply for using the camera must close or
remind the user to close the other application that are using the camera.

– To keep privacy, all applications that are recording video must pause recording
when an incoming call comes.

– To preserve battery for more critical functions, the camera should be disabled when
the remaining battery power is blow 30%.

– If one application was denied a short time ago(one minute, for instance), its request
should be denied automatically.

Now suppose there is a confidential meeting in the company where Alice works during
10:00 to 12:00 every Wednesday and Thursday in 2010, and video recording is not
allowed at the meeting. We can specify the policy as in Table 1.

3.4 Runtime Usage Decisions

We employ the Bell-LaPadula model [4] for confidentiality and the Biba model [7]
for integrity to express the authorizations in ConUCON. The other appropriate security
models can be used to express specific application constraints in ConUCON.

Definition 15. (Authorizations) Authorizations are used to check whether a subject
is allowed to perform an action on an object, according to specified security model,

334 G. Bai et al.

Table 1. An example of usage control policy

Components Constraints
Subject All
Object Camera
Right Use

Pre-obligation
ObligationID1 (predefined as closing or reminding user
to close the other application that is using the camera)

On-obligation ObligationID2 (predefined as pausing recording if an incoming call comes)
State currentT ime− lastForbiddenT ime � 1minute

Pre-context
(batterypower � 30%)

∧((¬〈[01/01/2010 00 : 00 : 00, 12/31/2010 23 : 59 : 59], weeks+
{3, 4}.day + 10hours � 2hours〉) ∨ (¬meetingroom))

Ongoing-context
(batterypower � 30%)

∧((¬〈[01/01/2010 00 : 00 : 00, 12/31/2010 23 : 59 : 59], weeks+
{3, 4}.day + 10hours � 2hours〉) ∨ (¬meetingroom))

Update if(forbidden)lastForbiddenT ime = currentT ime

such as integrity models and confidentiality models. The function Ω : S × O × R →
{true, false}, which is used to get the authorization result, is defined as:

Ω(s, o, r) ⇒

⎧⎪⎨⎪⎩
ϕo(o) ∈ ϕs(s), if o is a resource object

ϕc(s) �c ϕc(o) ∧ ϕi(s) �c ϕi(o), if o is a data object, and r = read

ϕc(s) �c ϕc(o) ∧ ϕi(s) �c ϕi(o), if o is a data object, and r = write

Definition 16. (Usage Decision) The usage decision determines whether an access
should be permitted or an ongoing access should be revoked based on authorizations,
obligations, contexts, and states. The usage decision is performed as below:

– allow(s, o, r) ⇒ Ω(s, o, r) ∧ fulfill(preOb) ∧ fulfill(preContext) ∧
fulfill(stateConstraint)

– revoke(s, o, r) ⇐ ¬fulfill(onOb)∨ ¬fulfill(onContext)
– update(state)

4 A Usage Control Framework for Android

Based on the above ConUCON model, we developed a continuous context-aware usage
control framework for Android.

4.1 Framework Overview

Figure 1 describes the architecture of the framework. The framework consists of a Pol-
icy Enforcement Point (PEP), a Policy Decision Point (PDP), a Policy Information Point
(PIP) and a Policy Administration Point (PAP). These components communicate with
each other with the messaging mechanism listed in Table 2.

Context-Aware Usage Control for Android 335

Usage Control Framework

User

PEP

Policy Resolver

Obligation
Evaluation Engine

State
Evaluation Engine

Context Evaluation Engine

PDP PIP State
Repository

Policy
Repository

PAP

data flow control flow control flow return

App

Label
Repository

Obligation
Repository

Context
Repository

Fig. 1. ConUCON Framework

Table 2. Message types transmitted among components

Message Source Destination Meaning

request(s, o, r) PEP PDP
The subject s is requesting to perform the right r
on the object o.

permit(s, o, r) PDP PEP The request(s, o, r) is permitted.
deny(s, o, r) PDP PEP The request(s, o, r) is denied.

terminate(s,o, r) PEP PDP The subject s terminates access to the subject o.
revoke(s, o, r) PDP PEP Revoke the request(s, o, r).

evaluate(s, o, r) PDP PIP Perform obligation, state and context evaluation.

fulfill(s, o, r) PIP PDP
The obligation, state and context policies are en-
forced.

violate(s, o, r) PIP PDP
Not all obligations, state and context policies are
enforced.

withdraw(s, o, r) PDP PIP Withdraw all continuous evaluations.

The circled numbers in the figure indicate the processing flow during one usage de-
cision process. When an application tries to access an object, the PEP perceives the re-
quest and invokes the PDP using request(s, o, r). Then the PDP performs authorization
and activates the PIP with evaluate(s, o, r). The PIP then invokes the Policy Resolver
to resolve predefined policies related to s and o, and then invokes the Evaluation En-
gines to check the pre-policies. After that, the PIP sends a result(i.e. a fulfill(s, o, r)
or violate(s, o, r) message) to the PDP, which synthesizes the received result and the
authorization result to decide whether the access should be permitted or denied, and
notifies the PEP of the decision by a permit(s, o, r) or a deny(s, o, r) message. The
State Evaluation Engine also updates the states accordingly.

336 G. Bai et al.

Two cases are not illustrated in Figure 1 for the sake of simplicity. The first case
is continuous evaluation. After permitting the access, the Evaluation Engines begin to
evaluate ongoing policies continuously. Once a violation is detected, the Engines notify
the PIP, which then sends a violate(s, o, r) message to the PDP. And the PDP will send
a revoke(s, o, r) message to the PEP immediately to revoke the access at once. The
other case occurs when an application terminates the access. The PEP notifies the PDP
by a terminate(s, o, r) message, which then sends a withdraw(s, o, r) message to the
PIP to withdraw the continuous evaluation on this session.

Notice that the PDP can send a revoke(s, o, r) message to the PEP on its own ini-
tiative before the PEP sends a terminate(s, o, r) message. Similarly, the PIP can send
a violate(s, o, r) message to the PDP once the Engines detect a violation, no matter
whether the PDP sends an evaluate(s, o, r) message or not. This is an important im-
provement upon existing access control research, whose usage decision only occurs
before the access.

4.2 Framework Components

Policy Enforcement Point (PEP). The PEP takes charge of perceiving access request
and termination, invoking the PDP to perform the usage decision and enforcing the
usage control according to the PDP’s response.

When the PEP captures a request, it invokes the PDP with a request(s, o, r) mes-
sage. The PEP allows the access only if the PDP responds a permit(s, o, r) message.
After permitting the access, the PEP shifts to a listening state. If any of the ongoing
policies is violated, the PEP will be noticed by PDP with a revoke(s, o, r) message to
terminates the access. In addition, The PEP should perceive the termination of the ac-
cess. Once a subject terminates the access, the PEP sends a terminate(s, o, r) message
to the PDP, and then the PDP stops monitoring policies.

To capture the access requests to all objects, the PEP should be integrated in the
relatively low level, the application framework layer of Android platform, for instance.
It should also implement specific messaging mechanism to communicate with the PDP.

Policy Decision Point (PDP). The PDP is the component that performs usage decisions.
The PDP is responsible for activating the Policy Resolver and the PIP, authorizing (i.e.
checking the permission labels), and notifying the PEP of the usage decision result
after merging the authorization result and the responding result of the PIP. The PDP is
invoked by the PEP when access actions including request and termination occur.

The PDP is invoked by the PEP using a request(s, o, r) message. After being in-
voked, the PDP retrieves the permission labels of s and o from label repository and
performs authorization based on Definition 15. If the result is true, the PDP then in-
vokes the PIP to gather information related with usage decision (i.e. pre-policy evalua-
tion result). If any policy is violated, the PDP responds a deny(s, o, r) message to the
PEP to deny the access. Otherwise, it returns the PEP a permit(s, o, r) message, and
listens on both the PEP and the PIP to process the violate(s, o, r) from the PIP and
terminate(s, o, r) from the PEP.

Policy Information Point (PIP). The PIP is the component that provides the PDP with
evaluation information on obligation, state and context both before (pre) and during

Context-Aware Usage Control for Android 337

(ongoing) the access, with the aid of the Obligation Evaluation Engine, the State Eval-
uation Engine and the Context Evaluation Engine.

The PIP is invoked by the PDP with an evaluate(s, o, r) message. The PIP then calls
Policy Resolver to resolve policies that contain pre-policies and ongoing-policies. After
that, the PIP invokes Evaluation Engines to evaluate pre-policies at first. If any engines
returns false, the PIP responds a violate(s, o, r) to the PDP. Otherwise, the PIP returns
fulfill(s, o, r), then invokes Evaluation Engines to fork daemons to evaluate ongoing
polices continuously. If any of ongoing policies is violated, the PIP notifies the PDP
of a violate(s, o, r) message. The PIP also listens on the PDP after the pre-policies
evaluation. When it receives a withdraw(s, o, r) message from the PDP, it withdraws
the ongoing evaluation.

Evaluation Engines. The Evaluation Engines are invoked by the PIP to perform corre-
sponding policy evaluation for obligation, state and context.

The Obligation Evaluation Engine monitors the execution of obligations. If the obli-
gation is an action that can be carried out by the Engine directly, the Engine can require
the subject to perform the obligation or carry out directly. Recall Example 8. The En-
gine can ask for the application to remind the user to close another application that is
using the video recorder, or just close it directly. If the obligation can only be observed,
the Engine does not return true until the obligation is observed. The obligations defined
by Definition 6 are stored in the Obligation Repository, which can be accessed using
their obligation IDs or paths specified by the user.

The State Evaluation Engine is invoked to evaluate the state constraints. It first re-
solves the attribute type from the state constraint expressions, and retrieves the cor-
responding attribute values from the State Repository. Then it evaluates whether the
constraint is satisfied, and notifies the PIP of the evaluation result. Besides, the State
Evaluation Engine will update the state values into the state repository if needed.

The Context Evaluation Engine evaluates the context policies and monitors the
change of the context. Similarly with the State Evaluation Engine, it first resolves the
context types from context constraint expressions. Then it interacts with underlying sys-
tems and sensors to retrieve context value such as the coordinate, CPU utilization and
battery power.

Policy Administration Point (PAP). The PAP is a component that interacts with the user,
which allows the user to administrate the usage policies for the data and resources in
his smart phone. The user can impose or deprive the permission labels, confidentiality
labels and integrity labels to a subject or an object as Definition 5.

The PAP then formats the user’s policy specification and stores the policies into
the Label Repository and Policy Repository, respectively. The policies are formatted in
XML, which will be discussed in Section 4.3.

4.3 Policy Specification

Through the PAP, the user specifies his usage policies on his data and resources accord-
ing to Definition 13 and 14. In order to facilitate policy storage and transmission among
the components, the policies are represented in an XML format. The primary tags used
are listed as follows.

338 G. Bai et al.

– <Subject>, <Object> and <Right> specify the subject, object and right
associated with the policy.

– <Obligation> tag specifies an obligation. The ObligationTime specifies
whether the obligation must be performed before (pre) or during (ongoing) the
access, while the ObligationID specifies the ID of the obligation, the Obligation
Evaluation Engine retrieves the action stored in Obligation Repository using this
ID. The user can specify a new obligation by assigning the action path to the Obli-
gationID, and use several < Parameter > tags to specify the parameters to
execute the action.

– <State> tag specifies the state constraint in the policy. The <Attribute> tag
indicates the attribute in this state constraint, while the attribute Owner indicates
owner of this attribute and the Type is the attribute type. The <Expression> tag
specifies the logic expression expected, which is defined in Definition 14.

– <Context> tag specifies the context constraint in the policy. The meaning
of ContextTime is similar with ObligationTime. The context consists of several
< ContextComposition > tags, which are connected with “∧”. Each <
ContextComposition > consists of several < Factor > tags, connected
with the Operator. The <Factor> is a context predicate defined in Definition
14, the Type specifies the context type defined in Definition 7.

– <Update> tag specifies an update policy. The UpdateTime declares the
time to perform this update, which is in {Allow, Deny, Ongoing, Post}. The
<Attribute> tag indicates the attribute to be modified. It is stored in State
Repository and identified by Name, while the default value of the attribute is De-
fault. An <Expression> tag specifies an assignment expression that is executed
to update the state.

Figure 2 illustrates the XML representation of Example 8. The root node
<Policies> contains all the policies. It includes several <Policy> tags, each
indicates a user-specified policy defined in Definition 14.

<Policies>
 <Policy Effect="Permit">
 <Subject>All</Subject>
 <Object>Camera</Object>
 <Right>Use</Right>
 <Obligations>
 <Obligation ObligationTime="Previous" ObligationID =

"com:android:conUcon:obligationID1"></Obligation>
 <Obligation ObligationTime="Ongoing" ObligationID=

"com:android:conUcon:obligationID2"></Obligation>
 </Obligations>
 <States>
 <State>
 <Attribute Owner="Camera"

Type = "lastForbiddenTime"></Attribute>
 <Expression>System.currentTime-

Camera.lastForbiddenTime>=1</Expression>
 </State>
 </States>
 <Contexts>
 <Context ContextTime="Previous">
 <ContextComposition Operator="~">

<Fator Type="Temporal">[01/01/2010_00:00:00,
12/31/2010_23:59:59], weeks + {3, 4}.day + 10 hours ->
2hours</Fator>

 <Fator Type="Spatial">Meeting Room</Fator>
 </ContextComposition>
 <ContextComposition>
 <Fator Type="BatteryPower">batteryPower >= 30%</Fator>
 </ContextComposition>
 </Context>
 <Context ContextTime="Ongoing">...</Context>
 </Contexts>
 <Updates>
 <Update UpdateTime="Deny">
 <Attribute Owner="Camera" Name = "lastForbiddenTime"

Default="01/01/1900_00:00:00"></Attribute>
 <Expression>Camera.lastForbiddenTime

=System.currentTime</Expression>
 </Update>
 </Updates>
 </Policy>
</Policies>

Fig. 2. XML representation of Example 8 in Section 3.3

Context-Aware Usage Control for Android 339

5 Implementation and Evaluation

We have implemented the above framework on Android, which will be described in this
section. The framework monitors the accesses to the resources, data and files (i.e. the
Objects in ConUCON) performed by the applications and application components (i.e.
the Subjects in ConUCON). The identities of subjects and objects, i.e. a subject’s UID
and an Object’s URI, are included in their attribute sets. The attribute sets also contain
other information such as the software producer, usage times and attributes defined by
the user, like lastForbiddenTime in Example 9. The attributes can be retrieved
and maintained by the usage decision process. Some frequently used obligations are
predefined and hard-coded in the Obligation Evaluation Engine, an interface is also
provided to the user to assign a new obligation in the way described in section 4.3.
Context types are confined to frequently used property in our implementation, such as
temporal, spatial, battery, signal strength, acceleration, Bluetooth state, WiFi state, CPU
utilization, and memory amount, which can be easily retrieved in Android.

The framework components are implemented and deployed according to their re-
sponsibility. The PEP, PDP and PIP are integrated in the application framework layer
on Android. We implement the Policy Resolver as a parser to resolve the xml file
which stores the policies. The Evaluation Engines are implemented as daemon threads
to monitor and evaluate the ongoing policies continuously. The messages described in
Section 4.1 can be implemented as procedure calls and inter component communica-
tions (ICC). The Repositories are stored in the \system directory on Android and are
managed using the Content Provider component, which provides inherent isola-
tion and protection.

5.1 Usage Decision

The applications in Android retrieve the resources and data using an ICC mechanism.
Intent is used to encapsulate the information related to the ICC. An Intent object
is passed to Context.startActivity(), Context.startService(), or
other limited number of methods. These methods are implemented by the Applica-
tionContext class, which then transmits control to the ActivityManager-
Service class, where the Intent is resolved to determine the component which will
handle it. Then the UID and permission required for accessing the component are used
as parameters to call the checkComponentPermission(). The checkPermi-
ssion() in ActivityManagerService, which is claimed (by the comments in
source code) as the only public entry point [22], actually calls the checkComponent-
Permission() to perform permission check. Thus, we hook this function to insert
our usage decision conUconPDP().

After performing the existing permission check in the checkComponentPer-
mission(), the conUconPDP() takes over the control. It first extracts and analyzes
the object information from the Intent. If the object is a file object (including the pic-
tures, contacts, and regular files), it retrieves the confidentiality and integrity labels of
the subject and object from the label repository and checks the permission. After that, it
invokes the conUconPIP() to perform evaluation on obligations, states and contexts.

340 G. Bai et al.

The conUconPIP() calls the Policy Resolver to get the policies. For the obli-
gations, the conUconPIP() executes the hard-coded instructions according to the
obligationID or calls the routine specified by the user. For the states, it checks
whether the constraint is fulfilled. It also creates representations for the new attributes
and maintains them in the State Repository. For contexts, it invokes different managers
to get the context information and evaluates it. If the evaluation is passed, it returns true.
Meanwhile, if necessary, it may create daemon threads to evaluate the ongoing policies
before returning. The daemons periodically check whether the constraints are violated.
If a violation is identified, the daemons will terminate the session.

5.2 Policy Specification

An activity com.android.conUcon.contextDefine is implemented to pro-
vide a usable interface for the user to define his context information such as exam-
ples illustrated in Table 3. Besides, we modify the PackageInstallerActivity
to allow a user to impose his policies on an application at install-time. The existing
framework lists the permission that the application requires. We modify this interface
to enable the user to set his obligation, state and context constraints on this permission.
An activity com.android.conUcon.policyAdministrator is implemented
to enable the user to specify his policies after installation. This activity lists all the in-
stalled applications, all the resources and all the data (i.e. contacts, pictures, files and
so on). The user can associate the confidentiality and integrity labels to the subjects
and data objects and specify the policy on these applications, resources and data. The
specifications are resolved by the activity, which then generates the corresponding data
and stores them in the Repositories. The activity even provides an interface for expert
users to specify his policies by editing the policy file.

Table 3. A context information stored in the Context Repository

Context Type Context Name Context Value

temporal weekday
periodic expression =
′′ < [0,∞], weeks + {1, 2, , 5}.days >′′

logic position my university
featuretype =′′ school′′, realposition =
′′(o = (39.99◦N, 116.30◦E), r = 1530m)′′

battery power low power ′′batterypower � 10%′′

5.3 Performance Evaluation

Because the usage decision in ConUCON framework performs extra actions to evaluate
the obligation, state and context policies, an overhead will be introduced. To evaluate
this overhead, we carry out some experiments on the Android emulator to measure the
execution time. The actions we choose are frequently used in the daily life.

To keep authenticity, we associate different policies on these actions. For example,
The applications starting dialer must perform the obligation to check whether the au-
dio capture is closed. The call duration should be maintained as a state, meanwhile, its

Context-Aware Usage Control for Android 341

constraint should consider restrictions on location and time. The constraints on all these
actions come into three categories: Obligation, State and Context in Table 4. If an ex-
periment with ConUCON considers specific types of constraints in its security policy,
the corresponding column are marked as“

√
”. The performance contrast between exist-

ing mechanism and our framework are illustrated in Table 4. The overhead caused by
our usage decision is quite acceptable when we restrict context types within what can
be retrieved locally, such as temporal, WiFi and battery power. Other information such
as location that needs to be retrieved by querying network or satellite will consume a
little longer time (the numbers within parentheses in Table 4). However, if the data and
resources are extremely important, it is worthwhile sacrificing a little performance.

Table 4. Performance Comparisons

Actions
Existing
mechanism (ms)

ConUCON framework
Obligation State Context Time (ms)

sarting WiFi 102.5
√

-
√

117.3 (195.3)
sending SMS 69.8 -

√ √
76.0

starting dialer 49.7
√ √ √

80.6(150.8)
accessing a contact 95.3 -

√ √
116.5

accessing a picture 55.8
√ √ √

68.5(153.8)

6 Related Work

Some literatures have proposed solutions for enhancing the security on smart phone
platforms. Malware detection on smart phone is already widely concerned [8,9,29,32].
Zhang et al. [33] proposed an isolation technique for mobile platform by realizing the
TCG’s Trusted Mobile Phone specification and by leveraging SELinux which provides
a generic domain isolation concept at the kernel level. Schmidt et al. [29] demonstrated
how to monitor a smart phone running Symbian and Windows Mobile in order to extract
features for anomaly detection.

Access control models play an important role in security mechanisms. Some re-
searchers have extended the RBAC model [28], the most popular access control model
nowadays, to include context information in authorization decisions. Damiani et.al pro-
posed GEO-RBAC [13] to support spatial roles. Bertino et al. proposed TRBAC [6]
to support temporal roles. Other extensions include GRBAC [20,11], STARBAC [1]
and LRBAC [25]. Context-awareness has attracted much attention in the security issues
of mobile platforms as well, some literatures have already focused on context-aware
access control in the networks [10,3,2].

Android security is also widely concerned in recent researches. Asaf Shabtai et.al
analyzed and assessed the security mechanisms incorporated in Android by identify-
ing the threats and potential dangers, as well as solutions in Android platform [30].
SCANDROID [17] is a tool for reasoning automatically about the security applications,
which checks whether data flows through an application are consistent with its specifi-
cations. Enck et al. [14] proposed Kirin security service for Android, which performs
lightweight certification of applications to mitigate malware at install-time. Apex [22]

342 G. Bai et al.

presents a policy enforcement framework to enable the the user grant permissions in a
fine-grained manner and enforces policy user defined at runtime. However, the context
information is not taken into consideration in these approaches. Our work refers to the
Apex [22] in policy specification and implementation, yet we focus on performing a
continuous usage decision including obligations, states and contexts.

7 Conclusion

The existing security mechanism on the Android platform is facing great challenges
because of the mobility and openness of mobile computing environment. This paper
proposes a context-aware usage control mechanism to enhance data protection and
resource usage constraints on Android. We propose a context-aware Usage CONtrol
model ConUCON, which is able to take obligations, states and contexts into consider-
ation at usage decisions. Based on ConUCON, we extend the existing security mech-
anism to implement a policy enforcement framework on Android, which enables the
user to grant permissions in a fine-grained manner and to support revocations and mod-
ifications on an application’s permissions at runtime. We also evaluate our mechanism
with some frequently used actions, which shows that the overhead introduced by the
proposed scheme is acceptable. We will further study the application of our ConUCON
model on other types of mobile platform.

Acknowledgements. This work is supported by the National Basic Research Pro-
gram of China (973) under Grant No. 2009CB320703, the Science Fund for Creative
Research Groups of China under Grant No. 60821003, National Key S & T Special
Projects under Grant No. 2009ZX01039-001-001 and the National High-Tech Research
and Development Plan of China under Grant No. 2007AA010304.

References

1. Aich, S., Sural, S., Majumdar, A.K.: STARBAC: Spatio temporal role based access con-
trol. In: Meersman, R., Tari, Z. (eds.) OTM 2007, Part II. LNCS, vol. 4804, pp. 1567–1582.
Springer, Heidelberg (2007)

2. Al-Muhtadi, J., Ranganathan, A., Campbell, R.H., Mickunas, M.D.: Cerberus: A context-
aware security scheme for smart spaces. In: PerCom, p. 489 (2003)

3. Bandinelli, M., Paganelli, F., Vannuccini, G., Giuli, D.: A contextaware security framework
for next generation mobile networks. In: MobiSec. Springer, Heidelberg (2009)

4. Bell, D., LaPadula, L.: Secure computer systems: Mathematical foundations. Technical Re-
port ESD-TR-73-278, MITRE Corporation (1973)

5. Bertino, E., Bettini, C., Ferrari, E., Samarati, P.: An access control model supporting period-
icity constraints and temporal reasoning. ACM Trans. Database Syst. 23(3), 231–285 (1998)

6. Bertino, E., Bonatti, P.A., Ferrari, E.: TRBAC: A temporal role-based access control model.
In: RBAC 2000, July 26-27, pp. 21–30. ACM Press, New York (2000)

7. Biba, K.J.: Integrity considerations for secure computer systems. MTR-3153, Rev. 1, The
Mitre Corporation (1977)

8. Bose, A., Hu, X., Shin, K.G., Park, T.: Behavioral detection of malware on mobile handsets.
In: MobiSys 2008, pp. 225–238. ACM, New York (2008)

Context-Aware Usage Control for Android 343

9. Cheng, J., Wong, S.H.Y., Yang, H., Lu, S.: Smartsiren: virus detection and alert for smart-
phones. In: MobiSys 2007, pp. 258–271. ACM, New York (2007)

10. Covington, M.J., Fogla, P., Zhan, Z., Ahamad, M.: A contextaware security architecture for
emerging applications. In: ACSAC, pp. 249–260 (2002)

11. Covington, M.J., Moyer, M.J., Ahamad, M.: Generalized role-based access control for secur-
ing future applications (November 03, 2000)

12. Dagon, D., Martin, T., Starner, T.: Mobile phones as computing devices: the viruses are
coming! IEEE Pervasive Computing 3(4), 11–15 (2004)

13. Damiani, M.L., Bertino, E., Catania, B., Perlasca, P.: Geo-rbac: A spatially aware RBAC.
ACM Trans. Inf. Syst. Secur. 10(1), 2 (2007)

14. Enck, W., Ongtang, M., McDaniel, P.D.: On lightweight mobile phone application certifica-
tion. In: Proceedings of CCS 2009, pp. 235–245. ACM, New York (2009)

15. F-Secure. Cabir, http://www.f-secure.com/v-descs/cabir.shtml
16. F-Secure. Pbstealer. A.,

http://www.f-secure.com/v-descs/pbstealer_a.shtml
17. Fuchs, A.P., Chaudhuri, A., Foster, J.S.: Scandroid: Automated security certification of an-

droid applications
18. Google. Android, http://www.android.com
19. Hypponen, M.: Mobile Malware. In: USENIX Security Symposium (August 2007),

http://www.usenix.org/events/sec07/tech/hypponen.pdf (Invited Talk)
20. Moyer, M.J., Abamad, M.: Generalized role-based access control. In: 21st International Con-

ference on Distributed Computing Systems, pp. 391–398 (April 2001)
21. Mulliner, C.: Security of Smart Phones. Master’s thesis, Department of Computer Science,

University of California Santa Barbara (June 2006)
22. Nauman, M., Khan, S., Alam, M., Zhang, X.: Apex: Extending android permission model

and enforcement with user-defined runtime constraints. In: ASIACCS 2010, Beijing, China,
April 13-16. ACM, New York (2010)

23. Park, J., Sandhu, R.: The UCONABC usage control model. ACM Transactions on Informa-
tion and System Security 7(1), 128–174 (2004)

24. Park, J., Sandhu, R.S.: Towards usage control models: beyond traditional access control. In:
SACMAT, pp. 57–64 (2002)

25. Ray, I., Kumar, M., Yu, L.: LRBAC: A location-aware role-based access control model.
In: Bagchi, A., Atluri, V. (eds.) ICISS 2006. LNCS, vol. 4332, pp. 147–161. Springer,
Heidelberg (2006)

26. Android reference. Develope Guide,
http://developer.android.com/guide/index.html

27. Sandhu, R.S., Park, J.: Usage control: A vision for next generation access control. In:
MMMACNS (2003)

28. Sandhu, R.S.: Role-based access control. Advances in Computers 46, 238–287 (1998)
29. Schmidt, A.-D., Peters, F., Lamour, F., Albayrak, S.: Monitoring smartphones for anomaly

detection. In: MOBILWARE 2008. ICST (2007)
30. Shabtai, A., Fledel, Y., Kanonov, U., Elovici, Y., Dolev, S., Glezer, C.: Google android: A

comprehensive security assessment. IEEE Security & Privacy (2010)
31. Stevenne, J., Niezette, M.: An efficient symbolic representation of periodic time. In: Finin,

T.W., Yesha, Y., Nicholas, C. (eds.) CIKM 1992. LNCS, vol. 752. Springer, Heidelberg (1993)
32. Xie, L., Zhang, X., Chaugule, A., Jaeger, T., Zhu, S.: Designing system-level defenses against

ellphone malware. In: SRDS 2009, pp. 83 –90 (September 2009)
33. Zhang, X., Aciiçmez, O., Seifert, J.-P.: A trusted mobile phone reference architecture via

secure kernel. In: STC, pp. 7–14. ACM, New York (2007)
34. Zhang, X., Parisi-Presicce, F., Sandhu, R., Park, J.: Formal model and policy specification of

usage control. TISSEC 8(4), 351–387 (2005)

http://www.f-secure.com/v-descs/cabir.shtml
http://www.f-secure.com/v-descs/pbstealer_a.shtml
http://www.android.com
http://www.usenix.org/events/sec07/tech/hypponen.pdf
http://developer.android.com/guide/index.html

Efficient Isolation of Trusted Subsystems in
Embedded Systems

Raoul Strackx, Frank Piessens, and Bart Preneel

IBBT-Distrinet, Katholieke Universiteit Leuven,

Celestijnenlaan 200A, B-3001 Heverlee, Belgium

{raoul.strackx,frank.piessens}@cs.kuleuven.be,
bart.preneel@esat.kuleuven.be

Abstract. Many embedded systems have relatively strong security

requirements because they handle confidential data or support secure elec-

tronic transactions. A prototypical example are payment terminals. To

ensure that sensitive data such as cryptographic keys cannot leak, security-

critical parts of these systems are implemented as separate chips, andhence

physically isolated from other parts of the system.

But isolation can also be implemented in software. Higher-end com-

puting platforms are equipped with hardware support to facilitate the

implementation of virtual memory and virtual machine monitors. How-

ever many embedded systems lack such hardware features.

In this paper, we propose a design for a generic and very lightweight

hardware mechanism that can support an efficient implementation of

isolation for several subsystems that share the same processor and mem-

ory space. A prototypical application is the software implementation of

cryptographic support with strong assurance on the secrecy of keys, even

towards other code sharing the same processor and memory. Secure co-

habitation of code from different stakeholders on the same system is also

supported.

Keywords: software security, memory protection, isolation.

1 Introduction

Many embedded systems, including for instance payment terminals and other
terminals supporting secure electronic transactions, have relatively strong secu-
rity requirements. In order to meet these requirements, security-critical parts
of these systems, like the cryptographic processor, are implemented as separate
chips, and hence physically isolated from other parts of the system [1,2,3,4].
This increases the assurance that sensitive data such as cryptographic keys can-
not leak.

But isolation can also be implemented in software. Many of the hardware
security features of today’s higher-end computing platforms – including mem-
ory protection hardware and hardware to support virtualization – were designed
to enable the software implementation of efficient isolation of components that

S. Jajodia and J. Zhou (Eds.): SecureComm 2010, LNICST 50, pp. 344–361, 2010.
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2010

Efficient Isolation of Trusted Subsystems in Embedded Systems 345

share the computing platform. Based on these hardware building blocks, effi-
cient software implementations of virtual memory, virtual machine monitors or
hypervisors are feasible, and these in turn make it possible to have high assur-
ance isolation between several software components sharing the same physical
hardware [5,6,7,8].

Several trends in embedded system design make it interesting to investigate
to what extent such isolation mechanisms can play a role in secure embedded
systems.

First, the desire to minimize cost pushes towards the reuse of one single proces-
sor for tasks that were traditionally divided over physically separated hardware.
A prime example are the hardware security modules or cryptographic copro-
cessors mentioned above: the increased computational power of general purpose
processors combined with an increased support for high assurance isolation of
software components sharing the processor makes it feasible to design software-
based cryptographic coprocessors. Obviously, this raises security concerns that
need to be investigated. In particular, one would like to maintain the strong
assurance on key secrecy that separate hardware security modules provide.

Second, the co-location of different applications owned by different stakehold-
ers on the same embedded system makes it important to provide high-assurance
isolation between these applications. Prime examples are third-party applica-
tions on mobile phones, multi-application smartcards, or shared sensor networks.
While some of the security requirements of such multi-stakeholder embedded
platforms are similar to these of high-end multi-user computing platforms, there
are also essential differences, and hence it is necessary to re-evaluate and where
needed re-design the security mechanisms to provide secure isolation.

This paper proposes self-protecting modules (SPM): based on a minimal form
of hardware support for memory access control, we show how trusted subsys-
tems can share the same processor and memory space, while still maintaining
strong security properties including strong isolation guarantees between two such
subsystems, and high assurance on the confidentiality of subsystem-private data.

More specifically, the contributions of this paper are the following:

– a novel memory access control model, where access to memory locations can
also depend on the value of the program counter,

– based on this access control model, the design of self-protecting modules:
software modules that can provide strong security guarantees both for the
data they handle as well as for how they can be invoked by other modules,

– a proof sketch of the security of this design,
– and a discussion of several application examples.

The remainder of this paper is structured as follows: in the next Section the
threat model will be presented as well as the security properties provided. Sec-
tion 3 will present SPM’s in more detail including an overview, layout of an
SPM and the required hardware modifications. We also discuss a proof sketch of
the security properties of SPM’s. In Section 4 we discuss possible applications.
Finally we discuss related work and offer a conclusion.

346 R. Strackx, F. Piessens, and B. Preneel

2 Problem Statement

2.1 Threat Model

We assume that an attacker has the ability to inject machine code of his choice
into the memory space of the system under attack. This is a realistic assump-
tion: there are several ways in which an attacker can achieve this. First, the
attacker can exploit a software vulnerability such as a buffer overflow in one of
the applications on the system, and perform a code injection attack [9,10].

Second, the attacker could be one of the stakeholders in a system where several
mutually distrusting stakeholders cohabit the same platform. Third, the attacker
may have compromised the software layer below (for instance the OS kernel).

We also assume that the attacker does not have the ability to perform a
physical attack: he can for instance not disconnect memory from the processor,
place probes on the memory bus, or perform a hard reset of the system. An
example of such an attack is discussed by Halderman [11]: memory chips con-
taining sensitive information are placed in a machine that is under total control
of the attacker, and the secrets can be extracted relatively easy. Such attacks
are not considered in this paper. If such physical attacks are an important con-
cern, the software-based implementation of security proposed in this paper is not
appropriate.

2.2 Security Properties

Under the threat model discussed above, we want to support the execution of
software modules that share the same memory address space guaranteeing the
following security properties:

– Restriction of entry points. Software modules can securely restrict how they
can be invoked. In other words, the entry points into the module can be
defined by the module provider. An attacker can not jump to an arbitrary
location within the module.

– Security of module data. Sensitive information, such as keys, managed by
the module can only be read or modified by code from the module.

– Authentication of modules. Modules have a secure mechanism of identifying
other modules in memory.

– Secure communication between modules. Modules can communicate efficiently
with other modules they have authenticated. Moreover, the integrity and con-
fidentiality of messages passed over this communication channel can be
assured.

– Minimal Trusted Computing Base (TCB). The correct and secure execution
of a module depends only on (1) the hardware, (2) a small part of the
boot process of the system (see Section 3.7), and (3) the correct behavior of
the code of the module itself and any third-party modules that it calls. In
particular, the operating system kernel is excluded from the TCB.

Note that we do not aim to protect a module against vulnerabilities in its own im-
plementation: if a module contains a logical fault (e.g. a faulty API design [12]),

Efficient Isolation of Trusted Subsystems in Embedded Systems 347

or an implementation-level vulnerability (e.g. a buffer overwrite [9], a buffer over-
read [13] or other low-level vulnerabilities [10]), then sensitive data may leak. We
only protect the module against attacks that are a consequence of malicious code
sharing the memory space of the module. Protection against vulnerabilities in the
module itself can be provided by other countermeasures [14].

Note also that we do not protect against denial-of-service: malicious code
running on the machine can go into an infinite loop, or can install any number of
additional modules thus exhausting CPU-time or memory space. In Section 3.10
we discuss some possible mitigations.

3 Self-Protecting Modules

3.1 Overview

A self-protecting module (SPM) is an area of memory with a particular layout
and with particular memory protection settings. Many SPM’s as well as other
code or data can share the same memory address space. Any code outside the
SPM, including code in other SPM’s, could be potentially hostile. Here is an
overview of how SPM’s operate.

First, an SPM is structured in three sections. Each section is a contiguous
range of memory. The SSecret section will contain data that untrusted code
should not be able to access directly. The SPublic section will contain data that
can be accessed in a read-only manner, as well as the code of the module. Finally,
the SEntry section defines the entry points into the module’s code: this is a list
of pointers into the SPublic section, and the only way to call the SPM is by
jumping to an address in this list.

Second, memory access control restricts the rights to read, write or execute
memory locations, based on both the value of the program counter (PC), as well
as on the address being accessed. For instance, the SSecret memory will only
be readable while the PC is in the SPublic section, and the SPublic section is
read-only accessible when the PC is outside the SPM. We discuss the access
control rules in more detail further on.

The creation and initialization of an SPM takes several steps and is displayed
graphically in Fig. 1a. First, the operating system loads the SPublic and SEntry
sections into memory (step 1). This part of the initialization does not need to
be trusted: if an attacker interferes with the loading, it will be detected later on.

Second (step 2), a new hardware instruction, setProtected, to create the
SPM. This instruction defines the boundaries of the three sections of the SPM,
enables memory access control, and clears the SSecret section to all zeros. Mem-
ory protection enforces, from this point on, that only the SPM itself can de-
stroy itself, or modify its contents. As a consequence, the identity of SPM’s can
be securely authenticated from this point on: SPublic and SEntry sections are
world-readable, and together they define the identity of an SPM.

Third, loading the secret data of the module in the SSecret section requires
the assistance of another trusted SPM that we call the vault (step 3). This SPM

348 R. Strackx, F. Piessens, and B. Preneel

(a) Initialization

(b) Destruction

Fig. 1. The life of an SPM from initialization (1a) to destruction (1b)

will authenticate the identity of the newly loaded SPM and then provision it
with its initial secret data.

Of course, the question then remains how the vault itself gets initialized.
For that, we trust (a part of) the boot process: the vault gets installed and
provisioned with secret data at boot time, and is never unloaded.

Once SPM’s are loaded and initialized, they can securely call functionality of
other SPM’s. That is: an SPM can call an entry point of another SPM with the
following guarantees: (1) it is calling into an SPM with the correct identity, and
(2) the integrity and confidentiality of parameters and return values is protected.

Destruction of an SPM is similar to initialization. Fig. 1b displays the steps
graphically. First, the vault is used to store secret data securely on untrusted
storage. In step two, the secret data is overwritten. Finally, access control on the
SPM is disabled and the SPM becomes unprotected memory again.

We now discuss several aspects of this design in more detail.

3.2 Layout of an SPM

An SPM is structured in three memory areas or sections (see Fig. 2) with different
access control settings. Table 1 gives a schematic overview and should be read as

Efficient Isolation of Trusted Subsystems in Embedded Systems 349

follows: the “from” index is determined by the current value of the PC, and the
“to” index is determined by the memory address being accessed. For instance, if
the PC is in the SPublic section, then memory locations in the SSecret section
of the same SPM can be read and modified. An identical instruction issued from
any other location will be prevented. Note that access to a section originating
from a different SPM is treated in the same way as access originating from
unprotected memory.

SSecret. Sensitive data of the SPM is stored in this section. This includes cryp-
tographic keys and application-level data such as credit card numbers, but also
a return stack to implement an SPM’s functionality and other control flow data.

In contrast with the other sections, any attempt to access this section from
outside the SPM will fail. This provides complete isolation of secret data. Data
can only flow out or into this section using the functionality provided by the
self-protected module.

In our design, execution of instructions stored in the SSecret section is pre-
vented for the following reasons: (1) the SSecret section is not a part of the
identity of the SPM that can be authenticated by other SPM’s, and (2) making
any the only writable section non-executable has important security advantages
from the point of view of protecting against vulnerabilities in the SPM itself
[15,16].

SPublic. Contrary to the SSecret section, the SPublic section can be read from
any location, including from unprotected memory locations. The instructions
implementing the functionality of the SPM are placed in this section, as well as
constant non-secret data such as security certificates. The hardware implemented
access control will prevent write instructions to this section from any location.
Therefore, it can’t be modified after access control on the module is enabled and
SPM’s can be authenticated easily (see Section 3.5).

The code in the SPublic section is assumed to be trustworthy. It is responsible
for instance to prevent undesired leaking of secret information to untrusted mem-
ory locations or to untrusted SPM’s. It should also make sure that an attacker
cannot inject false data.

SEntry. It is very hard to guarantee good properties of a piece of machine code
if one cannot restrict the possible entry points into the code [17]. By carefully
choosing the destination of a jump instruction, security sensitive code, such as
encryption functions, could be skipped.

To prevent such attacks, direct calls to the SPublic section from outside the
SPM are prevented (see Table 1). But jumping to the SEntry section is allowed.
This section contains a list of jump instructions to valid locations in the SPublic
section. By making SEntry executable from outside the secured section, and
SPublic not, entry points are effectively restricted to those listed in the SEntry
section. Note that jumping from SEntry to SPublic is allowed by the memory
access control model.

Modifications of the SEntry section are prevented by marking it only read
and executable, both from within as from outside the secured section.

350 R. Strackx, F. Piessens, and B. Preneel

Fig. 2. The layout of an SPM in memory

Table 1. The memory access control matrix

from\to SEntry SPublic SSecret unprotected

SEntry x

SPublic rx rx rw rwx

SSecret

Unprotected/other SPM rx r rwx

3.3 Hardware Modifications

In order to use the proposed solution, some hardware modifications are required.
Besides the access control model, three instructions need to be supported.

setProtected. Installation of an SPM starts with loading the content of its sec-
tions into memory. Up to this point this content is not protected but any
modification will be detected later on. Only after successful execution of the
setProtected instruction with the correct parameters, access control is enabled
and the SPM is protected from hostile code stored at any location outside the
SPM, running at any privilege level.

To simplify checks executed before protection is enabled, the setProtected
instruction assumes a fixed ordering of the SPM’s sections in memory. The SEn-
try section is always placed at the lower memory locations immediately followed
by the SPublic and SSecret sections, respectively. Using this fixed layout, the
instruction only requires 4 arguments; start spm, size sentry, size spublic
and size ssecret (see Fig. 2). The first argument, start spm, provides the
address of the lowest memory location that will be protected, the base of the
SEntry section. The other arguments provide the length of each section as they
are placed in memory.

Efficient Isolation of Trusted Subsystems in Embedded Systems 351

Before access control can be safely enabled, a check needs to be performed
that the new SPM will not overlap with an existing one1.

When the check succeeds, the content of the SSecret section is blanked with
zeros to prevent an attacker from injecting false data. Finally, the SPM is pro-
tected by enabling access control on each section.

isProtected. Before secret data can be passed between SPM’s securely, they
should be able to authenticate one another. The ability to read the code and
public data part of an SPM is not sufficient. Its correct installation must be
proven. This not only includes that the access control is enabled, but also that
the layout of the SPM is as expected.

The isProtected instruction takes a memory location as an argument and
returns the layout of the surrounding SPM in the same format as expected by
the setProtected instruction. In case the memory location is not protected an
error value is returned.

resetProtected. Once an SPM is created, its protection cannot be disabled from
outside the SPM, not even by code running at the processor’s highest privilege
level. Only the SPM can remove it by executing the resetProtected instruction.

To keep data stored in the SSecret section secret from attackers, it should be
destroyed before access control is disabled. Since we need to trust the SPM code
to correctly clean up for other purposes as well (see Section 3.6), we require the
SPM to overwrite the data explicitly rather than blanking it automatically when
the resetProtected instruction is issued.

3.4 Initialization of SPM’s

Initialization of SPM’s takes three steps (see Fig. 1a). First, the content of its
SEntry and SPublic sections is loaded in unprotected memory (step 1). Next, its
SSecret section is blanked by the setProtected instruction and access control on
all sections is enabled (step 2). Finally, the SPM should initialize its internal data
structures (step 3). For example, a new return stack should be created within
the SSecret section as control flow data of the SPM should never be stored at an
unprotected location. There are two approaches for the initialization of SPM’s.

First, it may be possible to initialize it using only public data. This situation
occurs when only secure execution is an issue, not secrecy. When the provided
data stays the same over time, it could be shipped and placed alongside the code
in the SPublic section. To allow its modification by the SPM, it can be copied
to the SSecret section. In case the public data changes repeatedly over time and
only integrity needs to be protected, the SSecret section could be created and
cryptographically signed by a trusted third party and sent to the SPM. After
checking the signature, the provided data can be used to initialize the SPM.

1 In principle the SEntry and SPublic sections could be shared by multiple instances

of the same SPM to reduce memory consumption. This optimization and its security

issues are considered to be out-of-scope for this paper.

352 R. Strackx, F. Piessens, and B. Preneel

Second, the SSecret section could be initialized using secret data stored in a
cryptographically encrypted and signed file. As a secret key must be available
for decryption and since prior to initialization, an SPM can not contain secret
data, help of another trusted SPM is required. Our design proposes a special
SPM called vault to provide such functionality. We discuss this in Section 3.7.

3.5 Authentication of SPM’s

Previous sections described how an SPM could be loaded into memory from an
untrusted source. Even when a software module has been received correctly, it
may have been modified while it was stored on disk. Before it can be trusted
with secret data, its trustworthiness must be validated.

For this purpose, each SPM is shipped with a security report. It states that
the correct implementation of the SPM has been verified by its issuer. In case
that third party is trusted, so can the SPM when the security report is valid.
Recall that our threat model assumes that the SPM does not contain logical
faults nor implementation-level vulnerabilities (see Section 2.1).

By placing the security report in the SPublic section, it can be accessed easily
and efficiently as access control of the SPM allows read access from any location.

Each security report contains following information:

– Hash of SEntry and SPublic sections : To be able to establish trust in an
SPM, it must be identical to the SPM certified by the trusted third party. By
providing a hash result of the SEntry and SPublic sections2, any modification
will be detected.

– The layout of the SPM : When incorrect parameters are supplied with the
setProtected instruction, the SPM may use unprotected memory locations
to store secret data. To avoid such situations, the layout of the SPM is
included in the security report. Using the results of the isProtected in-
struction, the layout of the newly installed SPM can be validated.

– Cryptographic signature: The security report is signed with its issuer’s private
key. An SPM that wishes to verify the trustworthiness of another, has a list
of trusted certificate authorities (CA’s). When a chain of trust can be built
from a CA to the public key of the issuer, the security report can be trusted.

If an SPM A wishes to authenticate SPM B, it should (1) verify the signature
of B’s security report, (2) verify the hashes of the SEntry and SPublic sections,
and (3) verify the SPM layout using the isProtected instruction.

3.6 Secure Communication

The ability to communicate securely between two mutually trusted SPM’s does
not only result in a more modular system, it is also required to bootstrap the
system. Section 3.7 describes how an SPM loaded from an untrusted location
2 The hash of the SPublic section implies knowledge of the security report. To break

this circular dependency, the security report is replaced with zeros during calculation.

Efficient Isolation of Trusted Subsystems in Embedded Systems 353

can be authenticated and provided its secret data. This Section presents how two
SPM’s can communicate with one another while preserving secrecy and integrity
of the exchanged messages. Injection of false data is prevented as well.

Each of the presented protocols assumes that the SPM’s know each others
location and implemented functionality. In practice this can be accomplished by
requiring each SPM to register itself to a centralized service. As this service does
not have to be trusted, its inner workings are not considered in this paper.

One-Way Authentication. Some applications only require that one endpoint
of the communication channel is authenticated. Consider for example an SPM
SecureRandom, providing the service of secure random number generation. For
obvious security reasons, the client needs to authenticate the service. SecureRan-
dom in turn, has no need to verify the trustworthiness of its client as it does not
leak any secrets, it only creates unpredictable random numbers.

The protocol described in this Section offers the following security guarantees
for communication between SPM’s: authentication of one endpoint, secrecy and
integrity of the messages sent and received.

Fig. 3 displays the protocol. In the first step, the client authenticates Se-
cureRandom. It does so by fetching its security report from its SPublic section
and validating it. This operation can be performed without leaving the client
SPM as SEntry and SPublic sections are world-readable (see Section 3.2).

Next, the generation of a new random number is requested. This request can
be made similar to an ordinary function call; by jumping to the correct location
in the SEntry section of SecureRandom and passing arguments in registers. How-
ever, unlike a function call, execution cannot return directly to the instruction
following the call instruction, as this would provide SecureRandom with a way
of (re-)entering the calling SPM at an address that is not in the SEntry list, thus
enabling return-into-libc-like attacks [17]. The access control on the SPM will
prevent such jump instructions into the SPublic section as it originated from
outside the SPM. Instead, returning from a service call is implemented by creat-
ing a new entry point, client entry, in the SEntry section and sending it as an
argument with the request. After the random number is created, SecureRandom
will then issue a jump instruction to the specified entry point. There control flow
is directed to the correct, fixed, location, as allowed by the access control. This
is similar to continuation-passing-style programming.

In the third step of the protocol, the random generator returns the random
number k, by placing it in a register and jumping to the return entry point
specified by the client.

Placing sensitive information in registers is an inexpensive solution as it does
not require encryption and signing. Unfortunately it can only be used when a
small amount of data needs to be transferred from one SPM to another. When
bulk data needs to be exchanged, it can either be divided and transported using
multiple jump instructions, or it can be communicated in untrusted, unprotected
memory after appropriate encryption and signing. The keys used can than be
exchanged securely in registers.

354 R. Strackx, F. Piessens, and B. Preneel

Fig. 3. One-way authentication between SPM’s. A client authenticates the random

number generator before requesting a new random number.

Mutual Authentication. The protocol presented in Section 3.6 can be modi-
fied easily to authenticate both communication endpoints (see Fig. 4). As before,
the client initiates the protocol and authenticates the vault. Next, a message is
sent requesting the secret data. The entry point to be used to return the data,
client entry, is added as well as the location of the security report of the client,
client sec rep.

At the reception of the message, vault must verify that the security report of
the client is valid and trusted. To prevent sending the secret to an unprotected
location or to an incorrect SPM, vault also has to check that the given entry
point is located within the SPM described by the security report. Only when
both tests are valid, the secret information, k, will be returned.

Fig. 4. Two-way authentication between SPM’s

Mutual Authentication with Support of Both Endpoints. The previ-
ous protocol is inefficient in case multiple authenticated communication events
between the same SPM’s occur. With support of both endpoints, performance
overhead can be reduced by avoiding repeated checks of the security reports.

Fig. 5 displays the protocol where SPM’s A and B wish to communicate. The
protocol establishes a persistent secure channel in only two passes.

First, A authenticates endpoint B. After trust is established, the notify -
destruction entry point of B is called providing an entry point of A, notifyA

that should be called when B is about to be destroyed. A freshly generated
cryptographic nonce NBA is also added to the request. As only B has knowledge
of the nonce, any message containing NBA must be sent by B. This avoids
repeated authentication of B.

In the second part of the protocol endpoint B performs identical steps, pro-
viding A with the entry point notifyB and the fresh nonce NAB. Now A and
B are able to communicate securely without repeated authentication events. As
before, entry points of the other SPM can be called passing secret data in reg-
isters. Providing the received nonce with each communication event, proves the
origin of the message.

Efficient Isolation of Trusted Subsystems in Embedded Systems 355

Fig. 5. Two-way authentication between SPM’s with support

3.7 Vault: Bootstrapping Trust

After loading the SEntry and SPublic sections into unprotected memory and
calling the setProtected instruction (step 1 and 2 in Fig. 1a respectively), the
SSecret section of newly created SPM’s is blank. As described in Section 3.4,
SPM’s can be easily initialized using public data (step 3). However, in some cases
secret data, for example a cryptographic key, of a previous instance of an SPM
needs to be restored. A special SPM called vault provides such functionality.
It is able to store secret data securely in persistent but untrusted memory and
guarantees that the secret data will only be returned to the same SPM that
requested its storage.

Requesting storage goes as follows. First, an SPM establishes an one-way
authenticated channel to the vault. Next, the secret data is transferred to the
vault where it is appended with the security report of the requesting SPM,
encrypted and signed with the vault’s cryptographic keys and stored in persistent
storage. Note that vault only stores secret data from other SPM’s. As it does
not provide any of its own secrets, it does not have to trust its clients.

A different instance of the same SPM, for example after the system is re-
booted, is now able to retrieve the stored secrets from the vault. First, it estab-
lishes a two-way authenticated channel with the vault. The secret data is fetched
from persistent storage3, its signature checked and decrypted by the vault. Only
when the stored security report matches the requesting SPM’s, the secret data
is passed over the secure channel.

This leaves the problem of how the vault itself gets initialized with its keys.
For this we trust (a part of) the boot process: the system is modified to create the
vault as early in the boot sequence as possible. Unlike any other SPM, its secret
data is provided directly by hardware by copying it from protected memory that
is only accessible at boot time.

3.8 Destruction

Before protection on the module is disabled, the SPM’s destruction should be
prepared. In general two cases need to be considered. First, the stored secret data
in the SPM. When access control is disabled, it can be accessed from any location.
To avoid disclosing it in unprotected memory, it needs to be overwritten.

3 How the secret data is found on persistent storage is not relevant from a security

point of view and is omitted for clarity. However, the vault could return an identifier,

for example a filename, when storage is requested and stored unprotected.

356 R. Strackx, F. Piessens, and B. Preneel

Second, other SPM’s may assume the presence of the trusted, protected mod-
ule at a certain memory location. These SPM’s need to be notified of the immi-
nent destruction to prevent them from issuing jump instructions to unprotected
and/or untrusted code while passing secret data in registers.

3.9 Discussion

Limitations of the Current Design. The proposed solution reduces the TCB
to only the SPM’s used, a small part of the boot process and the hardware. By
eliminating the kernel from the TCB, its correct behavior can no longer be
trusted upon and access in any way conflicting with the access control model
presented in Section 3.2 needs to be prevented. As a result, support of many
advanced features, such as interrupts, virtual memory and others, must be im-
plemented in the SPM’s, in collaboration with the hardware. Supporting these
features is considered to be out of the scope of this paper.

– interrupts : when an interrupt occurs during the execution of an SPM, sen-
sitive information stored in registers will be accessible to the kernel. There-
fore SPM’s should be executed in the highest interrupt level, preventing
interrupts from being handled during execution. Hence, SPM implementors
should make sure that SPM calls return within a reasonable amount of time.

– swapping: in case more memory is required than is available on the machine,
the kernel will swap chunks of memory to disk. This may not only prevent
the correct memory location from being called, as secret data is stored at
an unprotected location, confidentiality and integrity may be compromised.
Therefore, swapping of SPM’s should be prevented.

– direct memory access (DMA): peripheral devices often use DMA to access
memory locations directly; protected memory locations must be excluded.

– paging: paging allows the same physical page to be mapped to different
address spaces, even at different addresses. In itself this does not pose a
security problem as long as access control remains correctly enforced. In
practice this may be difficult, as an SPM may span multiple pages and
additional pages may be injected at runtime. Support for paging is considered
to be out-of-scope, SPM’s are currently expected to use physical addresses.

– concurrent execution of SPM’s : When multiple SPM’s exchange secret data,
authentication of endpoints does not suffice. In the limited amount of time
between authentication and a communication event, one of the endpoints
may have been removed. Issuing jump instructions in that case, may leak
secret data stored in registers. For this reason, concurrent execution of SPM’s
is currently not supported.

Note that these assumptions are only made during the execution of self-protecting
modules. Execution of unprotected code, including concurrent execution on a dif-
ferent core, are not restricted as long as the access rights presented in Section 3.2
are enforced. By using a multi-core processor to execute the kernel on a different
core than the SPM’s, the system will remain responsive.

Efficient Isolation of Trusted Subsystems in Embedded Systems 357

Proof Sketches of Security Guarantees

Security of module code. After installation, an SPM contains all the code that
implements its functionality. It cannot be modified nor influenced, not from
outside nor from within the SPM, and can only be called using the entry points
into the module as defined by the module’s provider.

This property almost directly follows from access control enforced on SPM’s.
Only the SEntry section is executable from outside the module. A user has
no other option than to use these specified entry points. After calling an entry
point, the SPM is entered and control flow is directed to the SPublic section. Both
SPublic as SEntry sections are now executable. As both sections are not writable
from any location, an attacker is not able to modify the stored instructions.

Only modification of control data still needs to be considered. In the SSecret
section, a return stack may be built to allow easy implementation of the SPM’s
functionality. Implementation vulnerabilities may allow this data to be overwrit-
ten, for example by exploiting a buffer overflow vulnerability [9,10]. Modification
of a return address, frame pointer, or other control data may result in modified
behavior of the SPM as defined by the SPM’s provider. However, it is assumed
that code stored in the SPM does not contain such vulnerabilities.

While an attacker is able to modify the code of the SPM before access control
is enabled, such modification will be detected during authentication.

Security of module data. Sensitive data such as keys stored in the module must be
protected. Access must be restricted to the SPM and unless explicitly specified,
secret data must not leak. For example, a key may only leave the SPM when it
is securely passed to another, trusted, SPM or when it is encrypted and signed.

Isolation of data stored in the SSecret section is directly provided by the
access control model enforced upon it. Any access attempt from outside the
SPM is prevented. In contrast, instructions within the SPM are allowed to read
and modify data stored in the SSecret section. Considering that the code of the
module is secure and cannot be modified nor influenced after installation, as
stated by the previous security guarantee, we conclude that secret data can only
leave the SPM as implemented by the SPM’s provider.

Finally the destruction of an SPM needs to be considered. As access control
only allows an SPM to disable its own protection and the SPM is able to enforce
the conditions under which the resetProtected instruction is issued, any secret
data can be overwritten prior to the destruction of the SPM.

Secure communication between modules. Combining the strong isolation of data
and code with a secure communication scheme between SPM’s, will result in a
modular and secure subsystem. Only the existence of such a secure communi-
cation mechanism still needs to be argued. In order to pass secret data between
modules securely, (mutual) authentication and a secure channel are required.

To authenticate an SPM, its implementation needs to be verified. Access con-
trol restricts execution of code within the SPM to the SEntry and SPublic sec-
tions. As these sections are world-readable, the functionality of an SPM can be

358 R. Strackx, F. Piessens, and B. Preneel

checked easily. The presence of self-modifying code or code injection attacks does
not have to be considered; in a previous paragraph it is already argued that after
installation the code of an SPM cannot be modified. Finally, the isProtected
instruction can be issued to check the correct setup of the SPM’s protection.

Authentication can only consider the SEntry and SPublic sections as the
SPM’s protection will prevent access to the SSecret section. Without proper se-
curity measures, an attacker may still carefully craft an SSecret section. This
could, for example, trick the trusted code into storing received secret data at
an unprotected location encrypted using a key under the attackers control. Such
spoofing attacks are prevented by automatically clearing the entire SSecret sec-
tion when the setProtected instruction is issued. After initialization the SPM’s
are responsible to prevent injection of false data.

Next, a secure channel between two modules can be established. Authenticity
and confidentiality of the exchanged messages must be provided. SPM’s can
be called like ordinary functions; by directly modifying the program counter
of the processor. Messages can be passed using registers. It is assumed that
the execution of modules cannot be interrupted. Therefore, the secrecy of data
passed in registers cannot be breached and both requirements are met.

Finally, it must be assured that the secure channel is set up between the
correct SPM’s. Between authentication and the first message, an endpoint may
be destroyed. In that situation, secrecy of the data stored in registers cannot be
ensured. An attacker may have replaced the SPM with malicious code.

To prevent such situations, control flow must not leave the SPM between
authentication and the communication event. Because SPM’s can only be de-
stroyed by themselves, the authenticated SPM must have been entered between
the two events. However, it is enforced that at any time no two SPM’s can be
executing simultaneous. Therefore such attacks are prevented.

Minimal trusted computing base (TCB). The hardware and implementation of
vault forms the root of trust of the systems. Because modules are able to control
the flow of secret data to authenticated modules or to unprotected memory under
specific conditions, a chain of trust can be built. This trust does not include the
kernel. As a result, the TCB only consists of the trusted modules, a small part
of the boot process creating a root of trust and the hardware.

3.10 Extensions

The current design does not allow SPM’s to be interrupted during execution or
swapped to disk. Leveraging these limitations, an attacker is able to execute a
denial-of-service attack (DoS), for example, by installing an SPM that goes into
an infinite loop. On devices that support multiple privilege levels, the chances of
such an attack can be reduced easily. By restricting the setProtected instruc-
tion to kernel mode, an attacker with only user privileges must request the kernel
for the protection of an SPM. Before this request is validated, security checks
can be performed. For example, only SPM’s of trusted issuers could be allowed.
Note that an attacker who compromised the kernel to avoid these restrictions,
is also able to power the system down, executing a similar denial-of-service.

Efficient Isolation of Trusted Subsystems in Embedded Systems 359

4 Applications

Many embedded systems, for instance payment terminals and mobile phones
running third-party applications including m-banking applications, have strong
security requirements. For example, sensitive data such as cryptographic keys
must not leak. To assure these requirements, secret data is stored and computed
on a physically separated co-processor and memory, packaged together on a
single chip called a hardware security module (HSM). Many modern PC’s are
already being shipped with such a chip [1]. Similar hardware for mobile devices
is being developed.

However, isolation can also be guaranteed by SPM’s in software. This reduces
manufacturing cost as a separate co-processor and memory is no longer required.
For the same reason power consumption is reduced, making secure isolation
possible for low-end devices or improve mobility. Prime examples are multi-
application smartcards and shared sensor networks.

However, there are differences between HSM’s and SPM’s. First, a Trusted
Platform Module (TPM) [1], the HSM found on many desktop PC’s, can only
execute the cryptographic algorithms installed on the chip when it was manufac-
tured4. Other algorithms on secret data still need to be executed in unprotected
memory under a huge TCB. In contrary, SPM’s are able to isolate any module.

Second, many HSM’s do have advantages over SPM’s. Secret data can also be
protected against physical attacks. However, in many situations the user with
physical access to the device can be trusted. A user trying to access his banking
account, for example, is only interested to keep his/hers login data secure.

Third, HSM’s could also be used to improve performance. As they are built
with a specific purpose, they can be more easily optimized for performance. How-
ever, when the HSM chips can be omitted, it could be replaced by an additional,
general-purpose processor core. This would allow a performance improvement of
any process, not just cryptographic algorithms.

5 Related Work

Many security measures have been proposed to increase the security of comput-
ing devices. Early work proposed hardware support for multiple privilege modes
in the processor to separate trusted from untrusted code [18]. From these added
hardware features, a balance between secure and performant architectures have
been investigated, leading to a whole design-space ranging from micro-kernels to
large monolithic kernels [19].

The Dyad HW[2] and other architectures [3,4] uses hardware features more
extensively. Executing trusted code on a co-processor provides strong isolation,
even protecting against physical attacks.

Hardware security modules such as the TPM [1], allow integrity measure-
ments during boot process. While it is able to attest a trusted boot sequence, it
4 However, there exist HSM chips that are able to execute custom algorithms within

the secured boundaries.

360 R. Strackx, F. Piessens, and B. Preneel

relies on the correctness of the entire code base [6]. An infeasible secure solution
considering the millions lines of code of modern monolithic kernels.

Recently, virtualization techniques, with or without hardware support, are
considered to provide isolation between trusted and untrusted code. For example,
Nizza [5], uses a minimal, trusted kernel to run both trusted AppCores and a
legacy operating system running untrusted processes. However, its TCB still
consists of hundred of thousands lines of code.

Oslo [6] takes advantage of virtualization instructions found in recent AMDTM

and Intel R© processors to establish a dynamic root of trust, providing more flexi-
bility. Flicker [7,8] also takes this approach. Running trusted code as virtualized
machines, called PAL’s and taking advantage of the functionality of a TPM,
strong isolation is provided with a small TCB. However, maintaining state be-
tween a PAL’s executions incurs a large performance overhead. In addition, the
requirement of both a TPM as hardware supported virtualization make it ill-
equipped for mobile and embedded devices.

6 Conclusion

Many embedded systems, for instance payment terminals and mobile phones run-
ning third-party applications including m-banking applications, have relatively
strong security requirements.

We propose a novel access control model where access to memory locations
also depends on the value of the program counter. Using this approach a secure
subsystem can be built and isolated in software instead of hardware, reducing
manufacturing cost and offering strong security guarantees to low-end devices
such as multi-party smartcards and sensor-networks.

Acknowledgments. This research is partially funded by the Interuniversity
Attraction Poles Programme Belgian State, Belgian Science Policy, and by the
Research Fund K.U.Leuven.

References

1. Trusted Computing Group: Tpm main specification,

http://www.trustedcomputinggroup.org/

2. Yee, B.: Using secure coprocessors. PhD thesis (1994)

3. Smith, S., Weingart, S.: Building a high-performance, programmable secure copro-

cessor. Comput. Networks 31(8), 831–860 (1999)

4. Chen, B., Morris, R.: Certifying program execution with secure processors. In:

USENIX HotOS Workshop, pp. 133–138 (2003)

5. Singaravelu, L., Pu, C., Härtig, H., Helmuth, C.: Reducing TCB complexity for

security-sensitive applications: Three case studies. In: Proceedings of the 1st ACM

SIGOPS/EuroSys European Conference on Computer Systems 2006. ACM, New

York (2006)

6. Kauer, B.: OSLO: improving the security of trusted computing. In: Proceedings of

16th USENIX Security Symposium, pp. 1–9. USENIX Association (2007)

http://www.trustedcomputinggroup.org/

Efficient Isolation of Trusted Subsystems in Embedded Systems 361

7. McCune, J., Parno, B., Perrig, A., Reiter, M., Isozaki, H.: Flicker: An exe-

cution infrastructure for TCB minimization. In: Proceedings of the 3rd ACM

SIGOPS/EuroSys European Conference on Computer Systems 2008. ACM, New

York (2008)

8. McCune, J., Perrig, A., Reiter, M.: Safe passage for passwords and other sensitive

data. In: Proceedings of NDSS (2009)

9. Aleph1: Smashing the stack for fun and profit. Phrack 49 (1996)

10. Younan, Y., Joosen, W., Piessens, F.: Code injection in c and c++: A survey

of vulnerabilities and countermeasures. Technical report, Departement Computer-

wetenschappen, Katholieke Universiteit Leuven (2004)

11. Halderman, J., Schoen, S., Heninger, N., Clarkson, W., Paul, W., Calandrino, J.,

Feldman, A., Appelbaum, J., Felten, E.: Lest we remember: Cold boot attacks on

encryption keys. In: USENIX Security Symposium, pp. 45–60 (2008)

12. Longley, D., Rigby, S.: An automatic search for security flaws in key management

schemes. Computers & Security 11(1), 75–89 (1992)

13. Strackx, R., Younan, Y., Philippaerts, P., Piessens, F., Lachmund, S., Walter, T.:

Breaking the memory secrecy assumption. In: EUROSEC 2009: Proceedings of the

Second European Workshop on System Security, pp. 1–8. ACM, New York (March

2009)

14. Erlingsson, Ú.: Low-level software security: Attacks and defenses. In: Aldini, A.,

Gorrieri, R. (eds.) FOSAD 2007. LNCS, vol. 4677, pp. 92–134. Springer, Heidelberg

(2007)

15. Microsoft Corporation: Changes to functionality in microsoft windows xp service

pack 2,

http://www.microsoft.com/downloads/

details.aspx?FamilyID=7bd948d7-b791-40b6-8364-685b84158c78

16. The PaX Team: Documentation for the pax project,

http://pax.grsecurity.net/docs/pax.txt

17. Shacham, H.: The geometry of innocent flesh on the bone: Return-into-libc with-

out function calls (on the x86). In: Proceedings of the 14th ACM conference on

Computer and communications security, p. 561. ACM, New York (2007)

18. Corbato, F., Vyssotsky, V.: Introduction and overview of the Multics system. In:

Proceedings of the fall joint computer conference, part I, November 30-December

1, pp. 185–196. ACM, New York (1965)

19. Liedtke, J.: Toward real microkernels. Communications of the ACM 39(9) (1996)

http://www.microsoft.com/downloads/details.aspx?FamilyID=7bd948d7-b791-40b6-8364-685b84158c78
http://www.microsoft.com/downloads/details.aspx?FamilyID=7bd948d7-b791-40b6-8364-685b84158c78
http://pax.grsecurity.net/docs/pax.txt

Enhancing Host Security Using External
Environment Sensors

Ee-Chien Chang1,�, Liming Lu1, Yongzheng Wu1,2,��,
Roland H.C. Yap1, and Jie Yu3,� � �

1 School of Computing, National University of Singapore, Singapore

{changec,luliming,wuyongzh,ryap}@comp.nus.edu.sg
2 Temasek Laboratories, National University of Singapore, Singapore

3 Department of Computer Science

National University of Defense Technology, China

yj@nudt.edu.cn

Abstract. We propose a framework that uses environment information

to enhance computer security. We apply our framework to: enhance IDS

performance; and to enrich the expressiveness of access/rate controls.

The environment information is gathered by external (w.r.t the host)

sensors, and transmitted via an out-of-band channel, and thus it is hard

for adversaries not having physical access to compromise the system.

The information gathered still remains intact even if malware use rootkit

techniques to hide its activities. Due to requirements on user privacy, the

information gathered could be coarse and simple. We show that such sim-

ple information is already useful in several experimental evaluations. For

instance, binary user presence indicating at a workstation can help to de-

tect DDoS zombie attacks and illegal email spam. Our framework takes

advantage of the growing popularity of multimodal sensors and physical

security information management systems. Trends in sensor costs sug-

gest that it will be cost-effective in the near future.

Keywords: intrusion detection, spam, sensors, access control, host

security.

1 Introduction

Securing computers against malware is increasingly difficult today. Anecdotes
abound that the survival time of an unpatched PC running Windows XP con-
nected to the Internet is in the order of minutes [1,2]. The recent Conficker
worm [3] is estimated to have infected 6% of computers on the Internet.

Often the goal of the attackers is to infect a host to make it part of a botnet.
The malware may be mostly dormant until it is activated, as such, it can be
difficult to detect that the host is infected. The detection problem is made worse

� Chang is supported by Grant R-252-000-413-232 from TDSI.
�� Wu and Yap are supported by Grant R-394-000-037-422 from DRTech.

� � � This work was done during internship at the National University of Singapore.

S. Jajodia and J. Zhou (Eds.): SecureComm 2010, LNICST 50, pp. 362–379, 2010.
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2010

Enhancing Host Security Using External Environment Sensors 363

since malware can exploit rootkit techniques to hide its presence and also any
activity. For example, the Mebroot rootkit infects the master boot record of the
hard disk allowing it to infect the Windows kernel during boot. After that it
hides the changes to the master boot record to make it difficult for antivirus
software to detect its presence.

Most security mechanisms tend to be host-based, and are often part of the
operating system or interact with it. A primary exception is network-based se-
curity mechanisms which analyze network data and traffic. While there are some
successes in detecting the presence or activity of malware by network-based se-
curity mechanisms, there are many other sources of information outside the host
that are also useful for improving detection.

In this paper, we propose fusing environment information in decision mak-
ing so as to enhance security. Our framework is designed to protect stationary
machines (e.g. workstation) which users work on rather than servers controlled
remotely or mobile laptops. We take advantage of the growth in pervasive com-
puting and sensor technology providing relatively cheap sensors which can take
a variety of physical measurements. We use the sensors in a variety of ways. As
a measurement of how a resource is being used on the host, e.g. correlating CPU
usage (the resource) with CPU temperature (the sensor measurement). The sen-
sors allow us to determine the presence or absence of the user on the host and
physical user activity such as keyboard usage. We remark that “user” means
the human using the host and although there may be more than one user, we
simply say user. Although it is possible to obtain comprehensive user activity
information, e.g. user identity and key strokes from surveillance cameras, due
to concerns of user privacy, we generally only consider sensors that only pro-
vide binary information like the presence of a user or keyboard activity or other
coarse-grained indirect data. Another source of environment information could
be from physical security information management systems. Such systems are
already in-place in many organizations and could provide relevant environment
information whereby user activities can be derived, e.g. the door entry control
system gives evidence that a particular user is in the machine room.

One usage of environment information is in enhancing IDS performance by
providing an external source that is difficult to be accessed or compromised by
malwares or intruders. The results of an environment sensing based malware de-
tector can be correlated with alerts from an IDS to reduce false positives. While
existing IDS may incorporate network traffic information in gateways which are
external to the host, the difference is that we make further use of other tamper-
proof sensors and fuse it with user presence and activity. The following example
shows the difference from the network intrusion problem. Consider the case of a
single email being sent. At the network level, there is insufficient information to
be able to identify whether it is a spam email generated by malware. Whereas,
in our framework, suppose that the email is sent in the absence of the user and
user activity, we can conclude that the email has been sent automatically. Fur-
thermore, in the absence of any additional information, it is reasonable for a
default rule to classify this email as spam activity. In this paper, we give some

364 E.-C. Chang et al.

application scenarios of malware detection – detecting when a botnet is using
the host for email spam, distributed denial of service (DDoS) attack, and as a
compute engine for offline dictionary attacks.

Environment information is also useful in other security applications. It in-
creases the expressivity of access control and rate control policies by requiring
privileged actions on a host to be correlated with physical user presence and
physical activity. This prevents remote attacks which escalate privileges, e.g. en-
force privileged actions to be only be performed if the administrator is present
and using the console.

One advantage of our framework is that we are able to give reliable security
guarantees even when the host is compromised. Without the fusion of sensor
data from the environment surrounding the host, the attacker can simply hide
inside the host or erase traces of an attack or intrusion. Some malware may even
be able to shut down IDSs deployed in the host. A limitation of our framework is
that the sensor data obtained is coarse grained and possibly noisy. Nevertheless,
our evaluations show such coarse data is already useful in identifying certain
mismatches between the host’s and user’s physical activities.

The rest of this paper is organized as follows. Sec. 2 introduces the framework
of integrating the data from external sources to the access control or intru-
sion detection logic. We apply the framework to malware detection in Sec. 3
to demonstrate that information external to the host enhances the detection of
malware activity. The framework is extended to rate and access control in Sec.
4. Related work is discussed in Sec. 5 and Sec. 6 concludes.

2 The Framework

Fig. 1 illustrates the relationship among different entities in our framework. The
host considered in this paper is a stationary computer which typically includes
keyboard, mouse, hard-disk, CPU, monitor, etc., and is operated through key-
board and mouse. Under this framework, users are persons who are directly ac-
cessing the computing resources. To access the computing resources, a user needs
to be in the proximity of the host and interacting with it directly through the
keyboard, mouse and display. Alternatively, users or attackers could be access-
ing the host remotely through a network connection. All network traffic in and
out of the host is channeled through some routers. We consider all information
processed and stored in the host as internal information. Potentially, internal
information can be manipulated by an adversary if the host is compromised. We
are more interested in the external information. In general, we call sensors in-
stalled outside the host external sensors, and the information gathered external
information. External sensors could be an infrared sensor detecting whether a
user is sitting in-front of the host’s display, or a sensor installed in the router
logging traffic information. The infra-red sensor is an example of an environment
sensor gathering information from the physical environment, instead of the com-
puted data from the host or routers. Information gathered can be classified into
two types:

Enhancing Host Security Using External Environment Sensors 365

1. Information obtained from measuring computing resource usages, e.g. a tem-
perature sensor measuring temperature near the motherboard (correspond-
ing to CPU load), and a microphone to listen to sounds from the disk.

2. Information measuring user’s activities, e.g. infrared sensors to detect user
presence, pressure sensor to measure keyboard typing, etc. One method uses
infra-red in a similar way as the common shop entrance alarm system. A
reliable method is to derive the user presence from video captured by camera
[14,15] but that may raise privacy concerns. However, video privacy was
found to be an acceptable tradeoff to users [15].

Although we do not exclude the use of surveillance cameras as the environment
sensors in our framework, the issue of user privacy must be taken into consider-
ation in an implementation of the framework. A microphone not only can detect
keyboard activity, but it can also record conversation among the users. A camera
recording the user or display can also violate workplace privacy policies. Hence,
we mainly consider binary information on user activities, such as whether a user
is present, or detecting keyboard activities. Such information can be captured
by sensors that are designed to give binary output or other coarse information,
which alleviates privacy concerns, e.g. an infra-red sensor that detects user pres-
ence, or a camera that only outputs the detection outcomes.

All information gathered is channeled to a monitor which makes decisions.
External sensors should communicate to the monitor securely to ensure the host
is unable to compromise its integrity, authenticity and confidentiality. One solu-
tion is to have a separate private network for the sensors, e.g. a wireless sensor
network with the external sensors as the nodes. Alternatively, the communi-
cation can still be tunneled through the host using cryptographic means. The
privacy requirements and the need for a separate private network fit well with
wireless sensor networks equipped with multi-modality sensors. There are many
commercial wireless multi-sensor boards which fit our purposes, e.g. SBT80 from
the EasySen [4] contains a number of sensors including infra-red, temperature
and acoustic.

Besides wireless sensor networks, many physical security systems can provide
relevant information for our monitor. For example, the door entry control system

Sensors

user
Host

Physical environment

Monitor
Routers

Internet

control/feedback

information flow

Fig. 1. The components of the framework

366 E.-C. Chang et al.

can give information about who gained access to a machine room, while surveil-
lance cameras could reliably detect the presence of users near a console or other
devices like scanner and printer. Although physical security systems are costly,
some organizations could already have such systems in-place, together with a
management system that is able to collect and process the data.

It is possible for an attacker to gain information similar to the sensory data,
if the host is compromised, e.g. CPU temperature can be collected by the host
and user presence can be inferred from keyboard or mouse events. Nevertheless,
the CPU temperature and user presence information collected by sensors are
still authentic and not subject to tampering.

3 Applying to Malware Detection

We now apply our framework to malware detection and give three malware detec-
tion implementations which detect email spamming, DDoS attack and password
cracking.

A simple setup is to use two kinds of environment sensors. One detects whether
the user is using the host, i.e. sitting at the machine. This can be done in a
variety of ways, ranging from motion sensors to infrared sensors to video cameras.
Another sensor records the temperature near the CPU. The first class of sensor
records user activities while the second class measures the usage of computing
resources. Network traffic of the host is also monitored at the router.

In our experiments, the malicious activities are carried out by a modified
Agobot worm (also known as Gaobot). The worm sends spam email to other
email accounts using the SMTP protocol, carries out a DDoS attack by flooding
a target with UDP packets, and consumes CPU resources on the host to perform
password cracking by hashing a dictionary of possible passwords.

The basic idea behind our detection rule is simple: the patterns of legitimate
resource usage when the user is interacting with the host, is different from that
when no user is present. If malware does not have the user presence information,
its behavior will not be correlated with the user presence. We divide the time into
intervals, in each interval, the user is either present or absent. The changepoint
detection algorithm [5,6] is then applied to each interval to detect malicious
activity. Table 1 gives an overview of the detection rules.

Table 1. Overview of malware detection rules

Malware Threat Rules for triggering alarms

Email Spammer (i) No user is present, and at least one email is sent; or

(ii) A user is present, and changepoint detection decides that

the cumulative sum of email sent exceeds a threshold.

DDoS Zombie Changepoint detection detects the cumulative sum of the net

outgoing packet rate exceeds thresholds for user present and absent

Password Cracker Changepoint detection detects the cumulative sum of

CPU temperature exceeds a certain threshold when user is absent

Enhancing Host Security Using External Environment Sensors 367

Table 2. Detection time of different spam worms. (Detection threshold N = 120 emails

in t = 6 hours at user presence, and N = 1 during user absence.)

Spam worm User present (min) User absent (sec)

Storm 6.1 4

Rustock 3.6 3

Srizbi 0.07 < 1

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 1 2 3 4 5 6 7 8 9 10 11

E
m

ai
l r

at
e

Time (minute)

False alarms

Missed detections

User email
Spam

Detection threshold

Fig. 2. False detections caused by email

rate based spam detection

 1

 2

 0 4 8 12 16 20 24

E
m

ai
l r

at
e

pe
r

m
in

ut
e

Time in a day (hour)

Outgoing email rate
User present

Fig. 3. Samples of user email rate

3.1 Changepoint Detection

The problem of changepoint detection [6] is to detect changes from normal be-
havior. We use a customized version of CuSum [7] to do such detection. In our
model, behaviors are described as a real-valued time series of xn. Normal be-
havior is estimated to have a value a or smaller. To detect an increase from the
normal behavior, the following cumulative sum Sn is computed.{

S0 = 0,

Sn = Sn−1 + max(0, xn − a), n ≥ 1,

where xn is the observation at time n from the sampling process. The value of
a can be determined by the system administrator, or by observing samples of
normal behaviors to select the smallest acceptable normal upper bound of xn.
If Sn exceeds the threshold N , a change point is detected at time n and the
alarm will be triggered. Note that a can be exceeded when normal behavior is
violated, so a is a lower detection threshold of abnormal behavior, Sn is the actual
signal and N is the changepoint detection threshold. CuSum can be shown to be
optimal under certain conditions [6]. As it is simple and efficient, it is suitable
for real-time processing of streaming sensor data.

We use spam detection to show the difference between rate based detection
and changepoint detection. Fig. 2 illustrates situations where rate based detec-
tion causes false positives and false negatives. Occasionally, a user email rate

368 E.-C. Chang et al.

exceeds the spam detection threshold, causing false alarms, even though the
high rate is a transient. On the other hand, spam malware can control its email
rate to just below the threshold, by spreading the operation over a long period
of time. Rate based spam detection do not report such cases correctly, while
changepoint detection can. With changepoint detection, we can set the upper
bound of normal email rate as a baseline, e.g. one email per minute, then ac-
cumulate the excess amount of emails over a time period. Thus, it computes
within a time interval, the area in the graph enclosed below by the baseline and
bounded above by the email rate curve. With changepoint detection, occasional
high email rates do not cause false alarms, and constant medium email rates
cannot evade detection.

Changepoint detection relies on empirical or administrative thresholds, ad-
vanced attackers may gain information on user presence and adapt their behav-
ior accordingly. Our mechanism cannot fully stop such malware, but it effectively
mitigates the malicious activity.

3.2 Experimental Setup

Our experimental setup consists of one router and several hosts connected by
100Mbps connections to the Internet through the router. First, we gather nor-
mal data from three uncompromised hosts for a period of 12 days. Next, we
“compromise” one host by installing the modified Agobot on it and control it
from another machine. The compromised host carries out different activities
on demand: generate spam email, start a DDoS attack and perform password
cracking. More experimental details are described in the relevant section.

Three types of sensor data are collected on the hosts: (i) user presence; (ii) CPU
temperature; and (iii) network traffic. User presence is represented by a binary-
valued time series, indicating whether the user is sitting at the host. We use in-
frared sensors to detect user presence. This is more reliable compared to using
acoustic sensors to detect keyboard typing or mouse clicks. One reason is that a
user can be simply looking at the monitor. Another reason is that malware can
fool the sensor by playing back clicks. The CPU temperature is represented by a
real-valued time series measuring temperature at the processor, which correlates
to CPU load. In principle, the CPU temperature should be measured with a sen-
sor between the CPU heat sink and fan, but we had difficulty in doing so with
our sensor. To prove the concept, we used the CPU temperature obtained from
the host’s operating system as a proxy.1 We remark that the sensor data should
be measured and sent to the monitor via a secure channel, and thus our tempera-
ture readings is only a simulation to simplify the experiments. For network traffic,
headers of all packets and partial payload passing through the router are logged.

3.3 Spam Detection

Spam can be sent out at different rates. Some worms like Storm and Rustock
have been reported to send at lowish rates of 20 and 33 emails/min while others
1 We use the system call IDebugDataSpaces–>ReadMsr() in Windows.

Enhancing Host Security Using External Environment Sensors 369

like Srizbi’s rate is 1800 emails/min [12]. While 20 emails/min is probably too
high for humans, malware could also send at lower rates. We remark that humans
might also send email at high rate, e.g. when using a script to send emails to a
group of recipients.

Our experiment is meant to show reliable spam detection when data from
external sensors is included. We also experiment on different modes of sending
email, namely, SMTP-based clients and also webmail clients.

Spam Detection Using the Framework. To detect bots that send spam,
we use the following rules: (i) when the user is absent, any outgoing email flags
a spamming activity; and (ii) when the user is present, changepoint detection
is applied on the number of emails sent. Essentially, if over N emails are sent
within a time interval of length t, the algorithm flags it as spamming activity,
where N and t are the two tunable parameters.

The first rule relies on the fact that emails are usually directly sent to the
mail servers when the user hits send. Any scheduled delay in delivery is based on
the server itself. The actual value of N and t in the second rule can be learned
from the normal traffic for each host. Although the rules are simple, no matter
how slow the spam rate is, we can detect spam when the user is absent. So if a
stealthy spam program sends out only a single email at night, this could slip out
unnoticed by normal email rate based spam detection while we would detect it.

We apply CuSum to detect changes in the amount of emails sent when the user
is present. We incorporate a limit on the accumulation time t, and set a = 0,
N = 120 and t = 6 hours. The effect is that whenever there is an outgoing email,
we accumulate the count, and no more than N = 120 emails can be sent in 6
hours. If the accumulated sum exceeds 120, we raise a spam alarm for the host. The
allowable average email rate is three minutes per email. It is high for a human user,
since users do not consistently send an email every 3 minutes for 6 hours. When
user is absent, we set N = 1, meaning any outgoing email indicates a spam.

Experimental Results on Spammer Detection. The detection of outgo-
ing email is done by matching packets with a list of signatures. Table 3 shows
the signatures of email sent using SMTP and webmail. Email sent using SMTP
protocol is relatively easy to detect, since an SMTP command MAIL indicates
the user is submitting email. Webmail interfaces are more complex – Table 3
summarises how we identify emails sent using Hotmail, Gmail, NetEase, and
SquirrelMail. The destination IP is first matched with a set of possible known
servers. Next, we examine the first few bytes of packet payload to look for HTTP
request method POST. Existence of such a method indicates that the client could
be submitting email, logging into the mail server, making a request to retrieve
email, requesting for the email listing, or requesting housekeeping operations.
To determine whether the client is sending an email, different checks are car-
ried out for different mail services. For Hotmail, we look for URI that starts
with mail/SendMessageLight.aspx?. For NetEase, the request URI ends with
&func=mbox:compose. For Gmail, the request URI contains &view=up&act=sm.2

2 Gmail uses HTTPS from late Jan. 2010, but our experiments were performed earlier.

370 E.-C. Chang et al.

Table 3. Rules for email detection

SMTP the SMTP request command is MAIL.

The destination IP is in the set of hotmail.com server IPs,

hotmail.com the protocol is HTTP, the HTTP request method is POST, and

the HTTP request URI starts with /mail/SendMessageLight.aspx?

The destination IP is in the set of netease.com server IPs,

netease.com the protocol is HTTP, the HTTP request method is POST, and

the HTTP request URI ends with &func=mbox:compose

The destination IP is in the set of gmail.com server IPs,

gmail.com the protocol is HTTP, the HTTP request method is POST, and

the HTTP request URI contains &view=up&act=sm

SquirrelMail A particular HTTP request immediately after an email is sent.

To perform these checks, we need to read 33 bytes into the HTTP message for
Hotmail, 64 bytes for NetEase and 80 bytes for Gmail. Hence during packet cap-
tures, the packet payload needs to be logged partially. Detecting SquirrelMail
is less straightforward as the payload is encrypted. We found that immediately
after an email is sent, there is an HTTP Get request in plain text of a large size
to fetch the listing of the current folder. The signatures enable us to identify the
sending of email reliably. Compared to a typical spam filter that inspects the
email content, our method has less privacy concerns.

Fig. 3 shows the typical email activity of a user in a day. About 10 to 20
emails are sent daily. It shows that our hypothesis that all emails are sent with
the user present is reasonable.

In our experiment, spam is sent from the monitored host using the modified
Agobot. We tested the detection of spam at rates corresponding to Srizbi, Rus-
tock and Storm worms. Table 2 shows the detection time when the user is present
and absent. Note that threshold N is set on the parameter of the accumulated
email amount. It is easy to see the detection time is inversely proportional to
the spam rate. Since the spam rate of Srizbi is much higher than Rustock or
Storm, it takes least time to detect. When the user is present, the detection time
of Srizbi is less than 0.1 minute and about 4 and 6 minutes for Rustock and
Storm respectively. When the user is absent, all three spam worms are detected
instantly, because the detection threshold N = 1 at user absence.

3.4 Detecting DDoS Zombie Attacks

This experiment deals with detecting zombies which carry out UDP packet flood-
ing for a DDos attack. In this attack, the compromised host sends out UDP
packets to a victim to consume the victim’s network bandwidth. When the user
is absent, legitimate network traffic rate is low and thus we can potentially de-
tect the malicious UDP packet flood by observing the traffic rate. However, there
could be background processes that generate network traffic, e.g. automated up-
dates. Another scenario in our experiment is a legitimate P2P program. The
P2P program constantly generates network traffic even when the user is absent.

Enhancing Host Security Using External Environment Sensors 371

 0

 20

 40

 60

 80

 100

 1 10 100 1000

C
D

F
 o

f f
lo

w
s

(%
)

Packet rate

Outgoing packet rate
Net outgoing packet rate

Fig. 4. Difference in the outgoing packet rate and the net outgoing packet rate of 2351

active TCP flows during user presence

Hence, it is desirable to derive another feature, instead of the overall rate, to
distinguish UDP flood.

We observe that the UDP flood generates one-way traffic, whereas typical
legitimate processes generate two-way traffic. This motivates us to consider the
net outgoing packet rate pnet,

pnet = max(pout − pin, 0),

where pout and pin are the outgoing and incoming packet rate respectively. We
apply CuSum on pnet, but with a different threshold a when the user is absent
and present.

In addition to pnet, we also monitor the ratio r of outgoing packets that are
not responded to,

r = pnet/pout.

We have 0 ≤ r ≤ 1 where r = 1 if the flow has only outgoing packets; and r = 0
if pout ≤ pin. The excess of pnet over a is accumulated only if r ≈ 1.

Fig. 4 compares the maximum net outgoing packet rate pnet and the outgoing
packet rate pout of 2,351 non-attack TCP flows, observed in 10 minutes. A flow
is identified by (local IP, remote IP, transport protocol) – port numbers are not
differentiated as attackers may open multiple ports to flood the same victim.
Over 60% of the flows have the maximum pout > 10 packets a minute; whereas
less than 5% of the flows have the maximum pnet > 10. In some flow, maximum
pout is 2,443 packets per minute, but the maximum pnet is as low as 10 packets.

Fig. 5 shows the distribution of pnet for 13,620 flows. Fig. 5(a) shows the net
outgoing packet rate is close to 0 for most flows. When the user is present, 35% of
the flows have pnet = 0; and 80% flows have pnet less than 10 packets a minute.
When the user is absent, 90% of the flows have pnet = 0. Fig. 5(b) shows that
the difference in pnet when user is present and absent, it can be as large as 600
for some flows, so different upper bounds of normal pnet should be used for user
presence and absence and for each flow.

From Fig. 5(a), initializing the upper bound of normal pnet to be a = 60
packets per minute is sufficient for most flows. Parameter a can be lowered by

372 E.-C. Chang et al.

 0

 20

 40

 60

 80

 100

 1 10 100

C
D

F
 o

f f
lo

w
s

(%
)

pnet (packets per minute)

User present
User absent

a0 = 60

(a) Distribution of flow net outgoing

packet rates

 0

 20

 40

 60

 80

 100

 1 10 100

C
D

F
 o

f f
lo

w
s

(%
)

Difference in pnet

(b) Difference in the flow rates when user

is present and absent

Fig. 5. Distribution of the maximum net outgoing packet rate pnet with 13,620 TCP

and UDP flows, each flow is observed for 10 minutes during user presence and absence

 0

 200

 400

 600

 800

 1000

 50 100 150 200 250 300 350 400

N
et

 o
ut

go
in

g
pa

ck
et

 r
at

e

Time (minute)

Attack starts

Attack detected

Continuous attack
Increasing attack
Fluctuating attack

Flow threshold
User present

Fig. 6. Net outgoing packet rate of the

DDoS attack flow in different attack

patterns

 32

 34

 36

 38

 40

 42

 44

 46

 48

 0 10 20 30 40 50 60 70 80 90 100

C
P

U
 T

em
pe

ra
tu

re

CPU Load

Fig. 7. Correlation of CPU load and CPU

temperature

examining the online traffic. To accumulate the excess of pnet over a, r must be
close to 1 and we set it at 0.95. The threshold to trigger an alarm is N = 800
packets, accumulated over 20 minutes. It ensures an attack flow can be detected
if at least 2 UDP packets are sent a second on average.

Some non-attack flows have large net outgoing packet rate. However, they do
not cause false alarms, because the outgoing packets are responded to, or r is not
close to 1. In terms of absolute value, pnet = 1278 is high, but its pout = 2, 812,
making r = 0.45, so there is 1 response in about 2 packets, the ratio is reasonable
and hence the high net outgoing packet rate is also accepted.

Fig. 6 shows the net outgoing packet rate pnet of the attack flow under 3
different attack scenarios. The upper bound a of normal pnet is 10 and 2 packets
a minute for user present and absent respectively. These bounds are determined
from analyzing the training data of the flow. The attack starts at the 125th
minute. For the continuous attack, pnet sharply increases to around 600. After

Enhancing Host Security Using External Environment Sensors 373

 34

 35

 36

 37

 38

 39

 40

 41

 42

 43

 0 20000 40000 60000 80000 100000 120000 14000

C
P

U
 te

m
pe

ra
tu

re

Time in seconds

Fig. 8. CPU temperature variation during user absence and presence. User is absent

from 0 to 64,000 second; and present from 64,000 second onwards. The vertical line

separates user absence from presence.

1.36 minutes, the alarm is triggered. The increasing rate attack increases its
attack intensity very slowly to delay detection. This attack might not be detected
if the detector adapts to the flow rate in near real time. Our approach detects the
attack in about 15 minutes, long before it reaches its peak rate. The fluctuating
attack in Fig. 6 constrains the attack intensity, and releases attack traffic in
pulses. This is to avoid detection if average traffic rate or peak rate is used by
the detector. Our approach detects the fluctuating attack within 3 minutes.

3.5 Detecting Misuse of Compute Resources

Bots are often recruited to invert cryptographic functions to break passwords.
Inverting such functions requires extensive computations which are distributed
to the bots. To detect such activities, we look for increases in the CPU load after
user has been absent for a while. As CPU load is internal to the host, we rely
on CPU temperature as a measure of the CPU load.

 35

 40

 45

 50

 55

 60

 0 2000 4000 6000 8000 10000

C
P

U
 te

m
pe

ra
tu

re

Time in seconds

Game starts
Matlab starts

Cracker starts

User leave
Threshold

Fig. 9. CPU temperature variation during

various activities

 36

 38

 40

 42

 44

 46

 48

 50

 0 120 240 360 480 600 720 840 960 1080 1200

C
P

U
 te

m
pe

ra
tu

re

Time in seconds

100%
80%
60%
40%
20%

start (t=180)
end (t=780)

Fig. 10. Correlation of attack intensity

and CPU temperature

374 E.-C. Chang et al.

Fig. 7 shows the correlation between CPU load and temperature. The correla-
tion is good but it includes fluctuation and noise. Fig. 8 shows the temperature
when a user is present and absent. Note when the user is absent, the temperature
is around 37◦C, and varies less. We measured the temperature during automated
software update and found the temperature increase of 2-3◦.

We employ CuSum to detect the increase in CPU temperature. Fig. 8 shows
normal temperature variations during user presence and absence. From the ob-
servation of Fig. 8, we set the upper bound of system idle temperature to be
a = 38.5◦C. We set the threshold for the accumulated increase in temperature
as N = 2400 in 30 minutes. This threshold N is chosen to allow software update
that increases the CPU temperature by 2◦and lasts for 20 minutes. We set a
grace period of g = 10 minutes at the transition from user presence to absence,
that is, if the changepoint is detected within 10 minutes after a user leaves, the
alarm is not activated.

Fig. 9 shows the temperature during various computation tasks. The change-
points in temperature for playing games and running matlab are detected 10.4
minutes and 5.2 minutes respectively after they start. Since the user is present
or just left when the changepoint occurs, the activities are considered initiated
by the user and accepted as normal. The password cracker activity triggers an
alarm 4.5 minutes after it starts. Since the changepoint is detected when user is
absent, it is considered as malicious computation. If the malicious computation
executes during user presence, it can be noted by the user.

We also conducted an experiment which varies the intensity of the CPU usage.
This investigates if the CPU usage can be detected when the malware throttles
its computation at a lower rate. CPU usage is controlled as follows: for each
one-second interval, the bot computes at full speed for x seconds and then sleep
for 1 − x seconds, where x < 1. We denote the CPU usage to be 100x% in Fig.
10. We carry out the attack for 600 seconds (starts at 180 seconds and ends
at 780 seconds). Fig. 9 shows the temperature under intensity variation. Note
that after the attacks stop, the temperature gradually returns to normal. For
the password computation running at 100% usage, we detect the change after
about 4.5 minutes. For the computation at 20% usage, we can also detect the
change if the computation lasts for more than 20 minutes. To evade detection,
the malicious computation can only further reduce its CPU usage or shorten
its execution time. Thus, our system effectively limits the amount of malicious
computation.

We need to handle carefully the non-malicious programs that commonly run
when no user is present. Besides system auto-updates, these programs include
nightly backup, nightly virus scan, remote desktop and user scheduled compu-
tation. Backup and virus scan are regular tasks. Their resource consumption
can be profiled, in terms of the start time, duration, and the increase in CPU
temperature. Based on our measurement, system backup only increases the CPU
temperature by 1-3◦. Virus scan usually increases the CPU temperature by 2-3◦.
These host profiles are basis of a whitelist kept by the monitor to suppress false
alarms. Even if attacker tries to hide the malware execution by running it at

Enhancing Host Security Using External Environment Sensors 375

the same time as these tasks, the excess increase in temperature or duration will
still trigger the alarm.

User scheduled computations may cause irregular behavior. As the execution
of scheduled computation can be planned ahead, the user simply declares in
advance to the monitor the estimated process start time, duration and CPU load
(converted to temperature increases by the monitor). The monitor suppresses
any false alarm within the specified resource consumption. The user is advised
to give a conservative estimation, for it is better for the user to intervene if excess
resources are consumed, than allowing the attacker to free ride.

4 Application to Access Control and Rate Control

Here we investigate how environment information can be useful in controlling
and allocating resources. A security policy may require administrators to be
physically inside the machine room to access server consoles and administrative
tools. In order to mitigate malware from sending spam email, we could implement
rate control in the router or the mail server, and the rate limit is based on user
presence. In both cases, environment information is used as a condition to access
certain resources. Note that the first case is on access control, while the second
is on rate control.

4.1 Access Control

Our framework can be used to implement location-based access control. One
location-based access control scheme was proposed by Ardagna et al. [8] to
restrict access to certain resources based on physical location of the user. In
their work, the physical location is obtained from mobile devices, such as mobile
phones carried by users. Our framework also implements location-based access
control, but in a different way. Their work adopts a user-centric approach where
the device is attached to the user and user’s location is measured in order to fig-
ure out which resources can be accessed. We adopt a resource-centric approach
where the device is attached to the resource and user presence is observed near
the resource in order to decide whether to grant the access. Both approaches
have advantages and disadvantages.

Our access control policy not only incorporates user presence information but
also user activity information. For example, the user activity information can be
“the user has typed some keys”. Enforcement is implemented both on the host
and router depending on the type of the resource. Enforcement implemented on
the host implicitly assumes that malware is not in control of the host and the host
decides the access based on environmental information gathered by the monitor,
but the malware cannot affect access control policies at the environment level.
Here we give two access control policies as examples.

1. The user can execute the /usr/bin/sudo program only if he is sitting at
the host. This policy is used to mitigate the problem of remote attacks - it
requires that there is a human present before the sudo operation is allowed.

376 E.-C. Chang et al.

This policy has to be enforced on the host. A remote attacker who does not
yet have control of the host would be prevented from performing actions
which could be used to infect the operating system.

2. The user can send email only if he is sitting at the computer and has mouse
or keyboard activity. This policy is used to prevent malware from sending
email while the user is away. Since user activity is enforced in the policy, it
also prevents sending email while the user is idle, e.g. watching a movie. The
intuition is that the user must have performed some typing or mouse action in
order to send an email. Unlike user presence, which can be thought of as being
a continuous signal, mouse and keyboard input are discrete events which
may happen at time points which do not overlap with the email sending
time interval. Thus, the precise meaning of the policy is “An email can be
sent at time t if user presence is observed at that t and there is mouse or
keyboard input between [t−Δ, t+Δ]”. This policy is enforced in the router
or the mail server instead of the host and thus provides enforcement even
when the host is compromised.

4.2 Rate Control

Previously we showed that abnormal resource usage when the user is absent
can be easily detected under several scenarios. This can be easily extended to
controlling the resource usage rate in the case of activities involving external
resources. Two natural scenarios of external rate control are:

– Shaping Network Traffic
To mitigate computers being used as bots to perform DDoS attacks, router
can shape network traffic based on user presence information. By limiting the
traffic on flows, this becomes a form of inverse quality of service, providing
reduced quality when the user is not present. If P2P programs are being
used, this would save some network bandwidth, e.g. if the host uses Skype
and becomes a Skype supernode, it could lose its supernode status under
the reduced network flow.

– Sending Email
Similarly, the emails could be simply denied when the user is absent. If the
threshold is above zero, then for both webmail and SMTP, the router can
simply rate limit the protocol. Alternatively for an SMTP server, it could
quarantine email beyond the threshold. In both cases, outgoing spam emails
are rate limited possibly to zero.

The email rate can also be rate limited when the user is present. The
idea is that email is based on typing and/or mouse clicks. This data can also
be recorded using environmental sensors. The email rate can then be based
on a function of the detected keystrokes and/or mouse clicks.

The framework can make resource rate limiting policies more flexible and usable.
The idea is to have feedback if a usage is too high for a resource. External
sensors can then be used as a secure channel to request a higher resource rate.

Enhancing Host Security Using External Environment Sensors 377

For example, a monitor on the host can display the resource usage and warn
the user if he is reaching the limit. The user can have something as simple as a
button which is pressed to function as the secure request channel to obtain more
network bandwidth or more emails. Notice that such a policy cannot be done
securely without the help of external environment information.

In the access and rate control application discussed above, to control the
resource utilization, essentially we need to verify whether an entity is “hu-
man”. Instead of using external environment to infer user presence, alternatively,
CAPTCHA [9] or graphical Turing test could be implemented to verify that the
user is human. Using the environment information has the advantage that the
users are not interrupted by the challenges issued by the graphical Turing test.

5 Related Work

If we consider a computer host to include the host, the user channel and the
network channel, then host security can be divided into: (i) software security,
which ensures the software running in the host is authentic, e.g. antivirus [19],
system call filtering [16] and binary authentication [17]; (ii) user security, which
ensures the user is authentic, e.g. password/biometric authentication, physical
perimeters and surveillance camera monitoring; and (iii) network security, which
ensures the network communication is authentic, e.g. personal firewalls [18]. Our
approach to enhance host security is substantially different from the existing
designs in three aspects. Firstly, the model we propose fuses data from a few
channels of external environment sensors to monitor the host activity. Secondly,
as our model does not require controlling or modifying the host OS or software,
it is able to provide some security even when the host is compromised. Thirdly,
our system detects outbound or on-host malware execution, which complements
intrusion detection.

There are a few works which correlates information from different channels
to improve host security. The system BINDER [10] correlates user events (user
input), process events (process creation and process termination), and network
events (connection request, data arrival and domain name lookup) to detect mal-
ware. Both our malware detection system and BINDER correlate user presence
information and system behaviour to detect malware. BINDER uses information
collected by the user’s machine, which potentially could be manipulated by the
compromised host.

The systems proposed by Gu et al. [11] and Yen et al. [13] detect botnets
by analyzing and correlating network traces. The two systems and our malware
detection system use information from the network router rather than the host
in question so as to be able to deal with the case when the host is compromised
and gives false information. The difference with our malware detection system
is that we have user presence and activity information in addition to network
information.

Kumar et al. proposed a system [14] which continuously monitors user’s bio-
metric identity and locks up the computer if it cannot detect the correct user.

378 E.-C. Chang et al.

Both their system and our access control system use physical user information
to provide additional factor for authentication. There are two main differences
between the two. Firstly, our system only detects user presence information,
while their system detects user’s biometric information which is much stronger
but gives less privacy. Secondly, their system runs entirely in the user’s ma-
chine, thus it cannot guarantee the authentication once the machine has been
compromised.

Location-based access control (LBAC) has been actively researched on wire-
less networks, e.g. [20]. The model in LBAC assumes user devices are mobile,
their locations are tracked for service continuity, or verified before granting ac-
cess. The problem we address is different in that we are not dealing with mobile
devices, instead our focus is on utilizing a combination of environment data to
enhance security, such as to detect malware on the host and to regulate the usage
of resources by the host.

6 Conclusion

In this paper, we proposed a framework that incorporates environment infor-
mation in securing host computers in a few ways: by using the environment
information as an additional source of information for malware detection, or by
integrating the environment information with existing conditions in rate-control
mechanisms and access control policies. We argued that, since the sensors are
“external” with respect to the host, they are difficult to be accessed and tam-
pered by a compromised host. Furthermore, by investigating several applica-
tions, we showed that the simple and coarse information on user activities and
resource usages is sufficient to provide good performance in malware detection,
and is useful in expressing certain rate-control and access control policies. We
have also identified a few important requirements of the sensors, in particular,
the concerns of user-privacy and the need of a secure channel. Thus, we have
proposed a simple and effective framework for security enhancement which is
arguably safe against compromise by attackers.

The framework also takes advantage of the growing popularity of pervasive
computing and sensor networks. As the trend in cost of wireless multi-modality
sensors is decreasing, applications of our framework are feasible for cost-effective
deployment in the near future.

References

1. The Myth of The Four-minute Windows Survival Time,

http://www.edbott.com/weblog/?p=2071

2. Unpatched PC ’Survival Time’ Just 16 Minutes,

http://www.informationweek.com/news/

showArticle.jhtml?articleID=29106061

3. Conficker, http://en.wikipedia.org/wiki/Conficker

4. EasySen SBT80 Product Page, http://www.easysen.com/SBT80.htm

http://www.edbott.com/weblog/?p=2071
http://www.informationweek.com/news/showArticle.jhtml?articleID=29106061
http://www.informationweek.com/news/showArticle.jhtml?articleID=29106061
http://en.wikipedia.org/wiki/Conficker
http://www.easysen.com/SBT80.htm

Enhancing Host Security Using External Environment Sensors 379

5. Wang, H., Zhang, D., Shin, K.G.: Detecting SYN Flooding Attacks. In: IEEE

InfoCom (2002)

6. Basseville, M., Nikiforov, I.V.: Detection of Abrupt Changes: Theory and Appli-

cation. Prentice-Hall, Englewood Cliffs (1993)

7. Page, E.S.: Continuous Inspection Schemes. Biometrika (1954)

8. Ardagna, C.A., Cremonini, M., Damiani, E., di Vimercati, S.D.C., Samarati, P.:

Supporting Location-Based Conditions in Access Control Policies. In: ACSAC

(2006)

9. Von Ahn, L., Blum, M., Hopper, N.J., Langford, J.: CAPTCHA: Using hard AI

problems for security. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656.

Springer, Heidelberg (2003)

10. Cui, W., Katz, R.H., Tan, W-.T.: Design and Implementation of an Extrusion-

based Break-In Detector for Personal Computers. In: ACSAC (2005)

11. Gu, G., Porras, P., Yegneswaran, V., Fong, M., Lee, W.: BotHunter: Detecting

Malware Infection Through IDS-Driven Dialog Correlation. In: USENIX Security

(2005)

12. John, J.P., Moshchuk, A., Gribble, S.D., Krishnamurthy, A.: Studying Spamming

Botnets Using Botlab. In: NSDI (2009)

13. Yen, T.-.F., Reiter, M.K.: Traffic Aggregation for Malware Detection. In: GI Intl.

Conf. on Detection of Intrusions and Malware, and Vulnerability Assessment (2008)

14. Kumar, S., Sim, T., Janakiraman, R., Zhang, S.: Using Continuous Biometric Ver-

ification to Protect Interactive Login Sessions. In: ACSAC (2005)

15. Kwang, G.K., Yap, R.H.C., Sim, T., Ramnath, R.: An Usability Study of Continous

Biometrics Authentication. In: IAPR/IEEE Intl. Conf. on Biometrics (2009)

16. Provos, N.: Improving Host Security with System Call Policies. In: USENIX Secu-

rity (2003)

17. Halim, F., Ramnath, R., Sufatrio Wu, Y., Yap, R.H.C.: A Lightweight Binary

Authentication System for Windows. In: IFIPTM (2008)

18. Ingham, K., Forrest, S.: A History and Survey of Network Firewalls. Tech. Rep.

TR-CS-2002-37, University of New Mexico Computer Science Department (2002)

19. Post, G., Kagan, A.: The Use and Effectiveness of Anti-Virus Software. Computers

& Security 17(7) (1998)

20. Ardagna, C.A., Cremonini, M., Damiani, E., di Vimercati, S.D.C., Samarati, P.:

Supporting Location-Based Conditions in Access Control Policies. In: ASIACCS

(2006)

FADE: Secure Overlay Cloud Storage with File
Assured Deletion

Yang Tang1, Patrick P.C. Lee1, John C.S. Lui1, and Radia Perlman2

1 The Chinese University of Hong Kong
2 Intel Labs

{tangyang,pclee,cslui}@cse.cuhk.edu.hk, radiaperlman@gmail.com

Abstract. While we can now outsource data backup to third-party

cloud storage services so as to reduce data management costs, security

concerns arise in terms of ensuring the privacy and integrity of out-

sourced data. We design FADE, a practical, implementable, and readily

deployable cloud storage system that focuses on protecting deleted data

with policy-based file assured deletion. FADE is built upon standard

cryptographic techniques, such that it encrypts outsourced data files to

guarantee their privacy and integrity, and most importantly, assuredly

deletes files to make them unrecoverable to anyone (including those who

manage the cloud storage) upon revocations of file access policies. In par-

ticular, the design of FADE is geared toward the objective that it acts as

an overlay system that works seamlessly atop today’s cloud storage ser-

vices. To demonstrate this objective, we implement a working prototype

of FADE atop Amazon S3, one of today’s cloud storage services, and

empirically show that FADE provides policy-based file assured deletion

with a minimal trade-off of performance overhead. Our work provides

insights of how to incorporate value-added security features into current

data outsourcing applications.

Keywords: Policy-based file assured deletion, cloud storage, prototype

implementation.

1 Introduction

Cloud storage (e.g., Amazon S3 [2], MyAsiaCloud [11]) offers an abstraction of
infinite storage space for clients to host data, in a pay-as-you-go manner [3].
For example, SmugMug [19], a photo sharing website, chose to host terabytes
of photos on Amazon S3 in 2006 and saved about 500K US dollars on storage
devices [1]. Thus, instead of self-maintaining data centers, enterprises can now
outsource the storage of a bulk amount of digitized content to those third-party
cloud storage providers so as to save the financial overhead in data management.
Apart from enterprises, individuals can also benefit from cloud storage as a result
of the advent of mobile devices (e.g., smartphones, laptops). Given that mobile
devices have limited storage space in general, individuals can move audio/video
files to the cloud and make effective use of space in their mobile devices.

S. Jajodia and J. Zhou (Eds.): SecureComm 2010, LNICST 50, pp. 380–397, 2010.
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2010

FADE: Secure Overlay Cloud Storage with File Assured Deletion 381

However, privacy and integrity concerns become relevant as we now count
on third parities to host possibly sensitive data. To protect outsourced data,
a straightforward approach is to apply cryptographic encryption onto sensitive
data with a set of encryption keys, yet maintaining and protecting such en-
cryption keys will create another security issue. One specific issue is that upon
requests of deletion of files, cloud storage providers may not completely remove
all file copies (e.g., cloud storage providers may make multiple file backup copies
and distribute them over the cloud for reliability, and clients do not know the
number or even the existence of these backup copies), and eventually have the
data disclosed if the encryption keys are unexpectedly obtained, either by acci-
dents or by malicious attacks. Therefore, we seek to achieve a major security goal
called file assured deletion, meaning that files are reliably deleted and remain
permanently unrecoverable and inaccessible by any party.

The security concerns motivate us, as cloud clients, to develop a secure cloud
storage system that provides file assured deletion. However, a key challenge
of building such a system is that cloud storage infrastructures are externally
owned and managed by third-party cloud providers, and hence the system should
never assume any structural changes (in protocol or hardware levels) in cloud
infrastructures. Thus, it is important to design a secure overlay cloud storage
system that can work seamlessly atop existing cloud storage services.

In this paper, we present FADE, a secure overlay cloud storage system that
ensures file assured deletion and works seamlessly atop today’s cloud storage
services. FADE decouples the management of encrypted data and encryption
keys, such that encrypted data remains on third-party (untrusted) cloud storage
providers, while encryption keys are independently maintained by a key manager
service, whose trustworthiness can be enforced using a quorum scheme [18].
FADE generalizes time-based file assured deletion [5,14] (i.e., files are assuredly
deleted upon time expiration) into a more fine-grained approach called policy-
based file assured deletion, in which files are associated with more flexible file
access policies (e.g., time expiration, read/write permissions of authorized users)
and are assuredly deleted when the associated file access policies are revoked and
become obsolete.

A motivating application of FADE is cloud-based backup systems (e.g., Jun-
gleDisk [7], Cumulus [21]), which use the cloud as the backup storage for files.
FADE can be viewed as a value-added security service that further enhances the
security properties of the existing cloud-based backup systems.

In summary, our paper makes the following contributions:

– We propose a new policy-based file assured deletion scheme that reliably
deletes files with regard to revoked file access policies. In this context, we
design the key management schemes for various file manipulation operations.

– We implement a working prototype of FADE atop Amazon S3 [2]. Our im-
plementation aims to illustrate that various applications can benefit from
FADE, such as cloud-based backup systems. FADE consists of a set of API
interfaces that we can export, so that we can adapt FADE into different
cloud storage implementations.

382 Y. Tang et al.

– We empirically evaluate the performance overhead of FADE atop Amazon
S3, and using realistic experiments, we show the feasibility of FADE in im-
proving the security protection of data storage on the cloud.

The remainder of the paper proceeds as follows. In Section 2, we present the
design of policy-base file assured deletion, a major building block of FADE. In
Section 3, we explain the implementation details of FADE. In Section 4, we
evaluate FADE atop Amazon S3. Section 5 discusses the limitations of FADE
and possible enhancements. In Section 6, we review related work on protecting
outsourced data storage. Finally, Section 7 concludes.

2 Policy-Based File Assured Deletion

We present policy-based file assured deletion, the major design building block
of our FADE architecture. Our main focus is to deal with the cryptographic
key operations that enable file assured deletion. We first review time-based file
assured deletion. We then explain how it can be extended to policy-based file
assured deletion.

2.1 Background

Time-based file assured deletion, which is first introduced in [14], means that
files can be securely deleted and remain permanently inaccessible after a pre-
defined duration. The main idea is that a file is encrypted with a data key, and
this data key is further encrypted with a control key that is maintained by a
separate key manager service (known as Ephemerizer [14]). In [14], the control
key is time-based, meaning that it will be completely removed by the key manager
when an expiration time is reached, where the expiration time is specified when
the file is first declared. Without the control key, the data key and hence the
data file remain encrypted and are deemed to be inaccessible. Thus, the main
security property of file assured deletion is that even if a cloud provider does
not remove expired file copies from its storage, those files remain encrypted and
unrecoverable.

Time-based file assured deletion is later prototyped in Vanish [5]. Vanish
divides a data key into multiple key shares, which are then stored in different
nodes of a peer-to-peer network. Nodes remove the key shares that reside in their
caches for 8 hours. If a file needs to remain accessible after 8 hours, then the file
owner needs to update the key shares in node caches.

However, both [14] and [5] target only the assured deletion upon time expi-
ration, and do not consider a more fine-grained control of assured deletion with
respect to different file access policies. We elaborate this issue in Section 2.2.

2.2 Policy-Based Deletion

We associate each file with a single atomic file access policy (or policy for short),
or more generally, a Boolean combination of atomic policies. Each (atomic) policy

FADE: Secure Overlay Cloud Storage with File Assured Deletion 383

is associated with a control key, and all the control keys are maintained by the key
manager. Similar to time-based deletion, the file content is encrypted with a data
key, and the data key is further encrypted with the control keys corresponding
to the policy combination. When a policy is revoked, the corresponding control
key will be removed from the key manager. Thus, when the policy combination
associated with a file is revoked and no longer holds, the data key and hence the
encrypted content of the file cannot be recovered with the control keys of the
policies. In this case, we say the file is deleted. The main idea of policy-based
deletion is to delete files that are associated with revoked policies.

The definitions of policies vary depending on applications. Time-based dele-
tion is a special case under our framework, and policies with other access rights
can be defined. To motivate the use of policy-based deletion, let us consider a
scenario where a company outsources its data to the cloud. We consider four
practical cases where policy-based deletion will be useful:

– Storing files for tenured employees. For each employee (e.g., Alice), we
can define a user-based policy “P : Alice is an employee”, and associate this
policy with all files of Alice. If Alice quits her job, then the key manager
will expunge the control key of policy P . Thus, nobody including Alice can
access the files associated with P on the cloud, and those files are said to be
deleted.

– Storing files for contract-based employees. An employee may be affil-
iated with the company for only a fixed length of time. Then we can form
a combination of the user-based and time-based policies for employees’ files.
For example, for a contract-based employee Bob whose contract expires on
2010-01-01, we have two policies “P1: Bob is an employee” and “P2: valid
before 2010-01-01”. Then all files of Bob are associated with the policy com-
bination P1 ∧ P2. If either P1 or P2 is revoked, then Bob’s files are deleted.

– Storing files for a team of employees. The company may have different
teams, each of which has more than one employee. As in above, we can assign
each employee i a policy combination Pi1 ∧ Pi2, where Pi1 and Pi2 denote
the user-based and time-based policies, respectively. We then associate the
team’s files with the disjunctive combination (P11 ∧P12)∨ (P21 ∧P22)∨· · · ∨
(PN1∧PN2) for employees 1, 2, . . . , N . Thus, the team’s files can be accessed
by any one of the employees, and will be deleted when the policies of all
employees of the team are revoked.

– Switching a cloud provider. The company can define a customer-based
policy “P : a customer of cloud provider X”, and all files that are stored
on cloud X are tied with policy P . If the company switches to a new cloud
provider, then it can revoke policy P . Thus, all files on cloud X will be
deleted.

Policy-based deletion follows the similar notion of attribute-based encryption
(ABE) [6,16,17], in which data can be accessed only if a subset of attributes
(policies) are satisfied. However, our work is different from ABE in two aspects.
First, we focus on how to delete data, while ABE focuses on how to access data
based on attributes. Second, because of the different design objectives, ABE

384 Y. Tang et al.

gives users the decryption keys of the associated attributes, so that they can ac-
cess files that satisfy the attributes. On the other hand, in policy-based deletion,
we do not share with users any decryption keys of policies, which instead are
all maintained in the key manager. Our focus is to appropriately remove keys in
the key manager so as to guarantee file assured deletion, which is an important
security property when we outsource data storage to the cloud. This guides us
into a different design space in contrast with existing ABE approaches.

2.3 Participants in the System

Our system is composed of three participants: the data owner, the key manager,
and the storage cloud. They are described as follows.

Data owner. The data owner is the entity that originates file data to be stored
on the cloud. It may be a file system of a PC, a user-level program, a mobile
device, or even in the form of a plug-in of a client application.

Key manager. The key manager maintains the policy-based control keys that
are used to encrypt data keys. It responds to the data owner’s requests by
performing encryption, decryption, renewal, and revocation to the control keys.

Storage cloud. The storage cloud is maintained by a third-party cloud provider
(e.g., Amazon S3) and keeps the data on behalf of the data owner. We emphasize
that we do not require any protocol and implementation changes on the storage
cloud to support our system. Even a naive storage service that merely provides
file upload/download operations will be suitable.

2.4 Threat Models and Assumptions

Our main design goal is to provide assured deletion of files produced by the data
owner. A file is deleted (or permanently inaccessible) if its policy is revoked and
becomes obsolete. Here, we assume that the control key associated with a revoked
policy is reliably removed by the key manager. Thus, by assured deletion of files,
we mean that any existing file copy that are associated with revoked policies will
remain permanently encrypted and unrecoverable.

The key manager can be deployed as a minimally trusted third-party service.
By minimally trusted, we mean that the key manager reliably removes the control
keys of revoked policies. However, it is possible that the key manager can be
compromised. In this case, an attacker can recover the files that are associated
with existing active policies. On the other hand, files that are associated with
revoked policies still remain inaccessible, as the control keys are removed. Hence,
file assured deletion is achieved.

It is still important to improve the robustness of the key manager service to
minimize its chance of being compromised. To achieve this, we can use a quorum
of key managers [18], in which we create n key shares for a key, such that any
k < n of the key shares can be used to recover the key. While the quorum scheme
increases the storage overhead of keys, this is justified as keys are of much smaller
size than data files.

FADE: Secure Overlay Cloud Storage with File Assured Deletion 385

Before accessing the active keys in the key manager, the data owner needs
to present authentication credentials (e.g., based on public key infrastructure
certificates) to the key manager to show that it satisfies the proper policies
associated with the files. We assume that the data owner does not disclose any
successfully decrypted file to unauthorized parties.

2.5 The Basics - File Upload/Download

We now introduce the basics of uploading/downloading files to/from the cloud
storage. We first assume that each file is associated with a single policy, and
then explain how a file is associated with multiple policies in Section 2.7.

Our design is based on blinded RSA [14,20], in which the data owner requests
the key manager to decrypt a blinded version of the encrypted data key. If the
associated policy is satisfied, then the key manager will decrypt and return the
blinded version of the original data key. The data owner can then recover the
data key. In this way, the actual content of the data key remains confidential
to the key manager as well as to any attacker that sniffs the communication
between the data owner and the key manager.

We first summarize the major notation used throughout the paper. For each
policy i, the key manager generates two secret large RSA prime numbers pi

and qi and computes the product ni = piqi
1. The key manager then randomly

chooses the RSA public-private control key pair (ei, di). The parameters (ni, ei)
will be publicized, while di is securely stored in the key manager. On the other
hand, when the data owner encrypts a file F , it randomly generates a data key
K, and a secret key Si that corresponds to policy Pi. We let {m}k denote a
message m encrypted with key k using symmetric-key encryption (e.g., AES).
We let R be the blinded component when we use blinded RSA for the exchanges
of cryptographic keys.

Suppose that F is associated with policy Pi. Our goal here is to ensure that
K, and hence F , are accessible only when policy Pi is satisfied. Note that we
only present the operations on cryptographic keys, while the implementation
subtleties, such as metadata, will be discussed in Section 3. Also, when we raise
some number to exponents ei or di, it must be done over modulo ni. For brevity,
we drop “mod ni” in our discussion.

File upload. Figure 1 shows the file upload operation. The data owner first
requests the public key (ni, ei) of policy Pi from the key manager, and caches
(ni, ei) for subsequent uses if the same policy Pi is associated with other files.
Then the data owner generates two random keys K and Si, and sends {K}Si,
Sei

i , and {F}K to the cloud2. Then the data owner can discard K and Si.

File download. Figure 2 shows the file download operation. The data owner
fetches {K}Si, Sei

i , and {F}K from the storage cloud. Then the data owner
1 We require that each policy i uses a distinct ni to avoid the common modulus attack

on RSA [10].
2 We point out that the encrypted keys (i.e., {K}Si , Sei

i) can be stored in the cloud

without creating risks of leaking confidential information.

386 Y. Tang et al.

Pi

ei , ni

Pi , {K}Si
 , Si

ei, {F}K

Storage cloud Data owner Key manager

Pi , Si
eiRei

SiR

Pi , {K}Si
 , Si

ei, {F}K

Storage cloud Data owner Key manager

Fig. 1. File upload Fig. 2. File download

generates a secret random number R, computes Rei , and sends Sei

i ·Rei = (SiR)ei

to the key manager to request for decryption. The key manager then computes
and returns ((SiR)ei)di = SiR to the data owner. The data owner can now
remove R and obtain Si, and decrypt {K}Si and hence {F}K .

Integrity. To protect the integrity of a file, the data owner needs to compute
an HMAC on every encrypted file and stores the HMAC, together with the
encrypted file, in the cloud storage. When a file is downloaded, the data owner
will check whether the HMAC is valid before decrypting the file. We assume that
the data owner has a long-term private secret for the HMAC computation.

2.6 Policy Revocation for File Assured Deletion

If a policy Pi is revoked, then the key manager completely removes the private
key di and the secret prime numbers pi and qi. Thus, we cannot recover Si from
Sei

i , and hence cannot recover K and the file F . We say that the file F , which is
tied to policy Pi, is assuredly deleted. Note that the policy revocation operations
do not involve interactions with the storage cloud.

2.7 Multiple Policies

In addition to one policy per file, FADE supports a Boolean combination of
multiple policies. We mainly focus on two kinds of logical connectives: (i) the
conjunction (AND), which means the data is accessible only when every policy
is satisfied; and (ii) the disjunction (OR), which means if any policy is satisfied,
then the data is accessible.

– Conjunctive Policies. Suppose that F is associated with conjunctive poli-
cies P1 ∧ P2 ∧ · · · ∧ Pm. To upload F to the storage cloud, the data owner
first randomly generates a data key K, and secret keys S1, S2, . . . , Sm. It
then sends the following to the storage cloud: {{K}S1}S2 · · ·Sm , Se1

1 , Se2
2 ,

. . ., Sem
m , and {F}K . On the other hand, to recover F , the data owner gener-

ates a random number R and sends (S1R)e1 , (S2R)e2 , . . ., (SmR)em to the
key manager, which then returns S1R, S2R, . . . , SmR. The data owner can
then recover S1, S2, . . . , Sm, and hence K and F .

FADE: Secure Overlay Cloud Storage with File Assured Deletion 387

– Disjunctive Policies. Suppose that F is associated with disjunctive policies
Pi1 ∨ Pi2 ∨ · · · ∨ Pim . To upload F to the cloud, the data owner will send
the following: {K}S1, {K}S2, . . ., {K}Sm , Se1

1 , Se2
2 , . . ., Sem

m , and {F}K .
Therefore, the data owner needs to compute m different encrypted copies of
K. On the other hand, to recover F , we can use any one of the policies to
decrypt the file, as in the above operations.

To delete a file associated with conjunctive policies, we simply revoke any of the
policies (say, Pj). Thus, we cannot recover Sj and hence the data key K and file
F . On the other hand, to delete a file associated with disjunctive policies, we
need to revoke all policies, so that S

ej

j cannot be recovered for all j. Note that
for any Boolean combination of policies, we can express it in canonical form,
e.g., in the disjunction (OR) of conjunctive (AND) policies.

2.8 Policy Renewal

We conclude this section with the discussion of policy renewal. Policy renewal
means to associate a file with a new policy (or combination of policies). For
example, if a user wants to extend the expiration time of a file, then the user
can update the old policy that specifies an earlier expiration time to the new
policy that specifies a later expiration time. However, to guarantee file assured
deletion, policy renewal can be performed only when the following condition
holds: the old policy will always be revoked first before the new policy is revoked.
The reason is that after policy renewal, there will be two versions of a file: one
is protected with the old policy, and one is protected with the new policy. If
the new policy is revoked first, then the file version that is protected with the
old policy may still be accessible when the control keys of the old policy are
compromised, meaning that the file is not assuredly deleted.

It is important to note that it is a non-trivial task to enforce the condition of
policy renewal, as the old policy may be associated with other existing files. In
this paper, we do not consider this issue and we pose it as future work.

Suppose that we have enforced the condition of policy renewal. A straightfor-
ward approach of implementing policy renewal is to combine the file upload and
download operations, but without retrieving the encrypted file from the cloud.
The procedures can be summarized as follows: (i) download all encrypted keys
from the storage cloud, (ii) send them to the key manager for decryption, (iii)
recover the data key, (iv) re-encrypt the data key with the control keys of the
new policies, and finally (v) send the newly encrypted keys back to the cloud.

In some special cases, optimization can be made so as to save the operations
of decrypting and re-encrypting the data key. Suppose that the Boolean com-
bination structure of policies remain unchanged, but one of the atomic policies
Pi is changed Pi′ . For example, when we extend the contract date of Bob (see
Section 2.2), we may need to update the particular time-based policy of Bob
without changing other policies. In this case, the data owner simply sends the
blinded version Si

eiRei to the key manager, which then returns SiR. The data
owner then recovers Si. Now, the data owner re-encrypts Si into S

ei′
i (mod ni′),

388 Y. Tang et al.

Pi , Si
eiRei

SiR

Pi , Si
ei

Storage cloud Data owner Key manager

Pi’

ei’ , ni’

Pi’ , Si’
ei’

Fig. 3. Policy renewal

where (ni′ , ei′) is the public key of policy Pi′ , and sends it to the cloud. Note
that the encrypted data key K remains intact. Figure 3 illustrates this special
case of policy renewal.

3 The FADE Architecture

We implement a working prototype of FADE using C++ on Linux, and we use
the OpenSSL library [13] for the cryptographic operations. In addition, we use
Amazon S3 [2] as our storage cloud. This section is to address the implementation
issues of our FADE architecture, based on our experience in prototyping FADE.
Our goal is to show the practicality of FADE when it is deployed with today’s
cloud storage services.

Figure 4 shows the FADE architecture. In the following, we define the meta-
data of FADE attached to individual files. We then describe how we implement
the data owner and the key manager, and how the data owner interacts with the
storage cloud.

3.1 Representation of Metadata

For each file protected by FADE, we include the metadata that describes the
policies associated with the file as well as a set of encrypted keys. In FADE,
there are two types of metadata: file metadata and policy metadata.

File metadata. The file metadata mainly contains two pieces of information:
file size and HMAC. We hash the encrypted file with HMAC-SHA1 for integrity
checking. The file metadata is of fixed size (with 8 bytes of file size and 20 bytes
of HMAC) and attached at the beginning of the encrypted file. Both the file

FADE: Secure Overlay Cloud Storage with File Assured Deletion 389

Data owner

Key manager

...

Cloud

File
(encrypted)

Metadata

Fig. 4. The FADE architecture

metadata and the encrypted data file will then be treated as a single file to be
uploaded to the storage cloud.

Policy metadata. The policy metadata includes the specification of the Boolean
combination of policies and the corresponding encrypted cryptographic keys.Here,
we assume that each single policy is specified by a unique 4-byte integer identifier.
To represent a Boolean combination of policies, we express it in disjunctive canon-
ical form, i.e., the disjunction (OR) of conjunctive policies, and use the characters
‘*’ and ‘+’ to denote the AND and OR operators. Then we upload the policy meta-
data as a separate file to the storage cloud. This enables us to renew policies directly
on the policy metadata without retrieving the entire file from the storage cloud.

In our implementation, individual files have their own policy metadata, al-
though we allow multiple files to be associated with the same policy (which is
the expected behavior of FADE). In other words, for two data files that are un-
der the same policy, they will have different policy metadata files that specify
different data keys, and the data keys are protected by the control key of the
same policy. In Section 5, we discuss how we may associate the same policy
metadata file with multiple data files so as to reduce the metadata overhead.

3.2 Data Owner and Storage Cloud

Our implementation of the data owner uses the following four function calls to
enable end users to interact with the storage cloud:

– Upload(file, policy). The data owner encrypts the input file using the
specified policy (or a Boolean combination of policies). It then sends the
encrypted file and the metadata onto the cloud. In our implementation,
the file is encrypted using the 128-bit AES algorithm with the cipher block
chaining (CBC) mode, yet we can adopt a different symmetric-key encryption
algorithm depending on applications.

– Download(file). The data owner retrieves the file and the policy metadata
from the cloud, checks the integrity of the file, and decrypts the file.

– Delete(policy). The data owner tells the key manager to permanently re-
voke the specified policy. All files associated with the policy will be assuredly
deleted.

390 Y. Tang et al.

– Renew(file, new_policy). The data owner first fetches the policy meta-
data for the given file from the cloud. It then updates the policy metadata
with the new policy. Finally, it sends the policy metadata back to the cloud.

The above function calls can be exported as library APIs that can be embedded
into different implementations of the data owner. In our current prototype, we
implement the data owner as a user-level program that can access files under a
working directory of a desktop PC.

The above exported interfaces wrap the third-party APIs for interacting with
the storage cloud. As an example, we use LibAWS++ [9], a C++ library for
interfacing with Amazon S3. We note that the LibAWS++ library uses HTTP
to communicate with the cloud, and it does not provide any security protection
on the data being transferred. To interact with different cloud storage services,
we can use different third-party APIs, provided that the APIs support the basic
file upload/download operations.

3.3 Key Manager

We implement the key manager that supports the following four basic functions.

– Creating a policy. The key manager creates a new policy and returns the
corresponding public control key.

– Retrieving the public control key of a policy. If the policy is accessible, then
the key manager returns the public control key. Otherwise, it returns an
error.

– Decrypting a key with respect to a policy. If the policy is accessible, then the
key manager decrypts the (blinded) key. Otherwise, it returns an error.

– Revoking a policy. The key manager revokes the policy and removes the
corresponding keys.

We implement the basic functionalities of the key manager so that it can perform
the required operations on the cryptographic keys. In particular, all the policy
control keys are built upon 1024-bit blinded RSA (see Section 2.5). To make the
key manager more robust, we can extend the key manager to a quorum of key
managers as stated in [18], and implement a PKI-based certification system for
policy checking (see Section 2.4).

4 Evaluation

We implement a prototype of FADE atop Amazon S3 [2], and we now evaluate
the empirical performance of FADE. It is crucial that FADE does not introduce
substantial performance overhead that will lead to a big increase in data man-
agement costs. In addition, the cryptographic operations of FADE should only
bring insignificant computational overhead. Therefore, our experiments aim to
answer the following issue: What is the performance overhead of FADE, and is
it feasible to use FADE to provide file assured deletion for cloud storage?

FADE: Secure Overlay Cloud Storage with File Assured Deletion 391

Our experiments use Amazon S3, residing in the United States, as the storage
cloud. Also, we deploy the data owner and the key manager within an organiza-
tion’s network that resides in an Asian country. In the experiments, we evaluate
FADE when it operates on an individual file of different sizes: 1KB, 10KB,
100KB, 1MB, and 10MB.

4.1 Experimental Results on Time Performance of FADE

We now measure the time performance of FADE using our prototype. In order
to identify the time overhead of FADE, we divide the running time of each
measurement into three components:

– data transmission time, the data uploading/downloading time between the
data owner and the storage cloud. We further divide it into two components:
the file component, which measures the transmission time for the file body
and the file metadata, and the policy component, which measures the trans-
mission time for the policy metadata (see Section 3.1). We upload/download
these two components as two separate copies to/from the storage cloud.

– AES and HMAC time, the total computational time used for performing
AES and HMAC on the file.

– key management time, the time for the data owner to coordinate with the key
manager on operating the cryptographic keys. For the file upload operation
(see Figure 1 in Section 2.5), we require the data owner to obtain the public
control key for the corresponding policy; for the download operation (see
Figure 2 in Section 2.5), the data owner works with the key manager to
obtain the data key.

We average each of our measurement results over 10 different trials.

Experiment 1 (Performance of file upload/download operations). First,
we measure the running time of the file upload and download operations for
different file sizes. Table 1 shows the results. We find that the transmission time
is the dominant factor (over 99%). The AES and HMAC time increases linearly
with the file size. However, the key management time stays constant on the
order of milliseconds, regardless of the file size. In other words, compared with
the basic encryption and integrity check provided by AES and HMAC, FADE
only involves a small time overhead in key management.

We note that when the file size is small, the transmission time for the policy
metadata is comparable with the transmission time for the file. To understand
this, we capture and analyze the data traffic, and find that the round-trip time
between our network (in Asia) and Amazon S3 (in the United States) is 200-
300 milliseconds. Because the file and the policy metadata are stored on the
cloud as two separate copies, they are transferred through two different TCP
connections, and a significant portion of data transmission time is actually due
to the TCP connection setup. In Section 4.2, we will show that the actual number
of bytes stored for the policy metadata is in fact much less than that for the file.

Experiment 2 (Performance of policy updates). Table 2 shows the time
used for renewing a single policy of a file (see Figure 3 in Section 2.8), in which

392 Y. Tang et al.

Table 1. Experiment 1 (Performance of upload/download operations)

(a) Upload

File size Total time
Data transmission AES+HMAC Key management

File (%) Policy (%) Time (%) Time (%)

1KB 1.260s 0.724s 57.4% 0.537s 42.6% 0.000s 0.0% 0.000s 0.0%

10KB 1.552s 1.020s 65.7% 0.532s 34.3% 0.001s 0.0% 0.000s 0.0%

100KB 2.452s 1.903s 77.6% 0.546s 22.3% 0.002s 0.1% 0.001s 0.0%

1MB 4.194s 3.646s 86.9% 0.527s 12.6% 0.022s 0.5% 0.000s 0.0%

10MB 16.275s 15.463s 95.0% 0.595s 3.7% 0.218s 1.3% 0.000s 0.0%

(b) Download

File size Total time
Data transmission AES+HMAC Key management

File (%) Policy (%) Time (%) Time (%)

1KB 0.843s 0.485s 57.5% 0.355s 42.1% 0.000s 0.0% 0.003s 0.4%

10KB 0.912s 0.615s 67.4% 0.294s 32.2% 0.000s 0.0% 0.003s 0.3%

100KB 1.968s 1.682s 85.5% 0.282s 14.3% 0.002s 0.1% 0.002s 0.1%

1MB 4.696s 4.360s 92.8% 0.317s 6.7% 0.017s 0.4% 0.002s 0.1%

10MB 33.746s 33.182s 98.3% 0.395s 1.2% 0.166s 0.5% 0.002s 0.0%

Table 2. Experiment 2 (Performance of policy updates). We do not show the

AES+HMAC time as it is not involved in policy renewal.

File size Total time
Data transmission Key management

Download (%) Upload (%) Time (%)

1KB 0.923s 0.315s 34.1% 0.605s 65.5% 0.004s 0.4%

10KB 0.805s 0.266s 33.0% 0.536s 66.6% 0.004s 0.4%

100KB 0.821s 0.271s 33.0% 0.546s 66.5% 0.004s 0.5%

1MB 0.813s 0.273s 33.5% 0.537s 66.0% 0.003s 0.4%

10MB 0.832s 0.266s 32.0% 0.562s 67.6% 0.004s 0.5%

we update the policy metadata on the storage cloud with the new set of crypto-
graphic keys. Our experiments show that the total time is generally small (less
than a second) regardless of the file size, as we operate on the policy metadata
only. Also, the key management time only takes about 0.004s in renewing a
policy, and this value is again independent of the file size.

Experiment 3 (Performance of multiple policies). We now evaluate the
performance of FADE when multiple policies are associated with a file (see Sec-
tion 2.7). Here, we focus on the file upload operation, and fix the file size at
1MB. We look at two specific combinations of policies, one on the conjunctive
case and one on the disjunctive case.

Table 3a shows different components of time for different numbers of con-
junctive policies, and Table 3b shows the case for disjunctive policies. A key
observation is that the AES and HMAC and the key management time remain
very low (on the order of milliseconds) when the number of policies increases.

FADE: Secure Overlay Cloud Storage with File Assured Deletion 393

Table 3. Experiment 3 (Performance of multiple policies)

(a) Conjunctive policies

Number of
Total time

Data transmission AES+HMAC Key management

policies File (%) Policy (%) Time (%) Time (%)

1 5.141s 4.562s 88.7% 0.557s 10.8% 0.022s 0.4% 0.000s 0.0%

2 4.970s 4.352s 87.6% 0.595s 12.0% 0.022s 0.4% 0.000s 0.0%

3 4.667s 3.983s 85.3% 0.662s 14.2% 0.022s 0.5% 0.001s 0.0%

4 4.976s 4.397s 88.4% 0.557s 11.2% 0.022s 0.4% 0.001s 0.0%

5 4.962s 4.406s 88.8% 0.533s 10.7% 0.021s 0.4% 0.001s 0.0%

(b) Disjunctive policies

Number of
Total time

Data transmission AES+HMAC Key management

policies File (%) Policy (%) Time (%) Time (%)

1 3.927s 3.364s 85.7% 0.541s 13.8% 0.022s 0.6% 0.000s 0.0%

2 4.015s 3.460s 86.2% 0.534s 13.3% 0.021s 0.5% 0.000s 0.0%

3 3.923s 3.390s 86.4% 0.511s 13.0% 0.022s 0.6% 0.001s 0.0%

4 3.859s 3.322s 86.1% 0.515s 13.3% 0.022s 0.6% 0.000s 0.0%

5 4.118s 3.559s 86.4% 0.536s 13.0% 0.022s 0.5% 0.001s 0.0%

4.2 Space Utilization of FADE

We now assess the space utilization. As stated in Section 3.1, there are file
metadata and policy metadata for each file, and this metadata information is
the space overhead introduced by FADE. For the file metadata, it is always fixed
at 28 bytes. On the other hand, for the policy metadata, its size differs with the
number of policies. For instance, we need 128 bytes for the policy-based secret
key Sei

i for some policy i. The size of an encrypted copy of K is 16 bytes,
and this size increases with the number of terms in the case of disjunctive (OR)
policies (see Section 2.7). Table 4 shows the different sizes of the policy metadata
based on our implementation prototype for a variable number of (a) conjunctive
policies (P1 ∧ P2 ∧ · · · ∧ Pm), and (b) disjunctive policies (P1 ∨ P2 ∨ · · · ∨ Pm).
For instance, if the file size is 1MB and there is only one policy, then the size of
the file metadata is 28 bytes and the policy metadata is 149 bytes, and hence
the space overhead is 0.017%.

4.3 Lessons Learned

In this section, we evaluate the performance of FADE in terms of the overheads
of time, space utilization, and data transfer. It is important to note that the per-
formance results depend on the deployment environment. For instance, if the data
owner and the key manager all reside in the United States as Amazon S3, then the
transmission times for files and metadata will significantly reduce; or if the policy
metadata contains more descriptive information, the overhead will increase. Nev-
ertheless, we emphasize that our experiments can show the feasibility of FADE in
providing an additional level of security protection for today’s cloud storage.

394 Y. Tang et al.

Table 4. Size of the policy metadata

(a) Conjunctive policies

Number of Policy metadata

policies size (bytes)

1 149

2 282

3 415

4 548

5 681

(b) Disjunctive policies

Number of Policy metadata

policies size (bytes)

1 149

2 298

3 447

4 596

5 745

We note that the performance overhead of FADE becomes less significant
when the size of the actual file content increases (e.g. on the order of megabytes
or even bigger). Thus, FADE is more suitable for enterprises that need to archive
large files with a substantial amount of data. On the other hand, individuals may
generally manipulate small files on the order of kilobytes. In this case, we may
consider the techniques of associate the same policy metadata with multiple files
(see Section 5) to reduce the overhead of FADE.

5 Discussion

In this section, we discuss several design limitations that we do not address in
this paper. We suggest possible enhancements that we can make to FADE.

Adding an Additional Layer of Encryption. In our current design of FADE,
if the key manager colludes with the storage cloud, then the storage cloud can
decrypt the files of data owner. To prevent this from happening, one solution is
to add an additional layer of encryption in the data owner. The idea is that the
data owner first encrypts a file with a long-term secret key, and then encrypts
the encrypted file with the data key. In this way, even if the key manager colludes
with the storage cloud, the files of the data owner remain encrypted.

Multiple Files with the Same Policy Metadata. In our current implemen-
tation, the operations of FADE are on a per-file basis, such that each data file
has one corresponding policy metadata file (see Section 3). To reduce the meta-
data overhead of FADE, we can associate a batch of multiple data files (e.g.,
files under the same directory) with the same policy metadata and the same set
of cryptographic keys (including the data key and the control keys of policies).
The advantage of the batch-based approach is that we can use one single policy
metadata for multiple data files. Thus, if the data files are of small size, then
the batch-based approach can reduce the storage overhead due to the policy
metadata.

It is possible to add a new data file into the batch of files that are currently
associated with the same policy metadata. To achieve this, the data owner first
downloads the policy metadata from the storage cloud and recovers the data key.

FADE: Secure Overlay Cloud Storage with File Assured Deletion 395

Then it uses the same data key to encrypt the new file. Note that the content
of the policy metadata remains unchanged. Also, the data key can be cached in
the data owner’s volatile storage so as to include new files into the batch later.

Reliability of the key manager. This work assumes several reliability features
of the key manager (see Section 2.4), including: (i) implementation of the quorum
scheme that improves the robustness of key management, (ii) removal of keys of
revoked policies, and (iii) secure and reliable storage of keys of active policies
that are not yet revoked. We plan to address these issues in future work.

6 Related Work

In Section 2.1, we discuss time-based deletion in [5,14], which we generalize into
policy-based deletion. In this section, we review other related work on protecting
outsourced data storage.

Cryptographic protection on outsourced data storage has been considered (see
survey in [8]). For example, Wang et al. [23] propose secure outsourced data ac-
cess mechanisms that support changes in user access rights and outsourced data.
Ateniese et al. [4] and Wang et al. [22] propose an auditing system that verifies
the integrity of outsourced data. However, all the above systems require new
protocol support on the cloud infrastructure, and such additional functionalities
may make deployment more challenging.

Security solutions that are compatible with existing public cloud storage ser-
vices have been proposed. Yun et al. [24] propose a cryptographic file system that
provides privacy and integrity guarantees for outsourced data using a universal-
hash based MAC tree. They prototype a system that can interact with an un-
trusted storage server via a modified file system. JungleDisk [7] and Cumulus
[21] are proposed to protect the privacy of outsourced data, and their implemen-
tation use Amazon S3 [2] as the storage backend. Specifically, Cumulus focuses
on making effective use of storage space while providing essential encryption on
outsourced data. The above systems mainly put the protocol functionalities on
the client side, and the cloud storage providers merely provide the storage space.

The concept of attributed-based encryption (ABE) is first introduced in [17],
in which attributes are associated with encrypted data. Goyal et al. [6] extend
the idea to key-policy ABE, in which attributes are associated with private
keys, and encrypted data can be decrypted only when a threshold of attributes
are satisfied. Pirretti et al. [16] implement ABE and conduct empirical studies.
Nair et al. [12] consider a similar idea of ABE, and they seek to enforce a fine-
grained access control of files based on identity-based public key cryptography.
Perlman et al. [15] also address the Boolean combinations of policies, but they
focus on digital rights management rather than file assured deletion and their
operations of cryptographic keys are different from our work because of the
different frameworks. As argued in Section 2.2, ABE and our work have different
design objectives and hence different key management mechanisms.

396 Y. Tang et al.

7 Conclusions

We propose a cloud storage system called FADE, which aims to provide assured
deletion for files that are hosted by today’s cloud storage services. We present the
design of policy-based file assured deletion, in which files are assuredly deleted
and made unrecoverable by anyone when their associated file access policies
are revoked. We present the essential operations on cryptographic keys so as to
achieve policy-based file assured deletion. We implement a prototype of FADE
to demonstrate its practicality, and empirically study its performance overhead
when it works with Amazon S3. Our experimental results provide insights into
the performance-security trade-off when FADE is deployed in practice.

Acknowledgment

The work of Patrick P. C. Lee was supported by project #MMT-p1-10 of the
Shun Hing Institute of Advanced Engineering, The Chinese University of Hong
Kong.

References

1. Amazon. SmugMug Case Study: Amazon Web Services (2006),

http://aws.amazon.com/solutions/case-studies/smugmug/

2. Amazon Simple Storage Service (Amazon S3), http://aws.amazon.com/s3/

3. Armbrust, M., Fox, A., Griffith, R., Joseph, A.D., Katz, R.H., Konwinski, A.,

Lee, G., Patterson, D.A., Rabkin, A., Stoica, I., Zaharia, M.: Above the Clouds: A

Berkeley View of Cloud Computing. Technical Report UCB/EECS-2009-28, EECS

Department, University of California, Berkeley (February 2009)

4. Ateniese, G., Pietro, R.D., Mancini, L.V., Tsudik, G.: Scalable and Efficient Prov-

able Data Possession. In: Proc. of SecureComm. (2008)

5. Geambasu, R., Kohno, T., Levy, A., Levy, H.M.: Vanish: Increasing Data Privacy

with Self-Destructing Data. In: Proc. of USENIX Security Symposium (August

2009)

6. Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-Based Encryption for Fine-

Grained Access Control of Encrypted Data. In: Proc. of ACM CCS (2006)

7. JungleDisk, http://www.jungledisk.com/

8. Kamara, S., Lauter, K.: Cryptographic Cloud Storage. In: Proc. of Financial Cryp-

tography: Workshop on Real-Life Cryptographic Protocols and Standardization

(2010)

9. LibAWS++, http://aws.28msec.com/

10. Menezes, A.J., van Oorschot, P.C., Vanstone, S.A.: Handbook of Applied Cryptog-

raphy. CRC Press, Boca Raton (October 1996)

11. MyAsiaCloud, http://www.myasiacloud.com/

12. Nair, S., Dashti, M.T., Crispo, B., Tanenbaum, A.S.: A Hybrid PKI-IBC Based

Ephemerizer System. In: IFIP International Federation for Information Processing,

vol. 232, pp. 241–252 (2007)

13. OpenSSL, http://www.openssl.org/

14. Perlman, R.: File System Design with Assured Delete. In: ISOC NDSS (2007)

http://aws.amazon.com/solutions/case-studies/smugmug/
http://aws.amazon.com/s3/
http://www.jungledisk.com/
http://aws.28msec.com/
http://www.myasiacloud.com/
http://www.openssl.org/

FADE: Secure Overlay Cloud Storage with File Assured Deletion 397

15. Perlman, R., Kaufman, C., Perlner, R.: Privacy-Preserving DRM. In: IDtrust

(2010)

16. Pirretti, M., Traynor, P., McDaniel, P., Waters, B.: Secure Attribute-Based Sys-

tems. In: ACM CCS (2006)

17. Sahai, A., Waters, B.: Fuzzy Identity-Based Encryption. In: Cramer, R. (ed.)

EUROCRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (2005)

18. Shamir, A.: How to Share a Secret. CACM 22(11), 612–613 (1979)

19. SmugMug, http://www.smugmug.com/

20. Stallings, W.: Cryptography and Network Security. Prentice-Hall, Englewood Cliffs

(2006)

21. Vrable, M., Savage, S., Voelker, G.M.: Cumulus: Filesystem backup to the cloud.

ACM Trans. on Storage (ToS) 5(4) (December 2009)

22. Wang, C., Wang, Q., Ren, K., Lou, W.: Privacy-preserving public auditing for

storage security in cloud computing. In: Proc. of IEEE INFOCOM (March 2010)

23. Wang, W., Li, Z., Owens, R., Bhargava, B.: Secure and Efficient Access to Out-

sourced Data. In: ACM Cloud Computing Security Workshop (CCSW) (November

2009)

24. Yun, A., Shi, C., Kim, Y.: On Protecting Integrity and Confidentiality of Crypto-

graphic File System for Outsourced Storage. In: ACM Cloud Computing Security

Workshop (CCSW) (November 2009)

http://www.smugmug.com/

A New Information Leakage Measure for Anonymity
Protocols

Sami Zhioua

King Fahd University of Petroleum and Minerals
Saudi Arabia

zhioua@kfupm.edu.sa

Abstract. The main goal of anonymity protocols is to protect the identities of
communicating entities in a network communication. An anonymity protocol
can be characterized by a noisy channel in the information-theoretic sense. The
anonymity of the protocol is then tightly related to how much information is be-
ing leaked by the channel. In this paper we investigate a new idea of measuring
the information leaked based on how much the rows of the channel probabilities
matrix are different from each other. We considered each row of the matrix as a
point in the n-dimensional space and we used statistical dispersion measures to
estimate how much the points are scattered in the space. Empirical results showed
that the two proposed measures KLSD and KLMD are sensitive to the modifica-
tions of the attacker capabilities and most importantly they are stable when the a
priori distribution on the secret events changes. We show that a variant of KLSD
coincides with the classical notion of mutual information which gives the latter
an interesting geometric interpretation. The same idea of statistical dispersion is
used in a new decision function when the protocol is re-executed several times.

1 Introduction

The ubiquitous popularity of the Internet as a means of communication and information
dissemination is creating regularly during the last few decades several security concerns.
Most of the security efforts have been devoted to the privacy of communications. Al-
though encrypting communication can help protect the privacy of data, the identities of
the communicating entities remain generally known. For example, in the Internet Pro-
tocol (IP), each IP packet carries the IP addresses of the sender as well as the receiver.
Even if this information is made invisible, an attacker can still reveal the identities of
the communicating entities by using traffic analysis (e.g. tracking encrypted packets,
analyzing the time delays between packets, comparing the payload size, etc.).

A variety of methods have been proposed to provide anonymous connections over
the Internet. These include protocols such as Mix based systems [1] Crowds [2], Onion-
routing [3], DC-Net [4], Hordes [5], etc. Most of these protocols use the idea of blending
into a crowd, that is, hiding a user’s action within the actions of many others. On the
positive side, this idea suggests that the mere availability of other users offers the actual
initiator some degree of deniability. On the negative side, a user may be incorrectly
suspected of initiating a message.

In the last decade and with the increasing need to analyze anonymity systems in more
formal and mathematical-based approaches, a significant number of works have been

S. Jajodia and J. Zhou (Eds.): SecureComm 2010, LNICST 50, pp. 398–414, 2010.
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2010

A New Information Leakage Measure for Anonymity Protocols 399

dedicated to exploring the notion of anonymity from an information-theoretic point of
view. In this regard, we see a natural progression from anonymity set [4], to entropy-
based measures [6,7] then to mutual information [8] and finally to capacity [9,10]. A
detailed account of related work is given in the next section.

In this research, we adopt the same information theory based approach where a pro-
tocol is considered as a noisy channel. A noisy channel is a concept from information
theory [11] which represents the link between a set of anonymous events A and a set
of observable events O. Events in A represent the information to hide from a poten-
tial attacker while events in O are the ones that the attacker actually observes. A good
anonymity protocol should make it hard to the attacker to guess the anonymous event
given the observable event. The extreme case is when the distributions A and O are
completely independent. This is called noninterference and achieving it, unfortunately,
is often not possible because in most of the cases the protocol needs to reveal informa-
tion about A. For example, in an election protocol, the individual votes should be secret
but ultimately, the result of the votes must be made public which reveals information
about individual votes. Hence the degree of anonymity of a protocol is tightly related
to the amount of information leaked about the anonymous event when an observation is
observed.

In information theory, the information leaked by a noisy channel is given by the
notion of mutual information which measures the amount of information that one ran-
dom variable (O) contains about another random variable (A). Recently, Smith [12]
showed through an interesting example that when an adversary tries to guess the value
of the anonymous event in a single try, an information-leak measure based on Renyi
min-entropy [13] is more suitable than mutual information. However, both mutual in-
formation and Smith’s measure depend on the knowledge of the a priori distribution
(the probabilities that a user did some action) while in general this distribution is not
known. Capacity on the other hand is an abstraction of mutual information obtained by
maximizing over the possible a priori distributions. Unfortunately, it has been argued
that the capacity is too strong [14] and there is no analytical formula to compute it for
arbitrary channels.

The contributions of this paper are threefold:

• Starting from the fact that a noisy channel can be represented as a matrix of the
conditional probabilities p(o|a) for o ∈ O and a ∈ A, we present a new family of
measures based on how much the rows of the matrix are different from each others
and we adopt a geometric approach to assess how much the corresponding points
in the n-dimensional space are scattered. Empirical analysis show very promising
properties of this measure compared to mutual information and Smith’s measure.
In particular we strongly think that these measures hold the promise of much less
dependence on the a priori distribution.

• We illustrate an interesting relationship between the new measure and the classical
concept of mutual information. To the best of our knowledge, this is the first time
that such geometric interpretation is given to mutual information.

• The same idea of statistical dispersion is used in a new decision function when the
protocol is re-executed several times. The decision function turns out to be more
reliable than the one based on maximum likelihood (ML).

400 S. Zhioua

2 Related Work

Chaum [4] introduced the notion of anonymity set which is the set of users who are
likely to be the sender or receiver of a particular message. Naturally, the anonymity of
the users increases if the size of the anonymity set increases. Serjantov and Danezis [6]
defined the effective set size based on the concept of entropy after they showed that
the simple anonymity set is inadequate when not all the users are equally likely to have
sent a particular message. For instance, an attacker analyzing emails will assign a lower
probability to a German sender of an email in arabic which arrived in Dubai. Diaz et
al. [7] proposed independently a similar measure and took the next step in attempting to
normalize the entropy and thus define a degree of anonymity as a number between 0 and
1. These two simple entropy measures were the first to explore the anonymity notion
from an information theoretic point of view and as such they have since been the subject
of various discussions and comparisons. Newman et al. [15] argued that those measures
focused on how well protected the actions of a particular user are and do not examine
how much protection a system provide to its users collectively. Toth et al. pointed out
that by using simple entropy the focus is to quantify how many bits of information an
adversary needs in order to perfectly match a message to a respective use [16]. They
refer to this approach as global and propose another approach that uses the maximal
probability of the distribution that they refer to as local measure and they show through
several interesting examples that from the user’s point of view, the local approach is
more appropriate. The main difference with respect to our approach is that in those
works, the measure reflects the lack of information (uncertainty) that an attacker has
about the distribution of users whereas in this paper, we focus on measures that reflect
the capability of protocol to disguise this information given the attacker’s knowledge
about the observables. In other words, we focus on the difference between the a priori
and a posteriori distributions and not on analyzing the a posteriori distribution only.

In information theory, the notion of mutual information quantifies the information
leaked by a noisy channel and can be seen as the difference between the a priori dis-
tribution (Shannon) entropy and the a posteriori distribution (Shannon) entropy. In [8],
Zhu and Bettati proposed to use mutual information as a measure of anonymity and
applied it to several mix based anonymity systems. Recently, Smith [12] showed that if
the attacker tries to guess the value of the anonymous event in a single try, mutual infor-
mation is not a suitable measure. The example he used is very close to the examples of
Toth et al. [16]. He proposed then a new information leak measure which is the differ-
ence between the Reny Min-entropies [13] of the a priori and a posteriori distributions.
The main problem with these two measures, mutual information and Smith’s measure,
is that they require the knowledge of the a priori distribution which is generally not pos-
sible in practice. Channel capacity which is an important notion in information theory
have been used as an anonymity measure [9,14]. Capacity is the maximum mutual in-
formation over all possible a priori distributions and hence it is an abstraction of mutual
information which is independent from the a priori distribution. However, it has been
argued that capacity in some cases is too strong and most importantly, for arbitrary
channels, there is no analytical formula to compute its value. The best one can do is to
approximate it using for example Blahut-Arimoto algorithm [11].

A New Information Leakage Measure for Anonymity Protocols 401

In this paper we still consider an anonymity protocol as a noisy channel which can
be represented as a conditional probabilities matrix. The main contribution is to pro-
pose a new anonymity measure based on the vector configuration of the matrix. This
is to the best of our knowledge the first attempt to establish a connection between the
information leaked and the vector configuration of the matrix. Edman et al. [17] pro-
posed an anonymity metric based on the permanent of a matrix. The matrix in their case
represents possible input-output correlations in a network of mixes. The permanent of
that matrix will give the number of perfect input-output matchings in the system. The
main difference with our work lies in the interpretation of the matrix. In their matrix,
the inputs are the messages entering a mix node or a mix network and the outputs are
the messages leaving the mix. In our matrix, the inputs are information to keep secret
and the output are the observations the attacker observes. Newman et al. [15] used a ma-
trix they called traffic matrix to assess how good a Traffic Analysis Prevention (TAP)
system is. Intuitively, the matrix will represent all observations made by an attacker in
a period of time and if the number of possible matrices is large enough this indicates a
good amount of protection. Clearly, this is very different from our interpretation of the
matrix.

Finally we mention that Chatzikokolakis et al. [18] proposed to consider the proba-
bility of error as a measure of leakage. In our view, this work falls in the same class as
[12] and [16].

3 Anonymity Protocols as Noisy Channels

Information theory turns out to be very useful in analyzing anonymity protocols [19,9].
Indeed, an anonymity protocol can be represented as a memoryless noisy channel where
the input is the information to be kept secret and the output is the observed events.
The attacker’s challenge is then to guess the secret information based on the observed
event. The set of observables depends on the capabilities of the attacker. So each attack
scenario can be represented by a different channel.

A channel is a tuple (A,O, p(·|·)) where A is a random variable representing the in-
puts with n values {a1, . . . ,an}, O is a random variable representing the outputs (observ-
ables) with m values {o1, . . . ,om}, and p(o|a) is a conditional probability of observing
o ∈ O given that a ∈ A is the input.

The channel is noisy because an input might lead to different outputs with different
probabilities. The probability values p(o|a) for every input/output pair constitutes the
channel matrix. Typically, the inputs are arranged by rows and the outputs by columns.

Generally, the channel matrix and its conditional probabilities p(o|a) can be easily
computed manually. It can also be computed analytically or by means of a model-
checking tool like PRISM [20]. The first step is to define the sets A of secret inputs and
O of observables. The inputs are generally the identities of the senders (assuming the
goal is sender anonymity) and the outputs are the attacker’s observables. Chatzikoko-
lakis [21] gives a detailed description of how channel matrices are computed.

The probability distribution p(·) over A is called the a priori distribution and is gen-
erally not known in advance. When an output o is observed, the probability that the
input is a certain a is given by the a posteriori probability of a given o (p(a|o)).

402 S. Zhioua

As example, let us determine the channel matrix for Crowds protocol under the col-
laborators attack1 [2].

Consider a Crowds protocol with n users among them c are compromised (c collab-
orators) and with p f as probability of forwarding. The set of inputs is the set of the
identities of the users {u1,u2, . . . ,un}. Recall that in collaborators attack, a set of cor-
rupted users collaborate to figure out the identity of the initiator. An observable action
in the protocol happens when a (honest) user i forwards the message to a collaborator.
This action is denoted di and means that user i is detected. Hence, the set of observable
actions is the set {d1,d2, . . . ,dn}. It is easy to note that there is a form of symmetry in
the corresponding channel matrix. Indeed, once a user is detected, the probability that
it is actually the initiator is the same regardless of which user is the actual initiator.
According to the proof of Theorem 5.2 in [2], this probability is

α = c
1− (n−c−1

n) p f

n− (n− c) p f
.

The probability of detecting a user other than the initiator is the same for all other users
and is β = α− c

n . Hence the conditional probabilities of the matrix are2:

p(o j|ai) =

⎧⎪⎪⎨⎪⎪⎩
α
s

if i = j

β
s

otherwise

where s = α+(n−1)β.
Crowds protocol with n = 10 users, c = 3 collaborators, and p f = 0.8 has the fol-

lowing channel matrix:

d1 d2 . . . d10

a1 0.4462 0.0615 . . . 0.0615

a2 0.0615 0.4462 . . . 0.0615

...
...

...
. . .

...

a10 0.0615 0.0615 . . . 0.4462

3.1 Channel Matrix Analysis

Anonymity protocols can be seen as noisy channels where the noise is a manifesta-
tion of the efforts of the protocol to hide the link between the inputs and the outputs3.

1 Sometimes called predecessor attack.
2 The matrix probabilities are computed by conditioning on the event that some user was de-

tected. The situation when no user is detected corresponds to absolute privacy and anonymity
is not an issue in that case.

3 In the rest of the paper, the terms secret information and input will be used interchangeably
and so are observation and output

A New Information Leakage Measure for Anonymity Protocols 403

The more noise there is in the channel, the more anonymous the protocol is. One
promising approach to analyze these protocols is the quantitative theory of informa-
tion flow which focuses on “how much” information is being leaked. Indeed, initially,
there is an initial uncertainty about the secret information. After the protocol executes
and the adversary observes the output, the uncertainty might decrease. The idea of the
quantitative approach of information theory is to quantify the amount of initial uncer-
tainty (a priori), the remaining uncertainty after observing the observation (a posteriori)
and then deduce the amount of information leaked.

In Shannon information theory, the information leaked by a noisy channel is given
by the notion of mutual information. Mutual Information of A and O, noted I(A;O),
represents the correlation of information between A and O and is defined as:

I(A;O) = H(A)−H(A|O) (1)

where H(A) is the Shannon entropy of A and H(A|O) is the conditional entropy of A
given O. Channel capacity is the maximum mutual information over all a priori distri-
butions.

C = max
p

I(A;O) (2)

Most of previous works [4,6,7] use a different interpretation of the anonymity degree
which is based only on the capabilities of the attacker after the protocol executes, that is,
the uncertainty (entropy) of the a posteriori distribution on the inputs. The approach we
use in this paper which is based on how much information is being leaked by the pro-
tocol is more adequate and more reliable than the simple a posteriori entropy approach.
Indeed, it is easy to think of two channels with significantly different a priori distribu-
tions but with the same a posteriori uncertainty. For example, consider the following
two channels (recall that the inputs are arranged by rows and the outputs by columns):

C1 =

⎛⎝ 0 1 0
0.5 0.5 0
0.5 0 0.5

⎞⎠ C2 =

⎛⎜⎜⎜⎜⎝
0 1 0
0 0 1
0 0 1
0 1 0
1 0 0

⎞⎟⎟⎟⎟⎠
In channel C1 the number of inputs is 3 so if we assume a uniform a priori distri-

bution [1
3 , 1

3 , 1
3], the entropy H(A) will be equal to 1.58. In channel C2, the number of

inputs is 5 so the uniform distribution is [1
5 , 1

5 , 1
5 , 1

5 , 1
5] and the corresponding entropy is

H(A) = 2.32. Hence, initially there is more uncertainty in channel C1 than in C2. The
a posteriori distributions in C1 and C2, however, have very similar uncertainty values.
Indeed, H(A|O) in C1 is equal to 0.79 and in C2 it is 0.8. That is, after observing an
observation, an attacker in C1 will have the same uncertainty as an attacker in C2. So
measures that rely only on the a posteriori distribution will declare both protocols with
similar anonymity degrees. This is not accurate because C1 is clearly better than C2

since it leaks less information and preserves better the uncertainty on the input distribu-
tion. Mutual information as well as the measures we propose in this paper reflects this
difference. For instance, Mutual Information for C1 is 0.79 while it it 1.52 in C2.

404 S. Zhioua

As an alternative to Shannon entropy, one can use the concept of probability of error
of an adversary [18]. In an anonymity protocol, the attacker tries to guess the secret in-
formation based on the information she observes. Her goal is to use a decision function
so that to minimize the probability of error (probability of guessing wrong). The deci-
sion function f : O → A gives for every output o, the guessed input a. The probability
of error associated to f is the averaged sum over all outputs of making a wrong guess:

Pe = ∑
o∈O

p(o)(1− p(f (o)|o)) (3)

The two most known decision functions are MAP (Maximum A Posteriori Probability)
and ML (Maximum Likelihood).

If an observation o has been observed, the MAP decision function chooses the input
that maximizes the a posteriori probability p(a|o) :

f (o) = a ⇒∀b ∈ A, p(a|o)≥ p(b|o).

The probability of error with the MAP criterion is then:

1− ∑
o∈O

max
a∈A

(p(o|a) p(a)). (4)

The ML decision function chooses the input that maximizes the likelihood p(o|a):

f (o) = a ⇒∀b ∈ A, p(o|a)≥ p(o|b).

The corresponding probability of error is thus:

1− ∑
o∈O

max
a∈A

(p(o|a)) p(a). (5)

It is well known that the best decision function is based on the MAP rule and the cor-
responding probability of error is called Bayes risk. It is known also that ML is only
an approximation of MAP when the a priori distribution is not available. This explains
why in some cases the ML deviates considerably from MAP [22].

The probability of error is not a measure of information leakage. Instead, it can be
used to measure the attacker’s initial capability (based on the a priori distribution) and
also the attacker capability after observing the output (based on the a posteriori proba-
bility). A notion of “difference” between these probabilities of error can give rise to an
information leakage measure. Smith [12] introduced an information leakage measure
along this idea but in his formulation, he used Rényi entropy [13]:

In f ormationLeak = H∞(A)−H∞(A|O) (6)

where

• H∞(A) = log
1

max
a∈A

p(a)

• H∞(A|O) = log
1

∑
o∈O

max
a∈A

p(o|a)p(a)

A New Information Leakage Measure for Anonymity Protocols 405

Equation (6) can be formulated as follows :

In f ormationLeak = log
∑
o∈O

max
a∈A

p(o|a)p(a)

max
a∈A

p(a)
(7)

In this paper we refer to this measure as min-entropy information leak. Smith showed
through an interesting example that when an adversary tries to guess the value of the
input in a single try, min-entropy information leak is more suitable than mutual infor-
mation. The example features two systems with the same mutual information, the same
a priori uncertainty, but with very different MAP probabilities of error.

4 Scattering of the Channel Matrix Rows

The new family of measures we present in this paper are based on how much the rows
of the matrix are different from each others. Since the inputs are arranged by rows,
every row of the matrix is a probability distribution on the observations for a given
input : (p(o1|a), p(o2|a), . . . , p(om|a)). Intuitively, the more these rows are similar to
each other, the more the protocol is anonymous because the observation of the output in
that case does not help much the attacker to guess the right input. On the other hand, the
more the rows are different from each other, the less anonymous the protocol is because
the knowledge of the output carries significant information about the input. To measure
how much the rows are different from each others, we consider every row as a point in
the m−dimensional space. If the rows are different, then the associated points will be
very scattered in the space and if they are similar they will be close to each others. We
consider two measures of statistical dispersion: mean difference and standard deviation
and we propose variants of theses measures we call Kullback-Leibler mean difference
(KLMD) and Kullback-Leilbler standard deviation (KLSD).

Definition 1. Let M be a channel matrix where |A| = n and |O| = m.

KLMD(M, p) =
1

n(n−1) ∑
a
=b∈A

p(a) p(b) DKL(
−→
Ra || −→Rb) (8)

KLSD(M, p) =
√

∑
a∈A

p(a) DKL(
−→
Ra || −−−−→Meanp)2 (9)

where

- DKL is the Kullback-Leibler distance (know also as relative entropy)
-
−→
Ra denotes the matrix row associated to input a

-
−−−−→
Meanp is the mean distribution with respect to the prior distribution p. Meanp(o)=
∑a p(a) p(o|a).

In addition to mean difference and standard deviation, we tried other statistical dis-
persion measures such as variance but the most promising empirical results were ob-
tained with the selected two measures. On the other hand, the choice of relative entropy

406 S. Zhioua

is motivated by the fact that in information theory, the divergence between two proba-
bility distributions is given by the relative entropy. We tried also to use Euclidean norm
but again the empirical results were clearly better with relative entropy. That said, our
plans for future work include the investigation of other statistical dispersion measures
and probability distribution metrics and different combinations of them.

The measures (8) and (9) have a geometric flavor and they are based on relative
entropy. Interestingly, we could establish a link between a variant of KLSD and the
classical mutual information notion. This gives an interesting geometrical interpretation
to mutual information. To the best of our knowledge, this fact has not been mentioned
in the literature so far.

Theorem 1.
I(A;O) = ∑

a
p(a) DKL(

−→
Ra || −−−−→Meanp)

Proof.

∑
a

p(a) DKL(
−→
Ra || −−−−→Meanp) = ∑

a
p(a)∑

o
p(o|a) log(

p(o|a)
Meanp(o)

)

= ∑
a

p(a)∑
o

p(o|a) (log(p(o|a)− log(Meanp(o)))

=
(

∑
a

p(a)∑
o

p(o|a) log(p(o|a))
)

−
(

∑
a

p(a)∑
o

p(o|a) log(Meanp(o))
)

= −∑
a

p(a)H(
−→
Ra)−

(
∑
o

∑
a

p(a)p(o|a) log(Meanp(o))
)

= −∑
a

p(a)H(
−→
Ra)+ H(

−−−−→
Meanp)

= H(
−−−−→
Meanp)−∑

a
p(a)H(

−→
Ra)

= H(O)−H(O|A)
= I(A;O) (10)

4.1 Empirical Analysis

To see how these new measures compare to mutual information and Smith’s min-entropy
information leak, we performed empirical study on Crowds [2], Onion-routing [3], and
ring-based DC-Net [4] anonymity protocols under the collaborators attack [2,23]. Two
types of experiments are performed. The first experiment aims at showing how the dif-
ferent measures behave as the capabilities of the attacker increase. The second experi-
ment focuses rather on the impact of changing the a priori distribution on the different
measures.

For Crowds, the experiment consists in considering a crowd of 20 users, a fixed prob-
ability of forwarding of 0.8 and then computing the different measures while increasing

A New Information Leakage Measure for Anonymity Protocols 407

2 7 12 17
0

0.5

1

1.5

2

2.5

3

3.5

Number of collaborators

M
ea

su
re

 v
al

ue
Crowds with 20 users

3 8 13 18
0

0.5

1

1.5

2

2.5

3

3.5

Number of collaborators

M
ea

su
re

 v
al

ue

Onion Routing with 20 users

4 8 12 16 19
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Number of users

M
ea

su
re

 v
al

ue

DC−Net with 2 collaborators

Mutual Information

Min−Entropy Information Leak

KL Mean Difference

KL Standard Deviation

Fig. 1. Comparison of the four different measures on three protocols under collaborators attack
while increasing the number of collaborators

the number of collaborators from 2 to 19. The upper left plot of Figure 1 shows how
the four measures behave. The upper right plot of the same figure shows the result of
the same experiment but on Onion-routing (20 users and the number of collaborators
increasing from 3 to 19). For the ring-based DC-Net an attack with more than 2 collab-
orators is difficult to analyze. To avoid dealing with this complexity, a slightly different
experiment is carried out which consists in fixing the number of collaborators to 2 and
decreasing the number of users from 19 to 3. This is equivalent to increasing the attacker
capabilities. The results are depicted in the lower left plot of Figure 1.

A good information leak measure should be sensitive to the increase of the attacker
capabilities. If the number of collaborators increases, for instance, this should be re-
flected by the measure. Overall, min-entropy information leak is the more sensitive to
the attacker capabilities increases. For Crowds and Onion-routing, KLMD is interest-
ingly sensitive to the attacker capabilities modification. For all protocols mutual infor-
mation and KLSD behave very similarly. This can be explained by the Thoerem 1.

In experiment 2, we fix the attacker capabilities and play on the a priori distribution.
For each protocol, the different measures are computed for different a priori distribu-
tions starting from a distribution peaked in one input and then flattering until reaching

408 S. Zhioua

2 4 6 8 10
0

0.5

1

1.5

2

2.5

A priori distribution

M
ea

su
re

 v
al

ue
Crowds with 20 users and 5 collaborators

2 4 6 8 10
0

0.5

1

1.5

2

A priori distribution

M
ea

su
re

 v
al

ue

Onion with 20 users and 5 collaborators

2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

A priori distribution

M
ea

su
re

 v
al

ue

DC Net with 20 users and 2 collaborators

5 10 15
0

0.1

0.2

0.3

0.4

0.5
A priori distributions used

Mutual Information

Min−Entropy Information Leak

KL Mean Difference

KL Standard Deviation

Fig. 2. Comparison of the four different measures on three protocols under collaborators attack
using different a priori distributions

the uniform distribution. The lower left plot of Figure 2illustrates the distributions graph-
ically. It is easy to see from the rest of plots of Figure 2 that the min-entropy information
leak is very sensitive to the a priori distribution unlike the other measures. This does not
constitute a desirable property for an anonymity measure. Indeed, generally, the a priori
distribution is not assumed to be known and hence a good anonymity measure should be
as independent as possible from that distribution. Such good measure should be deter-
mined uniquely by the matrix. Dependence on the a priori distribution has always been
an argument against the MAP rule because this makes it look as an artificial rule. The
fact that min-entropy information leak measure is inspired by the MAP probability of
error explains the sensitivity of this measure with respect to the a priori distribution as
depicted in Figure 2. The rest of the measures: mutual information, KLMD, and KLSD
are more stable when the a priori distribution changes.

To further see how each measure behaves for each protocol under the collaborators
attack, we combined the results of experiment 1 and experiment 2 in a single 3-d chart.
Figure 3 illustrates the measures for Crowds: the x axis represents the a priori distribution,
the y axis the number of collaborators and the z axis the different measures values. Note
that on the x axis, only the min-entropy information leak values increase considerably
while on the y axis, the slope is neat for all measures, in particular the KLMD measure.

A New Information Leakage Measure for Anonymity Protocols 409

5 Re-executing the Protocol Multiple Times

Most of anonymity attacks are passive attacks in the sense that they don’t draw attention
to themselves and consequently may continue for a long period of time. In particular,
a collaborators attack that last for a long period of time may detect several messages
from the same session (initiated by the same user). If the path used in that session does
not change, then the collaborators will not gain additional information even if the attack
lasts forever because it is always the same user which is detected. However, protocols
such as Crowds, Onion-routing, and Hordes change their paths periodically because
some users join the protocol, some others leave and also to improve the performance
of the protocol by balancing the load among all users. By changing the path during
the same session, the collaborators will have more information to identify the initiator
since several users will be detected and it is easy to see that the true initiator will be more
likely to be detected than any other user. The same situation happens if the path is fixed
but the set of collaborators (compromised users) change periodically which corresponds
to a second variant of the collaborators attack called called Roving adversary [24].

From an information theoretical standpoint, changing the path several times during
the same session can be regarded as re-executing the protocol several times with the
same input. Since an anonymity protocol is typically represented as a noisy channel,
re-executing the protocol will yield to a sequence of possibly different observations. It
is assumed that the protocol is memoryless, that is, each time it is re-executed, it works
according to the same probability distribution, independently from what happened in
previous sessions.

0
2

4
6

8
10 0

5
10

15
20

0

0.5

1

1.5

2

2.5

3

3.5

Collaborators
A priori distribution

M
ea

su
re

 V
al

ue

rent measures on Crowds protocol for different numbers of collaborators
different a priori distributions.

Min−Entropy Information Leak

Mutual Information

KL Mean Difference

KL Standard Deviation

Fig. 3. The four measures applied on Crowds in a 3-d graphics

410 S. Zhioua

Let a ∈ A be the input and suppose that the protocol is re-executed k times with
the same input a. The attacker has to infer the input a based on the k observations she
obtains. Let −→o denotes the sequence of k observations o1,o2, . . .ok. The total number
of possible sequences is :

ns =
(m+ k−1)!
k! (m−1)!

where m = |O| is the number of observations. The probability of an observation se-
quence −→o given an input a is :

p(−→o | a) = Πk
i=1 p(oi|a).

Re-executing the protocol k times can be represented by a bigger channel matrix
where the n inputs a1,a2, . . . ,an are arranged by rows and the ns possible sequences−→o1 ,

−→o2, . . . ,
−→ons are arranged by columns. The probability at row i and column j repre-

sents p(−→o j |ai).
Let fk be a decision function adopted by the attacker to infer the input from the

sequence of k observations. Similarly to the the single execution case, there are mainly
two types of decision functions: one based on the MAP rule and one based on ML rule.
A MAP rule based decision function returns the input that maximizes the a posteriori
prbability :

p(a|−→o) =
p(−→o |a) p(a)

p(−→o)
.

That is,

fk(−→o) = a ⇒ p(−→o |a)p(a) ≥ p(−→o |a′)p(a′) ∀a′ ∈ A.

According to the ML rule, the decision function returns the input that maximizes the
likelihood p(−→o |a). That is,

fk(−→o) = a ⇒ p(−→o |a) ≥ p(−→o |a′) ∀a′ ∈ A.

Hence the probability of error after k executions according to the MAP rule is:

1−∑−→o
max

a
(p(−→o |a)p(a)).

According to ML rule, it is:

1−∑−→o
max

a
(p(−→o |a))p(a).

In the same spirit as the new anonymity measures introduced in Section 4, we pro-
pose an alternative decision function based on how close −→o is from the channel ma-
trix’s rows. Let f req(−→o) be a vector composed of the frequencies of each o in −→o .
f req(−→o) can be seen as a probability distribution on O and consequently a point in the
m−dimentional space. Hence, we can think of a decision function that chooses the input
a whose row is the closest to the point associated to f req(−→o). The proposed decision
function is as follows:

fk(−→o) = a ⇒ DKL(
−→
Ra || f req(−→o)) ≤ DKL(

−→
Ra′ || f req(−→o)) ∀a′ ∈ A

A New Information Leakage Measure for Anonymity Protocols 411

0 2 4 6 8
0

0.2

0.4

0.6

0.8

0 2 4 6 8
0

0.2

0.4

0.6

0.8

0 2 4 6 8
0

0.2

0.4

0.6

0.8

0 2 4 6 8
0

0.2

0.4

0.6

0.8

0 2 4 6 8
0

0.2

0.4

0.6

0.8

0 2 4 6 8
0

0.2

0.4

0.6

0.8

0 2 4 6 8
0

0.2

0.4

0.6

0.8

Number of re−executions

P
ro

ba
bi

lit
y

of
 e

rr
or

2 4 6 8
0

0.1

0.2

0.3

0.4

0.5

0.6
A priori distributions

Probability of error
 (MAP)

Probability of error
(ML)

Probability of error
(distance measure)

Fig. 4. Comparison of the three probabilities of error using different a priori distributions

where DKL(· || ·) is the KL divergence (relative entropy).
The probability of error based on this decision function is:

1−∑−→o
p(−→o |amin−→o) p(amin−→o)

where
∀−→o , amin−→o = argmin

a
DKL(

−→
Ra|| f req(−→o)).

To compare these probabilities of error, we did a set of empirical experiments on
Crowds protocol. We considered a Crowds protocol (8 users, 2 collaborators, and p f =
0.9) and a set of a priori distributions ranging from a distribution peaked in 2 inputs
to the almost uniform distribution as shown in the lower right plot of Figure 4. The
experiment consists in repeating the execution of the protocol 1 time, 2 times, etc. until
8 times and seeing how the 3 probabilities of error compare to each others. Each plot
of Figure 4 shows the result of the experiment for a different a priori distribution. The
first plot (upper-left), for instance, corresponds to the distribution peaked in two inputs.
In all plots, the probabilities of error are decreasing. This is expected because the more
the protocol is re-executed, the less uncertain the attacker will be about the input.

412 S. Zhioua

The only exception concerns the probability of error with ML as the 3 first plots
exhibit a strange situation where an increase in the number of re-executions yields to
a larger probability of error which is clearly counter intuitive. This can be explained
by the inconsistent values of ML probability of error in some extreme situations as
discussed in Section 3.1.

According to Figure 4, MAP rule yields the best decision function. This confirms
a result in [9] stating that even when the protocol is re-executed, the MAP rule based
decision function remains the best. As of the probability of error we proposed, accord-
ing to Figure 4, it is not minimal but it is more reliable than ML. Also, from the same
figure we can note that as the a priori distribution approaches the uniform distribution,
the different probabilities of error become almost the same.

6 Conclusion

In this paper we have investigated a new idea of measuring the information leaked by a
protocol by analyzing the vector configuration of the channel probabilities matrix. We
considered each row of the matrix as a point in the n-dimensional space and we used
statistical dispersion measures to estimate how much the points are scattered in the
space. Empirical results showed that the two proposed measures KLSD and KLMD are
sensitive to the modifications of the attacker capabilities and most importantly they are
stable when the a priori distribution on the secret events changes. In the light of this sec-
ond property, we strongly think that this new approach holds the promise of much less
dependence on the a priori distribution on secret events. On the other side, compared
to existing information-theoretic anonymity measures ([6,?]) which focus on the lack
of information that an attacker has about the identities of users, the proposed approach
focuses rather on the capability of the protocol to disguise this information given the
attacker’s knowledge about the observables. In other words, we focus on the difference
between the a priori and a posteriori distributions and not on analyzing the a posteri-
ori distribution only. This makes our approach more general. We mention also that the
proposed measures are easy to compute compared for instance to channel capacity.

In this paper, we compared the proposed measures with mutual information by trying
them on Crowds, Onion-Routing, and DC-Net protocols. It turns out that the channel
matrices for these particular protocols are symmetric and hence the capacity reaches its
maximum in the uniform distribution. We plan to carry out comparisons on other proto-
cols and attack scenarios where capacity reaches its maximum in a non-uniform distri-
bution. It is important to mention however that in order to fairly compare the proposed
measures as well as Smith’s measure with Capacity, one has to find the distribution that
maximizes every one of these measures. This is part of our future work.

In both proposed measures, we used relative entropy (or Kullback-Leibler diver-
gence) to compute the “distance” between two probability distributions (rows the ma-
trix). Our plans for future work include the investigation of other statistical dispersion
measures such as average (mean) deviation and interquartile range and also other prob-
ability distribution metrics such as Hellinger distance and Levy metric [25]. Our goal is
to find the best combination of statistical dispersion measure and probability distribu-
tion metric that reveals the connection between the vector configuration of the matrix

A New Information Leakage Measure for Anonymity Protocols 413

and the information leaked. We plan also further analyze the proposed family of mea-
sures when applied on other anonymity systems, in particular Mix-based ones [26] and
Tor [27].

Acknowledgement

This research has been initiated by an informal discussion with Catuscia Palamidessi
and a large part of it took place under the supervision of Prakash Panangaden. We sin-
cerely thank them for their help and their support. Research funded in part by FQRNT
(McGill University, Canada) and Junior Faculty Grant (KFUPM, Saudi Arabia).

References

1. Chaum, D.: Untraceable electronic mail, return addresses, and digital pseudonyms. Commu-
nications of the ACM 24(2), 84–90 (1981)

2. Reiter, M., Rubin, A.: Crowds: Anonymity for web transactions. ACM Transactions on In-
formation and System Security 1(1), 66–92 (1998)

3. Syverson, P., Goldschlag, D., Reed, M.: Anonymous connections and onion routing. In: Pro-
ceedings of the 1997 IEEE Symposium on Security and Privacy (SP 1997), Washington, DC,
USA. IEEE Computer Society, Los Alamitos (1997)

4. Chaum, D.: The dining cryptographers problem: unconditional sender and recipient untrace-
ability. Journal of Cryptology 1(1), 65–75 (1988)

5. Shields, C., Levine, B.: A protocol for anonymous communication over the internet. In: Pro-
ceedings of the 7th ACM Conference on Computer and Communications Security, pp. 33–42.
ACM, New York (2000)

6. Serjantov, A., Danezis, G.: Towards an information theoretic metric for anonymity. In:
Dingledine, R., Syverson, P.F. (eds.) PET 2002. LNCS, vol. 2482, pp. 41–53. Springer, Hei-
delberg (2003)

7. Diaz, C., Seys, S., Claessens, J., Preneel, B.: Towards measuring anonymity. In: Dingledine,
R., Syverson, P.F. (eds.) PET 2002. LNCS, vol. 2482, pp. 54–68. Springer, Heidelberg (2003)

8. Zhu, Y., Bettati, R.: Anonymity vs. information leakage in anonymity systems. In: Proceed-
ings of the 25th IEEE International Conference on Distributed Computing Systems (ICDCS
2005), Columbus, Ohio, pp. 514–524 (2005)

9. Chatzikokolakis, K., Palamidessi, C., Panangaden, P.: Anonymity protocols as noisy chan-
nels. Information and Computation 206(2-4), 378–401 (2008)

10. Moskowitz, I., Newman, R., Crepeau, D., Miller, A.: Covert channels and anonymizing net-
works. In: WPES 2003: Proceedings of the 2003 ACM workshop on Privacy in the electronic
society, pp. 79–88. ACM, New York (2003)

11. Cover, T., Thomas, J.: Elements of Information Theory. Wiley-Interscience, New York
(1991)

12. Smith, G.: On the foundations of quantitative information flow. In: de Alfaro, L. (ed.)
FOSSACS 2009. LNCS, vol. 5504, pp. 288–302. Springer, Heidelberg (2009)

13. Rény, A.: On measures of entropy and information. In: Proceedings of the 4th Berkeley
Symposium on Mathematics, Statistics, and Probability, pp. 547–561 (1960)

14. Moskowitz, I., Newman, R., Syverson, P.: Quasi-anonymous channels. In: IASTED CNIS,
pp. 126–131 (2003)

15. Newman, R., Moskowitz, I., Syverson, P., Serjantov, A.: Metrics for traffic analysis preven-
tion. In: Dingledine, R. (ed.) PET 2003. LNCS, vol. 2760, pp. 48–65. Springer, Heidelberg
(2003)

414 S. Zhioua

16. Tóth, G., Hornák, Z., Vajda, F.: Measuring anonymity revisited. In: Liimatainen, S., Virtanen,
T. (eds.) Proceedings of the Ninth Nordic Workshop on Secure IT Systems, Espoo, Finland,
pp. 85–90 (November 2004)

17. Edman, M., Sivrikaya, F., Yener, B.: A combinatorial approach to measuring anonymity. In:
2007 IEEE Intelligence and Security Informatics, pp. 356–363 (2007)

18. Chatzikokolakis, K., Palamidessi, C., Panangaden, P.: On the bayes risk in information-
hiding protocols. Journal of Computer Security 16(5), 531–571 (2008)

19. Clark, D., Hunt, S., Malacaria, P.: Quantitative analysis of the leakage of confidential data.
Electrical Notes in Theoretical Computer Science 59, 238–251 (2001)

20. University of Oxford: Prism, http://www.prismmodelchecker.org
21. Chatzikokolakis, K.: Probabilistic and Information-Theoretic Approaches to Anonymity.

PhD thesis, Laboratoire d’Informatique (LIX), École Polytechnique, Paris (October 2007)
22. MacKay, D.: Information Theory, Inference and Learning Algorithms. Cambridge University

Press, Cambridge (2003)
23. Wright, M., Adler, M., Levine, B., Shields, C.: An analysis of the degradation of anony-

mous protocols. In: Proceedings of the Network and Distributed Security Symposium (NDSS
2002). IEEE Computer Society, Los Alamitos (2001)

24. Syverson, P., Tsudik, G., Reed, M., Landwehr, C.: Towards an analysis of onion routing se-
curity. In: Proceedings of the international workshop on Designing privacy enhancing tech-
nologies, pp. 96–114. Springer, New York (2001)

25. Gibbs, A., Su, F.: On choosing and bounding probability metrics. International Statistical
Institute 70, 418–435 (2002)

26. Danezis, G., Diaz, C.: A survey of anonymous communication channels. Technical Report
MSR-TR-2008-35, Microsoft Research (January 2008)

27. Dingledine, R., Mathewson, N., Syverson, P.: Tor: the second-generation onion router. In:
Proceedings of the 13th Usenix Security Symposium (August 2004)

http://www.prismmodelchecker.org

Hidden Markov Models for
Automated Protocol Learning

Sean Whalen1,2, Matt Bishop1, and James P. Crutchfield1,2,3

1 Department of Computer Science

University of California, Davis

{whalen,bishop}@cs.ucdavis.edu
2 Department of Physics

University of California, Davis

chaos@cse.ucdavis.edu
3 Santa Fe Institute

1399 Hyde Park Road

Santa Fe, New Mexico 87501

Abstract. Hidden Markov Models (HMMs) have applications in several

areas of computer security. One drawback of HMMs is the selection of

appropriate model parameters, which is often ad hoc or requires domain-

specific knowledge. While algorithms exist to find local optima for some

parameters, the number of states must always be specified and directly

impacts the accuracy and generality of the model. In addition, domain

knowledge is not always available or may be based on assumptions that

prove incorrect or sub-optimal.

We apply the ε-machine—a special type of HMM—to the task of con-

structing network protocol models solely from network traffic. Unlike

previous approaches, ε-machine reconstruction infers the minimal HMM

architecture directly from data and is well suited to applications such

as anomaly detection. We draw distinctions between our approach and

previous research, and discuss the benefits and challenges of ε-machines

for protocol model inference.

Keywords: Statistical Inference, Reverse Engineering, Network Proto-

cols, Markov Models, Computational Mechanics.

1 Introduction

Understanding the structure of a network protocol allows us to “speak” its lan-
guage and converse with other systems on the network that use it. The structure
of commonly used protocols, such as HTTP and FTP, are provided by their spec-
ification. In addition, these protocols use fragments of English as well as other
ASCII text such as domain names. As a result, the presence of HTTP or FTP
traffic can be identified by visual inspection of a network trace, assuming the
channel is not encrypted. One can then use its specification, or one of many free
or commercial tools, to understand the traffic present in the trace.

S. Jajodia and J. Zhou (Eds.): SecureComm 2010, LNICST 50, pp. 415–428, 2010.
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2010

416 S. Whalen, M. Bishop, and J.P. Crutchfield

The task becomes more difficult when the protocol in question uses non-
ASCII representations of state to establish connections and exchange data. Still,
there are many approaches to identify the protocol such as using port numbers,
unique payload signatures, or machine learning techniques [1]. Once the protocol
is identified, the traffic can again be understood by using the specification.

In contrast to protocol identification, consider the scenario where we do not
have access to the protocol’s specification—it is either proprietary, undocu-
mented, or otherwise obfuscated. We can treat the protocol as a black box,
where a hidden state machine governs the transmission of packets on the net-
work. To understand the structure of the packets, the task of protocol inference
is to approximate this hidden state machine with only the observed packets as
a guide.

Hidden Markov Models (HMMs) [2] are a common statistical model for sys-
tems with hidden internal states that can be measured only indirectly by obser-
vation. These models have numerous applications in computer science, including
several in computer security. An HMM is specified by a state transition matrix
and a symbol emission matrix. This means that, for an N -state HMM with a
discrete alphabet of size M , there are N(N − 1) + N(M − 1) free parameters
to be specified. These parameters can be trained using the Baum-Welch algo-
rithm [2], but training is often slow and gets stuck in local optima. In addition,
the number of states must still be specified. A model with too many states tends
to over-fit the data, while too few states may not fit the data at all. Worse, when
dealing with an unknown protocol, there is little if any knowledge available for
selecting appropriate model parameters.

To address this problem, we turn to the ε-machines of computational mechan-
ics [3]. An ε-machine is the minimal deterministic HMM of a stochastic process.
A reconstruction algorithm creates an ε-machine from a set of finite strings, and
infers the parameters of the minimal HMM that generates those strings. Here,
we treat a network protocol as a stochastic process and the traffic it generates as
input strings for the reconstruction algorithm. With the ε-machine in hand, we
can perform different tasks such as protocol mimicry, intelligent fuzzing, traffic
generation, and anomaly detection.

We next discuss recent work done on protocol inference and the benefits of
our approach. We follow this with background on HMMs and ε-machines, and
demonstrate our reconstruction technique using several simple protocols. Finally,
we discuss future applications and the limitations of our approach. Our discus-
sion assumes familiarity with stochastic processes and information theory at the
level of Cover and Thomas [4].

2 Related Work

Current approaches to protocol inference can be divided into two primary groups:
those that infer partial or complete protocol formats [5, 6, 7, 8, 9, 10], and those
that infer a state machine model [11, 12]. Both groups can be further divided
into those that examine network traces [5, 11, 6, 7], and those that additionally

Hidden Markov Models for Automated Protocol Learning 417

examine how a protocol implementation processes those traces [8,9,10,12]. Each
approach has different strengths and weaknesses, but both must identify the
location and size of protocol headers.

Much of the recent work can be traced back to Protocol Informatics, which
attempted to “determine the location and length of fields within protocol pack-
ets” using sequence alignment algorithms typically found in bioinformatics [5].
This approach was extended by RolePlayer, which used heuristics identify the
locations of IP addresses and domain names in a packet, in order to “successfully
replay one side of a [protocol] session” [6].

This work led to Discoverer, which focused on “reverse engineering the [com-
plete] message format specification” [7]. In this work, Cui et al. found that select-
ing robust parameters for sequence alignment was difficult, and that alignment
has trouble identifying variable length fields in messages of the same format.
In response, they developed a type-based alignment algorithm that infers the
semantics of different fields, and used these semantics to cluster messages of the
same format. Inference of the state machine, which is the focus of our approach,
was left to future work.

Prospex addressed this issue by inferring non-probabilistic state machines
from execution traces of a protocol implementation [12]. Their state machine
“reflects the sequences in which messages may be exchanged”. They converted
their machines into input specifications for the fuzzing tool Peach, and found
several known and unknown flaws in open source software.

In contrast, our ε-machine approach infers the minimal HMM from passively
observed network data without using execution traces. This strikes a middle
ground between Discoverer and Prospex, with several unique contributions.
These include using a probabilistic model that enables anomaly detection via
model comparison techniques, and avoiding ad hoc specification of model pa-
rameters by inferring them from the data.

We continue with a brief overview of HMMs and ε-machines, and refer the
reader to references [2] and [3] for further detail.

3 Background

A discrete stochastic process is a sequence . . . X1, X2, X3 . . . of random variables
Xn indexed by time; realizations . . . x1, x2, x3 . . . are often referred to as time se-
ries data. Here, we use time series and string interchangeably. The set of strings
a process generates forms a stochastic language in which each string occurs with
some probability. We treat a network protocol as a stochastic process, transmit-
ting packets in the protocol’s language with varying probabilities. Several well
known model classes, such as Markov Chains and Hidden Markov Models, are
commonly used to represent finite-memory stochastic processes. We will consider
these in turn, eventually introducing ε-machines as a useful alternative.

418 S. Whalen, M. Bishop, and J.P. Crutchfield

A B

α

1 − α

β

1 − β

A B

1 | 0.5

0 | 0.5

1 | 1.0

Fig. 1. Top: The general form of a two-state Markov Chain. Bottom: An HMM for

the Even Process. A state transition occurs with some probability p and generates a

symbol s, displayed as the edge label s | p. For example, the label 1 | 0.5 indicates

symbol 1 is generated with probability 0.5.

3.1 Markov Models

A Markov Chain is a representation of a stochastic process that assumes the
conditional probability of a future state Xn+1 depends only on the present
state Xn [13]:

Pr(Xn+1 = x|Xn = xn, Xn−1 = xn−1, . . . , X1 = x1)
= Pr(Xn+1 = x|Xn = xn) , (1)

where X1 . . . Xn is a sequence of random variables representing process state
over time. While this dependency can be extended to include a fixed number of
past states, a finite state Markov Chain can only represent a stochastic process
that has a limited dependence on history.

Transitions between states are random, occurring with probabilities specified
in a row-normalized transition matrix T of size |X |×|X |. Here, |X | is the number
of states. The probability of transitioning from state i to state j is denoted Tij .
As an example, a Markov Chain with two states X = {A, B} has the form:

T =
(

1 − α α
β 1 − β

)
, (2)

where α, β ∈ [0, 1] are parameters. This corresponds graphically to the state
machine diagram shown in Fig. 1.

Due to their limited history dependence, Markov Chains represent only a
subset of stochastic processes. Consider the Even Process which generates binary
strings in which the number of consecutive 1s, bounded by 0s, is always even.
For example, the strings 0110 and 011110 are in its language, but the string 010

Hidden Markov Models for Automated Protocol Learning 419

is not. It turns out that this process is not equivalent to a Markov Chain of
any finite order [14]. In such cases, one must employ a more sophisticated model
class such as Hidden Markov Models (HMMs).

3.2 Hidden Markov Models

An HMM is a Markov Chain in which the states, now denoted S, are not ob-
served directly but indirectly through measurement symbols Xn. Each observed
symbol is generated by a transition between hidden states according to some
distribution.

Since multiple transitions can generate the same observed symbol, the in-
ternal transitions and states of the system typically are not directly revealed
by observation. Nonetheless, given an HMM, several quantities of interest can
be calculated [2], including the probability of observing a particular string, the
most likely hidden-state sequence for a given string, and the state transition
and symbol emission probabilities that maximize the probability of a particular
string.

The Even Process is exactly represented by the two-state HMM given in Fig. 1.
By distinguishing internal states from observed symbols, HMMs can finitely
represent a much wider class of stochastic processes than Markov Chains.

3.3 ε-Machines

In fact, Fig. 1 shows a special HMM representation for the Even Process—one
with a minimal number of states. Moreover, the transitions are deterministic,
meaning that the measurement symbols occur on at most one transition leav-
ing a state. This property guarantees that, although there is not a one-to-one
relationship between internal states and measurement symbols, there is a one-
to-one relationship between sufficiently long measurement words and internal
state paths. Thus, internal state information is present, if very indirectly, in the
observed process.

An HMM with these properties is called an ε-machine. An ε-machine is the
minimal, optimal predictor for a stochastic process and so captures all of the
latter’s causal structure [3]. For these reasons, this is the model class we will
use.

Formally, an ε-machine consists of a set of causal states S, a measurement
alphabet A, and a set of transition matrices {T (s) : s ∈ A}. There are several
reconstruction algorithms that one can use to infer an ε-machine from a time se-
ries. We use the state splitting algorithm of Shalizi et al., whose time complexity
is O(|A|2Lmax+1) + O(N) [15]. Separate from the mathematical theory, differ-
ent reconstruction algorithms make specific assumptions about the underlying
process. The type of process being modeled thus affects the choice of algorithm.

Given an ε-machine, we can calculate certain important properties of a process.
In particular, the determinism of the state transitions enables direct calculation
of information-theoretic quantities, such as the process’s rate of information pro-
duction (source entropy rate) and the amount of historical information it stores

420 S. Whalen, M. Bishop, and J.P. Crutchfield

(statistical complexity) [3,14]. Such properties cannot be calculated from an HMM
representation that is not an ε-machine.

To estimate an HMM from time series, the number of states and transitions
must be guessed a priori. In contrast, ε-machine reconstruction algorithms infer
the minimal deterministic HMM architecture directly from time series data [16,
15]. This is a critical distinction if one wishes to discover the structure embedded
in a process, as opposed to guessing it ahead of time. This is advantageous when
reverse engineering protocols where prior information is unavailable.

4 Protocol Inference

4.1 Approach

We first define a network protocol as a set of message types. Each message type
consists of a sequence of bits, and related bits are often grouped into headers.
A particular message type may contain a set of headers, as well as a data pay-
load. This payload may contain data provided by the user, or may encapsulate
messages of a higher level protocol. Thus, we can think of a protocol message at
several levels of abstraction: as a sequence of bits, bytes, or headers and payloads.

By changing the level of abstraction, we can adjust the order of the underlying
Markov Chain as well as its alphabet size |A|. In addition, we are interested in
the structure of the protocol and not highly entropic user data such as images
or movies, so we attempt to detect and ignore payloads. This further reduces
the alphabet size, and is essential to the practical use of ε-machines.

Consider a minimal protocol having a single message type, consisting of a
2-byte length header and a payload. The length header specifies the number of
bytes in the payload as an unsigned 16-bit integer. A four byte message sending
the ASCII characters for “no” could then be viewed as a sequence of bits:

00000000 00000010 01101110 01101111

or of bytes:

0 2 110 111

or of headers and payloads:

2 “no”

The binary sequence has |A| = 2, but requires a prohibitive order-16 model to
capture the first header. At the byte level this becomes order-2, but |A| increases
to 4. Finally, if we know where the separation between header and payload is,
we can use an order-1 model with |A| = 2. If more messages are observed, the
alphabet size of the byte representation could increase to 256, so operating at
the header level is desirable. Of course, knowing the location and size of message
headers requires either the protocol specification or heuristics.

Hidden Markov Models for Automated Protocol Learning 421

Protocols such as HTTP and FTP use ASCII tokens, so header boundaries
are easily identified by inspection—typically tabs, spaces, newlines, and car-
riage returns. For more difficult binary protocols, Beddoe aligns bytes across
different messages using bioinformatics algorithms and then uses simple statis-
tics as a boundary detection heuristic [5]. Cui et al. discuss difficulties with
sequence alignment and devise a significantly improved type-based alignment
algorithm [7]. Both methods are compatible with our approach, though we use
minimum entropy clustering [17] to group messages of the same type and then
apply the simple statistics of Beddoe to identify likely header boundaries. This
method is adequate for the protocols discussed here, but complex protocols may
require additional sophistication.

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
type code checksum

identifier sequence number

data · · ·

type code chksum

idseqnumdata

0x80 0x00

Σ2

Σ2Σ2

Σ

EOM

1

2 3

5 4

0x8000 | 1.0

Σ2 | 1.0

Σ3 | 1.0

Σ | 1.0

EOM | 1.0

Fig. 2. Top: Specification of an ICMP echo request [18], Middle: HMM representation,

Bottom: ε-Machine representation. The symbol Σ represents a random byte of data,

with Σn denoting n consecutive random bytes.

422 S. Whalen, M. Bishop, and J.P. Crutchfield

Thus, our inference approach can be separated into three primary tasks: 1)
grouping bytes into headers, 2) filtering highly entropic data, and 3) reconstruct-
ing the ε-machine. Tasks 1 and 2 exist primarily to reduce the alphabet size, and
can be changed independently of task 3. For example, type-based alignment
could be exchanged with minimum entropy clustering to transparently improve
the accuracy of the inferred model.

4.2 Results

We introduce protocol ε-machines and their accompanying notation using two
simple binary protocols, followed by two more complex protocols. The first
of these, the Internet Control Messaging Protocol (ICMP) [18] defines several
message types used for network diagnostics. One of these types, the echo re-
quest/reply, finds common use in the ping command line utility bundled with
most operating systems. For this discussion we focus on echo requests, consisting
of a 1-byte type set to 0x80, 1-byte code set to 0x00, 2-byte checksum whose
contents are a function of the message, 2-byte identifier, 2-byte sequence number,
and zero or more bytes of payload.

The message specification, a corresponding 6-state HMM, and the ε-machine
are shown in Figure 2. A state is created in the HMM for each header, with
transitions between states whose headers are adjacent in the specification. Tran-
sition are labeled with the symbols to be generated. The symbol Σn denotes n
consecutive random bytes. The symbol EOM signals the message is complete and
ready for transmission.

The ε-machine inferred from captured echo requests is shown below the HMM.
Transitions are labeled with the symbol s generated by the transition and the
probability p of the transition being taken, denoted s | p . This intentionally sim-
ple example has no branching between states, resulting in transition probabilities
of 1. The type and code headers are constant values, causing their separate HMM
states to be merged in the ε-machine.

Many protocols contain a sequence number header represented as a 16-bit
integer. However, the first byte of this header changes very rarely compared to
the second byte that is incremented with each message. In the requests captured
for this example, the identifier header and the first byte of the sequence number
remained constant, resulting in their grouping into a single value by the boundary
detection heuristic (see the A3 transition between state 3 and 4). While this does
not match the specification, it is a reasonable grouping to make based solely on
the statistics of the observed messages. Given enough data, the bytes will be
grouped into the correct fields.

We next examine Modbus, a protocol commonly used in supervisory control
and data acquisition (SCADA) systems for managing industrial and infrastruc-
ture processes such as power generation and waste management. Designed in
the late 70s to operate on simple programmable logic controllers, it has gained
recent notoriety due to its lack of security. These issues have escalated due to
the Modbus/TCP variant [19] connecting these systems to standard TCP/IP
networks.

Hidden Markov Models for Automated Protocol Learning 423

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

trans id prot id

length function unit id

data · · ·

1

2

5

4

3

0x00000000000600 | 1.0

0x01 | .6

0x02 | .2

0x04 | .05

0x05 | .05

0x06 | .1

0x00 | 1.0

Σ4 | 1.0EOM | 1.0

Fig. 3. Top: Specification of a Modbus/TCP request [19], Bottom: ε-Machine repre-

sentation

The specification of Modbus/TCP requests and an inferred ε-machine are
shown in Figure 3. A request consists of a 2-byte transaction id, 2-byte protocol
id set to 0x00, 2-byte length, 1-byte unit id, 1-byte function code, and variable
length payload.

The captured traffic, generated by a protocol simulator, consists of 150 re-
quests where all transaction ids and unit ids are set to 0x00. Traffic generated
by the simulator is actual Modbus traffic, and not a statistical approximation.
Observed function codes include 0x01 for reading coils, 0x02 for reading discrete
inputs, 0x04 for reading input registers, 0x05 for writing single coils, and 0x06
for writing single registers. Each payload contains 4 bytes specifying the range
of coils or registers to read or write. Branching occurs between state 2 and 3,
with each transition probability representing the maximum likelihood estimate
of a different function code.

424 S. Whalen, M. Bishop, and J.P. Crutchfield

FTP

Sample Size Recurrent States Time (Seconds)

300 6 0.18

600 9 0.20

900 10 0.23

1200 10 0.11

1500 11 0.32

HTTP

Sample Size Recurrent States Time (Seconds)

14337 12 0.18

28674 14 0.35

43011 18 0.84

57348 20 1.16

71685 22 1.86

Fig. 4. Scaling of inferred states and inference time as a function of data length, for

FTP (top) and HTTP (bottom). Time is not necessarily monotonically increasing due

to finite sample effects. State counts are given for non-deterministic presentations of

the ε-machine.

Reconstruction also works with more complex protocols such as FTP and
HTTP. Model size prevents including the full ε-machines here, so we present
summaries of their reconstruction in Figure 4. Shown is the scaling of inferred
states and reconstruction time as a function of data length, performed on a
single core of an Intel Core 2 Duo 2.4GHz CPU under OS X 10.6.3. A Python
implementation of the state splitting reconstruction algorithm [15] was used, and
will soon be available in the open source Computational Mechanics in Python
(CMPy) library. Captured traffic was obtained from the UCDavis Honeynet
Project.

An 18-state ε-machine can be inferred from 60,000 symbols in less than a
second using an interpreted language. A random walk on the machine generates
new packets that are accepted by a remote protocol implementation as valid,
indicating the structure of the protocol is correctly captured. Together, these
results show that probabilistic reconstruction of both binary and text-based
protocols is possible when alphabet size is managed. Given this, we next discuss
future applications of probabilistic models to protocol inference.

5 Future Work

Capturing probabilities enables an ε-machine to model normal behavior and
detect anomalies using model comparison techniques. This is an advantage of
ε-machines over non-probabilistic state machines such as minimized prefix tree
acceptors [20].

Weemploy relative entropy [4] formodel comparisonbetween ε-machines, aswell
as measuring the model’s fit. Relative entropy, also known as the Kullback-Liebler

Hidden Markov Models for Automated Protocol Learning 425

0 20

Lexicographic Index

B
lo

ck
P

ro
b
a
b
il
it
y

Inferred

Generated

Fig. 5. Overlayed distributions of block length 4 symbols using an ε-machine inferred

from Modbus traffic (dark gray) to generate new traffic (light gray). Relative entropy

between the distributions is 0.09 bits, indicating the distributions are close.

divergence, measures the distance between two probability distributions P and Q
and is defined as:

DKL(P ||Q) =
∑

i

P (i) log
P (i)
Q(i)

, (3)

and DKL(P ||Q) = 0 when P and Q are equal. Thus, a large relative entropy
between machines may indicate anomalous behavior. More work is needed to
determine appropriate thresholds for flagging behavior as anomalous with an
acceptable false positive rate.

A random walk on an ε-machine generates new traffic, useful for both protocol
mimicry and traffic simulation. We measure the fit of the model by taking the
relative entropy between the new and original traffic distributions as shown in
Figure 5. An ε-machine inferred from 500 captured Modbus requests was used to
generate new traffic with a distribution almost identical to the original, having
0.09 bits of relative entropy.

Random walks on the machine can also be used for intelligent fuzzing. Fuzzing
tests the robustness of a program by feeding it invalid input values, often in the
form of random inputs or mutated valid inputs. If the program does not correctly
handle invalid input, it may crash or leave the system vulnerable to attack.

426 S. Whalen, M. Bishop, and J.P. Crutchfield

While generally considered effective for finding bugs, a substantial drawback
to this approach is code coverage. For example, if the code’s execution path
depends on the value of a 32-bit integer, a random input has a 1 in 232 chance of
evaluating that code path [21]. Working with mutated valid inputs enables more
targeted testing, but requires some knowledge of the specification. The inferred
ε-machine enables such targeted fuzzing when no specification is available.

Consider a previously known flaw in Golden FTP Server 2.70 for Windows [22].
A CWD command sent from the client with certain large arguments crashes the
server and enables remote code execution. Using an ε-machine inferred from FTP
traffic and tuned to produce longer runs of random data, this flaw was reproduced
by a random walk on the machine. The subgraph of the ε-machine relating to the
crash is given in Figure 6. We plan to investigate if probabilistic models confer
additional benefits to intelligent fuzzing.

1

2

3

4

USER: test 0x0d0a | 1.0

PASS: test 0x0d0a | 1.0
CWD | 1.0

0x2f | .99

0x0d0a EOM | .01

Fig. 6. Subgraph of the ε-machine used for fuzzing Golden FTP Server 2.70, crashing

the server when a CWD command is followed by more than 150 bytes. Symbol prob-

abilities in the inferred ε-machine were tuned to produce longer sequences of random

data for guided fuzzing.

6 Conclusion

We presented a novel HMM-based approach for inferring the state machine of
network protocols using only their traffic. While generally applicable to any
non-encrypted protocol stream, our emphasis is on protocols without a publicly
available specification.

Our approach uses ε-machine reconstruction [3] to infer the minimal deter-
ministic HMM of a protocol. The parameters of the HMM are inferred directly
from the data, which avoids the typical pitfalls involved in parameter selection.
We demonstrated our approach using ICMP, Modbus, FTP, and HTTP, and use
the inferred ε-machines for protocol mimicry, fuzzing, and traffic generation. We

Hidden Markov Models for Automated Protocol Learning 427

plan to use the probabilistic nature of our models for anomaly detection, and
have early success doing so in high performance computing environments.

Due to the limitations of traffic-based approaches, as well as sensitivity to
alphabet size, more work remains to adapt reconstruction to high complexity
protocols. In some cases where domain knowledge is available, traditional HMMs
may scale better than ε-machines, and we leave this investigation to future work.
However, our approach is well suited to protocol inference where domain knowl-
edge is lacking for manual construction of state machine models.

Acknowledgements

This work was partially supported by the DARPA Physical Intelligence Program,
as well as the Director, Office of Computational and Technology Research, Di-
vision of Mathematical, Information, and Computational Sciences of the U.S.
Department of Energy, under contract number DE-AC02-05CH11231.

References

1. Erman, J., Mahanti, A., Arlitt, M.: Internet traffic identification using machine

learning. In: Proceedings of the 49th IEEE Global Telecommunications Conference,

pp. 1–6 (2006)

2. Rabiner, L.: A tutorial on Hidden Markov Models and selected applications in

speech recognition. Proceedings of the IEEE 77, 257–286 (1989)

3. Crutchfield, J.P., Young, K.: Inferring statistical complexity. Phys. Rev. Let. 63

(1989); Crutchfield, J.P.: Physica D 75 11–54 (1994); Crutchfield, J. P., Shalizi, C.

R.: Phys. Rev. E 59(1), 275–283, 105–108 (1999)

4. Cover, T.M., Thomas, J.A.: Elements of Information Theory, 2nd edn. Wiley In-

terscience, New York (2006)

5. Beddoe, M.: Network protocol analysis using bioinformatics algorithms. Technical

report, McAfee Inc. (2005)

6. Cui, W., Paxson, V., Weaver, N., Katz, R.: Protocol-independent adaptive replay

of application dialog. In: Proceedings of the 13th Annual Symposium on Network

and Distributed System Security (2006)

7. Cui, W., Kannan, J., Wang, H.: Discoverer: Automatic protocol reverse engineering

from network traces. In: Proceedings of 16th USENIX Security Symposium on

USENIX Security Symposium, pp. 1–14 (2007)

8. Lin, Z., Jiang, X., Xu, D., Zhang, X.: Automatic protocol format reverse engi-

neering through context-aware monitored execution. In: Proceedings of the 15th

Annual Network and Distributed System Security Symposium (2008)

9. Wondracek, G., Milani Comparetti, P., Kruegel, C., Kirda, E.: Automatic net-

work protocol analysis. In: Proceedings of the 15th Symposium on Network and

Distributed System Security (2008)

10. Caballero, J., Poosankam, P., Kreibich, C., Song, D.: Dispatcher: enabling active

botnet infiltration using automatic protocol reverse-engineering. In: Proceedings of

the 16th ACM conference on Computer and Communications Security, pp. 621–634

(2009)

428 S. Whalen, M. Bishop, and J.P. Crutchfield

11. Leita, C., Mermoud, K., Dacier, M.: Scriptgen: An automated script generation tool

for honeyd. In: Proceedings of the 21st Annual Computer Security Applications

Conference, pp. 203–214 (2005)

12. Milani Comparetti, P., Wondracek, G., Kruegel, C., Kirda, E.: Prospex: Protocol

specification extraction. In: IEEE Symposium on Security and Privacy (2009)

13. Norris, J.R.: Markov Chains. Cambridge University Press, Cambridge (1997)

14. Crutchfield, J., Feldman, D.: Regularities unseen, randomness observed: Levels of

entropy convergence. Chaos 15, 25–54 (2003)

15. Shalizi, C.R., Shalizi, K.L.: Blind construction of optimal nonlinear recursive pre-

dictors for discrete sequences. In: Proceedings of the 20th conference on Uncertainty

in Artificial Intelligence, pp. 504–511 (2004)

16. Shalizi, C., Shalizi, K., Crutchfield, J.: Pattern discovery in time series, Part I:

Theory, algorithm, analysis, and convergence, 2002 Santa Fe Institute Working

Paper 02-10-060; arXiv.org/abs/cs.LG/0210025

17. Li, H., Zhang, K., Jiang, T.: Minimum entropy clustering and applications to gene

expression analysis. In: Computational Systems Bioinformatics Conference, Inter-

national IEEE Computer Society, pp. 142–151 (2004)

18. Postel, J.: Internet Control Message Protocol (1981), Updated by RFCs 950, 4884

19. Modbus Organization: Modbus Messaging Implementation Guide 1.0b (2006)

20. Bugalho, M., Oliveira, A.L.: Inference of regular languages using state merging

algorithms with search. Pattern Recognition 38 (2005)

21. Godefroid, P.: Random testing for security: blackbox vs. whitebox fuzzing. In:

Proceedings of the 2nd international workshop on Random testing, p. 1 (2007)

22. Infigo Information Security: Multiple FTP Servers vulnerabilities (2006) (accessed

October 29, 2006)

Epistemic Model Checking for Knowledge-Based
Program Implementation: An Application to

Anonymous Broadcast�

Omar I. Al-Bataineh and Ron van der Meyden

School of Computer Science and Engineering,

University of New South Wales

Abstract. Knowledge-based programs provide an abstract level of de-

scription of protocols in which agent actions are related to their states

of knowledge. The paper describes how epistemic model checking tech-

nology may be applied to discover and verify concrete implementations

based on this abstract level of description. The details of the imple-

mentations depend on the specific context of use of the protocol. The

knowledge-based approach enables the implementations to be optimized

relative to these conditions of use. The approach is illustrated using ex-

tensions of the Dining Cryptographers protocol, a security protocol for

anonymous broadcast.

Keywords: Formal methods, anonymity, model checking.

1 Introduction

In distributed systems, we generally would like agent’s actions to depend upon
the information that they have. However, the way that information flows in such
systems can be quite complex. It has been proposed to address this complexity
by the use of formal logics of knowledge [4].

In particular, knowledge based programs have been proposed as a level of
abstraction that directly captures the relationship between an agent’s knowledge
and its actions, by allowing branching statements to contain formulas of the
modal logic of knowledge, expressing what the agent knows about the global state
of the system. This has several advantages. By focusing on what information is
required, rather than how it is encoded, knowledge-based programs can be more
intuitive and more easily verified to be correct. They can also provide a common
description that is independent of assumptions such as the failure modes of
� This material is based on research sponsored by the Air Force Research Laboratory,

under agreement number FA2386-09-1-4156. The U.S. Government is authorized to

reproduce and distribute reprints for Governmental purposes notwithstanding any

copyright notation thereon. The views and conclusions contained herein are those

of the authors and should not be interpreted as necessarily representing the official

policies or endorsements, either expressed or implied, of the Air Force Research

Laboratory or the U.S. Government.

S. Jajodia and J. Zhou (Eds.): SecureComm 2010, LNICST 50, pp. 429–447, 2010.
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2010

430 O.I. Al-Bataineh and R. van der Meyden

communication channels in the system. Finally, knowledge-based programs lead
us to implementations that are optimal in their use of information, in the sense
that agents do not overlook opportunities to use relevant information that is
available in their local states.

A cost of the abstraction that knowledge-based programs provide, is that they
are more like specifications than concrete programs, so cannot be directly exe-
cuted. To obtain an executable program, it is necessary to replace the tests for
knowledge in the knowledge based program by equivalent concrete predicates
of the agent’s local state. Because of the complexity of information flow in dis-
tributed systems, such concrete predicates can be difficult to find. To date, this
task has generally been carried out by pencil and paper reasoning. Perhaps for
this reason, there remain only a handful of worked out examples of the develop-
ment of concrete implementations of knowledge-based programs (e.g., [1,3,7,9]).

The difficulty can be addressed through the use of model checking technol-
ogy for the logic of knowledge. Model checkers are systems that take as input a
formal model of a system, together with a specification, and determine whether
that specification is satisfied by the model [11]. The specification language used
in model checkers is generally a form of temporal logic, but in recent years work
has begun on the development of model checkers based on logics of knowledge
[5,12,19]. We describe a methodology for the use of this latter class of model
checkers to the development of implementations of knowledge based programs.
The methodology is partially automated. It assists users in finding a concrete
predicate that is equivalent to a knowledge condition in a knowledge-based pro-
gram by means of an iterative process, in which automatically computed coun-
terexamples to a user’s guess for the concrete predicate are used by the user to
construct an improved concrete predicate, until one is found that is equivalent
to the knowledge condition.

We illustrate the methodology by means of an example in which we use the
epistemic model checker MCK [5], to develop concrete implementations of a
knowledge-based program for anonymous broadcast, based on multiple rounds
of Chaum’s Dining Cryptographers Protocol [2].

The Dining Cryptographers Protocol enables a message to be broadcast anony-
mously, under the assumption that only one agent is attempting to broadcast a
message. The objective of the extension that we consider is to remove this assump-
tion, so that any number of agents may broadcast their messages anonymously.
One of the main difficulties in this is that, since agents operate independently, it
is possible for simultaneous broadcasts to interfere with each other, causing a fail-
ure in the transmission. Thus, a key issue is to enable the agents to detect conflicts
in the transmission, and to respond appropriately when a conflict is detected.

In our analysis, we express the expected behaviour using a knowledge based
program that conditions the agent’s actions on whether it knows that there is
a conflict. We then use our model checking supported methodology to identify
exactly the concrete conditions under which an agent knows whether there is a
conflict. These conditions turn out to have a surprising level of complexity. In

Epistemic Model Checking for Knowledge-Based Program Implementation 431

particular, we find that these conditions can differ, depending on the assumptions
that we make about the number of agents wishing to broadcast.

Our approach leads to the discovery (assisted by automation) of a number
of subtleties concerning the protocol that, to our knowledge, have not been
previously noticed. In particular, we find that it is possible for agents to detect
conflicts (or lack of conflict) in some quite unexpected situations. Moreover, we
discover situations where, even though the protocol terminates, an agent cannot
be sure that its message has been successfully transmitted (although it may have
a high subjective probability that this is the case). Our results both show that
there are previously unnoticed opportunities to optimize the protocol, and help
to clarify what should be the specification of the protocol (the previous literature
generally describes the protocol without providing a formal specification beyond
the statement that it is intended for anonymous broadcast.)

The structure of the paper is as follows. We give a brief introduction to the
logic of knowledge and epistemic model checking in Section 2. In Section 3 we
discuss knowledge-based programs and describe our methodology for the devel-
opment of their implementations using epistemic model checking. The Dining
Cryptographers problem and its extensions are introduced in Section 4. In Sec-
tion 5, we describe the application of our methodology to this protocol. Finally,
some conclusions are drawn in Section 6.

2 Model Checking Epistemic Logic

Epistemic logics are a class of modal logics that include operators whose mean-
ing concerns the information available to agents in a distributed or multi-agent
system. We describe here briefly a version of such a logic combining operators
for knowledge and linear time, and its semantics in a class of structures known
in the literature as interpreted systems [4]. We then discuss the model checker
MCK [5], which is based on this semantics.

Suppose that we are interested in systems comprised of n agents and a set
Prop of atomic propositions. The syntax of the fragment of the logic of knowledge
and time relevant for this paper is given by the following grammar:

φ ::= � | p | ¬φ | φ ∧ φ | Kiφ | Xφ

where p ∈ Prop is an atomic proposition and i ∈ {1 . . . n} is an agent. (We
freely use standard boolean operators that can be defined using the two given.)
Intuitively, the meaning of Kiφ is that agent i knows that φ is true, and Xφ
means that φ will be true at the next moment of time.

The semantics we use is the interpreted systems model for the logic of knowl-
edge [4]. For each i = 0 . . . n, let Si be a set of states. For i = 0, we interpret Si as
the set of possible states of the environment within which the agents operate; for
i = 1 . . . n we interpret Si as the set of local states of agent i. Intuitively, a local
state captures all the concrete pieces of information on the basis of which an
agent determines what it knows. We define the set of global state based on such
collection of environment and local states, to be the set S = S0 × S1 × . . .× Sn.

432 O.I. Al-Bataineh and R. van der Meyden

We write si for the i-th component (counting from 0) of a global state s. A
run over S is a function r : N → S. An interpreted system for n agents is a
tuple I = (R, π), where R is a set of runs over S, and π : S → P(Prop) is an
interpretation function.

A point of I is a pair (r, m) where r ∈ R and m ∈ N. We say that two points
(r, m), (r′, m′) are indistinguishable to agent i, and write (r, m) ∼i (r′, m′), if
r(m)i = r′(m′)i, i.e., if agent i has the same local state at these two points. We
define the semantics of the logic by means of a relation I, (r, m) |= φ, where I
is an intepreted system, (r, m) is a point of I and φ is a formula. This relation
is defined inductively as follows:

– I, (r, m) |= p if p ∈ π(r(m)),
– I, (r, m) |= ¬φ if not I, (r, m) |= φ
– I, (r, m) |= φ1 ∧ φ2 if I, (r, m) |= φ1 and I, (r, m) |= φ2
– I, (r, m) |= Xφ if I, (r, m + 1) |= φ
– I, (r, m) |= Kiφ if for all points (r′, m′) of I such that r(m) ∼i r′(m′) we

have I, (r′, m′) |= φ

We note that the semantics of the knowledge operator depends not just on the
run at which the formula is being evaluated, but also the set of all possible runs.
Changing the set of runs (e.g., by making changes to the protocol), can change
what an agent knows. Since knowledge-based programs change agent behaviours
based on what the agent knows, this makes the semantics of knowledge-based
programs somewhat subtle.

MCK is a model checker based on this semantics for the logic of knowledge.
For a given interpreted system I, and a specification φ in the logic of knowledge
and time, MCK computes whether I, (r, 0) |= φ holds for all runs r of I.

Since interpreted systems are infinite structures, MCK allows an interpreted
system to be given a finite description in the form of a program from which the
interpreted system can be generated. This description is given using:

1. A list of global variables making up states of the environment, and their
types.

2. A listing of the agents in the system, together with the global variables
that they are able to access. For each agent, we may also introduce local
variables. If v is a local variable of agent A, then we may refer to this variable
in specification formulas as A.v. Local variables may be aliased to global
variables.

A subset of the local variables is specified as being observable to the
agent. This means that it will be taken into account in the definition of the
indistinguishability relation for the agent.

3. A statement init cond φ, where φ is a boolean formula. All assignments
satisfying this formula represent an initial state of the system.

4. A program that describes the protocol executed by each agent. The protocol
describes how the agent chooses its actions depending on its history.

Executing the agent protocols starting at an initial state generates a set of runs,
that we take to be the set of runs of the interpreted system generated by input

Epistemic Model Checking for Knowledge-Based Program Implementation 433

script. (The agents operate in lock-step, each agent executing a single action in
each step. Write-conflicts are syntactically prevented.) If V is the set of all local
and global variables in the system, then the component s0 = r(n)0 of the global
state at each point (r, n) of a run r is a well-typed assignment of values to the
variables V . The local states si of agent i in these runs are defined using the
variables declared to be local. MCK allows this to be done in a number of ways,
each giving a different semantics for the knowledge operators. The construction
of local states relevant to the present paper is the perfect recall interpretation.
Writing s0 � Vi for the restriction of the assignment s0 to the variables Vi that
are observable to agent i = 1 . . . n, the local states are defined to be the sequence

r(n)i = (r(0)0 � Vi) (r(1)0 � Vi) . . . (r(n)0 � Vi),

i.e., the local state is the history of all values of the variables observable to the
agent.

This perfect recall intepretation of knowledge is particularly relevant for anal-
yses in which security or the optimal use of information are of concern. In both
cases, we are interested in determining the maximal information that an agent is
able to extract from what it observes. Both issues are significant in the example
that we study in this paper. MCK is the only model checker currently available
that supports symbolic model checking for the perfect recall interpretation of
knowledge. (DEMO [19] uses a less scalable explicit state algorithm.)

3 Implementation of Knowledge-Based Programs

Knowledge-based programs [4] are like standard programs, except that expres-
sions may refer to agent’s knowledge. That is, in a knowledge-based program for
agent i, we may find statements of the forms if φ then P1 else P2 and v := φ,
where φ is a formula of the logic of knowledge that is a boolean combination of
atomic formulas concerning the agent’s local variables and formulas of the form
Kiψ, and P1, P2 are knowledge-based programs for agent i.

Unlike standard programs, knowledge-based programs cannot in general be
directly executed, since, as noted above, the satisfaction of the knowledge sub-
formulas depends on the set of all runs of the program, which depends on the
actions taken, which in turn depends on the satisfaction of these knowledge
subformulas.

This apparent circularity is handled by treating knowledge-based programs
as specifications, and defining when a concrete standard program satisfies this
specification. Suppose that we have a standard program P of the same syntactic
structure as the knowledge-based program P, in which each knowledge-based
expression φ is replaced by a concrete predicate pφ of the local variables of the
agent. In order to handle the perfect recall semantics, we also allow P to add
local history variables v and code fragments of the form v := e, where e is an
expression, that update these history variables, so as to make information about
past states available at the current time. The predicate pφ may depend on the
history variables.

434 O.I. Al-Bataineh and R. van der Meyden

The concrete program P generates a set of runs that we can take to be the
basis of an interpreted system I(P). We now say that P is an implementation
of the knowledge-based program P if for each formula φ in a conditional, we
have that in the interpreted system I(P), the formula pφ ⇔ φ is valid (at times
when the condition is used). That is, the concrete condition is equivalent to the
knowledge condition in the implementation. In general, knowledge-based pro-
grams may have no implementations, a behaviourally unique implementation, or
many implementations. Some conditions are known under which a behaviourally
unique implementation is guaranteed to exist. One of these conditions is that
agents have perfect recall and all knowledge formulas in the program refer to
the present time (rather than to the past or future). This case will apply to
the knowledge-based programs we consider in this paper, so we are guaranteed
behaviourally unique implementations.

We now describe a partially automated process, using epistemic model check-
ing, that can be followed to find implementations of knowledge-based programs
P (provide these terminate in a finitely bounded time: this applies to our ex-
amples) The user begins by introducing a local boolean variable vφ for each
knowledge formula φ = Kiψ in the knowledge-based program, and replacing φ
by vφ. Treating vφ as a history variable, the user may also add to the program
statements of the form vφ := e, relying on their intuitions concerning situations
under which the epistemic formula φ will be true. This produces a standard
program P that is a candidate to be an implementation of the knowledge-based
program P. (It has, at least, the correct syntactic structure.)

To verify the correctness of P as an implementation of P, the user must now
check that the variables vφ are being maintained so as to be equivalent to the
knowledge formulas that they are intended to express. This can be done using
epistemic model checking, where we verify formulas of the form

Xn(pci = l ⇒ (vφ ⇔ Kiψ))

where n is a time at which the test containing φ may be executed, pci is the
program counter of agent i and l is a label for the location of the expression
containing φ. (This conditioning on the program counter can be dispensed with
when the expression is known to always occur at particular times n, as it al-
ways is in our examples. More generally, we would write a formula that checks
equivalence at all times for nonterminating programs, but the resulting model
checking problem is undecidable with respect to the perfect recall semantics.)

In general, the user’s guess concerning the concrete condition that is equivalent
to the knowledge formula may be incorrect, and the model checker will report the
error. In this case, the model checker can be used to generate an error trace, a
partial run leading to a situation that falsifies the formula being checked. The next
step of our process requires the user to analyse this error trace (by inspection and
human reasoning) in order to understand the source of the error in their guess
for the concrete condition representing the knowledge formula. As a result of this
analysis, a correction of the assignment(s) to the variable vφ is made by the user
(this step may require some ingenuity on the part of the user.) The model checker

Epistemic Model Checking for Knowledge-Based Program Implementation 435

is then invoked again to check the new guess. This process is iterated until a guess
is produced for which all the formulas of interest are found to be true, at which
point an implementation of the knowledge-based program has been found.

In many cases, this process can proceed monotonically. Starting from an initial
assignment vφ := e, where e is a condition that the user can easily see to be
sufficient for Kiψ, the error trace leads to the identification of a situation where
i may know ψ, which is not covered by the condition e. (That is, where Kiψ ⇒ e
does not hold.) An analysis of this condition may lead to the discovery of another
sufficient condition e′. In this case, the user can take as the next guess the
assignment vφ := e ∨ e′. Continuing in this way, we obtaining an increasing
sequence of concrete lower approximations to the knowledge formula, eventually
converging to the correct implementation. (We note that such a condition e′ can
always be found, since we may always take it to be a complete description of the
run producing the counter-example. Finding a good generalization that remains
a sufficient condition for the knowledge formula may be more difficult.)

In general, monotonicity is not guaranteed, but it obtains in our example in
this paper. We leave the question of characterizing the situations where mono-
tonicity applies to future work, and turn to a demonstration of the process on a
particular example, introduced in the next section.

4 Chaum’s Dining Cryptographers Protocol

Chaum’s dining cryptographers protocol [2, p. 65] is an example of a protocol
for secure multiparty computation: it enables the value of a function of a group
of agents to be computed while revealing nothing more than that value. Chaum
introduces the protocol with the following story:

Three cryptographers are sitting down to dinner at their favourite restau-
rant. Their waiter informs them that arrangements have been made with
the maitre d’hotel for the bill to be paid anonymously. One of the cryp-
tographers might be paying for the dinner, or it might have been NSA
(U.S National Security Agency). The three cryptographers respect each
other’s right to make an anonymous payment, but they wonder if NSA
is paying. They resolve their uncertainty fairly by carrying out the fol-
lowing protocol:

Each cryptographer flips an unbiased coin behind his menu, between
him and the cryptographer on his right, so that only the two of them can
see the outcome. Each cryptographer then states aloud whether the two
coins he can see–the one he flipped and the one his left-hand neighbor
flipped–fell on the same side or on different sides. If one of the cryp-
tographers is the payer, he states the opposite of what he sees. An odd
number of differences uttered at the table indicates that a cryptographer
is paying; an even number indicates that NSA is paying (assuming that
the dinner was paid for only once). Yet if a cryptographer is paying, nei-
ther of the other two learns anything from the utterances about which
cryptographer it is.

436 O.I. Al-Bataineh and R. van der Meyden

This version of the dining cryptographers protocol has frequently been the
focus of studies of verification of security protocols, but it is just one of many
variants discussed in Chaum’s paper. One of Chaum’s considerations is the use of
the protocol for more general anonymous broadcast applications, and he writes:

The cryptographers become intrigued with the ability to make messages
public untraceably. They devise a way to do this at the table for a state-
ment of arbitrary length: the basic protocol is repeated over and over;
when one cryptographer wishes to make a message public, he merely
begins inverting his statements in those rounds corresponding to 1’s in a
binary coded version of his message. If he notices that his message would
collide with some other message, he may for example wait for a num-
ber of rounds chosen at random from some suitable distribution before
trying to transmit again.

He notes that “undetected collision results only from an odd number of syn-
chronized identical message segments”. As a particular realization of this idea,
he discusses grouping communication into blocks and the use of the following
2-phase broadcast protocol using slot-reservation:

In a network with many messages per block, a first block may be used
by various anonymous senders to request a “slot reservation” in a second
block. A simple scheme would be for each anonymous sender to invert
one randomly selected bit in the first block for each slot they wish to
reserve in the second block. After the result of the first block becomes
known, the participant who caused the ith bit in the first block sends in
the ith slot of the second block.

This idea has been implemented as part of the Herbivore system[6]. (Herbivore
also adds mechanisms for dividing the group of participants into cliques of suf-
ficient size to provide reasonable anonymity guarantees, as well as protocols for
joining and leaving the group of participants - we will not discuss these extension
here.) The Herbivore authors note that

If an even number of nodes attempt to reserve a given slot, the collision
will be evident in the reservation phase, and they will simply wait un-
til the next round to transmit. If an odd number of nodes collide, the
collission will occur during the transmission phase.

The remarks above do not constitute a concrete definition of the protocol, and
leave a number of questions concerning the implementation open. For example,
what exact test is applied to determine whether there is a collision? Which agents
are able to detect a collision? Are there situations where some agent expects to
receive a message, but a collision occurs that it does not detect (although some
other agent may do so?)

Note that each round of the DC protocol has been proved correct, but what
about the way in which the rounds are combined? It is not immediately clear
that there are not subtle flows of information!

Epistemic Model Checking for Knowledge-Based Program Implementation 437

Prior knowledge of the participants may also affect the flow of information.
For example, suppose that the protocol is being used for the participants in a
referendum to anonymously announce their votes. In this case it is known that
all particpants will attempt to reseve a slot - does this information change the
flow of information in any way? If so, does it affect the security of the protocol?
One of the benefits of verification by epistemic model checking is that it permits
such questions about variants of a protocol, and its application in a particular
setting to be investigated efficiently without requiring reconstruction of possibly
complex proofs.

5 The 2-Phase Broadcast Protocol as a Knowledge-Based
Program

It is interesting to note that the descriptions of the 2-phase protocol above
are, in their level of abstraction, more like knowledge-based programs than like
concrete implementations. In this section, we explicitly study the protocol from
this perspective, and apply our partially automated methodology to derive the
concrete implementations. We consider a setting with 3 agents who use 3 slots
for their broadcast. Each slot permits the transmission of a single-bit message.

5.1 The Knowledge-Based Program

Figure 1 represents the 2-phase protocol as a knowledge-based program. The
parameters of the protocol in the first line alias certain local variables to global
variables in the environment. Variable i is a number in the range 1..3 used to
index the present instance of the protocol, and variables keyleft and keyright
represent keybits (referred to as “coins”, above), which are shared between by
agents in the appropriate pattern. Note that since a fresh set of keybits needs to
be used for each instance of the basic Dining Cryptographers protocol (which we
run 6 times here), we assume that an external process generates fresh values for
these keybit variables at each step; we omit the details. The final variable said
in the parameters represent the array of public announcements by the agents
at each step. All arrays are assumed to be indexed starting from 1. The local
variable slot-request records the slot number (in the range 1..3) that this agent
will attempt to reserve. If slot-request=0, then the agent will not attempt to
reserve any slot. The variable message records the single bit message that the
agent wishes to anonymously broadcast (if any). Variables for which an initial
value is not explicitly specified can take any initial value. We write ‘⊕’ for the
exclusive or operation.

The term conflict(s) in the knowledge-based program represents that there
is a conflict on slot s. This is a global condition that is defined as

conflict(s) =
∨
i�=j

(i.slot-request= s = j.slot-request) .

i.e., there exist two distinct agents i and j both requesting slot s.

438 O.I. Al-Bataineh and R. van der Meyden

protocol dc agent(i:[1,3], keyleft,keyright,said[3]:Bool) {
local variables:

slot-request:[0,3],

message:Bool,

rcvd0[3], rcvd1[3], dlvrd: Bool (initially false);

//reservation phase

for (s = 1; s ≤ 3; s++)

{
said[i] := (keyleft⊕ keyright⊕ (slot-request=s));

}
//transmission phase

for (s = 1; s ≤ 3; s++)

{
if (slot-request = s ∧ ¬Ki(conflict(s))

then said[i] := (keyleft⊕ keyright⊕ message)

else said[i] := (keyleft⊕ keyright⊕ false);

rcvd0[s] := Ki(sender(i, 0, s));
rcvd1[s] := Ki(sender(i, 1, s))

};
dlvrd:=

∧
x∈Bool,t=1..3((message = x ∧ slot-request = t) ⇒

Ki(
∧

j �=i Kjsender(j, x, t)))

}

Fig. 1. The knowledge-based program CDC

The term sender(i, x, s) represents that an agent other than i is sending
message x in slot s; this is defined as

sender(i, x, s) =
∨
j �=i

(j.message = x ∧ j.slot-request = s) .

Thus, the variable rcvd0[s] is assigned to be true if in round s, the agent learns
that someone else is trying to send the bit 0, and similarly for rcvd1[s]. This
addresses an issue that is not explicitly mentioned in the discussion of the two-
phase protocol above, viz., how does an agent know whether it has received a
transmission from another? Note that this is pertinent because the knowledge-
based program allows that, although an agent has declared that it wishes to
reserve a slot, it may still back off from the transmission if it discovers that
there is a conflict. But will the receiver always know that it has done so?

We note that this representation of the 2-phase protocol as a knowledge-
based program is speculative: an agent transmits in a slot so long as it does not
know that there is a conflict. This allows that a collision will occur during the
transmission phase. One of the benefits of the knowledge-based approach is that
it makes explicit the difference between this and another interpretation of the
protocol where, in place of the condition ¬Ki(conflict(s)), we use the condition
Ki(¬conflict(s)). In this conservative version, an agent would broadcast only
if it is certain that there is not a conflict on its desired slot. Both versions may be

Epistemic Model Checking for Knowledge-Based Program Implementation 439

appropriate depending on the circumstances, but we focus our discussion here
on the speculative version.

Since an agent may attempt to reserve a slot, and then back off, or may
send in a reserved slot without success, the protocol does not guarantee that
the message will be delivered. In this case, the agent is required to retry the
transmission in the next run of the protocol. So that it can determine whether a
retry is necessary, the final assignment to the variable dlvrd captures whether
the agent knows that its (anonymous) transmission has been successful. This
is the case if all other agents know that some agent sent the bit i.message in
slot j.slot-request. (Subtleties about the semantics of the logic of knowledge
prevent simplification of this formula by substitution of these expressions for x
and t.)

In order to set up the appropriate configuration of the 3 agents and to alias
their parameters to variables in the environment, we use the following declaration
block:

agent C2 : dc_agent(1,k31,k12,said)

agent C3 : dc_agent(2,k12,k23,said)

agent C3 : dc_agent(3,k23,k31,said)

where the kij are boolean variables that represent the keybit shared between
agent i and agent j.

In Figure 2, we give the generic structure of a possible implementation of the
knowledge-based program, as we seek using our partially-automated process.
The lines marked with (+) indicate places of difference with CDC.

Here we have introduced some history variables rr[s] that record the round
results said[0]⊕ said[1]⊕said[2] obtained from each round s of the basic
Dining Cryptographers protocol. Note that, because of the pattern of sharing of
the keybits between the agents, this expression contains each keybit value twice,
so that the keybits cancel out, leaving just the exclusive-or of the actual content
being transmitted by each of the agents (in each assignment to said[i], this
is the final term in the exclusive-or). In particular, under the assumption that
just one agent has a genuine message x to transmit in round j, and the others
transmit false, we obtain that rr[j]=x.

The variable kc[s] is used to represent the epistemic condition concern-
ing conflict in the knowledge-based program (either ¬Ki(conflict(s)) or
Ki(¬conflict(s)), depending on whether we are dealing with the speculative
or the conservative version). Thus, in verifying that we have an implementation,
the key condition to be checked is whether kc[s] ⇔ ¬Ki(conflict(s)) (respec-
tively, kc[s] ⇔ Ki(¬conflict(s))) is valid at the times the if statement is
executed. The main difficulty in finding an implementation is to find the appro-
priate concrete assignment for this variable that will make this condition valid.
Similarly we seek assignments to the variables rcvd0[s], recvd1[s] that give
these the intended meaning.

440 O.I. Al-Bataineh and R. van der Meyden

protocol dc agent(i:[0,2], keyleft,keyright,said[3]:Bool) {
local variables:

slot-request:[0,3],

message:Bool,

rcvd0[3], rcvd1[3]:Bool (initially false),

rr[6]:Bool, (+)

kc[3]:Bool (initially false); (+)

//reservation phase

for (s = 1; s ≤ 3; s++)

{
said[i] := (keyleft⊕ keyright⊕ (slot-request== s));
rr[s] :=said[0]⊕ said[1]⊕ said[2]; (+)

}
//transmission phase

for (s = 1; s ≤ 3; s++)

{
kc[s] :=???; (+)

if (slot-request== s ∧ kc[s])

then said[i] := (keyleft⊕ keyright⊕ message)

else said[i] := (keyleft⊕ keyright⊕ false);

rr[s+3] := said[0]⊕ said[1]⊕ said[2]; (+)

rcvd0[s] := ???; (+)

rcvd1[s] := ???; (+)

}
dlvrd:= ??? (+)

}

Fig. 2. A generic implementation of CDC

5.2 Verification Conditions

In order to apply our methodology, it is necessary for the user to substitute
a guess for parts of the implementation marked ‘???’, and then to use model
checking to check the correctness of the guess. We now discuss the formulas
that are used to verify the implementation. In general, the conditions need to be
verified only at specific times n, straightforwardly determined from the structure
of the program. We generally omit discussion of this.

The first formula of interest concerns the correctness of the guess for the
knowledge condition ¬Ki(conflict(s)) (in case of the speculative implementa-
tion, or Ki(¬conflict(s)) (in the case of the conservative implementation). In
the implementation, this condition is represented by the variable kc[s].

Specification 1: kc[s] correctly represents knowledge of the existence of a
conflict in slot s = 1..3. In case of the speculative interpretation, we use the
formula

Xn(i.kc[s] ⇔ ¬Ki(conflict(s))) (1s)

and in case of the conservative implementation, we use the formula

Epistemic Model Checking for Knowledge-Based Program Implementation 441

Xn(i.kc[s] ⇔ Ki(¬conflict(s))) (1c)

(In both cases, the appropriate values of n are 7, 12 and 17, where we treat the
for loops as macros and the if conditions as taking zero time.)

As remarked above, it has been claimed that the 2-phase protocol is guar-
anteed to detect a conflict either in the slot-reservation phase or else in the
transmission phase. To verify this, we can use the following specification:

Specification 2: A conflict is always detected.

Xn(conflict(s) ⇒ Ki(conflict(s)))

where we may take time n to correspond to the final time in the protocol. We
remark that the converse implication is trivial from the semantics of knowledge.

As will discuss below, Specification 2 is arguably too strong, since agents
may not be able to learn about conflicts on slots they do not reserve. Thus, the
following weaker specification is also of interest.

Specification 3: If there is a slot conflict involving agent i, then agent i detects
it.

Xn((conflict(s) ∧ i.slot-request = s) ⇒ Ki(conflict(s)))

where again we take n to correspond to the end of the protocol.
Next, the protocol has some positive goals, viz., to allow agents to broadcast

some information, and to do so anonymously. Successful reception of a bit by the
time n immediately after the transmission in slot s is intended to be represented
by the variables rcvd0[s] and rcvd1[s]. To ensure that the assignments to
these variables correctly implement their intended meaning in the knowledge-
based program, we use specifications of the following form.

Specification 4: reception variables correctly represent transmissions by others

Xn(i.rcvd0[s] ⇔ Ki(sender(i, 0, s))) (4a)

and
Xn(rcvd1[s] ⇔ Ki(sender(i, 1, s))) (4b)

Similarly, we need to verify correct implementation of the agent’s knowledge
about whether its transmission is successful.

Specification 5: delivery variables correctly represent knowledge about delivery

Xn(i.dlvrd ⇔ ∧
x∈Bool,t=1..3(i.message = x ∧ i.slot-request = t

⇒ Ki(
∧

j �=i Kjsender(j, x, t))))

Finally, the aim of the protocol is to ensure that when information is trans-
mitted, this is done anonymously. An agent may know that one of the other two
agents has a particular message value, but it may not know what that value is for
a specific agent. We may write the fact that agent i knows the value of a boolean
variable x by the notation K̂i(x), defined by K̂i(x) = Ki(x)∨Ki(¬x) . Using this,
we might first attempt to specify anonymity as

∧
j �=i(¬K̂i(j.message), i.e., agent

442 O.I. Al-Bataineh and R. van der Meyden

i knows no other’s message. Unfortunately, the protocol cannot be expected to
satisfy this: suppose that all agents manage to broadcast their message and all
messages have the same value x: then each knows that the other’s value is x. We
therefore write the following weaker specification of anonymity:

Specification 6: The protocol preserves anonymity

Xn(
∨

x=0,1

Ki(
∧
j �=i

(j.message = x)) ∨
∧
j �=i

(¬K̂i(j.message)))

to be evaluated with n set to the final time of the protocol.

5.3 Finding an Implemention of the Knowledge-Based Program

We now illustrate how we find an implementation of the knowledge-based pro-
gram using our methodology. We focus here on the speculative version, and
consider a scenario where the number of agents that are seeking to broadcast−
is initially unknown, and could be any value from the set {0..3}.

Our first task in implementing the knowledge-based program is to find an
appropriate assignment for the variables kc[s], and to verify that this assignment
correctly represents knowledge about slot conflicts and validates Specification 1.
It is plain from the discussion above that if an agent attempts to reserve slot s,
but sees that the round result for that reservation attempt is not true, then this
must be because some other agent also attempted to reserve the slot. Thus, in
this case the agent detects a conflict. A reasonable guess for the assignment to
kc[s] to represent ¬Ki(conflict(s)) is therefore

kc[s] := ¬(slot-request = s ∧ ¬rr[s] = false) .

Indeed, this proves to be the correct choice: if we now model check Specification
1s then we find that this specification is true.1

The next question of interest is then whether Specification 2 holds , as claimed.
The answer obtained by model checking is that it does not, and the counter-
example discovered is the following:

Example 1: (None of the agents discover conflict) Suppose that all agents
(C1, C2, C3) would like to reserve slot 2 and each has message 1. The round
results rr[s] are shown in on the left in Figure 3, where we show for each agent
the contribution other than keybits (which cancel out).

Now from agent C1’s perspective, this run of the protocol is indistinguishable
from another run where only C1 attempts to reserve slot 2, and it still has
message 1, shown on the right in Figure 3. Hence we have a situation where
although there is a conflict agent C1 cannot know that there is a conflict, and
Specification 2 fails, contra to what one might have expected from the quote
1 Strictly, in order to model check this claim, we first need to fill in the other ‘???’

assignments. We remark that because of independencies, the outcome of model check-

ing Specification 1s is the same whatever we choose for the other ‘???’ assignments.

We omit a detailed argument for this here.

Epistemic Model Checking for Knowledge-Based Program Implementation 443

s 1 2 3 4 5 6

Agent C1 0 1 0 0 1 0

Agent C2 0 1 0 0 1 0

Agent C3 0 1 0 0 1 0

rr[s] 0 1 0 0 1 0

s 1 2 3 4 5 6

Agent C1 0 1 0 0 1 0

Agent C2 0 0 0 0 0 0

Agent C3 0 0 0 0 0 0

rr[s] 0 1 0 0 1 0

slot-request = [2, 2, 2], slot-request = [2, 0, 0]

message = [1, 1, 1] message = [1, 1, 1]

Fig. 3. Runs indistinguishable to C1

from [6] above.2 Indeed, we see that the more liberal Specification 3 also fails in
this example.

In the discussion above, we have focused on the agent’s knowledge that there
is a conflict. From the point of view of determining the appropriate assign-
ments to the variables rcvd0 and rcvd1, it would be helpful to determine un-
der what circumstances an agent knows that there will be a transmission on a
slot but there is not a conflict on that slot. Thus, it would be helpful to have
a predicate i.conflict-free(s) that is equivalent to Ki(

∨
j j.slot-request =

s∧¬conflict(s)). We now investigate this question, and use it to illustrate the
iterative procedure to obtain local predicates that are equivalent to knowledge
formulas.

Plainly, a round-result of 1 during the reservation phase implies that someone
wishes to send in that slot. However, Example 1 also shows that Ki¬conflict(s)
cannot hold in case agent i obtains round result 1 in a slot it intends to transmit
in, and 0 in all other slots, since it is possible that all agents are attempting to
transmit in the same slot. Hence a reasonable guess is

conflict-free1(s) = rr[s] = 1 ∧ ¬(∧t∈{1,2,3}\{s}rr[t] = 0) .

When we model check

Xn(i.conflict-free1(s) ⇔ Ki(
∨
j

j.slot-request = s ∧ ¬conflict(s))

at time n after the transmission phase, we find that this formula is false. A
counter-example produced by the model checker shows that this happens when
C1 and C3 request slot 3, and C2 requests slot 1. Note that in this case the
reservation round results are (1, 0, 0). Here C1 and C3 detect a conflict in slot 3.
Since there are only three agents, they are able to reason that the conflict must
have been 2-way (else we have the scenario of Example 1). This means that they
are able to deduce that there is not a conflict in slot 1.
2 It is unclear if the authors of [6] intended to imply that all conflicts would be detected.

They also state that messages are sent with an MD5 checksum, so most conflicts

of messages somewhat longer than a single bit would in fact be detected with high

probability through corruption of this checksum. However, even with this device,

collisions of 3 identical messages would still go undetected, as noted by Chaum.

444 O.I. Al-Bataineh and R. van der Meyden

This example motivates a second guess for the predicate conflict-free(s),
viz., (when all variables are local to agent i)

conflict-free2(s) = conflict-free1(s) ∨
(rr[s] = 1 ∧ slot-request ∈ {1, 2, 3} \ {s} ∧ rr[i.slot-request] = 0) .

Model checking this predicate for equivalence to Ki(
∨

j j.slot-request = s ∧
¬conflict(s)), we still find that the equivalence does not hold. The counter-
example produced this time is the situation where agents C1 and C2 do not
request a slot, but agent C3 requests slot s so that the round result of slot s
is 1. Note that here, agents C1 and C2 know that any slot collision must be
2-way, since they cannot be a participant. Since the reservation request on slot
s gave round result 1, there must be exactly one agent requesting slot s. With
some reflection, we note that agent C1 would have been able to draw the same
conclusion about slots 2 and 3 in case the round result pattern were (0, 1, 1).
Thus, we are led to the following improved guess:

conflict-free3(s) = conflict-free2(s) ∨ (rr[s] = 1 ∧ slot-request
= s)

At this point, model checking shows that we have found the predicate we seek.
Returning now to the question of when agents learn the bit that another agent

is transmitting, we guess the assignment

rcvd1[s] := rr[s] = 1 ∧ conflict-free3(s) ∧ slot-request
= s .

That is, the agent sees that there will be a conflict free transmission on slot s,
but it is not itself using that slot. We now model check Specification 4b. Some-
what surprisingly, this specification turns out to be false! The counter example
returned is one in which the agent is C1, all agents reserve slot 1, and the agents
have messages (1, 1, 0). Note that here, the round result obtained for the trans-
mission is 0, so agent C1 detects the collision, which it knows must have been
3-way. It can also reason that the other agents cannot both have had messages
0, since this would have produced round result 0, thus, at least one must have
had message 1! This observation leads to the revised guess

rcvd1[s] := (rr[s] = 1 ∧ conflict-free3(s) ∧ slot-request
= s)∨
(slot-request = 1 ∧ rr[s + 3]
= message∧∧

t∈{1,2,3}\{s} rr[t] = 0) .

We now find that Specification 4b holds, so we have correctly implemented this
part of the knowledge-based program. A similar assignment works for the as-
signment to rcvd0 and Specification 4a.

This process can also be carried out also for the final specification Specification
5, which concerns the circumstances under which a sender knows that their
message (if any) has been received by the others. One obvious situation when
this is the case is when the sender i knows that the slot on which they are sending
is conflict-free. Recall that this occurs only when two or more of the reservation
round results equal 1, and note that this implies that all other agents also know
that the slot on which i is sending is conflict-free. Thus the others will receive

Epistemic Model Checking for Knowledge-Based Program Implementation 445

the message that i is sending (anonymously) on this slot. This suggests the
assignment

dlvrd := slot-request = 0∨
∨

s∈{1,2,3}
slot-request = s∧ conflict-free3(s) .

When we model check this with respect to Specification 5, we find that that the
specification holds, and we have a complete implementation of the knowledge-
based program. Finally, we may also model check Specification 6 and verify that
the protocol preserves anonymity in the appropriate sense. This proves to be the
case.

6 Conclusion

We have demonstrated the application of our partially automated methodol-
ogy for knowledge-based program implementation on a protocol for anony-
mous broadcast. While, like related studies [8,10,18,17,15,16], we verify that
an anonymity property holds, the focus of our effort lies in other aspects of the
protocol.

One of the main outcomes of the analysis is that the flows of information
in the protocol are considerably more subtle than one might have expected. In
particular, we find that there are circumstances, that go beyond those that have
been identified in the literature, where agents are able to obtain knowledge of
each other’s bits. Significantly, we make this discovery not manually, but using
automated support. We also address in our work a number of questions that
have not been considered in the prior literature, viz., under what circumstances
can a receiver be confident that they are receiving a transmission, and under
what circumstances a sender can know that its transmission has been successful,
and find complete answers to these questions in a particular scenario.

On the other hand, being based on model checking of a concrete model under
very particular assumptions, our approach lacks generality: it does not yield an
immediate answer to how our conclusions are affected by changing the num-
ber of agents, their topology, or the initial assumptions concerning the number
of agents wishing to transmit. However, the methodology provides an efficient
means to experiment with such questions. We are presently investigating further
variants using our methodology, in order to obtain an empirical basis from which
theoretical results may be generalized. Our present models are also starting to
press the limits of the model checking technology (run times of the order of
hours for some queries, for protocols of around 20 steps), so we are also inves-
tigating optimizations to increase the scale and complexity of the problems we
can address. We plan to report on this in future work.

In work conducted independently, Luo et al [13] have also model checked
knowledge in the 2-phase protocol, but they focus on a number of formulas
concerning conflict detection, rather than attempting to implement a knowledge-
based program, as we have done in this paper. They consider larger numbers
of agents, but they do not consider the questions we have studied concerning

446 O.I. Al-Bataineh and R. van der Meyden

reception and termination, nor do they try to find exact conditions under which
knowledge properties of interest hold. They also use observational rather than
perfect recall semantics, and justify this by an informal argument that what
they do is equivalent to perfect recall. We believe their claim of equivalence to
be correct, and it would be an interesting topic for future work to provide a more
formal and systematic justification. (Some initial steps on optimizing models of
the 2-phase protocol were already taken in [14].)

References

1. Baukus, K., van der Meyden, R.: A knowledge based analysis of cache coherence.

In: Davies, J., Schulte, W., Barnett, M. (eds.) ICFEM 2004. LNCS, vol. 3308, pp.

99–114. Springer, Heidelberg (2004)

2. Chaum, D.: The dining cryptographers problem: Unconditional sender and recipi-

ent untraceability. Journal of Cryptology, 65–75 (1988)

3. Dwork, C., Moses, Y.: Knowledge and common knowledge in a Byzantine environ-

ment: crash failures. Information and Computation 88(2), 156–186 (1990)

4. Fagin, R., Halpern, J.Y., Moses, Y., Vardi, M.Y.: Reasoning about Knowledge.

MIT Press, Cambridge (1995)

5. Gammie, P., van der Meyden, R.: MCK: Model checking the logic of knowledge.

In: Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS, vol. 3114, pp. 479–483. Springer,

Heidelberg (2004)

6. Goel, S., Robson, M., Polte, M., Sirer, E.: Herbivore: A scalable and efficient pro-

tocol for anonymous communication. Technical report, Cornell University, Ithaca,

NY (February 2003)

7. Hadzilacos, V.: A knowledge-theoretic analysis of atomic commitment protocols.

In: PODS 1987: Proc. 6th ACM Symp. on Principles of Database Systems, pp.

129–134. ACM, New York (1987)

8. Halpern, J.Y., O’Neill, K.R.: Anonymity and information hiding in multiagent

systems. In: Proc. 16th IEEE Computer Security Foundations Workshop, pp. 75–

88 (2003)

9. Halpern, J.Y., Zuck, L.D.: A little knowledge goes a long way: knowledge-based

derivations and correctness proofs for a family of protocols. Journal of the

ACM 39(3), 449–478 (1992)

10. Hughes, D., Shmatikov, V.: Information hiding, anonymity and privacy: a modular

approach. Journal of Computer Security 12(1), 3–36 (2004)

11. Clarke Jr., E.M., Grumberg, O., Peled, D.A.: Model Checking. The MIT Press,

Cambridge (1999)

12. Lomuscio, A., Qu, H., Raimondi, F.: MCMAS: A model checker for the verifica-

tion of multi-agent systems. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS,

vol. 5643, pp. 682–688. Springer, Heidelberg (2009)

13. Luo, X., Su, K., Gu, M., Wu, L., Yang, J.: Symbolic model checking the knowledge

in Herbivore protocol. In: van der Meyden, R., Smaus, G. (eds.) MoChArt 2010:

6th Int. Workshop on Model Checking and Artificial Intelligence, LNCS. Springer,

Hiedelberg (2010) (to appear), AAAI Working Notes

14. Nhu, L.L.V.: Enhancing an epsitemic logic model checker for application to exten-

sions of the dining cryptographers protocol. Honours thesis, School of Computer

Science and Engineering, University of New South Wales (November 2005)

Epistemic Model Checking for Knowledge-Based Program Implementation 447

15. Ryan, P., Schneider, S.: The modelling and analysis of security protocols: the CSP

approach. Addison-Wesley Professional, Reading (2000)

16. Schneider, S., Sidiropoulos, A.: CSP and anonymity. In: Proc. of the European

Symposium on Research in Computer Security (ESORICS), pp. 198–218. Springer,

Heidelberg (1996)

17. Syverson, P., Stubblebine, S.: Group principals and the formalization of anonymity.

In: Wing, J.M., Woodcock, J.C.P., Davies, J. (eds.) FM 1999, Part I. LNCS,

vol. 1708, pp. 814–833. Springer, Heidelberg (1999)

18. van der Meyden, R., Su, K.: Symbolic model checking the knowledge of the dining

cryptographers. In: Proc. 17th IEEE Computer Security Foundation Workshop,

pp. 280–291. IEEE Computer Society, Los Alamitos (2004)

19. van Eijck, J.: Dynamic epistemic modelling. Technical report, Centrum voor

Wiskunde en Informatica, Amsterdam (2004), CWI Report SEN-E0424

Surveying DNS Wildcard Usage
among the Good, the Bad, and the Ugly

Andrew Kalafut, Minaxi Gupta, Pairoj Rattadilok, and Pragneshkumar Patel

School of Informatics and Computing, Indiana University

{akalafut,minaxi,prattadi,patel27}@cs.indiana.edu

Abstract. A DNS wildcard can be used to point arbitrary requests

for host names within a domain to a specific host name or IP address.

Wildcards offer administrators the convenience of not having to change

DNS entries when host names change. However, we are not aware of any

work that documents how wildcards are used in practice. Such a study is

particularly important now, because Internet miscreants are starting to

exploit DNS wildcards for convenience and possibly for evading blacklists

based on exact host names. In this paper, we study the prevalence and

uses of wildcards among the good, bad, and ugly domains in the Inter-

net. We find that wildcards are in extensive use among businesses that

monetize unregistered domains, domains hosted by large web-hosting

providers, blogging sites, and websites connected to scam, phishing, and

malware.

Keywords: DNS, Wildcard, Security.

1 Introduction

The Domain Name System (DNS) [16] serves the basic purpose of translating
human-readable host names into the IP addresses. While conceptually a simple
mapping, the DNS is complex in reality. Several record types exist for different
types of mappings, and several features exist to improve convenience and func-
tionality beyond this basic description. One such feature, which we examine in
this paper, is wildcards.

Wildcards are one of the original features of DNS, defined in the original
standard. The role of wildcards in DNS is a many to one mapping, allowing all
names within a single domain or subdomain to map to a single value. This can
be used for example to map all host names in a domain to a single IP address, or
to assign a single DNS or mail server to all possible subdomains of a domain. In
both of these and other similar cases, the single catch-all wildcard record saves
the DNS administrator from having to maintain many different records that all
return the same value.

Despite their usefulness, very little is known about who uses wildcards, and
for what purposes. There are signs that Internet miscreants have discovered the
convenience of wildcards. Recently, Netcraft released two advisories that point to
the use of wildcards in setting up phishing campaigns [15,19]. Wildcards may be

S. Jajodia and J. Zhou (Eds.): SecureComm 2010, LNICST 50, pp. 448–465, 2010.
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2010

Surveying DNS Wildcard Usage among the Good, the Bad, and the Ugly 449

attractive to miscreants because they allow mapping multiple host names in their
campaigns to the same IP address, for example. This can be useful in evading
host name based blacklists with minimal effort. Given this, understanding the
use of wildcards becomes even more important.

In this paper, we undertake the first systematic study to investigate the use
of wildcards in the Internet. We specifically work towards two goals. Our pri-
mary goal is to survey wildcard usage among good, bad, and ugly domains in
the Internet. Toward this goal, we query approximately 8 million domains for
wildcard entries in the four most popular DNS record types. Our second goal
is to investigate if malicious uses of wildcards can be differentiated from their
benign uses. The ability to do so may be helpful in identifying and effectively
blacklisting malicious domains.

Working towards these goals, we arrive at the following key results:

– Prevalence: We find that a surprisingly large percentage of Internet do-
mains use wildcards. Specifically, 25-75% of domains in various data sets use
wildcards, making this a much more popular DNS feature than one would
expect.

– Type: An overwhelming majority of domains using wildcards use them in
their address records, which map arbitrary host names to a IP address.

– Uses: Prominent users of wildcards include domain-parking businesses that
wish to monetize unregistered domains and subdomains, web-hosting com-
panies, and blogging and social-networking sites.

– Malicious sites: Malicious sites also make extensive use of wildcards, with
spammers leading the pack with 75% of the scam-related domains in our
data wildcarded. We also find that Google knows more host names matching
wildcards in malicious domains than are in our data sets, implying that the
coverage of blacklists could be improved by including wildcard entries.

– Distinguishing malicious uses: Our preliminary investigation shows that
IP addresses contained in wildcard records typically spread across many ASes.
Additionally, they tend to have lower TTLs than wildcards for benign pur-
poses. These features can be used to differentiate wildcard usage among mali-
cious domains, particularly those associated with spam, from the benign ones

The rest of this paper proceeds as follows: Section 2 presents background on the
syntax and behavior of DNS wildcards. The data we use throughout the paper is
described in Section 3. We discuss the prevalence of wildcards in Section 4. We
examine what they are being used for in Section 5. Section 6 explores differences
between wildcards used for malicious purposes and others. We discuss related
work in Section 7 and conclude in Section 8.

2 Background

The primary goal of DNS is to translate host names into IP addresses. The most
popular types of host names resolved are mail servers, DNS servers (also known
as name servers) and all other types of servers, including web servers. Mail and

450 A. Kalafut et al.

DNS servers have dedicated DNS record types, MX and NS respectively, that map
the queries for those servers to host names. These host names are then mapped
to IP addresses through A records1. Web and other kinds of servers do not have
dedicated types of DNS records and a mapping between their exact name and
the corresponding IP addresses is accomplished directly through the A records.
A fourth popular DNS record type is the CNAME record, which aliases a host
name to another host name. In total, 59 DNS record types are defined as of now
but only 42 of these are in wide use [9]. Figure 1(a) shows an example of DNS
provisioning for a domain with one MX, one NS, and three A records.

A 129.79.245.53www.foo.com
foo.com MX mail.foo.com
foo.com
mail.foo.com A

NS ns1.foo.com
129.79.247.191

ns1.foo.com 129.79.247.191A

(a) without wildcards

A 129.79.245.53www.foo.com
foo.com MX mail.foo.com
foo.com

A
NS ns1.foo.com

129.79.247.191*.foo.com

(b) with wildcards

Fig. 1. Example of DNS provisioning of a domain with and without wildcards

Wildcards in DNS were first defined in RFCs 1034 [16]. Later, RFC 4592 [10]
updated and clarified the specification, providing more details and examples of
intended behavior, and the interactions of wildcards with specific record types.
A wildcard record is a DNS record of any type with a minor change to the left
hand side of the record. In a wildcarded DNS record, instead of the name being
an exact host name, its least significant (leftmost) label in the name consists of
a single asterisk character, as shown in Figure 1(b). Conceptually, the asterisk
matches one or more labels at the left end of the DNS name. In this example,
*.foo.com is being used in place of mail.foo.com and ns1.foo.com. When a
DNS query is made for mail.foo.com, seeing no match, the server will return
results for *.foo.com, substituting mail for the *. Specific records override the
wildcard records. Since the record for www.foo.com is still present, the wildcard
would not be considered when responding to a query for this host name.

The client receiving a DNS response can not directly tell if the response was
generated from a wildcard record or not; their use is transparent to the client
systems. If a query for host name name.foo.comwere matched from the wildcard
record *.foo.com, the name on the record returned in the response will still be
name.foo.com instead of *.foo.com as it is stored on the DNS server. We can
however still tell if a wildcard is in use by directly querying for the wildcard
name, in this case, *.foo.com. Since the wildcard record is the only one that
would match such a query, if a response is given to such a query, it would let us
know a wildcard record is present. Note that wildcard matches only work in one
direction. Although the query for *.foo.com looks like the client has a wildcard
in the query, it will only match an explicit wildcard record, not an arbitrary
name in foo.com on the server.
1 AAAA records are used to map host names to IPv6 addresses.

Surveying DNS Wildcard Usage among the Good, the Bad, and the Ugly 451

3 Data Sets

Our goal is to study DNS wildcard usage in three contexts: domains judged as
worthwhile or useful by Internet users (the good), domains from several blacklists
(the bad), and a large general collection of domains, including both good and
bad domains (the ugly). Table 1 shows an overview of the data sets.

Table 1. Overview of the data sets

DMOZ ZONE FILES PHISH MALWARE SPAM

Start Date Sept. 17 Sept. 27 Sept. 22 Sept. 22 Sept. 22

End Date N/A N/A Oct. 21 Oct. 21 Oct. 21

Frequency Once Once Daily Daily Daily

Hosts 3,038,928 N/A 16,496 18,570 N/A

Domains 2,737,326 5,536,475 10,575 12,854 548,041

TLDs 3,235 7 306 259 327

The good: One context in which we study wildcards is the domains determined
to be useful by Internet users. We use data from the DMOZ Open Directory
Project [?] for this purpose. The Open Directory Project is a large directory
of user submitted and editor approved Web URLs. We assume that those links
submitted and approved are those someone has judged to be worthwhile, and are
therefore in some sense good. We consider 2.7 million domains contained in this
data set on September 17th, 2009. We refer to this data set as DMOZ throughout
this paper.

The Bad: Another context in which we study wildcards is domains known to be
associated with malicious activity. For this context, we use host names extracted
from two real-time feeds of known phishing URLs [2, 22], three feeds of known
malware-serving URLs [5,11,20], and one feed of domains for scam sites seen in
spam mails [26]. We examine each of these feeds every day for a period of 30
days, extracting a total of 571,470 domains that were alive at the time of our
receiving the feed. We refer to these data sets respectively as PHISH, MALWARE,
and SPAM throughout this paper.

The Ugly: The last context we consider is a large general list of domains on the
Internet. We refer to these as “ugly” since they could be used for any purpose,
good or bad or something in between. The data source for this context is the
zone files2 from seven generic top-level domains (gTLDs), .asia, .biz, .com,
.info, .mobi, .net, and .org [28,18,4,24,1,21], on September 27th, 2009. There
were 110,728,143 domains contained in these TLDs, 58% of the total 192 million
domains in the Internet at the time of our study [27]. From these, we randomly
sample at a rate of 5%, or 5,536,475, which we examine in this paper. We refer
to this data set as ZONE FILES throughout this paper.

2 Zone files are text files listing all DNS records directly contained in a domain.

452 A. Kalafut et al.

4 Wildcard Prevalence

Wildcards can occur at all levels of the DNS hierarchy. We concentrate on the
domain level, instead of TLDs or subdomains, since this is generally the start
or administrative control. We look for wildcards in four DNS record types: A,
NS, MX, and CNAME. From the entries in each data set, we determine the domain
name part of each host name using the Public Suffix List [17]. For all domain
names in these data sets, for example, foo.com, we query for *.foo.com for the
four record types. All queries were run once for each domain in the DMOZ and
ZONE FILES data sets, but daily for the others that changed often in real-time.
We also query for the NS record for each domain to ensure that the domain exists
at the time of the query.

A large fraction of domains we surveyed used wildcards. Table 2 presents
an overview of the number and types of wildcards present in each data set
at the domain level. Between 1/4 and 3/4 of domains use wildcards, with the
DMOZ data set showing the least prevalence of wildcards and the SPAM data set
showing the most. Not only is the A wildcard overwhelmingly popular, its usage
mimics general wildcard usage trends. Some domains have more than one type
of wildcard, causing the percentages in the last four rows of Table 2 to exceed
the total percentage of domains using wildcards.

Table 2. % of active domains with wildcards of each record type in each data set

DMOZ ZONE FILES PHISH MALWARE SPAM

Domains

Checked 2,737,326 5,536,475 10,575 12,854 548,041

Active 2,717,186 4,861,053 9,044 11,312 226,060

Inactive (%) 0.73% 12.2% 14.5% 12% 58.7%

Wildcards

total % 24.52% 45.15% 32.09% 31.39% 75.10%

% A 18.76% 42.72% 27.79% 26.59% 72.30%

% NS 0.32% 5.53% 0.20% 0.19% 1.60%

% MX 5.72% 6.44% 4.10% 6.14% 6.83%

% CNAME 3.40% 3.75% 3.37% 4.49% 2.34%

4.1 Overridden Wildcards

Some wildcards may be overridden by specific entries. For example, a domain
foo.com, may have a wildcard entry for *.foo.com, and a more specific entry
for host name a.b.foo.com. This allows the domain to point a.b.foo.com to a
different value than any other host name fitting *.foo.com. Now that we have
seen how often wildcards are occurring, an important consideration is if they are
overridden by a more specific DNS entry. If latter, then our conclusion about
wildcard usage in the Internet would be different.

Toward the goal of identifying overrides, we proceed as following. For the
DMOZ, PHISH, and MALWARE data sets where we have host names in the feeds, we
query the DNS for A and CNAME records corresponding to the host names and
check if the results of this lookup match the results of the wildcard lookup. If

foo.com
*.foo.com
foo.com
*.foo.com
a.b.foo.com
a.b.foo.com
*.foo.com

Surveying DNS Wildcard Usage among the Good, the Bad, and the Ugly 453

they are not the same answers, we consider the exact match to be overriding
the wildcard. If we have multiple host names for one wildcard, we count it as an
override if any of them do not match the wildcard entry. For ZONE FILES and
SPAM, we do not have exact host names, so we simply prepend www to the domain
name. Though we do not know for sure that the host name so generated is being
used, it is commonly used for web servers and may catch some overrides.

Notice that since our data sets are for web servers only, they do not contain
name servers or mail servers. As a result, we cannot establish the presence of
overrides for MX and NS wildcards by querying each domain for MX and NS wild-
cards and comparing the result to host names in the feed. This limitation is not
severe since MX and NS are the two least popular type of wildcards per Table 2.

Table 3 shows the percentage of A and CNAME wildcards being overridden in
each data set. Wildcards are overridden in 2.8-31.6% of cases. The SPAM data set
sees the least overrides.

Table 3. Percentage of A and CNAME wildcards being overridden by specific entries

DMOZ ZONE FILES PHISH MALWARE SPAM

A 10.7% 31.6% 19.0% 19.9% 6.7%

CNAME 17.4% 8.8% 17.5% 30.0% 2.8%

Some data sets witness overrides for CNAME wildcards more often than those
for A wildcards and vice versa. The difference is most striking for the ZONE FILES
data set. Examining the overrides in this data set closely, we find that 25.4%
(557,949) of wildcards in the ZONE FILES data set are hosted on name servers
in domaincontrol.com. Of these, 99.7% are A wildcards being overridden by a
specific CNAME record. These account for 88.9% of the overrides of A wildcards
in this data set. If we ignore wildcard entries on this name server, only 6.6% of
remaining A wildcards in this data set are overridden, much closer the percentage
of overridden CNAME wildcards in this data set. We conclude that wildcards are
not frequently overridden in most data sets.

5 Wildcard Usage

We now investigate the specific uses of wildcards by the good, bad, and ugly do-
mains. To group related wildcarded domains, we considered several options and
found it best to aggregate them by the DNS servers serving them. This grouping
is intuitive because provider of DNS services, for example hosting companies,
often provide a default configuration which most domains may choose. Simi-
larly, large organizations running many of their own domains are likely to use
similarly-provisioned servers. In fact, we aggregate even more by grouping wild-
carded domains in terms of the domain of the DNS server.

5.1 Wildcard Usage among Good Domains

The first data set we analyze is DMOZ, our set of good domains from a user
edited directory. From this data set, we saw a total of 666,334 domains (24.5%)

www

454 A. Kalafut et al.

using wildcards. These were served by DNS servers belonging to 28,883 domains.
Figure 2 shows a CDF of the wildcarded domains and the corresponding DNS
server domains for this and ZONE FILES data sets. A key observation from this
Figure is that just a few DNS servers are responsible for a disproportionate
number of wildcarded domains. Specifically, 29.1% of domains in the DMOZ data
set are served by just top ten DNS server domains.

Fig. 2. CDF of wildcarded domains served by each DNS server domain

We now consider the top ten DNS server domains serving the most wildcarded
domains. Table 4 shows the total domains and wildcarded domains served by
each. In looking over the domains accounting for most wildcard usage, we find
that all are operated by registrars or web-hosting providers. Both these entities
tend to provide a default configuration to users which includes a wildcard record.
Even users who override these with specific records for individual hosts may
choose to keep the wildcard record.

5.2 Usage among the Ugly

We now change our focus to the ZONE FILES data set, a large collection of do-
mains taken from several TLD zone files. In this data set, we saw 2,194,565
domains using wildcards (45.2%). These domains are also served by a small
number of DNS server domains, only 32,644. Overall, we find that wildcarded
domains are even more concentrated at a few name server domains than in the
DMOZ data set. Table 5 shows the top ten name server domains serving the most
wildcarded domains in the ZONE FILES data set. Four of the domains listed are
in common with those in Table 4.

Surveying DNS Wildcard Usage among the Good, the Bad, and the Ugly 455

Table 4. Top 10 DNS server domains serving the most wildcarded domains in the DMOZ

data set

Domains Wildcarded

served domains

worldnic.com 55,947 48,484

rzone.de 47,913 47,771

yahoo.com 23,194 21,835

namespace4you.de 17,611 17,409

kasserver.com 13,313 13,227

name-services.com 17,529 10,595

b-one.nu 9,471 9,406

ipower.com 9,058 9,057

register.com 13,853 8,077

mediatemple.net 7,869 7,705

Table 5. Top 10 DNS server domains serving the most wildcarded domains in the

ZONE FILES data set

Domains Wildcarded

served domains

domaincontrol.com 1,138,877 557,949

name-services.com 179,130 147,697

worldnic.com 137,696 116,759

sedoparking.com 96,790 96,789

dsredirection.com 91,796 91,796

yahoo.com 82,747 80,669

register.com 72,827 62,137

secureserver.net 62,672 60,063

fabulous.com 39,166 39,137

parked.com 37,529 37,522

100% of the domains served by sedoparking.comand dsredirection.comare
wildcarded. These two, along with the two others that have the highest percentage of
wildcarded domains, fabulous.comand parked.com, belong to companies involved
in domain parking3. Wildcards are very useful for parked domains. By directing
visitors to a parking page, they allow monetization of all possible subdomains of
a domain. However, not all parked domains are wildcarded. At least one provider
of parking services we know of serves over 700,000 domains but uses wildcards on
less than 1%. The other major user of wildcards in this data set are web-hosting
providers, as we saw in DMOZ. In fact, four of these are the same ones we saw in the
top 10 from the DMOZ data set.

5.3 Usage among the Bad

Next, we look for wildcard usage in bad data sets, PHISH, MALWARE, and SPAM. As
we saw in Table 2, 32.1% of active phishing domains, 31.4% of active malware
hosting domains, and 75.1% of active spam domains were using wildcards. The
3 A parked domain is a domain with no actual useful content, just a template page filled

with ads redirecting the user to other pages, mostly for the purpose of monetizing

chance-visitors to the domain.

456 A. Kalafut et al.

top ten DNS server domains serving wildcarded domains in PHISH, MALWARE, and
SPAM, are shown in Tables 6, 7, and 8. They account for 21.67%, 22.95%, and
21.82% of the wildcard domains in these data sets respectively. This indicates a
slightly lower concentration on the top name servers than we saw in the DMOZ
data set, and much lower than we saw in the ZONE FILES data set. The other
key observation from these tables is that many of the top-10 domains serving
wildcarded domains are shared across all data sets. This happens because many
of the registrars and web-hosting providers are common across the three types
of data sets.

Table 6. Top 10 DNS server domains serving the most wildcarded domains in the

PHISH data set

Domains Wildcarded

served domains

ixwebhosting.com 151 151

nshost.com.ve 139 139

rzone.de 63 60

yahoo.com 98 55

name-services.com 54 47

hosteurope.com 100 44

worldnic.com 48 42

hrnoc.net 33 32

register.com 32 30

namebay.com 128 29

Table 7. Top 10 DNS server domains serving the most wildcarded domains in the

MALWARE data set

Domains Wildcarded

served domains

freeservers.com 203 203

ixwebhosting.com 93 92

ipower.com 83 83

name-services.com 101 81

northsky.com 73 73

everydns.net 173 67

yahoo.com 63 59

servage.net 58 57

sorpresor.com 51 51

sitelutions.com 54 49

Examining the domains listed in these three tables, some of the top ten from
these data sets are in common with the top ten from the other two data sets.
Some of these from the SPAM data set are associated with domain parking, and
are probably there due to spam domains that have been taken down but still
appear in our data set. These are less than 5% of the wildcards in SPAM so are
certainly not the primary reason it has a higher proportion of wildcards than
the others. Others are present because they are hosting providers. The most
prominent example of this is name-services.com, which appears in the top ten
from every data set. This and the few others from the three malicious data sets

Surveying DNS Wildcard Usage among the Good, the Bad, and the Ugly 457

Table 8. Top 10 DNS server domains serving the most wildcarded domains in the SPAM

data set

Domains Wildcarded

served domains

name-services.com 16,699 14,764

tutby.com 6,167 5,966

domainservice.com 4,640 4,555

domainsite.com 3,202 3,200

domaincontrol.com 6,278 2,045

dsredirection.com 1,778 1,777

sedoparking.com 1,323 1,323

netstandardconsulting.com 1,296 1,296

peak-communications.net 1,180 1,180

dzcamera.net 941 940

that are also top users in the other data sets may be large providers of malicious
wildcards just because they are large providers who use wildcards by default and
miscreants happen to use them. However, a majority that are the top users in
these three data sets are not among the top users in the other two, making it
likely that the miscreants are configuring wildcards intentionally.

Churn of Hosts Among Bad Wildcarded Domains: Miscreants can exploit
the flexibility of wildcards to their advantage by simply swapping a blacklisted
host name with a new one without having to change DNS entries. This can be
useful in evading blacklists, which are based on exact host names today. We now
attempt to determine if such is the case. In this analysis, we focus on the PHISH
and MALWARE data sets, since the SPAM data set only includes domains, not host
names.

We examine if new host names matching an existing wildcard entry are being
added to our feed of bad data sets over time. Toward this goal, we calculate the
daily churn of host names for each wildcarded domain in PHISH and MALWARE

Fig. 3. CDF of churn rate of malicious domains over 30 days

458 A. Kalafut et al.

data sets. For this, we compare the host names for a domain with those listed
the previous day. The sum of the additions and deletions is the churn rate for
the day. We average this over all days the domain is alive. We do not count the
initial set up or take down of the domain since some domains may have existed
before or continued to exist after our data collection. Domains only seen for one
day are also not counted since there is no second day to compare to derive a
churn. Figure 3 depicts the CDF of churn over a period of 30 days.

For the PHISH data set, the average churn rate is 0.64, a little more than one
change every 2 days, and the maximum is 52. For malware, the average is 2.87
with a maximum of 32.5. Clearly, these numbers indicate that miscreants whose
domains are active for more than a day, especially those serving malware, are
taking advantage of the wildcard records to use new host names over time.

6 Identifying Malicious Wildcard Usage

Thus far, we have seen that wildcards are in wide-spread use among all types of
domains in the Internet. Even though some types of bad domains use wildcards
more commonly than good or ugly domains, it is unclear if there are any trends
that would distinguish wildcard usage among such domains from others. The pri-
mary reason for this is that the largest wildcard users are domain registrars and
web-hosting providers and many of them are common across all data sets. This
is somewhat unsurprising, given that a recent report examining phishing attacks
from the first half of 2009 [25], found that only 14.5% of domains used in phish-
ing were actually registered by the phishers, the remaining were compromised
domains that could belong to a known service provider.

In this section, we take the first step and examine features of wildcard usage
in an attempt to find ones that can distinguish their malicious usage from be-
nign ones. Specifically, we examine time to live (TTL) values on wildcard DNS
records and autonomous systems (ASes) corresponding to the wildcarded do-
mains. We also use the Google search engine to discover new hosts matching
known wildcards.

6.1 TTLs of Wildcarded Records

We examined the TTLs for each type of wildcarded records to see if malicious
domains set different TTLs on their DNS records than benign ones. We compared
the TTLs across the three data sets focusing on A wildcards since they were the
most common type. A histogram of TTLs for A records is shown in Figure 4.

A few TTLs are most popular in our data sets: 5 minutes, 30 minutes, 1 hour,
and 1 day. The most significant difference we see among data sets is at 30 min-
utes, where the PHISH domains have a large spike but none other do. In general,
we find that wildcards in the PHISH, MALWARE, and SPAM data sets have shorter
TTLs than those in good and ugly data sets, with 30 minutes and 1 hour being
most popular values for malicious wildcarded domains. This is intuitive because
shorter TTLs allow miscreants to quickly update the IP addresses corresponding

Surveying DNS Wildcard Usage among the Good, the Bad, and the Ugly 459

Fig. 4. TTLs for A records in each data set

to malicious host names. Given that it is well known that miscreants are increas-
ingly fluxing through IP addresses using short TTLs in an attempt to escape
detection [12], examining TTLs corresponding to wildcarded records appears to
be a promising avenue for investigation.

6.2 Autonomous Systems Pointed to by Wildcards

Many of the malicious domains are hosted on bots in geographically diverse
Internet locations. ASes are one way to measure such diversity. Here, we examine
how often the IP addresses corresponding to the wildcard records for each domain
are spread over multiple ASes. This test only applies when there are multiple
wildcard records for the same name pointing to different IP addresses. This is
straightforward to do for A wildcards, since the right hand side of these records
directly provides an IP address. For CNAME, MX, and NS records, which point to a
host name instead of an IP address, we simply resolve the hosts on the right hand
side to IP addresses. For all wildcard types, we see some difference in the results
among the various data sets, however, we focus on A and CNAME wildcards in this
discussion since these show the greatest difference, enough that they could be
used to distinguish benign and malicious use of wildcards.

A histogram of the ratio of ASNs to IP addresses for wildcarded A records
is shown in Figure 5. The most notable observation here is that a majority of
SPAM wildcard domains with multiple IP addresses have a ratio of ASNs to IP
addresses between 0.6 and 0.7. Very few of the good data sets are in this range.
In fact, PHISH and MALWARE A wildcards are much more likely than ZONE FILES

and somewhat more likely than DMOZ to be in the 0.9 to 1.0 range.
Figure 6 shows the ASN/IP ratio for wildcarded CNAME records. Here, the

SPAM data set almost all ends up in the 0.9-1.0 range, while less than 10% of the
good data sets do so. Phishing and malware sites are significantly more likely
than good ones to fall into the ranges from 0.1 to 0.4.

Overall, this method looks like a good one for identifying wildcards associated
with spam sites, and can also be used with wildcards associated with phishing

460 A. Kalafut et al.

Fig. 5. Ratio of number of ASNs associated with each wildcard A record to number of

IP addresses pointed to by record

Fig. 6. Ratio of number of ASNs associated with each wildcard CNAME record to number

of IP addresses pointed to by record

and malware sites. The only issue with it is that it relies on the wildcard entry
pointing to multiple IP addresses, since otherwise, the notion of geographical
diversity makes no sense. Wildcard entries point to multiple IP addresses in
1.6 - 4.2% of domains with CNAME wildcards and 0.5 - 27.2% of A wildcards
depending on the data set. In the SPAM data set, this happens for 18.2% of A
wildcards and 41.2% of CNAME wildcards. This data set is also the one where
the ratio is most different from the good data sets, indicating that it would be
effective a significant amount of the time for identifying wildcards associated
with spam.

6.3 Host Names Represented by Wildcards

Technically, a wildcard entry in the DNS can match any host name. However,
in practice, a site may only use some of these host names. Blogging and so-
cial networking sites often provide a subdomain for each user. Out of 170 such

Surveying DNS Wildcard Usage among the Good, the Bad, and the Ugly 461

sites we investigated, 52 support subdomains for each user and all do so using
wildcard entries. Of these 52, 37 use A wildcards, and the rest use CNAME. As a
specific example of this, Windows Live Spaces provides a subdomain for each
user, all handled by a single wildcard entry, and claims 175 million users [14].
Even the smallest blog site we have found using wildcards supports over 10,000
subdomains.

We now investigate if Google searches can reveal new host names covered by
our wildcards. Using this method, we would like to see if malicious and benign
domains use the wildcard for differing numbers of host names in practice. Toward
this goal, we queried the Google search API [6] for a sampling of the domains
with A or CNAME wildcards from each data set, using site restriction to make sure
all responses were from the domain we were interested in, not external pages
with the domain in their text. This gives us an idea of how the wildcard is being
used, subject to a maximum of 64 results imposed by the Google API. Table 9
shows how many domains were queried from each data set, and what percentage
were found in the Google index.

Table 9. Wildcarded domains from each data set queried at Google

DMOZ ZONE FILES PHISH MALWARE SPAM

Domains checked 6,717 9,867 1825 2321 4,057

Domains responding 6,587 4,596 1089 1263 475

% indexed 98.1% 46.6% 59.7% 54.4% 11.7%

We find that a large percentage of domains we queried were indexed by Google.
Over half from ZONE FILES were not indexed, probably due to the large amount
of sites devoid of useful content, such as parking pages. Over half of the MALWARE
pages were indexed. From SPAM, a large majority were not indexed by Google.
This is perhaps because the URLs associated with them are only advertised
though email, so the Google crawler would have never seen them. It is possible
that Google to intentionally excludes some pages with known malicious content.

Out of the domains that did return Google results we examine how many re-
sults were returned. Results are shown in Figure 7. The most notable result here
is that wildcards from PHISH correspond to a higher number of hosts known by
Google than wildcards from other data sets. For the other data sets, meaningful
distinctions are hard to make, since SPAM and ZONE FILES results are similar to
each other, as are MALWARE and DMOZ. While it can not be said with certainty
that wildcards representing large numbers of host names are associated with
phishing, it is certainly an indication that further scrutiny is required to see if
they are phishing sites. While a client could not directly determine the number
of hosts a wildcard represents, any organization who crawls the Web should be
able to provide data on how many host names they have seen in a domain name,
making this check practical.

Figure 8 shows how many host names Google returned that were not found
in out data sets. Here, only those data feeds that contained host names are
considered since no conclusions can be drawn from data sets containing only

462 A. Kalafut et al.

Fig. 7. Cumulative percent of wildcarded domains in each data set with the given

number of host names found in the Google index

Fig. 8. Cumulative percent of wildcarded domains in each data set with new host

names found in the Google index

domain names. For most domains Google indexed in the PHISH and MALWARE

data sets, it knows of several host names not in our data set. This indicates that
blacklisting could be improved by directly including wildcard entries instead of
exact host names.

Since overridden wildcards may indicate the wildcard entry itself is not actu-
ally used, just present as a default, we wanted to see if the wildcarded domains
where we found specific DNS records overriding the wildcarded entry appeared

Surveying DNS Wildcard Usage among the Good, the Bad, and the Ugly 463

less than others in Google. This does in fact appear to be true. 8.8% of overrid-
den domains we looked up from DMOZ, 20.4% from PHISH, 6.8% from MALWARE,
and 1.0% from SPAM appear in Google. Compared to the percent responding
for wildcarded domain in general from Table 9, the percent responding for do-
mains with overridden wildcards is an order of magnitude less, for all but PHISH,
which is still significantly lower. The fact that Google does not know about these
domains indicates their wildcard may not be used to represent as many hosts,
giving Google less of a chance to find them. This is further reinforced by the ob-
servation that of the ones with overriding found in Google, only 4.8% from DMOZ,
7.2% from PHISH and 2.4% from MALWARE return any new results not from our
data feed. This is far lower than seen in Figure 8. This observation implies that
the presence of DNS records overriding wildcarded records may be an indication
that the wildcard is not used for purposes such as evading blacklists.

7 Related Work

Wildcard records have been a part of DNS from the original specification [16].
This specification is ambiguous and unintuitive, so RFC 4592 [10] was created to
clarify the intended behaviors of wildcard records. In addition to issues arising
from the specification being non-intuitive, it has been argued that they violate
common assumptions on how DNS should operate. An Internet Architecture
Board (IAB) commentary [8] describes the way wildcards violate this assump-
tions and the issues that can arise from it. It recommends only using MX type
wildcards since they are the only ones that only affect a single protocol. It
also recommends not ever using wildcards for domains that have subdomains.
Nonetheless, wildcards are in widespread use, as our study finds.

Previous work by Kalafut et al. [9] took a more general look at the contents of
all DNS records in 5 million DNS domains. In this paper, we focus in more detail
on a specific subset of the records, just the wildcards, and search for such records
in a larger set of domains. Pappas et al. [23] also examined DNS configurations,
looking specifically for three types of errors that could impact availability. The
Measurement Factory also has done surveys of DNS configurations [13], focusing
on software version and deployment of features such a source port randomization.

8 Discussion

Our study found that wildcards are popular among all types of Internet domains,
including those involved in malicious behaviors. Among malicious users, spam-
mers use wildcards the most. They are also the least likely to override them.
There is a significant churn among host names matching wildcards belonging to
malware and phishing domains, implying that they too are likely taking advan-
tage of the wildcards to escape exact host-name-based blacklists.

We found some distinguishing features of the malicious wildcards, such as
short TTLs, distinct ratios of IP addresses to ASes when the wildcard pointed
to multiple IP addresses, and a low likelihood of appearing in Google results,

464 A. Kalafut et al.

especially for wildcard domains associated with spam. None of these observations
on their own may be enough to distinguish a benign wildcard use from a malicious
one. However, these characteristics may be useful in conjunction with others and
with each other to identify some malicious sites, a direction we plan to pursue
in future work.

Finally, the observations in this paper point to a specific immediate improve-
ment that can be made in blacklists. Many blacklists currently list individual
host names. One prominent example, the Google Safe Browsing API [7], uses a
system somewhat similar to regular expressions, but this is not common for other
blacklists. In the blacklists we use for data feeds, only individual host names were
listed, which often ended up matching wildcards. Such blacklists could be easily
improved by checking for a wildcard DNS entry and adding it instead of the host
name where appropriate. Miscreants could evade detection based on wildcards
and still use a large number of host names by creating separate DNS entries
for each. However, these cases could still be dealt with by a wildcard entry in
the blacklist, added once some threshold number of individual host names in a
domain has been seen involved in malicious activity.

References

1. Afilias Limited: How can I get access to Afilias’ TLD zone file for .INFO domains?

http://www.info.info/faq/

how-can-i-get-access-afilias-tld-zone-file-inf%o-domains

2. APWG: Anti-phishing working group, http://www.antiphishing.org/

3. DMOZ, Open directory project, http://www.dmoz.org/

4. DotAsia Organization Limited. ASIA Zone File Access Agreement, http://www.

dotasia.org/info/DAO.ZONE-2007-10-24.pdf

5. eSoft Inc., http://www.esoft.com/

6. Google: Google AJAX Search API, http://code.google.com/apis/ajaxsearch/

7. Google: Google Safe Browsing API, http://code.google.com/apis/

safebrowsing

8. Internet Architecture Board: Architectural concerns on the use of DNS wildcards.

IAB Commentary (September 2003),

http://www.iab.org/documents/docs/2003-09-20-dns-wildcards.html

9. Kalafut, A., Shue, C., Gupta, M.: Understanding implications of DNS zone provi-

sioning. In: ACM SIGCOMM Internet Measurement Conference, IMC (2008)

10. Lewis, E.: The role of wildcards in the domain name system (July 2006)

11. MalwarePatrol: Malwarepatrol - malware block list,

http://www.malwarepatrol.net/lists.shtml

12. McGrath, D.K., Kalafut, A., Gupta, M.: Phishing infrastructure fluxes all the way.

IEEE Security and Privacy Magazine Special Issue on DNS Security (2009)

13. Measurement Factory: DNS survey (October 2008),

http://dns.measurement-factory.com/surveys/200810.html

14. Microsoft: Windows Live Fact Sheet,

http://www.microsoft.com/presspass/newsroom/msn/

factsheet/WindowsLive.mspx

15. Miller, R.: Phishers use wildcard DNS to build convincing bait URLs (March 2005)

http://www.info.info/faq/how-can-i-get-access-afilias-tld-zone-file-inf%o-domains
http://www.info.info/faq/how-can-i-get-access-afilias-tld-zone-file-inf%o-domains
http://www.antiphishing.org/
http://www.dmoz.org/
http://www.dotasia.org/info/DAO.ZONE-2007-10-24.pdf
http://www.dotasia.org/info/DAO.ZONE-2007-10-24.pdf
http://www.esoft.com/
http://code.google.com/apis/ajaxsearch/
http://code.google.com/apis/safebrowsing
http://code.google.com/apis/safebrowsing
http://www.iab.org/documents/docs/2003-09-20-dns-wildcards.html
http://www.malwarepatrol.net/lists.shtml
http://dns.measurement-factory.com/surveys/200810.html
http://www.microsoft.com/presspass/newsroom/msn/factsheet/WindowsLive.mspx
http://www.microsoft.com/presspass/newsroom/msn/factsheet/WindowsLive.mspx

Surveying DNS Wildcard Usage among the Good, the Bad, and the Ugly 465

16. Mockapetris, P.: Domain names - concepts and facilities. IETF RFC 1034 (Novem-

ber 1987)

17. Mozilla Foundation: Public suffix list, http://publicsuffix.org

18. mTLD, Ltd.: dotMobi Zone File Access Agreement,

http://mtld.mobi/domain/zonefile

19. Mutton, P.: New phishing attacks combine wildcard DNS and XSS, http://

news.netcraft.com/archives/2009/02/17/new_phishing_attacks_combi%ne_

wildcard_dns_and_xss.html (February 2009)

20. NETpilot GmbH: Viruswatch mailing list, http://lists.clean-mx.com/cgi-bin/

mailman/listinfo/viruswatch

21. NeuStar Registry Services: BIZ Zone File Distribution,

https://www.neulevel.biz/zonefile/

22. OpenDNS: PhishTank, http://www.phishtank.com/

23. Pappas, V., Xu, Z., Lu, S., Massey, D., Terzis, A., Zhang, L.: Impact of configura-

tion errors on DNS robustness (2004)

24. Public Interest Registry. ORG Registry - Zone File Access,

http://pir.org/index.php?db=content/Website&tbl=Registrars&id=7

25. Rasmussen, R., Aaron, G.: Apwg global phsihing survey: Trends and domain name

use in 1h2009 (Oct.ober 2009)

26. SURBL: http://www.surbl.org/

27. VeriSign: Domain name industry brief (February 2010),

http://www.verisign.com/domain-name-services/

domain-information-center/%domain-name-resources/

domain-name-report-feb10.pdf

28. VeriSign, Inc.: TLD Zone Access Program,

http://www.versign.com/information-services/

naming-services/page 001052.html

http://publicsuffix.org
http://mtld.mobi/domain/zonefile
http://news.netcraft.com/archives/2009/02/17/new_phishing_attacks_combi%ne_wildcard_dns_and_xss.html
http://news.netcraft.com/archives/2009/02/17/new_phishing_attacks_combi%ne_wildcard_dns_and_xss.html
http://news.netcraft.com/archives/2009/02/17/new_phishing_attacks_combi%ne_wildcard_dns_and_xss.html
http://lists.clean-mx.com/cgi-bin/mailman/listinfo/viruswatch
http://lists.clean-mx.com/cgi-bin/mailman/listinfo/viruswatch
https://www.neulevel.biz/zonefile/
http://www.phishtank.com/
http://pir.org/index.php?db=content/Website&tbl=Registrars&id=7
http://www.surbl.org/
http://www.verisign.com/domain-name-services/domain-information-center/%domain-name-resources/domain-name-report-feb10.pdf
http://www.verisign.com/domain-name-services/domain-information-center/%domain-name-resources/domain-name-report-feb10.pdf
http://www.verisign.com/domain-name-services/domain-information-center/%domain-name-resources/domain-name-report-feb10.pdf
http://www.versign.com/information-services/naming-services/page_001052.html
http://www.versign.com/information-services/naming-services/page_001052.html

The Hitchhiker’s Guide to DNS Cache Poisoning

Sooel Son and Vitaly Shmatikov

The University of Texas at Austin

Abstract. DNS cache poisoning is a serious threat to today’s Internet. We de-
velop a formal model of the semantics of DNS caches, including the bailiwick
rule and trust-level logic, and use it to systematically investigate different types
of cache poisoning and to generate templates for attack payloads. We explain the
impact of the attacks on DNS resolvers such as BIND, MaraDNS, and Unbound
and their implications for several defenses against DNS cache poisoning.

Keywords: DNS, cache poisoning, formal model.

1 Introduction

The Domain Name System (DNS) is an essential part of the Internet. The primary
purpose of DNS is to resolve symbolic domain names to IP addresses [17,18,10]. Many
Internet security mechanisms, including host access control and defenses against spam
and phishing, implicitly or explicitly depend on the integrity of the DNS infrastructure.
Unfortunately, security was not one of the design considerations for DNS, and many
attacks on DNS were reported over the years [19, 3, 12, 15].

Cache poisoning is arguably the most prominent and dangerous attack on DNS. DNS
cache poisoning results in a DNS resolver storing (i.e., caching) invalid or malicious
mappings between symbolic names and IP addresses. Because the process of resolving
a name depends on authoritative servers located elsewhere on the Internet (see Sec-
tion 2.2), DNS protocol is intrinsically vulnerable to cache poisoning [3]. An attacker
may poison the cache by compromising an authoritative DNS server or by forging a
response to a recursive DNS query sent by a resolver to an authoritative server.

Many non-cryptographic defenses (surveyed in Section 8) focus solely on blind re-
sponse forgery and attempt to solve the problem by increasing the entropy of DNS
query components such as transaction IDs, query labels, and port numbers. This makes
blind response forgery more difficult. Unfortunately, blind response forgery is just one
of the possible attack vectors for DNS cache poisoning and, unlike cryptographic solu-
tions, these defenses are vulnerable to trivial eavesdropping attacks. Therefore, they do
not address the root causes of DNS cache poisoning and provide only partial protection.

Our goal is to develop a formal model for the semantics of DNS caches and use
it to study cache poisoning attacks. Our analysis focuses on the internal operation of
DNS resolvers and is thus complementary to the analyses of network protocols used to
deliver DNS messages, success rate of forgery attempts, network-level defenses, and so
forth. For instance, in a concurrent work [4], Bau and Mitchell formally modeled the
cryptographic operations involved in the DNSSEC protocol, discovering a vulnerability
that allows an attacker to add a forged name into a signed zone.

S. Jajodia and J. Zhou (Eds.): SecureComm 2010, LNICST 50, pp. 466–483, 2010.
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2010

The Hitchhiker’s Guide to DNS Cache Poisoning 467

By contrast, we analyze the internal bailiwick rules (used by DNS resolvers to decide
whether to accept a mapping from a given authority) and the trust levels of DNS data
(used by resolvers to decide whether to overwrite an existing record). The bailiwick
rule in particular, while critical for DNS security and reliability, is not part of the DNS
standard and left to the resolver implementation. Its subtleties are often exploited by
cache poisoning attacks, regardless of the actual mechanism (such as blind response
forgery) used to deliver attack packets. To the best of our knowledge, internal operations
of DNS resolvers have not been formally modeled before.

Our contributions. We explain the nature of DNS cache poisoning attacks and present
a precise, formal model of the bailiwick rule and the record overwriting mechanism
of modern DNS resolvers, including BIND v9.4.1, Unbound v1.3.4, and MaraDNS
v1.3.07.09. We use our model to systematically enumerate and analyze different types
of cache poisoning attacks and to explain the damage to different aspects of DNS res-
olution resulting from each attack. Using the ProVerif protocol analysis tool [6], we
automatically construct attack templates for all attacks in our taxonomy, verifying that
the attacks work against actual implementations.

The objective of this study is to develop a precise understanding of the semantics
of modern DNS caches, including their bailiwick rules and trust-level logic. We do not
propose a new defense against DNS response forgery since defending against specific
types of DNS compromise is largely orthogonal to our goals. (In general, the only reli-
able protection is provided by cryptographic authentication schemes such as DNSSEC;
unfortunately, these schemes are not yet deployed widely.) Instead, we use our model
to enumerate the consequences of different types of DNS forgery exploits, regardless
of whether they are perpetrated via server compromise, birthday attack, eavesdropping,
or some other attack vector. We also show that our model is useful for evaluating the
effectiveness of some non-cryptographic defenses against DNS response forgery.

2 DNS Background

2.1 Resource Record Set

DNS is a distributed storage system for Resource Records (RR). Each DNS resolver
or authoritative server stores RRs in its cache or local zone file. A Resource Record
includes a label, class, type, and data [10]. The label of an RR is a symbolic domain
name used when accessing an Internet resource [17]. The class is either IN, or CH; the
class of most RRs is IN, which means the Internet system. The type can have many
possible values, but we will focus on records of type A, CNAME, and NS. An A record
holds a mapping from a domain name to an IP address, a CNAME record holds a
mapping from a domain name to an alias, and an NS record holds a mapping from a
domain name to the name of an authoritative name server for that domain. Each record
has a time-to-live (TTL) parameter and is purged from the cache once its TTL expires.

No two RRs in the cache may have the same label, class, type, and data, but it is
possible to have multiple records with the same label, class, and type. Such a group is
called a Resource Record Set (RRset).

468 S. Son and V. Shmatikov

2.2 Caching and Recursive Resolution

When a DNS resolver or authoritative server receives a query, it searches its cache for a
matching label. If there is no matching label in the cache, the server may instead retrieve
from the cache and return a referral response, containing an RRset of NS type whose
label is “closer” to the domain which is the subject of the query [17].

Instead of sending a referral response, the DNS resolver may also be configured to
initiate the same query to an authoritative DNS server responsible for the domain name
which is the subject of the query [17]. Each query is identified by a random 16-bit
transaction ID (TXID). The authoritative server can respond with an answer, a referral,
or a failed response. In general, a response is comprised of the query, answer, authority,
and additional sections. Each section may have none, one, or multiple RRsets.

The authoritative server’s response—or a forged message pretending to be the au-
thoritative server’s response—is accepted by the DNS resolver and stored in its cache
only if the RRset of each section passes a set of conditions known as the bailiwick rule.
These conditions are not part of the DNS specification and depend on the implementa-
tion of the resolver. Furthermore, in certain circumstances (see Section 5), the received
records may even overwrite those already stored in the cache.

Poisoning the DNS cache by adding false records is a serious threat, but DNS records
corresponding to popular domains are likely to be already stored in the cache prior
to an attack and are thus not vulnerable to the basic forgery exploit (this observation
underlies the naive defense of increasing the time-to-live parameter of these records).
It is the ability to overwrite existing records that makes DNS response forgery such
a devastating attack. To understand record overwriting, we need to understand (1) the
mechanism through which an attacker may introduce forged records into the cache of a
DNS resolver (Section 3) and (2) the bailiwick and trust-level rules that govern addition
and overwriting of records in DNS caches (Sections 4 and 5).

3 DNS Response Forgery

3.1 Cache Poisoning without Response Forgery

Before BIND adopted the bailiwick rule in 1993, the owner of any DNS authoritative
server could compromise records corresponding to any domain name [22, 23]. When
responding to a query from the resolver, a malicious authoritative server can send, in
the additional section of its response, an arbitrary mapping from any domain name
(including those outside its authority) to an IP address.

For instance, consider a malicious authoritative server for bad.com. When a
client asks its DNS resolver to resolve www.bad.com, the resolver queries the
server. The server’s response contains in its additional section the mapping from, say,
ns1.good.com to a malicious IP address. Without the bailiwick rule (described
in Section 4), this mapping would have been cached by the resolver, even though
good.com was neither part of the query, nor under the malicious server’s authority
(see Fig. 2(a)).

bad.com
www.bad.com
ns1.good.com
good.com

The Hitchhiker’s Guide to DNS Cache Poisoning 469

3.2 Blind Response Forgery Using Birthday Attack

The basic DNS protocol does not authenticate responses to recursive queries. The only
checks are: (1) the query section and 16-bit transaction ID (TXID) of the response
must match those of the query, and (2) the source IP address and destination port of
the response must match, respectively, the destination IP address and source port of the
query. The first arriving UDP packet which satisfies these conditions is treated as a valid
response from the authoritative server.

Prior to recent patches [8], many DNS resolvers used a fixed port to send queries.
Therefore, with the exception of a random TXID, all values used by the resolver to
determine the validity of a packet received in response to its query are predictable. To
generate a valid-looking response, it is sufficient to guess the TXID used in the query.

Fig. 1. Overview of the cache poisoning attack

Attacks on DNS exploiting
the “birthday paradox” have been
known since at least 2002 [21]. If
the TXID has only N bits of en-
tropy (in practice, N = 16), a net-
work attacker needs only O(2

N
2)

trials on average to generate a
forged response which matches
the TXID of the query and will
thus be accepted as valid by the
target resolver. The answer sec-
tion of the forgery contains a ma-
licious mapping from a domain
name to an IP address (see Fig. 1).

For the attack to succeed, the
forgery must arrive to the target
resolver before the response from
the legitimate authoritative server.
If the legitimate response arrives
first, it will be cached by the re-
solver and until its time-to-live (TTL) expires, the resolver will not ask the authoritative
server to resolve the same domain name, preventing the attacker from poisoning the
mapping for that domain.

Kaminsky’s exploit. At Black Hat 2008, Kaminsky presented a new extension of the
birthday attack [13]. While the basic mechanism is the same (using the birthday attack
to forge a response with the same transaction ID as the query), three observations make
Kaminsky’s attack more serious than “conventional” DNS forgery [19].

First, the attacker can force the target resolver to initiate a query to an authoritative
server of his choice. Second, modern attackers have enough network bandwidth to gen-
erate a large number of spoofed responses, each with a different guess of the transaction
ID. Third, the malicious “payload” of the forged response is the additional section (as
opposed to the answer section in the conventional attack), for reasons explained below.

The basic scheme of the exploit is as follows. The attacker chooses the domain name
that he wants to compromise (e.g., www.google.com). He then queries the target

www.google.com

470 S. Son and V. Shmatikov

(a) A forged response without considering
bailiwick

(b) Kaminsky’s exploit

Fig. 2. Payloads of various cache poisoning attacks

resolver with any subdomain which is not already cached on the resolver (e.g., a non-
existent subdomain such as xyz12.google.com). Because the name is not in the
cache, this causes the target resolver to send a query to the authoritative server(s) for
this domain. At this point, the attacker floods the resolver with a large number of forged
responses, each containing a different guess of the query’s transaction ID.

A typical forged response is shown in Fig. 2(b). Note that it is a referral, not an
answer, and the false information is contained in the additional section rather than the
answer section. This greatly increases the efficacy of the attack. Instead of hijacking
a mapping for a single domain name, the attack, if successful, introduces into the tar-
get resolver’s cache a false mapping for an authoritative server. Future queries from
the compromised resolver will be sent directly to an attacker-controlled IP address, en-
abling the attacker to provide malicious responses without blind response forgery.

If a forgery attempt fails, the attacker can immediately start a new race, using a
different domain name, and continue until he actually wins the race, i.e., a forgery with
a valid transaction ID arrives to the resolver before the legitimate answer.

3.3 Response Forgery Using Eavesdropping

A number of recently proposed defenses against DNS cache poisoning, including
source port randomization, 0x20-bit encoding, XQID, and WSEC-DNS, fundamentally
depend on the asymmetric accessibility of the components used for authenticating re-
sponses to DNS queries [7, 8, 11, 20].

These defenses ensure neither confidentiality of DNS queries, nor authentication of
responses (in contrast to cryptographic defenses such as DNSSEC) and thus prevent
only blind forgery. DNS remains vulnerable to trivial attacks by compromised servers
and/or network eavesdroppers: in a non-switched subnet environment, the attacker can
run an eavesdropping tool in the promiscuous mode; in a switched environment, ARP
poisoning [14] or any similar technique can be used to force all packets from the target
resolver to pass through a malicious computer on the same subnet.

4 The Bailiwick Rule

The purpose of the bailiwick rule is to prevent malicious authoritative servers from pro-
viding DNS mappings for domains outside their authority as part of a referral response

xyz12.google.com

The Hitchhiker’s Guide to DNS Cache Poisoning 471

(see Section 3.1). For example, the authoritative server for .com can return a mapping
for any .com domain, while the authoritative server for bad.com should only be able
to provide mappings for subdomains of bad.com.

The RFC specifying the DNS protocol does not define a concrete bailiwick rule. For
the purposes of this paper, we analyze the bailiwick rules of three open-source imple-
mentations: BIND v9.4.1 [1], Unbound v1.3.4 [16], and MaraDNS v1.3.07.09 [24].

BIND. The key data structure used by the bailiwick-checking algorithm of BIND v9.4.1
to keep track of the bailiwick at any given point in the recursive DNS resolution is
Query.zone. If a BIND resolver cannot resolve a query locally, it finds the RRset
whose label is the “closest” to the received query among all RRsets of type NS in its
cache. This label is stored in Query.zone, and the resolver sends the query to the
name server indicated by the NS record.

If the response holds an RRset in the answer section, the resolver caches it after
checking that its domain label matches the query. NS records in the authority section
are cached only if their domain label is a subdomain of or equal to Query.zone.

If the response is a referral (i.e., the answer section does not contain a record), the
resolver must resend the query to another name server, as indicated in the referral.
At this point, the bailiwick check is performed. First, the resolver checks whether the
domain label of the query is a subdomain of the label in the authority section of the
received response. If it is, the resolver next checks whether the domain label in the
authority section is a subdomain of the current value of Query.zone. Only if both
conditions hold, the resolver caches the NS-type RRset received in the referral.

The next step is to determine whether to cache the RRsets in the additional section of
the referral. If the domain label of each record in the additional section is a subdomain
of Query.zone, the additional section is cached; otherwise, it is not cached and the
resolver will initiate new queries for the labels of the records from the additional section.

This prevents a malicious name server from referring a query to a name server in a
different bailiwick along with a false IP address mapping for that server (as in Fig. 2(a)),
since the resolver will not cache the additional section containing the false mapping.

Finally, the value of Query.zone is changed to the label of the RRset in the author-
ity section of the received referral response. The BIND resolver then initiates queries
for the names which were not cached in the previous steps.

Unbound. The bailiwick checking algorithm of Unbound is very different from BIND.
All records whose labels are out of the bailiwick are removed from the received re-
sponses. The remaining records are cached, provided the response contains at least one
answer record which comes from an authoritative server.

Unbound also differs in how it decides whether a response is a referral or not. If
the label of the authority record in a response is below the resolver’s bailiwick zone,
Unbound labels the response as a referral even if there is a record in the answer section.
The resolver caches all records from the additional and authority sections of a referral
response, but, by default, does not send them to clients [26].

MaraDNS. The bailiwick logic of MaraDNS is significantly simpler. MaraDNS does not
cache the authority and additional section of responses containing an RRset in the answer
sections, thus eliminating the need to perform bailiwick checks on them. Furthermore,

.com
.com
bad.com
bad.com

472 S. Son and V. Shmatikov

even for referral responses, MaraDNS caches neither the NS mapping from the domain
name to an authoritative server name (authority section), nor the A mapping from the
latter name to an IP address (additional section). Instead, MaraDNS simply stores an
authority section with a mapping from the domain name to the IP address. This eliminates
the need to perform a bailiwick check on the name of the authoritative server, since this
name is not cached (with a potential loss in efficiency).

Differences between resolver implementations. Table 1 summarizes the differences
between DNS resolver implementations. There is an important difference between
BIND’s and Unbound’s default caching policies for RRsets in the additional section.
To shorten query resolution times, BIND caches all such mappings, including domain
labels and IP addresses from the additional section. By default, Unbound, too, caches
the additional section, but these mappings are not sent to the client as the answer for a
query. Therefore, from the client’s viewpoint, the default behavior of Unbound is sim-
ilar to that of MaraDNS. All three implementations can be compromised by different
types of cache poisoning attacks (the implementations are semantically correct, but the
protocols they use for updating the DNS cache are intrinsically weak). In Section 7, we
show which implementation is vulnerable to which attack.

Table 1. Differences between resolver implementations

Functionality BIND 9.4.1 Unbound 1.3.4 MaraDNS 1.3.07
RRset trust rules O O X
Caching answer section O O O
Caching authority section from a referral response O O O
Caching authority section from an answer response O O X
Caching additional section from a referral response O O X
Caching additional section from an answer response O O X
Additional section data sent to clients Default O Default X X

Kaminsky’s exploit and the bailiwick check. Kaminsky’s exploit does not violate the
bailiwick rule. The forged referral in this attack contains an authority section with a
(possibly fake) in-bailiwick name server, along with an additional section mapping this
server to an attacker-controlled IP address. This invalid mapping is cached by the target
BIND resolver. If the attacker wants to compromise the mapping of an existing name
server (as opposed to introducing a fake one), there is a complication. The mappings
for the name servers of popular domains tend to have long TTLs; they are likely to be
already present in the victim’s cache and must be overwritten. In Section 5, we explain
the conditions under which an existing record may be overwritten.

Unbound caches RRsets from the additional section, but, by default, does not send
them to clients. These RRsets are used internally by the resolver to find IP addresses of
authoritative servers and can be overwritten, facilitating certain attacks (see Section 7).

MaraDNS will accept the malicious authority section, but the mapping from the fake
name server to an attacker-controlled IP address will not be cached. The IP address of
an authoritative server can be changed only by overwriting an existing mapping.

The Hitchhiker’s Guide to DNS Cache Poisoning 473

5 Cache Overwriting

Cache poisoning attacks are especially dangerous because they enable the attacker not
just to add false mappings to the cache of vulnerable DNS resolvers, but also to over-
write existing mappings, including long-lived mappings for popular domains.

The rules for overwriting cache records are defined in RFC 2181 [10]. They depend
on the trust level of an RRset. Table 2 shows trust levels used by BIND resolvers. The
trust level of an RRset contained in a response depends on whether it comes from an
authoritative server and whether the response is a referral. Trust level 8 is for records
in a local zone setup file provided by a DNS server administrator, while trust level 7 is
used by DNSSEC. We focus on records whose trust levels are from 2 to 6.

Table 2. Trust levels in BIND 9.4.1.

Define symbol Trust level Description
dns trust ultimate 8 This server is authoritative
dns trust secure 7 Successfully DNSSEC validated
dns trust authanswer 6 Answer from an authoritative server
dns trust authauthority 5 Received in the auth section as an authority response
dns trust answer 4 Answer from a non-authoritative server
dns trust glue 3 Received in a referral response
dns trust additional 2 Received in the add section of a response

BIND and Unbound. In BIND, a cached RRset is overwritten if the trust level of
the received RRset is higher or equal to the cached one and its TTL is longer. NS-type
RRsets received in a referral are an exception: they have the trust level 8 for the purposes
of overwriting (i.e., they always overwrite the records already present in the cache), but
are stored with the trust level 3.

In Unbound, the absolute trust levels are different, but the relative order is the same.
Therefore, we use the same trust-level model for BIND and Unbound.

MaraDNS. MaraDNS does not use trust levels. A new record contained in the response
simply overwrites the existing record. In practice, however, only NS records can be
overwritten by forged responses. Because MaraDNS does not cache the additional sec-
tion of responses, in order to overwrite an A or CNAME record the forged response
should contain the replacement mapping in the answer section and its label must be
exactly the same as the label of the record to be overwritten. Such a forgery would only
be accepted in response to a query with the same label. Observe, however, that since a
record with this label is already present in the cache, a MaraDNS resolver would never
initiate a recursive query for this label. Therefore, there is no query that would give the
attacker an opportunity to overwrite an existing A or CNAME record.

6 Formal Model of DNS Resolver

6.1 Modeling Methodology

As shown in Sections 4 and 5, the semantics of DNS caches are quite complicated.
To understand the potential impact of cache poisoning attacks, we construct a formal

474 S. Son and V. Shmatikov

Fig. 3. Generic model of a DNS resolver

model of the default bailiwick-checking and cache-overwriting rules of BIND v9.4.1
and Unbound v1.3.4. We do not build a formal model for MaraDNS because it does not
cache the authority and additional sections of responses containing an answer RRset and
does not use trust levels for overwriting existing records. We do show attacks against
all three implementations, including MaraDNS, in Table 4

We use the ProVerif protocol analysis tool, due to its success in practical formal ver-
ification of security protocols (e.g., [2]). The details of ProVerif are beyond the scope of
this paper and can be found in [6]. The behavior of each protocol participant is modeled
as a set of Horn clauses, which represent sending or receiving messages on specified
communication channels. ProVerif then uses a sound, resolution-based algorithm to de-
termine whether a specified property holds over all executions of the protocol.

Fig. 3 shows the abstract model of DNS resolver. We use it to check whether or
not a cached resource record with a certain label and trust level is secure against cache
poisoning conducted by the active adversary who has complete control of the network.
This attacker model may appear strong, but we emphasize once again that our goal is to
model the internal behavior of DNS resolvers, not the details of the network protocol
through which DNS messages are exchanged. By modeling the network as a public
channel, we can focus on the semantics of the cache and abstract from the particulars
of the forgery method through which attacker packets are introduced.

The initial state of the model asserts that three valid records of types A, NS, and
CNAME, respectively, have been cached. Their labels are determined via network in-
puts. (In reality, the attacker can insert an arbitrary label into the cache by tricking a
client of the resolver into asking to resolve the corresponding name.) Trust levels are
specified manually. The model then receives a query from the network. If recursive res-
olution is required, the model sends out a recursive query and receives a response from
the network. The bailiwick rule in the model determines which records in the response
should be cached. If a malicious record satisfies the bailiwick conditions, the model
asserts that a cache poisoning event has occurred.

The Hitchhiker’s Guide to DNS Cache Poisoning 475

6.2 Base Data Types

We use a simplified model of DNS records with only three components—type (A,
NS, or CNAME), domain name, and data—and ignore other aspects such as author-
ity RRsets in the answer section, lame resolution, and zone delegation. Events model
critical points in the resolution process. The evInitCache event occurs when the model
is initialized. It asserts that a record is cached with a verifier-specified trust level prior to
the attack (in our analysis, we vary the trust level to determine whether or not a particu-
lar record can be overwritten). The evRecursiveQueryStart event occurs when the cache
does not have a record matching a given query and the resolver must send a recursive
query to an authoritative server responsible for the bailiwick zone. The evPoison event
occurs when an invalid record passes all checks and is about to be cached.

6.3 Cache Initialization

Our model assumes that the CNAME, A and NS resource records for a certain name
are already present in the cache. The model then generates a query, waits for a response
from the network, and decides whether or not the response should be cached.

The following property says that the evPoison event does not occur unless the
evInitCache event has occurred. More precisely, in the resolver which already caches
cachedns, cacheda and cachedcname labels, a resource record whose label is poisoned-
label and whose type is rectype is cached with the trust level tl only if there has oc-
curred an evInitCache event in which the resource record whose label was cachedlabel
and whose type was cachedtype was cached with the trust level cachedtl.

query ev: evPoison(rectype, poisonedlabel, poisoneddata, tl,
cachedns, cacheda, cachedcname)

−→ ev: evInitCache(Record(cachedtype, cachedlabel, data), cachedtl)

6.4 Non-overwritability

Recall from Section 5 that a cached record can only be overwritten by a record with an
equal or higher trust level. The following properties model “non-overwritability” of A
records with various trust levels:

query ev: evPoison(At, cacheda, wrongdst, tl, cachedns, cacheda, cachedcname)
−→ ev: evInitCache(Record(At, cacheda, validdst), tl6) ∧ tl6 > tl

query ev: evPoison(At, cacheda, wrongdst, tl, cachedns, cacheda, cachedcname)
−→ ev: evInitCache(Record(At, cacheda, validdst), tl4) ∧ tl4 > tl

query ev: evPoison(At, cacheda, wrongdst, tl, cachedns, cacheda, cachedcname)
−→ ev: evInitCache(Record(At, cacheda, validdst), tl3) ∧ tl3 > tl

query ev: evPoison(At, cacheda, wrongdst, tl, cachedns, cacheda, cachedcname)
−→ ev: evInitCache(Record(At, cacheda, validdst), tl2) ∧ tl2 > tl

Each of these properties says that whenever a poisoning event occurs, the target
record is already cached with a certain trust level which is higher than the trust level
of the forged response. If the property holds, the existing record cannot be overwritten.

476 S. Son and V. Shmatikov

Fig. 4. All ways to overwrite an existing RRset in the cache

If the property cannot be provable, then the model contains at least one path in which
the trust level of the forged record is higher than the trust level of the cached record.
Therefore, the cached record can be successfully overwritten by the forgery.

ProVerif analysis shows that in both BIND and Unbound, non-overwritability holds
only for trust levels 4 and 6. All cached records whose trust level is 2, or 3 can be over-
written. For all interesting trust levels of an A or NS record, Fig. 4 shows the (automat-
ically generated) templates for malicious payloads to be used in the forged response. In
Fig. 4, we assume that the NS record of abc.com and the A record of www.abc.com
are already cached by the victim resolver.

The following property is always false in our model, showing that CNAME records
cannot be overwritten.

query ev: evPoison(CNAMEt, cachedc, invalid, tl, cachedns, cacheda, cachedc)

6.5 Bailiwick Rule

The primary purpose of the bailiwick rule is to prevent an authoritative server from
claiming the mappings from domain names belonging to other authorities. To determine
whether the bailiwick-checking logic of BIND and Unbound resolvers achieves this, we
used ProVerif to verify the following three properties:

abc.com
www.abc.com

The Hitchhiker’s Guide to DNS Cache Poisoning 477

query ev: evPoison(NSt/At/CNAMEt, targetname, dst, tl, cachedns, cacheda, cachedc)
−→ ev: evRecursiveQueryStart(query, bailiwick, bailiwickAAserver)

∧ isSubName: query, bailiwick
∧ isSubName: targetname, bailiwick

These properties say that a record can enter the cache (represented by the cache
poisoning event, since in our model all responses arrive from the network attacker)
only in response to a recursive query and if targetname and query are subdomains of
bailiwick. Here bailiwick is the authority name closest to the domain label in the query.

According to ProVerif, these three properties hold in our model. Therefore, the do-
main name of both legitimate and forged responses must be a subdomain of the proper
bailiwick, as determined by the DNS resolver. Note, however, that the bailiwick de-
pends on the label of the current query. An attacker may initiate a query for a domain
of his choice or manipulate the resolver into issuing such a query (e.g., by tricking one
of the resolver’s users into visiting a webpage with a link to the domain), thus ensuring
that forged responses do not violate the bailiwick rule.

7 Taxonomy of Cache Poisoning Attacks

We use our model to systematically enumerate several types of cache poisoning at-
tacks, the corresponding payloads of forged DNS responses, and their effect on the
compromised resolver. Our taxonomy is shown in Table 3. It is complete for A, NS,
and CNAME records. We assume that the resolver has already fixed the bailiwick zone
(abc.com) for incoming responses. Every name which can be a target of cache poison-
ing belongs to one of three categories: domain outside abc.com, subdomain of abc.com,
or abc.com itself. There are two types of cache poisoning: adding a new name and over-
writing the mapping for an existing name. Table 3 covers all possibilities.

Table 4 summarizes the feasibility of different types of cache poisoning attacks
against different resolver implementations. Because BIND and Unbound use different

Table 3. Taxonomy of cache poisoning attacks on BIND and Unbound (abc.com is the bailiwick
zone)

Target domain name Type
Type of poisoning

Adding a new mapping
Overwriting an existing
mapping

Domain name outside abc.com
CNAME

Impossible (Section 6.5) Impossible (Section 6.5)A
NS

abc.com NS
Target name is already in
the cache

Possible (Section 7.4)

Subdomain of abc.com
CNAME Possible (Section 7.1) Impossible (Section 6.4)

A
Possible (Sections 7.1,
7.2, 7.5, 7.6)

Possible for trust levels 2,
3 (Sections 7.3, 6.4)

NS Possible (Section 7.4) Possible (Section 7.4)

478 S. Son and V. Shmatikov

Table 4. Cache poisoning attacks on different resolvers. All attacks have been tested against
actual implementations.

Type of attack BIND 9.4.1 Unbound 1.3.4 MaraDNS 1.3.07
Adding a new CNAME record
(Section 7.1)

Effective Effective Effective

Adding a subdomain under an
existing authority (Section 7.2)

Effective
Possible, but inef-
fective with the de-
fault policy

Impossible by forg-
ing additional data

Overwriting an existing A
record (Section 7.3)

Effective Effective Impossible ∗

Overwriting an existing NS
record (Section 7.4)

Effective Effective Effective

Creating fake domains (Sec-
tion 7.5)

Effective (by forg-
ing additional sec-
tion)

Effective (requires
prior overwriting of
IP addresses of au-
thoritative servers)

Effective (requires
prior overwriting of
IP addresses of au-
thoritative servers)

Stealing a popular domain name
by hijacking subauthorities
(Section 7.6)

Effective Effective Effective

∗ IP addresses of authoritative servers can be overwritten without overwriting an A record.

caching policies by default and MaraDNS does not cache the additional section, the
effective attack payload varies from resolver to resolver. For BIND and Unbound, our
analysis is based on our formal model and experimental attacks against the resolver im-
plementation. For MaraDNS, we analyzed the bailiwick-checking logic manually (it is
significantly simpler than in either BIND, or Unbound).

7.1 Adding a New CNAME Record

Our model shows that the only way to add a malicious CNAME mapping to the cache
is to forge an answer section whose label is exactly same as the query (the reason is
that the authority section contains only NS records and the additional section only A
records). This is captured by the following property:

query ev: evPoison(CNAMEt, newname, invalidlabel, tl, cachedns, cacheda, cachedc)
−→ ev: evInitCache(Record(At, cacheda, validlabel), cachedtl)

The disadvantage of this attack is that it cannot be easily perpetrated via blind, brute-
force forgery. If the attacker fails in a single race, the resolver will cache the failed label
and the attacker must change the target name. If, however, the attacker poisons the IP
addresses of authoritative servers for a certain zone, he controls all names in this zone
and adding any CNAME mapping is trivial. The IP addresses of authoritative servers
are usually cached with the trust level 2 or 3 and can thus be overwritten (Section 7.3).

The Hitchhiker’s Guide to DNS Cache Poisoning 479

7.2 Adding a Subdomain under an Existing Authority

This exploit adds a record for a fake subdomain under an existing authority in the vic-
tim’s cache. It is modeled by the following property:

query ev: evPoison(At, makeSubName(bad, goodZone), invalid, tl,
goodZone, makeSubName(good, goodZone), cname)

−→ev: evInitCache(Record(At, makeSubName(good, goodZone), valid), cachetl)

As shown in Fig. 4, payloads 1 and 2 can add a new domain name to a BIND cache.
By default, the RRsets in the additional section will be used as the answer to the query.
Payloads 2, 3, and 4 can add a new domain name to an Unbound cache, but Unbound’s
default policy does not send this information to clients.

This attack is dangerous to clients using BIND resolvers because many Web security
policies are vulnerable to attacks from subdomains. For example, many websites set the
path and domain name of cookies as, respectively, ‘/’ and the top two levels of the site’s
domain (e.g., example.com rather than www10.example.com). An attacker who
uses cache poisoning to introduce a fake subdomain can use phishing to lure naive users
to this subdomain and then overwrite and/or read cookies set by legitimate subdomains.

7.3 Overwriting an Existing a Record

One may assume that address mappings for popular domain names are already cached
by most resolvers with the trust level 4 or 6. Therefore, they cannot be overwritten until
their TTL expires. This is the basis of a common defense against DNS forgery: simply
increase TTL for legitimate DNS records.

A cleverer attack exploits the fact that it is uncommon for clients to directly initiate
queries about authoritative name servers such as ns1.google.com. Records with
addresses of authoritative name servers are typically received by resolvers as part of
referral responses, which are cached with the trust level 2 or 3. Therefore, they can be
overwritten. In our model, this is captured by the following property:

query ev: evPoison(At, targetname, invaliddata, tl, ns, targetname, cname)
−→ ev: evInitCache(Record(At, targetname, validdata), tl2) ∧ tl2 > tl

query ev: evPoison(At, targetname, invaliddata, tl, ns, targetname, cname)
−→ ev: evInitCache(Record(At, targetname, validdata), tl3) ∧ tl3 > tl

Our formal analysis shows that payloads 1 and 2 for BIND and payloads 2, 3, and 4
for Unbound (see Fig. 4) can accomplish this attack.

This attack is dangerous to clients of both BIND and Unbound. It results in changing
the IP addresses of authoritative servers and enables the attacker to compromise any
domain in the server’s zone. Furthermore, IP address mappings for the names of root
DNS servers such as A.ROOT-SERVERS.NET can be stored in the cache with the
trust level 2. Although there are only 13 root servers, making forgery harder, if the
attack does succeed, their addresses can be overwritten.

example.com
www10.example.com
ns1.google.com
A.ROOT-SERVERS.NET

480 S. Son and V. Shmatikov

7.4 Overwriting an Existing NS Record

Unlike Kaminsky’s attack, which uses the authority and additional sections of the forged
response to compromise the mapping from a domain name to an IP address, forged
responses can also be used to overwrite existing NS records in the resolver’s cache [25].
In our formal model, this is represented by the following property:

query ev: evPoison(NSt, targetname, invalidlabel, tl, targetname, a, cname)
−→ ev: evInitCache(Record(NSt, targetname, validlabel), cachetl) ∧ cachetl > tl

Payload 2 from Fig. 4 works against BIND, payloads 2 and 3 against Unbound.
The consequence of this attack is that any query for a domain name under the com-

promised authority is sent by the resolver directly to an attacker-controlled authoritative
server(s). This exploit is more serious than Kaminsky’s exploit because it effectively
hijacks every domain name under the compromised authority. We emphasize that the
attacker can overwrite any NS record in the cache, even those with non-expired TTL.

7.5 Creating Fake Domains

Cache poisoning enables the attacker to insert a mapping for any domain name into the
victim resolver’s cache even if the domain does not exist in reality. For example, the
attacker can create mappings for plausible domain names such as www.google.edu
and www.university.gov, making it easier to carry out phishing attacks. To stage
this exploit, the forged packet must look like a valid response from the authoritative
server for a top-level domain such as .edu or .gov. Against BIND, it is sufficient to
forge RRsets in the additional section. Technically, the attack is modeled by the same
rules and uses the same payloads as in Section 7.2.

The attack against Unbound is more sophisticated because Unbound by default does
not send the additional section to clients. The attacker must change the authority section
for the target zone or the IP addresses of the zone’s authoritative servers. Once that’s
done, adding a new name under this zone is trivial. Technically, this attack is modeled
by the same rules and uses the same payloads as in Section 7.3 (respectively, 7.4).

7.6 Hijacking a Popular Domain via a Sub-authority

A common objective of DNS attacks is to compromise the mappings for popular domain
names such as www.paypal.com and www.google.com. As mentioned above,
such mappings are difficult to compromise because they are likely to be already cached
with a long TTL. In practice, popular domain names are usually mapped to subdomains
via long-lived CNAME records. For example, www.google.com may be mapped
to www.l.google.com. Even if the attacker succeeds in forging an A record which
maps www.google.com to a malicious IP address, the resolver will use the unexpired
CNAME record rather than the forged A record, foiling the attack.

Subdomain names, however, are mapped to actual IP addresses by A records with
relatively short TTL values. For example, the record mapping www.l.google.com
to an IP address may have a 300-second TTL. Suppose the attacker poisons the authority
section for l.google.com. Once the A record for www.l.google.com expires,

www.google.edu
www.university.gov
.edu
.gov
www.paypal.com
www.google.com
www.google.com
www.l.google.com
www.google.com
www.l.google.com
l.google.com
www.l.google.com

The Hitchhiker’s Guide to DNS Cache Poisoning 481

the victim will ask an attacker-controlled server to resolvewww.l.google.com, giv-
ing him complete control over the mapping. This attack is effective against both BIND
and Unbound because it targets the authority section of a zone or the IP address of
the zone’s authoritative server, not the records in the additional section. Therefore, Un-
bound’s default policy does not prevent the attack. Technically, this attack is modeled
by the same rules and uses the same payloads as in Section 7.3 (respectively, 7.4).

8 Defenses

The objective of our formal model is to understand the nature and impact of cache poi-
soning attacks at the level of DNS resolvers, not the protocol through which poisoned
packets are delivered. By contrast, the defenses surveyed below (with the exception
of cryptographic defenses) focus solely on preventing blind response forgery, which is
simply one of the many vectors for cache poisoning attacks. Therefore, they are largely
complementary and orthogonal to the goals of this paper.

Cryptographic solutions include DNSSEC [9] and DNSCurve [5]. DNSSEC uses
digital signatures to authenticate and protect integrity of responses to DNS queries. So
far, cryptographic solutions have not been widely deployed due to their impact on DNS
performance, as well as political and infrastructural issues.

The most popular non-cryptographic defense against blind response forgery is UDP
source port randomization [8]. It increases entropy of recursive DNS queries by ran-
domizing the source port number in addition to the transaction ID, thus making the
birthday attack more difficult. This patch depends on the configuration of the local net-
work such as the firewall imposing strict constraints on inbound connections. Other
solutions aiming to prevent blind response forgery by increasing entropy of queries
are 0x20-bit encoding [7], which randomizes capitalization of letters in the query (the
amount of entropy depends on the length of the query), and WSEC-DNS [20] and
XQID [11], which use a challenge-response scheme with random nonces.

While these solutions may be effective for blocking a particularly dangerous attack
vector (namely, blind response forgery), they do not actually authenticate responses to
recursive DNS queries and should be viewed only as a temporary patch until proper au-
thentication mechanisms are deployed. As long as there exist other attack vectors (see
Section 3) and modern resolver implementations such as BIND and Unbound cache
information provided in the authority and additional sections of unauthenticated re-
sponses (see Section 4), DNS cache poisoning will remain a serious issue.

Other proposed solutions include increasing TTLs of legitimate records and limiting
the number of simultaneous recursive queries (the latter to decrease the number of si-
multaneous races that may be staged by the attacker). Our model helps evaluate such
defenses because their efficacy depends on a detailed understanding of the semantics
of DNS caches. For example, our analysis shows that increasing TTL does not help
against a large class of attacks that involve overwriting of existing DNS records.

9 Conclusion

We presented a formal model of DNS cache semantics, including the bailiwick and
trust-level rules used by common resolver implementations, and analyzed it with the

www.l.google.com

482 S. Son and V. Shmatikov

ProVerif protocol analysis tool. The result is a comprehensive taxonomy of cache poi-
soning attacks, showing (1) which parts of the cache can be poisoned, (2) conditions
necessary for each attack, and (3) consequences of each attack. Furthermore, our anal-
ysis enabled us to produce payload templates for each attack. We argue that our formal
model is an essential tool for understanding the subtle caching rules used by modern
DNS resolvers and developing robust defenses against DNS cache poisoning.

References

1. Internet Systems Consortium BIND 9.4.1, http://www.isc.org/downloadtables
2. Abadi, M., Blanchet, B.: Computer-assisted verification of a protocol for certified email. Sci.

Comput. Program. 58(1-2), 3–27 (2005)
3. Atkins, D., Austein, R.: Threat Analysis of the Domain Name System (DNS). RFC 3833,

Informational (August 2004)
4. Bau, J., Mitchell, J.: A security evaluation of DNSSEC with NSEC3. In: NDSS (2010)
5. Bernstein, D.J.: DNSCurve, http://DNSCurve.org
6. Blanchet, B.: Automatic verification of correspondences for security protocols. J. Computer

Security (2009)
7. Dagon, D., Antonakakis, M., Vixie, P., Jinmei, T., Lee, W.: Increased DNS forgery resistance

through 0x20-bit encoding. In: CCS (2008)
8. Doughety, C.R.: Vulnerability note vu#800113 (2008),

https://www.kb.cert.org/vuls/id/800113
9. Eastlake, D.: Domain Name System Security Extensions. RFC 2535 (Proposed Standard)

(March 1999), Obsoleted by RFCs 4033, 4034, 4035, updated by RFCs 2931, 3007, 3008,
3090, 3226, 3445, 3597, 3655, 3658, 3755, 3757, 3845

10. Elz, R., Bush, R.: Clarifications to the DNS Specification. RFC 2181 (Proposed Standard)
(July 1997), Updated by RFCs 4035, 2535, 4343, 4033, 4034

11. Høy, J.: Anti DNS spoofing - extended query ID (XQID) (April 2008),
http://www.jhsoft.com/dns-xqid.htm

12. Jackson, C., Barth, A., Bortz, A., Shao, W., Boneh, D.: Protecting browsers from DNS re-
binding attacks. In: CCS (2007)

13. Kaminsky, D.: Black ops 2008-it’s the end of the cache as we know it. Presented at Black-
Hat 2008 (2008)

14. King, T.: Packet sniffing in a switched environment (August 2002),
http://www.sans.org/reading_room/whitepapers/networkdevs/

15. Klein, A.: BIND 9 DNS cache poisoning (March 2007),
http://www.trusteer.com/bind9dns

16. NLnet Labs. Unbound 1.3.4, http://www.unbound.net/download.html
17. Mockapetris, P.V.: Domain names - concepts and facilities. RFC 1034 (Standard) (November

1987), Updated by RFCs 1101, 1183, 1348, 1876, 1982, 2065, 2181, 2308, 2535, 4033, 4034,
4035, 4343, 4035, 4592

18. Mockapetris, P.V.: Domain names - implementation and specification. RFC 1035 (Standard)
(November 1987), Updated by RFCs 1101, 1183, 1348, 1876, 1982, 1995, 1996, 2065, 2136,
2181, 2137, 2308, 2535, 2845, 3425, 3658, 4033, 4034, 4035, 4343

19. Olnet, M., Mullen, P., Miklavcic, K.: Dan Kaminsky’s 2008 DNS vulnerability (2008),
http://www.ietf.org/mail-archive/web/dnsop/
current/pdf2jgx6rzxN4.pdf

20. Perdisci, R., Antonakakis, M., Luo, X., Lee, W.: WSEC DNS: Protecting recursive DNS
resolvers from poisoning attacks. In: DSN-DCCS (2009)

http://www.isc.org/downloadtables
http://DNSCurve.org
https://www.kb.cert.org/vuls/id/800113
http://www.jhsoft.com/dns-xqid.htm
http://www.sans.org/reading_room/whitepapers/networkdevs/
http://www.trusteer.com/bind9dns
http://www.unbound.net/download.html
http://www.ietf.org/mail-archive/web/dnsop/current/pdf2jgx6rzxN4.pdf
http://www.ietf.org/mail-archive/web/dnsop/current/pdf2jgx6rzxN4.pdf

The Hitchhiker’s Guide to DNS Cache Poisoning 483

21. Sacramento, V.: Vulnerability in the sending requests control of Bind version 4 and 8 allows
DNS spoofing (November 2002),
http://www.rnp.br/cais/alertas/2002/cais-ALR-19112002a.html

22. Schuba, C.: Addessing weaknesses in the domain name system protocol (1993),
http://ftp.cerias.purdue.edu/pub/papers/christoph-schuba/

23. Secure Works. DNS cache poisoning - the next generation (2007),
http://www.secureworks.com/research/
articles/dns-cache-poisoning

24. S. Trenholme. MaraDNS 1.3.07.09, http://www.maradns.org.
25. Computer Academic Underground,

http://www.caughq.org/exploits/CAU-EX-2008-0003.txt
26. Wijngaards, W.: Resolver side mitigations (August 2008),

http://tools.ietf.org/html/
draft-wijngaards-dnsext-resolver-side-mitiga%tion-00

http://www.rnp.br/cais/alertas/2002/cais-ALR-19112002a.html
http://ftp.cerias.purdue.edu/pub/papers/christoph-schuba/
http://www.secureworks.com/research/articles/dns-cache-poisoning
http://www.secureworks.com/research/articles/dns-cache-poisoning
http://www.maradns.org
http://www.caughq.org/exploits/CAU-EX-2008-0003.txt
http://tools.ietf.org/html/draft-wijngaards-dnsext-resolver-side-mitiga%tion-00
http://tools.ietf.org/html/draft-wijngaards-dnsext-resolver-side-mitiga%tion-00

A Formal Definition of Online Abuse-Freeness�

Ralf Küsters1, Henning Schnoor2, and Tomasz Truderung1

1 Universität Trier, Germany

{kuesters,truderung}@uni-trier.de
2 Christian-Albrechts-Universität zu Kiel, Germany

schnoor@ti.informatik.uni-kiel.de

Abstract. Abuse-freeness is an important security requirement for con-

tract-signing protocols. In previous work, Kähler, Küsters, and Wilke

proposed a definition for offline abuse-freeness. In this work, we general-

ize this definition to online abuse-freeness and apply it to two prominent

contract-signing protocols. We demonstrate that online abuse-freeness is

strictly stronger than offline abuse-freeness.

Keywords: contract signing, cryptographicprotocols, formalverification.

1 Introduction

In a (two-party) contract-signing protocol (see, e.g., [4,3,9]), two parties, A (Al-
ice) and B (Bob), aim to exchange signatures on a contractual text that they
previously agreed upon. In this paper, we consider optimistic contract-signing
protocols. In such protocols, a trusted third party T (TTP), serving as an im-
partial judge, is not involved in every protocol run, but in case of a problem
only.

A central security property for optimistic contract-signing, introduced in [9], is
abuse-freeness: This property (formulated for the case of the honest signer Alice)
requires that there is no state in a protocol run in which dishonest Bob (the
prover) can convince an outside party, Charlie (the verifier), that the protocol
is in an unbalanced state, i.e., a state in which Bob has both (i) a strategy to
prevent Alice from obtaining a valid contract and (ii) a strategy to obtain a valid
contract himself. In other words, if a contract-signing protocol is not abuse-free,
then Alice can be misused by Bob to get leverage for another contract (with
Charlie). Obviously, abuse-freeness is a highly desirable security property.

In [12], Kähler, Küsters, and Wilke presented the first rigorous and protocol-
independent definition of abuse-free for (two-party) optimistic contract-signing.
However, their definition focusses on an offline setting: Charlie is not actively
involved in the protocol run and may receive a single message from Bob only,
based on which he has to make his decision.

� This work was partially supported by Deutsche Forschungsgemeinschaft (DFG) un-

der Grant KU 1434/5-1.

S. Jajodia and J. Zhou (Eds.): SecureComm 2010, LNICST 50, pp. 484–497, 2010.
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2010

A Formal Definition of Online Abuse-Freeness 485

The goal of this work is to generalize the definition from [12] to the setting in
which Charlie may be online, i.e., may be actively involved in the protocol run,
and to apply the definition to prominent contract-signing protocols.

Contribution of this Work. We propose a definition for online abuse-freeness,
generalizing the definition of Kähler et al., who considered offline abuse-freeness.
As theirs, our definition is protocol-independent. More precisely, we define two
variants of online abuse-freeness: Weak abuse-freeness requires that there is no
way for dishonest Bob to convince the verifier that the protocol is currently in
an unbalanced state. As will be explained in Section 3, in the setting of of-
fline abuse-freeness, every contract-signing protocol is weakly abuse-free. Strong
abuse-freeness requires that Bob cannot even prove to Charlie that the protocol
was in an unbalanced state at some point of the run.

We apply our definitions to two prominent contract signing protocols: a pro-
tocol by Asokan, Shoup, and Waidner [3] (ASW protocol), and one by Garay,
Jakobsson, and P. MacKenzie [9] (GJM protocol). The latter was explicitely de-
signed with abuse-freeness in mind. Depending on whether the verifier is allowed
to eavesdrop on the network connection between the signers or on the channel
between the signers and the TTP, and whether the initiator or responder in the
protocol is dishonest, the protocols behave differently: We show that if the ver-
ifier can read the messages between the signers and the TTP, and the initiator
is dishonest, then the ASW protocol is vulnerable to a very strong attack, i.e.
it is not even weakly abuse-free. In this attack, the online aspect of our defini-
tion plays a crucial role, as the verifier “dictates” parts of the messages sent by
the dishonest signer. In all other situations, ASW is weakly, but not strongly
abuse-free. The GJM protocol shows a stronger resistance against abuse: It is
weakly abuse-free in all situations, and strongly abuse free if the verifier cannot
eavesdrop on the network channel between the signers.

Related Work. As mentioned above, Kähler et al. [12] introduced the first
rigorous and protocol-independent definition of offline abuse-freeness.

Kremer et al. [13] analyzed the ASW and GJM protocol w.r.t. abuse-freeness
using a finite-state model checking tool. They explicitly needed to specify the
behavior of dishonest principals and which states are the ones that are convincing
to Charlie.

Chadha et al. [5] introduce a stronger notion than abuse-freeness, namely
balance: A protocol is balanced, if unbalanced states (see above) do not occur
at all. Obviously, a balanced protocol is abuse-free as well. However, balance is
very difficult to achieve. In fact, as shown by Chadha et al. [6], if principals are
optimistic, i.e., they are willing to wait for messages of other parties, balance is
impossible to achieve.

Procedures for deciding properties of contract-signing protocols, including bal-
ance, were presented in [11] and [10].

Shmatikov and Mitchell [16] employ the finite-state model checker Murϕ to
automatically analyze contract-signing protocols. They approximate the notion
of abuse-freeness by a notion similar to balance.

486 R. Küsters, H. Schnoor, and T. Truderung

A cryptographic definition of the balance property was presented by Cortier,
Küsters, and Warinschi in [7].

Aizatulin, Schnoor, and Wilke [2] introduced a contract signing protocol which
satisfies a probabilistic notion of balance. Wang [17] introduces an abuse-free
contract signing protocol based on the RSA signature scheme.

Structure of the Paper. In Section 2, we introduce our protocol model. The
definition of abuse-freeness is then given in Section 3, and applied to the ASW
and GJM protocols in Sections 4 and 5, respectively. Proofs of our results can
be found in our technical report [14].

2 Protocol Model

In this section, following [15], we present a quite abstract symbolic protocol model.
In this model, processes are represented as functions that from a sequence of input
messages (the messages received so far) produce output messages. This model is
the basis of our definition of abuse-freeness provided in the next section. We note,
however, that the details of the model are not essential for the definition. The main
motivation for using this model is brevity of presentation. We could as well have
used another protocol model, such as the applied pi calculus [1].

2.1 Terms and Messages

Let Σ be some signature for cryptographic primitives (including a possibly infi-
nite set of constants for representing participant names, etc.), X = {x1, x2, . . . }
be a set of variables, and Nonce be an infinite set of nonces, where the sets Σ,
X , and Nonce are pairwise disjoint. For N ⊆ Nonce, the set TN of terms over
Σ ∪ N and X is defined as usual. Ground terms, i.e., terms without variables,
represent messages. We assume some fixed equational theory associated with Σ
and denote by ≡ the congruence relation on terms induced by this theory. The
exact definition of Σ and the equational theory will depend on the cryptographic
primitives used in the protocol under consideration. A simple example of a sig-
nature Σex and its associated equational theory is provided in Figure 1. A term
of the form sig(sk(k), m) represents a message m signed using the (private) key
sk(k). Checking validity of such a signature is modeled by equation (1). The
fact that signatures do not necessarily hide the signed message is expressed by
equation (2). A term of the form {x}r

pk(k) represents the ciphertext obtained
by encrypting x under the public key pk(k) using randomness r. Decryption of
such a term using the corresponding private key sk(k) is modeled by equation
(3). A term of the form 〈x, y〉 models the pairing of terms x and y. The compo-
nents x and y of 〈x, y〉 can be extracted by applying the operators first(·) and
second(·), respectively, as modeled by the equations (4) and (5). A term of the
form hash(m) represents the result of applying a hash function to a message
m. Note that hash(·) is a free symbol, i.e. there is no equation involving this
symbol in the given equational theory. For example, let ≡ex denote the congru-
ence relation induced by the equational theory in Figure 1, then we have that
dec({a}r

pk(k), first(〈sk(k), b〉)) ≡ex a.

A Formal Definition of Online Abuse-Freeness 487

checksig(sig(sk(k), m), pk(k)) = T (1)

extractmsg(sig(sk(k), m)) = m (2)

dec({x}r
pk(k), sk(k)) = x (3)

first(〈x, y〉) = x, (4)

second(〈x, y〉) = y (5)

Fig. 1. The equational theory associated with the signature Σex = {sig(·, ·), 〈·, ·〉, {·}··,
T, checksig(·, ·), extractmsg(·), first(·), second(·), hash(·), pk(·), sk(·)}

2.2 Event Sequences and Views

Let Ch be a set of channels (channel names). An input/output event is of the
form (c : m) and (c̄ : m), respectively, for c ∈ Ch and a message m (note that
c̄ /∈ Ch). A finite or infinite sequence of events is called an event sequence. For a
sequence ρ = (c1 : m1) (c2 : m2), . . . of input events, we denote by chan(ρ) the
sequence c1, c2, . . . of channels in this sequence. For C ⊆ Ch, we denote by ρ|C
the subsequence of ρ containing only the events of the form (c : m) with c ∈ C.

Let τ ∈ TN be a term, which may contain variables x1, x2, Then, with
ρ as above, we denote by τ [ρ] the message τ [m1/x1, m2/x2, . . .], where xi is
replaced by mi. For example, assume that τex = dec(x1, first(x2)) and ρex = (c1 :
{a}r

pk(k)), (c2 : 〈sk(k), b〉). Then τex[ρex] = dec({a}r
pk(k), first(〈sk(k), b〉)) ≡ex a.

Borrowing the notion of static equivalence from [1], we call two event sequences
ρ and ρ′ statically equivalent w.r.t. a set C ⊆ Ch of channels and a set N ⊆ Nonce
of nonces, written ρ ≡C

N ρ′, if (i) chan(ρ|C) = chan(ρ′|C) and (ii) for every τ1, τ2 ∈
TN we have that τ1[ρ|C] ≡ τ2[ρ|C] iff τ1[ρ′|C] ≡ τ2[ρ′|C]. Intuitively, ρ ≡C

N ρ′

means that a party listening on channels C and a priori knowing the nonces in
N cannot distinguish between the inputs received according to ρ and ρ′. We call
the equivalence class of ρ w.r.t. ≡C

N , the (C, N)-view on ρ. For example, if a and
b are different constants, k, k′, r and r′ are nonces, C = {c1, c2}, and N = ∅,
then it is easy to see that ρ1

ex = (c1 : {a}r
pk(k)), (c2 : 〈sk(k′), b〉), (c3 : sk(k)) and

ρ2
ex = (c1 : {b}r′

pk(k)), (c2 : 〈sk(k′), b〉) yield the same (C, N)-view w.r.t. ≡ex.

2.3 Processes

A process is, basically, a function that given a sequence of input events (rep-
resenting the history so far) produces a sequence of output events. We require
that a process behaves the same on inputs on which it has the same view. More
precisely, a process is a tuple π = (I, O, N, f) where

(i) I, O ⊆ Ch are finite sets of input and output channels, respectively,
(ii) N ⊆ Nonce is a set of nonces used by π,
(iii) f is a mapping which assigns a sequence f(U) = (c1 : τ1) · · · (cn : τn) with

ci ∈ O and τi ∈ TN to each (I, N)-view U .

488 R. Küsters, H. Schnoor, and T. Truderung

We note that (iii) guarantees that π performs the same computation on event
sequences that are equivalent according to ≡I

N , and hence, on which π has the
same view.

For an event sequence ρ, we write π(ρ) for the output produced by π on
input ρ. This output is (c1 : τ1[ρ′]) · · · (cn : τn[ρ′]), where ρ′ = ρ|I and (c1 :
τ1) · · · (cn : τn) = f(U) for the equivalence class U of ρ w.r.t. ≡I

N . For example,
let I = {c1, c2}, N = ∅, U be the equivalence class of ρ1

ex, and assume that
f(U) = (c4 : 〈x1, first(x2)〉). Then, π(ρ1

ex) = (c4 : 〈{a}r
pk(k), first(〈sk(k′), b〉)〉),

which modulo ≡ex can be written equivalently as (c4 : 〈{a}r
pk(k), sk(k

′)〉) and

π(ρ2
ex) = (c4 : 〈{b}r′

pk(k), first(〈sk(k′), b〉)〉), which modulo ≡ex can be equivalently

written as (c4 : 〈{b}r′
pk(k), sk(k

′)〉). Note that since ρ1
ex and ρ2

ex yield the same
(I, N)-view w.r.t. ≡ex, π performs the same transformation on ρ1

ex and ρ2
ex. We

refer to I, O and N by Iπ , Oπ, and Nπ, respectively. We note that the sets
Iπ and Oπ do not have to be disjoint, i.e., π can send messages to itself. By
Proc(I, O, N) we denote the set of all processes π with Iπ ⊆ I, Oπ ⊆ O, and
Nπ ⊆ N .

2.4 Systems and Runs

A system S is a finite set of processes with disjoint sets of input channels and
sets of nonces, i.e., Iπ ∩ Iπ′ = ∅ and Nπ ∩Nπ′ = ∅, for distinct π, π′ ∈ S. We will
write π1 ‖ · · · ‖ πn for the system {π1, · · · , πn}.

Given a system S and a finite sequence s0 of output events, a run ρ of S
initiated by s0 is a finite or infinite sequence of input and output events which
evolves from s0 in a natural way: An output event is chosen non-deterministically
(initial from s0). Once an output event has been chosen, it will not be chosen
anymore later on. By definition of systems, there exists at most one process, say
π, in S with an input channel corresponding to the output event. Now, π (if
any) is given the input event corresponding to the chosen output event, along
with all previous input events on channels of π. Then, π produces a sequence
of output events as described above. Now, from these or older output events an
output event is chosen non-deterministically, and the computation continues as
before.

We emphasize that s0 may induce many runs, due to the non-deterministic
delivery of messages. In what follows, we assume fair runs, i.e., every output
event in a run will eventually be chosen. A run is complete if it is either infinite
or else all output events have been chosen at some point. For runs ρ, ρ′, we write
ρ ≤ ρ′, if ρ′ is an extension of ρ, i.e., is obtained by continuing the run ρ.

2.5 Protocols

A protocol is a tuple P = (A, in , out ,nonce, s0, Π), where

(i) A is a finite set of agent names. An agent a ∈ A has access to his/her nonces
nonce(a), input and output channels in(a), out(a) ⊆ Ch, respectively, such
that nonce(a) ∩ nonce(a′) = ∅ and in(a) ∩ in(a′) = ∅, for a
= a′,

A Formal Definition of Online Abuse-Freeness 489

(ii) s0 is a finite sequence of output events, the initial output sequence, for
initializing parties,

(iii) for every a ∈ A, Π(a) ⊆ Proc(in(a), out(a),nonce(a)) is the set of programs
or processes of a. We will write P (a) for Π(a).

If A = {a1, . . . , an} and πi ∈ Π(ai), then the system (π1 ‖ · · · ‖ πn) is an
instance of P . A run of P is a fair run of some instance of P initiated by s0. A
property γ of P is a subset of runs of P .

We note that our model allows to express nondeterminism: To make a nonde-
terministic choice, a program can simply send two (or more) messages to itself,
and change its behaviour depending on which message arrives first.

3 Online Abuse-Freeness

We define (online) abuse-freeness of a protocol P = (A, in , out ,nonce, s0, Π)
with respect to two distinct agents of P : the prover p ∈ A and the veri-
fier v ∈ A. Both agents are considered to be dishonest, and hence, the sets
of programs of these agents will typically contain all possible processes, i.e.,
P (p) = Proc(in(p), out(p),nonce(p)) and P (v) = Proc(in(v), out(v),nonce(v));
these processes are only limited by their network interfaces, i.e., the set of in-
put/output channels available to them.

Moreover, we define abuse-freeness of P with respect to two properties of P :
γ+ and γ−. The property γ+ is supposed to contain all the runs of P in which p
obtains a valid contract from an honest signer a and γ− is supposed to contain
all runs where the honest signer a is prevented from obtaining a valid contract
from p.

To define abuse-freeness, we first need to formalize the notion of an unbalanced
run. Intuitively, a run of an instance of a protocol P is unbalanced with respect
to the properties γ+ and γ− if p has both a strategy to achieve γ+ (i.e., enforce
a continuation of the run so that the overall run belongs to γ+) and a strategy to
achieve γ−. In other words, in an unbalanced state, the prover can unilaterally
determine the outcome of the protocol: i) obtain a signed contract from the
honest signer a or ii) prevent a from obtaining a signed contract from p.

To model the choice made by the prover to either achieve γ+ or γ−, we
introduce the following notation. We assume that the prover p has a distinct
input channel chchoice which is not an output channel of any agent in the protocol
P . Moreover, we assume that the events (chchoice : 0) and (chchoice : 1) belong to
the initial event sequence s0 of P . Intuitively, if in a run p receives 1 on chchoice,
then p will try to achieve γ+. If p receives 0 on chchoice, then p will try to achieve
γ−. More precisely, a run ρ in which neither (chchoice : 0) nor (chchoice : 1) has
been delivered is called open; intuitively, in such a run the prover has not yet
made a decision. Otherwise the run is called closed. In such a run, p tries to
achieve γ+ or γ− depending on the message received; note that only the first
message received on chchoice will set p’s goal.

In the following definition, given a finite open run ρ, we denote by ρ(chchoice:0)

the run obtained from ρ by delivering 0 on channel chchoice to p, i.e., in ρ(chchoice:0)

490 R. Küsters, H. Schnoor, and T. Truderung

the prover p is now determined to achieve γ−. The run ρ(chchoice:1) is defined
analogously. We say that a run ρ′ is a complete extension of ρ if ρ′ is an extension
of ρ and is complete.

We are now ready to formally define unbalanced runs.

Definition 1. Given an instance S of a protocol P as above with a prover p and
two properties γ+ and γ−, we say that a finite open run ρ of S is unbalanced,
if the following two conditions hold true:

(i) γ− holds in every complete extension of ρ(chchoice:0).
(ii) γ+ holds in every complete extension of ρ(chchoice:1).

Now, intuitively, a protocol is abusive if a prover p can convince the verifier v
that the current run is unbalanced. In other words, p can convince v that in the
current run he, the prover, has a strategy to obtain a valid contract from the
honest signer (and hence, close the deal) and a strategy to prevent the honest
signer from obtaining a valid contract (and hence, cancel the deal). This may
convince v to agree into a deal with p that for p is more profitable than the one
with the honest signer. Thus, in an abusive protocol, p can take advantage of
the honest signer.

Since we consider online abuse-freeness in this paper, we allow v to be actively
involved in the protocol run. In particular, p and v can freely exchange messages
during a run. For example, v could dictate (parts of the) messages p is supposed
to send to the honest signer, and v could request to receive the private keys of p.
The verifier v may even control some of the network traffic. However, this is not
hard-wired in our definition. The power of p and v can be modeled in a flexible
way in terms of the programs p and v may run and the network interface they
have.

We will consider two forms of abuse-freeness, namely strong and weak abuse-
freeness. In the strong form, p merely needs to convince v that the run was
unbalanced at some point. In contrast, for the weak form, p needs to convince
v that the run is unbalanced in the current state of the run. Since in the latter
case, the task of p is harder, the latter form of abuse-freeness is weaker. It is
desirable that a protocol is abuse-free in the strong sense since the fact that a
run was and potentially still is unbalanced might already be sufficient incentive
for v to agree into a deal with p.

In the formal definition of (online) abuse-freeness, we assume that the verifier
v can accept a run by sending the message accept on the designated channel
chaccept, indicating that v is convinced that the run is/was unbalanced. We say
that a finite run is freshly accepted, if the message accept is sent by v in the last
step of this run.

We also use the following notation in the definition of abuse-freeness: Let
P = (A, in , out ,nonce, s0, Π) be a protocol. For a program v ∈ Π(v) of the
verifier, we write P|v for the protocol that coincides with P except that the set
Π(v) of programs of v is restricted to {v}. In particular, in every instance of P|v
the verifier runs the program v.

We are now ready to define (online) abuse-freeness. We start with the strong
form of abuse-freeness.

A Formal Definition of Online Abuse-Freeness 491

Definition 2. Let P = (A, in , out ,nonce, s0, Π) with p, v ∈ A. Let γ+ and γ−

be properties of P . Then, the protocol P is called (γ+, γ−)-abusive w.r.t. the
prover p and the verifier v, if there is a program v ∈ Π(v) of v such that the
following conditions are satisfied:

(i) If an open run ρ of P|v is accepted by v, then there is an unbalanced run
ρ′ with ρ′ ≤ ρ.

(ii) There exists an open, freshly accepted, unbalanced run ρ of P|v.

The protocol P is (strongly) (γ+, γ−)-abuse-free w.r.t. p and v, if P is not
(γ+, γ−)-abusive w.r.t. p and v.

Condition (i) in the above definition says that if v accepts a run, i.e., is convinced
that the run was unbalanced at some point, then this is in fact the case. Note
that according to the definition of unbalanced runs, v may help p to achieve his
goals (γ+ or γ−). One could as well consider a variant where p has to achieve
these goals against v (and in fact, our negative results, presented in Sections 4
and 5, use a prover that works without the help of the verifier). However, this
would make the definition only weaker. We note that it would not make sense
to consider closed runs in Condition (i): The definition of unbalanced runs only
applies to open runs. Moreover, the restriction to open runs does not limit the
power of any agent.

While Condition (i) is the core of the above definition, it would not make
sense without Condition (ii): A verifier who never accepts a run would satisfy
Condition (i) trivially. Moreover, a verifier who only accepts runs which are not
unbalanced anymore would potentially also suffice to meet Condition (i). By
Condition (ii) we require that the strategy of the verifier for accepting a run
is reasonable in the sense that there is at least one run which is accepted and
which is still unbalanced.

Altogether the above definition says that a protocol is abuse-free if there is
no program a verifier could run which i) reliably tells, for any dishonest prover
(which the verifier does not trust), whether a run was unbalanced and ii) accepts
an actual unbalanced run.

We note that the above definition is possibilistic. It does, for example, not
take into account the probability with which unbalanced runs occur or a verifier
accepts an (unbalanced) run. As mentioned in the introduction, a cryptographic,
in particular probabilistic definition of the balance property, which is stronger
than abuse-freeness in that it does not require a dishonest signer to convince an
outside party of the fact that he is in an unbalanced state, was presented in [7].

Given Definition 2, it is now straightforward to define weak abuse-freeness:

Definition 3. Let P, p, v, γ+, and γ− be given as in Definition 2. Then protocol
P is strongly (γ+, γ−)-abusive w.r.t. p and v, if there is a program v such that
the following conditions are satisfied:

(i) If an open run ρ of P|v is freshly accepted, then ρ is unbalanced,
(ii) There exists an open, freshly accepted, unbalanced run ρ of P|v.

492 R. Küsters, H. Schnoor, and T. Truderung

The protocol P is weakly (γ+, γ−)-abuse-free w.r.t. p and v, if P is not strongly
(γ+, γ−)-abusive w.r.t. p and v.

This notion differs from the (strong) abuse-freenes only in Condition (i): Now
we require that the accepted run is unbalanced, not only that it was unbalanced
at some previous point. Clearly, (strong) abuse-freeness implies weak abuse-
freeness.

Note that a notion like weak abuse-freeness does not make sense in the offline
setting considered in [12]: If the verifier receives only a single message from the
prover, this message can only prove that the protocol was in an unbalanced
state at some point during the protocol run; since the prover may withhold that
evidence for as long as he wishes, it does not prove that the current state is
unbalanced.

4 The ASW Protocol

In this section, we study abuse-freeness of the contract-signing protocol proposed
by Asokan, Shoup, and Waidner (ASW protocol) in [3].

In [12], it has been shown (in a synchronous communication model without
optimistic honest parties, see below) that the ASW protocol is offline abusive.
Not surprisingly, the protocol is also abusive in the online setting. More precisely,
we show that the protocol is weakly abusive. Interestingly, we can show that the
protocol is, in some cases, even strongly abusive. For this attack, it is crucial that
the verifier is online, i.e., can interact with the prover. In fact, the verifier will
dictate part of the message the prover sends to the honest signer.

4.1 Description of the Protocol

The ASW protocol assumes the following scenario: Alice and Bob want to
sign a contract and a TTP is present. The following two types of messages,
the standard contract (SC) and the replacement contract (RC), will be rec-
ognized as valid contracts between Alice and Bob with contractual text text:
SC = 〈me1, NA, me2, NB〉 and RC = sig(sk(kt), 〈me1, me2〉) where NA and
NB stand for nonces, me1 = sig(sk(ka), 〈A, B, text, hash(NA)〉), and me2 =
sig(sk(kb), 〈me1, hash(NB)〉), with sk(kt), sk(ka), and sk(kb) denoting the pri-
vate keys of the TTP, Alice, and Bob, respectively. In addition to SC and RC,
the variants of SC and RC which one obtains by exchanging the roles of A and
B are regarded as valid contracts.

There are three interdependent parts to the protocol: an exchange protocol,
an abort protocol, and a resolve protocol. The exchange protocol consists of
four steps, which, in Alice-Bob notation, are displayed in Fig. 2. The first two
messages, me1 and me2, serve as respective promises of Alice and Bob to sign
the contract, and NA and NB serve as contract authenticators : After they have
been revealed, Alice and Bob can compose the standard contract, SC.

A Formal Definition of Online Abuse-Freeness 493

A → B : me1
B → A : me2
A → B : NA

B → A : NB

Fig. 2. ASW exchange

protocol

The abort protocol is run between Alice and
the TTP and is used by Alice to abort the
contract signing process when she does not re-
ceive Bob’s promise. Alice will obtain (from the
TTP) an abort receipt or, if the protocol in-
stance has already been resolved (see below),
a replacement contract. The first step is A →
T : ma1, where ma1 = sig(sk(ka), 〈aborted, me1〉)
is Alice’s abort request ; the second step is the TTP’s reply, which is either
sig(sk(kt), 〈aborted, ma1〉), the abort receipt, if the protocol has not been resolved,
or the replacement contract, RC.

The resolve protocol can be used by Alice and Bob to resolve the proto-
col, which either results in a replacement contract or, if the protocol has al-
ready been aborted, in an abort receipt. When Bob runs the protocol (be-
cause Alice has not sent her contract authenticator yet), the first step is
B → T : 〈me1, me2〉; the second step is the TTP’s reply, which is either the abort
receipt sig(sk(kt), 〈aborted, ma1〉), if the protocol has already been aborted, or
the replacement contract, RC. The same protocol (with roles of A and B ex-
changed) is also used by Alice.

4.2 Modeling

Our modeling of the ASW protocol uses the equational theory presented in
Section 2 (however, without encryption, which is not used in the protocol).
We consider, besides the regular protocol participants of the protocol—Alice,
Bob, and the trusted third party—two additional parties, the verifier and a key
distribution center. We will consider four cases depending on (a) which signer
(Alice or Bob) is dishonest and plays the role of the prover and (b) which part
of the network is controlled by the verifier.

In each case we assume that the honest signer is optimistic in the sense that
he/she only contacts the TTP if the dishonest signer allows the honest signer to
do so. In other words, the dishonest signer can buy himself as much time as he
needs, before the honest signer contacts the TTP. This assumption, also made in
[6], seems realistic. In any case, it only makes the dishonest party more powerful,
and hence, strengthens our positive results.

Let PA
ASW-Net denote the specification of the ASW protocol, as a protocol in

the sense of our definition (see Section 2.5), with dishonest Alice and honest Bob,
where the verifier can eavesdrop on (but not block) the network traffic between
Alice and Bob. Analogously, PB

ASW-Net denotes the protocol with dishonest Bob
and honest Alice, where again the verifier can eavesdrop on the network traffic
between Alice and Bob. Let PA

ASW-TTP (PB
ASW-TTP) be the protocols with dishonest

Alice (Bob) and honest Bob (Alice), where the verifier can eavesdrop on (but
not block) the communication between the signers and the TTP.

In the modeling of these protocols (see below), we allow an honest signer to
not be engaged in the protocol run. This is of course realistic; also, otherwise
the initial state of the protocol would already be unbalanced before a signer

494 R. Küsters, H. Schnoor, and T. Truderung

has committed to the contract. To model this, we assume that an honest signer
decides nondeterministically (see end of Section 2.5) as to whether he/she will
participate in the protocol run.

More formally, the set of programs of the protocol participants are defined as
follows:

Key Distribution Center. The set of programs for this party consists of
exactly one program, which generates key pairs (using its set of nonces) for
all other parties. Private keys, modeled as terms of the form sk(k), where k is
a nonce, are sent, via dedicated channels, only to the respective parties. Public
keys, modeled as terms of the form pk(k), are distributed to all parties, including
the verifier. Honest parties will first wait to receive their public/private key pair
and the public keys of the other protocol participants. In the specification of
honest parties below this is assumed implicitly.

Dishonest parties (prover and verifier). The sets of programs of dishon-
est parties contain all the possible processes, only constrained by the network
configuration and, possibly, some additional constrains, as described below. We
allow the prover and verifier to communicate directly with each other via a direct
(asynchronous) channel.

Network configuration. In the protocols PA
ASW-TTP and PB

ASW-TTP (in which
the verifier can eavesdrop on messages between the signers and the TTP) we
assume that the messages that Alice and Bob want to send to the TTP are
routed through the verifier. We require the verifier to forward these messages to
the recipient, i.e. we restrict the set of program of the verifier to those programs
which comply with this constraint. However, we assume direct (asynchronous)
channels between Alice and Bob.

Similarly, in PA
ASW-TTP and PB

ASW-TTP messages between Alice and Bob are
routed through the verifier, who, as above, can only eavesdrop on these messages.
Message between the signers and the TTP can be sent via direct (asynchronous)
channels.

TTP. The set of programs of TTP consists of only one program (process),
namely the one that performs exactly the steps defined by the protocol as de-
scribed in Section 4.1.

Honest Alice or Bob. The set of programs of Alice in PA
ASW-TTP and PA

ASW-Net

consists of only one program, namely the one described in Section 4.1. As men-
tioned above, at the beginning Alice first nondeterministically chooses whether
to participate in the contract signing. Also, she contacts the TTP only if she
receives a message from Bob that she is allowed to contact the TTP. The case
of honest Bob is analogous.

Remark 1. One could also study the case where the verifier can eavesdrop on all
channels. However in this case, both the ASW and GJM protocols clearly are
strongly abusive, since the verifier always knows the exact stage of the protocol
run.

A Formal Definition of Online Abuse-Freeness 495

4.3 Security Analysis

We define γ+ as the set of all runs where the prover is able to construct the
standard contract or has received the replacement contract. Analogously, γ−

consists of those runs in which the honest signer is not able to construct the
standard contract and has not received the replacement contract. For the ASW
protocol, we prove the following results (see our technical report [14] for the
proof).

Theorem 1. The protocol PA
ASW-TTP is not weakly (γ+, γ−)-abuse-free (and

hence also not abuse-free). PB
ASW-TTP, PA

ASW-Net, and PB
ASW-Net are weakly

(γ+, γ−)-abuse-free but not abuse-free.

We note that the first result exhibits a particularly devastating attack, which
makes heavy use of the fact that the verifier is an online agent. This result shows
that under certain conditions the ASW protocol is not even weakly abuse-free.
The above results also show that weak abuse-freeness is a much weaker security
property than strong abuse-freeness.

Remark 2. The proofs for PA
ASW-Net and PB

ASW-Net easily carry over to the case
when the verifier not only eavesdrops on the channels between Alice and Bob,
but also controls these channels.

5 The GJM Protocol

In [12], it has been shown that, in a synchronous communication model, the
GJM protocol is offline abuse-free. In this section, we show that whether it is
online abuse-free depends on assumptions about what part of the network the
verifier can eavesdrop on. In particular, we show that in some cases the GJM
protocol is not online abuse-free, which, again, illustrates the fact that online
abuse-freeness is stronger than offline abuse-freeness.

5.1 Informal Description and Model of the Protocol

The structure of the GJM protocol is the same as the one of the ASW protocol.
However, the actual messages exchanged are different. In particular, the exchange
protocol of the GJM protocol the first two messages are so-called private contract
signatures (PCS) [9] and the last two messages are actual signatures (obtained by
converting the private contract signatures into universally verifiable signatures).

For the GJM protocol we consider the signature ΣGJM = {
sig(·, ·, ·), sigcheck(·, ·, ·), pk(·), sk(·), fake(·, ·, ·, ·, ·), pcs(·, ·, ·, ·, ·), pcsver(·, ·, ·, ·, ·),
sconv(·, ·, ·), tpconv(·, ·, ·), sver(·, ·, ·, ·), tpver(·, ·, ·, ·), 〈·, ·〉, first(·), second(·), A,
B, T , text, initiator, responder, ok, pcsok, sok, tpok, aborted}.

The equational theory for GJM contains, in addition to the equations for
pairing and signatures, equations for modeling private contract signatures, as
depicted in Figure 3. A term of the form pcs(u, sk(x), w, pk(y), pk(z)) stands for

496 R. Küsters, H. Schnoor, and T. Truderung

pcsver(w, pk(x),pk(y),pk(z), pcs(u, sk(x), w, pk(y), pk(z))) = pcsok, (6)

pcsver(w, pk(x), pk(y),pk(z), fake(u, sk(y), w, pk(x), pk(z))) = pcsok, (7)

sver(w, pk(x), pk(z), sconv(u, sk(x),pcs(v, sk(x), w, pk(y), pk(z)))) = sok, (8)

tpver(w, pk(x),pk(z), tpconv(u, sk(z), pcs(v, sk(x), w, pk(y), pk(z)))) = tpok. (9)

Fig. 3. Equations for private contract signatures.

a PCS computed by x (with sk(x)) involving the text w, the party y, and the
TTP z, while u models the random coins used to compute the PCS. Everybody
can verify the PCS with the public keys involved (equation (6)), but cannot
determine whether the PCS was computed by x or y (equation (7)): instead of
x computing the “real” PCS, y could have computed a “fake” PCS which would
also pass the verification with pcsver. Using sconv and tpconv, see (8) and (9), a
“real” PCS can be converted by x and the TTP z, respectively, into a universally
verifiable signature (verifiable by everyone who possesses pk(x) and pk(z)).

We study the version of the GJM protocol with the modification pro-
posed in [16] to obtain fairness. In the protocol, the following messages are
exchanged: The initial messages containing the private contract signatures
are me1 = pcs(u, sk(A), contract, pk(B), pk(TTP)) and me2 = pcs(u′, sk(B),
contract, pk(A), pk(TTP)), where sk(A), pk(A), sk(B), pk(B), and pk(TTP) are
the private and public keys of Alice, Bob, and the TTP. The abort request sent
by Alice is of the form ma1 = sig(w, sk(A), 〈contract, A, B, aborted〉), where w
are random coins (for the GJM protocol, we consider randomized signatures).
The resolve request sent by Alice is 〈me1, me2〉, the resolve request from Bob is
〈me2, me1〉. As mentioned earlier, the structure of the protocol is the same as
for the ASW protocol (see Section 4).

5.2 Security Analysis

We study the cases PA
GJM-TTP, PB

GJM-TTP, PA
GJM-Net and PB

GJM-Net, which are defined
analogously to the case of ASW (see Section 4.2). The properties γ+ and γ− are
also defined analogously to the case of the ASW protocol (see Section 4.3). The
proof of this result can be found in our technical report [14].

Theorem 2. 1. PA
GJM-TTP and PB

GJM-TTP are (γ+, γ−)-abuse-free.
2. PA

GJM-Net and PB
GJM-Net are weakly (γ+, γ−)-abuse-free but not (γ+, γ−)-abuse-

free.

As made precise by this theorem, abuse-freeness of the GJM protocol in the online
setting depends on the assumptions about what part of the network the verifier
can eavesdrop on. In the offline case, the verifier was not allowed to easvesdrop
on any part of the network (and of course, was also not allowed to be actively
involved in the protocol run). Therefore, and just as in the case of the ASW pro-
tocol, our positive results are stronger than those shown for offline abuse-freeness.
Conversely, our negative results exhibit the extra power of online verifiers.

A Formal Definition of Online Abuse-Freeness 497

References

1. Abadi, M., Fournet, C.: Mobile Values, New Names, and Secure Communication.

In: POPL 2001, pp. 104–115. ACM Press, New York (2001)

2. Aizatulin, M., Schnoor, H., Wilke, T.: Computationally Sound Analysis of a Prob-

abilistic Contract Signing Protocol. In: Backes, M., Ning, P. (eds.) ESORICS 2009.

LNCS, vol. 5789, pp. 571–586. Springer, Heidelberg (2009)

3. Asokan, N., Shoup, V., Waidner, M.: Asynchronous protocols for optimistic fair

exchange. In: IEEE Symposium on Research in Security and Privacy, pp. 86–99

(1998)

4. Ben-Or, M., Goldreich, O., Micali, S., Rivest, R.L.: Fair protocol for signing con-

tracts. IEEE Transactions on Information Theory 36(1), 40–46 (1990)

5. Chadha, R., Kanovich, M.I., Scedrov, A.: Inductive methods and contract-signing

protocols. In: CCS 2001, pp. 176–185. ACM Press, New York (2001)

6. Chadha, R., Mitchell, J.C., Scedrov, A., Shmatikov, V.: Contract Signing, Opti-

mism, and Advantage. In: Amadio, R.M., Lugiez, D. (eds.) CONCUR 2003. LNCS,

vol. 2761, pp. 361–377. Springer, Heidelberg (2003)

7. Cortier, V., Küsters, R., Warinschi, B.: A cryptographic model for branching time

security properties – the case of contract signing protocols. In: Biskup, J., López, J.

(eds.) ESORICS 2007. LNCS, vol. 4734, pp. 422–437. Springer, Heidelberg (2007)

8. Dolev, D., Yao, A.C.: On the Security of Public-Key Protocols. IEEE Transactions

on Information Theory 29(2), 198–208 (1983)

9. Garay, J.A., Jakobsson, M., MacKenzie, P.: Abuse-free optimistic contract signing.

In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 449–466. Springer,

Heidelberg (1999)

10. Kähler, D., Küsters, R.: Constraint Solving for Contract-Signing Protocols. In:

Abadi, M., de Alfaro, L. (eds.) CONCUR 2005. LNCS, vol. 3653, pp. 233–247.

Springer, Heidelberg (2005)

11. Kähler, D., Küsters, R., Wilke, T.: Deciding Properties of Contract-Signing Proto-

cols. In: Diekert, V., Durand, B. (eds.) STACS 2005. LNCS, vol. 3404, pp. 158–169.

Springer, Heidelberg (2005)

12. Kähler, D., Küsters, R., Wilke, T.: A Dolev-Yao-based Definition of Abuse-free

Protocols. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP

2006. LNCS, vol. 4052, pp. 95–106. Springer, Heidelberg (2006)

13. Kremer, S., Raskin, J.-F.: Game analysis of abuse-free contract signing. In: CSFW

2002 (2002)

14. Küsters, R., Schnoor, H., Truderung, T.: A Formal Definition of On-

line Abuse-freeness. Technical Report, University of Trier (2010),

http://infsec.uni-trier.de/publications.html

15. Küsters, R., Truderung, T.: An Epistemic Approach to Coercion-Resistance for

Electronic Voting Protocols. In: Security and Privacy 2009, pp. 251–266. IEEE

Computer Society, Los Alamitos (2009)

16. Shmatikov, V., Mitchell, J.C.: Finite-state analysis of two contract signing proto-

cols. Theoretical Computer Science (TCS), special issue on Theoretical Founda-

tions of Security Analysis and Design 283(2), 419–450 (2002)

17. Wang, G.: An Abuse-Free Fair Contract-Signing Protocol Based on the RSA Sig-

nature. IEEE Transactions on Information Forensics and Security 5(1), 158–168

(2010)

http://infsec.uni-trier.de/publications.html

Author Index

Ajam, Nabil 53

Al-Bataineh, Areej 20

Al-Bataineh, Omar I. 429

Bai, Guangdong 326

Beyah, Raheem 253

Bishop, Matt 415

Bourgeois, Anu 253

Chang, Ee-Chien 362

Chen, Xiangqun 326

Chiang, Jerry T. 235

Choi, Jihyuk 235

Conti, Mauro 290

Crispo, Bruno 272

Crutchfield, James P. 415

Cuppens-Boulahia, Nora 53

Cuppens, Frederic 53

Dewri, Rinku 71

Dimitriou, Tassos 35

Di Pietro, Roberto 290

Ehrenkranz, Toby 217

Feng, Tao 326

Gong, Tao 1

Grace, Michael 162

Gu, Liang 326

Guo, Yao 326

Gupta, Minaxi 144, 448

Han, Jinguang 181

Hu, Yih-Chun 107, 235

Ion, Mihaela 272

Jhi, Yoon-Chan 1

Jiang, Xuxian 162

Jing, Jiwu 307

Jung, Sang Shin 253

Kalafut, Andrew 448

Kim, Dongho 107, 235

Kong, Deguang 1

Küsters, Ralf 484

Lee, Patrick P.C. 380

Liakh, Siarhei 162

Liang, Zhenkai 162

Li, Jinku 162

Li, Jun 217

Li, Ming 89

Lin, Jingqiang 307

Liu, Peng 1, 307

Lou, Wenjing 89

Lui, John C.S. 380

Lu, Liming 362

Marconi, Luciana 290

McDaniel, Patrick 217

Morales, Jose Andre 20

Mu, Yi 181

Myers, Steven 144

Patel, Pragneshkumar 448

Perlman, Radia 380

Piessens, Frank 344

Preneel, Bart 344

Rattadilok, Pairoj 448

Ray, Indrajit 71

Ray, Indrakshi 71

Ren, Kui 89

Russello, Giovanni 272

Sandhu, Ravi 20

Schnoor, Henning 484

Shin, Youngsang 144

Shmatikov, Vitaly 466

Son, Sooel 466

Squicciarini, Anna C. 199

Srinivasan, Deepa 162

Strackx, Raoul 344

Sundareswaran, Smitha 199

Susilo, Willy 181

Tang, Yang 380

Traynor, Patrick 125

Truderung, Tomasz 484

500 Author Index

Valero, Marco 253

van der Meyden, Ronr 429

Wang, Qiongxiao 307

Wang, Zhi 162

Whalen, Sean 415

Whitley, Darrell 71

Wu, Yongzheng 362

Xi, Hongsheng 1

Xu, Shouhuai 20

Yan, Jun 181

Yap, Roland H.C. 362

Yegenian, Aram 35

Yu, Jie 362

Yu, Shucheng 89

Zhioua, Sami 398

Zhu, Sencun 1

	Title Page
	Preface
	SecureComm 2010
	Table of Contents
	Malware and Email Security
	SAS: Semantics Aware Signature Generation for Polymorphic Worm Detection
	Introduction
	Attacks on Signature Generation
	Techniques to Evade Detection
	Techniques to Mislead Signature Generation

	Our Approach
	Why STG Based Signature Can Help?
	System Overview
	Useful Instruction Extraction
	Payload Clustering
	STG Based Signature Generation
	Semantics Aware Signature Matching Process

	Security Analysis
	Strength
	Limitations

	Evaluation
	Comparison with Polygraph and Hamsa
	Per-polymorphic Engine Evaluation
	Performance Evaluation

	Related Work
	Conclusion
	References

	Analyzing and Exploiting Network Behaviors of Malware
	Introduction
	Related Work
	Data Set Analysis
	Network Behavior
	DNS and NetBIOS
	RD-Behavior
	UDP and ICMP
	Other Network Activity

	Clustering and Classification
	Clustering Results
	Classification Results

	Discussion
	Limitations
	Conclusion and Future Work
	References

	Inexpensive Email Addresses $An Email Spam-Combating System$
	Introduction
	Inexpensive Email Addresses: IEA
	How IEA Makes Use of SMTP
	IEA Step-by-Step Walkthrough
	Rolling and Banning

	System Design
	The IEA Sub-systems
	The DEAs

	Implementation
	Benchmarks

	Related Work
	Discussion and Critique of the IEA System
	Conclusions and Future Work
	References

	Anonymity and Privacy
	Privacy Administration in Distributed Service Infrastructure
	Introduction
	Motivating Example
	The Privacy-Aware OrBAC Model
	The OrBAC Model
	OrBAC Administration
	Privacy Contextual Management

	The Privacy Distributed Administration
	Privacy Administrative Views
	First Case: Dominance of the Mobile Operator Policy
	Second Case: Prioritised Third Party Policy
	Third Case: Policy Negotiation through the O2O Approach

	Related Works
	Conclusion
	References

	On the Formation of Historically k-Anonymous Anonymity Sets in a Continuous LBS
	Introduction
	Motivation
	Related Work
	Contributions

	System Architecture
	Historical k-Anonymity
	Implications

	The CANON Algorithm
	Handling Defunct Peers
	Deciding a Peer Set
	Handling a Large MBR

	Empirical Study
	Experimental Setup
	Comparative Performance
	Impact of Parameters
	Summary

	Conclusions
	References

	Securing Personal Health Records in Cloud Computing: Patient-Centric and Fine-Grained Data Access Control in Multi-owner Settings
	Introduction
	Related Work
	Traditional Access Control for EHRs
	Cryptographically Enforced Access Control for Outsourced Data

	Patient-Centric Data Access Control Framework for PHR in Cloud Computing
	Problem Definition
	The Proposed Framework for Patient-Centric Data Access Control

	Flexible and Fine-Grained Data Access Control Mechanisms
	Definitions, Notations and Preliminary
	Key Distribution
	Enforcement of Access Privileges
	User Revocation
	Handling Break-Glass

	Scheme Analysis
	Security Analysis
	Performance Analysis

	Conclusion
	References

	Wireless Security
	A Study on False Channel Condition Reporting Attacks in Wireless Networks
	Introduction
	Attack Overview
	Defense
	Solution Spectrum
	Scope of Our Algorithm
	Secure Channel Condition Estimation
	Application of Our Secure Estimation Algorithm
	Implementation of Multiple Challenges

	Evaluation
	Performance Analysis
	Simulation
	System Performance
	Security Analysis

	Related Work
	Conclusion and Future Work
	References

	Characterizing the Security Implications of Third-Party Emergency Alert Systems over Cellular Text Messaging Services
	Introduction
	Network Architecture
	Cellular Network Architecture
	Third-Party Provider Solutions

	Modeling Emergency Events in Real Environments
	Location Selection and Characterization
	Mathematical Characterization of Emergencies

	Simulating Emergency Events
	Normal Traffic
	Emergency Scenarios
	Testing Campus Alert Systems

	Discussion
	3G Networks
	Message Delivery Order
	Message Delay

	Improving Incident Response Communications
	Related Work
	Conclusion
	References

	Saving Energy onWiFi with Required IPsec
	Introduction
	Scenarios
	Power Saving Mode (PSM)
	Our Contributions

	Background on IPsec and Related Protocols
	Internet Key Exchange (IKE) Protocol
	IPsec Gateway Failover (IGF)
	MOBIKE

	Power Savings for Session-Resumption Protocols
	Mathematical Model
	Patterns in Real-World WiFi Traffic
	Measuring Variables for the Mathematical Model
	Power Savings under Optimal Scheduling
	A Real-World Scheduler

	Comparison of Performance of IPsec Session-Resumption Protocols
	Methodology
	Performance Evaluation

	Related Work
	Conclusions
	References

	Systems Security – I
	Transparent Protection of Commodity OS Kernels Using Hardware Virtualization
	Introduction
	Background
	Harvard Architecture
	Virtualization and Shadow Paging

	Design
	Page-Level Redirection for W X
	Mode-Sensitivity for W KX

	Implementation
	Page-Level Redirection
	Mode-Sensitivity Support

	Evaluation
	Discussion
	Related Work
	Conclusion
	References

	A Generic Construction of Dynamic Single Sign-on with Strong Security
	Introduction
	Formal Definitions and Security Models
	Single Sign-on
	The Security of Single Sign-on
	Dynamic Single Sign-on
	The Security of Dynamic Single Sign-on

	Building Blocks
	Broadcast Encryption System
	Chosen Ciphertext Security of Broadcast Encryption System
	Signature Scheme
	Strong Unforgeability of Signature
	Zero Knowledge Proof

	Generic Construction for Dynamic Single Sign-on
	Security Analysis
	Conclusion
	References

	DeCore: Detecting Content Repurposing Attacks on Clients’ Systems
	Introduction
	Content Repurposing Attacks
	Overview of the Content Repurposing Attacks
	Existing Protection Mechanisms

	The DeCore System Design
	The DeCore Implementation
	The DeCore Auditor Implementation
	The DeCore Detector Implementation

	The DeCore Evaluation
	Related Work
	Discussion and Concluding Remarks
	References

	Network Security – I
	Realizing a Source Authentic Internet
	Introduction
	Incoming Table, Blacklist, and Packet Classification
	Blacklist
	Packet Classification

	On-demand Update
	Pushback of Spoofed Packets
	Security Considerations
	Origin Authentication
	Collusion Prevention
	Confidentiality, Integrity, and Replay Prevention

	Evaluation
	Efficacy
	False Positives
	Overhead

	Open Issues
	Related Work
	Conclusion
	References

	Partial Deafness: A Novel Denial-of-Service Attack in 802.11 Networks
	Introduction
	Related Work
	The Partial Deafness Attack
	Description
	Analysis

	Implementation and Evaluation of the Partial Deafness Attack
	Implementation
	Evaluation

	Countermeasure
	Conclusions
	References

	Attacking Beacon-Enabled 802.15.4 Networks
	Introduction
	Related Work
	Problem Statement
	GTS Management Scheme
	Vulnerabilities of GTS Management Scheme

	Experiment Design
	Network Design
	Attack Model
	Hardware and Software Components

	Overview of Attacks
	Existing Identities in the PAN
	Non-existing Identities in the PAN

	Implementation of Attacks
	Existing Identities in the PAN
	Non-existing Identities in the PAN

	Attack Analysis
	Possible Countermeasures
	Conclusion and Future work
	References

	Supporting Publication and Subscription Confidentiality in Pub/Sub Networks
	Introduction
	The Publish/Subscribe Communication Paradigm
	A Case for Pub/Sub Confidentiality

	Confidentiality in Publish/Subscribe Systems
	Background
	Attribute-Based Encryption (ABE)
	Encrypted Search

	Solution Details
	Init(1k)
	Event Encryption
	Filter Generation
	Filtering of Events
	Decryption of the Content

	Revisiting the Stock Quote Example
	Security Analysis
	Related Work
	Conclusions and Future Work
	References

	Security Protocols – I
	CED2: Communication Efficient Disjointness Decision
	Introduction
	Related Work
	Our Solution: CED2
	System Model and Notation
	Protocol Overview
	Protocol Description

	Analysis
	Protocol Evaluation
	Disjoint Sets Instances
	Not-disjoint Instances

	Conclusions
	References

	Impossibility of Finding Any Third Family of Server Protocols Integrating Byzantine Quorum Systems with Threshold Signature Schemes
	Introduction
	System Model
	Problem Formulation
	Client Protocol
	General Model of Server Protocols
	Defining the Validity of Server Protocols
	Existing Valid Server Protocols
	Is It Possible to Find Any Third Family of Valid Protocols?

	Main Results
	Design Space for Server Protocols
	Properties of Valid Server Protocols
	Two Families of Valid Server Protocols

	Efficient Server Protocols
	Server Protocol I
	Server Protocol II

	Performance
	Communication
	Computation
	Concurrent Read/Write Operations

	Related Work
	Conclusions
	References

	Context-Aware Usage Control for Android
	Introduction
	Background
	Motivating Scenarios
	UCON Model
	Android Security

	ConUCON: A Context-Aware Usage Control Model
	Model Components
	Environment Contexts
	User Policy Specification
	Runtime Usage Decisions

	A Usage Control Framework for Android
	Framework Overview
	Framework Components
	Policy Specification

	Implementation and Evaluation
	Usage Decision
	Policy Specification
	Performance Evaluation

	Related Work
	Conclusion
	References

	System Security – II
	Efficient Isolation of Trusted Subsystems in Embedded Systems
	Introduction
	Problem Statement
	Threat Model
	Security Properties

	Self-Protecting Modules
	Overview
	Layout of an SPM
	Hardware Modifications
	Initialization of SPM's
	Authentication of SPM's
	Secure Communication
	Vault: Bootstrapping Trust
	Destruction
	Discussion
	Extensions

	Applications
	Related Work
	Conclusion
	References

	Enhancing Host Security Using External Environment Sensors
	Introduction
	The Framework
	Applying to Malware Detection
	Changepoint Detection
	Experimental Setup
	Spam Detection
	Detecting DDoS Zombie Attacks
	Detecting Misuse of Compute Resources

	Application to Access Control and Rate Control
	Access Control
	Rate Control

	Related Work
	Conclusion
	References

	FADE: Secure Overlay Cloud Storage with File Assured Deletion
	Introduction
	Policy-Based File Assured Deletion
	Background
	Policy-Based Deletion
	Participants in the System
	Threat Models and Assumptions
	The Basics - File Upload/Download
	Policy Revocation for File Assured Deletion
	Multiple Policies
	Policy Renewal

	The FADE Architecture
	Representation of Metadata
	Data Owner and Storage Cloud
	Key Manager

	Evaluation
	Experimental Results on Time Performance of FADE
	Space Utilization of FADE
	Lessons Learned

	Discussion
	Related Work
	Conclusions
	References

	Security Protocols – II
	A New Information Leakage Measure for Anonymity Protocols
	Introduction
	Related Work
	Anonymity Protocols as Noisy Channels
	Channel Matrix Analysis

	Scattering of the Channel Matrix Rows
	Empirical Analysis

	Re-executing the Protocol Multiple Times
	Conclusion
	References

	Hidden Markov Models for Automated Protocol Learning
	Introduction
	Related Work
	Background
	Markov Models
	Hidden Markov Models
	E-Machines

	Protocol Inference
	Approach
	Results

	Future Work
	Conclusion
	References

	Epistemic Model Checking for Knowledge-Based Program Implementation: An Application to Anonymous Broadcast
	Introduction
	Model Checking Epistemic Logic
	Implementation of Knowledge-Based Programs
	Chaum's Dining Cryptographers Protocol
	The 2-Phase Broadcast Protocol as a Knowledge-Based Program
	The Knowledge-Based Program
	Verification Conditions
	Finding an Implemention of the Knowledge-Based Program

	Conclusion
	References

	Network Security – II
	Surveying DNS Wildcard Usage among the Good, the Bad, and the Ugly
	Introduction
	Background
	Data Sets
	Wildcard Prevalence
	Overridden Wildcards

	Wildcard Usage
	Wildcard Usage among Good Domains
	Usage among the Ugly
	Usage among the Bad

	Identifying Malicious Wildcard Usage
	TTLs of Wildcarded Records
	Autonomous Systems Pointed to by Wildcards
	Host Names Represented by Wildcards

	Related Work
	Discussion
	References

	The Hitchhiker’s Guide to DNS Cache Poisoning
	Introduction
	DNS Background
	Resource Record Set
	Caching and Recursive Resolution

	DNS Response Forgery
	Cache Poisoning without Response Forgery
	Blind Response Forgery Using Birthday Attack
	Response Forgery Using Eavesdropping

	The Bailiwick Rule
	Cache Overwriting
	Formal Model of DNS Resolver
	Modeling Methodology
	Base Data Types
	Cache Initialization
	Non-overwritability
	Bailiwick Rule

	Taxonomy of Cache Poisoning Attacks
	Adding a New CNAME Record
	Adding a Subdomain under an Existing Authority
	Overwriting an Existing a Record
	Overwriting an Existing NS Record
	Creating Fake Domains
	Hijacking a Popular Domain via a Sub-authority

	Defenses
	Conclusion
	References

	A Formal Definition of Online Abuse-Freeness
	Introduction
	Protocol Model
	Terms and Messages
	Event Sequences and Views
	Processes
	Systems and Runs
	Protocols

	Online Abuse-Freeness
	The ASW Protocol
	Description of the Protocol
	Modeling
	Security Analysis

	The GJM Protocol
	Informal Description and Model of the Protocol
	Security Analysis

	References

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

