
1 Dedekind’s Eta Function and Modular
Forms

1.1 Identities of Euler, Jacobi and Gauss

Throughout this monograph we use the notation

e(z) = e2πiz

where z is a complex number. We define the Dedekind eta function by the
infinite product

η(z) = e
(

z
24

) ∞∏

n=1

(1 − qn) with q = e(z). (1.1)

The product converges normally for q in the unit disc or, equivalently, for
z in the upper half plane H = {z ∈ C | Im(z) > 0}. This means that the
product of the absolute values |1 − qn| converges uniformly for z in every
compact subset of H. The normal convergence of the product implies that η
is a holomorphic function on H and that η(z) �= 0 for all z ∈ H.

Throughout this monograph,
(

c
d

)
denotes the Legendre–Jacobi–Kronecker

symbol of quadratic reciprocity. Its definition and properties, especially for
an even denominator, can be found in many textbooks on Number Theory,
for example [45], §5.3, or [49], §46. For the readers’ convenience, we re-
produce the definition. First of all, the symbol takes the value 0 whenever
gcd(c, d) > 1. If d �= 2 is prime and d � c then

(
c
d

)
= 1 or −1 as to wether c

is or is not a square modulo d. (This is the Legendre symbol.) For d = 2 the
definition reads

(
c
2

)
=

{
1 if c ≡ 1 mod 8,

−1 if c ≡ 5 mod 8,

while
(

c
2

)
remains undefined if c ≡ 3 mod 4. This is the appropriate procedure

in order to validate the decomposition law for primes in quadratic number
fields which will be stated in Sect. 5.3. Finally,

(
c
d

)
is totally mutiplicative as
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4 1. Dedekind’s Eta Function and Modular Forms

a function of the denominator d, and it follows that it is totally multiplicative
also as a function of the numerator c. We will frequently and silently use the
law of quadratic reciprocity ; we do not state it here, but refer to the textbooks.

Euler’s identity

∞∏

n=1

(1 − qn) =
∞∑

m=− ∞
(−1)mq

1
2 m(3m−1)

is easily transformed (see below in this subsection) into the series expansion

η(z) =
∞∑

n=1

(
12
n

)
e

(
n2z

24

)
(1.2)

for the eta function. Euler succeeded to prove his identity in 1750. His
proof rests on a tricky inductive argument and can be studied in [114], §98.
Nowadays the Euler identity is commonly viewed as a special case of a more
general identity, which Jacobi published in 1829 in his famous Fundamenta
Nova Theoriae Functionum Ellipticarum. Proofs of this so-called triple prod-
uct identity are given in [9], §1.3, [14], §3.1, [36], §2.8.1, [38], §17, [45], §12.4,
[70], §3.2, [114], §100, and at other places.

Theorem 1.1 (Jacobi Triple Product Identity) Suppose that q, w ∈ C

and |q| < 1, w �= 0. Then

∞∏

n=1

(1 − q2n)(1 + q2n−1w)(1 + q2n−1w−1) =
∞∑

n=− ∞
qn2

wn.

We will present a proof of this identity because of its fundamental importance,
although many proofs are available in textbooks. We join [9] and [70] and
give a proof which is due to Andrews [4]. It is based upon another of Euler’s
identities (Chap. 16 of his Introductio in Analysin Infinitorum):

Lemma 1.2 (Euler) For q, w ∈ C with |q| < 1 we have

∞∏

n= 0

(1 + qnw) =
∞∑

m= 0

qm(m−1)/2wm

(1 − q)(1 − q2) . . . (1 − qm)
. (1.3)

If also |w| < 1, then

∞∏

n= 0

1
1 + qnw

=
∞∑

m= 0

(−1)mwm

(1 − q)(1 − q2) . . . (1 − qm)
. (1.4)
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Proof. The infinite product

f(q, w) =
∞∏

n= 0

(1 + qnw)

converges absolutely for |q| < 1 and any w ∈ C because of the convergence
of

∑∞
n=0 |qnw|. Therefore for any q with |q| < 1 there is a power series

expansion

f(q, w) =
∞∑

m=0

am(q)wm

which is valid on the entire w-plane. The definition of f clearly implies that
f(q, w) = (1 + w)f(q, qw), hence

∞∑

m= 0

am(q)wm =
∞∑

m= 0

am(q)qmwm +
∞∑

m= 0

am(q)qmwm+1 .

Comparing coefficients yields am(q) = am(q)qm + am−1(q)qm−1 for m ≥ 1,
or

am(q) = am−1(q)qm−1(1 − qm)−1 .

Since a0(q) = 1, it follows by induction that

am(q) =
q(m−1)+(m−2)+...+1

(1 − q)(1 − q2) . . . (1 − qm)
=

qm(m−1)/2

(1 − q)(1 − q2) . . . (1 − qm)
.

Thus the result (1.3) follows.

Now we consider
g(q, w) =

∏

n= 0

1
1 + qnw

.

For |q| < 1, |w| < 1 this product converges absolutely because of the conver-
gence of

∞∑

n= 0

∣
∣
∣
∣1 − 1

1 + qnw

∣
∣
∣
∣ =

∞∑

n= 0

∣
∣
∣
∣

qnw

1 + qnw

∣
∣
∣
∣ ≤ |w|

1 − |w|

∞∑

n= 0

|qnw| .

Therefore for any q with |q| < 1, g is an analytic function of w with a power
series expansion g(q, w) =

∑∞
m=0 bm(q)wm which is valid for |w| < 1. The

definition of g implies that g(q, qw) = (1 + w)g(q, w), and hence
∞∑

m= 0

bm(q)qmwm =
∞∑

m= 0

bm(q)wm +
∞∑

m= 0

bm(q)wm+1 .

We conclude that bm(q)qm = bm(q)+bm−1(q), or bm(q) = −bm−1(q)/(1−qm)
for m ≥ 1. Since b0(q) = 1, we obtain by induction that

bm(q) =
(−1)m

(1 − q)(1 − q2) . . . (1 − qm)
,

and the result (1.4) follows. �
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Proof of Theorem 1.1. Assume that |q| < 1 and w ∈ C. From (1.3) we obtain

∞∏

n= 0

(1 + q2n+1w) =
∞∏

n= 0

(
1 + (q2)n(qw)

)

=
∞∑

m= 0

q2m(m−1)/2qmwm

(1 − q2)(1 − q4) . . . (1 − q2m)

=
∞∑

m= 0

qm2
wm

(1 − q2)(1 − q4) . . . (1 − q2m)

=
∞∑

m= 0

qm2
wm

∞∏

ν= 0

(1 − q2m+2+2ν)

/ ∞∏

ν= 0

(1 − q2ν+2)

=
∞∏

ν= 0

1
1 − q2ν+2

∞∑

m= 0

qm2
wm

∞∏

ν= 0

(1 − q2m+2+2ν) .

For m < 0 the product inside the infinite sum is identically 0 because of the
factor with ν = −m − 1. Therefore we can write

∞∏

n= 0

(1 + q2n+1w) =
∞∏

ν= 0

1
1 − q2ν+2

∞∑

m= − ∞
qm2

wm
∞∏

ν= 0

(1 − q2m+2+2ν) .

Applying (1.3) once more, we get

∞∏

ν= 0

(1 − q2m+2+2ν) =
∞∏

ν= 0

(
1 + (q2)ν(−q2+2m)

)

=
∞∑

k= 0

qk(k−1)(−q2+2m)k

(1 − q2)(1 − q4) . . . (1 − q2k)

=
∞∑

k= 0

(−1)kqk2+k+2mk

(1 − q2)(1 − q4) . . . (1 − q2k)
.

Together with the preceding result this yields

∞∏

n= 0

(1 + q2n+1w) =
∞∏

ν= 0

1
1 − q2ν+2

∞∑

m= − ∞

∞∑

k= 0

(−1)kqm2+k2+2mk+kwm

(1 − q2)(1 − q4) . . . (1 − q2k)
.

We want to interchange the summation in the double sum, and for this pur-
pose we need absolute convergence. We have convergence for all w ∈ C. But
an estimate of the double sum in reversed order of summation shows that
absolute convergence does only hold if |q| < 1 and |w| > |q|. Under this
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assumption we get
∞∏

n= 0

(1 + q2n+1w)

=
∞∏

ν= 0

1
1 − q2ν+2

∞∑

k= 0

(−1)kqk

(1 − q2)(1 − q4) . . . (1 − q2k)

∞∑

m=− ∞
q(m+k)2wm

=

( ∞∑

m=− ∞
qm2

wm

) ∞∏

ν= 0

1
1 − q2ν+2

∞∑

k= 0

(−1)k(q/w)k

(1 − q2)(1 − q4) . . . (1 − q2k)
.

Since by assumption |q/w| < 1, we can apply (1.4) to the inner sum on k and
replace it by the product

∞∏

n= 0

1
1 + (q2)n(q/w)

.

This yields the Triple Product Identity
∞∑

m=− ∞
qm2

wm =
∞∏

n= 1

(1 − q2n)(1 + q2n−1w)(1 + q2n−1w−1)

under the assumptions that |q| < 1 and |w| > |q|. By the principle of analytic
continuation it holds for |q| < 1 and all w �= 0. �

Corollary 1.3 (Euler, Gauss) For q ∈ C, |q| < 1 and m ∈ N the following
identities hold:

∞∏

n=1

(1 − qn(m+1))(1 − qn(m+1)−m)(1 − qn(m+1)−1)

=
∞∑

n=− ∞
(−1)nq

1
2 n(n(m+1)−m+1),

∞∏

n=1

(1 − qn) =
∞∑

n=− ∞
(−1)nq

1
2 n(3n−1),

∞∏

n=1

(1 − qn)2(1 − q2n)−1 =
∞∑

n=− ∞
(−1)nqn2

.

Proof. In Theorem 1.1 we replace q by q
1
2 (m+1), and we put w = −q

1
2 (1−m).

This gives the first identity. When we choose m = 2 then we get the second,
which is Euler’s identity. Now we choose m = 1 in the first identity. Then
the left hand side is

∞∏

n=1

(1 − q2n)(1 − q2n−1)(1 − q2n−1) =
∞∏

n=1

(1 − qn)(1 − q2n−1),
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since 2n and 2n − 1 together take each positive integer once as a value. We
multiply and divide each factor by 1 − q2n. This yields the last identity. �

The third identity in Corollary 1.3 is attributed to Gauss. The right hand
side in the triple product identity is the famous Jacobi theta function which is
traditionally denoted by θ(q, w), θ3(q, w), or by θ(z, u), θ3(z, u) if q = e(z/2),
w = e(u).

In order to derive (1.2), we multiply Euler’s identity by q1/24 and observe
that

1
24 + 1

2n(3n − 1) = 1
24 (36n2 − 12n + 1) = 1

24 (6n − 1)2.

We put 6n − 1 = m for n > 0, 6n − 1 = −m for n ≤ 0. Then m > 0 for all n
and

(−1)n = χ(m) =
{

1
−1 for m ≡

{
±1
±5 mod 12.

Hence χ(m) =
(

12
m

)
for gcd(m, 12) = 1. Since

(
12
m

)
= 0 for gcd(m, 12) > 1,

we arrive at the series expansion (1.2) for η(z).

We put q = e(z) in the third identity in Corollary 1.3. Then we get

η2(z)
η(2z)

=
∞∑

n=− ∞
(−1)ne

(
n2z

)
. (1.5)

The coefficient function χ(m) =
(

12
m

)
in (1.2) is a Dirichlet character mod-

ulo 12. In fact, it is the only primitive character among the four characters
modulo 12.

We recall that a Dirichlet character modulo N is a homomorphism χ of
the group (Z/NZ)× of coprime residues modulo N into the multiplicative
group C

× of complex numbers. It is lifted to a function χ on Z by putting
χ(m) = χ(m mod N) if gcd(m, N) = 1 and χ(m) = 0 if gcd(m, N) > 1.
We say that χ is induced by a character ψ modulo a divisor N0 of N if
χ(m) = ψ(m) whenever gcd(m, N0) = 1. The smallest N0 such that χ
is induced by a character modulo N0 is called the conductor of χ. If the
conductor is N then χ is called primitive; otherwise it is called imprimitive.

Corollary 1.4 (Jacobi) For q ∈ C, |q| < 1 we have

∞∏

n=1

(1 − qn)3 =
∞∑

n= 0

(−1)n(2n + 1)q
1
2 n(n+1). (1.6)

The third power of the eta function has the expansion

η3(z) =
∞∑

n=1

(
−1
n

)
ne

(
n2z

8

)
. (1.7)
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Proof ([114], §102, or [101]). In Theorem 1.1 we put q =
√

uv and w =
−

√
u/v. This yields

∞∏

n=1

(1 − unvn)(1 − unvn−1)(1 − un−1vn) =
∞∑

n=− ∞
(−1)nu

1
2 n(n+1)v

1
2 n(n−1) ,

(1.8)
valid for |uv| < 1, u �= 0, v �= 0. (We start from a small region where
holomorphic square roots exist, and then argue by analytic continuation.) In
(1.8) we divide by 1 − v. For the left hand side this simply means that we
drop the third factor in the term with n = 1. On the right hand side we
combine, for any n ≥ 0, the terms with n and −n − 1, which gives

(−1)nu
1
2 n(n+1)v

1
2 n(n−1) + (−1)n+1u

1
2 n(n+1)v

1
2 (n+1)(n+2)

= (−1)nu
1
2 n(n+1)v

1
2 n(n−1)(1 − v2n+1)

= (−1)nu
1
2 n(n+1)v

1
2 n(n−1)(1 − v)

2n∑

k= 0

vk.

Therefore the division yields

∞∏

n=1

(1 − unvn)(1 − unvn−1)(1 − unvn+1)

=
∞∑

n= 0

(−1)nu
1
2 n(n+1)v

1
2 n(n−1)

2n∑

k= 0

vk.

Here we put v = 1 and write q instead of u. This gives us the identity (1.6).
We multiply (1.6) by q1/8, put q = e(z), and observe that 1

8 + 1
2n(n + 1) =

1
8 (2n + 1)2. So we arrive at

η3(z) =
∞∑

n= 0

(−1)n(2n + 1)e
(

(2n + 1)2z
8

)
, (1.9)

the Jacobi identity for η3 in its usual notation. We observe that (−1)n =( −1
2n+1

)
is a quadratic residue symbol. Thus we arrive at (1.7) by the obser-

vation that
( −1

n

)
= 0 if n is even. �

Remarks. The coefficient function n �→
( −1

n

)
in (1.7) is the primitive Dirich-

let character modulo 4.—When we replace v by 1 in (1.8) then both sides
are 0. Thus the replacement gives a useful result only after division by 1 − v.
Similarly, one might try to use Theorem 1.1 directly, replacing q by q1/2 and
w by −q1/2. But then too, both sides become 0. Nevertheless, a refinement
of this idea yields a proof of (1.6); see [70], §3.2.
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1.2 The Sign Transform

The map q �→ −q, applied to a Laurent series or product in the variable q,
will be called the sign transform, after Zucker [142]. For q = e(z) the sign
transform corresponds to the translation

z �→ z + 1
2

of the upper half plane. Zucker succeeded to deduce new identities from
known ones in a completely elementary way by means of the sign transform.
We give two examples:

Proposition 1.5 For z in the upper half plane we have

η
(
z + 1

2

)
= e

(
1
48

) η3(2z)
η(z)η(4z)

,
η3(2z)

η(z)η(4z)
=

∞∑

n=1

(
6
n

)
e

(
n2z

24

)
, (1.10)

η5(2z)
η2(z)η2(4z)

=
∞∑

n=− ∞
e
(
n2z

)
. (1.11)

Proof. The product expansion for η(z) gives

e
(

− 1
48

)
η
(
z + 1

2

)
= e

(
z
24

) ∞∏

n=1

(1 − (−q)n)

= e
(

z
24

) ∞∏

n=1

(1 − q2n)(1 + q2n−1)

= e
(

z
24

) ∞∏

n=1

(1 − q2n)(1 − q4n−2)
1 − q2n−1

= e
(

z
24

) ∞∏

n=1

(1 − q2n)2(1 − q4n−2)(1 − q4n)
(1 − qn)(1 − q4n)

= e
(

z
24

) ∞∏

n=1

(1 − q2n)3

(1 − qn)(1 − q4n)

=
η3(2z)

η(z)η(4z)
.

On the other hand, the series expansion yields

e
(

− 1
48

)
η
(
z + 1

2

)
=

∞∑

n=1

e
(

− 1
48

)
(

12
n

)
e

(
n2z

24
+

n2

48

)

=
∞∑

n=1

e

(
n2 − 1

48

) (
12
n

)
e

(
n2z

24

)

=
∞∑

n=1

(
6
n

)
e

(
n2z

24

)
.
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This proves (1.10). In the last line we used
(

2
n

)
= (−1)(n

2−1)/8 = e

(
n2 − 1

16

)
= e

(
n2 − 1

48

)
for gcd(n, 6) = 1.

Now we take the sign transform of the Gauss identity (1.5). We plug in (1.10)
and observe that the denominator is transformed into η(2z+1) = e

(
1
24

)
η(2z).

So we get

η5(2z)
η2(z)η2(4z)

=
∞∑

n=− ∞
(−1)n e

(
n2z + n2

2

)
=

∞∑

n=− ∞
e(n2z) .

Thus we have proved (1.11). �

We remark that the right hand side in (1.11) is traditionally called a Theta-
nullwert and denoted by θ(2z) or θ3(2z). With the notation explained after
Corollary 1.3, we have θ(2z) = θ(2z, 0). From (1.10) and (1.11) we deduce

θ(z) =
η2

(
z+1
2

)

η(z + 1)
= 1 + 2

∞∑

n=1

eπin2z.

(See also [70], §3.4.)—Another example of a Zucker identity comes from Ja-
cobi’s identity for η3:

Proposition 1.6 For z in the upper half plane we have

η9(2z)
η3(z)η3(4z)

=
∞∑

n=1

(
−2
n

)
n e

(
n2z

8

)
. (1.12)

Proof. In Jacobi’s identity (1.7) we take the sign transform, use (1.10), and
observe that

( −1
n

)
e
(

n2−1
16

)
=

( −2
n

)
. �

The identity (1.12) is contained in Zucker’s lists in an equivalent form (items
(24) in [141] and (T4.8) in [142]). It was also proved in a more complicated
way in [77].

1.3 The Multiplier System of η

The transformation formula

η(z + 1) = e
(

1
24

)
η(z) (1.13)

follows trivially from the definition of the eta function as a product or as a
series. (We used it already in the proof of (1.11).) Not at all trivial is the
transformation formula

η

(
− 1

z

)
=

√
−iz η(z), (1.14)
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where the square root of −iz is the holomorphic function on the upper half
plane which takes positive values for z = iy, y > 0. There is a rich literature
on (1.14) and its proofs. It is partly listed in the references for Appendix D in
[110]. Three proofs are given in Apostol [5], §3. Weil [138] reduced (1.14) to a
functional equation of a corresponding Dirichlet series; his proof is reproduced
in [96], §4.4. In [70], §3.3, Knopp deduces (1.14) from the Poisson summation
formula and a theta transformation formula. Here we will sketch Siegel’s
one-page proof [134] which is based on a skillful application of the calculus
of residues:

Sketch of a proof for (1.14). By the principle of analytic continuation it
suffices to prove (1.14) for z = yi with y > 0. The assertion will follow from

log η(i/y) − log η(yi) =
1
2

log y.

Taking the logarithm of an infinite product, we obtain

log η(yi) = − πy

12
+

∞∑

n= 1

log(1 − e−2πny) = − πy

12
+

∞∑

n= 1

∞∑

m= 1

e−2πmny

m

= − πy

12
+

∞∑

m= 1

1
m

1
1 − e2πmy

.

Therefore it suffices to prove that

∞∑

m= 1

1
m

1
1 − e2πmy

−
∞∑

m= 1

1
m

1
1 − e2πm/y

− π

12

(
y − 1

y

)
= − 1

2
log y .

(1.15)
For fixed y > 0 we consider the sequence of meromorphic functions

fn(w) = − 1
8w

cot(πiNw) cot(πNw/y) with n ∈ N, N = n +
1
2

.

Let C be the contour of the parallelogram with vertices y, i, −y, −i in that
order. Inside C, the function fn has simple poles at w = mi

N and at w = my
N

for m ∈ Z, 1 ≤ |m| ≤ n, and there is a triple pole at w = 0 with residue
i
24

(
y − y−1

)
. The residues of fn at mi

N and at my
N are

1
8mπ

cot(πim/y) =
1

8mπi

(
1 − 2

1 − e2πm/y

)

and

− 1
8mπ

cot(πimy) = − 1
8mπi

(
1 − 2

1 − e2πmy

)
,

respectively. Using that these expressions are even functions of m, we observe
that the 2πi-fold sum of the residues of fn(w) inside C is equal to the left
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hand side in (1.15), where the summation is restricted to 1 ≤ m ≤ n. On the
other hand, by the residue theorem this sum is equal to the contour integral
of fn along C. Therefore, in order to complete the proof, it suffices to show
that

lim
n→∞

∫

C

fn(w) dw = − 1
2

log y.

On the edges of C, except at the vertices, the functions w fn(w) have, as
n → ∞, the limit 1

8 on the edges connecting y, i and −y, −i, and the limit
− 1

8 on the other two edges. A closer inspection shows that the functions
fn(w) are bounded on C uniformly with respect to n (because of y > 0 and
N = n + 1

2 ). Therefore we can use the bounded convergence theorem and
interchange integration with taking the limit. We get

lim
n→∞

∫

C

fn(w) dw =
∫

C

(
lim

n→∞
w fn(w)

) dw

w
=

1
4

(∫ i

y

dw

w
−

∫ y

−i

dw

w

)

= 1
4

((
πi
2 − log y

)
−

(
log y + πi

2

))

= − 1
2 log y. �

It is well-known that the matrices

T =
(

1 1
0 1

)
and S =

(
0 −1
1 0

)

generate the (homogeneous) modular group Γ1 = SL2(Z). Correspondingly,
the Möbius transformations T : z �→ z + 1 and S : z �→ − 1

z of the upper half
plane generate the (inhomogeneous) modular group which we also denote
by Γ1 and which consists of all transformations z �→ L(z) = az+b

cz+d with

L =
(

a b
c d

)
∈ SL2(Z). The relations (1.13) and (1.14) are transformation

formulae for η(z) with respect to the generators T and S of Γ1. They can
be written as η(Tz) = e

(
1
24

)
η(z) and η(Sz) = e

(
− 1

8

) √
z η(z), where the

holomorphic branch of
√

z is fixed by
√

i = e
(

1
8

)
. One can verify directly

or deduce from the chain rule that the function J :
((

a b
c d

)
, z

)
�→ cz +

d satisfies J(L1L2, z) = J(L1, L2z)J(L2, z) for all Möbius transformations
L1, L2 ∈ SL2(R) of the upper half plane. It follows that the eta function
satisfies the relations

η(Lz) = vη(L)(cz + d)1/2 η(z) for all L =
(

a b
c d

)
∈ SL2(Z),

(1.16)
with factors vη(L) depending only on L and not on the variable z. We
will describe them explicitly, but before doing so it is necessary to agree on
a convention for square roots and, more generally, for powers with a real
exponent.
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We fix an argument of z for z ∈ C, z �= 0 by

−π ≤ arg(z) < π.

Then for r ∈ R we put
zr = |z|reir arg(z)

where, of course, |z|r > 0. In particular we have
√

z =
√

|z|ei arg(z)/2. This
convention will be used for (1.16). It implies zrzs = zr+s. But zrwr = (zw)r

does not hold in general.

The function L �→ vη(L) is called the multiplier system of the eta function.
Its values vη(T ) = e

(
1
24

)
, vη(S) = e

(
− 1

8

)
for the generators of the modular

group are 24th roots of unity. It follows that vη(L) is a 24th root of unity for
every L ∈ SL2(Z). The determination of these roots of unity is an important
issue in the theory of the eta function. A formula for vη(L) was first given
by Rademacher [113] in 1931. He expressed vη(L) in terms of Dedekind
sums which can be evaluated recursively; see also Chap. 9 of his book [114].
In 1954, Petersson [109] gave a formula which can be evaluated directly,
without a recursive process. It is contained in his book [110], entry (4.14).
A similar explicit formula is given by Rademacher in [114], §74. We begin
with an example which shows that vη is not a homomorphism on SL2(Z):
Since S2 = −12 is the negative of the 2 × 2 unit matrix and operates as
the identity on the upper half plane, and since

√
−1 = e−iπ/2 = −i by our

convention on roots, we obtain

η(z) = η((−12)(z)) = vη(−12) · (−i) · η(z),

and hence vη(−12) = i. Therefore we get vη(S2) = i �= −i = (vη(S))2.—
For Petersson’s formula we need some notation which extends the symbol of
quadratic reciprocity:

Notation Let c and d be integers such that gcd(c, d) = 1, d is odd and c �= 0.
Let sgn(x) = x

|x| be the sign of a real number x �= 0. Then we put

( c

d

)∗
=

(
c

|d|

)
and

( c

d

)

∗
=

(
c

|d|

)
· (−1)

1
4 (sgn(c)−1)(sgn(d)−1).

Furthermore, we put
(

0
1

)∗
=

(
0

−1

)∗
= 1,

(
0
1

)

∗
= 1,

(
0

−1

)

∗
= −1.

Now we reproduce Petersson’s formula, following Knopp [70], §4.1:

Theorem 1.7 For

L =
(

a b
c d

)
∈ SL2(Z),
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the multiplier system of the eta function is given by

vη(L) =
(

d

c

)∗
e
(

1
24 ((a + d)c − bd(c2 − 1) − 3c)

)
if c is odd,

vη(L) =
( c

d

)

∗
e
(

1
24 ((a + d)c − bd(c2 − 1) + 3d − 3 − 3cd)

)
if c is even.

1.4 The Concept of Modular Forms

The relations (1.16) say that η(z) is a modular form of weight 1
2 for the modu-

lar group Γ1 = SL2(Z). We will use the concept of a modular form mainly for
integral weights and for certain congruence subgroups of the modular group.
Nevertheless it is necessary to define a more comprehensive concept, since
we encountered η(z), θ(z) and η3(z) with half-integral weights, and since we
will meet the Fricke groups which are not subgroups of the modular group.

Definition. Two subgroups Γ, Γ̃ of SL2(R) are called commensurable if their
intersection Γ ∩ Γ̃ has finite index both in Γ and in Γ̃.—Recall that every
element L =

(
a b
c d

)
∈ SL2(R) acts as a Möbius transformation z �→ Lz =

az+b
cz+d on the upper half plane H.

Definition. Let Γ be a subgroup of SL2(R) which is commensurable with
the modular group Γ1, and let k be a real number. A function f : H → C

is called a modular form of weight k and multiplier system v for Γ if f is
holomorphic on H and has the following two properties:

(1) The relation

f(Lz) = f

(
az + b

cz + d

)
= v(L)(cz + d)kf(z)

holds for every L =
(

a b
c d

)
∈ Γ. Here, the complex numbers v(L)

satisfy |v(L)| = 1 and do not depend on the variable z, and the powers
(cz + d)k are defined according to the convention in Sect. 1.3.

(2) The function f is holomorphic at all cusps r ∈ Q ∪ { ∞}.—The meaning
of this condition will be explained immediately.

We begin to explain property (2) for the cusp ∞. Since Γ is commensurable
with Γ1, there is a positive integer h for which Th =

(
1 h
0 1

)
∈ Γ. We may

assume that h is chosen minimal with this property. From (1) we obtain

f(z + h) = v(Th)f(z).
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We write v(Th) = e(κ) = e2πiκ with 0 ≤ κ < 1. The integer h is called the
width of Γ at the cusp ∞, and the number κ is called the cusp parameter
(according to Rankin [117]) or the Drehrest (according to Petersson [110]) of
f at ∞. It follows that g(z) = e−2πiκzf(hz) is a holomorphic function with
period 1 on the upper half plane. Hence it can be written as a holomorphic
function of the variable q = e(z) in the punctured unit disc, which henceforth
has a Laurent expansion valid for 0 < |q| < 1. For f itself we obtain a Fourier
expansion of the form

f(z) = e2πiκz/h
∑

n

c(n)e
(nz

h

)
=

∑

n

c(n)e
(

(n + κ)z
h

)
, (1.17)

where the summation is on all n ∈ Z. The function f is called holomorphic
at the cusp ∞ if powers of e(z/h) with negative exponents do not occur in
(1.17), i.e., if c(n) �= 0 implies that n + κ ≥ 0.

Now we consider cusps r ∈ Q. We write r = a
c with gcd(a, c) = 1. Then

r = A(∞) with some A =
(

a b
c d

)
∈ Γ1 = SL2(Z).

Since the conjugate group A−1ΓA is commensurable with A−1Γ1A = Γ1,
there exists a smallest integer h > 0 for which Th ∈ A−1ΓA. The element
L = AThA−1 ∈ Γ fixes the point r. We write L =

(
α β
γ δ

)
and put

v(L) = e2πiκ with 0 ≤ κ < 1. As before, h is called the width of Γ at the
cusp r, and κ is the cusp parameter or Drehrest of f at r. Because of (1) the
function

ϕ(z) = (z − r)kf(z)

satisfies

ϕ(Lz) = (Lz − r)kf(Lz) = (Lz − r)k(γz + δ)ke2πiκf(z).

Elementary calculation yields

L =
(

1 − ach a2h
−c2h 1 + ach

)
and L(z) − r =

z − r

γz + δ
.

Since L(z) − r and z − r both belong to H, their arguments are in the interval
from 0 to π. Hence the difference of the arguments is in the interval from −π
to π where all arguments have to be chosen by the convention from Sect. 1.3.
Therefore in this particular situation we get

(Lz − r)k(γz + δ)k = ((Lz − r)(γz + δ))k = (z − r)k.

It follows that

ϕ(Lz) = (z − r)ke2πiκf(z), ϕ(AThA−1z) = e2πiκϕ(z).



1.4. The Concept of Modular Forms 17

With Az instead of z we get

ϕ(AThz) = e2πiκϕ(Az).

Now it is easy to verify that the holomorphic function

g(z) = e−2πiκzϕ(A(hz))

has period 1, and hence can be expanded in a Laurent series in the variable
q = e(z) which is valid for 0 < |q| < 1. Rewriting it for the function f(z), we
obtain an expansion of the form

f(z) = (z − r)−k
∑

n

c(n)e
(

(n + κ)A−1(z)
h

)
, (1.18)

valid for z ∈ H, with summation over all n ∈ Z. It is called the Fourier
expansion of f at the cusp r. As before, f is called holomorphic at the cusp
r if c(n) �= 0 implies that n + κ ≥ 0. It can be shown that this condition
is independent of the choice of the matrix A in Γ1 which sends r to ∞.—So
finally, we have explained the meaning of the requirement (2) on modular
forms.

At this point a remark on the multiplier system v of a modular form is in
order. We use the notation J(L, z) = cz + d for L =

(
a b
c d

)
∈ SL2(R)

which was introduced in Sect. 1.3. Suppose that there exists a function f
which satisfies (1) and is not identically 0. Then it is easy to prove that

v(L1L2) J(L1L2, z)k = v(L1)v(L2) J(L1, L2z)k J(L2, z)k

for all L1, L2 ∈ Γ. (See [70], §2.1, for example.) Matters are simplified
considerably when we deal with an integral weight k. Then we do not
have to worry about arguments of complex numbers, and from J(L1L2, z) =
J(L1, L2z)J(L2, z) we obtain

v(L1L2) = v(L1)v(L2).

Thus the multiplier system of a modular form of integral weight on Γ is a
homomorphism of Γ into the complex numbers of absolute value 1.

We continue with some definitions and remarks.

A modular form f is called a cusp form if it vanishes at all cusps. This
means that for all r ∈ Q ∪ { ∞} we have c(n) = 0 whenever n + κ ≤ 0 in the
expansions (1.17) and (1.18). Points z, w in H ∪ Q ∪ { ∞} are called equivalent
with respect to the group Γ if w = Lz for some L ∈ Γ. The set Γ(z) of points
equivalent to z is called the orbit of z under Γ or the Γ-orbit of z. Let f be a
function with property (1). If f is holomorphic or vanishes at a cusp r then
it is easy to see that f is holomorphic or vanishes at all cusps in the Γ-orbit
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of r, respectively. It is well-known that for the groups considered here there
exist only finitely many orbits of cusps. Therefore, in order to show that f
is a modular form it suffices to verify (2) for a finite set of representatives of
cusp orbits.

Clearly, the set of modular forms of weight k and multiplier system v for Γ
is a complex vector space, and the same is true for cusp forms. We denote
these spaces by M(Γ, k, v) and S(Γ, k, v), respectively. (We will rarely need
to use these notations.) Compactness arguments show that these spaces are
{0} whenever k ≤ 0, except for the equally trivial space M(Γ, 0, 1) = C

where 1 stands for the constant function 1 on Γ. Moreover, for the groups
considered here, all spaces of modular forms have finite dimension. In some
cases the dimension can be computed by contour integration with the help
of the argument principle; in more cases, the Riemann–Roch theorem yields
a dimension formula. We refer to the numerous textbooks for this important
topic, but here we will not reproduce dimension formulae.

Frequently the condition of holomorphicity is too strong since it excludes
interesting examples. A function f on H is called a meromorphic modular
form of weight k and multiplier system v for Γ if it is meromorphic on H,
satisfies (1) and is meromorphic at all cusps r ∈ Q ∪ { ∞}. This last condition
means that in each of the Fourier expansions (1.17) and (1.18) we have c(n) �=
0 for only finitely many n with n+κ < 0. Also, this condition implies that f
is holomorphic in a half plane {z ∈ C | Im(z) > M } for some sufficiently large
M > 0. Moreover, now the expansions (1.17) and (1.18) need not hold for
all z ∈ H, but only for 0 < |e(z)| < ε with some sufficiently small ε > 0. An
interesting class consists of those meromorphic modular forms whose poles are
supported by the cusps, that is, which are holomorphic on H. Eta products
belong to this class.

The case of weight k = 0 is of foremost importance. A meromorphic modular
form f of weight 0 and trivial multiplier system 1 for Γ is called a modular
function for Γ. It satisfies

f(Lz) = f(z) for all L ∈ Γ.

Clearly, the set of all modular functions for Γ is a field. It can be identified
with the field of meromorphic functions on the compact Riemann surface
corresponding to Γ.

Let f be a (holomorphic or) meromorphic modular form of weight k and
multiplier system v for Γ which is not identically 0, and let r be a cusp. Let
n0 be the smallest integer for which c(n0) �= 0 in the Fourier expansion (1.17)
or (1.18). Then we call

ord(f, r) = n0 + κ

the order of f at the cusp r.
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We give a final remark on products of modular forms. For j = 1, 2, let fj be
a (holomorphic or) meromorphic modular form of weight kj and multiplier
system vj for a group Γ̃j commensurable with the modular group. Then,
clearly, the product f1f2 is a (holomorphic or) meromorphic modular form
of weight k1 + k2 and some multiplier system v for the group Γ̃1 ∩ Γ̃2. In the
case of integral weights we have v(L) = v1(L)v2(L) for L in the intersection
of the groups. By this observation one can construct new modular forms
from known ones. We will use it when we introduce eta products in Sect. 2.

1.5 Eisenstein Series for the Full Modular Group

Part of the fascination in the realm of modular forms comes from the fact that
there are several possibilities to construct such functions arithmetically, while
on the other hand they form vector spaces of small dimensions. Therefore
there are linear relations and other identities among modular forms which
encode interesting arithmetical relations among their Fourier coefficients. As
for the constructions, we will introduce eta products in Sect. 2, Hecke theta
series in Sect. 5, and in the present subsection we introduce a few of the many
types of Eisenstein series.

Definition. A non-zero modular form is called normalized if its first non-
zero Fourier coefficient (at the cusp ∞) is equal to 1. For an even integer
k ≥ 2, the normalized Eisenstein series Ek of weight k for the modular group
Γ1 is defined by

Ek(z) = 1 − 2k

Bk

∞∑

n=1

σk−1(n)e(nz) (1.19)

for z ∈ H, where B2 = 1
6 , B4 = − 1

30 , B6 = 1
42 , . . . are the Bernoulli numbers,

defined by the expansion

w

ew − 1
=

∞∑

n= 0

Bn

n!
wn for 0 < |w| < 2π,

and where
σl(n) =

∑

d|n, d>0

dl

for any real l. For later use we introduce τ(n) = σ0(n), the number of positive
divisors of n, as a special case of the divisor sums σl(n).

It is well-known that Ek(z) is a modular form of weight k and trivial multiplier
system for the full modular group Γ1 if k ≥ 4. It is not a cusp form because
of the non-zero constant coefficient in (1.19). For k ≥ 4, Ek(z) is a constant
multiple of the (non-normalized) Eisenstein series

Gk(z) =
∑

m,n∈Z, (m,n) �=(0,0)

(mz + n)−k
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for which it is easy to verify that the transformation property Gk(Lz) =
J(L, z)kGk(z) holds for all L ∈ Γ1. Whereas we have absolute and locally
uniform convergence in H of the series Gk(z) for k ≥ 4 and of Ek(z) for
all k ≥ 2, the series G2(z) is only conditionally convergent. By evaluat-
ing the difference for two specific orders of summation, one can prove (see
Schoeneberg [125], §3.2, or Serre [127], §7.4.4) the important transformation
formula

E2

(
− 1

z

)
= z2E2(z) − 6i

π
z. (1.20)

The relation E2(z + 1) = E2(z) is obvious. More generally,

E2(Lz) = (cz + d)2E2(z) − 6ic

π
(cz + d) (1.21)

holds for all L =
(

a b
c d

)
∈ Γ1. Non-zero modular forms of weight 2 and

trivial multiplier system for Γ1 do not exist.

Non-zero cusp forms with trivial multiplier system for Γ1 exist for even
weights k = 12 and k ≥ 16, but for no other weights. For k = 12 we
have the cusp forms E3

4 − E2
6 and the discriminant function

Δ(z) = η24(z) = e(z)
∞∏

n=1

(1 − e(nz))24 =
∞∑

n=1

τ(n)e(nz), (1.22)

whose coefficients τ(n) are called the Ramanujan numbers. Since the corre-
sponding space of cusp forms has dimension 1, the two functions are propor-
tional; comparing the first non-zero coefficients yields

E3
4(z) − E2

6(z) = 123Δ(z),

an instance of the arithmetical relations mentioned at the beginning of this
subsection. It is well-known that every modular form with trivial multiplier
system for Γ1 can uniquely be written as a polynomial in the Eisenstein series
E4 and E6.

1.6 Eisenstein Series for Γ0(N) and Fricke Groups

In this subsection we introduce Eisenstein series of weights k ≥ 3 for the
subgroups Γ0(N) of the modular group and for the Fricke groups Γ∗(N).
The relation (1.21) is used to construct an Eisenstein series of weight 2 for
Γ∗(N). The groups are defined as follows:

For a positive integer N we introduce

Γ0(N) =
{(

a b
c d

)
∈ SL(2, Z)

∣
∣
∣ c ≡ 0 (mod N)

}
.



1.6. Eisenstein Series for Γ0(N) and Fricke Groups 21

It is called the Hecke congruence group of level N . The groups are named
after Erich Hecke because of his important contributions, although other
mathematicians worked on them much earlier. The matrix

WN =
(

0 1/
√

N

−
√

N 0

)

corresponds to the involution z �→ − 1
Nz of the upper half plane. It belongs to

the normalizer of Γ0(N) in SL2(R). The group which is generated by Γ0(N)
and WN is called the Fricke group of level N and denoted by Γ∗(N). We
call WN a Fricke involution. The index of Γ0(N) in Γ∗(N) is 2, with cosets
represented by the identity and WN . We will not need the full normalizer
of Γ0(N) in SL2(R) which is generated by Γ0(N) and all the Atkin–Lehner
involutions; see [6].

We begin with an observation which is easy to verify but important: Let
M, N, d be positive integers such that M |N and d|(N/M). Let f be a modular
form of weight k for Γ0(M). Then the function

g(z) = f(dz)

is a modular form of weight k for Γ0(N). If f has trivial multiplier system
then the multiplier system of g is trivial, too. So in particular, for N, d ∈ N,
d|N and even k ≥ 4 the Eisenstein series Ek(dz) are modular forms of weight
k with trivial multiplier system for Γ0(N). A bit more is true:

Proposition 1.8 For integers N ≥ 2, even k ≥ 2 and δ ∈ {1, −1}, define
the Eisenstein series

Ek, N,δ(z) =
1

1 + δNk/2

(
Ek(z) + δNk/2Ek(Nz)

)
.

Then for k ≥ 4, Ek, N,δ(z) is a modular form of weight k for the Fricke group
Γ∗(N) whose multiplier system v is given by v(L) = 1 for L ∈ Γ0(N) and
v(L) = δ for L �∈ Γ0(N). The function

E2, N,−1(z)

is a modular form of weight 2 for Γ∗(N) whose multiplier system v is given
by v(L) = 1 for L ∈ Γ0(N) and v(L) = −1 for L �∈ Γ0(N).

Proof. The factor C = 1/(1+δNk/2) is introduced merely to get a normalized
function. We put f(z) = Ek, N,δ(z).

Let k ≥ 4. The introductory remark implies that f is a modular form of
weight k for Γ0(N) with trivial multiplier system. For the Fricke involution
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we obtain

f(WNz) = C

(
Ek

(
− 1

Nz

)
+ δNk/2Ek

(
− 1

z

))

= C
(
(Nz)kEk(Nz) + δNk/2zkEk(z)

)

= δ (
√

Nz)kf(z).

Thus with respect to WN , f transforms like a modular form of weight k with
multiplier v(WN ) = δ. This implies the assertion on f .

Now we consider the case k = 2, δ = −1. Let L =
(

a b
c d

)
∈ Γ0(N) be

given. From (1.21) we obtain

f(Lz) = C

(
E2

(
az + b

cz + d

)
− NE2

(
a · Nz + Nb

c
N · Nz + d

))

= C

(
(cz + d)2 (E2(z) − NE2(Nz)) − 6i

π
(cz + d)

(
c − N · c

N

))

= (cz + d)2f(z).

A slightly simpler computation for WN , using (1.20), yields

f(WNz) = −(
√

Nz)2f(z).

In each case we observe cancellation of the extra terms in (1.20) and (1.21)
which indicate the deviation of E2(z) from a modular form. It follows that f
transforms like a modular form of weight 2 for Γ∗(N) with multiplier system
as stated in the proposition. The correct behavior at cusps follows from the
expansion of E2(z) at ∞ and the transformation properties. �

Now we present the Eisenstein series of “Nebentypus” which were introduced
by Hecke [53].

Theorem 1.9 (Hecke [53]) Let P be an odd prime and let χ be the Dirich-
let character modulo P which is defined by the Legendre symbol χ(n) =

(
n
P

)
.

Suppose that k ≥ 3 and χ(−1) = (−1)k. Then the Eisenstein series

F1(z) =
∞∑

n=1

( ∑

d>0, d|n
χ
(

n
d

)
dk−1

)
e(nz) (1.23)

and

F2(z) = Ak(P ) +
∞∑

n=1

( ∑

d>0, d|n
χ(d)dk−1

)
e(nz), (1.24)

with

Ak(P ) = (−1)�k/2� P (2k−1)/2(k − 1)!
(2π)k

L(χ, k), L(χ, k) =
∞∑

n=1

χ(n)n−k,
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are modular forms of weight k for Γ0(P ) with character χ, i.e., they satisfy
F (Lz) = χ(d)(cz + d)kF (z) for L =

(
a b
c d

)
∈ Γ0(P ). The transformation

S =
(

0 −1
1 0

)
interchanges the functions F1, F2 according to

F1

(
− 1

z

)
= (−i)k(−1)�k/2�P (1−2k)/2zkF2

(
z

P

)
, (1.25)

F2

(
− 1

z

)
= (−i)k(−1)�k/2�P −1/2zkF1

(
z

P

)
. (1.26)

We use the relations (1.25), (1.26) to define Eisenstein series for the Fricke
group Γ∗(P ) similarly as in Proposition 1.8:

Definition. Let P , χ, k and F1, F2 be given as in Theorem 1.9. Then we
put

Ek,P, i(z) =
1

Ak(P )
(
F2(z) − P (k−1)/2F1(z)

)

= 1 +
1

Ak(P )

∞∑

n=1

( ∑

d|n

(
χ(d) − P (k−1)/2χ

(
n
d

))
dk−1

)
e(nz),

(1.27)

Ek,P, −i(z) =
1

Ak(P )
(
F2(z) + P (k−1)/2F1(z)

)
. (1.28)

Since both F1 and F2 are modular forms of weight k for Γ0(P ) with charac-
ter χ, this holds true also for Ek,P,±i. From (1.25), (1.26) and the definitions
one easily deduces

Ek,P, δi

(
− 1

Pz

)
= −δ(−i)k(−1)�k/2�(

√
Pz)kEk,P, δi(z)

for δ ∈ {1, −1}. Hence we have modular forms for the Fricke group:

Proposition 1.10 For P , χ and k as in Theorem 1.9, the Eisenstein series
Ek,P, δi are modular forms of weight k for the Fricke group Γ∗(P ). Their

multiplier systems vδ are given by vδ(L) = χ(d) =
(

d
P

)
for L =

(
a b
c d

)
∈

Γ0(P ) in both cases, and vδ(WP ) = −δ(−i)k(−1)�k/2�.

We observe that Theorem 1.9 and Proposition 1.10 yield Eisenstein series
of odd weights k ≥ 3 for prime levels P ≡ 3 mod 4. The values L(χ, k) of
the L-series are explicitly known, and the constant term Ak(P ) in F2(z) is
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a rational number; see [59], §16.4, [84], §14.2, or [140], §7. For example, for
level P = 3 we have the weight 3 Eisenstein series

E3,3,i(z) = 1 + 18
∞∑

n=1

( ∑

d|n

1
2
(
3
(n/d

3

)
−

(
d
3

))
d2

)
e(nz),

E3,3,−i(z) = 1 − 18
∞∑

n=1

(∑

d|n

1
2
(
3
(n/d

3

)
+

(
d
3

))
d2

)
e(nz).

They satisfy

E3,3,i

(
− 1

3z

)
= i(

√
3z)3E3,3,i(z), E3,3,−i

(
− 1

3z

)
= −i(

√
3z)3E3,3,−i(z).

The signs in these transformation formulae have been the reason for the choice
of signs in the notation Ek,P, δi(z). We will meet the functions E3,3, δi(z) in
Sect. 11.2.

There are many more types of Eisenstein series which will not be presented
here. We refer to [30], Chap. 4, [96], Chap. 7, and [125], Chap. 7 for a
thorough discussion, including the delicate cases of small weights 1 and 2.
We will meet several examples in Part II.

1.7 Hecke Eigenforms

Spaces of modular forms possess bases of arithmetically distinguished func-
tions: Their Fourier expansions have multiplicative coefficients which, more-
over, satisfy simple recursions at powers of each prime. As a consequence,
the corresponding Dirichlet series have Euler product expansions of a partic-
ularly simple type. The tool for establishing these results is provided by a
sequence of linear operators on spaces of modular forms, the Hecke operators,
and the basis functions in question are the so-called Hecke eigenforms. For
introductions to this body of theory, in complete detail or in a more sketchy
form, we can refer to [16], [30], [33], [55], [61], [72], [73], [84], [90], [96], [105],
[117], [127], [131]. Here we will reproduce the basic definitions and some of
the main results.

Let f ∈ M(Γ1, k, 1) be a modular form of integral weight k on the full
modular group Γ1 with trivial multiplier system. For a positive integer m,
the action of the mth Hecke operator Tm on f is given by

Tmf(z) = mk−1
∑

ad = m, a > 0

d−k
∑

b mod d

f

(
az + b

d

)
. (1.29)

This definition looks more natural when one interprets modular forms as
homogeneous functions on lattices: We consider complex valued functions F
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on the set of all lattices Λ ⊂ C which are homogeneous of degree −k, that
is, which satisfy F (αΛ) = α−kF (Λ) for all lattices Λ and α ∈ C, α �= 0.
Any lattice can be written as Λ = αΛz with Λz = Z + Zz where z in
the upper half plane is unique up to a transformation from Γ1. Then the
assignment f(z) = F (Λz) yields a bijection from functions F on lattices,
homogeneous of degree −k, to functions f on the upper half plane satisfying
the transformation law (1) in the definition of modular forms in Sect. 1.4
(for Γ = Γ1, k integral, v = 1). The action of the mth Hecke operator on
degree −k functions F on lattices is simply given by TmF (Λ) =

∑
Λ′ F (Λ′)

where Λ′ runs over all sublattices of index m in Λ. Choosing appropriate
representatives for sublattices and translating back to modular forms yields
the definition (1.29), up to the normalizing factor mk−1. In terms of the
Fourier expansion (1.17) of f , which under our present assumptions simply
reads

f(z) =
∞∑

n= 0

c(n)e(nz) , (1.30)

the action of Tm is given by

Tmf(z) =
∞∑

n= 0

( ∑

d > 0 , d| gcd(n,m)

dk−1c
(

mn
d2

)
)

e(nz) . (1.31)

The operators Tm map M(Γ1, k, 1) into itself, they are linear, and they map
cusp forms into cusp forms. Any two operators Tm, Tl commute and satisfy

TmTl =
∑

d > 0 , d| gcd(m,l)

dk−1Tml/d2 . (1.32)

In particular we have

TpTpr = Tpr+1 + pk−1Tpr−1 (1.33)

for primes p and any r ≥ 1. The subspace S(Γ1, k, 1) of cusp forms is a
Hilbert space with respect to the Petersson inner product (whose definition
by an integral we are not going to reproduce here), and the Hecke operators
are self-adjoint with respect to this inner product. Therefore it follows from
linear algebra that the operators Tm can simultaneously be diagonalized on
the space of cusp forms. Thus S(Γ1, k, 1) has a basis of functions f which
are eigenvectors for all operators Tm and which are mutually orthogonal with
respect to the Petersson inner product. This result extends to M(Γ1, k, 1)
since it is easily seen that the Eisenstein series Ek in (1.19) is an eigenvector.
If f �= 0 and Tmf(z) = λ(m)f(z) for all m then from (1.31) we obtain (for
n = 1) that λ(m)c(1) = c(m) for all m. It follows that c(1) �= 0, and we can
achieve that c(1) = 1. In this case the eigenvalues coincide with the Fourier
coefficients; we have

λ(m) = c(m), Tmf(z) = c(m)f(z) for all m,
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and f is called a normalized Hecke eigenform, or simply an eigenform. The
relations (1.32), (1.33) then imply that

c(mn) = c(m)c(n) for gcd(m, n) = 1, (1.34)

c(pr+1) = c(p)c(pr) − pk−1c(pr−1) (1.35)

for all primes p and all r ≥ 1. Thus the Fourier coefficients of an eigenform are
multiplicative and satisfy a simple recursion at powers of primes. Moreover,
they are totally real algebraic integers. An eigenform is uniquely determined
by the eigenvalues.

The dimension of S(Γ1, k, 1) is equal to 1 for k = 12, 16, 18, 20, 22, 26. It is
clear then that the normalized modular forms Δ, ΔE4, ΔE6, ΔE2

4 , ΔE4E6,
ΔE2

4E6 in these spaces are normalized Hecke eigenforms. For the most
prominent example of the discriminant function Δ(z) we obtain that the Ra-
manujan numbers τ(n) are multiplicative and satisfy τ(pr+1) = τ(p)τ(pr) −
p11τ(pr−1) for all primes p.

For any modular form f with Fourier expansion (1.30), its Hecke L-series is
defined by

L(f, s) =
∞∑

n=1

c(n)n−s. (1.36)

For an eigenform f the relations (1.34) (1.35) translate into the Euler product
expansion

L(f, s) =
∏

p

(
1 − c(p)p−s + pk−1−2s

)−1
, (1.37)

where the product is taken over all primes p. We mention in passing that,
independently from f being an eigenform or not, the Dirichlet series (1.36)
converges for Re(s) > k, has an analytic continuation to the whole complex s-
plane, and satisfies a functional equation of Riemann type relating the values
at s and k − s.

In the late 1930’s Hecke and Petersson generalized the theory of the opera-
tors Tm to spaces of modular forms on congruence subgroups of the modular
group, most notably for the groups Γ0(N). But some of the main results,
such as the uniqueness of simultaneous eigenforms and the unrestricted Eu-
ler product formula (1.37), do not hold true for N > 1. Fully satisfactory
generalizations were achieved only later by Atkin and Lehner [6], with major
contributions by W. Li [87], [88], Pizer [112], and other authors, when the
concept of newforms was introduced and elaborated.

We consider the spaces M(Γ0(N), k, χ) and their subspaces S(Γ0(N), k, χ)
of cusp forms f of integral weight k which transform according to

f(Lz) = χ(d) (cz + d)k f(z) for L =
(

a b
c d

)
∈ Γ0(N),
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where χ is a Dirichlet character modulo N . For such a function f and for
primes p the action of Tp is defined by

Tpf(z) = pk−1

(
p−1∑

b= 0

p−kf
(

z+b
p

)
+ χ(p)f(pz)

)

. (1.38)

In terms of the Fourier expansion of f , which can also be written as (1.30),
this reads

Tpf(z) =
∞∑

n= 0

(
c(pn) + χ(p)pk−1c(n/p)

)
e(nz) , (1.39)

where we agree that c(n/p) = 0 if p � n. More generally, for any positive
integer m the action of the Hecke operator Tm is given by

Tmf(z) =
∞∑

n= 0

( ∑

d > 0 , d| gcd(n,m)

χ(d) dk−1 c
(

mn
d2

)
)

e(nz), (1.40)

where we note that χ(d) = 0 whenever gcd(d, N) > 1. Any two of the opera-
tors Tm with gcd(m, N) = 1 commute, and they are normal (not necessarily
self-adjoint) with respect to the Petersson inner product on S(Γ0(N), k, χ).
This yields Petersson’s result [108]:

The space S(Γ0(N), k, χ) has an orthogonal basis of common eigenfunctions
of the operators Tm for all m with gcd(m, N) = 1.

Generally, and in contrast to the case N = 1 handled above, S(Γ0(N), k, χ)
does not necessarily have a basis of common eigenfunctions for all Tm, and
subspaces of simultaneous eigenfunctions of the operators Tm with
gcd(m, N) = 1 need not be one-dimensional. The reason for this is sim-
ple and explained as follows. Suppose that M is a proper divisor of N and
that χ is induced from a character χ

′
modulo M . (For example, χ might be

trivial and M any proper divisor of N .) Let l be a positive integer such that
lM |N , and let f ∈ M(Γ0(M), k, χ

′
). Then it is easy to see that g(z) = f(lz)

belongs to M(Γ0(N), k, χ) and that the operators Tm with gcd(m, N) = 1
act on g in exactly the same way as they act on f . Thus M(Γ0(M), k, χ

′
)

sits in at least two different ways (for l = 1 and l = N
M ) in M(Γ0(N), k, χ),

and the same can be said for cusp forms. Following Atkin and Lehner [6], one
denotes by S old(Γ0(N), k, χ) the subspace of cusp forms which is spanned by
the functions g(z) = f(lz) with cusp forms f when M and l vary as described
above. It is called the space of oldforms. One concludes that the operators
Tm with gcd(m, N) = 1 map S old(Γ0(N), k, χ) into itself and that subspaces
of common eigenfunctions of these operators have dimensions at least 2.

Let S new(Γ0(N), k, χ) be the orthogonal complement of S old(Γ0(N), k, χ) in
S(Γ0(N), k, χ) with respect to the Petersson inner product. It is also invariant
under the operators Tm with gcd(m, N) = 1, since these operators are normal,
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and therefore it also has a basis of common eigenfunctions of the operators
Tm with gcd(m, N) = 1. Such an eigenfunction is called a newform. We
note that S new(Γ0(N), k, χ) = S(Γ0(N), k, χ) if χ is a primitive character
modulo N .

It turns out that the main assertions of the Hecke theory for S(Γ1, k, 1)
generalize to hold for newforms. In particular, if f is a newform and (1.30)
its Fourier expansion, then c(1) �= 0, and we can achieve that c(1) = 1, in
which case f is called a normalized newform. The main results for newforms,
embracing the above results for N = 1, are summarized as follows:

Theorem 1.11 (Atkin–Lehner) Let k, N be positive integers and χ a
Dirichlet character modulo N . The following assertions hold.

(1) There exists an orthogonal basis of S new(Γ0(N), k, χ) consisting of nor-
malized newforms. Let f ∈ S new(Γ0(N), k, χ) be a normalized newform
and c(n) its Fourier coefficients.

(2) For all m ≥ 1 we have
Tmf = c(m)f.

The eigenvalues c(m) are algebraic integers. For prime divisors p of N

we have |c(p)| = p
1
2 (k−1) if χ is not induced from a character modulo

N
p , while otherwise we have c(p) = 0 if p2|N , and c(p)2 = χ(p)pk−2 if
p2

� N .

(3) The Dirichlet series associated to f has the Euler product expansion

L(f, s) =
∏

p

(
1 − c(p)p−s + χ(p)pk−1−2s

)−1
.

(Note that χ(p) = 0 if p|N .)

(4) If g(z) =
∑∞

n=1 b(n)e(nz) is a normalized newform of weight k and
some level M and character ψ modulo M , and if b(p) = c(p) for
all but finitely many primes p, then M = N , ψ = χ and g = f .
The simultaneous eigenspaces of the operators Tp for primes p � N in
S new(Γ0(N), k, χ) are one-dimensional, and the normalized newforms
constitute the unique orthogonal basis of S new(Γ0(N), k, χ) consisting
of normalized common eigenfunctions of the operators Tp for primes
p � N .

Part (4) in Theorem 1.11 is called the multiplicity one theorem. The eigen-
values c(p) of a normalized newform of weight k satisfy

|c(p)| ≤ 2p
k−1
2
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for all primes p. This is the celebrated Deligne theorem, formerly the Rama-
nujan–Petersson conjecture, and a very deep result. We will see in Sect. 5.3
that in the special case of Hecke theta series this inequality follows trivially
from the decomposition of prime numbers into prime ideals in quadratic
number fields.

1.8 Identification of Modular Forms

The dimensions of spaces of modular forms are “small”. (We mentioned that
in Sect. 1.5.) This follows from the fact that the total number of zeros of
a non-zero modular form in a fundamental set of its group is “small”. In
the simplest case of a modular form f �= 0 of integral weight k and trivial
multiplier system on the full modular group Γ1, contour integration and the
argument principle yield the valence formula

ord(f, ∞) + 1
2 ord(f, i) + 1

3 ord(f, ω) +
∑

z

ord(f, z) =
k

12
, (1.41)

where ord(f, z) is the order of f at the point z and the summation is on all
z in the standard fundamental domain of Γ1 different from the elliptic fixed
points i and ω = e

(
1
6

)
. Therefore, if (1.30) is the Fourier expansion of a

function f ∈ M(Γ1, k, 1) and if c(n) = 0 for all n ≤ 1 + k
12 , then it follows

that f = 0, since otherwise the left hand side in (1.41) would be bigger
than the right hand side. Equivalently, two modular forms in M(Γ1, k, 1)
are identical if their initial segments of

⌊
1 + k

12

⌋
Fourier coefficients match.

Hence one can prove an identity among modular forms by simply comparing
a few of their Fourier coefficients.

This principle generalizes to other spaces of modular forms. In [53] (Math.
Werke, p. 811) Hecke gave the following results: If f ∈ M(Γ0(N), k, 1) with
expansion (1.30) satisfies

c(n) = 0 for all n ≤ 1 +
k

12
μ0(N) ,

then f = 0. If f ∈ M(Γ0(N), k, χ) with a real character χ �= 1 satisfies
c(n) = 0 for all n ≤ 2 + k

12 μ0(N), then f = 0. Here

μ0(N) =
[
Γ1 : Γ0(N)

]
= N

∏

p|N

(
1 +

1
p

)

is the index of Γ0(N) in Γ1. A similar result is given in [116], Theorem 1.
A more general result can be found in Petersson’s monograph [110], Satz 3.5,
p. 47:
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Theorem 1.12 Let Γ be a subgroup with finite index μ(Γ) = [Γ1 : Γ] in the
full modular group Γ1. For cusp forms f, g ∈ S(Γ, k, v) of weight k > 0 and
multiplier system v on Γ, let their Fourier expansions at ∞ be written as
(1.17) with coefficients c(n) and b(n), respectively. Then if

c(n) = b(n) for all n ≤ k

12
μ(Γ) − β(Γ, k, v) , (1.42)

we have f = g.

We will not reproduce the definition of the entity β(Γ, k, v) which is concocted
from cusp parameters (see Sect. 1.4) and properties of elliptic fixed points.
Since β(Γ, k, v) ≥ 0, we can simply ignore this term in applying Theorem 1.12
and verify c(n) = b(n) for n ≤ k

12 μ(Γ).

Verifying the identities in Part II provides numerous instances for the ap-
plication of Theorem 1.12 (or other versions of the same principle). For a
simple example, consider the identities for η2(z) in Example 9.1. The func-
tion η2(12z) belongs to Γ0(144), and by Theorems 5.1, 5.3 this holds also
for the theta series Θ1(3, ξ, z), Θ1(−4, χ

ν
, z) and Θ1(−3, ψ

ν
, z) in this exam-

ple. Thus for establishing the identities it suffices to compare coefficients for
n ≤ 1

12 μ0(144) = 24. This is very easy indeed, since for trivial reasons the
coefficients vanish for all n �≡ 1mod 12. For most of the other examples in
Part II the work to be done is lengthier.

In closing this subsection we mention the papers [39], [82], [116], [126] where
a quite different, but related problem is discussed: Let f and g be distinct
normalized Hecke newforms, not necessarily of the same weights or levels.
Find an upper bound for the smallest prime p for which the Hecke operator
Tp has distinct eigenvalues at f and at g.
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