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Preface

In der Theorie der Thetafunctionen ist es leicht, eine beliebig grosse
Menge von Relationen aufzustellen, aber die Schwierigkeit beginnt da,
wo es sich darum handelt, aus diesem Labyrinth von Formeln einen
Ausweg zu finden. Die Beschäftigung mit jenen Formelmassen scheint
auf die mathematische Phantasie eine verdorrende Wirkung auszuüben

G. Frobenius, 1893

Theta functions have never ceased to be a source of inspiration for math-
ematicians. Since their invention by Euler, Gauss, Jacobi, and others, the
concept of a theta function was vastly generalized, these functions found
applications in physics, theoretical chemistry and engineering sciences, and
they play a central role in number theory and other branches of mathematics.
In the present monograph only a special type of theta functions will be dis-
cussed: Beginning in 1920, Erich Hecke (1887–1947) introduced theta series
with characters on algebraic number fields. These series define holomorphic
functions on the upper half plane of one complex variable. For quadratic
number fields they provide a way to construct modular forms on subgroups
of the modular group SL2(Z), notably in the case of smallest integral weight 1,
when other methods of construction are troublesome or fail.

My work on the identities in this monograph started some 25 years ago when
I first used Eisenstein series and eta products for the construction of Hecke
eigenforms on some subgroups of the modular group. The arithmetic of
quadratic number fields and the very definition of Hecke theta series imply
that these functions are Hecke eigenforms; their Fourier coefficients are mul-
tiplicative and satisfy simple recursions at powers of primes. Thus, in order
to corroborate that a given combination of Eisenstein series or eta products
is in fact a Hecke eigenform, a convenient way would be to identify that func-
tion with a Hecke theta series. Of course, this method will only work for the
minority of modular forms which are in fact Hecke theta series, that is, in a
different terminology, which are of CM -type. But it will always work in the
case of weight 1.
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vi Preface

A few of my results have previously been published in journals. In the course
of time the number of examples grew, and apparently it did not make sense
any longer to submit them to journals. Finally I decided to pull all the
examples out of my desk and to collect them in a research monograph so
that they can be used by the community. During my work on this monograph
many more new examples emerged. In particular, I would like to draw the
attention to some 150 examples where theta series of weight 1 on three distinct
quadratic number fields (two of them imaginary, the other one real) coincide.
Only four of these examples were previously known to me from the literature.

For a reader who wants to use a book like this there is always a problem to
judge whether a specific result might be contained in it, and where to find it.
The Table of Contents at the beginning and the “Directory of Characters”
at the end of the book will be helpful in this respect.

Hopefully, neither myself nor anyone of my readers will be a victim to the
peril which, according to Georg Frobenius, threatens those who are interested
in theta identities.

I am grateful to my home institution, Mathematisches Institut der Universität
Würzburg, for providing me with office space and with library and computer
resources, several years beyond the time of my retirement. My special thanks
are due to Richard Greiner for teaching me how to use the computer resources.
I would like to thank Aloys Krieg and Jörn Steuding for reading parts of
earlier versions of the manuscript and for helpful criticism. Also, I would like
to thank Springer Verlag for publishing this book.

In preparing the manuscript I tried hard to avoid errors. But there are too
many chances to commit errors, by mixing up character symbols, confusing
signs, and so on, especially when you change notations. I will be grateful to
any reader for comments and for communicating errors to my E-mail address,
koehler@mathematik.uni-wuerzburg.de.

Würzburg, Germany Günter Köhler
August 2010

mailto:koehler@mathematik.uni-wuerzburg.de
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Introduction

In the beginning was Euler’s discovery of the wonderful identity

∞∏

n=1

(1 − qn) =
∞∑

m=− ∞
(−1)mq

1
2 m(3m−1).

He found it when he investigated partitions, whose generating function is∏∞
n=1(1 − qn)−1, and he communicated it for the first time in a letter to

N. Bernoulli in 1742. As a consequence, Euler obtained a nice recursive
formula for the number p(n) of partitions of a positive integer n. Only much
later, Euler succeeded to prove his discovery. He communicated his proof in a
letter to C. Goldbach in 1750, and in 1754 he presented it to the Petersburg
academy in an article Demonstratio theorematis circa ordinem in summis
divisorum observatum. (See [124] for some more details.)

The next important event is the introduction of a variable z by putting
q = e(z) = e2πiz, and appending a factor q1/24 = e

(
z
24

)
. This leads to the

appearance of the eta function η(z), and Euler’s identity gives a definition of
this function by both an infinite product and an infinite series,

η(z) = e
(

z
24

) ∞∏

n=1

(
1 − e(nz)

)
=

∞∑

n=1

(
12
n

)
e
(

n2z
24

)
.

Here, the coefficient
(

12
n

)
in the series is a quadratic residue symbol which is,

as a function of n, the only primitive character modulo 12 on the integers.
For the convergence of the product and the series one requires that |q| < 1 or,
equivalently, that z belongs to the upper half plane of complex numbers with
positive imaginary part. The function η(z) was first introduced and studied
in 1877 by Richard Dedekind in an article Schreiben an Herrn Borchardt über
die Theorie der elliptischen Modulfunktionen (Werke, Vol. 1, pp. 174–201),
apparently without referring to Euler. The introduction of the variable z is
the ticket for entering the realm of modular functions and modular forms:
From the definition it is clear that η(z + 1) = e

(
1
24

)
η(z). Various non-trivial

xiii
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proofs are known for η
(

− 1
z

)
=

√
−iz η(z), where the square root of −iz takes

positive values for z = iy, y > 0. Since z �→ z + 1 and z �→ − 1
z generate

the group of all fractional linear transformations z �→ (az + b)/(cz + d) with
integer coefficients a, b, c, d and determinant ad − bc = 1, it is clear then that

η(Lz) = η

(
az + b

cz + d

)
= vη(L)(cz + d)1/2η(z)

for all L =
(

a b
c d

)
in the modular group SL2(Z), where vη(L) is a certain

24th root of unity depending only on L once a holomorphic branch of the
square root (cz +d)1/2 is chosen. This relation tells us that η(z) is a modular
form of weight 1

2 for the full modular group with a certain multiplier system
denoted by vη.

The infinite product for η(z) shows that this function is nowhere zero on the
upper half plane, while the factor e

(
z
24

)
is responsible for a zero of order

1
24 at the cusp ∞. The definition of η(z) by an infinite series says that
indeed we have a theta function. This is due to the fact that only squares
of integers occur in the exponents of the series (viewed as a power series in
q1/24), and it implies that the series converges rapidly as long as z is not
too close to the real axis. Indeed the eta function can be identified with a
function in Jacobi’s theory of theta functions as developed in his monumental
treatise Fundamenta Nova Theoriae Functionum Ellipticarum of 1829. On
the other hand, all of Jacobi’s basic theta functions (“Thetanullwerte”) can
be expressed in terms of the eta function, as can be seen, for example, in
Theorem 1.60 of [105] or in Theorem 8.1 of the present monograph.

An obvious way to use the eta function for the construction of more modular
forms is by forming eta products and linear combinations of eta products of
like weights. The most prominent example is the discriminant function

Δ(z) = η24(z) =
∞∑

n=1

τ(n)e(nz)

which is the unique (up to a constant factor) cusp form with trivial multiplier
system and lowest weight 12 on the full modular group; its coefficients τ(n)
are the Ramanujan numbers. Generally, by an eta product (by other authors
also called an eta quotient) we understand any finite product of functions
(η(mz))am where the scaling factors m are positive integers and the exponents
am are arbitrary integers. Considering the lowest common multiple N of the
numbers m, we write such an eta product as

f(z) =
∏

m|N
η(mz)am .

It is straightforward to verify that f(z) transforms like a modular form of
weight k = 1

2

∑
m|N am and a certain multiplier system on the group Γ0(N) of
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all matrices
(

a b
c d

)
∈ SL2(Z) which satisfy c ≡ 0 mod N . Often one needs

to know explicitly the multiplier system of an eta product, and therefore one
needs to know explicitly the 24th root of unity vη(L) in the eta transforma-
tion formula. This problem was addressed by Dedekind in his Erläuterungen
zu zwei Fragmenten Riemanns (Werke, Vol. 1, pp. 159–173) where he intro-
duced what are now called the Dedekind sums and showed that these sums
can be computed by continued fractions, thus establishing the computation of
vη(L). Explicit formulae for this root of unity were developed by Rademacher
in 1931 and later by Petersson; we will reproduce such formulae in Sect. 1.3.

One of the two main actors in our story, the eta products, are now on the
stage. In order to present the other one it is necessary to talk about two of
Erich Hecke’s major achievements—his theta series with Grössencharacter,
and his operators on spaces of modular forms.

In 1916, Ramanujan studied the coefficients τ(n) of η24(z) and published
three conjectures about them [115]. The first and second, stating that τ is a
multiplicative function and satisfies a simple recursion at powers of primes,
were immediately proved by Mordell [97]. The third one resisted efforts
to prove it until 1973 and is now, vastly generalized, Deligne’s theorem.
Mordell’s approach was transformed into a comprehensive new theory in the
middle of the 1930’s when Hecke [52] introduced a sequence of operators
Tn, now called the Hecke operators, which map the spaces of modular forms
for SL2(Z) linearly into themselves and leave the subspaces of cusp forms
invariant. He observed that his operators commute and, more specifically,
found a formula for Tmn in terms of Tmn/d2 for the common divisors d of
m, n. In particular, TmTn = Tmn if m, n are coprime, and

Tpr+1 = TpTpr − pk−1Tpr−1

for powers of primes p, where the positive integer k is the weight of the mod-
ular forms where the operators act upon. Clearly, a one-dimensional space
of cusp forms is spanned by a common eigenform of the operators Tn, which
settles two of the Ramanujan conjectures for τ(n). Hecke verified the corre-
sponding fact for two-dimensional spaces of cusp forms. The obvious question
for higher-dimensional spaces was completely clarified when Hecke’s student
and collaborator Hans Petersson discovered a scalar product on spaces of
cusp forms, defined by a certain integral, with respect to which the operators
Tn are self-adjoint. Then it follows from principles of Linear Algebra that
every space of integral weight k cusp forms for SL2(Z) has a basis consisting
of simultaneous eigenforms of the operators Tn. Any such eigenform f(z)
with Fourier expansion

f(z) =
∞∑

n=1

c(n)e(nz)

can be normalized to have c(1) = 1. Then the coefficient c(n) is equal to
the corresponding eigenvalue of Tn, i.e., (Tnf)(z) = c(n) · f(z). Thus the
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coefficients form a multiplicative sequence of (totally real) algebraic integers
and satisfy the recursion c(pr+1) = c(p)c(pr) − pk−1c(pr−1) at powers of
primes p. These facts can be neatly expressed by an Euler product expansion
of the corresponding Dirichlet series,

L(f, s) =
∞∑

n=1

c(n)n−s =
∏

p

(
1 − c(p)p−s + pk−1−2s

)−1
,

where p runs over all primes. Another consequence is the multiplicity one
theorem, stating that the common eigenspaces of the Hecke operators have
dimension 1.

Hecke and Petersson went on to establish their theory for modular forms on
congruence subgroups of the modular group, mainly for the groups Γ0(N)
which were mentioned above. It turned out that everything can be done as
before for the operators Tn with gcd(n, N) = 1. The spaces of cusp forms
have bases of common eigenforms of these operators, but the multiplicity one
theorem does not hold in general. Later on the role of the operators Tn with
gcd(n, N) > 1 and the deviations from the multiplicity one theorem were
clarified by Atkin and Lehner [6], introducing the concepts of oldforms and
newforms. The theory of Hecke operators and the Atkin–Lehner theory are
easily accessible in several textbooks. We will give a brief review in Sect. 1.7.

In this monograph we will present a few eta products and several hundreds
of linear combinations of eta products which are Hecke eigenforms. We need
to impose the condition that the eta products are holomorphic not only on
the upper half plane, but also at all the cusps. In Sect. 2 this condition is
explained, and it is transformed into a system of linear inequalities for the
exponents am in an eta product. The inequalities have rational coefficients,
which implies that one can decide exactly (without numerical problems from
round off errors) whether they are satisfied for a given system of integers am.
The inequalities are interpreted geometrically in Sect. 3: The exponents am

of holomorphic eta products of a given level N are the coordinates of the
lattice points in a cone with vertex at the origin in a space whose dimension
is the number σ0(N) of positive divisors of N . Lattice points in the interior
of this cone correspond to cusp forms, and those on the boundary correspond
to non-cuspidal forms. This cone is the intersection of the half spaces given
by the inequalities mentioned before. The lattice points corresponding to
the eta products of a given weight k are obtained by intersecting the cone
with the hyperplane whose equation is

∑
m am = 2k. The intersection is a

compact simplex of dimension σ0(N) − 1, embedded into the real space of
dimension σ0(N). In Theorem 3.9 we show that these simplices shrink down
when we increase the primes pν in the factorization of N = ps1

1 · . . . · psr
r , but

we keep the exponents sν fixed.

The inequalities defining holomorphic eta products have thoroughly been
studied by G. Mersmann in his masters thesis [94]. His main result is that for
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any fixed weight k and arbitrary level N there are only finitely holomorphic
eta products which are new in a certain sense and which are not products
of holomorphic eta products of lower weights. He also shows that there are
exactly 14 new holomorphic eta products of lowest weight k = 1

2 . We refer
to Theorem 8.4 for precise statements.

In Sect. 4 we describe an algorithm which lists all the lattice points in a
rationally defined simplex, and thus lists the holomorphic eta products of a
given level N and weight k. We search for Hecke eigenforms by considering
all those eta products f of level N and weight k whose orders at the cusp ∞,

ord(f, ∞) =
1
24

∑

m|N
mam =

s

t

have, in lowest terms, the same denominator t. Then we construct linear
combinations of these eta products for which a certain initial segment of
coefficients is multiplicative and satisfies the required recursions at powers
of primes where, because of the presence of non-trivial multiplier systems,
the shape of the Euler factors has to be modified slightly. This procedure
does not guarantee that we actually obtain eigenforms. But we can prove
this fact by identifying our candidates of eigenforms with functions which
are known to be eigenforms. For this purpose it suffices, as is well known
and explained in Sect. 1.8, to show that sufficiently long initial segments of
coefficients coincide. In all of our examples the functions which we use for
comparison are modular forms of a rather special kind, the Hecke theta series.

In 1920 Hecke [48] introduced a new kind of theta series, thus opening a new
road for the construction of modular forms, and further worked on them in
[50], [51], [53]. He called them theta series with Grössencharacter; following
common usage, we will call them Hecke theta series. In a special setting they
can be defined as follows. Let K be an imaginary quadratic number field and
OK its ring of integers. Let a non-zero ideal m in OK and an integer k ∈ N

be given, and let J(m) denote the multiplicative group of fractional ideals of
K which are relatively prime to m. A Hecke character modulo m of weight k
for K is a homomorphism φ : J(m) → C

× of J(m) into the non-zero complex
numbers which for principal ideals (α) = αOK satisfies

φ((α)) = αk−1 whenever α ≡ 1 mod m.

The formula shows that the character values depend on the “size” of the ideal
(α)—thus motivating Hecke’s term “Grössencharacter”—but it does not show
explicitly how they depend on the residue classes of ideals a modulo m, that
is, in which way the concept of a Dirichlet character is generalized. The theta
series corresponding to φ is defined to be

Θ(φ, z) =
∑

a

φ(a) e(N(a) z),



xviii Introduction

where the summation is on all ideals a in OK , N(a) denotes the norm of a,
and φ(a) = 0 if a �∈ J(m). The function Θ(φ, z) is a modular form of weight
k and a certain multiplier system on Γ0(|D|N(m)), where D < 0 is the
discriminant of K, and it is a cusp form except when k = 1 and φ is induced
from a Dirichlet character through the norm. For more explanations and
details we refer to Sect. 5, especially Theorem 5.1, or to [96], Theorem 4.8.2,
and [105], Theorem 1.31. For the corresponding Dirichlet series we obtain
the Euler product expansion

L(φ, s) =
∑

a

φ(a) N(a)−s =
∏

p

(
1 − φ(p) N(p)−s

)−1
,

where p runs through the prime ideals in OK . This follows directly from
the Kummer–Dedekind theorem on unique factorization of ideals into powers
of prime ideals, and from the property of φ being a homomorphism. As a
consequence, Θ(φ, z) is a Hecke eigenform.

In this monograph we represent ideals by ideal numbers. They were invented
by Kummer and later used by Hecke [48], [49] and Neukirch [102], p. 507.
Details will be described in Sect. 5.5. The disadvantage is that a system
JK of ideal numbers for a field K is not uniquely determined by this field.
The advantage is that we can describe character values φ(a) explicitly, which
enables a rapid computation of Fourier coefficients of Θ(φ, K). If M and α
are ideal numbers for m and a, respectively, then

φ(a) = χ(α) αk−1,

where χ is a character in the usual sense on the finite abelian group
(JK/(M))× of ideal numbers modulo M which are coprime to M . Although
the decomposition of this group into direct cyclic factors of prime power or-
der may also depend on the choice of JK , we felt that it is highly convenient
working this way in all of our examples.

For the definition of characters φ and χ, following our procedure, it is useful
to know generators for (JK/(M))× in a decomposition of this group into
direct cyclic factors. Most urgently we need to know a decomposition of
the subgroup (OK/m)× into direct cyclic factors. Although every textbook
on Elementary Number Theory gives the answer in the case of the rational
number field Q, I do not know any textbook dealing with this problem for
quadratic fields. Principally the results are known, but they are not easily
accessible. Therefore we provide the results and complete proofs in Sect. 6.

The function η2(z) is the simplest example of an eta product which is also
a Hecke theta series. Its representation as a theta series on the Gaussian
integers Z[i] and on the ring Z[

√
3] of integers in the real quadratic field

Q(
√

3) was given by Hecke [50]. Later Schoeneberg [121] observed that η2(z)
is also a theta series on the Eisenstein integers Z[ω], ω = e

(
1
6

)
. More than
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150 examples in Part II of our monograph show that it happens quite often
that a Hecke eigencusp form of weight 1 is identified with theta series on
three distinct quadratic number fields, two of them imaginary and the other
one real.

Following Ribet [118] and Serre [128], [129], a modular form of weight k on
Γ0(N) is called of CM-type or a CM-form if it is a linear combination of
Hecke theta series on imaginary quadratic number fields. (The terminology
comes from the concept of complex multiplication of elliptic curves.) Let us
consider the Fourier expansion

Θ(φ, z) =
∞∑

n=1

c(n)e(nz)

of a Hecke theta series on an imaginary quadratic field K with discriminant D.
Every prime number p with

(
D
p

)
= −1 is inert in K, therefore there is no

ideal in OK whose norm is p, and we get c(p) = 0. Thus the coefficients of
a theta series vanish at every second prime on average. It follows that the
expansion of a Hecke theta series is lacunary, which means that

lim
x→∞

A(x)
x

= 0,

where A(x) is the number of n ≤ x for which c(n) �= 0. Of course, this asser-
tion extends to all CM-forms. In [128] Serre proved the converse: A modular
form is lacunary if and only if it is of CM-type. Somewhat earlier he and
Deligne [29] showed that every modular form of weight 1 is of CM-type, hence
lacunary.

Part II of our monograph can be viewed as a collection of examples for the
results mentioned above. When we have got an eta product or a linear
combination F (z) of eta products which apparently is an eigenform, and
when we want to identify it with a theta series, then a necessary condition
for success is that the Fourier expansion of F (z) is lacunary. The discriminant
D of an eligible field should be a divisor of the level of F (z), and there must
not be any non-vanishing coefficient at primes p with

(
D
p

)
= −1. In all

of our examples these conditions are met by at most one or, in the case of
weight k = 1, by at most two negative (and one positive) discriminants D.
In the latter case, the coefficients vanish at every three out of four primes on
average. For weight 1 there will indeed be a discriminant which fits, due to
the Deligne–Serre theorem. Finally, the theorems predict the modulus M for
which one should construct suitable characters.

For level N = 1, i.e., for the full modular group SL2(Z), Serre [129] classified
all lacunary powers ηr(z) and identified them with CM-forms. His work was
extended to eta products ηr(z)ηs(Nz) for some small values of N > 1 in
[43], [25]. Many more identities among eta products and theta series have
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been discovered during several decades, voluminous books such as [8], [14],
[36] have been published in recent years, and often an identity appears in
equivalent versions looking quite different. So it is difficult to do justice to
the authors who worked in this field, and we apologize for any omissions
of giving credit to others. Lack of a reference for specific identities does
not mean that we claim priority. Nevertheless we believe that most of the
identities in the later sections of our monograph have not been seen before.

Now we give some explanations on the organization of our text and on our
choices of levels N and weights k for which we inspect eta products.

In Part I we collect some theoretical material which is relevant for the exam-
ples. Comments on this part were given above in the preceding introductory
text. The Index at the end of the book and the Table of Contents will be
useful for the location of specific topics.

In Sect. 7, in the beginning of Part II we choose and describe systems of
integral ideal numbers for all those quadratic number fields which will be
needed for the identities in later sections. In Sect. 8 we collect well known
identities for the eta products of weight 1

2 and some eta products of weight 3
2 .

According to Sect. 8.3, these functions are superlacunary. In all of what
follows we restrict our attention to eta products of integral weight. The
expansions of many of these functions can be computed rapidly by taking
products of superlacunary eta products from Sect. 8.

The levels N which we discuss in Sects. 9 up to 31 proceed roughly in as-
cending order of σ0(N), the number of divisors of N , which is equal to the
dimension of the cone of holomorphic eta products of level N . We start with
N = 1 in Sect. 9 and go on with small primes N = p in Sects. 10, 11, 12.
In several instances we can prove arithmetical properties of Fourier coeffi-
cients, due to the fact that we have theta series on fields with small absolute
values |D| of the discriminant and with small periods of characters. In par-
ticular, a few theta series of weight 3 lead to an analogue of Fermat primes
which are related to solutions of Pell’s equation (Theorem 10.4). For primes
N = p > 23 the examples fade out since we cannot find eigenforms which are
linear combinations of eta products. This is due to the fact that the numbers
of holomorphic eta products do not increase and that their orders at ∞ tend
to increase when p increases.

Similar remarks apply to the levels N = p2, p3, p4, pq, p2q, p5, p6 with distinct
primes p, q which are discussed in Sects. 13 up to 26. For most of these levels
we restrict our attention to eta products of weight k = 1. The reason is that
the numbers of eta products of higher weights can be large and that we did
not take the labour to single out those among them which are lacunary. In
Sects. 21.1 and 24.1 the reader will find tables which display the numbers of
holomorphic eta products of weight 1 and level 4p for odd primes p, where we
count only those which are not induced from lower levels. The numbers are
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quite large for level N = 12; it takes us two entire sections to work through
all these eta products. In the remaining Sects. 27 up to 31 we inspect eta
products of weight 1 for some levels N = q3p, p2q2, 2pq, 4pq with distinct
(odd) primes p, q. Tables in Sects. 27.1, 29.1, 30.1 show that their numbers
are quite large. Therefore we restrict our inspection to eta products which
belong to the Fricke group Γ∗(N), the group which is generated by Γ0(N) and
the transformation z �→ − 1

Nz . An eta product with exponents am belongs to
Γ∗(N) if and only if am = aN/m for all m|N . Clearly this condition reduces
the numbers of eta products dramatically. Geometrically the condition means
that the dimension σ0(N) of the space of holomorphic eta products collapses
to about half this value.

In several instances we have identified some, but not all the components of a
theta series with (linear combinations of) eta products. However, this does
not exclude the possibility that more components might be identified in this
way, and conceivably this will be so.

The Table of Contents will help to find out whether a specific eta product
is discussed in this monograph and, if so, where to locate it. Possibly some
readers want to know whether a theta series on a specific number field with
a specific character shows up, and where to find it. For this purpose the
Table of Contents is useless. Therefore we compiled a Directory of Characters
at the end of the book (in Appendix A). Here we list the discriminants D
of imaginary quadratic number fields which occur in this book. For each
discriminant we give a table of periods of characters and the numbers of ex-
amples where a theta series with such a character occurs. Moreover, we list
discriminants D of real quadratic fields and the numbers of examples where
theta series for Q(

√
D) occur. This final table will help to find the examples

where theta series on three distinct quadratic number fields are identified.



Part I

Theoretical Background



1 Dedekind’s Eta Function and Modular
Forms

1.1 Identities of Euler, Jacobi and Gauss

Throughout this monograph we use the notation

e(z) = e2πiz

where z is a complex number. We define the Dedekind eta function by the
infinite product

η(z) = e
(

z
24

) ∞∏

n=1

(1 − qn) with q = e(z). (1.1)

The product converges normally for q in the unit disc or, equivalently, for
z in the upper half plane H = {z ∈ C | Im(z) > 0}. This means that the
product of the absolute values |1 − qn| converges uniformly for z in every
compact subset of H. The normal convergence of the product implies that η
is a holomorphic function on H and that η(z) �= 0 for all z ∈ H.

Throughout this monograph,
(

c
d

)
denotes the Legendre–Jacobi–Kronecker

symbol of quadratic reciprocity. Its definition and properties, especially for
an even denominator, can be found in many textbooks on Number Theory,
for example [45], §5.3, or [49], §46. For the readers’ convenience, we re-
produce the definition. First of all, the symbol takes the value 0 whenever
gcd(c, d) > 1. If d �= 2 is prime and d � c then

(
c
d

)
= 1 or −1 as to wether c

is or is not a square modulo d. (This is the Legendre symbol.) For d = 2 the
definition reads

(
c
2

)
=
{

1 if c ≡ 1 mod 8,
−1 if c ≡ 5 mod 8,

while
(

c
2

)
remains undefined if c ≡ 3 mod 4. This is the appropriate procedure

in order to validate the decomposition law for primes in quadratic number
fields which will be stated in Sect. 5.3. Finally,

(
c
d

)
is totally mutiplicative as

G. Köhler, Eta Products and Theta Series Identities,
Springer Monographs in Mathematics,
DOI 10.1007/978-3-642-16152-0 1, c© Springer-Verlag Berlin Heidelberg 2011
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a function of the denominator d, and it follows that it is totally multiplicative
also as a function of the numerator c. We will frequently and silently use the
law of quadratic reciprocity ; we do not state it here, but refer to the textbooks.

Euler’s identity

∞∏

n=1

(1 − qn) =
∞∑

m=− ∞
(−1)mq

1
2 m(3m−1)

is easily transformed (see below in this subsection) into the series expansion

η(z) =
∞∑

n=1

(
12
n

)
e

(
n2z

24

)
(1.2)

for the eta function. Euler succeeded to prove his identity in 1750. His
proof rests on a tricky inductive argument and can be studied in [114], §98.
Nowadays the Euler identity is commonly viewed as a special case of a more
general identity, which Jacobi published in 1829 in his famous Fundamenta
Nova Theoriae Functionum Ellipticarum. Proofs of this so-called triple prod-
uct identity are given in [9], §1.3, [14], §3.1, [36], §2.8.1, [38], §17, [45], §12.4,
[70], §3.2, [114], §100, and at other places.

Theorem 1.1 (Jacobi Triple Product Identity) Suppose that q, w ∈ C

and |q| < 1, w �= 0. Then

∞∏

n=1

(1 − q2n)(1 + q2n−1w)(1 + q2n−1w−1) =
∞∑

n=− ∞
qn2

wn.

We will present a proof of this identity because of its fundamental importance,
although many proofs are available in textbooks. We join [9] and [70] and
give a proof which is due to Andrews [4]. It is based upon another of Euler’s
identities (Chap. 16 of his Introductio in Analysin Infinitorum):

Lemma 1.2 (Euler) For q, w ∈ C with |q| < 1 we have

∞∏

n= 0

(1 + qnw) =
∞∑

m= 0

qm(m−1)/2wm

(1 − q)(1 − q2) . . . (1 − qm)
. (1.3)

If also |w| < 1, then

∞∏

n= 0

1
1 + qnw

=
∞∑

m= 0

(−1)mwm

(1 − q)(1 − q2) . . . (1 − qm)
. (1.4)
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Proof. The infinite product

f(q, w) =
∞∏

n= 0

(1 + qnw)

converges absolutely for |q| < 1 and any w ∈ C because of the convergence
of
∑∞

n=0 |qnw|. Therefore for any q with |q| < 1 there is a power series
expansion

f(q, w) =
∞∑

m=0

am(q)wm

which is valid on the entire w-plane. The definition of f clearly implies that
f(q, w) = (1 + w)f(q, qw), hence

∞∑

m= 0

am(q)wm =
∞∑

m= 0

am(q)qmwm +
∞∑

m= 0

am(q)qmwm+1 .

Comparing coefficients yields am(q) = am(q)qm + am−1(q)qm−1 for m ≥ 1,
or

am(q) = am−1(q)qm−1(1 − qm)−1 .

Since a0(q) = 1, it follows by induction that

am(q) =
q(m−1)+(m−2)+...+1

(1 − q)(1 − q2) . . . (1 − qm)
=

qm(m−1)/2

(1 − q)(1 − q2) . . . (1 − qm)
.

Thus the result (1.3) follows.

Now we consider
g(q, w) =

∏

n= 0

1
1 + qnw

.

For |q| < 1, |w| < 1 this product converges absolutely because of the conver-
gence of

∞∑

n= 0

∣∣∣∣1 − 1
1 + qnw

∣∣∣∣ =
∞∑

n= 0

∣∣∣∣
qnw

1 + qnw

∣∣∣∣ ≤ |w|
1 − |w|

∞∑

n= 0

|qnw| .

Therefore for any q with |q| < 1, g is an analytic function of w with a power
series expansion g(q, w) =

∑∞
m=0 bm(q)wm which is valid for |w| < 1. The

definition of g implies that g(q, qw) = (1 + w)g(q, w), and hence
∞∑

m= 0

bm(q)qmwm =
∞∑

m= 0

bm(q)wm +
∞∑

m= 0

bm(q)wm+1 .

We conclude that bm(q)qm = bm(q)+bm−1(q), or bm(q) = −bm−1(q)/(1−qm)
for m ≥ 1. Since b0(q) = 1, we obtain by induction that

bm(q) =
(−1)m

(1 − q)(1 − q2) . . . (1 − qm)
,

and the result (1.4) follows. �
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Proof of Theorem 1.1. Assume that |q| < 1 and w ∈ C. From (1.3) we obtain

∞∏

n= 0

(1 + q2n+1w) =
∞∏

n= 0

(
1 + (q2)n(qw)

)

=
∞∑

m= 0

q2m(m−1)/2qmwm

(1 − q2)(1 − q4) . . . (1 − q2m)

=
∞∑

m= 0

qm2
wm

(1 − q2)(1 − q4) . . . (1 − q2m)

=
∞∑

m= 0

qm2
wm

∞∏

ν= 0

(1 − q2m+2+2ν)

/ ∞∏

ν= 0

(1 − q2ν+2)

=
∞∏

ν= 0

1
1 − q2ν+2

∞∑

m= 0

qm2
wm

∞∏

ν= 0

(1 − q2m+2+2ν) .

For m < 0 the product inside the infinite sum is identically 0 because of the
factor with ν = −m − 1. Therefore we can write

∞∏

n= 0

(1 + q2n+1w) =
∞∏

ν= 0

1
1 − q2ν+2

∞∑

m= − ∞
qm2

wm
∞∏

ν= 0

(1 − q2m+2+2ν) .

Applying (1.3) once more, we get

∞∏

ν= 0

(1 − q2m+2+2ν) =
∞∏

ν= 0

(
1 + (q2)ν(−q2+2m)

)

=
∞∑

k= 0

qk(k−1)(−q2+2m)k

(1 − q2)(1 − q4) . . . (1 − q2k)

=
∞∑

k= 0

(−1)kqk2+k+2mk

(1 − q2)(1 − q4) . . . (1 − q2k)
.

Together with the preceding result this yields

∞∏

n= 0

(1 + q2n+1w) =
∞∏

ν= 0

1
1 − q2ν+2

∞∑

m= − ∞

∞∑

k= 0

(−1)kqm2+k2+2mk+kwm

(1 − q2)(1 − q4) . . . (1 − q2k)
.

We want to interchange the summation in the double sum, and for this pur-
pose we need absolute convergence. We have convergence for all w ∈ C. But
an estimate of the double sum in reversed order of summation shows that
absolute convergence does only hold if |q| < 1 and |w| > |q|. Under this
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assumption we get
∞∏

n= 0

(1 + q2n+1w)

=
∞∏

ν= 0

1
1 − q2ν+2

∞∑

k= 0

(−1)kqk

(1 − q2)(1 − q4) . . . (1 − q2k)

∞∑

m=− ∞
q(m+k)2wm

=

( ∞∑

m=− ∞
qm2

wm

) ∞∏

ν= 0

1
1 − q2ν+2

∞∑

k= 0

(−1)k(q/w)k

(1 − q2)(1 − q4) . . . (1 − q2k)
.

Since by assumption |q/w| < 1, we can apply (1.4) to the inner sum on k and
replace it by the product

∞∏

n= 0

1
1 + (q2)n(q/w)

.

This yields the Triple Product Identity
∞∑

m=− ∞
qm2

wm =
∞∏

n= 1

(1 − q2n)(1 + q2n−1w)(1 + q2n−1w−1)

under the assumptions that |q| < 1 and |w| > |q|. By the principle of analytic
continuation it holds for |q| < 1 and all w �= 0. �

Corollary 1.3 (Euler, Gauss) For q ∈ C, |q| < 1 and m ∈ N the following
identities hold:

∞∏

n=1

(1 − qn(m+1))(1 − qn(m+1)−m)(1 − qn(m+1)−1)

=
∞∑

n=− ∞
(−1)nq

1
2 n(n(m+1)−m+1),

∞∏

n=1

(1 − qn) =
∞∑

n=− ∞
(−1)nq

1
2 n(3n−1),

∞∏

n=1

(1 − qn)2(1 − q2n)−1 =
∞∑

n=− ∞
(−1)nqn2

.

Proof. In Theorem 1.1 we replace q by q
1
2 (m+1), and we put w = −q

1
2 (1−m).

This gives the first identity. When we choose m = 2 then we get the second,
which is Euler’s identity. Now we choose m = 1 in the first identity. Then
the left hand side is

∞∏

n=1

(1 − q2n)(1 − q2n−1)(1 − q2n−1) =
∞∏

n=1

(1 − qn)(1 − q2n−1),
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since 2n and 2n − 1 together take each positive integer once as a value. We
multiply and divide each factor by 1 − q2n. This yields the last identity. �

The third identity in Corollary 1.3 is attributed to Gauss. The right hand
side in the triple product identity is the famous Jacobi theta function which is
traditionally denoted by θ(q, w), θ3(q, w), or by θ(z, u), θ3(z, u) if q = e(z/2),
w = e(u).

In order to derive (1.2), we multiply Euler’s identity by q1/24 and observe
that

1
24 + 1

2n(3n − 1) = 1
24 (36n2 − 12n + 1) = 1

24 (6n − 1)2.

We put 6n − 1 = m for n > 0, 6n − 1 = −m for n ≤ 0. Then m > 0 for all n
and

(−1)n = χ(m) =
{

1
−1 for m ≡

{
±1
±5 mod 12.

Hence χ(m) =
(

12
m

)
for gcd(m, 12) = 1. Since

(
12
m

)
= 0 for gcd(m, 12) > 1,

we arrive at the series expansion (1.2) for η(z).

We put q = e(z) in the third identity in Corollary 1.3. Then we get

η2(z)
η(2z)

=
∞∑

n=− ∞
(−1)ne

(
n2z
)
. (1.5)

The coefficient function χ(m) =
(

12
m

)
in (1.2) is a Dirichlet character mod-

ulo 12. In fact, it is the only primitive character among the four characters
modulo 12.

We recall that a Dirichlet character modulo N is a homomorphism χ of
the group (Z/NZ)× of coprime residues modulo N into the multiplicative
group C

× of complex numbers. It is lifted to a function χ on Z by putting
χ(m) = χ(m mod N) if gcd(m, N) = 1 and χ(m) = 0 if gcd(m, N) > 1.
We say that χ is induced by a character ψ modulo a divisor N0 of N if
χ(m) = ψ(m) whenever gcd(m, N0) = 1. The smallest N0 such that χ
is induced by a character modulo N0 is called the conductor of χ. If the
conductor is N then χ is called primitive; otherwise it is called imprimitive.

Corollary 1.4 (Jacobi) For q ∈ C, |q| < 1 we have

∞∏

n=1

(1 − qn)3 =
∞∑

n= 0

(−1)n(2n + 1)q
1
2 n(n+1). (1.6)

The third power of the eta function has the expansion

η3(z) =
∞∑

n=1

(
−1
n

)
ne

(
n2z

8

)
. (1.7)
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Proof ([114], §102, or [101]). In Theorem 1.1 we put q =
√

uv and w =
−
√

u/v. This yields

∞∏

n=1

(1 − unvn)(1 − unvn−1)(1 − un−1vn) =
∞∑

n=− ∞
(−1)nu

1
2 n(n+1)v

1
2 n(n−1) ,

(1.8)
valid for |uv| < 1, u �= 0, v �= 0. (We start from a small region where
holomorphic square roots exist, and then argue by analytic continuation.) In
(1.8) we divide by 1 − v. For the left hand side this simply means that we
drop the third factor in the term with n = 1. On the right hand side we
combine, for any n ≥ 0, the terms with n and −n − 1, which gives

(−1)nu
1
2 n(n+1)v

1
2 n(n−1) + (−1)n+1u

1
2 n(n+1)v

1
2 (n+1)(n+2)

= (−1)nu
1
2 n(n+1)v

1
2 n(n−1)(1 − v2n+1)

= (−1)nu
1
2 n(n+1)v

1
2 n(n−1)(1 − v)

2n∑

k= 0

vk.

Therefore the division yields

∞∏

n=1

(1 − unvn)(1 − unvn−1)(1 − unvn+1)

=
∞∑

n= 0

(−1)nu
1
2 n(n+1)v

1
2 n(n−1)

2n∑

k= 0

vk.

Here we put v = 1 and write q instead of u. This gives us the identity (1.6).
We multiply (1.6) by q1/8, put q = e(z), and observe that 1

8 + 1
2n(n + 1) =

1
8 (2n + 1)2. So we arrive at

η3(z) =
∞∑

n= 0

(−1)n(2n + 1)e
(

(2n + 1)2z
8

)
, (1.9)

the Jacobi identity for η3 in its usual notation. We observe that (−1)n =( −1
2n+1

)
is a quadratic residue symbol. Thus we arrive at (1.7) by the obser-

vation that
(−1

n

)
= 0 if n is even. �

Remarks. The coefficient function n �→
(−1

n

)
in (1.7) is the primitive Dirich-

let character modulo 4.—When we replace v by 1 in (1.8) then both sides
are 0. Thus the replacement gives a useful result only after division by 1 − v.
Similarly, one might try to use Theorem 1.1 directly, replacing q by q1/2 and
w by −q1/2. But then too, both sides become 0. Nevertheless, a refinement
of this idea yields a proof of (1.6); see [70], §3.2.
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1.2 The Sign Transform

The map q �→ −q, applied to a Laurent series or product in the variable q,
will be called the sign transform, after Zucker [142]. For q = e(z) the sign
transform corresponds to the translation

z �→ z + 1
2

of the upper half plane. Zucker succeeded to deduce new identities from
known ones in a completely elementary way by means of the sign transform.
We give two examples:

Proposition 1.5 For z in the upper half plane we have

η
(
z + 1

2

)
= e
(

1
48

) η3(2z)
η(z)η(4z)

,
η3(2z)

η(z)η(4z)
=

∞∑

n=1

(
6
n

)
e

(
n2z

24

)
, (1.10)

η5(2z)
η2(z)η2(4z)

=
∞∑

n=− ∞
e
(
n2z
)
. (1.11)

Proof. The product expansion for η(z) gives

e
(

− 1
48

)
η
(
z + 1

2

)
= e

(
z
24

) ∞∏

n=1

(1 − (−q)n)

= e
(

z
24

) ∞∏

n=1

(1 − q2n)(1 + q2n−1)

= e
(

z
24

) ∞∏

n=1

(1 − q2n)(1 − q4n−2)
1 − q2n−1

= e
(

z
24

) ∞∏

n=1

(1 − q2n)2(1 − q4n−2)(1 − q4n)
(1 − qn)(1 − q4n)

= e
(

z
24

) ∞∏

n=1

(1 − q2n)3

(1 − qn)(1 − q4n)

=
η3(2z)

η(z)η(4z)
.

On the other hand, the series expansion yields

e
(

− 1
48

)
η
(
z + 1

2

)
=

∞∑

n=1

e
(

− 1
48

)(12
n

)
e

(
n2z

24
+

n2

48

)

=
∞∑

n=1

e

(
n2 − 1

48

)(
12
n

)
e

(
n2z

24

)

=
∞∑

n=1

(
6
n

)
e

(
n2z

24

)
.
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This proves (1.10). In the last line we used
(

2
n

)
= (−1)(n

2−1)/8 = e

(
n2 − 1

16

)
= e

(
n2 − 1

48

)
for gcd(n, 6) = 1.

Now we take the sign transform of the Gauss identity (1.5). We plug in (1.10)
and observe that the denominator is transformed into η(2z+1) = e

(
1
24

)
η(2z).

So we get

η5(2z)
η2(z)η2(4z)

=
∞∑

n=− ∞
(−1)n e

(
n2z + n2

2

)
=

∞∑

n=− ∞
e(n2z) .

Thus we have proved (1.11). �

We remark that the right hand side in (1.11) is traditionally called a Theta-
nullwert and denoted by θ(2z) or θ3(2z). With the notation explained after
Corollary 1.3, we have θ(2z) = θ(2z, 0). From (1.10) and (1.11) we deduce

θ(z) =
η2
(

z+1
2

)

η(z + 1)
= 1 + 2

∞∑

n=1

eπin2z.

(See also [70], §3.4.)—Another example of a Zucker identity comes from Ja-
cobi’s identity for η3:

Proposition 1.6 For z in the upper half plane we have

η9(2z)
η3(z)η3(4z)

=
∞∑

n=1

(
−2
n

)
n e

(
n2z

8

)
. (1.12)

Proof. In Jacobi’s identity (1.7) we take the sign transform, use (1.10), and
observe that

(−1
n

)
e
(

n2−1
16

)
=
(−2

n

)
. �

The identity (1.12) is contained in Zucker’s lists in an equivalent form (items
(24) in [141] and (T4.8) in [142]). It was also proved in a more complicated
way in [77].

1.3 The Multiplier System of η

The transformation formula

η(z + 1) = e
(

1
24

)
η(z) (1.13)

follows trivially from the definition of the eta function as a product or as a
series. (We used it already in the proof of (1.11).) Not at all trivial is the
transformation formula

η

(
− 1

z

)
=

√
−iz η(z), (1.14)
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where the square root of −iz is the holomorphic function on the upper half
plane which takes positive values for z = iy, y > 0. There is a rich literature
on (1.14) and its proofs. It is partly listed in the references for Appendix D in
[110]. Three proofs are given in Apostol [5], §3. Weil [138] reduced (1.14) to a
functional equation of a corresponding Dirichlet series; his proof is reproduced
in [96], §4.4. In [70], §3.3, Knopp deduces (1.14) from the Poisson summation
formula and a theta transformation formula. Here we will sketch Siegel’s
one-page proof [134] which is based on a skillful application of the calculus
of residues:

Sketch of a proof for (1.14). By the principle of analytic continuation it
suffices to prove (1.14) for z = yi with y > 0. The assertion will follow from

log η(i/y) − log η(yi) =
1
2

log y.

Taking the logarithm of an infinite product, we obtain

log η(yi) = − πy

12
+

∞∑

n= 1

log(1 − e−2πny) = − πy

12
+

∞∑

n= 1

∞∑

m= 1

e−2πmny

m

= − πy

12
+

∞∑

m= 1

1
m

1
1 − e2πmy

.

Therefore it suffices to prove that

∞∑

m= 1

1
m

1
1 − e2πmy

−
∞∑

m= 1

1
m

1
1 − e2πm/y

− π

12

(
y − 1

y

)
= − 1

2
log y .

(1.15)
For fixed y > 0 we consider the sequence of meromorphic functions

fn(w) = − 1
8w

cot(πiNw) cot(πNw/y) with n ∈ N, N = n +
1
2

.

Let C be the contour of the parallelogram with vertices y, i, −y, −i in that
order. Inside C, the function fn has simple poles at w = mi

N and at w = my
N

for m ∈ Z, 1 ≤ |m| ≤ n, and there is a triple pole at w = 0 with residue
i
24

(
y − y−1

)
. The residues of fn at mi

N and at my
N are

1
8mπ

cot(πim/y) =
1

8mπi

(
1 − 2

1 − e2πm/y

)

and

− 1
8mπ

cot(πimy) = − 1
8mπi

(
1 − 2

1 − e2πmy

)
,

respectively. Using that these expressions are even functions of m, we observe
that the 2πi-fold sum of the residues of fn(w) inside C is equal to the left
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hand side in (1.15), where the summation is restricted to 1 ≤ m ≤ n. On the
other hand, by the residue theorem this sum is equal to the contour integral
of fn along C. Therefore, in order to complete the proof, it suffices to show
that

lim
n→∞

∫

C

fn(w) dw = − 1
2

log y.

On the edges of C, except at the vertices, the functions w fn(w) have, as
n → ∞, the limit 1

8 on the edges connecting y, i and −y, −i, and the limit
− 1

8 on the other two edges. A closer inspection shows that the functions
fn(w) are bounded on C uniformly with respect to n (because of y > 0 and
N = n + 1

2 ). Therefore we can use the bounded convergence theorem and
interchange integration with taking the limit. We get

lim
n→∞

∫

C

fn(w) dw =
∫

C

(
lim

n→∞
w fn(w)

) dw

w
=

1
4

(∫ i

y

dw

w
−
∫ y

−i

dw

w

)

= 1
4

((
πi
2 − log y

)
−
(
log y + πi

2

))

= − 1
2 log y. �

It is well-known that the matrices

T =
(

1 1
0 1

)
and S =

(
0 −1
1 0

)

generate the (homogeneous) modular group Γ1 = SL2(Z). Correspondingly,
the Möbius transformations T : z �→ z + 1 and S : z �→ − 1

z of the upper half
plane generate the (inhomogeneous) modular group which we also denote
by Γ1 and which consists of all transformations z �→ L(z) = az+b

cz+d with

L =
(

a b
c d

)
∈ SL2(Z). The relations (1.13) and (1.14) are transformation

formulae for η(z) with respect to the generators T and S of Γ1. They can
be written as η(Tz) = e

(
1
24

)
η(z) and η(Sz) = e

(
− 1

8

)√
z η(z), where the

holomorphic branch of
√

z is fixed by
√

i = e
(

1
8

)
. One can verify directly

or deduce from the chain rule that the function J :
((

a b
c d

)
, z
)

�→ cz +
d satisfies J(L1L2, z) = J(L1, L2z)J(L2, z) for all Möbius transformations
L1, L2 ∈ SL2(R) of the upper half plane. It follows that the eta function
satisfies the relations

η(Lz) = vη(L)(cz + d)1/2 η(z) for all L =
(

a b
c d

)
∈ SL2(Z),

(1.16)
with factors vη(L) depending only on L and not on the variable z. We
will describe them explicitly, but before doing so it is necessary to agree on
a convention for square roots and, more generally, for powers with a real
exponent.
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We fix an argument of z for z ∈ C, z �= 0 by

−π ≤ arg(z) < π.

Then for r ∈ R we put
zr = |z|reir arg(z)

where, of course, |z|r > 0. In particular we have
√

z =
√

|z|ei arg(z)/2. This
convention will be used for (1.16). It implies zrzs = zr+s. But zrwr = (zw)r

does not hold in general.

The function L �→ vη(L) is called the multiplier system of the eta function.
Its values vη(T ) = e

(
1
24

)
, vη(S) = e

(
− 1

8

)
for the generators of the modular

group are 24th roots of unity. It follows that vη(L) is a 24th root of unity for
every L ∈ SL2(Z). The determination of these roots of unity is an important
issue in the theory of the eta function. A formula for vη(L) was first given
by Rademacher [113] in 1931. He expressed vη(L) in terms of Dedekind
sums which can be evaluated recursively; see also Chap. 9 of his book [114].
In 1954, Petersson [109] gave a formula which can be evaluated directly,
without a recursive process. It is contained in his book [110], entry (4.14).
A similar explicit formula is given by Rademacher in [114], §74. We begin
with an example which shows that vη is not a homomorphism on SL2(Z):
Since S2 = −12 is the negative of the 2 × 2 unit matrix and operates as
the identity on the upper half plane, and since

√
−1 = e−iπ/2 = −i by our

convention on roots, we obtain

η(z) = η((−12)(z)) = vη(−12) · (−i) · η(z),

and hence vη(−12) = i. Therefore we get vη(S2) = i �= −i = (vη(S))2.—
For Petersson’s formula we need some notation which extends the symbol of
quadratic reciprocity:

Notation Let c and d be integers such that gcd(c, d) = 1, d is odd and c �= 0.
Let sgn(x) = x

|x| be the sign of a real number x �= 0. Then we put

( c

d

)∗
=
(

c

|d|

)
and

( c

d

)

∗
=
(

c

|d|

)
· (−1)

1
4 (sgn(c)−1)(sgn(d)−1).

Furthermore, we put
(

0
1

)∗
=
(

0
−1

)∗
= 1,

(
0
1

)

∗
= 1,

(
0

−1

)

∗
= −1.

Now we reproduce Petersson’s formula, following Knopp [70], §4.1:

Theorem 1.7 For

L =
(

a b
c d

)
∈ SL2(Z),
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the multiplier system of the eta function is given by

vη(L) =
(

d

c

)∗
e
(

1
24 ((a + d)c − bd(c2 − 1) − 3c)

)
if c is odd,

vη(L) =
( c

d

)

∗
e
(

1
24 ((a + d)c − bd(c2 − 1) + 3d − 3 − 3cd)

)
if c is even.

1.4 The Concept of Modular Forms

The relations (1.16) say that η(z) is a modular form of weight 1
2 for the modu-

lar group Γ1 = SL2(Z). We will use the concept of a modular form mainly for
integral weights and for certain congruence subgroups of the modular group.
Nevertheless it is necessary to define a more comprehensive concept, since
we encountered η(z), θ(z) and η3(z) with half-integral weights, and since we
will meet the Fricke groups which are not subgroups of the modular group.

Definition. Two subgroups Γ, Γ̃ of SL2(R) are called commensurable if their
intersection Γ ∩ Γ̃ has finite index both in Γ and in Γ̃.—Recall that every
element L =

(
a b
c d

)
∈ SL2(R) acts as a Möbius transformation z �→ Lz =

az+b
cz+d on the upper half plane H.

Definition. Let Γ be a subgroup of SL2(R) which is commensurable with
the modular group Γ1, and let k be a real number. A function f : H → C

is called a modular form of weight k and multiplier system v for Γ if f is
holomorphic on H and has the following two properties:

(1) The relation

f(Lz) = f

(
az + b

cz + d

)
= v(L)(cz + d)kf(z)

holds for every L =
(

a b
c d

)
∈ Γ. Here, the complex numbers v(L)

satisfy |v(L)| = 1 and do not depend on the variable z, and the powers
(cz + d)k are defined according to the convention in Sect. 1.3.

(2) The function f is holomorphic at all cusps r ∈ Q ∪ { ∞}.—The meaning
of this condition will be explained immediately.

We begin to explain property (2) for the cusp ∞. Since Γ is commensurable
with Γ1, there is a positive integer h for which Th =

(
1 h
0 1

)
∈ Γ. We may

assume that h is chosen minimal with this property. From (1) we obtain

f(z + h) = v(Th)f(z).
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We write v(Th) = e(κ) = e2πiκ with 0 ≤ κ < 1. The integer h is called the
width of Γ at the cusp ∞, and the number κ is called the cusp parameter
(according to Rankin [117]) or the Drehrest (according to Petersson [110]) of
f at ∞. It follows that g(z) = e−2πiκzf(hz) is a holomorphic function with
period 1 on the upper half plane. Hence it can be written as a holomorphic
function of the variable q = e(z) in the punctured unit disc, which henceforth
has a Laurent expansion valid for 0 < |q| < 1. For f itself we obtain a Fourier
expansion of the form

f(z) = e2πiκz/h
∑

n

c(n)e
(nz

h

)
=
∑

n

c(n)e
(

(n + κ)z
h

)
, (1.17)

where the summation is on all n ∈ Z. The function f is called holomorphic
at the cusp ∞ if powers of e(z/h) with negative exponents do not occur in
(1.17), i.e., if c(n) �= 0 implies that n + κ ≥ 0.

Now we consider cusps r ∈ Q. We write r = a
c with gcd(a, c) = 1. Then

r = A(∞) with some A =
(

a b
c d

)
∈ Γ1 = SL2(Z).

Since the conjugate group A−1ΓA is commensurable with A−1Γ1A = Γ1,
there exists a smallest integer h > 0 for which Th ∈ A−1ΓA. The element
L = AThA−1 ∈ Γ fixes the point r. We write L =

(
α β
γ δ

)
and put

v(L) = e2πiκ with 0 ≤ κ < 1. As before, h is called the width of Γ at the
cusp r, and κ is the cusp parameter or Drehrest of f at r. Because of (1) the
function

ϕ(z) = (z − r)kf(z)

satisfies

ϕ(Lz) = (Lz − r)kf(Lz) = (Lz − r)k(γz + δ)ke2πiκf(z).

Elementary calculation yields

L =
(

1 − ach a2h
−c2h 1 + ach

)
and L(z) − r =

z − r

γz + δ
.

Since L(z) − r and z − r both belong to H, their arguments are in the interval
from 0 to π. Hence the difference of the arguments is in the interval from −π
to π where all arguments have to be chosen by the convention from Sect. 1.3.
Therefore in this particular situation we get

(Lz − r)k(γz + δ)k = ((Lz − r)(γz + δ))k = (z − r)k.

It follows that

ϕ(Lz) = (z − r)ke2πiκf(z), ϕ(AThA−1z) = e2πiκϕ(z).
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With Az instead of z we get

ϕ(AThz) = e2πiκϕ(Az).

Now it is easy to verify that the holomorphic function

g(z) = e−2πiκzϕ(A(hz))

has period 1, and hence can be expanded in a Laurent series in the variable
q = e(z) which is valid for 0 < |q| < 1. Rewriting it for the function f(z), we
obtain an expansion of the form

f(z) = (z − r)−k
∑

n

c(n)e
(

(n + κ)A−1(z)
h

)
, (1.18)

valid for z ∈ H, with summation over all n ∈ Z. It is called the Fourier
expansion of f at the cusp r. As before, f is called holomorphic at the cusp
r if c(n) �= 0 implies that n + κ ≥ 0. It can be shown that this condition
is independent of the choice of the matrix A in Γ1 which sends r to ∞.—So
finally, we have explained the meaning of the requirement (2) on modular
forms.

At this point a remark on the multiplier system v of a modular form is in
order. We use the notation J(L, z) = cz + d for L =

(
a b
c d

)
∈ SL2(R)

which was introduced in Sect. 1.3. Suppose that there exists a function f
which satisfies (1) and is not identically 0. Then it is easy to prove that

v(L1L2) J(L1L2, z)k = v(L1)v(L2) J(L1, L2z)k J(L2, z)k

for all L1, L2 ∈ Γ. (See [70], §2.1, for example.) Matters are simplified
considerably when we deal with an integral weight k. Then we do not
have to worry about arguments of complex numbers, and from J(L1L2, z) =
J(L1, L2z)J(L2, z) we obtain

v(L1L2) = v(L1)v(L2).

Thus the multiplier system of a modular form of integral weight on Γ is a
homomorphism of Γ into the complex numbers of absolute value 1.

We continue with some definitions and remarks.

A modular form f is called a cusp form if it vanishes at all cusps. This
means that for all r ∈ Q ∪ { ∞} we have c(n) = 0 whenever n + κ ≤ 0 in the
expansions (1.17) and (1.18). Points z, w in H ∪ Q ∪ { ∞} are called equivalent
with respect to the group Γ if w = Lz for some L ∈ Γ. The set Γ(z) of points
equivalent to z is called the orbit of z under Γ or the Γ-orbit of z. Let f be a
function with property (1). If f is holomorphic or vanishes at a cusp r then
it is easy to see that f is holomorphic or vanishes at all cusps in the Γ-orbit
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of r, respectively. It is well-known that for the groups considered here there
exist only finitely many orbits of cusps. Therefore, in order to show that f
is a modular form it suffices to verify (2) for a finite set of representatives of
cusp orbits.

Clearly, the set of modular forms of weight k and multiplier system v for Γ
is a complex vector space, and the same is true for cusp forms. We denote
these spaces by M(Γ, k, v) and S(Γ, k, v), respectively. (We will rarely need
to use these notations.) Compactness arguments show that these spaces are
{0} whenever k ≤ 0, except for the equally trivial space M(Γ, 0, 1) = C

where 1 stands for the constant function 1 on Γ. Moreover, for the groups
considered here, all spaces of modular forms have finite dimension. In some
cases the dimension can be computed by contour integration with the help
of the argument principle; in more cases, the Riemann–Roch theorem yields
a dimension formula. We refer to the numerous textbooks for this important
topic, but here we will not reproduce dimension formulae.

Frequently the condition of holomorphicity is too strong since it excludes
interesting examples. A function f on H is called a meromorphic modular
form of weight k and multiplier system v for Γ if it is meromorphic on H,
satisfies (1) and is meromorphic at all cusps r ∈ Q ∪ { ∞}. This last condition
means that in each of the Fourier expansions (1.17) and (1.18) we have c(n) �=
0 for only finitely many n with n+κ < 0. Also, this condition implies that f
is holomorphic in a half plane {z ∈ C | Im(z) > M } for some sufficiently large
M > 0. Moreover, now the expansions (1.17) and (1.18) need not hold for
all z ∈ H, but only for 0 < |e(z)| < ε with some sufficiently small ε > 0. An
interesting class consists of those meromorphic modular forms whose poles are
supported by the cusps, that is, which are holomorphic on H. Eta products
belong to this class.

The case of weight k = 0 is of foremost importance. A meromorphic modular
form f of weight 0 and trivial multiplier system 1 for Γ is called a modular
function for Γ. It satisfies

f(Lz) = f(z) for all L ∈ Γ.

Clearly, the set of all modular functions for Γ is a field. It can be identified
with the field of meromorphic functions on the compact Riemann surface
corresponding to Γ.

Let f be a (holomorphic or) meromorphic modular form of weight k and
multiplier system v for Γ which is not identically 0, and let r be a cusp. Let
n0 be the smallest integer for which c(n0) �= 0 in the Fourier expansion (1.17)
or (1.18). Then we call

ord(f, r) = n0 + κ

the order of f at the cusp r.
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We give a final remark on products of modular forms. For j = 1, 2, let fj be
a (holomorphic or) meromorphic modular form of weight kj and multiplier
system vj for a group Γ̃j commensurable with the modular group. Then,
clearly, the product f1f2 is a (holomorphic or) meromorphic modular form
of weight k1 + k2 and some multiplier system v for the group Γ̃1 ∩ Γ̃2. In the
case of integral weights we have v(L) = v1(L)v2(L) for L in the intersection
of the groups. By this observation one can construct new modular forms
from known ones. We will use it when we introduce eta products in Sect. 2.

1.5 Eisenstein Series for the Full Modular Group

Part of the fascination in the realm of modular forms comes from the fact that
there are several possibilities to construct such functions arithmetically, while
on the other hand they form vector spaces of small dimensions. Therefore
there are linear relations and other identities among modular forms which
encode interesting arithmetical relations among their Fourier coefficients. As
for the constructions, we will introduce eta products in Sect. 2, Hecke theta
series in Sect. 5, and in the present subsection we introduce a few of the many
types of Eisenstein series.

Definition. A non-zero modular form is called normalized if its first non-
zero Fourier coefficient (at the cusp ∞) is equal to 1. For an even integer
k ≥ 2, the normalized Eisenstein series Ek of weight k for the modular group
Γ1 is defined by

Ek(z) = 1 − 2k

Bk

∞∑

n=1

σk−1(n)e(nz) (1.19)

for z ∈ H, where B2 = 1
6 , B4 = − 1

30 , B6 = 1
42 , . . . are the Bernoulli numbers,

defined by the expansion

w

ew − 1
=

∞∑

n= 0

Bn

n!
wn for 0 < |w| < 2π,

and where
σl(n) =

∑

d|n, d>0

dl

for any real l. For later use we introduce τ(n) = σ0(n), the number of positive
divisors of n, as a special case of the divisor sums σl(n).

It is well-known that Ek(z) is a modular form of weight k and trivial multiplier
system for the full modular group Γ1 if k ≥ 4. It is not a cusp form because
of the non-zero constant coefficient in (1.19). For k ≥ 4, Ek(z) is a constant
multiple of the (non-normalized) Eisenstein series

Gk(z) =
∑

m,n∈Z, (m,n) �=(0,0)

(mz + n)−k
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for which it is easy to verify that the transformation property Gk(Lz) =
J(L, z)kGk(z) holds for all L ∈ Γ1. Whereas we have absolute and locally
uniform convergence in H of the series Gk(z) for k ≥ 4 and of Ek(z) for
all k ≥ 2, the series G2(z) is only conditionally convergent. By evaluat-
ing the difference for two specific orders of summation, one can prove (see
Schoeneberg [125], §3.2, or Serre [127], §7.4.4) the important transformation
formula

E2

(
− 1

z

)
= z2E2(z) − 6i

π
z. (1.20)

The relation E2(z + 1) = E2(z) is obvious. More generally,

E2(Lz) = (cz + d)2E2(z) − 6ic

π
(cz + d) (1.21)

holds for all L =
(

a b
c d

)
∈ Γ1. Non-zero modular forms of weight 2 and

trivial multiplier system for Γ1 do not exist.

Non-zero cusp forms with trivial multiplier system for Γ1 exist for even
weights k = 12 and k ≥ 16, but for no other weights. For k = 12 we
have the cusp forms E3

4 − E2
6 and the discriminant function

Δ(z) = η24(z) = e(z)
∞∏

n=1

(1 − e(nz))24 =
∞∑

n=1

τ(n)e(nz), (1.22)

whose coefficients τ(n) are called the Ramanujan numbers. Since the corre-
sponding space of cusp forms has dimension 1, the two functions are propor-
tional; comparing the first non-zero coefficients yields

E3
4(z) − E2

6(z) = 123Δ(z),

an instance of the arithmetical relations mentioned at the beginning of this
subsection. It is well-known that every modular form with trivial multiplier
system for Γ1 can uniquely be written as a polynomial in the Eisenstein series
E4 and E6.

1.6 Eisenstein Series for Γ0(N) and Fricke Groups

In this subsection we introduce Eisenstein series of weights k ≥ 3 for the
subgroups Γ0(N) of the modular group and for the Fricke groups Γ∗(N).
The relation (1.21) is used to construct an Eisenstein series of weight 2 for
Γ∗(N). The groups are defined as follows:

For a positive integer N we introduce

Γ0(N) =
{(

a b
c d

)
∈ SL(2, Z)

∣∣∣ c ≡ 0 (mod N)
}

.
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It is called the Hecke congruence group of level N . The groups are named
after Erich Hecke because of his important contributions, although other
mathematicians worked on them much earlier. The matrix

WN =
(

0 1/
√

N

−
√

N 0

)

corresponds to the involution z �→ − 1
Nz of the upper half plane. It belongs to

the normalizer of Γ0(N) in SL2(R). The group which is generated by Γ0(N)
and WN is called the Fricke group of level N and denoted by Γ∗(N). We
call WN a Fricke involution. The index of Γ0(N) in Γ∗(N) is 2, with cosets
represented by the identity and WN . We will not need the full normalizer
of Γ0(N) in SL2(R) which is generated by Γ0(N) and all the Atkin–Lehner
involutions; see [6].

We begin with an observation which is easy to verify but important: Let
M, N, d be positive integers such that M |N and d|(N/M). Let f be a modular
form of weight k for Γ0(M). Then the function

g(z) = f(dz)

is a modular form of weight k for Γ0(N). If f has trivial multiplier system
then the multiplier system of g is trivial, too. So in particular, for N, d ∈ N,
d|N and even k ≥ 4 the Eisenstein series Ek(dz) are modular forms of weight
k with trivial multiplier system for Γ0(N). A bit more is true:

Proposition 1.8 For integers N ≥ 2, even k ≥ 2 and δ ∈ {1, −1}, define
the Eisenstein series

Ek, N,δ(z) =
1

1 + δNk/2

(
Ek(z) + δNk/2Ek(Nz)

)
.

Then for k ≥ 4, Ek, N,δ(z) is a modular form of weight k for the Fricke group
Γ∗(N) whose multiplier system v is given by v(L) = 1 for L ∈ Γ0(N) and
v(L) = δ for L �∈ Γ0(N). The function

E2, N,−1(z)

is a modular form of weight 2 for Γ∗(N) whose multiplier system v is given
by v(L) = 1 for L ∈ Γ0(N) and v(L) = −1 for L �∈ Γ0(N).

Proof. The factor C = 1/(1+δNk/2) is introduced merely to get a normalized
function. We put f(z) = Ek, N,δ(z).

Let k ≥ 4. The introductory remark implies that f is a modular form of
weight k for Γ0(N) with trivial multiplier system. For the Fricke involution
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we obtain

f(WNz) = C

(
Ek

(
− 1

Nz

)
+ δNk/2Ek

(
− 1

z

))

= C
(
(Nz)kEk(Nz) + δNk/2zkEk(z)

)

= δ (
√

Nz)kf(z).

Thus with respect to WN , f transforms like a modular form of weight k with
multiplier v(WN ) = δ. This implies the assertion on f .

Now we consider the case k = 2, δ = −1. Let L =
(

a b
c d

)
∈ Γ0(N) be

given. From (1.21) we obtain

f(Lz) = C

(
E2

(
az + b

cz + d

)
− NE2

(
a · Nz + Nb

c
N · Nz + d

))

= C

(
(cz + d)2 (E2(z) − NE2(Nz)) − 6i

π
(cz + d)

(
c − N · c

N

))

= (cz + d)2f(z).

A slightly simpler computation for WN , using (1.20), yields

f(WNz) = −(
√

Nz)2f(z).

In each case we observe cancellation of the extra terms in (1.20) and (1.21)
which indicate the deviation of E2(z) from a modular form. It follows that f
transforms like a modular form of weight 2 for Γ∗(N) with multiplier system
as stated in the proposition. The correct behavior at cusps follows from the
expansion of E2(z) at ∞ and the transformation properties. �

Now we present the Eisenstein series of “Nebentypus” which were introduced
by Hecke [53].

Theorem 1.9 (Hecke [53]) Let P be an odd prime and let χ be the Dirich-
let character modulo P which is defined by the Legendre symbol χ(n) =

(
n
P

)
.

Suppose that k ≥ 3 and χ(−1) = (−1)k. Then the Eisenstein series

F1(z) =
∞∑

n=1

( ∑

d>0, d|n
χ
(

n
d

)
dk−1

)
e(nz) (1.23)

and

F2(z) = Ak(P ) +
∞∑

n=1

( ∑

d>0, d|n
χ(d)dk−1

)
e(nz), (1.24)

with

Ak(P ) = (−1)�k/2� P (2k−1)/2(k − 1)!
(2π)k

L(χ, k), L(χ, k) =
∞∑

n=1

χ(n)n−k,
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are modular forms of weight k for Γ0(P ) with character χ, i.e., they satisfy
F (Lz) = χ(d)(cz + d)kF (z) for L =

(
a b
c d

)
∈ Γ0(P ). The transformation

S =
(

0 −1
1 0

)
interchanges the functions F1, F2 according to

F1

(
− 1

z

)
= (−i)k(−1)�k/2�P (1−2k)/2zkF2

(
z

P

)
, (1.25)

F2

(
− 1

z

)
= (−i)k(−1)�k/2�P −1/2zkF1

(
z

P

)
. (1.26)

We use the relations (1.25), (1.26) to define Eisenstein series for the Fricke
group Γ∗(P ) similarly as in Proposition 1.8:

Definition. Let P , χ, k and F1, F2 be given as in Theorem 1.9. Then we
put

Ek,P, i(z) =
1

Ak(P )
(
F2(z) − P (k−1)/2F1(z)

)

= 1 +
1

Ak(P )

∞∑

n=1

( ∑

d|n

(
χ(d) − P (k−1)/2χ

(
n
d

))
dk−1

)
e(nz),

(1.27)

Ek,P, −i(z) =
1

Ak(P )
(
F2(z) + P (k−1)/2F1(z)

)
. (1.28)

Since both F1 and F2 are modular forms of weight k for Γ0(P ) with charac-
ter χ, this holds true also for Ek,P,±i. From (1.25), (1.26) and the definitions
one easily deduces

Ek,P, δi

(
− 1

Pz

)
= −δ(−i)k(−1)�k/2�(

√
Pz)kEk,P, δi(z)

for δ ∈ {1, −1}. Hence we have modular forms for the Fricke group:

Proposition 1.10 For P , χ and k as in Theorem 1.9, the Eisenstein series
Ek,P, δi are modular forms of weight k for the Fricke group Γ∗(P ). Their

multiplier systems vδ are given by vδ(L) = χ(d) =
(

d
P

)
for L =

(
a b
c d

)
∈

Γ0(P ) in both cases, and vδ(WP ) = −δ(−i)k(−1)�k/2�.

We observe that Theorem 1.9 and Proposition 1.10 yield Eisenstein series
of odd weights k ≥ 3 for prime levels P ≡ 3 mod 4. The values L(χ, k) of
the L-series are explicitly known, and the constant term Ak(P ) in F2(z) is
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a rational number; see [59], §16.4, [84], §14.2, or [140], §7. For example, for
level P = 3 we have the weight 3 Eisenstein series

E3,3,i(z) = 1 + 18
∞∑

n=1

(∑

d|n

1
2
(
3
(n/d

3

)
−
(

d
3

))
d2

)
e(nz),

E3,3,−i(z) = 1 − 18
∞∑

n=1

(∑

d|n

1
2
(
3
(n/d

3

)
+
(

d
3

))
d2

)
e(nz).

They satisfy

E3,3,i

(
− 1

3z

)
= i(

√
3z)3E3,3,i(z), E3,3,−i

(
− 1

3z

)
= −i(

√
3z)3E3,3,−i(z).

The signs in these transformation formulae have been the reason for the choice
of signs in the notation Ek,P, δi(z). We will meet the functions E3,3, δi(z) in
Sect. 11.2.

There are many more types of Eisenstein series which will not be presented
here. We refer to [30], Chap. 4, [96], Chap. 7, and [125], Chap. 7 for a
thorough discussion, including the delicate cases of small weights 1 and 2.
We will meet several examples in Part II.

1.7 Hecke Eigenforms

Spaces of modular forms possess bases of arithmetically distinguished func-
tions: Their Fourier expansions have multiplicative coefficients which, more-
over, satisfy simple recursions at powers of each prime. As a consequence,
the corresponding Dirichlet series have Euler product expansions of a partic-
ularly simple type. The tool for establishing these results is provided by a
sequence of linear operators on spaces of modular forms, the Hecke operators,
and the basis functions in question are the so-called Hecke eigenforms. For
introductions to this body of theory, in complete detail or in a more sketchy
form, we can refer to [16], [30], [33], [55], [61], [72], [73], [84], [90], [96], [105],
[117], [127], [131]. Here we will reproduce the basic definitions and some of
the main results.

Let f ∈ M(Γ1, k, 1) be a modular form of integral weight k on the full
modular group Γ1 with trivial multiplier system. For a positive integer m,
the action of the mth Hecke operator Tm on f is given by

Tmf(z) = mk−1
∑

ad = m, a > 0

d−k
∑

b mod d

f

(
az + b

d

)
. (1.29)

This definition looks more natural when one interprets modular forms as
homogeneous functions on lattices: We consider complex valued functions F
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on the set of all lattices Λ ⊂ C which are homogeneous of degree −k, that
is, which satisfy F (αΛ) = α−kF (Λ) for all lattices Λ and α ∈ C, α �= 0.
Any lattice can be written as Λ = αΛz with Λz = Z + Zz where z in
the upper half plane is unique up to a transformation from Γ1. Then the
assignment f(z) = F (Λz) yields a bijection from functions F on lattices,
homogeneous of degree −k, to functions f on the upper half plane satisfying
the transformation law (1) in the definition of modular forms in Sect. 1.4
(for Γ = Γ1, k integral, v = 1). The action of the mth Hecke operator on
degree −k functions F on lattices is simply given by TmF (Λ) =

∑
Λ′ F (Λ′)

where Λ′ runs over all sublattices of index m in Λ. Choosing appropriate
representatives for sublattices and translating back to modular forms yields
the definition (1.29), up to the normalizing factor mk−1. In terms of the
Fourier expansion (1.17) of f , which under our present assumptions simply
reads

f(z) =
∞∑

n= 0

c(n)e(nz) , (1.30)

the action of Tm is given by

Tmf(z) =
∞∑

n= 0

( ∑

d > 0 , d| gcd(n,m)

dk−1c
(

mn
d2

))
e(nz) . (1.31)

The operators Tm map M(Γ1, k, 1) into itself, they are linear, and they map
cusp forms into cusp forms. Any two operators Tm, Tl commute and satisfy

TmTl =
∑

d > 0 , d| gcd(m,l)

dk−1Tml/d2 . (1.32)

In particular we have

TpTpr = Tpr+1 + pk−1Tpr−1 (1.33)

for primes p and any r ≥ 1. The subspace S(Γ1, k, 1) of cusp forms is a
Hilbert space with respect to the Petersson inner product (whose definition
by an integral we are not going to reproduce here), and the Hecke operators
are self-adjoint with respect to this inner product. Therefore it follows from
linear algebra that the operators Tm can simultaneously be diagonalized on
the space of cusp forms. Thus S(Γ1, k, 1) has a basis of functions f which
are eigenvectors for all operators Tm and which are mutually orthogonal with
respect to the Petersson inner product. This result extends to M(Γ1, k, 1)
since it is easily seen that the Eisenstein series Ek in (1.19) is an eigenvector.
If f �= 0 and Tmf(z) = λ(m)f(z) for all m then from (1.31) we obtain (for
n = 1) that λ(m)c(1) = c(m) for all m. It follows that c(1) �= 0, and we can
achieve that c(1) = 1. In this case the eigenvalues coincide with the Fourier
coefficients; we have

λ(m) = c(m), Tmf(z) = c(m)f(z) for all m,
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and f is called a normalized Hecke eigenform, or simply an eigenform. The
relations (1.32), (1.33) then imply that

c(mn) = c(m)c(n) for gcd(m, n) = 1, (1.34)

c(pr+1) = c(p)c(pr) − pk−1c(pr−1) (1.35)

for all primes p and all r ≥ 1. Thus the Fourier coefficients of an eigenform are
multiplicative and satisfy a simple recursion at powers of primes. Moreover,
they are totally real algebraic integers. An eigenform is uniquely determined
by the eigenvalues.

The dimension of S(Γ1, k, 1) is equal to 1 for k = 12, 16, 18, 20, 22, 26. It is
clear then that the normalized modular forms Δ, ΔE4, ΔE6, ΔE2

4 , ΔE4E6,
ΔE2

4E6 in these spaces are normalized Hecke eigenforms. For the most
prominent example of the discriminant function Δ(z) we obtain that the Ra-
manujan numbers τ(n) are multiplicative and satisfy τ(pr+1) = τ(p)τ(pr) −
p11τ(pr−1) for all primes p.

For any modular form f with Fourier expansion (1.30), its Hecke L-series is
defined by

L(f, s) =
∞∑

n=1

c(n)n−s. (1.36)

For an eigenform f the relations (1.34) (1.35) translate into the Euler product
expansion

L(f, s) =
∏

p

(
1 − c(p)p−s + pk−1−2s

)−1
, (1.37)

where the product is taken over all primes p. We mention in passing that,
independently from f being an eigenform or not, the Dirichlet series (1.36)
converges for Re(s) > k, has an analytic continuation to the whole complex s-
plane, and satisfies a functional equation of Riemann type relating the values
at s and k − s.

In the late 1930’s Hecke and Petersson generalized the theory of the opera-
tors Tm to spaces of modular forms on congruence subgroups of the modular
group, most notably for the groups Γ0(N). But some of the main results,
such as the uniqueness of simultaneous eigenforms and the unrestricted Eu-
ler product formula (1.37), do not hold true for N > 1. Fully satisfactory
generalizations were achieved only later by Atkin and Lehner [6], with major
contributions by W. Li [87], [88], Pizer [112], and other authors, when the
concept of newforms was introduced and elaborated.

We consider the spaces M(Γ0(N), k, χ) and their subspaces S(Γ0(N), k, χ)
of cusp forms f of integral weight k which transform according to

f(Lz) = χ(d) (cz + d)k f(z) for L =
(

a b
c d

)
∈ Γ0(N),
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where χ is a Dirichlet character modulo N . For such a function f and for
primes p the action of Tp is defined by

Tpf(z) = pk−1

(
p−1∑

b= 0

p−kf
(

z+b
p

)
+ χ(p)f(pz)

)
. (1.38)

In terms of the Fourier expansion of f , which can also be written as (1.30),
this reads

Tpf(z) =
∞∑

n= 0

(
c(pn) + χ(p)pk−1c(n/p)

)
e(nz) , (1.39)

where we agree that c(n/p) = 0 if p � n. More generally, for any positive
integer m the action of the Hecke operator Tm is given by

Tmf(z) =
∞∑

n= 0

( ∑

d > 0 , d| gcd(n,m)

χ(d) dk−1 c
(

mn
d2

))
e(nz), (1.40)

where we note that χ(d) = 0 whenever gcd(d, N) > 1. Any two of the opera-
tors Tm with gcd(m, N) = 1 commute, and they are normal (not necessarily
self-adjoint) with respect to the Petersson inner product on S(Γ0(N), k, χ).
This yields Petersson’s result [108]:

The space S(Γ0(N), k, χ) has an orthogonal basis of common eigenfunctions
of the operators Tm for all m with gcd(m, N) = 1.

Generally, and in contrast to the case N = 1 handled above, S(Γ0(N), k, χ)
does not necessarily have a basis of common eigenfunctions for all Tm, and
subspaces of simultaneous eigenfunctions of the operators Tm with
gcd(m, N) = 1 need not be one-dimensional. The reason for this is sim-
ple and explained as follows. Suppose that M is a proper divisor of N and
that χ is induced from a character χ

′
modulo M . (For example, χ might be

trivial and M any proper divisor of N .) Let l be a positive integer such that
lM |N , and let f ∈ M(Γ0(M), k, χ

′
). Then it is easy to see that g(z) = f(lz)

belongs to M(Γ0(N), k, χ) and that the operators Tm with gcd(m, N) = 1
act on g in exactly the same way as they act on f . Thus M(Γ0(M), k, χ

′
)

sits in at least two different ways (for l = 1 and l = N
M ) in M(Γ0(N), k, χ),

and the same can be said for cusp forms. Following Atkin and Lehner [6], one
denotes by S old(Γ0(N), k, χ) the subspace of cusp forms which is spanned by
the functions g(z) = f(lz) with cusp forms f when M and l vary as described
above. It is called the space of oldforms. One concludes that the operators
Tm with gcd(m, N) = 1 map S old(Γ0(N), k, χ) into itself and that subspaces
of common eigenfunctions of these operators have dimensions at least 2.

Let S new(Γ0(N), k, χ) be the orthogonal complement of S old(Γ0(N), k, χ) in
S(Γ0(N), k, χ) with respect to the Petersson inner product. It is also invariant
under the operators Tm with gcd(m, N) = 1, since these operators are normal,
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and therefore it also has a basis of common eigenfunctions of the operators
Tm with gcd(m, N) = 1. Such an eigenfunction is called a newform. We
note that S new(Γ0(N), k, χ) = S(Γ0(N), k, χ) if χ is a primitive character
modulo N .

It turns out that the main assertions of the Hecke theory for S(Γ1, k, 1)
generalize to hold for newforms. In particular, if f is a newform and (1.30)
its Fourier expansion, then c(1) �= 0, and we can achieve that c(1) = 1, in
which case f is called a normalized newform. The main results for newforms,
embracing the above results for N = 1, are summarized as follows:

Theorem 1.11 (Atkin–Lehner) Let k, N be positive integers and χ a
Dirichlet character modulo N . The following assertions hold.

(1) There exists an orthogonal basis of S new(Γ0(N), k, χ) consisting of nor-
malized newforms. Let f ∈ S new(Γ0(N), k, χ) be a normalized newform
and c(n) its Fourier coefficients.

(2) For all m ≥ 1 we have
Tmf = c(m)f.

The eigenvalues c(m) are algebraic integers. For prime divisors p of N

we have |c(p)| = p
1
2 (k−1) if χ is not induced from a character modulo

N
p , while otherwise we have c(p) = 0 if p2|N , and c(p)2 = χ(p)pk−2 if
p2

� N .

(3) The Dirichlet series associated to f has the Euler product expansion

L(f, s) =
∏

p

(
1 − c(p)p−s + χ(p)pk−1−2s

)−1
.

(Note that χ(p) = 0 if p|N .)

(4) If g(z) =
∑∞

n=1 b(n)e(nz) is a normalized newform of weight k and
some level M and character ψ modulo M , and if b(p) = c(p) for
all but finitely many primes p, then M = N , ψ = χ and g = f .
The simultaneous eigenspaces of the operators Tp for primes p � N in
S new(Γ0(N), k, χ) are one-dimensional, and the normalized newforms
constitute the unique orthogonal basis of S new(Γ0(N), k, χ) consisting
of normalized common eigenfunctions of the operators Tp for primes
p � N .

Part (4) in Theorem 1.11 is called the multiplicity one theorem. The eigen-
values c(p) of a normalized newform of weight k satisfy

|c(p)| ≤ 2p
k−1
2
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for all primes p. This is the celebrated Deligne theorem, formerly the Rama-
nujan–Petersson conjecture, and a very deep result. We will see in Sect. 5.3
that in the special case of Hecke theta series this inequality follows trivially
from the decomposition of prime numbers into prime ideals in quadratic
number fields.

1.8 Identification of Modular Forms

The dimensions of spaces of modular forms are “small”. (We mentioned that
in Sect. 1.5.) This follows from the fact that the total number of zeros of
a non-zero modular form in a fundamental set of its group is “small”. In
the simplest case of a modular form f �= 0 of integral weight k and trivial
multiplier system on the full modular group Γ1, contour integration and the
argument principle yield the valence formula

ord(f, ∞) + 1
2 ord(f, i) + 1

3 ord(f, ω) +
∑

z

ord(f, z) =
k

12
, (1.41)

where ord(f, z) is the order of f at the point z and the summation is on all
z in the standard fundamental domain of Γ1 different from the elliptic fixed
points i and ω = e

(
1
6

)
. Therefore, if (1.30) is the Fourier expansion of a

function f ∈ M(Γ1, k, 1) and if c(n) = 0 for all n ≤ 1 + k
12 , then it follows

that f = 0, since otherwise the left hand side in (1.41) would be bigger
than the right hand side. Equivalently, two modular forms in M(Γ1, k, 1)
are identical if their initial segments of

⌊
1 + k

12

⌋
Fourier coefficients match.

Hence one can prove an identity among modular forms by simply comparing
a few of their Fourier coefficients.

This principle generalizes to other spaces of modular forms. In [53] (Math.
Werke, p. 811) Hecke gave the following results: If f ∈ M(Γ0(N), k, 1) with
expansion (1.30) satisfies

c(n) = 0 for all n ≤ 1 +
k

12
μ0(N) ,

then f = 0. If f ∈ M(Γ0(N), k, χ) with a real character χ �= 1 satisfies
c(n) = 0 for all n ≤ 2 + k

12 μ0(N), then f = 0. Here

μ0(N) =
[
Γ1 : Γ0(N)

]
= N

∏

p|N

(
1 +

1
p

)

is the index of Γ0(N) in Γ1. A similar result is given in [116], Theorem 1.
A more general result can be found in Petersson’s monograph [110], Satz 3.5,
p. 47:



30 1. Dedekind’s Eta Function and Modular Forms

Theorem 1.12 Let Γ be a subgroup with finite index μ(Γ) = [Γ1 : Γ] in the
full modular group Γ1. For cusp forms f, g ∈ S(Γ, k, v) of weight k > 0 and
multiplier system v on Γ, let their Fourier expansions at ∞ be written as
(1.17) with coefficients c(n) and b(n), respectively. Then if

c(n) = b(n) for all n ≤ k

12
μ(Γ) − β(Γ, k, v) , (1.42)

we have f = g.

We will not reproduce the definition of the entity β(Γ, k, v) which is concocted
from cusp parameters (see Sect. 1.4) and properties of elliptic fixed points.
Since β(Γ, k, v) ≥ 0, we can simply ignore this term in applying Theorem 1.12
and verify c(n) = b(n) for n ≤ k

12 μ(Γ).

Verifying the identities in Part II provides numerous instances for the ap-
plication of Theorem 1.12 (or other versions of the same principle). For a
simple example, consider the identities for η2(z) in Example 9.1. The func-
tion η2(12z) belongs to Γ0(144), and by Theorems 5.1, 5.3 this holds also
for the theta series Θ1(3, ξ, z), Θ1(−4, χ

ν
, z) and Θ1(−3, ψ

ν
, z) in this exam-

ple. Thus for establishing the identities it suffices to compare coefficients for
n ≤ 1

12 μ0(144) = 24. This is very easy indeed, since for trivial reasons the
coefficients vanish for all n �≡ 1 mod 12. For most of the other examples in
Part II the work to be done is lengthier.

In closing this subsection we mention the papers [39], [82], [116], [126] where
a quite different, but related problem is discussed: Let f and g be distinct
normalized Hecke newforms, not necessarily of the same weights or levels.
Find an upper bound for the smallest prime p for which the Hecke operator
Tp has distinct eigenvalues at f and at g.



2 Eta Products

2.1 Level, Weight, Nominator and Denominator of an
Eta Product

By an eta product we understand any finite product of functions

f(z) =
∏

m

η(mz)am

where m runs through a finite set of positive integers and the exponents
am may take any values from Z, positive or negative or 0. (Of course, an
exponent 0 contributes a trivial factor 1 to the product, and therefore we
may as well assume that am �= 0 for all m.) Since the product is finite, the
lowest common multiple N = lcm{m} exists, and every m divides N . We
write

f(z) =
∏

m|N
η(mz)am , (2.1)

and we call f an eta product of level N . Here, formally, m runs through
all positive divisors of the positive integer N , and some of the exponents am

might be 0. We will use this notation also in cases when N is bigger than
lcm{m}; then N is a multiple of the level of the eta product.

Some authors use the term eta quotient for functions as in (2.1), and they
reserve the term eta product for the case when am ≥ 0 for all m.

Often we will use the notation

[1a1 , 2a2 , 3a3 , . . .]

as an abbreviation for the eta product η(z)a1η(2z)a2η(3z)a3 . . . . This nota-
tion is adopted from [42]. The term in square brackets will often be written
as a fraction with positive exponents in its numerator and denominator.

G. Köhler, Eta Products and Theta Series Identities,
Springer Monographs in Mathematics,
DOI 10.1007/978-3-642-16152-0 2, c© Springer-Verlag Berlin Heidelberg 2011

31

http://dx.doi.org/10.1007/978-3-642-16152-0_2
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An eta product (2.1) transforms like a modular form of weight

k =
1
2

∑

m

am

with some multiplier system on the congruence group Γ0(N). This means
that for every L =

(
a b
c d

)
∈ Γ0(N) we have

f(Lz) = f

(
az + b

cz + d

)
= vf (L)(cz + d)kf(z)

where vf (L) is some 24th root of unity which can be computed from the
multiplier system vη of the eta function. We will rarely need to know the
values vf (L) of the multiplier system of f explicitly. We have

vf (L) = vf

(
a b
c d

)
=
∏

m|N

(
vη

(
a mb

c/m d

))am

where the values of vη are given explicitly in Theorem 1.7. Highly important

for us, however, is the value vf (T ) for the translation T =
(

1 1
0 1

)
. We

write
1
24

∑

m|N
mam =

s

t
(2.2)

in lowest terms, i.e., with gcd(s, t) = 1. Then it is a trivial consequence from
η(z + 1) = e

(
1
24

)
η(z) that we have vf (T ) = e

(
s
t

)
,

f(Tz) = f(z + 1) = e
(s

t

)
f(z).

It follows that f has a Fourier expansion of the form

f(z) =
∑

n≡s( mod t), n≥s

cne
(nz

t

)
(2.3)

with coefficients cn ∈ Z, cs = 1. In particular, s
t is the order of f at the

cusp ∞. We call s the numerator and t the denominator of the eta prod-
uct (2.1). The denominator t is a divisor of 24.

An explicit formula for vf (L) is given in [105], Theorem 1.64 in the case when
the weight k and the number (2.2) are integers (whence t = 1) and when also
1
24

∑
m|N maN/m is an integer; in this case vf (L) is a function of d only.

For a Fourier series (2.3), the sign transform is

f
(
z + 1

2

)
= e

(
s
2t

) ∑

n≡s( mod t), n≥s

(−1)(n−s)/tcne
(nz

t

)
.
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Modifying our concept from Sect. 1.2, we will also call the series for e(− s
2t ) ×

f(z + 1
2 ) the sign transform of the series for f(z).

An eta product f of level N as in (2.1) will be called old if there is an integer
d ≥ 1, a proper divisor N1 of N and an eta product g of level N1 such that
f(z) = g(dz). Otherwise f will be called a new eta product. Since f and g
have identical Fourier coefficients, it often suffices to study new eta products.
Nevertheless, sometimes it is advantageous to consider old ones. For example,
g(z) = η(z)η(2z) and f(z) = η(8z)η(16z) both are old eta products of level
16, while g is new of level 2. But f has period 1, and hence its Fourier
expansion is a power series in the variable q = e(z), which might be nicer
than the expansion of g with fractional powers of q.—We emphasize that our
concept of a new eta product has little to do with the concept of a newform in
the theory of Hecke operators as explained in Sect. 1.7. Only occasionally it
will happen that a new eta product is also a Hecke eigenform. (Incidentally,
η(z)η(2z) is such an example; see Sect. 10.1.)

2.2 Eta Products on the Fricke Group

For the moment, let us put fm(z) = η(mz), where m is a positive integer.
From η(−1/z) =

√
−iz η(z) it follows that

fm(WN z) = fm

(
− 1

Nz

)
= η

(
− 1

(N/m)z

)
=
√

−(iN/m)z η

(
N

m
z

)
.

Thus, for an eta product f of level N as in (2.1), we obtain

f(WN z) =
∏

m|N

(
(−i(N/m)z)1/2η

(
N

m
z

))am

=
∏

m|N

(
(−imz)1/2η(mz)

)aN/m

= (−iz)k

( ∏

m|N
maN/m

)1/2 ∏

m|N
η(mz)aN/m .

The eta product f transforms like a modular form of weight k for the Fricke
group Γ∗(N) if and only if

f(WNz) =
(

−i
√

Nz
)k

f(z).

We see that this holds if and only if the condition

aN/m = am for all m|N (2.4)

is satisfied. An eta product with this property will be called an eta product
on the Fricke group of level N .
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We observe that an eta product of level N is determined by its system of τ(N)
exponents am, whereas roughly half of these parameters—exactly �τ(N)/2�
of them—suffice to determine an eta product on the Fricke group. Here,
τ(N) = σ0(N) is the number of positive divisors of N , as introduced in
Sect. 1.5.

2.3 Expansion and Order at Cusps

The product for η(z) tells us that this function is nowhere 0. Therefore, eta
products (2.1) are holomorphic on the upper half plane regardless of their
system of exponents am. However, we will restrict our study to eta products
which are holomorphic at all cusps, too. In particular, the order at the cusp
∞ should be non-negative, i.e.,

s

t
≥ 0.

We need conditions for an eta product to be holomorphic at the other cusps
r ∈ Q. For this purpose we give a formula for the order of functions η(mz)
at an arbitrary cusp and, somewhat more general, for the Fourier expansion
of η(mz) at cusps. This expansion will eventually be useful when we want
to decide whether a linear combination of eta products is a cusp form, where
the eta products are holomorphic at all cusps, but not cusp forms themselves.

Proposition 2.1 Let fm(z) = η(mz) with m ∈ N, and let r = − d
c ∈ Q be

a reduced fraction with c �= 0. Let a, b be chosen such that A =
(

a b
c d

)
∈

SL2(Z). Then we have:

(1) The expansion of fm at the cusp r is

fm(A−1z) = vη(L)
(

gcd(c, m)
m

(−cz + a)
)1/2

×
∞∑

n=1

(
12
n

)
e

(
n2

24m

(
(gcd(c, m))2z + ν gcd(c, m)

))

where L =
(

x ∗
u ∗
)

∈ SL2(Z), x = md
gcd(c,m) , u = − c

gcd(c,m) , and ν is some
integer.

(2) The order of fm at the cusp r is

ord(fm, r) =
1

24m
(gcd(c, m))2 .
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Proof. Since c, d are relatively prime, we can choose a, b ∈ Z such that
A =

(
a b
c d

)
∈ SL2(Z). We get A−1(∞) =

(
d −b

−c a

)
(∞) = − d

c = r and

fm(A−1z) = η

(
mdz − mb

−cz + d

)
= η(αz)

where α =
(
md −mb

−c a

)
, det(α) = m. The expansion of fm at r is given by

the expansion of fm(A−1z) at ∞. In order to find it, we need some matrix
L =

(
x y
u v

)
∈ SL2(Z) such that the lower left entry in L−1α vanishes. We

have

L−1α =
(

v −y
−u x

)(
md −mb

−c a

)
=
(

∗ ∗
−mdu − cx ∗

)
.

Therefore we need that mdu + cx = 0. Thus for the first column of L we can
choose the relatively prime integers

x =
md

gcd(c, md)
=

md

g
, u = − c

g
, with g = gcd(c, m).

From det(L−1α) = det(α) = m we infer that

L−1α =
(

∗ ∗
0 m/g

)
=
(

g ν
0 m/g

)

with some ν ∈ Z. (Observe that we can compute ν = −mbv − ya explicitly,
depending on m and r.) Now we get

fm(A−1z) = η(αz) = η(LL−1αz)

= vη(L)
(

u
gz + ν

m/g
+ v

)1/2

η(L−1αz)

= vη(L)
(

−cz − cν/g

m/g
+ v

)1/2

η

(
gz + ν

m/g

)

= vη(L)
(

g

m

(
−cz − cν − vm

g

))1/2

η

(
g2

m
z +

νg

m

)

= vη(L)
(

g

m
(−cz + a)

)1/2

η

(
g2

m
z +

νg

m

)

= vη(L)
(

g

m
(−cz + a)

)1/2 ∞∑

n=1

(
12
n

)
e

(
n2

24m
(g2z + νg)

)
.

This proves our first assertion. The first non-vanishing term in (−cz+a)−1/2 ×
fm(A−1z) is a constant multiple of e(g2z/24m). Thus, by our definition of
the order, we obtain ord(fm, r) = g2/24m, which is the second assertion. �

We note an immediate consequence of the second assertion:



36 2. Eta Products

Corollary 2.2 Let f be an eta product as in (2.1), and let r = − d
c ∈ Q,

gcd(c, d) = 1. Then the order of f at the cusp r is

ord(f, r) =
1
24

∑

m|N

(gcd(c, m))2

m
am.

An eta product f will be called a holomorphic eta product if its orders at all
cusps are non-negative,

ord(f, r) ≥ 0 for all r ∈ Q ∪ ∞.

Holomorphic eta products (2.1) are (entire) modular forms for Γ0(N). They
are cusp forms if and only if all the orders are positive,

ord(f, r) > 0 for all r ∈ Q ∪ ∞.

In this case we will call them cuspidal eta products, and non-cuspidal other-
wise.

2.4 Conditions for Holomorphic Eta Products

From Corollary 2.2 we get conditions for an eta product to be holomorphic
or a cusp form. These are conditions for infinitely many cusps. Of course,
it suffices to check these conditions for a finite system of representatives of
inequivalent cusps of Γ0(N), i.e., for the orbits of this group on Q ∪ ∞. The
number of inequivalent cusps of Γ0(N) is

∑
m|N ϕ(gcd(m, N/m)), where ϕ is

the Euler function; this is known from several textbooks; see [125], p. 102,
for example. A set of representatives of inequivalent cusps is given in [92],
formula (2). Using this, it would be possible to characterize holomorphic and
cuspidal eta products by systems of finitely many inequalities. In fact, one
can find such a characterization using nothing else but Corollary 2.2:

We observe that the order of f at a cusp does only depend on the denominator
c of that cusp. If m is any divisor of N then for all c ∈ Z we have

gcd(c, m) = gcd(gcd(c, N), m),

and gcd(c, N) is a divisor of N . Therefore the conditions ord(f, r) ≥ 0 are
satisfied for all r ∈ Q ∪ ∞ if and only if

ord(f, 1/c) ≥ 0 for all c|N,

and similarly for strict inequalities. This proves the following result:
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Corollary 2.3 An eta product f as in (2.1) is holomorphic if and only if the
inequalities

∑

m|N

(gcd(c, m))2

m
am ≥ 0

hold for all positive divisors c of N . It is a cuspidal eta product if and only
if all these inequalities hold strictly.

2.5 The Cones and Simplices of Holomorphic Eta Prod-
ucts

According to Corollary 2.3, we introduce rational numbers αcm, a matrix A
and a column vector X by

αcm =
(gcd(c, m))2

m
, A = A(N) = (αcm)c, m, X = (am)m ∈ R

τ(N),

(2.5)
where the positive divisors m, c of N are taken in some arbitrary, but fixed or-
der. (Usually the divisors will be in their natural order.) Then the condition
for holomorphic eta products of level N reads

A(N) · X ≥ 0, (2.6)

and cuspidal eta products are characterized by A(N) X > 0. The system of
linear inequalities in (2.6) defines an intersection of τ(N) closed halfspaces
in R

τ(N) whose bounding hyperplanes all pass through the origin. So this
system defines a closed simplicial cone with its vertex at the origin. We
denote this cone by K(N), i.e.

K(N) = {X ∈ R
τ(N) | A(N)X ≥ 0}. (2.7)

We can reformulate Corollary 2.3 as follows:

Corollary 2.4 An eta product (2.1) is holomorphic if and only if its vector
of exponents X = (am)m is a lattice point in the cone K(N). It is cuspidal
if and only if X is an interior point of K(N).



3 Eta Products and Lattice Points in
Simplices

3.1 The Simplices S(N, k) of Eta Products

In Sect. 2.5 we obtained a bijection between the holomorphic eta products
of level N and the lattice points in a closed simplicial cone K(N) in R

τ(N).
Since η(mz)2k is a cuspidal eta product of level N and weight k for every
m|N and every (integral or half-integral) k > 0, the half lines from the origin
through the standard unit vectors belong to the interior of K(N). Therefore,
the first octant {X = (xm)m ∈ R

τ(N) | X �= 0, xm ≥ 0 for all m|N } belongs
to the interior of K(N).

Now we consider holomorphic eta products of level N with a fixed weight k.
Their vectors of exponents X = (am)m are the lattice points in the intersec-
tion of the cone K(N) and the hyperplane

∑
m|N am = 2k, which is a simplex

of dimension τ(N) − 1. We introduce the notation

S(N, k) =
{

X ∈ K(N)
∣∣∣
∑

m|N
am = 2k

}
(3.1)

for this simplex. It is one of the faces of the simplex

S(N, k) =
{

X ∈ K(N)
∣∣∣
∑

m|N
am ≤ 2k

}
(3.2)

of dimension τ(N).

Often it is advantageous to project S(N, k) down to R
n where n = n(N) =

τ(N) − 1. For this purpose we eliminate one of the coordinates, say

xN = 2k −
∑

m|N, m<N

xm.

In Sect. 2.5 we defined K(N) by a system of τ(N) rational linear inequalities
∑

m|N
αcmxm ≥ 0 for c|N.
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Elimination of xN gives
∑

m|N, m<N

(αcm − αcN )xm ≥ − 2k · αcN for c|N, (3.3)

a system of n + 1 rational linear inequalities in n = τ(N) − 1 variables xm.
Its set of solutions in R

n will be denoted by

S(N, k)pr .

This simplex is obtained by projecting S(N, k) down to the first n coordi-
nates. The cusp forms η(mz)2k tell us that the standard unit vectors and
the origin in R

n are interior points in S(N, k)pr . From (3.3) we see that the
simplices S(N, k)pr , for fixed N and varying k, are dilates of each other.

3.2 The Setting for Prime Power Levels

Modular forms for a given group, weight and multiplier system form finite-
dimensional complex vector spaces. Therefore the holomorphic eta products
of a given level N and weight k span a finite-dimensional space of functions.
In fact, these eta products are finite in number. We will prove this “obvious”
fact by giving a formal proof of the compactness of the simplices S(N, k) in
Proposition 3.8 and Theorem 3.9. A version of our proof was given in [120];
here we will choose another approach.

The exponents am in an eta product of level N form vectors in a space of
dimension τ(N). The multiplicativity of the function τ(N) enables us to
compose the cones K(N) and simplices S(N, k) as Kronecker products (in
a certain sense specified below in Proposition 3.8 and Theorem 3.9) from
the cones K(ps) and simplices S(ps, k) for the prime powers ps dividing N .
Therefore we begin with studying prime power levels. The compactness of
K(ps) will follow from an explicit description of the edges of K(ps). We shall
see that the cones and simplices grow larger when the primes get smaller
(while the exponent s is fixed). This means that there are much more holo-
morphic eta products for levels whose prime divisors are small than for those
with large prime divisors.

Let N = ps be a power of a prime p. Its divisors are 1, p, p2, . . . , ps. We will
write aν instead of apν for the exponents in an eta product of level ps; hence
such an eta product reads

f(z) =
s∏

ν=0

η(pνz)aν (3.4)

with aν ∈ Z. The entries of the matrix A(ps) in (2.5) which defines the cone
K(ps) are

αμν =
gcd(pμ, pν)2

pν
=
{

p2μ−ν for μ ≤ ν,
pν for μ > ν.
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The set of solutions of A(ps)X ≥ 0 remains unchanged when we multiply
each row of A(ps) by some positive number. We choose ps−μ as a factor for
the row with label μ, 0 ≤ μ ≤ s. This yields an integral symmetric matrix
which we denote by A(p, s):

A(p, s) =
(
ps−μαμν

)
μν

=
(
ps− |μ−ν|)

μ,ν= 0,...,s

=

⎛

⎜⎜⎜⎜⎜⎝

ps ps−1 ps−2 . . . p 1
ps−1 ps ps−1 . . . p2 p

...
...

... . . .
...

...
p p2 p3 . . . ps ps−1

1 p p2 . . . ps−1 ps

⎞

⎟⎟⎟⎟⎟⎠
.

For several of our arguments it does not matter that p is a prime or even an
integer. Therefore we put

K(p, s) = {X ∈ R
s+1 | A(p, s)X ≥ 0}, (3.5)

S(p, s, k) =

{
X ∈ K(p, s)

∣∣∣
s∑

μ=0

xμ = 2k

}
(3.6)

for any real numbers p > 0, k > 0 and s ∈ N. Just as in Sects. 2.5 and 3.1
it is clear that K(p, s) is a closed simplicial cone in R

s+1 with its vertex at
the origin and that S(p, s, k) is a simplex of dimension s. Of course we have
K(p, s) = K(ps) and S(p, s, k) = S(ps, k) if p is a prime.

3.3 Results for Prime Power Levels

Lemma 3.1 The cone K(p, s) is invariant with respect to the involution of
R

s+1 which sends X = (x0, x1, . . . , xs) to
←−
X = (xs, xs−1, . . . , x0).

Proof. For every row aμ of A(p, s), the inverted vector ←−aμ = as−μ is also a
row of A(p, s). Therefore X and

←−
X either both satisfy or both dissatisfy the

inequalities for K(p, s). �

This result reflects the fact that the Fricke involution WN belongs to the
normalizer of Γ0(N) in SL2(R): If f(z) is a modular form for Γ0(N), then
so is f(− 1/Nz). If (2.1) is a holomorphic or cuspidal eta product of level
N , then so is

∏
m|N η(mz)aN/m . This observation, or an inspection of the

inequalities defining K(N), shows that we can extend Lemma 3.1 as follows:

Lemma 3.1 (Extended) For every positive integer N the cone K(N) is
invariant with respect to the involution of R

τ(N) which sends X = (xm)m|N

to
←−
X = (xN/m)m|N .
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Proposition 3.2 Let p > 1 be a real number and s ∈ N. Then the edges
of the cone K(p, s) are the half lines {λvν | λ ≥ 0}, 0 ≤ ν ≤ s, which are
spanned by the column vectors vν = vν(p, s) of the matrix

V (p, s) =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

p(p − 1) −p 0 0 . . . 0 0 0
−(p − 1) p2 + 1 −p 0 . . . 0 0 0

0 −p p2 + 1 −p . . . 0 0 0
0 0 −p p2 + 1 . . . 0 0 0
.
..

.

..
.
..

.

.. . . .
.
..

.

..
.
..

0 0 0 0 . . . −p 0 0
0 0 0 0 . . . p2 + 1 −p 0
0 0 0 0 . . . −p p2 + 1 −(p − 1)
0 0 0 0 . . . 0 −p p(p − 1)

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Let e0, . . . , es denote the standard unit vectors in R
s+1. Then we have

v0 = (p − 1)(pe0 − e1), vs = (p − 1) · (pes − es−1),

vν = (p2 + 1)eν − p(eν−1 + eν+1) for 1 ≤ ν ≤ s − 1.

Proof. We use induction on s. For s = 1 we have A(p, 1) =
(
p 1
1 p

)
. The edges

V0, V1 of K(p, 1) are the solutions of (1 p) v = 0 and (p 1) v = 0, respec-
tively, hence they are spanned by the columns of V (p, 1) =

( p(p−1) −(p−1)
−(p−1) p(p−1)

)
.

We have

A(p, 2) =

⎛

⎝
p2 p 1
p p2 p
1 p p2

⎞

⎠ .

The edges V0, V1, V2 of K(p, 2) are the kernels of the matrices
(

p p2 p
1 p p2

)
,

(
p2 p 1
1 p p2

)
,

(
p2 p 1
p p2 p

)
,

respectively. They are spanned by the columns v0, v1, v2 of V (p, 2).

Now let s ≥ 2, and suppose that our assertions hold for the cones K(p, s).
We observe that

A(p, s + 1) =

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

1
p

pA(p, s)
...

ps−1

ps

1 p . . . ps ps+1

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

.

Let a0, . . . , as and ã0, . . . , ãs, ãs+1 denote the rows of A(p, s) and A(p, s+1),
respectively. Let Bν , 0 ≤ ν ≤ s, and B̃ν , 0 ≤ ν ≤ s + 1 denote the matrices
which are obtained by deleting the rows aν and ãν from A(p, s) and A(p, s+1),
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respectively. Then the edges V0, . . . , Vs of K(p, s) and Ṽ0, . . . , Ṽs, Ṽs+1 of
K(p, s + 1) are given by the solutions of

BνX = 0 and B̃νX̃ = 0,

respectively. By induction hypothesis, we can choose the column vectors
v0, . . . , vs of A(p, s) to span V0, . . . , Vs.

Let 0 ≤ ν ≤ s − 1. We consider the (s+1) × (s+1)-matrix Cν which consists
of the first s + 1 columns of B̃ν . By passing from A(p, s + 1) to B̃ν , the row
with label s + 1 was not dropped. Thus there are two rows in Cν which are
proportional. The system of linear equations CνX = 0 is equivalent to the
system defining Vν . Passing back from Cν to B̃ν by adding the last column of
B̃ν , the two proportional rows of Cν become linearly independent. Therefore
we get

ṽν =
(

vν

0

)

for a vector spanning Ṽν , and this is the νth column of V (p, s + 1).

We are left with Ṽs and Ṽs+1. But from Lemma 3.1 it follows that ṽs =
←−
ṽ 1

and ṽs+1 =
←−
ṽ 0, which are the last two columns of V (p, s+1). Thus we have

established the assertion for s + 1 instead of s.

We remark that indeed vν belongs to the cone K(p, s): We know that aμvν = 0
for μ �= ν, and we obtain

aνvν = ps−1(p2 − 1)(p − 1) > 0 for ν = 0, s ,

aνvν = ps(p2 − 1) > 0 for 1 ≤ ν ≤ s − 1.

At this point we need our assumption p > 1. �

Proposition 3.3 Let s ∈ N, and let p, q be real numbers with q > p > 1.
Then we have

K(q, s) ⊂ K(p, s).

Every non-zero boundary point of the cone K(q, s) is an interior point of the
cone K(p, s).

Proof. In Proposition 3.2 we determined the matrices V (q, s) and V (p, s)
whose column vectors v0(q), . . . , vs(q) and v0(p), . . . , vs(p) span the edges of
the cones K(q, s) and K(p, s), respectively. It suffices to show that every vν(q)
is an interior point of K(p, s). In other words, we must show that

A(p, s) vν(q) > 0 for 0 ≤ ν ≤ s.
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We have to verify s + 1 strict inequalities for every ν. For ν = 0 they are
equivalent with two inequalities:

(
ps ps−1

ps−1 ps

)
·
(

q(q − 1)
−(q − 1)

)
> 0.

We cancel the positive factors ps−1 and q − 1 and obtain

pq − 1 > 0, q − p > 0.

This is satisfied because of our assumption q > p > 1. Hence v0(q) is an
interior point of K(p, s). From Lemma 3.1 it follows that also vs(q) is an
interior point of K(p, s).

Now let 1 ≤ ν ≤ s − 1. Then our s + 1 inequalities for vν(q) = (q2 + 1)eν −
q(eν−1 + eν+1) reduce to three inequalities:

⎛

⎝
p2 p 1
1 p 1
1 p p2

⎞

⎠ ·

⎛

⎝
−q

q2 + 1
−q

⎞

⎠ > 0.

They are equivalent with two inequalities:

−q(p2 + 1) + p(q2 + 1) > 0, p(q2 + 1) − 2q > 0,

hence equivalent with

(q − p)(pq − 1) > 0, p(q − 1)2 + 2q(p − 1) > 0.

This is satisfied because of q > p > 1. �

From Proposition 3.3 and Corollary 2.4 we obtain the following interesting
result:

Corollary 3.4 Let s ∈ N, and let p, q be primes with q > p. If g(z) =∏s
ν=0 η(qνz)aν is a holomorphic eta product of level qs with positive weight,

then

f(z) =
s∏

ν=0

η(pνz)aν

is a cuspidal eta product of level ps.

According to Proposition 3.3 the cones K(p, s) shrink when p increases. We
show that they finally shrink down to the first octant:

Proposition 3.5 The intersection of all cones K(p, s) with p > 1 is the first
octant,

⋂

p>1

K(p, s) = {X = (x0, . . . , xs) ∈ R
s+1 | xν ≥ 0 for all ν}.
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Proof. All the entries in A(p, s) are positive. Hence every X in the first
octant satisfies A(p, s) X ≥ 0 and belongs to the intersection of the cones
K(p, s).

Now let X = (x0, . . . , xs) ∈ R
s+1 be a point with at least one coordinate

xμ < 0. As before in the proof of Proposition 3.2 we denote by a0, . . . , as the
rows of A(p, s). (We interpret X to be a column vector.) The largest entry
in aμ is ps at position μ, and the other entries αμν satisfy 0 < αμν ≤ ps−1.
This yields

aμ X = psxμ +
∑

0≤ν≤s, ν �=μ

αμνxν

≤ psxμ + ps−1
∑

ν �=μ

|xν |

= ps

(
xμ +

1
p

∑

ν �=μ

|xν |
)

.

Since xμ < 0, the right hand side is negative, hence X �∈ K(p, s), if p is
sufficiently large. �

The result tells us that for given s and k, and for all sufficiently large primes
p, all the exponents in a holomorphic eta product of level ps are non-negative.

Proposition 3.6 For s ∈ N and any real numbers p > 1, k > 0, the simplices
S(p, s, k) as defined in (3.6) are compact. Their vertices are 2k

(p−1)2 vν(p, s)
for 0 ≤ ν ≤ s where vν(p, s) are the columns of the matrix V (p, s) in Propo-
sition 3.2.

Proof. The vector n = (1, 1, . . . , 1) is normal for the hyperplane
∑

0≤ν≤s xν =
2k bounding S(p, s, k), and it points to the exterior of this simplex. From
Proposition 3.2 we know the vectors v0, . . . , vs ∈ K(p, s) which span the edges
of that cone. The inner product of n and any vν is

〈n, vν 〉 = (p − 1)2 > 0.

Thus n forms an acute angle with all the edges of K(p, s), and this implies
the compactness of S(p, s, k). The vertices of this simplex are those multiples
λνvν(p, s) whose sums of coordinates are equal to 2k; we obtain λν = 2k

(p−1)2

for every ν. (See also Fig. 3.1.) �

Corollary 3.7 For k > 0, 2k ∈ N, and every prime power ps there are only
finitely many holomorphic eta products of level ps.
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Figure 3.1: The nested simplices S(p2, 1)pr for primes p = 2, 3, 5

3.4 Kronecker Products of Simplices

We consider the decomposition of a level into coprime factors,

N = N1N2 with gcd(N1, N2) = 1.

We have

τ(N) = τρ where τ = τ(N1), ρ = τ(N2).

If m1, . . . , mτ and n1, . . . , nρ denote the positive divisors of N1 and N2, re-
spectively, then the positive divisors of N are dμν = mμnν for 1 ≤ μ ≤ τ ,
1 ≤ ν ≤ ρ, and we have gcd(mμ, nν) = 1. For the entries of A(N) we use a
double index for rows and columns; from the definition (2.5) we obtain

α(iμ),(jν) =
gcd(diμ, djν)2

djν
=

gcd(mi, mj)2

mj
· gcd(nμ, nν)2

nν
.

This tells us that A(N) is the Kronecker product of the matrices A(N1) and
A(N2),

A(N) = A(N1) ⊗ A(N2).

Therefore we can generalize the results in Sect. 3.3 by induction on the num-
ber of distinct prime divisors of N . As before, several of our arguments hold
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true for arbitrary real numbers > 1 instead of primes. Therefore we introduce
the following setting.

Let positive integers r, s1, . . . , sr and real numbers p1 > 1, . . . , pr > 1 and
k > 0 be given. Then we put

A(p1, s1; . . . ; pr, sr) = A(p1, s1) ⊗ . . . ⊗ A(pr, sr),

where A(pj , sj) is defined as in Sect. 3.3 with pj , sj instead of p, s. The
number of rows and columns of A(p1, s1; . . . ; pr, sr) is

M = (s1 + 1) · . . . · (sr + 1).

We define

K(p1, s1; . . . ; pr, sr)
= {X ∈ R

M | A(p1, s1; . . . ; pr, sr) X ≥ 0},

S(p1, s1; . . . ; pr, sr; k)
= {X = (x1, . . . , xM ) ∈ K(p1, s1; . . . ; pr, sr) | x1 + . . . + xM = 2k}.

Proposition 3.8 Let positive integers r, s1, . . . , sr and real numbers p1 >
1, . . . , pr > 1 be given, and put M = (s1 + 1) · . . . · (sr + 1). Then we have:

(1) K(p1, s1; . . . ; pr, sr) is a closed simplicial cone with its vertex in the
origin. With coordinates suitably ordered, the edges of this cone are the
half lines {λvν | λ ≥ 0} which are spanned by the columns

vν = vν1,...,νr , 0 ≤ νj ≤ sj , 1 ≤ j ≤ r,

of the matrix

V (p1, s1; . . . ; pr, sr) = V (p1, s1) ⊗ . . . ⊗ V (pr, sr).

(2) If q1, . . . , qr are real numbers and q1 ≥ p1, . . . , qr ≥ pr then we have

K(q1, s1; . . . ; qr, sr) ⊆ K(p1, s1; . . . ; pr, sr).

The inclusion holds properly if there is at least one proper inequality
qj > pj.

(3) For every real k > 0, S(p1, s1; . . . ; pr, sr; k) is a compact simplex of
dimension M − 1 in R

M with vertices 2k
(p1−1)2·...·(pr −1)2 vν .

Proof. For r = 1 the results were established in Sect. 3.3. We assume
r > 1 and put A = A(p1, s1; . . . ; pr, sr). From Proposition 3.2 we infer
that the factors A(pj , sj) are invertible. Therefore A is invertible. So if
Bν denotes the matrix obtained by dropping the νth row aν from A, then
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the system of linear equations BνX = 0 has a one-dimensional space of
solutions. It follows that K = K(p1, s1; . . . ; pr, sr) is a closed simplicial cone
whose edges are the half lines {λvν | λ ≥ 0} where vν satisfies Bνvν = 0 and
aνvν > 0. From the definition of A as a Kronecker product it follows that
for the vectors vν we can choose the columns of the corresponding Kronecker
product V (p1, s1; . . . ; pr, sr). Thus we have established (1).

From (1) and Proposition 3.3 we obtain assertion (2). From (1) we get
assertion (3) just as in the proof of Proposition 3.6. �

For the case of distinct primes p1, . . . , pr in Proposition 3.8 we get the results
on eta products which we need:

Theorem 3.9 Let N = ps1
1 · . . . · psr

r with distinct primes p1, . . . , pr and
positive integers s1, . . . , sr.

(1) For every k > 0, 2k ∈ N, the simplices S(N, k), S(N, k) and S(N, k)pr ,
as defined in Sect. 3.1, are compact. There are only finitely many holo-
morphic eta products of level N and weight k.

(2) With coordinates in R
τ(N) suitably ordered, the vertices of S(N, k) are

the points 2k
(p1−1)2...(pr −1)2 vν where v1, . . . , vτ(N) are the columns of the

matrix V (p1, s1) ⊗ . . . ⊗ V (pr, sr), and V (p, s) is defined as in Proposi-
tion 3.2.

(3) Let Ñ = qs1
1 ·. . .·qsr

r with distinct primes q1, . . . , qr which satisfy qj ≥ pj

for j = 1, . . . , r and qj > pj for at least one value of j. Then we have

S(Ñ , k) ⊂ S(N, k).

For every holomorphic eta product g(z) =
∏

m|Ñ η(mz)b(m) of level Ñ ,
the function f(z) =

∏
m|N η(mz)a(m) with a(pν1

1 . . . pνr
r ) = b(qν1

1 . . . qνr
r )

is a cuspidal eta product of level N .

The inclusion in part (3) can also be captured in

S(qsN, k) ⊂ S(psN, k)

for s ≥ 1 and primes p, q not dividing N with q > p.

3.5 The Simplices for the Fricke Group

An eta product for the Fricke group of level N is of the form

f(z) =
∏

m|N
η(mz)am with am ∈ Z, aN/m = am (3.7)
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for all divisors m of N . We use the divisors of N for labels of the coordinates
of vectors (or points) in R

τ(N). Then according to Corollary 2.4, the holomor-
phic eta products for the Fricke group Γ∗(N) are in one-to-one correspondence
with the lattice points in {X = (xm)m ∈ K(N) | xN/m = xm for all m|N }.
This is the intersection of K(N) with several hyperplanes through the origin.
In the lattice points in this intersection we can drop all the coordinates with
labels m >

√
N , and we will still have a one-to-one correspondence with the

holomorphic eta products for Γ∗(N). In this way we have reduced K(N) to
a set of roughly half its dimension. The resulting set will be denoted by

K ∗(N),

and similarly the set resulting from the compact simplex S(N, k) is denoted
by

S∗(N, k).

The reduced dimension is

l = l(N) =
⌊

1
2
(τ(N) + 1)

⌋
.

We use the divisors m of N with 1 ≤ m ≤
√

N for labels of the coordinates
of points X∗ ∈ R

l. Observe that τ(N) is odd if and only if N is a perfect
square. Therefore we have

l(N) =

{
1
2 (τ(N) + 1) if N is a square,
1
2τ(N) otherwise.

Now we will describe K ∗(N) and S∗(N, k) directly by systems of linear in-
equalities. The symmetry conditions in (3.7) for the exponents of an eta
product f imply that for a divisor c of N we have ord(f, 1

c ) ≥ 0 if and only if
ord(f, 1

N/c ) ≥ 0. More precisely, from part (2) in Proposition 2.1 we deduce

ord(f, 1
N/c ) = N

c2 ord(f, 1
c ).

Therefore f is holomorphic if and only if

ord
(

f,
1
c

)
≥ 0 for c|N, c ≤

√
N.

This gives a system of l(N) linear inequalities for the exponents X∗ =
(am)m≤

√
N which characterize f . It reads

A∗(N) X∗ ≥ 0 where A∗(N) = (α∗
cm)c,m≤

√
N ,

α∗
cm =

{
αcm if m2 = N,
αcm + αc,N/m otherwise
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and αcm = 1
m gcd(c, m)2 as in (2.5). These inequalities tell us that K ∗(N) is

a closed simplicial cone in R
l with its vertex at the origin and that S∗(N, k)

is a compact simplex of dimension l − 1, namely, the intersection of the cone
K ∗(N) with the hyperplane

x√
N + 2

∑

m|N, 1≤m<
√

N

xm = 2k.

(We agree that x√
N = 0 if N is not a perfect square.) Just as in Sect. 3.1

we can use this equation and eliminate one of the coordinates, projecting
S∗(N, k) down to a compact simplex

S∗(N, k)pr ⊆ R
l−1

which is defined by a system of l linear inequalities. The cuspidal weight 1
eta products η(mz)η

(
N
mz
)

for Γ∗(N) tell us that the standard unit vectors
in R

l belong to the interior of K ∗(N) and that the origin and the standard
unit vectors in R

l−1 belong to the interior of S∗(N, 1)pr . Just as in Sect. 3.1
we see that the simplices S∗(N, k)pr are dilates of each other with dilation
factor k.

Our discussion yields the following results:

Proposition 3.10 An eta product for the Fricke group Γ∗(N) as in (3.7) is
holomorphic if and only if its system of exponents am with 1 ≤ m ≤

√
N is a

lattice point in the cone K ∗(N). It is cuspidal if and only if its exponents form
an interior point of that cone. There is a one-to-one correspondence of the
holomorphic eta products of weight k for Γ∗(N) with the lattice points in the
compact simplex S∗(N, k)pr ⊆ R

l−1 where l = l(N) =
⌊

1
2 (τ(N) + 1)

⌋
, and

here the cuspidal eta products correspond to the lattice points in the interior
of that simplex.

3.6 Eta Products of Weight 1
2

As an application of the results in this section we determine all the holomor-
phic eta products of weight 1

2 for prime power levels.

Example 3.11 Suppose that s ∈ N and that p is an odd prime. Then the
only holomorphic eta products of weight 1

2 of level ps are the functions η(pνz)
for 0 ≤ ν ≤ s. All of them are cuspidal, and all of them are old eta products.

Proof. We need to determine the lattice points in the simplex S(ps, 1
2 ). By

Proposition 3.6, the vertices of this simplex are the points Vν = 1
(p−1)2 vν(p, s)
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for 0 ≤ ν ≤ s where vν(p, s) are the columns of the matrix V (p, s) in Propo-
sition 3.2. Typical such vertices are

V0 =
(

p

p − 1
, − 1

p − 1
, 0, . . . , 0

)
,

V1 =
(

−p

(p − 1)2
,

p2 + 1
(p − 1)2

,
−p

(p − 1)2
, 0, . . . , 0

)
,

and the others are obtained by shifting or reverting the coordinates of V0

or V1. Since p ≥ 3, all coordinates of all the vertices are > −1. Therefore
there is no lattice point in S(ps, 1

2 ) with a negative coordinate. It is easy to
list the lattice points with non-negative coordinates: they are the standard
unit vectors. This yields the holomorphic eta products η(pνz), 0 ≤ ν ≤ s,
thus proving our claim. �

Corollary 3.4 promises a more interesting result for the levels 2s. (Remember
the notion of square brackets which was explained in Sect. 2.1.):

Example 3.12 For s ≥ 1 there are exactly 6s − 2 holomorphic eta products
of level 2s and weight 1

2 They are given as follows:

(1) For level 2 we have the old cuspidal functions η(z), η(2z) and two new
non-cuspidal products with a negative exponent,

η2(z)
η(2z)

and
η2(2z)
η(z)

.

(2) For level 4 we have three old cuspidal functions η(z), η(2z), η(4z), four
old non-cuspidal products [12, 2−1], [22, 4−1], [1−1, 22], [2−1, 42], and
three new products

η5(2z)
η2(z)η2(4z)

,
η(z)η(4z)

η(2z)
, and

η3(2z)
η(z)η(4z)

;

the last one of them is cuspidal, and the other two are non-cuspidal.

(3) For s ≥ 3 all the eta products are old, obtained by rescaling the variable
z in the functions in part (2). Specifically, we have s + 1 functions
η(2νz), 2s functions

η2(2ν−1z)/η(2νz), η2(2νz)/η(2ν−1z)

for 1 ≤ ν ≤ s, and 3s − 3 functions

η5(2νz)/η2(2ν−1z)η2(2ν+1z),
η(2ν−1z)η(2ν+1z)/η(2νz), η3(2νz)/η(2ν−1z)η(2ν+1z)

for 1 ≤ ν ≤ s − 1.
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Figure 3.2: The simplices S(2, 1
2 ) and S(4, 1

2 )pr

Proof. The simplex S(2, 1
2 ) is the line connecting the points (−1, 2) and

(2, −1) in the plane. This yields the assertions in part (1). For s = 2 we con-
sider the projected simplex S(4, 1

2 )pr in R
2. It is defined by the inequalities

3x0 + x1 ≥ −1, 2x1 ≥ −2, −3x0 − 2x1 ≥ −4.

We look at the corresponding triangle in the plane, read off its ten lattice
points, recover the coordinates x2 corresponding to the exponents in η(4z),
and obtain the assertions in part (2). This was easy. (See also Fig. 3.2.)

Now let s ≥ 3. The vertices V0, . . . , Vs of S = S(2s, 1
2 ) are the columns of

the matrix

V (2, s) =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 −2 0 0 . . . 0 0 0
−1 5 −2 0 . . . 0 0 0
0 −2 5 −2 . . . 0 0 0
0 0 −2 5 . . . 0 0 0
...

...
...

... . . .
...

...
...

0 0 0 0 . . . −2 0 0
0 0 0 0 . . . 5 −2 0
0 0 0 0 . . . −2 5 −1
0 0 0 0 . . . 0 −2 2

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

from Proposition 3.2. Clearly, the lattice points in S without a negative
coordinate are the standard unit vectors eν , corresponding to the eta products
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η(2νz), 0 ≤ ν ≤ s. The points P ∈ S are given by the convex combinations

P =
s∑

j=0

λjVj , λ ≥ 0,

s∑

j=0

λj = 1. (3.8)

We obtain xν ≥ −2 for the coordinates of all points P = (x0, . . . , xs) ∈ S,
since this holds for the vertices Vj of S. We write Vj = (vj0, . . . , vjs).

We determine the lattice points P ∈ S with at least one coordinate xν = −2.
Then we must have λj > 0 for some j for which vjν = −2. If ν ∈ {0, 1, s−1, s}
then j is unique, and we get P ∈ {V1, V2, Vs−2, Vs−1}. Now suppose that
2 ≤ ν ≤ s − 2. Then the only possible values of j are ν − 1 and ν + 1. Hence
P is a convex combination of two vertices,

P = λVν−1 + (1 − λ)Vν+1

= λ(−2eν−2 + 5eν−1 − 2eν) + (1 − λ)(−2eν + 5eν+1 − 2eν+2)
= −2λeν−2 + 5λeν−1 − 2eν + 5(1 − λ)eν+1 − 2(1 − λ)eν+2,

0 ≤ λ ≤ 1. Since P should be a lattice point, we conclude that 2λ and 5λ are
integers. This implies that λ = 0 or 1 and that P is a vertex of S. Thus the
only lattice points in S containing −2 as a coordinate are s − 1 of its vertices.

We are left with the problem to find the lattice points in S with all coordinates
≥ −1 and at least one coordinate equal to −1. Unfortunately, our proof of
the remaining assertions in part (3) is somewhat tedious, and we will only
give an outline. We consider a lattice point P = (x0, . . . , xs) ∈ S with
x0 = −1. In this case, V1 is the only vertex of S which satisfies v1,0 < x0.
It follows that the intersection S′ of S with the hyperplane x0 = −1 is a
simplex of dimension s − 1. (In general, the intersection of a simplex and
a hyperplane is a more complicated polytope.) The vertices V ′

j of S′ are
the points where the hyperplane x0 = −1 meets the lines connecting V1

and Vj for j ��= 1. We compute V ′
j and write P as a convex combination

of V ′
0 , V ′

2 , V ′
3 , . . . , V ′

s , similarly as in (3.8). Then we look at the coordinates
xs, xs−1, . . . of P from bottom up, exploiting that they are integers. Finally
we arrive at the result that there are exactly two such lattice points P ,
namely, P = (−1, 2, 0, . . . , 0) and P = (−1, 3, −1, 0, . . . , 0). Lemma 3.1 tells
us that (0, . . . , 0, 2, −1) and (0, . . . , 0, −1, 3, −1) are the only lattice points
P ∈ S with coordinate xs = −1.

Now we can assume that x0 ≥ 0 and xs ≥ 0,—and simple arguments will work
again. We suppose it were x0 ≥ 1 and xs ≥ 1. Then looking at the matrix of
vertices V (2, s), we would have 2(λ0 − λ1) ≥ 1 and 2(λs − λs−1) ≥ 1 in (3.8).
It follows that λ0 ≥ 1

2 and λs ≥ 1
2 , hence λ0 = λs = 1

2 and P = 1
2 (V0 + Vs).

However, for s ≥ 3 this point has coordinates x1 = xs−1 = − 1
2 and is

not a lattice point. So we arrived at a contradiction. We conclude that
x0 = 0 or xs = 0. Then the point P ′ = (x1, . . . , xs) or P ′ = (x0, . . . , xs−1),
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respectively, corresponds to an eta product of level 2s−1, which means that
P ′ ∈ S(2s−1, 1

2 ). Thus induction works, and we arrive at the results in
part (3). �

Theorem For any odd N > 0, the functions η(mz) with m|N are the only
holomorphic eta products of level N and weight 1

2 .

We do not know of a general argument with modular forms of weight 1
2 that

would prove this result. It is supported by many computer runs with the
algorithm described in Sect. 4. Because of Example 3.11 it holds for powers
of an odd prime. By Theorem 3.9, part (3) it suffices to deal with levels
N = ps1

1 · . . . · psr
r where p1 = 3, p2 = 5, . . . is the sequence of odd primes in

ascending order. In general the simple argument given in Example 3.11 does
not work since the Kronecker product structure of the matrix of vertices given
in Theorem 3.9, part (2) implies that there are vertices with coordinates < −1
in S(N, 1

2 ). For example, for N = 3s15s2 we get vertices with coordinates
− 3

4 · 13
8 = − 39

32 , and for N = 3s15s27s311s4 we have vertices with coordinates
− 325

192 · 61
50 = − 793

388 < −2. The theorem has been proven by G. Mersmann in
[94] as part of a more general result by a thorough analysis of the inequalities
defining the simplices S(N, k). In Sect. 8.2 we will give an exact statement
and some more comments on Mersmann’s theorem.

Remark Example 3.12 says that there are exactly six new eta products of
weight 1

2 whose levels are powers of 2, including 20 = 1. Each of these func-
tions f is a simple theta series for the rational number field Q. This means
that we have expansions similar to those for η(z) and η3(2z)/(η(z)η(4z)) in
(1.2), (1.10), or to those for η2(z)/η(2z) and the Jacobi function θ(2z) =
η5(2z)/(η2(z)η2(4z)) in (1.5), (1.11). These expansions are of the form

f(z) =
∑

n

χ(n)e(n2z/t)

where t is the denominator of f , χ is some Dirichlet character whose modulus
is a divisor of 24, and the summation is on all positive integers n in the four
cuspidal cases and on all n ∈ Z in the non-cuspidal cases. In the case of
η(z) we have χ(n) =

(
12
n

)
, which is the unique primitive character with

modulus 12. We shall come back to this topic and present the remaining two
theta series expansions in Sect. 8.



4 An Algorithm for Listing Lattice Points in
a Simplex

4.1 Description of the Algorithm

In Part II we will show plenty of examples of eta products or linear combina-
tions of eta products which are Hecke eigenforms and which are represented
by theta series with a Hecke character on some imaginary quadratic field.
Our starting point for exhibiting these examples is a list of all holomorphic
eta products of a given level N and weight k. The results in Sect. 3 say that
we get this list when we list up all the lattice points in a certain compact
simplex. Every single lattice point represents an interesting function, and we
really need such a list.

There is a vast literature on lattice points in rational polytopes, with fascinat-
ing relations to many topics in number theory. We just mention a pioneering
paper by E. Ehrhart [32] and a recent book [7], which is an invitation to
enter this part of mathematics. Most problems and results in this area are
concerned with relations for the number of lattice points in a polytope and
its dilates, whereas there is usually no demand to know lists of lattice points.
In our investigations the situation is quite different.

It would be easy to list, for given N and k, all eta products with non-negative
exponents; we just list them in lexicographical order. The geometrical reason
for the easiness is that we search through a simplex of a certain dimension n
which has n of its n + 1 faces parallel to the axes. (In spite of this easiness,
relations on the number of lattice points remain interesting and non-trivial.)
Our problem, however, is more difficult because we need to know eta prod-
ucts with negative exponents, too. Example 3.12 gives a glimpse of possible
difficulties.

For these reasons, we developed an algorithm which produces the desired list
for given N and k. The idea is simple: We use the Gauss algorithm to find
a unimodular transformation which transforms the matrix of the vertices
of a simplex into lower triangular shape. For the transformed simplex we

G. Köhler, Eta Products and Theta Series Identities,
Springer Monographs in Mathematics,
DOI 10.1007/978-3-642-16152-0 4, c© Springer-Verlag Berlin Heidelberg 2011
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http://dx.doi.org/10.1007/978-3-642-16152-0_4
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have a manageable relation between coordinates of points and their convex
coordinates as in (3.8), and we have a bijection of the lattice points in a
simplex and in its transform.

We assume that a simplex S in R
n is given as the set of solutions of a system

of linear inequalities of the form

Ax ≥ b

where A is a rational (n+1) × n matrix and b is a column vector in Q
n+1. We

suppose that S is compact and contains interior points. We let a1, . . . , an+1

and b1, . . . , bn+1 denote the rows of A and the coordinates of b, respectively.
The set S will not be changed if we replace aj , bj by rjaj , rjbj with any
rational factors rj > 0. Therefore we may and we will assume that A and b
are integral. If the origin is an interior point of S (which we know is true for
the simplices S(N, k)pr and S∗(N, k)pr ), then bj < 0 for all j.

The vertices v1, . . . , vn+1 of S can be defined and computed as follows. For
1 ≤ j ≤ n + 1, let Aj be the n × n matrix which is obtained from A by
omitting aj , and let b(j) be the column vector which is obtained from b by
omitting bj . Then the vertex

vj = A−1
j b(j) ∈ Q

n

is the unique solution of the system of linear equations Ajx = b(j). We pick
one of the vertices, say vn+1, and we introduce the edges

ej = vj − vn+1, 1 ≤ j ≤ n,

with respect to this vertex. Our assumptions guarantee that the edges form
a basis for R

n. Every x ∈ S can uniquely be written as a convex combination

x = vn+1 +
n∑

j=1

λjej =
n+1∑

j=1

λjvj where 0 ≤ λj ≤ 1,

n+1∑

j=1

λj = 1.

(4.1)
Moreover, a point x ∈ S belongs to the boundary of S if and only if λj = 0
for some j, 1 ≤ j ≤ n + 1. We call λ1, . . . , λn+1 the convex coordinates of x.

If x is a lattice point in S then its convex coordinates λj are rational. How-
ever, we cannot tell a priori which λj will occur, nor even which denominators
should be considered for points x ∈ S ∩ Z

n. The reader may look back to
Example 3.12 and find the convex coordinates of lattice points in S

(
2s, 1

2

)pr .
We will overcome this difficulty by a suitable unimodular transformation of S.

Matrices U ∈ GL(n, Z) are called unimodular. For any such U we consider
the transformed simplex

SU = UT S = {UT x | x ∈ S}.
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Since U and U −1 are integral matrices, we have x ∈ S ∩ Z
n if and only if

y = UT x ∈ SU ∩ Z
n. We will show that for a suitable choice of U the

coordinates of y and its convex coordinates are related to each other in a
simple way.

For this purpose, we let h denote the lowest common multiple of the denom-
inators of the coordinates of the edges e1, . . . , en of S, and we introduce the
integral matrix

G = h · (e1 , . . . , en)T

whose jth row is the edge ej , viewed as a row vector and made integral
by means of the factor h. Then we use the Gauss algorithm to compute a
unimodular matrix U ∈ GL(n, Z) for which

GU =

⎛

⎜⎜⎜⎝

t11 0 . . . 0
t21 t22 . . . 0
...

...
. . .

...
tn1 tn2 . . . tnn

⎞

⎟⎟⎟⎠

is a lower triangular matrix. The transformed simplex SU = UT S has ver-
tices wj = UT vj , 1 ≤ j ≤ n + 1, and edges cj = wj − wn+1 = UT ej ,
1 ≤ j ≤ n. We write

wj = (wj1, . . . , wjn)T ,

cj = wj − wn+1 = (cj1, . . . , cjn)T =
1
h

(tj1, . . . , tjn)T ,

where tj,j+1 = . . . = tjn = 0; the last equality for cj holds since hcT
j = heT

j U

is the jth row of GU . Now when we write a point y = (y1, . . . , yn)T ∈ SU as
a convex combination

y = wn+1 +
n∑

j=1

λjcj =
n+1∑

j=1

λjwj ,

then we obtain

yν = wn+1,ν +
1
h

n∑

j=1

λjtjν = wn+1,ν +
1
h

n∑

j=ν

λjtjν .

The fact which makes our algorithm work is that the νth coordinate yν does
only depend on the final n − ν + 1 convex coordinates λν , . . . , λn of y.

Another version of the same method would be to compute U ∈ GL(n, Z)
such that AU is a lower triangular matrix, and to introduce the transformed
simplex U −1S = {y ∈ R

n | AUy ≥ b}. In this version, the νth coordinate of
a point y ∈ U −1S will only depend on the first ν convex coordinates of y.
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We construct the lattice points y ∈ SU ∩ Z
n as follows. The last coordinate

of a point y = wn+1 +
∑n

j=1 λjcj ∈ SU is

yn = wn+1,n + λncnn = wn+1,n + λn
tnn

h
.

The condition 0 ≤ λn ≤ 1 implies that yn belongs to the interval I = [α, β]
whose initial and end points are α = wn+1,n, β = wn+1,n + cnn if cnn > 0,
and vice-versa if cnn < 0. We initialize the construction of the lattice points
y by listing the integers yn ∈ I ∩ Z and the corresponding convex coordinates

λn = λ(yn) =
1

cnn
(yn − wn+1,n).

Now we proceed recursively. Suppose that for some ν ∈ {1, . . . , n − 1} we
are in possession of a list of integral points y(ν) = (yν+1, . . . , yn)T ∈ Z

n−ν

and convex coordinates λ(ν) = λ(y(ν)) = (λν+1, . . . , λn). If y ∈ SU has final
coordinates yν+1, . . . , yn, then the νth convex coordinate satisfies

0 ≤ λν ≤ 1 − (λν+1 + . . . + λn),

and the νth coordinate is

yν = a + λνcνν where a = wn+1,ν +
n∑

j=ν+1

λjcjν .

Hence yν belongs to the interval I = [α, β] whose initial and end points are
α = a, β = a+(1 − (λν+1 + . . .+λn))cνν if cνν > 0 and vice-versa if cνν < 0.
In the recursive step we list the integers yν ∈ I ∩ Z, if there are any, we
compute the corresponding values

λν =
1

cνν
(yν − a),

and append the new values yν and λν as νth coordinates to y(ν) and λ(ν). In
this way we obtain a list of successors y(ν+1) = (yν , . . . , yn) ∈ Z

n−ν+1 for a
given point y(ν). It may happen that this list of successors is empty.

Once we have all points y ∈ SU ∩ Z
n, we transform back to obtain the lattice

points x = (U −1)T y in S.

4.2 Implementation

The algorithm was implemented by S. Scheurich in her diploma thesis [120].
We will describe some of the features of her program.

For an arbitrary simplex S the input for the algorithm would be a matrix
A and a vector b as in Sect. 4.1. However, we implemented the algorithm
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Figure 4.1: The simplex S∗(16, 1
2 )pr and its transform

only for the simplices S = S(N, k)pr and S = S∗(N, k)pr as in Sects. 3.1
and 3.5. Thus the input just consists of a positive integer N , a positive
integer or half-integer k, and a decision for which of the groups Γ0(N) or
Γ∗(N) the algorithm should be run. In a first step the positive divisors m of
N are listed in ascending order 1 = m1 < m2 < . . . < mτ(N) = N , and the
matrix A and vector b are computed according to Sect. 3. The coordinates of
integral points x ∈ S are exponents xj = a(mj) in holomorphic eta products
of weight k.

In the next step, systems of linear equations are solved to find the vertices
v1, . . . , vn+1 of S, the edges ej = vj − vn+1 are computed, and denominators
are cleared to obtain the integral non-singular matrix G = h · (e1, . . . , en)T ,
as defined in Sect. 4.1. Next we need a unimodular matrix U for which GU is
lower triangular. Details of this step will be described later in this subsection.

For our class of simplices S the transformed simplex UT S will usually be
quite flat, while the original S is more evenly extended in all directions. The
example S = S∗(16, 1

2 )pr ⊆ R
2 is easy to visualize, and it shows the typical

effect. (See also Fig. 4.1.) It is defined by the inequalities

9x1 + 2x2 ≥ −4, −3x1 + 2x2 ≥ −4, −3x1 − 2x2 ≥ −2.
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Its vertices are e1 = (1, − 1
2 )T , e2 = (−1, 5

2 )T , e3 = (0, −2)T , and its lattice
points are (0, −2), (0, −1), (0, 0), (0, 1), corresponding to the eta products
η5(4z)/(η2(2z)η2(8z)), η3(4z)/(η(2z)η(8z)), η(4z), η(2z)η(8z)/η(4z). We
obtain

G = 2 · (e1 − e3, e2 − e3)T =
(

2 3
−2 9

)
,

and we can choose U =
( −1 3

1 −2

)
∈ GL(2, Z). The transformed simplex UT S

has vertices w1 = UT e1 = (− 3
2 , 4)T , w2 = ( 7

2 , −8)T , w3 = (−2, 4)T . We get

GU = 2 · (w1 − w3, w2 − w3)T =
(

1 0
11 −24

)
.

The procedure in Sect. 4.1 yields the interval [−8, 4] for the last coordinates
of lattice points in UT S. Therefore we have to consider 13 values y2 ∈
{−8, −7, . . . , 4} and the corresponding convex coordinates λ2 = 1

12 (y2 + 8).
Only four out of these 13 values yield a point y = (y1, y2)T ∈ UT S ∩ Z

2.

In general, for our simplex S we get an initial list of conceivable values yn for
the last coordinate of lattice points y in the transformed simplex. Then for
every ν ∈ {1, . . . , n} we get a list of conceivable points (yn−ν+1, . . . , yn)T ∈
Z

ν for the final ν coordinates of lattice points in UT S. The number of
these points in Z

ν will be called the shadow length in dimension ν of the
transformed simplex. Typically, the shadow lengths in dimensions around
n
2 will be huge as compared with the actual number of lattice points in S.
The shadow lengths depend on the choice of U . Therefore the values in the
following examples will possibly not be reproducible. But they give an idea
of the values which will occur.

Shadow lengths for S∗(2236, 1)pr and for S∗(3 · 5 · 7 · 11, 1)pr

Dimension ν 1 2 3 4 5 6 7 8 9 10

S∗(2916, 1)pr 973 6582 29629 11215 92448 12822 6043 1232 289 109
S∗(1155, 1)pr 288 1382 22108 196 806 16 8

The second example tells us that we have to inspect almost 25000 candi-
dates in intermediate dimensions, with the final result that the origin and
the standard unit vectors in R

7 are the only lattice points in S∗(1155, 1)pr ,
corresponding to the obvious holomorphic eta products η(mz)η

(
1155
m z

)
for

the positive divisors m <
√

N of N = 1155.

Essentially, the shadow lengths are governed by the absolute values of the
diagonal entries of the triangular matrix 1

hGU . They depend on the choice
of U . Now we give some comments on the computation of the transformation
matrix U .

We use the Gauss algorithm to compute U recursively, running through the
rows of G. Suppose that for some j ∈ {1, . . . , n} we have got a matrix
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Uj−1 ∈ GL(n, Z) such that the first j − 1 rows are lower triangular, i.e.,
that in GUj−1 = (cμν) we have cμν = 0 for 1 ≤ μ ≤ j − 1, μ < ν ≤ n.
Then if cjν = 0 for all ν > j, we put Uj = Uj−1. Otherwise we choose
a position ν0 > j for which |cj,ν0 | is minimal among the absolute values of
all entries cjν �= 0 for ν > j. We interchange the jth and ν0th columns of
GUj−1. Hereafter we add suitable multiples of the new jth column upon the
following columns such that all entries of the jth row beyond the diagonal
entry become smaller in absolute value than the diagonal entry. Repeating
this procedure we obtain, after finitely many steps, a matrix Uj ∈ GL(n, Z)
such that in GUj the first j rows are lower triangular. For U = Un−1 we are
done. There are some choices in the computation of U . But they are of no
effect upon the diagonal entries of GU :

Proposition 4.1 Let G be a non-singular integral n × n matrix, and let U ∈
GL(n, Z) be a matrix for which GU is lower triangular. Then the absolute
values of the diagonal entries of GU are independent from the choice of the
unimodular matrix U .

Proof. We suppose that U, Ũ ∈ GL(n, Z), GU = (tμν), GŨ = (t̃μν) and
tμν = t̃μν = 0 for all ν > μ. Then (t̃μν)−1 · (tμν) ∈ GL(n, Z) is lower
triangular, too, and hence has diagonal entries from {−1, 1}. It follows that
t̃μμ = ±tμμ for all μ = 1, . . . , n. �

In spite of Proposition 4.1 there are options for an improvement of the shape
of the transformed simplex. Firstly, we can permute the vertices v1, . . . , vn+1

of S, resulting in a permutation of the rows of G. Secondly, we can use the
edges vj − vj0 with respect to any vertex vj0 instead of vn+1 as a reference
vertex. By these means we cannot change the average size of the diagonal
entries of GU , since their product is the determinant of G in absolute value,
and hence invariant with respect to unimodular transformations. But we can
try to get the diagonal entries more evenly distributed, making |tjj | smaller
for large j and larger for small j.

In the recursive step of the Gauss algorithm as described above, the new
diagonal entry tjj is, up to sign, equal to the greatest common divisor of the
old entries tjj , tj,j+1, . . . , tjn. Therefore in the jth step one computes

tμ = gcd(tμj , tμ,j+1, . . . , tμn) for μ = j, . . . , n,

an index μ0 is chosen for which |tμ0 | = max{ |tj |, |tj+1|, . . . , |tn| }, and the jth
and μ0th rows of GUj−1 are interchanged. Only after this is done, the next
unimodular matrix Uj is computed as described above.

As for the choice of the reference vertex, it would be too time consuming to
try all of them and to make an optimal choice. Some numerical experiments
have shown that usually v1 is a good choice for S∗(N, k)pr and that all
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Figure 4.2: Searching through a tree

vertices are comparably good for S(N, k)pr . Actually, the vertex v1 instead
of vn+1 was chosen as the reference vertex in the implementation.

The preceding discussion shows that one has to cope with a huge number of
candidates (yn−ν+1, . . . , yn) ∈ Z

ν in dimensions 1 ≤ ν < n for a rather small
number of lattice points y = (y1, . . . , yn) in the transformed simplex UT S.
These candidates, including the lattice points y, form the nodes of a graph G,
where two nodes y(ν) = (yn−ν+1, . . . , yn) and z(ν+1) = (zn−ν , zn−ν+1, . . . , zn)
are joined by an edge if and only if z(ν+1) is an immediate successor of y(ν),
i.e., if zj = yj for n − ν + 1 ≤ j ≤ n. This graph G is a tree (if we formally
introduce a single node ∅ in dimension 0 which is a common predecessor of
all nodes in dimension 1). Searching through this tree is in fact the most
time consuming part of the algorithm. In Fig. 4.2 we show an example of
such a tree in dimension 4, with a total number of 20 nodes, but only two
nodes in full dimension.

There are two strategies for searching through a tree, characterized by the
principles “breadth first” or “depth first”. For a description of these principles
one may read [1], pp. 93–108, or pp. 112–115, 141–150 in [99], a book with
bright illustrations as from an art gallery.

According to the breadth first approach one computes and stores, for a
fixed ν, a list of all nodes in dimension ν and their convex coordinates. In
order to find the next list in dimension ν + 1 one has to inspect each of the
nodes in the actual list and compute its immediate successors, if there are
any. Following this principle would be disastrous in our situation. The reason
is that, even in modest examples, the list of nodes in dimensions around n

2 is
too large to fit into the random access memory, with the effect that almost
all the computing time is wasted with shuffling data back and forth from
random access memory to hard disc.
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We need to use the depth first approach. In the example in Fig. 4.2 this means
that the nodes are processed in the succession 1, 2, 3, . . . , 20 as indicated.
Proceeding from one node to the next one means that we simply append or
delete a coordinate. The great advantage of this approach is that we have to
keep in store just one node and its convex coordinates. Of course, we need
storage for the output of the final list of lattice points in the simplex; but
this is a rather small list in all practical cases.

We add a final remark: Since the entries in the transformation matrix U
tend to grow large even in modest examples, it is necessary to use software
which processes fractions and “long” integers correctly without roundoff er-
rors. As an example we mention the 11-dimensional simplex S∗(N, 1)pr for
N = 172822 = 2 · 13 · 172 · 23. Here, for the diagonal entries of U we got

119, 670 99880, −230 42088 51485, −15784 25116 63932 89336,
−38 50840 01215 06569, −2 25892 73713 91430 01510,
613 33952 59824 56022 75424, −81662 46175 33538 68489 67867,
1 11437 23920 55854 41303 93280, 12 15351 82203 89741 92593 34203,
−7 26505 80734 54019 17276 27726.

4.3 Output and Run Times

In the output, some information is provided which is important for studying
the eta products f(z) corresponding to the lattice points in S(N, k)pr or
S∗(N, k)pr . First of all, we list all coordinates x(m) of the lattice points x
in S = S(N, k) or S = S∗(N, k), i.e., all the exponents in

f(z) =
∏

m|N
η(mz)x(m).

Then we indicate, for every x, whether f is or is not a cusp form. If f is
not a cusp form, then in the output we list all cusps κ = 1

c for c = 0 or c|N
such that f does not vanish at κ. For this purpose we decide which of the
inequalities defining S hold with equality at x. Next, for each x we list the
order s

t of f at infinity, i.e., the numerator and the denominator of f . This
is useful because of the Fourier expansion (2.3) of f .

Now we explain our sorting of the lattice points x ∈ S. The list is subdivided
into 2 sublists for S = S∗(N, k) and into 4 sublists for S = S(N, k). The
first sublist contains the eta products for Γ∗(N) which are old, and in every
instance we indicate the level N1 for which it is new. The second sublist
contains the eta products for Γ∗(N) which are new. The third sublist gives
the remaining old eta products for Γ0(N), with an indication of levels N1

as before. The last sublist contains all the eta products which are new for
Γ0(N) and which do not belong to the Fricke group. Of course, the second
and the fourth sublists are of primary interest.



64 4. An Algorithm for Listing Lattice Points

Table 4.1: Sample run times for S = S∗(N, k)pr

level weight dimen- points length of total total percentage
N k sion in S initial list number run time of time for

of nodes searching
in tree

60 1 5 64 145 1687 .1 22

60 2 5 1310 289 11551 .3 42

210 1 7 24 288 11777 .4 49

240 1 9 108 37 42981 .9 79

5000 1 9 37 751 175751 3.6 90

900 1 13 127 271 203537 5.4 77

900 2 13 18658 541 17689277 497.1 95

1260 1 17 112 577 7966007 194.1 99

234 1 17 107 786433 2551482 41.8 97

236 1 18 113 1572865 5102364 88.0 98

Table 4.2: Sample run times for S = S(N, k)pr

level weight dimen- points length of total total percentage
N k sion in S initial list number run time of time for

of nodes searching
in tree

36 1/2 8 54 37 1826 .2 27

36 1 8 2023 73 33545 1.0 50

36 3/2 8 36912 109 272927 10.6 36

36 2 8 324691 145 1453276 79.2 24

484 1 8 393 159 16930 .5 76

60 1 11 2620 289 571545 11.6 90

735 1 11 96 225 129468 2.5 88

210 1 15 1304 1153 4522694 106.7 99

215 1 15 3919 98305 1556433 29.4 90

217 1 17 5067 393217 6196037 113.1 96

180 1 17 8492 433 66716584 1580.4 99
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Each of the 4 sublists is sorted in ascending order with respect to the denomi-
nator t. For fixed t we sort in ascending order with respect to the numerator s.
A standard algorithm is used for sorting within the sublists.

This kind of sorting is useful for the detection of Hecke eigenforms: We try
to find linear combinations

F (z) =
∑

j

Ajfj(z) =
∑

n≥1, gcd(n,t)=1

λ(n)e
(nz

t

)

of the eta products f1, f2, . . . for a fixed group, weight and denominator t
which are cusp forms, which are new for that group, and such that F is
a Hecke eigenform. This means that the sequence of coefficients λ(n) is
multiplicative and satisfies the well-known Ramanujan–Hecke recursions at
prime powers. In the same way, with minor modifications, we deal with eta
products which are non-cusp forms. In many cases this search for eigenforms
is successful. In favorite cases we even obtain a basis of Hecke eigenforms in
the spaces which are spanned by the corresponding sets of eta products. In
Part II we will present many examples of this kind, mainly for weight k = 1.

We did not try to find theoretical results on the complexity of our algorithm.
Here, we communicate some run times of the program. The actual times in
seconds depend, of course, on the environment which was used by S. Scheurich
(an AMD Athlon 1600 processor, with 512 MB random access memory and
1.4 MHz frequency, operated by SUSE Linux 8.2). But it illustrates how
running times grow when the dimension of the simplex or the number of
nodes in the tree grows. The last columns shows that for a large tree of
nodes practically the complete run time is used for searching through this
tree. So any effort for an improved implementation should be focused on that
search. (See also Tables 4.1 and 4.2.)



5 Theta Series with Hecke Character

5.1 Definition of Hecke Characters and Hecke
L-functions

In 1920 Hecke [48] introduced a new kind of theta series. The corresponding
Dirichlet series form a common generalization both of Dirichlet’s L-series
and of Dedekind’s zeta functions. While Dirichlet’s L-series are defined by
characters on the rational integers, Hecke’s L-functions involve characters on
the integral ideals of algebraic number fields. The values of these characters
at principal ideals depend on the values of the algebraic conjugates aν of a
generating number a, and not just on the residue of a modulo a fixed period
ideal. Therefore Hecke called his characters Grössencharaktere. We prefer to
use the term Hecke character. We can find definitions and results on Hecke
characters, Hecke theta series and Hecke L-functions in some textbooks; we
mention [96], pp. 90–95, 182–185, [102], pp. 491–514. Here we will reproduce
relevant definitions and results, but we will not give proofs.

Let K be an algebraic number field with degree n over Q. We let a �→ aν

for ν = 1, . . . , n denote the isomorphisms of K into C, mapping K onto
the algebraic conjugate fields K1, . . . , Kn, where we assume, as usual, that
K1, . . . , Kr1 are real and Kν and Kν+r2 = Kν for r1 < ν ≤ r1 + r2 are pairs
of complex conjugate non-real fields. We have n = r1 + 2r2. The field K is
called totally real if r1 = n and totally imaginary if r1 = 0. Let OK denote
the ring of algebraic integers in K, J the group of all non-zero fractional
ideals of K, and P the subgroup of principal ideals. The factor group J/P
is called the ideal class group of K. Its order h = h(K) is finite and is called
the class number of K.

We suppose that a non-zero integral ideal m � OK is given. Then we put

J(m) = {a ∈ J | gcd(a, m) = 1},

P (m) = {(a) ∈ P | a ≡ 1 mod×
m}.

G. Köhler, Eta Products and Theta Series Identities,
Springer Monographs in Mathematics,
DOI 10.1007/978-3-642-16152-0 5, c© Springer-Verlag Berlin Heidelberg 2011
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Here, the multiplicative congruence a ≡ 1 mod×m means that a = b
c with in-

tegers b, c ∈ OK which are relatively prime with m and satisfy b ≡ c mod m.
A homomorphism

ξ : J(m) → C
1

of J(m) into the complex numbers of absolute value 1 is called a Hecke char-
acter modulo m if there are real numbers uν , vν for 1 ≤ ν ≤ r1 + r2 such
that

ξ((a)) =
r1+r2∏

ν=1

(
aν

|aν |

)uν

|aν |ivν for all (a) ∈ P (m) (5.1)

and

uν ∈ {0, 1} for ν ≤ r1, uν ∈ Z for r1 < ν,

r1+r2∑

ν=1

vν = 0.

(5.2)
It is clear that indeed |ξ((a))| = 1 for (a) ∈ P (m). The conductor of ξ is the
greatest integral ideal n of K such that (5.1) holds for all (a) ∈ P (n) ∩ J(m).
A Hecke character ξ modulo m is called primitive if its conductor is m. In
general, for ξ there exists a unique primitive Hecke character ξ0 modulo n

such that ξ0(a) = ξ(a) for all a ∈ J(m). Any Hecke character ξ modulo m is
extended to a mapping of J into C by putting ξ(a) = 0 for a �∈ J(m).

The values of Hecke characters at principal ideals are split into an “infinite”
and a “finite” part as follows. We suppose that ξ is a primitive Hecke char-
acter modulo m with parameters uν , vν as above. Then we define functions
ξ∞ and ξf on the set of all a ∈ K which are relatively prime with m by

ξ∞(a) =
r1+r2∏

ν=1

(
aν

|aν |

)uν

|aν |ivν , ξf(a) =
ξ((a))
ξ∞(a)

. (5.3)

We have ξ∞(a) = ξ((a)), ξf(a) = 1 if a ≡ 1 mod×m. Moreover, we have
ξf(a) = ξf(b) if a ≡ b mod m.

The Hecke L-function for ξ is defined by

L(ξ, s) =
∑

a

ξ(a)N(a)−s (5.4)

where a runs over the non-zero integral ideals in OK and N = NK/Q de-
notes the norm. The series converges absolutely and uniformly on half-planes
Re(s) ≥ 1 + δ, for any δ > 0. Since ξ is a homomorphism, the Kummer–
Dedekind theorem on unique factorization of ideals into powers of prime
ideals implies that the L-function has the Euler product

L(ξ, s) =
∏

p

(1 − ξ(p)N(p)−s)−1 (5.5)

where p runs over the prime ideals in OK .
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5.2 Hecke Theta Series for Quadratic Fields

Now we restrict our attention to quadratic number fields K. For K there
exists a unique square-free integer d ∈ Z, d �= 1, such that

K = Q(
√

d).

The discriminant of K is

D =
{

d if d ≡ 1 mod 4,
4d if d ≡ 2, 3 mod 4.

The ring OK = O
Q(

√
d) of integers in K is

OK =
{

1
2 (x + y

√
d) | x, y ∈ Z, x ≡ y mod 2

}
if d ≡ 1 mod 4,

OK =
{
x + y

√
d | x, y ∈ Z

}
= Z

[√
d
]

if d ≡ 2, 3 mod 4.

For imaginary quadratic fields, i.e., for d < 0 we prefer to write O|d| instead
of O

Q(
√

d). So in our notation, O1 = Z[i] is the ring of Gaussian integers,
and O3 = Z[ω] with

ω = e( 1
6 ) = 1

2 (1 +
√

−3)

stands for the ring of Eisenstein integers.

First we discuss imaginary quadratic fields K. Then we have r1 = 0, r2 = 1.
It is clear from (5.2) that a Hecke character ξ modulo m for K satisfies

ξ((a)) =
(

a

|a|

)u

for a ≡ 1 mod ×
m

with some rational integer u ≥ 0. We write u = k − 1, and we call

Θk(ξ, z) = Θk(K, ξ, z) =
∑

a

ξ(a)N(a)(k−1)/2e(N(a)z) (5.6)

the Hecke theta series of weight k for the character ξ. In the summation, a

runs over the integral ideals in OK , and N(a) = NK/Q(a) is the norm of a.

The following result is Theorem 4.8.2 in [96], p. 183.

Theorem 5.1 Let K = Q(
√

d) be an imaginary quadratic field with discrim-
inant D, and ξ a Hecke character modulo m for K such that

ξ((a)) =
(

a

|a|

)k−1

for a ≡ 1 mod ×
m
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with some positive integer k. Then the theta series f(z) = Θk(ξ, z) is a mod-
ular form of weight k for the group Γ0(|D|N(m)) with a Dirichlet character
χ which is defined by

χ(t) =
(

D

t

)
ξf(t) for t ∈ Z.

Moreover, f is a cusp form unless k = 1 and ξ is induced from some Dirichlet
character through the norm. Finally, if ξ is primitive then f is a newform.

We give some explanations. We put N = |D|NK/Q(m). The statement that
f is a modular form for Γ0(N) with Dirichlet character χ means that

f(Lz) = χ(t)(sz + t)kf(z) for L =
(

a b
s t

)
∈ Γ0(N).

The Hecke character ξ is induced through the norm from a Dirichlet character
if

ξ(a) = ψ(NK/Q(a))

with some Dirichlet character ψ on Z. We will see examples of this sort in
Part II, and we will also be able to use Theorem 5.1 for a painless proof that
certain linear combinations of non-cuspidal eta products are cusp forms. The
term newform is used in its usual sense as explained in Sect. 1.7. It implies
that the theta series Θk(ξ, z) is a common eigenform of all Hecke operators Tn

and that the Fourier expansion f(z) =
∑∞

n=1 a(n)e(nz) starts with a(1) = 1.
In particular, the sequence of coefficients a(n) is multiplicative. We point out
that this fact follows from the arithmetic of number fields, without referring
to Hecke theory.

5.3 Fourier Coefficients of Theta Series

We can say more about the coefficients a(n) in

Θk(ξ, z) =
∑

a�Od

ξ(a)N(a)(k−1)/2e(N(a)z) =
∞∑

n=1

a(n)e(nz)

without even touching the concept of Hecke operators. By definition we have

a(n) =
∑

a, N(a)= n

ξ(a)n(k−1)/2.

For primes p ∈ N, the decomposition law for Od tells us that
⎧
⎨

⎩

p is split, (p) = pp, with prime ideals p �= p,
p is inert, (p) = p, a prime ideal,
p is ramified, (p) = p2, p a prime ideal,

if
(

D

p

)
=

⎧
⎨

⎩

1,
−1,

0.
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If p is inert then there is no ideal in Od whose norm is p, and it follows that

a(p) = 0 whenever
(

D

p

)
= −1.

More generally, we have a(n) = 0 for all n which contain an odd power of an
inert prime.

This observation implies that the Fourier expansion of a Hecke theta series is
lacunary in the following sense. A (power or Fourier) series with coefficients
a(n) is called lacunary if the set of values n with a(n) �= 0 has density 0, i.e.,
that limm→∞

A(m)
m = 0 where A(m) is the number of n ≤ m with a(n) �= 0.

Serre [128] proved that the Fourier series of a modular form f is lacunary if
and only if f is of CM -type, i.e., if f is a linear combination of Hecke theta
series. In [129] he showed that ηr for r = 2, 4, 6, 8, 10, 14, 26 are the only
even powers of η which are lacunary. Another criterion for the lacunarity of
modular forms has been given by V. K. Murty [100]. We will briefly return
to this topic in Sect. 8.3.

We return to the coefficients a(n) of Θk(ξ, z). For even powers of an inert
prime p we get

a(p2r) = ξ((p))rpr(k−1).

For arbitrary powers of ramified primes p = p2, i.e. of prime divisors of the
discriminant, we get

a(pr) = ξ(p)rpr(k−1)/2.

Finally, if p = pp is split, we obtain

a(p) = (ξ(p) + ξ(p))p(k−1)/2,

a(pr) =
(
ξ(pr) + ξ(pr−1

p) + . . . + ξ(pp
r−1) + ξ(pr)

)
pr(k−1)/2.

This implies the recursion formula

a(pr+1) = a(p)a(pr) − ξ((p))pk−1a(pr−1). (5.7)

The formulae imply
|a(p)| ≤ 2p(k−1)/2

for all primes p. So in the case of Hecke theta series the Ramanujan–
Petersson–Deligne inequality follows trivially from the definitions.

For weight k = 1 it may happen that a(p) = 0 for many split primes p because
of ξ(p) = −ξ(p). If this occurs then there are good chances for an identity of
the form

Θ1(K, ξ, z) = Θ1(L, ψ, z)
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where K and L are different number fields. We will exhibit many examples
in Part II. The simplest example is

η2(z) =
∑

n≡1 mod 12

α(n)e
(nz

12

)

which is a theta series on O1 with character modulo 6, a theta series on O3

with character modulo 4(1+ω), and also a theta series on the real quadratic
field Q(

√
3). The theta series on O1 was well known to Hecke ([50], p. 425;

he refers to H. Weber); it is easily obtained by squaring the series for η(z)
which yields

α(n) =
∑

x>0, y>0, x2+y2=2n

(
12
xy

)
.

As far as we know, Schoeneberg [121] was the first who saw that there is also
a theta series for η2(z) on O3. We will present it in Example 9.1.

Now we consider the L-function corresponding to Θk(ξ, z),

L(Θk(ξ, . ), s) =
∞∑

n=1

a(n)n−s =
∑

a

ξ(a)N(a)
k−1
2 −s.

Its Euler product takes the shape

L(Θk(ξ, . ), s) =
∏

p

(
1 − ξ(p)N(p)

k−1
2 −s

)−1

=
∏

p ramified

(
1 − ξ(p)p

k−1
2 −s

)−1

·
∏

p inert

(
1 − ξ((p))pk−1−2s

)−1

·
∏

p split

(
1 − (ξ(p) + ξ(p))p

k−1
2 −s + ξ((p))pk−1−2s

)−1

=
∏

p|D

(
1 − a(p)p−s

)−1 ·
∏

( D
p )=−1

(
1 − a(p2)p−2s

)−1

·
∏

( D
p )=1

(
1 − a(p)p−s + ξ((p))pk−1−2s

)
.

5.4 More on Theta Series for Quadratic Fields

We continue the discussion of theta series Θk(K, ξ, z) on imaginary quadratic
fields K. We will present Kahl’s Theorem which deals with components of
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theta series. Let A be a collection of ideal classes of K, and let t ∈ N, j ∈ Z.
Then

Θk(ξ, A, t, j, z) =
∑

a∈A, N(a)≡j mod t

ξ(a)N(a)(k−1)/2e(N(a)z)

is called a component of the Hecke theta series Θk(ξ, z). The summation is
restricted to integral ideals a of K which belong to classes in A and with
norms congruent to j modulo t. The following theorem is the main result
in the doctoral dissertation [64], and is published in [65], Theorem 3. It is a
generalization of Theorem 5.1.

Theorem 5.2 (Kahl’s Theorem) Let K be a quadratic number field with
discriminant D < 0, and ξ a Hecke character modulo m for K as in Theo-
rem 5.1. Let A be an ideal class of K, and let t be a divisor of 24 such that
the primitive character which induces ξ is primitive with respect to t. Then
the components

Θk(ξ, A, t, j, z) =
∑

a∈A, N(a)≡j mod t

ξ(a)N(a)(k−1)/2e(N(a)z)

are modular forms of weight k for the group Γ0(|D|N(m)) with Dirichlet
character χ as in Theorem 5.1. For k > 1 the components are cusp forms.

We give some explanations. Gaussian sums play a major role in the proof
of Theorem 5.1. For Theorem 5.2 one needs partial Gaussian sums for the
residue classes j modulo t. The technical significance of the condition t|24
is that j2 ≡ 1 mod t whenever gcd(j, t) = 1, and this implies that partial
Gaussian sums remain unchanged when j is multiplied by a square. In our
examples the condition t|24 is quite natural, since t is the denominator of an
eta product, which by definition is a divisor of 24.

For the technical term of primitivity with respect to t, we refer to [65], Sect. 2.
Primitivity with respect to 1 is equivalent with primitivity. For correctness
we remark that in the exceptional case m = OK , k = 1, j ≡ 0 mod t a
constant must be added to the theta component.

In Part II we will meet many examples of components of theta series which
are eta products or linear combinations thereof. But we will never use Theo-
rem 5.2 to show that the components are modular forms. The reason is that
we always have theta series for certain collections of characters, with the ef-
fect that all components of each single theta series are linear combinations
of the collection of theta series. Therefore, Theorem 5.1 suffices to show that
the components are modular forms.

A proper component of a Hecke theta series is not a Hecke eigenform. But
its coefficients possess certain “partially multiplicative” properties. Modular
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forms with such properties were studied by M. Newman [103], and further
investigated by Gordon and Sinor [44] and Gordon and Hughes [42]. They
introduced the concept of a completing form, a modular form with the prop-
erty that its addition to a partially multiplicative eta product yields a Hecke
eigenform.

Now we consider theta series on real quadratic fields K. Here we have r1 = 2,
r2 = 0, and by a′ we denote the algebraic conjugate of a ∈ K. We consider
Hecke characters ξ modulo m for which v1 = v2 = 0 and (u1, u2) = (1, 0)
or (0, 1) in (5.2); thus ξ((a)) = a/|a| = sgn(a) or ξ((a)) = sgn(a′) for a ≡
1 mod m. We define a theta series for ξ by

Θ(ξ, z) = Θ(K, ξ, z) =
∑

a

ξ(a)e(N(a)z),

where a runs over the integral ideals of K. The following result is Theo-
rem 4.8.3 in [96], p. 184.

Theorem 5.3 Let K be a real quadratic field with discriminant D, and ξ a
Hecke character modulo m such that

ξ((a)) = sgn(a) or ξ((a)) = sgn(a′) for a ≡ 1 mod m,

where a′ is the algebraic conjugate of a. Then the theta series f(z) = Θ(ξ, z)
is a cusp form of weight 1 for the group Γ0(D N(m)) with a Dirichlet character
χ which is defined by χ(t) =

(
D
t

)
ξ((t)). If ξ is primitive then f is a newform.

In Sect. 5.6 we will comment on Theorem 5.3 and on some examples.

5.5 Description of Theta Series by Ideal Numbers

For explicit computations with Hecke theta series Θk(K, ξ, z) with a character
ξ modulo m we need to specify the values ξ((a)) for a ∈ OK modulo m and the
values ξ(a) for a set of representatives a of the ideal classes of K. However,
we find it more convenient to describe ξ by its values ξ(μ) on a set of integral
ideal numbers μ for K.

An ideal number for an ideal a of a number field K is a number μ in some
algebraic extension field L of K such that

a = μOL ∩ K.

We can write a = (μ) ∩ K, where (μ) denotes the principal ideal of L which
is generated by μ. The numbers in a are all those numbers in K which are
multiples of μ with integers from L. In certain aspects we may handle an
arbitrary ideal a as if it were a principal ideal. A system of integral ideal
numbers for K is a set J of integers in some algebraic extension field L of K
with the following properties:
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(1) For every ideal a in OK we have a = αOL ∩ K for some α ∈ J .

(2) If α, μ ∈ J and αOL = μOL then μ = εα for some unit ε ∈ O ×
K ; ideal

numbers which generate the same principal ideal in L are associated
in K.

(3) If α, μ ∈ J then αμ ∈ J , and the ideal corresponding to αμ is the
product of the ideals corresponding to α and μ.

(4) The set J decomposes into subsets A1, . . . , Ah where h is the class
number of K. We have Al ∩ Am = {0} for l �= m. If α, μ belong to
some fixed subset Al, then the corresponding ideals belong to the same
ideal class, and we also have α ± μ ∈ Al. We may choose A1 = OK .

From (3) and (4) it follows that αμ ∈ Al whenever α ∈ OK and μ ∈ Al.

Ideal numbers were introduced by Kummer and Hecke. The existence of
systems of integral ideal numbers was proved by Hecke in [48] and in his
textbook [49], p. 121. A more recent exposition of the proof was given by
Neukirch [102], p. 506. For L one can choose a field whose degree over K is
equal to the class number h of K. The choice of L and J is not unique; this
is the reason why ideal numbers were widely neglected.

Let JK be a system of integral ideal numbers for a number field K, and let
α, γ ∈ JK be ideal numbers for the ideals a, c in OK . For α �= 0, we say
that α divides γ, and we write α|γ, if γ

α ∈ JK . Because of (3) this means
that a−1c is an integral ideal. We can define the concept of greatest common
divisor of integral ideal numbers as follows: We put

gcd(α, γ) = μ

where μ ∈ JK is an ideal number for a + c, the greatest common divisor of
the ideals a and c. By (1) and (2), μ exists and is unique up to a unit from
O ×

K as a factor. We call α, γ relatively prime or coprime if gcd(α, γ) = 1,
which means a + c = OK . We define congruences for the ideal numbers α, γ
as follows. Let m be a fixed non-zero integral ideal with an ideal number
M ∈ JK . We write

α ≡ γ mod M, or α ≡ γ mod m,

and we say that α, γ are congruent modulo M , if the ideals a, c corresponding
to α, γ belong to the same ideal class and if M |(α − γ). The condition that
a, c are in the same class is needed and makes sense because of (4).

The integral ideal numbers which are coprime with M form a semigroup
with respect to multiplication. It is split into residue classes by the relation
of congruence modulo M . We denote by

(JK/(M))×, or (JK/m)×
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the set of residue classes. It inherits the structure of a finite abelian group;
this tells us Satz 7.3 in [102], p. 508:

Proposition 5.4 The set (JK/(M))× of coprime residue classes modulo M
of integral ideal numbers of a number field K is a finite abelian group. There
is a canonical exact sequence

1 −→ (OK/m)× −→ (JK/(M))× −→ J/P −→ 1,

where M corresponds to the ideal m.

On the left hand side in this exact sequence we have the group (OK/m)×

of coprime residue classes of integers in K modulo m. Its order is the Euler
function of m and is denoted by ϕ(m). On the right hand side we have the
ideal class group J/P of K. Proposition 5.4 tells us in particular that the
order of (JK/(M))× is the product of the class number of K and the Euler
function of m,

|(JK/(M))× | = h ϕ(m).

Proposition 5.4 does not imply that (JK/(M))× is isomorphic to the direct
product of the groups (OK/m)× and J/P . In fact, this is false in general.
For a simple example we choose K = Q(

√
−5) and m = (2). A system of

integral ideal numbers for K is J5 = O5 ∪ {(x + y
√

−5)/
√

2 | x, y ∈ Z, x ≡
y mod 2}. Both groups (O5/(2))× � Z2 and J/P � Z2 are cyclic of order 2,
but (J5/(2))× � Z4 is cyclic of order 4. For quadratic fields K we will study
(OK/m)× thoroughly in Sect. 6, and we will meet many examples of groups
(JK/(M))× in Part II.

Now we rewrite a Hecke theta series (5.6) on an imaginary quadratic field
K = Q(

√
−d) in terms of ideal numbers. We use the notations from Sect. 5.2,

but write −d instead of d with the effect that d > 0. Let Jd be a system
of integral ideal numbers for K, and L an extension field of K for which
Jd ⊆ OL. Let ξ be a Hecke character modulo m for K as in Theorem 5.1,
with ideal number M ∈ Jd for m. For any non-zero integral ideal a of K
with ideal number α ∈ Jd we get aa = ααOL ∩ K = ααOd, since αα ∈ N,
and on the other hand we have aa = (N(a)) = N(a)Od. Therefore we get

N(a) = αα.

Using this, the summands in (5.6) take the shape

ξ(a)N(a)(k−1)/2e(N(a)z) = ξf(a)
(

α

|α|

)k−1

(αα)(k−1)/2e(ααz)

= ξf(a)αk−1e(ααz).

We may view ξf(a) = χ(α) as a function on the set Jd of ideal numbers which
comes from a character

χ : (Jd/(M))× −→ C
×
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and is defined on all of Jd by χ(α) = χ(α mod M) if gcd(α, M) = 1 and
χ(α) = 0 if α, M are not coprime. We need that χ(α)αk−1 is independent
from the choice of the ideal number α ∈ Jd for a. Because of property (2) of
ideal numbers this comes down to the requirement

χ(ε)εk−1 = 1 for all units ε ∈ O ×
d . (5.8)

Furthermore, when we sum over α ∈ Jd instead of a � Od, the series must
be divided by the number w of units of K which is

w =

⎧
⎨

⎩

6 for D = −3,
4 for D = −4,
2 for D < −4.

Finally our Hecke theta series is written as

Θk(χ, z) = Θk(D, χ, z) =
1
w

∑

α∈Jd

χ(α)αk−1e(ααz). (5.9)

Here, w is the number of units, D the discriminant of the imaginary quadratic
field K = Q(

√
−d), Jd is a system of integral ideal numbers for K, and χ is a

character modulo some M ∈ Jd. We call M the period of χ. By Theorem 5.1,
Θk(D, χ, z) is a modular form of weight k for Γ0(|D|MM) with a certain
Dirichlet character. Formally we can drop the requirement (5.8); if it is
violated then

∑
ε∈O ×

d
χ(ε)εk−1 = 0, and the theta series (5.9) is identically 0.

There is an exceptional case where we prefer to drop the denominator w in
(5.9): Let 1 denote the trivial character on Jd whose value is 1 for every
α ∈ Jd. Then for weight k = 1 we usually use the function which starts with
the constant coefficient 1, i.e.,

Θ(D, z) = w Θ1(D, 1, z) =
∑

α∈Jd

e(ααz).

The corresponding Dirichlet series is the Dedekind zeta function of the field K.

An expression similar to (5.9) is obtained for theta series of weight 1 on real
quadratic fields. Let K = Q(

√
D) with a discriminant D > 0, let J be a

system of integral ideal numbers for K, and let ξ be a character on J with
some period M ∈ J corresponding to an ideal m in OK . The norm of an
ideal a with ideal number α is N(a) =

∣∣α α′∣∣ where α �→ α′ extends the
conjugation map x + y

√
D �→ x − y

√
D from OK to J . Contrary to the

imaginary quadratic case, the unit group O ×
K is infinite (and isomorphic to

Z × Z2). Therefore we must not sum on all over J , but rather on a system
of representatives modulo units. We get

Θ1(D, ξ, z) =
∑

α∈J modulo units

ξ(α)e
(∣∣α α′∣∣z

)
. (5.10)
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We need to have ξ(α) = 1 for units α ∈ O ×
K . This is why in the examples

in Part II we will always see ξ(μ) = −sgn(μ) for μ ≡ −1 mod M as part of a
definition of a character ξ on a real quadratic field.

5.6 Coincidence of Theta Series of Weight 1

The simplest example for Theorem 5.3 is η2(z) which is a theta series of
weight 1 for a primitive Hecke character modulo 2

√
3 for the field Q(

√
3)

with discriminant D = 12. This remarkable identity for η2(z) was discovered
by Hecke in [50], p. 425; [51], p. 448. It was known to Hecke [51] and ear-
lier to Weber and Ramanujan [115] that η2(z) is also a theta series on the
Gaussian number field with discriminant −4. Only much later Schoeneberg
[121] observed that η2(z) is a theta series on the Eisenstein integers with dis-
criminant −3. We will describe these identities in Example 9.1. Some more
identities among eta products and theta series for both real quadratic and
imaginary quadratic fields were discovered by Kac and Peterson [63]. Ex-
plicit explanations were given by Hiramatsu [56], §3, and [57]. Specifically,
Hiramatsu identified the eta products η(z)η(2z), η(z)η(5z), η(z)η(7z) with
theta series on each three distinct quadratic fields. The discriminants are

8, −4, −8 for η(z)η(2z)
5, −4, −20 for η(z)η(5z)
21, −3, −7 for η(z)η(7z)

We will present the results in Examples 10.1, 12.1, 12.3. In Part II of our
monograph we will give more than 150 further examples for the coincidence
of theta series of weight 1 on three distinct quadratic fields and their iden-
tification with (linear combinations of) eta products. For the location of
these examples the reader may use the tables for positive discriminants D
in the Directory of Characters. The examples strongly support the following
statement.

Conjecture 5.5 Suppose that

Θ1(D1, ψ1, z) = Θ1(D2, ψ2, z)

for discriminants D1 �= D2 where the Hecke characters ψj on Kj = Q(
√

Dj)
have period ideals mj such that |D1|N(m1) = |D2|N(m2). Let K = Q(

√
D)

be the field whose discriminant D is determined by D1D2 = Dr2 with some
r ∈ N. Then there exists an integral ideal m of K with |D|N(m) = |Dj |N(mj)
and a Hecke character ψ of K with period ideal m such that

Θ1(D, ψ, z) = Θ1(D1, ψ1, z) = Θ1(D2, ψ2, z) .
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The examples also support the conjecture that only one of the fields K1, K2,
K is real.—Using work of Shintani [133], H. Ishii [60] gave a criterion for
the coincidence of L-functions for a real and an imaginary quadratic field,
which implies a corresponding criterion for theta series of weight 1. His
result can also be found in [56], [57]. However, we could not find a proof for
Conjecture 5.5 in these sources or anywhere else in the literature.



6 Groups of Coprime Residues in Quadratic
Fields

6.1 Reduction to Prime Powers and One-units

For an explicit specification of a Hecke theta series for a quadratic number
field K we need an explicit definition of characters on the groups (OK/m)×

and (JK/(M))× where m is a non-zero ideal in OK , M is an ideal number
for m, and JK is a system of integral ideal numbers for K. Since (OK/m)×

and (JK/(M))× are finite abelian groups, they are isomorphic with direct
products of cyclic subgroups. When we know generators of the direct factors
then we can define a character by specifying its values on the generators. In
almost all of the examples in Part II we will define characters in this way.
For this purpose we need to know a decomposition of the groups into direct
factors, and we need to know generators of the factors. The decomposition
is not unique; usually we will prefer large factors, using

Zm × Zn � Zmn for gcd(m, n) = 1

where Zn denotes the cyclic group of order n. (A small number of direct
factors means that a small number of values suffices to fix a character.) But
whenever possible we will use the group O ×

K of units modulo m as a direct
factor in (OK/m)×; we do this since by (5.8) the character values at units
are fixed once the weight k is given.

In many of the examples in Part II the reader will find a statement like: The
residues of α1, . . . , αr modulo M can be chosen as generators of (JK/(M))× �
Zn1 × . . . × Znr . The intended meaning of this phrase is that αj modulo M
generates a cyclic group of order nj and that the product of these groups for
j = 1, . . . , r is a direct product and isomorphic to (Jk/(M))×. It follows that
for μ ∈ JK , gcd(μ, M) = 1, there are unique exponents xj ∈ {0, 1, . . . , nj −1}
such that μ ≡ αx1

1 αx2
2 . . . αxr

r mod M . We call (x1, . . . , xr) the discrete loga-
rithm of μ modulo M with respect to the basis (α1, . . . , αr).

In this section we will present the results on the decomposition of (OK/m)×

into direct factors. Of course, for an arbitrary number field K we have the
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Chinese Remainder Theorem which tells us that

(OK/mn)× � (OK/m)× × (OK/n)× whenever gcd(m, n) = 1.

Therefore it suffices to deal with the case m = pr of a power of a prime ideal p.

Every textbook on Elementary Number Theory gives a proof for Gauss’s
Theorem that (Z/(pr))× is a cyclic group of order ϕ(pr) for all prime powers
pr except in the case p = 2, r ≥ 3 when we have a direct product of two
cyclic groups of orders 2 and 2r−2. Unfortunately, as far as we know, not a
single textbook presents analogous results for quadratic fields. Principally,
the results are known, but they are not easy to find in the literature. A paper
by Brandl [15] gives full results for the split and the inert case, but not for the
ramified case. The ramified prime 2 in the Gaussian number field is handled
by Cross [28]. A discussion by p-adic methods is given in [47]. We will present
full proofs for the results on (OK/pr)×. The results were presented also by
H. Knoche [69] in his diploma thesis.

For an arbitrary number field K, let p be a (non-zero) prime ideal in OK ; it
lies above a prime number p, which means that p ∩ Q = pZ. By f and e we
denote the inertial degree and the ramification index of p. By definition this
means that

N(p) = #(OK/p) = pf , (p) = pOK = p
e · q

for some ideal q which is coprime with p. Now we suppose that K = Q(
√

d)
where d ∈ Z is square-free and d �= 1, and by D we denote the discriminant
of the quadratic field K. In Sect. 5.3 we gave the explicit values of f and e in
this case: We have e = 2, f = 1, (p) = p2 for p|D, while e = 1 for all primes
p � D; we have f = 1, (p) = p p′ with p′ �= p if

(
D
p

)
= 1; and we have f = 2,

(p) = p if
(

D
p

)
= −1.

Since OK/p is a finite field with pf elements, and since the multiplicative
group of a finite field is cyclic, we obtain the following result for r = 1 and
an arbitrary number field:

Proposition 6.1 Let p be a prime ideal in a number field K, and f its
inertial degree. Then

(OK/p)× � Zpf −1

is a cyclic group of order ϕ(p) = pf − 1.

We introduce Rr = (OK/pr)× as an abbreviation for the group of coprime
residues modulo pr. For r ≥ 2 we can split off a cyclic factor R1 from Rr as
follows:
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Proposition 6.2 Let p be a prime ideal with inertial degree f in a number
field K, and let r ≥ 2. Then the map x mod pr �→ x mod p defines a
surjective homomorphism of the group Rr = (OK/pr)× onto the cyclic group
R1 = (OK/p)×. Its kernel is

Ar = Ar(p) = {x mod p
r | x ≡ 1 mod p} = 1 + p/p

r.

The order of the group Ar is pf(r−1) where p is the prime lying below p. We
have

Rr � Ar × R1.

The elements in Ar are called the one-units modulo pr.

Proof. Obviously, the map under consideration is a homomorphism of the
group Rr onto the group R1, and its kernel is the group Ar as defined in the
Proposition. Therefore we get an isomorphism R1 � Rr/Ar. The order of
Rr is the Euler function of pr,

ϕ(pr) = #(OK/p
r) − #(p/p

r)
= N(pr) − N(pr−1) = prf − p(r−1)f = p(r−1)f (pf − 1).

Now from Proposition 6.1 we infer that #Ar = #Rr/#R1 = p(r−1)f . Thus
the orders of Ar and R1 are relatively prime. Therefore the structure theorem
for finite abelian groups implies that there is an isomorphism Rr � Ar ×R1. �

By Proposition 6.2 the problem of decomposing Rr is reduced to the decom-
position of the group Ar = Ar(p) of one-units modulo pr, which is a finite
abelian p-group. Its decomposition into a direct product of non-trivial cyclic
p-groups is unique (up to order); the number of cyclic factors is called the
p-rank of Ar and will be denoted by ρ(Ar). In some cases the p-rank suffices
to determine the structure of Ar.

6.2 One-units in Arbitrary Number Fields

In this subsection we present results from [15] on the p-rank of groups of
one-units. Throughout this subsection we assume that p is a prime ideal in
an arbitrary number field K, lying over the prime number p, with inertial
degree f and ramification index e. We denote by Ar = Ar(p) the group of
one-units modulo pr, and by ρ = ρ(Ar) its p-rank.

Lemma 6.3 (1) In an abelian p-group with p-rank ρ there are exactly pρ

solutions x to the equation xp = 1.
(2) For s < r the order of ps/pr is p(r−s)f .
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(3) For s < r and every x ∈ 1 + ps/pr we have xp ∈ 1 + ps+c/pr where

c = min{e, (p − 1)s}.

(4) If e ≤ p − 1 then the order of every element in Ar is a divisor of
p�(r−1)/e�.

Proof. In a cyclic p-group there is exactly one subgroup of order p, and thus
there are exactly p solutions x to the equation xp = 1. (The group compo-
sition is written multiplicatively.) Then the structure theorem for abelian
groups yields assertion (1).

Assertion (2) comes from the isomorphism (OK/pr)/(ps/pr) � OK/ps and
from the fact that the order of OK/ps is N(ps) = psf . (We used this already
in the proof of Proposition 6.2.)

Let x ∈ 1 + ps/pr, i.e., x = 1 + α + pr for some α ∈ ps. We get (1 + α)p =
1 + pαγ + αp with some γ ∈ OK . Since pα ∈ pe+s and αp ∈ pps, we obtain

(1 + α)p − 1 ∈ p
min{e+s, ps} = p

s+c.

This proves assertion (3).

For e ≤ p − 1 we get c = e in part (3). The order of any x ∈ Ar = 1 + p/pr

is a power of the prime p. We apply part (3) with s = 1. Then we see that
an equation xpa

= 1 is equivalent with

1 + ea = s + ea ≥ r,

hence equivalent with a ≥ r−1
e . This proves (4). �

Corollary 6.4 (1) If r ≤ 1 + e ≤ p then Ar � Zp × . . . × Zp is a direct
product of (r − 1)f cyclic factors of order p.

(2) If r ≥ 2e then ρ(Ar) ≥ ef .

Proof. For r ≤ 1 + e we get �(r − 1)/e� = 1. Therefore, assertion (1) follows
from Lemma 6.3 (4) and Proposition 6.2.

We use Lemma 6.3 (3) with s = r − e. From r ≥ 2e we infer that c = e. Thus
for every x ∈ 1+pr−e/pr we have xp ∈ 1+ps+c/pr = 1+pr/pr, hence xp = 1
in Ar. Therefore the number of solutions x ∈ Ar of the equation xp = 1 is at
least #(pr−e/pr) = pef . From Lemma 6.3 (1) it follows that ρ(Ar) ≥ ef . �

Proposition 6.5 Suppose that r ≥ 2e, p �= 2 and (p − 1) � e. Then ρ(Ar) =
ef .
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Proof. Let x = 1+α+pr ∈ Ar be a solution of xp = 1. We have (α) = pbc for
some b ≥ 1 and some integral ideal c which is coprime with p. The equation
xp = 1 in Ar is equivalent to

p
r | y where y = (1 + α)p − 1. (6.1)

We obtain y = pα + pα2σ + αp for some σ ∈ OK , where pe+2b | pα2σ.

We discuss the case e + b < bp. If we would have r > e + b then it follows
from (6.1) that pe+b+1 | y. On the other hand it follows from e + 2b > e + b
and bp > e + b that y ≡ pα mod pe+b+1, whence pe+b is the exact power of
p contained in y. Thus we arrive at a contradiction, and we conclude that
r ≤ e+b, or b ≥ r−e. This shows that x = 1+α+pr ∈ 1+pr−e/pr. Therefore,
every solution of xp = 1 in Ar belongs to the set B = 1 + pr−e/pr whose
number of elements is pef . This implies ρ(Ar) ≤ ef , and from Corollary 6.4
(2) we get ρ(Ar) = ef .

The case e + b = bp is impossible since (p − 1) � e. We assume that it were
e + b > bp. Then we get b ≤ b(p − 1) < e and r ≥ 2e = e + e > e + b > bp (in
fact, r ≥ bp+2). Thus from (6.1) it follows that pbp+1 | y. On the other hand
we have y ≡ pα + αp mod pe+2b and e + 2b > bp + b ≥ bp + 1. This implies
y ≡ pα + αp mod pbp+1 and pα + αp ∈ pbp+1. Now from pα ∈ pe+b ⊆ pbp+1

we get αp ∈ pbp+1. But pbp is the exact power of p contained in αp. We
arrive at a contradiction, which shows that the case e + b > bp is impossible.
Thus we have proved our assertion. �

For unramified odd primes p the structure of Ar is given as follows:

Corollary 6.6 Let e = 1 and p �= 2. Then Ar � Zpr−1 × . . . × Zpr−1 is a
direct product of f cyclic factors of order pr−1.

Proof. From Proposition 6.5 we get ρ(Ar) = f , so that Ar is a direct product
of f cyclic groups. By Lemma 6.3 (4) the orders of the direct factors are at
most pr−1. Since the order of Ar is p(r−1)f , our claim follows. �

Now we determine ρ for p = 2 if r is sufficiently large:

Proposition 6.7 Let p = 2 and r > 2e. Then ρ(Ar) = ef + 1.

Proof. We count the number of solutions x ∈ Ar of x2 = 1. We have
x = 1 + α + pr with α ∈ p, and we get x2 = 1 + α(2 + α) + pr. Thus x2 = 1
is equivalent to

α(2 + α) ∈ p
r. (6.2)

If α ∈ pr−e then from 2 ∈ pe and r ≥ 2e it follows that (6.2) is satisfied.
Therefore, every x ∈ B = 1+pr−e/pr solves x2 = 1. The number of elements
in B is pef = 2ef .
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We discuss the case α /∈ pr−e. Then (6.2) implies that 2 + α ∈ pe+1. From
2 ∈ pe, 2 /∈ pe+1 we conclude that α ∈ pe, α /∈ pe+1 and 2 + α ∈ pr−e. We
put γ = 2 + α and obtain

x = 1 + α + p
r = −1 + γ + p

r = (−1 + p
r)(1 − γ + p

r)

with 1 − γ + pr ∈ 1 + pr−e/pr = B. Thus the set of solutions of x2 = 1 is
generated by B and y = −1 + pr. We have y /∈ B. Since otherwise it were
−1 ≡ 1 mod pr−e, and from r > 2e it would follow that 2 ∈ pr−e ⊆ pe+1,
a contradiction. Therefore the number of solutions x in Ar of x2 = 1 is
2 · #B = 21+ef . Now our claim follows from Lemma 6.3 (1). �

The proof of Proposition 6.7 suggests a closer look at the element y = −1+pr

in Ar:

Proposition 6.8 Let p = 2 and r > e. If −1 + pr is a square in Ar then
e is even. If e is odd then Ar = 〈−1 + pr 〉 × C is isomorphic with a direct
product of Z2 and some subgroup C of Ar.

Proof. We have 2 ∈ pe, 2 /∈ pe+1. We assume that −1 + pr is a square in Ar,
i.e.,

−1 ≡ (1 + β)2 mod p
r for some β ∈ p.

We write (β) = pbc where b ≥ 1 and the ideals c and p are coprime. The
condition on β reads

β2 + 2β + 2 ∈ p
r.

Because of 2 ∈ pe and pr ⊆ pe this implies β2 ∈ pe, hence e ≤ 2b. We suppose
it were e < 2b. Then it would follow that β2 ∈ pe+1, 2β ∈ pe+1 and 2 ∈ pe+1,
a contradiction. Therefore e = 2b is even. This proves the first assertion.

If e is odd then it follows that −1 + pr is not a square in Ar. Hence this
element generates a cyclic subgroup of order 2 which does not sit in a larger
cyclic subgroup of Ar. This implies the second assertion. �

We collect and stress some of the preceding results:

Theorem 6.9 For r ≥ 2e and arbitrary p we have ρ(Ar) ≥ ef . If r ≥ 2e and
(p − 1) � e then ρ(Ar) = ef . For p = 2 and r > 2e we have ρ(Ar) = ef + 1.
If p = 2, r > e and e is odd then Ar � Z2 × C with some subgroup C of Ar.

Proof. These are results from Corollary 6.4 and Propositions 6.5, 6.7 and 6.8.
�

Now we are ready to prove Brandl’s result [15] on the structure of Ar for
arbitrary p and r in the unramified case:



6.3. Ramified Primes p ≥ 3 87

Theorem 6.10 In the unramified case e = 1 the following assertions hold:

(1) We have A2 � Zp × . . . × Zp with f cyclic factors of order p.
(2) If r ≥ 3 and p �= 2 then Ar � Zpr−1 × . . . × Zpr−1 is a direct product of

f cyclic factors of order pr−1.
(3) If r ≥ 3 and p = 2 then Ar � Z2 × Z2r−2 × Z2r−1 × . . . × Z2r−1 with

f − 1 cyclic factors of order 2r−1.

Proof. Assertion (1) follows from Corollary 6.4 (1). Assertion (2) is Corol-
lary 6.6. Now let p = 2 and r ≥ 3. Proposition 6.8 and Theorem 6.9 tell
us that Ar � Z2 × C for some subgroup C of Ar whose 2-rank is f . The
number of elements in C is 2(r−1)f −1, and by Lemma 6.3 (4), the order of
every element in C is a divisor of 2r−1. This implies the last assertion (3). �

6.3 Ramified Primes p ≥ 3 in Quadratic Number Fields

We return to the case of quadratic number fields K = Q(
√

d) with square-free
d �= 1 in Z, and with discriminant D. As in the preceding subsection, Ar

denotes the group of one-units modulo pr, and ρ = ρ(Ar) is its rank, where
p is a prime ideal in OK . From Propositions 6.1, 6.2, Theorem 6.10 and the
decomposition law for primes in quadratic fields we obtain full information
on the decomposition of (OK/pr)× in the unramified case:

Theorem 6.11 Let K be a quadratic number field, D its discriminant, p a
prime number with p � D, and p a prime ideal in OK lying above p. Then

(OK/p)× �
{

Zp−1

Zp2−1
,

(OK/p
2)× �

{
Zp−1 × Zp

Zp2−1 × Zp × Zp
if (p) =

{
p p′ is split,
p is inert.

For r ≥ 3, p �= 2 we have

(OK/p
r)× �

{
Zp−1 × Zpr−1

Zp2−1 × Zpr−1 × Zpr−1
if (p) =

{
p p′ is split,
p is inert.

For r ≥ 3, p = 2 we have

(OK/p
r)× �

{
Z2 × Z2r−2

Z3 × Z2 × Z2r−2 × Z2r−1
if (2) =

{
p p′ is split,
p is inert.

We note that 2 is split for D ≡ 1 mod 8 and inert for D ≡ 5 mod 8. We are
left with the ramified primes p. So for the rest of this subsection we assume
that

p | D.
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Then (p) = p2, e = 2, f = 1. Corollary 6.4 (1) yields

(OK/p
2)× � Zp−1 × Zp for all p,

(OK/p
3)× � Zp−1 × Zp × Zp for p ≥ 3.

Ramified primes p ≥ 5 are easy to deal with:

Theorem 6.12 Let p ≥ 5 be a ramified prime in a quadratic number field
K, and let p be the prime ideal above p. Then (OK/p2)× � Zp−1 × Zp,
(OK/p3)× � Zp−1 × Zp × Zp, and

(OK/p
2m)× � Zp−1 ×Zpm−1 ×Zpm , (OK/p

2m+1)× � Zp−1 ×Zpm ×Zpm

for m ≥ 2.

Proof. It suffices to find the structure of Ar for r ≥ 4. Let x = 1+α+pr ∈ Ar

with α ∈ p. For any m ∈ N we get

xpm

= 1 + pmα + . . . + pmαpm −1 + αpm

+ p
r ∈ 1 + p

2m+1 + p
r.

It follows that xpm

= 1 in A2m for all x ∈ A2m, and xpm

= 1 in A2m+1 for
all x ∈ A2m+1. Hence the orders of all elements in A2m and in A2m+1 are
divisors of pm. By Theorem 6.9, the p-ranks of A2m and A2m+1 are equal to
ef = 2 for m ≥ 2. Now the result follows since the group order of Ar is pr−1.

�

Theorem 6.13 Let 3 be ramified in the quadratic number field K = Q(
√

d)
with discriminant D, and let p be the prime ideal above 3. Then (OK/p2)× �
Z2 × Z3, (OK/p3)× � Z2 × Z3 × Z3, and for m ≥ 2 the following assertions
hold:

(1) If d
3 ≡ 1 mod 3 then

(OK/p
2m)× � Z2 × Z3m−1 × Z3m ,

(OK/p
2m+1)× � Z2 × Z3m × Z3m .

(2) If d
3 ≡ 2 mod 3 then

(OK/p
2m)× � Z2 × Z3 × Z3m−1 × Z3m−1 ,

(OK/p
2m+1)× � Z2 × Z3 × Z3m−1 × Z3m .

Proof. A. Again it suffices to deal with Ar for r ≥ 4. We have 3|d, 32
� d

since 3|D and d is square-free. Moreover, we have p2 = (3) and

p = (
√

d , 3),
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which may or may not be a principal ideal. We compute the 3-rank ρ(Ar)
by counting the number of solutions of x3 = 1 in Ar.

Let x = 1 + α + pr ∈ Ar with α ∈ p. We get x3 = 1 + α1 + pr with
α1 = 3α

(
1+α+ α2

3

)
∈ p3, x9 = 1+α2 +pr with α2 = 3α1

(
1+α1 + α2

1
3

)
∈ p5.

Induction yields

x3a

∈ 1 + p
2a+1 + p

r for all x ∈ Ar, a ≥ 1. (6.3)

If α ∈ p2 then α = 3β for some β ∈ OK . Then 1 + α + α2

3 /∈ p, and hence
the equation x3 = 1 is equivalent to 3α ∈ pr, or α ∈ pr−2. The number of
solutions x of this kind is #(pr−2/pr) = N(p2) = 32.

Now we have to look for solutions x = 1+α+pr for which α ∈ p, but α /∈ p2.
Then 3α ∈ p3, 3α /∈ p4. We may write

α =
{ √

d u + 3v
1
2 (

√
d u + 3v)

with some u, v ∈ Z, 3 � u,

for d ≡
{

2, 3
1 mod 4, (6.4)

where u ≡ v mod 2 in the second line. For γ = 1 + α + α2

3 we compute

γ = 1+ d
3u2+

√
d(1+2v)u+3v(1+v) ∈ 1+ d

3u2+p for d ≡ 2, 3 mod 4

and 4γ = 4 + d
3u2 + 2

√
du(1 + v) + 3v(2 + v) ∈ 1 + d

3u2 + p for d ≡ 1 mod 4.
Hence γ ∈ 1 + d

3u2 + p in both cases. We observe that u2 ≡ 1 mod 3.

We consider the case d
3 ≡ 1 mod 3. Then 1 + d

3u2 ≡ 2 mod 3, and we have
γ /∈ p, α1 = 3αγ /∈ p4. It follows that x3 �= 1 in Ar for r ≥ 4. Hence in this
case there are altogether 32 solutions of x3 = 1 in Ar, and we get

ρ(Ar) = 2 for d
3 ≡ 1 mod 3, r ≥ 4.

Now we assume that d
3 ≡ 2 mod 3. Then we get 1 + d

3u2 ∈ p2 and γ =
1 + α + α2

3 ∈ p. The equation x3 = 1 in Ar is equivalent to γ ∈ pr−3. For
d ≡ 2, 3 mod 4 this is equivalent to

1 + 2v ∈ p
r−4, 1

3 (1 + d
3u2) + v(1 + v) ∈ pr−5. (6.5)

For d ≡ 1 mod 4 we get a similar result. First of all we observe that x3 = 1
for all x ∈ A4, which implies A4 � Z3 × Z3 × Z3. Next we observe that
x3 = 1 in A5 is equivalent to v ≡ 1 mod 3. Modulo p4 = (9) this gives three
values for v and six values for u, such that altogether we have 32 + 3 · 6 = 33

solutions of x3 = 1 in A5. This implies ρ(A5) = 3 and A5 � Z3 × Z3 × Z9.
Henceforth we have ρ(Ar) ≥ 3 for all r ≥ 5. By induction we see that for all
r ≥ 5 there are exactly 3 · 6 = 18 solutions (u, v) of (6.5). Hence we get

ρ(Ar) = 3 for d
3 ≡ 2 mod 3, r ≥ 4.
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B. We know the order and the 3-rank of the 3-group Ar; but this does not
suffice to determine its structure. Now we look for elements with highest
orders in Ar. Lemma 6.3 (4) does not help in the present situation. From
(6.3) we infer that

x3m

= 1 in A2m for all x ∈ A2m,

x3m

= 1 in A2m+1 for all x ∈ A2m+1.

Hence the orders of elements are divisors of 3m, both in A2m and in A2m+1.
In the case ρ(Ar) = 2 this fixes the structure; we get A2m � Z3m−1 × Z3m

and A2m+1 � Z3m × Z3m . Thus we have proved assertion (1).

We are left with the case
d
3 ≡ 2 mod 3, r ≥ 6.

We look for elements x ∈ Ar with highest order. They are of the form
x = 1 + α + pr where α ∈ p, α /∈ p2, and α may be written as in (6.4). We
compute

x3m−1
= 1 + 3m−1α + 1

2 (3m−1 − 1)3m−1α2 + . . . + α3m−1
+ pr

∈ 1 + 1
2 (3m−1 − 1)3m−1α2

+ 3m−1α
(
1 + 1

2 (3m−1 − 2)(3m−1 − 1)α2

3

)
+ p2m+1 + pr.

For β = 1
2 (3m−1 −1)3m−1α2 we obtain β ∈ p2m, β /∈ p2m+1. Further, we have

1
2 (3m−1 −2)(3m−1 −1) ≡ 1 mod 3, and (6.4) yields α2

3 ≡ d
3u2+2

√
duv+3v2 ≡

2 mod p. Thus for β̃ = 3m−1α
(
1 + 1

2 (3m−1 − 2)(3m−1 − 1)α2

3

)
we obtain

β̃ ∈ p2m, and if we choose v ≡ 0 mod 3 then β̃ ∈ p2m+1. We conclude that
x3m−1

= 1 in A2m for all x ∈ A2m, while there exist x ∈ A2m+1 for which
x3m−1 �= 1. It follows that the largest direct factor in A2m is Z3m−1 (or a
subgroup thereof), while the largest direct factor in A2m+1 is indeed Z3m . In
particular, we obtain A6 � Z3 × Z32 × Z32 . We need more information to
determine the structure of Ar for r ≥ 7.

C. We show that there is a direct factor Z3 in Ar for r ≥ 7. This is done by
counting the number of solutions of x9 = 1 in Ar. We must show that this
number is 3 · 32 · 32 = 35. (This number would be 36 if the smallest direct
factor were bigger than Z3.) Again, let x = 1 + α + pr ∈ Ar, α ∈ p. In the
beginning of the proof we got

x9 = 1+α2+p
r with α2 = 3α1

(
1+α1+ α2

1
3

)
, α1 = 3α

(
1+α+ α2

3

)
.

If α ∈ p2 then 1 + α + α2

3 �∈ p, and the equation x9 = 1 in Ar is equivalent to
α ∈ pr−4. Hence the number of solutions x of this kind is #(pr−4/pr) = 34.

Now we assume that α ∈ p, α /∈ p2. In

x9 = 1 + 9α
(
1 + α + α2

3

)(
1 + α1 + α2

1
3

)
+ pr
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we have α1 ∈ p3, 1 + α1 + α2
1
3 �∈ p, 9α ∈ p5, 9α /∈ p6. Therefore the equation

x9 = 1 in Ar is equivalent to

1 + α + α2

3 ∈ pr−5. (6.6)

We use the notation (6.4) and obtain the condition

1 + α + α2

3 = 1 + d
3u2 + 3v(1 + v) +

√
du(1 + 2v) ∈ pr−5

for d ≡ 2, 3 mod 4, and a similar one for d ≡ 1 mod 4. For r ≥ 7 the term
with

√
d shows that the condition implies v ≡ 1 mod 3. We write v = 1+3v1

with v1 ∈ Z and obtain a new condition

1
3

(
1 + d

3u2
)

+ (1 + 3v1)(2 + 3v1) +
√

du(1 + 2v1) ∈ pr−7. (6.7)

This is empty for r = 7, and then the number of solutions α is 2
3 · 1

3 ·#(p/p7) =
2 · 34, where the factors 2

3 and 1
3 come from the conditions u �≡ 0 mod 3 and

v ≡ 1 mod 3. For r = 8 the condition (6.7) is equivalent to a quadratic
congruence for u modulo 9 which has exactly 2 solutions modulo 9 since
d
3 ≡ 2 mod 3. Then for r = 9, (6.7) yields a linear congruence for v1

modulo 3. By induction we see that for every r ≥ 7 there are exactly 2 · 34

solutions α of (6.6) if d ≡ 2, 3 mod 4. Similarly, we get the same result if
d ≡ 1 mod 4.

Thus for r ≥ 7, altogether there are exactly 34+2 · 34 = 35 solutions of x9 = 1
in Ar, and it follows that there is a direct factor Z3 in Ar. Now the group
order 3r−1 of Ar, its 3-rank 3 and the estimate for the largest direct factor
imply that

A2m � Z3 × Z3m−1 × Z3m−1 , A2m+1 � Z3 × Z3m−1 × Z3m .

So finally we have proved assertion (2). �

6.4 The Ramified Prime 2 in Quadratic Number Fields

In this subsection we discuss the case that the prime p = 2 is ramified in
the quadratic number field K = Q(

√
d). (This is the case which is most

frequently needed for the description of Hecke characters in Part II.) Then
d ≡ 2 or 3 mod 4, the discriminant is D = 4d, and we have (2) = p2 with

p = (
√

d, 2) for d ≡ 2 mod 4, p = (1 +
√

d, 2) for d ≡ 3 mod 4.

Again, Ar denotes the group of one-units modulo pr, and ρ = ρ(Ar) is its
2-rank. Here we have (OK/pr)× = Ar, because of N(p) = 2. In the result
it is necessary to distinguish three cases. In the special instance d = −1,
assertion (3) in the following Theorem 6.14 is the result in [28].
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Theorem 6.14 Let K = Q(
√

d) where d ∈ Z is square-free and d ≡ 2 or
3 mod 4, and let p be the prime ideal of K lying above the prime 2. Then the
structure of Ar = (OK/pr)× for r ≤ 5 is given by A2 � Z2,

A3 � Z4, A4 � Z2 × Z4, A5 � Z2 × Z2 × Z4.

For m ≥ 3 the following assertions hold:

(1) Let d ≡ 2 mod 4. Then

A2m � Z2 × Z2m−2 × Z2m , A2m+1 � Z2 × Z2m−1 × Z2m .

(2) Let d ≡ 3 mod 8. Then

A2m � Z2 × Z2m−1 × Z2m−1 , A2m+1 � Z2 × Z2m−1 × Z2m .

(3) Let d ≡ 7 mod 8. Then

A2m � Z4 × Z2m−2 × Z2m−1 , A2m+1 � Z4 × Z2m−1 × Z2m−1 .

Proof. A. We have e = 2, f = 1. Hence Theorem 6.9 implies that

ρ(Ar) = 3 for all r ≥ 5.

The group order of Ar is 2r−1. Thus A2 � Z2 is clear. We write x =
1+α+ pr ∈ Ar with α = α0 ∈ p. Then x2 = 1+α1 + pr with α1 = α(2+α),
and recursively we obtain

x2a

= 1 + αa + p
r with αa = αa−1(2 + αa−1) (6.8)

for a ≥ 2. If we choose α /∈ p2 then we get α1 ∈ p2, α1 /∈ p3, and it follows that
x2 �= 1 in A3. This implies A3 � Z4. Now since every Ar is a homomorphic
image of Ar+1 and since ρ(A5) = 3, we conclude that A5 � Z2 × Z2 × Z4 and
A4 � Z2 × Z4. From now on we assume that r ≥ 6.

B. In the next step we decide whether the smallest direct factor in Ar is
Z2 or a bigger group. For this purpose we count the number of solutions of
x4 = 1 in Ar. First we assume that α ∈ p2, whence α = 2β with β ∈ OK .
Then from β(1 + β) ∈ p we obtain

α2 = α1(2 + α1) = 8β(1 + β)(1 + 2β + 2β2) ∈ p
7, 1 + 2β + 2β2 /∈ p.

Therefore, if r ≤ 7 it follows that x4 = 1 in Ar for all these elements α.
The number of solutions x of this kind is #(p2/pr) = 2r−2, which is 24 for
r = 6 and 25 for r = 7. For r ≥ 8 the equation x4 = 1 in Ar is equivalent to
β(1 + β) ∈ pr−6, hence equivalent to

β ∈ p
r−6 or β ∈ −1 + p

r−6.
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Thus for r ≥ 8 we have exactly 2 · #(pr−6/pr−2) = 25 solutions of x4 = 1 in
Ar with α ∈ p2.

Now we count the number of solutions x of x4 = 1 for which α �∈ p2. It is
advisable to distinguish cases for d.

We begin with d ≡ 2 mod 4. Then α =
√

d + 2β with β ∈ OK . We obtain
α2 = α1(2 + α1) = α(2 + α)γ with

γ = 2 + 2α + α2 = 2
√

d(1 + 2β) + (2 + d) + 4β(1 + β) ∈ 2
√

d(1 + 2β) + p
4.

The leading term 2
√

d(1 + 2β) belongs to p3, but not to p4. This implies
γ ∈ p3, γ /∈ p4 and α2 ∈ p5, α2 /∈ p6. Therefore, in the present situation
we get x4 �= 1 in Ar whenever r ≥ 6. Thus the total number of solutions of
x4 = 1 in Ar is 24 for r = 6 and 25 for r ≥ 7. It follows that the smallest
direct factor in Ar is Z2 for r ≥ 6 if d ≡ 2 mod 4.

Now let d ≡ 3 mod 4. Then α = 1 +
√

d + 2β with β ∈ OK . We obtain
α2 = α1(2 + α1) = α(2 + α)γ with

γ = 2 + 2α + α2 = (5 + d) + 4
√

d + 4β(2 +
√

d + β) ∈ p
4.

If d ≡ 3 mod 8 then 5+d ∈ p6, 4
√

d /∈ p5, β(
√

d+β) ∈ p, 4β(2+
√

d+β) ∈ p5,
and it follows that γ /∈ p5, hence α2 ∈ p6, α2 /∈ p7. Thus we get x4 = 1 in A6

for all x and x4 �= 1 in Ar for r ≥ 7 and all x of the kind considered here.
Altogether we have exactly 25 solutions of x4 = 1 in Ar for r ≥ 6, and it
follows that the smallest direct factor in this group is Z2, if d ≡ 3 mod 8.

We are left with the case d ≡ 7 mod 8. Then we have 1
4 (5 + d) /∈ p, hence

1
4 (5 + d) +

√
d ∈ p and

γ = 2 + 2α + α2 = 4
(

1
4 (5 + d) +

√
d + β(2 +

√
d + β)

)
∈ p5. (6.9)

It follows that α2 ∈ p7. Therefore in A7 there are 25 solutions of x4 = 1 of
the kind considered here, and altogether there are 25 + 25 = 26 solutions of
this equation. We conclude that

A7 � Z4 × Z4 × Z4, A6 � Z2 × Z4 × Z4.

Since A7 is a homomorphic image of Ar for r ≥ 7, it follows that the smallest
direct factor in Ar is at least Z4 if r ≥ 7.

C. In the last step we determine the largest order of an element x = 1+α+pr

in Ar. For the moment we do not distinguish cases for d. Again we begin with
elements x for which α = 2β ∈ p2. Then α1 = 4β(1 + β) ∈ p5, 2 + α1 ∈ p2,
2 + α1 /∈ p3. By induction we get

αa ∈ p
2a+3, x2a

∈ 1 + p
2a+3 + p

r
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for a ≥ 1. Therefore, x2m−1
= 1 in A2m and in A2m+1. So in this case the

order of x in A2m and in A2m+1 is a divisor of 2m−1.

Now we consider elements x for which α ∈ p, α /∈ p2. We have shown already
that

α2 ∈ p5, α2 /∈ p6 if d ≡ 2 mod 4,
α2 ∈ p6, α2 /∈ p7 if d ≡ 3 mod 8,
α2 ∈ p7 if d ≡ 7 mod 8.

By induction, for a ≥ 2 we obtain

x2a ∈ 1 + p2a+1 + pr, x2a

/∈ 1 + p2a+2 + pr if d ≡ 2 mod 4,
x2a ∈ 1 + p2a+2 + pr, x2a

/∈ 1 + p2a+3 + pr if d ≡ 3 mod 8,
x2a ∈ 1 + p2a+3 + pr if d ≡ 7 mod 8.

We discuss the case d ≡ 2 mod 4. Then the results for x2a

show that x2m

= 1
in A2m and in A2m+1 for all x in these groups, and that x2m−1 �= 1 for some
x in these groups. It follows that Z2m is the largest direct factor in A2m and
in A2m+1. Together with the information on the rank and the smallest direct
factor, this proves our assertion (1). Moreover we see how to find elements
with highest order in Ar: Choose any x = 1 + α + pr with α ∈ p, α /∈ p2.

Now let d ≡ 3 mod 8. Then the results for x2a

show that x2m−1
= 1 in A2m

for all x ∈ A2m and x2m−2 �= 1 for some x ∈ A2m, and that x2m

= 1 in A2m+1

for all x ∈ A2m+1 and x2m−1 �= 1 in A2m+1 for some x ∈ A2m+1. Therefore
the largest direct factor is Z2m−1 in A2m and Z2m in A2m+1. As before, this
proves our assertion (2), and we can find elements with highest order in Ar

as in the previous case.

D. Finally, let d ≡ 7 mod 8. The result for x2a

shows that x2m−1
= 1 in

A2m and in A2m+1 for all x in these groups. Therefore the largest direct
factor in these groups is at most Z2m−1 . The smallest one is at least Z4. We
conclude that A8 � Z4 × Z4 × Z8 and A9 � Z4 × Z8 × Z8. But we need more
information to determine the structure of Ar for r ≥ 10.

Let x = 1+α+pr ∈ Ar, α = 1+
√

d+2β ∈ p, α /∈ p2. Then x4 = 1+α2 +pr,
α2 = α(2+α)γ where (6.9) holds for γ. We inspect this relation more closely.
We have 1

4 (5+d)+
√

d ∈ p and 1
4 (5+d)+

√
d /∈ p2. Therefore we have α2 ∈ p7,

and α ∈ p8 is equivalent to
1
4 (5 + d) +

√
d + β(2 +

√
d + β) ∈ p2,

which in turn is equivalent to

β(
√

d + β) /∈ p
2.

This condition is violated when we choose β =
√

d, for example. With this
choice, induction shows that αa /∈ p2a+4 and

x2a

/∈ 1 + p
2a+4 + p

r



6.4. The Ramified Prime 2 95

for all a ≥ 2. It follows that x2m−2 �= 1 in A2m and in A2m+1. Therefore the
largest direct factor in A2m and in A2m+1 is indeed Z2m−1 . At the same time
we see how to find an element of order 2m−1 in these groups.

Now we obtain A10 � Z4 × Z8 × Z16. But for r ≥ 11 we need more informa-
tion on the smallest direct factor. For this purpose we count the number of
solutions x ∈ Ar of x8 = 1. If this number were 29 or bigger then the smallest
direct factor in Ar would be at least Z8. Again, let x = 1 + α + pr ∈ Ar,
α ∈ p. If α = 2β ∈ p2 then

α2 = 8β(1+β)(1+2β+2β2) ∈ p
7, α3 = α2(2+α2) ∈ p

9, 2+α2 /∈ p
3.

Hence in this case the equation x8 = 1 in Ar is equivalent to β(1+β) ∈ pr−8,
hence equivalent to

β ∈ p
r−8 or β ∈ −1 + p

r−8.

The number of solutions x of this shape is

2 · #(pr−8/p
r−2) = 2 · 26 = 27.

Now we consider solutions x for which α = 1 +
√

d + 2β ∈ p, α /∈ p2. Then
α2 = α(2 + α)(2 + 2α + α2) and (6.9) yield a chain of equivalences

x8 = 1 in Ar ⇐⇒ α3 ∈ p
r ⇐⇒ α2 ∈ p

r−2 ⇐⇒ 2 + 2α + α2 ∈ p
r−4

⇐⇒ 1
4 (5 + d) +

√
d + β(2 +

√
d + β) ∈ pr−8.

As before we have 1
4 (5+d)+

√
d ∈ p and 1

4 (5+d)+
√

d /∈ p2. Thus for r = 10
the condition on β is equivalent to β(

√
d + β) ∈ p, β(

√
d + β) /∈ p2. This

means that β = 1+ β̃ or β = 1+
√

d+ β̃ with β̃ ∈ p2. Therefore, in A10 there
are exactly 2 · #(p4/p10) = 27 solutions x of this kind. Passing from A10 to
A11, a linear congruence for β̃ modulo p must be satisfied. Generally, every
solution x in Ar lifts to exactly one solution x in Ar+1 of x8 = 1. Thus for
every r ≥ 10 we have exactly 27 solutions x ∈ Ar of this kind. Altogether
there are exactly 27 + 27 = 28 solutions x ∈ Ar of x8 = 1. Thus indeed, the
smallest direct factor in Ar is Z4. This proves, finally, our assertion (3). �

We will not prove general results on (JK/(P r))× when JK is a system of
integral ideal numbers for K and P is an ideal number for a prime ideal p

of K. In the examples in Part II it will usually be easy, based on Theo-
rems 6.11 to 6.14, to find the structure and also generators for these groups.
Indeed, a “general result” on (JK/(P r))× would not be very useful, since
the structure of this group depends on the choice of JK . For example, let
K = Q(

√
−6). When we choose JK = OK ∪ {x

√
3 + y

√
−2 | x, y ∈ Z} as in

Example 7.2, then we get (JK/(4))× � Z4 × Z4. But we can choose J ′
K =

OK ∪ {x
√

2+ y
√

−3 | x, y ∈ Z} as well, and then (J ′
K/(4))× � Z4 × Z2 × Z2.



Part II

Examples

Throughout the rest of this monograph we use the notation K = Q(
√

−d)
for an imaginary quadratic field, and Od for its ring of integers, where d > 0
is square-free. The discriminant of K is D = −d for −d ≡ 1 mod 4, and
D = −4d for −d ≡ 2, 3 mod 4.



7 Ideal Numbers for Quadratic Fields

In this section we describe systems Jd of integral ideal numbers for all those
imaginary quadratic fields K = Q(

√
−d) which will occur in the examples

of the following sections. In the last subsection we will also describe ideal
numbers for those few real quadratic fields that will be needed.

7.1 Class Numbers 1 and 2

Of course we have Jd = Od when K has class number 1. The result of
Gauss–Heegner–Baker–Stark says that there are exactly nine discriminants
with this property. We will need only 6 of the corresponding number rings,
namely,

O1, O2, O3, O7, O11, O19.

There is a bijection between the ideal classes of K and the equivalence classes
of positive definite binary quadratic forms of discriminant D. This bijection
is an isomorphism of groups when the classes of quadratic forms are equipped
with the Gauss composition. There is an efficient algorithm which computes
representatives of the classes of quadratic forms; see [140], §8, for example.
Using such a system of quadratic forms of discriminant D, it is usually easy
to find an appropriate system Jd of ideal numbers,—at least in the cases
of small class numbers which will be needed. Useful little tables of class
numbers are given in the appendix of [13].

One should look back to Sect. 5.5 for the properties (1), . . . , (4) which are
required for Jd. Also we recall that Jd is not unique. So in all of the following
examples it would be possible to make different choices.

Let −d ≡ 3 mod 4, d > 1. Then ϕ1(x, y) = x2 + dy2 and ϕ2(x, y) =
2x2+2xy+ d+1

2 y2 = 1
2 ((2x+y)2+dy2) represent different classes of quadratic

forms of discriminant D = −4d. If the class number is 2, then all classes are
represented by ϕ1 and ϕ2, and we obtain the following examples of systems
of ideal numbers:

G. Köhler, Eta Products and Theta Series Identities,
Springer Monographs in Mathematics,
DOI 10.1007/978-3-642-16152-0 7, c© Springer-Verlag Berlin Heidelberg 2011
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Example 7.1 Systems Jd of integral ideal numbers for the fields Q(
√

−d),
d ∈ {5, 13}, can be chosen as follows:

(1) J5 = {x + y
√

−5 | x, y ∈ Z}
∪
{

1√
2

(
x + y

√
−5
) ∣∣ x, y ∈ Z, x ≡ y mod 2

}
,

(2) J13 = {x + y
√

−13 | x, y ∈ Z}
∪
{

1√
2

(
x + y

√
−13

) ∣∣ x, y ∈ Z, x ≡ y mod 2
}
.

Let d = 2p, p an odd prime. Then ϕ1(x, y) = x2 +2py2 and ϕ2(x, y) = 2x2 +
py2 represent different classes of quadratic forms of discriminant D = −4d.
If the class number is 2, then all classes are represented by ϕ1 and ϕ2, and
we obtain the following examples of systems of ideal numbers:

Example 7.2 Systems Jd of integral ideal numbers for the fields Q(
√

−d),
d ∈ {6, 10, 22}, can be chosen as follows:

(1) J6 = {x + y
√

−6 | x, y ∈ Z} ∪ {x
√

3 + y
√

−2 | x, y ∈ Z},

(2) J10 = {x + y
√

−10 | x, y ∈ Z} ∪ {x
√

5 + y
√

−2 | x, y ∈ Z},

(3) J22 = {x + y
√

−22 | x, y ∈ Z} ∪ {x
√

11 + y
√

−2 | x, y ∈ Z}.

For D = −d ≡ 1 mod 4 the principal form is ϕ1(x, y) = x2 + xy + d+1
4 y2 =

1
4 ((2x + y)2 + dy2). If d+1

4 = m2 happens to be a square with m > 1 then
another form of discriminant D is ϕ2(x, y) = mx2+xy+my2 = 1

4 ((2m−1)(x−
y)2 + (2m + 1)(x + y)2). These special assumptions are satisfied in the cases
d = 15 and d = 35 of class number 2; we obtain two of the following systems of
ideal numbers. For d = 51 and d = 91 the quadratic forms 3x2 +3xy +5y2 =
1
4 (3(2x + y)2 + 17y2) and 5x2 + 3xy + 5y2 = 1

4 (7(x − y)2 + 13(x + y)2) yield
two more examples:

Example 7.3 Systems Jd of integral ideal numbers for Q(
√

−d), d ∈ {15, 35,
51, 91}, can be chosen as follows:

(1) J15 =
{

1
2 (x + y

√
−15)

∣∣ x, y ∈ Z, x ≡ y mod 2
}

∪
{

1
2

(
x

√
3 + y

√
−5
) ∣∣ x, y ∈ Z, x ≡ y mod 2

}
,

(2) J35 =
{

1
2 (x + y

√
−35)

∣∣ x, y ∈ Z, x ≡ y mod 2
}

∪
{

1
2

(
x

√
5 + y

√
−7
) ∣∣ x, y ∈ Z, x ≡ y mod 2

}
.

(3) J51 =
{

1
2 (x + y

√
−51)

∣∣ x, y ∈ Z, x ≡ y mod 2
}

∪
{

1
2

(
x

√
3 + y

√
−17

) ∣∣ x, y ∈ Z, x ≡ y mod 2
}

,
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(4) J91 =
{

1
2 (x + y

√
−91)

∣∣ x, y ∈ Z, x ≡ y mod 2
}

∪
{

1
2

(
x

√
7 + y

√
−13

) ∣∣ x, y ∈ Z, x ≡ y mod 2
}

.

From Gauss we know ([13], [27], [40], [140]) that a prime p is represented by
some binary quadratic form of discriminant D if and only if p|D or

(
D
p

)
= 1.

But there is no general rule that tells which primes are represented by a
specific class of forms. The eight discriminants D in the preceding examples
provide exceptions where we can decide by congruence conditions whether
a prime p is represented by the first or the second class of quadratic forms:
For p � D we have ([27], §2)

p =
{

x2 + 5y2

1
2 (x2 + 5y2) ⇐⇒ p ≡

{
1, 9
3, 7 mod 20,

p =
{

x2 + 13y2

1
2 (x2 + 13y2) ⇐⇒ p ≡

{
1, 9, 17, 25, 29, 49
7, 11, 15, 19, 31, 47 mod 52,

p =
{

x2 + 6y2

2x2 + 3y2 ⇐⇒ p ≡
{

1, 7
5, 11 mod 24,

p =
{

x2 + 10y2

2x2 + 5y2 ⇐⇒ p ≡
{

1, 9, 11, 19
7, 13, 23, 37 mod 40,

p =
{

x2 + 22y2

2x2 + 11y2

⇐⇒ p ≡
{

1, 9, 15, 23, 25, 31, 47, 49, 71, 81
13, 19, 21, 29, 35, 43, 51, 61, 83, 85 mod 88,

p =
{

x2 + 15y2

3x2 + 5y2 ⇐⇒ p ≡
{

1, 19, 31, 49
17, 23, 47, 53 mod 60,

p =

{
1
2 (x2 + 35y2)
1
2 (5x2 + 7y2)

⇐⇒ p ≡
{

1, 9, 11, 29, 39, 51, 71, 79, 81, 99, 109, 121
3, 13, 17, 27, 33, 47, 73, 83, 87, 97, 103, 117

mod 140,

p =

{
1
4 (x2 + 51y2)
1
4 (3x2 + 17y2)

⇐⇒ p ≡
{

1, 4, 13, 16, 19, 25, 43, 49
5, 11, 14, 20, 23, 29, 41, 44

mod 51.

These congruences are useful for the computation of coefficients of Hecke
theta series for the corresponding imaginary quadratic fields; they tell us in
which of the two subsets of Jd we should look for an ideal number μ = μp

such that p = μpμp.



102 7. Ideal Numbers for Quadratic Fields

7.2 Class Number 4

When the class number is 4 then the ideal class group is isomorphic to Z4

or to Z2 × Z2. The theory of genera, due to Gauss, enables us to distinguish
the two cases. It does the same job also for class number 8. More generally,
it tells us how many 2-groups are direct factors in the class group. We recall
the relevant theorem from the theory of genera ([13], [27], §3, [140], §12):

Theorem 7.4 (Gauss) Let K be a quadratic number field, D its discrimi-
nant, C its ideal class group, and C2 the subgroup of squares in C. Then

C/C2 � Zr−1
2

where r is the number of distinct prime divisors of D. In a decomposition of
C as a direct product of cyclic factors of prime power order, there are exactly
r − 1 factors whose orders are powers of 2.

Let d = 2pq, D = −8pq with distinct odd primes p, q. Then four different
classes of forms of discriminant D are represented by ϕ1(x, y) = x2 + 2pqy2,
ϕ2(x, y) = 2x2 + pqy2, ϕ3(x, y) = px2 + 2qy2, ϕ4(x, y) = qx2 + 2py2. If the
class number is 4 then these forms represent all the classes, the ideal class
group is Z2 × Z2 by Theorem 7.4, and we obtain the following examples of
systems of ideal numbers:

Example 7.5 Systems Jd of integral ideal numbers for Q(
√

−d), d ∈ {30, 42,
70, 78, 102, 130}, can be chosen as follows:

(1) J30 = {x + y
√

−30 | x, y ∈ Z} ∪ {x
√

2 + y
√

−15 | x, y ∈ Z}
∪ {x

√
10 + y

√
−3 | x, y ∈ Z} ∪ {x

√
5 + y

√
−6 | x, y ∈ Z},

(2) J42 = {x + y
√

−42 | x, y ∈ Z} ∪ {x
√

2 + y
√

−21 | x, y ∈ Z}
∪ {x

√
3 + y

√
−14 | x, y ∈ Z} ∪ {x

√
6 + y

√
−7 | x, y ∈ Z},

(3) J70 = {x + y
√

−70 | x, y ∈ Z} ∪ {x
√

2 + y
√

−35 | x, y ∈ Z}
∪ {x

√
5 + y

√
−14 | x, y ∈ Z} ∪ {x

√
10 + y

√
−7 | x, y ∈ Z},

(4) J78 = {x + y
√

−78 | x, y ∈ Z} ∪ {x
√

2 + y
√

−39 | x, y ∈ Z}
∪ {x

√
3 + y

√
−26 | x, y ∈ Z} ∪ {x

√
6 + y

√
−13 | x, y ∈ Z},

(5) J102 = {x + y
√

−102 | x, y ∈ Z} ∪ {x
√

2 + y
√

−51 | x, y ∈ Z}
∪ {x

√
3 + y

√
−34 | x, y ∈ Z} ∪ {x

√
6 + y

√
−17 | x, y ∈ Z},

(6) J130 = {x + y
√

−130 | x, y ∈ Z} ∪ {x
√

2 + y
√

−65 | x, y ∈ Z}
∪ {x

√
5 + y

√
−26 | x, y ∈ Z} ∪ {x

√
10 + y

√
−13 | x, y ∈ Z}.
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Let d = pq with distinct primes p ≡ q mod 4. Then D = −4pq, and by
Theorem 7.4 the ideal class group has exactly two direct factors which are
2-groups. The quadratic forms ϕ1(x, y) = x2 + pqy2, ϕ2(x, y) = px2 + qy2,
ϕ3(x, y) = 2x2 +2xy+ 1

2 (1+pq)y2 = 1
2 ((2x+y2)+pqy2) represent 3 different

classes. For d ∈ {21, 33, 57, 85} the class number is 4, and the fourth class
of forms is represented by 5x2 + 4xy + 5y2 = 1

2 (3(x − y)2 + 7(x + y)2),
6x2+6xy+7y2 = 1

2 (3(2x+y)2+11y2), 6x2+6xy+11y2 = 1
2 (3(2x+y)2+19y2)

and 10x2 +10xy +11y2 = 1
2 (5(2x+y)2 +17y2), respectively. Thus we obtain

the following systems of ideal numbers:

Example 7.6 Systems Jd of integral ideal numbers for Q(
√

−d), d ∈ {21, 33,
57, 85}, can be chosen as follows:

(1) J21 = {x + y
√

−21 | x, y ∈ Z} ∪ {x
√

3 + y
√

−7 | x, y ∈ Z}
∪
{

1√
2
(x + y

√
−21)

∣∣ x, y ∈ Z, x ≡ y mod 2
}

∪
{

1√
2
(x

√
3 + y

√
−7)

∣∣ x, y ∈ Z, x ≡ y mod 2
}
,

(2) J33 = {x + y
√

−33 | x, y ∈ Z} ∪ {x
√

3 + y
√

−11 | x, y ∈ Z}
∪
{

1√
2
(x + y

√
−33)

∣∣ x, y ∈ Z, x ≡ y mod 2
}

∪
{

1√
2
(x

√
3 + y

√
−11)

∣∣ x, y ∈ Z, x ≡ y mod 2
}
,

(3) J57 = {x + y
√

−57 | x, y ∈ Z} ∪ {x
√

3 + y
√

−19 | x, y ∈ Z}
∪
{

1√
2
(x + y

√
−57)

∣∣ x, y ∈ Z, x ≡ y mod 2
}

∪
{

1√
2
(x

√
3 + y

√
−19)

∣∣ x, y ∈ Z, x ≡ y mod 2
}
,

(4) J85 = {x + y
√

−85 | x, y ∈ Z} ∪ {x
√

5 + y
√

−17 | x, y ∈ Z}
∪
{

1√
2
(x + y

√
−85)

∣∣ x, y ∈ Z, x ≡ y mod 2
}

∪
{

1√
2
(x

√
5 + y

√
−17)

∣∣ x, y ∈ Z, x ≡ y mod 2
}
.

Let d = 2p with an odd prime p. Then D = −8p, and by Theorem 7.4 the
ideal class group has exactly one 2-group as a direct factor. We consider the
examples d ∈ {14, 34, 46} when the class number is 4 and, consequently, the
class group is isomorphic to Z4. The principal form is ϕ1(x, y) = x2 + 2py2.
The class whose square is the principal class is represented by ϕ2(x, y) =
2x2 + py2. In our examples the other two classes are represented by 3x2 ±
2xy + 5y2 = 1

3 ((3x ± y)2 + 14y2), 5x2 ± 2xy + 7y2 = 1
5 ((5x ± y)2 + 34y2),

and 5x2 ± 4xy + 10y2 = 1
5 ((5x ± 2y)2 + 46y2), respectively. We choose ideal

numbers x
√

2 + y
√−p corresponding to ϕ2. Then we choose a square root

Λ of one of these numbers, and we determine the quotients 1
Λ (x + y

√
−2p)

which are algebraic integers. After a modest calculation we arrive at the
following results:
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Example 7.7 Systems Jd of integral ideal numbers for Q(
√

−d), d ∈ {14, 34,
46}, can be chosen as follows:

(1) Let Λ14 =
√√

2 +
√

−7 be a root of the equation Λ8 + 10Λ4 + 81 = 0.
Then J14 = A1 ∪ A2 ∪ A3 ∪ A4 with

A1 = O14 = {x + y
√

−14 | x, y ∈ Z},

A2 = {x
√

2 + y
√

−7 | x, y ∈ Z},

A3 =
{

1
Λ14

(x + y
√

−14)
∣∣∣ x, y ∈ Z, x ≡ −y mod 3

}
,

A4 = {μ | μ ∈ A3},

(2) Let Λ34 =
√

2
√

2 +
√

−17 be a root of the equation Λ8+18Λ4+625 = 0.
Then J34 = A1 ∪ A2 ∪ A3 ∪ A4 with

A1 = O34 = {x + y
√

−34 | x, y ∈ Z},

A2 = {x
√

2 + y
√

−17 | x, y ∈ Z},

A3 =
{

1
Λ34

(x + y
√

−34)
∣∣∣ x, y ∈ Z, x ≡ −y mod 5

}
,

A4 = {μ | μ ∈ A3},

(3) Let Λ46 =
√√

2 +
√

−23 be a root of the equation Λ8 +42Λ4 +625 = 0.
Then J46 = A1 ∪ A2 ∪ A3 ∪ A4 with

A1 = O46 = {x + y
√

−46 | x, y ∈ Z},

A2 = {x
√

2 + y
√

−23 | x, y ∈ Z},

A3 =
{

1
Λ46

(x + y
√

−46)
∣∣∣ x, y ∈ Z, x ≡ 2y mod 5

}
,

A4 = {μ | μ ∈ A3}.

The meaning of the root symbols in Example 7.7 will not be specified, i.e.,
we do not specify which of the roots of the indicated polynomials should
be chosen for Λd. The same remark applies for the roots in the following
examples.

Let d = pq with odd primes p �≡ q mod 4. Then D = −d, and by Theorem 7.4
the ideal class group has exactly one 2-group as a direct factor. The principal
form is x2 + xy + 1

4 (d + 1)y2 = 1
4 ((2x + y)2 + dy2). For d = 39 and d = 55

the class number is 4, whence the ideal class group is Z4. The class whose
square is the principal class is represented by ϕ2(x, y) = 3x2 + 3xy + 4y2 =
1
4 (3(2x + y)2 + 13y2), respectively by ϕ2(x, y) = 4x2 + 3xy + 4y2 = 1

4 (5(x −
y)2 + 11(x + y)2). Similarly as before we obtain the following results:
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Example 7.8 Systems Jd of integral ideal numbers for Q(
√

−d), d ∈ {39,
55}, can be chosen as follows:

(1) Let Λ39 =
√

1
2 (

√
13 +

√
−3) be a root of the equation Λ8 −5Λ4+16 = 0.

Then J39 = A1 ∪ A2 ∪ A3 ∪ A4 with

A1 = O39 =
{

1
2 (x + y

√
−39)

∣∣ x, y ∈ Z, x ≡ y mod 2
}

,

A2 =
{

1
2 (x

√
13 + y

√
−3)

∣∣ x, y ∈ Z, x ≡ y mod 2
}

,

A3 =
{

1
2Λ39

(x + y
√

−39)
∣∣∣ x, y ∈ Z, x ≡ y mod 4

}
,

A4 = {μ | μ ∈ A3},

(2) Let Λ55 =
√

1
2 (

√
5 +

√
−11) be a root of the equation Λ8+3Λ4+16 = 0.

Then J55 = A1 ∪ A2 ∪ A3 ∪ A4 with

A1 = O55 =
{

1
2 (x + y

√
−55)

∣∣ x, y ∈ Z, x ≡ y mod 2
}

,

A2 =
{

1
2 (x

√
5 + y

√
−11)

∣∣ x, y ∈ Z, x ≡ y mod 2
}

,

A3 =
{

1
2Λ55

(x + y
√

−55)
∣∣∣ x, y ∈ Z, x ≡ y mod 4

}
,

A4 = {μ | μ ∈ A3}.

For d = 17, D = −68 the ideal class group is isomorphic to Z4. The classes
of quadratic forms are represented by x2 + 17y2, 2x2 + 2xy + 9y2 = 1

2 ((2x +
y)2 + 17y2) and 3x2 ± 2xy + 6y2 = 1

3 ((3x ± y)2 + 17y2). Similarly as before
we get the following result:

Example 7.9 A system J17 of integral ideal numbers for the field Q(
√

−17)
can be chosen as follows. Let Λ17 =

√
1√
2
(1 +

√
−17) be a root of the equation

Λ8 + 16Λ4 + 81 = 0. Then J17 = A1 ∪ A2 ∪ A3 ∪ A4 with

A1 = O17 = {x + y
√

−17 | x, y ∈ Z},

A2 =
{

1√
2
(x + y

√
−17)

∣∣ x, y ∈ Z, x ≡ y mod 2
}
,

A3 =
{

1
Λ17

(x + y
√

−17)
∣∣∣ x, y ∈ Z, x ≡ y mod 3

}
,

A4 = {μ | μ ∈ A3}.

7.3 Class Number 8

We will need six imaginary quadratic fields whose class number is 8. In five
cases the ideal class group is isomorphic to Z4 ×Z2. Three of the examples are
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given by d = 6p with p ∈ {11, 19, 23}. Then D = −24p, and four classes of
quadratic forms are represented by the diagonal forms x2 +6py2, 2x2 +3py2,
3x2 + 2py2, 6x2 + py2. The other four classes are represented by

{
5x2 ± 4xy + 14y2 = 1

5 ((5x ± 2y)2 + 66y2)
7x2 ± 4xy + 10y2 = 1

7 ((7x ± 2y)2 + 66y2)
for d = 66,

{
5x2 ± 2xy + 23y2 = 1

5 ((5x ± y)2 + 114y2)
10x2 ± 8xy + 13y2 = 1

10 ((10x ± 4y)2 + 114y2)
for d = 114,

{
7x2 ± 6xy + 21y2 = 1

7 ((7x ± 3y)2 + 138y2)
11x2 ± 8xy + 14y2 = 1

11 ((11x ± 4y)2 + 138y2)
for d = 138.

We proceed as described in Example 7.7 and obtain the following results:

Example 7.10 Systems Jd of integral ideal numbers for Q(
√

−d), d ∈ {66,
114, 138}, can be chosen as follows:

(1) Let Λ66 =
√√

3 +
√

−22 be a root of the equation Λ8 − 38Λ4 +625 = 0.
Then J66 = A1 ∪ . . . ∪ A8 with

A1 = O66 = {x + y
√

−66 | x, y ∈ Z},

A2 = {x
√

2 + y
√

−33 | x, y ∈ Z},

A3 = {x
√

3 + y
√

−22 | x, y ∈ Z},

A4 = {x
√

6 + y
√

−11 | x, y ∈ Z},

A5 =
{

1
Λ66

(x
√

3 + y
√

−22)
∣∣∣ x, y ∈ Z, x ≡ y mod 5

}
,

A6 = {μ | μ ∈ A5},

A7 =
{

1
Λ66

(x
√

2 + y
√

−33)
∣∣∣ x, y ∈ Z, x ≡ −y mod 5

}
,

A8 = {μ | μ ∈ A7}.

(2) Let Λ114 =
√√

6 +
√

−19 be a root of the equation Λ8+26Λ4+625 = 0.
Then J114 = A1 ∪ . . . ∪ A8 with

A1 = O114 = {x + y
√

−114 | x, y ∈ Z},

A2 = {x
√

2 + y
√

−57 | x, y ∈ Z},

A3 = {x
√

3 + y
√

−38 | x, y ∈ Z},

A4 = {x
√

6 + y
√

−19 | x, y ∈ Z},

A5 =
{

1
Λ114

(x
√

6 + y
√

−19)
∣∣∣ x, y ∈ Z, x ≡ y mod 5

}
,

A6 = {μ | μ ∈ A5},
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A7 =
{

1
Λ114

(x
√

2 + y
√

−57)
∣∣∣ x, y ∈ Z, x ≡ 3y mod 5

}
,

A8 = {μ | μ ∈ A7}.

(3) Let Λ138 =
√√

3 +
√

−46 be a root of the equation Λ8+86Λ4+2401 = 0.
Then J138 = A1 ∪ . . . ∪ A8 with

A1 = O138 = {x + y
√

−138 | x, y ∈ Z},

A2 = {x
√

2 + y
√

−69 | x, y ∈ Z},

A3 = {x
√

3 + y
√

−46 | x, y ∈ Z},

A4 = {x
√

6 + y
√

−23 | x, y ∈ Z},

A5 =
{

1
Λ138

(x
√

3 + y
√

−46)
∣∣∣ x, y ∈ Z, x ≡ y mod 7

}
,

A6 = {μ | μ ∈ A5},

A7 =
{

1
Λ138

(x
√

6 + y
√

−23)
∣∣∣ x, y ∈ Z, x ≡ −3y mod 7

}
,

A8 = {μ | μ ∈ A7}.

For d = 65, D = −260, the classes of quadratic forms are represented by two
diagonal forms x2 +65y2, 5x2 +17y2, by two more forms 2x2 +2xy +33y2 =
1
2 ((2x + y)2 + 65y2), 9x2 + 8xy + 9y2 = 1

2 (5(x − y)2 + 13(x + y)2) whose
squares are in the principal class, and by the four forms 3x2 ± 2xy + 22y2 =
1
3 ((3x ± y)2 + 65y2), 6x2 ± 2xy + 11y2 = 1

6 ((6x ± y)2 + 65y2).

The case d = 69, D = −276 is similar; the classes of quadratic forms are
represented by x2 +69y2, 3x2 +23y2, 2x2 +2xy+35y2 = 1

2 ((2x+y)2 +69y2),
6x2 + 6xy + 13y2 = 1

2 (3(2x + y)2 + 23y2), and by the four forms 5x2 ± 2xy +
14y2 = 1

5 ((5x ± y)2 +69y2), 7x2 ± 2xy+10y2 = 1
7 ((7x ± y)2 +69y2). Similarly

as before we get the following results:

Example 7.11 Systems Jd of integral ideal numbers for Q(
√

−d), d ∈ {65,
69}, can be chosen as follows:

(1) Let Λ65 =
√

1√
2
(

√
5 +

√
−13) be a root of the equation Λ8 +8Λ4 +81 =

0. Then J65 = A1 ∪ . . . ∪ A8 with

A1 = O65 = {x + y
√

−65 | x, y ∈ Z},

A2 = {x
√

5 + y
√

−13 | x, y ∈ Z},

A3 =
{

1√
2
(x + y

√
−65)

∣∣∣ x, y ∈ Z, x ≡ y mod 2
}

,

A4 =
{

1√
2
(x

√
5 + y

√
−13)

∣∣ x, y ∈ Z, x ≡ y mod 2
}
,

A5 =
{

1√
2Λ65

(x + y
√

−65)
∣∣∣ x, y ∈ Z, x ≡ −y mod 6

}
,
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A6 = {μ | μ ∈ A5},

A7 =
{

1√
2Λ65

(x
√

5 + y
√

−13)
∣∣∣ x, y ∈ Z, x ≡ y mod 6

}
,

A8 = {μ | μ ∈ A7}.

(2) Let Λ69 =
√

1√
2
(3

√
3 +

√
−23) be a root of the equation Λ8 − 4Λ4 +

625 = 0. Then J69 = A1 ∪ . . . ∪ A8 with

A1 = O69 = {x + y
√

−69 | x, y ∈ Z},

A2 = {x
√

3 + y
√

−23 | x, y ∈ Z},

A3 =
{

1√
2
(x + y

√
−69)

∣∣ x, y ∈ Z, x ≡ y mod 2
}
,

A4 =
{

1√
2
(x

√
3 + y

√
−23)

∣∣ x, y ∈ Z, x ≡ y mod 2
}

,

A5 =
{

1√
2Λ69

(x + y
√

−69)
∣∣∣ x, y ∈ Z, x ≡ −y mod 10

}
,

A6 = {μ | μ ∈ A5},

A7 =
{

1√
2Λ69

(x
√

3 + y
√

−23)
∣∣∣ x, y ∈ Z, x ≡ 3y mod 10

}
,

A8 = {μ | μ ∈ A7}.

The ideal class group of Q(
√

−95) is cyclic of order 8. The classes of binary
quadratic forms of discriminant D = −95 are represented by x2+xy+24y2 =
1
4 ((2x+y)2+95y2), 5x2+5xy+6y2 = 1

4 (5(2x+y)2+19y2), 2x2 ± xy+12y2 =
1
8 ((4x ± y)2 +95y2), 3x2 ± xy +8y2 = 1

12 ((6x ± y)2 +95y2), 4x2 ± xy +6y2 =
1
16 ((8x ± y)2 +95y2). We find the following system of integral ideal numbers:

Example 7.12 A system J95 = A0 ∪ . . . ∪ A7 of integral ideal numbers for

the field Q(
√

−95) can be chosen as follows. Let Λ95 = 4

√
1
2 (3

√
5 +

√
−19) be

a root of the equation Λ16 − 13Λ8 + 256 = 0. Then Λ95Λ95 = 2,

A0 = O95 =
{

1
2 (x + y

√
−95)

∣∣ x, y ∈ Z, y ≡ x mod 2
}

,

A1 =
{

1
2Λ95

(x + y
√

−95)
∣∣∣ x, y ∈ Z, y ≡ x mod 4

}
,

A7 = {μ | μ ∈ A1},

A2 =
{

1
2Λ2

95

(x
√

5 + y
√

−19)
∣∣∣ x, y ∈ Z, y ≡ 3x mod 8

}
,

A6 = {μ | μ ∈ A2},

A3 =
{

1
2Λ95

(x
√

5 + y
√

−19)
∣∣∣ x, y ∈ Z, y ≡ −x mod 4

}
,

A5 = {μ | μ ∈ A3},

A4 =
{

1
2 (x

√
5 + y

√
−19)

∣∣ x, y ∈ Z, y ≡ x mod 2
}
.
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Let A denote the ideal class of the numbers in A1. Then A generates the ideal
class group, and the ideals in the class Aj are represented by the numbers in
Aj for 0 ≤ j ≤ 7.

7.4 Class Numbers 3, 6 and 12

For D = −d = −23 the class number is 3. The classes of quadratic forms are
represented by x2 + xy + 6y2 = 1

4 ((2x + y)2 + 23y2) and 2x2 ± xy + 3y2 =
1
8 ((4x ± y)2 + 23y2). We choose a third root of 1

2 (3 +
√

−23) and obtain the
following result:

Example 7.13 A system J23 of integral ideal numbers for the field Q(
√

−23)

can be chosen as follows. Let Λ23 = 3

√
1
2 (3 +

√
−23) be a root of the equation

Λ6 − 3Λ3 + 8 = 0. Then J23 = A1 ∪ A2 ∪ A3 with

A1 = O23 =
{

1
2 (x + y

√
−23)

∣∣ x, y ∈ Z, x ≡ y mod 2
}

,

A2 =
{

1
2Λ23

(x + y
√

−23)
∣∣∣ x, y ∈ Z, x ≡ −y mod 4

}
,

A3 = {μ | μ ∈ A2}.

We will need the fields with d = 26 and d = 38 for which the class number
is 6. Here we have d = 2p, D = −8p with a prime p ≡ 1 mod 6. The classes
whose squares are the principal class are represented by the diagonal forms
x2 + 2py2 and 2x2 + py2. Two more classes are represented by 3x2 ± 2xy +
2p+1

3 y2 = 1
3 ((3x ± y)2 + 2py2). The remaining two classes are represented by

5x2 ± 4xy + 6y2 = 1
5 ((5x ± 2y)2 + 26y2), respectively by 6x2 ± 4xy + 7y2 =

1
6 ((6x ± 2y)2 +38y2). After some calculation as in the preceding cases we get
the following results:

Example 7.14 Systems Jd of integral ideal numbers for Q(
√

−d), d ∈ {26,
38}, can be chosen as follows:

(1) Let Λ26 = 3
√

1 +
√

−26 be a root of the equation Λ6 − 2Λ3 + 27 = 0.
Then J26 = A1 ∪ . . . ∪ A6 with

A1 = O26 = {x + y
√

−26 | x, y ∈ Z},

A2 = {x
√

2 + y
√

−13 | x, y ∈ Z},

A3 =
{

1
Λ26

(x + y
√

−26)
∣∣∣ x, y ∈ Z, x ≡ y mod 3

}
,

A4 = {μ | μ ∈ A3},

A5 =
{

1
Λ26

(x
√

2 + y
√

−13)
∣∣∣ x, y ∈ Z, x ≡ −y mod 3

}
,

A6 = {μ | μ ∈ A5}.



110 7. Ideal Numbers for Quadratic Fields

(2) Let Λ38 = 3
√

1 + 3
√

−38 be a root of the equation Λ6 − 2Λ3 + 343 = 0.
Then J38 = A1 ∪ . . . ∪ A6 with

A1 = O38 = {x + y
√

−38 | x, y ∈ Z},

A2 = {x
√

2 + y
√

−19 | x, y ∈ Z},

A3 =
{

1
Λ38

(x + y
√

−38)
∣∣∣ x, y ∈ Z, x ≡ −2y mod 7

}
,

A4 = {μ | μ ∈ A3},

A5 =
{

1
Λ38

(x
√

2 + y
√

−19)
∣∣∣ x, y ∈ Z, x ≡ −y mod 7

}
,

A6 = {μ | μ ∈ A5}.

In Sect. 28 we will construct theta series on the fields Q(
√

−d) for d ∈
{110, 170} whose ideal class groups are isomorphic to Z6 × Z2. The classes
of quadratic forms with discriminants −4d are represented by four diagonal
forms, by 1

3 ((3x±y)2+dy2), 1
6 ((6x±2y)2+dy2), and by 1

7 ((7x±3y)2+110y2),
1
9 ((9x ± 4y)2 + 110y2) for d = 110, respectively by 1

9 ((9x ± y)2 + 170y2),
1
13 ((13x ± 5y)2 + 170y2) for d = 170. Similarly as in the preceding cases one
obtains the following systems of ideal numbers:

Example 7.15 Systems Jd = A1 ∪ . . . ∪ A12 of integral ideal numbers for
Q(

√
−d), d ∈ {110, 170}, can be chosen as follows:

(1) Let Λ = Λ110 = 3
√√

5 +
√

−22 be a root of the equation Λ12 + 34Λ6 +
729 = 0. Then A1, A2, A3, A4 consist of all numbers

x + y
√

−110, x
√

2 + y
√

−55, x
√

5 + y
√

−22, x
√

10 + y
√

−11

with x, y ∈ Z, and

A5 =
{

1
Λ (x + y

√
−110)

∣∣ x, y ∈ Z, x + y ≡ 0 mod 3
}

,

A6 = {μ | μ ∈ A5},

A7 =
{

1
Λ (x

√
2 + y

√
−55)

∣∣ x, y ∈ Z, x − y ≡ 0 mod 3
}
,

A8 = {μ | μ ∈ A7},

A9 =
{

1
Λ (x

√
5 + y

√
−22)

∣∣ x, y ∈ Z, x − y ≡ 0 mod 3
}
,

A10 = {μ | μ ∈ A9},

A11 =
{

1
Λ (x

√
10 + y

√
−11)

∣∣ x, y ∈ Z, x + y ≡ 0 mod 3
}
,

A12 = {μ | μ ∈ A11}.

(2) Let Λ = Λ170 = 3
√√

10 +
√

−17 be a root of the equation Λ12 + 14Λ6 +
729 = 0. Then A1, A2, A3, A4 consist of all numbers

x + y
√

−170, x
√

2 + y
√

−85, x
√

5 + y
√

−34, x
√

10 + y
√

−17
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with x, y ∈ Z, and

A5 =
{

1
Λ (x + y

√
−170)

∣∣ x, y ∈ Z, x − y ≡ 0 mod 3
}
,

A6 = {μ | μ ∈ A5},

A7 =
{

1
Λ (x

√
2 + y

√
−85)

∣∣ x, y ∈ Z, x + y ≡ 0 mod 3
}
,

A8 = {μ | μ ∈ A7},

A9 =
{

1
Λ (x

√
5 + y

√
−34)

∣∣ x, y ∈ Z, x + y ≡ 0 mod 3
}
,

A10 = {μ | μ ∈ A9},

A11 =
{

1
Λ (x

√
10 + y

√
−17)

∣∣ x, y ∈ Z, x − y ≡ 0 mod 3
}
,

A12 = {μ | μ ∈ A11}.

7.5 Ideal Numbers for Some Real Quadratic Fields

In most of our examples of theta series on real quadratic fields we will deal
with fields of class number 1; then in the corresponding theta series we just
sum on integers in these fields. The class number 1 fields that will actually
occur in our examples are those with discriminants

5, 8, 12, 13, 17, 21, 24, 28, 44, 56, 76, 88, 152.

In some of our examples we will meet theta series of weight 1 on fields Q(
√

pq)
where p, q are distinct primes with pq �≡ 1 mod 4 and where the class number
is 2. In a few of these cases the classes of (indefinite) binary quadratic forms
with discriminant 4pq are represented by the forms

x2 − pqy2 and px2 − qy2.

For these fields it is easy to find a system of integral ideal numbers:

Example 7.16 For (p, q) ∈ {(2, 5), (2, 13), (3, 5), (3, 17)}, a system JQ(
√

pq)

of integral ideal numbers for Q(
√

pq) is given by the set of all numbers

x + y
√

pq and x
√

p + y
√

q

with x, y ∈ Z.

The fields with discriminants 156 and 136 have class number 2. In these
cases, the classes of binary quadratic forms are represented by x2 − 39y2,
1
2 ((2x + y)2 − 39y2), and by x2 − 34y2, 3x2 + 2xy − 11y2, respectively. This
yields the results in the following two examples:

Example 7.17 A system J
Q(

√
39) of integral ideal numbers for the real qua-

dratic field with discriminant 156 is given by the union of Z[
√

39] and the set
of all numbers

1√
2
(x + y

√
39)

with x, y ∈ Z, x ≡ y mod 2.
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Example 7.18 Choose positive roots Λ =
√

3 +
√

34, Λ′ =
√

−3 +
√

34.
A system J

Q(
√

34) of integral ideal numbers for Q(
√

34) is given by the union
of Z[

√
34] and the set of all numbers

1
Λ (x + y

√
34) and 1

Λ′ (x − y
√

34)

with x, y ∈ Z, x − 3y ≡ 0 mod 5.

A result as simple as that in Example 7.16 continues to hold for some dis-
criminants D which have more than two prime divisors:

Example 7.19 For d ∈ {30, 42, 78, 102}, systems J
Q(

√
d) of integral ideal

numbers for Q(
√

d) are given by the sets of all numbers

x + y
√

30 and x
√

3 + y
√

10 ,

x + y
√

42 and x
√

2 + y
√

21 ,

x + y
√

78 and x
√

6 + y
√

13 ,

x + y
√

102 and x
√

3 + y
√

34 ,

respectively, with x, y ∈ Z.

In Sect. 28 we will use two real quadratic fields whose class numbers are 4.
In both cases the classes of binary forms are represented by diagonal forms,
and we can choose a rather simple system of integral ideal numbers:

Example 7.20 For (p, q) ∈ {(5, 13), (5, 17)}, systems JQ(
√

2pq) of integral
ideal numbers for Q(

√
2pq) are given by the sets of all numbers

x + y
√

2pq, x
√

2 + y
√

pq, x
√

p + y
√

2q, x
√

2p + y
√

q

with x, y ∈ Z.



8 Eta Products of Weight 1
2 and 3

2

8.1 Levels 1, 2 and 4

In Example 3.12 we learned that there are exactly six holomorphic eta prod-
ucts of weight 1

2 which are new for the levels 1, 2 or 4. In Sects. 1.1 and 1.2
we obtained series expansions for four of these functions. In a closing remark
in Sect. 3.6 we explained that these expansions are simple theta series for
the rational number field with Dirichlet characters. Now we derive similar
expansions for the remaining two eta products

η2(2z)/η(z) and η(z)η(4z)/η(2z).

They are corollaries from the Jacobi Triple Product Identity; so we could
have presented them already in Sect. 1.1.

In Theorem 1.1 we replace both q and w by q
1
2 . This yields

∞∏

n=1

(1 − qn)(1 + qn)(1 + qn−1) =
∞∑

n=− ∞
q

1
2 (n2+n).

The factor 1 + q1−1 = 2 is shifted to the right hand side, which gives

∞∏

n=1

(1 − qn)(1 + qn)2 =
1
2

∞∑

n=− ∞
q

1
8 ((2n+1)2−1) = q− 1

8

∞∑

n=0

q
1
8 (2n+1)2 ,

hence

∞∏

n=1

(1 − q2n)2

1 − qn
=

∞∏

n=1

(1 − q2n)(1 + qn)

=
∞∏

n=1

(1 − qn)(1 + qn)2 = q− 1
8

∑

n>0 odd

q
1
8 n2

.
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2

We move q− 1
8 to the left and put q = e(z). So we get

η2(2z)
η(z)

=
∑

n>0 odd

e

(
n2z

8

)
. (8.1)

This identity can also be written as

η2(2z)
η(z)

=
∞∑

n=1

χ0(n) e

(
n2z

8

)

where χ0 is the principal Dirichlet character modulo 2. Now we take the sign
transform in (8.1) and use (1.10) and (−1)(n

2−1)/8 =
(

2
n

)
. This yields

η(z)η(4z)
η(2z)

=
∞∑

n=1

(
2
n

)
e

(
n2z

8

)
. (8.2)

Equivalent versions of (8.1) and (8.2) as q-identities are attributed to Gauss
and Jacobi. One finds them in [14], entry (3.1.11), and [142], entries (T1.3),
(T1.4).

We collect the results:

Theorem 8.1 For z in the upper half plane the following identities hold:

η(z) =
∞∑

n=1

(
12
n

)
e

(
n2z

24

)
, (8.3)

η3(2z)
η(z)η(4z)

=
∞∑

n=1

(
6
n

)
e

(
n2z

24

)
, (8.4)

η2(2z)
η(z)

=
∑

n>0 odd

e

(
n2z

8

)
, (8.5)

η(z)η(4z)
η(2z)

=
∞∑

n=1

(
2
n

)
e

(
n2z

8

)
, (8.6)

η2(z)
η(2z)

=
∞∑

n=− ∞
(−1)ne

(
n2z
)
, (8.7)

η5(2z)
η2(z)η2(4z)

=
∞∑

n=− ∞
e
(
n2z
)
. (8.8)
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8.2 Levels 6 and 12

From Corollary 2.3 and the algorithm in Sect. 4 one obtains exactly four new
holomorphic eta products of weight 1

2 and level 6, namely,
[
22, 3
1, 6

]
,

[
1, 62

2, 3

]
,

[
12, 6
2, 3

]
,

[
2, 32

1, 6

]
. (8.9)

All of them are non-cuspidal. In the same way, there are exactly four new
holomorphic eta products of weight 1

2 and level 12. They are the sign trans-
forms of those of level 6,

[
1, 4, 62

2, 3, 12

]
,

[
22, 3, 12
1, 4, 6

]
,

[
25, 3, 12
12, 42, 62

]
,

[
1, 4, 65

22, 32, 122

]
, (8.10)

and hence are non-cuspidal too. All these eta products share series expansions
which may be viewed as simple theta series for the rational number field, but
whose coefficients are not characters. Expansions for the last three entries in
(8.9) and, in a disguised version, also for the first one, have been presented
by Kac [62] as examples for his and Macdonald’s “denominator formula” in
the theory of affine Lie algebras, which is a vast generalization of the Triple
Product Identity. Kac claimed his expansions to be new. The expansion for
the last entry in (8.9) was rediscovered by Klyachko [68]. All four entries
are contained in Zucker’s list [142], Table 1. We present our versions of the
identities, but we will not give proofs:

Theorem 8.2 (Kac Identities) The following identities hold:

(1) We have

η2(2z)η(3z)
η(z)η(6z)

=
1
2

(
3

η2(9z)
η(18z)

− η2(z)
η(2z)

)
=

∞∑

n= 0

a(n)e
(
n2z
)

with a(0) = 1, a(n) = (−1)n−1 if n > 0, 3 � n, and a(n) = 2 · (−1)n if
n > 0, 3|n.

(2) We have

η(z)η2(6z)
η(2z)η(3z)

=
1
2

(
η2(3z)
η(6z)

− η2(z/3)
η(2z/3)

)
=

∞∑

n=1

b(n)e
(

n2z

3

)

with b(n) = (−1)n−1 if 3 � n and b(n) = 0 if 3|n.
(3) We have

η2(z)η(6z)
η(2z)η(3z)

=
η2(2z)
η(z)

− 3
η2(18z)
η(9z)

=
∞∑

n=1

c(n)e
(

n2z

8

)

with c(n) = 0 if n is even, c(n) = 1 if gcd(n, 6) = 1, c(n) = −2 if
gcd(n, 6) = 3.
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(4) We have

η(2z)η2(3z)
η(z)η(6z)

=
η2(2z/3)
η(z/3)

− η2(6z)
η(3z)

=
∑

n>0 , gcd(n,6)=1

e

(
n2z

24

)
.

The identities in Theorems 8.1, 8.2 for weight 1
2 are a source for numerous

identities in higher weights. In subsequent sections we will meet several eta
identities in weight 1 which look spectacular at first sight but which can be
deduced from those in weight 1

2 by trivial manipulations.

The expansions for the eta products (8.10) were also given by Zucker [142].
It is a simple matter to take the sign transforms in Theorem 8.2 and obtain
the following results:

Corollary 8.3 We have the identities

η(z)η(4z)η2(6z)
η(2z)η(3z)η(12z)

=
∞∑

n= 0

α(n)e
(
n2z
)
, (8.11)

η2(2z)η(3z)η(12z)
η(z)η(4z)η(6z)

=
∑

n> 0 , 3�n

e

(
n2z

3

)
, (8.12)

η5(2z)η(3z)η(12z)
η2(z)η2(4z)η2(6z)

=
∞∑

n=1

γ(n)e
(

n2z

8

)
, (8.13)

η(z)η(4z)η5(6z)
η2(2z)η2(3z)η2(12z)

=
∞∑

n=1

(
18
n

)
e

(
n2z

24

)
, (8.14)

where α(0) = 1, α(n) = −1 if n > 0, 3 � n, and α(n) = 2 if n > 0, 3|n, and
γ(n) =

(
2
n

)
if 3 � n, and γ(n) = 2

(
2

n/3

)
if 3|n.

Many computer runs with the algorithm in Sect. 4 support the fact that 1,
2, 4, 6 and 12 are the only levels for which new holomorphic eta products
of weight 1

2 exist. We proved this for prime power levels N = pr in Exam-
ples 3.11 and 3.12. It would be desirable to establish the general result with
lucid arguments, based on the theory in Sect. 3. In some sense this goal and
more was achieved by G. Mersmann:

Theorem 8.4 (Mersmann) (1) For any given positive integer or half-
integer k there are only finitely many holomorphic eta products of weight
k which are new in the sense defined in Sect. 2.1 and which are not
products of holomorphic eta products of lower weights.

(2) The only new holomorphic eta products of weight 1
2 are the fourteen

functions which are listed in Theorem 8.1 and in (8.9), (8.10).
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This result is stated without proof in an article by D. Zagier in [16], p. 30.
Zagier refers to the master’s thesis [94] where it comes from. We stress that
the assertion in part (1) concerns eta products of any level N . Unfortunately
no parts of Mersmann’s thesis have ever been published. His proof rests
on a thorough analysis of the inequalities in Corollary 2.3 characterizing
holomorphic eta products and the Kronecker product structure exhibited in
Sect. 3.4, using nothing but the principles of linear algebra and some easy
results on the density of primes. But the proof is rather long and can hardly
be called lucid, although doubtlessly it is ingenious. We were not able to
simplify it sufficiently so that we could reasonably incorporate it into this
monograph.

8.3 Eta Products of Weight 3
2

and the Concept of Su-
perlacunarity

In the sections which follow we will present a great number of eta products of
weight 1 or linear combinations thereof which are identified with Hecke theta
series. Correspondingly, there exist plenty of new holomorphic eta products of
weight 3

2 of all levels. We do not know how many of them possess expansions
as simple theta series on the rational number field. Here we will just present
a few examples of this phenomenon, including the Jacobi identity (1.7) and
(1.12).

Theorem 8.5 For z in the upper half plane the following identities hold:

η3(z) =
∞∑

n=1

(
−1
n

)
ne

(
n2z

8

)
, (8.15)

η9(2z)
η3(z)η3(4z)

=
∞∑

n=1

(
−2
n

)
ne

(
n2z

8

)
, (8.16)

η5(2z)
η2(z)

=
∞∑

n=1

(−1)n−1
(n

3

)
ne

(
n2z

3

)
, (8.17)

η2(z)η2(4z)
η(2z)

=
∞∑

n=1

(n

3

)
ne

(
n2z

3

)
, (8.18)

η5(z)
η2(2z)

=
∑

n> 0 odd

(n

3

)
ne

(
n2z

24

)
, (8.19)

η13(2z)
η5(z)η5(4z)

=
∞∑

n=1

(
−6
n

)
ne

(
n2z

24

)
. (8.20)
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These six functions form three pairs of sign transforms. The identities (8.17)
and (8.19) are due to Gordon [41] who deduced them from his quintuple
product identity. Macdonald [91] and Kac [62] deduced them anew by their
methods. In fact, (8.19) was known to Ramanujan [115], p. 170. Other proofs
of all these identities (except Jacobi’s) have been given in [77].

At this point we review some of the concepts and results from Ken Ono’s
paper [104]. The elementary theta function for parameters a ≥ 1, ν ∈ {0, 1},
t ≥ 1, 0 ≤ r < t, is given by

θa,ν,r,t(z) =
∑

n ≡ r mod t

nνe(an2z).

It is a modular form of weight ν+ 1
2 . These functions were thoroughly treated

by Shimura [132] and Petersson [110], Anhang A. (In [110] they are called
einfache Thetareihen.) The concept is closely related to what we called a
simple theta series at the end of Sect. 3.6. Every linear combination of
elementary theta functions is called superlacunary. If f is superlacunary with
Fourier coefficients c(n) then the number of n < x with c(n) �= 0 is a positive
constant times

√
x, asymptotically, and therefore f is lacunary. A major

result is due to Serre and Stark [130] who proved that every modular form of
weight 1

2 is superlacunary. It is conjectured that every lacunary modular form
of non-integral weight is superlacunary. In this direction, Ono [104] proved
the following result. If f(z) =

∑∞
n=1 c(n)e(nz) belongs to M(Γ0(N), k, χ),

and if f is not superlacunary, then the number A(x) = #{n < x | c(n) �= 0} is
bigger than a positive constant times x/ log x. As a corollary it follows what is
called Gordon’s ε-conjecture: If f ∈ M(Γ0(N), k, χ) satisfies A(x) = O(x1−ε)
for some ε > 0 then f is superlacunary.
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Clearly, the only holomorphic eta product of weight k for the full modular
group is η2k(z). Lacunary powers of the eta function have been studied by
Serre [129] exhaustively. Here we will present theta series representations for
some modular forms on the full modular group, including Serre’s results on
powers of η(z).

9.1 Weights k = 1, k ≡ 1 mod 4 and k ≡ 1 mod 6

From Euler’s series (1.2) for η(z) we obtain

η2(z) =
∑

n≡1 mod 12

a2(n)e
(nz

12

)
with a2(n) =

∑

x,y>0, x2+y2=2n

(
12
xy

)
.

(9.1)
The representation of η2(z) as a theta series for the Gaussian number field
has been known to Weber, Ramanujan [115] and Hecke [50]. Hecke [50] also
discovered a representation as a theta series on the real quadratic field Q(

√
3).

Schoeneberg [121] observed that there is also a representation on Q(
√

−3).
We state the result in Example 9.1. For the notations Od, Zm, etc., we refer to
the Index of Notations. In particular, we recall that ω = e

(
1
6

)
= 1

2 (1+
√

−3).

We recall from Theorem 5.3 that Hecke characters on real quadratic fields
always occur in pairs corresponding to the field automorphism of algebraic
conjugation. In the following description of η2(z) we write down only one of
these characters. We will do so throughout this monograph whenever a real
quadratic field comes into play. This will cause some asymmetry between
the real and imaginary cases in the appearance of our identities. (Look for
Example 23.16 for a particularly apparent case of asymmetry.) We empha-
size that symmetry can be restored by algebraic conjugation according to
Theorem 5.3.

Example 9.1 The residues of 2 + i and 2 + 3i modulo 6 can be chosen as
generators for the group (O1/(6))× � Z8 × Z2. A pair of characters χν on

G. Köhler, Eta Products and Theta Series Identities,
Springer Monographs in Mathematics,
DOI 10.1007/978-3-642-16152-0 9, c© Springer-Verlag Berlin Heidelberg 2011

119

http://dx.doi.org/10.1007/978-3-642-16152-0_9
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O1 with period 6 is fixed by the values

χν(2 + i) = νi, χν(2 + 3i) = −1

with ν ∈ {1, −1}. We have (2 + i)2(2 + 3i) ≡ −i mod 6. The residues of
1 + 2ω, 1 − 4ω and ω modulo 4(1 + ω) can be chosen as generators for the
group O3/(4 + 4ω)× � Z2 × Z2 × Z6. A pair of characters ψν on O3 with
period 4(1 + ω) is fixed by the values

ψν(1 + 2ω) = −ν, ψν(1 − 4ω) = −1, ψν(ω) = 1

with ν ∈ {1, −1}. A Hecke character ξ on Z[
√

3] with period 2
√

3 is given by

ξ(μ) =
{

sgn(μ)
−sgn(μ) for μ ≡

{
1, 2 +

√
3

−1, −2 +
√

3
mod 2

√
3.

The corresponding theta series of weight 1 satisfy

Θ1

(
12, ξ,

z

12

)
= Θ1

(
−4, χν ,

z

12

)
= Θ1

(
−3, ψν ,

z

12

)
= η2(z). (9.2)

By Theorems 5.3, 5.1 and Sect. 1.3, the functions Θ1(ξ, z), Θ1(χν , z), Θ1(ψν , z)
and η2(z) are modular forms of weight 1 and level 122. Therefore the match-
ing of small initial segments of their Fourier expansions suffices to prove (9.2).
We have

a2(p) = χν(μ) + χν(μ) = 0 for primes p = μμ ≡ 5 mod 12, μ ∈ O1,

a2(p) = ψν(μ) + ψν(μ) = 0 for primes p = μμ ≡ 7 mod 12, μ ∈ O3.

For primes p ≡ 1 mod 12 the representation of η2(z) by χν on O1 shows that

a2(p) =
{

2
−2 if p =

{
36x2 + y2

9x2 + 4y2 (9.3)

for some x, y ∈ Z. This tells us that the representation of primes by quadratic
forms of discriminant −144 is governed by the coefficients of the modular form
η2(z). The representation of primes by quadratic forms x2+Ny2 is studied in
the monograph [27] and in several papers, for example [56], [58], [66]. More
results on this topic will be given in Corollaries 10.3, 11.2, 11.10, 12.2, 12.5,
12.7, (12.16), and in a remark after Example 12.10. At the end of Sect. 9.2
we will prove that

a2(p) =
{

2
−2 if p = x2 + 4xy + 16y2 with y > 0, x ≡

{
1

−1 mod 4.

(9.4)

The criterion (9.3) can be read off from Fig. 9.1 which displays the values
of χν and ψν within period meshes of these characters; here dots stand for
positions with character value 0.
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Figure 9.1: Values of the characters χν and ψν in period meshes

The theta series of weight k for χν and ψν are not identically 0 for k ≡ 1 mod 4
and k ≡ 1 mod 6, respectively. We have seen that for weight k = 1 both values
of the sign ν yield the same theta series. The reason is that χν(μ)+χν(μ) = 0
for μ ∈ O1, μμ ≡ 5 mod 8 and ψν(μ) + ψν(μ) = 0 for μ ∈ O3, μμ ≡ 7 mod 12.
We will meet many more examples for this phenomenon—the next one in
Example 10.5. For k > 1 different signs ν yield different modular forms.
They are identified with linear combinations of Eisenstein series and powers
of η(z):

Example 9.2 The theta series for the characters χν and ψν in Example 9.1
satisfy

Θ5

(
χν ,

z

12

)
= E4(z)η2(z) − 48νη10(z), (9.5)

Θ9

(
χν ,

z

12

)
= E2

4(z)η2(z) + 672νE4(z)η10(z), (9.6)

Θ13

(
χν ,

z

12

)
= E3

4(z)η2(z) − 20592νE2
4(z)η10(z) − 6912000η26(z), (9.7)

Θ7

(
ψν ,

z

12

)
= E6(z)η2(z) + 360

√
−3νη14(z), (9.8)

Θ13

(
ψν ,

z

12

)
= E2

6(z)η2(z) − 102960
√

−3νE6(z)η14(z) + 9398592η26(z).

(9.9)

All these identities (or equivalent versions) are known from Serre [129]. The
identities (9.5) and (9.8) were found by van Lint [89]. As a consequence,
these authors obtain the lacunarity of certain powers of η(z): From (9.5) and
(9.8) it follows that

η10(z) = − 1
96

(
Θ5

(
χ1,

z

12

)
− Θ5

(
χ−1,

z

12

))
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and
η14(z) =

1
720

√
−3

(
Θ7

(
ψ1,

z

12

)
− Θ7

(
ψ−1,

z

12

))

are linear combinations of Hecke theta series, and hence are lacunary. In the
same way, (9.7) and (9.9) show that E3

4η2−6912000η26 and E2
6η2+9398592η26

are linear combinations of two Hecke theta series. Since E3
4 − E2

6 = 1728η24,
it follows that η26(z) is a linear combination of four Hecke theta series, and
hence is lacunary.

9.2 Weights k = 2 and k ≡ 2 mod 6

The expansion of η4(z) can be written as

η4(z) =
∑

n≡1 mod 6

a4(n)e
(nz

6

)

with

a4(n) =
∑

j,l>0, j+l=2n

a2(j)a2(l) =
∑

x,y>0, x2+3y2=4n

(
12
x

)(
−1
y

)
y.

The second expression for a4(n) comes from Euler’s and Jacobi’s formulae
for η(z) and η3(z). Theorem 5.1 together with certain non-vanishing values
of a4(n) implies that D = −3 is the only conceivable discriminant for a theta
series representation of η4(z). Such a representation exists indeed:

Example 9.3 The group (O3/(2 + 2ω))× � Z6 is generated by the residue
of ω modulo 2+2ω. A character ψ on O3 with period 2(1+ω) is fixed by the
value

ψ(ω) = ω.

The corresponding theta series are not identically 0 for weights k ≡ 2 mod 6
and satisfy

Θ2

(
ψ,

z

6

)
= η4(z), (9.10)

Θ8

(
ψ,

z

6

)
= E6(z)η4(z), (9.11)

Θ14

(
ψ,

z

6

)
= E2

6(z)η4(z) + 616896η28(z), (9.12)

Θ20

(
ψ,

z

6

)
= E3

6(z)η4(z) − 116375616E6(z)η28(z). (9.13)

The identity (9.10) is equivalent to identities given by Mordell [97] and Pe-
tersson [111], and Mordell dates it back to Klein and Fricke. We draw some
consequences for the coefficients a4(p) of η4(z) at primes p ≡ 1 mod 6. From
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Sect. 5.3 it is clear that the coefficients are multiplicative and satisfy the
recursion

a4(pr+1) = a4(p)a4(pr) − pa4(pr−1)

for all primes p > 3. Another identity involving η4(z) and the character ψ
will appear in Example 15.14.

Corollary 9.4 For primes p ≡ 1 mod 6 the coefficients a4(p) of η4(z) have
the following properties:

(1) We have
a4(p) ≡ 2 mod 6,

whence a4(p) ≥ 2 or a4(p) ≤ −4.
(2) We have

|a4(p)| ≤ 2
√

p − 3

with equality if and only if p = 4x2 + 3 for some x ∈ Z.
(3) We have

a4(p) =
{

2
−4 if and only if p =

{
3v2 + 1
3v2 + 4

for some v ∈ Z.
(4) Every odd prime divisor q of a4(p) satisfies

(
3p
q

)
= 1.

Proof. Let p ≡ 1 mod 6 be given. Since p is split in the factorial ring O3, we
have

p = μμ = x2 + xy + y2

where μ = x + yω ∈ O3 is unique up to associates and conjugates, which
are ±μ = ±(x + yω), ±ωμ = ±(−y + (x + y)ω), ±ω2μ = ±(−(x + y) + xω),
±ω = ±((x+y)−yω), ±ωμ = ±(y+xω), ±ω2μ = ±(−x+(x+y)ω). We have
x �≡ y mod 3 since otherwise p would be a multiple of 3. If εμ ≡ μmod 2+2ω
for some unit ε ∈ O ×

3 then since μ and 2 + 2ω are relatively prime, it follows
that ε = 1. Therefore exactly one of the six associates of μ is congruent to 1
modulo 2 + 2ω, and therefore we may assume that

μ = x + yω ≡ 1 mod 2 + 2ω.

This implies that y is even, x is odd and x − 1 ≡ y mod 3. (We use that 2
is prime in O3 and that an element a + bω ∈ O3 is a multiple of the prime
element 1 + ω if and only if a ≡ b mod 3.) We can interchange μ and μ, if
necessary, and assume that y > 0. Thus we get a unique μ satisfying

y > 0, y even, x odd, x ≡ y + 1 mod 3.
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Then we have ψ(μ) = ψ(μ) = 1, and from

η4(6z) = Θ2(ψ, z) =
1
6

∑

μ∈O3

ψ(μ)μe(μμz)

we obtain
a4(p) = μ + μ = 2x + y.

Thus a4(p) is even and a4(p) ≡ 3y + 2 ≡ 2 mod 3, hence a4(p) ≡ 2 mod 6. In
particular, a4(p) cannot take the values −3, −2, . . . , 1. This proves part (1).

Since |μ| =
√

p we can write

μ =
√

peiα, a4(p) = μ + μ = 2
√

p cosα

with 0 ≤ α < 2π. The absolute value of the cosine is maximal if α is as close
to 0, π or 2π as possible. This means that |y| is as small as possible. Since
y = 2 is the smallest possible value, we get the largest values of a4(p) for
μ = x + 2ω, and then we have

p = x2 + 2x + 4 = (x + 1)2 + 3, a4(p) = 2(x + 1) = 2
√

p − 3.

This proves (2).

From 4p = (2x + y)2 + 3y2 = a4(p)2 + 3y2 we obtain p =
(

1
2a4(p)

)2 + 3v2

with v = 1
2y ∈ N. Inserting the values 2 and −4 for a4(p) yields the assertion

(3).—We note that there are similar criteria for any value of a4(p).

Let q be an odd prime divisor of a4(p) = 2x+ y. Then y ≡ −2xmod q, hence

p = x2 + xy + y2 ≡ (1 − 2 + 4)x2 ≡ 3x2 mod q

and 3p ≡ (3x)2 mod q. Thus 3p is a square modulo q, which proves (4). �

We illustrate the results in Table 9.1, presenting values of a4(p) and μ =
x + yω for small primes p. An asterisk ∗ or a cross # at p indicate that
|a4(p)| = 2

√
p − 3 or a4(p) ∈ {2, −4}, respectively.

With the proof of Corollary 9.4 at hand, it is easy now to prove the criterion
(9.4):

Proof of (9.4). Let a prime p ≡ 1 mod 12 be given. As in the proof of
Corollary 9.4, we write p uniquely in the form p = μμ with

μ = x + yω, y > 0, y even, x odd, x ≡ y + 1 mod 3.

We have y ≡ 0 mod 4 because of p ≡ 1 mod 4. We put y = 4v and obtain
p = x2 + xy + y2 = 1

4 ((2x + y)2 + 3y2) = (x + 2v)2 + 12v2, hence

p = x2 + 4xv + 16v2.



9.3. Weights k = 3 and k ≡ 3 mod 4 125

Table 9.1: Coefficients of η4(z) at primes p

p a4(p) μ p a4(p) μ p a4(p) μ
7∗,# −4 −3 + 2ω 127 20 7 + 6ω 277 26 7 + 12ω

13# 2 −1 + 4ω 139 −16 −13 + 10ω 283 32 13 + 6ω
19∗ 8 3 + 2ω 151# −4 −9 + 14ω 307 −16 −17 + 18ω
31# −4 −5 + 6ω 157 14 1 + 12ω 313 −22 −19 + 16ω
37 −10 −7 + 4ω 163 8 −3 + 14ω 331 32 11 + 10ω
43 8 1 + 6ω 181 26 11 + 4ω 337 −34 −21 + 8ω
61 14 5 + 4ω 193# 2 −7 + 16ω 349 14 −3 + 20ω
67∗ −16 −9 + 2ω 199∗ −28 −15 + 2ω 367# −4 −13 + 22ω
73 −10 −9 + 8ω 211 −16 −15 + 14ω 373 38 17 + 4ω
79# −4 −7 + 10ω 223 −28 −17 + 6ω 379 8 −7 + 22ω
97 14 3 + 8ω 229 −22 −17 + 12ω 397 −34 −23 + 12ω

103∗ 20 9 + 2ω 241 14 −1 + 16ω 409 38 15 + 8ω
109# 2 −5 + 12ω 271 −28 −19 + 10ω 421 −22 −21 + 20ω

From (9.2) and the definition of the characters ψν we conclude that a2(p) = 2
if and only if ψν(μ) = 1, which holds if and only if μ ≡ 1 mod 4(1 + ω). This
in turn is equivalent with x ≡ 1 mod 4. Writing y instead of v we obtain
(9.4). �

9.3 Weights k = 3 and k ≡ 3 mod 4

From Jacobi’s identity (8.15) we obtain

η6(z) =
∑

n≡1 mod 4

a6(n)e
(nz

4

)
with a6(n) =

∑

x,y>0,x2+y2=2n

(
−1
xy

)
xy.

(9.14)
A theta series representation exists for the discriminant −4 only:

Example 9.5 A character χ on the Gaussian number ring O1 with period 2
is defined by the Legendre symbol

χ(x + iy) =
(

−1
x2 − y2

)

for x �≡ y mod 2. The corresponding theta series are not identically 0 for
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weights k ≡ 3 mod 4. They satisfy the identities

Θ3

(
χ,

z

4

)
= η6(z), (9.15)

Θ7

(
χ,

z

4

)
= E4(z)η6(z), (9.16)

Θ11

(
χ,

z

4

)
= E2

4(z)η6(z), (9.17)

Θ15

(
χ,

z

4

)
= E3

4(z)η6(z) − 153600η30(z), (9.18)

Θ19

(
χ,

z

4

)
= E4

4(z)η6(z) + 1843200E4(z)η30(z), (9.19)

Θ23

(
χ,

z

4

)
= E5

4(z)η6(z) + 69734400E2
4(z)η30(z). (9.20)

As with (9.10), an equivalent version of (9.15) has been known since Mordell
[97].—We get consequences similar to those in Corollary 9.4:

Corollary 9.6 The coefficients a6(p) of η6(z) at primes p ≡ 1 mod 4 have
the following properties:

(1) We have a6(p) ≡ 2pmod 16, a6(p) ≡ 2 mod 8 and

−2p + 4 ≤ a6(p) ≤ 2p − 16.

(2) We have a6(p) ≥ 10 or a6(p) ≤ −6, and we have

|a6(p)| ≥ 2
√

2p − 1

with equality if and only if p = 2x2 + 2x + 1 for some x ∈ N.
(3) If q is an odd prime divisor of a6(p) then

(
p

q

)
=
(

2
q

)
= (−1)(q

2−1)/8.

If
(

p
3

)
= −1, i.e., if p ≡ 5 mod 12, then 3 divides a6(p). If

(
p
5

)
= −1

then 5 divides a6(p).
(4) Every prime divisor q of a6(p) satisfies q ≤

√
2p − 1. If q =

√
2p − 1 >

0 is an integer then |a6(p)| = 2q.

Proof. Let p ≡ 1 mod 4 be a prime. Then p is split in O1, and we have
p = μμ = x2 + y2 for a unique element

μ = x + iy ∈ O1 with y > 0, y even, x > 0, x odd.

Then χ(μ) = χ(μ) = 1, and (9.15) implies

a6(p) = μ2 + μ2 = 2(x2 − y2) = 2p − 4y2 = 4x2 − 2p.
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Since y is even and p ≡ 1 mod 4, this implies the congruences in (1), and from
4y2 ≥ 16, 4x2 ≥ 4 we get the inequalities in (1).

The smallest values of |a6(p)| = 2|x2 − y2| are attained when x = y + δ,
δ ∈ {1, −1}. In this case, p = 2y2 + 2δy + 1 = 2

((
y + 1

2δ
)2 + 1

4

)
and

a6(p) = 2(y + δ)2 − 2y2 = 2δ(2y + δ). Since we assume that y is positive and
even, we get a6(p) ≥ 10 if δ = 1 and a6(p) ≤ −6 if δ = −1. Moreover, for the
minimal absolute value of a6(p) we get

|a6(p)| = 4
(
y + 1

2δ
)

= 4
√

p
2 − 1

4 = 2
√

2p − 1.

Thus we obtain |a6(p)| ≥ 2
√

2p − 1 with equality if and only if p = 2y2 ±2y+1
for some positive even y. The case of the minus sign is reduced to the plus
sign since 2y2 − 2y + 1 = 2(y − 1)2 + 2(y − 1) + 1, and we can replace y by
x = y − 1. Thus we have proved (2).

Let q be an odd prime divisor of a6(p). Then we get 2p = 2x2 + 2y2 =
a6(p) + 4y2 ≡ (2y)2 mod q. This implies

(
2p
q

)
= 1, hence

(
p
q

)
=
(

2
q

)
. For the

primes q ∈ {3, 5} we can prove the converse of this criterion:

We suppose that
(

p
3

)
= −1. Then 3 � x and 3 � y, since otherwise p = x2 + y2

would be a square modulo 3. It follows that 3|(x − y) or 3|(x+ y), and hence
a6(p) = 2(x2 − y2) is a multiple of 3. Now we suppose that

(
p
5

)
= −1. Then

5 � x, 5 � y, x �≡ 2y mod 5 and x �≡ 3y mod 5, since otherwise p would be a
square modulo 5. It follows that x ≡ y mod 5 or x ≡ −y mod 5, and hence
a6(p) is a multiple of 5. We have proved (3).

Clearly q = 2 satisfies the inequality in (4). So we assume that q is an odd
prime divisor of a6(p) = 2(x − y)(x + y). Then q divides one of the factors.
From x > 0, y > 0 we obtain

q ≤ x + y =
√

x2 + 2xy + y2 ≤
√

2x2 + 2y2 − 1 =
√

2p − 1.

Now we suppose that 2p = q2 + 1 for some integer q > 0. Then

p = 1
2 (q2 + 1) =

(
1
2 (q + 1)

)2 +
(

1
2 (q − 1)

)2
,

hence x = 1
2 (q − 1), y = 1

2 (q + 1) or vice versa, according to the residue of q
modulo 4. It follows that

|a6(p)| = 2(x + y)|x − y| = 2q.

This proves (4). More precisely, from (1) we get a6(p) = 2q for q ≡ 1 mod 4
and a6(p) = −2q for q ≡ −1 mod 4. �

The list of primes p of the form p = 1
2 (q2 + 1) with q ≤ 101 is

5, 13, 41, 61, 113, 181, 313, 421, 613, 761, 1013, 1201, 1301, 1741, 1861,

2113, 2381, 2521, 3121, 3613, 4513, 5101.
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9.4 Weights k = 4 and k ≡ 1 mod 3

For the coefficients a8(n) in

η8(z) =
∑

n≡1 mod 3

a8(n)e
(nz

3

)

there is no such formula as in (9.1), etc., coming from the multiplication of
two simple theta series of half-integral weights. But there is a representation
as a Hecke theta series. The only conceivable discriminant is D = −3:

Example 9.7 A character ψ on O3 with period 1 + ω is defined by the Leg-
endre symbol

ψ(x + yω) =
(

x − y

3

)
.

The corresponding theta series are not identically 0 for weights k ≡ 4 mod 6.
They satisfy the identities

Θ4

(
ψ,

z

3

)
= η8(z), (9.21)

Θ10

(
ψ,

z

3

)
= E6(z)η8(z), (9.22)

Θ16

(
ψ,

z

3

)
= E2

6(z)η8(z) − 31752η32(z), (9.23)

Θ22

(
ψ,

z

3

)
= E3

6(z)η8(z) − 2095632E6(z)η32(z). (9.24)

As with (9.10) and (9.15), an equivalent version of (9.21) was known to
Mordell [97]. Again, we list some arithmetical consequences for the coeffi-
cients of η8(z):

Corollary 9.8 The coefficients a8(p) of η8(z) at primes p ≡ 1 mod 6 have
the following properties:

(1) We have a8(p) ≡ 2 mod 18.

(2) We have a8(p) ≥ 3p − 1 or a8(p) ≤ −(6p − 8), with equality if and only
if p = 3y2 + 3y + 1 or p = 3y2 + 6y + 4 with some y ∈ N, respectively.

(3) We have
|a8(p)| ≤ (p − 3)

√
4p − 3

with equality if and only if p = x2 + x + 1 for some x ∈ N.
(4) If q is an odd prime divisor of a8(p) then

(
3p
q

)
= 1. If

(
p
5

)
= −1 then

5 divides a8(p). If
(

p
7

)
= −1 then 7 divides a8(p).

(5) Every prime divisor q of a8(p) satisfies q ≤
√

4p − 3. If p = x2 + x + 1
for some integer x then a8(p) is a multiple of the positive integer q =√

4p − 3.
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Proof. Let p ≡ 1 mod 6 be a prime. Then p = μμ = x2 + xy + y2 for some
μ = x + yω ∈ O3 which is unique up to associates and conjugates. We have
x �≡ y mod 3, and from (9.21) we obtain

a8(p) = ψ(μ)
(
μ3 + μ3

)
= ψ(μ)(μ + μ)(ωμ + ωμ)(ωμ + ωμ)

=
(

x − y

3

)
(2x + y)(x − y)(x + 2y).

At least one of the factors on the right is even, and hence a8(p) is even. By
an appropriate choice of μ we achieve that y = 3v is a multiple of 3. Then

a8(p) =
(x

3

)
(2x + 3v)(x − 3v)(x + 6v) ≡ 2x3

(x

3

)
≡ 2 mod 9.

Thus we have proved (1).

For estimates of |a8(p)| we choose μ such that 0 < y < x. This means that

μ =
√

peiα with 0 < α <
π

6
,

and clearly this choice is possible. Then all factors 2x + y, x − y, x + 2y in
a8(p) are positive, with x − y the smallest among them. Moreover, we get

|a8(p)| = 2p
√

p cos(3α).

Extremal values of |a8(p)p−3/2| are attained when α is close to π
6 or 0, or,

equivalently, when y is close to x or to 0. For x = y + 1 we get

p = 3y2 + 3y + 1, a8(p) = (3y + 1)(3y + 2) = 3p − 1;

for x = y + 2 we get

p = 3y2 + 6y + 4, a8(p) = −2(3y + 4)(3y + 2) = −6p + 8.

This proves the lower estimates for |a8(p)| in (2) and the criteria for values
closest to 0.

For y = 1 we obtain p = x2 + x + 1 and

a8(p) =
(

x−1
3

)
(2x + 1)(x − 1)(x + 2) =

(
x−1

3

)
(x2 + x − 2)(2x + 1)

=
(

x−1
3

)
(p − 3)

√
4p − 3.

This implies the upper estimate for |a8(p)| and the criterion for maximal
values in (3).

Let q be an odd prime divisor of a8(p). Then one of the factors 2x+y, x − y,
x + 2y is a multiple of q, which implies that p = x2 + xy + y2 ≡ 3x2 mod q or
p ≡ 3y2 mod q. Hence 3p is a square modulo q, i.e.,

(
3p
q

)
= 1. For q ∈ {5, 7}

the converse of this criterion holds:
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Table 9.2: Coefficients of η8(z) at primes p

p μ a8(p) p μ a8(p) p μ a8(p)

7∗,# 2 + ω 20 127# 7 + 6ω 380 277 12 +7ω −4030 = −2·5·13·31

13∗,# 3 + ω −70 139 10 +3ω 2576 283 13 +6ω 5600 =25 · 52 · 7

19# 3 + 2ω 56 151 9 +5ω 1748 307∗ 17 + ω 10640 =24 · 5 · 7 · 19
31∗ 5 + ω 308 157∗ 12 + ω −3850 313 16 +3ω 10010 =2·5·7·11·13

37# 4 + 3ω 110 163 11 +3ω −3400 331# 11 +10ω 992 =25 · 31
43∗ 6 + ω −520 181 11 +4ω 3458 337 13 +8ω −4930 = −2·5·17·29

61# 5 + 4ω 182 193# 9 + 7ω −1150 349 17 +3ω −11914 = −2·7·23·37
67 7 + 2ω −880 199 13 +2ω −5236 367 13 +9ω 4340 =22 · 5 · 7 · 31
73∗ 8 + ω 1190 211∗ 14 + ω 6032 373 17 +4ω 12350 =2 · 52 · 13 · 19
79 7 + 3ω 884 223 11 +6ω −3220 379 15 +7ω −8584 = − 23 · 29 · 37

97 8 + 3ω −1330 229 12 +5ω 4466 397# 12 +11ω 1190 =2 · 5 · 7 · 17
103 9 + 2ω 1820 241∗ 15 + ω −7378 409 15 +8ω 8246 =2 · 7 · 19 · 31

109# 7 + 5ω −646 271# 10 +9ω 812 421∗ 20 + ω 17138 =2 · 11 · 19 · 41

We suppose that
(

3p
5

)
= 1 or, equivalently, that

(
p
5

)
= −1. Then 5 � x, 5 � y

and 5 � (x − 4y), since otherwise p = x2+xy+y2 would be a square modulo 5.
(Observe that 0 is a square modulo 5, too.) Therefore x ≡ y or x ≡ 2y or
x ≡ 3y modulo 5. Consequently, one of the factors 2x + y, x − y, x + 2y in
a8(p) is a multiple of 5, and we get 5|a8(p). Now we suppose that

(
p
7

)
= −1.

As before we conclude that 7 � x, 7 � y, 7 � (x − 2y), 7 � (x − 4y), 7 � (x + y).
Therefore x ≡ y or x ≡ 3y or x ≡ 5y modulo 7. Hence one of the factors in
a8(p) is a multiple of 7, and we get 7|a8(p). Thus we have proved (4).

Clearly the prime 2 satisfies the estimate in (5). Let q be an odd prime
divisor of a8(p). As before, we choose μ such that 0 < y < x. Then 2x + y is
the biggest of the three positive factors in a8(p). Therefore,

q ≤ 2x + y =
√

4x2 + 4x + y2 =
√

4p − 3y2 ≤
√

4p − 3.

Now we suppose that p = x2+x+1 for some integer x. Then 4p = (2x+1)2+3,
hence q =

√
4p − 3 = |2x + y| is a positive integer (not necessarily a prime)

and a divisor of a8(p). Thus we have proved (5). �

We illustrate the results in Table 9.2 similar to that in Sect. 9.2. Here,
an asterisk ∗ or a cross # at p indicate that |a8(p)| = (p − 3)

√
4p − 3 and√

4p − 3 ∈ N or that a8(p) ∈ {3p − 1, −6p + 8}, respectively.
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9.5 Weights k ≡ 0 mod 6

The 12-th power η12(z) is a Hecke eigenform. But it has no expansion as a
Hecke theta series, since otherwise the coefficients in

η12(z) =
∑

n≡1 mod 2

a12(n)e
(nz

2

)

would vanish at all primes in certain arithmetical progressions, which is not
the case. Schoeneberg [122] proved that if a12(n) = 0 for some odd n then
the smallest such n is a prime p and satisfies p ≡ −1 mod 28. Moreover,
a12(n) ≡ σ5(n) mod 28 for all n.—The modular form E4(z)η4(z) of weight 6
is a Hecke theta series:

Example 9.9 Let ψ be the conjugate of the character ψ on O3 in Exam-
ple 9.3, having period 2(1 + ω) and satisfying ψ(ω) = ω. The corresponding
theta series are not identically 0 for weights k ≡ 0 mod 6 and satisfy the
identities

Θ6

(
ψ,

z

6

)
= E4(z)η4(z), (9.25)

Θ12

(
ψ,

z

6

)
= E4(z)E6(z)η4(z), (9.26)

Θ18

(
ψ,

z

6

)
= E4(z)E2

6(z)η4(z) − 27687744E4(z)η28(z), (9.27)

Θ24

(
ψ,

z

6

)
= E4(z)E3

6(z)η4(z) + 7950446784E4(z)E6(z)η28(z). (9.28)

Remark. Let us write

E4(z)η4(z) =
∑

n≡1 mod 6

c(n)e
(nz

6

)
.

The expansions of E4 and η4 yield

c(n) = a4(n) + 240
∑

j,l>0,6j+l=n

σ3(j)a4(l),

and hence we have c(n) ≡ a4(n) mod 240 for all n > 0. Let p ≡ 1 mod 6 be
prime. Then p = μμ where we can choose μ ∈ O3 uniquely as in the proof of
Corollary 9.4, which implies that ψ(μ) = ψ(μ) = 1. Therefore, from (9.25)
we obtain

c(p) = μ5 + μ5 = (μ + μ)(μ4 − μ3μ + μ2μ2 − μμ3 + μ4)
= a4(p)(μ4 − μ3μ + μ2μ2 − μμ3 + μ4).

Thus c(p) is a multiple of a4(p).
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For a real number λ > 0 the Hecke group G(λ) is defined to be the subgroup
of SL2(R) which is generated by Tλ =

(
1 λ
0 1

)
and S =

(
0 1

−1 0

)
. We

mention the Hecke groups not because of Hecke’s pioneering research [54],
but merely since three of them are conjugate to Fricke groups: Besides the
modular group G(1) = Γ1 itself, we have

MG(
√

N)M −1 = Γ∗(N) with M =
(

1 0
0

√
N

)
for N ∈ {2, 3, 4}.

The Hecke group G(2) is also called the theta group since Jacobi’s θ(z) is
a modular form for G(2). Several of the results in Sects. 10, 11 and 13 are
transcriptions of earlier research [74], [75], [76] on theta series on these three
Hecke groups.

10.1 Weight 1 and Other Odd Weights for the Fricke
Group Γ∗(2)

For Γ0(2) and weight k = 1 there are 5 holomorphic eta products,

[1, 2],
[
13, 2−1

]
,
[
1−1, 23

]
,
[
14, 2−2

]
,
[
1−2, 24

]
.

The second and third are cuspidal with denominator 24, the last two are non-
cuspidal, and only the first one belongs to the Fricke group Γ∗(2). A small
list of coefficients in the expansion

η(z)η(2z) =
∑

n≡1 mod 8

b1(n)e
(

nz
8

)
, b1(n) =

∑

x,y>0, x2+2y2=3n

(
12
xy

)

(10.1)
suggests that this function might be identical with Hecke theta series for
the discriminants D = −4 and D = −8. This is true, indeed, as shown in
the following result. The identity for D = −8 is contained in [31]. Both

G. Köhler, Eta Products and Theta Series Identities,
Springer Monographs in Mathematics,
DOI 10.1007/978-3-642-16152-0 10, c© Springer-Verlag Berlin Heidelberg 2011
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these identities for η(z)η(2z) and their implications for the splitting of the
polynomial X4 − 2 over the prime fields Fp were studied by C. Moreno [98].
(See Corollary 11.3 for similar results on X3 − 2.) Moreover, from [56] we
know that this function is also a theta series on the real quadratic field Q(

√
2).

Example 10.1 The residues of 1+2i, 3 and i modulo 4(1+ i) can be chosen
as generators of the group (O1/(4+4i))× � Z2 ×Z2 ×Z4. A pair of characters
χν on O1 with period 4(1 + i) is fixed by the values

χν(1 + 2i) = ν, χν(3) = −1, χν(i) = 1,

ν ∈ {1, −1}, on the generators. The residues of 1 +
√

−2 and −1 modulo 4
can be chosen as generators of the group (O2/(4))× � Z4 × Z2. A pair of
characters ψν on O2 with period 4 is fixed by the values

ψν(1 +
√

−2) = νi, χν(−1) = 1,

ν ∈ {1, −1}, on the generators. The residues of 1 +
√

2 and −1 modulo 4
generate the group (Z[

√
2]/(4))× � Z4 × Z2. A Hecke character ξ on Z[

√
2]

with period 4 is fixed by the values

ξ(μ) =
{

sgn(μ)
−sgn(μ) for μ ≡

{
1 +

√
2

−1
mod 4.

The corresponding theta series of weight 1 satisfy the identities

Θ1

(
8, ξ, z

8

)
= Θ1

(
−4, χν , z

8

)
= Θ1

(
−8, ψν , z

8

)
= η(z)η(2z). (10.2)

In Examples 15.28 and 15.30 these theta series of weight 1 will be written
in two different ways as linear combinations of non-cuspidal eta products.—
Now we list identities for theta series of some higher weights. They involve
the Eisenstein series Ek,N,δ(z) which were defined in Proposition 1.8.

Example 10.2 Let η2(z) = η(z)η(2z). The Hecke theta series for the char-
acters χν and ψν on O1 and O2 in Example 10.1 are not identically 0 for
weights k ≡ 1 mod 4 and k ≡ 1 mod 2, respectively. They satisfy the identities

Θ5

(
χν , z

8

)
= E4,2,−1(z)η2(z) − 48νiη5

2(z), (10.3)

Θ9

(
χν , z

8

)
=

(
E2

4,2,1(z) − 6656η8
2(z)

)
η2(z) + 672νiE4,2,−1(z)η5

2(z),
(10.4)

Θ13

(
χν , z

8

)
=

(
E2

4,2,1(z) − 531456η8
2(z)

)
E4,2,−1(z)η2(z)

+ 1584νi
(
13E2

4,2,1(z) + 3072η8
2(z)

)
η5
2(z), (10.5)

Θ3

(
ψν , z

8

)
= E2,2,−1(z)η2(z) − 4ν

√
2η3

2(z), (10.6)

Θ5

(
ψν , z

8

)
= E4,2,1(z)η2(z) + 8ν

√
2E2,2,−1(z)η3

2(z), (10.7)

Θ7

(
ψν , z

8

)
= E3

2,2,−1(z)η2(z) + 20ν
√

2E2
2,2,−1(z)η3

2(z), (10.8)

Θ9

(
ψν , z

8

)
=

(
E2

4,2,1(z) + 18432η8
2(z)

)
η2(z) − 112ν

√
2E3

2,2,−1(z)η3
2(z).
(10.9)
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The identities (10.4) and (10.9) imply that η9
2(z) = η9(z)η9(2z) is a linear

combination of four Hecke theta series. Therefore its Fourier expansion is
lacunary. This is one of the examples in Gordon and Robins [43] where all
lacunary eta products of the form ηa(z)ηb(2z) are determined. Among them,
η9
2(z) is the only one with weight k > 5.

The characters ψν satisfy ψν(μ) + ψν(μ) = 0 if μμ ≡ 3 mod 8, while

ψν(x + y
√

−2) =
{

1
−1 if x is odd and y ≡

{
0
2 mod 4.

We note that μμ = x2+8v2 for μ = x+y
√

−2 with even y = 2v. Therefore, for
primes p ≡ 1 mod 8 the coefficients in η(z)η(2z) are b1(p) = 2 or b1(p) = −2
if p is or is not represented by the quadratic form x2 + 32y2. The relation
with Θ1(χν , ·) tells us that b1(p) = 2 if and only if p = μμ for some μ ≡
1 mod 4(1 + i) in O1. We collect this result and some consequences from
(10.3) and (10.6):

Corollary 10.3 Let b1(n) be the coefficients of η(z)η(2z) in (10.1), and de-
fine b3(n), b5(n) by the expansions

E2,2,−1(z)η2(z) =
∑

n≡1 mod 8

b3(n)e
(

nz
8

)
,

E4,2,−1(z)η2(z) =
∑

n≡1 mod 8

b5(n)e
(

nz
8

)

with η2(z) = η(z)η(2z). Then for primes p ≡ 1 mod 8 the following state-
ments hold :

(1) We have b1(p) = 2 if and only if p is represented by the quadratic form
x2 + 32y2, and b1(p) = −2 otherwise.

(2) We have b1(p) = 2 if and only if p = μμ for some μ = x + yi ≡
1 mod 4(1 + i) in O1.

(3) We have

b3(p) ≡
{

2
−2 mod 48,

b3(p) ≡
{

2p mod 128
−2p + 32 mod 256 if b1(p) =

{
2,

−2.

(4) If p is represented by the quadratic form x2 +32y2 then we have −2p+
4 ≤ b3(p) ≤ 2p − 128; here the value b3(p) = −2p + 4 is attained if and
only if p = 288v2 + 1, and b3(p) = 2p − 128 if and only if p = 9u2 + 32
for some u, v ∈ N. If p is not represented by x2 + 32y2 then we have
−2p + 32 ≤ b3(p) ≤ 2p − 4, where b3(p) = −2p + 32 if and only if
p = 9u2 + 8, and b3(p) = 2p − 4 if and only if p = 72v2 + 1 for some
odd u, v ∈ N.
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(5) The values b3(p) = ±2 are attained if and only if p = 16y2+1 = 2x2 − 1
and x, y are positive solutions of Pell’s equation x2 − 8y2 = 1.

(6) Every odd prime divisor q of b3(p) satisfies
(

p
q

)
=
(

2
q

)
= 1.

(7) We have

b5(p) ≡
{

2
−2 mod 160 if b1(p) =

{
2,

−2.

(8) Every odd prime divisor q of b5(p) satisfies q <
√

2p and
(

2
q

)
= 1.

(9) We have 2
√

2p2 − 1 ≤ |b5(p)| ≤ 2(p2 − 4p + 2).

Proof. The assertions (1) and (2) have already been proved. We observe
that the Fourier expansions of Θk(χν , z) and Θk(ψν , z) each split into two
components with summation on n ≡ 1 mod 8, n ≡ 5 mod 8, respectively
on n ≡ 1 mod 8, n ≡ 3 mod 8, and moreover, that E4,−1(2, z)η2(z) and
E2,−1(2, z)η2(z) are the 1-components of Θ5(χν , z) and Θ3(ψν , z), respec-
tively. Therefore, if p ≡ 1 mod 8 is prime, we get

b5(p) = χν(μ)μ4 + χν(μ)μ4

where μ = x + yi ∈ O1 can be chosen such that x is odd and y > 0 is a
multiple of 4, and

b3(p) = ψν(μ)μ2 + ψν(μ)μ2

where μ = x+y
√

−2 ∈ O2 can uniquely be chosen such that x, y are positive.

We begin with b3(p). Since p ≡ 1 mod 8, y is even, and with 2y instead of y we
obtain p = μμ = x2+8y2, μ2 = x2 −8y2+4xy

√
−2, b1(p) = 2ψν(μ) = 2(−1)y

and

b3(p) = ψν(μ)
(
μ2 + μ2

)
= b1(p)

(
x2 − 8y2

)

= b1(p)(p − 16y2) = b1(p)(2x2 − p). (10.10)

Exactly one of the numbers x, y is a multiple of 3 since otherwise p would be
so. Thus x2 − 8y2 ≡ 1 mod 3, and therefore (10.10) together with (1) imply
the assertions in (3).

From (1) and (10.10) we know that

b3(p) =
{

2p − 32y2 = 4x2 − 2p
−2p + 32y2 = −4x2 + 2p

if p = x2 + 8y2 with
{

y even,
y odd.

With x = 1 we get the upper bound |b3(p)| ≤ 2p − 4, and then y = 6v or
y = 3v is a multiple of 3. With y = 2 or 1 we get the bounds b3(p) ≤ 2p − 128
and b3(p) ≥ −2p + 32, respectively, and then x = 3u is a multiple of 3. This
proves (4). We note that the smallest values of p for which the lower or upper
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bounds are attained are 288·22+1 = 1153, b3(1153) = −2302, 9·12+32 = 41,
b3(41) = −46, 9 · 12 + 8 = 17, b3(17) = −2, 72 · 12 + 1 = 73, b3(73) = 142.

We use (10.10) and |b1(p)| = 2. Inserting |b3(p)| = 2 yields the assertion (5).
We remark that there are infinitely many positive solutions xm, ym of x2 −
8y2 = 1, given by xm +2ym

√
2 = (3+2

√
2)m, and here ym is even if and only

if m is even. The only primes among the numbers pm = x2
m +8y2

m = 2x2
m − 1

for m ≤ 20 are p1 = 17, p2 = 577, p4 = 665857.

Let q be an odd prime divisor of b3(p). Then from (10.10) and |b1(p)| = 2 we
get q|(p − 16y2), q|(2x2 − p), hence p ≡ (4y)2 mod q and 2p ≡ (2y)2 mod q.
This proves (6).

Now we consider b5(p) for primes p ≡ 1 mod 8. Then p = μμ = x2 + 16y2

where μ = x + 4yi ∈ O1 is uniquely determined by the requirements y > 0,
x = 1 + 4u ≡ 1 mod 4. We obtain

b5(p) = χν(μ)
(
μ4 + μ4

)
= 1

2b1(p)
(
μ4 + μ4

)
, b1(p) = 2χν(μ) = 2(−1)u−y.

Since μ ≡ 1 mod 4, we get μ4 ≡ 1 mod 16 and μ4 + μ4 ≡ 2 mod 32. Since μ
is relatively prime to the prime elements 2 ± i with norm 5, Fermat’s Little
Theorem yields μ4 ≡ μ4 ≡ 1 mod 5. Thus μ4 + μ4 ≡ 2 mod 160, and we have
proved (7).

The decomposition

μ4 + μ4 = (μ2 + iμ2)(μ2 − iμ2)

and w + iw = (1 + i)(a + b), w − w = (1 − i)(a − b) for w + a + bi yield

b5(p) = χν(μ)
(
μ4 + μ4

)
= 2

(
(x + 4y)2 − 32y2

) (
(x − 4y)2 − 32y2

)
.

(10.11)
Each of the factors in parenthesis on the right hand side is estimated by
|(x ± 4y)2 − 32y2| = 1√

2
|μ2 ± μ2| ≤

√
2|μ|2 =

√
2p. It is easy to see that

both factors are odd and relatively prime. Therefore, if q is an odd prime
divisor of b5(p), then q divides one of the factors and hence satisfies q <

√
2p.

Moreover, (10.11) shows that 32 is a square modulo q, and hence
(

2
q

)
= 1.

Thus we have proved (8). The estimate is illustrated by the prime divisor
q = 103 in b5(73) = −1442 where

√
2 · 73 < 103.3.

We write μ =
√

peit with −π < t < π. Then μ2 ± iμ2 = ±(1 ± i)
√

2p sin
(
2t ±

π
4

)
and

b5(p) = ±2
√

2p2 sin
(
2t + π

4

)
sin
(
2t − π

4

)
.

We get maximal values for |b5(p)/p2| when the sine factors are close to each
other, which means that t is close to 0, ± π

4 , ± π
2 , ± 3π

4 or ±π. An analysis
of the cases shows that the maximal value is attained when t is closest to
± π

4 , hence x = ±(1 + 4y), p = (1 + 4y)2 + (4y)2, and then (10.11) yields
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|b5(p)| = 2(p2 − 4p + 2). This proves the upper bound in (9). The bound is
attained for p = 41, 113, 313, 761, . . . .

Minimal values for |b5(p)/p2| are obtained when one of the factors in (10.11)
is 1. We may assume that (x + 4y)2 − 32y2 = 1. Then we compute b5(p)2 =
8p2 − 4, |b5(p)| = 2

√
2p2 − 1. This proves the lower bound in (9).—The

positive solutions Xm, Ym of Pell’s equation X2 − 32Y 2 = 1 are given by
Xm + 4Ym

√
2 = (17 + 12

√
2)m. The lower bound in (9) is attained when

pm = (Xm − 4Ym)2 + 16Y 2
m or p

′

m = (−Xm − 4Ym)2 + 16Y 2
m is a prime. The

only prime among these numbers for m ≤ 10 is p′
5 = 1746860020068409. �

Remark. It is possible to exhibit similar properties for the coefficients of
Θ3(ψν , z) and Θ5(χν , z) at primes p ≡ 3 mod 8 and p ≡ 5 mod 8, respectively,
and also for the coefficients of Θ5(ψν , z).—Concerning the examples for prop-
erty (5), it is not a mere accident that all the indices m for which pm is prime
are powers of 2. Indeed there is an analogue to the Fermat numbers 2m + 1.
The following result and corresponding examples are published in [81]:

Theorem 10.4 Let d be a positive integer and not a square. Let x1, y1 be the
fundamental solution of Pell’s equation x2 − dy2 = 1, such that all positive
solutions xm, ym are given by xm + ym

√
d = (x1 + y1

√
d)m. Put pm =

2x2
m − 1 = x2

m + dy2
m = 1 + 2dy2

m. Then pr |pm if m = rs and s is odd. If
pm is prime then m = 2a is a power of 2. The numbers Pa = p2a satisfy
Pa+1 = 2P 2

a − 1. Any two of them are relatively prime.

Proof. Let m = rs with r, s ∈ N, s odd, be given. We put α = x1 + y1

√
d,

A + B
√

d = αr, x + y
√

d = αm. Then we get A2 − dB2 = 1, x2 − dy2 = 1
and x + y

√
d = (A + B

√
d)s, hence

x = As +
(

s
2

)
As−2dB2 +

(
s
4

)
As−4(dB2)2 + . . . +

(
s

s−1

)
A(dB2)

s−1
2

= As +
(

s
2

)
As−2(A2 − 1) +

(
s
4

)
As−4(A2 − 1)2 + . . .

+
(

s
s−1

)
A(A2 − 1)

s−1
2 .

We have pr = 2A2 − 1, and for pm = 2x2 − 1 we obtain

pm = 2
(
As +

(
s
2

)
As−2(A2 − 1) +

(
s
4

)
As−4(A2 − 1)2

+ . . . +
(

s
s−1

)
A(A2 − 1)

s−1
2
)2 − 1.

Since A2 − 1 ≡ −A2 mod pr it follows that

pm ≡ 2A2s
(
1 −

(
s
2

)
+
(

s
4

)
− + . . . + (−1)

s−1
2
(

s
s−1

))2 − 1

= A2s · 1
2 ((1 + i)s + (1 − i)s)2 − 1

= (
√

2)2sA2s · 1
2

(
e
(

s
8

)
+ e
(

− s
8

))2 − 1

= (2A2)s − 1
≡ 0 mod pr.



10.2. Weight 1 for Γ0(2) 139

This proves the first claim. The second one follows immediately.

We put Xa = x2a , Ya = y2a . Then we get Xa+1 + Ya+1

√
8 = (Xa + Ya

√
8)2,

hence Xa+1 = X2
a + 8Y 2

a = 2X2
a − 1 = Pa and Pa+1 = 2X2

a+1 − 1 = 2P 2
a − 1.

It follows that Pa+1 ≡ −1 mod Pa and Pa+2 ≡ 2(−1)2 − 1 = 1 mod Pa. Hence
any two of the numbers Pa are relatively prime. �

10.2 Weight 1 for Γ0(2)

Among the eta products listed at the beginning of Sect. 10.1, now we consider
the two cusp forms with denominator 24. A small list of coefficients shows
that the linear combinations

Fδ =
[
13, 2−1

]
+ 2δi

[
1−1, 23

]
with δ ∈ {1, −1}

presumably are Hecke eigenforms. This is consolidated by verifying that
these functions are identical with Hecke theta series. Gaps in the Fourier
expansion show that −4, −24 and 24 are the only discriminants for which
representations as theta series can exist. Since Fδ(24z) belongs to the level
2 · 242, Theorem 5.1 predicts that M = 12(1 + i) for D = −4 and M = 4

√
3

for D = −24 should be periods of suitable characters. Indeed, we obtain
such theta representations in Example 10.5 below. Moreover, we get a theta
identity involving Q(

√
6) which we have not seen before.

We recall that Sect. 6 gives complete results on the structure of the groups
(OK/(M))× of coprime residue classes in quadratic number fields K. With
this information at hand, we find the structure of (JK/(M))× for the ideal
numbers JK for each example individually.

Example 10.5 The residues of 1 + 2i, 1 + 6i, 11 and i modulo 12(1 + i)
can be chosen as generators for the group (O1/(12 + 12i))× � Z8 × Z2

2 × Z4.
A quadruplet of characters χδ,ν on O1 with period 12(1 + i) is fixed by the
values

χδ,ν(1 + 2i) = δi, χδ,ν(1 + 6i) = ν, χδ,ν(11) = −1, χδ,ν(i) = 1

with δ, ν ∈ {1, −1}. Let J6 be the system of integral ideal numbers for
Q(

√
−6) as defined in Example 7.2. The residues of

√
3+

√
−2, 1+

√
−6 and

−1 modulo 4
√

3 can be chosen as generators for the group (J6/(4
√

3))× �
Z2

4 × Z2. Four characters ψδ,ν on J6 with period 4
√

3 are fixed by their values

ψδ,ν(
√

3 +
√

−2) = δi, ψδ,ν(1 +
√

−6) = ν, ψδ,ν(−1) = 1.

The residues of 1+
√

6, 5 and −1 modulo 4(3+
√

6) can be chosen as generators
of (Z[

√
6]/(12 + 4

√
6))× � Z4 × Z2

2 . Hecke characters ξδ on Z[
√

6] modulo



140 10. The Prime Level N = 2

4(3 +
√

6) are given by

ξδ(μ) =
{

δi sgn(μ)
−sgn(μ) for μ ≡

{
1 +

√
6

5, −1
mod 4(3 +

√
6).

The theta series of weight 1 for ξδ, χδ,ν and ψδ,ν are identical and satisfy

Θ1

(
24, ξδ,

z
24

)
= Θ1

(
−4, χδ,ν , z

24

)
= Θ1

(
−24, ψδ,ν , z

24

)
= h1(z) + 2δih5(z)

(10.12)
with Fourier series of the form hj(z) =

∑
n>0,n≡j mod 24 cj(n)e

(
nz
24

)
,

cj(n) ∈ Z, where

h1(z) =
η3(z)
η(2z)

, h5(z) =
η3(2z)
η(z)

. (10.13)

In Example 17.13, the very same theta series will be identified with eta prod-
ucts of level N = 10.

In this example it was rather artificial to introduce the Fourier series hj(z).
But similar series will be convenient in many of the forthcoming examples.

Henceforth, a non-vanishing Fourier series
∑

n>0 a(n)e(nw) will be called
integral if a(n) ∈ Z for all n, and it is called normalized if a(n0) = 1 when n0

is the smallest n for which a(n) �= 0. Note that we do not require a(1) = 1.
In (10.12), h5 is normalized with n0 = 5, whereas the function f5 in (12.31)
is normalized with n0 = 17. Many of our normalized integral Fourier series
can be written, as above, in the form h(z) =

∑
n≡j mod t c(n)e

(
nz
t

)
where

gcd(j, t) = 1 and 0 < j < t. Then we will call h(z) a Fourier series with
denominator t and numerator class j modulo t. We will also meet some
Fourier series of the form

h(z) =
∑

n≡j mod T

c(n)e
(nz

t

)
with gcd(j, T ) = 1 and 0 < j < T,

where T is a proper multiple of t. Then we will call h(z) a Fourier series
with denominator t and numerator class j modulo T . We hope that this
terminology will not cause any confusion with that of the numerator of an
eta product. For example, the function f5 = [1, 113] in (12.31) is a normalized
integral Fourier series with (denominator 12 and) numerator class 5 modulo
12, and it is an eta product with numerator 17.

In Examples 10.20 and 10.24 we will state identities for the theta series of
weights 3 and 5 for the characters in Example 10.5.

The coefficients of the eta products in (10.13) can rapidly be computed since
both are products of two of the simple theta series of weight 1

2 in Sect. 8.
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This is true also for the two non-cuspidal eta products of weight 1 for Γ0(2)
which are

η4(z)
η2(2z)

=
∞∑

n=0

( ∑

x,y∈Z,x2+y2=n

(−1)x+y

)
e(nz),

η4(2z)
η2(z)

=
∑

n>0,n≡1 mod 4

( ∑

x,y>0,x2+y2=2n

1
)

e
(nz

4

)
.

They are identified with Eisenstein series and Hecke theta series. Here we
meet a first example illustrating Theorem 5.1 for the case of a character which
is induced from a Dirichlet character through the norm:

Example 10.6 The non-cuspidal eta products of weight 1 for Γ0(2) are

η4(z)
η2(2z)

= 1 − 4
∞∑

n=1

(
(−1)n−1

∑

d|n

(
−1
d

))
e(nz), (10.14)

η4(2z)
η2(z)

=
∑

n>0,n≡1 mod 2

(∑

d|n

(
−1
d

))
e
(nz

4

)
= Θ1

(
−4, χ0,

z

4

)
, (10.15)

where χ0 is the principal character modulo 1 + i on O1.

The principal character χ0 modulo 1 + i and the function η4(2z)/η2(z) will
show up again in Example 15.11 in the identities (15.27), (15.29), and in
Example 17.14. The Eisenstein series (10.14) will appear again in Exam-
ple 17.16.

10.3 Even Weights for the Fricke Group Γ∗(2)

The only holomorphic eta product of weight 2 for Γ∗(2) is η2(z)η2(2z). It
is identified with a Hecke theta series for Q(i). Theorem 5.1 predicts the
period 2(1 + i) for a suitable character χ. The group (O1/(2 + 2i))× � Z4

is generated by the residue of i. For a non-vanishing theta series of weight 2
we must have χ(i) = −i.

Example 10.7 Let η2(z) = η(z)η(2z). Let χ be the character with period
2(1+ i) on O1 which is fixed by the value χ(i) = −i. The corresponding theta
series are not identically 0 for weights k ≡ 2 mod 4 and satisfy

Θ2

(
χ, z

4

)
= η2

2(z), (10.16)

Θ6

(
χ, z

4

)
= E4,2,−1(z)η2

2(z), (10.17)

Θ10

(
χ, z

4

)
=

(
E4

2,2,−1(z) + 2304η8
2(z)

)
η2
2(z), (10.18)

Θ14

(
χ, z

4

)
=

(
E4

2,2,−1(z) + 17664η8
2(z)

)
E4,2,−1(z)η2

2(z). (10.19)
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Let the Fourier expansion of η2
2(z) be written as

η2
2(z) = η2(z)η2(2z) =

∑

n≡1 mod 4

b2(n)e
(

nz
4

)
. (10.20)

Among the associates and conjugates of a number in μ ∈ O1 with (1 + i) � μ
we can choose a unique representative μ = x + 2yi with y > 0, x ≡ 1 mod 4.
Then we have χ(μ) = (−1)y, and we can derive the following properties of
the coefficients of η2

2(z):

Corollary 10.8 Let b2(n) denote the coefficients of η2(z)η2(2z) in (10.20).
For a prime p ≡ 1 mod 4, write p = x2 + 4y2 with x ≡ 1 mod 4. Then the
following assertions hold:

(1) We have

b2(p) = (−1)y2x ≡
{

2
−2 mod 8 if p ≡

{
1
5 mod 8.

(2) We have
2 ≤ |b2(p)| ≤ 2

√
p − 4.

Here, |b2(p)| = 2 if and only if p = 4y2 + 1 for some y ∈ N, and
|b2(p)| = 2

√
p − 4 if and only if p = x2 + 4 for some x ∈ N.

(3) Every odd prime divisor q of b2(p) satisfies
(

p
q

)
= 1.

Proof. We have p = μμ = x2 + 4y2 where we can choose μ = x + 2yi ∈ O1

with x ≡ 1 mod 4. Then the identity (10.16) implies b2(p) = χ(μ)μ+χ(μ)μ =
(−1)y2x. Now assertion (1) follows easily. Also, we get |b2(p)| = |2x| ≥ 2
with equality if and only if x = 1, and |b2(p)| = |2x| ≤ 2

√
p − 4 with equality

if and only if y2 = 1. This proves (2).

Let q be an odd prime divisor of b2(p). Then p|x, and hence p = x2 + 4y2 ≡
(2y)2 mod q. This proves (3). �

The complex conjugate of the character χ in Example 10.7 satisfies χ(i) = i
and hence produces modular forms of weights k ≡ 0 mod 4. We obtain the
following identities:

Example 10.9 Let η2(z) and χ be given as in Example 10.7. The theta
series for the character χ are not identically 0 for weights k ≡ 0 mod 4 and
satisfy

Θ4

(
χ, z

4

)
= E2,2,−1(z)η2

2(z), (10.21)

Θ8

(
χ, z

4

)
= E4,2,−1(z)E2,2,−1(z)η2

2(z), (10.22)

Θ12

(
χ, z

4

)
=

(
E4

2,2,−1(z) − 13056η8
2(z)

)
E2,2,−1(z)η2

2(z), (10.23)

Θ16

(
χ, z

4

)
=

(
E2

4,2,1(z) + 217344η8
2(z)

)
E6,2,1(z)η2

2(z). (10.24)
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Remark. We state some identities for Eisenstein series of level 2 which are
known from [74] and which can be used to reshape the identities in Exam-
ples 10.2 and 10.9: We have

E4,2,1(z) = E2
2,2,−1(z),

E4,2,−1(z)E2,2,−1(z) = E6,2,1(z), E4,2,1(z)E2,2,−1(z) = E6,2,−1(z).

Similar identities for level 3 will be presented in Sect. 11.1. In Example 10.22
we will identify the Eisenstein series E2,2,−1(z) and E4,2,−1(z) with linear
combinations of non-cuspidal eta products.

Corollary 10.10 Let b2(n) be given as in Corollary 10.8, and define b4(n)
similarly by the expansion of E2,2,−1(z)η2(z)η2(2z). For primes p ≡ 1 mod 4,
the following assertions hold :

(1) The coefficient b4(p) is a multiple of b2(p), and

b4(p)
b2(p)

≡ pmod 16.

(2) We have

3
√

3p − 3 ≤ |b4(p)| ≤ (2p + 1)
√

p − 1 =
√

4p3 − 3p − 1.

(3) Every odd prime divisor q of b4(p) satisfies
(

p
q

)
= 1.

Proof. As in the proof of Corollary 10.8, we write p = μμ = x2 + 4y2 with
μ = x + 2yi ∈ O1, x ≡ 1 mod 4. Then χ(μ) = χ(μ) = (−1)y, and (10.17)
implies

b4(p) = χ(μ)μ3 + χ(μ)μ3 = (−1)y2x(x2 − 12y2) = b2(p)(x2 − 12y2).

Since x2 − 12y2 = p − 16y2, we obtain assertion (1). For a prime divisor q
of x2 − 12y2 we get p ≡ (4y)2 mod q. Together with Corollary 10.8 (3), this
implies assertion (3).

We have b4(p) = 2p
√

p cos(3t) where μ =
√

peit, 0 < t < 2π. Small values of
|b4(p)|/p3/2 occur when t is close to ± π

6 , ± π
2 or ± 5π

6 . Values of t closest to ± π
2

are attained for x = 1, and this gives the values |b4(p)| = 2(3p − 4). Values
of t close to ± π

6 or ± 5π
6 occur when x2 is close to 12y2. For x2 = 12y2 +1 we

would have 3p = 4x2 − 1, whence p would not be prime. For x2 = 12y2 − 3
we infer x = 3u and

(2y)2 − 3u2 = 1, p = 12u2 + 1, |b4(p)| = 3
√

3p − 3.
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This proves the lower bound in (2). We remark that the positive solutions
um, vm of Pell’s equation v2 − 3u2 = 1 are given by vm +um

√
3 = (2+

√
3)m;

here vm is even if m is odd, and the only prime among the numbers pm =
12u2

m + 1 with odd m < 20 is p1 = 13. Large values of |b4(p)|/p3/2 occur
when t is close to ± π

3 , ± 2π
3 or 0. We get maximal values when 4y2 is closest

to 3x2, i.e., for 4y2 − 3x2 = 1. Then we have

p = 4x2 + 1, |b4(p)| = (2p + 1)
√

p − 1.

This proves the upper bound in (2). In order to find primes for which the
upper bound is attained, we have to consider the numbers p

′

m = 4u2
m + 1 for

solutions um, vm of the same Pellian as before, and now we get p
′

1 = 5 as the
only prime for odd m < 20. �

10.4 Weight k = 2 for Γ0(2)

For level N = 2 and weight k = 2 there are 11 new holomorphic eta products.
The only one belonging to the Fricke group is η2(z)η2(2z); it was handled in
Example 10.7. Of the remaining 10, there are 8 cuspidal and 2 non-cuspidal
eta products. Each of the 8 cusp forms is a component in a Hecke theta
series. In what follows we will use the concept of normalized integral Fourier
series which was introduced in Sect. 10.2.

Example 10.11 Let the generators of (O2/(4))× � Z4 × Z2 be chosen as
in Example 10.1, and fix a pair of characters χδ on O2 with period 4 by the
values

χδ(1 +
√

−2) = δ, χδ(−1) = −1

with δ ∈ {1, −1}. The corresponding theta series of weight 2 have a decom-
position

Θ2

(
−8, χδ,

z
8

)
= f1(z) + 2

√
2δif3(z) (10.25)

where the components fj are normalized integral Fourier series with denomi-
nator 8 and numerator classes j modulo 8, and each of them is an eta product,

f1(z) =
η5(z)
η(2z)

, f3(z) =
η5(2z)
η(z)

. (10.26)

The identities (10.25), (10.26) can be deduced directly from the identities for
η2(z)/η(z), η2(2z)/η(z) and η3(z) in Sect. 8 which imply

η5(z)
η(2z)

=
∑

n≡1 mod 8

( ∑

x∈Z,y>0,8x2+y2=n

(−1)x
(−1

y

)
y

)
e
(

nz
8

)
,

η5(2z)
η(z)

=
∑

n≡3 mod 8

( ∑

x,y>0,x2+2y2=n

(−1
y

)
y

)
e
(

nz
8

)
.
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Example 10.12 The residues of 2 + i and i modulo 6(1 + i) can be chosen
as generators of the group (O1/(6 + 6i))× � Z8 × Z4. A pair of characters
χδ on O1 with period 6(1 + i) is fixed by the values

χδ(2 + i) = δ, χδ(i) = −i

with δ ∈ {1, −1}. The corresponding theta series of weight 2 have a decom-
position

Θ2

(
−4, χδ,

z
12

)
= f1(z) + 4δf5(z) (10.27)

where the components fj are normalized integral Fourier series with denom-
inator 12 and numerator classes j modulo 12, and each of them is an eta
product,

f1(z) =
η6(z)
η2(2z)

, f5(z) =
η6(2z)
η2(z)

. (10.28)

Example 10.13 Let J6 and the generators of (J6/(4
√

3))× be given as in
Example 10.5. A quadruplet of characters ϕδ,ε on J6 with period 4

√
3 is fixed

by the values

ϕδ,ε(
√

3 +
√

−2) = δi, ϕδ,ε(1 +
√

−6) = −εi, ϕδ,ε(−1) = −1

with δ, ε ∈ {1, −1}. The corresponding theta series of weight 2 have a decom-
position

Θ2

(
−24, ϕδ,ε,

z
24

)
= f1(z)+2

√
3δif5(z)+2

√
6εf7(z)+4

√
2δεif11(z) (10.29)

where the components fj are normalized integral Fourier series with denom-
inator 24 and numerator classes j modulo 24, and each of them is an eta
product,

f1(z) =
η7(z)
η3(2z)

, f5(z) = η3(z)η(2z),

f7(z) = η(z)η3(2z), f11(z) =
η7(2z)
η3(z)

.

(10.30)

The sign transforms of the cuspidal eta products in the preceding examples
belong to the Fricke group Γ∗(4); they will be discussed in Sect. 13.2.

The non-cuspidal eta products of weight 2 for Γ0(2) are η8(z)/η4(2z) and
η8(2z)/η4(z). Their sign transforms are

(
η5(2z)/(η2(z)η2(4z))

)4 = θ4(2z)
and (η(z)η(4z)/η(2z))4. For the first one there is Jacobi’s famous identity

θ4(2z) =
∞∑

n=0

r4(n)e(nz) = 1 + 8
∞∑

n=1

( ∑

4�d|n

d

)
e(nz), (10.31)



146 10. The Prime Level N = 2

where r4(n) denotes the number of representations of n as a sum of 4 squares.
For the second one, (8.6) implies

η4(z)η4(4z)
η4(2z)

=
∑

n>0 odd

( ∑

u,v,x,y>0, u2+v2+x2+y2=4n

(
2

uvxy

))
e
(

nz
2

)
,

and the identity

η4(z)η4(4z)
η4(2z)

=
∑

n>0 odd

(
−1
n

)
σ1(n)e

(
nz
2

)
(10.32)

holds. It is equivalent to the identity in [38], entry (31.52), for η8(2z)/η4(z)
itself, which will be listed in (10.34). We show how (10.32) can be derived
from (10.31):

If n > 0 is odd then Jacobi’s identity (10.31) yields r4(4n) = 8
∑

d|2n d =
8σ1(2n) = 24σ1(n). If one of the terms xj in a representation 4n = x2

1 +
x2

2 + x2
3 + x2

4 is even, then all of them are even, say xj = 2yj , and n =
y2
1 + y2

2 + y2
3 + y2

4 . Therefore the number of representations of 4n as a sum of
four odd squares is r4(4n) − r4(n) = 24σ1(n) − 8σ1(n) = 16σ1(n). It follows
that the number of representations of 4n as a sum of four positive odd squares
is equal to σ1(n). Let 4n = u2 + v2 + x2 + y2 be such a representation. Since
u2 ≡ 1 or 9 mod 16 according as

(
2
u

)
= 1 or −1, it follows that

(
2

uvxy

)
=

(−1)(n−1)/2 =
(−1

n

)
does not depend on the particular representation of 4n.

Thus we obtain (10.32).

Taking the sign transforms gives the following two identities:

Example 10.14 The non-cuspidal eta products of weight 2 for Γ0(2) have
the expansions

η8(z)
η4(2z)

= 1 +
∞∑

n=1

(−1)nr4(n)e(nz), (10.33)

η8(2z)
η4(z)

=
∑

n>0 odd

σ1(n)e
(

nz
2

)
, (10.34)

where r4(n) = 8
∑

4�d|n d is the number of representations of n as a sum of
four squares.

10.5 Lacunary Eta Products with Weight 3 for Γ0(2)

Gordon and Robins [43] determined all lacunary eta products of level N = 2.
The preceding examples in this section comprise all those of them which have
weights k ≤ 2 or belong to the Fricke group. Besides, there are 28 more with
weights k > 2, among them 14 with weight 3 and 14 with weight 5. In this
subsection we reproduce the results of [43] for k = 3 in our terminology.
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Example 10.15 The remainder of 1 + i modulo 3 generates the group
(O1/(3))× � Z8. A pair of characters χδ on O1 with period 3 is fixed by
the value χδ(1 + i) = −δi with δ ∈ {1, −1}. The corresponding theta series
of weight 3 decompose as

Θ3

(
−4, χδ,

z
3

)
= f1(z) + 2δf2(z) (10.35)

with normalized integral Fourier series fj with denominator 3 and numerator
classes j modulo 3. The components fj are the sign transforms of the eta
products η4(z)η2(2z) and η−4(z)η10(2z), that is,

f1(z) =
η14(2z)

η4(z)η4(4z)
, f2(z) =

η4(z)η4(4z)
η2(2z)

. (10.36)

This result would better fit into the realm of the Fricke group Γ∗(4) in
Sect. 13. In [43] Θ2

(
−4, χδ,

z
3

)
is erroneously identified with η4(z)η2(2z) +

2δη−4(z)η10(2z). Of course the result proves the lacunarity of the eta prod-
ucts η4(z)η2(2z) and η−4(z)η10(2z), and it provides formulae for their coef-
ficients: When we write

η4(z)η2(2z) =
∑

n≡1 mod 3

a(n)e
(

nz
3

)
,

η−4(z)η10(2z) =
∑

n≡2 mod 3

b(n)e
(

nz
3

)
,

then for primes p we get

a(p) = 2(x2 − y2) if p = x2 + y2 ≡ 1 mod 12, 3|y,

b(p) = −2xy if p = x2 + y2 ≡ 5 mod 12, x ≡ y mod 3.

The next example from [43] shows the lacunarity of η−2(z)η8(2z) and
η8(z)η−2(2z). It involves an eta product for Γ0(4).

Example 10.16 Let the generators of (O3/(4 + 4ω))× � Z2
2 × Z6 be chosen

as in Example 9.1. A pair of characters ψδ on O3 with period 4(1 + ω) is
fixed by the values

ψδ(1 + 2ω) = δ, ψδ(1 − 4ω) = −1, ψδ(ω) = −ω

with δ ∈ {1, −1}. The corresponding theta series of weight 3 decompose as

Θ3

(
−3, ψδ,

z
12

)
= f1(z) + 8δi

√
3f7(z) (10.37)

with normalized integral Fourier series fj with denominator 12 and numer-
ators j modulo 12. The components are eta products or linear combinations
thereof,

f1(z) =
η10(z)
η4(2z)

+ 32
η2(z)η8(4z)

η4(2z)
, f7(z) =

η8(2z)
η2(z)

. (10.38)
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Moreover, we have the identity

η8(z)
η2(2z)

= f1(2z) − 8f7(2z). (10.39)

Let aj(n) denote the coefficients of fj(z). From (10.37), (10.38), (10.39) we
obtain formulae for a7(n) and for the coefficients of

η8(z)η−2(2z) =
∑

n≡1 mod 6

c(n)e
(

nz
6

)
.

If p ≡ 7 mod 12 is prime then p = μμ = 1
4 ((2x + y)2 + 3y2) for some μ = x +

yω ∈ O3. We can choose y = 2v even. Then x and v are odd. Interchanging
μ and μ, if necessary, we can assume that μ ≡ ±(1+2ω) mod 4(1+ω). Then
ψδ(μ) = δ, ψδ(μ) = −δ, and we obtain

a7(p) = 1
2vu where p = u2 +3v2, u − v+2vω ≡ ±(1+2ω) mod 4(1+ω).

From (10.39) we get

c(n) = a1(n) for n ≡ 1 mod 12, c(n) = −8a7(n) for n ≡ 7 mod 12.

Let p ≡ 1 mod 12 be prime, and let p = μμ, μ = x+yω ∈ O3, where we assume
that y is even. Then y = 4v is a multiple of 4. Interchanging μ and −μ, if
necessary, we can assume that x ≡ 1 mod 4. Then ψδ(μ) = ψδ(μ) =

(
x+2v

3

)
.

We obtain c(p) =
(

x+2v
3

)
(μ2 + μ2), hence

c(p) = 2
(

u
3

)
(u2 −12v2) where p = u2+12v2, u−2v ≡ 1 mod 4. (10.40)

It follows that c(p) = ±2 if and only if p = u2 + 12v2 with solutions u, v
of Pell’s equation u2 − 12v2 = 1. Its positive solutions are um = x2m,
vm = y2m, where xm + ym

√
3 = (2 +

√
3)m are the solutions of x2 − 3y2 = 1.

Thus we have another example for Theorem 10.4. We will meet the Pell
equation x2 − 3y2 = 1 in Corollary 11.12 (3) when we discuss η3(z)η3(3z).
Remarkably, the coefficients of η8(z)η−2(2z) and η3(z)η3(3z) at primes p ≡
1 mod 12 coincide up to the sign

(
u
3

)
.

The next result from [43] exhibits a close relation of the eta products
η10(z)η−4(2z) and η2(z)η4(2z) with those in Example 10.15:

Example 10.17 Let χ̃δ be the imprimitive character on O1 with period 3(1+
i) which is induced by the character χδ in Example 10.15. It is fixed by the
value χ̃δ(2+ i) = δi on the generator 2+ i of the group (O1/(3+3i))× � Z8.
The corresponding theta series of weight 3 decompose as

Θ3

(
−4, χ̃δ,

z
12

)
= g1(z) − 8δg5(z) (10.41)
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with normalized integral Fourier series gj with denominator 12 and numera-
tor classes j modulo 12. The components gj are eta products,

g1(z) =
η10(z)
η4(2z)

, g5(z) = η2(z)η4(2z). (10.42)

With notations aj(n) and bj(n) for the coefficients of fj in Example 10.15
and those of gj, respectively, we have b1(n) = a1(n) for n ≡ 1 mod 12 and
b5(n) = − 1

4a2(n) for n ≡ 5 mod 12.

The following identities from [43] (with corrections of minor misprints) prove
the lacunarity of some eta products of weight 3 with denominators 8 and 24:

Example 10.18 Let the generators of (O1/(4 + 4i))× � Z2
2 × Z4 be chosen

as in Example 10.1, and define a pair of characters ϕδ on O1 with period
4(1 + i) by its values

ϕδ(1 + 2i) = δ, ϕδ(3) = −1, ϕδ(i) = −1

with δ ∈ {1, −1}. The corresponding theta series of weight 3 decompose as

Θ3

(
−4, ϕδ,

z
8

)
= f1(z) + 8δif5(z) (10.43)

with normalized integral Fourier series fj with denominator 8 and numerator
classes j modulo 8. Both the components are eta products,

f1(z) =
η9(z)
η3(2z)

, f5(z) =
η9(2z)
η3(z)

. (10.44)

Example 10.19 Let the generators of (O1/(12+12i))× be chosen as in Ex-
ample 10.5, and define four characters ρδ,ε on O1 with period 12(1 + i) by
their values

ρδ,ε(1 + 2i) = −δi, ρδ,ε(1 + 6i) = ε, ρδ,ε(11) = −1, ρδ,ε(i) = −1

with δ, ε ∈ {1, −1}. The corresponding theta series of weight 3 decompose as

Θ3

(
−4, ρδ,ε,

z
24

)
= f1(z) + 6δif5(z) + 24εif13(z) − 16δεf17(z), (10.45)

where the components fj are normalized integral Fourier series with denomi-
nator 24 and numerator classes j modulo 24, and all of them are eta products,

f1(z) =
η11(z)
η5(2z)

, f5(z) =
η7(z)
η(2z)

, f13(z) =
η7(2z)
η(z)

, f17(z) =
η11(2z)
η5(z)

.

(10.46)

The last example of this subsection shows the lacunarity of [15, 2] and [1, 25].
We need two eta products of level 4.
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Example 10.20 Let ψδ,ν be the quadruplet of characters on J6 with period
4

√
3 as defined in Example 10.5. The corresponding theta series of weight 3

decompose as

Θ3

(
−24, ψδ,ν , z

24

)
= g1(z) + 2δig5(z) + 4νi

√
6g7(z) + 8δν

√
6g11(z), (10.47)

where the components gj are normalized integral Fourier series with denomi-
nator 24 and numerator classes j modulo 24, and all of them are eta products
or linear combinations thereof,

g1(z) =
η11(z)
η5(2z)

+ 32
η3(z)η8(4z)

η5(2z)
, g5(z) =

η7(z)
η(2z)

+ 32
η8(4z)

η(z)η(2z)
,

(10.48)
g7(z) = η5(z)η(2z), g11(z) = η(z)η5(2z). (10.49)

10.6 Lacunary Eta Products with Weight 5 for Γ0(2)

In this subsection we present the identities of Gordon and Robins [43] for
eta products of level 2 and weight 5. We begin with identities which show
that

[
114, 2−4

]
and

[
1−4, 214

]
are lacunary. Both these functions are sign

transforms of eta products for Γ∗(4).

Example 10.21 Let χ0 be the principal character on O1 with period 1 + i,
and let 1 denote the trivial character on O1. The corresponding theta series
of weight 5 satisfy

Θ5

(
−4, χ0,

z
4

)
=

η14(z)
η4(2z)

, (10.50)

Θ5 (−4, 1, z) = 2
η14(4z)
η4(16z)

− η14(2z)
η4(z)

. (10.51)

Identities for the Eisenstein series E2,2,−1(z) and E4,2,−1(z) are used to mod-
ify (10.3), (10.7) and to discuss

[
117, 2−7

]
and

[
1−7, 217

]
. These functions,

too, are sign transforms of eta products for Γ∗(4). The following identities
show that each of them is a linear combination of four theta series, and hence
is lacunary.

Example 10.22 The Eisenstein series of Nebentypus and weights 2 and 4
and for Γ∗(4) are

E2,2,−1(z) =
η8(z)
η4(2z)

+ 32
η8(4z)
η4(2z)

, E4,2,−1(z) =
η16(z)
η8(2z)

− 64
η16(2z)
η8(z)

.

(10.52)
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For the characters χν and ψν as defined in Example 10.1, the identities (10.3)
and (10.7) read

Θ5

(
−4, χν , z

8

)
=

η17(z)
η7(2z)

− 64
η17(2z)
η7(z)

− 48νiη5(z)η5(2z), (10.53)

Θ5

(
−8, ψν , z

8

)
=

η17(z)
η7(2z)

+ 64
η17(2z)
η7(z)

+ 8ν
√

2
(

η11(z)
η(2z)

+ 32
η3(z)η8(4z)

η(2z)

)
.

(10.54)
Moreover, we have

E4,2,1(z) = E2
2,2,−1(z) =

η16(z)
η8(2z)

+ 64
η16(2z)
η8(z)

, (10.55)

η17(2z)
η7(z)

=
η9(z)η8(4z)

η7(2z)
+ 16

η(z)η16(4z)
η7(2z)

. (10.56)

From (10.52), (10.55) and the definitions in Proposition 1.8 we get

E4(z) =
η16(z)
η8(2z)

+ 256
η16(2z)
η8(z)

. (10.57)

In terms of coefficients, because of (1.19), (8.5), (8.7), this identity reads

240σ3(n) = (−1)nr8(n) + 28rodd
8+ (8n) = (−1)nr8(n) + rodd

8 (8n) (10.58)

for all positive integers n, where rk(n), rodd
k (n), rodd

k+ (n) denote the numbers
of representations of n as a sum of k squares, of k odd squares, and of k
positive odd squares, respectively.

The identity (10.57) is known from entry (1.28) in [105], where E6(z) is also
identified with a linear combination of eta products (of level 4),

E6 =
[
124

212

]
− 480

[
212
]

− 16896
[
212, 48

18

]
+ 8192

[
424

212

]
. (10.59)

This proves Ono’s Theorem 1.67, saying that every modular form for the full
modular group is a linear combination of eta products. Ono does not date
these identities further back in history. His result was extended by Kilford
[67]; he proved that every modular form on any group Γ0(N) is a rational
function of eta products (of levels dividing 4N), and he found some new
examples of levels N for which every modular form is a linear combination
of eta products.

The identity (10.56) is equivalent to

η16(z)η8(4z) + 16η8(z)η16(4z) = η24(2z), (10.60)
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which in turn is equivalent to

∞∏

n=1

(1 − q2n−1)8 + 16q

∞∏

n=1

(1 + q2n)8 =
∞∏

n=1

(1 + q2n−1)8,

with q = e(z). This identity is due to Jacobi. It has been re-proven by
Whittaker and Watson [139] (who report that Jacobi was deeply impressed
by this identity), by the Borwein brothers [14], and more recently by J. A.
Ewell [35] and Hei-Chi Chan [17].

Using (10.52) and (9.5), we get (10.61) in the following Example 10.23. To-
gether with (10.62) it follows that

[
118, 2−8

]
and

[
1−6, 216

]
are linear com-

binations of four theta series, hence lacunary. Then linear relations for[
1−8, 218

]
and

[
116, 2−6

]
show that these eta products are lacunary, too.

Example 10.23 For the characters χν as defined in Example 9.1, the iden-
tity (9.5) reads

Θ5

(
−4, χν , z

12

)
=

η18(z)
η8(2z)

+ 256
η16(2z)
η6(z)

− 48νη5(z)η5(2z). (10.61)

Let the generators of (O3/(4 + 4ω))× be chosen as in Examples 9.1, 10.16.
A pair of characters ϕν on O3 with period 4(1 + ω) is fixed by the values

ϕν(1 + 2ω) = ν, ϕν(1 − 4ω) = −1, ϕν(ω) = −ω

with ν ∈ {1, −1}. The corresponding theta series of weight 5 satisfy

Θ5

(
−3, ϕν , z

12

)
=

η18(z)
η8(2z)

− 128
η16(2z)
η6(z)

+ 16νi
√

3
(

η6(z)η4(2z) + 32
η4(2z)η8(4z)

η2(z)

)
. (10.62)

Moreover, we have the linear relations
[
1−8, 218

]
=

[
26, 44

]
+ 32

[
2−2, 44, 88

]
+ 8
[
2−6, 416

]
, (10.63)

[
116, 2−6

]
=

[
218, 4−8

]
+ 128

[
2−6, 416

]
− 16

[
1−8, 218

]
. (10.64)

The following identities from [43] show that the eta products
[
17, 23

]
,
[
13, 27

]
,[

119, 2−9
]
,
[
1−9, 219

]
,
[
115, 2−5

]
and

[
1−5, 215

]
are lacunary. The first two

of them are linear combinations of four theta series; the others are linear
combinations of eight theta series.

Example 10.24 Let χδ,ν and ψδ,ν be the quadruplets of characters on O1

with period 12(1 + i) and on J6 with period 4
√

3, respectively, as defined in
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Example 10.5. The corresponding theta series of weight 5 decompose as

Θ5

(
−4, χδ,ν , z

24

)
= f1(z) − 14δif5(z) + 240νif13(z) − 480δνg17(z),

(10.65)

Θ5

(
−24, ψδ,ν , z

24

)
= g1(z) − 46δig5(z) − 40νi

√
6g7(z) − 80δν

√
6g11(z),

(10.66)

where the components fj and gj are normalized integral or rational Fourier
series with denominator 24 and numerator classes j modulo 12, and all of
them are eta products or linear combinations thereof,

f1 =
[
119, 2−9

]
+ 448

[
1−5, 215

]
, f5 =

[
115, 2−5

]
+ 64

7

[
1−9, 219

]
,

(10.67)
f13 =

[
17, 23

]
, f17 =

[
13, 27

]
, (10.68)

g1 =
[
119, 2−9

]
− 1472

[
1−5, 215

]
, g5 =

[
115, 2−5

]
− 64

23

[
1−9, 219

]
,

(10.69)
g7 =

[
113, 2−3

]
+ 32

[
15, 2−3, 48

]
, g11 =

[
19, 2

]
+ 32

[
1, 2, 48

]
.

(10.70)
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11.1 Weight 1 and Other Weights k ≡ 1 mod 6 for Γ∗(3)
and Γ0(3)

For Γ0(3) and weight k = 1 there are three holomorphic eta products,

[1, 3],
[
13, 3−1

]
,
[
1−1, 33

]
.

The first one is cuspidal and belongs to the Fricke group Γ∗(3), the others are
non-cuspidal. Here we have an illustration for Theorem 3.9 (3): The lattice
points on the boundary of the simplex S(2, 1) do not belong to S(3, 1), and
two of the interior lattice points in S(2, 1) are on the boundary of S(3, 1). At
this point it becomes clear that η(z)η(pz) is the only holomorphic eta product
of level p and weight 1 for primes p ≥ 5. The eta product η(z)η(3z) is iden-
tified with a Hecke theta series for Q(

√
−3); the result (11.2) is known from

[31], [75]. In the identities for higher weights we need the trivial character 1
on O3 and the corresponding theta series

Θ(z) = 6 Θ1(−3, 1, z) =
∑

μ∈O3

e(μμz) = 1 + 6
∞∑

n=1

(∑

d|n

(
−3
d

))
e(nz) (11.1)

of weight 1 and level 3. It is an instance for a non-cusp form in Theorem 5.1
and appeared in Hecke [51] as an example of a modular form of “Nebentypus”.
It satisfies

Θ(W3z) = Θ
(

− 1
3z

)
= − i

√
3z Θ(z);

hence it belongs to the Fricke group Γ∗(3). The identities

E2,3,−1(z) = Θ2
1(−3, 1, z), E4,3,1(z) = E2

2,3,−1(z) = Θ4
1(−3, 1, z)

and several others are known from [74]; they are easily deduced from the fact
that certain spaces of modular forms are one-dimensional.
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Example 11.1 The residues of 2 + ω and ω modulo 6 can be chosen as
generators for the group (O3/(6))× � Z3 × Z6. Two characters ψ1 = ψ and
ψ−1 = ψ on O3 with period 6 are fixed by their values

ψν(2 + ω) = ω2ν = e
(

ν
3

)
= 1

2

(
−1 + ν

√
−3
)
, ψν(ω) = 1.

The corresponding theta series are not identically 0 for weights k ≡ 1 mod 6
and satisfy

Θ1

(
ψ, z

6

)
= Θ1

(
ψ, z

6

)
= η(z)η(3z) (11.2)

and, with Θ(z) and η3(z) = η(z)η(3z) from (11.1),

Θ7

(
ψ, z

6

)
=

(
Θ6(z) − 432 η6

3(z)
)
η3(z), (11.3)

Θ7

(
ψ, z

6

)
=

(
Θ6(z) + 648 η6

3(z)
)
η3(z), (11.4)

Θ13

(
ψ, z

6

)
=

(
Θ12(z) + 231120 Θ6(z)η6

3(z) − 93312 η12
3 (z)

)
η3(z), (11.5)

Θ13

(
ψ, z

6

)
=

(
Θ12(z) − 77760 Θ6(z)η6

3(z) + 5038848 η12
3 (z)

)
η3(z). (11.6)

The identities (11.3) and (11.4) imply that η7(z)η7(3z) is a linear combina-
tion of two Hecke theta series, and hence its Fourier expansion is lacunary.
According to the exhaustive list in [25], Theorem 1.3, this is the highest
weight eta product of level 3 which is lacunary.

We consider the coefficients in

η(z)η(3z) =
∑

n≡1 mod 6

c1(n) e
(

nz
6

)
, c1(n) =

∑

x,y > 0 , x2+3y2= 4n

(
12
xy

)
.

(11.7)
For primes p ≡ 1 mod 6 we have p = μμ for some μ ∈ O3. From (11.2) and the
definition of the character ψ we obtain ψ(μ) = 1 and c1(p) = 2 if and only if
one of the conjugates of μ has residue 1 modulo 6. Then we may assume that
μ = 1+6a+6bω ≡ 1 mod 6, and thus p = (1+6a+3b)2 +27a2 is represented
by the quadratic form x2 + 27y2. Otherwise we get c1(p) = ω2 + ω2 = −1.
We have proved statement (1) in the following Corollary:

Corollary 11.2 Let η3(z) = η(z)η(3z) and Θ(z) = 6 Θ1(−3, 1, z) be given
as in Example 11.1. Then for primes p ≡ 1 mod 6 the following assertions
hold :

(1) The coefficient of η3(z) at p is c1(p) = 2 if p is represented by the
quadratic form x2 + 27y2, and c1(p) = −1 otherwise.

(2) Let c7(n) denote the Fourier coefficients of η7
3(z), and let p = x2 +xy+

y2. Then

c7(p) =
{

0
± 1

120 xy(x + y)(x − y)(2x + y)(x + 2y) if c1(p) =
{

2,
−1.
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Proof of assertion (2). From (11.3) and (11.4) we infer

η7
3(z) = 1

1080

(
Θ7

(
ψ, z

6

)
− Θ7

(
ψ, z

6

))
.

We have p = μμ = x2 + xy + y2 for some μ = x + yω ∈ O3 which is unique
up to associates and conjugates. This implies

c7(p) = 1
1080

(
ψ(μ)μ6 + ψ(μ)μ6 − ψ(μ)μ6 − ψ(μ)μ6

)
.

If c1(p) = 2 then ψ(μ) = ψ(μ) = 1, and hence we get c7(p) = 0. Otherwise
we have ψ(μ) = ω2, ψ(μ) = ω2 or vice versa, and we get

c7(p) = ± ω2 − ω2

1080
(μ6 − μ6) = ±

√
−3

1080
(μ2 − μ2)(μ2 + ωμ2)(μ2 + ω μ2).

Evaluating the factors yields the desired result. �

There is a famous theorem of Gauss (Werke, vol. 8, p. 5) on the representation
of primes by the quadratic form x2 + 27y2. It follows from a law of cubic
reciprocity; a proof is given in [59], Proposition 9.6.2:

Theorem (Gauss) Let p ≡ 1 mod 6 be prime. The polynomial X3 − 2 splits
completely into linear factors over the p-element field Fp if and only if p is
represented by the quadratic form x2 + 27y2.

For primes p ≡ −1 mod 6 the order p − 1 of the cyclic group F
×
p and the

exponent 3 are relatively prime, and therefore X3 − 2 splits into a linear
and an irreducible quadratic factor over Fp. Hiramatsu [56] says that a
reciprocity law for an irreducible polynomial f(X) over Z is a rule how f(X)
decomposes over the p-element fields Fp for primes p. One of his examples
(Theorem 1.1 in [56]) is the result on c1(p) in Corollary 11.2 (1). We state
several equivalent criteria for the splitting of X3 −2. The equivalence with (b)
in the following list is borrowed from Satgé [119]. The list will be prolonged
in Corollary 11.10:

Corollary 11.3 For primes p ≡ 1 mod 6 the following statements are equiv-
alent :

(a) The polynomial X3 − 2 splits into three linear factors over the field Fp.
(b) The prime p splits completely in the field Q(ω, 3

√
2).

(c) The prime p is represented by the quadratic form x2 + 27y2.
(d) The Fourier coefficient of the weight 1 eta product η(z)η(3z) at p is

equal to 2.
(e) The Fourier coefficient of the weight 7 eta product η7(z)η7(3z) at p is

equal to 0.
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We briefly deal with the non-cuspidal eta products of weight 1 for Γ0(3). An
inspection of their Fourier expansions yields the following identities:

Example 11.4 We have the identities

η3(z)
η(3z)

= 1 − 3
∞∑

n=1

(∑

d|n

(
d
3

))
e(nz) + 9

∞∑

n=1

(∑

d|n

(
d
3

))
e(3nz)

= − 3 Θ1(−4, 1, z) + 9 Θ1(−4, 1, 3z), (11.8)
η3(3z)
η(z)

=
∑

n>0, 3 �n

(∑

d|n

(
d
3

))
e
(

nz
3

)
= Θ1

(
−3, ψ0,

z
3

)
, (11.9)

where 1 stands for the trivial character on O3 and ψ0 is the principal char-
acter modulo 1 + ω on O3.

The coefficients at n in the series (11.8) and (11.9) vanish whenever there is
an odd power of a prime p ≡ 5 mod 6 in the factorization of n. Therefore,
both these series are lacunary. According to [25], Theorem 1.4, η3(z)/η(3z)
and η3(3z)/η(z) are the only non-cuspidal eta products of the form [1a, N b]
with level N ≥ 3 which are lacunary.

11.2 Even Weights for the Fricke Group Γ∗(3)

The only holomorphic eta product of weight 2 for Γ∗(3) is η2
3(z) with η3(z) =

η(z)η(3z). Another modular form of weight 2 for this group is Θ(z)η3(z)
where Θ(z) is defined in (11.1). Both functions are Hecke eigenforms and
can be identified with Hecke theta series for Q(

√
−3). Theorem 5.1 predicts

period 3 for a character ψ to represent η2
3(z). For weight 2 we must have

ψ(ω) = ω, and ψ is uniquely determined by this value.

Example 11.5 Let η3(z) = η(z)η(3z) and Θ(z) = 6 Θ1(−3, 1, z) as in
Sect. 11.1. The residue of ω modulo 3 generates the group (O3/(3))× � Z6.
Let ψ be the character with period 3 on O3 which is fixed by the value
ψ(ω) = ω, and let ψ be the conjugate complex character. The theta series for
ψ are not identically 0 for weights k ≡ 2 mod 6 and satisfy

Θ2

(
ψ, z

3

)
= η2

3(z), (11.10)

Θ8

(
ψ, z

3

)
=

(
Θ6(z) − 162 η6

3(z)
)
η2
3(z), (11.11)

Θ14

(
ψ, z

3

)
=

(
Θ12(z) − 8262 Θ6(z)η6

3(z) − 157464 η12
3 (z)

)
η2
3(z). (11.12)

The theta series for ψ are not identically 0 for weights k ≡ 0 mod 6 and
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satisfy

Θ6

(
ψ, z

3

)
= E4,3,−1(z)η2

3(z), (11.13)

Θ12

(
ψ, z

3

)
=

(
Θ6(z) − 2052 η6

3(z)
)
E4,3,−1(z)η2

3(z), (11.14)

Θ18

(
ψ, z

3

)
=

(
Θ12(z) − 131112 Θ6(z)η6

3(z)

+ 2496096 η12
3 (z)

)
E4,3,−1(z)η2

3(z). (11.15)

Corollary 11.6 Let c1(n) be the coefficients of η3(z) = η(z)η(3z) as in
(11.7), and define c2(n) by the expansion

η2
3(z) =

∑

n≡1 mod 3

c2(n)e
(

nz
3

)
.

Then for primes p ≡ 1 mod 6 the following assertions hold :

(1) We have p � c2(p) and

c2(p) ≡
{

p + 1 mod 36,
p − 8 mod 18,

c2(p) ≡
{

2
−1 mod 6 if c1(p) =

{
2,

−1.

(2) Let a4(n) denote the coefficients of η4(z). Then c2(p) = a4(p) holds if
and only if c1(p) = 2.

(3) We have c2(p) = −1 if and only if 4p = 27v2+1, and we have c2(p) = 2
if and only if p = 108v2 + 1 for some v ∈ N.

(4) We have |c2(p)| ≤
√

4p − 27 with equality if and only if 4p = m2 + 27
for some m ∈ N.

Proof. We have p = μμ = x2 + xy + y2 where we can choose μ = x + yω
among its associates and conjugates such that x ≡ 1 mod 3, y ≡ 0 mod 3.
Then μ ≡ μ ≡ 1 mod 3, ψ(μ) = ψ(μ) = 1, and (11.10) implies

c2(p) = μ + μ = 2x + y.

Hence c2(p) is even if and only if y is even. But then x is odd, μ ≡ 1 mod 6,
whence c1(p) = 2 by Corollary 11.2. Otherwise, if y is odd, we have c1(p) =
−1. This proves the congruences modulo 6 in (1).

We write x = 1 + 3u, y = 3v. Then we obtain c2(p) = 2 + 6u + 3v and
p+1 = 1+(1+3u)2+3v(1+3u)+9v2 = c2(p)+9(u2+uv+v2) ≡ c2(p) mod 9.
If y is even then we get u2 + uv + v2 ≡ 0 mod 4 and p + 1 ≡ c2(p) mod 36.
If v is odd then u2 + uv + v2 is odd, hence p + 1 ≡ 9 + c2(p) mod 18.—Since
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(μ) and (μ) are distinct prime ideals in O3, c2(p) = μ + μ is not a multiple
of either of them. This establishes the assertions in (1).

The character ψ′ in the representation (9.10) of η4(z) as a theta series (de-
noted by ψ in Example 9.3) and the character presently denoted by ψ satisfy
ψ′(μ) = ψ(μ) = 1 if μ ≡ 1 mod 2(1+ω), and in this case we get c2(p) = a4(p),
c1(p) = 2. Otherwise, different values of ψ′(μ) and ψ(μ) yield different values
of a4(p) and c2(p). This proves (2).

We write y = 3v. Then c2(p) = 2x + y = −1 is equivalent to p = 1
4 ((2x +

y)2 + 3y2) = 1
4 (1 + 27v2). Similarly, c2(p) = 2x + y = 2 is equivalent to

p = 1
4 (4 + 27v2). Necessarily, v is a multiple of 4. We write 4v instead of v

and obtain p = 108v2 + 1. This proves (3).

We get large values of |c2(p)|/√
p when μ is close to the real axis. Hence

we get an upper bound if we take y = 3. In this case, c2(p) = 2x + 3 and
4p = (2x + 3)2 + 3 · 32 = c2(p)2 + 27. This implies (4). �

For the representation of Θ(z)η3(z) as a theta series on O3 we need a character
with period 6. From Example 11.1 we know that the residues of 2 + ω and ω
modulo 6 generate the group (O3/(6))×.

Example 11.7 A pair of characters ρ1 = ρ and ρ−1 = ρ on O3 with period
6 is given by

ρν(2 + ω) = 1, ρν(ω) = ω−ν = e
(−ν

6

)
= 1

2 (1 − ν
√

−3).

Let η3(z) and Θ(z) be defined as in Example 11.5. The theta series for ρ are
not identically 0 for weights k ≡ 2 mod 6 and satisfy

Θ2

(
ρ, z

6

)
= Θ(z)η3(z), (11.16)

Θ8

(
ρ, z

6

)
=

(
Θ6(z) − 1296 η6

3(z)
)
Θ(z)η3(z), (11.17)

Θ14

(
ρ, z

6

)
=

(
Θ12(z) − 229392 Θ6(z)η6

3(z) + 42830208 η12
3 (z)

)
Θ(z)η3(z).

(11.18)

The theta series for ρ are not identically 0 for weights k ≡ 0 mod 6 and satisfy

Θ6

(
ρ, z

6

)
= E4,3,−1(z)Θ(z)η3(z), (11.19)

Θ12

(
ρ, z

6

)
=

(
Θ6(z) − 76896 η6

3(z)
)
E4,3,−1(z)Θ(z)η3(z), (11.20)

Θ18

(
ρ, z

6

)
=

(
Θ12(z) + 24930288 Θ6(z)η6

3(z)

+ 3142188288 η12
3 (z)

)
E4,3,−1(z)Θ(z)η3(z). (11.21)

The character ρ = ρ1 will reappear in Example 14.4.
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Corollary 11.8 Let η3(z), Θ(z), c1(n), c2(n) and a4(n) be given as in Ex-
ample 11.5 and Corollary 11.6. For primes p ≡ 1 mod 6 the coefficients γ2(p)
in the expansion

Θ(z)η3(z) =
∑

n≡1 mod 6

γ2(n)e
(

nz
6

)

have the following properties:

(1) We have p � γ2(p),

γ2(p) ≡
{

p + 1 mod 36,
p − 2 mod 18,

γ2(p) ≡
{

2
−1 mod 6 if c1(p) =

{
2,

−1,

and γ2(p) = c2(p) if and only if c1(p) = 2.
(2) We have γ2(p) = −1 if and only if 4p = 3m2 + 1 with m ≡ ±5 mod 12.
(3) We have |γ2(p)| ≤

√
4p − 3 where equality holds if and only if 4p =

m2 + 3 with m ≡ ±5 mod 12.

Proof. In p = μμ = x2 + xy + y2 we choose μ = x + yω ≡ 1 mod 3 as in the
proof of Corollary 11.6. If y is even then μ ≡ 1 mod 6, ρ(μ) = 1, and we get
γ2(p) = 2x + y = c2(p) = a4(p), c1(p) = 2. Otherwise, when y is odd, an
inspection of the values ρ(μ) yields γ2(p) = −x − 2y if x is odd, γ2(p) = y − x
if x is even. Now we argue as in the proof of Corollary 11.6 and obtain the
assertions in (1).

It follows that γ2(p) = −1 if and only if y = 3v is odd and x + 2y = 1 or
x−y = 1. This is equivalent to 4p = (2x+y)2+3y2 = 3(2y ±1)2+1 = 3m2+1
with m = 6v ± 1 ≡ ±5 mod 12. Thus we have proved (2).

For even y the upper bound in Corollary 11.6, (4) is valid for γ2(p) = c2(p).
For odd y = 3v we get maximal values of |γ2(p)|/√

p when ωμ = y + xω or
ωμ = −y+(x+y)ω is close to the real axis. This means that γ2(p) = −x − 2y
with x = 1 or γ2(p) = y − x with x + y = 1, and gives the asserted estimate
|γ2(p)| ≤

√
4p − 3 with equality for 4p = m2 +3, m = 6v ± 1 ≡ ±5 mod 12. �

In the following discussion of weights k ≡ 4 mod 6 we need the Eisenstein
series of weight 3 for Γ∗(3) which were introduced in Sect. 1.6. One verifies
the identities

E3,3,i(z) = Θ3(z), E3,3,−i(z) Θ(z) = E4,3,−1(z).

The products E3,3,i(z)η3(z) = Θ3(z)η3(z) and E3,3,−i(z)η3(z) are cusp forms
of weight 4 for Γ∗(3). Lists of coefficients display multiplicative properties
and gaps which suggest that they are both eigenforms and Hecke theta series
for Q(

√
−3). Again, we need characters with period 6.
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Example 11.9 Let η3(z) and Θ(z) be defined as in Example 11.5. A pair of
characters χ = χ1 and χ = χ−1 on O3 with period 6 is given by

χν(2 + ω) = ω−2ν = e
(−ν

3

)
, χν(ω) = −1.

The corresponding theta series are not identically 0 for weights k ≡ 4 mod 6
and satisfy

Θ4

(
χ, z

6

)
= Θ3(z)η3(z), (11.22)

Θ10

(
χ, z

6

)
=

(
Θ6(z) + 7776 η6

3(z)
)
Θ3(z)η3(z), (11.23)

Θ16

(
χ, z

6

)
=

(
Θ12(z) − 4239216 Θ6(z)η6

3(z)

− 186437376 η12
3 (z)

)
Θ3(z)η3(z), (11.24)

Θ4

(
χ, z

6

)
= E3,3,−i(z)η3(z), (11.25)

Θ10

(
χ, z

6

)
=

(
Θ6(z) + 4752 η6

3(z)
)
E3,3,−i(z)η3(z), (11.26)

Θ16

(
χ, z

6

)
=

(
Θ12(z) + 2994192 Θ6(z)η6

3(z)

+ 8864640 η12
3 (z)

)
E3,3,−i(z)η3(z). (11.27)

For the coefficients in

Θ3(z)η3(z) =
∑

n≡1 mod 6

γ4(n)e
(

nz
6

)
,

E3,3,−i(z)η3(z) =
∑

n≡1 mod 6

γ′
4(n)e

(
nz
6

)

at primes p ≡ 1 mod 6 one can deduce similar properties as in the preceding
cases. We omit the proofs, but note the results

γ4(p) ≡ γ′
4(p) ≡

{
2

−1 mod 18 if c1(p) =
{

2,
−1,

(11.28)
{

γ4(p) = γ′
4(p) = a8(p)

γ4(p) + γ′
4(p) + a8(p) = 0 if c1(p) =

{
2,

−1,
(11.29)

where a8(n) denote the coefficients of η8(z) in Sect. 9.4,

γ4(p) ≤ −(6p − 8) or γ4(p) ≥ 3p − 1 if c1(p) = 2,

|γ4(p)| ≤ (p − 3)
√

4p − 3 if c1(p) = 2.

We continue the list of equivalent statements in Corollary 11.3, using Corol-
laries 11.6, 11.8 and (11.28), (11.29):

Corollary 11.10 Let η3(z) and Θ(z) be defined as in Example 11.5. For
primes p ≡ 1 mod 6, the statements in Corollary 11.3 and the following state-
ments are equivalent to each other :
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(f) The coefficient c2(p) of η2
3(z) at p satisfies c2(p) ≡ 2 mod 6.

(g) The coefficients of η2
3(z) and η4(z) at the prime p are equal to each

other.
(h) The coefficient γ2(p) of Θ(z)η2

3(z) at p satisfies γ2(p) ≡ 2 mod 6.
(i) The coefficients of Θ(z)η3(z) and η4(z) at the prime p are equal to each

other.
(j) The coefficient γ4(p) of Θ3(z)η2

3(z) at p satisfies γ4(p) ≡ 2 mod 18.
(k) The coefficients of Θ3(z)η3(z) and η8(z) at p are equal to each other.
(l) The coefficients of Θ3(z)η3(z) and E3,3,−i(z)η3(z) at p are equal to each

other.

11.3 Weights k ≡ 3, 5 mod 6 for the Fricke Group Γ∗(3)

We continue to use the notations η3(z) = η(z)η(3z) and Θ(z) = 6 Θ1(−3, 1, z)
from Sect. 11.1. There are three cusp forms of weight 3 for Γ∗(3), with
expansions

η3
3(z) =

∑

n≡1 mod 2

c3(n)e
(

nz
2

)
, (11.30)

Θ(z)η2
3(z) =

∑

n≡1 mod 3

γ3(n)e
(

nz
3

)
, Θ2(z)η3(z) =

∑

n≡1 mod 6

λ3(n)e
(

nz
6

)
.

(11.31)
Lists of coefficients suggest that all of them are Hecke theta series for Q(

√
−3).

According to Theorem 5.1, we need characters with periods 2, 3 and 6, re-
spectively. The group (O3/(2))× is cyclic of order 3 with the residue of ω
modulo 2 as a generator.

Example 11.11 A character ψ2 on O3 with period 2 is fixed by the value
ψ2(ω) = −ω. The corresponding theta series are not identically 0 for weights
k ≡ 3 mod 6 and satisfy

Θ3

(
ψ2,

z
2

)
= η3

3(z), (11.32)

Θ9

(
ψ2,

z
2

)
=

(
Θ6(z) + 48 η6

3(z)
)
η3
3(z), (11.33)

Θ15

(
ψ2,

z
2

)
=

(
Θ12(z) − 2256 Θ6(z)η6

3(z) + 58752 η12
3 (z)

)
η3
3(z). (11.34)

The theta series for the conjugate complex character ψ2 are not identically 0
for weights k ≡ 5 mod 6 and satisfy

Θ5

(
ψ2,

z
2

)
= Θ2(z)η3

3(z), (11.35)

Θ11

(
ψ2,

z
2

)
=

(
Θ6(z) − 288 η6

3(z)
)
Θ2(z)η3

3(z), (11.36)

Θ17

(
ψ2,

z
2

)
=

(
Θ12(z) + 6480 Θ6(z)η6

3(z) − 255744 η12
3 (z)

)
Θ2(z)η3

3(z).
(11.37)
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Corollary 11.12 For primes p ≡ 1 mod 6 the coefficients c3(p) of η3
3(z) have

the following properties:

(1) We have c3(p) ≡ 2pmod 12 and c3(p) ≡ 2 mod 24.
(2) Every odd prime divisor q of c3(p) satisfies q ≡ ±1 mod 12 and

(
p
q

)
=(

2
q

)
.

(3) We have c3(p) = 2 if and only if p = 2u2 − 1 and u2 − 3v2 = 1 for some
u, v ∈ N.

(4) We have −2(p − 2) ≤ c3(p) ≤ 2(p − 6). Equality c3(p) = −2(p − 2)
holds if and only if p = 12m2 + 1, and equality c3(p) = 2(p − 6) holds
if and only if p = 4m2 + 3 for some m ∈ N.

(5) The coefficient λ5(p) of Θ2(z)η3
3(z) at p satisfies λ5(p) = (c3(p))2 − 2p2.

Proof. We have p = μμ = x2 +xy +y2 where we can choose μ = x+yω ∈ O3

with μ ≡ 1 mod 2. Then ψ2(μ) = ψ2(μ) = 1, and (11.32) implies

c3(p) = μ2 + μ2 = 2p − 3y2 = (2x + y)2 − 2p. (11.38)

Since y is even, we get c3(p) = 2p − 3y2 ≡ 2pmod 12. Since p ≡ 1 or 7 mod 12
according to y ≡ 0 or 2 mod 4, we also get c3(p) ≡ 2 mod 24. Thus (1) is
established.

Let q be an odd prime divisor of c3(p). Then 6p − (3y)2 ≡ 2p − (2x + y)2 ≡
0 mod q, hence

(
6p
q

)
=
(

2p
q

)
= 1. Therefore we get

(
p
q

)
=
(

2
q

)
and

(
3
q

)
= 1,

i.e., q ≡ ±1 mod 12. Thus we proved (2).

From (1) it is clear that c3(p) ≥ 2 or c3(p) ≤ −22. The case c3(p) = 2 means
that 2p − 3y2 = (2x + y)2 − 2p = 2. Here, y = 2v and 2x + y = 2u are even,
and we obtain p = 2u2 − 1, u2 − 3v2 = 1. This proves (3).

From |c3(p)| < 2p and (1) it is clear that −2(p − 2) ≤ c3(p) ≤ 2(p − 6).
From (11.38) we see that c3(p) = 2p − 12 holds if and only if y2 = 4, and
this means that p = (x + 1)2 + 3 = 4m2 + 3 for some m ∈ Z. Also, we see
that c3(p) = −2p + 4 holds if and only if (2x + y)2 = 4, and this means that
p = 1 + 3

4y2 = 1 + 12m2 for some m ∈ Z. This proves (4).

With μ chosen as before, (11.35) implies λ5(p) = μ4+μ4 = (μ2+μ)2−2μ2μ2 =
(c3(p))2 − 2p2, which is (5). �

Remark. All positive solutions um, vm of Pell’s equation u2 − 3v2 = 1 in
Corollary 11.12 (3) are given by um+vm

√
3 = (2+

√
3)m. If pm = 2u2

m −1 is a
prime then m = 2a is a power of 2, according to Theorem 10.4. Thus p1 = 7,
p2 = 97, p8 = 708158977 are the only primes below 1035 with c3(p) = 2,
since p4 = 31 · 607 and p16 = 127 · 7897466719774591 are composite. We
recall relation (10.40) for the coefficients of η8(z)η−2(2z) which lead us to
the “even” solutions u2m, v2m of u2 − 3v2 = 1.
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Example 11.13 Let ψ2 and ψ2 be the characters with period 3 on O3 which
are fixed by the values ψ2(ω) = −ω, ψ2(ω) = ω2 and which are the squares
of the characters ψ, ψ in Example 11.5. The theta series for ψ2 are not
identically 0 for weights k ≡ 3 mod 6 and satisfy

Θ3

(
ψ2, z

3

)
= Θ(z)η2

3(z), (11.39)

Θ9

(
ψ2, z

3

)
=

(
Θ6(z) + 216 η6

3(z)
)
Θ(z)η2

3(z), (11.40)

Θ15

(
ψ2, z

3

)
=

(
Θ12(z) + 16308 Θ6(z)η6

3(z) + 903960 η12
3 (z)

)
Θ(z)η2

3(z).
(11.41)

The theta series for ψ2 are not identically 0 for weights k ≡ 5 mod 6 and
satisfy

Θ5

(
ψ2, z

3

)
= Θ3(z)η2

3(z), (11.42)

Θ11

(
ψ2, z

3

)
=

(
Θ6(z) + 972 η6

3(z)
)
Θ3(z)η2

3(z), (11.43)

Θ17

(
ψ2, z

3

)
=

(
Θ12(z) + 65448 Θ6(z)η6

3(z)

− 14486688 η12
3 (z)

)
Θ3(z)η2

3(z). (11.44)

From (11.39) one derives properties of the coefficients of Θ(z)η2
3(z). We omit

the proofs, which are similar to preceding cases, except for part (3):

Corollary 11.14 For primes p ≡ 1 mod 6 the coefficients γ3(p) of Θ(z)η2
3(z)

have the following properties:

(1) We have γ3(p) ≡ 2pmod 27 and

γ3(p) ≡
{

2
−1 mod 12 if c1(p) =

{
2,

−1.

Moreover, γ3(p) = c3(p) if and only if c1(p) = 2.
(2) Every odd prime divisor q of γ3(p) satisfies q ≡ ±1 mod 12 and

(
p
q

)
=(

2
q

)
.

(3) There is no prime with γ3(p) = 2. The only prime with γ3(p) = −1 is
p = 13.

(4) We have −2p + 1 ≤ γ3(p) ≤ 2p − 27. Equality γ3(p) = −2p + 1 holds
if and only if 4p = 27m2 + 1, and equality γ3(p) = 2p − 27 holds if and
only if p = m2 + 3m + 9 for some m ∈ N.

Proof of part (3). As in the proof of Corollary 11.12 (3), one finds that
γ3(p) = 2 if and only if p = 2U2 − 1 and U2 − 27V 2 = 1 for some U, V ∈ N.
The positive solutions Um, Vm of Pell’s equation U2−27V 2 = 1 are Um = u3m,
Vm = v3m where um, vm is defined in the remark after Corollary 11.12. Now
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Theorem 10.4 says that all numbers Pm = 2U2
m − 1 = p3m are composite.—

We have γ3(p) = −1 if and only if 2p = u2 + 1, u2 − 27v2 = −2 for some
u, v ∈ N. The positive solutions um, vm of u2 − 27v2 = −2 are given by
um + vm

√
27 = (5 +

√
27)(26 + 5

√
27)m−1. An easy induction shows that all

numbers p′
m = 1

2 (u2
m + 1) are multiples of the prime p′

1 = 13. �

Example 11.15 Let ρ2 be the character with period 6 on O3 which is fixed by
the values ρ2(2+ω) = 1, ρ2(ω) = −ω and which is the square of the character
ρ in Example 11.7. The corresponding theta series are not identically 0 for
weights k ≡ 3 mod 6 and satisfy

Θ3

(
ρ2, z

6

)
= Θ2(z)η3(z), (11.45)

Θ9

(
ρ2, z

6

)
=

(
Θ6(z) − 4320 η6

3(z)
)
Θ2(z)η3(z), (11.46)

Θ15

(
ρ2, z

6

)
=

(
Θ12(z) − 72144 Θ6(z)η6

3(z)

− 118506240 η12
3 (z)

)
Θ2(z)η3(z). (11.47)

The theta series for the conjugate complex character ρ2 are not identically 0
for weights k ≡ 5 mod 6 and satisfy

Θ5

(
ρ 2, z

6

)
= Θ4(z)η3(z), (11.48)

Θ11

(
ρ 2, z

6

)
=

(
Θ6(z) − 33048 η6

3(z)
)
Θ4(z)η3(z), (11.49)

Θ17

(
ρ 2, z

6

)
=

(
Θ12(z) + 6728832 Θ6(z)η6

3(z)

− 1562042880 η12
3 (z)

)
Θ4(z)η3(z). (11.50)

From (11.45) one obtains properties of the coefficients of Θ2(z)η3(z). We
omit the proofs.

Corollary 11.16 For primes p ≡ 1 mod 6 the coefficients λ3(p) of Θ2(z) ×
η3(z) have the following properties:

(1) We have

λ3(p) ≡
{

2p mod 108,
2p − 3 mod 72,

λ3(p) ≡
{

2
−1 mod 12 if c1(p) =

{
2,

−1.

Moreover, λ3(p) = c3(p) if and only if c1(p) = 2.
(2) Every odd prime divisor q of λ3(p) satisfies q ≡ ±1 mod 12 and

(
p
q

)
=(

2
q

)
.

(3) We have −2p+1 ≤ λ3(p) ≤ 2p−3. Equality λ3(p) = −2p+1 holds if and
only if 4p = 3y2 + 1 for some y ≡ 1 mod 6, and equality λ3(p) = 2p − 3
holds if and only if p = x2 + x + 1 for some x ≡ 2 or 3 mod 6.
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It can be shown that λ3(p) �= −1 for all primes p. If λ3(p) = 2 then we
also have γ3(p) = 2, and the statements in Corollary 11.14 and the following
remark apply.

With Corollaries 11.12, 11.14, 11.16 it is easily possible to prolong the list of
equivalent statements in Example 11.5 and Corollary 11.10. We refrain from
stating the results.

11.4 Weight k = 2 for Γ0(3)

For level N = 3 and weight k = 2 there are seven new holomorphic eta
products. In Example 11.5 the function η2(z)η2(3z) was identified with a
theta series. Of the remaining 6 functions, there are 4 cuspidal and 2 non-
cuspidal eta products. For two of the cusp forms with denominator t = 12
there is a neat representation by Hecke series:

Example 11.17 The residues of 2+ω, 5 and ω modulo 12 can be chosen as
generators of the group (O3/(12))× � Z6 × Z2 × Z6. A pair of characters ψδ

on O3 with period 12 is given by

ψδ(2 + ω) = δω, ψδ(5) = 1, ψδ(ω) = ω

with δ ∈ {1, −1}. The corresponding theta series of weight 2 have a decom-
position

Θ2

(
−3, ψδ,

z
12

)
= f1(z) + 3

√
3δi f7(z) (11.51)

with normalized integral Fourier series fj with denominator 12 and numera-
tor classes j modulo 12 which are eta products,

f1(z) =
η5(z)
η(3z)

, f7(z) =
η5(3z)
η(z)

. (11.52)

The cuspidal eta product η3(z)η(3z) has denominator 4 and numerator 1.
Its coefficients enjoy partially multiplicative properties, but it is not a Hecke
eigenform. We do not get an eigenform by adding a complementary Fourier
series for the remainder 3 modulo 4. But in the following example we will
obtain a theta series by adding an old eta product of level 9 with order 5

4 at ∞.
The eta product η(z)η3(3z) is cuspidal with order 5

12 at ∞, and its coefficients
also have some partially multiplicative properties. Here one can construct an
eigenform, which also is a theta series, by adding a complementary component
for the remainder 1 modulo 12. It turns out that the missing component
is obtained by rescaling the variable in η3(z)η(3z), thus passing from level
N = 3 to the higher level 9. So we get identities which are more complicated
than those in the examples so far in this section.
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Example 11.18 Let the generators of (O1/(6))× � Z8 × Z2 be chosen as in
Example 9.1, and define a pair of characters χδ on O1 with period 6 by the
assignment

χδ(2 + i) = δ√
2
(1 + i), χδ(2 + 3i) = 1

with δ ∈ {1, −1}. The corresponding theta series of weight 2 have a decom-
position

Θ2

(
−4, χδ,

z
12

)
= f1(z) + 3

√
2 δi f5(z) (11.53)

with normalized integral Fourier series fj(z) with denominator 12 and nu-
merator classes j modulo 12. The component f5 is an eta product, and f1 is
a linear combination of eta products. We have

f1(z) = η3
(

z
3

)
η(z) + 3η(z)η3(3z), f5(z) = η(z)η3(3z), (11.54)

Θ2

(
−4, χδ,

z
4

)
= η3(z)η(3z) + 3(1 +

√
2 δi) η(3z)η3(9z).

The Fricke involution W9 acts on Fδ(z) = Θ2

(
−4, χ

δ
, z

4

)
by Fδ(W9z) =

−3
√

3(1 +
√

2δi)z2 F−δ(z).

We introduce coefficients for the functions in the last example by setting

η3(z)η(3z) =
∑

n≡1,5 mod 12

a(n)e
(nz

4

)
,

η(3z)η3(9z) =
∑

n≡5 mod 12

b(n)e
(nz

4

)
,

and Fδ(z) =
∑

n≡1,5 mod 12 λδ(n)e
(

nz
4

)
. Then we use (8.3), (8.15) to relate

a(n), b(n) to the positive solutions of x2 + y2 = 2n and 9x2 + y2 = 2n with
x odd and gcd(y, 6) = 1. It follows that b(n) = −3a(n) for n ≡ 5 mod 12 and

λδ(n) =
{

a(n)
−

√
2δi a(n)

for n ≡
{

1
5 mod 12.

The non-cuspidal eta products of weight 2 and level 3 are the squares of the
functions in Example 11.4, η6(z)/η2(3z) and η6(3z)/η2(z). Below, for the
first one we present a complicated identity with Eisenstein series. The second
one has denominator 3 and numerator 2, and one needs a complementary
component with numerator 1 to construct eigenforms:

Example 11.19 We have the identities

η6(z)
η2(3z)

= 1 + 3
∞∑

n=1

( ∑

9 � d | n

d

)
e(nz) − 9

∑

n≡1 mod 3

σ1(n)e(nz), (11.55)
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f1(z) + 3
η6(3z)
η2(z)

=
∑

3 � n

σ1(n)e
(

nz
3

)
, (11.56)

f1(z) − 3
η6(3z)
η2(z)

=
∞∑

n=1

(
n
3

)
σ1(n)e

(
nz
3

)
(11.57)

with f1(z) =
∑

n≡1 mod 3 σ1(n)e
(

nz
3

)
.

11.5 Lacunary Eta Products with Weights k > 2 for Γ0(3)

Cooper, Gun and Ramakrishnan [25] determined all lacunary eta products
of levels N = 3, 4 and 5. The preceding examples in this section comprise
all those of level 3 which have weights k ≤ 2 or belong to the Fricke group.
Besides, there are 8 more with weights k > 2, and all of them have weight 4.
The representations of these eta products by theta series have already been
established by Gordon and Hughes [42] and Ahlgren [2]. The first example
from [2] shows that

[
110, 3−2

]
and

[
1−2, 310

]
are lacunary:

Example 11.20 Let the generators of (O3/(6))× � Z3 × Z6 be chosen as in
Example 11.1, fix a character ψ1 on O3 with period 6 by its values

ψ1(2 + ω) = −ω = e
(

− 1
3

)
, ψ1(ω) = −1,

and let ψ−1 = ψ1 be the conjugate complex character. Then for δ ∈ {1, −1}
the corresponding theta series of weight 4 satisfy

Θ4

(
−3, ψδ,

z
6

)
=

η10(z)
η2(3z)

+ 27δ
η10(3z)
η2(z)

. (11.58)

The next example from [2] shows that
[
19, 3−1

]
and

[
1−3, 311

]
are lacunary

since they are linear combinations of Hecke theta series:

Example 11.21 Let the generators of (O1/(6))× � Z8 × Z2 be chosen as
in Example 9.1. For δ ∈ {1, −1}, define a pair of characters ϕδ on O1 with
period 6 by

ϕδ(2 + i) = δξ = δ 1 − i√
2

, ϕδ(2 + 3i) = 1.

The residues of 1 + 2ω and ω modulo 4 generate the group (O3/(4))× �
Z2 × Z6. A pair of characters ψδ on O3 with period 4 is given by

ψδ(1 + 2ω) = δ, ψδ(ω) = −1.
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Let ψ′
δ be the imprimitive character on O3 with period 4(1 + ω) which is

induced by ψδ. Then the corresponding theta series of weight 4 satisfy

η9(z)
η(3z)

− 9
η11(3z)
η3(z)

= 1
2 (1 + i

√
2) Θ4

(
−4, ϕ1,

z
4

)

+ 1
2 (1 − i

√
2) Θ4

(
−4, ϕ−1,

z
4

)
, (11.59)

η9(z)
η(3z)

+ 9
η11(3z)
η3(z)

= 3
2

(
Θ4

(
−3, ψ′

1,
z
4

)
+ Θ4

(
−3, ψ′

−1,
z
4

))

+
(
Θ4

(
−3, ψ1,

z
4

)
+ Θ4

(
−3, ψ−1,

z
4

))
. (11.60)

The identities (11.59), (11.60) imply relations among the coefficients of the
two eta products: Let us write

η9(z)
η(3z)

=
∑

n≡1 mod 4

a(n)e
(

nz
4

)
,

η11(3z)
η3(z)

=
∑

n≡1 mod 4

b(n)e
(

nz
4

)
.

Then we have

b(n) =
{

9a(n)
−9a(n) for n ≡

{
5
9 mod 12.

For primes p ≡ 1 mod 12 we have p = μμ = x2 + y2 where we can choose
μ = x + yi ∈ O1 with 3|y, x ≡ 1 or 2 mod 6, and we have p = λλ = u2 + 12t2

with λ = u + 2t
√

−3 ∈ O3. Then the characters in Example 11.21 satisfy
ϕδ(μ) = ϕδ(μ) = 1, ψδ(λ) = ψδ(λ) = ±1, and we get

a(p) − 9b(p) = μ3 + μ3 = 2x(x2 − 3y2),

a(p) + 9b(p) = ±(λ3 + λ
3
) = ±2u(u − 6t)(u + 6t).

Under the Fricke involution W3, the functions
[
19, 3−1

]
± 9

[
1−3, 311

]
in Ex-

ample 11.21 are transformed into multiples of
[
111, 3−3

]
± 81

[
1−1, 39

]
. The

representations of these functions by Hecke theta series looks somewhat sim-
pler than the preceding identities. Moreover, we identify

[
13, 35

]
and

[
15, 33

]

with components of theta series, thus proving their lacunarity as in [42]:

Example 11.22 Let ϕδ, ψδ and ψ′
δ be defined as in Example 11.21. Then

we have

η11(z)
η3(3z)

− 81
η9(3z)
η(z)

= 1
2

(
Θ4

(
−4, ϕ1,

z
12

)
+ Θ4

(
−4, ϕ−1,

z
12

))
,

(11.61)
η11(z)
η3(3z)

+ 81
η9(3z)
η(z)

= 1
2

(
Θ4

(
−3, ψ′

1,
z
12

)
+ Θ4

(
−3, ψ′

−1,
z
12

))
.

(11.62)
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Moreover, we have decompositions

Θ4

(
−3, ψ′

δ,
z
12

)
= f1(z) + 18δi

√
3 f7(z), (11.63)

3 Θ4

(
−3, ψ′

δ,
z
4

)
− 2 Θ4

(
−3, ψδ,

z
4

)
= g1(z) − 6δi

√
3 g3(z), (11.64)

where the components fj and gj are normalized integral Fourier series with
denominators 12 and 4, respectively, and numerator classes j modulo their
denominators, and all of them are eta products or linear combinations thereof,

f1(z) =
η11(z)
η3(3z)

+ 81
η9(3z)
η(z)

, f7(z) = η5(z)η3(3z), (11.65)

g1(z) =
η9(z)
η(3z)

+ 9
η11(3z)
η3(z)

, g3(z) = η3(z)η5(3z). (11.66)
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12.1 Odd Weights for the Fricke Groups Γ∗(p), p = 5, 7,
11, 23

For primes p ≥ 5 the only holomorphic eta product of weight 1 and level p is
ηp(z) = η(z)η(pz). It belongs to the Fricke group. If the order at ∞ satisfies
p+1
24 ≤ 1 then we can find complementary components such that a linear

combination with ηp(z) becomes a Hecke theta series. For p ∈ {5, 7, 11, 23}
the numerator of the eta product is one, p+1

24 = 1
t . Then ηp(z) itself is a

Hecke theta series. These cases are known from [31] and [65]. The result for
p = 23 was discussed even earlier by van der Blij [12] and Schoeneberg [123].
For p = 5 and p = 7 theta series identities involving real quadratic fields are
known from [63], [56].

Example 12.1 Let J5 be the system of ideal numbers for Q(
√

−5) as defined
in Example 7.1. The residue of (1 +

√
−5)/

√
2 modulo 2 generates the group

(J5/(2))× � Z4. A pair of characters ψν on J5 with period 2 is fixed by

ψν

(
1+

√
−5√
2

)
= νi

with ν ∈ {1, −1}. The residues of 2 + i and i modulo 2(2 − i) can be chosen
as generators for the group (O1/(4 − 2i))× � Z2 × Z4. A character χ on O1

with period 2(2 − i) is fixed by its values

χ(2 + i) = −1, χ(i) = 1.

Let χ̂ be the character with period 2(2 + i) which is defined by χ̂(μ) = χ(μ)
for μ ∈ O1. The residues of 1

2 (1 +
√

5) and −1 modulo 4 generate the group(
O

Q(
√

5)/(4)
)× � Z6 × Z2. A Hecke character ξ on O

Q(
√

5) is given by

ξ(μ) =
{

sgn(μ)
−sgn(μ) for μ ≡

{
1
2 (1 +

√
5)

−1
mod 4.
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The theta series of weight 1 for the characters ξ, ψν , χ and χ̂ are identical ;
we have

Θ1

(
5, ξ, z

4

)
= Θ1

(
−20, ψν , z

4

)
= Θ1

(
−4, χ, z

4

)
= Θ1

(
−4, χ̂, z

4

)
= η(z)η(5z).

(12.1)
With η5(z) = η(z)η(5z), the theta series of weights 3 and 5 satisfy

Θ3

(
−20, ψν , z

4

)
= E2,5,−1(z)η5(z) − 2ν

√
5 η3

5(z), (12.2)

Θ5

(
−20, ψν , z

4

)
=

(
E2

2,5,−1(z)η5(z) − 36η5
5(z)

)
+ 8ν

√
5 E2,5,−1(z)η3

5(z),
(12.3)

Θ5

(
−4, χ, z

4

)
=

(
4
25 (4 + 3i)E4,5,1(z) + 3

25 (3 − 4i)E2
2,5,−1(z)

)
η5(z)

+ 84
25 (3 − 4i)η5

5(z), (12.4)
Θ5

(
−4, χ̂, z

4

)
=

(
4
25 (4 − 3i)E4,5,1(z) + 3

25 (3 + 4i)E2
2,5,−1(z)

)
η5(z)

+ 84
25 (3 + 4i)η5

5(z). (12.5)

In Examples 24.25 and 24.29 we will identify η(z)η(5z) and η(5z)η(20z) with
differences of non-cuspidal eta products of level 20.

The identity (12.2) shows that η3(z)η3(5z) is a linear combination of two
Hecke theta series, and hence is lacunary. This is also clear since this function
is a product of two superlacunary series, η3(z) and η3(5z). Because of (12.3),
(12.4) and (12.5), η5(z)η5(5z) is a linear combination of four Hecke theta
series, and therefore it is lacunary. This was shown in [25], §3.2.

The quadratic form x2 + 5y2 represents the primes p ≡ 1 and 9 mod 20. The
characters ψν in Example 12.1 satisfy ψν(x+ y

√
−5) = (−1)y. Therefore the

identity (12.1) gives a rule whether p is represented by x2 + 20y2:

Corollary 12.2 A prime p ≡ 1 or 9 mod 20 is represented by the quadratic
form x2 +20y2 if and only if the coefficient in η(z)η(5z) =

∑
n≡1 mod 4 a(n) ×

e
(

nz
4

)
at the prime p satisfies a(p) = 2. If p is not represented by that form

then a(p) = −2.

Now we deal with level N = 7. Similarly as before in Example 12.1, the eta
product η(z)η(7z) is identified with theta series on a real quadratic field and
on two imaginary quadratic fields. For one of these fields we have conjugate
complex non-real periods of the characters.

In the following figure we show the values inside and close to period meshes
for the characters on O1 and O3 in Examples 12.1, 12.3 which are both
denoted by χ. (See also Fig. 12.1.)

Example 12.3 The group (O7/(3))× � Z8 is generated by the remainder of
1
2 (1 +

√
−7) modulo 3. A pair of characters ψν on O7 with period 3 is given
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Figure 12.1: Values of the characters χ in Examples 12.1, 12.3 in period meshes

by
ψν

(
1
2 (1 +

√
−7)

)
= νi

with ν ∈ {1, −1}. The remainders of 2 and −1 modulo 4 + ω can be chosen
as generators for the group (O3/(4 + ω))× � Z6 × Z2. A character χ on O3

with period 4 + ω is fixed by the values

χ(2) = −1, χ(−1) = 1.

Let χ̂ be the character with period 5 − ω which is defined by χ̂(μ) = χ(μ) for
μ ∈ O3. The coprime residues modulo M = 1

2 (3 +
√

21) in O
Q(

√
21) form

a group of order 2, and a Hecke character ξ modulo M on O
Q(

√
21) is given

by ξ(μ) = −sgn(μ) for μ ≡ −1 mod M . The theta series of weight 1 for the
characters ξ, ψν , χ and χ̂ are identical ; we have

Θ1

(
21, ξ, z

3

)
= Θ1

(
−7, ψν , z

3

)
= Θ1

(
−3, χ, z

3

)
= Θ1

(
−3, χ̂, z

3

)
= η(z)η(7z).

(12.6)
Put η7(z) = η(z)η(7z), and let

Θ(z) = 2 Θ1(−7, 1, z) =
∑

μ∈O7

e(μμz)

be the theta series of weight 1 for the trivial character on O7. Then the theta
series of weights 3 and 5 for ψν satisfy

Θ3

(
−7, ψν , z

3

)
= E2,7,−1(z)η7(z) − ν

√
7 Θ(z)η2

7(z), (12.7)

Θ5

(
−7, ψν , z

3

)
=

(
E4,7,1(z) + 216

5 Θ(z)η3
7(z)

)
η7(z)

+ 3ν
√

7
(
Θ3(z) − 4η3

7(z)
)
η2
7(z). (12.8)

The next weight with non-vanishing theta series for χ and χ̂ would be k = 7.
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In subsequent examples we will write χ1 and χ−1 for characters like χ and χ̂.
The advantage is a single entry Θ1(D, χν , z

t ) instead of two entries in formulae
like (12.1), (12.6).

We note some further identities among Eisenstein series, eta products and
theta series for the trivial character 1 on O7. They can be used to reshape
(12.7) and (12.8):

Example 12.4 Let 1 denote the trivial character on O7. For Θ(z) =
2 Θ1(−7, 1, z) and weights 3 and 5 we have the identities

E2,7,−1(z) = Θ2(z), (12.9)
Θ3(−7, 1, z) = η3(z)η3(7z), (12.10)
Θ5(−7, 1, z) = E2,7,−1(z)Θ3(−7, 1, z). (12.11)

The identities (12.7) and (12.8) show that the modular forms Θ(z)η2
7(z) and

η3
7(z) have lacunary Fourier expansions. For η3

7(z) this is clear since it is a
product of two superlacunary series. (Levels N ≥ 6 are not treated in [25].)—
We apply (12.6) to determine the coefficients of η(z)η(7z) at primes p which
satisfy

(
p
3

)
=
(

p
7

)
= 1. Then p = μμ = x2 +7y2 for some μ = x+y

√
−7 ∈ O7

which is unique when we require that x > 0, y > 0. Because of p ≡ 1 mod 3
we have xy ≡ 0 mod 3. The characters ψν on O7 satisfy

ψν(μ) = ψν(μ) =
{

1
−1 if

{
3|y,
3|x.

Therefore we obtain the first result in the following corollary. For the second
result we consider the coefficients b(n) of Θ3

(
ψν , z

3

)
. If p is as before and

p = μμ = x2 + 63y2 with μ = x + 3y
√

−7, then we obtain b(p) = μ2 + μ2 =
2(x2 − 63y2). It follows that b(p) = 2 if and only if x2 − 63y2 = 1. So there is
another opportunity to apply Theorem 10.4. Now the fundamental solution
of our Pell equation is x1 = 8, y1 = 1, and for pm = 2x2

m − 1 we find the
primes p1 = 127, p2 = 32257,

p16 = 1500 38171 39490 50304 32003 28185 43397 10977,

while p4 = 193 · 107 82529 and p8 = 598 98367 · 14 46008 68351 are composite.

Corollary 12.5 Define a(n) and b(n) by the expansions

η(z)η(7z) =
∑

n≡1 mod 3

a(n)e
(

nz
3

)
,

E2,7,−1(z)η(z)η(7z) =
∑

n≡1 mod 3

b(n)e
(

nz
3

)
.
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Then for primes p with
(

p
3

)
=
(

p
7

)
= 1 we have

a(p) =
{

2
−2 if

{
p = x2 + 63y2

p = 9x2 + 7y2

for some x, y ∈ N. Moreover, b(p) = 2 if and only if p = x2 + 63y2 and
x2 − 63y2 = 1 for some x, y ∈ N.

For level N = 11, the eta product η(z)η(11z) is a theta series for just one
imaginary quadratic field:

Example 12.6 The remainder of 1
2 (1+

√
−11) modulo 2 generates the cyclic

group (O11/(2))× � Z3. A pair of characters ψν on O11 with period 2 is given
by

ψν

(
1
2 (1 +

√
−11)

)
= ω2ν = 1

2 (−1 + ν
√

−3)

with ν ∈ {1, −1}. The theta series of weight 1 for ψν satisfy

Θ1

(
−11, ψν , z

2

)
= η(z)η(11z). (12.12)

Put η11(z) = η(z)η(11z), and let

Θ(z) = Θ1(−11, 1, z) =
1
2

∑

μ∈O11

e(μμz)

be the theta series of weight 1 for the trivial character on O11. Then for
weights 3 and 5 we have the identities

Θ3

(
−11, ψν , z

2

)
= Θ2(z)η11(z) − 1

2

(
1 + ν

√
33
)
η3
11(z), (12.13)

Θ5

(
−11, ψν , z

2

)
= Θ4(z)η11(z) − 1

2

(
−21 + 5ν

√
33
)
Θ2(z)η3

11(z)

+ 4
(
5 − ν

√
33
)
η5
11(z). (12.14)

Corollary 12.7 Let Θ(z) be given as in Example 12.6. Define a1(n), a3(n)
and c(n) by the expansions

η(z)η(11z) =
∑

n≡1 mod 2

a1(n)e
(

nz
2

)
,

η3(z)η3(11z) =
∑

n≡1 mod 2

a3(n)e
(

nz
2

)
,

Θ2(z)η(z)η(11z) =
∑

n≡1 mod 2

c(n)e
(

nz
2

)
.

Then for primes p with
(

p
11

)
= 1 the following assertions hold :
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(1) We have

a1(p) =
{

−1
2 if

{
p = 1

4 (x2 + 11y2) with x, y odd ,
p = x2 + 11y2.

(2) If a1(p) = 2, p = x2 + 11y2 then a3(p) = 0 and c(p) = 2(x2 − 11y2).
We have c(p) = 2 if and only if the prime p belongs to the sequence of
numbers Pm defined by P1 = 199, Pm+1 = 2P 2

m − 1.

Proof. Let p be a prime with
(

p
11

)
= 1. Then p is split in O11, hence

p = μμ = 1
4 (x2 + 11y2) with x ≡ y mod 2, and μ = 1

2 (x + y
√

−11) is unique
when we require that x > 0, y > 0. If x, y are odd then ψν(μ) = ω2,
ψν(μ) = ω−2 or vice versa, and then (12.12) implies a1(p) = ω2 + ω−2 = −1.
If x, y are even we write 2x, 2y instead of x, y. Then ψν(μ) = ψν(μ) = 1, and
(12.12) implies a1(p) = 2. This proves (1).

From Jacobi’s identity (1.7) we infer

a3(n) =
∑

u,v>0, u2+11v2=4n

(
−1
uv

)
uv.

We suppose that a1(p) = 2. Then p = x2 + 11y2 has a unique solution
in positive integers x, y. Since the prime 2 is inert in O11 it follows that
4p = u2 + 11v2 has no solution in integers. Therefore the sum for a3(p)
is empty, hence a3(p) = 0. Now from (12.13) it follows that c(p) is the
coefficient of Θ3

(
ψν , z

2

)
at p, i.e.,

c(p) = μ2 + μ2 = 2(x2 − 11y2).

Finally, we have c(p) = 2 if and only if x2 − 11y2 = 1. The fundamental
solution of this Pell equation is x1 = 10, y1 = 3. Hence from Theorem 10.4
we obtain the last assertion in (2). In this example, P1 = 199 and P2 = 79201
are prime, while P3 = 31 · 4046 96671 and P4, P5 are composite. �

Now we discuss the prime level N = 23. The eta product η(z)η(23z) has
denominator t = 1. It is a theta series for Q(

√
−23) whose characters have

period 1, i.e., they are characters of the ideal class group of this field.

Example 12.8 Let Λ = Λ23 = 3

√
(3 +

√
−23)/2 and J23 = O23 ∪ A2 ∪ A3

be given as in Example 7.13. Let ψν be the non-trivial characters of the
ideal class group of Q(

√
−23), defined on J23 by ψν(μ) = 1 for μ ∈ O23,

ψν(μ) = ω2ν for μ ∈ A2, ψν(μ) = ω−2ν for μ ∈ A3, with ν ∈ {1, −1}. Then
we have

Θ1(−23, ψν , z) = η(z)η(23z). (12.15)
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From (12.15) we deduce some of the results of van der Blij [12] and Schoene-
berg [123]. (See also Zagier’s article in [16].) We define a(n) by the expansion

η(z)η(23z) =
∞∑

n=1

a(n)e(nz).

We recall that the three subsets of J23 correspond to the ideal classes A1, A2,
A3 in Q(

√
−23) (with A1 the principal class), which in turn correspond to

the classes of binary quadratic forms of discriminant D = −23, represented
by 1

4 ((2x+y)2+23y2) and 1
8 ((4x ± y)2+23y2). If A is one of the ideal classes,

let a(n, A) denote the number of ideals in A whose norm is n.

Let p be a prime with
(

p
23

)
= 1. Then we have p = μμ where either μ, μ ∈ O23

or μ ∈ A2, μ ∈ A3. In the first case (12.15) yields a(p) = 2, and necessarily
p is of the form p = x2 + 23y2 with x, y ∈ N, 6|xy. In the second case we
get a(p) = ω2 + ω2 = −1, and there is a representation 8p = x2 + 23y2 with
2 � xy, 3|xy. Thus we have

a(p) =
{

2 = a(p, A1)
−1 = −a(p, A2) = −a(p, A3)

if
{

p = x2 + 23y2,
8p = x2 + 23y2.

(12.16)
It follows that a(n) = a(n, A1) − a(n, A2) for all n.

From the definition of the characters in Example 12.8 we obtain

2 Θk(−23, ψν , z) =
∑

μ∈O23

μk−1e(μμz) +
∑

μ∈A2

(
ω2νμk−1 + ω2νμk−1

)
e(μμz)

for any odd k ≥ 1. On the other hand, for the trivial character 1 on J23 we
get

2 Θk(−23, 1, z) =
∑

μ∈O23

μk−1e(μμz) +
∑

μ∈A2

(
μk−1 + μk−1

)
e(μμz).

Adding the relations, and using that ω2 + ω2 + 1 = 0, we obtain

2 (Θk(−23, ψ1, z) + Θk(−23, ψ−1, z) + Θk(−23, 1, z)) = 3
∑

μ∈O23

μk−1e(μμz).

Similarly we can represent
∑

μ∈A2
μk−1e(μμz) as a linear combination of

three theta series. Thus we get two linearly independent modular forms

∑

μ∈O23

μk−1e(μμz) and
∑

μ∈A2

μk−1e(μμz)

which are cusp forms for weight k ≥ 3 and non-cuspidal for weight k = 1.
The procedure is a symmetrization by means of the characters of the ideal
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class group and was, of course, known to Hecke. The result is also contained
as a special case in Kahl’s Theorem 5.2. Schoeneberg [123] observed that the
relation a(n) = a(n, A1) − a(n, A2) holds more generally for the coefficients
of η(z)η(|D|z) for any discriminant D < 0, D ≡ 1 mod 24, and suitable ideal
classes A1, A2 of Q(

√
D). A similar, though more complicated result for

D = −184 will be obtained in Example 21.3.

12.2 Weight 1 for the Fricke Groups Γ∗(p), p = 13, 17, 19

The eta product η(z)η(13z) is a component in theta series for the fields
Q(

√
−13), Q(

√
−3) and Q(

√
39). Gordon and Hughes [42] identified the other

component with a linear combination of eta products of level 156. When we
checked their formula we had to change two numerical factors and to replace
two of the functions by their sign transforms; note the discrepancies between
our formula for the component f1 below and that in [42], p. 429.

Example 12.9 Let J13 be the system of ideal numbers for Q(
√

−13) as de-
fined in Example 7.1. The residues of 2+

√
−13 and (3+

√
−13)/

√
2 modulo

6 can be chosen as generators of the group (J13/(6))× � Z8 × Z4, where
(2+

√
−13)4 ≡ −1 mod 6. Four characters χδ,ν on J13 with period 6 are fixed

by their values

χδ,ν(2 +
√

−13) = δνi, χδ,ν

(
1√
2
(3 +

√
−13)

)
= −νi

with δ, ν ∈ {1, −1}. The residues of 3 + ω, 1 + 6ω, 9 + 4ω and ω modulo
4(5 + 2ω) can be chosen as generators of the group (O3/(20 + 8ω))× � Z12 ×
Z2

2 × Z6. Two characters ψδ,1 on O3 with period 4(5 + 2ω) are given by

ψδ,1(3+ω) = 1, ψδ,1(1+6ω) = −δ, ψδ,1(9+4ω) = −1, ψδ,1(ω) = 1.

Let ψδ,−1 be the characters with period 4(5 + 2ω) which are defined by
ψδ,−1(μ) = ψδ,1(μ) for μ ∈ O3. Let the ideal numbers J

Q(
√

39) be chosen as in
Example 7.17. The residues of 1√

2
(7+

√
39) and −1 modulo M = 2(6+

√
39)

are generators of
(

J
Q(

√
39)/(M)

)× � Z4 ×Z2. Hecke characters ξδ on J
Q(

√
39)

with period M are given by

ξδ(μ) =
{

δ sgn(μ)
−sgn(μ) for

{ 1√
2
(7 +

√
39)

−1
mod M.

The theta series of weight 1 for the characters ξδ, χδ,ν , ψδ,ν satisfy the iden-
tities

Θ1

(
156, ξδ,

z
12

)
= Θ1

(
−52, χδ,ν , z

12

)
= Θ1

(
−3, ψδ,ν , z

12

)
= f1(z) + 2δ f7(z)

(12.17)
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with normalized integral Fourier series fj with denominator 12 and numera-
tor classes j modulo 12. The component f7 is an eta product,

f7(z) = η(z)η(13z). (12.18)

The component f1 is a linear combination of eta products of level 156,

f1 =
[
2−1, 4, 62, 12−1, 39−2, 785, 156−2

]

+
[
3−2, 65, 12−2, 26−1, 52, 782, 156−1

]

− 2
[
6−1, 122, 13−1, 262, 39, 52−1, 78−1, 156

]

− 2
[
1−1, 22, 3, 4−1, 6−1, 12, 78−1, 1562

]
.

A corresponding result for the sign transforms is stated in Example 22.5.

For level N = 17 we find the expected component η(z)η(17z) and another
component which is a combination of eta products of level 68:

Example 12.10 Let J17 be the system of ideal numbers for Q(
√

−17) as
defined in Example 7.9. The residue of Λ = Λ17 =

√
1√
2
(1 +

√
−17) modulo 2

generates the group (J17/(2))× � Z8. Four characters χδ,ν on J17 with
period 2 are fixed by their value

χδ,ν(Λ) = ξ = 1√
2
(δ + νi),

a primitive 8th root of unity, with δ, ν ∈ {1, −1}. The theta series of weight
1 for χδ,ν satisfy

Θ1

(
−68, χδ,ν , z

4

)
= f1(z) + δ

√
2 f3(z) (12.19)

with normalized integral Fourier series fj with denominator 4 and numerator
classes j modulo 4. The components are eta products or linear combinations
thereof,

f1 =
[

42, 345

2, 172, 682

]
−
[

25, 682

12, 42, 34

]
, f3 = [1, 17]. (12.20)

The characters in Example 12.10 are not induced by the norm, and therefore
(by Theorem 5.1) the components f1, f7 are cusp forms. Remarkably, in
(12.20) the cusp form f1 is written as a difference of two non-cuspidal eta
products of level 68 which do not belong to the Fricke group. The sign
transforms of f1, f7 will appear in Example 22.1 when we discuss level 68.
From the definition of χδ,ν , or from (12.20), (8.5), (8.8) we see that the
coefficient of f1(z) at an integer n ≡ 1 mod 4 is given by

∑

x>0, y∈Z, x2+68y2= n

1 −
∑

x>0, y∈Z, 4x2+17y2= n

1.



182 12. Prime Levels N = p ≥ 5

In particular, if p ≡ 1 mod 4 is prime and
(

p
17

)
= 1, then this coefficient is

2 or −2 if p is represented by the quadratic form x2 + 68y2 or 4x2 + 17y2,
respectively.

The theta series in Example 12.10 will appear once more in Example 22.14.

For level N = 19 there is a theta series with component η(z)η(19z). In [42]
the other component is identified with a linear combination of eta products
with level 456:

Example 12.11 The residue of 1
2 (1 +

√
−19) modulo 6 generates the group

(O19/(6))× � Z24. A quadruplet of characters χδ,ν on O19 with period 6 is
given by

χδ,ν( 1
2 (1 +

√
−19)) = ξ = 1

2 (δ
√

3 + νi),

a primitive 12th root of unity, with δ, ν ∈ {1, −1}. The theta series of weight
1 for χδ,ν decomposes as

Θ1

(
−19, χδ,ν , z

6

)
= f1(z) + δ

√
3 f5(z) (12.21)

with normalized integral Fourier series fj with denominator 6 and numerator
classes j modulo 6. The component f5 is an eta product,

f5(z) = η(z)η(19z). (12.22)

The component f1 is a linear combination of six eta products of level 456,

f1 =
[
4−1, 8, 122, 24−1, 114−2, 2285, 456−2

]

+
[
3−1, 62, 19−1, 38, 572, 114−1

]

−
[
6−2, 125, 24−2, 76−1, 152, 2282, 456−1

]

−
[
1−1, 2, 32, 6−1, 57−1, 1142

]

− 2
[
12−1, 242, 38−1, 762, 114, 152−1, 228−1, 456

]

+ 2
[
2−1, 42, 6, 8−1, 12−1, 24, 228−1, 4562

]
.

In Example 21.2, in a similar result for the sign transform of η(z)η(19z), we
will need characters on O19 with period 12.

12.3 Weight 2 for Γ0(p)

The only new eta product of weight 2 for the Fricke group Γ∗(p) is η2(z)η2(pz).
For p = 5 and p = 11 it is a Hecke eigenform. But it is not lacunary,
so there cannot be an identity of the kind listed in this monograph. The
function η2(z)η2(11z) is a prominent example of a weight 2 cuspidal eigen-
form: Its associated Dirichlet series is the zeta function of the elliptic curve
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Y 2 − Y = X3 − X2 with conductor 11 ([55], p. 321, [136], p. 365). This is
the simplest example for the celebrated relation between elliptic curves and
weight 2 modular forms. Martin and Ono [93] determined all eta products
which are weight 2 newforms and listed the corresponding elliptic curves.
The cusp form η2(z)η2(11z) can be identified with a linear combination of
two non-cusp forms; with Θ(z) as in Example 12.6 we have

η2(z)η2(11z) = 5
8

(
Θ2(z) − E2,11,−1(z)

)
. (12.23)

For all primes p there are the new weight 2 eta products
[
13, p

]
and

[
1, p3

]

for Γ0(p). These are the only ones if p ≥ 7. They are lacunary since they are
products of two superlacunary series. For Γ0(5) there are, in addition, two
new non-cuspidal eta products

[
15, 5−1

]
and

[
1−1, 55

]
of weight 2.

In [42], linear combinations of
[
13, 5

]
and

[
53, 1

]
are identified with Hecke

theta series:

Example 12.12 Let J15 be the system of ideal numbers for Q(
√

−15) as
defined in Example 7.3. The residues of 1

2

(√
3 +

√
−5
)

and −1 modulo
√

3
generate the group (J15/(

√
3))× � Z2

2 . A pair of characters ψδ on J15 with
period

√
3 is given by

ψδ

(
1
2

(√
3 +

√
−5
))

= δ, ψδ(−1) = −1

with δ ∈ {1, −1}. The corresponding theta series of weight 2 decompose as

Θ2

(
−15, ψδ,

z
3

)
= f1(z) + δi

√
5 f2(z) (12.24)

with normalized integral Fourier series fj with denominator 3 and numerator
classes j modulo 3. Both the components are eta products,

f1(z) = η3(z)η(5z), f2(z) = η(z)η3(5z). (12.25)

For p = 7 and p = 11 one finds complementary components such that linear
combinations with

[
13, p

]
and

[
1, p3

]
are Hecke theta series. The result for

p = 7 is known from [42]:

Example 12.13 Let J21 be the system of ideal numbers for Q(
√

−21) as
defined in Example 7.6. The residues of 1√

2
(

√
3 +

√
−7) and

√
−7 modulo

2
√

3 can be chosen as generators of (J21/(2
√

3))× � Z2
4 . Four characters

ψδ,ε on J21 with period 2
√

3 are fixed by their values

ψδ,ε

(
1√
2

(√
3 +

√
−7
))

= δi, ψδ,ε(
√

−7) = εi

with δ, ε ∈ {1, −1}. The corresponding theta series of weight 2 decompose as

Θ2

(
−84, ψδ,ε,

z
12

)
= f1(z) + δi

√
6 f5(z) − ε

√
7 f7(z) + δεi

√
42 f11(z) (12.26)
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with normalized integral Fourier series fj with denominator 12 and numera-
tor classes j modulo 12. The components f5 and f11 are eta products,

f5(z) = η3(z)η(7z), f11(z) = η(z)η3(7z). (12.27)

The components f1 and f7 are linear combinations of eta products of level
28,

f1 =
[
25, 4−2, 7−2, 145, 28−2

]
+ 4

[
12, 2−1, 42, 14−1, 282

]
, (12.28)

f7 =
[
1−2, 25, 4−2, 145, 28−2

]
+ 4

[
2−1, 42, 72, 14−1, 282

]
. (12.29)

Example 12.14 Let J33 be the system of ideal numbers for Q(
√

−33) as
defined in Example 7.6. The residues of 1√

2

(√
3 +

√
−11

)
,

√
−11 and −1

modulo 2
√

3 can be chosen as generators of (J33/(2
√

3))× � Z4 × Z2
2 . Four

characters ψδ,ε on J33 with period 2
√

3 are given by

ψδ,ε

(
1√
2

(√
3 +

√
−11

))
= ε, ψδ,ε(

√
−11) = δε, ψδ,ε(−1) = −1

with δ, ε ∈ {1, −1}. The theta series of weight 2 for ψδ,ε decompose as

Θ2

(
−132, ψδ,ε,

z
12

)
= f1(z) + δi

√
66 f5(z) + ε

√
6 f7(z) + δεi

√
11 f11(z)

(12.30)

with normalized integral Fourier series fj with denominator 12 and numera-
tor classes j modulo 12. The components f5 and f7 are eta products,

f5(z) = η(z)η3(11z), f7(z) = η3(z)η(11z). (12.31)

For p = 13 there are theta series on Q(
√

−39) whose “second” components are
linear combinations of the eta products

[
13, 13

]
and

[
1, 133

]
with denominator

t = 3. We use the system of ideal numbers J39 from Example 7.8, where
Λ = Λ39 is a root of the polynomial X8 − 5X4 + 16. The eight roots are
±c ± di, ±d ± ci with c = 1

2

√
4 +

√
13 > d = 1

2

√
4 −

√
13 > 0. Theorem 5.1

asks for characters with period
√

−3. The group (J39/(
√

−3))× � Z4 × Z2 is
generated by the residues of Λ and −1, and we have Λ ≡ −Λ3 mod

√
−3. For

weight 2 we need characters χ with χ(−1) = −1. The four choices for the
value at Λ yield four different theta series. For different choices of the root
Λ the four theta series are merely permuted. We obtain the following result:

Example 12.15 Let J39 be the system of ideal numbers for Q(
√

−39) as
defined in Example 7.8, where Λ = Λ39 is a root of the polynomial X8 −5X4+
16. The residues of Λ and −1 modulo

√
−3 can be chosen as generators of

(J39/(
√

−3))× � Z4 × Z2. Two pairs of characters χδ and ψδ on J39 with
period

√
−3 are given by

χδ(Λ) = δ, χδ(−1) = −1, ψδ(Λ) = δi, ψδ(−1) = −1
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with δ ∈ {1, −1}. If we choose Λ = 1
2 (
√

4 +
√

13 + i
√

4 −
√

13) then the
theta series of weight 2 for χδ and ψδ decompose as

Θ2

(
−39, χδ,

z
3

)
= f

(−1)
1,δ (z) + f

(−1)
2,δ (z),

Θ2

(
−39, ψδ,

z
3

)
= f

(1)
1,δ (z) + f

(1)
2,δ (z)

(12.32)

with Fourier series f
(ν)
j,δ (z) =

∑
n≡j mod 3 α

(ν)
j,δ (n)e

(
nz
3

)
whose coefficients are

algebraic integers. The components f
(−1)
2,δ and f

(1)
2,δ are linear combinations

of eta products,

f
(ν)
2,δ (z) = δi

√
4 + ν

√
13
(
η3(z)η(13z) + ν

√
13η(z)η3(13z)

)
. (12.33)

A different choice for Λ results in a permutation of the theta series.

We close this subsection with a description of the non-cuspidal eta products
of weight 2 for Γ0(5). They constitute an example of Hecke’s Eisenstein series
in Theorem 1.9:

Example 12.16 We have the identities

η5(z)
η(5z)

= 1 − 5
∞∑

n=1

( ∑

d>0, d|n

(
d

5

)
d

)
e(nz), (12.34)

η5(5z)
η(z)

=
∞∑

n=1

( ∑

d>0, d|n

(
n/d

5

)
d

)
e(nz). (12.35)

The formula (12.35) is equivalent with a famous formula of Ramanujan;
see [9], p. 107.

12.4 Weights 3 and 5 for Γ0(5)

In this subsection we present the results of Cooper, Gun and Ramakrishnan
[25] on lacunary eta products of level 5 with weights k > 2 which do not
belong to the Fricke group. There are four of them with weight 3 and two
with weight 5. Each of the eta products

[
17, 5−1

]
,
[
1, 55

]
,
[
15, 5

]
and

[
1−1, 57

]

is a linear combination of four theta series on the Gaussian field Q(
√

−1),
and hence is lacunary:

Example 12.17 The residues of 2 − i, 2 + 3i and i modulo 6(2 + i) can be
chosen as generators of (O1/(12 + 6i))× � Z8 × Z2 × Z4. Characters ϕδ,1 on
O1 with period 6(2 + i) are defined by

ϕδ,1(2 − i) = δi, ϕδ,1(2 + 3i) = −1, ϕδ,1(i) = −1
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with δ ∈ {1, −1}. Define the characters ϕδ,−1 on O1 with period 6(2 − i) by
ϕδ,−1(μ) = ϕδ,1(μ) for μ ∈ O1. For δ, ε ∈ {1, −1}, the theta series of weight
3 for these characters satisfy

Θ3

(
−4, ϕδ,ε,

z
12

)
=

η7(z)
η(5z)

+ (7 − 24εi) η(z)η5(5z)

+ δε

(
(4 + 3εi) η5(z)η(5z) + 5(4 − 3εi)

η7(5z)
η(z)

)
.

(12.36)

The last example from [25] shows that
[
111, 5−1

]
and

[
1−1, 511

]
are lacunary.

They are linear combinations of the theta series of weight 5 from Exam-
ple 12.1:

Example 12.18 Let χ, χ̂ and ψν be the characters on O1 and on J5, respec-
tively, as defined in Example 12.1. The corresponding theta series of weight
5 satisfy

η11(z)
η(5z)

+ 55
η11(5z)

η(z)
= 9

32

(
Θ5

(
−20, ψ1,

z
4

)
+ Θ5

(
−20, ψ−1,

z
4

))

+ 7
32

(
Θ5

(
−4, χ, z

4

)
+ Θ5

(
−4, χ̂, z

4

))
, (12.37)

η11(z)
η(5z)

+ 195
η11(5z)

η(z)
= 1

2

(
Θ5

(
−20, ψ1,

z
4

)
+ Θ5

(
−20, ψ−1,

z
4

))

+ 7i
24

(
Θ5

(
−4, χ, z

4

)
− Θ5

(
−4, χ̂, z

4

))
. (12.38)

Concerning prime levels, we finally mention a recent paper by Clader, Kem-
per and Wage [23]. The authors raise the problem to find all lacunary eta
products of the special form ηb(az)/η(z) with b odd, and they end up with a
complete list of 19 such functions. Of course, for a = 1 they recover Serre’s
list of seven lacunary powers ηb−1(z) with integral weight 1

2 (b − 1). Then
for a = 2, 3, 4, 5 they recover ten of the lacunary eta products known from
Gordon and Robins [43] and Cooper, Gun and Ramakrishnan [25]. The list
is completed by two eta products of level 7 with weights 4 and 7. Theta
series identities for 16 out of these special eta products (all of them with the
exception of

[
1−1, 47

]
,
[
1−1, 79

]
,
[
1−1, 715

]
) are to be found in Sects. 9, 10,

11, 12, 13 of our monograph.
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13.1 Odd Weights for the Fricke Group Γ∗(4)

There are six new holomorphic eta products of weight 1 for the Fricke group
Γ∗(4). They are the sign transforms of η2(z) and of the five eta products
for Γ0(2) listed at the beginning of Sect. 10.1. Therefore the representations
by theta series are quite similar to those in Sect. 10.1. A minor difference
is that we need larger periods for the characters. It is easy to verify the
following result, which allows a comfortable construction of modular forms
for the Fricke group Γ∗(4):

Lemma 13.1 If f(z) is a modular form of weight k for Γ0(2) (or, in partic-
ular, for the full modular group Γ1) then its sign transform g(z) = f

(
z + 1

2

)

is a modular form of weight k for the Fricke group Γ∗(4). If vf denotes the
multiplier system of f then the multiplier system vg of g is given by

vg(W4) = vf

(
1 −1
2 −1

)
, vg

(
a b
4c d

)
= vf

(
a + 2c b − c + d−a

2
4c d − 2c

)

for
(

a b
4c d

)
∈ Γ0(4).

In the particular case of the Eisenstein series E4(z) we see from (10.57)
that its sign transform E4

(
z + 1

2

)
is a linear combination of eta products

for Γ∗(4).—We begin with
[
1−2, 26, 4−2

]
, the sign transform of η2(z). Not

surprisingly, we find identities with theta series on three quadratic number
fields as before in Example 9.1:

Example 13.2 The residues of 2 + i, 1 + 6i and i modulo 12 can be chosen
as generators of the group (O1/(12))× � Z8 × Z2 × Z4. Two characters χν

on O1 with period 12 are fixed by their values

χν(2 + i) = νi, χν(1 + 6i) = −1, χν(i) = 1

G. Köhler, Eta Products and Theta Series Identities,
Springer Monographs in Mathematics,
DOI 10.1007/978-3-642-16152-0 13, c© Springer-Verlag Berlin Heidelberg 2011

187

http://dx.doi.org/10.1007/978-3-642-16152-0_13
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with ν ∈ {1, −1}. The residues of 1 + 2ω, 1 − 4ω, 5 and ω modulo 8(1 + ω)
can be chosen as generators of (O3/(8 + 8ω))× � Z4 × Z2

2 × Z6. Characters
ψν on O3 with period 8(1 + ω) are defined by

ψν(1 + 2ω) = ν, ψν(1 − 4ω) = 1, ψν(5) = −1, ψν(ω) = 1.

The residues of 2 +
√

3, 1 + 2
√

3 and −1 modulo 4
√

3 can be chosen as
generators of (Z[

√
3]/(4

√
3))× � Z4 × Z2

2 . A Hecke character ξ on Z[
√

3]
modulo 4

√
3 is given by

ξ(μ) =
{

sgn(μ)
−sgn(μ) for μ ≡

{
2 +

√
3

−1, 1 + 2
√

3
mod 4

√
3.

The corresponding theta series satisfy

Θ1

(
12, ξ, z

12

)
= Θ1

(
−4, χν , z

12

)
= Θ1

(
−3, ψν , z

12

)
=

η6(2z)
η2(z)η2(4z)

,

(13.1)

Θ5

(
−4, χν , z

12

)
= E4

(
z + 1

2

) η6(2z)
η2(z)η2(4z)

− 48ν

(
η6(2z)

η2(z)η2(4z)

)5

,

(13.2)

Θ7

(
−3, ψν , z

12

)
= E6

(
z + 1

2

) η6(2z)
η2(z)η2(4z)

− 360νi
√

3
(

η6(2z)
η2(z)η2(4z)

)7

.

(13.3)

The characters χν , ψν and the eta product
[
1−2, 26, 4−2

]
will reappear in

identities in Example 15.3.

Now we deal with the sign transforms of the eta products in Sect. 10.1. We
obtain theta identities involving the same fields as before in that section.

Example 13.3 The residues of 2 + i, 3 and i modulo 8 can be chosen as
generators of the group (O1/(8))× � Z4 × Z2 × Z4. A pair of characters χ∗

ν

on O1 with period 8 is fixed by the values

χ∗
ν(2 + i) = νi, χ∗

ν(3) = 1, χ∗
ν(i) = 1

with ν ∈ {1, −1}. The residues of 1 +
√

−2, 3 and −1 modulo 4
√

−2 can
be chosen as generators of (O2/(4

√
−2))× � Z4 × Z2

2 . Characters ψ∗
ν on O2

with period 4
√

−2 are defined by

ψ∗
ν(1 +

√
−2) = ν, ψ∗

ν(3) = −1, ψ∗
ν(−1) = 1.

The residues of 1 +
√

2, 3 and −1 modulo 4
√

2 generate the group (Z[
√

2]/
(4

√
2))× � Z4 × Z2

2 . A Hecke character ξ∗ on Z[
√

2] modulo 4
√

2 is given by

ξ∗(μ) =
{

sgn(μ)
−sgn(μ) for μ ≡

{
1 +

√
2, 3

−1
mod 4

√
2 .
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The corresponding theta series satisfy

Θ1

(
8, ξ∗, z

8

)
= Θ1

(
−4, χ∗

ν , z
8

)
= Θ1

(
−8, ψ∗

ν , z
8

)
=

η4(2z)
η(z)η(4z)

, (13.4)

Θ5

(
−4, χ∗

ν , z
8

)
= E4,2,−1

(
z + 1

2

) η4(2z)
η(z)η(4z)

− 48ν

(
η4(2z)

η(z)η(4z)

)5

,

(13.5)

Θ3

(
−8, ψ∗

ν , z
8

)
= E2,2,−1

(
z + 1

2

) η4(2z)
η(z)η(4z)

+ 4νi
√

2
(

η4(2z)
η(z)η(4z)

)3

,

(13.6)

Θ5

(
−8, ψ∗

ν , z
8

)
= E4,2,1

(
z + 1

2

) η4(2z)
η(z)η(4z)

− 8νi
√

2 E2,2,−1

(
z + 1

2

)( η4(2z)
η(z)η(4z)

)3

. (13.7)

Remark. The stars in the character symbols have been introduced to avoid a
clash of notation in Example 15.30 where these characters will occur together
with some other characters.

Example 13.4 The residues of 2+i, 1+6i, 5 and i modulo 24 can be chosen
as generators of the group (O1/(24))× � Z8 × Z4 × Z2 × Z4. Four characters
χδ,ν on O1 with period 24 are fixed by their values

χδ,ν(2 + i) = δ, χδ,ν(1 + 6i) = νi, χδ,ν(5) = 1, χδ,ν(i) = 1

with δ, ν ∈ {1, −1}. The residues of
√

3 +
√

−2, 1 +
√

−6, 7 and −1 mod-
ulo 4

√
−6 can be chosen as generators of (J6/(4

√
−6))× � Z2

4 × Z2
2 . Four

characters ϕδ,ν on J6 with period 4
√

−6 are defined by

ϕδ,ν(
√

3 +
√

−2) = δ, ϕδ,ν(1 +
√

−6) = ν,

ϕδ,ν(7) = −1, ϕδ,ν(−1) = 1.

The residues of 1+
√

6, 5, 7 and −1 modulo 4
√

6 can be chosen as generators
of the group (Z[

√
6]/(4

√
6))× � Z4 × Z3

2 . Hecke characters ξδ on Z[
√

6]
modulo 4

√
6 are given by

ξδ(μ) =

⎧
⎨

⎩

δ sgn(μ)
sgn(μ)

−sgn(μ)
for μ ≡

⎧
⎨

⎩

1 +
√

6
5, 7

−1
mod 4

√
6 .

The corresponding theta series of weight 1 satisfy the identities

Θ1

(
24, ξδ,

z
24

)
= Θ1

(
−4, χδ,ν , z

24

)
= Θ1

(
−24, ϕδ,ν , z

24

)
= f1(z) + 2δf5(z)

(13.8)
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with normalized integral Fourier series fj with denominator 24 and numera-
tor classes j modulo 24. Both the components are eta products,

f1(z) =
η8(2z)

η3(z)η3(4z)
, f5(z) = η(z)η(4z). (13.9)

Another identification with eta products for these theta series will be pre-
sented in Example 15.23, a third one in Example 24.17, and another one for
f1 in Example 25.24.

For weights 3 and 5 we have decompositions

Θ5

(
−4, χδ,ν , z

24

)
= f5,1(z) − 14δ f5,5(z) + 240ν f5,13(z)

+ 480δν f5,17(z),

Θ3

(
−24, ϕδ,ν , z

24

)
= g3,1(z) + 2δ g3,5(z) + 4νi

√
6 g3,7(z)

+ 8δνi
√

6 g3,11(z),

Θ5

(
−24, ϕδ,ν , z

24

)
= g5,1(z) − 46δ g5,5(z) − 40νi

√
6 g5,7(z)

− 80δνi
√

6 g5,11(z)

where f5, j(z) =
∑

n≡j mod 24 a5, j(n)e
(

nz
24

)
and gk, j(z) =

∑
n≡j mod 24 bk, j(n)×

e
(

nz
24

)
are normalized integral or rational Fourier series and where expressions

for the components f5, j and gk, j in terms of eta products are obtained by
taking the sign transforms of corresponding components in Examples 10.20
and 10.24.

Closing this subsection, we state analogues for the identities in Example 10.6
for the non-cuspidal eta products of weight 1 for Γ∗(4):

Example 13.5 The non-cuspidal eta products of weight 1 for Γ∗(4) are

η10(2z)
η4(z)η4(4z)

= 1 + 4
∞∑

n=1

(∑

d|n

(
−1
d

))
e(nz) = 4 Θ1(−4, 1, z), (13.10)

η2(z)η2(4z)
η2(2z)

=
∞∑

n=1

(
2
n

)(∑

d|n

(
−1
d

))
e
(nz

4

)
= Θ1

(
−4, χ, z

4

)
, (13.11)

where 1 stands for the trivial character on O1 and χ denotes the character
modulo 4 on O1 which is given by χ(μ) = (−1)

1
2 xy =

(
2

μ μ

)
for μ = x + yi ∈

O1, x �≡ y mod 2.

The character χ and another identity for Θ1

(
−4, χ, z

4

)
will appear in Exam-

ple 24.26. Another identity for Θ1(−4, 1, z) will be given in Example 24.31.
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13.2 Even Weights for the Fricke Group Γ∗(4)

There are 12 new holomorphic eta products of weight 2 for the Fricke group
Γ∗(4). Among them, 10 are cuspidal and 2 are non-cuspidal. All of them are
sign transforms of eta products of levels 1 or 2. We begin with a description
of the sign transforms of η2(z)η2(2z) and η4(z), and then we look for the
transforms of the functions in Sect. 10.4.

Example 13.6 The residues of 1 + 2i and i modulo 4 generate the group
(O1/(4))× � Z2 × Z4. A character χ on O1 with period 4 is fixed by the
values χ(1 + 2i) = 1, χ(i) = −i, and explicitly given by χ(x + yi) =

(−1
x

)
if

y is even, χ(x + yi) = −i
(−1

y

)
if x is even. The corresponding theta series

of weight 2 satisfies

Θ2

(
−4, χ, z

4

)
=

η8(2z)
η2(z)η2(4z)

. (13.12)

Another eta identity for this theta series will be presented in Example 15.21.
Identities for weights 6, 10 and 14 can be derived from corresponding identi-
ties in Example 10.7 by taking sign transforms. In this process we should be
aware that possibly the numerical factors in front of the terms get twisted.—
Primes p ≡ 1 mod 4 can be written as p = x2 + y2 with x odd, and then the
coefficient of η8(2z)/(η2(z)η2(4z)) at p is given by

(−1
x

)
· 2x.

Example 13.7 Let the generators of (O3/(4 + 4ω))× � Z2
2 × Z6 be chosen

as in Example 9.1, and define a character ψ on O3 with period 4(1 + ω) by
its values

ψ(1 + 2ω) = 1, ψ(1 − 4ω) = −1, ψ(ω) = ω.

The corresponding theta series of weight 2 satisfies

Θ2

(
−3, ψ, z

6

)
=

η12(2z)
η4(z)η4(4z)

. (13.13)

There is a linear relation among eta products,

2
η12(2z)

η4(z)η4(4z)
=

η10(z)
η4( z

2 )η2(2z)
+

η4( z
2 )η2(2z)
η2(z)

. (13.14)

We will meet the character ψ and the eta product
[
1−4, 212, 4−4

]
again in

Examples 13.15, 13.24.

As before, identities for weights 8, 14 and 20 are obtained from identities in
Example 9.3 by taking sign transforms. The linear relation (13.14) might
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look spectacular, but it can be proved by elementary arguments: We divide
it by η2(2z) and obtain the equivalent version

2
(

η5(2z)
η2(z)η2(4z)

)2

=
(

η5(z)
η2( z

2 )η2(2z)

)2

+
(

η2( z
2 )

η(z)

)2

, (13.15)

that is,
2 θ2(2z) = θ2(z) + θ2(z + 1).

This is well known ([24], p. 104, entry (26), or [36], p. 266) and shown as fol-
lows: Using (8.7) and (8.8) in Theorem 8.1, the identity (13.15) is equivalent
to the relations

2
∑

2(x2+y2) = n

1 =
∑

x2+y2 = n

(
1 + (−1)x+y

)

for all n ≥ 0, where in both sums the summation is on all x, y ∈ Z satisfying
the indicated equation. Here, obviously, both sides are 0 if n is odd. If
n = x2 + y2 is even then (−1)x+y = 1, and (x+ yi)/(1+ i) = x′ + y′i induces
a bijection of the terms on the right hand side to those on the left hand side.

Let c(n) denote the coefficients in (13.13),

η12(2z)
η4(z)η4(4z)

=
∑

n≡1 mod 6

c(n)e
(

nz

6

)
.

We can write this eta product as a product of two simple theta series in
two different ways,

[
1−4, 212, 4−4

]
=
[
1−3, 29, 4−3

][
1−1, 23, 4−1

]
=
[
1−5, 213,

4−5
][

1, 2−1, 4
]
. Now when we use (8.4), (8.6), (8.16), (8.20), we get the

identities

c(n) =
∑

x,y > 0, x2+3y2 = 4n

(
6
x

)(−2
y

)
y =

∑

x,y > 0, x2+3y2 = 4n

(−6
x

)(
2
y

)
x.

Now we treat the sign transforms of the eta products in Sect. 10.4.

Example 13.8 Let the generators of (O2/(4
√

−2))× � Z4 × Z2
2 be chosen

as in Example 13.3, and define a pair of characters ψδ on O2 with period
4

√
−2 by

ψδ(1 +
√

−2) = −δi, ψδ(3) = 1, ψδ(−1) = −1

with δ ∈ {1, −1}. The corresponding theta series of weight 2 satisfy

Θ2

(
−8, ψδ,

z
8

)
= f1(z) + 2

√
2δ f3(z) (13.16)

with normalized integral Fourier series fj with denominator 8 and numerator
classes j modulo 8. Both the components are eta products,

f1(z) =
η14(2z)

η5(z)η5(4z)
, f3(z) = η(z)η2(2z)η(4z). (13.17)
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Example 13.9 Let the generators of (O1/(12))× � Z8 × Z2 × Z4 be chosen
as in Example 13.2, and define a pair of characters χδ on O1 with period 12
by its values

χδ(2 + i) = δ, χδ(1 + 6i) = 1, χδ(i) = −i

with δ ∈ {1, −1}. The corresponding theta series of weight 2 satisfy

Θ2

(
−4, χδ,

z
12

)
= f1(z) + 4δ f5(z) (13.18)

with normalized integral Fourier series fj with denominator 12 and numera-
tor classes j modulo 12. Both the components are eta products,

f1(z) =
η16(2z)

η6(z)η6(4z)
, f5(z) = η2(z)η2(4z). (13.19)

Example 13.10 Let the generators of (J6/(4
√

−6))× � Z2
4 × Z2

2 be chosen
as in Example 13.4, and define a quadruplet of characters ϕδ,ε on J6 with
period 4

√
−6 by

ϕδ,ε(
√

3 +
√

−2) = δ, ϕδ,ε(1 +
√

−6) = −εi,

ϕδ,ε(7) = 1, ϕδ,ε(−1) = −1

with δ, ε ∈ {1, −1}. The corresponding theta series of weight 2 satisfy

Θ2

(
−24, ϕδ,ε,

z
24

)
= f1(z)+2

√
3δ f5(z)+2

√
6ε f7(z)−4

√
2δε f11(z) (13.20)

with normalized integral Fourier series fj with denominator 24 and numera-
tor classes j modulo 24. All the components are eta products,

f1 =
[

218

17, 47

]
, f5 =

[
210

13, 43

]
, f7 =

[
26

1, 4

]
, f11 =

[
13, 43

22

]
.

(13.21)

Identities for the non-cuspidal eta products of weight 2 for Γ∗(4),
[
1−8, 220,

4−8
]

and
[
14, 2−4, 44

]
, have already been stated in Sect. 10.4.

13.3 Weight 1 for Γ0(4)

In Table 13.1 we list the numbers of new holomorphic eta products of weights
1 and 2 for Γ0(4) which do not belong to Γ∗(4), specified according to their
denominator t and according to their property of being cuspidal or non-
cuspidal.

In the present subsection we will identify the cuspidal eta products of weight
1 with (components of) Hecke theta series both on real and on imaginary
quadratic fields, and we will present some identities for the non-cuspidal eta
products of weight 1.
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Table 13.1: Numbers of new eta products of level 4 with weights 1 and 2

denominator t 1 2 3 4 6 8 12 24
k = 1, cuspidal 0 0 0 0 2 0 0 4
k = 1, non-cuspidal 2 0 0 0 0 4 0 0
k = 2, cuspidal 0 2 6 2 4 8 8 24
k = 2, non-cuspidal 6 0 0 4 0 8 0 0

Example 13.11 Let the generators of (O3/(8 + 8ω))× � Z4 × Z2
2 × Z6 be

chosen as in Example 13.2, and define four characters ψδ,ν on O3 with period
8(1 + ω) by their values

ψδ,ν(1 + 2ω) = δi, ψδ,ν(1 − 4ω) = δν, ψδ,ν(5) = 1, ψδ,ν(ω) = 1

with δ, ν ∈ {1, −1}. Let the generators of (J6/(4
√

−6))× � Z2
4 ×Z2

2 be chosen
as in Example 13.4, and fix a quadruplet of characters ϕδ,ν on J6 with period
4

√
−6 by

ϕδ,ν(
√

3 +
√

−2) = ν, ϕδ,ν(1 +
√

−6) = δi,

ϕδ,ν(7) = −1, ϕδ,ν(−1) = 1.

The residues of 1 +
√

2 and 3 +
√

2 modulo 6
√

2 generate the group (Z[
√

2]/
(6

√
2))× � Z8 × Z4, where (3+

√
2)2 ≡ −1 mod 6

√
2. Hecke characters ξδ on

Z[
√

2] modulo 6
√

2 are given by

ξδ(μ) =
{

sgn(μ)
δi sgn(μ) for μ ≡

{
1 +

√
2

3 +
√

2
mod 6

√
2 .

The corresponding theta series of weight 1 are identical and decompose as

Θ1

(
8, ξδ,

z
6

)
= Θ1

(
−3, ψδ,ν , z

6

)
= Θ1

(
−24, ϕδ,ν , z

6

)
= f1(z) + 2δi f7(z)

(13.22)
where the components fj are normalized integral Fourier series with denom-
inator 6 and numerator classes j modulo 24. They are linear combinations
of two eta products which are sign transforms of each other,

f1 = 1
2

([
1−2, 25, 4−1

]
+
[
12, 2−1, 4

])
,

f7 = 1
4

([
1−2, 25, 4−1

]
−
[
12, 2−1, 4

])
.

(13.23)

The action of the Fricke involution W4 on Fδ = f1 + 2δif7 is given by

Fδ(W4z) = δ−i√
2

z
([

1−1, 25, 4−2
]

− 2δi
[
1, 2−1, 42

])
. (13.24)

Formula (13.24) shows that
[
1−1, 25, 4−2

]
− 2δi

[
1, 2−1, 42

]
is a pair of Hecke

eigenforms. Taking the sign transforms gives another such pair,
[
1, 22, 4−1

]
−

2δi
[
1−1, 22, 4

]
. Their representations by Hecke theta series are given in the

following example. We need characters with period 16(1 + ω) on O3.
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Example 13.12 Let the characters ξδ on Z[
√

6], ψδ,ν on O3 and ϕδ,ν on
J6 be defined as in Example 13.11. The residues of 1 + 2ω, 1 − 4ω, 7 and ω
modulo 16(1+ω) can be chosen as generators of the group (O3/(16+16ω))× �
Z8 × Z4 × Z2 × Z6. Define characters ψ̃δ,ν on O3 with period 16(1 + ω) by
their values

ψ̃δ,ν(1+2ω) = δi, ψ̃δ,ν(1−4ω) = νi, ψ̃δ,ν(7) = −1, ψ̃δ,ν(ω) = 1

with δ, ν ∈ {1, −1}. Let the generators of (J6/(4
√

−6))× � Z2
4 ×Z2

2 be chosen
as in Example 13.4, and define characters ρδ,ν on J6 with period 4

√
−6 by

ρδ,ν(
√

3 +
√

−2) = νi, ρδ,ν(1 +
√

−6) = δi,

ρδ,ν(7) = −1, ρδ,ν(−1) = 1.

The residues of 1 +
√

2, 3 +
√

2, 5 and −1 modulo 12
√

2 can be chosen as
generators of (Z[

√
2]/(12

√
2))× � Z8 × Z4 × Z2

2 . Hecke characters ξ̃δ on
Z[

√
2] modulo 12

√
2 are given by

ξ̃δ(μ) =

⎧
⎨

⎩

sgn(μ)
δi sgn(μ)

−sgn(μ)
for μ ≡

⎧
⎨

⎩

1 +
√

2
3 +

√
2

−1
mod 12

√
2 .

The theta series of weight 1 for ξδ, ψδ,ν and ϕδ,ν are identical, and those for
ξ̃δ, ψ̃δ,ν and ρδ,ν are identical, and they decompose as

Θ1

(
8, ξδ,

z
24

)
= Θ1

(
−3, ψδ,ν , z

24

)
= Θ1

(
−24, ϕδ,ν , z

24

)

= g1(z) + 2δi g7(z), (13.25)

Θ1

(
8, ξ̃δ,

z
24

)
= Θ1

(
− 3, ψ̃δ,ν , z

24

)
= Θ1

(
−24, ρδ,ν , z

24

)

= h1(z) + 2δi h7(z), (13.26)

where the components hj are normalized integral Fourier series with denom-
inator 24 and numerator classes j modulo 24, and where gj(4z) = fj(z) with
fj(z) as declared in Example 13.11. All the components are eta products, and
(g1, h1) and (g7, h7) are pairs of sign transforms. We have

g1 =
[
1−1, 25, 4−2

]
, h1 =

[
1, 22, 4−1

]
,

g7 =
[
1, 2−1, 42

]
, h7 =

[
1−1, 22, 4

]
,

(13.27)

and
[
4−1, 85, 16−2

]
+ 2δi

[
4, 8−1, 162

]

= 1
2 (1 + δi)

[
1−2, 25, 4−1

]
+ 1

2 (1 − δi)
[
1, 2−1, 42

]
. (13.28)

Other versions of the identities for g1, h1 will be given in Example 19.3. The
characters ψ̃δ,ν and ρδ,ν will appear in another identity in Example 15.23.
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An equivalent version for (13.28) is
[
4−1, 85, 16−2

]
= 1

2

([
1−2, 25, 4−1

]
+
[
1, 2−1, 42

])
,

[
4, 8−1, 162

]
= 1

4

([
1−2, 25, 4−1

]
−
[
1, 2−1, 42

])
.

For the six non-cuspidal eta products of weight 1 we introduce the notation

F =
[
1−2, 27, 4−3

]
, F̃ =

[
12, 2, 4−1

]
,

f1 =
[
13, 2−2, 4

]
, f3 =

[
1, 2−2, 43

]
,

g1 =
[
1−3, 27, 4−2

]
, g3 =

[
1−1, 2, 42

]
.

We observe that F and F̃ have denominator 1 and numerator 0, while fj , gj

have denominator 8 and numerator j. We have three pairs (F, F̃ ), (f1, g1),
(f3, g3) of sign transforms. The Fricke involution W4 interchanges f1 and f3,
and it transforms F and F̃ into g1 and g3, respectively. Now we present six
linear combinations which are Eisenstein series or Hecke theta series. They
are non-cuspidal Hecke eigenforms (according to Theorem 5.1) since all the
characters are induced by the norm.

Example 13.13 For δ ∈ {1, −1}, let ψδ be the character on O2 with period
2

√
−2 which is given by

ψδ(μ) =
{

(−1)(μμ−1)/8

(δi)(μμ−3)/8 if μμ ≡
{

1 mod 8,

3 mod 8.

Define the characters ψ̃δ on O2 by

ψ̃δ(μ) = δ(μμ−1)/2

for 2 � μμ, such that ψ̃1 is the principal character modulo
√

−2 and ψ̃−1 is
the non-principal character modulo 2. Then with notations from above we
have the identities

1
4

(
F
(

z
2

)
+ F̃

(
z
2

))
=

1
2

−
∞∑

n=1

(
(−1)n−1

∑

d|n

(
−2
d

))
e(nz), (13.29)

1
4

(
F (z) − F̃ (z)

)
=

∞∑

n=1

((
−1
n

)∑

d|n

(
−2
d

))
e(nz), (13.30)

Θ1

(
−8, ψδ,

z
8

)
= f1(z) + 2δi f3(z), (13.31)

Θ1

(
−8, ψ̃δ,

z
8

)
= g1(z) + 2δ g3(z). (13.32)

The characters ψ̃δ will reappear in Examples 15.2, 15.9, 15.30, 19.8, 26.9.
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13.4 Weight 2 for Γ0(4), Cusp Forms with Denominators
t ≤ 6

The cuspidal eta products of weight 2 and denominator 2 form a pair of sign
transforms

[
1−2, 25, 4

]
,
[
12, 2−1, 43

]
. The Fricke involution W4 transforms

them into eta products with denominator 8. We get the identities (13.33),
(13.34), (13.53), (13.54), similar to those in (13.22), (13.23), (13.28).

Example 13.14 The group (O2/(2
√

−2))× � Z4 is generated by the residue
of 1 +

√
−2 modulo 2

√
−2. A pair of characters χδ on O2 with period 2

√
−2

is fixed by the value χδ(1 +
√

−2) = δi and explicitly given by

χδ(x + y
√

−2) =
{ (−1

x

)
(−1

x

)
δi

if y is
{

even,

odd,

with δ ∈ {1, −1}. The corresponding theta series of weight 2 decompose as

Θ2

(
−8, χδ,

z
2

)
= f1(z) + 2δi f3(z) (13.33)

with normalized integral Fourier series fj with denominator 8 and numera-
tor classes j modulo 8. The components are linear combinations of two eta
products which are sign transforms of each other,

f1 = 1
2

([
1−2, 25, 4

]
+
[
12, 2−1, 43

])
,

f3 = 1
4

([
1−2, 25, 4

]
−
[
12, 2−1, 43

])
.

(13.34)

The action of the Fricke involution W4 on Fδ = f1 + 2δif3 is given by

Fδ(W4z) = − 1+δi√
2

z2
([

1, 25, 4−2
]

− 2δi
[
13, 2−1, 42

])
. (13.35)

The cuspidal eta products of weight 2 and denominator 3 form three pairs of
sign transforms

[
1−4, 210, 4−2

]
,
[
14, 2−2, 42

]
;
[
1−2, 27, 4−1

]
,
[
12, 2, 4

]
;[

1−2, 23, 43
]
,
[
12, 2−3, 45

]
. The Fricke involution W4 transforms the first pair

into eta products with denominator 12, the other two pairs into eta products
with denominator 24.

Example 13.15 Let the generators of (O3/(4 + 4ω))× � Z2
2 × Z6 be chosen

as in Example 9.1, and define characters ψδ on O3 with period 4(1 + ω) by
their values

ψδ(1 + 2ω) = δ, ψδ(1 − 4ω) = −1, ψδ(ω) = −ω2

with δ ∈ {1, −1}. Put

F =
[
1−4, 210, 4−2

]
, F̃ =

[
14, 2−2, 42

]
.
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The corresponding theta series of weight 2 satisfy

Θ2

(
−3, ψ1,

z
3

)
= 1

2

(
F (z) + F̃ (z)

)
, (13.36)

Θ2

(
−3, ψ−1,

z
3

)
= 1

8

(
F
(

z
4

)
− F̃

(
z
4

))
. (13.37)

The action of W4 on Ψδ(z) = Θ2

(
−3, ψδ,

z
3

)
is given by

Ψ1(W4z) = − 2 z2
([

1−2, 210, 4−4
]
+ 4

[
12, 2−2, 44

])
, (13.38)

Ψ−1(W4z) = − 32 z2
([

4−2, 810, 16−4
]

− 4
[
42, 8−2, 164

])
. (13.39)

We will return to these identities in Sect. 13.5, Example 13.24 when we discuss
eta products with denominator 12.

In the following example there are some subtleties in the identification of
four theta series involving the remaining four eta products with denomina-
tor 3. Matter will become simpler when we study their Fricke transforms in
Sect. 13.6.

Example 13.16 The residues of
√

3 +
√

−2, 1 +
√

−6 and −1 modulo 2
√

3
generate the group (J6/(2

√
3))× � Z3

2 . The residues of
√

3 +
√

−2 and −1
modulo 3 generate (J6/(3))× � Z6 × Z2. Pairs of characters ϕδ on J6 with
period 2

√
3 and ϕ̃δ with period 3 are fixed by their values

ϕδ(
√

3 +
√

−2) = δ, ϕδ(1 +
√

−6) = −1, ϕδ(−1) = −1,

ϕ̃δ(
√

3 +
√

−2) = δ, ϕ̃δ(−1) = −1

with δ ∈ {1, −1}. Put

F1 =
[
1−2, 27, 4−1

]
, G1 =

[
12, 2, 4

]
,

F2 =
[
1−2, 23, 43

]
, G2 =

[
12, 2−3, 45

]
.

The corresponding theta series of weight 2 satisfy

Θ2

(
−24, ϕδ,

z
3

)
= 1

2 (F1(z) + G1(z)) + 1√
2
δi
(
F2(z) − G2(z)

)
,

(13.40)
Θ2

(
−24, ϕ̃δ,

z
3

)
= e

(
− 1

6

)
1
2 (F2(w) + G2(w))

+ e
(

− 1
3

)
1

2
√

2
δi (F1(w) − G1(w)) (13.41)

where w = 1
2 (z − 1). The action of W4 on Φδ(z) = Θ2

(
−24, ϕδ,

z
3

)
is given

by

Φδ(W4z) = − 1
2δi z2

([
13, 23, 4−2

]
− 2

[
15, 2−3, 42

]

− 2
√

2δi
[
1−1, 27, 4−2

]
− 4

√
2δi
[
1, 2, 42

])
. (13.42)
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We note that 1
2

(
F2( z

2 ) + G2( z
2 )
)

and 1
4

(
F1( z

2 ) − G1( z
2 )
)

are normalized inte-
gral Fourier series with denominators 3 and numerators 1 and 2, respectively,
whose sign transforms are the components in (13.41). The eta products in
(13.42) will be discussed in Example 13.26.

The cuspidal eta products with denominator 4 form a pair of sign trans-
forms

[
1−4, 211, 4−3

]
,
[
14, 2−1, 4

]
. We get a result similar to those in Exam-

ples 13.11 and 13.14.

Example 13.17 Let the generators of (O1/(4 + 4i))× � Z2
2 × Z4 be chosen

as in Example 10.1, and define a pair of characters χδ on O1 with period
4(1 + i) by

χδ(1 + 2i) = δ, χδ(3) = 1, χδ(i) = −i

with δ ∈ {1, −1}. Put

F =
[
1−4, 211, 4−3

]
, F̃ =

[
14, 2−1, 4

]
.

The corresponding theta series of weight 2 satisfy

Θ2

(
−4, χδ,

z
4

)
= f1(z) + 4δif5(z) (13.43)

with normalized integral Fourier series fj with denominator 4 and numerator
classes j modulo 8 which are linear combinations of F and F̃ ,

f1(z) = 1
2

(
F (z) + F̃ (z)

)
, f5(z) = 1

8

(
F (z) − F̃ (z)

)
. (13.44)

The action of W4 on Hδ(z) = Θ2

(
−4, χδ,

z
4

)
is given by

Hδ(W4z) = −
√

2(1 + δi) z2
([

1−3, 211, 4−4
]

− 4δi
[
1, 2−1, 44

])
. (13.45)

The cuspidal eta products with denominator 6 form two pairs of sign trans-
forms

F =
[
1−6, 215, 4−5

]
, F̃ =

[
16, 2−3, 4

]
,

G =
[
1−2, 29, 4−3

]
, G̃ =

[
12, 23, 4−1

]
,

(13.46)

all of which have numerator 1. The Fricke involution W4 transforms them
into eta products with orders 1

24 , 19
24 , 7

24 , 13
24 , respectively, at the cusp ∞.

Not surprisingly, the Fricke transforms will allow a simpler result (in Exam-
ple 13.27) than the next one:

Example 13.18 Let the generators of (O3/(8 + 8ω))× � Z4 × Z2
2 × Z6 be

chosen as in Example 13.2, and define four characters ψδ,ε on O3 with period
8(1 + ω) by their values

ψδ,ε(1 + 2ω) = −δi, ψδ,ε(1 − 4ω) = δε, ψδ,ε(5) = 1, ψδ,ε(ω) = −ω2
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with δ, ε ∈ {1, −1}. The corresponding theta series of weight 2 satisfy

Θ2

(
−3, ψδ,ε,

z
6

)
= 1

2
√

2
ξδ,ε

(
F (z) − εi F̃ (z) + δ

√
3 G(z) + δεi

√
3 G̃(z)

)

= f1(z) + 2
√

3δf7(z) − 4
√

3δεif13(z) + 8εif19(z)
(13.47)

with primitive 24th roots of unity

ξδ,ε = 1
2

√
2

(
(1 + δ

√
3) + (1 − δ

√
3) εi

)

and with components fj which are normalized integral Fourier series with
denominator 6 and numerator classes j modulo 24, and which are linear
combinations of the eta products in (13.46),

f1 = 1
8 (F + F̃ + 3G + 3G̃), f7 = 1

16 (F − F̃ + G − G̃), (13.48)

f13 = 1
32 (F + F̃ − G − G̃), f19 = 1

64 (F − F̃ − 3G + 3G̃). (13.49)

The action of W4 on Fδ,ε(z) = Θ2

(
−3, ψδ,ε,

z
6

)
is given by

Fδ,ε(W4z) = − ξδ,ε z2
([

1−5, 215, 4−6
]
+ 2

√
3δ
[
1−3, 29, 4−2

]

+ 4
√

3δεi
[
1−1, 23, 42

]
− 8εi

[
1, 2−3, 46

])
. (13.50)

We note some striking properties of the coefficients of F and G:

Corollary 13.19 Let the expansions of the eta products in (13.46) be written
as

F (z) =
∑

n≡1 mod 6

a(n)e
(

nz
6

)
, G(z) =

∑

n≡1 mod 6

b(n)e
(

nz
6

)
.

Then the following assertions hold.

(1) For all n ≡ 1 mod 6 we have

a(n) =
∑

x2+3y2 = 4n

(
−6
x

)
x, b(n) =

∑

x2+3y2 = 4n

(
12
x

)(
−2
y

)
y,

with summation on all positive integers x, y satisfying the indicated
equation.

(2) We have

a(n) =
(−1

n

)
b(n) for n ≡ 1, 19 mod 24,

a(n) = −3
(−1

n

)
b(n) for n ≡ 7, 13 mod 24.
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(3) Let p ≡ 1 mod 6 be prime and write p = u2 + 3v2 with unique positive
integers u, v. Then

a(p) = ± 2u for p ≡ 1, 19 mod 24,

a(p) = ± 6v for p ≡ 7, 13 mod 24.

Here the sign is
( −6

u−3v

)
for p ≡ 1 mod 24, and −

( −6
u−3v

)
for p ≡

13 mod 24.

Proof. We can write F and G as products of two simple theta series of
weights 1

2 ,

F (z) =
η13(2z)

η5(z)η5(4z)
· η2(2z)

η(z)
, G(z) =

η9(2z)
η3(z)η3(4z)

· η(z).

We use (8.20), (8.5) and (8.16), (8.3). This yields assertion (1). Since (F, F̃ ),
(G, G̃) are pairs of sign transforms, the identities (13.47), (13.48), (13.49)
imply assertion (2).

Let a prime p ≡ 1 mod 6 be given, and write p uniquely in the form p =
u2 + 3v2 with positive integers u, v. This means that p = μμ where μ =
(u − v)+2vω and μ = (u+v) − 2vω. A table of values ψδ,ε(μ) as in Figs. 9.1,
12.1 shows that ψδ,ε(μ) = ψδ,ε(μ) for p ≡ 1, 19 mod 24 and ψδ,ε(μ) = −ψδ,ε(μ)
for p ≡ 7, 13 mod 24. For the coefficient λ(p) of Θ2

(
−3, ψδ,ε,

z
6

)
at the prime

p this implies that λ(p) = ψδ,ε(μ) (μ + μ) = ψδ,ε(μ) 2u for p ≡ 1, 19 mod 24
and λ(p) = ψδ,ε(μ) (μ − μ) = ψδ,ε(μ) 2v(2ω − 1) = ψδ,ε(μ)

√
3i 2v for p ≡

7, 13 mod 24. We use (13.47), (13.48), (13.49) again and obtain a(p) = ±2u
for p ≡ 1, 19 mod 24, a(p) = ±6v for p ≡ 7, 13 mod 24.

Now we assume that p ≡ 1 mod 24. Then u is odd and v is a multiple of 4.
It follows that ψδ,ε(μ) = ψδ,ε(u − 3v) =

( −6
u−3v

)
, and hence a(p) =

( −6
u+3v

)
2u.

Finally, let p ≡ 13 mod 24. Then u is odd and v ≡ 2 mod 4. We get ψδ,ε(μ) =
ψδ,ε(u − 3v − 4(ω + 1)) =

( −6
u−3v

)
δε, and hence a(p) = −

( −6
u+3v

)
6v. Thus we

have proved assertion (3). It would also be possible to find rules for the sign
in the remaining two cases. �

13.5 Weight 2 for Γ0(4), Cusp Forms with Denominators
t = 8, 12

Now we discuss the cuspidal eta products of weight 2 and denominator 8. We
start with the Fricke transforms of the functions in Example 13.14. Rescaling
the eta products gives a pair of functions which are interchanged by the action
of the Fricke involution.
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Example 13.20 Let χδ be the characters on O2 with period 2
√

−2 as defined
in Example 13.14. The corresponding theta series of weight 2 satisfy

Θ2

(
−8, χδ,

z
8

)
= g1(z) + 2δi g3(z) (13.51)

with normalized integral Fourier series gj with denominator 8 and numerator
classes j modulo 8 which are eta products,

g1 =
[
1, 25, 4−2

]
, g3 =

[
13, 2−1, 42

]
. (13.52)

We have the identities
[
4, 85, 16−2

]
= 1

2

([
1−2, 25, 4

]
+
[
12, 2−1, 43

])
, (13.53)

[
43, 8−1, 162

]
= 1

4

([
1−2, 25, 4

]
−
[
12, 2−1, 43

])
. (13.54)

The action of W4 on

Fδ(z) = Θ2

(
−8, χδ,

z
4

)
=

η(2z)η5(4z)
η2(8z)

+ 2δi
η3(2z)η2(8z)

η(4z)

is given by
Fδ(W4z) = −2

√
2(1 + δi)z2F−δ(z).

Corollary 13.21 Let aj(n) for j ∈ {1, 3} denote the coefficients of the func-
tions fj in (13.33) and, simultaneously, of the functions gj in (13.52). Let
p ≡ 1 or 3 mod 8 be prime and write p = x2+2y2 with unique positive integers
x, y. Then

a1(p) =
(−1

x

)
2x for p ≡ 1 mod 8,

a3(p) =
(−1

x

)
x for p ≡ 3 mod 8.

Proof. The character values χδ(x + y
√

−2) are explicitly given by a formula
in Example 13.14. We write p uniquely in the form p = μμ = x2 + 2y2

with μ = x + y
√

−2 ∈ O2, x > 0, y > 0. Here y is even if p ≡ 1 mod 8,
and y is odd if p ≡ 3 mod 8. Now we can compute the coefficient λ(p) =
χδ(μ)μ + χδ(μ)μ = χδ(μ) 2x of Θ2(−8, χδ, ·) at p, and the assertion follows
from (13.51), (13.52).

The result can also be deduced directly from the Jacobi and Gauss identities
(8.5), (8.8), (8.15) when we decompose the eta products

[
1, 25, 4−2

]
=
[
1−2, 25, 4−2

] [
13
]
,

[
13, 2−1, 42

]
=
[
13
] [

2−1, 42
]

into products of two simple theta series. Then we get

a1(n) =
∑

x>0, y∈Z, x2+8y2 = n

(−1
x

)
x, a3(n) =

∑

x,y>0, x2+2y2 = n

(−1
x

)
x

for arbitrary n. �
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Next we deal with the Fricke transforms of the eta products in Example 13.17.
The result is quite similar to that in Example 13.20.

Example 13.22 Let χδ be the characters on O1 with period 4(1 + i) as de-
fined in Example 13.17. The corresponding theta series of weight 2 satisfy

Θ2

(
−4, χδ,

z
8

)
= g1(z) + 4δi g5(z) (13.55)

with normalized integral Fourier series gj with denominator 8 and numerator
classes j modulo 8 which are eta products,

g1 =
[
1−3, 211, 4−4

]
, g5 =

[
1, 2−1, 44

]
. (13.56)

We have the identities
[
2−3, 411, 8−4

]
= 1

2

([
1−4, 211, 4−3

]
+
[
14, 2−1, 4

])
, (13.57)

[
2, 4−1, 84

]
= 1

8

([
1−4, 211, 4−3

]
−
[
14, 2−1, 4

])
. (13.58)

The action of W4 on

Gδ(z) = Θ2

(
−4, χδ,

z
4

√
2

)
=

η11(2
√

2z)
η3(

√
2z)η4(4

√
2z)

+ 4δi
η(

√
2z)η4(4

√
2z)

η(2
√

2z)

is given by
Gδ(W4z) = −2

√
2(1 + δi)z2 G−δ(z).

Here again, we can write
[
1−3, 211, 4−4

]
=
[
1−3, 29, 4−3

] [
22, 4−1

]
,

[
1, 2−1, 44

]
=
[
43
] [

1, 2−1, 4
]

as products of two simple theta series. Then we use (8.6), (8.7), (8.15), (8.16)
and obtain the formulae

a1(n) =
∑

x>0, y∈Z, x2+16y2 = n

(−1)y
(−2

x

)
x,

a5(n) =
∑

x,y>0, x2+4y2 = n

(−1
y

) (
2
x

)
y

for the coefficients aj(n) of the eta products gj in (13.56). These formulae
can also be deduced from (13.56) and the definition of the characters χδ.

The remaining four cuspidal eta products with denominator 4 are the sign
transforms of the functions discussed so far. They form two pairs of functions
which are transformed into each other by W4 and which combine to theta
series:
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Example 13.23 Let the generators of (O1/(8))× � Z4 × Z2 × Z4 and of
(O2/(4

√
−2))× � Z4 × Z2

2 be chosen as in Example 13.3. Define two pairs of
characters χδ on O1 with period 8 and ψδ on O2 with period 4

√
−2 by their

values
χδ(2 + i) = δ, χδ(3) = −1, χδ(i) = −1,

ψδ(1 +
√

−2) = δ, ψδ(3) = 1, ψδ(−1) = −1

with δ ∈ {1, −1}. The corresponding theta series of weight 2 satisfy

Θ2

(
−4, χδ,

z
8

)
= f1(z) + 4δ f5(z), (13.59)

Θ2

(
−8, ψδ,

z
8

)
= g1(z) + 2δ g3(z), (13.60)

where fj and gj are normalized integral Fourier series with denominator 8
and numerator classes j modulo 8. All of them are eta products,

f1 =
[
13, 22, 4−1

]
, f5 =

[
1−1, 22, 43

]
, (13.61)

g1 =
[
1−1, 28, 4−3

]
, g3 =

[
1−3, 28, 4−1

]
. (13.62)

The action of W4 on Fδ(z) = Θ2

(
−4, χδ,

z
8

)
and on Gδ(z) = Θ2

(
−8, ψδ,

z
8

)

is given by

Fδ(W4z) = −4δz2 Fδ(z), Gδ(W4z) = −4δz2 Gδ(z). (13.63)

As before, the eta products are products of two simple theta series, and they
are the sign transforms of the eta products in Examples 13.20, 13.22. There-
fore the coefficients aj(n), bj(n) of the eta products fj , gj in Example 13.23
are given by the formulae

a1(n) =
∑

x>0, y∈Z, x2+16y2 = n

(−1)y
(−1

x

)
x,

a5(n) =
∑

x,y>0, x2+4y2 = n

(−1
y

)
y,

b1(n) =
∑

x>0, y∈Z, x2+8y2 = n

(−1)y
(−2

x

)
x,

b3(n) =
∑

x,y>0, x2+2y2 = n

(−2
x

)
x

which are quite similar to those we got before.

Four of the cuspidal eta products with weight 2 and denominator 12 are

f1 =
[

210

12, 44

]
, f7 =

[
12, 44

22

]
, g1 =

[
12, 24

42

]
, g7 =

[
24, 42

12

]
.

(13.64)
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Here, (f1, g1) and (f7, g7) are pairs of sign transforms, and g1, g7 are inter-
changed by W4. The transforms of f1, f7 under W4 were discussed in Exam-
ple 13.15. Two linear combinations of f1, f7 are, after rescaling, transformed
into themselves by W4, and one of them is the eta product for Γ∗(4) which
was discussed in Example 13.7. The four eta products combine to theta series
as follows:

Example 13.24 Let ψδ be the characters on O3 with period 4(1 + ω) as
defined in Example 13.15. Let the generators of (O3/(8+8ω))× � Z4×Z2

2 ×Z6

be chosen as in Example 13.2, and define a pair of characters ψ̃δ on O3 with
period 8(1 + ω) by

ψ̃δ(1 + 2ω) = δ, ψ̃δ(1 − 4ω) = 1, ψ̃δ(5) = −1, ψ̃δ(ω) = ω

with δ ∈ {1, −1}. The corresponding theta series of weight 2 satisfy

Θ2

(
−3, ψδ,

z
12

)
= f1(z) + 4δ f7(z), (13.65)

Θ2

(
− 3, ψ̃δ,

z
12

)
= g1(z) + 4δ g7(z), (13.66)

where the components fj and gj are equal to the eta products defined in
(13.64). The action of W4 on Gδ(z) = Θ2

(
−3, ψ̃δ,

z
12

)
is given by Gδ(W4z) =

−4δz2 Gδ(z). We have the eta identities

f1(4z) + 4f7(4z) =
1
2

(
η10(2z)

η4(z)η2(4z)
+

η4(z)η2(4z)
η2(2z)

)
=

η12(2z)
η4(z)η4(4z)

,

(13.67)

f1(4z) − 4f7(4z) =
1
8

(
η10( z

2 )
η4( z

4 )η2(z)
−

η4( z
4 )η2(z)

η2( z
2 )

)
. (13.68)

The action of W4 on Fδ(z) = Θ2

(
− 3, ψδ,

z
3

)
is given by F1(W4z) = −4z2 ×

F1(z), F−1(W4z) = − 1
2z2 F−1(z).

The eta products fj , gj in (13.64) are products of two simple theta series.
So as before we get formulae which relate their coefficients aj(n), bj(n) to
quadratic forms,

a1(n) =
∑

x>0, y∈Z, x2+12y2 = n

(
x
3

)
x, a7(n) =

∑

x,y>0, 3x2+4y2 = n

(
y
3

)
y,

and similar formulae for bj(n).

The other four cuspidal eta products with denominator 12 form two pairs of
sign transforms

F =
[
1−4, 213, 4−5

]
, F̃ =

[
14, 2, 4−1

]
,

G =
[
1−4, 29, 4−1

]
, G̃ =

[
14, 2−3, 43

] (13.69)
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with numerators 1 and 5. By W4 they are transformed into eta products with
orders 5

24 , 17
24 , 1

24 , 13
24 , respectively, at the cusp ∞. The Fricke transforms will

be discussed in Example 13.28. The functions (13.69) combine to four theta
series as follows:

Example 13.25 Let the generators of (O1/(12 + 12i))× � Z8 × Z2
2 × Z4 be

chosen as in Example 10.5, and define four characters ϕδ,ε on O1 with period
12(1 + i) by their values

ϕδ,ε(1 + 2i) = εi, ϕδ,ε(1 + 6i) = −δ, ϕδ,ε(11) = 1, ϕδ,ε(i) = −i

with δ, ε ∈ {1, −1}. The corresponding theta series of weight 2 satisfy

Θ2

(
−4, ϕδ,ε,

z
12

)
= f1(z) + 2εi f5(z) + 4δif13(z) − 8δεf17(z), (13.70)

where the components fj are normalized integral Fourier series with denom-
inator 12 and numerator classes j modulo 24 which are linear combinations
of the eta products in (13.69),

f1 = 1
2 (F + F̃ ), f13 = 1

8 (F − F̃ ), (13.71)

f5 = 1
2 (G + G̃), f17 = 1

8 (G − G̃). (13.72)

The action of W4 on Fδ,ε(z) = Θ2

(
− 4, ϕδ,ε,

z
12

)
is given by

Fδ,ε(W4z) = −εi(1 + δi)
√

2z2
([

1−1, 29, 4−4
]

− 2εi
[
1−5, 213, 4−4

]

− 4δi
[
13, 2−3, 44

]
− 8δε

[
1−1, 2, 44

])
. (13.73)

There are decompositions of F and F̃ into products of two simple theta series
which imply coefficient formulae similar to those before. We did not find such
a decomposition for G or G̃.

13.6 Weight 2 for Γ0(4), Cusp Forms with Denominator
t = 24

We start the discussion of the 24 cuspidal eta products of weight 2 and denom-
inator 24 with the Fricke transforms of the eta products with denominator 3
in Example 13.16.

Example 13.26 Let the generators of (J6/(2
√

3))× � Z3
2 be chosen as in

Example 13.16, and define four characters ϕδ,ε on J6 with period 2
√

3 by
their values

ϕδ,ε(
√

3 +
√

−2) = δε, ϕδ,ε(1 +
√

−6) = −ε, ϕδ,ε(−1) = −1
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with δ, ε ∈ {1, −1}. The corresponding theta series of weight 2 satisfy

Θ2

(
−24, ϕδ,ε,

z
24

)
= f1(z) + 2

√
2δεi f5(z) + 2εf7(z) − 4

√
2δif11(z), (13.74)

where the components fj are normalized integral Fourier series with denom-
inator 24 and numerator classes j modulo 24. All of them are eta products,

f1 =
[
13, 23, 4−2

]
, f5 =

[
1−1, 27, 4−2

]
,

f7 =
[
15, 2−3, 42

]
, f11 =

[
1, 2, 42

]
.

(13.75)

The Fricke involution W4 maps Θ2

(
− 24, ϕδ,ε,

z
24

)
to a multiple of

[
1−2, 27, 4−1

]
− ε
[
12, 2, 4

]
− δεi

√
2
([

1−2, 23, 43
]

+ ε
[
12, 2−3, 45

])
.

We have the identities
[
83, 163, 32−2

]
− 2
[
85, 16−3, 322

]
= 1

2

([
1−2, 27, 4−1

]
+
[
12, 2, 4

])
,

(13.76)[
8−1, 167, 32−2

]
+ 2
[
8, 16, 322

]
= 1

4

([
1−2, 23, 43

]
−
[
12, 2−3, 45

])
.

(13.77)

We note that the characters ϕδ,−1 in Example 13.26 coincide with the
characters ϕ−δ in Example 13.16. Therefore the identities (13.76), (13.77)
follow from (13.40), (13.74), (13.75). We have the decompositions f1 =[
15, 2−2

][
1−2, 25, 4−2

]
, f5 =

[
25, 4−2

][
1−1, 22

]
, f7 =

[
15, 2−2

][
2−1, 42

]
,

f11 =
[
12, 2−1, 42

][
1−1, 22

]
into products of simple theta series. Therefore

the identities in Sect. 8 yield coefficient formulae for the eta products (13.75)
similar to those in preceding cases.—The sign transforms of these eta prod-
ucts will appear in Example 13.29.

In the next example we treat the Fricke transforms of the eta products in
Example 13.18. Rescaling the theta series in that example produces theta
series whose components are eta products with denominator 24; rescaling
differently, we get functions which are permuted by the Fricke involution W4.

Example 13.27 Let ψδ,ε be the characters on O3 with period 8(1 + ω) as
defined in Example 13.18. The corresponding theta series of weight 2 satisfy

Θ2

(
−3, ψδ,ε,

z
24

)
= g1(z) + 2

√
3δ g7(z) − 4δεi

√
3 g13(z) + 8εig19(z), (13.78)

where the components gj are normalized integral Fourier series with denom-
inator 24 and numerator classes j modulo 24. All of them are eta products,

g1 =
[
1−5, 215, 4−6

]
, g7 =

[
1−3, 29, 4−2

]
,

g13 =
[
1−1, 23, 42

]
, g19 =

[
1, 2−3, 46

]
.

(13.79)
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We have the identities gj(4z) = fj(z) where the fj are the linear combinations
(13.48), (13.49) of the eta products F , F̃ , G, G̃ in (13.46). The action of W4

on Gδ,ε(z) = Θ2

(
−3, ψδ,ε,

z
12

)
is given by

Gδ,ε(W4z) = −4 ξδ,εz
2 Gδ,−ε(z)

with the 24th roots of unity ξδ,ε from Example 13.18.

There are obvious decompositions of the eta products (13.79) into products
of two simple theta series. They imply coefficient formulae similar to those
in preceding cases. The sign transforms

[
15, 4−1

]
,
[
13, 4

]
,
[
1, 43

]
,
[
1−1, 45

]

of the functions (13.79) will be discussed in Example 13.30. Now we turn to
the Fricke transforms of the eta products in Example 13.25. We get a result
quite similar to that above:

Example 13.28 Let ϕδ,ε be the characters on O1 with period 12(1 + i) as
defined in Example 13.25. The corresponding theta series of weight 2 satisfy

Θ2

(
−4, ϕδ,ε,

z
24

)
= g1(z) + 2εi g5(z) + 4δi g13(z) − 8δεg17(z), (13.80)

where the components gj are normalized integral Fourier series with denom-
inator 24 and numerator classes j modulo 24. All of them are eta products,

g1 =
[
1−1, 29, 4−4

]
, g5 =

[
1−5, 213, 4−4

]
,

g13 =
[
13, 2−3, 44

]
, g17 =

[
1−1, 2, 44

]
.

(13.81)

We have the identities gj(2z) = fj(z) where the fj are the linear combinations
(13.71), (13.72) of the eta products F , F̃ , G, G̃ in (13.69). The action of W4

on Gδ,ε(z) = Θ2

(
−4, ϕδ,ε,

z
12

√
2

)
is given by

Gδ,ε(W4z) = −2
√

2 εi(1 + δi) z2 G−δ,−ε(z).

We can write g5 =
[
1−5, 213, 4−5

][
4
]
, g17 =

[
2−2, 45

][
1−1, 23, 4−1

]
as prod-

ucts of two simple theta series, but apparently there are no such decompo-
sitions for g1 and g13. The sign transforms of the functions (13.81) will be
discussed in Example 13.31. Now we describe theta series whose components
are the sign transforms of the eta products in Example 13.26.

Example 13.29 Let the generators of (J6/(4
√

−6))× � Z2
4 × Z2

2 be chosen
as in Example 13.4, and define characters ψδ,ε on J6 with period 4

√
−6 by

ψδ,ε(
√

3 +
√

−2) = −δεi, ψδ,ε(1 +
√

−6) = ε,

ψδ,ε(7) = 1, ψδ,ε(−1) = −1.

The corresponding theta series of weight 2 satisfy

Θ2

(
−24, ψδ,ε,

z
24

)
= g1(z) + 2

√
2δε g5(z) + 2ε g7(z) + 4

√
2δ g11(z), (13.82)
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where the components gj are normalized integral Fourier series with denomi-
nator 24 and numerator classes j modulo 24. They are equal to eta products,

g1 =
[
1−3, 212, 4−5

]
, g5 =

[
1, 24, 4−1

]
,

g7 =
[
1−5, 212, 4−3

]
, g11 =

[
1−1, 24, 4

]
.

(13.83)

The functions gj are the sign transforms of the eta products fj in Exam-
ple 13.26. The action of W4 on Gδ,ε(z) = Θ2

(
− 24, ψδ,ε,

z
24

)
is given by

Gδ,ε(W4z) = − 4ε z2 Gδ,ε(z).

The decompositions of the functions fj in Example 13.26 into products of sim-
ple theta series imply analogous decompositions for their sign transforms gj .
In the following two examples we describe theta series whose components are
the sign transforms of the eta products in Examples 13.27, 13.28.

Example 13.30 Let the generators of (O3/(16+16ω))× � Z8 ×Z4 ×Z2 ×Z6

be chosen as in Example 13.12, and define four characters ρδ,ε on O3 with
period 16(1 + ω) by

ρδ,ε(1 + 2ω) = −δi, ρδ,ε(1 − 4ω) = δεi, ρδ,ε(7) = 1, ρδ,ε(ω) = ω

with δ, ε ∈ {1, −1}. The corresponding theta series of weight 2 satisfy

Θ2

(
−3, ρδ,ε,

z
24

)
= h1(z) + 2

√
3δ h7(z) + 4

√
3δε h13(z) + 8ε h19(z), (13.84)

where the components hj are normalized integral Fourier series with denom-
inator 24 and numerator classes j modulo 24. All of them are eta products,

h1 =
[
15, 4−1

]
, h7 =

[
13, 4

]
, h13 =

[
1, 43

]
, h19 =

[
1−1, 45

]
. (13.85)

The functions hj are the sign transforms of the eta products gj in Exam-
ple 13.27. The action of W4 on Hδ,ε(z) = Θ2

(
−3, ρδ,ε,

z
24

)
is given by

Hδ,ε(W4z) = − 4ε z2 Hδ,ε(z).

Example 13.31 Let the generators of (O1/(24))× � Z8 × Z4 × Z2 × Z4 be
chosen as in Example 13.4, and define four characters χδ,ε on O1 with period
24 by their values

χδ,ε(2 + i) = −εi, χδ,ε(1 + 6i) = −δi, χδ,ε(5) = 1, χδ,ε(i) = −i

with δ, ε ∈ {1, −1}. The corresponding theta series of weight 2 satisfy

Θ2

(
−4, χδ,ε,

z
24

)
= h1(z) + 2ε h5(z) + 4δ h13(z) + 8δε h17(z), (13.86)
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where the components hj are normalized integral Fourier series with denom-
inator 24 and numerator classes j modulo 24. All of them are eta products,

h1 =
[
1, 26, 4−3

]
, h5 =

[
15, 2−2, 4

]
,

h13 =
[
1−3, 26, 4

]
, h17 =

[
1, 2−2, 45

]
.

(13.87)

The functions hj are the sign transforms of the eta products gj in Exam-
ple 13.28. The action of W4 on Hδ,ε(z) = Θ2

(
− 4, χδ,ε,

z
24

)
is given by

Hδ,ε(W4z) = − 4δ z2 Hδ,ε(z).

13.7 Weight 2 for Γ0(4), Non-cuspidal Eta Products

The table at the beginning of Section 13.3 indicates that there are altogether
18 new non-cuspidal eta products of weight 2 for Γ0(4). We start with the
discussion of those with denominator 8. They form four pairs of sign trans-
forms, and they are not lacunary. There are eight linear combinations whose
Fourier expansions are of Eisenstein type.

Example 13.32 Consider the eta products

f1 =
[
1−7, 217, 4−6

]
, f3 =

[
1−5, 211, 4−2

]
,

f5 =
[
1−3, 25, 42

]
, f7 =

[
1−1, 2−1, 46

] (13.88)

with normalized integral Fourier expansions fj(z) =
∑

n≡j mod 8 aj(n)e
(

nz
8

)
.

Then for δ, ε ∈ {1, −1}, the linear combinations

Fδ,ε(z) = f1(z) + 2δ f3(z) + 4ε f5(z) + 8δε f7(z) =
∑

n>0 odd

λδ,ε(n) e
(

nz
8

)

have coefficients

λδ,ε(n) = σδ,ε(n)
∑

d|n

(
2

n/d

)
d (13.89)

where

σδ,ε(n) =
(

−1
n

) δ−1
2
(

−2
n

) ε−1
2

=

⎧
⎪⎨

⎪⎩

1
δ
ε
δε

for n ≡

⎧
⎪⎨

⎪⎩

1
3
5
7

mod 8.

The coefficients are multiplicative and satisfy the recursion

λδ,ε(pr+1) = λδ,ε(p)λδ,ε(pr) −
(

2
p

)
p λδ,ε(pr−1)
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for odd primes p. For the sign transforms f̃j of the functions fj,

f̃1 =
[
17, 2−4, 4

]
, f̃3 =

[
15, 2−4, 43

]
, f̃5 =

[
13, 2−4, 45

]
, f̃7 =

[
1, 2−4, 47

]
,

(13.90)
we have the linear combinations

F̃δ,ε(z) = f̃1(z) + 2δ f̃3(z) + 4ε f̃5(z) + 8δε f̃7(z) =
∑

n>0 odd

λ̃δ,ε(n)e
(

nz
8

)

with coefficients λ̃δ,ε(n) = (−1)(n−n0)/8λδ,ε(n) where n0 is the smallest posi-
tive residue of n modulo 8. The action of W4 on F̃δ,ε is given by

F̃δ,ε(W4z) = −4δε z2 F̃δ,ε(z).

The Fricke involution W4 sends the eta products fj in (13.88) into eta prod-
ucts with denominator t = 1 and order 0 at the cusp ∞. We denote them
by

g1 =
[
1−6, 217, 4−7

]
, g3 =

[
1−2, 211, 4−5

]
,

g5 =
[
12, 25, 4−3

]
, g7 =

[
16, 2−1, 4−1

]
.

(13.91)

Then the functions Fδ,ε in Example 13.32 satisfy

Fδ,ε(W4z) = −2
√

2z2 (g1(z) + δg3(z) + εg5(z) + δεg7(z)) .

Correspondingly, we get four linear combinations of the eta products gj which
are Eisenstein series and, in particular, have multiplicative coefficients:

Example 13.33 The eta products gj in (13.91) form two pairs (g1, g7),
(g3, g5) of sign transforms. They satisfy

1
8 (g1 + g7 + g3 + g5)

(
z
2

)
= 1

2 +
∞∑

n=1

(
(−1)n−1

∑

d|n

(
2
d

)
d

)
e(nz),

1
32 (g1 + g7 − g3 − g5)

(
z
2

)
=

∞∑

n=1

(
(−1)n−1

∑

d|n

(
2

n/d

)
d

)
e(nz),

1
8 (g1 − g7 − g3 + g5)(z) =

∞∑

n=1

((−2
n

)∑

d|n

(
2

n/d

)
d

)
e(nz) = F1,−1(8z),

1
16 (g1 − g7 + g3 − g5)(z) =

∞∑

n=1

((−1
n

)∑

d|n

(
2

n/d

)
d

)
e(nz) = F−1,1(8z),

where Fδ,ε is defined in Example 13.32.
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We observe that F1,1(8z) and F−1,−1(8z) are the partial sums with odd-
numbered coefficients in 1

8 (g1 +g7 +g3 +g5)
(

z
2

)
and 1

32 (g1 +g7 − g3 − g5)
(

z
2

)
,

respectively. For the coefficients in gj(z) =
∑∞

n=0 bj(n)e(nz) we observe

b1(n) = 3b3(n) for n ≡ ± 1 mod 8,

3b1(n) = b3(n) for n ≡ ± 3 mod 8,

and some more complicated rules relating b1(n), b3(n) for even n.

We have two more non-cuspidal eta products of weight 2 with order 0 at the
cusp ∞. They form a pair of sign transforms, and their Fricke transforms
have denominator t = 4. We denote these functions by

f =
[
1−4, 214, 4−6

]
, f̃ =

[
14, 22, 4−2

]
,

h1 =
[
1−6, 214, 4−4

]
, h3 =

[
1−2, 22, 44

]
.

(13.92)

The remaining two non-cuspidal eta products of weight 2 with denominator
4 are the sign transforms of h1 and h3. We denote them by

g1 =
[
16, 2−4, 42

]
, g3 =

[
12, 2−4, 46

]
. (13.93)

Example 13.34 The functions in (13.92) combine to the Eisenstein series

F (z) = 1
8

(
f(z) − f̃(z)

)
=

∞∑

n=1

((−1
n

)∑

d|n
d

)
e(nz),

F̃ (z) = − 1
16

(
f
(

z
4

)
+ f̃

(
z
4

))
= − 1

8 +
∞∑

n=1

(
(−1)n−1

∑

d|n, 4�d

d

)
e(nz),

h1(z) + 4h3(z) =
∑

n>0 odd

σ1(n)e
(

nz
4

)
,

h1(z) − 4h3(z) =
∑

n>0 odd

(−1
n

)
σ1(n)e

(
nz
4

)
= F

(
z
4

)
.

The Fricke transforms of F and F̃ are

F (W4z) = −z2 F
(

z
4

)
, F̃ (W4z) = −8z2 (h1(4z) + 4h3(4z)).

The functions in (13.93) combine to the Eisenstein series

g1(z) + 4g3(z) =
∑

n>0 odd

(−2
n

)
σ1(n)e

(
nz
4

)
,

g1(z) − 4g3(z) =
∑

n>0 odd

(
2
n

)
σ1(n)e

(
nz
4

)
.

The Fricke transform of Gδ(z) = g1(z) + 4δg3(z) is Gδ(W4z) = −4δz2Gδ(z).
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13.8 A Remark on Weber Functions

In [137], pp. 86, 112, Heinrich Weber introduced and used three modular
functions which he denoted by f , f1, f2 and which we will denote, quite
similarly, by f, f1, f2. The definitions are

f(z) = q− 1
48

∞∏

n=1

(
1 + qn− 1

2
)

=
η2(z)

η( z
2 )η(2z)

, (13.94)

f1(z) = q− 1
48

∞∏

n=1

(
1 − qn− 1

2
)

=
η( z

2 )
η(z)

, (13.95)

f2(z) =
√

2 q
1
24

∞∏

n=1

(1 + qn) =
√

2
η(2z)
η(z)

, (13.96)

where q = e(z). Immediate consequences are the relations f f1 f2 =
√

2,
f(z) f1(z) = f1(2z), f1(2z) f2(z) =

√
2. We mention the Weber functions

because all the pairs of sign transforms of eta products in this section are
related to the modular function

J(z) = 1√
2
f(2z)f2(z) =

∞∏

n=1

(1 + qn)(1 + q2n−1)

=
∞∏

n=1

(1 + q2n)(1 + q2n−1)2

=
η3(2z)

η2(z)η(4z)
. (13.97)

The eta product representation shows that the sign transform of J is the
reciprocal of J itself, that is,

J
(
z + 1

2

)
=

1
J(z)

. (13.98)

The product expansions show that the coefficients in

J(z) =
∞∑

n=0

A(n)e(nz) (13.99)

allow an interpretation in terms of partitions: We have A(n) =
∑

P 2r(P )

where the summation is on all partitions P of n in which even parts are not
repeated and odd parts are repeated at most once, and where r(P ) is the
number of those odd parts in P which are not repeated. It is easy to see that
A(n) is positive and even for all n ≥ 1 and that the sequence of numbers
A(n) is strictly increasing with the sole exception of A(1) = A(2) = 2. The
function J transforms according to J(Lz) = vJ(L)J(z) for L ∈ Γ0(4) where
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vJ(L) is a certain 8th root of unity which can be computed from Theorem 1.7.
We have vJ(L) = 1 for L ∈ Γ0(32), that is, J is a modular function for Γ0(32).
From (13.98) one can deduce a recursion formula which expresses A(2n) in
terms of the products A(j)A(2n − j) with j < n. Efficient formulae for A(n)
are obtained when we write J as a quotient of simple theta series which are
sign transforms of each other,

J =
[
1−1, 23, 4−1

]
/
[
1
]

=
[
1−2, 25, 4−2

]
/
[
22, 4−1

]
=
[
1−1, 22

]
/
[
1, 2−1, 4

]
.

In this way we get, for example,

A(n) = 2δn − 2
∑

x>0, 2x2≤n

(−1)xA(n − 2x2)

where δn = 1 if n is a square and δn = 0 otherwise.

Because of (13.98) it is not very surprising that the quotients of pairs of sign
transforms of the eta products in this section are powers of the function J .
For instance, Example 13.10 leads to

[
1−7, 218, 4−7

]
/
[
17, 2−3

]
= J7,

[
1−3, 210, 4−3

]
/
[
13, 2

]
= J3,

[
1−1, 26, 4−1

]
/
[
1, 23

]
= J,

[
13, 2−2, 43

]
/
[
1−3, 27

]
= J −3.

Example 13.15 gives
[
1−4, 210, 4−2

]
/
[
14, 2−2, 42

]
= J4,

[
1−2, 210, 4−4

]
/
[
12, 24, 4−2

]
= J2,

and so on through all the examples in this section.
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14.1 Weight 1 for Level N = 9

For primes p ≥ 5 there are exactly 6 holomorphic eta products of weight 1 and
level N = p2. The only new one among them is η(z)η(p2z). Since its order at
∞ is 1+p2

24 > 1, there is little chance to find complementary eta products for
the construction of eigenforms which might be represented by Hecke theta
series,—at least when we stick to level p2. The chances are improved when
we consider η(z)η(p2z) as an old eta product of level 2p2, and indeed the
function η(z)η(25z) will play its rôle in Sect. 20.3.

Thus for weight 1 we are confined to the level N = 32 = 9. In this case there
are exactly 13 holomorphic eta products, among which only 4 are new. Two
of them are the cuspidal eta products

[
1, 9
]

and
[
1−1, 34, 9−1

]
for the Fricke

group Γ∗(9). The other two are non-cuspidal,
[
12, 3−1, 9

]
and

[
1, 3−1, 92

]
,

with orders 1
3 and 2

3 at ∞. In the first example of this section we describe
theta series whose components are the two cuspidal eta products:

Example 14.1 The residues of α = 2 + i and β = 2 + 3i modulo 18 can be
chosen as generators of (O1/(18))× � Z24 × Z6. We have α6β3 ≡ i mod 18,
α12 ≡ −1 mod 18. Four characters χ

δ,ν
on O1 with period 18 are fixed by

their values

χ
δ,ν

(2 + i) = ξ, χ
δ,ν

(2 + 3i) = ξ2, with ξ = ξ
δ,ν

= 1
2 (δ

√
3 + νi)

a primitive 12th root of unity, and δ, ν ∈ {1, −1}. The corresponding theta
series of weight 1 satisfy

Θ1

(
−4, χ

δ,ν
, z

12

)
= f1(z) + δ

√
3 f5(z) (14.1)

where the components fj are normalized integral Fourier series with denom-
inator 12 and numerator classes j modulo 12, and both of them are eta prod-
ucts,

f1(z) =
η4(3z)

η(z)η(9z)
, f5(z) = η(z)η(9z). (14.2)

G. Köhler, Eta Products and Theta Series Identities,
Springer Monographs in Mathematics,
DOI 10.1007/978-3-642-16152-0 14, c© Springer-Verlag Berlin Heidelberg 2011
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The Fricke involution W9 maps Fδ(z) = Θ1

(
−4, χδ,ν , z

12

)
to Fδ(W9z) =

−3iz Fδ(z).

For the non-cuspidal eta products which we mentioned above we introduce
the notation

g1 =
[
12, 3−1, 9

]
, g2 =

[
1, 3−1, 92

]
,

gj(z) =
∑

n≡j mod 3

bj(n)e
(

nz
3

)
. (14.3)

We find two linear combinations which are Eisenstein series whose divisor
sums involve non-real characters:

Example 14.2 For δ ∈ {1, −1}, let χ
δ

be the Dirichlet character modulo 9
on Z which is fixed by the value χ

δ
(2) = ωδ for the primitive root 2 modulo 9.

Then the eta products g1, g2 in (14.3) satisfy

g1(z) + δi
√

3 g2(z) =
∞∑

n=1

(
χ

δ
(n)
∑

d|n
χδ(d)

)
e
(nz

3

)
. (14.4)

The Fricke involution W9 transforms Gδ = g1 + δi
√

3 g2 into Gδ(W9z) =
3δz G−δ(z).

The identity (14.4) implies that the coefficients bj(p) of gj at primes p are

b1(p) =
{

−1
2 for p ≡

{
7, 13

1 mod 18,

b2(p) =

⎧
⎨

⎩

−1
1
0

for p ≡

⎧
⎨

⎩

5
11
17

mod 18.

For the coefficients λ(pr) of Gδ at prime powers pr we get the recursions
λ(pr+1) = λ(p)λ(pr) −

(
p
3

)
λ(pr−1).

14.2 Weight 2 for the Fricke Group Γ∗(9)

There are 6 new holomorphic eta products of weight 2 for Γ∗(9), four of them
cuspidal and two non-cuspidal. Besides, there are 14 new cuspidal and 6 new
non-cuspidal eta products of level 9 which do not belong to the Fricke group.

We get 4 linear combinations of the cuspidal eta products for Γ∗(9) which
are Hecke eigenforms. Two eta products with orders 1

3 and 2
3 at ∞ combine

to the eigenforms

η6(3z)
η(z)η(9z)

+ δ
√

3 η(z)η2(3z)η(9z),
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and the other two eta products with orders 1
6 and 5

6 at ∞ combine to the
eigenforms

η8(3z)
η2(z)η2(9z)

+ 3δ η2(z)η2(9z),

with δ ∈ {1, −1}. These functions are, however, not lacunary, and hence can-
not be identified with theta series. We remark that a few of their coefficients
at primes vanish, in accordance with Serre’s theorem [128].

The non-cuspidal eta products of weight 2 for Γ∗(9) have orders 0 and 1 at ∞.
One of them is the Eisenstein series E2,9,−1 from Proposition 1.8, the other
one is an Eisenstein series similar to those in Theorem 1.9:

Example 14.3 We have the identities

η10(3z)
η3(z)η3(9z)

= 1 +
∞∑

n=1

( ∑

d|n, 9�d

d

)
e(nz) = E2,9,−1(z) , (14.5)

η3(z)η3(9z)
η2(3z)

=
∞∑

n=1

((n

3

)∑

d|n
d

)
e(nz) . (14.6)

14.3 Weight 2 for Γ0(9)

One of the cuspidal eta products of weight 2 for Γ0(9) is η3(z)η(9z) with
order 1

2 at ∞. It is an eigenform of the Hecke operators Tp for all primes
p �= 3. It is completed to an eigenform by the oldform η4(9z), yielding a
theta series which is well known from Example 11.7. Fricke transformation
leads to the eta product η(z)η3(9z) with order 7

6 at ∞. We list the following
results:

Example 14.4 Let ρ = ρ1 be the character on O3 with period 6 as defined
in Example 11.7. Then we have the identities

Θ2

(
−3, ρ, z

2

)
= η3(z)η(9z) + 3 η4(9z) , (14.7)

Θ2

(
−3, ρ, z

6

)
= η4(z) + 9 η(z)η3(9z) , (14.8)

and, with Θ(z) as defined in (11.1),

Θ(3z)η(3z)η(9z) = η4(3z)+9 η(3z)η3(27z) = η3(z)η(9z)+3 η4(9z). (14.9)

The Fricke involution W9 transforms F =
[
13, 9

]
+ 3
[
94
]

into F (W9z) =
−3z2F

(
z
3

)
.
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The only new cuspidal eta product of level 9, weight 2 and denominator 4 is[
13, 3−1, 92

]
, with order 3

4 at ∞. We could not find an eigenform involving
this eta product as a constituent in one of its components. The same must be
said for its Fricke transform

[
12, 3−1, 93

]
with order 13

12 at ∞. However, there
are theta series whose components are old eta products with denominator 4:
These are the functions

[
13, 3

]
+ 3(1 +

√
2 δi)

[
3, 93

]

which were discussed in Example 11.18.

There are exactly two new cuspidal eta products of weight 2 with denomina-
tor 6. They are Fricke transforms of each other, and their linear combinations

Fδ(z) =
η(z)η4(3z)

η(9z)
+ 3δ

η4(3z)η(9z)
η(z)

are Hecke eigenforms. These functions are not lacunary, and hence there is
no theta series identity. We have Fδ(W9z) = −9z2Fδ(z).

There are 9 new cuspidal eta products of weight 2 with denominator 12 for
Γ0(9). One of them is

[
12, 3−1, 93

]
which was mentioned before. For the

others we introduce the notations

f1 =
[
1−1, 37, 9−2

]
, f5 =

[
1−2, 37, 9−1

]
,

f7 =
[
12, 3, 9

]
, f11 =

[
1, 3, 92

]
,

(14.10)

g1 =
[
12, 33, 9−1

]
, g13 =

[
1−1, 33, 92

]
,

g5 =
[
14, 3−1, 9

]
, g17 =

[
1, 3−1, 94

]
.

(14.11)

Here the subscripts are equal to the numerators of the eta products, and
(f1, f5), (f7, f11), (g1, g13), (g5, g17) are pairs of Fricke transforms. We get
four Hecke eigenforms

Fδ,ε = f1 +
√

3δεif5 + 3εif7 + 3
√

3δf11,

with δ, ε ∈ {1, −1}, which are not lacunary. They satisfy Fδ,ε(W9z) =
−9δεiFδ,−ε(z). There are four linear combinations of the eta products gj

which are represented by Hecke theta series:

Example 14.5 Let the generators of (O1/(18))× � Z24 × Z6 be chosen as
in Example 14.1, and define four characters ψ

δ,ε
on O1 with period 18 by

ψδ,ε(2 + i) = ξ, ψ
δ,ε

(2 + 3i) = −iξ2,

with ξ = 1
2

√
2
ε
((

1 + δ
√

3
)

+
(
1 − δ

√
3
)
i
)

a primitive 24th root of unity, and with δ, ε ∈ {1, −1}. Then we have the
identity

Θ2

(
−4, ψ

δ,ε
, z

12

)
= g1(z) + 3

√
3δ g13(z)

+ 1
2εi

√
6(

√
3 − δ)

(
g5(z) − 3

√
3δ g17(z)

)
, (14.12)
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where the components gj are the eta products in (14.11). The Fricke involu-
tion W9 transforms Gδ,ε = Θ2

(
−4, ψ

δ,ε
, z

12

)
into Gδ,ε(W9z) = −9δz2Gδ,−ε(z).

Primitive 24th roots of unity appeared in Example 13.18, with a similar
notation. Four of eight roots are involved here. We remark that ξ2 = 1

2 (δ
√

3−
i), ξ3 = ε 1−i√

2
, ξ6 = −i. Since i ≡ (2 + i)6(2 + 3i)3 mod 18, we obtain

ψ
δ,ε

(i) = ξ6(−iξ2)3 = iξ12 = −i as it should be for weight k = 2. Formulae
such as μξ − μξ = εi√

2

(
(x + y) − δ

√
3(x − y)

)
for μ = x + yi are useful for the

evaluation of coefficients of Θ2

(
−4, ψδ,ε,

z
12

)
.

Now we discuss the non-cuspidal eta products of weight 2 and level 9. Two of
them,

[
13, 32, 9−1

]
and

[
1−1, 32, 93

]
, with denominators 1 and 3, form a pair

of Fricke transforms which we could not identify with constituents of Hecke
eigenforms. For the others we introduce the notation

h1 =
[
15, 3−2, 9

]
, h4 =

[
12, 3−2, 94

]
,

(14.13)
h2 =

[
14, 3−2, 92

]
, h5 =

[
1, 3−2, 95

]
.

All of them have denominator 3, the subscripts are equal to the numerators,
and (h1, h5), (h2, h4) are pairs of Fricke transforms. There are four linear
combinations which are eigenforms and can be represented by Eisenstein
series:

Example 14.6 For δ, ε ∈ {1, −1}, let ρ
δ,ε

and χε be the Dirichlet characters
modulo 9 on Z which are fixed by the values

ρ
δ,ε

(2) = δω−ε, χ
ε
(2) = ω2ε

for the primitive root 2 modulo 9. Then the eta products hj in (14.13) satisfy
(
h1(z) + 3Aε h4(z)

)
+ δ
(
Aε h2(z) + 9h5(z)

)

=
∞∑

n=1

(
ρ

δ,ε
(n)
∑

d|n
χ

ε
(d)d

)
e
(nz

3

)
, (14.14)

where Aε = 1+ωε. Let Hδ,ε denote the functions in (14.14). Then the action
of W9 on Hδ,ε is given by Hδ,ε(W9z) = −9δz2 Hδ,ε(z).

From (14.14) one can deduce explicit formulae for the coefficients of the eta
products (14.13). At primes they read as follows:

Corollary 14.7 Let the Fourier expansions of the eta products (14.13) be
written as

hj(z) =
∑

n≡j mod 3

cj(n)e
(

nz
3

)
.
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Then for primes p we have

c1(p) =

⎧
⎨

⎩

p + 1
1 − 2p

p − 2
, c4(p) =

⎧
⎪⎨

⎪⎩

0
p−1
3

− p−1
3

for p ≡

⎧
⎨

⎩

1
4
7

mod 9,

c2(p) =

⎧
⎨

⎩

p − 1
−(p − 1)

0
, c5(p) =

⎧
⎪⎨

⎪⎩

− p−2
9

2p−1
9

− p+1
9

for p ≡

⎧
⎨

⎩

2
5
8

mod 9.

14.4 Weight 2 for Levels N = p2, p ≥ 5

For each prime p ≥ 7 there are exactly 6 new holomorphic eta products of
weight 2 and level p2. There are 5 more of them for level 25. (In accordance
with Propositions 3.3, 3.5 we get more or at least the same number of eta
products for smaller primes.)

We start to discuss level 25. Among the 11 new eta products, 3 belong to
the Fricke group Γ∗(25). One of them is

[
1, 52, 25

]
with denominator 2 and

order 3
2 at ∞. It can be combined with old eta products to get an eigenform.

At the beginning of Sect. 12.3 we mentioned that
[
12, 52

]
is an eigenform.

Now we find that

F =
[
12, 52

]
+ 4

[
1, 52, 25

]
+ 5

[
52, 252

]

is an eigenform and satisfies F (W25z) = −25z2F (z). Its coefficients at mul-
tiples of 5 vanish. With

[
12, 52

]
it shares the property that it is not lacunary.

The other two eta products for Γ∗(25) have denominator 6 and orders 1
6 and

13
6 at ∞. They combine to an eigenform which is a theta series for the field

Q(
√

−3):

Example 14.8 The residues of 2+ω and ω modulo 10(1+ω) can be chosen
as generators of the group (O3/(10 + 10ω))× � Z24 × Z6. A character ψ on
O3 with period 10(1 + ω) is given by

ψ(2 + ω) = ω, ψ(ω) = ω.

The corresponding theta series of weight 2 satisfies

Θ2

(
−3, ψ, z

6

)
=

η6(5z)
η(z)η(25z)

+ 4 η2(z)η2(25z). (14.15)

For the construction of another eigenform involving
[
1−1, 56, 25−1

]
and[

12, 252
]

one would need a third constituent; we did not find one.
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The cuspidal eta products of weight 2 for Γ0(25) are
[
13, 25

]
,
[
1, 253

]
,
[
12,

5, 25
]
,
[
1, 5, 252

]
with orders 7

6 , 19
6 , 4

3 , 7
3 at ∞. The orders are > 1, and the

numerators s and denominators t satisfy s ≡ 1 mod t. These are the obstacles
why we did not find eigenforms involving these eta products as constituents.

A more favorable situation prevails for the non-cuspidal eta products of level
25 and weight 2. All of them have denominator 1. We denote them by
f1, . . . , f4 where s is the order of fs at ∞.

Example 14.9 Put

f1 =
[
14, 5−1, 25

]
, f2 =

[
13, 5−1, 252

]
,

(14.16)
f3 =

[
12, 5−1, 253

]
, f4 =

[
1, 5−1, 254

]
.

For δ ∈ {1, −1}, let χ
δ

be the Dirichlet character modulo 5 on Z which is
fixed by the value χ

δ
(2) = δi for the primitive root 2 modulo 5. Then we have

the identities

f1(z) + (4 + 3δi) f2(z) + 5(2 + δi) f3(z) + 5(1 + 2δi) f4(z)

=
∞∑

n=1

(χ
δ
(n)σ1(n)) e(nz), (14.17)

f1(z) + 3f2(z) + 5f3(z) + 5f4(z)

=
∞∑

n=1

((
n

5

)∑

d|n

(n/d

5

)
d

)
e(nz), (14.18)

f1(z) + 5 f2(z) + 15 f3(z) + 25 f4(z)

=
∞∑

n=1

(∑

d|n

(
n/d

5

)
d

)
e(nz) − 5

∑

5|n

(∑

d|n

(
n/d

5

)
d

)
e(nz). (14.19)

The holomorphic eta products of weight 2 and levels N = p2 with primes p ≥
7 are

[
1, (p)2, (p2)

]
,
[
12, (p2)2

]
,
[
1, p, (p2)2

]
,
[
1, (p2)3

]
,
[
12, p, (p2)

]
,
[
13, (p2)

]
.

All of them have orders > 1 at ∞. We did not find eigenforms involving any
of these eta products.



15 Levels N = p3 and p4 for Primes p

So far we worked through the levels N with numbers of divisors τ(N) ≤ 3.
In Sects. 15, 16, 17 and 18 we will delve into the cases with τ(N) = 4 or 5.
These are the cubes and fourth powers of primes and the products of two
distinct primes.

15.1 Weights 1 and 2 for Γ∗(8)

For primes p ≥ 3, the only new holomorphic eta product of weight 1 and
level p3 is η(z)η(p3z). Its order at ∞ is 1+p3

24 > 1; we cannot find eigenforms
involving such an eta product. Thus for weight k = 1 we are confined to
study the level

N = 8.

In Table 15.1 the numbers of new holomorphic eta products of level 8 and
weights 1 and 2 are shown, split up according to their groups and denomina-
tors.

Table 15.1: Numbers of new eta products of level 8 with weights 1 and 2

denominator t 1 2 3 4 6 8 12 24
Γ∗(8), k = 1, cuspidal 0 0 0 0 0 2 0 0
Γ∗(8), k = 1, non-cuspidal 1 1 0 0 0 0 0 0
Γ0(8), k = 1, cuspidal 0 0 2 0 0 2 2 12
Γ0(8), k = 1, non-cuspidal 3 1 0 2 0 4 0 0
Γ∗(8), k = 2, cuspidal 0 0 0 2 0 4 0 0
Γ∗(8), k = 2, non-cuspidal 2 0 0 0 0 0 0 0
Γ0(8), k = 2, cuspidal 2 6 22 10 22 52 44 136
Γ0(8), k = 2, non-cuspidal 28 10 0 20 0 24 0 0
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The cuspidal eta products of weight 1 for Γ∗(8) allow a neat theta series
representation:

Example 15.1 The residues of 1 +
√

−2, 3 and −1 modulo 8 can be chosen
as generators of the group (O2/(8))× � Z8 × Z2

2 . Four characters ψδ,ν on O2

with period 8 are fixed by their values

ψδ,ν(1 +
√

−2) = ξ, ψδ,ν(3) = 1, ψδ,ν(−1) = 1

with ξ = 1√
2
(δ + νi) a primitive 8th root of unity and δ, ν ∈ {1, −1}. The

corresponding theta series of weight 1 satisfy

Θ1

(
−8, ψδ,ν , z

8

)
=

η2(2z)η2(4z)
η(z)η(8z)

+ δ
√

2 η(z)η(8z). (15.1)

For the non-cuspidal eta products of weight 1 for Γ∗(8) we get simple repre-
sentations by Eisenstein series:

Example 15.2 We have the identities

η3(2z)η3(4z)
η2(z)η2(8z)

= Θ1(−8, 1, z) = 1 + 2
∞∑

n=1

(∑

d|n

(
−2
d

))
e(nz), (15.2)

where 1 stands for the trivial character on O2, and

η2(z)η2(8z)
η(2z)η(4z)

= Θ1

(
− 8, ψ, z

2

)
=

∞∑

n=1

((
−1
n

)∑

d|n

(
−2
d

))
e

(
nz

2

)
, (15.3)

where ψ(μ) =
(

2
μμ

)
for μ ∈ O2 is the non-principal character modulo 2 on O2.

Now we discuss the eta products of weight 2 for Γ∗(8). The cuspidal products
with denominator 4 combine to two eigenforms

η4(2z)η4(4z)
η2(z)η2(8z)

+ 2δ η2(z)η2(8z),

with δ ∈ {1, −1}, which are not lacunary.

The four cuspidal eta products of weight 2 with denominator 8 are
[
1−3, 25,

45, 8−3
]
,
[
1−1, 23, 43, 8−1

]
,
[
1, 2, 4, 8

]
,
[
13, 2−1, 4−1, 83

]
. There are no linear

combinations of these four functions which are Hecke eigenforms.

For the non-cuspidal eta products we find the identities

η6(2z)η6(4z)
η4(z)η4(8z)

= 1 + 4
∞∑

n=1

(
a(n)

∑

2�d|n

d

)
e(nz),



15.2. Weight 1 for Γ0(8), Cuspidal Eta Products 225

η4(z)η4(8z)
η2(2z)η2(4z)

=
∞∑

n=1

(
b(n)

∑

2�d|n

d

)
e(nz)

where

a(n) =

⎧
⎨

⎩

1
2
6

, b(n) =

⎧
⎨

⎩

1
−4
0

for n ≡

⎧
⎨

⎩

1 mod 2
2 mod 4
0 mod 4

.

15.2 Weight 1 for Γ0(8), Cuspidal Eta Products

The number of new holomorphic eta products of weight 2 for Γ0(8) is pro-
hibitively large for a discussion of all of them. Perhaps someone might use
the methods in [129], [42], [43], [2] and pick out those among them which
are lacunary. Here we will only inspect the new eta products of weight 1 for
Γ0(8).

Example 15.3 The cuspidal eta products for Γ0(8) with weight 1 and de-
nominator 3 form a pair of sign transforms

f1 =
[
12, 2−1, 8

]
, f2 =

[
1−2, 25, 4−2, 8

]
.

Let the generators of (O1/(12))× � Z8 × Z2 × Z4 and (O3/(8 + 8ω))× �
Z4 × Z2

2 × Z6 be chosen as in Example 13.2. Define characters χδ,ν on O1

with period 12 and ψδ,ν on O3 with period 8(1 + ω) by

χδ,ν(2 + i) = νi, χδ,ν(1 + 6i) = −δ, χδ,ν(i) = 1,

ψδ,ν(1 + 2ω) = ν, ψδ,ν(1 − 4ω) = δ, ψδ,ν(5) = −1, ψδ,ν(ω) = 1

with δ, ν ∈ {1, −1}, such that χ1,ν = χν and ψ1,ν = ψν are the characters
which were introduced in Example 13.2. Let ξ1 = ξ on Z[

√
3] be given as in

Example 13.2, and define a character ξ−1 on Z[
√

3] modulo 4
√

3 by

ξ−1(μ) =
{

sgn(μ)
−sgn(μ) for μ ≡

{
2 +

√
3, 1 + 2

√
3

−1
mod 4

√
3 .

The corresponding theta series of weight 1 satisfy

Θ1

(
12, ξ1,

z
3

)
= Θ1

(
−4, χ1,ν , z

3

)

= Θ1

(
−3, ψ1,ν , z

3

)
= 1

2 (f1(z) + f2(z)), (15.4)

Θ1

(
12, ξ−1,

z
3

)
= Θ1

(
−4, χ−1,ν , z

3

)

= Θ1

(
−3, ψ−1,ν , z

3

)
= 1

4

(
f1

(
z
4

)
− f2

(
z
4

))
. (15.5)

We have the identity

η2(z)η(8z)
η(2z)

+
η5(2z)η(8z)
η2(z)η2(4z)

= 2
η6(8z)

η2(4z)η2(16z)
. (15.6)
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The eta products with denominator t = 8 are the sign transforms of those in
Example 15.1. We get an identity similar to (15.1) with characters similar to
those before:

Example 15.4 Let the generators of (O2/(8))× � Z8 × Z2
2 be chosen as in

Example 15.1, and define a quadruplet of characters ψ̃δ,ν on O2 with period
8 by

ψ̃δ,ν(1 +
√

−2) = ζ, ψ̃δ,ν(3) = −1, ψ̃δ,ν(−1) = 1

with ζ = 1√
2
(ν + δi) a primitive 8th root of unity and δ, ν ∈ {1, −1}. The

corresponding theta series of weight 1 satisfy

Θ1

(
−8, ψ̃δ,ν , z

8

)
=

η(z)η3(4z)
η(2z)η(8z)

+ δi
√

2
η3(2z)η(8z)
η(z)η(4z)

. (15.7)

The eta products with denominator t = 12 form a pair of sign transforms.
We get identities which are somewhat simpler than those in Example 15.3:

Example 15.5 The cuspidal eta products for Γ0(8) with weight 1 and de-
nominator 12 form a pair of sign transforms

g1 =
[
1−2, 24, 4, 8−1

]
, g2 =

[
12, 2−2, 43, 8−1

]
.

Let the generators of (O1/(24))× � Z8 × Z4 × Z2 × Z4 and of (O3/(16 +
16ω))× � Z8 × Z4 × Z2 × Z6 be chosen as in Examples 13.4 and 13.12. Define
characters χδ,ν on O1 with period 24 and ψδ,ν on O3 with period 16(1 + ω)
by

χδ,ν(2 + i) = ν, χδ,ν(1 + 6i) = δi, χδ,ν(5) = −1, χδ,ν(i) = 1,

ψδ,ν(1+2ω) = ν, ψδ,ν(1 − 4ω) = δi, ψδ,ν(7) = −1, ψδ,ν(ω) = 1

with δ, ν ∈ {1, −1}. The residues of 2 +
√

3, 4 +
√

3, 7 and −1 modulo 8
√

3
can be chosen as generators of (Z[

√
3]/(8

√
3))× � Z2

4 × Z2
2 . Hecke characters

ξδ on Z[
√

3] with period 8
√

3 are given by

ξδ(μ) =

⎧
⎨

⎩

sgn(μ)
δi sgn(μ)

−sgn(μ)
for μ ≡

⎧
⎨

⎩

2 +
√

3, 7
4 +

√
3

−1
mod 8

√
3 .

The corresponding theta series of weight 1 satisfy the identities

Θ1

(
12, ξδ,

z
12

)
= Θ1

(
−4, χδ,ν , z

12

)

= Θ1

(
−3, ψδ,ν , z

12

)
= θ1(z) + 2δi θ13(z) (15.8)

where the components θj are normalized integral Fourier series with denom-
inator 12 and numerator classes j modulo 24, and satisfy

θ1 = 1
2 (g1 + g2), θ13 = 1

4 (g1 − g2).
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Another identification of θ1 by eta products will be given in Example 19.3.

There are 12 new cuspidal eta products of weight 1 for Γ0(8) with denomina-
tor t = 24. They form six pairs of sign transforms, and they span a space of
dimension 12 in which we can easily find 12 eigenforms. They are represented
by theta series in the following Examples 15.6 and 15.7.

Example 15.6 The residues of 2 + i, 3 + 2i, 5 and i modulo 24(1 + i) can
be chosen as generators of the group (O1/(24 + 24i))× � Z8 × Z3

4 . Eight
characters χδ,ν and χ̃δ,ν on O1 with period 24(1 + i) are fixed by their values

χδ,ν(2 + i) = ν, χδ,ν(3 + 2i) = δi, χδ,ν(5) = −1, χδ,ν(i) = 1,

χ̃δ,ν(2 + i) = νi, χ̃δ,ν(3 + 2i) = δ, χ̃δ,ν(5) = 1, χ̃δ,ν(i) = 1

with δ, ν ∈ {1, −1}. The residues of 1+2ω, 1−4ω, 17 and ω modulo 32(1+ω)
can be chosen as generators of (O3/(32+32ω))× � Z16 × Z8 × Z2 × Z6. Eight
characters ψδ,ν and ψ̃δ,ν on O3 with period 32(1 + ω) are given by

ψδ,ν(1 + 2ω) = ν, ψδ,ν(1 − 4ω) = δi, ψδ,ν(17) = −1, ψδ,ν(ω) = 1,

ψ̃δ,ν(1 + 2ω) = ν, ψ̃δ,ν(1 − 4ω) = δ, ψ̃δ,ν(17) = −1, ψ̃δ,ν(ω) = 1.

The residues of 2 +
√

3, 1 + 2
√

3, 7 and −1 modulo 8(3 +
√

3) can be chosen
as generators of (Z[

√
3]/(24 + 8

√
3))× � Z8 × Z4 × Z2

2 . Hecke characters ξδ

and ξ̃δ on Z[
√

3] with period 8(3 +
√

3) are given by

ξδ(μ) =

⎧
⎨

⎩

sgn(μ)
δi sgn(μ)

−sgn(μ)
,

ξ̃δ(μ) =

⎧
⎨

⎩

sgn(μ)
−δ sgn(μ)

−sgn(μ)
for μ ≡

⎧
⎨

⎩

2 +
√

3, 7
1 + 2

√
3

−1
mod 8(3 +

√
3).

The corresponding theta series of weight 1 satisfy

Θ1

(
12, ξδ,

z
24

)
= Θ1

(
−4, χδ,ν , z

24

)

= Θ1

(
zz − 3, ψδ,ν , z

24

)
= f1(z) + 2δi f13(z), (15.9)

Θ1

(
12, ξ̃δ,

z
24

)
= Θ1

(
−4, χ̃δ,ν , z

24

)

= Θ1

(
−3, ψ̃δ,ν , z

24

)
= f̃1(z) + 2δ f̃13(z), (15.10)

where the components fj and f̃j are normalized integral Fourier series with
denominator 24 and numerator classes j modulo 24. All of them are eta
products,

f1(z) =
η(2z)η4(4z)
η(z)η2(8z)

, f̃1(z) =
η(z)η5(4z)

η2(2z)η2(8z)
, (15.11)
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f13(z) =
η3(2z)η2(8z)
η(z)η2(4z)

, f̃13(z) =
η(z)η2(8z)

η(4z)
. (15.12)

Here (f1, f̃1) and (f13, f̃13) are pairs of sign transforms. The action of the
Fricke involution W8 on Fδ = f1 + 2δif13 and F̃δ = f̃1 + 2δf̃13 is given by

Fδ(W8z) = −2
√

2iz

([
24, 4
12, 8

]
+ δi

[
12, 43

22, 8

])
,

F̃δ(W8z) = −4iz

([
25, 8
12, 42

]
+ δ

[
12, 8

2

])
.

Example 15.7 The residues of 1 +
√

−6,
√

3 + 2
√

−2, 7 and −1 modulo
8

√
3 can be chosen as generators of the group (J6/(8

√
3))× � Z8 × Z4 × Z2

2 .
Sixteen characters ϕδ,ε,ν and ϕ̃δ,ε,ν on J6 with period 8

√
3 are fixed by their

values

ϕδ,ε,ν(1 +
√

−6) = ξ, ϕδ,ε,ν(
√

3 + 2
√

−2) = −δεi,

ϕδ,ε,ν(7) = −1, ϕδ,ε,ν(−1) = 1,

ϕ̃δ,ε,ν(1 +
√

−6) = ξ, ϕ̃δ,ε,ν(
√

3 + 2
√

−2) = −δε,

ϕ̃δ,ε,ν(7) = −1, ϕ̃δ,ε,ν(−1) = 1,

with ξ = 1√
2
(ν + εi) a primitive 8th root of unity and δ, ε, ν ∈ {1, −1}. The

corresponding theta series of weight 1 satisfy

Θ1

(
−24, ϕδ,ε,ν , z

24

)
= g1(z) + δ

√
2 g5(z) + εi

√
2 g7(z) − 2δεi g11(z), (15.13)

Θ1

(
−24, ϕ̃δ,ε,ν , z

24

)
= g̃1(z) + δi

√
2 g̃5(z) + εi

√
2 g̃7(z) − 2δε g̃11(z), (15.14)

where the components gj and g̃j are normalized integral Fourier series with
denominator 24 and numerator classes j modulo 24. All them are eta prod-
ucts,

g1 =
[
23, 4
1, 8

]
, g5 =

[
2, 43

1, 8

]
, g7 =

[
1, 2, 8

4

]
, g11 =

[
1, 4, 8

2

]
, (15.15)

g̃1 =
[
1, 42

8

]
, g̃5 =

[
1, 44

22, 8

]
, g̃7 =

[
24, 8
1, 42

]
, g̃11 =

[
22, 8

1

]
. (15.16)

Here (gj , g̃j) is a pair of sign transforms for every j. The action of the
Fricke involution W8 on Gδ,ε(z) = Θ1

(
−24, ϕδ,ε,ν , z

24

)
and G̃δ,ε(z) =

Θ1

(
−24, ϕ̃δ,ε,ν , z

24

)
is given by

Gδ,ε(W8z) = −2
√

2 δiz Gδ,−ε(z), G̃δ,ε(W8z) = 2
√

2 δεiz G̃−δ,−ε(z).
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15.3 Weight 1 for Γ0(8), Non-cuspidal Eta Products

For the non-cuspidal eta products of weight 1 with denominator t = 1 we
introduce the notation

F1 =
[

25

12, 8

]
, F2 =

[
12, 42

2, 8

]
, F3 =

[
12, 45

23, 82

]
. (15.17)

Here (F1, F2) is a pair of sign transforms, while the sign transform of F3 is the
theta series with trivial character on O2 in (15.2). We observe the following
relations:

Example 15.8 The eta products in (15.17) satisfy

F3(z) =
η2(z)η5(4z)
η3(2z)η2(8z)

= 1 − 2
∞∑

n=1

(
(−1)n−1

∑

d|n

(
−2
d

))
e(nz), (15.18)

1
4 (F1(z) − F2(z)) =

∑

n≡1 mod 4

(
(−1)

1
4 (n−1)

∑

d|n

(
−1
d

))
e(nz), (15.19)

− 1
8

(
F1

(
z
8

)
+ F2

(
z
8

))
= − 1

4 +
∞∑

n=1

(
(−1)n−1

∑

d|n

(
−1
d

))
e(nz). (15.20)

The non-cuspidal eta product with denominator t = 2 is
[
1−2, 25, 4−3, 82

]
=
[
1−2, 25, 4−2

][
4−1, 82

]
.

It is the sign transform of the function in (15.3) and the Fricke transform of
the function F3 in (15.18). Its identification with an Eisenstein series and
with a theta series follows directly from (8.5) and (8.8):

Example 15.9 Let ψ0 denote the principal character modulo
√

−2 on O2.
Then we have

η5(2z)η2(8z)
η2(z)η3(4z)

= Θ1

(
−8, ψ0,

z
2

)
=

∑

n≡1 mod 2

( ∑

d|n

(
−2
d

))
e
(

nz
2

)
. (15.21)

The character ψ0 was denoted by ψ̃1 in Example 13.13. Comparing (15.21)
and (13.32) yields the eta identity

[
25, 82

12, 43

]
=
[

87

43, 162

]
+ 2

[
8, 162

4

]

which follows trivially from (8.5), (8.7), (8.8).
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The non-cuspidal eta products with denominators 4 and 8 are related among
themselves by identities which will be presented in Example 15.11. For de-
nominator 4 we have a pair of sign transforms (f, f̃) for which the identities
in Theorem 8.1 imply the representations

f(z) =
η6(2z)η(8z)
η2(z)η3(4z)

=
∑

n≡1 mod 4

((
−2

(n + 1)/2

)∑

d|n

(
−1
d

))
e
(

nz
4

)
, (15.22)

f̃(z) =
η2(z)η(8z)

η(4z)
=

∑

n≡1 mod 4

((
2

(n + 1)/2

)∑

d|n

(
−1
d

))
e
(

nz
4

)
. (15.23)

The coefficients in these two series are only partially multiplicative. We
obtain eigenforms and theta series as follows:

Example 15.10 Let the generators of (O1/(8))× � Z4 × Z2 × Z4 be chosen
as in Example 13.3, and fix a pair of characters χδ on O1 with period 8 by

χδ(2 + i) = δi, χδ(3) = −1, χδ(i) = 1

with δ ∈ {1, −1}, such that

χδ(μ) =
{ 1

−1 for μμ ≡
{ 1

9 mod 16,

χδ(μ) =
{

δi
−δi

for μμ ≡
{ 5

13 mod 16.

The corresponding theta series of weight 1 satisfy

Θ1

(
−4, χδ,

z
4

)
= 1

2 (1 + δi) f(z) + 1
2 (1 − δi) f̃(z) (15.24)

where f and f̃ are the eta products in (15.22) and (15.23).

For denominator 8 we have two pairs of sign transforms (g1, g̃1) and (g5, g̃5),
which are given by

g1 =
[

45

1, 82

]
, g̃1 =

[
1, 46

23, 82

]
,

(15.25)

g5 =
[
22, 82

1, 4

]
, g̃5 =

[
1, 82

2

]
.

When we rescale g̃1 and g̃5 and replace the variable z by 2z then we get linear
combinations of the eta products f and f̃ in the following Example 15.10; the
identities (15.26) in Example 15.11 can be deduced directly from the identities
in Theorem 8.1. The theta series for the principal character modulo 1 + i on
O1 is known from Example 10.6 and will reappear in (15.27). This yields the
eta identity (15.29) which also follows trivially from (8.5), (8.8).
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Example 15.11 We have the identities
[

26, 8
12, 43

]
+
[
12, 8

4

]
= 2

[
2, 86

43, 162

]
,

(15.26)
[

26, 8
12, 43

]
−
[
12, 8

4

]
= 4

[
2, 162

4

]
.

Let ψ1 denote the principal character modulo 1 + i on O1, and let ψ−1 be
the character on O1 with period 4 which is given by ψ−1(μ) =

(
2

μμ

)
. Then

for δ ∈ {1, −1} the theta series of weight 1 for the characters ψδ and for the
characters χδ in Example 15.10 satisfy

Θ1

(
−4, ψδ,

z
8

)
= g1(z) + 2δ g5(z)

=
∑

n≡1 mod 4

((
2
n

) δ−1
2 ∑

d|n

(
−1
d

))
e
(

nz
8

)
, (15.27)

Θ1

(
−4, χδ,

z
8

)
= g̃1(z) + 2δi g̃5(z), (15.28)

where gj, g̃j are the eta products in (15.25). The action of W8 is given by

g1(W8z) + 2δ g5(W8z) = −2iz (F1(z) + δ F2(z)),

g̃1(W8z) + 2δi g̃5(W8z) = −2iz (f(z) + δi f̃(z)),

with F1, F2, f , f̃ as in (15.17), (15.22), (15.23). We have the identity
[

85

2, 162

]
+ 2

[
42, 162

2, 8

]
=
[
24

12

]
. (15.29)

15.4 Weight 1 for Γ∗(16)

Table 15.2 displays the numbers of new holomorphic eta products of level
N = 16 with weights 1 and 2. Not unexpectedly, the numbers are somewhat
larger than those in Sect. 15.1 for level 8.

We start to discuss weight 1 for the Fricke group Γ∗(16), which is rather
easy. The cuspidal eta products with denominators 8 and 24 combine to a
pair and a quadruplet, respectively, of eigenforms which are identified with
theta series on the Gaussian number field.

Example 15.12 The residues of 2 + i, 4 + i and i modulo 16 are generators
of the group (O1/(16))× � Z8 × Z2

4 . Four characters χδ,ν on O1 with period
16 are given by

χδ,ν(2 + i) = ξ, χδ,ν(4 + i) = ξ2 = δνi, χδ,ν(i) = 1,
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Table 15.2: Numbers of new eta products of level 16 with weights 1 and 2

denominator t 1 2 3 4 6 8 12 24
Γ∗(16), k = 1, cuspidal 0 0 0 0 0 2 0 4
Γ∗(16), k = 1, non-cuspidal 2 0 0 0 0 0 0 0
Γ0(16), k = 1, cuspidal 0 0 2 0 2 2 0 16
Γ0(16), k = 1, non-cuspidal 4 2 0 0 0 12 0 0
Γ∗(16), k = 2, cuspidal 0 0 2 2 2 8 4 16
Γ∗(16), k = 2, non-cuspidal 4 2 0 0 0 0 0 0
Γ0(16), k = 2, cuspidal 12 16 74 46 74 176 124 488
Γ0(16), k = 2, non-cuspidal 84 42 0 32 0 136 0 0

with ξ = 1√
2
(δ + νi) a primitive 8th root of unity, and with δ, ν ∈ {1, −1}.

The corresponding theta series of weight 1 satisfy

Θ1

(
−4, χδ,ν , z

8

)
= f1(z) + δ

√
2i f5(z), (15.30)

where the components fj are normalized integral Fourier series with denomi-
nator 8 and numerator classes j modulo 8, and both of them are eta products,

f1(z) =
η2(2z)η2(8z)
η(z)η(16z)

, f5(z) =
η(z)η2(4z)η(16z)

η(2z)η(8z)
. (15.31)

Example 15.13 The residues of 2+i, 6+i, 5 and i modulo 48 can be chosen
as generators of the group (O1/(48))× � Z2

8 × Z2
4 . Eight characters ψδ,ε,ν on

O1 with period 48 are fixed by their values

ψδ,ε,ν(2+ i) = ξ, ψδ,ε,ν(6+ i) = εξ, ψδ,ε,ν(5) = 1, ψδ,ε,ν(i) = 1,

with ξ = 1√
2
(δ + νi) a primitive 8th root of unity, and with δ, ε, ν ∈ {1, −1}.

The corresponding theta series of weight 1 satisfy

Θ1

(
−4, ψδ,ε,ν , z

24

)
= g1(z) + δ

√
2 g5(z) − δε

√
2 g13(z) + 2ε g17(z), (15.32)

where the components gj are normalized integral Fourier series with denomi-
nator 24 and numerator classes j modulo 24, and all of them are eta products,

g1 =
[
2, 42, 8
1, 16

]
, g5 =

[
23, 83

1, 42, 16

]
,

(15.33)

g13 =
[
1, 44, 16
22, 82

]
, g17 = [1, 16].
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Each of the non-cuspidal eta products of weight 1 for Γ∗(16) is a product of
two simple theta series of weight 1

2 . From the identities in Theorem 8.1 one
deduces the formulas

η2(z)η2(16z)
η(2z)η(8z)

=
∞∑

n=1

a(n)e(nz),

η5(2z)η5(8z)
η2(z)η4(4z)η2(16z)

= 1 + 2
∞∑

n=1

b(n)e(nz)

with

a(n) =

⎧
⎨

⎩

∑
d|n
(−1

d

)

−2 a
(

n
2

)

0
, b(n) =

⎧
⎨

⎩

a(n)
0

2
∑

d|n
(−1

d

) for n ≡

⎧
⎨

⎩

1 mod 2
2 mod 4
0 mod 4

.

15.5 Weight 2 for Γ∗(16)

Eta products of weight 2 for the Fricke group of level 16 are more interesting
than those of level 8—at least from the point of view of this monograph. The
reason is that we find several lacunary eta products. There are two of them
with denominator t = 3, and here we get the following identities:

Example 15.14 Let the generators of (O3/(4 + 4ω))× � Z2
2 × Z6 be chosen

as in Example 9.1, and define characters ψδ on O3 with period 4(1 + ω) by

ψδ(1 + 2ω) = δ, ψδ(1 − 4ω) = −1, ψδ(ω) = ω

with δ ∈ {1, −1}. Then ψ−1 has period 2(1 + ω) and is identical with the
character ψ in Example 9.3. The corresponding theta series of weight 2 satisfy

Θ2

(
−3, ψ1,

z
3

)
=

η5(2z)η5(8z)
η2(z)η2(4z)η2(16z)

− 2
η2(z)η2(4z)η2(16z)

η(2z)η(8z)
, (15.34)

Θ2

(
−3, ψ−1,

z
3

)
+ 4 Θ2

(
−3, ψ−1,

4z
3

)

=
η5(2z)η5(8z)

η2(z)η2(4z)η2(16z)
+ 2

η2(z)η2(4z)η2(16z)
η(2z)η(8z)

= η4(2z) + 4 η4(8z). (15.35)

We remark that the linear combination of eta products in (15.35) has mul-
tiplicative coefficients and is an eigenform of the Hecke operators Tp for all
primes p > 3.—For the eta products with denominator t = 4 we introduce
the notation

f1 =
[

24, 84

12, 162

]
, f5 =

[
12, 44, 162

22, 82

]
. (15.36)

We get the following results:
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Example 15.15 Let the generators of (O1/(8))× � Z4 × Z2 × Z4 and of
(O2/(4

√
−2))× � Z4 × Z2

2 be chosen as in Example 13.3. Define a character
ρ on O1 with period 8 and a pair of characters ϕδ on O2 with period 4

√
−2

by
ρ(2 + i) = 1, ρ(3) = −1, ρ(i) = −i,

ϕδ(1 +
√

−2) = −δi, ϕδ(3) = 1, ϕδ(−1) = −1

with δ ∈ {1, −1}. Then with notations from (15.36), the corresponding theta
series of weight 2 satisfy

Θ2

(
−4, ρ, z

4

)
= f1(z) + 2 f5(z), (15.37)

Θ2

(
−8, ϕδ,

z
4

)
= g1(z) + 2 δ

√
2 g3(z), (15.38)

where the components gj are normalized integral Fourier series with denom-
inator 4 and numerator classes j modulo 8, and where g1 is a linear combi-
nation of the eta products f1 and f5,

g1(z) = f1(z) − 2 f5(z). (15.39)

Conceivably also g3 is a linear combination of eta products; we did not find
such an identification. We note some consequences for the coefficients of f1

and f5:

Corollary 15.16 Let the expansions of the eta products in (15.36) be written
as

η4(2z)η4(8z)
η2(z)η2(16z)

=
∑

n≡1 mod 4

a(n)e
(

nz
4

)
,

η2(z)η4(4z)η2(16z)
η2(2z)η2(8z)

=
∑

n≡1 mod 4

b(n)e
(

nz
4

)
.

Then we have

a(n) = 2 b(n) for all n ≡ 5 mod 8. (15.40)

Let p ≡ 1 mod 8 be prime, and write

p = u2 + 16v2 = x2 + 8y2

with u ≡ 1 mod 4 and x ≡ 1 or 3 mod 8. Then we have

a(p) + 2b(p) = (−1)v · 2u, a(p) − 2b(p) = 2x. (15.41)

Proof. Since g1 = f1 − 2f5 is a component of a theta series on Q(
√

−2), its
coefficients at n ≡ 5 mod 8 vanish. This proves (15.40). Primes p ≡ 1 mod 8
are split both in Q(

√
−1) and in Q(

√
−2). Thus p = μμ = λλ where μ = u+
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ri ∈ O1 and λ = x+ s
√

−2 ∈ O2 are unique up to associates and conjugates.
We can choose r even. Then from p ≡ 1 mod 8 we obtain that r = 4v is a
multiple of 4 and that s = 2y is even, whence p = u2 + 16v2 = x2 + 8y2. By
appropriate choices of the signs of u and x we achieve that u ≡ 1 mod 4 and
x ≡ 1 or 3 mod 8. Then an inspection of the values of the characters ρ and ϕ
yields ρ(μ) = (−1)v and ϕ(λ) = 1. Now from (15.37) and (15.38) we obtain
a(p) + 2b(p) = ρ(μ)(μ + μ) and a(p) − 2b(p) = ϕ(λ)(λ + λ), which proves
(15.41). �

We get similar results for the eta products with denominator t = 6 which we
denote by

h1 =
[
23, 42, 83

12, 162

]
, h7 =

[
12, 46, 162

23, 83

]
. (15.42)

In particular, the properties (15.46) and (15.47) are proved in the same way
as in Corollary 15.16.

Example 15.17 Let the generators of (O3/(8+8ω))× � Z4 ×Z2
2 ×Z6 and of

(O1/(12))× � Z8 × Z2 × Z4 be chosen as in Example 13.2. Define a character
ψ on O3 with period 8(1 + ω) and a pair of characters χδ on O1 with period
12 by

ψ(1 + 2ω) = 1, ψ(1 − 4ω) = 1, ψ(5) = −1, ψ(ω) = ω,

χδ(2 + i) = δ, χδ(1 + 6i) = 1, χδ(i) = −i

with δ ∈ {1, −1}. Then with notations from (15.42), the corresponding theta
series of weight 2 satisfy

Θ2

(
−3, ψ, z

6

)
= h1(z) + 2 f7(z), (15.43)

Θ2

(
−4, χδ,

z
6

)
= g1(z) + 4 δ g5(z), (15.44)

where the components gj are normalized integral Fourier series with denom-
inator 6 and numerator classes j modulo 12, and where g1 is a linear combi-
nation of the eta products h1 and h7,

g1(z) = h1(z) − 2 h7(z). (15.45)

Let the expansions of h1 and h7 be written as

h1(z) =
∑

n≡1 mod 6

α(n)e
(

nz
6

)
, h7(z) =

∑

n≡1 mod 6

β(n)e
(

nz
6

)
.

Then we have

α(n) = 2 β(n) for all n ≡ 7 mod 12. (15.46)

Let p ≡ 1 mod 12 be prime, write

p = u2 + 4v2 = x2 + 12y2,
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and choose the sign of u such that u ≡ 1, 3 or 5 mod 12. Then we have

α(p) + 2β(p) = (−1)y
(

x
3

)
· 2x, α(p) − 2β(p) = 2u. (15.47)

Remark. The relation (15.46) follows directly from the identities in Theo-
rem 8.1 when we write

h1 =
[

25

12, 42

] [
85

42, 162

] [
45

22, 82

]
[4], h7 =

[
45

22, 82

] [
12

2

] [
162

8

]
[4].

This implies α(n) =
∑(

12
t

)
and β(n) =

∑
(−1)w

(
12
t

)
where in α(n) the

summation is on all t > 0, u, v, w ∈ Z for which t2 + 6u2 + 12v2 + 24w2 = n,
and in β(n) the summation is on all t, u > 0, u odd, v, w ∈ Z for which
t2 + 6u2 + 12v2 + 6w2 = n. Now (15.46) follows easily.

For the eta products of weight 2 and denominator t = 8 we introduce the
notation

f1a =
[

27, 87

13, 44, 163

]
, f1b =

[
410

1, 22, 82, 16

]
,

(15.48)

f9 = [1, 2, 8, 16], f3 =
[
2, 44, 8
1, 16

]
,

f5a =
[

24, 84

1, 42, 16

]
, f5b =

[
1, 412, 16

25, 85

]
,

(15.49)

f13 =
[
13, 42, 163

22, 82

]
, f7 =

[
1, 46, 16
22, 82

]
,

using the numerators s for labels. These functions span a space of dimension
6, with linear relations f1a − f1b = 2f9 and f5a − f5b = 2f13 among them.
The second relation follows trivially from the first one when we multiply
with

[
12, 2−3, 42, 8−3, 162

]
. In this space we find six Hecke eigenforms. Four

of them are

(f1a + 2f9) + 2δ
√

2 f3 − δε
√

2 (f5a + 2f13) + 4εf7,

with δ, ε ∈ {1, −1}, which are not lacunary. The remaining two are identified
with Hecke theta series on the Gaussian number field:

Example 15.18 Among the eta products of weight 2 and denominator 8 for
the Fricke group Γ∗(16), the linear relations

f1a − f1b = 2f9, f5a − f5b = 2f13 (15.50)

hold, with notations defined in (15.48), (15.49). Let the generators of (O1/
(16))× � Z8 × Z2

4 be chosen as in Example 15.12. Define characters χδ on
O1 with period 16 by

χδ(2 + i) = ξ = δ 1−i√
2
, χδ(4 + i) = 1, χδ(i) = −i
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with δ ∈ {1, −1}. The corresponding theta series of weight 2 satisfy

Θ2

(
−4, χδ,

z
8

)
=
(
f1a(z) − 6f9(z)

)
+ δ

√
2
(
3f5a(z) − 2f13(z)

)
. (15.51)

The 8th root of unity ξ satisfies relations such as ξ2 = −i, iξ = ξ = −ξ3,
μξ+μξ = δ

√
2(a+b) for μ = a+bi which are useful for evaluating coefficients

of the theta series in Example 15.18.

There are six Hecke eigenforms whose components involve the four eta prod-
ucts of weight 2 and denominator t = 12 for Γ∗(16), and two functions which
are not otherwise identified. All these eigenforms are equal to Hecke theta
series. Again we use the numerators for labels of the eta products:

Example 15.19 Let the eta products of weight 2 and denominator 12 for
the Fricke group Γ∗(16) be denoted by

g1 =
[
22, 44, 82

12, 162

]
, g5 =

[
26, 86

12, 44, 162

]
,

(15.52)

g13 =
[
12, 48, 162

24, 84

]
, g17 =

[
12, 162

]
.

Let the generators of (O1/(24))× � Z8 ×Z4 ×Z2 ×Z4 and of (J6/(4
√

−6))× �
Z2

4 ×Z2
2 be chosen as in Example 13.4. Define characters ρδ on O1 with period

24 and ϕδ,ε on J6 with period 4
√

−6 by

ρδ(2 + i) = −δi, ρδ(1 + 6i) = −i, ρδ(5) = 1, ρδ(i) = −i,

ϕδ,ε(
√

3 +
√

−2) = ε, ϕδ,ε(1 +
√

−6) = −δi,

ϕδ,ε(7) = 1, ϕδ,ε(−1) = −1

with δ, ε ∈ {1, −1}. The corresponding theta series of weight 2 satisfy

Θ2

(
−4, ρδ,

z
12

)
= h̃1(z) + 2δ h̃5(z), (15.53)

Θ2

(
−24, ϕδ,ε,

z
12

)
= h1(z) + 2ε

√
3 h5(z) + 2δ

√
6 h7(z) − 4δε

√
2 h11(z),

(15.54)
where the components h̃j and hj are normalized integral Fourier series with
denominator 12 and numerator classes j modulo 24. Those for j = 1, 5 are
linear combinations of eta products; with notations from (15.52) we have

h̃1 = g1+2g13, h1 = g1−2g13, h̃5 = g5+2g17, h5 = g5−2g17. (15.55)
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For the eta products of weight 2 and denominator 24 on Γ∗(16) we introduce
notations where again we use the numerators for labels,

g1a =
[

26, 86

13, 42, 163

]
, g1b =

[
412

1, 23, 83, 16

]
,

(15.56)

g25 = [1, 42, 16], g7 =
[

46

1, 16

]
,

g5a =
[

28, 88

13, 46, 163

]
, g5b =

[
48

1, 2, 8, 16

]
,

(15.57)

g29 =
[
1, 22, 82, 16

42

]
, g11 =

[
22, 42, 82

1, 16

]
,

g13a =
[
23, 83

1, 16

]
, g13b =

[
1, 414, 16

26, 86

]
,

(15.58)

g37 =
[
13, 44, 163

23, 83

]
, g19 =

[
1, 48, 16
23, 83

]
,

g17a =
[

25, 85

1, 44, 16

]
, g17b =

[
1, 410, 16

24, 84

]
,

(15.59)

g41 =
[
13, 163

2, 8

]
, g23 =

[
1, 44, 16

2, 8

]
.

First of all, there are the linear relations

g1a − g1b = 2g25, g5a − g5b = 2f29,
(15.60)

g13a − g13b = 2f37, g17a − g17b = 2f41

which are trivial consequences from each of the relations in (15.50). Thus the
16 eta products span a space of dimension 12. In this space there are eight
Hecke eigenforms

Fδ,ε,ν = (g1a − 6g25) + δε
√

2 (g5a − 6g29) + 4δ g7 + 4ε
√

2 g11

+ δν
√

2 (−3g13a + 2g37) + 2εν (3g17a − 2g41)

+ 4ν
√

2 g19 − 8δεν g23

with δ, ε, ν ∈ {1, −1}, which are not lacunary. Furthermore, in this space
there are four Hecke eigenforms which are identified with Hecke theta series
on the Gaussian number field as follows. Among the character values, the
8th root of unity ξ from Example 15.18 reappears.

Example 15.20 Let the generators of (O1/(48))× � Z2
8 × Z2

4 be chosen as
in Example 15.13. Define characters χδ,ε on O1 with period 48 by
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χδ,ε(2 + i) = ξ = δ 1−i√
2
, χδ,ε(6 + i) = δεξ = ε 1−i√

2
,

χδ,ε(5) = 1, χδ,ε(i) = −i

with δ, ε ∈ {1, −1}. The corresponding theta series of weight 2 satisfy

Θ2

(
−4, χδ,ε,

z
24

)
= (g1a(z) + 10g25(z)) + δ

√
2 (3g5a(z) − 2g29(z))

+ ε
√

2 (5g13a(z) + 2g37(z))
+ 2δε (g17a(z) − 6g41(z)), (15.61)

with notations as defined in (15.56), (15.57), (15.58), (15.59).

Now we inspect the non-cuspidal eta products of weight 2 on Γ∗(16). For
those with denominator 2 we introduce the notation

h1 =
[

27, 87

12, 46, 162

]
, h3 =

[
12, 2, 8, 162

42

]
. (15.62)

We get two linear combinations which are eigenforms, one of them an Eisen-
stein series, the other one a cusp form and theta series which is known from
Example 13.6:

Example 15.21 The eta products (15.62) combine to the Eisenstein series

h1(z) + 2h3(z) =
∞∑

n=1

(
−2
n

)
σ1(n)e

(
nz
2

)
. (15.63)

Let χ be the character on O1 with period 4 as defined in Example 13.6. The
corresponding theta series of weight 2 satisfies

Θ2

(
−4, χ, z

2

)
= h1(z) − 2h3(z) (15.64)

with h1, h3 as defined in (15.62). We have the eta identity

η7(2z)η7(8z)
η2(z)η6(4z)η2(16z)

− 2
η2(z)η(2z)η(8z)η2(16z)

η2(4z)
=

η8(4z)
η2(2z)η2(8z)

. (15.65)

Let αj(n) denote the Fourier coefficients of hj(z). Then

α1(n) = 2α3(n) = 1
2

(−2
n

)
σ1(n) for all n ≡ 3 mod 4.

If p ≡ 1 mod 4 is prime and p = x2+y2, x odd, then α1(p)−2α3(p) =
(−1

x

)
·2x.

Finally there are four eta products of weight 2 with denominator 1 on Γ∗(16).
They span a space of dimension 3, with a linear relation presented below.
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There is a linear combination which is an eigenform and an Eisenstein series,

1
2

(
η10(2z)η10(8z)

η4(z)η8(4z)η4(16z)
− η(2z)η6(4z)η(8z)

η2(z)η2(16z)

)

=
η2(z)η10(4z)η2(16z)

η5(2z)η5(8z)
+ 2

η4(z)η4(16z)
η2(2z)η2(8z)

=
∞∑

n=1

(
−1
n

)
σ1(n)e(nz).

The coefficients of each of these eta products can be expressed in terms of
divisor sums, and they show multiplicative properties with respect to all odd
primes; we do not display the formulas.

15.6 Weight 1 for Γ0(16), Cusp Forms with Denomina-
tors t = 3, 6, 8

According to Table 15.2 at the beginning of Sect. 15.4, cuspidal eta products
of weight 1 for Γ0(16) exist only with denominators 3, 6, 8 and 24. For
denominator t = 3 we have a pair of sign transforms whose numerator is 2.
This means that for the construction of eigenforms we need a complementing
component with numerator 1.

Example 15.22 Let the generators of the groups (O1/(24))× � Z8 × Z4 ×
Z2 × Z4 and (J6/(4

√
−6))× � Z2

4 × Z2
2 be chosen as in Example 13.4. Define

characters χ̃δ,ν on O1 with period 24 and ϕ̃δ,ν on J6 with period 4
√

−6 by
their values

χ̃δ,ν(2 + i) = δi, χ̃δ,ν(1 + 6i) = ν, χ̃δ,ν(5) = −1, χ̃δ,ν(i) = 1,

ϕ̃δ,ν(
√

3 +
√

−2) = δi, ϕ̃δ,ν(1 +
√

−6) = ν,

ϕ̃δ,ν(7) = −1, ϕδ,ν(−1) = 1

with δ, ν ∈ {1, −1}. Let the generators of (Z[
√

6]/(4
√

6))× � Z4 × Z3
2 be

chosen as in Example 13.4, and define characters ξ̃δ on Z[
√

6] modulo 4
√

6
by

ξ̃δ(μ) =

⎧
⎨

⎩

δi sgn(μ)
sgn(μ)

−sgn(μ)
for μ ≡

⎧
⎨

⎩

1 +
√

6
7

5, −1
mod 4

√
6 .

The corresponding theta series of weight 1 satisfy

Θ1

(
24, ξ̃δ,

z
3

)
= Θ1

(
−4, χ̃δ,ν , z

3

)

= Θ1

(
−24, ϕ̃δ,ν , z

3

)
= f̃1(z) + 2δif̃5(z), (15.66)
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where the components f̃j are normalized integral Fourier series with denom-
inator 3 and numerator classes j modulo 24, and where f̃5 is a linear combi-
nation of eta products,

f̃5(z) =
1
4

(
η5(2z)η(16z)
η2(z)η2(4z)

− η2(z)η(16z)
η(2z)

)
. (15.67)

A result in Example 25.24 will show that f̃1 =
[

83

16

]
and that f̃1

(
3z
8

)
is a

linear combination of eta products of level 12.

The eta products with denominators t = 6 also make up a pair of sign trans-
forms, but with numerator 1. When we add these functions then we need a
complementing component with numerator 5 which is an “old friend” from
Example 13.4. Subtracting the eta products gives another pair of eigenforms
with a complementing component with numerator 1 which is an old eta prod-
uct from Example 13.12:

Example 15.23 Let ξδ, χδ,ν and ϕδ,ν be the characters on Z[
√

6] with pe-
riod 4

√
6, on O1 with period 24 and on J6 with period 4

√
−6 as defined in

Example 13.4. The corresponding theta series of weight 1 satisfy

Θ1

(
24, ξδ,

z
6

)
= Θ1

(
−4, χδ,ν , z

6

)

= Θ1

(
−24, ϕδ,ν , z

6

)
= F1(z) + 2δF5(z), (15.68)

where the components Fj are normalized integral Fourier series with denom-
inator 6 and numerator classes j modulo 24 which are eta products or linear
combinations thereof,

F1(z) =
1
2

(
η5(2z)η3(8z)

η2(z)η3(4z)η(16z)
+

η2(z)η3(8z)
η(2z)η(4z)η(16z)

)
,

(15.69)
F5(z) = η(4z)η(16z).

Let ξ̃δ, ψ̃δ,ν and ρδ,ν be the characters on Z[
√

2], O3 and J6 as defined in
Example 13.12. Then we have

Θ1

(
8, ξ̃δ,

z
6

)
= Θ1

(
− 3, ψ̃δ,ν , z

6

)

= Θ1

(
−24, ρδ,ν , z

6

)
= h1(z) + 2δih7(z), (15.70)

where the components hj are normalized integral Fourier series with denom-
inator 6 and numerator classes j modulo 24 which are eta products or linear
combinations thereof,

h7(z) =
1
4

(
η5(2z)η3(8z)

η2(z)η3(4z)η(16z)
− η2(z)η3(8z)

η(2z)η(4z)η(16z)

)
,

(15.71)

h1(z) =
η(4z)η2(8z)

η(16z)
.



242 15. Levels N = p3 and p4 for Primes p

When we compare components in Examples 15.23 and 13.4 then we obtain
F1(z) = f1(4z), and hence we have F1 =

[
4−3, 88, 16−3

]
. This reduces to the

eta identity
[
1−2, 25, 4−2

]
+
[
12, 2−1

]
= 2

[
4−2, 85, 16−2

]
, which is a trivial

consequence from (8.7), (8.8). Comparing h7 with the corresponding compo-
nent in Example 13.12 gives the identity

h7(z) =
η2(8z)η(16z)

η(4z)
.

This is equivalent to
[
1−2, 25, 4−2

]
−
[
12, 2−1

]
= 4
[
8−1, 162

]
, which is also a

trivial consequence from (8.7), (8.8), (8.5).

We turn to the eta products with denominator t = 8 for Γ0(16). They are the
sign transforms of the eta products for Γ∗(16) in Example 15.12, and a twist
of the characters there yields suitable characters for the present situation:

Example 15.24 Let the generators of (O1/(16))× � Z8 × Z2
4 be chosen as

in Example 15.12, and define characters χ̃δ,ν on O1 with period 16 by their
values

χ̃δ,ν(2 + i) = ξ, χ̃δ,ν(4 + i) = −ξ2 = −δνi, χ̃δ,ν(i) = 1,

with ξ = 1√
2
(δ + νi) a primitive 8th root of unity, and with δ, ν ∈ {1, −1}.

The corresponding theta series of weight 1 satisfy

Θ1

(
−4, χ̃δ,ν , z

8

)
= f̃1(z) + δ

√
2i f̃5(z), (15.72)

where the components f̃j are normalized integral Fourier series with denom-
inator 8 and numerator classes j modulo 8. Both of them are eta products,

f̃1(z) =
η(z)η(4z)η2(8z)

η(2z)η(16z)
, f̃5(z) =

η2(2z)η(4z)η(16z)
η(z)η(8z)

. (15.73)

The Fricke involution W16 maps Fδ = f̃1 + δ
√

2if̃5 to Fδ(W16z) = −4δiz ×
F−δ(z).

15.7 Weight 1 for Γ0(16), Cusp Forms with Denominator
t = 24

The 16 eta products of weight 1 for Γ0(16) with denominator t = 24 consist
of six pairs of sign transforms and of the sign transforms of the four eta
products for Γ∗(16) in Example 15.13. The results in Example 15.13 have
their counterpart in the following results for the sign transforms:
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Example 15.25 Let the generators of (O1/(48))× � Z2
8 × Z2

4 be chosen as
in Example 15.13. Define characters χδ,ε,ν on O1 with period 48 by

χδ,ε,ν(2 + i) = ξ̃, χδ,ε,ν(6 + i) = εξ̃, χδ,ε,ν(5) = −1, χδ,ε,ν(i) = 1,

with ξ̃ = 1√
2
(ν + δi) a primitive 8th root of unity and δ, ε, ν ∈ {1, −1}. The

corresponding theta series of weight 1 satisfy

Θ1

(
−4, χδ,ε,ν , z

24

)
= f1(z) + δi

√
2 f5(z)+ δεi

√
2 f13(z) + 2ε f17(z), (15.74)

where the components fj are normalized integral Fourier series with denom-
inator 24 and numerator classes j modulo 24. All of them are eta products,

f1 =
[
1, 43, 8
22, 16

]
, f5 =

[
1, 83

4, 16

]
,

(15.75)

f13 =
[
2, 43, 16

1, 82

]
, f17 =

[
23, 16
1, 4

]
.

The action of W16 on Fδ,ε(z) = Θ1

(
−4, χδ,ε,ν , z

24

)
is given by Fδ,ε(W16z) =

4δεzF−δ,−ε(z).

From the 6 pairs of sign transforms among the eta products with denominator
24 one can construct 8 linear combinations which are eigenforms and Hecke
theta series on Q(

√
−3). We need characters with period 32(1 + ω):

Example 15.26 Let the generators of (O3/(32+32ω))× � Z16 ×Z8 ×Z2 ×Z6

be chosen as in Example 15.6. Define characters ψδ,ε,ν and ψ̃δ,ε,ν on O3 with
period 32(1 + ω) by

ψδ,ε,ν(1 + 2ω) = ξ, ψδ,ε,ν(1 − 4ω) = −εξ,

ψδ,ε,ν(17) = −1, ψδ,ε,ν(ω) = 1,

ψ̃δ,ε,ν(1 + 2ω) = ξ, ψ̃δ,ε,ν(1 − 4ω) = δενξ,

ψ̃δ,ε,ν(17) = −1, ψ̃δ,ε,ν(ω) = 1

with ξ = 1√
2
(ν + δi) a primitive 8th root of unity, and with δ, ε, ν ∈ {1, −1}.

The corresponding theta series of weight 1 satisfy

Θ1

(
−3, ψδ,ε,ν , z

24

)
= g1(z) + δi

√
2 g7(z) + δεi

√
2 g13(z) + 2ε g19(z), (15.76)

Θ1

(
−3, ψ̃δ,ε,ν , z

24

)
= g̃1(z) + δi

√
2 g̃7(z) + δε

√
2 g̃13(z) + 2εi g̃19(z), (15.77)

where the components gj and g̃j are normalized integral Fourier series with
denominator 24 and numerator classes j modulo 24. All of them are eta
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products,

g1 =
[

23, 82

1, 4, 16

]
, g7 =

[
22, 83

1, 4, 16

]
,

(15.78)
g13 =

[
1, 4, 16

8

]
, g19 =

[
1, 4, 16

2

]
,

g̃1 =
[
1, 82

16

]
, g̃7 =

[
1, 83

2, 16

]
,

(15.79)

g̃13 =
[
23, 16
1, 8

]
, g̃19 =

[
22, 16

1

]
.

Here (gj , g̃j) are pairs of sign transforms. The action of W16 on Gδ,ε(z) =
Θ1

(
−3, ψδ,ε,ν , z

24

)
and on G̃δ,ε(z) = Θ1

(
−3, ψ̃δ,ε,ν , z

24

)
is given by

Gδ,ε(W16z) = 4δz G−δ,ε(z), G̃δ,ε(W16z) = 4εz G̃−δ,−ε(z).

There are two pairs of sign transforms among the eta products of weight 1
with denominator t = 24 which are not yet identified with components of
eigenforms and theta series. We need four more Fourier series (which we do
not identify with eta products or linear combinations thereof) in order to form
eight linear combinations which are eigenforms. Each of these eigenforms is
identified with Hecke theta series on three different number fields. Thus in
the following example it is necessary to define characters involving the fields
with discriminants −3, −4, −24, 8, 24.

Example 15.27 Let the generators of (O3/(32+32ω))× � Z16 ×Z8 ×Z2 ×Z6

be chosen as in Example 15.6. Define characters ψδ,ν and ψ̃δ,ν on O3 with
period 32(1 + ω) by their values

ψδ,ν(1+2ω) = δi, ψδ,ν(1−4ω) = νi, ψδ,ν(17) = −1, ψδ,ν(ω) = 1,

ψ̃δ,ν(1+2ω) = δi, ψ̃δ,ν(1−4ω) = ν, ψ̃δ,ν(17) = −1, ψ̃δ,ν(ω) = 1

with δ, ν ∈ {1, −1}. Let the generators of (O1/(48))× � Z2
8 × Z2

4 be chosen
as in Example 15.13. Define characters χδ,ν and χ̃δ,ν on O1 with period 48
by

χδ,ν(2 + i) = δ, χδ,ν(6 + i) = νi, χδ,ν(5) = 1, χδ,ν(i) = 1,

χ̃δ,ν(2 + i) = δi, χ̃δ,ν(6 + i) = ν, χ̃δ,ν(5) = −1, χ̃δ,ν(i) = 1.

The residues of
√

3 +
√

−2, 1 +
√

−6, 7 and −1 modulo 8
√

−6 can be chosen
as generators of the group (J6/(8

√
−6))× � Z2

8 × Z2
2 . Four quadruplets of
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characters ρδ,ν , ρ̃δ,ν , ϕδ,ν , ϕ̃δ,ν on J6 with period 8
√

−6 are given by

ρδ,ν(
√

3 +
√

−2) = δ, ρδ,ν(1 +
√

−6) = ν,

ρδ,ν(7) = −1, ρδ,ν(−1) = 1,

ρ̃δ,ν(
√

3 +
√

−2) = δi, ρ̃δ,ν(1 +
√

−6) = ν,

ρ̃δ,ν(7) = −1, ρ̃δ,ν(−1) = 1,

ϕδ,ν(
√

3 +
√

−2) = νi, ϕδ,ν(1 +
√

−6) = δi,

ϕδ,ν(7) = −1, ϕδ,ν(−1) = 1,

ϕ̃δ,ν(
√

3 +
√

−2) = ν, ϕ̃δ,ν(1 +
√

−6) = δi,
ϕ̃δ,ν(7) = −1, ϕ̃δ,ν(−1) = 1.

The residues of 1 +
√

6, 5, 7 and −1 modulo 8
√

6 are generators of (Z[
√

6]/
(8

√
6))× � Z8 × Z4 × Z2

2 . Characters ξδ and ξ̃δ on Z[
√

6] with period 8
√

6
are given by

ξδ(μ) =

⎧
⎪⎪⎨

⎪⎪⎩

δ sgn(μ)
sgn(μ)
sgn(μ)

−sgn(μ)

,

ξ̃δ(μ) =

⎧
⎪⎪⎨

⎪⎪⎩

δi sgn(μ)
−sgn(μ)
sgn(μ)

−sgn(μ)

for μ ≡

⎧
⎪⎪⎨

⎪⎪⎩

1 +
√

6
5
7

−1

mod 8
√

6 .

The residues of 1 +
√

2, 3 +
√

2, 5 and −1 modulo 24
√

2 are generators of
(Z[

√
2]/(24

√
2))× � Z2

8 ×Z4 ×Z2. Characters ξ∗
δ and ξ̃∗

δ on Z[
√

2] with period
24

√
2 are given by

ξ∗
δ (μ) =

⎧
⎪⎪⎨

⎪⎪⎩

sgn(μ)
δi sgn(μ)

−sgn(μ)
−sgn(μ)

,

ξ̃∗
δ (μ) =

⎧
⎪⎪⎨

⎪⎪⎩

sgn(μ)
δi sgn(μ)
sgn(μ)

−sgn(μ)

for μ ≡

⎧
⎪⎪⎨

⎪⎪⎩

1 +
√

2
3 +

√
2

5
−1

mod 24
√

2 .

The corresponding theta series of weight 1 satisfy

Θ1

(
24, ξδ,

z
24

)
= Θ1

(
−4, χδ,ν , z

24

)

= Θ1

(
−24, ρδ,ν , z

24

)
= h1(z) + 2δ h5(z), (15.80)

Θ1

(
24, ξ̃δ,

z
24

)
= Θ1

(
−4, χ̃δ,ν , z

24

)

= Θ1

(
−24, ρ̃δ,ν , z

24

)
= h̃1(z) + 2δi h̃5(z), (15.81)
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Θ1

(
8, ξ∗

δ , z
24

)
= Θ1

(
−3, ψδ,ν , z

24

)

= Θ1

(
−24, ϕδ,ν , z

24

)
= h∗

1(z) + 2δi h7(z), (15.82)

Θ1

(
8, ξ̃∗

δ , z
24

)
= Θ1

(
− 3, ψ̃δ,ν , z

24

)

= Θ1

(
−24, ϕ̃δ,ν , z

24

)
= h̃∗

1(z) + 2δi h̃7(z), (15.83)

where the components hj, h̃j, h∗
j , h̃∗

j are normalized integral Fourier series
with denominator 24 and numerator classes j modulo 24. Those for j = 1
are linear combinations of eta products,

h1 =
[

23, 85

1, 43, 162

]
+ 2

[
23, 162

1, 4, 8

]
, h̃1 =

[
1, 85

42, 162

]
− 2

[
1, 162

8

]
, (15.84)

h∗
1 =

[
23, 85

1, 43, 162

]
− 2

[
23, 162

1, 4, 8

]
, h̃∗

1 =
[

1, 85

42, 162

]
+ 2

[
1, 162

8

]
. (15.85)

Here (hj , h̃j) for j = 1, 5, 7 and (h∗
1, h̃

∗
1) are pairs of sign transforms.

15.8 Weight 1 for Γ0(16), Non-cuspidal Eta Products

There are 4 non-cuspidal eta products on Γ0(16) with weight 1 and denomi-
nator t = 1. Two of them are the sign transforms of eta products on Γ∗(16)
which were described at the end of Sect. 15.4. They can be written in terms
of theta series,

η5(2z)η2(16z)
η2(z)η2(4z)η(8z)

= Θ1(−4, χ0, z) + 2 Θ1(−4, χ0, 2z),

η2(z)η5(8z)
η(2z)η2(4z)η2(16z)

= 4 Θ1(−4, 1, 4z) − 2 Θ1(−4, χ0, z),

where χ0 denotes the principal character modulo 1 + i and 1 stands for the
trivial character on O1. The coefficients can be written in terms of divisor
sums similarly as in Sect. 15.4. The other two eta products with denominator
1 form a pair of sign transforms. The only cusp orbit where they do not vanish
is the orbit of ∞. Since their difference vanishes at ∞, it is a cusp form; it is
identified with theta series as follows:

Example 15.28 Let ξ, χν and ψν be the characters modulo 4 on Z[
√

2],
modulo 4(1 + i) on O1 and modulo 4 on O2 as defined in Example 10.1. The
corresponding theta series of weight 1 satisfy

Θ1 (8, ξ, z) = Θ1 (−4, χν , z) = Θ1 (−8, ψν , z)

=
1
4

(
η5(2z)η2(8z)

η2(z)η2(4z)η(16z)
− η2(z)η2(8z)

η(2z)η(16z)

)
. (15.86)
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According to Example 10.1, the right hand side in (15.86) is equal to η(8z) ×
η(16z). This identity is equivalent to

[
1−2, 25, 4−2

]
−
[
12, 2−1

]
= 4
[
8−1, 162

]
,

which is, as we noticed after Example 15.23, a trivial consequence from the
identities in Theorem 8.1.

For the non-cuspidal eta products with denominator t = 2 we introduce the
notation

fa(z) =
η5(2z)η(16z)

η2(z)η(4z)η(8z)
, fb(z) =

η2(z)η(4z)η(16z)
η(2z)η(8z)

. (15.87)

These functions form a pair of sign transforms. The only orbit of cusps where
they do not vanish is the orbit of 1

8 . It can be deduced from Proposition 2.1
that fa + fb vanishes at 1

8 and hence is a cusp form. This is also clear from
Theorem 5.1 and the following, Example 15.29, where we identify 1

2 (fa + fb)
with theta series whose characters are not induced through the norm from a
Dirichlet character. Moreover, fa − fb is a component of a theta series with
a character which is induced through the norm:

Example 15.29 Let ξ∗, χ∗
ν and ψ∗

ν be the characters on Z[
√

2] modulo 4
√

2,
on O1 modulo 8 and on O2 modulo 4

√
−2 as defined in Example 13.3. Define

characters ϕ̃δ on O2 with period 4
√

−2 by

ϕ̃δ(1 +
√

−2) = δi, ϕ̃δ(3) = −1, ϕ̃δ(−1) = 1

with δ ∈ {1, −1}. They are induced through the norm from Dirichlet charac-
ters modulo 16,

ϕ̃δ(μ) = (−1)
1
8 (μμ−1) for μμ ≡ 1 mod 8,

ϕ̃δ(μ) = (−1)
1
8 (μμ−3)δi for μμ ≡ 3 mod 8.

The corresponding theta series of weight 1 satisfy, with notations as defined
in (15.87),

Θ1

(
8, ξ∗, z

2

)
= Θ1

(
−4, χ∗

ν , z
2

)

= Θ1

(
−8, ψ∗

ν , z
2

)
= 1

2 (fa(z) + fb(z)) , (15.88)

Θ1

(
−8, ϕ̃δ,

z
2

)
= g1(z) + 2δi g3(z) (15.89)

where the components gj are normalized integral Fourier series with denom-
inator 2 and numerator classes j modulo 8, and where g3 is a linear combi-
nation of eta products,

g3(z) = 1
4 (fa(z) − fb(z)).

From (15.88) and (13.4) we obtain the eta identity

1
2 (fa + fb) =

[
84

4, 16

]
.
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The component g1 is also a linear combination of eta products. This is
exhibited by the identity (15.94) in the following Example 15.30 where the
characters ϕ̃δ show up again. We will meet them again in Example 26.9.

The remaining task is to inspect 12 non-cuspidal eta products with denomi-
nator t = 8. For four of them we introduce the notation

f1 =
[

22, 85

1, 42, 162

]
, f9 =

[
22, 162

1, 8

]
,

(15.90)

f̃1 =
[

1, 85

2, 4, 162

]
, f̃9 =

[
1, 4, 162

2, 8

]
.

Here the subscripts indicate the numerators of the eta products, and (f1, f̃1),
(f9, f̃9) are pairs of sign transforms.

Example 15.30 Let ξ, χν and ψν be the characters modulo 4 on Z[
√

2],
modulo 4(1 + i) on O1 and modulo 4 on O2 as defined in Example 10.1. Let
ξ∗, χ∗

ν and ψ∗
ν , ϕ̃δ be the characters modulo 4

√
2 on Z[

√
2], modulo 8 on O1

and modulo 4
√

−2 on O2 as defined in Examples 13.3 and 15.29. Let ψ̃δ

be given as in Example 13.13 such that ψ̃1 is the principal character modulo√
−2 and ψ̃−1 is the non-trivial character modulo 2 on O2. The corresponding

theta series of weight 1 satisfy, with notations as defined in (15.90),

Θ1

(
8, ξ, z

8

)
= Θ1

(
−4, χν , z

8

)
= Θ1

(
−8, ψν , z

8

)
= f1(z) − 2f9(z), (15.91)

Θ1

(
8, ξ∗, z

8

)
= Θ1

(
−4, χ∗

ν , z
8

)
= Θ1

(
−8, ψ∗

ν , z
8

)
= f̃1(z) + 2f̃9(z),

(15.92)
Θ1

(
−8, ψ̃δ,

z
8

)
= h1(z) + 2δ h3(z), (15.93)

Θ1

(
−8, ϕ̃δ,

z
8

)
= h̃1(z) + 2δi h̃3(z), (15.94)

where the components hj and h̃j are normalized integral Fourier series with
denominator 8 and numerator classes j modulo 8, and where h1, h̃1 are linear
combinations of eta products; with notations from (15.90) we have

h1 = f1 + 2f9, h̃1 = f̃1 − 2f̃9.

From (15.93) and (13.32) we obtain the eta identity
[

27

13, 42

]
=
[

22, 85

1, 42, 162

]
+ 2

[
22, 162

1, 8

]
.

From (15.94) we get g1 =
[
4, 8−1, 16−1, 325, 64−2

]
+ 2

[
4, 8−1, 16, 32−1, 642

]

for the component g1 in (15.89). When we compare the right hand sides in
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(15.91), (15.92) with corresponding theta series in Examples 10.1, 15.29 then
we obtain the eta identities

[
1−1, 22, 4−2, 85, 16−2

]
− 2

[
1−1, 22, 8−1, 162

]
= [1, 2],

[
4, 325

8, 16, 642

]
+ 2

[
4, 16, 642

8, 32

]
=

1
2

([
25, 16
12, 4, 8

]
+
[
12, 4, 16

2, 8

])
.

All these eta identities follow easily from the identities in Theorem 8.1.

There are eight more non-cuspidal eta products with denominator t = 8.
They form four pairs of sign transforms with numerators 1, 3, 5 and 7. The
functions will be listed in (15.97), (15.98). The orbit of 1

4 is the only orbit of
cusps where these functions do not vanish. We find eight linear combinations
which are Eisenstein series and eigenforms whose coefficients are divisor sums
of values of Dirichlet characters modulo 32. We use that (Z/(32))× � Z8 ×Z2

is generated by the residues of 5 and −1 modulo 32.

Example 15.31 For δ, ε ∈ {1, −1} we introduce the primitive 8th roots of
unity

ξ = 1√
2
(δ + εi),

and define Dirichlet characters χδ,ε, χ̃δ,ε and ϕδ,ε modulo 32 by

χδ,ε(n) = (−1)aξm, χ̃δ,ε

(
n) = (−1)a(−iξ)m,

ϕδ,ε(n) = (−1)aξ2m = (−1)a(δεi)m

for n ≡ (−1)a5m mod 32, a ∈ {0, 1}, 0 ≤ m ≤ 7. Then we have the identities

∞∑

n=1

(
χδ,ε(n)

∑

d|n
ϕδ,ε(d)

)
e
(

nz
8

)

= g1(z) + δ
√

2 g3(z) + εi
√

2 g5(z) − 2δεi g7(z), (15.95)

∞∑

n=1

(
χ̃δ,ε(n)

∑

d|n
ϕδ,ε(d)

)
e
(

nz
8

)

= g̃1(z) + δi
√

2 g̃3(z) + ε
√

2 g̃5(z) + 2δεi g̃7(z), (15.96)

where the components gj and g̃j are normalized integral Fourier series with
denominator 8 and numerator classes j modulo 8, and all of them are eta



250 15. Levels N = p3 and p4 for Primes p

products,

g1 =
[

24, 83

1, 43, 16

]
, g3 =

[
23, 84

1, 43, 16

]
,

(15.97)
g5 =

[
1, 2, 16

4

]
, g7 =

[
1, 8, 16

4

]
,

g̃1 =
[
1, 2, 83

42, 16

]
, g̃3 =

[
1, 84

42, 16

]
,

(15.98)

g̃5 =
[
24, 16
1, 42

]
, g̃7 =

[
23, 8, 16

1, 42

]
.

For every j, (gj , g̃j) is a pair of sign transforms. The action of W16 on the
functions Fδ,ε, F̃δ,ε in (15.95), (15.96) is given by

Fδ,ε(W16z) = −4δiz Fδ,−ε(z), F̃δ,ε(W16z) = 4δεz F̃−δ,ε(z).



16 Levels N = pq with Primes 3 ≤ p < q

16.1 Weight 1 for Fricke Groups Γ∗(3q)

In this and the following two sections we discuss eta products whose levels
N = pq are products of two distinct primes p, q, whence the number of
divisors of N is 4. In the present section we begin with the case of odd
primes 3 ≤ p < q. Then the denominator of an eta product of integral
weight is different from 8 and 24 (because the sum of an even number of
odd integers is even). Remarkably, in this case every new holomorphic eta
product of weight 1 belongs to the Fricke group Γ∗(pq).

For level N = 15 and weight 1, the only new holomorphic eta products are
two non-cuspidal eta products

[
1−1, 32, 52, 15−1

]
,
[
12, 3−1, 5−1, 152

]
and two

cuspidal eta products
[
3, 5
]
,
[
1, 15

]
. Therefore it follows from Theorem 3.9

that η(pz)η(qz) and η(z)η(pqz) are the only new holomorphic eta products
of weight 1 for levels N = pq �= 15 with distinct odd primes p, q. The results
for the levels 15 and 21 are indicated in the Table in [65].

The non-cuspidal eta products of weight 1 and level 15 are identified with
Eisenstein series and theta series as follows:

Example 16.1 Let 1 denote the trivial character on J15, and let χ0 be
the non-trivial character modulo 1 on the system J15 of ideal numbers for
Q(

√
−15), as defined in Example 7.3. Then we have the identities

η2(3z)η2(5z)
η(z)η(15z)

= Θ1 (−15, 1, z) = 1 +
∞∑

n=1

(∑

d|n

(
d

15

))
e(nz), (16.1)

η2(z)η2(15z)
η(3z)η(5z)

= Θ1 (−15, χ0, z) =
∞∑

n=1

a(n)e(nz), (16.2)

where
a(3rm) = (−1)r

(
m
3

)∑

d|m

(
d
15

)
for r ≥ 0, 3 � m.
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The cuspidal eta products of weight 1 and level 15 combine to eigenforms
which are theta series for Q(

√
−15):

Example 16.2 The residues of 1
2 (

√
3+

√
−5) and −1 modulo 3 generate the

group (J15/(3)) � Z6 × Z2. Four characters ψδ,ν on J15 with period 3 are
fixed by their values

ψδ,ν

(
1
2 (

√
3 +

√
−5)

)
= ζ = 1

2 (δ + ν
√

−3), ψδ,ν(−1) = 1

with δ, ν ∈ {1, −1}, such that ζ3 = −δ. The corresponding theta series of
weight 1 satisfy

Θ1

(
−15, ψδ,ν , z

3

)
= η(3z)η(5z) + δ η(z)η(15z). (16.3)

For the levels 21 and 33 we can identify some, but not all components of a
theta series with eta products:

Example 16.3 Let J21 be the system of ideal numbers for Q(
√

−21) as de-
fined in Example 7.6. The residues of 1√

2
(

√
3+

√
−7) and

√
−7 modulo 6 can

be chosen as generators of (J21/(6))× � Z12 × Z4. Eight characters ϕδ,ε,ν on
J21 with period 6 are given by

ϕδ,ε,ν

(
1√
2
(

√
3 +

√
−7)

)
= ξ = 1

2 (δ
√

3 + νi), ϕδ,ε,ν(
√

−7) = ε

with δ, ε, ν ∈ {1, −1}, where ξ is a primitive 12th root of unity for which
ξ3 = νi. The corresponding theta series of weight 1 decompose as

Θ1

(
−84, ϕδ,ε,ν , z

12

)
= f1(z) + δ

√
3 f5(z) + ε f7(z) − δε

√
3 f11(z), (16.4)

where the components fj are normalized integral Fourier series with denom-
inator 12 and numerator classes j modulo 12. Those for j = 5, 11 are eta
products,

f5(z) = η(3z)η(7z), f11(z) = η(z)η(21z). (16.5)

Example 16.4 Let J33 be the system of ideal numbers for Q(
√

−33) as de-
fined in Example 7.6. The residues of 1√

2
(1+

√
−33),

√
−11 and −1 modulo 6

can be chosen as generators of the group (J33/(6))× � Z12 × Z2
2 . Eight char-

acters χδ,ε,ν on J33 with period 6 are fixed by their values

χδ,ε,ν

(
1√
2
(1 +

√
−33)

)
= ξ = 1

2 (δ
√

3 + νi), χδ,ε,ν(
√

−11) = ε,

χδ,ε,ν(−1) = 1

with δ, ε, ν ∈ {1, −1}, where ξ is a primitive 12th root of unity for which
ξ3 = νi. The corresponding theta series of weight 1 decompose as

Θ1

(
−132, χδ,ε,ν , z

12

)
= g1(z) + δ

√
3 g5(z) + δε

√
3 g7(z) + ε g11(z), (16.6)
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where the components gj are normalized integral Fourier series with denom-
inator 12 and numerator classes j modulo 12. Those for j = 5, 7 are eta
products,

g5(z) = η(z)η(33z), g7(z) = η(3z)η(11z). (16.7)

Two linear combinations of the eta products of weight 1 and level 39 are
components of theta series:

Example 16.5 Let J39 be the system of ideal numbers for Q(
√

−39) as de-
fined in Example 7.8, with any choice of the root Λ = Λ39 of the equation
Λ8 − 5Λ4 + 16 = 0. The residues of Λ and −1 modulo 3 can be chosen as
generators of (J39/(3))× � Z12 × Z2. Eight characters ρδ,ν and ρ̃δ,ν on J39

with period 3 are given by

ρδ,ν(Λ) = ξ = 1
2 (δ

√
3 + νi), ρδ,ν(−1) = 1,

ρ̃δ,ν(Λ) = δξ2 = 1
2 (δ + νi

√
3), ρ̃δ,ν(−1) = 1

with δ, ν ∈ {1, −1}, where ξ3 = νi. The corresponding theta series of weight
1 decompose as

Θ1

(
−39, ρδ,ν , z

3

)
= h1(z) + δ

√
3h2(z),

(16.8)
Θ1

(
−39, ρ̃δ,ν , z

3

)
= h̃1(z) + δ h̃2(z)

where the components hj, h̃j are normalized integral Fourier series with de-
nominator 3 and numerator classes j modulo 3, and where h2, h̃2 are linear
combinations of eta products,

h2 = [3, 13] − [1, 39], h̃2 = [3, 13] + [1, 39]. (16.9)

For level N = 51 we have the eta product η(z)η(51z) with order 13
6 at ∞ and

numerator s ≡ 1 mod 6. For the construction of eigenforms one would need
a complementing and overlapping component with numerator s = 1, and
therefore we cannot find an eta–theta identity in this case. For levels N = 3q
with primes q ≥ 23 all eta products of weight 1 have orders > 1 at ∞, and
therefore there seems to be no chance to identify them with constituents in a
theta series. In contrast, the situation for q = 19, N = 57 is quite favorable
and similar to that in Example 16.3:

Example 16.6 Let J57 be the system of ideal numbers for Q(
√

−57) as de-
fined in Example 7.6. The residues of 1√

2
(

√
3 +

√
−19) and

√
−19 modulo 6

can be chosen as generators of (J57/(6))× � Z12 ×Z4. Eight characters ψδ,ε,ν

on J57 with period 6 are given by

ψδ,ε,ν

(
1√
2
(

√
3 +

√
−19)

)
= ξ = 1

2 (−δε
√

3 + νi), ψδ,ε,ν(
√

−19) = ε
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with δ, ε, ν ∈ {1, −1}, where ξ3 = νi. The corresponding theta series of weight
1 decompose as

Θ1

(
−228, ψδ,ε,ν , z

12

)
= f1(z) + δ

√
3 f5(z) + ε f7(z) − δε

√
3 f11(z) (16.10)

where the components fj are normalized integral Fourier series with denom-
inator 12 and numerator classes j modulo 12, and where f5, f11 are eta
products,

f5(z) = η(z)η(57z), f11(z) = η(3z)η(19z). (16.11)

16.2 Weight 1 in the Case 5 ≤ p < q

It will be clear now that there are not many levels N = pq with primes
5 ≤ p < q for which our method of exhibiting eta–theta identities for weight
1 is successful. There is a nice result for level 35 where the eta products have
denominator 2:

Example 16.7 Let J35 be the system of ideal numbers for Q(
√

−35) as de-
fined in Example 7.3. The residue of 1

2 (
√

5 +
√

−7) modulo 2 generates the
group (J35/(2))× � Z6. Four characters χδ,ν on J35 with period 2 are fixed
by their value

χδ,ν

(
1
2 (

√
5 +

√
−7)

)
= ζ = 1

2 (δ + νi
√

3)

with δ, ν ∈ {1, −1}, where ζ3 = −δ. The corresponding theta series of weight
1 satisfy

Θ1

(
−35, χδ,ν , z

2

)
= η(5z)η(7z) + δ η(z)η(35z). (16.12)

The characters χδ,ν will appear once more in Example 31.22.

There is a partial result for level 55; a difference of two theta series can be
identified with a linear combination of eta products:

Example 16.8 Let J55 be the system of ideal numbers for Q(
√

−55) as de-
fined in Example 7.8, with any choice of the root Λ = Λ55 of the equation
Λ8 + 3Λ4 + 16 = 0. The residues of Λ and

√
−11 modulo 3 can be chosen as

generators of the group (J55/(3))× � Z16 × Z2, where Λ4 ≡ −
√

−55 mod 3,
Λ8 ≡ −1 mod 3. Eight characters ρδ,ε,ν on J55 with period 3 are given by

ρδ,ε,ν(Λ55) = 1√
2
(δ + νi), ρδ,ε,ν(

√
−11) = ε

with δ, ε, ν ∈ {1, −1}. The corresponding theta series of weight 1 satisfy

Θ1

(
−55, ρ1,ε,ν , z

3

)
− Θ1

(
−55, ρ−1,ε,ν , z

3

)

= 2
√

2
(
η(5z)η(11z) + ε η(z)η(55z)

)
. (16.13)
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For N = 65 and N = 85 there are results comparable to those in Exam-
ples 16.3, 16.4, 16.6; for N = 85 we get another instance for an identity of
theta series on different number fields:

Example 16.9 Let J65 be the system of ideal numbers for Q(
√

−65) as de-
fined in Example 7.11, with any choice of the root Λ = Λ65 of the equation
Λ8 + 8Λ4 + 81 = 0. The residues of Λ and

√
5 modulo 2 can be chosen as

generators of (J65/(2))× � Z8 × Z2. Eight characters ϕδ,ε,ν on J65 with
period 2 are given by

ϕδ,ε,ν(Λ65) = 1√
2
(ε + νi), ϕδ,ε,ν(

√
5) = −δ

with δ, ε, ν ∈ {1, −1}. The corresponding theta series of weight 1 decompose
as

Θ1

(
−260, ϕδ,ε,ν , z

4

)
= f1,δ(z) + ε

√
2 f3,δ(z), (16.14)

where the components fj,δ are normalized integral Fourier series with de-
nominator 4 and numerator classes j modulo 4, and where f3,δ are linear
combinations of eta products,

f3,δ(z) = η(5z)η(13z) + δ η(z)η(65z). (16.15)

Example 16.10 Let J51 and J85 be the systems of ideal numbers for
Q(

√
−51) and Q(

√
−85) as defined in Examples 7.3 and 7.6. The residues of

1
2 (

√
3 − ν

√
−17), 2 + ν

√
−51, 19 and −1 modulo 1

2 (
√

3 + ν
√

−17) ·
√

3 · 4 =
6+2ν

√
−51 can be chosen as generators of the group

(
J51/(6+2ν

√
−51))× �

Z24 × Z3
2 . Characters χδ,ε,ν on J51 with periods 6+2ν

√
−51 are fixed by their

values
χδ,ε,ν( 1

2 (
√

3 − ν
√

−17)) = ε, χδ,ε,ν(2 + ν
√

−51) = δε,

χδ,ε,ν(19) = −1, χδ,ε,ν(−1) = 1

with δ, ε, ν ∈ {1, −1}. The residues of 1√
2
(

√
5 +

√
−17), 1√

2
(3 +

√
−85) and

√
−17 modulo 6 can be chosen as generators of (J85/(6))× � Z8 × Z4 × Z2,

where
(

1√
2
(

√
5 +

√
−17)

)4 ≡ −1 mod 6. Eight characters ψδ,ε,ν on J85 with
period 6 are given by

ψδ,ε,ν

(
1√
2
(

√
5 +

√
−17)

)
= δ, ψδ,ε,ν

(
1√
2
(3 +

√
−85)

)
= νi,

ψδ,ε,ν(
√

−17) = ε.

Let ideal numbers J
Q(

√
15) for Q(

√
15) be chosen as in Example 7.16. The

residues of
√

3 − 2δ
√

5, 8 − δ
√

15 and −1 modulo Mδ = 2(3 + 2δ
√

15) are
generators of

(
J

Q(
√

15)/(Mδ)
)× � Z32 ×Z2

2 . Hecke characters ξδ,ε with period
Mδ are fixed by their values

ξδ,ε(μ) =

⎧
⎨

⎩

−δε sgn(μ)
sgn(μ)

−sgn(μ)
for μ ≡

⎧
⎨

⎩

√
3 − 2δ

√
5

8 − δ
√

15
−1

mod Mδ.
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The theta series of weight 1 for ξδ,ε, χδ,ε,ν and ψδ,ε,ν are identical, and they
decompose as

Θ1

(
60, ξδ,ε,

z
12

)
= Θ1

(
−51, χδ,ε,ν , z

12

)
= Θ1

(
−340, ψδ,ε,ν , z

12

)

= f1(z) + ε f5(z) − 2δε f7(z) + 2δ f11(z), (16.16)

where the components fj are normalized integral Fourier series with denom-
inator 12 and numerator classes j modulo 12, and where f7, f11 are eta
products,

f7(z) = η(z)η(85z), f11(z) = η(5z)η(17z). (16.17)

For N = 95 we have two eta products with denominator t = 1. They are
identified as constituents in three eigenforms which are theta series on the
fields with discriminants −19 and −95. For the latter field we need characters
with period 1, that is, characters of the ideal class group, so that we could
easily avoid ideal numbers:

Example 16.11 Let J95 be the system of ideal numbers for K = Q(
√

−95)
as defined in Example 7.12, with any choice of the root Λ = Λ95 of the
equation Λ16 − 13Λ8 +256 = 0. For δ, ν ∈ {1, −1}, define the characters χδ,ν

of the ideal class group of K by

χδ,ν(μ) = ξj , ξ = 1√
2
(δ + νi) for μ ∈ Aj ,

0 ≤ j ≤ 7, with Aj as given in Example 7.12. Let ρν be the characters on
O19 with periods 1

2 (1 + ν
√

−19), which are given by

ρ1(μ) =
(

x−y
5

)
,

ρ−1(μ) = ρ1(μ) =
(

x+y
5

)
for μ = 1

2 (x + y
√

−19) ∈ O19.

The corresponding theta series of weight 1 satisfy the identities

Θ1 (−19, ρν , z) = η(5z)η(19z) − η(z)η(95z) (16.18)

and
Θ1 (−95, χδ,ν , z) = η(5z)η(19z) + η(z)η(95z) + δ

√
2 g(z)

with an integral Fourier series g(z) =
∑∞

n=1 b(n)e(nz). We have

1
2 (Θ1 (−95, χ1,ν , z) + Θ1 (−95, χ−1,ν , z))

= η(5z)η(19z) + η(z)η(95z). (16.19)

For N = 7 · 13 = 91 the eta products have denominator t = 6 and numerators
s ≡ 5 mod 6, with a result resembling that in Example 16.9:
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Example 16.12 Let J91 be the system of ideal numbers for Q(
√

−91) as
defined in Example 7.3. The residues of 1

2 (
√

7 +
√

−13) and
√

7 modulo
6 can be chosen as generators of the group (J91/(6))× � Z24 × Z2, where(

1
2 (

√
7 +

√
−13)

)12 ≡ −1 mod 6. Eight characters ϕδ,ε,ν on J91 with period
6 are fixed by their values

ϕδ,ε,ν

(
1
2 (

√
7 +

√
−13)

)
= 1

2 (δ
√

3 + νi), ϕδ,ε,ν(
√

7) = −ε

with δ, ε, ν ∈ {1, −1}. The corresponding theta series of weight 1 decompose
as

Θ1

(
−91, ϕδ,ε,ν , z

6

)
= f1(z) − εg1(z) + δ

√
3
(
f5(z) + εg5(z)

)
(16.20)

where the components fj and gj are normalized integral Fourier series with
denominator 6 and numerator classes j modulo 6, and where f5, g5 are eta
products,

f5(z) = η(7z)η(13z), g5(z) = η(z)η(91z). (16.21)

The eta products of weight 1 for N = 7 · 17 and N = 11 · 13 have denominator
t = 1. There are no linear combinations which are Hecke eigenforms. Some
partially multiplicative properties of the coefficients of [7, 17] ± [1, 119] and
of [11, 13] ± [1, 143] are a temptation to look for suitable complements which
would make up theta series. Conceivably the fields Q(

√
−119) and Q(

√
−143)

with class numbers 10 should be considered.

16.3 Weight 2 for Fricke Groups

For the Fricke groups Γ∗(3q) with primes q > 3 there are five eta products of
weight 2,

[1, 3, q, (3q)] ,
[
12, (3q)2

]
,
[
32, q2

]
,

[
13, 3−1, q−1, (3q)3

]
,
[
1−1, 33, q3, (3q)−1

]
,

and all of them are cuspidal. For Γ∗(15), in addition, there are two non-
cuspidal eta products

[
1−2, 34, 54, 15−2

]
and

[
14, 3−2, 5−2, 154

]
. We will list

some Hecke eigenforms which are linear combinations of these eta products.

For level N = 15 the eta product η(z)η(3z)η(5z)η(15z) is an eigenform;
according to [93] it is the newform which corresponds to the elliptic curve
Y 2 + XY + Y = X3 + X2 − 10X − 10 without complex multiplication.

The functions

η3(3z)η3(5z)
η(z)η(15z)

+ 1
2 (1 + δ

√
13) η2(z)η2(15z)

− 1
2ε (1 + δ

√
13) η2(3z)η2(5z) + ε

η3(z)η3(15z)
η(3z)η(5z)
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with δ, ε ∈ {1, −1} are Hecke eigenforms, but not lacunary. The non-cuspidal
eta products combine to a function

1
2

(
η4(3z)η4(5z)
η2(z)η2(15z)

+
η4(z)η4(15z)
η2(3z)η2(5z)

)
=

1
2

+
∞∑

n=1

a(n)e(nz)

with multiplicative coefficients a(n) which satisfy a(pr) = σ1(pr) for primes
p �= 3, p �= 5, and a(3r) = 1, a(5r) = 2σ1(5r) − 1.

For level N = 21 there are Hecke eigenforms
[
33, 73

1, 21

]
−
[
13, 213

3, 7

]
+ δ

√
3 f2,

[
33, 73

1, 21

]
+ 4 [1, 3, 7, 21] +

[
13, 213

3, 7

]
+ δ

√
7 f̃2,

g1 + 3δ
(
[32, 72] + [12, 212]

)
,

g̃1 + δ
√

13
(
[32, 72] − [12, 212]

)

with δ ∈ {1, −1}, where f2(z) =
∑

n≡2 mod 3 a2(n)e
(

nz
3

)
, f̃2(z) =∑

n≡2 mod 3 ã2(n)e
(

nz
3

)
and g1(z) =

∑
n≡1 mod 6 b1(n)e

(
nz
6

)
, g̃1(z) =∑

n≡1 mod 6 b̃1(n)e
(

nz
6

)
are normalized integral Fourier series. None of these

eigenforms is lacunary. There is, however, another linear combination for
level 21 which is a Hecke theta series on the Eisenstein integers:

Example 16.13 The residues of 2 and ω modulo 3(2 + ω) can be chosen as
generators of (O3/(6+3ω))× � Z2

6 . A character χ on O3 with period 3(2+ω)
is fixed by its values

χ(2) = −1, χ(ω) = ω.

Let χ̂ be the character on O3 with period 3(2 + ω) which is given by χ̂(μ) =
χ(μ) for μ ∈ O3. The corresponding theta series of weight 2 satisfy

Θ2

(
−3, χ, z

3

)
+ (8 − 3ω) η2(7z)η2(21z)

= Θ2

(
−3, χ̂, z

3

)
+ (5 + 3ω) η2(7z)η2(21z)

=
η3(3z)η3(7z)
η(z)η(21z)

− 3 η(z)η(3z)η(7z)η(21z)

+
η3(z)η3(21z)
η(3z)η(7z)

. (16.22)

We remark that η2(7z)η2(21z) is, after rescaling, the theta series on O3,
which is known from Example 11.5.
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For level N = 39 there are four Hecke eigenforms
[
33, 133

1, 39

]
+ 1

2 (1 + δ
√

37)
([

32, 132
]

−
[
12, 392

])

−
[
13, 393

3, 13

]
+ ε

√
1
2 (7 + δ

√
37) f2,δ

with δ, ε ∈ {1, −1} where f2,δ(z) =
∑

n≡2 mod 3 α2,δ(n)e
(

nz
3

)
are normalized

Fourier series whose coefficients are algebraic integers in Q(
√

37). These
functions are not lacunary.

For the Fricke groups Γ∗(pq) with primes 5 ≤ p < q there are only three
weight 2 eta products,

[1, p, q, (pq)], [p2, q2], [12, (pq)2],

and they are cuspidal. For Γ∗(35), in addition, there are two non-cuspidal
eta products

[1−1, 53, 73, 35−1], [13, 5−1, 7−1, 353].

For level 35 the linear combinations

[52, 72] + [12, 352] and [52, 72] − 1
2 (1 + δ

√
17) [1, 5, 7, 35] − [12, 352]

with δ ∈ {1, −1} are eigenforms; they are not lacunary.

16.4 Cuspidal Eta Products of Weight 2 for Γ0(15)

We are able to discuss only a few of the eta products of weight 2 and levels
N = pq for primes 3 ≤ p < q. Their numbers for Γ0(15) and Γ0(21) are given
in Table 16.1. We recall the remark from the beginning of Sect. 16.1, saying
that the denominators 8 and 24 cannot occur.

In this subsection we treat the cuspidal eta products of weight 2 for Γ0(15).
There are no eigenforms which are linear combinations of the eta products

Table 16.1: Numbers of new eta products of levels 15 and 21 with weight 2

denominator t 1 2 3 4 6 12
Γ0(15) cuspidal 0 4 4 14 12 26
Γ0(15) non-cuspidal 8 0 6 0 0 0
Γ0(21) cuspidal 2 6 6 6 6 22
Γ0(21) non-cuspidal 5 0 5 0 0 0
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with denominator t = 2,

[
15, 3−1, 5−1, 15

]
,

[
1−1, 3, 55, 15−1

]
, [1, 32, 5], [1, 5, 152].

The cuspidal eta products with denominator t = 3 combine to four eigenforms

[
3, 54

15

]
+ 3δi

[
1, 154

5

]
+

ε

5
√

2

(
3(−δ + 3i)

[
34, 5

1

]
+ (3δ + i)

[
14, 15

3

])

with δ, ε ∈ {1, −1}. They are not lacunary.

There are 8 linear combinations of the eta products with denominator t = 4
which are theta series. We state the results in the following two examples.

Example 16.14 Let the generators of (O1/(12 + 6i))× � Z8 × Z2 × Z4 be
chosen as in Example 12.17. Two characters χ1,ε on O1 with period 6(2 + i)
are fixed by their values

χ1,ε(2 − i) = ε 1√
2

(1 + i), χ1,ε(2 + 3i) = 1, χ1,ε(i) = −i

with ε ∈ {1, −1}. Let χ−1,ε be the characters on O1 with period 6(2 − i) which
are given by χ−1,ε(μ) = χ1,ε(μ) for μ ∈ O1. The corresponding theta series
of weight 2 satisfy

Θ2

(
−4, χδ,ε,

z
4

)
= 1

15 (1 + δεi
√

2)
(

(4 − 3δi)
η4(3z)η2(5z)
η(z)η(15z)

+ (1 + 3δi)
η4(z)η(5z)

η(3z)
+ 5

η2(z)η(3z)η2(15z)
η(5z)

)

+ 1
6 (2 − δεi

√
2)
(

(1 + 3δi)
η2(3z)η2(5z)η(15z)

η(z)

+ (1 − 3δi)
η2(z)η4(15z)
η(3z)η(5z)

+ 2
η(z)η4(5z)

η(15z)

)
.

(16.23)

Example 16.15 The residues of 1√
2
(1 −

√
−5) and −1 modulo

√
2(1+

√
−5)

generate the group (J5/(
√

2 +
√

−10))× � Z4 × Z2. Two characters ρ1,ε on
J5 with period

√
2(1 +

√
−5) are given by

ρ1,ε

(
1√
2
(1 −

√
−5)

)
= −ε, ρ1,ε(−1) = −1

with ε ∈ {1, −1}. Let ρ−1,ε be the characters on J5 with period
√

2(1 −
√

−5)
which are given by ρ−1,ε(μ) = ρ1,ε(μ) for μ ∈ J5. The corresponding theta
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series of weight 2 satisfy

Θ2

(
−20, ρδ,ε,

z
4

)
+ 3ε√

2
(1 − δi

√
5) Θ2

(
−20, ρδ,ε,

3z
4

)

=
η4(3z)η2(5z)
η(z)η(15z)

− η2(z)η(3z)η2(15z)
η(5z)

+ δi
√

5
(

η2(3z)η2(5z)η(15z)
η(z)

+
η2(z)η4(15z)
η(3z)η(5z)

)

+ ε
√

2
(
η3(z)η(15z) − δi

√
5 η(3z)η3(5z)

)
. (16.24)

Only eight out of 14 eta products with denominator 4 are involved in the
identities in Examples 16.14, 16.15. Another four of these eta products appear
in the eigenforms
[
32, 53

15

]
− δi

[
13, 152

3

]
+ ε

√
3
(

1 + δi√
2

[
33, 52

1

]
− 1 − δi√

2

[
12, 153

5

])
,

with δ, ε ∈ {1, −1}, which are not lacunary. We did not find eigenforms in-
volving the remaining two eta products [1−2, 36, 5, 15−1] and [1, 3−1, 5−2, 156]
with denominator 4 in their components.

Now we consider the 12 eta products of level 15, weight 2 and denominator 6.
There are eight Hecke eigenforms which are linear combinations of eight of
these eta products,

[
1, 3, 53

15

]
+ 3δ

[
33, 5, 15

1

]
+ ε

([
13, 5, 15

3

]
+ 3δ

[
1, 3, 153

5

])

and
[
33, 52

15

]
+ δi

[
13, 152

5

]
+ ε

√
5
(

1 + δi√
2

[
32, 53

1

]
+

1 − δi√
2

[
12, 153

3

])
,

with δ, ε ∈ {1, −1}. None of these functions is a Hecke theta series. The re-
maining four eta products are

[
1−1, 35, 5, 15−1

]
, [3, 52, 15], [12, 3, 15],[

1, 3−1, 5−1, 155
]
. They are the Fricke transforms of the eta products with

denominator t = 2, and there are no linear combinations of these functions
which are eigenforms.

Finally we address the 26 eta products of level 15, weight 2 and denomi-
nator t = 12. Applying the Fricke involution W15 upon the eta products
which constitute the theta series in Examples 16.14, 16.15 yields eight linear
combinations of the eta products with denominator 12 which are theta series.

Example 16.16 Let χδ,ε be the characters on O1 with period 6(2 + i) for
δ = 1 and with period 6(2 − i) for δ = −1, as defined in Example 16.14. The
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corresponding theta series of weight 2 satisfy

Θ2

(
−4, χδ,ε,

z
12

)
=

η(z)η2(3z)η2(5z)
η(15z)

+ 9
5 (1 + 3δi)

η4(3z)η(15z)
η(z)

+ 1
5 (−4 + 3δi)

η4(z)η2(15z)
η(3z)η(5z)

+ ε

(
3 + δi√

2
η2(3z)η4(5z)
η(z)η(15z)

+
3 − δi√

2
η2(z)η(5z)η2(15z)

η(3z)

− 9δi
√

2
η(3z)η4(15z)

η(5z)

)
. (16.25)

The residues of 1√
2
(3 +

√
−5),

√
−5 and −1 modulo 6 generate the group

(J5/(6))× � Z4 × Z2
2 . Four characters ψδ,ε on J5 with period 6 are given by

ψδ,ε

(
1√
2
(3 +

√
−5)

)
= −ε, ψδ,ε(

√
−5) = −δ, ψδ,ε(−1) = −1

with δ, ε ∈ {1, −1}. The corresponding theta series of weight 2 decompose as

Θ2

(
−20, ψδ,ε,

z
12

)
= g1(z) − δi

√
5 g5(z) − 3ε

√
2 g7(z) − 3δεi

√
10 g11(z),

(16.26)
where the components gj are normalized integral Fourier series with denomi-
nator 12 and numerator classes j modulo 12. They are eta products or linear
combinations thereof,

g1 =
[
1, 32, 52

15

]
+
[
14, 152

3, 5

]
, g5 =

[
32, 54

1, 15

]
−
[
12, 5, 152

3

]
, (16.27)

g7 = [33, 5], g11 = [1, 153]. (16.28)

Comparing (16.23) and (16.25) yields a complicated identity among eta prod-
ucts of weight 2 and level 45. We do not write it down here.

There are 18 eta products of level 15, weight 2 and denominator 12 which
do not occur in Example 16.16. Among them we could find only 8 linear
combinations which are Hecke eigenforms,

[
12, 53

15

]
+ 3

(
1 + δ

√
3
) [

32, 5, 15
]

+ εi

([
13, 52

3

]
+ 3

(
1 + δ

√
3
) [

1, 3, 152
])

+ νi
√

6
√

2 + δ
√

3
([

1, 3, 52
]

− 3
2

(
1 − δ

√
3
) [33, 152

1

]

− εi

([
12, 5, 15

]
− 3

2

(
1 − δ

√
3
) [32, 153

5

]))
.

These functions are not lacunary.
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16.5 Some Eta Products of Weight 2 for Γ0(21)

The numbers of eta products of weight 2 for Γ0(21) are listed at the begin-
ning of Sect. 16.4. We discuss only those among them which are involved
in theta identities. To begin with, there are two linear combinations of the
eta products [12, 3, 7], [1−1, 32, 74, 21−1], [14, 3−1, 7−1, 212], [1, 72, 21] with de-
nominator t = 2 which have multiplicative coefficients but violate the proper
recursions at powers of the prime 3. They are identified with linear combi-
nations of two theta series:

Example 16.17 The residues of −1 + 2ω and ω modulo 2(2 + ω) generate
the group (O3/(4 + 2ω))× � Z3 × Z6. A character ψ1 on O3 with period
2(2 + ω) is defined by

ψ1(−1 + 2ω) = 1, ψ1(ω) = ω.

Let ψ−1 denote the character on O3 with period 2(2 + ω) which is given by
ψ−1(μ) = ψ1(μ). Then for δ ∈ {1, −1} we have the identity

Θ2

(
−3, ψδ,

z
2

)
− 3δi

√
3 Θ2

(
−3, ψδ,

3z
2

)

= 1
3 (1 + δi

√
3) η2(z)η(3z)η(7z) + 1

3 (2 − δi
√

3)
η2(3z)η4(7z)
η(z)η(21z)

+ 1
3

η4(z)η2(21z)
η(3z)η(7z)

− 1
3 (1 + 3δi

√
3) η(z)η2(7z)η(21z). (16.29)

We get simpler results for the eta products with denominator t = 3. One of
the identities involves four eta products with numerators s ≡ 1 mod 3, the
other one two eta products with numerators s ≡ 2 mod 3:

Example 16.18 Let the generators of (O3/(6+2ω))× � Z2
6 be chosen as in

Example 16.13. A character ϕ1 on O3 with period 3(2 + ω) is given by

ϕ1(2) = 1, ϕ1(ω) = ω.

Let ϕ−1 denote the character on O3 with period 3(2 + ω), which is given by
ϕ−1(μ) = ϕ1(μ). Then for δ ∈ {1, −1} we have the identity

Θ2

(
−3, ϕδ,

z
3

)
= 1

4 (−1 + δi
√

3)
η4(z)η(7z)

η(3z)
+ 1

4 (5 − δi
√

3)
η(z)η4(7z)

η(21z)

+ 3
4 (3 − δi

√
3)

η4(3z)η(21z)
η(z)

− 3
4 (3 + 5δi

√
3)

η(3z)η4(21z)
η(7z)

. (16.30)
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Let the generator of (O7/(3))× � Z8 be chosen as in Example 12.3, and
define four characters ρδ,ε on O7 with period 3 by their value

ρδ,ε

(
1
2 (1 +

√
−7)

)
= 1√

2
ε(1 − δi)

with δ, ε ∈ {1, −1}. The corresponding theta series of weight 2 satisfy

Θ2

(
−7, ρδ,ε,

z
3

)
= h1(z) + δ

√
7 h̃1(z)

+ 1√
2
εi(

√
7 − δ)

(
η3(3z)η(7z) + δ

√
7 η(z)η3(21z)

)
(16.31)

with normalized integral Fourier series h1, h̃1 with denominator 3 and nu-
merator class 1 modulo 3.

The Fricke involution W21 transforms the eta products in Example 16.17
into eta products with denominator t = 6. For these functions there is a
rather simple theta identity, in contrast to (16.29), due to the fact that the
coefficients at multiples of the prime 3 vanish:

Example 16.19 The residues of 3 − ω, −5 and ω modulo 6(2 + ω) can
be chosen as generators of the group (O3/(12 + 6ω))× � Z6 × Z3 × Z6.
A character χ1 on O3 with period 6(2 + ω) is fixed by its values

χ1(3 − ω) = ω, χ1(−5) = 1, χ1(ω) = ω.

Let χ−1 denote the character on O3 with period 6(2 + ω) which is given by
χ−1(μ) = χ1(μ). Then for δ ∈ {1, −1} we have the identity

Θ2

(
−3, χδ,

z
6

)
=

η4(3z)η2(7z)
η(z)η(21z)

+ (1 + δi
√

3) η(z)η2(3z)η(21z)

− (1 + 3δi
√

3) η(3z)η(7z)η2(21z)

+ (2 − δi
√

3)
η2(z)η4(21z)
η(3z)η(7z)

. (16.32)

There is a linear combination of the cuspidal eta products with denominator
t = 12 and numerators s ≡ 1 mod 12 which has multiplicative coefficients
and which is closely related to the theta series in Example 11.17. We get an
identity relating eta products of weight 2 of levels 3 and 21:

Example 16.20 We have the eta identity

9
[

36, 7
12, 21

]
+ 5

[
12, 73

21

]
− 13

[
3, 76

1, 212

]
− 9

[
33, 212

1

]

=
[
15

3

]
+ 27

[
215

7

]
, (16.33)
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and this function is equal to

1
2

(
Θ2

(
−3, ψ1,

z
12

)
+ Θ2

(
−3, ψ−1,

z
12

))

− 3i
√

3
2

(
Θ2

(
−3, ψ1,

7z
12

)
− Θ2

(
−3, ψ−1,

7z
12

))
,

where ψδ are the characters on O3 with period 12 from Example 11.17.

There are four linear combinations of eight cuspidal eta products with de-
nominator 12 which are Hecke theta series:

Example 16.21 The residues of 3 − ω, 3 + ω, 13 and ω modulo 12(2 + ω)
are generators of (O3/(24 + 12ω))× � Z2

6 × Z2 × Z6. Characters ψ1,ε on O3

with period 12(2 + ω) are given by

ψ1,ε(3 − ω) = εω, ψ1,ε(3 + ω) = ω, ψ1,ε(13) = −1, ψ1,ε(ω) = ω.

Define characters ψ−1,ε on O3 with period 12(2 + ω) by ψ−1,ε(μ) = ψ1,ε(μ).
Then for δ, ε ∈ {1, −1} we have the identity

Θ2

(
−3, ψδ,ε,

z
12

)
= f1(z) + Cδ f13(z)

+ (Cδ − 1) f̃13(z) + (Cδ + 6) f25(z)

+ ε
(
Cδ f7(z) + f19(z) + (Cδ + 6) f̃19(z)

+ (Cδ − 1) f31(z)
)
, (16.34)

where Cδ = 1
2 (1 − 3

√
3δi), and where the components are eta products which

make up four pairs of Fricke transforms, with the subscripts indicating the
numerators,

f1 =
[
33, 72

21

]
, f13 =

[
12, 3, 21

]
, f̃13 =

[
32, 73

1

]
, f25 =

[
1, 7, 212

]
,

(16.35)

f7 =
[
1, 32, 7

]
, f19 =

[
13, 212

7

]
, f̃19 =

[
3, 72, 21

]
, f31 =

[
12, 213

3

]
.

(16.36)



17 Weight 1 for Levels N = 2p with Primes
p ≥ 5

17.1 Eta Products for Fricke Groups

For primes p ≥ 5 there are exactly four new holomorphic eta products of
weight 1 for the Fricke group Γ∗(2p), namely,

[
22, p2

1, 2p

]
,

[
12, (2p)2

2, p

]
, [2, p] , [1, 2p] .

By Theorem 8.1, each of them is a product of two simple theta series. All
of them have denominator 8 if p ≡ 1 mod 3, while for p ≡ −1 mod 3 the
denominators are 8 for the first and second, and 24 for the remaining two eta
products. Some of the identities in this subsection are mentioned in [65]. We
begin with the discussion of the case p = 5, where we will meet theta series
on the fields with discriminants 40, −40 and −4:

Example 17.1 Let J10 be the system of integral ideal numbers for Q(
√

−10)
as defined in Example 7.2. The residues of 1 +

√
−10,

√
5 and −1 modulo 4

can be chosen as generators of (J10/(4))× � Z4 × Z2
2 . Four characters ψδ,ν

on J10 with period 4 are given by

ψδ,ν(1 +
√

−10) = δνi, ψδ,ν(
√

5) = δ, ψδ,ν(−1) = 1

with δ, ν ∈ {1, −1}. The residues of 2 − νi, 5 + 2νi, 1 − 4νi and νi modulo
4+12νi = 4(1+νi)(2+νi) are generators of (O1/(4+12νi))× � Z4 ×Z2

2 ×Z4.
Characters χδ,ν on O1 with periods 4 + 12νi are fixed by their values

χδ,ν(2 − νi) = δ, χδ,ν(5 + 2νi) = δ, χδ,ν(1 − 4νi) = −1, χδ,ν(νi) = 1.

Let ideal numbers J
Q(

√
10) for Q(

√
10) be chosen as in Example 7.16. The

residues of 1+
√

10,
√

5 and −1 modulo 4 generate the group
(

J
Q(

√
10)/(4)

)× �
Z4 × Z2

2 . Hecke characters ξδ on J
Q(

√
10) with period 4 are given by

ξδ(μ) =

⎧
⎨

⎩

sgn(μ)
δ sgn(μ)

−sgn(μ)
for μ ≡

⎧
⎨

⎩

1 +
√

10√
5

−1
mod 4.
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The corresponding theta series of weight 1 are identical and satisfy

Θ1

(
40, ξδ,

z
8

)
= Θ1

(
−40, ψδ,ν , z

8

)
= Θ1

(
−4, χδ,ν , z

8

)

=
η2(2z)η2(5z)
η(z)η(10z)

+ δ
η2(z)η2(10z)
η(2z)η(5z)

. (17.1)

The sign transforms of the eta products in (17.1) belong to Γ0(20) and will
be discussed in Example 24.10.

Example 17.2 The residues of 1 +
√

−10, 3 +
√

−10, 3
√

5 + 2
√

−2 and −1
modulo 12 can be chosen as generators of (J10/(12))× � Z8 × Z4 × Z2

2 . Eight
characters ϕδ,ε,ν on J10 with period 12 are given by

ϕδ,ε,ν(1 +
√

−10) = −δε, ϕδ,ε,ν(3 +
√

−10) = νi,

ϕδ,ε,ν(3
√

5 + 2
√

−2) = δ, ϕδ,ε,ν(−1) = 1

with δ, ε, ν ∈ {1, −1}. The residues of
√

3 − ν
√

−2, 1 + ν
√

−6, 7 − 4ν
√

−6
and −1 modulo 12+4ν

√
−6 = 4

√
3(

√
3+ν

√
−2) can be chosen as generators

of (J6/(12+4ν
√

−6))× � Z8 × Z4 × Z2
2 . Characters ρδ,ε,ν on J6 with periods

12 + 4ν
√

−6 are given by

ρδ,ε,ν(
√

3 − ν
√

−2) = δ, ρδ,ε,ν(1 + ν
√

−6) = ε,

ρδ,ε,ν(7 − 4ν
√

−6) = −1, ρδ,ε,ν(−1) = 1.

The residues of 4 +
√

15,
√

5, 1 + 2
√

15 and −1 modulo M = 4(3 +
√

15) are
generators of

(
J

Q(
√

15)/(M)
)× � Z2

4 × Z2
2 . Hecke characters ξδ,ε on J

Q(
√

15)

with period M are given by

ξδ,ε(μ) =

⎧
⎪⎪⎨

⎪⎪⎩

sgn(μ)
δ sgn(μ)
δε sgn(μ)

−sgn(μ)

for μ ≡

⎧
⎪⎪⎨

⎪⎪⎩

4 +
√

15√
5

1 + 2
√

15
−1

mod M.

The corresponding theta series of weight 1 are identical and decompose as

Θ1

(
60, ξδ,ε,

z
24

)
= Θ1

(
−40, ϕδ,ε,ν , z

24

)
= Θ1

(
−24, ρδ,ε,ν , z

24

)

= f1(z) + δ f5(z) + 2ε f7(z) − 2δε f11(z), (17.2)

where the components fj are normalized integral Fourier series with denom-
inator 24 and numerator classes j modulo 24, and where f7, f11 are eta
products,

f7(z) = η(2z)η(5z), f11(z) = η(z)η(10z). (17.3)
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The components f1, f5 will be identified with linear combinations of eta
products in Example 27.9. We note that the period 4(3 +

√
15) of ξδ,ε and

its conjugate 4(3 −
√

15) are associates; their quotient is the unit −4 −
√

15.

The eta products of weight 1 for Γ∗(14) combine to eigenforms which are
Hecke theta series for the field Q(

√
−14):

Example 17.3 Let J14 be the system of integral ideal numbers for Q(
√

−14)
as defined in Example 7.7, where Λ = Λ14 =

√√
2 +

√
−7 is a root of Λ8 +

10Λ4 + 81 = 0. The residues of Λ,
√

−7 and −1 modulo 4 can be chosen
as generators of (J14/(4))× � Z8 × Z2

2 . Eight characters χδ,ε,ν on J14 with
period 4 are fixed by their values

χδ,ε,ν(Λ) = 1√
2
(δ + νi), χδ,ε,ν(

√
−7) = −ε, χδ,ε,ν(−1) = 1

with δ, ε, ν ∈ {1, −1}. The corresponding theta series of weight 1 decompose
as

Θ1

(
−56, χδ,ε,ν , z

8

)
= f1(z) + δ

√
2 f3(z) + δε

√
2 f5(z) − ε f7(z) (17.4)

where the components fj are normalized integral Fourier series with denom-
inator 8 and numerator classes j modulo 8. All of them are eta products,

f1 =
[
22, 72

1, 14

]
, f3 = [2, 7], f5 = [1, 14], f7 =

[
12, 142

2, 7

]
. (17.5)

The results for level 22 are similar to those for level 10. They are even more
complete since in Example 17.5, in an analogue to (17.2), we can identify all
the components of a theta series with (linear combinations of) eta products,
which, however, do not all belong to the Fricke group:

Example 17.4 Let J22 be the system of integral ideal numbers for Q(
√

−22)
as defined in Example 7.2. The residues of 1 +

√
−22 and

√
11 modulo 4 can

be chosen as generators of (J22/(4))× � Z2
4 . Four characters ψδ,ν on J22

with period 4 are given by

ψδ,ν(1 +
√

−22) = δνi, ψδ,ν(
√

11) = δ

with δ, ν ∈ {1, −1}. The residues of 3 − ν
√

−2, 1 + 8ν
√

−2 and −1 modulo
4(3+ν

√
−2) can be chosen as generators of (O2/(12+4ν

√
−2))× � Z20 ×Z2

2 .
Characters χδ,ν on O2 with periods 4(3 + ν

√
−2) are fixed by their values

χδ,ν(3 − ν
√

−2) = δ, χδ,ν(1 + 8ν
√

−2) = −1, χδ,ν(−1) = 1.

The residues of 2 +
√

11, 1 + 2
√

11 and −1 modulo M = 4(3 +
√

11) are
generators of (Z[

√
11]/(M))× � Z4 × Z2

2 . Hecke characters ξδ on Z[
√

11]
with period M are given by

ξδ(μ) =
{

sgn(μ)
−sgn(μ) for μ ≡

{
1 + 2

√
11

2 +
√

11, −1
mod M.
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The corresponding theta series of weight 1 are identical and satisfy

Θ1

(
44, ξδ,

z
8

)
= Θ1

(
−88, ψδ,ν , z

8

)
= Θ1

(
−8, χδ,ν , z

8

)

=
η2(2z)η2(11z)

η(z)η(22z)
+ δ

η2(z)η2(22z)
η(2z)η(11z)

. (17.6)

Similarly as before in Example 17.2, the character period 4(3 +
√

11) and its
conjugate 4(3 −

√
11) are associates.

Example 17.5 The residues of 1+
√

−22, 3+
√

−22 and
√

11 modulo 12 can
be chosen as generators of (J22/(12))× � Z8 × Z2

4 . Eight characters ρδ,ε,ν on
J22 with period 12 are fixed by their values

ρδ,ε,ν(1 +
√

−22) = ε, ρδ,ε,ν(3 +
√

−22) = −δνi,

ρδ,ε,ν(
√

11) = δε

with δ, ε, ν ∈ {1, −1}. Let J66 be the system of integral ideal numbers for
Q(

√
−66) as defined in Example 7.10, with Λ = Λ66 =

√√
3 +

√
−22. The

residues of Λ, 1+
√

−66, 5 and
√

−11 modulo 4
√

3 can be chosen as generators
of (J66/(4

√
3))× � Z8 ×Z4 ×Z2

2 , where Λ4(1+
√

−66)2 ≡ −1 mod 4
√

3. Eight
characters ϕδ,ε,ν on J66 with period 4

√
3 are given by

ϕδ,ε,ν(Λ) = ν, ϕδ,ε,ν(1 +
√

−66) = −εν,

ϕδ,ε,ν(5) = −1, ϕδ,ε,ν(
√

−11) = δε.

The residues of 2 − ε
√

3, 23, 17 + 8ε
√

3, 11 − 2ε
√

3 and −1 modulo Mε =
4(3−5ε

√
3) can be chosen as generators of (Z[

√
3]/(Mε))× � Z20 ×Z4

2 . Hecke
characters ξδ,ε on Z[

√
3] with period Mε are given by

ξδ,ε =

⎧
⎨

⎩

sgn(μ)
−δ sgn(μ)

−sgn(μ)
for μ ≡

⎧
⎨

⎩

2 − ε
√

3, 23, 17 + 8ε
√

3
11 − 2ε

√
3

−1
mod Mε .

The corresponding theta series of weight 1 are identical and decompose as

Θ1

(
12, ξδ,ε,

z
24

)
= Θ1

(
−88, ρδ,ε,ν , z

24

)
= Θ1

(
−264, ϕδ,ε,ν , z

24

)

= f1(z) + δε f11(z) + 2δ f13(z) + 2ε f23(z) , (17.7)

where the components fj are normalized integral Fourier series with denomi-
nator 24 and numerator classes j modulo 24 which are eta products or linear
combinations thereof,

f1(z) =
η(z)η2(11z)

η(22z)
+ 2

η2(2z)η(22z)
η(z)

,

(17.8)

f11(z) =
η2(z)η(11z)

η(2z)
+ 2

η(2z)η2(22z)
η(11z)

,

f13(z) = η(2z)η(11z), f23(z) = η(z)η(22z). (17.9)
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The eta products in (17.8) will appear once more in Example 17.21 in the
components of another theta series.

For level N = 26 we find six eigenforms which are theta series and involve,
besides the four eta products, two components which are not identified with
eta products. Here for the first time we meet a field with class number 6:

Example 17.6 Let J26 be the system of integral ideal numbers for Q(
√

−26)
as defined in Example 7.14, where Λ = Λ26 = 3

√
1 +

√
−26 is a root of the

polynomial X6 − 2X3 + 27. The residues of Λ and
√

−13 modulo 4 can be
chosen as generators of the group (J26/(4))× � Z12 × Z4. Eight characters
ψδ,ε,ν on J26 with period 4 are given by

ψδ,ε,ν(Λ) = 1
2 (ε

√
3 + νi), ψδ,ε,ν(

√
−13) = δ

with δ, ε, ν ∈ {1, −1}. The characters ϕδ,ν = ψ3
δ,ε,ν on J26 with period 4 are

defined by
ϕδ,ν(Λ) = νi, ϕδ,ν(

√
−13) = δ.

The residues of 3 − 2νi, 5 − 6νi, 1+10νi and νi modulo 4(1+ νi)(3+2νi) =
4 + 20νi can be chosen as generators of (O1/(4 + 20νi))× � Z12 × Z2

2 × Z4.
Characters χδ,ν on O1 with periods 4(1 + 5νi) are given by

χδ,ν(3−2νi) = δ, χδ,ν(5−6νi) = −δ, χδ,ν(1+10νi) = δ, χδ,ν(νi) = 1.

Let the ideal numbers J
Q(

√
26) be given as in Example 7.16. The residues of

1+
√

26,
√

13 and −1 modulo 4 are generators of
(

J
Q(

√
26)/(4)

)× � Z4 × Z2
2 .

Define characters ξδ modulo 4 on J
Q(

√
26) by

ξδ(μ) =

⎧
⎨

⎩

sgn(μ)
δ sgn(μ)

−sgn(μ)
for μ ≡

⎧
⎨

⎩

1 +
√

26√
13

−1
mod 4.

The corresponding theta series of weight 1 satisfy the identities

Θ1

(
−104, ψδ,ε,ν , z

8

)
= f1(z) + ε

√
3 f3(z) + δ f5(z) − δε

√
3 f7(z), (17.10)

Θ1

(
104, ξδ,

z
8

)
= Θ1

(
−104, ϕδ,ν , z

8

)
= Θ1

(
−4, χδ,ν , z

8

)
= g1(z) − δ g5(z) ,

(17.11)
where the components fj, gj are integral Fourier series with denominator 8
and numerator classes j modulo 8 which are normalized with the exception
of g5. Those for j = 1, 5 are linear combinations of eta products,

f1 =
[
22, 132

1, 26

]
+ [1, 26], f5 = [2, 13] +

[
12, 262

2, 13

]
, (17.12)

g1 =
[
22, 132

1, 26

]
− 2 [1, 26], g5 = 2 [2, 13] −

[
12, 262

2, 13

]
. (17.13)
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Similar results for the sign transforms of the eta products in (17.12), (17.13)
will be given in Example 22.18.

In the following two examples we describe theta series which contain the eta
products of weight 1 for Γ∗(34) in their components: The sign transforms
of the eta products in (17.16) belong to Γ0(68) and will be discussed in
Example 22.10.

Example 17.7 Let J34 be the system of integral ideal numbers for Q(
√

−34)
as defined in Example 7.7, where Λ34 =

√
2

√
2 +

√
−17 is a root of the

polynomial X8 − 18X4 + 625. The residues of Λ34 and 1 +
√

−34 modulo
4

√
2 can be chosen as generators of the group (J34/(4))× � Z8 × Z4, where

Λ4
34 ≡ −1 mod 4. Eight characters ϕδ,ν and ρδ,ν on J34 with period 4 are

fixed by their values

ϕδ,ν(Λ34) = δi, ϕδ,ν(1 +
√

−34) = −δνi,

ρδ,ν(Λ34) = δ, ρδ,ν(1 +
√

−34) = νi

with δ, ν ∈ {1, −1}. Let J17 be the system of integral ideal numbers for

Q(
√

−17) as defined in Example 7.9, where Λ17 =
√

(1 +
√

−17)/
√

2 is a root
of the polynomial X8 + 16X4 + 81. The residues of Λ17, 1 + 2

√
−17 and 3

modulo 4 can be chosen as generators of the group (J17/(4
√

2))× � Z16 × Z2
2 ,

where Λ8
17 ≡ −1 mod 4

√
2. Four characters ψδ,ν on J17 with period 4

√
2 are

given by

ψδ,ν(Λ17) = ν, ψδ,ν(1 + 2
√

−17) = δν, ψδ,ν(3) = −1.

The residues of 2 + νi, 3 + 8νi, 7 − 2νi and νi modulo 4(1 + νi)(4 − νi) =
20 + 12νi are generators of (O1/(20 + 12νi))× � Z16 × Z2

2 × Z4. Characters
χδ,ν on O1 with periods 4(5 + 3νi) are given by

χδ,ν(2 + νi) = δ, χδ,ν(3 + 8νi) = −1, χδ,ν(7 − 2νi) = δ, χδ,ν(νi) = 1.

The residues of 1 − δ
√

2, 5 + δ
√

2 and −1 modulo Mδ = 4(5 − 2δ
√

2) are
generators of (Z[

√
2]/(Mδ))× � Z16 × Z4 × Z2. Define characters ξ∗

δ modulo
Mδ on Z[

√
2] by

ξ∗
δ (μ) =

{
−δ sgn(μ)

−sgn(μ) for μ ≡
{

1 − δ
√

2, 5 + δ
√

2
−1

mod Mδ.

Let J
Q(

√
34) be given as in Example 7.18. The residues of Λ =

√
3 +

√
34 and

−1 modulo 4 are generators of
(

J
Q(

√
34)/(4)

)× � Z8 × Z2. Define characters
ξδ modulo 4 on J

Q(
√

34) by

ξδ(μ) =
{

δ sgn(μ)
−sgn(μ) for μ ≡

{
Λ

−1 mod 4.
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The theta series of weight 1 for ξ∗
δ , ϕδ,ν , ψδ,ν are identical, and those for ξδ,

ρδ,ν , χδ are identical, and we have the decompositions

Θ1

(
8, ξ∗

δ , z
8

)
= Θ1

(
−136, ϕδ,ν , z

8

)

= Θ1

(
−68, ψδ,ν , z

8

)
= f1(z) + 2δ f7(z), (17.14)

Θ1

(
136, ξδ,

z
8

)
= Θ1

(
−136, ρδ,ν , z

8

)

= Θ1

(
−4, χδ,ν , z

8

)
= g1(z) + 2δ g5(z) (17.15)

where the components fj, gj are normalized integral Fourier series with de-
nominator 8 and numerator classes j modulo 8, and where f1, g1 are linear
combinations of eta products,

f1 =
[
22, 172

1, 34

]
+
[
12, 342

2, 17

]
, g1 =

[
22, 172

1, 34

]
−
[
12, 342

2, 17

]
. (17.16)

Example 17.8 Let J34 be given as in the preceding example. The residues
of Λ34, 3 +

√
−34 and 3

√
2 +

√
−17 modulo 12 can be chosen as generators

of the group (J34/(12))× � Z16 × Z2
4 , where (3 +

√
−34)2(3

√
2 +

√
−17)2 ≡

−1 mod 12. Sixteen characters χδ,ε,ν,σ on J34 with period 12 are fixed by their
values

χδ,ε,ν,σ(Λ34) = 1√
2
(δ − νσi), χδ,ε,ν,σ(3 +

√
−34) = −εσi,

χδ,ε,ν,σ(3
√

2 +
√

−17) = σi

with δ, ε, ν, σ ∈ {1, −1}. The corresponding theta series of weight 1 decompose
as

Θ1

(
−136, χδ,ε,ν,σ, z

24

)
= h1(z) + δ

√
2 h5(z) + ν

√
2 h7(z) + 2δν h11(z)

− δε
√

2 h13(z) + ε h17(z)

− 2δεν h19(z) + εν
√

2 h23(z), (17.17)

where the components hj are normalized integral Fourier series with denom-
inator 24 and numerator classes j modulo 24, and where h11, h19 are eta
products,

h11(z) = η(z)η(34z), h19(z) = η(2z)η(17z). (17.18)

For Γ∗(38) there are four eta products of weight 1 whose denominators are
8 and whose numerators occupy all the residue classes modulo 8. But there
are no linear combinations of these functions which are eigenforms. We do
not pursue the levels N = 2p for larger primes p.



274 17. Weight 1 for Levels N = 2p

17.2 Cuspidal Eta Products for Γ0(10)

For primes p ≥ 7 there are exactly ten new holomorphic eta products of
weight 1 for Γ0(2p). All of them are products of two simple theta series, and
in fact only η(z), η2(z)/η(2z) and η2(2z)/η(z) are needed to concoct these
ten eta products. Specifically, we have two non-cuspidal eta products

[
12, 2−1, p2, (2p)−1

]
,

[
1−1, 22, p−1, (2p)2

]

and eight cuspidal ones,
[
2, p2, (2p)−1

]
,
[
1−1, 22, p

]
,
[
12, 2−1, 2p

]
,
[
1, p−1, (2p)2

]
,

[
1, p2, (2p)−1

]
,
[
12, 2−1, p

]
,
[
1−1, 22, 2p

]
,
[
2, p−1, (2p)2

]
.

For those in the last line the denominator t = 24 does not depend upon p. For
Γ0(10) there are, in addition, four non-cuspidal and four cuspidal eta products
of weight 1. In this subsection we discuss the 12 cuspidal eta products of level
10. Two of them have denominator 12; they appear in theta series for the
fields with discriminants 60, −4 and −15:

Example 17.9 Let J15 be the system of integral ideal numbers for Q(
√

−15)
as defined in Example 7.3. The residues of

√
−5, 7, 2+

√
−15 and −1 modulo

2(3+
√

−15) can be chosen as generators of (J15/(6+2
√

−15))× � Z4 × Z3
2 .

Four characters ψδ,ν on J15 with period 2(3+
√

−15) are fixed by their values

ψδ,ν(
√

−5) = δi, ψδ,ν(7) = −1, ψδ,ν(2 +
√

−15) = ν, ψδ,ν(−1) = 1

with δ, ν ∈ {1, −1}. The residues of 2 + νi, 7 and νi modulo 6(1 + νi)(2 −
νi) = 6(3 + νi) can be chosen as generators of (O1/(18 + 6νi))× � Z8 × Z2

4 .
Characters χδ,ν on O1 with periods 6(3 + νi) are given by

χδ,ν(2 + νi) = δi, χδ,ν(7) = −1, χδ,ν(νi) = 1.

The residues of
√

3+2
√

5 and
√

5 modulo M = 2(3+
√

15) are generators of
the group

(
J

Q(
√

15)/(M)
)× � Z2

4 , where (
√

3 + 2
√

5)2 ≡ −1 mod M . Define

characters ξ̃δ modulo M on J
Q(

√
15) by

ξ̃δ(μ) =
{

−δi sgn(μ)
δi sgn(μ) for μ ≡

{ √
3 + 2

√
5√

5
mod M.

The corresponding theta series of weight 1 are identical and decompose as

Θ1

(
60, ξ̃δ,

z
12

)
= Θ1

(
−15, ψδ,ν , z

12

)

= Θ1

(
−4, χδ,ν , z

12

)
= f1(z) + δi f5(z) , (17.19)

where the components fj are eta products,

f1(z) =
η(2z)η2(5z)

η(10z)
, f5(z) =

η2(z)η(10z)
η(2z)

. (17.20)
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The sign transforms of the eta products in (17.20) belong to Γ0(20) and will
be considered in Example 24.11.

Let Fδ = f1 + δif5 denote the functions given by (17.19), (17.20). The Fricke
involution W10 acts on Fδ according to Fδ(W10z) = −2

√
5iz Gδ(z), where

Gδ =
[
1−1, 22, 5

]
+ δi

[
1, 5−1, 102

]
is a linear combination of eta products

with denominator t = 3. One would expect that the functions Gδ are Hecke
eigenforms and representable by theta series. However, although the coeffi-
cients of Gδ are multiplicative, they violate the proper recursion formula for
powers of the prime 2, and therefore Gδ is not a Hecke theta series. We get
an eta–theta identity when we rectify the bad behavior at the prime 2, using
the eta products with denominator t = 12:

Example 17.10 Let J15 be given as before in Example 17.9. The residues
of 1

2 (
√

3 + ν
√

−5) and −1 modulo 1
2 (

√
3 + 3ν

√
−5) are generators

of (J15/( 1
2 (

√
3+3ν

√
−5)))× � Z4 × Z2. Characters ϕδ,ν on J15 with periods

1
2 (

√
3 + 3ν

√
−5) are given by

ϕδ,ν

(
1
2 (

√
3 + ν

√
−5)

)
= δi, ϕδ,ν(−1) = 1

with δ, ν ∈ {1, −1}. The residues of 2 − νi and νi modulo 3(2 + νi) generate
the group (O1/(6 + 3νi))× � Z8 × Z4. Characters ρδ,ν on O1 with periods
3(2 + νi) are given by

ρδ,ν(2 − νi) = δi, ρδ,ν(νi) = 1.

The residue of
√

5 modulo
√

3 is a generator of
(

J
Q(

√
15)/(

√
3)
)× � Z4.

Hecke characters ξδ on J
Q(

√
15) modulo

√
3 are given by ξδ(μ) = δi sgn(μ)

for μ ≡
√

5 mod
√

3. The corresponding theta series of weight 1 are identical
and decompose as

Θ1

(
60, ξδ,

z
3

)
= Θ1

(
−15, ϕδ,ν , z

3

)

= Θ1

(
−4, ρδ,ν , z

3

)
= g1(z) + δi g2(z) , (17.21)

where the components gj are normalized integral Fourier series with denom-
inator 3 and numerator classes j modulo 3 which are linear combinations of
eta products,

g1(z) =
η(z/2)η2(5z)

η(5z/2)
+

η2(2z)η(20z)
η(4z)

,

(17.22)

g2(z) =
η2(z)η(5z/2)

η(z/2)
− η(4z)η2(10z)

η(20z)
.

The eta products in (17.22) have expansions to powers e
(

z
6

)n. But in the
linear combinations all coefficients at odd n vanish thanks to coincidences
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of coefficients of the eta products with denominators 3 and 12, and hence
the expansions of g1, g2 proceed to powers e

(
z
3

)n. Much simpler formulae
for g1, g2 will be given in Example 24.5 in terms of the sign transforms of[
1−1, 22, 5

]
,
[
1, 5−1, 10

]
which belong to Γ0(20).

There are eight eta products with denominator t = 24, and we find eight theta
series which involve these eta products in their components. The results will
be described in the following three examples where we will exhibit the two
remarkable identities (17.29), (17.30) connecting eta products of levels 10
and 2.

Example 17.11 Let J30 be the system of integral ideal numbers for
Q(

√
−30) as defined in Example 7.5. The residues of 1 +

√
−30,

√
5 +

√
−6,

2
√

10+
√

−3 and −1 modulo 4
√

−3 can be chosen as generators of the group
(J30/(4

√
−3))× � Z2

4 × Z2
2 . Eight characters ψ = ψδ,ε,ν on J30 with period

4
√

−3 are fixed by their values

ψ(1+
√

−30) = ν, ψ(
√

5+
√

−6) = δνi, ψ(2
√

10+
√

−3) = εν, ψ(−1) = 1

with δ, ε, ν ∈ {1, −1}. The residues of 2 − νi, 3 − 2νi, 11, 11 + 6νi and
νi modulo 12(1 − νi)(2 + νi) = 12(3 − νi) can be chosen as generators of
(O1/(36 − 12νi))× � Z8 × Z4 × Z2

2 × Z4. Characters χ = χδ,ε,ν on O1 with
periods 12(3 − νi) are given by

χ(2 − νi) = δi, χ(3 − 2νi) = ε, χ(11) = −1, χ(11+6νi) = ε, χ(νi) = 1.

Let ideal numbers J
Q(

√
30) be given as in Example 7.19. The residues of

1 +
√

30,
√

3 +
√

10 and −1 modulo 4
√

3 can be chosen as generators of(
J

Q(
√

30)/(4
√

3)
)× � Z2

4 × Z2. Hecke characters ξδ,ε on J
Q(

√
30) with period

4
√

3 are defined by

ξδ,ε(μ) =

⎧
⎨

⎩

−δi sgn(μ)
δεi sgn(μ)

−sgn(μ)
for μ ≡

⎧
⎨

⎩

1 +
√

30√
3 +

√
10

−1
mod 4

√
3.

The corresponding theta series of weight 1 are identical and decompose as

Θ1

(
120, ξδ,ε,

z
24

)
= Θ1

(
−120, ψδ,ε,ν , z

24

)
= Θ1

(
−4, χδ,ε,ν , z

24

)

= f1(z) + δi f5(z) + 2ε f13(z) − 2δεi f17(z) , (17.23)

where the components fj are normalized integral Fourier series with denom-
inator 24 and numerator classes j modulo 24. All of them are eta products,

f1 =
[
1, 52

10

]
, f5 =

[
12, 5

2

]
,

(17.24)

f13 =
[
22, 10

1

]
, f17 =

[
2, 102

5

]
.
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We will meet the theta series (17.23) once more in Examples 24.13, 24.16,
27.10 when we will find identities relating the components fj with eta prod-
ucts on Γ0(20) and on Γ∗(40). The sign transforms of the eta products in
(17.24) will be identified with components of theta series in Example 24.19.

Example 17.12 Let the generators of (O1/(36 − 12νi))× be chosen as before
in Example 17.11. Characters ρδ,ν on O1 with periods 12(3 − νi) are fixed by
their values

ρδ,ν(2 − νi) = δi, ρδ,ν(3 − 2νi) = ν, ρδ,ν(11) = −1, ρδ,ν(11+6σi) = −ν

and ρδ,ν(νi) = 1 with δ, ν ∈ {1, −1}. Let the generators of (J6/(12 +
4ν

√
−6))× be chosen as in Example 17.2. Characters ϕδ,ν on J6 with pe-

riods 4(3 + ν
√

−6) are given by

ϕδ,ν(
√

3 − ν
√

−2) = δi, ϕδ,ν(1 + ν
√

−6) = ν,

ϕδ,ν(7 − 4ν
√

−6) = −1, ϕδ,ν(−1) = 1.

The residues of 1 +
√

6, 7, 5 − 4
√

6 and −1 modulo M = 4(3 −
√

6)(1 −
√

6)
can be chosen as generators of (Z[

√
6]/(M))× � Z2

4 × Z2
2 . Hecke characters

ξδ on Z[
√

6] with period M are given by

ξδ(μ) =

⎧
⎨

⎩

δi sgn(μ)
sgn(μ)

−sgn(μ)
for μ ≡

⎧
⎨

⎩

1 +
√

6
7

5 − 4
√

6, −1
mod M.

The corresponding theta series of weight 1 satisfy

Θ1

(
24, ξδ,

z
24

)
= Θ1

(
−4, ρδ,ν , z

24

)
= Θ1

(
−24, ϕδ,ν , z

24

)
= g1(z) + δi g5(z) ,

(17.25)
where the components gj are normalized integral Fourier series with denom-
inator 24 and numerator classes j modulo 24 which are linear combinations
of eta products,

g1 = 3
[

2, 54

1, 102

]
− 2

[
24, 5
12, 10

]
, g5 =

[
14, 10
22, 5

]
+ 6

[
1, 104

2, 52

]
. (17.26)

Example 17.13 Let ξδ, χδ,ν and ψδ,ν be the characters on Z[
√

6], O1 and
J6, respectively, as defined in Example 10.5. The corresponding theta series
of weight 1 satisfy

Θ1

(
24, ξδ,

z
24

)
= Θ1

(
−4, χδ,ν , z

24

)

= Θ1

(
−24, ψδ,ν , z

24

)

= h1(z) + 2δi h5(z) , (17.27)
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where the components hj are normalized integral Fourier series with denom-
inator 24 and numerator classes j modulo 24 which are linear combinations
of eta products,

h1 = 5
[

2, 54

1, 102

]
− 4

[
24, 5
12, 10

]
, h5 =

[
14, 10
22, 5

]
+ 5

[
1, 104

2, 52

]
. (17.28)

Observe that the same four eta products show up in (17.26) and in (17.28).
When we compare the results in Examples 10.5 and 17.13, we obtain the
remarkable eta identities

5
η(2z)η4(5z)
η(z)η2(10z)

− 4
η4(2z)η(5z)
η2(z)η(10z)

=
η3(z)
η(2z)

, (17.29)

η4(z)η(10z)
η2(2z)η(5z)

+ 5
η(z)η4(10z)
η(2z)η2(5z)

=
η3(2z)
η(z)

. (17.30)

Playing around with these formulae yields
[

2, 54

1, 102

]
=

[
13

2

]
+ 4

[
103

5

]
,

(17.31)[
24, 5
12, 10

]
=

[
13

2

]
+ 5

[
103

5

]
,

[
14, 10
22, 5

]
= 5

[
53

10

]
− 4

[
23

1

]
,

(17.32)[
1, 104

2, 52

]
=

[
23

1

]
−
[

53

10

]
.

These identities tell that the eta products of level 10 on the left hand sides
are combinations of products of two simple theta series. For example, let
α(n) and β(n) for n ≡ 1 mod 24 denote the coefficients of

[
1−1, 2, 54, 10−2

]

and of
[
1−2, 24, 5, 10−1

]
. Then

α(n) = β(n) =
∑

x>0, y∈Z, x2+24y2=n

(−1)y

(
12
x

)

whenever 5 � n.

17.3 Non-cuspidal Eta Products for Γ0(10)

The non-cuspidal eta products of weight 1 for Γ0(10) have denominators 1
and 4, three at a time in each case. Two of those with denominator 4 combine
to an Eisenstein series which is well known from Examples 10.6 and 15.11:
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Example 17.14 Let χ0 denote the principal character on O1 with period
1 + i. Then

Θ1

(
−4, χ0,

z
4

)
=

∑

n odd

(∑

d|n

(−1
d

))
e
(

nz
4

)

=
1
4

(
5

η(2z)η3(5z)
η(z)η(10z)

− η3(z)η(10z)
η(2z)η(5z)

)
(17.33)

and

∑

n odd

( ∑

d|n

(−1
d

))
e
(

5nz
4

)
=

1
4

(
η(2z)η3(5z)
η(z)η(10z)

− η3(z)η(10z)
η(2z)η(5z)

)
=

η4(10z)
η2(5z)

.

Comparing the results from Examples 10.6, 15.11, 17.14 yields the eta iden-
tities
[
24

12

]
=

1
4

(
5
[

2, 53

1, 10

]
−
[
13, 10
2, 5

])
=
[

85

2, 162

]
+ 2

[
42, 162

2, 8

]
. (17.34)

Multiplying (17.30) with η(2z)/η(z) gives another identity for [1−2, 24] which
together with (17.34) implies
[

2, 53

1, 10

]
=
[
24

12

]
−
[
104

52

]
,

[
13, 10
2, 5

]
=
[
24

12

]
− 5

[
104

52

]
. (17.35)

The eta product with denominator 4 and numerator 3 is the sign transform
of an eta product for Γ∗(20). It is a component in two Eisenstein series which
are theta series on the field with discriminant −20. The other component is
a linear combination of two eta products for Γ0(20) whose sign transforms
belong to Γ∗(20) and which will appear in Examples 24.1 and 24.3.

Example 17.15 Let ψ1 and ψ−1 denote the trivial and the non-trivial char-
acter on J5 with period

√
2, respectively. Then for δ ∈ {1, −1} we have

Θ1

(
−20, ψδ,

z
4

)
=

∑

n > 0 odd

((
δ
n

)∑

d|n

(−20
d

))
e
(

nz
4

)
= f1(z) + 2δ f3(z) ,

(17.36)
where the components fj are normalized integral Fourier series with denom-
inator 4 and numerator classes j modulo 4 which are eta products or linear
combinations thereof,

f1 =
[

42, 105

2, 52, 202

]
+
[

25, 202

12, 42, 10

]
, f3 =

[
22, 102

1, 5

]
. (17.37)
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We will meet the series in (17.36) again in Example 24.27, and then we get
other identifications of f1, f3 with eta products. We note that the components
f1 and f3 of the theta series come from the summation on O5 and on J5 \ O5,
respectively. The characters ψδ in Example 17.15 take the values ψδ(x +
y

√
−5) = 1 for x �≡ y mod 2, ψδ((x + y

√
−5)/

√
2) = δ for x ≡ y ≡ 1 mod 2,

and ψδ(μ) = 0 if μμ is even.

The eta product [1, 2−1, 5−1, 103] with denominator 1 is identified with an
Eisenstein series. Its coefficients are multiplicative, but they violate the
proper Hecke recursions at powers of the prime 2, and therefore this func-
tion is not a theta series. Its sign transform is both a theta series and an
Eisenstein series, as will be shown in Example 24.31. The coefficients of
[1, 2−1, 5−1, 103] and of [1−1, 23, 5, 10−1] coincide at all indices n for which
5 � n, and the difference of these two functions is an Eisenstein series which
is well known from Example 10.6:

Example 17.16 We have the identities

η(z)η3(10z)
η(2z)η(5z)

=
∞∑

n=1

(−1)n−1

( ∑

d|n, 5�d

(
−1
d

))
e(nz), (17.38)

η3( 2z
5 )η(z)

η( z
5 )η(2z)

−
η( z

5 )η3(2z)
η( 2z

5 )η(z)
= 1 −

∞∑

n=1

(
(−1)n−1

(−1
n

)∑

d|n

(−1
d

))
e(nz)

=
η4(z)
η2(2z)

. (17.39)

Finally, the eta product [12, 2−1, 52, 10−1] with denominator 1 is not identified
with a constituent of an Eisenstein or theta series. But it is a difference of eta
products of level 20. This will be deduced in Example 24.4 from an identity
for its sign transform which belongs to Γ∗(20).

17.4 Eta Products for Γ0(14)

The 8 cuspidal eta products of weight 1 for Γ0(14) combine nicely and make
up 8 eigenforms which are Hecke theta series. The precise results are stated
in the following two examples:

Example 17.17 Let J21 be the system of integral ideal numbers for
Q(

√
−21) as defined in Example 7.6. The residues of 1√

2
(

√
3 +

√
−7) and

√
3 + 2

√
−7 modulo 2

√
6 can be chosen as generators of (J21/(2

√
6))× �
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Z8 × Z4, where (
√

3 + 2
√

−7)2 ≡ −1 mod 2
√

6. Four characters χδ,ε on J21

with period 2
√

6 are fixed by their values

χδ,ε

(
1√
2
(

√
3 +

√
−7)

)
= 1√

2
(ε + δi), χδ,ε(

√
3 + 2

√
−7) = δ

with δ, ε ∈ {1, −1}. The corresponding theta series of weight 1 decompose as

Θ1

(
−84, χδ,ε,

z
12

)
= f1(z) + δi

√
2 f5(z) + εi f7(z) + δε

√
2 f11(z) (17.40)

where the components fj are normalized integral Fourier series with denom-
inator 12 and numerator classes j modulo 12. All of them are eta products,

f1 =
[
2, 72

14

]
, f5 =

[
22, 7

1

]
,

(17.41)

f7 =
[
12, 14

2

]
, f11 =

[
1, 142

7

]
.

Example 17.18 Let J21 be given as before in Example 17.17, and let J42

be the system of ideal numbers for Q(
√

−42) as defined in Example 7.5. The
residues of 1√

2
(

√
3+

√
−7),

√
3+2

√
−7, 1+2

√
−21 and −1 modulo 4

√
6 can

be chosen as generators of the group (J21/(4
√

6))× � Z8 × Z4 × Z2
2 . Eight

characters ρ = ρδ,ε,ν on J21 with period 4
√

6 are given by

ρ
(√

3+
√

−7√
2

)
= νi, ρ(

√
3 + 2

√
−7) = −εi,

ρ(1 + 2
√

−21) = −δεν, ρ(−1) = 1

with δ, ε, ν ∈ {1, −1}. The residues of 1 +
√

−42,
√

6 −
√

−7 and 2
√

2 +√
−21 modulo 4

√
3 can be chosen as generators of (J42/(4

√
3))× � Z3

4 , where
(2

√
2 +

√
−21)2 ≡ −1 mod 4

√
3. Eight characters ψδ,ε,ν on J42 with period

4
√

3 are given by

ψδ,ε,ν(1 +
√

−42) = ν, ψδ,ε,ν(
√

6 −
√

−7) = −ενi,

ψδ,ε,ν(2
√

2 +
√

−21) = −δν.

The residues of 1 + δ
√

2, 3 − δ
√

2, 13 and −1 modulo Mδ = 12(3 + δ
√

2) are
generators of (Z[

√
2]/(Mδ))× � Z24 × Z4 × Z2

2 . Define Hecke characters ξδ,ε

on Z[
√

2] with period Mδ by

ξδ,ε(μ) =

⎧
⎨

⎩

δ sgn(μ)
εi sgn(μ)

−sgn(μ)
for μ ≡

⎧
⎨

⎩

1 + δ
√

2
3 − δ

√
2

13, −1
mod Mδ.

The corresponding theta series of weight 1 are identical and decompose as

Θ1

(
8, ξδ,ε,

z
24

)
= Θ1

(
−84, ρδ,ε,ν , z

24

)
= Θ1

(
−168, ψδ,ε,ν , z

24

)

= g1(z) + εi g7(z)
+ 2δεi g17(z) + 2δ g23(z), (17.42)
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where the components gj are normalized integral Fourier series with denom-
inator 24 and numerator classes j modulo 24. All of them are eta products,

g1 =
[
1, 72

14

]
, g7 =

[
12, 7

2

]
, g17 =

[
22, 14

1

]
, g23 =

[
2, 142

7

]
.

(17.43)

We will return to the eta products (17.43) and their sign transforms in Ex-
ample 23.24. We note that (g1, g17), (g7, g23) are pairs of transforms with
respect to W14.

One of the non-cuspidal eta products of weight 1 for Γ0(14) is an Eisenstein
series and a theta series for the field Q(

√
−7). The other one has multiplica-

tive coefficients which behave like those of an Eisenstein series at odd indices
but do not satisfy the proper Hecke recursions at powers of the prime 2. The
corresponding identities in the following example can be deduced directly
from (8.5), (8.7) and from the arithmetic in the factorial ring O7:

Example 17.19 Let χ0 and χ̂0 denote the principal characters on O7 with
periods 1

2 (1 +
√

−7) and 1
2 (1 −

√
−7), respectively. Then we have

Θ1 (−7, χ0, z) = Θ1 (−7, χ̂0, z) =
∞∑

n=1

(∑

2�d|n

(−7
d

))
e(nz) =

η2(2z)η2(14z)
η(z)η(7z)

.

(17.44)
Moreover, we have

η2(z)η2(7z)
η(2z)η(14z)

= 1 − 2
∞∑

n=1

λ(n)e(nz) , where λ(2rm) = −(r −1)
∑

d|m

(−7
d

)

(17.45)
if m is odd and r ≥ 0.

17.5 Eta Products for Γ0(22)

The four eta products with denominator 12 combine to four eigenforms which
are theta series for Q(

√
−33):

Example 17.20 Let J33 be the system of integral ideal numbers for
Q(

√
−33) as defined in Example 7.6. The residues of 1√

2
(

√
3 +

√
−11),

√
−11 and −1 modulo 2

√
6 can be chosen as generators of the group

(J33/(2
√

6))× � Z8 × Z2
2 . Eight characters χδ,ε,ν on J33 with period 2

√
6 are

fixed by their values

χδ,ε,ν

(
1√
2
(

√
3 +

√
−11)

)
= 1√

2
(ν + εi), χδ,ε,ν(

√
−11) = δε,
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χδ,ε,ν(−1) = 1

with δ, ε, ν ∈ {1, −1}. The corresponding theta series of weight 1 decompose
as

Θ1

(
−132, χδ,ε,ν , z

12

)
= f1(z) + δi

√
2 f5(z) + εi

√
2 f7(z) + δε f11(z) (17.46)

where the components fj are normalized integral Fourier series with denom-
inator 12 and numerator classes j modulo 12. All of them are eta products,

f1 =
[
2, 112

22

]
, f5 =

[
1, 222

11

]
,

(17.47)

f7 =
[
22, 11

1

]
, f11 =

[
12, 22

2

]
.

The four eta products with denominator 24 make up two of the components
of the theta series in Example 17.5 which belong to the Fricke group Γ∗(21).
Another two linear combinations form two of the components of four eigen-
forms which are theta series for the fields Q(

√
11), Q(

√
−66) and Q(

√
−6):

Example 17.21 Let the generators of (J66/(4
√

3))× � Z8 × Z4 × Z2
2 be

chosen as in Example 17.5, and define eight characters ψδ,ε,ν on J66 with
period 4

√
3 by

ψδ,ε,ν(Λ) = εi, ψδ,ε,ν(1 +
√

−66) = −δν,

ψδ,ε,ν(5) = −1, ψδ,ε,ν(
√

−11) = δ

with δ, ε, ν ∈ {1, −1}. The residues of 1 + ν
√

−6,
√

3 − 2ν
√

−2, 23 and −1
modulo 4

√
3(

√
3 + 2ν

√
−2) = 4(3 + 2ν

√
−6) can be chosen as generators of

(J6/(12 + 8ν
√

−6))× � Z20 × Z4 × Z2
2 . Characters ρδ,ε,ν on J6 with periods

4(3 + 2ν
√

−6) are given by

ρδ,ε,ν(1 + ν
√

−6) = δεi, ρδ,ε,ν(
√

3 − 2ν
√

−2) = δ,

ρδ,ε,ν(23) = −1, ρδ,ε,ν(−1) = 1.

The residues of 2+
√

11, 10+3
√

11, 1+6
√

11 and −1 modulo M = 12(3+
√

11)
are generators of (Z[

√
11]/(M))× � Z8 × Z4 × Z2

2 . Define Hecke characters
ξδ,ε on Z[

√
11] with period M by

ξδ,ε(μ) =

⎧
⎪⎪⎨

⎪⎪⎩

δεi sgn(μ)
sgn(μ)
δ sgn(μ)

−sgn(μ)

for μ ≡

⎧
⎪⎪⎨

⎪⎪⎩

2 +
√

11
10 + 3

√
11

1 + 6
√

11
−1

mod M.

The corresponding theta series of weight 1 satisfy

Θ1

(
44, ξδ,ε,

z
24

)
= Θ1

(
−264, ψδ,ε,ν , z

24

)
= Θ1

(
−24, ρδ,ε,ν , z

24

)

= g1(z) + 2εi g5(z) + 2δεi g7(z) + δ g11(z) , (17.48)
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where the components gj are normalized integral Fourier series with denom-
inator 24 and numerator classes j modulo 24, and where g1, g11 are linear
combinations of eta products,

g1 =
[
1, 112

22

]
− 2

[
22, 22

1

]
, g11 =

[
12, 11

2

]
− 2

[
2, 222

11

]
. (17.49)

The coefficients of the non-cuspidal eta products [12, 2−1, 112, 22−1]
and [1−1, 22, 11−1, 222] for Γ0(22) are closely related to the arithmetic in
Q(

√
−11). There is a linear combination of one of these eta products and a

rescaling of the other one which is identified with an Eisenstein series: We
have

− 1
2

η2(z)η2(11z)
η(2z)η(22z)

+ 2
η2(4z)η2(44z)
η(2z)η(22z)

= − 1
2

+
∞∑

n=1

(
(−1)n−1

∑

d|n

(
d

11

))
e(nz). (17.50)

17.6 Weight 1 for Levels 26, 34 and 38

The eta products of weight 1 and denominator 24 for Γ0(26) combine neatly
to a quadruplet of theta series, similarly as those of levels 10 and 14 in
Examples 17.11 and 17.18:

Example 17.22 Let J78 be the system of ideal numbers for Q(
√

−78) as
defined in Example 7.5. The residues of 1 +

√
−78, 2

√
2 +

√
−39 and 2

√
6 +√

−13 modulo 4
√

3 can be chosen as generators of (J78/(4
√

3))× � Z3
4 , where

(2
√

6 +
√

−13)2 ≡ −1 mod 4
√

3. Eight characters ψδ,ε,ν on J78 with period
4

√
3 are fixed by their values

ψδ,ε,ν(1 +
√

−78) = δεν, ψδ,ε,ν(2
√

2 +
√

−39) = νi,

ψδ,ε,ν(2
√

6 +
√

−13) = −ε

with δ, ε, ν ∈ {1, −1}. The residues of 2 + νi, 5, 7 + 12νi, 5 + 6νi and νi
modulo 12(1+νi)(3−2νi) = 12(5+νi) are generators of (O1/(60+12νi))× �
Z24 × Z4 × Z2

2 × Z4. Characters ϕ = ϕδ,ε,ν on O1 with periods 12(5 + νi) are
given by

ϕ(2 + νi) = δi, ϕ(5) = 1, ϕ(7 + 12νi) = −1,

ϕ(5 + 6νi) = ε, ϕ(νi) = 1.

Let J
Q(

√
78) be given as in Example 7.19. The residues of

√
6+

√
13, 1+2

√
78,

√
13 and −1 modulo M = 4(9 +

√
78) are generators of

(
J

Q(
√

78)/(M)
)× �
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Z4 × Z3
2 . Hecke characters ξδ,ε on J

Q(
√

78) with period M are given by

ξδ,ε(μ) =

⎧
⎨

⎩

−δεi sgn(μ)
ε sgn(μ)

−sgn(μ)
for μ ≡

⎧
⎨

⎩

√
6 +

√
13√

13
1 + 2

√
78, −1

mod M.

The corresponding theta series of weight 1 satisfy the identities

Θ1

(
312, ξδ,ε,

z
24

)
= Θ1

(
−312, ψδ,ε,ν , z

24

)
= Θ1

(
−4, ϕδ,ε,ν , z

24

)

= f1(z) + 2δi f5(z) + ε f13(z)
+ 2δεi f17(z) , (17.51)

where the components fj are normalized integral Fourier series with denom-
inator 24 and numerator classes j modulo 24. All of them are eta products,

f1 =
[
1, 132

26

]
, f5 =

[
22, 26

1

]
,

(17.52)

f13 =
[
12, 13

2

]
, f17 =

[
2, 262

13

]
.

The sign transforms of the eta products (17.52) belong to Γ0(52) and will be
handled in Example 22.21.

The other four cuspidal eta products of weight 1 for Γ0(26) are [2, 132, 26−1],
[12, 2−1, 26] with denominator 12 and their Fricke transforms [1−1, 22, 13],
[1, 13−1, 262] with denominator 3. For each pair the numerators are con-
gruent to each other modulo the denominator. Therefore complementing
components are needed to obtain eigenforms. In the following example we
describe theta series which represent the eigenforms with denominator 12:

Example 17.23 Let J39 be the system of ideal numbers for Q(
√

−39) as

defined in Example 7.8, where Λ = Λ39 =
√

1
2 (

√
13 +

√
−3) is a root of the

polynomial X8 −5X4+16. The residues of 1
2Λ (1+

√
−39), 2+

√
−39, 5 and −1

modulo 4
√

−3Λ can be chosen as generators of the group (J39/(4
√

−3Λ))× �
Z8 × Z3

2 . Eight characters ϕδ,ν and ψδ,ν on J39 with period 4
√

−3Λ are
defined by

ϕδ,ν

(
1

2Λ (1 +
√

−39)
)

= δi, ϕδ,ν(2 +
√

−39) = ν,

ϕδ,ν(5) = −1, ϕδ,ν(−1) = 1,

ψδ,ν

(
1

2Λ (1 +
√

−39)
)

= ν, ψδ,ν(2 +
√

−39) = δν,

ψδ,ν(5) = −1, ψδ,ν(−1) = 1

with δ, ν ∈ {1, −1}. Let J13 be the ideal numbers for Q(
√

−13) as defined in
Example 7.1. The residues of 1√

2
(5 +

√
−13) and 2 +

√
−13 modulo 6

√
2 can



286 17. Weight 1 for Levels N = 2p

be chosen as generators of (J13/(6
√

2))× � Z2
8 , where

(
(5 +

√
−13)/

√
2
)4 ≡

−1 mod 6
√

2. Four characters ρδ,ν on J13 with period 6
√

2 are given by

ρδ,ν

(
(5 +

√
−13)/

√
2
)

= δνi, ρδ,ν(2 +
√

−13) = −νi.

The residues of 2 + νi, 6 + νi and νi modulo 6(1 + νi)(3 − 2νi) = 6(5 + νi)
are generators of (O1/(30 + 6νi))× � Z24 × Z2

4 . Characters χδ,ν on O1 with
periods 6(5 + νi) are given by

χδ,ν(2 + νi) = δi, χδ,ν(6 + νi) = −1, χδ,ν(νi) = 1.

The residues of 1√
2
(7+

√
39), 1+2

√
39, 5 and −1 modulo M = 4

√
2(6+

√
39)

are generators of
(

J
Q(

√
39)/(M)

)× � Z8×Z3
2 . Hecke characters ξδ on J

Q(
√

39)

with period M are given by

ξδ(μ) =

⎧
⎨

⎩

δi sgn(μ)
sgn(μ)

−sgn(μ)
for μ ≡

⎧
⎨

⎩

1√
2
(7 +

√
39)

1 + 2
√

39
5, −1

mod M.

The residues of 1 − 2δ
√

3, 4 + δ
√

3 and −1 modulo Mδ = 2(9 + δ
√

3) are
generators of (Z[

√
3]/(Mδ))× � Z12 × Z4 × Z2. Hecke characters Ξδ on

Z[
√

3] with period Mδ are given by

Ξδ(μ) = − sgn(μ) for μ ≡ 1 − 2δ
√

3, 4 + δ
√

3, −1 mod Mδ.

The corresponding theta series of weight 1 satisfy

Θ1

(
156, ξδ,

z
12

)
= Θ1

(
−39, ϕδ,ν , z

12

)

= Θ1

(
−4, χδ,ν , z

12

)

= g1(z) + 2δi g5(z), (17.53)

Θ1

(
12, Ξδ,

z
12

)
= Θ1

(
−39, ψδ,ν , z

12

)

= Θ1

(
−52, ρδ,ν , z

12

)

= h1(z) + 2δ h11(z), (17.54)

where gj and hj are normalized integral Fourier series with denominator
12 and numerator classes j modulo 12. The components g1, h1 are linear
combinations of eta products,

g1 =
[
2, 132

26

]
+
[
12, 26

2

]
, h1 =

[
2, 132

26

]
−
[
12, 26

2

]
. (17.55)

The sign transforms of the eta products in (17.55) will be discussed in Ex-
ample 22.20, with similar results.
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The Fricke involution W26 transforms the functions (17.55) into the linear
combinations [1−1, 22, 13] ± [1, 13−1, 262] of eta products with denominator
t = 3 and numerators s ≡ 2 mod 3. One would expect that these functions
are components of Hecke eigenforms. Indeed it is easy to construct comple-
menting components with numerator 1 such that the resulting combinations
have multiplicative coefficients. However, they violate the proper relations at
powers of the prime 2, and hence are not eigenforms of the Hecke operator T2

and cannot be represented by a theta series. But we get a more complicated
representation by sums of two theta series:

Example 17.24 Let ϕδ,ν and ψδ,ν be the characters on J39 with period
4

√
−3Λ as defined in Example 17.23. The residues of Λ, 5 and −1 mod-

ulo
√

−3 Λ
2

= 1
2 (3 +

√
−39) can be chosen as generators of (J39/( 1

2 (3 +√
−39)))× � Z4 × Z2

2 . Characters χδ and ρδ on J39 with period 1
2 (3+

√
−39)

are fixed by their values

χδ(Λ) = −δi, χδ(5) = −1, χδ(−1) = 1,

ρδ(Λ) = −δ, ρδ(5) = −1, ρδ(−1) = 1

with δ ∈ {1, −1}. For the corresponding theta series of weight 1 we have the
identities

Θ1

(
−39, ϕδ,ν , z

3

)
+ δi Θ1

(
−39, χδ,

2z
3

)
= g̃1(z) + δi g̃2(z), (17.56)

Θ1

(
−39, ψδ,ν , z

3

)
+ δ Θ1

(
−39, ρδ,

2z
3

)
= h̃1(z) + δ h̃2(z), (17.57)

where the components g̃j, h̃j are normalized integral Fourier series with de-
nominator 3 and numerator classes j modulo 3, and where g̃2, h̃2 are linear
combinations of eta products,

g̃2 =
[
22, 13

1

]
+
[
1, 262

13

]
, h̃2 =

[
22, 13

1

]
−
[
1, 262

13

]
. (17.58)

The identities continue to hold true when χδ, ρδ are replaced by the characters
χ̂δ, ρ̂δ on J39 with period 1

2 (3 −
√

−39), which are given by χ̂δ(μ) = χδ(μ),
ρ̂δ(μ) = ρδ(μ) for μ ∈ J39.

One of the non-cuspidal eta products of weight 1 for Γ0(26) is identified with
a component of two theta series on Q(

√
−13). It turns out that the other

component is a linear combination of non-cuspidal eta products for Γ0(52):

Example 17.25 Define characters ψ−1 and ψ1 on J13 with period
√

2 by

ψ−1(μ) =
(

−1
μμ

)
, ψ1(μ) = ψ2

−1(μ) = χ0(μμ)
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for μ ∈ J13, where χ0 denotes the principal (Dirichlet) character modulo 2
on Z. The corresponding theta series of weight 1 decompose as

Θ1

(
−52, ψδ,

z
4

)
= f1(z) + 2δ f3(z) , (17.59)

where the components fj are normalized integral Fourier series with denom-
inator 4 and numerator classes j modulo 4 which are eta products or linear
combinations thereof,

f1 =
[

42, 265

2, 132, 522

]
+
[

25, 522

12, 42, 26

]
, f3 =

[
22, 262

1, 13

]
. (17.60)

The identities (17.59), (17.60) can be deduced by elementary arguments from
(8.5), (8.8) and from the theory of binary quadratic forms with discrimi-
nant −52.

Concerning the cuspidal eta products of weight 1 for Γ0(34), each two of
them have denominators 6 and 12, and four of them have denominator 24.
We find theta identities only for the latter four:

Example 17.26 Let J102 be the system of ideal numbers for Q(
√

−102) as
defined in Example 7.5. The residues of

√
−17,

√
6+

√
−17 and

√
3+2

√
−34

modulo 4
√

3 can be chosen as generators of (J102/(4
√

3))× � Z3
4 , where

(
√

3 + 2
√

−34)2 ≡ −1 mod 4
√

3. Eight characters ψδ,ε,ν on J102 with period
4

√
3 are defined by

ψδ,ε,ν(
√

−17) = −δεi, ψδ,ε,ν(
√

6 +
√

−17) = νi,

ψδ,ε,ν(
√

3 + 2
√

−34) = −δν

with δ, ε, ν ∈ {1, −1}. The residue classes of 2 + νi, 4 + νi, 11 + 6νi, 35 and
νi modulo 12(1 + νi)(4 − νi) = 12(5 + 3νi) can be chosen as generators of
(O1/(60 + 36νi))× � Z16 × Z8 × Z2

2 × Z4. Characters χ = χδ,ε,ν on O1 with
periods 12(5 + 3νi) are given by

χ(2 + νi) = δi, χ(4 + νi) = −δεi,

χ(11 + 6νi) = ε, χ(35) = −1, χ(νi) = 1.

Let J
Q(

√
102) be given as in Example 7.19. The residues of

√
3+

√
34, 1+

√
102

and −1 modulo 4
√

3 are generators of
(

J
Q(

√
102)/(4

√
3)
)× � Z2

4 × Z2. Define
Hecke characters ξδ,ε on J

Q(
√

102) with period 4
√

3 by

ξδ,ε(μ) =

⎧
⎨

⎩

δεi sgn(μ)
−δi sgn(μ)

−sgn(μ)
for μ ≡

⎧
⎨

⎩

√
3 +

√
34

1 +
√

102
−1

mod 4
√

3.
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The corresponding theta series of weight 1 are identical and decompose as

Θ1

(
408, ξδ,ε,

z
24

)
= Θ1

(
−408, ψδ,ε,ν , z

24

)
= Θ1

(
−4, χδ,ε,ν , z

24

)

= f1(z) + 2δi f5(z)
+ 2ε f13(z) − δεi f17(z) , (17.61)

where the components fj are normalized integral Fourier series with denom-
inator 24 and numerator classes j modulo 24. All of them are eta products,

f1 =
[
1, 172

34

]
, f5 =

[
2, 342

17

]
,

(17.62)

f13 =
[
22, 34

1

]
, f17 =

[
12, 17

2

]
.

The sign transforms of the eta products in (17.62) will be discussed in Ex-
ample 22.11.

Each four of the cuspidal eta products of weight 1 for Γ0(38) have denom-
inators t = 12 and t = 24. For t = 12 there is a theta series all of whose
components are identified with eta products, while for t = 24 there is a theta
series with eight components, and only four of them are identified with eta
products:

Example 17.27 Let J57 be the system of ideal numbers for Q(
√

−57) as
defined in Example 7.6. The residues of 1√

2
(

√
3 +

√
−19) and

√
3 + 2

√
−19

modulo 2
√

6 can be chosen as generators of (J57/(2
√

6))× � Z8 × Z4, where
(

√
3 + 2

√
−19)2 ≡ −1 mod 2

√
6. Eight characters ϕδ,ε,ν on J57 with period

2
√

6 are given by

ϕδ,ε,ν

(
1√
2
(

√
3 +

√
−19)

)
= 1√

2
(−δε + νi), ϕδ,ε,ν(

√
3 + 2

√
−19) = δν

with δ, ε, ν ∈ {1, −1}. The corresponding theta series of weight 1 decompose
as

Θ1

(
−228, ϕδ,ε,ν , z

12

)

= g1(z) + δi
√

2 g5(z) + εi g7(z) − δε
√

2 g11(z) , (17.63)

where the components gj are normalized integral Fourier series with denom-
inator 12 and numerator classes j modulo 12. All of them are eta products,

g1 =
[
2, 192

38

]
, g5 =

[
1, 382

19

]
,

(17.64)

g7 =
[
12, 38

2

]
, g11 =

[
22, 19

1

]
.
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Example 17.28 Let J114 be the system of ideal numbers for Q(
√

−114) as
defined in Example 7.10 where Λ = Λ114 =

√√
6 +

√
−19 is a root of the

polynomial X8+26X4+625. The residues of Λ,
√

2+
√

−57 and 2
√

2+
√

−57
modulo 4

√
3 can be chosen as generators of (J114/(4

√
3))× � Z8 × Z2

4 , where
(2

√
2 +

√
−57)2 ≡ −1 mod 4

√
3. Sixteen characters ρδ,ε,ν,σ on J114 with

period 4
√

3 are defined by

ρδ,ε,ν,σ(Λ) = 1√
2
(σ + νi), ρδ,ε,ν,σ(

√
2 +

√
−57) = δ,

ρδ,ε,ν,σ(2
√

2 +
√

−57) = −ενσ

with δ, ε, ν, σ ∈ {1, −1}. The corresponding theta series of weight 1 decompose
as

Θ1

(
−456, ρδ,ε,ν,σ, z

24

)
= h1(z) + νi

√
2 h5(z) + δνi

√
2 h7(z) + 2δ h11(z)

+ εν
√

2 h13(z) + 2εi h17(z)

+ δεi h19(z) + δεν
√

2 h23(z) , (17.65)

where the components hj are normalized integral Fourier series with denom-
inator 24 and numerator classes j modulo 24. Those for j = 1, 11, 17, 19 are
eta products,

h1 =
[
1, 192

38

]
, h11 =

[
2, 382

19

]
,

(17.66)

h17 =
[
22, 38

1

]
, h19 =

[
12, 19

2

]
.

The sign transforms of the eta products in (17.66) belong to Γ0(76) and will
be identified with components of theta series in Example 21.12.



18 Level N = 6

18.1 Weights 1 and 2 for Γ∗(6)

Table 18.1 displays the numbers of new holomorphic eta products of level 6
and weights 1 and 2, specified according to their groups and denominators.
The large numbers for Γ0(6), k = 2 suggest that we confine our discussion to
eta products of weights k ≤ 2 for Γ∗(6) and to those of weight 1 for Γ0(6).

The eta products of weight 1 for Γ∗(6) combine to six eigenforms which are
nicely represented by Hecke theta series:

Example 18.1 The residues of
√

3+
√

−2 and
√

3+2
√

−2 modulo 4 can be
chosen as generators of the group (J6/(4))× � Z2

4 , where (
√

3 + 2
√

−2)2 ≡
−1 mod 4. Four characters φδ,ν on J6 with period 4 are fixed by their values

φδ,ν(
√

3 +
√

−2) = νi, φδ,ν(
√

3 + 2
√

−2) = −δ

with δ, ν ∈ {1, −1}. The residues of 1 − ν
√

−2, 3 − 2ν
√

−2 and −1 modulo
4(1 + ν

√
−2) generate the group (O2/(4 + 4ν

√
−2))× � Z4 × Z2

2 . Characters
ψδ,ν on O2 with periods 4(1 + ν

√
−2) are given by

ψδ,ν(1 − ν
√

−2) = δ, ψδ,ν(3 − 2ν
√

−2) = −1, ψδ,ν(−1) = 1.

The residues of 2+
√

3, 1+2
√

3 and −1 modulo M = 4(1+
√

3) are generators
of (Z[

√
3]/(M))× � Z4 ×Z2

2 . Define Hecke characters ξδ on Z[
√

3] with period
M by

ξδ(μ) =

⎧
⎨

⎩

sgn(μ)
−δ sgn(μ)

−sgn(μ)
for μ ≡

⎧
⎨

⎩

2 +
√

3
1 + 2

√
3

−1
mod M.

The corresponding theta series of weight 1 satisfy the identities

Θ1

(
12, ξδ,

z
8

)
= Θ1

(
−24, φδ,ν , z

8

)

= Θ1

(
−8, ψδ,ν , z

8

)
= f1(z) + δ f3(z) , (18.1)

G. Köhler, Eta Products and Theta Series Identities,
Springer Monographs in Mathematics,
DOI 10.1007/978-3-642-16152-0 18, c© Springer-Verlag Berlin Heidelberg 2011
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Table 18.1: Numbers of new eta products of level 6 with weights 1 and 2

denominator t 1 2 3 4 6 8 12 24

Γ∗(6), k = 1, cuspidal 0 0 0 0 0 2 0 4
Γ∗(6), k = 1, non-cuspidal 0 0 0 0 0 0 0 0
Γ0(6), k = 1, cuspidal 0 0 0 2 2 4 4 8
Γ0(6), k = 1, non-cuspidal 8 2 3 2 1 0 2 0
Γ∗(6), k = 2, cuspidal 0 1 2 2 2 0 4 0
Γ∗(6), k = 2, non-cuspidal 2 0 0 0 0 0 0 0
Γ0(6), k = 2, cuspidal 2 9 16 19 25 60 47 120
Γ0(6), k = 2, non-cuspidal 36 6 18 16 4 0 8 0

where the components fj are normalized integral Fourier series with denominator
8 and numerator classes j modulo 8, and both of them are eta products,

f1(z) =
η2(2z)η2(3z)

η(z)η(6z)
, f3(z) =

η2(z)η2(6z)
η(2z)η(3z)

. (18.2)

Example 18.2 The residues of
√

3 +
√

−2, 1 + 3
√

−6 and −1 modulo 12
can be chosen as generators of (J6/(12))× � Z12 × Z4 × Z2. Eight characters
χδ,ε,ν on J6 with period 12 are defined by

χδ,ε,ν(
√

3 +
√

−2) = ξ = 1
2 (δ

√
3 + νi),

χδ,ε,ν(1 + 3
√

−6) = εξ−3 = −ενi, χδ,ε,ν(−1) = 1

with δ, ε, ν ∈ {1, −1}. The corresponding theta series of weight 1 decompose
as

Θ1

(
−24, χδ,ε,ν , z

24

)
= g1(z) + δ

√
3 g5(z) + δε

√
3 g7(z) − ε g11(z) , (18.3)

where the components gj are normalized integral Fourier series with denomi-
nator 24 and numerator classes j modulo 24, and all of them are eta products,

g1 =
[
23, 33

12, 62

]
, g5 = [2, 3] , g7 = [1, 6] , g11 =

[
13, 63

22, 32

]
. (18.4)

Now we briefly inspect the weight 2 eta products for the Fricke group.

The cuspidal eta product with denominator 2 is

η(z)η(2z)η(3z)η(6z).
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It is a Hecke eigenform. In [78] it is shown that θ(z)θ(2z)θ(3z)θ(6z) is a
sum of this eta product and several Eisenstein series. This is the reason why
Liouville was able to find a formula for the number of representations of an
integer n by the quadratic form x2

1 +2x2
2 +3x2

3 +6x2
4 in terms of divisor sums

in the case when n is even, but not when n is odd. See also Theorem 1.6
in [3]. Also, this eta product appears in the list in [93] as the eigenform
corresponding to the elliptic curve Y 2 = X3 − X2 − 4X + 4.

The cuspidal eta products with denominators 3, 4, 6 and 12 combine nicely
to the Hecke eigenforms

η3(2z)η3(3z)
η(z)η(6z)

+ δ
η3(z)η3(6z)
η(2z)η(3z)

,

η4(2z)η4(3z)
η2(z)η2(6z)

+ δ
η4(z)η4(6z)
η2(2z)η2(3z)

,

η5(2z)η5(3z)
η3(z)η3(6z)

+ δ
η5(z)η5(6z)
η3(2z)η3(3z)

,

η6(2z)η6(3z)
η4(z)η4(6z)

+ δ
√

13 η2(2z)η2(3z) + ε
√

13 η2(z)η2(6z) + δε
η6(z)η6(6z)
η4(2z)η4(3z)

,

with δ, ε ∈ {1, −1}. None of these eigenforms is a Hecke theta series.

The non-cuspidal eta products are

f0(z) =
η7(2z)η7(3z)
η5(z)η5(6z)

, f1(z) =
η7(z)η7(6z)
η5(2z)η5(3z)

.

There are two linear combinations whose coefficients are multiplicative,

1
4 (f0(z) − f1(z)) = 1

4 +
∞∑

n=1

λ(n)e(nz),

1
6 (f0(z) + f1(z)) = 1

6 +
∞∑

n=1

λ̃(n)e(nz),

and at prime powers pr the coefficients are given by

λ(pr) = λ̃(pr) = σ1(pr) if p > 3,

λ(3r) = 1 , λ̃(3r) = 2σ1(3r) − 1 = 3r+1 − 2 ,

λ(2r) = 2σ1(2r) − 1 = 2r+2 − 3, λ̃(2r) = 1 .
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18.2 Weight 1 for Γ0(6), Cusp Forms with Denominators
t = 4, 6, 8

The cuspidal eta products with denominator 4 both have numerator 1. There
are two linear combinations which are theta series for the Gaussian number
field:

Example 18.3 Let the generators of (O1/(6+6i))× � Z8 × Z4 be chosen as
in Example 10.12, and define characters χδ,ν on O1 with period 6(1 + i) by
their values

χδ,ν(2 + i) = 1√
2
(ν + δi), χδ,ν(i) = 1

with δ, ν ∈ {1, −1}. The corresponding theta series of weight 1 satisfy

Θ1

(
−4, χδ,ν , z

4

)
= 1

3 (1 − δi
√

2)
η2(z)η(6z)

η(2z)
+ 1

3 (2 + δi
√

2)
η2(2z)η(3z)

η(z)
.

(18.5)

By the Fricke involution W6, the eta products in (18.5) are transformed into
eta products with denominator 12. Computing the transformation factors
lets us expect that [2, 32, 6−1] + δi

√
2[1, 3−1, 62] are eigenforms and Hecke

theta series for Q(i). This will be corroborated in Example 18.7. A similar
remark applies to the eigenforms whose constituents are the cuspidal eta
products with denominator 6 (Examples 18.4 and 18.8):

Example 18.4 Let the generators of (O3/(12))× � Z6 × Z2 × Z6 be chosen
as in Example 11.17, and define characters ρδ,ν on O3 with period 12 by

ρδ,ν(2 + ω) = 1
2 (ν + δi

√
3), ρδ,ν(5) = −1, ρδ,ν(ω) = 1

with δ, ν ∈ {1, −1}. The corresponding theta series of weight 1 decompose as

Θ1

(
−3, ρδ,ν , z

6

)
= f1(z) + δi

√
3 f7(z), (18.6)

where the components fj are normalized integral Fourier series with denomi-
nator 6 and numerator classes j modulo 12 which are linear combinations of
eta products,

f1 = 1
4

(
3f + f̂

)
, f7 = 1

4

(
f − f̂

)
, f =

[
2, 33

1, 6

]
, f̂ =

[
13, 6
2, 3

]
.

Another identity for the theta series (18.6) will appear in Example 25.15.

Two of the eta products with denominator 8 are h1 = [12, 2−1, 3], h3 =
[1−1, 22, 6], where s indicates the numerator of hs. The linear combinations
Hδ = h1 − 2δh3 have multiplicative coefficients, but violate the proper Hecke
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recursions at powers of the prime p = 3. This is reminiscent of the Exam-
ples 15.14, 16.15, 17.24, and indeed Hδ is a linear combination of two theta
series just as in Example 17.24. Surprisingly the required characters are well
known from Example 18.1. Comparing the identities in this example with the
identity for Hδ yields two eta identities (18.8), which are trivial consequences
from the Kac identities (2), (4) in Theorem 8.2.

Example 18.5 Let ξδ, φδ,ν and ψδ,ν be the characters on Z[
√

3], J6 and O2

as defined in Example 18.1. Then if we put

Ψδ(z) = Θ1

(
12, ξδ,

z
8

)
= Θ1

(
−24, φδ,ν , z

8

)
= Θ1

(
−8, ψδ,ν , z

8

)
,

we have the identity

Ψδ(z) − 3δ Ψδ(3z) =
η2(z)η(3z)

η(2z)
− 2δ

η2(2z)η(6z)
η(z)

(18.7)

for δ ∈ {1, −1}. Moreover, we have the eta identities
[
22, 32

1, 6

]
− 3

[
32, 182

6, 9

]
=
[
12, 3

2

]
,

(18.8)[
12, 62

2, 3

]
− 3

[
62, 92

3, 18

]
= −2

[
22, 6

1

]
.

The remaining two eta products with denominator 8 are g = [14, 2−2, 3−1, 6]
and g̃ = [1−2, 24, 3, 6−1], and they both have numerator 1. For δ ∈ {1, −1}
the linear combinations

Gδ = 1
3 (2δ − 1) g + 1

3 (4 − 2δ) g̃

have multiplicative coefficients. But while G1 is an eigenform and a theta
series whose coefficients at multiples of the prime 3 vanish, the behavior of
G−1 at multiples of 3 seems to be unpleasant. A closer look shows that G−1

differs from a theta series by a multiple of η(9z)η(18z):

Example 18.6 Let the generators of (O1/(12 + 12i))× � Z8 × Z2
2 × Z4 be

chosen as in Example 10.5, and define four characters χδ,ν on O1 with period
12(1 + i) by their values

χδ,ν(1 + 2i) = δν, χδ,ν(1 + 6i) = ν, χδ,ν(11) = −1, χδ,ν(i) = 1

with δ, ν ∈ {1, −1}. The residues of 3 +
√

−2, 3 + 2
√

−2, 5 and −1 mod-
ulo 12 can be chosen as generators of the group (O2/(12))× � Z4 × Z3

2 . Four
characters ρδ,ν on O2 with period 12 are given by

ρδ,ν(3 +
√

−2) = νi, ρδ,ν(3 + 2
√

−2) = δ, ρδ,ν(5) = 1, ρδ,ν(−1) = 1.
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The residues of 1 +
√

2, 3 +
√

2 and −1 modulo 12 are generators of (Z[
√

2]/
(12))× � Z8 × Z4 × Z2. Hecke characters ξδ on Z[

√
2] with period 12 are

given by

ξδ(μ) =

⎧
⎨

⎩

sgn(μ)
−δ sgn(μ)

−sgn(μ)
for μ ≡

⎧
⎨

⎩

1 +
√

2
3 +

√
2

−1
mod 12.

The corresponding theta series of weight 1 are identical, and when we put

Hδ(z) = Θ1

(
8, ξδ,

z
8

)
= Θ1

(
−4, χδ,ν , z

8

)
= Θ1

(
−8, ρδ,ν , z

8

)
,

we have the identities

H1(z) = 1
3

η4(z)η(6z)
η2(2z)η(3z)

+ 2
3

η4(2z)η(3z)
η2(z)η(6z)

, (18.9)

H−1(z) = − η4(z)η(6z)
η2(2z)η(3z)

+ 2
η4(2z)η(3z)
η2(z)η(6z)

− 8 η(9z)η(18z) . (18.10)

We will return to these characters and identities in Examples 20.9, 20.13 and
25.14. The Fricke transforms of the eta products in Examples 18.5 and 18.6
have denominator 24. They exhibit simpler theta identities, as will be shown
in the following subsection.

18.3 Weight 1 for Γ0(6), Cusp Forms with Denominators
t = 12, 24

The cuspidal eta products with denominator 12 are the Fricke transforms of
the eta products in Examples 18.3 and 18.4 with denominators 4 and 6. We
obtain the following identities:

Example 18.7 The residues of 2 + i, −5 − 6i and i modulo 18(1 + i) can be
chosen as generators of (O1/(18 + 18i))× � Z24 × Z3 × Z4. Four characters
χδ,ν on O1 with period 18(1 + i) are given by

χδ,ν(2 + i) = 1√
2
(ν + δi), χδ,ν(−5 − 6i) = 1, χδ,ν(i) = 1

with δ, ν ∈ {1, −1}. The corresponding theta series of weight 1 decompose as

Θ1

(
−4, χδ,ν , z

12

)
= f1(z) + δi

√
2 f5(z) , (18.11)

where the components fj are normalized integral Fourier series with denom-
inator 12 and numerator classes j modulo 12, and both of them are eta prod-
ucts,

f1(z) =
η(2z)η2(3z)

η(6z)
, f5(z) =

η(z)η2(6z)
η(3z)

. (18.12)
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Example 18.8 The residues of 2 + ω, 5, 1 − 12ω and ω modulo 24 can be
chosen as generators of (O3/(24))× � Z12 × Z2

2 × Z6. Four characters ψδ,ν

on O3 with period 24 are defined by

ψδ,ν(2+ω) = 1
2 (ν+δi

√
3), ψδ,ν(5) = −1, ψδ,ν(1−12ω) = 1, ψδ,ν(ω) = 1

with δ, ν ∈ {1, −1}. The corresponding theta series of weight 1 decompose as

Θ1

(
−3, ψδ,ν , z

12

)
= g1(z) + δi

√
3 g7(z) , (18.13)

where the components gj are normalized integral Fourier series with denomi-
nator 12 and numerator classes j modulo 12, and both of them are eta prod-
ucts,

g1(z) =
η3(2z)η(3z)
η(z)η(6z)

, g7(z) =
η(z)η3(6z)
η(2z)η(3z)

. (18.14)

In the following two examples we deal with the Fricke transforms of the eta
products in Examples 18.5 and 18.6.

Example 18.9 The residues of 1 + 3
√

−2, 3 − 4
√

−2, 17 and −1 modulo
12(1+

√
−2) can be chosen as generators of (O2/(12+12

√
−2))× � Z12 × Z3

2 .
Four characters ρδ,ν on O2 with period 12(1 +

√
−2) are fixed by their values

ρδ,ν(1 + 3
√

−2) = ν, ρδ,ν(3 − 4
√

−2) = −δν,

ρδ,ν(17) = −1, ρδ,ν(−1) = 1

with δ, ν ∈ {1, −1}. Let the generators of (J6/(12))× � Z12 × Z4 × Z2 be
chosen as in Example 18.2, and define characters ϕδ,ν on J6 with period 12
by

ϕδ,ν(
√

3 +
√

−2) = −δνi, ϕδ,ν(1 + 3
√

−6) = νi, ϕδ,ν(−1) = 1.

The residues of 2 +
√

3, 1 + 6
√

3, 7 and −1 modulo M = 12(1 +
√

3) are
generators of (Z[

√
3]/(M))× � Z12 × Z3

2 . Hecke characters ξ∗
δ on Z[

√
3] with

period M are given by

ξ∗
δ (μ) =

⎧
⎨

⎩

sgn(μ)
−δ sgn(μ)

−sgn(μ)
for μ ≡

⎧
⎨

⎩

2 +
√

3
1 + 6

√
3

7, −1
mod M.

The corresponding theta series of weight 1 are identical and decompose as

Θ1

(
12, ξ∗

δ , z
24

)
= Θ1

(
−8, ρδ,ν , z

24

)

= Θ1

(
−24, ϕδ,ν , z

24

)

= f1(z) + 2δ f11(z) , (18.15)
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where the components fj are normalized integral Fourier series with denom-
inator 24 and numerator classes j modulo 24, and both of them are eta prod-
ucts,

f1(z) =
η(z)η2(3z)

η(6z)
, f11(z) =

η(2z)η2(6z)
η(3z)

. (18.16)

Similarly as in preceding cases one might define characters on O2 with pe-
riod 12(1 −

√
−2) by the assignment μ �→ ρδ,ν(μ). But this gives the same

characters (with −ν instead of ν), since 1 −
√

−2 is a divisor of the period of
ρδ,ν . The same remark applies to the following example.

Example 18.10 Let the generators of (O2/(12 + 12
√

−2))× � Z12 × Z3
2 be

chosen as in Example 18.9, and define characters ψδ,ν on O2 with period
12(1 +

√
−2) by

ψδ,ν(1+3
√

−2) = νi, ψδ,ν(3−4
√

−2) = −δ, ψδ,ν(17) = 1, ψδ,ν(−1) = 1

with δ, ν ∈ {1, −1}. The residues of 2 + i, 1 − 6i, 19 and i modulo 36(1 + i)
can be chosen as generators of (O1/(36+36i))× � Z24 × Z6 × Z2 × Z4. Four
characters χ∗

δ,ν on O1 with period 36(1 + i) are given by

χ∗
δ,ν(2 + i) = ν, χ∗

δ,ν(1 − 6i) = δν, χ∗
δ,ν(19) = −1, χ∗

δ,ν(i) = 1.

The residues of 1 +
√

2, 3 +
√

2 and −1 modulo 36 are generators of (Z[
√

2]/
(36))× � Z24 × Z12 × Z2. Hecke characters ξ∗

δ on Z[
√

2] with period 36 are
given by

ξ∗
δ (μ) =

⎧
⎨

⎩

sgn(μ)
−δ sgn(μ)

−sgn(μ)
for μ ≡

⎧
⎨

⎩

1 +
√

2
3 +

√
2

−1
mod 36.

The corresponding theta series of weight 1 are identical and decompose as

Θ1

(
8, ξ∗

δ , z
24

)
= Θ1

(
− 4, χ∗

δ,ν , z
24

)
= Θ1

(
−8, ψδ,ν , z

24

)
= g1(z) + 2δ g17(z) ,

(18.17)
where the components gj are normalized integral Fourier series with denomi-
nator 24 and numerator classes j modulo 24, and both of them are eta prod-
ucts,

g1(z) =
η(2z)η4(3z)
η(z)η2(6z)

, g17(z) =
η(z)η4(6z)
η(2z)η2(3z)

. (18.18)

Another identification for the component g1 will be given in Examples 25.34,
25.35.

There are four eta products with denominator 24 which remain. They com-
bine nicely to four eigenforms which are theta series for Q(

√
−6):
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Example 18.11 Let the generators of (J6/(12))× � Z12 × Z4 × Z2 be chosen
as in Example 18.2, and define eight characters ϕδ,ε,ν on J6 with period 12
by

ϕδ,ε,ν(
√

3+
√

−2) = 1
2ε(−δν

√
3+i), ϕδ,ε,ν(1+3

√
−6) = ν, ϕδ,ε,ν(−1) = 1

with δ, ε, ν ∈ {1, −1}. The corresponding theta series of weight 1 decompose
as

Θ1

(
−24, ϕδ,ε,ν , z

24

)
= h1(z) + εi h5(z) + δi

√
3 h7(z) + δε

√
3 h11(z) , (18.19)

where the components hj are normalized integral Fourier series with denomi-
nator 24 and numerator classes j modulo 24, and all of them are eta products,

h1 =
[
22, 3

6

]
, h5 =

[
12, 6

3

]
,

(18.20)

h7 =
[
2, 32

1

]
, h11 =

[
1, 62

2

]
.

The action of the Fricke involution W6 on Hδ,ε(z) = Θ1

(
−24, ϕδ,ε,ν , z

24

)
is

given by Hδ,ε(W6z) = δ
√

6z H−δ,−ε(z).

18.4 Non-cuspidal Eta Products with Denominators
t ≥ 4

In the following discussion of the non-cuspidal eta products of weight 1 for
Γ0(6) we start with those with large denominators, since they are few in
number and easy to handle, and we work down to those with denominator 1.
There are two such eta products with denominator 12:

Example 18.12 For δ ∈ {1, −1}, let ϕδ denote the character on O1 with
period 3(1+ i) which is fixed by the value ϕδ(2+ i) = δ on the generator 2+ i
of (O1/(3 + 3i))× � Z8, and which is explicitly given by

ϕδ(μ) =
{

1
δ

for μμ ≡
{

1
5 mod 12,

such that ϕ1 is the principal character modulo 3(1+i). Let χ0
1 and χ0

−1 denote
the principal and the non-principal Dirichlet character modulo 6, respectively.
Then we have the identity

Θ1

(
−4, ϕδ,

z
12

)
=

∞∑

n=1

χ0
δ(n)

( ∑

d|n

(−1
d

))
e
(

nz
12

)
= f1(z) + 2δ f5(z) ,

(18.21)
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where the components fj are normalized integral Fourier series with denom-
inator 12 and numerator classes j modulo 12, and both of them are eta prod-
ucts,

f1 =
[
22, 34

12, 62

]
, f5 =

[
2, 3, 6

1

]
. (18.22)

Another formula for the first component f1 will be given in Example 26.5.

There is a single non-cuspidal eta product with denominator t = 6. It is an
Eisenstein series and a theta series:

Example 18.13 Let ψ0 denote the principal character with period 2(1 + ω)
on O3. Then we have the identity

Θ1

(
−3, ψ0,

z
6

)
=

η3(2z)η2(3z)
η2(z)η(6z)

=
∑

n≡1 mod 6

( ∑

d|n

(
d

3

))
e
(

nz
6

)
. (18.23)

In Examples 20.24 and 26.6 we will find other formulae for Θ1

(
−3, ψ0,

z
6

)
,

implying an eta identity in each case.

The non-cuspidal eta products with denominator t = 4 both have numerator
s = 1. We introduce the notation

f1 =
[
1, 2, 6

3

]
, f̃1 =

[
14, 62

22, 32

]
. (18.24)

For δ ∈ {1, −1}, the linear combinations 2
3 (2+ δ)f1 − 1

3 (1+2δ)f̃1 have multi-
plicative coefficients. In fact, for δ = −1 we get the Hecke eigenform 2

3f1+ 1
3 f̃1

which coincides with the theta series Θ1

(
−4, χ−1,

z
4

)
from Example 18.12.

This yields an interesting eta identity which will be stated in the following
example. For δ = 1, however, 2f1 − f̃1 violates the proper recursions at
powers of the prime p = 3, and this function differs from Θ1

(
−4, χ1,

z
4

)
by a

power series in e
(

9z
4

)
:

Example 18.14 For δ ∈ {1, −1}, let χδ be the characters on O1 with period
3(1 + i) as defined in Example 18.12. Then with notations from (18.24) we
have the identities

Θ1

(
−4, χ−1,

z
4

)
=

∑

n≡1, 5 mod 12

(n

3

)(∑

d|n

(
−1
d

))
e
(

nz
4

)

=
η2(6z)η4(9z)
η2(3z)η2(18z)

− 2
η(6z)η(9z)η(18z)

η(3z)

= 1
3

(
2 f1(z) + f̃1(z)

)
, (18.25)

Θ1

(
−4, χ1,

z
4

)
− 8

∑

n≡1 mod 4

(∑

d|n

(
−1
d

))
e
(

9nz
4

)
= 2 f1(z) − f̃1(z). (18.26)
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We observe that the Fricke transforms of the eta products in Examples 18.12,
18.13 and 18.14 have denominators 1, 1 and 3, respectively. In the next
subsection this will help us to find linear combinations of eta products with
multiplicative coefficients.

18.5 Non-cuspidal Eta Products with Denominators
t ≤ 3

Taking Fricke transforms in Example 18.14 yields the linear combinations of
eta products with denominator 3,

[1, 2−1, 3, 6] ± [12, 2−2, 3−2, 64],

which have multiplicative coefficients, but violate the proper recursions at
powers of the prime p = 2. The only other non-cuspidal eta product with
denominator 3 is [13, 2−2, 3−1, 62]. It has multiplicative coefficients, too, and
violates the proper recursions at powers of p = 2. The coefficients can be
represented by divisor sums as follows:

Example 18.15 Let ϕ0 denote the principal character modulo 1 + ω on O3.
Then we have the identity

η3(z)η2(6z)
η2(2z)η(3z)

=
∑

n≡1 mod 3

( ∑

d|n

(
d
3

))
e
(

nz
3

)

− 4
∑

n≡1 mod 3

( ∑

d|n

(
d
3

))
e
(

4nz
3

)

= Θ1

(
−3, ϕ0,

z
3

)
− 4 Θ1

(
−3, ϕ0,

4z
3

)
. (18.27)

Put

g1 =
[
1, 3, 6

2

]
, g2 =

[
12, 64

22, 32

]
,

and let χ0 denote the principal character modulo 3 on O1. Then we have the
identities

g1(z) − g2(z) =
∑

3 � n

(−1)n−1

(∑

d|n

(−1
d

))
e
(

nz
3

)

= Θ1

(
−4, χ0,

z
3

)
− 2 Θ1

(
−4, χ0,

2z
3

)
, (18.28)

g1(z) + g2(z) =
∑

3 � n

(
n
3

)(∑

d|n

(−1
d

))
e
(

nz
3

)

+ 2
∑

3 � n

(
n
3

)(∑

d|n

(−1
d

))
e
(

2nz
3

)
. (18.29)
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The right hand side in (18.27) can also be written as Θ1

(
−3, ψ0,

z
3

)
−

3 Θ1

(
−3, ϕ0,

4z
3

)
, where ψ0 is the principal character modulo 2(1+ω) on O3,

as in Example 18.13. Therefore the coefficients of [13, 2−2, 3−1, 62] and
[2−2, 43, 62, 12−1] at odd indices coincide, and we have the identity

η3(z)η2(6z)
η2(2z)η(3z)

− η3(4z)η2(6z)
η2(2z)η(12z)

= − 3
∑

n≡1 mod 3

(∑

d|n

(
d
3

) )
e
(

4nz
3

)
.

One of the non-cuspidal eta products with denominator 2 is [12, 2−1, 3−2, 63],
the Fricke transform of the eta product in (18.27). It has multiplicative coeffi-
cients which, however, violate the proper recursions at powers of the prime 3.
The other non-cuspidal eta product with denominator 2 is [1−1, 22, 3−1, 62],
with similar properties. The coefficients are represented by divisor sums as
follows:

Example 18.16 Let ψ0 denote the principal character modulo 2(1+ω) on O3,
as in Example 18.13, and let ρ0 be the principal character modulo 2 on O3.
Then we have the identities

η2(z)η3(6z)
η(2z)η2(3z)

= Θ1

(
−3, ψ0,

z
2

)
− 2 Θ1

(
−3, ρ0,

3z
2

)

= Θ1

(
−3, ρ0,

z
2

)
− 3 Θ1

(
−3, ρ0,

3z
2

)
, (18.30)

η2(2z)η2(6z)
η(z)η(3z)

= Θ1

(
−3, ρ0,

z
2

)
. (18.31)

We have the eta identity
[
12, 63

2, 32

]
=
[
22, 62

1, 3

]
−
[
62, 182

3, 9

]
. (18.32)

Another identity for Θ1(−3, ρ0, ·) will appear in Example 26.13. We note
that all the eta products in Examples 18.15, 18.16 are products of two of
the eta products of weight 1

2 in Sect. 8, and the results can be deduced from
Theorems 8.1, 8.2.

There are linear relations among the non-cuspidal eta products with denom-
inator 1, and the eta products which are involved in these relations are ex-
pressible by the theta series with trivial character on O3 which was used in
Example 11.1 and in some other examples in Sect. 11:

Example 18.17 The 8 non-cuspidal eta products for Γ0(6) with weight 1
and denominator 1 span a space of dimension 6. Among these eta products
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the linear relations
[

16, 6
23, 32

]
= 9

[
2, 36

12, 63

]
− 8

[
26, 3
13, 62

]
,

(18.33)[
1, 66

22, 33

]
= −

[
2, 36

12, 63

]
+
[

26, 3
13, 62

]

hold. Let 1 denote the trivial character on O3. Then we have the identities

η(2z)η6(3z)
η2(z)η3(6z)

= 2 Θ1 (−3, 1, z) + 4 Θ1 (−3, 1, 2z) , (18.34)

η6(2z)η(3z)
η3(z)η2(6z)

= 3 Θ1 (−3, 1, z) + 3 Θ1 (−3, 1, 2z) . (18.35)

The identities (18.34), (18.35) imply

3
η(2z)η6(3z)
η2(z)η3(6z)

− 2
η6(2z)η(3z)
η3(z)η2(6z)

= 6 Θ1 (−3, 1, 2z) = Θ(2z)

where Θ(z) is the function which was used in Sect. 11. We note that the eta
products in (18.34), (18.35) give, after normalization, functions 1

2 [1−2, 2, 36,
6−3] and 1

3 [1−3, 26, 3, 6−2] with multiplicative coefficients.

In the following example we describe the Fricke transforms of the eta products
in (18.23) and (18.31):

Example 18.18 Let 1 denote the trivial character on O3, and put

f(z) =
η2(z)η2(3z)
η(2z)η(6z)

, g(z) =
η2(2z)η3(3z)
η(z)η2(6z)

.

Then we have the identities

f(z) = −2 Θ1 (−3, 1, z) + 8 Θ1 (−3, 1, 4z) ,

g(z) = 1
2 (−f(z) + 3f(3z)). (18.36)

Finally we discuss the Fricke transforms of the eta products in Example 18.12.
Here we have another instance for Theorem 5.1 with a character which is
induced from a Dirichlet character via the norm:

Example 18.19 Let χ be the character with period 3 on O1 which is given
by

χ(μ) =
(

μμ

3

)
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for μ ∈ O1 and which is also fixed by the value χ(1+i) = −1 on the generator
1 + i of (O1/(3))× � Z8. Let 1 stand for the trivial character on O1. Put

F (z) =
η4(2z)η2(3z)
η2(z)η2(6z)

, G(z) =
η(z)η(2z)η(3z)

η(6z)
.

Then we have the identities

1
3 (F (z) − G(z)) =

∞∑

n=1

(
n
3

)( ∑

d|n

(−1
d

))
(e(nz) + 2 e(2nz))

= Θ1 (−4, χ, z) + 2 Θ1 (−4, χ, 2z) , (18.37)

F (z) + G(z) = 2 +
∞∑

n=1

(−1)n−1

( ∑

d|n

(−1
d

))
(e(nz) + 9 e(9nz))

= Θ(−4, 1, z) − 2 Θ(−4, 1, 2z) − 9 Θ(−4, 1, 9z)
+ 18 Θ(−4, 1, 18z). (18.38)

We note that 4Θ1(−4, 1, z) = θ2(2z) with Jacobi’s theta function θ(z).



19 Weight 1 for Prime Power Levels p5 and p6

19.1 Weight 1 for Γ∗(32)

The number of divisors of an integer N is 6 if and only if N = p5 or N = p2q
with distinct primes p, q, and it is equal to 7 if and only if N = p6 for some
prime p. In this section we discuss eta products whose levels are p5 or p6.
Other levels N with six positive divisors will be treated in the following
sections.

The only new holomorphic eta products of weight 1 for N = 35 and N = 36

are η(z)η(243z) and η(z)η(729z), respectively. Their orders at ∞ are rather
big, so there is no chance to find a theta series which involves such an eta
product in its components. According to Corollary 3.4 the chances are equally
bad for weight 1 and levels p5 or p6 with primes p > 3. This means that the
title of this section is somewhat misleading, since we will only treat the levels
25 = 32 and 26 = 64. Moreover, we will only discuss eta products of weight 1.

To begin with, we list the numbers of new holomorphic eta products of weight
1 and levels 32 and 64. (See also Table 19.1.)

The cuspidal eta products of weight 1 for Γ∗(32) nicely combine to Hecke
eigenforms which are theta series on Q(

√
−2):

Example 19.1 The residues of 1+
√

−2, 5 and −1 modulo 16 can be chosen
as generators of the group (O2/(16))× � Z16 × Z4 × Z2. For δ, ε, ν ∈ {1, −1},
let ξ denote the primitive 16th root of unity

ξ = ξδ,ε,ν = 1
2

(
ε
√

2 + δ
√

2 + νi
√

2 − δ
√

2
)
,

and define eight characters ψδ,ε,ν on O2 with period 16 by their values

ψδ,ε,ν(1 +
√

−2) = ξδ,ε,ν , ψδ,ε,ν(5) = 1, ψδ,ε,ν(−1) = 1.
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Springer Monographs in Mathematics,
DOI 10.1007/978-3-642-16152-0 19, c© Springer-Verlag Berlin Heidelberg 2011
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Table 19.1: Numbers of new eta products of levels 32 and 64 with weight 1

denominator t 1 2 3 4 6 8 12 24
Γ∗(32), cuspidal 0 0 0 0 0 4 0 0
Γ∗(32), non-cuspidal 2 0 0 0 0 0 0 0
Γ0(32), cuspidal 0 0 4 0 0 4 0 20
Γ0(32), non-cuspidal 6 0 0 0 0 4 0 0
Γ∗(64), cuspidal 0 0 0 0 0 2 0 4
Γ∗(64), non-cuspidal 2 0 0 0 0 0 0 0
Γ0(64), cuspidal 0 0 4 0 0 2 0 16
Γ0(64), non-cuspidal 6 0 0 0 0 12 0 0

The corresponding theta series of weight 1 decompose as

Θ1

(
−8, ψδ,ε,ν , z

8

)
= f1(z) + δ

√
2 f̃1(z)

+ ε

√
2 + δ

√
2
(
f3(z) − δ

√
2 f̃3(z)

)
, (19.1)

where the components fj and f̃j are normalized integral Fourier series with
denominator 8 and numerator classes j modulo 8, and all of them are eta
products,

f1 =
[
22, 162

1, 32

]
, f̃1 =

[
1, 4, 8, 32

2, 16

]
,

(19.2)

f3 =
[

23, 163

1, 4, 8, 32

]
, f̃3 = [1, 32] .

For the non-cuspidal eta products of weight 1 for Γ∗(32) there is just one
linear combination whose coefficients are multiplicative, namely,

1
2

η5(2z)η5(16z)
η2(z)η2(4z)η2(8z)η2(32z)

− η2(z)η2(32z)
η(2z)η(16z)

= 1
2 +

∞∑

n=1

γ(n)
( ∑

d|n

(−2
n

))
e(nz) (19.3)

where the sign γ(n) is given by γ(n) = 1 for n ≡ 0, 1, 3 mod 4 and γ(n) = −1
for n ≡ 2 mod 4.

19.2 Cuspidal Eta Products of Weight 1 for Γ0(32)

The sign transforms of the eta products in Example 19.1 belong to Γ0(32)
and have denominator 8. Therefore one expects a similar result as before:
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Example 19.2 Let ξ = ξδ,ε,ν be given as in Example 19.1, and define eight
characters ψ̃δ,ε,ν on O2 with period 16 by their values

ψ̃δ,ε,ν(1 +
√

−2) = ξδ,ε,ν , ψ̃δ,ε,ν(5) = −1, ψ̃δ,ε,ν(−1) = 1.

The corresponding theta series of weight 1 decompose as

Θ1

(
−8, ψ̃δ,ε,ν , z

8

)
= g1(z) + δ

√
2 g̃1(z)

+ νi
√

2 − δ
√

2
(
g3(z) − δ

√
2 g̃3(z)

)
, (19.4)

where the components gj and g̃j are normalized integral Fourier series with
denominator 8 and numerator classes j modulo 8, and all of them are eta
products,

g1 =
[
1, 4, 162

2, 32

]
, g̃1 =

[
22, 8, 32

1, 16

]
,

(19.5)

g3 =
[
1, 163

8, 32

]
, g̃3 =

[
23, 32
1, 4

]
.

Let aj(n), ãj(n), bj(n), b̃j(n) denote the coefficients of fj , f̃j , gj , g̃j in Ex-
amples 19.1, 19.2. Since (fj , gj),

(
f̃j , g̃j

)
are pairs of sign transforms, we

get

b1(n) =
{

a1(n)
−a1(n) , b̃1(n) =

{
−ã1(n)

ã1(n) for n ≡
{

1
9 mod 16,

b3(n) =
{

a3(n)
−a3(n) , b̃3(n) =

{
−ã3(n)

ã3(n) for n ≡
{

3
11 mod 16.

The eta products with denominator t = 3 form two pairs of sign transforms
[

25, 163

12, 42, 8, 32

]
,

[
12, 163

2, 8, 32

]
and

[
25, 32
12, 42

]
,

[
12, 32

2

]
. (19.6)

There is no linear combination of these functions whose coefficients are multi-
plicative, although their representation as products of two simple theta series
from Theorem 8.1 and the arithmetic in O3 imply some partially multiplica-
tive properties. The “defectiveness” is explained when we pass to the Fricke
transforms which have denominator 24 and numerators 1 and 49. In the fol-
lowing example we will see that these Fricke transforms make up some of the
components of theta series which appeared earlier in Sects. 13 and 15.

Example 19.3 The components g1 and h1 of the theta series in Exam-
ple 13.12 are

g1 =
[

25

1, 42

]
=
[

23, 165

1, 4, 82, 322

]
− 2

[
23, 322

1, 4, 16

]
,

(19.7)

h1 =
[
1, 22

4

]
=
[

1, 165

82, 322

]
− 2

[
1, 322

16

]
.
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The component θ1 of the theta series in Example 15.5 is

θ1 =
1
2

([
24, 4
12, 8

]
+
[
12, 43

22, 8

])
=
[

43, 325

2, 8, 162, 642

]
+ 2

[
43, 642

2, 8, 32

]
. (19.8)

Let the generators of (O1/(24))× � Z8 × Z2
4 × Z2, of (O3/(16 + 16ω))× �

Z8 × Z4 × Z2 × Z6, and those of (Z[
√

3]/(8
√

3))× � Z2
4 × Z2

2 be chosen as
in Examples 13.4, 13.12 and 15.5, respectively, and fix characters χ̃δ,ν on O1

modulo 24, ψ̃δ,ν on O3 modulo 16(1 + ω), and ξ̃δ on Z[
√

3] modulo 8
√

3 by

χ̃δ,ν(2 + i) = νi, χ̃δ,ν(1 + 6i) = −δ, χ̃δ,ν(5) = 1, χ̃δ,ν(i) = 1,

ψ̃δ,ν(1 + 2ω) = ν, ψ̃δ,ν(1 − 4ω) = δ, ψ̃δ,ν(7) = −1, ψ̃δ,ν(ω) = 1,

ξ̃δ(μ) =

⎧
⎨

⎩

sgn(μ)
δ sgn(μ)

−sgn(μ)
for μ ≡

⎧
⎨

⎩

2 +
√

3, 7
4 +

√
3

−1
mod 8

√
3,

with δ, ν ∈ {1, −1}. The corresponding theta series of weight 1 satisfy

Θ1

(
12, ξ̃δ,

z
24

)
= Θ1

(
− 3, ψ̃δ,ν , z

24

)
= Θ1

(
−4, χ̃δ,ν , z

24

)

=
η(z)η5(16z)

η2(8z)η2(32z)
+ 2

η(z)η2(32z)
η(16z)

+ 2δ f13(z), (19.9)

where f13 is a normalized integral Fourier series with denominator 24 and
numerator 13.

The eta identities (19.7) follow trivially from (8.5), (8.7), (8.8) in Theo-
rem 8.1, and (19.8) can also be deduced from Theorem 8.1 and the arithmetic
of O1. We note that the eta products on the right hand side of (19.8) are
obtained by rescaling those in the first identity in (19.7), and that equal eta
products appear in (19.9) and in the second identity in (19.7).

We return to the eta products (19.6) with denominator 3. The theta series in
Example 13.12 are g1 +2δi[1, 2−1, 42] and h1 +2δi[1−1, 22, 4] with g1, h1 as in
(19.7). When we apply the Fricke involution W32 we are led to the functions

[
25, 163

12, 42, 8, 32

]
−
[

12, 163

2, 8, 32

]
+ 4δi

[
82, 32

16

]
,

[
25, 32
12, 42

]
−
[
12, 32

2

]
+ 2δi

[
8, 162

32

]
.

They are turned into eigenforms when we rescale in the first case and take
constant multiples in both cases, and then in fact we get theta series which
are known from Examples 13.11, 13.12:
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Example 19.4 Consider the theta series (13.22), (13.26) in Examples 13.11,
13.12,

Θ1

(
8, ξδ,

z
6

)
= Θ1

(
−3, ψδ,ν , z

6

)
= Θ1

(
−24, ϕδ,ν , z

6

)
= f1(z) + 2δi f7(z),

Θ1

(
8, ξ̃δ,

z
24

)
= Θ1

(
−3, ψ̃δ,ν , z

24

)
= Θ1

(
−24, ρδ,ν , z

24

)
= h1(z) + 2δi h7(z),

and put

Fδ(z) = f1(8z) + 2δif7(8z), Hδ(z) = h1(8z) + 2δi h7(8z).

Then we have the identities

Fδ =
1 − δi

8

([
25, 163

12, 42, 8, 32

]
−
[

12, 163

2, 8, 32

]
− 4δi

[
82, 32

16

])
, (19.10)

Hδ = − 1
2δi

([
25, 32
12, 42

]
−
[
12, 32

2

]
− 2δi

[
8, 162

32

])
. (19.11)

From h7 = [1−1, 22, 4] and (19.11) we deduce the eta identity

[8−1, 162, 32] = 1
2

(
[1−2, 25, 4−2, 32] − [12, 2−1, 32]

)

which follows trivially from (8.5), (8.7), (8.8), just as (19.7) before.

There are still 16 eta products with denominator 24 waiting to be discussed.
They form eight pairs of sign transforms, and in another way they also form
eight pairs of Fricke transforms. They are the components in two octets of
theta series, where each octet contains four pairs of Fricke transforms and
where sign transform leads from one of the octets to the other one. The
results in the following example are simpler than those in Examples 19.3,
19.4 in so far as we get theta series all of whose components are eta products.

Example 19.5 The residues of 1 +
√

−6,
√

3 + 2
√

−2, 7 and −1 modulo
16

√
3 can be chosen as generators of (J6/(16

√
3))× � Z16 × Z8 × Z2

2 . For
δ, ε, ν, σ ∈ {1, −1}, introduce primitive 16th and 8th roots of unity

ξδ,ε,ν,σ = 1
2

(
σ
√

2 + δ
√

2 − δενi
√

2 − δ
√

2
)
,

ξ̃δ,ε,ν,σ = 1
2

(
σ
√

2 − δ
√

2 + δενi
√

2 + δ
√

2
)
,

ζε,ν,σ = 1√
2
(ν + εσi), ζ̃ε,ν,σ = 1√

2
(−εσ + νi).

Define characters ϕ = ϕδ,ε,ν,σ and ϕ̃ = ϕ̃δ,ε,ν,σ on J6 with period 16
√

3 by
their values

ϕ(1+
√

−6) = ξδ,ε,ν,σ, ϕ(
√

3+2
√

−2) = ζε,ν,σ, ϕ(7) = −1, ϕ(−1) = 1,



310 19. Weight 1 for Prime Power Levels p5 and p6

ϕ̃(1+
√

−6) = ξ̃δ,ε,ν,σ, ϕ̃(
√

3+2
√

−2) = ζ̃ε,ν,σ, ϕ̃(7) = −1, ϕ̃(−1) = 1.

The corresponding theta series of weight 1 decompose as

Θ1

(
−24, ϕδ,ε,ν,σ, z

24

)

= f1(z) + δ
√

2 f25(z) + εi
√

2 − δ
√

2
(
f5(z) + δ

√
2 f29(z)

)

− δενi
√

2 − δ
√

2
(
f7(z) + δ

√
2 f31(z)

)

+ ν
√

2
(
f11(z) + δ

√
2 f35(z)

)
, (19.12)

Θ1

(
−24, ϕ̃δ,ε,ν,σ, z

24

)

= f̃1(z) + δ
√

2 f̃25(z) + ε
√

2 + δ
√

2
(
f̃5(z) + δ

√
2 f̃29(z)

)

+ δενi
√

2 + δ
√

2
(
f̃7(z) + δ

√
2 f̃31(z)

)

+ νi
√

2
(
f̃11(z) + δ

√
2 f̃35(z)

)
, (19.13)

where fj and f̃j are eta products with denominator 24 and numerators j and
where

(
fj , f̃j

)
are pairs of sign transforms,

f1 =
[
1, 162

32

]
, f25 =

[
23, 8, 32
1, 4, 16

]
,

(19.14)

f5 =
[
23, 8, 162

1, 42, 32

]
, f29 =

[
1, 82, 32

4, 16

]
,

f7 =
[
22, 4, 163

1, 82, 32

]
, f31 =

[
1, 42, 32

2, 8

]
,

(19.15)

f11 =
[
1, 4, 163

2, 8, 32

]
, f35 =

[
22, 32

1

]
,

f̃1 =
[

23, 162

1, 4, 32

]
, f̃25 =

[
1, 8, 32

16

]
,

(19.16)

f̃5 =
[
1, 8, 162

4, 32

]
, f̃29 =

[
23, 82, 32
1, 42, 16

]
,

f̃7 =
[
1, 42, 163

2, 82, 32

]
, f̃31 =

[
22, 4, 32

1, 8

]
,

(19.17)

f̃11 =
[

22, 163

1, 8, 32

]
, f̃35 =

[
1, 4, 32

2

]
.

On Fδ,ε,ν(z) = Θ1

(
−24, ϕδ,ε,ν,σ, z

24

)
and F̃δ,ε,ν(z) = Θ1

(
−24, ϕ̃δ,ε,ν,σ, z

24

)

the Fricke involution acts according to

Fδ,ε,ν(W32z) = 4δν
√

2iz Fδ,−ε,ν(z), F̃δ,ε,ν(W32z) = 4ν
√

2z F̃δ,ε,−ν(z).
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19.3 Non-cuspidal Eta Products of Weight 1 for Γ0(32)

The non-cuspidal eta products with denominator 8 constitute two pairs of
sign transforms. There are two linear combinations which are cusp forms and
Hecke theta series for the discriminants 8, −4 and −8. Another two linear
combinations form components in theta series which are non-cuspidal:

Example 19.6 The residues of 2 + i, 5 and i modulo 8(1 + i) can be chosen
as generators of (O1/(8+8i))× � Z3

4 . Define two pairs of characters χν and
χ̃ν on O1 with period 8(1 + i) by their values

χν(2 + i) = νi, χν(5) = 1, χν(i) = 1,

χ̃ν(2 + i) = ν, χ̃ν(5) = −1, χ̃ν(i) = 1

with ν ∈ {1, −1}. Let the generators of (O2/(8))× � Z8 × Z2
2 be chosen as

in Example 15.1, and define characters ϕν and ϕ̃ν on O2 with period 8 by

ϕν(1 +
√

−2) = ν, ϕν(3) = 1, ϕν(−1) = 1,

ϕ̃ν(1 +
√

−2) = νi, ϕ̃ν(3) = −1, ϕ̃ν(−1) = 1.

The residues of 1+
√

2, 3 and −1 modulo 8 are generators of (Z[
√

2]/(8))× �
Z8 × Z2

2 . Define Hecke characters ξ and ξ̃ on Z[
√

2] with period 8 by

ξ(μ) =

⎧
⎨

⎩

sgn(μ)
sgn(μ)

−sgn(μ)
,

ξ̃(μ) =

⎧
⎨

⎩

sgn(μ)
−sgn(μ)
−sgn(μ)

for μ ≡

⎧
⎨

⎩

1 +
√

2
3

−1
mod 8.

The theta series of weight 1 for ξ, χν , ϕν and those for ξ̃, χ̃ν , ϕ̃ν are identical,
they are cusp forms, and they are linear combinations of non-cuspidal eta
products,

Θ1

(
8, ξ, z

8

)
= Θ1

(
−4, χν , z

8

)

= Θ1

(
−8, ϕν , z

8

)
= f1(z) − 2 f17(z), (19.18)

Θ1

(
8, ξ̃, z

8

)
= Θ1

(
−4, χ̃ν , z

8

)

= Θ1

(
−8, ϕ̃ν , z

8

)
= f̃1(z) − 2 f̃17(z), (19.19)

where

f1 =
[

22, 165

1, 82, 322

]
, f17 =

[
22, 322

1, 16

]
,

(19.20)

f̃1 =
[

1, 4, 165

2, 82, 322

]
, f̃17 =

[
1, 4, 322

2, 16

]
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and the subscripts indicate the numerators of the eta products. Let the gener-
ators of (O1/(8))× � Z4 × Z2 × Z4 be chosen as in Example 13.3, and define
characters ψδ and ψ̃δ on O1 with period 8 by their values

ψδ(2 + i) = δ, ψδ(3) = 1, ψδ(i) = 1,

ψ̃δ(2 + i) = δi, ψ̃δ(3) = −1, ψ̃δ(i) = 1.

The corresponding theta series of weight 1 satisfy

Θ1

(
−4, ψδ,

z
8

)
= f1(z) + 2 f17(z) + 2δ g5(z), (19.21)

Θ1

(
−4, ψ̃δ,

z
8

)
= f̃1(z) + 2 f̃17(z) + 2δi g̃5(z), (19.22)

where g5, g̃5 are normalized integral Fourier series with denominator 8 and
numerator 5, where

(
f1, f̃1

)
,
(
f17, f̃17

)
,
(
g5, g̃5

)
are pairs of sign transforms,

and fj, f̃j are defined in (19.20).

The characters ψδ and ψ̃δ in Example 19.6 are induced from Dirichlet char-
acters through the norm; we have ψδ(μ) = ρδ(μμ) and ψ̃δ(μ) = ρ̃δ(μμ) with

ρδ(n) =
{

1
δ

for n ≡
{

1
5 mod 8,

ρ̃δ(n) =

⎧
⎪⎪⎨

⎪⎪⎩

1
−1
δi

−δi

for n ≡

⎧
⎪⎪⎨

⎪⎪⎩

1
9
5
13

mod 16.

Therefore we get

Θ1

(
−4, ψδ,

z
8

)
=

∑

n≡1 mod 4

(
ρδ(n)

∑

d|n

(−1
d

))
e
(

nz
8

)
,

Θ1

(
−4, ψ̃δ,

z
8

)
=

∑

n≡1 mod 4

(
ρ̃δ(n)

∑

d|n

(−1
d

))
e
(

nz
8

)
.

The Fricke transforms of the functions f1 ±2f17 and f̃1 ±2f̃17 in Example 19.6
are (up to factors) the linear combinations g1 ± h1 and g̃1 ± h̃1 of non-cuspidal
eta products with denominator 1,

g1 =
[

25, 162

12, 42, 32

]
, h1 =

[
12, 162

2, 32

]
,

(19.23)

g̃1 =
[

25, 8, 32
12, 42, 16

]
, h̃1 =

[
12, 8, 32

2, 16

]
,
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whose numerators are 0 for g1, h1 and 1 for g̃1, h̃1. Because of the components
g5, g̃5 in (19.21), (19.22) additional functions are needed to turn g1 + h1 and
g̃1 + h̃1 into eigenforms, which, however, cannot be identified here. On the
other hand, from (19.18), (19.19) one expects that the functions 1

4 (g1 −h1)(z)
and 1

4 (g̃1 − h̃1)( z
2 ) are eigenforms and theta series. Indeed, up to rescaling

they are identical with f1 − 2f17 and f̃1 − 2f̃17:

Example 19.7 Let the characters ξ, ξ̃, χν , χ̃ν , ϕν , ϕ̃ν be defined as in
Example 19.6. Then the corresponding theta series of weight 1 satisfy

Θ1 (8, ξ, z) = Θ1 (−4, χν , z)
= Θ1 (−8, ϕν , z) = 1

4

(
g1(z) − h1(z)

)
, (19.24)

Θ1

(
8, ξ̃, 2z

)
= Θ1 (−4, χ̃ν , 2z)

= Θ1 (−8, ϕ̃ν , 2z) = 1
4

(
g̃1(z) − h̃1(z)

)
, (19.25)

where g1, h1, g̃1, h̃1 are defined in (19.23).

From Examples 19.6, 19.7 we obtain the eta identities
[

25, 162

12, 42, 32

]
−
[
12, 162

2, 32

]
= 4

[
162, 1285

8, 642, 2562

]
− 8

[
162, 2565

8, 128

]
,

[
25, 8, 32
12, 42, 16

]
−
[
12, 8, 32

2, 16

]
= 4

[
16, 64, 2565

32, 1282, 5122

]
− 8

[
16, 64, 5122

32, 256

]
,

which also follow from the identities in Theorem 8.1.

The table at the beginning of Sect. 19.1 tells that there are two more non-
cuspidal eta products with denominator 1 to be discussed. They form a pair
of sign transforms which we denote by

f =
[

25, 165

12, 42, 82, 322

]
, f̃ =

[
12, 165

2, 82, 322

]
, (19.26)

and which combine to eigenforms as follows:

Example 19.8 Let the characters ψ̃δ be defined as in Example 13.13, such
that ψ̃1 is the principal character modulo

√
−2 and ψ̃−1 is the non-principal

character modulo 2 on O2. Then for f , f̃ from (19.26) we have the identities

1
4

(
f(z) + f̃(z)

)
= 1

2 +
∞∑

n=1

(∑

d|n

(
−2
d

))
e(4nz), (19.27)

Θ1

(
−8, ψ̃δ, z

)
= F1(z) + 2δ F3(z), (19.28)



314 19. Weight 1 for Prime Power Levels p5 and p6

where the components Fj are normalized integral Fourier series with denom-
inator 1 and numerator classes j modulo 8, and where F1 is given by

F1 = 1
4

(
f − f̃

)
=

1
4

([
25, 165

12, 42, 82, 322

]
−
[

12, 165

2, 82, 322

])
. (19.29)

When we compare this result with (13.32) we find that the component F1 =
[8−3, 167, 32−2] is an eta product, and we get the eta identity

[
25, 165

12, 42, 82, 322

]
−
[

12, 165

2, 82, 322

]
= 4

[
167

83, 322

]
,

which is a trivial consequence from the identities in Theorem 8.1.

19.4 Weight 1 for Level 64

There are two cuspidal eta products of weight 1 and denominator t = 8 for
the Fricke group Γ∗(64). Their sign transforms belong to Γ0(64) and form
a pair of Fricke transforms. There are four linear combinations of these eta
products which are theta series on the Gaussian integers:

Example 19.9 The residues of 2+ i, 4+ i and i modulo 32 can be chosen as
generators of (O1/(32))× � Z16 × Z8 × Z4. Denote the primitive 16th roots
of unity by

ξδ,ε,ν = 1
2

(
ε
√

2 − δ
√

2 + νi
√

2 + δ
√

2
)

with δ, ε, ν ∈ {1, −1}. Define two systems of characters χδ,ε,ν and χ̃δ,ε,ν on
O1 with period 32 by their values

χδ,ε,ν(2+i) = ξδ,ε,ν , χδ,ε,ν(4+i) = − ξ2
δ,ε,ν = 1√

2
(δ−ενi), χδ,ε,ν(i) = 1,

χ̃δ,ε,ν(2 + i) = i ξδ,ε,ν , χ̃δ,ε,ν(4 + i) = − ξ2
δ,ε,ν , χ̃δ,ε,ν(i) = 1.

The corresponding theta series of weight 1 decompose as

Θ1

(
−4, χδ,ε,ν , z

8

)
= f1(z) + δ

√
2 h1(z)

+ ε
√

2 − δ
√

2 f5(z)

+ δε
√

2 + δ
√

2 h5(z), (19.30)

Θ1

(
−4, χ̃δ,ε,ν , z

8

)
= f̃1(z) + δ

√
2 h̃1(z)

+ εi
√

2 − δ
√

2 f̃5(z)

− δεi
√

2 + δ
√

2 h̃5(z), (19.31)
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where the components fj, hj , f̃j , h̃j are normalized integral Fourier series
with denominator 8 and numerator classes j modulo 8. Those for j = 1 are
eta products,

f1 =
[
22, 322

1, 64

]
, h1 =

[
1, 4, 16, 64

2, 32

]
,

(19.32)

f̃1 =
[
1, 4, 322

2, 64

]
, h̃1 =

[
22, 16, 64

1, 32

]
,

and
(
fj , f̃j

)
,
(
hj , h̃j

)
are pairs of sign transforms.

There are four eta products with weight 1 and denominator 24 for the Fricke
group Γ∗(64). Their numerators satisfy s ≡ 13 or 17 (mod 24). We did
not find eigenforms involving any of these eta products in their components.
There are another 16 eta products with weight 1 and denominator 24 for
Γ0(64), and eight of them have numerators s ≡ 1( mod 24). Four of them
make up components in theta series on Q(

√
−6):

Example 19.10 The residues of 1 +
√

−6,
√

3 +
√

−2, 17 and −1 modulo
16

√
−6 can be chosen as generators of (J6/(16

√
−6))× � Z2

16 × Z2
2 . For

δ, ε, ν ∈ {1, −1}, introduce the primitive 8th roots of unity

ξδ,ν = 1√
2
(δ + νi),

and define two systems of characters ϕδ,ε,ν and ϕ̃δ,ε,ν on J6 with period
16

√
−6 by

ϕδ,ε,ν(1 +
√

−6) = −εiξδ,ν , ϕδ,ε,ν(
√

3 +
√

−2) = ξδ,ν ,

ϕδ,ε,ν(17) = −1, ϕδ,ε,ν(−1) = 1,

ϕ̃δ,ε,ν(1 +
√

−6) = −εiξδ,ν , ϕ̃δ,ε,ν(
√

3 +
√

−2) = iξδ,ν ,

ϕ̃δ,ε,ν(17) = −1, ϕ̃δ,ε,ν(−1) = 1.

The corresponding theta series of weight 1 decompose as

Θ1

(
−24, ϕδ,ε,ν , z

24

)
= g1(z) + δ

√
2 g5(z)

− δεi
√

2 g7(z) + 2εig11(z), (19.33)
Θ1

(
−24, ϕ̃δ,ε,ν , z

24

)
= g̃1(z) + δi

√
2 g̃5(z)

− δεi
√

2 g̃7(z) + 2εg̃11(z), (19.34)

where the components gj, g̃j are normalized integral Fourier series with de-
nominator 24 and numerator classes j modulo 24, where (gj , g̃j) are pairs of
sign transforms, and where g1, g̃1 are linear combinations of eta products,

g1 =
[

23, 325

1, 4, 162, 642

]
− 2

[
23, 642

1, 4, 32

]
,

(19.35)

g̃1 =
[

1, 325

162, 642

]
− 2

[
1, 642

32

]
.
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The Fricke transforms of the components g1 and g̃1 in Example 19.10 are, up
to factors, the linear combinations

[
25, 323

12, 42, 16, 64

]
−
[

12, 323

2, 16, 64

]
and

[
25, 64
12, 42

]
−
[
12, 64

2

]

of eta products with denominator 3. The orders at ∞ are 2
3 , 8

3 for the eta
products and 5

3 , 11
3 for the linear combinations. We cannot find eigenforms

involving any of these eta products in their components.

Returning to the eta products with denominator 24, we see that another
four of them with numerators s ≡ 1 mod 24 and four with numerators s ≡
19 mod 24 make up components in theta series on Q(

√
−3):

Example 19.11 The residues of 1+2ω, 1 − 4ω, 31 and ω modulo 64(1+ω)
can be chosen as generators of (O3/(64+64ω))× � Z32 × Z16 × Z2 × Z6. For
δ, ε, ν, σ ∈ {1, −1}, denote the primitive 16th roots of unity by

ξδ,ε,σ = 1
2

(
σ
√

2 + δ
√

2 + εi
√

2 − δ
√

2
)
,

and define characters ψ = ψδ,ε,ν,σ and ψ̃ = ψ̃δ,ε,ν,σ on O3 with period 64(1 +
ω) by their values

ψ(1 + 2ω) = ξδ,ε,σ, ψ(1 − 4ω) = − δνξδ,ε,σ, ψ(31) = −1, ψ(ω) = 1,

ψ̃(1 + 2ω) = ξδ,ε,σ, ψ̃(1 − 4ω) = − δνi ξδ,ε,ν , ψ̃(31) = −1, ψ̃(ω) = 1.

The corresponding theta series of weight 1 decompose as

Θ1

(
−3, ψδ,ε,ν,σ, z

24

)
= g1(z) + δ

√
2 h1(z)

+ εi
√

2 − δ
√

2
(
g7(z) − δ

√
2 h7(z)

)

+ δενi
√

2 − δ
√

2
(
g13(z) − δ

√
2 h13(z)

)

+ ν
√

2
(
g19(z) + δ

√
2 h19(z)

)
, (19.36)

Θ1

(
−3, ψ̃δ,ε,ν,σ, z

24

)
= g̃1(z) + δ

√
2 h̃1(z)

+ εi
√

2 − δ
√

2
(
g̃7(z) + δ

√
2 h̃7(z)

)

+ δεν
√

2 − δ
√

2
(
g̃13(z) + δ

√
2 h̃13(z)

)

+ νi
√

2
(
g̃19(z) + δ

√
2 h̃19(z)

)
, (19.37)

where the components gj, hj, g̃j, h̃j are normalized integral Fourier series
with denominator 24 and numerator classes j modulo 24, where (gj , g̃j),(
hj , h̃j

)
are pairs of sign transforms, and where the components for j = 1, 19
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are eta products,

g1 =
[

23, 322

1, 4, 64

]
, h1 =

[
1, 16, 64

32

]
,

(19.38)

g̃1 =
[
1, 322

64

]
, h̃1 =

[
23, 16, 64
1, 4, 32

]
,

g19 =
[

22, 323

1, 16, 64

]
, h19 =

[
1, 4, 64

2

]
,

(19.39)

g̃19 =
[

1, 4, 323

2, 16, 64

]
, h̃19 =

[
22, 64

1

]
.

Now we consider the non-cuspidal eta products of weight 1 and level 64.
There are eight of them with denominator t = 1. But there are only two
linear combinations of these functions which have multiplicative coefficients.
These are the Eisenstein series which are known from Examples 10.6 and
13.5: We have the identities

1
4

([
25

12, 42

]
−
[
12

2

])([
325

162, 642

]
+ 2

[
642

32

])
=
[
84

42

]
,

η4(8z)
η2(4z)

=
∑

n>0 odd

(∑

d|n

(−1
d

))
e(nz) ,

1
4

([
25

12, 42

]
−
[
12

2

])([
325

162, 642

]
− 2

[
642

32

])
=
[
42, 162

82

]
,

η2(4z)η2(16z)
η2(8z)

=
∞∑

n=1

(
2
n

)( ∑

d|n

(−1
d

))
e(nz).

The eta identities are trivial consequences from the identities in Theorem 8.1.

The same remark applies to the following two eta identities which we obtain
for linear combinations of four of the non-cuspidal eta products with denom-
inator t = 8: Let ψδ,ν and ψ̃δ,ν be the characters with period 8 on O2 which
were defined in Examples 15.1 and 15.4. Then for the 1-components of the
corresponding theta series of weight 1 we have the identities

η2(2z)
η(z)

(
η5(32z)

η2(16z)η2(64z)
− 2

η2(64z)
η(32z)

)
=

η2(2z)η2(4z)
η(z)η(8z)

,

η(z)η(4z)
η(2z)

(
η5(32z)

η2(16z)η2(64z)
− 2

η2(64z)
η(32z)

)
=

η(z)η3(4z)
η(2z)η(8z)

,

which are sign transforms of each other. Here we have examples of cusp forms
which are linear combinations of non-cuspidal eta products.

The remaining 8 non-cuspidal eta products with denominator t = 8 show up
in the components of a nice collection of Eisenstein series:
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Example 19.12 Let the primitive 16th roots of unity be written as

ξδ,ε,ν = 1
2

(
ν
√

2 + δ
√

2 − ενi
√

2 − δ
√

2
)

with δ, ε, ν ∈ {1, −1}. Define Dirichlet characters ψδ,ε,ν and ψ̃δ,ε,ν modulo 64
and χδ,ε and χ̃δ,ε modulo 32 by their values

ψδ,ε,ν(3) = ξδ,ε,ν , ψδ,ε,ν(−1) = −1, ψ̃δ,ε,ν(3) = iξδ,ε,ν , ψ̃δ,ε,ν(−1) = −1,

χδ,ε(3) = ξ2
δ,ε,ν , χδ,ε(−1) = −1, χ̃δ,ε(3) = ξ

2

δ,ε,ν , χ̃δ,ε(−1) = −1

on the generators 3 and −1 of the groups (Z/(64))× and (Z/(32))×, respec-
tively. Then there are decompositions

∞∑

n=1

ψδ,ε,ν(n)
( ∑

d|n
χδ,ε(d)

)
e
(

nz
8

)

= g1(z) + δ
√

2 h1(z)

+ ν
√

2 + δ
√

2
(
g3(z)

+ δ
√

2 h3(z)
)

+ δενi
√

2 + δ
√

2
(
g5(z) + δ

√
2 h5(z)

)

+ εi
√

2
(
g7(z) + δ

√
2 h7(z)

)
, (19.40)

∞∑

n=1

ψ̃δ,ε,ν(n)
( ∑

d|n
χ̃δ,ε(d)

)
e
(

nz
8

)

= g̃1(z) − δ
√

2 h̃1(z)

+ νi
√

2 + δ
√

2
(
g̃3(z) + δ

√
2 h̃3(z)

)

− δεν
√

2 + δ
√

2
(
g̃5(z) + δ

√
2 h̃5(z)

)

+ εi
√

2
(
g̃7(z) − δ

√
2 h̃7(z)

)
, (19.41)

where the components gj, hj, g̃j, h̃j are normalized integral Fourier series
with denominator 8 and numerator classes j modulo 8, where (gj , g̃j),

(
hj , h̃j

)

are pairs of sign transforms, and where the components for j = 3, 5 are eta
products,

g3 =
[
1, 16, 322

8, 64

]
, h3 =

[
23, 162, 64
1, 4, 8, 32

]
,

(19.42)

g̃3 =
[
23, 16, 322

1, 4, 8, 64

]
, h̃3 =

[
1, 162, 64

8, 32

]
,

g5 =
[

1, 42, 323

2, 8, 16, 64

]
, h5 =

[
22, 4, 64

1, 8

]
,

(19.43)

g̃5 =
[

22, 4, 323

1, 8, 16, 64

]
, h̃5 =

[
1, 42, 64

2, 8

]
.
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20.1 The Case of Odd Primes p and q

In six sections we will discuss eta products of weight 1 with levels N = p2q
where p, q are distinct primes. For these levels the number of positive divisors
is σ0(N) = 6. In the present section we treat the case that p is odd, and
here most of the effort is needed for level N = 18. Five more sections will be
dedicated to the case p = 2, that is, levels N = 4q with odd primes q. We
need so much space for the results in the case p = 2 due to the fact known
from Theorem 3.9, part (3), that the number of holomorphic eta products
of a given weight increases when a prime in the factorization of the level is
replaced by a smaller prime.

The results are rather meagre when both primes are odd. For p ≥ 5, q ≥ 3
and for p = 3, q ≥ 11 the only holomorphic eta products of weight 1 are

[p2, q] and [1, p2q].

Their orders at ∞ exceed 1 (with the exceptions of [9, 11] and [9, 13]). We did
not find eigenforms containing these eta products in their components. For
p = 3 and q ≤ 7 there are two more holomorphic eta products of weight 1,
namely, the non-cuspidal eta products

f0 =
[
1, 9, 213

3, 7, 63

]
and f2 =

[
33, 7, 63
1, 9, 21

]
(20.1)

of level 63, and the cuspidal eta products
[
1, 9, 153

3, 5, 45

]
and

[
33, 5, 45
1, 9, 15

]
(20.2)

of level 45. The non-cuspidal functions of level 63 combine to an Eisenstein
series as follows:

G. Köhler, Eta Products and Theta Series Identities,
Springer Monographs in Mathematics,
DOI 10.1007/978-3-642-16152-0 20, c© Springer-Verlag Berlin Heidelberg 2011

319

http://dx.doi.org/10.1007/978-3-642-16152-0_20


320 20. Levels p2q for Distinct Primes p �= 2 and q

Example 20.1 The eta products f0, f2 in (20.1) satisfy

− f0(z) + f2(z) = −1 +
∞∑

n=1

∑

d|n

(
d

7

)
e(nz) − 3

∞∑

n=1

∑

d|n

(
d

7

)
e(9nz)

= Θ1(−7, 1, z) − 3 Θ1(−7, 1, 9z) (20.3)

where 1 stands for the trivial character on O7.

The cuspidal eta products [7, 9] and [1, 63] for Γ∗(63) combine to components
of four theta series on Q(

√
−7):

Example 20.2 The residues of λ = 1
2 (1+

√
−7) and −2 modulo 9 can be cho-

sen as generators of the group (O7/(9))× � Z24 × Z3, where λ12 ≡ −1 mod 9.
Eight characters χδ,ν and ψδ,ν on O7 with period 9 are fixed by their values

χδ,ν(λ) = 1
2 (δ + νi

√
3), χδ,ν(−2) = 1,

ψδ,ν(λ) = 1
2 (δ

√
3 + νi), ψδ,ν(−2) = 1

with δ, ν ∈ {1, −1}. The corresponding theta series of weight 1 decompose as

Θ1

(
−7, χδ,ν , z

3

)
= f1(z) + δ f2(z), (20.4)

Θ1

(
−7, ψδ,ν , z

3

)
= g1(z) + δ

√
3 g2(z) , (20.5)

where the components fj, gj are normalized integral Fourier series with de-
nominator 3 and numerator classes j modulo 3, and where f2 and g2 are
linear combinations of eta products,

f2(z) = η(7z)η(9z) − η(z)η(63z),
(20.6)

g2(z) = η(7z)η(9z) + η(z)η(63z).

The eta products [5, 9] and [1, 45] for Γ∗(45) have denominator 12. The follow-
ing example shows that they are components in four theta series on Q(

√
−5).

The cuspidal eta products (20.2) for Γ0(45) also have denominator 12. We
cannot find eigenforms involving these eta products in their components.

Example 20.3 The residues of 1√
2
(3 +

√
−5),

√
−5 and −1 modulo 18 can

be chosen as generators of (J5/(18))× � Z12 × Z6 × Z2. Eight characters
χδ,ε,ν on J5 with period 18 are given by

χδ,ε,ν

(
1√
2
(3 +

√
−5)

)
= 1

2 (ε
√

3 + νi), χδ,ε,ν(
√

−5) = δ,

χδ,ε,ν(−1) = 1
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with δ, ε, ν ∈ {1, −1}. The corresponding theta series of weight 1 decompose
as

Θ1

(
−20, χδ,ε,ν , z

12

)
= f1(z) + δ f5(z) + ε

√
3 f7(z) − δε

√
3 f11(z) , (20.7)

where the components fj are normalized integral Fourier series with denom-
inator 12 and numerator classes j modulo 12, and where f7, f11 are eta
products,

f7(z) = η(5z)η(9z), f11(z) = η(z)η(45z). (20.8)

20.2 Levels 2p2 for Primes p ≥ 7

For any prime p ≥ 7 there are exactly 14 new holomorphic eta products of
weight 1 and level N = 2p2. They are obtained in an obvious way as products
of two eta products of weight 1

2 . Four of them belong to the Fricke group
and are cuspidal with denominator t = 8. Of the remaining ten, two are
non-cuspidal with denominators 1 and 4, each two have denominators 6 and
12, and four have denominator 24. For p ≥ 11 there seems to be no chance
to find eigenforms involving any of these eta products in their components.
In the next example we present theta series on Q(

√
−2) containing the eta

products for Γ∗(98), and this is all we can do for level 98.

Of course the 14 eta products mentioned above are also present for the primes
p = 5 and p = 3. But then there are some more new holomorphic eta products
which provide a more interesting landscape.

Example 20.4 The residues of 1 +
√

−2, 7 − 5
√

−2 and −1 modulo 28 can
be chosen as generators of the group (O2/(28))× � Z48 × Z4 × Z2. Eight
characters ψδ,ε,ν on O2 with period 28 are fixed by their values

ψδ,ε,ν(1+
√

−2) = 1√
2
(ε+νi), ψδ,ε,ν(7−5

√
−2) = −δνi, ψδ,ε,ν(−1) = 1

with δ, ε, ν ∈ {1, −1}. The corresponding theta series of weight 1 decompose
as

Θ1

(
−8, ψδ,ε,ν , z

8

)
= f1(z) + δ

√
2 g1(z) + ε

√
2 f3(z) − 2δε g3(z) , (20.9)

where the components fj, gj are normalized integral Fourier series with de-
nominator 8 and numerator classes j modulo 8, and where f1, g1 are linear
combinations of eta products,

f1 =
[
22, 492

1, 98

]
−
[
12, 982

2, 49

]
, g1 = [2, 49] − [1, 98]. (20.10)
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20.3 Eta Products of Level 50

For the rest of this section we are occupied with the levels 2 · 52 = 50 and
2 · 32 = 18. The numbers of new holomorphic eta products of weight 1 for
these levels are listed in Table 20.1. There are no non-cuspidal eta products
for the Fricke groups.

The eta products for the Fricke group Γ∗(50) are involved in the components
of theta series on the fields with discriminants 8, −4 and −8; also involved
are some unidentified components and the old eta product [25, 50]:

Example 20.5 The residues of 3+2i, 4−i, 1+10i, 11 and i modulo 20(1+i)
can be chosen as generators of (O1/(20 + 20i))× � Z2

4 × Z2
2 × Z4. Four

characters χδ,ν on O1 with period 20(1 + i) are defined by

χδ,ν(3 + 2i) = ν, χδ,ν(4 − i) = δ,

χδ,ν(1 + 10i) = −δν, χδ,ν(11) = −1, χδ,ν(i) = 1

with δ, ν ∈ {1, −1}. The residues of 1 +
√

−2, 1 + 5
√

−2 and −1 modulo 20
can be chosen as generators of (O2/(20))× � Z24 × Z4 × Z2. Four characters
ϕδ,ν and another eight characters ψδ,ε,ν on O2 with period 20 are given by

ϕδ,ν(1 +
√

−2) = −δνi, ϕδ,ν(1 + 5
√

−2) = νi, ϕδ,ν(−1) = 1,

ψδ,ε,ν(1+
√

−2) = 1
2 (ε

√
3+νi), ψδ,ε,ν(1+5

√
−2) = −δνi, ψδ,ε,ν(−1) = 1

with δ, ε, ν ∈ {1, −1}. The residues of 3 +
√

2, 1 + 5
√

2 and −1 modulo 20
are generators of (Z[

√
2]/(20))× � Z24 × Z4 × Z2. Define Hecke characters

ξδ on Z[
√

2] modulo 20 by

ξδ(μ) =

⎧
⎨

⎩

−δ sgn(μ)
sgn(μ)

−sgn(μ)
for μ ≡

⎧
⎨

⎩

3 +
√

2
1 + 5

√
2

−1
mod 20.

Table 20.1: Numbers of new eta products of levels 50 and 18 with weight 1

denominator t 1 2 3 4 6 8 12 24
Γ∗(50), cuspidal 0 0 0 0 0 4 0 0
Γ0(50), cuspidal 0 0 0 0 3 0 3 6
Γ0(50), non-cuspidal 3 0 0 3 0 0 0 0
Γ∗(18), cuspidal 0 0 0 0 0 2 0 4
Γ0(18), cuspidal 0 2 2 2 2 12 12 20
Γ0(18), non-cuspidal 24 2 12 6 4 0 4 0
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The theta series of weight 1 for ξδ, χδ,ν , ϕδ,ν are identical and decompose as

Θ1

(
8, ξδ,

z
8

)
= Θ1

(
−4, χδ,ν , z

8

)

= Θ1

(
−8, ϕδ,ν , z

8

)

=
η2(2z)η2(25z)

η(z)η(50z)
− 2η(2z)η(25z)

+ δ

(
2 η(z)η(50z) − η2(z)η2(50z)

η(2z)η(25z)

)

− 3(1 − δ) η(25z)η(50z). (20.11)

The theta series of weight 1 for ψδ,ε,ν decompose as

Θ1

(
−8, ψδ,ε,ν , z

8

)
= f1(z) + δ g1(z) + ε

√
3
(
f3(z) − δ g3(z)

)
, (20.12)

where the components fj, gj are normalized integral Fourier series with de-
nominator 8 and numerator classes j modulo 8, and where f1, g1 are linear
combinations of eta products,

f1(z) =
η2(2z)η2(25z)

η(z)η(50z)
+ η(2z)η(25z),

(20.13)

g1(z) = η(z)η(50z) +
η2(z)η2(50z)
η(2z)η(25z)

.

We note that the old eta product [25, 50] in (20.11) disappears for the pa-
rameter value δ = 1.

The eta products with denominators 6 and 12 are [1−1, 22, 25], [1, 25−1, 502],
[2, 252, 50−1], [12, 2−1, 50], which are products of two eta products of weight
1
2 , and a pair of Fricke transforms

[
1, 104, 25
2, 52, 50

]
and

[
2, 54, 50
1, 102, 25

]
,

which cannot be factored. In order to find eigenforms involving any of these
eta products it is necessary to take into account the old eta products [2, 50],
[1, 25], [12], [252] and [502]:

Example 20.6 The residues of 2 + ω, 1 − 10ω, 19 and ω modulo 20(1 + ω)
can be chosen as generators of (O3/(20 + 20ω))× � Z24 × Z2

2 × Z6. Four
characters ψδ,ν on O3 with period 20(1 + ω) are fixed by their values

ψδ,ν(2 + ω) = δν, ψδ,ν(1 − 10ω) = ν, ψδ,ν(19) = −1, ψδ,ν(ω) = 1

with δ, ν ∈ {1, −1}. The residues of 4+ i, 3+2i, 10+3i and i modulo 30 can
be chosen as generators of (O1/(30))× � Z8 × Z4 × Z2 × Z4. Four characters
χδ,ν on O1 with period 30 are given by

χδ,ν(4 + i) = δνi, χδ,ν(3 + 2i) = δ, χδ,ν(10 + 3i) = −1, χδ,ν(i) = 1.
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The residues of 4 +
√

3, 4 + 5
√

3 and −1 modulo 10
√

3 are generators of
(Z[

√
3]/(10

√
3))× � Z24 × Z2

2 . Define Hecke characters ξδ on Z[
√

3] with
period 10

√
3 by

ξδ(μ) =
{

δ sgn(μ)
−sgn(μ) for μ ≡

{
4 +

√
3

4 + 5
√

3, −1
mod 10

√
3.

The theta series of weight 1 for ξδ, ψδ,ν , χδ,ν are identical and satisfy

Θ1

(
12, ξδ,

z
6

)
= Θ1

(
−3, ψδ,ν , z

6

)
= Θ1

(
−4, χδ,ν , z

6

)

=
η(z)η4(10z)η(25z)
η(2z)η2(5z)η(50z)

+
η2(2z)η(25z)

η(z)
+

η(z)η2(50z)
η(25z)

+ (2δ − 1) η(2z)η(50z) + 2(δ − 1) η2(50z), (20.14)

Θ1

(
12, ξδ,

z
12

)
= Θ1

(
−3, ψδ,ν , z

12

)
= Θ1

(
−4, χδ,ν , z

12

)

= (3 − 2δ)
(

η(2z)η2(25z)
η(50z)

+
η(2z)η4(5z)η(50z)
η(z)η2(10z)η(25z)

+
η2(z)η(50z)

η(2z)

)

− 2(1 − δ) η2(z) − 12(1 − δ) η2(25z)
+ (8δ − 7) η(z)η(25z). (20.15)

We note that in these identities the old eta products [502], [12], [252] disappear
for the parameter value δ = 1. The identities are essentially transformed into
each other by the Fricke involution W50.

There are three non-cuspidal eta products with denominator 1, but just a
single linear combination of them with multiplicative coefficients. It reads

− 1
2

η2(z)η2(25z)
η(2z)η(50z)

− η2(2z)η(5z)η(50z)
η(z)η(10z)

+
η(2z)η(5z)η2(50z)

η(10z)η(25z)

=
∞∑

n=0

λ(n)e(nz)

with λ(0) = − 1
2 , λ(2r) = −1 and

λ(5r) = 2(r − 2) for r > 0, λ(n) =
∑

d|n

(
−1
d

)
for gcd(n, 10) = 1.

The non-cuspidal eta products with denominator 4 are the Fricke transforms
of those with denominator 1. We get a linear combination with similar mul-
tiplicative coefficients,

η(z)η(10z)η2(25z)
η(5z)η(50z)

− η2(z)η(10z)η(25z)
η(2z)η(5z)

+ 2
η2(2z)η2(50z)

η(z)η(25z)

=
∑

n>0 odd

λ(n)e
(

nz
4

)
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with exactly the same λ(n) for odd n as before. There is another linear
combination of these eta products which is a component in a theta series
with characters depending on the norm only:

Example 20.7 Let J5 be given as in Example 7.1. The residues of α =
1√
2
(1 +

√
−5) and 3 modulo 2

√
−10 are generators of (J5/(2

√
−10))× �

Z8 × Z4, where α4 ≡ −1 mod 2
√

−10. Two characters ϕδ on J5 with period
2

√
−10 are fixed by their values ϕδ(α) = δi, ϕδ(3) = −1 with δ ∈ {1, −1},

and they are explicitly given by

ϕδ(μ) =
{

1
−1 for μμ ≡

{
1
9 mod 20 ,

ϕδ(μ) =
{

δi
−δi

for μμ ≡
{

3
7 mod 20 .

The corresponding theta series of weight 1 decompose as

Θ1

(
−20, ϕδ,

z
4

)
= g1(z) + 2δi g3(z) , (20.16)

where the components gj are normalized integral Fourier series with denom-
inator 4 and numerator classes j modulo 4, and where g1 is a linear combi-
nation of eta products,

g1(z) =
η(z)η(10z)η2(25z)

η(5z)η(50z)
+

η2(z)η(10z)η(25z)
η(2z)η(5z)

. (20.17)

In Θ1

(
−20, ϕδ,

z
4

)
=
∑∞

n=1 λ̃(n)e
(

nz
4

)
the coefficients at primes p are given

by

λ̃(p) =
{

2
−2 for p ≡

{
1
9 mod 20 ,

λ̃(p) =
{

2δi
−2δi

for p ≡
{

3
7 mod 20 ,

and λ̃(p) = 0 otherwise.

The eta products of level 50 with weight 1 and denominator 24 form three
pairs of Fricke transforms with numerators congruent to 1 and 5 modulo 24,
respectively. They appear in the components of six theta series on the fields
with discriminants 24, 60, −24, −4 and −40, together with four modular
forms which will not be identified otherwise:

Example 20.8 The residues of
√

3 + 2
√

−2, 1 +
√

−6, 5 +
√

−6, 19 and −1
modulo 20

√
3 can be chosen as generators of (J6/(20

√
3))× � Z8 × Z2

4 × Z2
2 .

Twelve characters ϕδ,ν and ρδ,ε,ν on J6 with period 20
√

3 are fixed by their
values
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ϕδ,ν(
√

3 + 2
√

−2) = δνi, ϕδ,ν(1 +
√

−6) = ν,

ϕδ,ν(5 +
√

−6) = −ν, ϕδ,ν(19) = −1,

ρδ,ε,ν(
√

3 + 2
√

−2) = δε, ρδ,ε,ν(1 +
√

−6) = δi,

ρδ,ε,ν(5 +
√

−6) = ν, ρδ,ε,ν(19) = −1

and ϕδ,ν(−1) = ρδ,ε,ν(−1) = 1 with δ, ε, ν ∈ {1, −1}. The residues of 4 + i,
3 + 2i, 7, 11, 1 + 30i and i modulo 60(1 + i) can be chosen as generators of
(O1/(60 + 60i))× � Z8 × Z2

4 × Z2
2 × Z4. Four characters χδ,ν on O1 with

period 60(1 + i) are given by

χδ,ν(4 + i) = −δνi, χδ,ν(3 + 2i) = ν, χδ,ν(7) = 1,

χδ,ν(11) = −1, χδ,ν(1 + 30i) = ν

and χδ,ν(i) = 1. Let J10 be the system of ideal numbers for Q(
√

−10) as
given in Example 7.2. The residues of

√
5+

√
−2, 1+

√
−10, 1+3

√
−10 and

−1 modulo 12
√

5 are generators of (J10/(12
√

5))× � Z2
8 × Z4 × Z2. Eight

characters ψδ,ε,ν on J10 with period 12
√

5 are defined by

ψδ,ε,ν(
√

5 +
√

−2) = δi, ψδ,ε,ν(1 +
√

−10) = δε,

ψδ,ε,ν(1 + 3
√

−10) = νi, ψδ,ε,ν(−1) = 1.

The residues of 5+2
√

6, 5+
√

6, 1+2
√

6, 19 and −1 modulo 20(3+
√

6) are
generators of (Z[

√
6]/(20(3 +

√
6)))× � Z3

4 × Z2
2 . Define Hecke characters ξδ

on Z[
√

6] with period 20(3 +
√

6) by

ξδ(μ) =

⎧
⎨

⎩

sgn(μ)
δi sgn(μ)

−sgn(μ)
for μ ≡

⎧
⎨

⎩

5 + 2
√

6, 19
5 +

√
6

1 + 2
√

6, −1
mod 20(3 +

√
6).

The residues of 2
√

3 +
√

5, 4 +
√

15, 1 + 2
√

15, 11 and −1 modulo M =
4

√
15(

√
3 +

√
5) are generators of

(
J

Q(
√

15)/(M)
)× � Z8 × Z4 × Z3

2 . Define
Hecke characters Ξδ,ε on J

Q(
√

15) with period M by

Ξδ,ε(μ) =

⎧
⎪⎪⎨

⎪⎪⎩

δi sgn(μ)
sgn(μ)

δε sgn(μ)
−sgn(μ)

for μ ≡

⎧
⎪⎪⎨

⎪⎪⎩

2
√

3 +
√

5
4 +

√
15, 11

1 + 2
√

15
−1

mod M.

The theta series of weight 1 for ξδ, ϕδ,ν and χδ,ν are identical and decompose
as

Θ1

(
24, ξδ,

z
24

)
= Θ1

(
−24, ϕδ,ν , z

24

)
= Θ1

(
−4, χδ,ν , z

24

)

= f1(z) + 2 h5(5z) + δi
(
f5(z) − h1(5z)

)
. (20.18)
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The theta series of weight 1 for Ξδ,ε, ρδ,ε,ν and ψδ,ε,ν are identical and de-
compose as

Θ1

(
60, Ξδ,ε,

z
24

)
=

(
−24, ρδ,ε,ν , z

24

)
= Θ1

(
−40, ψδ,ε,ν , z

24

)

= g1(z) + 2εi g5(z) + 2δi g7(z)
+ 2δε g11(z). (20.19)

The components fj, gj, hj are normalized integral Fourier series with denom-
inator 24 and numerator classes j modulo 24, and f1, f5, g1, g5 are linear
combinations of eta products,

f1 =
[
1, 252

50

]
−
[
12, 25

2

]
+ 2

[
22, 5, 502

1, 10, 25

]
,

f5 =
[
12, 10, 252

2, 5, 50

]
+ 2

[
22, 50

1

]
− 2

[
2, 502

25

]
,

g1 =
[
1, 252

50

]
+
[
12, 25

2

]
,

g5 =
[
22, 50

1

]
+
[
2, 502

25

]
.

20.4 Eta Products for the Fricke Group Γ∗(18)

Here and in the following subsections we will discuss the eta products of
weight 1 for level N = 18. Six of them belong to the Fricke group Γ∗(18).
Those with denominator 8 are related to the eta products of level 6 in Ex-
ample 18.6:

Example 20.9 Let ξδ, χδ,ν , ρδ,ν be the characters on Z[
√

2], O1, O2 with
periods 12, 12(1 + i), 12, respectively, as defined in Example 18.6. Then we
have the identities

Θ1

(
8, ξ1,

z
8

)
= Θ1

(
−4, χ1,ν , z

8

)
= Θ1

(
−8, ρ1,ν , z

8

)

=
η2(2z)η2(9z)
η(z)η(18z)

− η2(z)η2(18z)
η(2z)η(9z)

, (20.20)

Θ1

(
8, ξ−1,

z
8

)
= Θ1

(
−4, χ−1,ν , z

8

)

= Θ1

(
−8, ρ−1,ν , z

8

)
= 3

η2(2z)η2(9z)
η(z)η(18z)

− 2η(z)η(2z) + 3
η2(z)η2(18z)
η(2z)η(9z)

− 8η(9z)η(18z). (20.21)



328 20. Levels p2q for Distinct Primes p �= 2 and q

From (18.9) and (20.20) we obtain the eta identity

[
14, 6
22, 3

]
+ 2

[
24, 3
12, 6

]
= 3

[
22, 92

1, 18

]
− 3

[
12, 182

2, 9

]

which is an easy consequence from the Kac identities in Theorem 8.2. Sim-
ilarly for the parameter value δ = −1 the Kac identities can be used to
transform (18.10) into (20.21). Another shape for (20.21) is

Θ1

(
8, ξ−1,

z
8

)
= Θ1

(
−4, χ−1,ν , z

8

)

= Θ1

(
−8, ρ−1,ν , z

8

)
= η(z)η(2z) + η(9z)η(18z), (20.22)

where on the right hand side only old eta products of level 18 show up. This
amounts to the eta identity

[1, 2] + 3 [9, 18] =
[
22, 92

1, 18

]
+
[
12, 182

2, 9

]
, (20.23)

which we could not deduce from other identities.

The eta products with denominator 24 are the components of theta series on
O2 whose characters have period 36:

Example 20.10 The residues of 1+3
√

−2, 3 − 4
√

−2, 17 and −1 modulo 36
can be chosen as generators of (O2/(36))× � Z12 × Z6 × Z2

2 . Eight characters
ψδ,ε,ν on O2 with period 36 are fixed by their values

ψδ,ε,ν(1 + 3
√

−2) = εξ, ψδ,ε,ν(3 − 4
√

−2) = −εξ2,

ψδ,ε,ν(17) = 1, ψδ,ε,ν(−1) = 1

with a primitive 12th root of unity ξ = 1
2 (δ

√
3+νi) and δ, ε, ν ∈ {1, −1}. The

corresponding theta series of weight 1 decompose as

Θ1

(
−8, ψδ,ε,ν , z

24

)
= f1(z) + δ

√
3 f11(z) + ε f17(z) + δε

√
3 f19(z) , (20.24)

where the components fj are normalized integral Fourier series with denom-
inator 24 and numerator classes j modulo 24. All of them are eta products,

f1 =
[
2, 3, 6, 9

1, 18

]
, f11 = [2, 9],

(20.25)
f17 =

[
1, 3, 6, 18

2, 9

]
, f19 = [1, 18].
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20.5 Cuspidal Eta Products of Level 18 with Denomi-
nators t ≤ 8

The eta products of level 18 with denominator 3 allow two linear combinations

Fδ =
[

1, 64, 9
2, 32, 18

]
+ δ

[
2, 32, 18

1, 9

]

whose coefficients λ(n) are multiplicative. However, at powers of the prime
2 we have λ(22r) = −1, λ(22r−1) = δ which violates the Hecke recursion and
prevents a representation by theta series. The Fricke transforms of the eta
products in Fδ will appear in Example 20.16. Taking the sign transforms
of the eta products yields proper eigenforms which are theta series on the
Gaussian ring of integers. But in this way we are led to eta products for the
Fricke group of level 36:

Example 20.11 The residues of 1+i and 1+3i modulo 9 generate the group
(O1/(9))× � Z24 × Z3, where (1 + i)6 ≡ i mod 9. Four characters χδ,ν on O1

with period 9 are given by

χδ,ν(1 + i) = δ, χδ,ν(1 + 3i) = 1
2 (−1 + ν

√
−3)

with δ, ν ∈ {1, −1}. The corresponding theta series of weight 1 satisfy

Θ1

(
−4, χδ,ν , z

3

)
= Gδ(z) = g1(z) + δ g2(z) (20.26)

with

g1 =
[
22, 32, 122, 182

1, 4, 62, 9, 36

]
, g2 =

[
1, 4, 66, 9, 36

22, 32, 122, 182

]
.

For the sign transform of Gδ(z) = Θ1

(
−4, χδ,ν , z

3

)
we obtain

−Gδ

(
z + 3

2

)
= F−δ(z), F−δ =

[
1, 64, 9
2, 32, 18

]
− δ

[
2, 32, 18

1, 9

]
.

The cuspidal eta products of level 18 with denominator 4 both have numer-
ator 3. They satisfy the identity

2
[
22, 3, 18

1, 6

]
+
[
12, 18

2

]
= 3 [92]

which follows easily from one of the Kac identities in Theorem 8.2. Also, the
Kac identities imply that the components of the theta series in Example 18.8
can be written in terms of eta products of level 18:
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Example 20.12 Let ψδ,ν be the characters on O3 with period 24 as defined
in Example 18.8, and let g1, g7 be the components of the corresponding theta
series of weight 1 as given there. Then we have

g1 = 3
2

[
2, 92

18

]
− 1

2 [12] and g̃7 = 1
3

([
22, 3, 18

1, 6

]
−
[
12, 18

2

])

where g̃7(z) = g7(3z).

For the eta products with denominator 6 we obtain
[
1, 6, 92

3, 18

]
+
[
1, 182

9

]
= [ 22]

from part (4) in Theorem 8.2. Hence Example 9.1 gives theta series repre-
sentations for this sum of eta products.

There are 12 cuspidal eta products with denominator 8. Six of them have
numerators s ≡ 1 mod 8, but they span a space of dimension four only. Linear
relations will be stated in the following example, where we will also present a
theta identity which can be deduced using those in Examples 18.6, 20.9, the
Kac identities and (20.23).

Example 20.13 Among the cuspidal eta products of weight 1 for Γ0(18) the
linear relations

[
1, 67, 9

22, 33, 182

]
=

[
12, 6, 92

2, 3, 18

]
+
[
22, 3, 182

1, 6, 9

]
,

[
2, 37, 18
12, 63, 92

]
=

[
12, 6, 92

2, 3, 18

]
+ 4

[
22, 3, 182

1, 6, 9

]

hold. The theta series of weight 1 with characters on Z[
√

2], O1 and O2, as
defined in Examples 18.6 and 20.9, satisfy

Θ1

(
8, ξδ,

z
8

)
= Θ1

(
−4, χδ,ν , z

8

)
= Θ1

(
−8, ρδ,ν , z

8

)

=
η2(z)η(6z)η2(9z)
η(2z)η(3z)η(18z)

+ 2δ
η2(2z)η(3z)η2(18z)

η(z)η(6z)η(9z)
+ 2(1 − δ) η(9z)η(18z). (20.27)

There are four eta products with orders 3
8 and two with orders 7

8 at ∞. Four
of them are involved in eigenforms as follows.
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Example 20.14 The residues of
√

3+
√

−2, 1+
√

−6 and −1 modulo 12
√

3
generate the group (J6/(12

√
3))× � Z2

12 × Z2. Eight characters ϕδ,ε,ν on J6

with period 12
√

3 are fixed by their values

ϕδ,ε,ν(
√

3 +
√

−2) = ξ, ϕδ,ε,ν(1 +
√

−6) = −ενξ
2
, ϕδ,ε,ν(−1) = 1

with a primitive 12th root of unity ξ = 1
2 (ν

√
3 + δεi) and δ, ε, ν ∈ {1, −1}.

The corresponding theta series of weight 1 decompose as

Θ1

(
−24, ϕδ,ε,ν , z

8

)
= f1(z) + ε

√
3 f3(z) + δεi f5(z) + δi

√
3 f7(z) , (20.28)

where the components fj are normalized integral Fourier series with denom-
inator 8 and numerator classes j modulo 8, and where f3, f7 are linear
combinations of eta products,

f3 =
1
3

([
22, 3, 9

1, 6

]
−
[
12, 9

2

])
, f7 =

1
3

(
2
[
22, 18

1

]
+
[
12, 6, 18

2, 3

])
.

(20.29)

Two of the eta products with order 1
8 and two with order 3

8 at ∞ make up
components in theta series on Q(

√
−6), as shown in the following example:

Example 20.15 Define characters ϕ̃δ,ε,ν on J6 with period 12
√

3 by their
values

ϕ̃δ,ε,ν(
√

3 +
√

−2) = ζε,ν = 1
2 (ε

√
3 + νi),

ϕ̃δ,ε,ν(1 +
√

−6) = −δζε,ν , ϕ̃δ,ε,ν(−1) = 1

on the generators of (J6/(12
√

3))× as chosen in Example 20.14. The corre-
sponding theta series of weight 1 decompose as

Θ1

(
−24, ϕ̃δ,ε,ν , z

8

)
= h1(z) + ε

√
3 h5(z) − δε

√
3 h7(z) + δ h11(z) , (20.30)

where the components hj are normalized integral Fourier series with denom-
inator 8 and numerator classes j modulo 8, and where h1, h11 are linear
combinations of eta products,

h1 =
1
3

(
2
[
22, 62, 9
1, 3, 18

]
+
[

12, 63, 9
2, 32, 18

])
,

(20.31)

h11 =
1
3

([
22, 33, 18
1, 62, 9

]
−
[
12, 32, 18

2, 6, 9

])
.

The Fricke transforms of the eta products in (20.31) have denominator 24
and will also appear in the components of theta series in Example 20.19.
This suggests that, besides (20.30), also

Gδ(z) =
1
3

(
2
[
22, 33, 18
1, 62, 9

]
+
[
12, 32, 18

2, 6, 9

])(z

3

)

+
2δ

3

([
22, 62, 9
1, 3, 18

]
−
[

12, 63, 9
2, 32, 18

])(z

3

)
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should be eigenforms. Indeed, the functions Gδ have multiplicative coeffi-
cients λ(n), and they are eigenforms of the Hecke operators Tp for all primes
p �= 3, while at powers of 3 we have λ(3r) = −2(−δ)r.

20.6 Cuspidal Eta Products of Level 18 with Denomi-
nators t ≥ 12

The table at the beginning of Sect. 20.3 tells us that there are 12 cuspidal
eta products of weight 1 and denominator 12 for Γ0(18). They span a space
of dimension 8. Four linear relations among them are

[
2, 62, 9
3, 18

]
=

[
1, 63, 93

2, 32, 182

]
+
[
1, 62, 18

2, 3

]
, (20.32)

[
13, 63, 9
22, 32, 18

]
=

[
1, 63, 93

2, 32, 182

]
− 2

[
1, 62, 18

2, 3

]
, (20.33)

[
23, 33, 18
12, 62, 9

]
=

[
2, 32, 9

1, 6

]
+
[
2, 33, 183

1, 62, 92

]
, (20.34)

[
1, 32, 18

6, 9

]
=

[
2, 32, 9

1, 6

]
− 2

[
2, 33, 183

1, 62, 92

]
. (20.35)

All these relations follow easily from the identities in Theorems 8.1 and 8.2.
Moreover, from part (2) in Theorem 8.2 we obtain the identity

[
2, 92

18

]
− 2

[
2, 3, 182

6, 9

]
= [12], (20.36)

such that the linear combination of eta products of level 18 on the left hand
side in fact belongs to level 1 and is a theta series on O1, O3 and Z[

√
3],

by virtue of Example 9.1. Now we show that eta products of level 18 and
denominator 12 make up components of theta series which did not yet occur
in preceding examples:

Example 20.16 Let the generators of (O1/(18 + 18i))× � Z24 × Z3 × Z4

be chosen as in Example 18.7, and define eight characters ρδ,ε,ν on O1 with
period 18(1 + i) by

ρδ,ε,ν(2 + i) = ξ, ρδ,ε,ν(−5 − 6i) = −ξ4, ρδ,ε,ν(i) = 1

with a primitive 24th root of unity

ξ = ξδ,ε,ν = 1
2

(
ν
√

2 − ε
√

3 − δεi
√

2 + ε
√

3
)

and δ, ε, ν ∈ {1, −1}. The group (O1/(9+9i))× � Z24 ×Z3 is generated by the
residues of 2+i and −5 − 6i modulo 9(1+i), where (2+i)6 ≡ −i mod 9(1+i).
Four characters χδ,ν on O1 with period 9(1 + i) are given by

χδ,ν(2 + i) = ζδ,ν = δ ξ4 = 1
2 (δ + νi

√
3), χδ,ν(−5 − 6i) = ζ

2

δ,ν .
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The corresponding theta series of weight 1 decompose as

Θ1

(
−4, ρδ,ε,ν , z

12

)
= (f1(z) + g1(z)) + ε

√
3 g1(z)

− δεi
√

2 + ε
√

3 f5(z) + δi
√

2 g5(z),
Θ1

(
−4, χδ,ν , z

12

)
= h1(z) + δ h5(z),

where the components fj, gj , hj are normalized integral Fourier series with
denominator 12 and numerator classes j modulo 12. All of them are eta
products,

f1 =
[

1, 63, 93

2, 32, 182

]
, g1 =

[
1, 62, 18

2, 3

]
,

(20.37)

f5 =
[
2, 32, 9

1, 6

]
, g5 =

[
2, 33, 183

1, 62, 92

]
,

h1 =
[
1, 62, 9
2, 18

]
, h5 =

[
2, 34, 18
1, 62, 9

]
. (20.38)

We remark that the linear relations at the beginning of this subsection open
up some choices of how to write the decomposition of Θ1

(
−4, ρδ,ε,ν , z

12

)
. The

coefficients of this theta series frequently take the value

− δεi
√

2 + ε
√

3 + δi
√

2 = − δεi
√

2 − ε
√

3.

The root of unity ξ satisfies ξ4 = 1
2 (1 + δνi

√
3) and ξ6 = −δενi. The

Fricke transform of Θ1

(
−4, χδ,ν , z

12

)
yields the linear combinations Fδ of

eta products with denominator 3 which were mentioned at the beginning of
Sect. 20.5.

Another combination of the eta products in (20.36) can be identified with a
component of a theta series on O3:

Example 20.17 The residues of 2+ω, 1+12ω, 17 and ω modulo 24(1+ω)
generate the group (O3/(24 + 24ω))× � Z12 × Z6 × Z2 × Z6. Four characters
ψδ,ν on O3 with period 24(1 + ω) are defined by

ψδ,ν(2 + ω) = 1
2 (ν + δi

√
3), ψδ,ν(1 + 12ω) = 1,

ψδ,ν(17) = −1, ψδ,ν(ω) = 1

with δ, ν ∈ {1, −1}. The corresponding theta series of weight 1 decompose as

Θ1

(
−3, ψδ,ν , z

12

)
= F1(z) + δi

√
3 F7(z) , (20.39)

where the components Fj are normalized integral Fourier series with denom-
inator 12 and numerator classes j modulo 12, and where F1 is a linear com-
binations of eta products,

F1 =
[
2, 92

18

]
+
[
2, 3, 182

6, 9

]
. (20.40)
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There are 20 eta products of weight 1 and level 18 with denominator 24.
They are linearly independent, hence span a space of dimension 20. In the
examples in the rest of this subsection we will present 24 theta series whose
components consist of these 20 eta products and of four more functions which
are not otherwise identified.

Example 20.18 Let the generators of (O2/(36))× � Z12 ×Z6 ×Z2
2 be chosen

as in Example 20.10, and define eight characters ψδ,ε,ν on O3 with period 36
by

ψδ,ε,ν(1 + 3
√

−2) = δνξ, ψδ,ε,ν(3 − 4
√

−2) = −δνξ2,

ψδ,ε,ν(17) = −1, ψδ,ε,ν(−1) = 1

with ξ = ξε,ν = 1
2 (ε + νi

√
3) and δ, ε, ν ∈ {1, −1}. The corresponding theta

series of weight 1 decompose as

Θ1

(
−8, ψδ,ε,ν , z

24

)
= f1(z) + ε f11(z) + δεi

√
3 f17(z)

+ δi
√

3 f19(z) (20.41)

with normalized integral Fourier series fj with denominator 24 and numera-
tor classes j modulo 24. All the components are eta products,

f1 =
[
1, 62, 9
3, 18

]
, f11 =

[
2, 32, 18

6, 9

]
,

(20.42)

f17 =
[
1, 62, 9

2, 3

]
, f19 =

[
2, 32, 18

1, 6

]
.

Example 20.19 Let the generators of (O2/(12))× � Z4 × Z3
2 and of

(J6/(4
√

3))× � Z2
4 × Z2 be chosen as in Examples 18.6 and 10.5, respec-

tively. Define characters ψδ,ν on O2 with period 12 and characters ϕδ,ν on
J6 with period 4

√
3 by their values

ψδ,ν(3 +
√

−2) = δ, ψδ,ν(3 + 2
√

−2) = −ν,

ψδ,ν(5) = −1, ψδ,ν(−1) = 1,

ϕδ,ν(
√

3 +
√

−2) = νi, ϕδ,ν(1 +
√

−6) = δνi,

ϕδ,ν(−1) = 1

with δ, ν ∈ {1, −1}. The residues of 2 +
√

3, 1 + 2
√

3, 7 and −1 modulo
4(3 +

√
3) are generators of (Z[

√
3]/(12 + 4

√
3))× � Z4 × Z3

2 . Define Hecke
characters ξδ on Z[

√
3] with period 4(3 +

√
3) by

ξδ(μ) =

⎧
⎨

⎩

sgn(μ)
δ sgn(μ)

−sgn(μ)
for μ ≡

⎧
⎨

⎩

2 +
√

3
1 + 2

√
3

7, −1
mod 4(3 +

√
3).
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The corresponding theta series of weight 1 are identical and decompose as

Θ1

(
12, ξδ,

z
24

)
= Θ1

(
−8, ψδ,ν , z

24

)

= Θ1

(
−24, ϕδ,ν , z

24

)
= g1(z) + 2δ g11(z), (20.43)

where the components gj are normalized integral Fourier series with denom-
inator 24 and numerator classes j modulo 24 which are linear combinations
of eta products,

g1 =
[
2, 32, 92

1, 6, 18

]
− 2

[
2, 33, 182

1, 62, 9

]
,

(20.44)

g11 =
[

1, 63, 92

2, 32, 18

]
+
[
1, 62, 182

2, 3, 9

]
.

Example 20.20 Let the generators of (O1/(36+36i))× � Z24 ×Z6 ×Z2 ×Z4

and of (J6/(12))× � Z12 × Z4 × Z2 be chosen as in Examples 18.10 and 18.2,
respectively. Define characters χδ,ν on O1 with period 36(1+i) and characters
ρδ,ν on J6 with period 12 by their values

χδ,ν(2 + i) = δi, χδ,ν(1 − 6i) = −ν,

χδ,ν(19) = −1, χδ,ν(i) = 1,

ρδ,ν(
√

3 +
√

−2) = δi, ρδ,ν(1 + 3
√

−6) = ν,

ρδ,ν(−1) = 1

with δ, ν ∈ {1, −1}. The residues of 1 +
√

6, 5 + 2
√

6 and 17 modulo M =
12(3 +

√
6) are generators of (Z[

√
6]/(M))× � Z12 × Z6 × Z2, where (1 +√

6)6(5 + 2
√

6)3 ≡ −1 mod M . Define Hecke characters Ξδ on Z[
√

6] with
period M by

Ξδ(μ) =

⎧
⎨

⎩

δi sgn(μ)
sgn(μ)

−sgn(μ)
for μ ≡

⎧
⎨

⎩

1 +
√

6
5 + 2

√
6

17
mod M.

The corresponding theta series of weight 1 are identical and decompose as

Θ1

(
24, Ξδ,

z
24

)
= Θ1

(
−4, χδ,ν , z

24

)

= Θ1

(
−24, ρδ,ν , z

24

)
= h1(z) + 2δi h5(z), (20.45)

where the components hj are normalized integral Fourier series with denom-
inator 24 and numerator classes j modulo 24 which are linear combinations
of eta products,

h1 =
[
1, 92

18

]
− 2

[
1, 3, 182

6, 9

]
,

(20.46)

h5 =
[
2, 6, 92

3, 18

]
+
[
2, 182

9

]
.
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We will reconsider the characters Ξδ, χδ,ν , ρδ,ν in Example 25.30. Other
linear combinations of the eta products in (20.44), (20.46) will occur in Ex-
ample 20.22.

Example 20.21 Let the generators of (O1/(36+36i))× be chosen as in Ex-
amples 18.10 and 20.20, and define sixteen characters χ∗

δ,ε,ν and χ̃δ,ε,ν on O1

with period 36(1 + i) by their values

χ∗
δ,ε,ν(2 + i) = δξε,ν , χ∗

δ,ε,ν(1 − 6i) = −νξ
2

ε,ν ,

χ∗
δ,ε,ν(19) = −1, χ∗

δ,ε,ν(i) = 1,

χ̃δ,ε,ν(2 + i) = δνξ2
ε,ν , χ̃δ,ε,ν(1 − 6i) = −νξ2

ε,ν ,

χ̃δ,ε,ν(19) = −1, χ̃δ,ε,ν(i) = 1

with a primitive 12th root of unity

ξε,ν = 1
2 (−εν

√
3 + i)

and δ, ε, ν ∈ {1, −1}. The corresponding theta series of weight 1 decompose
as

Θ1

(
−4, χ∗

δ,ε,ν , z
24

)
= f ∗

1 (z) + δi f ∗
5 (z) + εi

√
3 f ∗

13(z) + δε
√

3 f ∗
17(z), (20.47)

Θ1

(
−4, χ̃δ,ε,ν , z

24

)
= f̃1(z) − δεi

√
3 f̃5(z) + εi

√
3 f̃13(z) + δ f̃17(z) , (20.48)

where the components f ∗
j and f̃j are normalized integral Fourier series with

denominator 24 and numerator classes j modulo 24. All of them are eta
products,

f ∗
1 =

[
3, 63

2, 18

]
, f ∗

5 =
[
33, 6
1, 9

]
,

(20.49)
f ∗
13 =

[
1, 6, 9

3

]
, f ∗

17 =
[
2, 3, 18

6

]
,

f̃1 =
[

12, 65, 92

22, 33, 182

]
, f̃5 =

[
1, 63, 9
2, 3, 18

]
,

(20.50)

f̃13 =
[
2, 33, 18
1, 6, 9

]
, f̃17 =

[
22, 35, 182

12, 63, 92

]
.

Example 20.22 Let the generators of (J6/(12
√

3))× � Z2
12 × Z2 be chosen

as in Example 20.14. Define sixteen characters ϕ∗
δ,ε,ν and ϕ̃δ,ε,ν on J6 with

period 12
√

3 by their values

ϕ∗
δ,ε,ν(

√
3+

√
−2) = ζδ,ν , ϕ∗

δ,ε,ν(1+
√

−6) = −δενζ
2

δ,ν , ϕ∗
δ,ε,ν(−1) = 1,

ϕ̃δ,ε,ν(
√

3 +
√

−2) = ζ̃ε,ν , ϕ̃δ,ε,ν(1 +
√

−6) = −δζ̃ε,ν , ϕ̃δ,ε,ν(−1) = 1
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with primitive 12th roots of unity

ζδ,ν = 1
2 (ν

√
3 + δi), ζ̃ε,ν = 1

2 (ε
√

3 + νi)

and δ, ε, ν ∈ {1, −1}. The corresponding theta series of weight 1 decompose
as

Θ1

(
−24, ϕ∗

δ,ε,ν , z
24

)
= g∗

1(z) + δi g∗
5(z) + εi

√
3 g∗

7(z) + δε
√

3 g∗
11(z), (20.51)

Θ1

(
−24, ϕ̃δ,ε,ν , z

24

)
= g̃1(z) + ε

√
3 g̃5(z) − δε

√
3 g̃7(z) + δ g̃11(z) (20.52)

with normalized integral Fourier series g∗
j and g̃j with denominator 24 and

numerator classes j modulo 24. The components g∗
1 , g∗

5 , g̃1, g̃11 are linear
combinations of the eta products in Examples 20.19, 20.20,

g∗
1 =

[
1, 92

18

]
+
[
1, 3, 182

6, 9

]
, g∗

5 =
[
2, 6, 92

3, 18

]
− 2

[
2, 182

9

]
, (20.53)

g̃1 =
[
2, 32, 92

1, 6, 18

]
+
[
2, 33, 182

1, 62, 9

]
, g̃11 =

[
1, 63, 92

2, 32, 18

]
− 2

[
1, 62, 182

2, 3, 9

]
.

(20.54)

20.7 Non-cuspidal Eta Products of Level 18, Denomina-
tors t ≥ 4

We recall that the numbers of new holomorphic eta products of level 18 and
weight 1 are listed in Table 20.1 at the beginning of Sect. 20.3. Now we discuss
the non-cuspidal ones in decreasing order of their denominators. There are
four of them with denominator 12. They combine to four Eisenstein series
which are similar to those in Example 19.12, yet somewhat simpler:

Example 20.23 Six Dirichlet characters ψδ,ε and χε with period 36 are fixed
by their values

ψδ,ε(5) = δξε, ψδ,ε(−1) = −δ, χε(5) = −ξε, χε(−1) = −1

on generators of (Z/(36))× � Z6 × Z2, with a primitive 6th root of unity
ξε = 1

2 (1 + εi
√

3) and δ, ε ∈ {1, −1}. Then there is a decomposition

∞∑

n=1

ψδ,ε(n)
( ∑

d|n
χε(d)

)
e
(

nz
12

)

= f1(z) + δ f5(z) + εi
√

3 f7(z) − δεi
√

3 f11(z) (20.55)
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with normalized integral Fourier series fj with denominator 12 and numera-
tor classes j modulo 12. All the components are eta products,

f1 =
[

1, 65, 92

2, 33, 182

]
, f5 =

[
12, 65, 9
22, 33, 18

]
,

(20.56)
f7 =

[
2, 6, 9

3

]
, f11 =

[
1, 6, 18

3

]
.

This result can be written in an equivalent form, giving explicit formulae for
the coefficients aj(n) of the eta products fj in (20.56) in terms of the divisors
of n. For example,

a1(p) =
{

2
−1 for primes p ≡

{
1

13, 25 mod 36,

a7(p) =

⎧
⎨

⎩

1
0

−1
for primes p ≡

⎧
⎨

⎩

7
19
31

mod 36.

There are four non-cuspidal eta products with denominator 6. Linear combi-
nations provide four eigenforms, one of which is cuspidal and the others are
Eisenstein series:

Example 20.24 Two Dirichlet characters χδ modulo 18 are fixed by their
values

χδ(5) = 1
2 (1 + δi

√
3)

on a generator of (Z/(18))× � Z6. Let χ0 denote the principal character
modulo 2(1 + ω) on O3. Let the generators of (O3/(12))× � Z6 × Z2 × Z6 be
chosen as in Example 11.17, and define two characters ψν on O3 with period
12 by

ψν(2 + ω) = 1
2 (−1 + νi

√
3), ψν(5) = 1, ψν(ω) = 1.

Then there are decompositions
∞∑

n=1

χδ(n)
( ∑

d|n
χδ(d)

)
e
(

nz
6

)
= g1(z) + δi

√
3 g5(z), (20.57)

Θ1

(
−3, χ0,

z
6

)
= h1(z) + h7(z), (20.58)

Θ1

(
−3, ψν , z

6

)
= h1(z) − 2 h7(z), (20.59)

where the components gj, hj are normalized integral Fourier series with de-
nominator 6 and numerator classes j modulo 6. All them are eta products,

g1 =
[
1, 63, 9
32, 18

]
, g5 =

[
1, 63, 9
2, 32

]
,

(20.60)

h1 =
[
2, 3, 92

1, 18

]
, h7 =

[
2, 32, 182

1, 6, 9

]
.
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We met Θ1

(
−3, χ0,

z
6

)
already in Example 18.13. Comparing (18.23) and

(20.58) yields the eta identity
[
23, 32

12, 6

]
=
[
2, 3, 92

1, 18

]
+
[
2, 32, 182

1, 6, 9

]

which follows trivially from the Kac identities in Theorem 8.2. The characters
ψν and the function Θ1(−3, ψν , z) will occur again in Examples 20.26, 20.28,
20.30.

There are six non-cuspidal eta products with denominator 4, and all of them
have numerators s ≡ 1 mod 4. They span a space of dimension 3 only. We
introduce the notation

f̃1 =
[
22, 6, 92

1, 3, 18

]
, f1 =

[
12, 62, 92

2, 32, 18

]
, f5 =

[
22, 182

1, 9

]
(20.61)

for functions which can be chosen for a basis of this space. (The numerators
are indicated by the index.) Linear relations and three eigenforms in this
space are given as follows:

Example 20.25 The non-cuspidal eta products of level 18, weight 1 and
denominator 4 span a space of dimension 3. With notations as defined in
(20.61), the linear relations

[
12, 6, 182

2, 3, 9

]
= f̃1 − f1 − 2 f5, (20.62)

[
1, 68, 9

22, 34, 182

]
= f1 + f5,

[
2, 36, 18
12, 62, 92

]
= f1 + 4 f5 (20.63)

hold. In the space spanned by these eta products there are three Eisenstein
series,

f1(z) =
∑

gcd(n,6)=1

(n

3

)∑

d|n

(
−1
d

)
e
(

nz
4

)
= Θ1

(
−4, χ−1,

z
4

)
, (20.64)

1
3

(
4f̃1(z) − f1(z)

)
=

∑

gcd(n,6)=1

∑

d|n

(
−1
d

)
e
(

nz
4

)
= Θ1

(
−4, χ1,

z
4

)
, (20.65)

f̃1(z) + f5(z) =
∑

gcd(n,2)=1

∑

d|n

(
−1
d

)
e
(

nz
4

)
= Θ1

(
−4, χ0,

z
4

)
, (20.66)

where χ1, χ−1 are the characters modulo 3(1 + i) on O1 as defined in Ex-
ample 18.12 and χ0 is the principal character modulo 1 + i on O1, as in
Example 10.6.



340 20. Levels p2q for Distinct Primes p �= 2 and q

The eta identity (20.62) follows trivially from the Kac identities in Theo-
rem 8.2. Comparing (20.64), (20.65), (20.66) with identities in Examples 10.6
and 18.12 yields three more eta identities which we do not write down here
and which also follow trivially from the identities in weight 1

2 . We failed in
an attempt to deduce the identities (20.63) in the same way. The second one
is equivalent to the identity

[
35

62

]
[3] =

[
23
] [92

18

]
+ 3

[
183
] [12

2

]

in weight 2 with the advantage that, by virtue of Example 8.5, all the eta
products are products of two simple theta series of weights 3

2 and 1
2 , respec-

tively. In terms of coefficients, this identity reads
∑

x,y>0,
x2+y2=2n

(
12
x

)(
y
3

)
y

=
∑

x∈Z,y>0,
36x2+y2=n

(−1)x
(−1

y

)
y + 3

∑

x∈Z,y>0,
4x2+9y2=n

(−1)x
(−1

y

)
y

for all n ≡ 1 mod 4. The first identity in (20.63) is equivalent to
[
62

3

]4
=
[
22

1

]3 [182

9

]
− 3

[
22

1

]2 [182

9

]2
+ 3

[
22

1

] [
182

9

]3
.

Because of (8.5) this gives, in terms of coefficients, a nice result on the rep-
resentation of integers by sums of four odd squares, namely,

∑

3(x2+y2+u2+v2) = 4n

1 =
∑

x2+y2+u2+9v2 = 4n

1

− 3
( ∑

x2+y2+9(u2+v2) = 4n

1
)

+ 3
( ∑

x2+9(y2+u2+v2) = 4n

1
)

for all odd n, where in each case the summation is on all positive odd x, y, u, v
satisfying the indicated condition. In particular, the right hand side vanishes
whenever n is not a multiple of 3.

20.8 Non-cuspidal Eta Products, Level 18, Denomina-
tors 3 and 2

According to Table 20.1 in Sect. 20.3 there are 12 non-cuspidal eta products
of level 18, weight 1 and denominator 3. They are linearly independent,
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and indeed we find 12 linear combinations of them which have multiplicative
coefficients and which are eigenforms of the Hecke operators Tp for all primes
p > 3.

Two of these eta products,

f1 =
[
1, 62, 92

2, 3, 18

]
and f4 =

[
1, 6, 182

2, 9

]
, (20.67)

vanish at all cusps except those in the orbit of 1
2 (with respect to Γ0(18)). Two

of their linear combinations enjoy the properties stated above, one of them
a cusp form, and both of them expressible by theta series with characters
which are known from previous examples:

Example 20.26 Let f1 and f4 be given as in (20.67), and let ψν be the
characters modulo 12 on O3 as defined in Example 20.24. Then the identity

Θ1

(
−3, ψν , z

3

)
= f1(z) + f4(z) (20.68)

holds. Moreover, we have

f1(z) − 2 f4(z) = H(z) − 3 H̃(4z) (20.69)

with Eisenstein series

H(z) =
∑

gcd(n,6)=1

∑

d|n

(
d

3

)
e
(

nz
3

)
= Θ1

(
−3, χ0,

z
3

)
,

H̃(z) =
∑

gcd(n,3)=1

∑

d|n

(
d

3

)
e
(

nz
3

)
= Θ1

(
−3, ψ0,

z
3

)
,

where χ0 and ψ0 are the principal characters modulo 2(1 + ω) and modulo
1 + ω on O3 as given in Examples 20.24 and 11.4, respectively.

Comparing (20.68) and (20.59) gives an eta identity which follows easily from
the Kac identities in Theorem 8.2. We recall that H̃(z) = η3(3z)/η(z), by
Example 11.4. So comparing (20.69) with (20.58) and Example 11.4 gives a
lengthy eta identity which we could not deduce from the identities in weight 1

2 .

Next we consider the eta products

g1 =
[
23, 9
1, 6

]
, g̃1 =

[
2, 93

3, 18

]
,

(20.70)

g2 =
[
13, 18
2, 3

]
, g5 =

[
1, 183

6, 9

]
,

which share the property that they do not vanish in the cusp orbits of 1
3

and 1
6 . (We continue to use the numerators for subscripts.) We find four

linear combinations which are Eisenstein series:
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Example 20.27 Let χδ be the Dirichlet character modulo 9 which is fixed
by the value

χδ(5) = ξδ = 1
2 (1 + δi

√
3),

δ ∈ {1, −1}, on the generator 5 of (Z/(9))× � Z6, and let χ0
δ be the imprimi-

tive Dirichlet character modulo 18 which is induced by χδ. Then with g1, g̃1,
g2, g5 as given in (20.70), the identities

∞∑

n=1

χδ(n)
∑

d|n
χδ(d) e

(
nz
3

)

= 3 g̃1(z) − 2 g1(z) − δi
√

3
(
g2(z) + 2 g5(z)

)
, (20.71)

∞∑

n=1

χδ(n)
∑

d|n
χ0

δ(d) e
(

nz
3

)

= (1 + ξδ) g̃1(z) − ξδ g1(z) + ξδ g2(z)
+ (1 + ξδ) g5(z) (20.72)

hold.

The coefficients of the series (20.71) and (20.72) coincide at all odd integers n,
while they are distinct at even n with 3 � n. This is clear since χ0

δ(d) = χδ(d)
if d is odd, χ0

δ(d) = 0 if d is even. The coefficients of both the series vanish
at all primes p ≡ −1 mod 18, since then χδ(1) + χδ(p) = 1 + ξ3

δ = 0.

There are six eta products with denominator 3 which remain. They share
the property that the cusps where they do not vanish are exactly those in
the orbit of 1

6 . Two linear combinations with multiplicative coefficients are
given by

Fδ =
[
2, 33, 18

62, 9

]
+ δi

√
3
[
2, 33, 18

1, 62

]
.

Remarkably, Fδ shares its coefficients with (20.71) and (20.72) at all odd
integers n. Unfortunately we could not understand the coefficients at powers
of the prime 2, so we did not find an identity for Fδ in terms of Eisenstein
series. Four more linear combinations with multiplicative coefficients are
given by

Gδ,ε = 1
2 (1 + ξδ)

[
2, 3, 9

6

]
+ 1

2ξδ

[
22, 35, 18
12, 63, 9

]

− 1
2ε

(
(1 + ξδ)

[
1, 3, 18

6

]
− ξδ

[
2, 35, 182

1, 63, 92

])

with δ, ε ∈ {1, −1} and ξδ = 1
2 (1 + δi

√
3) as before. The coefficients in

Gδ,ε(z) =
∑∞

n=1 λ(n)e
(

nz
3

)
are explicitly given by

λ(n) = ψ(n)
∑

d|n
χ(d)
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for odd n, with Dirichlet characters ψ and χ modulo 36 which are fixed by
the values

ψ(5) = εζ, ψ(−1) = −δ,

χ(5) = −ζ, χ(−1) = −1,

ζ = ζε = 1
2 (1 − εi

√
3)

at generators of (Z/(36))× � Z6 × Z2. At powers of the prime 2 we have
λ(2r) = −(εζ)r.

For the non-cuspidal eta products with denominator 2 we introduce the no-
tation

F =
[
22, 32, 18

1, 6, 9

]
, G =

[
12, 3, 18

2, 9

]
. (20.73)

We get a linear combination which is cuspidal and well-known from preceding
examples. Rescaling yields another linear combination which is non-cuspidal
and well known, too:

Example 20.28 Let ψν be the characters modulo 12 on O3 as defined in
Example 20.24, and let ρ0 be the principal character modulo 2 on O3 as in
Example 18.16. Then the eta products F , G in (20.73) satisfy

1
3

(
2 F (z) + G(z)

)
= Θ1

(
−3, ψν , z

2

)
, (20.74)

1
3

(
F
(

z
3

)
− G

(
z
3

))
= Θ1

(
−3, ρ0,

z
2

)
− 3Θ1

(
−3, ρ0,

3z
2

)
. (20.75)

Comparing (20.74) and (20.59), (20.68) yields eta identities which follow
trivially from the identities in Theorem 8.2. From (20.75) and (18.30) we
obtain the eta identity

[
22, 32, 18

1, 6, 9

]
−
[
12, 3, 18

2, 9

]
= 3

[
32, 183

6, 92

]

which follows immediately from Theorem 8.2, too.

20.9 Non-cuspidal Eta Products of Level 18 with De-
nominator 1

The non-cuspidal eta products of level 18, weight 1 and denominator 1 span
a space of dimension 9. In the following example we choose a basis for this
space, and we give linear relations for the eta products in terms of the basis
functions. Three of these relations follow immediately when we multiply
(20.62), (20.63) by [32, 6−2].
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Example 20.29 There are 24 non-cuspidal eta products of level 18, weight
1 and denominator 1. They span a space of dimension 9. A basis of this
space is given by the functions

f0 =
[

24, 92

12, 6, 18

]
, g0 =

[
22, 3, 92

1, 6, 18

]
,

h0 =
[
12, 92

2, 18

]
, f̃0 =

[
22, 6, 9
1, 18

]
,

g̃0 =
[
12, 62, 9
2, 3, 18

]
, f1 =

[
24, 3, 182

12, 62, 9

]
,

g1 =
[
14, 182

22, 3, 9

]
, h1 =

[
22, 32, 182

1, 62, 9

]
,

f2 =
[
22, 3, 184

1, 62, 92

]
.

The other 15 eta products are
[
1, 2, 92

3, 18

]
= f0 − 3f1 + 3f2,

[
14, 6, 92

22, 32, 18

]
= f0 − 5f1 − g1 + 9f2,

[
22, 94

1, 3, 182

]
= f0 − f1 + f2,

[
12, 6, 94

2, 32, 182

]
= f0 − 1

3 (11f1 + g1) + 5f2,

[
13, 67, 9

23, 34, 182

]
= f0 − 4f1 − g1 + 6f2,

[
1, 67, 93

22, 34, 183

]
= f0 − 1

3 (8f1 + g1) + 4f2,

[
23, 37, 18
13, 64, 92

]
= f0 + f1 + 3f2,

[
1, 66, 9

22, 32, 182

]
= h0 + h1,

[
2, 38, 18
12, 64, 92

]
= h0 + 4h1,

[
1, 2, 182

6, 9

]
= f1 − 3f2,

[
2, 37, 183

12, 64, 93

]
= 1

3 (2f1 + g1) + 2f2,

[
12, 9, 18

2, 3

]
= 1

3 (2f1 + g1) − 2f2,
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[
22, 9, 18

1, 6

]
= f1 − f2,

[
12, 3, 182

2, 6, 9

]
= g0 − h0 − 2h1,

[
12, 184

2, 6, 92

]
= 1

3 (f1 − g1) − f2.

All these linear relations follow easily from Theorem 8.2 and (20.63). Of
course, many more linear relations can be deduced from these relations.

Now we present linear combinations of the basis functions in Example 20.29
which have multiplicative coefficients:

Example 20.30 Let the notations be given as in Example 20.29.

(1) We have

h1(z) =
∞∑

n=1

(n

3

)∑

d|n

(
−1
d

)(
e(nz) + 2 e(2nz)

)
. (20.76)

(2) Let ψν be the characters modulo 12 on O3 as defined in Example 20.24.
Then we have

1
3

(
f̃0(z) − g̃0(z)

)
= Θ1 (−3, ψν , z) . (20.77)

(3) The functions

F1 = 2
3 (g0 − h0) − h1, F1(z) =

∞∑

n=1

λ1(n)e(nz),

F2 = 1
12 (10 g0 − 7 h0) − h1, F2(z) = 1

4 +
∞∑

n=1

λ2(n)e(nz),

F3 = 1
4 (2 g0 − 3 h0) − h1, F3(z) = − 1

4 +
∞∑

n=1

λ3(n)e(nz),

have multiplicative coefficients, given by

λ1(n) = λ2(n) = λ3(n) = (−1)n+1
∑

d|n

(−1
d

)
if 9 � n,

λ1(9r) = 0, λ2(9r) = −1, λ3(9r) = 1.

(4) The functions

G1 = 1
6 (f0 + g1) + 1

2 (f1 − f2), G2 = f1 − f2 =
[
22, 9, 18

1, 6

]
,

G3 = 1
3 (f0 + f1), G4 = 1

9 (8 f1 + g1) − 4
3f2
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have multiplicative expansions, given by

G1(z) = 1
6 +

∞∑

n=1

∑

d|n

(
d

3

)
e(nz) = Θ1(−3, 1, z), (20.78)

where 1 stands for the trivial character on O3,

G2(z) =
∞∑

gcd(n,3) = 1

∑

2 � d|n

(
d

3

)
e(nz), (20.79)

G3(z) = 1
3 +

∞∑

n=1

∑

2 � d|n

(
d

3

)
e(nz), (20.80)

G4(z) = 1
3 +

∞∑

gcd(n,3) = 1

∑

d|n

(
d

3

)
e(nz). (20.81)

Comparing (20.77) with (20.58), (20.68), (20.74) yields more eta identities
which also follow from Theorem 8.2. From Example 18.17 we get

6 Θ1(−3, 1, z) = 4
[

26, 3
13, 62

]
− 3

[
2, 36

12, 63

]
=
[

2, 36

12, 63

]
+ 4

[
1, 66

22, 33

]
.

Comparing this with (20.78) gives a lengthy eta identity which we could not
derive from the identities in weight 1

2 . We note that all the coefficients of
G1, G2, G3, G4 are non-negative. There are two more linear combinations of
f0, f1, g1, f2 with multiplicative coefficients,

G5 = 1
9 (7 f1 + 2 g1) − 5

3f2, G6 = 1
3 (2 f1 + g1) − f2.

The coefficients of G5, G6 at n ≥ 1 coincide with those of G2, G3, respectively,
up to a factor (−1)ν(n) where n = 2ν(n)m with m odd.
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21.1 An Overview

For each prime p ≥ 7 there are exactly nine new holomorphic eta products of
weight 1 for the Fricke group Γ∗(4p), where five of them are cuspidal and 4
are non-cuspidal. In addition there are 60 new holomorphic eta products of
weight 1 for Γ0(4p), 44 of them cuspidal and 16 non-cuspidal. The cuspidal
ones for the Fricke group are

[
23

1, 4

] [
(2p)3

p, 4p

]
,

[
22

1

] [
p2

2p

]
, [4, p], [1, 4p],

[
22

4

] [
(2p)2

p

]
, (21.1)

and the non-cuspidal ones are

[
25

12, 42

] [
(2p)5

p2, (4p)2

]
,

[
1, 4
2

] [
p, 4p

2p

]
,

[
42

2

] [
p2

2p

]
,

[
12

2

] [
(4p)2

2p

]
.

(21.2)
In three cases the orders at ∞ do not depend on p. The first of the functions
in (21.1) is the sign transform of [1, p]. It would not make sense here to list
all the additional eta products for Γ0(4p). But we mention the fact that each
of them is, as well as those in (21.1) and (21.2), a product of two simple theta
series from Theorem 8.1. Table 21.1 displays the numbers of eta products
for the various denominators t and for the primes p which we are going to
discuss. In the non-cuspidal case the denominators do not depend on p.

The number of new holomorphic eta products of weight 1 is modestly larger
for level N = 4 · 5 = 20 and considerably larger for level N = 4 · 3 = 12.
(See Table 24.1 in Sect. 24.1.) This is in accordance with the fact proved in
Theorem 3.9, part (3). We will discuss these levels in Sects. 24, 25 and 26.
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Springer Monographs in Mathematics,
DOI 10.1007/978-3-642-16152-0 21, c© Springer-Verlag Berlin Heidelberg 2011
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Table 21.1: Numbers of new eta products of levels 4p with weight 1 for primes
7 ≤ p ≤ 23

denominator t 1 2 3 4 6 8 12 24
Γ0(4p), non-cuspidal 6 0 0 2 0 8 0 0
Γ0(92), cuspidal 4 0 0 0 4 6 8 22
Γ0(76), cuspidal 0 2 0 0 6 6 8 22
Γ0(68), cuspidal 0 0 0 4 10 6 2 22
Γ0(52), cuspidal 0 0 6 2 4 6 4 22
Γ0(44), cuspidal 0 4 0 0 4 6 8 22
Γ0(28), cuspidal 2 0 2 0 4 6 8 22

21.2 Eta Products for the Fricke Groups Γ∗(92) and
Γ∗(76)

From Example 12.8 we know the eta product η(z)η(23z) with its theta series
representation on Q(

√
−23) dating back to van der Blij and Schoeneberg. Its

sign transform is the function

η3(2z)η3(46z)
η(z)η(4z)η(23z)η(92z)

with denominator 1. Clearly, its coefficients are multiplicative and closely
related to the arithmetic in Q(

√
−23). However, they violate the proper

recursion at powers of the prime 2, and therefore this eta product cannot be
identified with a Hecke theta series.

The other four cuspidal eta products of weight 1 for Γ∗(92) have denomina-
tor 8. Together with two more functions (which are not identified otherwise)
they constitute the components of six theta series on Q(

√
−23):

Example 21.1 Let J23 be the system of ideal numbers for Q(
√

−23) as given

in Example 7.13, with Λ = Λ23 = 3

√
1
2 (3 +

√
−23). The residues of α =

1
2Λ (1 −

√
−23), 3, 4 +

√
−23 and −1 modulo 16 can be chosen as generators

of (J23/(16))× � Z12 × Z4 × Z2
2 . Twelve characters ψδ,ε,ν and ϕδ,ν modulo

16 on J23 are fixed by their values

ψδ,ε,ν(α) = 1
2 (ε

√
3 + νi), ψδ,ε,ν(3) = 1,

ψδ,ε,ν(4 +
√

−23) = −δ, ψδ,ε,ν(−1) = 1,
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ϕδ,ν(α) = νi, ϕδ,ν(3) = 1,

ϕδ,ν(4 +
√

−23) = δ, ϕδ,ν(−1) = 1

with δ, ε, ν ∈ {1, −1}. The corresponding theta series of weight 1 decompose
as

Θ1

(
−23, ψδ,ε,ν , z

8

)
= f1(z) + ε

√
3 f3(z) − δε

√
3 f5(z) + δ f7(z), (21.3)

Θ1

(
−23, ϕδ,ν , z

8

)
= g1(z) − δ g7(z), (21.4)

where the components fj, gj are normalized integral Fourier series with de-
nominator 8 and numerator classes j modulo 8. Those for j = 1, 7 are linear
combinations of eta products,

f1 =
[
22, 462

1, 92

]
+ [4, 23], f7 =

[
22, 462

4, 23

]
+ [1, 92], (21.5)

g1 =
[
22, 462

1, 92

]
− 2 [4, 23], g7 =

[
22, 462

4, 23

]
− 2 [1, 92]. (21.6)

The non-cuspidal eta products of weight 1 for Γ∗(92) have orders 0, 3, 1
4 , 23

4
at ∞. There is little chance to combine eigenforms from these eta products
and suitable complementary functions.

In Example 12.11 we identified η(z)η(19z) with a component of a theta se-
ries on Q(

√
−19). The same can be done for the sign transform of this eta

product:

Example 21.2 The residues of 1
2 (1 +

√
−19), 4 + 3

√
−19 and −1 modulo

12 can be chosen as generators of (O19/(12))× � Z24 × Z2
2 . Four characters

ρδ,ν on O19 with period 12 are given by

ρδ,ν

(
1
2 (1+

√
−19)

)
= 1

2 (δ
√

3+νi), ρδ,ν(4+3
√

−19) = −1, ρδ,ν(−1) = 1

with δ, ν ∈ {1, −1}. The corresponding theta series of weight 1 decompose as

Θ1

(
−19, ρδ,ν , z

6

)
= h1(z) + δ

√
3 h5(z) , (21.7)

where the components hj are normalized integral Fourier series with denom-
inator 6 and numerator classes j modulo 6, and where h5 is an eta product,

h5 =
[

23, 383

1, 4, 19, 76

]
. (21.8)

The other four cuspidal eta products of weight 1 for Γ∗(76) have orders 1
8 ,

19
8 , 23

24 , 77
24 at ∞. The orders of the non-cuspidal eta products at ∞ are 0, 5

2 ,
1
4 , 19

4 . We cannot present any results involving these functions.
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21.3 Cuspidal Eta Products for Γ0(92) with Denomina-
tors t ≤ 12

The cuspidal eta products of weight 1 for Γ0(92) with denominator 1 consti-
tute two pairs of sign transforms; we denote them by

f1 =
[
23, 23
1, 4

]
, f̃1 =

[
1, 463

23, 92

]
,

(21.9)

f3 =
[
22, 23, 92

1, 46

]
, f̃3 =

[
1, 4, 462

2, 23

]
.

We find but one linear combination of them which is a theta series. When
we take the Fricke transforms, which have denominator 8, and look ahead to
(21.12), (21.15) in Example 21.4, then we find that two linear combinations
of the Fricke transforms are theta series. Transforming back gives a second
linear combination of the functions (21.9) as a candidate for an eigenform.
However, we obtain an eigenform only after some modifications; we have to
rescale—replace the variable z by z

2—and afterwards we have to take the sign
transform. This yields the identity (21.11) in the following example:

Example 21.3 Let J23, Λ and α = 1
2Λ (1 −

√
−23) be given as in Exam-

ple 21.1. The residues of α, 3,
√

−23 and −1 modulo 8 are generators of
(J23/(8))× � Z6 × Z3

2 . Two characters χν on J23 with period 8 are fixed by
their values

χν(α) = ν, χν(3) = −1, χν(
√

−23) = 1, χν(−1) = 1

with ν ∈ {1, −1}. Let J46 be the system of integral ideal numbers for Q(
√

−46)
as given in Example 7.7. The residues of Λ46 =

√√
2 +

√
−23 and

√
−23

modulo 2
√

2 can be chosen as generators of (J46/(2
√

2))× � Z8 × Z2, where
Λ4

46 ≡ −1 mod 2
√

2. Two characters ψν on J46 with period 2
√

2 are given by

ψν(Λ46) = νi, ψν(
√

−23) = 1.

The residues of 1 +
√

2 and −1 modulo M = 2(2 + 5
√

2) are generators of
(Z[

√
2]/(M))× � Z44 × Z2. Define a Hecke character ξ on Z[

√
2] with period

M by

ξ(μ) =
{

sgn(μ)
−sgn(μ) for μ ≡

{
1 +

√
2

−1
mod M.

The corresponding theta series of weight 1 are identical and satisfy

Θ1 (8, ξ, z) = Θ1 (−23, χν , z) = Θ1 (−184, ψν , z)

= 1
2

(
f1(z) + f̃1(z) + f3(z) + f̃3(z)

)
, (21.10)
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with eta products f1, f̃1, f3, f̃3 as defined in (21.9). The residues of Λ and
−1 modulo Λ3 = 1

2 (3 +
√

−23) generate the group (J23/(Λ3))× � Z6 × Z2.
Define a character χ̃1 on J23 with period Λ3 by its values

χ̃1( Λ ) = −1, χ̃1(−1) = 1,

and define a character χ̃−1 on J23 with period Λ
3

by χ̃−1(μ) = χ̃1(μ) for
μ ∈ J23. Define characters ρν on J46 with period 1 by

ρν(μ) =
{

1
−1 for μ ∈

{
A1

A2
, ρν(μ) =

{
νi

−νi
for μ ∈

{
A3

A4
,

where Aj are the parts of J46 as given in Example 7.7. The residue of 5+
√

2
modulo 5−

√
2 is a generator of (Z[

√
2]/(5−

√
2))× � Z22. Define a character

ξ̃ on Z[
√

2] with period 5 −
√

2 by

ξ̃(μ) = −sgn(μ) for μ ≡ 5 +
√

2 mod 5 −
√

2.

The corresponding theta series of weight 1 satisfy the identities

Θ1

(
8, ξ̃, z

)
= Θ1 (−23, χ̃ν , z) = Θ1 (−184, ρν , z) = −F

(
z + 1

2

)
, (21.11)

where
F (z) = f1

(
z
2

)
− f̃1

(
z
2

)
+ f3

(
z
2

)
− f̃3

(
z
2

)
.

The characters ρν in (21.11) are the characters of order 4 on the ideal class
group of Q(

√
−46). Therefore, it follows that for primes p with

(−46
p

)
= 1,

the coefficient λ(p) of F (z) at p indicates how (p) = p p splits into prime ideals
in this field. We have λ(p) = 2 if p is principal, λ(p) = −2 if p2 is principal
but p is not principal, and λ(p) = 0 if p and p belong to the classes which
generate the ideal class group. Thus the function F (z) takes the same role
for Q(

√
−46) as η(z)η(23z) plays for Q(

√
−23).—According to Theorem 5.3,

instead of ξ̃ in (21.11) we can as well use the character ξ̂ with period 5 +
√

2
which is defined by ξ̂(μ) = −sgn(μ

′
) for μ ≡ 5 −

√
2 mod 5 +

√
2.

We will return to the theta series of Example 21.3 at the end of Sect. 21.5
where they will be written in terms of non-cuspidal eta products with de-
nominator 1.

Next we consider the cuspidal eta products with denominator 6. They form
two pairs of sign transforms

[
4, 465

232, 922

]
,

[
4, 232

46

]
,

[
25, 92
12, 42

]
,

[
12, 92

2

]
.

There is no linear combination of these eta products which is an eigen-
form. Their Fricke transforms have denominator 24. When we look ahead
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to (21.22), (21.24) in Example 21.6 then we find eight theta series whose
components consist of these Fricke transforms and of four more functions
which are not otherwise identified. Transforming back fails to give a result
because of the non-identified components and since the group (Z/(6))× is
smaller than (Z/(24))×. So we leave the case of denominator 6 unresolved.
A similar remark on (21.13), (21.16) in Example 21.4 explains why we got
just two eigenforms from the four eta products with denominator 1.

In the following example we present ten theta series which are linear combi-
nations of six eta products with denominator 8 and of four more functions
which are not otherwise identified:

Example 21.4 Let the generators of (J23/(8))× � Z6 × Z3
2 be chosen as in

Example 21.3. Define twelve characters χδ,ν and ρδ,ε,ν on J23 with period 8
by

χδ,ν(α) = ν, χδ,ν(3) = −1, χδ,ν(
√

−23) = δ, χδ,ν(−1) = 1,

ρδ,ε,ν(α) = 1
2 (ν + εi

√
3), ρδ,ε,ν(3) = −1,

ρδ,ε,ν(
√

−23) = δ, ρδ,ε,ν(−1) = 1

with δ, ε, ν ∈ {1, −1}. The residues of Λ46 =
√√

2 +
√

−23, 3,
√

−23 and
−1 modulo 4

√
2 can be chosen as generators of (J46/(4

√
2))× � Z8 × Z3

2 .
Characters ϕδ,ε,ν on J46 with period 4

√
2 are defined by

ϕδ,ε,ν(Λ46) = 1√
2
(ν + δi), ϕδ,ε,ν(3) = −1,

ϕδ,ε,ν(
√

−23) = −δε, ϕδ,ε,ν(−1) = 1.

The corresponding theta series of weight 1 decompose as

Θ1

(
−23, χδ,ν , z

8

)
= g1(z) + δ g7(z), (21.12)

Θ1

(
−23, ρδ,ε,ν , z

8

)
= h1(z) + εi

√
3 h3(z) + δεi

√
3 h5(z) + δ h7(z),

(21.13)

Θ1

(
−184, ϕδ,ε,ν , z

8

)
= F1(z) + εi

√
2 F3(z) + δi

√
2 F5(z) − δεH7(z),

(21.14)

where the components gj, hj, Fj are normalized integral Fourier series with
denominator 8 and numerator classes j modulo 8. Those for j = 1, 7 are eta
products or linear combinations thereof,

g1 =
[
1, 4, 462

2, 92

]
+ 2

[
4, 463

23, 92

]
, g7 =

[
22, 23, 92

4, 46

]
+ 2

[
23, 92
1, 4

]
, (21.15)

h1 =
[
1, 4, 462

2, 92

]
−
[

4, 463

23, 92

]
, h7 =

[
22, 23, 92

4, 46

]
−
[
23, 92
1, 4

]
, (21.16)

F1 =
[

1, 4, 465

2, 232, 922

]
, F7 =

[
25, 23, 92
12, 42, 46

]
. (21.17)
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We observe that the characters χ1,ν in Example 21.4 and χν in Example 21.3
coincide. Therefore the eta identity

1
2

(
f1(z) + f̃1(z) + f3(z) + f̃3(z)

)
= g1(8z) + g7(8z)

holds, with notations defined in (21.9), (21.15).

There are eight cuspidal eta products of weight 1 for Γ0(92) with denomina-
tor 12. We present eight theta series on the field Q(

√
−69) whose components

consist of four of these eta products and of four functions which are not oth-
erwise identified:

Example 21.5 Let J69 be the system of ideal numbers for Q(
√

−69) as given
in Example 7.11, with Λ = Λ69 =

√
1√
2
(3

√
3 +

√
−23). The residues of Λ,

2
√

3 +
√

−23,
√

−23, 7 and −1 modulo 8
√

3 can be chosen as generators of
(J69/(8

√
3))× � Z16 ×Z4 ×Z3

2 . Sixteen characters ψδ,ε,ν,σ on J69 with period
8

√
3 are fixed by their values

ψδ,ε,ν,σ(Λ) = ξε,ν,σ, ψδ,ε,ν,σ(2
√

3 +
√

−23) = δ,

ψδ,ε,ν,σ(
√

−23) = δ, ψδ,ε,ν,σ(7) = −1

and ψδ,ε,ν,σ(−1) = 1, with primitive 16th roots of unity

ξε,ν,σ = 1
2

(
σ
√

2 − ε
√

2 + νi
√

2 + ε
√

2
)

and δ, ε, ν, σ ∈ {1, −1}. The corresponding theta series of weight 1 decompose
as

Θ1

(
−276, ψδ,ε,ν,σ, z

12

)
= f1(z) + ε

√
2 f̃1(z)

+ νi
√

2 + ε
√

2
(
f5(z) − ε

√
2 f̃5(z)

)

− δνi
√

2 + ε
√

2
(
f7(z) − ε

√
2 f̃7(z)

)

+ δ
(
f11(z) + ε

√
2 f̃11(z)

)
, (21.18)

where the components fj, f̃j are normalized integral Fourier series with de-
nominator 12 and numerator classes j modulo 12. Those for j = 1, 11 are
eta products,

f1 =
[

2, 465

232, 922

]
, f̃1 =

[
1, 4, 463

2, 23, 92

]
,

(21.19)

f11 =
[
25, 46
12, 42

]
, f̃11 =

[
23, 23, 92
1, 4, 46

]
.

We did not find eigenforms involving
[

22, 463

1, 23, 92

]
,

[
1, 4, 23

2

]
,

[
23, 462

1, 4, 23

]
,

[
1, 23, 92

46

]
,
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the remaining four eta products with denominator 12. The sign transforms
of their Fricke transforms will appear in theta series in Example 21.7. The
Fricke transforms themselves, together with four eta products of level 46,
will appear in theta series in Example 21.8. Transforming back to the eta
products with denominator 12 fails to give a result for similar reasons as
explained above.

21.4 Cuspidal Eta Products for Γ0(92) with Denomina-
tor 24

Here we have to deal with 22 eta products. They span a space of dimension 20,
and among them there are eight pairs of sign transforms. Two of these pairs
appear in two linear relations which will be stated in (21.20), (21.21). These
relations follow from each other by multiplying with suitable eta products.
In Examples 21.6, 21.7 we will present altogether 24 theta series involving
16 of the eta products and 12 functions which are not otherwise identified.
Example 21.6 shows 16 theta series involving four pairs of sign transforms of
eta products:

Example 21.6 There are 22 cuspidal eta products of weight 1 for Γ0(92)
with denominator 24. They span a space of dimension 20. Among them we
have the linear relations

[
23, 465

1, 4, 232, 922

]
−
[
1, 462

92

]
= 2

([
2, 463

23, 92

]
+
[
4, 462

23

])
, (21.20)

[
25, 463

12, 42, 23, 92

]
−
[
22, 23

4

]
= 2

([
23, 46
1, 4

]
+
[
22, 92

1

])
. (21.21)

Let J138 be the system of integral ideal numbers for Q(
√

−138) as given in
Example 7.10, with Λ = Λ138 =

√√
3 +

√
−46. The residues of Λ,

√
6 +√

−23,
√

−23, 5 and −1 modulo 4
√

6 can be chosen as generators of the
group (J138/(4

√
6))× � Z8 × Z4 × Z3

2 . Thirty-two characters χδ,ε,ν,σ and
χ̃δ,ε,ν,σ on J138 with period 4

√
6 are fixed by their values

χδ,ε,ν,σ(Λ) = ζε,σ, χδ,ε,ν,σ(
√

6 +
√

−23) = δi,

χδ,ε,ν,σ(
√

−23) = ν, χδ,ε,ν,σ(5) = −1,

χ̃δ,ε,ν,σ(Λ) = ζε,σ, χ̃δ,ε,ν,σ(
√

6 +
√

−23) = δ, χ̃δ,ε,ν,σ(
√

−23) = ν,

χ̃δ,ε,ν,σ(5) = 1,

and χδ,ε,ν,σ(−1) = χ̃δ,ε,ν,σ(−1) = 1, with primitive 8th roots of unity ζε,σ =
1√
2

(σ + εi) and δ, ε, ν, σ ∈ {1, −1}. The corresponding theta series of weight
1 decompose as
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Θ1

(
−552, χδ,ε,ν,σ, z

24

)
= f1(z) + 2δi f5(z)

+ εi
√

2 f7(z) + δε
√

2 f11(z) + δεν
√

2 f13(z)

− ενi
√

2 f17(z) + 2δνi f19(z)
+ ν f23(z), (21.22)

Θ1

(
−552, χ̃δ,ε,ν,σ, z

24

)
= f̃1(z) + 2δ f̃5(z) − εi

√
2 f̃7(z)

+ δεi
√

2 f̃11(z) − δενi
√

2 f̃13(z)

+ ενi
√

2 f̃17(z) + 2δν f̃19(z)

+ νf̃23(z), (21.23)

where fj and f̃j are normalized integral Fourier series with denominator 24
and numerator classes j modulo 24, and where

(
fj , f̃j

)
are pairs of sign

transforms. The components for j = 1, 5, 19, 23 are eta products,

f1 =
[

1, 465

232, 922

]
, f5 =

[
42, 23

2

]
,

(21.24)

f19 =
[
1, 922

46

]
, f23 =

[
25, 23
12, 42

]
,

f̃1 =
[

23, 232

1, 4, 46

]
, f̃5 =

[
42, 463

2, 23, 92

]
,

(21.25)

f̃19 =
[

23, 922

1, 4, 46

]
, f̃23 =

[
12, 463

2, 23, 92

]
.

Now we encounter two more of the numerous examples for the phenomenon
that theta series of weight 1 on three distinct fields coincide:

Example 21.7 Let the generators of (J138/(4
√

6))× � Z8 × Z4 × Z3
2 be

chosen as in Example 21.6, and define sixteen characters ϕδ,ε,ν and ϕ̃δ,ε,ν on
J138 with period 4

√
6 by their values

ϕδ,ε,ν(Λ138) = ν, ϕδ,ε,ν(
√

6 +
√

−23) = δνi,

ϕδ,ε,ν(
√

−23) = −ε, ϕδ,ε,ν(5) = 1,

ϕ̃δ,ε,ν(Λ138) = δi, ϕ̃δ,ε,ν(
√

6 +
√

−23) = νi,

ϕ̃δ,ε,ν(
√

−23) = ε, ϕ̃δ,ε,ν(5) = 1,

and ϕδ,ε,ν(−1) = ϕ̃δ,ε,ν(−1) = 1, with δ, ε, ν ∈ {1, −1}. Let the generators of
the group (J69/(8

√
3))× � Z16 × Z4 × Z3

2 be chosen as in Example 21.5, and
define eight characters ρδ,ε,ν on J69 with period 8

√
3 by
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ρδ,ε,ν(Λ69) = ν, ρδ,ε,ν(2
√

3 +
√

−23) = −δνi,

ρδ,ε,ν(
√

−23) = ε, ρδ,ε,ν(7) = −1

and ρδ,ε,ν(−1) = 1. Let J46 be given as in Example 7.7, with
Λ46 =

√√
2 +

√
−23. The residues of Λ46, 3

√
2 +

√
−46,

√
−23, 5 and

−1 modulo 12
√

2 generate the group (J46/(12
√

2))× � Z16 × Z4 × Z3
2 . Eight

characters ψδ,ε,ν on J46 with period 12
√

2 are given by

ψδ,ε,ν(Λ46) = ν, ψδ,ε,ν(3
√

2 +
√

−23) = δενi,

ψδ,ε,ν(
√

−23) = −ε, ψδ,ε,ν(5) = −1

and ψδ,ε,ν(−1) = 1. The residues of 2+ε
√

3, 13+18ε
√

3, 7+12ε
√

3, 29−4ε
√

3
and −1 modulo Mε = 8(9+2ε

√
3) are generators of (Z[

√
3]/(Mε))× � Z44 ×

Z4 × Z3
2 . Hecke characters ξδ,ε on Z[

√
3] with period Mε are given by

ξδ,ε(μ) =

⎧
⎨

⎩

sgn(μ)
−δεi sgn(μ)

−sgn(μ)
for μ ≡

⎧
⎨

⎩

2 + ε
√

3, 29 − 4ε
√

3
13 + 18ε

√
3

7 + 12ε
√

3, −1
mod Mε.

The residues of 1 + ε
√

2, 7 − 3ε
√

2, 13 + 12ε
√

2, 47 and −1 modulo Pε =
12(2 + 5ε

√
2) are generators of (Z[

√
2]/(Pε))× � Z88 × Z4 × Z3

2 . Hecke
characters ξ̃δ,ε on Z[

√
2] with period Pε are given by

ξ̃δ,ε(μ) =

⎧
⎪⎪⎨

⎪⎪⎩

ε sgn(μ)
sgn(μ)

δi sgn(μ)
−sgn(μ)

for μ ≡

⎧
⎪⎪⎨

⎪⎪⎩

1 + ε
√

2
13 + 12ε

√
2, 47

7 − 3ε
√

2
−1

mod Pε.

The theta series of weight 1 for ξδ,ε, ϕδ,ε,ν , ψδ,ε,ν are identical, those for ξ̃δ,ε,
ϕ̃δ,ε,ν , ρδ,ε,ν are identical, and these functions decompose as

Θ1

(
12, ξδ,ε,

z
24

)
= Θ1

(
−552, ϕδ,ε,ν , z

24

)
= Θ1

(
−184, ψδ,ε,ν , z

24

)

= g1(z) + 2δi g11(z) + 2δεi g13(z) − ε g23(z),
(21.26)

Θ1

(
8, ξ̃δ,ε,

z
24

)
= Θ1

(
−552, ϕ̃δ,ε,ν , z

24

)
= Θ1

(
−276, ρδ,ε,ν , z

24

)

= h1(z) + 2δi h7(z) − 2δεi h17(z) + ε h23(z),
(21.27)

where the components gj, hj are normalized integral Fourier series with de-
nominator 24 and numerator classes j modulo 24. Those for j = 1, 23 are
linear combinations of eta products,
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g1 =
[
1, 462

92

]
+ 2

[
2, 463

23, 92

]
+ 2

[
1, 4, 46

2

]
+ 2

[
4, 462

23

]
, (21.28)

h1 =
[
1, 462

92

]
+ 2

[
2, 463

23, 92

]
− 2

[
1, 4, 46

2

]
+ 2

[
4, 462

23

]
, (21.29)

g23 =
[
22, 23

4

]
+ 2

[
23, 46
1, 4

]
+ 2

[
2, 23, 92

46

]
+ 2

[
22, 92

1

]
, (21.30)

h23 =
[
22, 23

4

]
+ 2

[
23, 46
1, 4

]
− 2

[
2, 23, 92

46

]
+ 2

[
22, 92

1

]
. (21.31)

The remaining four eta products with denominator 24 are
[

23, 462

1, 4, 92

]
,

[
4, 23, 92

46

]
,

[
22, 463

4, 23, 92

]
,

[
1, 4, 92

2

]
,

the sign transforms of four of the eta products in g1, h1, g23, h23 in Exam-
ple 21.7. The other four have sign transforms

[2, 23],
[
22, 46

1

]
, [1, 46],

[
2, 462

23

]
,

belonging to Γ0(46). Linear combinations of these eight eta products consti-
tute some of the components of the following theta series:

Example 21.8 Let generators of (J46/(12
√

2))×, (J69/(8
√

3))×,
(J138/(4

√
6))× and of (Z[

√
3]/(8(9+2δ

√
3)))× be chosen as in Examples 21.5,

21.6 and 21.7. Define sixteen characters ρδ,ε,ν and ψ∗
δ,ε,ν on J46 with period

12
√

2 by their values

ρδ,ε,ν(Λ46) = ε, ρδ,ε,ν(3
√

2 +
√

−23) = νi,

ρδ,ε,ν(
√

−23) = δ, ρδ,ε,ν(5) = 1,

ψ∗
δ,ε,ν(Λ46) = νi, ψ∗

δ,ε,ν(3
√

2 +
√

−23) = δενi,

ψ∗
δ,ε,ν(

√
−23) = δ, ψ∗

δ,ε,ν(5) = 1,

and ρδ,ε,ν(−1) = ψ∗
δ,ε,ν(−1) = 1. Define 24 characters χ = χδ,ε,ν,σ and

χ̃ = χ̃δ,ε,ν on J69 with period 8
√

3 by

χ(Λ69) = 1√
2
(ε + σi), χ(2

√
3 +

√
−23) = νσ, χ(

√
−23) = δ, χ(7) = −1,

χ̃(Λ69) = ε, χ̃(2
√

3 +
√

−23) = ν, χ̃(
√

−23) = δ, χ̃(7) = −1,

and χ(−1) = χ̃(−1) = 1. Define eight characters ϕδ,ε,ν on J138 with period
4

√
6 by
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ϕδ,ε,ν(Λ138) = ν, ϕδ,ε,ν(
√

6 +
√

−23) = εν,

ϕδ,ε,ν(
√

−23) = δ, ϕδ,ε,ν(5) = −1,

and ϕδ,ε,ν(−1) = 1, where δ, ε, ν, σ ∈ {1, −1}. Define Hecke characters Ξδ,ε

on Z[
√

3] with period Mδ = 8(9 + 2δ
√

3) by

Ξδ,ε(μ) =

⎧
⎨

⎩

sgn(μ)
δε sgn(μ)

−sgn(μ)

for μ ≡

⎧
⎨

⎩

2 + δ
√

3
13 + 18δ

√
3

7 + 12δ
√

3, 29 − 4δ
√

3, −1
mod Mδ.

The residues of 1 + δ
√

6, 1 + 4δ
√

6, 5 + 8δ
√

6, 7 + 12δ
√

6 and −1 modulo
Pδ = 4(12 + δ

√
6) are generators of (Z[

√
6]/(Pδ))× � Z44 × Z4

2 . Hecke
characters Ξ̃δ,ε on Z[

√
6] with period Pδ are given by

Ξ̃δ,ε(μ) =
{

δε sgn(μ)
−sgn(μ)

for μ ≡
{

1 + δ
√

6
1 + 4δ

√
6, 5 + 8δ

√
6, 7 + 12δ

√
6, −1

mod Pδ.

Then the corresponding theta series of weight 1 satisfy the identities

Θ1

(
−276, χδ,ε,ν,σ, z

24

)
= f1(z) + ε

√
2 f5(z) + νi

√
2 f7(z)

+ 2ενi f11(z) + 2δενi f13(z)

+ δνi
√

2 f17(z) + δε
√

2 f19(z)
+ δ f23(z), (21.32)

Θ1

(
24, Ξ̃δ,ε,

z
24

)
= Θ1

(
−184, ρδ,ε,ν , z

24

)
= Θ1

(
−276, χ̃δ,ε,ν , z

24

)

= g1(z) + 2ε g5(z) − 2δε g19(z) + δ g23(z),
(21.33)

Θ1

(
12, Ξδ,ε,

z
24

)
= Θ1

(
−184, ψ∗

δ,ε,ν , z
24

)
= Θ1

(
−552, ϕδ,ε,ν , z

24

)

= h1(z) + 2ε h11(z) + 2δε h13(z) + δ h23(z),
(21.34)

where the components fj, gj , hj are normalized integral Fourier series with
denominator 24 and numerator classes j modulo 24. Those for j = 1, 23 are
linear combinations of eta products,
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f1 =
[

23, 462

1, 4, 92

]
+ 2

[
4, 23, 92

46

]
, f23 =

[
22, 463

4, 23, 92

]
+ 2

[
1, 4, 92

2

]
,

(21.35)

g1 =
[

23, 462

1, 4, 92

]
+ 2 [2, 23] + 2

[
22, 46

1

]
− 2

[
4, 23, 92

46

]
, (21.36)

h1 =
[

23, 462

1, 4, 92

]
− 2 [2, 23] + 2

[
22, 46

1

]
− 2

[
4, 23, 92

46

]
, (21.37)

g23 =
[

22, 463

4, 23, 92

]
+ 2 [1, 46] + 2

[
2, 462

23

]
− 2

[
1, 4, 92

2

]
, (21.38)

h23 =
[

22, 463

4, 23, 92

]
− 2 [1, 46] + 2

[
2, 462

23

]
− 2

[
1, 4, 92

2

]
. (21.39)

21.5 Non-cuspidal Eta Products for Γ0(92) and Γ0(76)

The non-cuspidal eta products of level 92, weight 1 and denominator 8 form
four pairs of sign transforms for which we introduce the notations

f1 =
[

22, 465

1, 232, 922

]
, f̃1 =

[
1, 4, 232

2, 46

]
,

(21.40)

f25 =
[
42, 462

2, 23

]
, f̃25 =

[
42, 23, 92

2, 46

]
,

f23 =
[

25, 462

12, 42, 23

]
, f̃23 =

[
12, 23, 92

2, 46

]
,

(21.41)

f47 =
[
22, 922

1, 46

]
, f̃47 =

[
1, 4, 922

2, 46

]
,

where the subscripts indicate the numerators. We find four linear combina-
tions which are cusp forms and theta series on the fields with discriminants
8, −23 and −184, and we find eight Eisenstein series which are composed
from the eta products and from four other Fourier series:

Example 21.9 Let generators of (J23/(8))×, (J23/(16))×, (J46/(2
√

2))×,
(J46/(4

√
2))× be chosen as in Examples 21.3, 21.1 and 21.4. Define four

characters ϕδ,ν on J23 with period 8 and four characters ϕ̃δ,ν on J23 with
period 16 by

ϕδ,ν(α) = ν, ϕδ,ν(3) = −1,

ϕδ,ν(
√

−23) = δ, ϕδ,ν(−1) = 1,

ϕ̃δ,ν(α) = νi, ϕ̃δ,ν(3) = 1,

ϕ̃δ,ν(4 +
√

−23) = δ, ϕ̃δ,ν(−1) = 1,
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where α = (1 −
√

−23)/2Λ23. Define four characters ψδ,ν on J46 with period
2

√
2 and four characters ψ̃δ,ν on J46 with period 4

√
2 by

ψδ,ν(Λ46) = νi, ψδ,ν(
√

−23) = δ,

ψ̃δ,ν(Λ46) = ν, ψ̃δ,ν(3) = −1,

ψ̃δ,ν(
√

−23) = −δ, ψ̃δ,ν(−1) = 1,

with δ, ν ∈ {1, −1}. The residues of 1 + δ
√

2, 5 − 8δ
√

2, 7 − 8δ
√

2 and −1
modulo Mδ = 4(2 + 5δ

√
2) are generators of (Z[

√
2]/(Mδ))× � Z44 × Z3

2 .
Hecke characters ξδ and ξ̃δ on Z[

√
2] with period Mδ are given by

ξδ(μ) =

⎧
⎪⎪⎨

⎪⎪⎩

δ sgn(μ)
−sgn(μ)
sgn(μ)

−sgn(μ)

,

ξ̃δ(μ) =

⎧
⎪⎪⎨

⎪⎪⎩

δ sgn(μ)
sgn(μ)
sgn(μ)

−sgn(μ)

for μ ≡

⎧
⎪⎪⎨

⎪⎪⎩

1 + δ
√

2
5 − 8δ

√
2

7 − 8δ
√

2
−1

mod Mδ.

Then the corresponding theta series of weight 1 satisfy the identities

Θ1

(
8, ξδ,

z
8

)
= Θ1

(
−23, ϕδ,ν , z

8

)
= Θ1

(
−184, ψδ,ν , z

8

)

= f1(z) − 2 f25(z) + δ
(
f23(z) − 2 f47(z)

)
, (21.42)

Θ1

(
8, ξ̃δ,

z
8

)
= Θ1

(
−23, ϕ̃δ,ν , z

8

)
= Θ1

(
−184, ψ̃δ,ν , z

8

)

= f̃1(z) + 2 f̃25(z) − δ
(
f̃23(z) + 2 f̃47(z)

)
, (21.43)

where fj, f̃j are defined in (21.40), (21.41). Fix Dirichlet characters χδ,ν

modulo 8 and χ̃δ,ν modulo 16 by their values

χδ,ν(5) = ν, χδ,ν(−1) = δ, χ̃δ,ν(5) = νi, χ̃δ,ν(−1) = −δ

on generators of (Z/(8))× and (Z/(16))×, respectively. Then we have the
identities

∞∑

n=1

(
χδ,ν(n)

∑

d|n

(−46
d

))
e
(

nz
8

)
= g1(z) + 2δν g3(z) + 2ν g5(z) + δ g7(z),

(21.44)
∞∑

n=1

(
χ̃δ,ν(n)

∑

d|n

(−46
d

))
e
(

nz
8

)
= g̃1(z) − 2δνi g̃3(z) + 2νi g̃5(z) + δ g̃7(z),

(21.45)
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where gj, g̃j are normalized integral Fourier series with denominator 8 and
numerator classes j modulo 8. The components for j = 1, 7 are linear com-
binations of eta products; with notations from (21.40), (21.41) we have

g1 = f1 + 2 f25, g7 = f23 + 2 f47, g̃1 = f̃1 − 2 f̃25, g̃7 = f̃23 − 2 f̃47.
(21.46)

We observe that ϕ1,ν = χν and ψ1,ν = ψν for the characters χν and ψν in
Example 21.3. Therefore we get a complicated eta identity which says that
the right hand side in (21.42), with δ = 1 and with z replaced by 8z, is equal
to the right hand side in (21.10).

In (21.44), χ1,1 is the unique Dirichlet character modulo 2, χ−1,1 is the non-
trivial character modulo 4, and we have χδ,−1(n) =

(−2δ
n

)
.

The non-cuspidal eta products of weight 1 for Γ0(92) with denominator 4 are
[

42, 465

2, 232, 922

]
,

[
25, 922

12, 42, 46

]
.

Their sign transforms belong to the Fricke group Γ∗(92). There are no linear
combinations of these four functions which are eigenforms.

The functions f̃j in (21.40), (21.41) are permuted by the Fricke involution
W92, whereas the functions fj are transformed into four out of the six non-
cuspidal eta products with denominator 1. (The other two of them are the
Fricke transforms of the above mentioned eta products with denominator 4.)
This indicates that applying W92 to the right hand side of (21.42) should
produce eigenforms which are linear combinations of the four eta products

h1 =
[

25, 462

12, 42, 92

]
, h25 =

[
22, 232

4, 46

]
,

(21.47)

h23 =
[

22, 465

4, 232, 922

]
, h47 =

[
12, 462

2, 92

]
,

with denominator 1 and numerator 0. Here hj is the Fricke transform of fj ,
and (h1, h47), (h23, h25) are pairs of sign transforms. Taking into account the
transformation factors leads to the candidates

Hδ = 1
4

(
(h1 − h25) + δ (h23 − h47)

)

with δ ∈ {1, −1}. We find that H1 is indeed an eigenform, while in H−1,
exactly as in (21.11), we need to replace z by z

2 and pass to the sign transform.
In fact we get

1
2

(
(f1 + f3) + δ (f̃1 + f̃3)

)
= 1

4

(
(h1 − h25) + δ (h23 − h47)

)
,
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with notations as in (21.9), (21.47). These identities are equivalent to

f1 + f3 = 1
2 (h1 − h25), f̃1 + f̃3 = 1

2 (h23 − h47),

or, explicitly,
[
23, 23
1, 4

]
+
[
22, 23, 92

1, 46

]
=

1
2

([
25, 462

12, 42, 92

]
−
[
22, 232

4, 46

])
,

[
1, 463

23, 92

]
+
[
1, 4, 462

2, 23

]
=

1
2

([
22, 465

4, 232, 922

]
−
[
12, 462

2, 92

])
.

Multiplication with suitable eta products shows that each of these identities
is equivalent to

2
(
[2, 46] + [4, 92]

)
=
[

23, 463

1, 4, 23, 92

]
− [1, 23].

In terms of coefficients, this is equivalent to
∑

x2+23y2 = 12 n

(
12
xy

)
+

∑

x2+23y2 = 24 n

(
12
xy

)
+

∑

x2+23y2 = 48 n

(
12
xy

)
= 0

for all positive integers n, where in each sum x, y run over all positive integers
satisfying the indicated equation.

Now we briefly discuss the non-cuspidal eta products of weight 1 for Γ0(76).

Those with denominator 4 have numerators 1 and 19. Those with denomi-
nator 8 form four pairs of sign transforms with numerators 1, 19, 21 and 39.
There are no linear combinations of these functions which have multiplicative
coefficients. The eta products with denominator 1 form three pairs of sign
transforms, all of which do not vanish at ∞. Again, there are no linear com-
binations with multiplicative coefficients. Thus this subsections ends without
any results for level 76.

21.6 Cuspidal Eta Products for Γ0(76)

The cuspidal eta products of weight 1 for Γ0(76) with denominator 2 form a
pair of sign transforms with orders 5

2 at ∞. The Fricke involution W76 sends
them to eta products with orders 1

8 and 19
8 at ∞. We did not find eigenforms

involving any of these functions. Also, we did not find eigenforms containing
any of the six cuspidal eta products with denominator 6 which form three
pairs of sign transforms with orders 1

6 , 19
6 , 5

6 at ∞. Their transforms under
W76 have denominator 24; four of them are

F1 =
[

1, 385

192, 762

]
, F25 =

[
42, 19

2

]
,

F19 =
[
25, 19
12, 42

]
, F115 =

[
1, 762

38

]
, (21.48)
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where the subscripts indicate the numerators. In Example 21.13 we will meet
theta series whose components involve these eta products and four more func-
tions which are not otherwise identified. Transforming back to the eta prod-
ucts with denominator 6 does not yield a result,—for similar reasons as ex-
plained before Example 21.4 and after Example 21.5. The Fricke transforms
of the remaining two eta products with denominator 6 are [4, 19−1, 383, 76−1]
and [1−1, 23, 4−1, 76] with orders 23

24 and 77
24 at ∞; they will not appear fur-

thermore in examples.

As for the six cuspidal eta products with denominator 8, we cannot present
results either. Two of them are, as mentioned above, the Fricke transforms
of eta products with denominator 2. The others form two pairs of Fricke
transforms, and their sign transforms are the eta products for Γ∗(38) which
were briefly discussed at the end of Sect. 17.1.

Our first result in this subsection involves four out of the eight cuspidal eta
products with denominator 12. We refer to Example 17.27 on eta products
of level 38 and theta series on Q(

√
−57). When we take the sign transforms

of the functions in (17.64) then we obtain a corresponding result for level 76:

Example 21.10 Let J57 be the system of integral ideal numbers for Q(
√

−57)
as given in Example 7.6. The residues of α = 1√

2
(

√
3 +

√
−19),

√
−19 and

1 + 2
√

−57 modulo 4
√

3 can be chosen as generators of (J57/(4
√

3))× �
Z8 × Z4 × Z2, where (α2

√
−19)2 ≡ −1 mod 4

√
3. Eight characters χδ,ε,ν on

J57 with period 4
√

3 are fixed by their values

χδ,ε,ν(α) = 1√
2
(δε + νi), χδ,ε,ν(

√
−19) = δi, χδ,ε,ν(1 + 2

√
−57) = 1

with δ, ε, ν ∈ {1, −1}. The corresponding theta series of weight 1 decompose
as

Θ1

(
−228, χδ,ε,ν , z

12

)

= h1(z) + εi
√

2 h5(z) + δi h7(z) + δε
√

2 h11(z) (21.49)

where the components hj are normalized integral Fourier series with denomi-
nator 12 and numerator classes j modulo 12, and all of them are eta products,

h1 =
[

2, 385

192, 762

]
, h5 =

[
23, 19, 76
1, 4, 38

]
,

h7 =
[
25, 38
12, 42

]
, h11 =

[
1, 4, 383

2, 19, 76

]
. (21.50)

The other four cuspidal eta products with denominator 12 form two pairs of
sign transforms with numerators 11 and 29. By the Fricke involution W76

they are sent to the eta products
[

23, 382

1, 4, 76

]
,

[
22, 383

4, 19, 76

]
,

[
4, 19, 76

38

]
,

[
1, 4, 76

2

]
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with denominator 24 and numerators 1, 19, 61, 79. We cannot offer eigenforms
involving any of these eight functions.

In the following example we present sixteen theta series on Q(
√

−57) whose
components consist of four pairs of sign transforms among the eta products
with denominator 24, together with eight functions which are not otherwise
identified:

Example 21.11 Let J57 and α be given as in Example 21.10. The
residues of α,

√
−19, 1 + 2

√
−57 and −1 modulo 8

√
3 are generators of

(J57/(8
√

3))× � Z8 × Z2
4 × Z2. Thirty-two characters ψ = ψδ,ε,ν,σ and

ψ̃ = ψ̃δ,ε,ν,σ on J57 with period 8
√

3 are given by

ψ(α) = ξ =
εσ + νi√

2
, ψ(

√
−19) = δ, ψ(1 + 2

√
−57) = σ, ψ(−1) = 1,

ψ̃(α) = iξ =
ν + εσi√

2
, ψ̃(

√
−19) = δi, ψ̃(1+2

√
−57) = σi, ψ̃(−1) = 1,

with δ, ε, ν, σ ∈ {1, −1}. The corresponding theta series of weight 1 decompose
as

Θ1

(
−228, ψδ,ε,ν,σ, z

24

)
= g1(z) − δε

√
2 g5(z)

− 2δενi g7(z) + νi
√

2 g11(z)

+ 2ενi g13(z) + δνi
√

2 g17(z)

+ δ g19(z) − ε
√

2 g23(z), (21.51)

Θ1

(
−228, ψ̃δ,ε,ν,σ, z

24

)
= g̃1(z) − δεi

√
2 g̃5(z)

− 2δενi g̃7(z) + ν
√

2 g̃11(z)

− 2εν g̃13(z) − δνi
√

2 g̃17(z)

+ δi g̃19(z) + ε
√

2 g̃23(z), (21.52)

where gj and g̃j are normalized integral Fourier series with denominator 24
and numerator classes j modulo 24. For every j, (gj , g̃j) is a pair of sign
transforms. The components for j = 1, 7, 13, 19 are eta products,

g1 =
[

23, 382

1, 4, 76

]
, g7 =

[
1, 4, 76

2

]
,

(21.53)

g13 =
[
4, 19, 76

38

]
, g19 =

[
22, 383

4, 19, 76

]
,

g̃1 =
[
1, 382

76

]
, g̃7 =

[
22, 76

1

]
,

(21.54)

g̃13 =
[
4, 382

19

]
, g̃19 =

[
22, 19

4

]
.
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The Fricke involution W76 permutes the eta products g̃j in (21.54), while it
sends the eta products gj in (21.53) to the eta products with denominator 12
which we could not identify with components of eigenforms.—In the following
example we meet the sign transforms of the eta products in (17.66):

Example 21.12 Let J114 be defined as in Example 7.10, with Λ = Λ114 =√√
6 +

√
−19. The residues of Λ,

√
−19,

√
3 +

√
−38 and 1 + 2

√
−114

modulo 4
√

6 can be chosen as generators of (J114/(4
√

6))× � Z8 × Z2
4 × Z2,

where Λ4(
√

3 +
√

−38)2 ≡ −1 mod 4
√

6. Sixteen characters ϕ = ϕδ,ε,ν,σ on
J114 with period 4

√
6 are fixed by their values

ϕ(Λ) = 1√
2
(ν + σi), ϕ(

√
−19) = δ,

ϕ(
√

3 +
√

−38) = εi, ϕ(1 + 2
√

−114) = 1

with δ, ε, ν, σ ∈ {1, −1}. The corresponding theta series of weight 1 decompose
as

Θ1

(
−456, ϕδ,ε,ν,σ, z

24

)
= h̃1(z) + ν

√
2 h̃5(z) + δενi

√
2 h̃7(z)

− 2δεi h̃11(z) − ενi
√

2 h̃13(z) + 2εi h̃17(z)

+ δ h̃19(z) + δν
√

2 h̃23(z) (21.55)

with normalized integral Fourier series h̃j with denominator 24 and numer-
ator classes j modulo 24. Four of the components are eta products and equal
to the sign transforms of the eta products hj in (17.66),

h̃1 =
[

23, 385

1, 4, 192, 762

]
, h̃11 =

[
2, 19, 76

38

]
,

h̃17 =
[
1, 4, 38

2

]
, h̃19 =

[
25, 383

12, 42, 19, 76

]
.

The next example shows another two instances for the coincidence of theta
series on distinct number fields. In each case there are two components which
are linear combinations of eta products and two components which are not
otherwise identified:

Example 21.13 The residues of Λ = Λ114,
√

−19 and
√

3 +
√

−38 modulo
2

√
6 can be chosen as generators of (J114/(2

√
6))× � Z8 × Z4 × Z2, where

Λ4 ≡ −1 mod 2
√

6. Sixteen characters χδ,ε,ν and χ̃δ,ε,ν on J114 with period
2

√
6 are defined by

χδ,ε,ν(Λ) = ν, χδ,ε,ν(
√

−19) = δi, χδ,ε,ν(
√

3 +
√

−38) = εν,

χ̃δ,ε,ν(Λ) = −δεi, χ̃δ,ε,ν(
√

−19) = δi, χ̃δ,ε,ν(
√

3 +
√

−38) = ν
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with δ, ε, ν ∈ {1, −1}. The residues of 2 + ω, 9 − 4ω, 19 + 8ω, 21 − 8ω
and ω modulo 8(7 + ω) can be chosen as generators of (O3/(56 + 8ω))× �
Z36 × Z3

2 × Z6. Characters ρ = ρδ,ε,1 on O3 with period 8(7+ω) are given by

ρ(2 + ω) = δεi, ρ(9 − 4ω) = −ε,

ρ(19 + 8ω) = 1, ρ(21 − 8ω) = 1, ρ(ω) = 1.

Define characters ρδ,ε,−1 on O3 with period 8(7+ω) by ρδ,ε,−1(μ) = ρδ,ε,1(μ).
The residues of 1

2 (1 +
√

−19),
√

−19, 1 + 6
√

−19 and −1 modulo 24 can be
chosen as generators of (O19/(24))× � Z24 × Z4 × Z2

2 . Define characters
ψδ,ε,ν on O19 with period 24 by

ψδ,ε,ν

(
1
2 (1 +

√
−19)

)
= −δεi, ψδ,ε,ν(

√
−19) = δi,

ψδ,ε,ν(1 + 6
√

−19) = ν, ψδ,ε,ν(−1) = 1.

The residues of 5+
√

38 and 3+
√

38 modulo M = 6(6+
√

38) are generators
of (Z[

√
38]/(M))× � Z8 × Z4, where (3 +

√
38)2 ≡ −1 mod M . Characters

ξδ,ε on Z[
√

38] with period M are given by

ξδ,ε(μ) =
{

ε sgn(μ)
−δi sgn(μ) for μ ≡

{
5 +

√
38

3 +
√

38
mod M.

The residues of 1 + ε
√

6, 11 + 2ε
√

6 and −1 modulo Pε = 2(6 + 5ε
√

6) are
generators of (Z[

√
6]/(Pε))× � Z36 × Z2

2 . Hecke characters ξ̃δ,ε on Z[
√

6]
with period Pε are given by

ξ̃δ,ε(μ) =

⎧
⎨

⎩

−δi sgn(μ)
sgn(μ)

−sgn(μ)
for μ ≡

⎧
⎨

⎩

1 + ε
√

6
11 + 2ε

√
6

−1
mod Pε.

The corresponding theta series of weight 1 satisfy the identities

Θ1

(
152, ξδ,ε,

z
24

)
= Θ1

(
−456, χδ,ε,ν , z

24

)
= Θ1

(
−3, ρδ,ε,ν , z

24

)

= f1(z) + 2δεi f7(z) + 2ε f13(z) + δi f19(z),
(21.56)

Θ1

(
24, ξ̃δ,ε,

z
24

)
= Θ1

(
−456, χ̃δ,ε,ν , z

24

)
= Θ1

(
−19, ψδ,ε,ν , z

24

)

= f̃1(z) − 2δεi f̃5(z) + δi f̃19(z) − 2ε f̃23(z),
(21.57)

where the components fj, f̃j are normalized integral Fourier series with de-
nominator 24 and numerator classes j modulo 24. Those for j = 1, 19 are
linear combinations of eta products,

f1 =
[

1, 385

192, 762

]
+ 2

[
42, 19

2

]
, f19 =

[
25, 19
12, 42

]
− 2

[
1, 762

38

]
, (21.58)

f̃1 =
[

1, 385

192, 762

]
− 2

[
42, 19

2

]
, f̃19 =

[
25, 19
12, 42

]
+ 2

[
1, 762

38

]
. (21.59)
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In the following example we deal with the sign transforms of the eta products
in (21.58), (21.59). Not surprisingly, we obtain identities with theta series on
the same number fields where, however, the characters have twice the periods
than before.

Example 21.14 Let the generators of (J114/(4
√

6))× � Z8 × Z2
4 × Z2 be

chosen as in Example 21.12. Sixteen characters φδ,ε,ν and φ̃δ,ε,ν on J114

with period 4
√

6 are defined by

φδ,ε,ν(Λ) = ε, φδ,ε,ν(
√

−19) = δ,

φδ,ε,ν(
√

3 +
√

−38) = ν, φδ,ε,ν(1 + 2
√

−114) = −1,

φ̃δ,ε,ν(Λ) = νi, φ̃δ,ε,ν(
√

−19) = δ,

φ̃δ,ε,ν(
√

3 +
√

−38) = δεν, φ̃δ,ε,ν(1 + 2
√

−114) = −1

with δ, ε, ν ∈ {1, −1}. The residues of 2+ω, 9 − 4ω, 1 − 16ω, 39 − 16ω and ω
modulo 16(7+ω) are generators of (O3/(112+16ω))× � Z72 × Z4 × Z2

2 × Z6.
Characters ϕδ,ε,1 on O3 with period 16(7 + ω) are given by

ϕδ,ε,1(2 + ω) = δεi, ϕδ,ε,1(9 − 4ω) = −εi,

ϕδ,ε,1(1 − 16ω) = 1, ϕδ,ε,1(39 − 16ω) = −1

and ϕδ,ε,1(ω) = 1. Define characters ϕδ,ε,−1 on O3 with period 16(7 + ω) by
ϕδ,ε,−1(μ) = ϕδ,ε,1(μ). The residues of 1

2 (1 +
√

−19),
√

−19, 1 + 6
√

−19 and
−1 modulo 48 can be chosen as generators of (O19/(48))× � Z24 × Z8 × Z4 ×
Z2. Define characters ψ̃δ,ε,ν on O19 with period 48 by

ψ̃δ,ε,ν

(
1
2 (1 +

√
−19)

)
= δε, ψ̃δ,ε,ν(

√
−19) = δ,

ψ̃δ,ε,ν(1 + 6
√

−19) = νi, ψ̃δ,ε,ν(−1) = 1.

The residues of 5 +
√

38, 3 +
√

38, 5 and −1 modulo M = 12(6 +
√

38) are
generators of (Z[

√
38]/(M))× � Z8 × Z4 × Z2

2 . Hecke characters Ξδ,ε on
Z[

√
38] with period M are given by

Ξδ,ε(μ) =

⎧
⎨

⎩

εi sgn(μ)
−δ sgn(μ)

−sgn(μ)
for μ ≡

⎧
⎨

⎩

5 +
√

38
3 +

√
38

5, −1
mod M.

The residues of 1 + ε
√

6, 11 + 2ε
√

6, 19 − 4ε
√

6, 37 and −1 modulo Pε =
4(6 + 5ε

√
6) are generators of (Z[

√
6]/(Pε))× � Z36 × Z4

2 . Hecke characters
Ξ̃δ,ε on Z[

√
6] with periods Pε are given by

Ξ̃δ,ε(μ) =

⎧
⎨

⎩

δ sgn(μ)
sgn(μ)

−sgn(μ)
for μ ≡

⎧
⎨

⎩

1 + ε
√

6
11 + 2ε

√
6, 19 − 4ε

√
6, 37

−1
mod Pε.
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The corresponding theta series of weight 1 satisfy the identities

Θ1

(
152, Ξδ,ε,

z
24

)
= Θ1

(
−456, φδ,ε,ν , z

24

)
= Θ1

(
−3, ϕδ,ε,ν , z

24

)

= g1(z) − 2δεi g7(z) + 2εi g13(z) + δ g19(z),
(21.60)

Θ1

(
24, Ξ̃δ,ε,

z
24

)
= Θ1

(
−456, φ̃δ,ε,ν , z

24

)
= Θ1

(
−19, ψ̃δ,ε,ν , z

24

)

= g̃1(z) + 2δε g̃5(z) + δ g̃19(z) + 2ε g̃23(z),
(21.61)

where the components gj, g̃j are normalized integral Fourier series with de-
nominator 24 and numerator classes j modulo 24. Those for j = 1, 19 are
linear combinations of eta products,

g1 =
[

23, 192

1, 4, 38

]
− 2

[
42, 383

2, 19, 76

]
,

(21.62)

g19 =
[

12, 383

2, 19, 76

]
− 2

[
23, 762

1, 4, 38

]
,

g̃1 =
[

23, 192

1, 4, 38

]
+ 2

[
42, 383

2, 19, 76

]
,

(21.63)

g̃19 =
[

12, 383

2, 19, 76

]
+ 2

[
23, 762

1, 4, 38

]
.

The components here and in Example 21.13 form pairs of sign transforms
(fj , gj) and

(
f̃j , g̃j

)
.

In Examples 21.11, 21.12, 21.13, 21.14, altogether 20 eta products with de-
nominator 24 occur in the components of theta series. There are two such eta
products which remain, [1−1, 23, 4−1, 76] and [4, 19−1, 383, 76−1], with orders
77
24 and 23

24 at ∞, which we could not identify with constituents in eigenforms.
Their Fricke transforms have order 5

6 at ∞, and their sign transforms belong
to Γ∗(76).
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22.1 Eta Products for the Fricke Groups Γ∗(68) and
Γ∗(52)

There is exactly one cuspidal eta product of weight 1 for Γ∗(68) with denom-
inator 4. Its order at ∞ is 3

4 , and it is the sign transform of the function
η(z)η(17z) which was treated in Example 12.10. Not surprisingly, now we get
a similar result for theta series on Q(

√
−17) with characters which have twice

the period of those in Example 12.10. Here again, one of the components is
identified with a difference of two non-cuspidal eta products:

Example 22.1 Let J17 be the system of ideal numbers for Q(
√

−17) as given
in Example 7.9. The residues of Λ = Λ17 =

√
1√
2
(1 +

√
−17) and 1+2

√
−17

modulo 4 can be chosen as generators of the group (J17/(4))× � Z16 × Z2,
where Λ8 ≡ −1 mod 4. Four characters ψδ,ν on J17 with period 4 are fixed by
their values

ψδ,ν(Λ) = 1√
2
(δ + νi), ψδ,ν(1 + 2

√
−17) = −1

with δ, ν ∈ {1, −1}. The corresponding theta series of weight 1 satisfy

Θ1

(
−68, ψδ,ν , z

4

)
= g1(z) + δ

√
2 g3(z) (22.1)

with normalized integral Fourier series gj with denominator 4 and numerator
classes j modulo 4. The components are eta products or linear combinations
thereof,

g1 =
[
42, 172

2, 34

]
−
[
12, 682

2, 34

]
, g3 =

[
23, 343

1, 4, 17, 68

]
. (22.2)

The components gj are the sign transforms of the components fj in Exam-
ple 12.10.
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DOI 10.1007/978-3-642-16152-0 22, c© Springer-Verlag Berlin Heidelberg 2011
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The cuspidal eta products of weight 1 for Γ∗(68) with denominator 8 have
orders 1

8 , 17
8 , 7

8 , 23
8 at ∞. We find four theta series on Q(

√
−68) which are

linear combinations of these eta products and of two functions not otherwise
identified:

Example 22.2 The residues of Λ =
√

1√
2
(1 +

√
−17), 1 + 2

√
−17 and 3

modulo 8 can be chosen as generators of (J17/(8))× � Z16 × Z4 × Z2, where
Λ8 ≡ −1 mod 8. Eight characters ϕδ,ε,ν on J17 with period 8 are given by

ϕδ,ε,ν(Λ) = 1√
2
(δ + νi), ϕδ,ε,ν(1 + 2

√
−17) = −ενi, ϕδ,ε,ν(3) = 1

with δ, ε, ν ∈ {1, −1}. The corresponding theta series of weight 1 decompose
as

Θ1

(
−68, ϕδ,ε,ν , z

8

)
= h1(z) + δ

√
2 h3(z) − 2δε h5(z) + ε

√
2 h7(z) (22.3)

with normalized integral Fourier series hj with denominator 8 and numerator
classes j modulo 8. The components h1, h7 are linear combinations of eta
products,

h1 =
[
22, 342

1, 68

]
−
[
22, 342

4, 17

]
, h7 = [4, 17] + [1, 68]. (22.4)

One of the non-cuspidal eta products of weight 1 for Γ∗(68) has denomina-
tor 1. This is the function

[
25, 345

12, 42, 172, 682

]

whose coefficient at n is the number of representations of n by the quadratic
form x2 + 17y2 with discriminant −68. Here the class number is 4, and
therefore this eta product can be considered to be one out of four terms in
Θ1(−68, 1, z) where 1 stands for the trivial character on J17.

In (22.2) we met already two of the non-cuspidal eta products with denom-
inator 4. The third one is

[
1, 2−1, 4, 17, 34−1, 68

]
with order 9

8 at ∞. We
find a linear combination of these three eta products which is a cuspidal
eigenform and a theta series on the fields Q(

√
17), Q(

√
−17) and Q(

√
−1).

Moreover, we find two Eisenstein series with components consisting of these
eta products and of a function not otherwise identified:

Example 22.3 Let the generators of (J17/(4))× � Z16 × Z2 be chosen as in
Example 22.1, and define characters χν on J17 with period 4 by

χν(Λ) = νi, χν(1 + 2
√

−17) = −1
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with ν ∈ {1, −1}. The residues of 1 + 2νi, 7 + 2νi and νi modulo 4(4 + νi)
can be chosen as generators of (O1/(16 + 4νi))× � Z16 × Z2 × Z4. Define
characters ϕν on O1 with periods 4(4 + νi) by

ϕν(1 + 2νi) = 1, ϕν(7 + 2νi) = −1, ϕν(νi) = 1.

Put ω17 = 1
2 (1 +

√
17). The residues of 2 +

√
17,

√
17, 3 and −1 modulo 8

are generators of (Z[ω17]/(8))× � Z4
2 . A Hecke character ξ on Z[ω17] with

period 8 is given by

ξ(μ) =
{

sgn(μ)
−sgn(μ) for μ ≡

{
2 +

√
17,

√
17

3, −1
mod 8.

The corresponding theta series of weight 1 satisfy the identities

Θ1

(
17, ξ, z

4

)
= Θ1

(
−68, χν , z

4

)

= Θ1

(
−4, ϕν , z

4

)
= f1(z) − 2 f9(z) + f17(z) (22.5)

where

f1 =
[
42, 172

2, 34

]
, f9 =

[
1, 4, 17, 68

2, 34

]
, f17 =

[
12, 682

2, 34

]
. (22.6)

Moreover, we have two Eisenstein series

∞∑

n=1

(
δ

1
2 (n−1)

(
−2
n

)∑

d|n

(
−17
d

))
e
(

nz
4

)
= F1(z) + 2δ F3(z) (22.7)

with δ ∈ {1, −1}, where Fj is a normalized integral Fourier series with de-
nominator 4 and numerator j, and where F1 is a linear combination of the
eta products in (22.6),

F1 = f1 + 2 f9 + f17. (22.8)

Now we discuss the cuspidal eta products of weight 1 for the Fricke group
Γ∗(52). Those with denominator 8 have orders 1

8 and 13
8 at ∞. They are

components in two theta series on the field with discriminant −52:

Example 22.4 Let J13 be given as in Example 7.1. The residues of
1√
2
(1 +

√
−13), 1 + 2

√
−13 and −1 modulo 8 can be chosen as generators of

(J13/(8))× � Z8 × Z4 × Z2. Eight characters χδ,ε,ν on J13 with period 8 are
given by

χδ,ε,ν

(
1√
2
(1 +

√
−13)

)
= 1√

2
(δ + νi), χδ,ε,ν(1 + 2

√
−13) = −ενi,

χδ,ε,ν(−1) = 1
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with δ, ε, ν ∈ {1, −1}. The corresponding theta series of weight 1 decompose
as

Θ1

(
−52, χδ,ε,ν , z

8

)
= f1(z) + ε

√
2 f3(z) + δε f5(z) + δ

√
2 f7(z) (22.9)

where the components fj are normalized integral Fourier series with denom-
inator 8 and numerator classes j modulo 8, and where f1 and f5 are eta
products,

f1 =
[
22, 262

1, 52

]
, f5 =

[
22, 262

4, 13

]
. (22.10)

The eta product with denominator 12 is the sign transform of the function
η(z)η(13z) in Example 12.9. Therefore we obtain a result which is similar to
that in Example 12.9:

Example 22.5 The residues of 1√
2
(1 +

√
−13), 2 +

√
−13 and 1 + 6

√
−13

modulo 12 can be chosen as generators of (J13/(12))× � Z2
8 × Z2, where(

1√
2
(1 +

√
−13)

)4 ≡ −1 mod 12. Four characters ϕδ,ν on J13 with period 12
are given by their values

ϕδ,ν

(
1√
2
(1 +

√
−13)

)
= δ,

ϕδ,ν(2 +
√

−13) = νi, ϕδ,ν(1 + 6
√

−13) = −1

with δ, ν ∈ {1, −1}. The residues of 3 + ω, 1 + 6ω, 9 + 4ω, 13 − 16ω and ω
modulo 8(5 + 2ω) are generators of (O3/(40 + 16ω))× � Z12 × Z4 × Z2

2 × Z6.
Characters ρδ,1 on O3 with period 8(5 + 2ω) are given by

ρδ,1(3 + ω) = −1, ρδ,1(1 + 6ω) = δ,

ρδ,1(9 + 4ω) = 1, ρδ,1(13 − 16ω) = −1, ρδ,1(ω) = 1.

Define characters ρδ,−1 on O3 with period 8(5 + 2ω) by ρδ,−1(μ) = ρδ,1(μ).
The residues of 1√

2
(7 +

√
39), 1 + 2

√
39 and −1 modulo M = 4(6 +

√
39) are

generators of
(

J
Q(

√
39)/(M)

)× � Z8 × Z2
2 . Hecke characters ξδ on J

Q(
√

39)

with period M are given by

ξδ(μ) =
{

−δ sgn(μ)
−sgn(μ) for μ ≡

{
1√
2
(7 +

√
39)

1 + 2
√

39, −1
mod M.

The corresponding theta series of weight 1 satisfy the identities

Θ1

(
156, ξδ,

z
12

)
= Θ1

(
−52, ϕδ,ν , z

12

)

= Θ1

(
−3, ρδ,ν , z

12

)
= g1(z) + 2δ g7(z) (22.11)
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where the components fj are normalized integral Fourier series with denomi-
nator 12 and numerator classes j modulo 12, and where g7 is an eta product,

g7(z) =
η3(2z)η3(26z)

η(z)η(4z)η(13z)η(52z)
, (22.12)

and g1 is a linear combination of eta products of level 156,

g1 =
[
4, 62, 392

2, 12, 78

]
−
[
32, 52, 782

6, 26, 156

]
+ 2

[
122, 13, 782

6, 26, 39

]
− 2

[
1, 62, 1562

2, 3, 78

]
.

The eta products [1, 52] and [4, 13] with denominator 24, together with six
complementing functions, combine to eight theta series for the discriminant
D = −52:

Example 22.6 The residues of 1√
2
(1 +

√
−13), 1 + 2

√
−13, 1 + 6

√
−13 and

−1 modulo 24 can be chosen as generators of (J13/(24))× � Z2
8 × Z4 × Z2.

Sixteen characters ψ = ψδ,ε,ν,σ on J13 with period 24 are defined by their
values

ψ

(
1 +

√
−13√
2

)
=

δ + σi√
2

, ψ(1 + 2
√

−13) = −δε, ψ(1 + 6
√

−13) = δνσi

and ψ(−1) = 1 with δ, ε, ν, σ ∈ {1, −1}. The corresponding theta series of
weight 1 decompose as

Θ1

(
−52, ψδ,ε,ν,σ, z

24

)
= h1(z) − 2δε h5(z) + δ

√
2 h7(z)

+ ε
√

2 h11(z) + ν h13(z)

− 2δεν h17(z) + δν
√

2 h19(z)

+ εν
√

2 h23(z), (22.13)

where the components hj are normalized integral Fourier series with denom-
inator 24 and numerator classes j modulo 24, and where h5 and h17 are eta
products,

h5(z) = η(z)η(52z), h17(z) = η(4z)η(13z). (22.14)

In the final part of this subsection we consider the non-cuspidal eta prod-
ucts of weight 1 for Γ∗(52). One of them has denominator 1; its coef-
ficient at n is the number of representations of n by the quadratic form
x2 + 13y2 with discriminant −52. Here the class number is 2, and therefore[
1−2, 25, 4−2, 13−2, 265, 52−2

]
is one of the two terms in Θ1(−52, 1, z) where

1 stands for the trivial character on J13.

We are left with three eta products with denominator 4 for which we introduce
the notations

g1 =
[
42, 132

2, 26

]
, g7 =

[
1, 4, 13, 52

2, 26

]
, g13 =

[
12, 522

2, 26

]
(22.15)
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where the subscripts indicate the numerators. They combine to three eigen-
forms. One of them is a cusp form and a theta series, and the remaining two
are Eisenstein series:

Example 22.7 The residues of 1√
2
(1+

√
−13) and 1+2

√
−13 modulo 4 gen-

erate the group (J13/(4))× � Z8 × Z2, where
(

1√
2
(1 +

√
−13)

)4 ≡ −1 mod 4.
Two characters φν on J13 with period 4 are fixed by the values

φν

(
1√
2
(1 +

√
−13)

)
= νi, φν(1 + 2

√
−13) = −1

with ν ∈ {1, −1}. The corresponding theta series of weight 1 satisfy

Θ1

(
−52, φν , z

4

)
= g1(z) + g13(z) (22.16)

with notations as in (22.15). Moreover, for δ ∈ {1, −1} we have the identity

∞∑

n=1

(
2δ

n

)∑

d|n

(
−13
d

)
e
(

nz
4

)
= g1(z) − g13(z) + 2δ g7(z). (22.17)

We note that the factors
(

2δ
n

)
in (22.17) are the primitive Dirichlet characters

modulo 8.

22.2 Cuspidal Eta Products for Γ0(68) with Denomina-
tors t ≤ 12

We recall Table 21.1 in Sect. 21.1 where we listed the numbers of eta products
of weight 1 on Γ0(4p). For level 68 there are two cuspidal eta products with
denominator 4. They form a pair of sign transforms. Their Fricke transforms,
together with two complementing functions, make up the components in theta
series with denominator 8 on Q(

√
−17), as will be shown in Example 22.9.

Transforming back fails to give a result for denominator 4 because there are
fewer coprime residue classes modulo 4 than there are modulo 8, and one
would need overlapping components with numerators 1 and 3 modulo 4.

There are ten cuspidal eta products with denominator 6. Four of them, in
fact two pairs of sign transforms, show up in the components of theta series
on the fields with discriminants 8, −51 and −408:

Example 22.8 Let J51 be the system of ideal numbers for Q(
√

−51) as given
in Example 7.3. The residues of 1

2 (
√

3+
√

−17), 4+
√

−51, 1+2
√

−51 and −1
modulo 8

√
3 can be chosen as generators of (J51/(8

√
3))× � Z12 × Z4 × Z2

2 .
Eight characters χ = χδ,ε,ν on J51 with period 8

√
3 are given by their values

χ
(

1
2 (

√
3 +

√
−17)

)
= δνi, χ(4 +

√
−51) = −δενi,
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χ(1 + 2
√

−51) = −ν, χ(−1) = 1

with δ, ε, ν ∈ {1, −1}. Let J102 be the system of ideal numbers for Q(
√

−102)
as given in Example 7.5. The residues of 1 +

√
−102,

√
2 +

√
−51 and

√
6 +√

−17 modulo 2
√

6 can be chosen as generators of (J102/(2
√

6))× � Z2
4 × Z2,

where (
√

2 +
√

−51)2 ≡ −1 mod 2
√

6. Eight characters ψδ,ε,ν on J102 with
period 2

√
6 are given by

ψδ,ε,ν(1 +
√

−102) = δεi, ψδ,ε,ν(
√

2 +
√

−51) = ν,

ψδ,ε,ν(
√

6 +
√

−17) = −ε.

The residues of 1+ε
√

2, 7+2ε
√

2 and 15+11ε
√

2 modulo Mε = 6(4+5ε
√

2)
are generators of (Z[

√
2]/(Mε))× � Z16 × Z8 × Z4, where (15 + 11ε

√
2)2 ≡

−1 mod Mε. Hecke characters ξδ,ε on Z[
√

2] with period Mε are given by

ξδ,ε(μ) =

⎧
⎨

⎩

ε sgn(μ)
δi sgn(μ)
δεi sgn(μ)

for μ ≡

⎧
⎨

⎩

1 + ε
√

2
7 + 2ε

√
2

15 + 11ε
√

2
mod Mε.

The corresponding theta series of weight 1 satisfy the identities

Θ1

(
8, ξδ,ε,

z
6

)
= Θ1

(
−51, χδ,ε,ν , z

6

)

= Θ1

(
−408, ψδ,ε,ν , z

6

)

= f1(z) + δi f5(z) + 2δεi f7(z)
− 2ε f11(z), (22.18)

where the components fj are normalized integral Fourier series with denom-
inator 6 and numerator classes j modulo 12. All of them are linear combi-
nations of eta products,

f1 = 1
2

([
4, 345

172, 682

]
+
[
4, 172

34

])
,

(22.19)

f5 = 1
2

([
25, 68
12, 42

]
+
[
12, 68

2

])
,

f7 = 1
4

([
4, 345

172, 682

]
−
[
4, 172

34

])
,

(22.20)

f11 = 1
4

([
25, 68
12, 42

]
−
[
12, 68

2

])
.

The Fricke transforms of the eta products in (22.19), (22.20) will appear in
Example 22.12.—We did not find eigenforms made up of any of the other
six eta products with denominator 6. Two of them form a pair of Fricke
transforms,

[
1−1, 23, 4−1, 17, 34−1, 68

]
,

[
1, 2−1, 4, 17−1, 343, 68−1

]
,
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whose sign transforms belong to Γ0(34) (and could not be treated in Sect. 17.6).
The remaining four form two pairs of sign transforms,

[
23, 342

1, 4, 17

]
,

[
1, 17, 68

34

]
and

[
22, 343

1, 17, 68

]
,

[
1, 4, 17

2

]
,

whose Fricke transforms have denominator 24 (and for which we will not be
able to give a result either).

There are six eta products with denominator 8. In the following two examples
we present eight theta series whose components consist of these eta products
together with four functions which are not otherwise identified. First we deal
with the sign transforms of the eta products in Example 22.2, with a similar
result as before:

Example 22.9 Let the generators of (J17/(8))× � Z16 × Z4 × Z2 be chosen
as in Example 22.2, and define eight characters ρδ,ε,ν on J17 with period 8
by

ρδ,ε,ν(Λ) = 1√
2
(εν + δi), ρδ,ε,ν(1 + 2

√
−17) = −νi, ρδ,ε,ν(3) = −1

with δ, ε, ν ∈ {1, −1}. The corresponding theta series of weight 1 decompose
as

Θ1

(
−68, ρδ,ε,ν , z

8

)
= g1(z) + δi

√
2 g3(z) + 2δεi g5(z) + ε

√
2 g7(z) (22.21)

with normalized integral Fourier series gj with denominator 8 and numera-
tor classes j modulo 8. The components gj are the sign transforms of the
components hj in Example 22.2, and g1, g7 are linear combinations of eta
products,

g1 =
[
1, 4, 342

2, 68

]
−
[
22, 17, 68

4, 34

]
, g7 =

[
4, 343

17, 68

]
+
[
23, 68
1, 4

]
. (22.22)

Now we treat the sign transforms of the eta products in Example 17.7. We
get similar results and use similar notations as before:

Example 22.10 Let J34 be given as in Example 7.7. The residues of Λ34,
1+

√
−34 and 3 modulo 4

√
2 can be chosen as generators of (J34/(4

√
2))× �

Z8 × Z4 × Z2, where Λ4
34 ≡ −1 mod 4

√
2. Eight characters ϕ̃δ,ν and ρ̃δ,ν on

J34 with period 4
√

2 are fixed by their values

ϕ̃δ,ν(Λ34) = ν, ϕ̃δ,ν(1 +
√

−34) = −δν, ϕ̃δ,ν(3) = −1,

ρ̃δ,ν(Λ34) = δi, ρ̃δ,ν(1 +
√

−34) = ν, ρ̃δ,ν(3) = −1
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with δ, ν ∈ {1, −1}. Let the generators of (J17/(8))× � Z16 × Z4 × Z2 be
chosen as in Example 22.2 and define characters ψ̃δ,ν on J17 with period 8
by

ψ̃δ,ν(Λ17) = νi, ψ̃δ,ν(1 + 2
√

−17) = δνi, ψ̃δ,ν(3) = 1.

The residues of 1+2νi, 6+9νi, 3+8νi and νi modulo 8(4+νi) are generators
of (O1/(32+8νi))× � Z16 × Z4 × Z2 × Z4. Define characters φδ,ν on O1 with
periods 8(4 + νi) by

φδ,ν(1 + 2νi) = δi, φδ,ν(6 + 9νi) = −δi, φδ,ν(3 + 8νi) = 1, φδ,ν(νi) = 1.

The residues of 1+δ
√

2, 7+δ
√

2, 11+4δ
√

2 and −1 modulo Mδ = 4(4+5δ
√

2)
are generators of (Z[

√
2]/(Mδ))× � Z16 × Z4 × Z2

2 . Hecke characters ξ̃∗
δ on

Z[
√

2] with period Mδ are given by

ξ̃∗
δ (μ) =

⎧
⎪⎪⎨

⎪⎪⎩

δ sgn(μ)
−δ sgn(μ)

sgn(μ)
−sgn(μ)

for μ ≡

⎧
⎪⎪⎨

⎪⎪⎩

1 + δ
√

2
7 + δ

√
2

11 + 4δ
√

2
−1

mod Mδ.

Let ideal numbers for Q(
√

34) with Λ =
√

3 +
√

34 be given as in Exam-
ple 7.18. The residues of Λ, 1 + 2

√
34 and −1 modulo P = 4(6 +

√
34) are

generators of
(

J
Q(

√
34)/(P )

)× � Z8 × Z2
2 . Define Hecke characters ξ̃δ on

J
Q(

√
34) modulo P by

ξ̃δ(μ) =

⎧
⎨

⎩

δi sgn(μ)
sgn(μ)

−sgn(μ)
for μ ≡

⎧
⎨

⎩

Λ
1 + 2

√
34

−1
mod P.

The corresponding theta series of weight 1 satisfy the identities

Θ1

(
8, ξ̃∗

δ , z
8

)
= Θ1

(
−136, ϕ̃δ,ν , z

8

)

= Θ1

(
− 68, ψ̃δ,ν , z

8

)
= f̃1(z) + 2δ f̃7(z), (22.23)

Θ1

(
136, ξ̃δ,

z
8

)
= Θ1

(
−136, ρ̃δ,ν , z

8

)

= Θ1

(
−4, φδ,ν , z

8

)
= g̃1(z) + 2δi g̃5(z), (22.24)

with normalized integral Fourier series f̃j and g̃j with denominator 8 and
numerator classes j modulo 8. The components are the sign transforms of
the components in Example 17.7, and f̃1, g̃1 are linear combinations of eta
products,

f̃1 =
[

1, 4, 345

2, 172, 682

]
+
[
25, 17, 68
12, 42, 34

]
,

(22.25)

g̃1 =
[

1, 4, 345

2, 172, 682

]
−
[
25, 17, 68
12, 42, 34

]
.
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For denominator t = 12 we have a pair of Fricke transforms with orders 1
12

and 17
12 at ∞,

[
2, 17−2, 345, 68−2

]
and

[
1−2, 25, 4−2, 34

]
. We cannot present

eigenforms containing these eta products in their components, nor could we
do so (in Sect. 17.6) for their sign transforms which belong to Γ0(34).

22.3 Cuspidal Eta Products for Γ0(68) with Denomina-
tor 24

In this subsection we present 12 linear combinations of 12 eta products with
denominator 24 which are eigenforms and theta series. We did not find
eigenforms containing any of the remaining 10 eta products with denominator
24 in their components. The first result is concerned with the sign transforms
of the eta products in Example 17.26:

Example 22.11 Let J102 be the ideal numbers for Q(
√

−102) as given in
Example 7.5. The residues of 1 +

√
−102,

√
2 +

√
−51,

√
6 +

√
−17 and −1

modulo 4
√

6 can be chosen as generators of (J102/(4
√

6))× � Z3
4 × Z2. Eight

characters ϕδ,ε,ν on J102 with period 4
√

6 are fixed by their values

ϕδ,ε,ν(1 +
√

−102) = −δεν, ϕδ,ε,ν(
√

2 +
√

−51) = δ,

ϕδ,ε,ν(
√

6 +
√

−17) = νi, ϕδ,ε,ν(−1) = 1

with δ, ε, ν ∈ {1, −1}. The residues of 1 + 2νi, 2 + 5νi, 6 + 11νi, 35 and νi
modulo 24(4 + νi) are generators of (O1/(96 + 24νi))× � Z16 × Z8 × Z4 ×
Z2 × Z4. Characters ρδ,ε,ν on O1 with periods 24(4 + νi) are given by

ρδ,ε,ν(1 + 2νi) = δ, ρδ,ε,ν(2 + 5νi) = δ,

ρδ,ε,ν(6 + 11νi) = −εi, ρδ,ε,ν(35) = 1, ρδ,ε,ν(νi) = 1.

The residues of
√

3+
√

34, 1+2
√

102, 7 and −1 modulo M = 4(10
√

3+3
√

34)
are generators of

(
J

Q(
√

102)/(M)
)× � Z2

4 × Z2
2 . Define Hecke characters ξδ,ε

on J
Q(

√
102) modulo M by

ξδ,ε(μ) =

⎧
⎪⎪⎨

⎪⎪⎩

−δεi sgn(μ)
−δ sgn(μ)

sgn(μ)
−sgn(μ)

for μ ≡

⎧
⎪⎪⎨

⎪⎪⎩

√
3 +

√
34

1 + 2
√

102
7

−1

mod M.

The corresponding theta series of weight 1 satisfy the identities

Θ1

(
408, ξδ,ε,

z
24

)
= Θ1

(
−408, ϕδ,ε,ν , z

24

)

= Θ1

(
−4, ρδ,ε,ν , z

24

)

= f̃1(z) + 2δ f̃5(z) + 2εi f̃13(z)

+ δεi f̃17(z) (22.26)
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with normalized integral Fourier series f̃j with denominator 24 and numer-
ator classes j modulo 24. The components f̃j are the sign transforms of the
components fj in Example 17.26, and they are eta products,

f̃1 =
[

23, 345

1, 4, 172, 682

]
, f̃5 =

[
2, 17, 68

34

]
,

f̃13 =
[
1, 4, 34

2

]
, f̃17 =

[
25, 343

12, 42, 17, 68

]
.

The Fricke involution W68 maps the functions F̃δ,ε in (22.26) to

F̃δ,ε(W68z) = 2
√

17δεz F̃δ,−ε(z).

Our second result in this subsection describes theta series on the fields with
discriminants 8, −51 and −408 whose components form four pairs of sign
transforms which are eta products with denominator 24:

Example 22.12 Let the generators of (J102/(4
√

6))× � Z3
4 × Z2 be chosen

as in Example 22.11. Sixteen characters ψδ,ε,ν and ψ̃δ,ε,ν on J102 with period
4

√
6 are fixed by their values

ψδ,ε,ν(1 +
√

−102) = −δεi, ψδ,ε,ν(
√

2 +
√

−51) = νi,

ψδ,ε,ν(
√

6 +
√

−17) = ε, ψδ,ε,ν(−1) = 1,

ψ̃δ,ε,ν(1 +
√

−102) = δεi, ψ̃δ,ε,ν(
√

2 +
√

−51) = ν,

ψ̃δ,ε,ν(
√

6 +
√

−17) = −ε, ψ̃δ,ε,ν(−1) = 1

with δ, ε, ν ∈ {1, −1}. Let J51 be given as in Example 7.3. The residues of
1
2 (

√
3 +

√
−17), 4 +

√
−51, 1 + 2

√
−51 and −1 modulo 16

√
3 can be chosen

as generators of (J51/(16
√

3))× � Z12 × Z8 × Z4 × Z2. Sixteen characters
χδ,ε,ν and χ̃δ,ε,ν on J51 with period 16

√
3 are given by

χδ,ε,ν

(
1
2 (

√
3 +

√
−17)

)
= ν, χδ,ε,ν(4 +

√
−51) = εν,

χδ,ε,ν(1 + 2
√

−51) = −δνi, χ̃δ,ε,ν

(
1
2 (

√
3 +

√
−17)

)
= νi,

χ̃δ,ε,ν(4 +
√

−51) = −ενi, χ̃δ,ε,ν(1 + 2
√

−51) = −δν

and χδ,ε,ν(−1) = χ̃δ,ε,ν(−1) = 1. The residues of 1 + ε
√

2, 7 + 2ε
√

2,
15 + 11ε

√
2, 35 and −1 modulo Mε = 12(4 + 5ε

√
2) are generators of

(Z[
√

2]/(Mε))× � Z16 × Z8 × Z4 × Z2
2 . Hecke characters ξδ,ε and ξ̃δ,ε on

Z[
√

2] modulo Mε are given by

ξδ,ε(μ) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ε sgn(μ)
−δi sgn(μ)
δεi sgn(μ)

sgn(μ)
−sgn(μ)

,
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ξ̃δ,ε(μ) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ε sgn(μ)
δi sgn(μ)
δεi sgn(μ)

−sgn(μ)
−sgn(μ)

for μ ≡

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1 + ε
√

2
7 + 2ε

√
2

15 + 11ε
√

2
35

−1

mod Mε.

The corresponding theta series of weight 1 satisfy the identities

Θ1

(
8, ξδ,ε,

z
24

)
= Θ1

(
−408, ψδ,ε,ν , z

24

)

= Θ1

(
−51, χδ,ε,ν , z

24

)

= g1(z) − 2δεi g7(z) + δi g17(z)
+ 2ε g23(z), (22.27)

Θ1

(
8, ξ̃δ,ε,

z
24

)
= Θ1

(
−408, ψ̃δ,ε,ν , z

24

)

= Θ1

(
−51, χ̃δ,ε,ν , z

24

)

= g̃1(z) + 2δεi g̃7(z) + δi g̃17(z)
− 2ε g̃23(z), (22.28)

with normalized integral Fourier series gj, g̃j with denominator 24 and nu-
merator classes j modulo 24. The components form pairs of sign transforms
(gj , g̃j), and all of them are eta products,

g1 =
[

23, 172

1, 4, 34

]
, g7 =

[
23, 682

1, 4, 34

]
,

(22.29)

g17 =
[

12, 343

2, 17, 68

]
, g23 =

[
42, 343

2, 17, 68

]
,

g̃1 =
[

1, 345

172, 682

]
, g̃7 =

[
1, 682

34

]
,

(22.30)

g̃17 =
[
25, 17
12, 42

]
, g̃23 =

[
42, 17

2

]
.

Let Gδ,ε, G̃δ,ε denote the functions in (22.27), (22.28). Then we have

Gδ,ε(W68z) = −2
√

17εiz G−δ,ε(z),

G̃δ,ε(W68z) = 2
√

34 δ(1 − δεi)z H−δ,δε(z),

where Hδ,ε(z) denote the theta series with denominator 6 in (22.18).

22.4 Non-cuspidal Eta Products for Γ0(68)

The non-cuspidal eta products of weight 1 for Γ0(68) with denominator 4
make up a component of a theta series in Example 12.10; their sign transforms
show up in Example 22.1.
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The non-cuspidal eta products with denominator 8 form four pairs of sign
transforms. Together with four functions which are not otherwise identified,
they combine to the components of twelve theta series. Four of them are cusp
forms (according to Theorem 5.1), and the remaining eight can be identified
with Eisenstein series:

Example 22.13 Let the generators of (J34/(4
√

2))× � Z8 × Z4 × Z2 be
chosen as in Example 22.10. Define characters ψδ,ν , ψ̃δ,ν , ρδ,ε, ρ̃δ,ε on J34

with period 4
√

2 by

ψδ,ν(Λ34) = νi, ψδ,ν(1 +
√

−34) = −δ, ψδ,ν(3) = 1,

ψ̃δ,ν(Λ34) = ν, ψ̃δ,ν(1 +
√

−34) = −δi, ψ̃δ,ν(3) = −1,

ρδ,ε(Λ34) = δ, ρδ,ε(1 +
√

−34) = ε, ρδ,ε(3) = 1,

ρ̃δ,ε(Λ34) = δi, ρ̃δ,ε(1 +
√

−34) = εi, ρ̃δ,ε(3) = −1

with δ, ε, ν ∈ {1, −1}. The residues of 1+ν
√

−2, 3+ν
√

−2, 5−4ν
√

−2 and −1
modulo 4(4+3ν

√
−2) are generators of (O2/(16+12ν

√
−2))× � Z16×Z4×Z2

2 .
Characters ϕ = ϕδ,ν and φ = φδ,ν on O2 with periods 4(4+3ν

√
−2) are given

by
ϕ(1 + ν

√
−2) = −δ, ϕ(3 + ν

√
−2) = −δ,

ϕ(5 − 4ν
√

−2) = 1, ϕ(−1) = 1,

φ(1 + ν
√

−2) = −δi, φ(3 + ν
√

−2) = δi,

φ(5 − 4ν
√

−2) = −1, φ(−1) = 1.

The residues of 2+
√

17, 3,
√

17 and −1 modulo 16 are generators of (Z[ω17]/
(16))× � Z2

4 × Z2
2 , where ω17 = 1

2 (1 +
√

17). Hecke characters ξδ and ξ̃δ on
Z[ω17] with period 16 are given by

ξδ(μ) =

⎧
⎨

⎩

−δ sgn(μ)
sgn(μ)

−sgn(μ)
,

ξ̃δ(μ) =

⎧
⎨

⎩

−δi sgn(μ)
−sgn(μ)
−sgn(μ)

for μ ≡

⎧
⎨

⎩

2 +
√

17
3√

17, −1
mod 16.

The corresponding theta series of weight 1 satisfy the identities

Θ1

(
17, ξδ,

z
8

)
= Θ1

(
−136, ψδ,ν , z

8

)

= Θ1

(
−8, ϕδ,ν , z

8

)
= f1(z) + 2δ f3(z) (22.31)

Θ1

(
17, ξ̃δ,

z
8

)
= Θ1

(
−136, ψ̃δ,ν , z

8

)

= Θ1

(
−8, φδ,ν , z

8

)
= f̃1(z) + 2δi f̃3(z) (22.32)
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with normalized integral Fourier series fj , f̃j with denominator 8 and nu-
merator classes j modulo 8. All the components are linear combinations of
eta products,

f1 =
[

22, 345

1, 172, 682

]
−
[

25, 342

12, 42, 17

]
,

(22.33)

f3 =
[
42, 342

2, 17

]
−
[
22, 682

1, 34

]
,

f̃1 =
[
1, 4, 172

2, 34

]
−
[
12, 17, 68

2, 34

]
,

(22.34)

f̃3 =
[
42, 17, 68

2, 34

]
−
[
1, 4, 682

2, 34

]
,

and
(
fj , f̃j

)
are pairs of sign transforms. The theta series of weight 1 for

ρδ,ε, ρ̃δ,ε decompose as

Θ1

(
−136, ρδ,ε,

z
8

)
= g1(z) + 2ε g3(z) + 2δ g5(z) + 2δε g7(z), (22.35)

Θ1

(
−136, ρ̃δ,ν , z

8

)
= g̃1(z) + 2εi g̃3(z) + 2δi g̃5(z) + 2δε g̃7(z) (22.36)

with normalized integral Fourier series gj, g̃j with denominator 8 and nu-
merator classes j modulo 8. Here

(
gj , g̃j

)
are pairs of sign transforms, and

the components for j = 1, 3 are linear combinations of the same eta products
as before,

g1 =
[

22, 345

1, 172, 682

]
+
[

25, 342

12, 42, 17

]
,

(22.37)

g3 =
[
42, 342

2, 17

]
+
[
22, 682

1, 34

]
,

g̃1 =
[
1, 4, 172

2, 34

]
+
[
12, 17, 68

2, 34

]
,

(22.38)

g̃3 =
[
42, 17, 68

2, 34

]
+
[
1, 4, 682

2, 34

]
.

Moreover, the theta series for ρδ,ε, ρ̃δ,ε are Eisenstein series,

Θ1

(
−136, ρδ,ε,

z
8

)
=

∞∑

n=1

χδ,ε(n)
∑

d|n

(
−34
d

)
e
(

nz
8

)
, (22.39)

Θ1

(
−136, ρ̃δ,ν , z

8

)
=

∞∑

n=1

χ̃δ,ε(n)
∑

d|n

(
−34
d

)
e
(

nz
8

)
, (22.40)

where χδ,ε and χ̃δ,ε are Dirichlet characters modulo 8 and 16, respectively,
given by

χ1,ε(n) =
(

ε
n

)
, χ−1,ε(n) =

(−2 ε
n

)
, χ̃δ,ε(n) = e

(
n2−1

32

)(−2
n

)
χδ,ε(n).
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Now we discuss the non-cuspidal eta products of weight 1 for Γ0(68) with
denominator 1. Just as for other levels 4p, they form three pairs of sign
transforms. The Fricke transforms of one of these pairs appear in a theta
series in Example 12.10, and we get a similar result now:

Example 22.14 Let χδ,ν be the characters on J17 with period 2 as defined
in Example 12.10. The corresponding theta series of weight 1 satisfy

Θ1 (−68, χδ,ν , z) = h1(z) + δ
√

2 h3(z) (22.41)

with

h1 =
1
4

([
25, 172

12, 42, 34

]
−
[

12, 345

2, 172, 682

])
, h3 = [4, 68] . (22.42)

Comparing (12.19) and (22.41) yields the eta identity
[

25, 172

12, 42, 34

]
−
[

12, 345

2, 172, 682

]
= 4

([
162, 1365

8, 682, 2722

]
−
[

85, 2722

42, 162, 136

])
.

It can be deduced by trivial manipulations of the coefficient formulae which
come from the identities (8.5), (8.7), (8.8) in weight 1

2 , and in this way one
observes that the identity holds more generally for levels N = 4d with any
d ≡ 1 mod 4 instead of 17. We will meet another instance for this identity
after Example 22.25.

The Fricke transforms of the other four eta products with denominator 1
make up components of the theta series in (22.31) and (22.35). Transforming
back (22.35) does not yield a result since the components g5, g7 have not
been identified. Transforming back (22.31) gives the following results:

Example 22.15 For ν ∈ {1, −1}, let ρν be the characters on J34 with period
1 which are defined by

ρν(μ) = νi

if μ belongs to the class A3 generating the ideal class group of Q(
√

−34) as
in Example 7.7. The residues of Λ34 and

√
2 +

√
−17 modulo 2

√
2 can be

chosen as generators of (J34/(2
√

2))× � Z8 × Z2, where Λ4
34 ≡ −1 mod 2

√
2.

Define characters ψν on J34 with period 2
√

2 by

ψν(Λ34) = νi, ψν(
√

2 +
√

−17) = 1.

The residue of 1 − ν
√

−2 modulo 3 + 2ν
√

−2 is a generator of (O2/(3 +
2ν

√
−2))× � Z16, and the residues of 1 − ν

√
−2 and 3 − 3ν

√
−2 modulo

2(3 + 2ν
√

−2) are generators of (O2/(6 + 4ν
√

−2))× � Z16 × Z2, where
(1 − ν

√
−2)8 ≡ −1 mod 6+4ν

√
−2. Define characters φν and ϕν on O2 with

periods 3 + 2ν
√

−2 and 2(3 + 2ν
√

−2), respectively, by

φν(1 − ν
√

−2) = −1, ϕν(1 − ν
√

−2) = 1, ϕν(3 − 3ν
√

−2) = −1.
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Let generators of (Z[ω17]/(8))× ×Z4
2 be chosen as in Example 22.3, and define

a Hecke character ξ∗ on Z[ω17] modulo 8 by

ξ∗(μ) =
{

sgn(μ)
−sgn(μ) for μ ≡

{
3

2 +
√

17,
√

17, −1
mod 8.

Let P8 = 1
2 (7 −

√
17), choose 3 and −1 modulo P8 for generators of

(Z[ω17]/(P8))× � Z2
2 , and define a Hecke character Ξ∗ on Z[ω17] modulo

P8 by

Ξ∗(μ) =
{

sgn(μ)
−sgn(μ) for μ ≡

{
3

−1 mod P8.

The theta series of weight 1 for ξ∗, ψν , ϕν are identical and equal to a linear
combination of eta products,

Θ1 (17, ξ∗, z) = Θ1 (−136, ψν , z) = Θ1 (−8, ϕν , z) = F (z), (22.43)

F =
1
4

([
25, 342

12, 42, 68

]
−
[
12, 342

2, 68

]
+
[
22, 172

4, 34

]
−
[

22, 345

4, 172, 682

])
. (22.44)

The theta series of weight 1 for Ξ∗, ρν , φν are identical and satisfy

Θ1 (17, Ξ∗, z) = Θ1 (−136, ρν , z) = Θ1 (−8, φν , z) = Φ
(
z + 1

2

)
, (22.45)

Φ(z) = G
(

z
2

)
,

where G is a linear combination of the same eta products as before,

G =
1
4

([
25, 342

12, 42, 68

]
+
[
12, 342

2, 68

]
−
[
22, 172

4, 34

]
−
[

22, 345

4, 172, 682

])
. (22.46)

We note that, by virtue of Theorem 5.1, all the theta series in this example
are cusp forms. We remark further that the function in (22.45) takes the
same role for Q(

√
−34) as η(z)η(23z) and a function in Example 21.3 play

for Q(
√

−23) and Q(
√

−46), respectively: Consider the coefficients λ(p) of
the function in (22.45) at primes p which split in Q(

√
−34). Then λ(p) = 2

if p splits into principal ideals, λ(p) = −2 if p splits into non-principal ideals
whose squares are principal, and λ(p) = 0 otherwise. Thus we have another
result in the mood of van der Blij and Schoeneberg.

22.5 Cuspidal Eta Products for Γ0(52) with Denomina-
tors t ≤ 12

We recall Table 21.1 in Sect. 21.1 which lists the numbers of eta products of
weight 1 for Γ0(4p) with given denominators t.
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For level 52, the eta products with denominator 3 form two pairs of sign
transforms and a pair of Fricke transforms. The sign transforms of the latter
pair are

[
1−1, 22, 13

]
,
[
1, 13−1, 262

]
, which appeared in components of theta

series in Example 17.24. For the two pairs of sign transforms, the Fricke
transforms have denominator 24 and will show up as components in theta
series in Example 22.23. These theta series contain four more components.
Nevertheless, transforming back yields a result for four of our six eta products
with denominator 3. It will be stated later in Example 22.24.

For denominator 4 we have a pair of sign transforms whose Fricke transforms
have denominator 8 and will appear as components in theta series in Exam-
ple 22.17, with two more components which are not immediately identified.
Transforming back with W52 leads to theta series containing the eta products
with denominator 4; the result will be stated in a remark after Example 22.17.

For the eta products with denominator 6 we introduce the notations

f1 =
[

4, 265

132, 522

]
, f̃1 =

[
4, 132

26

]
,

(22.47)

f13 =
[
25, 52
12, 42

]
, f̃13 =

[
12, 52

2

]
.

Here the subscripts indicate the numerators, and
(
f1, f̃1

)
,
(
f13, f̃13

)
are pairs

of sign transforms. We find four linear combinations of these eta products
which are theta series on the fields with discriminants 104, −3 and −312:

Example 22.16 The residues of 1+
√

−78,
√

2+
√

−39 and
√

3+
√

−26 can
be chosen as generators of (J78/(2

√
6))× � Z2

4 × Z2, where (
√

2+
√

−39)2 ≡
−1 mod 2

√
6. Define eight characters ψδ,ε,ν on J78 with period 2

√
6 by

ψδ,ε,ν(1 +
√

−78) = δi, ψδ,ε,ν(
√

2 +
√

−39) = ν,

ψδ,ε,ν(
√

3 +
√

−26) = −εν

with δ, ε, ν ∈ {1, −1}. Let the generators of (O3/(40 + 16ω))× � Z12 × Z4 ×
Z2

2 × Z6 be chosen as in Example 22.5, and define characters χ = χδ,ε,1 on
O3 with period 8(5 + 2ω) by

χ(3 + ω) = ε, χ(1 + 6ω) = −δεi,

χ(9 + 4ω) = −ε, χ(13 − 16ω) = 1,

χ(ω) = 1.

Define characters χδ,ε,−1 on O3 with period 8(5+2ω) by χδ,ε,−1(μ) = χδ,ε,1(μ).
The residues of 5 +

√
26, 3 +

√
26 and

√
13 modulo 6

√
2 are generators of
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(
J

Q(
√

26)/(6
√

2)
)× � Z8 × Z4 × Z2, where (3 +

√
26)2 ≡ −1 mod 6

√
2. Hecke

characters ξδ,ε on J
Q(

√
26) with period 6

√
2 are given by

ξδ,ε(μ) =

⎧
⎨

⎩

sgn(μ)
δi sgn(μ)
ε sgn(μ)

for μ ≡

⎧
⎨

⎩

5 +
√

26
3 +

√
26√

13
mod 6

√
2.

The corresponding theta series of weight 1 satisfy the identities

Θ1

(
104, ξδ,ε,

z
6

)
= Θ1

(
−312, ψδ,ε,ν , z

6

)
= Θ1

(
−3, χδ,ε,ν , z

6

)

= g1(z) + 2δi g7(z) + ε g13(z) + 2δεi g19(z),
(22.48)

where the components gj are normalized integral Fourier series with denom-
inator 6 and numerator classes j modulo 24; they are linear combinations of
the eta products in (22.47),

g1 = 1
2

(
f1+f̃1

)
, g7 = 1

4

(
f1 −f̃1

)
, g13 = 1

2

(
f13+f̃13

)
, g19 = 1

4

(
f13 −f̃13

)
.

(22.49)

In terms of the eta products in (22.47), the theta series (22.48) can also be
written as

1
2

(
(1 + δi) f1 + (1 − δi) f̃1 + ε (1 + δi) f13 + ε (1 − δi) f̃13

)
.

Now we turn to the cuspidal eta products with denominator 8, beginning with
the Fricke transforms of those with denominator 4. We find four theta series
containing the eta products with denominator 8 as two of their components.
Applying W52 tells us which linear combinations of the eta products with
denominator 4 will occur as components in eigenforms. This leads to the
identification of the other two components in (22.52) in the next example:

Example 22.17 Let the generators of (J13/(8))× � Z8 × Z4 × Z2 be chosen
as in Example 22.4, and define eight characters ϕδ,ε,ν on J13 with period 8
by their values

ϕδ,ε,ν

(
1√
2
(1 +

√
−13)

)
= 1√

2
(δε + νi),

ϕδ,ε,ν(1 + 2
√

−13) = −εν, ϕδ,ε,ν(−1) = 1

with δ, ε, ν ∈ {1, −1}. The corresponding theta series of weight 1 decompose
as

Θ1

(
−52, ϕδ,ε,ν , z

8

)
= h1(z) + εi

√
2 h3(z) + δi h5(z) + δε

√
2 h7(z), (22.50)

where the components hj are normalized integral Fourier series with denom-
inator 8 and numerator classes j modulo 8. Here h1, h5 are eta products,

h1 =
[
1, 4, 262

2, 52

]
, h5 =

[
22, 13, 52

4, 26

]
, (22.51)
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and h3, h7 are linear combinations of eta products; with Hj(z) = hj(2z) we
have

H3 =
1
2

([
22, 13, 52

1, 26

]
−
[
1, 4, 262

2, 13

])
,

(22.52)

H7 =
1
2

([
22, 13, 52

1, 26

]
+
[
1, 4, 262

2, 13

])
.

We observe that linear combinations of the eta products with denominator 4
make up two of the components of Θ1

(
−52, ϕδ,ε,ν , z

4

)
.

The other four cuspidal eta products with denominator 8 are the sign trans-
forms of the eta products for Γ∗(26) which were discussed in Example 17.6.
We get similar results and use similar notations as before:

Example 22.18 Let J26 be the system of ideal numbers for Q(
√

−26) as
given in Example 7.14. The residues of Λ26,

√
2+

√
−13 and −1 modulo 4

√
2

can be chosen as generators of (J26/(4
√

2))× � Z12 × Z4 × Z2. Define eight
characters ψ̃δ,ε,ν on J26 with period 4

√
2 by their values

ψ̃δ,ε,ν (Λ26) = 1
2 (ν + εi

√
3), ψ̃δ,ε,ν(

√
2 +

√
−13) = −δνi,

ψ̃δ,ε,ν(−1) = 1

with δ, ε, ν ∈ {1, −1}. The characters ϕ̃δ,ν = ψ̃3
δ,ε,ν on J26 with period 4

√
2

are given by

ϕ̃δ,ν (Λ26) = −ν, ϕ̃δ,ν(
√

2 +
√

−13) = δνi,

ϕ̃δ,ν(−1) = 1.

The residues of 3 − 2νi, 5 − 6νi, 11 + 8νi and νi modulo 8(3 + 2νi) are
generators of (O1/(24 + 16νi))× � Z12 × Z4 × Z2 × Z4. Characters ρδ,ν on
O1 with periods 8(3 + 2νi) are given by

ρδ,ν(3 − 2νi) = δi, ρδ,ν(5 − 6νi) = −δi,

ρδ,ν(11 + 8νi) = 1, ρδ,ν(νi) = 1.

The residues of 5 +
√

26,
√

13 and −1 modulo 4
√

2 are generators of(
J

Q(
√

26)/(4
√

2)
)× � Z2

4 × Z2. Hecke characters ξ̃δ on J
Q(

√
26) with period

4
√

2 are given by

ξ̃δ(μ) =

⎧
⎨

⎩

sgn(μ)
δi sgn(μ)

−sgn(μ)
for μ ≡

⎧
⎨

⎩

5 +
√

26√
13

−1
mod 4

√
2.
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The corresponding theta series of weight 1 satisfy

Θ1

(
−104, ψ̃δ,ε,ν , z

8

)
= f̃1(z) + εi

√
3 f̃3(z) + δi f̃5(z) − δε

√
3 f̃7(z), (22.53)

Θ1

(
104, ξ̃δ,

z
8

)
= Θ1

(
−104, ϕ̃δ,ν , z

8

)
= Θ1

(
−4, ρδ,ν , z

8

)
= g̃1 + δi g̃5(z),

(22.54)
where the components f̃j and g̃j are normalized (with the exception of g̃5) and
integral Fourier series with denominator 8 and numerator classes j modulo 8.
Those for j = 1, 5 are linear combinations of eta products,

f̃1 =
[

1, 4, 265

2, 132, 522

]
−
[
23, 26
1, 4

]
, f̃5 =

[
2, 263

13, 52

]
−
[
25, 13, 52
12, 42, 26

]
, (22.55)

g̃1 =
[

1, 4, 265

2, 132, 522

]
+ 2

[
23, 26
1, 4

]
, g̃5 = 2

[
2, 263

13, 52

]
+
[
25, 13, 52
12, 42, 26

]
.

(22.56)

There are four eta products with denominator 12, a pair of sign transforms
and a pair of Fricke transforms. Altogether we find twelve theta series whose
components are constituted by these eta products and by eight functions not
otherwise identified. The next example deals with the pair of sign transforms.
The functions in this pair and two old eta products of level 104 make up four
(out of eight) components of theta series on Q(

√
−13). When we take the sign

transforms of the Fricke transforms of this pair then we get the eta products
on Γ∗(52) in Example 22.6.

Example 22.19 Let the generators of (J13/(24))× � Z2
8 ×Z4 ×Z2 be chosen

as in Example 22.6. Define sixteen characters χ = χδ,ε,ν,σ on J13 with period
24 by

χ
(

1√
2
(1 +

√
−13)

)
= 1√

2
ε(δ + νσi), χ(1 + 2

√
−13) = ενi,

χ(1 + 6
√

−13) = −νσ

and χ(−1) = 1 with δ, ε, ν, σ ∈ {1, −1}. The corresponding theta series of
weight 1 decompose as

Θ1

(
−52, χδ,ε,ν,σ, z

12

)
= f1(z) − δi f13(z) + 2ενi f5(z)

+ 2δεν f17(z) + δε
√

2 f7(z)

+ εi
√

2 f19(z) + δνi
√

2 f11(z)

+ ν
√

2 f23(z), (22.57)

where the components fj are normalized integral Fourier series with denom-
inator 12 and numerator classes j modulo 24. Here f7, f19 are linear combi-
nations of eta products,

f7 =
1
2

([
23, 13
1, 4

]
+
[

1, 263

13, 52

])
, f19 =

1
2

([
23, 13
1, 4

]
−
[

1, 263

13, 52

])
,

(22.58)
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and f5, f17 are old eta products of level 104,

f5 =
[
43, 104

2, 8

]
, f17 =

[
8, 523

26, 104

]
. (22.59)

The eta products in the pair of Fricke transforms with denominator 12 have
as their sign transforms the eta products on Γ0(26) which were treated in
Example 17.23. Now we get similar results, and we use similar notations:

Example 22.20 Let the generators of (J13/(24))× � Z2
8 ×Z4 ×Z2 be chosen

as in Example 22.6, and define four characters ρ̃δ,ν on J13 with period 24 by
their values

ρ̃δ,ν

(
1 +

√
−13√
2

)
= νi, ρ̃δ,ν(1 + 2

√
−13) = δνi,

ρ̃δ,ν(1 + 6
√

−13) = −1, ρ̃δ,ν(−1) = 1

with δ, ν ∈ {1, −1}. Let J39 be the system of ideal numbers for Q(
√

−39) as
given in Example 7.8. The residues of (1+

√
−39)/2Λ39, 2+

√
−39, 1−2

√
−39,

5 and −1 modulo 8
√

−3 can be chosen as generators of (J39/(8
√

−3))× �
Z8 × Z4

2 . Define eight characters ψ̃δ,ν and ϕ̃δ,ν on J39 with period 8
√

−3 by

ψ̃δ,ν

(
1 +

√
−39

2Λ39

)
= ν, ψ̃δ,ν(2 +

√
−39) = δν,

ψ̃δ,ν(1 − 2
√

−39) = 1, ψ̃δ,ν(5) = −1,

ϕ̃δ,ν

(
1 +

√
−39

2Λ39

)
= δi, ϕ̃δ,ν(2 +

√
−39) = ν,

ϕ̃δ,ν(1 − 2
√

−39) = 1, ϕ̃δ,ν(5) = −1

and ψ̃δ,ν(−1) = ϕ̃δ,ν(−1) = 1. The residues of 2 + νi, 5, 5 − 6νi and νi
modulo 12(3+2νi) are generators of (O1/(36+24νi))× � Z24 × Z4 × Z2 × Z4.
Characters φδ,ν on O1 with periods 12(3 + 2νi) are given by

φδ,ν(2 + νi) = δi, φδ,ν(5) = −1,

φδ,ν(5 − 6νi) = −1, φδ,ν(νi) = 1.

Let generators of J
Q[

√
39] modulo M = 4(6 +

√
39) be chosen as in Exam-

ple 22.5, and define Hecke characters ξ̃δ on J
Q[

√
39] modulo M by

ξ̃δ(μ) =
{

−δi sgn(μ)
−sgn(μ) for μ ≡

{
1√
2
(7 +

√
39)

1 + 2
√

39, −1
mod M.
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The residues of 2 + δ
√

3, 5, 7 + 2δ
√

3 and −1 modulo Pδ = 4(3 + 4δ
√

3) are
generators of (Z[

√
3]/(Pδ))× � Z12 × Z4 × Z2

2 . Hecke characters Ξ̃δ on Z[
√

3]
with period Pδ are given by

Ξ̃δ(μ) =
{

sgn(μ)
−sgn(μ) for μ ≡

{
2 + δ

√
3, 5

7 + 2δ
√

3, −1
mod Pδ.

The corresponding theta series of weight 1 satisfy the identities

Θ1

(
156, ξ̃δ,

z
12

)
= Θ1

(
−39, ϕ̃δ,ν , z

12

)

= Θ1

(
−4, φδ,ν , z

12

)
= g̃1(z) − 2δi g̃5(z), (22.60)

Θ1

(
12, Ξ̃δ,

z
12

)
= Θ1

(
− 39, ψ̃δ,ν , z

12

)

= Θ1

(
−52, ρ̃δ,ν , z

12

)
= h̃1(z) + 2δ h̃11(z), (22.61)

where g̃j and h̃j are normalized integral Fourier series with denominator
12 and numerator classes j modulo 12. The components g̃1, h̃1 are linear
combinations of eta products,

g̃1 =
[

2, 265

132, 522

]
−
[
25, 26
12, 42

]
,

(22.62)

h̃1 =
[

2, 265

132, 522

]
+
[
25, 26
12, 42

]
.

22.6 Cuspidal Eta Products for Γ0(52) with Denomina-
tor 24

The eta products with denominator 24 combine neatly to form several families
of theta series. We begin with the sign transforms of the eta products for
Γ0(26) in Example 17.22:

Example 22.21 The residues of 1 +
√

−78,
√

2 +
√

−39,
√

3 +
√

−26 and
−1 modulo 4

√
6 can be chosen as generators of (J78/(4

√
6))× � Z3

4 × Z2.
Define eight characters ψ̃δ,ε,ν on J78 with period 4

√
6 by their values

ψ̃δ,ε,ν(1 +
√

−78) = ν, ψ̃δ,ε,ν(
√

2 +
√

−39) = δεi,

ψ̃δ,ε,ν(
√

3 +
√

−26) = δ, ψ̃δ,ε,ν(−1) = 1

with δ, ε, ν ∈ {1, −1}. The residues of 2 + νi, 5, 5 − 6νi, 11 + 24νi and νi
modulo 24(3+2νi) are generators of (O1/(72+48νi))× � Z24 × Z2

4 × Z2 × Z4.
Characters φ = φδ,ε,ν on O1 with periods 24(3 + 2νi) are given by
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φ(2 + νi) = δ, φ(5) = −1,

φ(5 − 6νi) = εi, φ(11 + 24νi) = 1, φ(νi) = 1.

The residues of
√

6 +
√

13,
√

13, 5 and −1 modulo 4
√

6 are generators of the
group

(
J

Q(
√

78)/(4
√

6)
)× � Z2

4 × Z2
2 . Characters ξ̃δ,ε on J

Q(
√

78) with period
4

√
6 are given by

ξ̃δ,ε(μ) =

⎧
⎪⎪⎨

⎪⎪⎩

−δεi sgn(μ)
εi sgn(μ)
sgn(μ)

−sgn(μ)

for μ ≡

⎧
⎪⎪⎨

⎪⎪⎩

√
6 +

√
13√

13
5

−1

mod 4
√

6.

The corresponding theta series of weight 1 satisfy the identities

Θ1

(
312, ξ̃δ,ε,

z
24

)
= Θ1

(
−312, ψ̃δ,ε,ν , z

24

)

= Θ1

(
−4, φδ,ε,ν , z

24

)

= f̃1(z) + 2δ f̃5(z) + εi f̃13(z)

+ 2δεi f̃17(z), (22.63)

where the components f̃j are normalized integral Fourier series with denomi-
nator 24 and numerator classes j modulo 24, and all of them are eta products,

f̃1 =
[

23, 265

1, 4, 132, 522

]
, f̃5 =

[
1, 4, 26

2

]
,

f̃13 =
[

25, 263

12, 42, 13, 52

]
, f̃17 =

[
2, 13, 52

26

]
. (22.64)

In the following example we handle eight eta products which form four pairs
(gj , g̃j) of sign transforms. The first components gj in these pairs are per-
muted among each other by W52, while the Fricke involution maps the second
components g̃j to the eta products with denominator 6 in Example 22.16.

Example 22.22 Let the generators of (J78/(4
√

6))× � Z3
4 × Z2 be chosen

as in Example 22.21. Define sixteen characters χδ,ε,ν and χ̃δ,ε,ν on J78 with
period 4

√
6 by their values

χδ,ε,ν(1 +
√

−78) = δi, χδ,ε,ν(
√

2 +
√

−39) = ν,

χδ,ε,ν(
√

3 +
√

−26) = ενi, χδ,ε,ν(−1) = 1,

χ̃δ,ε,ν(1 +
√

−78) = δi, χ̃δ,ε,ν(
√

2 +
√

−39) = ν,

χ̃δ,ε,ν(
√

3 +
√

−26) = −εν, χ̃δ,ε,ν(−1) = 1

with δ, ε, ν ∈ {1, −1}. The residues of 1 + 2ω, 5, 9 + 4ω, 1 + 32ω and
ω modulo 16(5 + 2ω) can be chosen as generators of (O3/(80 + 32ω))× �
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Z24 × Z2
4 × Z2 × Z6. Eight characters ψ = ψδ,ε,1 and ρ = ρδ,ε,1 on O3 with

period 16(5 + 2ω) are given by

ψ(1 + 2ω) = −δi, ψ(5) = 1,

ψ(9 + 4ω) = εi, ψ(1 + 32ω) = −1 ψ(ω) = 1,

ρ(1 + 2ω) = δi, ρ(5) = −1,

ρ(9 + 4ω) = −ε, ρ(1 + 32ω) = −1, ρ(ω) = 1.

Define characters ψδ,ε,−1 and ρδ,ε,−1 on O3 with period 16(5 + 2ω) by
ψδ,ε,−1(μ) = ψδ,ε,1(μ), ρδ,ε,−1(μ) = ρδ,ε,1(μ). The residues of 5 +

√
26,

3 +
√

26,
√

13 and −1 modulo 12
√

2 are generators of
(

J
Q(

√
26)/(12

√
2)
)× �

Z8 × Z2
4 × Z2. Hecke characters ξδ,ε and ξ̃δ,ε on J

Q(
√

26) with period 12
√

2
are given by

ξδ,ε(μ) =

⎧
⎪⎪⎨

⎪⎪⎩

sgn(μ)
δi sgn(μ)
εi sgn(μ)

−sgn(μ)

,

ξ̃δ,ε(μ) =

⎧
⎪⎪⎨

⎪⎪⎩

sgn(μ)
δi sgn(μ)
ε sgn(μ)

−sgn(μ)

for μ ≡

⎧
⎪⎪⎨

⎪⎪⎩

5 +
√

26
3 +

√
26√

13
−1

mod 12
√

2.

The corresponding theta series of weight 1 satisfy the identities

Θ1

(
104, ξδ,ε,

z
24

)
= Θ1

(
−312, χδ,ε,ν , z

24

)

= Θ1

(
−3, ψδ,ε,ν , z

24

)

= g1(z) + 2δi g7(z) + εi g13(z)
− 2δε g19(z), (22.65)

Θ1

(
104, ξ̃δ,ε,

z
24

)
= Θ1

(
−312, χ̃δ,ε,ν , z

24

)

= Θ1

(
−3, ρδ,ε,ν , z

24

)

= g̃1(z) + 2δi g̃7(z) + ε g̃13(z)
+ 2δεi g̃19(z), (22.66)

where gj, g̃j are normalized integral Fourier series with denominator 24 and
numerator classes j modulo 24, and where (gj , g̃j) are pairs of sign trans-
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forms. All the components are eta products,

g1 =
[

23, 132

1, 4, 26

]
, g7 =

[
23, 522

1, 4, 26

]
,

(22.67)

g13 =
[

12, 263

2, 13, 52

]
, g19 =

[
42, 263

2, 13, 52

]
,

g̃1 =
[

1, 265

132, 522

]
, g̃7 =

[
1, 522

26

]
,

(22.68)

g̃13 =
[
25, 13
12, 42

]
, g̃19 =

[
42, 13

2

]
.

In the next example we present two families of theta series on Q(
√

−39)
whose components form eight pairs of sign transforms, and where four pairs
can be identified with eta products:

Example 22.23 Let J39 with Λ = Λ39 =
√

(
√

13 +
√

−3)/2 be given as in

Example 7.8. The residues of 1+
√

−39
2Λ , 2+

√
−39, 4+

√
−39, 7 and −1 modulo

16
√

−3 can be chosen as generators of (J39/(16
√

−3))× � Z16 × Z4 × Z3
2 .

Define characters χ = χδ,ε,ν,σ and χ̃ = χ̃δ,ε,ν,σ on J39 with period 16
√

−3 by
their values

χ
(

1+
√

−39
2Λ

)
= ξ, χ(2 +

√
−39) = −δεν,

χ(4 +
√

−39) = νσ, χ(7) = −1, χ(−1) = 1,

χ̃
(

1+
√

−39
2Λ

)
= δσξ, χ̃(2 +

√
−39) = δενi,

χ̃(4 +
√

−39) = −νσ, χ̃(7) = −1, χ̃(−1) = 1

with ξ = ξδ,σ = δ+σi√
2

and δ, ε, ν, σ ∈ {1, −1}. The corresponding theta series
of weight 1 decompose as

Θ1

(
−39, χδ,ε,ν,σ, z

24

)
= f1(z) + δ

√
2 f5(z)

+ 2δνi f7(z) + νi
√

2 f11(z) + εi f13(z)

+ δεi
√

2 f17(z) − 2δεν f19(z)

+ εν
√

2 f23(z), (22.69)

Θ1

(
−39, χ̃δ,ε,ν,σ, z

24

)
= f̃1(z) + δi

√
2 f̃5(z) + 2δνi f̃7(z)

+ ν
√

2 f̃11(z) + ε f̃13(z)

− δεi
√

2 f̃17(z) + 2δενi f̃19(z)

− εν
√

2 f̃23(z), (22.70)
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where fj, f̃j are normalized integral Fourier series with denominator 24 and
numerator classes j modulo 24, and where

(
fj , f̃j

)
are pairs of sign trans-

forms. The components for j ≡ 1 mod 6 are eta products,

f1 =
[

23, 262

1, 4, 52

]
, f7 =

[
1, 4, 52

2

]
,

(22.71)

f13 =
[

22, 263

4, 13, 52

]
, f19 =

[
4, 13, 52

26

]
,

f̃1 =
[
1, 262

52

]
, f̃7 =

[
22, 52

1

]
,

(22.72)

f̃13 =
[
22, 13

4

]
, f̃19 =

[
4, 262

13

]
.

So far in the examples in this subsection, 20 out of the 22 eta products
of weight 1 for Γ0(52) with denominator 24 appeared in the components
of theta series. The eta products which are missing are

[
1−1, 23, 4−1, 52

]

and
[
4, 13−1, 263, 52−1

]
. But when we replace the variable z by 2z in these

eta products then we obtain the components (22.59) of the theta series in
Example 22.19.

Our final example in this subsection concerns the eta products of weight 1
and denominator 3 for Γ0(52) which are the Fricke transforms of the functions
in (22.71). When we apply W52 to the “eta product part” on the right hand
side of (22.69), we find the following result:

Example 22.24 Let χδ,ε,ν,σ be the characters on J39 with period 16
√

−3 as
given in Example 22.23, and put

ϕδ,ε,σ = χδ,ε,ν,σ with ν = δε.

Then we have

Θ1

(
−39, ϕδ,ε,σ, z

3

)
= h1(z) + εi h̃1(z) + δ

√
2 h2(z) + δεi

√
2 h̃2(z) (22.73)

where the components hj, h̃j are normalized integral Fourier series with de-
nominator 3 and numerator classes j modulo 3, and where h2, h̃2 are linear
combinations of eta products,

h2 = 1
4

(
g2 − g̃2 + g5 + g̃5

)
, h̃2 = 1

4

(
g2 − g̃2 − g5 − g̃5

)
(22.74)

with

g2 =
[

22, 263

1, 13, 52

]
, g̃2 =

[
1, 4, 13

2

]
,

(22.75)

g5 =
[

23, 262

1, 4, 13

]
, g̃5 =

[
1, 13, 52

26

]
.
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22.7 Non-cuspidal Eta Products for Γ0(52)

The sum of the non-cuspidal eta products of weight 1 and denominator 4 for
Γ0(52) appeared as a component of a theta series in Example 17.25. The
difference of these two eta products is a cusp form and a theta series on the
quadratic fields with discriminants 13, −52 and −4. It turns out that this
difference, when the variable z is replaced by 4z, is also a linear combination
of non-cuspidal eta products with denominator 1:

Example 22.25 The residue of 1√
2
(1+

√
−13) modulo 2 generates the group

(J13/(2))× � Z4. Define a pair of characters ψν on J52 with period 2 by

ψν

(
1√
2
(1 +

√
−13)

)
= νi

with ν ∈ {1, −1}. The residues of 2 + νi and 4 − νi modulo 2(3 + 2νi) are
generators of (O1/(6 + 4νi))× � Z12 × Z2, where (2 + νi)3 ≡ νi mod 6 + 4νi.
Characters χν on O1 with periods 2(3 + 2νi) are defined by

χν(2 + νi) = 1, χν(4 − νi) = −1.

The residues of 1
2 (3+

√
13) and −1 modulo 4 are generators of (Z[ω13]/(4))× �

Z6 × Z2, where ω13 = 1
2 (1 +

√
13). Define a Hecke character ξ on Z[ω13]

modulo 4 by

ξ(μ) =
{

sgn(μ)
−sgn(μ) for μ ≡

{
1
2 (3 +

√
13)

−1
mod 4.

The corresponding theta series of weight 1 are identical and satisfy

Θ1

(
13, ξ, z

4

)
= Θ1

(
−52, ψν , z

4

)
= Θ1

(
−4, χν , z

4

)
= F (z), (22.76)

where F is a linear combination of non-cuspidal eta products with orders 1
4

and 13
4 at ∞,

F =
[

42, 265

2, 132, 522

]
−
[

25, 522

12, 42, 26

]
. (22.77)

Moreover, G(z) = F (4z) satisfies

G =
1
4

([
25, 132

12, 42, 26

]
−
[

12, 265

2, 132, 522

])
. (22.78)

We use (8.5), (8.7), (8.8) and write G(z) = F (4z) in terms of the coefficients
of the eta products. It follows that this identity is equivalent to

1
2

∑

x2+13y2 = n

(
(−1)y − (−1)x

)
=

∑

x2+52y2 = n

1 −
∑

13x2+4y2 = n

1 (22.79)
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for all n ≡ 1 mod 4, where in each sum x and y run over all integers in
Z satisfying the indicated equation. As we noted after Example 22.14, the
identity (22.79) allows a trivial proof which generalizes to any positive integer
d ≡ 1 mod 4 instead of 13 (and 4d instead of 52).

According to Example 17.25, the sum of the eta products in (22.77) is a
component of two theta series on Q(

√
−13), with f3 =

[
1−1, 22, 13−1, 262

]

as the other component. Therefore one would expect that the sum of the
eta products in (22.78) together with the Fricke transform W26(f3) will also
make up components of theta series on Q(

√
−13). In fact this holds true

after some manipulation with the argument z, similarly as in Example 22.15:

Example 22.26 Let ρ1 be the trivial and ρ−1 the non-trivial character with
period 1 on J13. Then for δ ∈ {1, −1} we have

Θ1 (−52, ρδ, z) = Gδ

(
z + 1

2

)
, (22.80)

where
Gδ(z) = 1

2 g(z) + 1
4δ h

(
z
2

)
, (22.81)

g =
[
12, 132

2, 26

]
, h =

[
25, 132

12, 42, 26

]
+
[

12, 265

2, 132, 522

]
. (22.82)

Clearly we have

Θ1 (−52, ρ1, z) = 1 +
∞∑

n=1

( ∑

d|n

(−13
d

))
e(z).

For the coefficients of the theta series corresponding to ρ−1 we introduce the
notation

Θ1 (−52, ρ−1, z) = 1 +
∞∑

n=1

λ(n) e(nz).

Then for primes p with
(−13

p

)
= 1 we have λ(p) = 2 if p splits into principal

ideals in O13, which holds if and only if g has coefficient −4 at p, and we
have λ(p) = −2 if p splits into non-principal ideals in O13, which holds if and
only if h has coefficient −8 at 2p. This follows easily from a formula for λ(n)
which is deduced from (8.7), (8.8). Thus here we have a trivial analogue for
the result of van der Blij and Schoeneberg.

The eta products with denominator 1 which remain form two pairs of sign
transforms. Their Fricke transforms are eta products with denominator 8
which together with their sign transforms constitute all the non-cuspidal
eta products of weight 1 for Γ0(52) with denominator 8. We did not find
eigenforms containing any of these twelve functions in their constituents.
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23.1 Eta Products for the Fricke Groups Γ∗(44)
and Γ∗(28)

Once more, we recall Table 21.1 in Sect. 21.1 with the numbers of eta products
of weight 1 and levels N = 4p. Now we discuss the primes p = 11 and p = 7.

One of the cuspidal eta products for Γ∗(44) has denominator 2. It is the sign
transform of η(z)η(11z). We get a result closely related to that in Exam-
ple 12.6:

Example 23.1 The residues of 1
2 (1+

√
−11) and −1 modulo 4 can be chosen

as generators of (O11/(4))× � Z6 × Z2. A pair of characters χν on O11 with
period 4 is given by

χν

(
1
2 (1 +

√
−11)

)
= ων = 1

2 (1 + νi
√

3), χν(−1) = 1

with ν ∈ {1, −1}. The corresponding theta series of weight 1 satisfy

Θ1

(
−11, χν , z

2

)
=

η3(2z)η3(22z)
η(z)η(4z)η(11z)η(44z)

. (23.1)

The remaining four cuspidal eta products for Γ∗(44) have denominator 8
with orders 1

8 , 11
8 , 5

8 , 15
8 at ∞. We could not find eigenforms involving

f1 =
[
1−1, 22, 222, 44−1

]
, f11 =

[
22, 4−1, 11−1, 222

]
, nor could we do so for

their sign transforms which belong to Γ0(44). One of the reasons is that the
coefficients of f1 violate the condition of multiplicativity. For the other two
eta products the following result holds:

Example 23.2 The residues of 1
2 (1+

√
−11), 3+2

√
−11 and −1 modulo 16

can be chosen as generators of (O11/(16))× � Z24 ×Z4 ×Z2. Eight characters
ϕδ,ε,ν on O11 with period 16 are given by their values
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ϕδ,ε,ν

(
1
2 (1 +

√
−11)

)
= 1

2 (δ + ενi
√

3), ϕδ,ε,ν(3 + 2
√

−11) = νi,

ϕδ,ε,ν(−1) = 1

with δ, ε, ν ∈ {1, −1}. The corresponding theta series of weight 1 decompose
as

Θ1

(
−11, ϕδ,ε,ν , z

8

)
= h1(z) + δ h3(z) + δε

√
3 h5(z) + ε

√
3 h7(z), (23.2)

where the components hj are normalized integral Fourier series with denomi-
nator 8 and numerator classes j modulo 8, and where h5, h7 are eta products,

h5 = [4, 11], h7 = [1, 44]. (23.3)

Two of the non-cuspidal eta products for Γ∗(44), with denominators 1 and
2, have sign transforms which belong to Γ0(22) and which appear in the
Eisenstein series identity (17.50). The other two non-cuspidal eta products,

[
2−1, 42, 112, 22−1

]
and

[
12, 2−1, 22−1, 442

]

with denominator 4, are related to the theory of binary quadratic forms with
discriminant −44, but there is no linear combination of these functions which
is an eigenform. We note that −44 is not a fundamental discriminant, and
its class number is 4.

We turn to the Fricke group Γ∗(28). Here we have the cuspidal eta product

f =
[
1−1, 23, 4−1, 7−1, 143, 28−1

]

with order 1
3 at ∞. It is the sign transform of the function η(z)η(7z) in

Example 12.3. However, there is no corresponding result for f , since the
coefficients of f are not multiplicative.

The cuspidal eta products with denominator 8 are the components of theta
series on the fields with discriminants 8, −7 and −56:

Example 23.3 The residues of 2 +
√

−7, 3, 8 + 3
√

−7 and −1 modulo 16
can be chosen as generators of (O7/(16))× � Z2

4 × Z2
2 . Four characters χδ,ν

on O7 with period 16 are defined by

χδ,ν(2 +
√

−7) = νi, χδ,ν(3) = 1,

χδ,ν(8 + 3
√

−7) = −δ, χδ,ν(−1) = 1

with δ, ν ∈ {1, −1}. Let J14 with Λ = Λ14 =
√√

2 +
√

−7 be given as in
Example 7.7. The residues of Λ,

√
−7, 3 and −1 modulo 4

√
2 can be chosen

as generators of (J14/(4
√

2))× � Z8 × Z3
2 . Four characters ψδ,ν on J14 with

period 4
√

2 are given by
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ψδ,ν(Λ) = ν, ψδ,ν(
√

−7) = −δ,

ψδ,ν(3) = −1, ψδ,ν(−1) = 1.

The residues of 1+δ
√

2, 3−4δ
√

2, 1−4δ
√

2 and −1 modulo Mδ = 4(2+3δ
√

2)
are generators of (Z[

√
2]/(Mδ))× � Z12 × Z3

2 . Hecke characters ξδ on Z[
√

2]
with period Mδ are given by

ξδ(μ) =
{

δ sgn(μ)
−sgn(μ) for μ ≡

{
1 + δ

√
2

3 − 4δ
√

2, 1 − 4δ
√

2, −1
mod Mδ.

The corresponding theta series of weight 1 satisfy the identities

Θ1

(
8, ξδ,

z
8

)
= Θ1

(
−7, χδ,ν , z

8

)
= Θ1

(
−56, ψδ,ν , z

8

)
= f1(z) − δ f7(z),

(23.4)
where the components fj are normalized integral Fourier series with denomi-
nator 8 and numerator classes j modulo 8, and both of them are eta products,

f1 =
[
22, 142

1, 28

]
, f7 =

[
22, 142

4, 7

]
. (23.5)

The cuspidal eta products with denominator 24 constitute two of the com-
ponents of theta series on the fields with discriminants 168, −7 and −24:

Example 23.4 The residues of 2 +
√

−7,
√

−7, 2 + 3
√

−7, 8 + 3
√

−7 and
−1 modulo 48 can be chosen as generators of (O7/(48))× � Z8 × Z2

4 × Z2
2 .

Eight characters ϕ = ϕδ,ε,ν on O7 with period 48 are given by their values

ϕ(2 +
√

−7) = ε, ϕ(
√

−7) = δ,

ϕ(2 + 3
√

−7) = νi, ϕ(8 + 3
√

−7) = −δ

and ϕ(−1) = 1 with δ, ε, ν ∈ {1, −1}. The residues of
√

3 + ν
√

−2,
√

3 +
2ν

√
−2, 1 + 12ν

√
−6, 13 and −1 modulo 4(6 + ν

√
−6) are generators of

(J6/(24 + 4ν
√

−6))× � Z12 × Z4 × Z3
2 . Characters ρ = ρδ,ε,ν on J6 with

periods 4(6 + ν
√

−6) are given by

ρ(
√

3 + ν
√

−2) = −δε, ρ(
√

3 + 2ν
√

−2) = ε,

ρ(1 + 12ν
√

−6) = 1, ρ(13) = 1

and ρ(−1) = 1. The residues of 4
√

2 +
√

21, 1 +
√

42, 11 and −1 modulo
M = 4(6 +

√
42) are generators of

(
J

Q[
√

42]/(M)
)× � Z2

4 × Z2
2 . Hecke

characters ξδ,ε on J
Q[

√
42] with period M are given by

ξδ,ε(μ) =

⎧
⎪⎪⎨

⎪⎪⎩

ε sgn(μ)
δ sgn(μ)
sgn(μ)

−sgn(μ)

for μ ≡

⎧
⎪⎪⎨

⎪⎪⎩

4
√

2 +
√

21
1 +

√
42

11
−1

mod M.
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The corresponding theta series of weight 1 are identical and decompose as

Θ1

(
168, ξδ,ε,

z
24

)
= Θ1

(
−7, ϕδ,ε,ν , z

24

)
= Θ1

(
−24, ρδ,ε,ν , z

24

)

= g1(z) − 2δε g5(z) + δ g7(z) + 2ε g11(z), (23.6)

where the components gj are normalized integral Fourier series with denom-
inator 24 and numerator classes j modulo 24, and where g5, g11 are eta
products,

g5(z) = η(z)η(28z) , g11(z) = η(4z)η(7z) . (23.7)

The non-cuspidal eta products of weight 1 for Γ∗(28) with denominator 1
are the sign transforms of the functions in Example 17.19. Therefore we get
similar results,

η(z)η(4z)η(7z)η(28z)
η(2z)η(14z)

=
∞∑

n=1

(−1)n−1

( ∑

2�d|n

(−7
d

))
e(nz), (23.8)

η5(2z)η5(14z)
η2(z)η2(4z)η2(7z)η2(28z)

= 1 + 2
∞∑

n=1

λ̃(n) e(nz), (23.9)

where λ̃(2rm) = |r −1|
∑∞

d|m
(−7

d

)
if m is odd and r ≥ 0. Contrary to (17.44),

one cannot write (23.8) in terms of a theta series, since the coefficients violate
the proper recursions at powers of the prime 2.

The non-cuspidal eta products with denominator 4 combine to eigenforms
which are Eisenstein series and, simultaneously, theta series with characters
of period 4 on Q(

√
−7). We remark that (O7/(4))× � Z2

2 with the residues
of 2 +

√
−7 and

√
−7 modulo 4 as generators.

Example 23.5 For δ ∈ {1, −1}, let χδ be the characters with period 4 on
O7 which are given by

χδ(μ) =
(

2δ
μ μ

)
for μ ∈ O7.

Then we have

Θ1

(
−7, χδ,

z
4

)
=

∞∑

n=1

(
2δ
n

)( ∑

d|n

(−7
d

))
e
(

nz
4

)
= F1(z) − δ F3(z), (23.10)

where the components Fj are normalized integral Fourier series with denom-
inator 4 and numerator classes j modulo 4, and equal to eta products,

F1(z) =
η2(4z)η2(7z)
η(2z)η(14z)

, F3(z) =
η2(z)η2(28z)
η(2z)η(14z)

. (23.11)
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23.2 Cuspidal Eta Products for Γ0(44) with Denomina-
tors t ≤ 12

The cuspidal eta products of weight 1 for Γ0(44) with denominator 2 form two
pairs of sign transforms. Their Fricke transforms have denominator 8. Two
of these transforms are components in theta series which will be described in
Example 23.7 and which contain two more components not otherwise identi-
fied. Transforming back with W44 does not yield a result for the eta products
with denominator 2 since one would need overlapping components with nu-
merator 1 which we cannot identify.

Similar facts prevail for denominator 6. The eta products form two pairs
of sign transforms. Their Fricke transforms have denominator 24, and they
make up four of the components of theta series which will be described in Ex-
ample 23.13 and which have four more components not otherwise identified.
Transforming back with W44 does not yield a result for the same reasons as
before.

There are six cuspidal eta products of weight 1 for Γ0(44) with denominator 8.
Two of them are the sign transforms of those in Example 17.4 and make up
the components of theta series on the fields with discriminants 44, −8 and
−88:

Example 23.6 Let J22 be given as in Example 7.2. The residues of
√

11 +√
−2, 1 +

√
−22 and −1 modulo 4

√
−2 can be chosen as generators of

(J22/(4
√

−2))× � Z2
4 × Z2. Four characters ψδ,ν on J22 with period 4

√
−2

are defined by

ψδ,ν(
√

11 +
√

−2) = ν, ψδ,ν(1 +
√

−22) = δνi, ψδ,ν(−1) = 1

with δ, ν ∈ {1, −1}. The residues of 3+ν
√

−2, 1−8ν
√

−2, 5−2ν
√

−2 and −1
modulo 4(2+3ν

√
−2) can be chosen as generators of (O2/(8+12ν

√
−2))× �

Z20 × Z3
2 . Characters ϕδ,ν on O2 with periods 4(2 + 3ν

√
−2) are given by

ϕδ,ν(3 + ν
√

−2) = δi, ϕδ,ν(1 − 8ν
√

−2) = −1,

ϕδ,ν(5 − 2ν
√

−2) = 1, ϕδ,ν(−1) = 1.

The residues of 2 +
√

11, 1 + 2
√

11 and −1 modulo 8 are generators of
(Z[

√
11]/(8))× � Z2

4 × Z2. Hecke characters ξ̃δ on Z[
√

11] with period 8
are given by

ξ̃δ(μ) =

⎧
⎨

⎩

sgn(μ)
δi sgn(μ)

−sgn(μ)
for μ ≡

⎧
⎨

⎩

2 +
√

11
1 + 2

√
11

−1
mod 8.

The corresponding theta series of weight 1 satisfy the identities

Θ1

(
44, ξ̃δ,

z
8

)
= Θ1

(
−88, ψδ,ν , z

8

)
= Θ1

(
−8, ϕδ,ν , z

8

)
= f1(z) + δi f3(z),

(23.12)
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where the components fj are normalized integral Fourier series with denomi-
nator 8 and numerator classes j modulo 8, and both of them are eta products,

f1 =
[

1, 4, 225

2, 112, 442

]
, f3 =

[
25, 11, 44
12, 42, 22

]
. (23.13)

Two of the remaining four cuspidal eta products with denominator 8 are
components in theta series on Q(

√
−11). They are the sign transforms of the

eta products in Example 23.2 and, simultaneously, the Fricke transforms of
two of the eta products with denominator 2. We get the following result.

Example 23.7 Let the generators of (O11/(16))× � Z24 × Z4 × Z2 be chosen
as in Example 23.2. Eight characters ρδ,ε,ν on O11 with period 16 are given
by

ρδ,ε,ν

(
1
2 (1 +

√
−11)

)
= 1

2 (ν
√

3 + εi),

ρδ,ε,ν(3 + 2
√

−11) = δεν, ρδ,ε,ν(−1) = 1

with δ, ε, ν ∈ {1, −1}. The corresponding theta series of weight 1 decompose
as

Θ1

(
−11, ρδ,ε,ν , z

8

)
= g1(z) + εi g3(z) + δi

√
3 g5(z) − δε

√
3 g7(z), (23.14)

where the components gj are normalized integral Fourier series with denomi-
nator 8 and numerator classes j modulo 8, and where g5, g7 are eta products,

g5 =
[

4, 223

11, 44

]
, g7 =

[
23, 44
1, 4

]
. (23.15)

There are two eta products with denominator 8 which remain,
[
1, 2−1, 4,

222, 44−1
]

and
[
22, 4−1, 11, 22−1, 44

]
. We cannot offer eigenforms involving

these eta products in their components, nor could we do so for their sign trans-
forms, which belong to the Fricke group Γ∗(44), or for their Fricke transforms,
which have order 3

2 at ∞.

Four of the cuspidal eta products with denominator 12 are the sign transforms
of the functions in Example 17.20. We get a similar result as before in that
example:

Example 23.8 Let J33 be given as in Example 7.6. The residues of 1√
2
(

√
3+

√
−11),

√
−11, 1 + 2

√
−33 and −1 modulo 4

√
3 can be chosen as generators

of (J33/(4
√

3))× � Z8 × Z3
2 . Eight characters χ̃δ,ε,ν on J33 with period 4

√
3

are fixed by their values

χ̃δ,ε,ν

(
1√
2
(

√
3 +

√
−11)

)
= 1√

2
(ν + εi),

χ̃δ,ε,ν(
√

−11) = −δε, χ̃δ,ε,ν(1 + 2
√

−33) = 1
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and χ̃δ,ε,ν(−1) = 1, with δ, ε, ν ∈ {1, −1}. The corresponding theta series of
weight 1 decompose as

Θ1

(
−132, χ̃δ,ε,ν , z

12

)
= f̃1(z) + δi

√
2 f̃5(z) + εi

√
2 f̃7(z) − δε f̃11(z), (23.16)

where the components f̃j are normalized integral Fourier series with denomi-
nator 12 and numerator classes j modulo 12, and all of them are eta products,

f̃1 =
[

2, 225

112, 442

]
, f̃5 =

[
23, 11, 44
1, 4, 22

]
,

(23.17)

f̃7 =
[

1, 4, 223

2, 11, 44

]
, f̃11 =

[
25, 22
12, 42

]
.

The other four cuspidal eta products with denominator 12 form two pairs of
sign transforms. They appear in the components of another family of theta
series on the field Q(

√
−33):

Example 23.9 The residues of 1√
2
(

√
3+

√
−11),

√
−11, 1+2

√
−33 and −1

modulo 8
√

3 can be chosen as generators of (J33/(8
√

3))× � Z8 × Z2
4 × Z2.

Sixteen characters ψ = ψδ,ε,ν,σ on J33 with period 8
√

3 are defined by

ψ
(

1√
2
(

√
3 +

√
−11)

)
= 1√

2
(σ + εi),

ψ(
√

−11) = −δνi, ψ(1 + 2
√

−33) = −δσ

and ψ(−1) = 1, with δ, ε, ν, σ ∈ {1, −1}. The corresponding theta series of
weight 1 decompose as

Θ1

(
−132, ψδ,ε,ν,σ, z

12

)

=
(
g1(z) − 2δεi g13(z)

)
− ν

√
2
(
δε g5(z) − i g17(z)

)

+
√

2
(
εi g7(z) + δ g19(z)

)
− ν
(
δi g11(z) − 2ε g23(z)

)
, (23.18)

where the components gj are normalized integral Fourier series with denom-
inator 12 and numerator classes j modulo 24. Those for j ≡ 5, 7 mod 12 are
linear combinations of eta products,

g5 =
1
2

([
23, 222

1, 4, 11

]
−
[
1, 11, 44

22

])
,

(23.19)

g7 =
1
2

([
22, 223

1, 11, 44

]
+
[
1, 4, 11

2

])
,

g17 =
1
2

([
23, 222

1, 4, 11

]
+
[
1, 11, 44

22

])
,

(23.20)

g19 =
1
2

([
22, 223

1, 11, 44

]
−
[
1, 4, 11

2

])
.
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23.3 Cuspidal Eta Products for Γ0(44) with Denomina-
tor 24

In this subsection we will describe six families of theta series which in their
components comprise all the 22 cuspidal eta products of weight 1 for Γ0(44)
with denominator 24 and, additionally, 18 Fourier series which are not other-
wise identified. In particular, it follows that the 22 eta products are linearly
independent. We begin with the sign transforms of six eta products on Γ0(22)
which were handled in Example 17.5:

Example 23.10 Let J22 and J66 with Λ = Λ66 =
√√

3 +
√

−22 be given
as in Examples 7.2 and 7.10. The residues of 1 +

√
−22, 3 +

√
−22,

√
11

and −1 modulo 12
√

−2 can be chosen as generators of (J22/(12
√

−2))× �
Z8 × Z2

4 × Z2. Eight characters ρ̃δ,ε,ν on J22 with period 12
√

−2 are fixed by
their values

ρ̃δ,ε,ν(1 +
√

−22) = ε, ρ̃δ,ε,ν(3 +
√

−22) = νi,

ρ̃δ,ε,ν(
√

11) = δεi, ρ̃δ,ε,ν(−1) = 1

with δ, ε, ν ∈ {1, −1}. The residues of Λ, 2
√

2 +
√

−33,
√

−11 and 5 mod-
ulo 4

√
6 generate the group (J66/(4

√
6))× � Z8 × Z2

4 × Z2, where (2
√

2 +√
−33)2 ≡ −1 mod 4

√
6. Eight characters ϕ̃δ,ε,ν on J66 with period 4

√
6 are

given by
ϕ̃δ,ε,ν(Λ) = νi, ϕ̃δ,ε,ν(2

√
2 +

√
−33) = δν,

ϕ̃δ,ε,ν(
√

−11) = δεi, ϕ̃δ,ε,ν(5) = 1.

The residues of 2+ε
√

3, 11−2ε
√

3, 7+16ε
√

3, 23 and −1 modulo Mε = 8(6+
ε

√
3) are generators of (Z[

√
3]/(Mε))× � Z20 × Z4 × Z3

2 . Hecke characters
ξ̃δ,ε on Z[

√
3] with period Mε are given by

ξ̃δ,ε(μ) =

⎧
⎨

⎩

sgn(μ)
−δi sgn(μ)

−sgn(μ)
for μ ≡

⎧
⎨

⎩

2 + ε
√

3, 7 + 16ε
√

3, 23
11 − 2ε

√
3

−1
mod Mε.

The corresponding theta series of weight 1 satisfy the identities

Θ1

(
12, ξ̃δ,ε,

z
24

)
= Θ1

(
−88, ρ̃δ,ε,ν , z

24

)
= Θ1

(
−264, ϕ̃δ,ε,ν , z

24

)

= f̃1(z) + δεi f̃11(z) + 2δi f̃13(z) + 2ε f̃23(z),
(23.21)

where the components f̃j are normalized integral Fourier series with denom-
inator 24 and numerator classes j modulo 24. All of them are eta products
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or linear combinations thereof,

f̃1 =
[

23, 225

1, 4, 112, 442

]
− 2

[
1, 4, 22

2

]
,

(23.22)

f̃11 =
[

25, 223

12, 42, 11, 44

]
− 2

[
2, 11, 44

22

]
,

f̃13 =
[

2, 223

11, 44

]
, f̃23 =

[
23, 22
1, 4

]
. (23.23)

We observe that the eta products in (23.22), (23.23) make up three pairs of
transforms with respect to the Fricke involution W44. The pairs in (23.22)
will also appear in components of theta series in the next example. This
corresponds to the appearance of their sign transforms in both Examples 17.5
and 17.21.

Example 23.11 Let the generators of (J66/(4
√

6))× � Z8 × Z2
4 × Z2 be

chosen as in Example 23.10, and define characters ψδ,ε,ν on J66 with period
4

√
6 by

ψδ,ε,ν(Λ) = ε, ψδ,ε,ν(2
√

2 +
√

−33) = ν,

ψδ,ε,ν(
√

−11) = δεi, ψδ,ε,ν(5) = 1

with δ, ε, ν ∈ {1, −1}. The residues of
√

3 + ν
√

−2,
√

3 + 2ν
√

−2, 11 −
8ν

√
−6, 23 and −1 modulo 4(4

√
3 + 3ν

√
−2) can be chosen as generators of

(J6/(16
√

3 + 12ν
√

−2))× � Z20 × Z4 × Z3
2 . Characters ρ = ρδ,ε,ν on J6 with

periods 4(4
√

3 + 3ν
√

−2) are given by

ρ(
√

3 + ν
√

−2) = ε, ρ(
√

3 + 2ν
√

−2) = δεi,

ρ(11 − 8ν
√

−6) = −1, ρ(23) = −1

and ρ(−1) = 1. The residues of 2 +
√

11, 2 + 3
√

11,
√

11 and −1 modulo 24
are generators of (Z[

√
11]/(24))× � Z8 × Z2

4 × Z2. Hecke characters ξδ,ε on
Z[

√
11] with period 24 are given by

ξδ,ε(μ) =

⎧
⎪⎪⎨

⎪⎪⎩

δi sgn(μ)
sgn(μ)

δεi sgn(μ)
−sgn(μ)

for μ ≡

⎧
⎪⎪⎨

⎪⎪⎩

2 +
√

11
2 + 3

√
11√

11
−1

mod 24.

The corresponding theta series of weight 1 satisfy the identities

Θ1

(
44, ξδ,ε,

z
24

)
= Θ1

(
−264, ψδ,ε,ν , z

24

)
= Θ1

(
−24, ρδ,ε,ν , z

24

)

= g1(z) + 2ε g5(z) + 2δi g7(z) + δεi g11(z), (23.24)
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where the components gj are normalized integral Fourier series with denom-
inator 24 and numerator classes j modulo 24, and where g1, g11 are linear
combinations of eta products,

g1 =
[

23, 225

1, 4, 112, 442

]
+ 2

[
1, 4, 22

2

]
,

(23.25)

g11 =
[

25, 223

12, 42, 11, 44

]
+ 2

[
2, 11, 44

22

]
.

The next example deals with four pairs of sign transforms of eta products
which are components in two families of theta series on Q(

√
−33). In the first

family we meet the Fricke transforms of the eta products in Example 23.9,
while the eta products in the second family form two pairs of Fricke trans-
forms:

Example 23.12 Let the generators of (J33/(8
√

3))× � Z8 × Z2
4 × Z2 be

chosen as in Example 23.9. Define 32 characters φ = φδ,ε,ν,σ and φ̃ = φ̃δ,ε,ν,σ

on J33 with period 8
√

3 by their values

φ
(

1√
2
(

√
3 +

√
−11)

)
= 1√

2
(σ + δi), φ(

√
−11) = εi, φ(1 + 2

√
−33) = ενσ,

φ̃
(

1√
2
(

√
3 +

√
−11)

)
= 1√

2
(σ + δi), φ̃(

√
−11) = ε, φ̃(1 + 2

√
−33) = ενσi,

and φ(−1) = φ̃(−1) = 1, with δ, ε, ν, σ ∈ {1, −1}. The corresponding theta
series of weight 1 decompose as

Θ1

(
−132, φδ,ε,ν,σ, z

24

)
= h1(z) + δε

√
2 h5(z) + δi

√
2 h7(z)

+ εi h11(z) + 2δενi h13(z)

+ νi
√

2 h17(z) − εν
√

2 h19(z)
+ 2δν h23(z), (23.26)

Θ1

(
−132, φ̃δ,ε,ν,σ, z

24

)
= h̃1(z) − δεi

√
2 h̃5(z)

+ δi
√

2 h̃7(z) + ε h̃11(z) − 2δεν h̃13(z)

+ νi
√

2 h̃17(z) − ενi
√

2 h̃19(z)

− 2δν h̃23(z), (23.27)

where the components hj, h̃j are normalized integral Fourier series with de-
nominator 24 and numerator classes j modulo 24, and where

(
hj , h̃j

)
are
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pairs of sign transforms. Eight of the components are eta products,

h1 =
[

23, 222

1, 4, 44

]
, h11 =

[
22, 223

4, 11, 44

]
,

(23.28)
h13 =

[
4, 11, 44

22

]
, h23 =

[
1, 4, 44

2

]
,

h̃1 =
[
1, 222

44

]
, h̃11 =

[
22, 11

4

]
,

(23.29)

h̃13 =
[
4, 222

11

]
, h̃23 =

[
22, 44

1

]
.

Our final results in this subsection are similar to those in Example 23.12.
We present two families of theta series on Q(

√
−66) whose components form

pairs of sign transforms, and where eight of the components are identified with
eta products. Those in the first family form two pairs of Fricke transforms,
while the Fricke transforms of the eta products in the second family have
denominator 6:

Example 23.13 Let the generators of (J66/(4
√

6))× � Z8 × Z2
4 × Z2 be

chosen as in Example 23.10. Define 32 characters χ = χδ,ε,ν,σ and χ̃ =
χ̃δ,ε,ν,σ on J66 with period 4

√
6 by

χ(Λ) = 1√
2
(ν + σi), χ(2

√
2 +

√
−33) = −ενσ,

χ(
√

−11) = δi, χ(−1) = 1,

χ̃(Λ) = 1√
2
(σ + νi), χ̃(2

√
2 +

√
−33) = −ενσ,

χ̃(
√

−11) = δ, χ̃(−1) = 1

with δ, ε, ν, σ ∈ {1, −1}. The corresponding theta series of weight 1 decompose
as

Θ1

(
−264, χδ,ε,ν,σ, z

24

)
= f1(z) + ν

√
2 f5(z)

− δνi
√

2 f7(z) + δi f11(z) + ενi
√

2 f13(z)
+ 2εi f17(z) + 2δε f19(z)

− δεν
√

2 f23(z), (23.30)

Θ1

(
−264, χ̃δ,ε,ν,σ, z

24

)
= f̃1(z) + νi

√
2 f̃5(z)

− δνi
√

2 f̃7(z) + δ f̃11(z) + εν
√

2 f̃13(z)

+ 2εi f̃17(z) + 2δεi f̃19(z)

− δεν
√

2 f̃23(z), (23.31)
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where the components fj, f̃j are normalized integral Fourier series with de-
nominator 24 and numerator classes j modulo 24, and where

(
fj , f̃j

)
are

pairs of sign transforms. Eight of the components are eta products,

f1 =
[

23, 112

1, 4, 22

]
, f11 =

[
12, 223

2, 11, 44

]
,

(23.32)

f17 =
[

42, 223

2, 11, 44

]
, f19 =

[
23, 442

1, 4, 22

]
,

f̃1 =
[

1, 225

112, 442

]
, f̃11 =

[
25, 11
12, 42

]
,

(23.33)

f̃17 =
[
42, 11

2

]
, f̃19 =

[
1, 442

22

]
.

23.4 Non-cuspidal Eta Products for Γ0(44)

There are two non-cuspidal eta products of weight 1 for Γ0(44) with denom-
inator 4,

[
2−1, 42, 11−2, 225, 44−2

]
and

[
1−2, 25, 4−2, 22−1, 442

]
.

We did not find eigenforms containing these functions or their Fricke trans-
forms, which have order 0 at ∞, in their components. Correspondingly, in
Sect. 23.1 there is no result for their sign transforms which belong to Γ∗(44).

The non-cuspidal eta products with denominator 8 make up four pairs of
sign transforms. We find eight linear combinations which are theta series
and Eisenstein series:

Example 23.14 Let the generators of (J22/(4
√

−2))× � Z2
4 × Z2 be chosen

as in Example 23.6, and define characters χ′
δ,ε and χ̃′

δ,ε on J22 with period
4

√
−2 by

χ′
δ,ε(

√
11 +

√
−2) = ε, χ′

δ,ε(1 +
√

−22) = δε, χ′
δ,ε(−1) = 1,

χ̃′
δ,ε(

√
11 +

√
−2) = εi, χ̃′

δ,ε(1 +
√

−22) = δε, χ̃′
δ,ε(−1) = 1

with δ, ε ∈ {1, −1}. Then χ′
δ,ε(μ) = χδ,ε(μμ) and χ̃′

δ,ε(μ) = χ̃δ,ε(μμ) for
μ ∈ J22, where the Dirichlet characters χδ,ε modulo 8 and χ̃δ,ε modulo 16 are
fixed by their values

χδ,ε(5) = ε, χδ,ε(−1) = δε, χ̃δ,ε(5) = −εi, χ̃δ,ε(−1) = −δε

on generators of (Z/(8))× and (Z/(16))×, respectively. Moreover, χ′
1,1 is

the principal character modulo
√

−2, χ′
−1,−1 is the non-principal character
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modulo
√

−2, and the characters χ′
δ,−δ have period 2. The corresponding

theta series of weight 1 satisfy

Θ1

(
−88, χ′

δ,ε,
z
8

)
=

∞∑

n=1

χδ,ε(n)
(∑

d|n

(−22
d

))
e
(

nz
8

)

= f1(z) + δ f3(z) + 2ε f5(z)
+ 2δε f7(z), (23.34)

Θ1

(
−88, χ̃′

δ,ε,
z
8

)
=

∞∑

n=1

χ̃δ,ε(n)
( ∑

d|n

(−22
d

))
e
(

nz
8

)

= f̃1(z) + δi f̃3(z) + 2εi f̃5(z)

+ 2δε f̃7(z), (23.35)

where the components fj, f̃j are normalized integral Fourier series with de-
nominator 8 and numerator classes j modulo 8, and all of them are eta
products,

f1 =
[

22, 225

1, 112, 442

]
, f3 =

[
25, 222

12, 42, 11

]
,

(23.36)

f5 =
[
42, 222

2, 11

]
, f7 =

[
22, 442

1, 22

]
,

f̃1 =
[
1, 4, 112

2, 22

]
, f̃3 =

[
12, 11, 44

2, 22

]
,

(23.37)

f̃5 =
[
42, 11, 44

2, 22

]
, f̃7 =

[
1, 4, 442

2, 22

]
.

The eta products in (23.37) make up two pairs
(
f̃1, f̃5

)
,
(
f̃3, f̃7

)
of Fricke

transforms, while the Fricke transforms of the eta products in (23.36) are

F1 =
[

25, 222

12, 42, 44

]
, F3 =

[
22, 225

4, 112, 442

]
,

(23.38)

F5 =
[
22, 112

4, 22

]
, F7 =

[
12, 222

2, 44

]

with denominator 1. When we apply W44 to the right hand side in (23.34)
then we get, after some remodelling, the following results for the non-cuspidal
eta products with denominator 1:

Example 23.15 Let χ′
δ = χ′

δ,−δ be the characters with period 2 on J22 as
given in Example 23.14. Let ψ1 be the trivial character on J22, and let ψ−1
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be the non-trivial character with period 1 on J22. The corresponding theta
series of weight 1 satisfy

Θ1

(
−88, χ′

δ, z
)

=
∞∑

n=1

χδ(n)
( ∑

d|n

(−22
d

))
e(nz)

=
1
4
((

F1(z) − Fz(z)
)

+ δ
(
F3(z) − F5(z)

))
(23.39)

with χ1(n) =
(−2

n

)
and χ−1(n) =

(−1
n

)
,

Θ1

(
−88, ψδ, z

)
= Ψδ

(
z + 1

2

)
, Ψδ(z) = Φδ

(
z
2

)
(23.40)

Φδ(z) =
1
4
((

F3(z) + F5(z)
)

+ δ
(
F1(z) + F7(z)

))
, (23.41)

with eta products Fj as defined in (23.38).

Clearly we have

Θ1

(
−88, ψ1, z

)
= 1 +

∞∑

n=1

( ∑

d|n

(−22
d

))
e(nz).

When we write Θ1

(
−88, ψ−1, z

)
=
∑∞

n=1 λ(n) e(nz), then for primes p with(−22
p

)
= 1 we get λ(p) = 2 or λ(p) = −2 as to wether p splits into principal or

non-principal ideals in O22. This depends only on the remainder of p modulo
88, according to Sect. 7.1.

Comparing (23.39) with (23.34) for ε = −δ yields two eta identities which can
also be deduced by elementary arguments from the identities in Theorem 8.1.

23.5 Cuspidal Eta Products for Γ0(28) with Denomina-
tors t ≤ 12

There are two cuspidal eta products of weight 1 for Γ0(28) with denominator
t = 1. They form a pair of sign transforms. Combinations of these functions
are theta series on the fields with discriminants 8, −7 and −56:

Example 23.16 The residues of 2 +
√

−7,
√

−7, 3 and −1 modulo 8 can
be chosen as generators of (O7/(8))× � Z4

2 . Two characters χν on O7 with
period 8 are given by

χν(2 +
√

−7) = ν, χν(
√

−7) = 1,

χν(3) = −1, χν(−1) = 1
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with ν ∈ {1, −1}. The residues of 1
2 (1+ν

√
−7) and −1 modulo Pν =

(
1
2 (−1+

ν
√

−7)
)3 = 1

2 (5 − ν
√

−7) generate the group (O7/(Pν))× � Z2
2 . Characters

ρν on O7 with periods Pν are given by

ρν

(
1
2 (1 + ν

√
−7)

)
= −1, ρν(−1) = 1.

Let J14 with subsets A1, . . . , A4 and Λ = Λ14 =
√√

2 +
√

−7 be given as
in Example 7.7. The residues of Λ and

√
−7 modulo 2

√
2 are generators of

(J14/(2
√

2))× � Z8 × Z2, where Λ4 ≡ −1 mod 2
√

2. Characters ψν on J14

with period 2
√

2 are given by

ψν(Λ) = νi, ψν(−1) = 1.

Let ϕν be the characters with period 1 on J14 which are fixed by ϕν(μ) = νi
for μ ∈ A3. The residues of 1 +

√
2 and −1 modulo M = 2(2 + 3

√
2) are

generators of (Z[
√

2]/(M))× � Z12 × Z2. The residue of 1 −
√

2 modulo
P = 3 −

√
2 is a generator of (Z[

√
2]/(P ))× � Z6. Hecke characters ξ and

ξ∗ on Z[
√

2] with periods M and P are given by

ξ(μ) =
{

sgn(μ)
−sgn(μ) for μ ≡

{
1 +

√
2

−1
mod M,

ξ∗(μ) = −sgn(μ) for μ ≡ 1 −
√

2 mod P.

The theta series of weight 1 for ξ, χν and ψν are identical and satisfy

Θ1 (8, ξ, z) = Θ1 (−7, χν , z) = Θ1 (−56, ψν , z) = 1
2

(
f(z) + f̃(z)

)
(23.42)

with eta products

f =
[
22, 7, 28

1, 14

]
, f̃ =

[
1, 4, 142

2, 7

]
. (23.43)

The theta series of weight 1 for ξ∗, ρν and ϕν are identical and satisfy

Θ1 (8, ξ∗, z) = Θ1 (−7, ρν , z) = Θ1 (−56, ϕν , z) = F
(
z + 1

2

)
(23.44)

with
F (z) = 1

2

(
f
(

z
2

)
− f̃

(
z
2

))
(23.45)

and f , f̃ as before in (23.43).

Let λ(n) denote the Fourier coefficients of the functions in (23.44), and con-
sider primes p with

(−14
p

)
= 1. Then we get λ(p) = 0 if p splits into ideals

in O14 whose squares are not principal, and in this case
(

2
p

)
=
(−7

p

)
= −1,

while for
(−7

p

)
= 1 we get λ(p) = 2 if p splits into principal ideals in O14,

and λ(p) = −2 if p splits into non-principal ideals in O14 whose squares are
principal.
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In Example 27.7 we will identify the theta series of weight 1 on Q(
√

−56) for
all the four characters modulo 1 with linear combinations of eta products.

The eta products with denominator 3 also form a pair of sign transforms.
They are involved in theta series in a similar way where, however, one of the
components is not identified with eta products:

Example 23.17 The residues of 2 +
√

−7, 2 + 3
√

−7, 1 + 6
√

−7, 5 and
−1 modulo 24 can be chosen as generators of (O7/(24))× � Z8 × Z4

2 . Four
characters χδ,ν on O7 with period 24 are fixed by their values

χδ,ν(2 +
√

−7) = δi, χδ,ν(2 + 3
√

−7) = −ν,

χδ,ν(1 + 6
√

−7) = ν, χδ,ν(5) = −1

and χδ,ν(−1) = 1 with δ, ν ∈ {1, −1}. The residues of 1
2 (1 + ν

√
−7), 5 and

−1 modulo Pν = 3
2 (5 − ν

√
−7) generate the group (O7/(Pν))× � Z8 × Z2

2 .
Characters φδ,ν on O7 with periods Pν are given by

φδ,ν

(
1
2 (1 + ν

√
−7)

)
= −δi, φδ,ν(5) = −1, φδ,ν(−1) = 1.

The residues of
√

3 + ν
√

−2,
√

3 + 2ν
√

−2 and −1 modulo 2(6 + ν
√

−6)
generate the group (J6/(12 + 2ν

√
−6))× � Z12 × Z4 × Z2. Characters ρδ,ν

on J6 with periods 2(6 + ν
√

−6) are given by

ρδ,ν(
√

3 + ν
√

−2) = −δi, ρδ,ν(
√

3 + 2ν
√

−2) = δi, ρδ,ν(−1) = 1.

The residues of ν
√

−2 and −1 modulo
√

3 + 3ν
√

−2 generate the group
(J6/(

√
3 + 3ν

√
−2))× � Z12 × Z2. Characters ψδ,ν on J6 with periods√

3 + 3ν
√

−2 are given by

ψδ,ν(ν
√

−2) = −δi, ψδ,ν(−1) = 1.

The residues of
√

2 +
√

21 and 2
√

2 +
√

21 modulo M = 2(6 +
√

42) are
generators of

(
J

Q(
√

42)/(M)
)× � Z2

4 , where (
√

2 +
√

21)2 ≡ −1 mod M . The

residue of
√

2 modulo P = 3
√

2+
√

21 is a generator of
(

J
Q(

√
42)/(P )

)× � Z4.
Hecke characters ξδ and ξ∗

δ on J
Q(

√
42) with periods M and P are given by

ξδ(μ) = −δi sgn(μ) for μ ≡
√

2 +
√

21, 2
√

2 +
√

21 mod M,

ξ∗
δ (μ) = δi sgn(μ) for μ ≡

√
2 mod P.

The theta series of weight 1 for ξδ, χδ,ν and ρδ,ν are identical and satisfy

Θ1

(
168, ξδ,

z
3

)
= Θ1

(
−7, χδ,ν , z

3

)
= Θ1

(
−24, ρδ,ν , z

3

)

= g1(z) + 2δi g5(z), (23.46)
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where the components gj are normalized integral Fourier series with denomi-
nator 3 and numerator classes j modulo 6, and where g1 = 1

2 (g + g̃) with eta
products

g =
[
23, 7
1, 4

]
, g̃ =

[
1, 143

7, 28

]
. (23.47)

The theta series of weight 1 for ξ∗
δ , φδ,ν and ψδ,ν are identical and satisfy

Θ1

(
168, ξ∗

δ , z
3

)
= Θ1

(
−7, φδ,ν , z

3

)

= Θ1

(
−24, ψδ,ν , z

3

)
= −Hδ

(
z + 3

2

)
, (23.48)

Hδ(z) = h1(z) + δi h2(z),

where the components hj are normalized integral Fourier series with denom-
inator 3 and numerator classes j modulo 3, and

h2(z) = 1
2

(
g
(

z
2

)
− g̃

(
z
2

))
(23.49)

with eta products g, g̃ as before in (23.47).

The cuspidal eta products with denominator 6 form two pairs of sign trans-
forms. They combine to four theta series on the fields with discriminants 56,
−168 and −3:

Example 23.18 Let J42 be given as in Example 7.5. The residues of
√

−7,√
6 +

√
−7 and

√
3 +

√
−14 modulo 2

√
6 can be chosen as generators of

(J42/(2
√

6))× � Z2
4 × Z2, where (

√
6 +

√
−7)2 ≡ −1 mod 2

√
6. Eight char-

acters χδ,ε,ν on J42 with period 2
√

6 are fixed by their values

χδ,ε,ν(
√

−7) = εi, χδ,ε,ν(
√

6 +
√

−7) = −δε, χδ,ε,ν(
√

3 +
√

−14) = ν

with δ, ε, ν ∈ {1, −1}. The residues of 2+ω, 3+8ω, 3+4ω, 13 and ω modulo
8(4 + ω) can be chosen as generators of (O3/(32 + 8ω))× � Z12 × Z3

2 × Z6.
Characters ψ = ψδ,ε,1 on O3 with period 8(4 + ω) are given by

ψ(2 + ω) = εi, ψ(3 + 8ω) = 1, ψ(3 + 4ω) = −δε, ψ(13) = 1, ψ(ω) = 1.

Define characters ψδ,ε,−1 on O3 with period 8(4+ω) by ψδ,ε,−1(μ) = ψδ,ε,1(μ).
The residues of 1+

√
14 and 3+

√
14 modulo M = 6(4+

√
14) are generators

of (Z[
√

14]/(M))× � Z8 × Z4, where (3 +
√

14)2 ≡ −1 mod M . Define Hecke
characters ξδ,ε on Z[

√
14] with period M by

ξδ,ε(μ) =
{

−δε sgn(μ)
δi sgn(μ) for μ ≡

{
1 +

√
14

3 +
√

14
mod M.

The corresponding theta series of weight 1 satisfy the identities

Θ1

(
56, ξδ,ε,

z
6

)
= Θ1

(
−168, χδ,ε,ν , z

6

)
= Θ1

(
−3, ψδ,ε,ν , z

6

)

= F1(z) + εi F7(z) − 2δε F13(z) + 2δi F19(z), (23.50)
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where the components Fj are normalized integral Fourier series with denom-
inator 6 and numerator classes j modulo 24 which are linear combinations
of eta products,

F1 = 1
2 (f + f̃), F7 = 1

2 (g + g̃),
(23.51)

F13 = 1
4 (g − g̃), F19 = 1

4 (f − f̃)

with

f =
[

4, 145

72, 282

]
, f̃ =

[
4, 72

14

]
, g =

[
25, 28
12, 42

]
, g̃ =

[
12, 28

2

]
. (23.52)

The cuspidal eta products with denominator 8 form three pairs of transforms
with respect to the Fricke involution W28. They are the sign transforms
of functions belonging to Γ∗(14) and Γ∗(28), which were treated in Exam-
ples 17.3 and 23.3, respectively. Similar results are presented in the following
two examples:

Example 23.19 Let the generators of (J14/(4
√

2))× � Z8 × Z3
2 be chosen

as in Example 23.3. Eight characters χ̃δ,ε,ν on J14 with period 4
√

2 are given
by

χ̃δ,ε,ν(Λ14) = 1√
2
(ν + δi), χ̃δ,ε,ν(

√
−7) = −δε,

χ̃δ,ε,ν(3) = −1, χ̃δ,ε,ν(−1) = 1

with δ, ε, ν ∈ {1, −1}. The corresponding theta series of weight 1 decompose
as

Θ1

(
−56, χ̃δ,ε,ν , z

8

)
= f̃1(z) + δi

√
2 f̃3(z) + εi

√
2 f̃5(z) − δε f̃7(z), (23.53)

where the components f̃j are normalized integral Fourier series with denom-
inator 8 and numerator classes j modulo 8, and all of them are eta products,

f̃1 =
[

1, 4, 145

2, 72, 282

]
, f̃3 =

[
2, 143

7, 28

]
,

(23.54)

f̃5 =
[
23, 14
1, 4

]
, f̃7 =

[
25, 7, 28
12, 42, 14

]
.

Example 23.20 Let the generators of (J14/(4
√

2))× � Z8 × Z3
2 and of

(O7/(16))× � Z2
4 × Z2

2 be chosen as in Example 23.3. Four characters ϕδ,ν

on J14 with period 4
√

2 are fixed by their values

ϕδ,ν(Λ14) = νi, ϕδ,ν(
√

−7) = δ, ϕδ,ν(3) = 1, ϕδ,ν(−1) = 1

with δ, ν ∈ {1, −1}. Four characters ρδ,ν on O7 with period 16 are given by

ρδ,ν(2 +
√

−7) = ν, ρδ,ν(3) = −1, ρδ,ν(8 + 3
√

−7) = −δ, ρδ,ν(−1) = 1.
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Let generators of Z[
√

2] modulo Mδ = 4(2 + 3δ
√

2) be chosen as in Exam-
ple 23.3, and define Hecke characters ξ̃δ on Z[

√
2] modulo Mδ by

ξ̃δ(μ) =

⎧
⎨

⎩

δ sgn(μ)
sgn(μ)

−sgn(μ)
for μ ≡

⎧
⎨

⎩

1 + δ
√

2
3 − 4δ

√
2

1 − 4δ
√

2, −1
mod Mδ.

The corresponding theta series of weight 1 are identical and decompose as

Θ1

(
8, ξ̃δ,

z
8

)
= Θ1

(
−56, ϕδ,ν , z

8

)

= Θ1

(
−7, ρδ,ν , z

8

)
= h1(z) + δ h7(z), (23.55)

where the components hj are normalized integral Fourier series with denomi-
nator 8 and numerator classes j modulo 8, and both of them are eta products,

h1 =
[
1, 4, 142

2, 28

]
, h7 =

[
22, 7, 28

4, 14

]
. (23.56)

Among the eight cuspidal eta products with denominator 12 there are two
pairs of Fricke transforms. Their sign transforms belong to Γ0(14) and com-
bine to theta series which were presented in Example 17.17. Now we get a
similar result with theta series on the field Q(

√
−21):

Example 23.21 Let J21 be given as in Example 7.6. The residues of
1√
2
(

√
3 +

√
−7), 1 + 2

√
−21,

√
−7 and −1 modulo 8

√
3 can be chosen as

generators of (J21/(8
√

3))× � Z8 × Z2
4 × Z2. Eight characters ψδ,ε,ν on J21

with period 8
√

3 are defined by

ψδ,ε,ν

(
1√
2
(

√
3 +

√
−7)

)
= 1√

2
(ν + εi), ψδ,ε,ν(1 + 2

√
−21) = 1,

ψδ,ε,ν(
√

−7) = δi

and ψδ,ε,ν(−1) = 1 with δ, ε, ν ∈ {1, −1}. The corresponding theta series of
weight 1 decompose as

Θ1

(
−84, ψδ,ε,ν , z

12

)
= g1(z) + εi

√
2 g5(z) +δi g7(z) + δε

√
2 g11(z), (23.57)

where the components gj are normalized integral Fourier series with denomi-
nator 12 and numerator classes j modulo 12, and all of them are eta products,

g1 =
[

2, 145

72, 282

]
, g5 =

[
1, 4, 143

2, 7, 28

]
,

(23.58)

g7 =
[
25, 14
12, 42

]
, g11 =

[
23, 7, 28
1, 4, 14

]
.
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There are four more cuspidal eta products with denominator 12. They form
two pairs of sign transforms

(
f, f̃

)
and

(
h, h̃

)
which will be listed in (23.62).

They combine to eight theta series with altogether eight components, two of
which are identified with old eta products coming from level 14, and two are
not otherwise identified:

Example 23.22 Let the generators of (J21/(8
√

3))× � Z8 × Z2
4 × Z2 be

chosen as in Example 23.21, and define sixteen characters ϕδ,ε,ν and φδ,ε,ν

on J21 with period 8
√

3 by

ϕδ,ε,ν

(
1√
2
(

√
3 +

√
−7)

)
= ε, ϕδ,ε,ν(1 + 2

√
−21) = ν,

ϕδ,ε,ν(
√

−7) = δi, φδ,ε,ν

(
1√
2
(

√
3 +

√
−7)

)
= νi,

φδ,ε,ν(1 + 2
√

−21) = −δεν, φδ,ε,ν(
√

−7) = δi

and ϕδ,ε,ν(−1) = φδ,ε,ν(−1) = 1 with δ, ε, ν ∈ {1, −1}. Let generators of
(J6/(24 + 4ν

√
−6))× � Z12 × Z4 × Z3

2 be chosen as in Example 23.4, and
define characters ρ = ρδ,ε,ν on J6 with periods 4(6 + ν

√
−6) by

ρ(
√

3 + ν
√

−2) = ε, ρ(
√

3 + 2ν
√

−2) = −δεi,

ρ(1 + 12ν
√

−6) = −1, ρ(13) = −1

and ρ(−1) = 1. The residues of
√

−7,
√

6+
√

−7,
√

3+
√

−14 and −1 modulo
4

√
6 generate the group (J42/(4

√
6))× ≡ Z3

4 × Z2. Eight characters χδ,ε,ν on
J42 with period 4

√
6 are given by

χδ,ε,ν(
√

−7) = δi, χδ,ε,ν(
√

6 +
√

−7) = νi,

χδ,ε,ν(
√

3 +
√

−14) = δεi, χδ,ε,ν(−1) = 1.

The residues of 1 +
√

14, 3 +
√

14, 5 and −1 modulo M = 12(4 +
√

14) are
generators of (Z[

√
14]/(M))× � Z8 × Z4 × Z2

2 . Hecke characters Ξδ,ε on
Z[

√
14] with period M are given by

Ξδ,ε(μ) =

⎧
⎪⎪⎨

⎪⎪⎩

δεi sgn(μ)
ε sgn(μ)
sgn(μ)

−sgn(μ)

for μ ≡

⎧
⎪⎪⎨

⎪⎪⎩

1 +
√

14
3 +

√
14

5
−1

mod M.

The residues of 1 + ε
√

2, 3 − ε
√

2, 19 − 12ε
√

2, 13 and −1 modulo Pε =
12(2 + 3ε

√
2) are generators of (Z[

√
2]/(Pε))× � Z24 × Z4 × Z3

2 . Define
Hecke characters ξ∗

δ,ε on Z[
√

2] with period Pε by

ξ∗
δ,ε(μ) =

⎧
⎨

⎩

ε sgn(μ)
δi sgn(μ)

−sgn(μ)
for μ ≡

⎧
⎨

⎩

1 + ε
√

2
3 − ε

√
2

19 − 12ε
√

2, 13, −1
mod Pε.
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The corresponding theta series of weight 1 satisfy the identities

Θ1

(
56, Ξδ,ε,

z
12

)
= Θ1

(
−84, ϕδ,ε,ν , z

12

)
= Θ1

(
−24, ρδ,ε,ν , z

12

)

= f1(z) + 2ε f5(z) + δi f7(z) − 2δεi f11(z), (23.59)

Θ1

(
8, ξ∗

δ,ε,
z
12

)
= Θ1

(
−84, φδ,ε,ν , z

12

)
= Θ1

(
−168, χδ,ε,ν , z

12

)

= h1(z) + 2δεi h5(z) + δi h7(z) + 2ε h11(z). (23.60)

Here the components fj, hj are normalized integral Fourier series with de-
nominator 12 and numerator classes j modulo 12. Those for j = 5, 11 are
linear combinations of eta products,

f5 = 1
2 (f + f̃), h5 = 1

2 (f − f̃),
(23.61)

f11 = 1
2 (h + h̃), h11 = 1

2 (h − h̃),

f =
[

22, 143

1, 7, 28

]
, f̃ =

[
1, 4, 7

2

]
,

(23.62)

h =
[
23, 142

1, 4, 7

]
, h̃ =

[
1, 7, 28

14

]
.

The components h1, h7 are old eta products from Γ0(14),

h1 =
[
2, 142

28

]
, h7 =

[
22, 14

4

]
. (23.63)

23.6 Cuspidal Eta Products for Γ0(28) with Denomina-
tor 24

In this subsection we will present 28 theta series whose components are made
up from 20 cuspidal eta products of weight 1 for Γ0(28) with denominator 24
and from eight Fourier series which are not otherwise identified. Also, we will
give two linear relations among eta products. Thus the 22 eta products span a
space of dimension 20. We begin with eight theta series in two families whose
components form four pairs of sign transforms of eta products. Those in the
first family form two pairs of Fricke transforms, while the Fricke transforms
of those in the second family have denominator 6 and appeared in (23.52) in
Example 23.18.

Example 23.23 Let the generators of (J42/(4
√

6))× � Z3
4 × Z2 be chosen

as in Example 23.22, and define sixteen characters φδ,ε,ν and φ̃δ,ε,ν on J42

with period 4
√

6 by
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φδ,ε,ν(
√

−7) = δi, φδ,ε,ν(
√

6 +
√

−7) = εi,

φδ,ε,ν(
√

3 +
√

−14) = ν, φδ,ε,ν(−1) = 1,

φ̃δ,ε,ν(
√

−7) = δi, φ̃δ,ε,ν(
√

6 +
√

−7) = ε,

φ̃δ,ε,ν(
√

3 +
√

−14) = ν, φδ,ε,ν(−1) = 1

with δ, ε, ν ∈ {1, −1}. The residues of 2 + ω, 3 + 4ω, 9 + 16ω, 9 − 8ω and
ω modulo 16(4 + ω) can be chosen as generators of (O3/(64 + 16ω))× �
Z24 × Z4 × Z2

2 × Z6. Characters ϕ = ϕδ,ε,1 and ρ = ρδ,ε,1 on O3 with period
16(4 + ω) are given by

ϕ(2 + ω) = δi, ϕ(3 + 4ω) = −εi,

ϕ(9 + 16ω) = −1, ϕ(9 − 8ω) = −1, ϕ(ω) = 1,

ρ(2 + ω) = δi, ρ(3 + 4ω) = ε,

ρ(9 + 16ω) = −1, ρ(9 − 8ω) = 1, ϕ(ω) = 1.

Define characters ϕδ,ε,−1 and ρδ,ε,−1 on O3 with period 16(4 + ω) by
ϕδ,ε,−1(μ) = ϕδ,ε,1(μ) and ρδ,ε,−1(μ) = ρδ,ε,1(μ). Let generators of Z[

√
14]

modulo M = 12(4 +
√

14) be chosen as in Example 23.22, and define Hecke
characters ξδ,ε, ξ̃δ,ε on Z[

√
14] with period M by

ξδ,ε(μ) =

⎧
⎪⎪⎨

⎪⎪⎩

εi sgn(μ)
δε sgn(μ)

−sgn(μ)
−sgn(μ)

,

ξ̃δ,ε(μ) =

⎧
⎪⎪⎨

⎪⎪⎩

ε sgn(μ)
−δεi sgn(μ)

sgn(μ)
−sgn(μ)

for μ ≡

⎧
⎪⎪⎨

⎪⎪⎩

1 +
√

14
3 +

√
14

5
−1

mod M.

The corresponding theta series of weight 1 satisfy the identities

Θ1

(
56, ξδ,ε,

z
24

)
= Θ1

(
−168, φδ,ε,ν , z

24

)
= Θ1

(
−3, ϕδ,ε,ν , z

24

)

= f1(z) + δi f7(z) + 2εi f13(z) + 2δε f19(z), (23.64)

Θ1

(
56, ξ̃δ,ε,

z
24

)
= Θ1

(
−168, φ̃δ,ε,ν , z

24

)
= Θ1

(
−3, ρδ,ε,ν , z

24

)

= f̃1(z) + δi f̃7(z) + 2ε f̃13(z) − 2δεi f̃19(z). (23.65)
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Here the components fj , f̃j are normalized integral Fourier series with de-
nominator 24 and numerator classes j modulo 24, forming pairs of sign trans-
forms, and all of them are eta products,

f1 =
[

23, 72

1, 4, 14

]
, f7 =

[
12, 143

2, 7, 28

]
,

(23.66)

f13 =
[

42, 143

2, 7, 28

]
, f19 =

[
23, 282

1, 4, 14

]
,

f̃1 =
[

1, 145

72, 282

]
, f̃7 =

[
25, 7
12, 42

]
,

(23.67)

f̃13 =
[
42, 7

2

]
, f̃19 =

[
1, 282

14

]
.

In our next example we describe eight theta series in two families whose
components again form four pairs of sign transforms of eta products. Two of
the components give rise to the linear relations mentioned at the beginning
of this subsection. The eta products in the first family belong to Γ0(14), they
are well known from Example 17.18, and another two linear relations show
that they also belong to the space which is spanned by the eta products for
Γ0(28). The eta products in the second family form two pairs of transforms
with respect to W28.

Example 23.24 For δ, ε, ν ∈ {1, −1}, let ξδ,ε, ρδ,ε,ν and ψδ,ε,ν be the charac-
ters on Z[

√
2], J21 and J42, respectively, as defined in Example 17.18. Then

the components g1, g7 in (17.42) satisfy

g1 =
[
1, 72

14

]
=
[

23, 142

1, 4, 28

]
− 2

[
4, 7, 28

14

]
,

(23.68)

g7 =
[
12, 7

2

]
=
[

22, 143

4, 7, 28

]
− 2

[
1, 4, 28

2

]
.

Let the generators of (J21/(8
√

3))× � Z8 × Z2
4 × Z2, of (J42/(4

√
6))× �

Z3
4 × Z2, and of (Z[

√
2]/(Pε))× � Z24 × Z4 × Z3

2 with Pε = 12(2 + 3ε
√

2)
be chosen as in Examples 23.21, 23.22. Define characters ρ̃δ,ε,ν on J21 with
period 8

√
3, characters ψ̃δ,ε,ν on J42 with period 4

√
6, and characters ξ̃∗

δ,ε on
Z[

√
2] with period Pε by

ρ̃δ,ε,ν

(
1√
2
(

√
3 +

√
−7)

)
= ν, ρ̃δ,ε,ν(1 + 2

√
−21) = −δενi,

ρ̃δ,ε,ν(
√

−7) = δi, ρ̃δ,ε,ν(−1) = 1,

ψ̃δ,ε,ν(
√

−7) = δi, ψ̃δ,ε,ν(
√

6 +
√

−7) = ν,

ψ̃δ,ε,ν(
√

3 +
√

−14) = −δεi, ψ̃δ,ε,ν(−1) = 1,
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ξ̃∗
δ,ε(μ) =

⎧
⎪⎪⎨

⎪⎪⎩

ε sgn(μ)
δi sgn(μ)
sgn(μ)

−sgn(μ)

for μ ≡

⎧
⎪⎪⎨

⎪⎪⎩

1 + ε
√

2
3 − ε

√
2

19 − 12ε
√

2, 13
−1

mod Pε.

The corresponding theta series of weight 1 are identical and decompose as

Θ1

(
8, ξ̃∗

δ,ε,
z
24

)
= Θ1

(
−84, ρ̃δ,ε,ν , z

24

)
= Θ1

(
−168, ψ̃δ,ε,ν , z

24

)

= g̃1(z) + δi g̃7(z) + 2εi g̃17(z) + 2δε g̃23(z), (23.69)

where the components g̃j are normalized integral Fourier series with denomi-
nator 24 and numerator classes j modulo 24, and all of them are eta products
or linear combinations thereof,

g̃1 =
[

23, 145

1, 4, 72, 282

]
=
[
1, 142

28

]
+ 2

[
4, 142

7

]
, g̃17 =

[
1, 4, 14

2

]
, (23.70)

g̃7 =
[

25, 143

12, 42, 7, 28

]
=
[
22, 7

4

]
+ 2

[
22, 28

1

]
, g̃23 =

[
2, 7, 28

14

]
. (23.71)

Here (gj , g̃j) are pairs of sign transforms, and (g̃1, g̃7) and (g̃17, g̃23) are pairs
of transforms with respect to W28.

The linear relations in (23.68) and those in (23.70), (23.71) are trivial conse-
quences from each other. But we do not have a simple arithmetical proof of
either of them. Using Theorem 8.1, the linear relations can be transformed
into relations for the coefficients; we do not write them down here.

Now we describe a third set of eight theta series in two families whose com-
ponents form four pairs of sign transforms. Four of the components are linear
combinations of the same eta products as in g1, g7, g̃1, g̃7 in (23.68), (23.70),
(23.71), while the remaining four components are not identified with (com-
binations of) eta products:

Example 23.25 Let the generators of J21 modulo 8
√

3, of J6 modulo 24 +
4

√
6, and of Z[

√
14] modulo M = 12(4+

√
14) be chosen as in Examples 23.21,

23.4 and 23.22. Let ϕδ,ε,ν , ρδ,ε,ν and Ξδ,ε be the characters on J21, J6 and
Z[

√
14], respectively, as defined in Example 23.22. Define characters ϕ̃ =

ϕ̃δ,ε,ν on J21 with period 8
√

3 by their values

ϕ̃
(

1√
2
(

√
3 +

√
−7)

)
= εi, ϕ̃(1 + 2

√
−21) = −δενi,

ϕ̃(
√

−7) = δi, ϕ̃(−1) = 1

with δ, ε, ν ∈ {1, −1}. Define characters φ = φδ,ε,ν on J6 with periods 4(6 +
ν

√
−6) by
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φ(
√

3 + ν
√

−2) = εi, φ(
√

3 + 2ν
√

−2) = −δε,

φ(1 + 12ν
√

−6) = −1, φ(13) = 1,

and φ(−1) = 1. Define characters Ξ̃δ,ε on Z[
√

14] with period M by

Ξ̃δ,ε(μ) =

⎧
⎪⎪⎨

⎪⎪⎩

−δε sgn(μ)
εi sgn(μ)

−sgn(μ)
−sgn(μ)

for μ ≡

⎧
⎪⎪⎨

⎪⎪⎩

1 +
√

14
3 +

√
14

5
−1

mod M.

The corresponding theta series of weight 1 satisfy the identities

Θ1

(
56, Ξδ,ε,

z
24

)
= Θ1

(
−84, ϕδ,ε,ν , z

24

)
= Θ1

(
−24, ρδ,ε,ν , z

24

)

= h1(z) + 2ε h5(z) + δi h7(z) − 2δεi h11(z), (23.72)

Θ1

(
56, Ξ̃δ,ε,

z
24

)
= Θ1

(
−84, ϕ̃δ,ε,ν , z

24

)
= Θ1

(
−24, φδ,ε,ν , z

24

)

= h̃1(z) + 2εi h̃5(z) + δi h̃7(z) − 2δε h̃11(z), (23.73)

where the components hj, h̃j are normalized integral Fourier series with de-
nominator 24 and numerator classes j modulo 24, and where

(
hj , h̃j

)
are

pairs of sign transforms. Those for j = 1, 7 are linear combinations of eta
products,

h1 =
[

23, 142

1, 4, 28

]
+ 2

[
4, 7, 28

14

]
, h̃1 =

[
1, 142

28

]
− 2

[
4, 142

7

]
, (23.74)

h7 =
[

22, 143

4, 7, 28

]
+ 2

[
1, 4, 28

2

]
, h̃7 =

[
22, 7

4

]
− 2

[
22, 28

1

]
. (23.75)

Comparing (23.72) and (23.59) shows that h5(2z) and h11(2z) are linear
combinations of the eta products f , f̃ , h, h̃ in (23.62).

In our last example in this subsection we consider the sign transforms of the
eta products on Γ∗(28) in (23.7). Similarly as in Example 23.4 we get four
theta series on the fields Q(

√
42), Q(

√
−7) and Q(

√
−6) with four compo-

nents, two of which are identified with eta products:

Example 23.26 Let the generators of (O7/(48))× � Z8 × Z2
4 × Z2

2 , of
(J6/(24 + 4ν

√
6))× � Z12 × Z4 × Z3

2 , and of
(

J
Q[

√
42]/(M)

)× � Z2
4 × Z2

2

with M = 4(6+
√

42) be chosen as in Example 23.4. Define characters ϕ̃δ,ε,ν

on O7 with period 48 by

ϕ̃δ,ε,ν(2 +
√

−7) = εi, ϕ̃δ,ε,ν(
√

−7) = δ,

ϕ̃δ,ε,ν(2 + 3
√

−7) = ν, ϕ̃δ,ε,ν(8 + 3
√

−7) = δ
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and ϕ̃δ,ε,ν(−1) = 1 with δ, ε, ν ∈ {1, −1}. Define characters χ = χδ,ε,ν on J6

modulo 4(6 + ν
√

−6) by

χ(
√

3 + ν
√

−2) = δεi, χ(
√

3 + 2ν
√

−2) = εi,

χ(1 + 12ν
√

−6) = −1, χ(13) = −1

and χ(−1) = 1. Define characters ξ̃δ,ε on J
Q[

√
42] with period M by

ξ̃δ,ε(μ) =

⎧
⎨

⎩

εi sgn(μ)
δ sgn(μ)

−sgn(μ)
for μ ≡

⎧
⎨

⎩

4
√

2 +
√

21
1 +

√
42

5, −1
mod M.

The corresponding theta series of weight 1 satisfy the identities

Θ1

(
168, ξ̃δ,ε,

z
24

)
= Θ1

(
−7, ϕ̃δ,ε,ν , z

24

)
= Θ1

(
−24, χδ,ε,ν , z

24

)

= g̃1(z) − 2δεi g̃5(z) + δ g̃7(z) + 2εi g̃11(z), (23.76)

where the components g̃j are normalized integral Fourier series with denom-
inator 24 and numerator classes j modulo 24. Those for j = 5, 11 are eta
products,

g̃5 =
[
23, 28
1, 4

]
, g̃11 =

[
4, 143

7, 28

]
. (23.77)

23.7 Non-cuspidal Eta Products for Γ0(28)

The non-cuspidal eta products of weight 1 for Γ0(28) with denominator 4
are the sign transforms of the eta products in Example 23.5. They combine
nicely to form two theta series and Eisenstein series:

Example 23.27 For δ ∈ {1, −1}, define characters ψδ on O7 by

ψδ(μ) =
{

1
δ

for μμ ≡
{

1
3 mod 4,

ψδ(μ) = 0 if μμ is even, such that ψ1 is the (principal) character modulo 2
and ψ−1 has period 4 and is given by ψ−1(μ) =

(−1
μμ

)
. The corresponding

theta series of weight 1 satisfy

Θ1

(
−7, ψδ,

z
4

)
= f1(z) + δ f3(z) (23.78)

with eta products

f1 =
[

42, 145

2, 72, 282

]
, f3 =

[
25, 282

12, 42, 14

]
. (23.79)
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We have

Θ1

(
−7, ψ1,

z
4

)
=

∑

n>0 odd

(∑

d|n

(−7
d

))
e
(

nz
4

)
, (23.80)

Θ1

(
−7, ψ−1,

z
4

)
=

∞∑

n=1

(−1
n

)(∑

d|n

(−7
d

))
e
(

nz
4

)
. (23.81)

The results in Example 23.27 are easily deduced from the arithmetic in O7,
since by (8.5) and (8.8) the coefficients of the eta products f1 and f3 are given
by the numbers of representations of n by the quadratic forms x2 +28y2 and
4x2 + 7y2, respectively.

For the non-cuspidal eta products with denominator 8 we find 12 theta series
whose components are linear combinations of the eight eta products and of
four Fourier series which are not otherwise identified. Four of these theta
series are the same as those in Examples 23.3, 23.20, giving rise to eta iden-
tities:

Example 23.28 The components f1, f7, h1, h7 of the theta series defined
in Examples 23.3, 23.20 satisfy the identities

f1 =
[
22, 142

1, 28

]
=

[
1, 4, 72

2, 14

]
+ 2

[
42, 7, 28

2, 14

]
,

f7 =
[
22, 142

4, 7

]
=

[
12, 7, 28

2, 14

]
+ 2

[
1, 4, 282

2, 14

]
,

h1 =
[
1, 4, 142

2, 28

]
=

[
22, 145

1, 72, 282

]
− 2

[
42, 142

2, 7

]
,

h7 =
[
22, 7, 28

4, 14

]
=

[
25, 142

12, 42, 7

]
− 2

[
22, 282

1, 14

]
.

Let the generators of (J14/(4
√

2))× � Z8 × Z3
2 be chosen as in Example 23.3,

and define eight characters χδ,ε and χ̃δ,ε on J14 with period 4
√

2 by their
values

χδ,ε(Λ14) = ε, χδ,ε(
√

−7) = δ, χδ,ε(3) = 1, χδ,ε(−1) = 1,

χ̃δ,ε(Λ14) = εi, χ̃δ,ε(
√

−7) = δ, χ̃δ,ε(3) = −1, χ̃δ,ε(−1) = 1

with δ, ε ∈ {1, −1}. The corresponding theta series of weight 1 decompose as

Θ1

(
−56, χδ,ε,

z
8

)
= g1(z) + 2ε g3(z) + 2δε g5(z) + δ g7(z), (23.82)

Θ1

(
−56, χ̃δ,ε,

z
8

)
= g̃1(z) + 2εi g̃3(z) + 2δεi g̃5(z) + δ g̃7(z), (23.83)
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where the components gj, g̃j are normalized integral Fourier series with de-
nominator 8 and numerator classes j modulo 8, and those for j = 1, 7 are
linear combinations of eta products,

g1 =
[

22, 145

1, 72, 282

]
+ 2

[
42, 142

2, 7

]
, g7 =

[
25, 142

12, 42, 7

]
+ 2

[
22, 282

1, 14

]
, (23.84)

g̃1 =
[
1, 4, 72

2, 14

]
− 2

[
42, 7, 28

2, 14

]
, g̃7 =

[
12, 7, 28

2, 14

]
− 2

[
1, 4, 282

2, 14

]
. (23.85)

We note that the components in Example 23.28 form pairs of sign trans-
forms (fj , hj) and (gj , g̃j). By the Fricke involution W28, the eta products
in (23.85) are permuted, while those in (23.84) are mapped to eta products
with denominator 1. The character values χδ,ε(μ) and χ̃δ,ε(μ) depend only
on μμ modulo 8, and therefore, by Theorem 5.1, the theta series (23.82),
(23.83) are non-cuspidal modular forms, whereas fj , hj are cuspidal. The
eta identities for f1, f7, h1, h7 are easily transformed into each other (by
sign transform or by multiplication with suitable weight 0 eta products). In
terms of coefficients the identity for h1 is equivalent to

∑

x2+112y2 = n

(
2
x

)
(−1)y =

∑

x2+56y2 = n

1 −
∑

2x2+7y2 = n

1

for all n ≡ 1 mod 8, where in each sum x, y run over all integers in Z satisfying
the indicated equation. Also, the eta identities are easily transformed into
the equivalent identity

[
23, 143

1, 4, 7, 28

]
= [1, 7] + 2 [4, 28] ,

which in terms of coefficients reads
∑

x2+7y2 = 8n

((
6

xy

)
−
(

12
xy

))
= 2

∑

x2+7y2 = 2n

(
12
xy

)

for all n ≡ 1 mod 3, with summation on positive integers x, y.

All the non-cuspidal eta products with denominator 1 are obtained when we
apply W28 to the eta products in (23.79) and (23.84). From f1, f3 in (23.79)
we get

f̂1 =
[

25, 72

12, 42, 14

]
, f̂3 =

[
12, 145

2, 72, 282

]
, (23.86)

and one would expect that suitable modifications of f̂1 ± f̂3 are eigenforms.
This holds true for the minus sign, and in fact we have the identity 1

4

(
f̂1(z) −

f̂3(z)
)

= f1(4z) − f3(4z) or, more explicitly,
[

25, 72

12, 42, 14

]
−
[

12, 145

2, 72, 282

]
= 4

[
162, 565

8, 282, 1122

]
− 4

[
85, 1122

22, 162, 56

]
. (23.87)
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In terms of coefficients this boils down to an identity which is trivial to verify.
As for the plus sign, the function

1
4

(
f̂1

(
z
4

)
+ f̂3(z)

(
z
4

))

has multiplicative coefficient which at odd n coincide with those of f1 + f3,
but violate the proper recursions at powers of the prime 2.

For the W28-images of the eta products in (23.84) we introduce the notations

f =
[

25, 142

12, 42, 28

]
, g =

[
22, 72

4, 14

]
,

(23.88)

f̃ =
[
12, 142

2, 28

]
, g̃ =

[
22, 145

4, 72, 282

]
.

From the eigenforms h1 ±h7 in Example 23.28 one would expect that suitable
modifications of (f − g) ±

(
g̃ − f̃

)
are eigenforms. Indeed we see that

1
4

(
f − g + f̃ − g̃

)
(z)

and the sign transform of

1
4

(
f − g − f̃ + g̃

) (
z
2

)

are eigenforms which, moreover, are identical with the cuspidal eigenforms
(23.42), (23.45) in Example 23.16. These identities are equivalent with the
eta identities

f − g = 2
[
22, 7, 28

1, 14

]
, f̃ − g̃ = −2

[
1, 4, 142

2, 7

]
, (23.89)

which in terms of coefficients are equivalent with
∑

x2+14y2 = n

(−1)y −
∑

2x2+7y2 = n

(−1)x+y = 2
∑

x2+7y2 = 8n

(
2
y

)
(23.90)

for all positive integers n, where the summation on the left hand side is on
all x, y ∈ Z and on the right hand side on all positive odd x, y satisfying the
indicated equations.



24 Weight 1 for Level N = 20

24.1 Eta Products for the Fricke Group Γ∗(20)

From Sect. 21.1 we know that for primes p ≥ 7 there are 9 new holomorphic
eta products of weight 1 for Γ∗(4p) and another 60 such eta products for
Γ0(4p). Table 24.1 shows that the corresponding numbers of eta products
are slightly larger for level N = 4 · 5 = 20 and considerably larger for level
N = 4 · 3 = 12. In the present section we are going to discuss theta series
identities for the eta products of weight 1 and level 20.

We start with the cuspidal eta product for Γ∗(20) with denominator 4 which
is the sign transform of η(z)η(5z) in Example 12.1. It is a theta series on the
fields with discriminants 5, −20 and −4, and it can be written as a sum of
non-cuspidal eta products:

Table 24.1: Numbers of new eta products of levels 20 and 12 with weight 1

denominator t 1 2 3 4 6 8 12 24 total
Γ∗(20), non-cuspidal 3 0 0 3 0 0 0 0 6
Γ∗(20), cuspidal 0 0 0 1 0 4 0 0 5
Γ0(20), non-cuspidal 10 2 0 4 0 8 0 0 24
Γ0(20), cuspidal 0 0 6 4 4 6 6 34 60
Γ∗(12), non-cuspidal 3 1 0 2 0 0 0 0 6
Γ∗(12), cuspidal 0 0 0 0 1 2 2 4 9
Γ0(12), non-cuspidal 48 5 18 16 1 40 14 16 158
Γ0(12), cuspidal 0 4 6 10 16 28 14 60 138

G. Köhler, Eta Products and Theta Series Identities,
Springer Monographs in Mathematics,
DOI 10.1007/978-3-642-16152-0 24, c© Springer-Verlag Berlin Heidelberg 2011
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Example 24.1 The residues of 1√
2
(1 +

√
−5) and 1 + 2

√
−5 modulo 4 can

be chosen as generators of (J5/(4))× � Z8 × Z2, where
(

1√
2
(1 +

√
−5)

)4 ≡
−1 mod 4. Two characters ψν on J5 with period 4 are fixed by their values

ψν

(
1√
2
(1 +

√
−5)

)
= νi, ψν(1 + 2

√
−5) = −1

with ν ∈ {1, −1}. The residues of 2 − νi, 3 + 2νi and νi modulo 4(2 + νi)
generate the group (O1/(8 + 4νi))× � Z4 × Z2 × Z4. Characters χν on O1

with periods 4(2 + νi) are given by

χν(2 − νi) = 1, χν(3 + 2νi) = −1, χν(νi) = 1.

The residues of ω5 = 1
2 (1 +

√
5), 1 + 2

√
5 and −1 modulo 8 are generators

of (Z[ω5]/(8))× � Z12 × Z2
2 . A Hecke character ξ̃ on Z[ω5] with period 8 is

defined by

ξ̃(μ) =
{

sgn(μ)
−sgn(μ) for μ ≡

{
ω5, 1 + 2

√
5

−1
mod 8.

The corresponding theta series of weight 1 satisfy

Θ1

(
5, ξ̃, z

4

)
= Θ1

(
−20, ψν , z

4

)
= Θ1

(
−4, χν , z

4

)

=
η3(2z)η3(10z)

η(z)η(4z)η(5z)η(20z)
. (24.1)

We have the identity
[

23, 103

1, 4, 5, 20

]
=
[
42, 52

2, 10

]
+
[
12, 202

2, 10

]
. (24.2)

One can use Theorem 8.1 and transform (24.2) into an identity for coefficients;
we leave this to the reader.

The cuspidal eta products for Γ∗(20) with denominator 8 combine to four
theta series on the field Q(

√
−5):

Example 24.2 The residues of 1√
2
(1 +

√
−5),

√
−5 and −1 modulo 8 can

be chosen as generators of (J5/(8))× � Z8 × Z4 × Z2. Eight characters ϕδ,ε,ν

on J5 with period 8 are fixed by their values

ϕδ,ε,ν

(
1√
2
(1 +

√
−5)

)
= 1√

2
(δ + νi), ϕδ,ε,ν(

√
−5) = ε, ϕδ,ε,ν(−1) = 1

with δ, ε, ν ∈ {1, −1}. The corresponding theta series of weight 1 decompose
as

Θ1

(
−20, ϕδ,ε,ν , z

8

)
= f1(z) + δ

√
2 f3(z) + ε f5(z) − δε

√
2 f7(z), (24.3)
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where the components fj are normalized integral Fourier series with denom-
inator 8 and numerator classes j modulo 8, and all of them are eta products,

f1 =
[
22, 102

1, 20

]
, f3 = [4, 5], f5 =

[
22, 102

4, 5

]
, f7 = [1, 20] . (24.4)

Two of the non-cuspidal eta products with denominator 4 make up a cuspidal
eigenform, according to identity (24.2). Together with the third eta product
of this kind we get another two linear combinations which are theta series
and Eisenstein series:

Example 24.3 Let the generators of (J5/(4))× � Z8 × Z2 be chosen as in
Example 24.1, and define a pair of characters χδ on J5 with period 4 by

χδ

(
1√
2
(1 +

√
−5)

)
= δ, χδ(1 + 2

√
−5) = −1

with δ ∈ {1, −1}, such that

χδ(μ) =
(

−2δ

μμ

)

for μ ∈ J5. The corresponding theta series of weight 1 satisfy

Θ1

(
−20, χδ,

z
4

)
=

∞∑

n=1

(−2δ
n

)(∑

d|n

(−5
d

))
e
(

nz
4

)
= F1(z) + 2δ F3(z), (24.5)

where the components Fj are normalized integral Fourier series with denom-
inator 4 and numerator classes j modulo 4. They are eta products or linear
combinations thereof,

F1 =
[
42, 52

2, 10

]
−
[
12, 202

2, 10

]
, F3 =

[
1, 4, 5, 20

2, 10

]
. (24.6)

For the non-cuspidal eta products with denominator 1 we find the following
identities:

Example 24.4 Let 1 stand for the trivial character on J5, and let χ0 denote
the non-trivial character modulo 1 on J5. The corresponding theta series of
weight 1 satisfy

Θ1 (−20, 1, z) = 1 +
∞∑

n=1

( ∑

d|n

(−20
d

))
e(nz) =

η(2z)η(4z)η(5z)η(10z)
η(z)η(20z)

,

(24.7)

Θ1 (−20, χ0, z) =
∞∑

n=1

(
m
5

)(∑

d|n

(−20
d

))
e(nz) =

η(z)η(2z)η(10z)η(20z)
η(4z)η(5z)

,

(24.8)



430 24. Weight 1 for Level N = 20

where n = 5rm, 5 � m. Moreover, we have the eta identity
[

25, 105

12, 42, 52, 202

]
=
[
2, 4, 5, 10

1, 20

]
+
[
1, 2, 10, 20

4, 5

]
. (24.9)

Of course, (24.9) is a trivial consequence from (24.2). Taking sign transforms
in (24.9) yields the identity

[
12, 52

2, 10

]
=
[
1, 42, 104

22, 5, 202

]
−
[
24, 5, 202

1, 42, 102

]

which was announced after Example 17.16. (The eta products on the right
hand side will appear again in Example 24.28.) Concerning the signs in (24.8),
we know from Sect. 7.1 that congruence conditions modulo 20 tell whether
a prime number splits into principal or non-principal ideals in O5.—We will
reconsider the identities (24.7), (24.8) in Example 24.28.

24.2 Cuspidal Eta Products for Γ0(20) with Denomina-
tors t ≤ 6

Two of the cuspidal eta products of weight 1 for Γ0(20) with denominator
3 are the sign transforms of eta products of level 10 which appear in a dis-
guised shape in Example 17.10. Now we get much simpler formulae for the
components of the theta series in that example. Comparing the new result
with (17.21), (17.22) yields two eta identities:

Example 24.5 Let ξδ, ϕδ,ν and ρδ,ν be the characters on J
Q(

√
15), on J15

and on O1, as defined in Example 17.10. Then the components g1, g2 of their
common theta series of weight 1, as stated in (17.21), are eta products and
given by

g1 =
[
1, 4, 103

2, 5, 20

]
, g2 =

[
23, 5, 20
1, 4, 10

]
. (24.10)

We have the eta identities
[

2, 8, 203

4, 10, 40

]
=

[
1, 102

5

]
+
[
42, 40

8

]
,

(24.11)[
43, 10, 40
2, 8, 20

]
=

[
22, 5

1

]
−
[
8, 202

40

]
.

In terms of coefficients, the second identity in (24.11) reads
∑

x2+60y2 = n

(
12
x

)
(−1)y =

∑

3x2+5y2 = 8n

(
12
y

)
−

∑

x2+15y2 = 4n

(
6
x

)(
2
y

)
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for all n ≡ 1 mod 3, where x, y run over all positive integers satisfying the
indicated equations, except for the left hand side where y ∈ Z is arbitrary.
The first identity in (24.11) is equivalent to a similar relation for n ≡ 2 mod 3.

The other cuspidal eta products with denominator 3 form two pairs of sign
transforms (gj , g̃j), where we use the notation

g1 =
[
1, 4, 5

2

]
, g̃1 =

[
22, 103

1, 5, 20

]
, g2 =

[
23, 102

1, 4, 5

]
, g̃2 =

[
1, 5, 20

10

]
.

(24.12)
Their Fricke transforms (with respect to W20) have denominator 24 and allow
a rather simple result, which will be given in Example 24.14. The result for
the functions (24.12) is more complicated:

Example 24.6 The residues of
√

−5, 2 +
√

−15, 1 + 2
√

−15, 7 and −1
modulo 8

√
3 can be chosen as generators of (J15/(8

√
3))× � Z4 × Z4

2 . Four
characters χδ,ν on J15 with period 8

√
3 are fixed by their values

χδ,ν(
√

−5) = −δ, χδ,ν(2 +
√

−15) = 1,

χδ,ν(1 + 2
√

−15) = ν, χδ,ν(7) = −1

and χδ,ν(−1) = 1 with δ, ν ∈ {1, −1}. The residues of 1
2 (

√
3 + ν

√
−5), 7

and −1 modulo −
√

3
(

1
2 (

√
3 − ν

√
−5)

)3
= 1

2 (9 + ν
√

−15) generate the group(
J15/((9 + ν

√
−15)/2)

)× � Z4 × Z2
2 . Define characters ρδ,ν on J15 with

period 1
2 (9 + ν

√
−15) by

ρδ,ν

(
1
2 (

√
3 + ν

√
−5)

)
= δ, ρδ,ν(7) = −1, ρδ,ν(−1) = 1.

The residues of 1 +
√

−10, 3 +
√

−10 and 3
√

5 + 2
√

−2 modulo 6
√

−2 can be
chosen as generators of (J10/(6

√
−2))× � Z8 ×Z4 ×Z2, where (3+

√
−10)2 ≡

−1 mod 6
√

−2. Four characters ψδ,ν on J10 with period 6
√

−2 are fixed by
the values

ψδ,ν(1 +
√

−10) = νi, ψδ,ν(3 +
√

−10) = 1, ψδ,ν(3
√

5 + 2
√

−2) = δ.

The residues of 1+
√

−10 and
√

−2 modulo 3 generate the group (J10/(3))× ≡
Z8 × Z2, where (1 +

√
−10)4 ≡ −1 mod 3. Four characters ψ̃δ,ν on J10 with

period 3 are fixed by

ψ̃δ,ν(1 +
√

−10) = νi, ψ̃δ,ν(
√

−2) = δ.

The residues of 1 + δ
√

6 and −1 modulo Pδ = 3 + 2δ
√

6 are generators of
(Z[

√
6]/(Pδ))× � Z4 × Z2. Define Hecke characters ξδ on Z[

√
6] with period

Pδ by
ξδ(μ) = −sgn(μ) for μ ≡ 1 + δ

√
6, −1 mod Pδ.
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The residues of 5 + 2δ
√

6, 1 − δ
√

6 and −1 modulo Mδ = 2(6 + δ
√

6) are
generators of (Z[

√
6]/(Mδ))× � Z2

4 × Z2. Define Hecke characters Ξδ on
Z[

√
6] with period Mδ by

Ξδ(μ) =
{

sgn(μ)
−sgn(μ) for μ ≡

{
5 + 2δ

√
6, 1 − δ

√
6

−1
mod Mδ.

The corresponding theta series of weight 1 satisfy the identities

Θ1

(
24, Ξδ,

z
3

)
= Θ1

(
−15, χδ,ν , z

3

)
= Θ1

(
−40, ψδ,ν , z

3

)
= G1(z) − δ G2(z),

(24.13)
where the components Gj are normalized integral Fourier series with denom-
inator 3 and numerator classes j modulo 3 which are linear combinations of
eta products,

G1 = 1
2

(
g1 + g̃1

)
, G2 = 1

2

(
g2 − g̃2

)
, (24.14)

with notations as given in (24.12). Moreover, we have

Θ1

(
24, ξδ,

z
3

)
= Θ1

(
−15, ρδ,ν , z

3

)
= Θ1

(
−40, ψ̃δ,ν , z

3

)
= −Hδ

(
z + 3

2

)

(24.15)
with

Hδ(z) = 1
2

(
g2 + g̃2

) (
z
2

)
+ 1

2δ
(
g1 − g̃1

) (
z
2

)
.

For the cuspidal eta products with denominator 4 we introduce the notations

f1 =
[
23, 5
1, 4

]
, f̃1 =

[
1, 103

5, 20

]
, f3 =

[
22, 5, 20

1, 10

]
, f̃3 =

[
1, 4, 102

2, 5

]
.

(24.16)
Here

(
f1, f̃1

)
and

(
f3, f̃3

)
are pairs of sign transforms. Their Fricke trans-

forms have denominator 8 and will be discussed in Example 24.9 where we
will find eta identities relating the functions (24.16) with their Fricke trans-
forms. Presently we get the following result:

Example 24.7 Let the generators of (J5/(8))× � Z8 × Z4 × Z2 be chosen
as in Example 24.2, and define eight characters φδ,ε,ν on J5 with period 8 by

φδ,ε,ν

(
1√
2
(1 +

√
−5)

)
= 1√

2
(ν + εi), φδ,ε,ν(

√
−5) = δi, φδ,ε,ν(−1) = 1

with δ, ε, ν ∈ {1, −1}. The corresponding theta series of weight 1 decompose
as

Θ1

(
−20, φδ,ε,ν , z

4

)
= F1(z) + εi

√
2 F3(z) + δi F5(z) − δε

√
2 F7(z) , (24.17)

where the components Fj are normalized integral Fourier series with denom-
inator 4 and numerator classes j modulo 8. All of them are linear combina-
tions of eta products,

F1 = 1
2

(
f1 + f̃1

)
, F3 = 1

2

(
f3 + f̃3

)
, F5 = 1

2

(
f1 − f̃1

)
, F7 = 1

2

(
f3 − f̃3

)

(24.18)
with notations as defined in (24.16).
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For the cuspidal eta products with denominator 6 we get similar results as
before, with the additional feature that we have coincidental theta series on
three distinct number fields. We introduce the notations

g1 =
[

4, 105

52, 202

]
, g̃1 =

[
4, 52

10

]
, g5 =

[
25, 20
12, 42

]
, g̃5 =

[
12, 20

2

]
,

(24.19)
where (g1, g̃1), (g5, g̃5) are pairs of sign transforms. Their Fricke transforms
have denominator 24 and will be discussed in Example 24.15. Here we get
the following result:

Example 24.8 The residues of 1 +
√

−30,
√

2 +
√

−15 and 2
√

10 +
√

−3
modulo 2

√
−6 can be chosen as generators of (J30/(2

√
−6))× � Z2

4 × Z2,
where (

√
2 +

√
−15)2 ≡ −1 mod 2

√
−6. Eight characters ψδ,ε,ν on J30 with

period 2
√

−6 are defined by

ψδ,ε,ν(1 +
√

−30) = δi, ψδ,ε,ν(
√

2 +
√

−15) = ν,

ψδ,ε,ν(2
√

10 +
√

−3) = −δεν

with δ, ε, ν ∈ {1, −1}. The residues of
√

3+ν
√

−2, 1+ν
√

−6 and −1 modulo
2(2

√
3 + 3ν

√
−2) generate the group (J6/(4

√
3 + 6ν

√
−2))× � Z8 × Z4 × Z2.

Characters ϕδ,ε,ν on J6 with periods 2(2
√

3 + 3ν
√

−2) are given by

ϕδ,ε,ν(
√

3 + ν
√

−2) = εi, ϕδ,ε,ν(1 + ν
√

−6) = δi, ϕδ,ε,ν(−1) = 1.

The residues of ω5 = 1
2 (1+

√
5),

√
5, 1+6

√
5 and −1 modulo 24 are generators

of (Z[ω5]/(24))× � Z24 × Z4 × Z2
2 . Hecke characters ξδ,ε on Z[ω5] with period

24 are given by

ξδ,ε(μ) =

⎧
⎪⎪⎨

⎪⎪⎩

sgn(μ)
εi sgn(μ)
δε sgn(μ)

−sgn(μ)

for μ ≡

⎧
⎪⎪⎨

⎪⎪⎩

ω5√
5

1 + 6
√

5
−1

mod 24.

The corresponding theta series of weight 1 satisfy the identities

Θ1

(
5, ξδ,ε,

z
6

)
= Θ1

(
−120, ψδ,ε,ν , z

6

)
= Θ1

(
−24, ϕδ,ε,ν , z

6

)

= G1(z) + εi G5(z)
+ 2δi G7(z) − 2δεG11(z) , (24.20)

where the components Gj are normalized integral Fourier series with denom-
inator 6 and numerator classes j modulo 12. All of them are linear combi-
nations of eta products,

G1 = 1
2

(
g1 + g̃1

)
, G5 = 1

2

(
g5 + g̃5

)
,

(24.21)
G7 = 1

4

(
g1 − g̃1

)
, G11 = 1

4

(
g5 − g̃5

)

with notations as defined in (24.19).
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24.3 Cuspidal Eta Products with Denominators 8 and 12

The Fricke transforms of the eta products in (24.16) have denominator 8.
They combine to theta series which are, up to a rescaling of the variable, the
same as those in (24.17). As a consequence we get four eta identities:

Example 24.9 Let φδ,ε,ν be the characters on J5 with period 8 as defined in
Example 24.7. Then the components in the decomposition

Θ1

(
−20, φδ,ε,ν , z

8

)
= F̂1(z) + εi

√
2 F̂3(z) + δi F̂5(z) − δε

√
2 F̂7(z) (24.22)

are eta products,

F̂1 =
[
1, 4, 102

2, 20

]
, F̂3 =

[
4, 103

5, 20

]
,

(24.23)

F̂5 =
[
22, 5, 20

4, 10

]
, F̂7 =

[
23, 20
1, 4

]
.

We have the eta identities

2
[
2, 8, 202

4, 40

]
=
[
23, 5
1, 4

]
+
[
1, 103

5, 20

]
,

2
[
42, 10, 40

8, 20

]
=
[
23, 5
1, 4

]
−
[
1, 103

5, 20

]
,

2
[

8, 203

10, 40

]
=
[
22, 5, 20

1, 10

]
+
[
1, 4, 102

2, 5

]
,

2
[
43, 40
2, 8

]
=
[
22, 5, 20

1, 10

]
−
[
1, 4, 102

2, 5

]
.

In combination with Theorem 8.1, the eta identities in Example 24.9 yield
identities in terms of coefficients. One of them reads

∑

x>0, y∈Z, x2+80y2 = n

(−1)y

(
2
x

)
=

∑

x,y>0, x2+5y2 = 6n

(
6
x

)(
12
y

)
(24.24)

for all n ≡ 1 mod 8. The others are similar relations for n ≡ 3, 5, 7 mod 8. We
did not find direct proofs for these relations using the arithmetic of the field
Q(

√
−5).

The remaining two cuspidal eta products with denominator 8 are the sign
transforms of the functions on Γ∗(10) which were treated in Example 17.1.
Now we get a similar result:

Example 24.10 The residues of 1 +
√

−10,
√

5 and −1 modulo 4
√

−2 can
be chosen as generators of (J10/(4

√
−2))× � Z2

4 × Z2. Four characters ψ̃δ,ν

on J10 with period 4
√

−2 are fixed by their values

ψ̃δ,ν(1 +
√

−10) = δν, ψ̃δ,ν(
√

5) = δi, ψ̃δ,ν(−1) = 1
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with δ, ν ∈ {1, −1}. The residues of 2 − νi, 3, 11 and νi modulo 8(2 + νi)
can be chosen as generators of (O1/(16+8νi))× � Z2

4 × Z2 × Z4. Characters
ρδ,ν on O1 with periods 8(2 + νi) are given by

ρδ,ν(2 − νi) = δi, ρδ,ν(3) = −1, ρδ,ν(11) = 1, ρδ,ν(νi) = 1.

The residues of
√

5, 1+
√

10 and −1 modulo 4
√

2 are generators of
(

J
Q[

√
10]/

(4
√

2)
)× � Z2

4 × Z2. Hecke characters ξ̃δ on J
Q[

√
10] with period 4

√
2 are

given by

ξ̃δ(μ) =
{

δi sgn(μ)
−sgn(μ) for μ ≡

{ √
5

1 +
√

10, −1
mod 4

√
2.

The corresponding theta series of weight 1 satisfy the identities

Θ1

(
40, ξ̃δ,

z
8

)
= Θ1

(
−40, ψ̃δ,ν , z

8

)
= Θ1

(
−4, ρδ,ν , z

8

)

=
η(z)η(4z)η5(10z)

η(2z)η2(5z)η2(20z)

+ δi
η5(2z)η(5z)η(20z)
η2(z)η2(4z)η(10z)

. (24.25)

Two among the cuspidal eta products with denominator 12 are the sign trans-
forms of the eta products on Γ0(10) which were discussed in Example 17.9.
Here we get similar identities:

Example 24.11 Let the generators of (J15/(8
√

3))× � Z4 × Z4
2 be chosen

as in Example 24.6, and define four characters φδ,ν on J15 with period 8
√

3
by

φδ,ν(
√

−5) = δi, φδ,ν(2 +
√

−15) = ν,

φδ,ν(1 + 2
√

−15) = 1, φδ,ν(7) = −1

and φδ,ν(−1) = 1 with δ, ν ∈ {1, −1}. The residues of 2 − νi, 7, 11 + 6νi and
νi modulo 12(2 + νi) can be chosen as generators of (O1/(24 + 12νi))× �
Z8 × Z4 × Z2 × Z4. Characters ϕδ,ν on O1 with periods 12(2 + νi) are given
by

ϕδ,ν(2 − νi) = δi, ϕδ,ν(7) = −1, ϕδ,ν(11 + 6νi) = −1, ϕδ,ν(νi) = 1.

The residues of
√

5,
√

3 + 2
√

5 and 1 + 2
√

15 modulo 4
√

3 are generators of
the group

(
J

Q[
√

15]/(4
√

3)
)× � Z2

4 × Z2, where (
√

3 + 2
√

5)2 ≡ −1 mod 4
√

3.
Hecke characters ξδ on J

Q[
√

15] with period 4
√

3 are given by

ξδ(μ) =
{

δi sgn(μ)
−sgn(μ) for μ ≡

{ √
5,

√
3 + 2

√
5

1 + 2
√

15
mod 4

√
3.
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The corresponding theta series of weight 1 satisfy the identities

Θ1

(
60, ξδ,

z
12

)
= Θ1

(
−15, φδ,ν , z

12

)
= Θ1

(
−4, ϕδ,ν , z

12

)

=
η(2z)η5(10z)
η2(5z)η2(20z)

+ δi
η5(2z)η(10z)
η2(z)η2(4z)

. (24.26)

For the other cuspidal eta products with denominator 12 we introduce the
notations

h1 =
[

24, 52

12, 4, 10

]
, h̃1 =

[
12, 4, 105

22, 52, 202

]
,

(24.27)

h5 =
[

25, 52, 20
12, 42, 102

]
, h̃5 =

[
12, 104

2, 52, 20

]
,

where
(
h1, h̃1

)
and

(
h5, h̃5

)
are pairs of sign transforms. Their Fricke trans-

forms have denominator 24 and will be considered in Example 24.16. We
note that the functions in (24.27) cannot be written as products of holomor-
phic eta products of weight 1

2 . In the following example we describe four
theta series on the fields with discriminants 60, −40 and −24 whose compo-
nents involve the eta products (24.27) and two old eta products coming from
level 10:

Example 24.12 The residues of 1 +
√

−10, 3 +
√

−10,
√

5 + 3
√

−2 and
−1 modulo 12

√
−2 can be chosen as generators of (J10/(12

√
−2))× � Z8 ×

Z2
4 × Z2. Eight characters ϕδ,ε,ν on J10 with period 12

√
−2 are fixed by their

values
ϕδ,ε,ν(1 +

√
−10) = −δε, ϕδ,ε,ν(3 +

√
−10) = νi,

ϕδ,ε,ν(
√

5 + 3
√

−2) = −δνi, ϕδ,ε,ν(−1) = 1

with δ, ε, ν ∈ {1, −1}. The residues of
√

3+ν
√

−2, 1+ν
√

−6, 5+8ν
√

−6, 11
and −1 modulo 4(2

√
3+3ν

√
−2) can be chosen as generators of (J6/(8

√
3+

12ν
√

−2))× � Z8 × Z4 × Z3
2 . Characters ρδ,ε,ν on J6 with periods 4(2

√
3 +

3ν
√

−2) are given by

ρδ,ε,ν(
√

3 + ν
√

−2) = δ, ρδ,ε,ν(1 + ν
√

−6) = ε,

ρδ,ε,ν(5 + 8ν
√

−6) = −1, ρδ,ε,ν(11) = 1

and ρδ,ε,ν(−1) = 1. The residues of
√

5,
√

3+2
√

5, 1+2
√

15 and −1 modulo
8

√
3 are generators of

(
J

Q[
√

15]/(8
√

3)
)× � Z3

4 × Z2. Define Hecke characters
Ξδ,ε on J

Q[
√

15] with period 8
√

3 by

Ξδ,ε(μ) =

⎧
⎪⎪⎨

⎪⎪⎩

δ sgn(μ)
ε sgn(μ)
δε sgn(μ)

−sgn(μ)

for μ ≡

⎧
⎪⎪⎨

⎪⎪⎩

√
5√

3 + 2
√

5
1 + 2

√
15

−1

mod 8
√

3.
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The corresponding theta series of weight 1 are identical and decompose as

Θ1

(
60, Ξδ,ε,

z
12

)
= Θ1

(
−40, ϕδ,ε,ν , z

12

)
= Θ1

(
−24, ρδ,ε,ν , z

12

)

= H1(z) + δ H5(z)
+ 2εH7(z) − 2δεH11(z), (24.28)

where the components Hj are normalized integral Fourier series with denom-
inator 12 and numerator classes j modulo 12. All of them are eta products
or linear combinations thereof,

H1 = 1
2

(
h1 + h̃1

)
, H5 = 1

2

(
h5 + h̃5

)
,

(24.29)
H7 = [4, 10], H11 = [2, 20]

with notations as defined in (24.27).

In the theta series (24.28) only every second coefficient of the eta products
(24.27) survives. The others survive in h1 − h̃1 and h5 − h̃5, and one should
expect that these differences are also components in theta series. Indeed the
appropriate theta series are well known from Example 17.11, and as a result
we get two eta identities:

Example 24.13 Let ξδ,ε, ψδ,ε,ν and χδ,ε,ν be the characters on J
Q[

√
30], on

J30 and on O1, respectively, as defined in Example 17.11. Then the compo-
nents in the decomposition

Θ1

(
120, ξδ,ε,

z
12

)
= Θ1

(
−120, ψδ,ε,ν , z

12

)
= Θ1

(
−4, χδ,ε,ν , z

12

)

= F1(z) + δi F5(z)
+ 2ε F13(z) − 2δεi F17(z) (24.30)

satisfy

F1 =
[
2, 102

20

]
, F5 =

[
22, 10

4

]
, (24.31)

F13 =
[
42, 20

2

]
= 1

4

(
h1 − h̃1

)
, F17 =

[
4, 202

10

]
= 1

4

(
h5 − h̃5

)
(24.32)

with notations from (24.27).

Multiplication with
[
2, 4−1

]
or
[
10, 20−1

]
shows that each of the eta identities

in (24.32) is equivalent to

4 [4, 20] =
[

25, 52

12, 42, 10

]
−
[

12, 105

2, 52, 202

]
, (24.33)

which in terms of coefficients is equivalent to
∑

x2+5y2 = 6n

(
12
xy

)
=

∑

x2+5y2 = n

((−1)y − (−1)x)
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for all integers n ≥ 0, where the summation is on all x, y ∈ Z satisfying the
indicated equations. It is easy to prove this relation using the arithmetic
in O5.

24.4 Cuspidal Eta Products with Denominator 24, First
Part

Two subsections will be devoted to the discussion of the 34 cuspidal eta
products of weight 1 for Γ0(20) with denominator 24. They span a space of
dimension 32. Two linear relations will be exhibited below in Example 24.20.
The majority of our 34 eta products are sign transforms or Fricke transforms
of functions which appeared previously in our examples. We begin with the
Fricke transforms of the eta products with denominator 3 in Example 24.6:

Example 24.14 Let the generators of (J10/(12
√

−2))× � Z8 × Z2
4 × Z2 be

chosen as in Example 24.12, and define eight characters ψδ,ε,ν on J10 with
period 12

√
−2 by

ψδ,ε,ν(1 +
√

−10) = νi, ψδ,ε,ν(3 +
√

−10) = −δε,

ψδ,ε,ν(
√

5 + 3
√

−2) = ε, ψδ,ε,ν(−1) = 1

with δ, ε, ν ∈ {1, −1}. The residues of
√

−5, 2 +
√

−15, 8 +
√

−15, 7 and −1
modulo 16

√
3 can be chosen as generators of (J15/(16

√
3))× � Z8 × Z4 × Z3

2 .
Eight characters ρδ,ε,ν on J15 with period 16

√
3 are fixed by their values

ρδ,ε,ν(
√

−5) = δ, ρδ,ε,ν(2 +
√

−15) = −δε,

ρδ,ε,ν(8 +
√

−15) = ν, ρδ,ε,ν(7) = −1

and ρδ,ε,ν(−1) = 1. The residues of 1 − ε
√

6, 5+2ε
√

6, 5+4ε
√

6, 11 and −1
modulo Mε = 4(6+

√
6) are generators of (Z[

√
6]/(Mε))× � Z2

4 × Z3
2 . Define

Hecke characters ξ∗
δ,ε on Z[

√
6] with period Mε by

ξ∗
δ,ε(μ) =

⎧
⎨

⎩

−δε sgn(μ)
sgn(μ)

−sgn(μ)
for μ ≡

⎧
⎨

⎩

1 − ε
√

6
5 + 2ε

√
6

5 + 4ε
√

6, 11, −1
mod Mε.

The corresponding theta series of weight 1 are identical and decompose as

Θ1

(
24, ξ∗

δ,ε,
z
24

)
= Θ1

(
−40, ψδ,ε,ν , z

24

)
= Θ1

(
−15, ρδ,ε,ν , z

24

)

= f1(z) + δ f5(z)
− 2δε f19(z) + 2ε f23(z), (24.34)
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where the components fj are normalized integral Fourier series with denom-
inator 24 and numerator classes j modulo 24. All of them are eta products,

f1 =
[

23, 102

1, 4, 20

]
, f5 =

[
22, 103

4, 5, 20

]
,

(24.35)
f19 =

[
4, 5, 20

10

]
, f23 =

[
1, 4, 20

2

]
.

In the following example we consider the Fricke transforms of the eta products
(24.19) from Example 24.8:

Example 24.15 The residues of
√

10 +
√

−3,
√

2 +
√

−15,
√

5 +
√

−6 and
−1 modulo 4

√
−6 can be chosen as generators of (J30/(4

√
−6))× � Z3

4 × Z2.
Eight characters ψ∗

δ,ε,ν on J30 with period 4
√

−6 are given by

ψ∗
δ,ε,ν(

√
10 +

√
−3) = −νi, ψ∗

δ,ε,ν(
√

2 +
√

−15) = −δν,

ψ∗
δ,ε,ν(

√
5 +

√
−6) = −δε

and ψ∗
δ,ε,ν(−1) = 1 with δ, ε, ν ∈ {1, −1}. Let the generators of (J6/(8

√
3 +

12ν
√

−2))× � Z8 × Z4 × Z3
2 be chosen as in Example 24.12, and define

characters φ = φδ,ε,ν on J6 with periods 4(2
√

3 + 3ν
√

−2) by

φ(
√

3 + ν
√

−2) = δi, φ(1 + ν
√

−6) = εi,

φ(5 + 8ν
√

−6) = −1, φ(11) = 1

and φ(−1) = 1. The residues of ω5 = 1
2 (1 +

√
5),

√
5, 1 + 6

√
5 and −1

modulo 48 are generators of (Z[ω5]/(48))× � Z24 × Z8 × Z4 × Z2. Define
Hecke characters ξ∗

δ,ε on Z[ω5] with period 48 by

ξ∗
δ,ε(μ) =

⎧
⎪⎪⎨

⎪⎪⎩

sgn(μ)
δi sgn(μ)
δε sgn(μ)

−sgn(μ)

for μ ≡

⎧
⎪⎪⎨

⎪⎪⎩

ω5√
5

1 + 6
√

5
−1

mod 48.

The corresponding theta series of weight 1 satisfy the identities

Θ1

(
5, ξ∗

δ,ε,
z
24

)
= Θ1

(
−120, ψ∗

δ,ε,ν , z
24

)
= Θ1

(
−24, φδ,ε,ν , z

24

)

= g1(z) + δi g5(z) + 2εi g7(z) − 2δε g11(z), (24.36)

where the components gj are normalized integral Fourier series with denom-
inator 24 and numerator classes j modulo 24. All of them are eta products,

g1 =
[

1, 105

52, 202

]
, g5 =

[
25, 5
12, 42

]
,

(24.37)

g7 =
[
1, 202

10

]
, g11 =

[
42, 5

2

]
.
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For the Fricke transforms of the eta products (24.27) which appeared in
Examples 24.12 and 24.13 we introduce the notations

h1 =
[

42, 104

2, 5, 202

]
, h25 =

[
25, 5, 202

12, 42, 102

]
,

(24.38)

h5 =
[

1, 42, 105

22, 52, 202

]
, h29 =

[
24, 202

1, 42, 10

]
.

We get the eight theta series which are known from Examples 24.12 and 17.11,
but now we can identify some of the components with linear combinations of
the eta products in (24.38), and thus we obtain another four eta identities:

Example 24.16 Let Ξδ,ε, ϕδ,ε,ν , ρδ,ε,ν be the characters on J
Q[

√
30], on J10,

and on J6, respectively, as defined in Example 24.12. Then in the decompo-
sition

Θ1

(
60, Ξδ,ε,

z
24

)
= Θ1

(
−40, ϕδ,ε,ν , z

24

)
= Θ1

(
−24, ρδ,ε,ν , z

24

)

= Ĥ1(z) + δ Ĥ5(z)

+ 2ε Ĥ7(z) − 2δε Ĥ11(z) (24.39)

corresponding to (24.28), the components are given by

Ĥ1 = h1 + h25, Ĥ5 = h5 + h29, Ĥ7 = [2, 5], Ĥ11 = [1, 10] (24.40)

with notations defined in (24.38). We have the eta identities
[

24, 52

12, 4, 10

]
+
[

12, 4, 105

22, 52, 202

]
= 2

[
82, 204

4, 10, 402

]
+ 2

[
45, 10, 402

22, 82, 202

]
, (24.41)

[
25, 52, 20
12, 42, 102

]
+
[

12, 104

2, 52, 20

]
= 2

[
2, 82, 205

42, 102, 402

]
+ 2

[
44, 402

2, 82, 20

]
. (24.42)

Let ξδ,ε, ψδ,ε,ν and χδ,ε,ν be the characters on J
Q[

√
30], on J30, and on O1,

respectively, as defined in Examples 17.11, 24.13. Then the components f1,
f5 in the decomposition (17.23),

Θ1

(
120, ξδ,ε,

z
24

)
= Θ1

(
−120, ψδ,ε,ν , z

24

)
= Θ1

(
−4, χδ,ε,ν , z

24

)

= f1(z) + δi f5(z) + 2ε f13(z) − 2δεi f17(z),

satisfy

f1 =
[
1, 52

10

]
= h1 − h25 =

[
42, 104

2, 5, 202

]
−
[

25, 5, 202

12, 42, 102

]
, (24.43)

f5 =
[
12, 5

2

]
= h5 − h29 =

[
1, 42, 105

22, 52, 202

]
−
[

24, 202

1, 42, 10

]
. (24.44)
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We recall from Example 17.11 that f13 = [1−1, 22, 10], f17 = [2, 5−1, 102].
Each of the identities (24.41) and (24.42) is equivalent to an identity among
non-cuspidal eta products with denominator 1,
[

25, 52

12, 42, 10

]
+
[

12, 105

2, 52, 202

]
= 2

[
2, 82, 204

42, 10, 402

]
+ 2

[
44, 10, 402

2, 82, 202

]
, (24.45)

where the coefficient at n (of the left hand side) is given by

∑

x,y ∈ Z, x2+5y2 = n

(
(−1)x + (−1)y

)
.

Each of the identities (24.43) and (24.44) is equivalent to

[1, 5] =
[

42, 105

2, 52, 202

]
−
[

25, 202

12, 42, 10

]
, (24.46)

which in terms of coefficients is equivalent to

∑

x,y > 0 , x2+5y2 = 6n

(
12
xy

)
=

∑

x>0 , y ∈ Z, x2+20y2 = n

1 −
∑

x>0 , y ∈ Z, 5x2+4y2 = n

1

for all n ≡ 1 mod 4. We note that the identities (24.33) and (24.46) are quite
similar to each other.

In the following example we see that the theta series from Example 13.4,
whose components are eta products of levels 4 and 8, and which occurred
once more in Example 15.23, can also be written in terms of eta products of
level 20:

Example 24.17 Let ξδ, χδ,ν and ϕδ,ν be the characters on Z[
√

6], on O1,
and on J6, as defined in Example 13.4. The corresponding theta series of
weight 1 satisfy

Θ1

(
24, ξδ,

z
24

)
= Θ1

(
−4, χδ,ν , z

24

)
= Θ1

(
−24, ϕδ,ν , z

24

)
= f1(z) + 2δ f5(z)

with

f1 =
[

28

13, 43

]
= 5

[
1, 4, 1010

22, 54, 204

]
− 4

[
12, 42, 102

22, 5, 20

]
, (24.47)

f5 = [1, 4] =
[

210, 5, 20
14, 44, 102

]
− 5

[
22, 52, 202

1, 4, 102

]
. (24.48)

When we multiply (24.48) with [1−1, 23, 4−1, 10] then we get an eta identity
in weight 2 where two of the terms are products of two simple theta series in
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weights 1
2 and 3

2 , and the third one is a product of four simple theta series in
weight 1

2 . By virtue of Theorems 8.1 and 8.5, this identity is equivalent to

∑

3x2 + 5y2 = n

(
−1
x

)(
12
y

)
x

=
∑

x2 + 15y2 = 15n

(
−6
x

)(
2
y

)
x

− 5
∑

24u2 + 15(x2+y2) + 10t2 = 8n

(
2
xy

)(
12
t

)
(24.49)

for all n ≡ 2 mod 3, where in the sums u ∈ Z and x, y, t > 0 run over
the integers satisfying the indicated equations. A similar result for integers
n ≡ 3 mod 4 is obtained when we multiply (24.47) with [2, 5, 10−1, 20].

The eta products on the right hand sides in (24.47), (24.48) make up the
components of another pair of theta series on the fields with discriminants
24, −4 and −24:

Example 24.18 Let generators of (J6/(8
√

3 + 12ν
√

−2))× � Z8 × Z4 × Z3
2

be chosen as in Example 24.12, and define characters ψδ,ν on J6 with periods
4(2

√
3 + 3ν

√
−2) by

ψδ,ν(
√

3 + ν
√

−2) = δ, ψδ,ν(1 + ν
√

−6) = ν,

ψδ,ν(5 + 8ν
√

−6) = 1, ψδ,ν(11) = −1

and ψδ,ν(−1) = 1 with δ, ν ∈ {1, −1}. The residues of 2 − νi, 11 + 6νi, 7,
7 − 12νi and νi modulo 24(2 + νi) can be chosen as generators of (O1/(48 +
24νi))× � Z8 × Z2

4 × Z2 × Z4. Characters ρδ,ν on O1 with periods 24(2 + νi)
are given by

ρδ,ν(2 − νi) = δ, ρδ,ν(11 + 6νi) = νi,

ρδ,ν(7) = 1, ρδ,ν(7 − 12νi) = −1, ρδ,ν(νi) = 1.

Let generators of Z[
√

6] modulo Mν = 4(6 + ν
√

6) be chosen as in Exam-
ple 24.14, and define characters ξ̃δ,ν on Z[

√
6] with period Mν by

ξ̃δ,ν(μ) =

⎧
⎨

⎩

−δν sgn(μ)
sgn(μ)

−sgn(μ)

for μ ≡

⎧
⎨

⎩

1 − ν
√

6
5 + 2ν

√
6, 5 + 4ν

√
6, 11

−1
mod Mν .
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The corresponding theta series of weight 1 satisfy the identities

Θ1

(
24, ξ̃δ,ν , z

24

)
= Θ1

(
−4, ρδ,ν , z

24

)
= Θ1

(
−24, ψδ,ν , z

24

)

= h1(z) + δ h5(z), (24.50)

where the components hj are normalized integral Fourier series with denom-
inator 24 and numerator classes j modulo 24. Both of them are linear com-
binations of eta products,

h1 = 3
[

1, 4, 1010

22, 54, 204

]
− 2

[
12, 42, 102

22, 5, 20

]
,

(24.51)

h5 =
[

210, 5, 20
14, 44, 102

]
− 6

[
22, 52, 202

1, 4, 102

]
.

In the examples in this subsection we described 20 distinct theta series. Their
components are composed of 16 of the eta products with denominator 24 and
of four old eta products of level 10. There are 18 eta products of weight 1
for Γ0(20) with denominator 24 which remain. They will be discussed in the
following subsection where we will present two linear relations and 16 theta
series which are linear combinations of 16 eta products.

24.5 Cuspidal Eta Products with Denominator 24, Sec-
ond Part

Now we describe theta series whose components are the sign transforms of
the eta products in Example 17.11. The results are similar as before in
Example 17.11, and we use similar notations. In particular, the eta products
in the following example form two pairs of transforms with respect to W20:

Example 24.19 Let the generators of (J30/(4
√

−6))× � Z3
4 × Z2 be chosen

as in Example 24.15, and define eight characters ψ̃ = ψ̃δ,ε,ν on J30 with
period 4

√
−6 by their values

ψ̃(
√

10 +
√

−3) = εi, ψ̃(
√

2 +
√

−15) = −δεi,

ψ̃(
√

5 +
√

−6) = ν, ψ̃(−1) = 1

with δ, ε, ν ∈ {1, −1}. Let the generators of (O1/(48 + 24νi))× be chosen
as in Example 24.18, and define characters φ = φδ,ε,ν on O1 with periods
24(2 + νi) by

φ(2 − νi) = δ, φ(11 + 6νi) = εi,

φ(7) = −1, φ(7 − 12νi) = −1, φ(νi) = 1.
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The residues of 1 +
√

30,
√

3 +
√

10, 7 and −1 modulo M = 4(6 +
√

30) are
generators of

(
J

Q[
√

30]/(M)
)× � Z2

4 × Z2
2 . Define Hecke characters ξ̃δ,ε on

J
Q[

√
30] with period M by

ξ̃δ,ε(μ) =

⎧
⎪⎪⎨

⎪⎪⎩

δ sgn(μ)
−δεi sgn(μ)

sgn(μ)
−sgn(μ)

for μ ≡

⎧
⎪⎪⎨

⎪⎪⎩

1 +
√

30√
3 +

√
10

7
−1

mod M.

The corresponding theta series of weight 1 satisfy the identities

Θ1

(
120, ξ̃δ,ε,

z
24

)
= Θ1

(
−120, ψ̃δ,ε,ν , z

24

)
= Θ1

(
−4, φδ,ε,ν , z

24

)

= f̃1(z) + δ f̃5(z)

+ 2εi f̃13(z) − 2δεi f̃17(z), (24.52)

where the components f̃j are normalized integral Fourier series with denomi-
nator 24 and numerator classes j modulo 24, and all of them are eta products,

f̃1 =
[

23, 105

1, 4, 52, 202

]
, f̃5 =

[
25, 103

12, 42, 5, 20

]
,

(24.53)
f̃13 =

[
1, 4, 10

2

]
, f̃17 =

[
2, 5, 20

10

]
.

In the following example we describe four theta series whose components
involve the eta products f̃1, f̃5 in (24.53), the sign transforms of the eta
products h25, h29 in (24.38), and the sign transforms of the eta products
[2, 5], [1, 10] in Example 17.2. Two of the components are linear combinations
of eta products which can be written in different ways due to linear relations.
So the following example will be the place to display the relations which were
announced at the beginning of Sect. 24.4:

Example 24.20 Let generators of (J10/(12
√

−2))× � Z8 × Z2
4 × Z2 and

of (J6/(8
√

3 + 12ν
√

−2))× � Z8 × Z4 × Z3
2 be chosen as in Example 24.12.

Define characters ϕ∗ = ϕ∗
δ,ε,ν on J10 with period 12

√
−2 by

ϕ∗(1 +
√

−10) = δεi, ϕ∗(3 +
√

−10) = δν,

ϕ∗(
√

5 + 3
√

−2) = νi, ϕ∗(−1) = 1

with δ, ε, ν ∈ {1, −1}. Define characters χ∗ = χ∗
δ,ε,ν on J6 with periods

4(2
√

3 + 3ν
√

−2) by

χ∗(
√

3 + ν
√

−2) = δi, χ∗(1 + ν
√

−6) = ε,

χ∗(5 + 8ν
√

−6) = 1, χ∗(11) = −1
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and χ∗(−1) = 1. Let generators of
(

J
Q[

√
15]/(8

√
3)
)× � Z3

4 × Z2 be chosen
as in Example 24.12, and define Hecke characters Ξ∗

δ,ε on J
Q[

√
15] with period

8
√

3 by

Ξ∗
δ,ε(μ) =

⎧
⎪⎪⎨

⎪⎪⎩

δi sgn(μ)
−ε sgn(μ)

−δεi sgn(μ)
−sgn(μ)

for μ ≡

⎧
⎪⎪⎨

⎪⎪⎩

√
5√

3 + 2
√

5
1 + 2

√
15

−1

mod 8
√

3.

The corresponding theta series of weight 1 are identical and decompose as

Θ1

(
60, Ξ∗

δ,ε,
z
24

)
= Θ1

(
−40, ϕ∗

δ,ε,ν , z
24

)
= Θ1

(
−24, χ∗

δ,ε,ν , z
24

)

= f1(z) + δi f5(z) + 2ε f7(z) + 2δεi f11(z), (24.54)

where the components fj are normalized integral Fourier series with denom-
inator 24 and numerator classes j modulo 24. All of them are eta products
or linear combinations thereof,

f1 =
[

23, 105

1, 4, 52, 202

]
− 2

[
12, 10, 20

2, 5

]
,

(24.55)

f5 =
[

25, 103

12, 42, 5, 20

]
− 2

[
1, 2, 202

4, 10

]
,

f7 =
[
2, 103

5, 20

]
, f11 =

[
23, 10
1, 4

]
. (24.56)

We have the eta identities
[
42, 5, 10

2, 20

]
=
[

23, 105

1, 4, 52, 202

]
−
[
12, 10, 20

2, 5

]
, (24.57)

[
2, 4, 52

1, 10

]
=
[

25, 103

12, 42, 5, 20

]
−
[
1, 2, 202

4, 10

]
. (24.58)

Multiplication with suitable eta products shows that the identities (24.57)
and (24.58) are equivalent to each other and equivalent to

[
23, 103

1, 4, 5, 20

]
=
[
42, 52

2, 10

]
+
[
12, 202

2, 10

]
,

which in terms of coefficients is equivalent to

∑

x,y > 0, x2+5y2 = 6n

(
6
xy

)
=

∑

x>0, y ∈ Z, x2+20y2 = n

(−1)y

+
∑

x>0, y ∈ Z, 5x2+4y2 = n

(−1)y (24.59)

for all n ≡ 1 mod 4.
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In the next example we describe four theta series whose components are the
sign transforms of the eta products (24.37) in Example 24.15 and which form
two pairs of Fricke transforms.

Example 24.21 Let the generators of (J30/(4
√

−6))× � Z3
4 × Z2 and of

(J6/(8
√

3 + 12
√

−2))× � Z8 × Z4 × Z3
2 be chosen as in Examples 24.15 and

24.12, respectively. Define eight characters ψ̃∗
δ,ε,ν on J30 with period 4

√
−6

by their values

ψ̃∗
δ,ε,ν(

√
10 +

√
−3) = ν, ψ̃∗

δ,ε,ν(
√

2 +
√

−15) = −δν,

ψ̃∗
δ,ε,ν(

√
5 +

√
−6) = δεi

and ψ̃∗
δ,ε,ν(−1) = 1 with δ, ε, ν ∈ {1, −1}. Define characters ϕ = ϕδ,ε,ν on J6

with periods 4(2
√

3 + 3ν
√

−2) by

ϕ(
√

3+ν
√

−2) = δ, ϕ(1+ν
√

−6) = −εi, ϕ(5+8ν
√

−6) = 1, ϕ(11) = −1

and ϕ(−1) = 1. Let generators of (Z[ω5]/(48))× with ω5 = 1
2 (1 +

√
5) be

chosen as in Example 24.15, and define Hecke characters ξ̃∗
δ,ε on Z[ω5] with

period 48 by

ξ̃∗
δ,ε(μ) =

⎧
⎪⎪⎨

⎪⎪⎩

sgn(μ)
δ sgn(μ)

δεi sgn(μ)
−sgn(μ)

for μ ≡

⎧
⎪⎪⎨

⎪⎪⎩

ω5√
5

1 + 6
√

5
−1

mod 48.

The corresponding theta series of weight 1 satisfy the identities

Θ1

(
5, ξ̃∗

δ,ε,
z
24

)
= Θ1

(
−120, ψ̃∗

δ,ε,ν , z
24

)
= Θ1

(
−24, ϕδ,ε,ν , z

24

)

= g̃1(z) + δ g̃5(z)
+ 2εi g̃7(z) + 2δεi g̃11(z), (24.60)

where the components g̃j are normalized integral Fourier series with denom-
inator 24 and numerator classes j modulo 24. They are the sign transforms
of the functions in (24.37),

g̃1 =
[

23, 52

1, 4, 10

]
, g̃5 =

[
12, 103

2, 5, 20

]
,

(24.61)

g̃7 =
[

23, 202

1, 4, 10

]
, g̃11 =

[
42, 103

2, 5, 20

]
.

The final example for denominator 24 handles the sign transforms of the eta
products (24.35) in Example 24.14. They form two pairs of Fricke transforms:
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Example 24.22 Let the generators of the groups (J10/(12
√

−2))× � Z8 ×
Z2

4 × Z2 and (J15/(16
√

3))× � Z8 × Z4 × Z3
2 be chosen as in Examples 24.12

and 24.14, respectively. Define eight characters ψ̃δ,ε,ν on J10 with period
12

√
−2 by their values

ψ̃δ,ε,ν(1 +
√

−10) = ν, ψ̃δ,ε,ν(3 +
√

−10) = δεi,

ψ̃δ,ε,ν(
√

5 + 3
√

−2) = −ε, ψδ,ε,ν(−1) = 1

with δ, ε, ν ∈ {1, −1}. Define eight characters ρ̃δ,ε,ν on J15 with period 16
√

3
by

ρ̃δ,ε,ν(
√

−5) = δi, ρ̃δ,ε,ν(2 +
√

−15) = δεi,

ρ̃δ,ε,ν(8 +
√

−15) = ν, ρ̃δ,ε,ν(7) = −1

and ρ̃δ,ε,ν(−1) = 1. Let generators of (Z[
√

6]/(Mε))× for Mε = 4(6 +
√

6) be
chosen as in Example 24.14, and define Hecke characters ξ̃∗

δ,ε on Z[
√

6] with
period Mε by

ξ̃∗
δ,ε(μ) =

⎧
⎨

⎩

−δεi sgn(μ)
sgn(μ)

−sgn(μ)

for μ ≡

⎧
⎨

⎩

1 − ε
√

6
5 + 2ε

√
6, 5 + 4ε

√
6, 11

−1
mod Mε.

The corresponding theta series of weight 1 satisfy the identities

Θ1

(
24, ξ̃δ,ε,

z
24

)
= Θ1

(
−40, ψ̃δ,ε,ν , z

24

)
= Θ1

(
−15, ρ̃δ,ε,ν , z

24

)

= f̃1(z) + δi f̃5(z)

+ 2δεi f̃19(z) − 2ε f̃23(z), (24.62)

where the components f̃j are normalized integral Fourier series with denom-
inator 24 and numerator classes j modulo 24. They are the sign transforms
of the eta products in (24.35),

f̃1 =
[
1, 102

20

]
, f̃5 =

[
22, 5

4

]
,

(24.63)

f̃19 =
[
4, 102

5

]
, f̃23 =

[
22, 20

1

]
.

24.6 Non-cuspidal Eta Products with Denominators
t > 1

Table 24.1 at the beginning of Sect. 24.1 tells us that t = 8 is the largest value
for the denominator of a non-cuspidal eta product of weight 1 for Γ0(20).
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There are eight eta products of this kind. They form four pairs of sign
transforms, where one member in each pair has only non-negative coefficients.
In the following two examples we describe eight linear combinations which
are both theta series and Eisenstein series. We note that the eta products in
the second of these examples form two pairs of Fricke transforms:

Example 24.23 The residues of 1 +
√

−10 and
√

5 modulo 2 can be chosen
as generators of (J10/(2))× � Z2

2 . Four characters ϕδ,ε on J10 with period
2 are fixed by their values

ϕδ,ε(1 +
√

−10) = δ, ϕδ,ε(
√

5) = ε

with δ, ε ∈ {1, −1}, such that ϕ1,±1 represent the trivial and the non-trivial
characters modulo

√
−2, and ϕ−1,±1 are primitive characters modulo 2 on

J10. These characters are induced through the norm,

ϕδ,ε(μ) = χδ,ε(μμ),

where the Dirichlet characters χδ,ε modulo 8 are fixed by the values χδ,ε(5) =
ε, χδ,ε(−1) = δε on generators of (Z/(8))×. The corresponding theta series
of weight 1 satisfy

Θ1

(
−40, ϕδ,ε,

z
8

)
=

∞∑

n=1

χδ,ε(n)
(∑

d|n

(−10
d

))
e
(

nz
8

)

= f1(z) + 2δ f3(z) + ε f5(z)
+ 2δε f7(z), (24.64)

where the components fj are normalized integral Fourier series with denom-
inator 8 and numerator classes j modulo 8. All of them are eta products,

f1 =
[

22, 105

1, 52, 202

]
, f3 =

[
22, 202

1, 10

]
,

(24.65)

f5 =
[

25, 102

12, 42, 5

]
, f7 =

[
42, 102

2, 5

]
.

Example 24.24 Let the generators of (J10/(4
√

−2))× � Z2
4 × Z2 be chosen

as in Example 24.10, and define four characters ϕ̃δ,ε on J10 with period 4
√

−2
by

ϕ̃δ,ε(1 +
√

−10) = δi, ϕ̃δ,ε(
√

5) = εi, ϕ̃δ,ε(−1) = 1

with δ, ε ∈ {1, −1}. These characters are induced through the norm,

ϕ̃δ,ε(μ) = χ̃δ,ε(μμ),

where the Dirichlet characters χ̃δ,ε modulo 16 are fixed by the values χ̃δ,ε(5) =
εi, χ̃δ,ε(−1) = δε on generators of (Z/(16))×. The corresponding theta series
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of weight 1 satisfy

Θ1

(
−40, ϕ̃δ,ε,

z
8

)
=

∞∑

n=1

χ̃δ,ε(n)
( ∑

d|n

(−10
d

))
e
(

nz
8

)

= f̃1(z) + 2δi f̃3(z)

+ εi f̃5(z) − 2δε f̃7(z), (24.66)

where the components f̃j are normalized integral Fourier series with denom-
inator 8 and numerator classes j modulo 8. They are the sign transforms of
the eta products in (24.65),

f̃1 =
[
1, 4, 52

2, 10

]
, f̃3 =

[
1, 4, 202

2, 10

]
,

(24.67)

f̃5 =
[
12, 5, 20

2, 10

]
, f̃7 =

[
42, 5, 20

2, 10

]
.

There are four non-cuspidal eta products with denominator 4. We introduce
the notations

g1 =
[

42, 105

2, 52, 202

]
, g5 =

[
25, 202

12, 42, 10

]
,

(24.68)

h1 =
[

1, 4, 108

22, 53, 203

]
, ĥ1 =

[
28, 5, 20

13, 43, 102

]
,

where the numerators are indicated by the subscripts. We met g1, g5 already
in Example 17.15; these functions are the sign transforms of eta products
on Γ∗(20) in Examples 24.1 and 24.3. The functions h1, ĥ1 form a pair of
Fricke transforms, and they are the sign transforms of eta products for Γ0(10)
in Example 17.14. According to Example 24.1, there should be a cuspidal
eigenform which is a linear combination of g1, g5, and indeed this function is
well known from Example 12.1:

Example 24.25 Let ξ be the character on Z[ 12 (1 +
√

5)] with period 4, let
ψν be the characters on J5 with period 2, and let χν be the characters on O1

with periods 2(2 − νi), as defined in Example 12.1. Then the function

Θ1

(
5, ξ, z

4

)
= Θ1

(
−20, ψν , z

4

)
= Θ1

(
−4, χν , z

4

)
= F (z) (24.69)

satisfies
F = [1, 5] = g1 − g5

with notations from (24.68). We have the eta identity

[1, 5] =
[

42, 105

2, 52, 202

]
−
[

25, 202

12, 42, 10

]
. (24.70)
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In terms of coefficients the identity (24.70) is equivalent to
∑

x,y > 0, x2+5y2 = 6n

(
12
xy

)
=

∑

x>0, y ∈ Z, x2+20y2 = n

1 −
∑

x>0, y ∈ Z, 5x2+4y2 = n

1

(24.71)
for all n ≡ 1 mod 4. This is similar and indeed equivalent (via sign transform)
to (24.59).

For h1, ĥ1 we get results which are analogous to those in Example 17.14. The
character ϕ in the following example was denoted by χ in Example 13.5:

Example 24.26 Let ϕ be the character on O1 with period 4 which is given
by

ϕ(μ) =
(

2
μμ

)

for μ ∈ O1. For ν ∈ {1, −1}, let ϕν be the imprimitive characters on O1 with
periods 4(2+νi) which are induced by ϕ; when generators of (O1/(8+4νi))× �
Z4 × Z2 × Z4 are chosen as in Example 24.1, then ϕν is fixed by its values
ϕν(2 − νi) = −1, ϕν(3 + 2νi) = −1, ϕν(νi) = 1. The corresponding theta
series of weight 1 satisfy

Θ1

(
−4, ϕ, z

4

)
=

∑

n ≡ 1 mod 4

(
2
n

)(∑

d | n

(−1
d

))
e
(

nz
4

)
= 1

4

(
5h1(z) − ĥ1(z)

)
,

(24.72)

Θ1

(
−4, ϕν , z

4

)
=

∑

n ≡ 1 mod 4

(
2
n

)( ∑

5 � d | n

(−1
d

))
e
(

nz
4

)
= h1(z) (24.73)

with notations from (24.68). We have the eta identity

4
[
12, 42

22

]
= 5

[
1, 4, 108

22, 53, 203

]
−
[

28, 5, 20
13, 43, 102

]
. (24.74)

When we multiply (24.74) with [2, 10] then we get an identity in weight 2
which (due to Theorems 8.1 and 8.5) in terms of coefficients is equivalent to

∑

x2+5y2 = 2n

(−2
x

)(
2
y

)
x = 5

∑

x2+5y2 = 2n

(
2
x

)(−2
y

)
y

− 4
∑

3(u2+v2)+2x2+10y2 = 6n

(
2

u v

)(
12
xy

)
(24.75)

for all n ≡ 3 mod 4, where in each sum x, y or x, y, u, v run over the positive
integers satisfying the indicated equation.

The non-cuspidal eta products with denominator 2 form a pair of sign trans-
forms. Each of them is both a theta series and an Eisenstein series. These
series are well known from Example 17.15. This yields two more eta identi-
ties:
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Example 24.27 For δ ∈ {1, −1}, let ψδ be the characters on J5 with period√
2 as defined in Example 17.15. The corresponding theta series of weight 1

satisfy

Θ1

(
−20, ψ1,

z
2

)
=
∑

n odd

(∑

d|n

(−20
d

))
e
(

nz
2

)
=

η4(2z)η2(5z)η(20z)
η2(z)η(4z)η2(10z)

,

(24.76)

Θ1

(
−20, ψ−1,

z
2

)
=
∑

n odd

(−1
n

)(∑

d|n

(−20
d

))
e
(

nz
2

)
=

η2(z)η(4z)η4(10z)
η2(2z)η2(5z)η(20z)

.

(24.77)
We have the eta identities

[
24, 52, 20
12, 4, 102

]
+
[
12, 4, 104

22, 52, 20

]
=
[
82, 102

4, 20

]
+
[
22, 402

4, 20

]
, (24.78)

[
24, 52, 20
12, 4, 102

]
−
[
12, 4, 104

22, 52, 20

]
= 4

[
42, 202

2, 10

]
. (24.79)

The identity (24.79) is not new; it is transformed into (24.33) when we mul-
tiply with

[
2, 4−1, 10, 20−1

]
.

24.7 Non-cuspidal Eta Products with Denominator 1

There are ten non-cuspidal eta products of weight 1 for Γ0(20) with denom-
inator 1. Eight of them are the Fricke transforms of eta products of level 20
with denominators 8, 4 and 2, and this means that we will get results similar
as, yet a bit more complicated than those in Examples 24.23, 24.25, 24.27.
We start with the Fricke transforms of the eta products in (24.76), (24.77).
They do not combine to eigenforms. But their sign transforms are eigenforms
which can easily be identified with the eta products in Example 24.4:

Example 24.28 As in Example 24.4, let 1 stand for the trivial character
on J5, and let χ0 denote the non-trivial character modulo 1 on J5. Then we
have the identities

Θ1 (−20, 1, z) = 1 +
∞∑

n=1

(∑

d|n

(−20
d

))
e(nz) = F

(
z + 1

2

)
,

Θ1 (−20, χ0, z) =
∞∑

n=1

(
m
5

)(∑

d|n

(−20
d

))
e(nz) = −G

(
z + 1

2

)
,

where n = 5rm, 5 � m, and where

F =
[
1, 42, 104

22, 5, 202

]
, G =

[
24, 5, 202

1, 42, 102

]
.
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The Fricke transforms of the eta products g1, g5 in Example 24.25 are

ĝ1 =
[

25, 52

12, 42, 10

]
, ĝ5 =

[
12, 105

2, 52, 202

]
. (24.80)

From this example we expect that 1
4

(
ĝ1 − ĝ5

)
is a theta series, and indeed

we will find just another version for the identity (12.1). Taking into account
Example 17.15, we expect that linear combinations of rescaled functions ĝ1 +
ĝ5 and

[
12, 2−1, 52, 10−1

]
should be eigenforms. This holds true only after a

sign transformation, and then we get just another version for the identities
in Examples 24.4 and 24.28:

Example 24.29 For ν ∈ {1, −1}, let ψν be the characters on J5 with pe-
riod 2, and let χ̂, χ be the characters on O1 with periods 2(2 ± i) as defined
in Example 12.1. The corresponding theta series of weight 1 satisfy

Θ1 (−20, ψν , z) = Θ1 (−4, χ, z) = Θ1 (−20, χ̂, z) = 1
4

(
ĝ1(z) − ĝ5(z)

)

(24.81)
with notations from (24.80). As in Examples 24.4 and 24.28, let 1 stand
for the trivial character on J5, and let χ0 denote the non-trivial character
modulo 1 on J5. Then we have the identities

Θ1 (−20, 1, z) = H1

(
z + 1

2

)
, Θ1 (−20, χ0, z) = H−1

(
z + 1

2

)
,

where

Hδ(z) = 1
2

η2(z)η2(5z)
η(2z)η(10z)

+ 1
4δ
(
ĝ1 + ĝ5

) (
z
2

)

for δ ∈ {1, −1}, again with notations from (24.80).

Comparing (24.81) and (12.1) yields the eta identity (24.33), which we de-
tected previously as consequences from Examples 24.13 and 24.27.

For the Fricke transforms of the eta products (24.65) with denominator 8 we
introduce the notations

f̂1 =
[

25, 102

12, 42, 20

]
, f̂3 =

[
12, 102

2, 20

]
,

(24.82)

f̂5 =
[

22, 105

4, 52, 202

]
, f̂7 =

[
22, 52

4, 10

]
.

We find four linear combinations which are both theta series and Eisenstein
series:

Example 24.30 Let 1 stand for the trivial character on J10, and let ψ0

denote the non-trivial character modulo 1 on J10. The corresponding theta
series of weight 1 satisfy

Θ1 (−40, 1, z) = 1 +
∞∑

n=1

(∑

d|n

(−10
d

))
e(nz) = F

(
z + 1

2

)
, (24.83)
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Θ1 (−40, ψ0, z) =
∞∑

n=1

(−1)r
(

m
5

)(∑

d|n

(−10
d

))
e(nz) = − G

(
z + 1

2

)
,

(24.84)
where n = 5rm, 5 � m, and

F (z) = 1
4

(
f̂1+f̂3+f̂5+f̂7

) (
z
2

)
, G(z) = 1

4

(
f̂1+f̂3 −f̂5 −f̂7

) (
z
2

)
, (24.85)

with notations from (24.82). Put φε = ϕ−1,ε, where ϕδ,ε are the characters
on J10 with period 2 as defined in Example 24.23, such that φε(μ) = χε(μμ)
for μ ∈ J10 with Dirichlet characters χ1(n) =

(−1
n

)
, χ−1(n) =

(
2
n

)
. Then

the identities

Θ1 (−40, φε, z) =
∞∑

n=1

(
χε(n)

∑

d|n

(−10
d

))
e(nz)

= 1
4

((
f̂1 − f̂3

)
+ ε

(
f̂5 − f̂7

))
(z) (24.86)

hold, again with notations from (24.82).

When we compare (24.86) and (24.64) then we get the eta identities

1
4

(
f̂1 − f̂3

)
(z) =

(
f1 − 2f3

)
(8z), 1

4

(
f̂5 − f̂7

)
(z) =

(
f5 − 2f7

)
(8z),

with notations as in (24.82), (24.65). They are trivial consequences from the
identities in weight 1

2 in Theorem 8.1.

Simpler identifications with eta products for the theta series in (24.83),
(24.84), (24.86) will be presented in Example 27.12.

The remaining two non-cuspidal eta products for Γ0(20) with denominator 1
are

g0 =
[
1, 4, 102

5, 20

]
, g1 =

[
22, 5, 20

1, 4

]
. (24.87)

They are Fricke transforms of each other, and they are the sign transforms
of eta products for Γ0(10) which were discussed in Example 17.16. We find
two eigenforms which are both theta series and Eisenstein series, and we find
another version for the identity (13.10) in Example 13.5:

Example 24.31 Let 1 stand for the trivial character on O1, and let χ and χ̂
denote the imprimitive characters on O1 with periods 2 ± i which are induced
by the trivial character. The corresponding theta series of weight 1 satisfy

Θ1 (−4, 1, z) = 1
4 +

∞∑

n=1

(∑

d|n

(−1
d

))
e(nz) = 1

4

(
g0(z) + 5 g1(z)

)
, (24.88)

Θ1 (−4, χ, z) = Θ1 (−4, χ̂, z) =
∞∑

n=1

( ∑

5�d|n

(−1
d

))
e(nz) = g1(z) (24.89)

with notations defined in (24.87).
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Comparing (24.88) and (13.10) gives the eta identity
[

210

14, 44

]
=
[
1, 4, 102

5, 20

]
+ 5

[
22, 5, 20

1, 4

]
. (24.90)

Multiplication with a suitable eta product shows that it is equivalent to the
identity [

213, 103

15, 45, 5, 20

]
=
[
23, 105

52, 202

]
+ 5

[
25, 103

12, 42

]

in weight 2, where each term is a product of two simple theta series. From
Theorems 8.1 and 8.5 we infer that this is equivalent to

∑

x,y>0, x2+5y2 = 6n

(−6
x

)(
6
y

)
x =

∑

x>0, y∈Z, x2+20y2=n

(−1
x

)
x

+ 5
∑

x>0,y∈Z, 5x2+4y2 = n

(−1
x

)
x (24.91)

for all n ≡ 1 mod 4.



25 Cuspidal Eta Products of Weight 1 for
Level 12

25.1 Eta Products for the Fricke Group Γ∗(12)

We devote two sections to the discussion of the large number of eta products
of level 12 and weight 1. (See Table 24.1 at the beginning of Sect. 24.1.) In
the first of these sections we deal with all the cuspidal eta products for Γ0(12)
and, as an exception, also with the non-cuspidal ones for Γ∗(12). Results for
this Fricke group are contained in the table at the end of [65], where, however,
no details on the characters are communicated. In this subsection we will
provide more details, and we will add results for real quadratic fields.

The cuspidal eta product for Γ∗(12) with denominator 6 is the sign transform
of the function [1, 3] in Example 11.1 which is a theta series on Q(

√
−3). Here

we get a similar result:

Example 25.1 Let the generators of (O3/(12))× � Z6 × Z2 × Z6 be chosen
as in Example 11.17, and define characters χν on O3 with period 12 by their
values

χν(2 + ω) = ων = 1
2 (1 + νi

√
3), χν(5) = 1, χν(ω) = 1

with ν ∈ {1, −1}. The corresponding theta series of weight 1 satisfy

Θ1

(
−3, χν , z

6

)
=

η3(2z)η3(6z)
η(z)η(3z)η(4z)η(12z)

. (25.1)

The cuspidal eta products with denominator 8 combine to eigenforms which
are theta series on the fields with discriminants 24, −3 and −8:

Example 25.2 The residues of 1+2ω, 1−4ω and ω modulo 16 can be chosen
as generators of (O3/(16))× � Z8 × Z4 × Z6. Four characters ϕδ,ν on O3

with period 16 are fixed by their values

ϕδ,ν(1 + 2ω) = νi, ϕδ,ν(1 − 4ω) = δνi, ϕδ,ν(ω) = 1

G. Köhler, Eta Products and Theta Series Identities,
Springer Monographs in Mathematics,
DOI 10.1007/978-3-642-16152-0 25, c© Springer-Verlag Berlin Heidelberg 2011
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with δ, ν ∈ {1, −1}. The residues of 1+ν
√

−2, 3 − 2ν
√

−2, 5 and −1 modulo
4(2 + ν

√
−2) can be chosen as generators of (O2/(8 + 4ν

√
−2))× � Z4 × Z3

2 .
Characters ψδ,ν on O2 with periods 4(2 + ν

√
−2) are given by

ψδ,ν(1+ν
√

−2) = δ, ψδ,ν(3−2ν
√

−2) = −1, ψδ,ν(5) = 1, ψδ,ν(−1) = 1.

The residues of 1 +
√

6, 3 and −1 modulo M = 4(2 +
√

6) are generators of
(Z[

√
6]/(M))× � Z4 × Z2

2 . Hecke characters ξδ on Z[
√

6] with period M are
given by

ξδ(μ) =

⎧
⎨

⎩

δ sgn(μ)
sgn(μ)

−sgn(μ)
for μ ≡

⎧
⎨

⎩

1 +
√

6
3

−1
mod M.

The corresponding theta series of weight 1 are identical and decompose as

Θ1

(
24, ξδ,

z
8

)
= Θ1

(
−3, ϕδ,ν , z

8

)
= Θ1

(
−8, ψδ,ν , z

8

)
= f1(z) + δ f3(z),

(25.2)
where the components fj are normalized integral Fourier series with denomi-
nator 8 and numerator classes j modulo 8, and both of them are eta products,

f1 =
[
22, 62

1, 12

]
, f3 =

[
22, 62

3, 4

]
. (25.3)

The cuspidal eta products with denominator 12 combine to eigenforms which
are theta series on Q(

√
−3):

Example 25.3 Let the generators of (O3/(24))× � Z12 × Z2
2 × Z6 be chosen

as in Example 18.8, and define four characters ρδ,ν on O3 with period 24 by

ρδ,ν(2+ω) = 1
2 (δ+νi

√
3), ρδ,ν(5) = 1, ρδ,ν(1−12ω) = −1, ρδ,ν(ω) = 1

with δ, ν ∈ {1, −1}. The corresponding theta series of weight 1 decompose as

Θ1

(
−3, ρδ,ν , z

12

)
= g1(z) + δ g7(z), (25.4)

where the components gj are normalized integral Fourier series with denomi-
nator 12 and numerator classes j modulo 12. Both of them are eta products,

g1 =
[
2, 3, 4, 6

1, 12

]
, g7 =

[
1, 2, 6, 12

3, 4

]
. (25.5)

A similar result with theta series on Q(
√

−3) holds for the cuspidal eta prod-
ucts with denominator 24 for the Fricke group:
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Example 25.4 The residues of 2 + ω, 1 − 12ω, 7 and ω modulo 48 can be
chosen as generators of (O3/(48))× � Z24 × Z4 × Z2 × Z6. Eight characters
ψδ,ε,ν on O3 with period 48 are fixed by their values

ψδ,ε,ν(2 + ω) = ξ = 1
2 (δ

√
3 + νi),

ψδ,ε,ν(1 − 12ω) = εξ
3

= −ενi, ψδ,ε,ν(7) = 1

and ψδ,ε,ν(ω) = 1 with δ, ε, ν ∈ {1, −1}, where ξ = ξδ,ν is a primitive 12th
root of unity. The corresponding theta series of weight 1 decompose as

Θ1

(
−3, ψδ,ε,ν , z

24

)
= h1(z) + δ

√
3 h7(z) + δε

√
3 h13(z) + ε h19(z), (25.6)

where the components hj are normalized integral Fourier series with denom-
inator 24 and numerator classes j modulo 24. All of them are eta products,

h1 =
[
32, 42

1, 12

]
, h7 = [3, 4], h13 = [1, 12], h19 =

[
12, 122

3, 4

]
. (25.7)

Now we consider the non-cuspidal eta products of weight 1 for Γ∗(12). Those
with denominator 4 combine to eigenforms which are both theta series and
Eisenstein series:

Example 25.5 For δ ∈ {1, −1}, characters φδ on O3 with period 8 are given
by

φδ(μ) =
(

2δ

μμ

)
for μ ∈ O3.

They are also fixed by their values φδ(1+2ω) = δ, φδ(1−4ω) = −1, φδ(ω) = 1
on generators of (O3/(8))× � Z4 × Z2 × Z6. The corresponding theta series
of weight 1 satisfy

Θ1

(
−3, φδ,

z
4

)
=
∑

n=1

(
2δ
n

)(∑

d|n

(
d
3

))
e
(

nz
4

)
= F1(z) − δ F3(z). (25.8)

The components Fj are normalized integral Fourier series with denominator
4 and numerator classes j modulo 4, and equal to eta products,

F1 =
[
32, 42

2, 6

]
, F3 =

[
12, 122

2, 6

]
. (25.9)

A similar result holds for the single non-cuspidal eta product with denomi-
nator 2:

Example 25.6 A character χ on O3 with period 4 is given by

χ(μ) =
(

−1
μμ

)
for μ ∈ O3.
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The corresponding theta series of weight 1 satisfies

Θ1

(
−3, χ, z

2

)
=

∞∑

n=1

(−1
n

)(∑

d|n

(
d
3

))
e
(

nz
2

)
=

η(z)η(3z)η(4z)η(12z)
η(2z)η(6z)

.

(25.10)

Another identity for Θ1(−3, χ, ·) will appear in Example 26.13. The eta
product in (25.10) is a product of two simple theta series. From (8.6) and
(25.10) we get

(−1
n

)∑

d|n

(
d
3

)
=

∑

x,y>0, x2+3y2 = 4n

(
2

xy

)

for all positive odd integers n. This can also be deduced from the arithmetic
in O3.

For the non-cuspidal eta products of weight 1 on Γ∗(12) with denominator 1
we introduce the notations

F =
[

33, 43

1, 2, 6, 12

]
, G =

[
25, 65

12, 32, 42, 122

]
, H =

[
13, 123

2, 3, 4, 6

]
. (25.11)

These functions span a space of dimension 2. A linear relation will be pre-
sented in the following example. Similarly as in Examples 18.17, 18.18, each
of the functions F , G, H can be expressed in terms of the theta series for
the trivial character on O1. The sign transform of G is the eta product f in
Example 18.18, and belongs to Γ0(6).

Example 25.7 Let 1 stand for the trivial character on O3, with correspond-
ing theta series

Θ1 (−3, 1, z) = 1
6 +

∞∑

n=1

(∑

d|n

(
d
3

))
e(z).

Then with notations from (25.11) we have the identities

F (z) = Θ1(−3, 1, z) + 3 Θ1(−3, 1, 2z) + 2 Θ1(−3, 1, 4z), (25.12)
G(z) = 2 Θ1(−3, 1, z) + 4 Θ1(−3, 1, 4z), (25.13)
H(z) = G(z) − F (z)

= Θ1(−3, 1, z) − 3 Θ1(−3, 1, 2z) + 2 Θ1(−3, 1, 4z). (25.14)

As a consequence from Example 25.7 we note the identity

(2F − G)
(

z
2

)
= 6 Θ1(−3, 1, z).
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25.2 Cuspidal Eta Products for Γ0(12) with Denomina-
tors t = 2, 3

For the cuspidal eta products of weight 1 on Γ0(12) with denominator 2 we
introduce the notations

f =
[
25, 12
12, 42

]
, f̃ =

[
12, 12

2

]
, g =

[
22, 3, 12

1, 6

]
, g̃ =

[
1, 4, 62

2, 3

]
,

(25.15)
where

(
f, f̃
)

and (g, g̃) are pairs of sign transforms. The Fricke transforms of
these functions have denominators 24 and 8, respectively. In the following two
examples we describe four linear combinations of these eta products which
are theta series:

Example 25.8 Let the generators of (O3/(8))× � Z4 × Z2 × Z6 be chosen
as in Example 25.5 and define four characters ψδ,ν on O3 with period 8 by
their values

ψδ,ν(1 + 2ω) = νi, ψδ,ν(1 − 4ω) = δν, ψδ,ν(ω) = 1

with δ, ν ∈ {1, −1}. The residues of 1 + ν
√

−2 and −1 modulo 2(2 + ν
√

−2)
generate the group (O2/(4 + 2ν

√
−2))× � Z4 × Z2. Define characters χδ,ν

on O2 with periods 2(2 + ν
√

−2) by

χδ,ν(1 + ν
√

−2) = δi, χδ,ν(−1) = 1.

The group (Z[
√

6]/(4 + 2
√

6))× � Z4 is generated by the residue of 1 +
√

6
modulo 2(2 +

√
6), and characters Ξδ with period 2(2 +

√
6) are defined by

Ξδ(μ) = −δi sgn(μ) for μ ≡ 1 +
√

6 mod 2(2 +
√

6).

The corresponding theta series of weight 1 are identical and decompose as

Θ1

(
24, Ξδ,

z
2

)
= Θ1

(
−3, ψδ,ν , z

2

)
= Θ1

(
−8, χδ,ν , z

2

)

= 1
2 (1 + δi) g(z) + 1

2 (1 − δi) g̃(z) = G1(z) + δi G3(z),
(25.16)

with g, g̃ as defined in (25.15) and

G1 = 1
2

(
g + g̃

)
, G3 = 1

2

(
g − g̃

)
,

where the components Gj are normalized integral Fourier series with denom-
inator 2 and numerator classes j modulo 8.

Another version for the decomposition (25.16) will show up in Example 25.19.
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Example 25.9 Let the generators of (O3/(8 + 8ω))× � Z4 × Z2
2 × Z6 be

chosen as in Example 13.11. Let ψ′
δ,ν be the imprimitive characters on O3

with period 8(1+ω) which are induced by the characters ψδ,ν in Example 25.8
and which are fixed by their values

ψ′
δ,ν(1 + 2ω) = νi, ψ′

δ,ν(1 − 4ω) = δν, ψ′
δ,ν(5) = −1, ψ′

δ,ν(ω) = 1

with δ, ν ∈ {1, −1}. The residues of 1 + 3
√

−2, 3 + 2
√

−2 and −1 modulo
6

√
−2 can be chosen as generators of (O2/(6

√
−2))× � Z4 × Z2

2 . Let χ′
δ,ν be

the imprimitive characters on O2 with period 6
√

−2 which are induced by the
characters χδ,ν in Example 25.8 and which are given by

χ′
δ,ν(1 + 3

√
−2) = −δi, χ′

δ,ν(3 + 2
√

−2) = ν, χ′
δ,ν(−1) = 1.

Let Ξ′
δ be the imprimitive characters modulo 2

√
6 on Z[

√
6] which are induced

from the characters Ξδ in Example 25.8 and which are defined by their values

Ξ′
δ(μ) =

{
−δi sgn(μ)

−sgn(μ) for μ ≡
{

1 +
√

6
−1

mod 2
√

6

on generators of (Z[
√

6]/(2
√

6))× � Z4 × Z2. The corresponding theta series
of weight 1 satisfy the identities

Θ1

(
24, Ξ′

δ,
z
2

)
= Θ1

(
−3, ψ′

δ,ν , z
2

)
= Θ1

(
−8, χ′

δ,ν , z
2

)

= 1
6 (1 − δi) f(z) + 1

6 (1 + δi) f̃(z)
+ 1

3 (1 + δi) g(z) + 1
3 (1 − δi) g̃(z)

= H1(z) − 2δi H3(z), (25.17)

with f , f̃ , g, g̃ as defined in (25.15) and

H1 = 1
6

(
f + f̃ + 2g + 2g̃

)
, H3 = 1

12

(
f − f̃ − 2g + 2g̃

)
.

The components Hj are normalized integral Fourier series with denominator
2 and numerator classes j modulo 8.

The cuspidal eta products with denominator 3 form three pairs of sign trans-
forms

(
f1, f̃1

)
, (g1, g̃1),

(
f2, f̃2

)
, where

f1 =
[
24, 32, 12
12, 4, 62

]
, f̃1 =

[
12, 4, 64

22, 32, 12

]
, g1 =

[
2, 3, 4

1

]
, g̃1 =

[
1, 42, 63

22, 3, 12

]
,

(25.18)

f2 =
[
23, 3, 122

1, 4, 62

]
, f̃2 =

[
1, 6, 12

3

]
, (25.19)

and where the numerators are indicated by the subscripts. We find three
linear combinations which are theta series:
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Example 25.10 Let χν be the characters on O3 with period 12 as defined
in Example 25.1. Then the identity

Θ1

(
−3, χν , z

3

)
= 1

2

(
f1(z) + f̃1(z)

)
(25.20)

holds, with notations as given in (25.18). The residues of
√

3 +
√

−2, 5 and
1+3

√
−6 modulo 6

√
3 can be chosen as generators of (J6/(6

√
3))× � Z2

6 ×Z2,
where 53 ≡ −1 mod 6

√
3. Four characters ϕδ,ν on J6 with period 6

√
3 are

fixed by their values

ϕδ,ν(
√

3 +
√

−2) = δων = 1
2 (δ + δνi

√
3),

ϕδ,ν(5) = 1, ϕδ,ν(1 + 3
√

−6) = −1

with δ, ν ∈ {1, −1}. The corresponding theta series of weight 1 decompose as

Θ1

(
−24, ϕδ,ν , z

3

)
= F1(z) + δ F2(z) (25.21)

with components Fj which are normalized integral Fourier series with denom-
inator 3 and numerator classes j modulo 3, and which are linear combinations
of eta products,

F1 = 1
2

(
g1 + g̃1

)
, F2 = 1

2

(
f2 − f̃2

)

with notations from (25.18), (25.19).

We get an eta identity when we compare (25.20) and (25.1). Each term in
this identity is a product of two of the functions of weight 1

2 in Theorems 8.1,
8.2 and Corollary 8.3. Using this, the identity is equivalent to

∑

x≥0, y>0, 3x2+y2 = n

a(x)
(
1 + (−1)xb(y)

)
= 2

∑

x,y > 0, 3x2+y2 = 4n

(
6
xy

)

for n ≡ 1 mod 3, where a(n), b(n) are defined as in Theorem 8.2.

Another version for this identity follows from (25.22) below. There are an-
other three linear combinations of the eta products (25.18), (25.19) which
are eigenforms after rescaling them and (in the case of (25.23) below) tak-
ing sign transforms. One of the results is not so much surprising since the
sign transform of the eta product in (25.1) is the function η(z)η(3z) which is
identified with a theta series in Example 11.1.

Example 25.11 Let ψν be the characters on O3 with period 6 from Exam-
ple 11.1. Then we have ψν = χ2

ν with χν as in Examples 25.1, 25.10, and
the identity

Θ1

(
−3, ψν , z

3

)
= η(z)η(3z) = 1

4

(
f1

(
z
4

)
− f̃1

(
z
4

))
(25.22)
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with notations from (25.18) holds. The residues of
√

3+
√

−2 and −1 −
√

−6
modulo 3

√
3 can be chosen as generators of (J6/(3

√
3))× � Z2

6 , where (−1 −√
−6)3 ≡ −1 mod 3

√
3. Four characters φδ,ν on J6 with period 3

√
3 are fixed

by their values

φδ,ν(
√

3 +
√

−2) = δων = 1
2 (δ + δνi

√
3), φδ,ν(1 +

√
−6) = − 1

2 (1 + νi
√

3)

with δ, ν ∈ {1, −1}. The corresponding theta series of weight 1 satisfy

Θ1

(
−24, φδ,ν , z

3

)
= −Hδ

(
z
2 + 3

4

)
(25.23)

with

Hδ = h1 + δ h2, h1 = 1
2

(
f2 + f̃2

)
, h2 = 1

2

(
g1 − g̃1

)

and notations from (25.18), (25.19).

25.3 Cuspidal Eta Products with Denominator 4

All the cuspidal eta products of weight 1 for Γ0(12) with denominator 4 have
numerator 1. Two of them are the sign transforms of the eta products for
Γ0(6) which were handled in Example 18.3, and for these functions we get a
similar result:

Example 25.12 Let the generators of (O1/(12))× � Z8 × Z2 × Z4 be chosen
as in Example 13.2, and define four characters χ̃δ,ν on O1 with period 12 by

χ̃δ,ν(2 + i) = 1√
2
(ν + δi), χ̃δ,ν(1 + 6i) = 1, χ̃δ,ν(i) = 1

with δ, ν ∈ {1, −1}. The corresponding theta series of weight 1 decompose as

Θ1

(
−4, χ̃δ,ν , z

4

)
= F1(z) + δi

√
2 F5(z), (25.24)

where the components Fj are normalized integral Fourier series with denom-
inator 4 and numerator classes j modulo 12. Both of them are linear combi-
nations of eta products,

F1 = 1
3 (F + 2G), F5 = 1

3 (F − G), F =
[

25, 6
12, 42

]
, G =

[
1, 4, 63

2, 3, 12

]
.

(25.25)

The other cuspidal eta products with denominator 4 form four pairs of sign
transforms. In the following example we describe four theta series which are
linear combinations of the eta products in two of these pairs. We introduce
the notations

f =
[

22, 63

1, 3, 12

]
, f̃ =

[
1, 3, 4

2

]
, g =

[
12, 64

2, 32, 12

]
, g̃ =

[
25, 32, 12
12, 42, 62

]
.

(25.26)
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Example 25.13 Let the generators of (O1/(24))× � Z8 × Z4 × Z2 × Z4 be
chosen as in Example 13.4, and define eight characters ρδ,ε,ν on O1 with
period 24 by

ρδ,ε,ν(2+i) = 1√
2
(δ+νi), ρδ,ε,ν(1+6i) = −εν, ρδ,ε,ν(5) = 1, ρδ,ε,ν(i) = 1

with δ, ε, ν ∈ {1, −1}. The corresponding theta series of weight 1 decompose
as

Θ1

(
−4, ρδ,ε,ν , z

4

)
= G1(z) + δ

√
2 G5(z) − 2δεi G13(z) + εi

√
2 G17(z),

(25.27)
where the components Gj are normalized integral Fourier series with denom-
inator 4 and numerator classes j modulo 24. All of them are linear combi-
nations of eta products,

G1 = 1
6

(
2f + 2f̃ + g + g̃

)
, G5 = 1

6

(
f − f̃ − g + g̃

)
,

G13 = 1
12

(
2f − 2f̃ + g − g̃

)
, G17 = 1

6

(
f + f̃ − g − g̃

)
,

(25.28)

with notations as given in (25.26).

The characters ρδ,ε,ν will appear again in Example 25.23.

There are two pairs of sign transforms of cuspidal eta products with denom-
inator 4 which remain to be discussed. They span a space of dimension 2.
Linear relations among them are

3
[

1, 42, 68

23, 33, 123

]
=
[

27, 3, 12
13, 42, 62

]
+ 2

[
13, 4, 6
22, 3

]
,

3
[
33, 4
1, 6

]
= 2

[
27, 3, 12
13, 42, 62

]
+
[
13, 4, 6
22, 3

]
.

(25.29)

We note that the eta products on the right hand sides in (25.29), as well
as all the eta products in the examples in this subsection, are products of
two of the eta products of weight 1

2 in Theorems 8.1, 8.2 and Corollary 8.3.
Their Fricke transforms have denominator 24. In Example 25.35 we will
encounter theta series whose components consist of these Fricke transforms
and of certain functions which are not otherwise identified. Transforming
back yields a partial result which involves the eta products in the second
identity in (25.29), an old eta product from level 6 and the characters and
theta series from Example 18.6:

Example 25.14 Let the characters ξδ on Z[
√

2] modulo 12, the characters
χδ,ν on O1 modulo 12(1+i) and the characters ρδ,ν on O2 modulo 12 be given
as in Example 18.6. Then the functions

Ψδ(z) = Θ1

(
8, ξδ,

z
4

)
= Θ1

(
−4, χδ,ν , z

4

)
= Θ1

(
−8, ρδ,ν , z

4

)
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satisfy

Ψ1 =
1
3

(
3
[
33, 4
1, 6

]
−
[

27, 3, 12
13, 42, 62

]
+
[
24, 12
42, 6

])
,

Ψ−1 = 3
[
33, 4
1, 6

]
−
[

27, 3, 12
13, 42, 62

]
−
[
24, 12
42, 6

]
− 8 [18, 36].

25.4 Cuspidal Eta Products with Denominator 6

Two of the cuspidal eta products with denominator 6 form a pair of Fricke
transforms whose sign transforms belong to Γ0(6) and were discussed in Ex-
ample 18.4. Now we meet exactly the same theta series as previously in that
example. Comparing (18.6) with the new result yields two identities which
relate eta products of levels 6 and 12:

Example 25.15 Let ρδ,ν be the characters on O3 with period 12 as defined
in Example 18.4. Then the components in the decomposition

Θ1

(
−3, ρδ,ν , z

6

)
= f1(z) + δi

√
3 f7(z)

satisfy

f1 = 1
4

(
g +3ĝ

)
, f7 = 1

4

(
g − ĝ

)
with g =

[
28, 3, 12
13, 43, 62

]
, ĝ =

[
1, 4, 68

22, 33, 123

]
.

(25.30)
We have the eta identities

2
[

28, 3, 12
13, 43, 62

]
= 3

[
2, 33

1, 6

]
−
[
13, 6
2, 3

]
, 2

[
1, 4, 68

22, 33, 123

]
=
[
2, 33

1, 6

]
+
[
13, 6
2, 3

]
.

(25.31)

The other cuspidal eta products with denominator 6 form seven pairs of sign
transforms. The numerators are 1 for six of these pairs and 5 for the last
one. In the following examples in this subsection we present fourteen theta
series which are linear combinations of exactly these fourteen eta products.

Example 25.16 Let the generators of (O3/(24))× � Z12 ×Z2
2 ×Z6 be chosen

as in Example 18.8, and define four characters ψδ,ν on O3 with period 24 by
their values

ψδ,ν(2 + ω) = νi, ψδ,ν(5) = −1, ψδ,ν(1 − 12ω) = δν, ψδ,ν(ω) = 1

with δ, ν ∈ {1, −1}. The residues of 3 +
√

−2, 3 + 4
√

−2 and −1 modulo
6(2 +

√
−2) can be chosen as generators of (O2/(12 + 6

√
−2))× � Z12 × Z2

2 .
Four characters ϕδ,ν on O2 with period 6(2 +

√
−2) are given by

ϕδ,ν(3 +
√

−2) = νi, ϕδ,ν(3 + 4
√

−2) = δν, ϕδ,ν(−1) = 1.
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The residues of 1 +
√

6 and −1 modulo P = 6(2 +
√

6) are generators of
(Z[

√
6]/(P ))× � Z12 × Z2. Hecke characters ξ∗

δ on Z[
√

6] with period P are
given by

ξ∗
δ (μ) =

{
δi sgn(μ)

−sgn(μ) for μ ≡
{

1 +
√

6
−1

mod P.

The corresponding theta series of weight 1 satisfy the identities

Θ1

(
24, ξ∗

δ , z
6

)
= Θ1

(
−3, ψδ,ν , z

6

)
= Θ1

(
−8, ϕδ,ν , z

6

)
= G1(z) + 2δi G19(z),

(25.32)
where the components Gj are normalized integral Fourier series with denom-
inator 6 and numerator classes j modulo 24. Both of them are linear combi-
nations of eta products,

G1 = 1
2

(
g + g̃

)
, G19 = 1

4

(
g − g̃

)
, g =

[
4, 65

32, 122

]
, g̃ =

[
32, 4

6

]
.

(25.33)

One may wonder why we don’t consider, as in other cases, the characters
ϕ̂δ,ν(μ) = ϕδ,ν(μ) on O2 with period 6(2 −

√
−2). The reason is that 6(2 ±√

−2) share the same prime divisors in O2 and that ϕ̂δ,ν = ϕδ,−ν .

The next example captures the eta products with order 5
6 and two of those

with order 1
6 at ∞:

Example 25.17 The residues of 1+
√

−6, 3
√

3+
√

−2 and −1 modulo 6
√

−2
can be chosen as generators of (J6/(6

√
−2))× � Z12 × Z2

2 . Eight characters
ρδ,ε,ν on J6 with period 6

√
−2 are fixed by their values

ρδ,ε,ν(1+
√

−6) = 1
2 (ν

√
3+δεi), ρδ,ε,ν(3

√
3+

√
−2) = −εν, ρδ,ε,ν(−1) = 1

with δ, ε, ν ∈ {1, −1}. The corresponding theta series of weight 1 decompose
as

Θ1

(
−24, ρδ,ε,ν , z

6

)
= H1(z) + δi

√
3 H5(z) + δεi H7(z) − ε

√
3 H11(z),

(25.34)
where the components Hj are normalized integral Fourier series with denom-
inator 6 and numerator classes j modulo 24. All of them are linear combi-
nations of eta products,

H1 = 1
2

(
h1+h̃1

)
, H5 = 1

2

(
h5+h̃5

)
, H7 = 1

2

(
h1 −h̃1

)
, H11 = 1

2

(
h5 −h̃5

)
,

(25.35)

h1 =
[
22, 3, 4

1, 6

]
, h̃1 =

[
1, 42, 62

2, 3, 12

]
, h5 =

[
22, 3, 122

1, 4, 6

]
, h̃5 =

[
1, 62, 12

2, 3

]
.

(25.36)
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There are eight cuspidal eta products with denominator 6 which remain, all
of them with numerator 1. They make up the components of eight theta
series on the field Q(

√
−3):

Example 25.18 Let the generators of (O3/(24))× � Z12 ×Z2
2 ×Z6 be chosen

as in Example 18.8, and define sixteen characters χδ,ε,ν and φδ,ε,ν on O3 with
period 24 by

χδ,ε,ν(2 + ω) = 1
2 (ν

√
3 + δi), χδ,ε,ν(5) = 1,

χδ,ε,ν(1 − 12ω) = δεν, χδ,ε,ν(ω) = 1,
φδ,ε,ν(2 + ω) = 1

2 (δ
√

3 + νi), φδ,ε,ν(5) = −1,

φδ,ε,ν(1 − 12ω) = −δεν, φδ,ε,ν(ω) = 1

with δ, ε, ν ∈ {1, −1}. The corresponding theta series of weight 1 decompose
as

Θ1

(
−3, χδ,ε,ν , z

6

)
= F1(z) + δi F7(z) + εi

√
3 F13(z) − δε

√
3 F19(z),

(25.37)

Θ1

(
−3, φδ,ε,ν , z

6

)
= G1(z) + δ

√
3 G7(z) + εi

√
3 G13(z) − δεi G19(z),

(25.38)

where the components Fj and Gj are normalized integral Fourier series with
denominator 6 and numerator classes j modulo 24. All of them are linear
combinations of eta products,

F1 = 1
8

(
f + f̃ + 3g + 3g̃

)
, F7 = 1

8

(
−f + f̃ − 3g + 3g̃

)
,

F13 = 1
8

(
−f − f̃ + g + g̃

)
, F19 = 1

8

(
f − f̃ − g + g̃

)
,

G1 = 1
8

(
v + ṽ + 3w + 3w̃

)
, G7 = 1

8

(
−v + ṽ − w + w̃

)
,

G13 = 1
8

(
v + ṽ − w − w̃

)
, G19 = 1

8

(
−v + ṽ + 3w − 3w̃

)
,

f =
[
1, 22, 6

3, 4

]
, f̃ =

[
25, 3, 12
1, 42, 62

]
, g =

[
1, 4, 65

22, 3, 122

]
, g̃ =

[
2, 3, 62

1, 12

]
,

(25.39)

v =
[

13, 4, 66

23, 33, 122

]
, ṽ =

[
26, 33, 12
13, 42, 63

]
, w =

[
1, 63

3, 12

]
, w̃ =

[
23, 3
1, 4

]
.

(25.40)

25.5 Cuspidal Eta Products with Denominator 8

Our Table 24.1 in Sect. 24.1 indicates 28 cuspidal eta products of weight 1 for
Γ0(12) with denominator 8. We start the discussion with the sign transforms
of the eta products in Example 25.2, which are also the Fricke transforms
of the eta products g, g̃ with denominator 2 in Example 25.8. We find just
another version of the decomposition of the theta series in that example and,
henceforth, two eta identities:
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Example 25.19 Let Ξδ, ψδ,ν and χδ,ν be the characters on Z[
√

6], O3 and
O2, respectively, as defined in Example 25.8. Then the components in the
decomposition

Θ1

(
24, Ξδ,

z
8

)
= Θ1

(
−3, ψδ,ν , z

8

)
= Θ1

(
−8, χδ,ν , z

8

)
= Ψ1(z) + δi Ψ3(z)

(25.41)
satisfy

Ψ1 =
[
1, 4, 62

2, 12

]
, Ψ3 =

[
22, 3, 12

4, 6

]
. (25.42)

We have the eta identities

1
2 (g + g̃) =

[
4, 16, 242

8, 48

]
, 1

2 (g − g̃) =
[
82, 12, 48

16, 24

]
(25.43)

with g, g̃ as defined in (25.15).

We use Theorem 8.1 and write the identities (25.43) in terms of coefficients;
this yields

∑

x2+3y2 = 4n

((
2
y

)
+
(

2
x

))
= 2 ·

∑

x2+48y2 = n

(−1)y
(

2
x

)
for n ≡ 1 mod 8,

∑

x2+3y2 = 4n

((
2
y

)
−
(

2
x

))
= 2 ·

∑

3x2+16y2 = n

(−1)y
(

2
x

)
for n ≡ 3 mod 8,

where x, y are positive on the left hand sides and x > 0, y ∈ Z on the right
hand sides.

The Fricke transforms of the eta products g, g̃ in (25.33) have denominator 8.
For these functions and for their sign transforms we introduce the notations

h1 =
[

25, 3
12, 42

]
, h3 =

[
3, 42

2

]
, h̃1 =

[
12, 63

2, 3, 12

]
, h̃3 =

[
42, 63

2, 3, 12

]
,

(25.44)
where the subscripts indicate the numerators. We get theta identities which
are more complicated than those in Example 25.16. For δ ∈ {1, −1}, the
linear combinations h1 +2δih3 and h̃1 +2δh̃3 have multiplicative coefficients,
but violate the proper recursions at powers of the prime 3. We identify these
functions with sums of theta series at arguments z

8 and 3z
8 :

Example 25.20 Let the characters ψδ,ν , χδ,ν be given as in Examples 25.8,
25.19, and use the notations (25.44). Then we have

h1(z) − 2δi h3(z) = Θ1

(
−3, ψδ,ν , z

8

)
− 3δi Θ1

(
−3, ψδ,ν , 3z

8

)
(25.45)

and identities corresponding to (25.41) with χδ,ν . Let the characters ϕδ,ν on
O3 with period 16 and the characters ψδ,ν on O2 with periods 4(2 + ν

√
−2)

be given as in Example 25.2. Then we have

h̃1(z) − 2δ h̃3(z) = Θ1

(
−3, ϕδ,ν , z

8

)
− 3δ Θ1

(
−3, ϕδ,ν , 3z

8

)
. (25.46)
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According to (25.2) the identity (25.46) also holds when ϕδ,ν is replaced
by ψδ,ν .

Comparing (25.41) and (25.45) yields two eta identities which can be written
as
[

25, 3
12, 42

]
=
[
1, 4, 62

2, 12

]
+ 3

[
62, 9, 36
12, 18

]
, 2
[
3, 42

2

]
= 3

[
3, 12, 182

6, 36

]
−
[
22, 3, 12

4, 6

]
.

(25.47)
In the same way, from (25.2) and (25.46) we get
[

12, 63

2, 3, 12

]
=
[
22, 62

1, 12

]
− 3

[
62, 182

9, 12

]
, 2

[
42, 63

2, 3, 12

]
= 3

[
62, 182

3, 36

]
−
[
22, 62

3, 4

]
.

(25.48)
These identities are trivial consequences from Theorem 8.2. For the coeffi-
cients (25.48) means

∑

x>0, y∈Z, x2+8y2=n

(−1)y
(

6
x

)
=

∑

x>0, y∈Z, x2+48y2 = n

(−1)y

− 3
∑

x>0, y∈Z, 9x2+48y2=n

(−1)y,

2
∑

x,y>0, x2+2y2=n

(
6
x

)
= 3

∑

x>0, y∈Z, 3x2+144y2=n

(−1)y

−
∑

x>0, y∈Z, 3x2+16y2=n

(−1)y

for n ≡ 1 mod 8 and n ≡ 3 mod 8, respectively, where in each sum x is
restricted to odd integers. Similar (and in fact equivalent) identities follow
from (25.47).

Next we consider the sign transforms of the eta products of level 6 in Exam-
ples 18.1 and 18.5. For these sign transforms we introduce the notations

f1 =
[

1, 4, 65

2, 32, 122

]
, f3 =

[
25, 3, 12
12, 42, 6

]
,

g1 =
[

25, 63

12, 3, 42, 12

]
, g3 =

[
1, 4, 6

2

]
,

(25.49)

where the subscripts indicate the numerators, and where (f1, f3) is a pair
of transforms with respect to the Fricke involution W12. We obtain results
similar to those in the preceding two examples:

Example 25.21 The residues of
√

3+
√

−2, 1+
√

−6 and −1 modulo 4
√

−2
can be chosen as generators of (J6/(4

√
−2))× � Z2

4 × Z2. Four characters
φδ,ν on J6 with period 4

√
−2 are fixed by their values

φδ,ν(
√

3 +
√

−2) = δν, φδ,ν(1 +
√

−6) = νi, φδ,ν(−1) = 1
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with δ, ν ∈ {1, −1}. The residues of 1 − ν
√

−2, 5, 7 and −1 modulo 8(1 +
ν

√
−2) generate the group (O2/(8 + 8ν

√
−2))× � Z8 × Z3

2 . Characters ρδ,ν

on O2 with periods 8(1 + ν
√

−2) are given by

ρδ,ν(1 − ν
√

−2) = δi, ρδ,ν(5) = 1, ρδ,ν(7) = −1, ρδ,ν(−1) = 1.

The residues of 2 +
√

3, 4 +
√

3 and −1 modulo 8 are generators of (Z[
√

3]/
(8))× � Z2

4 × Z2. Define Hecke characters ξδ on Z[
√

3] with period 8 by

ξδ(μ) =

⎧
⎨

⎩

sgn(μ)
−δi sgn(μ)

−sgn(μ)
for μ ≡

⎧
⎨

⎩

2 +
√

3
4 +

√
3

−1
mod 8.

The corresponding theta series of weight 1 satisfy the identities

Θ1

(
12, ξδ,

z
8

)
= Θ1

(
−24, φδ,ν , z

8

)
= Θ1

(
−8, ρδ,ν , z

8

)
= f1(z) + δi f3(z)

(25.50)
with eta products f1, f3 as given in (25.49). The eta products g1, g3 in
(25.49) satisfy

g1(z) − 2δi g3(z) = Θ1

(
−24, φδ,ν , z

8

)
− 3δi Θ1

(
−24, φδ,ν , 3z

8

)
(25.51)

and corresponding identities with ξδ and ρδ,ν instead of φδ,ν . We have the
eta identities g1(z) = f1(z)+ 3f3(3z) and 2g3(z) = 3f1(3z) − f3(z), or, more
explicitly,

[
25, 63

12, 3, 42, 12

]
=
[

1, 4, 65

2, 32, 122

]
+ 3

[
65, 9, 36

32, 122, 36

]
,

2
[
1, 4, 6

2

]
= 3

[
3, 12, 185

6, 92, 362

]
−
[
25, 3, 12
12, 42, 6

]
.

The eta identities are equivalent to relations for the coefficients which are
similar to those after (25.48). We do not write them down here.

Now we consider the sign transforms of the eta products in Example 18.6.
We denote them by

f̃ =
[
12, 42, 62

22, 3, 12

]
, g̃ =

[
210, 3, 12
14, 44, 62

]
. (25.52)

In analogy with Example 18.6 we find theta series which are linear combina-
tions of f̃ , g̃ and the old eta product

[
9−1, 184, 36−1

]
from level 4:

Example 25.22 Let the generators of (O1/(24))× � Z8 × Z4 × Z2 × Z4 be
chosen as in Example 13.4, and define four characters χ̃δ,ν on O1 with period
24 by their values

χ̃δ,ν(2 + i) = νi, χ̃δ,ν(1 + 6i) = −δνi, χ̃δ,ν(5) = 1, χ̃δ,ν(i) = 1
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with δ, ν ∈ {1, −1}. The residues of 3+
√

−2, 3+4
√

−2, 5, 7 and −1 modulo
12

√
−2 can be chosen as generators of (O2/(12

√
−2))× � Z4 × Z4

2 . Four
characters ρ̃δ,ν on O2 with period 12

√
−2 are given by

ρ̃δ,ν(3 +
√

−2) = ν, ρ̃δ,ν(3 + 4
√

−2) = δ,

ρ̃δ,ν(5) = −1, ρ̃δ,ν(7) = 1, ρ̃δ,ν(−1) = 1.

Let generators of (Z[
√

2]/(12
√

2))× � Z8 × Z4 × Z2
2 be chosen as in Exam-

ple 13.12, and define Hecke characters ξ̃δ on Z[
√

2] with period 12
√

2 by

ξ̃δ(μ) =

⎧
⎨

⎩

sgn(μ)
δ sgn(μ)

−sgn(μ)
for μ ≡

⎧
⎨

⎩

1 +
√

2
3 +

√
2

5, −1
mod 12

√
2.

The corresponding theta series of weight 1 satisfy the identities

Θ1

(
8, ξ̃1,

z
8

)
= Θ1

(
−4, χ̃1,ν , z

8

)
= Θ1

(
−8, ρ̃1,ν , z

8

)
= 1

3

(
2f̃(z) + g̃(z)

)
,

(25.53)

Θ1

(
8, ξ̃−1,

z
8

)
= Θ1

(
−4, χ̃−1,ν , z

8

)
= Θ1

(
−8, ρ̃−1,ν , z

8

)

= 2f̃(z) − g̃(z) + 8 h(9z) (25.54)

with notations from (25.52) and h =
[
1−1, 24, 4−1

]
.

The old eta product in (25.54) is derived from the new eta product
[
1−1, 24,

4−1
]

of level 4 which is, according to Example 13.3, a theta series on Z[
√

2],
O1 and O2 with characters of periods 4

√
2, 8 and 4

√
−2, respectively. At this

point we observe that the characters χ̃−1,ν and ρ̃−1,ν in (25.54) are imprim-
itive and induced from the characters χ∗

ν , ψ∗
ν in Example 13.3. Other eta

identities for the theta series corresponding to χ̃δ,ν and ρ̃δ,ν will be obtained
in Example 29.7.

In the following example we describe eight theta series which are linear com-
binations of four pairs of sign transforms among the eta products with de-
nominator 8. We introduce the notations

f1 =
[

42, 64

2, 3, 122

]
, g1 =

[
22, 63

3, 4, 12

]
, f5 =

[
25, 3, 122

12, 42, 62

]
, g5 =

[
1, 4, 12

2

]
,

(25.55)

f̃1 =
[
3, 42, 6
2, 12

]
, g̃1 =

[
22, 3

4

]
, f̃5 =

[
12, 6, 12

2, 3

]
, g̃5 =

[
22, 12

1

]
,

(25.56)
where the subscripts indicate the numerators. We need characters on O1 with
period 24. One of the two families of characters is known from Example 25.13.
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Example 25.23 Let the characters ρδ,ε,ν on O1 with period 24 be given as
in Example 25.13, and define eight characters ρ̃δ,ε,ν on O1 with period 24 by

ρ̃δ,ε,ν(2+i) = 1√
2
(ν+δi), ρ̃δ,ε,ν(1+6i) = ενi, ρ̃δ,ε,ν(5) = −1, ρ̃δ,ε,ν(i) = 1

with δ, ε, ν ∈ {1, −1}. The corresponding theta series of weight 1 decompose
as

Θ1

(
−4, ρδ,ε,ν , z

8

)
= F1(z) + δ

√
2 F5(z) − 2δεi F13(z) + εi

√
2 F17(z), (25.57)

Θ1

(
−4, ρ̃δ,ε,ν , z

8

)
= F̃1(z) + δi

√
2 F̃5(z) − 2δε F̃13(z) + εi

√
2 F̃17(z), (25.58)

where the components Fj and F̃j are normalized integral Fourier series with
denominator 8 and numerator classes j modulo 24. All of them are linear
combinations of eta products,

F1 = 1
3

(
2f1 +g1

)
, F5 = 1

3

(
f5 +2g5

)
, F13 = 1

3

(
f5 − g5

)
, F17 = 1

3

(
f1 − g1

)
,

(25.59)
F̃1 = 1

3

(
2f̃1 + g̃1

)
, F̃5 = 1

3

(
f̃5 +2g̃5

)
, F̃13 = 1

3

(
−f̃5 + g̃5

)
, F̃17 = 1

3

(
f̃1 − g̃1

)
,

(25.60)
with notations from (25.55), (25.56).

We get four eta identities when we compare (25.59) and (25.27). They can
be written as

2
[

82, 124

4, 6, 242

]
=

[
22, 63

1, 3, 12

]
+
[
1, 3, 4

2

]
,

2
[

42, 123

6, 8, 24

]
=

[
25, 32, 12
12, 42, 62

]
+
[

12, 64

2, 32, 12

]
,

2
[

45, 6, 242

22, 82, 122

]
=

[
22, 63

1, 3, 12

]
−
[
1, 3, 4

2

]
,

4
[
2, 8, 24

4

]
=

[
25, 32, 12
12, 42, 62

]
−
[

12, 64

2, 32, 12

]
.

The next example deals with two pairs of sign transforms of eta products
with denominator 8, all of which have numerator 1. We get new identities
for components of theta series from previous examples:

Example 25.24 Let ξδ, χδ,ν and ϕδ,ν be the characters on Z[
√

6], on O1

and on J6 with periods 4
√

6, 24 and 4
√

−6, respectively, as given as in Ex-
amples 13.4, 15.23 and 24.17. Then the first component in the decomposition

Θ1

(
24, ξδ,

z
8

)
= Θ1

(
−4, χδ,ν , z

8

)
= Θ1

(
−24, ϕδ,ν , z

8

)
= Φ1(z) + 2δ Φ5(z)
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satisfies

Φ1 =
[

68

33, 123

]
= 2 G − H with G =

[
2, 42, 6
1, 12

]
, H =

[
23, 33

12, 4, 6

]
.

(25.61)
Let ξ̃δ, χ̃δ,ν and ϕ̃δ,ν be the characters on Z[

√
6], on O1 and on J6 as given

as in Example 15.22. Then the first component in the decomposition

Θ1

(
24, ξ̃δ,

z
8

)
= Θ1

(
−4, χ̃δ,ν , z

8

)
= Θ1

(
−24, ϕ̃δ,ν , z

8

)
= Φ̃1(z) + 2δi Φ̃5(z)

satisfies

Φ̃1 =
[
33

6

]
= 2 G̃ − H̃ with G̃ =

[
1, 43, 6
22, 12

]
, H̃ =

[
12, 4, 68

23, 33, 123

]
.

(25.62)
Corresponding eta products in (25.61), (25.62) and Φ1, Φ̃1 form pairs of sign
transforms.

Multiplication with [6−1, 12] transforms (25.61) and (25.62) into identities
in which every term is a product of two of the simple theta series from
Theorems 8.1, 8.2 and Corollary 8.3. For the coefficients this yields relations
for the representations of integers n ≡ 3 mod 8 by certain binary quadratic
forms. We do not write these relations down here.

Looking back to the examples in this subsection, we see that 24 cuspidal eta
products for Γ0(12) with denominator 8 occur in the components of theta
series in these examples. Table 24.1 in Sect. 24.1 tells us that there are
altogether 28 eta products of this kind. In fact these eta products span a
space of dimension 23. The four functions which are still missing are linear
combinations of the eta products in (25.61), (25.62), and this holds true also
for the function g̃ in (25.52) and for its sign transform in Example 18.6:

Example 25.25 With notations from (25.61), (25.62) we have the eta iden-
tities

[
27, 3, 12
12, 43, 62

]
= 4 G̃ − 3 H̃,

[
12, 2, 6

3, 4

]
= 4 G − 3 H,

[
1, 123

4, 6

]
= G̃ − H̃,

[
23, 123

1, 42, 6

]
= −G + H,

[
14, 6
22, 3

]
= −2 G̃ + 3 H̃,

[
210, 3, 12
14, 44, 62

]
= −2 G + 3 H.

25.6 Cuspidal Eta Products with Denominator 12

There are 14 cuspidal eta products of weight 1 for Γ0(12) with denominator
t = 12. They span a space of dimension 12. Linear relations among these
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functions are
[

1, 4, 67

22, 33, 122

]
= 2

[
2, 33, 12

1, 62

]
−
[
28, 3, 122

13, 43, 63

]
,

[
13, 12
2, 3

]
= 3

[
2, 33, 12

1, 62

]
− 2

[
28, 3, 122

13, 43, 63

]
.

These relations follow from the upper two relations on the left hand side
in Example 25.25 when we apply the Fricke involution W12. Altogether,
12 of our 14 eta products are the Fricke transforms of eta products with
denominators t < 12. We begin our discussion with those two which are not
of this kind. They form a pair of Fricke transforms, and they are the sign
transforms of the eta products of level 6 which were treated in Example 18.8.
We get a similar result as before in that example:

Example 25.26 Let the generators of (O3/(24))× � Z12 ×Z2
2 ×Z6 be chosen

as in Example 18.8, and define characters ψ̃δ,ν on O3 with period 24 by their
values

ψ̃δ,ν(2+ω) = 1
2 (ν+δi

√
3), ψ̃δ,ν(5) = −1, ψ̃δ,ν(1−12ω) = −1, ψ̃δ,ν(ω) = 1

with δ, ν ∈ {1, −1}. The corresponding theta series of weight 1 decompose as

Θ1

(
−4, ψ̃δ,ν , z

12

)
= g̃1(z) + δi

√
3 g̃7(z), (25.63)

where the components g̃j are normalized integral Fourier series with denomi-
nator 12 and numerator classes j modulo 12. Both of them are eta products,

g̃1 =
[
1, 4, 62

3, 12

]
, g̃7 =

[
22, 3, 12

1, 4

]
. (25.64)

Now we consider the Fricke transforms of the eta products f1, f̃1 in (25.18)
with denominator 3. At the same time, they are the sign transforms of the
eta products for Γ∗(12) in Example 25.3:

Example 25.27 Let the generators of (O3/(24))× � Z12 ×Z2
2 ×Z6 be chosen

as in Example 18.8, and define four characters ρ̃δ,ν on O3 with period 24 by

ρ̃δ,ν(2 + ω) = 1
2 (δ + νi

√
3), ρ̃δ,ν(5) = 1, ρ̃δ,ν(1 − 12ω) = 1, ρ̃δ,ν(ω) = 1

with δ, ν ∈ {1, −1}. The corresponding theta series of weight 1 decompose as

Θ1

(
−3, ρ̃δ,ν , z

12

)
= G1(z) + δ G7(z), (25.65)

where the components Gj are normalized integral Fourier series with denom-
inator 12 and numerator classes j modulo 12. Both of them are eta products,

G1 =
[

1, 42, 64

22, 3, 122

]
, G7 =

[
24, 3, 122

1, 42, 62

]
. (25.66)
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The Fricke transforms of the eta products F , G with denominator 4 in Ex-
ample 25.12 are also the sign transforms of the eta products f1, f5 for Γ0(6)
in Example 18.7. We get a result similar to that in Example 18.7:

Example 25.28 The residues of 2+ i, 1 − 6i and i modulo 36 can be chosen
as generators of (O1/(36))× � Z24 × Z6 × Z4. Four characters χ̃δ,ν on O1

with period 36 are given by

χ̃δ,ν(2 + i) = 1√
2
(ν + δi), χ̃δ,ν(1 − 6i) = 1, χ̃δ,ν(i) = 1

with δ, ν ∈ {1, −1}. The corresponding theta series of weight 1 decompose as

Θ1

(
−4, χ̃δ,ν , z

12

)
= f̃1(z) + δi

√
2 f̃5(z), (25.67)

where the components f̃j are normalized integral Fourier series with denomi-
nator 12 and numerator classes j modulo 12. Both of them are eta products,

f̃1 =
[

2, 65

32, 122

]
, f̃5 =

[
23, 3, 12
1, 4, 6

]
. (25.68)

For the Fricke transforms of the eta products in (25.55) we introduce the
notations

h1 =
[

24, 32

12, 4, 6

]
, h̃1 =

[
12, 4, 65

22, 32, 122

]
, h5 =

[
23, 62

1, 3, 4

]
, h̃5 =

[
1, 3, 12

6

]
.

(25.69)
They have denominator 12 and form two pairs of sign transforms. We find
four theta series which are linear combinations of these functions:

Example 25.29 Let the generators of (O1/(36+36i))× � Z24 ×Z6 ×Z2 ×Z4

be chosen as in Example 18.10, and define eight characters χδ,ε,ν on O1 with
period 36(1 + i) by

χδ,ε,ν(2 + i) = 1√
2
(δ + νi), χδ,ε,ν(1 − 6i) = δεν,

χδ,ε,ν(19) = 1, χδ,ε,ν(i) = 1

with δ, ε, ν ∈ {1, −1}. The corresponding theta series of weight 1 decompose
as

Θ1

(
−4, χδ,ε,ν , z

12

)
= H1(z) + δ

√
2 H5(z) − 2εi H13(z) + δεi

√
2 H17(z),

(25.70)
where the components Hj are normalized integral Fourier series with denom-
inator 12 and numerator classes j modulo 24. All of them are linear combi-
nations of eta products,

H1 = 1
2

(
h1+h̃1

)
, H5 = 1

2

(
h5+h̃5

)
, H13 = 1

4

(
h1 −h̃1

)
, H17 = 1

2

(
h5 −h̃5

)
,

(25.71)
with notations from (25.69).
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The Fricke transforms of the eta products G̃, H̃ in (25.62) have order 5
12

at ∞. They form one of the components of theta series which are known
from Example 20.20:

Example 25.30 Let χδ,ν , ρδ,ν and Ξδ be the characters on O1, on J6 and on
Z[

√
6], respectively, as defined in Example 20.20. Then the second component

in the decomposition

Θ1

(
24, Ξδ,

z
12

)
= Θ1

(
−4, χδ,ν , z

12

)

= Θ1

(
−24, ρδ,ν , z

12

)
= F1(z) + 2δi F5(z)

satisfies

F5 =
1
2

(
3
[
2, 33, 12

1, 62

]
−
[
28, 3, 122

13, 43, 63

])
. (25.72)

We obtain an eta identity when we compare (25.72) and (20.46). Using the
relations at the beginning of this subsection, it can be written as

1
2

([
1, 4, 67

22, 33, 122

]
+
[
2, 33, 12

1, 62

])
=
[
4, 12, 182

6, 36

]
+
[
4, 362

18

]
.

Each of the eta products in this identity is a product of two simple theta
series from Theorems 8.1, 8.2 and Corollary 8.3. For the coefficients, this
yields

∑

2x2+3y2 = n

(
12
x

)
= 1

2

∑

x2+9y2 = 2n

((
2
x

)
+
(

2
y

))
(25.73)

for n ≡ 5 mod 12, where x, y run over the positive integers satisfying the
indicated equations.

25.7 Cuspidal Eta Products with Denominator 24,
First Part

There are 60 cuspidal eta products of weight 1 for Γ0(12) with denomina-
tor 24. In spite of their large number, it is rather easy to find linear com-
binations which are eigenforms and theta series. In this first part of their
discussion we treat all those among them which are Fricke transforms of eta
products with denominators t ≤ 4, and the sign transforms of these Fricke
transforms. We start with the transforms of the functions f , f̃ with denomi-
nator 2 in (25.15), and here we get a result which is similar to, but somewhat
simpler than that in Example 25.8:

Example 25.31 Let the generators of (O3/(48))× � Z24 × Z4 × Z2 × Z6 be
chosen as in Example 25.4, and define eight characters ψδ,ν and ψ̃δ,ν on O3
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with period 48 by

ψδ,ν(2 + ω) = νi, ψδ,ν(1 − 12ω) = δν, ψδ,ν(7) = 1, ψδ,ν(ω) = 1,

ψ̃δ,ν(2 + ω) = νi, ψ̃δ,ν(1 − 12ω) = −δνi, ψ̃δ,ν(7) = 1, ψ̃δ,ν(ω) = 1

with δ, ν ∈ {1, −1}. The residues of 1 + 3
√

−2, 3 + 4
√

−2, 17, 19 and −1
modulo 12(2 +

√
−2) can be chosen as generators of (O2/(24 + 12

√
−2))× �

Z12 × Z4
2 . Eight characters ϕδ,ν and ϕ̃δ,ν on O2 with period 12(2+

√
−2) are

given by

ϕδ,ν(1 + 3
√

−2) = δi, ϕδ,ν(3 + 4
√

−2) = ν, ϕδ,ν(17) = −1,

ϕδ,ν(19) = −1, ϕδ,ν(−1) = 1,

ϕ̃δ,ν(1 + 3
√

−2) = δ, ϕ̃δ,ν(3 + 4
√

−2) = ν,

ϕ̃δ,ν(17) = −1, ϕ̃δ,ν(19) = 1, ϕ̃δ,ν(−1) = 1.

The residues of 1+
√

6, 5, 7 and −1 modulo M = 12(2+
√

6) are generators of
the group (Z[

√
6]/(M))× � Z12 × Z3

2 . Define characters ξδ and ξ̃δ on Z[
√

6]
with period M by

ξδ(μ) =

⎧
⎨

⎩

δi sgn(μ)
sgn(μ)

−sgn(μ)
,

ξ̃δ(μ) =

⎧
⎨

⎩

−δ sgn(μ)
−sgn(μ)
−sgn(μ)

for μ ≡

⎧
⎨

⎩

1 +
√

6
5

7, −1
mod M.

The corresponding theta series of weight 1 satisfy the identities

Θ1

(
24, ξδ,

z
24

)
= Θ1

(
−3, ψδ,ν , z

24

)
= Θ1

(
−8, ϕδ,ν , z

24

)

= f1(z) + 2δi f19(z), (25.74)

Θ1

(
24, ξ̃δ,

z
24

)
= Θ1

(
−3, ψ̃δ,ν , z

24

)
= Θ1

(
−8, ϕ̃δ,ν , z

24

)

= f̃1(z) + 2δ f̃19(z), (25.75)

where the components fj and f̃j are normalized integral Fourier series with
denominator 24 and numerator classes j modulo 24. All of them are eta
products,

f1 =
[

1, 65

32, 122

]
, f19 =

[
1, 122

6

]
, f̃1 =

[
23, 32

1, 4, 6

]
, f̃19 =

[
23, 122

1, 4, 6

]
.

(25.76)

The eta products g1, g̃1, f2, f̃2 in Example 25.10 have Fricke transforms with
denominator 24. These functions and their sign transforms combine to eight
theta series on the field with discriminant −24:
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Example 25.32 The residues of
√

3+
√

−2, 3
√

3+2
√

−2, 7 and −1 modulo
12

√
−2 can be chosen as generators of (J6/(12

√
−2))× � Z12 × Z4 × Z2

2 .
Sixteen characters ρ = ρδ,ε,ν and ρ̃ = ρ̃δ,ε,ν on J6 with period 12

√
−2 are

fixed by their values

ρ(
√

3+
√

−2) = 1
2 (δ+νi

√
3), ρ(3

√
3+2

√
−2) = δε, ρ(7) = 1, ρ(−1) = 1,

ρ̃(
√

3+
√

−2) = 1
2 (ν

√
3+δi), ρ̃(3

√
3+2

√
−2) = δεi, ρ̃(7) = 1, ρ̃(−1) = 1

with δ, ε, ν ∈ {1, −1}. The corresponding theta series of weight 1 decompose
as

Θ1

(
−24, ρδ,ε,ν , z

24

)
= g1(z) + δ g5(z) + ε g7(z) − δε g11(z), (25.77)

Θ1

(
−24, ρ̃δ,ε,ν , z

24

)
= g̃1(z) + δi g̃5(z) + ε g̃7(z) + δεi g̃11(z), (25.78)

where the components gj and g̃j are normalized integral Fourier series with
denominator 24 and numerator classes j modulo 24. All of them are eta
products,

g1 =
[
3, 4, 6

12

]
, g5 =

[
12, 4, 63

22, 3, 12

]
, g7 =

[
23, 32, 12
1, 4, 62

]
, g11 =

[
1, 2, 12

4

]
,

(25.79)

g̃1 =
[

4, 64

3, 122

]
, g̃5 =

[
24, 3
12, 4

]
, g̃7 =

[
1, 64

32, 12

]
, g̃11 =

[
24, 12
1, 42

]
.

(25.80)

Now we reconsider the eta products f , f̃ , g, g̃ in Example 25.13. Their
Fricke transforms are the components of four theta series on the Gaussian
number field. The sign transforms of these Fricke transforms are at the same
time the Fricke transforms of the eta products f̃j with denominator 8 in
Example 25.23, and they are the components of another four theta series on
the Gaussian number field:

Example 25.33 The residues of 2 + i, 1 + 6i, 19 and i modulo 72 can be
chosen as generators of (O1/(72))× � Z24 ×Z12 ×Z2 ×Z4. Sixteen characters
χδ,ε,ν and χ̃δ,ε,ν on O1 with period 72 are given by

χδ,ε,ν(2 + i) = 1√
2
(ε + νi), χδ,ε,ν(1 + 6i) = δεν,

χδ,ε,ν(19) = 1, χδ,ε,ν(i) = 1,

χ̃δ,ε,ν(2 + i) = 1√
2
(−ν + εi), χ̃δ,ε,ν(1 + 6i) = δενi,

χ̃δ,ε,ν(19) = −1, χ̃δ,ε,ν(i) = 1

with δ, ε, ν ∈ {1, −1}. The corresponding theta series of weight 1 decompose
as

Θ1

(
−4, χδ,ε,ν , z

24

)
= f1(z) + ε

√
2 f5(z) + 2δi f13(z) − δεi

√
2 f17(z), (25.81)
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Θ1

(
−4, χ̃δ,ε,ν , z

24

)
= f̃1(z) + εi

√
2 f̃5(z) + 2δ f̃13(z) − δεi

√
2 f̃17(z), (25.82)

where the components fj and f̃j are normalized integral Fourier series with
denominator 24 and numerator classes j modulo 24, and all of them are eta
products,

f1 =
[

23, 62

1, 4, 12

]
, f5 =

[
1, 42, 65

22, 32, 122

]
, f13 =

[
3, 4, 12

6

]
, f17 =

[
24, 122

1, 42, 6

]
,

(25.83)

f̃1 =
[
1, 62

12

]
, f̃5 =

[
2, 32, 4

1, 6

]
, f̃13 =

[
4, 62

3

]
, f̃17 =

[
1, 2, 122

4, 6

]
.

(25.84)

We reconsider the relations (25.29) among four eta products with denomina-
tor 4. Their Fricke transforms have denominator 24. For two of them and
for their sign transforms we introduce the notations

F =
[

3, 43

2, 12

]
, G =

[
1, 4, 67

22, 32, 123

]
, F̃ =

[
43, 63

2, 3, 122

]
, G̃ =

[
2, 32, 6
1, 12

]
.

(25.85)
From (25.29) we get two pairs of linear relations among eta products with
denominator 24. Moreover, there is a third such pair involving an eta product
of level 6:

Example 25.34 We have the eta identities
[
28, 32, 12
13, 43, 63

]
= 4 F − 3 G,

[
13, 63

2, 32, 12

]
= 4 F̃ − 3 G̃,

[
2, 3, 123

4, 62

]
= F − G,

[
2, 6, 122

3, 4

]
= −F̃ + G̃,

[
2, 34

1, 62

]
= 2 F − G,

[
1, 4, 610

22, 34, 124

]
= 2 F̃ − G̃

with notations as given in (25.85).

Here the first and the second pair of relations are equivalent to corresponding
relations in Example 25.25 via multiplication with suitable eta products. In
the same way, the third pair is equivalent to the identity for Φ1 in Exam-
ple 25.24 and its sign transform.

In the following example we present theta series whose components contain
the eta products in (25.85):

Example 25.35 Let F , G, F̃ , G̃ be given as in (25.85). Let ξ∗
δ , χ∗

δ,ν and ψδ,ν

be the characters on Z[
√

2], on O1 and on O2 as defined in Example 18.10.
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Let the generators of (O1/(72))× � Z24 × Z12 × Z2 × Z4 and of (O2/(24 +
12

√
−2))× � Z12×Z4

2 be chosen as in Examples 25.33 and 25.31, respectively.
Define characters χ̃δ,ν on O1 with period 72 and ψ̃δ,ν on O2 with period
12(2 +

√
−2) by their values

χ̃δ,ν(2 + i) = νi, χ̃δ,ν(1 + 6i) = −δνi, χ̃δ,ν(19) = 1, χ̃δ,ν(i) = 1,

ψ̃δ,ν(1 + 3
√

−2) = ν, ψ̃δ,ν(3 + 4
√

−2) = δ,

ψ̃δ,ν(17) = 1, ψ̃δ,ν(19) = −1, ψ̃δ,ν(−1) = 1

with δ, ν ∈ {1, −1}. The residues of 1 +
√

2, 3 +
√

2, 19 and −1 modulo
36

√
2 are generators of (Z[

√
2]/(36

√
2))× � Z24 × Z12 × Z2

2 . Define Hecke
characters ξ̃δ on Z[

√
2] with period 36

√
2 by

ξ̃δ(μ) =

⎧
⎨

⎩

sgn(μ)
δ sgn(μ)

−sgn(μ)
for μ ≡

⎧
⎨

⎩

1 +
√

2, 19
3 +

√
2

−1
mod M.

Then the first component in the decomposition (18.17),

Θ1

(
8, ξ∗

δ , z
24

)
= Θ1

(
−4, χ∗

δ,ν , z
24

)
= Θ1

(
−8, ψδ,ν , z

24

)
= g1(z) + 2δ g17(z),

satisfies g1 = 2F − G. The theta series of weight 1 for ξ̃δ, χ̃δ,ν and ψ̃δ,ν

satisfy

Θ1

(
8, ξ̃δ,

z
24

)
= Θ1

(
−4, χ̃δ,ν , z

24

)
= Θ1

(
−8, ψ̃δ,ν , z

24

)
= g̃1(z) + 2δ g̃17(z),

(25.86)
where the components g̃j are normalized integral Fourier series with denomi-
nator 24 and numerator classes j modulo 24, and both of them are eta prod-
ucts,

g̃1 =
[

1, 4, 610

22, 34, 124

]
= 2 F̃ − G̃, g̃17 =

[
22, 32, 122

1, 4, 62

]
. (25.87)

Let characters ρδ,ν , ρ̃δ,ν on O1 with period 72 be given by

ρδ,ν(2 + i) = δi, ρδ,ν(1 + 6i) = ν, ρδ,ν(19) = −1, ρδ,ν(i) = 1,

ρ̃δ,ν(2 + i) = δ, ρ̃δ,ν(1 + 6i) = νi, ρ̃δ,ν(19) = 1, ρ̃δ,ν(i) = 1.

Let generators of (J6/(12
√

−2))× � Z12 × Z4 × Z2
2 and of (Z[

√
6]/(12(2 +√

6)))× � Z12 × Z3
2 be chosen as in Examples 25.32, 25.31. Define characters

ϕδ,ν , ϕ̃δ,ν on J6 with period 12
√

−2 by their values

ϕδ,ν(
√

3 +
√

−2) = δi, ϕδ,ν(3
√

3 + 2
√

−2) = νi,

ϕδ,ν(7) = −1, ϕδ,ν(−1) = 1,

ϕ̃δ,ν(
√

3 +
√

−2) = δ, ϕ̃δ,ν(3
√

3 + 2
√

−2) = ν,

ϕ̃δ,ν(7) = −1, ϕ̃δ,ν(−1) = 1,
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and define characters Ξδ and Ξ̃δ on Z[
√

6] with period 12(2 +
√

6) by

Ξδ(μ) =

⎧
⎪⎪⎨

⎪⎪⎩

δi sgn(μ)
−sgn(μ)
sgn(μ)

−sgn(μ)

,

Ξ̃δ(μ) =

⎧
⎪⎪⎨

⎪⎪⎩

δ sgn(μ)
sgn(μ)
sgn(μ)

−sgn(μ)

for μ ≡

⎧
⎪⎪⎨

⎪⎪⎩

1 +
√

6
5
7

−1

mod 12(2 +
√

6).

The corresponding theta series of weight 1 satisfy the identities

Θ1

(
24, Ξδ,

z
24

)
= Θ1

(
−4, ρδ,ν , z

24

)
= Θ1

(
−24, ϕδ,ν , z

24

)

= h1(z) + 2δi h5(z), (25.88)

Θ1

(
24, Ξ̃δ,

z
24

)
= Θ1

(
−4, ρ̃δ,ν , z

24

)
= Θ1

(
−24, ϕ̃δ,ν , z

24

)

= h̃1(z) + 2δ h̃5(z), (25.89)

where the components hj and h̃j are normalized integral Fourier series with
denominator 24 and numerator classes j modulo 24, and where h1, h̃1 are
linear combinations of eta products,

h1 = −2F + 3G, h̃1 = −2F̃ + 3G̃. (25.90)

The eta products g̃1, g̃17 in (25.87) are the Fricke transforms of the eta
products g̃, f̃ with denominator 8 in Example 25.22. Therefore they would
as well fit into the next subsection.

25.8 Cuspidal Eta Products with Denominator 24,
Second Part

In this subsection we discuss those eta products with denominator 24 which
are Fricke transforms of eta products with denominators t = 6 and 8, and
the sign transforms of these Fricke transforms. (Some of these functions
were settled already in the preceding subsection since they are also the sign
transforms of Fricke transforms of eta products with denominators t ≤ 4.)
There are eight eta products which are not captured by this approach. But
they are the sign transforms of eta products of level 6 and will be discussed at
the end of this subsection. We begin with the transforms of the eta products
in Example 25.17:

Example 25.36 Let generators of (J6/(12
√

−2))× be chosen as in Exam-
ple 25.32, and define sixteen characters φ = φδ,ε,ν and φ̃ = φ̃δ,ε,ν on J6 with
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period 12
√

−2 by their values

φ(
√

3 +
√

−2) = 1
2 (ν + δi

√
3), φ(3

√
3 + 2

√
−2) = ενi,

φ(7) = −1, φ(−1) = 1,

φ̃(
√

3 +
√

−2) = 1
2 (δ

√
3 + νi), φ̃(3

√
3 + 2

√
−2) = −εν,

φ̃(7) = −1, φ̃(−1) = 1

with δ, ε, ν ∈ {1, −1}. The corresponding theta series of weight 1 decompose
as

Θ1

(
−24, φδ,ε,ν , z

24

)
= h1(z) + δi

√
3 h5(z) − εi h7(z) + δε

√
3 h11(z), (25.91)

Θ1

(
−24, φ̃δ,ε,ν , z

24

)
= h̃1(z) + δ

√
3 h̃5(z) − εi h̃7(z) + δεi

√
3 h̃11(z), (25.92)

where the components hj and h̃j are normalized integral Fourier series with
denominator 24 and numerator classes j modulo 24. All of them are eta
products,

h1 =
[
12, 4, 62

2, 3, 12

]
, h5 =

[
3, 4, 62

2, 12

]
, h7 =

[
1, 22, 12

4, 6

]
, h11 =

[
22, 32, 12

1, 4, 6

]
,

(25.93)

h̃1 =
[

25, 3
12, 4, 6

]
, h̃5 =

[
4, 65

2, 3, 122

]
, h̃7 =

[
25, 12
1, 42, 6

]
, h̃11 =

[
1, 65

2, 32, 12

]
.

(25.94)

The Fricke transforms of the eta products in Example 25.18 make up eight
eta products with denominator 24. In the following example we discuss four
of them; their sign transforms belong to Γ∗(12) and show up in Example 25.4.
The other four and their sign transforms will be handled in Example 25.38.
All of them are components in theta series on the Eisenstein integers:

Example 25.37 Let the generators of (O3/(48))× � Z24 × Z4 × Z2 × Z6

be chosen as in Example 25.4, and define eight characters χδ,ε,ν on O3 with
period 48 by their values

χδ,ε,ν(2 + ω) = 1
2 (δ

√
3 + νi), χδ,ε,ν(1 − 12ω) = −εν,

χδ,ε,ν(7) = 1, χδ,ε,ν(ω) = 1

with δ, ε, ν ∈ {1, −1}. The corresponding theta series of weight 1 decompose
as

Θ1

(
−3, χδ,ε,ν , z

24

)
= f1(z) + δ

√
3 f7(z) + δεi

√
3 f13(z) − εi f19(z), (25.95)

where the components fj are normalized integral Fourier series with denom-
inator 24 and numerator classes j modulo 24. All of them are eta products,

f1 =
[

1, 43, 66

23, 32, 123

]
, f7 =

[
4, 63

3, 12

]
, f13 =

[
23, 12
1, 4

]
, f19 =

[
26, 3, 123

12, 43, 63

]
.

(25.96)
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Example 25.38 Let the generators of (O3/(48))× be chosen as in Exam-
ple 25.4, and define sixteen characters ψδ,ε,ν and ψ̃δ,ε,ν on O3 with period 48
by

ψδ,ε,ν(2 + ω) = 1
2 (ν

√
3 + εi), ψδ,ε,ν(1 − 12ω) = δεν,

ψδ,ε,ν(7) = −1, ψδ,ε,ν(ω) = 1,

ψ̃δ,ε,ν(2 + ω) = − 1
2 (ν

√
3 + εi), ψ̃δ,ε,ν(1 − 12ω) = δενi,

ψ̃δ,ε,ν(7) = −1, ψ̃δ,ε,ν(ω) = 1

with δ, ε, ν ∈ {1, −1}. The corresponding theta series of weight 1 decompose
as

Θ1

(
−3, ψδ,ε,ν , z

24

)
= g1(z) + εi g7(z) + δi

√
3 g13(z) − δε

√
3 g19(z), (25.97)

Θ1

(
−3, ψ̃δ,ε,ν , z

24

)
= g̃1(z) − εi g̃7(z) + δ

√
3 g̃13(z) + δεi

√
3 g̃19(z), (25.98)

where the components gj and g̃j are normalized integral Fourier series with
denominator 24 and numerator classes j modulo 24. All of them are eta
products,

g1 =
[
22, 4, 6
1, 12

]
, g7 =

[
25, 3, 12
12, 4, 62

]
, g13 =

[
1, 4, 65

22, 32, 12

]
g19 =

[
2, 62, 12

3, 4

]
,

(25.99)

g̃1 =
[
1, 42, 6
2, 12

]
, g̃7 =

[
12, 4, 6

2, 3

]
, g̃13 =

[
2, 32, 12

1, 6

]
, g̃19 =

[
2, 3, 122

4, 6

]
.

(25.100)

The Fricke transforms of the eta products g1, g3 in (25.49), Example 25.21,
have denominator 24. At the same time, they are the sign transforms of the
eta products for Γ0(6) in Example 18.9. We get a similar result as before in
(18.15):

Example 25.39 Let the generators of (O2/(24+12
√

−2))× � Z12 × Z4
2 and

those of (J6/(12
√

−2))× � Z12 × Z4 × Z2
2 be chosen as in Examples 25.31

and 25.32, respectively. Define characters ρ̃δ,ν on O2 with period 12(2+
√

−2)
and characters ϕ̃δ,ν on J6 with period 12

√
−2 by their values

ρ̃δ,ν(1 + 3
√

−2) = νi, ρ̃δ,ν(3 + 4
√

−2) = δν,

ρ̃δ,ν(17) = −1, ρ̃δ,ν(19) = 1, ρ̃δ,ν(−1) = 1,

ϕ̃δ,ν(
√

3 +
√

−2) = ν, ϕ̃δ,ν(3
√

3 + 2
√

−2) = −δi,

ϕ̃δ,ν(7) = 1, ϕ̃δ,ν(−1) = 1

with δ, ν ∈ {1, −1}. The residues of 2 +
√

3, 1 + 6
√

3, 7 and −1 modulo 24
are generators of (Z[

√
3]/(24))× � Z12 × Z4 × Z2

2 . Define characters ξ̃δ on



25.8. Cuspidal Eta Products 483

Z[
√

3] with period 24 by

ξ̃δ(μ) =

⎧
⎨

⎩

sgn(μ)
−δi sgn(μ)

−sgn(μ)
for μ ≡

⎧
⎨

⎩

2 +
√

3,

1 + 6
√

3
7, −1

mod 24.

The corresponding theta series of weight 1 satisfy

Θ1

(
12, ξ̃δ,

z
24

)
= Θ1

(
−8, ρ̃δ,ν , z

24

)
= Θ1

(
−24, ϕ̃δ,ν , z

24

)

= f̃1(z) + 2δi f̃11(z), (25.101)

where the components f̃j are normalized integral Fourier series with denomi-
nator 24 and numerator classes j modulo 24. Both of them are eta products,

f̃1 =
[

23, 65

1, 32, 4, 122

]
, f̃11 =

[
2, 3, 12

6

]
. (25.102)

There are eight cuspidal eta products with denominator 24 which have not
yet been discussed. Four of them are the sign transforms of the eta products
for Γ∗(6) in Example 18.2. Here we get a similar result:

Example 25.40 Let the generators of (J6/(12
√

−2))× � Z12 × Z4 × Z2
2 be

chosen as in Example 25.32. Define eight characters χ̃δ,ε,ν on J6 with period
12

√
−2 by

χ̃δ,ε,ν(
√

3 +
√

−2) = 1
2 (ν + δi

√
3), χ̃δ,ε,ν(3

√
3 + 2

√
−2) = εi,

χ̃δ,ε,ν(7) = 1, χ̃δ,ε,ν(−1) = 1

with δ, ε, ν ∈ {1, −1}. The corresponding theta series of weight 1 decompose
as

Θ1

(
−24, χ̃δ,ε,ν , z

24

)
= G1(z) + δi

√
3 G5(z) + δε

√
3 G7(z) + εi G11(z),

(25.103)
where the components Gj are normalized integral Fourier series with denomi-
nator 24 and numerator classes j modulo 24, and all of them are eta products,

G1 =
[

12, 42, 67

23, 33, 123

]
, G5 =

[
2, 63

3, 12

]
,

G7 =
[
23, 6
1, 4

]
, G11 =

[
27, 32, 122

13, 43, 63

]
.

(25.104)

Finally we present a result for the sign transforms of the eta products on
Γ0(6) in Example 18.11:
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Example 25.41 Define eight characters φ = φδ,ε,ν on J6 with period 12
√

−2
by

φ(
√

3 +
√

−2) = 1
2 (ε + νi

√
3), φ(3

√
3 + 2

√
−2) = δν,

φ(7) = −1, φ(−1) = 1

with δ, ε, ν ∈ {1, −1}. The corresponding theta series of weight 1 decompose
as

Θ1

(
−24, φδ,ε,ν , z

24

)
= H1(z) + εH5(z) + δi

√
3 H7(z) + δεi

√
3 H11(z),

(25.105)
where the components Hj are normalized integral Fourier series with denomi-
nator 24 and numerator classes j modulo 24, and all of them are eta products,

H1 =
[
22, 62

3, 12

]
, H5 =

[
26, 3, 12
12, 42, 62

]
,

H7 =
[

1, 4, 66

22, 32, 122

]
, H11 =

[
22, 62

1, 4

]
.

(25.106)

We summarize the results on the 60 cuspidal eta products with denominator
24 as follows. These functions span a space of dimension 55. Linear relations
are given in Example 25.34. The other examples in the last two subsections
comprise 58 distinct theta series. Their components consist (counting the
functions in Example 25.35 correctly) of 55 eta products for Γ0(12), of one
old eta product from level 6, and of two functions which are not otherwise
identified.



26 Non-cuspidal Eta Products of Weight 1 for
Level 12

26.1 Non-cuspidal Eta Products with Denominator 24

We recall that the non-cuspidal eta products of weight 1 for the Fricke group
Γ∗(12) were treated in Sect. 25.1. According to Table 24.1 in Sect. 24.1 there
are 158 more such eta products for Γ0(12). We start inspecting those with
large denominators, working down to denominator 1. Here for the first time
we meet non-cuspidal eta products with denominator 24. They form eight
pairs of sign transforms, where one member in each pair has a non-zero value
only in the orbit of the cusp 1, and the other member has a non-zero value
only in the orbit of the cusp 1

2 . Four of these pairs combine to theta series
on the field Q(

√
−2), the other four combine to theta series on Q(

√
−6), and

all of these series are also Eisenstein series. We describe the results in the
following two examples:

Example 26.1 For δ, ε ∈ {1, −1}, let Dirichlet characters χδ,ε modulo 24
and χ̃δ,ε modulo 48 be fixed by their values

χδ,ε(5) = δ, χδ,ε(7) = ε, χδ,ε(−1) = 1,

χ̃δ,ε(5) = δi, χ̃δ,ε(7) = −ε, χ̃δ,ε(−1) = 1

on generators of (Z/(24))× and of (Z/(48))×, respectively. Then χ1,1 is the
principal character modulo 6, χ1,−1(n) =

(
6
n

)
is primitive, χ−1,1 is induced

from the character
(

2
n

)
modulo 8, and χ−1,−1(n) =

(
12
n

)
is primitive modulo

12. The residues of 3 +
√

−2, 1 + 3
√

−2 and −1 modulo 6 can be chosen as
generators of (O2/(6))× � Z3

2 . Define four characters ψδ,ε on O2 with period
6 by

ψδ,ε(3 +
√

−2) = δε, ψδ,ε(1 + 3
√

−2) = δ, ψδ,ε(−1) = 1.

Then ψ1,1 is the principal character modulo 3
√

−2, ψ1,−1 also has period
3

√
−2, and we have ψδ,ε(μ) = χδ,ε(μμ) for μ ∈ O2. The corresponding theta
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DOI 10.1007/978-3-642-16152-0 26, c© Springer-Verlag Berlin Heidelberg 2011
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series of weight 1 satisfy

Θ1

(
−8, ψδ,ε,

z
24

)
=

∞∑

n=1

χδ,ε(n)
(∑

d|n

(−2
d

))
e
(

nz
24

)

= f1(z) + 2δε f11(z) + 2ε f17(z) + 2δ f19(z), (26.1)

where the components fj are normalized integral Fourier series with denom-
inator 24 and numerator classes j modulo 24. All of them are eta products,

f1 =
[

2, 64

1, 122

]
, f11 =

[
4, 64

2, 3, 12

]
,

f17 =
[
22, 6, 12

1, 4

]
, f19 =

[
2, 32, 122

1, 62

]
.

(26.2)

Let the generators of (O2/(12
√

−2))× � Z4 × Z4
2 be chosen as in Exam-

ple 25.22, and define four characters ψ̃δ,ε on O2 with period 12
√

−2 by

ψ̃δ,ε(3 +
√

−2) = δεi, ψ̃δ,ε(3 + 4
√

−2) = −ε,

ψ̃δ,ε(5) = −1, ψ̃δ,ε(7) = 1, ψ̃δ,ε(−1) = 1.

Then we have ψ̃δ,ε(μ) = χ̃δ,ε(μμ) for μ ∈ O2. The corresponding theta series
of weight 1 satisfy

Θ1

(
−8, ψ̃δ,ε,

z
24

)
=

∞∑

n=1

χ̃δ,ε(n)
(∑

d|n

(−2
d

))
e
(

nz
24

)

= f̃1(z) + 2δεi f̃11(z) + 2ε f̃17(z) − 2δi f̃19(z), (26.3)

where the components f̃j are normalized integral Fourier series with denomi-
nator 24 and numerator classes j modulo 24, and all of them are eta products,

f̃1 =
[
1, 4, 64

22, 122

]
, f̃11 =

[
3, 4, 6

2

]
, f̃17 =

[
1, 6, 12

2

]
, f̃19 =

[
1, 4, 64

22, 32

]
.

(26.4)
Here

(
fj , f̃j

)
are pairs of sign transforms, fj vanishes at all cusps except

those in the orbit of 1, and f̃j vanishes at all cusps except those in the orbit
of 1

2 .

The characters ψδ,ε will reappear in Example 26.22.

Example 26.2 For δ, ε ∈ {1, −1}, let the Dirichlet characters χδ,ε modulo
24 and χ̃δ,ε modulo 48 be given as in Example 26.1. Let the generators of
(J6/(2

√
3))× � Z3

2 be chosen as in Example 13.16, and define four characters
ϕδ,ε on J6 with period 2

√
3 by

ϕδ,ε(
√

3 +
√

−2) = δ, ϕδ,ε(1 +
√

−6) = ε, ϕδ,ε(−1) = 1.
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Then ϕ1,1 is the principal character modulo
√

−6, ϕ−1,1 also has period
√

−6,
and we have ϕδ,ε(μ) = χδ,ε(μμ) for μ ∈ J6. The residues of

√
3+

√
−2, 3

√
3+

4
√

−2, 7 and −1 modulo 24 can be chosen as generators of (J6/(24))× �
Z24 × Z4 × Z2

2 . Define four characters ϕ̃δ,ε on J6 with period 24 by the
assignment

ϕ̃δ,ε(
√

3 +
√

−2) = δi, ϕ̃δ,ε(3
√

3 + 4
√

−2) = −δεi,

ϕ̃δ,ε(7) = 1, ϕ̃δ,ε(−1) = 1.

Then we have ϕ̃δ,ε(μ) = χ̃δ,ε(μμ) for μ ∈ J6. The corresponding theta series
of weight 1 satisfy

Θ1

(
−24, ϕδ,ε,

z
24

)
=

∞∑

n=1

χδ,ε(n)
(∑

d|n

(−6
d

))
e
(

nz
24

)

= g1(z) + 2δ g5(z) + 2ε g7(z) + 2δε g11(z), (26.5)

Θ1

(
−24, ϕ̃δ,ε,

z
24

)
=

∞∑

n=1

χ̃δ,ε(n)
(∑

d|n

(−6
d

))
e
(

nz
24

)

= g̃1(z) + 2δi g̃5(z) + 2ε g̃7(z) − 2δεi g̃11(z), (26.6)

where the components gj and g̃j are normalized integral Fourier series with
denominator 24 and numerator classes j modulo 24. All of them are eta
products,

g1 =
[

26, 32

13, 42, 6

]
, g5 =

[
2, 4, 62

1, 12

]
,

g7 =
[
32, 42

1, 6

]
, g11 =

[
24, 3, 12
12, 4, 6

]
,

(26.7)

g̃1 =
[

13, 4, 65

23, 32, 122

]
, g̃5 =

[
1, 42, 62

22, 12

]
,

g̃7 =
[

1, 43, 65

23, 32, 122

]
, g̃11 =

[
12, 4, 62

22, 3

]
.

(26.8)

Here (gj , g̃j) are pairs of sign transforms, gj vanishes at all cusps except those
in the orbit of 1, and g̃j vanishes at all cusps except those in the orbit of 1

2 .

The characters ϕδ,ε will reappear in Example 26.21.

26.2 Non-cuspidal Eta Products with Denominators 6
and 12

There is just a single non-cuspidal eta product of weight 1 for Γ0(12) with
denominator 6. This function is the sign transform of the eta product for
Γ0(6) in Example 18.13. It is easy to find its description as a theta series and
an Eisenstein series:
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Example 26.3 Let the generators of (O3/(4 + 4ω))× � Z2
2 × Z6 be chosen

as in Example 9.1, and define a character ψ̃0 on O3 with period 4(1 + ω) by
its values

ψ̃0(1 + 2ω) = −1, ψ̃0(1 − 4ω) = 1, ψ̃0(ω) = 1.

The corresponding theta series of weight 1 is an Eisenstein series and an eta
product,

Θ1

(
−3, ψ̃0,

z
6

)
=

∞∑

n≡1 mod 6

(−1)(n−1)/6

(∑

d|n

(
d
3

))
e
(

nz
6

)

=
η2(z)η2(4z)η5(6z)

η3(2z)η2(3z)η2(12z)
. (26.9)

Among the non-cuspidal eta products with denominator 12 there are two
functions which are the sign transforms of eta products for Γ0(6), and six
pairs of sign transforms with properties as in Sect. 26.1: One member in
each pair has a non-zero value only in the orbit of the cusp 1, and the other
member has a non-zero value only in the orbit of the cusp 1

2 . Altogether,
these functions span a space of dimension 9. Similarly as in Example 25.34, we
present five linear relations among these functions and another one involving
an eta product of level 6. For this purpose we introduce the notations

F1 =
[

4, 67

2, 32, 123

]
, F̃1 =

[
32, 4, 6
2, 12

]
,

F13 =
[
22, 3, 123

1, 4, 62

]
, F̃13 =

[
1, 6, 122

2, 3

]
,

(26.10)

where
(
Fj , F̃j

)
are pairs of sign transforms and the subscripts j indicate the

numerators of the eta products.

Example 26.4 We have the eta identities
[

3, 43

1, 12

]
= F1 + F13,

[
1, 44, 63

23, 3, 122

]
= F̃1 − F̃13,

[
29, 32, 12
14, 43, 63

]
= F1 + 4 F13,

[
14, 4, 63

23, 32, 12

]
= F̃1 − 4 F̃13,

[
22, 34

12, 62

]
= F1 + 2 F13,

[
12, 42, 610

24, 34, 124

]
= F̃1 − 2 F̃13

with notations as given in (26.10).

All the eta products in the last line of these identities are products of two of
the simple theta series of weight 1

2 in Theorems 8.1, 8.2 and Corollary 8.3.
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Using this yields two equivalent identities for the coefficients; one of them
reads

∑

x>0, y∈Z, x2+36y2 = n

1 +
∑

x>0, y∈Z, 4x2+9y2 = n

1 =
∑

x,y > 0, x2+y2 = 2n

1

for n ≡ 1 mod 12.

In the following example we reconsider the identities in the last line in Ex-
ample 26.4. We get another expression for the theta series in Example 18.12,
and we get a similar result for the non-cuspidal eta products with denomi-
nator 12 whose sign transforms belong to Γ0(6). In the Eisenstein series we
meet two of the Dirichlet characters modulo 24 from Examples 26.1, 26.2, for
which, however, we introduce new notations:

Example 26.5 For δ ∈ {1, −1}, let ϕδ be the characters on O1 with period
3(1 + i) as defined in Example 18.12. In particular, ϕ1 is the principal char-
acter modulo 3(1 + i). Then the first component in the theta series (18.21),

Θ1

(
−4, ϕδ,

z
12

)
= f1(z) + 2δ f5(z),

satisfies

f1 =
[
22, 34

12, 62

]
= F1 + 2 F13,

with notations from (26.10). Let the Dirichlet characters χδ modulo 24 be
given by χ1(n) =

(
6
n

)
and χ−1(n) =

(
18
n

)
. Let the generators of (O1/(12))× �

Z8 × Z2 × Z4 be chosen as in Example 13.2, and define characters ρδ on O1

with period 12 by

ρδ(2 + i) = δ, ρδ(1 + 6i) = −1, ρδ(i) = 1.

Then we have ρδ(μ) = χδ(μμ) for μ ∈ O1. The corresponding theta series of
weight 1 satisfy

Θ1

(
−4, ρδ,

z
12

)
=

∞∑

n=1

χδ(n)
(∑

d|n

(−1
d

))
e
(

nz
12

)
= f̃1(z) + 2δ f̃5(z) (26.11)

with components f̃j which are normalized integral Fourier series with denom-
inator 12 and numerator classes j modulo 12. With notations from (26.10)
we have

f̃1 =
[

12, 42, 610

24, 34, 124

]
= F̃1 − 2 F̃13, f̃5 =

[
1, 4, 64

22, 3, 12

]
. (26.12)

Other identifications with eta products for the theta series in (26.11) will be
given in Example 29.12.
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Only one pair among the non-cuspidal eta products with denominator 12 has
numerators which are not congruent to 1 modulo 12. From this pair and one
of the pairs with numerator 1 we obtain linear combinations which are theta
series and Eisenstein series. Since two of the Hecke characters coincide with
those in Examples 18.13 and 26.3, we also get two eta identities:

Example 26.6 Let χ0
1 be the principal Dirichlet character modulo 6, and

let χ0
−1 be the imprimitive Dirichlet character modulo 12 which is induced

from
(−1

n

)
. Let ψ0

1 be the principal character modulo 2(1+ω) on O3, and let
ψ0

−1 = ψ̃0 be the character modulo 4(1+ω) on O3 as defined in Example 26.3.
Then we have ψ0

δ (μ) = χ0
δ(μμ) for μ ∈ O3. The corresponding theta series

of weight 1 satisfy

Θ1

(
−3, ψ0

δ , z
12

)
=

∞∑

n=1

χ0
δ(n)

(∑

d|n

(
d
3

))
e
(

nz
12

)
= g1(z) + 2δ g7(z) (26.13)

for δ ∈ {1, −1}, where the components gj are normalized integral Fourier
series with denominator 12 and numerator classes j modulo 12, and both of
them are eta products,

g1 =
[

24, 62

12, 4, 12

]
, g7 =

[
2, 3, 4, 12

1, 6

]
. (26.14)

We have the eta identities
[

44, 122

22, 8, 24

]
+ 2

[
4, 6, 8, 24

2, 12

]
=
[
23, 32

12, 6

]
,

[
44, 122

22, 8, 24

]
− 2

[
4, 6, 8, 24

2, 12

]
=
[

12, 42, 65

23, 32, 122

]
.

(26.15)

Let the generators of (O3/(8 + 8ω))× � Z4 × Z2
2 × Z6 be chosen as in Exam-

ple 13.2, and define characters φ0
δ on O3 with period 8(1 + ω) by

φ0
δ(1 + 2ω) = δ, φ0

δ(1 − 4ω) = −1, φ0
δ(5) = 1, φ0

δ(ω) = 1.

Then we have φ0
δ(μ) =

(−6δ
μ μ

)
for μ ∈ O3. The corresponding theta series of

weight 1 satisfy

Θ1

(
−3, φ0

δ ,
z
12

)
=

∞∑

n=1

(−6δ
n

)(∑

d|n

(
d
3

))
e
(

nz
12

)
= g̃1(z) + 2δ g̃7(z), (26.16)

where the components g̃j are normalized integral Fourier series with denomi-
nator 12 and numerator classes j modulo 12, and both of them are eta prod-
ucts,

g̃1 =
[
12, 4, 62

22, 12

]
, g̃7 =

[
1, 42, 62

22, 3

]
. (26.17)

Here (gj , g̃j) are pairs of sign transforms.
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The eta products in (26.15) are products of two simple theta series of weight
1
2 . As before in such a context this implies the coefficient identity

∑

x>0, y∈Z, x2+12y2 = n

1 +
∑

x>0, y∈Z, 3x2+4y2 = n

1 =
∑

x,y > 0, 3x2+y2 = 4n

1

for n ≡ 1 mod 6. An equivalent result comes from the companion eta identity
in Example 26.6.

Concluding this subsection, we describe two linear combinations of the non-
cuspidal eta products in (26.10) which are cuspidal eigenforms and equal to
theta series on the fields with discriminants 12, −3 and −4:

Example 26.7 Let the generators of (O3/(24))× � Z12 × Z2
2 × Z6 and of

(O1/(36))× � Z24 ×Z6 ×Z4 be chosen as in Examples 18.8 and 25.28. Define
four characters ϕν and ϕ̃ν on O3 with period 24 by

ϕν(2 + ω) = ν, ϕν(5) = −1, ϕν(1 − 12ω) = 1, ϕν(ω) = 1,

ϕ̃ν(2 + ω) = ν, ϕ̃ν(5) = −1, ϕ̃ν(1 − 12ω) = −1, ϕ̃ν(ω) = 1

with ν ∈ {1, −1}. Define characters χν and χ̃ν on O1 with period 36 by

χν(2 + i) = νi, χν(1 − 6i) = 1, χν(i) = 1,

χ̃ν(2 + i) = νi, χ̃ν(1 − 6i) = −1, χ̃ν(i) = 1.

The residues of 2 +
√

3, 1 + 6
√

3 and −1 modulo 12 are generators of
(Z[

√
3]/(12))× � Z12 × Z2

2 . Define Hecke characters ξ and ξ̃ on Z[
√

3] with
period 12 by

ξ(μ) =

⎧
⎨

⎩

sgn(μ)
sgn(μ)

−sgn(μ)
,

ξ̃(μ) =

⎧
⎨

⎩

sgn(μ)
−sgn(μ)
−sgn(μ)

for μ ≡

⎧
⎨

⎩

2 +
√

3,

1 + 6
√

3
−1

mod 12.

The corresponding theta series of weight 1 satisfy the identities

Θ1

(
12, ξ, z

12

)
= Θ1

(
−3, ϕν , z

12

)
= Θ1

(
−4, χν , z

12

)
= F1(z) − 2 F13(z),

(26.18)
Θ1

(
12, ξ̃, z

12

)
= Θ1

(
−3, ϕ̃ν , z

12

)
= Θ1

(
−4, χ̃ν , z

12

)
= F̃1(z) + 2 F̃13(z),

(26.19)
with notations as given in (26.10).

The characters and eta products of this example will appear again in Exam-
ples 26.17 and 26.23.
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26.3 Non-cuspidal Eta Products with Denominator 8

The non-cuspidal eta products of weight 1 for Γ0(12) with denominator 8
form 20 pairs of sign transforms. The output of the algorithm in Sect. 4 tells
us at which cusps a given eta product does not vanish. This is helpful for the
construction of eigenforms: We look for linear combinations of eta products
which share these cusps. In the following two examples we settle eight eta
products which do not vanish at 1 and 1

3 , and their eight sign transforms
which have non-zero values at 1

2 and 1
6 . We find 16 linear combinations

which are theta series and Eisenstein series. Eight of them belong to the field
with discriminant −24:

Example 26.8 For δ, ε ∈ {1, −1}, let Dirichlet characters χδ,ε modulo 8 and
χ̃δ,ε modulo 16 be fixed by their values

χδ,ε(5) = δ, χδ,ε(−1) = ε, χ̃δ,ε(5) = δi, χ̃δ,ε(−1) = −ε

on generators of the corresponding groups; thus χ1,1 is the principal char-
acter, χ1,−1(n) =

(−1
n

)
, and χ−1,ε(n) =

(
2ε
n

)
. Let the generators of (J6/

(4
√

−2))× � Z2
4 × Z2 be chosen as in Example 25.21, and define characters

ρδ,ε and ρ̃δ,ε on J6 with period 4
√

−2 by

ρδ,ε(
√

3 +
√

−2) = δ, ρδ,ε(1 +
√

−6) = ε, ρδ,ε(−1) = 1,

ρ̃δ,ε(
√

3 +
√

−2) = δi, ρ̃δ,ε(1 +
√

−6) = ε, ρ̃δ,ε(−1) = 1.

Then ρδ,ε in fact has period 2
√

−2, ρ1,1 is the principal character modulo√
−2, and we have ρδ,ε(μ) = χδ,ε(μμ) and ρ̃δ,ε(μ) = χ̃δ,ε(μμ) for μ ∈ J6.

The corresponding theta series of weight 1 satisfy

Θ1

(
−24, ρδ,ε,

z
8

)
=

∞∑

n=1

χδ,ε(n)
(∑

d|n

(−2
d

))
e
(

nz
8

)

= f1(z) + δε f3(z) + 2δ f5(z) + 2ε f7(z), (26.20)

Θ1

(
−24, ρ̃δ,ε,

z
8

)
=

∞∑

n=1

χ̃δ,ε(n)
(∑

d|n

(−2
d

))
e
(

nz
8

)

= f̃1(z) + δεi f̃3(z) + 2δi f̃5(z) + 2ε f̃7(z), (26.21)

where the components fj, f̃j are normalized integral Fourier series with de-
nominator 8 and numerator classes j modulo 8. All of them are eta products,

f1 =
[

22, 65

1, 32, 122

]
, f3 =

[
25, 62

12, 3, 42

]
, f5 =

[
42, 62

2, 3

]
, f7 =

[
22, 122

1, 6

]
,

(26.22)
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f̃1 =
[
1, 32, 4

2, 6

]
, f̃3 =

[
12, 3, 12

2, 6

]
, f̃5 =

[
3, 42, 12

2, 6

]
, f̃7 =

[
1, 4, 122

2, 6

]
.

(26.23)
Here

(
fj , f̃j

)
are pairs of sign transforms.

Now we describe eight theta series and Eisenstein series on the field with
discriminant −8 which are linear combinations of the eta products

g1a =
[

44, 63

22, 3, 122

]
, g1b =

[
1, 42, 610

23, 34, 124

]
,

g3 =
[
210, 3, 122

14, 44, 63

]
, g11 =

[
23, 124

1, 42, 62

]
,

(26.24)

g̃1a =
[

3, 44

22, 12

]
, g̃1b =

[
34, 4
1, 62

]
,

g̃3 =
[
14, 12
22, 3

]
, g̃11 =

[
1, 124

4, 62

]
.

(26.25)

The functions in (26.24) are non-zero at the cusp orbits of 1 and 1
3 , and their

sign transforms in (26.25) are non-zero at the orbits of 1
2 and 1

6 .

Example 26.9 Let χ1 be the principal Dirichlet character modulo 2, and
put χ−1(n) =

(−1
n

)
. For δ ∈ {1, −1}, define Dirichlet characters χ̃δ modulo

16 by their values χ̃δ(5) = −δi, χ̃δ(−1) = 1 on generators of (Z/(16))×.
Let ψ̃δ be the characters on O2 as defined in Example 13.13, such that ψ̃1 is
the principal character modulo

√
−2 and ψ̃−1 is the non-principal character

modulo 2. Let the characters ϕ̃δ on O2 with period 4
√

−2 be given as in
Example 15.29. Let ψ̃0

δ and ϕ̃0
δ be the imprimitive characters modulo 2(1 +√

−2) and modulo 4(2+
√

−2) (or modulo 2(1−
√

−2) and modulo 4(2−
√

−2),
as well) which are induced from ψ̃δ and ϕ̃δ, respectively. The corresponding
theta series of weight 1 satisfy

Θ1

(
−8, ψ̃δ,

z
8

)
=

∞∑

n=1

χδ(n)
(∑

d|n

(−2
d

))
e
(

nz
8

)

=
(
4 g1a(z) − 3 g1b(z)

)
+ 2δ

(
g3(z) − 3 g11(z)

)
, (26.26)

Θ1

(
−8, ϕ̃δ,

z
8

)
=

∞∑

n=1

χ̃δ(n)
(∑

d|n

(−2
d

))
e
(

nz
8

)

=
(
4 g̃1a(z) − 3 g̃1b(z)

)
+ 2δi

(
g̃3(z) + 3 g̃11(z)

)
, (26.27)

Θ1

(
−8, ψ̃0

δ , z
8

)
=

∞∑

n=1

χδ(n)
( ∑

3 �d|n

(−2
d

))
e
(

nz
8

)

=
(
2 g1a(z) − g1b(z)

)
+ δ

(
g3(z) − 2 g11(z)

)
, (26.28)
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Θ1

(
−8, ϕ̃δ,

z
8

)
=

∞∑

n=1

χ̃δ(n)
(∑

3 �d|n

(−2
d

))
e
(

nz
8

)

=
(
2 g̃1a(z) − g̃1b(z)

)
+ δi

(
g̃3(z) + 2 g̃11(z)

)
, (26.29)

where the notations for eta products are defined in (26.24) and (26.25).

The characters in (26.26), (26.27) are well known from several examples in
preceding sections, and therefore we get some more eta identities. We write
down just those two which arise from a comparison with (13.32) in Exam-
ple 13.13,

[
27

13, 42

]
= 4 g1a − 3 g1b,

[
2, 42

1

]
= g3 − 3 g11. (26.30)

So far the examples in this subsection comprise 16 of the non-cuspidal eta
products with denominator 8. Eight more of them are linear combinations
of the eta products in (26.24), (26.25):

Example 26.10 We have the eta identities
[
32, 4, 6
1, 12

]
= 2 g1a − g1b,

[
1, 42, 67

23, 32, 123

]
= 2 g̃1a − g̃1b,

[
23, 33, 12
12, 4, 62

]
= g3 − 2 g11,

[
12, 4, 67

23, 33, 122

]
= g̃3 + 2 g̃11,

[
13, 4, 63

22, 32, 12

]
= 3 g1a − 2 g1b,

[
27, 32, 12
13, 42, 63

]
= 3 g̃1a − 2 g̃1b,

[
12, 2, 12

3, 4

]
= g3 − 6 g11,

[
27, 3, 122

12, 43, 63

]
= g̃3 + 6 g̃11

with notations as given in (26.24), (26.25).

Each of the eta products on the left hand sides of the identities in Exam-
ple 26.10 has a non-zero value at the cusps of a single orbit. In the linear
combinations of the first two lines the values at the orbits of 1

3 and 1
6 cancel,

and in the last two lines the values at the orbits of 1 and 1
2 cancel.

There are 16 non-cuspidal eta products with denominator 8 which remain
to be discussed. These functions are the Fricke transforms of the eight eta
products with denominator 24 which were denoted by f̃j and g̃j in (26.4)
and (26.8), and the sign transforms of these Fricke transforms. Therefore,
in order to find eigenforms, we apply W12 to the linear combinations (26.3)
and (26.6) of eta products. The procedure brings only a partial success: The
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resulting functions have multiplicative coefficients, but usually violate the
proper recursions at powers of the prime 3. We must add suitable Fourier
series in the variable 3z

8 in order to match linear combinations of theta series
and of eta products. Starting from (26.6) we get the following result:

Example 26.11 Let ρδ,ε and ρ̃δ,ε be the characters on J6 with period 4
√

−2
as defined in Example 26.8. Let ϕδ,ε and ϕ̃δ,ε be the characters on J6 with
periods 2

√
3 and 24, respectively, as defined in Example 26.2. Then we have

the identities

Θ1

(
−24, ϕδ,ε,

z
8

)
−2δεΘ1

(
−24, ρδ,ε,

3z
8

)

= H1(z) − 2δεH3(z) + 2δ H5(z) + 2εH7(z), (26.31)

Θ1

(
−24, ϕ̃δ,ε,

z
8

)
− 2δεi Θ1

(
−24, ρ̃δ,ε,

3z
8

)

= H̃1(z) − 2δεi H̃3(z) + 2δi H̃5(z) + 2ε H̃7(z), (26.32)

where the components Hj and H̃j are normalized integral Fourier series with
denominator 8 and numerator classes j modulo 8 which form pairs of sign
transforms and which are eta products,

H1 =
[

12, 66

2, 33, 122

]
, H3 =

[
1, 4, 64

2, 32, 12

]
,

H5 =
[
22, 6, 12

3, 4

]
, H7 =

[
12, 122

2, 3

]
,

H̃1 =
[
25, 33, 12
12, 42, 63

]
, H̃3 =

[
22, 32, 12

1, 62

]
,

H̃5 =
[
22, 3, 122

4, 62

]
, H̃7 =

[
25, 3, 123

12, 42, 63

]
.

For the Fricke transforms of the eta products in (26.4) and for the sign trans-
forms of these functions we introduce the notations

F̃1 =
[
2, 3, 4

6

]
, G̃1 =

[
24, 3, 12
42, 62

]
, F̃3 =

[
1, 2, 12

6

]
, G̃3 =

[
24, 3, 12
12, 62

]
,

(26.33)

F1 =
[
2, 4, 62

3, 12

]
, G1 =

[
24, 6
3, 42

]
, F3 =

[
24, 12
1, 4, 6

]
, G3 =

[
12, 42, 6

22, 3

]
,

(26.34)
where the subscripts indicate the numerators. Starting from (26.3) we obtain
the following results:

Example 26.12 Let χδ,ε and χ̃δ,ε be the Dirichlet characters as given in
Example 26.1, and let ψδ,ε and ψ̃δ,ε be the characters on O2 with periods 6
and 12

√
−2, respectively, as defined in Example 26.1. Let ψ̃δ and ϕ̃δ be the
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characters on O2 with periods
√

−2, 2 and 4
√

−2, respectively, as given in
Example 26.9. Then we have the identities

Θ1

(
−8, ψδ,−1,

z
8

)
=

∞∑

n=1

χδ,−1(n)
(∑

d|n

(−2
d

))
e
(

nz
8

)

=
1
3
((

2F1(z) + G1(z)
)

− 2δ
(
F3(z) − G3(z)

))
, (26.35)

Θ1

(
−8, ψ̃δ,−1,

z
8

)
=

∞∑

n=1

χ̃δ,−1(n)
(∑

d|n

(−2
d

))
e
(

nz
8

)

=
1
3
((

2F̃1(z) + G̃1(z)
)

+ 2δi
(
F̃3(z) − G̃3(z)

))
, (26.36)

Θ1

(
−8, ψδ,1,

z
8

)
− 4δ Θ1

(
−8, ψδ,1,

3z
8

)
+ 4δ Θ1

(
−8, ψ̃δ,

27z
8

)

=
(
2F1(z) − G1(z)

)
− 2δ

(
F3(z) + G3(z)

)
, (26.37)

Θ1

(
−8, ψ̃δ,1,

z
8

)
+ 4δi Θ1

(
−8, ψ̃δ,1,

3z
8

)
+ 4δi Θ1

(
−8, ϕ̃−δ,

27z
8

)

=
(
2F̃1(z) − G̃1(z)

)
+ 2δi

(
F̃3(z) + G̃3(z)

)
, (26.38)

with notations as given in (26.33), (26.34).

26.4 Non-cuspidal Eta Products with Denominator 4

The sign transforms of the eta products F1, F3 on Γ∗(12) in (25.9) allow
a similar result as before in Example 25.5. It involves characters on O3

which are known from Examples 18.16 and 25.6, and therefore we get another
two eta identities (we denote the characters different from before in these
examples):

Example 26.13 Let ψ1 be the principal character modulo 2 on O3, and
define a character ψ−1 modulo 4 on O3 by ψ−1(μ) =

(−1
μ μ

)
. For δ ∈ {1, −1},

the corresponding theta series of weight 1 satisfy

Θ1

(
−3, ψδ,

z
4

)
=

∑

n>0 odd

(
δ
n

)(∑

d|n

(
d
3

))
e
(

nz
4

)
= F̃1(z) + δ F̃3(z), (26.39)

where the components F̃j are normalized integral Fourier series with denom-
inator 4 and numerator classes j modulo 4. Both of them are eta products,

F̃1 =
[

42, 65

2, 32, 122

]
, F̃3 =

[
25, 122

12, 42, 6

]
. (26.40)

With f̃j(z) = F̃j(2z) we have the eta identities
[
22, 62

1, 3

]
= f̃1 + f̃3 ,

[
1, 3, 4, 12

2, 6

]
= f̃1 − f̃3. (26.41)
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The identities (26.41) are equivalent to identities for the coefficients which
also can be deduced from the arithmetic in the ring of Eisenstein integers.

Now we consider

g1 =
[
210, 32, 122

14, 44, 64

]
, h1 =

[
24, 3, 12
1, 4, 62

]
, (26.42)

the sign transforms of the eta products of level 6 in Example 18.14. We find
two linear combinations with multiplicative coefficients. One of them is an
Eisenstein series and a theta series on the Gaussian number field. The other
one misbehaves at the prime p = 3; it is a sum of theta series in the variables
z
4 and 9z

4 . The characters are known from previous examples, and so again
we get eta identities:

Example 26.14 Let ρδ be the characters on O1 with period 12 as defined
in Example 26.5. Let ϕ be the character modulo 4 on O1 as given in Exam-
ples 24.26, 15.11, 13.5, such that ρ−1 is the imprimitive character induced
by ϕ. Then we have

Θ1

(
−4, ρ1,

z
4

)
=

∞∑

n=1

(
6
n

)(∑

d|n

(−1
d

))
e
(

nz
4

)
= 1

3

(
g1(z) + 2 h1(z)

)
, (26.43)

Θ1

(
−4, ρ−1,

z
4

)
− 8 Θ1

(
−4, ϕ, 9z

4

)

=
∞∑

n=1

(
18
n

)(∑

d|n

(−1
d

))
e
(

nz
4

)
− 8

∞∑

n=1

(
2
n

)(∑

d|n

(−1
d

))
e
(

9nz
4

)

= − g1(z) + 2 h1(z) (26.44)

with eta products g1, h1 as given in (26.42). Moreover, we have the eta
identity

3
[
32, 122, 1810

64, 94, 364

]
+ 6

[
3, 12, 184

62, 9, 36

]
=
[
210, 32, 122

14, 44, 64

]
+ 2

[
24, 3, 12
1, 4, 62

]
. (26.45)

Of course, (26.45) follows from (26.11), (26.43). More complicated eta iden-
tities follow from (26.11), (26.44) connected with (13.11), (15.27) or (24.72).
These identities are transformed into relations for coefficients when the eta
products are split into products of simple theta series.

The non-cuspidal eta products with denominator 4 which remain form six
pairs of sign transforms. One of the members in each pair is the Fricke
transform of an eta product with denominator 12. Therefore the results
in Sect. 26.2 help us to find results for denominator 4. In particular from
Example 26.4 we get linear relations. Together with other results, they show
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that the 16 non-cuspidal eta products with denominator 4 span a space of
dimension 11. We introduce the notations

G1 =
[

1, 43, 62

22, 3, 12

]
, G̃1 =

[
2, 3, 42

1, 6

]
, H1 =

[
27, 12

12, 43, 6

]
, H̃1 =

[
12, 2, 12

4, 6

]
.

(26.46)
Then the linear relations read as follows:

Example 26.15 We have the eta identities

[
12, 4, 69

23, 34, 123

]
= 1

3

(
4 G1 − H1

)
,

[
23, 34, 12
12, 4, 63

]
= 1

3

(
4 G̃1 − H̃1

)
,

[
1, 123

3, 4

]
= 1

3

(
− G1 + H1

)
,

[
23, 3, 124

1, 42, 63

]
= 1

3

(
G̃1 − H̃1

)
,

[
14, 62

22, 32

]
= 2 G1 − H1,

[
210, 32, 122

14, 44, 64

]
= 2 G̃1 − H̃1

with notations as given in (26.46).

The Fricke transforms of the eta products g̃1, g̃7 in (26.17) and their sign
transforms have denominator 4, and they are not involved in the linear rela-
tions in Example 26.15. We get results which are somewhat more complicated
than those in Example 26.6:

Example 26.16 For δ ∈ {1, −1}, let the Dirichlet characters χ0
δ and the

characters ψ0
δ on O3 with periods 2(1 + ω) and 4(1 + ω) be given as in Ex-

ample 26.6. Let the characters ψδ on O3 with periods 2 and 4 be given as in
Example 26.13. Let φ0

δ be the characters on O3 with period 8(1 +ω) as given
in Example 26.6, and let φδ be the characters on O3 with period 8 as given
in Example 25.5. Then we have the identities

Θ1

(
−3, ψ0

δ , z
4

)
− 2δ Θ1

(
−3, ψδ,

3z
4

)

=
∞∑

n=1

χ0
δ(n)

(∑

d|n

(
d
3

))
e
(

nz
4

)
− 2δ

∞∑

n=1

(
δ
n

)(∑

d|n

(
d
3

))
e
(

3nz
4

)

= h1(z) − 2δ h3(z), (26.47)

Θ1

(
−3, φ0

δ ,
z
4

)
+ 2δ Θ1

(
−3, φδ,

3z
4

)

=
∞∑

n=1

(−6δ
n

)(∑

d|n

(
d
3

))
e
(

nz
4

)
+ 2δ

∞∑

n=1

(
2δ
n

)(∑

d|n

(
d
3

))
e
(

3nz
4

)

= h̃1(z) + 2δ h̃3(z), (26.48)
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where the components hj, h̃j are normalized integral Fourier series with de-
nominators 4 and numerator classes j modulo 4. All of them are eta products,

h1 =
[

22, 64

32, 4, 12

]
, h̃1 =

[
22, 32, 12

4, 62

]
, h3 =

[
1, 4, 6, 12

2, 3

]
, h̃3 =

[
22, 3, 122

1, 62

]
.

(26.49)

From Example 26.16 and Examples 26.6, 26.13, 25.5 one can infer eta iden-
tities; we do not state them here.

Now we look for linear combinations of the eta products in (26.46) which
have multiplicative coefficients. We find two such combinations which are
cuspidal theta series with characters from Example 26.7:

Example 26.17 For ν ∈ {1, −1}, let the characters ϕν , ϕ̃ν on O3 with
period 24, the characters χν , χ̃ν on O1 with period 36, and the characters ξ,
ξ̃ on Z[

√
3] with period 12 be defined as in Example 26.7. Then we have the

identities

Θ1

(
12, ξ, z

4

)
= Θ1

(
−3, ϕν , z

4

)
= Θ1

(
−4, χν , z

4

)
= 1

3

(
2 G1(z) + H1(z)

)
,

(26.50)
Θ1

(
12, ξ̃, z

4

)
= Θ1

(
−3, ϕ̃ν , z

4

)
= Θ1

(
−4, χ̃ν , z

4

)
= 1

3

(
2 G̃1(z) + H̃1(z)

)
,

(26.51)
with eta products G1, G̃1, H1, H̃1 as given in (26.46). We have the eta
identities

[
12, 187

6, 92, 363

]
− 2

[
62, 9, 363

3, 12, 182

]
= 1

3

(
2 G1 + H1

)
,

[
92, 12, 18

6, 36

]
+ 2

[
3, 18, 362

6, 9

]
= 1

3

(
2 G̃1 + H̃1

)
.

Applying W12 to the right hand side in (26.11) yields 1
3 (−2G̃1 + H̃1 + 4h1),

with h1 from (26.42), as a candidate for an eigenform. Sign transform yields
another such candidate. But these functions have only partially multiplica-
tive coefficients, and they misbehave at the prime p = 3. We need to add a
further eta product, and we get sums of two theta series as in (26.44). (Now
we write g̃1 instead of h1.)

Example 26.18 For δ ∈ {1, −1}, let the characters ϕδ and ρδ on O1 with
periods 3(1 + i) and 12, respectively, be given as in Example 26.5. Let χ0 be
the principal character modulo 1 + i on O1 as in Examples 10.6, 20.25, and
let ϕ be the character with period 4 on O1 as given in Examples 13.5, 15.11,
24.26, 26.14. Then we have the identities

Θ1

(
−4, ϕδ,

z
4

)
− 4 Θ1

(
−4, χ0,

9z
4

)
= 1

3

(
−2G1(z)+H1(z)+4g1(z)

)
+2δg5(z),

(26.52)
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Θ1

(
−4, ρδ,

z
4

)
− 4Θ1

(
−4, ϕ, 9z

4

)
= 1

3

(
−2G̃1(z) + H̃1(z) + 4g̃1(z)

)
+ 2δg̃5(z),

(26.53)
with eta products G1, G̃1, H1, H̃1 as given in (26.46), and

g1 =
[
1, 2, 6

3

]
, g̃1 =

[
24, 3, 12
1, 4, 62

]
, g5 =

[
6, 9, 18

3

]
, g̃5 =

[
3, 12, 184

62, 9, 36

]
.

26.5 Non-cuspidal Eta Products with Denominator 3

One of the non-cuspidal eta products with denominator 3 is the sign trans-
form of

[
1−1, 33

]
in Example 11.4, and another one is the sign transform of[

13, 2−2, 3−1, 62
]

in Example 18.15. We denote these functions by

Fa =
[

1, 4, 69

23, 33, 123

]
, Fb =

[
27, 3, 12
13, 43, 6

]
. (26.54)

Both of them have numerator 1. They combine to eigenforms as follows:

Example 26.19 Let χ0 and χ′
0 be the principal Dirichlet characters modulo

3 and modulo 6, respectively. Let ψ0 and ψ′
0 be the principal characters on O3

modulo 1 + ω and modulo 2(1 + ω), respectively. Then we have the identities

Θ1

(
−3, ψ′

0,
z
3

)
=

∞∑

n=1

χ′
0(n)

(∑

d|n

(
d
3

))
e
(

nz
3

)
= 1

4

(
Fb(z) + 3 Fa(z)

)
,

(26.55)

Θ1

(
−3, ψ0,

z
3

)
=

∞∑

n=1

χ0(n)
(∑

d|n

(
d
3

))
e
(

nz
3

)
= 1

4

(
Fb

(
z
4

)
− Fa

(
z
4

) )

(26.56)
with eta products Fa, Fb as given in (26.54).

Another two of the non-cuspidal eta products with denominator 3 are the
sign transforms of the functions g1, g2 in Example 18.15. We denote them
by

g̃1 =
[

22, 64

1, 3, 4, 12

]
, g̃2 =

[
24, 32, 122

12, 42, 62

]
, (26.57)

where the subscripts indicate the numerators. We get a result which is simpler
than that in Example 18.15:

Example 26.20 For δ ∈ {1, −1}, let ρδ be the character on O1 with period
3 which is fixed by its value ρδ(1 + i) = δ on a generator of (O1/(3)) � Z8.
Then we have ρδ(μ) = χδ(μμ) for μ ∈ O1, where χ1 and χ−1 denote the
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principal and the non-principal Dirichlet character modulo 3, respectively.
We have the identities

Θ1

(
−4, ρδ,

z
3

)
=

∞∑

n=1

χδ(n)
(∑

d|n

(−1
d

))
e
(

nz
3

)
= g̃1(z) + δ g̃2(z) (26.58)

with eta products g̃1, g̃2 as given in (26.57).

The non-cuspidal eta products which remain form seven pairs of sign trans-
forms. All of them are Fricke transforms of eta products with denominators
8 or 4. For the Fricke transforms of the functions Hj in Example 26.11 we
introduce the notations

f1 =
[
1, 2, 62

3, 4

]
, f̃1 =

[
24, 3, 12
1, 42, 6

]
, f2 =

[
26, 122

12, 43, 6

]
, f̃2 =

[
12, 122

4, 6

]
,

(26.59)
where the subscripts indicate the numerators. The resulting identities are
more complicated than (26.31) in Example 26.11:

Example 26.21 For δ ∈ {1, −1}, let ϕδ,1 and ϕδ,−1 be the characters on J6

with periods
√

−6 and 2
√

3 as given in Example 26.2. Let φδ be the char-
acters on J6 with period

√
3 which are fixed by their values φδ(

√
−2) = δ,

φδ(−1) = 1 on generators of (J6/(
√

3)) � Z2
2 . In particular, φ1 is the prin-

cipal character modulo
√

3. Let χδ denote the Dirichlet characters modulo 3
as given in Example 26.20. Then we have the identities

Θ1

(
−24, ϕδ,−1,

z
3

)
= 1

2

(
f1(z) + f̃1(z)

)
+ δ

2

(
f2(z) − f̃2(z)

)
, (26.60)

Θ1

(
−24, φδ,

z
3

)
=

∞∑

n=1

χδ(n)
(∑

d|n

(−6
d

))
e
(

nz
3

)
= − Fδ

(
z + 3

2

)
(26.61)

with
Fδ(z) = 1

2

(
f2

(
z
2

)
+ f̃2

(
z
2

) )
+ δ

2

(
f1

(
z
2

)
− f̃1

(
z
2

) )

and with eta products fj, f̃j as given in (26.59).

Alternatively, one may consider Fδ itself instead of its sign transform and
write (26.61) in the form

Θ1

(
−24, ϕδ,1,

z
3

)
− δ Θ1

(
−24, φδ,

2z
3

)
= Fδ(z).

Comparing (26.60) and (26.5) yields two eta identities

1
2

(
f1 + f̃1

)
=
[

166, 242

83, 322, 48

]
− 2

[
242, 322

8, 48

]
,

1
2

(
f2 − f̃2

)
=
[
16, 32, 482

8, 96

]
−
[
164, 24, 96
82, 32, 48

]
,

which are trivial consequences from the identities for weight 1
2 in Sect. 8.
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For the Fricke transforms of the eta products F1, G1, F3, G3 in (26.34) we
introduce the notations

h1 =
[

1, 64

2, 3, 12

]
, h̃1 =

[
22, 3, 6

1, 4

]
, h2 =

[
2, 64

32, 4

]
, h̃2 =

[
2, 32, 122

4, 62

]
,

(26.62)
where the subscripts indicate the numerators and

(
h1, h̃1

)
,
(
h2, h̃2

)
are pairs

of sign transforms. These functions exhibit a similar behavior as those in
Example 26.21:

Example 26.22 For δ, ε ∈ {1, −1}, let ψδ,ε be the characters on O2 with
period 6 as given in Example 26.1. Let ψ0

δ be the characters on O2 with period
3 which are fixed by their values ψ0

δ (
√

−2) = δ, ψ0
δ (−1) = 1 on generators of

(O2/(3)) � Z2
2 . In particular, ψ0

1 is the principal character modulo 3. Let
χδ denote the Dirichlet characters modulo 3 as before. Then we have the
identities

Θ1

(
−8, ψ−1,δ,

z
3

)
= 1

2

(
h1(z) + h̃1(z)

)
− δ

2

(
h2(z) − h̃2(z)

)
, (26.63)

Θ1

(
−8, ψ0

δ , z
3

)
=

∞∑

n=1

χδ(n)
(∑

d|n

(−2
d

))
e
(

nz
3

)
= − Hδ

(
z + 3

2

)
(26.64)

with
Hδ(z) = 1

2

(
h2

(
z
2

)
+ h̃2

(
z
2

))
+ δ

2

(
h1

(
z
2

)
− h̃1

(
z
2

))

and with eta products hj, h̃j as given in (26.62).

Similarly as before we can write (26.64) in the form

Θ1

(
−8, ψ1,δ,

z
3

)
− δ Θ1

(
−8, ψ0

δ , 2z
3

)
= Hδ(z).

From (26.63) and (26.1) we get two eta identities

1
2

(
h1 + h̃1

)
=
[
16, 484

8, 962

]
− 2

[
16, 242, 962

8, 482

]
,

1
4

(
h2 − h̃2

)
=
[

32, 484

16, 24, 96

]
−
[
162, 48, 96

8, 32

]
,

which again are trivial consequences from the identities for weight 1
2 in Sect. 8.

Now we consider the Fricke transforms of the eta products G1, H1 in (26.46)
which we denote by

Φ =
[
22, 33, 12
1, 4, 62

]
, Φ̃ =

[
1, 67

2, 33, 122

]
. (26.65)
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Applying W12 to the relations in the left hand column in Example 26.15 yields
linear relations among the non-cuspidal eta products with denominator 3. In
the same way, from 2G1+H1 in Example 26.17 we get a linear combination of
Φ, Φ̃ which is a cuspidal eigenform. From −2G1+H1 in Example 26.18 we get
another linear combination which is a component in non-cuspidal eigenforms.
All these results are collected in the following example:

Example 26.23 With notations as given in (26.65), we have the linear re-
lations
[
29, 3, 122

13, 44, 63

]
= 2 Φ − Φ̃,

[
13, 12
3, 4

]
= − Φ + 2 Φ̃,

[
22, 124

42, 62

]
= 1

2

(
Φ − Φ̃

)

(26.66)
among non-cuspidal eta products with denominator 3. For δ, ν ∈ {1, −1},
let the characters ϕν on O3 with period 24, the characters χν on O1 with
period 36, and the character ξ modulo 12 on Z[

√
3] be given as in Exam-

ples 26.7, 26.17, and let ρδ be the characters on O1 with period 3 as defined
in Example 26.20. Then we have the identities

Θ1

(
12, ξ, z

3

)
= Θ1

(
−3, ϕν , z

3

)
= Θ1

(
−4, χν , z

3

)
= 1

2

(
Φ(z) + Φ̃(z)

)
,

(26.67)

Θ1

(
−4, ρδ,

z
3

)
=

∞∑

n=1

(
n
3

)(δ−1)/2
(∑

d|n

(−1
d

))
e
(

nz
3

)
= − Gδ

(
z + 3

2

)

(26.68)
with

Gδ(z) =
η(z)η(3z)η(6z)

η(2z)
− δ

2

(
Φ
(

z
2

)
− Φ̃

(
z
2

) )
.

Comparing (26.67) and (26.18) yields a four term eta identity which again is
a trivial consequence from the identities for weight 1

2 in Sect. 8.

The final example for denominator t = 3 deals with the Fricke transforms of
the eta products h1, h3 in Example 26.16. We get the following results:

Example 26.24 Let χ0 and χ′
0 be the principal Dirichlet characters mod-

ulo 3 and modulo 6, respectively, and let ψ0 be the principal character on O3

modulo 1+ω as given in Example 26.19. Let ψ0
1 be the principal character on

O3 modulo 2(1+ω), and let ψ0
−1 be the character on O3 with period 4(1+ω)

as given in Examples 26.6 and 26.3. Then we have the identities

Θ1

(
−3, ψ0

−1,
z
3

)
=

∞∑

n=1

(
12
n

)(∑

d|n

(
d
3

))
e
(

nz
3

)
= 1

2

(
g(z) + g̃(z)

)
, (26.69)
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Θ1

(
−3, ψ0

1 , z
3

)
− 3 Θ1

(
−3, ψ0,

4z
3

)

=
∞∑

n=1

χ′
0(n)

(∑

d|n

(
d
3

))
e
(

nz
3

)
− 3

∞∑

n=1

χ0(n)
(∑

d|n

(
d
3

))
e
(

4nz
3

)

= 1
2

(
g
(

z
4

)
− g̃

(
z
4

) )
, (26.70)

where g, g̃ are eta products,

g =
[

24, 62

1, 3, 42

]
, g̃ =

[
1, 2, 3, 12

4, 6

]
. (26.71)

26.6 Non-cuspidal Eta Products with Denominator 2

One of the non-cuspidal eta products with denominator 2 is the Fricke trans-
form of the eta product with denominator 6 in Example 26.3. Its coefficients
are multiplicative, but violate the proper recursions at powers of the prime 3.
We can represent this function by a sum of two theta series:

Example 26.25 Let ψ = ψ−1 be the character on O3 with period 4 which
is given by ψ(μ) =

(−1
μ μ

)
, as in Examples 25.6, 26.13, 26.16. Let ψ̃0 be the

imprimitive character modulo 4(1 + ω) on O3 which is induced from ψ, as
given in Example 26.3. Then we have the identity

Θ1

(
−3, ψ̃0,

z
2

)
+ 2 Θ1

(
−3, ψ, 3z

2

)

=
∞∑

n=1

(−9
n

)(∑

d|n

(
d
3

))
e
(

nz
2

)
+ 2

∞∑

n=1

(−1
n

)(∑

d|n

(
d
3

))
e
(

3nz
2

)

=
η5(2z)η2(3z)η2(12z)
η2(z)η2(4z)η3(6z)

. (26.72)

The other non-cuspidal eta products with denominator 2 form two pairs of
sign transforms for which we introduce the notations

F =
[
33, 4, 12

1, 62

]
, F̃ =

[
1, 42, 67

23, 33, 122

]
, G =

[
27, 3, 122

13, 42, 63

]
, G̃ =

[
13, 4, 12

22, 3

]
.

(26.73)
In the following example we present linear relations, showing that these func-
tions span a two-dimensional space, and we present a theta series which is
identified with combinations of F and F̃ in two different ways:

Example 26.26 With notations from (26.73) the linear relations

G = 2 F − F̃ , G̃ = − F + 2 F̃ (26.74)
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hold. Let χ0 be the principal character modulo 1 + i on O1. Then we have
the identities

Θ1

(
−4, χ0,

z
2

)
=

∑

n>0 odd

(∑

d|n

(−1
d

))
e
(

nz
2

)

= 1
2

(
F (z) + F̃ (z)

)
= 1

2

(
F
(

z
3

)
− F̃

(
z
3

))
, (26.75)

F (z) = Θ1

(
−4, χ0,

z
2

)
+ Θ1

(
−4, χ0,

3z
2

)
,

F̃ (z) = Θ1

(
−4, χ0,

z
2

)
− Θ1

(
−4, χ0,

3z
2

)
.

26.7 Denominator 1, First Part

There are 48 new non-cuspidal eta products of weight 1 for Γ0(12) with
denominator 1. They will be inspected here and in the following subsection.
We will denote these functions by f1, f2, . . . where the subscripts are just
labels without any conceptual meaning. However, we will write f̃j for the
sign transform and fW

j for the Fricke transform of fj . We start with the eta
products

f1 =
[

1, 44, 68

24, 33, 124

]
, f2 =

[
28, 3, 124

13, 44, 64

]
,

fW
1 =

[
28, 34, 12
14, 43, 64

]
, fW

2 =
[

14, 4, 68

24, 34, 123

] (26.76)

where f1, f2 are the sign transforms of the eta products F , H for Γ∗(12)
in (25.11). In Example 25.7, besides F and H, a third eta product G for
Γ∗(12) occurs whose sign transform is

[
12, 2−1, 32, 6−1

]
and was identified in

Example 18.18. We repeat the result for this function and present four new
identities:

Example 26.27 Let 1 stand for the trivial character on O3, and let ρ0 be
the principal character modulo 2 on O3. Then with notations from (26.76)
we have the identities

−2 Θ1(−3, 1, z) + 8 Θ1(−3, 1, 4z) = f1(z) − f2(z) =
η2(z)η2(3z)
η(2z)η(6z)

, (26.77)

Θ1(−3, ρ0, z) + 3 Θ1(−3, ρ0, 2z) − 3 Θ1(−3, ρ0, 4z) = f2(z), (26.78)

Θ1(−3, 1, z) = 1
12

(
fW
1

(
z
2

)
+ fW

2

(
z
2

))
, (26.79)

Θ1(−3, ρ0, z) = 1
8

(
fW
1 (z) − fW

2 (z)
)
. (26.80)

In the following example we consider the sign transforms of six eta products
for Γ0(3) and for Γ0(6) which were treated in Examples 11.4, 18.17, 18.18.
According to the previous examples, these functions span a space of dimen-
sion 4 and can be identified with combinations of theta series for the trivial
character on O3. Now we get similar results:
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Example 26.28 Let 1 stand for the trivial character on O3, and introduce
the notations

f3 =
[

29, 3, 12
13, 43, 63

]
, f4 =

[
12, 42, 615

25, 36, 126

]
, f5 =

[
13, 43, 6
23, 3, 12

]
, f6 =

[
1, 4, 67

2, 33, 123

]
.

(26.81)
Then we have the linear relations

[
215, 32, 122

16, 46, 65

]
= 9 f4 − 8 f5,

[
2, 33, 123

1, 4, 63

]
= f4 − f5 (26.82)

and the identities

f3(z) = 3Θ1(−3, 1, z) − 9Θ1(−3, 1, 3z) − 6Θ1(−3, 1, 4z) + 18Θ1(−3, 1, 12z),
(26.83)

f4(z) = − 2 Θ1(−3, 1, z) + 4 Θ1(−3, 1, 2z) + 4 Θ1(−3, 1, 4z), (26.84)

f5(z) = − 3 Θ1(−3, 1, z) + 3 Θ1(−3, 1, 2z) + 6 Θ1(−3, 1, 4z), (26.85)

f6(z) = − Θ1(−3, 1, z) + 3 Θ1(−3, 1, 3z) − 2 Θ1(−3, 1, 4z) + 6 Θ1(−3, 1, 12z).
(26.86)

Of course, each of the eta products in Example 26.28 can be written as a
combination of Eisenstein series when we use

Θ1(−3, 1, z) =
1
6

+
∞∑

n=1

(∑

d|n

(
d
3

))
e(nz).

For the sign transforms of the eta products F , G in Example 18.19 we get a
similar result as before in this example:

Example 26.29 Let 1 stand for the trivial character on O1, and let χ be the
character on O1 with period 3 which is given by χ(μ) =

(
μ μ
3

)
for μ ∈ O1 as

in Example 18.19. Then the eta products

f7 =
[

24, 62

1, 3, 4, 12

]
, f8 =

[
12, 42, 64

22, 32, 122

]
(26.87)

satisfy the identities

Θ1(−4, 1, z) − 9 Θ1(−4, 1, 9z) = − f7(z) − f8(z), (26.88)

Θ1(−4, χ, z) = 1
3 (f7(z) − f8(z)) =

∞∑

n=1

(
n
3

)(∑

d|n

(−1
d

))
e(nz). (26.89)
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For the Fricke transforms of the eta products in (26.2), Example 26.1, we
introduce the notations

f9 =
[

24, 6
12, 12

]
, f̃9 =

[
12, 42, 6
22, 12

]
, f10 =

[
1, 2, 62

3, 12

]
, f̃10 =

[
24, 3
1, 4, 6

]
.

(26.90)
Applying W12 to the linear combinations of eta products in (26.1) yields four
linear combinations of the functions (26.90) with multiplicative coefficients.
However, only one of them is an eigenform and a theta series, while the others
are sums of two or more theta series:

Example 26.30 For δ, ε ∈ {1, −1}, let ψδ,ε be the characters on O2 with
period 6 as given in Example 26.1. Let ψ0

1 be the principal character modulo 3
on O2, and let ψ0

−1(μ) =
(

μ μ
3

)
be the character modulo 3 on O2, as given

in Example 26.22. As in Examples 26.9, 13.13, let ψ̃−1 be the non-principal
character modulo 2 on O2, and let 1 stand for the trivial character on O2.
Then with notations from (26.90) we have the identities

Θ1 (−8, ψ−1,−1, z) = 1
6

(
f9(z) − f̃9(z) − f10(z) + f̃10(z)

)
, (26.91)

Θ1 (−8, ψ−1,1, z) + 4 Θ1 (−8, ψ−1,1, 3z) − 4 Θ1

(
− 8, ψ̃−1, 27z

)

= 1
2

(
f9(z) − f̃9(z) + f10(z) − f̃10(z)

)
, (26.92)

Θ1 (−8, ψ1,−1, z) + Θ1

(
−8, ψ0

−1, 2z
)

= 1
6

(
f9

(
z
2

)
+ f̃9

(
z
2

)
− f10

(
z
2

)
− f̃10

(
z
2

))
,

(26.93)
Θ1 (−8, ψ1,1, z) − Θ1

(
−8, ψ0

1 , 2z
)

− 4 Θ1 (−8, 1, 3z)
+ 8 Θ1 (−8, 1, 6z) + 8 Θ1 (−8, 1, 9z) − 16 Θ1 (−8, 1, 18z)

= − 1
2

(
f9

(
z
2

)
+ f̃9

(
z
2

)
+ f10

(
z
2

)
+ f̃10

(
z
2

))
. (26.94)

Since all the characters in this example are known from before, one can find
eta identities by comparing new theta identities with previous ones. The
same remark applies to most of the following examples in this section.

The Fricke transforms of the eta products in (26.7), Example 26.2, exhibit a
similar behavior. We denote them by

f11 =
[

42, 66

2, 32, 123

]
, f̃11 =

[
32, 42

2, 12

]
, f12 =

[
1, 4, 64

2, 3, 122

]
, f̃12 =

[
22, 3, 6
1, 12

]
.

(26.95)
For these functions we get the following results:

Example 26.31 For δ, ε ∈ {1, −1}, let ϕδ,ε be the characters on J6 with
period 2

√
3 as given in Example 26.2. Define characters ϕ0

δ,ε on J6 with
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period 2 by their values ϕ0
δ,ε(

√
3) = δε, ϕ0

δ,ε(1 +
√

−6) = ε on generators of
(J6/(2))× � Z2

2 , such that ϕ0
1,1 is the principal character modulo 2 and

ϕ0
−1,1(μ) =

(
2

μ μ

)
, ϕ0

1,−1(μ) =
(−1

μ μ

)
, ϕ0

−1,−1(μ) =
(−2

μ μ

)

for μ ∈ J6. Let φδ be the characters modulo
√

3 on J6 as given in Examples
26.21, such that, in particular, φ1 is the principal character modulo

√
3. Let

φ0
1 stand for the trivial and φ0

−1 for the non-trivial character with period 1
on J6. Then with notations from (26.95) we have the identities

Θ1 (−24, ϕδ,−1, z) + 2δ Θ1

(
−24, ϕ0

δ,−1, 3z
)

= 1
2

(
δ
(
f11(z) − f̃11(z)

)
−
(
f12(z) − f̃12(z)

))
, (26.96)

Θ1 (−24, ϕδ,1, z) − δΘ1 (−24, φδ, 2z) − 2δΘ1

(
−24, ϕ0

δ,1, 3z
)

+ 2Θ1

(
−24, φ0

δ , 6z
)

= 1
2

((
f11

(
z
2

)
+ f̃11

(
z
2

))
+ δ
(
f12

(
z
2

)
+ f̃12

(
z
2

)))
. (26.97)

The Fricke transforms of the eta products F1, F13 in (26.10) and an old eta
product from level 6 will be denoted by

f13 =
[

27, 3
13, 42, 6

]
, f̃13 =

[
13, 4, 62

22, 3, 12

]
, h =

[
2, 4, 6

12

]
. (26.98)

The relations in Example 26.4 imply that two new and an old eta product
of level 12 are linear combinations of f13 and f̃13. From Examples 26.5,
18.12, 26.7 we obtain, via Fricke transform, three linear combinations of
the eta products in (26.98) which have multiplicative coefficients and are
combinations of theta series:

Example 26.32 With notations from (26.96) we have the linear relations
[

33, 4
1, 12

]
= 1

3

(
2 f13 + f̃13

)
,

[
1, 42, 69

23, 33, 124

]
= 1

3

(
f13 + 2 f̃13

)
, (26.99)

[
44, 62

22, 122

]
= 1

2

(
f13 + f̃13

)
.

For δ, ν ∈ {1, −1}, let ϕν be the characters on O3 with period 24, χν the
characters on O1 with period 36, and ξ the characters modulo 12 on Z[

√
3],

as given in Examples 26.7, 26.17, 26.23. Let φδ denote the characters modulo
3(1 + i) on O1 as considered in Examples 26.5, 18.12, such that φ1 is the
principal character modulo 3(1 + i) and φ−1(μ) =

(
μ μ
3

)
for μ ∈ O1, 2 � μμ.

Let ρδ be the characters modulo 3 on O3 as given in Examples 26.20, 26.23,
such that ρ1 is the principal character modulo 3 and ρ−1(μ) =

(
μ μ
3

)
for
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μ ∈ O1. Finally, let 1 be the trivial character on O1 and χ0 the principal
character modulo 1 + i on O1. Then we have the identities

Θ1 (12, ξ, z) = Θ1 (−3, ϕν , z) = Θ1 (−4, χν , z) = 1
6

(
f13(z) − f̃13(z)

)
,

(26.100)
Θ1 (−4, φ−1, z) + Θ1 (−4, ρ−1, 2z) = 1

6

(
f13

(
z
2

)
+ f̃13

(
z
2

)
− 2h

(
z
2

))
,

(26.101)

Θ1 (−4, φ1, z) − Θ1 (−4, ρ1, 2z) − 8 Θ1

(
−4, χ0, 9z

)
+ 8 Θ1 (−4, 1, 18z)

= 1
2

(
f13

(
z
2

)
+ f̃13

(
z
2

)
+ 2 h

(
z
2

))
. (26.102)

The Fricke transforms of the eta products in (26.14), Example 26.6, will be
denoted by

f14 =
[

22, 64

1, 3, 122

]
, f̃14 =

[
1, 3, 4, 6

2, 12

]
. (26.103)

There are two linear combinations of these functions which are combinations
of theta series:

Example 26.33 For δ ∈ {1, −1}, let ψ0
δ be the characters on O3 as consid-

ered in Examples 26.6, 26.16, 26.24, such that ψ0
1 is the principal character

modulo 2(1+ω) and ψ0
−1(μ) =

(−1
μ μ

)
for μ ∈ O3, 3 � μμ, with period 4(1+ω).

Let ψδ be the characters on O3 from Examples 26.13, 26.16, 26.25, such that
ψ1 is the principal character modulo 2 and ψ−1(μ) =

(−1
μ μ

)
for μ ∈ O3 with

period 4. Let ψ0 and 1 denote the principal character modulo 1 + ω and the
trivial character on O3. Then we have the identities

Θ1

(
−3, ψ0

−1, z
)

+ 2 Θ1 (−3, ψ−1, 3z) = 1
2

(
f14(z) − f̃14(z)

)
, (26.104)

Θ1

(
−3, ψ0

1 , z
)

− 2 Θ1 (−3, ψ1, 3z) − 3 Θ1

(
−3, ψ0, 4z

)
+ 6 Θ1 (−3, 1, 12z)

= 1
2

(
f14

(
z
4

)
+ f̃14

(
z
4

))
(26.105)

with eta products as given in (26.103).

26.8 Denominator 1, Second Part

The Fricke transforms of the eta products in (26.22), Example 26.8, will be
denoted by

f15 =
[

25, 62

12, 42, 12

]
, f̃15 =

[
12, 62

2, 12

]
, f16 =

[
22, 65

32, 4, 122

]
, f̃16 =

[
22, 32

4, 6

]
.

(26.106)
Four linear combinations of these eta products with multiplicative coefficients
are obtained by applying W12 to the right hand side of (26.20). Two of them
are in fact eigenforms and theta series; the others are sums of two theta series:
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Example 26.34 For δ, ε ∈ {1, −1}, let ρδ,ε be the characters on J6 as de-
fined in Example 26.8, such that ρ1,1 is the principal character modulo

√
−2,

and
ρ1,−1(μ) =

(−1
μ μ

)
, ρ−1,ε(μ) =

(
2ε
μ μ

)

for μ ∈ J6 with period 2
√

−2. Let φ0
δ be the characters modulo 1 on J6 as

given in Example 26.31. Then we have the identities

Θ1 (−24, ρδ,−1, z) = 1
4

((
f15(z) − f̃15(z)

)
− δ

(
f16(z) − f̃16(z)

))
, (26.107)

Θ1 (−24, ρδ,1, z) − δ Θ1

(
−24, φ0

δ , 2z
)

= − 1
4

(
δ
(
f15

(
z
2

)
+ f̃15

(
z
2

))
+
(
f16

(
z
2

)
+ f̃16

(
z
2

)))
(26.108)

with eta products as given in (26.106).

The Fricke transforms of the eta products in (26.24) will be denoted by

f17 =
[
210, 32, 12
14, 44, 63

]
, f̃17 =

[
14, 63

22, 32, 12

]
,

f18 =
[

23, 34

12, 4, 62

]
, f̃18 =

[
12, 4, 610

23, 34, 124

]
.

(26.109)

We get four linear combinations of these functions with multiplicative coeffi-
cients when we apply W12 to the right hand sides in (26.26), (26.28) in Exam-
ple 26.9. One of them is a theta series; the others are combinations of theta
series. Likewise, the relations on the left hand side in Example 26.10 yield,
upon Fricke transformation, linear relations among the functions (26.109)
and four more non-cuspidal eta products with denominator 1:

Example 26.35 For δ ∈ {1, −1}, let ψ̃δ and ψ̃0
δ be the characters on O2 as

given in Example 26.9, such that ψ̃1 is the principal character modulo
√

−2,
ψ̃−1 is the non-principal character modulo 2, and ψ̃0

δ are the imprimitive
characters modulo 2(1 ±

√
−2) which are induced from ψ̃δ. Let ψ be the

principal character modulo 1 +
√

−2 (or modulo 1 −
√

−2, as well) on O2,
and let 1 denote the trivial character on O2. Then we have the identities

Θ1

(
−8, ψ̃0

−1, z
)

= 1
4

((
f17(z) − f̃17(z)

)
−
(
f18(z) − f̃18(z)

))
, (26.110)

Θ1

(
−8, ψ̃0

−1, z
)

+ 2 Θ1

(
−8, ψ̃−1, 3z

)

= 1
4

(
−
(
f17(z) − f̃17(z)

)
+ 3

(
f18(z) − f̃18(z)

))
, (26.111)

Θ1

(
−8, ψ̃0

1 , z
)

− Θ1 (−8, ψ, 2z)

= 1
4

((
f17

(
z
2

)
+ f̃17

(
z
2

))
−
(
f18

(
z
2

)
+ f̃18

(
z
2

)))
, (26.112)

Θ1

(
−8, ψ̃0

1 , z
)

− Θ1 (−8, ψ, 2z) − 2 Θ1

(
−8, ψ̃1, 3z

)
+ 2 Θ1(−8, 1, 6z)

= 1
4

(
−
(
f17

(
z
2

)
+ f̃17

(
z
2

))
+ 3

(
f18

(
z
2

)
+ f̃18

(
z
2

)))
(26.113)
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with eta products as given in (26.109). Among the non-cuspidal eta products
with denominator 1 there are the linear relations
[
2, 3, 42

1, 12

]
= 1

2

(
3 f18 − f17

)
,

[
23, 3, 123

1, 42, 62

]
= 1

2

(
f17 − f18

)
, (26.114)

[
1, 43, 63

22, 3, 122

]
= 1

2

(
3 f̃18 − f̃17

)
,

[
1, 6, 122

3, 4

]
= 1

2

(
f̃18 − f̃17

)
. (26.115)

Now we consider the Fricke transforms

f19 =
[

25, 32

12, 42, 6

]
, f̃19 =

[
12, 65

2, 32, 122

]
(26.116)

of the eta products F̃1, F̃3 in Example 26.13. We get the following results:

Example 26.36 For δ ∈ {1, −1}, let ψδ be the characters on O3 as given in
Example 26.13, whence ψ1 is the principal character modulo 2, and ψ−1(μ) =(−1

μ μ

)
has period 4. Let 1 stand for the trivial character on O3. Then we have

the identities
Θ1 (−3, ψ−1, z) = 1

4

(
f19(z) − f̃19(z)

)
, (26.117)

Θ1 (−3, ψ1, z) − 3 Θ1 (−3, 1, 4z) = − 1
4

(
f19

(
z
4

)
+ f̃19

(
z
4

))
(26.118)

with eta products as given in (26.116).

Comparing (26.39) and (26.117) yields an eta identity which is a trivial con-
sequence from the Gauss and Jacobi identities in Theorem 8.1.

Finally we consider the eta products

f20 =
[
27, 32, 12
12, 43, 63

]
, f̃20 =

[
12, 2, 63

32, 4, 12

]
, f21 =

[
1, 3, 123

4, 62

]
, f̃21 =

[
23, 6, 122

1, 3, 42

]
.

(26.119)
Here, f20 and f21 are the Fricke transforms of F̃ and G̃ in (26.73), Exam-
ple 26.26. Their sign transforms f̃20, f̃21 form a pair of Fricke transforms.
Similarly as before in (26.75), we get relations among the values of the func-
tions (26.119) at z and z

3 . Moreover, the final four eta products which were
not yet considered are linear combinations of the functions (26.119):

Example 26.37 Let χ0 be the principal character modulo 1 + i on O1, as
in Example 26.26, and let 1 stand for the trivial character on O1. Then with
notations from (26.119) we have the identities

Θ1 (−4, χ0, z) − Θ1 (−4, 1, 2z) = 1
4

(
6 f21(z) − f20(z)

)

= 1
4

(
2 f21

(
z
3

)
− f20

(
z
3

))
, (26.120)
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Θ1 (−4, χ0, z) + Θ1 (−4, 1, 2z) = 1
4

(
6 f̃21(z) + f̃20(z)

)

= 1
4

(
2 f̃21

(
z
3

)
+ f̃20

(
z
3

))
. (26.121)

Among the non-cuspidal eta products with denominator 1 there are the linear
relations

[
12, 4, 67

23, 32, 123

]
= f20 − 4 f21,

[
23, 32, 6
12, 4, 12

]
= f̃20 + 4 f̃21, (26.122)

[
1, 3, 43

22, 12

]
= f20 − 3 f21,

[
2, 42, 63

1, 3, 122

]
= f̃20 + 3 f̃21. (26.123)

We summarize the results of the final two subsections: Among the 48 new
non-cuspidal eta products of level 12 with denominator 1 there are 12 linear
relations, reducing the number of linearly independent functions to 36. We
got 37 linear combinations of these functions and of one old eta product (in
Example 26.32) which have multiplicative coefficients and which are identi-
fied with combinations of theta series. (We counted (26.120) and (26.121)
twice, since there are two linear combinations of eta products in each of these
relations.) Among these 37 combinations there are eight which are proper
theta series and eigenforms.



27 Weight 1 for Fricke Groups Γ∗(q3p)

27.1 An Overview, and the Case p = 2

Here and in the following sections we will inspect eta products of some levels
which have 8 or more positive divisors. A class of levels N with σ0(N) = 8
is given by N = q3p where q and p are distinct primes. Table 27.1 shows the
numbers of new holomorphic eta products of weight 1 for some values of q
and p. Since some of these numbers are quite large, we restrict our diligence
to eta products for the Fricke groups.

Table 27.1 does not include levels where both q and p are odd. In that case
η(pz)η(q3z) and η(z)η(q3pz) are the only new holomorphic eta products of
weight 1, they both belong to the Fricke group, and there is no chance to find
identities of the kind we are looking for. As well, chances are not favorable for
groups Γ∗(N) with N = 2q3 and primes q ≥ 5. Then the only new holomor-
phic eta products of weight 1 are

[
1, N

]
,
[
2, (N/2)

]
,
[
12, 2−1, (N/2)−1, N2

]
,[

1−1, 22, (N/2)2, N −1
]

with large orders at the cusp ∞.

In this first subsection we discuss the case q = 3, p = 2, N = 54. There is
a result for the eta products with denominator 8 which involves two old eta
products and several characters known from Sect. 18. We denote the new eta
products by

f1 =
[
22, 272

1, 54

]
, f25 =

[
12, 6, 9, 542

2, 3, 18, 27

]
,

(27.1)

f3 =
[
22, 3, 18, 272

1, 6, 9, 54

]
, f27 =

[
12, 542

2, 27

]
,

where the subscripts indicate the numerators.

Example 27.1 Let the characters ρδ,ν on O2 with period 12(1 +
√

−2), the
characters ϕδ,ν on J6 with period 12, and the characters ξ∗

δ on Z[
√

3] with

G. Köhler, Eta Products and Theta Series Identities,
Springer Monographs in Mathematics,
DOI 10.1007/978-3-642-16152-0 27, c© Springer-Verlag Berlin Heidelberg 2011

513

http://dx.doi.org/10.1007/978-3-642-16152-0_27
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Table 27.1: Numbers of new eta products of levels q3p with primes q �= p and
weight 1

denominator t 1 2 3 4 6 8 12 24 total
Γ∗(54), non-cuspidal 0 0 0 0 0 0 0 0 0
Γ∗(54), cuspidal 0 0 0 0 0 4 0 8 12
Γ0(54), non-cuspidal 10 6 6 4 2 0 4 0 32
Γ0(54), cuspidal 0 0 1 4 3 12 6 12 38
Γ∗(24), non-cuspidal 4 4 0 0 0 0 0 0 8
Γ∗(24), cuspidal 0 0 2 0 2 4 0 16 24
Γ0(24), non-cuspidal 76 18 32 6 10 60 26 44 272
Γ0(24), cuspidal 4 2 14 38 24 72 42 140 336
Γ∗(40), non-cuspidal 2 2 0 0 0 0 0 0 4
Γ∗(40), cuspidal 0 0 0 0 0 4 4 4 12
Γ0(40), non-cuspidal 14 4 0 8 0 8 0 0 34
Γ0(40), cuspidal 0 6 8 4 0 12 12 68 110
Γ∗(56), non-cuspidal 4 4 0 0 0 0 0 0 8
Γ∗(56), cuspidal 0 0 0 0 0 8 0 0 8
Γ0(56), non-cuspidal 8 4 0 4 0 8 0 0 24
Γ0(56), cuspidal 0 0 8 0 0 8 8 48 72
Γ∗(88), non-cuspidal 2 2 0 0 0 0 0 0 4
Γ∗(88), cuspidal 0 0 0 0 0 4 0 4 8
Γ0(88), non-cuspidal 6 2 0 4 0 8 0 0 20
Γ0(88), cuspidal 0 0 4 0 0 4 4 44 56

period 12(1 +
√

3) be defined as in Example 18.9. Let the characters ψδ on
O2 with period 4(1 +

√
−2), the characters φδ,ν on J6 with period 4, and ξδ

on Z[
√

3] with period 4(1 +
√

3) be given as in Examples 18.1, 18.5. Let the
characters χδ,ε,ν on J6 with period 12 be defined as in Example 18.2. Then
we have the identities

Θ1

(
12, ξ∗

δ , z
8

)
+ 2δ Θ1

(
12, ξ∗

δ , 3z
8

)
+ Θ1

(
12, ξ−δ,

9z
8

)

= Θ1

(
−8, ρδ,ν , z

8

)
+ 2δ Θ1

(
−8, ρδ,ν , 3z

8

)
+ Θ1

(
−8, ψ−δ,

9z
8

)

= Θ1

(
−24, ϕδ,ν , z

8

)
+ 2δ Θ1

(
−24, ϕδ,ν , 3z

8

)
+ Θ1

(
−24, φ−δ,ν , 9z

8

)

=
(
f1(z) − 2 f25(z)

)
+ δ

(
2 f3(z) − f27(z)

)
, (27.2)

Θ1

(
−24, χδ,ε,ν , z

8

)
+ εΘ1

(
−24, φε,ν , 3z

8

)

=
(
f1(z) + f25(z)

)

+ ε
(
f3(z) + f27(z)

)
+ δ

√
3
(
f5(z) − ε f7(z)

)
, (27.3)

where the eta products fj with denominator 8 and numerators j are defined
in (27.1) and by f5 = [6, 9], f7 = [3, 18].
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Comparing (27.2), (27.3) with appropriate results in Sect. 18 yields eta iden-
tities which, however, can also be deduced from the identities in weight 1

2 in
Theorem 8.2.

There are 8 holomorphic eta products of weight 1 for Γ∗(54) with denominator
24. Each two of them have numerators congruent to 1, 5, 7, and 11 modulo 24.
This seems to be a hint for theta series on the field Q(

√
−6) which, however,

is misleading. There are no linear combinations of these eta products with
multiplicative coefficients. We did not find additional functions such that
linear combinations exist which are eigenforms.

27.2 Levels N = 8p for Primes p ≥ 7

On the Fricke groups Γ∗(8p) with primes p ≥ 11 there are exactly eight
cuspidal and four non-cuspidal eta products of weight 1. Each of them is
a product of two simple theta series of weight 1

2 from Theorem 8.1. For
p ≥ 13 there are no linear combinations of these eta products which have
multiplicative coefficients. For p = 11 we can offer some nice results. We
recall from Example 7.2 that the class number of Q(

√
−22) is 2, which is

favorably small. For the cuspidal eta products with denominator 8 the result
is quite simple:

Example 27.2 The residues of
√

11 +
√

−2,
√

11 and −1 modulo 8 can be
chosen as generators of (J22/(8))× � Z8 × Z4 × Z2. Eight characters ψδ,ε,ν

on J22 with period 8 are fixed by their values

ψδ,ε,ν(
√

11 +
√

−2) = 1√
2
(ε + νi), ψδ,ε,ν(

√
11) = δ, ψδ,ε,ν(−1) = 1

with δ, ε, ν ∈ {1, −1}. The corresponding theta series of weight 1 decompose
as

Θ1

(
−88, ψδ,ε,ν , z

8

)
= f1(z) + δ f3(z) + ε

√
2 f5(z) − δε

√
2 f7(z) (27.4)

where the components fj are normalized integral Fourier series with denom-
inator 8 and numerator classes j modulo 8, and all of them are eta products,

f1 =
[
22, 442

1, 88

]
, f3 =

[
42, 222

8, 11

]
, f5 =

[
2, 8, 11, 44

4, 22

]
, f7 =

[
1, 4, 22, 88

2, 44

]
.

(27.5)

The cuspidal eta products on Γ∗(88) with denominator 24 form four of the
components of eight theta series, where the other four components are not
identified:
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Example 27.3 The residues of
√

11+
√

−2, 3+
√

−22,
√

11 and −1 modulo
24 can be chosen as generators of (J22/(24))× � Z2

8 × Z4 × Z2. Sixteen
characters χ = χδ,ε,ν,σ on J22 with period 24 are given by

χ(
√

11 +
√

−2) = ξ = 1√
2
(δ + σi), χ(3 +

√
−22) = −εξ,

χ(
√

11) = −δν, χ(−1) = 1

with δ, ε, ν, σ ∈ {1, −1}. The corresponding theta series of weight 1 decompose
as

Θ1

(
−88, χδ,ε,ν,σ, z

24

)
= g1(z) + εν

√
2 g5(z) − δε

√
2 g7(z) − δν g11(z)

+ δ
√

2 g13(z) − 2δεν g17(z)

+ 2ε g19(z) + ν
√

2g23(z), (27.6)

where the components gj are normalized integral Fourier series with denomi-
nator 24 and numerator classes j modulo 24. Four of them are eta products,

g13 =
[

43, 223

2, 8, 11, 44

]
, g17 = [1, 88] ,

(27.7)

g19 = [8, 11] , g23 =
[

23, 443

1, 4, 22, 88

]
.

The non-cuspidal eta products of weight 1 for Γ∗(88) also combine to theta
series on the field Q(

√
−22). Here we encounter characters which are known

from previous examples:

Example 27.4 Let ρδ be the characters on J22 with period 2 which were
denoted by χ′

δ,−δ in Examples 23.14, 23.15 and which are explicitly given by
ρ1(μ) =

(−2
μ μ

)
, ρ−1(μ) =

(−1
μ μ

)
for μ ∈ J22. As in Example 23.15, let ψ1

be the trivial character on J22, and let ψ−1 be the non-trivial character with
period 1 on J22. The corresponding theta series of weight 1 satisfy

Θ1

(
−88, ρδ,

z
2

)
=

∞∑

n=1

χδ(n)
( ∑

d|n

(−22
d

))
e
(

nz
2

)
= F (z) + δ G(z), (27.8)

Θ1 (−88, ψδ, z) = 1
2

(
Φ(z) + δ Ψ(z)

)
, (27.9)

where F , G and Φ, Ψ are normalized integral Fourier series with denomina-
tors 2 and 1, respectively. All of them are eta products,

F =
[
82, 112

4, 22

]
, G =

[
12, 882

2, 44

]
,

(27.10)

Φ =
[

25, 445

12, 42, 222, 882

]
, Ψ =

[
45, 225

22, 82, 112, 442

]
.
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The identity (27.9) follows easily from (8.8) and from the theory of binary
quadratic forms of discriminant −88. In particular, we have

Θ1 (−88, ψ1, z) = 1 +
∞∑

n=1

( ∑

d|n

(−22
d

))
e(nz) = 1

2

(
Φ(z) + Ψ(z)

)
.

For Γ∗(56), all the eight cuspidal eta products of weight 1 have denominator 8.
They combine nicely to eigenforms which are theta series on the field with
discriminant −56:

Example 27.5 Let J14 with Λ = Λ14 =
√√

2 +
√

−7 be the system of ideal
numbers for Q(

√
−14) as given in Example 7.7. The residues of Λ,

√
−7,

3 and −1 modulo 8 can be chosen as generators of (J14/(8))× � Z16 × Z3
2 .

Sixteen characters χ = χδ,ε,ν,σ on J14 with period 8 are fixed by their values

χ(Λ) = ξ, χ(
√

−7) = −εν, χ(3) = 1, χ(−1) = 1

with primitive 16th roots of unity

ξ = ξδ,ε,σ = 1
2

(
ε
√

2 + δ
√

2 + σi
√

2 − δ
√

2
)

and δ, ε, ν, σ ∈ {1, −1}. The corresponding theta series of weight 1 decompose
as

Θ1

(
−56, χδ,ε,ν,σ, z

8

)
=

(
f1(z) + δ

√
2g1(z)

)

+ ε
√

2 + δ
√

2
(
f3(z) − δ

√
2g3(z)

)

+ ν
√

2 + δ
√

2
(
f5(z) − δ

√
2g5(z)

)

− εν
(
f7(z) + δ

√
2g7(z)

)
, (27.11)

where the components fj and gj are normalized integral Fourier series with
denominator 8 and numerator classes j modulo 8. All of them are eta prod-
ucts,

f1 =
[
22, 282

1, 56

]
, f3 =

[
43, 143

2, 7, 8, 28

]
,

(27.12)

f5 =
[

23, 283

1, 4, 14, 56

]
, f7 =

[
42, 142

7, 8

]
,

g1 =
[
2, 7, 8, 28

4, 14

]
, g3 = [1, 56] ,

(27.13)
g5 = [7, 8] , g7 =

[
1, 4, 14, 56

2, 28

]
.
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The non-cuspidal eta products of weight 1 for Γ∗(56) with denominator 2 will
be denoted by

h1 =
[
72, 82

4, 14

]
, h∗

1 =
[

23, 7, 8, 283

1, 42, 142, 56

]
,

(27.14)

h3 =
[
1, 43, 143, 56
22, 7, 8, 282

]
, h7 =

[
12, 562

2, 28

]
,

where the subscripts indicate the numerators. These functions span a three-
dimensional space. There are three linear combinations which are eigenforms
and theta series. One of them is cuspidal and representable by theta series
on three distinct number fields:

Example 27.6 Among the eta products (27.14) we have the linear relation

h3 − h7 = h∗
1 − h1. (27.15)

Let J14 and Λ be given as before in Example 27.5. The residues of Λ and√
−7 modulo 2 generate the group (J14/(2))× � Z4 × Z2. Characters φδ and

ρν on J14 with period 2 are given by

φδ(Λ) = δ, φδ(
√

−7) = −1, ρν(Λ) = νi, ρν(
√

−7) = 1

with δ, ν ∈ {1, −1}. We have φδ(μ) = χδ(μμ) for μ ∈ J14 with Dirichlet
characters χ1(n) =

(−2
n

)
, χ−1(n) =

(−1
n

)
. The residues of 2 + ν

√
−7, 3 and

−1 modulo 2(1+ν
√

−7) can be chosen as generators of (O7/(2+2ν
√

−7))× �
Z3

2 . Characters ϕν on O7 with periods 2(1 + ν
√

−7) are given by

ϕν(2 + ν
√

−7) = 1, ϕν(3) = −1, ϕν(−1) = 1.

The residues of 1 +
√

2 and −1 modulo M = 2(3 +
√

2) are generators of the
group (Z[

√
2]/(M))× � Z6 × Z2. Define a Hecke character ξ on Z[

√
2] with

period M by

ξ(μ) =
{

sgn(μ)
−sgn(μ) for μ ≡

{
1 +

√
2

−1
mod M.

The corresponding theta series of weight 1 satisfy

Θ1

(
8, ξ, z

2

)
= Θ1

(
−56, ρν , z

2

)
= Θ1

(
−7, ϕν , z

2

)
= h1(z) + h7(z), (27.16)

Θ1

(
−56, φδ,

z
2

)
=

∞∑

n=1

χδ(n)
(∑

d|n

(−14
d

))
e
(

nz
2

)

=
(
h1(z) − h7(z)

)
+ 2δ

(
h3(z) − h7(z)

)
(27.17)

with eta products hj as given in (27.14).
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In (27.16), instead of ξ we can as well use the character ξ̂ with period M ′ =
2(3 −

√
2) which is defined by ξ̂(μ) = ξ(μ′) for μ ∈ Z[

√
2].

For the non-cuspidal eta products of weight 1 for Γ∗(56) with denominator 1
we introduce the notation

F1 =
[

25, 285

12, 42, 142, 562

]
, F2 =

[
45, 145

22, 72, 82, 282

]
, G =

[
1, 42, 142, 56

2, 7, 8, 28

]
,

(27.18)

F3 =
[
22, 7, 8, 282

1, 4, 14, 56

]
.

These functions are linearly independent. In the following example we present
three linear combinations of the eta products in (27.18) which are eigenforms.
One of them is cuspidal and representable by theta series on three distinct
number fields. We did not find an eigenform involving the eta product F3 in
its components.

Example 27.7 For ν ∈ {1, −1}, let the characters ϕν on J14 with period
1, the characters ρν on O7 with periods 1

2 (5 − ν
√

−7), and the character ξ∗

on Z[
√

2] with period 3 −
√

2 be defined as in Example 23.16. Let ψ = ϕ2
ν be

the character on J14 with period 1 which takes the values ψ(μ) = −1 if μ2

represents a non-principal ideal, and let 1 stand for the trivial character on
J14. The corresponding theta series of weight 1 satisfy

Θ1 (8, ξ∗, z) = Θ1 (−56, ϕν , z) = Θ1 (−7, ρν , z) = 1
2

(
F1(z) − F2(z)

)
,

(27.19)
Θ1 (−56, ψ, z) = 1

2

(
F1(z) − F2(z)

)
+ 2 G(z), (27.20)

Θ1 (−56, 1, z) = 2 +
∞∑

n=1

(∑

d|n

(−14
d

))
e(nz) = 1

2

(
F1(z) + 3 F2(z)

)
− 2G(z)

(27.21)
with eta products F1, F2, G as given in (27.18).

27.3 Eta Products for Γ∗(40)

Each four of the cuspidal eta products of weight 1 on Γ∗(40) have denomina-
tors 8, 12 and 24. Those with denominator 8 combine nicely to theta series
on the field with discriminant −40 whose class number is 2 and whose ideal
numbers are chosen in Example 7.2:

Example 27.8 The residues of 1 +
√

−10,
√

5 and −1 modulo 8 can be
chosen as generators of (J10/(8))× � Z8 × Z4 × Z2. Eight characters ψδ,ε,ν

on J10 with period 8 are given by their values

ψδ,ε,ν(1 +
√

−10) = 1√
2
(δ + νi), ψδ,ε,ν(

√
5) = ε, ψδ,ε,ν(−1) = 1



520 27. Weight 1 for Fricke Groups Γ∗(q3p)

with δ, ε, ν ∈ {1, −1}. The corresponding theta series of weight 1 decompose
as

Θ1

(
−40, ψδ,ε,ν , z

8

)
= f1(z) + δ

√
2 f3(z) + ε f5(z) − δε

√
2 f7(z), (27.22)

where the components fj are normalized integral Fourier series with denom-
inator 8 and numerator classes j modulo 8. All of them are eta products,

f1 =
[
22, 202

1, 40

]
, f3 =

[
1, 4, 10, 40

2, 20

]
, f5 =

[
42, 102

5, 8

]
, f7 =

[
2, 5, 8, 20

4, 10

]
.

(27.23)

In the following example we present four theta series whose components in-
volve two old eta products and the four new products of weight 1 for Γ∗(40)
with denominator 12. The characters in these theta series are known from
Example 17.2. Now we can identify the components f1, f5 in (17.2) which
was not done previously:

Example 27.9 Let the characters ϕδ,ε,ν on J10 with period 12, the charac-
ters ρδ,ε,ν on J6 with periods 4(3+ν

√
−6), and the characters ξδ,ε on J

Q(
√

15)

with period 4(3+
√

15) be defined as in Example 17.2. The corresponding theta
series of weight 1 satisfy the identities

Θ1

(
60, ξδ,ε,

z
12

)
= Θ1

(
−40, ϕδ,ε,ν , z

12

)
= Θ1

(
−24, ρδ,ε,ν , z

12

)

= g1(z) + δ g5(z) + 2ε g7(z) − 2δε g11(z), (27.24)

where the components gj are normalized integral Fourier series with denom-
inator 12 and numerator classes j modulo 12. All of them are eta products
or linear combinations thereof,

g1 =
[
22, 5, 8, 202

1, 4, 10, 40

]
−
[
1, 43, 103, 40
22, 5, 8, 202

]
,

g5 =
[

23, 5, 8, 203

1, 42, 102, 40

]
−
[
1, 42, 102, 40

2, 5, 8, 20

]
, (27.25)

g7 = [4, 10] , g11 = [2, 20] .

Two of the eta products in (27.25) form a component of a theta series which
is known from Example 17.11:

Example 27.10 Let the characters ψδ,ε,ν on J30 with period 4
√

−3, the
characters χδ,ε,ν on O1 with periods 12(3 − νi), and the characters ξδ,ε on
J

Q(
√

30) with period 4
√

3 be defined as in Example 17.11. Then we have

Θ1

(
120, ξδ,1,

z
12

)
= Θ1

(
−120, ψδ,1,ν , z

12

)

= Θ1

(
−4, χδ,1,ν , z

12

)
= h1(z) + δi h5(z),
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where the components hj are normalized integral Fourier series with denom-
inator 12 and numerator classes j modulo 12. The first one is given by

h1 =
[
22, 5, 8, 202

1, 4, 10, 40

]
+
[
1, 43, 103, 40
22, 5, 8, 202

]
=
[
2, 102

20

]
+ 2

[
42, 20

2

]
. (27.26)

For the eta products of weight 1 on Γ∗(40) with denominator 24 we get a
result resembling that in Example 27.3:

Example 27.11 The residues of 1 +
√

−10, 3 +
√

−10,
√

5 and −1 modulo
24 can be chosen as generators of (J10/(24))× � Z2

8 × Z4 × Z2. Sixteen
characters ϕ = ϕδ,ε,ν,σ on J10 with period 24 are fixed by their values

ϕ(1 +
√

−10) = ξ = 1√
2
(ε + σi), ϕ(3 +

√
−10) = −δνξ,

ϕ(
√

5) = δ, ϕ(−1) = 1

with δ, ε, ν, σ ∈ {1, −1}. The corresponding theta series of weight 1 decompose
as

Θ1

(
−40, ϕδ,ε,ν,σ, z

24

)
= f1(z) + δ f5(z) + δε

√
2 f7(z)

+ ε
√

2 f11(z) + 2ν f13(z)

− 2δν f17(z) − δεν
√

2 f19(z)

− εν
√

2f23(z), (27.27)

where the components fj are normalized integral Fourier series with denomi-
nator 24 and numerator classes j modulo 24. Four of them are eta products,

f7 =
[

43, 103

2, 5, 8, 20

]
, f11 =

[
23, 203

1, 4, 10, 40

]
,

f13 = [5, 8] , f17 = [1, 40] . (27.28)

The non-cuspidal eta products of weight 1 on Γ∗(40) combine to theta series
which are known from Example 24.30:

Example 27.12 As in Example 24.30, let the characters φδ on J10 with
period 2 be given by φδ(μ) = χδ(μμ) for μ ∈ J10 with Dirichlet characters
χ1(n) =

(−1
n

)
, χ−1(n) =

(
2
n

)
. Let 1 stand for the trivial character on J10,

and let ψ0 be the non-trivial character with period 1 on J10. Then we have
the identities

Θ1

(
−40, φδ,

z
2

)
=

∞∑

n=1

χδ(n)
(∑

d|n

(−10
d

))
e
(

nz
2

)
= F1(z) + δ F5(z),

(27.29)
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Θ1 (−40, ψ0, z) = 1
2

(
G(z) − H(z)

)
, (27.30)

Θ1 (−40, 1, z) = 1 +
∞∑

n=1

(∑

d|n

(−10
d

))
e(nz) = 1

2

(
G(z) + H(z)

)
, (27.31)

with eta products

F1 =
[
52, 82

4, 10

]
, F5 =

[
12, 402

2, 20

]
,

(27.32)

G =
[

25, 205

12, 42, 102, 402

]
, H =

[
45, 105

22, 52, 82, 202

]
.

27.4 Cuspidal Eta Products of Weight 1 for Γ∗(24)

We start our inspection of the cuspidal eta products of weight 1 on Γ∗(24)
with those of smallest denominator 3. Here we get an identity with theta
series on the field with discriminant −24:

Example 27.13 Let the generators of (J6/(3))× � Z6 × Z2 be chosen as in
Example 13.16, and define a quadruplet of characters χδ,ν on J6 with period
3 by

χδ,ν(
√

3 +
√

−2) = 1
2 (−δ + νi

√
3), χδ,ν(−1) = 1

with δ, ν ∈ {1, −1}. The corresponding theta series of weight 1 decompose as

Θ1

(
−24, χδ,ν , z

3

)
= f1(z) + δ f2(z), (27.33)

where the components fj are normalized integral Fourier series with denom-
inator 3 and numerator classes j modulo 3. Both of them are eta products,

f1 =
[
23, 3, 8, 123

1, 42, 62, 24

]
, f2 =

[
1, 43, 63, 24
22, 3, 8, 122

]
. (27.34)

For the eta products with denominator 6 the result is equally simple:

Example 27.14 The residues of 1 +
√

−6, 3
√

3 +
√

−2 and −1 modulo 6
can be chosen as generators of (J6/(6))× � Z6 × Z2

2 . Four characters ψδ,ν

on J6 with period 6 are given by

ψδ,ν(1 +
√

−6) = 1
2 (1 + νi

√
3), ψδ,ν(3

√
3 +

√
−2) = −δ,

ψδ,ν(−1) = 1

with δ, ν ∈ {1, −1}. The corresponding theta series of weight 1 decompose as

Θ1

(
−24, ψδ,ν , z

6

)
= g1(z) + δ g5(z), (27.35)
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where the components fj are normalized integral Fourier series with denom-
inator 6 and numerator classes j modulo 6 which are eta products,

g1 =
[
22, 3, 8, 122

1, 4, 6, 24

]
, g5 =

[
1, 42, 62, 24
2, 3, 8, 12

]
. (27.36)

Similarly, we obtain four linear combinations of the eta products with de-
nominator 8 which are theta series on Q(

√
−6):

Example 27.15 The residues of 1 +
√

−6,
√

3 and −1 modulo 8 can be
chosen as generators of (J6/(8))× � Z8 × Z4 × Z2. Eight characters ϕδ,ε,ν

on J6 with period 8 are given by

ϕδ,ε,ν(1 +
√

−6) = 1√
2
(−δε + νi), ϕδ,ε,ν(

√
3) = δ, ϕδ,ε,ν(−1) = 1

with δ, ε, ν ∈ {1, −1}. The corresponding theta series of weight 1 decompose
as

Θ1

(
−24, ϕδ,ε,ν , z

8

)
= h1(z) + δ h3(z) + ε

√
2 h5(z) − δε

√
2 h7(z), (27.37)

where the components hj are normalized integral Fourier series with denom-
inator 8 and numerator classes j modulo 8. All of them are eta products,

h1 =
[
22, 122

1, 24

]
, h3 =

[
42, 62

3, 8

]
,

(27.38)
h5 =

[
2, 3, 8, 12

4, 6

]
, h7 =

[
1, 4, 6, 24

2, 12

]
.

There are 16 cuspidal eta products of weight 1 for Γ∗(24) with denominator
24. Each four of them have numerators congruent to 1, 5, 7, 11 modulo 24.
Therefore it is no surprise that we find linear combinations which are theta
series on the field with discriminant −24. The eta products span a space of
dimension 8. We choose

f1 =
[
2, 32, 82, 12
1, 4, 6, 24

]
, f25 = [1, 24] ,

(27.39)

f5 =
[

43, 63

2, 3, 8, 12

]
, f29 =

[
1, 2, 12, 24

4, 6

]
,

f7 =
[
3, 4, 6, 8

2, 12

]
, f31 =

[
12, 42, 62, 242

22, 3, 8, 122

]
,

(27.40)

f11 = [3, 8] , f35 =
[
12, 4, 6, 242

2, 3, 8, 12

]

for a basis. Here the subscripts indicate the numerators. In the following
example we present theta series as announced and linear relations for the
other eight eta products:
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Example 27.16 Let the generators of (J6/(24))× � Z24 ×Z4 ×Z2
2 be chosen

as in Example 26.2. Sixteen characters ρ = ρδ,ε,ν,σ on J6 with period 24 are
given by

ρ(
√

3 +
√

−2) = ξ, ρ(3
√

3 + 4
√

−2) = δν,

ρ(7) = 1, ρ(−1) = 1

with primitive 24th roots of unity

ξ = ξδ,ε,σ = 1
2

(
ε
√

2 + δ
√

3 + σi
√

2 − δ
√

3
)

and δ, ε, ν, σ ∈ {1, −1}. The corresponding theta series of weight 1 decompose
as

Θ1

(
−24, ρδ,ε,ν,σ, z

24

)
=

(
f1(z) + δ

√
3 f25(z)

)

+ ε
(√

2 + δ
√

3 f5(z) + δ
√

3 f29(z)
)

− δεν
(√

2 − δ
√

3 f7(z) +
√

2 + δ
√

3 f31(z)
)

+ ν
(√

3 f11(z) − δ f35(z)
)

(27.41)

with eta products fj as defined in (27.39), (27.40). Among the eta products
of weight 1 for Γ∗(24) with denominator 24 we have the linear relations

[
25, 3, 8, 125

12, 43, 63, 242

]
= f1 + f25,

[
44, 64

22, 3, 8, 122

]
= f1 − f25, (27.42)

[
22, 32, 82, 122

1, 42, 62, 24

]
= f5 + f29,

[
26, 3, 8, 126

12, 44, 64, 242

]
= f5 + 2 f29, (27.43)

[
23, 123

1, 4, 6, 24

]
= f7 + f31,

[
1, 46, 66, 24

24, 32, 82, 124

]
= f7 − f31, (27.44)

[
24, 124

1, 42, 62, 24

]
= f11 + f35,

[
1, 45, 65, 24

23, 32, 82, 123

]
= f11 − f35. (27.45)

Each pair of identities (27.42), (27.43), (27.44), (27.45) follows from any other
of these pairs by multiplication with a suitable eta product.

27.5 Non-cuspidal Eta Products of Weight 1 for Γ∗(24)

There are 4 non-cuspidal eta products of weight 1 for Γ∗(24) with denomina-
tor 2. They span a two-dimensional space. Eigenforms and linear relations
in this space are given as follows:
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Example 27.17 For δ ∈ {1, −1}, define characters ψδ on J6 with period 2
by ψδ(μ) = χδ(μμ) with Dirichlet characters χ1(n) =

(−2
n

)
, χ−1(n) =

(−1
n

)
.

The corresponding theta series of weight 1 satisfy

Θ1

(
−24, ψδ,

z
2

)
=

∞∑

n=1

χδ(n)
(∑

d|n

(−6
d

))
e
(

nz
2

)
= F1(z) + δ F3(z) (27.46)

with eta products

F1 =
[
32, 82

4, 6

]
, F3 =

[
12, 242

2, 12

]
. (27.47)

Among the non-cuspidal eta products of weight 1 and denominator 2 on
Γ∗(24) we have the linear relations

[
24, 3, 8, 124

1, 43, 63, 24

]
= F1 + F3,

[
1, 44, 64, 24
23, 3, 8, 123

]
= F1 − F3. (27.48)

The characters ψδ are known from before: We have ψδ = ϕ0
−δ,−1 in the

notations of Example 26.31. The relations (27.48) follow trivially (by mul-
tiplication with suitable eta products) from any of the pairs of relations in
Example 27.16. We remark that, according to (27.46), each of the eta prod-
ucts on the left hand sides in (27.48) is a theta series and an Eisenstein
series.

The results and comments for denominator 1 run parallel to those for de-
nominator 2:

Example 27.18 As in Examples 26.31, 26.34, let φ0
1 stand for the trivial

and φ0
−1 for the non-trivial character with period 1 on J6. The corresponding

theta series of weight 1 satisfy

Θ1

(
−24, φ0

1, z
)

= 1 +
∞∑

n=1

(∑

d|n

(−6
d

))
e(nz) = 1

2

(
Ga(z) + Gb(z)

)
, (27.49)

Θ1

(
−24, φ0

−1, z
)

=
∞∑

n=1

ν(n)
(∑

d|n

(−6
d

))
e(nz) = 1

2

(
Ga(z) − Gb(z)

)

(27.50)
with eta products

Ga =
[

25, 125

12, 42, 62, 242

]
, Gb =

[
45, 65

22, 32, 82, 122

]
, (27.51)

where ν(n) = 1 or −1 if n is the norm of a principal or a non-principal ideal
in O6, respectively. Among the non-cuspidal eta products of weight 1 and
denominator 1 on Γ∗(24) we have the linear relations
[
2, 3, 8, 12

1, 24

]
= 1

2 (Ga + Gb),
[
1, 4, 6, 24

3, 8

]
= 1

2 (Ga − Gb). (27.52)



28 Weight 1 for Fricke Groups Γ∗(2pq)

28.1 Levels N = 2pq for Primes p > q ≥ 5

For distinct odd primes p1, p2, p3, the only new holomorphic eta products of
weight 1 and level N = p1p2p3 are

[
1, N

]
,
[
p1, p2p3

]
,
[
p2, p1p3

]
,
[
p3, p1p2

]
,

and they belong to the Fricke group. We do not expect to find linear combi-
nations of these eta products and some complementary functions which are
eigenforms.

For primes p > q ≥ 5 there are exactly eight new holomorphic eta products
of weight 1 on the Fricke group Γ∗(2pq). All of them are cuspidal, and they
are given by

[
22, (pq)2

1, 2pq

]
,

[
12, (2pq)2

2, pq

]
,

[
p2, (2q)2

2p, q

]
,

[
q2, (2p)2

2q, p

]
, (28.1)

[1, 2pq] , [2, pq] , [p, 2q] , [q, 2p] . (28.2)

Their denominators are 8 in case of (28.1), and 24 or 8 in case of (28.2). For
p > q ≥ 7 we did not find linear combinations which are eigenforms. Thus
our investigations are confined to the cases q = 5 and q = 3. We begin with
p = 7, q = 5, N = 70. Then we obtain four linear combinations of the eta
products (28.1) which are theta series on the fields with discriminants 56,
−280 and −20:

Example 28.1 Let a system J70 of ideal numbers for Q(
√

−70) be given as
in Example 7.5. The residues of 1 +

√
−70,

√
5,

√
−7 and −1 modulo 4 can

be chosen as generators of (J70/(4))× � Z4 × Z3
2 . Eight characters χδ,ε,ν on

J70 with period 4 are fixed by their values

χδ,ε,ν(1 +
√

−70) = νi, χδ,ε,ν(
√

5) = δε,

χδ,ε,ν(
√

−7) = ε, χδ,ε,ν(−1) = 1
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with δ, ε, ν ∈ {1, −1}. The residues of 1√
2
(3 − ν

√
−5), 5 − 8ν

√
−5, 9 −

2ν
√

−5 and −1 modulo 4(3+ν
√

−5) can be chosen as generators of (J5/(12+
4ν

√
−5))× � Z24 ×Z3

2 . Characters ρ = ρδ,ε,ν on J5 with periods 4(3+ν
√

−5)
are given by

ρ
(

1√
2
(3 − ν

√
−5)

)
= ε, ρ(5 − 8ν

√
−5) = −1,

ρ(9 − 2ν
√

−5) = −δε, ρ(−1) = 1.

The residues of 3 − ε
√

14, 3 and −1 modulo Mε = 4(3+ε
√

14) are generators
of (Z[

√
14]/(Mε))× � Z2

4 × Z2. Define characters ξδ,ε on Z[
√

14] with periods
Mε by

ξδ,ε(μ) =

⎧
⎨

⎩

−δ sgn(μ)
sgn(μ)

−sgn(μ)
for μ ≡

⎧
⎨

⎩

3 − ε
√

14
3

−1
mod Mε.

The corresponding theta series of weight 1 are identical and decompose as

Θ1

(
56, ξδ,ε,

z
8

)
= Θ1

(
−280, χδ,ε,ν , z

8

)
= Θ1

(
−20, ρδ,ε,ν , z

8

)

= f1(z) + δ f3(z) + δε f5(z) + ε f7(z), (28.3)

where the components fj are normalized integral Fourier series with denom-
inator 8 and numerator classes j modulo 8. All of them are eta products,

f1 =
[
22, 352

1, 70

]
, f3 =

[
12, 702

2, 35

]
, f5 =

[
72, 102

5, 14

]
, f7 =

[
52, 142

7, 10

]
.

(28.4)

For p = 7, q = 5 we find eight linear combinations of the eta products (28.2)
and of four complementing functions which are theta series on the fields with
discriminants 120, −280 and −84:

Example 28.2 The residues of 1+
√

−70,
√

5+3
√

−14, 2
√

10+3
√

−7,
√

−35
and −1 modulo 12 can be chosen as generators of (J70/(12))× � Z8 ×Z4 ×Z3

2 .
Sixteen characters ψ = ψδ,ε,ν,σ on J70 with period 12 are fixed by their values

ψ(1 +
√

−70) = ν, ψ(
√

5 + 3
√

−14) = σi,

ψ(2
√

10 + 3
√

−7) = −δεν, ψ(
√

−35) = −εν

and ψ(−1) = 1 with δ, ε, ν, σ ∈ {1, −1}. The residues of 1√
2
(

√
3 − σ

√
−7),

σ
√

−7, 13 − 2σ
√

−21, 11 and −1 modulo 4(3 + σ
√

−21) can be chosen as
generators of (J21/(12 + 4σ

√
−21))× � Z2

8 × Z3
2 . Characters ϕ = ϕδ,ε,ν,σ on

J21 with periods 4(3 + σ
√

−21) are given by
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ϕ
(

1√
2
(

√
3 − σ

√
−7)

)
= δ, ϕ(σ

√
−7) = −δεν,

ϕ(13 − 2σ
√

−21) = ε, ϕ(11) = −1

and ϕ(−1) = 1. The residues of
√

3 − ν
√

10, 5 − ν
√

30, 13 and −1 modulo
Mν = 4(3 + ν

√
30) are generators of

(
J

Q[
√

30]/(Mν)
)× � Z12 × Z4 × Z2

2 .
Define Hecke characters ξδ,ε,ν on J

Q[
√

30] with periods Mν by

ξδ,ε,ν(μ) =

⎧
⎨

⎩

δε sgn(μ)
−δν sgn(μ)

−sgn(μ)
for μ ≡

⎧
⎨

⎩

√
3 − ν

√
10

5 − ν
√

30
13, −1

mod Mν .

The corresponding theta series of weight 1 are identical and decompose as

Θ1

(
120, ξδ,ε,ν , z

24

)
= Θ1

(
−280, ψδ,ε,ν,σ, z

24

)
= Θ1

(
−84, ϕδ,ε,ν,σ, z

24

)

= g1(z) + δ g5(z) − δεν g7(z)
− εν g11(z) − 2ε g13(z)
+ 2δεg17(z) − 2δν g19(z) + 2ν g23(z), (28.5)

where the components gj are normalized integral Fourier series with denomi-
nator 24 and numerator classes j modulo 24. Four of them are eta products,

g13 = [2, 35] , g17 = [7, 10] , g19 = [5, 14] , g23 = [1, 70] . (28.6)

We turn to the case p = 11, q = 5, N = 110, where all the eta products
(28.1), (28.2) have denominator 8. We find only four linear combinations
of these functions with multiplicative coefficients. Here for the first time we
meet theta series on a field with class number 12:

Example 28.3 Let a system J110 of integral ideal numbers for Q(
√

−110)
with Λ = Λ110 = 3

√√
5 +

√
−22 be given as in Example 7.15. The residues

of Λ, 2
√

10 +
√

−11,
√

−55 and −1 modulo 4 can be chosen as generators of
(J110/(4))× � Z12 × Z3

2 . Eight characters χδ,ε,ν on J110 with period 4 are
given by

χδ,ε,ν(Λ) = νi, χδ,ε,ν(2
√

10 +
√

−11) = δ,

χδ,ε,ν(
√

−55) = ε, χδ,ε,ν(−1) = 1

with δ, ε, ν ∈ {1, −1}. The residues of 1 − ν
√

−10,
√

5 − 2ν
√

−2, 21 and −1
modulo 4(1+ν

√
−10) can be chosen as generators of (J10/(4+4ν

√
−10))× �

Z20 × Z3
2 . Characters ρδ,ε,ν on J10 with periods 4(1 + ν

√
−10) are given by

ρδ,ε,ν(1 − ν
√

−10) = δ, ρδ,ε,ν(
√

5 − 2ν
√

−2) = δε,

ρδ,ε,ν(21) = −1, ρδ,ε,ν(−1) = 1.
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The residues of 4+ε
√

11, 3, 1+2ε
√

11 and −1 modulo Mε = 4(1+ε
√

11) are
generators of (Z[

√
11]/(Mε))× � Z2

4 × Z2
2 . Define characters ξδ,ε on Z[

√
11]

with periods Mε by

ξδ,ε(μ) =

⎧
⎨

⎩

δε sgn(μ)
−δε sgn(μ)

−sgn(μ)
for μ ≡

⎧
⎨

⎩

4 + ε
√

11
1 + 2ε

√
11

3, −1
mod Mε.

The corresponding theta series of weight 1 satisfy the identities

Θ1

(
44, ξδ,ε,

z
8

)
= Θ1

(
−440, χδ,ε,ν , z

8

)
= Θ1

(
−40, ρδ,ε,ν , z

8

)

= f1(z) + δ f3(z) + δε f5(z) + ε f7(z), (28.7)

where the components fj are integral and (with the exception of f7) normal-
ized Fourier series with denominator 8 and numerator classes j modulo 8.
All of them are linear combinations of eta products,

f1 =
[
22, 552

1, 110

]
− 2 [5, 22] , f3 =

[
52, 222

10, 11

]
− 2 [2, 55] , (28.8)

f5 =
[
102, 112

5, 22

]
+ 2 [1, 110] , f7 =

[
12, 1102

2, 55

]
+ 2 [10, 11] . (28.9)

In the following example we consider the eta products (28.1) for p = 13,
q = 5, N = 130. We find four linear combinations which are theta series on
the fields with discriminants 520, −520 and −4. Here we meet one of our
two examples of real quadratic fields with class number 4. For D = −4 the
norm of the character periods P is P P = 25 · 5 · 13; it contains two distinct
primes which split in O1. According to the distinct decompositions of 65 in
O1, we need characters with periods 4(9 ± 7i) and 4(11 ± 3i) to represent the
eigenforms for different combinations of the sign parameters.

Example 28.4 Let a system J130 of integral ideal numbers for Q(
√

−130)
be given as in Example 7.5. The residues of 1 +

√
−130,

√
−13 and

√
−5

modulo 4 can be chosen as generators of (J130/(4))× � Z2
4 × Z2, where

(
√

−13)2 ≡ −1 mod 4. Eight characters ψδ,ε,ν on J130 with period 4 are fixed
by their values

ψδ,ε,ν(1 +
√

−130) = νi, ψδ,ε,ν(
√

−13) = δε, ψδ,ε,ν(
√

5) = ε

with δ, ε, ν ∈ {1, −1}. The residues of 2 − νi, 5+28νi, 17 − 12νi, 1 − 10νi and
νi modulo 4(9+7νi) are generators of (O1/(36+28νi))× � Z12 ×Z4 ×Z2

2 ×Z4.
The residues of 2 − νi, 13+12νi, 7+4νi, 1+10νi and νi modulo 4(11+3νi)
are generators of (O1/(44 + 12νi))×. Characters χ1,ε,ν on O1 with periods
4(9+7νi) and characters χ−1,ε,ν on O1 with periods 4(11+3νi) are given by



28.1. Levels N = 2pq for Primes p > q ≥ 5 531

χ1,ε,ν(2 − νi) = ε, χ1,ε,ν(5 + 28νi) = −1,

χ1,ε,ν(17 − 12νi) = −1, χ1,ε,ν(1 − 10νi) = ε,

χ−1,ε,ν(2 − νi) = ε, χ−1,ε,ν(13 + 12νi) = −1,

χ−1,ε,ν(7 + 4νi) = −1, χ−1,ε,ν(1 + 10νi) = ε

and χδ,ε,ν(νi) = 1. The residues of
√

10 +
√

13,
√

5,
√

13 and −1 modulo 4
are generators of

(
J

Q[
√

130]/(4)
)× � Z4 × Z3

2 . Define Hecke characters ξδ,ε

on J
Q[

√
130] with period 4 by

ξδ,ε(μ) =

⎧
⎨

⎩

δε sgn(μ)
ε sgn(μ)

−sgn(μ)
for μ ≡

⎧
⎨

⎩

√
10 +

√
13,

√
13√

5
−1

mod 4.

The corresponding theta series of weight 1 satisfy

Θ1

(
520, ξδ,ε,

z
8

)
= Θ1

(
−520, ψδ,ε,ν , z

8

)
= Θ1

(
−4, χδ,ε,ν , z

8

)

= f1(z) + δ g1(z) + ε f5(z) + δε g5(z), (28.10)

where the components fj and gj are normalized integral Fourier series with
denominator 8 and numerator classes j modulo 8 which are equal to eta
products,

f1 =
[
22, 652

1, 130

]
, g1 =

[
12, 1302

2, 65

]
,

(28.11)

f5 =
[
102, 132

5, 26

]
, g5 =

[
52, 262

10, 13

]
.

The eta products (28.2) for p = 13, q = 5, N = 130 allow a result which is
similar to that in Example 28.2. Now we get theta series on the fields with
discriminants 156, −520 and −120:

Example 28.5 The residues of 1+
√

−130,
√

5+3
√

−26,
√

−13 and 3
√

5+
2

√
−26 modulo 12 can be chosen as generators of (J130/(12))× � Z8 × Z2

4 ×
Z2, where (

√
−13)2 ≡ −1 mod 12. Sixteen characters ρ = ρδ,ε,ν,σ on J130

with period 12 are given by

ρ(1 +
√

−130) = ε, ρ(
√

5 + 3
√

−26) = σi,

ρ(
√

−13) = εν, ρ(3
√

5 + 2
√

−26) = δ

with δ, ε, ν, σ ∈ {1, −1}. The residues of
√

5 + σ
√

−6,
√

10 + σ
√

−3, 53,
2

√
10 + 9σ

√
−3 and −1 modulo 4(3 + σ

√
−30) can be chosen as generators

of (J30/(12 + 4σ
√

−30))× � Z24 × Z4 × Z3
2 . Characters φ = φδ,ε,ν,σ on J30

with periods 4(3 + σ
√

−30) are given by
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φ(
√

5 − σ
√

−6) = ε, φ(
√

10 + σ
√

−3) = εν,

φ(53) = −1, φ(2
√

10 + 9σ
√

−3) = δν

and φ(−1) = 1. The residues of 1√
2
(7 + ν

√
39), 13, 13 − 2ν

√
39, 11 and −1

modulo Mν = 4(3+ν
√

39) are generators of
(

J
Q[

√
39]/(Mν)

)× � Z8 ×Z4 ×Z3
2 .

Define Hecke characters ξδ,ε,ν on J
Q[

√
39] with period Mν by

ξδ,ε,ν(μ) =

⎧
⎪⎪⎨

⎪⎪⎩

δ sgn(μ)
sgn(μ)

εν sgn(μ)
−sgn(μ)

for μ ≡

⎧
⎪⎪⎨

⎪⎪⎩

1√
2
(7 + ν

√
39)

13, 11
13 − 2ν

√
39

−1

mod Mν .

The corresponding theta series of weight 1 satisfy the identities

Θ1

(
156, ξδ,ε,ν , z

24

)
= Θ1

(
−520, ρδ,ε,ν,σ, z

24

)
= Θ1

(
−120, φδ,ε,ν,σ, z

24

)

= h1(z) + δ h5(z) − 2δε h7(z)
+ 2ε h11(z) + εν h13(z)
+ δεν h17(z) − 2δν h19(z) + 2ν h23(z), (28.12)

where the components hj are normalized integral Fourier series with denomi-
nator 24 and numerator classes j modulo 24. Four of them are eta products,

h7 = [5, 26] , h11 = [1, 130] , h19 = [2, 65] , h23 = [10, 13] . (28.13)

For p = 17, q = 5, N = 170, all the eta products (28.1), (28.2) have denom-
inator 8, just as in Example 28.3. We find 12 linear combinations of these
eta products and of four other functions which are theta series on the fields
with discriminants 680, −680 and −4, including our second example of a real
quadratic field with class number 4. Just as in Example 28.4, the level N
contains two distinct primes which split in O1, and thus we need characters
with periods 4(13 ± i) and 4(11 ± 7i) to represent eigenforms for different
combinations of sign parameters:

Example 28.6 Let the ideal numbers J170 with Λ = Λ170 = 3
√√

10 +
√

−17
be given as in Example 7.15. The residues of Λ,

√
−17 and

√
5 modulo 4 can

be chosen as generators of (J170/(4))× � Z12 × Z4 × Z2, where (
√

−17)2 ≡
−1 mod 4. Sixteen characters ψδ,ε,ν,σ on J170 with period 4 are fixed by their
values

ψδ,ε,ν,σ(Λ) = 1
2 (ν

√
3 + σi), ψδ,ε,ν,σ(

√
−17) = δ, ψδ,ε,ν,σ(

√
5) = δε

with δ, ε, ν, σ ∈ {1, −1}. The characters χδ,ε,σ = ψ3
δ,ε,ν,σ on J170 with period

4 are fixed by the values

χδ,ε,σ(Λ) = σi, χδ,ε,σ(
√

−17) = δ, χδ,ε,σ(
√

5) = δε.
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The residues of 2 + νi, 19 + 4νi, 3 + 8νi, 11 + 14νi and νi modulo 4(13 + νi)
can be chosen as generators of (O1/(52 + 4νi))× � Z16 × Z4 × Z2

2 × Z4. The
residues of 3 + 2νi, 13 + 12νi, 15 + 12νi, 7 + 2νi and νi modulo 4(11 + 7νi)
are generators of (O1/(44 + 28νi))×. Characters ρ1,ε,ν on O1 with periods
4(13+ νi) and characters ρ−1,ε,ν on O1 with periods 4(11+7νi) are given by

ρ1,ε,ν(2 + νi) = ε, ρ1,ε,ν(19 + 4νi) = −1,

ρ1,ε(3 + 8νi) = −1, ρ1,ε,ν(11 + 14νi) = ε,

ρ−1,ε,ν(3 + 2νi) = −ε, ρ−1,ε,ν(13 + 12νi) = −1,

ρ−1,ε,ν(15 + 12νi) = −1, ρ−1,ε,ν(7 + 2νi) = ε

and ρδ,ε,ν(νi) = 1. The residues of
√

10 +
√

17,
√

5,
√

17 and −1 modulo 4
are generators of

(
J

Q[
√

170]/(4)
)× � Z4 × Z3

2 . Define Hecke characters ξδ,ε

on J
Q[

√
170] with period 4 by

ξδ,ε(μ) =

⎧
⎨

⎩

δ sgn(μ)
δε sgn(μ)

−sgn(μ)
for μ ≡

⎧
⎨

⎩

√
10 +

√
17,

√
17√

5
−1

mod 4.

The corresponding theta series of weight 1 satisfy

Θ1

(
−680, ψδ,ε,ν,σ, z

8

)
=

(
f1(z) + g1(z)

)
+ δ

(
h1(z) − k1(z)

)

+ δε
(
f5(z) − g5(z)

)

+ ε
(
h5(z) + k5(z)

)

+ ν
√

3
(
f3(z) − δ g3(z) − ε f7(z)

+ δε g7(z)
)
, (28.14)

Θ1

(
680, ξδ,ε,

z
8

)
= Θ1

(
−680, ψδ,ε,ν , z

8

)
= Θ1

(
−4, ρδ,ε,ν , z

8

)

=
(
f1(z) − 2 g1(z)

)
+ δ

(
h1(z) + 2 k1(z)

)

+ δε
(
f5(z) + 2 g5(z)

)

+ ε
(
h5(z) − 2 k5(z)

)
, (28.15)

where the components fj, gj, hj, kj are normalized integral Fourier series
with denominator 8 and numerator classes j modulo 8, and those for j = 1, 5
are eta products,

f1 =
[
22, 852

1, 170

]
, g1 = [10, 17] ,

(28.16)

h1 =
[
52, 342

10, 17

]
, k1 = [1, 170] ,

f5 =
[
102, 172

5, 34

]
, g5 = [2, 85] ,

(28.17)

h5 =
[
12, 1702

2, 85

]
, k5 = [5, 34] .



534 28. Weight 1 for Fricke Groups Γ∗(2pq)

28.2 Levels 30 and 42

For each prime p ≥ 5 there are exactly 12 new holomorphic eta products of
weight 1 for the Fricke group Γ∗(6p). All of them are cuspidal, and all of
them are products of two simple theta series of weight 1

2 . These functions
are given by

[
22, (3p)2

1, 6p

]
,

[
62, p2

3, 2p

]
,

[
32, (2p)2

6, p

]
,

[
12, (6p)2

2, 3p

]
(28.18)

with denominator 8, and by

[1, 6p] , [2, 3p] , [3, 2p] , [6, p] , (28.19)

[
2, 32, (2p)2, 3p

1, 6, p, 6p

]
,

[
22, 3, 2p, (3p)2

1, 6, p, 6p

]
,

(28.20)[
1, 62, p2, 6p

2, 3, 2p, 3p

]
,

[
12, 6, p, (6p)2

2, 3, 2p, 3p

]

with denominator 24. In this subsection we discuss the cases p = 5 and p = 7.

Example 28.7 The residues of 1 +
√

−30,
√

5,
√

−3 and −1 modulo 4 can
be chosen as generators of (J30/(4))× � Z4 × Z3

2 . Eight characters χδ,ε,ν on
J30 with period 4 are fixed by their values

χδ,ε,ν(1 +
√

−30) = νi, χδ,ε,ν(
√

5) = δε,

χδ,ε,ν(
√

−3) = δ, χδ,ε,ν(−1) = 1

with δ, ε, ν ∈ {1, −1}. The residues of 1√
2
(1 − ν

√
−5), 1+2ν

√
−5, 3 − 4ν

√
−5

and −1 modulo 4(1+ν
√

−5) are generators of (J5/(4+4ν
√

−5))× � Z8 ×Z3
2 .

Characters ρ = ρδ,ε,ν on J5 with periods 4(1 + ν
√

−5) are given by

ρ
(

1√
2
(1 − ν

√
−5)

)
= δ, ρ(1 + 2ν

√
−5) = −δε,

ρ(3 − 4ν
√

−5) = −1, ρ(−1) = 1.

The residues of 1 − ε
√

6, 3 and −1 modulo Mε = 4(1+ε
√

6) are generators of
the group (Z[

√
6]/(Mε))× � Z2

4 × Z2. Define Hecke characters ξδ,ε on Z[
√

6]
with periods Mε by

ξδ,ε(μ) =

⎧
⎨

⎩

−δ sgn(μ)
sgn(μ)

−sgn(μ)
for μ ≡

⎧
⎨

⎩

1 − ε
√

6
3

−1
mod Mε.

The corresponding theta series of weight 1 satisfy

Θ1

(
24, ξδ,ε,

z
8

)
= Θ1

(
−120, χδ,ε,ν , z

8

)
= Θ1

(
−20, ρδ,ε,ν , z

8

)

= f1(z) + δ f3(z) + δε f5(z) + ε f7(z), (28.21)
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where the components fj are normalized integral Fourier series with denom-
inator 8 and numerator classes j modulo 8. All of them are eta products,

f1 =
[
22, 152

1, 30

]
, f3 =

[
52, 62

3, 10

]
,

(28.22)

f5 =
[
32, 102

5, 6

]
, f7 =

[
12, 302

2, 15

]
.

Example 28.8 The residues of 1+
√

−30,
√

5, 2
√

10+3
√

−3 and −1 modulo
12 can be chosen as generators of (J30/(12))× � Z12 × Z4 × Z2

2 . Sixteen
characters ϕ = ϕδ,ε,ν,σ on J30 with period 12 are given by

ϕ(1 +
√

−30) = 1
2 (ε

√
3 + σi), ϕ(

√
5) = δ,

ϕ(2
√

10 + 3
√

−3) = −δν, ϕ(−1) = 1

with δ, ε, ν, σ ∈ {1, −1}. The corresponding theta series of weight 1 satisfy

Θ1

(
−120, ϕδ,ε,ν,σ, z

24

)
= g1(z) + δ g5(z) + ε

√
3 g7(z)

− δε
√

3 g11(z) + δεν
√

3 g13(z)

− εν
√

3 g17(z) + δν g19(z) + ν g23(z),
(28.23)

where the components gj are normalized integral Fourier series with denom-
inator 24 and numerator classes j modulo 24. All of them are eta products,

g1 =
[
2, 32, 102, 15

1, 5, 6, 30

]
, g5 =

[
22, 3, 10, 152

1, 5, 6, 30

]
,

(28.24)
g7 = [1, 30] , g11 = [5, 6] ,

g13 = [3, 10] , g17 = [2, 15] ,
(28.25)

g19 =
[
12, 5, 6, 302

2, 3, 10, 15

]
, g23 =

[
1, 52, 62, 30
2, 3, 10, 15

]
.

The eta products of weight 1 for Γ∗(42) show a similar pattern as we got
it for Γ∗(30) in Examples 28.7, 28.8. Those with denominator 8 combine to
theta series on the fields with discriminants 28, −168 and −24, and those
with denominator 24 combine to theta series on the field with discriminant
−168:

Example 28.9 The residues of 1 +
√

−42,
√

3 and
√

−7 modulo 4 can be
chosen as generators of (J42/(4))× � Z2

4 × Z2, where (
√

3)2 ≡ −1 mod 4.
Eight characters ψδ,ε,ν on J42 with period 4 are fixed by their values

ψδ,ε,ν(1 +
√

−42) = νi, ψδ,ε,ν(
√

3) = δ, ψδ,ε,ν(
√

−7) = −ε
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with δ, ε, ν ∈ {1, −1}. The residues of
√

3 − ν
√

−2,
√

3 − 2ν
√

−2 and 13
modulo Pν = 4(1 + ν

√
−6) are generators of (J6/(Pν))× � Z12 × Z4 × Z2,

where (
√

3 − 2ν
√

−2)2 ≡ −1 mod Pν . Characters ϕδ,ε,ν on J6 with periods
Pν are given by

ϕδ,ε,ν(
√

3 − ν
√

−2) = −δε, ϕδ,ε,ν(
√

3 − 2ν
√

−2) = −δ, ϕδ,ε,ν(13) = −1.

The residues of 2 + ε
√

7, 1 + 2ε
√

7, 5 and −1 modulo Mε = 4(1 + ε
√

7) are
generators of (Z[

√
7]/(Mε))× � Z4 × Z3

2 . Define Hecke characters ξδ,ε on
Z[

√
7] with periods Mε by

ξδ,ε(μ) =

⎧
⎨

⎩

δε sgn(μ)
sgn(μ)

−sgn(μ)
for μ ≡

⎧
⎨

⎩

2 + ε
√

7, 1 + 2ε
√

7
5

−1
mod Mε.

The corresponding theta series of weight 1 satisfy the identities

Θ1

(
28, ξδ,ε,

z
8

)
= Θ1

(
−168, ψδ,ε,ν , z

8

)
= Θ1

(
−24, ϕδ,ε,ν , z

8

)

= f1(z) + δ f3(z) − δε f5(z) − ε f7(z), (28.26)

where the components fj are normalized integral Fourier series with denom-
inator 8 and numerator classes j modulo 8. All of them are eta products,

f1 =
[
22, 212

1, 42

]
, f3 =

[
62, 72

3, 14

]
,

(28.27)

f5 =
[
12, 422

2, 21

]
, f7 =

[
32, 142

6, 7

]
.

Example 28.10 The residues of 1+
√

−42,
√

−7 and 2
√

2+3
√

−21 modulo
12 can be chosen as generators of (J42/(12))× � Z12 × Z2

4 , where (2
√

2 +
3

√
−21)2 ≡ −1 mod 12. Sixteen characters χ = χδ,ε,ν,σ on J42 with period

12 are given by

χ(1 +
√

−42) = 1
2 (−εν

√
3 + σi), χ(

√
−7) = ε, χ(2

√
2 + 3

√
−21) = −δ

with δ, ε, ν, σ ∈ {1, −1}. The corresponding theta series of weight 1 satisfy

Θ1

(
−168, χδ,ε,ν,σ, z

24

)
= g1(z) + δ g5(z) + ε g7(z)

+ δε g11(z) + ν
√

3 g13(z)

+ δν
√

3 g17(z) − εν
√

3 g19(z)

− δεν
√

3 g23(z), (28.28)

where the components gj are normalized integral Fourier series with denom-
inator 24 and numerator classes j modulo 24. All of them are eta products,
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g1 =
[
2, 32, 142, 21

1, 6, 7, 42

]
, g5 =

[
1, 62, 72, 42
2, 3, 14, 21

]
,

g7 =
[
22, 3, 14, 212

1, 6, 7, 42

]
, g11 =

[
12, 6, 7, 422

2, 3, 14, 21

]
,

g13 = [6, 7] , g17 = [3, 14] , g19 = [1, 42] , g23 = [2, 21] .

28.3 Levels 6p for Primes p = 11, 13

For primes p ≡ 1, 3 mod 8, p �= 3, the eta products (28.18) have numerators
j ≡ 1, 3 mod 8. For p = 11 the eta products (28.19), (28.20) have numerators
j ≡ 1, 11, 17, 19 mod 24. Thus the numerators do not cover all of the coprime
residues modulo the denominators t. For p = 11 we find eigenforms which
contain complementing components for the missing residues. They are theta
series on the field with discriminant −264:

Example 28.11 Let the ideal numbers J66 with Λ = Λ66 =
√√

3 +
√

−22 be
given as in Example 7.10. The residues of Λ,

√
3 and

√
−11 modulo 4 can be

chosen as generators of (J66/(4))× � Z8 ×Z4 ×Z2, where (
√

3)2 ≡ −1 mod 4.
Sixteen characters ϕδ,ε,ν,σ on J66 with period 4 are fixed by their values

ϕδ,ε,ν,σ(Λ) = 1√
2
(ν + σi), ϕδ,ε,ν,σ(

√
3) = ε, ϕδ,ε,ν,σ(

√
−11) = δε

with δ, ε, ν, σ ∈ {1, −1}. The corresponding theta series of weight 1 satisfy

Θ1

(
−264, ϕδ,ε,ν,σ, z

8

)
=

(
f1(z) + δ g1(z)

)
+ ε

(
f3(z) + δ g3(z)

)

+ ν
√

2
(
f5(z) + δ g5(z)

)

+ εν
√

2
(
f7(z) − δ g7(z)

)
, (28.29)

where the components fj, gj are normalized integral Fourier series with de-
nominator 8 and numerator classes j modulo 8. Those for j = 1, 3 are eta
products,

f1 =
[
22, 332

1, 66

]
, g1 =

[
12, 662

2, 33

]
,

(28.30)

f3 =
[
62, 112

3, 22

]
, g3 =

[
32, 222

6, 11

]
.

Example 28.12 Let J66 and Λ be given as before in Example 28.11. The
residues of Λ, 3

√
3+4

√
−22,

√
−11 and 5 modulo 12 can be chosen as gener-

ators of (J66/(12))× � Z24 × Z4 × Z2
2 , where (3

√
3 + 4

√
−22)2 ≡ −1 mod 12.

Thirty-two characters χ = χδ,ε,ν,σ,κ on J66 with period 12 are given by

χ(Λ) = ξ, χ(3
√

3 + 4
√

−22) = δεν, χ(
√

−11) = ε, χ(5) = 1
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with primitive 24th roots of unity

ξ = ξδ,σ,κ = 1
2

(
κ
√

2 + δ
√

3 + κσi
√

2 − δ
√

3
)

= 1
2

√
2

(
κ(

√
3 + δ) + κσi(

√
3 − δ)

)

and δ, ε, ν, σ, κ ∈ {1, −1}. The corresponding theta series of weight 1 decom-
pose as

Θ1

(
−264, χδ,ε,ν,σ,κ, z

24

)

=
(
F1(z) + δ

√
3 G1(z)

)
+ κA

(
F5(z) + δ

√
3 G5(z)

)

+ εκA
(
F7(z) + δ

√
3 G7(z)

)
+ ε

(
F11(z) + δ

√
3 G11(z)

)

− δνA
(
F13(z) + δ

√
3 G13(z)

)
+ δν

(
F17(z) + δ

√
3 G17(z)

)

+ δεν
(
F19(z) + δ

√
3G19(z)

)

− δενA
(
F23(z) + δ

√
3G23(z)

)
, (28.31)

where A =
√

2 + δ
√

3 = 1√
2
(

√
3 + δ), and where the components Fj, Gj

are normalized integral Fourier series with denominator 24 and numerator
classes j modulo 24. Those for j = 1, 11, 17, 19 are eta products,

F1 =
[
2, 32, 222, 33
1, 6, 11, 66

]
, G1 = [3, 22] ,

(28.32)

F11 =
[
22, 3, 22, 332

1, 6, 11, 66

]
, G11 = [2, 33] ,

F17 =
[
1, 62, 112, 66
2, 3, 22, 33

]
, G17 = [6, 11] ,

(28.33)

F19 =
[
12, 6, 11, 662

2, 3, 22, 33

]
, G19 = [1, 66] .

For p = 13 the numerators of the eta products (28.18), (28.19), (28.20) cover
all the coprime residues modulo their denominators 8 and 24, respectively.
Therefore, it is not a surprise that we get results similar to those for p = 5
and p = 7 in Examples 28.7, 28.8, 28.9, 28.10; we find theta series all of
whose components are identified with the eta products considered here:

Example 28.13 The residues of 1 +
√

−78,
√

−13 and
√

−39 modulo 4
can be chosen as generators of (J78/(4))× � Z2

4 × Z2, where (
√

−13)2 ≡
−1 mod 4. Eight characters ψδ,ε,ν on J78 with period 4 are fixed by their
values

ψδ,ε,ν(1 +
√

−78) = νi, ψδ,ε,ν(
√

−13) = δε, ψδ,ε,ν(
√

−39) = ε

with δ, ε, ν ∈ {1, −1}. Let J26 with Λ = Λ26 = 3
√

1 +
√

−26 be given as in
Example 7.14. The residues of Λ,

√
−13 and 5 modulo 4Λ can be chosen as
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generators of (J26/(4Λ))× � Z12 × Z4 × Z2, where (
√

−13)2 ≡ −1 mod 4Λ.
Characters ϕδ,ε,1 on J26 with period 4Λ are given by

ϕδ,ε,1( Λ ) = δ, ϕδ,ε,1(
√

−13) = δε, ϕδ,ε,1(5) = −1.

Define characters ϕδ,ε,−1 on J26 with period 4Λ by ϕδ,ε,−1(μ) = ϕδ,ε,1(μ)
for μ ∈ J26. The residues of 2 + ε

√
3, 5, 7 − 2ε

√
3 and −1 modulo Mε =

4(1+3ε
√

3) are generators of (Z[
√

3]/(Mε))× � Z12 × Z4 × Z2
2 . Define Hecke

characters ξδ,ε on Z[
√

3] with periods Mε by

ξδ,ε(μ) =

⎧
⎨

⎩

sgn(μ)
−δε sgn(μ)

−sgn(μ)
for μ ≡

⎧
⎨

⎩

2 + ε
√

3, 5
7 − 2ε

√
3

−1
mod Mε.

The corresponding theta series of weight 1 satisfy the identities

Θ1

(
12, ξδ,ε,

z
8

)
= Θ1

(
−312, ψδ,ε,ν , z

8

)
= Θ1

(
−104, ϕδ,ε,ν , z

8

)

= f1(z) + δ f3(z) + δε f5(z) + ε f7(z), (28.34)

where the components fj are normalized integral Fourier series with denom-
inator 8 and numerator classes j modulo 8. All of them are eta products,

f1 =
[
22, 392

1, 78

]
, f3 =

[
62, 132

3, 26

]
,

(28.35)

f5 =
[
32, 262

6, 13

]
, f7 =

[
12, 782

2, 39

]
.

Example 28.14 The residues of 1+
√

−78, 2
√

2+3
√

−39 and
√

−13 modulo
12 can be chosen as generators of (J78/(12))× � Z12 × Z2

4 , where (
√

−13)2 ≡
−1 mod 12. Sixteen characters χ = χδ,ε,ν,σ on J78 with period 12 are given
by

χ(1 +
√

−78) = 1
2 (εν

√
3 + σi), χ(2

√
2 + 3

√
−39) = δν, χ(

√
−13) = ε

with δ, ε, ν, σ ∈ {1, −1}. The corresponding theta series of weight 1 satisfy

Θ1

(
−312, χδ,ε,ν,σ, z

24

)
= g1(z) + δ

√
3 g5(z) + εν

√
3 g7(z)

− δεν g11(z) + ε g13(z)

+ δε
√

3 g17(z) + ν
√

3 g19(z)
− δν g23(z), (28.36)

where the components gj are normalized integral Fourier series with denom-
inator 24 and numerator classes j modulo 24. All of them are eta products,
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g1 =
[
2, 32, 262, 39
1, 6, 13, 78

]
, g5 = [3, 26] ,

(28.37)

g7 = [1, 78] , g11 =
[
12, 6, 13, 782

2, 3, 26, 39

]
,

g13 =
[
22, 3, 26, 392

1, 6, 13, 78

]
, g17 = [2, 39] ,

(28.38)

g19 = [6, 13] , g23 =
[
1, 62, 132, 78
2, 3, 26, 39

]
.

28.4 Levels 6p for Primes p = 17, 19, 23

For p = 17 the eta products (28.18) have numerators which cover only the
residues 1, 3 modulo 8. But, unlike the situation for p = 11 in Example 28.11,
we do not need complementing components for the residues 5, 7 modulo 8 in
order to obtain eigenforms. Instead, we find linear combinations of the eta
products which are theta series on the fields with discriminants 204, −8 and
−408. Similarly as before in Examples 28.4, 28.6, the norm of the character
periods 4(1 ±

√
−2)(3 ± 2

√
−2) for discriminant −8 contains two distinct

primes which split in O2.

Example 28.15 The residues of
√

6 +
√

−17,
√

3 and 2
√

2 +
√

−51 modulo
4 can be chosen as generators of (J102/(4))× � Z2

4 × Z2, where (
√

3)2 ≡
−1 mod 4. Eight characters ψδ,ε,ν on J102 with period 4 are fixed by their
values

ψδ,ε,ν(
√

6 +
√

−17) = νi, ψδ,ε,ν(
√

3) = δ, ψδ,ε,ν(2
√

2 +
√

−51) = −δε

with δ, ε, ν ∈ {1, −1}. The residues of 1 + ν
√

−2, 11 − ν
√

−2, 15 + 2ν
√

−2
and −1 modulo 4(1 + 5ν

√
−2) can be chosen as generators of (O2/(4 +

20ν
√

−2))× � Z16 × Z4 × Z2
2 . Characters ϕδ,1,ν on O2 with periods 4(1 +

5ν
√

−2) are given by

ϕδ,1,ν(1 + ν
√

−2) = δ, ϕδ,1,ν(11 − ν
√

−2) = −δ,

ϕδ,1,ν(15 + 2ν
√

−2) = −1, ϕδ,1,ν(−1) = 1.

The residues of 3−ν
√

−2, 3+ν
√

−2, 3+10ν
√

−2 and −1 modulo 4(7+ν
√

−2)
are generators of (O2/(28+4

√
−2))×. Characters ϕδ,−1,ν on O2 with periods

4(7 + ν
√

−2) are given by

ϕδ,−1,ν(3 − ν
√

−2) = δ, ϕδ,−1,ν(3 + ν
√

−2) = −δ,

ϕδ,−1,ν(3 + 10ν
√

−2) = −1
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and ϕδ,−1,ν(−1) = 1. The residues of 2 +
√

51, 2
√

3 +
√

17,
√

17 and −1
modulo M = 4(7 +

√
51) are generators of

(
J

Q[
√

51]/(M)
)× � Z4 × Z3

2 .
Define Hecke characters ξδ,ε on J

Q[
√

51] with period M by

ξδ,ε(μ) =

⎧
⎪⎪⎨

⎪⎪⎩

sgn(μ)
−δ sgn(μ)
ε sgn(μ)

−sgn(μ)

for μ ≡

⎧
⎪⎪⎨

⎪⎪⎩

2 +
√

51
2

√
3 +

√
17√

17
−1

mod M.

The corresponding theta series of weight 1 satisfy the identities

Θ1

(
204, ξδ,ε,

z
8

)
= Θ1

(
−408, ψδ,ε,ν , z

8

)
= Θ1

(
−8, ϕδ,ε,ν , z

8

)

=
(
f1(z) + ε g1(z)

)

+ δ
(
f3(z) + ε g3(z)

)
, (28.39)

where the components fj, gj are normalized integral Fourier series with de-
nominator 8 and numerator classes j modulo 8. All of them are eta products,

f1 =
[
22, 512

1, 102

]
, g1 =

[
32, 342

6, 17

]
,

(28.40)

f3 =
[
62, 172

3, 34

]
, g3 =

[
12, 1022

2, 51

]
.

The numerators of the eta products of weight 1 for Γ∗(102) with denominator
24 cover all the coprime residues modulo 24. We find linear combinations of
these functions which are theta series on the field with discriminant −408:

Example 28.16 The residues of
√

6 +
√

−17,
√

−17 and 3
√

3 + 2
√

−34
modulo 12 can be chosen as generators of (J102/(12))× � Z12 × Z2

4 , where
(3

√
3 + 2

√
−34)2 ≡ −1 mod 12. Sixteen characters χ = χδ,ε,ν,σ on J102 with

period 12 are given by

χ(
√

6+
√

−17) = 1
2 (δεν

√
3+σi), χ(

√
−17) = ε, χ(3

√
3+2

√
−34) = −εν

with δ, ε, ν, σ ∈ {1, −1}. The corresponding theta series of weight 1 satisfy

Θ1

(
−408, χδ,ε,ν,σ, z

24

)
= h1(z) + δ

√
3 h5(z) − δν

√
3 h7(z)

+ ν h11(z) − δε
√

3 h13(z)
+ ε h17(z) + εν h19(z)

+ δεν
√

3 h23(z), (28.41)

where the components hj are normalized integral Fourier series with denom-
inator 24 and numerator classes j modulo 24. All of them are eta products,
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h1 =
[
2, 32, 342, 51
1, 6, 17, 102

]
, h5 = [2, 51] ,

(28.42)

h7 = [1, 102] , h11 =
[
1, 62, 172, 102

2, 3, 34, 51

]
,

h13 = [3, 34] , h17 =
[
22, 3, 34, 512

1, 6, 17, 102

]
,

(28.43)

h19 =
[
12, 6, 17, 1022

2, 3, 34, 51

]
, h23 = [6, 17] .

In the following two examples we consider the eta products of weight 1 for
the Fricke group of level N = 6 · 19 = 114. Those with denominator 8 have
numerators congruent to 1 or 3 modulo 8. We need complementing compo-
nents for the residues 5 and 7 modulo 8 in order to construct eigenforms.
They are identified with theta series on the field with discriminant −456:

Example 28.17 Let J114 with Λ = Λ114 =
√√

6 +
√

−19 be given as in
Example 7.10. The residues of Λ,

√
3 and

√
−19 modulo 4 are generators of

(J114/(4))× � Z8 × Z4 × Z2, where (
√

3)2 ≡ −1 mod 4. Sixteen characters
ψ = ψδ,ε,ν,σ on J114 with period 4 are given by

ψ(Λ) = 1√
2
(ν + σi), ψ(

√
3) = δ, ψ(

√
−19) = −δε

with δ, ε, ν, σ ∈ {1, −1}. The corresponding theta series of weight 1 satisfy

Θ1

(
−456, ψδ,ε,ν,σ, z

8

)
=
(
f1(z) + ε g1(z)

)
+ δ

(
f3(z) + ε g3(z)

)

+ ν
√

2
(
f5(z) − ε g5(z)

)

+ δν
√

2
(
f7(z) + ε g7(z)

)
, (28.44)

where the components fj, gj are normalized integral Fourier series with de-
nominator 8 and numerator classes j modulo 8. Those for j = 1, 3 are eta
products,

f1 =
[
22, 572

1, 114

]
, g1 =

[
12, 1142

2, 57

]
, f3 =

[
62, 192

3, 38

]
, g3 =

[
32, 382

6, 19

]
.

(28.45)

For the eta products of weight 1 on Γ∗(114) with denominator 24 we get a
similar result as before in Example 28.12 for level 66:

Example 28.18 Let J114 and Λ be given as before in Example 28.17. The
residues of Λ,

√
−19 and 2

√
2+3

√
−57 modulo 12 can be chosen as generators

of (J114/(12))× � Z24 ×Z2
4 , where (2

√
2+3

√
−57)2 ≡ −1 mod 12. Thirty-two

characters χ = χδ,ε,ν,σ,κ on J114 with period 12 are fixed by their values

χ(Λ) = ξ, χ(
√

−19) = δν, χ(2
√

2 + 3
√

−57) = −ν
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with primitive 24th roots of unity

ξ = ξε,σ,κ = 1
2

(
σ
√

2 + ε
√

3 + κi
√

2 − ε
√

3
)

= 1
2

√
2

(
σ(

√
3 + ε) + κi(

√
3 − ε)

)

and δ, ε, ν, σ, κ ∈ {1, −1}. The corresponding theta series of weight 1 decom-
pose as

Θ1

(
−456, χδ,ε,ν,σ,κ, z

24

)

=
(
F1(z) + ε

√
3 G1(z)

)
+ σA

(
F5(z) − ε

√
3 G5(z)

)

− δσA
(
F7(z) − ε

√
3 G7(z)

)
+ δ

(
F11(z) − ε

√
3 G11(z)

)

+ νσA
(
F13(z) − ε

√
3 G13(z)

)
+ ν

(
F17(z) + ε

√
3 G17(z)

)

+ δν
(
F19(z) − ε

√
3 G19(z)

)

− δνσA
(
F23(z) + ε

√
3 G23(z)

)
, (28.46)

where A =
√

2 + ε
√

3 = 1√
2
(

√
3 + ε), and where the components Fj, Gj

are normalized integral Fourier series with denominator 24 and numerator
classes j modulo 24. Those for j = 1, 11, 17, 19 are eta products,

F1 =
[
2, 32, 382, 57
1, 6, 19, 114

]
, G1 = [6, 19] ,

(28.47)

F11 =
[
12, 6, 19, 1142

2, 3, 38, 57

]
, G11 = [2, 57] ,

F17 =
[
1, 62, 192, 114

2, 3, 38, 57

]
, G17 = [3, 38] ,

(28.48)

F19 =
[
22, 3, 38, 572

1, 6, 19, 114

]
, G19 = [1, 114] .

In the final examples in this section we deal with the eta products of weight
1 on the Fricke group of level N = 6 · 23 = 138. The numerators of those with
denominator 8 cover all the coprime residue classes modulo 8. Nevertheless
we need complementing components in order to construct eigenforms. They
are theta series on the field with discriminant −4 · 138 = −552:

Example 28.19 Let J138 with Λ = Λ138 =
√√

3 +
√

−46 be defined as in
Example 7.10. The residues of Λ,

√
3 and

√
−23 modulo 4 can be chosen as

generators of (J138/(4))× � Z8 × Z4 × Z2, where (
√

3)2 ≡ −1 mod 4. Sixteen
characters ψ = ψδ,ε,ν,σ on J138 with period 4 are given by

ψ(Λ) = 1√
2
(εν + σi), ψ(

√
3) = δ, ψ(

√
−23) = ε

with δ, ε, ν, σ ∈ {1, −1}. The corresponding theta series of weight 1 decompose
as
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Θ1

(
−552, ψδ,ε,ν,σ, z

8

)
=

(
f1(z) + ν

√
2 g1(z)

)
+ δ

(
f3(z) − ν

√
2 g3(z)

)

+ δε
(
f5(z) − ν

√
2 g5(z)

)

+ ε
(
f7(z) + ν

√
2 g7(z)

)
, (28.49)

where the components fj, gj are normalized integral Fourier series with de-
nominator 8 and numerator classes j modulo 8. The components fj are eta
products,

f1 =
[
22, 692

1, 138

]
, f3 =

[
62, 232

3, 46

]
,

(28.50)

f5 =
[
12, 1382

2, 69

]
, f7 =

[
32, 462

6, 23

]
.

The numerators of the eta products with denominator 24 are congruent to
1, 5, 19 or 23 modulo 24. For the construction of eigenforms, complementing
components are needed whose numerators cover the missing residue classes
modulo 24:

Example 28.20 Let J138 and Λ be given as before in Example 28.19. The
residues of Λ, 3

√
3+2

√
−46,

√
−23 and 5 modulo 12 can be chosen as gener-

ators of (J138/(12))× � Z24 × Z4 × Z2
2 , where (3

√
3+2

√
−46)2 ≡ −1 mod 12.

Thirty-two characters χ = χδ,ε,ν,σ,κ on J138 with period 12 are fixed by their
values

χ(Λ) = ξ, χ(3
√

3 + 2
√

−46) = −ν, χ(
√

−23) = ε, χ(5) = 1

with primitive 24th roots of unity

ξ = ξδ,σ,κ = 1
2

√
2

(
σ(

√
3 + δ) + σκi(

√
3 − δ)

)

and δ, ε, ν, σ, κ ∈ {1, −1}. The corresponding theta series of weight 1 decom-
pose as

Θ1

(
−552, χδ,ε,ν,σ,κ, z

24

)

=
(
F1(z) + δ

√
3 G1(z)

)
+ εν

(
F5(z) + δ

√
3 G5(z)

)

+ σA
(
F7(z) + δ

√
3 G7(z)

)
+ ενσA

(
F11(z) − δ

√
3 G11(z)

)

+ νσA
(
F13(z) + δ

√
3 G13(z)

)
+ εσA

(
F17(z) + δ

√
3 G17(z)

)

+ ν
(
F19(z) + δ

√
3 G19(z)

)

+ ε
(
F23(z) + δ

√
3 G23(z)

)
, (28.51)

where A =
√

2 + δ
√

3 = 1√
2
(

√
3 + δ), and where the components Fj, Gj

are normalized integral Fourier series with denominator 24 and numerator
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classes j modulo 24. Those for j = 1, 5, 19, 23 are eta products,

F1 =
[
2, 32, 462, 69
1, 6, 23, 138

]
, G1 = [3, 46] ,

(28.52)

F5 =
[
1, 62, 232, 138

2, 3, 46, 69

]
, G5 = [6, 23] ,

F19 =
[
12, 6, 23, 1382

2, 3, 46, 69

]
, G19 = [1, 138] ,

(28.53)

F23 =
[
22, 3, 46, 692

1, 6, 23, 138

]
, G23 = [2, 69] .



29 Weight 1 for Fricke Groups Γ∗(p2q2)

29.1 An Overview, and an Example for Level 196

For primes p > q ≥ 3 there are only two new holomorphic eta products of
weight 1 and level p2q2, namely, η(q2z)η(p2z) and η(z)η(q2p2z). They belong
to the Fricke group, and their orders at ∞ do not allow the construction of
eigenforms. Thus our inspection of eta products in this section is confined
to the Fricke groups of levels 4p2 for odd primes p. Table 29.1 displays the
numbers of new holomorphic eta products also for the groups Γ0(4p2). For
p ≥ 7 the numbers for Γ∗(4p2) are independent from p, and each of these
nine eta products is a product of two simple theta series of weight 1

2 from
Theorem 8.1.

Many of the results in this section have previously been published in [79].
There are, however, several cross connections with results in preceding sec-
tions, and there are some theta series on real quadratic fields, which are not
to be found in [79]. We start with an example for level 196 which is new.
There is a cuspidal linear combination of the non-cuspidal eta products of
weight 1 and denominator 4 for Γ∗(196) which is a theta series on the fields
with discriminants 28, −4 and −7:

Example 29.1 The residues of 2 +
√

−7, 1 + 2
√

−7, 1 + 4
√

−7, 13 and −1
modulo 8

√
−7 can be chosen as generators of (O7/(8

√
−7))× � Z6 × Z4

2 .

A pair of characters ψν on O7 with period 8
√

−7 is given by

ψν(2 +
√

−7) = ν, ψν(1 + 2
√

−7) = 1,

ψν(1 + 4
√

−7) = 1, ψν(13) = −1, ψν(−1) = 1

with ν ∈ {1, −1}. The residues of 2+ i, 1+14i and i modulo 28 generate the
group (O1/(28))× � Z48 × Z2 × Z4. Two characters ϕν on O1 with period 28

G. Köhler, Eta Products and Theta Series Identities,
Springer Monographs in Mathematics,
DOI 10.1007/978-3-642-16152-0 29, c© Springer-Verlag Berlin Heidelberg 2011
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Table 29.1: Numbers of new eta products of weight 1 and levels 4p2 with odd
primes p

denominator t 1 2 3 4 6 8 12 24 total
Γ∗(196), non-cuspidal 1 0 0 3 0 0 0 0 4
Γ∗(196), cuspidal 0 0 0 0 0 2 1 2 5
Γ0(196), non-cuspidal 6 0 0 2 0 8 0 0 16
Γ0(196), cuspidal 0 0 0 2 10 6 4 22 44
Γ∗(100), non-cuspidal 3 0 0 3 0 0 0 0 6
Γ∗(100), cuspidal 0 0 0 0 1 2 2 6 11
Γ0(100), non-cuspidal 10 2 0 4 0 8 0 0 24
Γ0(100), cuspidal 0 0 0 2 10 6 6 24 48
Γ∗(36), non-cuspidal 10 0 0 10 0 0 0 0 20
Γ∗(36), cuspidal 0 0 2 0 0 10 8 16 36
Γ0(36), non-cuspidal 162 14 66 36 32 88 28 64 490
Γ0(36), cuspidal 0 24 8 18 8 80 58 140 336

are given by

ϕν(2 + i) = νi, ϕν(1 + 14i) = −1, ϕν(i) = 1.

The residues of 2 +
√

7, 1 + 2
√

7 and −1 modulo 4
√

7 are generators of
(Z[

√
7]/(4

√
7))× � Z12 × Z2

2 . A Hecke character ξ on Z[
√

7] with period 4
√

7
is given by

ξ(μ) = −sgn(μ) for μ ≡ 2 +
√

7, 1 + 2
√

7, −1 mod 4
√

7.

The corresponding theta series of weight 1 are identical and equal to a linear
combination of eta products,

Θ1

(
28, ξ, z

4

)
= Θ1

(
−7, ψν , z

4

)

= Θ1

(
−4, ϕν , z

4

)
= f(z) − 2 g(z) + h(z), (29.1)

where

f =
[
42, 492

2, 98

]
, g =

[
1, 4, 49, 196

2, 98

]
, h =

[
12, 1962

2, 98

]
. (29.2)

29.2 Some Examples for Level 100

We cannot offer any result for the eta products of weight 1 and denominator
1 on Γ∗(100), which are given by
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[
1−2, 25, 4−2, 25−2, 505, 100−2

]
,
[
4, 5−1, 102, 20−1, 25

]
,

[
1, 5−1, 102, 20−1, 100

]
.

We find one linear combination of the non-cuspidal eta products with denom-
inator 4 which is an eigenform. It is non-cuspidal, too, and can be identified
with a theta series on the Gaussian number field:

Example 29.2 Let the character χ on O1 with period 20 be defined by

χ(μ) =
(

10
μμ

)

for μ ∈ O1, or, equivalently, by its values χ(3 + 2i) = 1, χ(5 + 4i) = 1,
χ(i) = 1, χ(5 + 2i) = −1 on a set of generators of (O1/(20))× � Z3

4 × Z2.
The corresponding theta series of weight 1 satisfies

Θ1

(
−4, χ, z

4

)
= f1(z) + 2 f13(z) + f25(z), (29.3)

where

f1 =
[
42, 252

2, 50

]
, f13 =

[
1, 4, 25, 100

2, 50

]
, f25 =

[
12, 1002

2, 50

]
. (29.4)

The cuspidal eta product on Γ∗(100) with denominator 6 is
[
1−1, 22, 4−1, 52, 10−2, 202, 25−1, 502, 100−1

]
.

Its numerator is 1, but it is not an eigenform. Conceivably it combines with
some other eta products, not belonging to Γ∗(100), to a theta series on the
ring of Eisenstein integers Z[ω].

There are two linear combinations of the eta products with denominator 8
and of a third component (not otherwise identified) which are theta series on
the fields with discriminants 40, −4 and −40:

Example 29.3 The residues of 3 + 2i, 5 + 2i, 3, 11 and i modulo 40 can be
chosen as generators of (O1/(40))× � Z3

4 × Z2 × Z4. Four characters χδ,ν

on O1 with period 40 are fixed by their values

χδ,ν(3 + 2i) = δ, χδ,ν(5 + 2i) = νi,

χδ,ν(3) = 1, χδ,ν(11) = 1, χδ,ν(i) = 1

with δ, ν ∈ {1, −1}. The residues of
√

5+
√

−2, 1+
√

−10, 11 and −1 modulo
4

√
−10 generate the group (J10/(4

√
−10))× � Z8 × Z4 × Z2

2 . Four characters
ψδ,ν on J10 with period 4

√
−10 are given by
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ψδ,ν(
√

5 +
√

−2) = −δν, ψδ,ν(1 +
√

−10) = ν,

ψδ,ν(11) = −1, ψδ,ν(−1) = 1.

The residues of
√

2 +
√

5, 1 +
√

10, 11 and −1 modulo 4
√

10 are generators
of the group

(
J

Q[
√

10]/(4
√

10)
)× � Z8 × Z4 × Z2

2 . Define characters ξδ on
J

Q[
√

10] with period 4
√

10 by

ξδ(μ) =

⎧
⎨

⎩

δ sgn(μ)
sgn(μ)

−sgn(μ)
for μ ≡

⎧
⎨

⎩

√
2 +

√
5

1 +
√

10, 11
−1

mod 4
√

10.

The corresponding theta series of weight 1 satisfy the identities

Θ1

(
40, ξδ,

z
8

)
= Θ1

(
−4, χδ,ν , z

8

)

= Θ1

(
−40, ψδ,ν , z

8

)

= f1(z) − f25(z) + 2δ f5(z), (29.5)

where

f1 =
[
22, 502

1, 100

]
, f25 =

[
22, 502

4, 25

]
, (29.6)

and f5 is a normalized integral Fourier series with denominator 8 and nu-
merator class 5 modulo 8.

The eta products with denominator 12 are
[
1−1, 23, 4−1, 25−1, 503, 100−1

]
,

[
1, 2−2, 4, 5−4, 1010, 20−4, 25, 50−2, 100

]
,

both with numerator 13. We cannot offer a result involving these functions.

There are six eta products with denominator 24. In the following two ex-
amples we describe theta series whose components involve five of these eta
products and three functions not otherwise identified.

Example 29.4 The residues of 4 + i, 3 + 2i, 9 + 4i, 7, 11 and i modulo
120 can be chosen as generators of (O1/(120))× � Z8 × Z3

4 × Z2 × Z4. Four
characters ϕδ,ν on O1 with period 120 are given by

ϕδ,ν(4 + i) = δνi, ϕδ,ν(3 + 2i) = −νi, ϕδ,ν(9 + 4i) = −1,

ϕδ,ν(7) = 1, ϕδ,ν(11) = 1

and ϕδ,ν(i) = 1 with δ, ν ∈ {1, −1}. The residues of
√

3+2
√

−2, 1+
√

−6, 1+
4

√
−6, 11, 19 and −1 modulo 20

√
−6 generate the group (J6/(20

√
−6))× �

Z8 × Z2
4 × Z3

2 . Four characters ψ = ψδ,ν on J6 with period 20
√

−6 are given
by
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ψ(
√

3 + 2
√

−2) = ν, ψ(1 +
√

−6) = δν,

ψ(1 + 4
√

−6) = −1, ψ(11) = −1, ψ(19) = 1

and ψ(−1) = 1. The residues of 5 +
√

6, 1 + 2
√

6, 7, 11, 19 and −1 modulo
20

√
6 are generators of (Z[

√
6]/(20

√
6))× � Z3

4 × Z3
2 . Hecke characters ξδ on

Z[
√

6] with period 20
√

6 are given by

ξδ(μ) =

⎧
⎨

⎩

−δ sgn(μ)
sgn(μ)

−sgn(μ)
for μ ≡

⎧
⎨

⎩

5 +
√

6
7, 11

1 + 2
√

6, 19, −1
mod 20

√
6.

The corresponding theta series of weight 1 satisfy the identities

Θ1

(
24, ξδ,

z
24

)
= Θ1

(
−4, ϕδ,ν , z

24

)

= Θ1

(
−24, ψδ,ν , z

24

)
= F1(z) + 2δ F5(z), (29.7)

where the components Fj are normalized integral Fourier series with denom-
inator 24 and numerator classes j modulo 24, and where F1 is a linear com-
bination of eta products,

F1 = f1 + 2 f73 + f145

with

f1 =
[
42, 102, 252

2, 5, 20, 50

]
, f73 =

[
1, 4, 102, 25, 100

2, 5, 20, 50

]
,

(29.8)

f145 =
[
12, 102, 1002

2, 5, 20, 50

]
.

Example 29.5 Let the generators of (O1/(120))× be chosen as before in
Example 29.4, and define eight characters ρ = ρδ,ε,ν on O1 with period 120
by their values

ρ(4 + i) = −δε, ρ(3 + 2i) = ε,

ρ(9 + 4i) = νi, ρ(7) = 1, ρ(11) = 1, ρ(i) = 1

with δ, ε, ν ∈ {1, −1}. The residues of
√

10 +
√

−3,
√

5 +
√

−6, 1 +
√

−30,
5

√
5 + 2

√
−6 and −1 modulo 4

√
−30 are generators of (J30/(4

√
−30))× �

Z8 × Z2
4 × Z2

2 . Eight characters φ = φδ,ε,ν on J30 with period 4
√

−30 are
given by

φ(
√

10 +
√

−3) = ε, φ(
√

5 +
√

−6) = ν,

φ(1 +
√

−30) = −δν, φ(5
√

5 + 2
√

−6) = δ

and φ(−1) = 1. The residues of
√

3 +
√

10, 1 +
√

30, 11, 19 and −1 modulo
4

√
30 are generators of

(
J

Q[
√

30]/(4
√

30)
)× � Z8 × Z4 × Z3

2 . Hecke characters
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ξδ,ε on J
Q[

√
30] with period 4

√
30 are given by

ξδ,ε(μ) =

⎧
⎪⎪⎨

⎪⎪⎩

δε sgn(μ)
δ sgn(μ)
sgn(μ)

−sgn(μ)

for μ ≡

⎧
⎪⎪⎨

⎪⎪⎩

√
3 +

√
10

1 +
√

30
11

19, −1

mod 4
√

30.

The corresponding theta series of weight 1 satisfy the identities

Θ1

(
120, ξδ,ε,

z
24

)
= Θ1

(
−4, ρδ,ε,ν , z

24

)
= Θ1

(
−120, φδ,ε,ν , z

24

)

= G1(z) + 2δ G5(z) + 2εG13(z)
− 2δεG17(z), (29.9)

where the components Gj are normalized integral Fourier series with denom-
inator 24 and numerator classes j modulo 24, and where G1, G5 are linear
combinations of eta products,

G1 = f1 − f145, G5 = f29 − f101

with f1, f145 as before in (29.8) and

f29 = [4, 25] , f101 = [1, 100] . (29.10)

Eta products of weight 1 for Γ∗(100) were discussed in [79], Sect. 6. We note
that the eta product

[
1−2, 25, 4−2, 5, 10−2, 20, 25−2, 505, 100−2

]

with order 5
24 at ∞ does not appear as a constituent in our theta series.

29.3 Cuspidal Eta Products for Γ∗(36)

In the remaining parts of this section we inspect the eta products of weight
1 on the Fricke group Γ∗(36). Those with denominator 3 are

[
22, 32, 122, 182

1, 4, 62, 9, 36

]
,

[
1, 4, 66, 9, 36

22, 32, 122, 182

]
.

We have taken care of them in Example 20.11 where it is shown that they
are the components of two theta series on O1 with characters of period 9.

There are 10 new eta products of weight 1 with denominator 8 on Γ∗(36).
All of them are cuspidal. They span a space of dimension 3 only, a basis of
which is

f1 =
[
22, 182

1, 36

]
, f9 =

[
22, 182

4, 9

]
, f17 =

[
12, 62, 362

2, 3, 12, 18

]
; (29.11)



29.3. Cuspidal Eta Products for Γ∗(36) 553

here j indicates the numerator of the eta product fj . In the following example
we express the other eta products, including an old one coming from level 4,
in terms of this basis:

Example 29.6 Among the eta products of weight 1 and denominator 8 on
Γ∗(36) we have the linear relations
[
2, 33, 123, 18
1, 4, 62, 9, 36

]
= f1 + f17,

[
42, 62, 92

2, 3, 12, 18

]
= f1 − f9 + f17,

[
25, 3, 12, 185

12, 42, 62, 92, 362

]
= f1 + f9,

[
1, 42, 610, 92, 36
23, 34, 124, 183

]
= f1 − 2 f9 + 2 f17,

[
12, 42, 618, 92, 362

25, 37, 127, 185

]
= f1 − 3 f9 + 4 f17,

[
68

33, 123

]
= f1 − f9,

[
12, 4, 610, 9, 362

23, 34, 124, 183

]
= f9 − 2 f17,

[
1, 4, 62, 9, 36
2, 3, 12, 18

]
= f9 − f17,

with f1, f9, f17 as given in (29.11).

The linear combination f1 − f9 +2f17 of the eta products (29.11) is an eigen-
form and a theta series. The linear combination f1 + 3f9 − 2f17 has mul-
tiplicative coefficients, but violates the proper recursions at powers of the
prime 3; it becomes an eigenform and a theta series after the inclusion of an
old eta product from level 4. The corresponding theta series are known from
Example 25.22. We also record a trivial consequence from Example 13.4 and
from the identity for

[
3−3, 68, 12−3

]
in Example 29.6, saying that f1 − f9 is

a component in a theta series:

Example 29.7 For δ, ν ∈ {1, −1}, let χ̃δ,ν be the characters with period 24
on O1, ρ̃δ,ν the characters with period 12

√
−2 on O2, and ξ̃δ the characters

with period 12
√

2 on Z[
√

2], as defined in Example 25.22. The corresponding
theta series of weight 1 satisfy

Θ1

(
8, ξ̃1,

z
8

)
= Θ1

(
−4, χ̃1,ν , z

8

)

= Θ1

(
−8, ρ̃1,ν , z

8

)

= f1(z) − f9(z) + 2f17(z), (29.12)

Θ1

(
8, ξ̃−1,

z
8

)
= Θ1

(
−4, χ̃−1,ν , z

8

)
= Θ1

(
−8, ρ̃−1,ν , z

8

)

= f1(z) + 3 f9(z) − 2f17(z)

− 4
η4(18z)

η(9z)η(36z)
(29.13)

with f1, f9, f17 as given in (29.11). Let χδ,ν be the characters with period 24
on O1, ϕδ,ν the characters with period 4

√
−6 on J6, and ξδ the characters
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with period 4
√

6 on Z[
√

6], as given in Example 13.4. Then we have

Θ1

(
24, ξδ,

z
8

)
= Θ1

(
−4, χδ,ν , z

8

)
= Θ1

(
−24, ϕδ,ν , z

8

)

= f1(z) − f9(z) + 2δ η(3z)η(12z). (29.14)

From Examples 25.23 and 29.7 one obtains lengthy identities among eta prod-
ucts for Γ0(12) and Γ∗(36); we do not write them down.

There are eight new eta products of weight 1 and denominator 12 on Γ∗(36).
They span a space of dimension 4. We choose

g1 =
[
22, 62, 182

1, 4, 9, 36

]
, g13 =

[
1, 64, 36

2, 3, 12, 18

]
,

(29.15)

g5 =
[

23, 183

1, 4, 9, 36

]
, g17 =

[
1, 62, 36

3, 12

]

for a basis, where j indicates the numerator of the eta product gj . The other
four eta products are expressed in terms of this basis by linear relations which
follow trivially when we multiply relations in Example 29.6 by suitable eta
products. We find four linear combinations of the basis functions which are
theta series on the Gaussian integers:

Example 29.8 Among the eta products of weight 1 and denominator 12 on
Γ∗(36) we have the linear relations

[
4, 64, 9

2, 3, 12, 18

]
= g1 − g13,

[
1, 4, 612, 9, 36
23, 34, 124, 183

]
= g1 − 2 g13,

[
4, 62, 9
3, 12

]
= g5 − g17,

[
1, 4, 610, 9, 36
22, 34, 124, 182

]
= g5 − 2 g17,

with g1, g13, g5, g17 as given in (29.15). Let generators of (O1/(36))× �
Z24 × Z6 × Z2 be chosen as in Example 25.28, and define eight characters
ρδ,ν and ρ̃δ,ν on O1 with period 36 by their values

ρδ,ν(2 + i) = ξ = 1
2 (δ

√
3 + νi), ρδ,ν(1 − 6i) = ξ

2
= 1

2 (1 − δνi
√

3),

ρδ,ν(i) = 1,

ρ̃δ,ν(2 + i) = δξ2 = 1
2 (δ + νi

√
3), ρ̃δ,ν(1 − 6i) = ξ2 = 1

2 (1 + δνi
√

3),

ρ̃δ,ν(i) = 1.

The corresponding theta series of weight 1 satisfy

Θ1

(
−4, ρδ,ν , z

12

)
= g1(z) − 2 g13(z) + δ

√
3 g5(z), (29.16)

Θ1

(
−4, ρ̃δ,ν , z

12

)
= g1(z) + δ

(
g5(z) − 2 g17(z)

)
. (29.17)
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There are 16 new eta products with denominator 24. They span a space of
dimension 8, and we choose

h1 =
[
2, 32, 122, 18

1, 62, 36

]
, h25 =

[
2, 32, 122, 18

4, 62, 9

]
,

(29.18)

h5 =
[
4, 62, 9
2, 18

]
, h29 =

[
1, 62, 36

2, 18

]
,

h13 = [4, 9] , h37 = [1, 36] ,
(29.19)

h17 =
[
2, 62, 18

3, 12

]
, h41 =

[
12, 4, 64, 9, 362

22, 32, 122, 182

]

for a basis of this space. As before, expressions for the other eight eta prod-
ucts in terms of this basis follow trivially from the relations in Example 29.6:

Example 29.9 Among the eta products of weight 1 and denominator 24 on
Γ∗(36) we have the linear relations
[

24, 33, 123, 184

12, 42, 64, 92, 362

]
= h1 + h25,

[
66

2, 3, 12, 18

]
= h1 − h25,

[
22, 3, 12, 182

1, 4, 9, 36

]
= h5 + h29,

[
1, 4, 610, 9, 36
23, 33, 123, 183

]
= h5 − h29,

[
23, 3, 12, 183

1, 4, 62, 9, 36

]
= h13 + h37,

[
1, 4, 68, 9, 36

22, 33, 123, 182

]
= h13 − h37,

[
1, 42, 64, 92, 36
22, 32, 122, 182

]
= h17 − h41,

[
12, 42, 612, 92, 362

24, 35, 125, 184

]
= h17 − 2 h41,

with hj as given in (29.18), (29.19).

We find eight linear combinations of the basis functions (29.18), (29.19) which
are eigenforms and theta series on the Gaussian number field:

Example 29.10 Let generators of (O1/(72))× � Z24 × Z12 × Z2 × Z4 be
chosen as in Example 25.33, and define 16 characters ψ = ψδ,ε,ν and ψ̃ =
ψ̃δ,ε,ν on O1 with period 72 by their values

ψ(2 + i) = ξ = 1
2 (δ

√
3 + νi), ψ(1 + 6i) = −δεξ = 1

2 (−ε
√

3 + δενi),

ψ(19) = 1,

ψ̃(2 + i) = δξ2 = 1
2 (δ + νi

√
3), ψ̃(1 + 6i) = δεξ = 1

2 (ε
√

3 + δενi),

ψ̃(19) = 1



556 29. Weight 1 for Fricke Groups Γ∗(p2q2)

and ψ(i) = ψ̃(i) = 1, with δ, ε, ν ∈ {1, −1}. The corresponding theta series
of weight 1 satisfy

Θ1

(
−4, ψδ,ε,ν , z

24

)
= h1(z) + h25(z) + δ

√
3
(
h5(z) + h29(z)

)

+ ε
√

3
(
h13(z) − h37(z)

)

+ δε
(
h17(z) − 2 h41(z)

)
, (29.20)

Θ1

(
−4, ψ̃δ,ε,ν , z

24

)
= h1(z) − h25(z) + δ

(
h5(z) − h29(z)

)

+ ε
√

3
(
h13(z) + h37(z)

)

− δε
√

3 h17(z) (29.21)

with eta products hj as given in (29.18), (29.19).

29.4 Non-cuspidal Eta Products for Γ∗(36)

The non-cuspidal eta products of weight 1 and denominator 4 on Γ∗(36) span
a space of dimension 3. We choose

f1 =
[
22, 3, 12, 182

1, 62, 36

]
, f5 =

[
22, 3, 12, 182

4, 62, 9

]
, f9 =

[
12, 362

2, 18

]
(29.22)

for a basis of this space, where j is the numerator of the eta product fj .
Relations for the other eta products of this type, including an old one from
level 4, follow trivially from the relations in Example 29.6:

Example 29.11 Among the eta products of weight 1 and denominator 4 on
Γ∗(36) we have the linear relations
[

25, 32, 122, 185

12, 42, 64, 92, 362

]
= f1 + f5,

[
2, 34, 124, 18
1, 4, 64, 9, 36

]
= f1 + f9,

[
12, 42, 616, 92, 362

25, 36, 126, 185

]
= f1 − 3 f5 + 4 f9,

[
42, 92

2, 18

]
= f1 − f5 + f9,

[
1, 42, 68, 92, 36
23, 33, 123, 183

]
= f1 − 2 f5 + 2 f9,

[
66

32, 122

]
= f1 − f5,

[
1, 4, 9, 36

2, 18

]
= f5 − f9,

[
12, 4, 68, 9, 362

23, 33, 123, 183

]
= f5 − 2 f9,

with f1, f5, f9 as given in (29.22).

From the relation for the old eta product
[
3−2, 66, 12−2

]
and from Exam-

ple 13.2 it is clear that f1 − f5 is a cusp form and a theta series. The sum
f1 + f5, which itself is an eta product by virtue of one of the preceding rela-
tions, is a theta series on O1 with one of the characters ρ1 in Example 26.5.
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The other character ρ−1 yields a combination of f1 − 3f5 +4f9, which is also
an eta product by the preceding relations, and of an old eta product from
level 4:

Example 29.12 For δ ∈ {1, −1}, let ρδ be the characters on O1 with period
12 as defined in Example 26.5. For ν ∈ {1, −1}, let χν , ψν and ξ be the char-
acters on O1 with period 12, on O3 with period 8(1 + ω), and on Z[

√
3] with

period 4
√

3, respectively, as defined in Example 13.2. Then with notations
from (29.22) we have the identities

Θ1

(
12, ξ, z

4

)
= Θ1

(
−4, χν , z

4

)
= Θ1

(
−3, ψν , z

4

)
= f1(z) − f5(z), (29.23)

Θ1

(
−4, ρ1,

z
4

)
= f1(z) + f5(z), (29.24)

Θ1

(
−4, ρ−1,

z
4

)
= f1(z) − 3 f5(z) + 4 f9(z) − 4

η2(9z)η2(36z)
η2(18z)

. (29.25)

We observe that the character ρ−1 is imprimitive and induced from the char-
acter χ(μ) =

(
2

μ μ

)
modulo 4 which represents η2(z)η2(4z)/η2(2z), as we

know from Example 13.5. Therefore the old eta product in (29.25) can also
be written as Θ1

(
−4, χ, 9z

4

)
. In (29.24) we insert the eta product for f1 + f5

from Example 29.11, and we compare with (26.11) in Example 26.5. Then
we get an identity which is easily seen to be equivalent to

[
25

12, 42

]
−
[

185

92, 362

]
= 2

[
62, 9, 36
3, 12, 18

]
, (29.26)

which in turn is equivalent to (8.12) in Corollary 8.3.

The eta products of weight 1 and denominator 1 on Γ∗(36) span a space of
dimension 3, just as before in the case of denominator 4. For this space we
choose the basis functions

g0 =
[

22, 62, 182

1, 3, 12, 36

]
, g1 =

[
22, 62, 182

3, 4, 9, 12

]
, g2 =

[
12, 64, 362

2, 32, 122, 18

]
. (29.27)

They emerge from the functions in (29.22) by multiplication with
[
3−2, 64,

12−2
]
. Accordingly, we get the following linear relations for the other eta

products of this type:
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Example 29.13 Among the eta products of weight 1 and denominator 1 on
Γ∗(36) we have the linear relations
[

25, 185

12, 42, 92, 362

]
= g0 + g1,

[
2, 32, 122, 18

1, 4, 9, 36

]
= g0 + g2,

[
12, 42, 620, 92, 362

25, 38, 128, 185

]
= g0 − 3 g1 + 4 g2,

[
42, 64, 92

2, 32, 122, 18

]
= g0 − g1 + g2,

[
1, 42, 612, 92, 36
23, 35, 125, 183

]
= g0 − 2 g1 + 2 g2,

[
610

34, 124

]
= g0 − g1,

[
1, 4, 64, 9, 36
2, 32, 122, 18

]
= g1 − g2,

[
12, 4, 612, 9, 362

23, 35, 125, 183

]
= g1 − 2 g2,

with g0, g1, g2 as given in (29.27).

The relation for the old eta product
[
3−4, 610, 12−4

]
and Example 13.5 imply

that g0 − g1 is an eigenform and an Eisenstein series. The difference g1 − g2,
itself an eta product by one of the preceding relations, is a theta series on
O1 with a character which is known from several other examples. The sum
g0 + g2 becomes an eigenform when we combine it with an old eta product
from level 4:

Example 29.14 Let 1 stand for the trivial character on O1. As in Exam-
ple 18.15, let χ0 be the principal character modulo 3 on O1. Let χ be the
non-principal character modulo 3 on O1 which is given by χ(μ) =

(
2

μ μ

)
for

μ ∈ O1, as in Examples 18.19, 26.20. Then with notations from (29.27) we
have the identities

Θ1 (−4, 1, 3z) = 1 + 4
∞∑

n=1

(∑

d|n

(−1
d

))
e(3nz) = g0(z) − g1(z), (29.28)

Θ1 (−4, χ, z) =
∞∑

n=1

((
n
3

)∑

d|n

(−1
d

))
e(nz) = g1(z) − g2(z), (29.29)

Θ1 (−4, χ0, z) = g0(z) + g2(z) − 4
η10(18z)

η4(9z)η4(36z)
. (29.30)

We get more eta identities when we compare (29.29), (29.30) with former
relations (26.58), (26.89) in Examples 26.20, 26.29. We do not list these
identities here.



30 Weight 1 for the Fricke Groups Γ∗(60) and
Γ∗(84)

30.1 An Overview

In the final two sections of this monograph we inspect eta products of weight
1 on Fricke groups of levels N = 4pq for several pairs of distinct odd primes
p and q. Table 30.1 displays the numbers of these eta products and of those
for Γ0(4pq) for a few small values of p, q.

For p > q ≥ 5, pq > 35, there are exactly eight new non-cuspidal and
10 cuspidal eta products of weight 1 for Γ∗(4pq). For p ≥ 7, q = 3, the
corresponding numbers are 8 and 22. In the following two subsections we
will inspect the comparably large number of 60 eta products for Γ∗(60).

30.2 Cuspidal Eta Products for Γ∗(60)

There are six new holomorphic eta products of weight 1 for Γ∗(60) with
denominator 3. They span a space of dimension 4 which also includes two
old eta products from level 15. For a basis of this space we choose

f1 =
[
22, 3, 5, 12, 20, 302

1, 4, 6, 10, 15, 60

]
, f5 =

[
1, 4, 62, 102, 15, 60
2, 3, 5, 12, 20, 30

]
, (30.1)

g1 =
[

63, 103

3, 5, 12, 20

]
, g2 =

[
23, 303

1, 4, 15, 60

]
, (30.2)

where the subscripts indicate the numerators of the eta products. In the
following example we present four linear relations including those for the new
eta products which are not listed above. The sign transforms of f1 and f5 in
(30.1) belong to the group Γ0(30) and will not be treated in this monograph.
From Example 16.2 we know Hecke theta series on the field Q(

√
−15) which

are equal to g̃1 ± g̃2, where g̃1 = [3, 5] and g̃2 = [1, 15] are the sign transforms
of g1 and g2 in (30.2). The functions g1 ± g2 have multiplicative coefficients,
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Springer Monographs in Mathematics,
DOI 10.1007/978-3-642-16152-0 30, c© Springer-Verlag Berlin Heidelberg 2011
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Table 30.1: Numbers of new eta products of weight 1 and levels 4pq with odd
primes p �= q

denominator t 1 2 3 4 6 8 12 24 total
Γ∗(60), non-cuspidal 18 0 0 4 0 12 0 0 34
Γ∗(60), cuspidal 0 0 6 0 0 4 4 12 26
Γ0(60), non-cuspidal 136 8 46 32 4 108 18 48 400
Γ0(60), cuspidal 8 16 64 68 32 138 72 222 620
Γ∗(84), non-cuspidal 2 0 0 6 0 0 0 0 8
Γ∗(84), cuspidal 0 0 2 0 0 4 8 8 22
Γ0(84), non-cuspidal 62 4 42 26 4 64 22 32 256
Γ0(84), cuspidal 18 12 38 12 24 92 56 152 404
Γ∗(132), non-cuspidal 2 0 0 6 0 0 0 0 8
Γ∗(132), cuspidal 0 0 2 0 0 4 8 8 22
Γ0(132), non-cuspidal 50 4 32 30 2 56 18 40 232
Γ0(132), cuspidal 0 34 12 14 26 90 34 130 340
Γ∗(140), non-cuspidal 4 4 0 4 0 0 0 0 12
Γ∗(140), cuspidal 0 2 0 0 0 8 0 0 10
Γ0(140), non-cuspidal 12 0 0 4 0 16 0 0 32
Γ0(140), cuspidal 0 8 0 0 8 12 16 52 96
Γ∗(220), non-cuspidal 4 0 0 4 0 0 0 0 8
Γ∗(220), cuspidal 0 0 2 0 0 4 0 4 10
Γ0(220), non-cuspidal 12 0 0 4 0 16 0 0 32
Γ0(220), cuspidal 4 0 4 0 8 12 16 44 88

but they are not eigenforms of T2, and hence cannot be identified with theta
series. Also, the linear combinations f1 ± f5 of the eta products in (30.1)
are eigenforms of the Hecke operators Tp for all primes p �= 2; they can be
expressed by sums of theta series related to the characters in Example 16.2:

Example 30.1 With notations from (30.1), (30.2) we have the linear rela-
tions

[
25, 3, 5, 12, 20, 305

12, 42, 62, 102, 152, 602

]
= 2 f1 − g1 ,

(30.3)[
1, 4, 65, 105, 15, 60

22, 32, 52, 122, 202, 302

]
= − 2 f5 + g2 ,

[2, 30] = f1 − g1 , [6, 10] = − f5 + g2 . (30.4)
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For δ, ν ∈ {1, −1}, let ψδ,ν be the characters on J15 with period 3 as defined
in Example 16.2, and let ψ′

δ,ν be the imprimitive characters with period 6
which are induced from ψδ,ν . Then we have the identity

Θ1

(
− 15, ψ′

δ,ν , z
3

)
+ Θ1

(
−15, ψδ,ν , 4z

3

)
= f1(z) − δ f5(z) . (30.5)

For the cuspidal eta products with denominator 8 we introduce the notations

f1 =
[
22, 302

1, 60

]
, f3 =

[
62, 102

3, 20

]
,

(30.6)

f5 =
[
62, 102

5, 12

]
, f15 =

[
22, 302

4, 15

]
.

Again the subscripts indicate the numerators of the eta products. We find
four linear combinations of these functions which are theta series on the fields
with discriminants 40, −15 and −24:

Example 30.2 The residues of
√

3, 2 +
√

−15,
√

−15 and −1 modulo 16
can be chosen as generators of (J15/(16))× � Z8 × Z4 × Z2

2 . Eight characters
χδ,ε,ν on J15 with period 16 are fixed by their values

χδ,ε,ν(
√

3) = δ, χδ,ε,ν(2 +
√

−15) = νi,

χδ,ε,ν(
√

−15) = ε, χδ,ε,ν(−1) = 1

with δ, ε, ν ∈ {1, −1}. The residues of
√

3 + ν
√

−2, 1 + ν
√

−6, 11 and −1
modulo 4(2+ν

√
−6) generate the group (J6/(8+4ν

√
−6))× � Z8 × Z4 × Z2

2 .
Characters ϕδ,ε,ν on J6 with periods 4(2 + ν

√
−6) are given by

ϕδ,ε,ν(
√

3 + ν
√

−2) = δε, ϕδ,ε,ν(1 + ν
√

−6) = −ε,

ϕδ,ε,ν(11) = −1, ϕδ,ε,ν(−1) = 1.

The residues of
√

2 − ε
√

5, ε
√

5, 7 and −1 modulo Mε = 4(2 + ε
√

10) are
generators of

(
J

Q[
√

10]/(Mε)
)× � Z2

4 × Z2
2 . Define Hecke characters ξδ,ε on

J
Q[

√
10] with periods Mε by

ξδ,ε(μ) =

⎧
⎪⎪⎨

⎪⎪⎩

−δε sgn(μ)
δ sgn(μ)
sgn(μ)

−sgn(μ)

for μ ≡

⎧
⎪⎪⎨

⎪⎪⎩

√
2 − ε

√
5

ε
√

5
7

−1

mod Mε.

The corresponding theta series of weight 1 satisfy the identities

Θ1

(
40, ξδ,ε,

z
8

)
= Θ1

(
−15, χδ,ε,ν , z

8

)
= Θ1

(
−24, ϕδ,ε,ν , z

8

)

= f1(z) + δ f3(z) + δε f5(z) + ε f15(z) (30.7)

with eta products fj as given in (30.6).
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The eta products with denominator 12 are

g1 =
[
4, 62, 102, 15
2, 5, 12, 30

]
, g5 =

[
22, 3, 20, 302

1, 6, 10, 60

]
, (30.8)

g19 =
[
1, 62, 102, 60
2, 3, 20, 30

]
, g23 =

[
22, 5, 12, 302

4, 6, 10, 15

]
, (30.9)

where again j is the numerator of gj . We get a neat result as before in the
preceding example, yet with a theta series only on Q(

√
−15):

Example 30.3 The residues of 2 +
√

−15,
√

−5, 1 + 6
√

−15, 7 and −1
modulo 24 can be chosen as generators of (J15/(24))× � Z6 × Z4 × Z3

2 . Eight
characters ψ = ψδ,ε,ν on J15 with period 24 are fixed by their values

ψ(2 +
√

−15) = 1
2 (ε + νi

√
3), ψ(

√
−5) = δ,

ψ(1 + 6
√

−15) = −1, ψ(7) = 1

and ψ(−1) = 1 with δ, ε, ν ∈ {1, −1}. The corresponding theta series of
weight 1 satisfy

Θ1

(
−15, ψδ,ε,ν , z

12

)
= g1(z) + δ g5(z) + ε g19(z) + δε g23(z) (30.10)

with eta products gj as given in (30.8), (30.9).

There are 12 eta products of weight 1 and denominator 24 for Γ∗(60). They
are linearly independent. We find eight linear combinations which are Hecke
theta series on the field with discriminant −15:

Example 30.4 The residues of 2
√

3 +
√

−5, 2 + 3
√

−15, 4 + 3
√

−15, 7 and
−1 modulo 48 can be chosen as generators of (J15/(48))× � Z24 × Z4 × Z3

2 .
Sixteen characters ρ = ρδ,ε,ν,σ on J15 with period 48 are defined by their
values

ρ(2
√

3 +
√

−5) = δ
2 (εν

√
3 + σi), ρ(2 + 3

√
−15) = νσi,

ρ(4 + 3
√

−15) = ν, ρ(7) = 1

and ρ(−1) = 1 with δ, ε, ν, σ ∈ {1, −1}. The corresponding theta series of
weight 1 decompose as

Θ1

(
−15, ρδ,ε,ν,σ, z

24

)
= f1(z) + δ f5(z) − ν f7(z)

− δν f11(z) − εν
√

3 f13(z)

+ δεν
√

3 f17(z) + ε
√

3 f19(z)

− δε
√

3 f23(z) , (30.11)
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where the components fj are normalized integral Fourier series with denom-
inator 24 and numerator classes j modulo 24. All of them are eta products,

f1 =
[
2, 32, 202, 30
1, 6, 10, 60

]
, f5 =

[
42, 6, 10, 152

2, 5, 12, 30

]
,

f7 =
[
2, 52, 122, 30
4, 6, 10, 15

]
, f11 =

[
12, 6, 10, 602

2, 3, 20, 30

]
,

f13 = [1, 60] , f17 = [5, 12] , f19 = [4, 15] , f23 = [3, 20] .

We cannot offer a result involving the remaining eta products with denomi-
nator 24, which are
[
22, 5, 12, 302

1, 4, 15, 60

]
,

[
1, 62, 102, 60
3, 5, 12, 20

]
,

[
22, 3, 20, 302

1, 4, 15, 60

]
,

[
4, 62, 102, 15
3, 5, 12, 20

]
.

30.3 Non-cuspidal Eta Products for Γ∗(60)

There are 12 non-cuspidal eta products of weight 1 for Γ∗(60) with denomi-
nator 8. Together with the cuspidal eta products (30.6) they span a space of
dimension 8. As a basis we can choose the functions (30.6) and

F1 =
[
4, 6, 10, 15

2, 30

]
, F11 =

[
2, 5, 12, 30

6, 10

]
, (30.12)

F13 =
[
2, 3, 20, 30

6, 10

]
, F15 =

[
1, 6, 10, 60

2, 30

]
. (30.13)

Linear relations for the remaining 8 eta products are listed in the following
example. There are no linear combinations of the functions (30.12), (30.13)
which are eigenforms.

Example 30.5 Among the eta products of weight 1 on Γ∗(60) with denom-
inator 8 we have the linear relations

[
1, 42, 62, 102, 152, 60
22, 3, 5, 12, 20, 302

]
= f1 − F1 ,

[
1, 42, 65, 105, 152, 60

23, 32, 52, 122, 202, 303

]
= − f1 + 2 F1 ,

[
22, 3, 52, 122, 20, 302

1, 4, 62, 102, 15, 60

]
= f3 + F11 ,

[
25, 3, 52, 122, 20, 305

12, 42, 63, 103, 152, 602

]
= f3 + 2 F11 ,

[
22, 32, 5, 12, 202, 302

1, 4, 62, 102, 15, 60

]
= f5 + F13 ,
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[

25, 32, 5, 12, 202, 305

12, 42, 63, 103, 152, 602

]
= f5 + 2 F13 ,

[
12, 4, 62, 102, 15, 602

22, 3, 5, 12, 20, 302

]
= f15 − F15 ,

[
12, 4, 65, 105, 15, 602

23, 32, 52, 122, 202, 303

]
= − f15 + 2 F15 ,

with notations from (30.6), (30.12), (30.13).

For the eta products with denominator 4 we introduce the notations

g1 =
[
42, 152

2, 30

]
, g5 =

[
32, 202

6, 10

]
,

(30.14)

g3 =
[
52, 122

6, 10

]
, g15 =

[
12, 602

2, 30

]
,

where j is the numerator of gj . We find four linear combinations which are
eigenforms and theta series on the field Q(

√
−15). All of them are non-

cuspidal:

Example 30.6 The residues of
√

3, 2+
√

−15,
√

−15 and −1 modulo 8 can
be chosen as generators of (J15/(8))× � Z4 × Z3

2 . Four characters φδ,ε on
J15 with period 8 are defined by their values

φδ,ε(
√

3) = δ, φδ,ε(2 +
√

−15) = −δε, φδ,ε(
√

−15) = δε, φδ,ε(−1) = 1

with δ, ε ∈ {1, −1}. The corresponding theta series of weight 1 satisfy

Θ1

(
−15, φδ,ε,

z
4

)
= g1(z) + ε g5(z) + δ g3(z) + δε g15(z) (30.15)

with eta products gj as given in (30.14).

The Hecke characters φδ,ε are induced through the norm from Dirichlet char-
acters. We do not show these Dirichlet characters, but instead we present a
formula for the coefficients λ(p) of Θ1

(
−15, φδ,ε,

z
4

)
at primes p: If

(−15
p

)
= 1

then

λ(p) =

⎧
⎪⎪⎨

⎪⎪⎩

2, −2
2δ, −2δ
2ε, −2ε
2δε, −2δε

for p ≡

⎧
⎪⎪⎨

⎪⎪⎩

1, 13
11, 23
5, 17
7, 19

mod 24.

The 18 eta products of weight 1 for Γ∗(60) with denominator 1 span a space
of dimension only 4. For a basis of this space we choose

f0 =
[
22, 6, 10, 302

1, 4, 15, 60

]
, f1 =

[
3, 5, 12, 20

6, 10

]
, f2 =

[
1, 4, 15, 60

2, 30

]
,

(30.16)
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f3 =
[
12, 42, 6, 10, 152, 602

22, 3, 5, 12, 20, 302

]
, (30.17)

where j is the order of fj at ∞ (and the numerator of fj as well). This space
also includes the old eta products

[
2−1, 62, 102, 30−1

]
and

[
22, 6−1, 10−1, 302

]
,

coming from eta products of level 15 which were identified with theta series
on Q(

√
−15) for the characters of period 1 in Example 16.1. In the following

example we list 16 linear relations for the remaining 14 new and for two old
eta products.

Example 30.7 With notations from (30.16), (30.17), we have the following
linear relations among the eta products of weight 1 on Γ∗(60) with denomi-
nator 1:

[
62, 102

2, 30

]
= f0 − f1 + f2,

[
22, 302

6, 10

]
= f2 + f3,

[
25, 305

12, 42, 152, 602

]
= f0 + f1 − f3,

[
65, 105

32, 52, 122, 202

]
= f0 + f1 − f3,

[
24, 32, 52, 122, 202, 304

12, 42, 63, 103, 152, 602

]
= f0 + f1 + f2,

[
2, 32, 52, 122, 202, 30
1, 4, 62, 102, 15, 60

]
= f0 + f2,

[
210, 32, 52, 122, 202, 3010

14, 44, 65, 105, 154, 604

]
= f0 + 3f1 + 4f2 + f3,

[
27, 32, 52, 122, 202, 307

13, 43, 64, 104, 153, 603

]
= f0 + 2f1 + 2f2,

[
12, 42, 610, 1010, 152, 602

25, 34, 54, 124, 204, 305

]
= f0 − 3f1 + 4f2 − f3,

[
1, 4, 66, 106, 15, 60

23, 32, 52, 122, 202, 303

]
= f0 − 2f1 + 2f2,

[
2, 62, 102, 30
3, 5, 12, 20

]
= f1 − f3,

[
23, 3, 5, 12, 20, 303

1, 4, 62, 102, 15, 60

]
= f1 + f2,

[
26, 3, 5, 12, 20, 306

12, 42, 63, 103, 152, 602

]
= f1 + 2f2 + f3,

[
1, 4, 63, 103, 15, 60
22, 3, 5, 12, 20, 302

]
= f1 − f2,
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[
12, 42, 67, 107, 152, 602

24, 33, 53, 123, 203, 304

]
= f1 − 2f2 + f3,

[
12, 42, 64, 104, 152, 602

23, 32, 52, 122, 202, 303

]
= f2 − f3.

There are no linear combinations of the eta products in the preceding example
which are theta series. But three among these eta products can be identified
with sums of two theta series:

Example 30.8 Let 1 and χ0 denote the trivial and the non-trivial character
with period 1 on J15, respectively, as given in Example 16.1. Let ρ1,ν denote
the imprimitive characters with periods 1

2 (
√

3+ν
√

−5) which are induced from
the trivial character 1. Let ρ−1,ν and ψ−1 denote the imprimitive characters
with periods 1

2 (
√

3 + ν
√

−5) and 2, respectively, which are induced from χ0.
Then with notations from (30.16), (30.17), we have the identities

f1(z) − f2(z) = Θ1 (−15, ρ1,ν , z) − Θ1 (−15, ρ1,ν , 2z) , (30.18)

f1(z) + f2(z) = Θ1 (−15, ψ−1, z) + Θ1 (−15, ρ−1,ν , 2z) , (30.19)

f1(z) − f3(z) = Θ1 (−15, ψ−1, z) + Θ1 (−15, χ0, 4z) . (30.20)

30.4 Cuspidal Eta Products for Γ∗(84)

The eta products of weight 1 on Γ∗(84) with denominator 3 are components
of theta series on the field with discriminant −84:

Example 30.9 The residues of 1√
2
(

√
3 +

√
−7) and

√
−7 modulo 3 can be

chosen as generators of (J21/(3))× � Z6 × Z4, where (
√

−7)2 ≡ −1 mod 3.
Eight characters χδ,ε,ν on J21 with period 3 are defined by their values

χδ,ε,ν

(
1√
2
(

√
3 +

√
−7)

)
= 1

2 (−δε + νi
√

3), χδ,ε,ν(
√

−7) = δ

with δ, ε, ν ∈ {1, −1}. The corresponding theta series of weight 1 decompose
as

Θ1

(
−84, χδ,ε,ν , z

3

)
=
(
f1(z) + δ g1(z)

)
+ ε

(
f2(z) − δ g2(z)

)
, (30.21)

where the components fj, gj are normalized integral Fourier series with de-
nominator 3 and numerator classes j modulo 3, and where f1, g1 are eta
products,

f1 =
[
22, 3, 7, 12, 28, 422

1, 4, 6, 14, 21, 84

]
, g1 =

[
1, 4, 62, 142, 21, 84
2, 3, 7, 12, 28, 42

]
. (30.22)



30.4. Cuspidal Eta Products for Γ∗(84) 567

The eta products with denominator 8 are given by
[
22, 422

1, 84

]
,

[
62, 142

3, 28

]
,

[
22, 422

4, 21

]
,

[
62, 142

7, 12

]
.

There are no linear combinations of these functions which are eigenforms.

For the eta products with denominator 12 we introduce the notations

f1 =
[
4, 62, 142, 21
2, 7, 12, 42

]
, f25 =

[
1, 62, 142, 84
2, 3, 28, 42

]
, f5 =

[
63, 143

3, 7, 12, 28

]
,

(30.23)

f7 =
[
22, 3, 28, 422

1, 6, 14, 84

]
, f31 =

[
22, 7, 12, 422

4, 6, 14, 21

]
, f11 =

[
23, 423

1, 4, 21, 84

]
,

(30.24)

g5 =
[

25, 3, 7, 12, 28, 425

12, 42, 62, 142, 212, 842

]
, g11 =

[
1, 4, 65, 145, 21, 84

22, 32, 72, 122, 282, 422

]
.

(30.25)
We find eight linear combinations of these functions which are theta series
on the field with discriminant −21:

Example 30.10 The residues of 1√
2
(

√
3 +

√
−7), 3

√
3 + 2

√
−7 and 1 +

6
√

−21 modulo 12 are generators of (J21/(12))× � Z24 × Z4 × Z2, where
(3

√
3 + 2

√
−7)2 ≡ −1 mod 12. Sixteen characters ϕ = ϕδ,ε,ν and ψ = ψδ,ε,ν

on J21 with period 12 are defined by their values

ϕ
(

1√
2
(

√
3 +

√
−7)

)
= ξ = 1

2 (ε
√

3 + νi), ϕ(3
√

3 + 2
√

−7) = −δ,

ϕ(1 + 6
√

−21) = −1,

ψ
(

1√
2
(

√
3 +

√
−7)

)
= εξ2 = 1

2 (ε + νi
√

3), ψ(3
√

3 + 2
√

−7) = δ,

ψ(1 + 6
√

−21) = −1

with δ, ε, ν ∈ {1, −1}. The corresponding theta series of weight 1 decompose
as

Θ1

(
−84, ϕδ,ε,ν , z

12

)
= F1(z) + ε

√
3 F5(z) + δ F7(z) − δε

√
3 F11(z) , (30.26)

Θ1

(
−84, ψδ,ε,ν , z

12

)
= G1(z) + εG5(z) + δ G7(z) + δεG11(z) , (30.27)

where the components Fj, Gj are normalized integral Fourier series with
denominator 12 and numerator classes j modulo 12. All of them are eta
products or linear combinations thereof; with notations from (30.23), (30.24),
(30.25) we have

F1 = f1 + f25 , F5 = f5 , F7 = f7 + f31 , F11 = f11 , (30.28)

G1 = f1 − f25 , G5 = g5 , G7 = f7 − f31 , G11 = g11 . (30.29)
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The numerators of the eta products with denominator 24 are congruent to
1, 7, 13 or 19 modulo 24, with two eta products for each of these residue
classes. We find 16 eigenforms which are constituted by these 8 functions
and by eight complementing components with numerator classes 5, 11, 17
and 23 modulo 24 which are not identified with (linear combinations of) eta
products:

Example 30.11 The residues of 1√
2
(

√
3 +

√
−7),

√
−7, 1 + 6

√
−21 and −1

modulo 24 can be chosen as generators of (J21/(24))× � Z24 × Z2
4 × Z2.

Thirty-two characters ρ = ρδ,ε,ν,σ,κ on J21 with period 24 are given by

ρ
(

1√
2
(

√
3 +

√
−7)

)
= ξ, ρ(

√
−7) = ε, ρ(1 + 6

√
−21) = ν ξ6 = νσκi

and ρ(−1) = 1 with primitive 24th roots of unity

ξ = ξδ,σ,κ = 1
2

√
2

(
σ(

√
3 + δ) + κi(

√
3 − δ)

)

and δ, ε, ν, σ, κ ∈ {1, −1}. The corresponding theta series of weight 1 decom-
pose as

Θ1

(
−84, ρδ,ε,ν,σ,κ, z

24

)
=

(
f1(z) + δ

√
3 g1(z)

)

+ σ
(√

3+δ√
2

f5(z) +
√

3−δ√
2

g5(z)
)

+ ε
(
f7(z) − δ

√
3 g7(z)

)

+ εσ
(√

3+δ√
2

f11(z) +
√

3−δ√
2

g11(z)
)

+ ν
(
f13(z) − δ

√
3 g13(z)

)

− νσ
(√

3+δ√
2

f17(z) −
√

3−δ√
2

g17(z)
)

+ εν
(
f19(z) + δ

√
3 g19(z)

)

− ενσ
(√

3+δ√
2

f23(z) −
√

3−δ√
2

g23(z)
)

(30.30)

where the components fj, gj are normalized integral Fourier series with de-
nominator 24 and numerator classes j modulo 24. Those for j = 1, 7, 13, 19
are eta products,

f1 =
[
2, 32, 282, 42
1, 6, 14, 84

]
, g1 = [4, 21],

(30.31)

f7 =
[
42, 6, 14, 212

2, 7, 12, 42

]
, g7 = [3, 28],

f13 =
[
2, 72, 122, 42
4, 6, 14, 21

]
, g13 = [1, 84],

(30.32)

f19 =
[
12, 6, 14, 842

2, 3, 28, 42

]
, g19 = [7, 12] .
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30.5 Non-cuspidal Eta Products for Γ∗(84)

For the non-cuspidal eta products with denominator 4 we introduce the no-
tations

f1 =
[
42, 212

2, 42

]
, f5 =

[
3, 7, 12, 28

6, 14

]
, f21 =

[
12, 842

2, 42

]
, (30.33)

f3 =
[
72, 122

6, 14

]
, f11 =

[
1, 4, 21, 84

2, 42

]
, f7 =

[
32, 282

6, 14

]
, (30.34)

where j is the numerator of fj . There are six linear combinations of these
functions which are theta series. Two of them are cuspidal:

Example 30.12 The residues of 1√
2
(

√
3 +

√
−7),

√
−7 and 2

√
3 +

√
−7

modulo 4 can be chosen as generators of (J21/(4))× � Z8 × Z2
2 , where(

1√
2
(

√
3 +

√
−7)

)4 ≡ −1 mod 4. Eight characters ϕε,ν and ψδ,ε on J21 with
period 4 are given by

ϕε,ν

(
1√
2
(

√
3 +

√
−7)

)
= νi, ϕε,ν(

√
−7) = ε, ϕε,ν(2

√
3 +

√
−7) = − ε ,

ψδ,ε

(
1√
2
(

√
3 +

√
−7)

)
= δ, ψδ,ε(

√
−7) = −ε, ψδ,ε(2

√
3 +

√
−7) = ε

with δ, ε, ν ∈ {1, −1}. The residues of 3 − ω, 13, 5 − 4ω and ω modulo
8(2 + ω) can be chosen as generators of (O3/(16 + 8ω))× � Z12 × Z2

2 × Z6.
Two characters χε,1 on O3 with period 8(2 + ω) are given by

χε,1(3 − ω) = ε, χε,1(13) = −1, χε,1(5 − 4ω) = 1, χε,1(−1) = 1.

Define characters χε,−1 on O3 with period 8(2+ω) by χε,−1(μ) = χε,1(μ) for
μ ∈ O3. The residues of 2+ ε

√
7, 1+2ε

√
7 and −1 modulo Mε = 4(2 − ε

√
7)

are generators of (Z[
√

7]/(Mε))× � Z4 × Z2
2 . Hecke characters ξε on Z[

√
7]

with periods Mε are given by

ξε(μ) =
{

sgn(μ)
−sgn(μ) for μ ≡

{
2 + ε

√
7, 1 + 2ε

√
7

−1
mod Mε.

The corresponding theta series of weight 1 satisfy the identities

Θ1

(
−84, ψδ,ε,

z
4

)
=
(
g1(z) + 2δ h1(z)

)
+ ε

(
g3(z) − 2δ h3(z)

)
, (30.35)

Θ1

(
28, ξε,

z
4

)
= Θ1

(
−84, ϕε,ν , z

4

)
= Θ1

(
−3, χε,ν , z

4

)
= F1(z) + ε F3(z) ,

(30.36)
where the components gj, hj, Fj are normalized integral Fourier series with
denominator 4 and numerator classes j modulo 4. All of them are eta prod-
ucts or linear combinations thereof; with notations from (30.33), (30.34) we
have

g1 = f1 − f21 , h1 = f5 , g3 = f3 − f7 , h3 = f11 , (30.37)

F1 = f1 + f21 , F3 = f3 + f7 . (30.38)
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The non-cuspidal eta products of weight 1 and denominator 1 for Γ∗(84) are

f(z) = J(z)J(21z), g(z) = J(3z)J(7z) with J =
[

25

12, 42

]
(30.39)

from (8.8). Their coefficients at n are the numbers of integral solutions of
x2 + 21y2 = n and of 3x2 + 7y2 = n, respectively. For the construction of
eigenforms one needs, in addition, the functions corresponding to the other
two classes of quadratic forms with discriminant −84 (see Example 7.6). The
coefficients at n of these additional functions are the numbers of integral
solutions of x2 + 21y2 = 2n and of 3x2 + 7y2 = 2n, respectively. We obtain
these functions by introducing the sign transforms

J̃ =
[
12

2

]
, f̃ =

[
12, 212

2, 42

]
, g̃ =

[
32, 72

6, 14

]

and putting

f̂(z) = 1
2

(
f
(

z
2

)
+ f̃
(

z
2

))
, ĝ(z) = 1

2

(
g
(

z
2

)
+ g̃
(

z
2

))
. (30.40)

Here we leave the realm of the Fricke groups, since f̃ , g̃ belong to Γ0(42).
But f̃ , g̃ have the desired expansions, and we get the following result:

Example 30.13 For δ, ε ∈ {1, −1}, let the characters χ0
δ,ε with period 1 on

J21 be defined by

χ0
δ,ε(μ) =

⎧
⎪⎪⎨

⎪⎪⎩

1
δ
ε

δε

for μ =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

x + y
√

−21
x

√
3 + y

√
−7

1√
2

(
x + y

√
−21

)

1√
2

(
x

√
3 + y

√
−7
)

.

Let f , g, f̃ , g̃ be given as in (30.39), (30.40). Then we have the identity

Θ1

(
−84, χ0

δ,ε, z
)

= 1
2

(
f(z) + δ g(z) + ε f̂(z) + δε ĝ(z)

)
. (30.41)

In particular, for the trivial character 1 = χ0
1,1 we have

Θ1

(
−84, 1, z

)
= 2 +

∞∑

n=1

( ∑

d|n

(−21
d

))
e(nz) = 1

2

(
f(z) + g(z) + f̂(z) + ĝ(z)

)
.



31 Some More Levels 4pq with Odd Primes
p �= q

31.1 Weight 1 for Γ∗(132)

We recall Table 30.1 in Sect. 30.1 which displays numbers of eta products of
weight 1 for some of the Fricke groups which will be inspected in the present
section.

There are no linear combinations of the eta products with denominator 3 on
Γ∗(132) which are eigenforms. From the eta products with denominator 8
we can construct four eigenforms which are theta series on the fields with
discriminants 88, −132 and −24. These functions involve, besides the four
eta products, two more components which are not otherwise identified:

Example 31.1 The residues of 1√
2
(

√
3 +

√
−11),

√
−11 and 1 + 2

√
−33

modulo 8 can be chosen as generators of (J33/(8))× � Z8 × Z2
4 , where(

1√
2
(

√
3 +

√
−11)

)4 ≡ −1 mod 8. Eight characters ψδ,ε,ν on J33 with period
8 are given by

ψδ,ε,ν

(
1√
2
(

√
3 +

√
−11)

)
= ε, ψδ,ε,ν(

√
−11) = −δ, ψδ,ε,ν(1 + 2

√
−33) = νi

with δ, ε, ν ∈ {1, −1}. The residues of
√

3+ ν
√

−2,
√

3+2ν
√

−2, 7 − 4ν
√

−6
and −1 modulo 4(4 + ν

√
−6) can be chosen as generators of (J6/(16 +

4ν
√

−6))× � Z20 × Z4 × Z2
2 . Characters ϕ = ϕδ.ε,ν on J6 with periods

4(4 + ν
√

−6) are given by

ϕ(
√

3 + ν
√

−2) = −δε, ϕ(
√

3 + 2ν
√

−2) = −δ,

ϕ(7 − 4ν
√

−6) = −1, ϕ(−1) = 1.

The residues of 5 + ε
√

22, 5, 7 and −1 modulo Mε = 4(4 + ε
√

22) are gener-
ators of (Z[

√
22]/(Mε))× � Z4 × Z3

2 . Characters ξδ,ε on Z[
√

22] with periods

G. Köhler, Eta Products and Theta Series Identities,
Springer Monographs in Mathematics,
DOI 10.1007/978-3-642-16152-0 31, c© Springer-Verlag Berlin Heidelberg 2011
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Mε are given by

ξδ,ε(μ) =

⎧
⎨

⎩

δ sgn(μ)
sgn(μ)

−sgn(μ)
for μ ≡

⎧
⎨

⎩

5 + ε
√

22
5, 7

−1
mod Mε.

The corresponding theta series of weight 1 satisfy the identities

Θ1

(
88, ξδ,ε,

z
8

)
= Θ1

(
−132, ψδ,ε,ν , z

8

)
= Θ1

(
−24, ϕδ,ε,ν , z

8

)

= F1(z) + δ F3(z) + 2δε F5(z) + 2ε F7(z) , (31.1)

where the components Fj are normalized integral Fourier series with denom-
inator 8 and numerator classes j modulo 8, and where F1 and F3 are linear
combinations of eta products,

F1 =
[
22, 662

1, 132

]
−
[
22, 662

4, 33

]
, F3 =

[
62, 222

3, 44

]
−
[
62, 222

11, 12

]
. (31.2)

We find eight theta series on the field with discriminant −132 which are linear
combinations of the eta products of weight 1 and denominator 12 on Γ∗(132).
In the following example the subscripts j indicate the numerators of the eta
products fj and gj :

Example 31.2 The residues of 1√
2
(

√
3+

√
−11),

√
−11, 1+6

√
−33 and −1

modulo 12 can be chosen as generators of (J33/(12))× � Z24 × Z3
2 . Sixteen

characters χ = χδ,ε,ν and ρ = ρδ,ε,ν on J33 with period 12 are given by

χ
(

1√
2
(

√
3 +

√
−11)

)
= ξ, χ(

√
−11) = ε,

χ(1 + 6
√

−33) = −1, χ(−1) = 1,

ρ
(

1√
2
(

√
3 +

√
−11)

)
= δξ2, ρ(

√
−11) = ε,

ρ(1 + 6
√

−33) = −1, ρ(−1) = 1

with primitive 12th roots of unity ξ = ξδ,ν = 1
2 (−δ

√
3 + νi) and δ, ε, ν ∈

{1, −1}. The corresponding theta series of weight 1 decompose as

Θ1

(
−132, χδ,ε,ν , z

12

)
=

(
f1(z) − f37(z)

)
+ δε

√
3 f17(z) − δ

√
3 f7(z)

+
(
f11(z) − f47(z)

)
, (31.3)

Θ1

(
−132, ρδ,ε,ν , z

12

)
=

(
f1(z) + f37(z)

)
− δε g17(z)

+ δ g7(z) +
(
f11(z) + f47(z)

)
(31.4)
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with eta products

f1 =
[
4, 62, 222, 33
2, 11, 12, 66

]
, f37 =

[
1, 62, 222, 132

2, 3, 44, 66

]
, f17 =

[
23, 663

1, 4, 33, 132

]
,

(31.5)

g17 =
[

1, 4, 65, 225, 33, 132
22, 32, 112, 122, 442, 662

]
, g7 =

[
25, 3, 11, 12, 44, 665

12, 42, 62, 222, 332, 1322

]
,

(31.6)

f7 =
[

63, 223

3, 11, 12, 44

]
, f11 =

[
22, 3, 44, 662

1, 6, 22, 132

]
, f47 =

[
22, 11, 12, 662

4, 6, 22, 33

]
.

(31.7)

For the eta products with denominator 24 we introduce the notations

f1 =
[
2, 32, 442, 66
1, 6, 22, 132

]
, f49 =

[
2, 112, 122, 66

4, 6, 22, 33

]
,

(31.8)
f37 = [4, 33] , f133 = [1, 132] ,

f11 =
[
42, 6, 22, 332

2, 11, 12, 66

]
, f179 =

[
12, 6, 22, 1322

2, 3, 44, 66

]
,

(31.9)
f23 = [11, 12] , f47 = [3, 44] .

Each two of the numerators j of fj are congruent to 1, 11, 13 or 23 modulo 24.
We find sixteen theta series which are composed from these eta products and
from additional components with numerator classes 5, 7, 17, 19 modulo 24:

Example 31.3 The residues of 1√
2
(

√
3 +

√
−11),

√
−11, 1 + 6

√
−33 and

−1 modulo 24 can be chosen as generators of (J33/(24))× � Z24 × Z2
4 × Z2.

Thirty-two characters ψ = ψδ,ε,ν,σ and φ = φδ,ε,ν,σ on J33 with period 24 are
defined by their values

ψ
(

1√
2
(

√
3 +

√
−11)

)
= ξ, ψ(

√
−11) = δ, ψ(1 + 6

√
−33) = ενξ3 = ενσi,

φ
(

1√
2
(

√
3 +

√
−11)

)
= δνξ2, φ(

√
−11) = δ,

φ(1 + 6
√

−33) = −ενξ3 = −ενσi

and ψ(−1) = φ(−1) = 1 with primitive 12th roots of unity ξ = 1
2 (−δν

√
3+σi)

and δ, ε, ν, σ ∈ {1, −1}. The corresponding theta series of weight 1 decompose
as

Θ1

(
−132, ψδ,ε,ν,σ, z

24

)
= F1(z) + ν

√
3 F5(z) − δν

√
3 F7(z) + δ F11(z)

− δε
√

3F13(z) − δεν F17(z) − εν F19(z)

+ ε
√

3 F23(z), (31.10)
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Θ1

(
−132, φδ,ε,ν,σ, z

24

)
= G1(z) + ν G5(z) + δν G7(z)

+ δ G11(z) + δε
√

3 G13(z)

− δεν
√

3 G17(z) + εν
√

3 G19(z)

+ ε
√

3 G23(z), (31.11)

where the components Fj and Gj are integral and (with the exception of F19)
normalized Fourier series with denominator 24 and numerator classes j mod-
ulo 24. Those for j = 1, 11, 13, 23 are linear combinations of the eta products
in (31.8), (31.9),

F1 = f1 + f49, F11 = f11 + f179 , F13 = f37 − f133, F23 = f23 − f47,

(31.12)
G1 = f1 − f49, G11 = f11 − f179, G13 = f37 + f133, G23 = f23 + f47.

(31.13)

Concerning the non-cuspidal eta products with denominator 4, we find only
four theta series which are composed from these six functions. All of them
are non-cuspidal:

Example 31.4 The residues of 1√
2
(

√
3 +

√
−11),

√
−11 and 1 + 2

√
−33

modulo 4 can be chosen as generators of (J33/(4))× � Z8 × Z2
2 , where(

1√
2
(

√
3 +

√
−11)

)4 ≡ −1 mod 4. Four characters χδ,ε on J33 with period
4 are given by

χδ,ε

(
1√
2
(

√
3 +

√
−11)

)
= −δε, χδ,ε(

√
−11) = ε, χδ,ε(1 + 2

√
−33) = −1

with δ, ε ∈ {1, −1}. The corresponding theta series of weight 1 satisfy

Θ1

(
−132, χδ,ε,

z
4

)
=
(
g1(z) + 2δ h1(z)

)
+ ε

(
g3(z) − 2δ h3(z)

)
(31.14)

with

g1 =
[
42, 332

2, 66

]
+
[
12, 1322

2, 66

]
, h1 =

[
1, 4, 33, 132

2, 66

]
, (31.15)

g3 =
[
112, 122

6, 22

]
+
[
32, 442

6, 22

]
, h3 =

[
3, 11, 12, 44

6, 22

]
. (31.16)

For the eta products of weight 1 and denominator 1 on Γ∗(132) we get a
result analogous to that in Example 30.13. The reason is that Q(

√
−33), as

well as Q(
√

−21), has an ideal class group isomorphic to Z2 × Z2:
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Example 31.5 Let J =
[
1−2, 25, 4−2

]
and

f(z) = J(z)J(33z), g(z) = J(3z)J(11z),

f̃ =
[
12, 332

2, 66

]
, g̃ =

[
32, 112

6, 22

]
,

f̂(z) = 1
2

(
f
(

z
2

)
+ f̃
(

z
2

))
, ĝ(z) = 1

2

(
g
(

z
2

)
+ g̃
(

z
2

))
.

For δ, ε ∈ {1, −1}, let the characters χ0
δ,ε with period 1 on J33 be defined by

χ0
δ,ε(μ) =

⎧
⎪⎪⎨

⎪⎪⎩

1
δ
ε

δε

for μ =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

x + y
√

−33
x

√
3 + y

√
−11

1√
2

(
x + y

√
−33

)

1√
2

(
x

√
3 + y

√
−11

)
.

Then we have the identity

Θ1

(
−132, χ0

δ,ε, z
)

= 1
2

(
f(z) + δ g(z) + ε f̂(z) + δε ĝ(z)

)
. (31.17)

In particular, for the trivial character 1 = χ0
1,1 we have

Θ1

(
−132, 1, z

)
= 2 +

∞∑

n=1

( ∑

d|n

(−33
d

))
e(nz)

= 1
2

(
f(z) + g(z) + f̂(z) + ĝ(z)

)
.

31.2 Weight 1 for Γ∗(156)

For the Fricke group of level N = 12 · 13 = 156 we have the same number of
eta products of weight 1 as before in the cases N = 84 and N = 132, but with
a different distribution of denominators. There are six cuspidal eta products
with denominator 3; using their numerators for subscripts, we denote them
by

f1 =
[
22, 3, 12, 13, 52, 782

1, 4, 6, 26, 39, 156

]
, f13 =

[
1, 4, 62, 262, 39, 156
2, 3, 12, 13, 52, 78

]
, (31.18)

f2 =
[

25, 3, 12, 13, 52, 785

12, 42, 62, 262, 392, 1562

]
, f5 =

[
1, 4, 65, 265, 39, 156

22, 32, 122, 132, 522, 782

]
,

(31.19)

g2 =
[

63, 263

3, 12, 13, 52

]
, g5 =

[
23, 783

1, 4, 39, 156

]
. (31.20)

The sign transforms of the functions fj belong to the group Γ0(78), while
those of g2, g5 are the eta products [3, 13], [1, 39] for Γ∗(39) which were
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discussed in Example 16.5. Now we get a result which is more complete, yet
also more complicated than that before. There are four linear combinations
of the eta products listed above which are eigenforms of the Hecke operators
Tp for all primes p �= 2, and which are identified with sums of theta series
with characters related to those in Example 16.5:

Example 31.6 Let J39 with Λ = Λ39 =
√

1
2 (

√
13 +

√
−3) be given as in

Example 7.8. For δ, ν ∈ {1, −1}, let ρδ,ν and ρ̃δ,ν be the characters on J39

with period 3 as defined in Example 16.5. They induce imprimitive characters
ρ′

δ,ν and ρ̃ ′
δ,ν with period 6 which are fixed by their values

ρ′
δ,ν

(
1

2Λ (1 +
√

−39)
)

= −ξ = − 1
2 (δ

√
3 + νi),

ρ̃ ′
δ,ν

(
1

2Λ (1 +
√

−39)
)

= δξ2 = 1
2 (δ + νi

√
3)

and ρ′
δ,ν(−1) = ρ̃ ′

δ,ν(−1) = 1 on generators of (J39/(6)) � Z12 × Z2. Then
we have the identities

Θ1

(
−39, ρ′

δ,ν , z
3

)
+ Θ1

(
−39, ρδ,ν , 4z

3

)

=
(
f1(z) − f13(z)

)

− 1
2δ

√
3
(
f2(z) + f5(z) − g2(z) − g5(z)

)
, (31.21)

Θ1

(
−39, ρ̃ ′

δ,ν , z
3

)
+ Θ1

(
−39, ρ̃δ,ν , 4z

3

)

=
(
f1(z) + f13(z)

)

+ 1
2δ
(
f2(z) − f5(z) − g2(z) + g5(z)

)
(31.22)

with eta products fj, gj as given in (31.18), (31.19), (31.20).

The numerators of the eta products with denominator 8 occupy all the co-
prime residues modulo 8. There are no linear combinations of these functions
which have multiplicative coefficients.

For the eta products with denominator 12 we introduce the notations

f1 =
[
4, 62, 262, 39
2, 12, 13, 78

]
, f13 =

[
22, 3, 52, 782

1, 6, 26, 156

]
, (31.23)

f43 =
[
1, 62, 262, 156

2, 3, 52, 78

]
, f55 =

[
22, 12, 13, 782

4, 6, 26, 39

]
. (31.24)

We find eight theta series which are composed of these eta products and of
four components which are not otherwise identified:

Example 31.7 Let Λ be given as before in Example 31.6. The residues of
1

2Λ (1 +
√

−39), 2 + 3
√

−39, 1 + 6
√

−39, 5 and −1 modulo 24 can be chosen
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as generators of (J39/(24))× � Z24 × Z4
2 . Sixteen characters χ = χδ,ε,ν and

ψ = ψδ,ε,ν with period 24 on J39 are given by

χ
(

1
2Λ (1 +

√
−39)

)
= ξ, χ(2 + 3

√
−39) = −δ,

χ(1 + 6
√

−39) = −1, χ(5) = 1,

ψ
(

1
2Λ (1 +

√
−39)

)
= εξ2, ψ(2 + 3

√
−39) = −δ,

ψ(1 + 6
√

−39) = −1, ψ(5) = 1,

and χ(−1) = ψ(−1) = 1 with primitive 12th roots of unity ξ = ξε,ν =
1
2 (ε

√
3 + νi) and δ, ε, ν ∈ {1, −1}. The corresponding theta series of weight

1 satisfy

Θ1

(
−39, χδ,ε,ν , z

12

)
= F1(z) + ε

√
3 F5(z) + δ F7(z) + δε

√
3 F11(z) , (31.25)

Θ1

(
−39, ψδ,ε,ν , z

12

)
= G1(z) + εG5(z) + δ G7(z) − δεG11(z) , (31.26)

where the components Fj, Gj are normalized integral Fourier series with
denominator 12 and numerator classes j modulo 12. Those for j = 1, 7 are
linear combinations of eta products,

F1 = f1 + f13, G1 = f1 − f13, F7 = f43 + f55, G7 = f43 − f55 (31.27)

with notations from (31.23), (31.24).

Linear combinations of the 8 eta products of weight 1 and denominator 24
for Γ∗(156) form four of the components of 16 theta series on Q(

√
−39):

Example 31.8 The residues of 1
2Λ (1+

√
−39), 2+3

√
−39, 8+3

√
−39, 7 and

−1 modulo 48 can be chosen as generators of (J39/(48))× � Z48 × Z4 × Z3
2 .

Thirty-two characters ϕ = ϕδ,ε,ν,σ,κ with period 48 on J39 are given by

ϕ
(

1
2Λ (1 +

√
−39)

)
= ξ, ϕ(2 + 3

√
−39) = νξ6 = νσκi,

ϕ(8 + 3
√

−39) = −εν, ϕ(7) = 1

and ϕ(−1) = 1 with primitive 24th roots of unity

ξ = ξδ,σ,κ = 1
2

√
2

(
σ(

√
3 + δ) + κi(

√
3 − δ)

)

and δ, ε, ν, σ, κ ∈ {1, −1}. The corresponding theta series of weight 1 decom-
pose as

Θ1

(
−39, ϕδ,ε,ν,σ,κ, z

24

)

=
(
f1(z) + δ

√
3 g1(z)

)
+ σ

√
3+δ√
2

(
f5(z) + δ

√
3 g5(z)

)

− εν
(
f7(z) + δ

√
3 g7(z)

)
+ ενσ

√
3−δ√
2

(
f11(z) − δ

√
3 g11(z)

)

+ ε
(
f13(z) + δ

√
3 g13(z)

)
+ εσ

√
3+δ√
2

(
f17(z) − δ

√
3 g17(z)

)

− ν
(
f19(z) + δ

√
3 g19(z)

)

+ νσ
√

3+δ√
2

(
f23(z) − δ

√
3 g23(z)

)
, (31.28)
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where the components fj, gj are normalized integral Fourier series with de-
nominator 24 and numerator classes j modulo 24. Those for j = 1, 7, 13, 19
are eta products,

f1 =
[
2, 32, 522, 78
1, 6, 26, 156

]
, g1 = [12, 13],

(31.29)

f7 =
[
2, 122, 132, 78

4, 6, 26, 39

]
, g7 = [3, 52],

f13 =
[
42, 6, 26, 392

2, 12, 13, 78

]
, g13 = [1, 156],

(31.30)

f19 =
[
12, 6, 26, 1562

2, 3, 52, 78

]
, g19 = [4, 39].

There are two linear combinations of the non-cuspidal eta products with
denominator 4 which are cuspidal eigenforms and equal to theta series on
three distinct number fields:

Example 31.9 The residues of 1
2Λ (1 +

√
−39), 2 +

√
−39,

√
−39 and −1

modulo 8 can be chosen as generators of (J39/(8))× � Z8 × Z3
2 . Four char-

acters φδ,ν with period 8 on J39 are given by

φδ,ν

(
1

2Λ (1 +
√

−39)
)

= νi, φδ,ν(2 +
√

−39) = −δ,

φδ,ν(
√

−39) = δ, φδ,ν(−1) = 1

with δ, ν ∈ {1, −1}. The residues of 1 + ω, 5, 13 − 4ω and ω modulo 8(3 + ω)
can be chosen as generators of (O3/(24 + 8ω))× � Z12 × Z4 × Z2 × Z6. Two
characters ρδ,1 with period 8(3 + ω) on O3 are given by

ρδ,1(1 + ω) = δ, ρδ,1(5) = −1, ρδ,1(13 − 4ω) = −1, ρδ,1(ω) = 1.

Define characters ρδ,−1 with period 8(3 + ω) on O3 by ρδ,−1(μ) = ρδ,1(μ)
for μ ∈ O3. The residues of 1

2 (3 + δ
√

13), 1 + 2δ
√

13, 5 and −1 modulo
Mδ = 4(1 + δ

√
13) are generators of (Z[ω13]/(Mδ))× � Z12 × Z3

2 , where
ω13 = 1

2 (1 +
√

13). Hecke characters ξδ on Z[ω13] with periods Mδ are given
by

ξδ(μ) =

⎧
⎨

⎩

δ sgn(μ)
sgn(μ)

−sgn(μ)
for μ ≡

⎧
⎨

⎩

1
2 (3 + δ

√
13)

1 + 2δ
√

13
5, −1

mod Mδ.

The corresponding theta series of weight 1 satisfy the identities

Θ1

(
13, ξδ,

z
4

)
= Θ1

(
−39, φδ,ν , z

4

)

= Θ1

(
−3, ρδ,ν , z

4

)
= F1(z) + δ F3(z) , (31.31)
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where the components Fj are normalized integral Fourier series with denom-
inator 4 and numerator classes j modulo 4. Both of them are linear combi-
nations of eta products,

F1 =
[
42, 392

2, 78

]
+
[
32, 522

6, 26

]
, F3 =

[
122, 132

6, 26

]
+
[
12, 1562

2, 78

]
. (31.32)

For the non-cuspidal eta products with denominator 1 we introduce the no-
tations

f =
[

25, 785

12, 42, 392, 1562

]
, g =

[
65, 265

32, 122, 132, 522

]
, (31.33)

f2 =
[
3, 12, 13, 52

6, 26

]
, f5 =

[
1, 4, 39, 156

2, 78

]
. (31.34)

We present three linear combinations of these functions with multiplicative
coefficients which are eigenforms of the Hecke operators Tp for primes p �=
2 and which are sums of theta series. The situation differs from that in
Examples 30.13, 31.5 since the ideal class group of Q(

√
−39) is isomorphic

to Z4.

Example 31.10 For δ ∈ {1, −1}, let χδ be the characters with period 1 on
J39 which are given by

χδ(μ) = δi for μ = 1
2Λ (x + y

√
−39) ∈ J39 , x ≡ y mod 4.

Let χ̃δ be the imprimitive characters modulo 2 which are induced from χδ,
and let χ′

δ and χ̂ ′
δ denote the imprimitive characters modulo Λ and modulo

Λ, respectively, which are induced from χδ. Then we have the identities
Θ1

(
−39, χ̂ ′

δ, z
)

= Θ1

(
−39, χ′

−δ, z
)
,

Θ1

(
−39, χ̃δ, z

)
+ Θ1

(
−39, χδ, 4z

)
= 1

2

(
f(z) − g(z)

)
, (31.35)

Θ1

(
−39, χ̃δ, z

)
+ δi Θ1

(
−39, χ̃δ, 2z

)
+ Θ1

(
−39, χ′

−δ, 4z
)

= 1
2

(
f(z) − g(z)

)
+ δi

(
f2(z) + f5(z)

)
(31.36)

with eta products f, g, f2, f5 as given in (31.33), (31.34).

Remark. The theta series of weight 1 for χδ, χ̃δ, χ′
δ, χ̂ ′

δ have coefficients

λ2 = χδ(Λ) + χδ(Λ) = 0, λ̃2 = 0, λ′
2 = χδ(Λ) = δi, λ̂ ′

2 = χδ(Λ) = −δi

at n = 2, and those at n = 4 are

λ4 = χδ

(
Λ2
)

+ χδ

(
Λ

2)
+ χδ(2) = −1, λ̃4 = 0,

λ′
4 = χδ

(
Λ

2)
= −1, λ̂ ′

4 = χδ

(
Λ2
)

= −1.
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31.3 Weight 1 for Γ∗(228)

We have no results for the eta products of weight 1 on the Fricke group of
level N = 12 · 17 = 204. Concerning the non-cuspidal eta products with
denominator 1, we remark that their coefficients are the numbers of repre-
sentations of integers by the quadratic forms x2 + 51y2 and 3x2 + 17y2 with
discriminant −204, while the field discriminant of Q(

√
−51) is −51.

In contrast, we have a rich supply of theta–eta identities for the Fricke group
of level N = 12 · 19 = 228. The eta products of weight 1 on Γ∗(228) with
denominator 3 are

f1 =
[
22, 3, 12, 19, 76, 1142

1, 4, 6, 38, 57, 228

]
, f19 =

[
1, 4, 62, 382, 57, 228
2, 3, 12, 19, 76, 114

]
, (31.37)

with numerators j of fj congruent to 1 modulo 3. Their sign transforms
belong to Γ0(114) and will not be discussed. The functions fj make up two
of the components of four theta series on the field with discriminant −228:

Example 31.11 Let J57 be given as in Example 7.6. The residues of
√

3 −√
−19 and 1√

2
(3

√
3 +

√
−19) modulo 3 can be chosen as generators of

(J57/(3))× � Z12 × Z2, where (
√

3 −
√

−19)6 ≡ −1 mod 3. Eight charac-
ters χδ,ε,ν with period 3 on J57 are defined by their values

χδ,ε,ν(
√

3 −
√

−19) = 1
2 (−δ + νi

√
3), χδ,ε,ν

(
1√
2
(3

√
3 +

√
−19)

)
= δε

with δ, ε, ν ∈ {1, −1}. The corresponding theta series of weight 1 decompose
as

Θ1

(
−228, χδ,ε,ν , z

3

)
=
(
f1(z) + δ f19(z)

)
+ ε

(
f2(z) − δ g2(z)

)
, (31.38)

where f1, f19 are the eta products in (31.37) and where f2, g2 are normalized
integral Fourier series with denominator 3 and numerator classes 2 modulo 3.

For the eta products with denominator 8 we introduce the notations

f1 =
[
22, 1142

1, 228

]
, f57 =

[
22, 1142

4, 57

]
,

(31.39)

f3 =
[
62, 382

3, 76

]
, f19 =

[
62, 382

12, 19

]
.

The numerators j of fj are congruent to 1 or 3 modulo 8. Linear combinations
of these functions constitute two of the components of four theta series on
the fields with discriminants 24, −228 and −152:
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Example 31.12 The residues of 1√
2
(

√
3+

√
−19),

√
3 and 1+2

√
−57 modulo

8 can be chosen as generators of (J57/(8))× � Z8 × Z2
4 , where

(
1√
2
(

√
3 −

√
−19)

)4 ≡ −1 mod 8. Eight characters ψδ,ε,ν with period 8 on J57 are given
by

ψδ,ε,ν

(
1√
2
(

√
3 +

√
−19)

)
= νi, ψδ,ε,ν(

√
3) = δ, ψδ,ε,ν(1 + 2

√
−57) = −ενi

with δ, ε, ν ∈ {1, −1}. Let J38 with Λ = Λ38 = 3
√

1 + 3
√

−38 be given as in
Example 7.14. The residues of Λ,

√
−19, 7 and −1 modulo P = 4

Λ (2 −
√

−38)
are generators of (J38/(P ))× � Z12 × Z4 × Z2

2 . Characters ϕδ,ε,1 with period
P on J38 are given by

ϕδ,ε,1(Λ) = ε, ϕδ,ε,1(
√

−19) = −δ, ϕδ,ε,1(7) = −1, ϕδ,ε,1(−1) = 1.

Define characters ϕδ,ε,−1 with period P on J38 by ϕδ,ε,−1(μ) = ϕδ,ε,1(μ) for
μ ∈ J38. The residues of 5 + ε

√
6, 17 + 4ε

√
6, 19 − 4ε

√
6 and −1 modulo

Mε = 4(4 + 3ε
√

6) are generators of (Z[
√

6]/(Mε))× � Z36 × Z3
2 . Hecke

characters ξδ,ε on Z[
√

6] with periods Mε are given by

ξδ,ε(μ) =

⎧
⎨

⎩

−δ sgn(μ)
sgn(μ)

−sgn(μ)
for μ ≡

⎧
⎨

⎩

5 + ε
√

6
19 − 4ε

√
6

17 + 4ε
√

6, −1
mod Mε.

The corresponding theta series of weight 1 satisfy the identities

Θ1

(
24, ξδ,ε,

z
8

)
= Θ1

(
−228, ψδ,ε,ν , z

8

)
= Θ1

(
−152, ϕδ,ε,ν , z

8

)

= F1(z) + δ F3(z) − 2δε F5(z) + 2ε F7(z), (31.40)

where the components Fj are normalized integral Fourier series with denom-
inator 8 and numerator classes j modulo 8, and where F1, F3 are linear
combinations of the eta products in (31.39),

F1 = f1 − f57 , F3 = f3 − f19 . (31.41)

There are eight eta products of weight 1 for Γ∗(228) with denominator 12.
Using the numerators for subscripts, we denote them by

f1 =
[

4, 62, 382, 57
2, 12, 19, 114

]
, g61 =

[
1, 62, 382, 228
2, 3, 76, 114

]
, f29 =

[
23, 1143

1, 4, 57, 228

]
,

(31.42)

f19 =
[
22, 3, 76, 1142

1, 6, 38, 228

]
, g79 =

[
22, 12, 19, 1142

4, 6, 38, 57

]
, f11 =

[
63, 383

3, 12, 19, 76

]
,

(31.43)
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g29 =
[

1, 4, 65, 385, 57, 228
22, 32, 122, 192, 762, 1142

]
, g11 =

[
25, 3, 12, 19, 76, 1145

12, 42, 62, 382, 572, 2282

]
.

(31.44)

We find eight theta series on the field with discriminant −228 whose compo-
nents are linear combinations of these eta products:

Example 31.13 The residues of 1√
2
(

√
3 +

√
−19), 3

√
3 + 2

√
−19 and 1 +

6
√

−57 modulo 12 can be chosen as generators of (J57/(12))× � Z24×Z4×Z2,
where

(
3

√
3 + 2

√
−19

)2 ≡ −1 mod 12. Sixteen characters ρ = ρδ,ε,ν and
φ = φδ,ε,ν with period 12 on J57 are given by

ρ
(

1√
2
(

√
3 +

√
−19)

)
= ξ = 1

2 (δ
√

3 + νi), ρ(3
√

3 + 2
√

−19) = ε,

ρ(1 + 6
√

−57) = −1,

φ
(

1√
2
(

√
3 +

√
−19)

)
= δξ2 = 1

2 (δ + νi
√

3), φ(3
√

3 + 2
√

−19) = −ε,

φ(1 + 6
√

−57) = −1

with δ, ε, ν ∈ {1, −1}. The corresponding theta series of weight 1 decompose
as

Θ1

(
−228, ρδ,ε,ν , z

12

)
= F1(z) + δε

√
3 F5(z) + ε F7(z) + δ

√
3 F11(z), (31.45)

Θ1

(
−228, φδ,ε,ν , z

12

)
= G1(z) − δεG5(z) + εG7(z) + δ G11(z), (31.46)

where the components Fj, Gj are normalized integral Fourier series with
denominator 12 and numerator classes j modulo 12. All of them are linear
combinations of the eta products in (31.42), (31.43), (31.44), or eta products
themselves,

F1 = f1 − g1 , F5 = f29 , F7 = f19 − g79 , F11 = f11 , (31.47)

G1 = f1 + g1 , G5 = g29 , G7 = f19 + g79 , G11 = g11 . (31.48)

We get a similar result for the eta products with denominator 24, which we
denote by

f1 =
[
2, 32, 762, 114
1, 6, 38, 228

]
, f73 =

[
2, 122, 192, 114

4, 6, 38, 57

]
,

(31.49)
f31 = [12, 19] , f79 = [3, 76] ,
f61 = [4, 57] , f229 = [1, 228] ,

(31.50)

f19 =
[

42, 6, 38, 572

2, 12, 19, 114

]
, f307 =

[
12, 6, 38, 2282

2, 3, 76, 114

]
.

Linear combinations of these functions make up eight of the components of
sixteen theta series:
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Example 31.14 The residues of 1√
2
(

√
3+

√
−19), 3

√
3+2

√
−19,

√
−19 and

−1 modulo 24 can be chosen as generators of (J57/(24))× � Z24 × Z2
4 × Z2.

Thirty-two characters χ = χδ,ε,ν,σ and ψ = ψδ,ε,ν,σ with period 24 on J57 are
fixed by their values

χ
(

1√
2
(

√
3 +

√
−19)

)
= ξ, χ(3

√
3 + 2

√
−19) = −δεξ3 = −εσi,

χ(
√

−19) = δ,

ψ
(

1√
2
(

√
3 +

√
−19)

)
= δενξ2, ψ(3

√
3 + 2

√
−19) = −εσi,

ψ(
√

−19) = δ

and χ(−1) = ψ(−1) = 1 with ξ = δ
2 (εν

√
3 + σi), δενξ2 = δ

2 (εν + σi
√

3) and
δ, ε, ν, σ ∈ {1, −1}. The corresponding theta series of weight 1 decompose as

Θ1

(
−228, χδ,ε,ν,σ, z

24

)
= F1(z) − δε F5(z) + ν

√
3F7(z)

+ δεν
√

3 F11(z)

− δν
√

3 F13(z) − εν
√

3 F17(z)
+ δ F19(z) + ε F23(z), (31.51)

Θ1

(
−228, ψδ,ε,ν,σ, z

24

)
= G1(z) − δε

√
3 G5(z) + ν

√
3G7(z)

+ δεν G11(z)

+ δν
√

3 G13(z) − εν G17(z) + δ G19(z)

+ ε
√

3G23(z), (31.52)

where the components Fj, Gj are normalized integral Fourier series with
denominator 24 and numerator classes j modulo 24. Those for j = 1, 7, 13, 19
are linear combinations of the eta products in (31.49), (31.50),

F1 = f1 − f73 , F7 = f31 + f79 ,

F13 = f61 + f229 , F19 = f19 − f307 , (31.53)

G1 = f1 + f73 , G7 = f31 − f79 ,

G13 = f61 − f229 , G19 = f19 + f307 . (31.54)

There are six non-cuspidal eta products with denominator 4,

f1 =
[
42, 572

2, 114

]
, f29 =

[
1, 4, 57, 228

2, 114

]
, f57 =

[
12, 2282

2, 114

]
, (31.55)

f3 =
[
122, 192

6, 38

]
, f11 =

[
3, 12, 19, 76

6, 38

]
, f19 =

[
32, 762

6, 38

]
. (31.56)

We find six linear combinations of these functions which are theta series, two
of them cuspidal and the others non-cuspidal:
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Example 31.15 The residues of 1√
2
(

√
3 +

√
−19),

√
−19 and 1 + 2

√
−57

modulo 4 can be chosen as generators of (J57/(4))× � Z8 × Z2
2 , where(

1√
2
(

√
3 −

√
−19)

)4 ≡ −1 mod 4. Eight characters ϕδ,ν and φδ,ε with period
4 on J57 are given by

ϕδ,ν

(
1√
2
(

√
3 +

√
−19)

)
= νi, ϕδ,ν(

√
−19) = −δ,

ϕδ,ν(1 + 2
√

−57) = −1,

φδ,ε

(
1√
2
(

√
3 +

√
−19)

)
= δε, φδ,ε(

√
−19) = δ,

φδ,ε(1 + 2
√

−57) = −1

with δ, ε, ν, ∈ {1, −1}. The residues of 1 + ω, 5 + 4ω, 13 − 16ω and ω modulo
8(3+2ω) can be chosen as generators of (O3/(24+16ω))× � Z36 × Z2

2 × Z6.
Characters ρδ,1 with period 8(3 + 2ω) on O3 are given by

ρδ,1(1+ω) = δ, ρδ,1(5+4ω) = 1, ρδ,1(13 − 16ω) = −1, ρδ,1(ω) = 1.

Define characters ρδ,−1 with period 8(3 + 2ω) on O3 by ρδ,−1(μ) = ρδ,1(μ)
for μ ∈ O3. The residues of 4 − δ

√
19, 1 + 2δ

√
19 and −1 modulo Mδ =

4(4 + δ
√

19) are generators of (Z[
√

19]/(Mδ))× � Z4 × Z2
2 . Hecke characters

ξδ on Z[
√

19] with periods Mδ are given by

ξδ(μ) =
{

sgn(μ)
−sgn(μ) for μ ≡

{
1 + 2δ

√
19

4 − δ
√

19, −1
mod Mδ.

The corresponding theta series of weight 1 satisfy the identities

Θ1

(
76, ξδ,

z
4

)
= Θ1

(
−228, ϕδ,ν , z

4

)
= Θ1

(
−3, ρδ,ν , z

4

)

=
(
f1(z) − f57(z)

)
+ δ

(
f3(z) − f19(z)

)
, (31.57)

Θ1

(
−228, φδ,ε,

z
4

)
=

(
f1(z) + f57(z) − 2ε f29(z)

)

+ δ
(
f3(z) + f19(z) + 2ε f11(z)

)
(31.58)

with eta products fj as defined in (31.55), (31.56).

The ideal class group of Q(
√

−57) is Z2 × Z2. Thus for the eta products of
weight 1 and denominator 1 on Γ∗(228) we get a result analogous to those in
Examples 30.13 and 31.5:

Example 31.16 Let J =
[
1−2, 25, 4−2

]
and

f(z) = J(z)J(57z), g(z) = J(3z)J(19z),

f̃ =
[
12, 572

2, 114

]
, g̃ =

[
32, 192

6, 38

]
,
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f̂(z) = 1
2

(
f
(

z
2

)
+ f̃
(

z
2

))
, ĝ(z) = 1

2

(
g
(

z
2

)
+ g̃
(

z
2

))
.

For δ, ε ∈ {1, −1}, let the characters χ0
δ,ε with period 1 on J57 be defined by

χ0
δ,ε(μ) =

⎧
⎪⎪⎨

⎪⎪⎩

1
δ
ε

δε

for μ =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

x + y
√

−57
x

√
3 + y

√
−19

1√
2

(
x + y

√
−57

)

1√
2

(
x

√
3 + y

√
−19

)
.

Then we have the identity

Θ1

(
−228, χ0

δ,ε, z
)

= 1
2

(
f(z) + δ g(z) + ε f̃(z) + δε g̃(z)

)
. (31.59)

In particular, for the trivial character 1 = χ0
1,1 we have

Θ1

(
−228, 1, z

)
= 2 +

∞∑

n=1

( ∑

d|n

(−57
d

))
e(nz)

= 1
2

(
f(z) + g(z) + f̃(z) + g̃(z)

)
.

31.4 Weight 1 for Γ∗(276)

Results for the eta products of weight 1 on Γ∗(12 · 23) = Γ∗(276) can only be
presented for the cuspidal ones with denominator 12 and for the non-cuspidal
ones with denominator 4. For those with denominator 12 we introduce the
notations

f1 =
[

4, 62, 462, 69
2, 12, 23, 138

]
, f13 =

[
63, 463

3, 12, 23, 92

]
, f73 =

[
1, 62, 462, 276
2, 3, 92, 138

]
,

(31.60)

f23 =
[
22, 3, 92, 1382

1, 6, 46, 276

]
, f35 =

[
23, 1383

1, 4, 69, 276

]
, f95 =

[
22, 12, 23, 1382

4, 6, 46, 69

]
,

(31.61)

h13 =
[

25, 3, 12, 23, 92, 1385

12, 42, 62, 462, 692, 2762

]
, h35 =

[
1, 4, 65, 465, 69, 276

22, 32, 122, 232, 922, 1382

]
.

These functions are linearly independent. But only those in (31.60), (31.61)
appear as components in the following theta series:

Example 31.17 Let J69 with Λ = Λ69 =
√

1√
2
(3

√
3 +

√
−23) be given as in

Example 7.11. The residues of Λ, 2
√

3+
√

−23,
√

−23 and −1 modulo 12 can
be chosen as generators of (J69/(12))× � Z16 × Z6 × Z2

2 . Sixteen characters
ψ = ψδ,ε,ν,σ with period 12 on J69 are given by
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ψ(Λ) = εξ
3

= 1√
2
(ν + σi), ψ(2

√
3 +

√
−23) = εξ4 = 1

2 (1 − δνσi
√

3),

ψ(
√

−23) = ε

and ψ(−1) = 1 with primitive 24th roots of unity

ξ = ξδ,ε,ν,σ = 1
2

√
2

(
εν(1 + δ

√
3) + εσi(1 − δ

√
3)
)

and δ, ε, ν, σ ∈ {1, −1}. The corresponding theta series of weight 1 decompose
as

Θ1

(
−276, ψδ,ε,ν,σ, z

12

)
=

(
F1(z) + δ

√
3 G1(z)

)
+ 1√

2
ν
(
F5(z) + δ

√
3 G5(z)

)

+ 1√
2
εν
(
F7(z) + δ

√
3G7(z)

)

+ ε
(
F11(z) + δ

√
3 G11(z)

)
, (31.62)

where the components Fj, Gj are integral and (with the exception of F5) nor-
malized Fourier series with denominator 12 and numerator classes j mod-
ulo 12. Those for j = 1, 11 are eta products or linear combinations of eta
products in (31.60), (31.61),

F1 = f1 + f73, G1 = f13, F11 = f23 + f95, G11 = f35. (31.63)

The non-cuspidal eta products of weight 1 and denominator 4 on Γ∗(276)
will be denoted by

f1 =
[
42, 692

2, 138

]
, f13 =

[
3, 12, 23, 92

6, 46

]
, f69 =

[
12, 2762

2, 138

]
, (31.64)

f3 =
[
122, 232

6, 46

]
, f35 =

[
1, 4, 69, 276

2, 138

]
, f23 =

[
32, 922

6, 46

]
. (31.65)

We find two linear combinations of these functions which are cuspidal theta
series on the fields with discriminants 12, −276 and −23:

Example 31.18 Let J69 with Λ69 be given as before in Example 31.17. The
residues of Λ69, 2

√
3+

√
−23 and

√
−23 modulo 4 can be chosen as generators

of (J69/(4))× � Z16 × Z2
2 , where Λ8

69 ≡ −1 mod 4. Four characters χδ,ν with
period 4 on J69 are given by

χδ,ν(Λ69) = νi, χδ,ν(2
√

3 +
√

−23) = δ, χδ,ν(
√

−23) = −δ

with δ, ν ∈ {1, −1}. Let J23 with Λ23 = 3

√
1
2 (3 +

√
−23) be given as in

Example 7.13, and put π3 = (1 −
√

−23)/2Λ23. The residues of π3,
√

−23, 5,
7 and −1 modulo 8π3 can be chosen as generators of (J23/(8π3))× � Z6 ×Z4

2 .
Characters ϕδ,1 with period 8π3 on J23 are given by
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ϕδ,1(π3) = δ, ϕδ,1(
√

−23) = −δ,

ϕδ,1(5) = −1, ϕδ,1(7) = −1, ϕδ,1(−1) = 1.

Define characters ϕδ,−1 with period 8π3 on J23 by ϕδ,−1(μ) = ϕδ,1(μ) for
μ ∈ J23. The residues of 2+δ

√
3, 5+6δ

√
3 and −1 modulo Pδ = 4(2+3δ

√
3)

are generators of (Z[
√

3]/(Pδ))× � Z44 × Z2
2 . Hecke characters ξδ on Z[

√
3]

with periods Pδ are given by

ξδ(μ) =
{

sgn(μ)
−sgn(μ) for μ ≡

{
2 + δ

√
3

5 + 6δ
√

3, −1
mod Pδ.

The corresponding theta series of weight 1 satisfy the identities

Θ1

(
12, ξδ,

z
4

)
= Θ1

(
−276, χδ,ν , z

4

)

= Θ1

(
−23, ϕδ,ν , z

4

)
= H1(z) + δ H3(z) , (31.66)

where the components Hj are linear combinations of the eta products in
(31.64), (31.65),

H1 = f1 + 2 f13 − f69, H3 = f3 − 2 f35 − f23 . (31.67)

31.5 Weight 1 for Γ∗(140)

As indicated by Table 30.1 in Sect. 30.1, the cuspidal eta products of weight
1 on Γ∗(140) have denominators 2 and 8 only. For those with denominator 2
we get an identity with theta series on Q(

√
−35):

Example 31.19 The residues of 1
2 (

√
5 +

√
−7),

√
5 and −1 modulo 4 can

be chosen as generators of (J35/(4))× � Z6 × Z2
2 . Four characters ψδ,ν with

period 4 on J35 are fixed by their values

ψδ,ν

(
1
2 (

√
5 +

√
−7)

)
= 1

2 (δ + νi
√

3), ψδ,ν(
√

5) = δ, ψδ,ν(−1) = 1

with δ, ν ∈ {1, −1}. The corresponding theta series of weight 1 satisfy

Θ1

(
−35, ψδ,ν , z

2

)
= G1(z) + δ G3(z) , (31.68)

with eta products

G1 =
[

103, 143

5, 7, 20, 28

]
, G3 =

[
23, 703

1, 4, 35, 140

]
. (31.69)

There are eight eta products of weight 1 on Γ∗(140) with denominator 8. We
find only four linear combinations of these functions which are eigenforms.
They are theta series on the fields with discriminants 56, −35 and −40:
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Example 31.20 The residues of 1
2 (3 −

√
−35), 1 + 2

√
−35, 3

√
−7 and −1

modulo 16 can be chosen as generators of (J35/(16))× � Z24 ×Z4 ×Z2
2 . Eight

characters χδ,ε,ν with period 16 on J35 are fixed by their values

χδ,ε,ν

(
1
2 (3 −

√
−35)

)
= δ, χδ,ε,ν(1 + 2

√
−35) = νi,

χδ,ε,ν(3
√

−7) = −ε, χδ,ε,ν(−1) = 1

with δ, ε, ν ∈ {1, −1}. The residues of
√

5,
√

5 + ν
√

−2, 15 and −1 modulo
4(2 + ν

√
−10) can be chosen as generators of (J10/(8 + 4ν

√
−10))× � Z12 ×

Z4 × Z2
2 . Characters ϕδ,ε,ν with periods 4(2 + ν

√
−10) on J10 are given by

ϕδ,ε,ν(
√

5) = δε, ϕδ,ε,ν(
√

5 + ν
√

−2) = −ε,

ϕδ,ε,ν(15) = −1, ϕδ,ε,ν(−1) = 1.

The residues of 3 + ε
√

14, 3, 11 and −1 modulo Mε = 4(2 + ε
√

14) are
generators of (Z[

√
14]/(Mε))× � Z2

4 × Z2
2 . Hecke characters ξδ,ε on Z[

√
14]

with periods Mε are given by

ξδ,ε(μ) =

⎧
⎨

⎩

δ sgn(μ)
sgn(μ)

−sgn(μ)
for μ ≡

⎧
⎨

⎩

3 + ε
√

14
11

3, −1
mod Mε.

The corresponding theta series of weight 1 satisfy the identities

Θ1

(
56, ξδ,ε,

z
8

)
= Θ1

(
−35, χδ,ε,ν , z

8

)
= Θ1

(
−40, ϕδ,ε,ν , z

8

)

= F1(z) − δ F3(z) + δε F5(z) − ε F7(z) , (31.70)

where the components Fj are normalized integral Fourier series with denom-
inator 8 and numerator classes j modulo 8. All of them are linear combina-
tions of eta products,

F1 =
[
22, 702

1, 140

]
− 2 [7, 20] , F3 =

[
22, 702

4, 35

]
− 2 [5, 28] , (31.71)

F5 =
[
102, 142

5, 28

]
+ 2 [4, 35] , F7 =

[
102, 142

7, 20

]
+ 2 [1, 140] . (31.72)

There are no linear combinations of the non-cuspidal eta products with de-
nominator 4 having multiplicative coefficients.

For the non-cuspidal eta products with denominator 2 we introduce the no-
tations

g1 =
[

25, 5, 7, 20, 28, 705

12, 42, 102, 142, 352, 1402

]
,

(31.73)

g3 =
[

1, 4, 105, 145, 35, 140
22, 52, 72, 202, 282, 702

]
,
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f3 =
[
5, 7, 20, 28

10, 14

]
, f9 =

[
1, 4, 35, 140

2, 70

]
. (31.74)

In the space spanned by these functions there are four theta series. But it
turns out that this space embraces the eta products (31.69) and that two
of the theta series are well known from Example 31.19. Thus the following
example starts with two eta identities:

Example 31.21 Among the eta products of weight 1 and denominator 2 on
Γ∗(140) we have the identities

G1 = g1 − 2
(
f3 + f9

)
, G3 = −g3 + 2

(
f3 − f9

)
(31.75)

with notations from (31.69), (31.73), (31.74). Let the generators of
(J35/(4))× � Z6 × Z2

2 be chosen as in Example 31.19, and define two char-
acters ρδ with period 4 on J35 by their values

ρδ

(
1
2 (

√
5 +

√
−7)

)
= δ, ρδ(

√
5) = −δ, ρδ(−1) = 1

with δ ∈ {1, −1}. The corresponding theta series of weight 1 satisfy, with
notations for eta products as before,

Θ1

(
−35, ρ1,

z
2

)
= g1(z) + g3(z) − f3(z) + 3 f9(z) , (31.76)

Θ1

(
−35, ρ−1,

z
2

)
= g1(z) − g3(z) − 3 f3(z) − f9(z) . (31.77)

The non-cuspidal eta products with denominator 1 will be denoted by

h0 =
[

22, 5, 7, 20, 28, 702

1, 4, 10, 14, 35, 140

]
, h4 =

[
1, 4, 102, 142, 35, 140

2, 5, 7, 20, 28, 70

]
, (31.78)

f0 =
[

25, 705

12, 42, 352, 1402

]
, g0 =

[
105, 145

52, 72, 202, 282

]
. (31.79)

There are two linear combinations of these functions which are cuspidal theta
series for the characters from Example 16.7, and thus we get two eta identities.
Two other linear combinations have multiplicative coefficients and can be
written as sums of theta series on Q(

√
−35) with characters of period 1:

Example 31.22 For δ, ν ∈ {1, −1}, let χδ,ν be the characters with period
2 on J35 as defined in Example 16.7 by their values χδ,ν

(
1
2 (

√
5 +

√
−7)

)
=

1
2 (δ+νi

√
3). Let 1 stand for the trivial character and let χ0 be the non-trivial

character with period 1 on J35. Then with notations from (31.78), (31.79)
we have the identities

Θ1 (−35, χ1,ν , z) = h0(z) − g0(z) − h4(z) , (31.80)

Θ1 (−35, χ−1,ν , z) = f0(z) − h0(z) − h4(z) , (31.81)
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Θ1 (−35, 1, z) + 2 Θ1 (−35, 1, 4z)
= 2 h0(z) − 1

2 f0(z) + 3
2 g0(z) + 2 h4(z) , (31.82)

Θ1

(
−35, χ0, z

)
+ 2 Θ1

(
−35, χ0, 4z

)

= −2 h0(z) + 3
2 f0(z) + 1

2 g0(z) + 2h4(z) , (31.83)

and we have the eta identities

[10, 14] = 1
2

(
f0 − g0

)
− h4 , [2, 70] = h0 − 1

2

(
f0 + g0

)
. (31.84)

31.6 Weight 1 for Γ∗(220)

In this very last subsection we consider eta products of weight 1 on the Fricke
group of level N = 4 · 5 · 11 = 220. We cannot present any eta–theta identities
for the cuspidal eta products. There are two linear combinations of the non-
cuspidal eta products with denominator 4 which are cuspidal and equal to
theta series on the fields with discriminants 5, −55 and −11:

Example 31.23 Let J55 with Λ = Λ55 =
√

1
2 (

√
5 +

√
−11) be given as in

Example 7.8. The residues of α = 1
2Λ (1 +

√
−55),

√
−55, 2 +

√
−55 and

−1 modulo 8 can be chosen as generators of (J55/(8))× � Z8 × Z3
2 . Four

characters ψδ,ν with period 8 on J55 are fixed by their values

ψδ,ν(α) = νi, ψδ,ν(
√

−55) = δ, ψδ,ν(2 +
√

−55) = −δ, ψδ,ν(−1) = 1

with δ, ν ∈ {1, −1}. The residues of 1
2 (3 − ν

√
−11), 4 + ν

√
−11, 5 + 2ν

√
−11

and −1 modulo 4(3 + ν
√

−11) are generators of (O11/(12 + 4ν
√

−11))× �
Z12 × Z4 × Z2

2 . Characters ϕ = ϕδ,ν with periods 4(3 + ν
√

−11) on O11 are
given by

ϕ
(

1
2 (3 − ν

√
−11)

)
= 1, ϕ(4 + ν

√
−11) = −δ,

ϕ(5 + 2ν
√

−11) = −1, ϕ(−1) = 1.

The residues of 1
2 (1+ δ

√
5), 5 − 4δ

√
5, 7+2δ

√
5 and −1 modulo Mδ = 8(4+

δ
√

5) are generators of (Z[ω5]/(Mδ))× � Z60 × Z3
2 , where ω5 = 1

2 (1 +
√

5).
Hecke characters ξδ on Z[ω5] with periods Mδ are given by

ξδ(μ) =

⎧
⎨

⎩

δ sgn(μ)
sgn(μ)

−sgn(μ)
for μ ≡

⎧
⎨

⎩

1
2 (1 + δ

√
5)

7 + 2δ
√

5
5 − 4δ

√
5, −1

mod Mδ.

The corresponding theta series of weight 1 satisfy the identities

Θ1

(
5, ξδ,

z
4

)
= Θ1

(
−55, ψδ,ν , z

4

)
= Θ1

(
−11, ϕδ,ν , z

4

)
= F1(z) + δ F3(z) ,

(31.85)
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where the components Fj are normalized integral Fourier series with denom-
inator 4 and numerator classes j modulo 4. Both of them are linear combi-
nations of eta products,

F1 =
[
42, 552

2, 110

]
+
[
112, 202

10, 22

]
, F3 =

[
52, 442

10, 22

]
+
[
12, 2202

2, 110

]
. (31.86)

There is a linear combination of two of the eta products with denominator 1
which is a sum of two theta series:

Example 31.24 For ν ∈ {1, −1}, let χν be the characters with period 1 on
J55 which are defined by χν

(
(x + y

√
−55)/(2Λ55)

)
= νi for x ≡ y mod 4.

Then we have the identity

Θ1 (−55, χν , z) + 2 Θ1 (−55, χν , 4z) = 1
2

(
f0(z) − g0(z)

)
(31.87)

with eta products

f0(z) = J(z)J(55z) , g0(z) = J(5z)J(11z) , J =
[

25

12, 42

]
. (31.88)

Besides the eta products f0, g0 in the preceding example there are two more
non-cuspidal eta products with denominator 1,

[
5, 11, 20, 44

10, 22

]
and

[
1, 4, 55, 220

2, 110

]
.

The coefficients of these four eta products are related to representation num-
bers of integers by the quadratic forms x2 + 55y2 and 5x2 + 11y2 whose
discriminant −220 is not a field discriminant.
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A Directory of Characters

In the following tables we list the Examples where characters with a given
period on a field with a given discriminant D < 0 occur. We begin with the
most frequent discriminants −3, −4, −8, −24. Thereafter the discriminants
are ordered according to their absolute values. Each table is ordered in
ascending absolute values of the character periods.

D = −3

period Example(s)

1 11.1, 11.4, 18.17, 18.18, 20.30, 25.7, 26.27,
26.28, 26.33, 26.36

1 + ω 9.7, 11.4, 18.15, 20.26, 26.19, 26.24, 26.33
2 11.11, 18.16, 20.28, 26.13, 26.16, 26.27, 26.33,

26.36
3 11.5, 11.13
2(1 + ω) 9.3, 9.9, 15.14, 18.13, 20.24, 20.26, 26.6, 26.16,

26.19, 26.24, 26.33
4 11.21, 11.22, 25.6, 26.13, 26.16, 26.25, 26.33,

26.36
4 + ω, 4 + ω 12.3
2(2 + ω), 2(2 + ω) 16.17
6 11.1, 11.7, 11.9, 11.15, 11.20, 14.4, 25.11
4(1 + ω) 9.1, 9.2, 10.16, 10.23, 11.21, 11.22, 13.7, 13.15,

13.24, 15.14, 26.3, 26.6, 26.16, 26.24,
26.25, 26.33

3(2 + ω), 3(2 + ω) 16.13, 16.18
8 25.5, 25.8, 25.19, 25.20, 26.16

G. Köhler, Eta Products and Theta Series Identities,
Springer Monographs in Mathematics,
DOI 10.1007/978-3-642-16152-0, c© Springer-Verlag Berlin Heidelberg 2011
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http://dx.doi.org/10.1007/978-3-642-16152-0
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period Example(s)

12 11.17, 16.20, 18.4, 20.24, 20.26, 20.28, 20.30,
25.1, 25.10, 25.15

8(1 + ω) 13.2, 13.11, 13.12, 13.18, 13.24, 13.27, 15.3,
15.17, 19.4, 25.9, 26.6, 26.16, 29.12

6(2 + ω), 6(2 + ω) 16.19
16 25.2, 25.20
10(1 + ω) 14.8
8(2 + ω), 8(2 + ω) 30.12
24 18.8, 20.12, 25.3, 25.16, 25.18, 25.26, 25.27,

26.7, 26.17, 26.23, 26.32
4(5 + 2ω), 4(5 + 2ω) 12.9
16(1 + ω) 13.12, 13.30, 15.5, 19.3, 19.4
8(3 + ω), 8(3 + ω) 31.9
12(2 + ω), 12(2 + ω) 16.21
20(1 + ω) 20.6
8(3 + 2ω), 8(3 + 2ω) 31.15
8(4 + ω), 8(4 + ω) 23.18
24(1 + ω) 20.17
48 25.4, 25.31, 25.37, 25.38
8(5 + 2ω), 8(5 + 2ω) 22.5, 22.16
32(1 + ω) 15.6, 15.26, 15.27
8(7 + ω), 8(7 + ω) 21.13
16(4 + ω), 16(4 + ω) 23.23
16(5 + 2ω), 16(5 + 2ω) 22.22
64(1 + ω) 19.11
16(7 + ω), 16(7 + ω) 21.14

D = −4

period Example(s)

1 10.21, 13.5, 18.19, 24.31, 26.29, 26.32, 26.37, 29.14
1 + i 10.6, 10.21, 15.11, 17.14, 20.25, 26.18, 26.26, 26.32, 26.37
2 9.5
2 ± i 24.31
2(1 + i) 10.7, 10.9
3 10.15, 18.15, 18.19, 26.20, 26.23, 26.29, 26.32, 29.14
4 13.5, 13.6, 15.11, 15.21, 24.26, 26.14, 26.18
3(1 + i) 10.17, 18.12, 18.14, 20.25, 26.5, 26.18, 26.32
2(2 ± i) 12.1, 12.18, 24.25, 24.29
4(1 + i) 10.1, 10.2, 10.18, 13.17, 13.22, 15.28, 15.30
6 9.1, 9.2, 10.23, 11.18, 11.21, 11.22
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period Example(s)

3(2 ± i) 17.10, 24.5
2(3 ± 2i) 22.25
8 13.3, 13.23, 15.10, 15.15, 15.29, 15.30, 19.6
6(1 + i) 10.12, 18.3
4(2 ± i) 24.1, 24.26
9 20.11
8(1 + i) 19.6, 19.7
12 13.2, 13.9, 15.3, 15.17, 25.12, 26.5, 26.14, 26.18, 29.12
4(1 ± 3i) 17.1
9(1 + i) 20.16
6(2 ± i) 12.17, 16.14, 16.16
16 15.12, 15.18, 15.24
4(4 ± i) 22.3
12(1 + i) 10.5, 10.19, 10.24, 13.25, 13.28, 17.13, 18.6, 20.9, 20.13, 25.14
8(2 ± i) 24.10
18 14.1, 14.5
6(3 ± i) 17.9
20 29.2
4(1 ± 5i) 17.6
4(5 ± 3i) 17.7
24 13.4, 13.31, 15.5, 15.19, 15.22, 15.23, 19.3, 24.17, 25.13,

25.22, 25.23, 25.24, 29.7
18(1 + i) 18.7, 20.16
12(2 ± i) 24.11
20(1 + i) 20.5
28 29.1
8(3 ± 2i) 22.18
30 20.6
6(5 ± i) 17.23
32 19.9
8(4 ± i) 22.10
24(1 + i) 15.6
36 25.28, 26.7, 26.17, 26.23, 26.32, 29.8
12(3 ± i) 17.11, 17.12, 24.13, 24.16, 27.10
40 29.3
12(3 ± 2i) 22.20
4(9 ± 7i) 28.4
4(11 ± 3i) 28.4
48 15.13, 15.20, 15.25, 15.27
36(1 + i) 18.10, 20.20, 20.21, 25.29, 25.30, 25.35
4(13 ± i) 28.6
4(11 ± 7i) 28.6
24(2 ± i) 24.18, 24.19
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period Example(s)

12(5 ± i) 17.22
12(5 ± 3i) 17.26
72 25.33, 25.35, 29.10
60(1 + i) 20.8
24(3 ± 2i) 22.21
24(4 ± i) 22.11
120 29.4, 29.5

D = −8

period Example(s)

1 15.2, 26.30, 26.35√
−2 13.13, 15.9, 15.30, 19.8, 26.9, 26.12, 26.35

1 ±
√

−2 26.35
2 13.13, 15.2, 15.30, 19.8, 26.9, 26.12, 26.30, 26.35
2

√
−2 13.13, 13.14, 13.20

3 26.22, 26.30
2(1 ±

√
−2) 26.9, 26.35

4 10.1, 10.2, 10.11, 15.30
3 ± 2

√
−2 22.15

3
√

−2 26.1, 26.12
2(2 ±

√
−2) 25.8, 25.19, 25.20

4
√

−2 13.3, 13.8, 13.23, 15.15, 15.29, 15.30, 26.9, 26.12
6 26.1, 26.12, 26.22, 26.30
4(1 ±

√
−2) 18.1, 18.5, 27.1

8 15.1, 15.2, 15.4, 19.6, 19.7
2(3 ± 2

√
−2) 22.15

6
√

−2 25.9
4(2 ±

√
−2) 25.2, 25.20, 26.9

12 18.6, 20.9, 20.13, 20.19, 25.14
4(3 ±

√
−2) 17.4

8(1 ±
√

−2) 25.21
6(2 +

√
−2) 25.16

16 19.1, 19.2
12

√
−2 25.22, 26.1, 26.12, 29.7

4(2 ± 3
√

−2) 23.6
20 20.5
12(1 +

√
−2) 18.9, 18.10, 25.35, 27.1

4(4 ± 3
√

−2) 22.13
28 20.4
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period Example(s)

4(1 ± 5
√

−2) 28.15
4(7 ±

√
−2) 28.15

12(2 +
√

−2) 25.31, 25.35, 25.39
36 20.10, 20.18

D = −24

period Example(s)

1 26.31, 26.34, 27.18√
−2 26.8, 26.11, 26.34√
3 26.21, 26.31

2 26.31, 27.17√
−6 26.2, 26.11, 26.21, 26.31

2
√

−2 26.8, 26.11, 26.34
3 13.16, 27.13
2

√
3 13.16, 13.26, 26.2, 26.11, 26.21, 26.31

4 18.1, 18.5, 27.1√
3 ± 3

√
−2 23.17

3
√

3 25.11
4

√
−2 25.21, 26.8, 26.11

6 27.14
4

√
3 10.5, 10.13, 10.20, 10.24, 17.13, 20.19

8 27.15
6

√
−2 25.17

4
√

−6 13.4, 13.10, 13.11, 13.12, 13.29, 15.19, 15.22, 15.23,
19.3, 19.4, 24.17, 25.24, 29.7

6
√

3 25.10
4(1 ±

√
−6) 28.9

2(2
√

3 ± 3
√

−2) 24.8
12 18.2, 18.9, 18.11, 20.20, 25.30, 27.1
4(2 ±

√
−6) 30.2

2(6 ±
√

−6) 23.17
8

√
3 15.7

4(3 ±
√

−6) 17.2, 17.12, 27.9
12

√
−2 25.32, 25.35, 25.36, 25.39, 25.40, 25.41

4(4 ±
√

−6) 31.1
8

√
−6 15.27

12
√

3 20.14, 20.15, 20.22
4(2

√
3 ± 3

√
−2) 24.12, 24.15, 24.16, 24.18, 24.20, 24.21

4(3 ± 2
√

−6) 17.21
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period Example(s)

24 26.2, 26.11, 27.16
4(6 ±

√
−6) 23.4, 23.22, 23.25, 23.26

16
√

3 19.5
4(4

√
3 ± 3

√
−2) 23.11

20
√

3 20.8
16

√
−6 19.10

20
√

−6 29.4

D = −7

period Example(s)

1 12.4, 20.1
1
2 (1 ±

√
−7) 17.19

2 23.27
1
2 (5 ±

√
−7) 23.16, 27.7

3 12.3, 16.18
4 23.5, 23.27
2(1 ±

√
−7) 27.6

8 23.16
3
2 (5 ±

√
−7) 23.17

9 20.2
16 23.3, 23.20, 23.28
8

√
−7 29.1

24 23.17
48 23.4, 23.26

D = −11

period Example(s)

2 12.6
4 23.1
16 23.2, 23.7
4(3 ±

√
−11) 31.23

D = −15

period Example(s)

1 16.1, 30.8
1
2 (

√
3 ±

√
−5) 30.8√

3 12.12
2 30.8
3 16.2, 30.1
1
2 (

√
3 ± 3

√
−5) 17.10, 24.5

D = −19

period Example(s)

1
2 (1 ±

√
−19) 16.11

6 12.11
12 21.2
24 21.13
48 21.14
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period Example(s)

1
2 (9 ±

√
−15) 24.6

6 30.1
8 30.6
2(3 +

√
−15) 17.9

8
√

3 24.6, 24.11
16 30.2
24 30.3
16

√
3 24.14, 24.22

48 30.4

D = −20

period Example(s)

1 24.4, 24.28, 24.29√
2 17.15, 24.27

2 12.1, 12.18, 24.25, 24.29√
2(1 ±

√
−5) 16.15

4 24.1, 24.3
6 16.16
2

√
−10 20.7

8 24.2, 24.7, 24.9
4(1 ±

√
−5) 28.7

4(3 ±
√

−5) 28.1
18 20.3

D = −23

period Example(s)

1 12.8
1
2 (3 ±

√
−23) 21.3

8 21.3, 21.4, 21.9
4(1 −

√
−23)/Λ23,

4(1 +
√

−23)/Λ23 31.18
16 21.1, 21.9
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D = −35

period Example(s)

1 31.22
2 16.7, 31.22
4 31.19, 31.21
16 31.20

D = −39

period Example(s)

1 31.10
Λ39, Λ39 31.10√

−3 12.15
2 31.10
3 16.5, 31.6
1
2 (3 ±

√
−39) 17.24

6 31.6
8 31.9
4

√
−3 Λ39 17.23, 17.24

8
√

−3 22.20
24 31.7
16

√
−3 22.23, 22.24

48 31.8

D = −40

period Example(s)

1 24.30, 27.12√
−2 24.23

2 24.23, 24.30, 27.12
3 24.6
4 17.1
4

√
−2 24.10, 24.24

8 27.8
6

√
−2 24.6

12 17.2, 27.9
4

√
−10 29.3

4(1 ±
√

−10) 28.3
4(2 ±

√
−10) 31.20

12
√

−2 24.12, 24.14, 24.16,
24.20, 24.22

12
√

5 20.8
24 27.11

D = −51

period Example(s)

8
√

3 22.8
2(3 ±

√
−51) 16.10

16
√

3 22.12



A Directory of Characters 601

D = −52

period Example(s)

1 22.26√
2 17.25

2 22.25
4 22.7
6 12.9
8 22.4, 22.17
6

√
2 17.23

12 22.5
24 22.6, 22.19, 22.20

D = −55

period Example(s)

1 31.24
3 16.8
8 31.23

D = −56

period Example(s)

1 23.16, 27.7
2 27.6
2

√
2 23.16

4 17.3
4

√
2 23.3, 23.19, 23.20, 23.28

8 27.5

D = −68

period Example(s)

2 12.10, 22.14
4 22.1, 22.3
4

√
2 17.7

8 22.2, 22.9, 22.10

D = −84

period Example(s)

1 30.13
3 30.9
2

√
3 12.13

4 30.12
2

√
6 17.17

6 16.3
4

√
6 17.18, 23.24

12 30.10
8

√
3 23.21, 23.22, 23.24,

23.25
4(3 ±

√
−21) 28.2

24 30.11

D = −88

period Example(s)

1 23.15, 27.4√
−2 23.14

2 23.14, 23.15, 27.4
4 17.4
4

√
−2 23.6, 23.14

8 27.2
12 17.5
12

√
−2 23.10

24 27.3
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D = −91

period Example(s)

6 16.12

D = −95

period Example(s)

1 16.11

D = −104

period Example(s)

4 17.6
4

√
2 22.18

4Λ26, 4Λ26 28.13

D = −120

period Example(s)

4 28.7
2

√
−6 24.8

4
√

−3 17.11, 24.13, 24.16, 27.10
4

√
−6 24.15, 24.19, 24.21

12 28.8
4

√
−30 29.5

4(3 ±
√

−30) 28.5

D = −132

period Example(s)

1 31.5
2

√
3 12.14

4 31.4
2

√
6 17.20

6 16.4
4

√
3 23.8

8 31.1
12 31.2
8

√
3 23.9, 23.12

24 31.3

D = −136

period Example(s)

1 22.15
2

√
2 22.15

4 17.7
4

√
2 22.10, 22.13

12 17.8

D = −152

period Example(s)

4
Λ38

(2 −
√

−38),
4

Λ38
(2 +

√
−38) 31.12

D = −168

period Example(s)

4 28.9
2

√
6 23.18

4
√

3 17.18, 23.24
4

√
6 23.22, 23.23, 23.24

12 28.10
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D = −184

period Example(s)

1 21.3
2

√
2 21.3, 21.9

4
√

2 21.4, 21.9
12

√
2 21.7, 21.8

D = −228

period Example(s)

1 31.16
3 31.11
4 31.15
2

√
6 17.27

6 16.6
4

√
3 21.10

8 31.12
12 31.13
8

√
3 21.11

24 31.14

D = −260

period Example(s)

2 16.9

D = −264

period Example(s)

4 28.11
4

√
3 17.5, 17.21

4
√

6 23.10, 23.11, 23.13
12 28.12

D = −276

period Example(s)

4 31.18
8

√
3 21.5, 21.7, 21.8

12 31.17

D = −280

period Example(s)

4 28.1
12 28.2

D = −312

period Example(s)

4 28.13
2

√
6 22.16

4
√

3 17.22
4

√
6 22.21, 22.22

12 28.14

D = −340

period Example(s)

6 16.10
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D = −408

period Example(s)

4 28.15
2

√
6 22.8

4
√

3 17.26
4

√
6 22.11, 22.12

12 28.16

D = −440

period Example(s)

4 28.3

D = −456

period Example(s)

4 28.17
2

√
6 21.13

4
√

3 17.28
4

√
6 21.12, 21.14

12 28.18

D = −520

period Example(s)

4 28.4
12 28.5

D = −552

period Example(s)

4 28.19
4

√
6 21.6, 21.7, 21.8

12 28.20

D = −680

period Example(s)

4 28.6

In the following tables we list the examples where Hecke characters on real
quadratic fields occur. For the most frequent discriminants 8, 12 and 24 we
arrange the tables as before where, however, the character periods are not
listed according to their absolute values, but rather according to the absolute
values of their algebraic norms. For other discriminants D we just list the
values of D and the numbers of the examples, but do not indicate periods of
characters.

These tables will also display all our examples of identities of theta series on
three distinct quadratic fields.
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D = 8

period Example(s)

3 −
√

2 23.16, 27.7
4 10.1, 15.28, 15.30
5 ±

√
2 21.3

2(3 ±
√

2) 27.6
4

√
2 13.3, 15.29

2(2 + 3
√

2) 23.16
8 19.6, 19.7
6

√
2 13.11, 19.4

12 18.6, 20.9, 20.13, 25.14
2(2 ± 5

√
2) 21.3

4(2 ± 3
√

2) 23.3, 23.20
4(5 ± 2

√
2) 17.7

12
√

2 13.12, 15.23, 19.4, 25.22, 29.7
20 20.5
4(4 ± 5

√
2) 22.10

4(2 ± 5
√

2) 21.9
12(3 +

√
2) 17.18

24
√

2 15.27
6(4 ± 5

√
2) 22.8

36 18.10, 25.35
12(2 ± 3

√
2) 23.22, 23.24

36
√

2 25.35
12(4 ± 5

√
2) 22.12

12(2 ± 5
√

2) 21.7

D = 12

period Example(s)

2
√

3 9.1
4(1 +

√
3) 18.1, 18.5, 27.1

4
√

3 13.2, 15.3, 29.12
8 25.21
4(3 +

√
3) 20.19

12 26.7, 26.17, 26.23, 26.32
8

√
3 15.5, 19.3

12(1 +
√

3) 18.9, 27.1
10

√
3 20.6

2(9 +
√

3) 17.23
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period Example(s)

4(2 ± 3
√

3) 31.18
8(3 +

√
3) 15.6

4(1 ± 3
√

3) 28.13
24 25.39
4(3 ± 4

√
3) 22.20

4(3 ± 5
√

3) 17.5
8(6 ±

√
3) 23.10

8(9 ± 2
√

3) 21.7, 21.8

D = 24

period Example(s)

2(2 +
√

6) 25.8, 25.19
3 ± 2

√
6 24.6

2
√

6 25.9
4(2 +

√
6) 25.2

4(3 +
√

6) 10.5, 17.13
6(2 +

√
6) 25.16

4(1 ±
√

6) 28.7
4

√
6 13.4, 15.22, 15.23, 24.17, 25.24, 29.7

2(6 ±
√

6) 24.6
4(9 ± 4

√
6) 17.12

12(2 +
√

6) 25.31, 25.35
8

√
6 15.27

12(3 +
√

6) 20.20
2(6 ± 5

√
6) 21.13

4(6 ±
√

6) 24.14, 24.18, 24.22
4(4 ± 3

√
6) 31.12

20(3 +
√

6) 20.8
4(6 ± 5

√
6) 21.14

4(12 ±
√

6) 21.8
20

√
6 29.4
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D Example(s)

5 12.1, 24.1, 24.8, 24.21, 24.25, 31.23
13 22.25, 31.9
17 22.3, 22.13, 22.15
21 12.3
28 28.9, 29.1, 30.12
40 17.1, 24.10, 29.3, 30.2
44 17.4, 17.21, 23.6, 23.11, 28.3
56 23.18, 23.22, 23.23, 23.25, 28.1, 31.20
60 16.10, 17.2, 17.9, 17.10, 20.8, 24.11, 24.12, 24.16, 24.20, 27.9
76 31.15
88 31.1

104 17.6, 22.16, 22.18, 22.22
120 17.11, 24.13, 24.16, 24.19, 27.10, 28.2, 29.5
136 17.7, 22.10
152 21.13, 21.14
156 12.9, 17.23, 22.5, 22.20, 28.5
168 23.4, 23.17, 23.26
204 28.15
312 17.22, 22.21
408 17.26, 22.11
520 28.4
680 28.6
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B Index of Notations

Ar the group of one-units modulo pr, for a prime ideal p §6.1
d a square-free positive integer
D the discriminant of an imaginary quadratic field, D = −d

or D = −4d §5.2
e(z) = exp(2πiz) = e2πiz

Ek(z) Eisenstein series of weight k for the modular group §1.5
Ek, N, δ(z) Eisenstein series for the group Γ∗(N), with k even, δ = ±1 §1.6
Ek, P, δi(z) Eisenstein series for the group Γ∗(P ), with P �= 2 prime,

(−1)k =
(−1

P

)
, δ = ±1 §1.6

H = {x + iy ∈ C | x ∈ R, y > 0}, the upper half plane §1.1

J(L, z) = cz + d for L =
( ∗ ∗

c d

)
in SL2(R) §1.3

Jd a system of integral ideal numbers for Q(
√

−d) §5.5
(Jd/(M))× group of coprime residues modulo M §5.5
k the weight of a modular form §1.4
K an algebraic number field
K(N) the cone of holomorphic eta products of level N §2.5
K ∗(N) the cone of holomorphic eta products for Γ∗(N) §3.5
M(Γ, k, v) vector space of modular forms §1.4
M(Γ0(N), k, χ) vector space of modular forms §1.7
N a positive integer, usually the level of an eta product
N = NK/Q, the norm function for ideals in a number field K

Od the ring of integers in Q(
√

−d) §5.2
rk(n) the number of representations of n as a sum of k squares §10.5
R× the group of units in a ring R
s the numerator of an eta product §2.1
S(N, k) the simplex of holomorphic eta products of level N and

weight k §3.1
S(N, k) the simplex of holomorphic eta products of level N

and weight ≤ k §3.1
S(N, k)pr projection of S(N, k) §3.1
S∗(N, k) the simplex of holomorphic eta products of weight k for Γ∗(N) §3.5
S∗(N, k)pr the projection of S∗(N, k) §3.5
S(Γ, k, v) vector space of cusp forms §1.4
S(Γ0(N), k, χ) vector space of cusp forms §1.7
sgn(x) the sign of a real number x �= 0 §1.3
t the denominator of an eta product §2.1
Tm the mth Hecke operator §1.7
TT the transpose of a matrix T
vη the multiplier system of η §1.3
WN the Fricke involution, z �→ −1/(Nz) §1.6
Zn the cyclic group of order n §6.1

δ, ε, ν, σ, κ signs which can independently take the values 1 and −1
Γ1 the modular group §1.3
Γ0(N) the Hecke congruence group of level N §1.6
Γ∗(N) the Fricke group of level N §1.6
Δ(z) the discriminant function §1.5
η the Dedekind eta function §1.1

θ(z) =
∑∞

n=− ∞ eπin2z , the Jacobi theta function §1.2
Θk(ξ, ·) Hecke theta series of weight k and character ξ on some field §5.2
Θk(K, ξ, ·) theta series as before, indicating the field K §5.2
Θk(D, χ, ·) Hecke theta series of weight k and character χ on the quadratic

number field with discriminant D §5.5



B Index of Notations 609

ξ, ζ roots of unity, values of characters
ξ, Ξ characters on real quadratic fields, often with subscripts and/or

constructs, such as ξ∗, χ̃δ,ε , . . .

σl(N) sum of the lth powers of the positive divisors of N §1.5
τ(N) = σ0(N), the number of positive divisors of N §1.5
τ(n) the Ramanujan numbers §1.5
ϕ the Euler function; or (more frequently) a character §5.5
χ (sometimes) a Dirichlet character
χ, ψ, ϕ, φ, ρ characters on imaginary quadratic fields, often adorned with sub-

cripts and/or constructs, such as χ̃δ,ε,ν or ψ̂δ

ω = e(1/6) = 1
2
(1 +

√
−3)

( c
d
) the Legendre–Jacobi–Kronecker symbol §1.1

[1a1 , 2a2 , . . .] short notation for an eta product ηa1(z)ηa2 (2z) · . . . , frequently
written as a fraction in brackets with positive
exponents in nominator and denominator §2.1


x� Gauss bracket, or floor: the largest integer ≤ x
�x ceiling: the smallest integer ≥ x
R× the group of units in a ring R

μ′ = a − b
√

d, the conjugate of a real quadratic irrational number

μ = a + b
√

d
#B the number of elements in a finite set B
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theorie, Birkhäuser, Basel, 1966.
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[121] B. Schoeneberg, Über den Zusammenhang der Eisensteinschen Reihen
und Thetareihen mit der Diskriminante der elliptischen Funktionen,
Math. Ann. 126 (1953), 177–184.
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otarev, Publ. Math. Inst. Hautes Etudes Sci. 54 (1981), 123–201.
[129] J.-P. Serre, Sur la lacunarité des puissances de η, Glasg. Math. J. 27

(1985), 203–221.
[130] J.-P. Serre, H. Stark, Modular forms of weight 1

2 , in: Modular of One
Variable VI. Lecture Notes in Math. 627 (1977), 27–67.

[131] G. Shimura, Introduction to the Arithmetic Theory of Automorphic
Functions, Princeton University Press, Princeton, 1971.

[132] G. Shimura, On modular forms of half integral weight, Ann. Math. 97
(1973), 440–481.

[133] T. Shintani, On certain ray class invariants of real quadratic fields, J.
Math. Soc. Jpn. 30 (1978), 139–167.

[134] C. L. Siegel, A simple proof of η(−1/τ) = η(τ)
√

τ/i, Mathematika 1
(1954), 4. Gesammelte Abhandlungen 62.

[135] G. V. Voskresenskaya, Multiplicative products of Dedekind’s eta func-
tion and representations of groups, Mat. Zametki 73 (2003), 511–526.

[136] L. C. Washington, Elliptic Curves: Number Theory and Cryptography,
Chapman & Hall, London, 2003.

[137] H. Weber, Lehrbuch der Algebra, dritter Band, Vieweg, Wiesbaden,
1908.

[138] A. Weil, Sur une formule classique, J. Math. Soc. Jpn. 20 (1968), 400–
402.



618 References

[139] E. T. Whittaker, G. N. Watson, A Course of Modern Analysis, Cam-
bridge University Press, Cambridge, 4th edn., 1966.

[140] D. B. Zagier, Zetafunktionen und quadratische Körper, Springer, Berlin,
1981.

[141] I. J. Zucker, A systematic way of converting infinite series into infinite
products, J. Phys. A, Math. Gen. 20 (1987), L13–L17.

[142] I. J. Zucker, Further relations amongst infinite series and products: II.
The evaluation of three-dimensional lattice sums, J. Phys. A, Math.
Gen. 23 (1990), 117–132.



Index

p-rank, 83

A

Ahlgren, S., 169
Andrews, G. E., 4
argument, 14
Atkin, A. O. L., xvi, 21, 26

B

Bernoulli numbers, 19
Blij, F. van der, 173, 348, 384, 396
Brandl, R., 82, 86

C

character, Dirichlet, 8
Chinese Remainder Theorem, 82
class number, 67
CM-form, xix
commensurable, 15
component of theta series, 73
conductor, 8, 68
congruence for ideal numbers, 75
convex coordinates, 56
Cooper, S., 156, 169, 174, 185
coprime, 75
Cross, J. T., 82, 91
cusp, 15
cusp form, 17
cusp parameter, 16

D

Dedekind, Richard, 1831–1916, xiii
Dedekind eta function, 3
Dedekind zeta function, 77
Deligne’s theorem, 29
denominator of eta product, 32
denominator of Fourier series, 140
Dirichlet character, 8
discrete logarithm, 81
discriminant, 69
discriminant function, 20
divisor sums, 19
Drehrest, 16
Dummit, D., 133, 155, 173

E

eigenform, 26
Eisenstein integers, 69
Eisenstein series, 19, 21, 143, 150,

185, 212, 251, 284, 317, 337, 341,
359, 371, 374, 382, 400, 429, 448,
457, 485

elementary theta function, 118
elliptic curve, 183, 257, 293
eta function, 3
eta product, 31
eta product, cuspidal, 36
eta product, holomorphic, 36
eta product, new, 33
eta product, non-cuspidal, 36
eta product, old, 33
eta product, order at cusps, 35
eta product on Fricke group, 33
eta quotient, 31
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