


Lecture Notes in Computer Science 6394
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany



Dorina C. Petriu Nicolas Rouquette
Øystein Haugen (Eds.)

Model Driven
Engineering Languages
and Systems
13th International Conference, MODELS 2010
Oslo, Norway, October 3-8, 2010
Proceedings, Part I

13



Volume Editors

Dorina C. Petriu
Carleton University, Department of Systems and Computer Engineering
1125 Colonel By Drive, Ottawa, Ontario, K1S 5BG, Canada
E-mail: petriu@sce.carleton.ca

Nicolas Rouquette
Jet Propulsion Laboratory
Flight Software Systems Engineering and Architecture Group
4800 Oak Grove Drive, Pasadena, CA 91109, USA
E-mail: nicolas.f.rouquette@jpl.nasa.gov

Øystein Haugen
SINTEF IKT
Forskningsveien 1, 0373 Oslo, Norway
E-mail: oystein.haugen@sintef.no

Library of Congress Control Number: 2010935022

CR Subject Classification (1998): D.2, D.3, K.6.3, D.2.9, F.3.3, D.1, D.2.2

LNCS Sublibrary: SL 2 – Programming and Software Engineering

ISSN 0302-9743
ISBN-10 3-642-16144-8 Springer Berlin Heidelberg New York
ISBN-13 978-3-642-16144-5 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

springer.com

© Springer-Verlag Berlin Heidelberg 2010
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper 06/3180



Preface

The MODELS series of conferences is the premier venue for the exchange of in-
novative technical ideas and experiences focusing on a very important new tech-
nical discipline: model-driven software and systems engineering. The expansion
of this discipline is a direct consequence of the increasing significance and success
of model-based methods in practice. Numerous efforts resulted in the invention
of concepts, languages and tools for the definition, analysis, transformation, and
verification of domain-specific modeling languages and general-purpose modeling
language standards, as well as their use for software and systems engineering.

MODELS 2010, the 13th edition of the conference series, took place in Oslo,
Norway, October 3-8, 2010, along with numerous satellite workshops, symposia
and tutorials. The conference was fortunate to have three prominent keynote
speakers: Ole Lehrmann Madsen (Aarhus University, Denmark), Edward A. Lee
(UC Berkeley, USA) and Pamela Zave (AT&T Laboratories, USA).

To provide a broader forum for reporting on scientific progress as well as on
experience stemming from practical applications of model-based methods, the
2010 conference accepted submissions in two distinct tracks: Foundations and
Applications. The primary objective of the first track is to present new research
results dedicated to advancing the state-of-the-art of the discipline, whereas the
second aims to provide a realistic and verifiable picture of the current state-of-
the-practice of model-based engineering, so that the broader community could
be better informed of the capabilities and successes of this relatively young
discipline. This volume contains the final version of the papers accepted for
presentation at the conference from both tracks.

We received a total of 252 submissions (207 in the Foundations and 45 in the
Applications track) from 34 countries; 21% of the papers were co-authored by
researchers from different countries, indicating a healthy trend toward interna-
tional collaboration. The program committees selected a total of 54 papers for
presentation at the conference (43 Foundations and 11 Applications) giving a
total acceptance rate of 21.3%.

We would like to thank everyone who submitted papers, as well as those
who submitted proposals for workshops and tutorials. We would also like to
express our gratitude to the large number of volunteers who contributed to the
success of the conference. Special thanks are due to Richard van de Stadt for his
prompt and unfailing support of CyberChairPRO, the conference management
system used for MODELS 2010. Last but not least, we would like to thank
our sponsors, ACM, IEEE, SINTEF, and the Department of Informatics at the
University of Oslo.

October 2010 Dorina C. Petriu
Nicolas Rouquette

Øystein Haugen



Organization

General Chair

Øystein Haugen SINTEF and University of Oslo, Norway

Program Chairs

Dorina C. Petriu Carleton University, Canada
(Foundations Track)
Nicolas Rouquette NASA, Jet Propulsion Laboratory, USA
(Applications Track)

Local Chair

Birger Møller-Pedersen University of Oslo, Norway

Publicity and Sponsor Chair

Arne J. Berre SINTEF and University of Oslo, Norway

International Publicity Chair

Franck Fleurey SINTEF, Norway

Treasurer

Parastoo Mohagheghi SINTEF, Norway

Workshop Co-chairs

Juergen Dingel Queens University, Canada
Arnor Solberg SINTEF, Norway

Tutorial Co-chairs

Stein Krogdahl University of Oslo, Norway
Stein-Erik Ellevseth ABB, Norway



VIII Organization

Educators’ Symposium Co-chairs

Peter Clarke Florida International University, USA
Martina Seidl Vienna University of Technology, Austria

Doctoral Symposium Chair

Bernhard Schätz Technical University Munich, Germany
Brian Elvesæter SINTEF and University of Oslo, Norway
(Support)

Panel Chair

Thomas Kühne Victoria University of Wellington, New Zealand

Exhibition and Demo Chair

Arne Maus University of Oslo, Norway

Web Chair

Dag Langmyhr University of Oslo, Norway

Local Room Facilities

Roy Grønmo SINTEF and University of Oslo, Norway

Student Volunteer Coordinator

Jon Oldevik SINTEF and University of Oslo, Norway

Program Committee: Foundations Track

Daniel Amyot University of Ottawa, Canada
Krishnakumar

Balasubramanian The MathWorks Inc., USA
Don Batory University of Texas, USA
Benoit Baudry INRIA, France
Behzad Bordbar University of Birmingham, UK
Ruth Breu University of Innsbruck, Austria
Lionel Briand Simula Research Lab and University of Oslo,

Norway
Jean-Michel Bruel Université de Toulouse, France
Jordi Cabot INRIA- Ecole des Mines de Nantes, France



Organization IX

Michel Chaudron Leiden University, The Netherlands
Tony Clark Middlesex University, UK
Vittorio Cortellessa University of L’Aquila, Italy
Krzysztof Czarnecki University of Waterloo, Canada
Juan de Lara Universidad Autónoma de Madrid, Spain
Jens Dietrich Massey University, New Zealand
Juergen Dingel Queen’s University, Canada
Stephane Ducasse INRIA Lille, France
Keith Duddy Queensland University of Technology, Australia
Gregor Engels University of Paderborn, Germany
Franck Fleurey SINTEF, Norway
Robert B. France Colorado State University, USA
David Frankel SAP, USA
Lidia Fuentes University of Malaga, Spain
Dragan Gasevic Athabasca University, Canada
Geri Georg Colorado State University, USA
Sébastien Gérard CEA LIST, France
Sudipto Ghosh Colorado State University, USA
Holger Giese Hasso Plattner Institute at the University of

Potsdam, Germany
Tudor Gı̂rba University of Bern, Switzerland
Martin Gogolla University of Bremen, Germany
Susanne Graf VERIMAG, France
Vincenzo Grassi University of Rome “Tor Vergata”, Italy
Jeff Gray University of Alabama, USA
John Grundy Swinburne University of Technology, Australia
Esther Guerra Universidad Carlos III de Madrid, Spain
Jun Han Swinburne University of Technology, Australia
Øystein Haugen SINTEF, Norway
Zhenjiang Hu National Institute of Informatics, Japan
Heinrich Hussmann Universität München, Germany
Paola Inverardi University of L’Aquila, Italy
Jan Jürjens TU Dortmund and Fraunhofer ISST, Germany
Audris Kalnins University of Latvia, Latvia
Gerti Kappel Vienna University of Technology, Austria
Gabor Karsai Vanderbilt University, USA
Jörg Kienzle McGill University, Montreal, Canada
Ingolf Krüger UC San Diego, USA
Thomas Kühne Victoria University of Wellington, New Zealand
Jochen Küster IBM Research - Zürich, Switzerland
Yvan Labiche Carleton University, Canada
Ralf Laemmel University of Koblenz-Landau, Germany
Michaël Lawley CSIRO Australian e-Health Research Centre,

Australia
Timothy C. Lethbridge University of Ottawa, Canada



X Organization

Tom Maibaum McMaster University, Canada
Radu Marinescu Universitatea Politehnica Timisoara, Romania
Dragan Milicev University of Belgrade, Yugoslavia
Birger Møller-Pedersen University of Oslo, Norway
Ana Moreira Universidade Nova de Lisboa, Portugal
Pierre-Alain Muller Université de Haute-Alsace, France
Ileana Ober IRIT, France
Iulian Ober IRIT, France
Richard Paige University of York, UK
Robert Pettit The Aerospace Corporation, USA
Alfonso Pierantonio Università degli Studi dell’ Aquila, Italy
Claudia Pons University of La Plata, Argentina
Ivan Porres Åbo Akademi University, Finland
Gianna Reggio Università di Genova, Italy
Arend Rensink University of Twente, The Netherlands
Ralf Reussner Karlsruhe Institute of Technology, Germany
Bernhard Rumpe RWTH Aachen University, Germany
Bernhard Schätz TU München, Germany
Andy Schürr Technische Universität Darmstadt, Germany
Bran Selic Malina Software, Canada
Micha�l Śmia�lek Warsaw University of Technology, Poland
Arnor Solberg SINTEF, Norway
Perdita Stevens University of Edinburgh, UK
Paul Strooper The University of Queensland, Australia
Tarja Systä Tampere University of Technology, Finland
Gabriele Taentzer Philipps-Universität Marburg, Germany
Juha-Pekka Tolvanen MetaCase, Finland
Laurence Tratt Bournemouth University, UK
Antonio Vallecillo Universidad de Mälaga, Spain
Dániel Varró Budapest University of Technology and Economics,

Hungary
Eelco Visser Technical University of Delft, The Netherlands
Andrzej Wasowski IT University of Copenhagen, Denmark
Jon Whittle Lancaster University, UK
Andreas Winter Carl von Ossietzky University, Germany

Program Committee: Applications Track

Patrick Albert IBM, France
Robert Baillargeon Panasonic Automotive Systems, USA
Edward Barkmeyer National Institute of Standards & Technology, USA
Mariano Belaunde Orange Labs, France
Rao G. Bhaskar Motorola, India
Behzad Bordbar University of Birmingham, UK
Francis Bordeleau Zeligsoft, Canada



Organization XI

Tony Clark Middlesex University, UK
Diarmuid Corcoran Ericsson AB, Sweden
Rik Eshuis Eindhoven University of Technology,

The Netherlands
Huascar Espinoza European Software Institute, Spain
Andy Evans Xactium, UK
Geri Georg Colorado State University, USA
Øystein Haugen SINTEF, Norway
Steven Kelly MetaCase, Finland
Jana Koehler IBM Zurich Research Laboratory, Switzerland
Vinay Kulkarni Tata Consultancy Services, India
Nikolai Mansourov KDM Analytics, Canada
Stephen Mellor Project Technology, Inc., UK
Dragan Milicev University of Belgrade, Serbia
Hiroshi Miyazaki Fujitsu, Japan
Juan Carlos Molina UdaetaCARE Technologies, S.A., Spain
Pierre-Alain Muller Université de Haute-Alsace, France
Syed Salman Qadri The Mathworks, Inc., USA
Ina Schieferdecker TU Berlin/Fraunhofer FOKUS, Germany
Bran Selic Malina Software Corporation, Canada
Richard Soley Object Management Group, USA
Ingo Stürmer Model Engineering Solutions GmbH, Germany
Jun Sun National University of Singapore, Singapore
François Terrier CEA-LIST, France
Laurence Tratt Bournemouth University, UK
Markus Voelter itemis AG, Germany
Michael von der Beeck BMW Group, Germany
Thomas Weigert Missouri University of Science and Technology, USA
Frank Weil Hengsoft, USA
Jon Whittle Lancaster University, UK
Ed Willink Thales Research and Technology Ltd., UK

Steering Committee

Heinrich Hussmann (Chair)
Geri Georg (Vice Chair)
Thomas Baar
Jean Bezivin
Lionel Briand
Jean-Michel Bruel
Krzysztof Czarnecki
Gregor Engels
Øystein Haugen
Rob Pettit
Stuart Kent

Ana Moreira
Pierre-Alain Muller
Oscar Nierstrasz
Dorina Petriu
Gianna Reggio
Matthew Dwyer
Doug Schmidt
Andy Schürr
Perdita Stevens
Jon Whittle



XII Organization

Sponsors

ACM (http://www.acm.org)
IEEE (http://www.ieee.org)
SINTEF (http://www.sintef.no/Home/)
IFI, University of Oslo (http://www.ifi.uio.no/english/)

Additional Reviewers

Saeed Ahmadi-Behnam
Mauricio Alferez
Shaukat Ali
Hamoud Aljamaan
Andrew Allen
Carmen Alonso
Michal Antkiewicz
Thorsten Arendt
Nesa Asoudeh
Arun Bahulkar
Kacper Bak
András Balogh
Cecilia Bastarrica
Basil Becker
Kristian Beckers
Axel Belinfante
James M. Bieman
Enrico Biermann
Dénes Bisztray
Marko Bošković
Noury Bouraqadi
Jens Brüning
Petra Brosch
Frank Brüseke
Erik Burger
Sergio Campos
Maura Cerioli
Dan Chiorean
Hyun Cho
Antonio Cicchetti
Selim Ciraci
Rober Clarisó
Peter J. Clarke
Benoit Combemale
Duc-Hanh Dang
Sylvain Dehors
Marcus Denker

Marcos Didonet Del Fabro
Zinovy Diskin
Frederic Doucet
Mauro Luigi Drago
Iulia Dragomir
Zoya Durdik
Maged Elaasar
Romina Eramo
Eban Escott
Sami Evangelista
Julie S. Fant
Hanna Farah
Claudiu Farcas
Stephan Fassbender
Ali Fatolahi
Frederic Fondement
Gregor Gabrysiak
Nadia Gámez
Xiaocheng Ge
Christian Gerth
Sepideh Ghanavati
Martin Giese
Thomas Goldschmidt
Cristina Gómez
László Gönczy
Hans Groenniger
Baris Güldali
Tim Gülke
Arne Haber
Lars Hamann
Brahim Hamid
Ali Hanzala
Michael Hauck
Regina Hebig
Ramin Hedayati
Werner Heijstek
Michael Henderson



Organization XIII

Frank Hernandez
Markus Herrmannsdoerfer
Stephan Hildebrandt
Martin Hirsch
Florian Hoelzl
Sören Höglund
Ákos Horváth
To-Ju Huang
Jeronimo Irazabal
Martin Johansen
Stefan Jurack
Lucia Kapova
Soon-Kyeong Kim
Felix Klar
Dimitrios Kolovos
Dagmar Koss
Mirco Kuhlmann
Thomas Kurpick
Ivan Kurtev
Angelika Kusel
Martin Küster
Scott Uk-Jin Lee
Leen Lambers
Philip Langer
Marius Lauder
Hervé Leblanc
Arne Lindow
Qichao Liu
Alexander De Luca
Markus Luckey
Tomaz Lukman
Carlos Luna
Frederic Massicotte
Max Maurer
Dieter Mayrhofer
Massimiliano Menarini
Marjan Mernik
Raffaela Mirandola
Kim-Sun Mo
Naouel Moha
Maarten de Mol
Ingo Mueller
Gunter Mussbacher
Benjamin Nagel
Stefan Neumann

Ariadi Nugroho
Martin Ochoa
Jon Oldevik
Sebastian Oster
Lars Patzina
Sven Patzina
Ekaterina Pek
Patrizio Pelliccione
Gabriela Perez
Christian Pfaller
Gergely Pintér
Monica Pinto
Alain Plantec
Ernesto Posse
Alireza Pourshahid
Alek Radjenovic
István Ráth
Daniel Ratiu
Irum Rauf
Indrakshi Ray
Holger Rendel
Lukas Renggli
Taylor Riche
Eduardo Rivera
Louis Rose
Sebastian Rose
Judith E. Y. Rossebø
Suman Roychoudhury
Fran J. Ruiz-Bertol
Davide Di Ruscio
Mehrdad Sabetzadeh
Karsten Saller
Pablo Sánchez
Joao Santos
Martin Schindler
Holger Schmidt
Andreas Seibel
Martina Seidl
Filippo Seracini Seyyed Shah
Syed Mohammad Ali Shaw
Carla Silva
Karsten Sohr
Stéphane S. Somé
Michael Spijkerman
Jim Steel



XIV Organization

Yu Sun
Andreas Svendsen
Nora Szasz
Jörn Guy Süß
Tian Huat Tan
Massimo Tisi
Catia Trubiani
Sara Tucci-Piergiovanni
Steve Versteeg
Thomas Vogel
Steven Völkel
Sebastian Voss
Ingo Weisemoeller
Konrad Wieland

Manuel Wimmer
Jevon Wright
Yali Wu
Andreas Wübbeke
Yingfei Xiong
Lijun Yu
Tao Yue
Eduardo Zambon
Vadim Zaytsev
Xiaorui Zhang
Manchun Zheng
Celal Ziftci
Karolina Zurowska



Table of Contents – Part I

Keynote 1

A Unified Approach to Modeling and Programming . . . . . . . . . . . . . . . . . . 1
Ole Lehrmann Madsen and Birger Møller-Pedersen

Session 1a: Genericity and Generalization

Generic Meta-modelling with Concepts, Templates and Mixin Layers . . . 16
Juan de Lara and Esther Guerra

An Observer-Based Notion of Model Inheritance . . . . . . . . . . . . . . . . . . . . . 31
Thomas Kühne

MDE-Based Approach for Generalizing Design Space Exploration . . . . . . 46
Tripti Saxena and Gabor Karsai

Session 1b: Model Migration and Incremental
Manipulation

A Comparison of Model Migration Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Louis M. Rose, Markus Herrmannsdoerfer, James R. Williams,
Dimitrios S. Kolovos, Kelly Garcés, Richard F. Paige, and
Fiona A.C. Polack

Incremental Evaluation of Model Queries over EMF Models . . . . . . . . . . . 76
Gábor Bergmann, Ákos Horváth, István Ráth, Dániel Varró,
András Balogh, Zoltán Balogh, and András Ökrös

Active Operations on Collections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
Olivier Beaudoux, Arnaud Blouin, Olivier Barais, and
Jean-Marc Jézéquel

Session 1c: Modeling Model Transformations

transML: A Family of Languages to Model Model Transformations . . . . . 106
Esther Guerra, Juan de Lara, Dimitrios S. Kolovos,
Richard F. Paige, and Osmar Marchi dos Santos

Henshin: Advanced Concepts and Tools for In-Place EMF Model
Transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

Thorsten Arendt, Enrico Biermann, Stefan Jurack,
Christian Krause, and Gabriele Taentzer



XVI Table of Contents – Part I

A Technique for Automatic Validation of Model Transformations . . . . . . . 136
Levi Lúcio, Bruno Barroca, and Vasco Amaral

Session 2a: Verifying Consistency and Conformance

Static- and Dynamic Consistency Analysis of UML State Chart
Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

Christian Schwarzl and Bernhard Peischl

Verifying Semantic Conformance of State Machine-to-Java Code
Generators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

Lukman Ab Rahim and Jon Whittle

A Dynamic-Priority Based Approach to Fixing Inconsistent Feature
Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

Bo Wang, Yingfei Xiong, Zhenjiang Hu, Haiyan Zhao,
Wei Zhang, and Hong Mei

Session 2b: Taming Modeling Complexity

Taming Graphical Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
Hauke Fuhrmann and Reinhard von Hanxleden

Taming EMF and GMF Using Model Transformation . . . . . . . . . . . . . . . . . 211
Dimitrios S. Kolovos, Louis M. Rose, Saad Bin Abid,
Richard F. Paige, Fiona A.C. Polack, and Goetz Botterweck

A Visual Traceability Modeling Language . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
Patrick Mäder and Jane Cleland-Huang

Session 2c: Modeling User-System Interaction

Application Logic Patterns – Reusable Elements of User-System
Interaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241

Albert Ambroziewicz and Micha�l Śmia�lek

A Metamodel-Based Approach for Automatic User Interface
Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256

António Miguel Rosado da Cruz and João Pascoal Faria

Rapid UI Development for Enterprise Applications: Combining Manual
and Model-Driven Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271

Arne Schramm, André Preußner, Matthias Heinrich, and Lars Vogel



Table of Contents – Part I XVII

Session 3a: Model-Driven Quality Assurance

Environment Modeling with UML/MARTE to Support Black-Box
System Testing for Real-Time Embedded Systems: Methodology and
Industrial Case Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 286

Muhammad Zohaib Iqbal, Andrea Arcuri, and Lionel Briand

Improving Test Models for Large Scale Industrial Systems: An
Inquisitive Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 301

Andrew Diniz da Costa, Viviane Torres da Silva,
Alessandro Garcia, and Carlos José Pereira de Lucena

Automatically Discovering Properties That Specify the Latent Behavior
of UML Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 316

Heather J. Goldsby and Betty H.C. Cheng

Session 3b: Managing Variability

Towards a Semantics of Activity Diagrams with Semantic Variation
Points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 331

Hans Grönniger, Dirk Reiß, and Bernhard Rumpe

An AADL-Based Approach to Variability Modeling of Automotive
Control Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 346

Shin’ichi Shiraishi

Extending Variability for OCL Interpretation . . . . . . . . . . . . . . . . . . . . . . . . 361
Claas Wilke, Michael Thiele, and Christian Wende

Session 3c: Multi-Modeling Approaches

Inter-Modelling: From Theory to Practice . . . . . . . . . . . . . . . . . . . . . . . . . . . 376
Esther Guerra, Juan de Lara, Dimitrios S. Kolovos, and
Richard F. Paige

Consistent Modeling Using Multiple UML Profiles . . . . . . . . . . . . . . . . . . . 392
Florian Noyrit, Sébastien Gérard, François Terrier, and Bran Selic

A Systematic Review on the Definition of UML Profiles . . . . . . . . . . . . . . . 407
Jesús Pardillo

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 423



Table of Contents – Part II

Keynote 2

Modeling the Internet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Pamela Zave

Session 4a: Distributed/Embedded Software
Development

Transformation-Based Parallelization of Request-Processing
Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

Taylor L. Riché, Harrick M. Vin, and Don Batory

Model Driven Orchestration: Design for Service Compatibility . . . . . . . . . 17
Georg Grossmann, Michael Schrefl, and Markus Stumptner

Embedded Software Development with Projectional Language
Workbenches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

Markus Voelter

Session 4b: (De)Composition and Refactoring

Concern-Based (de)composition of Model-Driven Software Development
Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

Jendrik Johannes and Uwe Aßmann

Flexible Model Element Introduction Policies for Aspect-Oriented
Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

Brice Morin, Jacques Klein, Jörg Kienzle, and Jean-Marc Jézéquel

Role-Based Generic Model Refactoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
Jan Reimann, Mirko Seifert, and Uwe Aßmann

Session 4c: Model Change

Precise Detection of Conflicting Change Operations Using Process
Model Terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

Christian Gerth, Jochen M. Küster, Markus Luckey, and
Gregor Engels

Capturing the Intention of Model Changes . . . . . . . . . . . . . . . . . . . . . . . . . . 108
Patrick Könemann



XX Table of Contents – Part II

Selective and Consistent Undoing of Model Changes . . . . . . . . . . . . . . . . . . 123
Iris Groher and Alexander Egyed

Session 5a: (Meta)Models at Runtime

Modeling Features at Runtime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
Marcus Denker, Jorge Ressia, Orla Greevy, and Oscar Nierstrasz

Metamodel-Based Information Integration at Industrial Scale . . . . . . . . . . 153
Stefan Berger, Georg Grossmann, Markus Stumptner, and
Michael Schrefl

Inferring Meta-models for Runtime System Data from the Clients of
Management APIs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

Hui Song, Gang Huang, Yingfei Xiong, Franck Chauvel,
Yanchun Sun, and Hong Mei

Session 5b: Requirements Engineering

A Meta Model for Artefact-Orientation: Fundamentals and Lessons
Learned in Requirements Engineering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

Daniel Méndez Fernández, Birgit Penzenstadler,
Marco Kuhrmann, and Manfred Broy

A Common Framework for Synchronization in Requirements Modelling
Languages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

Shahram Esmaeilsabzali, Nancy A. Day, and Joanne M. Atlee

A Systematic Review of the Use of Requirements Engineering
Techniques in Model-Driven Development . . . . . . . . . . . . . . . . . . . . . . . . . . . 213

Grzegorz Loniewski, Emilio Insfran, and Silvia Abrahão

Session 5c: Slicing and Model Transformations

Slicing of UML Models Using Model Transformations . . . . . . . . . . . . . . . . . 228
Kevin Lano and Shekoufeh Kolahdouz-Rahimi

An Adjustable Transformation from OWL to Ecore . . . . . . . . . . . . . . . . . . 243
Tirdad Rahmani, Daniel Oberle, and Marco Dahms

Transforming Process Models: Executable Rewrite Rules versus a
Formalized Java Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258

Pieter Van Gorp and Rik Eshuis



Table of Contents – Part II XXI

Keynote 3

Disciplined Heterogeneous Modeling (Invited Paper) . . . . . . . . . . . . . . . . . . 273
Edward A. Lee

Session 6a: Incorporating Quality Concerns in MDD

Design Guidelines for the Development of Quality-Driven Model
Transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288

Emilio Insfran, Javier Gonzalez-Huerta, and Silvia Abrahão

Early Deviation Detection in Modeling Activities of MDE Processes . . . . 303
Marcos Aurélio Almeida da Silva, Reda Bendraou,
Xavier Blanc, and Marie-Pierre Gervais

Artifact or Process Guidance, an Empirical Study . . . . . . . . . . . . . . . . . . . . 318
Marcos Aurélio Almeida da Silva, Alix Mougenot, Reda Bendraou,
Jacques Robin, and Xavier Blanc

Session 6b: Model-Driven Engineering in Practice

Scaling Up Model Driven Engineering – Experience and Lessons
Learnt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 331

Vinay Kulkarni, Sreedhar Reddy, and Asha Rajbhoj

Mod4J: A Qualitative Case Study of Model-Driven Software
Development . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 346

Vincent Lussenburg, Tijs van der Storm, Jurgen Vinju, and
Jos Warmer

Modeling Issues: A Survival Guide for a Non-expert Modeler . . . . . . . . . . 361
Emilio Rodriguez-Priego, Francisco J. Garćıa-Izquierdo, and
Ángel Luis Rubio

Session 6c: Modeling Architecture

Monarch: Model-Based Development of Software Architectures . . . . . . . . 376
Hamid Bagheri and Kevin Sullivan

Model-to-Metamodel Transformation for the Development of
Component-Based Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 391

Gerd Kainz, Christian Buckl, Stephan Sommer, and Alois Knoll

Architectural Descriptions as Boundary Objects in System and Design
Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 406

Lars Pareto, Peter Eriksson, and Staffan Ehnebom

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 421



A Unified Approach to Modeling and
Programming

Ole Lehrmann Madsen1 and Birger Møller-Pedersen2

1 Department of Computer Science, Aarhus University and the Alexandra Institute
Åbogade 34, DK-8200 Århus N, Denmark

ole.l.madsen@cs.au.dk
2 Department of Informatics, University of Oslo

Gaustadalléen 23, N-0371 Oslo, Norway
birger@ifi.uio.no

Abstract. SIMULA was a language for modeling and programming and
provided a unified approach to modeling and programming in contrast
to methodologies based on structured analysis and design. The current
development seems to be going in the direction of separation of modeling
and programming. The goal of this paper is to go back to the future and
get inspiration from SIMULA and propose a unified approach. In addi-
tion to reintroducing the contributions of SIMULA and the Scandina-
vian approach to object-oriented programming, we do this by discussing
a number of issues in modeling and programming and argue1 why we
consider a unified approach to be an advantage.

1 Introduction

Before the era of object-orientation, software development suffered from the
use of different approaches, languages, and representations for analysis, design
and implementation as e.g. when using the methodologies of structured analysis
and design (SA/SD) [25]. One of the strengths of object-orientation is that it
provides a unified approach to modeling as well as to programming, including
both a conceptual framework and a set of language mechanisms in support of
this.

Current mainstream object-oriented software development, however, seems to
be going in the direction of separation of modeling and programming. The nu-
merous technologies and books on object-oriented programming are primarily
concerned with the technical aspects of programming and pay very little atten-
tion to modeling aspects. New programming languages are apparently defined
with no concern for modeling. For modeling languages like UML [9] we see three
different developments: informal models in languages that have to be tailored
(UML profiled) to specific execution platforms or domains in order to be able
to generate more than just skeleton code, executable models in e.g. executable

1 This paper is a position paper accompanying a keynote speech and is therefore not
a traditional scientific paper.

D.C. Petriu, N. Rouquette, Ø. Haugen (Eds.): MODELS 2010, Part I, LNCS 6394, pp. 1–15, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



2 O.L. Madsen and B. Møller-Pedersen

UML (fUML) [8], and Domain Specific Languages (DSLs) that are executable
by virtue of lending themselves to a specific domain (and often to a framework
implemented in some programming language).

Although informal models may play an important role in the development
process and DSLs have their mission for domains with specific requirements on
syntax and semantics, our main concern is modeling and programming in general
purpose languages, as e.g. represented by UML and programming languages like
C++ [23], Java [7], and C# [10].

If models are executable one may ask what the principal difference is be-
tween a programming language and a modeling language. If the intention is that
the users of an executable modeling language are not supposed to handle any
generated code in a programming language, then users will require tools for this
modeling language that are comparable with the best tools for the best program-
ming languages. They will also require the powerful mechanisms that recently
have been added to programming languages (e.g. generics, classes and functions
combined, and functions as parameters). Users will also expect to have program-
ming language mechanisms that are used in everyday programming. Otherwise
the situation will be (as is the experience with incomplete code generation from
models) that code will stay the main artifact, and when things become critical,
the model is often dropped and only the code is further developed.

Another issue is efficiency. A lot of effort has been put into making compilers
for programming languages that exploit the execution platforms to a maximum.
In order to compete, the same would have to be done for an executable modeling
language. The alternative would be to rely on code generation to a programming
language with efficient code generators, but that implies the risk of ending up
with two artifacts.

While programming languages have developed a number of mechanisms not
yet found in modeling languages (see above), modeling languages similarly have
developed a set of mechanisms that have not found their way into mainstream
programming languages (like associations and state machines). In this way pro-
gramming languages may be seen as a driving force for the development of
modeling languages and vice versa.

It has often been emphasized that one of the strengths of object-oriented
programming is the ability to represent (model) phenomena and concepts from
the application domain. Others have questioned the modeling aspect [1,2] by
noting that just a small percentage of the code relates to the real world. It
is, however, not just modeling of real-world phenomena and concepts that is
important – in any application domain, modeling is important, be it the domains
of drivers, communication protocols, etc. [19].

All of this makes the case for a unified programming and modeling language,
or a programming language with modeling capabilities. Distinguishing between
programming and modeling languages blurs the fact the all programming should
be modeling in the appropriate domain. Programming should not just be a tech-
nical issue about instructing a computer. To program is to understand : if models
are described in a separate language then programming easily downgrades to just



A Unified Approach to Modeling and Programming 3

“getting away with it”2 and one looses the advantage of a tight coupling between
programming and modeling.

The dual support for modeling and programming may be traced back to
SIMULA [4] where one of the main goals was to provide a language for modeling
as well as for programming. The focus on modeling and programming has been
one of the main characteristics of the Scandinavian School of object-orientation.
The authors were involved in making BETA [18], another representative.

The overall purpose of this paper is to go back to the future and get inspiration
from some of the ideas, goals and strengths of SIMULA with respect to modeling
and programming and outline a unified approach to modeling and programming.

The approach will have to be based upon an analysis of current mainstream pro-
gramming and modeling languages, identifying candidate elements that should
be supported by such a unified approach and how they should be supported by
language mechanisms. Similarly, the approach will have to identify and under-
stand programming language mechanisms that do not apply for modeling – and
the other way around. Low-level implementation mechanisms may not apply to
modeling just as non-executable mechanisms cannot directly become part of a
programming language.

2 The Scandinavian Approach to Object-Orientation

2.1 The Contributions from SIMULA

It is well-known that SIMULA (developed by Ole-Johan Dahl and Kristen Ny-
gaard in the sixties) is the first object-oriented programming language, but it is
less well-known that the language was designed with support for both program-
ming and modeling, and that it formed the basis for a pure modeling language,
DELTA, already in 1973. Nygaard originally worked with operations research
and his main motivation for designing a programming language was that he then
could describe computer simulations. Dahl on the other hand was a computer
scientist with an exceptional talent for programming.3 Together they formed
a unique team that eventually led to the first SIMULA language, SIMULA I,
which was a simulation language. Dahl and Nygaard realized that the concepts
in SIMULA I could be applied to programming in general and as a result they
designed SIMULA 67 – later on just called SIMULA.

The SIMULA I [3] report from 1965 opens with the following sentences:

The two main objects of the SIMULA language are:
– To provide a language for a precise and standardised description of

a wide class of phenomena, belonging to what we may call ”discrete
event systems”.

– To provide a programming language for an easy generation of simu-
lation programs for ”discrete event systems”.

2 Free from Kristen Nygaard.
3 Kristen Nygaard in his obituary for Dahl [20].



4 O.L. Madsen and B. Møller-Pedersen

As it may be seen, SIMULA should support system description as well as pro-
gramming. At that time the term system description was used in a way similar
to the term modeling today.4

SIMULA contains many of the concepts (object, class, subclass, virtual met-
hod, etc.) that are now available in mainstream object-oriented languages in-
cluding UML. An exception is the SIMULA notion of active object with its own
action-sequence, which strangely enough has not been adopted by many other
languages (one exception is UML). For Dahl and Nygaard it was essential to be
able to model concurrent processes from the real world application domains.

SIMULA users often experienced that they learned more from creating a
SIMULA description of their system than from the actual simulation results.
Nygaard together with Erik Holbæk-Hanssen and Petter H̊andlykken therefore
decided to develop a language, DELTA [11], purely for system description.

DELTA was based on the essential mechanisms from SIMULA. In addition,
it had mechanisms for expressing true concurrency – as opposed to the pseudo
parallel processes (coroutines) in SIMULA, and so-called time-consuming ac-
tions for describing continuous state changes over time – as opposed to the
discrete event mechanisms supported by SIMULA. DELTA contained most of
the mechanisms found in SIMULA but non-executable mechanisms were added
to higher the level of descriptions. DELTA thus provided mechanisms that are
beyond programming in the sense that a DELTA description may in general not
be executed. DELTA did not get widespread acceptance outside a small commu-
nity in Scandinavia, but in many aspects it was ahead of its time compared to
subsequent work on specification languages and modeling languages.

Based upon SIMULA and DELTA, BETA was designed to be a a language
that could be used for design as well as for programming. BETA was, however,
designed more than 25 years ago (first published paper was at POPL’83 [13]).
Since the design of BETA, new requirements to modeling (and programming)
have emerged, but we think that the experience from the design and use of BETA
may be useful for a unified language approach.

A main contribution of BETA besides the language was the development of a
conceptual framework for object-oriented programming, and such a conceptual
framework is essential for modeling.

2.2 The Scandinavian Approach to Modeling

In BETA (and SIMULA and DELTA5) the program execution is considered to be
a (physical) model of some referent system (part of the application domain). The
program text is considered to be a description of the model (program execution)
and thereby a description of the referent system. Note that the program execu-
tion (i.e. the dynamic process taking place during execution of the program) is
considered to be the model. The program text is not a model but a description
of the model. At the time of SIMULA this was a common interpretation of the

4 In the following the two terms may thus be used interchangeably.
5 Slightly differently formulated since DELTA is not executable.



A Unified Approach to Modeling and Programming 5

Fig. 1. Relationship between referent system, model and description

term model. This is in contrast to UML where the UML description is considered
to be the model. The BETA model would in UML terms correspond to what
would be generated at M0 (with executable UML), while a BETA program would
correspond to a UML model at M1.

An analogy is a model train. The model of the real train station (or the one
to be built) is the one consisting of tracks, switches, lights and small trains that
move on these tracks. The model is not the description of how to build this train
station.

At some point in time during the development of object-oriented methods and
modeling languages, probably in connection with the introduction of graphical
descriptions, model became the term used for the diagrams or descriptions. A
box in a diagram representing really only a description of a part of a system
may easily be confused with a model of the same part.

An essential part of the BETA project was the development of a concep-
tual framework for object-oriented programming. The purpose of the conceptual
framework is to provide conceptual means for understanding and organizing
knowledge about phenomena and concepts from the real world (application do-
main). And also to be explicit about the kind of properties of the real world
that can be described in state-of-art object-oriented languages and in this way
also serve as a driving force for the development of new abstraction mechanisms.
Further development of a conceptual framework should be central in research
on modeling. The reader is referred to [17,18,14] for a further elaboration of the
modeling aspects of BETA.

2.3 Implications for Language Design

Apart from the direct support for active objects with their own action sequences,
one of the main characteristics of the Scandinavian modeling approach to object-
oriented modeling is that classes model application domain concepts, and



6 O.L. Madsen and B. Møller-Pedersen

subclasses therefore specialized domain concepts. An implication for language de-
sign is that classes are used for defining types and not just for implementing types.
Other approaches to object-oriented programming maintain the distinction be-
tween classes and types, while modeling languages have followed the Scandinavian
approach with classes and subclasses modeling domain concepts.

The implication regarding the program execution as a model is that language
mechanisms are designed in order to describe the desired properties of model
elements. In the same way as the mechanism of class is made in order to de-
scribe concepts, the mechanism of object is made in order for objects to be
models of phenomena. For the design of DSLs this has become obvious. When
making a language for describing e.g. train control systems one start by iden-
tifying the phenomena of train controls systems (tracks, switches, lights, etc.)
and their properties, and then design language mechanisms that suits the pur-
pose of describing such systems. For general purpose languages this will amount
to identifying the desired properties of phenomena in general and then devise
language mechanisms for this. As an example, when designing SIMULA it was
important to describe phenomena with their own action sequence. Value proper-
ties of phenomena lead to attributes of objects (developed as part of the record
concept prior to SIMULA), while potential behavior properties lead to proce-
dures (methods) belonging to objects. Another example is that in BETA it was
possible to describe that objects were parts of another object. For a program-
ming language this is not needed (can be done by a const mechanism), while
composition (as also found in UML) may be important for modeling.

3 Language Design Issues

As mentioned, modeling languages and programming languages have a common
core of concepts, language constructs and other issues. In addition, there are
a number of issues normally associated with modeling just as there are issues
normally associated with programming. We believe that most of these issues
apply just as well to modeling as to programming. In this section we discuss
a number of general language design issues and in the next section we discuss
concrete language constructs. We believe that research in modeling and pro-
gramming languages will benefit from identifying theses issues and discuss them
in a broader perspective. Issues like scope rules, type systems, semantics, etc.
that obviously apply to both modeling and programming are not discussed in
this paper.

3.1 Syntax

For mainstream languages, programming languages most often have a textual
syntax while modeling languages have a graphical syntax. There is, however, no
law or other justification for this. There are several examples of programming
languages with a graphical syntax, and we shall later argue that a textual syntax
may also be useful for a modeling language.



A Unified Approach to Modeling and Programming 7

One may argue that a graphical syntax is better suited for communication
than a textual syntax. Since modeling languages are primarily used in the initial
phases of a project, the communication aspect is important. This is the case for
communication in a team, between teams, with managers and perhaps also with
customers. All of this argues for a graphical syntax. There is the well known
phrase: A picture says more than a thousand words. There is, however, also a
saying the other way around: A word says more than a thousand pictures.6 As an
example, the word “vehicle” communicates the concept in a much more efficient
way than thousand pictures of vehicles. The point is that we use words to capture
essential concepts and phenomena – as soon as we have identified a concept and
found a word for it, this word is an efficient means for communication.

While the argument for graphical descriptions is that they are are good for
providing overview, the fact is that graphical descriptions quickly become un-
manageable when they get large. In addition when a model becomes stable and
well understood, a textual description is more compact, and at that stage of a
project there is no problem for the developers to work with at textual description
of a model.

One of the benefits of object-oriented programming is that it has provided a
common set of language constructs for programming as well as modeling. Ob-
jects, classes, subclasses, virtuals, etc. are core language elements in program-
ming as well as modeling languages, and these are independent of what kind of
syntax is used.

In our opinion text or graphics are just a matter of syntax, i.e. both types of
language should/could have a textual as well as a graphical syntax. In addition,
we find it useful to be able to mix textual and graphical descriptions in the
same page/diagram/window. SDL [12] is an example of a language that has
both a textual and a graphical syntax. In addition, it is possible to mix text and
graphics in the same descriptions.

The original design of BETA was based on a textual notation, but later a
graphical notation was added. The Mjølner tool [22] provided an integrated text,
structure and graphical editor. The textual syntax and the graphical syntax were
just different presentations of the same underlying abstract syntax tree, and the
user could switch between these presentations. There was thus a one-to-one
correspondence between the textual and the graphical syntax. This was the case
for the abstraction mechanisms, but of course not for low-level control structures,
assignments and expressions. Later, the graphical notation was changed into
UML, the rationale being that this was a de facto standard graphical notation,
but this created impedance problems. For a unified language this should not be
an issue, and the one-to-one-correspondence principle is the only option.

As mentioned, SIMULA was designed as a modeling and a programing lan-
guage, but based on a textual syntax. One may wonder whether or not a graphi-
cal notation was an issue. Graphical illustrations have been in common use since
the early days of programming, for documenting programs. This was of course
also the case for SIMULA. Such illustrations were informal and the intention

6 Quote by Kristan Nygaard.



8 O.L. Madsen and B. Møller-Pedersen

was to give the reader an idea about the structure of a given program. Current
mainstream modeling languages have a formal graphical syntax and this is fun-
damentally different from using informal drawings for illustrating programs. We
realize that some form of standardization of diagrams is necessary, but insisting
on a formal graphical syntax for all usages of graphics may not be a good idea.

3.2 Constraints

Some of the elements of modeling languages impose constraints on the elements
of the model. Constraints have also been an issue for programming languages
for decades. At a general level, constraint languages impose structural relations
or state changes by means of equations and/or relations. A language like Prolog
may be seen as an example of a programming language based on equations.
For object-oriented programming the work of Alan Borning, Bjorn Freman [5]
and others are well-known examples of adding constraints to object-oriented
languages. One of the first attempts was to use equations for stating the relations
between graphical elements in a window. This is an example where equations
often are easier to understand than a set of imperative statements.

Constraints have not made it into mainstream programming languages. The
reason may be twofold: (1) it is in general not possible to solve arbitrary equa-
tions and/or relations – it is necessary to impose some kind of restrictions upon
the kind of equations/relations that can be used, (2) constraints are rarely prim-
itive language elements. They require a constraint solver that may be more or
less complex. And since there is a broad variety of the kind of restrictions that
can be imposed on the equations/relations, constraint mechanisms and their cor-
responding solver merely seems to belong to the library/framework level. The
difficult part is to identify which primitive language elements to add to a given
language in order to support constraints.

3.3 Domain Specific Languages

The notion of Domain Specific Language (DSL) is an issue often associated with
modeling languages and therefore with graphical syntax. However, the idea of do-
main specific languages is orthogonal to programming and modeling languages.
It has been an issue long before modeling languages were considered.

When SIMULA 67 was generalized (from the simulation language SIMULA
I) to become a general purpose programming language, the simulation capabil-
ities of SIMULA I were defined in a framework in terms of a predefined class
Simulation. Class Simulation was the first example of an application frame-
work and it is also considered an example of a DSL embedded within SIMULA.
SIMULA actually has a special syntax that only applies together with class
Simulation.

In general any application framework may be considered a DSL, and most
often a DSL comes along with a framework. We do, however, not advocate
defining a special syntax for each application framework. If several frameworks



A Unified Approach to Modeling and Programming 9

are used together, different syntaxes may be confusing. There are, however, cases
for DSLs in very specific application domains where special syntax is required.

While DSLs started in languages with textual syntax (embedded or stand-
alone languages), the syntax for DSLs within modeling is often graphical, the
reason being that special kinds of well-established notations have to be sup-
ported. Examples are DSLs for feature modeling, where feature diagrams have
to be supported, and TCL [24], a train control language, where the descriptions
have to have the forms of tracks, switches, lights, etc.

For standalone languages, it is straightforward to associate a graphical syntax
with the defining framework. For embedded DSLs we suggest that techniques
for embedding a graphical language into a host (graphical) language be devel-
oped. This may also be used with complex language elements like state machines
and associations which could then be defined as frameworks with an associated
embeddable graphical syntax. We return to this in Sect. 4.

3.4 Object Models and Scenario Descriptions

Interaction diagrams like communication- and sequence diagrams in UML are
useful for describing the essential scenarios of a given system. In a similar way,
object models (instance specifications) in UML (at level M1) are useful for de-
scribing snapshots.

As mentioned, we consider the execution (level M0 in UML) to be the model,
and therefore we think that language constructs for describing snapshots of the
execution including objects and their relationships are important. Few program-
ming languages include support for describing snapshots.

For the same reason it is a good idea to define a notation for describing
snapshots/scenarios that is consistent with the language independent of whether
it is a modeling or programming language or a combination. A tool may then
check the consistency between scenario descriptions and the program/model just
as the notation may be used in debuggers. Currently only modeling languages
like UML seem to have this – few if no programming languages have an associated
scenario notation. With the current use in UML, the language will have to have
the notion of composite structure in order to provide a context for e.g. sequence
diagrams with lifelines corresponding to the parts of such a composite structure.

3.5 Programming by Examples

When one or more scenarios have been made, one has to design a description
of a model that covers the scenarios in the sense that the scenarios correspond
to the model. In order to support this, it will of course be useful to be able to
construct the model description more or less automatically from the scenarios.
There are several authors that present techniques for deriving models from sce-
nario descriptions. This includes techniques to construct state machines from
sequence diagrams.

This is, however, not only an issue for modeling. It may be seen as analogous
to programming by examples. The literature contains many examples of papers



10 O.L. Madsen and B. Møller-Pedersen

that present techniques for deriving programs from examples. One example is
the paper by Henry Lieberman from 1982 [15].

3.6 Miscellaneous

UML has a number of mechanisms like Components and Deployment that we do
not consider in this paper. Most of these are just as relevant for programming
as for modeling. Components are just special objects (just like in UML), and
programs also have to be deployed.

Use Cases appear to be quite separate from the rest of UML and they might
just as well be used together with a programming language. There might, how-
ever, be a case for a tighter integration with sequence diagrams and thus with
the execution, but for some reason this was not done when a major revision of
UML (UML2) was made.

4 Language Concepts

4.1 State Machines

State machines are common for modeling, but have never become mainstream
in programming languages. A common approach is to use the design pattern
as described in [6]. In practice, however, it is necessary to be able to alternate
between modeling and programming. When using the state-pattern it may be
difficult to identify a given state machine in a program and good tools for code
generation and reverse engineering are therefore required.

Another common approach is to define a state machine abstraction in a class
library. This puts requirements on the programing language with regard to the
ability to define a suitable abstraction for state machines. In order to support
a graphical syntax for a state machine abstraction it is necessary to be able to
associate such a syntax with the abstraction/library. As mentioned in Sect. 3.1,
general support for embedding graphical syntax in a host language may be a
solution.

Direct support by means of language constructs is of course a possibility. In
[16] a mechanism for changing the virtual binding of a class is suggested as a
means for supporting state machines. With direct language support it is of course
straightforward to support a graphical syntax.

State machines are complex entities – this holds for simple state machines,
but even more when composite states are included. This may imply that direct
language support is not the the best solution – the language should be powerful
enough to define the appropriate abstraction(s).

4.2 Associations

Associations are perhaps the modeling mechanism that is most often mentioned
as lacking proper support in programming languages. In 1987 Rumbaugh [21]



A Unified Approach to Modeling and Programming 11

proposed programming language support for associations, and since then there
have been several alternative proposals.

The reason that no mainstream programming language has direct support
for associations may be due to the complexity of associations. Rumbaugh has
a figure that shows the location of associations in the hierarchy of containers.
This may be taken as an indication that associations should perhaps not be a
built-in mechanism. It is, however, difficult to identify one or more less primitive
mechanisms (besides references) that should be included instead. In addition
to suggestions for language support, there are many examples of proposals for
association libraries as in [26].

We are not aware of design patterns for supporting associations in general.
There are specific design patterns for e.g. composite as in [6]. This may be an
indication of the complexity of associations. There are in fact many ways to
define such abstractions, i.e lack of standardization. The latter is perhaps due
to the fact that UML is open for interpretation or perhaps that there is a need
for variation here.

As for state machines we think that the best approach is to define abstractions
(in class libraries) that support associations. This is not possible in most main-
stream languages, so it is a challenge for programming language design. With
respect to graphical syntax we again advocate to develop support for embedding
a graphical syntax into a host language.

4.3 Asynchronous Events

Messages in mainstream object-oriented languages are synchronous in the sense
that a method invocation blocks until the entire message has been executed and
a possible value has been returned.

UML state machines have events that are both reception of asynchronous sig-
nals and methods calls. Most users of state machines in UML are using them in
application domains where asynchronous signals are the means of communica-
tion, e.g. telecom or process control. fUML recognizes this by only supporting
signals as events, while method calls are executed independently of the state of
the object. This is in contrast to e.g. state patterns proposed for object-oriented
programming languages, where method calls are the events.

In a unified language there seems to be two options: (a) support both kinds
of events and make both of them controlled by states, (b) select one of them
and provide the other as a framework on top of the language (not all modeling
mechanisms have to be language mechanisms, in programming languages one
is used to make frameworks instead of new language constructs). Starting with
object-oriented programming (and not with executable UML), the most obvious
choice is perhaps to have method calls as events, while for a unified language
the choice may not be that obvious.

For many years the support for asynchronous method calls has been an is-
sue for object-oriented programming platforms as well. There are numerous pro-
gramming languages that support asynchronous method calls. Programming lan-
guages with asynchronous communication are often based on actors. Actors are



12 O.L. Madsen and B. Møller-Pedersen

objects with their own thread of control. They share no state with other actors;
they communicate exclusively via asynchronous message passing.

Mapping of external events into synchronous or asynchronous method calls
or more direct support in the language is also an independent issue.

4.4 Action Sequences

With respect to action sequences there is in general a major difference between
programming languages and modeling languages. Programming languages are
based on well established (sequential) statements such as assignments and control
structures. For concurrent programming there is much less consensus – in fact
concurrent object-oriented programming seems to be caught in a tar pit of low-
level technical details of how to avoid locking problems, memory problems, and
efficient use of thread-safe libraries. If one recalls the original goals of SIMULA as
a modeling language that was also able to describe concurrent processes from the
real-world, mainstream concurrent programming seems far away from supporting
modeling.7

For modeling languages the picture seems pretty blurred in the sense that
there are many suggestions for describing action sequences, including state ma-
chines, active objects, activity modeling, etc. Compared to programming lan-
guages, there is clearly an attempt to model action sequences at a higher level.
This also holds for concurrent processes. UML 2 activities are typically used for
business process modeling, for modeling the logic captured by a single use case
or usage scenario, or for modeling the detailed logic of a business rule.

We do not think that the various proposals for modeling (sequential and
concurrent) action sequences in say UML have matured to a point where they are
usable in practice and can replace traditional programming language statements.
We do, however, advocate that the same means for describing action sequences
should be used for programming as well as modeling. We especially advocate a
modeling approach to concurrency since we need more high-level concurrency
abstractions in order to deal with the future of multi-core processors.

4.5 Other Language Constructs

In UML an object can be a member of several classes, which is not possible in
mainstream programming languages. This is desirable for modeling as well as
programming. In Chapter 18 in [18] we discuss a number of means for classifi-
cation, including multiple classification and dynamic class membership.

We have mainly discussed language mechanisms that are often associated with
modeling and argued that they are just as relevant for programming. In a sim-
ilar way, there are a number of programming language mechanisms that have
not found their way into modeling languages. These include statics, metaclasses

7 We do not claim that SIMULA is the solution to concurrent programming – SIMULA
may be able to describe real world processes, but has no support for synchronization
of true parallel processes.



A Unified Approach to Modeling and Programming 13

(reflection), generics, traits, (higher order) functions, general block-structure (ar-
bitrary nesting of classes and methods), aspects, modules, and many more. If
such mechanisms are useful for programming they are probably also useful for
modeling. We do (of course) not argue that a unified language should contain
the union of all possible language constructs. The point is that if a construct has
proved useful for programming, it might as well be useful for modeling and vice
versa.

5 Conclusion

We have argued for a unified approach to modeling and programming based on
the fact that this was one of the strengths of object-orientation as provided by
SIMULA. We think that the benefits of a unified approach are fading away since
the design of programming languages and modeling languages seems to be more
or less separate activities in different communities. If programming and mod-
eling are separate activities, we will constantly be confronted with impedance
mismatch between different representations just as programmers may not be
concerned with modeling and vice versa. Eventually the code will win, either
due to lack of time in a given project and/or because the code is the real thing.

We have also argued that programming is a modeling activity even in techni-
cal domains that are not related to the so-called real world. In our opinion any
object-oriented program should reflect the concepts and phenomena in the given
domain and the basic core of object-orientation includes a conceptual frame-
work as well as a set of language constructs that facilitate modeling. We have
also argued that further development of the conceptual framework for object-
orientation is an important activity within modeling and programming.

The approach to modeling has implications for language design as well as
for the design of notations for illustrating scenarios and including the model
(program execution).

We have discussed a number of issues often associated with modeling and
argued that most of these issues are relevant for programming as well. The other
way around, most issues relevant for programming are also relevant for modeling.
One conclusion is that programming and modeling may benefit from a unified
approach.

For modeling there may be a need for concepts at a higher level than primi-
tives in programming languages. Examples are state machines and associations.
A programming language should support defining these concepts as abstractions
(class libraries). We acknowledge that current state-of-art of language abstrac-
tions may not be sufficient to define such abstractions. This calls for further
research in order to develop more powerful abstraction mechanisms.

We have argued that a textual or graphical syntax is relevant for modeling
and programming, and we have argued for techniques to support embedding
of graphical syntax within a host language. This is especially relevant to sup-
port graphical notations associated with abstractions for e.g. state machines and
associations.



14 O.L. Madsen and B. Møller-Pedersen

Modeling languages may contain non-executable parts that express constraints
on the elements of the description. With a unified approach there is of course still
a need for such non-executable elements, but these should be integrated with the
language. There are programming languages that have support for non-executable
elements like invariants, assertions, and pre- and postconditions just as there are
so-called constraint-based languages. There is thus good reason to integrate non-
executable parts into a unified modeling and programming language.

Finally, there are issues related to the model itself (where model is the program
execution). Modeling languages include elements for describing scenarios and
object models. Bearing in mind that the model is the program execution, it is
of course important that language elements for describing the model in terms of
scenarios and/or objects are treated as a first-class issue and not left to just be
the design of a debugger. We need means for presenting the model.

References

1. Cook, S.: Object Technology – A Grand Narrative?. In: Thomas, D. (ed.) ECOOP
2006. LNCS, vol. 4067, pp. 174–179. Springer, Heidelberg (2006)

2. Cook, W.: Peek Objects. In: Thomas, D. (ed.) ECOOP 2006. LNCS, vol. 4067, pp.
180–185. Springer, Heidelberg (2006)

3. Dahl, O.-J., Nygaard, K.: SIMULA—a Language for Programming and Description
of Discrete Event Systems. Technical report, Norwegian Computing Center (1965)

4. Dahl, O.-J., Nygaard, K.: SIMULA: an ALGOL-based Simulation Language. Com-
munications of the ACM 9(9), 671–678 (1966)

5. Freeman-Benson, B.N., Borning, A.: Integrating Constraints with an Object-
Oriented Language, June 29-July 3 (1992)

6. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley Professional Computing Se-
ries. Addison-Wesley, Reading (1995)

7. Gosling, J., Joy, B., Steele, G.: The Java (TM) Language Specification. Addison-
Wesley, Reading (1999)

8. Object Management Group: Semantics of a Foundational Subset for Executable
UML Models FTF Beta 2 (2009)

9. Object Management Group: OMG Unified Modeling Language (OMG UML), Su-
perstructure Version 2.3 (2010)

10. Hejlsberg, A., Wiltamuth, S., Golde, P.: The C# Programming Language. Addison-
Wesley, Reading (2003)

11. Holbæk-Hanssen, E., H̊andlykken, P., Nygaard, K.: System Description and the
DELTA Language. Technical Report Report No. 523, Norwegian Computing Cen-
ter (1973)

12. ITU: Specification and Description Language (SDL), Recommendation Z.100, ITU
T (1999)

13. Kristensen, B.B., Madsen, O.L., Møller-Pedersen, B., Nygaard, K.: Abstraction
Mechanisms in the BETA Programming Language. In: Tenth ACM Symposium on
Principles of Programming Languages, Austin, Texas (1983)

14. Kristensen, B.B., Madsen, O.L., Moller-Pedersen, B.: The When, Why and Why
not of the BETA Programming Language. In: Hailpern, B., Ryder, B.G. (eds.)
History of Progamming Languages III, San Diego, CA. SIGPLAN (2007)



A Unified Approach to Modeling and Programming 15

15. Lieberman, H.: Designing Interactive Systems From The User’s Viewpoint. In:
Degano, P., Sandewall, E. (eds.) Integrated Interactive Computing Systems, Stresa.
North-Holland, Amsterdam (1987)

16. Madsen, O.L.: Towards Integration of Object-Oriented Languages and State Ma-
chines. In: Technology of Object-Oriented Languages and Systems (TOOLS Europe
1999), Nancy (1999)

17. Lehrmann Madsen, O., Møller-Pedersen, B.: What object-oriented programming
may be - and what it does not have to be. In: Gjessing, S., Nygaard, K. (eds.)
ECOOP 1988. LNCS, vol. 322, pp. 1–20. Springer, Heidelberg (1988)

18. Madsen, O.L., Møller-Pedersen, B., Nygaard, K.: Object-Oriented Programming
in the BETA Programming Language. Addison Wesley, Reading (1993)

19. Madsen, O.L.: ECOOP 1987 to ECOOP 2006 and Beyond. In: Thomas, D. (ed.)
ECOOP 2006. LNCS, vol. 4067, pp. 186–191. Springer, Heidelberg (2006)

20. Nygaard, K.: Ole-Johan Dahl. Journal of Object Technology 1(4) (2002)
21. Rumbaugh, J.: Relations as Semantic Constructs in an Object-Oriented Language.

In: Meyrowitz, N. (ed.) OOPSLA 1987 – Object-Oriented Programming, Systems
Languages and Applications, Orlando, Florida, USA. Sigplan Notices, vol. 22. ACM
Press, New York (1987)

22. Sandvad, E.: An Object-Oriented CASE Tool. In: Knudsen, J.L., Löfgren, M.,
Madsen, O.L., Magnusson, B. (eds.) Object-Oriented Environments—The Mjølner
Approach, Prentice Hall, Englewood Cliffs (1994)

23. Stroustrup, B.: The C++ Programming Language. Addison-Wesley, Reading
(1986)

24. Svendsen, A., Olsen, G.K., Endresen, J., Moen, T., Carlson, E., Alme, K.-J., Hau-
gen, O.: The Future of Train Signaling. In: Czarnecki, K., Ober, I., Bruel, J.-M.,
Uhl, A., Völter, M. (eds.) MODELS 2008. LNCS, vol. 5301, pp. 128–142. Springer,
Heidelberg (2008)

25. Yourdon, E., Constantine, L.L.: Structured Design: Fundamentals of a Discipline of
Computer Program and Systems Design. Yourdon Press Computing Series (1979)

26. Østerbye, K.: Design of a Class Library for Association Relationships. In: LCSD
2007, Montréal, Canada (2007)



Generic Meta-modelling with Concepts,
Templates and Mixin Layers

Juan de Lara1 and Esther Guerra2

1 Universidad Autónoma de Madrid, Spain
Juan.deLara@uam.es

2 Universidad Carlos III de Madrid, Spain
eguerra@inf.uc3m.es

Abstract. Meta-modelling is a key technique in Model Driven Engi-
neering, where it is used for language engineering and domain modelling.
However, mainstream approaches like the OMG’s Meta-Object Facility
provide little support for abstraction, modularity, reusability and ex-
tendibility of (meta-)models, behaviours and transformations.

In order to alleviate this weakness, we bring three elements of generic
programming into meta-modelling: concepts, templates and mixin layers.
Concepts permit an additional typing for models, enabling the defini-
tion of behaviours and transformations independently of meta-models,
making specifications reusable. Templates use concepts to express re-
quirements on their generic parameters, and are applicable to models
and meta-models. Finally, we define functional layers by means of meta-
model mixins which can extend other meta-models.

As a proof of concept we also report on MetaDepth, a multi-level
meta-modelling framework that implements these ideas.

1 Introduction

Meta-modelling is a core technique in Model Driven Engineering (MDE), where
it is used for language engineering and domain modelling. The main approach
to meta-modelling is the OMG’s Meta-Object Facility (MOF) [11], which pro-
poses a linear, strict meta-modelling architecture enabling the definition and
instantiation of meta-models. MOF has a widespread use, and has been par-
tially implemented in the Eclipse Modeling Framework (EMF) [13]. However,
even though meta-modelling is becoming increasingly used on an industrial scale,
current approaches and tools are scarcely ever concerned with scalability issues
like reusability, abstraction, extendibility, modularity and compatibility (i.e. ease
of composition) of models, meta-models and transformations.

Generic programming [5,14] is a style of programming in which types (typ-
ically classes) and functions are written in terms of parametric types that can
be instantiated for specific types provided as parameters. This promotes the ab-
straction of algorithms and types by lifting their details from concrete examples
to their most abstract form [14]. The advantage is that any type that fulfils
the algorithm’s requirements can reuse such a generic algorithm. Hence, generic

D.C. Petriu, N. Rouquette, Ø. Haugen (Eds.): MODELS 2010, Part I, LNCS 6394, pp. 16–30, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



Generic Meta-modelling with Concepts, Templates and Mixin Layers 17

programming shifts the emphasis from type-centric to requirements-centric pro-
gramming [9], enhancing generality and reusability.

In this paper we bring into meta-modelling and language engineering some
of the successful, proven principles of generic programming. The goal is to solve
some of the weaknesses of current approaches to meta-modelling, transformation
and behaviour specification concerning reusability, modularity, genericity and ex-
tendibility. For example, current approaches to behaviour specification tend to
define behaviour using types of one particular meta-model. However, as generic
programming often does, one should be able to define generic behaviours appli-
cable to several meta-models sharing some characteristics and without resorting
to intrusive mechanisms. In this respect, we show that the use of generic con-
cepts specifying requirements from parametric types permits defining behaviours
in an abstract, non-intrusive way, being applicable to families of meta-models.

Furthermore, models often suffer from an early concretization of details which
hinders their reusability. The use of model templates allows delaying some details
on the model structure by defining model parameters. In this way, a model tem-
plate could be instantiated with different parameters, allowing its reusability in
different situations, and enhancing its compatibility and modularity. Model tem-
plates are also a mechanism to implement patterns for domain-specific languages
and model component libraries.

Finally, mixin layers [12] allow defining meta-models with generic functional
capabilities to be plugged into different meta-models. We found especially use-
ful the definition of semantic mixin layers containing the necessary run-time
infrastructure for the definition of semantics of meta-model families.

As a proof of concept, we have implemented these elements in a multi-level
meta-modelling framework called MetaDepth [3]. However, our aim is not to
describe an extension of MetaDepth’s capabilities. We believe that genericity
has a wide potential in meta-modelling, and hence what we describe here has
immediate applicability to other frameworks, like the MOF. A prototype of the
tool can be downloaded from http://astreo.ii.uam.es/∼jlara/metaDepth/.

The paper is organized as follows. Section 2 reviews generic programming. Sec-
tion 3 introduces MetaDepth so that its syntax is used in the rest of the paper.
Section 4 presents generic concepts for meta-modelling, Section 5 presents model
templates and Section 6 introduces semantic mixin layers. Section 7 discusses
related research and Section 8 concludes.

2 Generic Programming

Genericity [5] is a programming paradigm found in many languages like C++,
Haskell, Eiffel or Java. Its goal is to express algorithms and data structures in
a broadly adaptable, interoperable form that allows their direct use in software
construction. It involves expressing algorithms with minimal assumptions about
data abstractions, as well as generalizing concrete algorithms without losing ef-
ficiency [5]. It promotes a paradigm shift from types to algorithms’ requirements,



18 J. de Lara and E. Guerra

so that even unrelated types may fulfil those requirements, hence making algo-
rithms more general and reusable.

In its basic form, generic programming involves passing type parameters to
functions or data types which are then called templates. In this way, template
functions or classes require the parameter types to fulfil a number of requirements
for a correct instantiation of the template. This set of requirements is usually
expressed using a concept [9]. Typical requirements include, e.g., a type which
must define a “<” binary relation, or a list of data objects with a first element,
an iterator and a test to identify the end. Rudimentary concepts exist e.g. in
Java, limited to express the requirements of a single type by demanding it to
inherit from a specified class or to implement a set of interfaces.

As an example, Listing 1 shows a C++ template function min that returns
the minimum of two elements of a parametric type T . The requirement for the
type T is to define the “<” operator, specified by concept LessThanComp1.

1 template <typename T> requires LessThanComp<T>

2 T min(T x, T y) { return y < x ? y : x; }
3 concept LessThanComp <typename T> { bool operator<(T, T); }

Listing 1. A template and a concept example in C++.

Mixins are classes designed to provide functionality to other classes, typically
through parameterized inheritance, promoting code reuse and modularity. Mixin
layers [12] extend mixins by encapsulating fragments of multiple classes to define
a layer of functionality, which can be added to other sets of classes. They were
proposed as a technique for implementing collaboration-based designs, where
objects play different roles in different collaborations. In this context, mixin
layers provide the needed functionality for each collaboration, so that the final
system is obtained by composing layers.

3 ���������

MetaDepth [3] is a new multi-level meta-modelling framework with support
for multiple meta-levels at the same time using potency [1]. This approach is
very useful to describe what we call deep languages, which are languages that
involve two or more meta-levels at the user level. An example of a deep language
is the combination of UML class and object diagrams, if one thinks of object
diagrams as instances of class diagrams [3]. The framework uses a textual syntax
and is integrated with the Epsilon family of languages2, so that EOL [7] can be
used to express constraints and behaviours. EOL extends OCL with imperative
constructs to manipulate models.

1 Concepts have been post-poned from C++0x, the last revision of C++.
2 http://www.eclipse.org/gmt/epsilon/



Generic Meta-modelling with Concepts, Templates and Mixin Layers 19

1 Model PetriNet {
2 abstract Node NamedElement {
3 name : String {id};
4 }
5 Node Place : NamedElement {
6 outTr : Transition[*] {ordered,unique};
7 inTr : Transition[*] {ordered,unique};
8 tokens: Token[*] {unique};
9 }

10 Node Token {}
11 Node Transition : NamedElement {
12 inPl : Place[*] {ordered,unique};
13 outPl: Place[*] {ordered,unique};
14 }
15 Edge ArcPT(Place.outTr,Transition.inPl) {}
16 Edge ArcTP(Transition.outPl,Place.inTr) {}
17 minPlaces : $Place.allInstances()->size()>0$
18 }

NamedElement

name: String {id}

Place Transition

Token
* tokens

1

ArcPT

ArcTP

outTr

inTr*
***

inPl

outPl

Listing 2. Meta-model for Petri nets, in metaDepth’s syntax and UML.

Listing 2 shows a meta-model for Petri nets using MetaDepth’s syntax to the
left and a UML representation to the right. Petri nets are a kind of automaton
with two kinds of vertices: Places and Transitions. Places contain tokens, and
can be connected with transitions through arcs (and the other way round).

The listing declares an abstract node NamedElement owning a field name. The
field’s id modifier states that no two instances of NamedElement can have the
same value for the field. Both Place and Transition inherit from NamedElement.
The former declares three association ends (outTr, inTr and tokens) with
cardinality 0..*. The modifier ordered keeps the collection elements in the
order of assignment, while unique forbids duplicated elements. The opposite
ends of outTr and inTr are declared by the edges ArcPT and ArcTP. Thus, in
MetaDepth’s syntax, Model is similar to a meta-model, Node to a meta-class,
and Edge to a meta-association (in fact to an associative class).

MetaDepth supports the definition of constraints and derived attributes ei-
ther in Java or in EOL. Constraints can be declared in the context of Models, Nodes
or Edges. Line 17 in the listing declares an EOL constraint named minPlaces,
which demands PetriNet models to have at least one Place. As MetaDepth
allows specifying multiplicities in the definition of Nodes, the same effect can be
obtained by replacing line 5 by “Node Place[1..*] : NamedElement {”.

The defined meta-model can be instantiated as Listing 3 shows. This Petri net
model represents a system with two processes (producer and consumer) com-
municating through a buffer of infinite capacity. The right of Listing 3 shows
the system using the usual Petri nets visual notation, with places represented



20 J. de Lara and E. Guerra

1 PetriNet ProducerConsumer {
2 Place WP { name="waitProduce"; }
3 Place RP { name="ReadyProduce"; }
5 Transition ReadyP { name="readyP"; }
4 Transition Produce { name="in"; }
6 ArcPT (RP, Produce);

7 ...

8 Place Buffer { name="Buffer"; }
9 ...

10 Place C { name="Consume"; }
11 Place WC { name="waitConsume"; }
12 Transition Consume { name="out"; }
13 Transition ReadyC { name="waitC"; }
14 ...

15 }

ReadyProduce

waitProduce

readyP

Consume

waitConsume

waitC

Bufferin out

Listing 3. A Petri net with the Producer-Consumer example.

as circles, transitions as black rectangles, and tokens as black dots inside places.
The dotted rectangles delimit the different conceptual components of the system.

Listing 3 makes use of the normal instantiation capabilities found in most
meta-modelling frameworks (like EMF [13]). However, one soon notices that the
definition of our model could be improved concerning abstraction, modularity
and reusability. First, the user could have been offered higher-level modelling
elements than places and transitions, like Buffers and Processes. Moreover, in-
specting the model, one realizes that the two processes have exactly the same
structure (two places connected by transitions). Therefore, it would have been
useful to have a meta-modelling facility to define model components – similar to
modelling patterns – that the user can instantiate and interconnect. Section 5
will demonstrate how the use of templates allows performing this at the model
level, without any need to modify the meta-model.

Finally, MetaDepth allows defining behaviour for models using either Java
or EOL. EOL is however very well suited for this purpose, as it permits defining
methods on the meta-classes of the meta-models. Listing 4 shows an example
simulator written in EOL to execute Petri net models. The entry point for its ex-
ecution is the operation main, which is annotated with the required meta-models
(PetriNet in our case). The listing declares the auxiliary operations enabled
and fire on the context of the Transition meta-class. These are invoked in the
loop of the main() operation, firing the enabled transitions.

This simulator works well for instances of the Petri net meta-model. However,
there are many languages whose behaviour can be defined in terms of Petri nets.
Therefore, couldn’t we abstract the essential elements of Petri net-like languages
and define such behaviour in a generic way? Next section will show that concepts
are a solution to this issue.



Generic Meta-modelling with Concepts, Templates and Mixin Layers 21

1 @metamodel(name=PetriNet,file=PetriNet.mdepth)

2 operation main() {
3 while (Transition.allInstances()->exists(t | t.enabled() and
3 t.fire())) {}
4 }
5 operation Transition enabled() : Boolean {
6 return self.inPl->forAll(p | p.tokens.size()>0);

7 }
8 operation Transition fire() : Boolean {
9 for (p in self.outPl)

10 p.tokens.add(new Token);

11 for (p in self.inPl) {
12 var t : Token := p.tokens.random();

13 p.tokens.remove(t); delete t;

14 }
15 return true;
16 }

Listing 4. A simulator for Petri nets.

4 Concepts for Language Engineering

Now we are in the position to discuss how to bring elements of generic program-
ming into meta-modelling. This section shows how to define concepts, and how
to use them to define generic behaviours applicable to language families. The
following two sections will discuss model and meta-model templates.

A concept in meta-modelling is a pattern specification that expresses require-
ments on models or meta-models. Concepts provide a dual typing in the context
where they are used, which we use to define behaviour independently of specific
meta-models. This is useful for reusability and composition of behaviours.

Let’s start discussing an illustrative scenario. Assume one needs to describe
the behaviour of two languages, one in the domain of Production Systems (where
pieces are produced and consumed by machines) and the other for Communica-
tion Networks (where packets are produced and consumed by computers). Thus,
one would define one program to simulate the first kind of models, and another
different one to simulate the second kind of models. This situation is illustrated
to the left of Fig. 1. In the figure we assume that behaviours are realized using
EOL programs, but our approach is applicable to other means of specification
of in-place model transformations, like e.g. graph transformation.

Analysing the semantics of these two languages reveals similarities between
the two programs implementing them. Actually, this is due to the fact that both
behaviours can be mapped into the standard semantics of Petri nets. Hence,
instead of defining such similar behaviours twice, we can transform the models
into a common language and define the behaviour for the common language
only once. This situation is depicted to the right of Fig. 1, where Model 1 is
transformed into Model 1’ and Model 2 is transformed into Model 2’, being



22 J. de Lara and E. Guerra

Meta-Model
1

Meta-Model
2

Model 1 Model 2

«instance of» «instance of»

Behaviour 1
(EOL)

«r
eq

ui
re

s»

executes on executes on

Behaviour 2
(EOL)

«r
eq

ui
re

s»

Meta-Model
1

Meta-Model
2

Model 1 Model 2

«instance of» «instance of»

Behaviour 1
(EOL)

«requires»executes on

Meta-Model
3

Model 1’ Model 2’

M2M trafo.
1to3

M2M trafo.
2to3

«requires» «requires»
«requires»

«requires»

executes on

«instance of» «instance of»src

tgt

src

tgt

Fig. 1. Direct implementation of behaviours (left). Transformational approach (right).

both transformed models conformant to the same meta-model for which the
behaviour is specified. However, this situation is not ideal either, as one has to
define specific model-to-model transformations between each language and the
common language. Moreover, after modifying the transformed model according
to the behaviour, this has to be translated back to the original language.

An improvement that avoids transforming models is to use extension or in-
heritance mechanisms for meta-models (see the left of Fig. 2). In this case, the
meta-models 1 and 2 extend a third meta-model for which the behaviour is de-
fined. In particular, their classes extend (or subclass) the classes that participate
in the defined behaviour for meta-model 3, so that this behaviour also applies
to the classes in 1 and 2. However, this solution is intrusive as it requires that
all defined meta-models for which we want to define the semantics to inherit
or extend the same meta-model. This may become unfeasible if more than one
semantics (e.g. timed and untimed) is to be defined for the same language.

Meta-Model
1

Meta-Model
2

Model 1 Model 2

«instance of» «instance of»

Behaviour
(EOL)

executes on executes on

Meta-Model
3

«extends» «extends»
«requires»

Meta-Model
1

Meta-Model
2

Model 1 Model 2

«instance of» «instance of»

Concept
A«binds» «binds»

Behaviour
(EOL)

«requires»

executes on executes on

Fig. 2. Inheritance of behaviour (left). Approach based on concepts (right).

In this scenario, concepts can simplify the situation as they can express re-
quirements on meta-models or models that some other elements (in this case
the behaviour) needs. In our example, we can define a concept expressing the
requirements that a simulator for Petri net-like languages needs. Such simulator
abstracts from the specific details of the languages, and uses only the elements
defined in the concept, hence being independent of any meta-model and there-
fore non-intrusive. Thus, if our two original languages satisfy the requirements



Generic Meta-modelling with Concepts, Templates and Mixin Layers 23

of the concept, then the behaviour can be applied to their instances as shown to
the right of Fig. 2. This scheme is the simplest and cleanest of the four, and its
benefits increase as we find new meta-models in which the concept is applicable
as we can reuse the defined behaviour for them. Moreover, the mechanism is
non-intrusive: the meta-models for which we are defining the behaviour are not
modified and are oblivious of the concepts.

In our approach a concept has a name and a number of parameters that rep-
resent generic types of models, nodes, edges or fields. Concepts can be bound
against models and meta-models by a pattern-matching mechanism. In this way,
a concept C defines a language L(C) of all (meta-)models that satisfy the re-
quirements imposed by the concept C. If C is defined at the meta-model level,
L(C) contains a family of meta-models sharing similar characteristics. We use
concepts to define generic behaviours using their parameters as generic types, as
well as to describe conditions to be fulfilled by template parameters. In contrast
to generic programming, where concepts are used to restrict the allowed types
to only those defining a certain set of operations, concepts in meta-modelling
refer to structural features of (meta-)models, and thus they can impose a certain
structure for their nodes, edges and fields, as well as define arbitrary constraints
to restrict their applicability.

Listing 5 shows a concept, using MetaDepth’s syntax. The concept charac-
terises languages with similar structural features, enabling their simulation using
the same semantics, which we call Token-Holder. The concept declares seven
parameters, which are treated as variables and start by “&”. The body of the
concept requires &M to be a model with three nodes. Node &T plays the role of
token. Node &H plays the role of a holder of tokens, as it is demanded to define
an attribute of type &T. Node &P plays the role of a process or transition, and
it must define two fields modelling the connection to input and output holders.
The body of a concept may include extra conditions expressed in EOL, as well
as constant elements as opposed to variables. For example, we could demand
node &H to have an attribute name:String.

1 concept TokenHolder(&M, &H, &P,

1 &T, &tokens, &inHolders,

1 &outHolders) {
2 Model &M {
3 Node &H {
4 &tokens : &T[*];

5 }

6 Node &P {
7 &inHolders : &H[*];

8 &outHolders: &H[*];

9 }
10 Node &T {}
11 }
12 }

Listing 5. A concept expressing the requirements for Token-Holder semantics.

We use this concept to characterize the family of meta-models sharing the
Token-Holder semantics. For example, it can be bound to the PetriNet meta-
model of Listing 2, where &H is bound to Place, &P to Transition, and so on.



24 J. de Lara and E. Guerra

Nonetheless, the concept can be bound to other meta-models as well. For in-
stance, Listing 6 defines a meta-model for Production Systems and its binding
over the TokenHolder concept. The meta-model declares machines and convey-
ors, which can be connected to each other. Conveyors hold parts, which are fed
into machines. Machines process parts, which are produced into conveyors. In
this way, this working scheme is adequate for its simulation using Token-Holder
semantics. Hence, we use the TokenHolder concept and bind it to the meta-
model in line 21: conveyors act like places, machines as transitions, and parts as
tokens. We explicitly pass concrete meta-model elements to the pattern matcher
in the bind command. The binding process matches association ends with a
more general cardinality (e.g. inHolders with cardinality “*”) to association
ends with more restricted cardinality (e.g. inC with cardinality “1..*”). This is
so as all instances of the meta-model fulfil the cardinalities of the concept. The
contrary is not allowed, as in that case some instances of the meta-model would
not fulfil the cardinalities of the concept.

1 Model ProdSys {
2 Node Machine {
3 ref : String;

4 type: String;

5 inC : Conveyor[1..*];

6 outC: Conveyor[1..*];

7 }
8 Node Conveyor {
9 outM : Machine[*];

10 inM : Machine[*];

11 parts: Part[*];

12 }
13 Node Part {
14 creationTime: int;

15 owner : Conveyor[0..1];

16 }
17 Edge PH(Machine.outC,Conveyor.inM);

18 Edge HP(Conveyor.outM,Machine.inC);

19 Edge iP(Part.owner,Conveyor.parts);

20 }
21 bind TokenHolder(ProdSys

21 ,ProdSys::Conveyor

21 ,ProdSys::Machine

21 ,ProdSys::Part

21 ,ProdSys::Conveyor::parts

21 ,ProdSys::Machine::inC

21 ,ProdSys::Machine::outC)

Listing 6. Binding the Token-Holder concept.

We can define generic behavioural specifications for the concepts, applicable to
instances of any meta-model that satisfies the concept’s requirements. Listing 7
shows an excerpt of the EOL simulator for the Token-Holder concept. The
program first states that it needs concept TokenHolder (line 1), and that it
will be executed on instances of meta-models satisfying the concept. Then, the
program uses the generic types and features defined by the concept, but nothing
else. This program is actually an abstraction of that of Listing 4, because this
one does not require concrete types. The working scheme is the same, but the
operations enabled and fire are added to the class &P gets bound to. The simulator
can be used to execute any instance of the ProdSys and PetriNet meta-models,
hence being more reusable than the one in Listing 4.



Generic Meta-modelling with Concepts, Templates and Mixin Layers 25

1 @concept(name=TokenHolder,file=TokenHolder.mdepth)

2 operation main() {
3 while (&P.allInstances()->exists(t | t.enabled() and t.fire())) {}
4 }
5 operation &P enabled() : Boolean {
6 return self.&inHolders->forAll(h | h.&tokens.size()>0);

7 }
8 operation &P fire() : Boolean {...}

Listing 7. Token-Holder behaviour expressed over concept TokenHolder.

5 Model Templates

Concepts express requirements of models and meta-models. By using such ab-
straction mechanism, behaviours and transformations can be expressed in a type
independent way, becoming more reusable. In this section we show how model
templates can be used to define models in a generic way.

Templates use concepts to express requirements on the type parameters they
receive. They declare a number of variables which can be checked against con-
cepts. In this way, when the templates are instantiated, an implicit binding
process checks whether the actual parameters satisfy the concepts. A template
T requiring concept C defines a language L(T ) of all its possible instantiations
using as parameters any element of L(C), the language defined by the concept.
In this way, a template can actually be seen as a function L(C) T→ L(T ).

The possibility of instantiating templates is very interesting for modelling,
because we can express patterns and generic model components using tem-
plates, which we can later instantiate and combine. Consider again the Producer-
Consumer Petri net model presented in Section 3. The model would benefit from
a higher-level representation enabling the definition of processes (for the pro-
ducer and the consumer) as well as of buffers. For this purpose we can define
two model templates, acting like model components or modelling patterns that
the modellers can use to construct their models.

Listing 8 shows how to specify the templates with MetaDepth. The first
template Buff2 (lines 7-13) defines a generic buffer with one input and one out-
put transitions. These two transitions (&Tri, &Tro), together with their owning
models (&PNi, &PNo), are passed as parameters to the template. Then, the tem-
plate simply imports both received models (line 9), declares one place (line 10)
and connect it to the received transitions (lines 11-12). In addition, the template
requires in line 8 that the input parameters satisfy the concept SimpleTrans.
The concept, defined in lines 1-5, requires the transition to have one input and
one output place, checked by the EOL constraint in line 5.

The second template, TwoStateProc (lines 15-22), defines a two-state process.
In this case, the template has no parameters and acts like a pattern which can
be instantiated by the modeller. In a realistic scenario, we may like to pass as
parameters the names of the places, but currently MetaDepth does not support
template parameters of basic data types, which is left for future work.



26 J. de Lara and E. Guerra

1 concept SimpleTrans(&M, &T) {
2 PetriNet &M {
3 Transition &T {}
4 }
5 } where $&T.inPl.size()=1 and
5 &T.outPl.size()=1$

6 // ---------------------------

7 template<&PNi,&Tri,&PNo,&Tro>
8 requires SimpleTrans(&PNi,&Tri),

8 SimpleTrans(&PNo,&Tro)

9 PetriNet Buff2 imports &PNi,&PNo{
10 Place Buffer {}
11 ArcPT (Buffer, &Tro);

12 ArcTP (&Tri, Buffer);

13 }

14 // ---------------------------

15 template<>
16 PetriNet TwoStateProc {
17 Place p1 {}
18 Place p2 {}
19 Transition t12 {}
20 Transition t21 {}
21 ...

22 }
23 // ---------------------------

24 TwoStateProc<> Producer;

25 TwoStateProc<> Consumer;

26 Buff2<Producer,Producer::t12,

26 Consumer,Consumer::t12>

26 ProducerConsumer;

Listing 8. Defining and using model templates.

Lines 24-26 instantiate the templates. The resulting model ProducerConsumer
is equivalent to the one in Listing 3. However, the use of templates has risen the
abstraction level of the model, which is now more concise, and we have reused
the definition of the template TwoStateProc. Altogether, model templates help
in defining component and pattern libraries for domain specific languages.

6 Meta-model Templates and Semantic Mixin Layers

Templates are not only useful to define generic models, but can be applied to
meta-models to provide an extensible way of defining languages, similar to mixin
layers [12]. In our context, a mixin layer is a set of functionalities added to a
meta-model by extending the elements passed as parameters in the template
that implements the functionalities. Here we explore semantic mixin layers,
which are meta-model templates declaring functionality needed to express the
behaviour of meta-models. These templates are complemented with behavioural
specifications, defined over the generic types of the mixin.

In order to define the semantics of a language, it is often the case that its
meta-model has to be extended with auxiliary classes and elements needed for
the simulation. For example, when simulating an automaton, we need a pointer to
the current state and the sequence of symbols to be parsed. When simulating an
event system, we need a list of the scheduled events ordered by their simulation
time. These extra elements are not part of the language, but of the simulation
infrastructure. If the language for specifying the semantics is powerful enough,
we can use it to create the required simulation infrastructure. For instance,
EOL provides data structures like Collections or Maps that can be used for
that purpose. However, some specification languages lack this expressivity (e.g.
graph transformation), so that in general, a simulation infrastructure needs to
be modelled and rendered.



Generic Meta-modelling with Concepts, Templates and Mixin Layers 27

The working scheme of semantic mixins is shown to the right of Fig. 3. It
shows a mixin layer template T that is used to extend the meta-model members
of a semantic family, characterized by concept C. L(T) contains the meta-models
in L(C) once they have been extended with the execution infrastructure. In this
way, T can be seen as a function with domain L(C) which adds such infras-
tructure. Then, we can define a simulator for the mixin layer T, which will be
applicable to instances of any meta-model in L(T).

Assume we want to define a simulator for timed token-holder languages. These
languages follow a token-holder semantics, but transitions fire after a given delay.
The simulator would necessitate storing a list of the firings that are currently
scheduled, together with the transition and tokens involved in each firing. These
extra elements are not part of the timed token-holder language, but devices
needed only for simulation. Hence, a separate mixin layer incorporates these
elements into the language definition in a non-intrusive way.

Fig. 3 shows to the left the template implementing the mixin layer. It declares
the necessary infrastructure to simulate instances of meta-models that satisfy
the concept TTokHold, so that the template definition requires such a concept.
This concept is similar to the concept TokenHolder in Listing 5, but in addition
transitions (variable &P) are required to define a distinguished time field storing
the firing delay. The template defines a family of meta-models which extend any
meta-model &M satisfying concept TTokHold with the machinery needed for their
simulation. For instance, assume we add an attribute delay to the Machine class
in Listing 6. Then, the meta-model ProdSys is a valid binding for the concept
TTokHold, and hence we can instantiate the mixin layer for the meta-model in
order to incorporate it the simulation infrastructure. This is done by declaring
TimedSched<ProdSys, ProdSys::Conveyor, ...> SimProdSys.

In particular, the template in Fig. 3 extends the received meta-model &M with
a class Event to store the events, and a singleton class FEvtList to handle the
event list. Moreover, the class with role &P (transition) is added a collection evts
storing the scheduled events associated to the transition, and the class with role
&T (token) is extended with the event in which the token is engaged, if any.

Behaviours associated to semantic mixin layers use the generic types of
the template. Listing 9 shows an excerpt of the simulator associated to the
TimedSched mixin layer. The simulator uses a FEvtList object (line 3) to keep
the current simulation time and the list of scheduled events. The list of events
is initialized with the set of active transitions (lines 5-6). The main simulation
loop (lines 8-13) advances the simulation time to the time of the first event in
the list, fires the transition associated to the event, and schedules new events
(this latter is not shown in the listing).

Associating the simulator to the mixin layer has the advantage that the sim-
ulator can be reused with any meta-model to which this mixin layer has been
applied (i.e. any meta-model fulfilling the TTokHold concept), like SimProdSys,
hence obtaining highly reusable specifications.



28 J. de Lara and E. Guerra

1 template <&M,&H,&P,&T,&tok,&inH,&outH,&time>

2 requires TTokHold(&M,&H,&P,&T,&tok,&inH,&outH,&time)

3 Model TimedSched extends &M {
4 Node &P { evts: Event[*]; }
5 Node &T { evts: Event[0..1]; }
6 Node FEvtList[1] {
7 first: Event[0..1];

8 time : double;
9 }

10 Node Event {
11 time: double;
12 next: Event[0..1];

13 proc: &P;

14 toks: &T[*];

15 }
16 Edge ProcTm(&P.evts, Event.proc)

17 { t:double; }
18 Edge TokTm(&T.evts, Event.toks)

19 { t:double; }
20 }

Meta-Model
&M

Meta-Model
TimeSched

Template T
Semantic

Mixin layer

Concept C
semantic

family

«defines» «defines»

Meta-Model Meta-Model

«requires»

«extends»

A
Meta-Model

«belongs to»

Simulator
for T

«requires»

«executes on»

Model

«instance of»

L(C)L(T)

MetaModel family
sharing semantics

MetaModel family
extended with execution 
infrastructure

Fig. 3. Semantic mixin layer adding infrastructure to simulate TTokHold concepts
(left). Working scheme of semantic mixin layers (right).

1 @template(name=TimedSched)

2 operation main() {
3 var FEL := new FEvtList;

4 FEL.time := 0;

5 var enab: Set(&P):= getEnabled();

6 FEL.schedule(enab);

7 var finish: Boolean := false;

8 while (not finish) {
9 FEL.time:= FEL.first.time;

10 var t: &P := FEL.first.proc;

11 t.fire();

12 ...

13 }
14 }

Listing 9. Excerpt of the simulator for the TimedSched mixin layer.

7 Related Work

The use of templates in modelling is not new, as they are already present in
the UML 2.0 specification [10], as well as in previous approaches like Catalysis’
model frameworks [4] and package templates, and the aspect-oriented meta-
modelling approach of [2]. Interestingly, while all of them consider templates for
meta-models (or class diagrams), none consider concepts or model templates.

Catalysis’ model frameworks [4] are parameterized packages that can be in-
stantiated by name substitution. Hence, they are similar to our meta-model
templates. The package templates of [2] are based on those of Catalysis, and are
used to define languages in a modular way. They are based on string substitu-
tion, as the parameters of the templates are strings that are substituted in the
template definition. This approach is realized in the XMF tool [15]. Although



Generic Meta-modelling with Concepts, Templates and Mixin Layers 29

package templates were incorporated into the UML 2.0 specification, the MOF
does not consider genericity at the meta-model or model level.

Kermeta (kermeta.org) includes facilities for model typing [8], allowing estab-
lishing a subtyping relationship between meta-models. Hence, generic behaviours
can be defined in a generic meta-model and applied to any subtype meta-model.
This approach has been applied to generic refactorings [8].

Our work extends the mentioned approaches in several ways. First, we can
apply templates not only to meta-models, but also to models, as seen in Sec-
tion 5 (cf. Listing 8). Moreover, as our framework supports an arbitrary number
of meta-models through potency [3], we can apply templates at any meta-level.
Second, our approach is based on concepts, which helps in expressing require-
ments on template parameters. In addition, we can define behaviour for concepts
and templates (in particular with semantic mixin layers), independently of meta-
models. Third, our approach provides a stronger support for templates, as our
template parameters are model elements whose requirements can be expressed
by concepts. This permits type checking at the template level. Finally, whereas
we consider the definition of behaviours, this is missing in other works [2,4,10].

Generic (meta-)modelling has fundamental differences with generic program-
ming. The first refers to the level of granularity, as generic programming deals
with generic classes or functions, whereas we consider generic (meta-)models
which include several modelling elements, more similar to mixin layers. Second,
while the purpose of programming concepts is to identify whether a class defines
certain operations, modelling concepts check structural properties of models.

Another set of related research are the (meta-)model modularization ap-
proaches, like Reuseware [6]. In that approach, the authors develop a language-
independent composition language, which can be used to define composition
interfaces for models, in an intrusive way. While Reuseware solves the modular-
ization of models, our templates provide in addition an instantiation mechanism,
suitable to construct patterns and component libraries. Moreover, [6] does not
consider behaviours and lacks abstraction mechanisms like concepts.

8 Conclusions and Future Work

In this paper we have shown the benefits of bringing concepts, templates and
mixin layers into language engineering. Concepts allow expressing requirements
of template parameters, and by themselves permit defining behaviours indepen-
dently of meta-models, hence becoming more reusable. Templates can be applied
to models or meta-models and promote extendibility, modularity and reusabil-
ity. At the model level, they are useful to define patterns and model component
libraries. We have seen that mixin layers, a kind of template meta-models, are
especially useful to provide the necessary infrastructure to execute models. These
elements have been realized in the metaDepth tool (the examples and the tool
are at http://astreo.ii.uam.es/∼jlara/metaDepth/Genericity.html). However,
the discussions are general and applicable to other contexts as well.

We are currently exploring the potential opened by genericity. We believe
the semantics of modelling languages can be classified using concepts. Hence,



30 J. de Lara and E. Guerra

we will define concepts for transition-based semantics, communication seman-
tics, discrete-event semantics, and so on. The combination of concepts and se-
mantic mixin layers will provide support for the rapid prototyping of language
semantics. We are also exploring the construction of pattern libraries for domain-
specific languages through model templates. We are working in improving the
MetaDepth support for genericity, adding extension relations between con-
cepts, to allow the incremental construction of concepts and concept libraries.
Genericity is also applicable to the definition of generic model-to-model trans-
formations. Finally, we are also working on an algebraic formalization, and a
proof of type safety of specifications using concepts.

Acknowledgements.Work sponsored by the Spanish Ministry of Science, project
TIN2008-02081 and mobility grants JC2009-00015 and PR2009-0019, and by the
R&D programme of the Community of Madrid, project S2009/TIC-1650.

References

1. Atkinson, C., Kühne, T.: Rearchitecting the UML infrastructure. ACM Trans.
Model. Comput. Simul. 12(4), 290–321 (2002)

2. Clark, T., Evans, A., Kent, S.: Aspect-oriented metamodelling. The Computer
Journal 46, 566–577 (2003)

3. de Lara, J., Guerra, E.: Deep meta-modelling with MetaDepth. In: Vitek, J. (ed.)
TOOLS 2010. LNCS, vol. 6141, pp. 1–20. Springer, Heidelberg (2010)

4. D’Souza, D.F., Wills, A.C.: Objects, components, and frameworks with UML: the
catalysis approach. Addison-Wesley Longman Publishing Co., Inc., Amsterdam
(1999)

5. Garćıa, R., Jarvi, J., Lumsdaine, A., Siek, J.G., Willcock, J.: A comparative study of
language support for generic programming. SIGPLAN Not. 38(11), 115–134 (2003)

6. Heidenreich, F., Henriksson, J., Johannes, J., Zschaler, S.: On language-
independent model modularisation. T. Asp.-Oriented Soft. Dev. VI 6, 39–82 (2009)

7. Kolovos, D.S., Paige, R.F., Polack, F.: The Epsilon Object Language (EOL). In:
Rensink, A., Warmer, J. (eds.) ECMDA-FA 2006. LNCS, vol. 4066, pp. 128–142.
Springer, Heidelberg (2006)

8. Moha, N., Mahé, V., Barais, O., Jézéquel, J.-M.: Generic model refactorings. In:
Schürr, A., Selic, B. (eds.) MODELS 2009. LNCS, vol. 5795, pp. 628–643. Springer,
Heidelberg (2009)

9. Musser, D.R., Schupp, S., Loos, R.: Requirement oriented programming. In: Jazay-
eri, M., Musser, D.R., Loos, R.G.K. (eds.) Dagstuhl Seminar 1998. LNCS, vol. 1766,
pp. 12–24. Springer, Heidelberg (1998)

10. OMG: UML 2.2 specification, http://www.omg.org/spec/UML/2.2/
11. OMG: MOF 2.0. (2009), http://www.omg.org/spec/MOF/2.0/
12. Smaragdakis, Y., Batory, D.: Mixin layers: An object-oriented implementation

technique for refinements and collaboration-based designs. ACM Trans. Softw. Eng.
Methodol. 11(2), 215–255 (2002)

13. Steinberg, D., Budinsky, F., Paternostro, M., Merks, E.: EMF: Eclipse Modeling
Framework, 2nd edn. Addison-Wesley Professional, Reading (2008)

14. Stepanov, A., McJones, P.: Elements of Programming. Addison Wesley, Reading
(2009)

15. Tony Clark, J.W., Sammut, P.: Applied Metamodelling, a Foundation for Language
Driven Development, 2nd edn., Ceteva (2008)

http://www.omg.org/spec/UML/2.2/
http://www.omg.org/spec/MOF/2.0/


An Observer-Based Notion of Model Inheritance

Thomas Kühne

Victoria University of Wellington,
P.O. Box 600, Wellington 6140, New Zealand
Thomas.Kuehne@ecs.victoria.ac.nz

Abstract. A model-based engineering discipline presupposes that models are or-
ganised by creating relationships between them. While there has been consider-
able work on understanding what it means to instantiate one model from another,
little is known about when a model should be considered to be a specialisation
of another one. This paper motivates and discusses ways of defining specialisa-
tion relationships between models, languages, and transformations respectively.
Several alternatives of defining a specialisation relationship are considered and
discussed. The paper’s main contribution is the introduction of the notions of an
observer and a context in order to define and validate specialisation relationships.
The ideas and discussions presented in this paper are meant to provide a stepping
stone towards a systematic basis for organising models.

Keywords: model inheritance, model compatibility, language engineering, model
evolution.

1 Introduction

As model-based engineering techniques gain traction it becomes increasingly important
that the creation and handling of models is done with a “return on investment” perspec-
tive. A high frequency of model usage mandates that models are created and handled
in a cost-effective manner. For instance, a model should not be created from scratch if
another model exists that can be used to derive the new model from it. With models
of substantial size, the derivation operation is typically cheaper than the creation op-
eration and validation efforts performed on the existing model can partially be carried
over to the derived model. Independently of whether or not two models were derived
from each other, it pays off to avoid treating models in isolation from each other and
capitalise on any relationships between them. Organising models in a network of rela-
tionships can aid model retrieval, support questions regarding model compatibility, and
help to megamodel big systems [12].

Megamodels have models as their modelling elements and arrange them in a re-
lationship graph. The meaning of an instance-of relationship between two models is
well-understood but the same cannot be said for specialisation relationships between
models [14]. In the following, I will often use the term “model inheritance” instead
of “model specialisation” to avoid any connotation that the term “specialisation” car-
ries. Just as “inheritance” between classes has many drastically differing interpreta-
tions [6,15], “inheritance” between models can also refer to a number of very different
relationships between a supermodel and its submodels.

D.C. Petriu, N. Rouquette, Ø. Haugen (Eds.): MODELS 2010, Part I, LNCS 6394, pp. 31–45, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



32 T. Kühne

While it is possible to relate token models – models that only represent their subjects
but are not types for any instances – to each other, this paper assumes that “model
inheritance” implies that type models are related to each other. There is no need to
distinguish between ontological or linguistic type models, as both have instances that
conform to their respective type models [5]. A linguistic type model can be regarded
as defining the syntax and static semantics of a language which is why the following
discussion is relevant for language engineering just as well as for domain modelling,
model evolution, and transformation definitions.

Language engineers can use model inheritance to derive one language definition
from another. Such an approach does not only boost productivity but is also essen-
tial for creating domain-customised languages, i.e., domain-specific languages that aim
to maintain compatibility to the general-purpose language they were derived from [3].

In domain modelling it also makes sense to identify commonalities between domain
models, for instance in the form of upper ontologies [19]. An application of this type of
domain model inheritance is the layered refinement of partial domain models within an
ontological modelling level in the “unified modelling library” approach [2].

In the context of model evolution, models and their versions have a natural derivation
relationship with each other and the main concern is to understand and optimise the
degree of compatibility between model versions and their instances [9].

Finally, transformation definitions can also be regarded as models [4] and it is worth-
while attempting to define relationships between such transformation models.

One of the most valuable properties that a relationship between models can guar-
antee is a certain level of compatibility between the models. This is why this paper
first discusses model compatibility (Sect. 2) and then looks at various ways to define
model inheritance (Sect. 3), arguing that achieving model substitutability is the most
valuable property to aim for. The paper then discusses a pragmatic way to extent the
possibilities for defining model compatibility by using the notions of a model observer
and a model context (Sect. 4). The discussion of related work (Sect. 5) precedes the
conclusion (Sect. 6).

2 Model Compatibility

m1

M
forward-

compatible
back

ward-

co
mpatib

le

m1m1

m’1m’1m’1

M’

«instanceO
f»

«instanceO
f»

Fig. 1. Model Compatibility

A very important criterion for judging the
utility of model inheritance variants is the
degree to which instances of a submodel
M′ are compatible with the supermodel M
and vice versa. The direction of the special-
isation relationship in Fig. 1 only signifies
that M′ is a new model that is derived from
the old model M. No other semantic con-
straints should be assumed since we want
to consider any kind of derivation including
those where M′ is a reduced, less expres-
sive version of M.



An Observer-Based Notion of Model Inheritance 33

Note that the terminology chosen for Fig. 1 uses the perspective of the type models.
The diagonal dependencies can be read “conformsTo” upwards, while their labels indi-
cate the respective type of compatibility regarding their downwards meaning. We would
have to use the terminology in reverse, if we used the perspective of the instances.

Figure 1 makes the notions of forward- and backward-compatibility look more
straightforward than they actually are. Before we can proceed to evaluate forms of
model inheritance in Sect. 3, we need to gain a deeper understanding of these notions
which involves to precisely define what a model is in this context.

2.1 Formal Foundation

I assume a model to be an instance of (i.e., a sentence in) some modelling language. A
model is therefore just data. To turn that data into information, i.e., in order to be able
to discuss properties of a model, we have to look at the meaning of a model. Formally, I
regard the meaning of a model μ(M) to be a projection (π) of the subject S the model
represents, i.e., μ(M) = π(S).

The important part for the following discussion, though, is that we can associate
both an intension and an extension [7] to the meaning of a type model. The intension
ι(μ(M)) of a model can be thought of to be a predicate that determines whether an-
other model is to be considered an instance of M or not. If M represents a language
definition then in practical terms a metamodel and its associated constraints fulfil the
role of the intension. The intension ι(μ(M)) thus is a characteristic predicate defining
the extension ε(μ(M)) of the type model, i.e., the set of instances which conform to
the type model: ε(μ(M)) = {x | P (x)}, where P = ι(μ(M)).

A supermodel M is forward-compatible with respect to a submodel M′, if M′-
instances conform to M. Likewise, a submodel M′ is backward-compatible with re-
spect to a supermodel M, if M-instances conform to M′. It therefore stands to reason
to establish the following formal definitions (using “→” as logical implication):

Definition 1. Given M′ < M (i.e., M′ inherits from M),

forwardCompatible (M,M′) ≡ ι(μ(M)) ← ι(μ(M′)) (1)

backwardCompatible (M,M′) ≡ ι(μ(M)) → ι(μ(M′)) (2)

Note that Def. 1 implies that the presence of both forward- and backward-compatibility
means that the intensions of M and M′ are equivalent, which in turn implies that
there would be no point in deriving M′ from M. Yet, in practice we can achieve both
forward- and backward-compatibility without requiring M and M′ to be equivalent.

As a real world example, consider the upgrade from mono-FM to stereo-FM trans-
mission. Old mono-receivers are agnostic of the presence of pilot signals and higher
sidebands within stereo-signals. The baseband of a stereo-signal carries the sum of the
left and right channels (L+R) and hence represents a proper mono-signal. Therefore,
every stereo-signal is a proper mono-signal:

ι(μ(MO)) ← ι(μ(ST )),

or alternatively
ε(μ(MO)) ⊇ ε(μ(ST )).



34 T. Kühne

This justifies deriving ST from MO and establishing the specialisation relationship
ST < MO. As a result, MO is forward-compatible to ST (see Def. 1).

A new stereo-receiver (ST ) can reproduce old mono-signals (instances of MO). In
the absence of a pilot signal, stereo-receivers do not attempt to use the L-R information
from the higher sideband of a stereo-signal and thus simply emit the L+R mono-signal
of the baseband on both channels. ST is therefore backward-compatible to MO. Yet,
Def. 1.2 does not hold since the specification of a mono-signal does not imply the
specification of a stereo-signal, i.e.,

ι(μ(MO)) � ι(μ(ST )).

In other words, there are elements in the extension of MO that do not conform to ST :

¬∀x : x ∈ ε(μ(MO)) → ι(μ(ST ))(x).

Here is why: A mono-signal with an accidentally present pilot signal but garbage L-R
information in the higher sideband conforms to the mono-signal specification but does
not conform to the stereo-signal specification since the latter requires a proper L-R
signal in the higher sideband. So, we do not seem able to affirm backward-compatibility.
Yet, we know that stereo-receivers accept and properly process all signals emitted from
mono-signal transmitters. So how can we reconcile the fact that a stereo-receiver (ST )
has higher requirements than the mono-signal specification (MO) guarantees with our
knowledge that any instance generated fromMO will conform to the ST specification?

The above formulation of the question practically contains the answer: We have to
distinguish between the instances that a model M accepts and the instances that M
generates. In other words, we have to acknowledge that a type model M has two roles.
The only role we have explicitly considered so far is that of a characteristic predicate,
i.e., as a test to check whether an instance conforms to the respective type model. The
other role of a type model is that of a generator of model instances. The set of the latter –
I will refer to it as ε0(μ(M)) – is a subset of the set of instances that the model accepts,
i.e., ε0(μ(M)) ⊆ ε(μ(M)). Now we can state a relaxed, yet practical, definition of
backward-compatibility:

Definition 2. Given M′ < M,

backwardCompatibler (M,M′) ≡ ε0(μ(M)) ⊆ ε(μ(M′)) (3)

Figure 2(a) illustrates how simultaneous strong forward- and backward-compatibility
implies that M is equivalent to M′. Figure 2(b) shows that using a relaxed notion of
backward-compatibility based on generated M-instances, as opposed to accepted M-
instances, allows both forward- and relaxed backward-compatibility to co-exist.

Summarising, regarding forward-compatibility, for any instance that is accepted but
not generated by M, i.e., m ∈ (ε(μ(M))\ε0(μ(M))), there is an implied information
loss when it is viewed through M. In our example, mono-receivers cannot make use
of the two channel information in a stereo-signal. Nevertheless, from the perspective of
the mono-receiver all required information is available and this is all one can hope for
regarding forward-compatibility.



An Observer-Based Notion of Model Inheritance 35

ε(μ
(M

’))ε(μ
(M

))

⊇backw
ard-

com
patible

⊇backw
ard-

com
patible

⊆ forward-
compatible

⊆ forward-
compatible

(a) Accepted instances imply equality

ε(μ
(M

’))

ε 0
(μ(M))

ε(μ
(M

))

relaxed backward-compatible

⊇

relaxed backward-compatible

⊇
⊆ forward-

compatible

⊆ forward-
compatible

(b) Generated instances enable compatibility

Fig. 2. Strong vs Relaxed Backward-Compatibility

In modelling practice, often the intension of derived models is stronger than that
of the base model and one can thus expect strong forward-compatibility (Def. 1.1),
albeit with information loss. While it is not possible for a strong notion of backward-
compatibility (Def. 1.2) to hold at the same time, in practice, we only need a relaxed
notion of backward-compatibility (Def. 2).

The relaxed notion of backward-compatibility may still be too strong if M′ requires
properties not guaranteed by M-generated instances, but it at least opens up the po-
tential of an automatic upgrade of M-generated instances to M′-instances. Section 3
discusses derivation strategies which ensure that M′ is not too demanding. I conclude
this section by observing that different stakeholders require different forms of model
compatibility:

Within “model evolution”, backward-compatibility is one of the main concerns. One
assumes that type models change and a large number of model instances is considered
to be an asset that deserves protection. Hence, one either strives to change type models
in a way that achieves backward-compatibility or seeks ways to automatically upgrade
old model instances so that they conform to the new type model.

In contrast, programmers or modellers are typically far more concerned with forward-
compatibility. Model instances are created programmatically and are therefore dispens-
able. However, (parts of) programs or models represent a high investment and one aims
to obtain their forward-compatibility with new model instances. Additionally, new pro-
gram/model parts are also required to exhibit some level of backward-compatibility if
only to support the manipulation of new instances by old program/model parts. Unless
the new program/model parts can accept the thus modified instances, the utility of the
old program/model parts is heavily compromised.

Language engineers have the highest requirements. They are interested in maximis-
ing the backward-compatibility of a new language with respect to the base language it
was derived from in order to be able to use old programs / models written in the base
language. However, they are also interested in maximising the forward-compatibility
of the base language since this will allow new programs / models to be used with old
tools. Furthermore, the higher the degree of forward-compatibility, the quicker one ex-
pects programmers / modellers to learn the new language on the basis of the old base
language. A strong degree of forward-compatibility means that the new language adds
new features but does not unnecessarily destroy similarities to the old base language.



36 T. Kühne

3 Forms of Model Inheritance

The meaning of “model inheritance” is open to many interpretations since there are
many motivations as to why one would derive one model from an existing one. A
submodel could be, among other things, a specialisation, a more restrictive version,
a realisation, a part of a partitioning, an implementation, or an extended version of its
supermodel. In the following, I concentrate on three main derivation kinds which can
be used to understand and classify the above mentioned interpretations.

3.1 Specification Import

Two type models M and M′ can be thought of to be in a specification import rela-
tionship if the construction of M′ is based on (parts of) the construction of M. In the
context of class inheritance, specification import is referred to as “subclassing” [15].
This derivation strategy opportunistically tries to maximise the usage of existing (in-
tensional) specification. No consideration is given to the (extensional) implications on
model compatibility. For example, one could derive a simple language from a complex
one by just pruning the metamodel of the former. This typically prohibits forward-
compatibility, since the assumptions that can be made with regard to the presence of
elements in M and their respective navigability often do not hold anymore in a pruned
version. Backward-compatibility would not necessarily be affected in this case but then
specification import does not impose any restrictions on how M′ may tighten up re-
quirements for M-instances.

Therefore, in general, specification import does not make any guarantees about com-
patibilities of any kind. The above considerations, however, give rise to two classes of
model derivations which guarantee forward-compatibility even though they involve the
removal of elements:

1. Compatible pruning removes only strictly optional elements (with multiplicities
that include zero) from M.

2. Compatible coarsening removes non-optional elements in M but with the require-
ment that these elements must not be relied on by elements in M that remain part
of M′. In other words, no element in M′ that can be observed through an M-view
must require any removed element through this M-view. A typical example for el-
ements that may safely be removed are subtypes that are not specifically referred to
and whose instances can be replaced by supertype instances without loss of gener-
ality. Note that no operation on M must rely on the removed elements either. The
coarsened version must not be distinguishable from a complete version under an
M-operation.

3.2 Conceptual Containment

Two type models can be thought of to be in a conceptual containment (also referred to
as “is-a” [6]) relationship if the submodel M′ puts stronger constraints on its instances.
In other words, the intension of the submodel is stronger than that of the supermodel.

Definition 3. M′ <is−a M → (ι(μ(M′)) → ι(μ(M)))



An Observer-Based Notion of Model Inheritance 37

Examples for such a strengthening are the specialisation of individual model elements
such as replacing Rectangle with Square or the introduction of covariant relationships.
In the UML, both association specialisation and association end redefinition can be
used to introduce relationships that have stronger requirements than the ones they rede-
fine [13]. For example, consider M to contain the elements Worker and Task connected
by a worksOn association. Also, Worker and Task are specialised by SpecialisedWorker and
SpecialTask respectively. If M′ now adds a worksOn association between Specialised-

Worker and SpecialTask and furthermore demands that special tasks are only worked on
by specialised workers then some valid M-instances are not valid M′-instances.

Note that according to Def. 1, the strengthening of the intension from M to M′

means that conceptual containment guarantees forward-compatibility. This is desirable
as it allows old tools to be used on new instances. However, note that in general there is
a strong limitation to this advantage. As soon as old tools go beyond reading instances,
e.g., for analysis or transformation, i.e., as soon as they start to modify instances, these
modified instances are unlikely to be compatible to the new specification they once
conformed to. The old tools do not know the new constraints introduced by the new
specification and will typically not respect them. Forward-compatibility, while desir-
able, must thus in general be acknowledged as enabling non-mutating access to new
model instances only.

The above observation implies a class of model derivations, though, which guaran-
tees mutator forward-compatibility in the sense that any change that can be applied to
M′-instances through an M-view will never make them invalid M′-instances: An or-
thogonal extension may introduce further constraints but only on new elements which
must be optional. For this derivation class, conceptual containment maintains relaxed
backward-compatibility.

3.3 Subtyping

Two type models M and M′ can be thought of to be in a subtyping relationship if in-
stances of M′ behave exactly like instances of M; in other words, it is always possible
to substitute instances of M with instances by M′. This defining property of subtyping
is known as the Liskov substitution principle [16].

A subtype relationship M′ <subt M provides us with

∀x : x ∈ ε(μ(M′)) → x ∈ ε(μ(M)),

which is equivalent to ε(μ(M′)) ⊆ ε(μ(M)). While this tells us that subtyping guar-
antees forward-compatibility, there does not seem to be a difference to conceptual con-
tainment which guarantees the same (cf. Def. 3). Yet, intuitively it is clear that subtyping
is a stronger requirement then conceptual containment because an instance from a con-
ceptually contained model M′ is only known to conform to M but not required to be
substitutable for an M-instance. Here is an example that illustrates this difference: Let
us consider the “SpecialisedWorker worksOn SpecialTask” model from Sect. 3.2 again.
An instance of this model conforms to the respective M model but if we then use the
M-view to manipulate this instance we can violate its constraints.



38 T. Kühne

In general, there are three outcomes such anM-view manipulation attempt may have:

1. The model instance does not support the M-view operation. For example, a square
element may not be able to respond to a stretchVertically operation which would not
have been a problem for a rectangle element.

2. The model instance supports the M-view operation but does not conform to M′

anymore after the operation has been performed. For example, in the above scenario
assigning a normal Worker to a SpecialTask will create a model instance which does
not conform to M′.

3. The model instance supports the M-view operation and remains an M′-instance.

Clearly, from a model instance that can substitute an M-instance we do not expect the
first case. Furthermore, with respect to the second case, while the notion of substitutabil-
ity does not express it explicitly, we expect subtype instances to keep respecting their
constraints even under M-view operations (see also Sect. 5). Using fM as an operation
available on M-instances, we can thus define a necessary condition for subtyping:

Definition 4

M′ <subt M → ((ι(μ(M′)) → ι(μ(M))) ∧ ∀fM, x : (x ∈ M′ → fM(x) ∈ M′)).

Figure 3 illustrates that conceptual containment and subtyping are both defining subsets
of M’s extension but differ in how they may respond to M-view operations.

ε(μ(M
))

ε(μ(M
’))

f M

ι(μ(M))

fM

fM
ι(μ(M’))

fMf M

ι(μ(M))

fM

fM
ι(μ(M’))

fMM <is-a M’

(a) Derived instances may change type

ε(μ(M
))

ε(μ(M
’))

M <subt M’

ι(μ(M)) ι(μ(M’))

f M
fM

fM

ι(μ(M)) ι(μ(M’))

f M
fM

fM

(b) Derived instances never change type

Fig. 3. Conceptual Containment vs Subtyping

Despite the property defined in Def. 4, subtyping does not imply backward-compati-
bility, not even the relaxed form of Def. 2. Not every M-generated instance needs to
conform to M′. For example, M′ may require additional mandatory navigability to
a Company instance from each Worker instance. Nevertheless, the property defined in
Def. 4 guarantees an important type of backward-compatibility in the form of muta-
tor forward-compatibility (see Sect. 3.2) for M′-instances. If the latter holds, M′ is
backward-compatible with M with respect to any M′-instance no matter which change
the latter is subjected to by M-view operations. Consequently, subtyping guarantees the
desirable mutator forward-compatibility beyond orthogonal extensions to all extensions
that adhere to subtyping. The corresponding class of derivations, which can be aptly re-
ferred to as conservative extensions, is larger than the class of orthogonal extensions
since now the tightening of requirements need not be confined to optional new ele-
ments, but can be extended to new mandatory elements. These elements might even be



An Observer-Based Notion of Model Inheritance 39

observable through an M-view, albeit with information loss. For example, an addition-
ally introduced SpecialisedWorker instance will be observable as a Worker instance, yet
its mandatory link to a Company instance will not.

Obviously, a round-trip starting with the creation of an M′-instance to the accep-
tance as an M-instance, with subsequent modifications through M-view operations,
and the final re-adoption as an M′-instance requires M-view operations to preserve
M′-features. In practice, tools associated with M are not required to properly inter-
pret all M′-features but need to keep them intact while applying M-view operations.
Naturally, not every tool has this capability but open meta-formats can certainly sup-
port this and at least subtyping potentially allows the round-trip whereas conceptual
containment does not. Note that object-oriented languages naturally support mutator
forward-compatibility if inheritance is used according to the subtyping principle.

3.4 Making a Choice

Interestingly, the derivation classes identified in the previous sections are related to each
other. Table 1 shows how the derivation classes extend each other and what their duals
are. The notion of “duality” is based on the symmetry of M and M′ to each other with
respect to the changes and their implications on compatibility which can occur between
them. Figure 1 shows this symmetry if one ignores the direction of the specialisation
relationship. For the sake of the symmetry argument, let us assume M′ to be the original
and perform a compatible pruning to derive M. This is equivalent to assuming M to
be the original and performing an orthogonal extension to derive M′.

The above implies a duality for the notions of forward- and backward-compatibility
and indeed the guarantees that, e.g., a conservative extension makes about forward-
compatibility (with information loss) translate to guarantees for compatible coarsening
with respect to backward-compatibility (with information loss). With the above ad-
ditional knowledge about compatibility in mind, given a choice of model inheritance
variants, a natural question to ask is which one should be preferred.

Specification Import is to preferred when the emphasis is on ease of construction.
Being able to chose a starting point M, which makes it easiest to derive a new M′

from it without compatibility concerns, makes the life of M′’s developer easier.

Subtyping, the most constrained relationship, supports ease of use. Any person or tool
being competent about M will be competent about large parts of M′ since its instances
are required to appear like M-instances. Subtyping thus makes the life of M′’s users
easier. Moreover, it guarantees mutator forward-compatibility, i.e., supports a round-trip
from new instances to old tools and back again.

Table 1. Dual Derivation Classes

dual

ex
te

nd
s Compatible Pruning ↔ Orthogonal Extension

∨ ∨
Compatible Coarsening ↔ Conservative Extension



40 T. Kühne

Conceptual Containment represents a useful middle ground if the strong requirements
of subtyping cannot be imposed but one nevertheless wants to achieve some level of
compatibility.

Note that the above variants are not mutually exclusive. If the cheapest option of
specification import is performed with considerations for compatibility in mind, it can
result in a conceptual containment or subtyping relationship. A simple strategy therefore
is to aim for subtyping and settle for anything below it that is viable to produce within
a given economic context. It will pay off, however, to make a return-on-investment
analysis; the increased effort to create an M′ that adheres to subtyping may often be
amortised by the resulting advantages of increased compatibility and ease of use.

4 Observer-Based Notion of Substitutability

Section 2 introduced the important notion of model compatibility and Sect. 3 discussed
the degree to which certain forms of model inheritance guarantee compatibility. It be-
came clear that the most desirable derivation classes impose the most restrictions on
how new models may be derived from existing ones and therefore are the most difficult
to achieve in practice.

Subtyping, for example, is already no longer achievable if one wants to redefine
the argument type of an equals method along with the concept that provides it. There
are also many examples where instances in an collaborative ensemble depend on other
participating instances to have certain upper type bounds [11]. Such ensembles cannot
be introduced in a subtype model since modifications through a supertype-view would
not respect the type bound constraints. In practice, it will therefore be hard to achieve
compatibilities of the form

ε(μ(M′)) ⊆ ε(μ(M)),

and one will more often than not have to settle with

∃MN : (ε(μ(M′)) \MN ) ⊆ ε(μ(M)),

i.e., only a subset of M′-instances conform to the M specification. This is an example
of compromised forward-compatibility but of course the symmetric situation exists for
compromised backward-compatibility as well.

Observers

In practice, it is often not necessary to insist on uncompromised compatibility. For
example, old tools can still be useful for new models if one is only interested in ap-
plying them to certain model instances that do not exploit compatibility-compromising
language features. Currently, there are two unsatisfactory alternatives for dealing with
such situations:

1. The compromised compatibility is incorrectly documented as an uncompromised
compatibility, i.e., one chooses to indicate a subtyping relationship between two
models even though it does not hold in general. Obviously, this creates incorrect
expectations and should be avoided.



An Observer-Based Notion of Model Inheritance 41

2. The compromised compatibility is not documented at all or with an unspecified
meaning for model inheritance. Hence it could be easily broken with subsequent
changes to tools and/or model instances.

o
 : O

b
server

o

M

M’

context

Fig. 4. Observer-Based Special-
isation

Therefore, I introduce a specialisation relationship be-
tween two models that is based on the notion of an ob-
server. Figure 4 illustrates how one could index a spe-
cialisation relationship (here with an o next to the spe-
cialisation arrowhead; the corresponding observer in-
stance “o” to the right only being included for illustra-
tive purposes) and thus refer to an entity that decides
whether the two models are in the relationship it spec-
ifies or not. In Fig. 4, the specialisation relationship is
not meant to be an instance of the observer, rather its
meaning depends on the observer.

There are many ways in which an observer could be
defined and applied in practice. For example, an existing
tool could be used as an acceptance checker in analogy
to how programming languages used to be defined by
their compiler implementations. Among many alternative ways to define observers, a
natural alternative is to use a type model and require certain conformance criteria of the
derived model.

o

M

M’

Ms

st

ds

Fig. 5. Language-
Based Observer

Figure 5 shows one approach that demands the derived model
to be a subtype of the observer specification1. Table 2 lists a num-
ber of choices for ds (derivation strategy) and Ms. Note how
an observer defines a family of models/languages M′

i that share
a commonality. Unlike with conventional specialisation, how-
ever, the commonality is not defined by the supermodel M only.
Instead, an observer defines a tolerance for deviations against
a standard subtyping interpretation. With a language-based ob-
server, the choices for ds and Ms (see Tab. 2) determine the
nature and the extend of this tolerance. The particular choices
can, e.g., be motivated by the properties of legacy tools.

In the above, I referred to a derivation strategy ds in order
to avoid a recursive definition of an observer-based specialisa-
tion. However, it is entirely possible to use another o′ observer

in place of the ds derivation strategy shown in Fig. 5, giving rise to meta-observers, i.e.,
observers that are used to define observers.

For models that define transformations, observers could be defined that focus on
(parts of) the input/output relation. Specialisation relationships between transformation
definitions could therefore be based on (partial) behavioural equivalence, rather than on
any structural similarities between the definitions. Over and above defining an output-
oriented view on transformations, observers could focus on certain parts of transformed
models and/or certain transformation properties.

1 Note that Ms is rendered as a type model but according to Fig. 4 also is an instance of an
Observer (meta-)model.



42 T. Kühne

Table 2. Choices for Language-Based Observers

Choices Description

ds = st∗, Ms = M The language-based observer is used to define standard subtying (st).

Ms = mcc†(M) Ms is the root of a family of M′
i that share a common conformance

level to M. The nature of the latter is determined by the choice for ds.

ds = cc‡ Ms is the root of a family of M′
i that share a common conceptual

containment of M.

ds = selection Ms selects only parts of M, e.g., a subnotation of a language definition,
and thus the family of M′

i is only required to conform to parts of M.
∗subtyping †maximum compatible coarsening ‡conceptual containment

Contexts

The idea of using an observer to mask out model parts and/or operations so that the
remaining parts allow a model M′ to be substituted for a model M, adds a large de-
gree of flexibility for specifying relationships between models. Designers can now be
explicit about which parts of models need to be focused on in order to establish concep-
tual containment or even subtyping. Designers no longer need to leave this information
undocumented, document it ambiguously, or overstate the case by using specialisation
relationships that are too strong in general.

Sometimes, however, even observers cannot help to go beyond a certain level of
compatibility between two models because some properties do not hold all the time. For
example, a database model handling a limited amount of entries is not a subtype of an
unlimited database in situations in which the maximum number of entries is exceeded.

This gives rise to the idea of a usage context. If we could specify a context for the
limited database model that guarantees that the maximum number of supported entries
will never be reached, we could specify the limited database model to be a subtype of
the unlimited version with respect to the chosen context. This is why Figure 4 shows
a context around a specialisation relationship. Only in contexts like the one specified,
does the specialisation relationship apply.

Contexts should not be confused with another observer layer. A context rather con-
fines changes to a model to ones that respect the constraints observed by the observer.
Contexts hence dramatically increase the potential to specify strong specialisation re-
lationships. Consider the “SpecialisedWorker/SpecialTask” refinement from Sect. 3.3. If
we can provide contexts in which only valid work assignments are created then we
can strengthen the refinement relationship from conceptual containment to subtyping!
While a supertype-view operation may still potentially violate subtype requirements,
the context prohibits such operations.

Summarising, often models are in a relationship that is not strong enough to allow the
use of any of the standard conceptual containment or subtyping relationships. Observers
then allow to introduce tolerance against the latter and hence enable specialisation rela-
tionships which otherwise would have been inappropriate.



An Observer-Based Notion of Model Inheritance 43

Contexts, on the other hand, establish constraints that enable the use of less tolerant
observers and thus stronger specialisation relationships.

5 Related Work

Inheritance has been suggested to be one of the basic relationships (next to instantia-
tion and representation) between models in [14]. However this work only considered
subtype specialisations.

The distinction made in Sect. 2.1, between the set of elements a type model accepts
(ε(μ(M))) and the set of model instances the former can generate (ε0(μ(M))), echoes
the fact that classes in object-oriented programming languages are often assumed to
play both roles at the same time [17]. Only a few programming languages explicitly
separate these two discriminator and generator roles [18].

Liskov and Wing introduced the substitution principle for subtypes in the context of
object-oriented programming languages [16]. Their discussion of subtypes include con-
strained subtypes that tighten constraints. Interestingly, the necessary precondition for
these – the supertype view does not allow the manipulation of the further constrained
variables in the subtype – is not explicitly mentioned. Another implicit assumption
made in [16] is that subtype instances never need to change their type. On the one
hand, this is surprising since supertype instances will have a supertype type after be-
ing manipulated, so the latter seems to be admissible behaviour for subtype instances
as well. On the other hand, one can argue that subtype instances should not add any
potential of invariant violations while being manipulated through supertype interfaces
and that the migration of a subtype instance to become a supertype instance would rep-
resent such an invariant violation. Note that the necessary condition given in Def. 4
of Sect. 3.3 is not sufficient for subtyping; it allows subtype instances to behaviourally
deviate from supertype instances. The notion of mutator forward-compatibility thus
represents a weaker requirement than subtyping. This is useful if the emphasis is on
guaranteeing backward-compatibility, i.e., safe manipulation round-trips for instances,
but full behaviour conformance is considered to be too restrictive.

Interfaces in JAVA [1] can be regarded as a certain form of a language-based ob-
server. Like observers, interfaces introduce tolerance against any features which are not
mentioned by the interface. Two classes that implement the same interface might be de-
clared to be subtypes through an observer-based specialisation relationship even though
they are not subtypes regarding features not specified by the interface.

Dependent types, as provided by GBETA [10], can be regarded as a means to estab-
lish contexts as discussed in Sect. 4. They allow programs to specify safe application
contexts for object ensembles that require family polymorphism [11]. The same mech-
anisms could, and should, be made available for models.

UML profiles, as long as they do not introduce constraints that are incompatible
with subtyping or use subsetting of base metamodels, produce conservative extensions
because they cannot introduce changes that are observable through an M-view. Such
UML profiles therefore guarantee mutator forward-compatibility and can be used to
create families of models/languages [8].



44 T. Kühne

6 Conclusion

This paper explored “model inheritance” with an emphasis on compatibility considera-
tions. I regarded the submodel as being derived from the supermodel and used a formal
approach to analyse what kind of compatibility guarantees can be made for various
forms of model inheritance.

I treated forward- and backward-compatibility symmetrically which allowed me to
identify dual derivation classes which are symmetric regarding their compatibility prop-
erties. Although space limitations did not permit explicitly analysing all compatibility
cases, the symmetries between forward- and backward-compatibility and the four iden-
tified derivation strategies respectively, allow the straightforward transfer of the discus-
sions to the dual scenarios.

In order to understand simultaneous forward- and backward-compatibility, I had to
introduce the notion of a set of generated instances, ε0(μ(M)), i.e., a subset of the full
model extension. Such ε0-sets do not only allow the definition of the practical notion
of relaxed backward-compatibility, they can also be used to relax mutator forward-
compatibility by restricting the considered instances to M′-generated instances.

To the best of my knowledge, this paper is the first to establish that subtyping can
be regarded as a strengthened form of conceptual containment that, among further con-
straints, adds a backward-compatibility requirement for subtype instances which have
been modified under a supermodel view. I introduced the new term mutator forward-
compatibility to characterise the ability of instances to survive a “round-trip” of casting,
manipulation, and re-casting. Interestingly, mutator forward-compatibility neither im-
plies backward-compatibility nor full behavioural compatibility for submodel instances,
and thus defines a useful class of submodels that is larger than that of subtypes. This is
a useful result as it ensures a safe manipulation round-trip, without requiring the strict
behaviour conformance of subtypes if the latter is considered to be too restrictive.

In the same vein – recognising that uncompromised subtying is difficult to obtain in
practice – I proposed observers to define custom relaxation criteria for specialisation
relationships, thus allowing the establishment and precise documentation of relation-
ships between models that are weaker than subtyping. Using a language-based observer
approach, I showed that the Liskov-Substitution Principle can be obtained by using the
strongest observer possible. Relaxations of this form are available through reducing the
amount of observable differences, thus giving rise to a family of models/languages.

Finally, I proposed contexts to allow stronger observers to be used whenever a usage
context can guarantee that otherwise observable violations of specialisation require-
ments cannot occur. If a context, for example, can restrict old tools that they only mod-
ify new instances in a way that keeps them compatible with new tools then a speciali-
sation relationship based on a correspondingly strong observer can document this level
of compatibility. A context that ensures immutability for a subset of model instances
can lift a conceptual containment relationship to mutator forward-compatibility or po-
tentially an even stronger subtyping relationship.

Summarising, the introduction of ε0-sets, observers, and contexts makes it possible
to properly document safe round-trip scenarios and thus protect their future integrity.
The author hopes that the ideas and discussions presented in this paper represent a
stepping stone towards a systematic basis for organising models.



An Observer-Based Notion of Model Inheritance 45

References

1. Arnold, K., Gosling, J., Holmes, D.: The Java Programming Language, 3rd edn. Addison-
Wesley, Reading (2000)

2. Atkinson, C., Kühne, T.: Rearchitecting the UML infrastructure. ACM Transactions on Mod-
eling and Computer Simulation 12(4), 290–321 (2003)

3. Atkinson, C., Kühne, T.: A tour of language customization concepts. In: Zelkowitz, M. (ed.)
Advances in Computers, vol. 70, ch. 3, pp. 105–161. Academic Press, Elsevier (June 2007)

4. Bézivin, J., Büttner, F., Gogolla, M., Jouault, F., Kurtev, I., Lindow, A.: Model transforma-
tions? Transformation models! In: Nierstrasz, O., Whittle, J., Harel, D., Reggio, G. (eds.)
MoDELS 2006. LNCS, vol. 4199, pp. 440–453. Springer, Heidelberg (2006)

5. Bézivin, J.: In search of a basic principle for model driven engineering. Special Novática
Issue “UML and Model Engineering” V(2), 21–24 (2004)

6. Brachman, R.: What is-a is and isn’t: An analysis of taxonomic links in semantic networks.
Computer 16(10), 30–36 (1983)

7. Carnap, R.: Meaning and Necessity: A Study in Semantics and Modal Logic. University of
Chicago Press, Chicago (1947)

8. Cook, S., Kleppe, A., Mitchell, R., Rumpe, B., Warmer, J., Wills, A.: Defining UML family
members using prefaces. In: Mingins, C., Meyer, B. (eds.) Proceedings of Technology of
Object-Oriented Languages and Systems, TOOLS 1999, Pacific. IEEE Computer Society,
Los Alamitos (1999)

9. Engels, G., Küster, J.M., Heckel, R., Groenewegen, L.: Towards consistency-preserving
model evolution. In: IWPSE 2002: Proceedings of the International Workshop on Principles
of Software Evolution, pp. 129–132. ACM, New York (2002)

10. Ernst, E.: gbeta – A Language with Virtual Attributes, Block Structure, and Propagating,
Dynamic Inheritance. Ph.D. thesis, DEVISE, Department of Computer Science, University
of Aarhus, Aarhus, Denmark (June 1999)

11. Ernst, E.: Family polymorphism. In: Knudsen, J.L. (ed.) ECOOP 2001. LNCS, vol. 2072, pp.
303–326. Springer, Heidelberg (2001)

12. Favre, J.M.: Foundations of meta-pyramids: Languages vs. metamodels - episode ii: Story
of thotus the baboon. In: Language Engineering for Model-Driven Software Development.
Dagstuhl Seminar Proceedings 04101. Internationales Begegnungs- und Forschungszentrum
für Informatik (IBFI), Schloss Dagstuhl (2004)

13. Håvaldsrud, T.V., Møller-Pedersen, B.: Nested and specialized associations. In: RAOOL
2009: Proceedings of the Workshop on Relationships and Associations in Object-Oriented
Languages, pp. 25–31. ACM, New York (2009)

14. Kühne, T.: Matters of (meta-) modeling. Software and Systems Modeling 5(4), 369–385
(2006)

15. LaLonde, W., Pugh, J.: Subclassing �= Subtyping �= Is-a. Journal of Object-Oriented Pro-
gramming 3(5), 57–62 (1991)

16. Liskov, B.H., Wing, J.M.: A behavioral notion of subtyping. ACM Transactions on Program-
ming Languages and Systems 16(6), 1811–1841 (1994)

17. Meyer, B.: EIFFEL the language. Object-Oriented Series. Prentice Hall, Englewood Cliffs
(1992)

18. Murer, S., Omohundro, S., Szyperski, C.: Engineering a programming language: The type
and class system of Sather. In: Gutknecht, J. (ed.) Programming Languages and System Ar-
chitectures. LNCS, vol. 782, pp. 208–227. Springer, Heidelberg (1993)

19. Wang, X.H., Gu, T., Zhang, D.Q., Pung, H.K.: Ontology based context modeling and reason-
ing using owl. In: IEEE International Conference on Pervasive Computing and Communica-
tion (PerCom 2004), pp. 18–22 (2004)



MDE-Based Approach for Generalizing Design
Space Exploration

Tripti Saxena� and Gabor Karsai

Department of Electrical Engineering and
Computer Science,

Vanderbilt University,
Nashville, TN 37205

{tsaxena,gabor}@isis.vanderbilt.edu

Abstract. Design Space Exploration (DSE) is the exploration of de-
sign alternatives before the implementation. Existing DSE frameworks
are domain-specific where the representation, evaluation method as well
as exploration algorithm are tightly coupled with domain-dependent as-
sumptions. Although the tasks involved in DSE are similar, the inflex-
ibility of the existing frameworks restricts their reuse for solving DSE
problems from other domains.

This paper presents an MDE-based approach for generalizing DSE
techniques. The framework supports a reconfigurable representation of a
design space, which is decoupled from exploration algorithm. The frame-
work can be configured to solve DSE problems from different domains
and enables the designer to experiment with different approaches to solve
the same problem with minimum effort. The main contributions of this
framework are: (1) rapid modeling of DSE problems, (2) reuse of pre-
viously defined artifacts, (3) multiple solver support and (4) a tool for
scalability study.

Keywords: Design Space Exploration, Domain-Specific Modeling Lan-
guages.

1 Introduction

A design space is a product of possible design choices, and design space ex-
ploration (DSE) is the process of searching through the design space to find
specific design alternatives that satisfy the various design constraints and are
“best” with respect to one or more objective functions. DSE problems exist in
different domains like signal processing [1], software product lines [2], hardware-
software codesign [3], etc. However, modeling and solving a DSE problem from
scratch is complicated. The main challenge is to deal with the combinations of
design choices that can yield an exponential number of design alternatives. This
task is further complicated by the various functional and non-functional require-
ments which often conflict with each other. A design choice made for one set of
requirements can have an impact on multiple sets of requirements.
� Corresponding author.

D.C. Petriu, N. Rouquette, Ø. Haugen (Eds.): MODELS 2010, Part I, LNCS 6394, pp. 46–60, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



MDE-Based Approach for Generalizing Design Space Exploration 47

Existing DSE frameworks are configured to model and explore one or a set of
DSE problems in a given domain only. For example, frameworks [4] and [5] are
used for synthesis of embedded systems, while [6] and [7] are used for configura-
tion of software product-lines. At the highest level, these DSE frameworks per-
form similar process steps: (1) model the design space, (2) evaluate design alter-
natives and (3) use exploration algorithms to traverse the design space and find
feasible, satisfactory, and possibly optimized designs. Even though the under-
lying steps are similar, the representation, evaluation methods and exploration
techniques supported by the frameworks are tightly coupled to domain-specific
details, therefore they cannot be reconfigured to specify and solve other DSE
problems within or across domains. This forces the domain-experts to either ex-
tend the existing framework or use another framework more suited to solve the
DSE problem.

Current frameworks solve DSE problems by automatically refining the prob-
lem specification to a concrete model as a constraint problem, such as integer-
linear programming (ILP) [8] and then feed it to an appropriate constraint solver,
which checks whether the encoding has a satisfying solution. The efficiency of a
solver to solve a DSE depends on the types of constraints, exploration objective
and the size of the problem. For example, a SAT [9] solver can efficiently ex-
tract a set of valid configurations for a software product-line satisfying boolean
constraints (inclusion/exclusion), but will perform poorly when the objective is
to an optimal configuration that satisfies numerical resource constraints, where
ILP solvers will perform better. Moreover, literature survey reveals that the same
DSE problem can be solved using different solvers and techniques. For example,
software product-line configuration problems have been solved using CSP [2] and
SAT [10] solvers. At present there are no frameworks that provide the flexibility
to select a solver to solve a given problem or use number of solvers on the same
problem to compare their efficiency.

In this paper, we present the Generic Design Space Exploration (GDSE)
framework, a meta-programmable tool that can be configured to model DSE
problems from any domain and provides the flexibility to use different solvers
and techniques to perform DSE. The GDSE Framework is based on Model-
Driven Engineering (MDE) [11] approach that enables modeling on a higher
level of abstraction, reuse of previously defined artifacts and provides mecha-
nisms to transform models into various other forms. The MDE-based approach
facilitates reuse of common DSE elements and enables association of DSE char-
acteristics to the objects of any DSML. The framework also provides abstractions
that decouple the representation of design space from the exploration algorithm,
thereby enabling the flexibility to choose from different solvers and techniques
to perform exploration.

The paper describes in detail the GDSE framework, which comprises of the
Abstract Design Space Exploration language (ADSEL) , the Constraint Specifi-
cation Language (CSL) to support writing constraints and a set interpreters that
enable integration of a set of exploration solvers and techniques. The main con-
tributions of this framework are: (1) tool for rapid modeling of DSE problems,



48 T. Saxena and G. Karsai

(2) reuse of previously defined artifacts, (3) multiple solver support and (4) a
tool for scalability study.

The remainder of the paper is organized as follows: Section 2 presents an
overview of the GDSE framework. Section 3 describes the languages and trans-
lators used in the framework in detail. Section 4 describes the use of the proposed
approach to model a case study. Section 5 discusses the related works and finally
Section 6 presents concluding remarks and future work.

DSML ADSEL

eDSML

Design Space 
Model

Instance of

GME

FlatZinc Solver

Solver Independent 
Constraint Problem in 

Minizinc

Intermediate 
Language

Intermediate Design 
Space Model

Instance of

FD 
Solver

LP 
Solver

Gecode
Solver

DESERT

4

1

t

2

3

Fig. 1. Generic Design Space Exploration Framework

2 Overview of GDSE Framework

Figure 1 gives an overview of the GDSE framework and the steps performed to
use it. The GDSE framework adopts Model Integrated Computing (MIC) as the
core technology. MIC is based on the use of domain-specific modeling languages,
model transformations, model analysis, and synthesis; and it is supported by
a suite of meta-programmable tools, including Generic Modeling Environment
(GME) [12]. GME allows the language designer to capture the syntactic and
semantic aspects of a domain in a stereotyped UML-style class diagram (meta-
model). This metamodel is instantiated into a graphical language, and meta-
model class stereotypes and attributes determine how the elements are presented
and used by modelers.

There are four steps involved in using the framework, where steps (1) and (2)
are executed once per domain, while steps (3) and (4) are executed, iteratively,
when a system is being designed. By following these steps DSE problems in any
domain can be solved. We examine each of the steps in more detail:



MDE-Based Approach for Generalizing Design Space Exploration 49

1. Design a Domain Specific Modeling Language (DSML): This step
is specific to each individual domain (see [12] for details). A domain expert
builds the DSML metamodel which captures entities in the domain and their
relationships. The same DSML metamodel can be reused for solving different
DSE problems within a domain.

2. Extend the DSML: The original DSML is then extended to capture the el-
ements (constraints, objectives, metrics) of a particular DSE problem in the
domain . This extension is performed using Template Instantiation technique
of metamodel composition [13]. Using this technique, we record the common
DSE metamodeling pattern as an abstract metamodel template, then instan-
tiate its elements by inheriting pre-existing elements in the original DSML
from the template elements. This enables the DSML elements to play the
roles of corresponding template elements in the target metamodel. In GDSE
framework, we call this generic language template as Abstract Design Space
Exploration Language (ADSEL) and extended language resulting from the
composition as eDSML, where ‘e’ stands for ‘extended’. The composition is
dependent on the nature of the DSE problem and has to be performed once
for each kind of design space exploration in a given domain.

3. Create a domain specific design space model: The eDSML specifica-
tion is used to configure the framework so that domain-engineers can use
this version of the tool to create an instance(s) of the design space with
constraints.

4. Perform DSE: The framework employs a two-stage transformation to au-
tomatically translate the design space model created in the previous step,
first to a model in Intermediate Language (IRL), and then to a Minizinc [14]
model, a solver-independent medium-level language used to express combi-
natorial search problems. The Minizinc model can be mapped to different
solving techniques and solvers like constraint programming, mathematical
modeling, etc. The Minizinc tool distribution includes a pre-defined trans-
lator which converts the Minizinc model to a low-level format (Flatzinc).
It also provides translators to transform Flatzinc model to different solver
specific languages. Moreover, Flatzinc is also supported by other external
solvers like Gecode [15] and Eclipse [16].

3 Languages and Translators Supporting GDSE
Framework

This section presents the languages and translators which form the framework.
The language metamodels use GME metamodeling syntax which is well docu-
mented in [17]. Concepts like inheritance and containment are similar to those
in UML. The stereotypes (ex: <<Model>>, <<Atom>>, <<Connection>>)
express the binding of the abstract syntax to the concrete syntax implemented
by the GME environment.



50 T. Saxena and G. Karsai

3.1 Abstract Design Space Exploration Language (ADSEL)

Abstract Design Space Exploration Language is the core of design space represen-
tation in the GDSE framework. ADSEL enables reuse of common DSE elements
while modeling different DSE problems. Moreover, the metamodel composition
enables association of DSE characteristics to objects of any underlying DSML.
All the elements in the ADSEL metamodel are abstract and can be replicated and
concretized in the target eDSML metamodel after composition with a DSML.

The ADSEL Metamodel consists of (i) Component Types, which provide a
generic representation to hierarchically structure the design alternatives at any
abstraction level, (ii) Constraints, which model the interactions between the
design alternatives, (iii) Function, which captures the goal of the exploration
and (iv) Metrics, which capture the metrics (for example, totalcost) required
to compare the different design alternative during the exploration process. In
the following, we describe each of category in detail.

Fig. 2. Component Types in Abstract Design Space Exploration Language

Component Types: The design variants are structured hierarchically using
Component classes: Primitive, Mandatory, Alternative, Option and Or. The
Primitive class is a fundamental unit of composition. The Mandatory class mod-
els composition, which means all the child objects are included if the parent is
included in a configuration. The Alternative class models a choice point where
exactly one child object is included. The Option class models a choice point
where one or none of the child objects is included. Finally, the Or class models
a choice point where any number of child objects between the minCardinality
and maxCardinality can be included if the parent is included in a configura-
tion. The component types structure the design space in form of a tree where
Primitives represent the leaf nodes. The design space is contained in Design-
Configurations class.

This part of the metamodel has been influenced by feature models [18], which
capture variability in a configurable application with set of features arranged in a



MDE-Based Approach for Generalizing Design Space Exploration 51

tree structure. ADSEL uses a subset of the feature set types which are sufficient
to capture generic structure of design spaces.

Properties: ADSEL allows associating a set of DSE properties to the Primitive
components. The container components aggregate the properties of the con-
tained objects using a composition function. A property specification includes
the following parts:

– PropertyType, which specifies if a property is set before the exploration
process (i.e. a parameter) or as a result of it (i.e. decision).

– ValueType, which can be {INT, BOOL, CUSTOM}, where CUSTOM is used when
domain of the variable is restricted to instance id’s of a metamodel element.
(for example, CUSTOM: Task means that the variable domain consists of id’s
of the instances of Task).

– Domain, which can be a single value or set or range of values that the variable
can take and depends on the ValueType.

– Composition, represents a recursive formula used to calculate property val-
ues of container components depending on its type. For example, if compo-
sition is ADD, then property value of a Mandatory object is given by∑
c∈chil(m)

c.property

where child(m) returns the child objects. Currently, only {ADD, MULT, MIN,
MAX, MEAN} are supported.

Fig. 3. Constraints and Objectives in ADSEL

Constraints: ADSEL captures the constraints on the design space using the
two constraint classes (shown in Figure 3): (1) GraphicalConstraint, which mod-
els dual context constraint used to impose a relation between two objects in the
design space tree (for example, A requires B) and (2)TextualConstraints, which
models a single context constraint (for example, A.memory ≤ 128). These are
explicitly instantiated in the design space model. By default a valid configura-
tion should satisfy all constraints. Disjunctive constraints can be modeled using
DisjunctiveConstraintSet, which can contain a set of (1) and (2) constraints,



52 T. Saxena and G. Karsai

such that exactly one constraint in the set should be true. Besides these con-
straints ADSEL also supports GlobalConstraint, which is applied to the entire
design space (for example, forall(m in Module) (m.resourcetype != 0)). It
is modeled as an attribute of DesignConfigurations (shown in Figure 2). All
constraint objects have an expression attribute, which captures the constraint
definition specified using Constraint Specification Language (CSL), a simple lan-
guage developed to facilitate user friendly syntax for writing constraints on ele-
ments of the design space.

Metric: This captures the temporary values required to compare the different
design alternatives during the exploration. The value of the metric is calculated
according to the assignmentExpr attribute. For example, utilization is a metric
which is calculated depending on the WCET and Period of the tasks mapped
on to the processor.

Function: This captures the goal of the exploration process. There are two
kinds of functions(shown in Figure 3): (i) Satisfy objective is used to perform
constraint-based DSE where the goal is to find design alternatives that satisfy
all constraints, and (ii) Optimize provides a placeholder for specifying the cost
functions used to compare the alternatives in the design space. Currently, the
framework supports only single goal optimization. The Optimize objective uses
metrics as parameters. Multiple objectives can be combined together using the
function definition attribute.

3.2 Constraint Specification Language (CSL)

Existing approaches like ILP (only linear constraints) and SAT (only boolean con-
straint) support only a subset of the constraints. A generic framework should sup-
port an expressive constraint language that can capture all arithmetic, boolean
and set constraints. Modeling tools like GME use Object Constraint Language
(OCL) to specify the requirements that must be satisfied by a design. However,
for DSE we need a language that can specify constraints which restrict the space of
admissible designs. Although OCL is sufficiently expressive to capture these con-
straints, the expressions can sometimes become verbose and hard to read [19]. We
need a more specialized constraint specification language that is easy to use with
the representation. Our initial attempt was to use an extended subset of OCL (add
traversal functions: children, implementedby). This extended subset was useful
for expressing single context constraints but not for multi-context constraints, be-
cause by default OCL expressions are single context expressions which can become
very complex when used to express constraints with multiple contexts.

In order to overcome the limitations OCL, we developed Constraint Specifica-
tion Language (CSL), a simple language to specify constraint expressions in the
GDSE framework. The main goal was to overcome the verbosity of OCL expres-
sions without compromising the expressiveness. At present, CSL consists of only



MDE-Based Approach for Generalizing Design Space Exploration 53

the most essential elements needed to express constraints (property variables,
relational, logical and set operators). A collection of operations are applied to
the property variables and constants to form an expression. At the highest level
an expression is a logical expression. There are two main differences between
OCL and CSL:

(1) CSL supports dual-context expressions, where the two contexts are refer-
enced by keywords $src and $dst. This allows us to write succinct cross-tree
constraints. For example, constraint A1 requires B2 can be written in extended
OCL and CSL as follows:

OCL context: R
OCL expression:
children(A).implementedBy=children(A).children(A1) Implies
children(B).implementedBy()=children(B).children(B2)

where R is the least common ancestor of A1 and B2.

CSL context: $src-A1 , $dst-B2
CSL expression: $src -> $dst

(2) OCL is a general expression language where expressions are tied to the
classes, associations and attributes whereas CSL is more specialized, where ex-
pressions are algebraic relationship between attributes of the classes.

CSL expression: $src.Cost < 100

Fig. 4. Metamodel of IRL

3.3 Intermediate Language (IRL)

The GDSE Framework supports multiple solvers in the backend by the use of two
solver independent formats: Intermediate Language (IRL) and Minizinc. IRL has
been developed to simplify the transformation process from a domain specific
design model to solver-independent model in Minizinc. IRL distills all visual and
other details not related to DSE and captures design space and constraints in
a form closer to one required by solver languages. Another advantage of IRL is



54 T. Saxena and G. Karsai

that it allows use of symbolic constraint satisfaction tools like DESERT [20] that
work at a higher abstraction level as compared to Finite Domain, SAT and ILP
solvers. Figure 4 shows the metamodel of IRL.

3.4 Translators

The refinement of design space model to a concrete model in Minizinc is a two-
stage process. The stage-1 transformation from eDSML model to IRL model
is performed using domain independent transformation written in the Graph
Rewriting and Transformation tool (GReAT) [21]. The stage-2 transformation
from the IRL model to a model in Minizinc creates data structures for the
design space tree and parses the CSL constraints to Minizinc constraint. This
translator is written in C++. Currently, the framework enables the designer to
choose the solver from {Flatzinc, LazyFD, Gecode} solvers, where LazyFd is a
hybrid SAT-CSP solver based on [22]. Other solvers like MiniSAT [9] solver etc.
can also be used but have not been tested yet. The solutions obtained from the
selected solver can be visualized using Gecode GIST [15], a graphical tool used
to interactively search the design space. The designer can also choose to feed
back the solution models into the design space model.

4 Motivating Example: Software Product-Line
Configuration

This section describes a simple software product-line configuration problem with
resource constraint and walks through its modeling and exploration to elucidate
the salient features of the GDSE Framework.

4.1 Problem Specification

We focus on a Face Recognition System case study, which is adapted from [23].

Feature Model: The Face Recognition System is equipped with two features:
Face recognition algorithm and a Camera used to capture the images. The
Face Recognition algorithm has three variants: (i) Linear Discriminant Anal-
ysis (LDA), (ii) Principal Component Analysis (PCA) and (iii) Bayesian. Each
of these variants has two versions of implementations each. The camera generates
images in two formats: (i) JPEG, (ii) TIFF. Each feature has set of parameters
{memoryi, accuracyi, costi}which specify the memory, accuracy and cost char-
acteristics of the feature.

Constraints: (1) PCA requires the image in JPEG format, (2) Face Recogni-
tion algorithm must satisfy the upper bounds on memory, Memory ≤ 2048.

Problem Objective: The design space consists of 16 possible configurations
and the goal is to find a configuration that satisfies all constraints, and mini-
mizes cost.



MDE-Based Approach for Generalizing Design Space Exploration 55

Fig. 5. Metamodel Composition

4.2 Step by Step Modeling of the Problem

(1) Create DSML: The first step mentioned in Section 2 is to create the
DSML. Figure 5a shows the Feature metamodel sufficient for creating feature
models. It consists of primitive element, Feature and container elements Com-
pound, Template and Option.

Fig. 6. Constraints in eFeature Metamodel

(2) Extending the DSML to model DSE problem: The domain expert ex-
tends the Feature metamodel to capture the feature configuration DSE problem.
Figure 5c shows part of the extended-Feature (eFeature) metamodel, created for
our example problem. The component entities (Feature, Alternative) of Feature
meta are derived from ADSEL component(ADSELPrimitive, ADSELAlterna-
tive), thereby inheriting their properties. New DSE attributes (accuracy, mem-
ory and cost) are added to Feature class in eFeature metamodel. Figure 6 shows



56 T. Saxena and G. Karsai

the constraint fragment of the eFeature meta. The requiresConstraint specifies
that selection of the source feature implies selection of destination feature. This
is captured by the CSL expression: $src → $dst. When an instance of this con-
straint is created, the keywords are automatically replaced by instance names,
thus alleviating the domain engineer from writing complex constraint expres-
sions. The MemoryConstraint specifies an upper bound ($self.value) on the
memory property of its context ($src).
(3) Create a design space model: The eFeature metamodel is used to con-
figure the GME environment using predefined interpreters. Figure 7 shows a
concrete model of Face Recognition System configuration problem. The modeler
instantiates the MemoryConstraint, attaches it to the desired component and
sets the value field. The requiresConstraint is simply a line connection between
two components.

Fig. 7. Design Space Model and Feedback

(4) Exploration of design space model: After the model has been created
the domain-engineer selects a solver to perform exploration and the solutions
(if any) are appended in the design space model. Figure 7 shows the solutions
obtained from the Flatzinc solver.

Table 1 shows time (in seconds) taken to compute all valid configurations
for scaled up versions of our example problem. The goal of this exercise was
just to compare the time taken by two different solvers to solve our product-
line configuration problem and get an idea of what characteristics affect solver
efficiency.



MDE-Based Approach for Generalizing Design Space Exploration 57

Table 1. Evaluation Result

Problem No. of features Flatzinc LazyFD

test 1 14 0.079 2.017

test 2 25 0.1723 3.799

test 3 40 0.541 8.531

test 4 78 1.720 22.36

5 Related Works

A large body of work exists on representation and solution of DSE problems,
especially in embedded systems and software product line domains. We sample
a few domain specific and generic exploration frameworks and compares their
capabilities with our framework.

DSE Frameworks for embedded systems design: Within the embedded
systems domain, DSE frameworks are used for component selection, resource
allocation, routing and scheduling.

Metropolis [4] is an integrated design environment for development of em-
bedded systems. The framework uses an algebraic approach for DSE where each
design alternative is a dataflow and exploration is performed using graph rewrite
rules to generate alternatives that preserve the scheduling constraints. Metropo-
lis uses representation and exploration algorithms which works well for the given
problem, but can not be reused.

PISA [24] is a framework that uses an evolutionary multi-objective search
algorithm to perform DSE. The search algorithm is implemented as a set of
communicating processes. PISA is better than other frameworks in terms of
flexibility since it separates the problem specification from the exploration
algorithm.

Many other techniques and frameworks exist that focus on finding design
alternatives that satisfy global constraints, and have been surveyed in [25]. Most
of these frameworks are tightly coupled with the evaluation methods and are
neither reusable (to solve a new DSE problem in the same domain), nor flexible
(to support different solvers in the backend). Unlike these frameworks, the GDSE
Framework decouples the representation and exploration algorithms from the
evaluation methods, thereby enabling both reusability and flexibility.

DSE Frameworks for Software Product-line: Within software product-line
domain, DSE frameworks are used to retrieve configurations that satisfy certain
constraints. These frameworks use feature models to structure design variants in
a tree like structure.

Feature Modeling Analyzer (FAMA) [6] is a framework for automated anal-
ysis of feature models integrating logic representation and off the shelf solvers.
FAMA automatically selects the most suitable solver to perform an operation
on the feature models. For example, OBDD solver counts the number of valid



58 T. Saxena and G. Karsai

configurations, SAT solver selects a particular configuration. At present CSP,
SAT and OBDD solvers are integrated in the framework.

Software Product Lines Online Tools (S.P.L.O.T) [7] is a Web-based frame-
work similar to FAMA. It enables interactive analysis and configuration of soft-
ware product lines and supports multiple solvers in the backend.

The goals of GDSE Framework are in sync with the goals of FAMA and
SPLOT. These frameworks also support flexibility and extensibility for solving
DSE problems in software product-line domain. The proposed framework can be
viewed as a generalization of these frameworks and can be used to handle DSE
problems from other domains as well.

Generic Frameworks: DESERT [20] is a generic DSE framework that has been
used to perform coarse-grained DSE. The design alternatives are structured hi-
erarchically in an AND-OR-LEAF tree with boolean constraints. The design
tree and constraints are symbolically encoded, using Ordered Binary Decision
Diagrams (OBDD)s [26]. The user interactively selects the hard constraints to
prune the design space in a single step. Although this DSE approach is exhaus-
tive, it does not scale well in the presence of continuous finite domain variables.
DESERT-FD [27] is a DSE framework developed to overcome the limitations of
DESERT. It uses a combination of OBDD and FD solver to perform DSE. Both
frameworks are domain independent frameworks and can be used to represent
and explore design spaces in any domain. Unlike the proposed framework, they
use a single encoding mechanism to perform exploration and lack the flexibility
of experimenting different solvers to explore the same space.

EXPLORA [28] is a Java based tool which enables generic DSE by provid-
ing support to integrate different optimization algorithms, cost functions and
synthesis tools. This tool supports DSE at different abstraction levels but the
reconfiguration has to be done programatically.

6 Conclusion and Future Work

In this paper, we presented a meta-programmable tool for representation and solu-
tion of DSE problems. The proposed approach has four main benefits. Firstly, the
framework provides tooling for rapid modeling of DSE problems. The domain-
experts can easily meta-program it to work for a DSE problem in any domain
(using metamodel composition). Once this is done, the domain-engineers can use
this version of the tool to create an instance of design space with constraint in-
stances and can select a solver to perform DSE. Secondly, the framework supports
reuse of the DSE metamodeling pattern (ADSEL) across domains so that the
domain experts can just focus on the unique domain-constraints rather than re-
implementing similar functionality. Within a domain, the same DSML metamodel
can be reused to specify DSE problems at different abstraction levels. Thirdly, the
proposed framework provides the flexibility to solve a given DSE problem using
any solver supported in the backend. The framework can also used as a hybrid
DSE tool where the solvers are used in series, each reducing the size of design
space. Finally, the framework can be used as a scalability analysis tool to com-
pare the efficiency of different solvers in solving a given exploration problem. This



MDE-Based Approach for Generalizing Design Space Exploration 59

leads to a huge reduction in efforts as compared to the current techniques that
require the designer to manually reformulate the problem in order to compare the
efficiency of different solvers in solving the same DSE.

There are several research directions where development can further enhance
the usability of the GDSE framework. Currently, the framework supports only
hierarchical representation of design alternatives and exact solver techniques
(FD, ILP) in the backend. In future we plan to extend the framework to support
parametric representation and search-based techniques which work better on
large design space. At present a domain expert manually creates extended-DSML
by metamodel composition, which is simple but time consuming task. In future,
we plan to semi-automate this process to ease reconfiguration of the framework.

Acknowledgments. This work was sponsored by DARPA, under its Software
Producibility Program. The views and conclusions presented are those of the
authors and should not be interpreted as representing official policies or en-
dorsements of DARPA or the US government.

References

1. Hourani, R., Jenkal, R., Davis, W.R., Alexander, W.: Automated Design Space
Exploration for DSP Applications. J. Signal Process. Syst. 56(2-3), 199–216 (2009)

2. Benavides, D., Trinidad, P., Ruiz-Cortés, A.: Automated Reasoning on Feature
Models. In: Pastor, Ó., Falcão e Cunha, J. (eds.) CAiSE 2005. LNCS, vol. 3520,
pp. 491–503. Springer, Heidelberg (2005)

3. Oh, H., Ha, S.: Hardware-Software Cosynthesis of Multi-Mode Multi-Task Embed-
ded Systems with Real-Time Constraints. In: CODES 2002, pp. 133–138 (2002)

4. Balarin, F., Watanabe, Y., Hsieh, H., Lavagno, L., Passerone, C., Sangiovanni-
Vincentelli, A.: Metropolis: An Integrated Electronic System Design Environment.
Computer 36, 45–52 (2003)

5. Bakshi, A., Prasanna, V.K., Ledeczi, A.: MILAN: A Model Based Integrated Simu-
lation Framework for Design of Embedded Systems. In: LCTES 2001: Proceedings
of the ACM SIGPLAN workshop on Languages, compilers and tools for embedded
systems, pp. 82–93. ACM, New York (2001)

6. Benavides, D., Segura, S., Trinidad, P., Ruiz-cortés, A.: FAMA: Tooling a frame-
work for the automated analysis of feature models. In: Proceeding of the First
International Workshop on Variability Modelling of Softwareintensive Systems
(VAMOS), pp. 129–134 (2007)

7. Mendonca, M., Branco, M., Cowan, D.: S.P.L.O.T.: software product lines online
tools. In: OOPSLA 2009: Proceeding of the 24th ACM SIGPLAN conference com-
panion on Object oriented programming systems languages and applications, pp.
761–762. ACM, New York (2009)

8. Schrijver, A.: 15.1 : Karmarkar’s polynomial–time algorithm for linear program-
ming. In: Theory of Linear and Integer Programming, pp. 190–194. John Wiley &
Sons, New York (1986)

9. En, N., Srensson, N.: An Extensible SAT-solver. In: Giunchiglia, E., Tacchella, A.
(eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2003)

10. Janota, M.: Do SAT Solvers Make Good Configurators? In: Thiel, S., Pohl, K.
(eds.) SPLC (2), Lero Int. Science Centre, pp. 191–195. University of Limerick,
Ireland (2008)



60 T. Saxena and G. Karsai

11. Schmidt, D.C.: Model-Driven Engineering. IEEE Computer 39(2) (February 2006)
12. Sztipanovits, J., Karsai, G.: Model-Integrated Computing. Computer 30(4), 110–

111 (1997)
13. Emerson, M., Sztipanovits, J.: Techniques for Metamodel Composition. In: OOP-

SLA 6th Workshop on Domain Specific Modeling, pp. 123–139 (2006)
14. Nethercote, N., Stuckey, P.J., Becket, R., Brand, S., Duck, G.J., Tack, G.: MiniZinc:

Towards a standard CP modelling language. In: Bessière, C. (ed.) CP 2007. LNCS,
vol. 4741, pp. 529–543. Springer, Heidelberg (2007)

15. Tack, G.: Constraint Propagation - Models, Techniques, Implementation. phd. the-
sis, Saarland University, Germany (2009)

16. Apt, K.R., Wallace, M.: Constraint Logic Programming using Eclipse. Cambridge
University Press, New York (2007)

17. Karsai, G., Sztipanovits, J., Ledeczi, A., Bapty, T.: Model-Integrated Development
of Embedded Software. Proceedings of the IEEE, 145–164 (2003)

18. Kang, K.C., Kim, S., Lee, J., Kim, K., Shin, E., Huh, M.: FORM: A feature-
oriented reuse method with domain-specific reference architectures. Ann. Softw.
Eng. 5, 143–168 (1998)

19. Vaziri, M., Vaziri, A., Jackson, D.: Some Shortcomings of OCL, the Object Con-
straint Language of UML

20. Neema, S.: System-Level Synthesis of Adaptive Computing Systems. PhD thesis,
Vanderbilt University (May 2001)

21. Agrawal, A.: Graph Rewriting And Transformation (GReAT): A Solution For The
Model Integrated Computing (MIC) Bottleneck. In: International Conference on
Automated Software Engineering, p. 364 (2003)

22. Feydy, T., Stuckey, P.: Lazy clause generation reengineered. In: Gent, I.P. (ed.) CP
2009. LNCS, vol. 5732, pp. 352–366. Springer, Heidelberg (2009)

23. White, J., Dougherty, B., Schmidt, D.C.: Selecting highly optimal architectural
feature sets with Filtered Cartesian Flattening. J. Syst. Softw. 82(8), 1268–1284
(2009)

24. Bleuler, S., Laumanns, M., Thiele, L., Zitzler, E.: PISA - A Platform and Pro-
gramming Language Independent Interface for Search Algorithms, pp. 494–508.
Springer, Heidelberg (2003)

25. Gries, M.: Methods for evaluating and covering the design space during early design
development. Integr. VLSI J. 38(2), 131–183 (2004)

26. Bryant, R.: Graph-Based Algorithms for Boolean Function Manipulation. IEEE
Transactions on Computers 35, 677–691 (1986)

27. Eames, B.K., Neema, S.K., Saraswat, R.: DesertFD: A Finite-Domain Constraint
based tool for Design Space Exploration. Design Automation for Embedded Sys-
tems (2009)

28. Cieslok, F., Esau, H., Teich, J.: EXPLORA - Generic Design Space Exploration
during Embedded System Synthesis. In: DIPES 2000: Proceedings of the IFIP
WG10.3/WG10.4/WG10.5 International Workshop on Distributed and Parallel
Embedded Systems, pp. 215–226. Kluwer, B.V, Deventer (2001)



A Comparison of Model Migration Tools

Louis M. Rose1, Markus Herrmannsdoerfer2, James R. Williams1,
Dimitrios S. Kolovos1, Kelly Garcés3,4, Richard F. Paige1,

and Fiona A.C. Polack1

1 Department of Computer Science,
University of York, UK

{louis,jw,dkolovos,paige,fiona}@cs.york.ac.uk
2 Institut für Informatik,

Technische Universität München, Germany
herrmama@in.tum.de

3 AtlanMod (EMN-INRIA)
Nantes, France

4 ASCOLA (LINA-INRIA)
Nantes, France

kelly.garces@mines-nantes.fr

Abstract. Modelling languages and thus their metamodels are sub-
ject to change. When a metamodel evolves, existing models may no
longer conform to the evolved metamodel. To avoid rebuilding them from
scratch, existing models must be migrated to conform to the evolved
metamodel. Manually migrating existing models is tedious and error-
prone. To alleviate this, several tools have been proposed to build a mi-
gration strategy that automates the migration of existing models. Little
is known about the advantages and disadvantages of the tools in differ-
ent situations. In this paper, we thus compare a representative sample of
migration tools – AML, COPE, Ecore2Ecore and Epsilon Flock – using
common migration examples. The criteria used in the comparison aim to
support users in selecting the most appropriate tool for their situation.

1 Introduction

When a metamodel evolves, existing models may no longer conform to the struc-
tures and rules of the metamodel [4]. To avoid rebuilding existing models from
scratch, these models are migrated to conform to the evolved metamodel. Man-
ual migration is tedious and error-prone, and so migration needs to be auto-
mated [11]. Building an automated migration strategy (even if desirable in prac-
tice) is non-trivial, as it has to correctly migrate an arbitrary set of models.

Recently, many different tools for building a migration strategy have become
available. Each tool has strengths and weaknesses. However, little is known about
how the tools compare in practice and so tool selection is difficult.

In this paper, we compare four model migration tools, selected from those
described in Section 2. Following the systematic process outlined in Section 3,
the tools are applied to two examples to facilitate their comparison. Section 4

D.C. Petriu, N. Rouquette, Ø. Haugen (Eds.): MODELS 2010, Part I, LNCS 6394, pp. 61–75, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



62 L.M. Rose et al.

reports our experiences in using each of the tools, highlighting their strengths
and weaknesses using nine criteria that we deem important for model migration.
From this comparison, Section 5 synthesises advice and guidelines to help users
in identifying the most appropriate model migration tool for their situation.

2 Related Work

Model transformation. Model migration can be implemented in a general-
purpose programming language (such as Java), or in a model-to-model (M2M)
transformation language, such as QVT [19] (the current OMG standard), ATL
[15] or Xtend (of the popular openArchitectureWare framework1).

[17] identifies different kinds of model transformations, and in particular two
categories of relationship between source and target metamodel: exogenous and
endogenous. In the former, the source and target metamodels differ, and the
target model is constructed entirely by the transformation. In the latter, source
and target metamodels are the same, and so the target model can be initialised
to be the same as source model before the transformation. In model migration,
source and target metamodels differ, and hence endogenous transformations can-
not be used. Consequently, model migration strategies are often specified with
exogenous model-to-model transformation languages, and must contain sections
for copying from original to migrated model those model elements that have not
been affected by metamodel evolution.

Model migration. As was first argued by Sprinkle [22], model migration is
best served by a language that combines properties of exogenous and endoge-
nous model transformation: we need to be able to specify the transformation
from a source metamodel to a different target metamodel, but only for the
metamodel elements for which a migration is required. Rose et al. [20] classify
model migration approaches into the following categories:

Manual specification approaches provide transformation languages to manu-
ally specify the model migration. These transformation languages try to reduce
the effort for building a migration strategy by providing mechanisms that are
specific for model migration. For instance, the approaches described in [18,21,23]
extend an exogenous transformation language to automatically copy model ele-
ments whose metamodel definition has not changed. While manual specification
fosters correctness of the model migration, it also requires the most effort to
build a migration strategy.

Operator-based approaches, such as [12,25], provide coupled operators that
allow metamodel changes and model migration strategies to be specified to-
gether. By capturing recurring co-evolution patterns as operators, these ap-
proaches avoid the need to specify identity rules, reusing recurring combinations
of metamodel evolution and model migration through coupled operations.

Metamodel matching approaches automatically generate an exogenous model
transformation from the difference between two metamodel versions. Because
1 http://www.openarchitectureware.org/

http://www.openarchitectureware.org/


A Comparison of Model Migration Tools 63

an exogenous transformation is generated, model elements that have not been
affected by co-evolution must be considered. Unlike manual specification, boiler-
plate code for automatic copying is automatically generated. Cicchetti [1] was the
first to report a metamodel matching approach, noting that some categories of
change cannot be automatically migrated. Garcés et al. [7] provide a potentially
more expressive approach that allows the matching strategy to be parameterised.

Comparison. Apart from the above categorisation based on theoretical aspects
of existing model migration approaches, no work compares model migration
tools. However, several papers compare model transformation languages. Czar-
necki and Helsen [2] present a feature model to classify transformation languages
according to their technical properties. Mens and van Gorp [17] present func-
tional and non-functional requirements for transformation languages. Taentzer
et al. [24] compare the graph transformation languages AGG, TGG, VIATRA,
and VMTS using the well-known object to relational transformation example.
Gronmo et al. [9] compare the transformation languages CGT, AGG, and ATL
using a complex refactoring example. These comparisons are used here to derive
criteria for the comparison of model migration tools.

3 Comparison Method

In this section, we present the approach used to compare the model migra-
tion tools. The comparison is based on practical application of the tools to the
co-evolution examples presented in Section 3.1. The selection of tools for the
comparison is described in Section 3.2. To contextualise the conclusions drawn
in this paper, Section 3.3 describes the process used to carry out the comparison.

3.1 Co-evolution Examples

To compare migration tools, two examples of co-evolution were used. The first is
a well-known problem in the model migration literature and was used to test the
comparison process, as discussed in Section 3.3. The second is a larger example
taken from a real-world model-driven development project, and was identified
as a potentially useful example for co-evolution case studies in [13].

Petri Nets. The first example is an evolution of a Petri net metamodel, previ-
ously used in [1,7,21,25] to discuss co-evolution and model migration.

In Figure 1(a), a Petri Net comprises Places and Transitions. A Place
has any number of src or dst Transitions. Similarly, a Transition has
at least one src and dst Place. In this example, the metamodel in Fig-
ure 1(a) is to be evolved to support weighted connections between Places and
Transitions and between Transitions and Places.

The evolved metamodel is shown in Figure 1(b). Places are connected to
Transitions via instances of PTArc. Likewise, Transitions are connected
to Places via TPArc. Both PTArc and TPArc inherit from Arc, and therefore
can be used to specify a weight.



64 L.M. Rose et al.

(a) Original metamodel. (b) Evolved metamodel.

Fig. 1. Petri nets metamodel evolution (taken from [21]). Shading is irrelevant.

GMF. The second example is taken from the Graphical Modeling Framework
(GMF) [8], an Eclipse project for generating graphical editors for models. The
development of GMF is model-driven and utilises four domain-specific metamod-
els. Here, we consider one of those metamodels, GMF Graph, and its evolution
between GMF versions 1.0 and 2.0.

The GMF Graph metamodel (not illustrated) describes the appearance of
the generated graphical model editor. The metaclasses Canvas, Figure, No-
de, DiagramLabel, Connection, and Compartment are used to represent
components of the graphical model editor to be generated. The evolution in
the GMF Graph metamodel was driven by analysing the usage of the Figu-
re#referencingElements reference, which relates Figures to the Diag-
ramElements that use them. As described in the GMF Graph documentation2,
the referencingElements reference increased the effort required to re-use
figures, a common activity for users of GMF. Furthermore, referencingEl-
ements was used only by the GMF code generator to determine whether an
accessor should be generated for nested Figures.

In GMF 2.0, the Graph metamodel was evolved to make re-using figures more
straightforward by introducing a proxy [5] for Figure, termed FigureDesc-
riptor. The original referencingElements reference was removed, and an
extra metaclass, ChildAccess, was added to make more explicit the original
purpose of referencingElements (accessing nested Figures).

GMF provides a migrating algorithm that produces a model conforming to
the evolved Graph metamodel from a model conforming to the original Graph
metamodel. In GMF, migration is implemented using Java. The GMF source
code includes two example editors, for which the source code management system
contains versions conforming to GMF 1.0 and GMF 2.0. For the comparison of
migration tools described in this paper, the migrating algorithm and example
editors provided by GMF were used to determine the correctness of the migration
strategies produced by using each model migration tool.

2 http://wiki.eclipse.org/GMFGraph_Hints

http://wiki.eclipse.org/GMFGraph_Hints


A Comparison of Model Migration Tools 65

3.2 Compared Tools

For the comparison in this paper, we selected one tool from each of the three
categories – manual specification, operator-based and metamodel matching ap-
proaches – described in Section 2. We included a further tool from the manual
specification category, Ecore2Ecore, as it is distributed with the Eclipse Mod-
eling Framework, arguably the most widely used modelling framework. Each of
these tools is discussed briefly below. Section 4 describes each tool in more detail.

AtlanMod Matching Language (AML) [7,6] is a model matching tool,
which can be used as a metamodel matching migration tool. AML provides
heuristics that the user combines to specify a metamodel matching strategy. A
migrating ATL transformation is automatically generated by matching original
and evolved metamodels.

COPE [12] is an operator-based migration tool. COPE provides a library of
co-evolutionary operators. Each co-evolutionary operator specifies both a meta-
model evolution and a corresponding model migration strategy. For example,
the “Introduce Reference Class” operator from COPE evolves the metamodel
such that a reference is replaced by a class and migrates models such that links
conforming to the reference are replaced by instances of the reference class.

Ecore2Ecore [14] is a manual specification migration tool that is part of
the Eclipse Modeling Framework (EMF). Migration is specified with a mapping
model and hand-written Java code. Ecore2Ecore has been used in real-world
projects, such as the Eclipse MDT UML2 project [3], to manage co-evolution.

Epsilon Flock [21] (subsequently referred to as Flock) is a manual specifica-
tion migration tool. Flock is a domain-specific transformation language tailored
for model migration. In particular, Flock automatically copies from original to
migrated model all model elements that have not been affected by metamodel
evolution. Flock is built atop Epsilon3 [16], an extensible platform providing
inter-operable programming languages for model-driven development.

3.3 Comparison Process

The comparison of migration tools was conducted by applying each of the four
tools (Ecore2Ecore, AML, COPE and Flock) to the two examples of co-evolution
(Petri nets and GMF). The developers of each tool were invited to participate in
the comparison. The authors of COPE and Flock were able to participate fully,
while the authors of Ecore2Ecore and AML were available for guidance, advice,
and to comment on preliminary results.

We began the comparison by allocating responsibility for using each tool on
the examples to a different person. Because the authors of Ecore2Ecore and AML
were not able to participate fully in the comparison, two colleagues experienced
in model transformation and migration stood in. To improve the validity of the
comparison, each tool was used by someone other than its developer. Other than
this restriction, the tools were allocated arbitrarily.

3 http://www.eclipse.org/gmt/epsilon

http://www.eclipse.org/gmt/epsilon


66 L.M. Rose et al.

Table 1. Summary of comparison criteria

Name Description

Construction Ways in which tool supports the development of migration strategies
Change Ways in which tool supports change to migration strategies

Extensibility Extent to which user-defined extensions are supported
Re-use Mechanisms for re-using migration patterns and logic

Conciseness Size of migration strategies produced with tool
Clarity Understandability of migration strategies produced with tool

Expressiveness Extent to which migration problems can be codified with tool
Interoperability Technical dependencies and procedural assumptions of tool

Performance Time taken to execute migration

The comparison was conducted in three phases. In the first phase, we identified
criteria against which the tools would be compared. In the second phase, we
used the first example of co-evolution (Petri nets) to familiarise ourselves with
the migration tools and to assess the suitability of the comparison criteria. In
the third phase, the tools were applied to the larger example of co-evolution
(GMF) and conclusions were drawn from our experiences. Table 1 summarises
the comparison criteria used in this paper. Further criteria could develop as a
result of further experimentation in the future. The next section presents, for
each criterion, observations from applying the migration tools to the co-evolution
examples.

4 Comparison Results

By applying the method described in Section 3, four model migration tools were
compared. This section reports similarities and differences of each tool, using
nine criteria. Each subsection considers one criterion. The complete solutions
are available online4.

4.1 Constructing the Migration Strategy

Facilitating the specification and execution of migration strategies is the pri-
mary function of model migration tools. This section reports the process for and
challenges faced in constructing migration strategies with each tool.

AML. An AML user specifies a combination of match heuristics from which
AML infers a migrating transformation by comparing original and evolved meta-
models. Matching strategies are written in a textual syntax, which AML compiles
to produce an executable workflow. The workflow is invoked to generate the mi-
grating transformation, codified in the Atlas Transformation Language (ATL)
[15]. Devising correct matching strategies was difficult, as AML lacks documen-
tation that describes the input, output and effects of each heuristic. Papers

4 http://github.com/louismrose/migration_comparison

http://github.com/louismrose/migration_comparison


A Comparison of Model Migration Tools 67

describing AML (such as [7,6]) discuss each heuristic, but mostly in a high-level
manner. A semantically invalid combination of heuristics can cause a runtime
error, while an incorrect combination results in the generation of an incorrect
migration transformation. However, once a matching strategy is specified, it can
be re-used for similar cases of metamodel evolution. To devise the matching
strategies used in this paper, AML’s author provided considerable guidance.

COPE. A COPE user applies coupled operations to the original metamodel
to form the evolved metamodel. Each coupled operation specifies a metamodel
evolution along with a corresponding fragment of the model migration strategy.
A history of applied operations is later used to generate a complete migration
strategy. As COPE is meant for co-evolution of models and metamodels, reverse
engineering a large metamodel can be difficult. Determining which sequence of
operations will produce a correct migration is not always straightforward. To
aid the user, COPE allows operations to be undone. To help with the migration
process, COPE offers the Convergence View which utilises EMF Compare to
display the differences between two metamodels. While this was useful, it can,
understandably, only provide a list of explicit differences and not the semantics
of a metamodel change. Consequently, reverse-engineering a large and unfamiliar
metamodel is challenging, and migration for the GMF Graph example could only
be completed with considerable guidance from the author of COPE.

Ecore2Ecore. In Ecore2Ecore model migration is specified in two steps. In
the first step, a graphical mapping editor is used to construct a model that
declares basic migrations. In this step only very simple migrations such as class
and feature renaming can be declared. In the next step, the developer needs to
use Java to specify a customised parser (resource handler, in EMF terminology)
that can parse models that conform to the original metamodel and migrate them
so that they conform to the new metamodel. This customised parser exploits
the basic migration information specified in the first step and delegates any
changes that it cannot recognise to a particular Java method in the parser for
the developer to handle. Handling such changes is tedious as the developer is
only provided with the string contents of the unrecognised features and then
needs to use low-level techniques – such as data-type checking and conversion,
string splitting and concatenation – to address them. Here it is worth mentioning
that Ecore2Ecore cannot handle all migration scenarios and is limited to cases
where only a certain degree of structural change has been introduced between
the original and the evolved metamodel. For cases which Ecore2Ecore cannot
handle, developers need to specify a custom parser without any support for
automated element copying.

Flock. In Flock, model migration is specified manually. Flock automatically
copies only those model elements which still conform to the evolved metamodel.
Hence, the user specifies migration only for model elements which no longer
conform to the evolved metamodel. Due to the automatic copying algorithm,
an empty Flock migration strategy always yields a model conforming to the
evolved metamodel. Consequently, a user typically starts with an empty mi-
gration strategy and iteratively refines it to migrate non-conforming elements.



68 L.M. Rose et al.

However, there is no support to ensure that all non-conforming elements are
migrated. In the GMF Graph example, completeness could only be ensured by
testing with numerous models. Using this method, a migration strategy can be
easily encoded for the Petri net example. For the GMF Graph example whose
metamodels are larger, it was more difficult, since there is no tool support for
analysing the changes between original and evolved metamodel.

4.2 Changing the Migration Strategy

Migration strategies can change in at least two ways. Firstly, as a migration
strategy is developed, testing might reveal errors which need to be corrected.
Secondly, further metamodel changes might require changes to an existing mi-
gration strategy.

AML. Because AML automatically generates migrating transformations,
changing the transformation, for example after discovering an error in the match-
ing strategy, is trivial. To migrate models over several versions of a metamodel
at once, the migrating transformations generated by AML can be composed by
the user. AML provides no tool support for composing transformations.

COPE. As mentioned previously, COPE provides an undo feature, meaning
that any incorrect migrations can be easily fixed. COPE stores a history of
releases – a set of operations that has been applied between versions of the
metamodel. Because the migration code generated from the release history can
migrate models conforming to any previous metamodel release, COPE provides
a comprehensive means for chaining migration strategies.

Ecore2Ecore. Migrations specified using Ecore2Ecore can be modified via
the graphical mapping editor and the Java code in the custom model parser.
Therefore, developers can use the features of the Eclipse Java IDE to modify
and debug migrations. Ecore2Ecore provides no tool support for composing mi-
grations, but composition can be achieved by modifying the resource handler.

Flock. There is comprehensive support for fixing errors. A migration strategy
can easily be re-executed using a launch configuration, and migration errors are
linked to the line in the migration strategy that caused the error to occur. If the
metamodel is further evolved, the original migration strategy has to be extended,
since there is no explicit support to chain migration strategies. The full migration
strategy may need to be read to know where to extend it.

4.3 Extensibility

The fundamental constructs used for specifying migration in COPE and AML
(operators and match heuristics, respectively) are extensible. Flock and Ecore2E-
core use a more imperative (rather than declarative) approach, and as such do
not provide extensible constructs.

AML. An AML user can specify additional matching heuristics. This requires
understanding of AML’s domain-specific language for manipulating the data
structures from which migrating transformations are generated.



A Comparison of Model Migration Tools 69

COPE provides the user with a large number of operations. If there is no
applicable operation, a COPE user can write their own operations using an
in-place transformation language embedded into Groovy5.

4.4 Re-use

Each migration tool capture patterns that commonly occur in model migration.
This section considers the extent to which the patterns captured by each tool
facilitate re-use between migration strategies.

AML. Once a matching strategy is specified, it can potentially be re-used
for further cases of metamodel evolution. Match heuristics provide a re-usable
and extensible mechanism for capturing metamodel change and model migration
patterns.

COPE. An operation in COPE represents a commonly occurring pattern in
metamodel migration. Each operation captures the metamodel evolution and
model migration steps. Custom operations can be written and re-used.

Ecore2Ecore. Mapping models cannot be reused or extended in Ecore2Ecore
but as the custom model parser is specified in Java, developers can decompose it
into reusable parts some of which can potentially be reused in other migrations.

Flock. A migration strategy encoded in Flock is modularised according to the
classes whose instances need migration. There is support to reuse code within a
strategy by means of operations with parameters and across strategies by means
of imports. Re-use in Flock captures only migration patterns, and not the higher
level co-evolution patterns captured in COPE or AML.

4.5 Conciseness

A concise migration strategy is arguably more readable and requires less effort
to write than a verbose migration strategy. This section comments on the con-
ciseness of migration strategies produced with each tool, and reports the lines
of code (without comments and blank lines) used.

AML. 117 lines were automatically generated for the Petri nets example. 563
lines were automatically generated for the GMF Graph example, and a further 63
lines of code were added by hand to complete the transformation. Approximately
10 lines of the user-defined code could be removed by restructuring the generated
transformation.

COPE requires the user to apply operations. Each operation application
generates one line of code. The user may also write additional migration code.
For the Petri net example, 11 operations were required to create the migrator
and no additional code. The author of COPE migrated the GMF Graph example
using 76 operations and 73 lines of additional code.

Ecore2Ecore. As discussed above, handling changes that cannot be declared
in the mapping model is a tedious task and involves a significant amount of
low level code. For the PetriNets example, the Ecore2Ecore solution involved
5 http://groovy.codehaus.org/

http://groovy.codehaus.org/


70 L.M. Rose et al.

a mapping model containing 57 lines of (automatically generated) XMI and a
custom hand-written resource handler containing 78 lines of Java code.

Flock. 16 lines of code were necessary to encode the Petri nets example, and
140 lines of code were necessary to encode the GMF Graph example. In the
GMF Graph example, approximately 60 lines of code implement missing built-
in support for rule inheritance, even after duplication was removed by extracting
and re-using a subroutine.

4.6 Clarity

Because migration strategies can change and might serve as documentation for
the history of a metamodel, their clarity is important. This section reports on
aspects of each tool that might affect the clarity of migration strategies.

AML. The AML code generator takes a conservative approach to naming
variables, to minimise the chances of duplicate variable names. Hence, some of
the generated code can be difficult to read and hard to re-use if the generated
transformation has to be completed by hand. When a complete transformation
can be generated by AML, clarity is not as important.

COPE. Migration strategies in COPE are defined as a sequence of operations.
The release history stores the set of operations that have been applied, so the
user is clearly able to see the changes they have made, and find where any issues
may have been introduced.

Ecore2Ecore. The graphical mapping editor provided by Ecore2Ecore allows
developers to have a high-level visual overview of the simple mappings involved in
the migration. However, migrations expressed in the Java part of the solution can
be far more obscure and difficult to understand as they mix high-level intention
with low-level string management operations.

Flock clearly states the migration strategy from the source to the target meta-
model. However, the boilerplate code necessary to implement rule inheritance
slightly obfuscates the real migration code.

4.7 Expressiveness

Migration strategies are easier to infer for some categories of metamodel change
than others [10]. This section reports on the ability of each tool to migrate the
examples considered in this comparison.

AML. A complete migrating transformation could be generated for the Petri
nets example, but not for the GMF Graph example. The latter contains examples
of two complex changes that AML does not currently support6. Successfully ex-
pressing the GMF Graph example in AML would require changes to at least one
of AML’s heuristics. However, AML provided an initial migration transforma-
tion that was completed by hand. In general, AML cannot be used to generate

6 http://www.eclipse.org/forums/index.php?t=rview&goto=526894#
msg_526894If

http://www.eclipse.org/forums/index.php?t=rview&goto=526894#msg_526894If
http://www.eclipse.org/forums/index.php?t=rview&goto=526894#msg_526894If


A Comparison of Model Migration Tools 71

complete migration strategies for co-evolution examples that contain breaking
and non-resolvable changes, according to the categorisation proposed in [10].

COPE. The expressiveness of COPE is defined by the set of operations avail-
able. The Petri net example was migrated using only built-in operations. The
GMF Graph example was migrated using 76 built-in operations and 2 user-
defined migration actions. Custom migration actions allow users to specify any
migration strategy.

Ecore2Ecore. A complete migration strategy could be generated for the
Petri nets example, but not for the GMF Graph example. The developers of
Ecore2Ecore have advised that the latter involves significant structural changes
between the two versions and recommended implementing a custom model parser
from scratch.

Flock. Since Flock extends EOL, it is expressive enough to encode both
examples. However, Flock does not provide an explicit construct to copy model
elements and thus it was necessary to call Java code from within Flock for the
GMF Graph example.

4.8 Interoperability

Migration occurs in a variety of settings with differing requirements. This section
considers the technical dependencies and procedural assumptions of each tool,
and seeks to answer questions such as: “Which modelling technologies can be
used?” and “What assumptions does the tool make on the migration process?”

AML depends only on ATL, while its development tools also require Eclipse.
AML assumes that the original and target metamodels are available for com-
parison, and does not require a record of metamodel changes. AML can be used
with either Ecore (EMF) or KM3 metamodels.

COPE depends on EMF and Groovy, while its development tools also require
Eclipse and EMF Compare. COPE does not require both the original and target
metamodels to be available. When COPE is used to create a migration strategy
after metamodel evolution has already occurred, the metamodel changes must
be reverse-engineered. To facilitate this, the target metamodel can be used with
the Convergence View, as discussed in Section 4.1. COPE targets EMF, and
does not support other modelling technologies.

Ecore2Ecore depends only on EMF. Both the original and the evolved
versions of the metamodel are required to specify the mapping model with
the Ecore2Ecore development tools. Alternatively, the Ecore2Ecore mapping
model can be constructed programmatically and without using the original meta-
model7. Unlike the other tools considered, Ecore2Ecore does not require the
original metamodel to be available in the workspace of the metamodel user.

Flock depends on Epsilon and its development tools also require Eclipse.
Flock assumes that the original and target metamodels are available for encoding
the migration strategy, and does not require a record of metamodel changes.
Flock can be be used to migrate models represented in EMF, MDR, XML and
7 Private communication with Marcelo Paternostro, an Ecore2Ecore developers.



72 L.M. Rose et al.

Z (CZT), although we only encoded a migration strategy for EMF metamodels
in the presented examples.

4.9 Performance

The time taken to execute model migration is important, particularly once a
migration strategy has been distributed to metamodel users. Ideally, migration
tools will produce migration strategies whose execution time is quick and scales
well with large models.

Fig. 2. Migration tool performance comparison

To measure performance, we produced Petri net models with a random gen-
erator, varying their size. Figure 2 shows the average time taken by each tool to
execute migration across 10 repetitions for models of different sizes. Note that
the Y axis has a logarithmic scale. The results indicate that, for the Petri nets co-
evolution example, AML and Ecore2Ecore execute migration significantly more
quickly than COPE and Flock, particularly when the model to be migrated con-
tains more than 1,000 model elements. Figure 2 indicates that, for the Petri nets
co-evolution example, Flock executes migration between two and three times
faster than COPE, although the author of COPE reports that turning off vali-
dation causes COPE to perform similarly to Flock.



A Comparison of Model Migration Tools 73

5 Discussion and Conclusions

The comparison results highlight the similarities and differences between a rep-
resentative sample of model migration approaches. In this section, the differences
are used to consider which tools are better suited to particular model migration
situations.

COPE captures co-evolution patterns (which apply to both model and meta-
model), while Ecore2Ecore, AML and Flock capture only model migration pat-
terns (which apply just to models). Because of this, COPE facilitates a greater
degree of re-use in model migration than other approaches. However, the order
in which the user applies patterns with COPE impacts on both metamodel evo-
lution and model migration, which can complicate pattern selection particularly
when a large amount of evolution occurs at once. The re-usable co-evolution pat-
terns in COPE make it well suited to migration problems in which metamodel
evolution is frequent and in small steps.

Flock, AML and Ecore2Ecore are preferable to COPE when metamodel evo-
lution has occurred before the selection of a migration approach. Because of its
use of co-evolution patterns, we conclude that COPE is better suited to forward-
rather than reverse-engineering.

Through its Convergence View and integration with the EMF metamodel
editor, COPE facilitates metamodel analysis that is not possible with the other
approaches considered in this paper. COPE is well-suited to situations in which
measuring and reasoning about co-evolution is important.

In situations where migration involves modelling technologies other than EMF,
AML and Flock are preferable to COPE and Ecore2Ecore. AML can be used with
models represented in KM3, while Flock can be used with models represented in
MDR, XML and CZT. Via the connectivity layer of Epsilon, Flock can be ex-
tended to support further modelling technologies.

There are situations in which Ecore2Ecore or AML might be preferable to
Flock and COPE. For large models, Ecore2Ecore and AML might execute mi-
gration significantly more quickly than Flock and COPE. Ecore2Ecore is the only
tool that has no technical dependencies (other than a modelling framework). In
situations where migration must be embedded in another tool, Ecore2Ecore of-
fers a smaller footprint than other migration approaches. Compared to the other
approaches considered in this paper, AML automatically generates migration
strategies with the least guidance from the user.

Despite these advantages, Ecore2Ecore and AML are unsuitable for some
types of migration problem, because they are less expressive than Flock and
COPE. Specifically, changes to the containment of model elements typically
cannot be expressed with Ecore2Ecore and changes that are classified by [11]
as metamodel-specific cannot be expressed with AML. Because of this, it is im-
portant to investigate metamodel changes before selecting a migration tool. Fur-
thermore, it might be necessary to anticipate which types of metamodel change
are likely to arise before selecting a migration tool. Investing in one tool to
discover later that it is no longer suitable causes wasted effort.



74 L.M. Rose et al.

Conclusions. This paper has compared a representative sample of approaches
to automating model migration, an activity crucial for supporting software evo-
lution in MDE. The comparison was performed by following a methodical process
and used an example from a real-world MDE project. Some preliminary recom-
mendations and guidelines in choosing a migration tool were synthesised from
the presented results and are summarised in Table 2.

The criteria considered in this paper provide a foundation for further compar-
isons. For example, we recognise the importance of the usability and learnability
of migration tools, and envisage a comprehensive user study (with 100s of users)
for assessing these criteria. Future work will identify further comparison crite-
ria and conduct further experimentation. In particular, we plan to investigate
memory usage and forward-compatibility of tools.

Table 2. Summary of tool selection advice. (Tools are ordered alphabetically).

Requirement Recommended Tools

Frequent, incremental co-evolution COPE
Reverse-engineering AML, Ecore2Ecore, Flock

Modelling technology diversity Flock
Quicker migration for larger models AML, Ecore2Ecore

Minimal dependencies Ecore2Ecore
Minimal hand-written code AML, COPE
Minimal guidance from user AML

Support for metamodel-specific migrations COPE, Flock

Acknowledgement. The work in this paper was supported by the European
Commission via the MADES project, co-funded under the “Information Society
Technologies” 7th Framework Programme (2009-2012). The work of the second
author was funded by the German Federal Ministry of Education and Research
(BMBF), grants “SPES2020, 01IS08045A” and “Quamoco, 01IS08023B”. The
work of the third author was supported by the EPSRC, through the Large-Scale
Complex IT Systems project, “EP/F001096/1”. The authors thank Kenn Hussey
and Marcelo Paternostro for reviewing a draft of this paper.

References

1. Cicchetti, A., Di Ruscio, D., Eramo, R., Pierantonio, A.: Automating co-evolution in
MDE. In: Proc. EDOC, pp. 222–231. IEEE Computer Society, Los Alamitos (2008)

2. Czarnecki, K., Helsen, S.: Feature-based survey of model transformation ap-
proaches. IBM Syst. J. 45(3), 621–645 (2006)

3. Eclipse. UML2 Model Development Tools project [online] (2009), http://www.
eclipse.org/modeling/mdt/uml2 (Accessed September 7, 2009)

4. Favre, J.: Meta-model and model co-evolution within the 3d software space. In:
Proc. ELISA Workshop, pp. 98–109 (September 2003)

5. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design patterns: elements of
reusable object-oriented software. Addison-Wesley, Reading (1995)

6. Garcés, K., Jouault, F., Cointe, P., Bézivin, J.: A Domain Specific Language for
Expressing Model Matching. In: Proc. IDM, Nancy, France (2009)

http://www.eclipse.org/modeling/mdt/uml2
http://www.eclipse.org/modeling/mdt/uml2


A Comparison of Model Migration Tools 75

7. Garcés, K., Jouault, F., Cointe, P., Bézivin, J.: Managing model adaptation by
precise detection of metamodel changes. In: Paige, R.F., Hartman, A., Rensink, A.
(eds.) ECMDA-FA 2009. LNCS, vol. 5562, pp. 34–49. Springer, Heidelberg (2009)

8. Gronback, R.C.: Eclipse Modeling Project: A Domain-Specific Language (DSL)
Toolkit. Addison-Wesley Professional, Reading (2009)

9. Grønmo, R., Møller-Pedersen, B., Olsen, G.K.: Comparison of three model trans-
formation languages. In: Paige, R.F., Hartman, A., Rensink, A. (eds.) ECMDA-FA
2009. LNCS, vol. 5562, pp. 2–17. Springer, Heidelberg (2009)

10. Gruschko, B., Kolovos, D.S., Paige, R.F.: Towards synchronizing models with
evolving metamodels. In: Workshop on Model-Driven Software Evolution (2007)

11. Herrmannsdoerfer, M., Benz, S., Juergens, E.: Automatability of coupled evolution
of metamodels and models in practice. In: Czarnecki, K., Ober, I., Bruel, J.-M.,
Uhl, A., Völter, M. (eds.) MODELS 2008. LNCS, vol. 5301, pp. 645–659. Springer,
Heidelberg (2008)

12. Herrmannsdoerfer, M., Benz, S., Juergens, E.: COPE - automating coupled evolu-
tion of metamodels and models. In: Drossopoulou, S. (ed.) ECOOP 2009. LNCS,
vol. 5653, pp. 52–76. Springer, Heidelberg (2009)

13. Herrmannsdoerfer, M., Ratiu, D., Wachsmuth, G.: Language evolution in practice.
In: van den Brand, M., Gašević, D., Gray, J. (eds.) SLE 2009. LNCS, vol. 5969,
pp. 3–22. Springer, Heidelberg (2009)

14. Hussey, K., Paternostro, M.: Advanced features of EMF. In: Tutorial at EclipseCon
2006, California, USA (2006), http://www.eclipsecon.org/2006/Sub.do?
id=171 (Accessed September 07, 2009)

15. Jouault, F., Kurtev, I.: Transforming models with ATL. In: Bruel, J.-M. (ed.)
MoDELS 2005. LNCS, vol. 3844, pp. 128–138. Springer, Heidelberg (2005)

16. Kolovos, D.S.: An Extensible Platform for Specification of Integrated Languages
for Model Management. PhD thesis, University of York, United Kingdom (2009)

17. Mens, T., Van Gorp, P.: A taxonomy of model transformation. Electron. Notes
Theor. Comput. Sci. 152, 125–142 (2006)

18. Narayanan, A., Levendovszky, T., Balasubramanian, D., Karsai, G.: Automatic
domain model migration to manage metamodel evolution. In: Schürr, A., Selic, B.
(eds.) MODELS 2009. LNCS, vol. 5795, pp. 706–711. Springer, Heidelberg (2009)

19. OMG. Query/View/Transformation 1.0 Specification [online] (2008),
http://www.omg.org/spec/QVT/1.0/ (Accessed April 26, 2010)

20. Rose, L.M., Kolovos, D.S., Paige, R.F., Polack, F.A.C.: An analysis of approaches
to model migration. In: Proc. Joint MoDSE-MCCM Workshop (2009)

21. Rose, L.M., Kolovos, D.S., Paige, R.F., Polack, F.A.C.: Model migration with Ep-
silon Flock. In: Tratt, L., Gogolla, M. (eds.) ICMT 2010. LNCS, vol. 6142, pp.
184–198. Springer, Heidelberg (2010)

22. Sprinkle, J.: Metamodel Driven Model Migration. PhD thesis, Vanderbilt Univer-
sity, TN, USA (2003)

23. Sprinkle, J., Agrawal, A., Levendovszky, T., Shi, F., Karsai, G.: Domain model
evolution in visual languages using graph transformations. In: Proc. Workshop on
Domain-Specific Visual Languages (2002)

24. Taentzer, G., Ehrig, K., Guerra, E., De Lara, J., Levendovszky, T., Prange, U.,
Varro, D.: Model transformations by graph transformations: A comparative study.
In: Model Transformations in Practice Workshop at MoDELS 2005, Montego, 5p.
(2005)

25. Wachsmuth, G.: Metamodel adaptation and model co-adaptation. In: Ernst, E.
(ed.) ECOOP 2007. LNCS, vol. 4609, pp. 600–624. Springer, Heidelberg (2007)

http://www.eclipsecon.org/2006/Sub.do?id=171
http://www.eclipsecon.org/2006/Sub.do?id=171
http://www.omg.org/spec/QVT/1.0/


Incremental Evaluation of Model Queries
over EMF Models�

Gábor Bergmann1, Ákos Horváth1, István Ráth1, Dániel Varró1,
András Balogh2, Zoltán Balogh2, and András Ökrös2

1 Budapest University of Technology and Economics,
Department of Measurement and Information Systems,

H-1117 Magyar tudósok krt. 2, Budapest, Hungary
{bergmann,ahorvath,rath,varro}@mit.bme.hu

2 OptxWare Research and Development LLC,
H-1137 Katona J. u. 39

{andras.balogh,zoltan.balogh,andras.okros}@optxware.com

Abstract. Model-driven development tools built on industry standard platforms,
such as the Eclipse Modeling Framework (EMF), heavily utilize model queries in
model transformation, well-formedness constraint validation and domain-specific
model execution. As these queries are executed rather frequently in interactive
modeling applications, they have a significant impact on runtime performance
and end user experience. However, due to their complexity, these queries can
be time consuming to implement and optimize on a case-by-case basis. Conse-
quently, there is a need for a model query framework that combines an easy-to-use
and concise declarative query formalism with high runtime performance.

In this paper, we propose a declarative EMF model query framework using
the graph pattern formalism as the query specification language. These graph
patterns describe the arrangement and properties of model elements that corre-
spond to, e.g. a well-formedness constraint, or an application context of a model
transformation rule.

For improved runtime performance, we employ incremental pattern matching
techniques: matches of patterns are stored and incrementally maintained upon
model manipulation. As a result, query operations can be executed instantly, in-
dependently of the complexity of the constraint and the size of the model. We
demonstrate our approach in an industrial (AUTOSAR) model validation context
and compare it against other solutions.

Keywords: EMF, model query, incremental pattern matching, model validation.

1 Introduction

As model management platforms are gaining more and more industrial attraction, the
importance of automated model querying techniques is also increasing. Queries form

� This work was partially supported by EU projects SENSORIA (IST-3-016004), SecureChange
(ICT-FET-231101), INDEXYS (ARTEMIS-2008-1-100021), the Hungarian CERTIMOT
(ERC HU 09) project, and the János Bolyai Scholarship.

D.C. Petriu, N. Rouquette, Ø. Haugen (Eds.): MODELS 2010, Part I, LNCS 6394, pp. 76–90, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



Incremental Evaluation of Model Queries over EMF Models 77

the underpinning of various technologies such as model transformation, code gener-
ation, domain specific behaviour simulation and model validation. In their most di-
rect application, model queries may help find violations of well-formedness constraints
of a domain-specific modeling language. Query evaluation entails a matching process,
where an automated mechanism searches for model elements conforming to the struc-
tural pattern and attribute constraints imposed by the given query.

The leading industrial modeling ecosystem, the Eclipse Modeling Framework (EMF
[1]), provides different ways to query the contents of models. These approaches range
from (1) the use of high-level declarative constraint languages (like OCL [2]) to (2) a
dedicated query language [3] resembling SQL, or, in the most basic case, (3) manually
programmed model traversal using the generic model manipulation API of EMF. How-
ever, industrial experience (including those of the authors) shows scalability problems
of complex query evaluation over large EMF models, taken e.g. from the automotive do-
main. Current practice for improving performance is manual query optimization, which
is time consuming to implement on a case-by-case basis.

A promising way to address the performance problem is incremental pattern match-
ing (INC) [4]. This technique relies on a cache which stores the results of a query ex-
plicitly. The result set is readily available from the cache at any time without additional
search, and the cache is incrementally updated whenever (elementary or transactional)
changes are made to the model. As results are stored, they can be retrieved in con-
stant time, making query evaluation extremely fast. The trade-off is increased memory
consumption, and increased update costs (due to continuous cache updates).

In the current paper, we propose EMF-INCQUERY, a framework for defining declar-
ative queries over EMF models, and executing them efficiently without manual coding.
For the query language, we reuse the concepts of graph patterns (which is a key con-
cept in many graph transformation tools) as a concise and easy way to specify complex
structural model queries. High runtime performance is achieved by adapting incremen-
tal graph pattern matching techniques.

The benefits of EMF-INCQUERY with respect to the state-of-the-art of querying
EMF models include: (i) a significant performance boost when frequently querying
complex structural patterns with a moderate amount of modifications in-between, (ii)
efficient enumeration of all instances of a class regardless of location, and (iii) simple
backwards navigation along references (these latter features address frequently encoun-
tered shortcomings of EMF’s programming interfaces). We demonstrate the advantages
of our approach over existing EMF query alternatives by conducting measurements on
a model validation case study in the context of AUTOSAR [5], an industrial standard
design platform for automotive embedded systems.

The paper is structured as follows: Section 2 introduces EMF and metamodeling,
the mathematical formalism of graph patterns and AUTOSAR. Section 3 presents our
declarative approach for queries over EMF. Section 4 elaborates the on-the-fly model
validation case study in the domain of AUTOSAR, and Section 5 conducts benchmark
measurements to assess the performance. A survey of similar tools and research is pre-
sented in Section 6. Finally, Section 7 summarizes the important points of the paper,
draws conclusions and plots some future plans.



78 G. Bergmann et al.

2 Background

In order to introduce our approach, this section briefly outlines the basics of the Eclipse
Modeling Framework, graph patterns and gives a motivating example from the automo-
tive domain based on the AUTOSAR framework.

2.1 Running Example: Constraint Checking in AUTOSAR Models

We demonstrate our model query technique by checking well-formedness constraints
over AUTOSAR models. AUTOSAR (short for Automotive Open System Architec-
ture, [5]) is an open and standardized automotive software architecture, jointly devel-
oped by automobile manufacturers, suppliers and tool developers. The objectives of the
AUTOSAR partnership include the implementation and standardization of basic system
functions while providing a highly customizable platform which continues to encourage
competition on innovative functions. The common standard should help the integration
of functional modules from multiple suppliers and increase scalability to different ve-
hicle and platform variants. It aims to be prepared for the upcoming technologies and
to improve cost-efficiency without making any compromise with respect to quality.

To improve quality and reliability of electrical/electronic systems, the validation of
AUTOSAR models should be carried out in the early stages of the development process.
The standard specifies a multitude of constraints, which should be satisfied to ensure
proper functionality in this diverse environment. In this paper, we present three of these
constraints, and define validators for each of them.

2.2 EMF and Ecore Metamodeling

ARElement

ARObject

ARPackage

FibexElement

Identifiable

+ shortName:  int

PackageableElement

+subPackage 0..*

+element

0..*

Fig. 1. AUTOSAR metamodel

The Eclipse Modeling Framework (EMF [1])
provides automated code generation and tool-
ing (e.g. notification, persistence, editor) for
Java representation of models. EMF models
consist of an (acyclic) containment hierarchy
of model elements (EObjects) with crossref-
erences – some of which may only be tra-
versed by programs in one direction (unidi-
rectional references). Additionally, each ob-
ject has a number of attributes (primitive
data values). Models are stored in EResources
(e.g. files), and interrelated resources are
grouped into EResourceSets.

EMF uses Ecore metamodels to describe the abstract syntax of a modeling language.
The main elements of Ecore are the following: EClass (represented graphically by a
rectangle in Fig. 1), EAttribute (entries in the rectangle) and EReference (depicted as
edges). EClasses define the types of EObjects, enumerating EAttributes to specify at-
tribute types of class instances and EReferences to define association types to other
EObjects. Some EReferences additionally imply containment (graphically represented
by a diamond). Unidirectional references are represented by arrows. Both ends of an



Incremental Evaluation of Model Queries over EMF Models 79

association may have a multiplicity constraint attached to them, which declares the
number of objects that, at run-time, may participate in an association. The most typi-
cal multiplicity constraints are i) the at-most-one (0..1), and (ii) the arbitrary (denoted
by *). Inheritance may be defined between classes (depicted by a hollow arrow), which
means that the inherited class has all the properties its parent has, and its instances are
also instances of the ancestor class, but it may further define some extra features.

These concepts are illustrated by a simplified core part of the AUTOSAR [5] meta-
model (Fig. 1). Note that in all metamodel figures of the paper, only relevant attributes
are depicted, but no elements are omitted from the inheritance hierarchy. Every object
in AUTOSAR inherits from the common ARObject class. If an element has to be iden-
tified, it has to inherit from the Identifiable class, and the shortName attribute has to
be set. ARElement is a common base class for stand-alone elements, while specializa-
tions of FibexElement represent elementary building blocks within the FIBEX package.
Instances of ARPackage class are arranged in a strict containment hierarchy by the sub-
Package association, and every PackageableElement can be aggregated by one of the
ARPackages using the element association.

2.3 Graph Patterns

Fig. 2. Graph Pattern for the ISignal
consistency check

Graph patterns [6] constitute an expressive for-
malism used for various purposes in Model Driven
Development, such as defining declarative model
transformation rules, defining the behavioral se-
mantics of dynamic domain specific languages, or
capturing general purpose model queries including
model validation constraints. A graph pattern (GP)
represents conditions (or constraints) that have to
be fulfilled by a part of the instance model. A basic
graph pattern consists of structural constraints pre-
scribing the existence of nodes and edges of a given
type (or subtypes, subject to polymorphism). Lan-
guages usually include a way to express attribute constraints. A negative application
condition (NAC) defines cases when the original pattern is not valid (even if all other
constraints are met), in form of a negative sub-pattern. With NACs nested in arbitrary
depth, the expressive power of graph patterns is equivalent to first order logic [7]. A
match of a graph pattern is a group of model elements that have the exact same con-
figuration as the pattern, satisfying all the constraints (except for NACs, which must be
made unsatisfiable).

Fig. 2 depicts a sample graph pattern CC ISignal. The structural part contains only a
single node of type ISignal, but the NAC subpattern connects this node to a SystemSig-
nal instance via an ISignal.systemSignal edge (note that some edges of that type may
connect to a SystemSignalGroup instead of a SystemSignal, so the type assertion is
relevant). Thus this graph pattern matches ISignal instances that are not connected to
a SystemSignal. This graph pattern can be used as a declarative model query, in order
to validate the model against a structural well-formedness constraint that requires each
ISignal to be connected to a SystemSignal. See Section 4 for further examples.



80 G. Bergmann et al.

Model queries with graph patterns. For readers with a strong EMF background, the
idea of querying models by specifying graph patterns might not be straightforward. The
key step in understanding the concept is that graph patterns declare what arrangement
of elements is sought after, not how or where to find them. Each node in the pattern rep-
resents an EObject (EMF instance object), and the type of the node identifies the EClass
of the object. This feature is useful to select only those model elements that conform to
a certain type. Furthermore, the pattern nodes are connected by directed edges, anno-
tated by an EReference type (or containment), to express how these elements reference
each other. Finally, attribute constraints filtering and comparing the attributes of these
elements can also be added.

3 Incremental Pattern Matching over EMF Models

3.1 Benefits

The aim of the EMF-INCQUERY approach is to bring the benefits of graph pattern
based declarative queries and incremental pattern matching to the EMF domain. The
advantage of declarative query specification is that it achieves (efficient) pattern match-
ing without time-consuming, manual coding effort associated to ad-hoc model traver-
sal. While EMF-INCQUERY is not the only technology for defining declarative queries
over EMF (e.g. EMF Query or MDT-OCL), its distinctive feature is incremental pat-
tern matching, with special performance characteristics suitable for scenarios such as
on-the-fly well-formedness validation.

Additionally, some shortcomings of EMF are mitigated by the capabilities of EMF-
INCQUERY, such as cheap enumeration of all instances of a certain type, regardless of
where they are located in the resource tree. Another such use is the fast navigation of
EReferences in the reverse direction, without having to augment the metamodel with
an EOpposite (which is problematic if the metamodel is fixed, or beyond the control of
the developer).

3.2 Usage

EMF-INCQUERY provides an interface for each declared pattern for (i) retrieving all
matches of the pattern, or (ii) retrieving only a restricted set of matches, by binding
(a-priori fixing) the value of one or more pattern elements (parameters).

In both cases, the query can be considered instantaneous, since the set of matches
of the queried patterns (and certain subpatterns) are automatically cached, and remain
available for immediate retrieval throughout the lifetime of the EMF ResourceSet. Even
when the EMF model is modified, these caches are continuously and automatically
kept up-to-date using the EMF Notification API. This maintenance happens without
additional coding, and works regardless how the model was modified (graphical editor,
programmatic manipulation, loading a new EMF resource, etc.).

3.3 Algorithm for Incremental Pattern Matching

EMF-INCQUERY achieves incremental pattern matching by adapting the RETE algo-
rithm, well-known in the field of rule-based systems (see [4] for our first work on the



Incremental Evaluation of Model Queries over EMF Models 81

application of RETE in graph patterns of a model transformation context). The follow-
ing paragraphs give an overview of the EMF specific behaviour of RETE.

RETE network for graph pattern matching. RETE-based pattern matching relies on
a network of nodes storing partial matches of a graph pattern. A partial match enumer-
ates those model elements which satisfy a subset of the constraints described by the
graph pattern. In a relational database analogy, each node stores a view. Partial matches
of a pattern are readily available at any time, and they will be incrementally updated
whenever model changes occur.

Input nodes serve as the underlying knowledge base representing a model. A RETE
input node is introduced for each EClass, to contain the instances of the class (and sub-
classes), wrapped into unary tuples. The input nodes for EReferences and EAttributes
contain all concrete occurrences of the structural feature as binary tuples (source, tar-
get). Finally, the EMF notion of containment is also represented by binary tuples in an
input node, and usable in pattern definitions.

Fig. 3. RETE matcher of CC ISignal

At each intermediate node,
set operations (e.g. filtering,
projection, join, etc.) can be ex-
ecuted on the match sets stored
at input nodes to compute the
match set which is stored at the
intermediate node. Finally, the
match set for the entire pattern
can be retrieved from the out-
put production node. An impor-
tant kind of intermediate node is
the join node, which performs a
natural join on its parent nodes
in terms of relational algebra;
whereas a anti-join node con-
tains the set of tuples stored at
the primary input which do not match any tuple from the secondary input.

Fig. 3 shows a simplified RETE network matcher built for the CC ISignal pattern
(see Fig. 2) illustrating the use of join nodes. It uses three input nodes, for instances
of EClass ISignal, EClass SystemSignal and EReference ISignal.systemSignal, respec-
tively. The first join node connects the latter two to find ISignal.systemSignal edges that
actually end in objects of type SystemSignal. The second intermediate node performs
an anti-join of the first input node and the previous join node, therefore containing in-
stances of ISignal that are not connected to a SystemSignal via ISignal.systemSignal.
This is exactly the match set of pattern CC ISignal, which is stored in the production
node.

Updates after model changes. Upon creation, the RETE net is registered to receive
notifications about all changes affecting an EMF ResourceSet, such as creation or dele-
tion of model elements, via a service called EContentAdapter (or similar services pro-
vided by a transactional editing domain). Whenever receiving a notification, the input



82 G. Bergmann et al.

Fig. 4. Overview of the EMF-INCQUERY approach

nodes of RETE are updated. This task is not always trivial: along containment edges,
entire subtrees can be attached to an EMF Resource in one step, which requires careful
traversal and multiple updates of input nodes.

Each time input nodes receive notifications about an elementary model change, they
release an update token on each of their outgoing edges. Such an update token repre-
sents changes in the partial matches stored by the RETE node. Positive update tokens
reflect newly added tuples, and negative updates refer to tuples being removed from the
set. Upon receiving an update token, a RETE node determines how the set of stored
tuples will change, and release update tokens of its own to signal these changes to its
child nodes. This way, the effects of an update will propagate through the network,
eventually influencing the result sets stored in production nodes.

3.4 Architectural Overview of EMF-INCQUERY

Both the query language and the implementation of EMF-INCQUERY are adapted from
the model transformation framework VIATRA2 [6]. However, the role of VIATRA2 is
limited to the development phase, as the runtime module of EMF-INCQUERY is not
dependent on it. Queries in EMF-INCQUERY can be defined by graph patterns in the
transformation language [6] of VIATRA2. A generator component can be invoked to
translate them to the EMF-specific query formthat serves as the input for the EMF-
based Pattern Matcher Engine. The latter is responsible for evaluating queries over
EMF ResourceSets, and is intended to be invoked from any Java program.

Graph patterns suitable for the EMF conversion have to refer to the metamodel ele-
ments of the relevant EMF format. Therefore VIATRA2 first needs to be aware of the



Incremental Evaluation of Model Queries over EMF Models 83

EMF metamodel (the Ecore model), which can be ensured by importing it into VIA-
TRA2’s (meta-)model representation, the VPM model space. As an additional benefit,
the development of graph pattern based queries can be eased by taking advantage of the
VIATRA2 framework. The VIATRA2 transformation interpreter shares identical func-
tional behavior with EMF-INCQUERY. Therefore VIATRA2 serves as a faithful pro-
totyping environment for graph patterns, capable of experimenting on EMF instance
models imported into its model space. See Fig. 4 for a graphical overview of the vari-
ous artifacts, software modules and their relations.

4 Benchmark Case Study

This section presents three well-formedness constraints from the AUTOSAR standard,
which form the basis of our measurements in Section 5.

4.1 ISignal Constraint Check

The two metamodel elements for this constraint (SystemSignal and ISignal) are illus-
trated in Fig. 5, extending Fig. 1. A SystemSignal is the smallest unit of data (it is unique
per System) and it is characterized by its length (in bits). (Also two optional elements
can be specified, Datatypes and DataPrototype constants, but they are not used in this
example.) An ISignal must be created for each SystemSignal (these will be the signals
of the Interaction Layer). The graph pattern representation is explained in Section 2.3.

4.2 Signal Group Mapping Constraint Check

+systemSignal

+signal

+signalToPduMapping+systemSignal

Fig. 5. AUTOSAR metamodel (ISignal)

Related AUTOSAR elements.
The required metamodel ele-
ments for this constraint check
are illustrated in Fig. 5. A PDU
(Protocol data unit) is the small-
est information which is deliv-
ered through a network layer. It
is an abstract element in AU-
TOSAR, and has multiple dif-
ferent subtypes according to the
available network layers. In this
case study, we will only examine IPdus (Interaction Layer PDU), and more precisely
SignalIPdus. These SignalIPdus used to transfer ISignals. The positions of these ISig-
nals are defined by the ISignalToIPduMappings. The ISignal can be a SystemSignal and
a SystemSignalGroup as well. A signal group refers to a set of signals that must always
be kept together to ensure the atomic transfer of the information in them.

Constraint check for signal group mapping. To ensure the atomic transfer of a Sys-
temSignalGroup, they have to be packed properly into SignalIPdus. This means that
if a SignalGroup is referenced from a SignalIPdu (with an ISignalToIPduMapping),



84 G. Bergmann et al.

then every Signal in it should be referenced as well from that SignalIPdu (note that an
ISignalToIPduMapping references ISignals, but as every SystemSignal and SystemSig-
nalGroup must have an ISignal, this is not a problem – the parent-child relationship
is thus expressed between the SystemSignal and SystemSignalGroup instances). This
constraint formulated as a graph pattern, matching a possible case of violation where
the mapping element corresponding to the SystemSignalGroup is missing (as indicated
by the NEG condition), can be seen in Fig. 6(a).

(a) Pattern to find invalid mappings (b) Pattern to find invalid physical channels

Fig. 6. Consistency check patterns

4.3 Simple PhysicalChannel Consistency Check

Related AUTOSAR elements. To demonstrate the chosen consistency check, some
additional AUTOSAR elements have to be described. These elements are illustrated by
Fig. 7, extending Fig. 1.

+signal

+signalToPduMapping

+signal

+iPdu

+iSignalTriggering

+iPduTriggering

+physicalChannel

Fig. 7. AUTOSAR metamodel (Channel)

In AUTOSAR, ECU (Elec-
tronic Control Unit) instances
can communicate with each
other through a communication
medium represented by a Phys-
icalChannel. Physical Channels
are aggregated by a Communi-
cationCluster, which is the main
element to describe the topo-
logical connection of communi-
cating ECUs. A Physical Chan-
nel can contain ISignalTriggering

and IPduTriggering elements. The IPduTriggering and ISignalTriggering describe the us-
age of IPdus and Signals on physical channels. ISignalTriggering defines the manner of
triggering of an ISignal on the channel, on which it is sent. IPduTriggering describes on
which channel the IPdu is transmitted.

Consistency check for physical channels. The following constraint has to be satisfied
for a physical channel: if a CH PhysicalChannel contains an IPDU SignalIPdu (through



Incremental Evaluation of Model Queries over EMF Models 85

an IPduTriggering), then all of the S ISignal, contained by IPDU (through an ISignal-
ToIPduMapping), must have a related STR ISignalTriggering in the CH channel. In
other words the channel is invalid if there is at least one S ISignal that has no related
ISignalTriggering in the channel. This informal definition is formalized in Fig. 6(b) as
a form of graph pattern. If the CC Channel(CH) pattern can be matched for a Physical
channel CH, then it is considered to be invalid.

5 Benchmarking and Evaluation

5.1 Generating Sample Models for Benchmarking

For a benchmarking evaluation, we designed a randomized model generator to create
sample models of increasing size. For the three constraint cases, we used two different
model families: (A) for ISignal and SSG and (B) for Channel. Both families contain
an approximately equal number of valid and invalid model elements. The size of the
sample model families ranges from a few thousand elements up to 600.000 (A) and
1.500.000 (B). See the appendix1 for a detailed description of the generation algorithm.

5.2 Benchmarking

The benchmark simulates the typical scenario of model validation. The user is working
with a large model, the modifications are small and local, but the result of the valida-
tion needs to be computed as fast as possible. To emulate this, the benchmark sequence
consists of the following sequence of operations:

(1) First, the model is loaded into memory. In the case of EMF-INCQUERY, most of
the overhead is expected to be registered in this phase, as the pattern matching cache
needs to be constructed. Note however, that this is a one-time penalty, meaning that
the cache will be maintained incrementally as long as the model is kept in memory. To
highlight this effect, we recorded the times for the loading phase separately.

(2) Next, in the first query phase, the entire matching set of the constraints is queried.
This means that a complete validation is performed on the model, looking for all ele-
ments for which the constraint is violated.

(3) After the first query, model manipulations are executed. These operations only
affect a small fixed subset of elements, and change the constraint’s validity (see the
appendix1).

(4) Finally, in the second query phase, the complete validation is performed again,
to check the net effect of the manipulation operations on the model.

Benchmark implementations. In addition to our EMF-INCQUERY-based implemen-
tation, we created two separate prototypes: a plain Java variant and an OCL variant that
uses MDT-OCL [2]. The exact versions of EMF and MDT-OCL were 2.5.0 and 1.2.0
respectively, running on Eclipse Galileo SR1 20090920-1017. We ran the benchmarks

1 All appendices, along with the complete source code and all test cases can be found at
http://viatra.inf.mit.bme.hu/models10



86 G. Bergmann et al.

Fig. 8. Results overview

on an Intel Core2 E8400-based PC clocked at 3.00GHz with 3.25GBs of RAM on Win-
dows XP SP3 (32 bit), using the Sun JDK version 1.6.0 17 (with a maximum heap size
of 1536 MBs). Execution times were recorded using the java.lang.System class, while
memory usage data has been recorded in separate runs using the java.lang.Runtime
class (with several garbage collector invocations to minimize the transient effects of
Java memory management). The data shown in the results correspond to the averages
of 10 runs each.

All implementations share the same code for model manipulation (implementing the
specification in the appendix1). They differ only in the query phases:

– The EMF-INCQUERY variant uses our API for reading the matching set of the
graph patterns corresponding to constraints. These operations are only dependent
on the size of the graph pattern and the size of the matching set itself (this is em-
pirically confirmed by the results, see Section 5.3). To better reflect memory con-
sumption, the RETE nets for all three constraints were built in each case.

– The plain Java variant performs model traversal using the generated model API of
EMF. This approach is not naive, but intuitively manually optimized based on the
constraint itself (but not on the actual structure of the model [8]).

– The OCL variant has been created by systematically mapping the contents of the
graph patterns to OCL concepts, to ensure equivalence. We did not perform any
OCL-specific optimization. The exact OCL expressions are in the appendix1.

To ensure the correctness of the Java implementation, we created a set of small test
models and verified the results manually. The rest of the implementations have been
checked against the Java variant as the reference, by comparing the number of valid and
invalid matches found in each round.



Incremental Evaluation of Model Queries over EMF Models 87

5.3 Analysis of the Results

Based on the results (Fig. 8), we have made the following observations:

(1) As expected, query operations with EMF-INCQUERY are nearly instantaneous,
they are only measurable for larger models (where the matching set itself is large). In
contrast, both Java and OCL variants exhibit a polynomially increasing characteristic,
with respect to model size. The optimized Java implementation outperforms OCL, but
only by a constant multiplier.

(2) Although not shown in Fig. 8, the times for model manipulation operations were
also measured for all variants, and found to be uniformly negligible. This is expected
since very few elements are affected by these operations, therefore the update overhead
induced by the RETE network is negligible.

(3) The major overhead of EMF-INCQUERY is registered in the resource loading
times (shown in the Res column in Fig. 8). It is important to note that the loading times
for EMF itself is included in the values for EMF-INCQUERY. By looking at the values
for loading times and their trends, it can be concluded that EMF-INCQUERY exhibits a
linear time increase in both benchmark types, with a factor of approximately 2 compared
to the pure EMF implementation. MDT-OCL does not cause a significant increase.

(4) The memory overhead also grows linearly with the model size, but depends on the
complexity of the constraint too. More precisely, it depends on the size of the match sets
of patterns and that of some sub-patterns depending on the structure of the constructed
RETE network. (Actually, the memory overhead is sub-additive with respect to patterns,
due to a varying degree of RETE node-sharing.)

It has to be emphasized that in practical operations, the resource loading time in-
crease may not be important as it occurs only once during a model editing session. So,
as long as there is enough memory, EMF-INCQUERY provides nearly instantaneous
query performance, independently of the complexity of the query and the contents of
the model. In certain cases, like for the SSG and ISignal benchmarks, EMF-INCQUERY

is the only variant where the query can be executed in the acceptable time range for
large models above 500000 elements, even when we take the combined times for re-
source loading and query execution into consideration. The performance advantage is
less apparent for simple queries, as indicated by the figures for the Channel benchmark,
where the difference remains in the range of a few seconds even for large models.

Overall, EMF-INCQUERY suits application scenarios with complex queries, which
are invoked many times, with relatively small model manipulations in-between. Even
though the memory consumption overhead is acceptable even for large models on to-
day’s PCs, the optimization techniques (based on combining various pattern matching
techniques [8]) previously presented for VIATRA2 apply to EMF-INCQUERY too (even
if their implementation will on EMF-level require some future work).

6 Related Work

Model queries over EMF. There are numerous technologies for providing declarative
model queries over EMF. Here we give a brief summary of the mainstream techniques,
none of which support incremental behavior.



88 G. Bergmann et al.

The project EMF Model Query [3] provides query primitives for selecting model
elements that satisfy a set of conditions; these conditions range from type and attribute
checks to enforcing similar condition checks on model elements reachable through ref-
erences. The query formalism has several important restrictions: (i) it can only describe
tree-like patterns (as opposed to graph patterns); (ii) nodes cannot be captured in vari-
ables to be referenced elsewhere in the query; and (iii) the query can only traverse uni-
directional relations in their natural direction. Indeed, the expressive power of Model
Query is intuitively similar to a formal logic belonging to a class of languages called
description logics [9], and weaker than first order logic. Therefore more complex pat-
terns involving circles of references or attribute comparisons between nodes cannot be
detected by EMF Model Query without additional coding.

EMF Search [10] is a framework for searching over EMF resources, with control-
lable scope, several extension facilities, and GUI integration. Unfortunately, only simple
textual search (for model element name/label) is available by default; advanced search
engines can be provided manually in a metamodel-specific way.

EMF-INCQUERY is not the first tool to apply graph pattern based techniques to
EMF [11, 12], but its incremental pattern matching feature is unique.

Incremental OCL evaluation approaches. OCL [13] is a standardized navigation-
based query language, applicable over a range of modeling formalisms. Taking advan-
tage of the expressive features and wide-spread adoption of OCL, the project MDT
OCL [2] provides a powerful query interface that evaluates OCL expressions over EMF
models. However, backwards navigation along references can still have low perfor-
mance, and there is no support for incrementality.

Cabot et al. [14] present an advanced three step optimization algorithm for incremen-
tal runtime validation of OCL constraints that ensures that constraints are reevaluated
only if changes may induce their violation and only on elements that caused this vio-
lation. The approach uses promising optimizations, however, it works only on boolean
constraints, therefore it is less expressive than our technique.

An interesting model validator over UML models [15] incrementally re-evaluates
constraint instances (defined in OCL or by an arbitrary validator program) whenever
they are affected by changes. During evaluation of the constraint instance, each model
access is recorded, triggering a re-evaluation when the recorded parts are changed. This
is also an important weakness: the approach is only applicable in environments where
read-only access to the model can be easily recorded, unlike EMF. Additionally, the
approach is tailored for model validation, and only permits constraints that have a single
free variable; therefore general-purpose model querying is not viable.

Incremental Model Transformation approaches. The model transformation tool
TefKat includes an incremental transformation engine [16] that also achieves incre-
mental pattern matching over the factbase-like model representation of the system. The
algorithm constructs and preserves a Prolog-like resolution tree for patterns, which is
incrementally maintained upon model changes and pattern (rule) changes as well.

As a new effort for the EMF-based model transformation framework ATL [17], in-
cremental transformation execution is supported, including a version of incremental
pattern matching that incrementally re-evaluates OCL expressions whose dependencies



Incremental Evaluation of Model Queries over EMF Models 89

have been affected by the changes. The approach specifically focuses on transforma-
tions, and provides no incremental query interface as of now.

VMTS [18] uses an off-line optimization technique to define (partially) overlapping
graph patterns that can share result sets (with caching) during transformation execution.
Compared to our approach, it focuses on simple caching of matching result with a small
overhead rather than complete caching of patterns.

Giese et al. [19] present a triple graph grammar (TGG) based model synchronization
approach, which incrementally updates reference (correspondence) nodes of TGG rules,
based on notifications triggered by modified model elements. Their approach share sim-
ilarities with our RETE based algorithm, in terms of notification observing, however, it
does not provide support for explicit querying of (triple) graph patterns.

7 Conclusion and Future Work

In this paper, we presented EMF-INCQUERY as the next evolutionary step in efficiently
executing complex queries over EMF models by adapting incremental graph pattern
matching technology [4]. It is important to point out that, due to significant differences
between EMF and VPM model representation and management - such as unidirection-
ally navigable graph models stored in multiple files in the case of EMF, vs. bidirec-
tionally navigable graph models with multiple typing stored in a single modelspace in
VIATRA2), we could actually reuse only the core concepts of RETE networks from our
previous results [4, 8]. In essence, we built an incremental pattern matching solution
specific to EMF technology, which is the scope of our paper.

The main lesson we learned from our experiments is that query evaluation should
be tailored to the designated application scenario. We have specifically targeted EMF-
INCQUERY to support the fast evaluation of complex model queries. Due to the fun-
damentals of the technology, this works best in the case of interactive applications,
where the model modification operations are small (with respect to the size of the entire
model). Our results have confirmed the high performance of our implementation, but
also the fact that the designer needs to keep the memory impact in mind. Practical appli-
cations of this technology include on-the-fly model validation, interactive execution of
domain-specific behavior languages, incremental model synchronization, model based
monitoring and management, design space exploration and incremental maintenance of
(aggregated) model views for development tool environments.

As future work, we intend to work on further automatic optimization, since, as with
every declarative query formalism, there is always room for improvement. In the case
of our RETE engine, this optimization targets the construction of the cache network,
based on the pattern and the contents of the model itself. Additionally, we plan to work
on integration with OCL as a query specification language. As it has been shown [20], a
significant subsection of OCL can be mapped to the graph pattern formalism, especially
if the pattern language is augmented with cardinality expressions.

References

1. The Eclipse Project: Eclipse Modeling Framework, http://www.eclipse.org/emf
2. The Eclipse Project: MDT OCL,

http://www.eclipse.org/modeling/mdt/?project=ocl

http://www.eclipse.org/emf
http://www.eclipse.org/modeling/mdt/?project=ocl


90 G. Bergmann et al.

3. The Eclipse Project: EMF Model Query,
http://www.eclipse.org/modeling/emf/?project=query

4. Bergmann, G., Ökrös, A., Ráth, I., Varró, D., Varró, G.: Incremental pattern matching in the
VIATRA model transformation system. In: Karsai, G., Taentzer, G. (eds.) Graph and Model
Transformation (GraMoT 2008). ACM, New York (2008)

5. AUTOSAR Consortium: The AUTOSAR Standard, http://www.autosar.org/
6. Varró, D., Balogh, A.: The Model Transformation Language of the VIATRA2 Framework.

Science of Computer Programming 68(3), 214–234 (2007)
7. Rensink, A.: Representing first-order logic using graphs. In: Ehrig, H., Engels, G., Parisi-

Presicce, F., Rozenberg, G. (eds.) ICGT 2004. LNCS, vol. 3256, pp. 319–335. Springer,
Heidelberg (2004)

8. Bergmann, G., Horváth, A., Ráth, I., Varró, D.: Efficient model transformations by combining
pattern matching strategies. In: Paige, R.F. (ed.) ICMT 2009. LNCS, vol. 5563, pp. 20–34.
Springer, Heidelberg (2009)

9. Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F. (eds.): The
description logic handbook: theory, implementation, and applications. Cambridge University
Press, New York (2003)

10. The Eclipse Project: EMFT Search,
http://www.eclipse.org/modeling/emft/?project=search

11. Biermann, E., Ermel, C., Taentzer, G.: Precise semantics of emf model transformations by
graph transformation. In: Czarnecki, K., Ober, I., Bruel, J.-M., Uhl, A., Völter, M. (eds.)
MODELS 2008. LNCS, vol. 5301, pp. 53–67. Springer, Heidelberg (2008)

12. Giese, H., Hildebrandt, S., Seibel, A.: Improved flexibility and scalability by interpreting
story diagrams. In: Magaria, T., Padberg, J., Taentzer, G. (eds.) Proceedings of GT-VMT
2009. Electronic Communications of the EASST, vol. 18 (2009)

13. The Object Management Group: Object Constraint Language, v2.0 (May 2006),
http://www.omg.org/spec/OCL/2.0/

14. Cabot, J., Teniente, E.: Incremental integrity checking of UML/OCL conceptual schemas. J.
Syst. Softw. 82(9), 1459–1478 (2009)

15. Groher, I., Reder, A., Egyed, A.: Incremental consistency checking of dynamic constraints.
In: Rosenblum, D.S., Taentzer, G. (eds.) FASE 2009. LNCS, vol. 6013, pp. 203–217.
Springer, Heidelberg (2010)

16. Hearnden, D., Lawley, M., Raymond, K.: Incremental model transformation for the evolution
of model-driven systems. In: Nierstrasz, O., Whittle, J., Harel, D., Reggio, G. (eds.) MoDELS
2006. LNCS, vol. 4199, pp. 321–335. Springer, Heidelberg (2006)

17. Jouault, F., Tisi, M.: Towards incremental execution of ATL transformations. In: Tratt, L.,
Gogolla, M. (eds.) ICMT 2010. LNCS, vol. 6142, pp. 123–137. Springer, Heidelberg (2010)

18. Mészáros, T., et al.: Manual and automated performance optimization of model transforma-
tion systems. Software Tools for Technology Transfer (2010) (to appear)

19. Giese, H., Wagner, R.: From model transformation to incremental bidirectional model syn-
chronization. Software and Systems Modeling (SoSyM) 8(1) (March 2009)

20. Winkelmann, J., Taentzer, G., Ehrig, K., Küster, J.M.: Translation of restricted OCL con-
straints into graph constraints for generating meta model instances by graph grammars. Elec-
tron. Notes Theor. Comput. Sci. 211, 159–170 (2008)

http://www.eclipse.org/modeling/emf/?project=query
http://www.autosar.org/
http://www.eclipse.org/modeling/emft/?project=search
http://www.omg.org/spec/OCL/2.0/


Active Operations on Collections

Olivier Beaudoux1, Arnaud Blouin2, Olivier Barais3, and Jean-Marc Jézéquel3

1 ESEO Group, Angers - GRI Team
olivier.beaudoux@eseo.fr

2 INRIA Rennes - Triskell Team
arnaud.blouin@inria.fr

3 University of Rennes 1 - Triskell Team
{barais,jezequel}@irisa.fr

Abstract. Collections are omnipresent within models: collections of ref-
erences can represent relations between objects, and collections of values
can represent object attributes. Consequently, manipulating models often
consists of performing operations on collections. For example, transfor-
mations create target collections from given source collections. Similarly,
constraint evaluations perform computation on collections. Recent re-
search works focus on making such transformations or constraint evalu-
ations active (i.e. incremental, or live). However, they propose their own
solutions to the issue by the introduction of specific languages and/or
systems. This paper proposes a mathematical formalism, centered on
collections and independent of languages and systems, that describes
how the implementation of standard operations on collections can be
made active. The formalism also introduces a reversed active assignment
dedicated to bidirectional operations. A case study illustrates how to use
the formalism and its Active Kermeta implementation for creating an
active transformation.

1 Introduction

The promise of model-driven engineering (MDE) is that the development and
maintenance effort can be reduced by working at the model instead of the code
level. Models define what is valuable in a system, and code generators produce
the functionality that is common in the application domain. One of the main
current issue for the MDE community is to support evolution in the stage of the
software development process (e.g. to support incremental code generation). To
address this issue, this paper works on formalizing operation on collections to
support incremental models manipulation. Indeed, collections are omnipresent
in the Model Driven Engineering field: collections of references can represent
relations between objects, and collections of values can represent object at-
tributes. Consequently, manipulating models often consists of performing opera-
tions on collections. Two essential model manipulations are constraint checking
and model transformation: the former often uses (OCL) iterators to traverse col-
lections, and the later generates target from source collections. This illustrates
the importance of collections in Model Driven Engineering. However, whenever
a model is modified, these operations are not efficient since they require a full

D.C. Petriu, N. Rouquette, Ø. Haugen (Eds.): MODELS 2010, Part I, LNCS 6394, pp. 91–105, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



92 O. Beaudoux et al.

re-execution as if the model was newly created. Many different solutions have
been proposed to solve such an issue; they are all based on the concept of incre-
mental [1], live [2] or active [3] model manipulation. Despite their omnipresence,
collections are not the central piece of these approaches that are often tied to a
specific language and/or system [4,5], or use usual manipulations combined with
merge strategies [6].

This paper proposes a formalism that makes standard operations on collec-
tions active, independently from languages and systems. It shows how active
transformations can be reduced to active operations on collections, thus under-
lining the interest of collections as first class objects for model manipulation.
It evaluates the approach by studying complexities of active operations, and
by explaining how active operations can be written with Active Kermeta, an
implementation of our formalism on top of Kermeta [7].

The remainder of this paper is structured as follows. Section 2 explains how
standard operations on collections can be made active through active loops,
thus showing the foundation of our proposal. Section 3 illustrates the use of
the formalism and its Active Kermeta implementation for writing active trans-
formations. Section 4 evaluates complexities of active operations, discusses the
possible optimizations, and compares the approach with related works. Finally,
section 5 concludes on our contribution and its perspective.

2 From Standard to Active Operations

This section explains the semantics of active operations by describing their active
loops: usual binary operations, application, selection, sort, and reversed assign-
ment. Such a set of operations has been mainly inspired by OCL [8].

2.1 Preliminary: Definitions

The set of all collections is noted C. Its subsets U and O define collections
that respectively manage uniqueness and order. The four combinations define
usual collection types: order set (oset = U ∩ O), set (set = U − O), sequence
(seq = O − U), and bag (bag = C − U − O).

The following table introduces the minimal set of operations that is sufficient
to express any other operation:

Operation C /∈ O C ∈ O

|C| cardinality of C
e ∈ C presence of e in C
e ∈i C n/a presence of e in C at position i ∈ [0..|C|[
C[i] n/a element in C at position i ∈ [0..|C|[
C[i..j] n/a sub-collection of C from pos. i to pos. j
C + e adds e into C appends e at the end of C
C +i e n/a inserts e into C at position i ∈ [0..|C|]
C − e removes the first occurrence of e from C
C−i n/a removes from C the element at pos. i ∈ [0..|C|[



Active Operations on Collections 93

If C ∈ U, operations C + e and C +i e check the uniqueness of e within C: if
e ∈ C before the insertion, operations have no effect. The following table gives
the notation used to iterate on collections:

Iteration C /∈ O C ∈ O

∀e ∈ C, p(e) calls p(e) for each element e of C
∀e ∈i C, p(e, i) n/a calls p(e, i) for each element e at position i in C
∀′e ∈ C, pa(e) calls pa(e) each time an element e is added into C
∀′e /∈ C, pr(e) calls pr(e) each time an element e is removed from C
∀′e ∈i C, pa(e, i) n/a calls pa(e, i) each time e is inserted at position i
∀′e /∈i C, pr(e, i) n/a calls pr(e, i) each time e is removed from position i

The first two rows represent usual iterations throughout loops (symbol ∀):
the iteration is performed once for all elements of the collection. The next two
rows define an iteration throughout an active loop (symbol ∀′) that is composed
of two rules: the addition rule (∀′... ∈ ...) immediately invokes procedure pa for
each element e of C (similar to usual loops), and subsequently invokes pa each
time a new element e is added into C; the removal rule (∀′... /∈ ...) subsequently
invokes procedure pr each time element e is removed from C. The last two rows
define the indexed active loop dedicated to ordered collections; such a loop can
also be used in some situations with unordered collections (e.g. selection and
sort, see sections 2.4 and 2.5). Active loops thus observe additions and removals
performed on collections; they also observe replacements since a replacement is
considered as a removal+addition pair (see section 4.2). Usual and active loops
can use a predicate; for example, ∀e ∈ C | e �= 1, p(e) calls p for each e different
from 1.

Usually operation B = op(A1, ..., An) computes the resulting collection B from
the source collections Ai. The computation is based on a usual loop: changing
Ai collections afterward does not change B. Conversely, an active operation is
based on an active loop, and thus reevaluates B each time an addition or a
removal occurs on Ai. One may find that using operator = is ambiguous since
it suggests bidirectionality; however, a change on B does not affect Ai. For
this reason, operator := is used so that expression B := op(A1, ..., An) becomes
unambiguous.

2.2 Union, Intersection and Difference

Usual binary operations, such as union, intersection and difference, have simple
active loops. For example with operation C := A∪B, each time an element e is
added into A or B, it is also added into C; conversely, each time e is removed
for A or B, it is also removed from C:

Operation Order Active loop
C := A ∪ B (A, B) /∈ O2 ∀′e ∈ A, C + e ∀′e /∈ A, C − e

∀′e ∈ B, C + e ∀′e /∈ B, C − e
(A, B) ∈ O2 ∀′e ∈i A, C +i e ∀′e /∈i A, C−i

∀′e ∈i B, C +|A|+i e ∀′e /∈i B, C−|A|+i



94 O. Beaudoux et al.

Union preserves uniqueness, i.e. (A, B) ∈ U2 ⇒ C ∈ U, and order, i.e.
(A, B) ∈ O2 ⇒ C ∈ O. Active loops for intersection and difference have been
defined similarly.

2.3 Application

Application B := A(f) consists of applying f on each element of A. It preserves
the order and guarantees |A| = |B|; it cannot preserve uniqueness since f may
have introduced pairs.

Application allows the definition of navigation paths. For example, if elements
e of A define property1 p, path B := A.p is equivalent to B := A(e → e.p).
However, the result must be flattened since A(e → e.p) returns a collection of
properties, i.e. a collection of collections.The following table gives the active
loops for applications and paths:

Operation Order Active loop
B := A(f) A /∈ O ∀′e ∈ A, B + f(e) ∀′e /∈ A, B − f(e)

A ∈ O ∀′e ∈i A, B +i f(e) ∀′e /∈i A, B−i

B := A.p A /∈ O ∀′e ∈ A, ∀′e /∈ A,
∀′e′ ∈ e.p, B + e′ stop observation of e.p
∀′e′ /∈ e.p, B − e′ ∀e′ ∈ e.p, B − e′

A ∈ O ∀′e ∈i A, ∀′e /∈i A,
∀′e′ ∈j e.p, B +k e′ stop observation of e.p
∀′e′ /∈j e.p, B−k ∀e′ ∈j e.p, B−k

where k = j +
∑n=i−1

n=0 |e[n].p|

2.4 Selection

Selection B := A[f ] consists of selecting elements of A that match predicate
f . It preserves uniqueness and order since it filters A. Other operations can be
derived from selection, such as operations reject, detect, exists and forAll defined
by OCL [8], or operation B := toUnique(A) that converts A ∈ C into B ∈ U.

Operation Order Active loop
B := A[f ] A /∈ O ∀′e ∈ A | f(e), B + e ∀′e /∈ A | f(e), B − e

A ∈ O ∀′e ∈i A | f(e, i), B +j e ∀′e /∈i A | f(e, i), B−j

where j =| A[0..i][f ] |

As one can note, the previous active loops do not take into account any
reevaluation of f required in some situations. For example, selection persons[p →
p.age < 18] returns a collection of persons under 18. The active loop works fine
whenever a person is added or removed from the collection; however, it fails
whenever the age of a person goes above 18.
1 A property is either a relation or an attribute. As explained in section 3.1, all prop-

erties are considered as collections.



Active Operations on Collections 95

Thus, we propose to reify (symbol ′) predicate f into a predicate collection rep-
resented as a sequence of booleans. Let us consider that collection persons contains
three people with ages 16, 42 and 12. Expression persons.age [a→a<18]′ returns
predicate collection (true, false, true) indicating that persons[0] and persons[2]
are below 18. Here we assume that all collections, including unordered ones, store
their elements in an array (see section 4.1), thus allowing the use of the
indexed accessor C[i] and indexed loops ∀′e ∈i C. By overriding operation B :=
A[f ] with B := A[P ] where P = A[f ]′, the desired selection can be performed:
persons[persons.age[a → a < 18]′].

Operation Order Active loop
P := A[f ]′ ∀′e ∈i A, P +i f(e) ∀′e /∈i A, P−i

B := A[P ] A /∈ O ∀′p ∈i P |p, B + A[i] ∀′e /∈i A | e ∈ B, B − e
∀′p ∈i P |¬p, B − A[i]

A ∈ O ∀′p ∈i P |p, B +j A[i] ∀′e /∈i A | e ∈j B, B−j

∀′p ∈i P |¬p, B−j

where j =| P [0..i][p → p] |

The addition rule of B := A[P ] is based on observing P but not A, which
implies that P := A[f ]′ must be computed before B := A[P ]. The removal rule
is based on observing A but not P , which allows retrieving element e of A that
must be removed from B. Predicate collections can be combined through usual
boolean operators:

Operation Active loop
P ′ := ¬P ∀′p ∈i P, P ′ +i ¬p ∀′p ∈i P, P ′−i

P := P1 ∧ P2 ∀′p2 ∈i P2, P +i (P1[i] ∧ p2) ∀′p2 /∈i P2, P−i

P := P1 ∨ P2 ∀′p2 ∈i P2, P +i (P1[i] ∨ p2) ∀′p2 /∈i P2, P−i

These active loops are simple. However, it is necessary to decide which col-
lection P1 or P2 must be observed for operators ∧ and ∨. By convention, we fix
that P1 is defined before P2 so that a change on P1 is followed by a change on
P2; rules are thus based on observing P2, which guaranties that |P1| = |P2| when
the rule is called (P1[i] can thus be used).

2.5 Sort

Sort B := A{f} consists of sorting A accordingly to the value returned by f as-
suming that its type defines operator <. The sort operation preserves uniqueness
but, naturally, not the order.

Operation Order Active loop
B := A{f} A /∈ O ∀′e ∈ A, B +j e ∀′e /∈ A, B−j

A ∈ O ∀′e ∈i A, B +j e ∀′e /∈i A, B−j

where j = |A[e′ → f(e′) < f(e)] |



96 O. Beaudoux et al.

As for selection, the previous active loops do not take into account any reeval-
uation required if f uses paths on e. For example, sort persons{p → p.name}
returns a collection of persons sorted by their name. This works fine whenever a
person is added or removed from the collection but fails whenever the name of
a person changes.

Thus, we propose again to reify (symbol ′) function f into an order collection
represented as a sequence of integers that gives positions after the sort. Let us con-
sider that collection persons contains three persons named “Emma”, “Oliver” and
“Alice”. Expression persons.name{n → n}′, abbreviated on {persons.name}′, re-
turns order collection (1, 2, 0), which means that persons[0] representing “Emma”
will occupy position {persons.name}′[0] = 1 after sorting. The order can then
be used for sorting the collection:persons{{persons. name}′}. The following ta-
ble overrides the previous one where O := {A}′ returns an order collection and
B := A{O} sorts A according to order O:

Operation Active loop
O := {A}′ ∀′e ∈i A, O +i j ∀′e /∈i A, O−i

where j = |A[e′ → e′ < e] |
B := A{O} ∀′j ∈i O, B +j A[i] ∀′j /∈ O, B−j

The active loop of O := {A}′ consists of adding or removing order j at/from
position i. However, operation + and − must be refined for order collections to
manage resulting positions correctly. For example, O +i j requires to increment
(silently) all orders greater than j.

Moreover, the previous active loops do not allow sorting on multiple criteria.
The full version is based on partial order collections that specify all possible
positions; a partial order collection is represented by a sequence of sequences of
integers. The previous example can be extended so that the persons are sorted by
their last names and then by their first names: persons{{persons.lastName}′∧
{persons.firstName}′}. Let us now consider that collection persons contains
three persons named “Emma G.”, “Oliver B.” and “Alice B.”. We now have
{person. lastName}′ that returns ((2), (0, 1), (0, 1)) and {person.firstName}′
that returns ((1), (2), (0)): “Oliver B.” and “Alice B.” have the same possible
positions (0 or 1) represented by the two sequences (0, 1), and final positions
are given by combining the two partial order collections: {persons.lastName}′∧
{persons.firstName}′ = ((2), (1), (0)).

2.6 Reversed Assignment

Previous operations are unidirectional: in operation B := op A, modifying A
induces a change on B, but modifying B does not induce any change on A, thus
motivating the use of operator := instead of =. Bidirectionality implies that op is
reversible, i.e. A := op−1B, so that a change on B impacts collection A. Union,
intersection, difference, selection and sort are not reversible; the only operation
that can be reverted is the application: B := A(f) can be reverted as long as
f−1 exists.



Active Operations on Collections 97

However, application B := A(f) and its reversed version A := B(f−1) cannot
be defined together since they both create a new resulting collection (respectively
B and A). We thus introduce the reversed assignment operator (symbol =:) that
can only be used on applications: application B := A(f) creates B from A, while
its reversed version B =: A(f) (also written B(f−1) =: A) allows the reverse
update. Since A is always initialized before the reversed assignment, its addition
rule must only be called subsequently to additions. Having B =: A(f) implies
that B := A(f): we use operator = so that B = A(f) defines a bidirectional
application. Active loops for reversed applications are defined as follows:

Operation Order Active loop
B =: A(f) (A, B) /∈ O2 ∀′e ∈ B, A + f−1(e) ∀′e /∈ B, A − f−1(e)

(A, B) ∈ O2 ∀′e ∈i B, A +i f−1(e) ∀′e /∈i B, A−i

Navigation throughout collections is based on the flattening version of the
application. In order to preserve the semantics of the active loop of path B := A.p
(see section 2.3), the active loop of the reverse path assignment B =: A.p should
define the following addition rule: ∀′e′ ∈ B, A + en, en.p + e′ where en is the
owner element of property p that contains e′. Figure 1 helps in understanding
this rule.

A
e1 e2

B = A.p

e1.p e2.p 
a b c

a b c

Fig. 1. Path principle

Such a definition has no general meaning: if en is already contained in A,
which one is it (e.g. e1 or e2 of figure 1)? if not, to what corresponds en? This
demonstrates that the path operation is not reversible since the transformation
loses the required information due to the flattening. However, if |A| = 1 at
any time, en = A[0] necessarily: in this specific case, operations B := A.p and
B =: A.p, written B = A.p, mean that property p of singleton A equals B at any
time. Operation B = A.p is very useful to “bind” a property to another property.
Reversed path assignment is defined as follows:

Operation Order Active loop
B =: A.p (A, B) /∈ O2 ∀′e ∈ B, A[0].p + e ∀′e /∈ B, A[0].p − e
with |A| = 1 (A, B) ∈ O2 ∀′e ∈i B, A[0].p +i e ∀′e /∈i B, A[0].p−i

The following case study includes such a reversed path assignment.



98 O. Beaudoux et al.

3 Case Study

This section illustrates how previous active operations can be used for imple-
menting active transformations. We first motivate the use of collections for rep-
resenting any object property. We then give the active operations required for
implementing an active transformation in the context of a user interface. We fi-
nally explains how the active transformation has been successfully implemented
within Kermeta using our Active Kermeta framework.

3.1 Requirement: All Properties Are Collections

An object property can be either a relation or an attribute, and is always repre-
sented by a collection. This means that, if the property has a cardinality 0..1 or
1..1, its representing collection is a singleton. In such a case, an empty collection
represents a null property value.

This requirement is implied by the use of paths that extends the dotted no-
tation of OOP. For example, in expression B := o.p1.p2 where |p1| ≤ 1, o.p1
represents the dotted notation of OOP while p1.p2 represents a path (see section
2.3). If p1 is not considered as a singleton but as a value, the property value o.p1
can be null, thus resulting in a null reference error within expression o.p1.p2.
This requirement has no real impact on performance since observing a singleton
is equivalent to observing changes on a value: in this last case, the value needs
to be encapsulated within a dedicated class (e.g. a class ObservableValue<T>).

3.2 Active Transformation

Figure 2 gives the outline of the sample transformation: the left part represents
source domain data, a directory of contacts; the right part represents the asso-
ciated user interface (UI) that displays the contacts within a list widget, and
allows editing contact properties throughout three text fields2.

Linking domain data to UI is usually performed using “UI bindings” that are
platform dependent and offer limited features. Using active operations avoids
such drawbacks, and addresses a more general problem than UI binding [9]. A
comparison between UI bindings and active operations is however beyond the
scope of this paper. A complex example is provided within the Active Kermeta
framework.

In the example of figure 2, D2L transforms directory d into list l that displays
the contacts sorted by their last name and first name:

l.items := d.contacts{{d.contacts.lastName}′ ∧ {d.contacts.firstName}′}(C2I)

C2I transforms each contact c into an item i that displays his/her first and last
name, and also saves the link between c and i in reversed relation contact :
2 UI objects are rendered through a graphical server not represented in the figure.

Adding a contact is achieved through the button “Add” of the user interface: clicking
on the button creates a new contact in the source data directly.



Active Operations on Collections 99

Fig. 2. Transformation outline

i.text := c.firstName + ” ” + c.lastName
i.contact := c

Operation +, not presented in this paper, is also active for a String singleton
(see section 3.3). Relation contact allows a reversible navigation from the trans-
formation target of the transformation source: i = C2I(c) and c = C2I−1(i) =
i.contact. Such a relation is called a trace.

L2FirstNameTF (respectively L2LastNameTF ) transforms the first name (re-
spectively the last name) of the selected contact (relation l.selection.contact) into
text-field tf in a bidirectional way:

tf.text = selection.contact.firstName

Finally, L2PhoneTF performs the same transformation but adds a bidirectional
conversion between the phone number (an Integer) and the text field content (a
String):

tf.text := selection.contact.phone(IntegerToString)
tf.text(StringToInteger) =: selection.contact.phone

3.3 Kermeta Implementation

Active operations have been implemented on top of Kermeta by the Ac-
tive Kermeta framework, freely available at http://gri.eseo.fr/software/
activekermeta. The framework proposes two packages dedicated to the four col-
lection classes Set, OrderedSet, Bag and Sequence. Package kermeta::observable
defines the minimal set of operations and active loops for these classes; the fol-
lowing table gives the syntax of Kermeta active loops:

∀′e ∈ C, ... C.eachAdded{e|...} ∀′e ∈i C, ... C.eachAddedAt{e,i|...}
∀′e /∈ C, ... C.eachRemoved{e|...} ∀′e /∈i C, ... C.eachRemovedAt{e,i|...}

Package kermeta::active implements active operations based on the active
loops presented in section 2; the following table gives the syntax of Kermeta
active operations:

http://gri.eseo.fr/software/activekermeta
http://gri.eseo.fr/software/activekermeta


100 O. Beaudoux et al.

C := A ∪ B C := A.union(B) B := A(f) B := A.collect{e|f(e)}
C := A ∩ B C := A.intersection(B) B := A.p B := A.path{e|e.p}
C := A − B C := A.difference(B) B =: A.p A.assignPath{e|e.p}.from(B)
P := A[f ]′ P := A.predicate{e|f(e)} O := {A}′ O := A.sortOrder()
B := A[P ] B := A.select(P) B := A{O} B := A.sortedBy(O)
P ′ := ¬P Pbis := P.not() O := O1 ∧ O2 O := O1.and(O2)
P := P1 ∧ P2 P := P1.and(P2) P := P1 ∨ P2 P := P1.or(P2)

Writing an active Kermeta transformation respects the same principle as writ-
ing a usual Kermeta transformation: aspects are used to add new transformation
operations on Ecore models [7]. The transformation of figure 2 has been imple-
mented with active operations as follows:

1 aspect class Directory {
2 operation D2L(): List is do
3 result := List .new
4 result . items := contacts .sortedBy(
5 contacts .path{c|c.lastName}.sortOrder().and(
6 contacts .path{c|c.firstName}.sortOrder ())
7 ). collect {c|c.C2I()}
8 end
9 }

10
11 aspect class Contact {
12 operation C2I(): Item is do
13 result := Item.new
14 result . text := firstName.plusValue("␣").plus(lastName)
15 result .contact .add( self )
16 end
17 }
18
19 aspect class List {
20 operation L2PhoneTF(): TextField is do
21 result := TextField .new
22 var contact : Set<Contact> init selection .path{i | i .contact}
23 result . text := contact.path{c|c.phone}. collect (a|a. toString ())
24 contact .assignPath{c|c.phone}.from(result . text . collect {t | t . toInteger ()})
25 end
26
27 // ...
28 }

Operation plus (line 15), not described in this paper, is an active operation
that concatenates two string singletons; its companion operation plusValue con-
catenates the literal string with the string singleton. Relation contact is added
through an aspect of class Item.

As one may note, such a Kermeta code can be easily generated from the formal
specification given in the previous section.



Active Operations on Collections 101

4 Evaluation

This section evaluates the worst case complexities of active loop rules, discusses
the resulting performance in the contexts of both constraint evaluation and
model transformation, and then compares the approach with related works.

4.1 Worst Case Complexities

The following table gives the worst case complexities of elementary operations
on collections implemented as array lists:

Operation C /∈ U C ∈ U

|C|, e ∈i C, C[i] O(1)
C + e O(1) O(n)
e ∈ C, C +i e, C − e, C−i O(n)

Due to the choice of the elementary operations, these complexities cannot be
better for linked lists, nor for sorted sets (C + e is even worse). Moreover, using
hash sets should only improve the average-case complexities (e.g. e ∈ C is O(1)
in average). We can thus infer worst -case complexities of active loops from the
previous table.

Since active loops of ordered collections differ from those of unordered col-
lections, we must study complexities for each of the four collection types (bag,
seq, set and oset). Moreover, we distinguish three cases of the active construc-
tion of collections: the initialization (“i.”) that invokes the addition rule n times;
the addition (“a.”) that invokes the addition rule on each addition performed in
the source collection; and the removal (“r.”) that invokes the removal rule on
each removal performed in the source collection. The following table synthesizes
complexities for each rule of action loops:

bag seq set oset
Operation i. a. r. i. a./r. i. a. r. i. a./r.
A ∪ B, A(f), A.p n 1 n n n n 1 n n n
A{O}, A[f ]′, A[P ] n 1 n n n n2 (n) n (1) n n2 (n) n
B =: A.p - 1 n - n - 1 n - n
¬P , P1 ∧ P2, P1 ∨ P2, O1 ∧ O2 - - - n n - - - - -
A ∩ B, A − B, {A}′ n2 n n n2 n n2 n n n2 n

Complexity for an initialization is not necessarily equal to n× c where c is the
complexity of its addition rule. For example, the addition rule of A ∪ B where
(A, B) ∈ seq2 is based on operation C +i e that costs O(n): the initialization
would thus cost O(n2); however, operation C +i e here appends e at the end of
C, which costs only O(1): the initialization phase thus costs O(n).

Operations in the first four rows are mainly O(n): additions cost O(1) for
unordered collections, but cost O(n) for ordered ones because of the required
shifting; removals always cost O(n) since they require a search in unordered



102 O. Beaudoux et al.

collections, or a shifting of ordered collections. Note that the complexity of op-
eration A.p is given considering |A.p| = n, but not |A| = n. Collections with
uniqueness have O(n2) operations because C + e must ensure the uniqueness.
However, operations on row 2 do not require uniqueness from operation +: for
example, selection B := A[f ] guaranties that B ∈ U if A ∈ U since it filters
A; these operations can thus reduce their complexities (values surrounded by
parenthesis). The last row has O(n2) complexities: A ∩ B and A − B require
presence tests that cost O(n), and {A} naturally requires two loops.

4.2 Discussion

The previous table illustrates that complexities for removals are always O(n).
Consequently, replacing element ea by element eb in collection C costs O(n)
since it performs a removal of ea and an addition of eb. This might be opti-
mized for ordered collections since replacing one of its element only costs O(1).
This optimization requires the introduction of a replace rule within active loops.
Moreover, replace rule can be mandatory in some circumstances; for example,
replacing the value of a property with cardinality 1..1 violates the minimal car-
dinality constraint if a removal if performed. The replace rules can be easily
inferred from addition and removal rules; they have not been considered in this
paper for clarity.

An active transformation that counts m operations constructs its initial result
in between O(m× n) and O(m×n2), and subsequently updates each individual
resulting collection in between O(1) and O(n). However, operations are not inde-
pendent: modifying one source collection can result in multiple chained updates.
A simplified view of such dependencies consists of representing the operations
in a two dimensioned space where height h counts the independent chains of
operations, and w counts the operations involved in a chain: O(m) = O(h×w).
The number of operations Δw required to reify functions involved in selections
and sorts (see sections 2.4 and 2.5) is included in number w. For example, sin-
gle selection persons[p → p.age < 18] must be rewritten in active selection
persons[persons.age[a → a < 18]′] that counts Δw = 2 (path + predicate
collection), i.e. w = 3.

Complexity of the initial construction varies from O(h×w×n) to O(h×w×n2),
and complexity of the subsequent chained updates varies from O(w) to O(w×n):
their ratio λ thus varies from O(h) to O(h × n2). This result illustrates the
interest of active operations, especially for large models (n � 1) and/or complex
transformations (h � 1).

The active loops proposed in section 2 should be implemented in a way that
depends on the context of use, thus allowing possible optimizations that would
increase λ by reducing width w of the dependency chains. In the context of
incremental constraint evaluation, Cabot and Teniente [4] propose to take into
account only changes that can induce constraint violation, thus defining a new
specific context of use. Such a specific context requires that our model for ob-
serving collections should be refined so that addition and removal rules does not
systematically invoke their associated procedures. Section 3 has presented the



Active Operations on Collections 103

specific context of active transformations for user interfaces: the transformation
binds the domain objects to their presentation. In such a context, the user works
on a presentation that represents a (small) part of the full application model:
this typically means that the transformation starts by a selection that filters
the full model. Such a selection thus naturally “optimizes” the transformation
by pre-filtering changes that do not impact the presentation. Moreover, the user
can perform many changes on a single object in a short time-slot, thus resulting
in many reevaluations of active operations. Once again, the observability model
can be refined by using an asynchronous invocation of addition and removal
rules, as done within Viatra [10]. This would improve performances by filtering
any redundant modifications, such as multiple intermediate changes of a single
property (only the last change should be considered).

Since it is centered on operations on collections, our approach is more suited
to imperative transformations (e.g. Kermeta) than to declarative ones (e.g. ATL
[11]). However, we think that our formalism can help in making declarative trans-
formations active. Moreover, mappings expressed with higher level languages,
such as Malan [12], should be automatically converted into active operations.

4.3 Related Work

Many research have been done on incremental evaluation of constraints and
incremental transformations. We herein only cite some of the most recent ones.

Blanc et al. propose an original approach for detecting model inconsistency
(constraint violation): the detection is performed on the model considered as
a sequence of elementary construction operations, rather than a model consid-
ered as a set of elements [13]. The approach is thus naturally incremental. It
shares some similarities with active operations: their elementary construction
operations match the elementary rules (addition and removal) of active loops,
and our addition rules are also used to initially build the content of collections.
However, their approach is dedicated to constraint evaluation only, and the im-
plementation is based on Prolog which is not widely used and not well adapted
to MDE.

Cabot et Teniente optimize OCL constraint evaluation by considering only
constraint violations: model changes that cannot violate constraints are filtered
[4]. They also translate OCL contexts to better contexts. The proposed optimiza-
tion is interesting and forms a specific context of use, as previously explained.
However, users often temporally violate constraints when editing models (e.g.
a user omits the type of a class attribute within an Ecore diagram): transition
from state violated to state respected should not be ignored. The optimization,
specific to constraint checking, cannot be used in the context of incremental
transformation.

XSLT is probably the best known transformation language. Villard and
Layaïda have developed incXLST, an incremental XSLT processor, thus showing
the broader interest of incremental transformation [5]. The processor is based
on re-instantiating transformation rules and merging the resulting fragments
within the target document, and has limited featured. Framework eXAcT allows



104 O. Beaudoux et al.

the transformation of DOM documents into DOM presentations (e.g. SVG pre-
sentations) [14]. However, eXAcT transformations are complex Java programs
with limited features. Moreover, both incXSLT and eXAcT are not MDE tools.

QVT has established that incremental transformation is an important issue of
MDE [15], but no incremental QVT-based transformation engine has been im-
plemented yet. Xiong et al. proposed SyncATL, an incremental ATL processor
[6], on the same principle as incXSLT: elicited ATL rules are re-executed and
their results are merged with the target. As for incXSLT with XSLT, the pro-
cessor is dedicated to ATL only. Hearnden et al. propose an original approach
based on the use of SLD resolution, where SLD trees store the transformation
context and dependency tables record dependencies between the transformation
and the source model [2]. The drawback of the approach is the maintenance cost
of the SLD trees and dependency tables.

The previous works make declarative transformations incremental by imple-
menting new processors and/or algorithms tied to specific languages and/or
systems. Using active operations on collections allows their direct execution on
model instances, without requiring any specific processor or complex algorithm:
definition of operations are directly executable in an active manner. We have
shown that active operation can be easily used to implement Kermeta impera-
tive transformations. We think that our formalism can help in making declara-
tive transformation languages active, such as ATL [11], by generating the active
operations for a given “passive” transformation. Some authors considered that
declarative transformations should be expressed as mappings [3,1,12]. Here again,
we think that active implementations of mappings, as defined by Akehurst [3],
can be achieved by active operations.

5 Conclusion and Perspective

This paper proposes a formalism, based on active loops, for implementing active
operations on collections. The standard set of operations, mainly inspired by
OCL [8], is supplemented by a reversed assignment that allows the definition of
bidirectional operations. A case study, fully implemented in Kermeta, illustrates
that making a transformation active by using such a formalism does not require
to change much the usual (i.e. passive) transformation; it also gives a specific
context that requires active transformations with bidirectionality features: user
interfaces. The complexity study shows that running active operations results
in an interesting gain when compared to running all the “passive” operations.
Moreover, such a gain can be increased by reducing operation dependencies with
optimization strategies that can be implemented depending of the contexts of
use (e.g. transformation within UI or evaluation of constraint violation).

We first plan to create an active implementation of the Malan language [12]
based on Active Kermeta, thus showing the ability of active operations to imple-
ment declarative mappings and transformations. We will secondly focus on the
use of active operations for incremental constraint validation by extending the
proposed set of active operations , and by defining active class invariants through



Active Operations on Collections 105

Kermeta aspects. We thirdly plan to optimize the collection observability model
of Active Kermeta with filtering and asynchronous treatment capabilities. Fi-
nally, we will use active operations in the context of user interfaces to link each
of their components [16,17].

References

1. Giese, H., Wagner, R.: From model transformation to incremental bidirectional
model synchronization. Software and Systems Modeling 8(1), 21–43 (2008)

2. Hearnden, D., Lawley, M., Raymond, K.: Incremental model transformation for the
evolution of model-driven systems. In: Nierstrasz, O., Whittle, J., Harel, D., Reggio,
G. (eds.) MoDELS 2006. LNCS, vol. 4199, pp. 321–335. Springer, Heidelberg (2006)

3. Akehurst, D.H.: Model Translation: A UML-based specification technique and ac-
tive implementation approach. PhD thesis, University of Kent (2000)

4. Cabot, J., Teniente, E.: Incremental evaluation of OCL constraints. In: Dubois,
E., Pohl, K. (eds.) CAiSE 2006. LNCS, vol. 4001, pp. 81–95. Springer, Heidelberg
(2006)

5. Villard, L., Layaïda, N.: An incremental XSLT transformation processor for XML
document manipulation. In: Proc. of WWW 2002, pp. 474–485. ACM, New York
(2002)

6. Xiong, Y., Liu, D., Hu, Z., Zhao, H., Takeichi, M., Mei, H.: Towards automatic
model synchronization from model transformations. In: Proc. of ASE 2007, pp.
164–173. ACM, New York (2007)

7. Muller, P.A., Fleurey, F., Jézéquel, J.M.: Weaving executability into object-
oriented meta-languages. In: Briand, L.C., Williams, C. (eds.) MoDELS 2005.
LNCS, vol. 3713, pp. 264–278. Springer, Heidelberg (2005)

8. Warmer, J.B., Kleppe, A.G.: The object constraint language: getting your models
ready for MDA. Addison-Wesley, Reading

9. Beaudoux, O., Blouin, A.: Linking data and presentations: from mapping to active
transformations. In: Proc. of DocEng 2010. ACM, New York (2010) (in press)

10. Varró, D., Balogh, A.: The model transformation language of the viatra2 frame-
work. Sci. Comput. Program. 68(3), 187–207 (2007)

11. Jouault, F., Kurtev, I.: Transforming models with ATL. In: Bruel, J.-M. (ed.)
MoDELS 2005. LNCS, vol. 3844, pp. 128–138. Springer, Heidelberg (2006)

12. Blouin, A., Beaudoux, O., Loiseau, S.: Malan: A mapping language for the data
manipulation. In: Proc. of DocEng 2008, pp. 66–75. ACM, New York (2008)

13. Blanc, X., Mounier, I., Mougenot, A., Mens, T.: Detecting model inconsistency
through operation-based model construction. In: Proc. of ICSE 2008, pp. 511–520.
ACM, New York (2008)

14. Beaudoux, O.: XML active transformation (eXAcT): transforming documents
within interactive systems. In: Proc. of DocEng 2005, pp. 146–148. ACM, New
York (2005)

15. OMG: MOF QVT final adopted specification. OMG document, OMG (2005)
16. Blouin, A., Beaudoux, O.: Improving modularity and usability of interactive sys-

tems with Malai. In: Proc. of EICS 2010, pp. 115–124. ACM, New York (2010)
17. Beaudoux, O., Beaudouin-Lafon, M.: OpenDPI: A toolkit for developing document-

centered environments. In: Enterprise Information Systems VII, pp. 231–239.
Springer, Heidelberg (2006)



transML: A Family of Languages to Model
Model Transformations

Esther Guerra1, Juan de Lara2, Dimitrios S. Kolovos3,
Richard F. Paige3, and Osmar Marchi dos Santos3

1 Universidad Carlos III de Madrid, Spain
eguerra@inf.uc3m.es

2 Universidad Autónoma de Madrid, Spain
Juan.deLara@uam.es

3 University of York, UK
{dkolovos,paige,osantos}@cs.york.ac.uk

Abstract. Model transformation is one of the pillars of Model-Driven
Engineering (MDE). The increasing complexity of systems and modelling
languages has dramatically raised the complexity and size of model trans-
formations. Even though many transformation languages and tools have
been proposed in the last few years, most of them are directed to the
implementation phase of transformation development. However, there is
a lack of cohesive support for the other phases of the transformation
development, like requirements, analysis, design and testing.

In this paper, we propose a unified family of languages to cover the
life-cycle of transformation development. Moreover, following an MDE
approach, we provide tools to partially automate the progressive refine-
ment of models between the different phases and the generation of code
for specific transformation implementation languages.

1 Introduction

Model-Driven Engineering (MDE) relies on models to conduct the software de-
velopment process. In this way, high-level models are refined using automated
transformations until the code of the final application is obtained. A key aspect
in MDE is automation of operations applied to models (i.e. model management).
In particular, there is a recurring need to transform models between different
languages and levels of abstraction, e.g. to migrate between language versions,
to translate models into semantic domains for analysis, to generate platform-
dependent from platform-independent models, or to refine and abstract models.
This kind of transformation is called Model-to-Model (M2M) transformation.

In MDE, transformations are seldom specified with general-purpose program-
ming languages (e.g. Java) but with M2M transformation languages specially
tailored for the task of transforming models [3]. Prominent examples of such
languages are QVT [12], ATL [1], Triple Graph Grammars [15] and ETL [10].

M2M transformations are deployed as software and, like any other software,
they need to be analysed, designed, implemented and tested. Therefore, their
development requires systematic engineering processes, notations, methods and

D.C. Petriu, N. Rouquette, Ø. Haugen (Eds.): MODELS 2010, Part I, LNCS 6394, pp. 106–120, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



transML: A Family of Languages to Model Model Transformations 107

tools. This need is more acute in industrial projects, where the complexity of
models and modelling languages makes necessary large and complex transforma-
tions. Surprisingly, most transformation languages proposed by the MDE com-
munity are either directed towards the implementation phase of transformations
or are not integrated in a unified engineering process. As a consequence, there
is a lack of cohesive support for transformations – involving notations, methods
and tools – across all development phases. This makes more difficult the design of
large-scale transformations, hinders the standardization and codification of best
practices (e.g. patterns analogous to design patterns in UML), and complicates
the maintenance and understandability of the transformation code.

In this paper we present a family of modelling languages, called transML,
which covers the whole life-cycle of transformation development: requirements,
analysis, design and testing. It can be used together with any transformation
implementation language. Moreover, following an MDE approach to the con-
struction of transformations, we provide partial automation for the refinement
of transML models and the generation of code for specific transformation imple-
mentation languages. We also provide support for reengineering transformation
code by its parsing into transML models, and facilitating platform migration.

Paper organization. §2 discusses previous attempts to model M2M transfor-
mations, pointing out limitations. Next, §3 proposes a set of languages that cover
the identified needs to build transformations in the large. §4 presents tool sup-
port for forward and reverse transformation engineering, followed by §5, which
evaluates the approach with an industrial case study. Finally, §6 concludes.

2 Related Work

Most recent research in M2M transformation has focused on the implementation
phase, either to develop new implementation languages, or to test final imple-
mentations. This is likely due to the infancy of M2M transformation research,
and is analogous to early research on software engineering languages where the
focus was directed to implementation languages. There, analysis and design no-
tations came later, when issues of system scale became a concern.

Only a few proposals for design notations for transformations can be found in
the literature. For example, [13] presents a language to design transformations,
but focusing only on their implementation. Another example is [4], which covers
the low-level design of transformations, being able to represent the structure of
rules using diagrams similar to UML class diagrams.

Closer to our engineering view of building transformations are the works that
consider several phases of development. For example, [16] identifies a transforma-
tion development life-cycle and proposes describing transformations incremen-
tally, starting from transformational patterns and partial specifications of trans-
formations, which are gradually refined. However, no concrete notation or tool
is proposed. The position paper [11] envisages a mapping and a transformation
view for transformations. Its aim is providing a precise semantics for mappings
in terms of Petri nets so that the transformation view can be generated from the



108 E. Guerra et al.

mappings view. Still, the framework is ad-hoc for their particular transformation
approach and cannot be applied to other implementation languages.

Finally, there is limited work on languages to express composition of transfor-
mations; this can be viewed as a kind of architectural design [14,18] through the
definition of new architectural languages. Whereas [14] is a specific language for
composing ATL transformations, in [18] the approach is more platform indepen-
dent. In both cases, other phases of transformation development are neglected.

In summary, we observe a lack of modelling notations and tools to cover the
complete life-cycle of transformation development in a cohesive way. Transfor-
mation developers should be able to use such notations with their favourite
transformation implementation languages, in the same way as the UML can
be used with any object-oriented programming language. Having available such
transformation modelling notations would make possible to apply systematic en-
gineering principles to transformation development, to trace the models in the
different stages of the development (in a non ad-hoc way), as well as to apply
MDE techniques to obtain transformation code from high-level models. Such no-
tations are urgently needed in order to be able to benefit from proven software
engineering principles, like design patterns [2,8] for model transformations.

3 A Family of Languages to Model Transformations

How are transformations developed? The answer is too frequently “in an ad-hoc
manner”. Jumping directly to an implementation language may be sufficient for
simple transformations, but this approach is challenging in the large. If transfor-
mation technology is to be used in industry, transformations must be constructed
using engineering principles. Hence, the process of transformation development
should include other phases, in addition to coding and testing, namely: require-
ments, analysis, architectural design, high-level design and detailed design.

The notations to be used in these phases have to consider the specificities
of model transformation development. Fig. 1 gives an overview of transML, the
family of languages we propose, and shows how they are interrelated. In the
upper part, the figure shows the family of proposed languages, made of a re-
quirements diagram, formal specification diagrams and simple scenarios to cover
the transformation analysis, architecture diagram, high-level design view of the
transformation specified as a mapping diagram, and rule diagrams for the low-
level design. The figure also shows relations to trace elements across diagrams
(e.g. to discover the requirements each rule is addressing). The objective of these
diagrams is guiding the construction of the software artifacts shown on the bot-
tom of the figure: the transformation code (in any implementation language
such as QVT or ETL), the generation of test cases, the run-time verification of
transformation code and the orchestration of transformations.

We do not prescribe a particular process in which these phases should occur,
but in our experience, transformations are often built in an iterative, incremental
way. We also do not suggest that all diagrams have to be used when building any
transformation (just like when building object-oriented systems it is not manda-
tory to use all UML diagram types). Depending on the project characteristics,



transML: A Family of Languages to Model Model Transformations 109

Traceability links

Rule
diagrams

Transformation code
(e.g. ETL, ATL, QVT…)

generation reengineering

Behavioural
diagrams

Mapping
diagram

Scenario
s

Aggregated
Scenarios

Requirements

Formal
specification

Test
Cases

generationin
je

ct
 a

ss
er

tio
ns

Simple
scenarios

Test
cases

High-level
design

Low-level design

Orchestration
code

generation

Analysis

Architecture
diagram

Derived traceability links

Fig. 1. Model transformation framework

we may emphasize the use of the formal specification language (e.g. for complex
transformations that should preserve behaviour), or just use the high-level de-
sign diagrams but not the low-level ones for small, one-to-one transformations.
However, the full power of transML comes by using its diagrams in combination.

Next we present transML in detail. We will use as an example the classical
class-to-relational transformation to ease understanding, and provide evaluation
of its use with a complex transformation in an industrial project in §5.

3.1 Requirements Elicitation

Just like any other software, transformation developers need to record the trans-
formation rationale, identifying functional and non-functional requirements.
Therefore, notations helping the hierarchical decomposition of requirements and
permitting traceability to further models are especially useful. Here we could
use any technique and notation from the Requirements Engineering commu-
nity. However, in order to trace requirements into subsequent phases, transML
includes a representation of requirements in the form of diagrams, similar
to SySML requirements diagrams1. The meta-model for this representation is
shown to the left of Fig. 2, and enables hierarchical decomposition, classifica-
tion, refinement and traceability of requirements. Requirements are classified in
a dual way: attending to whether they are functional or not, and to whether
their source is an input model, an output model or the transformation itself.

As an example, the right of Fig. 2 shows the requirements diagram for the
class-to-relational transformation. Requirements for the input model are anno-
tated with a right arrow in the upper right corner, whereas requirements of
the transformation are annotated with dented wheels. Thus, requirement 0.1
restricts input models to have no redefined attributes. On the other hand, re-
quirement 0.3.1 derives from requirements 0.3.2 and 0.3.3.
1 http://www.omg.org/spec/SysML/1.1/



110 E. Guerra et al.

requirements

ReqDiagram

-name:String

-description:String

derives+ *

Requirement

-name:String

-text:String

-source:ReqSource

-type:ReqType

children+ *

<< enumeration >>

ReqType

+functional:int=1

+nonFunctional:int=2

<< enumeration >>

ReqSource

+sourceModel:int=1

+targetModel:int=2

+transformation:int=3

*

refines+*

«requirement»

OO2DB Transformation

The objective is, given a class diagram to create a DB schema 

able to store the information of instances of the class diagram

«requirement»
Features

Features are transformed

to columns

«requirement»
Classes

Classes are transformed 

into tables

«requirement»
Single-Val-Attributes

Single valued attributes 

are transformed into 
columns

«requirement»
Multi-Val-Attributes

Multi-valued attributes are 

transformed into a table, 

with a foreign key and a 

column for their values

«requirement»
References

References are 

transformed into 

foreign keys

«requirement»
Inherited Attributes

Inherited attributes are 

copied to the table

«requirement»
Redefined Attributes

Redefined attributes in the class 
diagrams are not allowed

0

0.1 0.2 0.3

0.3.1 0.3.2 0.3.3 0.3.4

<<derives>>

<<derives>>

Fig. 2. Requirements meta-model (left). Requirements for the transformation (right).

3.2 Analysis

Software engineers use a variety of mechanisms to analyse, understand and rea-
son about requirements. We have identified techniques based on scenarios and
on formal specification languages, which we have adapted for transML.

First, once some requirements are fixed, engineers can write scenarios, which
are examples of the transformation (similar to the role of uses cases in UML).
We call these examples transformation cases, which describe how concrete source
models are transformed into target ones. The examples may contain either full-
fledged models or model fragments. As an example, the left of Fig. 3 shows a
transformation case that explains the transformation of a multi-valued attribute
into a table and a foreign key from the table associated to its owner class.

a:Attribute
name = “author”
isMany = true

c:Class
name = “Book”

t2:Table
name = “author”

co3:Column
name = “value”

co2:Column
name = ”authorId”

child

parent

Class with Multi-Valued Attribute

co1:Column
OO DB

fk:ForeignKey

co4:Column
name = ” id”

t1:Table
name = ”Book”

name = ”BookId”

p:Class

N(NoRefinedAttrs)

a:Attribute
name=X

c:Class ar:Attribute
name=X

c.general.includes(p)

c1: Class

P(InheritedAttrs)

p: Class a: Attribute
name=X

c1.general.includes(p) and c2.general.includes(p)

c2: Class
name=C1 name=C2

t1:Table
name=C1

t2:Table
name=C2

d:Column
name=X

e:Column
name=X

OO DB OO DB

Fig. 3. Transformation case (left). Restriction on the input model (center). Verification
property (right).

The purpose of transformation cases is twofold. First, they are used to under-
stand and reason about what the transformation has to do. Second, they can be
used as input to model transformation-by-example techniques [19] which derive
a rough sketch of the transformation, and can also be used as test cases for the
transformation implementation.



transML: A Family of Languages to Model Model Transformations 111

The second notation we use in this phase is a visual, formal specification lan-
guage [7]. Similar to the role of Z [17] or Alloy for general software engineering,
this language is used to: (i) describe in an abstract manner what the transfor-
mation has to do without stating how to do it, (ii) specify correctness properties
that the implementation should satisfy, and (iii) specify restrictions on the input
or output models. These specifications can be used later for formal reasoning of
transformation requirements, and for specification-driven testing of transforma-
tions through the generation of an oracle function to test the transformation.

Our specification language abstracts from concrete examples, and is based
on declarative patterns that express allowed or forbidden relations between two
models [7]. Patterns have a graphical part, and can include constraints (we use
EOL [9] for this). Patterns expressing allowed relations are called positive, while
those expressing forbidden relations are called negative. Thus, the language sup-
ports constructive and non-constructive specification styles (in contrast to sce-
narios, which are always constructive). Moreover, patterns are bi-directional, so
that they can be interpreted both source-to-target and target-to-source. This
allows the specification of uni-directional and bi-directional transformations.

Since transML has been designed to be independent of the language used
to implement the transformation, our specification language supports the two
usual styles for M2M transformation: trace-based and traceless, depending on
whether explicit traces are given between source and target elements or not.
In the latter case, patterns are similar to QVT relations [12] and can include
positive and negative graph pre- and post-conditions (when and where clauses
respectively). Trace-based and traceless patterns have a formal semantics which
allows answering correctness questions about specifications (e.g. whether there
are conflicts between patterns). The details of the semantics of this language
and its compilation into OCL for testing are available in [7].

As an example, the center of Fig. 3 shows a negative pattern (indicated by the
N(...)) used to express a restriction on the input models. It refines requirement
0.1 in Fig. 2. The pattern checks the existence of two classes c and p such that
p is an ancestor of c, having both an attribute with same name (represented by
variable X). As the pattern is negative, models in which such pattern occurs are
invalid. As we will see latter, code will be injected in the transformation to test
whether a given input model qualifies for the transformation.

The right of the figure shows a pattern expressing a property of the transfor-
mation itself. The pattern is positive (indicated by the P(...)) and expresses
that if a class p has two children classes c1 and c2, then each attribute in the
ancestor class p has to be replicated as a column in the tables associated to c1
and c2. The tables in which the classes are transformed are located by equality
of names (variables C1 and C2), but any formula relating their names would also
be allowed. This kind of patterns will be used for the run-time verification of the
transformation code, in order to check whether the implementation generates
target models satisfying these properties.



112 E. Guerra et al.

3.3 Architecture

Large software is seldom monolithic, but is decomposed into interacting blocks.
Hence engineers have to design its architecture. We have included a modelling
language for architectural design which permits the modular decomposition of
functional units. This is very useful in large-scale transformations, which need
to be split in different units and orchestrated. Moreover, it is often the case
that the transformation has to be integrated with further software components
providing extra functionality, such as code generators. For the design of this
language we have taken some ideas from works dealing with orchestration of
transformations [14,18], as well as from architectural description languages [6].

Our architectural language is made of components and connectors. Compo-
nents interact through directional interfaces with a type given by meta-models,
event types, actors or other components (to allow higher-order transformations).
They can have a set of constraints, can be arranged hierarchically, and may repre-
sent transformations (model-to-model, model-to-text, text-to-model or in-place),
software (a black-box) or actors (to model human intervention).

The left of Fig. 4 shows a simple architectural diagram for our example.
The model depicts a chain of transformations: the first takes an OO model and
transforms it into a DB model, the second optimises this DB model, and the
third generates textual code for a particular platform. The diagram shows the
transformations as components with typed, directional interfaces. The type of
the interfaces is given by one or more meta-models, together with extra (OCL)
constraints to rule out models which conform to the meta-model but are not
handled by the transformation. Models conforming to those interfaces can be the
input/output of the transformations. The type also allows checking compatibility
when connecting two transformation components. The right of the figure shows
a type-centric view of the same model. This view is similar to a mega-model [5],
where transformation components are visualized as arrows connecting interface
types. This architectural view can bridge modelware and grammarware technical
spaces by including model-to-text and text-to-model transformations.

OO2DB

in out

Normalize

in out

UML DB

GenSchSQL

in out

SQL Grammar
ISO/IEC 9075:2008

«M2M» «inPlace» «M2text»

UML DB
OO2DB

Normalize

SQL Grammar

ISO/IEC 9075:2008

GenSchSQL

Fig. 4. Architectural diagram: transformation-centric and type-centric views

3.4 High-Level Design: Mappings

The design of a transformation benefits from proceeding from a high to a lower
level of abstraction, and therefore we provide different notations for them. The
high-level design of a transformation is given by a mapping diagram that de-
fines the mappings between the elements of the arbitrary number of languages



transML: A Family of Languages to Model Model Transformations 113

involved in the transformation. This diagram provides an intuition of which
is transformed into what, without giving details on the how, thus enabling the
transition between analysis and design. This is similar to Triple Graph Grammar
schemas [15], however our mappings are not intended to be used as an auxiliary
tracing mechanism to guide the actual execution of the transformation code.

Fig. 5 shows to the left an extract of the mappings meta-model. A mapping
model is established between several languages, each one defined by a meta-
model. Mapping models can define the directionality of the transformation us-
ing the navigable attribute in ModelEnds. Models are structured in packages,
each one containing mappings, which can also be organized hierarchically. Map-
pings connect elements in the meta-models of the involved languages through
MappingEnds. Mappings are provided with constraints, given either in uninter-
preted text or in some language like OCL, expressing when mappings between
elements should hold. The mapping meta-model refers to the meta-models of the
languages involved in the transformation. We use an abstract class ModellingEle-
ment, which can be replaced by any concrete meta-modelling infrastructure.

mappings

MappingModel ModelEnd

−name:String

−navigable:Boolean

1..*

Language

MetaModel

ModellingElement

*

MappingEnd

−name:String

−min:int

−max:int

−navigable:BooleanMapping

children+
*

Constraint

−text:String

*
when+

0..1

OpaqueConstraintInterpretedConstraint

−language:String

Package

*

1..*

*

Table

Column

pkey

Class
Classes are transformed to 

tables

3

Reference
References are transformed 

into foreign keys

S ingle-Valued-Att
Single-valued attr ibutes are 
transformed into a column

fkey

DBClass2Relational

Multi-Val-Att-Top
Multi-valued attr ibutes are 
transformed into a table, 
with a pkey, a fkey, and a 

column for their values

Multi-Val-Att-Child
In children classes the table 
is not created, but only the 

foreign key

fk
ey

Class

Attribute

Reference

OO

Fig. 5. Excerpt of mapping meta-model (left). Mapping diagram example (right).

The right of Fig. 5 shows a mapping diagram. It has one block for each
language, containing the relevant elements of their meta-model. Another block
includes mappings connecting some of these elements to indicate a causal relation
between them. The links from the mappings to the language elements have a role
name (e.g. fkey, pkey), a multiplicity (1 is assumed if it is empty) and a direction
(to denote either access or creation of elements). As our transformation is uni-
directional, mapping ends are depicted with arrows on the side of the DB.

Mapping diagrams can be used with different levels of detail. One can start
with a rough sketch of the mappings and add details as the transformation is
better understood. For example, in Fig. 5 we have omitted element ForeignKey
of the DB meta-model. The mapping diagram is a high-level design notation,
independent of the transformation implementation language. Moreover, it is not
necessarily the case that a mapping has to be implemented by a unique rule and



114 E. Guerra et al.

vice-versa. As we show next, we can use rule diagrams as a way to design the
implementation of mappings if more details are needed before coding.

3.5 Low-Level Design: Rule Structure and Rule Behaviour

Low-level detailed design diagrams indicate how the transformation has to be
implemented. Here we separate the description of the rule structure from its be-
haviour. Hence, one or several rule structure diagrams may describe the structure
of the rules in the transformation, and several rule behaviour diagrams attached
to the rules can be used to specify what these rules should do. These notations
will help in describing good practices and transformation patterns, in the same
way as UML helps to record object-oriented patterns. Rule diagrams are also
useful to generate code for different platforms, and reengineering of existing code.

Fig. 6 shows part of the meta-model of the rule structure diagrams. This kind
of diagram depicts the structure (input/output parameters) of each rule, their
execution flow, and data dependencies (e.g. parameter passing) between them.
Rule diagrams refine mapping diagrams by giving the low-level design of how
the specified mappings are to be realized. In this way, a rule can contribute to
implement several mappings, and a mapping can be realized by several rules.
Regarding rule structure, we can declare uni-directional or bi-directional rules,
their involved domains and their parameters. Concerning the execution flow,
we support both explicit flows (subclasses of Flow) as well as non-deterministic
constructs found e.g. in graph transformation, as one can place a collection of
rules inside a non-deterministic Block.

rules−structure

Transformation

−isBidirectional:Boolean

<< from mappings >>

MappingModel

implements+

Flow

*

Component

−isALAP:Boolean

rules+1..*
src+

*

{ordered}

tar+

*

{ordered}

After

Choice

Call DataDependency

−expressionParam:String

*

<< from mappings >>

Constraint

guard+

Parameter

src+ * tar+
Rule

−isAbstract:Boolean

−isTop:Boolean

−isLazy:Boolean

−priority:int

Block

−isConcurrent:Boolean

−isNondeterministic:Boolean

−isInitial:Boolean

DirectionalRule BidirectionalRule

*

guard+

0..1

children+
*0..1

Domain
* *

<< from mappings >>

ModellingElement

type+

<< from mappings >>

Mapping

implements+*
<< from mappings >>

Language

Fig. 6. Excerpt of the meta-model of the rule structure diagram

Fig. 7 shows to the left a rule structure diagram with four rules. The diagram
is semi-collapsed, as it only shows the parameters of the OO domain. The diagram



transML: A Family of Languages to Model Model Transformations 115

shows the rule execution flow by means of rounded rectangles (Block objects),
in a notation similar to activity diagrams. Hence, the starting point is the block
containing rule Class2Table, which implements the Class mapping. After execut-
ing this rule, the control passes to another block with three rules, to be executed
in arbitrary order. In particular, rule MultiValuedAtt2Table has been designed
to implement two mappings: Multi-Val-Att-Child and Multi-Val-Att-Top. In all
cases, rules are applied at all matches of the input parameters.

Directional Transformation

from OO to DB (ETL)

c:Class

OO DB

calls 

{c.parent}

SingleValuedAtt

2Column
{Single-Valued-Att}

MultiValuedAtt

2Table
{Multi-Val-Att-Child, 
Multi-Val-Att-Top}

after

a:Attribute

Reference2Column
{Reference}

r:Reference

a:Attribute
DBOO

DBOO

DBOO

Class2Table
{Class}

c:Class

OO

«new»

t:Table

DB

Class2Table

name:=c.name

«new»

pk:Column

name:=t.pkName()

type:=‘NUMBER’

columns primaryKeys
«new» «new»

transform c: OO!Class

to t:DB!Table, pk: DB!Column

t.name:=c.name;

pk.name:=t.pkName();

pk.type:=‘NUMBER’;

t.columns.add(pk);

t.primaryKeys.add(pk);

Fig. 7. Rule structure diagram for ETL (left). A behavioural rule diagram in visual
(center) and textual (right) notation.

Our rule language captures the main features of transformation languages.
However, a particular rule diagram has to consider the specific implementation
platform. For example, rules can have an arbitrary number of input parameters if
we use ATL as the implementation language, whereas rules have only one input
parameter if we use ETL, and we have patterns if using QVT-R. Also, platforms
differ in the execution control of their rules. While in graph transformation the
execution scheme is “as long as possible” (ALAP) and we can have rule priorities
or layers, in ETL rules are executed once at each instance of the input parameter
type. Hence, even though the language covers the most widely used styles of
transformation, for its use with particular platforms we define platform models
for different transformation languages. These models contain the features allowed
in each languages, and can be used to check whether a rule model is compliant
with an execution platform when code is generated, as well as by editors to guide
the user in building compliant models with the platform. Nonetheless, we believe
that a general design language will enable platform interoperability.

From the point of view of the rule structure diagrams, rules are black-boxes:
their behaviour is still missing, in particular, attribute computations and object
and link creations are not specified. We use rule behaviour diagrams to specify
the actions each rule performs. We have identified three ways of expressing be-
haviour: (i) action languages, (ii) declarative, graphical pre- and post-conditions,
and (iii) object diagrams annotated with operations like new, delete or forbidden.

In the case of an action language, one can use the concrete syntax of existing
transformation implementation languages such as ATL or ETL. The case of pre-



116 E. Guerra et al.

and post-conditions follows the style of graph transformation [15]. The third
option is present in Fujaba (http://fujaba.de). The center of Fig. 7 shows a
behavioural diagram using this third type of syntax where created elements are
annotated with the new keyword. The right of the figure shows the same rule
using an action language with ETL syntax.

3.6 Implementation and Testing

transML does not include any implementation language, but we use existing
target languages to implement the transformations (e.g. QVT, ATL or ETL).
Using the MDE philosophy, code for different platforms can be generated from
the diagrams, specifically from the rule (structure and behaviour) diagrams.

With respect to testing, test cases can be generated from the transformation
cases, and assertions can be injected in the transformation code from the formal
specification built in the analysis phase. This injected code is an oracle function,
independent of the transformation implementation code. As an example, the fol-
lowing listing shows part of the EOL code automatically generated from pattern
N(NoRefinedAttrs) in Fig. 3, which can be injected into the pre section of the
transformation code to discard non supported input models:

operation sat NoRefinedAttrs () : Boolean {
return not OO!Class.allInstances().exists(p |

OO!Class.allInstances().exists(c | c <> p and

OO!Attribute.allInstances().exists(a |

p.features.includes(a) and

OO!Attribute.allInstances().exists(ar |

ar <> a and c.features.includes(ar) and

checkatt NoRefinedAttrs(p, c, a, ar)))));

}
operation checkatt NoRefinedAttrs

(p:OO!Class,c:OO!Class,a:OO!Attribute, ar:OO!Attribute) : Boolean {
var X:=a.name; var Xar:=ar.name;

return c.general.includes(p) and X=Xar;

}

3.7 Traceability

Even though the different transML diagrams can be used in isolation, their power
comes from their combined use. This is so, as one can trace requirements into the
code and build the final transformation by the progressive refinement of models.
In this way, we have defined traceability relations between the different diagrams
as shown to the left of Fig. 8. These relations correspond to the dotted arrows in
Fig. 1. Thus, it is possible to trace which requirements are considered by a given
scenario, specification property, architectural component or mapping. We can
also trace the mappings and components a rule implements, and the behavioural
diagram that refines a rule. Therefore, we can trace which requirements each rule
addresses and vice-versa.



transML: A Family of Languages to Model Model Transformations 117

4 Tool Support

We have developed Ecore meta-models for the presented languages, together
with several model transformations and code generators that allow automating
the conversion between diagrams, as shown to the right of Fig. 8. The purpose
of these transformations is to provide partial automation for model refinement
from requirements to code generation. For example, given a mapping diagram
we can generate a skeleton of a rule diagram, which has to be completed with
the behaviour model by the transformation developer. All model transformations
have been implemented with ETL, and all code generators with EGL.

<< from requirements >>

Requirement

<< from architecture >>

ArchComponent

<< from architecture >>

Interface

satisfies+ * satisfies+ *

<< from mappings >>

Mapping
satisfies+

*

<< from rules−structure>>

Rule

implements+ *

<< from rules−behaviour>>

BehaviouralDiagram

refines+

<< from analysis >>

Pattern
refines+

*

<< from rules−structure>>

Transformation

implements+ *

<< from mappings >>

MappingModel

implements+
Rule Diagram ETL Transformation 

Code 

Mapping
Diagram

Architecture
Diagram

EGL program Orchestration
code (ANT files)

ETL transf.

EGL program

parser
ETL 

transf.
ETL

transf.

Aggregated
Scenarios

Formal
Specification

1
2

3 7

4
6

5 assertions

Execution
Platform

Model
8OCL

invariants

check

Fig. 8. Traceability links (left). Tool support (right).

The code generator with label “1” takes as input the architecture diagram, and
generates ANT files that orchestrate the execution of the transformation chain
specified in the architecture (i.e. it will ask the user the models to transform and
pass them to the appropriate transformations). This generator also produces one
additional ANT file for each transformation in the architecture, which defines
tasks to automate the other labelled activities in the figure.

Transformation “2” generates one mapping diagram for each transformation
in the architecture. These mapping diagrams are added a mapping for each
concrete class defined by the input ports types. Transformation “3” generates
a simple rule diagram from a mapping diagram that contains one rule for each
mapping. Each rule stores a trace pointing to the mapping it implements. The
opposite transformation is also possible for reengineering (label “7”).

As stated before, one may use features of rule diagrams that are not available
in the specific platform. In order to check whether a certain set of rule diagrams
fits a particular execution platform, we have created an OCL code generator (la-
bel “8”) that, given a platform model (ETL in our case), synthesizes OCL con-
straints. These constraints are checked on the rule diagrams, discovering whether
they conform to the features of the platform.

In “4”, ETL code is generated from the structural rule diagram, taking into
account the flow directives. A parser for reverse engineering (label “6”) gener-
ates the diagram from ETL code. Finally, the generator in “5” produces OCL
code from the properties defined with the specification language. There are two



118 E. Guerra et al.

ways to inject this code into ETL transformations. Firstly, code generated from
patterns specifying restrictions on the input model is included in the pre section
of the transformation, and checked on the input model before the transformation
starts. If the model violates these constraints, a pop-up window informs the user
of the unsatisfied properties. Secondly, code generated from patterns specifying
properties of the transformation or of the expected output models is injected
in the post section of the transformation, and checked when the transformation
ends. This is used to perform run-time verification of the transformation. The
user is informed of any violated property and of the rules that are responsible
for the error. An example screenshot is shown in Fig. 10.

5 Case Study

In the INESS European project (http://www.iness.eu), experts have been
modelling railway signalling systems using xUML (Executable UML). Our task
in this project includes the formal verification of these models. Amongst other
verification efforts, we used transML to define a transformation from xUML to
PROMELA, the language of the SPIN model-checker (http://spinroot.com).

Due to the research nature of the project, we were not given initial require-
ments about the transformation, but they emerged as the transformation was
better understood. Examples of requirements for the input models include: (i)
classes always have an associated state machine; (ii) multiple-inheritance is not
allowed; (iii) a special class is used to instantiate a scenario (representing a rail-
way track layout) for the execution (analysis) of the model; (iv) objects can only
be created in the state-machine of the “application” class. Fig. 9 shows to the left
a specification pattern expressing the restriction (ii) of no multiple inheritance.

:Class :Class

:Class

general general

N(MultipleInheritance)

UML
2tbUMLin

out
tbUML2
Promela

in out

UML tbUML

GenProm
Code

out in

Promela
Grammar

«M2M» «M2M»

«M2text»

Promela

Spin
«SW» inout

xUML

act

c1:Class

c2.generalization.exists(g | 
g.target.includes(c1))

p:Property

name=X

owned
Attribute

t:Type

name=T

type

c2:Class

name=N

c3:Class

name=N

a:Attribute

name=X
type=T

attribute

UML tbUML

P(flatSuperAttrs)

Fig. 9. A restriction on the input model (left). Architecture of the project (center). A
verification property for transformation UML2tbUML (right).

This transformation poses many challenges, mostly concerned with handling
the action language in its full generality. For this purpose, we split the transfor-
mation in several steps that could be handled more efficiently. The architecture
of the final system is shown in the center of Fig. 9. It makes use of an interme-
diate meta-model, called (transition-based) tbUML, which is a simplified UML



transML: A Family of Languages to Model Model Transformations 119

meta-model that only considers the structure of class diagrams and the possible
set of transitions of the state-machines. Thus, the first transformation performs
a flattening of the classes and states machines. This transformation makes use
of the xUML meta-model for handling the action language. Then, the tbUML
model is transformed into a PROMELA model, from which code conforming to
the PROMELA grammar is generated as input to SPIN.

Fig. 10. Testing the implementation

Splitting the transformation facili-
tates the elicitation of requirements.
For instance, requirements related to
the flattening of classes in the first
transformation include copying at-
tributes, associations and states for
each class and its generalizations (a
pattern specifying the requirement on
attributes is to the right of Fig. 9).
Requirements related to the flattening
of state machines include aggregating
and creating transitions depending on
concurrent events of orthogonal states
and of state machines associated to
super-classes, as well as on exit ac-
tions in composite states.

We used the mapping diagrams of transML to understand and reason about
corresponding elements in the two M2M transformations, and to generate skele-
ton rule structure diagrams from them. We also generated assertion code for
the run-time verification of the transformations. Fig. 10 shows a moment in the
execution of the first transformation (more than 1600 LOC), where a violation
of the verification property flatSuperAttrs occurs. By having traceability from
the models into the code, we were able to identify the erroneous rule.

6 Conclusions and Lines of Future Work

Transformations should be engineered, not hacked. For this purpose we have
presented transML, a family of languages to help building transformations us-
ing well-founded engineering principles. The languages cover the life-cycle of
the transformation development including requirements, analysis, architecture,
design and testing. We have provided partial tool support and automation for
the MDE of transformations, and evaluated the approach using an industrial
project, which showed the benefits of modelling transformations.

We are currently working in improving the tool support for our approach, in
particular the usability of the visual editors and the integration of the different
languages. We are also planning the use of transML in further case studies, and
investigating processes for transformation development.



120 E. Guerra et al.

Acknowledgements. Work funded by the Spanish Ministry of Science (project
TIN2008-02081and grants JC2009-00015,PR2009-0019), the R&D programme of
the Madrid Region (project S2009/TIC-1650), and the European Commission’s
7th Framework programme (grants #218575 (INESS), #248864 (MADES)).

References

1. ATL, http://www.sciences.univ-nantes.fr/lina/atl/
2. Bézivin, J., Jouault, F., Paliès, J.: Towards model transformation design patterns.

In: EWMT 2005 (2005)
3. Czarnecki, K., Helsen, S.: Feature-based survey of model transformation ap-

proaches. IBM Systems Journal 45(3), 621–646 (2006)
4. Etien, A., Dumoulin, C., Renaux, E.: Towards a unified notation to represent model

transformation. Technical Report RR-6187, INRIA (2007)
5. Favre, J.-M., Nguyen, T.: Towards a megamodel to model software evolution

through transformations. Electr. Notes Theor. Comput. Sci. 127(3), 59–74 (2005)
6. Garlan, D., Monroe, R.T., Wile, D.: Acme: Architectural description of component-

based systems. In: Foundations of Component-Based Systems, pp. 47–68. Cam-
bridge University Press, Cambridge (2000)

7. Guerra, E., de Lara, J., Kolovos, D.S., Paige, R.F.: A visual specification language for
model-to-model transformations. In: VLHCC 2010. IEEE CS, Los Alamitos (2010)

8. Iacob, M., Steen, M., Heerink, L.: Reusable model transformation patterns. In:
3M4EC 2008, pp. 1–10 (2008)

9. Kolovos, D.S., Paige, R.F., Polack, F.: The Epsilon Object Language (EOL). In:
Rensink, A., Warmer, J. (eds.) ECMDA-FA 2006. LNCS, vol. 4066, pp. 128–142.
Springer, Heidelberg (2006)

10. Kolovos, D.S., Paige, R.F., Polack, F.: The Epsilon Transformation Language. In:
Vallecillo, A., Gray, J., Pierantonio, A. (eds.) ICMT 2008. LNCS, vol. 5063, pp.
46–60. Springer, Heidelberg (2008)

11. Kusel, A.: TROPIC - a framework for building reusable transformation compo-
nents. In: Doctoral Symposium at MODELS (2009)

12. QVT, http://www.omg.org/docs/ptc/05-11-01.pdf
13. Rahim, L.A., Mansoor, S.B.R.S.: Proposed design notation for model transforma-

tion. In: ASWEC 2008, pp. 589–598. IEEE CS, Los Alamitos (2008)
14. Rivera, J.E., Ruiz-Gonzalez, D., Lopez-Romero, F., Bautista, J., Vallecillo, A.:

Orchestrating ATL model transformations. In: MtATL 2009, pp. 34–46 (2009)
15. Schürr, A.: Specification of graph translators with triple graph grammars. In: Mayr,

E.W., Schmidt, G., Tinhofer, G. (eds.) WG 1994. LNCS, vol. 903, pp. 151–163.
Springer, Heidelberg (1994)

16. Siikarla, M., Laitkorpi, M., Selonen, P., Systä, T.: Transformations have to be
developed ReST assured. In: Vallecillo, A., Gray, J., Pierantonio, A. (eds.) ICMT
2008. LNCS, vol. 5063, pp. 1–15. Springer, Heidelberg (2008)

17. Spivey, J.M.: An introduction to Z and formal specifications. Softw. Eng. J. 4(1),
40–50 (1989)

18. Vanhooff, B., Ayed, D., Baelen, S.V., Joosen, W., Berbers, Y.: Uniti: A unified
transformation infrastructure. In: Engels, G., Opdyke, B., Schmidt, D.C., Weil, F.
(eds.) MODELS 2007. LNCS, vol. 4735, pp. 31–45. Springer, Heidelberg (2007)

19. Varró, D.: Model transformation by example. In: Nierstrasz, O., Whittle, J., Harel,
D., Reggio, G. (eds.) MoDELS 2006. LNCS, vol. 4199, pp. 410–424. Springer,
Heidelberg (2006)

http://www.sciences.univ-nantes.fr/lina/atl/
http://www.omg.org/docs/ptc/05-11-01.pdf


Henshin: Advanced Concepts and Tools for
In-Place EMF Model Transformations

Thorsten Arendt1, Enrico Biermann2, Stefan Jurack1,
Christian Krause3,�, Gabriele Taentzer1

1 Philipps-Universität Marburg, Germany
{arendt,sjurack,taentzer}@mathematik.uni-marburg.de

2 Technische Universität Berlin, Germany
enrico@cs.tu-berlin.de

3 CWI Amsterdam, The Netherlands
c.krause@cwi.nl

Abstract. The Eclipse Modeling Framework (EMF) provides model-
ing and code generation facilities for Java applications based on struc-
tured data models. Henshin is a new language and associated tool set
for in-place transformations of EMF models. The Henshin transforma-
tion language uses pattern-based rules on the lowest level, which can be
structured into nested transformation units with well-defined operational
semantics. So-called amalgamation units are a special type of transfor-
mation units that provide a forall-operator for pattern replacement. For
all of these concepts, Henshin offers a visual syntax, sophisticated editing
functionalities, execution and analysis tools. The Henshin transformation
language has its roots in attributed graph transformations, which offer
a formal foundation for validation of EMF model transformations. The
transformation concepts are demonstrated using two case studies: EMF
model refactoring and meta-model evolution.

1 Introduction

Model-driven software development (MDD) is considered as a promising para-
digm in software engineering. Models are ideal means for abstraction and enable
developers to master the increasing complexity of software systems.

In model-driven development, the transformation of models belongs to the
essential activities. Since models become the central artifacts in MDD, they are
subject to direct model modifications, translated to intermediate models, and
finally code is generated. While direct model modifications are usually performed
in-place, i.e. directly on the model without creating copies, model translations
usually keep source models untouched and produce new models or code. These
transformations are called out-place.

Another crucial concept for MDD are domain-specific modeling languages
which allow the definition of models on an adequate abstraction level with all

� Supported by the NWO GLANCE project WoMaLaPaDiA.

D.C. Petriu, N. Rouquette, Ø. Haugen (Eds.): MODELS 2010, Part I, LNCS 6394, pp. 121–135, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



122 T. Arendt et al.

information needed to generate the right models or code. A promising approach
to define domain-specific modeling languages is the Eclipse Modeling Framework
(EMF) [1,2] which has evolved to a well-known and widely used technology. EMF
provides modeling and code generation capabilities based on so-called structural
data models. As they describe structural aspects only, they are mainly used to
specify domain-specific languages. EMF complies with Essential MOF (EMOF)
as part of OMG’s Meta Object Facility (MOF) 2.0 specification [3].

For various kinds of EMF model modifications such as refactorings, introduc-
tion of design patterns and other modeling patterns, we need a powerful in-place
transformation approach, operating directly on EMF models. There are several
in-place model transformations approaches which can transform EMF models
directly, e.g. Kermeta [4], EWL [5], EMF Tiger [6], and Moment2 [7]. The cor-
responding transformation languages are either rather simple or in case the of
Kermeta, not declarative enough to offer the opportunity for formal reasoning
on model transformations.

To fill this gap, we have developed the transformation language and tool envi-
ronment Henshin, operating directly on EMF models. Henshin is a successor of
EMF Tiger in the sense that it is also based on graph transformation concepts
but extends the transformation language of EMF Tiger considerably. Henshin
comes along with a powerful, yet declarative model transformation language,
offering the possibility for formal reasoning. Its basic concept of transformation
rules is enriched by powerful application conditions and flexible attribute com-
putations based on Java or JavaScript. Furthermore, it provides the concept of
transformation units defining control structures for rule applications in a mod-
ular way. A special kind of transformation unit are amalgamation units which
offer a forall-operator for applying transformation rules in parallel. For further
flexibility, special units for code execution can be added.

The Henshin tool environment consists primarily of a fast transformation
engine, several editors, and a state space generator to support reasoning by model
checking based on state space generation from transformation systems, useful for
model checking transformations. Since these transformation concepts are close
to graph transformation concepts, it is possible to translate the rules to AGG
[8], a tool environment for algebraic graph transformation where they might be
further analyzed concerning conflicts and dependencies of rule applications as
well as their termination.

Two example applications of Henshin are considered: (1) refactoring of EMF
models [9], more precisely refactoring Pull Up Attribute and (2) a simple form
of meta-model evolution [10] where two evolution steps of a Petri net model are
reflected on instance models being concrete Petri nets in abstract syntax.

The paper is organized as follows: Section 2 introduces the Henshin transfor-
mation language and describes its most important concepts. In Section 3 and 4,
we present two case studies on refactoring and meta-model evolution. The Hen-
shin tool environment is presented in Section 5. A discussion of related work can
be found in Section 6 and concluding remarks in Section 7.



Henshin: In-Place EMF Model Transformations 123

2 The Henshin Transformation Meta-model

In the following, we describe informally our transformation language using the
Henshin transformation meta-model, which is also an EMF meta-model and
moreover uses the Ecore meta-model for typing purposes. The Henshin trans-
formation language is based on graph transformation concepts [11,12,13] and
therefore offers a visual syntax and means for formal reasoning about transfor-
mations.

Fig. 1. Rules with application conditions

2.1 Rules and Matching

A transformation rule consists of left and right-hand side graphs (respectively
LHS and RHS) which describe model patterns by their underlying (graph) struc-
ture (cf. Fig. 1). Furthermore, attribute conditions can be defined for rules. Nodes
refer to objects while edges refer to references between objects. Nodes, edges and
attributes refer to EClass, EReference, and EAttribute via references called type
(not shown in Fig. 1) which are classes of the Ecore meta-model. These type ref-
erences are used as an explicit typing, e.g. a node connected to a certain EClass
will will match only to objects of this type. Mappings between LHS and RHS
can be defined between nodes. Since EMF models cannot contain parallel edges
of the same type between the same nodes, edge mappings are implicitly given
if both, their source and target nodes are mapped. For clarity, we omit the ex-
plicit notation of multiplicities in all figures. As a general guideline, all reference
types using names in plural have 0..* multiplicity. All others have upper bound
1. Note that we concentrate on the structure of the transformation meta-model
and neglect the properties of model elements such as their names.

Rules can be applied to a construct called EmfGraph that serves as an aggre-
gation of EObjects. Only the EObjects within an EmfGraph will be considered for
matching. Therefore, deleting EObjects removes them from the underlying Em-
fGraph representation only. The EObject might still be used in another context
but it is no longer visible for further rule applications.



124 T. Arendt et al.

2.2 Application Conditions

To conveniently determine where a specified rule should be applied, application
conditions can be defined. An important subset of application conditions are
negative application conditions (NACs) which specify the non-existence of model
patterns in certain contexts.

Application conditions allow the definition of first order logical formulas over
graph conditions, being atomic conditions that enforce the existence or non-
existence of model patterns, as well as further conditions over conditions (nest-
ing). Statements like ”a node must have an incoming edge or an outgoing edge”
or ”a node that is connected to this node may not have a looping edge” can be
easily expressed.

In the Henshin transformation model, shown in Fig. 1, Graphs can be an-
notated with application conditions using a Formula. This formula is either a
logical expression or an application condition which is an extension of the orig-
inal graph structure by additional nodes and edges. A rule can be applied to a
host graph only if all application conditions are fullfilled.

2.3 Transformation Units

To control the order of rule applications, it is possible to define control structures
over rules called TransformationUnits. The most basic transformation unit is a
rule itself which corresponds to a single application of that rule. All available
transformation units are depicted in Fig. 2. For example, there are constructs for
non-deterministic rule choices (IndependentUnit) and rule priority (PriorityU-
nit). Except for Rules and AmalgamationUnits, transformation units can have
one or more subunits which are executed according to the semantics of its parent
unit. For instance, subunits of an IndependentUnit will be executed in random
order.

Fig. 2. Transformation units and parameters



Henshin: In-Place EMF Model Transformations 125

Furthermore, it is possible to pass objects and values from one unit to another
one via parameters. In this way, the object flow between different rules and
units can be controlled and complex transformations can be parameterized. Each
transformation unit can have an arbitrary number of Parameters which can
either refer to a specific EObject or contain a specific value. ParameterMappings
define how parameters of transformation units are passed to their subunits.

Applicability. A unit is applicable if it can be successfully executed. Appli-
cability is defined differently for different transformation units. For example,
PriorityUnits or IndependentUnits are always applicable while a SequentialUnit
is applicable only if all of its subunits are applicable in the given order.

Termination. A unit terminates if it is successfully executed or if no rule
was applied in the context of that unit. ConditionalUnits or SequentialUnits
terminate if their subunits terminate. However, subunits of PriorityUnits and
IndependentUnits may be applied repeatedly. This can easily result in infinite
loops when nesting units of those kinds. IndependentUnits and PriorityUnits
terminate if their subunits do not contain any applicable rule.

2.4 Amalgamation

A special kind of transformation units are AmalgamationUnits which are useful
to specify forall operations on recurring model patterns. An amalgamation unit
contains an interaction scheme consisting of one Rule which acts as a kernel rule
and multiple rules which act as multi rules. The embedding of a kernel rule into
a multi rule are defined by Mappings between nodes of the LHS of the kernel and
the multi rule. The semantics of such an interaction scheme is that the kernel
rule is matched exactly once. This match is used as a common partial match for
each multi rule which are matched as often as possible. The effect is that the
modification defined in the kernel rule is applied only once while modifications
defined in the multi rules are applied a certain number of times depending on
the number of matches. For a detailed presentation of amalgamation concepts,
see [12]. An amalgamation unit is applicable if its kernel rule is applicable. It
terminates after one application.

2.5 Relation to Algebraic Graph Transformation

The presented language concepts of Henshin have their origin in algebraic graph
transformation [11]. This concerns the syntactical structure of rules and transfor-
mation units as well as their semantics wrt. EMFGraphs. While an EMFGraph
corresponds to a typed, attributed graphs, the given EMF model represents the
type graph. Nodes and edges in rules are related to EObjects and EReferences
which are typed over the same given EMF model. Formulas relate to graph
conditions [11] over typed, attributed graphs. The amalgamation concept is for-
mulated for typed graphs with node type inheritance and containment in [12].
Finally, transformation units are defined in [13] using an approach-independent



126 T. Arendt et al.

form. However, parameters have not been considered yet in the formal setting,
but will be in future work.

To summarize, our general aim is to give a formal semantics to the full trans-
formation language as solid basis for further validations. A large foundation is
already available and will be completed in the near future.

3 EMF Model Refactoring

In this section we present an example refactoring for EMF based models [1] using
the advanced concepts of Henshin.

3.1 DSL SimplifiedClassModel (SCM)

Figure 3 shows the meta-model of DSL SimplifiedClassModel (SCM) for mod-
eling simplified class diagrams being useful in an early stage of the software
development process to formulate analysis models. SCM can be considered as
simplification of the UML superstructure [14]. Meta-attributes and references
name, qualifiedName, visibility, and redefinedAttribute, as well as well-formedness
rules correspond to those known from UML and are not explained in detail here.

Fig. 3. DSL SimplifiedClassModel (SCM) - meta-model

3.2 Model Refactoring Pull Up Attribute

SCM refactoring Pull Up Attribute moves a common attribute from all direct
subclasses of a given class to this class. The name of the attribute to be moved is
given by parameter attributename while parameter superclassname specifies
the qualified name of the class the attribute has to be pulled up to. In order to
apply Pull Up Attribute, the following preconditions (PC) have to be checked:

– The class with qualified name superclassname does not already have an
attribute named attributename (PC1).



Henshin: In-Place EMF Model Transformations 127

– For each direct subclass of the class with qualified name superclassname:
• There is an attribute named attributename (PC2).
• Visibility (PC3) and type (PC4) of the attribute named attributename

are the same.
• If the attribute named attributename redefines another attribute each

attribute named attributename in each other subclass of the class with
qualified name superclassnamehas to redefine the same attribute (PC5).
Furthermore, the redefined attribute must have visibility private, i.e. it
must not be visible in class with qualified name superclassname (PC6).

If each precondition is fulfilled, the class with qualified name superclassname
gets a new attribute named attributename. Corresponding attributes are re-
moved from all subclasses. The new attribute gets the same visibility as before,
except that visibility private has to be set to protected since a subclass must
have access to the new attribute as well. Moreover, already redefined attributes
have to be referenced by the new attribute.

3.3 Implementation Using Henshin

The Henshin implementation of Pull Up Attribute uses a SequentialUnit which
in turn uses three IndependentUnits as subunits. The first IndependentUnit is
responsible for preconditions checking and contains six rules. Each rule is speci-
fied in a way that the class with qualified name superclassname gets a comment
’ERROR’ if a certain precondition is violated.

PUAExecuteRule

<<preserve>>
:Class

qualifiedName=superclassname

<<preserve>>
:Generalization

<<preserve>>
:Generalization

<<preserve>>
:Class

<<preserve>>
:Class

<<delete>>
:Attribute

name=attributename

<<preserve>>
:Attribute

name=attributename
visibility=vis -> getVisibility(vis)

<<forbid:0>>
:Attribute

name=attributename

<<forbid:1>>
:Comment

body="ERROR"

generalization <<preserve>>general
<<preserve>>

generalization
<<preserve>>

ownedAttribute

<<create>>

comment

<<forbid:1>>

ownedAttribute <<delete>>

ownedAttribute

<<forbid:0>>

general

<<preserve>>

ownedAttribute

<<delete>>

general

<<preserve>>

general
<<preserve>>

generalization <<preserve>>

generalization
<<preserve>>

ownedAttribute

<<delete>>

ownedAttribute <<delete>>
ownedAttribute

<<create>>

ownedAttribute

<<forbid:0>>

comment

<<forbid:1>>

Fig. 4. Rule PullUpAttributeRule

The second IndependentUnit performs the transformation using an Amalga-
mationUnit. Figure 4 shows two rules (the kernel and a multi rule) of the Amal-
gamationUnit as well as their LHS, RHS, and two NACs in an integrated view.
LHS objects (nodes and edges) can be identified by tags 〈〈preserve〉〉 or 〈〈delete〉〉,
objects tagged by 〈〈preserve〉〉 or 〈〈create〉〉 form the RHS of the rule. Kernel rule



128 T. Arendt et al.

nodes are bordered by a single line, whereas the multi rule contains all those of
the kernel rule and those objects bordered by two lines. They represent so-called
multi-objects.

The kernel rule moves the attribute from a class to its superclass. In its LHS
we are looking for an attribute named attributename contained in a subclass
of the class with qualified name superclassname. A condition on attribute visi-
bility changes its value to protected only if its previous value was private. This is
done by invoking Java method getVisibility() where the previous visibility
is given by variable vis. There are two NACs which have to be checked before
executing the specified transformation (〈〈forbid : 0〉〉 and 〈〈forbid : 1〉〉). The first
NAC checks whether the superclass has not been annotated by comment ’ER-
ROR’, whereas the second one checks whether the superclass does not already
own an attribute named attributename. After rule application the class with
qualified name superclassname owns the attribute named attributename.

The multi rule deletes the corresponding attribute from each further subclass.
Its LHS corresponds to the kernel rule LHS enriched by a sub-pattern for possibly
other subclasses of the class with qualified name superclassname that own
an attribute named attributename. This additional pattern is matched into
the model graph as often as different further subclasses exist. According to the
〈〈delete〉〉 tagged multi-object the corresponding attribute will be removed from
each further subclass.

The third IndependentUnit consists of one single rule that removes comment
’ERROR’ possibly inserted before. Each part of the refactoring (checking, per-
forming, and cleaning) has to be encapsulated by an IndependentUnit in order to
assure a successful execution of Pull Up Attribute, i.e. the target model is valid
either if the refactoring has been actually performed or not because of violated
conditions. Please note that the complete specification of Pull Up Attribute can
be found at [15].

4 Towards Meta-model Evolution

In model-driven and model-based development models are the key artifacts. As it
is quite natural that models evolve over time the compliance of existing instances
with such meta-models needs to be obtained. Not all modifications of a meta-
model lead to invalidity. In [10], Cicchetti et al. propose three categories of model
changes: Not breaking changes occur without breaking model instances, breaking
and resolvable changes break the instances but can be resolved by automatic
means and furthermore, breaking and unresolvable changes are those which do
break the instances and which cannot be resolved automatically.

In our case study below, we follow the manual specification approach, i.e. we
encode meta-model and instance model changes manually since currently there
does not exist a meta-model evolution framework based on Henshin. Neverthe-
less, we give a practical idea how (semi-) automatic meta-model evolution can
be realized with Henshin leading to an operator-based co-evolution approach.

Henshin is able to handle any Ecore-based model, thus we can create transfor-
mation rules for both, meta-models and its instances. In general, meta-models



Henshin: In-Place EMF Model Transformations 129

may occur in form of an Eclipse plug-in with generated model classes or stan-
dalone as .ecore file. The latter is more flexible and since Henshin supports Dy-
namic EMF, we use such Ecore files in our approach. In the following case study,
the control flow is currently implemented in form of a simple Java class which
loads related models and transformation rules and which triggers the transfor-
mation performed by the Henshin interpreter. This implementation as well as
corresponding models and rules are part of our Henshin examples plug-in [16].

Our case study is dealing with the evolution of a Petri net meta-model. Fig-
ure 5 shows a simple Petri net meta-model on the left while an evolved one is
shown on the right. A simple Petri net contains Places and Transitions which
can be interconnected by dedicated references. Net serves as root node. The
enhanced meta-model provides further nodes, ArcPT and ArcTP, serving as con-
nection entries between Places and Transitions or Transitions and Places,
respectively. Since ArcPT and ArcTP inherit from abstract Arc, it can be used to
specify a weight. Complying Petri net instances can be deduced easily and are
not shown due to space constraints.

Place
name : EString

Transition
name : EString

Net

places
0..*

transitions
0..*

src

0..*dst

1..*

dst 0..*src1..*

Net

Place
name : EString

Transition
name : EString

Arc
weight : EInt

ArcPT

ArcTP

places0..* transitions 0..*

out 0..*

in
0..*

in1..*

out
1..*src 1 trg 1src 1trg1

Fig. 5. Evolving Petri net meta-models. The original model is shown on the left while
the evolved model is shown on the right.

In order to perform an evolution as shown in Fig. 5, the utilization of a set
of general rules is conceivable being applied in a certain order. For example, the
first iteration step may be a replacement of a connection between two classes
by a connection class. The next iteration step may be to extract a super-class
analog to the well-known corresponding refactoring. Afterwards the attribute
could be introduced into the super-class. Each meta-model modification comes
with an adaption of its instance models. In the following we concentrate on
the replacement of connections only to demonstrate meta-model evolution with
Henshin. Such a replacement rule may be modeled in a very general way as
shown in Fig. 6. While two classes with given names and their container package
are preserved, two references shown in the upper area are deleted and another
four references and one class are created. Two eOpposite references between
each two EReferences are omitted to keep the rule compact here. A negative
application condition checks for the existence of a class named equally to the
introduced class since doublets are forbidden. Note that srcName, trgName and



130 T. Arendt et al.

MM_ReplaceRe...

<<preserve>>
:EClass

name=srcName

<<preserve>>
:EClass

name=trgName<<delete>>
:EReference

<<delete>>
:EReference

<<create>>
:EReference

containment=true
name="out"

<<create>>
:EReference

name="in"

<<create>>
refclass:EClass

name=refclassName

<<create>>
:EReference

name="src"

<<create>>
:EReference

name="dst"

<<forbid>>
:EClass

name=refclassName

<<preserve>>
:EPackage

eClassifiers
<<preserve>>

eStructuralFeatures
<<create>>

eType
<<create>>

eStructuralFeatures
<<delete>>

eStructuralFeatures
<<delete>>

eType
<<create>>

eType
<<create>>

eStructuralFeatures
<<create>>

eClassifiers
<<create>>

eType
<<delete>>

eType
<<create>>

eType
<<delete>>

eClassifiers
<<preserve>>

eStructuralFeatures
<<create>>eStructuralFeatures

<<create>>

eStructuralFeatures
<<delete>>

eType
<<delete>>

eStructuralFeatures
<<delete>>

eType
<<delete>>

eType
<<create>>

eStructuralFeatures
<<create>>

eStructuralFeatures
<<create>>

eType
<<create>>

eType
<<create>>

eStructuralFeatures
<<create>>

eType
<<create>>

eStructuralFeatures
<<create>>

eClassifiers
<<preserve>>

eClassifiers
<<preserve>>

eClassifiers
<<create>>

Fig. 6. General rule for replacing a connection by a connection class

refclassName are so-called parameters representing the names of the connected
classes and the new reference class. They have to be set before the application
of the rule. In order to maintain compliance of instance models, e.g. meta-model
elements in use must not be removed, our evolution step of replacing connections
is structured in several sub-steps as follows. Note, in our case these steps could
be deduced even automatically.

The first step is to create new types and references. The creation part of Fig. 6
leads to such a rule. The deletion part has to occur in that rule as well but in
terms of a preserved part. Having match and co-match, this allows to maintain in-
formation about concrete classes and references to be replaced. For the following

Fig. 7. Rule for replacing a connec-
tion by a connection class

we assume the parameters are set as follows:
srcName=”Place”, trgName=”Transition”
and refclassName=”ArcPT”. The second
step is to modify all instance models such
that old direct references are deleted and re-
placed by instances of the new class, each
referred to by an instance of the source
and target class. With the previous rule, its
match and its co-match at hand, the genera-
tion of a rule as depicted in Fig. 7 targeting

instance model changes is quite conceivable. The rule may be embedded into
an independent unit additionally. In this case it is applied as often as possible,
i.e. the replacement takes place sequentially. A parallel replacement would be
possible as well by utilizing an amalgamation unit. In that case the kernel rule
would be empty and the rule in Fig. 7 would be the multi rule.

In the third step we remove a direct reference from the meta-model. This rule
corresponds to the preserve and delete parts of Fig. 6. In addition, the rule is
equipped with a partial match by the references matched in the first step.



Henshin: In-Place EMF Model Transformations 131

5 Tool Environment

Henshin [16] is developed in a joint effort of the Technische Univerität Mar-
burg, the Technische Univerität Berlin and the CWI Amsterdam. The tool set
is implemented in the context of the Eclipse Modeling Framework Technology
(EMFT) [17] project, which in turn serves as an incubation project for the top-
level project Eclipse Modeling. Henshin is currently comprised of three modules:

1. a tree-based and a graphical editor for defining transformation systems,
2. a runtime component, currently consisting of an interpreter engine, and
3. a state space generator and an extension point for analysis tools.

In the following, we briefly describe the state of the art of the Henshin tool set.

5.1 Editors

There are currently two editors available for defining model transformations in
Henshin: i) a tree-based editor, generated by EMF itself, and extended with
additional notation and tools to ease the editing of transformations, and ii) a
graphical editor, implemented using GMF. Multi-panel editors, such as the one
of EMF Tiger [6] and AGG [8], separate the editing of respectively left-hand
side, right-hand side, and negative application conditions into multiple views.
We chose an integrated view on transformation rules, similar to the Fujaba [18],
GReAT [19], and GROOVE [20] editors. Examples of integrated transformation
rules in the graphical editor are depicted in Figs. 4, 6 and 7.

5.2 Runtime

The Henshin runtime currently consists of an efficient interpreter engine. Given
a transformation system and an EMF model as input, the transformation is per-
formed directly, i.e., in-place, on the given model. For exogenous transformations,
it further produces an additional output model instance. Note that endogenous
transformations are particularly well-supported by the interpreter, since they are
always executed in-place without the need of deep-copying model instances. The
interpreter supports the full expressiveness nested conditions and transformation
units, including amalgamations. Like EMF itself, the interpreter is independent
of the Eclipse Platform and can be used in non-Eclipse applications as well.

5.3 Validation of Model Transformations

In Henshin, we currently provide the following validation support: To analyze
in-place model transformations, we have developed a state space generation tool,
which allows to simulate all possible executions of a transformation for a given
input model, and to apply model checking, similar to the GROOVE [20] tool.
Fig. 8 depicts the graphical state space explorer for the academic dining philoso-
phers example. Here, the state space is finite, there exists one initial state (green,
on the left) and two deadlock states (red, on the right), in which none of the



132 T. Arendt et al.

Fig. 8. State space generation tool

rules is applicable anymore. Large state spaces can also be generated and ana-
lyzed outside of the graphical tool. We use parallel algorithms for the state space
exploration and can therefore benefit from modern multi-core processors. In its
current version, our tool is able to handle state spaces with millions of states.

Our state space generator supports two different equalities for objects: i) the
basic one defined by EMF itself (implemented in EcoreUtil.equals()), and ii)
an equality based on graph isomorphisms. The latter abstracts from the order of
elements in multi-valued references. In particular for highly symmetric models,
such as the simple dining philosophers example, the use of graph equality reduces
the size of the state space significantly. Note that Henshin currently does not
provide means for recognizing the order of elements in multi-valued references.
Therefore, the more compact state space induced by graph equality can be shown
to be formally equivalent to the one generated using the basic EMF equality.

The state space tool set further provides an extension point for model checkers.
We have integrated the third-party model checker CADP [21], which allows to
verify temporal properties, specified as modal μ-calculus formulas. Moreover,
we have integrated an existing OCL [22] validator for invariant checking. Found
counter examples for both validation tools are shown as traces in the graphical
state space explorer.

6 Related Work

Since model transformation is a key concept of model-driven development, a
number of model transformation approaches have been developed. Especially two



Henshin: In-Place EMF Model Transformations 133

kinds of model transformations are distinguished in MDD: (1) in-place model
modification within the same language and (2) out-place translation of mod-
els to models of other languages or to code. Model transformation approaches
supporting exogenous out-place transformations well are e.g. QVT, ATL, and
Tefkat. We do not relate Henshin closer to these approaches due to space lim-
itations. In the following, we consider EMF model transformations approaches
for endogenous in-place transformations like Kermeta [4], EWL [5], Mola [23],
Fujaba [18], EMF Tiger [6], and Moment2 [7] which we want to compare closer
with Henshin.

Kermeta is an EMOF compliant textual approach to support behavior defini-
tion based on an action language which is imperative and object-oriented. Thus,
Kermeta transformations are not rule-based and do not a formal foundation.
Its tool environment includes a parser, a type-checker and an interpreter. The
Epsilon Wizard Language is used to write small in-place transformations within
the Epsilon project. The central concept are wizards which can be compared to
rules. A wizard consists of a guard, a title and a do-section where the update
is programmed in an imperative, object-oriented style. A formal foundation of
the Epsilon Wizard Language is not mentioned. EMF Tiger is the predecessor
of Henshin basing on graph transformation concepts as well. However, its trans-
formation language is rather simple in the sense that it is purely rule-based and
allows simple attribute changes only. Application conditions of rules are just
sets of negative patterns. Moment2 supports transformations of EMF models
based on rewriting logic, as implemented in Maude. Its transformation language
provides the concept of rewrites similar to graph transformation rules. Rewrites
can be equipped with complex conditions expressed as OCL [22] constraints.
However, rewrites cannot be composed to larger transformation modules. Due
to its formalization based on rewrite logic, some static analysis and formal veri-
fication based on model checking are possible. MOLA supports transformations
on EMF models where transformations are specified by MOLA diagrams con-
sisting of graphical statements such as rules, loops, and calls to subprograms.
An interpreter for Fujaba’s story diagrams working on EMF models is presented
in [18]. Both tools work directly on EMF models and offer similar language con-
cepts as Henshin, namely rules based on patterns, and control constructs such
as sequences and loops. However, a concept such as amalgamation is not offered
by these tools. Furthermore, both MOLA and the story diagram interpreter do
not have a formal basis for further validations of model transformations. Via-
tra [24] provides a rule and pattern-based transformation language combining
graph transformation and abstract state machine (ASM) concepts. Modeling lan-
guages are defined by a proprietary meta modeling approach covering all main
meta modeling concepts. The import of models in standard meta modeling for-
mats such as EMF is supported as well. Based on graph patterns and rules,
the Viatra transformation language offers advanced transformation features [24]
including recursive graph patterns, generic and meta-transformations as well as
control structures based on ASMs. Henshin’s transformation features differ from



134 T. Arendt et al.

these especially concerning the execution of rules which might also be in parallel,
as in amalgamated units.

Henshin is the only in-place transformation approach which comes along with
a powerful transformation language being executed by a transformation engine
that operates directly on EMF models. Moreover, its transformation features are
all based on algebraic graph transformation [11,12,13].

Comparing Henshin’s transformation language and tool set with the one of
GROOVE [20], we can state that both are based on graph transformation and
support nested application conditions as well as universal quantification using
amalgamation. The use of regular expressions for matching is supported by
GROOVE, but not by Henshin. Model checking in GROOVE is done using
LTL or CTL formulas, whereas Henshin supports the more expressive modal μ-
calculus through the CADP [21] model checker, as well as validation of OCL [22]
invariants. To the best of our knowledge, GROOVE cannot handle EMF models
yet.

7 Conclusion

In this paper, we present the Henshin transformation model for in-place trans-
formations of EMF models. It builds up on graph transformation concepts such
as rule-based transformation, nested and pattern-based application conditions
for rules, and a variety of transformation units to define control structures for
rule applications. To summarize, the Henshin transformation concepts rely basi-
cally on rules and patterns which can lead to a high amount of non-determinism
when executing transformations. This amount can be reduced by the use of rule
parameters, conditions and transformation units.

The direct execution of Henshin transformations allows a tight integration of
transformations on inter-related EMF models as shown in the simple meta-model
evolution example. Typing information can be dynamically loaded and re-loaded
such that instance models can be re-typed over a modified meta-model. In the
future, we intend to elaborate the translation of meta-model transformations to
instance transformations further.

Although not addressed in this paper, Henshin can also be used for exogenous
transformations such that source and target meta-model are integrated into cor-
respondence meta-model in between. The transformation is formulated over this
integrated meta-model. To view the target model only, we plan to extend Hen-
shin by model operations such as projection operations restricting an instance
model to the target domain.

References

1. EMF: Eclipse Modeling Framework, http://www.eclipse.org/emf
2. Steinberg, D., Budinsky, F., Patenostro, M., Merks, E.: EMF: Eclipse Modeling

Framework, 2nd edn. Addison Wesley, Reading (2008)
3. MOF: Meta Object Facility (MOF) Core, http://www.omg.org/spec/MOF

http://www.eclipse.org/emf
http://www.omg.org/spec/MOF


Henshin: In-Place EMF Model Transformations 135

4. Kermeta: http://www.kermeta.org
5. Kolovos, D.S., Paige, R.F., Polack, F., Rose, L.M.: Update transformations in the

small with the Epsilon Wizard Language. Journal of Obj. Tech. 6(9), 53–69 (2007)
6. Biermann, E., Ehrig, K., Köhler, C., Kuhns, G., Taentzer, G., Weiss, E.: Graphical

Definition of Rule-Based Transformation in the Eclipse Modeling Framework. In:
Nierstrasz, O., Whittle, J., Harel, D., Reggio, G. (eds.) MoDELS 2006. LNCS,
vol. 4199, pp. 425–439. Springer, Heidelberg (2006)

7. Boronat, A.: MOMENT: A Formal Framework for Model Management. PhD thesis,
Universitat Politècnica de València (2007)

8. AGG: Attributed Graph Grammar System, http://tfs.cs.tu-berlin.de/agg
9. Biermann, E., Ehrig, K., Köhler, C., Kuhns, G., Taentzer, G., Weiss, E.: EMF

Model Refactoring based on Graph Transformation Concepts. ECEASST 3 (2006),
http://easst.org/eceasst

10. Cicchetti, A., Ruscio, D.D., Eramo, R., Pierantonio, A.: Automating co-evolution
in model-driven engineering. In: 12th International IEEE Enterprise Distributed
Object Computing Conference, pp. 222–231. IEEE Computer Society, Los Alamitos
(2008)

11. Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic Graph
Transformation. Monographs in Theoretical Computer Science. Springer, Heidel-
berg (2006)

12. Biermann, E., Ermel, C., Taentzer, G.: Lifting Parallel Graph Transformation Con-
cepts to Model Transformation based on the Eclipse Modeling Framework. ECE-
ASST 26 (2010), http://easst.org/eceasst

13. Kuske, S.: Transformation Units-A structuring Principle for Graph Transformation
Systems. PhD thesis, University of Bremen (2000)

14. UML: Unified Modeling Language, http://www.uml.org
15. EMF Refactor, http://www.mathematik.uni-marburg.de/~swt/modref
16. Henshin, http://www.eclipse.org/modeling/emft/henshin
17. EMFT: Eclipse Modeling Framework Technology, http://www.eclipse.org/

modeling/emft

18. Giese, H., Hildebrandt, S., Seibel, A.: Improved flexibility and scalability by inter-
preting story diagrams. ECEASST 18 (2009), http://easst.org/eceasst

19. GReAT: Graph Rewriting and Transformation, http://www.isis.vanderbilt.

edu/tools/GReAT

20. Kastenberg, H., Rensink, A.: Model checking dynamic states in GROOVE. In:
Valmari, A. (ed.) SPIN 2006. LNCS, vol. 3925, pp. 299–305. Springer, Heidelberg
(2006)

21. Garavel, H., Mateescu, R., Lang, F., Serwe, W.: CADP 2006: A toolbox for the
construction and analysis of distributed processes. In: Damm, W., Hermanns, H.
(eds.) CAV 2007. LNCS, vol. 4590, pp. 158–163. Springer, Heidelberg (2007)

22. OCL: The Object Constraint Language, http://www.omg.org/technology/

documents/formal/ocl.htm

23. MOLA: MOdel transformation LAnguage, http://mola.mi.lu.lv
24. Balogh, A., Varró, D.: Advanced model transformation language constructs in the

VIATRA2 framework. In: SAC 2006: Proceedings of the 2006 ACM Symposium
on Applied Computing, pp. 1280–1287. ACM, New York (2006), http://eclipse.
org/gmt/VIATRA2

http://www.kermeta.org
http://tfs.cs.tu-berlin.de/agg
http://easst.org/eceasst
http://easst.org/eceasst
http://www.uml.org
http://www.mathematik.uni-marburg.de/~swt/modref
http://www.eclipse.org/modeling/emft/henshin
http://www.eclipse.org/modeling/emft
http://www.eclipse.org/modeling/emft
http://easst.org/eceasst
http://www.isis.vanderbilt.edu/tools/GReAT
http://www.isis.vanderbilt.edu/tools/GReAT
http://www.omg.org/technology/documents/formal/ocl.htm
http://www.omg.org/technology/documents/formal/ocl.htm
http://mola.mi.lu.lv
http://eclipse.org/gmt/VIATRA2
http://eclipse.org/gmt/VIATRA2


A Technique for Automatic Validation of Model
Transformations

Levi Lúcio, Bruno Barroca, and Vasco Amaral

Departamento de Informática, Faculdade de Ciências e Tecnologia
Universidade Nova de Lisboa, Portugal�

{Levi.Lucio,Bruno.Barroca,Vasco.Amaral}@di.fct.unl.pt

Abstract. We present in this paper a technique for proving properties
about model transformations. The properties we are concerned about
relate the structure of an input model with the structure of the trans-
formed model. The main highlight of our approach is that we are able
to prove the properties for all models, i.e. the transformation designer
may be certain about the structural soundness of the results of his/her
transformations. In order to achieve this we have designed and experi-
mented with a transformation model checker, which builds what we call
a state space for a transformation. That state space is then used as in
classical model checking to prove the property or, in case the property
does not hold to produce a counterexample. If the property holds this
information can be used as a certification for the transformation, other-
wise the counterexample can be used as debug information during the
transformation design process.

1 Introduction

Nowadays model transformation tools [9,11] have become the topic of intensive
research due to their importance in Model Driven Development (MDD). In the
MDD context, these tools are used for several activities such as model refinement,
refactoring, translation, validation or operational semantics. These activities can
turn out to complex and error prone. This said, automatic validation techniques
for model transformations are of the utmost importance.

In our laboratory, we have developed a new tool named DSLTrans [3] to assist
the software engineer while specifying model transformations. DSLTrans aims at
overcoming the flaws of state of the art model transformation tools — most
importantly lack of confluence and termination guarantees — by proposing a
simple visual language with basic primitives. The main idea behind DSLTrans
is that, due to its simplicity, we can assure these features by construction.
� The presented work has been developed in the context of project BATIC3S partially

funded by the Portuguese foundation FCT/MCTES ref. PTDC/EIA/65798/2006,
the doctoral grant ref. SFRH/BD/38123/2007 and the post doctoral grant ref.
SFRH/BPD/65394/2009. We would also like to thank Vasco Sousa and Carla Fer-
reira for the fruitful discussions.

D.C. Petriu, N. Rouquette, Ø. Haugen (Eds.): MODELS 2010, Part I, LNCS 6394, pp. 136–150, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



A Technique for Automatic Validation of Model Transformations 137

In this paper, we present a technique for automatic validation of model trans-
formations expressed in DSLTrans. We will describe a symbolic model checker
which was built to guarantee transformation properties expressed in the form
of an implication: ‘if a structural relation between some elements of the source
model holds, then another structural relation between some elements of the tar-
get model should also hold’. Our symbolic model checker computes for each
possible execution of a transformation, an equivalence class representing a set
of source models and their corresponding transformations. We can then validate
that transformation by checking if our transformation property holds for every
computed equivalence class.

1.1 Related Work

In order to aid the construction of the proof of semantic preservation along a
set of transformation rules [2] introduced a language to anotate those rules with
assertions. The idea is to then pass these annotations to a reasoning framework
that will derive, at the meta level, conclusions about the overall transformation.
The work presented in [1] aims at validating a model transformation by using
the Alloy tool. In this case, Alloy simulates the transformation by generating
a model example of the source language and then analyzing the results of the
transformation.

The authors of [5] present a constructive fashion to automatically generate
a valid transformation (the authors refers to transformations as ontology align-
ment) which in principle would preserve the semantic properties of the input
and output models. This generation is done by using the Similarity Flooding
algorithm which is based on the calculus of a distance measurement between
source and target languages.

Similarly to our approach, the authors of [10] enable the declaration of a syn-
tactic structural correspondence between terms in source and target languages.
However, they use this structural correspondence to automatically verify the
results at the end of each transformation. With this approach, the quality engi-
neer will only realize that the transformation is invalid when some pair of models
input/output violates the declared structural correspondence.

1.2 Structure of the Paper

This paper is organized as follows. In section 2, we introduce the DSLTrans lan-
guage by providing a transformation which we use as running example through-
out this paper. We then present how the state space is built for the transfor-
mation and how that state space is used to prove some properties; In section 3
we introduce the formalization of our approach with the aim of having a precise
description of the transformation model checker and a base for its implementa-
tion; In section 4, we will describe how we have implemented the transformation
model checker using SWI-Prolog and provide a notion of the space complexity
of our algorithm; finally, in section 5, we finish with some technical directions



138 L. Lúcio, B. Barroca, and V. Amaral

on how to improve the space and time complexities of our transformation model
checker.

2 Motivating Example

Fig. 1. Metamodels of a squad of agents(left) and a squad organized by gender(right)

2.1 The Transformation Language

The transformation language we use as a base for this work is called DSLTrans [3]
and was developed in our laboratory. DSLTrans is a relatively simple transfor-
mation language having a reduced number of primitives. In order to introduce
DSLTrans let us first present the running example we will use throughout this
paper. Fig. 1 presents two metamodels of languages for describing views over the
organization of a police station. The metamodel annotated with ‘Organization
Language’ represents a language for describing the chain of command in a po-
lice station, which includes male officers (Male class), female officers (Female
class), and dogs (K9 class). The officer chain of command is expressed using the
EMF’s containment named ‘supervise’. The metamodel annotated with ‘Gender
Language’ represents a language for describing a different view over the chain of
command, where the officers working at the police station are classified by gen-
der. In Fig. 2 we present a transformation written in DSLTrans between models
of both languages. The purpose of this transformation is to flatten a chain of
command given in language ‘Organization Language’ into two sets of male and
female officers. Within each of those sets the command relations are kept, i.e. a
female officer will be directly related to all her female subordinates and likewise
for male officers. An example of one such transformation can be observed in
Fig. 3, where the original model is on the left and the transformed one on the
right. Notice that in the figure the boxes represent instances of the classes in
the metamodels of Fig. 1. In particular, the elements s, mk and fk in the figure
on the left are instances of the source metamodel elements Station, Male and
Female respectively. The primed elements in the figure on the right are their
instance counterparts in the target metamodel.



A Technique for Automatic Validation of Model Transformations 139

Fig. 2. A model transformation expressed in DSLTrans

We can identify in the transformation in Fig. 2 several components. Firstly, the
transformation is divided into two steps, formally called layers. Each layer defines
a set of transformation rules and a transformation rule is a pair 〈match, apply〉,
where both match and apply are patterns holding elements of the metamodel of
language ‘Squad Organization Language’ — the source language — and of lan-
guage ‘Squad Gender Language’ — the target language — respectively. Layer 1
(named ‘Layer Entities’) of the transformation includes three simple transforma-
tion rules to translate elements of a model of language ‘Organization Language’
into their counterparts in language ‘Gender Language’. Layer 2 (named ‘Layer
Relations’) includes four transformations that give structure to the elements built
in the previous layer. The transformation rules in layer 2 reveal two interesting
features of DSLTrans:

– Indirect links : these links can be observed in the match pattern of all the
transformations of layer 2 and are noted as a dashed arrow. A model matches



140 L. Lúcio, B. Barroca, and V. Amaral

Fig. 3. Original model (left) and transformed model (right)

Fig. 4. Validation properties over a DSLTrans model

such an indirect link if there exists a path of containment associations be-
tween instances of the two connected metamodel elements;

– Backward links : backward links connect elements of the match and the apply
patterns and are noted as dashed (vertical) lines. They can also be observed
in all the transformation rules of layer 2. Backward links are used to refer
to elements created in a previous layer in order to use them in the current
one. For example, the leftmost transformation rule of layer 2 in Fig. 2 takes
instances of Station and Male (of the ‘Gender Language’ metamodel) which
were created in a previous layer from instances of Station and Male (of
the ‘Organization Language’ metamodel), and creates an association ‘male’
between them.

A particular characteristic of DSLTrans as a transformation language is that
throughout all the layers the source model remains intact as a match source.



A Technique for Automatic Validation of Model Transformations 141

Fig. 5. Partial state space for the transformation in Fig. 2

The match pattern of a transformation rule can match multiple times the source
model and per each of those matches an instance of the apply pattern is created.
Each layer thus creates a set of target metamodel instances and relations between
those instances. In order to refer to elements created in a previous layer in a
transformation rule, backward links have to be used. A complete description of
the DSLTrans language including its formal syntax and semantics can be found
in [3]. An example of a complex transformation of UML to Java using DSLTrans
can be found in [8].

2.2 Properties and Their Proof

Now that the transformation language has been defined we can move on to
describe the properties we wish to prove about our transformations. Examples
of these properties can be observed in Fig. 4. In natural language the property
named ‘Satisfiable Property’ reads as follows: ‘Any model which includes a police
station that has both a male and female chief officers will be transformed into
a model where the male chief officer will exist in the male set and the female
chief officer will exist in the female set’. The primary goal of our model checker
is to prove that, given a transformation, such a property will hold for all models
given as inputs to that transformation.

Practically, this proof is achieved by building what we call the state space of
a transformation. Each state of the transformation state space corresponds to a
possible combination of the transformation rules of a given layer, combined with
all states of the previous layer. Using the example of the transformation given in
Fig. 2 we can build a rough sketch of such a state space which we present in Fig.5.
In the figure we identify each transformation rule in each layer by a number with
an index. For example transformation 11 corresponds to the first transformation
— e.g. left to right in Fig. 2 — in layer one. The state space starts with the initial
state— which in the figure belongs to layer 0 — where no transformation has
been applied. The initial state then connects to all possibilities of combinations



142 L. Lúcio, B. Barroca, and V. Amaral

of transformation rules in layer 1. Each of the states produced by layer 1 is then
connected to all possibilities of combinations of transformation rules in layer 2
— in the figure we only exemplify with the state 31. The states in layer 2 include
not only the combinations of transformation rules from that layer, but also the
transformation rules coming from a state produced by the previous layer. In such
a way each state accumulates all transformation rules leading to it and thus a
describes pattern(s) that should exist in the source model. As such, each state
symbolically describes an equivalence class of input models.

Fig. 6. Original transformations rules (left) and a possible collapse of those rules (right)

We can be more precise while building such equivalence classes. In Fig. 6 we
exemplify what we call the collapse of two of the rules of the transformation
in Fig. 2. Due to the semantics of DSLTrans it may occur that, for example, if
we have the two transformations on the left of Fig. 6 applied to a model, the
instance of Station used by the match pattern of the two rules is the same. This
comes from the fact that, in DSLTrans, the same input can consumed by several
transformation rules within the same layer. In this case we can collapse the
two classes in one in the state we are building. In fact, we can even go further
and collapse the Station classes in the apply pattern of the two rules which
would mean that both Station instances previously created in layer 1 (notice
the backward link) are actually the same. This leads to the state shown in Fig. 6
on the right. In fact this state is required to prove the ‘Satisfiable Property’ in
Fig. 4.

More generally, collapsing transformation rules is used to add more defini-
tion to the equivalence classes represented by each state than the simple union
of transformations as can be seen in Fig. 2. In this union, all elements of the
same type in the disjoint graphs of the united transformation are seen as refer-
ring to different objects in the input model — i.e. several elements of the same
type within a transformation necessarily refer to different objects in a model.
By adding the collapsed transformation rule states to the state space, the proofs
of our properties become complete given we are covering more models in our
symbolic states.



A Technique for Automatic Validation of Model Transformations 143

The proof of a property is then achieved by walking through the state space
and checking every complete transformation state space path (starting from the
initial state): if there is a state that satisfies the match pattern of the property,
then there must exist a subsequent state for which the apply pattern satisfies
the apply pattern of the property.

In Fig.4, the property named ‘Unsatisfiable Property’ represents a property
that is not true for the transformation in Fig. 2. In natural language the property
states the following: ‘If a male officer commands a female officer in the original
model, then that relation will be preserved in the transformed mode’. In our
simple example, this is clearly not true given that the point of our transformation
is to build separate lists of male and female officers. That said, in order to be
proved, the property should hold on all paths of the state space, therefore it
is sufficient to find one path where the property does not hold to render the
property false. Such a path can then be used as a counterexample and may
be useful for the transformation designer in the sense that it may point out a
sequence of transformation rules leading to a wrong transformation result.

It may also happen that a property is non provable. In Fig. 4, the property
named ‘Non Provable’ refers to dogs in the match pattern, a situation which
is never contemplated by the transformation rules in Fig. 2. As such, the only
possible statement about this property is that, although the source metamodel
would allow such match patterns, the transformation does not implement them.
This situation may point out to the transformation designer that (s)he is missing
transformation rules to address certain patterns of the input models.

3 Formalization

In this section we will present the detailed theory for our transformation sym-
bolic model checker. The theory is introduced incrementally and it formalizes
the informal description given in section 2. The goal of such a formalization is
to provide a precise definition of our symbolic model checker, to abstractly build
the algorithms to perform the proofs and to provide a base for the study of the
complexity of such algorithms. The formalization we provide tackles the core
syntax and semantics of our symbolic model checker, but for tractability rea-
sons leaves out: negative conditions in transformation rules; dealing with class
attributes; inheritance and other complex relations in metamodels and their in-
stances. Moreover, the proofs for the propositions stated during the formalization
can be found at [6].

3.1 Graph Definitions

Definition 1. Typed Graph
A typed graph is a triple 〈V , E, τ〉 where V is a finite set of vertices, E ⊆ V ×V
is a set of edges connecting the vertices and τ : V → Type is a typing function
for the elements of V, where Type is a set of type names. Edges (v, v′) ∈ E are
noted v → v′. The set of all typed graphs is called TG.



144 L. Lúcio, B. Barroca, and V. Amaral

Definition 2. Typed Graph Union
Let 〈V , E, τ〉, 〈V ′, E′, τ ′〉 ∈ TG be typed graphs. The typed graph union is the
function � : TG × TG → TG defined as:

〈V , E, τ〉 � 〈V ′, E′, τ ′〉 = 〈V ∪ V ′, E ∪ E′, τ ∪ τ ′〉

Definition 3. Typed Subgraph
Let 〈V , E, τ〉 = g, 〈V ′, E′, τ ′〉 = g′ ∈ TG be typed graphs. g′ is a typed subgraph
of g, written g′ � g iff for all v′1 → v′2 ∈ E′ there is a v1 → v2 ∈ E such that
τ ′(v′1) = τ(v1) and τ ′(v′2) = τ(v2).

Notice that the notion of subgraph in the context of typed graphs is not directly
concerned with the topology of the involved graphs, but rather with the topology
of the nodes having the same type.

3.2 Metamodel, Model and Transformation Definitions

We start by defining the notion of metamodel. A couple of metamodels were
introduced in Fig. 1 and can be seen as typed graphs where the nodes are classes
and the edges are associations.

Definition 4. Metamodel
A metamodel 〈V , E, τ〉 ∈ TG is a typed graph where τ is a bijective typing
function. The set of all metamodels is called META.

Formally, a metamodel corresponds to a graph of typed elements where only one
element for each type is represented.

Let us now define the notion of model. Two models can be observed in Fig. 3
and can also be seen as typed graphs, instances of a given metamodel. Only, as
can be observed in Fig. 3, models can have several instances of the same type.

Definition 5. Model
A model is a 4-tuple 〈V , E, τ , M〉 where 〈V , E, τ〉 is a typed graph. Moreover
M = 〈V ′, E′, τ ′〉 ∈ META is a Metamodel and the codomain of τ equals the
codomain of τ ′. Finally 〈V , E, τ〉 � M , which means 〈V , E, τ〉 is an instance of
a metamodel M . The set of all models for a metamodel M is called MODELM .

Definition 6. Match-Apply Model
A Match-Apply Model is a 6-tuple 〈V , E, τ , Match, Apply, Bl〉, where Match =
〈V ′, E′, τ ′, s〉 and Apply = 〈V ′′, E′′, τ ′′, t〉 are models, V = V ′ ∪ V ′′, E = E′ ∪
E′′∪Bl and τ = τ ′∪τ ′′. Edges Bl ⊆ V ′×V ′′ are called backward links. s is called
the source metamodel and t the target metamodel. The set of all Match-Apply
models for a source metamodel s and a target metamodel t is called MAM s

t .

A match-apply model is an extended definition of a model which is suited to
define the semantics of a model transformation. Given the semantics of DSLTrans
which keeps the source model unchanged and modifies the apply model as several
transformations are applied, a match-apply model is a suitable formalism to store



A Technique for Automatic Validation of Model Transformations 145

the intermediate steps of a transformation. In particular, the backward links allow
keeping a history of which elements in the match model created which elements
in the apply model.

Definition 7. Transformation Rule
A Transformation Rule is a 7-tuple 〈V , E ∪ Il, τ , Match, Apply, Bl, Il〉, where
〈V , E, τ , Match, Apply, Bl〉 ∈ MAM s

t is a match-apply model. Match = 〈V ′, E′,
τ ′, s〉 and the edges Il ⊆ V ′×V ′ are called indirect links. The set of all transfor-
mation rules having source metamodel s and target metamodel t is called TRs

t .

We define a transformation rule as a particular kind of match-apply model which
allows indirect links in the match pattern, but not in the apply one. The reason
for this is that match patterns can be more abstract than models, but apply pat-
terns define — in fact build — instances of models. In Fig. 2, we have presented
several examples of transformation rules.

Definition 8. Property
A Property is a 7-tuple 〈V , E ∪ Il, τ , Match, Apply, Bl, Il〉,
where 〈V , E, τ , Match, Apply, Bl〉 ∈ MAM s

t is a match-apply model. Match =
〈V ′, E′, τ ′, s〉, Apply = 〈V ′′, E′′, τ ′′, t〉 and the edges Il ⊆ (V ′ × V ′)∪ (V ′′ × V ′′)
are called indirect links. The set of all properties having source metamodel s and
target metamodel t is called Propertys

t .

The language to describe properties is in fact very similar to the language to
express transformations, with the additional possibility of expressing indirect
links in the apply pattern — thus allowing more abstract patterns than the
ones expressed in transformations. This is natural given that the properties of a
transformation can be more abstract than the rules implementing them.

Finally, we define layers as sets of transformation rules and transformations
as lists of layers.

Definition 9. Layer, Transformation
A layer is a finite set of transformation rules tr ⊆ TRs

t . The set of all layers for a
source metamodel s and a target metamodel t is called Layers

t . A transformation
is a finite list of layers denoted [l1 :: l2 :: . . . :: ln] where lk ∈ Layers

t and
1 ≤ k ≤ n. The set of all transformations for a source metamodel s and a target
metamodel t is called Transformations

t .

We naturally extend the notion of union in definition 2 to models (definition 5),
match-apply models (definition 6) and transformation rules (definition 7).

3.3 Transformation Collapse Definitions

Let us now define some useful functions for the construction of a transforma-
tion’s state space. The Graph Node Collapse function allows merging two nodes
of a graph having the same type. This function is subsequently used by the Graph



146 L. Lúcio, B. Barroca, and V. Amaral

Collapse Function that recursively builds a set of all the possible collapsed graphs
from a graph.

Definition 10. Graph Node Collapse
Let 〈V , E, τ〉 ∈ TG be a typed graph. A graph node collapse is a function χ :
TG → P(TG) such that:

χ〈V ,E,τ〉 =
{
〈V \{y}, E′, τ\(y, τ(y))〉 |
x, y ∈ V ∧ τ(x) = τ(y) ∧
E′ = {(x, z) | (y, z) ∈ E} ∪

{(z, x) | (z, y) ∈ E} ∪
{(w, z) | (w, z) ∈ E ∧ w �= y ∧ z �= y}

}
This definition is naturally extended to transformations TRs

t by limiting the
two elements x and y that are collapsed to be either members of the Match
pattern of the transformation or elements that are connected by a backward
link.

Definition 11. Graph Collapse Function
Let g ∈ TG be a typed graph. The graph collapse function collapse : TG →
P(TG) is recursively defined as:

collapse(g) =

{
{g} if χg = ∅
χg ∪ {g} ∪

⋃
g′∈χg

collapse(g′) if χg �= ∅

This definition is also naturally extended to transformation rules TRs
t .

Proposition 1. Finiteness of the result of the graph collapse function
Let 〈V , E, τ〉 ∈ TG be a typed graph. The collapsed graph set collapse(〈V , E, τ〉)
is a finite set of graphs, each graph in that set having a finite set of nodes.

3.4 State Space

In order to define the state space for a transformation let us start by defining
the possible combinations of transformations within a layer. More than that,
we also define a label for each of those combinations of transformation which is
used as label for the transitions in the transformation state space we build. These
labels hold the identifiers of the transformations leading to a state and will be
subsequently used to build counterexamples for properties that are unsatisfiable.

Definition 12. Layer combinations
Let l ∈ Layers

t be a layer. The set of layer combinations CLl is obtained as
follows:

CLl =
⋃

tc∈P(l)

(
tc,

⊔
t∈tc

t
)



A Technique for Automatic Validation of Model Transformations 147

Definition 13. Transformation state space
Let tr = [l1 :: . . . :: ln] ∈ Transformations

t be a transformation. The trans-
formation state space SPtr ⊆ TRs

t × (P(TRs
t ) × N) × TRs

t is the least set that
satisfies the following rules:

(tc, ut) ∈ CLl1, tr = [l1 :: R] ∈ Transformations
t , st ∈ collapse(ut)

〈∅, ∅, ∅, ∅, ∅, ∅〉 tc1−−→ st ∈ SPtr

tr = [H :: lk :: lk+1 :: R] ∈ Transformations
t , st

tck−−→ st′ ∈ SPtr

tc ∈ P(lk), (tc′, ut) ∈ CLlk+1 , st
′′ ∈ collapse(st′ � ut) | st′

st′
tc′k+1−−−−→ st′′ ∈ SPtr

Notice that H and R are lists. We also define SP ∗
tr as the transitive closure of

SPtr. The | : P(TRs
t )×TRs

t → P(TRs
t ) operator enforces that the backward links

existing in the second parameter transformation also exist in the transformations
of the first parameter.

We now build the state space for a transformation by gathering all the com-
binations of transformations for each layer, the result of collapsing them, and
building the state space as shown in Fig. 5. Notice in particular that the second
inference rule in definition 13 merges the states from a previous layer k and from
the current layer k + 1. Notice also that all transitions in the transition state
space are labeled with the transformations tck from the previous k layer that
caused it.

Proposition 2. Finiteness of the transformation state space
Let [l1 . . . ln] ∈ Transformations

t be a transformation. The transformation state
space SP[l1...ln] is finite.

The result in proposition 2 is crucial since by definition model checking can only
be performed on finite state spaces.

3.5 Property Semantics

Let us now proceed to formally define the semantics of our properties in the state
space generated by the rules of definition 13. As we have stated in section 2, a
property can be satisfiable, unsatisfiable or non provable. We start with the
definition of a state in a state space (formally defined as a transformation) being
model of a property. As a reminder, each state of the state space is a symbolic
representation of a set of models given as input to the transformation being
validated and their corresponding transformations. In fact, a state holds a set
of patterns that should be instantiated in the input model — the match part of
the state — as well as in the output model — the apply part of the state. By
validating a property at the level of the symbolic states, we validate it for the
whole set of input and output models of a given transformation.



148 L. Lúcio, B. Barroca, and V. Amaral

Definition 14. Model of a Property
A transformation rule 〈Vr, Er, τr, Matchr, Applyr, Ilr〉 = T ∈ TRs

t is a model of
a property 〈Vp, Ep, τp, Matchp, Applyp, Ilp〉 = P ∈ Propertys

t , written T �s P
if:

1. 〈Vp, Ep \ Ilp, τp〉 is a typed subgraph of 〈Vr , Er, τr〉
2. if vp → v′p ∈ Ilp then there exists vr → v′r ∈ E∗

r where τ(vp) = τ(vr),
τ(v′p) = τ(v′r) and E∗

r is obtained by the transitive closure of Er.

Definition 15. Satisfiable Property
Let tr = [l1 :: . . . :: ln] ∈ Transformations

t be a transformation. tr satisfies
property P ∈ Propertys

t , written tr � P , where:

tr � P ⇔ ∀s0
lb0−−→ . . .

lbn−−→ sn ∈ SP ∗
tr . (∃i . si �s match(P ))⇒(∃j ≥ i . sj �s P )

where s0 = 〈∅, ∅, ∅, ∅, ∅, ∅〉 and 0 ≤ i ≤ j ≤ n.

Informally, for all paths belonging to tr’s state space, if the property’s match
pattern is found in a given state, then a subsequent state in that path is model of
the property. Note that the projection function match returns the match pattern
of a property.

Definition 16. Unsatisfiable Property
Let tr = [l1 :: . . . :: ln] ∈ Transformations

t be a transformation. tr ∈ TR does
not satisfy property P ∈ Propertys

t , written tr � P , where:

tr � P ⇔ ∃s0
lb0−−→ . . .

lbn−−→ sn ∈ SP ∗
tr . (∃i . si �s match(P ))⇒(�j ≥ i . sj �s P )

where s0 = 〈∅, ∅, ∅, ∅, ∅, ∅〉 and 0 ≤ i ≤ j ≤ n.

The sequence lb0, . . . , lbn is called a counterexample for property P in transfor-
mation tr.

Informally, there exists a path belonging to tr’s state space where the property’s
match pattern is found in a given state, but no subsequent state in that path is
model of the property.

Definition 17. Non Provable Property
Let tr = [l1 :: . . . :: ln] ∈ Transformations

t be a transformation. A property
P ∈ Propertys

t is not provable for tr, written tr � P , where:

tr � P ⇔ ∀s0
lb0−−→ . . .

lbn−−→ sn ∈ SP ∗
tr . (�i . si) �s match(P )

where s0 = 〈∅, ∅, ∅, ∅, ∅, ∅〉 and 0 ≤ i ≤ n.

Again informally, the match pattern can never be found in any state of the state
space of tr.



A Technique for Automatic Validation of Model Transformations 149

4 Experimentation and Results

Using our implementation — downloadable at [7] — in SWI-Prolog, we have
generated a state space for the the presented police station transformation, re-
sulting in a state space with an order of magnitude of 104 states. Our implemen-
tation reflects the formalization in section 3. The transformation description
in DSLTrans is represented as a set of facts in a entity/relationship schema,
and the generated state space is represented as a list of transition predicates
t(LayerId,SquareGraphComb, Label, SquareGraphComb’). The layer identifier
LayerId precisely identifies the depth position of each of the transition’s states, in
the overall state space. Each state SquareGraphComb and SquareGraphComb’
is represented as predicate graph(match(Match),apply(Apply),blinks(BLinks)),
where Match, Apply and BLinks are lists of entities and relations which were
merged and combined from the given transformation description.

5 Conclusions and Future Work

In this paper we have presented a model checker for model transformations ex-
pressed in the DSLTrans language. The transformations in DSLTrans are by
construction confluent and terminating [3]. We have added to the language the
possibility to establish syntactic structural correspondences between patterns
in the source language and patterns in the target language of the transforma-
tion. This correspondence, which we call properties, is checked in a finite state
space which is generated by all the possible combinations of applications of the
rules specified in the transformation. Once one such property is validated for
the transformation at the meta level, we can certify that it holds for all input
instances of that transformation. As future work, we will perform experiments
on larger transformation and address spatial and time complexities in our state
space generation algorithm. Given that, on average, many states for a given
state space share the same structure, we are considering using BDD-like struc-
tures [4] to compact space and accelerate state space calculation and property
proof. Another possibility is to use available model checkers as interpreters for
our algorithm. In this fashion we could benefit from already studied state space
explosion control mechanisms. Finally, the study presented in this paper needs
to be extended to structures with more semantic content than the one that can
be represented by plain typed graphs. With this work we have made significant
progress in understanding the fundamental issues in building a model checker for
model transformations. However, a more detailed understanding and formaliza-
tion of the semantics of metamodels, models and properties is needed in order to
build proofs at the level of abstraction a transformation engineer would require.

References

1. Anastasakis, K., Bordbar, B., Küster, J.: Analysis of model transformations via
alloy. In: Baudry, B., Faivre, A., Ghosh, S., Pretschner, A. (eds.) Proceedings of the
workshop on Model-Driven Engineering, Verification and Validation (MoDeVVA
2007), Nashville, TN, USA, pp. 47–56. Springer, Heidelberg (October 2007)



150 L. Lúcio, B. Barroca, and V. Amaral

2. Asztalos, M., Lengyel, L., Levendovszky, T.: Towards automated, formal verifica-
tion of model transformations. In: ICST 2010: Proceedings of the 3rd International
Conference on Software Testing, Verification and Validation, pp. 15–24. IEEE Com-
puter Society, Los Alamitos (2010)

3. Barroca, B., Lucio, L., Amaral, V., Felix, R., Sousa, V.: A visual language
for model transformations. Technical report, UNL-DI-2-2010, University Nova
de Lisboa, Portugal (2010), http://solar.di.fct.unl.pt/twiki/pub/BATICCCS/
ModelTransformationPapers/vltechrep.pdf

4. Bryant, R.E.: Graph-based algorithms for boolean function manipulation. IEEE
Trans. Computers 35(8), 677–691 (1986)

5. Falleri, J.-R., Huchard, M., Lafourcade, M., Nebut, C.: Metamodel matching for
automatic model transformation generation. In: Czarnecki, K., Ober, I., Bruel,
J.-M., Uhl, A., Völter, M. (eds.) MODELS 2008. LNCS, vol. 5301, pp. 326–340.
Springer, Heidelberg (2008)

6. SOLAR Group. Detailed proofs for the paper: a technique for automatic validation
of model transformations, http://solar.di.fct.unl.pt/twiki/pub/BATICCCS/

ModelTransformationPapers/detailed_proofs.pdf

7. SOLAR Group. Transformation model checker, http://solar.di.fct.unl.pt/

twiki/pub/BATICCCS/ReleaseFiles/transmc.zip

8. SOLAR Group. Transforming uml to java using dsltrans, http://solar.di.fct.
unl.pt/twiki/pub/BATICCCS/ModelTransformationPapers/UML2Java.zip

9. Jouault, F., Kurtev, I.: Transforming models with atl. In: Bruel, J.-M. (ed.)
MoDELS 2005. LNCS, vol. 3844, pp. 128–138. Springer, Heidelberg (2005)

10. Narayanan, A., Karsai, G.: Verifying model transformations by structural corre-
spondence. ECEASST, 10 (2008)

11. Object Management Group. Query/view/specification (December 2005), http://
www.omg.org/cgi-bin/apps/doc?ptc/05-11-01.pdf

http://solar.di.fct.unl.pt/twiki/pub/BATICCCS/ModelTransformationPapers/vltechrep.pdf
http://solar.di.fct.unl.pt/twiki/pub/BATICCCS/ModelTransformationPapers/vltechrep.pdf
http://solar.di.fct.unl.pt/twiki/pub/BATICCCS/ModelTransformationPapers/detailed_proofs.pdf
http://solar.di.fct.unl.pt/twiki/pub/BATICCCS/ModelTransformationPapers/detailed_proofs.pdf
http://solar.di.fct.unl.pt/twiki/pub/BATICCCS/ReleaseFiles/transmc.zip
http://solar.di.fct.unl.pt/twiki/pub/BATICCCS/ReleaseFiles/transmc.zip
http://solar.di.fct.unl.pt/twiki/pub/BATICCCS/ModelTransformationPapers/UML2Java.zip
http://solar.di.fct.unl.pt/twiki/pub/BATICCCS/ModelTransformationPapers/UML2Java.zip
http://www.omg.org/cgi-bin/apps/doc?ptc/05-11-01.pdf
http://www.omg.org/cgi-bin/apps/doc?ptc/05-11-01.pdf


Static- and Dynamic Consistency Analysis of
UML State Chart Models

Christian Schwarzl1 and Bernhard Peischl2

1 Virtual Vehicle, Vehicle Electrics/Electronics and Software,
8010 Graz, Austria

christian.schwarzl@v2c2.at
2 Graz University of Technology, Institute for Software Technology,

8010 Graz, Austria
bernhard.peischl@ist.tugraz.at

Abstract. UML state chart models describing the behavior of a system
can be used as a formal specification thereof. The existence of advanced
modeling tools allows for model simulation and enables the execution of
manually created tests on the models. In this work the usage of static
and dynamic model analysis techniques is proposed to reveal errors in
these models. The static analysis focuses on the syntax, communication
structure and non-determinism. The dynamic analysis is based on a ran-
dom test approach and can reveal bugs like deadlocks and inter-model
loops. Further the data generated during the dynamic analysis allows for
additional correctness checks such as e.g. the number or lengths of paths.
The presented approach is implemented in a prototype and revealed sev-
eral bugs in an industrial case study not found during simulation and
manual model testing.

1 Introduction

Model development in an industrial setting is a challenging task due to the large
size and the number of interacting models. These models can also be used as
a formal specification for suppliers delivering the actual implementation of an
e.g. electronic control unit (ECU). Particularly in such scenarios the presence of
bugs in the model is critical due to the high cost, caused if the bug is found at
a late stage of the development process like integration testing. The existence
of a formal specification of the system behavior also suggests the automatic
generation of test cases based on these models. For this reason the correctness
of the model is key to enable a model based development and test process.

The existence of advanced modeling tools like Rhapsody [1] allows the gener-
ation of executable code from behavioral UML state chart models [2]. This code
can be executed and used to exercise the models in a simulation. Due to the
simulation it is possible to test the developed models manually, which is neces-
sary to reveal possible bugs. Although various industrial tools [3,4] and research
prototypes [5,6,7] for test generation exist, they rely on a correct specification
of the system.

D.C. Petriu, N. Rouquette, Ø. Haugen (Eds.): MODELS 2010, Part I, LNCS 6394, pp. 151–165, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



152 C. Schwarzl and B. Peischl

The current approach suggests the usage of static model analysis and tech-
niques used for test case generation to enhance the model correctness of UML
state chart models. During static model inspection the model structure as well
as the contained code is automatically checked against common errors listed be-
low. Although static analysis methods are already implemented in various tools,
a more complete set is provided in this approach:

– Syntax: The code on the model contained in the actions of transitions and
states as well as the transition guards are examined with respect to the
defined grammar.

– Existence: A check is performed whether all variables and attributes used
in guards and actions are defined on the model.

– Data type: The data types occurring within an assignment have to have the
same data type. This prevents for example the assignment of incompatible
types like floating point values to integer variables.

– Communication: In particular the possibility of a message reception in the
target model of a send command is considered. A model has to have at least
one transition triggered by a message sent by another model.

– Non determinism: The existence of non deterministic behavior caused by
overlapping parameter ranges is verified. An overlapping parameter range
can occur if a state has multiple outgoing transitions triggered by the same
event, which has at least one parameter. The value range of each event
parameter is defined by the guard of its according transition. An overlap
causing non determinism exists if an intersection between any pair of value
ranges is not empty.

– Transition hiding: During this test the traversability of all transitions
is checked. A transition cannot be traversed if a transition with the same
input message and higher priority exists, which covers the same or a larger
parameter range.

Given syntactically correct state chart models their described behavior can
still have inconsistencies, which can not be detected during a static analysis.
For this reason suitable test suites are required to ensure the intended behav-
ior of the system models. The preparation of such test suites is a tedious task
and is usually performed manually. Another approach is the usage of automatic
white-box testing techniques like random testing. These techniques allow the au-
tomatic execution of the models by using random input parameters. Although
this methods can drive models into failure situations, the automatic failure de-
tection is hard to achieve. The reason is that the reactions of a given input can
not be checked due to the missing oracle.

In contrast a random walk, which is introduced in this work, enables the
automatic detection of such situations whereby a failure trace is provided. This
is achieved by the usage of a different concept where the input needed to achieve
a certain reaction is calculated. In particular the following model failures can be
revealed:

– Deadlock: A model reaches a state including the valuation of its attributes
prohibiting the traversal of every outgoing transition.



Static- and Dynamic Consistency Analysis of UML State Chart Models 153

– Infeasible transitions: A transition is infeasible if it is triggered by a sent
message of another model and no path on any of these sender model exists,
which can fulfill its guard.

– Inter-model loops: Inter-model loops are circular dependencies in the
model communication structure. For example a message reception mr in
model M1 depends on model M2 whereby M2 depends on M1 to be able
to send the desired message mr.

In addition to the static and dynamic model analysis the usage of assertions
on the models is proposed. These checks can take place at two different stages
during the analysis process:

1. Model: Assertions on the model contain usually conditions on message vari-
ables and attributes, which have to be fulfilled during the simulation.

2. Dynamic analysis: This type of assertions performs checks, which allows to
state necessary conditions on the generated paths during the message reso-
lution (see Section 5). This can for example contain the number of generated
paths or its visited states.

The concepts already efficiently used in software development can also improve
the model development quality. The main advantages of the presented approach
are its automatism and the incorporation of multiple strategies to ensure the
syntactical and enhance the semantic correctness. Further it generates failure
traces. A failure trace describes the path through the model, which leads to the
found failure and can be extremely helpful for debugging.

Section 2 gives an overview of the used UML elements and introduces an
example containing several modeling flaws. In Section 3 and 4 the static and
dynamic consistency checks are presented. The algorithms used for handling the
communication dependencies between the models is described in Section 5. The
obtained results from an industrial case study are shown in Section 6 and Section
7 discusses related work. Finally a conclusion is given in Section 8.

2 Example Model

A UML state chart consists of states, transitions, variables and their according
values. Thereby a transition consists of an event, which can be created by an
according message reception of the model, a guard and an action. The guard
defines a condition, which must be satisfied to enable the traversal. Finally ac-
tions can be specified on each transition to assign values to variables or to send
messages to other models. UML also allows to model transitions without an
event. These transitions are called completion transitions and are traversed as
soon their guard evaluates to true.

In addition to these basic elements, a state chart can also have pseudo states,
entry- and exit-actions on states, sub states and nested state charts, which simpli-
fies the modeling process. Pseudo states are special states, which do not describe



154 C. Schwarzl and B. Peischl

Fig. 1. Model A

a system state but provide various functionalities to simplify modeling. The pre-
sented approach can handle condition states, junction states, deep history, entry-
and exit points and diagram connectors.

Condition states have at least one incoming and several outgoing transitions
where the outgoing transition guards must differ. The usage of junction states
allows the reduction of the number of transitions by merging multiple incoming
transitions into one outgoing. Entry- and exit states are always used in pairs,
because they establish interfaces between nested state chart models and other
states. A nested state chart model (NSCM) is an additional SCM, which is
embedded in a state. Transitions into deep history states behave like they were
linked to the deepest, last visited sub state of the state, in which the history
state lies. A sub state lies within another state and can also have sub states or
an NSCM. Diagram connectors allow the direct connection of two states beyond
the borders of nested state charts.

In the remainder a transition is given as an arrow connecting a source- (Ss)

and target-state (St) following the syntax Ss
event[guard]/action−−−−−−−−−−−−−→ St. The initial

state is defined through a default transition, which starts from a point instead
of a state and can only have actions. The Figures 1,2 and 3 show the behavior
description of an illustrative example. These models contain the following bugs,
inefficiencies and assertions described in Section 3 and 4.

1. Inter-model loop: A1 c−→ A2 is part of an inter-model loop between Model
A and Model B.

2. Deadlock: On A1, A2 r−→ A0 the assignment x = 0 is missing, which leads
to a deadlock. This cannot be found by random testing, because during a



Static- and Dynamic Consistency Analysis of UML State Chart Models 155

Fig. 2. Model B

Fig. 3. Model C

random test it is impossible to distinguish, whether the message reception
is required for a correct behavior. The reason is that both behaviors are
valid scenarios in UML. In contrast a random walk can detect the dead-
lock, because it will not find a valid path during communication dependency
resolution. This results from the fact that no traversable transition in this
system state exists.

3. Code level Assertion: B0 a−→ B1 shows an example of code level assertion.

The default transition • /x=1,i=0−−−−−−→ B0 with the incorrect assignment x = 1
instead of x = 0 enables this code level assertion to fail, if the transitions

B0
a((p≥0)&&(p≤5)&&(i≤2))−−−−−−−−−−−−−−−−−→ B1 b−→ B0 are traversed twice.

4. Dynamic analysis assertion: In B0
f−→ B0 an example of dynamic analysis

assertion is given.



156 C. Schwarzl and B. Peischl

5. Non-determinism: B0 a−→ B0 and B0 a−→ B1 allow a non-deterministic
behavior for the message parameter p = 5.

6. Transition hiding: Assume the following transition super(B0) a−→ B∗ exists
where super(B0) is any super state of B0. This transition would hide all
outgoing transitions of B0 with trigger a, because of its higher priority.

7. Missing model reception: C0 in1−−→ C1 represents a static error, because
ModelA cannot receive b whereby ModelB would have been the correct target
model.

3 Static Model Analysis

Since UML SCMs have an ambiguous semantic a unique dynamic model analysis
is not possible. For this reason a transformation of the UML SCMs into the a
Symbolic Transition System (STS) [15] is proposed.

An STS has a similar but reduced set of modeling elements. It also consists
of states, variables and transitions, whereby a transition distinguishes clearly
between input and output messages. In contrast to UML SCMs it does not
facilitate any pseudo state nor state hierarchy. Due to the hierarchical structure,
every SCM has to be flattened before it can be transformed into an STS [10].
During the flattening process the pseudo states and the hierarchy, introduced
through sub states and NSCMs, are removed and entry- and exit-actions on
states are moved to their respective incoming and outgoing transitions. Since
the flattening removes the hierarchical structure of the SCMs, this information
has to be kept in addition. It is needed because outgoing transitions of a super
state Ssup of a state S (Ssup = super(S)) have a higher priority than transitions
from S. During the transformation of an SCM an additional state and transition
has to be created for each send command in an action of an UML transition.
This is necessary because of the distinction between input and output messages.

Model Structure: Initially the model structure is checked against some defined
rules. These rules state in general the structural requirements, which have to
be fulfilled by the model. For example the number of incoming and outgoing
transitions needed for a certain pseudo state can be defined. In addition checks
on events, guards and actions can be performed. Default transitions for example
must not have a guard or an event at all whereas every outgoing transition of
a condition state must have a guard and again no event is allowed. Also the
existence of elements like default transitions in a state, if multiple sub states
exist, can be verified.

Textual Model Parts: During parsing of each assignment or condition a tree
containing all operators and operands is built. Each element contains the variable
name or the static value given in the model allowing for a data type check. The
data types are defined through the attributes and message parameters, which
have to be defined on the UML model in advance. The data types of constant
values in the actions or guard are identified through their syntax; e.g. using
points for float which are not found in integer values. In addition the syntax of



Static- and Dynamic Consistency Analysis of UML State Chart Models 157

the whole statement or condition, respectively, is checked during parsing. Also
the existence of attributes to which values are assigned or which are used in
conditions can be checked, because they have to be modeled in the SCM.

Model Message Reception: While building the communication structure con-
taining all message dependencies between the models, a possible reception can
be found easily. A failure is found if a message is sent to a model, which cannot
receive the message at all. This is likely to be an error in the model. If a message
is broad-casted to all available models this checks loose detail, because it can
only be verified if any model can receive the message. In addition a warning is
given if only one receiver is found, which could be an actual model error, but is
at least a source for future complications.

Transition Hiding: This checks the message parameter ranges of equal mes-
sages on transitions leaving the same state or a super state of a state. UML
defines that a transition leaving a super state has a higher priority than tran-
sitions from a sub state. Therefore it is possible that a transition cannot be
executed at all because no according parameter value exists. For this reason
it has to be ensured that parameter values exist, which allow only guards of
transitions with a lower priority evaluating to true. This can be achieved by it-
erating through every outgoing input transition of every state in the STS and by
calculating a parameter valuation for the respective extended guards. These ex-
tended guards consist of the condition initially defined on the transition and the
inversed guards of all transitions with the same input message with a higher or
equal priority. If the extended guard cannot be solved then no valuation exists,
which allows the transition to be traversed. This makes the transition obsolete
and indicates a modeling error.

Non-determinism: The detection of non-determinism based on overlapping
parameter ranges is similar to the detection of hidden transitions. Both have
a condition in common, which contains multiple guards. The difference is, that
the condition is constructed for every transition pair triggered by the same mes-
sage. This condition is a conjunction of the two guards. If the condition can be
solved then an overlapping parameter range is detected and a non-deterministic
behavior is found.

4 Dynamic Model Analysis

The dynamic model analysis focuses on modeling errors, which are syntactically
correct but lead to unexpected or unwanted behavior commonly known as bugs.
Since testing is a time consuming process, a fully automatic technique for consis-
tency analysis is proposed. It is based on a random walk through the model and
uses structural communication dependency resolution methods to find possible
paths through the concurrent models.

An exhaustive model analysis would require the execution of the possibly
infinite number of paths caused by e.g. loops. This situation is intensified by the
usage of data causing a state space explosion, which makes the use of e.g. model



158 C. Schwarzl and B. Peischl

checkers impossible. The random walk approach needs only to consider a fraction
of the state space at a time, because the models are traversed stepwise. A step
in this context means the random selection of a transition and the generation
of paths allowing its traversal. In each step the concrete values of the previous
step can be used to reduce the size of the state space. Although the presented
message dependency resolution algorithm can – in the worst case – lead to an
exponential path growth, the absolute number of possibilities is vastly reduced.
Due to the loss of exhaustiveness the absence of bugs cannot be guaranteed,
but the detection power increases with the number of performed steps during a
random walk.

Deadlocks: During a random walk a transition is randomly selected, its commu-
nication dependencies are resolved as described in Section 5 and then traversed.
A deadlock occurs if a state in the model is reached, which does not have any
traversable outgoing transitions. There are basically two possibilities how the
deadlock can occur:

First it can be a modeling error, which leads to the deadlock if the model
is exercised in a certain way. A typical example is given in Figure 1. In this

example the outgoing transition A0
in1[x==0]/x=x+1−−−−−−−−−−−−→ A1 has a condition on

attributes in the guard, which were not set accordingly to x = 0 in A1, A2 r−→
A0 before entering the state. This leads to a deadlock after two traversals of

A0
d[p<2]/x=0−−−−−−−→ A0, because this transition becomes infeasible. The reason is its

dependency on Model C (see Figure 3) where the sent parameter increases with
every traversal.

The second possibility is that the used path generation algorithms failed to
create a valid path. This can be a result of the needed restrictions on the gen-
eration technique to be able to handle the possibly infinite number of paths.
However, the restrictions can be chosen by the model developer and therefore
the requirements given by the model can be taken into account to circumvent
this situation.

Infeasible transitions: Assume the path generation techniques described in
Section 5 are chosen appropriate to suffice the model requirements. This means
that if no valid path can be created then there exists no path at all allowing the
selected transition to be traversed for the current system state. Since in general
the guard of the selected transition allows the traversal, the fact that it cannot
be triggered by any path implies that this transition or its guard, respectively,
must be infeasible. This is illustrated in the following example consisting of two
transitions where p is the input parameter, which can be chosen for the message

im in the given range: D0
im[0≤p≤10]/send(g(p),ALL)−−−−−−−−−−−−−−−−−−−→ D1, E0

g[20≤p≤30]−−−−−−−→ E1. In
this example a correct message is sent but the required input parameter range
for a is disjunct from the parameters possible for im. For this reason no input
value can be generated leading to an infeasible transition.



Static- and Dynamic Consistency Analysis of UML State Chart Models 159

If the stated assumption does not hold false positives are likely to be cre-
ated. However, in this case the false positives can be seen as warning, because
the behavior differs from the model developer conception, which leads to the
inappropriate chosen restrictions.

Inter-model loops: Inter-model loops occur, if the model communication has
a circular dependency. This means that a reception of a message in one model
depends on a second one, which depends on the first model to create the partic-
ular message (see messages c and a in Figures 1 and 2). Such model constructs
are erroneous, because – as shown in the given example – the circular depen-
dent transition can never be traversed. The reason is that due to the circular
dependency a transition has to be traversed before the desired transition. In
the special case where the circular dependent transition is part of a loop this
behavior could be correct – assuming the model attributes still have values so
that the guard of the desired transition remains true – but is still bad modeling
practice and could lead to false positives during a static analysis. Usually such
transitions lead to another state prohibiting the traversal of the initial desired
transition traversal.

Failure trace: The creation of traces through the models revealing errors in
the model are particularly useful for debugging and bug fixing. Due to the usage
of a random walk such a failure trace can be created by recording the selected
transitions including the used parameter values. These traces can also be stored
and replayed for e.g. regression testing.

Assertions: Assertions can be used to define additional checks during the model
simulation. They can check the system state or use data available during the
dynamic analysis in the presented approach and are given by the keyword as-
sert. An example of both assertion types is given in Figure 2 where transition
B0

f−→ B0 uses a condition on data of the dynamic analysis ( daPathNo ) and

B0
a[(p≥0)&&(p≤5)&&(i<2)]−−−−−−−−−−−−−−−−−→ B1 defines a check on the system state.

The first assertion uses information only available during the random walk. In
particular it is possible to check data like the number of valid paths created for
a given transition as presented in the example. In addition various parameters
can be checked like the length of the paths, visited states or transitions or the
sender models of required messages. These kind of assertion generally allows for
expressing the model developer’s intention of the behavior and provides warnings
and error messages if conflicts occur.

The second assertion type allows for additional checks on the model by incor-
porating the structure and the parameter values. They are equal to assertions
used in code in software development and are a helpful extension to identify
inconsistencies. The example given above can reveal the incorrect assignment
of x = 1 on the default transition in Model B after traversing the transition

B0
a[(p≥0)&&(p≤5)&&(i<2)]−−−−−−−−−−−−−−−−−→ B1 if no intermediate reset r is received.



160 C. Schwarzl and B. Peischl

5 Message Dependency Resolution

Due to the communication among the models their dependencies, which are
defined through their input-/output behavior, have to be incorporated in the
input generation. In general this means that the reactions on a message reception
sent by another model as well as the detection of paths ensuring the dispatch of
a wanted message have to be taken into account. This approach uses path search
algorithms on the basis of STS and symbolic execution techniques to guarantee
their validity. The path validity can be ensured by building and solving its path
constraint, which is built bottom up and contains all guards and actions needed
to uniquely traverse the whole path. A path is only valid if its path constraint can
be solved by a constraint solver like GNU Prolog, meaning that a valuation for
all involved attributes and message parameters exists, which fulfills all conditions
on the path.

Possible non deterministic behavior depending on the occurring parameter
values can be eliminated during the path constraint creation. This is achieved
by incorporating the inversed guards of all transitions, which have the same
message as trigger. The same is true for completion transitions where also a
deterministic behavior can be guaranteed. Since it is possible that a parameter
range of one guard is a full subset of the parameter range of another transition
guard, no valid path containing these transitions having the parameter subset
as guard will be found.

The path generation algorithms use depth first search (DFS), which can return
multiple potential candidates. A selection from the obtained candidates based
on criteria like length or coverage is possible to reduce the overall path number
and therefore enhance scalability.

5.1 Input Message Creation

The directed creation of an input message reception is performed if the traversal
of a designated transition is desired. In the simplest case – meaning the required
message is not part of any model communication – this can be achieved by cre-
ating the message including the according parameter values. If the message is
sent by at least one other model the arising dependencies have to be resolved.
I.e. the required precondition for sending this particular message has to be de-
termined. This procedure ensures that every involved model is in the same state
as it would be if the message dispatch was initiated by itself.

Before the search for paths sending the desired message all possible models,
which are capable of sending this message at all have to be identified. After the
application of the path search algorithms on the identified models a selection
algorithm is used to determine the paths for further processing.

Since these paths can also communicate with other models, which must be
resolved before the path validity can be checked, the same technique as described
in this section is used for every input message sent by another model on the paths.
Due to the fact that these created paths can also send messages along the path,
which are not the desired message for which the path was created initially, their



Static- and Dynamic Consistency Analysis of UML State Chart Models 161

influence on the receiving models has to be incorporated as described in the next
section.

5.2 Output Message Execution

Whenever a message is sent between models the possible reactions of the re-
ceiving models have to be taken into account. These reactions range from no
influence at all – if the receiver model is in a state where the message is not
accepted – to multiple different, possibly non deterministic behaviors depending
on the message parameters. This stems from the fact that the current state of a
model may have multiple outgoing transitions with the same input message. In
this case a path for every reception possibility, including the situation where no
transition can be traversed, because none of their guards evaluates to true for
specific message parameter values, has to be created.

The number of possibilities is also extended by completion transitions after
the receiving transition where each assigned guard can evaluate to true or false.
Again, non deterministic behavior can occur if guards have overlapping param-
eter ranges. However this can be prevented, if the inversed guard is taken into
account during the path constraint construction.

6 Results

The presented results were obtained from a prototype based on an UML state
chart model depicting an industrial case study. The model consists of six com-
municating models containing 33 states and 154 transitions. To show the appli-
cability of this approach eleven mutants were placed manually in the case study
whereby the length of the random walk needed for the detection is presented.
The following mutants were used:

1. Changed compare operators in guards: e.g. ≥ instead of <.
2. Incorrect or missing assignments of attributes: e.g. x = y; instead of x = z;
3. Missing send commands: a message sending was intended by the modeler

but actually not performed in the model

These mutants are a selection of faults often introduced during software devel-
opment, whereas the presented approach is not limited to them. The results are
focused on the infeasible transitions during the dynamic analysis. The reason is
that no inter-model loops or deadlocks occur in the used model structure.

The used prototype was able to identify eight out of the eleven seeded faults
whereby a found fault was removed immediately after its exposure, because its
influence on the model communication. The three missed mutants could not be
found by this algorithm, because – although the behavior was flawed – the model
consistency was maintained. The results are presented in more detail in Table
1 and Figure 4 where the mean and standard deviation of the length l of the
random walk for 50 independent runs for each number of alive mutants n are
shown.



162 C. Schwarzl and B. Peischl

Table 1. Lengths (l) of random walks needed to detect one of the n faults

n l n l

11 38 ± 24 7 154 ± 95
10 57 ± 41 6 164 ± 136
9 89 ± 78 5 544 ± 486
8 94 ± 59 4 676 ± 506

n

l

0

400

800

1200

11 10 9 8 7 6 5 4

Fig. 4. Random walk lengths until a fault detection. The black line is the mean and
the dotted lines represent the standard deviation of 50 runs.

The given mean reflects the fact that it is harder to find one bug out of few
than of many. The simulations also clearly showed that the mutants directly
influencing the consistency like incorrect message parameters were found first.
The high standard deviation indicates a high variability in the detection time,
which is directly influenced by the transition selection strategy used during the
random walk.

The undetected three mutants could be revealed using the proposed code as-
sertions by ensuring that the attribute values are consistent to the current state
in the state chart model. In summary the presented approach was able to reveal
all faults and is a useful technique to enhance the model consistency of communi-
cating state chart models. The static analysis ensures a certain formalism of the
model, which is then used to detect inconsistencies. While the dynamic analysis
can be used without manual interaction, its detection power can be extended by
the use of assertions added by the model developer.

7 Related Work

Model consistency is an increasing topic of interest due to the manifold applica-
tions in which models are used. This is reflected in the literature where various
approaches were studied including different views on this complex topic. An
overview of existing approaches and a brief glossary is given in [12].



Static- and Dynamic Consistency Analysis of UML State Chart Models 163

Techniques like the data-flow testing [14] and constraint logic programming
(CLP) have been proposed for consistency checks of class diagrams.

In [8,9] an assessment framework is proposed to check the consistency and
semantic quality of models. The syntactical consistency is ensured by checking
the model against a defined meta model and is performed fully automatically
during the model development. In addition the semantic quality is improved by
using queries and human domain knowledge. A query in this approach consists
of a set of constraints, which have to be fulfilled by the model.

The usage of model checkers like Spin and UPPAAL to verify the behavioral
model specification is proposed in [13] and [11]. Although good results have been
achieved with these approaches the scalability – especially in the presence of data
like attributes and message parameters – remains an open issue.

Random walks on behavioral models were performed by the test case genera-
tion tool TorX [6]. Since it is based on Labeled Transition Systems (LTS) [17] a
transformation of the UML state chart models is needed. This can be achieved
by using the process algebra LOTOS [20] as intermediate format and has been
proposed in [19]. Again this approach suffers from the state space explosion
problem due to the enumerative nature of LTS.

To overcome the state space explosion the usage of symbolic representations –
where data is stored in variables – has been proposed in [7,15]. Both approaches
use a symbolic transition system (STS) and perform random walks on the model.
However, these approaches are limited to a single model and therefore cannot
handle inter-model communication.

Symbolic execution was used for random white-box testing in the tool SAGE
[18]. It is based on the code of the implementation under test (IUT) and uses
symbolic techniques to trace the execution of random inputs. SAGE uses inverted
constraints of the trace and code coverage heuristics to create new input data for
enhancing code coverage capabilities. Although there are similarities in the input
data generation between SAGE and the presented approach, SAGE is not able
to handle changing communication structures depending on the system state.

8 Conclusion

Static and dynamic analysis methods have been proposed in this work to en-
hance the consistency of concurrent communicating state chart models. During
the static analysis structural and syntactical failures on the model are detected
and presented. Based on the syntactical correct model checks additional checks
are performed to ensure model determinism, which could be violated by e.g.
overlapping message parameter ranges. The static analysis is a simple to use
straightforward technique and is a sound basis for model formalization.

Based on the formalized model dynamic analysis methods were performed to
reveal behavioral bugs. This is done by a random walk, which traverses a model
and resolves the model communication dependencies to create valid input se-
quences. Due to this methodology bugs like deadlocks and infeasible transitions
can be revealed and according results were presented from an industrial case



164 C. Schwarzl and B. Peischl

study. The empirical results show that the induced bugs could be found during
the mutation test as long as they altered the consistency, which makes transi-
tions infeasible. Changes in the behavior being correct by means of consistency
can be revealed by the usage of assertions as proposed in this approach. They
can – as known from software development – perform checks on the valuation
of message parameters and attributes. In addition the data available during the
resolution of the model communication dependencies can be verified. This al-
lows for additional checks on the intended model behavior by incorporating its
structure depending on the variable system state.

This approach can be extended in a future work by using the assertions not
only for checks but include them explicitly during the communication depen-
dency resolution to generate failure traces exploiting their condition. Also tran-
sition selection control methods for the random walk could improve the overall
performance of this approach.

Acknowledgement

The authors wish to thank the “COMET K2 Forschungsförderungs-Programm”
of the Austrian Federal Ministry for Transport, Innovation and Technology
(BMVIT), the Austrian Federal Ministry of Economics and Labour (BMWA),
Österreichische Forschungsförderungsgesellschaft mbH (FFG), Das Land Steier-
mark and Steirische Wirtschaftsförderung (SFG) for their financial support.

References

1. IBM: Rational Rhapsody, http://www-01.ibm.com/software/rational/

products/rhapsody/developer/ (last visited July 2010)
2. OMG: UML Superstructure reference, http://www.omg.org/spec/UML/2.1.2/

Superstructure/PDF/ (last visited April 2010)
3. Conformiq: Qtronic, http://www.conformiq.com/products.php (last visited April

2010)
4. Smartesting: Test Designer, http://www.smartesting.com/index.php/cms/en/

explore/products (last visited April 2010)
5. Jard, C., Jéron, T.: TGV: theory, principles and algorithms: A tool for the auto-

matic synthesis of conformance test cases for non-deterministic reactive systems.
Int. J. Softw. Tools Technol. Transf., 297–315 (2005)

6. Tretmans, J., Brinksma, E.: TorX: Automated Model Based Testing. Cte de
Resyste (2003)

7. Clarke, D., Jéron, T., Rusu, V., Zinovieva, E.: STG: A Symbolic Test Generation
Tool. In: Katoen, J.P., Stevens, P. (eds.) TACAS/ETAPS 2002. LNCS, vol. 2280,
pp. 470–475. Springer, Heidelberg (2002)

8. Chimiak-Opoka, J., Lenz, C.: Use of OCL in a model assessment framework: An
experience report. Electronic Communications of the EASST 5 (2006)

9. Chimia-Opoka, J., Felderer, M., Lenz, C., Lange, C.: Querying UML Models us-
ing OCL and Prolog: A Performance Study. In: Software Testing Verification and
Validation Workshop, ICSTW 2008, pp. 81–88 (2008)

http://www-01.ibm.com/software/rational/products/rhapsody/developer/
http://www-01.ibm.com/software/rational/products/rhapsody/developer/
http://www.omg.org/spec/UML/2.1.2/Superstructure/PDF/
http://www.omg.org/spec/UML/2.1.2/Superstructure/PDF/
http://www.conformiq.com/products.php
http://www.smartesting.com/index.php/cms/en/explore/products
http://www.smartesting.com/index.php/cms/en/explore/products


Static- and Dynamic Consistency Analysis of UML State Chart Models 165

10. Schwarzl, C., Peischl, B.: Test Sequence Generation from Communicating UML
State Charts: An Industrial Application of Symbolic Transition Systems. In: QSIC
2010: Proceedings of the International Conference on Quality Software (2010) (to
be published)

11. Diethers, K., Huhn, M.: Vooduu: Verification of Object-Oriented Designs Using
UPPAAL. In: Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp.
139–143. Springer, Heidelberg (2004)

12. Malgouyres, H., Motet, G.: A UML Model Consistency Verification Approach
Based on Metamodeling Formalization. In: SAC 2006: Proceedings of the 2006
ACM Symposium on Applied Computing, pp. 1804–1809 (2006)

13. Zhao, X., Long, Q., Qiu, Z.: Model Checking Dynamic UML Consistency. In: Liu,
Z., He, J. (eds.) ICFEM 2006. LNCS, vol. 4260, pp. 440–459. Springer, Heidelberg
(2006)

14. Wang, C., Cavarra, A.: Checking Model Consistency using Data-Flow Testing. In:
APSEC 2009, pp. 414–421 (2009)

15. Frantzen, L., Tretmans, J., Willemse, T.: Test generation based on symbolic spec-
ifications. In: Grabowski, J., Nielsen, B. (eds.) FATES 2004. LNCS, vol. 3395, pp.
1–15. Springer, Heidelberg (2005)

16. Duale, A., Uyar, M.: A Method Enabling Feasible Conformance Test Sequence
Generation for EFSM Models. IEEE Trans. Comput. 53, 614–627 (2004)

17. Tretmans, J.: Test generation with inputs, outputs, and quiescence. LNCS, pp.
127–146. Springer, Heidelberg (1996)

18. Godefroid, P., Levin, M., Molnar, D.: Automated Whitebox Fuzz Testing. In: Pro-
ceedings of NDSS 2008 (Network and Distributed Systems Security), pp. 151–166
(2008)

19. Chimisliu, V., Schwarzl, C., Peischl, B.: From UML Statecharts to LOTOS: A
Semantics Preserving Model Transformation. In: QSIC 2009: Proceedings of the
2009 Ninth International Conference on Quality Software, pp. 173–178 (2009)

20. International Organisation for Standardization: ISO 8807: LOTOS – A formal de-
scription technique based on the temporal ordering of observational behaviour
(1989)



Verifying Semantic Conformance of State
Machine-to-Java Code Generators

Lukman Ab Rahim and Jon Whittle

School of Computing and Communications, InfoLab21,
Lancaster University, Lancaster LA1 4WA, UK

{abrahim,whittle}@comp.lancs.ac.uk

Abstract. When applying model-driven engineering to safety-critical
systems, the correctness of model transformations is crucial. In this pa-
per, we investigate a novel approach to verifying the conformance to
source language semantics of model-to-code transformations that uses
annotations in the generated code. These annotations are inserted by
the transformation and are used to guide a model checker to verify that
the generated code satisfies the semantics of the source language – UML
state machines in this paper. Verifying the generated output in this way
is more efficient than formally verifying the transformation’s definition.
The verification is performed using Java Pathfinder (JPF) [1], a model
checker for Java source code. The approach has been applied to verify
three UML state machine to Java code generators: one developed by us
and two commercial generators (Rhapsody and Visual Paradigm). We
were able to detect non-conformance in both commercial tools, which
failed some semantic properties extracted from the UML specification.

1 Introduction

In the development of safety- or mission-critical systems, the success of a model-
driven engineering (MDE) project depends heavily on the correctness of model
transformations. This includes verifying whether the code generator preserves
the source language semantics – i.e., whether the generator has the property of
semantic conformance to the source language semantics1. This paper presents
our work in verifying the semantic conformance of code generators for one of
the most common modeling notations used in the development of safety- or
mission-critical systems, the UML state machine.

Verifying code generators is an arduous task because of their complexity.
We argue, therefore, that it is more practical to verify semantic conformance
of a code generator indirectly by verifying the generated code rather than at-
tempting to verify the definition of the generator – an approach also taken in
Proof-Carrying Code [2,3] and in [4,5,6]. In this case, semantic conformance is
verified every time a program is generated. There are two advantages to this ap-
proach: (1) as noted earlier, verifying a generated program is likely to be much
1 Henceforth, we use the term semantic conformance as shorthand to mean semantic

conformance to source language semantics.

D.C. Petriu, N. Rouquette, Ø. Haugen (Eds.): MODELS 2010, Part I, LNCS 6394, pp. 166–180, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



Verifying Semantic Conformance of State Machine-to-Java Code Generators 167

simpler than verifying a transformation’s definition, and (2) it is the code that
will be deployed; therefore, greater confidence may be achieved by verifying the
generated code itself. There are disadvantages, of course: (1) verification is only
carried out for programs generated and deployed, not all possible generated pro-
grams, and (2) verification effort is required from the consumer of the generated
code since the verification cannot be applied a priori on the transformation’s
definition. Disadvantage (1) is not an issue because if code can be generated
but will not be deployed, it matters little whether it is correct. Disadvantage (2)
is more problematic and it is this which we address in this paper. We present
an approach for automating the verification of semantic conformance for each
generated program and call this approach Annotation-Driven Model Checking
(ADMC).

ADMC verifies the semantic conformance of code generators by model check-
ing the generated code every time a program is generated. The novelty of the
approach is the adaptation of the code generator to insert annotations into the
generated code. One type of annotation is Java assertions, which represent the
properties to be verified and are used by the Java Pathfinder (JPF) tool [1] to
model check the generated code. Therefore, the properties that can be checked
using ADMC are properties that can be translated into Java boolean statements
(statements that return true or false). Furthermore, JPF is built on top of the
standard Java JVM; ADMC can only verify properties of Java programs that
run on the standard Java JVM.

ADMC can be used by tool developers to assess whether their code generator
conforms to the UML semantics or by tool users to ensure that they select a code
generator meeting the UML semantics. ADMC is based on two key principles:
(1) verification is on the generated code rather than on the code generator; this
reduces the complexity, and (2) it does not assume access to the source code
of the generator; that is, ADMC may be applied by tool vendors, who do have
such access, or by tool users, who may not. With regards to (2), the architecture
of ADMC uses an additional model transformation to generate a component,
containing the annotations, that is an extension to the generated code.

The reader should note that ADMC does not attempt to prove full behavioural
correctness of the generated code nor does it prove complete semantics preser-
vation of the model-to-code transformation. Rather, ADMC focuses only on
checking semantic conformance in the sense defined earlier. This allows ADMC
to scale without requiring a labour-intensive formal proof process; indeed, all
verification in this paper is performed fully automatically.

We have applied ADMC to verify three code generators including two commer-
cial tools – Rhapsody [7] and Visual Paradigm [8]. ADMC showed that neither of
the commercial tools conform fully to the UML state machine semantics; there
are some properties that fail the verification and there are some that cannot be
verified because UML notations are not supported by the tools.

This paper is organized as follows. Section 2 gives a description of the UML
state machine semantics and the JPF tool. Section 3 illustrates the ADMC
approach using our own code generator and Section 4 evaluates the approach



168 L. Ab Rahim and J. Whittle

by verifying two commercial code generators, Rhapsody and Visual Paradigm.
Section 5 discusses existing work in verifying semantic conformance and semantic
preservation. Section 6 concludes this paper and discusses future work.

2 Background

This section describes the UML 2.1.1 state machine semantics [9] and captures
them as a list of properties. We restrict discussion to semantics explicitly speci-
fied in the UML specification. This section also describes JPF.

2.1 UML State Machine Semantics

We consider the following subset of the UML state machine notation in this
paper. A state machine consists of vertices that can be either a state or pseudo-
state, and transitions that connect two vertices. There are three types of state:
simple state, composite state and submachine state. A composite state is used
to compose a complex state and can be orthogonal (the composite state has
multiple independent regions) or non-orthogonal (the composite state has only
one region). An orthogonal composite state can have many active sub-states (one
for each region). A submachine state allows a state machine to be part of another
state machine and encourages reusable state machines. A state may have entry,
exit and do behaviours. An entry behaviour executes when a state is entered
and the exit behaviour executes on exit. The do behaviour is executed after the
execution of the entry behaviour and continues whilst the state remains active.

Various types of pseudo-states also exist for indicating the start of a state
machine, terminating a state machine and creating compound transitions. Four

Fig. 1. UML State Machine Notation



Verifying Semantic Conformance of State Machine-to-Java Code Generators 169

pseudo-states of particular interest (because of the semantics) are choice, history,
entry point and exit point pseudo-states. A choice pseudo-state is used as a
selection mechanism: the outgoing transition selected depends on the guard of
the transition. A history pseudo-state is used to enter a composite state and
continue from the most recently active sub-state. There are two types of history
pseudo-state: shallow history and deep history. Shallow history only records the
history of the outermost composite state while deep history also records the
history of nested composite states inside the parent composite state. Entry and
exit points are used as an alternative entry and exit to composite and submachine
states. The UML notation for these concepts is shown in Figure 1.

A state machine has at least one region. Syntactically, all vertices and tran-
sitions are located in regions. A region is active when one state in this region is
active (has been entered) and becomes inactive when the region is exited through
the final state or the exit point.

When created, a state machine starts with an initial pseudo-state and auto-
matically transitions to the first state. A transition may have triggers, a guard
and an effect. Certain transitions have well-formedness constraints: e.g., an out-
going transition from an initial pseudo-state cannot have triggers or guards. A
state machine changes state through the firing of transitions, which are triggered
by dispatching events from an event pool. After being dispatched, if an event
causes a transition to be fired, the event is said to be consumed and if not the
event is discarded. Furthermore, an event can be deferred by the current active
state and when deferred, the event is inserted back into the event pool.

Transitions are executed by computing a set of enabled transitions and by
firing a subset of these such that there are no conflicts between the enabled
transitions in this subset. A transition is enabled when the event that triggers
the transition is dispatched, the transition’s source is the current active state and
the transition’s guard is true. Two enabled transitions may be in conflict in a
number of ways. If one transition originates from a composite state and the other
originates from a direct/indirect substate, the transitions are in conflict and the
transition that fires is the transition in the innermost region. Two transitions in
the same region are also in conflict if they both originate from the same state.
In this case, a nondeterministic choice is made.

Below, we capture the UML state machine semantics as a list of properties.
These properties have been defined based on an analysis of the UML 2.1.1 spec-
ification [9]. Not all properties are shown here. Where UML is incomplete or
ambiguous, we make no attempt to choose a semantics. We therefore only check
conformance with respect to well-defined semantics in UML 2.1.1. For ease of
reference in the rest of the paper, each semantic property is named (in bold,
italic and square parentheses).

– Run-to-completion [R2C] : An event will only be dispatched from the
event pool when the state machine is in a stable configuration. A stable con-
figuration means that all transitions and behaviours have finished executing
and the state machine is in one of its states and not a pseudo-state.



170 L. Ab Rahim and J. Whittle

– Entry order [EnO] : When entering a composite/submachine state, the
state’s entry behaviour must be executed before that of the sub-states.

– Exit order [ExO] : When exiting a composite/submachine state, the exit
behaviours of the currently active sub-states are executed before the com-
posite/submachine state’s exit behaviour.

– Entry via entry points [EnEP] : When entering via an entry point, the
effect behaviour of the transition outgoing from the entry point is executed
after the composite/submachine state’s entry behaviour.

– Exit via exit points [ExEP] : When exiting via an exit point, the effect
behaviour of the transition incoming to the exit point is executed before the
composite/submachine state’s exit behaviour.

– Entry via history pseudo-state [EHP] : When entering a composite state
through a history pseudo-state, the current active sub-state will be the last
active sub-state from the previous entry. If the composite state is entered
for the first time through a history pseudo-state, the initial state of the
composite is entered.

– Ill-formed choice transition [ICT] : When a transition ends at a choice
pseudo-state and none of the choice pseudo-state’s outgoing transitions can
be fired the whole compound transition is said to be ill-formed. UML does
not define a repair action in this case.

– Transition enablement rules [TER] : The rules to enable a transition
for firing are: 1) the source of the transition is an active state, 2) the event
that triggers the transition was dispatched and 3) the guard is true.

– Transition firing rules [TFR] : The rules to fire a transition are: 1) the
transition must be enabled and 2) the transition has the highest priority to
fire among the enabled transitions. In [9], firing priority rules are specified
only for the case of conflicting transitions.

– Conflicting transitions [CT] : Conflicting transitions occur when an event
causes a transition to fire in an active region and in one or more of its
active subregions. In this case, firing priority is given to the transition in the
innermost active subregion.

– Number of fired transitions [NFT] : The number of transitions fired
should equal the number of fireable transitions. Normally, at most one tran-
sition is fired per active region. In the case of conflicts, only one transition
is selected among the conflicting transitions.

– Order of transitions execution steps [OTES] : When a transition is
fired, the following steps are taken in sequence: 1) the source state of the
transition is exited, 2) the effect behaviour of the transition is executed and
3) the target state of the transition is entered.

– Conflicting deferred events [CDE] : Conflicting deferred events occur
when 1) a composite state defers an event while one or more of its sub-
states do not defer the event or vice versa, and 2) the current active state in
an orthogonal region defers the event while another region’s current active
state does not. In the first case, the conflict is resolved depending on what
the sub-states do with the event. In the second case, the event is always
consumed.



Verifying Semantic Conformance of State Machine-to-Java Code Generators 171

There are other semantic properties that are not mentioned explicitly above
because they are associated to notation that is syntactic sugar and hence they
can be reduced to one of the properties above.

2.2 Java Path Finder (JPF)

JPF is a model checker for Java which uses a special purpose Java Virtual
Machine (JVM) and a Depth-First Search (DFS) module that traverses the Java
program’s state graph [1]. Using the DFS module, JPF traverses a program’s
state graph and checks if any of the properties to be verified are violated.

JPF has two methods for users to specify the properties to be checked. One
method is to extend a general Property class provided by JPF and the second
method is to use Java assertions. The general Property class is a template for
JPF users to define the properties they want JPF to check. JPF also comes with
two standard properties to check deadlocks and uncaught exceptions, which are
both implemented as a subclass of the general Property class. The uncaught
exception property is also used to check failing assertions (in Java, failing an
assertion is treated as an exception).

The tool also provides a class containing methods to define atomic blocks,
produce random boolean and integer values, and reduce the state graph by
specifying certain paths to ignore. These methods can be used to help model
check the Java program. To use these methods, the user needs to insert them
into the program being verified. JPF generates a counter-example if the model
checking result is negative.

3 Annotation-Driven Model Checking

ADMC verifies semantic conformance of UML state machine to Java code genera-
tors to the UML state machine semantics. The verification is conducted by model
checking the generated code. Figure 2 demonstrates the approach. We identify
two roles in this process: the producer, responsible for developing annotations for
the code generator and developing a transformation to insert these annotations
into generated code; and the consumer, who wishes to develop a state machine
model and verify the generated code. As an example, the producer role could be
played by a tool vendor and the consumer role by a tool user. Alternatively, the
producer role could be played by an organisation purchasing a tool but wishing
to carry out its own verification activities.

The producer carries out activities for each code generator, CG, of interest.
As a prerequisite, s/he needs to understand the nature of code generated by CG.
Given this, the producer’s role is to develop the annotation transformation, AT.
AT is a model-to-code transformation that generates components for verifica-
tion. These components represent the UML state machine semantic properties
as Java assertions and link these with code generated by CG by extension of the
generated code.

The consumer simply wishes to use ADMC to verify a particular program
generated by CG. The consumer needs no knowledge of the properties or Java



172 L. Ab Rahim and J. Whittle

Fig. 2. Annotation-Driven Model Checking

assertions. S/he merely applies the tool chain on the right-hand-side of Figure 2
and this process is fully automatic. The consumer’s main role, therefore, is to
construct the state machine model.

Note that the construction of AT is done only once for a particular code
generator. AT, however, is dependent on CG because the formalisation of the
properties as Java assertions depends on the way that the Java code is gen-
erated. For example, there are different ways to implement a state. The code
generator can use the State design pattern and create objects for each state, or
create a unique integer constant to represent individual state. When using the
State design pattern approach, AT can extend the State class and add boolean
attributes to represent the successful entry and exit of states. These boolean
attributes/flags can be used in asserting properties associated to the entry and
exit of states. Representing states as unique integer constants does not permit
this method of annotating.

The following subsections explain ADMC in detail, using our own code gen-
erator to illustrate.

3.1 Understanding the Code Generator (Producer)

The objective of this task is to understand how the code generator translates
the UML state machine notation into Java. The result of this task helps in
completing the second task, Defining the Assertions. This task can be skipped
if the producers are tool vendors because they should already understand the
code generator.

Understanding how the code generator translates a state machine can be
carried out by studying the transformation rules or the generated code. While
trying to understand the code generator, the producers need to find answers to
questions such as how the generated code receives and dispatches events, how



Verifying Semantic Conformance of State Machine-to-Java Code Generators 173

Fig. 3. The Code Pattern

run-to-completion is implemented, how transitions are selected for firing and
how states handle deferred events.

To illustrate how this task is carried out, we will use the SimGen code gener-
ator as an example and answer the questions that we listed above. The SimGen
code generator is a simple state machine-to-Java generator that was used to de-
velop and test ADMC. SimGen generates code based on the code pattern shown
in Figure 32. The answers to the questions above are:

The Environment class in the code pattern will dispatch events when notified
by the State Machine class. The State Machine class will only notify the Envi-
ronment when it is in a stable configuration. Selecting transitions for firing is
carried out by the SMRegion class. After receiving an event from the Environ-
ment, the State Machine will pass the event to all its regions. Each region will
check if the event is deferred by its current active state. If not, the region will
check if the event triggers a transition originating from its current active state.
A transition triggered by the event is enabled for firing if the guard method
returns true.

3.2 Defining the Assertions (Producer)

After understanding the code generator, the producer can start to define the
assertions. Assertions are written in Java in the following form:

assert <boolean statement>:<error message>

Thus, the producers need to translate the properties into boolean statements
and identify: 1) what information is needed to specify the assertions, 2) how to
acces this information, and 3) where to add these assertions.
2 Due to the size of the code pattern, Figure 3 only shows the elements discussed in

this section.



174 L. Ab Rahim and J. Whittle

To illustrate this task we will use the [TER] property. [TER] is asserted
by checking if the event being dispatched triggers transitions originating from
the current active state, and if these transitions’ guard methods return true.
Given e as the event being dispatched and t as a transition that was enabled,
the assertion will be:

assert t.getSource().equals(region.getCurrentActiveState())

&& t.getTrigger().equals(e) && t.guard():“Fail TER”;

The assertion consists of three parts that are connected by the AND operator.
The first part checks if the current active state is the source of transition t, the
second part checks if event e triggers transition t, and the third part checks the
guard condition. Looking at this assertion, we use auxiliary methods such as
equals, getSource and getTrigger. These methods are part of the code pattern
used by SimGen. If such methods are not available, they must be added as part
of the annotations.

Some assertions use boolean flags to check certain properties. For example,
the flag completed in the State Machine class. This flag is used to show the state
machine is in a stable configuration. The flag is set to false each time a transition
is fired and set back to true after the run-to-completion step has finished. Similar
to the auxiliary methods, flags and the commands to set their value need to be
added as part of the annotations, if they are not already part of the generated
code.

After defining the assertions, the producer needs to decide where to insert
the assertions. For SimGen, all the assertions are grouped into the verification
components (VC), which is a subclass of the Verifier class. As a consequence,
the generated code will be extended with calls to notify VC. Using this approach
has the advantage of putting all the assertions into one place. Going back to the
[TER] example, a call to the enabled method is followed by a notification to
VC to check the assertion.

3.3 Developing the Transformation AT (Producer)

Transformation AT is used to generate the verification components. The trans-
formation rules in AT should generate the verification components that con-
tain the assertions and extend the generated code with auxiliary methods and
boolean flags where necessary. Transformation AT is written in Epsilon Gener-
ation Language (EGL). Note, however, that ADMC does not mandate the use
of a particular transformation language; we used EGL because of familiarity.

We highlight once more that the boolean flags, assertions and auxiliary meth-
ods depend greatly on the code generator. As a result, the complexity of the
assertions and auxiliary methods – and, hence, the complexity of AT – may
vary significantly between code generators. We stress once more that this pro-
cedure need only be undertaken once for each generator.



Verifying Semantic Conformance of State Machine-to-Java Code Generators 175

3.4 Verifying the Generated Code (Consumer)

Once the previous steps have been carried out by the producer, the consumer’s
task – to verify semantic conformance for code generated from a state machine –
is relatively straightforward and automatic. We have implemented a tool which
automates the process: the state machine is passed to SimGen, which gener-
ates code, and to AT, which generates verification components. The combined
generated code is then passed to JPF, which exhaustively searches the state
space, starting from the main method in a main class passed as a parameter to
JPF. JPF checks the properties each time it encounters an assertion. To ensure
complete coverage of the execution flow, the Environment simulates all possible
externally injected events.

JPF returns, for each state machine, either with success or with a counter-
example that violates a property. If there is a failure, it is the consumer’s decision
how to address it: either by contacting the tool vendor, modifying the state
machine to avoid the error, or fixing the generated code manually.

4 Evaluation

To evaluate ADMC, we applied the approach to two commercial code generators:
Rhapsody [7] and Visual Paradigm [8]. We report on the application of ADMC
to verifying Rhapsody. The case with Visual Paradigm was similar. As noted
in the previous section, to apply ADMC to Rhapsody requires the producer to:
understand the generated code, identify the assertions and where to insert them,
and generate transformation AT.

Every commercial tool generates code differently and this must be under-
stood before assertions can be properly formulated. The Rhapsody tool does not
follow the State pattern as with SimGen. Rather, it generates a class with in-
teger variables to represent states in the state machine. This class also contains
methods that represent the transitions. Checking the guards of these transitions
is performed using select statements and the selection of which transitions to
fire is carried out using switch-case statements. Each event is translated into an
instance of an Event class. Events are dispatched using the takeEvent method
that is part of the Rhapsody state machine execution framework accessed by the
generated code.

The code generated by Rhapsody is not difficult to understand and, in fact,
knowing the UML semantics helps in performing this task. By understanding the
semantics, we are able to understand the purpose of methods in the generated
code and identify where we should add the assertions.

Due to the differences between the code generated by SimGen and Rhapsody,
the assertions for Rhapsody are syntactically different than those for SimGen.
For example, in Rhapsody’s case, we require a different set of boolean flags:
e.g., boolean flags to represent the entry and exit of the current active state of
each region. The assertions are added in methods associated to the properties:
e.g., assertion for [EnO] is added after the call to a composite state’s entry
behaviour.



176 L. Ab Rahim and J. Whittle

We developed AT for Rhapsody using EGL. The verification components
generated by AT are implemented using extension of Rhapsody classes.

4.1 Verification Result

Table 1 shows the verification result of Rhapsody and Visual Paradigm. Rhap-
sody fails two properties, which are ill-formed choice transition [ICT] and entry
via entry points [EnEP].

Rhapsody fails the [ICT] property because it translates a choice pseudo-state
in the same way it translates a junction pseudo-state. In UML, the choice and
junction pseudo-states have different semantics. Guards of transitions connected
to a junction pseudo-state are evaluated before the transitions are fired. On
the other hand, for a choice pseudo-state, the guards are evaluated dynamically
during the firing of the transition.

Rhapsody fails [EnEP] because the entry point’s outgoing transition’s effect
behaviour is not executed after entering the submachine state.

Table 1. Verification Result

Rhapsody Visual Paradigm
Successful Property [R2C] [EnO] [ExO] [ExEP]

[TER] [OTES]
[OTES]

Failed Property [ICT] [EnEP] [EnO] [ExO]
Unverifiable Property [EHP] [CDE] [TFR] [CT] [R2C] [EnEP] [ExEP] [CDE]

[ICT] [CT] [EHP] [TER]

There are certain properties that ADMC cannot verify because there are state
machine notations that Rhapsody does not support. Rhapsody does not support
the shallow history pseudo-state nor does it support deferred events. Hence,
[EHP] and [CDE] do not hold.

The [CT] property is not verified because we could not determine where
to insert the assertion. This is due to the complexity of the generated code.
Of course, with unlimited resources, a better understanding of the generated
code could be achieved which would allow us to check [CT]. However, when
verifying Rhapsody, we attempted to take into account practical considerations
that might be associated with the producer and dropped properties if the code
could not be sufficiently understood within a reasonable timeframe. The [TFR]
property could not be verified because it is dependent on the [CT] property.
We encountered similar problems with Visual Paradigm.

The [NFT] property is problematic in general. It is typically very hard, and
may be impossible, to determine the expected number of fired transitions by
examining the code alone and without modifying the code. This is because the
generated code simply may not contain this information. However, this informa-
tion can be obtained by examining the input state machine. As a result, there
needs to be a separate translation of the state machine that can identify which
transitions are enabled, can assess whether there are any conflicts between the



Verifying Semantic Conformance of State Machine-to-Java Code Generators 177

enabled transitions and can calculate the number of transitions expected to fire.
Furthermore, this new translation must be accessible by the Verifier. We have
not yet implemented this and hence were unable to verify [NFT] for either of
the two commercial generators.

Visual Paradigm’s code generator performs worse than Rhapsody’s. There
are many properties which cannot be verified at all because many of the state
machine notations are not supported in the generator. For example, Visual
Paradigm cannot generate code for state machines containing pseudo-states
other than the initial pseudo-state. Events and deferred events are also not trans-
lated into code. Therefore, we cannot determine where to add the assertions for
the [R2C], [CDE], [TER] and [NFT]. The only properties we can verify are
[EnO], [ExO], and [OTES].

Visual Paradigm fails the [EnO] property because, when entering a composite
state, the sub-states are not entered afterwards. Similarly, Visual Paradigm fails
the [ExO] property because the sub-states are not exited before the composite
state. Visual Paradigm only conforms to the [OTES] property.

From the result of these verifications, ADMC has successfully verified two
commercial code generators and clearly highlights the conformance level of these
tools. These verifications also prove that ADMC can be used in situations where
the transformation rules are not accessible by the producers and can only rely
on the generated code to create and add the assertions. It is important to note
that the large number of unverifiable properties does not negate the applicability
of ADMC itself; rather, it makes clear the lack of support that even well-known
commercial generators provide for the UML state machine semantics.

5 Related Work

There has been a wide body of work on verifying that model transformations are
semantics-preserving – in the sense that the application-specific model semantics
hold in the generated model (or code). For example, Varro and Pataricza [10]
use model checking to check properties in both source and target models. If both
models have the intended properties, the transformation is said to be semanti-
cally correct. Staats and Heimdahl [11] use a similar approach when verifying
semantic correctness of a Simulink-to-C code generator. Chaki et al. [12] and
Pnueli et al. [13] propose the use of an approach based on proof-carrying code
(PCC) [2,3] but where model checking is combined with the use of a theorem
prover, which is normally used in PCC.

To ensure semantic preservation, Barbosa et al. [14] propose an extension to
the MDA four layered architecture. They propose the addition of a semantic
metamodel and model into the architecture. The approach uses a formal checker
to verify the conformance of both static and dynamic semantics based on the
semantic metamodel. This approach requires a lot of effort because the semantic
models need to be created for each source and target model.

All of these works focus on verifying semantic preservation in general. The
scope of ADMC, however, is much narrower as it focuses only on semantic confor-
mance to the source language semantics. Whilst this makes ADMC less general,



178 L. Ab Rahim and J. Whittle

it also makes it more practical: there is no need for the consumer to formulate
properties to prove and a background in formal methods is not required because
the process is fully automated (at least in our examples so far).

ADMC is, in essence, a simplified form of PCC for model transformation. A
number of authors have investigated applying the principles of PCC to model-
based transformations. Autofilter [15], AutoBayes [4], and AutoCert [6] are three
tools that use theorem provers guided by annotations to verify the preservation
of certain semantic properties. Autofilter and AutoBayes are restricted to the
domain of geometric state estimation and data analysis problems respectively.
AutoCert improves on Autofilter and AutoBayes by being a domain indepen-
dent tool and provides a model-driven mechanism to generate the annotations.
ADMC differs from these approaches in two ways. Firstly, it verifies source lan-
guage semantic properties, whereas Auto* focus on domain-specific properties in
the given domain. Secondly, Auto* use an automated theorem prover to prove
properties of the generated code, using annotations as a guide. Whereas this
process can be automated for certain domain-specific properties, a great deal
of effort is required by the producer to set up the infrastructure so that the
proofs will go through automatically. Based on our experience, the level of effort
required by ADMC is greatly reduced and, in particular, is practical for those
with only limited training in formal methods.

More lightweight approaches have also been proposed to check semantic
preservation. For example, Baar and Marković [16] verify semantic preservation
of a transformation that refactors UML class diagram and OCL constraints.
The verification is performed by evaluating the conformance of source and tar-
get models to their OCL constraints. The evaluator is implemented as a graph
transformation. A similar approach is discussed by Whittle and Gajanovic [17].
More generally, semantic conformance has also been defined as whether a model
conforms to the semantics of its metamodel. Egea and Rusu [18] check for this
notion of semantic conformance using the ITP/OCL tool. This concept, however,
is different from the notion of semantic conformance used in this paper.

6 Conclusion and Future Work

This paper presented a verification approach, ADMC, for verifying the con-
formance of state machine to Java code generators to the UML state machine
semantics. ADMC is based on inserting assertions into the generated code, which
are then checked by the Java Pathfinder model checker. The code for verifica-
tion is maintained separately from the code generated from the input model.
The novelty of the approach is in using an annotation transformation, AT, to
annotate the generated code with assertions that are added based on informa-
tion in the source model. The approach was evaluated by applying it to two
commercial code generators, Rhapsody and Visual Paradigm. Both generators
failed to satisfy some properties.

ADMC can be used in a number of ways. Tool vendors may develop AT
themselves and then ship this transformation with the tool so that tool users



Verifying Semantic Conformance of State Machine-to-Java Code Generators 179

can check code generated on a case-by-case basis. Alternatively, since ADMC
requires no access to the source code of the generator, tool users themselves can
develop AT to ensure that code generated for use in safety-critical applications
conforms to the UML semantics. One appealing use case is as follows. Tool
vendors could develop AT, ship it with the product, and offer it as a certificate
which the tool user can then use to check the semantics. It is also important
to note that, in practice, many companies use home-grown code generators,
modify commercial generators, or extend generated code with hand-written code.
ADMC supports all of these use cases. Traditional a priori verification of a
transformation’s definition does not support them.

So far, the input state machine models we use have been of medium size. As a
result, Java Pathfinder has been able to check the semantic properties automat-
ically. However, we would anticipate that for very large models, this may not be
the case. To address this, we are investigating whether it is possible to represent
state reduction strategies (such as abstract interpretations) as annotations and
generate them using AT.

One outstanding issue is how to prove that the assertions have been defined
correctly and are inserted at the correct locations. This is a non-trivial problem.
Note, however, that, depending on how ADMC is used, such a proof may not be
necessary. We advocate that ADMC is used more as a debugging aid rather than
to attempt to provide a fully rigorous proof. In the former case, it is not crucial
to prove the assertions themselves because if an assertion cannot be proven,
it either points to a bug or the assertion needs to be fixed. Used in this way,
however, ADMC will not necessarily find all bugs.

In addition, ADMC, as presented in this paper, is specific to state machine-
to-Java generators and to state machine semantics. However, the ideas transfer
easily to other model transformations and other properties. Common properties
specific to a domain (e.g., security properties) can be encoded in AT and ADMC
could potentially be extended to check domain-specific properties of an input
model. We will tackle these issues in future work.

References

1. Visser, W., Havelund, K., Brat, G., Park, S.J., Lerda, F.: Model checking programs.
Automated Software Engineering Journal 10(2), 203–232 (2003)

2. Necula, G.C.: Proof-carrying Code. In: Proceedings of the 24th ACM SIGPLAN-
SIGACT symposium on Principles of programming languages (POPL 1997), pp.
106–119. ACM, New York (1997)

3. Colby, C., Lee, P., Necula, G.C.: A Proof-Carrying Code Architecture for Java.
In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855, pp. 557–560.
Springer, Heidelberg (2000)

4. Schumann, J., Fischer, B., Whalen, M., Whittle, J.: Certification Support for Au-
tomatically Generated Programs. In: Proceedings of the 36th Annual Hawaii In-
ternational Conference on System Sciences, pp. 1–10. IEEE, Los Alamitos (2003)



180 L. Ab Rahim and J. Whittle

5. Denney, E., Fischer, B.: Extending Source Code Generators for Evidence-Based
Software Certification. In: 2nd International Symposium on Leveraging Applica-
tions of Formal Methods, Verification and Validation (ISoLA 2006), pp. 138–145.
ACM, New York (2006)

6. Denney, E., Fischer, B.: Generating Customized Verifiers for Automatically Gen-
erated Code. In: Proceedings of the 7th International Conference on Generative
Programming and Component Engineering (GPCE 2008), pp. 77–88. ACM, New
York (2008)

7. IBM: Rational Rhapsody, http://www-01.ibm.com/software/rational/

products/rhapsody/developer/

8. Visual Paradigm International: Visual paradigm, http://www.visual-paradigm.
com/

9. OMG: Unified Modeling Language: Superstructure version 2.1.1. OMG (February
2007)

10. Varró, D., Pataricza, A.: Automated formal verification of model transformations.
In: Jürjens, J., Rumpe, B., France, R., Fernandez, E.B. (eds.) CSDUML 2003:
Critical Systems Development in UML; Proceedings of the UML 2003 Workshop.
Number TUM-I0323 in Technical Report, Technische Universität München, pp.
63–78 (September 2003)

11. Staats, M., Heimdahl, M.: Partial Translation Verification for Untrusted Code-
Generators. In: Liu, S., Maibaum, T., Araki, K. (eds.) ICFEM 2008. LNCS,
vol. 5256, pp. 226–237. Springer, Heidelberg (2008)

12. Chaki, S., Ivers, J., Lee, P., Wallnau, K., Zeillberger, N.: Model-Driven Construc-
tion of Certified Binaries. In: Engels, G., Opdyke, B., Schmidt, D.C., Weil, F. (eds.)
MODELS 2007. LNCS, vol. 4735, pp. 666–681. Springer, Heidelberg (2007)

13. Pnueli, A., Shtrichman, O., Siegel, M.: The Code Validation Tool CVT: Automatic
Verification of a Compilation Process. Software Tools for Technology Transfer 2,
192–201 (1998)

14. Barbosa, P.E.S., Ramalho, F., de Figueiredo, J.C.A., dos Jr., A.D.S.: An extended
MDA architecture for ensuring semantics-preserving transformations. In: 32nd An-
nual IEEE Software Engineering Workshop, pp. 33–42 (October 2008)

15. Denney, E., Fischer, B., Schumann, J., Richardson, J.: Automatic Certification of
Kalman Filters for Reliable Code Generation. In: IEEE Aerospace Conference, pp.
1–10. IEEE, Los Alamitos (2005)

16. Baar, T., Marković, S.: A graphical approach to prove the semantic preservation
of UML/OCL refactoring rules. In: Virbitskaite, I., Voronkov, A. (eds.) PSI 2006.
LNCS, vol. 4378, pp. 70–83. Springer, Heidelberg (2007)

17. Whittle, J., Gajanovic, B.: Model transformations should be more than just model
generators. In: Briand, L.C., Williams, C. (eds.) MoDELS 2005. LNCS, vol. 3713,
pp. 32–38. Springer, Heidelberg (2005)

18. Egea, M., Rusu, V.: Formal executable semantics for conformance in the MDE
framework. Innovations System Software Engineering 6(1-2), 73–81 (2010)

http://www-01.ibm.com/software/rational/products/rhapsody/developer/
http://www-01.ibm.com/software/rational/products/rhapsody/developer/
http://www.visual-paradigm.com/
http://www.visual-paradigm.com/


A Dynamic-Priority Based Approach to Fixing
Inconsistent Feature Models

Bo Wang1,2, Yingfei Xiong3, Zhenjiang Hu4, Haiyan Zhao1,2,�,
Wei Zhang1,2, and Hong Mei1,2

1 Key Laboratory of High Confidence Software Technologies,
Ministry of Education, China

2 Institute of Software, School of EECS, Peking University, Beijing, 100871, China
{wangbo07,zhhy,zhangw}@sei.pku.edu.cn, meih@pku.edu.cn

3 Generative Software Development Lab, The University of Waterloo, Canada
yingfei@swen.uwaterloo.ca

4 GRACE Center, National Institute of Informatics, Japan
hu@nii.ac.jp

Abstract. In feature models’ construction, one basic task is to ensure
the consistency of feature models, which often involves detecting and
fixing of inconsistencies in feature models. Several approaches have been
proposed to detect inconsistencies, but few focus on the problem of fixing
inconsistent feature models. In this paper, we propose a dynamic-priority
based approach to fixing inconsistent feature models, with the purpose
of helping domain analysts find solutions to inconsistencies efficiently.
The basic idea of our approach is to first recommend a solution auto-
matically, then gradually reach the desirable solution by dynamically
adjusting priorities of constraints. To this end, we adopt the constraint
hierarchy theory to express the degree of domain analysts’ confidence on
constraints (i.e. the priorities of constraints) and resolve inconsistencies
among constraints. Two case studies have been conducted to demon-
strate the usability and scalability of our approach.

Keywords: Feature Model, Priority, Inconsistency Fixing.

1 Introduction

Feature models [1,2] have been widely adopted to reuse the requirements of a
set of similar products in a domain. During the process of requirements reuse,
specific products that satisfy all the constraints are derived from feature models.
However, inconsistent feature models (called IFMs) contain contradictory con-
straints that cannot be satisfied at the same time, leading to no valid products
derivable from IFMs [3]. Therefore, in the construction of feature models, one
basic task is to ensure the consistency of feature models, which often involves
the detecting and fixing of inconsistencies in feature models.

� Corresponding author.

D.C. Petriu, N. Rouquette, Ø. Haugen (Eds.): MODELS 2010, Part I, LNCS 6394, pp. 181–195, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



182 B. Wang et al.

Although several approaches have been proposed to detect inconsistencies,
there lacks an effective approach to aiding domain analysts to fix the incon-
sistencies of feature models. Finding a solution to fix inconsistencies requires
quantitative analysis of certain parts of the IFMs. Even if one solution is found,
it is still unclear whether there exist alternative or better solutions. Moreover,
finding solutions becomes more and more difficult when feature models grow
large. The largest feature model [4] reported in academy has more than 5000
features. In industry, feature models often grow up to thousands of features [5].

In this paper, we propose a dynamic-priority based approach to the interactive
fixing of inconsistencies in feature models, and report an implementation of a
system that not only automatically recommends a solution to fixing inconsisten-
cies, but also supports domain analysts to gradually reach the desirable solution
by dynamically adjusting priorities of constraints. To this end, we adopt the
constraint hierarchy theory [6], a known practical theory in user interface con-
struction [7], to express the degree of domain analysts’ confidence on constraints
(i.e. the priorities of constraints) and resolve inconsistencies by deleting one or
more weaker constraints.

The main contributions of our paper are summarized as follows:

– We show the importance of the constraint hierarchy theory in fixing IFMs,
and implement an efficient constraint hierarchy system1 for fixing IFMs by
adapting and extending an existing incremental algorithm, SkyBlue [7,8].

– We extend the constraint hierarchy theory with a dynamic-priority based
mechanism to help domain analysts find the desirable solution; if domain
analysts are not satisfied with the solution the system recommends, they
can declaratively adjust the priorities of weaker constraints so that a new
solution can be produced.

– We successfully apply our system to check and fix the feature model of
the web store domain and the randomly generated feature models, which
indicates that our approach is promising and potentially useful in practice.

The rest of this paper is organized as follows. Section 2 introduces some pre-
liminary knowledge. Section 3 gives an overview of our approach and illustrates
it with an example. Section 4 amplifies the whole process of our approach. Sec-
tion 5 illustrates usability and scalability of our approach through case studies.
Section 6 describes the related work, and Section 7 concludes the paper and
highlights the future work.

2 Preliminaries

In this section, we first give a short introduction to feature models, and then
introduce the theory of constraint hierarchies and a constraint solver-SkyBlue.
The three above are the fundamentals for fixing inconsistencies in feature models.

1 See http://sei.pku.edu.cn/˜ wangbo07/ for more detail



A Dynamic-Priority Based Approach to Fixing Inconsistent Feature Models 183

Mobile Phone 

Call GPS Screen Media

Basic Color High
Resolution Camera MP3

Legend 

Mandatory Feature 

Optional Feature 

Require
Exclude 

Fig. 1. A simplified feature model of the mobile phone domain

2.1 Feature Model

A feature model defines a set of possible products of a domain, in terms of
features and the relationships between them. Fig. 1 shows a simplified feature
model of the mobile phone domain (used in [9]), which adopts our meta-model
of feature models [10].

A feature model is hierarchically organized. Features with different abstract
levels and granularities form a hierarchy structure through refinement relation-
ships between them. Refinements relationships bring constraints on features.
The root feature should be bound in all products. In feature models, if a feature
is bound (i.e. selected in a specific product), so it is parent. A mandatory fea-
ture means that it should be bound, if its parent is bound. An optional feature
indicates that it can be unbound (i.e. deselected in a specific product), even if
its parent is bound.

There are three kinds of simple constraints on two features, namely require,
m-requires, and excludes. If feature A requires feature B, it means that B cannot
be unbound when A is bound. If feature A m-requires feature B, it means that
A and B should be bound or unbound at the same time. If feature A excludes
feature B, it indicates that at most one of them can be bound. A mandatory
feature or optional feature brings constraints with their parents, m-requires and
requires, respectively.

There are three kinds of predicates on a set of features, namely All, Alternative
and Or. Predicates All, Alternative, and Or mean these predicates are true only
if all, one, and at least one features are bound in their feature sets, respectively.
For example, Or-Set(Camera, MP3) indicates that the Or predicate is true when
at least one features from this set are bound.

Based on predicates, there are three kinds of composite constraints on two
feature sets, composite-requires, composite-m-requires, and composite-excludes.
For example, All-Set(Screen) composite-requires Single-Set(Basic, Color, High
Resolution) means if Screen is bound, one feature of the single feature set should
be bound. For the details of the composite constraints, see Section 4.1.

Inconsistent Feature Models. A feature model is inconsistent if it cannot
produce any valid product that satisfies all the constraints of the feature model
[3]. Inconsistency is a severe problem, since we reuse feature models by deriving



184 B. Wang et al.

products from them. The inconsistencies in feature models happen when some
elements of feature models are overconstrainted by contradictory constraints.

2.2 Constraint Hierarchies and SkyBlue

When overconstrainted models are checked by a constraint solver, it is not
enough for the solver to signal an inconsistency and wait the modeler to fix
the detected inconsistency. The constraint hierarchy theory [6] provides a way
to specify how the overconstrainted model should be handled by maintaining
constraint hierarchies. A constraint hierarchy contains a set of constraints, each
assigned with a priority, indicating the importance of the constraint. Given an
overconstrainted model, the constraint solver can leave weaker constraints un-
satisfied in order to satisfy stronger constraints.

SkyBlue is an incremental, scalable, and efficient constraint solver that uses
local propagation to maintain the constraints hierarchy. The input of SkyBlue
is a set of variables and constraints on these variables. The output of SkyBlue is
a set of values that satisfy stronger constraints and leave contradictory weaker
constraints unsatisfied.

In SkyBlue, each constraint is equipped with one or more methods; SkyBlue
satisfies a constraint by selecting and executing one of its methods. For exam-
ple, “feature B excludes feature C” has two methods: 1) Unbind(B); 2) Un-
bind(C)(see Fig. 2(b)). This constraint can be satisfied by executing any one of
these two methods. A constraint is enforced if it has a selected method, otherwise,
it is unenforced. Choosing one method for a constraint is known as enforcing.
Choosing no methods for a constraint is known as revoking. The variables and
constraints form the constraint graph. The constraint graph, together with the
selected methods, form the method graph.

The output of SkyBlue, the value set for constraints, is calculated through
constructing and executing a locally-graph-better (called LGB) method graph.
A method graph is LGB if there are no method conflicts and there are no un-
enforced constraints that could be enforced by revoking one or more weaker
constraints (and possibly changing the selected methods for other enforced con-
straints with the same or stronger strength) [8].

As a simple example, consider the IFM (in Fig. 2(a)) and its corresponding
constraint graph (in Fig. 2 (c)). Each constraint in the feature model (C1 -C4 )

A

B C

Fig. 2. A simple example for SkyBlue



A Dynamic-Priority Based Approach to Fixing Inconsistent Feature Models 185

has one or more methods to make the constraint hold. (in Fig. 2 (b)). To satisfy
every constraint, SkyBlue tries to select a method from each constraint, as shown
in the upper of Fig. 2 (c), but there is a method conflict: variable C is determined
by two methods (i.e. Bind(C) and Unbind(C)) and determined to different value,
from C3 and C4, respectively. To resolve this conflicts, SkyBlue finds the stronger
constraints that can be enforced, while leaving the weaker constraints unenforced
by constructing LGB method graph. The LGB method graph of this example is
shown in the lower of Fig. 2 (c), in which C4 is revoked. After executing the se-
lected methods in the LGB method graph, A, B and C equal bound (selected in
the product), which satisfy the three stronger constraints, namely C1, C2 and C3.

3 Approach Overview

In this section, we give an overview of our approach, before using an example to
illustrate how to fix inconsistencies.

3.1 Dynamic-Priority Based IFM Fixing Process

In our approach, we detect and fix inconsistencies of feature models incremen-
tally; we start with an empty feature model and then add constraints one by
one. Every time a constraint is added into the feature model, we check inconsis-
tencies, recommend a solution and help domain analysts find a more desirable
solution. An overview of our approach is shown in Fig. 3.

Check 
Inconsistency

Recommend a 
Solution

N

Y

Change the 
Priorities

N

Y

Automatic Step

Manual Step

Add a 
Constraint

Inconsis
tent?

Satisfi
ed?

Fig. 3. The dynamic-priority based IFM fixing process

After a constraint is added to the feature model, the feature model may be-
come overconstrainted because of the newly-added constraint. We check the
inconsistency by first mapping the newly-added constraint to a SkyBlue con-
straint (called SBC), then trying to enforce the SBC through constructing a
LGB method graph. If the constructed LGB method graph does not contain any
unenforced constraints, the feature model is consistent.

If the constructed LGB method graph contains unenforced constraints and
the newly-added SBC is enforced in this LGB, the feature model becomes incon-
sistent because of the newly-added SBC. We recommend a solution to domain
analysts to fix the inconsistent feature model. This solution is composed of the



186 B. Wang et al.

unenforced constraints in the LGB method graph, and can be executed to fix
the inconsistencies by deleting the unenforced constraints.

Domain analysts can examine the recommended solution. If they do not want
some unenforced constraints deleted because of the newly added constraint, they
can raise the priorities of these unenforced constraints, with the help of the
dynamic-priority mechanism provided in our approach. We will recommend an-
other solution according to the new priorities. When domain analysts are satis-
fied with the solution, the solution is performed, and the feature model becomes
consistent again.

If the newly-added SBC is unenforced in the constructed LGB method graph,
the newly-added SBC conflicts with some same or stronger constraint in the fea-
ture model. Our approach will recommend dropping this newly-added constraint.

For all the unenforced constraints in the LGB, we provide constraints with the
same or higher priorities as potential conflict information to domain analysts,
with the purpose of aiding them find desirable solutions.

Note that our approach not only supports the checking and fixing of feature
models from scratch, but also supports these of a feature model that has already
been constructed. Given a constructed feature model, we extract all its con-
straints, and map them to the SBCs. We first add and enforce the root feature
to the constraint graph and then the other SBCs, according to their priorities,
from weaker constraints to stronger constraints. After each SBC is added, we
recommend solutions when inconsistencies detected, help domain analyst find
desirable solutions according to their feedback, perform the solutions to fix in-
consistencies. After all the SBCs are added, the feature model is checked and
fixed completely.

3.2 An Example

To demonstrate the process of dynamic-priority based IFM fixing, let us see how
to fix the inconsistent feature model in Fig. 4.

Suppose all the constraints have been added into the feature model except “fea-
ture C excludes feature D” (the red part in Fig. 4). These constraints are first
transformed into SBCs, according to the concrete rules in Tables 1 and 2. They are

A

CB D E  

F G

Fig. 4. An example of dynamic-priority based IFM fixing



A Dynamic-Priority Based Approach to Fixing Inconsistent Feature Models 187

then added to the constraint graph by enforcing themselves and construing LGB
method graph one by one. The feature model is consistent before adding “feature
C excludes feature D”, since the LGB method graph shown in Fig. 4(b) contains
no unenforced constraints. Note that even some variables are determined by more
than one method in the LGB method, there is no conflicts, because these variables
are set to a same value (see Section 4.2 for our definition for method conflicts in
feature models).

After the “exclude” constraint is added, the feature model become inconsis-
tent. In the generated LGB method graph, constraint “feature B requires feature
C” is unenforced. We recommend deleting this constraint to fix inconsistencies.

If domain analysts are not satisfied with the recommended solution, they
adjust priorities of the unenforced constraints to find the desirable solution with
the help of the potential conflict information, and then we recommend other
solutions according to the new priorities. For example, if the domain analysts
think the “require” constraint should not be deleted, they raise the priority
of it to 4, then we recommend another solution by constructing a new LGB
method graph, in which the “Mandatory feature B” is unenforced. Therefore
this constraint is recommended to be deleted.

4 Fix IFM with Dynamic Priority

In this section, we first describe how we implement the constraint hierarchy
theory in fixing IFMs, through revising and extending SkyBlue. Then we show
how to reach the desirable solution by adjusting priorities.

4.1 Map Feature Models to Constraint Graphs

To use SkyBlue to detect and fix inconsistencies, the first thing is to map the
elements of feature models to the elements of SkyBlue constraint graphs.

Generally speaking, the mapping consists of two steps: 1) each feature of the
feature model is mapped to a variable of the SkyBlue constraint graph; 2) each
constraint of the feature model is mapped to a SkyBlue constraint (called SBC)
that is represented by a set of methods. In feature models, each feature can
have only two states: 1) bound; 2) unbound. Therefore, it is possible to derive
methods from the constraints through combinations of the states of features.
Concrete rules for the mapping from constraints of feature models to SBCs are
listed in Tables 1 and 2.

Bind(feature) means the bind state of the feature is bound, and Unbind(feature)
means the bind state of the feature is unbound. Predicate(feature-set) represents
the value (True or False) of the predicate on the feature set.

In our approach, a simple constraint (i.e., require and exclude) can be repre-
sented by a composite constraint. For example, “feature A requires feature B”
can be represented as “All-Set(A) composite-requires All-Set(B)”. Therefore, we
can map simple constraints to SBCs according to these rules.



188 B. Wang et al.

Table 1. Methods for constraints

Relationship Number of 
Methods Methods

2 {Bind(A), Bind(B)} or 
{Unbind(A), Unbind(B)} 

2 {Bind(A)} or  
{Unbind(B)}

2 {Predicate(Set-A) = False} or 
{Predicate(Set-B ) = True} 

2
{Predicate(Set-A) = False, 
Predicate(Set-B) = False} or 
{Predicate(Set-A) = True, 
Predicate(Set-B) = True} 

2 {Predicate(Set-A)= False} or 
{Predicate(Set-B)= False} 

B

A

A

B

Mandatory 

Optional

Composite-Requires 

Composite-M-requires 

Composite-Excludes 

Set-A Set-B
Predicate Predicate

Set-A Set-B

Predicate Predicate

Set-A Set-B

Predicate Predicate

Table 2. Methods to determine the values of predicates

Predicate Value
Number

Of Methods
Methods

True 1 {Bind(A1),Bind(A2 n)} 

False n {Unbind(A1)} or {Unbind(A2

{Unbind(An)}

True n
{Bind(A1),Unbind(A2),Unbind(A3 n)} 
{Bind(A2),Unbind(A1),Unbind(A3 n

{Bind(An),Unbind(A1),Unbind(A2 n-1)} 

False 1+(n2-n)/2 {Unbind(A1),Unbind(A2 n)} or 
Any two of the features in the group are bound 

True n {Bind(A1)} or {Bind(A2 n)}

False 1 {Unbind(A1), Unbind(A2 n)} 

All
Set-A

{A1,A2 n}

Alternative
Set-A

{A1,A2 n}

Or
Set-A

{A1,A2 n}

In order to derive combinations of the states of a composite constraint’s fea-
tures(i.e. methods), our system 1) finds the combinations of values of the com-
posite constraint’s predicates according to the last three rows of Table 1; 2)
derive the combinations of the bind states of each predicate’s features to hold
the predicate value determined in the first step, according to Table 2.

For example, given “All-Set(A) composite-m-requires Alternative-Set(B,C)”,
first two combination of predicates, namely, {All-Set(A) = True, Alternative-
Set(B,C) = True}, {All-Set(A) = False, Alternative-Set(B,C) = False}, are
generated. Then the combinations to hold the values of these predicates are
generated. After that, the derived methods for this composite constraint are:
{Bind(A), Bind(B), Unbind(C)}, {Bind(A), Unbind(B), Bind(C)}, {Unbind(A),
Bind(B), Bind(C)}, {Unbind(A), Unbind(B), Unbind(C)}.

4.2 Recommend a Solution to Fix IFM

After one constraint is added to the feature model and in turn added to the
SkyBlue constraint graph by mapping it to a SBC, our system detect incon-
sistencies and recommend a solution by two steps: 1) constructing a new LGB
method graph through enforcing the newly-added SBC and other SBCs; 2) using
the LGB to recommend a solution. Our system uses SkyBlue’s LGB construction
algorithm, and we extend SkyBlue by redefining method conflicts and specializ-
ing the method execution process.



A Dynamic-Priority Based Approach to Fixing Inconsistent Feature Models 189

Constructing a LGB method graph involves enforcing the constraints in the
constraint graph. To enforce a constraint, SkyBlue selects a method for it, change
the methods of same and stronger constraints, or revoke one or more weaker
constraints. This process is called constructing a method vine or mvine. When
an mvine for a SBC is build, they are successfully enforced.

Note that each time a constraint is successfully enforced (i.e. an mvine is
constructed), one or more weaker constraints may be revoked. To construct
a LGB method graph, these revoked constraints are added to the unenforced
constraint set. Then our algorithm repeatedly tries to enforce all of them by
constructing mvines for these constraints, until none of the constraints can be
enforced. This process terminates because of the finite number of constraints.
The pseudo code of constructing a LGB method graph is shown below.

Construct a LGB method graph
constructLGB(Constraint SBC){

// clean the unenforced constraint set
clearUnenforcedCnSet ();
addToUnenforcedCnSet(SBC);
While(UnenforcedCntSet != null){

unenforcedCn = UnenforcedCnSet.get();
// enforce the unenforced constraint ,
//add the revoked constraints to the unenforced constraint set

buildMvine(unenforcedCn , unenforcedCnSet);
}

}

SkyBlue uses a backtracking depth-first search to build mvines. The pseudo
code of building an mvine is shown as follows:

Build an Mvine for a unenforced constraint
buildMvine(Constraint root){

While (root has methods){
Method m = getMethodFromConstraint(root);
If(! checkConflicts ()){

return true;
}Else{

Constrint cn = getConflictsConstraint ();
If(cn weaker than root){

revokeConstring(cn);
return true;

}Else{
buildMvine(cn);

}
}

}
return false; // start backtrack

}

The process of building an mvine for an unenforced constraint (called root
constraint in the building process) is actually a local propagation process, the
building process will end in the following situations:

– if this selected method does not conflict with other methods, this branch of
the depth-first search mvine does not extend any further;

– if this selected method conflicts with the selected methods of weaker enforced
constraints, SkyBlue just revokes these weaker constraints and adds them



190 B. Wang et al.

into the unenforced constraints set and this branch of the mvine does not
extend any further;

– if this selected method conflicts with the selected methods of the same or
stronger enforced constraint, SkyBlue selects other methods of these con-
straints; if these selected methods conflict with yet other constraints, choose
other methods.

Our system redefines method conflicts and revises the corresponding part of
the SkyBlue algorithm for building mvines. In SkyBlue, method conflicts happen
when a variable is determined by more than one methods. However, in method
graphs of feature models, the variables in constraint graphs can only be bound
and unbound. Therefore, even if a variable is determined by more than one
methods, it may not cause a conflict (e.g. see variable B in Fig. 4 (b)). Conflicts
happens only when a variable is set to different values.

Our algorithm can also handle graphs that contain directed cycles, when ex-
ecuting methods to satisfy the constraints in the cycle. In SkyBlue, it is not
possible to find an execution sort to satisfy the constraints in a cycle. In our
system, however, methods that determine a variable set the variable to one fixed
value. Therefore, our system can just execute all the methods to satisfy all the
constraints.

SkeBlue provides two techniques [8], namely, Local Collection and Walkabout
Strength to optimize the performance when constructing LGB method graphs.
Our system successfully implement the Local Collection technique based on the
new definition of method conflicts. The Walkabout Strength technique for feature
models is still under construction. However, our scalability case study in Section
5.2 shows that our system can scale up to large feature models without the
Walkabout Strength technique.

After a LGB method graph is constructed, we recommend a solution to do-
main analysts. How to analyze the LGB method graph to find a solution is
described in Section 3.1.

4.3 Choose other Solutions through Dynamic-Priority

After a solution is recommended to fix inconsistencies, domain analysts may not
be satisfied with this solution. In our approach, they can choose other solutions to
fix the inconsistencies, by raising the priorities of the constraints in the solution.

The recommended solution consists of a set of weaker unenforced constraints
to be deleted. These constraints conflict with some enforced constraints that have
the same or higher priorities. Provided with the solution, domain analysts may
not want some of the constraints in the solution to be deleted. To get a solution
that does contain this constraint, domain analysts should increase the priority of
the constraint. After the priority is adjusted, we construct a new LGB method
graph, with the hope of re-enforcing the raised constraint and recommending a
new solution based on this new LGB method graph. This process continues until
domain analysts are satisfied with the solution. The pseudo code of changing
priorities is listed as follows:



A Dynamic-Priority Based Approach to Fixing Inconsistent Feature Models 191

Changing a constriaint’s prioritiy
changePriority(Constraint SBC , Priority p){

oldPriority = SBC.priority ;
SBC.priority = p;
If (oldPriority <p){

If (!SBC.isEnforced())
ConstructLGB(SBC);

}
Else If(oldPriority >p){

If (SBC.isEnforced())
ConstructLGB(SBC);

}
}

5 Case Studies

To investigate whether our approach is useful to fix inconsistencies in feature
models, we undertook two case studies. The first one is a preliminary case study
that focused on whether our approach helps domain analysts fix IFMs efficiently.
The second case study investigated whether our approach is scalable to large
feature models.

5.1 Usability

In the following, we first describe the process of the usability case study, then
give an analysis to the results.

Study setup. In this case study, five participants were asked to build a feature
model of the web store domain using our system, which is integrated into a
Feature Model Graphical Editor we developed before. These participants have
diverse backgrounds: two of them are senior undergraduate students who have
little experience with domain engineering. The other three are graduate students
whose research interests are software reuse. None of them know the approach
until the case study and they are familiar with web store systems.

The five participants took the role of domain analysts to identify main fea-
tures, refinements, simple constraints, composite constraints of the web store
feature model. During the case study, our system recorded usage logs that in-
clude the scale of feature models, the number of the detected inconsistencies and
the number of the recommended solutions. After the case study, the efficiency
of our system is investigated through questionnaires.

Results. The usage log is summarized in Table 3. (The constraints showed in
the results are the constraints explicitly modeled into the feature model, they
do not contain the simple constraints that are brought with the Mandatory and
Optional features.)

Most of the participants built the web store domain feature model containing
about 50 features. For all the constructed feature models, there are few composite
constraints. On average, when an inconsistency is detected, about 2 recommen-
dations are needed to find the desirable solution, except for participant 4. The



192 B. Wang et al.

Table 3. Usage log of the usability case study

Particip
ants Features Simple 

Constraints 
Composite 
Constrains 

Number 
of 

Inconsist
encies 

Average 
Recommend
ation times 

Max  
Recommend

ation 
times 

Average 
Deleted  

Constraints 

Max  
Deleted  

Constraints 

P1 53 17 0 7 2.57 6 1.71 2 

P2 50 6 1 5 1.4 2 1.8 3 

P3 57 7 3 6 2.5 3 1.5 2 

P4 34 8 3 6 3.17 6 1.83 4 

P5 50 6 3 3 1.33 2 1.67 2 

relatively small feature model conducted by participant 4 has more constraints.
More recommendations are needed to find the desirable solution when inconsis-
tencies detected.

The concerns of the questionnaires are classified into three categories: 1)
whether the participants need recommended solutions when fixing inconsisten-
cies; 2) whether our system can help the participants fix inconsistencies; 3)
whether assigning priorities to constraints bring a lot of burden. Based on the
answers to these concerns, we conclude as follows:

– Three graduate students have experience with feature model construction
before. They pointed out that they often did not know how to fix the incon-
sistencies in relatively large and complex feature models. According to their
understanding, two factors lead to this difficulty. The first one is that they
have to first find out the meaning of the constraints, then analyze the incon-
sistencies and finally figure out how to fix them. The second factor is that
when analyzing the inconsistencies, some irrelevant features and constraints
disturb the domain analysts.

– Four out of five participants think our system is very helpful when fixing
inconsistencies, the rest one cannot be sure whether it is helpful. The partic-
ipants reported that our system helped them focus on where the inconsisten-
cies are and how to solve them, by providing recommendations. Adjusting
priorities can help them find alternative or better solutions. The time needed
to fix an inconsistency is also reduced greatly.

– All the participants think assigning priorities bring them trouble when con-
structing constraints, due to the lack of the standards for the priorities of
constraints. They think the default priority is rather helpful. They also point
out that adjusting priorities is relatively much easier, because they can adjust
priorities through comparing constraints.

5.2 Scalability

In this case study, we investigate the scalability of our system. To evaluate the
scalability, we randomly generate feature models and fix the inconsistencies in
the generated feature models. We use generated models because it is very difficult



A Dynamic-Priority Based Approach to Fixing Inconsistent Feature Models 193

Time
(Seconds)

Number of Features
/Constraints

400 800 1200 1600 2000 2400 2800 3200 3600 4000

242
/30

425
/50

605
/70

765
/110

1023
/130

1364
/150

1705
/170

2046
/190

2387
/210

2728
/230

3069
/250

3410
/270

3751
/290

4092
/310

4400

4433
/330

10

20

30

40

50

60

70

With the 
Same Priority

With different 
Priorities

Fig. 5. Experiments results for fixing randomly generated feature models with the same
and different priorities, respectively

to get real world large feature models. Although there are publications about
large models, none of these models are publicly available. On the other hand,
industrial feature models are always confidential.

We implement an algorithm to generate feature models randomly2. Each gen-
erated feature model contains a root feature. We can specify the number of the
subtrees that are connected to the root feature, the height of the subtrees, the
number of the chid features for each non-leaf feature in the subtrees, the number
of the constraints. The percentage of the variability of features are: Mandatory
(25%) and Optional (75%).

To make the study reflects the scalability of our system, we generate two
groups of feature model, with the same and different (randomly between 1 and
5) priorities. In our case study, we adopt the first recommended solution to fix
inconsistencies.

The environment for our experiments is a Win 7 PC with a 2.66GHz CPU,
2GB memory and the result is shown in Fig. 5. (The constraints showed in the
results are the constraints explicitly modeled into the feature model, they do
not contain the simple constraints that are brought with the Mandatory and
Optional feature.) Our system checks and fixes inconsistencies incrementally.
For example, in the second case, 425 mandatory or optional features are added
(each bring a constraint), and 50 constraints are explicitly modeled, we check
475 times in total and cost 0.8s in all.

From the result, we can see that, our system can handle feature models with
more than 4000 features and 300 constraints, which is a good support for domain
analysts when they fix inconsistencies in feature models.

6 Related Work

Feature models are first proposed by Kang et al. [1] in the feature-oriented do-
main analysis (FODA) method. Czarnecki et al. [11] proposed probabilistic fea-
ture models, in which soft constraints express the conditional probability of

2 See http://sei.pku.edu.cn/˜ wangbo07/ for the source code.



194 B. Wang et al.

configurations to contain certain features. Our approach use priorities to deter-
mine which constraints should stay in feature models, when inconsistency
happens.

Many studies focus on the automatic analysis of the deficiencies of feature
models [9]. Maßen and Lichter [3] proposed a deficiency framework of feature
model. They point out that inconsistency is one of the most severe deficiencies
in feature models. Mannion et al. [12] was the first to use propositional formulas
to analyze feature models. Batory [13] proposed an approach to detecting defi-
ciencies with SAT Solver. In his work, a Logic Truth Maintenance System was
designed to analyze feature models. Benavides et al. [14] were the first to use
constraint programming for analysis on feature models. Our previous work [15]
focused on how to analyze feature models using BDD.

However, all these works only focus on the detection of deficiencies. Egyed [16]
proposed an approach to fixing inconsistencies in UML models. Trinidad et al. [17]
focus on the explanation of deficiencies in feature models based on constraint pro-
gramming, but they do not give a solution to the deficiencies and the scalability of
his approach is also not clear. White et al. [18] focus on detect errors on the con-
figuration of a feature model, and propose changes in the configuration in terms
of features to be selected or deselected to correct the error. Our approach focuses
on the feature model itself, not the configuration of feature models.

7 Conclusion and Future Work

In this paper, we adopt the constraint hierarchy theory and extend the con-
straint solver-SkyBlue to implement a system that can help domain analysts fix
inconsistent feature models effectively. When a constraint is added to the fea-
ture model, we automatically check the inconsistencies by constructing a LGB
method graph, and recommend domain analysts a solution for fixing the inconsis-
tencies by analyzing the constructed LGB method graph. Furthermore, we can
recommend other solutions so that a more desirable solution can be obtained
based on the feedback of domain analysts. The feedback is expressed declara-
tively through the adjustment to the priorities of constraints. Our future work
will focus on working on more practical examples, and investigating applicability
of our approach to inconsistency fixing of other models such as UML models.

Acknowledgments. The authors would like to thank Shin Nakajima (NII,
Japan) and Lu Zhang (Peking University, China) for discussing with us on model
inconsistency detection and fixing, and to Hiroshi Hosobe (NII, Japan) for in-
troducing Delta/Skyblue to us. This work is supported by the National Basic
Research Program of China (973) under Grant No. 2009CB320701, the Science
Fund for Creative Research Groups of China under Grant No. 60821003, the
Natural Science Foundation of China under Grant No. 60703065, 60873059 and
the National Institute of Informatics (Japan) Internship Program.



A Dynamic-Priority Based Approach to Fixing Inconsistent Feature Models 195

References

1. Kang, K.C., Cohen, S.G., Hess, J.A., Novak, W.E., Peterson, A.S.: Feature-oriented
domain analysis (FODA) feasibility study. Technical report, CMU-SEI (1990)

2. Czarnecki, K., Helsen, S., Eisenecker, U.W.: Formalizing cardinality-based feature
models and their specialization. Software Process: Improvement and Practice 10,
7–29 (2005)

3. von der Maßen, T., Lichter, H.: Deficiencies in feature models. In: Workshop on
Software Variability Management for Product Derivation, in Conjunction with
SPLC (2004)

4. She, S., Lotufo, R., Berger, T., Wasowski, A., Czarnecki, K.: The variability model
of the Linux kernel. In: VaMoS, pp. 45–51 (2010)

5. Batory, D.S., Benavides, D., Cortés, A.R.: Automated analysis of feature models:
challenges ahead. Commun. ACM 49, 45–47 (2006)

6. Borning, A., Freeman-Benson, B.N., Wilson, M.: Constraint hierarchies. Lisp and
Symbolic Computation 5, 223–270 (1992)

7. Sannella, M.: SkyBlue: A multi-way local propagation constraint solver for user
interface construction. In: ACM Symposium on User Interface Software and Tech-
nology, pp. 137–146 (1994)

8. Sannella, M.: The SkyBlue constraint solver and its applications. In: PPCP, pp.
258–268 (1993)

9. Benavides, D., Segura, S., Cortés, A.R.R.: Automated analysis of feature models
20 years later: a literature review. Information Systems (2010)

10. Zhang, W., Mei, H., Zhao, H.: Feature-driven requirement dependency analysis
and high-level software design. Requir. Eng., 205–220 (2006)

11. Czarnecki, K., She, S., Wasowski, A.: Sample spaces and feature models: There
and back again. In: SPLC, pp. 22–31 (2008)

12. Mannion, M.: Using first-order logic for product line model validation. In: Chastek,
G.J. (ed.) SPLC 2002. LNCS, vol. 2379, pp. 176–187. Springer, Heidelberg (2002)

13. Batory, D.S.: Feature models, grammars, and propositional formulas. In: Obbink,
H., Pohl, K. (eds.) SPLC 2005. LNCS, vol. 3714, pp. 7–20. Springer, Heidelberg
(2005)

14. Benavides, D., Trinidad, P., Cortés, A.R.: Using constraint programming to reason
on feature models. In: SEKE, pp. 677–682 (2005)

15. Zhang, W., Yan, H., Zhao, H., Jin, Z.: A BDD-based approach to verifying clone-
enabled feature models’ constraints and customization. In: Mei, H. (ed.) ICSR
2008. LNCS, vol. 5030, pp. 186–199. Springer, Heidelberg (2008)

16. Egyed, A.: Fixing inconsistencies in uml design models. In: ICSE, pp. 292–301
(2007)

17. Trinidad, P., Benavides, D., Durán, A., Ruiz-Cortés, A., Toro, M.: Automated error
analysis for the agilization of feature modeling. J. Syst. Softw. 81, 883–896 (2008)

18. White, J., Schmidt, D.C., Benavides, D., Trinidad, P., Cortés, A.R.: Automated
diagnosis of product-line configuration errors in feature models. In: SPLC, pp.
225–234 (2008)



Taming Graphical Modeling

Hauke Fuhrmann and Reinhard von Hanxleden

Real-Time and Embedded Systems Group, Department of Computer Science
Christian-Albrechts-Universität zu Kiel, Olshausenstr. 40, 24118 Kiel, Germany

{haf,rvh}@informatik.uni-kiel.de
www.informatik.uni-kiel.de/rtsys/

Abstract. Visual models help to understand complex systems. How-
ever, with the user interaction paradigms established today, activities
such as creating, maintaining or browsing visual models can be very te-
dious. Valuable engineering time is wasted with archaic activities such as
manual placement and routing of nodes and edges. This paper presents
an approach to enhance productivity by focusing on the pragmatics of
model-based design.

Our contribution is twofold: First, the concept of meta layout enables
the synthesis of different diagrammatic views on graphical models. This
modularly employs sophisticated layout algorithms, closing the gap be-
tween MDE and graph drawing theory. Second, a view management logic
harnesses this auto-layout to present customized views on models.

These concepts have been implemented in the open source Kiel In-
tegrated Environment for Layout Eclipse Rich Client (KIELER). Two
applications—editing and simulation—illustrate how view management
helps to increase developer productivity and tame model complexity.

1 Introduction

Simply put, the main task of a programmer is to command the computer to do the
right thing. The programming mechanics of computers has undergone quite an
evolution: From manually stamping programs on punch cards over non-reversible
type writers to the main method still used today—text editor and keyboard.While
different IDEs might offer various support levels for large software artifacts, the
basic mechanics of writing or changing a line of code is rather standard and effi-
cient. Hence, editing text has been established for many decades.

The introduction of graphical models has added the second dimension to one-
dimensional text. However, this new freedom comes at a heavy price: We are
back to the early times of mechanical typewriters with rather archaic user inter-
actions. Graphical layout has to be manually defined by placing and routing of
nodes and edges. Deleting graphical objects, like using white-out on a typewriter,
creates new white-space that might not be large enough to insert new expres-
sions, i. e. new graphical constructs. Manually creating more space in a complex
diagram is like using scissors and glue. In fact, in large industrial projects it is
not uncommon that highly-paid engineers use scissors and glue to create large
hand-crafted posters from print-outs to help navigate through complex models.

D.C. Petriu, N. Rouquette, Ø. Haugen (Eds.): MODELS 2010, Part I, LNCS 6394, pp. 196–210, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

www.informatik.uni-kiel.de/rtsys/


Taming Graphical Modeling 197

Graphical views on models are manually defined and hence static like a type-
written piece of paper. Creating multiple different views, e. g., for different levels
of abstraction, onto the same model requires much manual editing work. Often
one ends up working with one single abstraction level or changing syntax from
graphical to structural to get more detailed or more abstract representations.
Although abstraction might play an important role for MDE, so far, graphical
aspects of models certainly do not. Instead of unfolding their potential as a vivid
means of communication they remain no more than syntactic sugar. When trying
to communicate with the computer through graphical models, the computer will
not answer in the same language. For example, model transformations typically
lose the graphical information and result in a model without a graphical view,
which is like typing in text and getting a punch card as an answer. Even graphical
means like graph grammars do not produce proper layouts for newly introduced
items. If one believes that a diagram communicates the meaning of a model
better than another representation, and if one wants this to be widely accepted
by domain users that are not necessarily computer scientists, then one has to
teach computers to truly master this language.

This paper presents an approach to bridge the gap between MDE and graph
drawing theory to enable the automatic processing of graphical models and fun-
damentally enhance the user interaction mechanisms—also for rich diagram no-
tations. After the related work in Sec. 2, Sec. 3 gives the required terminology
and defines the focus of our approach—pragmatics. Sec. 4 introduces the central
contributions: First, Sec. 4.1 explicates how meta layout enables the synthesis
of different diagrammatic views on graphical models. Meta layout offers inter-
faces to plug in sophisticated layout algorithms and to utilize them according
to higher-level optimization criteria. Second, Sec. 4.2 presents how view man-
agement logic employs this auto-layout to dynamically and interactively present
custom views on models. Sec. 5 illustrates these concepts with the open source
Kiel Integrated Environment for Layout Eclipse Rich Client (KIELER). Sec. 5.2
discusses two fields of application—model editing and simulation. Sec. 6 presents
an experimental evaluation, the paper concludes in Sec. 7.

For a more detailed presentation than space permits here, we refer to an-
other report [1] that includes a further discussion of the layout parametrization
(Sec. 4.1) and structure-based editing (Sec. 5.2).

2 Related Work

This work is an interdisciplinary task and hence there is a large body of related
work emerging from related communities.

The MDE community employs means of user experience enhancements orthog-
onal to ours [2]. There are multiple recent approaches on creating model-to-model
transformations not by complex transformation languages, but from examples
[3] or by demonstration [4]. It would be interesting to combine such approaches
with the structure-based editing framework presented in Sec. 5.2 to give the
user very natural ways to define custom editing operations him- or herself. Also,



198 H. Fuhrmann and R. von Hanxleden

transformation languages based on triple graph grammars [5] could augment
structure-based editing by graphical views on the transformations themselves.

The field of Human Centred Software Engineering [6] also addresses usability
and productivity. However, these approaches mainly focus on the question of
how to make the best user experience with a given product. In contrast, we try
to enhance the development process itself with novel tool support.

Another related community focuses on software visualization [7], which mainly
presents what we call effects on graphical views (cf. Sec. 4.2). We also employ
the notion of focus & context by Card et al. [8], see Sec. 5.2. Musiel and Jacobs
[9] apply this technique to UML class diagrams, using notions of level of detail
and a rudimentary specialized automatic layout algorithm. In our approach to
view management we try to generalize such ideas by orchestration of software
visualization concepts (effects) with the context (triggers) in which they should
be applied to dynamically synthesize graphical views on models.

Automatic layout problems for arbitrary diagrams are often NP-complete, and
diagram quality is difficult to measure [10]. However, the graph drawing theory
community emerged with sophisticated algorithms that solve single layout prob-
lems efficiently with appealing results [11,12]. There exist open layout library
projects with multiple sophisticated algorithms such as the Open Graph Draw-
ing Framework (OGDF) [13], Graphviz [14] and Zest1. There are also commercial
tools such as yFiles (yWorks GmbH) and ILOG JViews [15]. Demirezen et al.
use automatic layout in Eclipse with the GraphViz tool as an example of reusing
tools employing model transformations [16].

The KIEL project [17] evaluated the usage of automatic layout and structure-
based editing in the context of Statecharts. It provided a platform for exploring
layout alternatives and has been used for cognitive experiments evaluating es-
tablished and novel modeling paradigms. However, it was rather limited in its
scope and applicability, hence it has been succeeded by the KIELER project,
which is the context of the work presented here.

3 Pragmatics

In linguistics the study of how the meaning of languages is constructed and under-
stood is referred to as semiotics. It divides into the disciplines of syntax, semantics
and pragmatics [18]. These categories can be applied both to natural as well as
artificial languages, for programming or modeling. In the context of artificial lan-
guages, syntax is determined by formal rules defining expressions of the language
and semantics determines the meaning of syntactic constructs [19]. “Linguistic
pragmatics can, very roughly and rather broadly, be described as the science of
language use” [20]. This also holds for MDE with its artificial languages, as dis-
cussed in the following. However, first we clarify some more terminology specific
to MDE according to the modeling linguists Atkinson and Kühne [21].

The main artifacts in MDE are models with two main concepts: A model repre-
sents some software artifact or real-world domain and conforms to a metamodel,
1 http://www.eclipse.org/gef/zest/

http://www.eclipse.org/gef/zest/


Taming Graphical Modeling 199

Fig. 1. KIELER focuses on pragmatics and enhances the use of syntax and semantics
of models which are defined by modeling platforms such as Eclipse

defining its abstract syntax. Additionally, the concrete syntax is the concrete ren-
dering of the abstract concepts. Concrete syntax can be textual or displayed in a
structured way, for example a tree view. To be comprehensible, also a graphical
syntax is very often used, the Unified Modeling Language (UML) is one example.

A graphical model is a model that can have a graphical representation, e. g.,
a UML class model. A view onto the model is a concrete drawing of the model,
sometimes also diagram or notation model, e. g., a class diagram. The abstract
structure of the model leaving all graphical information behind is the semantical
or domain model, or just model in short. Hence, the model conforms to the
abstract syntax, while the view conforms to the concrete syntax. A view can
represent any subset of the model, which in some frameworks is used to break
up complex models into multiple manageable views. Hence, there is no fixed
one-to-one relationship between model and view.

State-of-the-practice approaches still lack generic answers on how to specify
semantics [22], but handle syntax of models very well, both abstract and con-
crete. They provide code generators to easily provide model implementations,
syntax parsers and textual and graphical editors with common features like the
Eclipse Graphical Modeling Framework (GMF)2.

The third field of linguistics, pragmatics, traditionally refers to how elements
of a language should be used, e. g., for what purposes a certain statement should
be used, or under what circumstances a level of hierarchy should be introduced
in a model. We slightly extend this traditional interpretation of pragmatics to
all practical aspects of handling a model in its design process [23]. This includes
practical design activities themselves such as editing and browsing of graphical
models in order to construct, analyze and effectively communicate a model’s
meaning.

2 http://www.eclipse.org/modeling/gmf/

http://www.eclipse.org/modeling/gmf/


200 H. Fuhrmann and R. von Hanxleden

4 Taming Complex Models

The main problem with pragmatics in state-of-the-practice modeling IDEs is the
widely accepted way of user interaction with diagrams: What-You-See-Is-What-
You-Get (WYSIWYG) Drag-and-Drop (DND) editing. DND here encompasses all
manual layout activities that a modeler has to perform, such as positioning—like
dragging new objects from a palette or toolbar to the canvas—or setting sizes
of graphical objects (nodes) or setting bend points of connections (edges). We
do not distinguish whether such actions are real drag-and-drop operations with
the mouse or are performed by keyboard, e.g. when moving objects around with
arrow keys.

When working with graphical models, it is useful to have an immediate graph-
ical feedback on editing operations, hence, WYSIWYG is not the problem. How-
ever, DND adds a lot of extra mechanical effort on editing diagrams. To quote
a professional developer [24]: “I quite often spend an hour or two just moving
boxes and wires around, with no change in functionality, to make it that much
more comprehensible when I come back to it.”

With such a standard editing paradigm one often ends up with exactly one
static view for a subset of a model where the developer once has decided the
abstraction level—e. g., level of detail or subset of displayed nodes. To get a
different view requires to start the editing process all-over.

4.1 Meta Layout

The idea of meta layout is to synthesize views automatically, thus freeing the
user to focus on the model itself. As discussed further in Sec. 4.2, this not only
saves time formerly spent on manual drawing activities, but yields completely
new possibilities for user interaction. The meta layout framework consists of two
main parts: (1) A bridge between layout algorithm libraries and diagram editors
and (2) parametrization possibilities to get the desired layout result of available
algorithms, see also Fig. 2.

Fig. 2. Meta layout in KIELER: Employ different layout algorithms in one diagram



Taming Graphical Modeling 201

Fig. 3. The KGraph: An Ecore class diagram with mixed upward planarization

Fig. 4. Overview of the Kieler Infrastructure for Meta Layout (KIML)

The layout bridge connects a range of layout algorithms with established
graphical model diagram editors. Fig. 3, with a class diagram of the KGraph,
shows an example layout/editor combination.

As illustrated in Fig. 4, the meta layout framework contains a basic graph data
structure, the KGraph, for exchanging data between a concrete diagram editor
and a layout algorithm. To achieve genericity, this does not assume any specific
format of either of the two worlds. Glue code that translates between used data
structures in both domains allows to use any diagram editor with any layout
algorithm. The KGraph is used as an intermediate format to (1) formulate the
layout problem and to (2) store the layout result, i. e. the concrete coordinates
and sizes. The KGraph follows the ideas of GraphML3 but is simplified to the
needs in this context.

Meta layout not only bridges between diagrams and layouters, it also tries
to do this in a smart customizable way. It provides an extensible layout option
system with priorities to specify which layouter types fit best to which dia-
gram kinds. Parameters provided by the algorithms can be made available in
the framework. Additionally, layouters get called recursively if the algorithms
themselves do not handle nested graphs. Furthermore, meta layout allows to use
multiple different layout algorithms for different parts of one and the same view
as shown in Fig. 2, which is well suited for nested models. More details on these
features are given elsewhere [1].

3 http://graphml.graphdrawing.org/

http://graphml.graphdrawing.org/


202 H. Fuhrmann and R. von Hanxleden

(a) Complete model. (b) Cutout with 20x zoom.

(c) A filtered view to the same model showing only Activity model parts.

Fig. 5. Class diagram of the UML 2.1 metamodel in Eclipse. Standard navigation
techniques come to their limits. Views become unusable. Filtering in view management
can synthesize a feasible view.

In summary, meta layout bundles a set of layout algorithms and matches them
with concrete diagram syntaxes. It lets the user mix parameters and layouters
to find the optimal layout result for custom model views.

However, there are limits of automatic layout of views when models become
too complex. Consider for example the current UML2 Metamodel, which con-
sists of 263 types with no nested structuring and thousands of relations and
inheritances between the classes. This metamodel is available as an EMF Ecore
model in the Eclipse Model Development Tools (MDT)4, as a semantical model
augmented with some very small manually placed views, but due to the model’s
complexity, there is no complete view available [25]. With meta layout, it is

4 http://www.eclipse.org/modeling/mdt

http://www.eclipse.org/modeling/mdt


Taming Graphical Modeling 203

possible to synthesize such a view; Fig. 5a shows the layout generated by KIML
using the Mixed-Upward-Planarization algorithm [26], which is optimized for
class diagrams and respects the different types of edges. However, the result looks
more like a VLSI integrated-circuit die and is hardly usable. Especially the nu-
merous relations make the diagram unreadable. Standard navigation techniques
like manual zooming and panning come to their limits; see also Fig. 5b. This
limitation of plain layout application prompts the need for view management,
discussed next.

4.2 View Management

When models and their corresponding views become too complex, it is time for
abstraction. View management is inter alia a means to automate the choice of
right abstraction levels. For a given model, view management chooses the subset
of the model that should be presented in a view. It decides the level of detail
[9] for all graphical elements and adds other graphical effects to views. This
automatic synthesis of views is only possible due to the automatic layout service
offered by meta layout. Hence, in different words, meta layout provides model
views as a service which view management uses. The idea of view management is
to focus automatically to the parts of the model that are “currently interesting.”

Obviously the context in which the user employs the model is important for
this task. For example, to learn only about a smaller subset of the UML, e. g.,
Activity models, one may create a customized view on the UML metamodel that
only contains elements immediately relevant to Activity models. Fig. 5c shows
such a view that is again automatically synthesized with meta layout. However,
this limited set of only 79 classes with much less edges presents a view that
actually can be used very well to browse Activity models.

(a) KIELER specifying layout options. (b) Aspects of view management [23].

Fig. 6. Meta layout and view management



204 H. Fuhrmann and R. von Hanxleden

To make view management context sensitive requires a generic architecture
that allows to define conditions under which certain views shall be synthesized.
View management listens to triggers or events under which certain graphical
effects should be executed on the view. The orchestration of a set of triggers
and effects forms a view management scheme (VMS), see also Fig. 6b. Triggers
are categorized in user triggers—e.g., manual selection of elements—and system
triggers—e. g., an event during a simulation run. Effects range from highlighting
elements, configuring levels of details, filtering graphical objects to visualizing
simulation data. An important effect uses the meta layout to rearrange the view
that might have been changed by other effects like filters. As space here is limited,
our following examples concentrate on the filtering mechanism. The next section
presents an implementation of view management and discusses two applications.

5 Kiel Integrated Environment for Layout Eclipse Rich
Client (KIELER)

The approaches presented in this paper are implemented and evaluated in the
project KIELER, the Kiel Integrated Environment for LayoutEclipse Rich Client.5

In the spirit of genericity, KIELER builds on the plug-in concept provided by
Eclipse and especially its modeling projects.6 As illustrated in Fig. 1, KIELER pro-
vides enhancements for pragmatics, to be combined with syntax and semantics
defined by other projects.

5.1 Kieler Infrastructure for Meta Layout (KIML)

KIML uses the Eclipse Modeling Framework (EMF) to specify abstract syntax.
For concrete syntax KIML supports graphical editors generated with the Graphi-
cal Editing Framework (GEF), a framework to implement graphical DSL editors.
The Graphical Modeling Framework (GMF) is a generative approach to GEF
editors that has a standard persistence handling of models and their views (the
notation model in GMF terminology). KIML provides a generic implementation
of the diagram glue code (Fig. 4) for GEF/GMF.

Hence, for most GMF editors KIELER’s automatic layout can be used out-
of-the-box. Optionally, the Eclipse extension point layoutInfo is used to specify
default values for layout options, e. g., diagram types to setup default layout
types. This has been done, for example, for the MDT/Papyrus UML suite [27].
For other concrete syntax frameworks based on GEF, like the Generic Eclipse
Modeling System (GEMS)7, Marama [28] or Graphiti8, the glue code would have
to be extended accordingly.

For layout algorithm integration KIELER provides the layoutProvider
extension point. It is used to specify the layout options that the corresponding
5 http://www.informatik.uni-kiel.de/rtsys/kieler
6 http://www.eclipse.org/modeling/
7 http://www.eclipse.org/gmt/gems/
8 http://www.eclipse.org/modeling/gmp

http://www.informatik.uni-kiel.de/rtsys/kieler
http://www.eclipse.org/modeling/
http://www.eclipse.org/gmt/gems/
http://www.eclipse.org/modeling/gmp


Taming Graphical Modeling 205

algorithm accepts and priorities for diagram types that it supports. The algorithm
itself has to be implemented following a simple abstract class.

How rich a diagram notation may be is determined by the diagram editor and
the supported features of the concrete layout algorithm. Currently it supports
many rich notations like nesting, hyperedges, multiple edge types, unconnected
boxes (e. g., orthogonal regions, swimlanes), port constraints, flow direction,
which can be extended in order not to limit the concrete syntax of models and
gets elaborated in [1]. It explicitly focuses not only on popular current Eclipse-
based editors, but also on widely accepted notations like Matlab/Simulink or
Labview.

5.2 Applications for View Management

As an example, the following illustrates how view management in KIELER aug-
ments the editing and simulation of SyncCharts [29].

Simulation with Focus & Context. One means to learn about the behavior
of a SyncChart is to execute it stepwise while the simulation browser highlights
active states. This paradigm is used by most state machine based tools like
Matlab/Simulink/Stateflow or Rhapsody. The usual means for navigation are
panning, zooming and opening different parts of the model in different windows
or canvases. However, for complex models it becomes difficult and effort prone
to manually navigate through a model. Figs. 7a/b demonstrate this with an
avionics application [30].

To alleviate this problem, the view management service can synthesize a new
view on the model dynamically. The idea is to use focus and context methods to
present only the “interesting” parts of the model [17]. For SyncCharts, a natural
definition of “interesting” considers the currently active states, as illustrated in
Figs. 7c/d. In KIELER, a specific trigger for the simulation notifies the view
management about changes in state activity. A simple effect then highlights
active states. An additional effect changes the level of detail at which the model
objects get displayed in the view. In KIELER this is implemented by using GEF’s
methods to collapse or expand compartments, which comprise the contents of
states and parallel regions. Afterwards view management uses KIML to rearrange
all elements and zooms-to-fit to make best use of the given space. This unfolds
the potentials of focus & context, as it presents all required details in the focus
while still showing the direct neighbor inactive states collapsed with reduced
detail level as the context. An animated morphing between the different views
is provided to match the mental map of the user. For an impression of this, the
reader is referred to example videos on-line (or the KIELER tool itself).

Structure-Based Editing. Another task in an MDE design process is to create
or modify models. One approach to harness view management is to go back to
textual editing. A textual editing framework like Xtext9 can be enriched with
graphical views synthesized on-the-fly to get full round-trip engineering.
9 http://www.eclipse.org/Xtext/

http://www.eclipse.org/Xtext/


206 H. Fuhrmann and R. von Hanxleden

(a) The whole SyncCharts model. (b) Even in deep hierarchy usually the full
complexity of the model is hidden.

(c) Focus & Context (1): Starting a sim-
ulation collapses all inactive states and
manually collapsed regions.

(d) Focus & Context (2): Advancing a
simulation will always expand only active
states with their full hierarchy.

Fig. 7. Focus & Context in a SyncChart

An alternative approach that stays in the graphical domain and keeps the di-
rect visual feedback like WYSIWYG is structure-based editing. It employs model-
to-model (M2M) transformations on the semantic model—its structure. It is an
interactive approach where the user can work on the model view. The workflow
for editing a model reduces to the following steps: (1) Focus a graphical model
object for modification and (2) apply an editing transformation operation. View
management with KIML applies the transformation, creates new graphical ele-
ments, and rearranges the resulting view.

The general implementation scope is shown in Fig. 9a. Again, to be generic, it
allows any M2M transformation framework to be used with KIELER Structure-
Based Editing (KSBasE). To integrate with the user interface, KIELER connects
to the Eclipse Textual Modeling Framework (TMF) Xtend transformation system
and all graphical GMF editors.

6 Evaluation

To assess the benefits of view management for model editing, we have conducted
a study using KIELER. The hypothesis to be evaluated was that structure-based



Taming Graphical Modeling 207

(a) Adding a choice construct. (b) Adding a region to simple and a complex
state, followed by removal of all regions.

Fig. 8. Example transformations for SyncCharts

(a) Scope of KSBasE

Manual

Auto-Layout

Structure-Based

00:00
02:00

04:00
06:00

08:00
10:00

12:00
14:00

16:00
18:00

20:00

Class

Practical

KIELER-Team

(b) Evaluation of different editing methods.

Fig. 9. KIELER Structure-Based Editing (KSBasE)

editing reduces the development times for creation and modification of graphical
models significantly compared to usual WYSIWYG Drag-and-Drop (DND) edit-
ing. The 30 subjects divided into three different categories: The class group was
familiar with the syntax of SyncCharts but not with modeling editors. The prac-
tical group took part in a practical course and had some experience already with
Eclipse GMF editors. The last group comprised developers of the KIELER team,
combining experiences with SyncCharts and the Eclipse SyncCharts editor.

The task was to create three different SyncCharts, using a different input
method in random order for each: (1) standard Drag-and-Drop editing, (2) DND
editing with manually triggered automatic layout and (3) structure-based editing
as presented above. The models were provided in a comprehensible but formal
textual notation. The experiment and its outcome are described in detail else-
where [31], but Fig. 9b summarizes the results.

Editing with automatic layout decreased the necessary modeling times in
average by nearly 33%. Full KSBasE reduced the times by another 15% compared
to DND. From auto-layout to KSBasE the difference was mainly influenced by
the earlier experience, e. g., how well keyboard shortcuts could be employed.

The SyncCharts in the tasks were of rather simple structure, and only cre-
ation was required, no modifications. Hence, only rather plain transformations



208 H. Fuhrmann and R. von Hanxleden

in KSBasE were necessary to complete the tasks. More complex transformations
might result in even greater speedups.

7 Conclusions

Visual models help to understand complex systems. However, with current in-
teraction paradigms, activities such as creating or browsing visual models can
be very tedious. We presented an approach on enhancing the pragmatics of
model-based design—the way a user interacts with models. The concept of meta
layout enables the dynamic synthesis of different diagrammatic views on graph-
ical models. View management builds upon automatic layout to configure views
on models given a certain context in which the model is examined. An experi-
mental evaluation supports the claim that view management with auto-layout
helps to tame complexity in graphical modeling.

Additional modeling languages under investigation are the UML and actor-
oriented dataflow languages. Ongoing work is integration and development of
more layout algorithms to support more specialized graphical syntaxes and to
enhance the aesthetics of layout results. Optimal layout parameters should be
determined automatically by measuring aesthetics with metrics and evolution-
ary algorithms/machine learning. Another current goal is the adoption of a view
management language for formulating view management use cases and to estab-
lish view management as a “first-class citizen” in modeling.

References

1. Fuhrmann, H., von Hanxleden, R.: Taming graphical modeling. Technical Report
1003, Christian-Albrechts-Universität zu Kiel, Department of Computer Science
(May 2010)

2. Seffah, A., Gulliksen, J., Desmarais, M.C.: An introduction to human-centered soft-
ware engineering. In: Human-Centered Software Engineering—Integrating Usabil-
ity in the Software Development Lifecycle. Human-Computer Interaction Series,
vol. 8, pp. 3–14. Springer, Netherlands (2005)

3. Brosch, P., Langer, P., Seidl, M., Wieland, K., Wimmer, M., Kappel, G., Rets-
chitzegger, W., Schwinger, W.: An example is worth a thousand words: Composite
operation modeling by-example. In: Schürr, A., Selic, B. (eds.) MODELS 2009.
LNCS, vol. 5795, pp. 271–285. Springer, Heidelberg (2009)

4. Sun, Y., White, J., Gray, J.: Model transformation by demonstration. In: Schürr,
A., Selic, B. (eds.) MODELS 2009. LNCS, vol. 5795, pp. 712–726. Springer, Hei-
delberg (2009)

5. Biermann, E., Ehrig, K., Köhler, C., Kuhns, G., Taentzer, G., Weiss, E.: Graphical
Definition of In-Place Transformations in the Eclipse Modeling Framework. In:
Nierstrasz, O., Whittle, J., Harel, D., Reggio, G. (eds.) MoDELS 2006. LNCS,
vol. 4199, pp. 425–439. Springer, Heidelberg (2006)

6. Gulliksen, J., Göransson, B., Boivie, I., Persson, J., Blomkvist, S.: Åsa Cajan-
der: Key principles for user-centred systems design. In: Human-Centered Soft-
ware Engineering—Integrating Usability in the Software Development Lifecycle.
Human-Computer Interaction Series, vol. 8, pp. 17–36. Springer, Netherlands
(2005)



Taming Graphical Modeling 209

7. Diehl, S.: Software Visualization: Visualizing the Structure, Behavior and Evolu-
tion of Software. Springer, Heidelberg (2007)

8. Card, S.K., Mackinlay, J., Shneiderman, B.: Readings in Information Visualization:
Using Vision to Think. Morgan Kaufmann, San Francisco (January 1999)

9. Musial, B., Jacobs, T.: Application of focus + context to UML. In: APVis 2003:
Proceedings of the Asia-Pacific symposium on Information visualisation, pp. 75–80.
Australian Computer Society, Inc., Darlinghurst (2003)

10. Purchase, H.C.: Metrics for graph drawing aesthetics. Journal of Visual Languages
and Computing 13(5), 501–516 (2002)

11. Di Battista, G., Eades, P., Tamassia, R., Tollis, I.G.: Graph Drawing: Algorithms
for the Visualization of Graphs. Prentice Hall, Englewood Cliffs (1999)

12. Jünger, M., Mutzel, P.: Graph Drawing Software. Springer, Heidelberg (October
2003)

13. Chimani, M., Gutwenger, C.: Algorithms for the hypergraph and the minor crossing
number problems. In: Tokuyama, T. (ed.) ISAAC 2007. LNCS, vol. 4835, pp. 184–
195. Springer, Heidelberg (2007)

14. Gansner, E.R., North, S.C.: An open graph visualization system and its applica-
tions to software engineering. Software—Practice and Experience 30(11), 1203–
1234 (2000)

15. Sander, G., Vasiliu, A.: The ILOG JViews graph layout module. In: Mutzel, P.,
Jünger, M., Leipert, S. (eds.) GD 2001. LNCS, vol. 2265, pp. 469–475. Springer,
Heidelberg (2002)

16. Demirezen, Z., Sun, Y., Gray, J., Jouault, F.: Supporting tool reuse with model
transformation. In: 18th International Conference on Software Engineering and
Data Engineering (SEDE 2009), pp. 119–125. ISCA, Las Vegas (June 2009)

17. Prochnow, S., von Hanxleden, R.: Statechart development beyond WYSIWYG.
In: Engels, G., Opdyke, B., Schmidt, D.C., Weil, F. (eds.) MODELS 2007. LNCS,
vol. 4735, pp. 635–649. Springer, Heidelberg (2007)

18. Morris, C.W.: Foundations of the theory of signs. International encyclopedia of
unified science, vol. 1. The University of Chicago Press, Chicago (1938)

19. Gurr, C.A.: Effective diagrammatic communication: Syntactic, semantic and prag-
matic issues. Journal of Visual Languages and Computing 10(4), 317–342 (1999)

20. Haberland, H., Mey, J.L.: Editorial: Linguistics and pragmatics. Journal of Prag-
matics 1, 1–12 (1977)

21. Atkinson, C., Kühne, T.: Model-driven development: A metamodeling foundation.
IEEE Software, 36–41 (2003)

22. Motika, C., Fuhrmann, H., von Hanxleden, R.: Semantics and execution of domain
specific models. Technical Report 0923, Christian-Albrechts-Universität Kiel, De-
partment of Computer Science (December 2009)

23. Fuhrmann, H., von Hanxleden, R.: On the pragmatics of model-based design. In:
Choppy, C., Sokolsky, O. (eds.) Foundations of Computer Software. Future Trends
and Techniques for Development. LNCS, vol. 6028, pp. 116–140. Springer, Heidel-
berg (2010)

24. Petre, M.: Why looking isn’t always seeing: Readership skills and graphical pro-
gramming. Communications of the ACM 38(6), 33–44 (1995)

25. Object Management Group: Unified Modeling Language: Superstructure, version
2.0 (August 2005), http://www.omg.org/docs/formal/05-07-04.pdf

26. Gutwenger, C., Jünger, M., Klein, K., Kupke, J., Leipert, S., Mutzel, P.: A new
approach for visualizing UML class diagrams. In: SoftVis 2003: Proceedings of the
2003 ACM Symposium on Software Visualization, pp. 179–188. ACM, New York
(2003)

http://www.omg.org/docs/formal/05-07-04.pdf


210 H. Fuhrmann and R. von Hanxleden

27. Fuhrmann, H., Spönemann, M., Matzen, M., von Hanxleden, R.: Automatic layout
and structure-based editing of UML diagrams. In: Proceedings of the 1st Work-
shop on Model Based Engineering for Embedded Systems Design (M-BED 2010),
Dresden (March 2010)

28. Grundy, J., Hosking, J., Huh, J., Li, K.N.L.: Marama: an eclipse meta-toolset
for generating multi-view environments. In: ICSE 2008: Proceedings of the 30th
International Conference on Software Engineering, Leipzig, Germany, pp. 819–822.
ACM, New York (2008)

29. André, C.: SyncCharts: A visual representation of reactive behaviors. Technical
Report RR 95–52, rev. RR 96–56, I3S, Sophia-Antipolis, France (Rev. April 1996)

30. Fuhrmann, H., von Hanxleden, R.: Enhancing graphical model-based system
design—an avionics case study. In: Conjoint workshop of the European Research
Consortium for Informatics and Mathematics (ERCIM) and Dependable Embed-
ded Components and Systems (DECOS) at SAFECOMP 2009, Hamburg, Germany
(September 2009)

31. Matzen, M.: A generic framework for structure-based editing of graphical mod-
els in Eclipse. Diploma thesis, Christian-Albrechts-Universität zu Kiel, Depart-
ment of Computer Science (March 2010), http://rtsys.informatik.uni-kiel.
de/~biblio/downloads/theses/mim-dt.pdf

http://rtsys.informatik.uni-kiel.de/~biblio/downloads/theses/mim-dt.pdf
http://rtsys.informatik.uni-kiel.de/~biblio/downloads/theses/mim-dt.pdf


Taming EMF and GMF
Using Model Transformation

Dimitrios S. Kolovos1, Louis M. Rose1, Saad Bin Abid2,
Richard F. Paige1, Fiona A.C Polack1, and Goetz Botterweck2

1 Department of Computer Science,
University of York, YO10 5DD, York, UK

{dkolovos,louis,paige,fiona}@cs.york.ac.uk
2 Lero - The Irish Software Engineering Research Centre,

Limerick, Ireland
{saad.binabid,goetz.botterweck}@lero.ie

Abstract. EMF and GMF are powerful frameworks for implementing
tool support for modelling languages in Eclipse. However, with power
comes complexity; implementing a graphical editor for a modelling lan-
guage using EMF and GMF requires developers to hand craft and main-
tain several low-level interconnected models through a loosely-guided,
labour-intensive and error-prone process. In this paper we demonstrate
how the application of model transformation techniques can help with
taming the complexity of GMF and EMF and deliver significant produc-
tivity, quality, and maintainability benefits. We also present EuGENia,
an open-source tool that implements the proposed approach, illustrate
its functionality through an example, and report on the community’s
response to the tool.

1 Introduction

The Eclipse Modelling Framework (EMF)[1] is a widely used model management
framework implemented atop the Eclipse software development platform. Over
the last few years, Eclipse and EMF have become the de facto standards in the
MDE community; the majority of MDE tools (e.g. ATL, oAW, Kermeta, MOF-
Script, Epsilon) are seamlessly integrated with them. EMF provides flexible and
powerful support for constructing models and defining modelling languages. To
better support end-users that desire powerful graphical editors for constructing
models, the Graphical Modelling Framework (GMF) has been developed: it is
a powerful and widely-used framework for implementing graphical editors for
EMF-based modelling languages.

Both EMF and GMF adopt a generative approach to achieving their objec-
tives: starting from an Ecore1 metamodel which specifies the abstract syntax
of the modelling language, developers derive and maintain a set of more fine-
grained, lower-level models that describe graphical syntax and implementation

1 Ecore is the object-oriented metamodelling language of EMF.

D.C. Petriu, N. Rouquette, Ø. Haugen (Eds.): MODELS 2010, Part I, LNCS 6394, pp. 211–225, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



212 D.S. Kolovos et al.

options, and which can be consumed by EMF and GMF code generators to re-
alise the editor. EMF and GMF are particularly powerful and flexible, providing
customization options for almost every aspect of the generated editor. However,
the price to be paid for power and flexibility is increased complexity. As dis-
cussed in the industrial experience report presented by Wienands and Golm [2],
implementing a graphical editor for a modelling language using EMF and GMF
is a loosely guided and error-prone process, mainly because it requires develop-
ers to hand craft and maintain a number of low-level, complex interconnected
models. Increased complexity in conjunction with sub-optimal tool support for
creating and maintaining the required low-level models make implementing a
graphical editor with GMF a painful experience, particularly for inexperienced
developers.

In this paper we demonstrate how model transformation can help with taming
the complexity of GMF and EMF, by raising the level of abstraction, lowering
the entrance barrier for new developers, and delivering significant productivity
and quality benefits to the process of constructing graphical editors for modelling
languages. In particular we demonstrate EuGENia, a mature and widely used
tool that adopts a single-sourcing approach based on metamodel annotation
and model transformation techniques (both model-to-model and in-place model
transformation) for automatically producing and maintaining all the low-level
models required by the EMF and GMF code generators.

The paper is organized as follows. Section 2 outlines the process of devel-
oping a graphical editor using EMF/GMF and highlights the error-prone and
labour-intensive steps. Following this, Section 3 demonstrates how we have used
metamodel annotation, model-to-model and in-place model transformation to
automate these steps in the context of EuGENia. Section 4 evaluates the findings
of this work and demonstrates the productivity and quality benefits delivered by
model transformation in this practical problem. Section 5 provides an overview
of related work, and Section 6 concludes the paper and provides directions for
further work on the subject.

2 Motivation

In this section we outline the process of implementing a graphical editor for
a modelling language using EMF and GMF and identify the labour-intensive,
error-prone and maintenance-crippling steps it involves. Figure 1 provides a
graphical overview of the process and the artefacts involved. The first part of
the process involves specifying the abstract syntax of the language using Ecore
and generating the respective Java code from it in two stages, using the EMF
built-in code generator. The second part involves specifying the graphical syn-
tax of the editor using a number of graphical syntax-specific GMF models in
three stages, and then using the GMF code generator to generate the concrete
graphical editor.



Model Transformation for EMF and GMF 213

Fig. 1. EMF/GMF Process Overview

2.1 Specifying Abstract Syntax and Generating Code Using EMF

Firstly, the developer needs to define the abstract syntax of the language using
Ecore. Following that, the developer can invoke the built-in EMF transformation
to transform the Ecore metamodel into a GenModel. A GenModel is a model
which captures lower-level information that specifies how the metamodel should
be implemented in Java (e.g. the Java package under which the code will be
generated, copyright information to be embedded in the generated files, whether
certain UI elements will be generated or not, etc.). Once derived from the Ecore
metamodel, a GenModel can be customised and fine-tuned manually. Finally,
the GenModel is consumed by an EMF built-in code generator which produces
all the necessary code and configuration files.

If the Ecore metamodel is subsequently modified, EMF provides a built-in
reconciler that can detect changes in the metamodel and propagate them to
the respective GenModel without overwriting the user-defined customisations.
However, the reconciler is only effective for simple changes in the Ecore meta-
model; for more complex changes the GenModel needs to be regenerated and
customised from scratch. This introduces a significant maintenance overhead as
it is not always clear to developers which changes in the metamodel can or can-
not be reconciled automatically. Therefore, it is common practice to maintain
documentation about all manual changes in a separate location (e.g. a text file)
so that they can be reapplied (manually) when necessary.

2.2 Specifying Graphical Syntax and Generating Code with GMF

Once the metamodel has been defined and the respective EMF code has been
generated, to implement a graphical editor for the language using GMF, the



214 D.S. Kolovos et al.

developer needs to construct three additional models. The graph model (GMF-
Graph ) specifies the graphical elements (shapes, connections, labels, decorations
etc.) involved in the editor, the tooling model (GMFTool) specifies the element
creation tools that will be available in the palette of the editor, and the map-
ping model (GMFMap) maps the graphical elements in the graph models and
the creation tools in the tooling model with the abstract syntax elements of the
Ecore metamodel (classes, attributes, references etc.). The mapping model is
then automatically transformed into an even more fine-grained generator model
(GMFGen) which contains all the low-level information that the GMF code
generator needs in order to produce the concrete artefacts (Java code and con-
figuration files) that realize the graphical editor.

In terms of automation, GMF provides a built-in wizard for automatically
generating initial versions of the tooling, graph and mapping models from the
Ecore metamodel itself. Unfortunately, in practice this wizard fails to yield useful
results for anything beyond very simple metamodels [2] - and this is reasonable
given how little can generally be inferred about the graphical syntax based on
the abstract syntax alone. As a result, these three models need to be hand-
crafted using a set of very basic tree-based editors provided by GMF, and this is
widely-recognized to be a laborious and error-prone process, particularly given
the complexity of the GMF metamodels, and the low-level error messages that
GMF produces. Perhaps more challenging than constructing these GMF-specific
models is maintaining them as, unlike in EMF, in GMF there is no reconciler that
can update these models automatically (even for very simple changes) when the
Ecore metamodel changes. Therefore, once customised in any way, these models
need to be maintained manually.

As a result, implementing a graphical editor with EMF and GMF is a labori-
ous and error prone task, particularly so for the inexperienced developer. Given
that implementing a simple graphical editor is typically one of the first steps
attempted by most of the newcomers in MDE [2], the risk of forming a nega-
tive impression about the quality of the MDE tool-chain from their interaction
with GMF is considerable. Moreover, even for seasoned MDE developers2, this
predominately manual and repetitive process is clearly tedious.

3 EuGENia: Model Transformation to the Rescue

Having criticised some aspects of GMF in the previous section, it is worth stress-
ing again that, despite its weaknesses, GMF still is one of the most powerful,
flexible and widely used open-source graphical editor framework available to-
day and when tuned appropriately it can achieve impressive results (the widely
used IBM RSA UML modeller, as well as the open-source Topcased and Papyus
modelling tools are all implemented atop GMF).

To shield developers from the complexity of GMF and address the highlighted
challenges, in this work we adopt a single-sourcing approach, in which additional
2 http://voelterblog.blogspot.com/2009/06/gmf-is-still-awful.
html

http://voelterblog.blogspot.com/2009/06/gmf-is-still-awful.html
http://voelterblog.blogspot.com/2009/06/gmf-is-still-awful.html


Model Transformation for EMF and GMF 215

information necessary for implementing a graphical editor is captured by embed-
ding high-level annotations in the Ecore metamodel. We then use automated
model-to-model and in-place transformations to generate, in a consistent and re-
peatable manner, the platform-specific models required by the EMF and GMF
code generators. In this section we demonstrate an implementation of our ap-
proach in the context of the EuGENia tool [3] and highlight the productivity, qual-
ity and maintainability benefits that our approach delivers.

3.1 Generating GenModels with EuGENia

The first challenge highlighted in Section 2 is to customise the EMF generator
model (GenModel) produced automatically from an Ecore metamodel, and keep
the two synchronized with minimal effort when the Ecore metamodel is subse-
quently modified. To address this challenge we annotate the Ecore model with
GenModel-specific information. A model-to-model transformation (Ecore2GenM
odel) consumes the annotated Ecore metamodel and creates a GenModel, where
in addition to the main Ecore elements (classes, features etc.), their annota-
tion values are also transformed into respective GenModel feature values. As
an example, in Figure 2 beyond creating the Simplem2 GenPackage from the
simplem2 EPackage, the value of the emf.gen basePackage annotation of the
simplem2 EPackage has also been copied into the basePackage attribute of the
respective GenPackage3.

For more complex customizations which require creating or deleting elements
in the GenModel, EuGENia supports user-defined polishing transformations. In
this context we use the term polishing transformation to describe a user-defined

Fig. 2. Exemplar output of the Ecore2GenModel transformation

3 The basePackage attribute specifies the base package under which all Java code will
be generated.



216 D.S. Kolovos et al.

Fig. 3. The EuGENia Ecore2GenModel transformation workflow

in-place model transformation - with a predefined file-name and location relative
to the Ecore metamodel - which is executed by EuGENia after the built-in
Ecore2GenModel transformation and through which the developer can fine-tune
the produced GenModel in a programmatic, and thus repeatable, manner. This
is illustrated in Figure 3 and a concrete example of a polishing transformation
is provided in Listing 1.3 of Section 4.

Using the built-in Ecore2GenModel transformation and the optional user-
defined polishing transformation, the GenModel no longer needs to be main-
tained manually. It can be regenerated at any point from the Ecore metamodel.
A screencast that demonstrates the Ecore2GenModel transformation in action
is available at:
http://www.eclipse.org/gmt/epsilon/cinema/#eugenia-genmodel.

3.2 Generating GMF-Specific Models with EuGENia

To automate the construction of the GMF-specific models, we follow a simi-
lar approach to the one outlined above: we annotate Ecore models with high-
level GMF-specific information and then use a model-to-model transformation
(Ecore2GMF ) to generate the tooling, graph and mapping GMF models - all in
one step. Once the mapping model has been transformed into a GMF generator
model (GMFGen) using the built-in GMF transformation, EuGENia applies an
in-place update transformation to it (FixGMFGen), as some of the graphical
syntax configuration options (e.g. compartment layout) can only be specified in
this model. Consistent with the practice followed in the Ecore2GenModel trans-
formation, the developer can contribute additional polishing transformations for
the Ecore2GMF and FixGMFGen transformations, which fine-tune the gener-
ated models. Figure 4 illustrates this workflow.

The GMF-specific annotations supported by EuGENia allow developers to
specify a large proportion of the graphical syntax of the language including
node shapes, feature-based and static labels, class- and reference-based associ-
ations (links), affixed and phantom nodes, compartments (with a free or a list-
based layout), colours and borders. Section 4.1 provides a detailed example that



Model Transformation for EMF and GMF 217

Fig. 4. The EuGENia Ecore2GMF and FixGMFGen transformation workflow

demonstrates a substantial subset of the supported annotations and a complete
list of all the annotations supported by EuGENia is available in [4]. It is worth
stressing that the annotations supported by EuGENia are not a 1-1 mapping
with the features of GMF (otherwise it would be just as complex). GMF features
that are not covered by the annotations that EuGENia provides (e.g. setting the
font of particular types of nodes) can be managed using the polishing transfor-
mation mechanism. A screencast that demonstrates the GMF-model generation
part of EuGENia is available at
http://www.eclipse.org/gmt/epsilon/cinema/#Eugenia

3.3 Implementation Notes

The EuGENia transformations are implemented using the Epsilon platform [5].
More specifically, the built-in Ecore2GenModel transformation has been imple-
mented using the rule-based ETL [6] model-to-model transformation language,
while the Ecore2GMF and FixGMFGen transformations have been implemented
using the imperative EOL language [7]. The Ecore2GMF transformation is im-
plemented with an imperative – and not a rule-based – language due to its high
complexity and need for low-level control of the execution flow. In terms of size,



218 D.S. Kolovos et al.

the Ecore2GenModel transformation is 264 lines long, the Ecore2GMF trans-
formation contains 1167 lines of code (including operation libraries), and the
FixGMFGen transformation contains 91 lines of code.

These transformations could possibly be implemented using other M2M lan-
guages (e.g. ATL, QVT and Kermeta) as long as the language supports:

– Managing more than one source and target models in the same transformation
– In-place as well as model-to-model transformation
– Establishing and navigating cross-model references
– Reflective access to model elements (i.e. the ability to find a feature of a given

element by name and get/set its value at runtime), which is particularly
desirable in the Ecore2GenModel transformation that otherwise will contain
many explicit annotation copying statements (76 for EPackages alone).

4 Evaluation

In this section we demonstrate EuGENia with a simple yet representative exam-
ple of graphical editor development. We also report user feedback and discuss
the testing mechanisms used to evaluate the correctness of EuGENia. Finally,
we consider the limitations of our approach.

4.1 Example

In this section we present an example that demonstrates EuGENia for imple-
menting the graphical editor of a Simple Component-connector Language (SCL)
using EMF and GMF. Firstly, we specify the abstract syntax of SCL using Ecore.
Briefly, an SCL model contains named components, which contain any number
of ports and subcomponents. Pairs of components can be linked through their
ports. The Ecore metamodel of SCL, expressed in the Emfatic textual notation
for Ecore is illustrated in Listing 1.1.

Listing 1.1. The SCL Ecore metamodel in Emfatic

1 @namespace(uri="scl", prefix="scl")
2 package scl;
3
4 class Component {
5 attr String name;
6 val Component[*] subcomponents;
7 val Port[*] ports;
8 }
9

10 class Connector {
11 attr String name;
12 ref Port#outgoing from;
13 ref Port#incoming to;
14 }



Model Transformation for EMF and GMF 219

15
16 class Port {
17 attr String name;
18 val Connector#from outgoing;
19 ref Connector#to incoming;
20 }

For EuGENia to realize the graphical editor for SCL using EMF and GMF,
we need to annotate the Ecore metamodel as shown in Listing 1.2. In particular,
the annotations specify the following:

– Line 2: Source code should generated in the
org.eclipse.epsilon.eugenia.examples Java package

– Line 5: Each diagram contains a top-level Component model element.
– Line 6: Each component is represented in the diagram as a light blue node

labelled with the name of the component.
– Line 9: Each Component has a compartment in which sub-components are

placed.
– Lines 15-16: Each Connector is represented as a link (association) between

its from and to ports. The end attached to the to port is decorated with an
arrow.

– Line 23: Each Port is represented as a 15x15 icon-less circle, attached to the
border of the component to which it belongs (Line 11).

– Line 24: Each Port is labelled with its name. The label is located outside the
circle.

Listing 1.2. The annotated SCL Ecore metamodel in Emfatic

1 @namespace(uri="scl", prefix="scl")
2 @emf.gen(basePackage="org.eclipse.epsilon.eugenia.examples")
3 package scl;
4
5 @gmf.diagram
6 @gmf.node(label="name", color="219,238,253")
7 class Component {
8 attr String name;
9 @gmf.compartment(layout="free")

10 val Component[*] subcomponents;
11 @gmf.affixed
12 val Port[*] ports;
13 }
14
15 @gmf.link(source="from", target="to",
16 label="name", target.decoration="arrow")
17 class Connector {
18 attr String name;
19 ref Port#outgoing from;
20 ref Port#incoming to;
21 }



220 D.S. Kolovos et al.

22
23 @gmf.node(figure="ellipse", size="15,15", label.icon="false",
24 label.placement="external", label="name")
25 class Port {
26 attr String name;
27 val Connector#from outgoing;
28 ref Connector#to incoming;
29 }

From this annotated metamodel, EuGENia can automatically generate the
GMFeditor that appears inFigure 5.While the generated editor is fully-functional,
we wish to further customise it to match our requirements (see Figure 6) .

Fig. 5. The first version of the GMF SCL editor

To achieve this, we specify the polishing transformation shown in Listing 1.3
and place it in a predefined location (a file named Ecore2GMF.eol in the same
directory as SCL.ecore) so that EuGENia can locate and execute it it after the
built-in Ecore2GMF transformation every time it is invoked.

Listing 1.3. The polishing in-place transformation in EOL

1 // Add bold font to component label
2 var componentLabel = GmfGraph!Label.
3 selectOne(l|l.name="ComponentLabelFigure");
4 componentLabel.font = new GmfGraph!BasicFont;
5 componentLabel.font.style = GmfGraph!FontStyle#BOLD;
6
7 //Set background color and border
8 //of the component compartment



Model Transformation for EMF and GMF 221

9 var componentCompartment = GmfGraph!Rectangle.
10 selectOne(r|r.name="ComponentSubcomponentsCompartmentFigure");
11 var lineBorder = new GmfGraph!LineBorder;
12 lineBorder.width = 1;
13 componentCompartment.backgroundColor =
14 createColor(255,255,255);
15 componentCompartment.border = lineBorder;
16
17 operation createColor(red : Integer, green : Integer,
18 blue : Integer) : GmfGraph!RGBColor {
19
20 var color = new GmfGraph!RGBColor;
21 color.red = red;
22 color.blue = blue;
23 color.green = green;
24 return color;
25 }

Fig. 6. The polished version of the GMF SCL editor

Specifying the graphical syntax information in the form of annotations in the
SCL metamodel involved adding 7 lines of Emfatic code (excluding line-breaks
for formatting reasons). From these 7 lines, 59 elements were produced by Eu-
GENia in the graph, tooling and mapping models. The productivity benefits
delivered by EuGENia increase alongside the size and complexity of the meta-
model - mainly because the graph, mapping and tooling models do not sup-
port the notion of inheritance and therefore inheritance in the Ecore metamodel
causes a significant amount of duplication in these models. For example, for the



222 D.S. Kolovos et al.

FileSystem metamodel4, 5 lines of Emfatic annotations result in 102 elements in
the graph, tooling and mapping models.

Polishing transformations may not have similar productivity results in terms
of the number of model elements they produce/modify (for example the polishing
transformation in Listing 1.3 takes 25 lines of code to create 3 and modify
2 elements), however in our experience the effort spent for construcing them
quickly pays off as graphical editor development is a highly iterative process [2].

4.2 Community Feedback

EuGENia is part of the Epsilon component of the Eclipse Modeling GMT project.
Since it was first released in August 2008, it has been widely used in the Eclipse
modelling community both by researchers (at Fraunhofer FOKUS, SINTEF and
several universities) and practitioners (at IBM, Siemens and WesternGeco). Evi-
dence for this exists among the large number of posts in the Epsilon forum5 that
refer to EuGENia. A long talk6 on EuGENia was also delivered in the predomi-
nately industrially-oriented Eclipse Summit Europe 2009.

4.3 Evaluating Correctness

To evaluate the correctness of the transformations provided by EuGENia and
avoid regressions we rely on a growing test set that includes manually constructed
input and output models for each transformation, as well as on the feedback of
the community (through which several bugs have already been identified and
fixed7).

Moreover, to test whether the Ecore2GenModel transformation preserves the
behaviour of the respective EMF built-in transformation it replaces, we executed
the two transformations on a common set of 20 Ecore metamodels obtained from
the EMFText Syntax Zoo8. Initial results indicated that the GenModels were
identical with the exception of a small number of non-critical attribute values.
As a result, we have updated the Ecore2GenModel transformation, and the two
transformations now produce identical results for our test-set.

4.4 Limitations

EuGENia has two notable limitations. Firstly, the EuGENia annotations pol-
lute metamodels with information irrelevant to their primary purpose (abstract
syntax definition). User feedback indicates that this is a fair trade-off for the
increased usability. To avoid metamodel pollution without sacrificing usability,
we are experimenting with more modular concrete syntaxes for Ecore models.
4 http://www.eclipse.org/gmt/epsilon/doc/articles/
eugenia-gmf-tutorial/

5 http://www.eclipse.org/gmt/epsilon/forum/
6 http://www.eclipsecon.org/summiteurope2009/sessions?id=979
7 http://bit.ly/bMOP6R
8 http://www.emftext.org/index.php/EMFText_Concrete_Syntax_Zoo

http://www.eclipse.org/gmt/epsilon/doc/articles/eugenia-gmf-tutorial/
http://www.eclipse.org/gmt/epsilon/doc/articles/eugenia-gmf-tutorial/
http://www.eclipse.org/gmt/epsilon/forum/
http://www.eclipsecon.org/summiteurope2009/sessions?id=979
http://bit.ly/bMOP6R
http://www.emftext.org/index.php/EMFText_Concrete_Syntax_Zoo


Model Transformation for EMF and GMF 223

More specifically, we are investigating the definition of a textual syntax based
on Emfatic [8], which allows annotations to be specified in separate physical
files and merged at runtime using name-based correspondences. Another op-
tion, suggested by EuGENia users, is to extract a standalone language from the
annotations provided by EuGENia.

The second limitation of EuGENia is that, to compose polishing transforma-
tions, developers need to become familiar with both the transformation language
(EOL) and the GMF-related metamodels. Having said this, extensive documen-
tation and several concrete examples are publicly available for EOL; moreover its
similarity to OCL helps to make familiarisation easier. Familiarisation with the
EMF and GMF metamodels can be achieved in an incremental manner, using
models produced by EuGENia as a foundation for incremental exploration.

5 Related Work

Similarly to EuGENia, GmfGen [9] also aims at simplifying the incremental
development of GMF editors. The graph, mapping and tooling models depicted
in Figure 1 typically contain some duplication of information. This duplication
exasperates any inconsistency problems that may arise when changes are made to
one of the models. GmfGen provides templates for generating the models needed
to construct a GMF editor. The templates remove most of the duplication present
in GMF models. However, GmfGen does not address the steep learning curve
encountered when first using GMF to generate a visual editor. In fact, knowledge
of GMF is required to understand the way in which GmfGens templates are
constructed. Instead, EuGENia focuses on abstracting away from GMF.

Several graphical modelling frameworks of similar functionality to GMF are
available, most notably MetaEdit+ [10], GME [11] (and its Eclipse-based GEMS
branch), AToM3 [12], and XMF-Mosaic [13]. A detailed analysis of their features
appears in [14]. In this work we have concentrated on GMF only as it is increas-
ingly gaining momentum, mainly due to its open-source nature, its extensive set
of features, and the immense success of the underlying EMF framework which is
widely accepted as the de-facto for modelling in the Java and Eclipse communities.

An early version of the work presented in this paper was presented in a work-
shop paper [15]. Since this publication, EuGENia has been extended significantly
based on feedback from the community, and additional features such as the
Ecore2GenModel transformation, and the support for polishing transformations
have been realized.

6 Conclusions and Further Work

In this paper we have presented EuGENia, a tool that employs metamodel an-
notations as well as model-to-model and in-place model transformations to de-
liver productivity and consistency benefits to the process of developing graphical
model editors with the EMF and GMF frameworks. EuGENia has been well-
received from the Eclipse modelling community and there is strong evidence that
it is extensively used by both researchers and practitioners.



224 D.S. Kolovos et al.

While EuGENia already greatly improves the usability of GMF and lowers the
entrance barrier for inexperienced developers, a significant amount of work re-
mains including support for: sub-diagrams, multiple (non-hierarchical) diagrams
in the same file, and advanced property editing. Ongoing research seeks to ad-
dresses some of these issues in the MOSKitt9 and EEF10 projects. We aim to
converge with these projects and progressively extend EuGENia to support, in
a usable and intuitive manner, all of the features discussed above.

An additional interesting direction for further research is to target alternative
graphical editor frameworks such as the upcoming Graphiti framework11 from
SAP, or web-based frameworks such as UMLCanvas12.

Acknowledgements

Parts of this work were supported by the European Commission’s 7th Frame-
work Programme, through grant #248864 (MADES), and by Science Foundation
Ireland grant 03/CE2/I303 1 to Lero, http://www.lero.ie/.

References

1. Steinberg, D., Budinsky, F., Paternostro, M., Merks, E.: EMF: Eclipse Modelling
Framework, 2nd edn. Eclipse Series. Addison-Wesley Professional, Reading (De-
cember 2008)

2. Wienands, C., Golm, M.: Anatomy of a Visual Domain-Specific Language Project
in an Industrial Context. In: ACM/IEEE 12th International Conference on Model
Driven Engineering Languages and Systems (MoDELS), Denver, Colorado, USA,
pp. 453–467 (2009)

3. Epsilon Eclipse GMT Component: EuGENia, http://www.eclipse.org/gmt/
epsilon/doc/eugenia

4. Epsilon Eclipse GMT Component: EuGENia GMF Tutorial, http://www.
eclipse.org/gmt/epsilon/doc/articles/eugenia-gmf-tutorial/

5. Eclipse Foundation: Epsilon Modeling GMT component, http://www.eclipse.
org/gmt/epsilon

6. Kolovos, D.S., Paige, R.F., Polack, F.A.C.: The Epsilon Transformation Language.
In: Vallecillo, A., Gray, J., Pierantonio, A. (eds.) ICMT 2008. LNCS, vol. 5063, pp.
46–60. Springer, Heidelberg (2008)

7. Kolovos, D.S., Paige, R.F., Polack, F.A.C.: The Epsilon Object Language. In:
Rensink, A., Warmer, J. (eds.) ECMDA-FA 2006. LNCS, vol. 4066, pp. 128–142.
Springer, Heidelberg (2006)

8. IBM alphaWorks: Emfatic Language for EMF Development (February 2005),
http://www.alphaworks.ibm.com/tech/emfatic

9. Schnepel, E.: GenGMF: Efficient editor development for large meta models using
the Graphical Modelling Framework. In: Proc. Special Interest Group on Model-
Driven Software Engineering (SIG-MDSE) (2008)

9 http://www.moskitt.org
10 http://www.eclipse.org/modeling/emft/?project=eef#eef
11 http://www.eclipse.org/proposals/graphiti/
12 http://umlcanvas.org/

http://www.eclipse.org/gmt/epsilon/doc/eugenia
http://www.eclipse.org/gmt/epsilon/doc/eugenia
http://www.eclipse.org/gmt/epsilon/doc/articles/eugenia-gmf-tutorial/
http://www.eclipse.org/gmt/epsilon/doc/articles/eugenia-gmf-tutorial/
http://www.eclipse.org/gmt/epsilon
http://www.eclipse.org/gmt/epsilon
http://www.alphaworks.ibm.com/tech/emfatic
http://www.moskitt.org
http://www.eclipse.org/modeling/emft/?project=eef#eef
http://www.eclipse.org/proposals/graphiti/
http://umlcanvas.org/


Model Transformation for EMF and GMF 225

10. MetaCase: Meta-Edit+, http://www.metacase.com
11. Generic Modeling Environment, http://www.isis.vanderbilt.edu/

Projects/gme
12. De Lara, J., Vangheluwe, H.: Using AToM3 as a Meta-CASE Tool. In: Proc. 4th

International Conference on Enterprise Information Systems, Ciudad Real, Spain,
pp. 642–649 (April 2002)

13. Xactium: XMF-Mosaic, http://www.xactium.com
14. Amyot, D., Farah, H., Roy, J.-F.: Evaluation of Development Tools for Domain-

Specific Modeling Languages. In: Gotzhein, R., Reed, R. (eds.) SAM 2006. LNCS,
vol. 4320, pp. 183–197. Springer, Heidelberg (2006)

15. Kolovos, D.S., Rose, L.M., Paige, R.F., Polack, F.A.C.: Raising the Level of Ab-
straction in the Development of GMF-based Graphical Model Editors. In: Proc.
3rd Workshop on Modeling in Software Engineering (MISE), ACM/IEEE Inter-
national Conference on Software Engineering (ICSE), Vancouver, Canada (May
2009)

http://www.metacase.com
http://www.isis.vanderbilt.edu/Projects/gme
http://www.isis.vanderbilt.edu/Projects/gme
http://www.xactium.com


A Visual Traceability Modeling Language

Patrick Mäder and Jane Cleland-Huang

DePaul University, Chicago, IL, USA
patrick.maeder@tu-ilmenau.de, jhuang@cs.depaul.edu

Abstract. Software traceability is effort intensive and must be applied
strategically in order to maximize its benefits and justify its costs. Unfor-
tunately, development tools provide only limited support for traceability,
and as a result users often construct trace queries using generic query
languages which require intensive knowledge of the data-structures in
which artifacts are stored. In this paper, we propose a usage-centered
traceability process that utilizes UML class diagrams to define trace-
ability strategies for a project and then visually represents trace queries
as constraints upon subsets of the model. The Visual Trace Modeling
Language (VTML) allows users to model queries while hiding the un-
derlying technical details and data structures. The approach has been
demonstrated through a prototype system and and evaluated through a
preliminary experiment to evaluate the expressiveness and readability of
VTML in comparison to generic SQL queries.

1 Introduction

Software and systems level traceability is a well-known concept, supporting a
number of software engineering tasks such as impact analysis, requirements val-
idation, and coverage analysis. However, studies suggest that developers and
other project stakeholders often create traceability links only because they are
required to by external regulations or by process improvement initiatives. Al-
though the required link creation process serves a useful purpose for helping to
validate that the system being constructed meets its requirements, studies have
shown that stakeholders rarely re-use traceability links during the long-term use
and maintenance of the system [8,1,5]. This failure can be partially attributed to
the fact that current tools make it difficult for project stakeholders to construct
non-trivial, yet useful traceability queries.

In contrast to the recent research focus on decreasing the costs of trace creation,
this paper introduces an expressive Visual Trace Modelling Language (VTML)
designed to increase the benefits of tracing, through making it more accessible
to software developers and other project stakeholders. This follows the approach
taken in database research and practice to develop visual query methods that al-
low users to formulate database queries in a relatively simple and intuitive way
[13]. Instead of creating an entirely new notation, our approach utilizes standard
UML class diagrams to model trace queries as a set of constraints enforced onto
a subset of a traceability meta-model. Taking this more conservative approach

D.C. Petriu, N. Rouquette, Ø. Haugen (Eds.): MODELS 2010, Part I, LNCS 6394, pp. 226–240, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



A Visual Traceability Modeling Language 227

means that VTML can be adopted by any organization familiar with UML, and
also that queries can be modeled and executed using standard tools available on
most projects. VTML is implemented using a goal-oriented approach which en-
ables project stakeholders to clearly define their traceability needs for the project,
develop an associated strategy for capturing the necessary traceability links, and
model complex traceability queries in a relatively intuitive way.

The remainder of the paper is structured as follows, Section 2 provides a brief
overview of the relevant traceability features included in common development
and requirements management tools. Section 3 reviews related work on modeling
traceability queries. Section 4 describes an usage-centered traceability process
and how traceability queries contribute to it. Section 5 discusses our visual trace-
ability query language and its main concepts. Section 6 shows sample queries,
and discusses the application of visual traceability queries, and their definition
and validation. Section 7 then discusses an experiment to evaluate the ease of
use and understandability of our modelling language.

2 State of Practice in Trace Query Modeling

Almost all leading requirements management tools provide support for common
traceability tasks such as coverage and impact analysis based on traceability links
created by the user. However this trace functionality is quite rudimentary. Cover-
age analysis is typically achieved through filtering out unrelated elements within
a structural component of the model, while impact analysis is achieved through
showing elements related through established traceability links. For example,
IBM Rational RequisitePro/Systems DeveloperTM provides a feature called a
Traceability Query, which allows users to create a diagram of all elements de-
pendent upon a selected one or all elements on which a selected element depends.
IBM DOORSTM provides a feature that visualizes chains of links across multiple
types of artifacts. Similarly, Sparx Enterprise ArchitectTM provides a feature for
generating implementation reports based on user created traces of a specific,
pre-defined type.

In most projects, support for more complex traceability queries is provided
through a tool-specific API or by direct access to the underlying data structures.
For example, Enterprise Architect allows user-defined queries to be modeled as
SQL statements on the underlying database, but these queries require substantial
knowledge of the tool’s internal data structures or of its API. This type of
approach does not make it easy for users to develop and use trace queries as an
integral day-to-day component of their work.

3 Related Work

To address these limitations, several researchers have developed languages and
notations for supporting trace queries, or of adopting standard query languages
such as SQL or XQuery. One goal of any such query language is to allow users
to specify their queries at an abstraction level that focuses on the purpose of



228 P. Mäder and J. Cleland-Huang

the trace, as opposed to its underlying data representation. However, there are
several specific challenges that make trace queries difficult to handle. Among
other issues, traceable artifacts such as requirements, design, code, and test
cases, are often represented in heterogeneous formats with different underlying
data structures. Although ideally in the future the use of integrated case tools
might lead to more standard representations, current traceability solutions must
deal with an enormously broad representation of data types and formats.

Maletic and Collard [6] describe a Trace Query Language (TQL) which can be
used to model trace queries for artifacts represented in XML format. TQL spec-
ifies queries on the abstraction level of artifacts and links and hides low-level
details of the underlying XPath query language through the use of extension
functions. Nevertheless, TQL queries are non-trivial for users without knowl-
edge of XPath and XML to understand. Zhang et al. [12] describe an approach
for the automated generation of traceability relations between source code and
documentation. The authors use ontologies to create query-ready abstract rep-
resentations of both models. The Racer query language (nRQL) is then used to
retrieve traces; however nRQL’s syntax requires users to have a relatively strong
mathematical background.

Wieringa [11] discusses the use of Entity Relationship Models (ERM) to rep-
resent traceability links. He points out that “. . . an ER model of links can be
implemented using any database technology” meaning that ad hoc queries can be
easily constructed. As ERMs are now often represented as class diagrams, VTML
extends this notion by utilizing class diagrams to visualize both the structure
of the traceability information and the queries built upon it. Schwarz et al. [9]
utilize a meta-model referred to as the Requirements Reference Model (RRM) to
store artifacts and relations, and then issue queries using the Graph Repository
Query Language (GReQL). The authors show two sample queries with syntax
similar to SQL, but provide no further detail concerning the implementation of
their approach nor its validation. Nevertheless, their use of a defined meta-model
for representing the underlying data is very useful.

Sherba et al. [10] discuss the specification of a traceability system, called
TraceM, based on information integration and open hypermedia. This work pro-
vides an interesting foundation for VTML, as it describes an optimal basis for
our approach. The authors address the problem of heterogeneous artifact repre-
sentations through proposing a service-based architecture with translators that
normalize the heterogeneous data, and schedulers that allow the user to de-
fine when to update the normalized data. Among these services is also a query
service that “allows filtering of relationships so that different views of the in-
formation space can be created based on the needs of various stakeholders.” In
related work, Lin et al. [3] implemented Poirot, a service-oriented approach for
retrieving artifacts dynamically at runtime from a variety of requirements man-
agement tools such as RequisiteProTM and DOORSTM. Poirot retrieves data
using adapters that interface with standard APIs provided by each case tool,
and then transform the data into Poirot’s XML schema. Our query language
could be integrated with the query services of either TraceM or Poirot.



A Visual Traceability Modeling Language 229

4 Defining the Traceability Information

VTML assumes the presence of an underlying meta-model, that we refer to as
the Traceability Information Model (TIM). The TIM provides the context in
which VTML queries can be specified and executed [8]. Our approach utilizes
a goal-oriented method for identifying long-term strategic trace queries and the
underlying data and traceability links needed to support them. This approach
minimizes the effort involved in trace creation and maintenance while maximiz-
ing its value. The techniques used to identify traceability goals and to construct
the TIM are founded in the systematic Goal-Question-Metric (GQM) approach
proposed by Basili et al. [2]. There are three steps involved in the process and
these are described in the following subsections.

Step 1: Identify tasks that require traceability. In this first step, specific tasks
that are dependent upon traceability should be defined. For example, in a safety
critical project a safety officer might need to retrieve all requirements that mit-
igate identified hazards in order to construct a safety case, or a developer might
need to check whether the code she/he is editing either directly or indirectly
impacts specific quality constraints captured in the software requirements spec-
ification. Such questions can be identified systematically through identifying
project goals and then analyzing the project roles and their related tasks.

Step 2: Define traceability. Once trace related tasks have been identified, it
is necessary to define a project level trace strategy to ensure that the necessary
traceability links are created and maintained. Many researchers agree on the
necessity of such a project-level definition as it facilitates a consistent and ready-
to-analyze set of traceability relations for a project. This definition is commonly
called a traceability information model or traceability meta-model and usually
represented as a UML class diagram. Figure 1 shows an example of a traceability
information model.

Such an information model is composed of two basic types of entities: trace-
able artifact types represented as classes, and the permitted traceability relations
between the artifact types represented as associations. Traceable artifact types
serve as the abstractions supporting the traceability perspective of a project, but
they do not necessarily reflect concrete datasets that exist in the traced models.
For example, a traceable artifact type might represent an abstraction of several
different concrete artifact types existing in the related models, or conversely it
could refer to a single artifact type in a tool. Figure 1 also shows the mapping
of traceable artifact types to their source documents, each one stereotyped as
a ’toolArtifact’. There are several reasons for distinguishing between tool ar-
tifact types and abstract traceable artifact types; however the pertinent issue
here is that a tool artifact provides information about how a certain traceable
artifact type is represented within a concrete tool or model. A more concrete
discussion of the traceability information model is given in [4]. As trace creation
and maintenance can be expensive, each proposed trace should be evaluated to
ensure that it serves a useful purpose. It is also useful to define important prop-
erties for each of the traceable artifacts. For example, in Figure 1 the ’UseCase’



230 P. Mäder and J. Cleland-Huang

Fig. 1. Example of a project-specific traceability information model

artifact type includes ’id’, ’name’, and ’description’ properties, all of which can
be returned as trace query results or used to define constraints that filter out
unwanted artifacts.

Step 3: Define traceability queries. Once traceability tasks have been identified
(Step 1) and the TIM established (Step 2), it is necessary to define a set of trace
queries that provide an efficient way of supporting the defined tasks. This step
is largely ignored by current tools, which assume that trace queries will either
be overly simple or that high-end users will export data and write customized
scripts to support their more advanced trace queries.

As the TIM provides a graphical representation of logical dependencies be-
tween artifacts in a development project, it is natural to use it to specify trace-
ability queries too. There are several benefits to this approach. First traceability
queries can be constrained to act on the traceable artifacts and traceability rela-
tions defined in the TIM, with the underlying assumptions that associated data
capture is integrated into the software development and management process.
Second, visualizing trace queries in this way can make them more intuitive for
typical project stakeholders. This conjecture is tested through the experiment
described in Section 7 of this paper.

There are several well-established query languages such as SQL and XQuery
which can provide the same results for a specific dataset as the method we
propose in this paper; however there are two specific issues that we believe
justify using VTML:

– Traceability queries deal to a large extent with the existence of relations
between artifacts and with the count of those relations, although such queries
can be specified in standard query languages such as SQL, they lead to rather
complex, recurring constructs. For example, a simple query against the TIM
in Figure 1, designed to identify implemented methods related to a given set
of use cases, translates into the following SQL statement:
SELECT "UseCase".id, "Method(Implementation)".id



A Visual Traceability Modeling Language 231

FROM "Method(Implementation)","LINKS_Method(Implementation)_Method(Design)",
"Method(Design)", "LINKS_Method(Design)_UseCase", "UseCase"
WHERE
"Method(Implementation)".id ="LINKS_Method(Implementation)_Method(Design)".sourceID AND
"LINKS_Method(Implementation)_Method(Design)".targetID = "Method(Design)".id
AND "Method(Design)".id = "LINKS_Method(Design)_UseCase".sourceID AND
"LINKS_Method(Design)_UseCase".targetID = "UseCase".id AND "UseCase".id

– A large part of a traceability query specified in a standard language refers
to the underlying data structure. For traceability purposes this has already
been described in the TIM, and redefining it in each trace query introduces
unwanted redundancy.

By re-using information previously specified in the TIM, VTML hides most of the
technical details and creates queries at the traceability perspective of a project.

5 Defining Visual Traceability Queries

This section describes the way in which VTML queries are modeled over the
TIM. The discussion is separated into a specification of the general structure
of a query, a specification of constraints on a query and finally the inclusion of
aggregation functions as part of a query.

5.1 Query Structure

Class diagrams provide a convenient way of representing a query, which can be
modeled as a structural subset of the traceability information model. This means
that a query may be composed from all traceable artifact types across all per-
mitted traceability relations defined within the current traceability information
model of a project. This approach also has the significant benefit of utilizing a
widely adopted modeling language, with all its associated tool support.

In addition to modeling traceable artifact types and their relationships, the
TIM also associates a set of properties with each traceable artifact. These prop-
erties, which are defined as attributes for each artifact type, can be used to
specify query constraints and can also be returned as results of a trace query.
When these properties are used within a query, they are stereotyped to show
whether they represent a ’result’ or a ’filter constraint’. As depicted in Figure 2,
each stereotype is associated with a graphical symbol placed in front of the prop-
erty name. For example, attributes stereotyped as ’results’ are represented by a
bar graph symbol, while attributes used to filter the results are annotated with
a filter symbol. Most UML modeling tools support the use of graphical symbols
in place of stereotypes. An identifier property exists by default for each trace-
able artifact type and is used to join the underlying data structures (artifacts
and traces) automatically. This property is only shown within a query if it is
intended to be returned in the result set.

5.2 Defining Constraints

While structural elements support queries across traceable artifacts, more spe-
cific queries can only be obtained by specifying constraints. There are three kinds



232 P. Mäder and J. Cleland-Huang

UseCase

description

COUNT_D(id)

TestCase(System)

result = ‘failed’2..*

Queried traceable
artifact types

Property filterRelation count
filter

Return value
of the query

Context: input-set
type, selectable by user

Aggregation
function

Queried relation
type

Fig. 2. Features of a visual traceability query

of constraints that can be specified in our notation: constraints to properties of
traceable artifacts, constraints to the number of existing traceability relations
between artifacts, and constraints on the scope which defines the user-selected
input set of a query.

The first type of constraint refers to the properties of traceable artifacts. As
previously discussed, these properties can become part of a query’s result or may
be used to filter out unwanted artifacts. In VTML the constraint is defined after
the name of a property attribute within a traceable artifact type. A stereotype
’filter’ is attached to the attribute and visually represented as the filter symbol
(see Figure 2). The constraint is specified as a logical expression consisting of
the property name, a logical comparison (=, <, >, <=, >=, ! =) and a value or
several values as boolean expression (&&, ||, !).

Multiplicity constraints refer to the number of existing traceability relations
between two artifacts. By specifying multiplicities for a traceability relation be-
tween two traceable artifact types, it is possible to constrain the query results to
only those artifacts that provide the specified number of traceability relations.
Similar to property constraints, a stereotype ’filter’ is attached to the multiplic-
ity and visually represented as a symbol (see Figure 2). As standardized in UML
class diagrams, multiplicities can be defined as a single number, a list of numbers,
or as a range of numbers, and therefore provide significant flexibility in specifying
constraints with respect to the number of existing traceability relations. For the
current prototype implementation we decided to interpret an unspecified multi-
plicity as 1..∗. Multiplicity constraints facilitate a wide variety of trace queries,
for example, to retrieve all requirements with no (zero) related acceptance tests,
or conversely all requirements that fan-out to 2 or more design elements.

The final type of constraint refers to a so-called query scope which defines
the traceable artifact type that a query can be applied to. While executing a
query, the user may choose to perform the query on all artifacts of that type
within a model or to constrain it to a subset of those. The scope is defined by
attaching the stereotype ’scope’ to one of the traceable artifact types of a query
and is visually represented as an encircled dot (see Figure 2). The example in
Figure 2 means that the query is applicable to use cases and the user may decide



A Visual Traceability Modeling Language 233

to provide a specific input-set of use cases to be queried or to perform the query
on all use cases.

In order to increase readability of queries we apply directed associations start-
ing from the scope element. Although, this is not required for the automated
interpretation of the query by a tool, feedback from early user studies has shown
that it can increase readability for human users.

5.3 Aggregation Functions

Some trace queries may require aggregation of the query results. For example,
instead of requesting a list of concrete artifacts which fulfill a certain query, a
user might require the trace query to return their count. For this purpose stan-
dard query languages provide a set of aggregation functions. VTML currently
supports the same functions as SQL. These functions are defined as methods
within traceable artifact types and a stereotype ’function’, visually represented
as a f symbol, is attached (see Figure 2).

5.4 Integrating Other Techniques

In addition to standard aggregation functions VTML supports an extended set
of customized functions, implemented as code snippets. For example, a function
could be developed to aggregate code metrics for all classes or methods that
traced from a specified requirement. For evaluation purposes we developed two
such functions and successfully incorporated them in the VTML and executed
them as trace queries.

5.5 Limitations and Analysis of the Approach

It is important to observe that all defined constraints of a query apply in paral-
lel. That means that for each artifact within the user-selected scope all defined
constraints must be fulfilled in order to be part of the results. We found that
limitation acceptable as we were able to express a broad range of desired queries
during the development of VTML. However, the notation does not support some
specific types of queries, for example, artifacts that either have a certain prop-
erty value or a relation to another artifact. Such queries need currently to be
performed separately, concatenating the results as an additional step. We could
not find an appropriate visual way of representing those dependencies between
constraints, while keeping the simplicity of the visual notation. We are currently
evaluating the use of filter references that can be used to write complex boolean
expression involving all filters as an additional text.

Moody [7] describes nine principles for designing cognitively effective visual
notations against which we qualitatively validated our VTML approach. As
advocated by Moody, our notation provides a 1:1 mapping between semantic
constructs that we are aiming to express and the graphical symbols used to
represent them (semiotic clarity). All our symbols are clearly distinguishable
from each other (perceptual discriminability). The participants of our experi-
ment reported no problems in identifying the meaning of our symbols (semantic



234 P. Mäder and J. Cleland-Huang

transparency). Visual traceability queries show only the actual queried part of
the available traceability information (complexity management). The representa-
tion of our queries builds upon the representation of the traceability information
model (cognitive integration). We apply a cognitively manageable number of vi-
sual symbols (graphic economy) where appropriate and use text to complement
these graphics (dual coding). Finally, we assumed that the traceability infor-
mation model is represented as a UML class diagram and created our notation
accordingly; however if the traceability information model were to be represented
using a different notation the VTML notation should be updated accordingly
(cognitive fit).

6 Applying Visual Traceability Queries

This section provides examples of visual traceability queries and discusses dif-
ferent aspects of their application. Although we only depict a small sampling of
queries in this paper, we have used VTML to express a much wider variety of
useful trace queries in a mid-sized industrial project.

6.1 Example Queries

Figure 3 shows four query examples that demonstrate VTML’s ability to express
a variety of traceability queries, including ones that could not easily be modeled
in existing requirements management tools.

The query shown in Figure 3a finds features that are implemented by more
than one component of the design model and so highlights possible deficiencies
in the design. Figure 3b depicts a query that returns all methods implementing
a ’failed’ unit test case and so facilitates the analysis of the discovered problem
in the source code. The query in Figure 3c returns the description of all use
cases that are implemented by methods with more than 50 lines of code. The

Feature

id

Component
(Design)

id
2..*

(a) Query: Find features scattered
among multiple components

TestCase
(Unit)

id
result=’failed’

Method
(Design)

1..*

Method
(Implementation)

1..*
id

(b) Query: Find methods implementing
’failed’ unit test cases

UseCase

description

Method
(Design)

1..*

Method
(Implementation)

LoC>50
1..*

(c) Query: Show uses cases implemented
by methods with > 50LoC

1..*

UseCase

id

Method
(Design)

1..*

Method
(Implementation)

id
1..*

(d) Query: Find redundant traces
between use cases and implementation

Fig. 3. Example queries



A Visual Traceability Modeling Language 235

purpose of such a query could be to identify and review complex usage scenarios.
Figure 3d shows a query, inspired by a real world example, that finds redundant
traceability relations between use cases and implementation methods. While the
traceability information model allows both routes, the idea is that either the one
or the other should be chosen by the user in order to avoid conflicts during other
analyses. Both routes could be allowed, because only some of the use cases are
documented in the design model and can be traced via such artifacts.

6.2 Transformation Into Executable Queries

One of the major benefits of VTML is that trace queries are specified over the
TIM, and do not need to reference the underlying data structures. This means
that a user specifies and reads queries from the traceability perspective of a
project. However, in order to execute these queries it is necessary to transform
them into a query format that is supported by the actual data sources. Although
VTML is not bound to any specific underlying query language, we demonstrate
its feasibility through a transformation of visual traceability queries into SQL
queries executable on the traceability repository of our traceMaintainer proto-
type. The transformation is fully automated and converts the features of a visual
traceability query step by step into an executable SQL query.

The VTML transformation is implemented using a XSLT script that translates
queries in XMI format, exported from a compatible UML modeling tool, into SQL
statements executable on traceMaintainer’s database. The transformation is not
only dependent upon the target query language, but also on the structure of the
repository. For the prototype implementation we decided to store each traceable
artifact type, defined with the traceability information model, as a separate table
as well as each traceability relation defined among these types. This is one possi-
ble way of implementing the data structure, but not the only one. The rationale
behind our implementation decision was that different traceable artifact types as
well as different defined traceability relations might have varying numbers and
types of properties making it more difficult to store all in the same table.

6.3 Supporting the Creation and Validation of Queries

In order to execute the defined queries, our current prototype requires the user
to export the created queries into XMI format, which is supported by all major
modeling tools. Future iterations of our prototype tool could include a VTML
wizard to provide interactive guidance on how to create queries for certain com-
mon purposes (e.g., counting elements over several artifact levels). Furthermore,
as all queries are subsets of the traceability information model, the TIM can be
used to validate the structural correctness of each query. Additionally, defined
constraints can be validated for their syntactical correctness by using regular
expressions. While extensions to the traceability information model will have no
effect on defined queries, deletions and modifications could invalidate a query
if the required information becomes unavailable following the change. Our tool
revalidates queries each time they are transformed into the executable format.



236 P. Mäder and J. Cleland-Huang

7 Evaluation

We designed a preliminary experiment to comparatively evaluate the under-
standability and the ease of use of VTML with respect to other query languages.
However, the experiment reported in this paper, was limited to a comparison
with SQL, which represents an expressive and broadly adopted query language
used in industry. We formulated two research questions:

Q1 Reading: Does the use of Visual Traceability Queries result in a more accu-
rate and faster understanding of a query’s purpose compared to equivalent
techniques?

Q2 Constructing: Does the use of Visual Traceability Queries result in a more
accurate and faster construction of traceability queries compared to equiva-
lent techniques?

Our experiment had one independent variable, the query notation, and two treat-
ments: VTML and SQL. Our experiment aimed to find out whether there is a
causal relationship between the treatment and the time and correctness for read-
ing and constructing queries.

7.1 Experimental Set-up

In order to answer these two research questions, we designed a controlled exper-
iment which included trace queries we had previously seen executed in actual
industrial projects.

Subjects. The subjects comprised 18 practitioners and students with a basic
knowledge of UML modeling and database engineering as well as writing and
understanding SQL queries. Our participants had an average experience of 3.5
years in using SQL queries but only an average of 2.2 years with UML. This in-
dicates that for many of the subjects we were evaluating a well-known technique
against a relatively new approach.

Procedure and Tasks. All the data was gathered via questionnaires. In addition
to providing actual answers to the questions in the questionnaire, the time it
took to complete individual tasks was recorded. The experiment consisted of the
following steps:

1. All subjects completed a series of questions to describe her/his background
and experience in the field of software and data engineering.

2. All subjects read a tutorial about the general purpose of software traceability,
the use of a traceability information model, and the purpose of traceability
related queries. The material also contained a table comparing features of a
query expressed in SQL and VTML. The subjects were allowed to use the
tutorial material throughout the entire experiment.

3. All participants were given a set of nine different queries, each expressed in
either SQL or VTML. For each query we provided four possible answers,
and the participants were directed to select the answer which they felt most
closely represented the meaning of the query. Each query was presented to
9 participants in SQL and 9 in VTML.



A Visual Traceability Modeling Language 237

●

●

●
●

●

0
20

0
40

0
60

0
80

0
10

00

T
im

e 
[s

]

●

●

●

●

●

0
20

0
40

0
60

0
80

0
10

00

● ●

0
20

0
40

0
60

0
80

0
10

00
0

20
0

40
0

60
0

80
0

10
00

R1 R2 R3 R4 R5 R6 R7 R8 R9 C1 C2

VTQL
SQL

Fig. 4. Time required to understand (R1–R9) and construct queries (C1, C2)

4. All subjects were also asked to construct two queries, one written in SQL
and one modeled in VTML. The assignment was random.

5. All subjects completed a questionnaire concerning their experience using
both VTML and SQL to read and construct traceability queries.

7.2 Results

Q1 Reading queries. Table 1 shows that subjects viewing our visual notation
responded on average (mean) 26% to 63% faster to the nine questions (R1–R9)
than subjects viewing the same query in SQL notation, thereby reducing the time
to understand a query by 45%. However the difference was statistically significant
in only six of the nine queries (see p-values in column t-test) due to the high
variability in the response time. Figure 4 visualizes response time and variability
across all tasks. The variability could have been caused by different experience
levels of the subjects; however this will be analyzed in a future experiment. Post
experiment interviews also suggested that the multiple choice design allowed
users to guess the answer without fully understanding the query, which certainly
could have impacted the results of the query reading task. For reading visual
queries, 14.9% of the given answers were incorrect using the visual notation, while
only 10.5% were incorrect using SQL. However, half of the incorrect answers
in both notations referred to the same query, suggesting that the answers we
provided might have been misleading. Furthermore, two-thirds of the incorrect
answers for visual queries were given for the first three questions, suggesting that
comprehension of visual queries increased with experience.

Q2 Constructing queries. Table 1 shows that subjects constructed the same
query in our visual notation on average 69% faster than in SQL. Despite the
relatively large variability, especially in the time spent constructing SQL queries
(see Figure 4), the differences for both construction tasks (C1, C2) are statis-
tically significant. Again, this is likely due to differences in experience of our
subjects. Only 6.7% of the constructed visual queries (one query) were partly
incorrect, while 89.5% of the constructed SQL queries were at least partly incor-
rect. This suggests that our approach facilitates a significantly faster and more
correct specification of traceability queries than SQL.



238 P. Mäder and J. Cleland-Huang

Table 1. Time differences [s] for performing tasks

VTML SQL diff
task mean sd mean sd VTML t-test

R1 101.6 53.6 206.9 134.0 -51% 0.03
R2 121.1 45.5 178.2 153.5 -32% 0.16
R3 112.1 70.4 220.9 48.3 -49% 0.00
R4 145.0 55.0 210.3 123.2 -31% 0.09
R5 94.1 63.4 126.8 57.1 -26% 0.14
R6 95.1 42.3 257.9 208.3 -63% 0.02
R7 71.7 48.2 131.1 45.7 -45% 0.01
R8 68.8 34.5 171.2 113.3 -60% 0.01
R9 68.3 25.2 143.5 62.1 -52% 0.00
Ø -45%

C1 153.0 100.4 500.5 276.6 -69% 0.00
C2 202.9 112.7 647.4 271.0 -69% 0.00
Ø -69%

7.3 Threats to Validity

Important threats to the validity of the experiment are divided into four common
categories.

External Validity. Our experiment shows results of subjects with a diverse
background in the field of our experiment, from practitioners to students, with
practical experience, for example, as product managers, developers, requirements
engineers and designers. Nevertheless, the relatively small size of our sample does
not allow us to draw general conclusions, we rather see our experiment as an
initial validation which will now lead into an extended study. All of the presented
queries had a realistic purpose and were determined based on our knowledge of
traceability in industrial settings.

Internal Validity. To decrease variability in knowledge across participants we
provided an introductory tutorial. The written form of the material minimized
the possible influence of the experimenters on the results. The notation in which a
query was represented was randomly assigned in order to balance learning effects.
None of the participants provided more than two incorrect answers suggesting
a sound understanding of the topic. Although, we improved the multiple-choice
answers for the questions during pilot tests, some of the answers might still have
been misleading as previously discussed.

Reliability. We expect that replications of the experiment will offer results
similar to those presented here. Concrete measured results will differ from those
presented here as they are specific to the subjects, but the underlying trends
and implications should remain unchanged. Our participants had a large variety
of experience regarding the topic of the experiment.

Construct Validity. Our experiment aimed at evaluating the understandability
and the ease of use of our visual notation compared to existing techniques. We



A Visual Traceability Modeling Language 239

decided to focus on reading and constructing of traceability queries as we believe
that those are the most important applications for a visual traceability modeling
language. If a notation is easier to use and comprehend, then the measures of
time and correctness should correspondingly show lower values. Our experiments
therefore focused on these measures.

8 Conclusions and Future Work

This paper has presented a usage-centered traceability process that first defines
the traceability strategies for a project and then models traceability queries vi-
sually using VTML. It introduces a novel way to specify traceability queries that
utilizes the project’s TIM and builds on UML concepts that are well known to
most users. In this way users apply the same technique to describe and execute
traceability queries as they use for modeling the overall project artifacts. Fur-
thermore, the specification of queries is constrained to entities defined within the
TIM, facilitating a consistent traceability view of a project as well as limiting
possible choices in the specification of queries to the actual available ones.

The experiment we performed has demonstrated that users are able to read
and construct traceability queries more quickly using VTML. This was especially
marked following an initial learning curve. This curve appeared most evident
for users with less prior UML experience. Our experiment further suggests that
visually constructed traceability queries are substantially more correct compared
to the same queries constructed with SQL. As a proof of concept and to gain more
experience we developed a prototype implementation. Future work will involve
augmenting the prototype to include more advanced features to guide the user
through the task of creating and validating trace queries. Furthermore, although
our current prototype uses XSLT to transform visual queries into executable
ones, we are exploring more general transformations that can be customized to
different underlying data schemes and various query languages such as SQL,
XQuery, and LINQ. Finally, we intend to conduct a more comprehensive study
that evaluates whether VTML can by used by stakeholders to create traceability
links that help them perform useful tasks in an industrial settings.

Acknowledgments

This work was partially funded by the National Science Foundation grant #CCF:
0810924.

References

1. Arkley, P., Riddle, S.: Overcoming the traceability benefit problem. In: Proceed-
ings 13th International Requirements Engineering Conference, pp. 385–389. IEEE
Computer Society, Los Alamitos (2005) ISBN 0-7695-2425-7



240 P. Mäder and J. Cleland-Huang

2. Basili, V.R., Caldiera, G., Rombach, H.D.: Goal Question Metric Paradigm. In:
Marciniak, J.J. (ed.) Encyclopedia of Software Engineering, vol. 1, pp. 528–532.
John Wiley & Sons, Chichester (1994)

3. Lin, J., Lin, C.C., Cleland-Huang, J., Settimi, R., Amaya, J., Bedford, G., Beren-
bach, B., Khadra, O.B., Duan, C., Zou, X.: Poirot: A distributed tool supporting
enterprise-wide automated traceability. In: RE, pp. 356–357. IEEE Computer So-
ciety, Los Alamitos (September 2006)

4. Mäder, P., Gotel, O., Philippow, I.: Getting Back to Basics: Promoting the Use of
a Traceability Information Model in Practice. In: 5th Workshop on Traceability
in Emerging Forms of Software Engineering (TEFSE 2009). In conjunction with
ICSE 2009, Vancouver, Canada (May 2009)

5. Mäder, P., Gotel, O., Philippow, I.: Motivation Matters in the Traceability
Trenches. In: Proceedings of 17th International Requirements Engineering Con-
ference (RE 2009), Atlanta, Georgia, USA (August 2009)

6. Maletic, J.I., Collard, M.L.: Tql: A query language to support traceability. In:
TEFSE 2009: Proceedings of the 2009 ICSE Workshop on Traceability in Emerging
Forms of Software Engineering, pp. 16–20. IEEE Computer Society, Washington
(2009)

7. Moody, D.L.: The ‘physics’ of notations: Toward a scientific basis for constructing
visual notations in software engineering. IEEE Trans. Software Eng. 35(6), 756–779
(2009)

8. Ramesh, B., Jarke, M.: Toward reference models of requirements traceability. IEEE
Transactions on Software Engineering 27(1), 58–93 (2001)

9. Schwarz, H., Ebert, J., Riediger, V., Winter, A.: Towards querying of traceabil-
ity information in the context of software evolution. In: 10th Workshop Software
Reengineering, Bad Honnef, May 5-7. LNI, vol. 126, pp. 144–148. GI (2008)

10. Sherba, S.A., Anderson, K.M., Faisal, M.: A framework for mapping traceabil-
ity relationships. In: Second International Workshop on Traceability in Emerging
Forms of Software Engineering (TEFSE 2003) (October 2003)

11. Wieringa, R.: An introduction to requirements traceability. Tech. Rep. IR-389,
Faculty of Mathematics and Computer Science (November 1995)

12. Zhang, Y., Witte, R., Rilling, J., Haarslev, V.: An ontology-based approach for
the recovery of traceability links. In: 3rd Int. Workshop on Metamodels, Schemas,
Grammars, and Ontologies for Reverse Engineering (ATEM 2006), Genoa, Italy,
October 1 (2006)

13. Zloof, M.: Query-by-example: A database language. IBM Systems Journal, 324–343
(1977)



Application Logic Patterns – Reusable Elements
of User-System Interaction

Albert Ambroziewicz1,2 and Micha�l Śmia�lek1

1 Warsaw University of Technology,
Warsaw, Poland

{ambrozia,smialek}@iem.pw.edu.pl
2 Infovide-Matrix, Warsaw, Poland

Abstract. Patterns of various kind are commonly used to reduce costs
and improve quality in software development. This paper introduces the
concept of patterns at the level of detailed descriptions of the user-system
dialogue. Application Logic Patterns define generalised sequences of in-
teractions performed by the system and its users in the context of an ab-
stract problem domain. The patterns are organised into a library. They
are precisely described by a language which is defined through a strict
meta-model. It extends the notation and semantics of the UML activ-
ities and use cases. Each of the patterns describing the visible system
dynamics is linked to an abstract domain model central to all the pat-
terns. The patterns can be easily instantiated by substituting abstract
domain notions with the notions specific to a given domain. This ease of
use and reduction in effort is validated in a controlled experiment using
an open-source tool.

1 Introduction

Contemporary software systems present high repeatability in their structure and
their logic (behaviour). It is an obvious desire of software developers to be able
to reuse the reoccurring elements within the various artifacts they produce dur-
ing the software lifecycle, following the idea of Alexander [1]: to describe the
core solution to problem, in such a way that you can use the solution a million
times over, without ever doing it the same way twice. Good quality systems have
patterns applied consciously by the developers. Mainly, though, this application
is performed at the levels of architecture, design and code structure, following
(and extending) the classical GoF library of design patterns [2]. Some approaches
follow Fowler’s idea of analytical patterns [3] which are defined at the problem
space (requirements), rather than the solution space (design).

Fowler’s analytical patterns can be seen as an attempt to generalise the struc-
ture and logic of problem domains. This leads us to “domain patterns” intro-
duced also by Fowler in [4]. It can be noted that describing the problem domain
can be treated as a separate discipline within software engineering (see [5] for
an excellent discussion). Domain engineering attempts to define the logic of a
given problem domain (called also “business logic”). This logic is in general

D.C. Petriu, N. Rouquette, Ø. Haugen (Eds.): MODELS 2010, Part I, LNCS 6394, pp. 241–255, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



242 A. Ambroziewicz and M. Śmia�lek

independent of the ways software applications handle user-system interactions.
We can thus try to separate this “application logic”, also known as workflow
logic [4] from the domain logic. The application logic would then contain pure
flows of abstract user-system interactions. A complete software system would be
a composition of application logic flows interwoven with the domain logic (and
user interface) descriptions. This can be translated into a commonly used archi-
tectural pattern of Model-View-Controller (MVC, see [6]) where the application
logic is equivalent to the controller layer.

This paper is an attempt to capture application logic flows that occur in
repeatable form within various software systems. It can be noted that such flows
of events are contained in the well-known use cases [7,8]. Use cases comprise
scenarios that define the dialogue (interaction) between the user and the system,
causing actions performed by the system, within a given problem domain. In
order to be able to repeat such scenarios in various contexts we would need
to abstract over any specific problem domain. We thus propose to extract pure
application logic, taking away all the specifics of a problem domain. This way we
introduce patterns that comprise generic application logic that can be used in
many domain contexts. At the same time we propose to introduce mechanisms for
fast application of such patterns. These mechanisms include a precisely defined
application logic language where the links to an abstract domain can be easily
substituted by the links to a specific domain. With the use of a dedicated tool,
the developers can instantly instantiate the chosen patterns by “switching” from
abstract notions to those from the current problem domain. We propose an
initial library of such easily instantiable patterns. The library can be extended
with additional variants of the proposed patterns. What is also important, the
growing library can be searched through for the most relevant patterns, suitable
for the given problem domain and its logic.

In the following sections we will introduce and define the Application Logic Pat-
terns (ALP) and give an overview of the pattern library. We will also present the
definition of the pattern language though a meta-model. This meta-model is im-
plemented within a tool which will be also presented. The tool was used to perform
an experiment to acknowledge applicability of the presented ALP concept.

2 Related Work

The idea of extracting abstract application logic can be seen as inspired by pa-
rameterised use cases, proposed by Cockburn in [8]. Cockburn gives an example
of the “Find a whatever” use case, leaving the construction of other such use cases
to the readers. Our approach is even closer to that proposed (but not elaborated
in further literature) by Robertson [9]. Robertson proposes to connect require-
ments scenarios with “data patterns”. Such scenarios contain references to data
processing operations within the data models. This paves the way to constructing
abstract application logic separated from the domain logic. A similar approach
was described in [10] where natural language scenarios were analysed for regu-
larities independent of problem domain which can lead to formulating patterns.



Application Logic Patterns 243

It is important that this last approach uses models in the form of a “lexicon” of
domain elements independent of the scenario flows (see also [11]). The flows con-
tain natural language sentences with “episodes” referring to the notions in the
lexicon. The episodes are written in constrained natural language defined with a
formal grammar. Another approach to scenario-based requirements patterns is
introduced (but not elaborated further) in [12]. In this solution, an atomic reuse
unit for composing scenario sentences is a case frame which forms a controlled
grammar similar to the one of episodes. An even more precise specification of
scenarios related to external domains is included in the Requirements Specifica-
tion Language (RSL). An overview and the language reference can be found in
[13] and [14] respectively. In RSL, the “lexicon” or “terminology” is additionally
mapped onto individual domain models. This way, the various terms used within
the scenarios can be related to a specific domain. Moreover, the individual in-
teractions or system actions (scenario sentences) are written in a very simple
language inspired by [15] and also similar to essential use cases (see [16]). The
RSL constructs have been the basis for constructing the current ALP language.
This is due to the existence of ready tool support and good acceptance of the
language in the industrial contexts (see validation report in [17]).

The above (quite sparse throughout the past 15 years) approaches to formu-
late application logic patterns do not offer any systematic library of patterns
in the form of reusable models. On the other hand, the idea of patterns within
the requirements discipline is somewhat dominated by two prominent books in
the area of use case patterns [18,19]. The first of these books still does not offer
reusable models but rather best practices in writing use cases. The second book
finally proposes a set of reusable models, but stops at the level of detail of what
can be called the “use case interrelations”. This evident gap has been recently
filled by Langlands [20]. He proposes a systematic set of patterns that define
detailed flows of interactions and system actions, and which he calls “patterns
inside the use case oval”. The flows are generalised and described using activ-
ity diagrams and simple natural language. Our approach is quite similar in this
respect but we extend this significantly by proposing a systematic and unam-
biguous way to link an external abstract domain which enables semi-automated
instantiation of patterns.

3 Introducing Application Logic Patterns

In summary, we would like our patterns to possess characteristics of Cockburn’s
parameterised use cases, defined both at the level of Overgaard&Palmkvist’s
high-level use case patterns and Langlands’ use case content patterns. At the
same time we want them to be associated with an abstract problem domain,
easily substitutable by a concrete one. In this section we will give a definition of
such patterns and substantiate it with simple examples.

Definition. “An Application Logic Pattern (ALP) is one or more closely related
use cases together with their representations describing the details of application
logic (cf. controller in the MVC pattern). These representations are described



244 A. Ambroziewicz and M. Śmia�lek

Fig. 1. “Select Resource” ALP - use case level and representation level

ALP instanceALP

Abstract domain Concrete domain

resource

systemactor customer
web store

list of products

...
(Actor) 

wants to 
select 

(resource)

(System) 
shows (list 

of 
resources)

(
s

(re
fro
res

list of resources

Customer 
wants to 

select 
product

WebStore 
shows list 
of products

product

Fig. 2. Example of ALP Instantiation

by sequences of interactions between abstract actor(s) and a system and system
actions defining an abstract observable behaviour of the system (abstract events).
The sequences can have conditions determining the event flow. The events are
defined with simple imperative sentences containing only references to an ab-
stract problem domain. Instantiation of a pattern is performed by substituting
references to the abstract domain with references to a specific one.”

To illustrate the above definition we will now present a simple pattern shown
in Figure 1. It is written in a strictly defined ALP language. The general no-
tation is taken from UML’s [21] use case and activity models. For the use case
and action names it follows the notation of SVO (subject-verb-object) sentences
found in RSL [14]. As pointed out in [15], this notation is satisfactory to describe
unambiguously the atomic actor – system interactions and internal system ac-
tions. What is characteristic for the ALP notation, are the links to an abstract
domain, central to all the patterns. These links are highlighted (here: by putting
in brackets). Every subject and object in the use case name and scenario steps
(actions in the activity) are linked to appropriate abstract notions. It can be
noted that these highlighted links to the central abstract domain elements are
the “parameters” of the pattern.

The parametrisation process consists in setting concrete “values” to the pattern
“parameters”. This is illustrated in Figure 2. In each of the ALP’s actions we sub-
stitute abstract notions (e.g. “resource”)with corresponding concrete notions from
the problem domain at hand (e.g “product”, for a WebStore system). It should be



Application Logic Patterns 245

stressed that this substitution is performed only once for all the used patterns. In
general, we substitute the whole abstract problem domain with a concrete one.

The activity diagram in Figure 1 contains also nodes that follow the UML’s
CallBehaviourAction notation (see [21]). These nodes are marked with a stereo-
type (�insertion point�) and denote possible inclusion of activities from other
ALPs. The insertion points (cf. extension points in UML) are ordered and the
ordering sequence is indicated by a number in brackets. An example for such
interaction flow inclusion is shown in Figure 3 which presents another ALP. The
“(Resource) Transfer” ALP utilises the previously introduced “Select (resource)”
by inserting its activity into the first insertion point. This insertion is denoted
through a new �invoke� relationship (a control flow in the activity diagram).
It can be noted that for the purpose of defining ALPs unambiguously we do
not follow the tangled semantics of UML use cases with the �include� and
�extend� relationships. Instead we use semantics introduced already in 1999
by Berg&Simons [22]. Moreover we combine the two standard relationships into
a single one which means conditional or unconditional inclusion of the activity
of the invoked use case in the place of the insertion point. It can be noted that
the patterns connected with a �utilize� relationship can pass domain elements
as “parameters” (see Fig. 3 bottom). This can be also shown in the activity
diagrams where data flows pass appropriate domain elements (e.g. “resource”)
and also certain conditions based on the status of these elements are possible
(see Fig. 3 top). The invocation relationships can be also used at the level of use
cases. This is shown in Figure 4 which depicts the “Manage (resource)” pattern
(equivalent to the CRUD pattern from e.g. [19]).

Fig. 3. “Transfer Resource” ALP - representation level and relation to another pattern

Fig. 4. Use case diagram for a complex ALP



246 A. Ambroziewicz and M. Śmia�lek

Fig. 5. Core part of the ALP metamodel

4 Metamodel of the ALP Language

When designing the ALP language we wanted to fulfill several requirements.
First, we wanted its constructs to be as close to natural language as possible.
Second, we wanted to reuse the commonly accepted use case notation. At the
same time our aim was to clarify use cases and provide notation for the “abstract
use case contents”. Many of our requirements are met by the already mentioned
RSL [14]. The metamodel presented in this section is thus an extension of the
relevant parts of the RSL metamodel. An additional motivation for using the
RSL metamodel was that it provides means to define automatic transformations
to design and code (see [23]). This way, the instantiated ALPs can obtain runtime
semantics through the introduced transformations up to code.

At the level of use cases, our metamodel significantly redefines the UML meta-
model [21]. This is due to its many ambiguities (see e.g. [24]). We introduce the
invocation relationship that substitutes the ambiguous include and extend re-
lationships. For the description of the actual application logic we have chosen
the basic notation of UML activities. However, we also advocate purely textual
concrete notation (consistent with the presented abstract notation), as shown in
the following sections. The basic idea is that every unit of functionality (here: a
use case) has its logic represented by sets of sentences (action sentences, control
sentences, conditions). These sentences point to elements of an abstract vocab-
ulary, that is clearly separated from the flow of “events”. This way we have easy
access to the contents of a use case (pure application logic of the system) and, at
the same time, links to a coherent vocabulary used by this logic. The vocabulary
notions that occur in the logic can be easily parameterised – the links just have
to be “rewired” to point at concrete concepts in a concrete vocabulary. Both the
vocabulary and the set of use cases corresponding to that vocabulary are placed
in a container called the ALP.

Figure 5 shows the top-level metamodel. An ApplicationLogicPattern is a con-
tainer for other pattern elements (hence specialisation from the UML’s Package).
Every ALP contains one AbstractDomain and one AbstractLogic. The abstract



Application Logic Patterns 247

Fig. 6. Metamodel of the abstract application logic

logic is composed of one or more AbstractUseCases interrelated through Invoca-
tionRelationships (redefining use case inclusion and extension; for more details on
invocation please refer to [25]). The abstract domain contains several Abstract-
DomainElements (AbstracNotions and AbstractActors). In addition to containing
use cases, each abstract logic is represented by an ActivityDescriptor, a special-
isation of the UML’s Activity. Such descriptors can by used on diagrams like
3 (bottom part) to indicate relationships between pattern logics. The simple
metamodel for these relationships was omitted for brevity.

The details of the AbstractUseCase representation are contained in Abstrac-
tUseCaseLogic as presented in Figure 6. Being a UML Activity, the AbstractUse-
CaseLogic contains actions and conditions. Condition and ControlAction sentences
allow for branching the flow of control between scenarios within a single use case.
A special case of ControlActions are InvocationActions expressing the passing of
control to another, invoked use case. Every InvocationAction points to an In-
vocationRelationship (not shown in the diagram) between the current and the
invoked use case. Regular scenario sentences expressing interactions between the
system and an actor are SVOActions. The points of interaction in which other
patterns’ execution flows can be included by means of InvokePatternRelationships
are indicated by InsertionPointActions.

The SVOActions are composed of two elements: a Subject and a Predicate. They
point to appropriate elements of the abstract domain structured as in Figure 7.
Every Phrase is connected to a proper AbstractDomainElement constituting its
name. Phrases contain one or more Objects, each pointing to an AbstractNoun.
This multiplicity is used to handle notions like “user account” or “application
form”, that are single domain elements from the point of view of an abstract do-
main, but are composed of more than one word. Treating separate words as single
notions would disable the possibility of parameterising globally only parts of do-
main elements names (for example: “object1”, “object1 form” → “application”,
“application form”). A special type of AbstractDomainElement is AbstractNotion.
In addition to a naming Phrase, it can also contain any number of VerbPhrases as
contained “statements”. The difference between a Phrase and a VerbPhrase is that



248 A. Ambroziewicz and M. Śmia�lek

Fig. 7. Metamodel of the abstract domain

the latter, contains an additional Verb. The verbs are not replaced during pattern
parametrisation as they in fact define the application logic semantics.

5 Application Logic Pattern Library

Having the above defined ALP language we have gathered a basic library of
patterns. The individual patterns and their relationships were found during the
analysis of a large collection of so-called “software cases” (see [23]). These cases
had their requirements specifications prepared using RSL with constructs sim-
ilar to that of the ALP language. There were analysed more than 50 software
cases with more than 1000 use cases. The cases were prepared by the industrial
and academic participants of the ReDSeeDS project (www.redseeds.eu, see [26])
and students during classes on model-driven software development (see [27]).
Our analysis of this vast material showed recurring logic despite of the partic-
ular problem domains for the various systems (ranging from fitness club and
theme park, through web stores, fire brigade support, procurement systems, up
to several financial and banking systems). In summary, we have identified the
following core patterns of application logic.

1. (Resource) transfer. Describes a user – system interaction in terms of
a specification for a process of transferring a resource (see Figure 3). The
abstract transfer data may characterise e.g. the delivery target, the way to
relocate the resource and other transfer parameters.

2. Share (resource). Represents abstract functionality related to making a
resource available to some other entity of a system (e.g. another actor).
The main actor in this interaction specifies the other participating entity, to
which the system makes the resource available.

3. (Resource) partition. Describes the logic related to dividing a resource
into parts – both according to a relative and a nominal factors (the parti-
tioning type is specified by the actor).

4. Bind (resource). The logic representing abstract functionality for binding
of two resources. In the first interaction step both resources are selected by the
main actor, and then the systembinds them in themanner specifiedby the user.

5. Manage (process). This pattern contains a use case model for basic process
management – its parametrisation, initiation and stopping.

6. Manage (resource). This patterns realises the typical create-read-update-
delete (CRUD) cycle of a domain resource. Its top-level structure is presented
in Figure 4.

7. Search for (resource). Defines a sequence of interactions performed during
a typical “search” process based on parameterised search criteria. An actor is



Application Logic Patterns 249

presented a search criteria form, and the system looks for domain resources
that match the criteria. Eventually a list of found elements is shown.

8. Select (resource). This sequence of interactions allows for selecting a re-
source from a list. Its details are shown in Figure 1. This simple ALP is
the base for most of the patterns in the library, as the majority of them
necessitate resource pre-selection.

9. (Resource data) verification. Describes the interactions related to verify-
ing data entered by an actor to a system. The pattern does not depend on the
data input method, only on the description of a resource for which the data is
verified. When the verification fails, an appropriate message is shown.

10. Manage (collection). A pattern containing a use case model for basic
collection management – adding, removing and listing elements.

These patterns form a coherent structure with some selected dependencies
shown in Figure 8. It can be noted that this collection can be the starting point
for specifying more detailed and more sophisticated ALPs. The patterns we
propose contain just the most general functionality that can be easily extended
by adding scenarios to the existing ones.

Fig. 8. Selected relationships among patterns in the ALP library

6 Tool Support for ALP Management and Instantiation

We have implemented the presented library of patterns within the ReDSeeDS
tool (redseeds.sourceforge.net). The tool offers capabilities to define requirements



250 A. Ambroziewicz and M. Śmia�lek

specifications in RSL. We have adapted the tool so that the pattern library is now
formulated as a separate reusable abstract “software case”. This is illustrated
in Figure 9. The left panel shows several packages, each denoting an individual
pattern, specified within the right panel. As it can be seen, the ALP concrete
notation has been adapted to the capabilities of the tool. The scenarios are
written in purely textual format with clearly marked parts of the SVO sentences.
These parts point to abstract domain elements (not shown in the Figure).

Whenever we want to reuse the patterns, we can refer to the pattern software
case and import relevant patterns to our current workspace. This is illustrated in
Figure 10. The first step is to create a new use case (“Selecting product”). The
analyst now selects a relevant pattern (“Select (resource)”) and imports it to the
current concrete use case. The abstract scenario sentences fill-in the previously
empty use case. Then, the analyst adapts the domain elements by changing their
abstract names to concrete ones (e.g. “resource” to “product”). If this domain
adaptation was done previously, the last step is performed automatically by the
tool (adaptation needs to be done only once for all the reused patterns).

The above reuse scenario can be applied when the analyst already knows
which pattern from the library is applicable to the specific concrete use case.
In less evident cases, the ReDSeeDS tool provides search capabilities allowing
to determine similarity between the current use case model and the individual
patterns (similarity ratio is computed using a combination of description logic,
information retrieval, case-based reasoning, taxonomies and graph comparison,
see [28] for more details). This can be done even with the sketched use case
names and/or skeleton scenarios (one-two sentences). The tool can suggest pat-
terns and shows how the abstract domain is similar to the currently modelled
one. This is illustrated in Figure 11. The tool can show the abstract domain
elements that can be instantiated, together with the level of their similarity to
the concrete domain elements. This is based on advanced matching mechanisms
described in [28]. These mechanisms function even when the terminology used
by the analyst is different (but semantically close) to the terminology within the
patterns (different verbs denoting actions within the application logic).

Fig. 9. Managing ALPs within the ReDSeeDS tool



Application Logic Patterns 251

Fig. 10. Using the ReDSeeDS tools to instantiate an ALP

Fig. 11. Finding a similar ALP

7 ALP Validation Experiment

In [29] there was reported high reuse potential for use cases. It has been shown
that in a typical system, the majority of use cases can be reused either within
a given problem domain or independent of the domain. In the current study we
wanted to acknowledge these levels of reuse for the ALPs. We also wanted to
determine the gains in productivity when using ALPs with the tooling framework
presented in the previous section. For this purpose we have arragned a simple
experiment perfomed by one of the authors (analyst experienced in RSL).



252 A. Ambroziewicz and M. Śmia�lek

The experiment was performed in two major steps. First, a simple requirements
specification for the customer-related part of an on-line store was created. The
requirements model (use cases and scenarios) was created in RSL without using
the ALPs deliberately in the ReDSeeDS tool. Thus, the scenario sentences were
written from scratch, using the RSL notation on this specific problem domain.
The specification consisted of 11 use cases divided into two packages. Each of the
use cases was described by at least one scenario. Altogether, the application logic
contained 45 sentences (SVO, conditional and invocation). The final domain spec-
ification consisted of a single actor (the store customer), a single system element
(the store system itself) and 14 domain elements containing 28 phrases. In the
second step of the experiment, there were deliberately used the patterns from the
library to create the same application logic as in the first step. Three patterns
hand-picked from the library were used: Manage process, CRUD and Manage col-
lection (see Table 1 for details). After the selected patterns were imported, there
was made a decision on which pattern elements are actually suitable and they were
complemented with the elements not present in the ALP library.

The ALP adaptation process during the the experiment, is illustrated through
an example in Figure 12. The requirements specification initially contains the
“Requesting re-stock notification” use case. Its scenario was written in full dur-
ing the first step, and then reused from patterns during the second step. In this
second step, there has been found a suitable pattern in the library (see the “Pat-
tern Selection” arrow pointing at the “Start (process)” use case, being part of the
“Manage (process)” pattern). The pattern is imported (the “Pattern Import”
arrow) using the ReDSeeDS tool mechanisms (see the previous section). In the
Figure, the dashed arrows indicate patterns inserted into the chain of imported
logic (“Manage (process)/Start (process)” invokes “CRUD pattern/Create (re-
source)”, which in turn invokes “Data validation pattern”, ...). The solid arrows
indicate reused sentences. Please note that some of the imported pattern sen-
tences are not reused in the resulting scenario – the analyst has discarded them
when importing the patters as not necessary in the current context. The bottom
of the Figure shows a two-step domain adaptation. First, an abstract domain
for the resource management pattern (“CRUD”) is adapted to comply with the
abstract domain of the “Manage (process)” pattern. Finally, it is instantiated to
become the on-line store domain.

The experiment showed that the above instantiation procedure can be per-
formed very quickly with the use of the ReDSeeDS tool. The most time consuming
part is the instantiation of the problem domain. However, this is comparable to
the time it took to introduce the problem domain from scratch (in the first step
of the experiment). Having this task done, the instantiation process is as fast as
selecting the pattern, importing all the included sentences (one click) and delet-
ing the ones that are redundant or irrelevant. This was significantly faster than
creating the same scenarios from scratch. It has to be noted that the first step was
performed by a person that knows the patterns and they were in fact reused from
his memory. For a less skilled analyst we could assume additional gains trough the
possibility to reuse the logic itself which is not initially mastered by that analyst.



Application Logic Patterns 253

Fig. 12. Requirements model used in experiment with example APL reuse

Table 1. Use cases and patterns with their reuse ratios

Package Use Case Pattern used Sentence
reuse

Domain
el. reuse

Discarded
pattern
sentences

Shopping

Browsing shopping cart

Collection 79% 44% 0
Adding product to cart
Changing item quantity
Removing product from
cart

Orders

Browsing order history CRUD (Browse) 67% 50% 0
Requesting re-stock noti-
fication

Manage process
(Start process)

100% 100% 6

Browsing products CRUD (Browse) 60% 50% 0
Reviewing order CRUD (Read) 100% 100% 3

Weighted mean: 71% 64% Sum: 9

In addition to the above qualitative analysis, we have also gathered quantita-
tive data. We have counted the reused elements with the granularity of individ-
ual sentences (SVOs, conditions, invocations) and domain elements. The number
of reused elements was compared with the size of the original specification (first
step) giving the resulting “reuse ratio”. For instance, in the example in Figure 12,
all the sentences and domain elements were reused, so the reuse ratio is equal to
1. This result can be found in Table 1 (the 3 use cases for which no patterns were
used are not included in the table, but wre taken into account for calculations).
We have also counted the sentences that were discarded and not re-used from the



254 A. Ambroziewicz and M. Śmia�lek

patterns (negative factor in the reuse process). This is given in actual numbers in
the last column of the Table. The last row in Table 1 contains the mean of reuse
ratios. This has been weighted with the number of sentences in each of the use
case scenarios. In summary, the ratio of sentences that could not be reused was
29% (13 out of 45). There were 36% domain elements (5 out of 14) and 36% verb
phrases (10 out of 28) that had to be additionally introduced.

8 Conclusion and Future Work

The presented library of patterns offers certain advantages over the previous
approaches. The patterns are written in a coherent language defined through
a meta-model. Its level of detail and domain-related coherence allows for con-
structing requirements specifications that are transformable into design models
(as shown in [23]). This places the presented ALPs in the mainstream of model-
driven development with all the benefits of automatic transformations. At the
same time, the ALP approach promises significant gains in productivity for re-
quirements specifiers alone. The presented experiment, although being simple,
showed the potential to reuse up to even 2/3-3/4 of the application logic for
a typical business software system. We plan to extend this experiment by ap-
plying the ALPs to several business cases with more participants include less
skilled ones (students). Moreover, this reuse can be automated to significant ex-
tend with the presented tooling. This gives a motivation to continue research
in this direction. We plan to extend the current simple pattern library into an
evolvable pattern repository. The patterns could be defined at various levels of
detail and in various variants. This kind of repository could be searched through
with queries based on partial use case models. The search engine would then
offer several variant patterns that could be discussed with the client and ap-
plied instantly. The new solutions could be inserted back to the repository as
additional variants of the existing patterns (including domain-specific variants).

References
1. Alexander, C., Ishikawa, S., Silverstein, M.: A Pattern Language: Towns, Buildings,

Construction. Oxford University Press, Oxford (1977)
2. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns. In: Elements of

Reusable Object-Oriented Software. Addison Wesley, Reading (1995)
3. Fowler, M.: Analysis patterns: reusable objects models. Addison-Wesley Longman

Publishing Co., Inc., Boston (1997)
4. Fowler, M.: Patterns of Enterprise Application Architecture. Addison-Wesley Long-

man Publishing Co., Inc., Boston (2002)
5. Bjørner, D.: Role of domain engineering in software development - why current

requirements engineering is flawed! In: Pnueli, A., Virbitskaite, I., Voronkov, A.
(eds.) PSI 2010. LNCS, vol. 5947, pp. 2–34. Springer, Heidelberg (2010)

6. Reenskaug, T.: Models-views-controllers. Technical note, Xerox PARC (1979)
7. Jacobson, I., Christerson, M., Jonsson, P., Overgaard, G.: Object-Oriented Soft-

ware Engineering: A Use Case Driven Approach. Addison-Wesley, Reading (1992)
8. Cockburn, A.: Writing Effective Use Cases. Addison-Wesley, Reading (2000)



Application Logic Patterns 255

9. Robertson, S.: Requirements patterns via events/use cases. Technical report, At-
lantic Systems Guild Ltd. (1996)

10. Ridao, M., Doorn, J., Leite, J.C.S.d.P.: Domain independent regularities in scenar-
ios. In: Proceedings of the RE 2001, pp. 120–127 (2001)

11. Leite, J.C.S.d.P., Hadad, G.D.S., Doorn, J.H., Kaplan, G.N.: A scenario construc-
tion process. Requirements Engineering 5, 38–61 (2000)

12. Watahiki, K., Saeki, M.: Scenario patterns based on case grammar approach. In:
Proceedings of the RE 2001, pp. 300–301 (2001)

13. Śmia�lek, M., Ambroziewicz, A., Bojarski, J., Nowakowski, W., Straszak, T.: In-
troducing a unified requirements specification language. In: Proc. CEE-SET 2007,
Software Engineering in Progress, Nakom, pp. 172–183 (2007)

14. Kaindl, H., Śmia�lek, M., et al.: Requirements specification language definition.
Project Deliverable D2.4.1, ReDSeeDS Project (2007), http://www.redseeds.eu

15. Graham, I.M.: Task scripts, use cases and scenarios in object-oriented analysis.
Object-Oriented Systems 3(3), 123–142 (1996)

16. Constantine, L.L.: What do users want? Engineering usability into software. Win-
dows Tech Journal (1995, rev. 2000)

17. Mukasa, K.S., et al.: Requirements specification language validation report. Project
Deliverable D2.5.1, ReDSeeDS Project (2007)

18. Adolph, S., Bramble, P., Cockburn, A., Pols, A.: Patterns for Effective Use Cases.
Addison Wesley, Reading (2002)

19. Overgaard, G., Palmkvist, K.: Use Cases: Patterns and Blueprints. Addison Wesley,
Reading (2005)

20. Langlands, M.: Inside the oval: use case content patterns. Technical
report, Planet Project (2010), http://planetproject.wikidot.com/

use-case-content-patterns
21. Object Management Group: Unified Modeling Language: Superstructure, version

2.2, formal/09-02-02 (2009)
22. van den Berg, K.G., Simons, A.J.H.: Control flow semantics of use cases in UML.

Information and Software Technology 41(10), 651–659 (1999)
23. Śmia�lek, M., Kalnins, A., Ambroziewicz, A., Straszak, T., Wolter, K.: Compre-

hensive system for systematic case-driven software reuse. In: van Leeuwen, J.,
Muscholl, A., Peleg, D., Pokorný, J., Rumpe, B. (eds.) SOFSEM 2010. LNCS,
vol. 5901, pp. 697–708. Springer, Heidelberg (2010)

24. Astudillo, H., Génova, G., Śmia�lek, M., et al.: Use cases in model-driven software
engineering. In: Bruel, J.-M. (ed.) MoDELS 2005. LNCS, vol. 3844, pp. 262–271.
Springer, Heidelberg (2006)

25. Śmia�lek, M., Bojarski, J., Nowakowski, W., Ambroziewicz, A., Straszak, T.: Com-
plementary use case scenario representations based on domain vocabularies. In:
Engels, G., Opdyke, B., Schmidt, D.C., Weil, F. (eds.) MODELS 2007. LNCS,
vol. 4735, pp. 544–558. Springer, Heidelberg (2007)

26. Jedlitschka,A.,Mukasa,K.S.,Weber,S.:Case reuseverificationandvalidation report.
Project Deliverable D6.2, ReDSeeDS Project (2009), http://www.redseeds.eu

27. Szmur�lo, R., Śmia�lek, M.: Teaching software modeling in a simulated project en-
vironment. In: Kühne, T. (ed.) MoDELS 2006. LNCS, vol. 4364, pp. 301–310.
Springer, Heidelberg (2007)

28. Wolter, K., Śmia�lek, M., Hotz, L., Knab, S., Bojarski, J., Nowakowski, W.: Map-
ping mof-based requirements representations to ontologies for software reuse. In:
CEUR Workshop Proceedings (TWOMDE 2009), vol. 531 (2009)

29. Issa, A., Odeh, M., Coward, D.: Using use case patterns to estimate reusability in
software systems. Information and Software Technology 48, 836–845 (2006)

http://www.redseeds.eu
http://planetproject.wikidot.com/use-case-content-patterns
http://planetproject.wikidot.com/use-case-content-patterns
http://www.redseeds.eu


D.C. Petriu, N. Rouquette, Ø. Haugen (Eds.): MODELS 2010, Part I, LNCS 6394, pp. 256–270, 2010. 
© Springer-Verlag Berlin Heidelberg 2010 

A Metamodel-Based Approach for Automatic User 
Interface Generation 

António Miguel Rosado da Cruz1 and João Pascoal Faria2 

1 ESTG-Instituto Politécnico de Viana do Castelo, Av. do Atlântico, s/n 4900-348 Viana do 
Castelo, Portugal 

miguel.cruz@estg.ipvc.pt  
2 Faculdade de Engenharia da Universidade do Porto / INESC Porto,  

Rua Dr. Roberto Frias, s/n 4200-465 Porto, Portugal 
jpf@fe.up.pt 

Abstract. One of the advantages of following a MDA-based approach in the 
development of interactive applications is the possibility of generating multiple 
platform-specific user interfaces (UI) from the same platform independent UI 
model. However, the effort required to create the UI model may be significant. 
In the case of data-intensive applications, a large part of the UI structure and 
functionality is closely related with the structure and functionality of the do-
main entities described in the domain model, and the access rules specified in 
the use case model. This paper presents an approach to reduce the effort re-
quired to create platform independent UI models for data intensive applications, 
by automatically generating an initial UI model from domain and use case 
models. For that purpose, UML-aligned metamodels for domain and use case 
models are defined, together with a MOF-based metamodel for user interface 
models. The transformation rules that drive the UI model generation are intro-
duced. It is also proposed a MDA-based process for the development of data in-
tensive interactive applications based on the proposed model architecture and 
transformations. 

Keywords: MDD, MDA, Metamodel, User Interface Automatic Generation, 
Model Transformation. 

1   Introduction 

Model-driven development (MDD) is mainly focused on platform independent mod-
eling activities rather than programming activities. This allows software engineers to 
focus on concepts of the problem domain, and the way they shall be modeled in order 
to produce a software solution, rather than being distracted by technical issues of the 
solution domain. Within an MDD setting, code can be automatically generated from 
models to a great extension, dramatically reducing the most costly and error-prone 
aspects of software development [1]. 

Model-driven development of interactive applications enables the generation of 
multiple platform-specific user interfaces (UI) from the same platform independent 
UI model. However, the effort required to create the UI model may be significant. In 



 A Metamodel-Based Approach for Automatic User Interface Generation 257 

the case of data-intensive applications, a large part of the UI structure and functional-
ity is closely related with the structure and functionality of the domain entities de-
scribed in the domain model, and the access rules specified in the use case model. 
This paper presents an approach to reduce the effort required to create platform inde-
pendent UI models for data intensive applications, by automatically generating an 
initial UI model from domain and use case models. 

The approach presented is based on a well identified subset of UML that permits 
the construction of a complete and rigorous platform independent model (PIM) of a 
software system (including constraints and actions), and extends that UML subset 
with new metamodel elements, that turn possible the model-driven automatic genera-
tion, by model transformation, of a User Interface Model (UIM), and the model-to-
code generation of a final application from the rigorous PIM. The generation of a PIM 
level UIM allows its configuration and/or modification prior to generating the final 
code. The main contributions of this paper are: 

 

• the definition of a process for the automatic generation of user interface mod-
els and executable prototypes from domain and use case models; 

• the definition of a UI metamodel that allows the platform independent model-
ing of the UI structure and of the bindings from the UI structure to the domain 
model, therefore providing a set of models that contains all the information for 
generating a fully executable prototype; 

• extensions to the UML metamodel, that better enable taking profit of the 
model features when generating the UIM; and,  

• the description of a set of transformation rules that allow the derivation of a 
default UIM from the Domain Model (DM) and Use Case Model (UCM). 

 

In previous work [2, 3], we informally defined extensions to the DM and UCM to 
better support UI generation, and explained how DM and UCM features could be 
mapped into UI features. In this paper, we formalize the extensions to the DM and 
UCM by specifying the metamodels that they shall conform to, formalize the UIM 
metamodel, and define the transformation rules in terms of those meta-models. 

Although not detailed in this paper, the research work that yielded the presented 
approach is supported by a proof of concept tool and has been validated through two 
case studies [4]. 

The proposed process is presented in the next section together with the contextuali-
zation of the presented metamodels within the UML metamodel. In the following 
sections, the metamodels for DM, UCM, and UIM are introduced. Section 6 presents 
the transformation rules for automatically obtaining a UIM from the DM and UCM. 
Section 7 briefly overviews related work. Finally, some conclusions are drawn to-
gether with some proposals for future work. A running example is used along the 
paper to illustrate the approach. 

2   Proposed Generation Process and Model Architecture 

The approach proposed in this paper comprises an iterative development process that 
enables the automatic generation of UI models from early, progressively enriched, 
platform independent system models, and a metamodel defining the concepts that 



258 A.M.R. da Cruz and J.P. Faria 

allow a platform independent system modeling according to 3 views: a structural 
view, that is established through a DM; a functional view, defined by a UCM; and, a 
user interface view, defined through a UIM. After the modeling activity and the UIM 
generation step, in each iteration, the approach permits the generation of an executa-
ble user interface prototype (UIP), which enables the complete model validation by 
other stakeholders besides the modeler himself.  

The DM represents the business entities and events of the problem domain, just 
like intended by the Unified Process [5]. 

The process, illustrated in Fig. 1, starts with the construction of a UCM and a DM 
that conform to a metamodel that specializes and extends UML [6, 7]. A simple UI 
can be automatically generated from the DM specification (by a model to model 
transformation process from DM to UIM, followed by a model to code transforma-
tion) supporting only the basic CRUD operations (Create, Retrieve, Update and De-
lete) and navigation along the associations defined. In subsequent iterations, the DM 
can be refined, and more information can be added to it, allowing the generation of 
richer user interfaces, and application prototypes. 

 

 
Fig. 1. Proposed generative UI development process  



 A Metamodel-Based Approach for Automatic User Interface Generation 259 

When desired, the modeler may develop a UCM. In the proposed approach, there is 
a full integration between the UCM and the DM, as use case specifications are estab-
lished over the structural DM. The UCM enables the separation of functionality by 
actor, and its customization (e.g.: hiding functionality for some actors). A correspond-
ing UIM and a UIP are then automatically generated from both the DM and the UCM. 

Figure 2 contextualizes the metamodel defined for this approach by dividing it in 
three packages corresponding to the referred model views and relating them to the 
UML and MOF. 

 

 

Fig. 2. Metamodel contextualization  

MOF provides the concepts for defining the UML metamodel, which is stratified in 
language units used for defining compliance levels[6, 7]. Compliance level 0 (L0) has 
a single language unit that enables modeling of class-based structures, and is formally 
described as the UML Infrastructure, or package Core, which is shared between MOF 
and the UML. Level 1 (L1) adds language units and extends the capabilities of L0 for 
use cases, interactions, structures, activities and actions, and L2 adds language units 
and extends the capabilities of L1 for state machine modeling and profiles. 

The Domain Metamodel (DMM) and the Use Case Metamodel (UCMM) are par-
tially merged with UML L2, incrementally adding features to some of its elements, by 
specializing or redefining other metamodel elements [7]. 

The User Interface Metamodel (UIMM) is defined conforming to the MOF meta-
metamodel and imports features from the DMM, which enable model integration. 

3   Metamodel for Domain Models 

The metamodel for domain models is depicted in Figures 3 and 4, and specializes and 
extends the UML language unit for class diagrams [6]. The reused UML elements are 
shaded and the ones that have been modified, either by adding or specializing features, 
have only the name compartment shaded. The modified UML elements are Class  
 
 



260 A.M.R. da Cruz and J.P. Faria 

+navigableO
w

nedE
nd

+m
em

berE
nd

0.
.1

+/
de

riv
ed

A
ttr

ib
ut

e

*

+ow
nedEnd

 

Fig. 3. Metamodel for Domain Models (structural features) 
 

*

*

0.
.1

 
 

Fig. 4. Metamodel for Domain Models (behavioral features) 

(with an alias “Entity”), Property and Operation. Entity (Class) has a new attribute, 
isNavigationRoot, that enables the identification of an entry point for navigating in the 
structure. This is useful when generating a UIM from the DM alone, without the devel-
opment of a UCM. BaseEntity and DerivedEntitiy specialize the modified UML Class 
and inherit all its features, semantics and concrete notation. The BaseEntity models a 
problem domain persistable concept in a platform independent manner. Property has a 
new attribute, isIdent, which enables the identification of properties that are used by the  
 



 A Metamodel-Based Approach for Automatic User Interface Generation 261 

business user as an instance identification or summarization structural feature. This is 
different from a unique identifier. 

Operation is extended in order to comprise, besides operations that are user-defined 
in an Action Semantics-based language, the basic CRUD operations (CRUDop) that 
are considered to exist by default for instances of every BaseEntity (see Fig. 4). 

The DM metamodel adds new model elements to the UML metamodel, easing the 
purpose of constructing a complete and rigorous PIM. DerivedEntity and  Domain-
Trigger deserve further explanation. 

3.1   Derived Entities 

A DerivedEntity models an interesting view in the problem domain (e.g. a business 
view). DerivedEntities are non-persistent domain entities with a structure closer to the 
business domain, like a business document, and so closer to the UI needs. A Derive-
dEntity must target a BaseEntity that acts as the root for referencing derived attrib-
utes. It is treated essentially as a virtual specialization of the target BaseEntity, possi-
bly restricted by a membership constraint and extended with derived attributes. It may 
also hide attributes from the target BaseEntity. A Derived Entity may be distinguished 
by having its name preceded by a slash in a concrete notation. 

3.2   Domain Triggers 

The DM metamodel includes constructs for defining domain triggers, which are used 
to capture generic business rules or to modify the default behavior of CRUD opera-
tions (CRUDop). Domain triggers are defined in the context of an Entity (see Fig. 4). 
A DomainTrigger inherits from the UML Trigger, but has only two possible kinds of 
associated events:  

• ChangeEvent: It is the UML ChangeEvent class but with the changeExpression 
association end restricted to Expression type. In standard UML it can be a 
ValueSpecification, that includes the possibility of defining an OpaqueExpression, 
which promotes the definition of platform specific expressions (e.g. Java 
expressions) within a PIM, which is considered to be a bad modeling practice [1]. 
The ChangeEvent triggers a DomainTrigger when the condition defined in the 
changeExpression holds. 

• CRUDopCallEvent. It is a specialization of UML’s CallEvent, restricted to 
CRUD operations, and with the possibility to intercept the call to an operation 
before, after or instead of calling it. It provides a way of modifying the default 
behavior of CRUD operations. A CRUDopCallEvent triggers a DomainTrigger 
before, after or instead of an identified CRUD operation call, within the con-
text of an instance of a class, enabling the reinforcement of business rules. 

 
Fig. 5 shows the DM constructed for an example Library System that will help il-

lustrate the approach along the paper. The DM has been developed in several itera-
tions and, as defined in the process presented in section 2, an executable prototype has 
been automatically generated and tested at the end of each iteration. 



262 A.M.R. da Cruz and J.P. Faria 

 

Fig. 5. Domain model (DM) for an example Library System 

4   Metamodel for Use Case Models 

The metamodel for use case models, shown in Figures 6 and 7, specializes and ex-
tends the UML language unit for use cases [7]. 

In the approach proposed, the UCM is defined in close connection with the DM, to 
specify and organize the CRUD, user-defined or navigational operations over Base or 
Derived Entities that are available for each actor. The definition of a UCM also en-
ables the use of several features, such as task-model-like relations, that permit a fine 
tuning of the interaction within a use case [8, 9], if the modeler wants to go deep in 
detailing a use case: enable, deactivate and choice. The data manipulated in each use 
case is typically determined by the domain entity (base or derived) and/or operation 
associated with it. Several constraints limit the types of use cases and UC relation-
ships that can be defined [4]. 

The UCM metamodel extends UML and modifies standard elements UseCase, Ex-
tend and Operation. The UML UseCase has been added attributes that enable a 
smooth integration between a UCM and the respective DM. 

A UseCase may identify an entity class (BaseEntity or DerivedEntity) from the 
DM. If a BaseEntity is identified, then it is possible to restrict the CRUD operations 
available, by associating only the allowed CRUD operations to the UseCase. 

It has been defined a merge increment to the UML Extend class, for being possi-
ble to associate to it a link name and an aggregation operation. The association of an 
aggregation operation to an Extend only makes sense when the Extend is about an 
entity collection use case, in which case the associated aggregation operation must 
belong to the operations associated to the extended use case. Operations may be user-
defined in an Action Semantics-based action language, or may be the basic CRUD 
instance operations that are defined by default in every BaseEntity. 

 



 A Metamodel-Based Approach for Automatic User Interface Generation 263 

Classifier

Actor

RedefinableElement

-name : String
NamedElementDirectedRelationship

ExtensionPoint

+linkName : String
Extend Include

+extension1

+extend*

-includingCase1

-include*

+extendedCase1

*

+addition1

*

1*1..*

*

Constraint

0.
.1

+condition0..1

+subject
*

+usecase*

0..1

*

BehavioredClassifier

+entityCollection : Boolean = False
UseCase

+isNavigationRoot
Entity

+entity0..1

0..*

UseCase

Enable Deactivate Choice

+enablingCase 1

+enable *

+enabled
Case

*

1
+deactivating

Case 1

+deactivate *

+deactivated
Case

*

1

0..1

+alternativeCase2..*

 

Fig. 6. Metamodel for Uose Case Models 

*

 
Fig. 7. Possible Use Case relations to Domain Model elements 

One can distinguish two categories of use cases, which have been addressed in [2]: 
• Independent use cases, that can be initiated directly, and so can be linked di-

rectly to actors (that initiate them) and appear as application entry points. 
• Dependent use cases, that can only be initiated from within other use cases, 

called source use cases, because they depend on the context set by the source 
use cases; the dependent use cases extend or are included by the source ones, 
according to their optional or mandatory nature, respectively. 

 

As can be seen in Fig. 7, a use case may be associated to an entity class in the DM. 
If the modeler wants to reach a higher degree of detail, a use case may also be as-

sociated to an operation, entity attribute or a set of use case variables. This kind of use 
cases must be included in another use case, through an «include» relation, that  



264 A.M.R. da Cruz and J.P. Faria 

“aggregates” them, sets the entity context and is able to bind variables to operations’ 
parameters, or a specialization relation between use cases, that has the same effect as 
include, but lets the specialized UC inherit all inclusions, extensions and meta-
attributes of the parent UC. Without losing the tight relation between the UCM  and 
the DM, this enables the highest degree of flexibility in the UCM definition in order 
to better define what one wants to see generated in the UI model.  

Fig. 8 shows the UCM for the Library System example, which is fully integrated 
with the DM. Table 1 partially shows the entity types and operations associated (via 
tagged values) with some of the use cases. Fig. 8 includes UC “Register New Loan”, 
which is detailed by using specialized use cases and including, and enabling relations.  

 

Librarian

List Books

Manage Books

Edit Book

«extend»

List Loans

Manage Loans

Add Loan
«extend»

BorrowerList Books

View Books

View Book Details

«extend»

Add a new Book
«extend»

Edit Loan

«extend»

List BookCopies

«extend»

«include»

«include»

Select BookCopy

Select Borrower

«include»

«include»

«include»

«include»

Add BookCopy

«extend»

Edit BookCopy

«extend»

Register New Loan

Select Borrower

Create Loan
Create Borrower

«enable»

Register Loan to
existing Borrower

Register Loan to
new Borrower

«include»
«include»

«include»

«enable»

 

Fig. 8. Partial Use Case Model (UCM) for the LibrarySystem example 

Table 1. Entities/operations associated (via tagged-values) with use cases in Fig. 8 

Use case  entity entity 
Collection associatedOp 

List Books Book True  
Add a new Book Book False Create 
Edit Book Book False Update, Delete 
List BookCopies BookCopy True  
Add BookCopy BookCopy False Create 
Edit BookCopy BookCopy False Update, Delete 
View Book Details Book False Retrieve 
Select Borrower Borrower False Update (link) 
Create Borrower Borrower False Create 
Create Loan Loan False Create 



 A Metamodel-Based Approach for Automatic User Interface Generation 265 

 
Fig. 9. Metamodel for User Interface Model 

5   Metamodel for User Interface Models 

The proposed metamodel for User Interface models (UIM) is depicted in Figs. 9 and 
10. The proposal focus on forms-based data-intensive applications, so the developed 
UIM metamodel contains elements for modeling forms and lists, and navigating 
through them. The UIMM imports elements defined in the DMM, in order to guaran-
tee the whole system model consistency, and together have all the information needed 
to generate an executable prototype. 

The top level element from which every element in the UIMM inherits from is 
AbstractInteractionObject, or AIO. There are two types of AIO: ComplexAIO and 
SimpleAIO. The first models elements that contain other elements, and the latter 
models simple elementary objects used within complexAIO elements. 

An InteractionSpace (IS) represents an abstract object that, at PIM level, is a UI 
container where interaction occurs. An IS is composed of InteractionBlocks, 
which, in turn, are made of SimpleAIOs, like DataAIOs, that are typically associ-
ated to entity properties in the DM, or ActionAIOs. These latter may be Do-
mainOperations, like the call of a CRUD or user defined operation, operations  
for Navigation between InteractionSpaces, or UIOperations, that allow actions 
over UI elements. 



266 A.M.R. da Cruz and J.P. Faria 

 
Fig. 10. UIM Metamodel parts for the InteractionBlock subtree, in the left, and the ActionAIO 
subtree, at the right 

6   Model Transformation Rules 

According to the presented development process (see section 2) an automatic model 
transformation process is able to generate a UIM from the DM and UCM. The struc-
tural information of the UIM is derived from the DM, although its presentation may 
be restricted for some users according to what may be defined in the UCM. Although 
implemented imperatively in the proof-of-concept tool, the transformation rules were 
defined declaratively through LHS-RHS relations, in which the RHS defines the ele-
ments being generated or modified in the target model when a pattern matching is 
verified in the LHS. Due to space limitations, the mapping rules that drive the trans-
formation process from the DM and UCM to the UIM cannot be fully presented in 
this paper. A complete presentation can be found in [4].  

In what respects to structural UI information, a base domain entity is by default 
mapped to an InteractionSpace with a ViewEntity block, with a DataAIO for each attrib-
ute and ActionAIOs for the CRUD operations, depending on the context (creating a new 
instance or editing an existing instance). Inheritance is treated by creating a DataAIO for 
each inherited attribute in the ViewEntity generated for the specialized entity.  

To-many relations (associations, aggregations or compositions) are mapped to a 
ViewRelatedList block in the InteractionSpace generated for the source entity, with a 
list of DataAIOs, one for each identifying attribute of the related instances of the 
target class, and ActionAIOs for adding new instances and for editing or removing the 
currently selected instance. 

To-one relations are mapped to a ViewRelatedEntity block in the interaction space 
generated for the source class, with a DataAIO for each identifying attribute of the 
related instance of the target class. If the UIM is being generated solely from the DM, 
and if the related instance is not fixed by the navigation path followed so forth, then a 
Navigation AIO is also generated for selecting the related instance. 

Within ViewList and ViewRelatedList blocks, DataAIO objects will correspond to 
table columns in concrete representations, while in other kinds of interaction blocks 
they will correspond, for instance, to labels and text fields. 

 



 A Metamodel-Based Approach for Automatic User Interface Generation 267 

 
Fig. 11. A sample DM metamodel instance (abstract syntax), in the left, and a partial corre-
spondence to a UIM metamodel instance. 

Derived attributes map to output-only DataAIOs, and default values are mapped to 
initial values in DataAIOs. Each derived entity (view) is mapped to an interaction 
space with a ViewEntity having an input/output DataAIO for each attribute of the 
target class, an output-only DataAIO for each derived attribute, and ActionAIOs for 
the CRUD operations over the target class. 

In what respects to UI-functionality related information, from the UCM, an actor is 
mapped into an ActorMainSpace, where the actor starts its application usage experi-
ence. A Use Case Package is mapped to a menu in the actor’s main space, with a 
menu item for each UC within the package that is directly linked to the actor. 

A use case (UC) with attribute entityCollection set to true (UC of type List Entity 
or List Related Entity) is mapped to an interaction space with a ViewList or a Vie-
wRelatedList, depending if it is an independent or a dependent UC, displaying the full 
list of instances of the associated entity, with ActionAIOs for the allowed operations 
(according to the dependent use cases). 

An extension UC associated to an entity that is the “many” side of a relation with 
the entity associated to the extended UC (UC of type Select Related Entity) is mapped 
to an interaction space with a ViewList displaying the list of candidate instances, with 
ActionAIOs for selecting one instance. 

A UC with attribute entityCollection set to false (UC of type CRUD Entity or 
CRUD Related Entity) is mapped to an interaction space with a ViewEntity or a Vie-
wRelatedEntity block displaying the object attribute values, through DataAIOs, with 
ActionAIOs corresponding to the CRUD operations allowed. In the case of a related 
instance, the showed «ident» attributes of the source object cannot be edited. 

A UC associated to a user-defined operation (UC of type Call User-Defined Op-
eration) generates a CallOp within the ViewEntity corresponding to the entity where 
the operation is defined. Blocks for entering the input parameters and displaying the 
result, in case they exist, are also generated. 

A Navigation ActionAIO is typically generated from an Extend or an Include  
relationship. 
 



268 A.M.R. da Cruz and J.P. Faria 

 

Fig. 12. Excerpt of the prototype generated from the LibrarySystem 

Fig. 12 shows part of the prototype generated for the LibrarySystem, showing the 
UI flow of a Librarian actor executing use cases List Books  Edit Book. 

7   Related Work 

Few approaches in the literature allow a model-to-model generation of a UIM and 
prototype, within a MDD setting. The XIS method [10, 11], like the OO-Method [12] 
and the ZOOM approach [13] are able to produce a fully functional (executable) ap-
plication, but the demanded input models are time consuming and arduous to build. 

XIS allows two approaches to interactive systems generation: a dummy approach 
that demands the full specification of a DM, an actors’ model, and a UIM; and a smart 
approach, which enables the derivation of the UIM by demanding the construction of 
two other models, a business entities model and a use case model. This approach to 
the UIM derivation is simpler than its full construction, but it comes with the cost of 
the inflexibility of the generated UI. XIS business entities select domain entities rela-
tions to provide a lookup or master/detail pattern to the UI needed for the interaction 
inside the context of a use case [10, 11]. Like in the XIS smart approach, in our ap-
proach the modeler must attach to each use case an Entity (base or derived) from the 
DM. The difference is that, in our approach, relations between entities are inferred 
from the DM, thus not being needed a separate business entities model to provide 
higher level entities to the UCM. The relation’s selection provided by the XIS busi-
ness entities model is done, within our approach, in the UCM by modeling or not 
related use cases associated to related entities for navigating through the relations. 

Similarly to XIS and the OO-Method, in our approach CRUD operations are prede-
fined, but their default behavior may be modified through domain triggers. User de-
fined operations are not possible to specify in the XIS approach. In the OO-Method, 
user defined operations (services and transactions) can be specified by using formal 
language OASIS or, in a limited form, by specifying the way each service changes the 
object state, categorizing each attribute [12]. The OO-Method permits, as well, the 
specification of allowed states and state transitions within a class. Each state transition 
may have attached a control (guard) or triggering condition. In our approach user 
defined operations may be specified using an UML Action Semantics-based language. 



 A Metamodel-Based Approach for Automatic User Interface Generation 269 

The ZOOM approach models a system by building a graphical model, which is 
then translated to the ZOOM language [13]. The models that are demanded by the 
approach, in order to automatically generate an executable application, are: a struc-
tural model, which must contain all the classes of the application (including design 
classes); a finite state machine model that models the system behavior and is the cen-
tral communication mechanism to connect the structural model to the UI model; and, 
a UI model, which models the UI screens by using predefined components that are 
organized according to a user defined layout. 

Elkoutbi et al. [14] and Martinez et al. [15] approaches generate a UI from the 
structural, use case and UI behavioral models, but demand the attachment of UI re-
lated information (input/output fields and/or widgets) to collaboration diagrams or 
message sequence charts used to specify use case behavior. The generated output is 
only able to simulate the specified use cases through the generated UI, with no busi-
ness level application behavior. 

8   Conclusions and Future Work 

This paper addresses an approach to MDD comprising a development process and a 
UML-aligned model architecture that enable a gradual approximation to the final 
application by deriving a default UIM from early DM and UCM and an application 
prototype from these three system model views. On each iteration the system models 
are further refined in order to accommodate all the requirements and to generate a 
suitable UIM. UI look&feel is achieved by modifying the UIM, without detaching it 
from the related DM, and by applying stylesheets to the generated UI code. 

The approach proposed combines advantages of the state-of-art approaches and 
adds a few own contributions. The main distinguishing point is that it doesn’t demand 
a UIM for UI generation; instead, it is able to generate a UIM and executable prototype 
from the DM alone or the UCM also. Other points are that it takes advantage of OCL 
invariants and preconditions to generate validation routines in the executable proto-
type; adds use case relations based on constructs typically found in task-models; allows 
defining triggers activated by CRUD-operations’ invocation or by a state condition 
holding; makes use of an actions language to specify triggers and class operations [4]. 

The presented metamodels enable a complete and rigorous modeling of a data-
intensive form-based system. Being this the case of most of the business applications, 
this approach enables full final-code generation, provided that target platforms and 
architecture may influence the selection of a model-to-code generator. 

Future evolutions may include: the development of a complete support tool that 
may integrate with existing MDA or UML diagramming tools; or, the opportunity to 
specify the target architectures and feed them to a generic model-to-code generator. 

References 

1. Frankel, D.S.: Model Driven Architecture - Applying MDA to Enterprise Computing. 
Wiley Publishing, Inc., Indianapolis (2003) 

2. Cruz, A.M.R., Faria, J.P.: Automatic generation of user interface models and prototypes 
from domain and use case models. In: Proceedings of the 4th ICSOFT (ICSoft 2009), 
Sofia, Bulgaria, vol. 1, pp. 169–176. INSTICC Press (July 2009) 



270 A.M.R. da Cruz and J.P. Faria 

3. Cruz, A.M.R., Faria, J.P.: Automatic Generation of Interactive Prototypes for Domain 
Model Validation. In: Proceedings of the 3rd ICSOFT (ICSoft 2008), Porto, Portugal, 
SE/GSDCA/MUSE, pp. 206–213. INSTICC Press (July 2008) 

4. Cruz, A.M.R.: Automatic generation of user interfaces from rigorous domain and use case 
models. PhD thesis. F.E.U.P., University of Porto, Portugal (2010) (to be published) 

5. Jacobson, I., Booch, G., Rumbaugh, J.: The Unified Software Development Process. Addi-
son Wesley, Reading (1998) 

6. OMG: Unified Modeling Language (OMG UML) Infrastructure (February 2009) 
7. OMG: Unified Modeling Language (OMG UML) Superstructure (February 2009) 
8. Paternó, F., Mancini, C., Meniconi, S.: ConcurTaskTrees: A Diagrammatic Notation for 

Specifying Task Models. In: Proceedings of the IFIP TC13 Int’l. Conf. on HCI, INTER-
ACT 1997, pp. 362–369. Chapman & Hall, Ltd, Boca Raton (1997) 

9. Paternó, F.: Task Models in Interactive Software Systems. In: Handbook of Software En-
gineering and Knowledge Engineering, vol. I, pp. 817–835. World Scientific Publ., Singa-
pore (2001) 

10. Silva, A.R.: The XIS approach and principles. In: Society, I.C. (ed.) Proceedings of the 
29th EUROMICRO Conference, New Waves in System Architecture (2003) 

11. Silva, A.R., Saraiva, J., Silva, R., Martins, C.: XIS - UML Profile for eXtreme Modeling 
Interactive Systems. In: 4th International Workshop on Model-based Methodologies for 
Pervasive and Embedded Software (MOMPES 2007). IEEE Computer Society, Los 
Alamitos (2007) 

12. Pastor, O., Molina, J.C.: Model-Driven Architecture in Practice. Springer, Heidelberg 
(2007) 

13. Jia, X., Steele, A., Qin, L., Liu, H., Jones, C.: Executable visual software modeling the 
ZOOM approach. Software Quality Control 15(1), 27–51 (2007) 

14. Elkoutbi, M., Khriss, I., Keller, R.: Automated prototyping of user interfaces based on 
UML scenarios. Journal of Automated Software Engineering 13(1), 5–40 (2006) 

15. Martinez, A., Estrada, H., Sanchez, J., Pastor, O.: From early requirements to user inter-
face prototyping: A methodological approach. In: Proceedings of ASE 2002, pp. 257–260 
(2002) 



Rapid UI Development for Enterprise
Applications: Combining Manual and

Model-Driven Techniques

Arne Schramm, André Preußner, Matthias Heinrich, and Lars Vogel

SAP Research Center Dresden
{arne.schramm,andre.preussner,matthias.heinrich,lars.vogel}@sap.com

Abstract. UI development for enterprise applications is a time-consum-
ing and error-prone task. In fact, approximately 50% of development
resources are devoted to UI implementation tasks [1]. Model-driven UI
development aims to reduce this effort. However, the quality of the final
layout is a problem of this approach, especially when dealing with large
and complex domain models. We share our experience in successfully
using model-driven UI development in a large-scale enterprise project.
Our approach mitigates the problems of model-driven UI development
by combining manual layout with automatic inference of UI elements
from a given domain model. Furthermore, we provide means to influence
the UI generation at design time and to customize the UI at runtime.
Thus, our approach significantly reduces the UI implementation effort
while retaining control of the resulting UI.

Keywords: Model-Driven UI Development, UI Generation, UI Cus-
tomisation.

1 Introduction

Enterprise applications, such as the SAP Enterprise Resource Planning or the
SAP Transportation Management, are used by companies to execute and manage
their business processes. One of their main tasks is to provide CRUD (Create,
Read, Update, Delete) functionality for business objects, such as products, cus-
tomers, business partners, etc. The properties and relations of these business
objects are captured in domain models. Enterprise applications provide different
views on the domain model of a company. Developers of user interfaces (UIs) for
enterprise applications are facing a number of challenges.

1. Development Costs: Implementing user interfaces for enterprise appli-
cations is a labour-intensive and therefore costly task. Developers have to
repeat similar working steps, such as choosing widgets and binding data to
them, many times. To reduce the effort of UI creation, many model-driven
approaches [2,3,4,5] have been proposed. They use several intermediate mod-
els to describe user interfaces at different layers of abstraction [6]. Given an
appropriate tool support, developers can derive the UIs from models much

D.C. Petriu, N. Rouquette, Ø. Haugen (Eds.): MODELS 2010, Part I, LNCS 6394, pp. 271–285, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



272 A. Schramm et al.

more efficiently and in a less error-prone way than implementing them from
scratch. A drawback of this methodology with respect to the effort of UI cre-
ation is that every UI widget still has to be modelled manually. In particular,
the mapping of data fields of the domain model to UI widgets is a recurring
task that can be automated to a great extent. However, a fully automated
UI generation based on a domain model produces significantly limited inter-
faces in terms of clarity, understandability, and usability [7], especially for
complex models.

2. Diversity of Users: Users of an application can have different roles that
may require role-specific views on the data they are working with. This forces
software companies to develop diverse UIs for different groups of users, in-
stead of providing one UI that satisfies the expectations of all users [2].
Furthermore, the users of an application may have different skills and ex-
perience levels, preferences, or cultural backgrounds, and therefore different
expectations regarding a convenient UI. Thus, flexible mechanisms for UI
adaptation, and customisation are needed.

3. Software Evolution and Maintenance: Companies need to be able to
quickly respond to trends and changes in the market. Therefore, the IT
landscape of an enterprise has to support constant evolution [8]. An exam-
ple is a transportation company extending their services from nation-wide to
international transports. This affects the company’s domain model, since ad-
dresses of partners and customers now need a new attribute indicating their
country. To support setting or reading this attribute, the company needs to
change, re-compile and re-install the UI for its transportation management
system.

In our approach we address the above mentioned challenges as follows.

1. We combine the benefits of model-driven UI development with automatic
UI generation to create meaningful and user centric results with minimal
effort. The UI designer creates the layout structure of the application which
ensures the clarity, while the atomic UI widgets are automatically generated
using information from a domain model.

2. We enable developers to rapidly create a business application for a certain
domain, and adapt it to the needs of a specific user role. The user can
individually customise the resulting UI.

3. Using our approach, minor changes in the domain model, such as adding or
deleting an attribute, are automatically reflected in the UI after a restart
of the application. Structural changes, such as adding or deleting business
objects, can be incorporated in an application with little effort thanks to our
tool support.

The remainder of this paper is organised as follows. Section 2 introduces a real-
world example that is used to explain the challenges tackled by our approach. Sec-
tion 3 describes our hybrid approach for UI development combining manual and
model-driven techniques. Section 4 points out the advantages and disadvantages
of our approach by means of two industrial use cases. Section 5 lists related work



Rapid UI Development for Enterprise Applications 273

in the field of model-driven UI development and ad-hoc UI generation. Finally,
Section 6 summarizes the paper and proposes ideas for future work.

The ideas presented in this paper were partly developed in the scope of the
EU-funded ServFace project.1

2 Organisational Context and Running Example

This section gives an overview of our organizational context and its challenges
from the UI development perspective. SAP Transportation Management (SAP
TM) is a solution for transportation management. This includes applications
for the management of transportation requests, which contain, e.g., the business
partners, the source and destination locations, or the items to be transported.
The customers of SAP TM, typically transportation companies, have very dif-
ferent business models. Some offer complex transports over various locations
using diverse means of transportation, while others provide only limited trans-
port services. The differences in the business models are reflected in different
requirements for the software support. While the services offered by the SAP
TM solution are suitable for most of the customers, and thus the underlying do-
main model is the same for all these customers, the UIs have to be adapted for
each customer to match the needs imposed by the various business models. Until
today more than one million UIs have been built on top of the transportation
solution. For one customer even 1145 different UI screens have been developed.
The development of each of these UIs is a tedious and expensive effort. This mo-
tivated us to find a solution for efficient UI creation and customisation. Existing
UIs for the transportation management solution consist mainly of elements for
editing data (approximately 80%) and only a minor part (approximately 20%) is
used for navigation and administration. For this reason, we focus on the creation
of form-based editors that provide CRUD functionality for DM elements.

Running Example. To better illustrate our approach, we introduce an example
based on a simplified scenario. The application enables users to manage trans-
portation requests. The domain model for this scenario is shown in Figure 1.

The model consists of eight classes containing in total 45 attributes. Creating
a form-based editor manually would take some time even for such a small model.
Assuming that each attribute needs at least a label and a widget for editing its
value, a programmer has to define nearly 100 widgets and bind them to elements
in the domain model. In the following section we introduce our UI development
approach that reduces this effort significantly.

3 Our UI Design Methodology

In this section we describe how UIs are created following our approach. First, we
briefly outline the steps needed to create a UI from an application designer’s per-
spective. In the following subsections we explain in detail the important concepts
and components of our approach.
1 http://www.servface.eu, last visited July 9, 2010.



274 A. Schramm et al.

Fig. 1. Excerpt of the Simplified Domain Model for Transportation Requests

Fig. 2. Application design process

3.1 Application Design Process

Figure 2 gives an overview of the four steps in our application design process.

1. Create Annotations: As the starting point we assume that the domain
model for the domain, for which an application shall be developed, is given as
an EMF model (EMF = Eclipse Modeling Framework)2. The developer may
add annotations to the model to influence the appearance of the generated
UI.We do not have tool support for this step, since EMF provides excellent
tools itself.

2. Define Layout and Reference Domain Model: To create the UI, the
designer defines the layout (a), and sets references to elements of the domain
model (b) using a WYSIWYG editor.

3. Run Application: Thanks to our interpretive approach the application
can now be used without any additional generation or compilation steps.
Besides the manipulation of domain model elements, the application provides
persistency of data, and convenience features such as auto-completion.

4. Customise UI: The UI can be customised individually by the users to
adapt it to their needs. After this customisation step the application can be
used without a restart.

3.2 Model and Tool Overview

Figure 3 gives an overview of the models and tools that are used to create and
customise applications. The numbers refer to the application development steps
in Figure 2. The Final Application is generated using an interpretive approach.
2 http://www.eclipse.org/modeling/emf, last visited May 2, 2010.



Rapid UI Development for Enterprise Applications 275

Fig. 3. Model and tool overview

Input for the Interpreter are two models, the UI Container Model (UICM) and
the Domain Model (DM). While the UICM is different for each new application,
the DM is created once by domain experts, and reused for all applications for that
specific domain. The UICM is created using the UICM Editor, which is explained
in Section 3.3. The UICM contains two kinds of information, the UI container
structure, and the references to DM elements. The generation of the container
structure is detailed in Section 3.4, and the generation of UI widgets based on
the DM is explained in Section 3.5. To influence this generation, developers can
enrich the DM with UI specific meta-data using annotations, which are described
in Section 3.6. The resulting application can be customised individually using
the Profile Editor as explained in Section 3.7.

3.3 Modelling the Application – The UICM Editor

The UI of an enterprise application must be well-structured to enable users to
work efficiently. Automatic UI generation fails to create such well-structured UIs
for large and complex domain models. Therefore, we decided to let the designer
create the layout of an application’s container structure by creating instances of
the UICM.

Figure 4 shows an excerpt of the metamodel of the UICM, which we defined
using EMF. Although the number of offered UI container elements is quite lim-
ited, it is our experience that the available elements are sufficiently powerful.
Furthermore, it requires only a very low introductive training and can be used
efficiently by designers.

Figure 5 shows the UICM Editor, a WYSIWYG editor for creating form-based
applications. It consists of 5 parts: The Controls palette (1) providing the con-
tainer elements, the Data Objects palette (2) offering the DM elements, the GUI
outline containing a tree-view of the UI, the Properties view (4) for manipulat-
ing the properties of the currently selected UI element, and the Editor view (5)
that provides the modelling area and displays the WYSIWYG representation of
the application that is currently built.



276 A. Schramm et al.

Fig. 4. Excerpt of the UI Container Model

Fig. 5. UICM Editor

To describe the container structure of an application, the designer drags and
drops different container elements from the controls palette onto the modelling
area (Step 2a in Figure 2). In this manner the designer creates a hierarchy of
nested composites on different tabs3, which can contain several sections. Then
he drags and drops DM elements onto the containers. The DM elements are
anaylsed and a suitable UI representation is generated and displayed inside the
container (Step 2b in Figure 2).

The example application in the modeling area in Figure 5 contains such a
container structure. Figure 6 shows an excerpt of the XML representation of the
corresponding UICM. The application has three tabs, “Transportation Manage-
ment” (Line 3), “Shipment Details”, and “Route Details”. The first tab contains

3 Our interpreter displays tabs as pages in a multi-page editor.



Rapid UI Development for Enterprise Applications 277

Fig. 6. Excerpt of the example UICM

4 sections, “Sales Data” (Line 5), “Partners”, “Items”, and “Destination”. The
“Sales Data” section is bound to the “salesData” business object from the do-
main model (Line 6). The final application is shown in Figure 7.

Fig. 7. Final application

3.4 Interpreting the Container Model – The UICM Interpreter

Due to the reasons discussed in Section 5 we decided to use an interpretive
approach, and implemented a concrete interpreter using the Standard Widget



278 A. Schramm et al.

Toolkit (SWT).4 The interpreter follows a strict set of rules to create widgets
for the elements in the UICM. The UICM itself, however, is technology-agnostic,
and different interpreters could create different UIs from it. The transformation
rules applied by our interpreter are shown in Table 1.

Table 1. Mapping of UICM types to UI container widgets

UICM Element Type UI Container Widget

Composite org.eclipse.swt.widgets.Composite

TabFolder org.eclipse.ui.part.MultiPageEditorPart

Tab org.eclipse.ui.forms.widgets.ScrolledForm

GroupBox org.eclipse.ui.forms.widgets.Section

Table org.eclipse.jface.viewers.TableViewer

3.5 Inferring the UI Elements – The Domain Model Analyser

If the UICM interpreter finds a reference to a DM element in the UICM, the DM
Analyser takes care of creating the atomic UI widgets. Here we take advantage of
the fact that attributes of certain data types are usually mapped to a predictable
set of widgets. For example, an attribute named “customer” of type “string” is
typically represented by a label named “Customer” and an editable textbox. The
DM Analyser inspects the structure of the DM element using reflection to get
all attributes. Based on the name and type of these attributes, UI widgets are
created and placed inside the container that references the DM element. Table 2
lists the most common mapping rules for data type to widgets at runtime, and
Figure 8 shows the steps executed by the generator to process one referenced
element of the domain model. The UI designer can add annotations to the DM
to influence the behaviour of the DM Analyser (see Section 3.6).

In the example application in Figure 7 the designer dragged the DM elements
“SalesData”, “BusinessPartner”, “Item”, and “Location” into the corresponding
sections “Sales Data”, “Partners”, “Items”, and “Destination”. This set refer-
ences from the sections in the UICM to the respective elements in the DM. They
are analysed and the appropriate widgets are generated.

Table 2. Mapping of data types to UI widgets

Data Type Generated UI Widgets

string org.eclipse.swt.widgets.Text

int org.eclipse.swt.widgets.Text

double org.eclipse.swt.widgets.Text

boolean org.eclipse.swt.widgets.Button (SWT.CHECK)

date org.eclipse.swt.widgets.DateTime

enumeration org.eclipse.swt.custom.CCombo

4 http://www.eclipse.org/swt/, last visited July 9, 2010.



Rapid UI Development for Enterprise Applications 279

Fig. 8. Activity diagram of the UI generation

3.6 Influencing the Generated UI – Annotations

Annotations are one possible way of influencing the appearance of the gener-
ated UI. The annotations are created, stored, and passed to the DM Analyser
using the standard EMF annotation mechanism. Each DM element can have its
own annotations, which influence the appearance of the resulting UI element.
Currently, we support the following set of annotations.

Label. Defines the label for the UI element. Labels are displayed as read-only
textfields in front of the UI element.

Group. Defines a group of UI elements that are placed nearby together and
separated from other UI elements by a special separator, as can be seen e.g.
in Figure 7 for the UI elements grouped under “General” and “Additional
Info” in the “Sales Data” section. A group has a unique identifier and a
label.

GroupElement. Indicates that the UI element belongs to a certain group by
referring to its group identifier.

Ordering. Defines an order in which UI elements should be placed on the UI.
The order is given as an index. DM elements, which have no ordering anno-
tation assigned, are placed below all ordered DM elements in the order of
their appearance in the EMF model.

Hide. Indicates that no UI element should be generated for this particular DM
element.

Default. Defines a default value that will be displayed in a new instance of the
corresponding UI element, and be used as value if the application user does
not specify another value.



280 A. Schramm et al.

Fig. 9. Analysing DM elements using profile information

3.7 Customising the Resulting UI – The Profile Editor

The methodology described in the previous sections enables the application de-
signer to quickly create and adapt UIs according to the needs of the customer.
However, these UIs still have to be customisable on an individual basis, since users
might have different roles in the company, and therefore may need different views
on the domain data. Creating different UIs for each and every role would require
significant effort for both development and maintenance. It is also desirable to have
only one annotated instance of the domain model per customer, which eliminates
the possibility of adding individual annotations per user. To enable individual cus-
tomisation nonetheless, we introduced the concept of user profiles. The ProfileEdi-
tor currently provides the following customisation possibilities to the user: Change
layout, hide elements, change labels, and set individual default values.

The profiles influence the behaviour of the UICM Interpreter and the DM
Analyser during the UI generation. They contain pieces of information that
modify the appearance of UI elements. The effects of the profiles on the UI
always overrride contradictory annotations. Figure 9 shows the activity diagram
of the UI generation by the DM Analyser when taking profiles into consideration.

The Profile Editor uses a modified version of the Interpreter described in
the previous subsection. This Interpreter generates a modified version of the
application’s UI with additional widgets, such as checkboxes to indicate whether
a UI widget should be hidden, or textboxes to change labels. The benefit of that
approach is the consistency of the look&feel.



Rapid UI Development for Enterprise Applications 281

4 Evaluation

In the project period of less than one year we have realised two different real-
world scenarios. No extensive user study was available at the time of writing this
paper, but the realisation of a larger evaluation involving customers is planned.

Development Costs and Productivity

As a very first evaluation of the productivity of our approach, we re-built a form-
based editor for the creation of instances of the Universal Service Description
Language (USDL) metamodel5. This metamodel consists of 46 classes with a
total of 243 attributes. The manual implementation of the editor took 10 person
days. It consists of four pages providing CRUD functionality for the elements
of the four perspectives of USDL. Creating the same editor with our approach
took less than two hours. One fact that speeded up the reimplementation is
of course that the layout for the editor’s UI was already given by the existing
implementation. Taking this into account our approach needs approximately
1/10 of the time for the manual implementation.

Quality

The implementation of graphical UIs is usually the most error-prone part of
the application development [9]. These implementation errors are completely
eliminated as there is no implementation part in our UI creation process. The
structure of our UI is modelled by defining instances of the UICM using a WYSI-
WYG editor and the atomic UI widgets are generated automatically. However,
from a design point of view, it is still possible to create disadvantageous UI lay-
outs, which are misleading or badly structured. To mitigate that, we decided to
provide a limited set of container elements in the UICM, so that the designer is
also guided in the design choices up to a certain level.

Tool Support

Our approach allowed us to create a powerful tool support for the development of
form-based CRUD applications. The UICM Editor enables the creation of appli-
cations in a WYSIWYG manner, and the Profile Editor provides an easy-to-use
customisation of the final application. Both tools are integrated in a workbench
that also runs the final application itself. In this way, the designer as well as a
user can switch between the different tools and the final application, and thus
immediately see and use the result of the design or customisation step. The tools
and the final application use the UICM Interpreter and the DM Analyser as their
foundation, which ensures a consistent look&feel of the UI.

Usability of the Final UI

The usability of UIs created with our approach is similar to the usability of
manually created UIs for DMs with low to medium complexity. The DM Analyser
5 http://www.internet-of-services.com/index.php?id=24, last visited May 2, 2010.



282 A. Schramm et al.

generates reasonable UI widgets that improve the usability, such as comboboxes
for enumerations, or calendar widgets for dates. Furthermore, the application pro-
vides convenience features such as autocompletion, and tab support (i.e. navigat-
ing to the next input field using the tabulator key). Of course, the clarity and
understandability of the UI depends to a great extent on layout created by the ap-
plication designer, and the additional information available via annotations
during the UI generation, such as grouping and ordering.

For complex DMs with deeply nested or recursive data structures the re-
stricted number of available structuring elements in the UICM currently hinders
the designer from creating clear UIs. One possible improvement is the usage of
the grouping and ordering annotation to enhance the visual structuring of the
generated UI elements. The available annotations as well as the UICM container
elements will be further evaluated and optimized.

Consistency

As mentioned in Section 2, roughly 80% of our UI elements are used to edit or
display data. The creation of these UIs in a predefined way leads to a consistent
look&feel of the different screens and applications. The look&feel of our gener-
ated UIs is defined by the different mapping rules applied by the interpreter.
Attributes of the same data type are always mapped to the same combination of
widgets, e.g., dates are always visualised in a calendar widget. Another benefit
of our approach is the consistency of error messages, hints or tooltips, as they
are also generated along with the widgets.

Customisability

One main requirement of our approach was that the resulting UI has to be
customisable individually, including the renaming and hiding of elements, setting
default values or changing the layout of the container structure. Providing these
possibilities allows the creation of one UI for a group of users, e.g., the employees
of one company, which can later be customized without implementation effort
by every user individually. Due to the interpretive approach the changes in the
UI are immediately reflected in the final application. The customisation can be
done by the user employing an adapted version of the interpreter. The benefit of
that is again a good usability and a consistent look&feel, also for the customise
view of the resulting application. The changes done by the user are stored in a
separate profile and taken into consideration by the interpreter and DM analyser
immediately.

Extensibility, Maintainability, and Flexibility

The flexibility of the created UI with regard to changes in the application’s
requirements or the DM is improved. Small changes in the DM, e.g., adding or
deleting attributes or changing their data type do not even require the UI to
be modified, since the DM elements will be analysed using reflection every time



Rapid UI Development for Enterprise Applications 283

the application is run. For displaying new DM elements, the UICM has to be
changed, so that it references the new model element. Again, there is no need
for code generation or adaptation.

5 Related Work

Work from different fields of research was taken into account for our approach.
The CAMELEON reference framework introduced by Calvary et al. [6] is the
foundation for several works, e.g., by Vanderdockt [2] and Paternò [10], [11]. It
defines several transient models, which are transformed into each other to create
the final UI. Concept and task models are used to derive an abstract UI model
(AUI), which is independent of any platform and implementation. A concrete
UI (CUI) uses this information and turns it into an interactor-dependent UI
description. In the last step, the runnable final UI is created.

There are two approaches to create the final UI. According to the method-
ology proposed in [6], the final UI code should be generated based on the CUI.
This strong separation between the modelling and runtime environment however
leads to insufficient support of evolution, especially in large-scale systems. The
regeneration of complete systems is often not feasible and in some cases even
not possible [12]. The second approach is to interpret the CUI instead of gener-
ating code. Interpretive model-driven approaches are discussed in [13], [14], and
[15]. Meijler et al. [12] give a detailed comparison of generative and interpretive
methods and present a hybrid approach supporting fine-grained changes in the
model without re-generation of code. The main advantage of interpretation over
code generation is flexibility. Because interpreters execute commands line by
line, changes in any of these lines are directly reflected in the resulting applica-
tion. There is no need for regeneration of code or model transformation. This
allows for a fast adaptation of the UI to new tasks or focuses. The shortcomings
of that are similar to our work, as they are bound to one preferred runtime and
cannot generate different runtime platforms from one model according to MDA.

The aspect of automated UI generation is covered by Spillner et al. [16], [17].
The proposed methodology inspired us in developing the concepts of the DM
Analyser. They retrieve their data model from WSDL files. The structure of
the data model is then used to derive the UI elements from it. The mapping
of data types to certain UI widgets is predefined to create highly usable UIs.
We developed the annotation model based on the concept of additional UI hints
introduced in this work.

6 Summary and Future Work

In this paper we presented our experience in the development of UIs for enter-
prise applications. The main challenge in this field are the high costs for devel-
opment, customisation and maintenance. Our approach to reduce development
effort combines explicit modelling of the UI’s layout structure with automatic
generation of the fine grained elements like labels and input fields based on a



284 A. Schramm et al.

given domain model. The models are interpreted at runtime providing an in-
creased flexibility. The interpreter and domain model analyser can be influenced
by annotating the domain model at design time or creating custom profiles at
runtime. We discussed the lessons learnt in detail. The benefits are a significantly
reduced UI development effort, and the elimination of programming errors, since
no manual implementation is required. Other enhancements are the consistency
of the used UI elements and the flexibility of the resulting application. However,
highly complex and deeply nested domain models can currently not be visualized
in a satisfactory manner.

For future work we have a number of improvement ideas. The introduction of
complex widgets like maps or graphs would improve the usability and efficiency
of the UIs for end-users. The modelling of navigational elements has not been
discussed in this work, but will be part of future work. Especially for UIs handling
large parts of the DM, intuitive navigation between different screens and sections
will improve the usability significantly. For very complex DMs, the usability of
UIs created with our approach can be improved, as mentioned in the evaluation
(Section 4). Different aspects of our methodology have to be reconsidered for
that. One way would be the extension of the UICM, providing UI designers more
possibilities for structuring the UI. An extended set of annotations could also
help to accomplish that goal. Another idea to be further evaluated is the storage
of the annotations separate from DM. This enables the provision of multiple
annotation sets for the same model, or the separation of different annotation
aspects, such as layout (e.g. Group and Order) from language (Label). In this
way labels for different languages can be provided in separate files, one for each
language, and separated from the language-independent annotations. Finally, the
easy and fast adaptation of the UI’s appearance and the application of corporate
design to all screens of one customer could be enabled by supporting style sheets.
For this we will investigate the possibilities provided by the Eclipse e4 project
supporting CSS.

References

1. Myers, B.A., Rosson, M.B.: Survey on user interface programming. In: SIGCHI
1992: Human Factory in Computing Systems (1992)

2. Vanderdonckt, J.: A MDA-Compliant Environment for Developing User Interfaces
of Information Systems. In: Proceedings of the 16th Conference on Advanced In-
formation Systems Engineering (2005)

3. Sousa, K., Mendonça, H., Vanderdonkt, J.: Towards Method Engineering of Model-
Driven User Interface Development. In: Winckler, M., Johnson, H., Palanque, P.
(eds.) TAMODIA 2007. LNCS, vol. 4849, pp. 112–125. Springer, Heidelberg (2007)

4. Lu, X., Wan, J.: Model Driven Development of Complex User Interfaces. In: Pro-
ceedings of the MoDELS 2007 Workshop on Model Driven Development of Ad-
vanced User Interfaces (2007)

5. Ali Fatolahi, S.S.S., Lethbridge, T.C.: Towards a Semi-Automated Model-Driven
Method for the Generation of Web-based Application from Use Cases. In: Proceed-
ings of the 4th International Workshop on Model-Driven Web Engineering MDWE
(2008)



Rapid UI Development for Enterprise Applications 285

6. Calvary, G., Coutaz, J., Bouillon, L., Florins, M., Limbourg, Q., Marucci, L.,
Paternó, F., Santoro, C., Souchon, N., Thevenin, D., Vanderdonckt, J.: The
CAMELEON Reference Framework. Technical report (2002)

7. Myers, B., Hudson, S.E., Pausch, R.: Past, present, and future of user interface
software tools. In: ACM Transactions on Computer-Human Interaction (TOCHI)
(2000)

8. Lehmann, M., Ramil, J.: Evolution in Software and Related Areas. In: 4th Inter-
national Workshop on Principles of Software Evolution (2001)

9. Mohan, R., Kulkarni, V.: Model Driven Development of Graphical User Interfaces
for Enterprise Business Applications – Experience, Lessons Learnt and a Way For-
ward. In: Schürr, A., Selic, B. (eds.) MODELS 2009. LNCS, vol. 5795, pp. 307–321.
Springer, Heidelberg (2009)

10. Paternò, F., Santoro, C., Scorcia, A.: Automatically adapting web sites for mobile
access through logical descriptions and dynamic analysis of interaction resources.
In: Proceedings of the Working Conference on Advanced Visual Interfaces (2008)

11. Paternò, F., Santoro, C., Spano, L.D.: Maria: A universal, declarative, multiple
abstraction-level language for service-oriented applications in ubiquitous environ-
ments, vol. 16, pp. 1–30. ACM, New York (2009)

12. Meijler, T.D., Nytun, J.P., Prinz, A., Wortmann, H.: Supporting fine-grained gen-
erative model-driven evolution. Software and Systems Modeling (2010)

13. Atkinson, C., Kühne, T.: Rearchitecting the UML infrastructure. ACM Transac-
tions on Modeling and Computer Simulation 12, 290–321 (2002)

14. Atkinson, C., Kühne, T.: Model-Driven Development: A Metamodeling Founda-
tion. IEEE Software 50, 36–41 (2003)

15. Riehle, D., Fraleigh, S., Bucka-Lassen, D., Omorogbe, N.: The architecture of a
UML virtual machine. In: 16th ACM SIGPLAN Conference on Object-oriented
Programming, Systems, Languages, and Applications (2001)

16. Spillner, J., Braun, I., Schill, A.: Flexible Human Service Interfaces. In: Cardoso,
J., Cordeiro, J., Filipe, J. (eds.) Proceedings of ICEIS (5), pp. 79–85 (2007)

17. Spillner, J., Feldmann, M., Braun, I., Springer, T., Schill, A.: Ad-Hoc Usage of Web
Services with Dynvoker. In: Mähönen, P., Pohl, K., Priol, T. (eds.) ServiceWave
2008. LNCS, vol. 5377, pp. 208–219. Springer, Heidelberg (2008)



D.C. Petriu, N. Rouquette, Ø. Haugen (Eds.): MODELS 2010, Part I, LNCS 6394, pp. 286–300, 2010. 
© Springer-Verlag Berlin Heidelberg 2010 

Environment Modeling with UML/MARTE to Support 
Black-Box System Testing for Real-Time Embedded 
Systems: Methodology and Industrial Case Studies  

Muhammad Zohaib Iqbal1,2, Andrea Arcuri1, and Lionel Briand1,2 

1 Simula Research Laboratory, P.O. Box 134, Lysaker, Norway 
2 Department of Informatics, University of Oslo, Norway 

{zohaib,arcuri,briand}@simula.no 

Abstract. The behavior of real-time embedded systems (RTES) is driven by 
their environment. Independent system test teams normally focus on black-box 
testing as they have typically no easy access to precise design information. 
Black-box testing in this context is mostly about selecting test scenarios that are 
more likely to lead to unsafe situations in the environment. Our Model-Based 
Testing (MBT) methodology explicitly models key properties of the environ-
ment, its interactions with the RTES, and potentially unsafe situations triggered 
by failures of the RTES under test. Though environment modeling is not new, 
we propose a precise methodology fitting our specific purpose, based on a lan-
guage that is familiar to software testers, that is the UML and its extensions, as 
opposed to technologies geared towards simulating natural phenomena. Fur-
thermore, in our context, simulation should only be concerned with what is 
visible to the RTES under test. Our methodology, focused on black-box MBT, 
was assessed on two industrial case studies. We show how the models are used 
to fully automate black-box testing using search-based test case generation 
techniques and the generation of code simulating the environment.  

1   Introduction 

Real-Time Embedded Systems (RTES) are largely used in critical domains where 
high system dependability is required and expected. The basic characteristic of RTES 
is that they react to external events within certain time constraints. Extensive testing 
of such systems is important in order to verify their correct behavior under different 
timing constraints and adverse situations of the environment (or context). It is also 
important to verify that the system under test (SUT) does not lead the environment to 
a hazardous state. Testing RTES is particularly challenging since they operate in a 
physical environment composed of possibly large numbers of sensors and actuators. 
There is usually a great number and variety of stimuli with differing patterns of arri-
val times. Therefore, the number of possible test cases is usually very large if not 
infinite. Testing all possible sequences of stimuli/events is not feasible. Hence, sys-
tematic testing strategies that have high fault revealing power must be devised.  
Manually writing appropriate test cases for such complex systems would be a far too 
challenging and time consuming task. If any part of the specification of the RTES 
changes during its development, a very common occurrence in practice, then the  



 Environment Modeling with UML/MARTE to Support Black-Box System Testing 287 

expected output of many test cases would potentially need to be recalculated manu-
ally. Automated test-generation and the use of an automated oracle are essential re-
quirements when dealing with complex industrial RTES. 

Moreover, testing the RTES in the real environment usually entail a very high cost 
and in some cases the consequences of failures would not be acceptable, for example 
when leading to serious equipment damages or safety concerns.  In many cases the 
hardware, e.g., sensors and actuators, is not yet available at the time of testing as 
software and hardware are typically developed concurrently in RTES development. 
Since testing RTES on the real environment is not a viable solution, the use of a simu-
lator is a common alternative.  

In our work, we address the above issues by devising a comprehensive, practical 
methodology for black-box, model-based testing (MBT). The main contributions of 
this paper are as follows: It provides an environment modeling methodology based on 
industrial standards and targeted at MBT, and evaluates it on two industrial case stud-
ies. The models describe both the structural and behavioral properties of the environ-
ment. Given an appropriate level of detail, defined by our methodology, they enable 
the automatic generation of the environment simulator. The models can also be used 
to generate automated test oracles. These could, for example, be invariants and error 
states that should never be reached by the environment during the execution of a test 
case. Moreover, the models can further be used to automatically choose test cases. 
Sophisticated heuristics to choose appropriate test cases are automatically derived 
from the models without any intervention of the tester. To summarize, the only re-
quired artifacts to be developed by testers is the environment model and the rest of the 
process is expected to be fully automated. By using this automated MBT technology, 
one of our industrial partners was able to find new critical faults in their RTES.  This 
paper focuses on how to make environment modeling as easy as possible for the pur-
pose of supporting black-box, MBT, and shows its use for test automation. Due to 
space constraints, we only briefly discuss the details for code generation.  

To support environment modeling in a practical fashion, we have selected standard 
and widely accepted notation for modeling software systems, the UML and its stan-
dard extensions. We use the MARTE [1] extensions for modeling real-time features 
and OCL for specifying constraints. We have also provided lightweight extension to 
UML to make it more useful in our context. As we will discuss later, environment 
modeling is not a new concept. But, most of the approaches use non-standardized 
notations or grammars for modeling, which makes them difficult to apply from a 
practical standpoint. To the best of our knowledge, modeling the environment of 
industrial RTES systems using a combination of UML, MARTE, and OCL has not 
been addressed in the literature.  By using the proposed methodology, the software 
testers (who are primarily software engineers) can model the environment with a 
notation that they are familiar with and at a level of precision required to support 
automated MBT.  

The importance of selecting standards for modeling was highlighted by the appli-
cation of methodology on the two industrial case studies that belonged to completely 
different domains. An alternative to using standard notations for modeling could 
have been to create a Domain Specific Language (DSL) for environment modeling. 
Since the methodology needed to be generic for RTES irrespective of their applica-
tion domain, making a DSL was not feasible. Making a DSL would have also re-
duced the benefits that we obtained from using standards and could have only been 



288 M.Z. Iqbal, A. Arcuri, and L. Briand 

justified if existing standards did not fit our needs. Our case studies were developed 
using Enterprise Architect and IBM Rational Software Architect, though any of the 
widely available UML tools could have been used for this purpose.  

The rest of the paper is organized as follow. Section 2 discusses the related work 
on environment modeling and testing based on environment models. The environment 
modeling methodology and simulation is discussed in Section 3. Section 4 describes 
the use of the environment modeling methodology for automated testing. Section 5 
discusses the case studies on which the methodology was applied on and finally Sec-
tion 6 concludes the paper. 

2   Related Work 

There are a few approaches reported in the literature for the environment modeling of 
embedded systems. Kishi and Noda [2] present an approach for modeling the envi-
ronment of an embedded system using an aspect-oriented modeling technique. Karsai 
et al. [3] propose a new language for modeling the environment of an embedded sys-
tem. Choi et al. [4] use annotated UML class and sequence diagrams for modeling 
and simulation of environment. Kreiner et al. [5] present a process to develop envi-
ronment models for simulation of automatic logistic systems and its environment. 
Axelsson [6] evaluates how UML can be used to model real-time features and pro-
vides extension to UML for modeling of real-time systems and their environments. 
Gomaa [7] discusses the use of a context diagram for modeling the relationship be-
tween an RTES and its external entities. Friedentahl et al. use the concept of SysML 
block diagram and activity diagrams to represent the system and its interfaces with 
environment components [8].  

There are a few works reported in literature that discuss testing based on the environ-
ment of a system. Auguston et al. [9] discuss the development of environment behavioral 
models using Attributed Event Grammar for testing of RTES. Bousquet et al. [10] pre-
sent an approach for testing of synchronous reactive software by representing the envi-
ronmental constraints using temporal logic. Larsen et al. [11] propose an approach for 
online testing of RTES based on time automata and environmental constraints. Heisel et 
al. [12] propose the use of a requirement model and an environment model using UML 
state machines along with the model of the SUT for testing. Adjir et al. [13] discuss a 
technique for testing RTES based on the model of the system and model of intended 
assumptions in the environment in Labeled Prioritized Timed Petri Nets.  

As discussed above, there are approaches in literature that deal with modeling the 
environment of a system for various purposes. Most of these approaches are only lim-
ited to modeling the static structure of the environment, as they do not focus on test 
automation. The approaches that deal with modeling of behavioral aspects either use 
notations with which the software engineers are not familiar, or provide extensions for 
environment modeling that do not have well-defined semantics. Moreover, the proper-
ties of the environment, such as its timeliness and non-determinism, are not modeled in 
a standard way. The environment models should be compatible with other standard 
techniques available for model manipulation, e.g., model transformations, consistency 
checking. For this reason, the modeling language should have well-defined constructs. 
All environment modeling approaches aimed at supporting testing, except by  
Heisel et al. [12], use non-standard languages for modeling.  Heisel et al. models both 



 Environment Modeling with UML/MARTE to Support Black-Box System Testing 289 

the SUT and the environment, which does not fit our purpose: black-box, system test-
ing. Moreover, they model the concepts of probabilities and time using non-standard 
notations, without using the UML extension mechanisms. Last but not least, none of 
the relevant work assesses their environmental methodology on an actual RTES sys-
tem, which we believe is a requirement to assess the credibility and applicability of any 
MBT approach.  

3   Environment Modeling – Methodology 

If environment models are to be used for RTES, they should not only be sufficiently 
detailed, but should also be easy to understand and modify as the environment and 
RTES evolve. To handle the complexity of realistic RTES environments, the model-
ing language should have provision for modeling at various levels of abstraction. The 
modeling language should also have well-defined syntax and semantics for the tools 
to analyze the models and for the humans to accurately understand them. The lan-
guage should also provide features (or allow possible extensions) for modeling real 
world concepts, real-time features, and other concepts, such as non-determinism, 
required by the environment components. The UML, MARTE profile, and the OCL 
together fulfill the important requirements of an environment modeling language. 

Even though we are using the same notations to model the environment that are 
used for modeling software systems, it is important to note that the methodology for 
environment modeling is significantly different from system modeling. While model-
ing for the industrial cases, we abstracted the functional details of the environment 
components to an extent that only the details visible to the SUT were included. For 
environment behavior modeling, non-determinism is widely used, which is not nearly 
as common when modeling the internal behavior of a system. 

For testing the system based on its environment, the behavior details of the envi-
ronment are as important as its structural details. Structural details of the RTES envi-
ronment are important to understand the overall composition of the environment (e.g., 
number and configuration of sensors/actuators), the characteristics of various compo-
nents, and their relationships. We choose to model these details in the form of a Do-
main Model developed using UML class diagrams. The behavioral details of envi-
ronment components are required to specify the dynamic aspects of the environment, 
for example, to determine the possible environment states, before and after its interac-
tions with the SUT, and to specify the possible interactions between the SUT and its 
environment. For behavioral details, we used the UML State Machines augmented 
with the MARTE profile.  

In the following subsections, we discuss the methodology for modeling the envi-
ronment of a RTES. We also discuss various guidelines based on our experience of 
applying the methodology on two industrial case studies. 

3.1   Modeling Structural Details as Environment Domain Model 

The environment domain model provides information of the components of the envi-
ronment, their characteristics, their relationships with one another and the SUT, and 
information regarding signal sending and reception. The various components modeled  
 



290 M.Z. Iqbal, A. Arcuri, and L. Briand 

in the domain model together form the overall environment of the SUT. This means 
that all these components (their instances) will run in parallel with each other. Each 
component in the domain model can have a number of instances in the RTES envi-
ronment. The information about the number of possible instances of a component in 
the environment is modeled as cardinalities on the associations between different 
components in the domain model. Therefore, the domain model can be used to obtain 
a number of potential configurations of the environment. Fig. 1 shows the partial 
domain model for the environment of one of our industrial cases, the sorting machine 
(named as SortingBoard in the figure). The sorting machine is part of an automated 
bottle recycling system and further details of the case study can be found in Section 5. 
The model shows various motors, sensors, mechanical devices taking part in sorting, 
and other systems the SortingBoard communicates with. 

Note that the domain model that we develop is different from the ones commonly 
discussed in literature (e.g., [14]). The components represented as classes in the envi-
ronment domain model will not necessarily relate to software classes. They may cor-
respond to systems, users and concepts related to various natural phenomena. Domain 
modeling here is not a starting point for software analysis. The identification of com-
ponents in the domain model, their properties, and their relationships is also different 
from what is commonly done for software analysis. Following, we further discuss 
various guidelines for modeling the structural details of a RTES environment. 
 
Environment Components to be Included. Initially, all the environment compo-
nents that are directly interacting with the SUT are included in the domain model. 
Then, each of these components is further refined to a level where we are certain to 
cover the important details for simulating the environment needed to test the SUT. If 
at any time the behavior of an environment component was getting too complex, 
when possible, we decomposed the component and divided its behavior into multiple 
concurrent state machines. This is especially useful if a component can be divided 
into components that are similar to existing components, so that we can specialize 
existing state machines.  We used the stereotype <<context>> to represent compo-
nents of the environment in the domain model. The components of the environment 
are made to communicate with each other and the SUT through signals, and are mod-
eled as active objects.  
 
Relationships to be Included. All those associations representing the physical or 
logical relationships among various environment components, or that were needed 
for components to communicate, should be included. A number of components in the 
environment might be similar to each other (e.g., various types of sensors). It is use-
ful to relate these components (and their behavior) using the generaliza-
tion/specialization relationship for simplifying the model, as our experience shows 
that such domain models get highly complex. For example, in the sorting machine 
case study, we modeled the association of the SortingBoard with the SortingArm, 
which is controlled by the board, and the ItemSensor that reports arrival of an Item 
(e.g., bottle). We used generalization in multiple places, including motors and sen-
sors as shown in Fig. 1. 

 
 



 Environment Modeling with UML/MARTE to Support Black-Box System Testing 291 

 
 

Fig. 1. Partial environment domain model showing properties and relationships of the sorting 
machine case study 

Properties to be Included. From all properties that may characterize environment 
components, it is important to include only those properties that are visible to the SUT 
(or have an impact on a component that is visible to the SUT). These may include 
attributes that have a relationship to the inputs of the SUT, that constrain the behavior 
of a component with respect to the SUT, or that contribute to the state invariant of a 
component that is relevant to the SUT. In Fig. 1, all the modeled properties of Item 
are either visible to the SortingBoard or are used by other components. For example, 
the serialNum and materialType of Item is assigned by VendingMachine and is used 
by the SortingBoard.  
 
Modeling the SUT. It is important to include the SUT in the environment domain 
model, so that its relationship with the other environment components can be speci-
fied. It is also useful to include the details of signal receptions by the SUT from other 
environment components. The SUT is stereotyped as <<system>>. The stereotype 
was used initially by Gomaa [7] to refer the system in a context diagram. The SUT 
modeled in the domain model should represent the SUT and its execution platform, as 
a single component.  

3.2   Modeling Behavioral Details with UML State Machines and MARTE  

For modeling the behavior details of the environment that have an impact on the SUT, 
we developed the UML State Machines with MARTE real-time extensions for various 
components in the environment. As discussed earlier, the environment components 
run in parallel to form the environment of the RTES. The components can send sig-
nals to each other and to the SUT. We can also view the environment as having one 
state machine with orthogonal regions, one for each component. Fig. 2 shows the state 
machine of a component for one of the industrial case studies. We have abstracted out 
the concepts for confidentiality reasons. Following, we discuss the details of the 
methodological guidelines we followed.  

 
Identifying Stateful Components. Components whose states either affect the SUT or 
are affected by the SUT should be modeled with state machines. Apart from these 



292 M.Z. Iqbal, A. Arcuri, and L. Briand 

components, it is also useful to model the behavior of other components on which we 
would like control during the simulation.   

Overall, the environment should be modeled in a way that enables, after the initial 
configuration and provision of input data (parameters and guards), the full simulation 
of the interactions with the SUT. All the context components shown in Fig. 1 are 
stateful components of the sorting machine case study. For example, the SortingArm 
component was modeled as stateful since it receives signals from the SortingBoard 
and reacts differently based on its current state.   

 

States to be Included. It is important to determine the right level of abstraction for a 
component state machine. If we want to precisely model the behavior of an environ-
ment component, this might lead to a large number of states. We are, however, only 
interested in state changes that have an impact on the SUT. A single state in an envi-
ronment model state machine may correspond to a large number of concrete or physi-
cal states. For example, in the sorting machine, the Item states that were modeled 
were all related to its movement through the sorting machine whereas its other possi-
ble states were not of interest as an environment component of the SortingBoard. 
 

Modeling Users in the Environment. Generally, for software system modeling users 
are only modeled as sources of inputs and data. The behaviors of users with respect to 
the system are mostly not considered. In the environment modeling methodology, it is 
useful to model the behavior of users in the environment to have a control over the 
inputs/outputs of the various components or the SUT. If a user participates in multiple 
roles, it is useful to model each role a user plays as a separate component. In the sort-
ing machine case study, we modeled two different users (the operator and the persons 
who enter the items for sorting), each of them had considerable non-deterministic 
behavior. In certain cases it can be interesting to model both the expected and unex-
pected behavior of users using the proposed methodology.  
 

Modeling Abstract Phenomena. Sometimes it is necessary to model abstract physi-
cal concepts, such as temperature, heat, voltage, and current. Mostly, information 
regarding these phenomena can be obtained and controlled through sensors and con-
trollers, such as a temperature controller or sensor. Modeling of such concepts explic-
itly as environment components can be useful if a change in the state of these con-
cepts impacts multiple components simultaneously, or if it is not possible to identify a 
related component in the environment that can act as a controller or sensor of this 
concept for simulation. As an example, consider a RTES on a vehicle that indicates its 
driver the time for a pit stop. The tires of a vehicle can burst when the temperature of 
the road gets too high. If there is no sensing mechanism available in the environment, 
then it is useful to make a state machine of temperature, with possibly two states rep-
resenting below and above danger temperatures. 
 

Modeling Transitions & Action Durations. Most of the transitions in the state ma-
chines of the components will either be based on signal events or time events. Time-
out transitions are an important concept in RTES environment models. The MARTE 
TimedEvent concept is used to model timeout transitions, so that it is possible for 
them to explicitly specify a clock. Each environment component may have its own 
clock or multiple components may share the same clock for absolute timing. The 
clocks are modeled using the MARTE’s concept of clocks.  Specifying a threshold  
 
 



 Environment Modeling with UML/MARTE to Support Black-Box System Testing 293 

 

Fig. 2. State Machine of the SortingArm component in the sorting machine case study 

time for an action execution or for a component to remain in a state is possible using 
the MARTE TimedProcessing concept. This is also a useful concept and can be used, 
for example, to model the behavior of an environment component when the RTES 
expects a response from it within a time threshold. When a SortingArm is signaled to 
move, after staying some time in the Moving state, it transitions to the Not Moving 
state (see Fig. 2). 
 
Modeling Non-Determinism. Non-determinism is a particularly important concept 
for environment modeling and is one of the fundamental differences between models 
for system modeling and models for environment modeling. Following we discuss 
different types of non-determinism that we have modeled for our case studies. 

Specifying exact value for timeout transitions might not always be possible for 
RTES environment components. To model their behavior in a realistic way, it is often 
more appropriate to specify a range of values for a possible timeout, rather than an 
exact value. Moreover, the behavior of humans interacting with the RTES is by defi-
nition non-deterministic. For modeling this behavior, we can add an attribute in the 
environment component and use OCL to constrain the possible set of values of the 
attribute and then use this attribute as a parameter of a timeout transition. In the sort-
ing machine case study, the SortingArm may reach a sorting location from its center 
between 5 sec and 6 sec, depending on various physical conditions. This is modeled 
through the attribute movingTime, which is passed as a parameter to the change event 
on the transition from Moving to Not Moving. Legal values for the attributes are con-
strained using OCL. 

Another important form of non-determinism is to assign probabilities to the transi-
tions of state machines. In an RTES environment, we sometimes only know the prob-
ability of a component to go into a particular state over time and we are not sure about 
the exact occurrence of such conditions. For example, we can say that the probability 
of a car engine to overheat after running continuously for 10 hours is 0.05, but we 
cannot be certain about the exact instance in time when this situation will happen. We 
can model this in the engine state machine with a transition going from Normal Tem-
perature state to Overheated state, during an interval of 10 hours, with probability of 
0.05. For modeling these scenarios, we assigned a probability on the transitions using 



294 M.Z. Iqbal, A. Arcuri, and L. Briand 

the property prob of the MARTE GaStep concept. Whenever a timeout transition has 
the gaStep stereotype applied with a non-zero value of prob, the combination will be 
comprehended as the probability of taking the transition over time of timeout transi-
tion. In the sorting machine case study, a SortingArm can get stuck in a position (e.g., 
because of a bottle blocking it or the arm jamming) with a probability 0.02 in a min-
ute if it is not moving and a higher probability when it is moving. This can be mod-
eled as shown in Fig. 2 by the transitions from Not Moving and Moving to Sorter 
Stuck. The sending of non-deterministic signals can also be modeled using this type of 
transitions, by placing them in the actions of such transitions.  

Another type of probability that we modeled in our case studies is for the situations 
where one event can lead to multiple possible scenarios, but all of them are mutually 
exclusive. For example, we might want to represent the fact that during the communi-
cation with the SUT there is a chance that signals are received with or without distor-
tion. To make the models more realistic, we assigned probabilities to each of such 
scenarios in the environment component. In terms of UML state machines, this means 
that multiple transitions are outgoing from one state based on the same event (maybe 
with identical guard). For modeling these scenarios, we assigned the MARTE gaStep 
stereotype to each of the multiple possible outgoing transitions. The example of 
communication with the SUT can be modeled by having two transitions going out of 
the environment component state on receiving of a signal, one labeled with a prob-
ability that the signal was corrupted and the other with the probability that the signal 
was fine. Modeling the distribution of event arrivals and timeout transitions can be 
useful for validation purposes, but is out of the scope of this paper, since our goal is 
verification of the SUT. Nevertheless, this type of information can be easily expressed 
in the model using the MARTE profile.  

Modeling Error & Failure States. In the environment models, two types of states 
play a particularly important role: the error states and the failure states. 

Environment error states are those states that the environment goes into because of 
unwanted response(s) (or lack of) from the SUT. Every component in the environ-
ment may have error states. If any component of the environment reaches one of these 
error states, then it means that the SUT is faulty. We use the stereotype <<error>> 
for such states in the environment model. For a SortingArm, an Item should not arrive 
while the arm is moving. This is an error state of the environment and can be caused 
if arm is not made to move on time by the SortingBoard. In Fig. 2, this has been mod-
eled with the Item Arrival Error state. 

Failure states model possible failures of environment components. A component 
may fail in several different ways with different consequences for the SUT. The SUT 
should appropriately behave under known, failing conditions. A failure can happen at 
any time during the execution of a component, e.g., a sensor may break at any time, 
and is modeled as non-deterministic behavior (as discussed). We use the stereotype 
<<failure>> for these failure states. The Sorter Stuck state discussed earlier, in  
which the SortingArm is stuck and cannot change its position, is a failure state of the 
environment.  



 Environment Modeling with UML/MARTE to Support Black-Box System Testing 295 

3.3   Modeling the Constraints 

To apply constraints on the relationships and restrictions on various value combina-
tions (or state combinations) of objects, we have used the Object Constraint Language 
(OCL). We have also used OCL for representing the guards on the state machines, 
various state invariants and general constraints on the relationships of environment 
components. 

RTES environment consists of a number of components including some real-world 
concepts (e.g., temperature, air pressure). If we consider all the various components of 
environment together, it is important to restrict the possible state combinations of 
these components to avoid infeasible situations (e.g., reverse and forward movement 
of motors is not possible at the same time). In our methodology, we have used OCL to 
specify constraints for such scenarios. For example, for the sorting machine, if a Sort-
ingArm is moving then only one DiskMotor and PositionMotor should be running at a 
given time. If the arm is not moving, both the motors should not be running. There 
can be a number of such constraints and it is important to model them to have a realis-
tic simulation and testing based on the models. Otherwise, the models would end up 
in states that are not practically possible. 

State invariants in the environment also play a significant role. Based on the values 
of the attributes of the component, the state invariants are used to evaluate the current 
state of the environment and derive state oracles (i.e., is the environment in the ex-
pected state?). We have used OCL to specify the state invariants. We also used OCL 
to specify the overall set of values that an attribute of an environment component can 
take. Last, the OCL constraints were also used for modeling non-determinism as dis-
cussed earlier.  

3.4   Environment Modeling Profile 

Our goal was to model the environment based only on the standard UML and its ex-
isting extensions as much as possible. We applied the standard notations and based on 
our needs for those case studies, where required, we provided light weight extensions 
to UML. In this section we will discuss the subsets of UML and MARTE that we used 
and the lightweight extensions that we have provided for environment modeling. 
From a practical standpoint, it was important to identify these subsets for the method-
ology, since the UML and MARTE standards are very large and most organizations 
would be reluctant to adopt such large notations.  

We used the concept of Context, System, Error, and Failure under the form of 
UML stereotypes. Context is used to represent an environment component and is 
applied on the classes of the domain model. Similarly, System is also applied on the 
classes of the domain model and represents the SUT. Error represents the states of 
environment component that are only taken if there is an error in the SUT. Failure is 
also applied on the states and represents a failure in the environment. Within UML, 
we used the concept of Class diagram, State Machines. From MARTE, we only used 
the Time package and the GaStep concept from the GQAM package as shown in Fig. 
3. This small subset of UML and MARTE was sufficient for modeling our two indus-
trial case studies for the purpose of automated black-box testing.  



296 M.Z. Iqbal, A. Arcuri, and L. Briand 

3.5   Simulation of Environment Models 

Due to size constraints, we cannot go into the details of the simulation and only 
briefly discuss it. The environment models developed using our methodology with 
UML and the MARTE profile are transformed into a RTES environment simulator in 
Java using a model to text transformation. The transformation was based on an ex-
tended version of the state pattern that accounts for asynchronous communication, 
time events, and change events. The simulator is used to test a RTES in conditions 
similar to its real environment.  Since the standard for a concrete syntax of the UML 
Action Language is still not finalized, we made use of Java to specify actions. Once 
there is a standard UML Action Language, the actions can be written in that language 
and then translated into the target language of the RTES. For our case studies, the 
actions are written in Java and are converted into Java method calls.  

 
 

 

Fig. 3. Profile diagram showing various stereotypes and references 

4   Model-Based Testing Based on Environment Models 

In this section we briefly discuss how our modeling methodology is used to achieve 
automated system testing. Further details can be found in [15].  

The UML/MARTE models of the environment are used to automatically generate a 
simulator for it.  The simulator is used to test the RTES on the development platform. 
The information from the models is used to guide the generation of test cases and for 
generating automated oracles, which enable fully automated testing. Once test case 
and oracle generation is completely automated, it is possible to execute and evaluate a 
large number of test cases.  

In our methodology, a test case is the setting used for the simulator. The informa-
tion of what to configure in the simulator is automatically derived from the models 
and it is given as input to the test engine. Two types of setting are necessary: 

 - Number and relations of the environmental components. For example, given 
a state machine representing a sensor, the Domain Model is used to deter-
mine how many sensors can be connected to the RTES (and so, we would 
know how many running instances we need for that state machine). Several 
different combinations are possible. 



 Environment Modeling with UML/MARTE to Support Black-Box System Testing 297 

- Each state machine can have non-deterministic events.  The models are used 
to specify them and to provide details of their type. When the simulator is 
running, every time it requires a value to calculate a non-deterministic event, 
it then queries the test engine to obtain such values. 

 

At the current moment, we have not investigated different configurations based on 
the Domain Models. We have focused on testing the behavior of the RTES given a 
single configuration. The goal of the testing is to provide a valid setting for the non-
deterministic events such that an environmental error state (Section 3.2) is reached 
during the simulation, if any fault is present. 

The simplest testing technique would be to provide (valid) random values each 
time the simulator queries the test engine for values to use in non-deterministic 
events. But more sophisticated techniques that exploit the information in the models 
can be used. For example, reaching the error state during simulation can be repre-
sented as a search/optimization problem, so Search Based Testing (SBT)[16] can be 
used. From the models we can automatically generate a fitness function to guide the 
search. Common heuristics such as approximation level and branch distance of the 
OCL constraints would be used for the fitness function. Due to size constraints, the 
investigated testing strategies are reported in [15], where we also proposed a novel 
fitness function that exploits the time properties of the UML/MARTE models. 

The use of models for SBT in the case of RTES system testing is essential. In fact, 
to have effective heuristics (i.e., the fitness function) we need to have precise knowl-
edge of the error states. This information is easily added in the models using stereo-
types (Section 3.4). All the relevant states/transitions that lead to those error states can 
be exploited for the automatic derivation of the fitness function. On the other hand, if 
we have a simulator but no model, it is unlikely that it would be possible to automati-
cally reverse-engineer all this necessary information from the code alone. Therefore, 
the fitness function would be necessarily written by hand, with all the related down-
sides that this choice brings.  

In some relevant cases [15], it is possible to automatically derive very precise fit-
ness functions. This happens when time constraints need to be satisfied (a typical case 
in RTES), e.g., a signal should be received within 10 milliseconds. A test case for 
which that signal is received after nine milliseconds gives more information than a 
test case in which the same signal is immediately received after one millisecond (no-
tice that in both cases the constraint is satisfied). SBT can automatically exploit this 
information by focusing the search on simulator configurations that are more likely to 
yield a deadline miss. A tester does not need to write these heuristics, they are in fact 
automatically derived from the environment models. This is essential, because in 
general software testers do not have the expertise to write proper fitness functions for 
search algorithms.  

The results in [15] show that our modeling methodology can be used for a fully 
automated system testing that is effective in revealing faults in industrial RTES.  
Although different testing strategies can be designed (e.g., Random Testing and 
SBT), the environment modeling methodology described here would still remain 
the same.   



298 M.Z. Iqbal, A. Arcuri, and L. Briand 

5   Case Studies 

To evaluate the proposed methodology for environment modeling, we applied it on 
two industrial RTES. The application domains of the systems were entirely different. 
Because we cannot provide full details of the systems due to confidentiality restric-
tions, we are providing only a brief description. One of the RTES case studies (Case 
A) was a sorting system, which was part of an automated bottle recycling machine 
(developed by Tomra). The system communicated with a number of sensors and ac-
tuators to guide recycled items through the recycling machine to their appropriate 
destinations. The second RTES was a marine seismic acquisition system (Case B). 
One of the responsibilities of that system was to control the movement of seismic 
cables, where each cable had a large number of sensors and seismic vibrators, among 
other equipments. The system regularly communicated with these components and 
was responsible for managing the life cycle and connections for these components 
(among other things). We provide a summary of the environment models developed 
for both the case studies in Table 1.  

For Case A, the RTES was configurable as three different types of systems; there-
fore the number of environment components was large. But most of the components’ 
behavior could be modeled with a couple of states. The highest number of states was 
18. Many components inherited a parent component behavior, i.e., its state machine. 
That was the case for example for DiskMotor and Motor in Fig. 1.  

Though the number of components for Case B was more limited than for Case A, 
the number of instances for some of the components in the environment was very large 
(e.g., thousands of sensors of the same type communicating with the SUT), thus lead-
ing to many instances of executing state machines during simulation. The complexity 
of component state machines was also on average much higher than for Case A.  

One important conclusion is that, in both cases, we were able to model the RTES en-
vironments with the subset of UML and MARTE that we identified and the lightweight 
extensions that we proposed. The models were sufficient to generate simulators that 
could be used to support large-scale test automation. In one of our industrial case study, 
using random testing and the SBST strategy described above, combined with using the 
environment model to identify error states (oracle), new critical faults were detected.  

For both case studies, the number of components identified at the time of domain 
modeling was larger than what was finally required. During successive revisions and 
based on insight obtained through behavioral modeling, some components turned out 
to be unnecessary and were removed from the domain model. One practical challenge 
is that it was not easy in practice to identify the right level of abstraction to model the 
behavior of environment components. Sub-machines were widely used to incremen-
tally refine the behavioral models until the right level of detail was achieved to simu-
late the behavior of component from the viewpoint of the SUT.  

Table 1.  Summary of the environment models of the two industrial RTES  

Industry Case # of env. 
components  

Stateful 
components 

Average 
# of states

Max states in 
a component 

Max transitions 
in a component 

Case A 55 43 ~3 18 40 
Case B 5 4 ~12 19 29 



 Environment Modeling with UML/MARTE to Support Black-Box System Testing 299 

6   Conclusion 

In this paper, we have discussed a methodology for modeling the environment of a 
Real-Time Embedded System (RTES) in order to enable black-box, system test auto-
mation, which is usually performed by test engineers who are not informed of the 
design specifics of the RTES. For practical reasons and to facilitate its adoption, the 
methodology is based on standards: UML, MARTE profile, and OCL for modeling 
the structure, behavior, and constraints of the environment. We, and this is part of our 
methodology, made a conscious effort to minimize the notation subset used from 
these standards. We briefly discussed how the environment models are used to gener-
ate automated system test cases and a simulator of the environment to enable testing 
on the development platform. One advantage is that the methodology also allows 
more focus on the testing for critical and hazardous conditions in the RTES environ-
ment as environment failures and possible error states due to faults in the RTES im-
plementation are explicitly modeled. 

We modeled the environment of two industrial RTES in order to investigate 
whether our methodology and the notation subsets selected were sufficient to fully 
address the need for automated system testing. Our experience showed that was the 
case. In particular, by using our environment models to derive test cases and oracles, 
it was possible to automatically find new, critical faults in one of the industrial case 
studies using fully automated, large scale random and search-based testing. 

Acknowledgements. The work presented in this paper was supported by Norwegian 
Research Council and was produced as part of the ITEA 2 VERDE project. We are 
thankful to Christine Husa, Tor Sjøwall, John Roger Johansen, Erling Marhussen, 
Dag Kristensen, and Anders Emil Olsen, all from Tomra, for their crucial support. 

References 

1. OMG: Modeling and Analysis of Real-time and Embedded systems (MARTE), Version 
1.0 (2009), http://www.omg.org/spec/MARTE/1.0/  

2. Kishi, T., Noda, N.: Aspect-oriented Context Modeling for Embedded Systems. In: Work-
shop on Early Aspects: Aspect-Oriented Requirements Engineering and Architecture De-
sign, pp. 68–74 (2004) 

3. Karsai, G., Neema, S., Sharp, D.: Model-driven architecture for embedded software: A 
synopsis and an example. Science of Computer Programming 73, 26–38 (2008) 

4. Choi, K.S., Jung, S.C., Kim, H.J., Bae, D.H., Lee, D.H.: UML-based Modeling and Simu-
lation Method for Mission-Critical Real-Time Embedded System Development. In: 
IASTED International Conference Proceedings pp. 160–165 (2006) 

5. Kreiner, C., Steger, C., Weiss, R.: Improvement of Control Software for Automatic Logis-
tic Systems Using Executable Environment Models. In: EUROMICRO 1998: Proceedings 
of the 24th Conference on EUROMICRO, pp. 20919–20923. IEEE Computer Society, Los 
Alamitos (1998) 

6. Axelsson, J.: Unified Modeling of Real-Time Control Systems and Their Physical Envi-
ronments Using UML. In: Eighth Annual IEEE International Conference and Workshop on 
the Engineering of Computer Based Systems (ECBS 2001), p. 18 (2001) 

7. Gomaa, H.: Designing Concurrent, Distributed And Real-Time Applications With UML. 
Addison-Wesley Educational Publishers Inc., Reading (2000) 



300 M.Z. Iqbal, A. Arcuri, and L. Briand 

8. Friedenthal, S., Moore, A., Steiner, R.: A Practical Guide to SysML: The Systems Model-
ing Language. Elsevier, Amsterdam (2008) 

9. Auguston, M., Michael, B., Shing, M.: Environment behavior models for automation of 
testing and assessment of system safety. Information and Software Technology 48, 971–
980 (2006) 

10. Du Bousquet, L., Ouabdesselam, F., Richier, J.L., Zuanon, N.: Lutess: a specification-
driven testing environment for synchronous software. In: ICSE 1999: Proceedings of the 
21st International Conference on Software Engineering, pp. 267–276. ACM, New York 
(1999) 

11. Larsen, K.G., Mikucionis, M., Nielsen, B.: Online Testing of Real-time Systems Using 
Uppaal. In: Grabowski, J., Nielsen, B. (eds.) FATES 2004. LNCS, vol. 3395, pp. 79–94. 
Springer, Heidelberg (2005) 

12. Heisel, M., Hatebur, D., Santen, T., Seifert, D.: Testing Against Requirements Using UML 
Environment Models. In: Fachgruppentreffen Requirements Engineering und Test, Ana-
lyse & Verifikation, pp. 28–31. GI (2008) 

13. Adjir, N., Saqui-Sannes, P., Rahmouni, K.M.: Testing Real-Time Systems Using TINA. 
In: Núñez, M. (ed.) TESTCOM/FATES 2009. LNCS, vol. 5826, pp. 1–15. Springer, Hei-
delberg (2009) 

14. Larman, C.: Applying UML and Patterns: An Introduction to Object-Oriented Analysis 
and Design and the Unified Process. Prentice Hall PTR, Upper Saddle River (2001) 

15. Arcuri, A., Iqbal, M.Z., Briand, L.: Black-box System Testing of Real-Time Embedded 
Systems Using Random and Search-based Testing. Technical Report, Simula Research 
Laboratory (2010) 

16. McMinn, P.: Search-based Software Test Data Generation: A Survey. Software Testing 
Verification and Reliability 14, 105–156 (2004) 



D.C. Petriu, N. Rouquette, Ø. Haugen (Eds.): MODELS 2010, Part I, LNCS 6394, pp. 301–315, 2010. 
© Springer-Verlag Berlin Heidelberg 2010 

Improving Test Models for Large Scale Industrial 
Systems: An Inquisitive Study 

Andrew Diniz da Costa1, Viviane Torres da Silva2, Alessandro Garcia1,  
and Carlos José Pereira de Lucena1 

1 Laboratory of Software Engineering, Informatics Department  
Pontifical Catholic University of Rio de Janeiro, Brazil  

2 Department of Computer Science,  
Federal Fluminense University, Brazil 

{acosta,afgarcia,lucena}@inf.puc-rio.br,  
viviane.silva@ic.uff.br 

Abstract. Although documentation of software tests is becoming increasingly 
important, there is little knowledge on whether modeling languages and tools 
are effective in industrial projects. Recent reports have pointed out that test 
modeling techniques might be barely used by software developers due to their 
inability to cover test concepts relevant in real-life large applications. This pa-
per reports an inquisitive multi-phase study aimed at revealing test-relevant 
concepts not supported by modeling languages. The study encompassed several 
questionnaire responses and interviews with developers, and observational 
analyses run over two years in large-scale software projects. Various test con-
cepts were brought forth and they fall in three categories: (i) test cases and 
software evolution, (ii) interdependencies between test cases, and (iii) categori-
zation and grouping of test cases. Finally, the relevance of the identified test 
concepts is discussed in terms of an industrial system for inventory and supply 
control of petroleum products. 

Keywords: Modeling, Software Testing, Industrial Applications.  

1   Introduction 

Documenting software tests is nearly as essential as documenting source code itself. 
Therefore, as the recognition on systematic software testing increases, there is a press-
ing need to conceive modeling techniques to explicitly document key concerns asso-
ciated with test cases [11][12]. In fact, when software tests are not properly docu-
mented, their successful application is hindered, the investment to build and maintain 
them is not paid off, and they can even become the key reason for remaining faults in 
software projects [3][11][12]. Even though the number of test modeling languages 
(e.g. [16][18][19]) is growing, there is limited knowledge about the extent they are 
expressive enough for the documentation of test cases in large-scale industrial pro-
jects. One of the reasons is that different test cases have intricate relationships, and 
each of them plays different roles as a software project evolves.  



302 A.D. da Costa et al. 

A test modeling language provides abstractions and a visual notation to represent 
testing-specific concerns and facilitate the communication of the project team. In 
general, the systematic evaluation of test modeling languages has been neglected in 
the literature. Their effectiveness is often assessed only by their own proponents 
[16][18][19]. In addition, there is growing evidence over the last decade that test 
modeling techniques are barely used by software developers due to their inability to 
cover test concepts relevant in evolving large systems [8][9]. On the other hand, iden-
tifying the effectiveness of test modeling languages in realistic projects is not trivial 
as project managers, developers and other stakeholders often do not have time to take 
part in controlled experiments. 

In this context, this paper reports an inquisitive multi-phase study [21] aimed at re-
vealing potential gaps or deficiencies of test modeling languages that are used in prac-
tice. In particular, we have conducted a questionnaire-based survey, interviews and 
retrospective analyses through several projects in order to identify test-relevant con-
cepts not supported by existing modeling languages. Our study was conducted in a 
software engineering lab specialized in executing different types of software test, 
including performance, database and functional tests. The initial elicitation of test 
concepts was based on a retrospective analysis of tests carried out in a number of 
long-term software projects in such a lab. 

Several participants were involved in the study, including fourteen developers with 
different testing skills that took part in the interviews and answered the questionnaire. 
The motivation for their participation is that over the last five years the testing team 
has faced numerous problems on documenting, maintaining and reusing test cases in 
various projects. After revealing a relevant set of test concepts, we analyzed their 
need and applicability in an industrial system for inventory and supply control of 
petroleum products. This system has a huge number of evolving requirements and 
business rules that must be tested with high frequency.  

The paper is organized as follows. Section 2 presents the empirical procedures 
adopted to reveal a set of relevant test concepts that are not fully supported by exist-
ing modeling languages. This section also describes the results of a questionnaire 
applied to a set of subjects with different backgrounds and skills on testing complex 
systems. The goal was to receive their feedback about the relevance of explicating 
documenting certain testing concerns that are often neglected by modeling techniques. 
Section 3 highlights a retrospective analysis of documenting and explicitly reasoning 
about such testing concerns in the context of a large-scale petroleum control system. 
Section 4 discusses to what extent the available test modeling and management tools 
support testing activities by focusing on the identification of testing concepts explic-
itly captured by them. Section 5 presents the concluding remarks and future work. 

2   Revealing Relevant Test Concepts: An Inquisitive Approach 

We conducted an inquisitive study [21] to identify test concepts not supported by 
modeling languages proposed in the literature. We have relied on interviews, a ques-
tionnaire applied to developers in a lab, and the analysis of the testing process applied 
in large-scale software projects. We have opted for an inquisitive study, rather than 
running controlled experiments, as this empirical method allows us to reveal relevant 



 Improving Test Models for Large Scale Industrial Systems: An Inquisitive Study 303 

testing concepts based on the experience of real developers, who worked in different 
software projects. Inquisitive analyses [21] are recommended for cases that require an 
exploratory investigation in a software engineering field and do not rely on well-
defined hypotheses. In addition, controlled experiments would impose: (i) higher 
costs that are often impeditive to several real-life software projects, and (ii) additional 
time from the subjects who participated of the work.  

Thus, the study was composed of two major complementary stages: (i) the identifi-
cation of potential test concepts that need to be supported by test models (Sections 2.1 
to 2.3), and (ii) an observational analysis of how such test concepts were important in 
a large-scale software project (Section 3). As stated, the former was mainly supported 
by the elaboration of interviews and a questionnaire distributed to several developers, 
which are discussed in the following subsections. The later relied on the outcome of 
the former, i.e. a list of recurring test concepts identified by developers and testers 
(Sections 2.2 and 2.3). This list was used to support a reflective analysis of how exist-
ing modeling languages could be enhanced while supporting testing in large-scale 
software projects (Sections 3 and 4).  

2.1   Identifying Neglected Test Concepts: Empirical Procedures 

The goal of the first stage was to detect testing concepts that were both considered 
useful in large-scale software projects and not fully (or partially) supported by exist-
ing modeling approaches. Therefore we derived a stepwise procedure to identify such 
a set of relevant concerns. Fig. 1 illustrates our steps, which are described below. 

 

 

Fig. 1. Gathering candidate concepts for test modeling 

The first step started three years ago, when we got involved in the analysis of test-
ing activities in several long-term software projects in the domain of petroleum con-
trol (Section 3). Our aim was to carry out an initial identification of useful test con-
cepts across these software projects. One of the paper authors was actually involved 
in the coordination and development of the testing activities in these projects. As the 
initial identification was exploratory, there was no specific constraint on the nature of 
testing concepts being gathered. This analytical work was performed during two 
years, and seven versions in three software projects were considered.  



304 A.D. da Costa et al. 

The initial analysis was followed by several interviews with test leaders. The goal 
of the interviews was to discuss with them to what extent those initially-elicited con-
cepts were, according to their experience, potentially useful for test modeling and 
documentation. For some cases, they were able to pinpoint which of those concepts 
were not supported by either tools or modeling approaches for testing that they knew. 
The test leaders also explained in detail how the teams were handling or informally 
representing those testing concepts in their day-to-day testing activities. Our final list 
of elicited testing concepts is presented in the next subsection. Next, we decided to 
analyze to what extent a representative set of test modeling languages and manage-
ment tools supported those concepts identified. Section 5 presents the key findings 
derived from this analysis.  

The fourth step (Figure 1) involved the design of a questionnaire, which was ap-
plied to fourteen invited participants with different testing skills and experience. The 
goal of the questionnaire was to confirm (or not) the importance of the test concepts 
suggested by the test leaders. The subjects involved were members of the software 
projects mentioned above, and the main motivation of the participation was the im-
provement of the test process applied. Table 1 shows the profile of these participants. 
In order to remove or minimize the bias in the responses given by the subjects, the 
questionnaire design followed well-known recommendations [7] and was validated by 
two experts on testing modeling and experimental software engineering. In addition, a 
person was able to address emerging doubts or concerns about the questions when the 
questionnaire was applied. Finally, all the responses were gathered and analyzed in 
detail. The results were presented and discussed with the stakeholders involved. De-
tails of the obtained results are described in the next section. 

Table 1. Profile of the subjects that answered the questionnaire 

Subjects and 
their Roles 

Academic Background Years of 
experience

Description 

(5 subjects) 
1 project leader 
2 senior developers 
1 junior developer 

  2 PhD candidates and  1 MSc 
in Software Engineering (SE), 
  1 grad., 1 undergrad. student 
in Computer Science (CS) 

> 3 years 

Large knowledge of testing
concepts, tools, libraries,
e.g. Rational tools, JUnit, 
DBUnit, so on.  

(6 subjects) 
2 database admins. 
4 senior developers 
 

 1 PhD candidate in SE, 3 MSc 
in SE, 2 grad. in CS  

1..3 years 

Worked extensively with 
unit testing and experience 
with functional tests and 
performance tests.  

(3 subjects) 
2 senior developers 
1 junior developer 

  2 undergrad. students in CS 
  1 undergrad. student in SE < 1 year 

Not much experience with 
tests, but knowledgeable of
all test concepts. 

2.2   Results of the Questionnaire 

The questionnaire basically motivated each participant to answer if they agree or dis-
agree, based on their own justifications, on the importance of each concept for test docu-
mentation. The identified testing concepts were classified in three categories: (i) test 
cases and software evolution, (ii) interdependences of test cases, and (iii) categorization 



 Improving Test Models for Large Scale Industrial Systems: An Inquisitive Study 305 

and grouping of test cases. The first category is concerned with properties of test cases 
that usually change as the system evolves. The second category focuses on concepts that 
capture different types of relations between test cases, such as, dependencies between 
their executions. Finally, the third category captures different ways of organizing the test 
cases according to their key properties. 

The most significant comments of the participants about the concepts falling in 
these three categories are discussed in the following. An overview of the results is 
illustrated in Fig. 2. For each concept, we described why the test leader initially sug-
gested it and why the vast majority of the participants felt that it was, in fact, of rele-
vance. Not by coincidence, all the subjects that have not agreed with the importance 
of one or more test concepts were the ones with less experience. Therefore, we do not 
detail in each test concept the reason for the disagreements. 

 

 

Fig. 2. Results of the Questionnaire: Important concepts for test modeling 

A. Test Cases and Software Evolution 

Documenting update of test cases and their version assignments: The test leaders 
stated that it is often needed to update test cases in order to reflect the modifications 
in requirements. Sometimes, the newest version of the test cases can only be used to 
test the latest version of the target software. The opposite may also be true, i.e., earlier 
system versions can only be tested by the older versions of the test cases. Thus, it is 
important to accurately document the association of the test cases with the corre-
sponding version. Besides this, the participants felt that defining classifications of test 
cases are useful for test planning and for identifying their relative importance in par-
ticular software releases. An example of useful category mentioned is regression 
testing, which must be executed every time a new version of the system is defined.  

Thirteen of fourteen subjects, which responded the questionnaire, agreed that the 
documentation of test case updates and respective version assignments were impor-
tant. They mentioned that scenarios with several tests show with more evidence the 
need of identifying the system version applied to each test case. According to them, 
this concept is important in order to identify which are the requirements of a given 
version being tested by a particular test case. However, the subjects also mentioned 
that even in case of systems with a modest requirements base, to inform the version of 
the system tested by a given test case is a good practice. This is particularly important 



306 A.D. da Costa et al. 

when the system has perspectives of growing and requires additional test cases. The 
control of updated tests for each version helps to organize the development process, 
especially if, for instance, regression tests are used. 

Identifying mandatory and optional test cases: According to the test leader, the test 
team usually faces difficulties on the identification of the compulsory and optional 
tests to be executed for each software version. For instance, some of the tests do not 
have very high priority and can be executed if the test team will have enough time. 
Thirteen of fourteen people agreed that it is important to allow the identification of 
which test cases were created (or will be created) are mandatory or optional to be 
executed in the system under test (SUT). They mentioned that such an identification 
can define: (i) which tests can be executed (optional tests), and (ii) which tests are 
mandatory to be executed, regardless of the time of delivery of the system. 

B. Interdependences of Test Cases 

Documenting dependences between test cases: One test case may depend on an-
other, including the provision of input data and environmental configuration. Thus, 
the information about such dependencies between test cases is fundamental to the 
correct order of tests execution. Without this information, problems are likely to hap-
pen during the testing activities. These factors were mentioned by the project leader 
and thirteen developers that considered this concept as important. 

Representing conceptual relationships between test cases: Different test cases can 
be conceptually related and, as a consequence, they are probably testing the same 
parts of the system. For instance, they can be related to the same use case or system 
component. The documentation of such relationships helps to better understand the 
test coverage provided by those test cases according to a high-level point of view. 
Therefore, the visualization of the relationships between the test cases, according to a 
given requirement or design element, was considered useful by the test leader and all 
the fourteen subjects. According to them, the main reason was that it makes easier the 
identification of tests executed to validate a given requirement or functionality. 

C. Categorizing and Grouping Test Cases 

Documenting automated and manual test cases: Tests are either automatically or 
manually executed. The manual tests require to perform a set of actions manually. 
According to the test leader, when a large amount of tests are created, the identifica-
tion of automated and manual tests is usually time-consuming. Besides this, such 
identification guides the tester to know which tool he/she should use to execute the 
test. Thirteen of fourteen participants thought it was important to identify which test 
cases are manual or automated, mainly with the purpose of better planning the tests. 
For instance, this explicit documentation would help the project leaders quickly pin-
point and locate project members with the required expertise depending on the man-
ual or automated nature of the tests. 

Documenting test suites created to a system: A test suite is a code component that 
executes a set of test cases automatically. Depending on the project, several suites can 
be defined. According to the test leader, it is important to represent these suits in order 
to facilitate the identification of the tests that will be executed by each suite and the 



 Improving Test Models for Large Scale Industrial Systems: An Inquisitive Study 307 

identification of the order of such execution. Eleven people considered the documenta-
tion of suites very important. The other three considered that it is not really necessary to 
identify the suites of the test cases since, in general, only few suites are defined to test a 
given system and because suites are only considered facilitators to execute a set of test 
cases. It is important to note that the three people that found this concept not important 
have low experience with tests. 

Identifying types of test: The identification of test types (e.g. functional, database, 
integration, security, etc.) helps to understand the purpose of each test. This was fully 
recognized by the test leader. Moreover, this information is useful on the delegation of 
tasks to members with expertise in running different test types. All the fourteen sub-
jects agreed with the importance of such concepts due to the aforementioned reasons. 

2.3   Proactive Proposal of Concepts by the Participants  

Besides requiring the perception of subjects on testing concepts revealed upfront, the 
questionnaire also elicited the identification of other test concepts not mentioned in 
previous questions. Below, such concepts are mentioned with the most significant 
comments and justifications provided by the subjects. 

 

• Documenting testing-specific roles: Two subjects mentioned that depending on 
the project, different roles can be played by individuals in the same test team, 
such as performance tester or tester of functional tests. Therefore, the documenta-
tion of testing-specific roles enables to quickly identify who worked at which test 
case. The subjects that highlighted the importance of documenting roles have 
large experience with management of projects. It is also important to highlight 
that our study was run in a lab specialized in software testing.  

• Identifying the priority of test execution in more detail: This concept was 
recommended for two subjects that responded the questionnaire. According to 
them, depending on the available time to test some project, to define in more de-
tail the priority of the tests can be useful, especially when the set of mandatory 
tests is large and the time to execute them is short. Thus, this representation can 
help to define orders of execution of the test cases. 

• Relating each test case with artifacts tested:  Three subjects informed that the 
documentation of which artifacts (e.g. class, component, etc) are being tested for 
each test case is important in two situations: (i) when it is needed to identify the 
artifact with problem, and (ii) when it is required to know the coverage of tests. 
Thus, the main focus of this concept is to allow the traceability of the artifacts 
tested by a given test.  

3   Case Study: Inventory and Supply of Petroleum Products 

This section presents a reflective analysis, based on a real software project, on how the 
explicit modeling of test concepts could potentially enhance a typical testing process. 
Even though a limited number of specific testing tools and notations were used in this 
project, we discuss in Section 4 to what extent they are representative of the state of the 
art. This project was carried out in a software engineering lab specialized on testing. In 



308 A.D. da Costa et al. 

particular, this lab team has extensively worked on coordinating and carrying out tests 
of software systems developed for a Brazilian petroleum company. This team is al-
ready informally documenting the revealed testing concepts (Section 2) across several 
projects. However, due to space constraints, we decided to report the lessons learned 
observed in the largest and more complex system they have developed. This system 
controls the inventory and supply of petroleum and derived products (e.g. gasoline, 
kerosene, etc). During our reflective analysis process, we had several meetings with 
project members to discuss how the documentation of those identified testing concepts 
(Section 2.2) enhanced their day-to-day testing activities.  

Some of the goals of the chosen system are to: (i) register routes (i.e. paths) based 
on ducts and ships that could be used to transport the derived products (e.g. gasoline, 
lubricating oil, kerosene, etc); (ii) predict when such products will arrive in terminals 
and refineries located in different places; (iii) plan the best routes to transport a par-
ticular product; (iv) register the real data that inform when and which products arrive 
in terminals and refineries; (v) compare real data with the predicted data; (vi)  provide 
different types of reports and graphics to help on the analysis of different activities; 
and (vii) control when and which products are imported from or exported to other 
countries. 

The system was developed by four teams responsible for the following elements: 
interface, database, requirements and test team. The test team was composed of seven 
people that executed functional, database and performance tests. Table 2 gives some 
details about the system characteristics, Table 3 relates the amount of use cases tested 
and the test types performed. Table 4 presents an overview of the solutions adopted 
by the testing team for each test concept identified (Section 2). Such solutions are 
described in detail in Section 3.1.  

Table 2. Information about the petroleum control system 

Project 
size 

# of  
staffs 

Test 
team 

Status Model size Database Test Cases 

7
years

30
people

7
people

working
46 use cases
580 classes

283 tables

46 database tests
15 performance tests

100 automated functional tests
558 manual functional tests

 

Table 3. Relation between the test types and use cases tested 

Types of test Amount of 
Tests 

Use Cases 
Tested 

Amount of Use Cases 
Tested 

Database Tests 46 4 11.5 

Performance Tests 15 6 2.5 
Automated Functional 
Tests 

100 9 11.1 

Manual Functional Tests 558 43 13.0 



 Improving Test Models for Large Scale Industrial Systems: An Inquisitive Study 309 

3.1   Test Concepts Documented in the Project 

This section discusses how the identified test-specific concepts played an important 
role in our case study. All the solutions presented in this section were defined from 
meetings with the test team members that participated of the project. Each test in the 
project was classified as: regression, new or updated. The regression tests are those 
executed every time a new version of the system is defined. They do not depend on 
the new or updated requirements that have influenced the creation of the new system 
version. New tests are those created due to new system requirements or due to 
changes on the system functionalities. Updated tests are those tests that were modified 
due to the definition of a new requirement or the adaptation of a given requirement.  

Table 4. Solution adopted for each test concept identified 

Identified Concepts Solution adopted 

Update of test cases and their version  
assignments 

An issue system is being used with an 
auxiliary document. 

Mandatory and optional test cases  
An issue system is being used with an 

auxiliary document. 
Dependences between test cases  Description using the RTM tool.  

Conceptual relationship between test cases  Use of the RTM tool.  

Automated and manual test cases  Definition of the MTC and ATC acronyms.  

Suites created to a system  Use of the RTM tool. 

Identifying types of test  
Definition of the GUI, DB and PER  

acronyms.  

 
These classifications helped to perform the planning and the delegation of the tests 

for system version. An example of delegation is the execution of regression tests, 
which were usually performed by new members of the test team. Thus, these mem-
bers were able to know the complexity and how to execute them. In a discussion with 
project members, they mentioned that if version-aware test cases were explicitly rep-
resented in a UML-based testing language, such as UML Testing Profile [16] and 
AGEDIS Modeling Language [18], it would motivate the use of those modeling lan-
guages. In this way, test classifications could be modeled without to affect the model-
ing of packages defined in the system.  

In this project, the tests were already classified based on their priorities. There are 
both mandatory and optional tests. As explained in Section 2, mandatory tests are 
those ones considered essential, i.e., must be executed before the system is delivered 
to the customer. On other hand, optional tests are those with low priority and should 
only be executed if the test team has enough time to do so. This is a common scenario 
that happens in many software development companies. 

Frequently, the subject that executes a given test is not necessarily the subject that 
has developed it. Thus, to have a documentation classifying the mandatory and op-
tional tests is important to help the tester on choosing the tests with highest priorities. 
Besides using Atlassian JIRA [2], an issue system that controls the tests (tasks) created 
for a given version, the test team used an extra document composed of spreadsheets 



310 A.D. da Costa et al. 

pointing out the mandatory and optional tests related to each system version updated. 
Thus, a modeling language that allows viewing these classifications would be effective 
to capture test compulsoriness. Another possible alternative is to adapt the notion of 
orthogonal variability models [17] to achieve the same purpose. 

As stated in Section 2.2, to annotate if a test case is manual (MTC) or automated 
(ATC). Since the time spent to execute such tests are completely different, to know 
before hand the characteristics of the test that will be executed is fundamental to plan 
the time dedicated to such an activity. Therefore, the test team has included the MTC 
acronym in the names of the test cases when they are manual, and the ATC acronym 
when the tests are automated. The representation of manual and automated test cases in 
models might be not hard though. Thus, an approach that allows such modeling can help 
on the traceability between the tests with: (i) scripts that represent the code of the test 
(e.g. represented for classes or methods); (ii) documentation that describe the tests cre-
ated; and (iii) documentation about artifacts tested (e.g. class and sequence diagrams).  

Different functional, database or performance tests are usually executed by using 
different tools.  In order to execute manual tests, the test team used Rational Manual 
Test tool (RTM) [15], while Rational Functional Tester [13] was used to automated 
functional tests, DBUnit [5] was used to automate database tests, and Rational Per-
formance Tester [14] was applied to support performance tests. Since the test execu-
tion depends on particular tools and different testers usually have expertise in differ-
ent test types, it is very important to classify the tests according to their types. A key 
benefit is that the test leader is able to better distribute them through test team mem-
bers during the test planning. In this project, the test types were identified by the fol-
lowing key words: GUI (functional test), DB (database test) or PER (performance 
test). For instance, ATC_GUI_ReportRoutes and MTC_GUI_RegisterRoutes are 
examples of names given to an automated functional test name and a manual func-
tional test name, respectively. This might be an indicator that the explicit classifica-
tion of manual and automated tests should be supported by modeling languages. A 
simplistic approach could be through the use of stereotypes in UML.     

The test team also agreed with the importance of documenting the relationships be-
tween the tests by identifying the different kinds of dependencies. This information 
helped the team to recognize the complexity related to the execution of a given test, 
and to better estimate the time to be spent in the test execution. If a test case depends 
on a large set of test cases to provide the input data, the tester will know that she/he 
will need to use the data provided by the suppliers to execute the client. Besides this, 
they will be able to estimate the time spent in the test activity based on the estimative 
of executing each test supplier. The use of dependencies between tests is particularly 
applied to avoid code duplication, i.e., common steps in different test cases and that 
need to be executed. The dependencies between the tests of this project were docu-
mented by associating a comment with the test. We found a substantial set of model-
ing languages (e.g. [16] [18] [19]) that represent the dependency concept. However, 
no one supported the representation of different kinds of dependencies (Section 4).   

Thus, an approach that gets to support the modeling of the above test concepts 
would allow an easier documentation, avoiding workarounds (such as the creation of 
acronyms) or different tools and new patterns of documentation that companies even-
tually adopt and that often require a considerable learning curve. As discussed above, 



 Improving Test Models for Large Scale Industrial Systems: An Inquisitive Study 311 

another advantage of the explicit modeling of the revealed test concepts is to allow a 
more efficient communication between the software testers and other stakeholders. 

3.2   Additional Impact Analysis of the Test Concepts Documented 

Due to the documentation of the test concepts following the approach mentioned in 
Section 3.1, the project team realized that the time spent in managing and executing 
the tests have drastically decreased. Before using such the tests acronyms (e.g. MTC, 
ATC, PER, DB, etc), the time spent in the test activity was higher than 16% of the 
planned time (see versions A and B in Table 4). However, when the test team started 
to explicitly document the newly-revealed testing concerns, a substantial improve-
ment was observed. The first time the tests were documented following this approach 
was in version C. As illustrated in Table 5, the test team was able to finish the test 
activity in the expected time in the next two versions: D and E. The data presented in 
Table 4 were collected from the issue system [2] used in the project and that informs 
the time spent in each task of the project. In our discussions with the project members, 
all of them agreed that this time reduction was directly impacted by the explicit 
documentation of test concepts due to the reasons discussed in Section 3.1.  

Table 5. Relation between the planned testing time and actual time spent in the project 

Versions Planned time 
(weeks) 

Time used 
(weeks) 

Time exceed 
(%) 

Version A 6 7 16.7 

Version B 7 8.5 21.4 

Version C 6 6.5 8.3 

Version D 7 7 0 

Version E 8 8 0 

3.3   Tool Support 

After analyzing several available languages and tools dedicated to model the test 
activities, the project team has chosen the test management tool called Rational Test 
Manager (RTM) [15]. It provides state-of-the-art facilities to specify tests, such as 
allowing the grouping of tests based on a tree structure and the identification of the 
tests. This representation facilitates the understanding of the test coverage since we 
can see which test cases were created to a given requirement or functionality. Figure 3 
illustrates an example where the test cases are related to use cases (approach used by 
our test team). In the example the use case UC01, which is related to the registration 
of routes, has two automated test cases, being one database (BD) test and one per-
formance (PER) test in addition to a manual functional test case.  

None of the analyzed modeling languages is able to define dependencies between 
tests, such as UML Testing Profile [16] and TTCN-3 [19] (Section 4). Thus, in order 
to have such an information documented we included it in the text fields provided by 
RTM.  Suites were represented in RTM by using a tree structure where the nodes are 
other suites or test cases. This structure was also used to represent groups of tests, as 



312 A.D. da Costa et al. 

explained before (see an example in Figure 4). Although other approaches, such as 
UML Testing Profile [16] and AGEDIS [18] that also represent the suite concept, we 
have chosen RTM since we were already using it to model other test characteristics 
and their approach is not better than the one presented by RTM. Details about the 
support provided by the available test modeling and management tools to model the 
mentioned concepts are presented in next Section 4. 

 

Fig. 3. Conceptual relation between test cases from RTM 

 

Fig. 4. Suites represented by RTM 

4   Discussion 

The UML Testing Profile [16] defines modeling means for designing, visualizing,  
and documenting the artifacts of test systems. Such approach extends UML 2.0 with 
test specific concepts like test components, verdicts, defaults, etc. These concepts are 
grouped into concepts for test architecture, test data, test behavior and time. Being a 
profile, the UML testing profile seamlessly integrates into UML: it is based on the 
UML meta-model and reuses UML syntax. Although the approach proposes interest-
ing concepts of test systems, it does not provide important concepts that can be useful 
for test teams, such as the identification of (i) which system version each test is able 



 Improving Test Models for Large Scale Industrial Systems: An Inquisitive Study 313 

to test, (ii) which tests are mandatory, (iii) which test types were created (e.g. func-
tional, database, security and integration test), (iv) which types of dependences exist 
between tests (such as data dependence), and (v) which tests are automated and man-
ual. On other hand, this approach provides some support to represent suites and a way 
to visualize the relationships between test cases according to a given requirement.  

The Testing and Test Control Notation (TTCN-3) [19] is a modular language that 
has a similar look and feel to a typical programming language. This language is 
widely accepted as a standard for test system development in the telecommunication 
and data communication area. The main reason is that it comprises concepts suitable 
to all types of distributed system testing, such as important features necessary to spec-
ify test procedures and campaigns for functional, conformance, interoperability, load 
and scalability tests like test verdicts. Besides this, it matches mechanisms to compare 
the reactions of the system under test with the expected range of values, timer han-
dling, distributed test components, ability to specify encoding information, synchro-
nous and asynchronous communication, and monitoring. Similar to the UML Testing 
Profile, TTCN-3 also does not provide a set of useful concepts that test teams may 
need. All the concepts not included in the UML Testing Profile are also not contem-
plated on this work. 

The testing language called AGEDIS modeling language (AML) [18] is based 
upon the UML (1.4) meta-model and enables the specification of tests for structural 
(static) and behavioral (dynamic) aspects of computational UML models. AML 
comes as part of the AGEDIS methodology [1] and has been designed with two main 
goals in mind: create a test adequate abstraction of the SUT that will be analyzed by 
the AGEDIS tools, which allows generating automatically suite tests, and set mean-
ingful test directives for the testing process. AML presents the same problem men-
tioned for the UML Testing Profile and TTCN-3. 

According to [20] the benefits of Model-Driven Engineering (MDE) for product 
software development have been demonstrated in numerous instances and could never 
be over-emphasized. Therefore, similar benefits can also be achieved in applying 
MDE to test software development. This form of Model-Based Testing (MBT) is 
called Model-Driven Test Engineering (MDTE) or simply Model-Driven Testing 
(MDT). However, to optimize the efficiency of MDT, good-practices and patterns 
specific to test development must be taken into account. Based on this idea, Feudjio 
[6] proposes a Unified Test Modeling Language (UTML) that is a test notation de-
signed for pattern-oriented MDT. It provides the means for designing all aspects of a 
test system at a high level of abstraction and independent of any specific lower-level 
test infrastructure. Besides this, at the same time it provides a guidance in following 
test design patterns and avoids usual pitfalls of MDT. Such approach provides a tool 
called MDTester that allows modeling the concepts proposed by UTML. However, 
this tool does not allow to explicitly model the concepts described in Section III by 
using this approach.  

Finally the authors in [15] propose an interesting test tool called Rational Test 
Manager (RTM). It is a central console for test activity management, execution and 
reporting. We are mentioning such a tool because it provides interesting test views 
from the interface that are not provided by the other mentioned approaches, such as 
the ability to group conceptually test cases. This grouping becomes easier their identi-
fication. Besides this, RTM allows viewing which suites are available, and which test 



314 A.D. da Costa et al. 

cases each suite execute.  On the other hand, the tool does not provide important test 
concepts, such as: (i) dependences between tests; (ii) the identification of which tests 
are mandatory and optional; (iii) which tests are automated and manual; (iv) the iden-
tification of test types; and (v) which tests are updated to a given version. 

Table 6 summarizes how the approaches mentioned above represent the revealed 
test concepts (Section 2). 

Table 6. Relation between test concepts and related work 

Identified Concepts 
UML 

Testing 
Profile 

TTCN-3 AML MDTester RTM 

Documenting update
of test cases and their
version assignments

No test
classification

No test
classification

No test
classification

No test
classification

No test
classification

Mandatory and
optional test cases to
be executed

- - - - -

Automated and
manual test cases

- - - - -

Dependences
between test cases

Represented,
except the

types of test.

Represented,
except the

types of test.

Represented,
except the

types of test.
- -

Conceptual
relationship between
test cases

- - - -
It is possible
to represent

Suites created to a
system

Represented - Represented - Represented

Types of test - - - - -
 

5   Conclusion and Future Works 

This paper revealed a set of test concepts that can be useful while modeling test cases. 
Such concepts were identified from a inquisitive study that performed interviews and  
applied a questionnaire to subjects with different skills on software testing. Aiming to 
demonstrate the need for using such concepts while modeling the test cases of a sys-
tem, Section 3 presents in detail the lessons learned from documenting (albeit infor-
mally) the new test concepts in the context of a large-scale system in the domain of 
petroleum inventory and supply. In the scenarios presented in Section 3, we described 
situations that emphasize the usefulness of such concepts.    

As it is clearly stated in Section 4, the modeling approaches we have analyzed are 
only able to model a subset of the test concepts we have pointed out. Therefore, we 
are in the process of analyzing the availability of creating or extending a test model-
ing language in order to make it possible the modeling of the test concepts mentioned 
in Section 2. Possible alternatives are either the extension of an UML-compliant test 
modeling technique (e.g. UML Testing Profile) or the proposition of a new test profile 
that represents the test concepts via the use of new stereotypes. Besides, we are also 



 Improving Test Models for Large Scale Industrial Systems: An Inquisitive Study 315 

investigating the need of modeling other test concepts that are mentioned in IEEE 
standards [10] and that have came to light due to our experience on testing systems in 
different domains. 

References 

1. AGEDIS - Automated Generation and Execution of Test Suites for DIstributed Component 
based Software, http://www.agedis.de 

2. Atlassian JIRA, http://www.atlassian.com/software/jira/ 
3. Black, R.: Managing the Testing Process: Practical Tools and Techniques for Managing 

Hardware and Software Testing, 2nd edn. Wiley, Chichester (2002), ISBN: 0471223980 
4. Booch, G., Rumbaugh, J., Jacobson, I.: Unified Modeling Language User Guide, 2nd edn. 

The Addison-Wesley Object Technology Series (2005) 
5. DBUnit web site, http://www.dbunit.org/ 
6. Feudjio, A.V.: MDTester User Guide, 

http://www.fokus.fraunhofer.de/distrib/motion/utml/ 
7. Fink, A.: The Survey Kit: How to ask survey questions, vol. 2. Sage, Thousand Oaks 

(2003), ISBN 0761925791 
8. Harrold, M.J.: Testing: A Roadmap. In: Proceedings of ICSE 2000, Future of Software 

Engineering, pp. 61–72 (2000) 
9. Harrold, M.J.: Testing Evolving Software: Current Practice and Future Promise. In: Pro-

ceedings of ISEC 2008, pp. 3–4 (2008) 
10. IEEE-SA Standards Board: IEEE Standard for Software Test Documentation, 

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7419
68&userType=inst  

11. Kaner, C., Bach, J., Pettichord, B.: Lessons Learned in Software Testing, 1st edn. Wiley, 
Chichester (2001), ISBN: 0471081124 

12. Kaner, C., Falk, J., Nguyen, H.Q.: Testing Computer Software, 2nd edn. Wiley, Chichester 
(1999), ISBN: 0471358460 

13. Rational Functional Tester, http://www-01.ibm.com/software/awdtools/ 
tester/functional/ 

14. Rational Performance Tester, http://www.acutest.co.uk/acutest/testing 
-rational-ibm 

15. Rational TestManager and Rational ManualTest, http://www-01.ibm.com/ 
software/awdtools/test/manager/ 

16. OMG - Object Management Group, UML Testing Profile, version 1, http://www. 
omg.org/cgi-bin/doc?formal/05-07-07 

17. Pohl, K., Bockle, G., Linden, F.: Software Product Line Engineering. Birkhauser, New 
York (2005), ISBN: 3540243720 

18. Trost, J., Cavarra, A.: AGEDIS Language Specification, http://www.agedis.de/ 
documents/d127_1/AGEDIS-ls-fpd.pdf 

19. TTCN-3 web site, http://www.ttcn3.org/ 
20. UTML - The Unified Test Modeling Language for Pattern-Oriented Test Design, 

http://www.fokus.fraunhofer.de/en/motion/ueber_motion/ 
technologien/utml/index.html21 

21. Lethbridge, T., Sim, S., Singer, J.: Studying Software Engineers: Data Collection Methods 
for Software Field Studies. Empirical Software Engineering (Submitted May 2000) 



Automatically Discovering Properties That
Specify the Latent Behavior of UML Models�,��

Heather J. Goldsby and Betty H.C. Cheng

Department of Computer Science and Engineering
Michigan State University, 3115 Engineering Building

East Lansing, Michigan 48824 USA
{hjg,chengb}@cse.msu.edu

Abstract. Formal analysis can be used to verify that a model of the
system adheres to its requirements. As such, traditional formal analysis
focuses on whether known (desired) system properties are satisfied. In
contrast, this paper proposes an automated approach to generating tem-
poral logic properties that specify the latent behavior of existing UML
models; these are unknown properties exhibited by the system that may
or may not be desirable. A key component of our approach is Marple,
a evolutionary-computation tool that leverages natural selection to dis-
cover a set of properties that cover different regions of the model state
space. The Marple-discovered properties can be used to refine the mod-
els to either remove unwanted behavior or to explicitly document a desir-
able property as required system behavior. We use Marple to discover
unwanted latent behavior in two applications: an autonomous robot nav-
igation system and an automotive door locking control system obtained
from one of our industrial collaborators.

1 Introduction

One approach to ensuring that models used for model-driven development pro-
vide the desired behavior is to analyze them for adherence to system require-
ments [1,2,3]. This analysis, however, does not detect errors in latent behavior, the
unspecified and potentially unwanted behavior of the model; these errors could
then be propagated to the implementation and even deployed. Uchitel et. al have
proposed an approach for detecting one form of latent behavior called implied
scenarios as part of the process of synthesizing a model from scenarios [4]. How-
ever, preexisting UML models cannot make use of this technique. Three broad
categories of approaches have been developed to produce properties that could be
used for analysis: Requirements discovery approaches (e.g., [5]) examine testing
� This work has been supported in part by NSF grants EIA-0000433, CNS-0551622,

CCF-0541131, IIP-0700329, CCF-0750787, Department of the Navy, Office of Naval
Research under Grant No. N00014-01-1-0744, Siemens Corporate Research, and a
Quality Fund Program grant from Michigan State University.

�� We gratefully acknowledge the feedback and insight provided by the reviewers of our
earlier work.

D.C. Petriu, N. Rouquette, Ø. Haugen (Eds.): MODELS 2010, Part I, LNCS 6394, pp. 316–330, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



Automatically Discovering Properties That Specify the Latent Behavior 317

and deployment artifacts to detect missing or erroneous properties; process im-
provements have been proposed as part of these approaches. Refinement-based
approaches (e.g., [6]) infer properties from formally specified goals or require-
ments. Lastly, specification generation techniques (e.g., [7,8,9,10,11,12,13,14,15])
infer properties from a representation of a system (e.g., a model or code) or a
derivative of the system (e.g., execution traces). Several previously developed
specification generation approaches are able to infer temporal logic properties
from a model [8,12], code [14], or execution traces [9,15]. For these approaches,
the developer identifies a part of the system behavior to explore, either by re-
stricting the exploration to a portion of the code [14], or by explicitly selecting
the states, events, and variables that are of interest [8,9,12,15]. One ramification
of having the developer guide the exploration is that the unexplored portions
of the system may still conceal latent unwanted behavior. Ideally, developers
would like to maximize both automation of property discovery and coverage,
while minimizing the number of properties that must be examined.

In this paper, we propose an evolutionary-computation approach called
Marple1 to automatically generating properties that specify the latent behavior
of UML models comprising an instance (class) diagram and multiple state dia-
grams. Evolutionary computation methods, such as genetic algorithms and ge-
netic programming, have achieved considerable success, in some cases producing
human-competitive designs [16]. Each evolutionary algorithm experiment com-
prises a population of individuals. Over the course of many generations, where
each generation is subjected to natural selection, mutation, and crossover, the
evolutionary algorithm seeks to optimize according to a fitness function that
describes one or more objectives. For this approach, we use a recently developed
technique called novelty search, where the objective is not to find one optimal
solution, but rather to find a suite of sufficiently different solutions [17]. We use
novelty search to enable Marple to produce properties that maximize coverage
of the model’s behavior, while minimizing human effort.

Marple uses novelty search to discover a set of properties that describe a
UML model, where these properties describe behavior not explicitly stated in
the requirements and may, in fact, be unacceptable latent behavior. Specifically,
each individual within Marple represents a property created by instantiating
one of the five most commonly occurring specification patterns [18] in the form
of Linear Temporal Logic (LTL). Instantiating a pattern involves replacing the
placeholders with evolved boolean propositions, where a proposition is created
using attribute and operation information from a UML instance diagram of the
system. Because the propositions can include conjunctives and disjunctives, the
set of possible propositions is unlimited and too large for brute force search meth-
ods to explore. During the evolutionary process, mutations and crossover produce
different LTL properties that may be satisfied by the UML model. The novelty
of a property is assessed using the Spin model checker [19]. Specifically, the
state space of the shortest witness trace (i.e., path that supports the property)

1 Marple is named after Miss Marple, Agatha Christie’s detective who was famous
for detecting latent human behavior.



318 H.J. Goldsby and B.H.C. Cheng

through the Spin representation of the model is compared to the state spaces of
other properties. 2 If a novel region of the model state space is discovered (i.e.,
a region of the state space that has not been explored by previously evaluated
properties), then the property is assigned a higher fitness value and Marple
searches the new region more thoroughly. However, if a property explores a pre-
viously explored region of the state space, then it is assigned a low fitness value
and Marple does not search the region as thoroughly. In this way, Marple
discovers properties that cumulatively describe the behavior of the model. For
readability purposes, the properties generated by Marple are presented to the
developer in natural language [20] for assessment. The generated properties can
be used by the developer to refine the requirements specifications (to explicitly
sanction the latent behavior) or to modify the UML model (to remove unwanted
latent behavior).

Overall, our approach enables developers to automatically explore UML mod-
els for properties representing potentially unwanted latent behavior. We illus-
trate our approach by using Marple to discover the unwanted latent behavior
of models for an automobile door locking system obtained from one of our indus-
trial collaborators. To further validate our approach, we have also applied it to
a robot navigation system [21] and sought feedback from our industrial collab-
orators. The remainder of the paper is organized as follows. Section 2 presents
relevant background information. Section 3 describes Marple. and describes re-
sults from our door locking case study. Section 4 describes how we validated the
performance of Marple. Section 5 discusses related work. Finally, in Section 6,
we present conclusions and discuss future work.

2 Background

In this section, we provide background information on the property specification
patterns used for this approach, genetic programming, and novelty search.

2.1 Property Specification Patterns

Dwyer et al. identified several property specification patterns [18] that are com-
monly used to analyze systems for assurance needs. For our approach, we enable
Marple to instantiate the five most common patterns (Absence, Universal-
ity, Existence, Precedence, and Response), using the global scope of applicabil-
ity. 3 Additionally, to facilitate assessment by human developers, we use a previ-
ously developed structured English grammar [20] for the specification patterns
to present relevant properties in natural language. Figure 1 depicts the natural
language representations of these patterns, where p and q are placeholders for
propositional expressions.
2 Spin provides configuration options for generating the shortest path, which is how

we produce the shortest witness trace.
3 Marple can also be used to generate properties using other scopes. However, for

brevity, we only present the global scope.



Automatically Discovering Properties That Specify the Latent Behavior 319

Pattern
Name

Natural Language

Absence Globally, it is never the case that p holds.
Existence Globally, p eventually holds.
Universality Globally, it is always the case that p holds.
Precedence Globally, it is always the case that if p holds, then q previously

held.
Response Globally, it is always the case that if p holds, then q eventually

holds.

Fig. 1. Global Specification Patterns

2.2 Genetic Programming

Genetic programming is an evolution-inspired approach to discovering computer
programs that solve a problem. A genetic programming experiment comprises a
population of individuals, where each individual is a program tree. Figure 2(a)
depicts one such program tree that represents the function: x + (sin(x) * 5).
Each node in the tree can be a function that takes one or more parameters
that are represented as subtrees (e.g., +, *, sin), or a terminal that does not
take any parameters and may represent either a variable or a constant (e.g., x,
5). At the start of the experiment, a population of individuals is created using a
random assortment of the available functions and terminals. Each individual has
an associated fitness that represents how closely it approximates the solution,
e.g., the desired symbolic regression formula (x*x*x).

A genetic program consists of many generations of individuals. During each
generation, the fitness of the individuals is evaluated. Then individuals with
high fitness scores are selected to be used to create the subsequent generation.
An individual may be selected for mutation, where one or more nodes within
the program tree are changed to another node prior to being placed within the
next generation. For example, Figure 2(b) depicts how the tree in (a) could
have been mutated by replacing the multiply function (*) with the divide func-
tion (/) effectively changing the formula to be: x + (sin(x) / 5); shading denotes
the point of change. An individual could also be selected for crossover, where
a subtree is exchanged with a subtree from another selected individuals. For
example, Figure 2(c) depicts how the tree in (a) could have been modified by
crossover replacing the sin(x) subtree with the constant 7. Because the highly
fit individuals are preferentially selected to be used as the raw material to cre-
ate subsequent generations, over time, the solutions discovered by the genetic
programming experiment optimize according to the fitness function.

In this paper, we use genetic programming as the basis for our representation
of LTL properties, where each program tree represents one property and the
terminals represent concepts defined by the UML model.



320 H.J. Goldsby and B.H.C. Cheng

(c)

x

sin 5

+

*

x

x

sin 5

+

/

x

x

5

+

*

 7

(a) (b)

Fig. 2. Examples of a genetic program tree, where (a) is a tree, (b) is the same tree
after a mutation, and (c) is the same tree after crossover. The shaded nodes represent
the location of the change.

2.3 Evolutionary Computation and Novelty Search

In general, evolutionary computation is a search technique used to explore large
and complex search spaces for solutions that optimize a fitness function. How-
ever, the application of a fitness function can sometimes be shortsighted leading
to evolutionary computation approaches becoming “stuck” on sub-optimal solu-
tions that represent local minima, rather than discovering the more complex and
better solution. Lehman and Stanley originally developed novelty search, where
fitness is a measure of how rare the behavior of an individual is, as a method for
discovering more complex and better solutions [17]. Specifically, novelty search
uses the following fitness formula:

ρ(x) =
1
k

k∑
i=0

dist(x, ui)

where ρ(x) is the novelty measurement for individual x; k is the number of
nearest neighbors used for the novelty calculation; and dist(x, ui) is the dis-
tance between individual x and its ith nearest neighbor, ui. To calculate ρ(x)
the distance between x and all other individuals in the current population and
the archive of previously discovered novel individuals is computed. The novelty
metric is then computed by taking the mean of the distance to the k nearest
neighbors. If the novelty value was greater than ρmin, then the individual is en-
tered into the archive. In this way, individuals that explored previously unseen
areas of the search space were assigned a higher fitness. This technique has pro-
duced a neural net that enabled a robot to more effectively navigate the maze,
as compared to neural nets created using evolutionary computation techniques
that sought to maximize fitness, rather than novelty [17].

While in previous work novelty search was used to discover better solutions
than other evolutionary computation techniques, in this paper, we use novelty
search to discover a suite of properties that cumulatively attempt to cover the
state space of a model.



Automatically Discovering Properties That Specify the Latent Behavior 321

3 Approach

At a high level, our approach uses novelty search to mine a model for prop-
erties that may represent either known sanctioned behavior or unknown latent
behavior. Three steps are used for running Marple:

1. The developer configures Marple for a specific model.
2. The developer runs Marple to produce a set of properties.
3. The developer reviews the properties and uses the information to improve

the model.

In this section, we provide further detail about this process using a door locking
model obtained from industry as a running example.

3.1 Case Study

We illustrate our approach by applying it to an automobile door-locking system
that was obtained from our industrial collaborators. Figure 3 depicts an object
diagram for the system. The door-locking system is a distributed embedded
system responsible for controlling the centralized door locks in a car. The door-
locking system comprises two control units, placed in the driver and passenger
doors, respectively. The units control the sensors and actuators located on the
respective sides of the car. To lock and unlock the doors, the locks on the driver
or passenger door may be used by inserting and turning a key in the key cylinder.
All doors in the car will be locked or unlocked simultaneously. In addition, doors
can be locked and unlocked from within the car, using a button located on each
door. For safety reasons, unlocking always has priority over locking, so that in
case of emergencies the car can be exited quickly.

communicate
DrivDoorLock

DrivDoorKey

DrivLockButton

DrivDoorSensor

PassBatteryVoltageSensorDrivBatteryVoltageSensor

DrivDoorController PassDoorController

Environment

IgnitionSensor

InteriorLightController

PassDoorLock

PassDoorKey

PassLockButton

PassDoorSensor

monitors monitors

InteriorLight
controls

monitors

communicate

controls controls

monitors

monitors

monitors

monitors

monitors

monitors

Fig. 3. Door Locking System Object Diagram



322 H.J. Goldsby and B.H.C. Cheng

3.2 Step 1: Configuring Marple

To use Marple, a developer needs to provide: (1) a UML model that includes an
object diagram and a set of state diagrams, where each state diagram describes
the behavior of one object, and (2) a textual representation of the attributes and
methods of the model. These attributes and methods are used as building blocks
to create propositional expressions that replace the placeholders in the specifica-
tion patterns. For example, Figure 4 depicts a snippet of the text file used to cre-
ate the propositional expressions. For each operation, a propositional expression
representing the operation being called is created. For each boolean attribute, a
terminal where the attribute is true and another terminal where the attribute is
false is created. For example, basic propositions DrivDoorController.doorStatus
== 0 and DrivDoorController.doorStatus == 1 are among the propositions cre-
ated for line 4. For each provided value of an integer, we create terminals where
the attribute is equal to the value and when the attribute is not equal to the
value. For example, basic propositions DrivDoorController.batteryVoltage == 6
and DrivDoorController. batteryVoltage != 6 are among the propositions cre-
ated for line 2. The door locking system has 143 unique basic propositional
expressions. Within Marple these basic expressions are then combined using
conjunctives and disjunctives to form more complex propositional expressions.

1 classname DrivDoorController

2 attribute batteryVoltage int 6 9

3 attribute keyStatus int 0 1 2

4 attribute doorStatus boolean 0 1

5 attribute lockButtonStatus int 0 1 2

6 attribute iterations int 0 1 2 3 4

7 attribute initSuccess boolean 0 1

8 attribute voltageSuccess boolean 0 1

9 operation setBatteryVoltage

10 operation setKeyStatus

11 operation setDoorStatus

12 operation setLockButtonStatus

Fig. 4. An elided portion of the text file used to create model-specific terminals

3.3 Step 2: Marple

Given the inputs provided by the user as part of Step 1, Marple automatically
produces a suite of LTL properties specified in natural language that cumu-
latively capture the requirements and latent behavior of the model. Here we
describe: (1) how Marple internally represents properties, including how prop-
erties are mutated and crossed-over and (2) how the fitness function that governs
the behavior of the evolutionary algorithm works.

Internal Property Representation. Essentially, each individual within a Marple
experiment represents a property as a Genetic Program. When Marple starts,
it randomly creates a population of these trees representing different properties.



Automatically Discovering Properties That Specify the Latent Behavior 323

Figure 5 depicts two such individuals and the natural-language representation
of the property that they specify. To enable Marple to evolve such trees, we
created a set of function nodes that are used to create properties for all possible
models and a set of terminals that are propositional expressions and are model
specific. Specifically, we provided function nodes for Absence, Existence, Uni-
versality, Precedence, and Response properties. Each tree had to be rooted
with one of these nodes. Each of these nodes took a specific number of subtrees
that correspond to the number of placeholders for propositional expressions.
Next, we created two additional function nodes and and or, which are used to
create more complex propositional expressions. For example, Figure 5(a) is an
Absence property that contains a subtree with an or node.

or

DrivDoorController.setLockButton()DrivDoorController.iterations==4

Absence

DrivDoorController.setKeyStatus()

Response

Environment.batteryVoltage==9

Globally, it is never the case that
  (DrivDoorController.iterations == 4 or
   Environment.batteryVoltage == 9) holds. 

   DrivDoorController.setLockButton() holds, then 
   DrivDoorController.setKeyStatus() eventually holds

Globally, it is always the case that if 

(a) (b)

Fig. 5. Two properties generated by Marple. Property (a) represents unwanted latent
behavior. Property (b) represents acceptable latent behavior.

If an individual property is selected for mutation, then one of its nodes or ter-
minals is randomly exchanged with another node or terminal. Because Marple
respects the type of a given node (e.g., a node representing an absence property
will only be replaced with a node representing a different type of property),
the produced property will always be syntactically correct. For example, after
mutation, the property Figure 5 (a) may turn into property Globally, it is never
the case that DrivDoorController.batteryVoltage == 9 holds., which changes the
boolean expression from a disjunctive expression to a basic proposition. Another
possible property that could be constructed by mutating the property depicted
in Figure 5 (a) is Globally, it is always the case that DrivDoorController.iterations
== 4 or Environment.batteryVoltage==9 holds, which changes the type of prop-
erty being specified from an absence property to a universality property.

If two properties are selected for crossover, then subtrees of the properties are
exchanged. For example, if properties (a) and (b) in Figure 5 are selected for
crossover, then the resulting properties might be:

– Globally, it is never the case that DrivDoorController.setLockButton() holds.
– Globally, it is always the case that if (DrivDoorController.iterations == 4

or Environment.batteryVoltage == 9) holds, then DrivDoorCon-
troller.setKeyStatus() eventually holds.



324 H.J. Goldsby and B.H.C. Cheng

where the underlined portions of the properties represent the parts that have
been exchanged through crossover.

Fitness Function. The central aspect of measuring the novelty of a property is
the distance metric that measures how similar (or different two properties) are.
In this case, we use the novelty search function described in Section 2.3 and
define distance as the difference between the state spaces covered by the witness
traces of the respective properties, where a witness trace is the shortest path
of execution through a model that satisfies a property. Specifically, first, we use
the Spin model checker [19] to verify the property holds. Then, if it does, we
invert the property to produce a witness property. For example, the witness prop-
erty of the property described in Figure 5 is: Globally, it is eventually the case
that (DrivDoorController.iterations ==4 or Environment.batteryVoltage == 9)
holds. Execution paths that violate the witness property are execution that sat-
isfy the original property.

g

a

c

f

d

b

e

Fig. 6. Visualization of novelty
metric

This distance measurement has several asso-
ciated benefits. First, if the property does not
hold for the model, then the set of states is
empty. If the property is trivially true (e.g.,
the situation where the proposition x is always
false and thus the property Globally, it is al-
ways the case that if x holds, then y eventually
holds. is vacuously true), then the set of states
is also empty. In this way, the distance met-
ric compresses uninteresting properties together
and enables us to discover more novel properties
that explore different areas of the state space.

We then perform novelty search using the distance metric in order to discover
latent model behavior. Figure 6 provides a graphical depiction of how novelty
search works. For this example, we are assessing the novelty of property a. Each
circle represents the state space of a property. If two circles overlap, then they
share a common set of states (e.g., c and e, a and c). The distance between
two circles is the set difference between their states. To compute the novelty
of a property, we examine all possible pairs of properties both in the property
and also in the archive of all previously generated properties. In this case, if k
were equal to 2, then the nearest neighbors of property d would be properties
b and a. The novelty of property d is the mean of the difference between d and
b and the difference between d and a. Because we are interested in a suite of
properties that cumulatively describe the behavior of the model, rather than a
single penultimate property, each generated property is added to the archive.

3.4 Step 3: Assessing the Properties

At the end of a run, Marple returns the contents of the archive, which rep-
resents all of the generated properties, to the developer. These properties are
provided in natural language, using Spider, a previously developed tool [20],



Automatically Discovering Properties That Specify the Latent Behavior 325

to facilitate understanding. The properties may represent either requirements,
latent acceptable behavior, or latent unacceptable behavior.

To assist the developer in analyzing the properties, we use a two-step approach
to using the properties to uncover latent behavior:

1. Inspect and assess the absence, universality, and existence properties gener-
ated by Marple. These types of properties are able to detect subtle errors,
such as whether or not an attribute ever changed values or a method was
called. Within this step, we begin by assessing the properties with novelty
values greater than zero, since these represent the minimal set of discovered
properties that effectively explore the state space and as such provide an
overview of the behavior of the model. If a property specifies potentially
unwanted behavior, we then zoom in by looking at other properties that
use the same attribute and class names, as these properties may specify the
same behavior in a manner more intuitive to understand.

2. Inspect and assess the precedence and response properties generated by
Marple. These properties are able to detect timing errors or unwanted
relationships among model elements. We repeat the magnification process
by first focusing on the novel properties and then zooming in on behaviors
of interest.

To illustrate this approach, we use the results from one run of Marple, which
produced 351 properties, 167 of which were verified as describing the model, of
which 63 had a novelty value greater than zero.

Figure 7 depicts five absence and existence properties generated by Marple
for the door-locking model. By visually inspecting these properties, we were
able to classify properties 2 and 5 as representing acceptable model behavior.
However, properties 1, 3, and 4 represent unwanted latent behavior – all of these
properties specify that certain attribute values were never used.

1. Absence Property: Globally, it is never the case that (Environ-
ment.batteryVoltage==9 or DrivDoorController.iterations==4) holds.

2. Existence Property: Globally, (DrivDoorController.batteryVoltage != 9
or DrivDoorController.initSuccess==1) eventually holds .

3. Absence Property: Globally, it is never the case that DrivDoorCon-
troller.initSuccess==1 holds.

4. Absence Property: Globally, it is never the case that DrivBatteryVoltage-
Sensor.voltage==9 holds.

5. Existence Property: Globally, PassDoorController.setKeyStatus() even-
tually holds.

Fig. 7. Five absence and existence properties generated by Marple

Next, we visually inspected the model in an attempt to discover the source
of the unwanted behavior. While examining the state diagram for the DrivDoor-
Controller we noted a subtle, but important error: The DrivDoorController was



326 H.J. Goldsby and B.H.C. Cheng

missing a transition that connected the start state to the initialization state Fig-
ure 8 depicts an elided version of the state diagram for the DrivDoorController.

RunSleep

PowerOff Initialize

Fig. 8. The elided version of
the DrivDoorController state di-
agram. The dotted line transi-
tion represents a missing tran-
sition that caused unwanted la-
tent behavior.

Specifically, to illustrate the error, the elided di-
agram depicts only the initialization state and
the compound states. The bolded transitions
were included in the model. The dotted line
transition represents the missing transition. Be-
cause the DrivDoorController was missing this
transition, it did not initialize properly and thus
did not initialize other components. The Pass-
DoorController also contained this error. We
consider this error to be subtle and difficult to
detect, given it strongly influenced the behavior
of the controllers and yet this model had been
developed and analyzed by a member of our lab
for adherence to requirements.

Given serious unwanted latent behavior was detected early in the process, the
model was corrected and the analyses rerun. However, if the absence, universality,
and existence properties were acceptable, then we would expand our analysis to
include the precedence and response properties.

4 Validation

While we have described the process of using Marple and have provided evi-
dence that in one case Marple was able to detect unwanted latent behavior, To
further validate our approach, we compare Marple’s ability to discover proper-
ties that describe the door locking system to a control experiment that did not
use novelty search.

The control version of Marple did not use novelty information for the
evolutionary search process – properties were randomly selected for mutation,
crossover, and survival. To ensure the generality of the control experiments, in
addition to assessing Marple’s performance on the door locking system, we also
evaluated it on a model of an autonomous robot navigation case study, origi-
nally developed by Park et al. [21], and later revised and modeled by us [22].
To account for the stochastic nature of the evolutionary process, for each model,
we ran 30 control runs and 30 Marple runs.

We then examined the central question of whether Marple is better able to
identify novel properties than the control. Table 1 depicts the results. The first
row is the total number of generated candidate properties, where these properties
may have been either true or false for the model. For both systems, Marple
generated over 35% more candidate properties than the control. The second
row is the number of properties that were verified to describe the behavior of
the model. Here, Marple produced more than twice as many properties that
described the behavior of the model than the control. On average, over 45% of
the properties generated by Marple were verified as describing the model. In



Automatically Discovering Properties That Specify the Latent Behavior 327

contrast, less than 30% of the properties generated by the control were verified.
The last row is the number of properties whose witness traces included at least
one previously unvisited state. These properties represent 30-40% of the verified
properties generated by Marple and indicate that Marple is exploring novel
regions of the state space. Overall, these results demonstrate that Marple is
an effective strategy for exploring the behavior of a model. In general, these
runs took approximately 8 hours. This time period enables a developer to run
Marple overnight and have results in the morning.

Table 1. The mean number of properties generated by the control and Marple runs
for the door-locking system and robot navigation system

Door-Locking System Robot Navigation System
Control Marple Control Marple

Candidate
Properties 214.78 294.20 205.31 287.14
Properties 59 134 56 141
Novel Properties - 43.27 - 59.27

We solicited feedback from our industrial collaborators regarding the proper-
ties identified and the overall process. First, they confirmed that the time frame
for generating properties (essentially overnight) and the number of properties
generated was reasonable. Second, the format in which the generated properties
were presented (i.e., structured natural language) was an effective format for de-
velopers to review and determine whether the properties represented sanctioned
or unwanted behavior. Third, the assessment process that we proposed was useful
and viable. In general, the feedback was that Marple provided a much needed
means for detecting unwanted behavior in models of high assurance systems.

5 Related Work

In general, specification generation techniques produce properties by instantiat-
ing property patterns that contain placeholders with propositions that specify
valid properties. Three major categories of related work are: static inference, dy-
namic inference, and temporal logic query checking. Static inference approaches
infer properties from code specifications by analyzing program text (e.g., [7,14])
or by analyzing the code using a modular model checker [11]. Dynamic infer-
ence approaches infer likely properties, called invariants, from execution traces
generated by code specifications (e.g., [9,10,15]). Temporal logic query checking
(e.g., [8,12]) finds the strongest formulae adhered to by the model that satisfy
the temporal logic query, which is a temporal logic formula with placeholders.

Next, we discuss the specification generation techniques that generate tempo-
ral logic properties [8,9,12,14,15]. Perracotta [15], a dynamic inference approach,
generates eight variations of the temporal logic response pattern from imperfect



328 H.J. Goldsby and B.H.C. Cheng

execution traces, where the developer instruments the program to monitor events
and states of interest that constitute the possible propositions. Chang et al. [9]
proposed a dynamic inference approach that generates temporal logic properties
from a set of inference templates built using the Propel patterns [23]. Event traces
are used to refine the inference templates to eliminate properties that are not
satisfied by the program’s event traces. Propositions based on developer-selected
events are used to instantiate the property templates. Weimer and Necula pro-
posed a static inference approach [14] to detecting bugs in source code. Their
approach generates properties that specify the behavior of the error-handling
code. Temporal logic query checking approaches [8,12] automatically find solu-
tions to a temporal logic query. Specifically, to find the strongest formula, the
query checker replaces the placeholders with combinations of developer-specified
propositions.

In general, these approaches rely on developer knowledge (i.e., selected propo-
sitions to use and/or a selection of code) to determine the part of the system
behavior to explore for properties. In essence, these approaches specify behav-
ioral properties that refine the developer’s understanding of a developer-specified
segment of system behavior. Our approach can be used in a complementary
fashion in that it identifies latent properties referring to propositions and/or
properties not explicitly identified by the developer and that might otherwise
remain concealed. For example, Marple could be used to identify unwanted
latent behavior, and temporal logic query checking could be used to refine de-
veloper knowledge by identifying the strongest relationship among the Marple
discovered propositions.

6 Conclusions and Future Work

In this paper, we have presented an approach to automatically generating prop-
erties that specify the unwanted behavior of UML models. Our approach relies on
Marple, an evolutionary computation technique, to generate properties that are
presented to the developer in natural language. Specifically, Marple generates
properties by instantiating specification patterns with propositions developed
using information in the UML class diagram. Regarding the scalability of this
approach, as with most industrial uses of model checking and formal analysis,
Marple is intended to be used on subsets of systems, particularly those of a crit-
ical nature. We have used Marple to detect latent properties of several models
provided by our industrial partners in order to demonstrate its ability to work
on models of industrial scale. Parallelizing the novelty search algorithm, chang-
ing the number of individuals within the population, or changing the number of
generations that the algorithm runs could reduce the analysis time, and we will
explore this optimization strategy in future work. Our approach is complemen-
tary to other specification generation techniques because it is able to identify
unwanted latent behavior in portions of the model that may otherwise remain
unexplored with the other approaches.

Our future work will explore extending Marple to use specification patterns
that include additional scopes, as well as specification patterns for real-time



Automatically Discovering Properties That Specify the Latent Behavior 329

properties and other types of properties [20,23]. These extensions will enable
Marple to detect additional sources of latent behavior. Lastly, we are investi-
gating using Marple to detect feature interaction properties and automatically
generate test cases for the corresponding code [24].

References

1. McUmber, W.E., Cheng, B.H.C.: A general framework for formalizing UML with
formal languages. In: Proceedings of the IEEE International Conference on Soft-
ware Engineering (ICSE 2001), Toronto, Canada (May 2001)

2. Lilius, J., Paltor, I.P.: vUML: A tool for verifying UML models. In: Proceedings
of the 14th IEEE International Conference on Automated Software Engineering,
Washington, DC, USA, p. 255. IEEE Computer Society, Los Alamitos (1999)

3. Tanuan, M.C.: Automated Analysis of Unifed Modeling Language (UML) Specifi-
cations. Master’s thesis, University of Waterloo, Canada (2001)

4. Uchitel, S., Kramer, J., Magee, J.: Detecting implied scenarios in message sequence
chart specifications. SIGSOFT Softw. Eng. Notes 26(5), 74–82 (2001)

5. Lutz, R.R., Mikulski, I.C.: Requirements discovery during the testing of safety-
critical software. In: ICSE 2003: Proceedings of the 25th International Conference
on Software Engineering (2003)

6. Letier, E.: Reasoning about Agents in Goal-Oriented Requirements Engineering.
PhD thesis, Louvain-la-Neuve, Belgium (2001)

7. Acharya, M., Xie, T., Pei, J., Xu, J.: Mining API patterns as partial orders from
source code: from usage scenarios to specifications. In: ESEC-FSE 2007, pp. 25–34.
ACM, New York (2007)

8. Chan, W.: Temporal-logic queries. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000.
LNCS, vol. 1855, pp. 450–463. Springer, Heidelberg (2000)

9. Chang, R.M., Avrunin, G.S., Clarke, L.A.: Property inference from program exe-
cutions. Technical Report UM-CS-2006-26, University of Massachusetts (2006)

10. Ernst, M.D., Cockrell, J., Griswold, W.G., Notkin, D.: Dynamically discovering
likely program invariants to support program evolution. IEEE Transactions on
Software Engineering 27(2), 99–123 (2001)

11. Flanagan, C., Leino, K.R.M.: Houdini, an annotation assistant for ESC/Java. In:
Oliveira, J.N., Zave, P. (eds.) FME 2001. LNCS, vol. 2021, pp. 500–517. Springer,
Heidelberg (2001)

12. Gurfinkel, A., Chechik, M., Devereux, B.: Temporal logic query checking: A tool
for model exploration. IEEE Transactions on Software Engineering 29(10), 898–914
(2003)

13. Jeffords, R., Heitmeyer, C.: Automatic generation of state invariants from require-
ments specifications. SIGSOFT Softw. Eng. Notes 23(6), 56–69 (1998)

14. Weimer, W., Necula, G.C.: Mining temporal specifications for error detection. In:
Halbwachs, N., Zuck, L.D. (eds.) TACAS 2005. LNCS, vol. 3440, pp. 461–476.
Springer, Heidelberg (2005)

15. Yang, J., Evans, D., Bhardwaj, D., Bhat, T., Das, M.: Perracotta: mining tem-
poral API rules from imperfect traces. In: ICSE 2006: Proceedings of the 28th
International Conference on Software Engineering, pp. 282–291. ACM, New York
(2006)

16. Koza, J.R., Keane, M.A., Streeter, M.J., Mydlowec, M., Yu, J., Lanza, G.: Genetic
Programming IV: Routine Human-Competitive Machine Intelligence. Springer,
Heidelberg (2003)



330 H.J. Goldsby and B.H.C. Cheng

17. Lehman, J., Stanley, K.: Exploiting open-endedness to solve problems through
the search for novelty. In: Bullock, S., Noble, J., Watson, R., Bedau, M.A. (eds.)
Artificial Life XI: Proceedings of the Eleventh International Conference on the
Simulation and Synthesis of Living Systems, pp. 329–336. MIT Press, Cambridge
(2008)

18. Dwyer, M.B., Avrunin, G.S., Corbett, J.C.: Patterns in property specifications for
finite-state verification. In: Proceedings of the 21st International Conference on
Software Engineering, pp. 411–420 (1999)

19. Holzmann, G.: The Spin Model Checker, Primer and Reference Manual. Addison-
Wesley, Reading (2004)

20. Konrad, S., Cheng, B.H.C.: Real-time specification patterns. In: Proceedings of
the International Conference on Software Engineering (ICSE 2005), St. Louis, MO,
USA (May 2005)

21. Kim, M., Kim, S., Park, S., Choi, M.T., Kim, M., Gomaa, H.: UML-based service
robot software development: a case study. In: ICSE 2006: Proceeding of the 28th
International Conference on Software Engineering, pp. 534–543 (2006)

22. Goldsby, H.J., Cheng, B.H.C., McKinley, P.K., Knoester, D.B., Ofria, C.A.: Digital
evolution of behavioral models for autonomic systems. In: Proceedings of the 5th
International Conference on Autonomic Computing (ICAC 2008), Chicago, Illinois
(June 2008)

23. Smith, R.L., Avrunin, G.S., Clarke, L.A., Osterweil, L.J.: Propel: an approach sup-
porting property elucidation. In: ICSE 2002: Proceedings of the 24th International
Conference on Software Engineering, pp. 11–21. ACM, New York (2002)

24. Cohen, M.B., Dwyer, M.B., Shi, J.: Coverage and adequacy in software product line
testing. In: ROSATEA 2006: Proceedings of the ISSTA 2006 Workshop on Role of
Software Architecture for Testing and Analysis, pp. 53–63. ACM, New York (2006)



Towards a Semantics of Activity Diagrams with
Semantic Variation Points

Hans Grönniger1, Dirk Reiß2, and Bernhard Rumpe1

1 Software Engineering, RWTH Aachen University, Germany
2 Institut für Wirtschaftsinformatik, Abteilung Informationsmanagement

Technische Universität Braunschweig, Braunschweig, Germany

Abstract. UML activity diagrams have become an established nota-
tion to model control and data flow on various levels of abstraction,
ranging from fine-grained descriptions of algorithms to high-level work-
flow models in business applications. A formal semantics has to capture
the flexibility of the interpretation of activity diagrams in real systems,
which makes it inappropriate to define a fixed formal semantics. In this
paper, we define a semantics with semantic variation points that allow for
a customizable, application-specific interpretation of activity diagrams.
We examine concrete variants of the activity diagram semantics which
may also entail variants of the syntax reflecting the intended use at hand.

1 Introduction

Activity diagrams [1] are a widely accepted modeling language for representing
control and data flow within software systems. The notation is applicable to
various application domains and is useful on many levels of abstraction. To name
just a few forms of use, activity diagrams can be used for low-level descriptions
of algorithms similar to flow-charts [2], for modeling collaborating objects in an
object-based system, or for specifying simple web application page flows [3] and
high-level business application workflows [4].

The basic idea of activity diagrams is to model actions and their possible
orders of execution. Besides this common denominator, interpretation of what
constitutes an action and how to determine when and how an action is enabled or
when it finishes execution remains specific to the application area. Methodically,
the purpose of activity diagrams is also subject to project-specific interpretation:
it may be loosely used for documentation purposes, or formally employed for
analysis or code generation.

Formal semantics for activity diagrams helps to reduce misunderstandings be-
tween people and may enhance interoperability between tools. Because of the
flexibility of the notation regarding its possible forms of use, it turned out to
be inappropriate to use a single and fixed formal semantics. Instead, we de-
fine a semantics with semantic variation points which allow for a customizable,
application-specific interpretation of activity diagrams. Explicit semantic vari-
ation points help people to agree on the meaning of language constructs in a

D.C. Petriu, N. Rouquette, Ø. Haugen (Eds.): MODELS 2010, Part I, LNCS 6394, pp. 331–345, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



332 H. Grönniger, D. Reiß, and B. Rumpe

certain project context. Invariant definitions constitute what we call the in-
ner semantics of a notation. This separation helps to reduce the complexity of
agreeing on a formal semantics. This paper concentrates on defining the inner
semantics. Additionally, variants of activity diagrams, for example, to model
low-level algorithms, are sketched.

The paper is structured as follows. In Section 2, we shortly describe the con-
crete and abstract syntax of activity diagrams. In Section 3, we define a formal
inner semantics with variation points, which are interpreted in the different con-
texts in Section 4. In Section 5, we discuss related work and Section 6 concludes
the paper.

2 Syntax of Activity Diagrams

Fig. 1 shows an example activity diagram. The workflow depicted therein de-
scribes an abstract view on a process for grading a thesis. It involves three roles
(denoted on the left hand side): Student, Referee1 and Referee2. The workflow
starts with a student who files a thesis. The action FileThesis has an output
pin (Thesis t) that represents type and name of the outgoing data. The thesis
is reviewed by Referee1 and Referee2 (fork to actions ReviewThesis1 and Re-
viewThesis2). Both actions have input and output pins – taking a Thesis t as
input and passing on a Review r along the flow. When both actions have fin-
ished, the reviews are then evaluated by Referee1 (action Evaluate). Depending
on the outcome of this action, either a certificate for the student is created (ac-
tion CreateCert in case of passed) or note of the failure (action DetainFailure in
case of failed) is taken. After either action, the activity is finished.

Fig. 1. Example activity “GradeThesis”

Please note that we currently do not consider constructs like hierarchical
decomposition, interruptible activity regions or parameter sets which are present
in the UML 2.2 [1] standard. Additional constructs can and will be handled in
subsequent versions of the semantics. The focus of this work, however, is to show
the handling of variants for the interpretation of activity diagrams.



Towards a Semantics of Activity Diagrams with Semantic Variation Points 333

2.1 Abstract Syntax

The abstract syntax of an activity diagram is given in Definition 1. An activity
diagram has a name, a set of nodes and transitions. roleOf associates a role
(being a name) to each node. A Node has a type, a name, a list of input and
output pins, and some Effect when executed which remains unspecified for now.
Transitions connect input and output pins of nodes. The names Src, Dst refer
some node, the names InPin, OutPin refer to pins of the connected nodes. pinType
yields the (data) type of the pin which also remains unspecified. Guards may
be specified on outgoing transitions but actually belong to the source node.
Therefore, we associate guards with output pins. These guards can be obtained
by function guard. The exact structure of the language of guards is also not fixed
in Definition 1.

Definition 1 (Abstract Syntax of Activity Diagrams).

AD = Name × ℘(Node) × ℘(Transition)×
roleOf × pinType × guard

Node = NType × NName× InPin∗ × OutPin∗ × Effect
roleOf ∈ Node → Role
NType = {action, initial, final, forkjoin, decisionmerge}
Transition = Src × OutPin × Dst × InPin
guard ∈ PName → Guard
InPin, OutPin = PName
pinType ∈ PName → PType
Src, Dst = NName
Role, NName, PName = Name

As can be seen from Definition 1 the usually distinct node types for fork and
join as well as decision and merge have been combined to more general nodes.
A single fork, for example, is just a special case of a node of type forkjoin with
exactly one input transition.

We introduce helper functions that operate on the abstract syntax for conve-
nience.

– inT : AD×Node → ℘(Transition) yields all incoming transitions given a node.
– outT : AD×Node → ℘(Transition) returns all outgoing transitions of a node.
– Dot-notation is used to access parts of the abstract syntax. For instance, if

ad ∈ AD, then ad.Node denotes the set of nodes in ad.

Further, we assume that the following context conditions hold (among others).
The diagram is complete in the sense that all nodes define pins when connected
by a transition. Pins that are only control pins are given the (pseudo) type ⊥⊥⊥.
Pins with an underspecified data type are given the type��� representing arbitrary
values. Each transition references existing nodes and pins. In the concrete syntax
(cf. Fig. 1), pins and their types may be left out but are assumed to be present
in the abstract syntax.



334 H. Grönniger, D. Reiß, and B. Rumpe

As for the concrete syntax, we only consider a true subset of constructs com-
pared to the UML standard. We also refrain from defining a simplified metamodel
for the abstract syntax because our set-based notation is more succinct, precise,
and convenient when defining the semantic mapping.

3 Inner Semantics of Activity Diagrams

We give a denotational semantics to activity diagrams. To do so, we precisely and
explicitly define the (abstract) syntax (previous section), the semantic domain,
and the semantic mapping [5].

3.1 System Model

The system model in the form of [6,7] serves as our semantic domain. It charac-
terizes object-based systems by describing their structural, behavioral, and inter-
action aspects. The purpose of the system model is to have a common semantic
domain for all kinds of UML diagram types. As described in [8] several UML
sub-languages have already been mapped to the system model. A set-valued
semantic mapping for individual diagram types allows for integrating multiple
semantics: the integrated semantics of a set of models denotes all systems in the
system model that fulfill all properties induced by the models. Object references
are available as elements of a universe of object identifiers UOID1. Similarly,
a universe of class names (UCLASS), variable names (UVAR), values (UVAL),
methods (UMETH), threads (UTHREAD), and program counters (UPC) is part
of each system in the system model providing static information. For each object
oid, classOf(oid) ∈ UCLASS determines its class. All methods m are defined in
a class: definedIn(m) ∈ UCLASS and there is a set of program counters for each
method, i.e., pcOf(m) ⊆ UPC.

From a global view-point, a system of the system model is a single non-
deterministic state machine. The behavior is determined by a transition function
of the form

Δ : STATE → ℘(STATE)

where STATE is the set of global states. Each state s ∈ STATE consists of
three components. The data store dsOf(s) ∈ UOID → (UVAR → UVAL) of a
state s captures attribute values of all currently existing objects. The control
store csOf(s) ∈ UOID → UTHREAD → Stack(FRAME) saves computational
states of methods in a stack of frames for each object and thread. A frame
f = (callee, mname, vars, pc, caller) ∈ FRAME stores the called object refer-
ence, the method name, current local variables, the current program counter,
and the calling object. To access the program counter, we define πpc(f) = pc.
Finally, the event store esOf(s) holds unprocessed messages. As can be seen from
the transition function above, we have a closed-world assumption. Inter-object
1 All elements are defined in the context of a system sm ∈ SystemModel. We write

UOID but actually refer to a specific system’s set of object identifiers UOIDsm.



Towards a Semantics of Activity Diagrams with Semantic Variation Points 335

communication is hidden in the global view since messages are sent directly to
the receiving event stores. Concurrent activities are possible in one state tran-
sition because a global state as a whole captures the individual state of each
object. A trace t ∈ TRACE of a system in the system model is a finite or infinite
sequence of states

t = s1 · s2 · s3 · · · such that si+1 ∈ Δ(si)

For details regarding the rationale behind the system model and the actual
definitions please consult [6,7].

3.2 Semantic Mapping

The basic idea of the semantic mapping, depicted in Fig. 2, is that an “instance”
of the activity diagram is represented by some system model concepts such as
objects, threads, etc. The abstract names e1, c1 and so on for these entities
have been chosen deliberately to not suggest any specific choice. While Fig. 2
highlights only one instance, there may be multiple instances of the same diagram
executing concurrently.

For an execution trace and a fixed instance it is then checked if all state
transitions si+1 ∈ Δ(si) conform to the behavior prescribed by the diagram.
In Fig. 2, for example, the system model concept that represents action A has
to be executed prior to the system model concepts that represent actions B
and C. Thus, the inner semantics presented in this Section defines possible or-
ders of executions of actions. How these actions manifest in a system is left
open and can be detailed by “fixing” the variation points of the inner semantics.

Fig. 2. Idea of mapping activity diagrams

The following definitions are given in standard maths. However, according to
our approach presented in [8], all definitions (including abstract syntax) will be
encoded in a theorem prover to obtain a machine-checkable language definition
which is suitable for verification purposes.

In Definition 2, we introduce the set ADInst, i.e., the set of activity diagram
instances. Depending on the intended interpretation of the activity diagram, it



336 H. Grönniger, D. Reiß, and B. Rumpe

has to be possible to obtain, e.g., the representation of roles or actions as system
model concepts. The exact definition is subject to specific interpretation and is
consequently defined as a variation point.

Definition 2 (Variation point for activity diagram instances). ADInst
denotes a set of activity diagram instances for an activity diagram. Given an in-
stance, we obtain the corresponding activity diagram by function ad : ADInst →
AD. No further assumptions are made on the number and structure of elements
of ADInst or on function ad.

Our semantics is completely abstract in terms of how we represent an instance of
an activity diagram as entities in the system. Establishing a connection between
the inner semantics of the diagram and possible realizations is the aim of Sect. 4
where we discuss realization variants.

In each state of the system, information about the currently executing actions
is required. Since the mapping of actions to system entities is not fixed, this also
remains a variation point.

Definition 3 (Variation point of state of actions). Function executing :
Node × ADInst× STATE → Bool checks if a given node is currently executing
for an instance in a system state.

Pin types pose a restriction on what tokens may flow into or out of the nodes.
This is defined in Definition 4.

Definition 4 (Variation point for assigning tokens to a pin type). Func-
tion elems : PType → ℘(Token) yields a set of tokens that match the pin type.
If the type is the special type ���, then all tokens are valid (arbitrary data or just
control), i.e., elems(���) = Token. The special control token ⊥ is the only token
matching ⊥⊥⊥, i.e., elems(⊥⊥⊥) = {⊥}.

To completely capture the current configuration of an activity diagram instance,
control and data flow tokens that sit on transitions need also be considered. This
is introduced in the following definition. All data are tokens as well. Function
bufState in Definition 5 gives access to the current token buffer of a transition
in a state. Elements in the buffer have to match the pin types the transition is
connected to. These types are not necessarily equal but compatible. No further
assumptions are made on the behavior of the buffer.

Definition 5 (Variation point on tokens and token buffers). Token is
a set of control and data tokens. bufState : Transition × ADInst× STATE →
Buffer(Token) returns the current buffer of a transition in a state. Given a tran-
sition t, instance inst, and state s, the tokens in the buffer match the pin types
of the transition:

∀e ∈ bufState(t, inst, s) :
e ∈ (elems(ad(inst).pinType(t.InPin)) ∩ elems(ad(inst).pinType(t.OutPin)))



Towards a Semantics of Activity Diagrams with Semantic Variation Points 337

For convenience, we define bufEmpty(t, inst, s) = (bufState(t, inst, s) = ε) and
bufNonEmpty(t, inst, s) = (bufState(t, inst, s) �= ε).

Further, we determine the tokens produced and consumed on a transition in
a system model step, s′ ∈ Δ(s) in Definition 6.

Definition 6 (Consumption and production of tokens). The function
cons : Transition × ADInst× STATE× STATE → Token∗ returns tokens that
have been consumed from a transition between to system states. Function prod :
Transition × ADInst× STATE× STATE → Token∗ yields tokens that have been
produced on a transition, respectively.

Outputting a token may be guarded. We do not specify syntax nor semantics
for the language Guard but, according to Definition 7, assume a function that
evaluates guards given a context.

Definition 7 (Variation point on evaluation of guards). Function eval :
Guard × ADInst× STATE → Bool evaluates guards.

isInitial in Definition 8 checks if a system state corresponds to an initial activity
diagram configuration. A system state corresponds to an initial configuration if
there are only tokens on the outgoing transitions of initial actions and no other
action is currently executing.

Definition 8 (Initial states of a system). For an instance inst ∈ ADInst,
the function isInitial : ADInst× STATE → Bool determines if a state s ∈
STATE is an initial state:

isInitial(inst, s) =
(∃n ∈ ad(inst).Node :

(n.NType = initial ∧ ∀t ∈ outT(ad(inst), n) : bufNonEmpty(t, inst, s))∧
(∀n ∈ ad(inst).Node :

(n.NType �= initial =⇒ ∀t ∈ outT(ad(inst), n) : bufEmpty(t, inst, s)∧
¬ executing(n, inst, s)))

A system state corresponds to a final configuration (Definition 9) if there are
only tokens on the ingoing transitions of final actions and no other action is
executing.

Definition 9 (Final states of a system). For an instance inst ∈ ADInst, the
function isFinal : ADInst× STATE → Bool determines if a state s ∈ STATE is
a final state:

isFinal(inst, s) =
(∃n ∈ ad(inst).Node :

(n.NType = final ∧ ∃t ∈ inT(ad(inst), n) : bufNonEmpty(t, inst, s))∧
(∀n ∈ ad(inst).Node :

(n.NType �= final =⇒ ∀t ∈ inT(ad(inst), n) : bufEmpty(t, inst, s))∧
¬ executing(n, inst, s)))



338 H. Grönniger, D. Reiß, and B. Rumpe

Two things may be noted here: a) Requiring that no other action is executing
in an initial or final state results in unique, non-overlapping activity diagram
instances with respect to system model entities. That means, changing the state
in one instance does not affect any other instance. Currently, we still investigate
under which conditions overlapping should be admissible since it enables inter-
ference between diagram instances which can be desired or unwanted. b) As an
extension to Definition 9, we could define some pre-final state condition in that,
although a final node was reached, other actions may still execute. Depending on
the context, we could allow actions to carry on for some extra time to complete
their tasks or kill them immediately.

We now define if a step in the system from state s to state s′ with s′ ∈ Δ(s) by
an instance conforms to the behavior prescribed by the activity diagram. This
definition may be extended if additional node types (such as hierarchical nodes)
are defined.

Definition 10 (A well behaving system step). The function step with sig-
nature step : Node × ADInst× STATE× STATE → Bool prescribes the allowed
behavior in a system step w.r.t. an instance inst according to node n.
step(n, inst, s, s′) =

((n.NType = action =⇒
(startAct(n, inst, s, s′) ∨ finishAct(n, inst, s, s′) ∨ stepInst(n, inst, s, s′)))∧

(n.NType = forkjoin =⇒ stepForkJoin(n, inst, s, s′))∧
(n.NType = decisionmerge =⇒ stepDecisionMerge(n, inst, s, s′))
∨ stutter(n, inst, s, s′))

The following function definitions all have the same signature like step.
Definition 11 (A stutter step). The function stutter checks for a stutter step:
The execution state (w.r.t. the instance inst) does not change and no tokens are
consumed or produced.

stutter(n, inst, s, s′) =
(executing(n, inst, s) = executing(n, inst, s′)∧
∀t ∈ inT(ad(inst), n) : cons(t, inst, s, s′) = ε∧
∀t ∈ outT(ad(inst), n) : prod(t, inst, s, s′) = ε)

Definition 12 (Starting an action node). The function startAct checks for
a start of an action node: execution is started and the required token is consumed.

startAct(n, inst, s, s′) =
(¬ executing(n, inst, s) ∧ executing(n, inst, s′)∧
(∀t ∈ inT(ad(inst), n) : #(cons(1, t, inst, s, s′)) = 1)∧
(∀t ∈ outT(ad(inst), n) : prod(t, inst, s, s′) = ε))

Definition 13 (Finishing an action node). The function finishAct checks
for a finishing step of an action node: Execution is stopped and the required
token is produced.

finishAct(n, inst, s, s′) =
(executing(n, inst, s) ∧ ¬ executing(n, inst, s′)∧

(∀t ∈ outT(ad(inst), n) : #(prod(t, inst, s, s′)) = 1)∧
(∀t ∈ inT(ad(inst), n) : cons(t, inst, s, s′) = ε))



Towards a Semantics of Activity Diagrams with Semantic Variation Points 339

While startAct and finishAct allow for behavior of nodes that last longer than
one system step, stepInst in Definition 14 is appropriate when the execution of
a node can be finished in just one step.

Definition 14 (Instant reaction of an action node). The function stepInst
checks for a step of an action node that constitutes of executing the whole action.

stepInst(n, inst, s, s′) =
((∀t ∈ inT(ad(inst), n) : #(cons(t, inst, s, s′)) = 1)∧
(∀t ∈ outT(ad(inst), n) : #(prod(t, inst, s, s′)) = 1))

It is assumed that a node produces or consumes at most one token on each tran-
sition at a time. Definition 6 allows for a more general treatment where multiple
tokens are considered. This can be exploited in future versions of the semantics
when considering, for example, streams of tokens and parameter sets [1].

Definition 15 (Step on a fork/join node). The function stepForkJoin checks
for a step of a fork or join node (or a combination of both): On all input tran-
sitions a token is consumed while on all output transitions a token is produced.

stepForkJoin(n, inst, s, s′) =
((∀t ∈ inT(ad(inst), n) : #(cons(t, inst, s, s′)) = 1)∧
(∀t ∈ outT(ad(inst), n) : #(prod(t, inst, s, s′)) = 1))

Please note, according to Definition 15, the reaction of a fork/join node is in-
stantaneous. While this may be adequate for many interpretations, it may be
inappropriate for others. An alternative definition could introduce a two-phase
behavior of fork/join similar to that of action nodes. Also a combined definition
(instantaneous or delayed) is possible. The same holds for Definition 16.

Another interesting issue is the buffering of tokens. There is no need to pro-
duce all tokens in one go. What it means to store or retrieve a token depends on
how the buffer is “implemented”. A rather sophisticated but useful way would
be to store arriving data values in attributes (one for each incoming pin) and use
an intelligent controller that senses if all tokens arrived (i.e., all attributes are
set). This would then be the instant in time at which all tokens are produced.

Definition 16 (Step on a decision/merge node). stepDecisionMerge checks
for a step of a decision or merge node (or a combination of both): There is exactly
one input token consumed and exactly one output token produced on an output
pin with its guard evaluated to true.

stepDecisionMerge(n, inst, s, s′) =
((∃t ∈ inT(ad(inst), n) : #(cons(t, inst, s, s′)) = 1∧

∀t′ ∈ inT(ad(inst), n) : t′ �= t =⇒ cons(t, inst, s, s′) = ε)∧
(∃t ∈ outT(ad(inst), n) :

#(prod(t, inst, s, s′)) = 1 ∧ eval(ad(inst).guard(t.OutPin), inst, s′)∧
∀t′ ∈ outT(ad(inst), n) : t′ �= t =⇒ prod(t, inst, s, s′) = ε))



340 H. Grönniger, D. Reiß, and B. Rumpe

The last definition of the inner semantics of activity diagrams now defines a sat-
isfaction relation of a trace of the system with an activity diagram instance. The
conditions that need to be fulfilled are: a) there is a state with an initial con-
figuration (i-th state), and all subsequent steps b) behave according to function
step, or c), if the execution reached a final configuration, it remains final.

Definition 17 (A trace that satisfies an activity diagram instance). For
a trace t ∈ TRACE of a system in the system model and an activity diagram
instance inst ∈ ADInst, t satisfies inst, t |= inst, exactly if

(∃i : isInitial(inst, t[i])∧
(∀j ≥ i, n ∈ ad(inst).Node :

step(n, inst, t[j], t[j + 1])∧
(isFinal(inst, t[j]) =⇒ isFinal(inst, t[j + 1]))))

Until now, we have not clarified how an activity diagram instance may look like
under a specific interpretation. This is the aim of the next section.

4 Variants

In this section two variants of activity diagram interpretations are introduced.
The degree of formality varies. A rather complete treatment of activity diagrams
describing a single method execution which is made up of atomic actions is given.
Activity diagrams in which actions are treated as complete methods are discussed
informally. Further variants are briefly discussed in the conclusion.

4.1 Variant 1: Nodes as Atomic Actions

Consider the example in Fig. 3. The activity diagram describes an algorithm
to compute the factorial of a number. Each action is assumed to be an atomic
action. The whole activity is a method definition. The idea now is to specify vari-
ants of the definitions in Sect. 3 which are variation points to obtain a semantics
in which we interpret an activity diagram as a single method. An instance of the
activity diagram hence is a concrete single execution of that method. In this case,
an activity diagram instance can be characterized by the following definition:

Definition 18 (Variant of Definition 2: Activity Diagram Instances).
An instance of an activity is a single method execution. The following functions
constitute the context of the execution:

– caller : ADInst → UOID is the caller of the method.
– meth : ADInst → UMETH is the method described by the activity diagram.
– params : ADInst → UVAR∗ is the list of parameters of the method.
– callee : ADInst → UOID is the called object. It has to define the method,

i.e., classOf(callee(inst)) = definedIn(meth(inst)).
– pc : Node × ADInst → UPC is a valid program counter value of the action

for the specified method, i.e., pc(n, inst) ∈ pcOf(meth(inst))
– thread : ADInst → UTHREAD is the thread executing the method.



Towards a Semantics of Activity Diagrams with Semantic Variation Points 341

Fig. 3. Activity for method ”fac”

Since all actions are atomic actions, we need not consider the execution state of a
node. All executions are instantaneous and Definition 3 remains underspecified.

No data but only control flow is relevant in this variant, hence we set PType =
{⊥⊥⊥} and define elems(⊥⊥⊥) = {⊥ = thread(inst)} for an instance inst. This is to
model the fact that if there is a token in the buffer of a transition, then the target of
the transition is the next action to execute. This is the case if the program counter
of the current stack frame identified by some object and thread points to the node
which is targeted. For some instance inst, transition t, and state s, this means

bufState(t, inst, s) = [thread(inst)]
⇔ pcOf(top(csOf(s)(callee(inst))(thread(inst)))) = pc(t.Dst, inst)

where top is the first element of the stack. This fixes the variation points of
Definitions 5 and 4.

We assume a given action language AL and set Effect = AL and Guard ⊆ AL.
Semantics is traditionally defined: An atomic action is evaluated in the context of
an object and a thread that execute an action and it is checked whether the state
s′ mirrors the effect of executing the action in state s. Consider, for example, an
action for setting an attribute SetAttr x y: the data store of the object is updated
according to the given attribute x and value y. Also the program counter is
advanced, i.e.,

sem : AL × UOID×UTHREAD× STATE× STATE → Bool
sem(SetAttr x y, oid, th, s, s′) =

(dsOf(s′)(oid) = dsOf(s)(oid) ⊕ [x �→ y]∧
csOf(s′)(oid)(th) = incPC(csOf(s)(oid)(th)))

In order to make sure that actions are properly executed, we add the constraint
that executing a node n in instance inst corresponds to considering its effect:

stepInst(n, inst, s, s′) ⇔ sem(n.Effect, callee(inst), thread(inst), s, s′)



342 H. Grönniger, D. Reiß, and B. Rumpe

Decision nodes determine the next action to execute based on their guards. Since
this is done by setting the program counter to the right value, guards have side
effects in this variant. In order to reflect this, we complement Definition 16 with:

stepDecisionMerge(n, inst, s, s′)
⇔ ∃t ∈ outT(ad(inst), n) :
sem(ad(inst).guard(t.OutPin), callee(inst), thread(inst), s, s′)

To not contradict Definition 16, we assume eval(g, inst, s) to hold for all guards,
instances, and transitions. Consequently, Definition 16 just ensures that exactly
one token is consumed and produced while the above constraint ensures that the
effect of a guard was observed in a system step.

Syntactic consequences: According to this variant and the semantics defined
for it, fork/join nodes should be excluded syntactically since there is only one
thread or token. The sequential execution by one thread also indicates that all
nodes (except for decision nodes) may have only one output pin and that roles
are excluded as well. Since only control flow between atomic actions is modeled,
data types on pins are also disallowed.

4.2 Variant 2: Actions as Methods

In this variant, all actions are considered to be complete methods of some objects
instead of atomic actions of one method. This might be a suitable interpretation
of the activity diagram in Fig. 1.

Activity diagram instances can in this case be characterized as in Defini-
tion 19: Nodes correspond to methods, there is a set of threads executing these
methods. A specific object on which the method is called is obtained by oid.
Roles are represented as objects as well.

Definition 19 (Variant of Definition 2: Activity Diagram Instances).
An instance of an activity diagram in which actions denote methods is charac-
terized by the following functions:

– meth : Node × ADInst → UMETH is the method referenced by the node.
– threads : ADInst → ℘(UTHREAD) is the set of threads in that instance.
– oid : Node×ADInst → UOID is an object that holds a method for the node.
– rrep : Role × ADInst → UOID is the object representing the role.

Instances can be refined further by introducing sub-variants of Definition 19. For
example, we may require that for an instance inst, the role of node n is defining
the method, i.e.,

definedIn(meth(n, inst)) = classOf(rrep(ad(inst).roleOf(n), inst))
= classOf(oid(n, inst))

According to Fig. 1, for example,

definedIn(meth(Evaluate, inst)) = classOf(rrep(Referee1, inst))



Towards a Semantics of Activity Diagrams with Semantic Variation Points 343

So the method that implements action Evaluate is defined in a class that repre-
sents role Referee1. An interesting question in this context then is: Who is calling
an action (i.e., method). Is it done by the role itself? Is there some additional
control structure that checks if a role finished one of its methods and then calls
(enables) the next one? Methods may, however, not be associated to roles at
all. Instead, specific objects, structured roughly as in the command design pat-
tern [9] could represent action nodes. To ensure data integrity, one has to be
careful when allowing concurrent instances, i.e., concurrent executions of meth-
ods (or of a single method as in variant 1). Analysis of the activity diagrams
would be required to proof or refute this property. At this state, we cannot
faithfully give definite answers but will examine these questions in future work.

Executing a node (cf. Definition 3) means executing a method, so there has
to be a stack frame f = (oid(n, inst), nameOf(meth(inst)), ∗, ∗, ∗)2 for a thread
th ∈ threads(inst), i.e.,

executing(n, inst, s) ⇔ f ∈ (csOf(s)(oid(n, inst))(th))

Again, we could be more specific. For example, we could force the caller of
the method to be the object that is representing the role, i.e., we have the last
component of f equal to rrep(ad(inst).roleOf(n), inst). In this variant, a natural

Fig. 4. Special buffering strategy for tokens as attributes

interpretation of tokens are method calls in the system. However, there is again
more than one choice. A token may correspond to a call that is both carrying
control and data. A single token could then correspond to a possibly complex
parameter list for the method. In case of multiple incoming transitions to a node,
we could also follow the idea discussed earlier that the actual method execution
can only be started if all required input data has arrived on all input pins. The
(incomplete) code snippet in Fig. 4 informally shows a possible implementation
in which an action HandlePerson is mapped to a class which has attributes for all
input pins. Setting the attribute also informs some controller that keeps track of
the state of attributes. Once all attributes are set, the controller may call method
exec that implements the actual behavior. Syntactically, all features introduced
in Sect. 2 make sense in this variant, so there are no syntax restrictions as in the
previous variant.
2 Values we are not interested in can be marked as “wild card” by ∗.



344 H. Grönniger, D. Reiß, and B. Rumpe

5 Related Work

The common denominator of most works regarding the semantics of activity di-
agrams is the idea to define the possible orders of executions of actions. In that
respect, our semantics is not different. The UML standard defines an informal
token flow semantics with semantic variation points [1]. However, the standard
provides no means to describe realizations. In our approach, we obtain realiza-
tions by stating variants of several function definitions. A formal approach uses
procedural Petri-nets for the semantics of UML2 activity diagrams [10]. Here,
only the control flow aspect of activity diagrams is covered (including concur-
rency and procedure calls), whereas data flow is covered in our approach as well.
As an extension, the data flow in activity diagrams has been mapped to Col-
ored Petri-nets [11]. Both works do not consider a specific application domain.
Eshuis [4] develops a requirements-level and an implementation-level semantics
for activity diagrams. Both semantics are fixed and focus on workflow manage-
ment systems while we introduce an inner semantics from which variants can be
developed. Another token-based approach in the application area of workflow
management systems uses a virtual machine to execute activities [12]. Here, a
fixed semantics is defined by mapping a model to its execution in said runtime
engine. The semantics of UML actions is formally defined using the system model
as a semantic domain in [13]. An extension of this work [14] describes a virtual
machine for UML2 actions and activities based on a fixed interpretation in the
system model. Another natural candidate to formalize the semantics of activi-
ties are process calculi. For example, in [15] the μ-calculus is used. The proposed
Petri-net and process calculus semantics often have the advantage of being ex-
ecutable and analyzable but do not allow an easy understanding of models in
terms of possible implementations.

6 Conclusion

We have defined a formal semantics for a subset of UML activity diagrams. The
inner semantics was equipped with variation points that can be interpreted dif-
ferently in specific application domains. Variants are obtained by deciding which
system model entities make up a diagram instance and how their execution state
and token flow is determined. This was sketched using two example variants.

Having clarified the inner semantics of activity diagrams in terms of the sys-
tem model, we are now working towards formalizing different variants of activity
diagram interpretations. In this paper, we were mainly concerned with rather
low-level interpretations of activity diagrams as simple action or method execu-
tions. As discussed in [3], activity diagrams can be used to model simple web
page flows but also complex collaborations in web information systems. Execut-
ing an action in this context means, for example, showing a web page to a user,
waiting for a data update, and storing it in a session context or data base. An-
other interesting line of future work is to include further concepts from activity
diagrams, for example, interruptible activity regions, parameter sets, etc. How-
ever, there is the danger of cluttering the notation with constructs which are only



Towards a Semantics of Activity Diagrams with Semantic Variation Points 345

useful in very special situations. To avoid this, we will introduce these concepts
as syntactic variants in addition to a relatively small language core as explained
in [16]. Further, we are confident that it is possible to combine different in-
terpretations of activity diagrams when considering hierarchical decomposition.
For example, it is possible to model the content of nodes interpreted as methods
by diagrams in which nodes are interpreted as basic actions and to adopt the
diagram instance.

References

1. Object Management Group: Unified Modeling Language: Superstructure Version
2.2 (09-02-02) (2009), http://www.omg.org/spec/UML/2.2/Superstructure/PDF/

2. International Organization for Standardization (ISO): ISO 5807:1985 Information
processing – Documentation symbols and conventions for data, program and sys-
tem flowcharts, program network charts and system resources charts (1985)

3. Koch, N., Kraus, A., Cacharo, C., Meliá, S.: Integration of business processes in
Web application models. Journal of Web Engineering 3(1), 22–49 (2004)

4. Eshuis, H.: Semantics and Verification of UML Activity Diagrams for Workflow
Modelling. PhD thesis, Univ. of Twente (2002)

5. Harel, D., Rumpe, B.: Meaningful Modeling: What’s the Semantics of “Semantics“?
Computer 37(10), 64–72 (2004)

6. Broy, M., Cengarle, M.V., Grönniger, H., Rumpe, B.: Considerations and Rationale
for a UML System Model. In: Lano, K. (ed.) UML 2 Semantics and Applications.
Wiley, Chichester (2009)

7. Broy, M., Cengarle, M.V., Grönniger, H., Rumpe,B.: Definition of the SystemModel.
In: Lano, K. (ed.) UML 2 Semantics and Applications. Wiley, Chichester (2009)

8. Grönniger, H., Ringert, J.O., Rumpe, B.: System Model-Based Definition of Mod-
eling Language Semantics. In: Lee, D., Lopes, A., Poetzsch-Heffter, A. (eds.)
FMOODS 2009. LNCS, vol. 5522, pp. 152–166. Springer, Heidelberg (2009)

9. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley Professional, Reading (1995)

10. Störrle, H.: Semantics of UML 2.0 Acitivities. In: Intl. Symp. Visual Lan-
guages/Human Computer Centered Systems, pp. 235–242 (2004)

11. Störrle, H.: Towards a Petri-net Semantics of Data Flow in UML 2.0 Activities.
Technical Report TR 0504, University of Munich (2004)

12. Vitolins, V., Kalnins, A.: Semantics of UML 2.0 Activity Diagram for Business Mod-
eling by Means of Virtual Machine. In: 9th IEEE International EDOC Enterprise
Computing Conference, pp. 181–194. IEEE Computer Society, Los Alamitos (2005)

13. Crane, M.L., Dingel, J.: Towards a Formal Account of a Foundational Subset for
Executable UML Models. In: Czarnecki, K., Ober, I., Bruel, J.-M., Uhl, A., Völter,
M. (eds.) MODELS 2008. LNCS, vol. 5301, pp. 675–689. Springer, Heidelberg (2008)

14. Crane, M.L., Dingel, J.: Towards a UML virtual machine: implementing an inter-
preter for UML 2 actions and activities. In: Proceedings of Centrer for Advanced
Studies on Collaborative Research (CASCON 2008), pp. 96–110. IBM (2008)

15. Küster, J., Koehler, J., Novatnack, J., Ryndina, K.: A Classification of UML2
Activity Diagrams. Technical report, IBM ZRL Technical Report 3673 (2006)

16. Cengarle, M.V., Grönniger, H., Rumpe, B.: Variability within Modeling Language
Definitions. In: Schürr, A., Selic, B. (eds.) MODELS 2009. LNCS, vol. 5795, pp.
670–684. Springer, Heidelberg (2009)

http://www.omg.org/spec/UML/2.2/Superstructure/PDF/


An AADL-Based Approach to Variability Modeling of
Automotive Control Systems

Shin’ichi Shiraishi

Toyota InfoTechnology Center Co., Ltd.
Akasaka 6-6-20, Minato-ku

Tokyo, Japan 107-0052

Abstract. While the complexity of automotive systems is increasing, nowadays,
most of the newly developed functionalities are implemented by software. This
implies that software plays an important role in the development of automotive
systems. However, several inefficiency problems related to software remain un-
resolved. One problem is to find an effective way to handle a large-scale varia-
tion of automotive systems. Hence, this paper presents an AADL (Architecture
Analysis & Design Language)-based approach to the variation-related problem.
The proposed approach captures the variation of automotive systems and yields
their variability models. The obtained models promote an efficient development
that exploits system variation. In this paper, we explain the detailed procedure of
AADL-based development with the help of an example of development of cruise
control systems.

Keywords: ADL, architecture description language, AADL, architecture analy-
sis & design language, variability modeling, automotive electronics systems.

1 Introduction

During the development of the latest automotive systems, new functionalities are gen-
erated by integrating independently developed systems. For example, navigation-co-
operative systems such as shift control or suspension control systems are good exam-
ples of this kind of integration. However, such a systems integration can easily lead to a
serious complication in automotive systems. Unfortunately, the complexity problem is
especially severe in software development because software plays a leading role in the
integration. Besides the complication, another problem is that the scale of software is
being expanded rapidly; for example, one prediction [1] is that the scale will reach 100
million steps around the year 2015.

Although the complication and expansion of software are now actively in progress,
unfortunately, some problems related to software development remain unresolved. For
example, while an efficient systems integration requires fluent communication between
engineers working in different technical areas, we do not have any effective communi-
cation basis on which engineers can share important information. This can be explained
by the fact that each technical domain — e.g., body electronics, infotainment, power-
train, and so forth — has its own vocabulary that the others cannot easily recognize.
Moreover, the fact that the development is widely distributed over several divisions,
suppliers, and subcontractors makes this problem more severe.

Yet another problem is a large-scale variation of automotive systems. Several factors,
e.g., car models, grades, classes, and markets, produce a large number of variants. Cer-
tainly, variability management for implementation codes is commonly employed in the

D.C. Petriu, N. Rouquette, Ø. Haugen (Eds.): MODELS 2010, Part I, LNCS 6394, pp. 346–360, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



An AADL-Based Approach to Variability Modeling of Automotive Control Systems 347

practical field; however, we need high-level variability modeling of automotive systems
that results in efficient variation handling and improved productivity.

Emerging technologies known as ADLs (architecture description languages ) — e.g.,
AADL [2], AADL V2 [3], SysML [4], MARTE [5], EAST-ADL [6], and EAST-
ADL 2 [7] — are recently drawing much attention from automotive engineers because
of their potential to alleviate the abovementioned problems. These ADLs offer syntax
that can capture the structure of software-centric systems at a high abstraction level. In
other words, they can be possibly used as an information infrastructure for a wide vari-
ety of engineers working in different areas. This paper demonstrates how ADLs can be
exploited in the development of automotive systems with detailed architecture descrip-
tions. In particular, we focus on the variation handling problem and choose AADL1

from among the abovementioned candidates. This is because AADL provides strong
support for variation handling as is demonstrated in the following sections. In order to
elucidate the concrete steps necessary for variability modeling, we utilize a case study
of automotive systems: cruise control systems.

2 Architecture Analysis & Design Language (AADL)

AADL is derived from Honeywell’s MetaH, which is a language for developing avion-
ics system architectures. This implies that AADL inherently specializes in real-time
system architectures (hardware and software) with respect to their design and analysis.
AADL was originally standardized by SAE in 2004 [2], and then, the updated version
(AADL V2) with new features—multi-layered architectures, virtual processors, and so
on—was recently published in 2009 [3].

AADL descriptions consist of basic elements called components. A certain number
of components connect each other and form an architecture of systems. AADL provides
several types of components that compose a software architecture, such as process,
thread , etc. In addition to the software architecture, we can use the following hard-
ware components for describing an execution platform: processor, device, bus, and
so forth. With regard to component interconnection, each component communicates via
ports: data port, event port, etc. Furthermore, the software architecture is bound
up with the execution platform by sharing a bus, e.g., a memory bus. A set of inter-
connected components composes a system . Figure 1 shows graphical notations of the
aforementioned AADL components, system, and ports.

System

(a) System.

DataProcess Subprogram
Thread
Group

Thread

(b) Software components.

Port Group Data Port Event Port Event Data Port

(c) Ports.

Bus Processor MemoryDevice

(d) Execution platform (hardware) com-
ponents.

Fig. 1. Graphical notations of AADL

1 It should be noted that we focus on AADL [2] rather than recently published AADL V2 [3].



348 S. Shiraishi

An interface design (external specification) of components is given by a type defini-
tion in AADL. In contrast, an internal specification is specialized by an implementation
of the type. It should be noted that the AADL allows a type definition to have multiple
implementations. List 1 displays an excerpt of the AADL description of the sample sys-
tem shown in Fig. 2(a). List 1 also explains that a type definition is implicitly described
in contrast to the explicit description of an implementation.

List 1. Example of AADL description.
-- The following is an excerpt of the entire description.
system system1 -- Type Definition of Base System
-- No interface
end system1;
system implementation system1.impl -- Implementation Description
subcomponents
process1: process pr1.impl;
process2: process pr2.impl;

connections
pr_com: data port process1.pr1_output -> process2.pr2_input;

end system1.impl;

In addition to the basic description strategy mentioned above, AADL is also equipped
with the following vocabulary to deal with variants of components: extends and re-
fined to. List 2 describes an extended base system shown in Fig. 2(b) that is a variant
of the base system in Fig. 2(a). Later, in this paper, we discuss in detail how to ex-
ploit this extension mechanism for the purpose of variability modeling of automotive
systems.

List 2. Example of description of variant: Fig. 2(b).
-- The following is an excerpt of the system variant.
thread th2_dash extends th2
features
th2_output: out data port; -- Additional Port

end th2_dash;
process implementation pr2.impl_dash extends pr2.impl
subcomponents
thread2_dash: thread th2_dash; -- Additional Thread
-- Snip

end pr2.impl_dash;
system implementation system1.impl_dash extends system1.impl
subcomponents -- pr2.impl_dash substitutes for pr2.impl
process2: refined to process pr2.impl_dash;
-- Snip

end system1.impl_dash;

System1

process1

thread1

process2

thread2

(a) Base system.

System1_dash

process1

thread1

process2_dash

thread2_dash

thread2

(b) Extended base system (a variant).

Fig. 2. Sample AADL diagrams of systems

3 Cruise Control Systems

This paper targets three types of cruise control systems, detailed explanations of which
are provided below.



An AADL-Based Approach to Variability Modeling of Automotive Control Systems 349

Cruise Control System: CC1. This cruise control system (hereafter referred to as CC1)
is a base system on which the other two systems are developed. Its main function is
constant-speed cruise control that renders the difference between the current vehicle
speed and the target speed set by a driver to zero. In this system, the lower and upper
speed limits for operation are 40 km/h and 100 km/h, respectively. This system con-
trols the output torque of an engine via an external engine control computer. Figure 3(a)
shows the hardware configuration of the cruise control system (CC1), including periph-
erals: switches, buses, ECUs, etc. The target application required to be developed in
this study is software running on Driving Support Computer depicted in the center of
Fig. 3(a).

Adaptive Cruise Control System: CC2. The adaptive cruise control system (hereafter
refereed to as CC2) is an extended system derived from CC1. This system provides a
new function of constant-distance cruise control that renders the difference between the
target distance set by a driver and the current distance to a target vehicle traveling in
front of the equipped vehicle to zero. In order to ensure constant-distance cruise control,
this system includes a radar sensor that yields the following information: the distance
from the equipped vehicle to the target vehicle and the relative speed between these
two vehicles. The speed limits for operation are the same as CC1: 40 km/h – 100 km/h.
The hardware configuration of this system is shown in Fig. 3(b); however, two gray
boxes, Object Recognition Sensor and Front Controller, are excluded because they are
dedicated to the full speed range adaptive cruise control system (see the next paragraph).

Full Speed Range Adaptive Cruise Control System: CC3. The full speed range adap-
tive cruise control system (hereafter referred to as CC3) is a further extended system
derived from CC2. In addition to the radar sensor, this system includes an image sensor
labeled Object Recognition Sensor in Fig. 3(b). The object recognition sensor cap-
tures the behavior of vehicles in front of the system-equipped vehicle. It works together
with the radar sensor in a compensatory way to expand the effective range of sensing
the distance and relative speed. This alleviates the speed limits for operation, such as
0 km/h–100 km/h. This wide-range sensing enables a stop-and-go function by follow-
ing on the target vehicle. The hardware configuration of this systems has already been
shown in Fig. 3(b).

Combination
Meter

Engine Control
Computer

Skid Control 
Computer

Cruise 
Control
Switch

Stop Lamp
Switch

Legend:

CAN

Analog I/O

S
el

f S
pe

ed Status

Brake 
On/Off

E
ng

in
e

S
ta

tu
s

To
rq

ue
R

eq
ue

st

Driving 
Support 

Computer

System On/Off
Set Speed

ECU

Device

(a) Hardware configuration of the cruise
control system: CC1.

Driving Support 
Computer

Combination
Meter

Engine Control
Computer

Skid Control 
Computer

Cruise Control
Main Switch

Stop Lamp
Switch

Self Speed

Status

Brake On/Off

Distance Setting
Switch

Rader Sensor

Front Controller
Wiper
Status

Object 
Recognition 

Sensor

Brake Request

R
el

at
iv

e 
S

pe
ed

 &
 

D
is

ta
nc

e

S
el

f S
pe

ed

Relative Speed & 
Distance

Self Speed E
ng

in
e

S
ta

tu
s

To
rq

ue
R

eq
ue

st

System On/Off
Set Speed

Legend:

CAN

Analog I/O

ECU

Device

(b) Hardware configurations of the adaptive
cruise control systems: CC2 and CC3.

Fig. 3. Hardware configurations of cruise control systems

As shown above, this paper uses the following identifiers to distinguish one system
from the others (CC1, CC2, and CC3).



350 S. Shiraishi

4 AADL-Based Development of Automotive Control Systems

In this section, we choose the basic cruise control system (CC1) from the three types of
systems mentioned in Sect. 3 and discuss in detail its development by using AADL.

4.1 Development Process

AADL does not depend on any development processes. In other words, we have to
prepare a development process to which we can apply AADL. Thus, we assume the
following steps of the development process 2.

1. Requirements Specification.
2. Architecture Design.

(a) Specification Description (Type Definition): Functional Decomposition, Inter-
face Design, Flow Design, etc.

(b) Implementation Description & Analysis: Component Aggregation & Intercon-
nection, Behavior Modeling, Flow Implementation, Flow Analysis, etc.

3. Code Implementation: Automatic Code Generation, Hand Coding, etc.

The above two steps, that is, specification description (type definition) and implementa-
tion description, are alternatively iterated along with delving deeper into an architecture
hierarchy (see the next section for details).

4.2 AADL Descriptions of the Cruise Control System

Cruise
Control

Stop Lamp

Skid Control

Engine 
Control

Cruise Control
Switch

Combination
Meter

Fig. 4. Context diagram of
CC1.

In this section, we provide detailed AADL descriptions
of the basic cruise control system (CC1) according to the
development process explained in Sect. 4.1. Variability
modeling, which is the focus of this paper, will be dis-
cussed in Sect. 5.

Requirements Specification. AADL does not provide
any vocabulary for requirements specification. Thus, the
requirements specification is written in a natural lan-
guage in accordance with a well-known guideline such
as IEEE Std. 830-1998 [8].

Architecture Design: Specification Description. This step describes external specifi-
cations of software, an execution platform, or subcomponents obtained by the decom-
position of these two top-level components. That is to say, the type definition in AADL
is performed in this step (cf. Sect. 2). In the subsequent discussion, we focus only on
the software part.

First, on the basis of the information provided in Fig. 3(a), we prepare an initial
diagram (context diagram) shown in Fig. 4. Our target is the software part of Cruise
Control shown in Fig. 4. The context diagram allows us to describe some preliminary
definitions, e.g., measurement units: km/h, Nm; data types: 32-bit long, 16-bit long; and
so on.

2 More precise explanations of each step will be given in the next section.



An AADL-Based Approach to Variability Modeling of Automotive Control Systems 351

Second, by using these fundamental measurement units and data types, we describe
the type definitions of software components and its peripherals. List 3 gives the type
definitions of the top-level software component (CruiseControlSoftwareCC1) and
the skid control computer (skid control base), which is a peripheral ECU from the
viewpoint of the cruise control system and is a central component of a brake control sys-
tem. Figure 5(a) shows the schematic type definition of CruiseControlSoftwareCC1.
This figure also shows that the type definition in AADL yields the interface design be-
tween components.

List 3. Type definitions of the top-level software component and the skid control computer.

-- Top-level Component of Software
system CruiseControlSoftwareCC1
features
self_speed_in: in data port types::kph_type;
can_bus_steering: requires bus access hardware::hs_can_bus;
-- Snip

end CruiseControlSoftwareCC1;
-- Device: Skid Control Computer
device skid_control_base
features
self_speed: out data port types::kph_type;
-- Requires CAN BUS
hs_can_bus_self_speed: requires bus access hardware::hs_can_bus;

end skid_control_base;

Finally, we consider the functional decomposition such that a software component is
split into some subcomponents. The external specifications (type definitions) of the ob-
tained subcomponents are also determined. Furthermore, internal relationships among
ports of each subcomponent are defined as flows (See flows in List 4).

The extracted subcomponents are connected to each other in the next step: the im-
plementation description in Sect. 4.2 . As mentioned before, these two steps, i.e., the
specification description (type definition) and the implementation description, are per-
formed alternatively until leaf components of software architecture, such as processes
or threads, are obtained.

CruiseControlSoftwareCC1

ControlSwitchCSC
CombinationMeter

current_drive_force

possib le_drive_force

self_speed_in

brake_on

required_drive_force

memory_bus

can_bus_steering

analog_io_main_sw

analog_io_cancel_sw

analog_io_m_set_sw

analog_io_stop_lamp_sw

(a) Top-level software
component.

CruiseControlMainBase

ControlSwitchCSC

b rake on setSpeed

Comb inationMeter

SelfCarControlBase

self speed in

setSpeed

current drive force

possib le drive force

required drive force

(b) Processes.

CalculateDriveForceBase

accelerationFromCSC

driveForceRequest

engineControl

EngineControl

current_drive_force

possib le_drive_force

required_drive_force_in

required_drive_force_out

engineControl

CalculateAccelerationFor...

setSpeed

selfSpeed
acceleration

SkidControlBase

self_speed_in
self_speed_out

(c) Threads.

Fig. 5. Schematic type definitions of software components

In the case of CC1, the top-level software component depicted in Fig. 5(a) consists
of the following two processes: CruiseControlMainBase and SelfCarControlBase in
Fig. 5(b). The former process CruiseControlMainBase is the manager of the entire
system. The latter process SelfCarControlBase realizes a constant-speed cruise control



352 S. Shiraishi

algorithm. Moreover, SelfCarControlBase is composed of four types of threads de-
picted in Fig. 5(c). List 4 gives the type definitions of the process SelfCarControlBase
in Fig. 5(b) and the thread SkidControlBase in Fig. 5(c).

List 4. Type definitions of a process and a thread.

process SelfCarControlBase
features
setSpeed: in data port types::kph_type;
-- Snip

end SelfCarControlBase;
thread SkidControlBase
features
self_speed_in: in data port types::kph_type;
self_speed_out: out data port types::kph_type;

flows -- Flow Design
FS0000: flow path self_speed_in -> self_speed_out;

end SkidControlBase;

Architecture Design: Implementation Description & Analysis. In this step, the in-
ternal specifications of software components whose external specifications have been
defined previously are described. This procedure is called as implementations of the
predefined types (cf. Sect. 2). More precisely, some subcomponents are aggregated and
interconnected so as to form an upper-level component. List 5 presents the implemen-
tations of the system CruiseControlSoftwareCC1 shown in Fig. 5(a) and the process
SelfCarControlBase shown in Fig. 5(b). The diagrams in Fig. 6 are the schematic de-
scriptions of these implementations.

If further decomposition of the subcomponents is necessary, we will return to Sect. 4.2
and reconsider the functional decomposition at a sub-subcomponent level. As mentioned
before, the decomposition is repeated until leaf components such as processes or threads
are obtained. We can expect to obtain a hierarchical software architecture as a result of
the iterative decomposition.

ControlSwitchCSC

CombinationMeter

current_drive_force

possib le_drive_force

self_speed_in

brake_on

required_drive_force

C_C_M

ControlSwitchCSC

brake_on

setSpeed

CombinationMeter

S_C_C

self_speed_in

setSpeed
current_drive_force

possib le_drive_force

required_drive_force

Instance of CruiseControlMainBase

Instance of SelfCarControlBase

(a) Implementation of CruiseControl-
SoftwareCC1 .

self_speed_in

setSpeed

current_drive_force

possib le_drive_force

required_drive_force

SKID_CON

self_speed_in

self_speed_out

CA4CSC

setSpeed

selfSpeed

acceleration

ENG_CON

current_drive_force

possib le_drive_force

required_drive_force_in

required_drive_force_out

engineControl

CDF

accelerationFromCSC

driveForceRequest

engineControl

Instance of SkidControlBase

Instance of CalculateAccelerationFor CSC

Instance of EngineControl Instance of CalculateDriveForceBase

(b) Implementation of SelfCarControl-
Base.

Fig. 6. Schematic implementation descriptions of software components

List 5. Implementation descriptions of a system and a process.

system implementation CruiseControlSoftwareCC1.impl
subcomponents
C_C_M: process CruiseControlMainBase.impl;
S_C_C: process SelfCarControlBase.impl;

connections
-- Snip

end CruiseControlSoftwareCC1.impl



An AADL-Based Approach to Variability Modeling of Automotive Control Systems 353

process implementation SelfCarControlBase.impl
subcomponents
CA4CSC: thread CalculateAccelerationForCSC.impl;
CDF: thread CalculateDriveForceBase.impl;
SKID_CON: thread SkidControlBase.impl;
ENG_CON: thread EngineControl.impl;

connections
IC0007: data port SKID_CON.self_speed_out->CA4CSC.selfSpeed;
-- Snip

end SelfCarControlBase.impl

In this step, predefined flows, e.g., FS0000 in List 4, are also implemented as a multi-
hop path from an input port to an output port via some internal subcomponents. On the
basis of implemented flows, some analysis tools can enable quantitative analyses such
as an end-to-end delay analysis and so forth.

After the iterative decomposition, the top-level software componentCruiseConrol-
SoftwareCC1 is connected to its peripherals and the execution platform. List 6 shows
that the execution platform CCHardware, peripheral ECUs such as SKID CONT, de-
vices such as CMB METER, and CCSoftware, which is an instance of CruiseControl-
SoftwareCC1, are interconnected via several buses such as a CAN bus and so on.

List 6. Implementation description of the cruise control system.

system implementation CruiseControlSystem.CC1
subcomponents
CCSoftware: system CruiseControlSoftwareCC1;
CCHardware: system CruiseControlHardwarePlatformBase;
SWITCH_CSC: system CruiseControlSwitchCSC;
ENGINE: device devices::engine_control;
SKID_CONT: device devices::skid_control_base;
STOP: device devices::stop_lamp;
CMB_METER: device devices::combination_meter;

connections
-- Backbone
CC0000: bus access CCHardware.hs_can_bus_0000 -> CCSoftware.can_bus_steering;
-- Others
DC0010: data port SKID_CONT.self_speed -> CCSoftware.self_speed_in;
-- CAN BUS
can_msg_0010: bus access CCHardware.hs_can_bus_0000 -> SKID_CONT.

hs_can_bus_self_speed;
-- Snip

end CruiseControlSystem.CC1;

Code Implementation. Now we can generate implementation codes from AADL de-
scriptions derived in the previous steps. However, unfortunately, code implementation
completely depends on the type of implementation languages used. Furthermore, even
if we decide to use a certain language, e.g., the C language, we have to choose from
several coding strategies depending on software platforms. This is because most lan-
guages, including the C language, do not provide any specific vocabulary that allows us
to explicitly design software architectures such as processes or threads. For example,
for the OSEK/VDX-C platform, we have to adopt a strategy that is different from that
for the µITRON platform.

Let us consider the OSEK/VDX-C platform as an example. In this case, we can
produce a configuration file in OIL (OSEK Implementation Language) and skeleton
codes from AADL descriptions. An example of translation strategies from AADL into
the C language on the OSEK/VDX-C platform is given below.



354 S. Shiraishi

– Threads in AADL are converted into task definitions in an OIL configuration file.
Then, skeleton codes corresponding to the task definitions are generated in a C
code.

– Connections between threads in AADL are implemented as internal messages of
OSEK/VDX-C. The definitions of the internal messages are prepared in the con-
figuration file. However, function calls (message sending and receiving) are em-
bedded into each task in the C code.

– Connections between processes in AADL that is bound to a CAN bus are imple-
mented as CAN messages. In a similar way to the internal message, the CAN
message definitions and function calls for message exchange are generated in the
configuration file and the C code, respectively.

5 Variability Modeling of Cruise Control Systems Based on AADL

Next, we discuss the variability modeling of cruise control systems, i.e., CC1, CC2, and
CC3. In these systems, there exit several kinds of variability at multiple levels. Thus,
we explain detailed variability models on a level-by-level basis.

5.1 System Variant # 1: Adaptive Cruise Control System

CruiseControlSoftwareCC1

ControlSwitchCSC
CombinationMeter

current_drive_force

possib le_drive_force

self_speed_in

brake_on

required_drive_force

memory_bus

can_bus_steering

analog_io_main_sw

analog_io_cancel_sw

analog_io_m_set_sw

analog_io_stop_lamp_sw

CruiseControlSoftwareCC2

ControlSwitchCSC
CombinationMeter

current_drive_force

possib le_drive_force

self_speed_in

brake_on

required_drive_force

memory_bus

can_bus_steering

analog_io_main_sw

analog_io_cancel_sw

analog_io_m_set_sw

analog_io_stop_lamp_sw

ControlSwitchCDC

set_distance

target_distance

relative_target_speed

self_speed_out

brake_request

can_bus_sensors

analog_io_p_resume_sw

analog_io_mode_sw

analog_io_set_distance_sw

Fig. 7. Variability model diagram of
the top-level software components

We attempt to realize the adaptive cruise control sys-
tem CC2 by extending the AADL descriptions of
CC1 derived in Sect. 4.2. As seen in Sect. 3, CC2
differs from CC1 on the following points: an addi-
tional sensor (radar sensor), constant-distance cruise
control, and brake control. Let us clarify how vari-
ability models are extracted from these differences
at three different levels: system, process, and thread
levels.

System Level. As shown in Fig. 3(b), a peripheral
ECU (radar sensor) is newly installed in CC2. This
implies that the external specification of the software
component in Fig. 5(a) requires additional interfaces.
On the other hand, the skid control computer needs
to receive control commands for brake control. Hence, we discuss the variability mod-
eling of these variations from two different viewpoints: type definition and implementa-
tion description, which are aligned with the linguistic structure of AADL.

Type Definition. Because of the newly installed radar sensor, the environment-system
interaction varies from CC1. Moreover, the target system (adaptive cruise control sys-
tem) needs to send control commands to the skid control computer in order to control
the brakes. In addition to these variations, some new driver commands such as the de-
sired distance must be recognized by the target system. For these reasons, the external
specification of the top-level software component, namely, type definition, needs to be
reconfigured.

List 7 defines the type of the top-level software component of CC2 as an extended
type of CC1 (cf. List 3). List 7 also shows some additional ports for the target distance



An AADL-Based Approach to Variability Modeling of Automotive Control Systems 355

setting and brake control. Figure 7 demonstrates that the type definition of Cruise-
ControlSoftwareCC2 is expressed by extending CruiseControlSoftwareCC1.

List 7. Extension to type definitions (cf. List 3).

-- Top-level Software Component of CC2
system CruiseControlSoftwareCC2 extends CruiseControlSoftwareCC1
features
relative_target_speed: in data port types::kph_type; -- Radar Sensor
target_distance: in data port types::m_type; -- Target Distance
brake_request: out data port types::Nm_type; -- Brake Control
-- Snip

end CruiseControlSoftwareCC2;
device skid_control_ext extends skid_control_base -- Device Extended for CC2

features
brake_request: in data port types::Nm_type; -- Additional Port for Brake

Control
end skid_control_ext;

Implementation Description. In addition to constant-speed cruise control, constant-
distance cruise control is necessary for CC2. Moreover, input signals from the newly
installed radar sensor need to be processed. Thus, the implementation of Cruise-
ControlSoftwareCC2 is varied as shown in List 8 and Fig. 8(a). In these descriptions,
F C R is an instance of a new process that processes signals from the radar sensor and
recognizes a vehicle traveling in front of the vehicle equipped with this system. On the
other hand, C C M and S C C are instances of the processes CruiseControlMainExt
and SelfCarControlExt, respectively. These two processes are variants of Cruise-
ControlMainBase and SelfCarControlBase, respectively, used in CC1. The varia-
tion of these instances can be explained by comparing C C Ms and S C Cs shown in
Figs. 8(a) and 6(a). The details of these variants are provided in the next paragraph.

List 8. Implementation description of CruiseControlSoftwareCC2.

system implementation CruiseControlSoftwareCC2.impl
subcomponents
C_C_M: process CruiseControlMainExt.impl; -- Variant
S_C_C: process SelfCarControlExt.impl; -- Variant
-- Additional Process
F_C_R: process ForwardCarRecognitionBase.impl;

connections
-- Snip

end CruiseControlSoftwareCC2.impl;

Process Level. As shown in the previous section, the top-level software component
CruiseControlSoftwareCC2 consists of one new process and two variants of the
processes used in CC1. We now consider an example of a variant of the process Self-
CarControlExt so as to discuss variability modeling at the process level.

Type Description. The variant process SelfCarControlExt is defined by extend-
ing the process SelfCarControlBase. The variability of SelfCarControlBase and
SelfCarControlExt is modeled as shown in List 9 and Fig. 9(a). The variability of
the other process CruiseControlMainBase can be also described in a similar way.



356 S. Shiraishi

ControlSwitchCSC

CombinationMeter

current_drive_force

possib le_drive_force

self_speed_in

brake_on

required_drive_force

ControlSwitchCDC

set_distance

target_distance

relative_target_speed

self_speed_out

brake_request

C_C_M

ControlSwitchCSC

brake_on

setSpeed

CombinationMeter

ControlSwitchCDC

set_distance

distanceSetting

detectionResult

F_C_R

self_speed_in

relative_target_speed

target_distance

self_speed_out

forwardCarRecogResult

detectionResult

S_C_C

self_speed_in

setSpeed

current_drive_force

possib le_drive_force

required_drive_force

distanceSetting

forwardCarRecogResult

brake_request

self_speed_out

Instance of CruiseControlMainExt

Instance of ForwardCarRecognitionBase

Instance of SelfCarControlExt

(a) Implementation of the top-level
software component: CruiseControl-
SoftwareCC2 (cf. Fig 6(a)).

self_speed_in

setSpeed

current_drive_force

possib le_drive_force

required_drive_force

distanceSetting

forwardCarRecogResult

brake_request

self_speed_out

SKID_CON

self_speed_in

self_speed_out

brakingRequest_out

brakingRequest_in

CA4CSC

setSpeed

selfSpeed

acceleration CA4CDC

selfSpeed

distanceSetting

forwardCarRecogResult
acceleration

CDF

accelerationFromCSC

driveForceRequest

engineControl

accelerationFromCDC

brakingRequest

ENG_CON

current_drive_force

possib le_drive_force

required_drive_force_in

required_drive_force_out

engineControl

Instance of SkidControlExt

Instance of CalculateAccelerationForCSC

Instance of CalculateAccelerationForCDC

Instance of CalculateDriveForceExt

Instance of EngineControl

(b) Implementation of the process: Self-
CarControlExt (cf. Fig. 6(b)).

Fig. 8. Schematic implementation descriptions of software components of the adaptive cruise
control system

List 9. Extension to the type definition of SelfCarControlBase (cf. List 4).
process SelfCarControlExt extends SelfCarControlBase
features
-- Additional Ports
forwardCarRecogResult: in data port types::FS_ForwardCarRecogResult;
brake_request: out data port types::Nm_type;
-- Snip

end SelfCarControlExt;

SelfCarControlBase

self_speed_in

setSpeed
current_drive_force

possib le_drive_force

required_drive_force

SelfCarControlExt

self_speed_in

setSpeed
current_drive_force

possib le_drive_force

required_drive_force

distanceSetting
forwardCarRecogResult

brake_request

self_speed_out

(a) Relation between the type definitions
of the two processes: SelfCarControl-
Base and SelfCarControlExt.

SkidControlBase

self_speed_in

self_speed_out

SkidControlExt

self_speed_in
self_speed_out

brakingRequest_out
brakingRequest_in

(b) Relation between the type definitions
of the two threads: SkidControlBase
and SkidControlExt.

Fig. 9. Variability model diagrams of processes and a threads

Implementation Description. As shown in the previous section, the external specifi-
cation (type definition) of the process SelfCarControlExt is different from that of
SelfCarControlBase in List 4. In other words, a new implementation description of
SelfCarControlExt is necessary. Fortunately, we can borrow some threads that are
used in the implementation of SelfCarControlBase (cf. List 5 and Fig. 6(b)).

The implementation of SelfCarControlExtby adopting the abovementioned strat-
egy is described as shown in List 10 and Fig. 8(b). In these descriptions, CA4CDC
is an instance of the thread CalculateAccelerationForCDC that is newly pre-
pared and designated to constant-distance cruise control. Moreover, the instances CA4-
CSC and ENG CON are instantiated from the threads CalculateAccelerationForCSC
and EngineControl. Fortunately, we can substitute these two instances for those in



An AADL-Based Approach to Variability Modeling of Automotive Control Systems 357

the implementation of SelfCarControlBase of CC1. The remaining instances CDF
and SKID CON, which are instantiated from CalculateDriveForceExt and Skid-
ControlExt, can be prepared by extending the base threads used in SelfCarControl-
Base (see the next section for details).

List 10. Implementation description of SelfCarControlExt.

process implementation SelfCarControlExt.impl
subcomponents
CA4CDC: thread CalculateAccelerationForCDC.impl; -- Additional thread
CA4CSC: thread CalculateAccelerationForCSC.impl; -- Not varied
ENG_CON: thread EngineControl.impl; -- Not varied
CDF: thread CalculateDriveForceExt.impl; -- Variants
SKID_CON: thread SkidControlExt.impl; -- Variants

connections
-- Snip

end SelfCarControlExt.impl;

Thread Level. The threads CalculateDriveForceExt and SkidControlExt of
CC2 are realized by extending the threads CalculateDriveForceBase and Skid-
ControlBase used in CC1. We consider the variant thread SkidControlExt for fur-
ther discussion at the bottom level (thread level).

Type Description. The extended thread SkidControlExt can be generated by adding
a new interface for sending control commands to the skid control computer. Therefore,
SkidControlExt can be modeled as a variant of SkidConntrolBase as shown in
List 11 and Fig. 9(b). We can apply the same discussion to the other thread Calculate-
DriveForceExt. List 11 also gives the type definition of the newly prepared thread
CalculateAccelerationForCDC.

List 11. Extension to the type definition of SkidControlBase (cf. List 4).

thread SkidControlExt extends SkidControlBase
features -- Additional Ports
brakingRequest_out: out data port types::Nm_type;
brakingRequest_in: in data port types::Nm_type;
-- Snip

end SkidControlExt
thread CalculateAccelerationForCDC
features
selfSpeed: in data port types::kph_type;
distanceSetting: in data port types::m_type;
forwardCarRecogResult: in data port types::FS_ForwardCarRecogResult;
acceleration: out data port types::mpss_type;

flows
FS0000: flow path forwardCarRecogResult -> acceleration;

end CalculateAccelerationForCDC;

In the case of CC2, it is not necessary to consider the variability of implementations
at the thread level. Thus, we shall return to this subject later.

We have seen that the adaptive cruise control system CC2 can be composed of new
components, the same components as those of CC1, and variants of the base compo-
nents used in CC1. These variants are generated by extending the type definitions of the
base components. AADL can also handle the variability of implementation descriptions
(see refined to in List 2). Hence, let us shift to the next topic: variability modeling
of implementations.



358 S. Shiraishi

5.2 Variant # 2: Full Speed Range Adaptive Cruise Control System

This section attempts to realize the full range adaptive cruise control system CC3 by
further extending the AADL descriptions derived in Sect. 5.1. In particular, this section
focuses on the variability of implementation descriptions because the variations of type
definitions of CC3 are quite similar to those of CC2.

As explained in Sect. 3, CC3 is mainly different from the other systems in the follow-
ing points: an additional sensor (object recognition sensor) and relaxation of the speed
limits such that the lower limit is extended to 0 km/h.

System Level. The implementation of the top-level software component of CC3 is
shown in List 12 and Fig. 10. The process S C C, which is an instance of SelfCar-
ControlExt, has the same interfaces (same type) as S C C in Fig. 8(a); however, these
two S C Cs have different implementations. This can be realized by comparing List 12
with List 8. The reason for this variation is that CC3 requires a new algorithm for the
constant-distance cruise control with the wider speed range 0 km/h–100 km/h.

List 12. Implementation description of CruiseControlSoftwareCC3.
system implementation CruiseControlSoftwareCC3.impl
subcomponents
C_C_M: process CruiseControlMainExt.impl;
S_C_C: process SelfCarControlExt.impl_ors; -- Variant
F_C_R: process ForwardCarRecognitionExt.impl;
-- Snip

end CruiseControlSoftwareCC3.impl;

ControlSwitchCSC

CombinationMeter

current_drive_force

possib le_drive_force

self_speed_in

brake_on

required_drive_force

ControlSwitchCDC

set_distance

target_distance

relative_target_speed

self_speed_out

brake_request

wiper_hi

target_distance_h

relative_target_speed_h

C_C_M

ControlSwitchCSC

brake_on
setSpeed

CombinationMeter

ControlSwitchCDC

set_distance

distanceSetting

detectionResult

S_C_C

self_speed_in

setSpeed

current_drive_force

possib le_drive_force

required_drive_force

distanceSetting

forwardCarRecogResult

brake_request
self_speed_out

F_C_R

self_speed_in

relative_target_speed

target_distance

self_speed_out
forwardCarRecogResult

detectionResult

relative_target_speed_h

target_distance_h

wiper_hi

Fig. 10. Schematic implemen-
tation description of Cruise-
ControlSotwareCC3

Process Level. As shown in the previous section, the
process SelfCarControlExt has two different im-
plementations: SelfCarControlExt.imp and Self-
CarControlExt.imp ors. These relationships can be
modeled as shown in Fig. 11(a).

List 13 gives the same implementation description
SelfCarControlExt.imp ors. As was the case with
S C C in the previous section, the thread CA4CDC,
which is an instance of CalculateAccelerationFor-
CDC, has the same type as that shown in Fig. 8(b). How-
ever, these two CA4CDCs are implemented in differ-
ent ways. On the other hand, the other threads com-
prising SelfCarControlExt are identical with those
shown in Fig. 8(b). In this case, we can describe the im-
plementation of SelfCarControlExt by extending the
implementation SelfCarControlExt.imp in List 10.
In List 13, refined to forms the variability model of
SelfCarControlExt.imp and SelfCarControlExt.imp ors.

List 13. Extension to the implementation description of SelfCarControlExt.
process implementation SelfCarControlExt.impl_ors extends SelfCarControlExt.impl
subcomponents
CA4CDC: refined to thread CalculateAccelerationForCDC.impl_ors; -- Variant

end SelfCarControlExt.impl_ors



An AADL-Based Approach to Variability Modeling of Automotive Control Systems 359

Thread Level. The thread CalculateAccelerationForCDC has two different kinds
of implementations: CalculateAccelerationForCDC.imp and CalculateAccel-
erationForCDC.imp ors; these implementations are dedicated to CC2 and CC3, re-
spectively. List 14 and Fig. 11(b) show the variability model of this thread-level variation.

SelfCarControlBase

self_speed_in

setSpeed
current_drive_force

possib le_drive_force

required_drive_force

SelfCarControlExt

self_speed_in

setSpeed
current_drive_force

possib le_drive_force

required_drive_force

distanceSetting
forwardCarRecogResult

brake_request

self_speed_out

SelfCarControlExt.impl

self_speed_in

setSpeed
current_drive_force

possib le_drive_force

required_drive_force

distanceSetting
forwardCarRecogResult

brake_request

self_speed_out

SelfCarControlBase.impl

self_speed_in

setSpeed
current_drive_force

possib le_drive_force

required_drive_force

SelfCarControlExt.impl_ors

self_speed_in

setSpeed
current_drive_force

possib le_drive_force

required_drive_force

distanceSetting

forwardCarRecogResult
brake_request

self_speed_out

(a) Variability model of the implemen-
tations of SelfCarControlBase and
SelfCarControlExt.

CalculateAccelerationForCDC

selfSpeed

distanceSetting

forwardCarRecogResult

acceleration

CalculateAccelerationForCDC.impl

selfSpeed

distanceSetting

forwardCarRecogResult

acceleration

CalculateAccelerationForCDC.impl_...

selfSpeed

distanceSetting

forwardCarRecogResult

acceleration

(b) Variability model of the implementa-
tions of CalculateAccelerationFor-
CDC.

Fig. 11. Variability model diagrams of processes and threads

On the basis of what we discussed in Sects. 5.1 and 5.2, we can understand that
AADL can provide models for capturing the variability of cruise control systems at
multiple levels: system, process, and thread levels. Moreover, the type–implementation
mechanism of AADL allows us to create models of minor variability with invariant
interface specifications. Therefore, we can conclude that AADL is highly capable of
variability modeling that is applicable to a complicated variation of real automotive
systems.

List 14. The extension to the implementation description of CalculateAccelerationForCDC.

-- CalculateAccelerationForCDC for CC2
-- Base Description
thread implementation CalculateAccelerationForCDC.impl
end CalculateAccelerationForCDC.impl;
-- Variant
thread implementation CalculateAccelerationForCDC.impl_ors extends

CalculateAccelerationForCDC.impl
end CalculateAccelerationForCDC.impl_ors;

In order for the characteristics of AADL to be enhanced, it needs to be precisely
compared with other ADLs. Unfortunately, due to space limitations, we will present
only a brief comparison between AADL and SysML in the next section.

5.3 Comparison with SysML

This section provides a qualitative comparison between AADL-based variability model-
ing and a SysML-based one. Similar to the type definition of AADL, the block definition
diagram (BDD) of SysML defines an external specification (interface design) of blocks,
which are the basic elements of SysML. SysML is derived from UML; therefore, the
BDD is also inherently equipped with the inheritance mechanism. For example, Fig. 12
shows that the block CruiseControlSoftwareCC2 is obtained by inheriting proper-
ties of the block CruiseControlSoftwareCC1. A comparison of Fig. 7 with Fig. 12



360 S. Shiraishi

reveals that SysML provides variability modeling equivalent to AADL from the view-
point of an external specification.

CruiseControlSoftwareCC1
<<block>>

required_drive_force

CombinationMeter

brake_on

self_speed_in

possible_drive_force

current_drive_force

ControlSwitchCSC

CruiseControlSoftwareCC2
<<block>>

brake_request

self_speed_out

relative_target_speed

target_distance

set_distance

ControlSwitchCDC

required_drive_force

CombinationMeter

brake_on

self_speed_in

possible_drive_force

current_drive_force

ControlSwitchCSC

Fig. 12. Variability model of software compo-
nents in SysML (block definition diagrams)

Furthermore, the internal block dia-
gram (IBD) of SysML describes the func-
tional decomposition of a block such
as implementation description of AADL.
However, SysML cannot describe the
variability of an internal specification,
which we saw in Sect. 5.2. In other words,
we have to draw several diagrams cor-
responding to each variant of internal
sub-blocks. Fortunately, we can borrow a
variation handling scheme from EAST-ADL2 in order to avoid the drawing of many
diagrams. Due to space limitations, the details of such an adoption are not provided
here.

6 Conclusion and Future Work

This paper presented the basic procedure for an AADL-based development of auto-
motive control systems. We focused on software development and provided detailed
AADL descriptions of cruise control systems. The discussion on the variability model-
ing shows that AADL can efficiently deal with a variation of systems at multiple levels.
We also found that the type – implementation structure of AADL brings high flexibil-
ity to variability modeling. A brief comparison of AADL with SysML elucidated the
characteristics of variability modeling in AADL.

In the future, it is necessary to consider an automatic code generator and a config-
uration management technique based on variability modeling. It is also necessary to
perform precise comparisons between AADL and other ADLs; this issue will be dis-
cussed in a future study.

References

1. Interim report of the society for the study of reliability and security of information systems/-
software in an advanced information society, tech. rep., the Ministry of Economy, Trade and
Industry (June 2009),
http://www.meti.go.jp/english/press/data/20090528_01.html

2. Architecture Analysis & Design Language (AADL). AS5506, SAE International (2004)
3. Architecture Analysis & Design Language (AADL). AS5506A, SAE International (2009)
4. OMG Systems Modeling Language (OMG SysML). Object Management Group (2007)
5. A UML Profile for Modeling and Analysis of Real-Time and Embedded Systems (MARTE).

Object Management Group, http://www.omgmarte.org
6. EAST-ADL. ITEA EAST-EEA (Embedded Electronic Architecture)
7. EAST-ADL2. ATESST (Advancing Traffic Efficiency and Safety through Software Technol-

ogy), http://www.atesst.org
8. IEEE Std. 830-1998 IEEE Recommended Practice for Software Requirements Specifications.

IEEE (1998)

http://www.meti.go.jp/english/press/data/20090528_01.html
http://www.omgmarte.org
http://www.atesst.org


Extending Variability for OCL Interpretation

Claas Wilke, Michael Thiele, and Christian Wende

Technische Universität Dresden
Department of Computer Science

Institute for Software and Multimedia Technology
Software Technology Group

{claas.wilke,michael.thiele,christian.wende}@inf.tu-dresden.de

Abstract. In recent years, OCL advanced from a language used to con-
strain UML models to a constraint language that is applied to various
modelling languages. This includes Domain Specific Languages (DSLs)
and meta-modelling languages like MOF or Ecore. Consequently, it is
rather common to provide variability for OCL parsers to work with dif-
ferent modelling languages. A second variability dimension relates to the
technical space that models are realised in. Current OCL interpreters do
not support such variability as their implementation is typically bound
to a specific technical space like Java, Ecore, or a specific model reposi-
tory. In this paper we propose a generic adaptation architecture for OCL
that hides models and model instances behind well-defined interfaces. We
present how the implementation of such an architecture for DresdenOCL
enables reuse of the same OCL interpreter for various technical spaces
and evaluate our approach in three case studies.

Keywords: OCL, OCL Infrastructure, OCL Tool, MDSD, Modelling,
Constraint Interpretation, Technological Spaces, Variability, Adaptation.

1 Introduction

Model-driven software development (MDSD) aims to abstract from concrete soft-
ware implementations and uses models to describe software systems. To ensure
consistency of models, the Object Constraint Language (OCL) [1] has been de-
veloped as an extension of the Unified Modelling Language (UML) [2,3]. In re-
cent years, OCL advanced to a constraint language used for various modelling and
meta-modelling languages [4] like the Meta Object Facility (MOF) [5] or Ecore [6].

While OCL constraints are defined on models, they are evaluated on instances
of these models. Besides instances of constrained models stored in various model
repositories like MOFLON [7], Netbeans MDR [5], or EMF [6], they also can be
realised using classic programming languages like Java [8], or C# [9], stored in
database systems [10], or described with XML [11].

Several OCL tools support variability at the model level [12,13], i.e., constraint
definition on different types of models. Yet, variability at the model instance level,
i.e., constraint evaluation on different types of model instances, is not provided.

D.C. Petriu, N. Rouquette, Ø. Haugen (Eds.): MODELS 2010, Part I, LNCS 6394, pp. 361–375, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



362 C. Wilke, M. Thiele, and C. Wende

For OCL compilers as presented in [5,8,9,10] such variability is not possible, as
the code generated from OCL constraints needs to be bound to the technical
spaces used at model instance level. However, for OCL interpreters, we argue
that a decoupling of the semantics evaluation from a concrete model instance
type is possible. In this paper we propose a generic adaptation architecture for
OCL interpreters that hides models and model instances behind well-defined
interfaces. This enables reuse of the complete OCL infrastructure including the
OCL parser, standard library and interpreter. We implemented such an infras-
tructure in DresdenOCL [14].

The remainder of this paper is structured as follows. In Sect. 2 we analyse
diverse applications for OCL and motivate two variation points for OCL in-
terpretation. In Sect. 3 we discuss the design and implementation of a generic
adaptation architecture for OCL interpreters to realise the motivated variation
points in DresdenOCL. In Sect. 4 we document the feasibility and benefits of our
adaptation architecture by applying it to three case studies that use OCL with
different combinations of models and model instances. In Sect. 5 we elaborate on
lessons learnt during implementation and application of our approach. Finally,
we present related work in Sect. 6 and conclude our contributions in Sect. 7.

2 Foundations

Originally, OCL was designed as a constraint language for UML. Recent work
showed that OCL can be applied to various other modelling and meta-modelling
languages. Thus, an abstract description of OCL and its relation to modelling
languages is sensible.

2.1 The Generic Three Layer Architecture

As discussed in [8], OCL evaluation always involves three adjacent layers of
the MOF layered architecture [15]. This leads to the notion of a generic three
layer architecture for OCL as depicted in Fig. 1 (a). At layer Mn+1, OCL is
bound to a concrete modelling language that has to provide concepts like types,
navigable properties, and possibly operations. This binding allows the definition
of OCL constraints on models that are described by the meta-model (Mn layer).
During the evaluation of these constraints, an OCL interpreter has to query
model instance elements for their properties or invoke operations on them (Mn-
1 layer).

Model instances are often realised in a different technological space [16,17]
than their model. Then, there are two model representations at the layer Mn
(cf. Fig. 1 (a)): the original constrained model and a model realisation imple-
menting the model in a specific technological space. The model realisation is
typically derived by a transformation of the model (e.g., when using the Eclipse
Modeling Framework (EMF) [18]). This leads to the problem that the connec-
tion between the different model representations at the Mn layer is hidden inside
the transformation and may not be accessible from the OCL infrastructure. An



Extending Variability for OCL Interpretation 363

Ecore
Model

Ecore

Java

UML

VP2

VP1

Model Instance

OCL
Abstract SyntaxMeta-Model

OCL ConstraintsModel

<<instance-of>>

<<binds>>

<<refines>>

<<queries>>

Mn+1

Mn

Mn-1
Java Object

UML Meta-Model

UML
Class Diagram

M2

M1

M0 Domain-Specific
Model

EMF Ecore

Domain-Specific
Language (DSL)

M3

M2

M1

(a) (b) (c)

Model Realisation Java Class Domain-Specific
Language (DSL)

<<is-matched-to>> <<is-matched-to>> <<is-matched-to>>

<<instance-of>> <<instance-of>>

<<instance-of>><<instance-of>>

<<instance-of>>

<<instance-of>>

OCL Interpreter

<<interprets>>

Fig. 1. The Generic Three Layer Architecture

algorithm matching the elements of the model realisation and the constrained
model can re-establish this connection.

Instances of this generic three layer architecture are shown in Fig. 1 (b)
and (c). Fig. 1 (b) exemplifies the application of OCL to constrain UML class
diagrams. At M2 (Mn+1) the OCL abstract syntax is bound to the UML
meta-model. At M1 (Mn) constraints are defined against UML class diagrams.
At this layer the original UML model is transformed to a Java-based model rep-
resentation where UML classes correspond to Java classes. At M0 (Mn-1) the
OCL constraints are evaluated against Java objects.

The example in Fig. 1 (c) demonstrates the application of OCL constraints
to define well-formedness rules (WFRs) for DSLs built with EMF Ecore. The
generic three layer architecture is lifted one layer: At M3 (Mn+1) the OCL
abstract syntax is bound to the Ecore meta-meta-model. At M2 (Mn) a new DSL
is defined using Ecore and OCL-based WFRs. Since EMF contributes a runtime
infrastructure for models and model instances no transformation is required at
M2. The model and the model representation are identical. At M1 (Mn-1) the
WFRs are evaluated against models built with the defined DSL.

2.2 Variation Points of OCL Interpretation

With instantiation of our generic three layer architecture for various OCL appli-
cations found in literature, we identified two variation points. The first variation
point (VP1) describes variability at Mn+1 and Mn w.r.t. the modelling language
used to specify constrained models. The second variation point (VP2) relates to
variability at Mn and Mn-1 t w.r.t. the technological space model instances are
realised and validated in (cf. Fig. 1 (a)).



364 C. Wilke, M. Thiele, and C. Wende

OCL Interpretation

Constrained Model
(VP1)

Model Instance
(VP2)

Mandatory Alternative

Ecore
(M3)

Ecore
(M2)

UML Meta-
Model (M2)

DSL
(M2)

DSL Model
(M1)

XML Schema
(M1)

DB Schema
(M1)

UML Class
Diagram (M1)

Java Classes
(M1)

XML Data
(M0)

Relational
Data (M0)

DSL Model
(M1)

Java Objects
(M0)

XML Schema
(M1)

DB Schema
(M1)

Ecore
(M2)

UML Meta-
Model (M2)

UML Class
Diagram (M1)

Java Classes
(M1)

UML Object
Diagram (M0)

DSL
(M2)

Fig. 2. Features of OCL interpretation

With the generic three layer architecture it is possible to vary several models
and model instances independently. For example the same UML model can be
combined with OCL evaluation on model instances realised in Java or a relational
database, or the OCL evaluation on XML-based model instances can be used
for models built with the UML or the Ecore meta-model. The feature model [19]
depicted in Fig. 2 documents the variation space of OCL applications found in
literature. The only constraint a variant configuration of the generic architecture
has to satisfy is that the model instance bound to VP2 is located exactly one
meta-layer below the model bound to VP1.

Several OCL tools provide support for variation on VP1 [6,13,14,20]. Yet,
those tools do not address VP2 as their supported models require specific in-
stances (typically both located in the same technological space). We argue that
this tight coupling can be reduced to avoid the reimplementation of OCL in-
terpreters for different technological spaces. In the following we contribute an
implementation of the generic three layer architecture that supports VP1 and
VP2.

3 Implementation

In this section we discuss the implementation of a generic adaptation architecture
for DresdenOCL to realise the variation points identified in the previous section.
First, we present model adaptation to address VP1. Afterwards, we discuss how
model instance adaptation supports VP2.



Extending Variability for OCL Interpretation 365

Type

Property

Operation

properties

operations

type

0..*

0..*
Parameter

parameters

0..*

Namespace
types

0..*

PrimitiveType Enumeration Enum.Literal
literals

0..*

modelTypes

/type

ModelInstanceElement

ModelInstanceCollectionModelInstanceObject

ModelInstancePrimitiveType

modelInstanceTypes

children 0..*

Adapted
Model

root 1

Adapted
ModelInstance elements

0..*

ModelInstanceEnum.Literal

Fig. 3. Interfaces for model and model instance adaptation

3.1 Model Adaptation (VP1)

In order to define OCL constraints for various models, DresdenOCL requires a
set of common interfaces defining structures that provide a dedicated abstrac-
tion to navigate and query models. Given this specific application purpose the
interfaces – called modelTypes (or pivotModel) [12] – slightly differ from other
generalisations of object-oriented metamodels like Ecore. They define the basic
concepts such as Type, Property, Operation and Parameter that bind OCL
constraints to a concrete model (cf. Fig. 3). DresdenOCL uses these concepts to
parse and statically analyse OCL constraints, e.g., the OCL parser can determine
the Type of OCL expressions.

For every model that shall be connected with DresdenOCL, a model adapter
component has to be implemented (cf. Fig. 4, Mn+1 layer). It contains indi-
vidual adapters that map concepts of the model’s meta-model to correspond-
ing concepts of the modelTypes. E.g., the UML meta-model concept UMLClass
is adapted to the modelTypes concept Type. Furthermore, the model adapter
component has to create instances of these adapters on demand resulting in an
adapted model (cf. Fig. 4, Mn layer). The adapters are only created for model
elements that are required and existing adapters are cached. Thus, unnecessary
and expensive adaptation is avoided, especially when working on large models
of which only parts are constrained.

3.2 Model Instance Adaptation (VP2)

In our generic adaptation architecture we applied the same principles for model
instances as those are also hidden behind a set of common interfaces. This enables



366 C. Wilke, M. Thiele, and C. Wende

VP2

VP1
<<elements matched by type names>>

<<conforms-to>>

<<conforms-to>> <<conforms-to>>

<<adapts>>

<<adapts>>

<<delegates-to>>

<<creates>>

<<creates>>

<<delegates-to>>

Meta-Model

Model

Model
Realisation

Model Instance

<<interface>>
Model Types
(Pivot Model)

Model Instance
Adapter

<<interface>>
OCL Standard

Library
Adapted Model

Adapted Model
Instance

Model Adapter

<<interface>>
Model Instance

Types

Mn+1

Mn-1

Mn

<<conforms-to>>

OCL Abstract
Syntax

OCL Constraints

<<extends>>

<<refers-to>>

<<delegates-to>>

Fig. 4. The Generic Adaptation Architecture of DresdenOCL

the reuse of the same OCL interpreter and standard library for the dynamic
evaluation of OCL constraints on model instances in various technical spaces.

To provide means for model instance adaptation, we introduced the model-
InstanceTypes.The modelInstanceTypesare a set of ModelInstanceElements
representing instances of primitive types, collections and objects defined in the
model. Fig. 3 illustrates that ModelInstanceElementsare typed. Since the model
instance and the model can reside in different technological spaces, the types have
to be computed in different ways for different model instances. E.g., a Java ob-
ject’s type in the model realisation is a Java class that can be matched to a UML
class, as shown in Fig. 1 (b). This type computation is implemented by a spe-
cific type matcher component. For each element of a model instance the type
matcher reflects the element’s type in the model realisation and matches this type
to a type in the model. Since the type matcher requires technical space specific
information, each modelInstanceTypes implementation has to provide its own
type matcher. On the other hand, model types are only accessed via standard-
ised interfaces. Therefore, a type matcher can be reused in connection with all
supported modelTypes. As a result, the interpreter can reason on the type of the
ModelInstanceElementsand thus, can select the constraints that have to be eval-
uated for these elements.

Additionally, the OCL interpreter needs to retrieve properties or invoke oper-
ations for which reflection capabilities are required. The modelInstanceTypes
have to provide such capabilities. To ensure variability, reflection operations are
part of the interfaces that have to be implemented by all modelInstanceTypes.
This enables the model and model instance independent reuse of the OCL



Extending Variability for OCL Interpretation 367

Java

Loyalty-
Account.class

account1
:LoyaltyAccount

Loyalty-
Account.class

account1
:LoyaltyAccount

UML
<<matched-by-type-name>>

<<conforms-to>>

<<conforms-to>>

<<adapts>>

<<adapts>>

<<delegates-to>>

<<creates>>

<<creates>>

<<delegates-to>>

UML MDT
Meta-Model

royalAndLoyal.uml
:UML MDT

Loyalty-
Account.class

account1
:LoyaltyAccount

Java
:Model Instance

Adapter

royalAndLoyal
:AdaptedModel

javaInstance1
:Adapted Model

Instance

UML
:Model AdapterM2

M0

M1

0..*

0..*

Fig. 5. Adapters used in the Royal and Loyal case study

interpreter and the OCL standard library, since type reasoning and reflective
property and operation calls are hidden behind well-defined interfaces.

Like model elements, ModelInstanceElements are adapted on demand and
adapted objects are cached to improve the performance and to avoid phenomena
like object schizophrenia [21].

4 Case Studies

In this section we present three case studies to demonstrate the benefits of
our generic adaptation architecture. The examples use different combinations
of models and model instances located at different layers of the MOF layered
architecture to illustrate the variability of our approach.

4.1 The Royal and Loyal System Example

As a first case study, we modelled and implemented the royal and loyal system
example as defined in [3]. This example was designed by Warmer and Kleppe
to teach the Object Constraint Language. It consists of 13 UML classes (includ-
ing inheritance and enumeration types) and 130 constraints. We specified the
royal and loyal system with a UML model (VP1) built with the Eclipse Model
Development Tools (MDT) [6]. The model was implemented and instantiated in
Java (VP2). Consequently, constraints were evaluated on Java objects.

The adapters required for the royal and loyal case study are shown in Fig. 5.
To parse the royal and loyal constraints in DresdenOCL, a UML model adapter
component was implemented. It adapts the required concepts of the UML meta-
model to the modelTypes of DresdenOCL at the M2 layer. Hence, the royal and



368 C. Wilke, M. Thiele, and C. Wende

XML

Loyalty-
Account.class

account1
:LoyaltyAccount

Loyalty-
Account.class

account1
:LoyaltyAccount

XSD
<<matched-by-type-name>>

<<conforms-to>>

<<conforms-to>>

<<adapts>>

<<adapts>>

<<delegates-to>>

<<creates>>

<<creates>>

<<delegates-to>>

XSD Meta-Model

sepa:XSD

GrpHdr:Node

grpHdr1:GrpHdr

XML
:Model Instance

Adapter

sepa
:AdaptedModel

xmlInstance1
:Adapted Model

Instance

XSD
:Model AdapterM2

M0

M1

0..*

0..*

Fig. 6. Adapters used in the SEPA case study

loyal class diagram was adapted as a model at the M1 layer. For the Java im-
plementation, a Java model instance adapter component was implemented that
adapts the Java model elements (classes of the package java.lang.reflect) to
the modelInstanceTypes. Thus, the objects of the royal and loyal Java imple-
mentation were adapted as a model instance in DresdenOCL at the M0 layer.
Since the UML classes are transformed to Java classes, both are located at the
M1 layer. Hence, the Java model realisation has to be matched with the UML
model during interpretation.

The royal and loyal case study demonstrates that our generic adaptation archi-
tecture is able to support the common interpretation of OCL constraints defined
on UML classes for Java objects.

4.2 SEPA Business Rules

In our second case study we interpreted OCL business rules defined on an
XML schema (VP1) for XML documents (VP2) conforming to this schema.
The Nomos Software company provides a service to check business rules on
financial Single Euro Payments Area (SEPA) messages that are used in financial
transactions of bank offices as defined by the European Payment Council (EPC),
ISO20022, and the Euro Banking Association (EBA) [22,23,24]. SEPA messages
are described and shipped as XML documents. Nomos Software uses OCL
constraints defined on XML schemas to validate XML documents against a set of
business rules to ensure the consistency of SEPA messages. We evaluated about
120 constraints that are provided with the online demo.1

The adapters required for the SEPA case study are shown in Fig. 6. To parse
the SEPA constraints into DresdenOCL, the XSD model adapter component
1 http://www.nomos-software.com/demo.html



Extending Variability for OCL Interpretation 369

Java
Model

Ecore
Model

Loyalty-
Account.class

account1
:LoyaltyAccount

Loyalty-
Account.class

account1
:LoyaltyAccount

Ecore
<<matched-by-type-name>>

<<conforms-to>>

<<conforms-to>>

<<adapts>>

<<adapts>>

<<delegates-to>>

<<creates>>

<<creates>>

<<delegates-to>>

EMF Ecore

modelTypes
:Ecore

OclAny:AnyType

oclAny:OclAny

XMI
:Model Instance

Adapter

modelTypes
:AdaptedModel

ecoreInstance1
:Adapted Model

Instance

EMF Ecore
:Model AdapterM3

M1

M2

0..*

0..*

<<creates>>

Java Class
Model :Model

Instance Adapter

jClassInstance1
:Adapted Model

Instance

exchangeable

Fig. 7. Adapters used in the Standard Library case study

adapts required concepts of the XSD meta-model to the modelTypes of Dresden-
OCL at the M2 layer. Consequently, the SEPA XML schema was adapted as a
model at the M1 layer. The XML instance adapter component adapts the XML
model elements (mainly the class org.w3c.dom.Node) to the modelInstance-
Types. Thus, the nodes of the SEPA messages were adapted as model instances
in DresdenOCL at the M0 layer.

The constraints were evaluated for three different XML files and the results
have been successfully compared with the results of the Nomos demo. This
demonstrates that our model instance adaptation allows DresdenOCL to trans-
parently interpret constraints on XML files as well, since the OCL interpreter
had not to be modified for the SEPA case study.

4.3 The OCL2.2 Standard Library

The last case study depicts the ability to load different model instances of one
model in order to check for inconsistencies between these instances. In this ex-
ample we checked well-formedness rules (WFRs) for the OCL standard library
of DresdenOCL. DresdenOCL’s standard library is explicitly modelled as an in-
stance of the modelTypes, describing predefined OCL types like Integer, OclAny
or Sequence and their associated operations. Hence, accessing those types is re-
duced to a simple model import while the model can conveniently be queried,
validated or altered [12]. The WFRs can be used to check whether all OCL
types are declared and whether they support all operations that are defined by
the current OCL specification [1].

Although modelling the standard library leads to great flexibility, an implemen-
tation that provides its dynamic semantics is still required. This implementation



370 C. Wilke, M. Thiele, and C. Wende

is realised in Java. As there is no code generator for the modelTypes, the manual
implementation can lead to inconsistencies between the modelled standard library
and the according Java implementation. We propose to use OCL to check that all
modelled types have an equivalent Java implementation and all modelled opera-
tions are also present in the Java interfaces.

Since the OCL standard library has been built conforming to the modelTypes,
an EMF Ecore model adapter component was required to parse OCL constraints
defined on the modelTypes (cf. Fig. 7, VP1). To evaluate the constraints on the
modelled standard library, we implemented an XMI model instance adapter com-
ponent for instances of Ecore-based meta-models stored as XMI files (VP2). For
the Java-based standard library a Java class model instance adapter compo-
nent was created. This adapter allowed us to load Java classes as a model in-
stance (VP2) and to check for inconsistencies with the modelled standard library.
The same WFRs used for the modelled standard library were evaluated for this
instance.

This case study demonstrates that the implemented OCL interpreter is not
only independent of specific model technical spaces, but can also use adapters
for different meta-layers. Thus, constraints defined on models, meta-models, and
even meta-meta-models can be interpreted.

4.4 Future Case Studies

For future case studies we plan to implement new model adapters for VP1 in-
cluding WSDL and SQL-DDL and further model instance adapters for VP2
including C# and relational databases.

5 Lessons Learnt

In this section we highlight some challenges we faced during the design and im-
plementation of our generic adaptation architecture for DresdenOCL. We present
solutions to these challenges and possible improvements.

Type Matching. Currently, type matching is realised by a simple type name
match (including the names of their enclosing namespaces whenever possible).
E.g., the Java class LoyaltyAccount is matched to the UML class Loyalty-
Account in the royal and loyal case study. This matching algorithm can be
rather complex and often information that could be used to improve the match-
ing is hidden inside the adapters. E.g., when adapting an instance of an EMF
Ecore model, one could use the generator model provided by Ecore to retrieve
information used in the Ecore to Java transformation. We plan to improve this
process by introducing type matching strategies that can be implemented using
the chain of responsibility pattern [25]. The chain could start by trying to match
the types using a model instance specific matcher that regards model transfor-
mation information whenever possible and ends by trying to simply match the
type names as currently done.



Extending Variability for OCL Interpretation 371

Abstract Syntax

VP 1

AS-Domain-Mapping

VP 2

Model Types
Implementation
Model Types
Implementation
Model Types
Implementation

<<interface>>
Model Types

OCL Abstract
Syntax

Domain

VP 2

Model Types
Implementation
Model Types
Implementation
Model Inst.
Types Impl.

<<interface>>
Model Inst. Types

OCL Standard
Library

Type Matcher

Interpreter

Fig. 8. Mapping the OCL abstract syntax and OCL domain; cf. [1, Sect. 10]

Element Unwrapping. Another problem when using adapters for modelInstance-
Types is the unwrapping mechanism of adapted elements when invoking opera-
tions on the ModelInstanceElements. E.g., to invoke an operation of an adapted
Java object we require java.lang.Objects as parameters instead of Model-
InstanceElements. This unwrapping mechanism is easy for elements that have
been adapted before as they simply can be unwrapped again. Unfortunately, dur-
ing interpretation of OCL constraints, new instances of primitive types or new col-
lections can be created by the standard library (e.g., when invoking the OCL op-
eration size() on a collection that returns an Integer instance). Thus, a model
instance adapter has to provide operations to reconvert primitive types and col-
lections into elements of the adapted model instances. In some cases this can be-
come rather complicated as the adaptation between types of the instance and the
modelInstanceTypes interfaces has not to be bijective. For example, Java ints
and java.lang.Integers are both mapped to ModelInstaceIntegers. During
unwrapping, the Java model instance adapter component has to reflect whether
the method to invoke requires an int, an Integer or another Java integer-like type
instance. The unwrapping mechanism of an adapted instance can be considered as
the most complicated and error-prone part of the complete model instance adap-
tation. Fortunately, model instances providing only structural information do not
need this unwrapping mechanism as they provide no operations.

Comparision to Standard OCL Semantics Evaluation. The OCL specification
[1, Sect. 10] defines three packages required for OCL evaluation: Abstract syn-
tax (AS), Domain and AS-Domain-Mapping (contributing type-value mapping
and expression-evaluation mapping). Equivalent concepts can be identified in
the presented approach as depicted in Fig. 8. The Abstract Syntax is defined by
the Model Types and the OCL Abstract Syntax. In contrast to the OCL speci-
fication, different Model Types Implementations provide model variability and
enable reuse of the OCL Abstract Syntax. The Domain is defined by the Model



372 C. Wilke, M. Thiele, and C. Wende

Inst. Types and the OCL Standard Library. Different Model Inst. Types
Impl. provide variability at the model instance (or domain) level and enable
reusing the OCL semantics. The type-value mapping is realised by the Type
Matcher as described in Sect. 3.2. Finally, the expression-evaluation mapping is
realised by the DresdenOCL Interpreter that traverses the OCL expressions
and invokes the methods defined in the OCL semantics for evaluation.

Automated Adapter Creation. The adaptation process of models and model in-
stances contains parts that are similar for each adaptation and thus can be
automated. To improve the model adaptation process, we developed a code gene-
rator for the creation of model adapter components. The code generator requires
an annotated meta-model describing the relation of meta-model concepts to the
modelTypes (e.g., the UML meta-class Classifier is annotated as a Type). The
code generator generates the skeleton code for all required adapters that has to
be completed manually. For the modelInstanceTypes, such a code generator is
currently missing, but could be implemented as well.

Adaptation Testing. We developed two generic JUnit test suites that can be
used to test the adaptation of a model or model instance, respectively. The
test suites are initialised with a model or model instance that contains all the
adapted concepts that shall be tested. The test suites then check whether all
required methods to retrieve Types, Operations, Properties for the variation
point VP1 are implemented or whether the reflection mechanism provided by
VP2 is supported appropriately. These generic test suites helped us to ensure
that all existing adaptations behave in the same expected manner and to easily
detect wrong adaptations of elements. Furthermore, these test suites can be used
to ensure the absence of specific bugs in all adaptations by adding new test cases
if such a bug is detected in one of the adaptations.

6 Related Work

In the following we will discuss alternative tools to parse, interpret, or compile
OCL constraints and the means they provide to support variability for models
and model instances:

– The USE tool [26] contributes an OCL simulator that can evaluate OCL
constraints against model snapshots. It is bound to UML class, UML object
and UML sequence diagrams and does not provide means for model or model
instance adaptations. Nevertheless, a case study proofed that it is possible
to create snapshots from Java runtime objects that can be evaluated with
USE [27].

– The OCLE tool [28] interprets OCL constraints on UML models. Further-
more, it provides a compiler to generate a Java implementation from a con-
strained UML model and the according OCL constraints. Model adaptation
is not supported. Although OCLE does not allow for real model instance
adaptation, XML files can be treated as model instances by transforming
them into UML object diagrams.



Extending Variability for OCL Interpretation 373

– The MIP OCL2 Parser [29] is a Java library for parsing OCL constraints
provided by the Institute for Defense Analyses. Constraints are checked syn-
tactically and semantically against a UML class diagram. To use the parser,
one must provide a Java implementation of the abstract UML model ex-
pected by the parser. Thus, the MIP parser provides very limited means for
model adaptation. Since MIP does not contribute an interpreter or compiler
for constraints, model instance adaptation is not relevant.

– The OCL interpreter and compiler provided by the Kent Modeling Frame-
work (KMF) supports model adaptation via a central Bridge model [13].
Both, the compiler and the interpreter depend on a Java-based representa-
tion of model instances. Thus, model instance adaptation is not supported.

– The Epsilon Validation Language (EVL) introduced in [20] is quite similar to
OCL. It comes with an interpreter that can be used for various EMF-based
languages. Thus, model adaptation is possible. In [30], a first approach to
reuse OCL semantics at the model instance level for various model realisa-
tions was proposed. This approach is limited to model instances defined at
the same meta-layer as their models and operation calls are not supported.

– A standard OCL interpreter for EMF is provided by MDT OCL [6]. It is also
tightly integrated with EMF and supports model adaptation for various EMF
languages. The interpreter directly supports model instances represented in
EMF. MDT OCL’s architecture is highly extensible and could be adapted to
other model instances using Java Generics [31]. However, we are not aware
of any such adaptations.

This analysis of related work consolidates that variability at model level is
considered useful and has already been implemented in various OCL tools. Sup-
porting variability at model instance level – as suggested in this paper – is a
consequent continuation of our previous and other’s related work.

7 Conclusion

In this paper we presented a generic approach for OCL interpretation that ad-
dresses both model and model instance variability. Various OCL infrastructures
support model variability, whereas – to the best of our knowledge – none of the
existing OCL infrastructure supports complete model instance variability. Our
approach addresses this problem by abstracting from domain-specific concepts
and by introducing well-defined interfaces for models and their instances. With
our implementation of such a generic adaptation architecture, the same OCL
interpreter was applied to three case studies that are located at different model-
ling layers and use different combinations of models and model instances. We
avoided new implementations of the OCL standard library for various different
technical spaces and hence contribute a reusable OCL interpreter.

For future work, we plan to improve our approach by addressing the issues
mentioned in Sect. 5. We are interested in evaluating the performance impact
of our adapter-based approach for OCL interpretation. Therefore, we plan a
benchmark comparing our interpreter with other interpreters and compilers,
and a continuation of our previous work [10] on extensible OCL compilation.



374 C. Wilke, M. Thiele, and C. Wende

Acknowledgements

We want to thank Tricia Balfe of Nomos Software for providing data for
the XML case study and for continuous feedback during adaptation of the case
study. Furthermore, we would like to thank all people that are or were involved
in the DresdenOCL project.

References

1. OMG: Object Constraint Language, Version 2.2. Object Management Group
(OMG), Needham (February 2010)

2. OMG: Unified Modeling LanguageTM, OMG Available Specification, Version 2.2.
Object Management Group (OMG), Needham (February 2009)

3. Warmer, J., Kleppe, A.: The Object Constraint Language - Getting Your Models
Ready for MDA, 2nd edn. Pearson Education Inc., Boston (2003)

4. Akehurst, D., Howells, W., McDonald-Maier, K.: UML/OCL - Detaching the Stan-
dard Library

5. Loecher, S., Ocke, S.: A Metamodel-based OCL-compiler for UML and MOF. In:
Stevens, P., Whittle, J., Booch, G. (eds.) UML 2003. LNCS, vol. 2863. Springer,
Heidelberg (2003)

6. Eclipse Model Development Tools, http://www.eclipse.org/modeling/mdt/
7. Amelunxen, C., Königs, A., Rötschke, T., Schürr, A.: Metamodeling with

MOFLON. In: Schürr, A., Nagl, M., Zündorf, A. (eds.) AGTIVE 2007. LNCS,
vol. 5088, pp. 573–574. Springer, Heidelberg (2008)

8. Demuth, B., Wilke, C.: Model and Object Verification by Using Dresden OCL. In:
Proceedings of the Russian-German Workshop Innovation Information Technolo-
gies: Theory and Practice, July 25-31. Ufa State Aviation Technical University,
Ufa (2009)

9. Arnold, D.: C# Compiler Extension to Support the Object Constraint Language
Version 2.0. Master Thesis, Carleton University, Ottawa, Ontario (2004)

10. Heidenreich, F., Wende, C., Demuth, B.: A Framework for Generating Query Lan-
guage Code from OCL Invariants. In: Akehurst, D.H., Gogolla, M., Zschaler, S.
(eds.) Ocl4All - Modelling Systems with OCL. ECEASST, vol. 9. Technische Uni-
versität, Berlin (2008)

11. Sakr, S., Gaafar, A.: Towards Complete Mapping between XML/XQuery and
UML/OCL. In: Proceedings of the IADIS e-society 2004 conference (ES 2004),
Avila, Spain. (2004)

12. Bräuer, M., Demuth, B.: Model-Level Integration of the OCL Standard Library
Using a Pivot Model with Generics Support. In: Akehurst, D.H., Gogolla, M.,
Zschaler, S. (eds.) Ocl4All - Modelling Systems with OCL. ECEASST, vol. 9.
Technische Universität, Berlin (2008)

13. Akehurst, D., Patrascoiu, O.: Ocl 2.0 - Implementing the Standard for Multiple
Metamodels. In: OCL2.0 - Industry standard or scientific playground? - Proceed-
ings of the UML 2003 Workshop, pp. 19–25 (2003) (Citeseer)

14. DresdenOCL, http://dresden-ocl.sourceforge.net/
15. OMG: Meta-Object Facility (MOF) Core Specification, Version 2.0. Object Man-

agement Group (OMG) (January 2006)
16. Kurtev, I., Bézivin, J., Aksit, M.: Technological spaces: An initial appraisal. In:

CoopIS, DOA (2002)

http://www.eclipse.org/modeling/mdt/
http://dresden-ocl.sourceforge.net/


Extending Variability for OCL Interpretation 375

17. Bézivin, J., Kurtev, I.: Model-based technology integration with the technical space
concept. In: Metainformatics Symposium (2005) (Citeseer)

18. Eclipse Modeling Framework (EMF) Project, http://www.eclipse.org/

modeling/emf/

19. Kang, K., Cohen, S., Hess, J., Novak, W., Peterson, A.: Feature-Oriented Domain
Analysis (FODA) Feasibility Study. Technical Report CMU/SEI-90-TR-0211990,
Software Engineering Institute (1990)

20. Kolovos, D., Paige, R., Polack, F.: Detecting and Repairing Inconsistencies across
Heterogeneous Models. In: Proceedings of the 2008 International Conference on
Software Testing, Verification, and Validation, pp. 356–364. IEEE Computer Soci-
ety, Los Alamitos (2008)

21. Szyperski, C.: Component Software: Beyond Object-Oriented Programming.
Addison-Wesley Longman Publishing Co., Inc., Boston (2002)

22. ISO: Payments Standards - Initiation - UNIFI (ISO 20022) Message Definition
Report. International Organization for Standardization (ISO), Geneva (October
2006)

23. EPC: SEPA Business-To-Business Direct Debit Scheme Customer-To-Bank Im-
plementation Guidelines, Version 1.3. Number EPC131-08. European Payments
Council (EPC), Brussels (October 2009)

24. Euro Banking Association (EBA), https://www.abe-eba.eu/
25. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns - Elements of

Reusable Object-Oriented Software, 2nd edn. Addison-Wesley Professional, Indi-
anapolis (1995)

26. Gogolla, M., Büttner, F., Richters, M.: USE: A UML-based Specification Environ-
ment for Validating UML and OCL. Science of Computer Programming 69(1-3),
27–34 (2007)

27. Occello, A., Dery-Pinna, A.M., Riveill, M.: Validation and Verification of an
UML/OCL Model with USE and B: Case Study and Lessons Learnt. In: Pro-
ceedings of the Software Testing Verification and Validation Workshop, ICSTW
2008. IEEE International Conference on Software Testing, Verification, and Val-
idation (ICST), Lillehammer, Norway, pp. 113–120. IEEE Digital Library (April
2008)

28. OCLE2.0 - Object Constraint Language Environment, http://lci.cs.ubbcluj.
ro/ocle/

29. MIP OCL Parser (MIP MDA Tools), http://mda.cloudexp.com/
30. Kolovos, D.S., Paige, R.F., Polack, F.A.C.: Towards Using OCL for Instance-Level

Queries in Domain Specific Languages. ECEASST, vol. 5. Technische Universität,
Berlin (2006)

31. Damus, C.W.: MDT OCL Goes Generic - Introduction to OCL and Study of the
Generic Metamodel and API. In: EclipseCon 2008, Slides of the presentation (2008)

http://www.eclipse.org/modeling/emf/
http://www.eclipse.org/modeling/emf/
https://www.abe-eba.eu/
http://lci.cs.ubbcluj.ro/ocle/
http://lci.cs.ubbcluj.ro/ocle/
http://mda.cloudexp.com/


Inter-modelling: From Theory to Practice

Esther Guerra1, Juan de Lara2, Dimitrios S. Kolovos3, and Richard F. Paige3

1 Universidad Carlos III de Madrid, Spain
eguerra@inf.uc3m.es

2 Universidad Autónoma de Madrid, Spain
Juan.deLara@uam.es

3 The University of York, UK
{dkolovos,paige}@cs.york.ac.uk

Abstract. We define inter-modelling as the activity of building models
that describe how modelling languages should be related. This includes
many common activities in Model Driven Engineering, like the specifica-
tion of model-to-model transformations, the definition of model match-
ing and model traceability constraints, the development of inter-model
consistency maintainers and exogenous model management operators.

Recently, we proposed a formal approach to specify the allowed and
forbidden relations between two modelling languages by means of bidi-
rectional declarative patterns. Such specifications were used to generate
graph rewriting rules able to enforce the relations in (forward and back-
ward) model-to-model transformation scenarios. In this paper we extend
the usage of patterns for two further inter-modelling scenarios – model
matching and model traceability – and report on an EMF-based tool im-
plementing them. The tool allows a high-level analysis of specifications
based on the theory developed so far, as well as manipulation of traces
by compilation of patterns into the Epsilon Object Language.

1 Introduction

Model Driven Engineering (MDE) attacks the accidental complexity in the soft-
ware development process by increasing the abstraction level at which engineers
work. Models (rather than code) are the core assets, and are used to gener-
ate code, validation and verification. Models are seldom oblivious of each other,
and hence many activities in MDE involve building relations between two or
more models either manually or (semi-)automatically. The development of sys-
tematic, well-founded techniques and tools for the creation and maintenance of
inter-model relations is therefore at the core of MDE, and is especially critical
in large-scale projects involving vast amounts of inter-related models [11].

The specifications of inter-model relations can be used in many ways. For
instance, a model-to-model (M2M) transformation specification expresses how
models of a language should be related with models of another one, and it is
actually used to transform source models into target ones (or vice-versa). We call
inter-modelling to the activity of specifying how two or more modelling languages
have to be related. Further examples of inter-modelling include specifications for
model matching and traceability, inter-model consistency, and synchronization.

D.C. Petriu, N. Rouquette, Ø. Haugen (Eds.): MODELS 2010, Part I, LNCS 6394, pp. 376–391, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



Inter-modelling: From Theory to Practice 377

Frequently, the specifications of different inter-modelling activities (e.g. M2M
transformation and model matching) are built separately from each other – even
if they relate the same modelling languages – and are written using different
notations and tools. This produces scattered specifications that are prone to
desynchronization and increase the maintenance effort. Moreover, all specifica-
tions that handle instances of the same meta-models need to be kept consistent,
which is difficult to ensure if they lack formal semantics. Hence, a unified, formal
notation able to specify different inter-modelling tasks would be very valuable.

Recently [6] we proposed a visual, declarative, bidirectional, formal language
to describe M2M transformations. The language permits specifying allowed and
forbidden relations between models of two modelling languages by means of
patterns. Patterns have a formal semantics that enable checking whether two
models are synchronized according to a pattern, and permitting static analysis. A
synthesis procedure was developed in [6] to generate graph grammar rules solving
two scenarios: source-to-target and target-to-source batch transformations.

In this paper we demonstrate that, in addition to transformation, our lan-
guage can solve two further inter-modelling scenarios: model matching and model
traceability. Hence, the same specification can solve different MDE tasks (trans-
formation, matching and traceability) reducing the burden of developers. We also
report on Pamomo, an Eclipse tool that allows the definition of inter-modelling
specifications, their analysis, and their operational use by compiling them into
the Epsilon Object Language (EOL) [8]. The tool solves the following scenarios,
for both model matching and model traceability:

1. Given two models M1 and M2, generate a trace model T relating both.
2. Given two models M1 and M2, and an existing trace model T ,

(a) verify whether T is valid (i.e. it has no missing or incorrect traces).
(b) update T so that it becomes a valid trace model for M1 and M2.

• pattern-pattern conflicts
• pattern-mm conflicts
• metamodel coverage

Triple
Patterns

Static analysis
High-level
declarative
specification

11

• M2M transf.
• analysis
• conflicts

Graph
rules

• model matching
• model traceab.

EOL

…

Operational scenarios

• conformance
• incorrect traces
• missing traces

OCL

Check-only
scenarios

compilation

act on… check for…

set of related models

22 33

The figure to the right shows the work-
ing scheme of our approach. An inter-
modelling specification consists of a set
of declarative triple patterns. This speci-
fication can be statically analysed (label
1) to check for conflicts between patterns,
between patterns and the meta-models,
and to assess meta-model coverage (i.e.
check if all types are used by some pat-
tern). Patterns can be used operationally
through their compilation into lower-level languages (label 2). In this paper, we
compile them into EOL for model matching and model traceability, obtaining
interoperability with EMF-based tools and an efficient implementation. Finally,
patterns can be used for check-only scenarios (label 3) in order to find out
whether two models are correctly traced and to detect incorrect or missing traces.

Paper organization. Section 2 presents our patterns for inter-modelling, which
we use in Section 3 for model matching and traceability. Section 4 shows how to



378 E. Guerra et al.

compile the patterns into OCL/EOL for these scenarios. Section 5 and Section 6
present tool support and a case study. We discuss related work in Section 7, and
conclude in Section 8.

2 Our Pattern-Based Inter-modelling Language

In this section we briefly introduce our pattern-based language for inter-
modelling. For technical details, the reader can consult [6].

Triple graphs. Our patterns are based on triple graphs [12], which are struc-
tures made of two graphs called source and target (S and T ) related through a
correspondence graph (C). Models can be represented as graphs with attributes
in nodes and edges and with a type [4]. The correspondence graph is a graph in
its own right, but we distinguish a special set of nodes M , called mappings. M
is a subset of the set of nodes of the correspondence graph, M ⊆ V C , and we
define two functions cs : M → V S and ct : M → V T from M to the sets of nodes
in the source and target graphs. These are called the correspondence functions,
and are used to relate source and target nodes. Thus, we say that x ∈ V S is
related to y ∈ V T iff ∃m ∈ M s.t. cs(m) = x and ct(m) = y. Altogether, a triple
graph is a tuple TrG = 〈S, C, T, M, cs, ct〉.

We can relate two triple graphs through triple morphisms, e.g. when a triple
graph represents a pattern that has to be found inside a bigger triple graph.
A triple morphism n : TrG1 → TrG2 is made of a triple of graph morphisms
n = 〈nX : X1 → X2〉X∈{S,C,T} relating the source, target and correspondence
graphs of TrG1 and TrG2. In addition, the mappings of TrG1 must be related to
mappings of TrG2, and the elements in TrG1 that are not mappings cannot be
identified to mappings of TrG2 (i.e. nC(M1) ⊆ M2 and nC(V C

1 \M1) ⊆ V C
2 \M2).

Triple constraints. In order to interpret triple graphs as constraints, we substi-
tute the set of data values in triple graphs by a finite set ν of sorted variables [6].
In this way, instead of concrete values, attributes point to variables of a given
sort and their value can be constrained by a formula α. Altogether, a triple
constraint is a tuple CTrG = 〈TrG, ν, α〉. It is important to note that a triple
graph (i.e. two models related through a correspondence model) can be repre-
sented as a ground triple constraint where the formula α restricts the attributes
to take exactly one value. Hence, we only need to consider triple constraints and
not triple graphs anymore. As an example, the left of Fig. 1 shows a ground
triple constraint taken from the class-to-relational example. The terms of the
formula α are shown below, where the and connectives are omitted. Note that
“=” denotes equality, not assignment.

Triple constraints can be related through CTrG-morphisms. A CTrG-
morphism a : CTrG1 → CTrG2 is made of a triple graph morphism with the
following conditions: the formula α2 of CTrG2 must imply the formula α1 of
CTrG1, and the same implication is demanded for the source and target restric-
tions of the formulae (α2|S ⇒ α1|S and α2|T ⇒ α1|T ). Roughly, the source α|S
(resp. target α|T ) restriction of a formula α is the same formula but considering



Inter-modelling: From Theory to Practice 379

c0: Class
name=X
persistent=P1

t: Table
name=Z

m:CT

c1: Class
name=Y
persistent=P2

parent

a: Attribute
name=A
type=Tfe

at
ur

e

n:CT

P1=true
P2=true

X=‘person’
Y=‘worker’

A=‘age’     T=‘int’ Z=‘Tperson’

c: Class
name=X
persistent=P

t: Table
name=Y

m:CT

Y=‘T’+XP=true
c: Class

p: Class
parent

ClassTableN(parent)

t: Tablem:CT

feature
co: Column
name=Y
type=T2

col
n:AC

AttributeColumn

Y=‘C’+X
(Collection{‘int’,’long’,’float’,’double’}.exists(z | z=T and T2=‘NUMBER’) 

or (T=‘string’ and T2=‘TEXT’))

«param»«param»

a: Attribute
name=X
type=T

c: Class
«param»

Fig. 1. Two related models as a ground triple constraint (left). Some P-patterns (right).

the variables of the source (resp. target) graph only [6]. In our current imple-
mentation, α can be any valid OCL expression given with EOL syntax.

Triple patterns. We use triple constraints as building blocks for triple patterns.
A triple pattern describes in a declarative way a relation between two models. If
the relation is allowed then we say the pattern is positive (P-pattern), whereas
if the relation is forbidden then we say the pattern is negative (N-pattern). P-
patterns are made of a main constraint Q declaring the allowed relation, an
optional positive pre-condition (or parameter) C with CTrG-morphism q : C →
Q, and a set NPre = {Q ci→ Ci}i∈Pre of negative pre-conditions (which may be
empty). N-patterns consist of just one constraint Q forbidden to occur.

The right of Fig. 1 shows two P-patterns. The upper one has a negative pre-
condition (N(parent)) and demands persistent, top-level classes to be related
with tables. Its formula constrains the names of the related class and table. The
lower P-pattern has as parameter all elements tagged with <<param>>, which
are shown together with the main constraint Q. It states that attributes and
columns should be related, but only if their owning class and table are related.

3 Model Matching and Model Traceability

Patterns are interpreted differently depending on the scenario. The M2M trans-
formation scenario looks at patterns either source-to-target or target-to-source,
checking whether patterns are source- or target-enabled [6]. For instance, in for-
ward transformation, pattern ClassTable in Fig. 1 is to be interpreted as “given
a class without parents, there must be a table”. Instead, model matching and
model traceability consider the source and target of patterns at the same time.
Thus, in these cases, the same pattern is interpreted as “given a class with-
out parents and a table with suitable name, there should be a trace relating
them”. Hence, given a pattern, we define a suitable directed pre-condition for
the scenario at hand, which in model matching and traceability is called trace
pre-condition. Next, we define the notion of pattern enabledness, which consists



380 E. Guerra et al.

on finding an occurrence of the directed pre-condition that does not violate any
negative pre-condition of the pattern. Finally, we build the notion of satisfaction
for the particular scenario (here for model matching and traceability)1.

Trace pre-condition. The trace pre-condition of a P-pattern is the constraint
made of the source and target parts of the main constraint Q, together with the
parameter C and the formula. For example, the trace pre-condition of pattern
ClassTable is made of objects c, t and the complete formula, while for pattern
AttributeColumn it is made of objects c, t, a, co, m and the formula.

Trace enabledness. A P-pattern is trace-enabled in a triple constraint TrG if
we find an occurrence of the pattern trace pre-condition in TrG, and none of its
negative pre-conditions. In Fig. 1, ClassTable is enabled in the left constraint at
objects {c0, t}, but not at objects {c1, t} as the latter belongs to an occurrence
of the negative pre-condition (i.e. c1 has a parent). AttributeColumn is not
trace-enabled because the table has no column.

Matched models. Two models are matched according to a specification, if each
trace-enabled occurrence of every P-pattern in the specification belongs to an
occurrence of the pattern’s main constraint. This demands all suitable combi-
nations of source and target elements to be traced. For N-patterns, we simply
forbid their occurrence. The models to the left of Fig. 1 are correctly matched
as the trace-enabled occurrence {c0, t} of pattern ClassTable is included in an
occurrence of the main constraint (i.e. a mapping CT exists).

Traced models. Two models are traced according to a specification if, for each
trace-enabled occurrence of every P-pattern in the specification, the source part
is traced with some (in contrast to all) suitable occurrence of the target, or the
other way round. Thus, model traceability does not require all combinations of
source and target elements to be traced. Here, the rationale for the trace model is
that it could have been generated from a forward or a backward transformation,
hence we also demand a “uniform” distribution of traces. This means that it is
not allowed to have one occurrence of the source to be traced twice, whereas
another occurrence that could have been related with the same target elements
as the first one is not traced at all (and similarly for the target). As an example,
the models in Fig. 1 are correctly traced.

Fig. 2 illustrates the difference between model matching and model traceabil-
ity, through an example of two models having two classes and two tables, equally
named. Model matching gives a unique minimal solution (left), whereas trace-
ability gives two minimal solutions (right). Connecting the two classes to the
same table is not a valid traceability solution, as there would be an unconnected
table, but enough classes in the source to be connected with. Whereas the model
matching solution cannot be generated by forward or backward transformation
(it contains redundant traces), any of the traceability solutions can. In fact, the
matching solution is the union of all traceability solutions. While two matched
models are always correctly traced, the converse is not true in general.

1 The formalization can be found at: http://astreo.ii.uam.es/∼jlara/PAMOMO.pdf



Inter-modelling: From Theory to Practice 381

c0: Class
name=X
persistent=P1

t0: Table
name=Z

1:CT

P1=P2=true X=Y=‘person’

c1: Class
name=Y
persistent=P2

t1: Table
name=U4:CT

Z=U=‘Tperson’

2:CT

3:CT

Matching (one solution)
c0: Class

name=X
persistent=P1

t0: Table
name=Z

1:CT

c1: Class
name=Y
persistent=P2

t1: Table
name=U4:CT

Traceability (two solutions)
c0: Class

name=X
persistent=P1

t0: Table
name=Z

c1: Class
name=Y
persistent=P2

t1: Table
name=U

2:CT

3:CT

P1=P2=true X=Y=‘person’ Z=U=‘Tperson’ P1=P2=true X=Y=‘person’ Z=U=‘Tperson’

Fig. 2. Model matching vs. model traceability

4 Compilation of Patterns into OCL/EOL

We compile patterns into OCL/EOL to cover check-only and operational sce-
narios for model matching and traceability. In particular, we use OCL to check
whether two models are correctly matched or traced, and EOL [8] to solve oper-
ational scenarios (i.e. to create a trace model from scratch so that two unrelated
models become correctly matched or traced, and to recover the consistency of
existing trace models by deleting incorrect traces and creating missing ones).

4.1 Check-Only Scenario: Satisfaction of Patterns by Models

Here the aim is, given two models and their traces, to identify whether the mod-
els are matched or traced according to a pattern specification. Thus, the OCL
code synthesized from the specification has to verify that each occurrence of the
trace-precondition of every P-pattern actually satisfies the pattern, and that the
models do not contain occurrences of the N-patterns. In this scenario, the only
difference between matching and traceability is that the former demands univer-
sal existence of traces (i.e. for all combinations of source and target elements)
whereas traceability demands them existentially (i.e. for at least one of them if
they involve the same source or target elements).

Thus, for each P-pattern p, we generate an operation sat p that (a) seeks
all trace-enabled occurrences of p and (b) checks if they are related by traces
as specified by p. For (a), the operation iterates on the nodes of the trace pre-
condition and checks if: (i) all node’s edges in the trace pre-condition can be
mapped to links in the models; (ii) all mappings in the trace pre-condition can
be mapped to traces in the models; (iii) the attribute conditions evaluate to
true when symbols are replaced by concrete attribute values from the models;
and (iv) there are no occurrences of the negative pre-conditions in the models.
For (b), we try to extend each occurrence of the trace pre-condition found in
(a) to the full main constraint. Next we show the compilation of a P-pattern
for model matching using the OCL-like syntax of EOL, which e.g. uses keyword
operation instead of query:
operation sat p.name() : Boolean {
return
-- (a) for each occurrence of the trace-enabling conditions...



382 E. Guerra et al.

patt matching forall〈n1〉 implies . . .
patt matching forall〈ni〉

}
∀ni ∈ nodesp

pre

checkatt p.name(n1, . . . , ni)
-- ... that does not violate any negative pre-condition,

and not patt matching exists〈mi1〉 and . . .
patt matching exists〈mik〉

checkatt Ci.name(n1, . . . , ni, mi1, . . . , mik)

⎫⎬
⎭ ∀Ci ∈ Np

pre,
∀mik ∈ nodesp

Ci

-- (b) check if it satisfies the main constraint
implies
patt matching exists〈ni+1〉 and . . .
patt matching exists〈nj〉

}
∀nj ∈ nodesp

post

checkatt p.name(n1, . . . , ni, ni+1, . . . , nj);
}

where p.name and Ci.name are the names of the pattern and its negative pre-
condition Ci; patt matching forall<ni> and patt matching exists<ni> are
replaced by expressions seeking all or one occurrence of node ni satisfying (i-ii)
and the ground terms in the formula assigning a concrete value to its attributes;
checkatt X are operations that evaluate the non-ground terms of the formula
in X ; nodesp

pre = {ni|ni ∈ V S
Q ∪ V T

Q ∪ q(V C
C )} are the nodes in the pattern

trace pre-condition, where V X
Y contains the graph X ’s nodes of Y (e.g. V S

Q

contains the nodes of the source graph S in the main constraint Q) and q(V C
C )

contains the correspondence nodes in Q which are parameter of the pattern;
nodesp

post = {nj|nj ∈ V C
Q \q(V C

C )} are the traces created by the pattern; Np
Pre =

{Q ci→ Ci} are the pattern negative pre-conditions; and nodesp
Ci

= {mik|mik ∈
(V S

Ci
∪V T

Ci
∪V C

Ci
)\ ci(nodesp

pre)} are the nodes in the negative pre-condition that
are not in the trace pre-condition.

In the operation, patt matching forall<ni> collects all nodes in the model
with same type, edges and attribute values as node ni in the pattern. To improve
performance, these checkings are evaluated before entering an inner loop. Thus,
the code that replaces patt matching forall<ni> is the following:

ni.type.allInstances().forAll(ni |
ni.nav(nj) = nj and } ∀e ∈ edgesp

pre|src(e) = ni, tar(e) = nj , j ≤ i
nk.nav(ni) = ni and } ∀e ∈ edgesp

pre|src(e) = nk, tar(e) = ni, k ≤ i
ni.nav(nl) = nl and }ni ∈ V M

C ,∀nl ∈ nodesp
pre|cs(ni) = nl or ct(ni) = nl, l ≤ i

nm.nav(ni) = ni and } ∀nm ∈ V M
C |cs(nm) = ni or ct(nm) = ni, m ≤ i

ni.att = value and } ∀ condition v = value, where v stores attribute att of ni

where ni.type is replaced by ni’s type; edgesp
pre = {e|e ∈ ES

Q ∪ET
Q ∪q(EC

C )} are
the edges in the trace pre-condition; and nav(nj) in the expression ni.nav(nj)
becomes the name of the association from node ni to nj . The generated pattern
matching expressions are nested in operation sat p, hence we implicitly order the
nodes ni. For efficiency we put first those nodes with higher number of links and
ground constraints for their attributes. The code for patt matching exists<ni>
is similar but using exists instead of forAll.



Inter-modelling: From Theory to Practice 383

After collecting the nodes, operation checkatt X checks if they satisfy the
non-ground part of the formula in X . The operation is generated for the trace-
enabling condition of the pattern, its main constraint (both with same name but
different parameters), and each negative pre-condition Ci. As an example, we
show the operation generated for the trace-enabling condition:

operation checkatt p.name(n1 : n1.type, . . . , ni : ni.type) : Boolean {
var v := ni.att; } ∀ variable v storing an attribute of ni ∈ nodesp

pre

return αtrace precondition;
}

The operation sat p for model traceability is similar, except that the expres-
sion that controls condition (b) (satisfaction of main constraint Q) just checks if
the matched source elements satisfy Q with any combination of target elements,
or if the target elements satisfy Q with any combination of the source ones.

Finally, from each N-pattern we generate one operation which checks the
absence of occurrences of the N-pattern in the model. The operations are the
same for model matching and traceability.

Example. Below we show part of the OCL code generated from ClassTable in
Fig. 1, for the check-only model matching scenario:

operation sat_ClassTable() : Boolean {

return Class.allInstances().forAll(c | c.persistent=true implies

Table.allInstances().forAll(t | checkatt_ClassTable(c, t)

and not Class.allInstances().exists(p |

c.parent.includes(p) and checkatt_ClassTable_parent(c, p))

implies CT.allInstances().exists(m |

m.source=c and m.target=t and checkatt_ClassTable(c, t, m))));

}

operation checkatt_ClassTable( c:Class, t:Table ) : Boolean

{ var X:=c.name; var Y:=t.name; return Y=’T’+X; }

4.2 First Operational Scenario: Creation of Correct Traces

In operational scenarios we are given two models (already related or not) and
the aim is to create missing traces and delete incorrect ones. For the former,
from each P-pattern p we generate an EOL operation rule p that (a) looks for
a trace-enabled occurrence of the pattern and (b) creates the traces according
to the pattern. Trace-enabledness is checked as in the check-only scenario, but
includes two additional conditions: (v) the pattern must not have been applied to
the same objects before (termination condition), and (vi) the result of applying
the pattern must not violate any N-pattern in the specification.

Termination condition (v). In model matching we must ensure that the el-
ements in the trace-enabled occurrence of a pattern are not related as specified
by the pattern. Therefore, we generate an extra condition which is equal to that
generated in the check-only scenario to check satisfaction of the main constraint



384 E. Guerra et al.

(three last lines in the body of operation sat p.name), but preceded by not in-
stead of implies. This avoids enforcing a pattern twice for the same objects. In
traceability we generate two stronger conditions checking that the source struc-
ture is not related to some occurrence of the target one, and vice-versa.

N-patterns (vi). In order to ensure that applying a P-pattern does not create
occurrences of N-patterns, we encapsulate the creation actions into transactions
which are rolled back if their execution results in an N-pattern violation. For
efficiency reasons, after applying a P-pattern only those N-patterns which include
elements created by the P-pattern are checked.

Creation of traces. If a set of objects satisfy all trace-enabling conditions,
they are passed as parameters to operation apply p, which creates all elements
appearing in the correspondence graph of Q, but not in its positive pre-condition.

operation apply p.name(n1 : n1.type, . . . , ni : ni.type) : Boolean {
-- creation of new nodes
var v.id : new v.type;

} ∀v ∈ nodesp
post

-- creation of new edges
nk.nav(nl) := nl;

} ∀e ∈ edgesp
post, with src(e) = nk, tar(e) = nl

-- creation of new correspondence functions
var nc.nav(ns) := ns;
var nc.nav(nt) := nt;

} ∀nc ∈ V M
Q ∩ nodesp

post, with ns ∈ V S
Q ,

nt ∈ V T
Q , cs(nc) = ns, ct(nc) = nt

return true;
}

where v.id is replaced by a unique identifier for node v.

Example. Part of the generated matching code for pattern ClassTable is:

operation rule_ClassTable() : Boolean {

return Class.allInstances().exists(c | c.persistent=true and

Table.allInstances().exists(t | checkatt_ClassTable(c, t)

and not Class.allInstances().exists(p |

c.parent.includes(p) and checkatt_ClassTable_parent(c, p))

and not CT.allInstances().exists(m |

m.source=c and m.target=t and checkatt_ClassTable(c, t, m))

and apply_ClassTable(c, t))); }

operation apply_ClassTable( c:Class, t:Table ) : Boolean {

var m:new CT; m.source:=c; m.target:=t; return true; }

4.3 Second Operational Scenario: Deletion of Incorrect Traces

The previous operational mechanism ensures that the needed traces exist, but
does not guarantee the absence of incorrect traces. This is so because it iterates
on occurrences of the source and target nodes creating valid traces, but does not
iterate on the occurrences of traces checking their correctness. Hence, two related
models may have incorrect traces (apart from the correct ones) if somebody
manually added an incorrect trace between them, or if the models evolved so



Inter-modelling: From Theory to Practice 385

that some traces became incorrect. Here we make a closed world assumption:
only those traces that are correct according to the specification should exist.

In order to achieve this, we generate additional EOL operations that detect
and delete incorrect traces. The operations check that, whenever there is a trace
in the correspondence model, it is because some P-pattern demands its presence
and it does not belong to an occurrence of any N-pattern.

We generate two types of operations, enforcing two levels of trace correctness.
The first operation type is called relaxed and it does not take into account the
negative pre-condition of patterns, since a pattern with negative pre-conditions
specifies what should happen if the negative pre-conditions are not found but
not if they are found. However the synthesized EOL code for trace creation does
not enforce a pattern if its negative pre-conditions are found; therefore the sec-
ond operation type checks that only those traces that our previous compilation
is able to create actually exist. This second operation type is called strict. For
space constraints we only show the compilation of the first operation.

operation relaxed 1 t.type (t : t.type) {
if (not patt matching exists〈n1〉 and . . .

patt matching exists〈ni〉
checkatt p.name(n1, . . . , ni) . . .)

⎫⎬
⎭ ∀p ∈ enablingt,

∀ni ∈ nodesp
pre ∪ nodesp

post \ t

{ t.type.allInstances().remove(t); -- remove correspondence object
delete t; }

}

where enablingt = {p|p is a P-pattern, ∃n ∈ nodesp
post with n.type = t} is the

set of P-patterns in the specification that create traces of type t.

Example. The first type of relaxed operation generated for trace CT is:

operation relaxed_1_CT( mt:CT ) {

if (not Class.allInstances().exists(c |

c.persistent=true and mt.source=c and

Table.allInstances().exists(t |

mt.target=t and checkatt_ClassTable(c, t, mt))))

{ CT.allInstances().remove(mt); delete mt; }

}

The generated EOL code for the operational scenarios works incrementally.
Thus, given source and target models connected through an arbitrary trace
model, the program invokes the deleting operations to delete the incorrect traces,
and then the creation ones to reestablish trace correctness.

5 Tool Support

We have developed an Eclipse tool, called Pamomo (http://astreo.ii.uam.es/
∼jlara/pamomo/main.htm), to build pattern specifications. It supports two modes
of execution: off-line and on-line. In the former the designer can validate a spec-
ification or generate different files with EOL code to perform model matching,



386 E. Guerra et al.

traceability, relaxed/strict deletion, or evaluate the satisfaction of a specifica-
tion by models. In this execution mode the specification is compiled once and
the result can be used afterwards for any incoming models, or be integrated in
other tools and model driven tasks. In the on-line mode the designer selects the
incoming source, correspondence and target models and the specification is ap-
plied to them for the chosen scenario. A ModeLink [9] file is generated showing
the result in an Eclipse three-pane window, the one in the middle containing the
generated trace model (see e.g. Fig. 6). The user can manipulate the result in
order to e.g. annotate traces with additional information.

Pamomo also supports analysis of meta-model coverage, identifying which
types are included in each positive/negative pre-condition, main constraint or
N-pattern. This has different interpretations depending on the scenario. For ex-
ample, a P-pattern that defines as parameter a trace type that is not created by
any other P-pattern in the specification may be useless.

Fig. 3 shows the Pamomo meta-model used to define pattern specifications. It
shows that Specifications are made of positive and negative patterns, both sub-
classes of Pattern. Patterns have a main constraint (role constraint), an optional
positive pre-condition, and a set of negative pre-conditions, all modelled through
class ConstraintTripleGraph. This class is made of three graphs with roles source,
target and correspondence. The correspondence graph is a special kind of graph
which may contain mappings that point to source and target objects.

Specification

−name:String

−sourceMetamodel:String

−correspondenceMetamodel:String

−targetMetamodel:String

Pattern

−name:String

patterns+

1..*

NegativePattern PositivePattern

ConstraintTripleGraph

−name:String

−attributeConditions:String [*]

constraint+

positivePrecondition+

0..1

negativePreconditions+

*

CorrespondenceGraph Graph

correspondenceGraph+ targetGraph+sourceGraph+

Mapping Object

−identifier:String

−type:String

mappings+*
objects+*

Feature

−name:String
source+

target+

features+

*

Attribute

−variable:String

−value:String

Reference*refersTo+

Fig. 3. Meta-model of Pamomo

On top of this meta-model we have built a textual concrete syntax editor for
Pamomo with XText (http://eclipse.org/Xtext). This editor takes a textual
representation of a specification like the one shown to the right of Fig. 5, and
parses it to our model-based internal representation. Then, the code genera-
tors we have built synthesize EOL files for the chosen scenario, following the
algorithms of previous section.



Inter-modelling: From Theory to Practice 387

6 Example

In the literature, model matching has been mainly used to compare instances of
the same meta-model. Here we show that it can be used for very different pur-
poses, in particular to implement a GoF design pattern [5] discovery mechanism.
On the one hand we have Ecore models where we want to identify instances of
design patterns, and on the other hand a pattern design vocabulary with the
definition of different design patterns and the roles participating in them. Fig. 4
shows part of the meta-model triple for this situation, which in the real case
contains the complete Ecore meta-model to the left, and additional role special-
izations (apart from those for classes, operations and references) to the right.
The correspondence meta-model binds roles to UML elements and groups the
bindings of each pattern instance through class Instance.

DesignPattern

−name:String

−type:String

−intent:String

−motivation:String

−consequence:String

−applicability:String

PatternRole

−name:String participants+

1..*

ClassRole

OperationRole

Instance

ClassBind

OpBind

*

*

EClass

EOperation

Ecore Design Pattern Vocabulary

*

*
relation

eSuperTypes+*

*

EReference RefBind ReferenceRole

*

Fig. 4. Meta-model to annotate Ecore models with roles in a design pattern vocabulary

The meta-model permits annotating Ecore models with design pattern roles.
Besides, we define a Pamomo specification to automate the identification of
design patterns in the Ecore models and annotate their elements with the roles
they play in the design patterns. For instance, Fig. 5 shows the Pamomo pattern
for the Proxy design pattern. The pattern identifies occurrences of the proxy, and
requires that the operations in Subject, RealSubject and Proxy have the same
name, modelled with variables n1, n2 and n3, all having the same value (see
condition). The pattern may define additional conditions, e.g. that the proxy
defines one public operation for each public operation in the subject, and it
does not define further public operations apart from these. We could also define
another pattern to annotate all operations in a proxy instance, hence allowing
variability on the number of operations that the Proxy wraps.

With our approach we formalize the structure of design patterns as an inter-
modelling specification. If we apply this specification to an EMF model and a
design pattern vocabulary model (instances of the meta-models in Fig. 4), we can
identify instances of the patterns in the Ecore models, by using the mechanism
for creation of traces in model matching. Fig. 6 shows the result provided by our
tool in a simple example. The process identified one instance of the proxy in the
model to the left. By selecting the created traces in the middle we can see the
particular role assigned to each element in the EMF model. In the figure, the
first trace binds role Subject to class Graphic in a proxy instance.



388 E. Guerra et al.

eRefer

c1:EClass

Abstract = true

c3:EClassc2:EClass

r:EReference

Name = n2

o2:EOperation

Name = n3

o3:EOperation

n1 = n3
n1 = n2

Name = n1

o1:EOperation

t1:ClassBind

t3:ClassBind

t2:ClassBind

i:Instance
name = ’Subject’

r1:ClassRole

name = 
  ’RealSubject’

r2:ClassRole

name = ’Proxy’

r3:ClassRole

name = ’Proxy’

dp:DesignPattern

eSuperTypes

eO
pe

ra
tio

ns

eO
pe

ra
tio

ns

eSuperTypes

eType

eOperations

Design Pattern Proxy

ences

Fig. 5. Specification of the Proxy design pattern

Fig. 6. Model matching result: EMF model, trace model, design pattern vocabulary

The mechanism for trace manipulation is incremental: if we modify the EMF
model after having identified design pattern instances, we can apply our oper-
ational mechanisms for deletion of incorrect traces (in case some instance was
destroyed), as well as to identify new instances of patterns. Moreover, we plan
to use Pamomo for Ecore model completion w.r.t. design patterns by allowing
users to manually annotate objects in the EMF model (i.e. assign them a role
in the pattern vocabulary). We could then apply a backward transformation to
create Ecore objects to obtain a correct instance of the design pattern.

7 Comparison with Related Work

Our long-term goal is providing a formal yet practical approach to integrate
inter-modelling tasks. Whereas in [11] the focus is on representing sets of related
models through macromodels (theoretically based on institutions), we provide a
declarative, bidirectional language to describe inter-model relations, as well as a
tool to enforce such relations. The goal in [2] is developing model management
operators for schema mapping and data integration, while in [13] the authors
use mega-models to distinguish between high- and low-level traceability models.



Inter-modelling: From Theory to Practice 389

Among the existing traceability approaches, the Atlas Model Weaver (AMW)
[1] supports the creation of weaving models (similar to our correspondence meta-
model) establishing links between meta-model elements. This makes AMW us-
able only when the source and target meta-models are very similar, and just
derives straight-forward source-to-target transformations. The specification of
complex conditions enabling the creation of traces, like e.g. the one in Fig. 5,
requires in addition specifying conditions at the model level by means of pat-
terns of source and target instances, not supported in AMW. The work in [3]
is based on a traceability meta-model in which OCL-like consistency conditions
can be given. Note that both approaches are specific to traceability and are not
formally founded, and therefore cannot be analysed. Finally, even though QVT-
Relations [10] (QVT-R) allows setting all domains as check-only, specifications
have a direction and relations have to be interpreted either source-to-target or
target-to-source, being unsuitable for traceability.

Regarding model matching, existing approaches permit comparing models ex-
pressed in the same language, typically UML [14], and the customization of the
comparisons is usually limited. However the advent of Domain Specific Lan-
guages makes evident the need for comparing heterogeneous models. In this
respect, ECL is a dedicated language for model comparison [7] which supports
heterogeneous models. However its rules are restricted to compare one source el-
ement with one target element, hence expressing a pattern like the one in Fig. 5
would require coding by hand the pattern-matching code that we generate auto-
matically. Moreover, to the best of our knowledge, no model matching approach
provides a formal foundation enabling the analysis of specifications. Regarding
limitations, the advantages of formality with respect to analysis capabilities come
to the price of less expressiveness than other low-level operational languages [7,8]
(e.g. we do not provide primitives for creating elements in arbitrary loops).

Although TGGs can be used for model matching [12], their compilation into
operational rules does not produce application conditions, and hence extra con-
trol mechanisms have to be designed ad-hoc. Using TGGs for check-only sce-
narios would require model parsing, and lacks an equivalent to our N-patterns.
Regarding QVT-R, its semantics is not suitable for model matching because
it is not possible to consider all domains at the same time, as our concept of
trace-enabledness does. Moreover, the lack of an explicit concept of trace makes
difficult its use for model matching.

Table 1 summarises the comparison of Pamomo with the mentioned ap-
proaches. The symbols

√
and − indicate whether they support a given feature

or not. The table shows whether the approaches can be used for traceability or
matching (columns 2 and 3), if they admit an explicit trace meta-model (column
4), have a formal foundation (column 5), have a declarative style (column 6),
admit non-constructive primitives similar to our N-patterns (column 7), whether
the traces are defined at the meta-model level or if it is possible to define ad-
ditional constraints at the model level as rules or patterns (mm vs. m, column 8),



390 E. Guerra et al.

Table 1. Comparison of different approaches for model traceability and matching

Traceab. Matching Trace MM Formal Declarative Non-constructive m* Heterogeneous

Pamomo
√ √ √ √ √ √

m
√

AMW − − √ − √ − mm
√

ECL − √ − − − − m
√

UMLDiff − √ − − − − − −
QVT-R − − − − √ − m

√
TGGs − √ √ √ √ − m

√

and if they permit relating heterogeneous languages (column 9). As it is appar-
ent, Pamomo is the only approach that supports both matching and traceability,
under a unified formal semantics, making it suitable for inter-modelling tasks.

8 Conclusions and Future Work

This paper has shown the use of our pattern-based approach to specify model
matching and model traceability conditions. For these scenarios, patterns can
be used in check-only mode to test satisfiability, and in operational (incremen-
tal) mode to manipulate the trace model. We have shown realizations of these
two activities using OCL and EOL respectively. Our patterns provide a unified,
formal approach to inter-modelling, as pattern specifications can also be used to
solve M2M transformation scenarios [6]. We have also introduced Pamomo, an
EMF-based tool that allows editing pattern-specifications, their static analysis,
and their compilation into EOL for model matching and traceability.

On the practical side, we are working on optimizing the pattern matching algo-
rithms, as well as in extending Pamomo to solve M2M transformation scenarios.
For this purpose we need to combine EOL with constraint solving techniques.
On the theoretical side, we are currently working on new analysis techniques and
on extending the expressivity of patterns.

Acknowledgements. Work funded by the Spanish Ministry of Science (project
TIN2008-02081 and grants JC2009-00015, PR2009-0019), the R&D programme
of the Madrid Region (project S2009/TIC-1650), the European Commission’s
7th Framework programme (grant #248864 (MADES)), and the Engineering
and Physical Sciences Research Council (EPSRC) (grant EP/E034853/1).

References

1. AMW: ATLAS Model Weaver, http://wiki.eclipse.org/AMW
2. Bernstein, P.A., Melnik, S.: Model management 2.0: manipulating richer mappings.

In: SIGMOD, pp. 1–12. ACM, New York (2007)
3. Drivalos, N., Kolovos, D., Paige, R., Fernandes, K.: Engineering a dsl for software

traceability. In: Gašević, D., Lämmel, R., Van Wyk, E. (eds.) SLE 2008. LNCS,
vol. 5452, pp. 151–167. Springer, Heidelberg (2008)

4. Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of algebraic graph
transformation. Springer, Heidelberg (2006)

 http://wiki.eclipse.org/AMW


Inter-modelling: From Theory to Practice 391

5. Gamma, E., Helm, R., Johnson, R., Vlissides, J.M.: Design Patterns. In: Elements
of Reusable Object-Oriented Software. Addison Wesley, Reading (1994)

6. Guerra, E., de Lara, J., Orejas, F.: Pattern-based model-to-model transformation:
Handling attribute conditions. In: Paige, R.F. (ed.) ICMT 2009. LNCS, vol. 5563,
pp. 83–99. Springer, Heidelberg (2009)

7. Kolovos, D.S.: Establishing correspondences between models with the Epsilon Com-
parison Language. In: Paige, R.F., Hartman, A., Rensink, A. (eds.) ECMDA-FA
2009. LNCS, vol. 5562, pp. 146–157. Springer, Heidelberg (2009)

8. Kolovos, D.S., Paige, R.F., Polack, F.: The Epsilon Object Language (EOL). In:
Rensink, A., Warmer, J. (eds.) ECMDA-FA 2006. LNCS, vol. 4066, pp. 128–142.
Springer, Heidelberg (2006)

9. Modelink, http://www.eclipse.org/gmt/epsilon/doc/modelink/
10. QVT, http://www.omg.org/docs/ptc/05-11-01.pdf
11. Salay, R., Mylopoulos, J., Easterbrook, S.: Using macromodels to manage collec-

tions of related models. In: van Eck, P., Gordijn, J., Wieringa, R. (eds.) CAiSE
2009. LNCS, vol. 5565, pp. 141–155. Springer, Heidelberg (2009)

12. Schürr, A.: Specification of graph translators with triple graph grammars. In: Mayr,
E.W., Schmidt, G., Tinhofer, G. (eds.) WG 1994. LNCS, vol. 903, pp. 151–163.
Springer, Heidelberg (1994)

13. Seibel, A., Neumann, S., Giese, H.: Dynamic hierarchical mega models: compre-
hensive traceability and its efficient maintenance. In: SOSYM (2010) (in press)

14. Xing, Z., Stroulia, E.: UMLDiff: an algorithm for object oriented design differenc-
ing. In: ASE 2005, pp. 54–65. ACM, New York (2005)

http://www.eclipse.org/gmt/epsilon/doc/modelink/
http://www.omg.org/docs/ptc/05-11-01.pdf


D.C. Petriu, N. Rouquette, Ø. Haugen (Eds.): MODELS 2010, Part I, LNCS 6394, pp. 392–406, 2010. 
© Springer-Verlag Berlin Heidelberg 2010 

Consistent Modeling Using Multiple UML Profiles 

Florian Noyrit1, Sébastien Gérard1, François Terrier1, and Bran Selic2 

1 CEA, LIST, Laboratory of model driven engineering for embedded systems,  
Point Courrier 94, Gif-sur-Yvette, 91191, France 

florian.noyrit@cea.fr, sebastien.gerard@cea.fr,  
francois.terrier@cea.fr 

2 Malina Software Corp. Nepean, Ontario, Canada 
selic@acm.org 

Abstract. The design of complex technical system invariably involves multiple 
domain-specific languages to cover the many different facets of such systems. 
However, unless the languages are designed to be used in combination, this 
typically leads to conflicting specifications that are difficult to reconcile due to 
the ontological and other differences between the languages used. In this paper, 
we describe a pragmatic but systematic approach to resolving this problem for 
the special but common case in which the domain-specific languages are all 
defined as UML profiles. 

1   Introduction 

Complex embedded software systems generally involve many perspectives and 
domains. A number of standard approaches have been devised to help designers 
manage this complexity. Among the most effective is the use of model-based 
engineering (MBE) methods, which rely on the systemic use of models to reduce the 
apparent complexity of the system under development. These models typically 
abstract out much technological detail, while emphasizing those aspects that are of 
interest to stakeholders. However, given the heterogeneous nature of most complex 
systems, different categories of stakeholders will have different concerns and, 
therefore, focus on different aspects. This need is often met by providing different 
modeling languages, each suited to a particular domain (i.e., domain-specific 
modeling languages or DSMLs). 

However, when multiple modeling languages are used to describe the different 
aspects of a given system, the problem of reconciling the corresponding language-
specific models arises. Although each domain-specific model represents different 
concerns, given that they all deal with the same system, there is bound to be some 
overlap in these descriptions. Consequently, unless the individual DSMLs were 
explicitly designed to be mutually complementary, there is a high probability that they 
will be inconsistent. What is needed, then, is a way of facilitating the use of multiple 
languages such that the possibility of model conflicts is minimized. 

This is the issue addressed in this paper. Specifically, we focus on the case where 
the DSMLs are defined in the form of UML profiles, although much of the work 
seems to be applicable more generally to DSMLs of all kinds. However, UML 



 Consistent Modeling Using Multiple UML Profiles 393 

profiles, particularly ones that have been standardized, are of special interest, since 
they have the crucial benefits of familiarity (UML is the most widely used modeling 
language) and the ability to take advantage of standard UML tools. Also, given that 
all profiles share a common semantic foundation [1][2], the problem of reconciling 
the different languages is likely to be simpler. Of particular interest is the combined use 
of two standard profiles: SysML, a domain-specific profile for systems engineering, and 
MARTE, a profile for real-time and embedded systems development. This potent 
combination of DSMLs is likely to be used in numerous projects where MBE 
techniques are being used.  

In the following section, we first introduce some useful terminology and concepts 
from the domains of ontology representation and semiotics (the study of symbols and 
their use in communications) to help us navigate the problems of combining multiple 
DSMLs. In first part of Section 3 we introduce the SysML/MARTE case study, which 
is used to illustrate both the main issues as well as key elements of our solution, and 
then we describe the proposed solution itself. This is followed by a discussion of its 
limitations and possible improvements (Section 4). Related work is reviewed and 
compared against our approach in Section 5, followed by a summary of the paper in 
Section 6.  

2   Languages and Their Composition 

The general problems of language and meaning have been studied since ancient times 
as have the problems of the relationships between different languages. It is helpful, 
therefore, to draw on this body of knowledge to provide a systematic framework for 
analyzing the issue of combining multiple DSMLs.  

2.1   A Framework for Analysis 

First, let us consider only one language. Aligned with Ullmann’s triangle [3], we 
distinguish three basic conceptual layers:  

─ The reality layer consists of real world phenomena that are the subject of a 
language such as a DSML.  

─ The conceptualization layer contains abstractions that are, typically, internalized 
mental interpretations of elements of the real world. They are the mediators 
between real world phenomena and the symbols that represent them in the 
language layer.  

─ The language layer consists of a set of symbols that represent elements of the 
conceptualization layer.  

The discipline of semiotics recognizes three distinct elements when considering 
these layers: syntax, semantics, and pragmatics. Syntax controls the manner in which 
symbols of a language are permitted to relate to each other. It defines the rules for 
constructing well-formed language statements (models) using a set of symbols. In 
case of modeling languages, syntax is usually defined by a metamodel supplemented 
by rules using some specialized language, such as OCL [4]. In MBE practice, syntax 
is typically refined further into abstract syntax and concrete syntax (i.e., the physical 
rendering of symbols). This refinement, which allows for multiple different concrete 
representations of a given symbol, inserts an extra layer into our framework.  



394 F. Noyrit et al. 

The semantics of a language defines the relations between symbols and real-world 
phenomena by means of interpretation: assigning meanings to symbols and patterns of 
symbols. Most often, the semantics of computer languages, such as UML or C++, are 
defined informally, using a textual description in some natural language. UML, in 
particular, has been frequently criticized for its lack of formal semantics, so that 
various formalizations have been proposed for it. Notable among these is the 
Executable UML Foundation (fUML) specification, which provides a formal 
definition of the semantics of a subset of UML and which was recently standardized 
by the Object Management Group [1].  

Fig. 1 depicts an example that illustrates the four layers in this framework: the 
concrete word «book» expresses an abstract symbol, the metaclass "Book", which 
represents the concept of book that someone has in mind, which, in turn, is an 
abstraction (conceptualization) of a real book.  

 

 

Fig. 1. Relations between concrete syntax, abstract syntax, conceptualization, and reality 

To provide a full semiotic analysis, we should also consider the pragmatics: that is, 
the relation between symbols and the agents (e.g., people, computers) who use them, 
and how context impacts meaning. However, pragmatics is rarely formally defined 
and we shall not discuss it further in this paper.  

2.2   Language Composition Issues 

When combining multiple languages to describe a complex system, incompatibility 
issues can occur at different layers in our framework:  

─ Expression issues: These occur when two concrete representations are 
incompatible. For example, two different tools may use different concrete 
syntaxes to express the same abstraction (e.g., "book" in English and "livre" in 
French). This can lead to confusion and misunderstanding.  

─ Syntax issues: In this case, it is likely that the metamodels of the two languages 
are different or even incompatible, so that well-formed formulas according to 
one metamodel may not be well-formed according to the other. For example, in 
the context of a print shop, a book might be associated with the particular 
printing press on which it was created, whereas in a library or a bookstore such 
a relationship would be irrelevant.  

─ Semantics issues: This typically happens when two similar symbols from two 
different languages have different meanings. For example, in a travel agency, 
the term "book" signifies a type of transaction, whereas in a library the same 
word refers to a physical instance of a book. 



 Consistent Modeling Using Multiple UML Profiles 395 

Since we are focusing on computer languages, it is meaningful to consider how and 
to what extent automation can help in resolving these kinds of issues. Clearly, these 
problems require some form of understanding of the semantics of the languages 
involved. This means that it is necessary to go beyond mere metamodels, which only 
deal with syntax, and to analyze language conceptualizations. 

In cases where language conceptualizations are defined implicitly (i.e., they are 
internalized in people's minds) or specified informally (e.g., via natural language), 
there is not much that can be done. Unfortunately, this is the most common method of 
specifying semantics in current MBE practice, leaving metamodels as the only formal 
entities open to computer treatment.  

Although modeling language designers usually try to align their metamodels 
(abstract syntaxes) with corresponding conceptualizations, various pragmatic and 
implementation concerns, such as the idiosyncrasies of the UML profile mechanism, 
often break or obfuscate this correspondence. They introduce elements into the 
metamodel that can lead to incorrect inferences and confusion about the semantics of 
a language. This conflicts with the primary rationale behind DSMLs, which is to 
provide languages that express domain conceptualizations in the most direct and 
accurate way possible [5]. Consequently, we adhere to the view elaborated in [6], 
which proposes to systematically evaluate the suitability of a language by comparing 
its syntactical structure to the structure of its conceptualization.  

Recent developments in formal knowledge representation (e.g., Description Logics 
[7], Common Logic [8]) aim to provide ways of concretizing conceptualizations into 
artifacts called ontologies. Because of their formal underpinnings, ontologies capture 
semantic information in a tractable and, most importantly, computable manner. This 
opens up the possibility of much greater automation support when dealing with 
language composition.  

3   Our Approach 

The potential for increased automation offered by formal ontologies as well as the 
need for a closer match between a DSML and its conceptualization were principal 
influencing factors in our approach to dealing with the problem of combining UML 
profiles. Rather than relying purely on implementation-polluted profile metamodels, 
we require the definition of an intermediate implementation-independent domain 
model, which serves as a kind of ontology. The semantics of a profile are then defined 
by semantic mappings of its symbols to corresponding elements in the domain model. 
At present, these domain models still use informal (natural language) specifications of 
semantics, since the choice of suitable ontologies, methods, and tools is still an open 
research issue. Ultimately, however, we hope to eventually evolve metamodels into 
true formal ontologies. 

The central feature of our approach to combining UML profiles is to define a new 
language that eclectically reuses the concepts of all of its original "source" languages. 
This is illustrated by the abstract example in Fig. 2: given languages L1 and L2 whose  
 
 



396 F. Noyrit et al. 

respective conceptualizations C1 and C2 overlap, we want to define a new language L 
(and its corresponding concrete syntax E), whose conceptualization C:  

─ reuses some subset of the concepts from C1 and C2 (CAdopt)  
─ introduces new concepts not present in either C1 or C2 (CNew) 
─ leaves out some subset of concepts from C1 and C2 ((C1 ∪ C2 ) \ CAdopt) 

 

Fig. 2. Outline of the approach 

Compared to designing a completely new language from scratch, this approach has 
the important advantage that it can potentially reuse much of the knowledge, 
experience, and tooling associated with its source languages. Of course, this means 
that we must deal with all three types of language composition issues described earlier 
(expression, syntax, and semantics).  

Although it is likely that this approach can be generalized, we examine this 
problem only in the specific context of DSMLs defined as UML profiles. A common 
criticism of the profile mechanism is that the UML metamodel may limit the language 
designer, due to constraints stemming from both its semantics and its syntax. For this 
reason, many designers prefer defining "pure" DSMLs, which give them full freedom 
to tailor the language primitives. However, as noted earlier, unless specifically 
designed to be used in combination, such ad hoc approaches are likely to introduce 
incompatibilities when it becomes necessary to use them jointly for the same system. 
On the other hand, since all UML profiles share a common semantics foundation [2], 
the likelihood of both syntactic and semantic conflicts is greatly reduced and their 
resolution is generally simpler. Furthermore, given that the conceptualization and 
metamodel of UML contain relatively universal modeling concepts (e.g., class, 
association, behavior, etc.) the limitations that it imposes may not be too severe in 
many cases. 

The approach we advocate, then, is to define a new profile that combines the 
required elements of its source profiles. Afterwards, if necessary, models based on this 
new profile can be translated back into models corresponding to the source profiles.  

3.1   An Example Case Study 

As a motivating example, we consider the joint use of the MARTE [9] and the SysML 
[10] profiles, a combination that is highly likely in the design of complex technical 
systems. Both profiles have been standardized as official technology recommendations 
by the OMG, which increases their visibility and use.  

MARTE is intended for model-driven development of real-time and embedded 
systems. It is designed to be used throughout the development cycle for a variety of  



 Consistent Modeling Using Multiple UML Profiles 397 

activities including specification, design, analysis, and verification and validation. For 
its part, SysML is a UML profile dedicated to systems engineering, that is, the design 
and development of complex heterogeneous systems or systems of systems. Both 
profiles have been designed as generic, anticipating the need for adaptation to specific 
problems and domains. For instance, MARTE may be refined to support specific 
types of model analyses, and SysML may be specialized to fit specific domains such 
aerospace or automotive.  

For this particular case study, we used as inputs the following descriptions:  

─ The domain models of MARTE and SysML. These domain models were 
specified using the OMG's MetaObject facility (MOF). To allow us to convert 
these domain models into true ontologies that could then be manipulated by 
appropriate tools, we developed a UML to OWL-DL [11] transformation that is 
aligned with ODM [12]. The choice of OWL-DL is motivated by its widespread 
adoption and readily available tooling. Also, it is highly expressive while 
retaining computational completeness and decidability.  

─ The UML profiles definitions of MARTE and SysML provided in the 
corresponding OMG specification documents.  

─ The semantics mappings between concepts in the domain model and the 
corresponding language symbols (stereotypes) that represent them as well as the 
relations between the stereotypes and the concrete syntax (the expressions). 
Note that these had to be created, as they are not defined formally in the specs 
(although the MARTE specification includes a partial mapping, SysML does not 
even provide a domain model).  

Using the semantic relations between the concepts introduced in the domain 
models, our objective is to generate a new “MARTE-SysML” profile that deals with 
the domains covered individually by MARTE and SysML.  

The possibility of combining the MARTE and SysML profiles to model embedded 
systems and the resulting concerns raised by heterogeneity have been discussed 
in[13]. These two profiles are highly complementary, but, nevertheless, there is still 
some overlap between them.  

Consider, for example, the FlowPort stereotype, which appears in both profiles 
(Fig. 3) and their definitions in domain models of SysML and MARTE (Fig. 4):  

 

 

Fig. 3. The FlowPort stereotype definition in SysML and MARTE 



398 F. Noyrit et al. 

 

Fig. 4. FlowPort concept definition in domain models of SysML and MARTE 

At first glance, these two appear to be almost identical. However, a simplistic 
merge of the two into a single concept would be inappropriate because there are 
important semantic differences between them that are not discernible from the 
metamodel or the domain model. Namely, the semantics of SysML state that a 
“FlowPort is an interaction point through which input and/or output of items such as 
data, material, or energy may flow”, whereas in the semantics of MARTE “FlowPorts 
have been introduced to enable dataflow-oriented communications between 
components, where messages that flow across ports represent data items”.  

Because MARTE flow ports only allow data flows, we see that the MARTE 
concept is actually a specialization of the corresponding SysML concept.  

This example clearly demonstrates that resolving language conflicts is not always 
trivial and that it often requires human intervention and especially so in the absence of 
formally specified semantics.  

In future work, we also plan to assess our approach with a case study that aims at 
redefining EAST-ADL2 [14] as an extension of MARTE.  

3.2   Details of the Approach 

The process for deriving a new profile from two or more source profiles is a multi-
step procedure.  

In the initial step, a first-pass domain model is defined. This identifies the full set 
of concepts needed in the new "combined" domain.  

Based on that, suitable source languages (profiles) are selected such that, between 
them, they cover a significant percentage of the domain concepts. As indicated by the 
FlowPort example, some of the "matching" concepts in the source languages will 
have to be refined or extended to fully satisfy the needs of the domain. Also, 
additional domain concepts, not present in any of the source languages, may have to 
be added. Finally, there will be concepts that are not required in the new domain and 
which need to be excluded. 

Once the source languages have been selected, the language definition process 
involves:  

1. Alignment of the ontologies (i.e., the conceptualizations), 
2. Alignment of the abstract syntaxes,  
3. Alignment of the concrete syntaxes.  

As might be expected, this may require multiple iterations.  



 Consistent Modeling Using Multiple UML Profiles 399 

3.2.1   Aligning the Ontologies 
This step involves identifying suitable concepts from the ontologies of all the source 
languages (CAdopt) as well as, possibly, adding new concepts not found in any of them 
(CNew). It also involves defining the semantic relationships that exist between the 
original source concepts and the corresponding target language concepts. For 
example, in the case of the flow port concept, the target language would likely 
incorporate the SysML concept directly, and would then add a generalization relation 
for the special case required by MARTE.  

Although some relations between source and target language concepts are 
relatively straightforward (e.g., equivalence, subsumption (is-a relationship), and 
meronymy (part-whole relationship)), we consider that, in the general case, these 
relations can be quite complex. Therefore, instead of relying solely on pre-defined 
relationship primitives provided in some transformation language (e.g., ATLAS 
Transformation Language [15] or QVT [16]), we introduce the notion of a resolution. 
This is a concept in the combined language that results from the sequence of 
elementary transformation operations (referred to collectively as the resolution 
record) by which it is derived from its source concepts.  

For example, the following transformation fragment might be applied to define a 
FlowPort concept in the combined language, which directly matches the SysML 
concept and which has a specialization called DataFlowPort corresponding to the 
MARTE concept1 (the resolution itself is shown in Fig. 5):  

 
FlowPort=Merge(SysML::FlowPort,MARTE::InteractionPort){ 
isConjugated=Merge(SysML::FlowPort::isConjugated,MARTE
::FlowPort::isConjugated); 
Set(MARTE::ownedPorts.memberEnd(MARTE::InteractionPort
),SysML::FlowPort); 
Set(MARTE::FlowPort.general(MARTE::FlowPort),SysML::Fl
owPort); 

} 
Block=Merge(SysML::Block, MARTE::StructuredComponent){ 
Set(MARTE::ownedPorts.memberEnd(MARTE::StructuredCompo
nent),SysML::Block); 
Remove(MARTE::StructuredComponent); 

} 
ownedPorts=Merge(MARTE::ownedPorts,SysML::ownedPorts); 
Set(MARTE::NonAtomicFlowPort.general(MARTE::FlowPort),S
ysML::NonAtomicFlowPort); 
Set(MARTE::NonAtomicFlowPort.name,NonAtomicDataFlowPort
); 
Set(SysML::NonAtomicFlowPort.name,NonAtomicFlowPort); 
Set(MARTE::AtomicFlowPort.general(MARTE::FlowPort),SysM
L::AtomicFlowPort); 
Set(MARTE::AtomicFlowPort.name,AtomicDataFlowPort); 
Set(SysML::AtomicFlowPort.name,AtomicFlowPort); 
Remove(MARTE::FlowPort); 

                                                           
1 The language used here to denote the record of the composition could be any model 

transformation language.  



400 F. Noyrit et al. 

FlowDirection=Merge(SysML::FlowDirection,MARTE::FlowDir
ectionKind){ 
in=Merge(SysML::FlowDirection::in,MARTE::FlowDirection
Kind::in); 
out=Merge(SysML::FlowDirection::out,MARTE::FlowDirecti
onKind::out); 
inout=Merge(SysML::FlowDirection::inout,MARTE::FlowDir
ectionKind::inout); 

} 
Set(MARTE::FlowProperty::direction.type,FlowDirection); 
FlowProperty=Merge(SysML::FlowProperty,MARTE::FlowPrope
rty){ 
direction=Merge(SysML::FlowProperty::direction,MARTE::
FlowProperty::direction); 

} 

 

Fig. 5. A possible resolution that defines FlowPort, DataFlowPort and Block concepts 

Note that such a resolution record can be easily inverted, so that it is possible to 
translate in either direction (although some inversions will be non-trivial). 

In designing resolutions, one can choose to emphasize the characteristics of one of 
the source concepts while deprecating the others. In that case the chosen source 
concept is said to be dominant. This is usually manifested in that a larger proportion 
of its characteristics (i.e., features) are retained relative to all the other source 
concepts.  

3.2.2   Aligning the Abstract Syntaxes 
Once the new ontology has been defined, we must then define new symbols that 
represent the resolutions (which are part of CAdopt) as well as the new concepts 
(belonging to CNew). Since we are focusing on UML profiles, this involves identifying 
which metaclasses will be extended by the new derived language concepts.  

For new concepts, this is straightforward, since we are unconstrained by any source 
language considerations. However, the issue is more complex for concepts within 
CAdopt, because the source concepts already have their corresponding metaclasses 
defined. Clearly, these specifications must be preserved to ensure that the original 
semantics are still present. In what follows, we assume that the semantic mappings 
between the original concepts in the domain model (ontologies) and the original 
symbols that represented them in the profiles (i.e., the original stereotypes) are 
already defined.  



 Consistent Modeling Using Multiple UML Profiles 401 

For a given resolution, if the original stereotypes of its source language concepts 
all extend the same set of metaclasses, the case is straightforward: the new stereotype 
simply needs to extend the same set of metaclasses. However, if these sets are 
different, then decision is non-trivial. In the situation where one metaclass is a 
specialization of another (e.g., Class and Classifier), there are two possible strategies. 
One is to define heuristics such as “always extend the most concrete metaclasses” or 
“only extend common metaclasses”. Alternatively, the decision can be left to the 
language designer, who will make the choice on a case-by-case basis. The most 
suitable approach seems to be a combination of the two; that is, to provide a set of 
choices based on heuristics and then allow the language designer to either choose the 
most appropriate one or to define a new one.  

Consider, for example, the hypothetical case in, where two source concepts, 
represented by symbols A and B, which respectively extend two very different 
metaclasses, are merged into a common resolution represented by the symbol R. In 
this case, depicted in Fig. 6, the decision was made to use both source metaclasses.  

  

Fig. 6. Original representation of two source concepts A and B and a possible representation of 
the resolution R  

3.2.3   Aligning the Concrete Syntaxes 
This final step involves in selecting a concrete syntax representation of the symbols of 
the new language. For resolutions, it is possible to select one of the original 
representations used for the source symbols (e.g., the dominant one, if it exists), or to 
define a new one.  

3.3   Ensuring Consistency and Interoperability 

The approach described above leaves considerable leeway to combine concepts, 
define symbols, and select concrete representations. However, such unbridled 
freedom can increase the likelihood of inconsistencies in the language, which is 
certainly undesirable. This can be prevented by the imposition of rigid formal 
constraints and rules to control the language derivation process. But, such an overly 
paternalistic approach might not only limit expressive power but can also lead to 
inappropriate or even nonsensical resolutions. Instead, we prefer an approach that 
does not constrain design freedom, but provides assistance through various metrics 
and guidelines that can help improve consistency. In our opinion it is the language 
designers who are in the best position to decide which resolution makes sense in a 
given case.  



402 F. Noyrit et al. 

For instance, the type of reasoning that led to the decision on the proper way to 
combine the two seemingly identical flow port concepts in SysML and MARTE is not 
something that can be easily automated. That would require that the subtle differences 
between these two source concepts be captured in a formal way within their 
respective ontologies so that they can be recognized and properly accounted for by a 
computer program. With current metamodel-based modeling languages whose 
semantics are specified informally, this possibility is still a long way off. 

Consequently, the approach we have taken is to provide an arsenal of useful 
guidelines, heuristics and metrics that a language designer can utilize to increase the 
consistency of design choices made. It is important to note that all of these can be 
easily integrated into a tool and consulted when needed to provide an automated 
decision support facility (as opposed to a highly-automated but inflexible decision-
making facility).  

3.3.1   Heuristics for Ontology Alignment 
The following two metrics can be used for ensuring semantic consistency:  

─ Completeness: This is the percentage of information that a resolution keeps from 
its source concepts. For example, in the case of the resolution shown in Fig. 6, 
removing the attribute PropB reduces completeness. (In this example, 
completeness is computed as 71% because 2 of the 3 features of A and 3 out of 
4 features of B were retained.) In general, maintaining higher levels of 
completeness is preferred, since it indicates more complete preservation of 
source semantics.  

─ Dominance: This is the percentage of each concept kept by a resolution. In the 
above example, concept B is dominant because 75% of its features are kept 
while nothing is kept from A (except, of course, its metaclass). Dominance tells 
us to what extent we are favoring one of the source languages. As a general 
guideline, it is probably good practice to consistently favor one of the source 
languages, as opposed to having a mixture of dominances.  

3.3.2   Heuristics for Abstract Syntax Alignment 
For aligning symbols, the following heuristics can be helpful: 

─ Metaclasses adequacy: If the stereotypes that represent the source concepts 
extend different metaclasses and those metaclasses are not related by direct or 
indirect type-subtype relationships, then the resolution may be inappropriate. 
That is, if no such relationship exists, then this may indicate a fundamental 
semantic mismatch of the source concepts.  

─ Properties adequacy: If two source features are merged, then, in the ideal case, 
their types, multiplicities, visibilities, and default values should all be equal; 
otherwise, a non-trivial translation is needed.  

In addition, the following is a non-exhaustive list of guidelines and metrics 
proposed in [6], which we find useful:  

─ Completeness: every concept should have a corresponding symbol (stereotype).  
─ Soundness: every symbol should represent a concept.  
─ Conciseness: every concept is represented at most once (in the metamodel).  
─ Lucidity: every symbol represents at most one concept.  



 Consistent Modeling Using Multiple UML Profiles 403 

─ Dominance: if a source concept is significantly dominant over other source 
concepts, then this dominance should be matched in the symbol corresponding 
to the resolution.  

3.3.3   Heuristics for Concrete Syntax Alignment 
Finally, the following are some guidelines for consistency of concrete representations:  

─ Completeness: every symbol can be expressed with a representation.  
─ Soundness: every representation expresses a symbol.  
─ Conciseness: every symbol is expressed by at most one representation.  
─ Lucidity: every representation expresses at most one symbol.  
─ Expression adequacy: the representation should intuitively express the 

corresponding meaning; for instance, graphical containment intuitively 
expresses semantic containment.  

─ Expression interoperability: syntactically related symbols should have 
correspondingly related representations.  

─ Dominance: if a concept is significantly dominant over another, then the 
original representation of the dominant source symbol should be favored. 

4   Discussion 

As noted earlier, a key concern is the degree of automation that can be provided to 
support this approach. Although some automation support can be provided for the 
metrics and heuristics described above, the language definition process is still mostly 
manual. As noted earlier, current metamodels only describe the abstract syntax while 
domain models given in the specifications do not contain enough information in a 
form that can be processed by a computer. In addition, we evaluated several ontology 
matching frameworks (such as Alignment API [17]) with SysML and MARTE 
domain models as inputs. Our results and conclusions are aligned with those reported 
in [18]: the proposed alignments are mostly inaccurate or even absurd confirming thus 
the inadequacy of a fully-automated approach. 

Consequently, we look forward to more formal definitions of semantics. Various 
initiatives based on shared formal ontologies [19] are likely to be useful. The 
approach used in the definition of the fUML subset of UML [1], where semantics are 
defined using CLIF [8], a first-order logic formalism, and are based on PSL [20], 
seems to be in this spirit. In addition to enabling and facilitating increased automation 
support, shared formal ontologies can be used to improve consistency. This is the 
direction we are considering for our future work.  

The fact that language designers struggle when designing resolutions can be a 
problem: this will be reflected in the resolution record. However, it is not really an 
issue if we let the designers edit the record directly.  

Also, when adopting standards, language designers may want to benefit from new 
revisions of these languages. The approach we propose offers version management 
facilities. Though that is not its primary goal, we can even apply the approach to only 
one language (create resolutions from only one language) and thereby track revisions. 
In that case, we can simply apply the transformations corresponding to the resolution 
record to simplify conversion of existing models.  



404 F. Noyrit et al. 

One of the assumptions behind our approach is that we have at our disposal 
artifacts from the semantic domain: the semantic mappings and the mappings between 
representation and expression. However, this is not always the case, because these are 
often omitted or are defined using natural language. Therefore, an additional effort 
may be required to reach the necessary level of formality. Nevertheless, the dominant 
trend in the MBE community is to use MBE techniques to design languages. 
Consequently, the use of formalisms is increasing and is likely to provide us 
eventually with the right type of artifacts required by our approach.  

Although we illustrated our approach using just two languages, it is possible that 
language designers will want to combine more than two DSMLs. There is nothing 
inherent in this approach that limits the number of languages that can be combined. 
Of course, for practical realization of this, suitable tool support will be crucial.  

5   Related Work 

There is much active research around the problem of combining modeling languages. 
In this section, we present those that inspired our approach and some that may support 
our future work.  

The artificial intelligence, information systems, and semantic web communities 
have worked on ontology alignment to support information and semantic integration. 
Here, we can distinguish two not necessarily exclusive classes of approaches:  

─ Shared ontology: The key idea in these approaches is to determine semantic 
relations between two ontologies by using an upper (higher-level) ontology. 
DOLCE [21], SUMO [22] and PSL are notable upper ontology initiatives. In 
[19], the authors use PSL as shared ontology to translate process models 
between two DSMLs. We hope to adapt these results to provide automation 
support for the composition of domain ontologies of multiple DSMLs.  

─ Heuristic and machine learning: In contrast shared ontologies, these approaches 
do not require a reference ontology. Instead, to detect similarities, they apply 
heuristics based solely on syntactic, lexical, or structural information available 
in the ontologies. One example of this is PROMPT [23], which guides the user 
and suggests possible matches. Mappings designed both by the system and the 
user when merging ontologies are recorded to create a declarative mapping. Our 
approach is rather close to this, but adapted for profile composition. 

In the MBE domain, we can mention the following related initiatives:  

─ AMW [24] proposes to store semantics relations between elements of different 
models or metamodels in a weaving model. Although the core weaving 
metamodel can be extended with new semantic relations, as noted earlier, we 
believe that it is infeasible to define a priori all possible resolutions for the 
different types of semantic relations.  

─ Various approaches have been proposed for model version management, such as 
EMF Compare or AML [25]. In general, those approaches have rather good 
results for versioning purpose. However, our experiments show that it does not 
give practical and accurate results when the ontologies are significantly distant.  



 Consistent Modeling Using Multiple UML Profiles 405 

In general, the approaches cited above are usually focused mostly on semantic 
equivalence relations. However, as our work showed, these are not always sufficient 
and it should be possible for language designers to define their own problem-specific 
semantic relations.  

6   Summary and Conclusions 

In the design of complex technical systems, different specialties will use different 
ontologies and different languages to deal with their concerns. Thus, whether we 
consider it wise or not, the use of multiple languages in such cases is a given. The 
issue then is how to deal with the problems that arise from such practices and, in 
particular, the problem of conflicts that arise from language incompatibilities. This 
paper focuses on a special but relatively common variant of that problem: the 
combined use of multiple domain-specific UML profiles. 

The solution proposed is one distinguished by emphasis on reuse in order to take 
maximal advantage of existing tools and expertise. To achieve this, it suggests 
defining a "composite" profile that eclectically reuses concepts from each of its 
component profiles. Our experiments with language composition techniques indicate 
clearly that a fully automated approach is unlikely to be realized without computable 
semantic information that is both accurate and precise. In other words, the process of 
combining languages almost always requires human intervention and guidance (at 
least until more formal methods for defining language semantics are sufficiently 
evolved). Consequently, our solution does not rely on pre-defined and inflexible 
formal transformation rules, which, like those early natural-language translators, are 
likely to produce flawed and even absurd results. Instead, the choice of defining and 
selecting the most suitable transformations is left to the language designer, who is in 
the best position to make meaningful decisions. Yet, it is an approach that is still 
suited to automation, because it provides a set of guidelines, heuristics, and metrics 
that can be easily incorporated into an automated decision-support system.  

It is fairly clear that much work remains to be done, including a more extensive 
assessment of the effectiveness and practicality of the proposed approach. An 
important next step is to investigate more thoroughly the applicability of formal 
ontologies to support increased levels of automation.  

References 

1. Object Management Group: Semantics of a Foundational Subset for Executable UML 
Models - Beta2 - ptc/2009-10-05 (2009),  
http://www.omg.org/spec/FUML/1.0/Beta2/ 

2. Selic, B.V.: On the semantic foundations of standard UML 2.0. In: Formal Methods for the 
Design of Real-Time Systems, pp. 181–199 (2004) 

3. Ullmann, S.: Semantics: an introduction to the science of meaning. Barnes & Noble (1962) 
4. Object Management Group: Object Constraint Language (OCL) - Version 2.0 - 

formal/2006-05-01 (2006), http://www.omg.org/spec/OCL/2.0/ 
5. Guarino, N.: Formal Ontology and Information Systems (1998) 



406 F. Noyrit et al. 

6. Guizzardi, G.: On Ontology, ontologies, Conceptualizations, Modeling Languages, and 
(Meta)Models. In: Databases and information systems IV: selected papers from the 
Seventh International Baltic Conference, DB&IS 2006. p. 18. Ios Pr. Inc. (2007) 

7. Baader, F., Calvanese, D., McGuinness, D.L., Patel-Schneider, P., Nardi, D.: The 
description logic handbook: theory, implementation, and applications. Cambridge 
University Press, Cambridge (2003) 

8. ISO/IEC: ISO/IEC 24707 - Information technology - Common Logic (CL): a framework 
for a family of logicbased languages (2007) 

9. Object Management Group: UML Profile for MARTE: Modeling and Analysis of Real-
Time Embedded Systems - Version 1.0 - formal/2009-11-02 (2009), 
http://www.omg.org/spec/MARTE/1.0/ 

10. Object Management Group: OMG Systems Modeling Language (OMG SysML) - Version 
1.1 - formal/2008-11-01 (2008), http://www.omg.org/spec/SysML/1.1/ 

11. Web Ontology Language (OWL), http://www.w3.org/2004/OWL/ 
12. Object Management Group: Ontology Definition Metamodel (ODM) - Version 1.0 - 

formal/2009-05-01 (2009), http://www.omg.org/spec/ODM/1.0/ 
13. Espinoza, H., Cancila, D., Selic, B., Gérard, S.: Challenges in Combining SysML and 

MARTE for Model-Based Design of Embedded Systems. In: Model Driven Architecture-
Foundations and Applications, pp. 98–113. Springer, Heidelberg (2009) 

14. ATESST: EAST-ADL 2.0 Specification (2008) 
15. ATLAS Transformation Language (ATL), http://www.eclipse.org/m2m/atl/ 
16. Object Management Group: MOF 2.0 Query/View/Transformation Specification (QVT) - 

Version 1.0 - formal/08-04-03 (2008), http://www.omg.org/spec/QVT/1.0/ 
17. Euzenat, J.: An API for ontology alignment. In: McIlraith, S.A., Plexousakis, D., van 

Harmelen, F. (eds.) ISWC 2004. LNCS, vol. 3298, pp. 698–712. Springer, Heidelberg 
(2004) 

18. Kappel, G., Kargl, H., Kramler, G., Schauerhuber, A., Seidl, M., Strommer, M., Wimmer, 
M.: Matching metamodels with semantic systems-an experience report. In: BTW 2007 
Workshop Model Management und Metadaten-Verwaltung, Aachen (2007) 

19. Ciocoiu, M., Nau, D.S.: Ontology-based semantics. In: Principles of Knowledge 
Representation and Reasoning - International Conference, pp. 539–546 (2000) 

20. NIST: ISO 18629-11 - Process Specification Language, PSL (2005) 
21. Gangemi, A., Guarino, N., Masolo, C., Oltramari, A., Schneider, L.: Sweetening 

ontologies with DOLCE (2002) 
22. Niles, I., Pease, A.: Towards a standard upper ontology. In: FOIS 2001. ACM, New York 

(2001) 
23. Noy, N.F., Musen, M.A.: The PROMPT suite: interactive tools for ontology merging and 

mapping. International Journal of Human-Computer Studies, 983–1024 (2003) 
24. Del Fabro, M.D., Bézivin, J., Valduriez, P.: Weaving Models with the Eclipse AMW 

plugin. In: Eclipse Modeling Symposium, Eclipse Summit Europe (2006) 
25. Garcés, K., Jouault, F., Cointe, P., Bézivin, J.: A domain specific language for expressing 

model matching. In: IDM 2009 (2009) 
 



A Systematic Review on the
Definition of UML Profiles�

Jesús Pardillo

University of Alicante – DLSI/Lucentia, Spain
jesuspv@dlsi.ua.es

Abstract. This article reports a systematic review on the definition
of UML profiles in the research literature. Several exploratory statis-
tical analyses have been performed in order to characterise both the
idiosyncrasy of UML profiles and how they are reported in the litera-
ture. This study uncovers the differences between presentation styles for
behavioural and structural domains, and shows how UML profiles based
on Class, Association, and Property structural metaclasses clearly out-
number any other kind. Also, this review reveals how half of the examined
UML profiles merely extend the abstract syntax, without adding neither
icons nor constraints. The main contribution of this study is therefore a
clear picture of the state-of-the-art in UML profiling, together with a set
of open questions regarding its future.

Keywords: UML, modelling, profiles, review.

1 Introduction

In the last years, we have witnessed a number of articles whose main contri-
bution was a UML profile [1] aimed at solving modelling problems in different
domains. Most of them have been presented in conferences specialised in concep-
tual modelling and software engineering. However, they show a great disparity
regarding both the profile definition process and the quality of the UML-profile
presentation. This heterogeneity makes the presented UML profiles very difficult
to compare, discuss and use, which most of the time are merely sketched.

In order to cast some light on this subject, this article presents a systematic
review [2] of UML-profiling practices that tackles both the (abstract) profile def-
inition process (metaclasses that they extend, practices regarding the definition
of constraints and tagged values, etc.) and their presentation quality. Neither of
these aspects have been tackled so far in the literature.

Next section describes the systematic-review protocol and variables stud-
ied (§2). Then, the findings of this study are presented (§3), and, later, dis-
cussed (§4). Finally, some concluding remarks are provided (§5).
� Supported by the FPU grant AP2006-00332 from the Spanish Ministry of Education

and Science. Special thanks to Cristina Cachero who contributed to the systematic
review and the MODELS’ anonymous reviewers for their helpful comments.

D.C. Petriu, N. Rouquette, Ø. Haugen (Eds.): MODELS 2010, Part I, LNCS 6394, pp. 407–422, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



408 J. Pardillo

2 Method and Materials

This review has followed the systematic review protocol proposed in [2]. The
sources were selected by means of a first exploratory study on the ERA ranking1,
which indicated that the two major conferences in the field of general-purpose
modelling were: the International Conference on Model Driven Engineering Lan-
guages and Systems (MODELS, ranked as B), formerly known as the Interna-
tional Conference on the Unified Modelling Language (UML, until 2004), and the
International Conference on Conceptual Modelling (ER, ranked as B). For both
UML/MODELS and ER conferences, the review also included the workshops.

These sources were reviewed for a 11-year period (1999-2009), i.e., since
the first contribution on UML profiles appeared in UML’99. The initial set
of primary studies were selected by searching2 in the title, abstract, and key-
words of the articles, the following case-insensitive search string (square brack-
ets stand for optionality, ‘|’ for disjunction, and round brackets for grouping):
(extend[ing|s] [the] UML)|(UML extension[s])|(UML profile[s]). The returned
articles were manually filtered for novel UML profiles. Only articles that focused
on the presentation of a profile were included in the study. For instance, [3] was
discarded since authors presented not a novel UML profile but a technique for au-
tomatic UML profiling. Auxiliary resources supporting those articles (e.g., tech-
nical reports) were also discarded.

Table 1 summarises this process output. A total of 63 publications were re-
turned by the initial search. After a manual review of these publications, 39 of
them were classified as reporting a UML profile.

Table 1. Statistics on the articles filtered

Venue Total Discarded Selected

ER 6 2 4
ER Workshops 10 4 6
MODELS 11 6 5
MODELS Workshops 5 2 3
UML 31 10 21
Total 63 24 39

In order to analyse the state-of-the-art of UML profiles, two types of variables
were manually gathered (see Table 6 in the appendix for the comprehensive
list): those for characterising the abstract definition of UML profiles, such as
the number of profiles by year, or stereotype count by metaclass, and those for
evaluating the presentation quality of the profile description.

Concerning the abstract definition, the presence of several base UML-profiling
characteristics were measured to study trends regarding the abstract definition

1 http://core.edu.au
2 The search engine used is located in ‘http://dblp.l3s.de’

http://core.edu.au
http://dblp.l3s.de


A Systematic Review on the Definition of UML Profiles 409

of UML profiles. Herein, CG stands for the number of occurrences of the char-
acteristic C by occurrence of the characteristic G. For instance, SM stands for
the stereotype count by metaclass3. Each characteristic is denoted for brevity
with the first letter of its name, whenever it is unambiguous. In addition, some
ratios over the former variables were studied. For instance, PM/SM stands for
the ratio between the profile count and the stereotype count, both by metaclass.

Concerning the presentation of UML profiles, and after a preliminary study
of the format of the contributions found in the literature, the quality indicators
defined (Q variables) refer to the presence in the article of: (1) all the con-
straints that are introduced by the UML profile (whether they be coded in OCL
or not; denoted as C), (2) a UML-profile diagram for representing the metaclass
extension made by the stereotypes (D), (3) a definition of the profile formal
semantics (whether they be axiomatic, denotational, etc.; F ), (4) a metamodel
diagram (whether it be a domain-specific or one specialising UML; M), (5) con-
straints formalised in OCL (O), and (6) any kind of template for systematically
specifying the UML profile (e.g., itemised list or a table; T ).

3 Findings

Table 2 shows part of the exploratory statistics gathered by UML profile (quality-
presentation indicators in §3.3 are omitted in this table due to the space con-
straints). There was a total of 406 stereotypes (variable S) and 46 distinct meta-
classes (M) identified. In addition, the average number of tags identified by
stereotype (TS) was 0.7 and the median value was 0. Next sections further dive
into the analysis of these data.

3.1 UML-Profiles Publication Trends

Our first analysis regards the profile count by year & venue (PY,V ). Fig. 1 decom-
poses this variable distribution by venue and year. As the reader may already
know, UML/MODELS is the venue where UML profiles began to appear. In-
terestingly, along the years, whereas this conference has decreased the number
of accepted articles presenting UML profiles, MODELS & ER workshops have
increased their number, with a peak in 2007. On the other hand, the ER main
conference is the venue where less UML profiles were presented, with no profile
published since 2005. It is interesting to also note that 2002, the most prolific
year in UML/MODELS main conference, was also the year when the last (and
current) main revision (2.0) of UML was presented. In this revision, UML pro-
files were further formalised in a specific metamodel that introduced the explicit
definition of stereotypes for tagging model elements, as well as the transparent
and dynamic extension of UML (without hard-coding UML profiles in the UML
metamodel). Also, 2002 and 2007 were the most prolific years by aggregating all
the studied venues.

3 It is assumed that the reader is familiarised with the definition of UML profiles.



410 J. Pardillo

Table 2. UML profiles gathered and their number of stereotypes (S) and distinct base
metaclasses (M), and the presence of icons (I), tags (T ), and constraints (C)

Ref. Domain S M I T C

ER:
[4] XML 4 2 × � ×
[5] security 20 8 � � �
[6] data warehouses 3 1 � × �
[7] data mappings 7 4 × � �
ER Workshops:
[8] business processes 11 5 × � �
[9] schema mappings 10 6 × � ×
[10] constraints 4 1 × � �
[11] business processes 19 4 � × �
[12] requirements 30 5 � � �
[13] database usage 6 4 � � ×
MODELS:

[14] signal processing 4 4 × � ×
[15] time 12 11 × � ×
[16] dependencies 2 2 × � ×
[17] state machines 1 1 × � ×
[18] airworthiness 30 4 × � ×
MODELS Workshops:

[19] railway 9 1 � � �
[20] homecare services 15 5 � � ×
[21] softw. architectures 5 2 × � �

Ref. Domain S M I T C

UML:
[22] quality of service 14 4 × � �
[23] real-time syst. 1 1 � × �
[24] ontologies 9 4 × � ×
[25] hypermedia 20 4 � × ×
[26] device capabilities 6 3 � � �
[27] time 4 3 × � �
[28] softw. architectures 6 5 � × ×
[29] complex topologies 2 2 × × ×
[30] manufacturing 7 4 � � �
[31] mobile syst. 13 9 × � �
[32] hypermedia 13 4 � × ×
[33] security 10 5 × � �
[34] safety-critical syst. 11 6 × � �
[35] data warehouses 8 3 � � �
[36] databases 31 7 � � ×
[37] interactive syst. 13 4 � × �
[38] executability 9 7 × � ×
[39] parallel applications 10 3 � � �
[40] reliability analysis 7 6 × � �
[41] interactions 12 3 � × ×
[42] reflection 8 4 × × ×

Fig. 1. Publication trends of the UML profiles by venue

3.2 Characterisation of the UML Profiles

This section presents the analysis of the variables related to the abstract defini-
tion of UML profiles.

Metaclass Extensibility. In order to assess the extension frequencies for each
UML metaclass, the variables studied were the ratio between the profile count
and the stereotype count by metaclass (PM/SM ), their relative ranking (SM −
PM ), and the profile count by metaclass (PM ). First, PM/SM was analysed to



A Systematic Review on the Definition of UML Profiles 411

identify differences in the metaclass extension by stereotype and profile in order
to assess a reliable granularity for the grouping of the remaining features.

Fig. 2 shows the distribution of PM/SM , where whole bars represent the
stereotype count (SM ) for which the black bar represent the profile count (PM ).
It is perceived that there are indeed large differences between PM and SM de-
pending on the metaclass. Some metaclasses have been extended in very few pro-
files, although with many associated stereotypes. For example, Collaboration
( 1
16 , ) has been extended in only one of the 39 identified profiles, but six-

teen stereotypes were defined for it. Another example is ActivityPartition
(1
9 , ), for which nine stereotypes were defined in the context of a single profile.

Others appear in very few profiles, and also with a low number of stereotypes
associated (see e.g., Abstraction (2

2 , ), or AcceptEventAction (1
1 , ). As

the reader may have noticed, in Fig. 2, three metaclasses are left out of this
figure since their relative PM , SM detach from the median values (1.5, 4.5, re-
spectively), thus breaking the scale of the figure: Class ( 26

141 , ), Property (15
49 ,

), and Association (16
38 , ).

Fig. 2. Ratio between profile count and stereotype count by metaclass (PM/SM )

Fig. 3 ranks metaclasses by both SM and PM for comparison purposes. The
main body of metaclasses is separated by vertical bars from the outliers (left-
hand side of the figure) and from metaclasses with SM , PM = 1 in each case
(right-hand, in italics and grey). This figure enriches the former view with both
the absolute metaclass ranking by SM or PM (that shall be reviewed in the
next paragraph) and the variations between both rankings. If we focus on large
differences, we can detect biases due to particular profiles. For example, if we
observe the Collaboration metaclass, we can see that it is ranked as fifth in
SM and 29th in PM , that is, very few profiles extend from Collaboration, but
they define a lot of different stereotypes for it. Conversely, the Action metaclass,
which ranks 24th in SM and 13th in PM , is an example of a metaclass that has
been extended in several profiles, but with few stereotypes associated in each
one of them. In this figure, we can also observe how, no matter how we rank



412 J. Pardillo

metaclasses, Class, Property and Association are the preferred subjects of
extension. This fact can be further analysed in Fig. 4. In this figure, in which
metaclasses have been ordered alphabetically, the reader can further analyse the
frequency distribution of extension metaclasses. This figure depicts the fact that
a large number of metaclasses are marginally extended (the median is 1.5 profiles
per metaclass, and 4.5 stereotypes per metaclass).

In
fo
rm
at
io
nF
lo
w

E
nu
m
er
at
io
nL
it.

E
le
m
en
t

A
ct
or

A
ct
io
n

M
es
sa
ge

P
rim

iti
ve
Ty
pe

S
te
re
o
ty
p
es

C
la
ss
ifi
er

D
ep
lo
ym

en
t

C
on
tr
ol
F
lo
w

C
om

m
un
ic
.P
at
h

D
ep
en
de
nc
y

C
om

po
ne
nt

A
cc
ep
tE
ve
nt
A
ct
io
n

S
tr
uc
t.A
ct
iv
.N
od
e

Tr
an
si
tio
n

S
tr
uc
t.C

la
ss
ifi
er

U
sa
ge

D
at
aT
yp
e

O
bj
ec
tF
lo
w

A
ss
oc
.C
la
ss

C
la
ss

A
bs
tr
ac
tio
n

O
pe
ra
tio
n

P
or
t

S
ta
te
M
ac
hi
ne

A
rt
ifa
ct

In
te
rf
ac
e

A
ss
oc
ia
tio
n

In
st
an
ce
S
pe
c.

Ti
m
eE
ve
nt

A
ct
iv
ity

E
nu
m
er
at
io
n

C
om

m
en
t

C
ol
la
bo
ra
tio
n

In
te
ra
ct
io
n

N
od
e

N
am

ed
E
le
m
en
t

U
se
C
as
e

C
on
st
ra
in
t

P
ac
ka
ge

M
od
el

P
ro
pe
rt
y

B
eh
av
io
r

A
ct
iv
ity
P
ar
tit
io
n

R
el
at
io
ns
hi
p

Ti
m
eE
ve
nt

S
tr
uc
t.A
ct
iv
.N
od
e

P
rim

iti
ve
Ty
pe

S
ta
te
M
ac
hi
ne

A
cc
ep
tE
ve
nt
A
ct
io
n

E
nu
m
er
at
io
nL
it.

In
fo
rm
at
io
nF
lo
w

P
ro
fi
le
s

C
la
ss
ifi
er

E
nu
m
er
at
io
n

A
bs
tr
ac
tio
n

S
tr
uc
t.C

la
ss
ifi
er

D
ep
en
de
nc
y

O
pe
ra
tio
n

In
te
ra
ct
io
n

C
on
tr
ol
F
lo
w

M
es
sa
ge

C
ol
la
bo
ra
tio
n

U
sa
ge

A
ct
iv
ity
P
ar
tit
io
n

R
el
at
io
ns
hi
p

C
om

m
en
t

C
la
ss

E
le
m
en
t

P
ac
ka
ge

B
eh
av
io
r

D
ep
lo
ym

en
t

N
am

ed
E
le
m
en
t

In
te
rf
ac
e

P
ro
pe
rt
y

In
st
an
ce
S
pe
c.

Tr
an
si
tio
n

A
ct
iv
ity

A
rt
ifa
ct

P
or
t

C
om

po
ne
nt

A
ss
oc
.C
la
ss

N
od
e

D
at
aT
yp
e

U
se
C
as
e

A
ct
or

C
on
st
ra
in
t

M
od
el

A
ss
oc
ia
tio
n

O
bj
ec
tF
lo
w

A
ct
io
n

C
om

m
un
ic
.P
at
h

Fig. 3. Difference between stereotype & profile rankings by metaclass (SM − PM )

Capability Extensibility. Regarding the modelling capabilities that group
UML metaclasses, the variables studied were the profile count by metaclass
grouped by capability (PMC ) and the difference between (extended) metaclass
count and the UML metaclass count by capability (MC/M0

C).
Fig. 5 shows the distribution of PMC that was additionally qualified as struc-

tural (dark grey) or behavioural (light grey) capabilities. It is perceived that the
PMC distribution is uniform but the Classes capability, which 69% of the UML
profiles extend. For behavioural capabilities, Activities is the most extended.

Fig. 6 shows the distribution of MC/M0
C ordered by descending M0

C , where
whole bars represent the UML metaclass count by capability (M0

C) for which
the black bar represent MC . It is perceived that, for none of the capabilities,
the metaclasses effectively extended are lower than a half of the total. The high-
est ratio is for Classes (21

55 , ), being Activities far next ( 6
52 , ). For the

remaining capabilities, MC is similar (median value is 2) independently of M0
C .

Extension Expressiveness. In order to study the complexity of the extension,
the variables studied were the presence of icons, tags, and constraints by stereo-
type and by profile ({I, T, C}{S,P} and the ratio between the number of icons
and the number of stereotypes by metaclass (IM/SM ). Due to the space limita-
tions, it is a common profile presentation practice that a comprehensive list of
constraints is left out of the articles. For this reason, CS has been dismissed in
this study, which has focused instead on the profile granularity (CP ).



A Systematic Review on the Definition of UML Profiles 413

Fig. 4. Profile count by metaclass (PM ) over the sample of 39 profiles. The three most
extended metaclasses are Class (26, 16%), Association (16, 10%), and Property (15,
9%). Package is next with 9 profiles (6%).

Fig. 5. Profile count by metaclass grouped by capability (PMC , structural-modelling
capabilities are depicted in dark grey, and behavioural ones in light grey)



414 J. Pardillo

Fig. 6. Ratio between the (extended) metaclass count and the UML metaclass count
by capability (MC/M0

C , ordered by descending M0
C)

Table 3 lists the values of each variable. Concerning stereotypes, they have
associated about 50% more tags than icons. Concerning profiles (see pie charts
accompanying the data), the ratios are twice the ones calculated by stereotype.
In particular, about half of the profiles have some icon or constraint, and about
75% have some tag defined.

Table 3. Stereotype percentage and profile count (over a total of 39 profiles) that has
some icon, tag, or constraint defined ({I, T, C}{S,P})

Granularity I T C

Stereotype 24% 37% N/A
Profile 18 29 20

These values are significantly different when the study is focused on the three
main base metaclasses. The Class metaclass, the IM/SM for the outlier meta-
classes is: 60

141 ( ) for Class, 19
67 ( ) for Property, and 7

42 ( ) for Association.
In this way, none has significant differences (the remaining metaclasses were not
extended by enough stereotypes to be worth mentioning them).

3.3 Presentation of the UML Profiles

This section presents the analysis of the variables related to the presentation
issues of UML profiles in the literature. These variables were presented in §2
and are listed in Table 6 in the appendix.

Presentation Quality Trend. Fig. 7 shows the UML-profile presentation-
quality trend in groups of two consecutive years since 2000 (QY variables). It is
perceived that there has been a cumulative increase of the presentation-quality



A Systematic Review on the Definition of UML Profiles 415

Fig. 7. Presentation-quality trend of the UML profiles

indicators along the first four years of publication. Then, the levels got stabilised
until 2007, and have decreased in the last two years. Despite of the large cumu-
lative values, when studied in isolation, the quality indicators have small values.
Concerning specific trends, there are not significant differences between quality
indicators, except for the presence of all the constraints, be them expressed for-
mally or informally, in the studied profiles (CY ). Since 2002-2003, such indicator
has decreased its value until being completely missing in 2006-2007 (the low
presence of OCL constraints, OY , does not help to ameliorate this trend).

Authorship Templating. Given the fact that there is no standard (neither
official nor de facto) for the presentation of profiles, one aim of this study was
to check whether authors had internally worked on a systematic way to present
profiles. In order to check this possibility, UML profiles of the same first author
were reviewed for commonalities (QA variables). Table 4 lists alphabetically the
authors with PA articles (PA > 1) included in the study. For these authors,
QA variables are classified according to the total number of presentation-quality
indicators between profiles defined by the same first author that has either the
same value (‘=’ column) or different value (‘�=’ column).

Table 4. Commonalties count by first author having several UML profiles published

First Author References PA = �=
Cuccuru [17,29] 2 2 4
Jürjens [33,34] 2 4 2
Lujan-Mora [35,6,7] 3 2 4

Domain-type Presentation Quality. Concerning the UML profile domain
type (QD variables), a total of 25 UML profiles out of 39 modelled a struc-
tural domain (64%), whereas 14 (36%) modelled a behavioural one. Table 5
lists the percentages of profiles for each domain type, together with the set of



416 J. Pardillo

Table 5. Profile count by presentation-quality indicator and domain-type

Domain Type C D F M O T

Behavioural 5 9 8 5 4 4
Structural 10 8 8 11 7 10

presentation-quality indicators. Comparing each domain type, we can observe
how D, F > C, M, O, T holds for behavioural profiles, and C, M, T > D, F, O
for structural ones, where O can be obviated for comparison purposes, since it
is included in the right-hand side member of both inequalities.

4 Discussion

This section discusses the main implications of the previous findings.

4.1 Publication Trends

MODELS/UML is the conference that agglutinates the bulk of published UML
profiles, including the first profile ever published. This is not surprising, since
this conference is the natural target of researchers aiming at publishing UML-
related research. However, along the years, the interest of this venue on profiles
has decreased. A similar trend can be observed in ER. Meanwhile, UML profiles
have been gaining scope in their respective workshops. One possible explanation
to this fact is that workshops, being forums of discussion, are less demanding.
For this reason, one of the conclusions of this study is that the research focused
on UML profiles is losing interest. Apart from the potential maturity of UML
profiling, one of the causes of the decrease could be the advent of modelling tools
that support ‘heavier’ metamodelling techniques, such as GMF (2006)4, which
seems to be narrowing the utility of UML profiles.

4.2 UML Profiling

The distribution of PM/SM points out that stereotypes in UML profiles are
highly cohesive with regard to the extended metaclasses, i.e., if a metaclass is
worth extending, it will be extended multiple times. Importantly, the PM distri-
bution highlights the top extended metaclasses, namely, Class, Association,
and Property. These metaclasses are indeed the backbone of class diagrams,
which are in addition the most popular UML diagram in practice [43]. One
possible explanation for this fact could be that these metaclasses are extended
because of the same reasons. However, other explanations are also feasible; the-
oretically speaking, such results seem to go against the conception of a general
purpose language, such as UML, since such usage and extension preferences are

4 http://www.eclipse.org/gmf

http://www.eclipse.org/gmf


A Systematic Review on the Definition of UML Profiles 417

very focused on a few set of metaclasses. Moreover, the widely-common exten-
sion of the same metaclasses in so different profiles and domains may also imply
a neglect of the semantics associated to these metaclasses.

The distribution of {I, T, C}{S,P} shows that the presence of tags in UML
profiles is more usual than icons or constraints. This means that tags are regarded
as useful elements for profiles (e.g., in order to add metadata to the extended
metaclasses). This contrasts with the relatively low number of icons defined
in the studied profiles. Further, the presence or not of icons does not depend
on the base metaclass, as IM/SM points out. If we compare this fact with the
number of metamodels with proprietary notation that have been proposed in the
last years, it seems weird that so few profiles try to benefit from icons (being so
simple to manage) to enrich the profile visualisation capabilities. We believe that
the reason is that icons provide such a limited visualisation flexibility that only
authors with low demands regarding notation opt by defining a profile instead
of a brand new metamodel.

Interestingly, only about half of the profiles have some constraint defined. This
could mean that profiles were defined informally, or just that simple labelling of
the metaclasses is required (not changing their syntax nor semantics).

4.3 Presentation Issues

Concerning the quality-presentation trends, it is interesting to study the correla-
tion between a the decrement of the publications and a decrement in their quality
during the last years. The reason could be that UML profiling is becoming well
known, and so researchers are giving more and more aspects for granted during
their description. This would explain why fewer profiles have been published
and, despite its increasing maturity, less formality is used to report them.

Regarding these presentation-quality indicators, it is especially worth men-
tioning how the definition of the profile formal semantics (F ) is very rare. This
is a clear indicator of the lack of rigour of UML profiling in practice, i.e., the
semantic mapping between domain-specific notions and UML metaclasses. In
addition, the common lack of metamodels (M) stands for non-formal syntaxes,
that in the case of specific domains (instead of UML pure extensions), could
compromise the correctness of the constraints imposed by profiles over UML.

Summarising, profiles show in general a low level of presentation quality (even
lower in the last years), with many elements missing from their definition. This
may point out that the community pays low attention to formal presentation
methods, whether it be by ignorance or necessity (e.g., saving article space). This
could have limited the (practical) applicability of UML profiles, since authors
could have been centred on particular issues on UML profiling, but not on com-
prehensive and proven solutions. Concerning the lack of authorship-templating
evidence, this may imply either that a rigourous presentation of profiles has not
been an issue of concern or that authors do not indeed know how to present
UML profiles properly, and they have learned by practice which presentation
techniques are better.



418 J. Pardillo

With regard to the domain type, the presence of diagrams (D) and formal
semantics (F ) is higher for behavioural profiles. Conversely, the presence of all
the constraints (C), metamodel (M), and templates (T ) are higher for structural
profiles. This result points out a presentation pattern for structural profiles based
on the presence of C, M , and T . In contrast, behavioural profiles are preferred to
be presented by showing the visual mapping to UML (D) instead of the domain-
specific metamodels (M), and the domain-specific formal semantics (F ) instead
of providing all the constraint or some OCL code (O). This pattern also seems
natural since UML itself has no formal semantics for their metaclasses (which
are described in natural language), whereas behavioural modelling needs to be
supported by their formal semantics to be useful. Conversely, structural domains
(which usually represent vague notions) are defined more informally.

4.4 Limitations of the Review

The main limitation to the validity of this review is the manual gathering of the
data, which may have caused some articles to be inaccurately discarded, or may
have hampered the measurement precision. This hindrance has been controlled
by a pair-review process, where every conflict of opinion between the reviewers
has been discussed before making any final decision on the exclusion of any
article and assigning marks to the quality indicators.

Also, in order to avoid the possibility of a selection bias, several combinations
of the main keywords in UML profiling were identified and tested for complete-
ness. Concerning the data extraction and analysis, every part of the process was
piloted and tested multiple times.

5 Conclusion

This study has characterised the state-of-the-art of UML profiles in the top mod-
elling conferences. Some important trends have been detected about how UML
profiles have been defined and presented. Then, some theories on the findings
obtained have been discussed. In particular, the distribution of extended meta-
classes, largely unbalanced towards a small number of metaclasses, suggest the
need for further research on the use of general-purpose versus domain-specific
modelling languages. Indeed, both UML profiles and other ‘model-driven’ tech-
niques still need comprehensive and empirically-assessed theories for understand-
ing their success factors in software development. A good starting point would
be the research accomplished on visual languages [44] or the conformity with the
technology acceptance model (TAM) [45].

From this study, new research lines have been opened. First of all, concerning
the large number of profiles extending Classes, both structural and behavioural,
it remains an open issue whether such situation may be caused by UML being
profiled for notational purposes; some preliminary exploratory research on this
assumption has lead the author to formulate the hypothesis (yet to be quanti-
tatively confirmed) that, instead of selecting extension metaclasses by their se-
mantic closeness, many profiles extend metaclasses due to a notational closeness



A Systematic Review on the Definition of UML Profiles 419

to the target language. In this sense, Classes Associations, and Properties
provide very intuitive mappings. Also, the class diagram is the best known UML
diagram. Has UML become too complex for designers to be able to find the
most suitable extension metaclasses? If this is the case, is it possible that such
complexity is one of the reasons behind the increasing popularity of MOF meta-
models in detriment of UML profiles?

Last but not least, the low presentation quality point out the need of more
formal methods and templates to present UML profiles. In this sense, additional
studies on the theory of software modelling could help to improve both the qual-
ity of the UML profiling itself and its presentation. For instance, the application
of techniques to study and manage ontologies could help to formally asses the
mapping between domain-specific languages and UML notions.

As a final remark, we would like to encourage readers to question themselves
about the very nature of UML profiling, and what makes a UML profile worth
as research contribution nowadays.

References

1. Object Management Group: Unified Modeling Language (UML), version 2.2.
(February 2009), http://www.omg.org/technology/documents/formal/uml.htm

2. Kitchenham, B.: Procedures for performing systematic reviews, pp. 1–28. Keele
University and National ICT Australia Ltd. (2004)

3. Giachetti, G., Valverde, F., Pastor, O.: Improving Automatic UML2 Profile Gen-
eration for MDA Industrial Development. In: ER Workshops, pp. 113–122 (2008)

4. Conrad, R., Scheffner, D., Freytag, J.C.: XML Conceptual Modeling Using UML.
In: Laender, A.H.F., Liddle, S.W., Storey, V.C. (eds.) ER 2000. LNCS, vol. 1920,
pp. 558–571. Springer, Heidelberg (2000)

5. Fernández-Medina, E., Trujillo, J., Villarroel, R., Piattini, M.: Extending UML for
Designing Secure Data Warehouses. In: Atzeni, P., Chu, W., Lu, H., Zhou, S., Ling,
T.-W. (eds.) ER 2004. LNCS, vol. 3288, pp. 217–230. Springer, Heidelberg (2004)

6. Luján-Mora, S., Trujillo, J., Song, I.Y.: Multidimensional Modeling with UML
Package Diagrams. In: Spaccapietra, S., March, S.T., Kambayashi, Y. (eds.) ER
2002. LNCS, vol. 2503, pp. 199–213. Springer, Heidelberg (2002)

7. Luján-Mora, S., Vassiliadis, P., Trujillo, J.: Data Mapping Diagrams for Data Ware-
house Design with UML. In: Atzeni, P., Chu, W., Lu, H., Zhou, S., Ling, T.-W.
(eds.) ER 2004. LNCS, vol. 3288, pp. 191–204. Springer, Heidelberg (2004)

8. Korherr, B., List, B.: Extending the UML 2 Activity Diagram with Business Pro-
cess Goals and Performance Measures and the Mapping to BPEL. In: ER Work-
shops, pp. 7–18 (2006)

9. Kurz, S., Guppenberger, M., Freitag, B.: A UML Profile for Modeling Schema
Mappings. In: ER Workshops, pp. 53–62 (2006)

10. Lagarde, F., Terrier, F., André, C., Gérard, S.: Extending OCL to Ensure Model
Transformations. In: ER Workshops, pp. 126–136 (2007)

11. List, B., Korherr, B.: A UML 2 Profile for Business Process Modelling. In: ER
Workshops, pp. 85–96 (2005)

12. Pardillo, J., Molina, F., Cachero, C., Toval, A.: A UML Profile for Modelling
Measurable Requirements. In: ER Workshops, pp. 123–132 (2008)

http://www.omg.org/technology/documents/formal/uml.htm


420 J. Pardillo

13. Stefanov, V., List, B.: A UML Profile for Modeling Data Warehouse Usage. In: ER
Workshops, pp. 137–147 (2007)

14. Daw, Z., Vetter, M.: Deterministic UML Models for Interconnected Activities and
State Machines. In: Schürr, A., Selic, B. (eds.) MODELS 2009. LNCS, vol. 5795,
pp. 556–570. Springer, Heidelberg (2009)

15. André, C., Mallet, F., de Simone, R.: Modeling time(s). In: Engels, G., Opdyke,
B., Schmidt, D.C., Weil, F. (eds.) MODELS 2007. LNCS, vol. 4735, pp. 559–573.
Springer, Heidelberg (2007)

16. Bernardi, S., Merseguer, J., Petriu, D.C.: Adding dependability analysis capabili-
ties to the marte profile. In: Czarnecki, K., Ober, I., Bruel, J.-M., Uhl, A., Völter,
M. (eds.) MODELS 2008. LNCS, vol. 5301, pp. 736–750. Springer, Heidelberg
(2008)

17. Cuccuru, A., Mraidha, C., Terrier, F., Gérard, S.: Enhancing UML Extensions with
Operational Semantics. In: Engels, G., Opdyke, B., Schmidt, D.C., Weil, F. (eds.)
MODELS 2007. LNCS, vol. 4735, pp. 271–285. Springer, Heidelberg (2007)

18. Zoughbi, G., Briand, L.C., Labiche, Y.: A UML Profile for Developing
Airworthiness-Compliant (RTCA DO-178B), Safety-Critical Software. In: Engels,
G., Opdyke, B., Schmidt, D.C., Weil, F. (eds.) MODELS 2007. LNCS, vol. 4735,
pp. 574–588. Springer, Heidelberg (2007)

19. Berkenkötter, K.: OCL-Based Validation of a Railway Domain Profile. In: Kühne,
T. (ed.) MoDELS 2006. LNCS, vol. 4364, pp. 159–168. Springer, Heidelberg (2007)

20. Walderhaug, S., Stav, E., Mikalsen, M.: Experiences from Model-Driven Devel-
opment of Homecare Services: UML Profiles and Domain Models. In: MoDELS
Workshops, pp. 199–212 (2008)

21. Weisemöller, I., Schürr, A.: A comparison of standard compliant ways to define
domain specific languages. In: MoDELS Workshops, pp. 47–58 (2007)

22. Aagedal, J.Ø., Ecklund Jr., E.F.: Modelling QoS: Towards a UML Profile. In:
Jézéquel, J.-M., Hussmann, H., Cook, S. (eds.) UML 2002. LNCS, vol. 2460, pp.
275–289. Springer, Heidelberg (2002)

23. Apvrille, L., de Saqui-Sannes, P., Lohr, C., Sénac, P., Courtiat, J.P.: A New UML
Profile for Real-Time System Formal Design and Validation. In: Gogolla, M., Ko-
bryn, C. (eds.) UML 2001. LNCS, vol. 2185, pp. 287–301. Springer, Heidelberg
(2001)

24. Baclawski, K., Kokar, M.M., Kogut, P.A., Hart, L., Smith, J.E., Holmes III, W.S.,
Letkowski, J., Aronson, M.L.: Extending UML to support ontology engineering for
the semantic web. In: Gogolla, M., Kobryn, C. (eds.) UML 2001. LNCS, vol. 2185,
pp. 342–360. Springer, Heidelberg (2001)

25. Baumeister, H., Koch, N., Mandel, L.: Towards a UML Extension for Hypermedia
Design. In: France, R.B., Rumpe, B. (eds.) UML 1999. LNCS, vol. 1723, pp. 614–
629. Springer, Heidelberg (1999)

26. Brenner, E., Derado, I.: UML Extensions for ASAM-GDI Device Capability De-
scription. In: Evans, A., Kent, S., Selic, B. (eds.) UML 2000. LNCS, vol. 1939, pp.
148–161. Springer, Heidelberg (2000)

27. Cabot, J., Olivé, A., Teniente, E.: Representing Temporal Information in UML. In:
Stevens, P., Whittle, J., Booch, G. (eds.) UML 2003. LNCS, vol. 2863, pp. 44–59.
Springer, Heidelberg (2003)

28. Crettaz, V., Kandé, M.M., Sendall, S., Strohmeier, A.: Integrating the Concern-
BASE Approach with SADL. In: Gogolla, M., Kobryn, C. (eds.) UML 2001. LNCS,
vol. 2185, pp. 166–181. Springer, Heidelberg (2001)



A Systematic Review on the Definition of UML Profiles 421

29. Cuccuru, A., Dekeyser, J.L., Marquet, P., Boulet, P.: Towards UML 2 Extensions
for Compact Modeling of Regular Complex Topologies. In: Briand, L.C., Williams,
C. (eds.) MoDELS 2005. LNCS, vol. 3713, pp. 445–459. Springer, Heidelberg (2005)

30. Flake, S., Müller, W.: A UML Profile for Real-Time Constraints with the OCL.
In: Jézéquel, J.-M., Hussmann, H., Cook, S. (eds.) UML 2002. LNCS, vol. 2460,
pp. 179–195. Springer, Heidelberg (2002)

31. Grassi, V., Mirandola, R., Sabetta, A.: A UML Profile to Model Mobile Systems.
In: Baar, T., Strohmeier, A., Moreira, A., Mellor, S.J. (eds.) UML 2004. LNCS,
vol. 3273, pp. 128–142. Springer, Heidelberg (2004)

32. Hennicker, R., Koch, N.: A UML-based Methodology for Hypermedia Design. In:
Evans, A., Kent, S., Selic, B. (eds.) UML 2000. LNCS, vol. 1939, pp. 410–424.
Springer, Heidelberg (2000)

33. Jürjens, J.: UMLsec: Extending UML for Secure Systems Development. In:
Jézéquel, J.-M., Hussmann, H., Cook, S. (eds.) UML 2002. LNCS, vol. 2460, pp.
412–425. Springer, Heidelberg (2002)

34. Jürjens, J.: Developing Safety-Critical Systems with UML. In: Stevens, P., Whittle,
J., Booch, G. (eds.) UML 2003. LNCS, vol. 2863, pp. 360–372. Springer, Heidelberg
(2003)

35. Luján-Mora, S., Trujillo, J., Song, I.Y.: Extending the UML for Multidimensional
Modeling. In: Jézéquel, J.-M., Hussmann, H., Cook, S. (eds.) UML 2002. LNCS,
vol. 2460, pp. 290–304. Springer, Heidelberg (2002)

36. Marcos, E., Vela, B., Cavero, J.M.: Extending UML for Object-Relational Database
Design. In: Gogolla, M., Kobryn, C. (eds.) UML 2001. LNCS, vol. 2185, pp. 225–
239. Springer, Heidelberg (2001)

37. Nunes, N.J., e Cunha, J.F.: Towards a UML profile for interaction design: the
Wisdom approach. In: Evans, A., Kent, S., Selic, B. (eds.) UML 2000. LNCS,
vol. 1939, pp. 101–116. Springer, Heidelberg (2000)

38. Pitkänen, R., Selonen, P.: A UML Profile for Executable and Incremental
Specification-Level Modeling. In: Baar, T., Strohmeier, A., Moreira, A., Mellor,
S.J. (eds.) UML 2004. LNCS, vol. 3273, pp. 158–172. Springer, Heidelberg (2004)

39. Pllana, S., Fahringer, T.: On Customizing the UML for Modeling Performance-
Oriented Applications. In: Jézéquel, J.-M., Hussmann, H., Cook, S. (eds.) UML
2002. LNCS, vol. 2460, pp. 259–274. Springer, Heidelberg (2002)

40. Rodrigues, G.N., Rosenblum, D.S., Uchitel, S.: Reliability Prediction in Model-
Driven Development. In: Briand, L.C., Williams, C. (eds.) MoDELS 2005. LNCS,
vol. 3713, pp. 339–354. Springer, Heidelberg (2005)

41. da Silva, P.P., Paton, N.W.: UMLi: The Unified Modeling Language for Interactive
Applications. In: Evans, A., Kent, S., Selic, B. (eds.) UML 2000. LNCS, vol. 1939,
pp. 117–132. Springer, Heidelberg (2000)

42. Suzuki, J., Yamamoto, Y.: Extending UML for Modelling Reflective Software Com-
ponentsa. In: France, R.B., Rumpe, B. (eds.) UML 1999. LNCS, vol. 1723, pp.
220–235. Springer, Heidelberg (1999)

43. Dobing, B., Parsons, J.: How UML is used. Commun. ACM 49(5), 109–113 (2006)
44. Moody, D.: Theory development in visual language research: Beyond the cognitive

dimensions of notations. In: VL/HCC, pp. 151–154 (2009)
45. Venkatesh, V., Morris, M.G., Davis, G.B., Davis, F.D.: User Acceptance of Infor-

mation Technology: Toward a Unified View. MIS Quarterly 27(3) (2003)



422 J. Pardillo

A List of Variables

Table 6. List of the studied properties and the notation for the associated variables

Property Variable
General:
How many stereotypes are in all the UML profiles? S
How many distinct metaclasses are in all the UML profiles? M
How many UML profiles have been published by conference and year? PY,V

How many quality-presentation indicators are shared among all the author’s profiles? QA

How many profiles present a specific quality indicator by domain type? QD

How many profiles present a specific quality indicator by year? QY

Stereotype:
Is any icon defined? IS

Is any tag definition present? TS

Metaclass:
How many stereotypes extend it? SM

How many stereotypes extend it in the context of the owning profile? PM /SM

What is the difference between the rankings of SM and PM ? SM − PM

How many profiles contain some stereotype that extend it? PM

How many icons are defined for it in the context of SM? IM /SM

Modelling capability:
How many profiles contain any stereotype extending an owned metaclass? PMC

How many metaclasses are extended with respect to the ones provided by UML? MC/M0
C

Profile:
How many stereotypes are defined? SP

How many distinct metaclasses are defined? MP

Is any stereotype icon defined? IP

Is any tag definition present? TP

Is any constraint defined? CP

Presentation-quality indicators (Q):
How many profiles present all the involved constraints? C
How many profiles present a UML-profile diagram? D
How many profiles present formal semantics? F
How many profiles present a metamodel diagram? M
How many profiles present any constraint formalised in OCL? O
How many profiles present a textual template? T



Author Index

Ab Rahim, Lukman I-166
Abid, Saad Bin I-211
Abrahão, Silvia II-213, II-288
Almeida da Silva, Marcos Aurélio

II-303, II-318
Amaral, Vasco I-136
Ambroziewicz, Albert I-241
Arcuri, Andrea I-286
Arendt, Thorsten I-121
Aßmann, Uwe II-47, II-78
Atlee, Joanne M. II-198

Bagheri, Hamid II-376
Balogh, András I-76
Balogh, Zoltán I-76
Barais, Olivier I-91
Barroca, Bruno I-136
Batory, Don II-2
Beaudoux, Olivier I-91
Bendraou, Reda II-303, II-318
Berger, Stefan II-153
Bergmann, Gábor I-76
Biermann, Enrico I-121
Blanc, Xavier II-303, II-318
Blouin, Arnaud I-91
Botterweck, Goetz I-211
Briand, Lionel I-286
Broy, Manfred II-183
Buckl, Christian II-391

Chauvel, Franck II-168
Cheng, Betty H.C. I-316
Cleland-Huang, Jane I-226

da Costa, Andrew Diniz I-301
da Cruz, António Miguel Rosado I-256
da Silva, Viviane Torres I-301
Dahms, Marco II-243
Day, Nancy A. II-198
de Lara, Juan I-16, I-106, I-376
de Lucena, Carlos José Pereira I-301
Denker, Marcus II-138
dos Santos, Osmar Marchi I-106

Egyed, Alexander II-123
Ehnebom, Staffan II-406
Engels, Gregor II-93
Eriksson, Peter II-406
Eshuis, Rik II-258
Esmaeilsabzali, Shahram II-198

Faria, João Pascoal I-256
Fuhrmann, Hauke I-196

Garcés, Kelly I-61
Garcia, Alessandro I-301
Garćıa-Izquierdo, Francisco J. II-361
Gérard, Sébastien I-392
Gerth, Christian II-93
Gervais, Marie-Pierre II-303
Goldsby, Heather J. I-316
Gonzalez-Huerta, Javier II-288
Greevy, Orla II-138
Groher, Iris II-123
Grönniger, Hans I-331
Grossmann, Georg II-17, II-153
Guerra, Esther I-16, I-106, I-376

Heinrich, Matthias I-271
Herrmannsdoerfer, Markus I-61
Horváth, Ákos I-76
Hu, Zhenjiang I-181
Huang, Gang II-168

Insfran, Emilio II-213, II-288
Iqbal, Muhammad Zohaib I-286

Jézéquel, Jean-Marc I-91, II-63
Johannes, Jendrik II-47
Jurack, Stefan I-121

Kainz, Gerd II-391
Karsai, Gabor I-46
Kienzle, Jörg II-63
Klein, Jacques II-63
Knoll, Alois II-391
Kolahdouz-Rahimi, Shekoufeh II-228
Kolovos, Dimitrios S. I-61, I-106,

I-211, I-376



424 Author Index

Könemann, Patrick II-108
Krause, Christian I-121
Kühne, Thomas I-31
Kuhrmann, Marco II-183
Kulkarni, Vinay II-331
Küster, Jochen M. II-93

Lano, Kevin II-228
Lee, Edward A. II-273
Loniewski, Grzegorz II-213
Lúcio, Levi I-136
Luckey, Markus II-93
Lussenburg, Vincent II-346

Mäder, Patrick I-226
Madsen, Ole Lehrmann I-1
Mei, Hong I-181, II-168
Méndez Fernández, Daniel II-183
Møller-Pedersen, Birger I-1
Morin, Brice II-63
Mougenot, Alix II-318

Nierstrasz, Oscar II-138
Noyrit, Florian I-392

Oberle, Daniel II-243
Ökrös, András I-76

Paige, Richard F. I-61, I-106,
I-211, I-376

Pardillo, Jesús I-407
Pareto, Lars II-406
Peischl, Bernhard I-151
Penzenstadler, Birgit II-183
Polack, Fiona A. C I-61, I-211
Preußner, André I-271

Rahmani, Tirdad II-243
Rajbhoj, Asha II-331
Ráth, István I-76
Reddy, Sreedhar II-331
Reimann, Jan II-78
Reiß, Dirk I-331
Ressia, Jorge II-138
Riché, Taylor L. II-2

Robin, Jacques II-318
Rodriguez-Priego, Emilio II-361
Rose, Louis M. I-61, I-211
Rubio, Ángel Luis II-361
Rumpe, Bernhard I-331

Saxena, Tripti I-46
Schramm, Arne I-271
Schrefl, Michael II-17, II-153
Schwarzl, Christian I-151
Seifert, Mirko II-78
Selic, Bran I-392
Shiraishi, Shin’ichi I-346
Śmia�lek, Micha�l I-241
Sommer, Stephan II-391
Song, Hui II-168
Stumptner, Markus II-17, II-153
Sullivan, Kevin II-376
Sun, Yanchun II-168

Taentzer, Gabriele I-121
Terrier, François I-392
Thiele, Michael I-361

van der Storm, Tijs II-346
Van Gorp, Pieter II-258
Varró, Dániel I-76
Vin, Harrick M. II-2
Vinju, Jurgen II-346
Voelter, Markus II-32
Vogel, Lars I-271
von Hanxleden, Reinhard I-196

Wang, Bo I-181
Warmer, Jos II-346
Wende, Christian I-361
Whittle, Jon I-166
Wilke, Claas I-361
Williams, James R. I-61

Xiong, Yingfei I-181, II-168

Zave, Pamela II-1
Zhang, Wei I-181
Zhao, Haiyan I-181


	Title
	Preface
	Organization
	Table of Contents – Part I
	Keynote 1
	A Unified Approach to Modeling and Programming
	Introduction
	The Scandinavian Approach to Object-Orientation
	The Contributions from SIMULA
	The Scandinavian Approach to Modeling
	Implications for Language Design

	Language Design Issues
	Syntax
	Constraints
	Domain Specific Languages
	Object Models and Scenario Descriptions
	Programming by Examples
	Miscellaneous

	Language Concepts
	State Machines
	Associations
	Asynchronous Events
	Action Sequences
	Other Language Constructs

	Conclusion
	References


	Session 1a: Genericity and Generalization
	Generic Meta-modelling with Concepts,Templates and Mixin Layers
	Introduction
	Generic Programming
	MetaDepth
	Concepts for Language Engineering
	Model Templates
	Meta-model Templates and Semantic Mixin Layers
	Related Work
	Conclusions and Future Work
	References

	An Observer-Based Notion of Model Inheritance
	Introduction
	Model Compatibility
	Formal Foundation

	Forms of Model Inheritance
	Specification Import
	Conceptual Containment
	Subtyping
	Making a Choice

	Observer-Based Notion of Substitutability
	Related Work
	Conclusion
	References

	MDE-Based Approach for Generalizing Design Space Exploration
	Introduction
	Overview of GDSE Framework
	Languages and Translators Supporting GDSE Framework
	Abstract Design Space Exploration Language (ADSEL)
	Constraint Specification Language (CSL)
	Intermediate Language (IRL)
	Translators

	Motivating Example: Software Product-Line Configuration
	Problem Specification
	Step by Step Modeling of the Problem

	Related Works
	Conclusion and Future Work
	References


	Session 1b: Model Migration and Incremental Manipulation
	A Comparison of Model Migration Tools
	Introduction
	Related Work
	Comparison Method
	Co-evolution Examples
	Compared Tools
	Comparison Process

	Comparison Results
	Constructing the Migration Strategy
	Changing the Migration Strategy
	Extensibility
	Re-use
	Conciseness
	Clarity
	Expressiveness
	Interoperability
	Performance

	Discussion and Conclusions
	References

	Incremental Evaluation of Model Queries over EMF Models
	Introduction
	Background
	Running Example: Constraint Checking in AUTOSAR Models
	EMF and Ecore Metamodeling
	Graph Patterns

	Incremental Pattern Matching over EMF Models
	Benefits
	Usage
	Algorithm for Incremental Pattern Matching
	Architectural Overview of EMF-IncQuery

	Benchmark Case Study
	ISignal Constraint Check
	Signal Group Mapping Constraint Check
	Simple PhysicalChannel Consistency Check

	Benchmarking and Evaluation
	Generating Sample Models for Benchmarking
	Benchmarking
	Analysis of the Results

	Related Work
	Conclusion and Future Work
	References

	Active Operations on Collections
	Introduction
	From Standard to Active Operations
	Preliminary: Definitions
	Union, Intersection and Difference
	Application
	Selection
	Sort
	Reversed Assignment

	Case Study
	Requirement: All Properties Are Collections
	Active Transformation
	Kermeta Implementation

	Evaluation
	Worst Case Complexities
	Discussion
	Related Work

	Conclusion and Perspective
	References


	Session 1c: Modeling Model Transformations
	transML: A Family of Languages to Model Model Transformations
	Introduction
	Related Work
	A Family of Languages to Model Transformations
	Requirements Elicitation
	Analysis
	Architecture
	High-Level Design: Mappings
	Low-Level Design: Rule Structure and Rule Behaviour
	Implementation and Testing
	Traceability

	Tool Support
	Case Study
	Conclusions and Lines of Future Work
	References

	Henshin: Advanced Concepts and Tools forIn-Place EMF Model Transformations
	Introduction
	The Henshin Transformation Meta-model
	Rules and Matching
	Application Conditions
	Transformation Units
	Amalgamation
	Relation to Algebraic Graph Transformation

	EMF Model Refactoring
	DSL SimplifiedClassModel (SCM)
	Model Refactoring Pull Up Attribute
	Implementation Using Henshin

	Towards Meta-model Evolution
	Tool Environment
	Editors
	Runtime
	Validation of Model Transformations

	Related Work
	Conclusion
	References

	A Technique for Automatic Validation of Model Transformations
	Introduction
	Related Work
	Structure of the Paper

	Motivating Example
	The Transformation Language
	Properties and Their Proof

	Formalization
	Graph Definitions
	Metamodel, Model and Transformation Definitions
	Transformation Collapse Definitions
	State Space
	Property Semantics

	Experimentation and Results
	Conclusions and Future Work
	References


	Session 2a: Verifying Consistency and Conformance
	Static- and Dynamic Consistency Analysis of UML State Chart Models
	Introduction
	Example Model
	Static Model Analysis
	Dynamic Model Analysis
	Message Dependency Resolution
	Input Message Creation
	Output Message Execution

	Results
	Related Work
	Conclusion
	References

	Verifying Semantic Conformance of State Machine-to-Java Code Generators
	Introduction
	Background
	UML State Machine Semantics
	Java Path Finder (JPF)

	Annotation-Driven Model Checking
	Understanding the Code Generator (Producer)
	Defining the Assertions (Producer)
	Developing the Transformation AT (Producer)
	Verifying the Generated Code (Consumer)

	Evaluation
	Verification Result

	Related Work
	Conclusion and Future Work
	References

	A Dynamic-Priority Based Approach to Fixing Inconsistent Feature Models
	Introduction
	Preliminaries
	Feature Model
	Constraint Hierarchies and SkyBlue

	Approach Overview
	Dynamic-Priority Based IFM Fixing Process
	An Example

	Fix IFM with Dynamic Priority
	Map Feature Models to Constraint Graphs
	Recommend a Solution to Fix IFM
	Choose other Solutions through Dynamic-Priority

	Case Studies
	Usability
	Scalability

	Related Work
	Conclusion and Future Work
	References


	Session 2b: Taming Modeling Complexity
	Taming Graphical Modeling
	Introduction
	Related Work
	Pragmatics
	Taming Complex Models
	Meta Layout
	View Management

	Kiel Integrated Environment for Layout Eclipse Rich Client (KIELER)
	Kieler Infrastructure for Meta Layout (KIML)
	Applications for View Management

	Evaluation
	Conclusions
	References

	Taming EMF and GMF Using Model Transformation
	Introduction
	Motivation
	Specifying Abstract Syntax and Generating Code Using EMF
	Specifying Graphical Syntax and Generating Code with GMF

	EuGENia: Model Transformation to the Rescue
	Generating GenModels with EuGENia
	Generating GMF-Specific Models with EuGENia
	Implementation Notes

	Evaluation
	Example
	Community Feedback
	Evaluating Correctness
	Limitations

	Related Work
	Conclusions and Further Work
	References

	A Visual Traceability Modeling Language
	Introduction
	State of Practice in Trace Query Modeling
	Related Work
	Defining the Traceability Information
	Defining Visual Traceability Queries
	Query Structure
	Defining Constraints
	Aggregation Functions
	Integrating Other Techniques
	Limitations and Analysis of the Approach

	Applying Visual Traceability Queries
	Example Queries
	Transformation Into Executable Queries
	Supporting the Creation and Validation of Queries

	Evaluation
	Experimental Set-up
	Results
	Threats to Validity

	Conclusions and Future Work
	References


	Session 2c: Modeling User-System Interaction
	Application Logic Patterns – Reusable Elements of User-System Interaction
	Introduction
	Related Work
	Introducing Application Logic Patterns
	Metamodel of the ALP Language
	Application Logic Pattern Library
	Tool Support for ALP Management and Instantiation
	ALP Validation Experiment
	Conclusion and Future Work
	References

	A Metamodel-Based Approach for Automatic User Interface Generation
	Introduction
	Proposed Generation Process and Model Architecture
	Metamodel for Domain Models
	Derived Entities
	Domain Triggers

	Metamodel for Use Case Models
	Metamodel for User Interface Models
	Model Transformation Rules
	Related Work
	Conclusions and Future Work
	References

	Rapid UI Development for EnterpriseApplications: Combining Manual and Model-Driven Techniques
	Introduction
	Organisational Context and Running Example
	Our UI Design Methodology
	Application Design Process
	Model and Tool Overview
	Modelling the Application – The UICM Editor
	Interpreting the Container Model – The UICM Interpreter
	Inferring the UI Elements – The Domain Model Analyser
	Influencing the Generated UI – Annotations 
	Customising the Resulting UI – The Profile Editor

	Evaluation
	Related Work
	Summary and Future Work
	References


	Session 3a: Model-Driven Quality Assurance
	Environment Modeling with UML/MARTE to Support Black-Box System Testing for Real-Time Embedded Systems: Methodology and Industrial Case Studies
	Introduction
	Related Work
	Environment Modeling – Methodology
	Modeling Structural Details as Environment Domain Model
	Modeling Behavioral Details with UML State Machines and MARTE
	Modeling the Constraints
	Environment Modeling Profile
	Simulation of Environment Models

	Model-Based Testing Based on Environment Models
	Case Studies
	Conclusion
	References

	Improving Test Models for Large Scale Industrial Systems: An Inquisitive Study
	Introduction
	Revealing Relevant Test Concepts: An Inquisitive Approach
	Identifying Neglected Test Concepts: Empirical Procedures
	Results of the Questionnaire
	Proactive Proposal of Concepts by the Participants

	Case Study: Inventory and Supply of Petroleum Products
	Test Concepts Documented in the Project
	Additional Impact Analysis of the Test Concepts Documented
	Tool Support

	Discussion
	Conclusion and Future Works
	References

	Automatically Discovering Properties That Specify the Latent Behavior of UML Models
	Introduction
	Background
	Property Specification Patterns
	Genetic Programming
	Evolutionary Computation and Novelty Search

	Approach
	Case Study
	Step 1: Configuring Marple
	Step 2: Marple
	Step 3: Assessing the Properties

	Validation
	Related Work
	Conclusions and Future Work
	References


	Session 3b: Managing Variability
	Towards a Semantics of Activity Diagrams with Semantic Variation Points
	Introduction
	Syntax of Activity Diagrams
	Abstract Syntax

	Inner Semantics of Activity Diagrams
	System Model
	Semantic Mapping

	Variants
	Variant 1: Nodes as Atomic Actions
	Variant 2: Actions as Methods

	Related Work
	Conclusion
	References

	An AADL-Based Approach to Variability Modeling of Automotive Control Systems
	Introduction
	Architecture Analysis & Design Language (AADL)
	Cruise Control Systems
	AADL-Based Development of Automotive Control Systems
	Development Process
	AADL Descriptions of the Cruise Control System

	VariabilityModeling of Cruise Control Systems Based on AADL
	System Variant # 1: Adaptive Cruise Control System
	Variant # 2: Full Speed Range Adaptive Cruise Control System
	Comparison with SysML

	Conclusion and Future Work
	References

	Extending Variability for OCL Interpretation
	Introduction
	Foundations
	The Generic Three Layer Architecture
	Variation Points of OCL Interpretation

	Implementation
	Model Adaptation (VP1)
	Model Instance Adaptation (VP2)

	Case Studies
	The Royal and Loyal System Example
	SEPA Business Rules
	The OCL2.2 Standard Library
	Future Case Studies

	Lessons Learnt
	Related Work
	Conclusion
	References


	Session 3c: Multi-Modeling Approaches
	Inter-modelling: From Theory to Practice
	Introduction
	Our Pattern-Based Inter-modelling Language
	Model Matching and Model Traceability
	Compilation of Patterns into OCL/EOL
	Check-Only Scenario: Satisfaction of Patterns by Models
	First Operational Scenario: Creation of Correct Traces
	Second Operational Scenario: Deletion of Incorrect Traces

	Tool Support
	Example
	Comparison with Related Work
	Conclusions and Future Work
	References

	Consistent Modeling Using Multiple UML Profiles
	Introduction
	Languages and Their Composition
	A Framework for Analysis
	Language Composition Issues

	Our Approach
	An Example Case Study
	Details of the Approach
	Ensuring Consistency and Interoperability

	Discussion
	Related Work
	Summary and Conclusions
	References

	A Systematic Review on the Definition of UML Profiles
	Introduction
	Method and Materials
	Findings
	UML-Profiles Publication Trends
	Characterisation of the UML Profiles
	Presentation of the UML Profiles

	Discussion
	Publication Trends
	UML Profiling
	Presentation Issues
	Limitations of the Review

	Conclusion
	References
	List of Variables


	Author Index


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 149
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 149
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 599
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
    /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
    /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
    /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
    /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
    /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
    /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
    /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice




