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Advances in the Theory of Control, Signals, and
Systems, with Physical Modeling

Jean Lévine1 and Philippe Müllhaupt2

1 Introduction

This book gathers articles that have been invited for presentation in the framework
of a Bernoulli Programme, held at the Bernoulli Center in Lausanne (Switzerland)
from January to June 2009.

This Programme mainly consisted of three workshops aiming at reviewing the
advances in the theory of control, signals, and systems, with a particular emphasis
on their relationship to physical modeling.

More precisely, the aim of this series of three workshops was to

• bring together knowledge and know-how from the communities of control, sig-
nals and systems,

• focus on the theoretical advances in these areas and examine the possibilities of
new convergences between them,

• contribute to the enhancement of the dialogue between theoretical laboratories
and more practically oriented units and industries.

In the 60’s, control, signals and systems had a common linear algebraic back-
ground and, according to their evolution, their respective backgrounds have now
dramatically differed. Recovering such a common background, especially in the
nonlinear context, is currently a fully open question.

In most contributions, emphasis has been put on physical modeling, which serves
as an Ariadne’s thread between the diverse fields of interest. This idea is not new,
however. As an example, mechanical system modeling, which heavily relies on ana-
lytical mechanics and in particular its conservation laws, has greatly inspired control
theory. As another example, control of chemical processes also gained in the use of
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sophisticated modeling software tools based on theories of mass balance conser-
vation and entropy laws. Hence one purpose of this program was to force the in-
teraction of probably uncorrelated disciplines thanks to these theoretical modeling
aspects.

Another important aspect of the conferences was to present and develop new
applications of the above approaches, and contribute to the enhancement of the dia-
logue between theoretical laboratories and more practically oriented research units
and industries, in both classical areas and emerging fields of research.

The first workshop, entitled Electrical and Mechatronical Systems Workshop
looked at various applications stemming from Mechatronics, Electrical and Me-
chanical Engineering, such as MEMS, eletrical machines, robots and car suspension.
From the modeling and methodological side, finite dimensional systems (described
by ordinary differential equations or difference equations) and infinite dimensional
systems (delayed systems, distributed systems, PDEs’, non-integer derivations)
were approached for control and signal processing, as well as model-free tech-
niques Indeed, the influence of physical modeling contributed to outline some con-
vergences. In particular, a unifying Lagrangian formalism has been sketched so as
to integrate electrical, electronical, magnetic and mechanical aspects of systems,
potentially leading to significant simplifications in the analysis of control systems.
Both finite dimensional and infinite dimensional models are shown to ease some es-
timation, adaptative control and observation problems. New applications in emerg-
ing fields of mechatronic systems, such as MEMS, or new suspension technologies,
have been presented, showing that Mechanics, Mechatronics and Electronics remain
a major source of inspiration for control and system theorists.

The aim of the second workshop, entitled Mathematical Tools Workshop, was to
serve as a think tank for mathematical paradigms in the fields of Control, Signals
and Systems. Again, both finite dimensional and infinite dimensional models have
been explored. Various approaches, in the framework of differential geometry and
algebra have been examined. Group theory and Riemannian Geometry appeared in
many presentations with, in particular, robotics, mechanical systems or quantum
control as background applications. Recent advances, in the fields of hamiltonian,
lagrangian, quantum, energy-based and flat or non flat control systems have also
been presented.

Finally, the third and last workshop, entitled Chemical and Life Science Work-
shop, concerned new approaches in the analysis of biomedical, biomechanical and
reaction systems, possibly coupled with fluid dynamics, with many challenging ap-
plications such as cancer treatment and diagnosis. Important results concerning uni-
fying approaches to deal with complex chemical and biochemical reactions have
been presented taking into account the network structure of the reactions while en-
suring robustness with respect to various unknown parameters and perturbations.
The influence of noisy data in the biological and chemical reaction systems has also
been approached. Time-scales, transients and bifurcations in ecological systems,
population dynamics and biological systems have also received a great attention
and their control theoretical perspectives have been envisaged.
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The reader will find in the present volume key contributions and surveys, giving a
precise account of the above topics. The book is organized in three parts, according
to the three aforementioned workshops. In each part, the articles follow the alpha-
betic order of the first author. This order has been prefered to a more sophisticated,
but often artificial, clustering by sub-themes. We hope that these readings will be
most inspiring and informative to PhD students and researchers in Mathematics,
Electrical, Mechanical, Chemical or Bio Engineering, and more generally to every
people of both the academic and industrial spheres curious of the recent develop-
ments in control, signals and systems.

We are very grateful both to the Swiss National Science Foundation for funding
such an endeavor and to the Centre Bernoulli for providing the required infrastruc-
ture. In particular, we thank Mrs. Christiane De Paola, Talya Van Woerden, Sabrina
Martone, and Rana Gherzeddine for the important administrative and organisational
work and Mr. Marc Perraudin for maintaining the internet server. Last, but not least,
we are deeply indebted to Prof. Tudor Ratiu for his constant encouragements to
organize the above program.

Jean Lévine and Philippe Müllhaupt
Mines-ParisTech and EPFL
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Modeling and Control of Multi-Body
Mechanical Systems: Part I A
Riemannian Geometry
Approach

Suguru Arimoto

Abstract. Control problems of motion of multi-body mechanical systems
under constraints and/or with redundancy in system’s degrees-of-freedom
(DOF) are treated from the standpoint of Riemannian geometry. A multi-
joint reaching problem with excess DOF is tackled and it is shown that a
task space PD feedback with damping shaping in joints maneuvers the end-
point of the robot arm to reach a given target in the sense of exponentially
asymptotic convergence. An artificial potential inducing the position feed-
back in task space can be regarded as a Morse-Bott function introduced in
Riemannian geometry, from which the Lagrange stability theorem can be di-
rectly extended to this redundant case. The speed of convergence of both
the orbit of the endpoint in task space and the trajectory of joint vector in
joint space can be adjusted by damping shaping and adequately choosing a
single stiffness parameter. In the case that the endpoint is constrained on a
hypersurface in E3, the original Lagrange dynamics expressed in an implicit
form by introducing a Lagrange multiplier is decomposed into two partial
dynamics with the aid of decomposition of the tangent space into the image
of the endpoint Jacobian matrix and the kernel orthogonally complemented
to the image. The stability problem of point-to-point endpoint movement on
the constraint surface is reduced to the former case without constraint.

1 Introduction

Motion of a multi-joint robot arm that is a mechanical system of multi-bodies
serially connected through rotational joints is characterized by the Lagrange

Suguru Arimoto
Research Organization of Science and Engineering, Ritsumeikan University
e-mail: arimoto@fc.ritsumei.ac.jp
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4 S. Arimoto

equation of motion that is nonlinear and has strong couplings between joints.
Notwithstanding the complexity of its dynamics, it is shown [1] that position
control is feasible by designing a PD (Position and its Derivative) feedback
with damping shaping, provided that the gravity term is adequately compen-
sated. This control methodology is extended to the cases that 1) the target
position is given and described in task space [1] and 2) the robot endpoint
is constrained on a surface in E3 (Eucleadian Space) [2]. However, in both
the cases, it is implicitly assumed that system’s degrees-of-freedom (DOF) is
non-redundant.

On the other hand, Nicholai A. Bernstein pointed out more than a half
century ago the importance and difficulty of the kinematic DOF problem
in relation to human movement [3], since the inverse kinematics becomes
illposed generally in case of systems with redundant DOFs. Although the
book [3] presents Bernstein’s major ideas on the development and control of
voluntary movement in general and the notion of dexterity, even nowadays
Bernstein’s problem is controversial not only in developmental psychology,
neurophysiology, and kinesiology [4, 5], but also in robotics, as discussed in
the author’s previous paper [6]. From the viewpoint of robot control for a class
of redundant multi-joint arms, it is shown in the paper [7] that a multi-joint
point-to-point reaching movement can be established by using a task-space
PD feedback with damping shaping in joint space. Nevertheless, the proof
of asymptotic convergence was rather sophisticated, lacking the mathemati-
cal rigor. Therefore, there still remains unsolved a lot of important problems
for control of nonlinear mechanical systems that are both constrained geo-
metrically and redundant in DOF. One practical example of such systems
is related to a stablization control for grasping a rigid object under rolling
contact constraints by using multiple robot fingers with multi-joints. Even in
this case, only a rough and rather intuitive sketch for proving the asymptotic
convergence of motion of the overall fingers/object system is presented so
far [8, 9]. Another interesting example is found in control of a hand-writing
robot [10].

This paper tackles such a difficult problem of control for a class of multi-
body robotic systems that are constrained geometrically or/and subject to re-
dundancy in system’s DOF from the standpoint of Riemannian geometry. It is
widely known among roboticsists that kinematics and planning of multi-joint
robots are tretaed in the configuration space regarded as an n-dimensional nu-
merical spaceRn [11, 12].On the other hand, Arnold [13]pointed out the impor-
tance of Riemannian geometry in the analysis of mechanical systems and shown
that the dynamics of motion of a double pendulum can be described by an orbit
on a two-dimensional torus T 2 that is regarded as T 2 = S1 × S1, where S1 de-
notes a unit circle. In line with this notion, an n-DOF robot arm can be treated
on an n-dimensional Rimeannian manifold like an n-dimensional torus T n, and
the stability problems of PD feedback with damping shaping [1] were retreated
in a Riemannian-geometric manner [14, 15]. More recently, the author and his
group showed that, given a robot arm, the set of all possible postures can be
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Fig. 1. A set of all possible postures of a planar robot with three joints regarded
as a Riemannian manifold with Riemannian metric gij(q) of the inertia matrix

regarded as a Riemannian manifold with the Riemannian metric that consti-
tutes the inertia matrix [16] (see Fig. 1). Thus, an orbit of motion as a geodesic
to the Euler equation can be regarded as an inertia-induced motion without
affection of damping and gravity forces [17].

2 Euler-Lagrange Equations and Geodesics

It is well known that motion of a robot manipulator as a serially connected
rigid-body system is governed by the Euler-Lagrange equation shown (see
[18])

G(q)q̈ +
{

1
2
Ġ(q) + S(q, q̇)

}
q̇ + g(q) = u (1)

where q = (q1, · · · , qn)T denotes the vector of joint angles, G(q) = (gij)
does the n × n inertia matrix, u a control toque vector, g(q) = ∂P (q)/∂q
with a scalar function P (q) called the gravity potential, and S(q, q̇) a
skew-symmetric matrix S = (Sij) defined as

Sij =
1
2

{
∂

∂qj

(
n∑

k=1

q̇kgik

)
− ∂

∂qi

(
n∑

k=1

q̇kgjk

)}
(2)

If we consider a control torque that can exactly compensate the gravity term,
that is, u = g(q), then it reduces (1) to

G(q)q̈ +
{

1
2
Ġ(q) + S(q, q̇)

}
q̇ = 0 (3)
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which is considered an ideal equation of motion without affection of the grav-
ity and joint damping like a robot arm on an artificial satellite in space. It is
pointed out in [8] that (3) is equivalently written in the form

gik(q)q̈i + Γikj(q)q̇j q̇i = 0, k = 1, · · · , n (4)

or in another equivalent form called the Euler equation

q̈k + Γ k
ij q̇iq̇j = 0, k = 1, · · · , n (5)

where Γikj and Γ k
ij are defined as

Γikj =
1
2

(
∂gjk

∂qi
+

∂gik

∂qj
− ∂gij

∂qk

)
(6)

Γ k
ij =

1
2

n∑
l=1

glk

(
∂gjl

∂qi
+

∂gil

∂qj
− ∂gij

∂ql

)
=

1
2

n∑
l=1

glkΓilj (7)

and (glk) denotes the inverse of G (= (gij)). The equivalence of (3) to (4) is
shown in Appendix A.

Let us now consider reaching movements of a redundant planar robot arm
shown in Fig. 2(a), when the target endpoint position is specified by point
P or equivalently the position vector xd (= (xd, yd)T) in E2. Since the end-
point position is a function of joint vector q = (q1, q2, q3)T of C∞-class de-
noted by x(q), a set of possible postures of the robot, NP = {q|x(q) = P},
constitutes a Riemannian submanifold of 1-dimension, and similarly NP ′ =
{q|x(q) = P ′ (= xd)}. If a starting posture q(0) with x(q(0)) = P is given
and fixed, there arises an infinite number of trajectories (or curves) in joint
space that start from q(0) on NP and reach some point on NP ′ satisfying
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x(q(T )) = P ′ (= xd). In this paper, we suppose an appropriate chart F in
the base manifold {M, gij} so that its homeomorphic map φ(F ) is an open
set U (= φ(F )) in joint space and denote the single-dimensional submanifold
NP ∩ U and NP ′ ∩ U (restrictions to U = φ(F )) by NP and NP ′ renewedly.
In this local sense, it is reasonable to suppose that there exists an optimal
orbit c(t) that minimizes the Riemannian distance from P to NP ′ such that

d(P, NP ′) = inf
q(t)

∫ T

0

√∑
gij(q(t))q̇i(t)q̇j(t) dt

=
∫ T

0

√∑
gij(c(t))ċi(t)ċj(t) dt (8)

where the infimum is taken over all of the orbits lying in F (or equivalently
in U (= φ(F )) in the configuration space) and connecting q(0) on NP and
some point on NP ′ . Since the chart F is local (compact) and connected, the
optimal orbit c(t) = (c1(t), · · · , cn(t)) must satisfy the Euler equation (see
[19])

c̈k + Γ k
ij ċ

iċj = 0, k = 1, · · · , n (9)

Once the geodesic curve c(t) of C∞-class is specified, the distance from P
to P ′ can be calculated by any other parameter s(= αt + s0) for α > 0 and
s1 = αT + s0 as follows:

d(P, NP ′ ) =
∫ s1

s0

√∑
gij (c(s))

(
dci

ds

)(
dcj

ds

)
ds (10)

3 Morse-Bott Function and an Extension of the
Lagrange Stability

As for the robot dynamics of (1), consider a PD feedback in task space with
damping shaping in joint space, that is expressed in the following form

u = −Cq̇ − JT
q (x)k(x− xd) (11)

where k denotes a positive constant called “stiffness”, C a positive definite
constant matrix called “damping matrix” in joint space, and Jq(x) = ∂x/∂qT

the 2× 3 Jacobian matrix of x in q. Substitution of (11) into (1) yields

G(q)q̈ +
{

1
2
Ġ(q)+S(q, q̇)

}
q̇ + Cq̇ +JT

q (q)kΔx=0 (12)

where Δx = x − xd and the term g(q) is ignored in this case since motion
of the robot is confined to the horizontal plane. Then, the inner product of
(12) and q̇ reduces to
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d
dt

{
1
2
q̇TG(q)q̇ +

k

2
‖Δx‖2

}
+ q̇TCq̇ = 0 (13)

In what follows, we use the symbols

E(q, q̇) =
1
2
q̇TG(q)q̇ + U(q), U(q) =

k

2
‖Δx‖2 (14)

The quantity E(q, q̇) is positive definite in q̇, but it is not positive definite
in q. Apparently, U(q) defined over the chart F in {M, gij} is a non-negative
function that attains its minimum on q ∈ NP ′ . In other words, there aises
an infinite number of critical points that satisfy ∂U(q)/∂q = 0 (i.e., x(q) =
xd = P ′). The set of critical points in φ(F ) constitutes a submanifold of
1-dimension.

In order to analyze the behavior of motion of the robot that is character-
ized by a solution trajectory q(t) to the closed-loop dynamics of (12), it is
necessary to see an important relation between NP ′ at some point q = qd

with x(qd) = xd and the Hessian of U(q) at that point. Since the gradient of
U(q) is given by

∂U

∂q
= kJq(x(q))(x(q) − xd) (15)

the Hessian at x(qd) = xd is formulated as follows:

Hxd
=

∂2U

∂q∂qT

∣∣∣∣
q=qd

= kJT
q (xd)Jq(xd) (16)

We call such a q (= qd) a critical (or equilibrium) point in the configuration
space that ∂U/∂q|q=qd

= 0. According to (15), any point qd in NP ′ is a critical
point. Now, let us introduce the following definition (see [20, 21]):

Definition (Nondegenerate critical manifold of U): If a Riemannian sub-
manifold NP ′ satisfies the following two conditions, it is called a
nondegenerate critical manifold of the function U :

1) NP ′ is a smooth connected submanifold of M (or φ(F )) and every point
of NP ′ is a critical point of U(q).

2) For any q ∈ NP ′ , the nullspace of the Hessian of U(q) at x(q) = xd is
coincident with the tangent space of NP ′ , that is, null (Hxd

) = TqNP ′ on
q ∈ NP ′ .

From this definition and the property of NP ′ , NP ′ becomes a nondegener-
ate critical manifold of U(q). Hence, we call U(q) the Morse-Bott function.

In order to consider the stability of motion as a solution to the closed-loop
dynamics of (12) it is necessary to introduce a Riemannian ball that contains
a part of NP ′ in a neighborhood of a given starting posture q(0) in F or φ(F )
that satisfies ‖x(q(0))−xd‖ ≤ δ for some specified number δ > 0. Since NP ′

is not a single point, it is necessary for us to suppose that there is a desired
reference posture q∗ belonging to NP ′ but actually the initial posture q(0)
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δq(0)

geodesic

r0

orbit

q
q

�

∗
N

B(q(0), r )

F

0

ε P'

Fig. 3. Definition of the Riemannian ball B(q∗, δ) included in a chart F . Any orbit
starting from B(q∗, δ) remains in B(q∗, ε)

differes from q∗ leaving the critical manifold NP ′ . Thus, we introduce the
concept of neighborhoods of q∗ in the chart F by defining a Riemannian ball
based upon the Riemannian distance (see Fig. 3) such that

B(q∗, r0) = {q|d(q, q∗) < r0, q ∈ F} (17)

Following the definition of stability on a manifold previously discussed (see
[10], in which we call NP ′ an equilibrium-point manifold and denote it by
EM1), we define:

Definition 1 If for any ε > 0 there exists δ(ε) > 0 and r1 > 0 (that is
independent of ε but may be less than r0) such that a solution q(t) of (12)
starting from q(0) with q̇(0) = 0 in B(q∗, r1) remains inside B(q∗, r0) and its
endpoint satisfies ‖x(q(t)) − xd‖ < ε, then the reference critical point q∗ is
said to be stable on a manifold.

It should be remarked that the quantities ε and δ(ε) are taken on the
basis of physical unit [m] in E2 but r0 and r1 are based on the unit of the
Riemannian metric originally introduced for measuring the distance d(q, q̄)
connecting two postures q and q̄.

This definition of the stability of motion around a critical point may be
a natural extension of Lyapunov’s stability. However, the Lyapunov-like re-
lation (13) does not directly conclude the stability of motion in the sense of
Definition 1, because the existence of excess DOF of the system may incur
“self-motion” as discussed in [22]. Therefore, a more severe notion of stability
is necessary when the system is subject to redundancy in system’s DOF.

Definition 2 If for any ε > 0 there exists a number δ(ε) > 0 such that
any trajectory of (12) starting from an arbitrary initial posture q(0) inside
B(q∗, δ(ε)) with q̇(0) = 0 remains inside B(q∗, ε) for any t > 0 and further
approaches asymptotically to some posture q∞ on NP ′ together with conver-
gence of q̇(t) to zero, then the posture q∗ on NP ′ is said to be asymptotically
stable on a manifold (see Fig. 3).
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In this definition the quantities ε and δ(ε) are based on the unit of the
Riemannian distance. At this point, we assume that the concerned robot has
a regular physical size like a human arm, hand, or fingers and numerical
values of each entry of the inertia matrix G(q) or the damping matrix C
is given on the basis of each physical unit kgm2 or kgm2/s. The stiffness
parameter k is given on the basis of kg/s2. Then, if we set C =

√
kC0 and

choose a constant positive definite matrix C0 adequately (see Appendix B),
it is possible to prove:

Theorem (Extended Lagrange Stability)
As to the closed-loop dynamics of (12), the reference posture q∗ on NP ′

is asymptotically stable on a manifold. Further, the speed of convergence to
the manifold NP ′ is exponential with an exponent −σ

√
k with some constant

σ > 0.
The proof is given in Appendix B.

4 Extension of Dirichlet-Lagrange Stability

It is well-known that motion of a hand-writing robot shown in Fig. 4 under the
endpoint constraint ϕ(x(q)) = 0 is governed by the Euler-Lagrange equation

G(q)q̈ +
{

1
2
Ġ(q) + S(q, q̇)

}
q̇ + g(q) = −λJT

q (q)
∂ϕ

∂xT
+ u (18)

no matter how the arm is redundant in DOF and ϕ(x(q)) = 0 expresses an
arbitrary hypersurface. In (18) Jq(q) denotes the Jacobian matrix of x(q)
with respect to q and hence it follows that

∂ϕ

∂qT
=

∂ϕ

∂xT

(
∂x

∂qT

)
=

∂ϕ

∂xT
Jq(q) (19)

The scalar λ in (18) signifies a Lagrange multiplier corresponding to the
constraint ϕ(x(q)) = 0. From the physical meaning of the constraint, the
3-dimensional vector ∂ϕ/∂xT stands for the normal vector at the contacting
point P (= (x, y, z)T) in E3. Therefore, it is reasonable to define the unit
normal along the locus of the contact point as n(s) = (∂ϕ/∂xT)‖∂ϕ/∂xT‖−1,
where s denotes the length parameter along the locus of the contact point
on the hypersurface. To simplify the notation, we denote the position of the
contact at s(t) on the locus by x(s(t)) (= P (s(t))) or x(s) (= P (s)). Further,
if we redefine the Lagrange multiplier in (18) as f = λ‖∂ϕ/∂xT‖, then (18)
can be rewritten into

G(q)q̈ +
{

1
2
Ġ(q) + S(q, q̇)

}
q̇ + g(q) = −fJT

q (x(s))n(s) + u (20)

To keep the constraint condition in (20), the sign of the constraint force f
should not change during motion in accordance with the physical meaning of
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Fig. 4. A hand-writing robot with four DOFs
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(or     )q
3

S
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Fig. 5. NP and NP ′ express a 1-
dim. submanifold and S a 3-dim.
submanifold in R4

the contact constraint. This condition is ensured by lifting (or pressing) the
dynamics by introducing a force control signal

u1 = fdJ
T
q (x(s))n(s) (21)

provided that the vector JT
q (x(s))n(s) or equivalently JT

q (x)∂ϕ/∂x can
be computed in real time. For a given target endpoint position xd on the
constraint surface, a position control signal can be designed as follows:

u2 = g(q)− Cq̇ − JT
q (x) {ζẋ + k(x− xd)} (22)

where g(q) in the right hand side means the direct compensation of the gravity
term. Thus, substitution of the control signal u = u1 + u2 into (18) leads to
the closed-loop dynamics

G(q)q̈ +
{

1
2
Ġ(q) + S(q, q̇)

}
q̇ + JT

q (x) {ζẋ + kΔx + Δfn(s)} = 0 (23)

where Δx = x− xd and Δf = f − fd. Since the endpoint velocity dx(q)/dt
at x on the surface is defined by ẋ = Jq(x)q̇ and it must be orghogonal to
the normal n(x(s)), the inner product of (22) and q̇ leads to

d
dt

{
1
2
q̇TG(q)q̇ +

k

2
‖Δx‖2

}
= −q̇Cq̇ − ζ‖ẋ‖2 (24)

where ‖Δx‖ and ‖ẋ‖ denote the Euclidean norm in E3.
Now, consider a set of all postures of the hand-writing robot whose

endpoint is constrained to the surface ϕ(x(q)) = 0, that is denoted by

S =
{
q|ϕ(x(q)) = 0 in E3 and q ∈ F

}
(25)
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Apparently, S is a three-dimensional submanifold of {M, gij}. Given a target
posture P ′ = xd on the surface, the set NP ′ = S ∩ {q|x(q) = xd} constitutes
a one-dimensional manifold as shown in Fig. 5. The hybrid position/force
control problem is now to prove that, given a starting posture q(0) of the
robot lying on NP (= S ∩ {q|x(q) = P}), the orbit of motion as a solution
to the closed-loop dynamics (23) converges asymptotically to some point
belonging to NP ′ as t tends to infinity.

In order to prove this stability problem, it is convenient to split the dynam-
ics of (23) into the two dynamics, the one is a quotient dynamics expressed
in the kernel space of w = JT

q (∂ϕ/∂xT) and the other is expressed in the
image space of w. To do this, let us introduce the orthogonal transformation
in the tangent space TqF defined by

q̇ = (P, w/‖w‖)
(

η̇
ϕ̇

)
= Q ˙̄q (26)

where Q = (P, w/‖w‖), ˙̄q = (η̇T, ϕ̇)T, and ‖w‖ denotes the Euclidean norm
of w, P is a 4× 3 matrix whose column vectors are orthogonal to each other
and to w and have the unit norm. Then, Q becomes an orthogonal matrix
satisfying Q−1 = QT. Hence, if q̇ ∈ ker(w) (the kernel space of vector w), then
ϕ̇ = wTq̇ = 0. Restriction of (23) to the kernel space of w can be attained by
multiplying (23) by PT from the left in the following way

PTG(q)
d
dt

(P η̇) + PT

{
1
2
Ġ + S

}
P η̇

+PTCP η̇ + PTJT
q + {ζẋ + kPxΔx} = 0 (27)

where Px signifies the orthogonal projection of Δx to the tangent plane of
the constraint surface at x in E3. This equation can be rewritten into the
form

Ḡ(q)η̈ +
{

1
2

˙̄G + S̄

}
η̇ + C̄η̇ + (JqJ

T
q )1/2 {ζẋ + kPxΔx} = 0 (28)

since P is given as P = JT
q (JqJ

T
q )−1/2 and Ḡ(q) = PTG(q)P , C̄ = PTCP ,

and S̄ = PTSP − 1
2 ṖTGP + 1

2PTGṖ . Note that S̄ is skew symmetric, too.
It should be remarked that equation (28) is similar to (12) by the reason
that ẋ in (28) stands for the velocity on the 2-dimensional tangent plane of
the constraint surface, but η̇ in (28) signifies motion of the joint orthogonally
complemented to w. Since η̇ is of 3-dimension, it is still redundant. Neverthe-
less, by using a similar argument given in the previous section, the asymptotic
stability of position control can be established by choosing appropriate gains
C, ζ, and k provided that the normal curvature in any direction of the con-
straint surface is small in comparison with the reciprocal of a representative
length of rigid links constituting the robot arm. It should be noted that in
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this case the Hessian matrix of the scalar function U = (k/2)‖Δx‖2 is given
by the same form as (16) with qd ∈ NP ′ . Apparently, the null space of Hqd

at q = qd ∈ NP ′ is coincident with Tqd
NP ′ . Even if the Hessian is taken over

the 3-dimensional submanifold S (see Fig. 5), it coincides with the Hessian
of (16) when q reaches some qd ∈ NP ′ .

Finally it can be concluded easily from (23) that the convergences q̇(t) → 0
and x(t) → xd as t → ∞ imply the convergence of f(t) to fd as t → ∞.

The stability notion of Definition 2 can be extended so as to permit joint
motions to start with non-zero velocities q̇(0) �= 0 at t = 0 (see the details
[8]).
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Appendix A

First note that Ġ =
∑

i{∂G/∂qi}q̇i the skew-symmetric matrix S(q, q̇) in (3)
is expressed as (2). Evidently, the second term in bracket ( ) of (6) corresponds
to the first term in { } of (2) and the third term in ( ) of (6) does to the
second term in { } of (2). Hence, it follows from (2)

n∑
j=1

Skj q̇j =
n∑

j=1

1
2

[{
∂

∂qj

(
n∑

i=1

q̇igki

)}
q̇i −

{
∂

∂qk

(
n∑

i=1

q̇igij

)}
q̇j

]

=
n∑

j=1

n∑
i=1

1
2

{(
∂gik

∂qj
− ∂gij

∂qk

)}
q̇iq̇j (A-1)

Substituting this into (4) by comparing the last two terms of (6) with the
last bracket { } of (A-1) results in the equivalence of (3) to (4).

Appendix B (Proof of the Theorem)

First we remark that the Riemannian distance d(q, q̄) connecting q and q̄ in
{M, gij} is numerically given on the basis of physical unit [

√
kg m] and ‖x‖

of vector x in E expresses the Euclidean norm. Then, numerical values of G
are given based upon [kgm2], C on [kgm2/s], stiffness k on [kg/s2], and hence
C0 on [

√
kg m2], since C =

√
kC0. Next we remark that, according to the

physical size of the concerned robot, the maximum eigenvalue of G(q) is at
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most 0.5 [kgm2] and the maximum length of robot links is less than 0.5 [m].
Then, it is possible to find a positive definite matrix C0 such that it satisfies

C0 ≥ 2αG(q) +
1
4α

JT(q)J(q), J(q)C−1
0 JT(q) ≤ αI3 (B-1)

with α = 1.0 [1/
√

kg ] for all q ∈ B(q∗d , r0). Since J(q) is nondegenerate in
B(q∗d , r0), there exists a constant σ0 [1/

√
kg ] such that

J(q)C−1
0 JT(q) ≥ σ0I3 (B-2)

for all q ∈ B(q∗d , r0). In other words, it is desirable to choose C0 so as to make
σ0 in (B-2) as large as possible with the conditions of (B-1). Now, let

V =
√

kΔxTJC−1
0 Gq̇ +

k

2
‖Δx‖2, W =

1
4
q̇TGq̇ +

k

2
‖Δx‖2 (B-3)

Then, it follows from multiplying (B-1) by JC−1
0 from the left and by C−1

0 JT

from the right that JC−1
0 GC−1

0 JT ≤ (1/2)I3, which makes it possible to show

0 ≤ W ≤ E + V ≤ 3W (B-4)

Next, we differentiate E + V in t, that results in

Ė + V̇ = −
√

kq̇TC0q̇ + V̇

= −
√

k
{
q̇TC0q̇ + kΔxTJC−1

0 JTΔx
}

+
√

kẋTJC−1
0 Gq̇ +

√
kΔxTH(q̇)q̇ (B-5)

where H(q̇) is a 3× 4-matrix described as

H(q̇) = J̇C−1
0 G + JC−1

0

{
1
2
Ġ− S

}
(B-6)

By noting again the inequality

ẋTJC−1
0 Gq̇ ≤ α

2
q̇TGq̇ +

1
2α

ẋTJC−1
0 GC−1

0 JTx

≤ 1
2
q̇T

{
αG +

1
2α

JTJ

}
q̇ (B-7)

and by substituting (B-7) into (B-5) with setting α = 1.0 [1/
√

kg ], we have

Ė + V̇ ≤ −
√

kq̇T

(
C0 −

1
2
G− 1

4
JTJ

)
q̇

−
√

kkΔxTJC−1
0 JTΔx +

√
kΔxTH(q̇)q̇ (B-8)
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On account of (B-1) with α = 1.0, this reduces to

Ė + V̇ ≤ −
√

k

{
1
2
q̇TGq̇ + σ0k‖Δx‖2

}
−
√

k
{
q̇TGq̇ −ΔxTH(q̇)q̇

}
≤ −2σ0

√
kW −

√
k
{
q̇TGq̇ −ΔxTH(q̇)q̇

}
(B-9)

At this stage, we note that (13) implies ‖Δx(t)‖ ≤ ‖Δx(0)‖ and, since H(q̇)q̇
is quadratic in q̇, there exists a positive constant γ0 > 0 with dimension [m]
such that ‖Δx(t)‖ < γ0 implies

q̇G(q)q̇ ≥ ΔxTH(q̇)q̇ (B-10)

On account of (B-4), this makes (B-9) reduce to

Ė + V̇ ≤ −2
3
σ0

√
k(E + V ) (B-11)

provided that ‖Δx(0)‖ < γ0. Thus, from (B-11) it follows that√
E(t) + V (t) ≤

√
E(0) + V (0)e−(σ0

√
k/3)t

=
√

k/2‖Δx(0)‖e−(σ
√

k)t (B-12)

where we set σ = σ0/3 [1/
√

kg ]. Hence

d(q(0), q(t)) ≤
∫ t

0

√
gij q̇i(τ)q̇j(τ) dτ ≤

∫ t

0

√
2{E(τ) + V (τ)} dτ

≤
√

k‖Δx(0)‖
∫ t

0

e−σ
√

kτdτ ≤ ‖Δx(0)‖/σ (B-13)

Since x(q) is of C∞-class, for a given ε > 0 there exists δ1(ε) > 0 [
√

kg m]
such that any q(0) ∈ B(q∗, δ1(ε)) implies ‖x(q(0)) − x(q∗)‖ ≤ ‖Δx(0)‖ <
min{γ0, σε/2}. Then, we see from (B-13) and taking δ(ε) = min{δ1(ε), ε/2}
that any q(0) ∈ B(q∗, δ(ε)) implies

d(q(t), q∗) ≤ d(q(t), q(0)) + d(q(0), q∗)
≤ ‖Δx(t)‖/2 + ε/2 < ε/2 + ε/2 = ε (B-14)

that proves the stability of q∗ on a manifold. The asymptotic convergence
of q(t) to NP ′ is now apparent from (B-14) and the exponential decay of
‖Δx(q(t))‖ to zero shown in (B-12).



Modeling and Control of Multi-Body
Mechanical Systems: Part II Grasping
under Rolling Contacts between
Arbitrary Shapes

Suguru Arimoto

Abstract. Modeling of 2-dimensional grasping and object manipulation un-
der rolling contacts by a pair of multi-joint robot fingers with an arbitrary
fingertip contour curve is discussed. Stabilization of grasping by using a con-
trol signal based on the fingers-thumb opposability is discussed from the
analysis of a Morse-Bott function introduced as an artificial potential. An
exentsion of modeling of 3-D grasping under rolling contact constraints is
discussed under the circumstance of arbitrary shapes of the fingertips and
object.

1 Modeling of 2-D Grasping under Arbitrary
Geometry

A mathematical model of 2-dimensional grasping of a rigid object with an
arbitrary shape by a pair of robot fingers with arbitrarily fingertip shapes
(see Fig. 1) is derived on the basis of the following differential-geometric
assumptions of rolling contacts [1]:

1) Two contact points on each contour curve must coincide at a single
common point without mutual penetration, and

2) the two contours must have the same tangent at the common contact
point.

The assumptions are equivalent to Nomizu’s definition of a rolling contact
[2], which is described by a mathematical form by using the common tangent
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and two normals at the contact. In [1], a set of Euler-Lagrange’s equations
of motion of the overall fingers/object system is given in the form:

mẍ−
∑

i=1,2

(fin̄0i + λib̄0i) = 0 (1)

Iθ̈ +
∑

i=1,2

(−1)i
{
fi(bT

0iγ0i)− λi(nT
0iγ0i)

}
= 0 (2)

Gi(qi)q̈i +
{

1
2
Ġi(qi) + Si(qi, q̇i)

}
q̇i + fi

{
JT

i (qi)n̄0i − (−1)i(bT
i γi)ei

}
+λi

{
JT

i (qi)b̄0i − (−1)i(nT
i γi)ei

}
= ui, i = 1, 2 (3)

Here qi stands for the joint vectors as q1 = (q11, q12, q13)T and q2 =
(q21, q22)T, θ̇ denotes the angular velocity of rotation of the object around the
object mass center Om expressed by position vector x = (x, y)T in terms of
the inertial frame coordinates O-xy. Equation (1) expresses the translational
motion of the object with mass m and (2) its rotational motion with inertia
moment I around the mass center Om. At the contact point Pi, bi denotes
the unit tangent vector expressed in local coordinates of Oi-XiYi fixed to the
fingertip of finger i (i = 1, 2) as shown in Fig. 1 and Fig. 2, and ni denotes
the unit normal to the tangent expressed in terms of Oi-XiYi. Similarly, b0i

and n0i are the unit tangent and normal at Pi expressed in terms of local
coordinates Om-XY fixed to the object. All these unit vectors are determined
uniquely from the assumptions 1) and 2) on the rolling contact constraints at
each contact point Pi dependent on each corresponding value si for i = 1, 2
as shown in Fig. 2. Equation (3) denotes joint motions of finger i with the
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inertia matrix Gi(qi) for i = 1, 2, and e1 = (1, 1, 1)T and e2 = (1, 1)T. All
position vectors γi and γ0i for i = 1, 2 are defined as in Fig. 2 and expressed
in their corresponding local coordinates. The unit vectors b̄0i and n̄0i are
expressed in the inertial frame coordinates as follows:

b̄0i = Π0b0i, n̄0i = Π0n0i, Π0 = (rX , rY ) (4)

where Π0 ∈ SO(2) and rX and rY denote the unit vectors of X- and Y -axes
of the object in terms of the frame coordinates O-xy. In (1) to (3), fi and
λi are Lagrange’s multipliers that correspond to the following rolling contact
constraints, respectively:{

Qbi = (ri − rm)Tb̄0i + bT
i γi − bT

0iγ0i = 0, i = 1, 2
Qni = (ri − rm)Tn̄0i + nT

i γi − nT
0iγ0i = 0, i = 1, 2

(5)

where ri denotes the position vector of the fingertip center Oi expressed in
terms of the frame coordinates O-xy and rm the position vector of Om in
terms of O-xy. In parallel with Euler-Lagrange equations (1) to (3), arclength
parameters si (i = 1, 2) should be governed by the first order differential
equations

{κ0i(si) + κi(si)}
dsi

dt
= (−1)i(θ̇ − ṗi), i = 1, 2 (6)

where κi(si) denotes the curvature of the fingertip contour for i = 1, 2, κ0i(si)
the curvature of the object contour at contact point Pi for i = 1, 2, and
pi = qT

i ei for i = 1, 2. Throughout the paper we use (˙) for denoting the
differentiation of the content of bracket ( ) in time t as θ̇ = dθ/dt in (6) and
( ′) for that of ( ) in length parameter si as illustrated by γ′

i(si) = dγi(si)/dsi.
As discussed in the paper [1], we have

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

bi(si) = γ′
i(si)

(
=

dγi(si)
dsi

)
, b0i(si) = γ′

0i(si), i = 1, 2

ni(si) = κi(si)b′i(si), n0i(si) = b′0i(si), i = 1, 2

bi(si) = −κi(si)n′
i(si), b0i(si) = −κ0i(si)n′

0i(si), i = 1, 2

(7)

It is well known in text books on differential geometry of curves and surfaces
(for example, see [3]) that the last two equations of (7) constitute Frenet-
Serret’s formulae for the fingertip contour curves and object contours. Note
that all equations of (1) to (3) are characterized by length parameters si

for i = 1, 2 through unit vectors n0i, b0i, bi, and ni and vectors γ0i and γi

expressed in each local coordinates, but quantities of the second fundamental
form of contour curves, that is, κi(si) and κ0(si) for i = 1, 2, do not enter into
(1) to (3). It is shown that the Euler-Lagrange equations (1) to (3) can be
derived by applying the variational principle to the Lagrangian of the system
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L(X ; s1, s2) = K(X, Ẋ)−
∑

i=1,2

(fiQni + λiQbi) (8)

where X denotes the position state vector X = (x, y, θ, qT
1 , qT

2 )T and

K(X, Ẋ) =
m

2
(ẋ2 + ẏ2) +

I

2
θ̇2 +

∑
i=1,2

1
2
q̇iGi(qi)q̇i (9)

Note that K(X, Ẋ) is independent of the shape parameters s1 and s2 but
Qni and Qbi defined in (5) are depnedent on si for i = 1, 2, respectively. The
corresponding variational principle is written in the following form:∫ t1

t0

{
δL + uT

1 δq1 + uT
2 δq2

}
dt = 0 (10)

When u1 = 0 and u2 = 0, (1) to (3) constitute the Euler equation for the
base manifold {M, gij} under the constraints of (5), where M stands for a set
of all possible postures of the system specified by X and gij the Riemannian
metric induced by the inertia matrix G(X) = diag(m, m, I, G1, G2).

2 Integrability of Rolling Contact Constraints

In order to derive the traditional rolling contact condition as discussed in the
text book [4], first note that the assumption 1) implies

ri + Πiγi = rm + Π0γ0i, i = 1, 2 (11)

from which (5) follows through taking the inner product of (11) and b̄0i or
n̄0i for i = 1, 2. On the other hand, differentiation of (11) concerning t yields

ṙi + Π̇iγi + Πiγ
′
i

dsi

dt
= ṙm + Π̇0γ0i + Π0γ

′
0i

dsi

dt
(12)

which is reduced to⎧⎪⎨
⎪⎩

Rbi = (ṙi − ṙm)Tb̄0i − (−1)i
{

ṗin
T
i γi + θ̇nT

0iγ0i

}
= 0

Rni = (ṙi − ṙm)Tn̄0i − (−1)i
{
ṗib

T
i γi − θ̇bT

0iγ0i

}
= 0

(13)

by taking the inner product of (12) and b̄0i or n̄0i for i = 1, 2. The first
equation of (13) shows the traditional rolling constraint as the zero relative
velocity of rolling of the contact at the fingerend to the object contour. It
imports us to know that the Pfaffian form of (12) is integrable in t, that is,

d
dt

Qni = Rni,
d
dt

Qbi = Rbi, i = 1, 2 (14)
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which can be derived through (6) that reflects the assumption 2) (see [1]).
More precisely, the rolling contact constraints define the distribution over the
tangent space TXM according to

Q̇bi = 	T
biẊ, Q̇ni = 	T

niẊ, i = 1, 2 (15)

Here, the vectors are given as

	b1 =

⎡
⎢⎢⎣

−b̄01

nT
01γ01

JT
1 b̄01 + (nT

1 γ1)e1

02

⎤
⎥⎥⎦ , 	n1 =

⎡
⎢⎢⎣

−n̄01

−bT
01γ01

JT
1 n̄01 + (bT

1 γ1)e1

02

⎤
⎥⎥⎦ (16)

and, similarly, 	b2 and 	n2.

3 Stabilization Based on a Morse-Bott Function

In this paper, we solve a stabilization problem of grasping in a special case
that the object has a pair of parallel flat surfaces. Therefore it can be regarded
as a rectangular object in a two dimensional horizontal plane. In this case, it
is possible to consider a class of control signals defined by

ui =−ciq̇i + (−1)ikJT
i (qi)(r1−r2)− kαiN̂iei, i=1, 2 (17)

where k stands for a position feedback gain common for i = 1, 2 with the
physical unit N/m, αi in m2 is also a positive constant for i = 1, 2. The
variable N̂i is defined as

N̂i = eT
i {qi(t)− qi(0)} = pi(t)− pi(0), i = 1, 2 (18)

and ci denotes a positive constant for joint damping for i = 1, 2. The first term
of the right hand side of (17) stands for damping shaping, the second term
plays a role of fingers-thumb opposition, and the last term adjusts possibly
some abundant motion of rotation of the object through contacts. Note that
the sum of inner products of ui and q̇i for i = 1, 2 is given by

∑
i=1,2

q̇T
i ui =−

d
dt

⎧⎨
⎩k

2
‖r1−r2‖2+

∑
i=1,2

αi

2
N̂2

i

⎫⎬
⎭−

∑
i=1,2

ci‖q̇i‖2 (19)

Substitution of control signals of (17) into (3) yields

Giq̈i +
{

1
2
Ġi + Si

}
q̇i + ciq̇i − (−1)ikJT

i (r1 − r2) + kαiN̂iei

+fi

{
JT

i n̄0i − (−1)i(bT
i γi)ei

}
+λi

{
JT

i b̄0i − (−1)i(nT
i γi)ei

}
=0, i=1, 2 (20)
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Fig. 3. Minimization of the squared norm ‖r1−r2‖2 over rolling motions is attained
when the straight line P1P2 connecting the two contact points becomes parallel to
the vector (r1 − r2), that is, O1O2 becomes parallel to P1P2

Hence, the overall closed-loop dynamics is composed of the set of Euler-
Lagrange equations of (1), (2), and (20) that are subject to four algebraic
constraints of (5) and the pair of first-order differential equations of (6) that
governs the update law of arclength parameters s1 and s2. It should be also
remarked that, according to (19), the sum of inner products of (1) and ẋ, (2)
and θ̇, and (20) and q̇i for i = 1, 2 yields the energy relation

d
dt

{
E(X, Ẋ) + P (X)

}
= −

∑
i=1,2

ci‖q̇i‖2 (21)

with

P (X) =
k

2
‖r1 − r2‖2 +

∑
i=1,2

kαi

2
N̂2

i (22)

Here, P (X) represents the artificial potential energy that is a scalar function
depending on only q1 and q2. It is importnat to note that the closed-loop
dynamics of (1), (2), and (19) can be written in a general form

G(X)Ẍ +
{

1
2
Ġ(X)+S(X, Ẋ)+C

}
Ẋ+

∂P (X)
∂X

+
∑

i=1,2

(fi	ni+λi	bi)=0 (23)

where C = diag(02, 0, c1I3, c2I2).
Now, P (X) can be regarded as a Morse-Bott function of X on the base

manifold, since both ‖r1 − r2‖2 and N̂2
i are positive semi-definite functions

of q1 and q2. Further, since in this case b̄0i ⊥ n̄0i (see Fig. 3), the first term
of P (X) can be regarded as a function of length parameters such that

U(X) =
k

2
‖r1 − r2‖2 =

k

2
{d2(s1, s2) + l2(s1, s2)} = U(s1, s2) (24)
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with the object width lw and{
d(s1, s2) = s1 − s2 − bT

1 γ1 + bT
2 γ2

l(s1, s2) = −lw + (nT
1 γ1 + nT

2 γ2)
(25)

(see Figs. 2 and 3). From this geometric meaning of U , U(s1, s2) is locally
minimized when the line connecting the contact points P1 and P2 becomes
parallel to the line O1O2 shown in Fig. 3. Since si (i = 1, 2) are also dependent
on pi (i = 1, 2) and θ as shown in (5), it is still not trivial to find the condition
for locally minimizing the potential function P (X). Instead, we transform (1),
(2), and (20) into

mẍ−
∑

i=1,2

(Δfin̄0i + Δλib̄0i) = 0 (26)

Iθ̈ +
∑

i=1,2

(−1)i(Δfi(bT
0iγ0i)−Δλi(nT

0iγ0i)) + SN = 0 (27)

Giq̈i +
{

1
2
Ġi+Si

}
q̇i + ciq̇i + ΔNiei + Δfi

{
JT

i n̄0i − (−1)i(bT
i γi)ei

}
+Δλi

{
JT

i b̄0i − (−1)i(nT
i γi)ei

}
= 0, i = 1, 2 (28)

by using the lifting{
Δfi = fi + kl(s1, s2)
Δλi = λi − (−1)ikd(s1, s2)

i = 1, 2 (29)

Here, SN and ΔNi are given by{
SN = k{(s1 − s2)l + lwd}
ΔNi = kNi + kαi{pi − pi(0)}, i = 1, 2

(30)

where

Ni = (−1)i(bT
i γi)l − (nT

i γi)d, i = 1, 2 (31)

The details of the derivation of (26) to (31) are given in Appendix A. Then,
it is possible to show (see Appendix A) that holds

dP = SN dθ +
∑

i=1,2

ΔNie
T
i dqi (32)
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or
∂P

∂θ
= SN and

∂P

∂qi
= ΔNiei (i = 1, 2) (33)

That is, a local minimum of P as a function P (X, s1, s2) of X , s1 and s2 is
attained when SN = 0 and ΔNi = 0 (i = 1, 2). This condition is satis-
fied when O1O2 is parallel to P1P2 and ΔNi = 0. Finally, the closed-loop
dynamics of (26) to (28) can be written in the form, correspondingly to (23),

G(X)Ẍ+
(

1
2
Ġ(X)+S(X, Ẋ)

)
Ẋ+CẊ+ΦΛ+

∂P

∂X
=0 (34)

where Λ = (Δf1, Δf2, Δλ1, Δλ2)T and Φ is the 8× 4-matrix defined by Φ =
(	n1,	n2,	b1,	b2). We note that, at a regular position of object pinching
like Fig. 1, four 8-dimensional column vectors of Φ are independent to each
other. That is, Φ is nondegenerate.

Now, we derive the Hessian matrix of P (X, s1, s2) at ∂P (X)/∂X = 0 (that
is, SN = 0 and ΔNi = 0 for i = 1, 2) by differentiating SN and ΔNi in t.
Since P (X, s1, s2) is regarded as a function of pi and si as seen in (22) and
(24), we obtain first the Hessian of P with respect to z = (θ, p1, p2)T in the
following form (see Appendix B):

∂P

∂z
=
(

∂P

∂θ
,
∂P

∂p1
,
∂P

∂p2

)T

= (SN , ΔN1, ΔN2)
T (35)

∂2P

∂z∂zT

∣∣∣∣
∂P/∂z=0

= k

⎛
⎝ v1 + v2 −v1 −v2

−v1 α1 + v11 −v12

−v2 −v21 α2 + v22

⎞
⎠ = Hz (36)

where the details of vi and vij are given in Appendix B. Then, it is possible
to verify that the Hessian of P with respect to z at ∂P/∂z = 0 is positive by
choosing αi to satisfy αi > −l/κi (note that l < 0 according to (25)). Finally,
the Hessian of P with respect to the position vector X is given by

HX =
∂2P

∂X∂XT
=
(

∂zT

∂X

)
∂2P

∂z∂zT

(
∂z

∂XT

)
= DTHzD (37)

where D is a constant 3× 8-matrix of the form

D =

⎛
⎝ 1 0 0 0 0 0 0 0

0 0 0 1 1 1 0 0
0 0 0 0 0 0 1 1

⎞
⎠ (38)

because z can be expressed by z = DX . Thus, the Hessian matrix HX is
degenerate, but it is possible to see that the function P (X) can be regarded
as a Morse-Bott function as discussed in the next section.
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4 Dirichlet-Lagrange Stability for 2-D Precision
Prehension

The equilibrium manifold is determined by the set of all postures that have
a form depicted in Fig. 3, in which O1O2 becomes parallel to P1P2. More
rigorously, the equilibrium manifold denoted by NP ′ can be regarded as a set
of all X that satisfy SN = 0, ΔN1 = 0 and ΔN2, that is, ∂P/∂z = 0. Since
at any point X on NP ′ the tangent space TXNP ′ must be the kernel space
of the transformation matrix D that is a mapping z = DX . In other words,
the tangent space TXNP ′ is coincident with the null space of the Hessian
matrix of P with respect to X . Thus, P (X) can be regarded as a Morse-Bott
function whose minimum is attained on NP ′ . It is then possible to prove
the asymptotic stability of motion of the prehension by applying a similar
method discussed in section 4 of Part I. In fact, by using the orthogonal
transformation

Ẋ =
(
R, Φ(ΦTΦ)−1/2

)(
η̇
ϕ̇

)
(39)

a quotient dynamics of (34) is obtained in such a way that holds

Ḡη̈ +
(

1
2

˙̄G + S̄

)
η̇ + RTCRη̇ + RTDT ∂P

∂z
= 0 (40)

Here, R is composed of 4 column vectors with the unit norm orthogonal to
each other satisfying RTΦ = 0, and Ḡ = RTGR, and

S̄ = RTSR− 1
2
ṘTGR +

1
2
RTGṘ (41)

If, during maneuvering the system, R is always nondegenerate, it is possible to
apply the method developed in section 4 of Part I to prove the exponentially
asymptotic stability of motion on a manifold.

It should be remarked that, in order to confirm the stability on a manifold
regarding the closed-loop dynamics of (34) by applying a similar method to
Appendix A in Part I, the damping term CẊ in (34) is not fully dissipated,
because there does not originally arise any damping term in object dynam-
ics of (26) and (27). Notwithstanding this, it is important to note that the
velocity constraints (13) imply

(ṙ1 − ṙ2)n̄01 + θ̇
∑

i=1,2

nT
0iγ0i +

∑
i=1,2

ṗin
T
i γi = 0 (42)

which results in

l2w θ̇2 ≤ cθ1‖q̇1‖2 + cθ2‖q̇2‖2 (43)
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Fig. 4. A pair of robot fingers is grasping a rigid object with arbitrary smooth
surfaces. The inertial frame is denoted by the coordinates O-xyz and the body
coordinates are expressed by Om-XY Z with body-fixed unit vectors rX , rY , and
rZ .

with some positive constants cθ1 and cθ2. Similarly to this argument, we
obtain from (13)

‖ẋ‖2 ≤ c01‖q̇1‖2 + c02‖q̇2‖2 + c03θ̇
2 (44)

These two inequalities imply that RTCR in (40) is positive definite and hence
the dynamics of (40) is fully dissipated.

A naive discussion of stability proof of the closed-loop dynamics of pinching
with DOF-redundancy is found in [5] for robot fingers with spheric fingerends.

5 Modeling of 3-D Grasping

Dynamics of 3-D grasping (see Fig. 4) of a rigid objectwith arbitrary surfaces by
a pair of robot fingers with smooth surfaces can be also derived under the same
assumptions 1) and 2) given in section I. We show the Euler-Lagrange equation
of motion of the fingers-object system under rolling contact constraints in the
following:

M ẍ− f1n̄1 − f2n̄2 − λ1b̄1 − λ2b̄2 − ξ1ē1 − ξ2ē2 = 0 (45)

Hω̇ + ω×Hω −
∑

i=1,2

{fi(γ0i×n0i) + λi(γ0i×b0i) + ξi(γ0i×e0i)} = 0 (46)
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Fig. 5. Rolling contact constraints

Gi(qi)q̈i +
{

1
2
Ġi + Si

}
q̇i + JT

i (qi)
{
n̄ifi + b̄iλi + ēiξi

}
−WT

i {γi × (nifi + biλi + eiξi)} = ui, i = 1, 2 (47)

Here, q1 = (q11, q12)T, q2 = (q21, q22, q23)T, γi(si) denote the locus of contact
point Pi as shown in Fig. 5(a), (b0, n0, e0) constitutes the orthogonal matrix
expressed in the local coordinates Om-XY Z (see Fig. 5(b)), (b0i, n0i, e0i) has
a similar meaning to the 2-D case. Further, Ji(qi) = ∂ri/∂qT

i , Wi = ∂ωi/∂q̇T
i ,

ω = (ωX , ωY , ωZ)T, H denotes the inertia tensor of the object, and{
p1 = q11 + q12, p2 = q22 + q23

ω1 = (0, 0, ṗ1)T, ω2 = (q̇21, ṗ2 sin q21, ṗ2 cos q21)T
(48)

and further Π0 = (rX , rY , rZ) is subject to Π̇0 = Π0ω×. It should be noted
that the length parameter si is updated by the first order differential equation

{κ0i(si) + κin(si)}
dsi

dt
= −eT

0iω − eT
i ωi, i = 1, 2 (49)

where κin denotes the normal curvature of the fingerend of the finger i and
κ0i that of the object surface at the contact point Pi. We remark that (46)
is expressed in local coordinates Om-XY Z fixed to the object but (45) and
(47) are expressed in frame coordinates O-xyz. Interestingly, (45) and (46)
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are described in a “wrench” vector form, that is, (45) and (46) as a whole
express the Euler-Lagrange equation of the object in wrench space.

The rolling contact constraints are derived from the assumptions 1) and
2) that can be stated as⎧⎪⎨

⎪⎩
Qbi = (ri − r0)Tb̄0i + (γT

i bi − γT
0ib0i) = 0

Qni = (ri − r0)Tn̄0i + (γT
i ni − γT

0in0i) = 0
Qei = (ri − r0)Tē0i + (γT

i ei − γT
0ie0i) = 0

(50)

by taking inner products of the contact condition r1 − r0 = Π0γ0 − Π1γ1

and b̄1, n̄1, or ē1. It is possible to show (see [7]) that

0 =
d
dt

Qbi = Rbi = (ṙi − ṙ0)Tb̄0i + (γi × bi)Tωi − (γ0i × b0i)Tω (51)

holds and, similarly, 0 = dQni/dt = Rni and 0 = dQei/dt = Rei.

6 Conclusions

Dirichlet-Lagrange stability of motion of mechanical systems under geometric
constraints is discussed in an extensive way for a class of nonlinear mechanical
systems with redundancy in the system’s DOF. Specifically, the structual
details of the Hessian matrix of an artificial potential related to the problem of
stabilization of 2-D precision prehension is presented. It is shown that such an
artificial potential function introduced to position control under constraints
plays a crucial role as a Morse-Bott function in stability of motions subject
to DOF-redundancy. Any discussions on stability of motions of 2-D grasping
of a rigid object with arbitrary contours are not yet presented. In the case of
3-D grasping, none of control problems of grasping from the dynamical point
of view has been tackled except a limited class of ball-plate problems [7].
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Appendix A

It is evident to see that substitution of (29) into (26) to (28) yields (1), (2),
and (20). Next, from (22), (24), (6), and (29) to (31) it follows that

d
dt

P =
d
dt

U(s1, s2) +
∑

i=1,2

kαiN̂i
dN̂i

dt

=
∑

i=1,2

[
(−1)ik

{
(nT

i γi)d− (−1)i(bT
i γi)l

}
κi

dsi

dt
+ kαiN̂i

dPi

dt

]

=
∑

i=1,2

[
k
{
(nT

i γi)d− (−1)i(bT
i γi)l

}
(θ̇ − ṗi) + kαiN̂iṗi

]

= k
{

(nT
1 γ1 + nT

2 γ2)d + (bT
1 γ1 − bT

2 γ2)l
}

θ̇ +
∑

i=1,2

(
kNi + kαiN̂i

)
ṗi

= k {(l + lw)d + (s1 − s2 − d)l} θ̇ +
∑

i=1,2

ΔNiṗi (A-1)

In the light of (30), this equation yields (32).

Appendix B

Calculating directly the derivatives of SN and ΔNi for i = 1, 2 in t, we have⎧⎪⎪⎨
⎪⎪⎩

dSN

dt
= (v1 + v2)

dθ

dt
− v1

dp1

dt
− v2

dp2

dt

dΔNi

dt
= −vi

dθ

dt
+ (kαi + vii)

dpi

dt
− vij

dpj

dt

(B-1)

for i �= j, where⎧⎪⎪⎪⎨
⎪⎪⎪⎩

vi = k
{
−l/κi + lw(nT

i γi) + (−1)ilwd(bT
i γi)/l

}
vij = −k

{
(nT

1 γ1)(nT
2 γ2)− (bT

1 γ1)(bT
2 γ2)

}
vii = k

{
−l/κi − lnT

i γi + dbT
i γi + (nT

i γi)2 + (bT
i γi)2

} (B-2)

for i = 1, 2 and j �= i. Note that l < 0, all v1, v2, v11, and v22 are positive,
and v12 = v21 when SN = 0 and ΔNi = 0 for i = 1, 2.



Sliding Mode Control for a High-Speed Linear
Axis Driven by Pneumatic Muscles

Harald Aschemann and Dominik Schindele

Abstract. This paper presents a cascaded sliding mode control scheme for a new
pneumatic linear axis. Its guided carriage is driven by a nonlinear mechanism con-
sisting of a rocker with a pair of pneumatic muscle actuators arranged at both sides.
Modelling leads to a system of four nonlinear differential equations including poly-
nomial approximations of the volume characteristic as well as the force character-
istic of the pneumatic muscles. The differential flatness of the system is exploited
in combination with sliding mode techniques to stabilize the error dynamics. Fur-
thermore, a proxy-based sliding mode controller was designed, which is a modified
version of sliding mode control as well as an extension of PID control. It allows
for accurate tracking during normal operation and smooth recovery from large po-
sition errors after unexpected incidents. The internal pressure of each pneumatic
muscle is controlled by a fast underlying control loop, whereas in an outer control
loop the carriage position and the mean internal pressure of the muscles are con-
trolled. Remaining model uncertainties are compensated by a disturbance observer.
Experimental results show an excellent control performance.

1 Introduction

Linear electrical direct drives provide for both high dynamics as well as small track-
ing errors but they are subject to a significant disadvantage: their thermal behaviour
when high forces have to be applied for a longer period of time. As an alternative,
current research focusses on a novel pneumatical linear drive that is actuated by
pneumatic muscles in combination with a nonlinear mechanism: this low-cost solu-
tion does not show the mentioned thermal problem, provides large maximum forces,
and allows for maximum velocities of approx. 1.3 m/s in a workspace of approx.
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1 m. The main advantages of pneumatic muscles as compared to classical cylinders
are given by a larger maximum force, a significantly reduced weight, the absence of
stick-slip effects, and the insensitivity to dirty working environment. Furthermore,
pneumatic muscle actuators are significantly cheaper than pneumatic cylinders or
electric direct drives with the same maximum force. Due to the nonlinear char-
acteristics of a pneumatic muscle nonlinear control approaches are mandatory. A
nonlinear drive mechanism is employed as depicted in Fig. 1. The carriage is driven
by a rocker. A roller bearing unit at the tip of the rocker allows for both a rotational
and translatory relative motion and transmits the drive force to the carriage. The
rocker is actuated by a pair of pneumatic muscles in an antagonistic arrangement.
The mounting points of the pneumatic muscles at the rocker have be defined so as
to gain a reasonable tradeoff between increase in maximum velocity and reduction
of the achievable drive force. The mass flow rate of compressed air into and out
of each pneumatic muscle is controlled by means of a separate proportional valve,
respectively. Pressure declines in the case of large mass flow rates are avoided by us-
ing an air accumulator for each muscle. The paper is structured as follows: first, the

Fig. 1. Experimental setup (left), kinematical structure of the high-speed linear axis (right)

control-oriented modelling of the mechatronic system is addressed. For the nonlin-
ear characteristics of the pneumatic muscle, i.e. the muscle volume and the muscle
force, polynomial descriptions are used in terms of contraction length and internal
muscle pressure. Second, by taking advantage of differential flatness, sliding mode
control techniques are employed to design a nonlinear cascade control. The inner
control loops involve a fast pressure control for each muscle, respectively. The outer
control loop achieves a decoupling of rocker angle and mean muscle pressure as
controlled variables and provides the reference pressures for the inner pressure con-
trol loops. In order to account for model uncertainties in the equation of motion,
a disturbance torque is introduced and estimated by a nonlinear reduced-order dis-
turbance observer. As shown by experimental results, desired trajectories for both
rocker angle and mean pressure can be tracked independently with high accuracy.
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2 Modelling of the Mechanical Structure

As for modelling, first the mechanical system part is regarded. The chosen
mechanical model for the high-speed axis consists of three elements (Fig. 1): a rigid
body for the rocker as actuated link (mass mR), a single lumped mass mA for the
lateral connecting rods and a lumped mass mC for the carriage. The inertial yz-
coordinate system is chosen in the base joint of the rocker. The mounting points of
the pneumatic muscles at the rocker are characterised by the distance lA in longitu-
dinal direction and the perpendicular distance b of the lateral connecting rods (right
part of Fig. 1). The motion of the linear axis is completely described by the gener-
alized coordinate ϕ(t), which denotes the inclination of the rocker w.r.t. the plumb
line. The carriage position is related to the rocker angle by the horizontal component
zC(t) = � · tanϕ(t), where � denotes the constant distance in y-direction between the
rotary joint at the carriage and the rocker joint. The nonlinear equation of motion
directly follows from Lagrange’s equations in form of a second order differential
equation

J(ϕ)ϕ̈ + k(ϕ , ϕ̇) = τ− τU , (1)

with the resulting mass moment of inertia J(ϕ) and the term k(ϕ , ϕ̇), which takes
into account the centrifugal as well as the gravity forces [10]. The drive torque τ
resulting from the muscle forces FMi, i = {l,r} can be stated as

τ =�ex · (FMr ·�rFr×�eMr + FMl ·�rFl×�eMl) , (2)

with the unity vector �ex in x-direction and the unity vectors �eMi = �dMi/dMi in
direction of the pneumatic muscle forces. The position vectors�rFi describe the con-
necting points, where the muscle forces act on the rocker. All remaining model
uncertainties are taken into account by the disturbance torque τU . On the one hand,
these uncertainties stem from approximation errors concerning the static muscle
force characteristics. On the other hand, time-varying damping and friction acting
on the carriage as well as on the rocker depend in a complex manner on lots of
influence factors and cannot be accurately represented by a simple friction model.

3 Modelling of the Pneumatic System Part

In this section the modelling of the pneumatic system part is adressed. In this way
the dynamics of the internal muscle pressures is regarded, in contrast to the model
of [3], [8]. A mass flow ṁMi into the pneumatic muscle leads to an increase in inter-
nal pressure pMi and a contraction Δ�Mi in longitudinal direction due to specially ar-
ranged fibers. This contraction effect can be exploited to generate muscle forces. The
force FMi and the volume VMi of a pneumatic muscle depend in a nonlinear way on
the according internal pressure pMi as well as the contraction length Δ�Mi. Given the
length of the uncontracted muscle �M , the contraction length Δ�Mi = �M− dMi(ϕ)
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can be calculated with the distance dMi between both connecting points of each
muscle [9]. The dynamics of the internal muscle pressure can be derived from a
mass flow balance in combination with the pressure-density relationship. As the in-
ternal muscle pressure is limited by a maximum value of 7 bar, the ideal gas equation
represents an accurate description of the thermodynamic behaviour. The thermody-
namic process is modelled as a polytropic change of state with n = 1.26 as identified
polytropic exponent [5]. The identified volume characteristic of the pneumatic mus-
cle can be described by a polynomial function of both contraction length and muscle
pressure [1]

VMi (Δ�Mi, pMi) =
3

∑
j=0

a j ·Δ� j
Mi ·

1

∑
k=0

bk · pk
Mi. (3)

Finally, the resulting pressure dynamics for the muscle i is given by [9]

ṗMi =
n

VMi + n · ∂VMi
∂ pMi

· pMi

[
R ·TMi · ṁMi−

∂VMi

∂Δ�Mi
· dΔ�Mi

dϕ
· pMi · ϕ̇

]
, (4)

where RL denotes the gas constant of air. The temperature TMi in a pneumatic muscle
is not measured but can be approximated with good accuracy by the temperature
Tamb of the ambiance. The muscle force FMi depends on the internal pressure pMi as
well as the contraction length Δ�Mi and represents the connection of the mechanical
and the pneumatic system part. Its nonlinear characteristic has been identified by
measurements and, then, approximated by the following polynomial description [1]

FMi =

{
F̄Mi, F̄Mi > 0

0 , else
, F̄Mi =

3

∑
m=0

(am ·Δ�m
Mi) pMi−

4

∑
n=0

(bn ·Δ�n
Mi) . (5)

4 Tracking Control Design

The sliding mode control design is performed by exploiting the differential flat-
ness property of the system under consideration [11]. The robustness of the result-
ing control structure w.r.t. external disturbances as well as unmodeled dynamics is
increased as compared to the usual flatness based control design [11].

4.1 Sliding Mode Control of Internal Muscle Pressure

With the internal muscle pressure as flat output candidate yi = pMi, the nonlinear
state equation(4) can be solved for the mass flow as input variable upi = ṁMi

ṁMi =
1

kui (Δ�Mi, pMi)
· [ṗMi + kpi

(
Δ�Mi,Δ �̇Mi, pMi

)
· pMi

]
. (6)
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The contraction length Δ�Mi as well as its time derivative Δ �̇Mi can be considered
as scheduling parameters in a gain-scheduled adaptation of kui and kpi. With the
internal pressure as flat output, its first time derivative ṗMi = υpi is introduced as
new control input (Fig. 3). According to the given first order pressure dynamics the
following sliding surfaces spi are defined [12], [6]

spi = pMid− pMi = epi. (7)

The convergence to the sliding surfaces in face of model uncertainty can be achieved
by introducing the following dynamics involving discontinuous signum-functions

ṡpi =−Wpi · sign(spi), Wpi > 0 . (8)

With properly chosen coefficients Wpi the sliding surfaces spi = 0 are attained
in a finite amount of time depending on the initial conditions. Consequently, the
corresponding control laws become

υpi = ṗMid +Wpi · sign(spi). (9)

4.2 Sliding Mode Decoupling Control

For the outer control loop, the following candidates can be chosen as flat outputs
[1]: the rocker angle y1 = ϕ and the mean pressure y2 = pM = (pMl + pMr)/2. The
trajectory control of the mean pressure allows for increasing stiffness concerning
disturbance forces acting on the carriage [2]. The input variables are represented by
the muscle pressures pMl and pMr and can be calculated by the inverse dynamics [1]

u =
[

ul

ur

]
=
[

pMl (y1, ẏ1,υ1,υ2,τU )
pMr (y1, ẏ1,υ1,υ2,τU )

]
, (10)

with the control inputs υ1 = ÿ1 and υ2 = y2. A sliding surface sϕ is defined for the
outer control loop in the form

sϕ = (ϕ̇d− ϕ̇)+α1 · (ϕd−ϕ) = ėϕ +α1 · eϕ , (11)

At this, the coefficient α1 must be chosen positive in order to obtain a Hurwitz-
polynomial. The convergence to the sliding surfaces in face of model uncertainty
can be achieved by specifying a discontinuous signum-function

ṡϕ =−Wϕ · sign(sϕ), Wϕ > 0 . (12)

With a properly chosen positive coefficient Wϕ , the sliding surface sϕ = 0 is reached
in finite time depending on the initial conditions. This leads to the stabilizing control
law for the rocker angle
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υ1 = υϕ = ϕ̈d +α1 · (ϕ̇d− ϕ̇)+Wϕ · sign(sϕ). (13)

For the second stabilizing control input υ2 the desired trajectory for the mean
pressure pMd is directly utilised in a feedforward manner, i.e., υ2 = pMd .

4.3 Reduction of Chattering

For implementation, an ideal actuator switching behaviour is not preferable in view
of noise emission, wear and resulting reduced lifetime of the proportional valves.
Hence, instead of the discontinuous switching function sign(s j) the continuous
hyperbolic tangent function can be advantageously employed

Wj · tanh
(s j

ε

)
, j = {pl, pr,ϕ}. (14)

Using these switching functions, high-frequency chattering can be reduced. This
comes at the price of a non-ideal sliding mode within a resulting boundary layer
determined by the parameter ε in the switching function.

4.4 Proxy-Based Sliding Mode Decoupling Control

Proxy-based sliding mode control is a modification of sliding mode control as well
as an extension of PID-control [7], [13]. The basic idea is to introduce a virtual
carriage, called proxy, which is controlled using sliding mode techniques, whereas
the proxy is connected to the real carriage by a PID-type coupling force, see Fig. 2.
The goal of proxy-based sliding mode is to achieve precise tracking during normal
operation and smooth, overdamped recovery in case of large position errors, which
leads to an inherent safety property. The sliding mode control law for the virtual
carriage results from equation (13) with ϕs denoting the rocker angle of the proxy

υa = ϕ̈d +α1 · (ϕ̇d− ϕ̇s)+Wϕ · tanh

(
ϕ̇d− ϕ̇s +α1 (ϕd−ϕs)

ε

)
. (15)

The PID-type virtual coupling between the proxy and the real carriage is given by

υc = KI

∫
(ϕs−ϕ)dt+ KP (ϕs−ϕ)+ KD (ϕ̇s− ϕ̇) . (16)

Assuming a proxy with vanishing inertia, the condition υa = υc holds. By intro-
ducing the new variable a as integrated difference between the real and the vir-
tual rocker angle a =

∫
(ϕs−ϕ)dt, the virtual coupling (16) and the stabilizing

proxy-based sliding mode control law (15) result in [7]

υc = KIa + KPȧ+ KDä , (17)

υa = ϕ̈d +α1ėϕ −α1ä+Wϕtanh

(
ėϕ +α1eϕ −α1ȧ− ä

ε

)
. (18)
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The implementation of the control law is shown in the right part of Fig. 2.
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Fig. 2. Coupling between virtual and real carriage (left). Implementation of the proxy-based
sliding mode control (right).

4.5 Nonlinear Reduced-Order Disturbance Observer

Disturbance behaviour and tracking accuracy in view of model uncertainties can
be significantly improved by introducing a nonlinear reduced-order disturbance ob-
server as described in [4]. The observer design is based on the equation of motion.
The key idea is to extend the state equation with an integrator as disturbance model

ẏ = f(y,τU ,u) , τ̇U = 0 , (19)

where y = [ϕ , ϕ̇ ]T denotes the measurable state vector. The estimated disturbance
torque and the state equation for z are given by

τ̂U = hT (y, τ̂U ,u) ·y + z , (20)

ż = Φ (y, τ̂U ,u) , (21)

with the chosen observer gain hT =
[

h1 h1
]
. The observer gain h and the nonlinear

function Φ have to be chosen properly, so that the steady-state observer error e =
τU − τ̂U converges to zero. Thus, the function Φ can be determined as follows

ė = 0 = τ̇U −hT (y, τ̂U ,u) · ẏ−Φ (y,τU −0,u) . (22)

In view of τ̇U = 0, equation (22) yields

Φ (y,τU −0,u) =−hT (y, τ̂U ,u) · ẏ . (23)

The linearized error dynamics has to be made asymptotically stable. Accordingly all
eigenvalues of the Jacobian Je = ∂Φ(y,τ̂U ,u)

∂ (τ̂U ) must lie in the left complex half-plane.
This can be achieved by proper choice of the observer gain h1. The stability of the
closed-loop control system has been investigated by thorough simulations.
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Fig. 3. Implementation of the sliding mode control

5 Experimental Results

For experiments at the test rig, the control structure depicted in Fig. 3 has been im-
plemented. Within the inverse kinematics, the desired values for the rocker angle
as well as the according first two time derivatives are calculated from the desired
trajectory for the carriage position. The only imperfectly known inverse dynam-
ics is corrected by an estimate of the resulting disturbance torque that acts on the
rocker. Underlying fast sliding mode pressure control loops achieve an accurate
tracking behaviour for the desired pressures provided by the outer control loop. The
nonlinear valve characteristic (VC) has been identified by measurements [1] and is
compensated by its approximated inverse valve characteristic (IVC) in each input
channel. For investigation of both tracking performance and steady-state accuracy,
the tracking of synchronized desired trajectories for the controlled variables as
shown in Fig. 4 has been considered. Here, the desired trajectories for the carriage
position, the corresponding desired velocity, the acceleration, and the mean pressure
are depicted. These desired trajectories are subject to a maximum carriage velocity
of 1.3 m/s and a maximum carriage acceleration of 5 m/s2. The resulting tracking
error for the carriage ez is depicted in the middle lower part of Fig. 4. As for the
carriage position, the maximum tracking error during the acceleration and decel-
eration intervals is approx. 3.5 mm. The steady-state error is negligible. The load
stiffness of the carriage regarding external disturbances can be enlarged by speci-
fying higher mean pressures within the admissible pressure interval. The specified
reference trajectory for the mean pressure varies between 4 bar and 5 bar. Concern-
ing the mean pressure, maximum control errors of approx. 0.3 bar occur during the
movements, whereas the steady-state error is less than 0.03 bar, see the right lower
part of Fig. 4. By introducing the estimated disturbance torque into the inverse dy-
namics, the tracking error is reduced significantly, as shown in the left part of Fig. 5.
In this figure, also a comparison of sliding mode control and proxy-based sliding
mode control is depicted. The robustness of the proposed solution is shown by a
non-modelled additional mass of 25 kg, which represents almost the double of the
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Fig. 4. Desired values for the carriage position, velocity, acceleration and mean pressure;
corresponding control errors ez = zCd− zC and epM = pMd − pM

nominal value. The corresponding tracking errors with and without additional mass
are depicted in the right part of Fig. 5. Whereas the steady-state errors remain al-
most unchanged, the maximum tracking error increases up to approx. 8 mm due to
the unmodelled inertia forces during the acceleration and deceleration phases. The
closed-loop stability, however, is not affected by this parametric uncertainty.
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and proxy-based sliding mode control (PBSM) concerning the corresponding control error
ez = zCd− zC (left); Tracking error ez with and without an additional mass of 25 kg (right)

6 Conclusion

In this paper, a nonlinear cascaded trajectory control is presented for a new lin-
ear axis driven by pneumatic muscles that offers a significant increase in both
workspace and maximum velocity as compared to a directly actuated solution. The
modelling of this mechatronic system leads to nonlinear system equations of fourth
order containing identified polynomial descriptions of the nonlinear characteristics
of the pneumatic muscle. The nonlinear valve characteristic is linearized using its
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approximated inverse characteristic. The inner control loops involve a sliding mode
control of the internal muscle pressure with high bandwidth. The outer control loop
achieves a sliding mode decoupling control of the rocker angle and the mean muscle
pressure as controlled variables. As alternative to the standard sliding mode con-
troller, a proxy-based sliding mode controller is introduced for the outer control
loop, which aims at increasing the safety property during operation. Uncertainties
in the muscle force characteristics as well as nonlinear friction are directly taken into
account by a compensation scheme based on a nonlinear disturbance observer. Ex-
perimental results emphasize the excellent closed-loop performance with maximum
position errors of approx. 3.5 mm during the movements, negligible steady-state
position error and steady-state pressure error of less than 0.03 bar.
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Using Hamiltonians to Model
Saturation in Space Vector
Representations of AC Electrical
Machines

Duro Basic, Al Kassem Jebai, François Malrait,
Philippe Martin, and Pierre Rouchon

Abstract. An Hamiltonian formulation with complex fluxes and currents is
proposed. This formulation is derived from a recent Lagrangian formulation
with complex electrical quantities. The complexification process avoids the
usual separation into real and imaginary parts and notably simplifies model-
ing issues. Simple modifications of the magnetic energy underlying standard
(α, β) models yield new (α, β) models describing machines with magnetic
saturation and saliency. We prove that the usual expression of the electro-
mechanical torque (wedge product of fluxes and currents) is related to a
rotational invariance characterizing sinusoidal machines.

1 Introduction

In [1] a Lagrangian formulation with complex currents and fluxes is proposed.
In this paper we develop the Hamiltonian counterpart only sketched in [1]. For
three-phase electrical machines we recall the usual model linear in fluxes, cur-
rents and voltages, and give its Hamiltonian formulation based on magnetic
energies depending quadratically on fluxes. We then propose a modification of
the usual magnetic energies in order to take into account magnetic saturation.
We prove that if these additional terms preserve the rotational invariance of
the usual magnetic energies, then the resulting electro-magnetic torque al-
ways admits the usual form and is thus still proportional to the imaginary
part of the product of complex conjugate of fluxes with stator currents.
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Section 2 is devoted to permanent-magnet machines. In subsection 2.1 we
present the Hamiltonian formulation of the usual model with saliency effects.
In subsection 2.2 we introduce a class of saturation models and prove that, if
we just replace in the usual model the constant inductances by inductances
depending on the flux level, the resulting model does not admit in general
a magnetic energy and thus is not correct from a physical ground. For sinu-
soidal machines where the magnetic energy is invariant with respect to the
choice of angle origin, we prove in subsection 2.3 that the usual formula giving
the electro-magnetic torque as a wedge product between the flux and cur-
rent remains valid even in the presence of saliency and magnetic saturation.
Section 3 is devoted to induction machines. In subsection 3.1 we present the
Hamiltonian formulation of the usual model. In subsection 3.2 we introduce
a class of saturation models. For machines with sinusoidally wound phases
where the magnetic energy is invariant with respect to the choice of angle
origin, we prove in subsection 3.3 that the usual formula giving the electro-
magnetic torque as a wedge product between the flux and current remains
valid even in the presence of magnetic saturation. In section 4 we suggest
some further developments.

The authors acknowledge John Chiasson for interesting discussions and
precious comments.

2 Permanent-Magnet Machines

2.1 Hamiltonian Modeling

In the (α, β) frame (total power invariant transformation), the usual dynamic
equations read (see, e.g., [2, 4]):⎧⎪⎨

⎪⎩
d

dt

(
Jθ̇
)

= np�
(
(λı∗s + φ̄e−jnpθ − μıse

−2jnpθ)ıs
)
− τL

d

dt

(
λıs + φ̄ejnpθ − μı∗se

2jnpθ
)

= us −Rsıs

(1)

where

− ∗ stands for complex-conjugation, � means imaginary part, j =
√
−1 and

np is the number of pairs of poles.
− θ is the rotor mechanical angle, J and τL are the inertia and load torque,

respectively.
− ıs ∈ C is the stator current, us ∈ C the stator voltage.
− λ = (Ld + Lq)/2 and μ = (Lq − Ld)/2 (inductances Ld > 0 and Lq > 0,

saliency when Ld �= Lq).
− The constant φ̄ > 0 represents the rotor flux due to the permanent

magnets.

It is proved in [1] that (1) admits the following Hamiltonian formulation
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d

dt

(
Jθ̇
)

= −∂Hm

∂θ
− τL,

d

dt
φs = us −Rsıs, ıs = 2

∂Hm

∂φ∗
s

(2)

where the magnetic energy Hm

Hm(φs, φ
∗
s , θ) =

1
2Ld

(
	(φse

−jnpθ)− φ̄
)2

+
1

2Lq

(
�(φse

−jnpθ)
)2

(3)

=
1

2Ld

(
φse

−jnpθ + φ∗
se

jnpθ

2
− φ̄

)2

+
1

2Lq

(
φse

−jnpθ −φ∗
se

jnpθ

2j

)2

=
1

8Ld

(
φse

−jnpθ + φ∗
se

jnpθ − 2φ̄
)2 − 1

8Lq

(
φse

−jnpθ − φ∗
se

jnpθ
)2

where the rotor angle θ, the stator flux φs and its complex conjugate φ∗
s are

considered independent variables when computing the partial derivatives of
Hm. In particular, ıs = 2∂Hm

∂φ∗
s

reads

ıs = ejnpθ

2Ld

(
φse

−jnpθ + φ∗
se

jnpθ − 2φ̄
)

+ ejnpθ

2Lq

(
φse

−jnpθ − φ∗
se

jnpθ
)

=
(

1
2Ld

+ 1
2Lq

)
φs − 1

Ld
φ̄ejnpθ +

(
1

2Ld
− 1

2Lq

)
φ∗

se
2jnpθ.

Inverting this relation we recover the usual relation between φs and the stator
current

φs = λıs + φ̄ejnpθ − μı∗se
2jnpθ.

2.2 Magnetic Saturation

To take into account magnetic saturation, we keep the structure equations (2)
and modify the magnetic energy Hm given in (3). For obvious physical
reasons, Ld and Lq should be decreasing functions of |φs|2. The simplest
magnetic saturation model will be given by setting

Hm(φs, φ
∗
s , θ) =

Sd(|φs|2)
L̄d

(
	(φse

−jnpθ)− φ̄
)2

+
Sq(|φs|2)

L̄q

(
�(φse

−jnpθ)
)2

where the saturation functions Sd and Sq are increasing function of |φs|2 with
Sd(0) = Sq(0) = 1 and where L̄d and L̄q are the unsaturated values of Ld

and Lq (low stator currents). The saturation model we propose is then given
by (2) with this modified Hamiltonian.

Using this Hamiltonian formulation to define the relationships between ıs,
φs and τem as in (2) automatically maintains energy conservation. This con-
servation results from the fact that mixed partial derivatives are independent
of order,
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∂2Hm

∂θ∂φ∗
s

=
∂2Hm

∂φ∗
s∂θ

.

This implies

−2
∂τem

∂φ∗
s

=
∂ıs
∂θ

where τem and ıs are considered as function of the independent variables φs,
φ∗

s and θ.
On the other hand, an incorrect but seemingly ”natural” way to include

saturation in the usual (α, β) model

d

dt

(
J

d

dt
θ

)
= np� (φ∗

sıs)− τL

d

dt
φs = us −Rsıs

ıs =
(

1
2Ld

+
1

2Lq

)
φs +

(
1

2Ld
− 1

2Lq

)
φ∗

se
2jnpθ − φ̄

Ld
ejnpθ

consists in taking Ld and Lq as function of ρ2 = φsφ
∗
s , without changing the

formula for the electro-magnetic torque. If we proceed like this we get

τem =
np

2j

((
1

2Ld
− 1

2Lq

)(
(φ∗

s)
2e2jnpθ−(φs)2e−2jnpθ

)
−
(

φ̄

Ld

)(
φ∗

sejnpθ − φse
−jnpθ

))

where Ld and Lq depend on ρ2 = |φs|2 Then some computations give

− 2
∂τem

∂φ∗
s

− ∂ıs
∂θ

= jnp

⎛
⎝d

(
1

2Ld
− 1

2Lq

)
dρ2

(
(φ∗

s)
2e2jnpθ − (φs)2e−2jnpθ

)

−
d
(

φ̄
Ld

)
dρ2

(
φ∗

se
jnpθ − φse

−jnpθ
)⎞⎠φs.

Thus such modeling does not in general respect the commutation condition
−2∂τem

∂φ∗
s

= ∂ıs

∂θ : no magnetic energy exists for such non-physical models. The
correct current relationships include additional terms with derivatives of the
functions Sd and Sq:

ıs =
(

1
2Ld

+
1

2Lq

)
φs +

(
1

2Ld
− 1

2Lq

)
φ∗

se
2jnpθ − φ̄

Ld
ejnpθ

+
S′

d(|φs|2)
2L̄d

φs

(
	(φse

−jnpθ)− φ̄
)2

+
S′

q(|φs|2)
2L̄q

φs

(
�(φse

−jnpθ)
)2

.
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2.3 Sinusoidal Models

Assume that the magnetic energy Hm admits the following rotational
invariance associated to sinusoidal back electro-magnetic force (bemf):

∀φs ∈ C, ∀θ, ξ ∈ S
1, Hm(ejnpξφs, e

−jnpξφ∗
s, ξ + θ) = Hm(φs, φ

∗
s, θ).

Then with H(ψ, ψ∗) = Hm(ψ, ψ∗, 0), Hm admits the following form

Hm(φs, φ
∗
s , θ) ≡ H(φse

−jnpθ, φ∗
se

jnpθ).

In this case

τem = −∂Hm

∂θ
= −jnp

(
∂H
∂ψ∗φ∗

se
jnpθ − ∂H

∂ψ
φse

−jnpθ

)

ıs = 2
∂Hm

∂φ∗
s

= 2ejnpθ ∂H
∂ψ∗ .

Since H is a real quantity ı∗s = e−jnpθ ∂H
∂ψ . Thus we recover the usual formula

relating the electro-magnetic torque to the flux φs and current ıs:

τem = np
φ∗

sıs − φsı
∗
s

2j
= np� (φ∗

sıs) . (4)

When Hm does not admit such rotational invariance, τem is different from
np� (φ∗

sıs). Thus (4) is a direct consequence of rotational invariance. The
saturation models considered in the previous subsection admit this rotational
invariance and yield electro-magnetic torques satisfying (4).

A simple example of a non sinusoidal model is a machine with a trapezoidal
bemf F (npθ) (a sinusoidal model corresponds to F (npθ) = cos(npθ)). In this
case we change the Hamiltonian in (2) by

Hm =
1

2Ld

(
	(φs(F (npθ) + jF (npθ + π

2 ))) − φ̄
)2

+
1

2Lq

(
�(φs(F (npθ) + jF (npθ + π

2 )))
)2

where e−jnpθ in (3) is replaced by F (npθ) + jF (npθ + π
2 ). This Hamiltonian

is not rotationally invariant.

3 Induction Machines

3.1 Hamiltonian Modeling

We will now proceed as for permanent-magnet machines. The standard T -
model of an induction machine admit the following form:
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⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

d

dt

(
Jθ̇
)

= np�
(
Lmı∗re

−jnpθıs
)
− τL

d

dt

(
Lm

(
ır + ıse

−jnpθ
)

+ Lfrır
)

= −Rrır

d

dt

(
Lm

(
ıs + ıre

jnpθ
)

+ Lfsıs
)

= us −Rsıs

(5)

where

− np is the number of pairs of poles, θ is the rotor mechanical angle, J and
τL are the inertia and load torque, respectively.

− ır ∈ C is the rotor current (in the rotor frame, different from the (d, q)
frame) , ıs ∈ C the stator current (in the stator frame, i.e. the (α, β) frame)
and us ∈ C the stator voltage (in the stator frame). The stator and rotor
resistances are Rs > 0 and Rr > 0.

− The inductances Lm, Lfr and Lfs are positive parameters with Lfr, Lfs �
Lm.

− The stator (resp. rotor) flux is φs = Lm

(
ıs + ıre

jnpθ
)

+ Lfsıs (resp. φr =
Lm

(
ır + ıse

−jnpθ
)

+ Lfrır).

The Hamiltonian formulation proposed in [1] reads:

d

dt

(
Jθ̇
)

= −∂Hm

∂θ
− τL,

d

dt
φr = −2Rr

∂Hm

∂φ∗
r

,
d

dt
φs = us− 2Rs

∂Hm

∂φ∗
s

(6)

where the magnetic energy Hm now depends on θ, the rotor flux φr and
its complex conjugate φ∗

r , the stator flux φs and its complex conjugate φ∗
s .

The rotor (resp. stator) current is then given by 2∂Hm

∂φ∗
r

(resp. 2∂Hm

∂φ∗
s

). For the
standard model (5), we have

Hm = 1
2Lf

(φs − ejnpθφr)(φ∗
s − e−jnpθφ∗

r) + 1
2Ls

φsφ
∗
s + 1

2Lr
φrφ

∗
r (7)

with Lf = LfsLfr

Lm
+Lfs +Lfr, Ls = Lfs + Lfs+Lfr

Lfr
Lm and Lr = Lfr + Lfs+Lfr

Lfs
Lm.

Such Hamiltonian formulations based on fluxes are also named π-models
whereas T -models based on currents correspond to Lagrangian formulations
(see, e.g., [5]).

3.2 Magnetic Saturation

As in section 2.2, we will take into account magnetic saturation, we assume
that in (7), Ls, Lr and Lf are decreasing function of |φs|2. Then the magnetic
saturation model will be given by :

1
Ls

=
Ss(|φs|2)

L̄s
,

1
Lr

=
Sr(|φs|2)

L̄r
,

1
Lf

=
Sf (|φs|2)

L̄f
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where the saturation functions Ss, Sr and Sf are increasing function of |φs|2
with Ss(0) = Sr(0) = Sf (0) = 1 and where L̄s , L̄r and L̄f are the unsaturated
values of Ls , Lr and Lf . The saturated Hamiltonian is then

Hm = Sf (|φs|2)
2L̄f

|φs − ejnpθφr|2 + Ss(|φs|2)
2L̄s

|φs|2 + Sr(|φs|2)

2L̄r
|φr |2

With the dynamic equations then given by (6). This saturation model is the
Hamiltonian counter-part of the saturation model proposed in [5].

3.3 Sinusoidal Models

The Hamiltonian Hm here above admits the following rotational invariance
associated to a sinusoidal bemf:

∀φs ∈ C, ∀θ, ξ ∈ S
1,

Hm(ejnpξφs, φr, e
−jnpξφ∗

s, φ
∗
r , ξ + θ) = Hm(φs, φr, φ

∗
s , φ

∗
r , θ).

Then with H(ψs, ψr, ψ
∗
s , ψ∗

r ) = Hm(ψs, ψr, ψ
∗
s , ψ∗

r , 0), Hm admits the
following form

Hm(φs, φr, φ
∗
s, φ

∗
r , θ) ≡ H(e−jnpθφs, φr, e

jnpθφ∗
s, φ

∗
r).

In this case

τem = −∂Hm

∂θ
= −jnp

(
∂H
∂ψ∗

s

φ∗
se

jnpθ − ∂H
∂ψs

φse
−jnpθ

)

Since ıs = 2∂Hm

∂φ∗
s

= 2ejnpθ ∂H
∂ψ∗

s
and ı∗s = 2∂Hm

∂φs
= 2e−jnpθ ∂H

∂ψs
we recover the

usual formula relating the electro-magnetic torque to stator flux and current:

τem = −jnp
φ∗

sıs − φsı
∗
s

2
= np� (φ∗

sıs) .

4 Concluding Remarks

It remains also to validate experimentally such magnetic-saturation mod-
els. Substantial modifications to such Hamiltonian formulation are needed
to include, in parallel to magnetic-saturation, magnetic hysteresis and the
associated energy losses [3].
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Iterative Learning Control Using
Stochastic Approximation Theory with
Application to a Mechatronic System

Mark Butcher and Alireza Karimi

Abstract. In this paper it is shown how Stochastic Approximation theory
can be used to derive and analyse well-known Iterative Learning Control
algorithms for linear systems. The Stochastic Approximation theory gives
conditions that, when satisfied, ensure almost sure convergence of the algo-
rithms to the optimal input in the presence of stochastic disturbances. The
practical issues of monotonic convergence and robustness to model uncer-
tainty are considered. Specific choices of the learning matrix are studied, as
well as a model-free choice. Moreover, the model-free method is applied to a
linear motor system, leading to greatly improved tracking.

1 Introduction

Iterative Learning Control (ILC) is a technique used to enhance the tracking
performance of systems that perform repetitive operations. In this approach,
information ‘learnt’ from previous repetitions is used to improve the per-
formance of the system during the next repetition/iteration i.e. reduce the
tracking error. ILC has been shown to be very effective for systems that
are predominately affected by deterministic, repetitive disturbances, which
are learnt from one iteration to the next. However, when the system is af-
fected by stochastic disturbances the tracking performance is greatly dimin-
ished [9, 5]. It is, therefore, important to develop ILC algorithms that have
reduced sensitivity to this type of disturbance.

Although the deterministic aspects of ILC have received more attention,
certain researchers have already proposed algorithms that are robust to the
presence of stochastic disturbances.
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1) The use of a forgetting factor in ILC was first proposed in [12] for a
D-type ILC law. It was then proposed in [2] for P-type ILC. It is shown
that by introducing the forgetting factor the system’s output converges to
a neighbourhood of the desired one, despite the presence of norm-bounded
initialisation errors, fluctuations of the dynamics and random disturbances.
However, in [19] and [5], it is shown that the use of a forgetting factor can
increase the expected value and variance of the error signal compared to
standard ILC algorithms.

2) The filtering of the ILC command has been proposed in certain papers
as a way of reducing the influence of noise on the error [15]. However, whilst
it reduces the error variance, it causes a nonzero converged mean error.

3) Kalman filtering-type techniques have also been applied to ILC to es-
timate the controlled output, in the presence of disturbances [22, 20, 21, 14,
8, 1]. In the case of perfect knowledge of the disturbance covariance matri-
ces and system parameters, convergence to the optimal input can be shown.
However, perfect knowledge is unrealistic.

4) In [22] another ILC algorithm is proposed using a learning gain that de-
creases inversely proportionally to the iteration number and has the form of a
Stochastic Approximation (SA) algorithm. No detailed analysis is, however,
carried out. An algorithm with a similar iteration decreasing learning gain is
also developed in [17] for repetitive disturbance rejection in the presence of
measurement noise. This algorithm is derived in a similar way to recursive
least squares identification algorithms, without mention to SA. The applica-
tion of SA theory to ILC is most directly considered in [6] and [7] for the
linear and nonlinear cases respectively. It is shown that the proposed ILC law
converges almost surely to the optimal input and the output error is min-
imised in the mean square sense as the number of iterations tends to infinity.
The algorithm requires only that the optimal input is realisable. Knowledge of
neither the disturbance covariance matrix nor the system matrices is required
because a simultaneous perturbation type algorithm is employed, which uses
random perturbations to estimate the gradient. The disadvantage of this
approach is slow convergence.

The main contribution of this paper is to show how ILC for linear systems
affected by stochastic disturbances fits into the SA theory framework. Us-
ing SA theory it is possible to derive necessary conditions for well-known
ILC algorithms to converge almost surely to the optimal input signal in the
presence of stochastic disturbances. In addition, the important practical is-
sues of monotonic convergence of the error signal and robustness to system
uncertainty are addressed. Also two choices of learning matrix based on an
uncertain model are studied, as well as a model-free choice. These choices are
compared in a simulation example in [4].

In [6] the input is randomly perturbed and applied to the system in a
second experiment at each iteration in order to estimate the gradient of the
proposed cost function. In contrast, here either an uncertain system model
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or a second special experiment is considered. These choices will typically lead
to faster convergence.

Steepest descent algorithms have been applied to ILC for the discrete-
time case in [11]. Although certain similarities exist between the algorithms
considered here and steepest descent algorithms, the major difference is the
conditions SA sets on the step sizes between iterations. These conditions
are necessary to ensure almost sure convergence to the optimal input in the
presence of stochastic disturbances.

This paper is organised as follows. In Section 2 the notational framework is
defined and the assumptions are stated. In Section 3 ILC is considered from
an SA perspective. Then in Section 4 possible choices of the learning matrix
are considered. In Section 5 experimental results obtained on a linear motor
system are presented. Finally in Section 6 some conclusions are made.

2 Notation

We consider the linear time-invariant (LTI), discrete-time, stable SISO system
G(q), shown in Fig. 1, that carries out a finite-time, repetitive tracking task
and whose controlled output zk(t), at time t and repetition k, is given by:

zk(t) = G(q)uk(t) + dk(t), (1)

where uk(t) is the input to the system, dk(t) is the load disturbance and q
is the forward-shift time domain operator. The system’s measured output,
yk(t), is:

yk(t) = zk(t) + nk(t), (2)

where nk(t) is the measurement disturbance. It should be mentionned that
if G(q) represents a closed-loop transfer function then dk(t) and nk(t) will
be the signals resulting from the filtering of external disturbances by the
corresponding closed-loop transfer functions.

uk(t) G(q)

nk(t)

zk(t) yk(t)++

dk(t)

Fig. 1. System affected by stochastic disturbances

The controlled tracking error signal is defined as:

εk(t) = yd(t)− zk(t), (3)

where yd(t) is the bounded desired system output, which is defined over a
finite repetition duration for t = 0, . . . , N − 1, and the measured error signal
is given by:
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ek(t) = yd(t)− yk(t). (4)

As the signals are defined over a finite duration, it is possible to express
the system’s input-output relationship by a matrix representation. Taking
advantage of the non-causal filtering possibilities of ILC, the lifted-system
representation is used. For a system with a relative degree m we define the
vectors:

uk = [uk(0), uk(1), . . . , uk(N −m− 1)]T (5)
zk = [zk(m), zk(m + 1), . . . , zk(N − 1)]T . (6)

The vectors yk, dk, nk and yd are defined similarly to zk. Using these vectors,
the measured output of the system is:

yk = Guk + dk + nk, (7)

where G is:

G =

⎡
⎢⎢⎢⎣

gm 0 . . . 0
gm+1 gm . . . 0

...
...

. . .
...

gN−1 gN−2 . . . gm

⎤
⎥⎥⎥⎦ , (8)

gi being the ith Markov parameter of G(q). The controlled error vector is:

εk(uk) = yd − zk = yd −Guk − dk (9)

and the measured error vector:

ek(uk) = yd − yk = εk(uk)− nk, (10)

where the errors’ dependence on uk is explicitly stated.
Furthermore, we have that the real system can be represented as:

G(q) = Ĝ(q)[1 + Δ(q)] (11)

where Ĝ(q) is a model of the system and Δ(q) represents the multiplicative
uncertainty. This representation is given in lifted-system form as:

G = Ĝ[I + Δ] (12)

where I is the identity matrix, and Ĝ and I+Δ are Toeplitz matrices formed
similarly to (8) from the Markov parameters of qm̂Ĝ(q) and qm−m̂[1+Δ(q)],
respectively. m̂ is the relative degree of Ĝ(q).

Definition: A real, square matrix M (not necessarily symmetric) is called
positive definite M > 0 if and only if all the eigenvalues of its symmetric part
(M + MT )/2 are positive.
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2.1 Assumptions

(A1) The ideal input: u∗ = G−1yd is realisable.
(A2) The system uncertainty satisfies: I + Δ > 0.
(A3) The disturbances dk and nk are zero-mean, weakly stationary ran-
dom vectors with unknown covariance matrices Rd and Rn, respectively.
Additionally, they have bounded, unknown cross-covariance matrices Rdn

and Rnd. Moreover, different realisations of dk and nk between iterations
are mutually independent.
(A4) The mean input is bounded for all iterations: E{uk} < ∞ ∀k.

Remarks:

1) It is shown in [10] that a sufficient condition for Assumption (A2) is that
the filter qm−m̂[1+Δ(q−1)] is strictly positive real (SPR). So when m = m̂,
Assumption (A2) is satisfied when ‖Δ‖∞ < 1. This condition occurs
frequently in the model uncertainty representation and so is a reasonable
assumption.

2) The validity of Assumption (A4) will be discussed later in the chapter.

3 ILC from a SA Viewpoint

The ideal aim of tracking control is to achieve zero controlled error. When
stochastic disturbances affect a system this objective is not possible. A rea-
sonable aim is then to set the mean controlled error equal to zero. We can
state a goal of the ILC algorithm, thus, as to iteratively calculate the optimal
input signal u∗ such that:

E{Lεk(u∗)} = E{Lek(u∗)} = 0, (13)

where E{·} denotes the mathematical expectation and L is a non-singular
matrix.

It is straightforward to see that the solution to criterion (13) is u∗ in
Assumption (A1). However, in order to calculate the ideal input u∗ directly
exact knowledge of G is needed, which is not available. Nevertheless, u∗ can
be found using an iterative stochastic approximation (SA) procedure, such
as the Robbins-Monro algorithm [18], which does not require exact system
knowledge. This algorithm calculates the input iteratively as:

uk+1 = uk + γkLek(uk). (14)

This algorithm clearly has the form of a standard P-type ILC law with an
iteration varying learning gain γk. In the next subsection conditions will be
given that, according to SA theory, ensure almost sure convergence of the
algorithm to the ideal input.
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3.1 Almost Sure Convergence

Theorem 1. Under the Assumptions (A1), (A3) and (A4), the iterative
update algorithm (14) converges almost surely to the solution u∗ of (13) when
k → ∞ if:

(C1) The sequence γk of positive steps satisfies:

∞∑
k=0

γk = ∞ and
∞∑

k=0

γ2
k < ∞. (15)

(C2) E{Lek(uk)} is monotonically decreasing:

Q(uk) =
d

duk
E{Lek(uk)} < 0. (16)

Proof. The proof is similar to that of the Robbins-Monro stochastic
approximation algorithm.

Condition (C1) should be fulfilled by an appropriate choice of the sequence
γk. Q(uk), in Condition (C2), can be rewritten as:

Q(uk) =
d

duk
E{Lek(uk)} =

d

duk
E{Lyd − LGuk + Ldk + Lvk}

= −LG = −LĜ[I + Δ] (17)

and so Condition (C2) becomes:

LĜ[I + Δ] > 0. (18)

Remark: By combining equations (9), (10), (14) and A1 we can obtain the
input error evolution as:

eu
k+1 = u∗ − uk+1 = (I− γkLG)eu

k + γkL(yd − dk − nk). (19)

A necessary, but not sufficient, condition for asymptotic convergence of the
input error, in the absence of disturbances, is:

|λi(I− γkLG)| < 1 ∀k, ∀i (20)

where λi(·) is the ith eigenvalue. If L represents a causal operator and is
therefore a real, lower triangular matrix, a link between this condition and
those given by SA theory can be made, as detailed below. Since I−γkLG will
be a real, lower triangular matrix, its eigenvalues will be real. (20) therefore
implies:

λ(I− γkLG) < 1 ⇐⇒ 1− γkλ(LG) < 1 ⇐⇒ γkλ(LG) > 0 (21)
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and

λ(I− γkLG) > −1 ⇐⇒ 1− λ(γkLG) > −1 ⇐⇒ γkλ(LG) < 2, (22)

where λ(·) and λ(·) are the minimum and maximum eigenvalues, respec-
tively. Moreover we have LGxi = λixi, where xi is the real eigenvector
corresponding to λi. Taking the transpose of the both sides gives:

xT
i (LG)T = λixT

i . (23)

Right multiplying (23) by xi and adding it with its transpose gives:

xT
i LGxi + xT

i (LG)T xi = 2λixT
i xi ⇐⇒ xT

i

(
LG + (LG)T

2

)
xi = λixT

i xi.

(24)
So, if LG is positive definite, (21) is satisfied. (22) can be satisfied by an
appropriate choice of γk.

3.2 Monotonic Convergence

Whilst almost sure convergence of the input sequence to the solution u∗ when
k → ∞ is, obviously, of utmost importance, practically it is not the only type
of convergence of interest. The monotonic convergence, from one iteration to
the next, of a norm of the controlled error is also of concern.

To proceed, we will need the following lemma:

Lemma 1. If a real, square matrix M (not necessarily symmetric) is positive
definite, there exists an α > 0 such that:

σ(I− αM) < 1, (25)

where σ(·) is the maximum singular value.

Proof. Condition (25) is true iff:

λi

(
I − α(MT + M) + α2MT M

)
< 1 ∀i

⇐⇒ 1− λi

(
α(MT + M)− α2MT M

)
< 1 ∀i

⇐⇒ λi

(
MT + M− αMT M

)
> 0 ∀i. (26)

Furthermore the eigenvalues satisfy:

[MT + M− αMT M]xi = λixi. (27)

Left multiplying (27) by xT
i we get:

xT
i

(
MT + M

)
xi − αxT

i MT Mxi = λixT
i xi. (28)
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So if M > 0, (26), and thus Condition (25), are satisfied when:

0 < α < min
i

xT
i

(
MT + M

)
xi

xT
i MT Mxi

. (29)

Theorem 2. If Ĝ[I + Δ]L > 0, there exists a sequence of positive step
sizes γk, satisfying Condition (C1), such that monotonic convergence of the
2-norm of the mean controlled error is achieved.

Proof. By combining equations (9), (10), (12) and (14) we can obtain the
controlled error evolution equation as:

εk+1(uk+1) = (I−γkĜ[I+Δ]L)εk(uk)+dk−dk+1 +γkĜ[I+Δ]Lnk. (30)

The mean value of equation (30) is:

E{εk+1(uk+1)} = (I− γkĜ[I + Δ]L)E{εk(uk)}. (31)

Monotonic convergence of the 2-norm of the mean controlled error is obtained
if the following condition is satisfied (see e.g. Theorem 2, [16]):

σ(I− γkĜ[I + Δ]L) < 1 ∀k. (32)

If a given sequence γk, satisfying Condition (C1), does not satisfy (32), a
new, scaled sequence γk � βγk, β > 0 can always be defined that does, as
follows from Lemma 1.

Remarks:

1) Theorem 2’s requirement that Ĝ[I + Δ]L be positive definite is satisfied
when L and Ĝ[I + Δ] commute, i.e. when L(q) is causal, and condition
(18) is satisfied.

2) Since the system G(q) is assumed stable, its output and internal states
will be bounded if its input is bounded. Combining equations (9), (10),
(12) and (14) gives the input evolution equation as:

uk+1 = (I− γkLĜ[I + Δ])uk + γkL(yd − dk − nk). (33)

According to Theorem 5 of [16] the input will remain bounded from one
iteration to the next if a) (33) is a uniformly exponentially stable iterative
system, b) for a finite constant β, ‖γkL‖ < β ∀k, and c) yd, dk and nk are
bounded. As stated in Corollary 1 of [16], (33) is a uniformly exponentially
stable iterative system if σ(I − γkLĜ[I + Δ]) < 1 ∀k. This condition is
considered in Lemma 1, implying that, when LĜ[I + Δ] > 0, a sequence
γk exists that achieves uniform exponential stability. Furthermore, since
‖γkL‖ = |γk|‖L‖, there exists a sequence γk that satisfies the condition
‖γkL‖ < β ∀k. So the boundedness of the system’s signals requires the
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disturbances to be bounded, which can usually be assumed to be the case
in practice.
It should be noted that the mean input E{uk} will be bounded if only
the means of the disturbances are bounded, rather than the disturbances
themselves.

3.3 Asymptotic Distribution of the Input Estimation
Error

The asymptotic distribution of the input estimation error is given by the
following theorem:

Theorem 3. Assume that:

i) Algorithm (14) converges almost surely to the solution u∗ as k → ∞.
ii) The sequence of step sizes is chosen as γk = α

k+1 .
iii) All the eigenvalues of the matrix D = I/2 + αQ(u∗) have negative real

parts.

Then the sequence
√

k(uk−u∗) ∈ As N (0,V) i.e it converges asymptotically
in distribution to a zero-mean normal distribution with covariance:

V = α2

∫ ∞

0

exp(Dx)P exp(DT x)dx (34)

where P is the covariance matrix of Le(u∗):

P = E{Lek(u∗)(Lek(u∗))T }. (35)

Proof. The proof can be found in [13] (Theorem 6.1 p.147).
Using Theorem 3 we have that:

P = E{Lek(u∗)(Lek(u∗))T } = E{(−L(dk + nk))(−L(dk + nk))T }
= L(Rd + Rdn + Rnd + Rn)LT . (36)

Additionally, as Q(u∗) = d
duk

E{Lek(uk)}|u(k)=u0 = −LG, we have that:

D = (I/2− αLG). (37)

The covariance matrix V is then the unique symmetric solution of the
following Lyapunov equation:

2α2L(Rd + Rdn + Rnd+Rn)LT +(I−2αLG)V+V(I−2αLG)T = 0. (38)

It is shown in [3] (Proposition 4, p.112) that if, instead of using a scalar
learning gain α, we use a non-singular learning matrix K, then the optimal
matrix K∗ to mimimise the trace of V is given by:
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K∗ = −Q(u∗)−1 = (LG)−1. (39)

Using this gain matrix results in the learning law:

uk+1 = uk +
G−1

k + 1
ek(uk), (40)

and the optimal asymptotic covariance matrix:

V∗ = G−1(Rd + Rdn + Rnd + Rn)G−T , (41)

which means that the sequence
√

k(uk − u∗) ∈ As N (0,V∗).
Moreover we have that εk(uk) = −G(uk − u∗) − dk so the covariance

matrix of εk(uk) is then given by:

cov(εk(uk)) = E{εk(uk)εT
k (uk)} = GE{(uk−u∗)(uk−u∗)T }GT +Rd. (42)

Using the optimal gain matrix K∗ means that the sequence εk(uk) will have
a converged covariance matrix given by

cov(εk(uk)) =
1
k
(Rd + Rdn + Rnd + Rn) + Rd

and in the limit we have: limk→∞ cov(εk(uk)) = Rd. However, K∗ is not
implementable because exact knowledge of G is not achievable. Nonetheless
it gives an ideal law to aim for in the design of a stochastic ILC algorithm.

4 Specific Choices of L

In this section specific choices of the learning matrix L will be considered.

4.1 Use of the Uncertain System Inverse

We consider here the choice of L = Ĝ−1 i.e. the inverse of the uncertain
system model. This choice is motivated by the fact that L = Ĝ−1 is an
approximation of the optimal learning gain used in (40).

Theorem 4. Under Assumption (A2) and when L = Ĝ−1, there exists a
sequence of positive step sizes γk, satisfying Condition (C1), that ensures
that the ILC algorithm (14) converges almost surely to u∗ and that the 2-
norm of the mean controlled error convergences monotonically.

Proof. Condition (18) is automatically satisfied when L = Ĝ−1, under As-
sumption (A2). Therefore, when the sequence of positive step sizes γk satisfies
Condition (C1), the ILC algorithm (14) converges almost surely to u∗, as
stated by Theorem 1. Moreover, because I + Δ is a lower triangular Toeplitz
matrix, I+Δ commutes with Ĝ and, under Assumption (A2), Ĝ[I+Δ]L > 0.
This result means Theorem 2 applies, implying the existence of a sequence,
satisfying Condition (C1), that ensures monotonic convergence.
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4.2 Use of the Uncertain System Transpose

Another choice is L = ĜT . This choice is motivated by the fact that it can be
used when Ĝ is ill conditioned, as may be the case when Ĝ(q) has unstable
zeros. The previously considered choice of L, on the other hand, may not be
usable because the input signal generated by the ILC algorithm can grow
unacceptably large before converging to the ideal input.

Theorem 5. Under Assumption (A2) and when L = ĜT , there exists a
sequence of positive step sizes γk, satisfying Condition (C1), that ensures
that the ILC algorithm (14) converges almost surely to u∗ and that the
2-norm of the mean controlled error convergences monotonically.

Proof. Since I+Δ is a lower triangular Toeplitz matrix, I+Δ commutes with
Ĝ and condition (18) can be written as ĜT [I+Δ]Ĝ > 0, when L = ĜT . This
condition is fulfilled when Ĝ is non-singular and I + Δ > 0. The former is
true because N is finite and the latter is Assumption (A2). Therefore, when
the sequence of positive step sizes γk satisfies Condition (C1), the ILC algo-
rithm (14) converges almost surely to u∗, as stated by Theorem 1. Moreover,
Theorem 2 applies, implying the existence of a sequence, satisfying Condition
(C1), that ensures monotonic convergence.

4.3 Use of an Experiment

So far the use of a model to give an L that can then be used in (14) to
evaluate Lek(uk) has been considered. For the specific choice of L = GT ,
it is, however, possible to use an extra experiment per iteration to evalu-
ate Lek(uk). Condition (18) is automatically satisfied with this choice, and
Theorem 2 also applies.

The fact that a special experiment can be used is seen by noting that
e2 = GT ek(uk) is equal to the following filtering operations:

e1(t) = G(q)ek(N − t, uk(t)) (43)
e2(t) = e1(N − t). (44)

We see that, in the disturbance free case, e2 can be found using an experiment
on the true system, where the time reversed error signal is fed into the system
as its input, the system output is measured and then time reversed itself. In
reality the special experiment will have its own disturbances d2(t) and v2(t)
associated with it. Nonetheless, an unbiased estimate of e2 can still be found
since:

E{e2} = E{GT ek(uk) + d2 + v2} = E{GT ek(uk)}+ E{d2}+ E{n2}
= GT E{εk(uk)} + 0 + 0. (45)
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This method of evaluating e2 is attractive as it avoids the problems of model
uncertainty. It does, however, require an additional, non-standard, experi-
ment at each iteration, which, depending on the application, may not always
be possible. One case where it may be useful is when ILC is used to tune the
input to improve the system’s performance before the system is used in its
intended application.

Remarks:

1. So far the motivation of the ILC algorithms considered has been to find the
input that solves the root-finding type criterion (13), which aims to set the
mean controlled error to zero. The model-free algorithm can be motivated
differently. Instead of criterion (13), a logical alternative objective is the
minimisation of the trace of the controlled error covariance matrix i.e.:

min
uk

Jk(uk) = min
uk

1
2
tr
(
E{εk(uk)εk(uk)T }

)
. (46)

The minimum of this criterion occurs when:

dJk(uk)
duk

∣∣∣
uk=u∗

= E

{(
∂εk(uk)

∂uk

∣∣∣
uk=u∗

)T

εk(u∗)

}
=−GT E{εk(u∗)}=0.

(47)

E{εk(uk)} is not directly measurable. Nonetheless, because equation (47)
can be written as:

dJk(uk)
duk

∣∣∣
uk=u∗

= −GT E{εk(u∗)} = −GT E{ek(u∗)} = 0 (48)

it is possible to find the minimiser of the criterion, again, using the
Robbins-Monro algorithm:

uk+1 = uk + γkGT ek(uk), (49)

i.e. (14) with L = GT .
2. The model-free algorithm has similarities to that proposed in [23] where

reversed time inputs are used to cancel the system phase and produce
monotonic convergence. Stochastic aspects are not considered, however.

3. It also has similarities to [11], which uses the steepest descent method, and
calls GT the adjoint of G. It shows that by using this ‘adjoint’ with an
iteration-varying gain, monotonic convergence occurs. The gain sequence
is calculated via an optimisation, which does not consider stochastic
disturbances. The gain at iteration k is given by:

γk =
‖GT ek−1‖2

w + ‖GGT ek−1‖2
, (50)
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where w is a weight on γk in the cost function. Since the measured error
signal is used to calculate the gain, it will be affected by stochastic dis-
turbances. This means limk→∞ ‖GT ek−1‖2 �= 0 and so limk→∞ γk �= 0.
This implies that the second series of condition C1 cannot be satisfied.
Therefore, whilst the algorithm developed can lead to fast deterministic
convergence to the optimal input, this cannot be proved when stochastic
disturbances are present.

5 Experimental Results

The model-free algorithm was applied to the tracking control of a linear, per-
manent magnet, synchronous motor (LPMSM), which forms the upper axis
of an x-y positioning table. LPMSMs are very stiff and have no mechanical
transmission components. They, therefore, do not suffer from backlash and
so allow very high positioning accuracy to be achieved. Additionally they are
capable of high velocities and accelerations. These properties make them a
very appealing, and thus common, choice for use in industries where rapid,
high precision movements are required.

A standard two-degree-of-freedom position controller is used to control
the motor’s position. It operates at a sampling frequency of 2kHz. An analog
position encoder using sinusoidal signals with periods of 2μm, which are then
interpolated with 8192 intervals/period to obtain a resolution of 0.24nm, is
used to measure the motor’s position. However, the accuracy of this type of
encoders is limited to 20nm.

The input, uk, computed by the ILC algorithm, is used as the position
reference signal of the closed-loop system.

The desired output position, yd(t), was a series of three low-pass filtered
steps, each of amplitude 25mm in the positive direction, followed by a simi-
lar series of filtered steps in the negative direction. This movement represents
a typical industrial positioning motion. It has N = 8192. This value corre-
sponds to the maximum number of points in the look-up table into which the
new reference signal is fed at each iteration.

The sequence γk = α
k+1 is used with α = 0.85, which was chosen to achieve

monotonic convergence.
For the experiment u0 = yd was used and 100 iterations were carried out.

Figures 2 and 3 show the convergence of εT
k (uk)εk(uk) and the initial and

final tracking achieved, respectively.
As can be seen from the figures and the values εT

0 (u0)ε0(u0) =
6.0143×10−8m2 and εT

100(u100)ε100(u100) = 1.9913×10−14m2 the algorithm
considerably improves the tracking.
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Fig. 3. Tracking at iteration k = 0 (green-dashed) and k = 100 (red) using the
model-free method

6 Conclusions

The main contribution of this paper is to show how stochastic approxima-
tion theory can be used to derive and analyse Iterative Learning Control
algorithms for linear time-invariant systems that are robust to non-repetitive
disturbances. SA theory has provided general conditions that ensure almost
sure convergence of the algorithm to the optimal input in the presence of
stochastic disturbances.
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ILC for LTI systems has been considered in this paper. The majority of
the results apply, however, to linear time-varying (LTV) systems as well. In
this case, however, the matrix G will not be lower triangular Toeplitz but a
general lower triangular matrix instead. This implies that L, Ĝ and I + Δ
will not, in general, commute.

The conditions imposed by SA require the learning gain to tend to zero
as the iterations tend to infinity. This requirement is essential for stochastic
learning algorithms. Practically it means that the learning ceases after a
large number of iterations and if the desired output or repetitive disturbances
change the algorithm will not react and the tracking will deteriorate. It is
thus necessary to have a surveillance program that restarts the learning when
the errors rise above a certain threshold.
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15. Norrlöf, M., Gunnarsson, S.: Disturbance aspects of iterative learning control.
Engineering Applications of Artificial Intelligence 14(1), 87–94 (2001)
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Elimination Theory for Nonlinear
Parameter Estimation

John Chiasson and Ahmed Oteafy

1 Introduction

The work presented here exploits elimination theory (solving systems of poly-
nomial equations in several variables) [1][2] to perform nonlinear parameter
identification. In particular show how this technique can be used to esti-
mate the rotor time constant and the stator resistance values of an induction
machine. Although the example here is restricted to an induction machine,
parameter estimation is applicable to many practical engineering problems.
In [3], L. Ljung has outlined many of the challenges of nonlinear system iden-
tification as well as its particular importance for biological systems. In these
types of problems, the model developed for analysis is typically a nonlinear
state space model with unknown parameter values. The typical situation is
that only a few of the state variables are measurable requiring that the sys-
tem be reformulated as a nonlinear input-output model. In turn, resulting the
nonlinear input-output model is almost always nonlinear in the parameters.
Towards that end, differential algebra tools for analysis of nonlinear systems
have been developed by Michel Fliess [4][5] and Diop [6]. Moreover, Ollivier
[7] as well as Ljung and Glad [8] have developed the use of the characteristic
set of an ideal as a tool for identification problems. The use of these differ-
ential algebraic methods for system identification have also been considered
in [9], [10]. The focus of their research has been the determination of a priori
identifiability of a given system model. However, as stated in [10], the devel-
opment of an efficient algorithm using these differential algebraic techniques
is still unknown. Here, in contrast, a method for which one can actually nu-
merically obtain the numerical value of the parameters is presented. We also
point out that [11] has also done work applying elimination theory to systems
problems.
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Here, using the techniques of elimination theory, it is shown that a
significant class of nonlinear identification problems can be formulated as
a nonlinear least-squares problem whose solution is guaranteed to be found
in a finite number of steps. The proposed methodology starts with obtaining
an over-parameterized input-output model that is linear in the parameters.
It is then assumed that the relationship between the actual parameters in the
over-parameterized model are rationally related which is not atypical of many
engineering systems. After making appropriate substitutions, the problem is
transformed into a nonlinear least-squares problem which is- not overparam-
eterized. It is then shown how the nonlinear least-squares problem can be
solved in a finite number of steps using elimination theory.

2 Mathematical Model of an Induction Machine

An induction machine is now used as a realistic application to describe the
methodology. Specifically, the identification of the rotor time constant and
stator resistance are considered. As background, field-oriented control pro-
vides a means to obtain high-performance control of an induction machine
for use in applications such as traction drives. This field-oriented control
methodology requires knowledge of the rotor flux linkages, which are not
usually measured [12][13]. To get around this problem, the rotor flux linkages
are usually estimated using a state observer, and this observer requires the
value of the rotor time constant TR. However, TR = LR/RR varies due to
ohmic heating and thus it is of considerable interest to estimate its value
online in order to update the flux estimator with its current value.

A standard two-phase model of the induction machine is given by ([13])

diSa

dt
=

β

TR
ψRa + βnpωψRb − γiSa +

1
σLS

uSa

diSb

dt
=

β

TR
ψRb − βnpωψRa − γiSb +

1
σLS

uSb

dψRa

dt
= − 1

TR
ψRa − npωψRb +

M

TR
iSa (1)

dψRb

dt
= − 1

TR
ψRb + npωψRa +

M

TR
iSb

dω

dt
=

Mnp

JLR
(iSbψRa − iSaψRb)−

τL

J

where the state variables are the rotor angular position θ, the rotor angular
speed ω = dθ/dt , the (two-phase equivalent) stator currents iSa, iSb, and the
(two-phase equivalent) rotor flux linkages ψRa, ψRb. The controllable inputs
are the (two-phase equivalent) stator voltages uSa, uSb while the disturbance
input is the load torque τL.
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The parameters of the model are the stator and rotor resistances RS and
RR, the mutual inductance M , the stator and rotor inductances LS and LR,
the moment of inertia J and the number of pole-pairs np. The symbols

TR = LR/RR σ = 1−M2/ (LSLR)
β = M/ (σLSLR) γ = RS/ (σLS) + βM/TR

are used to simplify the expressions where σ is referred to as the total leakage
factor.

This model is transformed into a coordinate system attached to the rotor
as the signals in this new (x, y) rotor frame typically vary at the slower slip
frequency rather than at the stator frequency in the (a, b) frame. The current
variables are transformed according to[

iSx

iSy

]
=
[

cos(npθ) sin(npθ)
− sin(npθ) cos(npθ)

] [
iSa

iSb

]
. (2)

This transformation does not depend on any unknown parameter in contrast
to the field-oriented (or dq) transformation which requires knowledge of the
rotor fluxes. The stator voltages and the rotor fluxes are transformed in the
same way as the currents resulting in the following model (see [14][15])

diSx

dt
=

uSx

σLS
− γiSx +

β

TR
ψRx + npβωψRy + npωiSy (3)

diSy

dt
=

uSy

σLS
− γiSy +

β

TR
ψRy − npβωψRx − npωiSx (4)

dψRx

dt
=

M

TR
iSx −

1
TR

ψRx (5)

dψRy

dt
=

M

TR
iSy −

1
TR

ψRy (6)

dω

dt
=

Mnp

JLR
(iSyψRx − iSxψRy)− τL

J
. (7)

As explained above, the interest here is in the online estimation of TR as
it changes due to ohmic heating so that an accurate value is available to
the rotor flux estimator. However, the stator resistance value RS will also
vary due to ohmic heating, therefore its variation must also be taken into
account in the estimation. The electrical parameters M, LS, σ are assumed
to be known and not varying. Measurements of the stator currents iSa, iSb

and voltages uSa, uSb as well as the position θ of the rotor are assumed to
be available; the velocity is then computed from the position measurements.
The rotor flux linkages are not assumed to be measured.
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3 Input-Output Model

Standard methods for parameter estimation are based on equalities where
known signals depend linearly on unknown parameters. However, the
induction motor model described above does not fit in this category unless
the rotor flux linkages are measured. As this is not the case here, the fluxes
ψRx, ψRy and their derivatives dψRx/dt, dψRy/dt must be eliminated from
the final identification model. The four equations (3), (4), (5), (6) are used
to solve for the four unknowns ψRx, ψRy, dψRx/dt, dψRy/dt. Further, a new
set of independent equations is found by differentiating equations (3) and (4)
to obtain

1
σLs

duSx

dt
=

d2iSx

dt2
+ γ

diSx

dt
− β

TR

dψRx

dt
− npβω

dψRy

dt
− npβψRy

dω

dt

− npω
diSy

dt
− npiSy

dω

dt
(8)

and

1
σLs

duSy

dt
=

d2iSy

dt2
+ γ

diSy

dt
− β

TR

dψRy

dt
+ npβω

dψRx

dt
+ npβψRx

dω

dt

+ npω
diSx

dt
+ npiSx

dω

dt
. (9)

To simplify the presentation we now assume that the speed is held con-
stant as in [16][17] (this is not necessary, see [18][19]). The expressions for
ψRx, ψRy, dψRx/dt, dψRy/dt found from solving equations (3), (4), (5), (6) are
substituted into equations (8) and (9) with dω/dt = 0 to obtain

0 = −d2iSx

dt2
+

diSy

dt
npω +

1
σLS

duSx

dt
− (γ +

1
TR

)
diSx

dt

− iSx(−βM

T 2
R

+
γ

TR
) + iSynpω(

1
TR

+
βM

TR
) +

uSx

σLSTR
(10)

0 = −d2iSy

dt2
− diSx

dt
npω +

1
σLS

duSy

dt
− (γ +

1
TR

)
diSy

dt

− iSy(−
βM

T 2
R

+
γ

TR
)− iSxnpω(

1
TR

+
βM

TR
) +

uSy

σLSTR
. (11)

As γ = RS/ (σLS) + βM/TR, it follows that

−βM/T 2
R + γ/TR = (RS/TR) / (σLS)
γ + 1/TR = RS/ (σLS) + (βM + 1) /TR
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which is used to rewrite (10) and (11) as

0 = −d2iSx

dt2
+

diSy

dt
npω +

1
σLS

duSx

dt
−
(

RS/ (σLS) + (βM + 1) /TR

) diSx

dt

− iSx(
RS

TR

1
σLS

) + iSynpω((βM + 1) /TR) +
uSx

σLSTR
(12)

0 = −d2iSy

dt2
− diSx

dt
npω +

1
σLS

duSy

dt
−
(

RS/ (σLS) + (βM + 1) /TR

) diSy

dt

− iSy(
RS

TR

1
σLS

)− iSxnpω (βM + 1) /TR +
uSy

σLSTR
. (13)

More compactly, equations (12) and (13) are written in linear regressor form
as

y(t) = W (t)K (14)

with

y(t) �

⎡
⎢⎣

d2iSx

dt2
− diSy

dt
npω −

1
σLS

duSx

dt
d2iSy

dt2
+

diSx

dt
npω −

1
σLS

duSy

dt

⎤
⎥⎦ (15)

and

W (t) �

⎡
⎢⎢⎣
−diSx

dt

1
σLS

(βM + 1)
(
−diSx

dt
+ iSynpω

)
+

uSx

σLS
− iSx

σLS

−diSy

dt

1
σLS

(βM + 1)
(
−diSy

dt
− iSxnpω

)
+

uSy

σLS
− iSy

σLS

⎤
⎥⎥⎦ (16)

as well as

K =

⎡
⎣K1

K2

K3

⎤
⎦ �

⎡
⎣ RS

1/TR

RS/TR

⎤
⎦ . (17)

This model is over-parameterized in the parameters, that is, they must satisfy
the constraint

K3 = K1K2. (18)

Replacing K3 by K1K2 in (14) results in a model that is not over-
parameterized, but it is no longer linear in the parameters. This issue is
considered next.

4 Nonlinear Least-Squares Identification

A discrete-time sampled version of (14) is

y(nT ) = W (nT )K, (19)
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where T is the sample period, nT is the time the nth sample is taken, and
K =

[
K1 K2 K3

]T is the (over-parameterized) vector of unknown parame-
ters. If the constraint (18) is ignored, then the system is a linear (but over-
parameterized) least-squares problem. Theoretically, an exact unique solution
for the unknown parameter vector K may be determined after several time
instants. However, due to the fact that both y(nT ) and W (nT ) are measured
from signals that are noisy (due to quantization and differentiation), the
regressor model (19) is only approximately valid in practice. These sources
of error result in an overdetermined system of equations. In order to get
around this problem, the solution vector K is specified as that which mini-
mizes a least-squares criterion. Specifically, given y(nT ) and W (nT ) where
y(nT ) = W (nT )K, one defines

E2(K) =
N∑

n=1

∣∣∣y(nT ) −W (nT )K
∣∣∣2 (20)

as the residual error associated to a parameter vector K. Then, the least-
squares estimate K∗ is chosen such that E2(K) is minimized for K = K∗.
The function E2(K) is quadratic and therefore has a unique minimum at the
point where ∂E2(K)/∂K = 0 holds. Solving this expression for K∗ yields the
least-squares solution to y(nT ) = W (nT )K as

K∗ =

[
N∑

n=1

WT (nT )W (nT )

]−1 [ N∑
n=1

WT (nT )y(nT )

]
. (21)

However, there is no guarantee that the solution of (21) will satisfy the
constraint K3 = K1K2. Furthermore, the over-parameterized identification
model consisting of (17) and (19) results in an ill-conditioned solution for K∗.
That is, small changes in the data W (nT ), y(nT ) can result in large changes
in the value computed for K∗. To get around these problems, a nonlinear
least-squares approach is taken which involves minimizing

E2(K) =
N∑

n=1

∣∣∣y(nT )−W (nT )K
∣∣∣2 = Ry − 2RT

WyK + KT RW K (22)

subject to the constraint K3 = K1K2 where

Ry �
N∑

n=1

yT (nT )y(nT ), RWy �
N∑

n=1

WT (nT )y(nT )

RW �
N∑

n=1

WT (nT )W (nT ). (23)

On physical grounds, the parameters K1, K2 are constrained to the region
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0 < K1 < ∞, 0 < K2 < ∞ (24)

and the squared error E2(K) will be minimized in this open region.
Substituting K3 = K1K2 in (22), we obtain a new error function E2

p(K1, K2)
as

E2
p(K1, K2) �

N∑
n=1

∣∣∣y(nT ) −W (nT )K
∣∣∣2
K3=K1K2

= Ry − 2RT
WyK

∣∣∣
K3=K1K2

+
(
KT RW K

)∣∣∣
K3=K1K2

. (25)

As the minimum of (25) must occur in the region (24), it follows that the
minimum is located at an extremum point. To solve for this minimum thus
entails solving simultaneously the two extrema equations

p1(K1, K2) �
∂E2

p(K1, K2)
∂K1

(26)

p2(K1, K2) �
∂E2

p(K1, K2)
∂K2

, (27)

which are polynomials in the parameters K1, K2. The degrees of the
polynomials pi are given in the table below

deg K1 deg K2

p1(K1, K2) 1 2
p2(K1, K2) 2 1

These two polynomials are rewritten in the form

p1(K1, K2) = a1(K2)K1 + a0(K2) (28)

p2(K1, K2) = b2(K2)K2
1 + b1(K2)K1 + b0(K2). (29)

A systematic procedure to find all possible solutions to a set of polynomials
is provided by elimination theory through the method of resultants [1][2].
However, in this particular example, p1(K1, K2) is of degree 1 in K1 and can
be solved directly. Substituting K1 = −a0(K2)/a1(K2) from p1(K1, K2) =
0 into p2(K1, K2) = 0 and multiplying the result through by a2

1(K2), one
obtains the (resultant) polynomial

r(K2) = a2
0(K2)b2(K2)− a0(K2)a1(K2)b1(K2) + a2

1(K2)b0(K2), (30)

where degK2
{r} = 5. The roots of (30) are the only possible candidates for

the values of K2 that satisfy p1(K1, K2) = p2(K1, K2) = 0 for some K1. In
the online implementation, the coefficients of the polynomials a1(K2), a0(K2),
b2(K2), b1(K2), b0(K2), whose explicit expressions in terms of the elements of
the matrices RW and RWy are known a priori vis-a-vis (25), (26), and (27),
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are computed and stored during data collection. The coefficients of the poly-
nomial r(K2) are then computed online according to (30). Next, the positive
roots K2i of r(K2) = 0 are computed and substituted into p1(K1, K2i) = 0
which is then solved for its positive roots K1j. By this method of back solv-
ing, the finite number of possible candidate solutions (K1j , K2i) are found.
The pair that results in the smallest squared error, i.e., the smallest value of
E2

p(K1, K2), is chosen.

5 Simulations

The above parameter identification method was studied in simulation using a
two-phase equivalent model of an induction machine under closed-loop control.
The parameters of the induction machine are (see [13]): M = 0.0117 H, LR =
0.014 H, LS = 0.014 H, RS = 1.7 Ω, RR = 3.9 Ω, τL0 = 0.15 Nm, J = 0.00011
Kgm2, and nP = 3. The controller sets the desired rotor speed at ωR = 2π×75
rad/s, while the load torque is defined to be τL � τL0 + fω with τL0 = 0.15
Nm. The data was sampled at fS = 4 kHz which was filtered through a 2nd

order low pass Butterworth filter with a cutoff frequency of 70 Hz.
To mimic the ohmic heating of the rotor and stator resistors, in the simu-

lation of the motor model their values were increased by 50% after 3 seconds
of operation with the estimator updating the value of TR every 0.5 seconds.
After the update at 3.5 secs the estimator provides the new estimates of RS

and RR to the controller. Figure 1 below is a plot of K2 = 1/TR and its
reference versus time showing that after the update the estimator gives the
value of K2 within 2% of the correct value.

To show the importance of having an accurate value of the rotor time
constant, the power consumed before and after the rotor time constant update
was computed. Figure 2 shows the speed versus time for the simulation. (the
transient at t = 0 is due to the fact that the flux in the machine is zero
so that during the build up of the flux the machine has torque oscillations).
Figure 3 below is a plot of the real power P (t) = uSaiSa + uSbiSb vs time.
As the figure shows, the real power jumps up to 66.9 W at 3 sec. After
the rotor time constant value is updated to controller at 3.5 seconds, the
real power comes down to 63.7 W, which is a 5% decrease. Of course these
numbers are small because the simulation was done with a small (a less than
kW) machine. In industry where large machines are used, the energy savings
would be significant.

As explained above, the rotor time constant TR = 1/K2 is used to estimate
the rotor fluxes which in turn are used to estimate the direct and quadrature
currents for use in field oriented control. In field oriented control the motor
torque is given by τ = μψdiq (μ = Mnp

JLR
) which at constant speed reduces to

τ = μMidiq. For a given torque, the current magnitude i2d + i2q is minimized if
id = iq [13]. Thus it is important to estimate the rotor flux angle accurately to
have accurate values of the dq currents in order to achieve this minimization.
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Fig. 1. K2 = 1/TR and K2ref vs. time in seconds

Fig. 2. Speed in radians/sec versus time in seconds
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Fig. 3. Real power P in Watts versus time in seconds. (The large transient in the
power at the beginning is due to the discontinuity in the acceleration - see the speed
trajectory)

6 Conclusions

An approach to solving a nonlinear least-squares parameter identification
problem in a finite number of steps was presented. This is in contrast to
iterative methods which may or may not converge and, even if convergences
takes place, it may be to only a local minimum. The method was presented
by showing how the rotor time constant of the induction machine can be
found online. In this application, the results show that an incorrect value
of TR leads to the controller commanding non-optimum values of the stator
currents to the machine which in turn increases the Ohmic losses. That is, a
higher power usage is required for the same torque requirement.
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Controlling Underactuated Mechanical Systems:
A Review and Open Problems

Zhong-Ping Jiang

Abstract. This chapter provides a short review on the popular yet still very impor-
tant area of controlling underactuated mechanical systems. New solutions to the
simultaneous stabilization and tracking problem are proposed for nonholonomic
mobile robots using state and output feedback. Some open problems are discussed
with a unique objective to solicit fundamentally novel techniques for the further
development of modern nonlinear control theory.

1 Introduction

Underactuated mechanical systems refer to those mechanical systems with less
number of controls than the degrees of freedom, and arise often from nonholo-
nomic systems with nonintegrable constraints. Examples of underactuated mechan-
ical systems are abundant in our daily life, ranging from spacecraft to ground and
marine vehicles such as mobile robots, surface ships and underwater vehicles. Con-
trolling underactuated mechanical systems has been an active research area over the
last 25 years. This is because it concerns fundamentally nonlinear control problems
which require novel ideas and techniques. One of these challenges in nonholonomic
systems is the obstruction to asymptotic stabilization. Indeed, Brockett’s necessary
condition [4] applied to these inherently nonlinear systems yields a surprising fact
that there is no linear, or nonlinear, continuous state-feedback stabilizing control
law for this special, but important, class of nonlinear systems. The control systems
community has contributed a versatile set of novel ideas and feedback design strate-
gies, including time-varying feedback [41, 40], differential flatness [15, 16, 30],
passivity-based control [1, 36, 18], discontinuous or hybrid feedback [2, 3, 39, 5]
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J. Lévine & P. Müllhaupt (Eds.): Adv. in Theory of Control, Signals, LNCIS 407, pp. 77–88.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2010



78 Z.-P. Jiang

and “time-varying” backstepping [32, 27, 28, 21, 22]. A summary of the earlier
research efforts by many researchers can be found in [3, 7, 25] and references
therein.

A second feature arising from investigating nonholonomic control problems is
that stabilization and tracking are two fundamentally different control problems.
Very often, in the traditional literature of control theory, stabilization is regarded as
a special case of the tracking problem. Unfortunately, this is not the case for un-
deractuated mechanical systems with nonholonomic constraints. The violation of
Brockett’s necessary condition for asymptotic stabilization presents a challenge to
develop fundamentally new approaches to nonlinear control theory. On the other
hand, in the case of trajectory-tracking, there is a local feedback solution if the lin-
earization of the system around the moving trajectory is uniformly controllable. In
terms of control terminology, the reference, or to-be-tracked, trajectory must sat-
isfy the persistence excitation (PE) condition to make the tracking control problem
tractable. While the stabilization and tracking problems are typically studied as two
separate problems, it becomes a natural question to ask: when can we find a (single)
control law which can solve both (global) stabilization and (global) tracking simulta-
neously? We call this problem “(Global) Simultaneous Stabilization and Tracking”.
In this work, we focus on continuous time-varying feedback solutions for underac-
tuated mechanical systems. Due to space limitation, we devote ourselves to the case
study of nonholonomic mobile robots.

The purpose of this book chapter is to point out that there is more to be accom-
plished in this field despite the significant progress made by many researchers. We
show by means of the benchmark example of nonholonomic mobile robots that the
simultaneous stabilization and tracking problem is largely open for underactuated
mechanical systems. Answering this question among other open problems requires
the invention of new techniques and methodologies, thereby contributing to the
further development of modern nonlinear control theory.

2 Simultaneous Stabilization and Tracking

2.1 Problem Statement

Due to inherent nonlinearity in mechanical systems with nonholonomic constraints,
point-stabilization and trajectory-stabilization have often been treated as two sepa-
rate control problems. One way to unify these two apparently different control prob-
lems is to adopt the idea of model reference control. More specifically, consider a
nonlinear control system of the form

ẋ = f (x,u), x ∈ℜn, u ∈ℜm (1)

and a reference model associated with (1), which describes the desired to-be-tracked
trajectory,

ẋd = f (xd ,ud), xd ∈ℜn, ud ∈ℜm (2)
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The central control problem addressed in this work is to identify conditions on the
set of admissible reference trajectories xd and find, if possible, a (single) continuous
feedback controller of the form

u = u(x,xd , t) (3)

which can stabilize the system (1) to any such xd , in particular, x(t)− xd(t) → 0 as
t → ∞.

On the one hand, it is worth noting that, of course, this set of so-called feasi-
ble trajectories determined by the set U of admissible reference inputs ud must
be strictly smaller than the set of feasible trajectories determined by all piecewise
continuous functions. Otherwise, the negative result of [31] implies that, generally
speaking, such a controller may not exist. On the other hand, the set U should be
large enough to include a variety of time-varying signals which can generate paths
for many practical control applications. Examples of such paths are straight line,
circle and a combination of the two.

Clearly, when there exists a set-point and reference input pair (x�
d ,u

�
d) such that

f (x�
d ,u�

d) = 0, the stabilization of set-point x�
d is a special case of the simultaneous

stabilization and tracking problem by simply setting ud ≡ u�
d and xd(0) = x�

d in (2).
Now, the problem of simultaneous stabilization and tracking is formulated.

Definition 1. For a class of admissible reference trajectories, the problem of simul-
taneous stabilization and tracking is said to be solvable if one can find a continu-
ous feedback law (3) such that the solutions of the closed-loop system (1)– (3) are
bounded over [0,∞), and in addition, x(t)− xd(t) goes to zero as time goes to ∞.

Remark 1. When one only has access to part of the state, or a function of the state
x, denoted as the output y = h(x), the state-feedback controller (3) cannot be imple-
mented. A solution to circumvent this obstacle is to invoke a dynamic, time-varying,
output-feedback control law of the form

ξ̇ = q(ξ ,y,t), u = u(ξ ,y, t) (4)

In this case, we deal with the problem of simultaneous stabilization and tracking
using output-feedback.

Remark 2. A more general, and practically important, control task is to come up
with a controller (3), or (4), which enjoys some additional property of disturbance
attenuation with respect to modeling errors or external disturbances. The input-to-
state stability property [42] is appropriate for quantifying disturbance attenuation.

Remark 3. Although a general answer to the above-mentioned problem is still lack-
ing in the general setting of nonlinear control systems, there are however several
continuous feedback solutions to simultaneous stabilization and tracking for non-
holonomic mobile robots, surface ships and other underactuated mechanical sys-
tems [29, 7, 9, 10, 8, 33]. Some discontinuous feedback solutions may be found in
[5] and references therein.
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2.2 State-Feedback Control of Nonholonomic Mobile Robots

Consider a two-wheeled nonholonomic mobile robot, as shown in Figure 1, whose
dynamics is described by the following ordinary differential equations [9, 10]:

η̇ = J(η)ω , (5)

Mω̇ +C(η̇)ω + Dω = τ (6)

where η = (x,y,φ)T denotes the position and the orientation of the robot, ω =
(ω1,ω2)T stands for the angular velocities of the rear wheels, τ = (τv,τw)T

represents the control torques applied to the wheels, and

J(η) =
r
2

⎡
⎣ cosφ cosφ

sinφ sinφ
b−1 −b−1

⎤
⎦ , M =

[
m11 m12

m12 m11

]
, C(η̇) =

[
0 cφ̇
−cφ̇ 0

]
, D =

[
d11 0
0 d22

]

with positive constants r, m11, m12, c, d11, and d22 related to robot parameters.
Notice that the vector field of the robot model is not locally onto, thus Brockett’s
necessary condition for C0 time-invariant asymptotic stabilization is violated.

x

y

0

X

φ

2b

P0

Pc

a

Y

2r

Fig. 1. A Wheeled Mobile Robot

The control objective is to find, if possible, a continuous time-varying feedback
law that simultaneously solves stabilization and tracking for a desirable reference
trajectory generated by the following virtual robot:

ẋd = vd cosφd ,
ẏd = vd sinφd ,
φ̇d = wd

(7)

where (xd ,yd ,φd)T denotes the position and the orientation of the virtual robot, and
vd , wd are the linear and angular velocities of the virtual robot, respectively. Assume
that vd and wd are bounded together with their first and second order derivatives.
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Perform the following change of state variables:

(v,w)T = B−1(ω1,ω2)T , B =
1
r

[
1 b
1 −b

]
, (8)⎡

⎣ xe

ye

φe

⎤
⎦ =

⎡
⎣ cosφ sinφ 0
−sinφ cosφ 0

0 0 1

⎤
⎦
⎡
⎣ x− xd

y− yd

φ −φd

⎤
⎦ (9)

As it can be directly checked, the kinematic tracking errors xe,ye,φe satisfy the
following differential equations

ẋe = v− vd cosφe + yew
ẏe = vd sinφe− xew
φ̇e = w−wd .

(10)

As demonstrated in our early work regarding the case-study in backstepping [21],
the dynamic ω-subsystem (6) is fully feedback linearizable, or in other words, is
feedback equivalent to two integrators. As a consequence, by means of the popu-
lar backstepping methodology [26], the desired control laws for the total dynamic
model can be derived from the control laws for the kinematic model (10). In the
sequel, we will focus our attention on the design of simultaneous stabilizers and
trackers for the kinematic model (10).

Toward this end, we will take explicit advantage of the “lower-triangular” struc-
ture inside system (10). Specifically, we will use φe as a virtual control input to sta-
bilize the ye-subsystem and then apply the backstepping scheme to design a control
law for w. A simple adaptation of the design procedure in [21] yields the following
virtual control law for φe, simpler than the ones in [9, 10]:

αφe =−arcsin

(
k(t)ye/

√
1 + y2

e

)
, k(t) = λ1vd(t)+λ2 cos(λ3t) (11)

where λi, 1≤ i≤ 3, are positive design parameters so that supt≥0 |k(t)|< 1.
Letting φ̄e = φe−αφe, we can rewrite the kinematic tracking error model (10) as

ẋe = v− vd cosφe + yew
ẏe = −k(t)vdye/

√
1 + y2

e− xew

+
[
vd sinαφe(−1 + cosφ̄e)+ vd cosαφe sin φ̄e

]
˙̄φ e = w−wd− α̇φe

(12)

where

α̇φe = −
√

1 + y2
e√

1 +(1− k2)y2
e

(
k̇(t)

y2
e√

1 + y2
e

+ k(t)
ẏe

(1 + y2
e)3/2

)

:= σ1(t,ye,φe)+σ2(t,ye)xew (13)
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Consider the following quadratic function as a Lyapunov function candidate

V =
1
2

x2
e +

1
2

y2
e +

1
2
φ̄2

e (14)

Differentiating V along the solutions of (12) leads to

V̇ = xe(v− vd cosφe−σ2w)− k(t)vd
y2

e√
1 + y2

e

+φ̄e

(
w−wd−σ1 +

vd sinαφe(−1 + cos φ̄e)+ vd cosαφe sin φ̄e

φ̄e

)
(15)

It should be noted that the last term in (15) does not involve any singularity.
This leads us to select the following control laws:

v = −c1xe + vd cosφe +σ2w, (16)

w = −c2φe + wd +σ1−
vd sinαφe(−1 + cosφ̄e)+ vd cosαφe sin φ̄e

φ̄e
(17)

with c1,c2 > 0. Thus, (15) becomes

V̇ ≤−c1x2
e − k(t)vd

y2
e√

1 + y2
e

− c2φ̄2
e . (18)

By means of the newly developed stability criteria for nonlinear time-varying sys-
tems [24], it is not hard to prove that V (t) tends to zero as t →∞, provided that vd(t)
is PE, that is,

(H1) There exist two positive constants τ1, τ2 such that
∫ t+τ1

t v2
d(s)ds > τ2 for all

t ≥ 0.

It is worth noting that (H1) is more general than PE conditions of other kind
used previously in past literature for studying the tracking problem of underactuated
mechanical systems. See, for instance, [7, 9, 10, 21].

When this condition (H1) fails, the following assumption is made:

(H2) The signal vd is L1 over [0,∞).
It is worth noting that (H2) can handle the cases of parking and stabilization.
By application of Lemma 2 in the Appendix and [21, Lemma 2], and follow-

ing the similar reasoning as in [10], under (H2), we can conclude the convergence
to zero of the kinematic tracking errors (xe,ye,φe), or equivalently (x(t)− xd(t),
y(t)− yd(t),φ(t)−φd(t)).

Summarizing the above, we have

Theorem 1. Under one of the assumptions (H1) and (H2), the problem of si-
multaneous stabilization and tracking is solvable for the kinematic model of the
nonholonomic mobile robot (5).
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As a direct application of backstepping, following the similar design strategies in
our previous work [21, 9, 10], we can generalize Theorem 1 to the dynamic model.

Theorem 2. Under one of the assumptions (H1) and (H2), the problem of si-
multaneous stabilization and tracking is solvable for the dynamic model of the
nonholonomic mobile robot (5) and (6).

2.3 Output-Feedback Control of Nonholonomic Mobile Robots

In the previous section, we assume that all state measurements are available for
controller design. This may not be the case when the velocity measurements are
not perfectly known or when we purposefully want to avoid implementing costly
sensors to measure the velocities. In such situations, we often turn to a dynamic,
observer-based output feedback controller of the form (4).

In the absence of ω-velocity measurements, the key strategy behind the output-
feedback solution to simultaneous stabilization and tracking is to transform the dy-
namic model (5) and (6) of the robot into a simplified model. The main purpose of
this transformation is to turn the nonlinearities in the original model into a situation
where, in the transformed model, the nonlinearities only depend on the output and
the unmeasured states appear linearly. For our control problem, we consider the po-
sition and orientation variables η as the (measured) output, and assume the velocity
ω as the unmeasured state.

To this end, introduce the following change of coordinates:

X = Q(η)ω (19)

where, for each fixed η , Q(η) is a nonsingular 2×2 matrix.
Direct computation gives:

Ẋ =
[
Q̇(η)ω−Q(η)M−1C(η̇)ω

]
+ Q(η)M−1(−Dω + τ) (20)

Select Q to satisfy the following PDE

Q̇(η)ω−Q(η)M−1C(η̇)ω = 0. (21)

One solution to this PDE is [10]:

Q(η) =
[

n11 cos(aΔφ) Δ sin(aΔφ)−n12 cos(aΔφ)
n11 sin(aΔφ) −n12 sin(aΔφ)−Δ cos(aΔφ)

]

where n11,n12,a,Δ are appropriate constants (see [10] for the details).
Then, the dynamic model (5) and (6) can be rewritten as

η̇ = J(η)Q−1(η)X , (22)

Ẋ = −Q(η)M−1DQ−1(η)X + Q(η)M−1τ (23)
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For this transformed system, we can design a passive, exponential observer of the
form

˙̂η = J(η)Q−1(η)X̂ + K01(η− η̂), (24)
˙̂X = −Q(η)M−1DQ−1(η)X̂ + Q(η)M−1τ + K02(η− η̂) (25)

Following [10], by appropriate choice of design functions K01,K02, the observation
errors η̃ := η− η̂ and X̃ := X− X̂ satisfy a globally exponentially stable system.

Accordingly, we can define

ω̂ = Q−1(η)X̂ , ω̃ = Q−1(η)X̃ , (26)

(v̂, ŵ)T = B−1ω̂T , (ṽ, w̃)T = B−1ω̃T . (27)

Clearly, these error signals ω̃ , ṽ, w̃ go to zero at an exponential rate.
Now, the kinematic tracking errors as defined in (9) satisfy, instead of (10),

ẋe = v̂− vd cosφe + ye(ŵ+ w̃)+ ṽ,
ẏe = vd sinφe− xe(ŵ + w̃),
φ̇e = ŵ−wd + w̃ .

(28)

As compared with the state-feedback design procedure in the previous subsection,
here we utilize v̂ and ŵ as the virtual controls for the kinematic and dynamic mod-
els. Again using backstepping, by combining the previously introduced design pro-
cedure and the one of [10], we can design a dynamic, time-varying output-feedback
control law relying upon the measurements of output η that solves simultaneous
stabilization and tracking.

Theorem 3. Under one of the assumptions (H1) and (H2), the problem of si-
multaneous stabilization and tracking using output feedback is solvable for the
nonholonomic mobile robot (5) and (6).

Proof. similar to the proof of the main result of [10].

3 Open Problems

In spite of significant progress over the past 25 years, the area of controlling un-
deractuated mechanical systems continues to pose challenging problems. Answer-
ing these questions certainly contributes to the development of modern nonlinear
control theory.

3.1 Adaptive Output Feedback Control

Adaptive output feedback control deals with a situation where the control system
in question involves unknown parameters and only the outputs are available for
feedback design. To the best of our knowledge, there is no general answer to the
question of when an adaptive output feedback controller can be designed for solving
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simultaneous stabilization and tracking of nonholonomic mobile robots in particular
and underactuated mechanical systems in general.

The central difficulty comes from the fact that the design of observers and param-
eter identifiers and the controller design are intertwined. The presence of nonholo-
nomic constraints prevents from applying earlier adaptive output-feedback schemes
[26] directly to this special, but important, class of nonlinear systems. See [9] for
a solution to adaptive state-feedback control for the simultaneous stabilization and
tracking of nonholonomic mobile robots.

3.2 Control under Saturation Constraints

When the control inputs are subject to saturation constraints, say, supt≥0 |τ(t)| ≤ ε ,
with ε > 0, the problem of simultaneous stabilization and tracking remains open
for nonholonomic mobile robots, let alone more general classes of underactuated
mechanical systems. Preliminary results are obtained in [23, 29] for the kinematic
model of mobile robots.

3.3 General Models of Underactuated Mechanical Systems

There is very little research accomplished for the simultaneous stabilization and
tracking problem for underactuated mechanical systems taking general forms
[3, 39], say,

M11(q)q̈1 + M12(q)q̈2 + F1(q, q̇) = B(q)u,
M21(q)q̈1 + M22(q)q̈2 + F2(q, q̇) = 0

(29)

where q is the generalized coordinates and u is the controls. Assuming that B(q) is
a full-rank matrix, the second equation of (29) refers to as the nonintegrable con-
straints on accelerations or the second-order nonholonomic constraints.

New techniques and methodologies are needed to address the simultaneous sta-
bilization and tracking problem for underactuated mechanical systems described by
the above general form (29). The challenge will become more daunting when one
moves into the exciting area of controlling a group of underactuated mechanical
systems, working in a team for complex tasks such as search and rescue, formation
control and other military and civilian applications.

Acknowledgements. The author would like to thank Claude Samson, Henk Nijmeijer and
Ti-Chun Lee for their insightful remarks on underactuated mechanical systems, and is grateful
to his former students K.D. Do and Q. Li for their active participation in this initiative. This
work has been supported by NSF grants ECS-0093176, DMS-0504462 and DMS-0906659.

Appendix – Useful Differential Inequalities

The following lemmas on differential inequalities are used, often implicitly, in the
controller design for nonholonomic systems; see [19, 21, 8, 9] and [27].
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Lemma 1. Let V : ℜ+ → ℜ+ be a continuously differentiable function satisfying
the differential inequality of the form

V̇ (t) ≤ −a(t)V(t)+ (V(t)+
√

V (t))b(t) (30)

where a(t) is PE in the sense of liminft→∞
1
t

∫ t0+t
t0

a(τ)dτ > 0 for all t0 ≥ 0, and b(t)
is an exponentially decaying signal. Then, V (t) is exponentially decaying.

Lemma 2. Let V : ℜ+ → ℜ+ be continuously differentiable and W : ℜ+ → ℜ+
uniformly continuous satisfying that, for each t ≥ 0,

V̇ (t) ≤ −W(t)+ p(t) (31)

with p : ℜ+ → ℜ+ is L1. Then, there exists a constant c such that W (t) → 0 and
V (t)→ c as t →∞. Moreover, if a(t)(γ1(V (t))−γ2(W (t)))→ 0 for some continuous
and bounded PE-type signal a(t) as in Lemma 1 and two class-K functions γ1,γ2,
then V (t) → 0 as t → ∞.
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16. Fliess, M., Lévine, J., Martin, P., Rouchon, P.: A Lie-Backlund approach to equivalence
and flatness of nonlinear systems. IEEE Trans. Autom. Control 44, 922–937 (1999)

17. Fontaine, I., Lozano, R.: Non-linear Control for Underactuated Mechanical Systems.
Springer, London (2001)

18. Fossen, T.I.: Marine Control Systems: Guidance, Navigation and Control of Ships, Rigs
and Underwater Vehicles. Marine Cybernetics (2002) ISBN 82-92356-00-2

19. Jiang, Z.P.: Lyapunov design of global state and output feedback trackers for nonholo-
nomic control systems. Int. J. of Control 73, 744–761 (2000)

20. Jiang, Z.P.: Global tracking control of underactuated ships by Lyapunov’s direct
method. Automatica 38, 301–309 (2002)

21. Jiang, Z.P., Nijmeijer, H.: Tracking control of mobile robots: a case study in backstep-
ping. Automatica 33, 1393–1399 (1997)

22. Jiang, Z.P., Nijmeijer, H.: A recursive technique for tracking control of nonholonomic
systems in chained form. IEEE Trans. Automatic Control 44, 265–279 (1999)

23. Jiang, Z.P., Lefeber, E., Nijmeijer, H.: Saturated stabilization and tracking of a nonholo-
nomic mobile robot. Syst. & Control Lett. 42, 327–332 (2001)

24. Jiang, Z.P., Lin, Y., Wang, Y.: Stabilization of nonlinear time-varying systems: A control
Lyapunov function approach. J. Syst. Sci. & Complexity 22, 683–696 (2009)

25. Kolmanovsky, I., McClamroch, N.H.: Developments in nonholonomic control
problems. IEEE Control Syst. Mag. 15, 20–36 (1995)

26. Krstic, M., Kanellakopoulos, K., Kokotovic, P.V.: Nonlinear and Adaptive Control De-
sign. John Wiley & Sons, New York (1995)

27. Lee, T.C., Jiang, Z.P.: A generalization of Krasovskii-LaSalle theorem for nonlinear
time-varying systems: converse results and applications. IEEE Trans. Automatic Con-
trol 50, 1147–1163 (2005)

28. Lee, T.C., Jiang, Z.P.: Uniform asymptotic stability of nonlinear switched systems with
an application to mobile robots. IEEE Trans. Automatic Control 53, 1235–1252 (2008)

29. Lee, T.C., Song, K.T., Lee, C.H., Teng, C.C.: Tracking control of unicycle-modeled
mobile robots using a saturation feedback controller. IEEE Trans. Control Systems
Technology 9, 305–318 (2001)

30. Levine, J.: Analysis and Control of Nonlinear Systems: A Flatness-based Approach.
Springer, Heidelberg (2009)

31. Lizarraga, D.A.: Obstructions to the existence of universal stabilizers for smooth control
systems. Math. Control, Signals, Syst. 16, 255–277 (2003)

32. Malisoff, M., Mazenc, F.: Constructions of Strict Lyapunov Functions. Springer,
London (2009)

33. Morin, P., Samson, C.: Control of nonholonomic mobile robots based on the transverse
function approach. IEEE Trans. Robotics 25, 1058–1073 (2009)

34. Murray, R.M., Sastry, S.S.: Nonholonomic motion planning: Steering using sinusoids.
IEEE Trans. Autom. Control 38, 700–716 (2003)

35. Olfati-Saber, R.: Nonlinear control of underactuated mechanical systems with appli-
cation to robotics and aerospace vehicles. Ph.D. Thesis, Massachusetts Institute of
Technology (2001)



88 Z.-P. Jiang

36. Ortega, R., Spong, M., Gomez-Estern, F., Blankenstein, G.: Stabilization of a class of
underactuated mechanical systems via interconnection and damping assignment. IEEE
Trans. Automat. Contr. 47, 1218–1233 (2002)

37. Qu, Z., Wang, J., Plaisted, C.E., Hull, R.A.: Global-stabilizing near-optimal con-
trol design for nonholonomic chained systems. IEEE Trans. Automat. Control 51,
1440–1456 (2006)

38. Refsnes, J.E., Sorensen, A.J., Pettersen, K.Y.: Model-based output feedback control
of slender-body underactuated AUVs: Theory and experiments. IEEE Trans. Control
Systems Technology 16, 930–946 (2008)

39. Reyhanoglu, M., van der Schaft, A., McClamroch, N.H., Kolmanovsky, I.: Dynamics
and control of a class of underactuated mechanical systems. IEEE Trans. Automat.
Contr. 44, 1663–1672 (1999)

40. Samson, C.: Velocity and torque feedback control of a nonholonomic cart. In: Canudas
de wit, C., et al. (eds.) Advanced Robot Control, pp. 125–151 (1991)

41. Sontag, E.D., Sussmann, H.: Remarks on continuous feedback. In: Proc. IEEE Conf.
Decision and Control, Albuquerque, pp. 916–921 (1980)

42. Sontag, E.D.: Input to state stability: Basic concepts and results. In: Nistri, P., Stefani,
G. (eds.) Nonlinear and Optimal Control Theory, pp. 163–220. Springer, Berlin (2007)



Time Scaling in Motion Planning and Control of
Tree-Like Pendulum Structures

Matthias Krause, Joachim Rudolph, and Frank Woittennek

Abstract. Planar tree-like structures consisting of rigid links with rotational joints
are considered. These models can be used to describe the dynamics of planar biped
robots, in particular during the single support phase. Another simple structure of
this type is the so-called acrobot. In both cases, the base joint is unactuated while
motors are available at all other joints. As a result, motion planning and control
of such systems remain challenging tasks. It is shown that flatness-based methods
can be helpful to their solution if time scaling is taken into account. To this end
the known concept of orbital flatness has to be extended. Moreover, controlled time
scaling turns out to provide a helpful additional degree of freedom. Motion planning
and feedback design are briefly discussed.

1 Introduction

Biped robot locomotion continues to be an interesting field of active research. Start-
ing with fully actuated quasi-static motions, more and more dynamic walking and
even running is under examination. A comprehensive view on currently treated top-
ics and results can be found in [10].

Trajectory planning is a major issue in any dynamic locomotion problem, and it
is now well known that the flatness concept is particularly helpful in such problems.
Anyhow, to the authors’ knowledge, the few flatness-based control results in the
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field of biped robots concern only simplified models of specific configurations [7],
[8].

Although motions in three dimensions are now a major topic of research, one
may still gain insight by studying the planar case. Therefore, here the flatness con-
cept will be exploited to study motion planning and control problems for planar
bipeds which have only pointwise contact with the floor. The robots are modeled as
pendulum trees, consisting of rigid links with rotational joints equipped with mo-
tors. There are no motors at contact points with the ground. The system is, thus,
underactuated.

During the single support phase, in addition to a judicious choice of the depen-
dent variables a change of the independent variable, or time scaling, is considered.
The use of such time scaling can be considered as a generalization of orbital flatness
[2]. Introducing an additional control parameter in the time scaling transformation
provides an extra degree of freedom which simplifies motion planning [3, 4]. In
particular, it is possible to plan trajectories which avoid impacts when touching the
ground. However, due to lack of space this issue cannot be discussed here. Further
simplification results from the examination of the acrobot, a basic example of a tree-
like structure. Besides motion planning, the consequences of the transformations for
the feedback design are also discussed.

The discussion of the double support phase of the biped as well as the bal-
listic phase are beyond the scope of the present contribution. The same holds
for phase transitions. However, similar results are available, which allow for the
parametrization and stabilization of complete walking cycles.

2 Mathematical Modeling

The mechanical systems under consideration are planar tree-like structures consist-
ing of n+1 rigid bodies, K0, . . . ,Kn, as depicted in Fig. 1(a). The “tree” is a structure
of knots and joining edges with unique connections between any two knots. An ar-
bitrary number of bodies can be attached to the body K0, viewed as the root of the
tree. Each body Kk can perform a rotation about a corresponding pivot point Pk. The
axes of the joints are collinear and, thus, only planar motion is possible. In Fig. 1(a),
one arbitrary body Kk, k ∈ {0, . . . ,n} is shown in detail in order to introduce the cor-
responding parameters: the length Lk, the mass mk, and the inertia around the center
of mass Jk.

Defining unit vectors ek =
(
sinϕk,−cosϕk

)T
, nk =

(
cosϕk,sinϕk

)T
parallel

and orthogonal to the kth edge and using the Einstein summation convention
a j b j = ∑ j a j b j, the position of the center of mass rk of body Kk can be written
as

rk = r+ lk
j e j, ṙk = ṙ+ lk

j ϕ̇
j n j, j ∈ P̄k. (1)

Here, ϕk denotes the absolute orientation angle of Kk w.r.t. the vertical, and
ϕ̇k = ωk denotes the corresponding angular velocity. This description can be used
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Fig. 1. Pendulum system considered

if the global root pivot is able to translate. To this end, the vector r denotes the
position of the root pivot in an inertial reference frame. The summation index j runs
over the set P̄k = Pk ∪{k}, where Pk contains the indices of all bodies lying on
the connection between the global root pivot and the link Kk. The center of mass of
every body is assumed to lie on the associated edge Kk, at a distance Sk from the
pivot Pk. A length parameter lk

j is defined as lk
j = Lj, for j ∈Pk, l j

j = S j, (i.e., for

k = j), lk
j = 0, otherwise.

The equations of motion can be derived using d’Alembert’s principle in its
Lagrangian formulation as

d
dt

(
∂T
∂ ṙx

)
− ∂T

∂ rx
+

∂V
∂ rx

= Fx,

d
dt

(
∂T
∂ ṙy

)
− ∂T

∂ ry
+

∂V
∂ ry

= Fy,

d
dt

(
∂T
∂ψ̇k

)
− ∂T
∂ψk +

∂V
∂ψk = Γk,

with k = 0, . . . ,n, and with ψk denoting the relative angle of Kk w.r.t. its antecessor.
Accordingly,ψ0 = ϕ0 holds because the root pendulum has no antecessor. The gen-
eralized force Γk is the input torque about the pivot Pk, which is a linear combination
of the torques produced by the motors attached at that point. Using the notation (1),
the kinetic energy T and the potential energy V can be compactly written as

2T = Ji
(
ϕ̇ i)2 +mi

〈
ṙi, ṙi

〉
= Ji

(
ϕ̇ i)2 +mi

〈
ṙ+ li

jn
jϕ̇ j, ṙ+ li

jn
jϕ̇ j

〉
(2a)

V = −mi

〈
g,ri

〉
=−mi

〈
g,r+ li

j e j
〉
, (2b)
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where i = 0, . . . ,n runs over all body indices. Likewise, the index j runs from
j = 0, . . . ,n, although only j ∈Pi is required to get to the center of mass of Ki.
This is already taken into account by the definition of the parameter li

j which sup-
presses all bodies Kj with j �∈Pi. The vector g= (0,−g)T denotes the gravitational
acceleration. Evaluating the equations of motion using (2) yields

d
dt

(
mi

(
ṙ+ li

jn
jϕ̇ j

))
−mg= F, (3a)

Jiϕ̈ i+mi

〈
d
dt

(
ṙ+ li

jn
jϕ̇ j
)
, li
μnμ

〉
−mi

〈
g, li

μnμ
〉
=Γk, (3b)

for i ∈ C̄k, μ ∈ {0, . . . ,n}\Pk. The summation runs over C̄k = Ck ∪{k}, with Ck

containing the indices of bodies attached to Kk. Moreover, m = ∑n
i=0 mi denotes the

total mass. These equations can be used for arbitrary tree-like pendulum systems.
The specific equations depend on the structure considered as described by the sets
Pk and Ck, k = 0, . . . ,n.

In the biped walking problem, a complete walking cycle may be split into several
phases. The most interesting one is likely the single support phase where only one
point touches the ground. Assuming that the root pivot has non-sliding contact with
the ground it can be modeled as being fixed (ṙ = r̈ = 0) with no actuation torque
(Γ0 = 0). With these assumptions, (3) yields the following equations for the single
support phase:

d
dt

(
Jiϕ̇ i +mi

〈
li

jn
jϕ̇ j, li

jn
j
〉)
−mi

〈
g, li

jn
j
〉
= 0, (4a)

Jiϕ̈ i+mi

〈
d
dt

(
ṙ+ li

jn
jϕ̇ j
)
, li
μnμ

〉
−mi

〈
g, li

μnμ
〉
=Γk, (4b)

for i ∈ C̄k, μ ∈ {0, . . . ,n}\Pk, k = 0, . . . ,n.

m0, J0

L0

S0

ψ0

m1, J1

L1

S1

ψ1

Γ1

Fig. 2. Sketch of the acrobot

The simplest configuration of the pendulum trees considered here is a two-link
planar pendulum with one actuator between the links (see Fig. 2) known as the
acrobot [9, 11, 12]. Discussing this simpler system provides valuable additional
insight into the time scaling methods proposed.
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The equations of motion of this system are well known. In accordance with (4)
they can be written as

m11(ψ1)ψ̈0 +m22(ψ1)ψ̈1 + c1(ψ , ψ̇)+g1(ψ0,ψ1) = 0,

m21(ψ1)ψ̈0 +m22(ψ1)ψ̈1 + c2(ψ , ψ̇)+g2(ψ0,ψ1) = Γ1,

where ψ = (ψ0,ψ1)T ,

m11(ψ1) = A1 +A2 +2Bcosψ1, m12(ψ1) = A2 +Bcosψ1,

m21(ψ1) = A2 +Bcosψ1, m22(ψ1) = A2,

with A1 = J0 +m0S2
0 +m1L2

0, A2 = J1 +m1S2
1, and B = m1L0S1. Moreover,

c1(ψ , ψ̇) =−
(
2ψ̇1ψ̇0 +(ψ̇1)2)Bsinψ1, c2(ψ , ψ̇) = (ψ̇0)2Bsinψ1,

g1(ψ0,ψ1) = (m0S0 +m1L0)gsinψ0+m1S1 sin(ψ0+ψ1)g,

g2(ψ0,ψ1) = m1S1gsin(ψ0+ψ1).

3 Time Scaling and Flatness Properties

In the sequel, it will be shown that time-scaling transformations can be used to
transform the models into flat systems. This is shown in two steps. First, the acrobot
structure is considered where the so-called orbital flatness is exhibited. Then, for
the general tree-like structure—specifically modeling the biped robot in the single
support phase—an extension of the orbital flatness concept is introduced.

3.1 Orbital Flatness of the Acrobot Model

Obviously, mi j, i, j = 1,2 and thus the kinetic energy are independent of the absolute
angleψ0. In [6], this property is called kinetic symmetry1. The change of coordinates

u =
(
m22(ψ1)

)−1(Γ1−m21(ψ1)ψ̈0− c2(ψ , ψ̇)−g2(ψ0,ψ1)
)
,

z1 = ψ0 + γ(ψ1), z2 = m11(ψ1)ψ̇0 +m12(ψ1)ψ̇1, ξ1 = ψ1, ξ2 = ψ̇1, (5)

with

γ(ψ1) =
∫ ψ1

0
m−1

11 (ψ̄
1)m12(ψ̄1)dψ̄1,

is introduced to transform the dynamics of the acrobot into a cascade system in strict
feedback form

ż1 = m−1
11 (ξ1)z2, ż2 =−g1(z1− γ(ξ1),ξ1), ξ̇1 = ξ2, ξ̇2 = u. (6)

1 Without including external forces originating from a potential into the Lagrangian, ψ0 may
be considered as a cyclic coordinate, and one may simply speak about a symmetry.
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There is only one input, u, and the system can be shown not to be flat.
However, applying the differential time transformation

dt
dτ

= m11(ψ1), (7)

the system can be parameterized in z1 and its derivatives. With d
dτ z1 = z′1 one obtains

z′1 = z2, z′′1 =−m11(ξ1)g1(z1− γ(ξ1),ξ1).

Locally, the second equation can be solved for ξ1 = φ(z′′1 ,z1). Differentiating this
expression w.r.t. τ and using (6) in combination with (7) leads to expressions for ξ2

and, by means of a further differentiation, for u. Thus, z1 can be interpreted as a flat
output of the system with transformed time—i.e., as an orbitally flat output [2].

3.2 Extension to General Tree-Like Structures

Equation (4a) forms a differential relation between the relative angles ψ0, . . . ,ψn.
Moreover, there are only n input torques. As a consequence, it is not possible to
freely assign trajectories to these angles. Thus, one might consider one of the angles
as playing a particular role. Clearly, the angle ψ0 = ϕ0 is a good candidate. For the
robot this is the angle between the root and the ground. It is the only angle without
an associated torque. The (variable) shape of the structure is then defined by the
remaining angles ψ = (ψ1, . . . ,ψn).

The interesting part of the model is the equation (4a)

d
dt

(
a0(ψ)ϕ̇0 +b0

j(ψ)ψ̇ j
)
=− ∂V

∂ϕ0 (ϕ
0,ψ), j ∈ {1, . . . ,n}, (8)

not involving any control torque. Applying the differential time transformation
dt
dτ = a0(ψ) and introducing the new variable y yield

d
dτ

((
ϕ0)′+ b0

j

a0

(
ψ j)′)= y′′ =−a0 ∂V

∂ϕ0 , y = ϕ0 +
τ∫

τ0

b0
j

a0

(
ψ j)′ dτ̄. (9)

This transformation is well-defined, because a0(ψ) describes an inertia. It is,
therefore, always positive and simply denotes a scaling depending on the shape.

Choosing any particular angle ψ̃ from {ψ1, . . . ,ψn}, one may design a trajec-
tory τ �→ ψ̃(τ) and then express the trajectories of the remaining angles as a func-
tion of ψ̃ . This yields y = ϕ0 + γ(ψ̃) with ( j runs over the indices of the angles in
{ψ1, . . . ,ψn} \ {ψ̃} )

γ(ψ̃) =
∫ ψ̃

ψ̃0

b0
j

a0

dψ j

dψ̃
dψ̃, y′′ =−a0 ∂V

∂ϕ0 =: f (y− γ(ψ̃), ψ̃).
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The latter can be solved for ψ̃ . As a result, one may consider (y,{ψ1, . . . ,ψn}\{ψ̃})
as an orbitally flat output of the system.

Since the time transformation involves a functional it slightly generalizes the
transformations used to define orbital flatness [2]. The terms orbitally flat output
and orbital flatness might still be used though.

3.3 Controlling the Clock

The parameterization derived so far has one drawback: it does not allow one to as-
sign independent trajectories to all the joint angles and, therefore, motion planning is
still difficult. As a result, a generalization may be useful. It is achieved by introduc-
ing an extra degree of freedom in the time scaling transformation. To this end, the
angles ψ1, . . . ,ψn may also be parameterized by functions ψ i = ψ̄ i(s), i = 1, . . . ,n
of yet another independent variable s. Substituting this expression into (9) leads to

y(τ) = ϕ0(τ)+
s(τ)∫

s(τ0)

b̄0
i (σ)

ā0(σ)
dψ̄ i

dσ
(σ)dσ =: ϕ0(τ)+ γ̄(s(τ)),

where the bar has been introduced to denote the composite functions. Together with
the equation of motion (9) this yields

y = ϕ0 + γ̄(s), y′′ =−a0(ψ̄(s))
∂V
∂ϕ0 (ϕ

0, ψ̄(s)) =: f̄ (ϕ0,s). (10)

Defining a trajectory τ �→ y(τ) on a not yet specified interval [τ0,τ1] allows one to
(locally and numerically) solve the second equation in (10),

y′′(τ) = f̄
(

y(τ)− γ̄
(
s(τ)

)
,s(τ)

)
, (11)

for the parameter s in order to get a relation τ �→ s(τ). Furthermore, using (9) and
ψ i = ψ̄ i(s), i = 1, . . . ,n, the corresponding trajectories of the angles, τ �→ ψ i(τ),
i = 1, . . . ,n, can also be deduced. Trajectories of derivatives of s w.r.t. τ can be
obtained after differentiation of (11).

So far all trajectories have been defined in posture dependent “time” τ , as
τ �→ ψ(τ) with the interval [τ0,τ1] being chosen arbitrarily. As a consequence, only
partial information about the evolution of the motion in physical time t can be de-
duced directly from the prescribed trajectories. The actual trajectories t �→ ψ(t) of
the relative pivot angles and the duration of the corresponding motion cycle can be
predicted only when the relation

t(τ) =
τ∫

τ0

a0(ψ(τ̃))dτ̃ , (12)

following from dt/dτ = a0(ψ) has been evaluated.
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In transformed time s, the tuple (y,ψ1, . . . , ψn) forms a set of n+1 free parame-
ters. This (vector) fundamental parameter may be interpreted as a generalization of
a flat output.

Remark 1. The introduction of an additional free parameter, which in some sense
can be viewed as an “extra input”, has been used in prior work by other authors
[4, 3]—see also [5] for a similar approach.

Of course, for the actual choice of the reference trajectories a number of constraints
have to be taken into account. In the case of the biped robot, the free leg cannot pass
through the ground, the root leg must keep contact with the ground, torque con-
straints must be satisfied, singularities must be avoided, and some inverse functions
must be determined. Furthermore, one wants to parameterize a “natural looking”
motion, and might also wish to ensure that impacts are avoided. Also, a start phase
to reach a periodic walking regime from rest as well as a stop phase must be parame-
terized. Altogether a parameterization of the trajectories of y,ψ1, . . . ,ψn is required
with enough freedom, and a detailed numerical study is needed. This work cannot
be discussed in detail here but a result is shown below.

3.4 Stabilizing Feedback

A method for the design of feedback laws stabilizing the motion along the reference
trajectories designed with the time scaling methods is briefly sketched in the sequel.
To this end, the reference (or desired) trajectories planned so far are now denoted
as ϕ0

d ,ψ1
d , . . . ,ψn

d . Tracking errors of the relative angles are defined as ei = ψ i−ψ i
d .

They may be stabilized w.r.t. s by defining an error differential equation

d2ei

ds2 − (λ i
1 +λ i

2)
dei

ds
+λ i

1λ
i
2ei = 0. (13)

As the definition of the flat output depends on the trajectories, the reference trajec-
tory for y must be corrected by taking the solution of this error system into account:

yd = ϕd +
∫ sd

0
ḡ(σ)dσ , ḡ(s) =

b̄0
i (s)

ā0(s)
dψ i

ds
(s) =

b̄0
i (s)

ā0(s)

(dψ i
d

ds
(s)+

dei

ds
(s)
)
. (14)

The derivatives of ey = y− yd then follow from s,s′,ϕ0,(ϕ0)′ and the reference
trajectories as

ey = ϕ−ϕd +
∫ s

sd

ḡ(σ)dσ , (15a)

e′y = ϕ ′ −ϕ ′d + ḡ(s)s′ − ḡ(sd)s′d , (15b)

e′′y = f̄ (ϕ0,s)− f̄ (ϕ0
d ,sd), (15c)

e′′′y =
d

dτ
(

f̄ (ϕ0,s)− f̄ (ϕ0
d ,sd)

)
. (15d)

A stable error dynamics for ey (w.r.t. τ) is chosen as
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e′′′′y +
3

∑
i=0

ky,i
diey

dτ i = 0, (16)

with an appropriate choice of the coefficients. The control torques are calculated as
in the feed-forward control case, except with y′′′′ replaced by the linear feedback
expression following from the error equation. At this point, it is important to notice
that the coefficients in the error equations (13) of the relative angles must be chosen
depending on the sign of s.

3.5 Simulation Results

A simulation result for the biped structure is presented below. Fig. 3 shows trajec-
tories generated on the basis of the parameterization proposed. The trajectories of
the relative joint angles ψ i(s), i = 1, . . . ,n are shown on the left top subfigure. To
its right, the control torques are given (Γ0, the one at the floor, being zero) and on
the upper right, the path of the lower end point of the free leg is drawn. Control
constraints from [1] are respected. Fig. 3 also shows a sequence of snaphots taken
during this step.
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Fig. 3. Simulation results for a step during the single support phase

4 Conclusion

Exploiting the concept of orbital flatness, extending it to transformations involving
functionals, and introducing a free time-scale parameter as an “additional input”
enables the solution to difficult problems of motion planning and control. This tech-
nique has been shown for general planar tree-like pendulum structures. The method
can be used in particular to plan walking motions of robots with models that fall
into this class of systems. Specifically, the single support phase of biped walking
robots is considered here. Additionally, the phases with two point floor contact and
the ballistic phase (with no ground contact) can be treated on a flatness basis. In the
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first case, this treatment is rather standard since the system is overactuated. In the
ballistic phase, the methods introduced here can be applied on the reduced system
obtained after elimination of the invariants of motion.
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4. Lévine, J.: On the synchronization of a pair of independent windshield wipers. IEEE
Trans. Contr. Syst. Technol. 5, 787–795 (2004)
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Mechanical Version of the CRONE Suspension

Alain Oustaloup and Xavier Moreau

Abstract. This paper deals with an application of the non integer differentiation in
vehicle suspension area: the CRONE suspension, French acronym of suspension á
Comportement Robuste d’Ordre Non Entier. This suspension results from a tradi-
tional suspension system whose order 1 dashpot is replaced by a non-integer order
dashpot. The different steps, from the concept to its practical realisation, are pre-
sented. A quarter-car model is used to illustrate the performances. The frequency
and time responses, for various values of the vehicle load, reveal a great stability
robustness: the resonsance in the frequency domain and the damping ratio in the
time domain remain almost constant whatsoever the load variations are.

1 Introduction

The history of the non integer (so-called fractional) differentiation can be dated back
to 1695, when L’Hospital and Leibniz were communicating whether it made sense
to define an operator dn/dtn for n = 0.5 [1]. In the 18th century there were only few
contributions to this topic and it was Euler who again raised the question of a deriva-
tive of order n for n being a fraction. Later, Liouville attempted to give a logical
definition of fractional derivatives. One can state that the whole theory of fractional
derivatives and integrals was established in the 2nd half of the 19th century [2], [3],
[4]. During the 20th century, fractional-order systems, or systems described using
fractional derivatives and integrals, have been studied by many in the engineering
area [5], [6], [7], [8]. It should be noted that there is a growing number of phys-
ical systems whose behaviour can be compactly described using fractional-order
system theory [9], [10], [11], [12]. Of specific interest to engineers are electrochem-
ical processes, long lines, dielectric polarization, colour noise, chaos and viscoelas-
tic materials. After this brief introduction, part 2 presents some basic definitions to
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introduce non integer differentiation from integer differentiation. Then, an
application of non integer differentiation in vehicle suspension area is presented:
the CRONE suspension [13]. The CRONE approach leads to a robustness of stabil-
ity degree versus load variation. Finally, the last part summarises all the main points
developed in this paper.

2 From Integer Differentiation to Non Integer Differentiation

2.1 Towards Non Integer Differentiation

A natural approach of the non integer derivative of a causal or not causal function
f (t), using a generalization of the well known real integer order derivative defini-
tion, consists in:

• expressing the order 1 derivative under an adequate form,
• also expressing the order 2 derivative under an analogous form,
• then extending to the non integer case the generic form resulting,
• to obtain thus a generalization to the integer and non integer case.

2.2 Generic Form of the Order 1 and 2 Derivatives

The order 1 left derivative is defined by:

D1 f (t) = lim
h→0

f (t)− f (t−h)
h

. (1)

A discretization of t to the sampling interval h, namely t = Kh, is translated by:

D1 f (t) = lim
h→0

f (Kh)− f ((K−1)h)
h

. (2)

The introduction of the delay operator q−1 applicable to a concrete function and
defined by

q−1 f (Kh) = f ((K−1)h), (3)

allows to write:

D1 f (t) = lim
h→0

1−q−1

h
f (Kh). (4)

A similar calculation carried out for an order 2 derivative, leads to:

D2 f (t) = lim
h→0

(
1−q−1

)2

h2 f (Kh). (5)

2.3 Generalization to the Integer and Non Integer Case

The generalization to any (integer or non integer, real or complex) order is
immediate and leads to the definition proposed by Grünwald in 1867, that is to say:



Mechanical Version of the CRONE Suspension 101

Dn f (t) = lim
h→0

(
1−q−1

)n

hn f (Kh), (6)

namely, developping (1−q−1)n by the Newton binomial formula:

Dn f (t) = lim
h→0

1
hn

[
∞

∑
k=0

(−1)k n(n−1)(n−2) . . .(n− k+1)
k!

q−k

]
f (Kh), (7)

or

Dn f (t) = lim
h→0

1
hn

∞

∑
k=0

(−1)k n(n−1)(n−2) . . .(n− k+1)
k!

q−k f (Kh), (8)

or even, given that

q−k f (Kh) = f ((K− k)h) = f (t− kh) : (9)

Dn f (t) = lim
h→0

1
hn

∞

∑
k=0

(−1)k n(n−1)(n−2) . . .(n− k+1)
k!

f (t− kh), (10)

or even, under a more condensed writing:

Dn f (t) = lim
h→0

1
hn

∞

∑
k=0

ak f (t− kh), (11)

by putting:

ak = (−1)k n(n−1)(n−2) . . .(n− k+1)
k!

, (12)

or, using the usual symbolism: ak = (−1)k
(n

k

)
with ak = 1 for k = 0.

2.4 Local and Global Characterization

Through the function f (t − kh) which introduces terms in f (t), f (t − h),
f (t−2h), . . . , thus past samples, the formula

Dn f (t) = lim
h→0

1
hn

∞

∑
k=0

ak f (t− kh), (13)

shows that, contrary to integer derivative, the non integer derivative of a function at
a given instant t takes into account the values of this function at all the past instants.

So, if integer derivative gives a local characterization of the function (slope of the
tangent to the curve at the instant t for the order 1 derivative), non integer derivative
turns out to give a global characterization.
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2.5 Memory Notion

Taking into account all the past of the function through a weighted sum of the
samples which expresses (through the weighting coefficients) a different weight
according to the sample, non integer differentiation introduces a memory notion
through a lessening or a stressing of the past in conformity with the weighting
coefficients which are such as:

• for n = −1 (which corresponds to an integration), the past is not weighted
(figure 1);

• for n > −1 (which corresponds to less than an integration and to a differentia-
tion), the past is lessened (with weighting coefficients which keep the same sign
for−1 < n < 1 and which change sign for n > 1 (figure 2));

• for n < −1 ((figure 3) which corresponds to more than an integration), the past
is stressed (with weighting coefficients which keep the same sign).

Such as characterized, this memory notion evokes a memory subtle form through
which the recollection of an event depends on the nature of this event:

• for usual events, the recollection of more ancient events is less important than the
recollection of more recent events;

• on the other hand, for unusual events, the recollection of more ancient events can
be more important than the recollection of more recent events.

Fig. 1. a(k) versus k with n =−1

3 The CRONE Approach in Vehicle Suspension Area: The
CRONE Suspension

In dynamics, for any vehicle, the suspension system must perform two main func-
tions [13]. Firstly, it provides a high degree of isolation for the vehicle body from
the loads applied between the wheels and roads to ensure passenger comfort; and,
secondly, it keeps the wheels in close contact with the road surface to ensure an ad-
equate roadholding when accelerating, braking or cornering. These functions must
then be optimised within several constraints: first, the minimum value of the relative
body/wheel workspace usage; second, control of vehicle attitude in manoeuvring;
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(a) n =−0.5 (b) n = 0.5

(c) n = 1.5

Fig. 2. a(k) versus k for different values of n

Fig. 3. a(k) versus k with n <−1

third, minimum value of the power consumption. In fact, the conflict between these
various aspects of vehicle behaviour is the main problem in suspension system de-
sign.

In statics, the vehicle bodywork weight is compensated:

• by the self leveller device, in addition to the suspension, in a hydropneumatic
technology;
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• by the spring of the suspension itself in a mechanical technology, which implies
that the CRONE suspension mechanical version is, like the usual suspension

– of type mass-spring-dashpot
– apart that the aforementioned dashpot is actually a damping device of another

kind.

Just like the hydropneumatic version of the CRONE suspension, the aim is to ensure
simultaneously to the vehicle bodywork

• a better vibration isolation by a reduction of the vertical accelerations (in
performance terms);

• and a better robustness of stability degree in relation to the carried load (in
robustness terms).

Contrary to the effective strategies that consist in reparametrizing an usual
suspension through a modification (linked or not)

• of the spring stiffness
• and of the dashpot viscous damping (or viscous friction coefficient),

our strategy consists in restructuring an usual suspension through a modification of
the order of the dashpot (defined by a force-displacement transfer), which comes to
replace

• the usual dashpot (of order 1)
• by a dashpot of non integer order.

4 Principle and Modeling of the CRONE Suspension

Let a suspension be of mass-spring-dashpot type (figure 4) , in which:

• M represents the bodywork mass supported by each wheel,
• k denotes the spring stiffness,
• C denotes the dashpot viscous damping,
• x(t) and y(t) denote the vertical displacements of the wheel and of the bodywork

respectively.

The usual suspension uses a dashpot which develops a force proportional to its rel-
ative (or differential) speed, that is to say to the first derivative of its relative (or
differential) displacement.

The principle of the CRONE suspension consists in replacing the order 1 dash-
pot so defined by a non integer order dashpot. This dashpot develops a force
proportional to the non integer derivative of its relative displacement, namely:

F(t) =C

(
d
dt

)m

[x(t)− y(t)], with 0 < m < 1. (14)
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Fig. 4. Suspension scheme

Applying the Newton’s second principle to the usual and CRONE suspensions,
makes it possible to establish the differential equations:

M
d2y(t)

dt2 =−k[y(t)− x(t)]−C

(
d
dt

)
[y(t)− x(t)] (15)

and

M
d2y(t)

dt2 =−k[y(t)− x(t)]−C

(
d
dt

)m

[y(t)− x(t)], (16)

namely:

M
d2y(t)

dt2 +C
dy(t)

dt
+ ky(t) =C

dx(t)
dt

+ kx(t) (17)

and

M
d2y(t)

dt2 +C

(
d
dt

)m

y(t)+ ky(t) =C

(
d
dt

)m

x(t)+ kx(t), (18)

from which one draws the transmittances:

H(s) =
Y (s)
X(s)

=
k+Cs

k+Cs+Ms2 (19)

for the usual suspension (m=1), and

H(s) =
Y (s)
X(s)

=
k+Csm

k+Csm +Ms2 (20)

for the CRONE suspension ( 0 < m < 1 ).
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4.1 Initial Behaviour : No Initial Acceleration for the CRONE
Suspension

The deformation (by crushing) of a tyre while climbing a pavement which consti-
tutes an extreme test case in vibratory isolation by impact absorption, makes that
the wheel hub describes a profile that looks more like a ramp than a step.

So, the ramp function turns out to be a model of elementary deterministic so-
licitation sufficiently representative of reality, so enabling to express the vertical
displacement of the hub under the form:

x(t) = tu(t), (21)

where u(t) denotes the unit step function. Concerning the response y(t) to this ramp
try, it is possible to write, from the initial value theorem

lim
t→0

ÿ(t) = lim
s→+∞

s[s2H(s)X(s)], (22)

particularized by

lim
t→0

ÿ(t) = lim
s→+∞

sH(s) for X(s) =
1
s2 : (23)

ÿ(0+) = lim
s→+∞

ks+Cs2

k+Cs+Ms2 =
C
M

(24)

for the usual suspension ( m=1 ), and

ÿ(0+) = lim
s→+∞

k+Cs1+m

k+Csm +Ms2 = 0 (25)

for the CRONE suspension ( 0 < m < 1 ).
The comparison of these relations shows that the initial acceleration of the

bodywork is finite for the usual suspension and nil for the CRONE suspension.
Independently of the robustness of the CRONE suspension that we are going to

show, this property is already remarkable. It indeed ensures a better comfort for the
passengers.

4.2 Stability Degree Robustness

4.2.1 Robustness Tests

For different parametric states of the usual and CRONE suspensions, namely

k = 17055 N/m and C = 5500 Ns/m for m = 1

and
k = 4264 N/m and C = 9000 Ns0.8/m for m = 0.8,
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these states ensuring approximately the same dynamics to the two suspensions
for a mass of 300 kg, the tests on the degree stability robustness in relation
to the carried load are completed for different values of the mass M, namely
150 kg, 300 kg, 600 kg and 900 kg.

4.2.2 Stability Degree Measure

Stability degree is quantified (or measured):

• either by the resonance ratio, defined from the frequency response (figure 5);
• either by the first overshoot, defined from the step response (figure 6);
• or by the damping ratio, defined from the roots of the characteristic equation

(figure 7).

That amounts to saying that the robustness tests as defined rely successively on

• the frequency and step responses of the two suspensions
• and also the roots of their characteristic equation.

4.2.3 Frequency and Setp Responses: Robustness of the Resonance Ratio
and of the First Overshoot for the CRONE Suspension

Figures 5 and 6 present the frequency and step responses for both usual and CRONE
suspensions.

These responses given for the different values of the vehicle load, reveal the ro-
bustness of stability degree for the CRONE suspension through the constancy− of
the resonance ratio in frequency domain− and of the first overshoot in time domain.

4.2.4 Characteristic Equation Roots: Robustness of the Damping Ratio for
the CRONE Suspension

The algorithm, that the “Generalized characteristic equation” module of the
CRONE software uses, is applied to find the roots of the characteristic equation

• of the usual suspension on one hand, namely (m = 1)

Ms2 +Cs+ k = 0 (26)

• of the CRONE suspension on the other hand, namely (m = 0.8)

Ms2 +Cs0.8 + k = 0. (27)

For the parametric states of the usual and CRONE suspensions as previously de-
fined, figure 7 illustrates the image of the roots (or the poles) so obtained for the
different mass values defined by the test conditions. Knowing that the damping ra-
tio is given by the cosine of the half centre angle that the conjugate complex pole
pair forms, the angular quasi-constancy of the CRONE suspension poles is repre-
sentative of its robustness.
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(a) Gain diagrams of the usual
suspension

(b) Gain diagrams of the CRONE
suspension

Fig. 5. Frequency response: − M = 300 Kg ; . . . M = 600 Kg

(a) Step responses of the usual
suspension

(b) Step responses of the CRONE
suspension

Fig. 6. Step response: − M = 300 Kg ; . . . M = 600 Kg

(a) Image of the poles of the usual
suspension

(b) Image of the poles of the CRONE
suspension

Fig. 7. Image of the poles of the usual and CRONE suspensions for different loads: ♦ M =
300 Kg ; � M = 600 Kg

5 Idea of the Synthesis of a Non Integer Order Dashpot

The synthesis of a non integer order dashpot is based on the non-stationarity of an
usual dashpot through the time variation of the viscous damping. Indeed, the force
developed by a non integer order dashpot, namely
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F(t) =C

(
d
dt

)m

[x(t)− y(t)], (28)

can be interpreted as resulting from an usual dashpot with variable viscous damping,
namely

F(t) =C(t)
(

d
dt

)
[x(t)− y(t)], (29)

from where one draws, by identifying these two equations:

C(t) =C

(
d
dt

)m
[x(t)− y(t)](

d
dt

)
[x(t)− y(t)]

. (30)

So, the solution consists:

• firstly, in computing (in conformity with this relation) the instantaneous viscous
damping C(t) from the relative displacement recorded by a position sensor;

• secondly, in computing the instantaneous section s(t) of the dashpot hole from
the value of C(t) so obtained.

6 Active Character of the CRONE Suspension

The time variation of the viscous damping C(t) for a mass of 300kg and for step
and harmonic responses as shown in figure 8, presents positive and negative values
that translate the existence of dissipative and active phases, so expressing that the
damping device which is at stake is in fact

• a continuously controlled dashpot for the dissipative phases
• relayed by a hydraulic actuator controlled in force for the active phases (which

makes active the CRONE suspension).

(a) Variation of C(t) for a step response (b) Variation of C(t) for a harmonic re-
sponse

Fig. 8. Variation of C(t) for step and harmonic responses
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7 Piloted Passive CRONE Suspension

Given that the energies at stake during the active phases are negligible in front of
those corresponding to the dissipative phases (quantified study in sinusoidal state),
which confers a quasi dissipative character to the dashpot of non integer order (so
justifying its dashpot denomination), it is convenient to adopt the following process:

• a priori, cancel C(t) when it becomes negative;
• a posteriori, verify that the cancellation of C(t) so defined does not practically

affect the performances (by means of an eventual reparametrization of the sus-
pension).

The modification of C(t) in conformity with a new viscous damping, denoted by
C∗(t), such as

C∗(t)

⎧⎪⎪⎨
⎪⎪⎩

0 when C(t)≤ 0,

C
( d

dt )
m
[x(t)−y(t)]

( d
dt )[x(t)−y(t)]

when C(t) > 0,

(31)

defines the CRONE suspension said modified or, in other terms, the piloted passive
CRONE suspension which constitutes the most economical solution as it needs no
exterior energy supply and which approximatively keeps the same performances
(figure 9) by means of the following reparametrization:

k = 10000 N/m, C = 9000 Ns0.7/m and m = 0.7. (32)

Fig. 9. Step responses of the modified CRONE suspension: (a) 300 kg; (b) 600 kg; (c) 900
kg; (d) 1200 kg

8 Contract Collaboration

The industrial partner is the Peugeot-Citroën (PSA) company.
The contribution of the collaboration is:

• the conception and the achievement of the non-integer order dashpot (figure 10)
(according to the patents 90 046 13 and 95 050 84 registered respectively in 1990
and 1995 )



Mechanical Version of the CRONE Suspension 111

Fig. 10. Non-integer order dashpot

(a) In the front (b) At the rear

Fig. 11. Non-integer order Dashpot implementation

• and also its implementation in a 406 Peugeot (figure 11) in 1998 with the help of
the Coverplant company.

9 Conclusion

This paper has shown that the CRONE suspension provides remarkable perfor-
mance: better robustness of stability degree versus load variations of the vehicle.
Robustness is illustrated by the frequency and time responses obtained for different
values of the load. From the concept of the CRONE suspension, a technological
solution has been developed with PSA. This solution, called the passive CRONE
suspension, uses a continuously controlled damper. Its design permits it to be man-
ufactured at the same cost as a traditional automobile damper. Bench test on a pro-
totype have validated the theoretical expectations.
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Electrostatic MEMS: Modelling, Control, and
Applications

Guchuan Zhu

Abstract. This paper addresses issues related to the modelling and the control
of electrostatic microelectromechanical systems (MEMS) in applications requiring
high accuracy positioning, wide operation range, and high control bandwidth. A par-
ticular emphasis is put on the choice of control system architecture and its influence
on potential performance in different practical operation conditions.

1 Introduction

In the last years, there has been a surge of interest in MEMS fabrication and appli-
cations. Currently available MEMS fabrication techniques enable the construction
of devices with high-precision displacement and high-quality optical surface. How-
ever, most of the known applications take advantage of only the native properties
of MEMS in building miniaturized systems for sensing or actuation operating in an
open-loop manner. This would not allow fully exploiting the promises the MEMS
technology can offer. MEMS requiring high accuracy positioning, wide operation
range, and high control bandwidth include, just to name a few, all-optical switches,
optical scanning mirrors, recoverable photopic crystal devices, tunable optical fil-
ters, and deformable micro-mirrors, which are key components in such systems
as optical communications, astronomical telescopes, medical and biological instru-
ments, and many other scientific and engineering applications. Constructing highly-
integrated microsystems for high-functionality and high-performance applications
represents one of the future trends in MEMS technology.

Among diverse actuation mechanisms, electrostatic actuation is the most popu-
lar one because of its simple structural geometry, flexible operation, and easy fab-
rication from standard and well-understood materials [1]. However, this actuation

Guchuan Zhu
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scheme results in highly nonlinear dynamics, giving rise to a saddle-node bifurca-
tion, called “pull-in,” which limits the stable open-loop operation to a small portion
of the whole physically available range [2]. Extending the stable operation range and
further enhancing the performance of electrostatic MEMS constitute one of the cen-
tral topics in the field of MEMS which has motivated the work on the application of
a variety of nonlinear control techniques to this problem (see, e.g., [3, 4, 5, 6, 7, 8]).
Robust and adaptive control of MEMS in the presence of parasitics and parametric
uncertainties has also been addressed (see, e.g., [9, 10, 11]).

This paper aims at getting an overview of diverse MEMS control strategies and
an insight into the potential performance one can expect regarding the architecture
of control system, in particular the choice of control variables. For simplicity, only
one degree-of-freedom (1DOF) electrostatic parallel-plate actuators will be consid-
ered and the model of such a system is presented in Section 2. The stabilizability
of typical control strategies is presented in Section 3-5, while the issue related to
modelling and control of MEMS devices in the presence of modelling errors due
to parametric uncertainties and parasitics is discussed in Section 6. Finally, some
concluding remarks are given in Section 7.

2 Dynamic Model of Electrostatic Parallel-Plate MEMS

The schematic representation of 1DOF electrostatic parallel-plate actuators is shown
in Fig. 1 where m is the mass of the moveable plate, k is the stiffness coefficient, b is
the damping coefficient, G is the air gap, G0 is the zero-voltage gap, p is the normal-
ized displacement, Δ is the insulating layer thickness, R is the loop resistance, Va is
the voltage across the actuator, and Vs and Is are the source voltage and the source
current, respectively. When the moveable plate is supposed to be a rigid body with-
out deformation and only the main electric field within the gap is considered, the
actuator capacitance can be computed by Ca = εA/G [2] where A is the effective
area of electrodes and ε is the permittivity in the gap. The electrostatic force on the
moving plate corresponding to bias voltage Va is then given by [2]

Fe =
V 2

a

2
∂Ca

∂G
=−2εAV 2

a

G2 =− Q2
a

2εA
(1)

where Qa = Va/Ca is the charge on the actuator. The equation of motion of the
actuator is then given by (see, e.g., [2]):

mG̈+bĠ+ k(G−G0) = Fe. (2)

By scaling system variables with respect to a critical bias voltage Vpi (the
so-called pull-in voltage) [12, 5]:

p = 1− G
G0

, q =
3Qa

2C0Vpi
, u =

Vs

Vpi
, i =

Is

Vpiω0C0
, r = ω0C0R, (3)
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Fig. 1. Schematic representation of 1DOF parallel-plate electrostatic actuator. The top
structure is fixed for sustaining the moveable plate.

where C0 := εA/G0 is the capacitance at zero-voltage position, ω0 :=
√

k/m is the
undamped natural frequency, and ζ := b/2mω0 is the damping ratio, the normalized
bias voltage can be expressed by ua = 3q(1− p)/2 and the dynamics of normalized
charge become q̇ = 2i/3. Denoting x = (x1,x2,x3)T = (p, ṗ,q)T , the state-space
model of the system in a normalized time scale with respect to ω0 is given by [5]:

ẋ1 = x2, (4a)

ẋ2 =−2ζx2− x1 +
1
3

x2
3, (4b)

ẋ3 =
1
r

x3(x1−1)+
2
3r

u, (4c)

which is defined on a restricted state space X =
{

x ∈ R
3 | x1 < 1− δ

}
with

δ = Δ/G0 being the normalized thickness of the insulating layer. Note that for
simplicity, contact dynamics on the boundary of X are not considered in this pa-
per. Consequently, the closed-loop stability obtained by the presented control laws
holds, in essence, locally.

3 Voltage Control and Capacitive Feedback

An intuitive choice of system output is the voltage across the device

y = ua =
3
2

x3(1− x1) = h1(x) (5)

which is the most commonly used control variable in open-loop control schemes.
We then have1

ẏ =− 3
2r

x3
(
(1− x2)2 + rx2

)
︸ ︷︷ ︸

Lf h1

+
1− x1

r︸ ︷︷ ︸
Lgh1

u. (6)

As Lgh1 �= 0 for all x1 < 1, System (4) with ua as output has uniform relative degree
1 [13]. The input-output linearization can be obtained by the following control

1 L f h(x) is the Lie derivative of h(x) along the vector field f defined as L f h(x) =
∂h(x)
∂x

f (x).
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u = (Lgh1)
−1 (ũ−Lf h1

)
, (7)

and is of the form

ẏ = ũ, (8a)

ż = η(z,y) (8b)

where ũ is a new control signal, z = (x1,x2)T , and

η(z,y) =

⎛
⎝ x2

−2ζx2− x1 +
4

27
y2

(1− x1)2

⎞
⎠ . (9)

Clearly, the zero-dynamics (8b) coincide with that of the mechanical subsystem.
An obvious control is

ũ =−k(y− ȳ), k > 0, (10)

where ȳ is the reference signal corresponding to a set-point. Hence, any equilib-
rium of the zero-dynamics must satisfy x2 = 0 and ȳ2 = 27x̄1(1− x̄1)2/4. Denoting
Δx1 = x1− x̄1 and Δx2 = x2− x̄2, the Jacobian linearization of the zero-dynamics
around the equilibrium point is given by

d
dt

(
Δx1

Δx2

)
=

⎛
⎝ 0 1

−1+
2x̄1

1− x̄1
−2ζ

⎞
⎠(Δx1

Δx2

)

which is stable if and only if x̄1 ∈ [0,1/3). It is straightforward to show that x̄1 = 1/3
is a saddle-node bifurcation point at which ȳ = ūa = 1, corresponding to Vpi.

A control scheme, called capacitive feedback, has been proposed by [14] that can
extend the stable operational range beyond the pull-in position by inserting a serial
capacitor (see Fig 2(a)). It can be seen that

Va +VCf =Va
(
1+Ca/Cf

)
=Va

(
1+ρ fCa/C0

)
where ρ f := C0/Cf , representing the scale of Cf with respect to C0. Therefore in
equilibrium, the relationship between actuation and bias voltages is given in normal-
ized coordinates by ua = us(1− x1)/(1− x1 +ρ f ). Noting that in any equilibrium
x2

3 = 3x1, we obtain

u2
s =

27
4

x1
(
1− x1 +ρ f

)2
. (11)

It can be seen from actuation curves in equilibrium points shown in Fig 2(b) that
the insertion of a serial capacitor has the effect of pushing the pull-in position away
and that for ρ f > 2 or equivalently Cf < C0/2, the saddle-node bifurcation will be
removed [14]. However, the insertion of serial capacitor will increase the footprint.
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Fig. 2. Capacitive feedback: (a) scheme; (b) effect of the size of Cf to actuation curve in
equilibrium

Capacitive feedback can also be implemented by closed-loop control without
using physical serial capacitor. In fact, if the system output is chosen as

y =
3
2

x3
(
1− x1 +ρ f

)
= h2(x), (12)

System (4) has still uniform relative degree 1 and its input-output linearization is of
the form given in (8) with

η(z,y) =

⎛
⎝ x2

−2ζx2− x1 +
4

27
y2

(1− x1 +ρ f )2

⎞
⎠ (13)

which is obtained by the control

u = (Lgh2)
−1 (ũ−Lf h2

)
, (14)

where

Lf h2 =−
3
2r

x3
(
(1− x1 +ρ f )(1− x1)+ rx2

)
, Lgh2 =

1− x1+ρ f

r
. (15)

Therefore, (11) holds in any equilibrium point and the corresponding zero-dynamics
are stable at any position within the air gap if ρ f > 2. Moreover, by choosing the
linear control as the one given in (10), it is possible to make the electrical subsystem
arbitrarily fast. The performance of the system will then be dominated by that of the
zero-dynamics, that is the mechanical subsystem.

4 Charge Feedback Control

Another way for displacement control is to drive the device by prescribed charge.
With charge as control variable, we have from (4) that at equilibrium x2

3 = 3x1. This
implies that every equilibrium be unique in the whole gap range and be stable, hence
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Fig. 3. Charge control: (a) control scheme implemented by ideal current sources; (b) effect of
parallel capacitance Cp to actuation curve in equilibrium

the voltage pull-in will not occur [15]. Figure 3(a) illustrates a basic charge control
scheme which is one of the diverse implementations proposed in the literature [12].
Compared to voltage control, implementation of current source requires more com-
plicated circuits and bigger footprint.

Charge feedback can be implemented by closed-loop nonlinear control using
voltage source [3, 4]. In fact, if the charge is chosen as system output

y = q = x3 = h3(x), (16)

the input-output linearization of the systems is of the form of (8) with

η(z,y) =

(
x2

−2ζx2− x1 +
1
3

y2

)
. (17)

The linearizing control can be derived directly from (4) which is given by

u =
3r
2

(
ũ− 1

r
x3(x1−1)

)
. (18)

Clearly the zero-dynamics verify x2
3 = 3x1 in any equilibrium and are stable in the

whole operational range. Furthermore, if the electrical-subsystem is rended arbi-
trarily fast by an appropriate control described in (10), then the performance of the
system will be dominated by mechanical-subsystem. Thus, the performance may be
poor if the natural damping of the devices is too low or too high. A solution for
improving system performance is proposed in [3] by using passivity-based dynamic
feedback.

Charge control may also suffer from instability, called charge pull-in, when there
are capacitors parallel to the device, represented by Cp [15, 16]. This is due to the
fact that the charge for driving the device including parallel capacitance is given by

Qs = Qa +Qp = Qa (1+Cp/Ca) = Qa (1+ρpC0/Ca)
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where ρp := Cp/C0, representing the size of Cp with respect to C0. Therefore, the
relationship between the charge on the device, qs, and that for driving the actuator,
q, is given in normalized coordinates by qs = q(1+ρp(1− x1)) and the equilibrium
satisfies

q2
s = 3x1 (1+ρp (1− x1))

2 . (19)

Actuation curves in equilibrium points corresponding to different size of Cp, repre-
sented by ρp, are shown in Fig 3(b). It can be shown that equilibrium points in the
whole physically feasible gap are all stable if and only if ρp < 1/2 or equivalently
Cp < C0/2 [15, 16].

5 Position Feedback Control

Position feedback is the most popular scheme employed in electrostatic MEMS con-
trol due to the fact that it allows removing the phenomenon of pull-in. When the
position is chosen as system output, y = x1, we obtain by a direct computation:

ẏ = x2,

ÿ =−2ζ ẏ− y+
1
3

x2
3

y(3) =−2ζ ÿ− ẏ+
2
3

x3ẋ3

which leads to

x3 =±
√

3(ÿ+2ζ ẏ+ y), (21a)

u =
9r
4x3

(
y(3) +2ζ ÿ+ ẏ

)
+

3
2

x3(1− y) (21b)

Since the states as well as the input can be expressed by output and its derivatives,
we can conclude that System (4) is differentially flat, except for x3 = 0, with y = x1

as flat output [17, 5]. The system is therefore exactly linearizable by state feedback
and a diffeomorphism [17]. This explains why position feedback can completely
remove pull-in. Furthermore, as the system is equivalent to y(3) = ũ, where ũ is a new
input, the tracking control can be carried out easily in the framework of flat systems.
Note that being treated as tracking problem, the desired behavior can be specified
through reference trajectories. Therefore, one can expect a high performance.

Nevertheless, position feedback control suffers from a singularity related to the
controllability. It is straightforward to show that due to the quadratic term q2 (or x2

3
in (4)) appearing in the mechanical subsystem, the Jacobian linearization of such
a system is not controllable at the points where q = 0. Consequently, controls de-
rived from feedback linearization with position as output will usually explode as
the trajectory of the system is approaching these points. To avoid the singularity
due to uncontrollable linearization, direct nonlinear designs should be considered.
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Examples of such designs include passivity-based control [4], Lyapunov approach
[8], and backstepping on nonlinear term q2 [18].

6 Dealing with Modelling Errors

To obtain a higher performance, one may need to use more accurate models. How-
ever, due to particular physical property of MEMS, accurate modelling may result in
very complex mathematical model. For example, the dynamics of micro-actuators
are significantly affected by the pressure due to the surrounding air which cannot
escape immediately as the moveable plate moves against the fixed one, creating the
so-called squeezed film damping force. To reduce this effect, the moveable plate
is typically patterned with circular holes allowing the flow of air. In this case, the
squeezed film damping coefficient in (2) is given by [19]

b(x) =
12μA2

nπG3
0x3

(
λ
2
− λ 2

8
− lnλ

4
− 3

8

)
(22)

where μ is the gas viscosity, n is the total number of holes in the moveable plate,
and λ is the fraction occupied by the holes. Obviously, squeezed film damping is a
state dependent quantity.

Modelling phenomena such as fringing fields and deformations leads also to
complex dynamics described by partial differential equations (see, e.g., [20]). Other
sources of uncertainty, such as parasitics, complicate the modelling issue even fur-
ther. In addition, most of the existing formulations do not precisely represent the
behavior of real devices due to dielectrics, imperfect conductors, rough sidewalls,
rounded corners, etc.

If the objective is one of modelling the plant for the purpose of controlling it,
then the model sought only needs to capture the essential dynamical behavior of
the system and yet be simple enough to make the control design less complicated
to implement. One of such a model is shown in Fig. 4. This model is based on the
simplified one given in Section 2 while presenting diverse unmodeled phenomena
by serial and parallel capacitors, denoted by Cs and Cp respectively, which can be
expressed in terms of capacitive influence coefficients, defined as:

ρs :=C0/Cs, ρp :=Cp/C0. (23)

Note that this model captures a quite wide range of physical phenomena. For ex-
ample, the serial capacitor can characterize the effect of fringing fields and defor-
mations, and the parallel capacitor can represent the parasitics due to thin layer-out
of micro structures [21, 20]. Following the same line of reasoning, we can model
devices with more complex configuration. The electrical dynamics of the system
shown in Fig. 4 are given by [22]
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Fig. 4. Equivalent circuit of a generic model. Ia: current through the actuator; Ip: current
through Cp; Vp: voltage across Cp.

Q̇a =
1

R

(
1+ρpρs +ρp

G
G0

) (Vs−
(

G
εA

+ρs
G0

εA
+Rρp

Ġ
G0

)
Qa

)
. (24)

The electrical-subsystem in (4c) then becomes:

ẋ3 =
1

r (1+ρp(1− x1)+ρpρs)

(
2
3

u− (1− x1)x3−ρsx3 + rρpx2x3

)
. (25)

Since the nominal plant is an ideal rigid body, the mechanical subsystem still follows
the same dynamics described in (4a-4b). Therefore only the dynamics of electrical
subsystem are affected.

Note that ρp and ρs are both bounded and that under realistic operation condi-
tions the term (1+ρp(1− x1)+ρpρs) is positive and bounded. It is also reasonable
to suppose that uncertainty of system parameters m, b, k, and r is bounded. Hence,
the control of micro-actuator in the presence of modelling errors and parametric un-
certainty can be handled in the framework of input-to-state stability (ISS) [23]. With
ISS approach, robust control system design amounts to finding a control for which
the closed-loop system is stable with respect to disturbances, considered now as in-
puts to the system. Though ISS-based robust control usually only guarantees bound-
edness of the closed-loop signals, it can handle arbitrary time-varying uncertainties.
This feature is particularly suitable for dealing with state-dependent modelling er-
rors, as those considered in the above discussion. Note that the ISS framework can
also deal with other types of uncertainties, such as sensor noise and disturbance
rejection, allowing one to address more generic and practical control problems in
microsystems.

7 Concluding Remarks

The capability of achieving full gap stable operation regarding different MEMS
control strategies is closely related to the architecture of control system, or more
specifically the choice of system output. Native voltage control suffers from in-
stability due to pull-in, whereas more judicious choice of system output leads to
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capacitive feedback, charge feedback, or position feedback which allow a full-gap
stabilization. It is also seen that several intuitive control schemes can also be im-
plemented by nonlinear control algorithms, making it possible to enhance the per-
formance of existing systems. However, care must be taken in order to get rid of
singularities and performance issues related to diverse practical operation condi-
tions. Finally, the techniques presented in this paper can eventually be extended to
devices with more complex structure, such as torsional micro-mirrors and
multi-DOF MEMS.

Acknowledgements. The author gratefully acknowledges Professors Jean Lévine, Laurent
Praly, Lahcen Saydy, Yves-Alain Peter, and Muthukumaran Packirisamy for their invaluable
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Mathematical Tools



Flatness Characterization: Two
Approaches

Felix Antritter and Jean Lévine

Abstract. We survey two approaches to flatness necessary and sufficient
conditions and compare them on examples.

1 Introduction

In this survey we consider underdetermined implicit systems of the form

F (x, ẋ) = 0 (1)

with x ∈ X , X being an inifnitely differentiable manifold of dimension n,
whose tangent bundle is denoted by TX , and F : TX → Rn−m regular in the
sense that rk ∂F

∂ẋ = n−m in a suitable open dense subset of TX . Differential
flatness, or more shortly, flatness was introduced in 1992 [20, 11]. In the
setting of implicit control systems it may be roughly described as follows:
there exists a smooth mapping x = ϕ(y, ẏ, . . . , y(r)) with y = (y1, . . . , ym)T

of dimension m, r = (r1, . . . , rm)T ∈ Nm, such that

F (ϕ(y, ẏ, . . . , y(r)), ϕ̇(y, ẏ, . . . , y(r+1))) ≡ 0 (2)

with ϕ invertible in the sense that there exists a locally defined smooth
mapping ψ and a multi-index s such that y = ψ(x, ẋ, . . . , x(s)).

The vector y is called a flat output.
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This concept has inspired an important literature. See [10, 21, 19, 26,
27, 31] for surveys on flatness and its applications. Various formalisms have
been introduced: finite dimensional differential geometric approaches [4, 14,
30], [32, 28], differential algebra and related approaches [12, 3, 15], infinite
dimensional differential geometry of jets and prolongations [13, 33, 19, 6,
7, 23], [22, 24], which is adopted here. The interested reader may refer to
[1, 13, 16], [19, 23, 34] for more details.

The first part of the paper recalls the mathematical setting. In Section 3
the approch introduced in [19, 2] for the characterization of differentially flat
systems is recalled. Then, in Section 4, we introduce a novel characterization
using the so-called Generalized Euler-Lagrange Operator. We conclude the
paper with examples.

2 Implicit Control Systems on Manifolds of Jets of
Infinite Order

Given an infinitely differentiable manifold X of dimension n, we denote its
tangent space at x ∈ X by TxX , and its tangent bundle by TX . Let F be a
meromorphic function from TX to Rn−m. We consider an underdetermined
implicit system of the form (1) regular in the sense that rk ∂F

∂ẋ = n−m in a
suitable open dense subset of TX .

Following [17, 18], we consider the infinite dimensional manifold X defined
by X

def= X × Rn∞
def= X × Rn × Rn × . . ., made of an infinite (but count-

able) number of copies of Rn, with the global infinite set of coordinates1

x =
(
x, ẋ, . . . , x(k), . . . ,

)
, endowed with the product topology. Recall that,

in this topology, a function ϕ from X to R is continuous (resp. differen-
tiable) if ϕ depends only on a finite (but otherwise arbitrary) number of
variables and is continuous (resp. differentiable) with respect to these vari-
ables. C∞ or analytic or meromorphic functions from X to R are then
defined as in the usual finite dimensional case since they only depend
on a finite number of variables. We endow X with the so-called trivial
Cartan field ([16, 34]) τX =

∑n
i=1

∑
j≥0 x

(j+1)
i

∂

∂x
(j)
i

. We also denote by

LτX
γ =

∑n
i=1

∑
j≥0 x

(j+1)
i

∂γ

∂x
(j)
i

= dγ
dt the Lie derivative of a differentiable

function γ along τX and Lk
τX

γ its kth iterate. Since d
dtx

(j)
i

def= ẋ
(j)
i = x

(j+1)
i ,

the Cartan field acts on coordinates as a shift to the right. X is thus called
manifold of jets of infinite order.

A regular implicit control system is defined as a triple (X, τX, F ) with X =
X×Rn

∞, τX its associated trivial Cartan field, and F meromorphic from TX
to Rn−m) satisfying rk ∂F

∂ẋ = n−m in a suitable open subset of TX.
We next consider the cotangent space T ∗

x̄X with dx
(j)
i , i = 1, . . . , n, j ≥ 0

as basis, dual to the ∂

∂x
(j)
i

´s. 1-forms on X are then defined in the usual way.

1 From now on, x y, . . . stand for the sequences of jets of infinite order of x, y,. . .
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The set of 1-forms is noted Λ1(X). We also denote by Λp(X) the module of
all the p-forms on X.

2.1 Flatness

We recall the following definitions and result [17, 18, 19]:
Given two regular implicit control systems (X, τX, F ), with X = X × Rn

∞,
dimX = n and rk ∂F

∂ẋ = n−m, and (Y, τY, G), with Y = Y ×Rp
∞, dim Y = p,

τY its trivial Cartan field, and rk ∂G
∂ẏ = p− q, we set X0 = {x ∈ X|Lk

τX
F (x) =

0, ∀k ≥ 0} and Y0 = {y ∈ Y|Lk
τY

G(y) = 0, ∀k ≥ 0}. They are endowed with
the topologies and differentiable structures induced by X and Y respectively.

Definition 1. The control systems (X, τX, F ) and (Y, τY, G) are said locally
Lie-Bäcklund equivalent (or shortly L-B equivalent) in a neighbourhood X0×
Y0 of the pair (x0, y0) ∈ X0 ×Y0 if and only if

(i) there exists a one-to-one meromorphic mapping Φ = (ϕ, ϕ̇, . . .) from Y0

to X0 satisfying Φ(y0) = x0 and such that Φ∗τY = τX;
(ii) there exists Ψ one-to-one and meromorphic from X0 to Y0, with Ψ =

(ψ, ψ̇, . . .), such that Ψ(x0) = y0 and Ψ∗τX = τY.

The mappings Φ and Ψ are called mutually inverse Lie-Bäcklund
isomorphisms at (x0, y0).

Definition 2. The implicit system (X, τX, F ) is locally flat in a neighborhood
of (x0, y0) ∈ X0×Rm∞ if and only if it is locally L-B equivalent around (x0, y0)
to the trivial implicit system (Rm

∞, τRm∞ , 0). In this case, the mutually inverse
L-B isomorphisms Φ and Ψ are called inverse trivializations.

Theorem 1. The system (X, τX, F ) is locally flat at (x0, y0) ∈ X0 × Rm
∞ if

and only if there exists a local meromorphic invertible mapping Φ from Rm∞
to X0, with meromorphic inverse, satisfying Φ(y0) = x0, and such that2

Φ∗dF = 0. (3)

3 Necessary and Sufficient Conditions: Generalized
Moving Frame Structure Equations

3.1 Algebraic Characterization of the Differential of
a Trivialization

Consider the following matrix, polynomial with respect to the differen-
tial operator d

dt (we use indifferently d
dt for LτX

or LτRm∞
, the context

being unambiguous):
2 Note that if Φ is a meromorphic mapping from Y to X, the (backward) image

by Φ of a 1-form is defined in the same way as in the finite dimensional context.
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P (F ) =
∂F

∂x
+

∂F

∂ẋ

d

dt
, P (ϕ) =

∑
j≥0

∂ϕ

∂y(j)

dj

dtj
(4)

with P (F ) (resp. P (ϕ)) of size (n−m)× n (resp. n×m).
Equation (3)) reads:

Φ∗dF = P (F )P (ϕ)dy = 0. (5)

Clearly, the entries of the matrices in (4) are polynomials in the differen-
tial operator d

dt with meromorphic coefficients from X to R. We denote by
K the field of meromorphic functions from X to R and by K[ d

dt ] the (non-
commutative) principal ideal ring of polynomials in d

dt with coefficients in K.
For r, s ∈ N, let us denote by Mr,s[ d

dt ] the module of r×s matrices over K[ d
dt ]

(see e.g. [8]). Matrices whose inverse belong to Mr,r[ d
dt ] are called unimodular

matrices . They form a multiplicative group denoted by Ur [ d
dt ].

Every matrix M ∈ Mr,s[ d
dt ] admits a Smith decomposition (or diagonal

reduction)

V MU = (Δ, 0r,s−r) if r ≤ s, and
(

Δ
0r−s,s

)
if s ≤ r (6)

with V ∈ Ur[ d
dt ] and U ∈ Us[ d

dt ] and Δ diagonal (see e.g. [8]). U and V are
indeed non unique. We say that U ∈ R− Smith (M) and V ∈ L− Smith (M).

A matrix M ∈ Mr,s[ d
dt ] is said hyper-regular if and only if its Smith de-

composition leads to Δ = I. An interpretation of this property in terms of
controllability in the sense of [9], may be found in [18].

From now on, we assume that P (F ) is hyper-regular in a neighborhood of
x0. In place of (5), we first solve the matrix equation:

P (F )Θ = 0 (7)

where Θ ∈ Mn,m[ d
dt ] is not supposed to be of the form P (ϕ). It may be

verified that matrices Θ ∈ Mn,m[ d
dt ] satisfying (7) have the structure

Θ = U

(
0n−m,m

Im

)
W (8)

with U ∈ R− Smith (P (F )) and W ∈ Um[ d
dt ] arbitrary. Clearly Θ is itself

hyper-regular and admits the Smith decomposition

QΘZ = QU

(
0n−m,m

Im

)
WZ = QÛR =

(
Im

0n−m,m

)
(9)

with Q ∈ Un[ d
dt ], Z ∈ Um[ d

dt ], R = WZ and Û = U

(
0n−m,m

Im

)
.
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3.2 Integrability

We denote by ω the m-dimensional vector 1-form defined by

ω(x) =

⎛
⎜⎝

ω1(x)
...

ωm(x)

⎞
⎟⎠ = (Im, 0m,n−m)Q(x)dx∣∣X0

(10)

with Q given by (9), the restriction to X0 meaning that x ∈ X0 satisfies
Lk

τX
F = 0 for all k and that the dx

(k)
j are such that dLk

τX
F = 0 in X0

for all k. Since Q is hyper-regular, the forms ω1, . . . , ωm are independent by
construction.

Theorem 2. A necessary and sufficient condition for system (1) to be lo-
cally flat around (x0, y0) is that there exist U ∈ R− Smith (P (F )), Q ∈
L− Smith

(
Û
)
, with Û given by (9) and a matrix M ∈ Um[ d

dt ] such that
d(Mτ) = 0.

We denote by (Λp(X))m the space of m-dimensional vector p-forms on X, by
(Λ(X))m the space of m-dimensional vector forms of arbitrary degree on X,
and by Lq ((Λ(X))m) =

⋃
p≥1 L

(
(Λp(X))m , (Λp+q(X))m

)
the space of linear

operators from (Λp(X))m to (Λp+q(X))m for all p ≥ 1, where L (P ,Q) denotes
the set of linear mappings from a given space P to a given space Q.

In order to develop the expression d(μκ) for μ ∈ Lq ((Λ(X))m) and for all
κ ∈ (Λp(X))m and all p ≥ 1, we define the operator d by:

d (μ)κ = d(μ κ)− (−1)qμ dκ. (11)

Note that (11) uniquely defines d (μ) as an element of Lq+1 ((Λ(X))m).

Theorem 3. The system (X, τX, F ) is locally flat iff there locally exists μ ∈
L1 ((Λ(X))m), and a matrix M ∈ Um[ d

dt ] such that

dω = μ ω, d (μ) = μ2, d (M) = −Mμ. (12)

with the notation μ2 = μμ and where ω is defined by (10). In addition, if
(12) holds true, a flat output y is obtained by integration of dy = Mω.

Remark 1. Note that the two first conditions of (12) are comparable to con-
ditions (A) and (B) of [6, 7]. However, the last condition of (12) is different
from condition (C) of [6, 7] and is easier to check.

Note also that conditions (12) may be seen as a generalization in the frame-
work of manifolds of jets of infinite order of Cartan’s well-known moving
frame structure equations (see e.g. [5]).
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3.3 A Sequential Procedure

We start with P (F ) hyper-regular and compute the vector 1-form ω de-
fined by (10).

1. We identify the operator μ such that dω = μω componentwise. It is proven
in [19] that such μ always exists.

2. Among the possible μ’s, only those satisfying d (μ) = μ2 are kept. It is
shown in [19] that such μ always exists.

3. We then identify M such that d (M) = −Mμ componentwise.
4. If, among such M ’s, there is a unimodular one, the system is flat and a

flat output is obtained by integration of dy = Mω. Otherwise the system
is not flat.

More details and examples may be found in [18, 19].

4 Necessary and Sufficient Conditions Using the
Generalized Euler-Lagrange Operator

Another way of analysing (3) consists in characterizing the change of co-
ordinates corresponding to the mapping Φ in (3). More precisely (3) reads

m∑
j=1

rj∑
k=0

(
∂F

∂x

∂ϕ

∂y
(k)
j

dy
(k)
j +

∂F

∂ẋ

d

dt

(
∂ϕ

∂y
(k)
j

)
dy

(k)
j +

∂F

∂ẋ

∂ϕ

∂y
(k)
j

dy
(k+1)
j

)
= 0

(13)
Since the one forms dy1, . . . , dy

(r1)
1 , . . . , dym, . . . , dy

(rm)
m are independent by

assumption, (13) yields, for every j = 1, . . . , m,

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∂F

∂ẋ

∂ϕ

∂y
(rj)
j

= 0

∂F

∂x

∂ϕ

∂y
(k)
j

+
∂F

∂ẋ

d

dt

(
∂ϕ

∂y
(k)
j

)
+

∂F

∂ẋ

∂ϕ

∂y
(k−1)
j

= 0, ∀k = 1, . . . , rj

∂F

∂x

∂ϕ

∂yj
+

∂F

∂ẋ

d

dt

(
∂ϕ

∂yj

)
= 0

(14)

The Generalized Euler-Lagrange operator EF associated to F is defined by

EF =
∂F

∂x
− d

dt

(
∂F

∂ẋ

)
(15)

In the case n−m = 1, it is well-known that the curves that extremize the cost
function J =

∫ T

0 F (x, ẋ)dt are those satisfying the Euler-Lagrange equation
EF = 0, which justifies our terminology.

Using (15) and elementary calculus, (14) yields:
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Theorem 4. A necessary and sufficient condition for (1) to be diffferentially
flat is that there exist (r1, . . . , rm) with

∑m
i=1 ri +m ≥ n and a solution ϕ of

the following triangular system of PDEs in an open dense subset of X⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂F

∂ẋ

∂ϕ

∂y
(rj)
j

= 0

∂F

∂ẋ

∂ϕ

∂y
(l)
j

=
rj−l−1∑

k=0

(−1)k+1 dk

dtk

(
EF

∂ϕ

∂y
(l+k+1)
j

)
, ∀l = 0, . . . , rj − 1

0 =
rj∑

k=0

(−1)k dk

dtk

(
EF

∂ϕ

∂y
(k)
j

) ,

(16)
satisfying dϕ1 ∧ . . . ∧ dϕn �= 0.

Remark 2. If there exists a coordinate transformation ϕ that satisfies the
conditions of Theorem 4 with given r1, . . . , rm, meaning that the system is
flat, then gj =

∑n
i=1

∂ϕi

∂y
(rj)
j

∂
∂ẋi

, if non zero, defines a ruled direction [32, 25,

19].

5 Examples

5.1 An Academic Example: Generalized Moving
Frame Approach

We consider the 3-dimensional system with 2 inputs:

ẋ1 = u1, ẋ2 = u2, ẋ3 = sin
(

u1

u2

)
(17)

or, in implicit form:

F (x1, x2, x3, ẋ1, ẋ2, ẋ3) � ẋ3 − sin
(

ẋ1

ẋ2

)
= 0. (18)

It is readily seen that P (F ) =
[
− cos( ẋ1

ẋ2
)ẋ−1

2
d
dt ẋ1 cos( ẋ1

ẋ2
)ẋ−2

2
d
dt

d
dt

]
and that

V P (F )U = (1 0 0) with

V = 1, U =

⎛
⎜⎜⎝

ẋ1
aẋ2

1 + ẋ1
a(ẋ2)2

cos
(

ẋ1
ẋ2

)
d
dt

ẋ1
aẋ2

d
dt

1
a

1
aẋ2

cos
(

ẋ1
ẋ2

)
d
dt − 1

a
d
dt

0 0 1

⎞
⎟⎟⎠ (19)
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where a = − 1
ẋ2

cos
(

ẋ1
ẋ2

)(
ẍ1ẋ2−ẋ1ẍ2

(ẋ2)2

)
. Then, QÛR =

⎛
⎝ 1 0

0 1
0 0

⎞
⎠ is computed

with

Q =

⎛
⎜⎝

1 − ẋ1
ẋ2

0
0 0 1

− 1
aẋ2

cos
(

ẋ1
ẋ2

)
d
dt

ẋ1
a(ẋ2)2

cos
(

ẋ1
ẋ2

)
d
dt

1
a

d
dt

⎞
⎟⎠ , R =

(
1 0
0 1

)
(20)

So, (ω1 ω2)
T =

(
1 0 0
0 0 1

)
Qdx =

(
dx1 − ẋ1

ẋ2
dx2 dx3

)T

and

dω =
(

1√
1−(ẋ3)2

dx2 ∧ dx3 0
)T

. According to section 3.3, step 1,

μ =

⎛
⎝0

(
− ẋ3

(1−(ẋ3)2)
3
2
dx2 ∧ dẋ3 + ηdẋ3

)
∧ d

dt

0 0

⎞
⎠ . (21)

Step 2 yields η = x2ẋ3

(1−ẋ3)
3
2
+ σ(ẋ3). For step 3 we set M =

(
1 m12

d
dt

0 1

)

which yields m12 = −
(

x2√
1−(ẋ3)2

+ σ1(ẋ3)
)

with σ1 a primitive of σ. Thus,

d(Mω) = 0 and setting (dy1 dy2)T = Mω, one obtains

y1 = x1 −
ẋ1

ẋ2
x2 + σ2(ẋ3), y2 = x3 (22)

where σ2(ẋ3) is an arbitrary meromorphic function (a primitive of σ1). By
inversion of (22) we get

x1 = y1 − arcsin(ẏ2)

√
1− (ẏ2)2

ÿ2
(ẏ1 − σ1(ẏ2)ÿ2)− σ2(ẏ2)

x2 = −
√
1− (ẏ2)2

ÿ2
(ẏ1 − σ1(ẏ2)ÿ2) (23)

x3 = y2

5.2 Academic Example: Euler-Lagrange Operator

We consider once more the example (18). We have

∂F

∂ẋ
=
(
−ẋ−1

2 cos
(

ẋ1

ẋ2

)
, ẋ1ẋ

−2
2 cos

(
ẋ1

ẋ2

)
, 1
)

, EF = (η1, η2, 0) (24)
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with η1 = − ẍ2
ẋ2
2
cos

(
ẋ1
ẋ2

)
− ẍ1ẋ2−ẋ1ẍ2

ẋ3
2

sin
(

ẋ1
ẋ2

)
and

η2 = − ẍ1ẋ2−2ẋ1ẍ2
ẋ3
2

cos
(

ẋ1
ẋ2

)
+ ẋ1(ẍ1ẋ2−ẋ1ẍ2)

ẋ4
2

sin
(

ẋ1
ẋ2

)
.

The first two equations of (16), with r1 = r2 = 2, read

− 1
ẋ2

cos
(

ẋ1

ẋ2

)(
∂ϕ1

∂ẏj
− ẋ1

ẋ2

∂ϕ2

∂ẏj

)
+

∂ϕ3

∂ẏj
= 0, j = 1, 2 (25)

If we assume that ∂ϕ3
∂ÿj

= ∂ϕ3
∂ÿj

= 0, j = 1, 2 and introduce the variable

ψ =
ẋ1

ẋ2
(26)

with ∂
∂ÿ ψ = 0 we obtain from (25)

∂ϕ1

∂ÿj
− ψ

∂ϕ2

∂ÿj
=

∂

∂ÿj
(ϕ1 − ψϕ2) = 0, j = 1, 2

Setting κ(y, ẏ) = ϕ1 − ψϕ2, we get

κ̇ = ϕ̇1 − ψϕ̇2 − ψ̇ϕ2 = −ψ̇ϕ2 (27)

Using the definition of κ and (27) we obtain:

ϕ1 = κ− κ̇
√
1− ϕ̇3

ϕ̈3
arcsin(ϕ̇3), ϕ2 = − κ̇

ϕ̈3

√
1− ϕ̇3, ϕ3 = ϕ3(y) (28)

Choosing ϕ3 = y2, κ = y1, we arrive at the invertible transformation

x1 = ϕ1 = y1 −
ẏ1

ÿ2

√
1− ẏ2

2 arcsin(ẏ2), x2 = ϕ2 = − ẏ1

ÿ2

√
1− ẏ2

2 ,

with x3 = ϕ3 = y2, which gives the same formula as (23) with σ1 = σ2 =
0. Hence (y1, y2) is indeed a flat output, which implies that the remaining
equations of (16) are satisfied.

5.3 An Example Proposed by P. Rouchon

Consider the implicit control system

F (x, ẋ) = ẋ1ẋ3 − (ẋ2)2 = 0. (29)

We thus have ∂F
∂x = (0 0 0) , ∂F

∂ẋ = (ẋ3 − 2ẋ2 ẋ1) and

EF =
∂F

∂x
− d

dt

(
∂F

∂ẋ

)
= − d

dt

(
∂F

∂ẋ

)
= (−ẍ3 2ẍ2 − ẍ1) .
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The lowest possible choice of (r1, r2) in Theorem 4 is r1 = r2 = 1. However,
there is no solution of (16) for these values, and we choose r1 = r2 = 2. The
two first equations of (16) read

ϕ̇3
∂ϕ1

∂ÿj
− 2ϕ̇2

∂ϕ2

∂ÿj
+ ϕ̇1

∂ϕ3

∂ÿj
= 0, j = 1, 2 (30)

We divide (30) by ϕ̇3 to obtain

∂ϕ1

∂ÿj
− 2ψ

∂ϕ2

∂ÿj
+ ψ2 ∂ϕ3

∂ÿj
= 0, j = 1, 2 (31)

where, taking account of the system equation (29),

ψ =
ϕ̇2

ϕ̇3
=

√
ϕ̇1

ϕ̇3
. (32)

If we assume that ψ doesn’t depend on ÿ1 and ÿ2, equation (31) reads
∂

∂ÿj

(
ϕ1 − 2ψϕ2 + ψ2ϕ3

)
= 0, for j = 1, 2. In other words, there exists a

function κ satisfying ∂κ
∂ÿj

= 0 for j = 1, 2, such that

ϕ1 − 2ψϕ2 + ψ2ϕ3 = κ (33)

Differentiating the latter relation with respect to t, and taking into account
the relation ϕ̇1 − 2ψϕ̇2 + ψ2ϕ̇3 = 0 obtained from (29) and (32), we get

ϕ2 − ψϕ3 = − κ̇

2ψ̇
. (34)

We again differentiate the latter relation with respect to t to obtain

ϕ3 =
κ̈ψ̇ − κ̇ψ̈

2ψ̇3
(35)

thanks to ϕ̇2 − ψϕ̇3 = 0 from (32). Thus, solving the system (33)–(35), we
immediately obtain

ϕ1 = κ− ψ
κ̇

ψ̇
+ ψ2

(
κ̈ψ̇ − κ̇ψ̈

2ψ̇3

)

ϕ2 = − κ̇

2ψ̇
+ ψ

(
κ̈ψ̇ − κ̇ψ̈

2ψ̇3

)

ϕ3 =
κ̈ψ̇ − κ̇ψ̈

2ψ̇3

(36)

where κ and ψ are arbitrary functions of y1, y2, ẏ1, ẏ2.
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Note that choosing κ = y1 and ψ = y2 yields, after inversion of (36) with
(32):

y1 = x1 − 2x2
ẋ2

ẋ3
+ x3

ẋ1

ẋ3
, y2 =

ẋ2

ẋ3
,

which is similar to the solution obtained by F. Ollivier3.
Similarly, the solution of K. Schlacher and M. Schöberl [29] may be recov-

ered by posing κ = y1 − y2
ẏ1
ẏ2

and ψ = ẏ1
2ẏ2

which, again after inversion of
(36) with (32), yields:

y1 = x1 − x3
ẋ1

ẋ3
, y2 = x2 − x3

ẋ2

ẋ3
.

6 Conclusion

In this survey we presented two dual approaches to flatness necessary and
sufficient conditions, one based on the integration of 1-forms and the second
based on the integration of a set of PDEs involving a generalized Euler-
Lagrange operator. Their complexity is compared on examples.
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Abstract. In this review paper we consider some of the basics of nonholo-
nomic systems, considering in particular how it is possible do derive non-
holonomic equations of motion as a limit of a Lagrangian system subject to
dissipation. This in then extended to show how dissipation may be induced
from a Hamiltonian field with a view to quantization of the system.

Keywords: Nonholonomic Systems, Dissipation, Quantization.

1 Introduction

In this (mainly) review paper we consider some of the basics of nonholonomic
systems, considering in particular how it is possible do derive nonholonomic
equations of motion as a limit of Lagrangian system subject to dissipation.
This is then extended to show how dissipation may be induced from a Hamil-
tonian field, thus keeping the full system Hamiltonian, with a view to quan-
tization of the system. Some of the basic ideas in nonholonomic systems
theory may be found in [Bloch, Krishnaprasad, Marsden, and Murray(1996)]
and [Bloch(2003)] (see also e.g. [Bullo and Lewis(2005)]) which thus give fur-
ther background on the ideas described here. Below we give various references
which link systems with nonholonomic constraints to the limit of infinite
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friction. The key idea goes back to Caratheodory and there have been
various interesting contributions since then including those by Fufaev and
Kozlov among others.

2 Vertical Disk

We being by discussing a key example which is useful for illustrating many
of the key idea in nonholonomic mechanics and control, the vertical disk (see
[Bloch(2003)]). In this example the configuration space: Q = R2 × S1 × S1,
parameterized by coordinates q = (x, y, θ, ϕ).

x

z

y

(x, y)

θ

P0

ϕ

P

Fig. 1. The geometry for the rolling disk

The Lagrangian for the system is simply the kinetic energy

L(x, y, θ, φ, ẋ, ẏ, θ̇, φ̇) =
1
2
m(ẋ2 + ẏ2) +

1
2
Iθ̇2 +

1
2
Jϕ̇2.

If R is the radius of the disk, the nonholonomic constraints of rolling without
slipping are

ẋ = R(cosϕ)θ̇
ẏ = R(sinϕ)θ̇, .

Dynamics of the Controlled Disk. We consider the case where we have two
controls, one that can steer the disk and another that determines the roll
torque. We obtain the Lagrange d’Alembert equations
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d

dt

(
∂L

∂q̇

)
= u1X1 + u2X2 + λ1W1 + λ2W2,

where
∂L

∂q̇
= (mẋ, mẏ, Iθ̇, Jϕ̇)T ,

X1 = (0, 0, 1, 0)T , X2 = (0, 0, 0, 1)T ,

and
WT

1 = (1, 0,−R cosϕ, 0), WT
2 = (0, 1,−R sinϕ, 0)T ,

together with the constraint equations.
Here u1, u2 are natural controls. We call the variables θ and φ “base” or

“controlled” variables and the variables x and y “fiber” variables. While θ
and ϕ are controlled directly, the variables x and y are controlled indirectly
via the constraints. This a special case of a general construction on bundles
(see [Bloch(2003)]).

It is clear here that the base variables are controllable in any sense we
can imagine. Moreover the full system is controllable also by virtue of the
nonholonomic (nonintegrable) nature of the constraints.

Also of interest is the so called Kinematic Controlled Disk. In this
case we imagine we have direct control over velocities rather than forces and,
accordingly, we consider the most general first order system satisfying the
constraints or lying in the “constraint distribution”.

In this case the system is

q̇ = u1X1 + u2X2

where X1 = (cosϕ, sinϕ, 1, 0)T and X2 = (0, 0, 0, 1)T .
Interesting problems related to this system including motion planning and

stabilization. Aspects of this are discussed in [Bloch(2003)] and references
therein.

Nonholonomic Equations of Motion. We now discuss the nonholonomic equa-
tions of motion in general: see e.g [Bloch(2003)].

The Lagrange-d’Alembert Principle. Consider a system with a configuration
space Q, local coordinates qi and m nonintegrable constraints

ṡa + Aa
α(r, s)ṙ

α = 0

where q = (r, s) ∈ Rn−p × Rp, which we write as qi = (rα, sa), where 1 ≤
α ≤ n− p and 1 ≤ a ≤ p.
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We also assume we have a Lagrangian L(qi, q̇i). The equations of motion
given by Lagrange-d’Alembert principle.

Definition 1. The Lagrange-d’Alembert equations of motion for the
system are those determined by

δ

∫ b

a

L(qi, q̇i) dt = 0,

where we choose variations δq(t) of the curve q(t) that satisfy δq(a) = δq(b) =
0 and δq(t) satisfies the constraints for each t where a ≤ t ≤ b.

This principle is supplemented by the condition that the curve itself satisfies
the constraints. Note that we take the variation before imposing the con-
straints; that is, we do not impose the constraints on the family of curves
defining the variation.

This leads to the equations of motion(
d

dt

∂L

∂ṙα
− ∂L

∂rα

)
= Aa

α

(
d

dt

∂L

∂ṡa
− ∂L

∂sa

)
, α = 1, . . . , n−m. (1)

The equations (1) combined with the constraint equations

ṡa = −Aa
αṙα, a = 1, . . . , m, (2)

give a complete description of the equations of motion of the system. Notice
that they consist of n−m second-order equations and m first-order equations.

We remark that this is in contrast to so called variational nonholonomic
systems (sometimes called vakonomic systems) where we constrain the class of
curves over which we take variations. Such constrained variational problems
may be solved by appending the constraints to the Lagrangian via Lagrange
multipliers (for details and background see [Bloch(2003)].

3 Chaplygin Sleigh

One of the striking feature of nonholonomic systems is that while they con-
serve energy they need not conserve volume in the phase space (or momen-
tum, even in the presence of symmetries). For more on this see [Bloch(2003)],
[Zenkov and Bloch(2003)] and [Bloch, Marsden, and Zenkov(2009)].

Here we describe the Chaplygin sleigh, perhaps the simplest mechanical
system which illustrates the possible dissipative nature of energy preserving
nonholonomic systems.

If v denotes the velocity of the system along the direction of the blade and
ω its angular velocity one can show that the equations of motion reduce to
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θ

x

z

y

(x, y)

�
�

A

ξ

η

Ca

Fig. 2. The Chaplygin sleigh is a rigid body moving on two sliding posts and one
knife edge

v̇ = aω2

ω̇ = − ma

I + ma2
vω

The equations have a family of relative equilibria given by (v, ω)|v =
const, ω = 0.

Linearizing about any of these equilibria one finds one zero eigenvalue and
one negative eigenvalue. In fact the solution curves are ellipses in v−ω plane
with the positive v-axis attracting all solutions.

This is a special case of the so-called Euler-Poincaré-Suslov equations, an
important special case of the reduced nonholonomic equations.

Another example is the Euler-Poincaré-Suslov Problem on SO(3). In this
case the problem can be formulated as the standard Euler equations

Iω̇ = Iω × ω

where ω = (ω1, ω2, ω3) are the system angular velocities in a frame where the
inertia matrix is of the form I = diag(I1, I2, I3) and the system is subject to
the constraint

a · ω = 0

where a = (a1, a2, a3). The nonholonomic equations of motion are then given
by

Iω̇ = Iω × ω + λa
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±2

±1

0

1

2

y

±2 ±1 1 2
x

Fig. 3. Chaplygin Sleigh phase portrait

subject to the constraint. Solving for λ we get

λ = −I−1a · (Iω × ω)
I−1a · a .

If a is an eigenvector of the moment of inertia tensor the flow is measure
preserving.

We can extend to the general Euler-Poincaré-Suslov equations on a Lie al-
gebra g where the system is characterized by the LagrangianL = 1

2 IABΩAΩB

and the left-invariant constraint

〈a, Ω〉 = aAΩA = 0. (3)

Here a = aAeA ∈ g∗ and Ω = ΩAeA, where eA, A = 1, . . . , k, is a basis
for g and eA is its dual basis. Multiple constraints may be imposed as well.
The classical examples of such systems are the systems just discussed: the
Chaplygin Sleigh and the Suslov problem introduced by Chaplygin in 1895
and Suslov in 1902, respectively.
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4 Lamb Model of Damping

Our goal here is to implement the constraints in the sleigh model by an exter-
nal field which in turn imposes dissipative motion on the sleigh. The model
of dissipation that we use goes back to Lamb in 1900 (see [Lamb(1900)] and
was discussed in detail in [Bloch, Hagerty and Weinstein (2004)] The original
Lamb model is an oscillator physically coupled to a string. The vibrations of
the oscillator transmit waves into the string and are carried off to infinity.
Hence the oscillator loses energy and is effectively damped by the string.

Fig. 4. Lamb model of an oscillator coupled to a string

Let w(x, t) denote displacement of a string. with mass density ρ, tension
T . Assuming a singular mass density at x = 0, we couple to this an oscillator
with position q and mass M (see figure 4) yielding the dynamics:

∂2w

∂t2
= c2 ∂2w

∂x2

Mq̈ + V q = T [wx]x=0

q(t) = w(0, t).

[wx]x=0 = wx(0+, t)−wx(0−, t) is the jump discontinuity of the slope of the
string. Note that this is a Hamiltonian system.

We can now solve for w and reduce (via elementary Fourier analysis) to
obtain a reduced form of the dynamics describing the explicit motion of the
oscillator subsystem,

Mq̈ +
2T
c

q̇ + V q = 0.

The coupling term arises explicitly as a Rayleigh dissipation term 2T
c q̇ in the

dynamics of the oscillator.
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5 Nonholonomic Systems as Limit

There is an interesting history behind the question of whether the Lagrange–
d’Alembert equations can be obtained by starting with an unconstrained
system subject to appropriately chosen dissipative forces, and then letting
these forces go to infinity in an appropriate manner.

Nonholonomic constraints can be regarded in some sense as due to “infi-
nite” friction. Several authors have asked if this can be quantified. Interest-
ingly this goes back at least to the work of Caratheodory who asked if the
limiting case of such friction could explain the motion of Chaplygin’s sleigh.
Caratheodory claimed this could not be done, but Fufaev in [Fufaev(1964)]
showed that this was indeed possible. The general case was considered by
Kozlov, [Kozlov(1983)] and Karapetyan [Karapetyan(1983)].

Kozlov ([Kozlov(1992)] showed also that variational nonholonomic equa-
tions (i.e. solutions of a constrained variational problem such as an optimal
control problem, see [Bloch(2003)]) can be obtained as the result of another
limiting process: He added a parameter-dependent “inertial term” to the La-
grangian of the constrained system, and then showed that the unconstrained
equations approach the variational equations as the parameter approaches
infinity.

The key idea in the nonholonomic setting is to take a nonlinear Rayleigh
dissipation function of the form

F = −1
2
k

m∑
j=1

(
n∑

i=1

a
(j)
i (q)q̇i

)2

(4)

where
∑n

i=1 a
(j)
i (q)q̇i = 0, i = 1 . . .m are the constraints and k > is a positive

constant. Taking the limit as k goes to zero and using Tikhonov’s theorem
yields the nonholonomic dynamics.

However, the system in this setting is still not Hamiltonian. The goal here
is to keep the system in the class of Hamiltonian systems by emulating the
dissipation by coupling to an external field. We shall consider this issue in
the next section.

Now consider again the Chaplygin sleigh which illustrates in very nice
fashion the approach to limiting friction.

This mechanical system has three coordinates, two for the center of mass
(xC , yC) and one “internal” angular variable θ for the rotation with respect to
the knife edge located at (x, y) = (xC + a cos θ, yC + a sin θ). The system can
rotate freely around (x, y) but is only allowed to translate in the direction
(cos θ, sin θ): if we choose our coordinates as q = (x, y, θ) there is a single
constraint given by

ẋ sin θ − ẏ cos θ = 0, (5)

or, a(1) = (sin θ,− cos θ, 0).
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The equations of motion can be also obtained using the virtual force method
starting with the unconstrained Lagrangian

L0 =
m

2

[(
ẋ− aθ̇ sin θ

)2

+
(
ẏ + aθ̇ cos θ

)2
]
+

I

2
θ̇2, (6)

and using a Lagrange multiplier in the equations of motion:

m
d

dt

(
ẋ− aθ̇ sin θ

)
= −λ sin θ,

m
d

dt

(
ẏ + aθ̇ cos θ

)
= λ cos θ,

(I + ma2)θ̈ + maθ̇(ẋ cos θ + ẏ sin θ) = 0. (7)

Carathedory and Fufaev added a viscous friction force of the from

R = −Nu (8)

to the sleigh equations.where u is the velocity in the direction perpendicular
to the blade. (Note that we interchange u and v compared to the original
paper of Fufaev.)

Setting

k2 =
m

I + ma2
, ε =

I

Na2
(9)

the equations with dissipation become

u = εaω̇ (10)

v̇ = aω2 + εaωω̇ (11)

ak2ω̇ + vω = −εaω̈ (12)

It is clear that as ε goes to zero one recovers the original equations.
Cartheodory incorrectly argued however that since no matter how small ε
is these equations yield trajectories which differ from that of the original
system, dissipation cannot yield the nonholonomic constraints.

Fufaev realized this is not correct since the system degenerates from a
system of three to two equations and thus there is a singularity. Setting
μ = εa and σ = ω̇ we then get

ω̇ = σ (13)

v̇ = aω2 + μωσ (14)

μσ̇ = −ak2σ − vω . (15)

Then as μ → 0 we get rapid motion except for the surface

ak2σ + μω = 0. (16)
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The slow motion of this surface onto the v-ω plane then gives the correct
equations of motion.

6 Dissipation and Quantization

One can show ([Bloch and Rojo (2008)]) that the sleigh equations can be
obtained from a variational principle as reduced equations of motion after
the system is coupled to an environment described by an U(1) infinite field
of the form a(z, t) ≡ [cosα(z, t), sinα(z, t)]. For the Lagrangian of the free
field we choose

LF =
K

2

∫
d2z ȧ2, (17)

and we couple the sleigh and the field with a term of the form

L1 =
∫

d2z δ(z− x) [γẋ · a+ μ cos (α(z, t)− θ)] . (18)

The first term in square brackets corresponds to a minimal coupling that
favors ẋ in the direction of a; the second has the form of a potential coupling
that favors an alignment of the internal variable θ with the local direction
of a.

The total action is S =
∫

dt(L0 +LF +L1) where L0 is the Lagrangian of
the free sleigh

L0 =
m

2

[(
ẋ− aθ̇ sin θ

)2

+
(
ẏ + aθ̇ cos θ

)2
]
+

I

2
θ̇2, (19)

and can be regarded as a full “microscopic” theory of the sleigh coupled to
an environment.

The equations of motion of the combined system are now obtained from a
variational principle, δS = 0.

Now take the limit μ → ∞ and use singular perturbation theory. For very
large μ we can show that we have a very slow dynamics on the right hand
side of the equations of motion., which amounts to saying that in the μ → ∞
limit the variables α(x, t) and θ are pinned to the same value. We also obtain

ẋ sinα(x, t) − ẏ cosα(x, t) = ẋ sin θ − ẏ cos θ = 0, (20)

which means that the constraint is satisfied and one can show the full
equations are given also.

One can now consider quantization of the system. in the case a = 0.
The Hamiltonian in this limit has the form

H =
1
2m

[px − λ cosα(x)]2 +
1
2m

[py − λ sinα(x)]2 +
1
2I

p2
θ (21)

+
1
2K

∫
dz Π2 (α(z)) + μ cos [θ − α(x)] . (22)
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For the quantization of H we proceed with the usual replacements

p = −i�(∂x, ∂y), pθ = −i�∂θ, Π (α(z)) = −i�∂α(z). (23)

We can then analyze the corresponding Schroedinger equation. In the qua-
siclassical limit the fluctuations of the angle are small and centered around
given eigenstates θ = θk. This means that, up to small quantum fluctuations,
the knife edge is pointing in the direction defined by the classical constraint.
Details may be found in [Bloch and Rojo (2008)].

We note also that an alternate approach to quantization can be
obtained using the inverse problem of the calculus of variations (see
[Bloch, Fernandez and Mestdag (2009)]). In this setting one obtains an asso-
ciated system which give the nonholonomic equations on invariant manifolds.
This system can shown to be variational using the inverse problem and can
then be quantized.

We note finally that control of such nonholonomic systems with internal
dissipation is of interest and the dissipation leads to interesting controlled
dynamics. We are currently pursuing work in this area with Luis Narnanjo
and Dmitry Zenkov. See also [Osborne and Zenkov(2005)].

References

[Arnold, Kozlov, and Neishtadt(1988)] Arnold, V.I., Kozlov, V.V., Neishtadt, A.I.:
Dynamical Systems III. Encyclopedia of Math., vol. 3. Springer, Heidelberg
(1988)

[Bloch(2003)] Bloch, A.M.: Nonholonomic Mechanics and Control. Interdisci-
plinary Applied Mathematics. Springer, Heidelberg (2003)

[Bloch, Fernandez and Mestdag (2009)] Bloch, A.M., Fernandez, O., Mestdag, T.:
Hamiltonization of Nonholonomic Systems and the Inverse Problem of the
Calculus of Variations. Reports on Mathematical Physics 63, 225–249 (2009)

[Bloch and Rojo (2008)] Bloch, A.M., Rojo, A.: Quantization of a nonholonomic
system. Phys. Rev. Letters 101, 030404 (2008)

[Bloch, Krishnaprasad, Marsden, and Murray(1996)] Bloch, A.M., Krishnaprasad,
P.S., Marsden, J.E., Murray, R.: Nonholonomic mechanical systems with
symmetry. Arch. Rat. Mech. An. 136, 21–99 (1996)

[Bloch, Krishnaprasad, Marsden, and Ratiu(1996)] Bloch, A.M., Krishnaprasad,
P.S., Marsden, J.E., Ratiu, T.S.: The Euler–Poincaré equations and double
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Controlled Lagrangians

Dong Eui Chang

Abstract. We report our recent progress on the method of controlled Lagrangians.
We present the following: a set of new matching conditions for controlled La-
grangian systems with external forces including velocity-independent forces; a cri-
terion for energy shaping and exponential stabilizability by dissipation for all linear
controlled Lagrangian systems; and a criterion for energy shaping and exponential
stabilizability by dissipation for all controlled Lagrangian systems with one degree
of underactuation. We illustrate the criteria with examples.

1 Introduction

The main idea of the method of controlled Lagrangians is as follows. Given an unsta-
ble mechanical system such as an inverted pendulum, we transform it via feedback
to a stable mechanical system such as a hanging pendulum and then achieve asymp-
totic stability by dissipative feedback forcing. One usually requires that the energy
function of the transformed system should have a non-degenerate minimum at an
equilibrium point of interest, due to which the method of controlled Lagrangians is
sometimes called the energy shaping method. One can also transform an external
force via feedback to a dissipative force, and this is called force shaping.

Although the requirement of non-degeneracy of a minimum of the “shaped” en-
ergy function has been well accepted by the community, it has been overlooked that
this is equivalent to considering the linearization of a system. Hence, the study of
stabilization for linear mechanical systems is important not only by itself but also
for understanding stabilization of nonlinear mechanical systems. In this paper we
address only non-degenerate energy shaping and call it simply energy shaping for
convenience. We note that degenerate energy shaping is much more difficult.
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The following gives a brief history of the energy shaping method. Potential
shaping was initiated in [1] to stabilize a fully-actuated mechanical system. A ki-
netic energy shaping technique was introduced in [2] to stabilize a rotational motion
of an underactuated rigid body. A total energy shaping method for underactuated
mechanical systems was first presented in [3, 4]. For a complete bibliography on the
history, we refer the readers to [5, 6, 7, 8] and references therein.

In the present paper we report some of the recent results obtained by the author.
First, we give new matching conditions for controlled Lagrangian systems with ex-
ternal forces including velocity-independent forces. Second, we provide conditions
for matching and force shaping. Third, we completely solve the problem of energy
shaping for linear mechanical control systems. Last, we give a necessary and suffi-
cient condition for energy shaping and exponential stabilizability by dissipation for
the class of all controlled Lagrangian systems with one degree of underactuation.
There are two examples to illustrate the main results. The present paper improves
[5] because we take into account both velocity-independent and velocity-dependent
external forces.

2 The Method of Controlled Lagrangians

Basic Notions on the Theory of Controlled Lagrangians

Let Q be a configuration manifold of dimension n. One may assume that Q is an
open subset of Rn because we are interested mainly in local stability. A controlled
Lagrangian (CL) system on T Q is a triple (L,F,W ): L is a Lagrangian function of
the form

L(q, q̇) =
1
2

m(q̇, q̇)−V(q)

where m ∈ Γ (S2(T ∗Q)) is non-degenerate and V is a function on Q; F : T Q → T ∗Q
is a fiber-preserving map called external force; and W is a subbundle of T ∗Q called
control bundle. Every control force is W -valued. When a map u is W -valued, we
simply denote it by u ∈W . Finally, let W 0 = {v ∈ T Q | 〈α,v〉 = 0 ∀α ∈W} be the
annihilator of W .

The equations of motion of a controlled Lagrangian system (L,F,W ) with a
control u ∈W are given by

m�(∇q̇q̇)+dV = F +u (1)

where ∇ is the symmetric affine connection induced from the (pseudo-Riemannian)
metric m. In coordinates,

mi jq̈
j +[ jk, i]q̇ jq̇k +

∂V
∂qi = Fi +ui, i = 1, . . . ,n

where [ jk, i] = 1
2

(
∂mi j

∂qk + ∂mki
∂q j −

∂mjk

∂qi

)
.
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Define the energy function E : T Q → R of (L,F,W ) by

E(q, q̇) =
1
2

m(q̇, q̇)+V(q).

Thus, along the trajectory of (1),

dE
dt

= 〈F, q̇〉+ 〈u, q̇〉

where the quantity on the right-hand side is called the power generated by F and u.
A force F is called dissipative if 〈F(q, q̇), q̇〉 ≤ 0 for all (q, q̇) ∈ T Q. In partic-

ular, F is called gyroscopic if 〈F(q, q̇), q̇〉 = 0 for all (q, q̇) ∈ TQ. When one is
interested in local stability it suffices to consider locally dissipative forces or locally
gyroscopic forces, i.e., one requires 〈F(q, q̇), q̇〉 ≤ 0 or 〈F(q, q̇), q̇〉 = 0 only in a
neighborhood of an equilibrium of interest. However, in this paper we do not deal
with locally dissipative forces or locally gyroscopic forces because we will not be
addressing force shaping in detail. We instead refer the readers to [5] for supple-
mentary work on (local) force shaping.

The linearization of a controlled Lagrangian system (L,F,W ) at an equilibrium
point (q, q̇) = (qe,0) is a linear controlled Lagrangian system (L�,F�,W �) given

by L� = 1
2 mi j(qe)q̇iq̇ j − 1

2
∂ 2V

∂qi∂q j (qe)(qi− qi
e)(q

j − q j
e); F� = ∂F

∂qi (qe,0)(qi− qi
e) +

∂F
∂ q̇i (qe,0)q̇i; and W � =W (qe).

Matching and Force Shaping

Consider two controlled Lagrangian systems (L,F,W ) and (L̂, F̂ ,Ŵ ) defined by

L =
1
2

m(q̇, q̇)−V(q), L̂ =
1
2

m̂(q̇, q̇)− V̂(q),

F = F0 +F1 +F2, F̂ = F̂0 + F̂1+ F̂2

where F0, F̂0 : Q → T ∗Q are velocity-independent forces defined by F0 = α and
F̂0 = α̂ for some one-forms α and α̂ on Q; F1, F̂1 : TQ → T ∗Q are forces linear in
velocity defined by

〈F1(v),u〉= A(v,u), 〈F̂1(v),u〉= Â(v,u)

for some A, Â ∈ Γ (T ∗Q⊗ T ∗Q); and F2, F̂2 : T Q → T ∗Q are forces quadratic in
velocity defined by

〈F2(v),u〉= B(v,v,u), 〈F̂2(v),u〉= B̂(v,v,u)
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for some B, B̂ ∈ Γ (S2(T ∗Q)⊗T ∗Q). Here, we consider velocity-dependent forces
of degree 2, in order to match the terms on the left-hand side of (1) that are quadratic
in velocity. Let ∇ and ∇̂ denote the metric connections of m and m̂, respectively.

Theorem 1 (Matching). In order that the two CL systems (L,F = F0 +F1 +F2,W )
and (L̂, F̂ = F̂0 + F̂1 + F̂2,Ŵ ) are feedback equivalent, it is necessary and sufficient
that

〈dV −α−m�m̂�(dV̂ − α̂)),Z〉= 0,

Â(X ,m̂�m�Z) = A(X ,Z),

B̂(X ,Y,m̂�m�Z)= K̂(X ,Y,m̂�m�Z)+B(X ,Y,Z),

Ŵ = m̂�m�W

for every X ,Y ∈ T Q and Z ∈W 0, where K̂ ∈ Γ (S2(T ∗Q)⊗T ∗Q) is defined by

K̂(X ,Y,Z) = m̂(∇̂XY −∇XY,Z)

for all X ,Y,Z ∈ T Q.

Theorem 2 (Matching and Force Shaping). Consider a CL system (L,F = F0 +
F1 +F2,W ). In order to find a CL system (L̂, F̂ = F̂1 + F̂2,Ŵ ) with dissipative F̂
that is feedback equivalent to (L,F,W ), it is necessary and sufficient to find a
non-degenerate m̂ ∈ Γ (S2(T ∗Q)) and a function V̂ : Q → R that satisfy

(dV −α−m�m̂�dV̂ )|W 0 = 0,

Sym(A�m̂�m�)|(W0)⊗2 � 0,

Sym(R̂)|(W0)⊗3 = 0

where R̂ ∈ Γ (S2(T ∗Q)⊗T∗Q) is defined by

R̂(X ,Y,Z) =
1
2
(∇m̂�m�Zm̂)(m̂�m�X ,m̂�m�Y )+B(m̂�m�X ,m̂�m�Y,Z)

for all X ,Y,Z ∈ T Q.

Sometimes it is computationally easier to find a T̂ = mm̂−1m ∈Γ (S2(T ∗Q)) instead
of finding an m̂ directly. The following corollary considers this case.

Corollary 1. Let T̂ = mm̂−1m ∈ Γ (S2(T ∗Q)). Then, the three matching conditions
in Theorem 2 are equivalent to the following:

(dV −α− T̂ �m�dV̂ )|W 0 = 0,

Sym(A�m�T̂ �)|(W 0)⊗2 � 0,

Sym(Ĵ)|(W 0)⊗3 = 0 (2)
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where Ĵ ∈ Γ (S2(T ∗Q)⊗T∗Q) is defined by

Ĵ(X ,Y,Z) =
1
2
(∇m�T̂ �ZT̂ )(X ,Y )−B(m�T̂ �X ,m�T̂ �Y,Z)

for all X ,Y,Z ∈ T Q.

Energy Shaping for Linear Controlled Lagrangian Systems

For linear controlled Lagrangian systems without any external forces we have a
complete understanding of energy shaping and stabilization by dissipation after
shaping energy.

Theorem 3 (Energy Shaping). A linear CL system (L,0,W ) is feedback equivalent
to a linear CL system (L̂,0,Ŵ ) with positive definite energy, if and only if the un-
controllable dynamics of (L,0,W ), if it exists, is oscillatory.1 Moreover, if (L,0,W )
is controllable, then (L̂,0,Ŵ ) can be exponentially stabilized by any Ŵ -valued
linear symmetric dissipative feedback û with rank û = dimŴ . If (L,0,W ) is not
controllable, then it cannot be exponentially stabilized by any controller.

Let us apply Theorem 3 to the system (L,0,W ) with L = 1
2 (ẋ

2 + ẏ2 + ż2)− 1
2(x

2 +
2xy+ 3y2 + 2εyz) and W = span{(0,0,1)} with a parameter ε ∈ R. If ε �= 0, then
the system is controllable, so it is possible to shape energy and then exponentially
stabilize the energy-shaped system with any linear symmetric dissipative feedback
having rank 1. If ε = 0, then the system is not controllable, but its uncontrollable dy-
namics is oscillatory. Hence, it is still possible to shape the energy function although
it is impossible to exponentially stabilize the system.

Energy Shaping for Controlled Lagrangian Systems with One Degree of
Underactuation

When the degree of underactuation is one, i.e., # (configuration variables)− # (con-
trols) = 1, we have a necessary and sufficient condition for energy shaping, and a
necessary and sufficient condition for exponential stabilization by dissipation after
energy shaping.

Theorem 4 (Energy Shaping and Exponential Stabilization by Dissipative
Forcing). Let (L,0,W ) be a CL system with one degree of under-actuation. Let
(L�,0,W �) denote its linearization at an equilibrium point of interest. Then, there
exists a CL system (L̂, F̂ ,Ŵ ) feedback equivalent to (L,0,W ), with a gyroscopic
force F̂ quadratic in velocity, and its energy Ê having a non-degenerate mini-
mum at the equilibrium, if and only if the uncontrollable dynamics of (L�,0,W �),
if it exists, is oscillatory. In particular, if (L�,0,W �) is controllable, then (L̂, F̂ ,Ŵ )
can be exponentially stabilized by any Ŵ -valued linear symmetric dissipative feed-
back û ∈ Γ (S2(T ∗Q)) with rank û = dimŴ . If (L�,0,W �) is not controllable, then
(L̂, F̂ ,Ŵ ) cannot be exponentially stabilized by any dissipative feedback.

1 A linear dynamics ẋ = Ax on Rn is called oscillatory if A is diagonalizable over C and
every eigenvalue of A is a non-zero purely imaginary number.
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Fig. 1. A 3-link robot arm with two actuators

Let us apply Theorem 4 to stabilize the 3-link robot arm with two actuators in Fig. 1.
The coordinates q = (q1,q2,q3) denote the angles between the arms and the vertical
line. In these coordinates, the mass matrix is given by

m =

⎡
⎣ a11 a12 cos(q1−q2) a13 cos(q1−q3)

a21 cos(q1−q2) a22 a23 cos(q2−q3)
a31 cos(q1−q3) a32 cos(q2−q3) a33

⎤
⎦

where

akk =
k

∑
i=1

mi(li)2, k = 1,2,3;

a1k = ak1 = m1l1lk, k = 2,3;

a23 = a32 = (m1 +m2)l2l3.

The potential energy V is given by

V = b1 cosq1 +b2 cosq2 +b3 cosq3

where

bk = glk
k

∑
i=1

mi, i = 1,2,3.

Assume that there is no friction at any joint. This system is a CL system (L,0,W )
where L = 1

2 m(q̇, q̇)−V (q) and W = span{dq2,dq3}. The control objective is to
stabilize the equilibrium (q, q̇) = (0,0). One can easily verify that the linearization
of this system at (0,0) is controllable, so by Theorem 4 it is possible to shape the
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energy function of the system and then exponentially stabilize the equilibrium by
any linear symmetric dissipative feedback force with rank 2.

3 Conclusion

We have presented criteria for “energy-shapability” and exponential stabilizability
by dissipation after energy shaping for the class of all linear controlled Lagrangian
systems without external forces and for the class of all one-degree-of-underactuation
controlled Lagrangian systems without external forces. These criteria are easy to
verify in advance before any concrete controller design.

We note that when there is an external force, the matching conditions in
Theorem 2 or Corollary 1 can be further refined by locally shaping the force and
energy simultaneously. We refer the readers to [5] for more on this topic.
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Compensation of Input Delay for Linear,
Nonlinear, Adaptive, and PDE Systems

Miroslav Krstic

Abstract. We present a tutorial introduction to methods for stabilization of systems
with long input delays. The methods are based on techniques originally developed
for boundary control of partial differential equations. We start with a consideration
of linear systems, first with a known delay and then subject to a small uncertainty
in the delay. Then we study linear systems with constant delays that are completely
unknown, which requires an adaptive control approach. For linear systems, we also
present a method for compensating arbitrarily large but known time-varying delays.
Finally, we consider nonlinear control problems in the presence of arbitrarily long
input delays.

An enormous wealth of knowledge and research results exists for control of sys-
tems with state delays and input delays. Problems with long input delays, for un-
stable plants, represent a particular challenge. In fact, they were the first challenge
to be tackled, in Otto J. M. Smith’s article [1], where the compensator known as
the Smith predictor was introduced five decades ago. The Smith predictor’s value is
in its ability to compensate for a long input or output delay in set point regulation
or constant disturbance rejection problems. However, its major limitation is that,
when the plant is unstable, it fails to recover the stabilizing property of a nominal
controller when delay is introduced.

A substantial modification to the Smith predictor, which removes its limitation
to stable plants was developed three decades ago in the form of finite spectrum
assignment (FSA) controllers [2, 3, 4]. More recent treatment of this subject can
also be found in the books [5, 6]. In the FSA approach, the system

Ẋ(t) = AX(t)+BU(t−D) , (1)

where X is the state vector, U is the control input (scalar in our consideration here),
D is an arbitrarily long delay, and (A,B) is a controllable pair, is stabilized with the
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infinite-dimensional predictor feedback

U(t) = K

[
eADX(t)+

∫ t

t−D
eA(t−θ)BU(θ )dθ

]
, (2)

where the gain K is chosen so that the matrix A+BK is Hurwitz. The word ‘pre-
dictor’ comes from the fact that the bracketed quantity is actually the future state
X(t + D), expressed using the current state X(t) as the initial condition and us-
ing the controls U(θ ) from the past time window [t −D, t]. Concerns are raised
in [7] regarding the robustness of the feedback law (2) to digital implementation of
the distributed delay (integral) term but are resolved with appropriate discretization
schemes [8, 9].

One can view the feedback law (2) as being given implicitly, since U appears
both on the left and on the right, however, one should observe that the input memory
U(θ ),θ ∈ [t−D,t] is actually a part of the state of the overall infinite-dimensional
system, so the control law is actually given by an explicit full-state feedback for-
mula. The predictor feedback (2) actually represents a particular form of bound-
ary control, commonly encountered in the context of control of partial differential
equations.

Motivated by our recent efforts in solving boundary control problems for various
classes of partial differential equations (PDEs) using the continuum version of the
backstepping method [10, 11], we review in this article various extensions to the
predictor feedback design that we have recently developed, particularly for nonlin-
ear and PDE systems. These extensions are the subject of our new book [12]. They
include the extension of predictor feedback to nonlinear systems and PDEs with
input delays, various robustness and inverse optimality results, a delay-adaptive de-
sign, an extension to time-varying delays, and observer design in the presence of
sensor delays and PDE dynamics. This article is a tutorial introduction to these de-
sign tools and concludes with a brief review of some open problems and research
opportunities.

1 Lyapunov Functional and Its Immediate Benefits

The key to various extensions to the predictor feedback that we present here is the
observation that the invertible backstepping transformation

w(x,t) = u(x,t)−
∫ x

0
KeA(x−y)Bu(y, t)dy−KeAxX(t) , (3)

u(x,t) = w(x,t)+
∫ x

0
Ke(A+BK)(x−y)Bw(y, t)dy+Ke(A+BK)xX(t) , (4)

where
u(x, t) =U(t + x−D) , (5)
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can transform the system (1), (2) into the target system

Ẋ(t) = (A+BK)X(t)+Bw(0,t) , (6)

wt(x,t) = wx(x,t) , (7)

w(D,t) = 0 , (8)

which is a cascade of an undriven transport PDE w-subsystem and the exponentially
stable X-system.

We shoe the equivalence of the closed-loop system (1), (2) and the target system
(6), (7), (8) as follows. With (3), (5), w(x,t) can be alternatively written as

w(x,t) =U(t + x−D)−
∫ x

0
KeA(x−y)BU(t + y−D)dy−KeAxX(t), (9)

By noting that
w(0,t) =U(t−D)−KX(t), (10)

we obtain

Ẋ(t) = AX(t)+BU(t−D) (11)

= (A+BK)X(t)+B
(

U(t−D)− KX(t)
)

(12)

= (A+BK)X(t)+Bw(0, t) . (13)

We further calculate

∂
∂ t

w(x,t) � U ′(t + x−D)−
∫ x

0
KeA(x−y)BU ′(t + y−D)dy

−KeAx
(

AX(t)+BU(t−D)
)

= U ′(t + x−D)−
∫ x

0

∂
∂y

(
KeA(x−y)BU(t + y−D)

)
dy

+
∫ x

0

∂ (KeA(x−y))
∂y

BU(t + y−D)dy−KeAx
(

AX(t)+BU(t−D)
)

= U ′(t + x−D)−
(

KBU(t + x−D)−Ke−AxBU(t−D)
)

−
∫ x

0
KAeA(x−y)BU(t + y−D)dy−KeAx

(
AX(t)+BU(t−D)

)
= U ′(t + x−D)−KBU(t+ x−D)

−
∫ x

0
KAeA(x−y)BU(t + y−D)dy−KeAxAX(t) (14)

and

∂
∂x

w(x,t) � U ′(t + x−D)−KBU(t+ x−D)
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−
∫ x

0
KAeA(x−y)BU(t + y−D)dy−KAeAxX(t). (15)

Thus, we obtain
∂
∂ t

w(x, t) =
∂
∂x

w(x, t), (16)

which establishes (7). Finally, for x = D it follows that

w(D, t) = U(t)−
∫ D

0
KeA(D−y)BU(t + y−D)dy−KeADX(t)

= U(t)−K

(∫ t

t−D
eA(t−θ)BU(θ )dy+ eADX(t)

)
. (17)

With (2), we obtain (8).
Since the undriven transport PDE (7), (8) is exponentially stable, the overall

cascade is exponentially stable. This fact is established with a Lyapunov functional

V (t) = X(t)T PX(t)+2
|PB|2
λmin(Q)

∫ D

0
(1+ x)w(x, t)2 dx , (18)

where P is the solution of the Lyapunov equation

P(A+BK)+ (A+BK)TP =−Q . (19)

Taking the derivative of the Lyapunov function, we calculate

dV
dt

=
(
(A+BK)X(t)+ Bw(0, t)

)T
PX(t)

+XT (t)P
(
(A+BK)X(t) +Bw(0,t)

)
+

2|PB|2
λmin(Q)

∫ D

0
(1+ x)2w

∂w
∂ t

dx

= XT (t)(A+BK)T PX(t)+ (Bw(0, t))T PX(t)+XT (t)P(A+BK)X(t)

+XT (t)PBw(0,t)+
2|PB|2
λmin(Q)

∫ D

0
(1+ x)2w

∂w
∂x

dx

=− XT (t)QX(t)+wT (0,t)BT PX(t)+XT (t)PBw(0, t)

+
2|PB|2
λmin(Q)

∫ D

0

(
∂
∂x

(
(1+ x)w2

)
− ∂ (1+ x)

∂x
w2
)

dx

= −XT (t)QX(t)+wT (0,t)BT PX(t)+XT(t)PBw(0, t)

+
2|PB|2
λmin(Q)

(1+D)w2(D, t)︸ ︷︷ ︸
0

− 2|PB|2
λmin(Q)

w2(0, t)

− 2|PB|2
λmin(Q)

∫ D

0
w2(x,t)dx
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= −XT (t)QX(t)+wT (0,t)BT PX(t)+XT(t)PBw(0, t)

− 2|PB|2
λmin(Q)

w2(0,t)− 2|PB|2
λmin(Q)

∫ D

0
w2(x,t)dx . (20)

Thus

dV
dt

= −
[

X(t) w(0,t)
]⎡⎣ Q −PB

−BT PT 2|PB|2
λmin(Q)

⎤
⎦[ X(t)

w(0, t)

]

− 2|PB|2
λmin(Q)

∫ D

0
w2(x,t)dx . (21)

Since the matrix ⎡
⎣ Q −PB

−BT PT 2|PB|2
λmin(Q)

⎤
⎦ (22)

is positive definite, it follows that the equilibrium X = 0,w(x) ≡ 0 is exponentially
stable in the sense of the euclidean norm on X and the L2 norm of w. With further
analysis, exponential stability of the equilibrium X = 0,u(x)≡ 0 is also established,
obtaining the following theorem.

Theorem 1. There exist positive constants G and g such that the solutions of the
closed-loop system (1), (2) satisfy Γ (t)≤ Ge−gtΓ (0) for all t ≥ 0, where

Γ (t) = |X(t)|2 +
∫ D

0
u(x, t)2dx . (23)

In the literature on delay systems the representation through the transport PDE state
(5) is somewhat non-standard. The constructions provided in the transport PDE no-
tation can also be expressed in the delay notation, such that the Lyapunov functional
(18) is written as

V (t) = X(t)T PX(t)+2
|PB|2
λmin(Q)

∫ t

t−D
(1+θ +D− t)W (θ )2dθ , (24)

and the backstepping transformation (3) is

W (θ ) = U(θ )−K

[∫ θ

t−D
eA(θ−σ)BU(σ)dσ + eA(θ+D−t)X(t)

]
, (25)

with −D≤ t−D≤ θ ≤ t. We pursue the PDE notation for delay systems so we can
seamlessly transition to PDE problems in the latter sections of the article.

From this point on, the ability to construct a Lyapunov functional can be ex-
ploited in various ways, including deriving disturbance attenuation estimates when
the system (1) is subject to an additive disturbance, proving robustness to a small
actuator lag, and conducting an inverse optimal redesign of the predictor feedback.
We consider these three problems in the current section. In subsequent sections, we
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present further, more substantial, benefits of constructing a Lyapunov functional and
a backstepping transformation. These benefits are the establishment of robustness to
a small error in D, where the error is allowed to be either positive or negative, the
design of adaptive controllers in the presence of a completely unknown and arbitrar-
ily long D, the design of stabilizing predictor feedback for time varying delays, and
the design of predictor feedback for some classes of nonlinear and PDE systems.

We now consider the system

Ẋ(t) = AX(t)+BU(t−D)+B1d(t) , (26)

where d(t) is an unmeasurable disturbance which is bounded but its bound is
unknown, and the controller

U(t) =
c

s+ c

{
K

[
eADX(t)+

∫ t

t−D
eA(t−θ)BU(θ )dθ

]}
, (27)

where c> 0, and where we use the transfer function representation for compactness
of notation.

We introduce the Lyapunov functional

V (t) = X(t)T PX(t)+2
|PB|2
λmin(Q)

∫ D

0
(1+ x)w(x, t)2 dx+

1
2

w(D, t)2 . (28)

Note that, due to the change in the control law from (2) to (27), the quantity w(D,t),
which is zero in (8), is not zero in (28). The following result is established with (28).

Theorem 2. There exists a positive constant c∗ such that for all c > c∗, the feedback
system (26), (27) is L∞-stable, that is, there exist positive constants β1,β2,γ1 such
that

N(t)≤ β1e−β2tN(0)+ γ1 sup
τ∈[0,t]

|d(τ)| , (29)

where

N(t) =
(
|X(t)|2 +

∫ t

t−D
U(θ )2dθ +U(t)2

)1/2

. (30)

Furthermore, there exists a constant c∗∗ > c∗ such that for all c≥ c∗∗ the feedback
(27) minimizes the cost functional

J = sup
d∈D

lim
t→∞

[
2cV (t)+

∫ t

0

(
Q(τ)+U̇(t)2− cγ2d(τ)2)dτ

]
(31)

for each

γ2 ≥ γ∗∗2 = 8
|PB|2

λmin(Q)
, (32)

where Q(t) ≥ μN(t)2 for some μ(c,γ2) > 0, which is such that μ(c,γ2) → ∞ as
c → ∞, and D is the set of linear scalar-valued functions of X.
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delay
LTI-ODE
plant

U(t) Y(t)

disturbance d(t)

lag

Fig. 1. An ODE with input delay and with an unmodeled input lag and additive disturbance. A
suitable form of robustness holds with respect to both perturbations under predictor feedback
(2), as stated in Theorem 7.

The following four special cases can be inferred from Theorem 2. First, the pre-
dictor feedback (2) is robust to the introduction of a lag c

s+c for sufficiently high c.
The lag can be either a part of the control law, as in (27), or an unmodeled part of
the system dynamics, as shown in Figure 1. This robustness to input lag may not be
surprising, but it is not obvious, in the light of various negative results on robustness
of hyperbolic PDEs to infinitesimal perturbations. Second, the system under predic-
tor feedback (2), as well as under feedback (27) with sufficiently high c, has a finite
L∞ gain relative to an additive disturbance. Third, the feedback (27) is an inverse
optimal stabilizer for sufficiently high but finite c, in the absence of the disturbance
d. This result is not so easy to see intuitively. It is obtained by writing the feedback
law in terms of U̇(t) as the control input, in which case the feedback law is of the
(Lie derivative) form ‘−LgV ’ [13]. Fourth, in the presence of the disturbance, the
feedback (27) with sufficiently high c is an inverse optimal solution to a differential
game problem [14] with a positive definite penalty on the state and control, and a
negative-definite penalty on the disturbance.

2 Delay-Robustness, Delay-Adaptivity, and Time-Varying
Delays

In control systems with input delay, the length of the delay is the most significant
possible uncertainty, both in the sense of robustness to a small mismatch in the
delay D when designing constant predictor feedback and in the sense of designing
delay-adaptive predictor feedback for a large uncertainty in the delay D.

2.1 Robustness to Delay Mismatch

We first discuss the problem of robustness to delay mismatch, as depicted in
Figure 2, and consider the feedback system

Ẋ(t) = AX(t)+BU(t−D0−ΔD) , (33)
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uncertain delay LTI-ODE
plant

U(t) Y(t)

Fig. 2. An ODE with input delay which is known up to a small mismatch error ΔD, which
can be either positive or negative. Stability is preserved under predictor feedback (34) for
sufficiently small |ΔD| but arbitrarily large D, as stated in Theorem 3.

U(t) = K

[
eAD0X(t)+

∫ t

t−D0

eA(t−θ)BU(θ )dθ
]
. (34)

The actuator delay mismatch ΔD can be either positive or negative relative to the
assumed actuator delay D0 > 0. However, the actual delay must be nonnegative,
D0 + ΔD ≥ 0. For the study of robustness to a small ΔD, we use two different
Lyapunov functionals, one for ΔD > 0, which is the easier of the two cases, and
another for ΔD < 0, in which case we employ

V (t)=X(t)T PX(t)+
a
2

∫ D0+ΔD

0
(1+x)w(x,t)2 dx+

1
2

∫ 0

ΔD
(D0+x)w(x, t)2dx (35)

with a sufficiently large a.

Theorem 3. There exists a positive constant δ such that for all ΔD ∈ (−δ ,δ ) there
exist positive constants G and g such that the solutions of the closed-loop system
(33), (34) satisfy Γ (t)≤ Ge−gtΓ (0) for all t ≥ 0, where

Γ (t) = |X(t)|2 +
∫ t

t−D̄
U(θ )2dθ (36)

and where
D̄ = D0 +max{0,ΔD} . (37)

The significance of this robustness result can be assessed based on the intuition
drawn from existing results. For example, finite-dimensional feedback laws for
finite-dimensional plants are robust to small delays [15], however, this result does
not apply to our infinite-dimensional problem. The delay perturbation to predictor
feedback incorporates the possibility of two different classes of perturbations, de-
pending on whether ΔD is positive or negative, so off-the-shelf results cannot be
used.

The result of Theorem 3 may be surprising in light of Datko’s negative result
on delay-robustness for certain examples of hyperbolic PDEs with boundary con-
trol [16]. Even though the input-delay problem also involves a hyperbolic PDE,
such a negative result does not hold for predictor feedback because of a significant
difference between first-order and second-order hyperbolic PDEs. The second-order
hyperbolic PDEs in Datko’s work have infinitely many eigenvalues on the imaginary
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axis, whereas is not the case with an ODE with input delay, even when the ODE
is unstable, only a finite number of open-loop eigenvalues may be in the closed
right-half plane.

2.2 Delay-Adaptive Control

Now we turn our attention from robustness to small delay mismatch to adaptivity
for large delay uncertainty. Several results exist on adaptive control of systems with
input delays, including [17, 18]. However, existing results deal with parametric un-
certainties in the ODE plant, whereas the key challenge is uncertainty in the delay.

Let us consider the plant (1) but with a transport PDE representation of the input
delay given as

Ẋ(t) = AX(t)+Bu(0, t) , (38)

Dut(x,t) = ux(x,t) , (39)

u(1,t) = U(t) . (40)

Here, the actuator state is defined as

u(x,t) =U(t +D(x−1)) , x ∈ [0,1] (41)

instead of the definition (5) with x ∈ [0,D]. We take the predictor feedback in the
certainty equivalence form

U(t) = K

[
eAD̂(t)X(t)+ D̂(t)

∫ 1

0
eAD̂(t)(1−y)Bu(y,t)dy

]
, (42)

where the update law for the estimate D̂(t) is designed as

˙̂D(t) = γProj[0,D̄]{τ(t)} , (43)

τ(t) = −
∫ 1

0 (1+ x)w(x, t)KeAD̂(t)xdx(AX(t)+Bu(0,t))

1+X(t)TPX(t)+b
∫ 1

0 (1+ x)w(x,t)2dx
, (44)

w(x,t) = u(x,t)− D̂(t)
∫ x

0
KeAD̂(t)(x−y)Bu(y, t)dy−KeAD̂(t)xX(t) , (45)

where b≥ 4D̄|PB|2
λmin(Q) and where D̄ is an a priori known upper bound on D. The standard

projection operator projects D̂(t) into the interval [0,D̄]. The structure of the adap-
tive control system is shown in Figure 3. The choice of the update law (43)–(45) is
motivated by a rather subtle Lyapunov analysis, resulting in a normalization of the
update law, without the use of any filters or overparametrization.

Theorem 4. Consider the closed-loop adaptive system (38)–(45). There exists γ∗ >
0 such that for all γ ∈ (0,γ∗) there exist positive constants R and ρ (independent
of the initial conditions) such that for all initial conditions satisfying (X0,u0,D̂0) ∈
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transport PDE with 
unknown

propagation speed 1/D

LTI-ODE
plant

U(t) X(t)

estimator of D

u(x,t)

certainty equivalence 
version of 

predictor feedback

Fig. 3. Delay-adaptive predictor feedback for a true delay D varying in a broad range from
0 to a possibly large value D̄. The certainty-equivalence controller (42) is combined with the
update law (43)–(45). Global stability and regulation of the state and control are achieved, as
specified in Theorem 4.

Rn×L2[0,1]× [0,D̄], the norm of the solutions obeys an exponential bound relative
to the norm of initial conditions, namely

ϒ (t)≤ R
(

eρϒ (0)−1
)
, for all t ≥ 0 , (46)

where

ϒ (t) = |X(t)|2 +
∫ 1

0
u(x,t)2dx+

(
D− D̂(t)

)2
. (47)

Furthermore
lim
t→∞

X(t) = 0 , lim
t→∞

U(t) = 0 . (48)

Example 1. We illustrate the delay-adaptive design for the example plant

X(s) =
e−s

(s−0.75)
U(s) (49)

with the simulation results given in Figure 4. The period up to 1 sec is the dead
time, the parameter estimation is active until about 3 sec, the control evolution is
exponential (corresponding to a predominantly LTI system) after 3 sec, and the state
evolves exponentially after 4 sec. The adaptive controller is successful both with
D̂(0) = 0 and with D̂(0) = 2D (100% parameter error in both cases).

The controller (42)–(45) uses full state measurement of the transport PDE state.
In the absence of such measurement, a slightly different design guarantees local
stability, which is the strongest result achievable in that case due to a nonlinear
parametrization of the operator e−Ds.
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Fig. 4. Time responses of D̂(t), X(t), and U(t) under delay-adaptive predictor feedback for an
unstable first-order plant. Stabilization is achieved both with D̂(0) = 0 and with a D̂(0) that
heavily overestimates the true D.
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time-varying

delay
LTI plant

Fig. 5. Linear system Ẋ(t) = AX(t) + BU(φ(t)) with time-varying actuator delay
δ (t) = t − φ(t). The predictor feedback (51) with compensation of the time-varying delay
achieves exponential stabilization in the sense of Theorem 5.

2.3 Time-Varying Input Delay

Before we close this section on uncertain delays, let us briefly turn our attention to
the problem of time-varying known input delays, which is depicted in Figure 5. We
consider the system

Ẋ(t) = AX(t)+BU(φ(t)) . (50)

A predictor feedback for this system is

U(t)=K

[
eA(φ−1(t)−t)X(t)+

∫ t

φ(t)
eA(φ−1(t)−φ−1(θ))B

U(θ )
φ ′ (φ−1(θ ))

dθ
]
, for all t≥ 0 .

(51)

With rather extensive effort, going through a transport PDE representation
with u(x,t) = U

(
φ
(
t + x

(
φ−1(t)− t

)))
and the time-varying backstepping

transformation

w(x, t) =u(x, t)−KeAx(φ−1(t)−t)X(t)−K
∫ x

0
eA(x−y)(φ−1(t)−t)Bu(y,t)

(
φ−1(t)− t

)
dy

(52)

into the target system

Ẋ(t) = (A+BK)X(t)+Bw(0,t) , (53)

wt(x,t) = π(x,t)wx(x,t) , (54)

w(1,t) = 0 , (55)

where the variable speed of propagation of the transport equation w is given by

π(x,t) =
1+ x

(
d
(
φ−1(t)

)
dt

−1

)

φ−1(t)− t
, (56)

we obtain the following stabilization result.

Theorem 5. Consider the closed-loop system (50), (51). Let the delay function
δ (t) = t−φ(t) be strictly positive and uniformly bounded from above. Let the delay
rate function δ ′(t) be strictly smaller than 1 and uniformly bounded from below.
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delay dx/dt = f(x,u)U(t)

Fig. 6. Nonlinear control in the presence of arbitrarily long input delay. Global stabilization is
achieved with the predictor feedback (59)–(61) if the plant is forward complete and globally
asymptotically stabilizable in the absence of delay, as stated in Theorem 6.

There exist positive constants G and g (the latter one being independent of φ ) such
that

|X(t)|2 +
∫ t

φ(t)
U2(θ )dθ ≤ Ge−gt

(
|X0|2 +

∫ 0

φ(0)
U2(θ )dθ

)
, for all t ≥ 0 . (57)

3 Predictor Feedback for Nonlinear Systems

In the area of robust nonlinear control various types of uncertainties are
considered—unmeasurable disturbances, static nonlinear functional perturbations,
dynamic perturbations on the state, and dynamic perturbations on the input. The
unmodeled input dynamics are represent the greatest challenge in robust nonlinear
control. It is for this reason no surprise that long delays at the input of nonlinear
systems, as depicted in Figure 6, have remained an unsolved challenge in nonlin-
ear control. Considerable success has been achieved in recent years with control of
nonlinear systems with state delay [19, 20, 21, 22], however, only one result exists
where input delay of arbitrary length is being addressed [23]. Systematic compen-
sation of input delays of arbitrary length is non-existent.

A conceptually easy and natural way to compensate input delays in nonlinear
control is through an extension of predictor feedback to nonlinear systems, which
we present next. Consider the general class of nonlinear systems

Ẋ(t) = f (X(t),U(t−D)) , f (0,0) = 0 , (58)

and assume that a feedback law U = κ(X) with κ(0) = 0 is known which globally
asymptotically stabilizes the system at the origin when D = 0. Denote the initial
conditions as Z0 = Z(0) and U0(θ ) = U(θ ),θ ∈ [−D,0]. A predictor feedback is
given by

U(t) = κ(P(t)) , (59)

where the predictor is defined as

P(t) =
∫ t

t−D
f (P(θ ),U(θ ))dθ +Z(t) , t ≥ 0 , (60)
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P(θ ) =
∫ θ

−D
f (P(σ),U0(σ))dσ +Z0 , θ ∈ [−D,0] . (61)

A key feature to note about the predictor P(t) is that it is defined implicitly, through
a nonlinear integral equation, rather than explicitly, through matrix exponentials and
the variation of constants formula, as is the case when the plant is linear. The lack
of an explicit formula for P(t) is not necessarily an obstacle numerically, since P(t)
is defined in terms of its past values.

The more serious question is conceptual, does a solution for P(t) always exist?
Fortunately, the answer to this question is rather simple. Since control has no effect
for D seconds after it has been applied, the system can indeed exhibit finite escape
over that period, resulting in a finite escape for P(t) since the predictor is governed
by the same model as the plant. Hence, a natural way to ensure global existence of
the predictor state is to assume that the plant is forward complete.

A system is said to be forward complete if, for all initial conditions and all locally
bounded input signals, its solutions exist for all time. This definition does not require
the solutions to be uniformly bounded. They can be growing to infinity as time goes
to infinity. For example, all LTI systems, stable or unstable, driven by inputs of
exponential growth, are forward complete. The same is true of nonlinear systems
with globally Lipschitz right-hand sides, but also of many systems that are neither
globally Lipschitz nor stable but contain super-linear nonlinearities that induce limit
cycles, rather than finite escape.

The nonlinear predictor design is developed for two classes of systems. For the
broad class of forward complete systems, that is, systems that do not exhibit a finite
escape time for any initial condition and any input signals that remain finite over
finite time intervals, which includes many mechanical and other systems, predictor
feedback is developed which achieves global asymptotic stability, as long as the
system without delay is globally asymptotically stabilizable. However, the predictor
requires the solution of a nonlinear integral equation, or a nonlinear DDE, in real
time.

Theorem 6. Let Ẋ = f (X ,U) be forward complete and Ẋ = f (X ,κ(X)) be globally
asymptotically stable at X = 0. Consider the closed-loop system (58)–(61). There
exists a function β̂ ∈K L such that

|Z(t)|+‖U‖L∞[t−D,t] ≤ β̂
(
|Z(0)|+‖U0‖L∞[−D,0], t

)
(62)

for all (Z0,U0) ∈R
n×L∞[−D,0] and for all t ≥ 0.

As we have mentioned above, the only weakness of predictor feedback laws is that
P(t) may not be explicitly computable. Fortunately, a significant class of nonlin-
ear system exists which are not only forward complete and globally stabilizable,
but where P(t) is also explicitly computable. This is the class of strict-feedforward
systems [13].

Example 2. We illustrate the explicit computability of the predictor, and thus of the
feedback law, for an example of a strict-feedforward system. Consider the third-
order system.
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Ẋ1(t) = X2(t)+X2
3 (t) , (63)

Ẋ2(t) = X3(t)+X3(t)U(t−D) , (64)

Ẋ3(t) = U(t−D) , (65)

which is not feedback linearizable and is in the strict-feedforward class. The globally
asymptotically stabilizing predictor feedback for this system is given by

U(t) = −P1(t)−3P2(t)−3P3(t)−
3
8

P2
2 (t)

+
3
4

P3(t)
(
−P1(t)−2P2(t)+

1
2

P3(t)+
P2(t)P3(t)

2

+
5
8

P2
3 (t)−

1
4

P3
3 (t)−

3
8

(
P2(t)−

P2
3 (t)
2

)2
)
, (66)

where the D-second-ahead predictor of (X1(t),X2(t),X3(t)) is given explicitly by

P1(t) = X1(t)+DX2(t)+
1
2

D2X3(t)+DX2
3 (t)+3X3(t)

∫ t

t−D
(t−θ )U(θ )dθ

+
1
2

∫ t

t−D
(t−θ )2U(θ )dθ +

3
2

∫ t

t−D

(∫ θ

t−D
U(σ)dσ

)2

dθ , (67)

P2(t) = X2(t)+DX3(t)+X3(t)
∫ t

t−D
U(θ )dθ +

∫ t

t−D
(t−θ )U(θ )dθ

+
1
2

(∫ t

t−D
U(θ )dθ

)2

, (68)

P3(t) = X3(t)+
∫ t

t−D
U(θ )dθ . (69)

Note that the nonlinear infinite-dimensional feedback operator employs a finite
Volterra series in U(θ ).

4 Delay-PDE Cascades

When a plant with an input delay is a PDE, such as, for example, in Figure 7, special
challenges arise in the design of predictor feedback, particularly if the PDE is actu-
ated through boundary control, which makes the input operator (commonly denoted
as B) unbounded. In [12] we consider two benchmark delay-PDE cascades, one
where the plant is a parabolic PDE and the other where the plant is a second-order
hyperbolic PDE. We review here the parabolic case, where the plant is an unstable
reaction-diffusion equation with an arbitrarily large number of unstable eigenvalues
in open loop.

Consider the PDE system

ut(x,t) = uxx(x, t)+λu(x, t) , (70)
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delay
unstable

reaction-diffusion PDE
U(t)

Fig. 7. Control of an unstable parabolic PDE with input delay, that is, of a boundary controlled
cascade of a transport PDE and a reaction-diffusion PDE. Explicit gains are derived for the
predictor feedback (73). As stated in Theorem 7, stability is achieved in a somewhat non-
standard Sobolev norm, rather than in the basic L2 norm of the state of the PDE cascade.

u(0, t) = 0 , (71)

u(1,t) = U(t−D) , (72)

where λ is an arbitrary constant. We derive a stabilizing feedback law in the explicit
form

U(t) = 2
∞

∑
n=1

∫ 1

0
sin(πnξ )λξ

I1

(√
λ (1− ξ 2)

)
√
λ (1− ξ 2)

dξ

×
(
−e(λ−π

2n2)D
∫ 1

0
sin(πny)u(y,t)dy

+πn(−1)n
∫ t

t−D
e(λ−π

2n2)(t−θ)U(θ )dθ
)
, (73)

where I1(·) is a Bessel function.

Theorem 7. Consider the closed-loop system (70)–(73). There exists a positive
continuous function ρ : R2 → R+ such that, for all initial conditions (u0,U0) ∈
L2[0,1]×H1[0,D], and for all c > 0, the solutions are bounded in the following
sense

ϒ (t)≤ ρ(D,λ )ecDϒ (0)e−min{2,c}t , for all t ≥ 0 , (74)

where

ϒ (t) =
∫ 1

0
u2(x,t)dx+

∫ t

t−D

(
U2(θ )+U̇2(θ )

)
dθ . (75)

Two elements of this result are of significance and they arise in any application of
predictor feedback to PDEs with boundary control. First, the feedback law (73) is
derived explicitly. The explicit determination of the control gains is made possible
by first deriving the control gain for D = 0 explicitly, which was achieved in [24],
and then by solving the undriven version of the PDE system (70)–(72) with an initial
condition given by the control gain for D = 0. In more specific terms, we solve the
PDE systems

kxx(x,y) = kyy(x,y)+λk(x,y) , 0≤ y≤ x≤ 1 , (76)

k(x,0) = 0 , (77)
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k(x,x) = −λ
2

x , (78)

and

γx(x,y) = γyy(x,y)+λγ(x,y) , (x,y) ∈ [1,1+D]× (0,1) , (79)

γ(x,0) = 0 , (80)

γ(x,1) = 0 , (81)

γ(1,y) = k(1,y) . (82)

Note that the k-system is hyperbolic and defined on a triangular domain, whereas
the γ-system is parabolic and defined on a rectangular semi-infinite domain, as well
as that the solution to the k-system acts as an initial condition to the γ-system, as
given by (82). The process of explicitly solving for γ(x,y) is the PDE equivalent of
analytically finding the vector KeAD in (2).

Second, when dealing with boundary control of a PDE with input delay, we are
facing the problem of control of two PDEs from different classes, such as a parabolic
PDE and a first-order hyperbolic PDE in the case covered here, where the PDEs are
interconnected through a boundary. While for each one of the two PDEs individually
a natural system norm may be the standard L2 norm, for the interconnected system
this may not be the case and a higher order norm may have to be used for one of the
subsystems, as is the case in (75).

5 Conclusions

The PDE backstepping approach is a potentially powerful tool in advancing the
design techniques for systems with input and output delays. Two ideas presented in
this article may be of interest to researchers in delay systems. The first idea is the
construction of backstepping transformations that allow one to deal with delays and
PDE dynamics at the input, as well as in the main line of applying control action,
such as in the chain of integrators for systems in triangular forms. The second idea
is the construction of Lyapunov functionals and explicit stability estimates, with the
help of direct and inverse backstepping transformations.
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Boundary Value Problems and Convolutional
Systems over Rings of Ultradistributions

Hugues Mounier, Joachim Rudolph, and Frank Woittennek

Abstract. One dimensional boundary value problems with lumped controls are con-
sidered. Such systems can be modeled as modules over a ring of Beurling ultradis-
tributions with compact support. This ring appears naturally from a corresponding
Cauchy problem. The heat equation with different boundary conditions serves for
illustration.

1 Introduction

The design of feedforward and feedback control for finite dimensional systems and
delay systems is largely simplified by flatness based control, respectively freeness.
This has been shown in numerous academic case studies and industrial applica-
tions. A central part in the control design (the importance of which has often been
under-estimated) is trajectory planning.

It is particularly useful for distributed parameter systems with lumped control
inputs, a class of systems the models of which include partial differential equations.
In the linear case, as for delay systems, a module-theoretic framework has been
established, and the trajectory planning is based on the use of a module basis, which
plays a role similar to the one of a flat output in finite-dimensional flat systems.

Examples of distributed parameter systems that have been studied are heat con-
ductors, elastic piezo-beams and plates, elastic robot arms, ropes, electric lines,
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tubular chemical reactors, and heat exchangers (see, e.g., [16, 17]). Although many
of the problems considered are linear with fixed boundary, some nonlinear and free
boundary value problems have been solved, too.

Here, based on the example of the linear heat equation the choice of the ring
used to represent the system as a module is further discussed. It is shown that a
suitable ring is R = C(∂t)[S]∩ E

′∗, where ∂t stands for time derivation, S is a
collection of spatially dependant hyperbolic functions, and E

′∗ is a ring of Beurling
ultradistributions.

2 Motivating Example: The Heat Equation

The one dimensional heat equation might be viewed as one of the simplest problems
of the class considered in the sequel. It will, therefore, be used for motivation. More-
over, this discussion is based on elementary calculations, which allow one to capture
the idea of the approach without entering into deeper mathematical considerations.

Consider the system

∂ 2
x w(x,t) = ∂tw(x, t), x ∈ [0,1], t ∈ R (1a)

∂xw(0,t) = 0, w(1, t) = u(t) (1b)

with homogeneous initial conditions. These equations model the heat conduction in
a rod of unit length, where w(x, t) denotes the temperature at the point x at time t.
The first boundary condition means that there is no heat flux at x = 0, the second
one means that the temperature at x = 1 is considered as a control input u(t).

2.1 Symbolic Viewpoint

Use the Laplace transform w.r.t. t to obtain

sŵ(x,s) = ∂ 2
x ŵ(x,s) (2)

from (1a). (Mikusiński’s oprational calculus would lead to similar formulae.) The
characteristic equation associated with (2) reads ζ 2− s = 0, i.e. ζ = ±√s, and the
general solution of (1a) can, thus, be written as ŵ(x,s) = ex

√
sγ1(s)+ e−x

√
sγ2(s) or

ŵ(x,s) = cosh(x
√

s)λ1(s)+
sinh(x

√
s)√

s
λ2(s). (3)

The second formulation is easier to handle, because with

Ĉ0(x) = cosh(x
√

s), Ĉ1(x) =
sinh(x

√
s)√

s
(4)

one has the relations ∂xĈ0(x) = sĈ1(x),∂xĈ1(x) = Ĉ0(x). Furthermore, as Ĉ0(0) =
1 and Ĉ1(0) = 0, the parameters λ1 and λ2 admit a direct interpretation through
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λ1(s) = ŵ(0,s) and λ2(s) = ∂xŵ(0,s). The general form of the solution and its first
derivative can thus be written

ŵ(x,s) = Ĉ0(x)λ1(s)+ Ĉ1(x)λ2(s)

∂xŵ(x,s) = sĈ1(x)λ1(s)+ Ĉ0(x)λ2(s).

The boundary conditions (1b) yield

λ2(s) = 0, Ĉ0(1)λ1(s) = û(s),

and the equation cosh(
√

s) ŵ(x,s) = cosh(x
√

s) û(s), or

Ĉ0(1)ŵ(x,s) = Ĉ0(x) û(s).

As a result one has a parametrization in λ1(s):

û(s) = Ĉ0(1)λ1(s) (5a)

ŵ(x,s) = Ĉ0(x)λ1(s). (5b)

The free parameter λ1 may, therefore, be considered as a flat or basic output. In a
module theoretic framework on an appropriate ring (to be defined) it would form a
basis of a corresponding free module.

Formally, write cosh(
√

s) = ∑i�0 si/((2i)!), and introduce ω(t) = w(0, t) to de-
note the function corresponding to λ1 in the time domain. Then, in the time domain

w(x,t) =∑
i�0

x2i

(2i)!
ω(i)(t), u(t) =∑

i�0

1
(2i)!

ω(i)(t). (6)

Convergence of the above series can be shown (see, e.g., [6, 11, 12]) provided t �→
ω(t) is a Beurling ultradifferentiable function of Gevrey order 2 (cf. the app.).

2.2 Temporal Viewpoint

A different look on the problem is based on a Cauchy-Kowaleski form of the system:

∂ 2
x w(x,t) = ∂tw(x, t), x ∈ [0,1], t ∈ [0,∞[ (7a)

∂xw(0,t) = 0, w(0,t) = ω(t), (7b)

which allows one to search for a formal solution

w(x, t) =∑
i�0

ai(t)
xi

i!

where the functions ai are infinitely differentiable. A formal check based upon (7)
gives ai+2(t) = ȧi(t), i � 0,a1(t) = 0,a0(t) = ω(t). Thus, for i � 0, one has a2i(t) =
ω(i)(t),a2i+1(t) = 0, which implies (6).
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3 Module Theoretic Formulation over Appropriate Rings

Generalizing the ideas of the introductory example, this section describes how
boundary value problems can be reformulated as linear systems of equations over
rings of ultradistributions. These equations serve as the defining relations for the
module representing the system under consideration. The question of the appropri-
ate choice of the coefficient rings of this module is brought up because its particular
choice may play an important rhole in whether the system module is free. The latter
property essentially simplifies trajectory planning and control design.

3.1 Class of Models Considered

In order to keep the exposition simple, in the sequel the following particular class of
systems, with distributed variables w1, . . . ,wl and lumped variables u = (u1, . . . ,um)
is considered:

∂xwi = Aiwi +Biu, wi : Ωi → F p, u ∈Fm

Ai ∈ (R[∂t ])pi×pi , Bi ∈ (R[∂t ])pi×m, i ∈ {1, . . . , l}
(8a)

where F represents an appropriate space E ∗(R) of smooth functions or (ultra-)
distributions D

′∗(R) to be specified in Sect. 3.2 below. The intervals Ω1, . . . ,Ωl are
open neighborhoods of Ω̃i = [xi,0,xi,1]. Without loss of generality, assume xi,0 = 0.

A key hypothesis will be the following: The characteristic polynomials of the
matrices A1, . . . ,Al can be written

Pi(λ ) := det(λ I−Ai) =
pi

∑
ν=0

ai,νλν , ai,ν = ∑
μ≤pi−ν

ai,ν,μ∂ μ
t (8b)

with ai,ν,μ ∈ R, ai,pi,0 = 1. Moreover, their principal parts ∑μ+ν=pi
ai,ν,μ∂

μ
t λν are

hyperbolic w.r.t. the time t, i.e., the roots of ∑μ+ν=pi
ai,ν,μλν are real.

The models are completed by boundary conditions

l

∑
i=1

Liwi(0)+Riwi(�i)+Du = 0 (8c)

with D ∈ (R[∂t ])q×m and Li,Ri ∈ (R[∂t ])q×pi .

Remark 1. Note that the above assumptions apply to a large class of spatially one-
dimensional boundary controlled evolution equations, including Euler-Bernoulli or
Timoshenko beam equations, more general parabolic diffusion-reaction-convection
equations, damped and undamped wave-equations etc. An exception are the models
of internally damped mechanical systems.
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Example 1. Consider an example similar to (1). The model is given by

∂ 2
x w(x,t) = ∂tw(x, t), x ∈ [0, �], t ∈ [0,+∞[ (9a)

∂xw(0,t) = 0, ∂xw(�,t) = u(t), (9b)

which may be rewritten in the form (8a), (8c) as

∂x

(
w(x, t)
∂xw(x, t)

)
=
(

0 1
∂t 0

)(
w(x,t)
∂xw(x,t)

)
(10a)(

0 1
0 0

)(
w(0,t)
∂xw(0,t)

)
+
(

0 0
0 1

)(
w(�,t)
∂xw(�,t)

)
=
(

0
1

)
u(t). (10b)

The characteristic polynomial P(λ ) = λ 2− ∂t of the coefficient matrix in (10a) has
the principal part λ 2 which is clearly hyperbolic w.r.t. the time axis.

3.2 Solution of the Cauchy Problem

Some properties of the solution of the Cauchy problem (8a) with initial conditions
given at x = ξ , i.e.

∂xw = Aw+Bu, w(ξ ) = wξ (11)

with A ∈ (R[∂t ])p×p, B ∈ (R[∂t ])p×q as assumed in the previous section for Ai, Bi,
will be used. The notation of the previous section is used in what follows, dropping
the index i ∈ {1, . . . , l}.

Choose1 E ∗(R) = E (p/(p−1))(R) (resp. D
′∗(R) = D

′(p/(p−1))(R)) which corre-
sponds to Beurling ultradifferentiable functions (resp. ultradistributions) of Gevrey
order p/(p−1) introduced in the appendix.

Consider the initial value problem

P(∂x)v(x) = 0, (∂ j
x v)(0) = v j ∈F , j = 0, . . . , p−1 (12)

associated with the characteristic polynomial

P(λ ) := det(λ I−A) =
p

∑
j=0

a jλ j, a j = ∑
μ≤p− j

a j,μ∂ μ
t .

Conformal with [8, Thrm. 12.5.6] or [15, Thrm 2.5.2, Prop. 2.5.6] the initial value
problem (12) has a unique solution. This solution may be written as

v(x) =
p−1

∑
j=0

Cj(x)v j,

1 Depending on the particular p.d.e. under consideration, choosing larger spaces E ∗ of
smooth functions and smaller spaces D

′∗ of ultradistributions and even distributions may
be possible.
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where juxtaposition of symbols means convolution and C0, . . . ,Cp−1 are smooth
functions2 mapping Ω to the space of compactly supported Beurling ultradis-
tributions E

′∗(R) := E
′(p/(p−1))(R) of Gevrey order p/(p− 1). The functions

C0, . . . ,Cp−1 satisfy (k, j ∈ {0, . . . , p−1})

∂ k
x Cj(0) =

{
1, k = j

0, k �= j
(13)

and
∂xCj =Cj−1−a jCp−1, j = 1, . . . , p−1, ∂xC0 =−a0Cp−1. (14)

With these preparatory steps, the unique solution x �→ Φ(x,ξ ) of the initial value
problem (11) can be expressed as

w(x) =Φ(x,ξ )wξ +Ψ(x,ξ )u. (15)

Therein, Φ(x,ξ ) ∈ E
′∗(R)p×p andΨ(x,ξ ) ∈ E

′∗(R)p×m are given by

Φ(x,ξ ) =
p−1

∑
j=0

A jCj(x− ξ ), Ψ(x,ξ ) =
∫ x

ξ
Φ(x,ζ )dζB. (16)

That (15) with the matrices given in (16) is indeed a solution of (11) can be checked
by plugging it into the p.d.e. in (11) and then employing (14) in combination with
the Cayley-Hamilton theorem. Moreover, observe that Ψ(ξ ,ξ ) = 0 while Φ(ξ ,ξ )
is the identity. As a consequence, the restriction of x �→ w(x) to x = ξ indeed
equals wξ .

Uniqueness of the solution (15) can be led back to the uniqueness of the scalar
problem (12). To this end assume the existence of two different solutions of (11)
which, by linearity, implies the existence of a non-zero solution of the homogeneous
p.d.e. ∂xw̃(x) = Aw̃(x) with data w̃(ξ ) = 0. Differentiating this latter differential
equation p−1 times w.r.t. x and using the Cayley-Hamilton theorem, one observes
that all components of w̃ satisfy (12) with zero data w̃(ξ ) = · · ·= ∂ p−1

x w̃(ξ ) = 0.

Remark 2. As in the example introduced in sec. 2 the solution of the Cauchy prob-
lem (11) can be achieved either by direct computations in the time domain (cf. sec.
2.2) or, alternatively, by means of the Laplace transform (cf. sec. 2.1). According
to the classical theory of ordinary differential equations, the solution of the Cauchy
problem (11) in the Laplace domain always exists even if the characteristic poly-
nomial of A does not satisfy the conditions formulated in section 3.1. However,
these conditions are necessary in order to ensure the existence of time-domain inter-
pretations of such solutions as compactly-supported ultradistributions. More specifi-
cally, they ensure particular growth bounds (w.r.t. the complex Laplace variable s) of
the partial Laplace transforms Ĉ0(x), . . . ,Ĉp−1(x) w.r.t. time of C0(x), . . . ,Cp−1(x).

2 A function C : Ω → E
′∗ is called of class C∞ if it defines a map D∗→C∞(Ω), i.e., for any

test function ϕ ∈ D∗ the function Ω � x �→ C(x)[ϕ] belongs to C∞(Ω). It can be shown
that this mapping is continuous.
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These bounds are specified in the appropriate Paley-Wiener theorems for ultradis-
tributions (see, e.g., [9, 10, 15]) and distributions (see, e.g., [7]).

Example 2 (Ex. 1 continued). As p = 2, for every fixed x ∈ Ω , C0(x),C1(x) are
ultradistributions of Gevrey order 2 (elements of E

′(2)). Clearly, for this simple ex-
ample C0(x), C1(x) can be given explicitly: While their Laplace transforms simply
correspond to (4), in the time domain one gets for all ν0,ν1 ∈ E (2)(R) (cf. (6))

C0(x)v0 =
∞

∑
k=0

x2k

(2k)!
∂ k

t v0, C1(x)v1 =
∞

∑
k=0

x2k+1

(2k+1)!
∂ k

t v1.

According to (15) and (16) the solutions of the (spatial) Cauchy problem with data
w(ξ ) = c = (c1,c2)T is given by

w(x) =Φ(x,ξ )c, Φ(x,ξ ) =
(

C0(x− ξ ) C1(x− ξ )
∂tC1(x− ξ ) C0(x− ξ )

)
. (17)

In particular, one has w(x) =C0(x− ξ )c1 +C1(x− ξ )c2.

3.3 System Module

Using the solutions of the initial value problem in the boundary conditions (8c), one
obtains

wi(x) =Φi(x,ξi)wi(ξi)+Ψi(x,ξi)u, i = 1, . . . , l, Pξ cξ = 0 (18)

Here ξ = (ξ1, . . . ,ξl) is arbitrary but fixed, cT
ξ = (wT

1 (ξ1), . . . ,wT
l (ξl),uT ), Pξ =(

Pξ ,1, . . . ,Pξ ,l+1
)

with

Pξ ,i = LiΦi(0,ξi)+RiΦi(�i,ξi), i = 1, . . . , l

Pξ ,l+1 = D+
l

∑
i=1

LiΨi(0,ξi)+RiΨi(�i,ξi).

The system will be represented by a module generated by cξ , u with the presentation
given in (18) — cf. [4, 3, 2, 13]. The ring of coefficients must contain at least the
entries of Φi(x,ξi), Ψi(x,ξi), i = 1, . . . , l, and the entries of Pξ , which consist of

values of functions Ci, j, j = 1, . . . , pi, i = 1, . . . , l from R in E
′�. Moreover, the

matrices may also contain values of spatial integrals of Ci, j. A possible choice for
the ring of coefficients is, thus, RI = C[∂t ,S,SI]⊂ E

′∗ with

S = {Ci, j(x)|x ∈ R; i = 1, . . . , l; j = 0, . . . , pi−1},
SI = {CI

i, j(x)|x ∈ R; i = 1, . . . , l; j = 0, . . . , pi−1}
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and

CI
i, j(x) =

∫ x

0
Ci, j(ζ )dζ , i = 1, . . . , l, j = 0, . . . , pi−1.

This ring is isomorphic to a subring of E
′∗.

Following [14, 1, 5], in order to simplify the analysis of the module properties
instead of RI , the larger ring R = C(∂t)[S]∩E

′∗ may be considered.

Definition 1. The convolutional system Σ associated with the boundary value prob-
lem (8) is the module generated by the components of cξ and u over R, with the
presentation matrix Pξ .

One may check that Σ is independent of the choice of ξ (cf. [19, Sect. 3.3] and [18,
Remark 4]).

Example 3 (Ex. 2 continued). Substituting (17) into the boundary conditions (10b)
one obtains LΦ(0,ξ )c+RΦ(�,ξ )c−Du = 0 or, even more explicitly,(

0 1
0 0

)(
C0(−ξ ) C1(−ξ )
∂tC1(−ξ ) C0(−ξ )

)
c+

(
0 0
0 1

)(
C0(�− ξ ) C1(�− ξ )
∂tC1(�− ξ ) C0(�− ξ )

)
c−

(
0
1

)
u = 0.

As a result, one has

(
−∂tC1(ξ ) C0(ξ ) 0
∂tC1(�− ξ ) C0(�− ξ ) −1

)⎛⎝c1

c2

u

⎞
⎠= 0, w(x) =Φ(x,ξ )

(
c1

c2

)
,

the first equation of which may be written

Pξ

(
c
u

)
= 0 with Pξ =

(
−∂tC1(ξ ) C0(ξ ) 0
∂tC1(�− ξ ) C0(�− ξ ) −1

)
.

Thus, the convolutional system Σ associated with the boundary value problem (10)
is the module generated by c1, c2, and u over R =C(∂t)[{C0(x),C1(x)|x∈R}]∩E

′∗,
with the above defined presentation matrix Pξ . Alternatively, instead of starting with

a module over R one may directly pass to E
′∗.

4 Conclusion

A ring has been exhibited over which systems of one dimensional boundary con-
trolled distributed parameter systems may be viewed as convolutional systems. It
appears that this ring is well suited for controllability studies, especially when one
is interested in the relations between algebraic and trajectory related controllabillity
properties. For a particular subclass of the class of models considered here, it is es-
tablished in [20], through Bézout ring properties, that torsion freeness and freeness
are equivalent over such types of rings for systems in which the p.d.e.’s are of second
order only. However, known results for the rings of entire functions of Paley-Wiener
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type (which are isomorphic to E
′∗ via the Laplace transform) suggest that in some

situations it may be advantageous to consider systems over even larger subrings of
E
′∗ to obtain similar results.

Appendix: Ultradistributions and Ultradifferentiable Functions

Some basic definitions about Gevrey functions and the corresponding classes of
ultradistributions are recalled here.

Definition 2 (see, e.g. [9],[8, Def. 12.7.3, p. 137]). An infinitely differentiable func-
tion f : Ω → C (with Ω ⊂ Rn open) belongs to the small Gevrey class E (α)(Ω)
(or the space of Beurling ultradifferentiable functions of Gevrey class α) if for all
M ∈ R+ and all compact sets K ⊂Ω there exists CK,M such that

sup
t∈Ω ,k≥0

|∂ (k)
t f (t)| ≤CK,MMk(k!)α .

A sequence ( fn), n∈N, fn ∈ E (α)(Ω) converges to f ∈ E (α)(Ω), if for all compact
K ⊂Ω and all M ∈R

+

lim
n→∞

sup
t∈Ω ,k≥0

|∂ (k)
t ( fn(t)− f (t))|

Mk(k!)α
= 0.

The space of compactly supported functions in E (α) is denoted by Dα(Ω). A se-
quence ( fn), fn ∈D (α)(Ω), n∈N converges in D (α)(Ω) if it converges in E (α)(Ω)
and, moreover, ∪n∈Nsupp fn is compact. The space D

′(α)(R) (resp. E
′(α)(R)) of

Beurling ultradistributions (resp. Beurling ultradistributions with compact support)
of Gevrey order α is the space of linear continuous functionals on D (α)(R) (resp.
E (α)(R)).

The Laplace transform of an ultradistribution f ∈ E
′∗ is given by f̂ (s) = f (gξ ) with

gs(t) = e−st . The isomorphism between the two convolution rings of ultradistribu-
tions with compact support and their Laplace transforms is given by a Paley-Wiener
type theorem which can be found in [10].
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Wei-Norman Technique for Control
Design of Bilinear ODE Systems with
Application to Quantum Control

Markku Nihtilä

Abstract. A two-level quantum system model describing population transfer
driven by a laser field is studied. A four-dimensional real-variable differential
equation model is first obtained from the complex-valued two-level model
describing the wave function of the system. Due to bilinearity in the control
and the states Lie-algebraic techniques can be applied for constructing the
state transition matrix of the system. The Wei-Norman technique is used in
the construction. The exponential representation of the transition matrix in-
cludes three base functions, two of which serves as the parameter functions,
which can be chosen freely. This corresponds to considering the overall con-
trol system as an underdetermined differential system. In this framework the
initial and final states can be defined corresponding to the two levels of the
original system model. Then flatness-based design is applied for explicitly
calculating the parameter functions, which in turn give the desired input–
output pairs. This input then drives the state of the system from the given
initial state to the given final state in a finite time.

Keywords: Quantum control, Control design, Open-loop control,
Wei-Norman technique, Two-level systems, Ordinary differential equation
models.

1 Introduction

In quantum computation a two-level system, so-called qubit, forms a basic
element for building up multi-qubit computing elements of future quantum
computers, see [15], [22] & [10]. Then a key problem is to drive the qubit
from one stable level to another, much like the classical commutation of an
ordinary bit from 0 to 1.
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Molecular excitation, i.e. driving of an ensemble of molecules from one
locally stable steady state to another is one alternative for a qubit struc-
ture. This type of systems are controlled by using coherent light. Based on
laser technology shorter and shorter coherent pulses can be generated for
controlling molecular excitation, see [15]–[20]. The goal is to direct molecular
reactions towards unprobable but desirable direction [2]-[5]. Then nonlin-
ear and more and more sophisticated control methods are needed for prop-
erly designing durations and forms of the control pulses. In classical N-level
problems the system to be controlled can be modelled by using ordinary
2N -dimensional differential equation systems. Due to femto- and picosecond
scale pulses, feedback is not in general applicable in the control design for
these systems. Flatness-based control [6]–[9] is then an ideal methodology for
open-loop design needed in quantum control problems. Then, for obtaining
smaller maximum values for the controls, due to e.g. technical limitations,
the transition time has to be increased. This offers a way to obtain a feasible
compromise between the strenght and lenght of the control signals applied.

This two-level quantum control problem and some related studies have
been carried out by several authors earlier, too, see [1],[11], [12], & [21].
Especially, in [21] a very similar approach as ours is used. A main difference
there is that the authors use quaternion-type framework in the state-variable
representation instead of a standard R

n-representation.
However, we start from the basic definition of differential flatness. The

system

dx

dt
= f(x, u); x(t) ∈ R

n, u(t) ∈ R
m (1)

is called differentially flat if there exists algebraic functions A, B, C, and finite
integers α, β, and γ such that for any pair (x, u) of inputs and controls, satis-
fying the dynamics (1), there exists a function z, called a flat (or linearizing)
output, such that the following equations are satisfied

x(t) = A(z, ż, . . . , z(α)) (2)
u(t) = B(z, ż, . . . , z(β)) (3)
z(t) = C(x, u, u̇, . . . , u(γ)) . (4)

Here we study the problem of a two-level quantum system from the flat-
ness viewpoint. We start with the standard finite-state Schrödinger equation
of two energy levels and transform it into a control theoretic form. A four-
dimensional real-variable differential equation model is then obtained from
the complex-valued two-level model. Due to bilinearity in the control and
the states Lie-algebraic techniques can be applied for constructing the state
transition matrix of the system. The Wei-Norman technique is used in the
construction according to [23]. The exponential representation of the transi-
tion matrix includes three base functions, two of which serve as the parameter
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functions, which can be chosen freely. In this framework the initial and final
states can be defined corresponding to the two levels of the original system
model. Then flatness-based design is applied for explicitly calculating the pa-
rameter functions, which in turn give the desired input–output pairs. These
inputs then drive the state of the system from the given initial state to the
given final state in a finite time and produce the corresponding outputs via
parametrization.

2 Model Conversion

At first, we repeat here shortly as a background the derivation of our dy-
namics. This was given e.g. in [3]. Population transfer in a two-level quantum
system can be described by the time-dependent Schrödinger equation, i.e. by
the dynamics

i
dψ̃

dt
= H̃(t) ψ̃, H̃(t) =

[
E1 Ω(t)

Ω∗(t) E2

]
, (5)

where the modified Planck’s constant � = h
2π has been scaled to � = 1, and

i =
√
−1. The wavefunction ψ̃ : R → C2 has the probabilistic interpretation,

in the sense that

‖ψ̃(t)‖2 = |ψ̃1(t)|2 + |ψ̃2(t)|2 = 1, ∀ t ∈ R, (6)

where ψ̃ = (ψ̃1, ψ̃2). The control is given byΩ : R → C, andΩ∗ is the complex
conjugate of Ω. E1 and E2 are the energy levels. The unitary transformation
ψ̃ �→ ψ and Ω �→ u by

ψ̃(t) = U(t)ψ(t), U(t) =
[
e−iE1t 0

0 e−iE2t

]
, (7)

u(t) = e−i(E2−E1)t Ω(t) (8)

transforms (5) to

i
dψ

dt
= H(t)ψ, H(t) =

[
0 u(t)

u∗(t) 0

]
. (9)

The componentwise representation

ψ(t) = ψ1(t)
[
1
0

]
+ ψ2(t)

[
0
1

]
(10)

converts (9) to the dynamics
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ψ̇1 = −iuψ2,

ψ̇2 = −iu∗ ψ1.
(11)

By using the real-valued decompositions⎧⎪⎨
⎪⎩
ψ1 = x1 + ix2

ψ2 = x3 + ix4

u = u1 + iu2

(12)

one obtains a state-variable representation in standard control theoretic form⎡
⎢⎢⎣
ẋ1

ẋ2

ẋ3

ẋ4

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

x4 x3

−x3 x4

x2 −x1

−x1 −x2

⎤
⎥⎥⎦
[
u1

u2

]
, or

dx
dt

=
(
u1F1 + u2F2

)
x, (13)

F1 =

⎡
⎢⎢⎣

0 0 0 1
0 0 −1 0
0 1 0 0

−1 0 0 0

⎤
⎥⎥⎦ , F2 =

⎡
⎢⎢⎣

0 0 1 0
0 0 0 1

−1 0 0 0
0 −1 0 0

⎤
⎥⎥⎦ . (14)

The constraint equation (6) is converted into the constraint

4∑
k=1

x2
k = 1.

Remark 1. It can be shown that F1 and F2 together with their Lie product
2F3 = [F1, F2] = F1F2−F2F1 form a Lie algebra with some isomorfic ”broth-
ers”. This can be used as a basis for differential geometric considerations of
the control system (13), see [3]. However, the elementary approach applied
in this paper is sufficient for our parametrization purposes.

3 Wei-Norman Formulation of State Transition Matrix

The Lie algebra of the matrices F1, F2, and F3 is three-dimensional with the
relations

[F1, F2] = 2F3, [F2, F3] = 2F1, [F3, F1] = 2F2, (15)

F3 =

⎡
⎢⎢⎣
0 −1 0 0
1 0 0 0
0 0 0 1
0 0 −1 0

⎤
⎥⎥⎦ . (16)
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Due to the linear structure of the system model (13) with respect to the state
x, the state transition matrix of the system, denoted by Φ, and which relates
the values of the state according to

x(t) = Φ(t, 0)x(0) (17)

can be written as a product of exponentials

Φ(t, 0) = eg1F1 eg2F2 eg3F3 (18)

where the exponentials are defined by

egiFi =
∞∑

k=0

1
k!
gk

i F
k
i , i = 1, 2, 3. (19)

The state transition matrix satisafies the following initial-value problem
(IVP1)

∂

∂t
Φ(t, 0) = F (t)Φ(t, 0); Φ(0, 0) = I, (20)

F (t) = u1(t)F1 + u2(t)F2 + 0 · F3. (21)

The technique we are using is nowadays called Wei-Norman technique ac-
cording to the paper of Wei and Norman [23]. Substitution of (18) to the
IVP1 gives

∂

∂t
Φ = ġ1F1 Φ+ ġ2 eg1F1F2 e−g1F1 Φ (22)

+ ġ3 eg1F1eg2F2F3 e−g2F2e−g1F1 Φ

By using (several times) the Campbell-Baker-Hausdorff formula for square
matrices A and B of the same dimension

eA B e−A = B + [A,B] + [A, [A,B]]/2! (23)
+ [A, [A, [A,B]]]/3! + · · ·

in the equation (22) it can be represented (after some tedious calculations)
in the form

∂

∂t
Φ = [f1(t)F1 + f2(t)F2 + f3(t)F3] Φ (24)

f1(t) = ġ1 + ġ3 sin(2g2) (25)

f2(t) = ġ2 cos(2g1)− ġ3 cos(2g2) sin(2g1) (26)

f3(t) = ġ2 sin(2g1) + ġ3 cos(2g2) cos(2g1) (27)
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The various series representations of the matrix exponentials can be
represented in closed form due to specific forms of the matrices F1, F2, and
F3 as it is described in Appendix. By comparing the coefficients of the Fi’s
in (24) and (20)–(21) one finally obtains a differential relation between the
gi’s and the controls u1 and u2 in the form of a matrix equation

⎡
⎢⎣
1 0 sin(2g2)
0 cos(2g1) − cos(2g2) sin(2g1)
0 sin(2g1) cos(2g2) cos(2g1)

⎤
⎥⎦
⎡
⎢⎣
ġ1

ġ2

ġ3

⎤
⎥⎦=
⎡
⎢⎣
u1

u2

0

⎤
⎥⎦ (28)

4 Parametrization of the System Model

Because the system has two (scalar) controls we can choose two of the three
base functions gi freely corresponding to free selection of the two controls.
The third base function has to be determined from the last equation of (28).
Parametrization actually means that the input–output pairs can be deter-
mined from the parameter functions without explicitly solving of the system
equations.

Due to the flatness-based design idea, computation of the third base func-
tion as well as of the controls must not include integrations as given by the
equations (2). Only differentiations are allowed. Consequently, based on the
third equation in (28), the base functions g2 and g3 are chosen as parame-
ter functions. Then these are also so-called flat outputs, see [9], denoted by
z = (z1, z2) = (g2, g3). The parametrization obtained in this way for g1 and
the controls are given by

g1 =
1
2
arctan

[
− cos(2g2)

ġ3

ġ2

]
(29)

u1 = ġ1 + ġ3 sin(2g2) (30)

u2 =
√
ġ2
2 + ġ2

3 cos2(2g2) . (31)

The state variables are calculated by using the state transition matrix
equations (17) or (18)

x(t) = Φ(t, 0)x(0) = eg1F1 eg2F2 eg3F3 x(0).

5 State Transfer

In population transfer problems from the level 1 corresponding to the
situation

|ψ1(0)|2 = x1(0)2 + x2(0)2 = 0 (32)
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to the level 2, where

|ψ2(T )|2 = x3(T )2 + x4(T )2 = 0 , (33)

where T is the transfer time, we can parametrize the partial trajectory by
using a sufficiently smooth, but otherwise arbitrarily chosen, parametrization
x1, x2 : [0, T ] → R with the boundary conditions

x1(0)2 + x2(0)2 = 0, (34)
x1(T )2 + x2(T )2 = 1. (35)

By partitioning the state vector for two two-dimensional parts as

x(t) = (w(t), v(t) ) , w(t) = (x1(t), x2(t) ) , v(t) = (x3(t), x4(t) ) (36)

we can represent the task of driving the state from the initial one to the final
one in a finite time T as follows

x(0)=
[
0
v0

]
=

⎡
⎢⎢⎣

0
0
x30

x40

⎤
⎥⎥⎦→ x(T )=

[
wT

0

]
=

⎡
⎢⎢⎣
x1T

x2T

0
0

⎤
⎥⎥⎦ (37)

⎡
⎢⎢⎣

0
0

sinα
cosα

⎤
⎥⎥⎦ →

⎡
⎢⎢⎣
cosβ
sinβ
0
0

⎤
⎥⎥⎦ (38)

We have chosen a specific parametrization for the initial and final values of
the state, because the sum of the squares of the nonzero state components
must be equal to 1 at the both ends of the planned trajectory.

The state transition equation x(T ) = Φ(T, 0)x(0) can now be written in
the form [

wT

0

]
=
[
A B
C D

] [
0
v0

]
, (39)

where A, B, C, and D are 2×2-blocks of the 4×4-dimensional state transition
matrix Φ(T, 0). Consequently,

wT = Bv0 , and 0 = Dv0 . (40)

In Appendix one alternative for choosing the feasible final values for g2 and
g3 is derived. The final value of g1 depends on the derivatives of g2 and g3.
This means that we have to adjust these derivatives via the equation (29) to
agree with the requirement g1(T ) = π/2.
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6 Conclusion

This paper is among the first ones in the series where our results on
parametrization of finite-state quantum control problems are represented.
Earlier we have been concentrating on studying parametrization of systems
described by partial differential control systems, see [13] & [14]. Flatness-
based ideas, originally developed by Michel Fliess and his co-workers, see the
seminal paper [9], have been developed for open-loop control design. These,
however, form a means for control design of a large class of nonlinear differ-
ential systems. In quantum control problems, where laser pulses are used for
the control, the dynamics is so fast that, at least at the present level of the
speed of possible computations, feedback control seems to be impossible to
implement.

Here we studied a two-level population transfer problem, which is described
by a 4-dimensional ordinary differential system, bilinear in the two scalar con-
trols. Without more advanced differential geometric considerations, which
might be helpful in understanding quantum phenomena in general, we use
the formulation found generally in the literature, to obtain our basic driftless
system model of the form ẋ = g(x)u, where g is linear in the state x.

Acknowledgment. This work was supported in part by the European Commis-
sion, in Marie Curie programme’s Transfer of Knowledge project Parametrization

in the Control of Dynamic Systems (PARAMCOSYS, MTKD-CT-2004-509223),
which is greatly acknowledged.

Appendix: Computation of the State Transition Matrix

The state transition matrix

Φ(t, 0) = eg1F1 eg2F2 eg3F3 (41)

where the exponentials are defined by absolutely convergent infinite series

egiFi =
∞∑

k=0

1
k!
gk

i F
k
i , i = 1, 2, 3 (42)

we obtain for the exponent functions the representations in closed form

egiFi = cos gi I + sin gi Fi (43)

due to the fact that F 2
i = −I, i = 1, 2, 3, where I is 4×4 identity matrix.

Then the product of the three exponent functions is of the form

Φ = (c1I + s1F1)(c2I + s2F2)(c3I + s3F3) (44)

ci = cos gi, si = sin gi, i = 1, 2, 3. (45)
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Now the D-part and B-part of the transfer matrix Φ are given by

D =
[
d1 d2

d3 d4

]
=
[

c1c2c3 − s1s2s3 c1c2s3 + s1s2c3
−c1c2s3 − s1s2c3 c1c2c3 − s1s2s3

]
(46)

= c1c2

[
c3 s3

−s3 c3

]
− s1s2

[
s3 −c3
c3 s3

]
, (47)

B =
[
b1 b2
b3 b4

]
=
[

c1s2c3 − s1c2s3 c1s2s3 + s1c2c3
−c1s2s3 − s1c2c3 c1s2c3 − s1c2s3

]
(48)

= c1s2

[
c3 s3

−s3 c3

]
− s1c2

[
s3 −c3
c3 s3

]
. (49)

We must have D = 0 due to the requirement Dv0 = 0 for any v0 = (x30, x40 )
satisfying the requirement x2

30 + x2
40 = 1. Then we have two alternatives in

(47): {
a) c1 = s2 = 0
b) s1 = c2 = 0

⇒ D = 0 ∴ Dv0 = 0. (50)

These conditions give two possibilities

a)

{
cos g1(T ) = 0 , g1(T ) =

π

2
sin g2(T ) = 0 , g2(T ) = 0,

; b)

{
sin g1(T ) = 0 , g1(T ) = 0

cos g2(T ) = 0 , g2(T ) =
π

2
.
(51)

In the case of the first alternative a) we have

B = −s1c2
[
s3 −c3
c3 s3

]
; wT = Bv0 =

[
sin g3 − cos g3

cos g3 sin g3

] [
sinα
cosα

]
(52)

=
[
sin g3 sinα− cos g3 cosα
cos g3 sinα+ sin g3 cosα

]
=
[
cos(g3 + α)
sin(g3 + α)

]
=
[
cosβ
sinβ

]
(53)

g3(T ) = β − α. (54)

In the same way the alternative b) can be solved. Due to trigonometric func-
tions in the equations there are also other possibilities for the final values
of g2 and g3 deviating by the multiples of π or 2π. These details are not
considered here.
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Interval Methods for Verification and
Implementation of Robust Controllers

Andreas Rauh and Harald Aschemann

Abstract. In recent years, powerful interval arithmetic tools have been developed
for the computation of guaranteed enclosures of the sets of all reachable states of
dynamical systems. In such simulations, uncertainties in initial conditions and pa-
rameters are taken into account by worst-case bounds. The resulting enclosures are
verified in the sense that all reachable states are guaranteed to be included. This is
achieved by taking into account both the influence of the above-mentioned uncer-
tainties as well as numerical inaccuracies arising from computer implementations
using finite-precision floating-point arithmetic. In this contribution, a computational
framework for both offline and online applications of interval tools in control de-
sign is presented. Verified computational procedures and their applications to the
solution of initial value problems for both ordinary differential equations and dif-
ferential algebraic equations are summarized. These algorithms are employed for
verified feedforward control design as well as state and disturbance estimation for a
distributed heating system.

1 Introduction

The basis of the procedures presented in this contribution are interval techniques
which have been developed to quantify rounding errors in finite-precision floating-
point arithmetic as well as to determine the influence of uncertainties in mathemat-
ical system models [12,6]. For technical applications, these models are either given
by sets of algebraic equations, difference equations, ordinary differential equations
(ODEs), or differential-algebraic equations (DAEs).
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Software libraries which implement basic interval arithmetic functionalities such
as evaluation of arithmetic operations and functions (e.g. trigonometric and other
transcendental functions) are, for instance, implemented in the C++ toolbox PRO-
FIL/BIAS [7]. In addition, most verified computational algorithms make use of par-
tial derivatives of the first and higher orders as well as coefficients of Taylor series.
Such derivatives are obtained efficiently with the help of algorithmic differentiation.
The C++ library that is used for this purpose is FADBAD++ [2].

On the basis of these software libraries, tools for verified integration of initial
value problems (IVPs) for sets of ODEs have been developed. Examples for tools
operating on the principle of interval arithmetic are VNODE, VNODE-LP [13],
and VALENCIA-IVP [1]. In addition, program packages such as VSPODE [10]
and COSY VI [3] make use of Taylor model arithmetic in order to reduce the in-
fluence of overestimation which might lead to extremely conservative enclosures of
the exact solution sets if naive implementations of interval algorithms are applied.

On the one hand, these software packages are the basis for approaches aiming at
offline verification, design, stability analysis and optimization of robust open-loop
and closed-loop control strategies (cf. [16, 17, 15, 18]). On the other hand, they are
also applicable under certain prerequisites to the online computation of feedforward
control strategies as well as for the computation of state and disturbance estimates.

In offline applications, interval tools are used to quantify the effects of uncer-
tainties which result from, for example, manufacturing tolerances or measurement
errors occurring unavoidably in any technical application. In the offline design and
proof of feasibility, verified enclosures of all possibly admissible solutions of con-
trol synthesis are determined after computation of verified enclosures of all reach-
able states. In this case, computing time is of minor importance. However, in online
applications, we have to fulfill real-time requirements by computing only one guar-
anteed admissible solution taking into account the influence of all possible uncer-
tainties. This solution must not violate any constraints on state and control variables.

Verified simulation algorithms for sets of ODEs and DAEs are summarized in
the Sections 2 and 3, respectively. In Section 4, DAE-based solution procedures
for feedforward control as well as state and disturbance estimation are presented for
finite-dimensional system models. These strategies are applied in real-time to a finite
volume representation of a distributed heating system in Section 5. Conclusions and
an outlook on future work are given in Section 6.

2 Verified Simulation of ODEs in VALENCIA-IVP

In this section, we consider the verified solution of IVPs to the set of ODEs

ẋ(t) = f (x(t) , t) , x ∈ R
nx (1)

with the uncertain initial conditions x(0)∈ [x(0)] := [x (0) ; x(0)], xi (0)≤ xi (0) for
all i = 1, . . . ,nx with the help of the verified solver VALENCIA-IVP.
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In the basic version of VALENCIA-IVP, time-varying state enclosures

[xencl (t)] := xapp (t)+ [R(t)] (2)

are computed iteratively which consist of a non-verified approximate solution
xapp (t) with guaranteed error bounds [R(t)]. For the sake of simplicity, we spec-
ify the iteration formulas for the ODE (1) in the time interval 0≤ t ≤ T . In this case,
an interval containing the derivatives

[
Ṙ(t)

]
of the desired error bounds [R(t)] can

be computed by[
Ṙ(κ+1) (t)

]
=−ẋapp (t)+ f

([
x(κ)encl (t)

]
, t
)

=−ẋapp (t)+ f
(

xapp (t)+
[
R(κ) (t)

]
, t
)
=: r

([
R(κ) (t)

]
, t
) (3)

if [
Ṙ(κ+1) (t)

]
⊆
[
Ṙ(κ) (t)

]
(4)

holds with [
R(κ+1) (t)

]
⊆
[
R(κ+1) (0)

]
+ t · r

([
R(κ) ([0 ; t])

]
, [0 ; t]

)
(5)

and t = T as well as [x(0)]⊆ xapp (0)+
[
R(κ+1) (t)

]
.

In addition, exponential state enclosures can be determined to prevent the growth
of interval diameters especially in simulations of asymptotically stable systems. The
basic idea is to use the ansatz

[xencl (t)] := exp([Λ ] · t) · [xencl (0)] (6)

with
[Λ ] := diag{[λi]} (7)

for the state enclosures, where the coefficients [λi] are computed iteratively by

[
λ (κ+1)

i

]
:=

fi

(
exp

([
Λ (κ)

]
· [0 ; T ]

)
· [xencl (0)] , [0 ; T ]

)
exp

([
λ (κ)

i

]
· [0 ; T ]

)
·
[
xencl,i (0)

] (8)

for all i = 1, . . . ,nx in the case of convergence, that means, for
[
λ (κ+1)

i

]
⊆
[
λ (κ)

i

]
.

The iteration formula (8) is only admissible if the value zero does not belong to
the set of all reachable states in the time interval [0 ; T ]. This property is checked
by the guaranteed enclosures obtained in the formulas (3)–(5) before the exponen-
tial state enclosures are evaluated. A detailed derivation of the iteration formulas of
VALENCIA-IVP can, for example, be found in [1, 15]. To further tighten the com-
puted state enclosures, consistency tests are available which exclude physically un-
reasonable domains resulting from overestimation by constraint propagation based
on conservation properties derived from suitable balance equations such as energy
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balances for mechanical systems [5]. In control systems, the above-mentioned al-
gorithms can be used to prove whether the enclosures of all reachable states remain
within given bounds for known control strategies. In the case of feedback control, it
is moreover possible to show whether the resulting control u(x(t)) (given by ana-
lytic expressions) matches the corresponding physical input constraints.

3 Verified Solution of IVPs for DAEs in VALENCIA-IVP

In this section, we consider semi-explicit DAEs

ẋ(t) = f (x(t) ,y(t) ,t) (9)

0 = g(x(t) ,y(t) , t) (10)

with f : D �→ Rnx , g : D �→Rny ,D⊂Rnx×Rny×R1, and the consistent initial condi-
tions x(0) and y(0). As for the ODEs in Section 2, these DAEs may further depend
on uncertain parameters p. To simplify the notation, the dependency on p is not ex-

plicitly denoted. However, all presented results are also applicable to pi ∈
[

p
i
; pi

]
with p

i
< pi, i = 1, . . . ,np. The basis for the following applications is the computa-

tion of guaranteed enclosures for both consistent initial conditions and solutions to
IVPs for DAEs. The enclosures for the differential and algebraic variables xi (t) and
y j (t), respectively, are defined by

[xi (t)] := xapp,i (tk)+ (t− tk) · ẋapp,i (tk)+ [Rx,i (tk)]+ (t− tk) · [Ṙx,i (t)] and (11)

[y j (t)] := yapp, j (tk)+ (t− tk) · ẏapp, j (tk)+ [Ry, j (t)] (12)

with i = 1, . . . ,nx, j = 1, . . . ,ny, and t ∈ [tk ; tk+1], t0 ≤ t ≤ t f .
In (11) and (12), tk and tk+1 are two subsequent points of time between which

guaranteed state enclosures are determined. For t = t0, the conditions

[x(t0)] = xapp (t0)+ [Rx (t0)] and [y(t0)] = yapp (t0)+ [Ry (t0)] (13)

have to be fulfilled with non-verified approximate solutions xapp (t) and yapp (t).
They are computed, for example, by the non-verified DAE solver DAETS [14].

The following three-stage algorithm allows us to determine guaranteed state en-
closures for a system of DAEs using the Krawczyk iteration [9] which solves
nonlinear algebraic equations in a verified way.

Step 1. Compute hidden constraints that have to be fulfilled for the verified en-
closures of the initial conditions x(0) and y(0) as well as for the time responses x(t)
and y(t) by considering algebraic equations gi (x) which do not depend explicitly
on y. Differentiation with respect to time leads to

d jgi (x)
dt j =

(
∂Lj−1

f gi (x)

∂x

)T

· f (x,y) = Lj
f gi (x) = 0 (14)
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with L0
f gi (x) = gi (x). The Lie derivatives Lj

f gi (x) are computed by algorithmic
differentiation using FADBAD++ [2] up to the smallest order j > 0 for which
Lj

f gi (x) depends on at least one component of y.
Step 2. Compute initial conditions for the equations (9) and (10) such that the

constraints (10) and (14) are fulfilled using the Krawczyk iteration.
Step 3. Substitute the state enclosures (11) and (12) for the vectors x(t) and y(t)

in (9) and (10) and solve the resulting equations for [Ṙx (t)] and [Ry (t)] with the help
of the Krawczyk iteration. Consider the hidden constraints (14) to restrict the set of
feasible solutions.

4 DAEs for Verified Feedforward Control and State Estimation

Besides simulation of systems with known control inputs, VALENCIA-IVP can be
employed for trajectory planning and computation of feedforward control strate-
gies for ODE and DAE systems. In the case of trajectory planning, reference signals
w(t) of open-loop controllers (S is open in Fig. 1) or closed-loop controllers (S is
closed in Fig. 1) are calculated in such a way that the output y(t) follows a desired
time response yd (t) within given tolerances. For closed-loop control, the structure
and parameters of u(x̂,w) are assumed to be determined beforehand using classi-
cal techniques for control synthesis. If state estimation techniques are employed in
Fig. 1 to reconstruct non-measured components of xs, p, and q, the estimate x̂ is fed
back as a substitute for the unknown quantities in the closed-loop control u(x̂,w).

To determine feedforward control strategies (and reference signals, resp.), we
compute the inputs u(t) (and w(t), resp.) as components of the vector y(t) of al-
gebraic state variables in the DAEs (9), (10) after describing the desired system
outputs by the algebraic equations

0 = h(xs (t) ,u(t) ,q(t) , t)− (yd (t)+ ytol (t)) (15)

with worst-case interval bounds [ytol (t)] for the tolerances ytol (t) between the actual
and desired outputs y(t) and yd (t). Note that all parameter vectors p and q may con-
tain interval uncertainties. The resulting DAE system is solved by
VALENCIA-IVP for the control sequence u(t) and the consistent states x(t).

Compared to design approaches based on symbolic formula manipulation which
can be applied to feedforward control of nonlinear exactly input-to-state lineariz-
able sets of ODEs (as a special case of differentially flat systems) [4,11], numerical,
interval-based approaches are more flexible. First, uncertainties and robustness re-
quirements can be taken into account directly in the constraints (15). In addition, the
verified approach can also handle differentially non-flat systems if stability of the
internal dynamics can be guaranteed by techniques published, for example, in [18].
For most of these systems, the output y(t) does not coincide exactly with yd (t).
However, verified techniques still allow us to compute control sequences (if they
exist) for which the tolerances [ytol (t)] �= [0 ; 0] in (15) are not violated.
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ẋ = f (x, p,u, t)

observer for

state

reconstruction

y = h(x,u,q, t)u(x̂,w)
u

x̂

control law plant

y
w

sensor characteristics

S

x

Fig. 1. Observer-based closed-loop control of nonlinear dynamical systems

Since most control structures rely on information on estimates for non-measured
states, parameters, and disturbances, an extension of the DAE approach is consid-
ered. In classical interval observers, a two-stage approach is used for reconstruction
of the non-measured quantities in a filter step by solving the measurement equations
for the same number of variables as linearly independent measurements (cf. [8]). In
a second stage, this information is predicted over time with the techniques from
Sections 2 and 3 up to the point at which the next measured data are available.

In contrast, the DAE-based solution procedure employs a one-stage approach.
To estimate non-measured quantities, the output equation ym (t) = h(x(t)) is in-
cluded as a further time-dependent algebraic constraint with interval uncertainties
of the measured variables and their derivatives. Here, the Lie derivatives of ym (t) =
h(x(t)) coincide directly with the hidden constraints (14) which are evaluated in
each time interval in which VALENCIA-IVP is used to integrate the
dynamical system model by solving the corresponding IVP to the set of DAEs.

5 Control of a Distributed Heating System

To visualize the practical applicability of verified DAE solvers for feedforward con-
trol as well as state and disturbance estimation, we consider the distributed heating
system in Fig. 2. The controlled variable of this system is the temperature at a given
position of the rod. Control and disturbance inputs are provided by four Peltier el-
ements and cooling units. The temperature ϑ (z, t) of the rod depends both on the
spatial variable z and on the time t. The temperature distribution is given by the
parabolic partial differential equation

∂ϑ(z,t)
∂ t

− λ
ρcp

∂ 2ϑ(z,t)
∂ z2 +

α
hρcp

ϑ(z,t) =
α

hρcp
ϑU (16)

which is discretized in its spatial coordinate using a finite volume discretization to
obtain a model for offline simulation as well as online state and disturbance estima-
tion. Balancing of heat exchange between four volume elements leads to the ODEs
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⎡
⎢⎢⎣

ẋ1 (t)
ẋ2 (t)
ẋ3 (t)
ẋ4 (t)

⎤
⎥⎥⎦=

⎡
⎢⎢⎣

a11 a12 0 0
a12 a22 a12 0
0 a12 a22 a12

0 0 a12 a11

⎤
⎥⎥⎦ ·
⎡
⎢⎢⎣

x1 (t)
x2 (t)
x3 (t)
x4 (t)

⎤
⎥⎥⎦+

1
mscp

⎡
⎢⎢⎣

1
0
0
0

⎤
⎥⎥⎦u(t)+

αA
mscp

⎡
⎢⎢⎣

e1 (t)
e2 (t)
e3 (t)
e4 (t)

⎤
⎥⎥⎦ (17)

for the temperatures xi (t) in the segments i = 1, . . . ,n = 4 with the coefficients

a11 =−
αAls +λsbh

lsmscp
, a12 =

λsbh
lsmscp

, and a22 =−
αAls +2λsbh

lsmscp
. (18)

Peltier element

Fig. 2. Experimental setup of a distributed heating system

In (17), the input signal u(t) corresponds to the heat flow into the first segment of
the rod. The goal of feedforward control (determined numerically by a DAE solver)
is the computation of an input u(t) = u1 (t) in such a way that the output temperature
in an arbitrary segment follows the specification

yd (t) = ϑ0 +

(
ϑ f −ϑ0

)
2

(
1+ tanh

(
k

(
t− 3600s

2

)))
(19)
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with ϑ0 = ϑU (0), ϑ f = ϑ0 + 10K, and k = 0.0015 exactly. The prediction time
horizon for the DAE solver is tk+1− tk = 1s. To select a specific value from the
control intervals, the definition u1 (t)= 0.5 ·(u1 (t)+u1 (t)) with t ∈ [tk; tk+1) is used.

The additive terms ei (t), i = 1, . . . ,n = 4 summarize errors resulting from the
discretization of the PDE and unmodeled disturbances which are estimated by a
Luenberger observer and the novel DAE-based approach, see the experimental re-
sults in Fig. 3. The interval observer detects the point of time from which on the
Luenberger observer yields consistent estimates. Both estimators make use of the
measured temperatures y1 = x1 and y2 = x4. If model errors are neglected, all ei

are equal to the ambient temperature ϑU (0). For the implementation of the distur-
bance observer, the ODEs (17) are extended by ė = 0 with e = e1 = . . . = e4. To
quantify the influence of measurement errors, the uncertainties xi ∈ y j +[−1 ; 1]K,
ẋi ∈ [−0.5 ; 1.5] ẏ j, i ∈ {1,4}, j ∈ {1,2} are considered by the DAE solver. To
compensate model errors and disturbances, output feedback u2 (t) is introduced
in addition to the feedforward control u1 (t) by a PI controller compensating the
largest time constant of the plant (17). Therefore, the total control input is given by
u(t) = u1 (t)+u2 (t).
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Fig. 3. Experimental results for closed-loop control of the heating system

For specification of the flat output g(x, t) = x4 (t)− yd (t) = 0, the structural
analysis performed in VALENCIA-IVP provides the following result:

The Lie derivative L4
f g corresponds to the smallest order of the derivative of the

output equation g(x,t) which is influenced directly by the control input u. Since
the number of unknowns and the number of hidden constraints is identical in this
case, the equations L1

f g = 0, . . . ,L4
f g = 0 can be solved directly by interval Newton

techniques for the consistent states x1, x2, and x3, as well as the control input u. The
value of x4 is known a-priori from g = L0

f g = 0 for each point of time t.
For specification of a non-flat output, for example g(x,t) = x3 (t)− yd (t) = 0,

the order δ is now lower than the number of unknown variables, that is, the relative
degree δ of the system is smaller than the dimension of the state vector. Thus, the
equations L1

f g = 0, . . . ,Lδ
f g = 0 cannot be solved directly. Information on the initial

conditions of the system has to be included in the following two-stage procedure.
In the first stage, a set of ODEs or DAEs is identified automatically which includes
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the system’s output and can be solved as an IVP by specification of corresponding
initial conditions. If these equations result in a set of DAEs, the initial conditions
are computed consistently using the output equation g = L0

f g = 0 and, if necessary,

the lower-order constraints L1
f g = 0, . . . ,Lτ

f g = 0, τ < δ . In the second stage, the

solution to this IVP is substituted for the corresponding state variables in Lτ+1
f g =

0, . . . ,Lδ
f g = 0. These purely algebraic equations are now solved for the remaining

states and the control input u(t) using interval Newton techniques.
For specification of x3 as the output, it is at least necessary to know the initial

temperature x4(0), see the following result of the structural analysis with τ = 0:

x1 x2 x3 x4 t u
ẋ1 • • •
ẋ2 • • �
ẋ3 • � ◦
ẋ4 � ◦

g(x,t) � �

x1 x2 x3 x4 t u
L0

f g � �
L1

f g • � ◦ �
L2

f g • • � ◦ �
L3

f g • • � ◦ � •

Legend: � a-priori known
◦ determined via IVP solver (ODE/ DAE) (stage 1)
• determined via algebraic constraints of DAE (stage 2)

6 Conclusions and Outlook on Future Research

In this paper, interval-based approaches for the verification and implementation of
robust control strategies have been presented and applied to a finite volume rep-
resentation of a distributed heating system. For this system, the online computa-
tion of feedforward control using VALENCIA-IVP is extended by classical output
feedback for compensation of model and parameter uncertainties and neglected dis-
turbances. Furthermore, a verified estimation procedure for internal system states
and disturbances has been described which is implemented by a one-stage approach
instead of the classical two-stage procedure used by other interval observers. This
observer can be applied to verify the admissibility and reliability of classical non-
verified observers such as Luenberger-type observers by comparison of their esti-
mates with the verified error bounds obtained in the interval approach.

In future work, further relations between reachability of states and the controlla-
bility of uncertain dynamical systems on the one hand and the solvability of DAEs
describing feedforward control problems on the other hand will be investigated.
Moreover, generalizations of the routine implemented in VALENCIA-IVP for the
detection of hidden algebraic constraints will be studied to extend the presented
automated feedforward control to multiple-input multiple-output systems for which
desired output trajectories are prescribed for non-flat outputs and for which ambigui-
ties in the solution might exist. Finally, combinations with verified tools for stability
analysis based on interval evaluation of Lyapunov functions will be discussed to
prove stability of non-observable or non-controllable internal dynamics.
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Rational Interpolation of Rigid-Body
Motions

J.M. Selig

1 Interpolation in Groups

Let g1, g2, . . . , gn be a sequence of elements of a Lie group, (knot points).
Our problem is to find a smooth, parameterised curve in the group that
passes through these elements at parameter values t1, t2, . . . , tn. There are
many variations on this basic problem. For example we could take account
of velocities. Perhaps we might only require the curve to be near the knot
points.

There are many applications for this problem. In robotics, for instance,
the Lie group will be SE(3), the group of proper rigid-body transformations.
Curves in this group are rigid-body motions. It is important to plan the
motion of a robot’s end-effector. We would like to choose a few knot positions,
to avoid an obstacle say, and control the robot to move along an interpolated
curve through these positions.

Other applications come from Computer Graphics. Again the relevant Lie
group is SE(3). In 3-D modelling, we often want to produce a ‘fly-by’. Choose
key positions for the camera, then interpolate a rigid motion between these.
At present, skilled operator must use experience to choose good key positions
to get acceptable results.

Another possible application is to the simulation of dynamics of rigid bod-
ies. This is a key problem in computer games. Solving equations of motion
is usually time consuming. So it might be advantageous to use expensive
methods to solve for key positions and then interpolate between these po-
sitions. Alternatively, it might be possible to use interpolation methods to
approximate the solution quickly and directly.

J.M. Selig
Faculty of Business, Computing and Information Management,
London South Bank University, U.K.

J. Lévine & P. Müllhaupt (Eds.): Adv. in Theory of Control, Signals, LNCIS 407, pp. 213–224.
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Fig. 1. A Typical Industrial Robot

With all these different applications it is understandable that the problem
has received much attention in the literature. In fact far too much to review
here, however see [2] for an extensive review.

1.1 A Simple Solution

In a vector space we could use well known techniques, for example Lagrange
or Hermite interpolation and many others. In a group we can’t add elements
or multiply by scalars. So a possible strategy is,

1. Map knot positions to the Lie algebra.
2. Solve the interpolation problem in the Lie algebra, (a vector space.)
3. Map the interpolated curve back to the group.

The exponential and logarithm maps could be used to map between the
Lie group and its Lie algebra, but this involves evaluating transcendental
functions which is usually time consuming on a computer. An alternative
would be to use Cayley maps and their inverses. Cayley maps, unlike the
exponential map, depend on the representation of the group being used. So
there are several Cayley maps to choose from. Cayley maps are rational maps
meaning that the matrix entries in the result will be rational functions of the
coordinates on the Lie algebra. This means that any interpolating curve will
be a rational curve in the representation of the group being used. Rational
functions are easy to evaluate on a computer and have other advantages from
a computational point of view. To implement this strategy it is simplest to
use dual quaternions to represent SE(3), rather than matrices.
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2 Dual Quaternions

Dual quaternions were invented by Clifford, and used by Study, Blaschke
and others. In the latter half of the 20th century Mathematicians seems to
forget about them, preferring matrix methods. However, they were always
remembered and used in Kinematics. They give a very neat and succinct way
to represent rigid-body transformations.

A general dual quaternion has the form,

q = h0 + εh1, (1)

where h0, h1 are standard quaternions h = a0 + a1i+ a2j + a3k. With i2 =
j2 = k2 = −1 and ijk = −1 as usual. The dual unit is ε and it commutes
with i, j, k and squares to zero, ε2 = 0. The algebra of dual quaternions
is given by, H ⊗ D where H are the quaternions and D is the ring of dual
numbers, generated by ε.

2.1 Quaternions and Rotations

It is well known that quaternions can be used to represent rotations about
the origin,

r = cos
θ

2
+ sin

θ

2
(lxi+ lyj + lzk), (2)

where θ is the rotation angle and l = (lx, ly, lz) is the unit vector along the
rotation axis.

The action of these rotations on points given by conjugation,

x′i+ y′j + z′k = r(xi+ yj + zk)r−, (3)

where r− is the quaternion conjugate of r. That is, if h = a0+a1i+a2j+a3k
then h− = a0 − a1i − a2j − a3k. Rotations are unit quaternions, rr− = 1.
But +r and −r give the same rotation, so the unit quaternions form a 2-to-1
cover of the rotation group.

2.2 Rigid-Body Transformations

In the dual quaternions a rigid transformation is represented by an element
of the form,

g = r +
1
2
εtr, (4)

where r is a unit quaternion representing the rotational part of the transfor-
mation and t = txi+ tyj+ tzk is a pure quaternion (that is a quaternion with
no real part) representing the translational component of the transformation.

Here the action on points is given by,
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1 + ε(x′i+ y′j + z′k) = (r +
1
2
εtr)(1 + ε(xi+ yj + zk))(r− +

1
2
εr−t). (5)

Again it is clear that +g and −g give the same transformation.
Notice that these dual quaternions satisfy the equation gg− = 1, where

now the conjugate is given by,(h0 + εh1)− = h−0 + εh−1 . If we write,

g = (a0 + a1i+ a2j + a3k) + ε(c0 + c1i+ c2j + c3k), (6)

then the real and dual parts of the equation give,

1 = a2
0 + a2

1 + a2
2 + a2

3, (7)
0 = a0c0 + a1c1 + a2c2 + a3c3. (8)

Now assume that (a0 : a1 : a2 : a3 : c0 : c1 : c2 : c3) are homogeneous
coordinates in a seven dimensional projective space, P

7. This will identify +g
and −g. In a projective space only homogeneous equations are well defined,
or at least the set of zeros for such an equation is well defined. The first
quadric above (7), is not homogeneous so cannot be considered now. Only
the second equation (8), is meaningful. Retaining only (8) it can be seen that
the group elements lie on a six-dimensional quadric, called the Study quadric
after its discoverer E. Study.

It can be shown that rigid transformations are in 1-to-1 correspondence
with points in the Study quadric, with the exception of the 3-plane a0 = a1 =
a2 = a3 = 0. That is the group SE(3) of rigid-body transformations can be
thought of as an open set in a six-dimensional quadric variety.

2.3 Lie Algebra

Elements of the Lie algebra to the group can also be represented as dual
quaternions. Given a rigid-body motion g(t) the corresponding Lie algebra
element at parameter value t is given by,(

d

dt
g

)
g− = (ωxi+ ωyj + ωzk) + ε(vxi+ vyj + vzk). (9)

The angular velocity of the motion is given by the vector ω, with components
ω = (ωx, ωy, ωz)T . The other characteristic vector of the motion is a linear
velocity v with components v = (vx, vy , vz)T , physically this corresponds to
the velocity of the origin.

2.4 Dual Quaternion and the 4 × 4 Representation

The homogeneous, or 4×4 representation of the group of rigid transformations
uses matrices of the form, (

R t
0 1

)
, (10)
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where R is the usual 3× 3 rotation matrix and t is a translation vector.
Given a group element as a dual quaternion g = (a0 + a) + ε(c0 + c), that

is with a = a1i+ a2j+ a3k and so forth, the corresponding 4× 4 matrix has,

R =
1
Δ2

(
Δ2I3 + 2a0A+ 2A2

)
and t =

2
Δ2

(
a0c− c0a + a× c

)
, (11)

whereΔ2 = a2
0+a

2
1+a

2
2+a

2
3 and A is the anti-symmetric matrix corresponding

to a, that is,

A =

⎛
⎝ 0 −a3 a2

a3 0 −a1

−a2 a1 0

⎞
⎠ . (12)

It is also possible to recover the dual quaternion from a 4× 4 matrix, (up to
an overall sign). We have,

a0 =
1
2

√
Tr(R) + 1, (13)

and then
A =

1
2
√
Tr(R) + 1

(
R−RT

)
. (14)

finally

(c0 + c) =
1
2
t(a0 + a). (15)

Notice, that vectors as pure quaternions and column vectors have not been
distinguished,

t = txi+ tyj + tzk =

⎛
⎝ tx
ty
tz

⎞
⎠ . (16)

More details on dual quaternions and their uses in robotics can be found
in [4].

3 The 4 × 4 Cayley Map

In the 4×4 representation of SE(3) the elements of the Lie algebra are given
by matrices,

S =
(
W u
0 0

)
, (17)

where W is a 3 × 3 anti-symmetric matrix and u a vector. The Cayley map
is defined to be,

Cay4(S) = (I4 + S)(I4 − S)−1. (18)

Since, by the Cayley-Hamilton theorem, the matrices S satisfies a degree 4
polynomial, the result of the map can be written as a cubic in S,
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Cay4(S) = I4 + 2S +
2

1 + |w|2S
2 +

2
1 + |w|2S

3, (19)

where |w|2 = −(1/2)Tr(S2) = −(1/2)Tr(W 2).
Writing the Lie algebra element as a dual quaternion s = (w1i + w2j +

w3k) + ε(u1i+ u2j + u3k) this Cayley map can be written,

Cay4(s) =
1

2
√
1 + |w|2

(
(2 + |w|2) + 2s+ s2

)
. (20)

Notice that this is only quadratic in s.
The inverse Cayley map can also be written in terms of dual quaternions.

Here g is a dual quaternion representing a group element, with rotation
angle θ,

Cay−1
4 (g) =

1
2 cos(θ/2)

(
g3 − 4 cos

θ

2
g2 + (4 cos2

θ

2
+ 3)g − 4 cos

θ

2
)
. (21)

More details on this map and other Cayley maps can be found in [5] and [6].

3.1 Cayley Map as a Rational Map

These maps can be thought of as birational transformations between the six-
dimensional projective space P

6 and the Study quadric in P
7. To see this let

us introduce a homogenising variable w0, so the homogeneous coordinates
for the P

6 will be (w0 : w1 : w2 : w3 : u1 : u2 : u3) and the coordinates in
the P

7 will be (a0 : a1 : a2 : a3 : c0 : c1 : c2 : c3) as above. Including the
homogenising variable the Cayley map is then,

Cay4(s) =
1

2
√
w2

0 + |w|2
(
(2w2

0 + |w|2) + 2w0s+ s2
)
, (22)

Explicitly in terms of coordinates, this is,

a0 = w2
0 , c0 = −(w1u1 + w2u2 + w3u3),

a1 = w0w1, c1 = w0u1,
a2 = w0w2, c2 = w0u2,
a3 = w0w3, c3 = w0u3.

(23)

Note that the normalising factor, 1/2
√
w2

0 + |w|2, is irrelevant here since the
coordinates are homogeneous. So the Cayley map is a quadratic transforma-
tion with exceptional set given by the 4-dimensional non-singular quadric,

w0 = 0, w1u1 + w2u2 + w3u3 = 0. (24)

The inverse map, Cay−1
4 is given by a cubic polynomial,
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Cay−1
4 (g)=

1
2a0(a2

0 + a2
1 + a2

2 + a2
3)

(
g3 − 4a0g

2 +

(
4a2

0 + 3(a2
0 + a2

1 + a2
2 + a2

3)
)
g − 4a0(a2

0 + a2
1 + a2

2 + a2
3)
)
. (25)

Notice that here cos(θ/2) has been replaced by a0 and the factor (a2
0 + a2

1 +
a2
2 + a2

3) has been used to make the expression homogeneous. Recall from
(7) above, that this factor can be chosen to be equal to 1 on physical group
elements, it only vanishes on the ideal elements of the Study quadric where
a0 = a1 = a2 = a3 = 0.

If we assign w0 = 2a0(a2
0 + a2

1 + a2
2 + a2

3), the common denominator, then
the other coordinates of s = Cay−1(g) are given by expanding the polynomial
in the dual quaternion g, see (6) above. The resulting expression can then be
simplified using the relation (8), which defines the Study quadric. The result,
after cancelling common factors, is,

w0 = a0,
w1 = a1, u1 = c1,
w2 = a2, u2 = c2,
w3 = a3, u3 = c3.

(26)

So this is in fact a linear projection, and is clearly the inverse to the Cayley
map (23), above.

3.2 Example — Two Positions

Here we look at interpolation between two positions, the identity g(0) = 1
and g(1) = 1√

2
(1 + k) + 1√

2
ε(− 3

2 + i+ 3
2k). The interpolating curve is a line

in the Lie algebra. As a rational map the Cayley map is quadratic so the line
maps to a conic in the Study quadric, see figure 2. This looks similar to a
finite screw motion, but the path of origin is a conic, not a helix.

4 Velocities

Using this approach it is possible to include information about velocities.
The Cayley map can be used to pull-back velocities. Suppose that S is a
function of time, then the Lie algebra element determined by the velocity of
the motion produced by S is given by,

Sd =
(
d

dt
Cay4(S)

)
Cay4(S)

−1 = 2(I4 − S)−1Ṡ(I4 + S)−1. (27)
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Fig. 2. Linear interpolation in the Lie algebra

The Lie algebra element Sd is usually known as the ‘twist’ of the motion.
Rearranging this gives the result,

Ṡ =
1
2
(I4 − S)Sd(I4 + S). (28)

This is the tangent to the curve in the Lie algebra determined by S. Ex-
panding this relation using the partitioned form of the matrices given in (17)
above yields,

ẇ = ω + ω ×w + (ω ·w)w, (29)
u̇ = ω × u+ v ×w + (ω ·w)u− ω(w · u) + v, (30)

where ω is the angular velocity vector and v the velocity of any point on
the instantaneous screw axis. This does not seem to have a neat expression
in terms of dual quaternions but this can now be used to interpolate with
velocity constraints. The above expression can be used to determine the re-
quired time derivative in the Lie algebra given the desired angular and linear
velocities of the motion.

4.1 Hermite Interpolation

In this example the previous example is re-examined but now we demand
that the start and finish velocities are translational only and in the x and y
direction respectively. The interpolating polynomial in the Lie algebra is now
a cubic. This maps to a degree six curve in the Study quadric. See figure 3.
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Fig. 3. Hermite interpolation in the Lie algebra

5 Bennett Motions

In 1903 G.T. Bennett discovered a mobile 4-bar mechanism, a crude diagram
of this linkage is shown in figure 4. The motion of the coupler bar of this
mechanism was found to be a conic curve in the Study quadric. Now any
conic in the Study quadric is called a Bennett motion or a generalised Bennett
motion, see [1].

Which curves in the Lie algebra will be mapped to Bennett motions in the
Study quadric by the Cayley map? Clearly, since the Cayley map is quadratic,
lines in P

6 will be mapped to conics in the Study quadric. Ordinarily a conic
in P

6 would be mapped to a degree 4 rational curve in the Study Quadric.
But if the conic meets the exceptional set at two points then the image will
be a conic.

Recall from (24) above, that the exceptional set is a 4-dimensional quadric.
This is essentially the Klein quadric of lines in P

3. Hence elements of the
exceptional set will be called ‘lines at infinity’.

Now consider a conic in P
6 given by,

Fig. 4. The Bennett Mechanism



222 J.M. Selig

w0 = (t− α)(t − β),(
w
u

)
= (t− α)(t − β)z + (t− α)(t− γ)l1 + (t− β)(t− δ)l2,

where z is an arbitrary 6-vector and l1 and l2 are lines, that is they satisfy,

lTQ0l = lTi

(
0 I3
I3 0

)
li = 0, i = 1, 2. (31)

This conic clearly meets the plane at infinity (w0 = 0) in two lines at t = α
and t = β. The result of the Cayley map on this conic will be,

a0 = (t− α)2(t− β)2,
c0 = −(t− α)2(t− β)2zTQ0z− 2(t− α)2(t− β)(t− γ)zTQ0l1

−2(t− α)(t− β)2(t− δ)zTQ0l2 − 2(t− α)(t − β)(t− γ)(t− δ)lT1 Q0l2,(
a
c

)
= (t− α)2(t− β)2z + (t− α)2(t− β)(t− γ)l1 + (t− α)(t − β)2(t− δ)l2.

Cancelling the common factor (t−α)(t−β) give a conic in the Study quadric
as expected,

a0 = (t− α)(t − β),
c0 = −(t− α)(t− β)zTQ0z− 2(t− α)(t− γ)zTQ0l1

−2(t− β)(t − δ)zTQ0l2 − 2(t− γ)(t− δ)lT1 Q0l2,(
a
c

)
= (t− α)(t − β)z + (t− α)(t− γ)l1 + (t− β)(t − δ)l2.

Finally here we look at an example interpolating three key points using a
Bennett motion.

The strategy will be as follows, first we project the key points to s0, s1 and
s2 in P

6. Now three points determine a 2-plane in P
6. This 2-plane intersects

the hyperplane w0 = 0 in a line, which in turn meets the Klein quadric in 2
points. Together with the original 3 points this gives 5 points in a 2-plane.
So we can find a unique conic through these 5 points. Finally, the conic can
be mapped back to the Study quadric with the Cayley map.

In figure 5 a Bennett motion is shown, the first and last points are the
same as in the previous examples and the middle position is as shown on the
left of the figure. In this case it is probably simpler to work in the Study
quadric directly, since 3 points there will also determine a 2-plane and this
2-plane will intersect the Study quadric in a conic, through the 3 points.

Schröcker and Jüttler [3] have extended this to the construction of Bennett
biarcs, pairs of Bennett motions through a common position with continuous
derivative at the common point. Again these construction can be pulled-back
to the Lie algebra but are simpler in the Study quadric itself.



Rational Interpolation of Rigid-Body Motions 223

Fig. 5. Interpolation using a Bennett Motion. The three key positions are shown
on the left

6 Conclusions

The novelty of the technique presented here is that it treats the rotational and
translation parts of the motion on an equal footing. In most of the previous
solutions the rotations and translations are treated separately, and this leads
to solutions which depend on the choice of origin in space. The methods given
here do not suffer from this problem. Indeed the methods presented here
satisfy both requirements proposed by Röschel, in [2]; that the interpolating
motion be rational and independent of the coordinates chosen.

There are several other Cayley maps that could also have been used. The
one used here appears to be the simplest, especially since the inverse of this
Cayley map is just a linear projection. For the Cayley map based on the
adjoint representation of the group, for example, the map is cubic and its
inverse is quadratic. Using other Cayley maps will also give different solutions
to the same problems.

Finally there are may other ways to specify a rigid-body motion. For ex-
ample, it is often useful to specify a rigid-body motion as the solution to
a variational problem as in dynamics or beam theory. It should be possi-
ble to approximate the solutions to such problems using rational motions as
described here.
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Contact Geometry and Its Application
to Control

Peter J. Vassiliou

1 Introduction

The purpose of this note is to describe a recent generalisation of the well-
known Goursat normal form and explore its possible role in control theory.
For instance, we give a new, straightforward, general procedure for linearising
nonlinear control systems, including time-varying, fully nonlinear systems
and we illustrate the method by elementary pedagogical examples. We also
exhibit an apparently non-flat control system1 which can nevertheless be
explicitly linearised and therefore posseses an infinite symmetry group.

The Goursat normal form is a local characterisation of the contact distri-
bution on Jk(R,R) for all k ≥ 1, which we denote C(k)

1 . The original theorem
is not due to Goursat who was its populariser [4]. It appears the theorem is
originally due, in some form, to E. von Weber but the statement of it I give
below essentially arises from a work of Cartan; see [9]. A good reference on
this classical topic is [10].

The generalised Goursat normal form, presented in [11, 12] is a geometric
characterisation of partial prolongations of the contact distribution C(1)

q on
the jet space J1(R,Rq) for all q ≥ 1.2 Given a Pfaffian system Ω or, equiva-
lently, a vector field distribution V on manifold M , it solves the recognition
problem up to a local diffeomorphism of M based solely on the derived type
of V . It is therefore analogous to the eponymous Goursat normal form. Addi-
tionally, in [12] it was shown how the generalised Goursat normal form gives
rise to a procedure for explicitly identifying a distribution with some par-
tial prolongation using the smallest number of integrations; this procedure is

Peter J. Vassiliou
Faculty of Information Sciences and Engineering
University of Canberra, Canberra A.C.T. 2601, Australia
1 I do not yet have a proof that the system is not differentially flat.
2 Recall that partial prolongations and Brunovsky normal forms are identical ge-

ometric objects.
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springerlink.com c© Springer-Verlag Berlin Heidelberg 2010



226 P.J. Vassiliou

summarised and illustrated below. Most of the calculations to be presented
have been automated in the Maple package DifferentialGeometry and this
makes the method particularly easy to use.

Note that the equivalences implied by the generalised Goursat normal form
are not a priori static feedback transformations nor is the differential system
V assumed to be a control system with predefined states and controls. In fact
the theorem was not motivated by control theory in the first instance but
rather purely as a result in exterior differential systems with applications in
differential geometry and integrable systems theory. Indeed the main motivat-
ing examples arose from the theory of Darboux integrable partial differential
equations [1]. Nevertheless, static feedback equivalences are not excluded and
useful applications to problems of nonlinear control are possible, as will be
demonstrated.

The problem of linearising nonlinear control systems has generated an
important literature the review of which is well beyond the scope of this
short paper. Nevertheless, in addition to the works previously cited and the
citations therein, I would like to mention [3, 5, 6] which are close in aims and
general techniques to the present work.

The derived flag. Suppose M is a smooth manifold and V ⊂ TM a smooth
sub-bundle of its tangent bundle. The structure tensor is the map δ : Λ2V →
TM/V defined by

δ(X,Y ) = [X,Y ] mod V , for all X,Y ∈ V .

In more detail, suppose X1, . . . , Xr is a basis for V and ω1, . . . , ωr is the
dual basis for its dual V∗. Suppose Z1, . . . , Zs is a basis for TM/V such that
[Xi, Xj ] ≡ ckijZk mod V for some functions ckij on M . Then δ = ckijω

i ∧
ωj ⊗ Zk; that is, a section of Λ2V∗ ⊗ TM/V . The structure tensor encodes
important information about a sub-bundle, the most obvious of which is the
extent to which it fails to be Frobenius integrable.

If δ has constant rank, we define the first derived bundle V(1) as the inverse
image of δ(Λ2V) under the canonical projection TM → TM/V . Informally,

V(1) = V + [V ,V ].

The derived bundles V(i) are defined inductively:-

V(i+1) = V(i) + [V(i),V(i)], V(0) = V , i ≥ 0,

assuming that at each iteration, this defines a vector bundle, in which case
we shall say that V is regular. For regular V , by dimension reasons, there will
be a smallest k for which V(k+1) = V(k). This k is called the derived length
of V and the whole sequence of sub-bundles

V ⊂ V(1) ⊂ V(2) ⊂ · · · ⊂ V(k)
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the derived flag of V . We shall denote by V(∞) the smallest integrable sub-
bundle containing V .
Cauchy bundles. Let us define

ζ : V → Hom(V , TM/V) by ζ(X)(Y ) = δ(X,Y )

Even if V is regular, the homomorphism ζ need not have constant rank. If
it does, let us write Char V for its kernel. The Jacobi identity shows that
Char V is always integrable. It is called the Cauchy bundle or characteristic
bundle of V . If V is regular and each V(i) has a Cauchy bundle then, we say
that V is totally regular. Then by the derived type of V we shall mean the list
{V(i),Char V(i)} of sub-bundles.

Theorem 1 (Goursat normal form). Let V ⊂ TM be a smooth, totally
regular, rank 2 sub-bundle over smooth manifold M such that

a) V(∞) = TM
b) dimV(i+1) = dimV(i) + 1, while V(i) �= TM

Then there is a generic subset M̂ ⊆M such that in a neigbourhood of each
point of M̂ there are local coordinates x, z0, z1, z2, . . . zk such that V has local
expression {

∂x +
k∑

j=1

zj∂zj−1 , ∂zk

}
(1)

where k = dimM − 2. That is, V is locally equivalent to C(k)
1 on M̂ .

A proof can be found in [10], pp157-159. For examples of application, see
[13].

The Goursat normal form (Theorem 1) solves the problem of when a
Pfafffian system or vector field distribution can be identified with the con-
tact distribution (1) from information deduced algorithmically from the de-
rived flag of the differential system. The generalised Goursat normal form
(GGNF) does the same job in case distribution (1) is replaced by the partial
prolongations of the contact distribution on jet space J1(R,Rq), with q > 1,

C(1)
q =

{
∂x + z1

1∂z1 + z2
1∂z2 + . . .+ zq

1∂zq , ∂z1
1
, . . . , ∂zq

1

}
. (2)

An example of a partial prolongation of (2) is given by

C〈0, 1, 1〉 =
{
∂x + z2

1∂z2 + z2
2∂z2

1
+ z3

1∂z3 + z3
2∂z3

1
+ z3

3∂z3
2
, ∂z2

2
, ∂z3

3

}
(3)

in which there is one variable of order 2 and one of order 3 (so q = 2).
The notation C〈0, 1, 1〉 denotes one “dependent variable of order 2” (second
element) and “one dependent variable of order 3” (third element). Note that
in (3) the superscript 2 or 3 denotes the order of the variable.



228 P.J. Vassiliou

2 Generalised Goursat Normal Form

In this section we describe the aforementioned theorem on partial prolon-
gations. This leads to an optimal procedure for constructing equivalences
to a partial prolongation. We begin with an introduction to the basic tools
required.

2.1 The Singular Variety

For each x ∈M , let

Sx = {v ∈ Vx\0 | ζ(v) has less than generic rank}

Then Sx is the zero set of homogeneous polynomials and so defines a subva-
riety of the projectivisation PVx of Vx. We shall denote by Sing(V) the fibre
bundle over M with fibre over x ∈ M equal to Sx and we refer to it as the
singular variety of V . For X ∈ V the matrix of the homomorphism ζ(X) will
be called the polar matrix of [X ] ∈ PV . There is a map degV : PV → N well
defined by

degV([X ]) = rank ζ(X) for [X ] ∈ PV .

We shall call degV([X ]) the degree of [X ] (relative to V). Function degV([X ]) is
a diffeomorphism invariant: degφ∗V([φ∗X ]) = degV([X ]). Hence the singular
variety Sing(V) is also a diffeomorphism invariant.

The computation of the singular variety for any given sub-bundle V ⊂
TM is algorithmic. It involves only differentiation and commutative algebra
operations. One computes the determinantal variety of the polar matrix for
generic [X ]; see [11, 12, 13] for examples.

The singular variety in positive degree. IfX ∈ Char V then degV([X ]) =
0. For this reason we pass to the quotient V̂ := V/Char V . We have structure
tensor δ̂ : Λ2V̂ → T̂M/V̂ , well defined by

δ̂(X̂, Ŷ ) = π([X,Y ]) mod V̂ ,

where T̂M = TM/Char V and

π : TM → T̂M

is the canonical projection. The notion of degree descends to this quotient
giving a map

degV̂ : PV̂ → N

well defined by

degV̂([X̂]) = rank ζ̂(X̂) for [X̂] ∈ PV̂,
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where ζ̂(X̂)(Ŷ ) = δ̂(X̂, Ŷ ) for Ŷ ∈ V̂ . Note that all definitions go over mutatis
mutandis when the structure tensor δ is replaced by δ̂. In particular, we
have notions of polar matrix and singular variety, as before. However, if the
singular variety of V̂ is not empty, then each point of PV̂ has degree one or
more.

The resolvent bundle. Suppose V ⊂ TM is totally regular of rank c+q+1,
q ≥ 2, c ≥ 0, dimM = c+ 2q + 1. Suppose further that V satisfies

a) dimChar V = c, V(1) = TM

b) Σ̂|x := Sing(V̂)|x = PB̂|x ≈ RPq−1, for each x ∈ M and some rank q sub-
bundle B̂ ⊂ V̂ . Then we call (V ,PB̂) (or (V , Σ̂)) a Weber structure of rank
q on M .

Given aWeber structure (V ,PB̂), letR(V) ⊂ V , denote the largest sub-bundle
such that

π
(
R(V)

)
= B̂.

We call the rank q + c bundle R(V) defined by (2.1) the resolvent bundle
associated to the Weber structure (V , Σ̂). The bundle B̂ determined by the
singular variety of V̂ will be called the singular sub-bundle of the Weber
structure. A Weber structure will be said to be integrable if its resolvent
bundle is integrable.

An integrable Weber structure descends to the quotient of M by the leaves
of Char V to be the contact bundle on J1(R,Rq). For completeness, we record
the following properties of the resolvent bundle of a Weber structure.

Proposition 1. [11]. Let (V , Σ̂) be a Weber structure on M and B̂ its sin-
gular sub-bundle. If q ≥ 3, then the following are equivalent

a) Its resolvent bundle R(V) ⊂ V is integrable
b) Each point of Σ̂ = Sing(V̂) has degree one
c) The structure tensor δ̂ of V̂ vanishes on B̂: δ̂(B̂, B̂) = 0.

Proposition 2. [11]. Let (V , Σ̂) be an integrable Weber structure on M .
Then its resolvent bundle RΣ̂(V) is the unique, maximal, integrable sub-
bundle of V.

Checking the integrability of the resolvent bundle is algorithmic. One com-
putes the singular variety Sing(V̂) = PB̂. In turn, the singular bundle B̂
algorithmically determines RΣ̂(V).

For any totally regular sub-bundle V ⊂ TM , we have the notion of its
derived type. In section 2, we defined the derived type of a bundle as the list
of all derived bundles together with their corresponding Cauchy bundles. We
shall frequently abuse notation by using the term ‘derived type of V ’ for the
ordered list of ordered pairs of the form
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d(V) = [[m0, χ
0], [m1, χ

1], . . . , [mk, χ
k]]

where mj = dimV(j) and χj = dimChar V(j).
It is important to relate the type of a partial prolongation to its de-

rived type. For this it is convenient to introduce the notions of velocity and
deceleration of a sub-bundle.

Definition 1. Let V ⊂ TM be a totally regular sub-bundle. The velocity of
V is the ordered list of k integers

vel(V) = 〈Δ1, Δ2, . . . , Δk〉, where Δj = mj −mj−1, 1 ≤ j ≤ k.

The deceleration of V is the ordered list of k integers

decel(V) = 〈−Δ2
2,−Δ2

3, . . . ,−Δ2
k, Δk〉, Δ2

j = Δj −Δj−1.

Note that total prolongations C(k)
q have decelerations of the form 〈0, . . . , 0, q〉,

q ≥ 1, where there are k−1 zeros before the final entry, q. The Goursat normal
form is the case q = 1 in this family of decelerations. We denote the partial
prolongation with deceleration σ expressed in standard jet coordinates by the
symbol C(σ).

To recognise when a given sub-bundle has or has not the derived type
of a partial prolongation we introduce one further canonically associated
sub-bundle that plays a crucial role.

Definition 2. If V ⊂ TM is a totally regular sub-bundle of derived length k

we let Char V(j)
j−1 denote the intersections

Char V(j)
j−1 = V(j−1) ∩ Char V(j), 1 ≤ j ≤ k − 1.

Let
χj

j−1 = dimChar V(j)
j−1, 1 ≤ j ≤ k − 1.

We shall call the the integers {χ0, χj, χj
j−1}k−1

j=1 the type numbers of V ⊂ TM
and the list

dr(V) = [[m0, χ
0], [m1, χ

1
0, χ

1], [m2, χ
2
1, χ

2], . . . , [mk−1, χ
k−1
k−2, χ

k−1], [mk, χ
k]]

as the refined derived type of V .

It is easy to see that in every partial prolongation sub-bundles Char V(j)
j−1 are

non-trivial and integrable, an invariant property of V . Furthermore, there are
simple relationships between the type numbers in any partial prolongation
thereby providing further invariants for the local equivalence problem.
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Proposition 3. [11]. Let sub-bundle V ⊂ TM be totally regular, of derived
length k, with velocity and 〈Δ1, Δ2, . . . , Δk〉 and 〈−Δ2

2, . . . ,−Δ2
k, Δk〉, re-

spectively. Then V has the derived type of a partial prolongation if and only
if the type numbers of V satisfy

χj = 2mj −mj+1 − 1, 0 ≤ j ≤ k − 1,

χi
i−1 = mi−1 − 1, 1 ≤ i ≤ k − 1.

If V ⊂ TM has refined derived type that satisfies the constraints of
Proposition 3, then we say that it has the derived type of a partial
prolongation.

Example 1. To illustrate all these notions we compute the refined derived type
and all relevant bundles associated with the partial prolongation
V = C〈4, 3, 2〉 in standard (contact) coordinates

{
X = ∂x +

4∑
a1=1

za1,1
1 ∂za1,1 +

3∑
a2=1

1∑
l2=0

za2,2
l2+1∂z

a2,2
l2

+
2∑

a3=1

2∑
l3=0

za3,3
l3+1∂z

a3,3
l3

,

∂
z

a1,1
1

, ∂
z

a2,2
2

, ∂
z

a3,3
3

}
on Jσ(R,R9), σ = 〈4, 3, 2〉. The refined derived type is

[[10, 0], [19, 9, 13], [24, 18, 21], [26, 26]],

and the derived length is k = 3. The Cauchy bundles and intersections are

Char V(1) =
{
∂

z
a1,1
1

, ∂
z

a2,2
2

, ∂
z

a3,3
3

, ∂za1,1

}
,

Char V(1)
0 =

{
∂

z
a1,1
1

, ∂
z

a2,2
2

, ∂
z

a3,3
3

}
,

and

Char V(2) =
{
∂

z
a2,2
1

, ∂
z

a3,3
2

, ∂za2,2 , ∂
z

a1,1
1

, ∂
z

a2,2
2

, ∂
z

a3,3
3

, ∂za1,1

}
,

Char V(2)
1 =

{
∂

z
a2,2
1

, ∂
z

a3,3
2

, ∂
z

a1,1
1

, ∂
z

a2,2
2

, ∂
z

a3,3
3

, ∂za1,1

}
.

The reader will find it easy to verify that the type numbers are in agreement
with Proposition 3. The singular variety of V̂(2) = V(2)/Char V(2) consists of
lines E = [Ξ], where Ξ = e1π(X) + e2π(∂z1,3

1
) + e3π(∂z2,3

1
), whose degree is

less than the generic degree which is 2. In practice, to compute the singular
variety, one computes the polar matrix of E, the matrix of the vector bundle
morphism ζ̂(Ξ). In this case it is given by(

−e2 e1 0
−e3 0 e1

)
,
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whose rank is less than 2 if and only if e1 = 0. We deduce that

Sing(V̂(2))|z = PB̂|z = P

{
π
(
∂z1,3

1

)
, π
(
∂z2,3

1

)}
|z
� RP

1, ∀ z ∈ Jσ(R,R9).

Consequently V(2) is a Weber structure of rank 2 with resolvent bundle,

RΣ̂2
(V(2)) = Char V(2) ⊕

{
∂z1,3

1
, ∂z2,3

1

}
,

which is integrable. We note that V has χ1 − χ1
0 = 4 dependent variables

of order 1; χ2 − χ2
1 = 3 dependent variables of order 2 and ρ3 := Δ3 = 2

dependent variables of order 3. Finally, we observe that decel(V) = 〈4, 3, 2〉.

Roughly speaking, the main result of [11] can be expressed “if V has the
refined derived type of a partial prolongation and certain canonical bundles
are (Frobenius) integrable then it is locally equivalent to the partial prolon-
gation, uniquely prescribed by decel(V)”. More precisely, we are lead to make
the following definition.

Definition 3. A totally regular sub-bundle V ⊂ TM of derived length k will
be called a Goursat bundle with deceleration σ if

1. V has the derived type of a partial prolongation whose deceleration is
σ = decel(V)

2. Each intersection Char V(i)
i−1 is an integrable sub-bundle whose rank, as-

sumed to be constant on M , agrees with the corresponding rank in C(σ)
3. In case Δk > 1, then V(k−1) determines an integrable Weber structure of

rank Δk on M .

Then the recognition problem for partial prolongations is solved by the
generalised Goursat normal form.

Theorem 2 (Generalised Goursat Normal Form) [11]. Let V ⊂ TM be
a Goursat bundle over manifold M , of derived length k > 1 and deceleration
σ = decel(V). Then there is an open, dense subset M̂ ⊆ M such that the
restriction of V to M̂ is locally equivalent to C(σ). Conversely any partial
prolongation of C(1)

q is a Goursat bundle.

The generalised Goursat normal form asserts that away from “singularities”,
the deceleration of any Goursat bundle is a complete local invariant. Hence
partial prolongations are generically classified by their deceleration vector.
For this reason the deceleration of a Goursat bundle V will sometimes be
called its signature. If V is a Goursat bundle and non-negative integer ρj

is the jth component of its signature, then V is locally diffeomorphic to a
partial prolongation with ρj “dependent variables of order j”. The theorem
has a counterpart which provides an efficient procedure for constructing an
equivalence to C(σ) where σ = decel(V) is the signature of V .
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Let V ⊂ TM be a Goursat bundle over M of derived length k. In fact
there are two slightly different procedures depending upon whether Δk > 1
or Δk = 1; their proof of correctness is given in [12].

To describe them we introduce some notation. For all appropriate values
of i and j, we shall denote the annihilators of V(i), Char V(j) and Char V(j)

j−1

by Ω(j), Ξ(Ω)(j) and Ξ(Ω)(j)j−1, respectively. We begin with the case Δk = 1.

Procedure Contact

(Case Δk = 1)

INPUT: Goursat bundle V ⊂ TM of derived length k and signature
σ = decel(V) = 〈ρ1, . . . , ρk〉, ρk = 1.

a) Fix any invariant of Char V(k−1) denoted x, and any section Z of V such
that Z(x) = 1.

b) Build distribution Πk, defined inductively by

Π l+1 = [Z,Π l], Π1 = Char V(1)
0 , 1 ≤ l ≤ k − 1.

c) Let zk = ϕ1,k be an invariant of Πk such that dx ∧ dϕ1,k �= 0.
d) For each j, such that ρj > 0, compute the fundamental bundle

Ξ(Ω)(j)j−1

/
Ξ(Ω)(j) of order j.

e) For each j, such that Ξ(Ω)(j)j−1

/
Ξ(Ω)(j) is non-trivial, compute the fun-

damental functions {ϕlj ,j}ρj

lj=1 of order j.
f) For each j, such that ρj > 0 let zlj,j = ϕlj ,j, 1 ≤ lj ≤ ρj .
g) For each j, such that ρj > 0 define functions

x, z
lj ,j
0 := zlj ,j = ϕlj ,j , z

lj,j
sj+1 = Zzlj,j

sj
, 0 ≤ sj ≤ j − 1, 1 ≤ lj ≤ ρj .

OUTPUT: Contact coordinates for V identifying it with C(σ).

Case Δk > 1. If the Goursat bundle V satisfies Δk > 1 then steps a) and
b) are replaced by the calculation of the resolvent bundle R(V(k−1)) which
is integrable and has 1 +Δk invariants; these are fundamental functions of
highest order, k. Any one of these can be taken to be the “independent”
variable, x, in the canonical form. We then fix any section Z of V such that
Zx = 1 after which we proceed, as in the case Δk = 1, to construct contact
coordinates. Proofs of correctness of these procedures are given in [12].

3 Examples

In this section we illustrate the general theory with some pedagogical
examples.
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3.1 A Fully Nonlinear, Time Varying Control System

Consider the fully nonlinear, time varying control system on M = R8,

dx1

dt
= expx2,

dx2

dt
= x1x

2
3,

dx3

dt
= v1v2 +

(x4

t

)
,

dx4

dt
= x4

(
1 +

1
t

)
+ t2(x5 − x3

1),
dx5

dt
=

1
v2
.

in fives states x1, . . . , x5 and two control v1, v2. This is encoded by the
distribution

V =
{
∂t + expx2∂x1 + x1x

2
3∂x2 +

(
v1v2 +

(x4

t

))
∂x3

+
(
x4

(
1 +

1
t

)
+ t2(x5 − x3

1)
)
∂x4 +

1
v2
∂x5 , ∂v1 , ∂v2

}
.

Computing the derived type we get

dimV = 3, dimV(1) = 5, dimV(2) = 7, dimV(3) = 8

and
Char V(1)

0 = {∂v1 , ∂v2} = Char V(1)

Char V(2)
1 = Char V(1) ⊕ {∂x3 , ∂x5}

Char V(2) = Char V(2)
1 ⊕ {∂x4}.

Hence the refined derived type is

dr(V) =
[
[3, 0], [5, 2, 2], [7, 4, 5], [8, 8]]

from which we deduce that the signature of V is 〈0, 1, 1〉. The hypotheses of
Theorem 2 are satisfied with decel(V) = 〈0, 1, 1〉. By the generalised Goursat
normal form, Theorem 2, there is a local diffeomorphism that identifies it
with the partial prolongation C〈0, 1, 1〉. This settles the recognition problem
for V .

We now use procedure Contact to construct an equivalence. From the sig-
nature, 〈0, 1, 1〉, we see that there is only one nontrivial fundamental bundle,
namely

Ξ(Ω)(2)1 /Ξ(Ω)(2) = {dx4}. (4)

Here the derived length is k = 3 and since Δ3 = 1, we construct the bundle
Π3 inductively as in procedure Contact. We find that

Π3 = {∂x2 , ∂x3 , ∂x4 , ∂x5 , ∂v1 , ∂v2}

whose invariants are spanned by t, x1. Continuing to follow Contact, we take t
to be the “independent variable” and x1 a fundamental function of (highest)
order 3. Function x4 spans the fundamental functions of order 2 by equation
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(4). The contact coordinates for V are then obtained by differentiating the
fundamental functions as follows: [Contact, step g)]

t, a = x4, a1 = Z(a), a2 = Z(a1),
b = x1, b1 = Z(b0), b2 = Z(b1), b3 = Z(b2).

Explicitly, we obtain the static feedback transformation

t = t, a = x4, a1 =
1
t

(
x4 + tx4 + t3(x5 − x3

1)
)
,

a2=
2v2x4 + 3t2v2x5 − 3t2v2x

3
1 − 3t3x2

1v2e
x2 + tv2x4 + t3v2x5 − t3v2x

3
1 + t3

tv2
,

b=x1, b1=ex2, b2=x1x
2
3 e

x2 , b2=
x3e

x2
(
tx3e

x2 + tx2
1x

3
3 + 2x1(v1v2t+ x4)

)
t

.

This local equivalence to the canonical form (3) is easy to invert to obtain
the required parametrisation of states and controls.

3.2 A Non-flat Control System

The previous example is easily seen to be differentially flat with flat outputs
x1 and x4. Here we examine the nonlinear control system

ẋ1=e−x5(1−u1x5), ẋ2=u1e
−x5 , ẋ3=e−2x5(1−u1x5), ẋ4=u1e

−2x5 , ẋ5=u2,
(5)

whose state space is a 5-dimensional (solvable) Lie group G with nonzero Lie
algebra structure given by

[E1, E5] = −E1, [E2, E5] = −E1−E2, [E3, E5] = −2E3, [E4, E5] = −E3−2E4.

These structure equations are realised by the Lie algebra of vector fields

g = {ex5∂x1 , e
x5(x5∂x1 + ∂x2),

e2x5∂x3 , e
2x5(x5∂x3 + ∂x4), ∂x5}

= {E1, E2, . . . , E5}.

The control system (5) determines the sub-bundle K ⊂ T (G × R3) whose
space of sections is spanned by

K =
{
∂t + E1 + E3 + u1(E2 + E4) + u2E5, ∂u1 , ∂u2

}
which is invariant under the left-translations of G. A calculation shows that
K has the same refined derived type as V of the previous example. An iden-
tical analysis leads to the fundamental functions that are required for its
linearisation to be
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independent variable : τ = −x5

function of order 2 : a = x2 − x4e
−x5

function of order 3 : b = x2 + 2x1 − 2x2x5 − (x3 + x4 − x4x5)e−x5 − tex5

(6)
where τ is the “independent variable” in the linearised system. Remark that
since K is defined on a Lie group with known multiplication one can construct
the fundamental functions (6) without carrying out any integration, using
instead the Fels-Olver method of moving frames [2].

In contrast to the previous example, the transformation generated by (6)
is not static feedback and, indeed, it can be checked that this system is
not feedback linearisable. It can also be checked that none of its partial
prolongations are feedback linearisable. Additionally, it does not appear to
be differentially flat (though I have not yet proved this)3. Nevertheless, the
above application of the generalised Goursat normal form shows that the
system is locally equivalent to the partial prolongation C〈0, 1, 1〉! As such its
symmetry group consists of the relevant infinite Lie pseudogroup of contact
transformations. If the system is indeed not flat then it provides a counter-
example to a conjecture expressed in the literature to the effect that “a
system is flat if and only if it has an infinite symmetry group”, [7]. We end
this example by noting that while the equivalence is not static feedback,
nevertheless the system can be linearised explicitly and such linearisations
may conceivably play a role in control theory.

Finally, we mention that, except in Example 1, we have not provided an
illustration of procedure Contact in the case of control systems satisfying
Δk > 1 in this paper. For this we draw readers attention to references [11, 12]
and [13].

Acknowledgements. I am grateful to the Institute Interfacultaire Bernoulli, École
Polytechnique Fédérale de Lausanne and organisers Professors Jean Levine and
Philippe Müllhaupt for gracious hospitality in April, 2009 during the “Mathematical
Tools in Control, Signals and Systems Workshop”, where this paper was presented.
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Piecewise Affine Models of Regulatory Genetic
Networks: Review and Probabilistic
Interpretation

Madalena Chaves and Jean-Luc Gouzé

Abstract. A formalism based on piecewise-affine (PWA) differential equations has
been shown to be well-suited to modelling genetic regulatory networks. In this pa-
per, we first review some results concerning the qualitative study of these models:
we partition the phase space into domains bounded by the threshold hyperplanes.
Inside each domain, the system is affine. To define solutions on the surfaces of dis-
continuity, we use the approach of Filippov, which extends the vector field to a
differential inclusion. We obtain a transition graph, describing qualitatively the pos-
sible transitions of solutions between domains. In a second part of the paper, we
give a new probabilistic interpretation of these transitions, by computing the pro-
portion of the volume of the domain that crosses to one of its adjacent domains. We
apply this idea to the model of the bistable switch and to parameter estimation from
experimental transition probabilities.

1 Introduction

The regulation of gene expression plays a fundamental role in the functioning of
cells. New mathematical modelling and computational techniques will be essential
to the understanding of these genetic regulatory networks (see [4] for a review and
[1] for biological aspects). The principal modelling challenges come from incom-
plete knowledge of the networks, and the dearth of quantitative data for identifying
kinetic parameters required for detailed mathematical models. Qualitative methods
overcome both of these difficulties and are thus well-suited to the modelling and
simulation of genetic networks.
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The first part of the paper is a paraphrase of results obtained by the authors and
collaborators, that are mostly taken from [2] and [10], and the references therein;
it recalls the basis of the modelling of genetic regulatory networks with PWA dif-
ferential equations. From a mathematical point of view, what is interesting in these
dynamical systems (possibly of large dimensions, until several thousands) is that a
global qualitative analysis (assisted by a computer) is possible and gives nontrivial
results. This is to compare with classical nonlinear ordinary differential equations
where, for dimensions greater than three, nothing is possible except a local analysis
around the equilibria, if the equilibria are computable. Moreover, in the PWA case,
the analysis is itself qualitative, and does not depend too much on the exact values of
the parameters of the model; instead, it depends only on inequalities between these
parameters.

In a second part, which is the original part of the paper, we build on the qualita-
tive transition graph given by the above analysis. This graph describes the possible
transitions between regions of the trajectories. We give a probabilistic interpretation
of the transitions: often, the biologist can only measure the fact that a gene is highly
or weakly expressed at some time. In this case, although the precise numerical val-
ues of the variables are not available to the biologist, he will be able to have an
estimation (frequency) of the probability of transition from one domain to another.
We compute these probabilities of transitions between domains, and show that it can
give some informations about the parameters of the model: for the classical model
of the bistable switch, we are able to estimate the expression rates.

2 Piecewise-Affine Models of Genetic Regulatory Networks

Piecewise affine models of genetic networks are built with discontinuous (step)
functions; such models are originally due to Glass and Kauffman [8]. The use of
such step functions has been motivated by the experimental observation that the ac-
tivity of certain genes change in a switch-like manner at a threshold concentration of
a regulatory protein. It is best illustrated with an example: the schematic diagram in
Figure 1 describes a simple genetic regulatory network. In this example, the genes a
and b code for the proteins A and B, which in turn control the expression of the two
genes a and b. Protein A inhibits gene a and activates gene b above certain threshold
concentrations, which are assumed to be different. Similarly protein B inhibits gene
b and activates gene a above different threshold concentrations. Such a two-gene
network could be found as a module of a more complex genetic regulatory network
from a real biological system.

The equations modeling the example network in Figure 1 can be written down as{
ẋa = κas+(xb,θ 1

b )s−(xa,θ 2
a )− γaxa

ẋb = κbs+(xa,θ 1
a )s−(xb,θ 2

b )− γbxb
(1)

where s+(xs,θs) is equal to 0 when xs < θs and equal to 1 when xs > θs and
s−(xs,θs) = 1− s+(xs,θs). In this model, gene a is expressed at a rate κa if the
concentration xb of protein B is above the threshold θ 1

b and the concentration xa of
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a b

A B

Fig. 1. Example of a genetic regulatory network of two genes (a and b), each coding for a
regulatory protein (A and B)

protein A is below the threshold θ 2
a . Similarly, gene b is expressed at a rate κb if

the concentration xa of protein A is above the threshold θ 1
a and the concentration xb

of the protein B is below the threshold θ 2
b . Degradation of both proteins is assumed

to be proportional to their own concentrations, so that the expression of the genes a
and b is modulated by the degradation terms γaxa and γbxb respectively. We suppose
that θ 1

j < θ 2
j for j = a,b.

Such a model is readily generalized to models containing both expression and
degradation terms for each gene:

ẋi = fi(x)− γixi

where fi(x) represents the expression rate of gene i, depending on the whole state
x = (x1, · · · ,xn)T and γi is the (relative) degradation rate. However, the expression
rates of (1) have the additional property of being constant for values of xa and xb

belonging to intervals that do not contain thresholds values θ j
i . This can be rewritten

by detailing fi(x) as follows:

fi(x) =
Li

∑
l=1

κilbil(x)

where bil(x) is a combination of step-functions s±(xr,θ j
r ) and κil > 0 is a rate

parameter. The generalized form of (1) is a piecewise linear model

ẋ = f (x)− γx (2)

where the model is affine within hyper-rectangles of the state-space (γ is the
diagonal matrix (γ1, . . . ,γn)).

The dynamics of the piecewise-linear system (2) can be studied in the n-dimensio-
nal state-space Ω = Ω1×Ω2× ·· ·×Ωn, where each Ωi is defined by Ωi = {xi ∈
IR+ | 0 ≤ xi ≤ maxi} for some positive parameter maxi > maxx

(
fi(x)
γi

)
. A protein

encoded by a gene will be involved in different interactions at different concentra-
tion thresholds, so for each variable xi, we assume there are pi ordered thresholds
θ 1

i , · · · ,θ
pi
i (we also define θ 0

i = 0 and θ pi+1
i = maxi). The (n−1)-dimensional hy-

perplanes defined by these thresholds partition Ω into hyper-rectangular regions we
call domains. Specifically, a domain D⊂Ω is defined to be a set D = D1×·· ·×Dn,
where Di is one of the following:
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Di = {xi ∈Ωi|0≤ xi < θ 1
i }

Di = {xi ∈Ωi|θ j
i < xi < θ j+1

i } for j ∈ {1, · · · , pi−1}
Di = {xi ∈Ωi|θ pi

i < xi ≤ maxi}
Di = {xi ∈Ωi|xi = θ j

i } for j ∈ {1, · · · , pi}

Let D be the set of domains in Ω . A domain D ∈D is called a regulatory domain if
none of the variables xi has a threshold value in D (it is the full hyperrectangle). In
contrast, a domain D ∈ D is called a switching domain of order k ≤ n if exactly k
variables have threshold values in D [11]. The corresponding variables xi are called
switching variables in D. The two sets of domains are respectively denoted by Dr

and Ds.

2.1 Classical Solutions and Focal Points

For any regulatory domain D, the function f (x) is constant for all x ∈ D, and it
follows that the piecewise-affine system (2) can be written as an affine vector field

ẋ = f D− γx, x ∈ D (3)

where f D is constant in D. Restricted to D, this is a classical linear ordinary differ-
ential equation. We assume that the parameters {θ j

i },{γi},{κil} are all fixed. For
any initial condition x(t0) ∈ D, the unique solution is given by

x(t) = φ(D)+ eγ(t0−t)(x(t0)−φ(D)), (4)

where φ(D) satisfies the linear system γφ(D) = f D. Clearly x(t) → φ(D)
monotonically until x(t) reaches the boundary of the regulatory domain D.

Definition 1. Given a regulatory domain D ∈ Dr, the point φ(D) = γ−1 f D ∈ Ω is
called the focal point for the flow in D.

Generally we make the assumption that φ(D) �∈ supp(D′), for all D′ ⊆ ∂D, for oth-
erwise solutions can take infinite time to reach a focal point in the boundary of their
domain (supp(D′) is the supporting hyperplane containing the domain D′). This is a
special case of a more general assumption we make in Section 2.3. In the example
network of Figure 1, it can easily be checked that for the regulatory domain D13 (see
Figure 3(a)), the state equations reduce to

ẋa = κa− γa xa,

ẋb = κb− γb xb.

Hence the focal point of D13 is φ(D13) = (κa/γa,κb/γb), which lies outside D13, in
the domain D25 in fact, under some assumptions concerning the parameters. Thus
solutions in D13 will flow towards φ(D13) ∈ D25 until they leave the domain D13.
Different regulatory domains will usually have different focal points. In general, all
solutions in a regulatory domain D flow towards the focal point φ(D) until they
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either reach it or leave the domain D. What happens when a solution leaves a
regulatory domain D and enters a switching domain in the boundary of D? Since
the step functions are not defined when a variable xi takes some threshold value
θ qi

i , the vector field is undefined on the switching domains. We need to precise our
definition of solutions.

2.2 Solutions in Switching Domains

In switching domains, the PWA system (2) is not defined, since in a switching do-
main of order k≥ 1, k variables assume a threshold value. If solutions do not simply
go through a switching domain, it is necessary to give a definition of what a solution
can be on that domain. Classically, this is done by using a construction originally
proposed by Filippov [7] and recently applied to PWA systems of this form [9, 6].

The method consists of extending the system (2) to a differential inclusion,

ẋ ∈H(x), (5)

where H is a set-valued function (i.e. H(x)⊆ IRn). If D is a regulatory domain, then
we define H simply as

H(x) = { f D− γx}, (6)

for x ∈ D. If D is a switching domain, for x ∈ D, we define H(x) as

H(x) = co({ f D′ − γx | D′ ∈ R(D)}), (7)

where R(D) = {D′ ∈ Dr|D ⊆ ∂D′} is the set of all regulatory domains with D in
their boundary, and co(X) is the closed convex hull of X . For switching domains,
H(x) is generally multi-valued so we define solutions of the differential inclusion as
follows.

Definition 2. A solution of (5) on [0,T ] in the sense of Filippov is an absolutely
continuous function (with respect to t) ξt(x0) such that ξ0(x0) = x0 and ξ̇t ∈ H(ξt),
for almost all t ∈ [0,T ].

In order to more easily define these Filippov solutions, it is useful to define a concept
analogous to the focal points defined for regulatory domains, extended to deal with
switching domains.

Definition 3. Let D ∈Ds be a switching domain of order k. Then its focal set Φ(D)
is

Φ(D) = supp(D)∩ co({φ(D′) | D′ ∈ R(D)}). (8)

Hence Φ(D) for D ∈ Ds is the convex hull of the focal points φ(D′) of all
the regulatory domains D′ having D in their boundary, as defined above, inter-
sected with the threshold hyperplane supp(D) containing the switching domain D
(Figure 2).
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It is possible to show that

H(x) = γ(Φ(D)− x) (9)

which is a compact way of writing that H(x) = {y ∈ IRn | ∃φ ∈ Φ(D) such that
y = γ(φ − x)}. The Filippov vector field is defined by means of the focal set.

D1

D2

φ(D1)

φ(D2)

D φ(D)

Fig. 2. Illustration of the definition of the focal set on a switching surface D according to
the Filippov definition of solutions. The convex hull of the points φ(D1) and φ(D2) is simply
the segment that links them, so that (8) implies that φ(D) is the intersection of this segment
with supp(D). Starting from D1, a typical trajectory will converge towards φ(D1) and reach
the surface D, then slide on D until the focal set φ(D).

If Φ(D) = { }, with D a switching domain, solutions will simply cross D; oth-
erwise, sliding mode is possible and convergence takes place “in the direction” of
Φ(D). If Φ(D)∩D = { }, solutions eventually leave D. In the case where Φ(D)∩D
is not empty, it can be assimilated to an equilibrium set within D towards which all
solutions will converge in the following sense (see [2]):

Lemma 1. For every regulatory domain D ∈ Dr, all solutions ξt of (2) in D mono-
tonically converge towards the focal point Φ(D). For every switching domain
D ∈ Ds, the non-switching component (ξt)i of the solution ξt in D monotonically
converges towards the closed interval

πi(Φ(D)) = {φi ∈Ωi | φ ∈Φ(D)},

the projection of Φ(D) onto Ωi, if (ξ0)i �∈ πi(Φ(D)). Every switching component
(ξt)i of the solution ξt in D is a constant (ξt)i = πi(Φ(D)) = θ qi

i .

Basically, this means that convergence does not take place towards Φ(D), but to-
wards the smallest hyper-rectangle that contains Φ(D). Indeed, if Φ(D) is neither
empty, nor a singleton, and ξt0 belongs to Φ(D), the Filippov vector field at this
point is defined as H(ξt0) = γ(Φ(D)− ξt0) and there is no guarantee that no el-
ement of H(ξt0) points outside of Φ(D) (we know however that a solution stays
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at ξt0 ). Due to the structure of the differential equations, it is on the other hand
certain that the transient solution does not leave the smallest hyper-rectangle Π(D)
containing Φ(D).

We then have the following corollary

Corollary 1. All solutions ξt in D converge towards Π(D), if ξ0 �∈ Π(D). For all
solutions ξt in D, Π(D) is invariant.

Corollary 2. If Φ(D) is a point, all solutions ξt in D converge monotonically
towards Φ(D).

3 Stability and State Transition Graph

The stability analysis of the various equilibria is a direct consequence of the anal-
ysis in the previous section. It is easily seen that equilibria x̄r in some D ∈ Dr are
asymptotically stable. In a switching domain D ∈ Ds, recall that solutions are de-
fined by considering the differential inclusion H(x). We say that a point y ∈Ω is an
equilibrium point for the differential inclusion if

0 ∈ H(y), (10)

where H is computed using the Filippov construction in (7). In other words, there is a
solution in the sense of Filippov, ξt , such that ξt(y) = y, ∀t > 0. We call such a point
a singular equilibrium point. It is easily seen that, for y to be an equilibrium point
inside D, it must belong to Φ(D). Also, since Assumption 1 below prevents Φ(D)
from intersecting the border of D, we then have that Φ(D) ⊂ D. Every element φ
of Φ(D) is then an equilibrium when Φ(D) ⊂ D so that, for every φ ∈Φ(D), there
exists a solution ξt(φ) = φ for all t.

One of the results of [2] concerns the link between the configuration of the state
transition graph and the stability of an equilibrium (there is a technical assumption,
called Assumption 1, that the focal points are not located on the switching thresh-
olds). This discrete, qualitative description of the dynamics of the PWA system that
underlies the qualitative simulation of genetic regulatory networks was originally
due to Glass. It indicates the passages between the different domains making up
the phase space. A state transition graph is a directed graph whose vertices are the
domains of the system and whose edges are the possible transitions between these
domains (easily determined by examining the PWA model). The transition graph of
system (1) is illustrated in Figure 3.

For a two-dimensional system, we show how this graph indicates the stability of
singular equilibria:

Theorem 1. Let the dimension of the PWA model be 2, and let D be a switching
domain containing a singular equilibrium point φ(D). If for all regulatory domains
D′ ∈ R(D) (that is, adjacent to D), there exists a transition from D′ to D in the state
transition graph, then φ(D) is asymptotically stable.
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Fig. 3. Subdivision of the state-space in 25 domains and transition graph of system (1)

This result is purely qualitative: it only depends on some inequalities between the
parameters (threshold and focal points), but their actual values are not needed. It can
be directly applied to show that the singular equilibrium (xa,xb) = (θ 2

a ,θ 2
b ), corre-

sponding to D19 on Figure 3, is asymptotically stable because there are transitions
to D19 from D13,D15,D23 and D25, the regulatory domains adjacent to D19.

A generalization, but in a weaker form, of this theorem to dimension n is also
available.

Theorem 2. Assume Ω ⊂ IRn. Let D ∈ Ds be a switching domain of order p ≥ 1
containing a singular equilibrium set Φ(D) that satisfies Assumption 1. If for all
D′ ∈ R(D), there is a transition from D′ to D in the state transition graph, then
Π(D) is asymptotically stable.

Corollary 3. Under the conditions above, if, moreover, Φ(D) is a point, it is
asymptotically stable.

These results are helpful for the qualitative analysis of the genetic regulatory
networks. Moreover, a software GNA was built to analyze genetic networks [5].

4 A Probabilistic Interpretation of the Transition Graph

In this part, we explore the new idea of associating a probability of transition to each
of the edges in the transition graph. Since PWA systems are deterministic, one way
to assign such a probability D0 → D1 is to compute the volume of the region C⊂D0

that switches to D1.
The goal is to relate dynamical aspects determined by the system’s parameters

(here, synthesis and degradation rates) to probabilities of transition between two
state space regions. The idea is to apply these probabilities to the estimation of
(some) parameters. Focusing for the present paper on 2-dimensional systems, we
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will write an analytical expression for the probability of transition between two
given regions in terms of the system’s parameters.

Consider a piecewise affine system of dimension 2, verifying Assumption 1.
Assume that there are ri thresholds for each variable i = 1,2:

0 := θ 0
i < θ 1

i < · · ·< θ ri
i < maxi := θ ri+1

i , (11)

where maxi is as defined in Section 2. Furthermore, assume that these thresholds are
defined so that:

(∀i = 1,2) (∀k = 0, . . . ,ri) sign( fi(x)− γixi) = const., ∀ θ k
i < xi < θ k+1

i . (12)

This is a general condition, since virtual thresholds can be added (i.e., even if it is not
an activation threshold from variable i to another variable). From now on, a regular
domain will be called a box (to distinguish them from the switching domains). To
label the regular domains, we will use the notation:

Bk1 k2 : ki ∈ {0,1, . . . ,ri−1}, θ ki
i < xi < θ ki+1

i .

As an example, if (r1,r2) = (1,3), B12 denotes the rectangle x1 ∈ (θ 1
1 ,max1), x2 ∈

(θ 2
2 ,θ 3

2 ).
Consider a trajectory that starts in box Bi j. The possible transitions from this box

are given by the state transition graph (see Section 3).
By assumption (12), the Jacobian of the system is sign-invariant in each box

Bi j. This implies that, according to the transition graph, any trajectory starting in
a box Bi j can switch to one of two neighbor boxes: Bi+s1, j and Bi, j+s2 , where sk =
sign( fk(x)− γkxk) (k = 1,2) for x ∈ Bi j. Moreover, since solutions inside each box
are uniquely defined, the initial condition in Bi j uniquely determines the next box to
be visited. Let φ(t;x0) denote the solution of system (2), for an initial condition x0.
Define

B1
i j = {x0 ∈ Bi j : φ(t;x0) ∈ Bi j,∀t < T ; φ(t;x0) ∈ Bi+s1, j,T < t < T +ΔT}

B2
i j = {x0 ∈ Bi j : φ(t;x0) ∈ Bi j,∀t < T ; φ(t;x0) ∈ Bi, j+s2 ,T < t < T +ΔT},

where T depends on x0 and the various parameters (κi,γi,θ k
i ). B1

i j (resp., B2
i j) is the

set of initial conditions in Bi j generating trajectories for which the next visit is box
Bi+s1, j (resp., Bi, j+s2 ). We will say that the probability that a trajectory of the system
switches from Bi j to Bi+s1, j is proportional to the volume of the region B1

i j:

Pi j→i+s1, j =
Area(B1

i j)
Area(Bi j)

, Pi j→i, j+s2 =
Area(B2

i j)
Area(Bi j)

. (13)

In Section 5 we will illustrate the computation of these probabilities as a function of
the parameters κi and γi, for a simple example of the bistable switch.

To experimentally obtain measurements of the probabilities (13), one would need
to perform N times the same experiment, with an initial state in Bi j (that is, initial
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concentrations of x in the region [θ i
1,θ

i+1
1 ]× [θ j

2 ,θ
j+1

2 ]), and count the number of
times N1 (resp., N2) that the system evolves to Bi+s1, j (resp., Bi, j+s2 ). If N1 = N2 = 0,
this means that the system remains in Bi j and Pi j→i, j+s2 = Pi j→i+s1, j = 0. If N1 �= 0,
then we expect N = N1 + N2 so that Pi j→i+s1, j = N1/N and Pi j→i, j+s2 = N2/N =
1−Pi j→i+s1, j (because we assume (12) which implies only two possible transitions).

These values can then be compared to the expressions in terms of the parameters,
for estimation (see Section 5).

5 The Bistable Switch Example

Mathematical models of the bistable switch are characterized by the existence of two
stable steady states (or two stable modes), representing two distinct outcomes of the
biological system [1, 3]. We will study a general qualitative example of the bistable
switch, ẋ = κ̂1s−(y,θ2)−γ1x and ẏ = κ̂2s−(x,θ1)−γ2y, but considering that the two
variables are normalized with respect to their respective thresholds (to reduce the
number of free parameters) x1 = x/θ1, x2 = y/θ2, and κi = κ̂i/θi to obtain:

ẋ1 = κ1s−(x2,1)− γ1x1

ẋ2 = κ2s−(x1,1)− γ2x2, (14)

with the assumption that (to guarantee existence of two steady states): κi
γi
> 1, i =

1,2. For each variable i, the thresholds (11) are: θ 0
i = 0; θ 1

i = 1; θ 2
i = κi

γi
, so the

state space for system (14) is partitioned into four boxes: B00, B01, B10 and B11. It
is not difficult to check that the system has two stable steady states, located in the
regions B10 and B01. Solutions starting in B00 or B11 will eventually cross to either
B10 and B01 (depending on the exact initial condition). Moreover, we can compute
the separatrix line x2 = σ00(x1) which divides region B00 into the two regions B1

00
and B2

00: solutions with initial conditions above (resp., below) the line σ00 will even-
tually converge to the steady state in B01 (resp., B10). A similar separatrix line σ11

can be computed for the region B11. These curves are given by:

σ00(x) =
κ2

γ2
−
(
κ2

γ2
−1

)( κ1
γ1
− x

κ1
γ1
−1

) γ2
γ1

, σ11(x) = x
γ2
γ1 (15)

These separatrix lines are represented in Fig. 4, and correspond to the locus of the
points that go through (x1,x2) = (1,1). To simplify the presentation, we will assume
that:

(A1) σ00(x = 0)> 0 ⇔
( κ1

γ1
κ1
γ1
−1

) γ2
γ1
<

κ2
γ2

κ2
γ2
−1

;

(A2) σ11(x = κ1
γ1

)< κ2
γ2

⇔
(
κ1
γ1

) γ2
γ1 < κ2

γ2
;

where (A1) says that the line σ00 exits the box B00 through the axis x1 = 0, and
(A2) says that the line σ11 exits the box B11 through the axis x1 = κ1

γ1
. According to

definition (13) we have:
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P00→10 =
∫ 1

0
σ00(x1) dx1, P00→01 = 1−P00→10, (16)

Similarly, we can compute the probability of a transition from B11 to B10. To obtain
the correct probability, we need to subtract the area corresponding to the region B10

(which is part of the area below σ11), and only then divide by the total area of B11:

P11→10 =
1

(κ1
γ1
−1)(κ2

γ2
−1)

{∫ κ1
γ1

1
σ11(x1) dx1−

(
κ1

γ1
−1

)}
(17)

and P11→01 = 1−P11→10. For transitions from regions B10 or B01, the theorical prob-
ability of transition to any other region is 0 so, in practice, we can expect very weak
transition probabilities from these two regions, and one can say that P01→01 = 1 and
P10→10 = 1. The expressions (16) and (17) can be written as:

P00→10 = b +
1

c + 1
(a−1)(b−1)

(
1−

(
a

a−1

)c+1
)

(18)

P11→10 =
1

(a−1)(b−1)

(
1

c + 1
(ac+1−1)− (a−1)

)
, (19)

in terms of the three parameters:

a =
κ1

γ1
, b =

κ2

γ2
, c =

γ2

γ1
.

Therefore, given measurements for the degradation rates and the probabilities of
transition, it is possible to estimate the synthesis rates from (18) and (19). Let c be
known, P00→10 = p00 and P11→10 = p11, then a is given by the solution of:
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Fig. 4. Separatrix functions satisfying assumptions A1 and A2
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(
ac+1−1

c + 1
− (a−1)

)−1

(p00−1)p11 =
1

a−1
+

1
c + 1

(
1−

(
a

a−1

)c+1
)

(20)

and b is given by

b = 1 +
1

(a−1)p11

(
1

c + 1
(ac+1−1)− (a−1)

)
(21)

in the domain of validity of the equalities (18)-(19) (assumptions A1 and A2 hold):

ac < b <

(
a

a−1

)c(
a

a−1

)c−1
.

Note that the assumptions A1 and A2 can be dropped, but then the explicit ex-
pression for P00→10 and P11→10 must be modified according to the geometry of the
separatrices, in particular the starting or ending points for the integrals will change.
The general case can be easily written down, but for reasons of space and presen-
tation we will not give it here. To give a numerical example, assume that γ1 = 0.9,
γ2 = 0.6, p00 = 0.9, and p11 = 0.25, to obtain c = 2/3 and, from equations (20)
and (21), respectively: a≈ 1.48 and b≈ 1.61, which are inside the region of validity
(b ∈ (1.29,1.89)). The estimated synthesis rates are thus: κ1 ≈ 1.33 and κ2 ≈ 0.96.

Fig. 5. Probabilities P00→10 (red surface) and P11→10 (blue surface), as a function of a and b,
for c = 0.5

Finally, in Fig. 5 the probabilities are shown as functions of both a and b, for a fixed
value of c = 0.5, in a domain where the functions (18)-(19) are valid. Observe that
the probability P00→10 remains at a fairly constant high level, while P11→10 decreases
significantly with b. This fact is interesting, because it shows that the dependence of
the separatrix curve σ00 on b is in fact weak, and that increasing b leads essentially
to increasing the area above the separatrix curve σ11 (see also Fig.4).
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6 Conclusions

In this paper, after a first part dedicated to a review of results about PWA systems,
we have given a probabilistic interpretation of the transitions in the second part.
A method is suggested for parameter estimation, applicable to systems where the
measurements are mostly qualitative. Assuming that the data consist of probabilities
of transition between two different regions of the state space, and that (for instance)
the degradation rates are known, one can estimate the synthesis rates. The method
was described for 2-dimensional piecewise affine differential systems. Further work
is needed for more complex systems.
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9. Gouzé, J.L., Sari, T.: A class of piecewise linear differential equations arising in biolog-
ical models. Dyn. Syst. 17(4), 299–316 (2002)
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A Control Engineering Model for Resolving the
TGF-β Paradox in Cancer

Seung-Wook Chung, Carlton R. Cooper, Mary C. Farach-Carson,
and Babatunde A. Ogunnaike�

Abstract. Although TGF-β is widely known to appear to function paradoxically
as a tumor suppressor in normal cells, and as a tumor promoter in cancer cells, the
underlying mechanisms by which a single cytokine plays such a dual—and diamet-
rically opposed—role are unknown. In particular, it remains a mystery why the level
of TGF-β is unusually high in the primary cancer tissue and blood samples of can-
cer patients with the poorest prognosis, given that this cytokine is primarily a tumor
suppressor. To provide a quantitative explanation of these paradoxical observations,
we have developed, from a control theory perspective, a mechanistic model of TGF-
β -driven regulation of cell homeostasis. Analysis of the overall system model yields
quantitative insight into how the cell population is regulated, enabling us to propose
a plausible explanation for the paradox: with the tumor suppressor role of TGF-β
unchanged from normal to cancer cells, we demonstrate that the observed increased
level of TGF-β is an effect of cancer cell characteristics (specifically, acquired TGF-
β resistance), not the cause. We are thus able to explain precisely why the clinically
observed correlation between elevated TGF-β levels and poor prognosis is in fact
consistent with TGF-β ’s original (and unchanged) role as a tumor suppressor.

1 Introduction

Normal tissue homeostasis is maintained by a delicate and dynamic balance between
the cellular processes of proliferation and death. In particular, too much growth and
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too little death can lead to a severe condition that may ultimately result in cancer
[1]. It is known that these cellular processes are affected by a variety of extracellular
stimuli, each capable of inducing its own set of responses via specific intracellular
signaling cascades. And among these extracellular signals, transforming growth fac-
tor β (TGF-β ) has drawn much attention from cancer researchers because it plays a
central role in regulating both cell proliferation and cell death [2, 3, 4].

TGF-β is known to be an important participant in a variety of physiological pro-
cesses in both normal and malignant tissues [3], but considerable debate remains
over its exact role during cancer progression. During the early stages of epithe-
lial tumorigenesis, that TGF-β functions as a potent tumor suppressor primarily by
inducing cell cycle arrest and programmed cell death (apoptosis) is unquestioned.
However, the level of TGF-β is frequently elevated in many malignant tissues and in
blood samples from cancer patients with the poorest prognosis. As such, the role of
TGF-β in the late phases of tumor progression appears to become—somehow—one
of tumor promotion, by appearing to support proliferation, by subverting immune-
surveillance and also facilitating epithelial to mesenchymal transition (EMT), inva-
sion, and angiogenesis. This has created the widely held perception that TGF-β is
simultaneously a tumor suppressor under one condition and a tumor promoter under
another. But how does a single stimulus produce multiple contradictory results? A
clearer understanding of these apparently contradictory roles of TGF-β in cancer
requires quantitative methods because TGF-β biology is simply too complex to be
understood on the basis of qualitative descriptions.

While extensive physiological, biochemical, and clinical information is available
on TGF-β , quantitative modeling of the TGF-β signaling system is still compar-
atively in its infancy. Furthermore, as briefly reviewed in [5], all published com-
putational TGF-β models to date have focused only on the intracellular signal
transduction pathway in a single cell. Such single-cell models, despite their sig-
nificant contributions to our understanding of the dynamic behavior of TGF-β sig-
naling, may not be sufficient for interpreting the contradictory clinical observations
noted above. This is because the dynamic characteristics of extracellular molecules
and signals depend strongly on the active interactions among cells and/or between
cells and the surroundings; explaining such extracellular dynamics requires more
that just studying intracellular events alone. Thus, a more realistic understanding
of the role of TGF-β in cancer requires a more comprehensive examination of the
TGF-β system encompassing the cells and their microenvironment.

To this end, we present in this study a macroscopic mechanistic model of TGF-
β -driven regulation of cell homeostasis. The model deals, not with a single cell, but
with the cell population as a systemic entity, and represents a control system char-
acterization of how TGF-β achieves cell homeostasis via communication between
the cells and their microenvironment. First, we identify the various functional com-
ponents of the system, their respective input and output variables, and how they are
connected to form the complete control system; each component is then modeled
on the basis of available consensus information in the reported biological litera-
ture. Where the required information is unavailable, we state and employ reasonable
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assumptions, supporting our postulates adequately. An analysis of the resulting
overall system model yields quantitative insight into how the biological processes
of cell proliferation and death are regulated by TGF-β via the interactions between
proliferating cells and their surroundings. The model also allows us to predict possi-
ble dynamic characteristics of the TGF-β -mediated control system in cancer tissues,
from which we are able to present an alternative perspective of the TGF-β paradox
in cancer.

2 Model Description

Of all the physiological processes that influence homeostasis in a cell population,
none is as critical as the combined processes of cell proliferation and death. Main-
taining the dynamic balance between proliferation and death is how cell population
dynamics are regulated; and biological regulation is achieved in general by dedi-
cated biological control systems. In the specific case of this study, we restrict our
attention to the TGF-β -mediated system for achieving cell homeostasis, viewed as
an automatic biological control system for rejecting “disturbances” that will other-
wise cause a cell population to grow indefinitely and become cancerous. As with all
control systems, engineered or biological, this control system will also consist of at
least the following component subsystems: (i) Sensor: which receives information
about the “controlled process” state and generates appropriate signals that are trans-
mitted to the regulatory machinery; (ii) Controller: the regulatory machinery which
receives “process state” signals and generates appropriate corrective action signals;
(iii) Actuator: the “final control element” which implements the corrective action on
the controlled process.

By representing each functional component with a block showing inputs and out-
puts as determined from mechanistic information available in the literature (and dis-
cussed in detail subsequently), the overall control system block diagram is shown
in Fig. 1. What follows is a detailed discussion of model development for each
component subsystem.

2.1 Controlled Process: Cell Proliferation and Death

In this study, the “controlled process” is the combined biological process of cell
proliferation and death. The output of interest—the “controlled output”—is the to-
tal cell population count. Our study is restricted to cell proliferation and death as
regulated by TGF-β via its ability to inhibit cell proliferation and induce apop-
tosis. As such, the “manipulated input” is the amount of active TGF-β to which
the cell population is exposed. Because the specific pathology of interest is cancer,
pro-proliferative signals (such as growth factors and hormones) constitute the “dis-
turbance” of interest whose effects on proliferation are to be handled appropriately
by the TGF-β -mediated control system, if normal cell growth and proliferation is
to be kept under judicious restraint. The desired mathematical model therefore will
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represent the response of cell population to stimulation by growth factors on one
hand and bioactive TGF-β on the other.

Cell population dynamics will be modeled under the following assumptions: (i)
all cells of interest are capable of proliferating and do so at a uniform rate, p; (ii) all
cells are homogeneously distributed so that each cell is readily and equally accessi-
ble to extracellular stimuli; (iii) cell death occurs at a uniform rate, d, for all cells;
(iv) cell population dynamics are dominated by proliferation and death so that other
cellular processes, including differentiation and migration, can be neglected; and (v)
upon initial stimulation with growth signals, cells start to proliferate immediately,
with no delay, and enter successive, synchronous, cell division rounds thereafter.
The simplest model consistent with these assumptions is:

dX
dt

= (p−d)X (1)

where X is the total number of cells in the population. Observe that when p = d,
the cell population is at steady state; when p �= d, the population either grows or
shrinks exponentially, depending on whether p > d or vice-versa. The population
dynamics are therefore clearly determined by the parameters p and d, which, in
turn, are determined by the level of the extracellular cues that induce proliferation
or death.

First, the rate of cell proliferation, p, is known to increase with the level of pro-
liferation stimuli, but decreases with the level of anti-proliferation factors such as
TGF-β which inhibits clonal expansion by arresting the cell cycle in the G1 phase
[3, 6]. Therefore, we postulate the following functional relationship between the rate
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Fig. 1. Block diagrammatic representation of the TGF-β control of cell proliferation and
death. Arrows indicate flow of information into and out of system blocks. Note the multiple
feedback loops involved in the “actuator” subsystem for regulating the level of bioactive
TGF-β .
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of cell proliferation, p, and the concentrations of growth factors and TGF-β as two
distinct terms, assuming no interaction effect between these distinct stimuli:

p(GF, T GFβ ) =
pa ·GFr

pb
r +GFr −

p2 ·T GFβm

p3
m +TGFβm p ≥ 0 (2)

Here, GF and TGFβ denote the concentrations of growth stimuli of any kind and
of TGF-β , respectively; pa is the maximum cell division rate; p2 is the maximum
anti-growth rate; pb and p3 are affinity constants; and r and m are Hill coefficients.

Next, d, the rate of cell death, is known to be influenced by the level of
pro-apoptotic stimuli such as the TNF superfamily; it is also known that TGF-β
promotes the death of unhealthy, damaged, and unnecessary cells by inducing apop-
tosis [3]. Thus, the rate of cell death should increase with increasing TGF-β level.
Consequently, we represent the dependence of d on TGF-β level as follows:

d (TGFβ ) = d1 +
d2 ·TGFβ n

d3
n +TGFβ n (3)

where, d1 is the inherent rate of death due to endogenous pro-apoptotic factors; d2

represents the maximum rate of TGF-β -induced apoptosis; d3 is an affinity constant;
and n is a Hill coefficient.

The overall model equation for the “controlled process” is therefore:

dX
dt

= (p−d)X =
(

pa ·GFr

pb
r +GFr −

p2 ·TGFβm

p3
m +TGFβm −d1−

d2 ·T GFβ n

d3
n +TGFβ n

)
X (4)

2.2 Sensor/Controller: TGF-β Production System

To elicit the well-established physiological response of healthy tissue to unusual
changes in its cell population size, such changes will have to be detected by some
sort of “sensor” system, which in turn will stimulate the required response from
the “biological controller” responsible for maintaining cellular homeostasis. In this
particular case, the response of interest is the production of TGF-β for the express
purpose of restraining unusual growth. While the precise mechanisms by which
this purpose is achieved is unknown, a growing body of knowledge is emerging to
provide clues concerning the basic characteristics.

When cells undergoing unusual growth break the basement membrane, (i) they
encounter the stroma, resulting in inflammation; (ii) in response, TGF-β is produced
locally in latent form—known as large latent complexes (LLC)—in the stroma (as
well as from other sources, including various immune cells such as macrophages,
dendritic cells, T cells, B cells, etc. [7]); and finally, (iii) active TGF-β is made
available by a subsequent multi-step process of activation (including secretion, in-
teraction with ECM components, and proteolytic cleavage), with each step in the
activation process under tight control [8]. Under normal circumstances, this action
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is sufficient to eliminate the errant cells, repair the damage, and promote normal
healing.

Thus, even though not all of the mechanistic details of how the TGF-β producer
cells “monitor and respond” to unusual changes in cell population are known, it is
clear from what is known that such a TGF-β production system is the biological
controller; and that it appears to be stimulated directly by changes in cell popula-
tion. As such, we consider the total cell number, X , as the input to this combined
sensor/controller, and the output is the level of inactive TGF-β complex. (Modeling
how active TGF-β is produced from the latent form is discussed later.)

As an anti-growth cytokine, the level of TGF-β should increase with increas-
ing cell population in order to inhibit abnormal cell growth. Conversely, a decrease
in cell number should result in a commensurate reduction in the level of TGF-β .
Therefore, as presented in many physiology textbooks (e.g., [9]), we employ the
following sigmoidal response function for this biological controller:

LLC (X) =
K

1+ e[Ca·(Cb−X)] (5)

indicating how LLC, the inactive TGF-β complex concentration, changes as a func-
tion of X , the cell population. Here, K is the maximum level of latent TGF-β , Ca is
a scaling parameter, and Cb is the sigmoid’s “center parameter” at which the con-
troller output is half of the maximum value, K. It can be shown that for this nonlinear
controller, the effective controller gain, ∂ (LLC)/∂X , is maximum at X = Cb; also,
it can be shown that Cb is the “implicit set-point” at which the controller appears to
want to maintain X .

2.3 Actuator: TGF-β Activation System

As noted briefly in Section 2.2, in response to changes in cell population, TGF-
β producer cells secrete an inactive form of the cytokine which is easily bound
to and stored in extracellular matrix (ECM) proteins (e.g., fibrillin-1, perlecan, and
fibronectin) via its latent TGF-β -binding protein (LTBP) component. In order to be-
come bioactive (i.e., to be able to bind its cognate cell-surface receptors and effect
intracellular signaling), TGF-β proteins sequestered within the ECM-bound LLC
need to be released [8]. The dissociation of bioactive TGF-β from the LLC-ECM
complex is mediated by two distinct mechanisms: enzymatic (or proteolytic) and
mechanical. Enzymatic cleavage involves a variety of proteases including metallo-
proteinases (MMPs) and serine proteases (e.g., plasmin, thrombin, tryptases, etc.),
and appears to be the most prominent of the two mechanisms [10]. With mechanical
dissociation, TGF-β is released by cell traction forces generated via integrins1 that
bind to a LLC component known as latency-associated propetide (LAP) [11].

Our model of this TGF-β activation process is based on these two mechanisms,
along with the following considerations: (i) TGF-β bioavailability depends most

1 A large family of heterodimeric transmembrane proteins that function as adhesion
receptors, promoting cell-cell adhesion or cell-matrix adhesion.
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strongly on the final step of the activation process, the release of TGF-β from
its latent complex; (ii) this protease-driven dissociation follows Michaelis-Menten
kinetics; (iii) integrins that mediate cell traction force exhibit enzyme-like activ-
ity with Michaelis-Menten kinetics; and (iv) the released bioactive TGF-β can be
irreversibly degraded by endogenous proteases.

This leads to the following “actuation dynamics” equation, representing the dy-
namics of activated TGF-β as a function of the concentration of the controller out-
put, LLC concentration, and the levels of participating proteases and integrins.

dTGFβ
dt

=
kcat1 ·P ·LLC
Km1 +LLC

+
kcat2 · I ·LLC
Km2 +LLC

− kdeg ·T GFβ (6)

Here, P and I denote the concentrations of TGF-β -activating proteases and inte-
grins, respectively; kcat1 and kcat2 are turnover numbers; Km1 and Km2 are Michaelis-
Menten constants; and kdeg is the rate of proteolytic degradation of bioactive TGF-β .

Finally, as part of the cell population regulation process, proliferating cells them-
selves produce proteases that promote the activation of TGF-β . In addition, prolifer-
ating cells also produce cell-surface integrins that potentially can associate directly
with, and hence promote the activation of, latent TGF-β . The actuation process
therefore involves feedback loops from the controlled process itself through the pro-
teases and integrins from proliferating cells (see Fig 1). Consequently, in the absence
of further mechanistic information, the simplest way to represent the concentrations
of active proteases, P(t), and of integrins, I(t), is with the following equations:

P(t) = kP ·X (t)+PRT 0 (7)

I (t) = kI ·X (t) (8)

where X is the total cell number (as in Eq (1)); kp is a proportional constant for
protease synthesis/activation from proliferating cells; PRT0 is the constitutive pro-
duction level of proteases in the tissue; and kI is a proportional constant for the
number of integrins from a cell that can potentially bind to latent TGF-β .

2.4 Overall System Model and Parameters

These individual component models may now be connected as indicated in Fig. 1,
resulting in the overall control system model which can now be used to simulate
the closed-loop characteristics of the TGF-β -mediated regulation of cell popula-
tion. The specific model parameter values selected for the simulation studies are
listed in Table 1. The values indicated for the controller parameters (K,Ca,Cb) were
chosen to obtain reasonable control system performance; K is subsequently sub-
jected to parametric analysis in the next section. Although space limitation prevents
a detailed discussion of how the other parameters were determined, we note that
most were estimated from experimental observations reported in the literature (pa,
pb, and r from [12]; d1 and d2 from [13]; kdeg from [14]; kcat1, Km1, kcat2, and Km2
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Table 1. Model parameter values

Parameter Value Parameter Value
pa 0.0531 h−1 Ca 4E-05
pb 1.3451 nM Cb 1.155E+05
r 1.4191 kp 1E-05 nM/cell
p2 0.0531 h−1 PRT0 2 nM
p3 2 nM kcat1 34.83 h−1

m 1 Km1 8.5 μM
d1 0.0355 h−1 kI 5E-06 nM/cell
d2 0.0142 h−1 kcat2 8.1 h−1

d3 4.2 nM Km2 4.25 μM
n 1 kdeg 0.1155 h−1

K 20 nM

from [15]); the remaining few were chosen on the basis of biologically reasonable
considerations.

A local sensitivity analysis was carried out based on the normalized sensitivity
coefficient defined as:

NSCi (t) =
θi

X
∂X(t,θ )
∂θi

∣∣∣∣
θ∗

(9)

where θ and i are the vector of model parameters and parameter index, respectively.
When time-averaged over the duration of the simulation, T = 300 hrs, the resulting
time-averaged sensitivity defined as

< NSCi >=
1
T

∫ T

0

θi

X
∂X(t,θ)
∂θi

∣∣∣∣
θ∗

dt (10)

is shown in Fig. 2. As expected, the parameters that the system response is most
sensitive to are related to the rates of cell growth and death (pa, d1), the responsive-
ness of the cells to TGF-β ’s cytostatic effects (p2), and the controller parameters
(Cb, and K).
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3 Results and Discussion

3.1 TGF-β -Driven Regulation of Normal Cell Growth/Death

The complete control system model may now be used to simulate the dynamic
regulation of the cell proliferation/death process under various conditions.

Nominal Conditions. First, under nominal conditions indicated in Table 1, and from
an initial condition of 1.0× 105 cells in the population, the response of the overall
system to a sustained step input of growth factor implemented at time t = 0 is shown
in Fig. 3. Upon stimulation with growth factor, the cell number increases initially;
but, as a result of an effective TGF-β -mediated controller and actuator, the cell pop-
ulation returns to a new steady state value not too far from the initial value (Fig. 3A).
The dynamics of the amount of latent TGF-β complex (LLC) (controller output) and
of bio-active TGF-β (actuator output) required to achieve this regulation are shown
in Figs. 3B and C respectively. The net result is an increase in the bioactive TGF-β
level to counterbalance the effect of the sustained growth factor stimulus. Observe
that under these nominal conditions, the overall system is stable, and the control
system regulates the cell population effectively.

Effect of controller parameter K. The performance of any control system depends
on the values chosen for the controller parameters. Even though this particular bi-
ological controller is nonlinear and possesses three parameters, we choose to in-
vestigate the effect of the parameter K on the control system performance. This
parameter can be shown to be related directly to the maximum possible controller
gain, and is therefore most reminiscent of the “proportional gain” value in classi-
cal feedback control. In particular, we compare the nominal controller performance
to the controller performance when a “high K” value (corresponding to twice the
nominal value) is used, and also to the performance obtained when a “low K” value
value (corresponding to half the nominal value) is used. The results are shown in
Fig. 4. Compared to nominal performance, the figure shows that a higher K value
results in a lower steady-state cell population, as a direct consequence of higher
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production of latent TGF-β ; a lower K value allows cells to grow more (because
of the consequent lower overall production of latent TGF-β ), resulting in a higher
steady state value for the cell population.

3.2 The Dynamics of Cancer Cell Population

Compared to signalling in normal cells, TGF-β signaling in cancer cells is signif-
icantly different, primarily as a result of alterations in several components of the
TGF-β signaling pathway that occur during cancer progression [16]. In particular,
it is known that cancer cells, because of mutations, deletions, and downregulation,
etc., have significantly fewer functional TGF-β receptors, thereby rendering cancer
cells generally less responsive to TGF-β [17].

To investigate the effect of such reduced TGF-β responsiveness on the overall
dynamics of TGF-β -mediated regulation in a cancer cell population, we start by
observing that the cell population’s responsiveness to TGF-β is represented in the
system model by the parameters p2 and d2, respectively, the effect of TGF-β on the
proliferation rate, p, and the death rate, d. Thus, we investigate the dynamic behav-
ior of the TGF-β -mediated control system under cancerous conditions by comparing
the performance under nominal conditions with the performance when the “respon-
siveness” parameters, p2 and d2, are both reduced simultaneously to 50%, 33.33%,
and 25% of their respective nominal values (corresponding to a 2-, 3-, and 4- fold
reduction in responsiveness).

The simulation results shown in Fig. 5 display several important features. First,
Fig. 5A indicates that as cells become less sensitive to TGF-β , TGF-β naturally be-
comes less effective as a regulator of growth. As such, in response to growth factor
stimulation, the total number of cells in the population increases, reaching progres-
sively higher steady state values as the cells become progressively less responsive.
Beyond a particular point (illustrated in this case by 25% of nominal responsive-
ness), the cells would become so unresponsive—and hence sufficiently resistant to
the anti-growth effects of TGF-β—to the point where the cytokine is no longer ef-
fective in suppressing unwanted proliferation. Inevitably, the cell population will
therefore grow without limit.

Fig. 4. Effect of changes in K: on the cell population (A); the level of inactive TGF-β , LLC
(B); and the level of bioactive TGF-β (C), for “high K,” twice the nominal value (circles),
and “low K,” half the nominal value (triangles)
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These simulation results are supported by experimental observations. For
example, as reported in [18], compared to normal prostatic cells, cells from pre-
malignant prostatic tissue (i.e., benign prostatic hyperplasia) have fewer TGF-β
receptors and tend to proliferate more rapidly. The signature enlargement of such
glands corresponds to the higher steady state cell population values indicated by
the simulation for cells with reduced (but still stabilizable) sensitivity to TGF-β .
On the other hand, malignant prostate cancer cells (e.g., the LNCaP cell line) with
their much higher proliferative potential, have even fewer TGF-β receptors [19],
making them much more recalcitrant to TGF-β ’s tumor suppressor effects. This sit-
uation corresponds to the uncontrollable growth indicated in the simulation when
the responsiveness is reduced to 25%.

Next, the results in the other plots (Figs. 5B, C and D) show another impor-
tant feature of this control system: how the ineffectiveness of TGF-β in regulating
the cell population has a compounding destabilizing effect that is typical of open
loop unstable systems under ineffective feedback control. Observe that when the
cell responsiveness is reduced to 25% of the nominal value, in response to growth
factor stimulation, the cell population increases to a higher than normal level as
a consequence of the lack of sensitivity to the anti-growth effect of TGF-β ; the
increasing cell population in turn causes the TGF-β producer cells to secrete an
increasing amount of the latent TGF-β complex in an effort to regulate the rapid
growth (Fig. 5B). Furthermore, the proliferating tumor cells themselves produce a
growing amount of proteases which then participate in the enzymatic activation of
TGF-β , in addition to promoting the synthesis and activation of such enzymes in
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the microenvironment (Fig. 5C). The increased level of active proteases, in turn,
results in rapid degradation of the extracellular matrix (ECM) components, ulti-
mately leading to increased and expedited release of bioactive TGF-β from the
ECM. The increased number of cancer cells also provide more integrins that can
bind to latent TGF-β , thereby facilitating TGF-β activation by cell traction force.
The net effect is shown in Fig. 5D where the amount of bioactive TGF-β is seen to
increase exponentially in an effort to suppress runaway growth in a population of
cells that have become resistant to TGF-β .

This final point is crucial to our understanding of the TGF-β paradox. It now
appears evident from these simulations that the observed increased level of TGF-β
is a consequence of the acquired TGF-β resistance exhibited by the cancer cells, not
the cause; as such, the correlation between the increased level of TGF-β and poor
prognosis, while real, should not have been interpreted as implying that the former
caused the latter. The implications are that as pre-malignant cells lose their respon-
siveness to TGF-β along the spectrum of tumor progression, a still-intact control
system must secrete more of this cytokine in a futile attempt to achieve the level of
tumor suppression attainable with normal, responsive cells. (On a single cell level,
this is consistent with our previous mathematical model of intracellular TGF-β sig-
naling [5] which showed, among other things, that the amount of TGF-β needed to
produce a saturated Smad-mediated response in a cancer cell is far higher than that
in healthy cells, implying that to elicit nuclear Smad-mediated (growth-inhibitory)
activity, cancer cells require more TGF-β than normal.) Our control system model
therefore indicates that there is no paradox: TGF-β remains a tumor suppressor; and
observing increased levels of TGF-β in poor prognosis patients is entirely consis-
tent with TGF-β ’s role as a tumor suppressor attempting to regulate the growth of
aberrant cells that have lost their sensitivity to the cytokine.

4 Conclusions

We have studied the role of TGF-β in normal and cancerous cells using a control
engineering model of TGF-β -mediated regulation of cell population dynamics. In
particular, the results of our study indicate that the correlation between increased
levels of TGF-β and poor prognosis may have been inadvertently misconstrued as
causality, creating an apparent paradox. Our results indicate that the clinically ob-
served increased TGF-β level in cancerous tissues is not an indication that the tumor
suppressor role of TGF-β has changed fundamentally. Rather, the control system
perspective supports the hypothesis that the role of TGF-β as a tumor suppressor
is unchanged, and further stipulates that the level of TGF-β should in fact increase
in an attempt to elicit normal responses from a tumor that is becoming increasingly
resistant to this cytokine. Thus, the clinical observations are actually consistent with
a TGF-β whose role as a tumor suppressor remains unchanged.

A key next step is to validate this hypothesis experimentally, in-vitro, using the
following approach. Several cancer cell lines along the spectrum of cancer progres-
sion from normal to highly malignant, whose functional TGF-β receptor levels are
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well-characterized, will be stimulated with identical amounts of growth factors and
allowed to begin proliferating. Measured amounts of TGF-β will then be added to
each growing population progressively until growth is arrested. The amount of TGF-
β required to suppress growth completely will then be noted for each cell line. If
the hypothesis is true, it is expected that higher amounts of TGF-β will be required
to suppress growth completely for the more malignant cell-lines.

If this control system hypothesis is confirmed, the consequences for how TGF-
β ligand and TGF-β receptors are used as therapeutic agents could be significant.
Specifically, it will mean that the current approach of targeting TGF-β ligand ther-
apeutically may have to be abandoned in favor of re-sensitizing the cells to the tu-
mor suppressive effect of the TGF-β , similar to treatment for diabetes mediated by
prolonged insulin-resistance.
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A Mathematical Model of Air-Flow
Induced Regional Over-Distention
during Mechanical Ventilation:
Comparing Pressure-Controlled and
Volume-Controlled Modes

P.S. Crooke�, A.M. Kaynar, and J.R. Hotchkiss

Abstract. In this paper we study a five compartment lung model to examine
the effects of heterogeneity (i.e., different portions of the lungs have different
impedance characteristics) on physiologic outcomes using two common modes
of mechanical ventilation: pressure-controlled (PCV) and volume-controlled
(VCV). In particular, we attempt to answer the question: If heterogeneity
exists in the lungs, then does one mode produce lower peak alveolar pressures,
given a desired overall tidal volume? A third type of mechanical ventilation,
decelerating flow ventilation (DFV), is also considered and it is shown that
an optimal initial flow (a multiple of the desired minute ventilation) exists
that will minimize peak compartmental pressures.

Keywords: model, mechanical ventilation, mutli-compartment, pressure-
controlled ventilation, volume-controlled ventilation, decelerating flow
ventilation.

AMS Classification: 92C30, 92C50.

1 Introduction

Mechanical ventilation can–by itself–damage the lungs. This contention is
supported by many experiments in animals (see [1]). Elegant experimental
work indicates that airspace overdistention (i.e., volutrauma), rather that
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elevated distending pressures (i.e., barotrauma) per se, causes the injury [2].
Clinical studies are also consistent with the hypothesis that airspace overdis-
tention during mechanical ventilation is injurious ([3, 4]). Restricting the tidal
volume (VT ) during mechanical ventilation decreases mortality in Acute Res-
piratory Distress Syndrome (ARDS), as well as the risk of acute lung injury
in other settings ([5]). Animal studies [6] have demonstrated the ventilatory-
induced lung injury (VILI) is regionally heterogeneous and correlates with
cyclical airway collapse and recruitment.

Disease/injured lungs are mechanically heterogeneous, both in the set-
ting of ARDS and in the context of Chronic Obstructive Pulmonary Disease
(COPD). Interaction between the applied pattern of ventilation and mechan-
ical heterogeneity would be expected to cause differences in the peak strains
(i.e., peak airspace volumes) among different regions of the lungs. In the
clinical setting, we can only control global strain during volume controlled
ventilation (VCV) by changing tidal volume and/or positive end expiratory
pressure (PEEP). During pressure controlled ventilation (PCV), we can only
control global peak stress via modification of set inspiratory pressures and
PEEP. Moreover, the outcome of our interventions can only be measured as
global strain during VCV or global stress during PCV. Apart from global
measures of stress and strain during mechanical ventilation, we cannot in-
fer regional stresses or strains in the clinical setting using currently avail-
able methods. This may lead to unrecognized overdistention and subsequent
injury in mechanically ventilated patients.

During VCV, one of the commonly referred guides is to restrict peak pres-
sures along with tidal volumes, thus lessening the risk of lung injury ([7, 8]).
However, analysis of neither experimental nor clinical data could not identify
a break point in peak pressures below which restricting the tidal volume no
longer decreased adverse consequences([9, 10]).

In this in silco study, we used a mathematical model to evaluate the
hypothesis that VCV increases the incidence of regional overdistention as
compared to PCV. This topic has recently been investigated from a clini-
cal perspective ([11–15]). The model allows one to explore the magnitude of
potential heterogeneity in peak regional strains during volume controlled as
compared to pressure controlled ventilation. We also investigated the sen-
sitivity with which common clinical measures would be expected to detect
elevated regional strains. The in silico approach permits more detailed ex-
amination of a greater number of impedance configurations than would be
practical in the experimental or laboratory settings.

2 The Mathematical Model

Mathematical models ([16, 17]) have been developed to predict clinical
outcomes such as tidal volumes, mean alveolar pressures, end-expiratory
pressures, given the physiologic parameters of the patient and the ventilator
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Fig. 1. Model lung configuration

settings. Some models ([19]) have incorporated two heterogeneous compart-
ments (i.e., two compartments with different compliances and resistances).
To approximate the notion of heterogeneity of the lungs, our model is com-
posed of five compartments as depicted in Figure 1. Each compartment has
separate impedance characteristics. We studied the compartmental volumes
over one cycle of mechanically controlled breathing which is composed of two
segments: inspiration and expiration. The time of one cycle is denoted by ttot.
Inspiration occurs during the time-interval, 0 ≤ t ≤ ti and expiration during
ti ≤ t ≤ ttot. For PCV, we control the airway pressure (Paw) and assume that
during inspiration, Paw ≡ Pset, 0 ≤ t ≤ ti . For VCV, the airway flow (Qaw)
is controlled during inspiration. The assumptions for expiration are identical
in either mode of ventilation, namely, Paw ≡ PPEEP , ti ≤ t ≤ ttot.

The mathematical model for the five compartments as shown in
Figure 1 is constructed using pressure and flow balances at junction points
and along segments that are depicted in Figure 2. To illustrate the con-
struction of the model, we consider the balances in the pressure controlled
case when Paw(t) ≡ Pset. In the compartments (A,B,C,D,E), the compli-
ance of each compartment is denoted by Cj , the resistances by Rj , and end-
expiratory pressures by Pexj . The pressure in each compartment is the sum
of resistive (RjQj), elastic (Vj/Cj) and residual (Pexj

) where Vj is the in-
stantaneous compartment volume and Qj = dVj/dt is the flow in or out of
the compartment. The resistances along the three connection segments are
denoted by RLTR, RLBR, and RRMR. Using this information, the following
13 equations involving the unknown compartment volumes (Vj) and compart-
ment flows (dVj/dt) are used to develop the system of differential equations
for the compartmental volumes:
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Fig. 2. Dynamic volume for each compartment for two modes of ventilation:
pressure-controlled (PCV-red) and volume-controlled (VCV-blue). Here the com-
partmental compliances are 0.01 L/cm H2O and there is heterogeneity in the com-
partmental resistances: RA = RB = 10, RC = 15, RD = RE = 5 cm H2O/(L/sec)
The overall volumes for both modes of ventilation are shown in the last panel

P1 = Pset

Qaw = Q1 + Q3

P2 = P1 − RLTRQ1

Q1 = QA + Q2

P2 = RAQA + (1/CA)VA + PexA

Q2 = QB + QC

P3 = P2 − RLBRQ2

P3 = RBQB + (1/CB)VB + PexB

P3 = RCQC + (1/CC)VC + PexC

Q3 = QD + QE

P4 = P1 − RRMRQ3

P4 = RDQD + (1/CD)VD + PexD

P4 = REQE + (1/CE)VE + PexE

(1)

From the system of equations in (1) which governs the dynamics during
inspiration, we can solve for the compartmental flows to obtain a system of
differential equations:
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where P̃
(i)
j depends on the end expiratory pressure (Pexj

) and the airway

pressure (Pset). The coefficients (α(i)
j , β(i)

j , γ(i)
j , δ(i)

j , and ε
(i)
j ) of the com-

partmental volume terms depend on the physiologic parameters (compliance
and resistance of each compartment). The superscript on these constants,
(i), denote the values of these constants during inspiration. At the start of
inspiration we assume the compartmental volume is measured from its resid-
ual volume (Pexj/Cj) and hence, we assume V (i)

j (0) = 0, j = A,B,C,D,E,
which provide the initial conditions for the system of differential equations.
We note that at this point in the model development, the end expiratory
pressures are unknown. They will be determined after the expiratory part of
the model is solved. We denote the solutions of (2) as V (i)

j (t), 0 ≤ t ≤ ti,
j = A,B,C,D,E.

Using the same pressure and flow balance equations as in (1), except that
we have Paw = Ppeep, ti ≤ t ≤ ttot, the corresponding system of differen-
tial equations can be obtained for the volumes in each compartment during
expiration. In particular, we find:
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where P̃
(e)
j depends on Pexj and the applied PEEP (PPEEP ). The initial

conditions for (3) are V (e)
j (ti) = V

(i)
j (ti) and the resulting solutions of this

initial-value problem are denoted as V (e)
j (t), ti ≤ t ≤ ttot.

Having the solutions of (2) and (3), the end-expiratory pressures for each
compartment can be determined by requiring that V (e)

j (ttot) = 0 for j =
A,B,C,D,E. This is accomplished by solving a linear system of algebraic
equations for PexA , PexB , PexC , PexD , PexE . Once this is done, we have the
solutions for the model equations. In particular,

Vj(t) =

{
V

(i)
j (t) if 0 ≤ t ≤ ti

V
(e)
j (t) if ti ≤ t ≤ ttot

(4)

for j = A,B,C,D,E.
A similar exercise can be performed in the case of volume-controlled ven-

tilation. In this case the flow at the airway is controlled by the ventilator
i.e., Qaw = Qset where Qset is a fixed flow that is related to the desired tidal
volume, VT . Since there is little difference in the derivation, we do not include
the details here.
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3 Model Simulations

In this section we perform simulations of the model developed in the previous
section. In particular, we investigate the effect of compartmental resistances
(RA, RB, RC , RD, RE), compartmental compliances (CA, CB, CC , CD, CE),
and the resistances of connecting airways (RLTR, RLBR, RRMR) on the end-
expiratory and peak compartmental pressures using the two modes of ven-
tilation (PCV and VCV) with both types of ventilation delivering the same
tidal volume over one breath. We attempt to show that for certain combina-
tions of parameters in each class (compartmental resistances, compartmental
compliances, and connecting airway resistances), volume-controlled ventila-
tion (with Qaw(t) = Qset) produces larger peak compartmental pressures and
larger variations between highest and lowest peak compartmental pressures.

The mathematical model developed in the previous section allows one
to compute tidal volumes (V (i)

j (ti) = VTj ), end-expiratory pressures (Pexj )

and peak-pressures (Ppkj = V
(i)
j /Cj + Pexj ) for each compartment and

the overall system for each mode of ventilation. In the first set of sim-
ulations, we have chosen a setup where we vary compartmental resis-
tances, but we keep the compartment compliances fixed along with the
resistances of the connecting airway. Each compartment has the same com-
pliance (CA = CB = CC = CD = CE = 0.01 L/cm H2O) so that
the overall compliance is C = 0.05 L/cm H2O, and the resistances of
the individual connecting airways are set as RLTR = 4 cm H2O/L/sec,
RLBR = 9 cm H2O/(L/sec) and RRMR = 5 cm H2O/(L/sec). The length
of a breath was set at 2 sec with a duty cycle of 0.5 so that ti = 1 sec. In
the pressure-controlled mode, Pset = 30 cm H2O with a peep of 5 cm H2O.
In the volume-controlled mode, the flow was chosen to produce the same
tidal volume: VT = 1.15314 L. Simulations were performed using fixed com-
pliances and connecting airway resistances while letting the compartmental
resistances vary from 5− 15 cm H2O/L in increments of 5. This calculation
gives 243 combinations for which we have compartmental volumes and pres-
sures. In Figures 2-3, we illustrate one of the simulations. The resistances for
the individual compartments were assigned the values: RA = 10, RB = 10,
RC = 15, RD = 5 and RE = 5 (all with the units cm H2O/(L/sec)). Figure 2
shows the dynamic volumes for inspiration and expiration over one breath for
the individual compartments. It is interesting to note that the volume profiles
for each compartment can be quite different in appearance than the overall
volume profile. In Figure 3, we compare peak pressures and end-expiratory
pressures for each compartment. For PCV (Paw ≡ 30 cm H2O), the maximum
compartmental peak pressure was 29.968 and the minimum compartmental
peak pressure was 27.623. For VCV with the same tidal volume, the max-
imum compartmental peak pressure was 34.616 and the minimum 27.432.
Hence, for this relatively small range of compartmental resistances, there is a
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Fig. 3. Peak pressures and end-expiratory pressure for each compartment with
each mode of ventilation (red-PCV, blue-VCV) for Figure 2
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Fig. 4. Dynamic volume for each compartment for two modes of ventilation:
pressure-controlled (CP-red) and volume-controlled (CF-blue). Here the compart-
mental resistances are 5 cm H2O and there is heterogeneity in the compartmental
compliances: CA = CB = CD = CE = 0.01, CC = 0.02 L/cm H2O.

difference of 4.648 cm H2O between the two modes of ventilation. For a
clinician, having a peak pressures over 30 cm H2O in one of the compartments
is significant.

A second set of simulations was performed where the compartmental resis-
tances were fixed at 5/cm/H2O/(L/sec) while letting the compartmental
compliances vary between 0.01 − 0.03 L/cm H2O. Simulations for one of
these combinations are shown in Figures 4-5. In this case, the compartmen-
tal compliances were set at CA = CB = CC = CD = CE = 0.01 L/cm H2O
and CC = 0.02 L/cm H2O. The peak compartmental pressure for PCV was
29.97 cm H2O and for VCV it was 33.94 cm H2O. As one can see from
Figure 5, the end-expiratory pressures for both modes of ventilation were
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Fig. 5. Peak pressures and end-expiratory pressure for each compartment with
each mode of ventilation for Figure 4
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Fig. 6. Peak pressures and end-expiratory pressure for each compartment with
each mode of ventilation for varying connecting airways resistances

very close and hence, the difference in peak pressures were due to dynamic
effects.

A third set of simulations had the compartmental compliances set at
0.02 L/cm H2O and the compartmental resistances set at 5/cm/H2O. The
resistances for the connecting airways, RLTR, RLBR and RRMR, were
then varied between 5−15 cm H2O/(L/sec). For RLTR = 5, RLBR = 10, and
RRMR = 15, the ratio between the maximum and minimum peak pressures
was 1.04 for PCV and 1.45 for VCV. The peak pressures and end-expiratory
pressures are shown in Figure 6.

In the simulations above, the PEEP was set at 5 cm H2O. When no PEEP
was used in the simulations, the differences between the smallest and largest
compartmental peak pressures in VCV increased. For example in the third
set of simulations, the ratio of the largest-to-smallest ratio is 1.45 in the case
when PPEEP = 5 and 1.58 when PPEEP = 0. Hence, it appears that PEEP
tends to mollify the heterogeneity effects. Comparisons in the Ppeak and Pex

for the case of PEEP and no-PEEP are shown in Figure 7. When PPEEP =
10 cm H2O, the ratio between the largest and smallest peak compartmental
pressure was 1.34 for VCV. In Table 1, we summarize the effect of PEEP on
the the maximum and minimum compartmental pressures and their ratio.
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Table 1. The effect of PEEP on max. and min. peak compartmental pressures in
VCV case

PEEP Max-Min Ratio Max Ppeak Min Ppeak

0 1.58 34.36 21.25
2.5 1.52 34.00 22.43
5.0 1.45 33.64 23.12
7.5 1.39 33.27 23.81
10.0 1.34 32.91 24.50
12.5 1.29 32.55 25.18
15.0 1.24 32.18 25.87

Besides VCV and PCV, decelerating flow ventilation is often employed in
the ICU. In this mode of ventilation, a controlled flow is given at the airway
opening during inspiration. In particular, if Qaw(t) denotes the airway open-
ing flow, then Qaw(t) = α − βt where α and β are positive constants. We
use our mathematical model to compare decelerating flow ventilation (DFV)
against VCV (with Qaw(t) = Qset) in the five compartment system. Keeping
the same inspiratory time and requiring Qaw(ti) = 0, we choose α = VT /ti
and β = VT /t

2
i . Using different combinations of compartmental compliances,

compartmental resistances, and connecting airway resistances we studied
the peak compartmental pressure and the ratio between the highest and
lowest peak compartmental pressures. From these studies (by varying the
impedance parameters of the compartments over clinically relevant ranges),
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it appears that DFV counteracts the effects of variation in the impedance
characteristics.

In DFV, the clinician has the choice of the initial flow. The choice of
this initial flow is often a multiple of the desired minute ventilation which
we term, minute ventilation factor (V̇E factor). We investigated the effects
of the the minute ventilation factor on variation of the peak compartmen-
tal pressures. To illustrate this effect, we set the compartmental resistances
set at 5 cm H2O/(L/sec), RLTR = RLBR = 5 cm H2O(/L/sec), and
RRMR = 10 cm H2O/L/sec and varied the minute ventilation factor. These
computations are summarized in Figure 8. It appears that the largest com-
partmental peak pressure is minimized when V̇E factor = 4. This is in agree-
ment with the ventilator management standard that the initial flow in DFV
should be approximately 5 times the desired minute ventilation.
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Fig. 8. Peak compartmental pressure as a function of minute ventilation factor

It is relatively easy to add compartments to the model and to change the
topology of the network (e.g., a three branch network). However, the present
setup for the model illustrates that differences exists between the two basic
modes of ventilation.

4 Discussion

Our results demonstrate that, at a fixed tidal volume and in the presence of
compartmental heterogeneity, the following observations can be made from
the model:

• There can be substantial heterogeneity in peak compartmental pressures
on the order of several centimeters of water during both pressure control
(PCV) and volume controlled ventilation (VCV);
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• The peak compartmental pressure never exceeded the set airway opening
pressure during pressure control ventilation (30 cm H2O). In contrast,
during VCV at the same tidal volume, peak compartmental pressures could
be as high as 35 cm H2O;

• The degree of heterogeneity in peak compartmental pressures was lower
with PCV than with VCV;

• The addition of positive end expiratory pressure (PEEP) attenuates the
heterogeneity of peak strain during VCV;

• There is sequential filling of compartments in volume VCV, as some
compartments fill progressively more rapidly during inspiration, whereas
during PCV flow into all compartments falls during inflation.

The heterogeneity of peak compartmental pressures, and presumably strains,
would not be evident under current clinical monitoring approaches (primar-
ily the measurement of peak pressure). Accordingly, clinical protocols or trials
predicated on limiting tidal volume and/or monitoring peak
pressures would not detect regional overdistention. Importantly, the mag-
nitude of the differences is clinically relevant: in VCV, the peak compart-
mental pressures could be well above those targeted in the ARDSNet trial,
despite a peak pressure that was of acceptable magnitude. These findings
could, in part, explain the inability of Brower et al. [5] to identify a safe peak
pressure (or a breakpoint in mortality at a specific level of peak pressure)
during volume cycled ventilation. Because peak pressure is a global mea-
sure obtained after an end inspiratory pause, regional overdistention can be
present even at a low peak pressure. Accordingly, particularly during VCV,
ventilation at acceptable peak pressures could be accompanied by regional
overdistention of a potentially injurious magnitude, triggering focal lung in-
jury, increased regional permeability, and cytokine release. It is intriguing to
speculate that such processes could promote more diffuse lung injury either
via release of proinflammatory mediators, or by reducing the compliance of
the most severely overstressed lung region and consequently increasing the
stress on other, more remote, regions. Lung injury could thus progress consid-
erably before being reflected in a clinically detectable change in peak pressure
or compliance.

In contrast to the situation during VCV, the peak distending pressures
during PCV never exceed the pressure at the airway opening. Accordingly,
if Paw is limited to less than 30 cm H2O, no compartment will experience
a peak stress greater than this value. As PCV has been shown to produce
the same tidal volumes at lower set airway pressures than VCV ([13]), this
suggests that it may have less potential for regional overdistention. More-
over, if impedance characteristics are changing (for example, due to mucous
plugging, progressive edema formation, bronchospasm, or pleural processes),
PCV ensures that no compartment will be even transiently exposed to un-
acceptable distending pressures, as long as adequate inspiratory times are
ensured. These benefits must be weighed against the potential for greater
shearing forces due to more rapid compartmental filling.
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In this model, applied PEEP reduced heterogeneity of peak compartmen-
tal pressures during VCV, most likely as a result of modulating expiratory
dynamics. The effect was less marked in PCV, where compartmental pres-
sure gradients play a larger role in setting total initial inspiratory flow. This
suggests that the application of PEEP, even in a linear system, might have
salutary effects on the distribution of peak stresses and the accompanying
strains. Notably, studies demonstrating no benefit of PEEP in ARDS have
titrated this parameter based on oxygenation and FIO2; our results suggest
that there might be a mechanics-related benefit even in the absence of re-
cruitment/derecruitment. Our model did not incorporate impedance charac-
teristics (e.g., Cj is a function of Vj) that change during the respiratory cycle
(such as recruitment/derecruitment of lung regions). It seems likely that the
lack of flow limitation during PCV (promoting more rapid inspiratory filling)
would aid in recruitment; however, this is at present an unproven hypoth-
esis. Moreover, although Chellboina et al. [18] have elegantly demonstrated
that linear multicompartment models are dynamically stable, such stability
might not obtain in multicompartment models having nonlinear compart-
mental impedance characteristics. The extent to which the benefits of PCV
could be obtained by applying a linearly decelerating flow pattern is also not
certain. Our preliminary work in this area suggests that decelerating flow
VCV attenuates but does not eliminate compartmental heterogeneity, and
PCV still results in less regional overdistention. Nonetheless, the advantages
of PCV in the setting of unstable impedance characteristics remain.

5 Conclusions

Our results indicate that there can be substantial heterogeneity of peak com-
partmental pressures during VCV, and that this heterogeneity can be of
a clinically relevant magnitude. PCV is accompanied by less regional het-
erogeneity and lower maximal compartmental distending pressures. Even
with modest airway flows, there can be substantial regional overpressure
during VCV. More detailed analyses, encompassing biological validation,
techniques for detecting overdistention from airway opening flow/pressure
tracings ([20–22]), and other flow patterns are warranted.

References

[1] Belperio, J.A., et al.: Critical role for CXCR2 and CXCR2 ligands during
the pathogenesis of ventilator-induced lung injury. J. Clin. Invest. 110(11),
1703–1716 (2002)

[2] Hernandez, L.A., Peevy, K.J., et al.: Chest wall restriction limits high airway
pressure-induced lung injury in young rabbits. J. Appl. Physiol. 66(5), 2364–
2368 (1989)



A Mathematical Model of Air-Flow Induced Regional Over-Distention 281

[3] Amato, M.B.P., Barbas, C.S.V., et al.: Effect of a protective-ventilation strat-
egy on mortality in the Acute Respiratory Distress Syndrome. N. E. J.
Med. 338, 347–354 (1998)

[4] Brower, R.G., Lanken, R.N., et al.: Higher ver sus lower positive end-expiratory
pressures in patients with the Acute Respiratory Distress Syndrome. N. E. J.
Med. 351, 327–336 (2004)

[5] Brower, R.G.: Mechanical ventilation in acute lung injury and ARDS. Crit.
Care Clinics 18, 1–13 (2002)

[6] Sinclair, S.E., Chi, E., Line, H., Altemeier, W.A.: Positive end-expiratory pres-
sure alters the severity and spatial heterogeneity or ventilator-induced lung
injury: An argument for cyclical airway collapse. J. Crit. Care (in press)

[7] Moran, J.L., Bersten, A.D., Solomon, P.J.: Meta-analysis of controlled tri-
als of ventilator therapy in acute lung injury and acute respiratory distress
syndrome: an alternative perspective. Intensive Care Med. 31, 227–235 (2005)

[8] Keszler, M.: Volume-targeted ventilation. Early Hum. Dev. 82, 811–818 (2006)
[9] Hager, D.N., Krishnan, J.A., et al.: ARDS Clinical Trials Network. Tidal vol-

ume reduction in patients with acute lung injury when plateau pressures are
not high. Am. J. Respir. Crit. Care Med. 172(10), 1241–1245 (2005)

[10] Jardin, R., Vieillard-Baron, A.: Is there a safe plateu pressure in ARDS? The
right heart only knows. Intensive Care Med. 33, 444–447 (2007)

[11] Boussarsar, M., Thierry, G., et al.: Relationship between ventilatory settings
and barotraumas in the acute respiratory distress syndrome. Inten. Care
Med. 28, 406–413 (2002)

[12] Hinz, J., Moerer, O., et al.: Regional pulmonary pressure volume curves in me-
chanically ventilated patients with acute respiratory failure measured by elec-
trical impedance tomography. Acta Anaesthesial. Scand. 50, 331–339 (2006)

[13] Unzueta, M.C., Casas, J.I., Moral, M.V.: Pressure-controlled versus volume-
controlled ventilation during one-lung ventilation for thoracic surgery. Anesth.
Analg. 104, 1029–1033 (2007)

[14] Hinz, J., Gehoff, A., et al.: Regional filling characteristics of the lungs in me-
chanically ventilated patients with acute lung injury. European J. Anaesth. 24,
414–424 (2007)

[15] Satoru, I., Lutchen, K.R., Suki, B.: Effects of heterogeneities on the parti-
tioning of airway and tissue properties in normal mice. J. Appl. Physiol. 102,
859–869 (2007)

[16] Marini, J.J., Crooke, P.S., Truwit, J.D.: Determinants and limits of pressure-
preset ventilation: a mathematical model of pressure control. J. Appl. Phys-
iol. 67, 1081–1092 (1989)

[17] Crooke, P.S., Kongkul, K., et al.: Mathematical models for pressure controlled
ventilation of oleic acid-injured pigs. Math. Med. Biol. 22, 99–112 (2005)

[18] Chellaboina, V., Haddadit, W.M., et al.: Limit cycle stability analysis of a
multi-compartment model for a pressure-limited respiratory and lung mechan-
ics system. In: Proceedings of the 2007 American Control Conference, New
York City, July 11-13, pp. 2024–2029 (2007)

[19] Crooke, P.S., Head, J.D., Marini, J.J.: A general two-compartment model for
mechanical ventilation. Math. Comp. Mod. 24, 1–18 (1996)



282 P.S. Crooke, A.M. Kaynar, and J.R. Hotchkiss

[20] Ranieri, V.M., et al.: Pressure-time curve predicts minimally injurious venti-
latory strategy in an isolated rat lung model. Anesthesia 93 (2000)

[21] Crooke, P.S., Marini, J.J., Hotchkiss, J.R.: A new look at the stress index for
lung injury. J. Biol. Systems 13, 261–272 (2005)

[22] Wolf, G.K., Grychtol, B., et al.: Regional lung volume changes in children
with acute respiratory distress syndrome during a derecruitment maneuver.
Pediatric Grit. Care 35, 1972–1978 (2007)



Positive Feedbacks Contribute to the
Robustness of the Cell Cycle with
Respect to Molecular Noise

Didier Gonze and Marc Hafner

Abstract. Most cellular oscillators rely on interlocked positive and negative
regulatory feedback loops. While a negative circuit is necessary and sufficient
to have limit-cycle oscillations, the role of positive feedbacks is not clear.
Here we investigate the possible role of positive feedbacks in the robustness
of the oscillations in presence of molecular noise. We performed stochastic
simulations of a minimal 3-variable model of the cell cycle. We compare
the robustness of the oscillations in the 3-variable model and in a modified
model which incorporates a positive feedback loop through an auto-catalytic
activation. We find that the model with a positive feedback loop is more
robust to molecular noise than the model without the positive feedback loop.
This increase of robustness is parameter-independent and can be explained
by the attractivity properties of the limit-cycle.

1 Introduction

Biological rhythms occur at various levels of the physiological organisa-
tion [16]. They are often generated at the cellular level through com-
plex interactions among genes, proteins, and metabolites [32]. Most cellular
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oscillators rely on interlocked positive and negative regulatory feedback loops
[17, 18, 41]. Examples include the so-called Calcium-Induced Calcium Release
mechanism responsible for the periodic calcium spiking [31], the p53/Mdm2
oscillator which induces oscillations of p53 in response to stress [6], the
Delta/Notch oscillator involved in somitogenesis [34], the CDK/cyclin net-
work controlling the cell cycle [7, 33], and the circadian clock controlling the
daily rhythms of the organism [3, 5, 12, 37].

Mathematical modeling of biological oscillators has shown that a sin-
gle delayed negative feedback loop is sufficient to generate self-sustained
oscillations [13, 15, 22, 32]. An experimental demonstration of this pre-
diction was recently brought by synthetic biology [8]: a minimal synthetic
oscillator involving genetically engineered gene-promoter constructions was
implemented in a bacterium and, in agreement with a theoretical model,
exhibits oscillations in gene expression. Thus we may inquire into the role
and advantage of additional positive feedback loops observed in most natural
cellular oscillators.

Using several prototypical models, Tsai et al (2008) [41] performed a se-
ries of simulations showing that positive feedbacks lead to a greater tunability
of the frequency and to an increase of the domain of conditions (region of
the parameter space) which lead to limit-cycle oscillations. Hasty et al [25]
proposed a theoretical model based on interlocked positive and negative feed-
back loops and showed that such a design, when coupled to another genetic
oscillator, is capable of entrainment and of amplified oscillations. Recently,
guided by the predictions of computational models, Stricker et al (2008) [40]
designed and constructed an artificial oscillator based on interlinked positive
and negative feedback loops. This study confirmed that the positive feed-
back loop enhances the tunability of the system’s frequency and increases
the robustness of the oscillations over a larger number of conditions.

In the present work, our aim is to check if the positive feedback loop may
also lead to a higher robustness of the oscillations with respect to molecular
noise. Several works already showed that oscillators based on positive and
negative regulatory elements make oscillations more resistant to fluctuations
[1, 42], but no comparative study showed how the addition of a positive
feedback to an oscillator affects its robustness. We consider here two minimal
models for the cell cycle. The first one is only based on a negative feedback.
The second one has the same architecture, but incorporates an additional
positive feedback. We performed stochastic simulations using the Gillespie
algorithm [11] and we quantify the robustness of the oscillations using the
auto-correlation function [20] and the distribution of the periods. We show
that the positive feedback loop increases the robustness of the oscillations
independently of the parameter values, and we provide a possible explanation
for this observation.
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2 Model

We consider here a minimal model proposed by Goldbeter (1991) for the frog
embryonic cell cycle [13]. The model is schematized in Fig. 1 (left panel).
The oscillator involves the activation of a cyclin-dependent kinase (CDK1)
by Cyclin B, and the CDK1-induced degradation of Cyclin B by an ubiqui-
tin ligase, which is part of the ubiquitin-mediated proteolysis system. Once
activated, CDK1 triggers the entry into mitosis.

In an extension of the model, Goldbeter (1993) included an additional
positive feedback loop, mediated by the CDC25 phosphatase [14]. In this
work, the positive feedback was modeled with an additional variable, standing
for the active fraction of CDC25. The latter is activated by CDK1 and, once
active, CDC25 activates CDK1. Here we simplify this model by considering
a direct feedback of CDK1 on itself (Fig. 1, right panel). This can be seen as
an auto-catalytic process.

Fig. 1. Schemas of the two models. Left: 3-variable model [13]. Right: 3-variable
model including a positive feedback loop (auto-catalysis) (adapted from [14]). Vari-
ables C, M , and X denote the Cyclin B, the active form of CDK1 kinase, and
the active cyclin protease, respectively. The variables indicated with a bar refer to
their inactive form. Solid arrows denote biochemical reactions, while dashed arrows
indicate positive regulations.

The time evolution of the three variables is governed by the following
system of kinetic equations (see refs. [13, 14] for a detailed description of the
equations and the parameters):

dC

dt
= vi − vdX

C

Kd + C
− kdC (1)

dM

dt
= vm1(a+ bM)

C

Kc + C

Mtot −M

K1 +Mtot −M
− vm2

M

K2 +M
(2)

dX

dt
= vm3M

Xtot −X

K3 +Xtot −X
− vm4

X

K4 +X
(3)
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Table 1. Stochastic version of the cell cycle model. The variables indicated with
a bar refer to their inactive form. Note also that Mtot and Xtot are here the total
number of molecules of M and X. Mtot and Xtot are obtained by multiplying the
concentration as given in the deterministic version by Ω.

No Reaction Propensity

1 → C w1 = viΩ

2 C → w2 = vdX
C

KdΩ + C
+ kdC

3 M̄ → M w3 = vm1(aΩ + bM)
C

KcΩ + C

Mtot − M

K1Ω + Mtot − M

4 M → M̄ w4 = v2Ω
M

K2Ω + M

5 X̄ → X w5 = vm3M
Xtot − X

K3Ω + Xtot − X

6 X → X̄ w6 = v4Ω
X

K4Ω + X

In these equations, the variables denote the concentration of Cyclin B (vari-
able C), of active CDK1 kinase (M), and of active cyclin protease (X). Note
that in the original version, M and X were the fraction of active CDK and
protease but, in order to facilitate the conversion to the stochastic version
of the model, we write here all the variables in terms of concentration and
consider that the total amount of M and X are Mtot and Xtot. The term
a + bM has been introduced in this version. Parameter a, kept equal to 1
in all the following simulations, controls the negative feedback. The positive
feedback is effective when b > 0. In the following we will compare the case
where b = 0 (no positive feedback) and b = 1 (effective positive feedback).
It is interesting to underly that, in this version of the model, the positive
feedback can thus be added continuously through a progressive increase of
one parameter (b).

To take into account the fluctuations arising from the limited number
of molecules, we need to resort to stochastic simulations. We use here the
Gillespie algorithm to simulate a stochastic version of the model as given in
Table 1. This Table lists the six reaction steps that define the model as
well as their corresponding propensities. These propensities are directly re-
lated to the kinetic rates and depend on the number of molecules present in
the system, controlled by the system size Ω. Note that we use here directly
the Michaelis-Menten functions to compute the propensities. An alternative
would be to decompose these kinetics into a set of elementary reaction steps,
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Fig. 2. Deterministic vs stochastic oscillations. (A,C) Model without auto-catalysis
(b = 0). (B,D) Model with auto-catalysis (b = 1). (A,B) Deterministic oscillations.
(C,D) Stochastic oscillations for Ω = 1000. Parameter values: vi = 0.025 nM/min,
vd = 0.25 nM/min, Kd = 0.02 nM, kd = 0.01 min−1, vm1 = 3.0 min−1, vm2 = 1.5
min−1, vm3 = 1.0 min−1, vm4 = 0.5 min−1, K1 = K2 = K3 = K4 = 0.005 nM,
Kc = 0.5 nM, Mtot = Xtot = 1 nM, a=1nM. In panels A and B, the concentration
is in nM.

but such a decomposition is not straightforward [36] and would lead to a large
number of variables and reaction steps, resulting in a level of details unneces-
sarily high for such a simplified model. Furthermore, theoretical studies have
shown that quasi-steady state approximations remain valid in the stochastic
case [35].

3 Results

Deterministic simulations of the cascade-based model described above con-
firmed that oscillations can arise solely as a result of the negative feedback
(b = 0) [13] (Fig. 2A). The period of the oscillations is around 30 min, which
roughly corresponds to the duration of the mitotic cycle in frog embryos, and
the shape of the oscillations matches those observed experimentally. Adding
a positive loop (b = 1) preserves the oscillations but slightly changes their
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shape (Fig. 2B). In particular, variablesM and X reach a small plateau, near
their maximum value Mtot and Xtot.

Typical stochastic time series obtained by simulating our models with the
Gillespie algorithm are shown in figures 2C (for b = 0) and 2D (for b = 1). For
these simulations, we set Ω = 1000, which leads to a number of molecules of
few hundreds, a value in agreement with the estimation of the actual number
of cell cycle molecules in a cell [27]. In presence of noise, the oscillations
still persist but their amplitude and period show some variability. We can
already notice that the model with auto-catalysis appears more robust than
the model without auto-catalysis.

To understand this increase of robustness in the model with auto-catalysis,
it is insightful to examine the dynamics in the phase space. The deterministic
and stochastic limit cycles associated to the oscillations shown in figure 2 are
given in figure 3 (see the thick close curves in panels A and B). To get a
deeper understanding of the dynamics, it is useful to analyze the dynamics
(in particular the steady states) of the reduced system obtained when the
slow variable C is maintained constant, as described by Tsai et al [41]. In
panels A and B, the thin line corresponds to the steady state of M as a
function of C. These curves have been obtained by bifurcation analysis of
the reduced model defined by eqs. (2) and (3) whith C taken as a parameter.
The main difference between the two models is the appearance of a S curve
in the reduced model with auto-catalysis. This S curve is associated with
bistability. When the dynamics of C is considered (i.e. when the evolution
of C is governed by eq. (1)), all variables oscillate, and the 3-ODE system
converges to a limit cycle (thick curve on panels A and B). The trajectory
follows the upper and lower parts of the S curve and periodically switches
from the steady states of the corresponding reduced model (panel B). Two
time scales thus appear: a slow motion when the system moves along the
upper and lower branches of steady states and a rapid jump from one steady
state to the other.

The stochastic trajectories corresponding to figures 3A and B are shown
in panels C and D. For the model without auto-catalysis the trajectories are
more spread than for the model with auto-catalysis, reflecting the higher ro-
bustness of the latter. The dual time scale generated by the positive feedback
loop defines regions in the phase space where trajectories are strongly at-
tracted, thereby reducing the spreading of the trajectories of the stochastic
system.

To quantify the effect of noise, we computed the auto-correlation func-
tion [20] and the period distribution (Fig. 4). Since the entry into mitosis
is controlled by the active CDK1, we computed these two measures using
variable M . The periods (or, rather, the peak-to-peak intervals) were de-
termined as the time interval separating two successive upward crossings of
the mean level of variable M , an arbitrary value which can be seen as the
threshold above which mitosis is triggered. We then use the half-life of the
decorrelation and the standard deviation of the periods as quantifiers of the
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Fig. 3. Deterministic vs stochastic limit cycles. (A,C) Model without auto-catalysis
(b = 0). (B,D) Model with auto-catalysis (b = 1). (A,B) The thin line corresponds
to the steady state of M when C is taken as a parameter. The thick grey curve
is the deterministic limit cycle of the 3-variable model. The arrows denote the
direction along the limit cycle. (C,D) Stochastic trajectories obtained for Ω = 1000.
Parameter values are as in Fig. 2. In panel A and B, variables are concentrations
(in nM), while in panels C and D, variables are numbers of molecules.

robustness [1, 19, 20]. Comparing the auto-correlation function and the pe-
riod distribution, it is now obvious that the model with auto-catalysis is
more robust than the model without auto-catalysis. Indeed, for the model
without auto-catalysis (b = 0), the auto-correlation decreases more rapidly
and the variability of the period is greater, reflecting a higher sensitivity to
noise. Note that the two measures used here rather focus on the robustness
of the period of the oscillations. We could have quantified the variation of
the amplitude of the oscillations, but from a biological point of view we can
hypothesize that mitosis is triggered when a threshold in the concentration
of CDK1 is reached and that small variations of the amplitude would not
affect the dynamics of cell cycle.

So far we have compared the two models for one parameter set only. How-
ever the dynamical properties of the oscillations (amplitude, period, etc) may
depend on parameter values. To check if our observations are general, i.e.
parameter-independent, we generated for each model about 100 parameter
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Fig. 4. Quantification of the robustness of the stochastic oscillations (obtained
for Ω = 1000). (A,C) Model without auto-catalysis (b = 0). (B,D) Model with
auto-catalysis (b = 1). (A,B) Auto-correlation function. (C,D) Period distribution.
These results have been obtained for the time series of M over a time interval of
10000 min. Parameter values are as in Fig. 2.

sets which give limit-cycle oscillations with a period within the range [30, 40]
min and a minimal amplitude for M of 0.6. The sets were found using a
two-step sampling procedure that yields points uniformly distributed in the
volume of the parameter space where these properties are fulfilled [23]. In
order to avoid extreme, irrealistic values of some parameters, the sampling
is restricted to a region of four orders of magnitude along each parameter,
centered on the original parameter set defined in the legend of figure 2. This
results in a uniform sampling of the possible parameter sets for which the
model matches the predefined criteria. The oscillations were found to be
sensitive to parameter a, which controls the negative feedback. In the sam-
pling process we kept a = 1 (to maintain the negative feedback) and b was
set either to 0(no positive feedback) or to 1 (effective positive feedback).

For both models, we performed stochastic simulations for each parameter
set and systematically calculate the half-life of the decorrelation and the
standard deviation of the period distribution. The distributions of these two
quantifiers are given in Fig. 5. A Wilcoxon rank sum test returned p−values
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Fig. 5. Robustness of the stochastic oscillations for various parameter sets. (A)
Distribution of the auto-correlation half-time and (B) distribution of the periods
for the model without (b = 0) and with (b = 1) the positive feedback loop. For each
model about 100 parameter sets have been generated as described in the text. One
run has been performed for each parameter set and for each run the time series
analysis has been done for variable M over a time interval of 10000 min.

of 2.01E-26 for the auto-correlation and 1.9E-26 for the period distribution,
ensuring that we have two distinct distributions. These data thus confirm
that the model with auto-catalysis is more robust than the model without
auto-catalysis, regardless of parameter values.
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4 Discussion

Understanding the design principles of biological oscillations is of general
interest in molecular biology [32]. Many cellular oscillators rely on inter-
linked positive and negative feedback loops. Since a single delayed negative
feedback loop has already the potential to generate self-sustained oscillations,
the question of the role of additional, positive, feedback loops is open. Besides
frequency tunability [41] and oscillations amplification [25], another possible
role is illustrated here: positive feedback loops may increase the robustness
of oscillators with respect to molecular noise. This role is here highlighted on
a minimal three-variable model proposed several years ago for the embryonic
mitotic cycle [13]. This model can be seen as a prototypical cascade model
and is therefore useful to investigate questions about design. More elaborated
models of the cell cycle [10, 26] exist. Stochastic simulations of such a de-
tailed model have recently been carried out by Kar et al (2009) [27]. These
authors assessed the relative level of intrinsic and extrinsic noise, but they
do not address specifically how the oscillator design affects its robustness to
molecular noise.

In the future, it would be interesting to perform similar analyses to other
simple networks, such as the three-variable Goodwin oscillator, which repre-
sents a minimal genetic oscillator, and to extend this work to more detailed
models for the cell cycle [10, 26] as well as for circadian clocks [2, 30], which
incorporate positive and negative feedback loops.

Robustness to noise is related to regulatory networks topology [1, 4, 28,
38]. Stochastic simulations of minimal models of circadian clocks already
put forward several robustness factors that contribute to the robustness of
oscillations with respect to molecular noise [9, 19, 21]: cooperativity of gene
repression, rate of binding-unbinding of the repressor protein to the gene
promoter, forcing by a light-dark cycle, etc. The present study suggests that
positive feedback loops, also occurring in circadian clocks [3, 5, 12, 37], may
also play a role in the robustness of the oscillations with respect to molecular
noise.

Positive feedbacks are typically associated with bistability and hysteresis.
They induce several time scales which affect speed and attractivity of the
limit cycle and, as already noticed in other works [20, 29, 42], the spreading
of stochastic trajectories along the deterministic cycle is correlated with its
attractivity properties. This may explain the increase of robustness observed
in models based on interlocked positive and negative feedback loops.

Finally, these observations may have implications in understanding evo-
lution of regulatory networks. Indeed, since sensitivity to noise may guide
network topology, robustness to noise may be taken as a constraint to design
regulatory networks and be added to other constraints such as period and
amplitude of oscillations [39, 43]. Interestingly, our model has the property
to be able to include or not the positive feedback loop (and to modify its
strength) upon tuning of a single parameter and thus opens the possibility
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to use robustness to noise as a criterium to study evolution of biological net-
work architectures. As shown in [24], it is possible to evolve in the parameter
space continuously while maintaining some macroscopic properties. Our re-
sults thus suggest that robustness to noise has contributed to the emergence
of additional positive feedback loops and that it may therefore serve as a
selection criterion to simulate the evolution of biological oscillators in silico.
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Guaranteed and Randomized Methods for
Stability Analysis of Uncertain Metabolic
Networks

Heinz Koeppl, Stefano Andreozzi, and Ralf Steuer

Abstract. A persistent problem hampering our understanding of the dynamics of
large-scale metabolic networks is the lack of experimentally determined kinetic pa-
rameters that are necessary to build computational models of biochemical processes.
To overcome some of the limitations imposed by absent or incomplete kinetic data,
structural kinetic modeling (SKM) was proposed recently as an intermediate ap-
proach between stoichiometric analysis and a full kinetic description. SKM ex-
tends stationary flux-balance analysis (FBA) by a local stability analysis utilizing
an appropriate parametrization of the Jacobian matrix. To characterize the Jaco-
bian, we utilize results from robust control theory to determine subintervals of the
Jacobian’ entries that correspond to asymptotically stable metabolic states. Further-
more, we propose an efficient sampling scheme in combination with methods from
computational geometry to sketch the stability region. A glycolytic pathway model
comprising 12 uncertain parameters is used to assess the feasibility of the method.

1 Modeling Metabolic Networks

Cellular metabolism, defined as the orchestrated biochemical interconversion of
small molecules by dedicated proteins, is an important aspect of cellular physiol-
ogy and of outstanding interest for many biotechnological and medical applications.
In the past decades, great strides have been made to elucidate and compile the list
of the biochemical reaction taking place in living cells and almost comprehensive
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stoichiometric models for several model organisms such as the S. cerevisiae or
E. coli, are now available [10]. However, to obtain a true understanding of cellu-
lar function and organization a mere list of parts is not enough. In this respect, the
construction of mathematical models is an indispensable tool to study – and eventu-
ally understand – how the parts of a metabolic network interact and function as an
integrated whole.

Current approaches to metabolic modeling are characterized by a dichotomy of
large-scale constraint-based stoichiometric models on the one hand, and detailed ki-
netic models of small subsystems on the other hand. The advantage of topological
and constraint-based methods is that they only require stoichiometric information,
making them applicable to large, up to ‘genome-scale’, systems. Most prominently,
flux-balance analysis (FBA) makes use of the mass conservation constraints to iden-
tify possible flux distributions that fulfill a given objective function, such as max-
imal ATP production or maximal biomass generation. Although one of the most
successful approaches to date, the downside of FBA is that it cannot provide any
information about the dynamical properties of the metabolic system. In contrast, the
description of dynamics requires the construction of a detailed kinetic model of the
network, usually in terms of ordinary differential equations. However, the construc-
tion of such explicit kinetic models of metabolism is based on detailed quantitative
information on kinetic parameters and rate equations, information that is only rarely
available in practice.

To overcome some of the difficulties imposed by the lack of information on ki-
netic parameters, there has been increasing interest in heuristic and semi-quantitative
methods to describe the dynamics of large-scale metabolic networks in the face of
uncertain kinetic data [23, 22, 20]. Specifically, structural kinetic modeling (SKM)
proposes to augment the constraint-based analysis by a local stability analysis uti-
lizing an appropriate parametrization of the Jacobian matrix [21]. The approach is
based on the observation that in many cases a detailed kinetic model is not neces-
sary. Rather, a large number of dynamical properties, such as control coefficients,
the stability of states, transitions to oscillatory regions, among various others, are
readily available using only a linear approximation of the system. SKM therefore
seeks to derive stringent bounds on the entries of the Jacobian matrix, based on
available phenotypic data and biophysical constraints, to enable a computational
analysis in the absence of further kinetic information. We emphasize that SKM is
a data-driven approach, taking another perspective than classical nonlinear dynam-
ics. More specifically, SKM starts out with a given, experimentally measured steady
state and asks for the underlying parameter region supporting this particular state.

In this work, we discuss an extension of SKM utilizing methods from robust
stability theory [4, 1] that allows to determine subintervals of the Jacobian entries of
a SKM model corresponding to stable metabolic states. To this end, we believe that
the proposed reasoning about entire sets of models is an adequate semi-quantitative
approach [18] to analyze biochemical models in general.

The paper is organized as follows. Section 2 provides an introduction to the SKM
framework. The applied guaranteed methods from robust control as well as a novel
random sampling scheme are discussed in Section 3. An application of the sampling
method is given in Section 4, while Section 5 draws conclusions.
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2 Structural Kinetic Modeling

SKM draws upon the fact that, even in the absence of detailed kinetic information,
questions with respect to stability of the metabolic operating point can be addressed.
To this end, we consider a metabolic network whose time-dependent behavior is
described by an ordinary differential equation of the form

dS
dt
≡ Ṡ = Nv(S,k) , (1)

with S ∈RN
+ denoting the vector of concentration of all involved species, N ∈ ZN×L

the stoichiometric matrix, v : RN
+×RM

+ → RL
+ the parametric rate laws and k ∈RM

+
a vector comprising all kinetic parameters. We assume that the network has at least
one non-zero steady state at concentration S0, which does not necessarily have to be
stable. In this case, we can equivalently write

Ṡi

S0
i

=
R

∑
j=1

Ni j
v j(S0)

S0
i

v j(S)
v j(S0)

. (2)

Introducing concentrations that are normalized by the steady-state concentration
xi = Si

S0
i

one obtains

ẋ =ΛΛΛμμμ(x), (3)

with the constant matrix Λi j ≡ Ni j
v j(S0)

S0
i

and the vector of normalized fluxes

μ j(x) ≡ v j(S)
v j(S0) . A linearization of the system at the steady state x = 1 yields with

ΛΛΛμμμ(1) = 0 a linear model with states zi

żi =
L

∑
j=1

N

∑
k=1

Λi j
∂μ j(z)
∂ zk

∣∣∣∣
z=1

(zk−1). (4)

Introducing the matrix Θk j ≡
∂μ j(z)
∂ zk

∣∣∣
z=1

we obtain

ż =ΛΛΛΘΘΘ(z−1). (5)

The stability of the nonlinear system specified by (3) at x = 1 is thus determined
by the eigenvalues of the matrix ΛΛΛΘΘΘ , which is equivalent to the (scaled) Jaco-
bian matrix. Our further analysis rests upon a detailed interpretation of the ma-
trices ΛΛΛ and ΘΘΘ . In particular, the matrix ΛΛΛ is entirely specified by stoichiometric
information, along with knowledge of a stationary metabolic state, characterized
by a set of stationary concentrations S0 and fluxes v0 = v(S0). The latter satisfy
the steady-state constraint Nv0 = 0. We note that large-scale measurements and the
characterization of metabolic systems in terms of concentrations (metabolomics)
and fluxes (fluxomics) are now almost standard techniques in the analysis of cellular
metabolism [14, 24, 17], making the matrix ΛΛΛ – at least in principle – accessible to
direct experimentation.
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The interpretation of the elements of ΘΘΘ is slightly more intricate. Every entry
of the matrix ΘΘΘ specifies the derivatives of the normalized rate law with respect
to the scaled concentrations, and can be interpreted as the (dimensionless) relative
saturation level of one particular reaction with respect to one particular substrate
concentration. Importantly, for most typical rate laws the elements of ΘΘΘ are con-
fined to well-defined intervals that are independent of the respective metabolic state
or mathematical details of the rate equation. We note that the elements of ΘΘΘ are
analogous to logarithmic derivatives and are closely related to the scaled elasticity
coefficients in Metabolic Control Analysis [12].

3 Stability of Uncertain Linear Systems

We are now in the position to apply the ideas of robustness analysis for linear sys-
tems to the Jacobian matrix J ≡ ΛΛΛΘΘΘ of our linearized metabolic network. Allow-
ing uncertainty in the kinetic rate law corresponds here to an uncertainty about the
saturation matrix ΘΘΘ . Thus we define the set of Jacobians as

J([ΘΘΘ ]) =
{

J |J =ΛΛΛΘΘΘ ,ΘΘΘ ∈ [ΘΘΘ ] ∈ IR
L×N} , (6)

where is IR is the set of all real intervals. Thus an element [ΘΘΘ ]∈ IR
N×L is an interval

matrix
[ΘΘΘ ]≡

{
ΘΘΘ |Θi j ∈ [Θ i j,Θ̄i j],Θ i j ≤ Θ̄i j, ∀(i, j)

}
,

the bounds of which are determined by biophysical constraints. In practice not every
entry of ΘΘΘ is uncertain and one seeks a representation of the Jacobian as a function
solely of the uncertain vector θθθ ∈ RM

J(θθθ) = J0 +
M

∑
i=1

θiJi = J0 +ΛΛΛ
M

∑
i=1

θiTi (7)

with template matrices Ti ∈ {0,1}N×L. We do not exclude the case that one uncer-
tain parameter controls multiple entries ofΘΘΘ . Alternatively, the parametric Jacobian
may be expressed as a convex matrix polytope with

J(θθθ) ∈ co{J̃1, . . . , J̃K} ≡
{

J

∣∣∣∣∣J =
K

∑
i=1

αiJ̃i,
K

∑
i=1

αi = 1,αi ≥ 0, i ∈ {1, . . . ,K}
}
,

with co{·}, the convex hull. The image of the saturation hyper-rectangle [ΘΘΘ ] under
ΛΛΛ is, in general, not a rectangle in the space of Jacobians and vertex points of [ΘΘΘ ]
can be mapped to the interior of the Jacobian polytope. Thus, we have K ≤ 2M

assuming that L≥ N, which is normally the case for reaction networks.

3.1 Guaranteed Methods

In the following, robust control methods are discussed that we consider particularly
suitable for the SKM framework. They determine saturation subintervals, where
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stability of every member is guaranteed. The application of those methods to a
model of the glycolytic pathway within the SKM framework is presented in [16].

Given a single Jacobian J∈RN×N of a linearized dynamics, stability can be deter-
mined by checking the Hurwitz property, i.e., whether all roots of the characteristic
polynomial p(λ ) = det(J−λ I) have negative real parts. For the case of parametric
Jacobians J(θθθ) the following theorem due to Kharitonov [15] can be utilized.

Theorem 1. Every polynomial

p(λ ,c) = c0 + c1λ + · · ·+ cn−1λ n−1 + cnλ n (8)

of degree n which is an instance of the polynomial set p(λ , [c]) = {p(λ ,c) |c ∈ [c]}
and cn > 0 is a Hurwitz polynomial, if and only if the associated following four
Kharitonov polynomials

p+−(λ ,c) = c̄0 + c1λ + c2λ
2 + c̄3λ 3 + c̄4λ 4 + c5λ

5 + · · ·
p++(λ ,c) = c̄0 + c̄1λ + c2λ

2 + c3λ
3 + c̄4λ 4 + c̄5λ 5 + · · ·

p−+(λ ,c) = c0 + c̄1λ + c̄2λ 2 + c3λ
3 + c4λ

4 + c̄5λ 5 + · · ·
p−−(λ ,c) = c0 + c1λ + c̄2λ 2 + c̄3λ 3 + c4λ

4 + c5λ
5 + · · ·

(9)

are Hurwitz polynomials.

The theorem gives a necessary and sufficient condition for stability. However, the
necessity is lost if the coefficients c are not independent as it is the case for the
characteristic polynomial p(λ ,θθθ) = det(J(θθθ)−λ I). Thus, the theorem just provides
a sufficient condition, and gives conservative results in general. In practice, one can
obtain the overbounding coefficient intervals [c] by computing the characteristic
polynomial with θθθ ∈ [θθθ ] using interval arithmetic [13, 16].

Quadratic stability of a polytopic linear system with J([θθθ ]) is defined that for
each member J(θθθ) ∈ co{J̃1, . . . , J̃K} one can find one common quadratic Lyapunov
function. With that, quadratic stability is stronger than testing the Hurwitz stabil-
ity of each member. Thus, for an uncertain system that is quadratically stable all
members are Hurwitz stable, but a system that is not quadratically stable can still
be stable for all members. Quadratic stability thus provides just another means to
obtain conservative stability bounds. However, quadratic stability, by itself, can be
determined without conservatism with a finite number of tests.

Theorem 2. A linear polytopic system is quadratically stable if and only if all its
vertex systems are stable.

It remains to find a common Lyapunov function for all vertex systems. This can be
done by solving the following K linear matrix inequalities simultaneously

J̃T
i P+PJ̃i ≺ 0, (10)

for i ∈ {1, . . . ,K} and P ! 0, the common positive-definite Lyapunov matrix. The
proof of the theorem is based on the observation that any positive linear combination
of negative definite terms is again negative definite
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J̃T (ααα)P+PJ̃(ααα) =
K

∑
i=1

αi(J̃T
i P+PJ̃i)≺ 0 with

K

∑
i=1

αi = 1 and αi ≥ 0,

i ∈ {1, . . . ,K} and ααα ≡ (α1, . . . ,αK ).

In contrast to quadratic stability, affine quadratic stability searches for a quadratic
parameter-dependent Lyapunov function, where the parameter dependency is
assumed to be affine

P(θθθ) = P0 +
M

∑
j=1

θ jP j. (11)

Writing it in terms of polytopes we seek a Lyapunov matrix such that

J̃(ααα)T P̃(ααα)+ P̃(ααα)J̃(ααα)≺ 0 (12)

and P̃(ααα)! 0 for any convex combination ααα . We used the corresponding polytopic
representation of the affine set (11)

P̃(ααα) =
K

∑
i=1

αiP̃i where
K

∑
k=1

αk = 1 and αk ≥ 0, (13)

with the vertex matrices P̃i. Affine quadratic stability leads to bilinear matrix in-
equalities that are difficult to solve numerically. However, forcing another constraint
on the Lyapunov function, namely multi-convexity [2, 11] one arrives at vertex
conditions similar to the one of quadratic stability

J̃T
i P̃i + P̃iJ̃i ≺ 0

P̃i ! 0

JT
j P j +P jJ j ≺ 0

(14)

for all i ∈ {1, . . . ,K} and j ∈ {1, . . .M}, where we used the affine representation of
(7). The incorporation of multi-convexity (third inequality) introduces conservatism
but yields a set of linear matrix inequalities that can now be solved efficiently using
semi-definite programming.

3.2 Efficient Random Sampling

A downside of guaranteed methods of robust control is that they, in general, provide
binary answers regarding stability. For instance the semidefinite program underly-
ing quadratic stability qualifies the proposed parameter interval [θθθ ] as feasible or
not. Thus, these methods do not lend themselves to locate the stable region or to
determine the most constraining parameter dimensions. Quadratic stability can be
extended to return a scalar variable, for which a proposal interval need to scaled uni-
formly around an expansion in order to meet quadratic stability [6]. However, also
this requires a priori information about the proper expansion point and side-length
ratios of the hyper-rectangle. Moreover, determination of the maximum-volume
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hyper-rectangle that can be inscribed into a closed surface, itself requires the so-
lution of a nonlinear program. Multi-dimensional bisection methods is used in [16]
to expand hyper-rectangles based on the binary decisions returned by the guaranteed
methods of Section 3.1. However, such an approach does not scale well with the pa-
rameter dimension and also does not guarantee to converge to the maximal-volume
rectangle, on top of the conservatism of those guaranteed methods.

The procedure outlined in the following aims to find a non-guaranteed hyper-
rectangle through advanced random sampling of the stability region. Sketching the
stability region in this way, also allows one to identify parameter combinations that
are most constraining in terms of stability. This can be achieved through a minor
component analysis (MCA) [9]. Besides its relevance in its own rights, the obtained
rectangle can then be proposed to a guaranteed method. Even if a downscaling of
the rectangle is necessary due to conservatism of the guaranteed method or due to
the overapproximation of the stability region by the sampling method, the expansion
center and the side-lengths ratios are likely to be representative.

Sampling. We randomly sample one-dimensional information through the fol-
lowing theorem that provides sufficient and necessary conditions in case of one-
dimensional uncertainty [5].

Theorem 3. Consider the affine uncertain system J(ω) = J0+ωJ1, with J0 Hurwitz
stable and ω ∈ [ω , ω̄ ] ∈ IR. The matrix J(ω) is robustly stable if and only if ω ∈
[ω∗, ω̄∗] with

ω∗ =
1

λ−min[−(J0⊕J0)−1(J1⊕J1)]

ω̄∗ =
1

λ+
max[−(J0⊕J0)−1(J1⊕J1)]

with the Kronecker sum J0⊕ J0 ≡ J0⊗ IN + IN ⊗ J0 and with λ−min(·) and λ+
max(·)

the minimum and maximum of the strictly negative and strictly positive set of
eigenvalues of a matrix.

With a nominal parameter set that corresponds to a stable Jacobian J0 the theorem
provides a means to sample the stability region around this expansion point without
any conservatism. We do this by shooting Bialas rays in random directions θθθ from
this expansion point. In vector notation this reads

vec(J(ω)) = (I⊗ΛΛΛ)vec(ΘΘΘ) = vec(J0)+ω(I⊗ΛΛΛ)Rθθθ , (15)

with the appropriate rearrangement matrix R ∈ {0,1}LN×M. The probability dis-
tribution over ray directions should be chosen such, that the intersection points
between rays and stability boundary are distributed uniformly. Choosing random
directions from an expansion point within a surface that result in a uniform distribu-
tion at that surface is a known problem; see for instance the problem of uniformly
sampling the surface of a n-sphere [19]. However, in the absence of information on
the surface to be sampled, we propose to resort to a sequential Monte-Carlo algo-
rithm that generates a uniform distribution at a bounding rectangle [θθθ ] ⊆ [θθθ ]0 that
is updated during sampling. We refer to [θθθ ]0 as the outer interval determined by
biophysical bounds.
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Dimensionality Reduction. Several expansion centers are chosen according to a
tree structure with predetermined depth and degree. Parameter combinations that
are constrained in terms of stability are revealed by computing an eigendecompo-
sition of the covariance matrix of the sampled line set (see for instance Fig. 2 in
Section 4). The eigendirections corresponding to small eigenvalues indicate con-
strained parameter combinations (minor components) [9]. Inner products between
eigendirections and basis vectors of the parameter coordinates allow to identify sin-
gle parameters, that are maximally aligned with these constrained directions. This
opens up the possibility for model reduction, where interval stability is investigated
only for the most constrained parameters.

Rectangle Inscription. In order to be able to inscribe a hyper-rectangle into a sam-
pled closed surface, the samples need to be connected to give closed surface. The
most natural choice is to construct the convex hull, i.e. the smallest convex set con-
taining the sampled points. The convex hull is a convex polytope – or bounded
polyhedron and thus has besides its vertex representation also a representation as a
set of half-spaces (see Minkowski-Weyl theorem). We define a polyhedron P as

P ≡
{
θθθ ∈ R

M
∣∣Aθθθ ≤ b, A ∈ R

Q×M, b ∈ R
Q} ,

with Q the number of half-spaces. The problem of inscribing the maximal-volume
rectangle into P is convex and can thus be solved efficiently on polynomial time
[7]. Denoting the interval of the inscribed box as [θθθ ]∈ IR

M we can write the convex
program as

max
[θθθ ]

logdetW([θθθ ])

subject to

[θθθ ]⊆P,

(16)

with the diagonal matrix W(·) denoting the interval width W([θθθ ])= diag{sup([θθθ ])−
inf([θθθ ])}. Instead of having 2MQ linear inequalities due to the 2M vertices of [θθθ ] and
the M halfspaces, the constraint [θθθ ] ⊆ P can be expressed more efficiently with
2MQ inequalities [7]. The plausibility of the obtained optimal [θθθ ] rest upon the as-
sumption that the intersection of stability region and biophysical bounding box [θθθ ]0
can well be encoded through a convex polytope.

Utilizing the exact convex hull, i.e. the tightest convex enclosure, introduces scal-
ability issues in high dimensions. The worst case complexity of an optimal convex
hull algorithm was shown to be O(n"M/2#) for M ≥ 4, where n is the number of
sample points. However, the worst-case is rarely encountered and the actual com-
plexity depends on the number of necessary inequalities Q, the order of which can
vary from O(1) to O(n"M/2#). Taking Q into account, a polynomial algorithm in
n,M and Q was shown to exist for the non-degenerate case [3].

4 Application

We apply the proposed sampling method of Section 3.2 to a medium-scale model of
glycolysis, depicted in Fig. 1. Transformed to the SKM representation of Section 2,
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the model has 12 non-zero entries in the saturation matrix ΘΘΘ . For all reactions,
except one, we assume standard Michaelis-Menten kinetics giving rise to biophys-
ical bounds [θi]0 = [0,1] for i ∈ {2, . . . ,12}. For the first reaction, the conversion
of Glucose (Glc) into fructose-1,6-biphosphate (FBP) we implement the known in-
hibitory effect of ATP, resulting in [θ1]0 = [−3,1]. We sketch the feasible region

Glc

2ATP 2ADP

FBP TP

N
AD

H
N
AD

+

BPG

2A
TP

2A
D
P

Pyr

N
AD

+

N
AD

H

N
AD

H

N
AD

+

EtOH

ATP ADP

Fig. 1. Medium-scale model of the yeast glycolytic pathway comprising 8 reactions giving
rise to 12 saturation parameters in the framework of structural kinetic modeling

characterized as the intersection of the stability domain with the biophysical bound-
ing box using 104 Bialas rays with a flat tree configuration of depth one and de-
gree 100. Figure 2(a) shows the eigendecomposition of the covariance matrix C
in normalized coordinates, indicating one tightly constrained parameter combina-
tion. Inner product computation reveals that direction θ1 is strongly aligned with the
corresponding eigendirection.
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Fig. 2. (a) Mean and standard deviation of the spectrum for the covariance matrix C of the
stable 12-dimensional parameter region – based on 100 runs each with 104 Bialas rays (tree
of depths one and degree 100). (b) biophysical bounding boxes and obtained stable intervals
(gray) for parameters retained after model reduction.

To illustrate the method we perform a model reduction retaining only the seven
most constrained parameter dimensions as interval variables and adjusting the re-
maining ones to their nominal value, chosen to be the midpoint of [θθθ ]0. The ob-
tained stability interval are depicted in Fig. 2(b). The convex hull and the obtained
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Fig. 3. Maximum-volume hyper-rectangle (green) inscribed in the convex hull (brown) and
biophysical bounding box [θθθ ]0 (yellow); a few of the 104 rays (blue) used to sketch the
stability region of the reduced 7-dimensional interval system; down-projection to coordinates
that are the most aligned to the directions of the first three minor components

7-dimensional stability rectangle, down-projected onto the first three most
constrained parameter dimension is shown in Fig. 3.

5 Conclusions

The scarcity of kinetic information for metabolic reactions rarely allows for the de-
termination of detailed kinetic rate laws for a metabolic model. We combine the
local stability analysis of structural kinetic modeling with interval methods to com-
pute guaranteed and non-guaranteed stability intervals for the saturation levels of
the involved reactions. We provide an efficient sampling algorithm to sketch high-
dimensional stability regions and apply methods from statistics and computational
geometry to obtain non-guaranteed stability intervals. The computed stability inter-
val may serve as a proposal for the binary test of guaranteed methods from robust
control. To alleviate scalability issues in the applied computational geometry meth-
ods, one may resort to randomized algorithms, for instance such as the randomized
incremental construction of the convex hull [8].
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Coexistence of Three Predators Competing for a
Single Biotic Resource

Claude Lobry, Tewfik Sari, and Karim Yadi

Abstract. We construct a model of competition of three consumers for one single
biotic resource ; simulations show that the three species coexist. Using singular
perturbations theory we sketch a mathematical proof for this coexistence. The main
mathematical tool used is an extension of the Pontryagin-Rodygin theorem on the
“slow” motion of a “slow-fast” differential system when the “fast” motion possesses
a stable limit cycle. The mathematical analysis is done within the framework of Non
Standard Analysis.

1 Introduction

The question of coexistence of competing species for a single resource has a very
long history that we shall not attempt to recall here. We just recall the two decisive
papers by Armstrong and Mac Gehee [1, 6] where they pointed that coexistence
is not synonymous of coexistence at equilibrium. These papers were the starting
point of numerous papers showing complex behaviors of systems of competitors
and evidence of coexistence on the basis of numerical simulations. Following this
tradition we propose a model of coexistence of three species competing for one
resource.
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The present paper has two parts. In the first part we construct our model and
explain what is the rationale behind our construction ; each step is illustrated by
simulations. In the second part we consider our model as a member of a more gen-
eral “consumer-resource” model for which we explain how coexistence of species
can be proved using singular perturbation analysis ; as an essential tool we use an
extension of a theorem of Pontryagin and Rodygin.

Considered from the ecological point of view our model shows that oscillations
in a “consumer-resource” relationship can open the door to coexistence with other
species provided that the new introduced species do not perturb too much the oscil-
lations. We do not know any example of an interaction between four species of the
type of the model presented here but its existence is plausible. We shall explain it
during the construction of a model. But we must acknowledge here that what we do
is a kind of “virtual ecology” showing what is “theoretically possible” in a world
of species respecting basic facts well established in concrete ecology. It is not a
description of the real world !

From the mathematical point of view our paper can be considered as an appli-
cation of singular perturbation methods to the mathematical proof of persistence
for some specific system. Our contribution consists mainly in the analysis of the
theorem of Pontryagin and Rodygin and its extension to a theorem which is more
effective in some circumstances. Detailed proofs can be consulted at [14] and will
be published elsewhere. The mathematical analysis is done within the framework of
Non Standard Analysis, using the axiomatic of Nelson [7] and respecting the spirit
of G. Reeb [9].

2 Construction of a Model

2.1 The Basic Oscillating Pair

We consider the system: ⎧⎪⎨
⎪⎩

ds
dt

= 3s(1− s)− s2

0.01+s2 x1

dx1

dt
= 0.1[ s2

0.01+s2 −0.65]x1

(1)

Due to the presence of the factor 0.1, it can be considered as a “slow-fast” system
of two differential equations of the following type:⎧⎪⎨

⎪⎩
ds
dt

= 1
ε1
[ f (s)−g1(s)x1]

dx1

dt
= (g1(s)−d1)x1

where ε1 is a “small” parameter. The real s represents the density of some biotic
resource (prey) for a consumer which density is represented by x1. This is a rather
classical prey-predator model and it is well known that this kind of generalization of
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the Lotka-Volterra model can have sustained oscillations. The existence of oscilla-
tions in prey-predator interaction is clearly demonstrated in laboratory experiments
(see [4]), if not in the real world. The choice of the function:

g1(s) =
s2

0.01+ s2

in place of the more classical Monod’s function with s in place of s2 was made
in order that the nullcline [ f (s)− g1(s)x1] = 0 has the “S-shape” shown on Fig. 1
which prevents the resource from extinction. This kind of assumption is sometimes
called the “Allee” effect in ecological literature.

Fig. 1. On this picture one observes a simulation of few trajectories of the system (1). The
black “S-shaped” curve is the nullcline [ f (s)− g1(s)x1] = 0. The direction of the motion
along trajectories is indicated by the black arrows and the limit cycle by the red arrow. By the
way s(t) oscillates between two values.

2.2 Addition of a New Consumer “x2”

We want to add a new consumer and at the same time keep the oscillations of (s,x1).
It can be done by introducing a new species with a very slow dynamics compare to
that of (s,x1) like in the model:⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ds
dt

= 1
ε1
[ f (s)−g1(s)x1−g2(s)x2]

dx1

dt
= (g1(s)−d1)x1

dx2

dt
= ε2 (g2(s)−d2)x2

where ε2 is small.
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The existence of two consumers (which densities are represented by x1 and x2) of
the same resource and having very different characteristic time seems to be common
in nature. For instance small mammals and big mammals eating the same grass have
a lifespan which may differ of an order of magnitude.

Denote by x2 some constant x2 ; since x2(t) is quasi constant, for a while, the
evolution of (s,x1) is governed by:⎧⎪⎪⎨

⎪⎪⎩
ds
dt

= 1
ε1
[ f (s)−g1(s)x1−g2(s)x2]

dx1

dt
= (g1(s)−d1)x1

In that system we see that when x2 is small the nullcline

f (s)−g1(s)x1−g2(s)x2 = 0 (2)

is very close to the nullcline

f (s)−g1(s)x1 = 0 (3)

and, thus, oscillations are preserved. The range of oscillations of s is slightly short-
ened as x2 increases. Now, if we look at the process from the point of view of x2

during an oscillation of period T the growth is given by:

∫ t+T

t
(g2(s(τ))−d2)x2(τ)dτ

which varies monotonically according to the variation of amplitude of s. Thus the
growth can be positive for small values of x2 and negative for large ones ; in the
middle there must be an equilibrium. This is the case for the model:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ds
dt

= 3s(1− s)− s2

0.01+s2 x1−g2(s)x2

dx1

dt
= 0.1[ s2

0.01+s2 −0.65]x1 with

{
s < 0.5 ⇒ g2(s) = 0

s≥ 0.5 ⇒ g2(s) =
0.1(s−0.5)

0.01+(s−0.5)
dx2

dt
= 0.01[g2(s)−0.025]x2

(4)

We choose g2 = 0 on [0,0.5] in order to be sure that the nullcline (2) is exactly the
same than the nullcline (3) and remains “S-shaped” ; thus oscillations are preserved.
This artificial choice is convenient for simplicity but a model with g2 being smoother
would also work. Evidence of coexistence of x1 and x2 is given on Fig. 2. On this
simulation three initial conditions where taken, keeping s(0) and x1(0) constant and
changing x2(0). On the picture we have superimposed the projections on the (s,x1)
plane (in green) and the (s,x2) plane in red. The first initial condition for x3 is a
which is shown by the black arrow ; since the variation of x2 is very slow the red
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projection looks like a point moving right to left and left to right very fast while
moving up very slowly ; the thick red line corresponds to a dozen of oscillations.
Starting from c we see that the point is slowly moving down. Starting from b we see
that x2 remains constant.

Fig. 2. Simulation of the system (4). The picture shows the two projections of the trajectories,
in green on the plane (s,x1) and in red on the plane (s,x2). While the initial conditions where
kept constant for s and x1 they where changed for x2. One sees that, starting from a small x2 =
a then x2(t) is increasing and, conversely, starting from a big x2 = c then x2(t) is decreasing.

2.3 Addition of a New Consumer “x3”

The idea is to have a new consumer with a g3 growth rate such that the two graphs of
g2 and g3 cross like on Fig. 3 in order that during an oscillation of (s,x1) the species
2 and 3 take the advantage alternatively. This leads to the system:

Fig. 3. The graphs of g2 and g3
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ds
dt

= 3s(1− s)− s2

0.01+s2 x1−g3(s)x3

dx1

dt
= 0.1[ s2

0.01+s2 −0.65]x1 with

{
s < 0.58 ⇒ g3(s) = 0

s≥ 0.58 ⇒ g3(s) =
2(s−0.58)

0.01+(s−0.58)
dx3

dt
= 0.01[g3(s)−0.025]x3

(5)

On Fig.4 one sees that the behavior of the system (s,x1,x3) is similar to the behavior
we observed for (s,x1,x2) ; the projection (in blue) on the (s,x3) plane is similar to
the projection (in red) observed for (s,x2) in Fig.2.

Fig. 4. Simulation of the system (5). The picture shows the two projections of the trajectories,
in green on the plane (s,x1) and in blue on the plane (s,x3). The projection (in blue) on the
(s,x3) plane is similar to the projection (in red) observed for (s,x2) in Fig.2. Starting from a
small x3 = a then x3(t) is increasing and, conversely, starting from a big x3 = c then x3(t) is
decreasing.
Between a and c there is some initial condition (not represented) for which x3 do not increase
nor decrease.

2.4 Coexistence of All the Three Consumers

Now we consider the complete system:
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

ds
dt = 3s(1− s)− s2

0.01+s2 x1−g2(s)x2−g3(s)x3

dx1
dt = 0.1[ s2

0.01+s2 −0.65]x1

dx2
dt = 0.01[g2(s)−0.025]x2

dx3
dt = 0.01[g3(s)−0.025]x3

(6)

Species x2 and x3 have a “slow motion” which can be approximated by computing
suitable integrals along the basic cycle ; this determines a flow on (x2,x3) plane ;
this flow is studied and proved to have a stable equilibrium which proves the per-
sistence of both x2 and x3. On Fig.5 one sees the projection on the (x2,x3) plane of
the full system (6) with the three competitors. The simulations from various initial
conditions shows convergence to a point which actually corresponds to a periodic
orbit in the full space (s,x1,x2,x3). More details are given in the next section.

Fig. 5. On this picture we have represented the projection of simulations of the the complete
system (6) on the plane (x2,x3). The variables (s1,x1) (not represented) present rapid oscil-
lations while (x2,x3) evolves slowly. One sees that all the trajectories seem to converge to an
equilibrium. Compare to the “theoretical” picture on Fig 8.

2.5 Species 2 and 3 Alone

Consider the system with s,x2 and x3 alone in the absence of the species represented
by x1. One easily checks that in this case, from the choice of g2 and g3, there is
no oscillation and the stable equilibrium is the one for which species x2 wins the
competition.
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3 Proof of the Persistence of the Three Competitors in a Model
with Three Time Scales

In this section, we give the successive steps of a proof of the persistence in a model
of the form ⎧⎪⎪⎪⎨

⎪⎪⎪⎩

ds
dt = 1

ε1ε2
( f (s)−g1(s)x1−g2(s)x2−g3(s)x3)

dx1
dt = 1

ε1
(g1(s)−d1)x1

dx2
dt = (g2(s)−d2)x2

dx3
dt = (g3(s)−d3)x3

(7)

where the occurring functions are differentiable, at least piecewise, ε1 and ε2 are
infinitesimal1. The function f vanishes at 0 ; it is increasing then decreasing and
vanishes at a value m. The functions gi are zero at 0, increasing and bounded.

3.1 Oscillations of s and x1

Let us consider the system {
ds
dt = 1

ε1
( f (s)−g1(s)x1)

dx1
dt = (g1(s)−d1)x1

(8)

• Suppose that the nullcline ds/dt = 0 is a curve ϕ that, when s increases from 0,
decreases from +∞ to a minimum value reached for s = s− then increases to a
maximum value for s = s+ to finally decrease and vanishes for s = m.

• Suppose that the value s∗ such that g1(s∗) = d1 is between s− and s+.

Proposition 1. For ε1 infinitesimal, the system (8) has a limit cycle close to the
curve ABCD in Fig. 6.

3.2 The Pontryagin-Rodygin’s Theorem

Due to the lack of space, we shall try in these sections to avoid excessive mathe-
matical formalism of the results and we refer to [12, 14, 13] for more details. To
simplify, we suppose that all the occurring differential equations have the property
of uniqueness of solutions. Let us consider the slow and fast system⎧⎪⎨

⎪⎩
[

ds
dt

dx1
dt

]
= 1

ε

[
F(s,x1,x)

G(s,x1,x)

]
dx
dt = H(s,x1,x)

(9)

1 We use N.S.A. terminology. Following the spirit of ([5]) when a word (like “infinitesimal”)
is written in bold character its meaning is the one used in the formal language of Nelson
I.S.T. but the reader not familiar with this framework can use the intuitive meaning.
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A

B

MD

Q
P

C

Fig. 6. Starting from the point P the solution is quasi horizontal and goes fast to the null-
cline ds/dt = 0 ; then the solution stays near the nullcline and goes up until it reaches the
maximum at B; then the solution is quasi horizontal and goes fast to the nullcline ds/dt = 0
at point C ; then the solution stays near the nullcline and goes down until it reaches the min-
imum at D ; then the solution goes fast to the right to the nullcline ds/dt = 0 and reaches it
at A.

where the scalars s and x1 are the fast components, and the vector x the slow one.
The real number ε is positive and infinitesimal. The functions F , G and H are
continuous. The following system, where x is considered as a parameter, is called
the fast equation [

ds
dt

dx1
dt

]
= 1

ε

[
F(s,x1,x)

G(s,x1,x)

]
(10)

Hence, the (s,x1)-component of a solution of (9) varies very quickly according to
(10) where x has been frozen at its initial value. When the fast equation (10) has sta-
ble limit cycles Γx for each x in a compact domain, Pontryagin-Rodygin’s Theorem
[8] gives the limiting behavior of the singularly perturbed problem (9): Under suit-
able conditions, after a fast transition near the cycles described by the fast equation
(10), the trajectories of (9) quickly roll up around the manifold generated by the
cycles, with a slow evolution of the x-component according to the averaged system

dx
dt

=
1

P(x)

∫ P(x)

0
H(s∗(τ,x),x∗1(τ,x),x)dτ (11)

where (s∗(τ,x),x∗1(τ,x)) is a P(x)−periodic solution of the fast equation corre-
sponding to the cycle Γx. This result was originally obtained for at least C2 vector
fields, under the assumption that the cycles Γx are asymptotically stable in the linear
approximation. However, the result obtained in [12] shows that Pontryagin-Rodygin
description of solutions holds for C0 vector fields under additional assumptions.
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3.3 Extension of Pontryagin-Rodygin’s Theorem

Note that System (7) has the form⎧⎪⎨
⎪⎩
[

ds
dt

dx1
dt

]
= 1

ε2

[
1
ε1

F(s,x1,x)

G(s,x1,x)

]
dx
dt = H(s,x1,x)

(12)

where x = (x2,x3) ∈R2. The fast equation[
ds
dt

dx1
dt

]
=

1
ε2

[
1
ε1

F(s,x1,x)

G(s,x1,x)

]
(13)

admits a stable limit cycle for any value of x for infinitesimal values of ε1. It is
tempting to apply Pontryagin-Rodygin’s Theorem to (12) but the main reason that
makes this impossible is the fact that the fast equation is a nonstandard equation.
It is itself a singularly perturbed equation. We can not avoid to take into account
the three dynamics of the problem. In [14] Pontryagin-Rodygin’s Theorem is ex-
tended to this kind of system the fast equation of which admits a slow and fast limit
cycle. This new result has also the advantage to overcome a serious limitation of
Pontryagin-Rodygin’s Theorem: unlike the latter, it makes possible the localization
of the cycles, the approximation of their periods and the calculation of the average
along these cycles. The functions F,G and H being continuous and the positive real
numbers ε1 and ε2 infinitesimal, suppose that there exists a compact domain K of
R2 such that, for all x ∈ K the nullclines F = 0 and G = 0 of (13) have the shape
given in Figure 7. The (s,x1)-plane is divided in four regions where the field has the
indicated signs in the figure. The limit cycle of (13) is infinitesimally close to the
closed curve (ABCD) in Fig. 6 formed by two “slow arcs” (AB) and (CD) and two
“fast segments” (DA) and (BC). The two decreasing branches of the nullcline F = 0
are denoted s = ψ1(x1,x) and s = ψ2(x1,x). Let us define in the interior of K the
slow equation

dx
dt

= M(x), (14)

where

M(x) = 1
P(x)

2
∑

i=1

ξi+1(x)∫
ξi(x)

g(ψi(x1,x),x1,x)
f2(ψi(x1,x),x1,x)

dx1,

P(x) =
2
∑

i=1

ξi+1(x)∫
ξi(x)

dx1
f2(ψi(x1,x),x1,x)

,with ξ3(x) = ξ1(x).

(15)

Let γ(t) be the trajectory of a solution of (12). Theorem 5.2.1 page 75 in [14] ex-
plains how γ(t) behave in the same manner than in the classical Pontryagin-Rodygin



Coexistence of Three Predators Competing for a Single Biotic Resource 319

G=0 
 F=0

s= 1(x1,x) s= 2(x1,x) 

1 (x) 

2 (x) 

s' >0 
x'1>0 

s' >0 
x'1<0 

s' <0 
x'1>0 

s' <0 
x'1<0 

s 

x1 

Fig. 7. Notations in equations (14)

theorem, the averaging on the cycles being now well approximated by the explicit
formulas (15).

3.4 Application to the Model

Reconsider System (7).

• Assume that the functions g2 and g3 are zero until the respective thresholds s2

and s3 are reached such that min(s2,s3) ≥ s+ and that g2 and g3 are increasing
beyond.

This assumption allows us to assert that the subsystem[ ds
dt

dx1
dt

]
=

1
ε2

[ 1
ε1
( f (s)−g1(s)x1−g2(s)x2−g3(s)x3)

(g1(s)−d1)x1

]
still admits, for every (x2,x3) and ε1 small enough, a limit cycle Γx2,x3 that differs
from that of (8) for values of s≥min(s2,s3). The more x1 and x2 are large, the more
these cycles are distorted inwards in their right side. The minimum and maximum
of the cycles remain unchanged. Here, the averaged equation (14,15) takes the form
(see [14] for explicit formulas){

dx2/dt = x2M2(x2,x3)/P(x2,x3),
dx3/dt = x3M3(x2,x3)/P(x2,x3).

(16)

A detailed study of equation (16) leads to the following conditions of persistence:

Theorem 1. [14] Suppose that s3 > s2 = s+, ϕ(s3) > ϕ(s−) and that d2 is below
a certain constant well determined by the problem. Then, for s3− s2 and d3 small
enough, there is persistence of the species x2 and x3 of (16).
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x2

x3

x3*

x2* a2

a3

O

A B

C

E

D

Fig. 8. Portrait of (x2,x3) obtained from the averaged system (16). Compare to the simulations
presented on Fig.5

This result is reflected in Fig. 8 representing a positively invariant box OABC of (16)
in which arrive all trajectories with positive initial conditions. The axes are invariant,
the origin O is an unstable node and D and E are saddle points. A lemma due to
Butler-McGehee [2] shows that the union of limit sets of positive half-trajectories is
a compact subset Ω which does not meet the axes.

Theorem 2. Under the assumptions of the preceding Theorem, there is persistence
of the whole species of the model (7) for all positive initial conditions.

This final result is obtained by using a nonstandard permanence lemma [10] which
extends the approximation of the component (x2(t),x3(t)) of the solution of (7) by
the solution of (16) to an infinitely large time interval [0,ω ]. We than prove2 that
(x2(t),x3(t)) remains infinitely close to Ω for all infinitely large values of t and all
infinitesimal values of ε1 and ε2.
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différentielles à solutions rapidement oscillantes. Mathematical Tools and Models for
Control, Systems Analysis and Signal Processing, CNRS Paris (3), 345–353 (1983)

4. Jost, J.L., Drake, T.J.F., Frederickson, A.G., Tsuchiya, M.: Interaction of Tetrahimen
pyriformis, Escherichi coli, Azotobacter vinelandi and Glucose in a Minimal Madium. J.
of Bacteriology 113(2), 834–840 (1973)

2 We say that the standard set {Γx2,x3 ×{(x2,x3)} : (x2,x3) ∈Ω} is practically asymptoti-
cally stable for (7) for all infinitesimal values of ε1 and ε2 (see [13] for more details).



Coexistence of Three Predators Competing for a Single Biotic Resource 321

5. Lobry, C., Sari, T.: Nonstandard analysis and representation of real world. International
Journal on Control 80(3), 171–193 (2007)

6. McGehee, R., Armstrong, R.A.: Some mathematical problems concerning the ecological
principle of competitive exclusion. Journal od Differential Equations (23), 30–52 (1977)

7. Nelson, E.: Internal Set Theory: a new approach to nonstandard analysis. Bull. Amer.
Math. Soc. 83(6), 1165–1198 (1977)

8. Pontryagin, L.S., Rodygin, L.V.: Approximate solution of a system of ordinary differ-
ential equations involving a small parameter in the derivatives. Soviet. Math. Dokl. (1),
237–240 (1960)
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Control Problems for One-Dimensional
Fluids and Reactive Fluids with
Moving Interfaces

Nicolas Petit

Abstract. The purpose of this paper is to expose several recent challeng-
ing control problems for mono-dimensional fluids or reactive fluids. These
problems have in common the existence of a moving interface separating two
spatial zones where the dynamics are rather different. All these problems are
grounded on topics of engineering interest. The aim of the author is to expose
the main control issues, possible solutions and to spur an interest for other
future contributors. As will appear, mobile interfaces play key roles in various
problems, and truly capture main phenomena at stake in the dynamics of the
considered systems.

1 Introduction

The purpose of this paper is to expose several recent challenging control
problems for mono-dimensional fluids or reactive fluids. These problems have
in common the existence of a moving interface separating two spatial zones
where the dynamics are rather different. All these problems are grounded on
topics of engineering interest. The aim of the author is to expose the main
control issues, possible solutions and to spur an interest for other future con-
tributors. As will appear, mobile interfaces play key roles in various problems,
and truly capture main phenomena at stake in the dynamics of the considered
systems.

The paper contains a brief panorama. It is organized as follows. In Sec-
tion 2, a Diesel oxidation catalyst for the automotive industry is considered.
A boundary control problem is formulated for the outlet temperature control
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of this distributed reactive gaseous system. A model mobile interface sepa-
rates the upstream reactive zone from the downstream transport zone. The
location of this frontier is dependent on several variables, including measured
disturbances and the control variable. In Section 3, a classic Stefan problem
is presented. This system represents the melting of a solid phase into a liquid
phase which is heated on its boundary. Heat propagates inside the system and
generates a melting which occurs at a distance from the heat source which
varies as the solid phase melts or grows. As will appear, both the temperature
and the location of the moving interface can be controlled by the boundary
actuation. In Section 4, some mixing models for stirring vessels are exposed.
The proposed models use a mobile interface separating a distributed plug
flow regime from a continuously stirred homogenous zone. The motion of the
interface is generated by the variations of the blending speed which is a con-
trol variable. Finally, in Section 5, some recent developments on multiphasis
slug flow are exposed. They appear in the petroleum industry. Slugs are large
bubbles of gas separating pockets of liquid. They appear under certain flow
conditions, and must be avoided as they have malicious effects. Models for
them, involving a virtual choke which plays the role of a controlled interface,
are discussed.

2 Diesel Oxidation Catalyst

This introductory example comes from the automotive engine control world.
On most modern diesel vehicles, the increasing requirements regarding par-
ticulate matter emissions are satisfied using a particulate filter (DPF). This
device is now widely spread among new vehicles. The filter, located in the
vehicle exhaust line, stores particulate matter until it is burnt during an ac-
tive regeneration process. This regeneration is achieved by raising the filter
temperature (between 450 and 600 degrees) in the presence of oxygen in a
diesel oxidation catalyst (DOC).

Historically, oxidation catalysts have been the first aftertreatment sys-
tems in the automotive industry. Catalysts used for diesel applications have
appeared only recently because of the relative lower values of hydrocarbon
reductants HC and CO emissions found in compression ignition engines com-
pared against spark ignition engines. Because the HC and CO reactions are
strongly exothermic, the DOC is also used to control the exhaust line temper-
ature. In particular, it is used to generate the temperature required for the
already mentioned DPF active regeneration. To increase the DPF inlet tem-
perature, reductants are oxidized inside the DOC, which, in turn, increases
its outlet temperature.

After treatment systems usemonolith converterswhich are designed tomax-
imize the mass transfer to the catalytic surface. To this end, the channels
of the monolith are narrow and numerous (a typical order of magnitude is
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400 cpsi). This geometric configuration (see Figure 1) also yields highly-efficient
heat transfer between gas and solid. Hence, the solid phase (i.e. the monolith)
acts as a spatially-distributed storage of energy and species. As can be ex-
perimentally observed, the induced propagation phenomenon leads to highly-
delayed responses. Models for these devices are based on one-dimensional
distributed parameter equations. These one-dimensional effects must be in-
cluded in the modeling and further, they must be accounted for in the control
strategies if performance is desired.

Fig. 1. Phenomena involved in the numerous channels of a Diesel Oxidation Cata-
lyst. Reductant species in the exhaust gas are converted on the distributed catalyst
surface.

Fig. 2. Scheme of governing phenomena in a Diesel Oxidation Catalyst

Considering thermal effects, a simple model for the DOC consists of the
following balance equations

∂T

∂t
+ v

∂T

∂z
= −k1(T − Ts) (1)

∂Ts

∂z
= k2(T − Ts) (2)

which represent the dynamics of the temperature of the gas (T ) and the
temperature of the monolith (Ts). These equations are pictured in Figure 2.
The control variable is the inlet temperature
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T (0, t) = u(t)

Mathematically, this system of equations has a surprisingly long response
time, which is consistent with experimental observations [16] discussed earlier.

In details, the input-output relationship can be easily calculated from the
following transfer function (in the Laplace domain)

T̂ (z, s) = û(s) exp(−z
v
s− k1z

v
+

m

s+ k2
) (3)

which gives, in the time-domain,

T (z, t) =H(t− z

v
) exp(−k1z

v
)

×
(
u(t− z

v
) +

∫ t− z
v

0

exp(−k2τ)
√
m

τ
I1(2

√
mτ)u(t− z

v
− τ)dτ

)

where H is the Heaviside function. The above formula, which involves a
modified Bessel function, kindly fits experimental data, as can be observed
in Figure 3.

Fig. 3. Experimental data versus the DOC model

For (open-loop) control design, the transfer function (3) can be readily
inverted. This gives

û(s) = exp(
z

v
s+

k1z

v
− m

s+ k2
)ŷ(s)

which, back in the time domain, yields an explicit formula using a Bessel
function and a compact support convolution (see [16]). This formula provides
a straightforward open-loop control law: given histories for the output
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temperature, one can simply determine the corresponding inlet temperature
histories.

In practical applications, the true dynamics of the DOC systems is not
simply a temperature-gas transport pass a solid monolith. In facts, the con-
trol variable is not the temperature, but, equivalently, the injected mass of
fuel. These reductants are oxidized at the entry of the DOC system and, in
turn, generate heat. One can model this heat generation using the mobile
interface scheme of Figure 4. In fact, the DOC consists of two zones. An
upstream reactive zone, and a temperature transport zone. The length of the
(upstream) reactive zone directly depends on the amount of reductants under
consideration, which is a control variable. It thus varies with the operating
point. In turn, the complementary downstream transport zone also has a
variable length.

Fig. 4. DOC heat release model: reductants are spatially uniformly oxidized on
the upstream part of the DOC. The system can be split into two zones separated
by a moving interface: a reactive zone and a transport zone.

The location of the mobile interface can be identified quite accurately on
experimental data. In practice, it is of great importance to account for the
location of the interface in the derivation of control strategies. In particular,
linear controllers reveal themselves to be efficient so long as they incorporate
this variability in the computation of the gain scheduling and feed-forward
actions [16, 17]. The reader can refer to [16, 18, 15] for practical vehicle
applications relying on this model.

3 A Nonlinear Stefan Problem

In this second example, we study a heat diffusion equation with an endother-
mic reaction on a varying length. This can be seen as a crystal growth prob-
lem. Here, as in the previous example, the location of the mobile interface
also depends on the control variable, but less directly, through the whole
system dynamics.
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In the papers [7, 8] it has been shown how to calculate open-loop trajec-
tories for a nonlinear Stefan problem. It is a system governed by a nonlinear
parabolic partial differential equation which has been vastly studied from a
numerical analysis point of view, i.e. to compute solutions for future times
knowing initial conditions and future control actions. We desire to solve the
inverse problem, i.e. knowing the behavior of the free boundary a priori we
seek a solution, here as a convergent series, to calculate the control and de-
scription trajectories between two stationary states.

x=0 x=y(t)

x
h(t)

Heating point Liquid phase Solid phase

Mobile interface

Fig. 5. Stefan problem with boundary control. Liquid phase with boundary control
governed by a reaction-diffusion nonlinear partial differential equation in contact
with a solid phase.

The classic Stefan problem considers a liquid phase column in contact at 0
degrees with an infinite phase solid, as shown in Figure 5. This problem is
presented in detail in [1]. A list of problem reducing to this one can be found
in [22] (including many processes formation and melting of crystals). Here,
the Stefan problem is amended by adding a diffusion term and a nonlinear
reaction term. This is a simplified model of reactant coolant fluid surrounded
by solid phase.

Note (x, t) �→ u(x, t) the temperature in the liquid phase, and t �→ y(t) the
varying location of the liquid/solid interface. The mappings h(t) and ψ(x)
are the temperature on the fixed boundary (x = 0) and the initial condition,
respectively (t = 0). The nonlinear Stefan problem consists in finding u(x, t)
and y(t), for given h(t) and ψ(x) satisfying

ut = uxx − νux − ρu2, ∀(x, t) ∈ DT

u(0, t) = h(t) ≥ 0, 0 < t ≤ T
u(x, 0) = ψ(x) ≥ 0, 0 ≤ x ≤ y(0)
u(y(t), t) = 0, ux(y(t), t) = −ẏ(t), 0 < t ≤ T

⎫⎪⎪⎬
⎪⎪⎭ (4)

with

DT ≡ {(x, t) : 0 < x < y(t), 0 < t ≤ T }

where the boundaries are noted

BT ≡{(0, t) : 0 < t ≤ T } ∪ {(x, 0) : 0 ≤ x ≤ y(0)} ∪ {(y(t), t) : 0 < t ≤ T }
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The boundary condition ux(y(t), t) = −ẏ(t) expresses that the heat flux at
the interface is used for melting (or crystallization) of the solid phase. The
parameters of conductivity and heat latent liquefaction are standard here,
but without limitation, one may consider any factors in changes of variables
x and t.

The inverse problem is to calculate the boundary control h(t) allowing the
transition between two stationary states. As noted in [11], it is a non-Cauchy
problem characteristic with the Cauchy data. This nonlinear problem can be
solved by the following method. One can seek solutions (4) under the form
of the following series

u(x, t) =
∞∑

n=0

an(t)
n!

[x− y(t)]n (5)

where the coefficients (an(t)) satisfy the induction relations which are
necessary and sufficient

an = ȧn−2 − an−1ẏ + νan−1 + ρ

n−2∑
k=0

(
n− 2
k

)
an−2−k ak

for n ≥ 2, with a0 = 0 (from u(y(t), t) = 0) and a1 = −ẏ (from −ux(y(t), t)
= ẏ(t)).

By increments, one can show that the series (5) is absolutely convergent
where there exists strictly positives parameters M , R, T such that

|y(l+1)(t)| ≤M
l!α

Rl
, ∀ l = 0, 1, 2, ...,∀t ∈ [0, T ]

A lower limit to its radius of convergence can be easily determined. The
main difficulties lie in the calculation of recurrence bounds on the suc-
cessive derivatives of the coefficients (an(t)). This involves development of
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combinatorial derived cross terms from the nonlinear in u2, for which one
can use Chu-Vandermonde inequalities (see [21]). The lower bound on the
radius of convergence is then calculated by analysis of roots of a polynomial
of third degree. This lower bound can justify the use of this solution as series
to solve the inverse problem of melting (or crystallization) of the solid phase
by the control h(t).

Suppose the liquid phase has an initial length L and that we wish to reach
the length L + ΔL in finite time. It is a challenging problem because the
actuator h(t) is located at the opposite end fixed the liquid-solid interface
which will move over time. The control must compensate the energy loss due
to melting solid and that due to diffusion and reaction term. To solve this
problem, simply use the function

y(τ) =

⎧⎨
⎩
L+ΔL if τ ≥ T,
L+ΔLg(τ/T ) if T > τ > 0,
L if τ ≤ 0,

where

g(τ) =
f(τ)

f(τ) + f(1− τ)
, τ ∈ [0, 1],

and

f(τ) =
{
e−

1
τ if τ > 0,

0 if τ ≤ 0.

This function defines a smooth transition between the lengths L and L+ΔL.
By choosing the parameter T depending on other physical parameters, one
can guarantee that the radius of convergence of the series is larger than
L+ΔL proving that that the series expansion, and therefore the solution to
the inverse problem are valid.

This work follows [19] on reaction diffusion equation with fixed boundary.
Besides convergence of this series for a very special class of Gevrey functions
(as defined in [1]) used in an explicit assumption depending on physical pa-
rameters of the system, one can also prove a maximum principle stating that
the maximum temperature is always achieved on the sides of the domain [8].
Asymptotic positivity property of the solution can also be established.

4 Mixing Models

We now pursue our panorama of distributed systems with mobile interfaces
by considering mixing systems1. In this case, a rather unusual model can be
1 The interested reader can refer to [20, 2] treating the related problem of blending

systems.
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proposed, where the motion of the moving interface separating a homoge-
neous zone and a distributed zone depends on the derivative of the input
signal.

We expose ways to model mixing phenomena for Newtonian fluids under
unsteady stirring conditions in agitated vessels using helical ribbon impellers.
A model of torus reactor including a well-mixed zone and a transport zone
is considered. The originality of the arrangement of ideal reactors developed
in [5, 6] lies in the time-dependent location of the boundaries between the two
zones. Interestingly, this concept is applied to model the positive influence of
unsteady stirring conditions on homogenization process. It appears that this
model allows the easy derivation of a control law, which is a great advantage
when optimizing the dynamics of a mixing process. We now detail this model.

Fig. 6. Sketch of torus model proposed in [5, 6]

The mixing system is as follows. Consider a torus of fixed volume V divided
into two ideal reactors (a constant stirred tank reactor of volume Vd and a
plug flow zone of volume Vp = V −Vd) in which flows a Newtonian fluid with
a uniform time-varying flow rate Q̇ in a clockwise direction (see Figure 6).
Further, y refers to the fluid concentration (kg/m3) which varies with time
and space. It is assumed that the total material quantity of the component
y in the reactor remains constant. The originality of the torus reactor arises
from the time-dependent position of the interfaces (S1 and S2) which separate
the two ideal flow zones. Indeed, it is assumed that S1 and S2 move alternately
in a counter-clockwise direction to the flow rate fluctuations. Consequently,
when the flow rate is non-steady, the volumes (Vd and Vp) of the two ideal
reactors are time variant. In particular, it is assumed that S1 (respectively, S2)
moves only when positive (respectively, negative) variations in the flow rate
occur in the torus volume and is otherwise motionless. Note also, that when a
variation of flow rate occurs, not only the volumes of the zones vary but their
location within the torus evolves counter-clockwise. We assume that at each
time t the flow rate Q̇(t) is proportional to the impeller rotational speed N(t).
For steady operations simulation results obtained with this model are close to
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Fig. 7. A mixing vessel used for experimental validation of the proposed mixing
model, from [6]

Fig. 8. The torus model reproduces well the experimentally observed mixing mea-
sured by a conductivity probe, from [6]

the reference results [14]. In the case of unsteady stirring, the model accounts
for the experimental observation that an improvement in mixing occurs when
a positive variation in the rotational speed is enforced. For example, in the
case of a positive variation in impeller rotational speed, the volume of the
stirred tank reactor increases while that of the plug flow decreases. As the
whole volume of the torus loop is unchanged, an enhancement in mixing is
expected.

Note V̇ +
d (respectively, V̇ −

d ) the variation of volume Vd due to the motion
of S1 (resp., S2) in the torus, and let θ be the residence time of the par-
ticle leaving the plug flow zone at time t. Then, the whole system can be
characterized by the following differential equations
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V = Vd(t) + Vp(t)∫ t

t−θ

Q̇(σ)dσ = V − Vd(Q̇(t− θ))−
∫ t

t−θ

V̇ +
d (σ)dσ

Vd(Q̇(t))
d (y(t))
dt

= (Q̇(t) + V̇ +
d )(y(t− θ)− y(t)),

Q̇(t) = αN(t)

with

V̇ +
d = k

dN

dt
, if

dN

dt
> 0, V̇ +

d = 0 otherwise,

V̇ −
d = −kdN

dt
, if

dN

dt
< 0, V̇ +

d = 0 otherwise.

This model represents experimental data well. To check its validity, a mixing
vessel pictured in Figure 7 was used. The agitated fluid is an aqueous solu-
tion of glucose. The rotational speed was controlled to reproduce increasing
and decreasing ramps. A conductivity probe was used to obtain the circula-
tion curves in the vessel. The rotational speed and the conductivity signal
were recorded throughout the mixing process. The values of the rotational
speed varied from 0.16 to 1.5 rev/s. Mixing and circulation times were deter-
mined from the response signal recorded after tracer injection. As is pictured
in Figure 8, for the experimental conditions tested, the probe conductivity
measurements are in close agreement with the expected behavior reproduced
by the model.

5 Multiphasis Slug Flow

Finally, we wish to complete our catalogue of distributed systems with mov-
ing interfaces with a problem of multiphase flow. This problem is of great
importance in the oil industry where long pipes (named risers, or flowlines)
are used to transport large blends of gas, oil and water. The gas and the liquid
phase do not mix, and, in the case when the dispersed bubbles gather, they
form large bubbles, named “slugs” which induce malicious pressure variations
which are highly detrimental for industrial facilities. In such cases, the inter-
face is the boundary between liquid and gas phase. It is indirectly controlled
by remote inputs.

In details, risers are long pipes connecting reservoirs to surface facilities
for oil production. Severe slugging is a flow regime that arises mostly when
entering tail production of an oil field. It is characterized by an unstable
multiphase flow, where slugs of liquid accumulate before being pushed up-
wards by the gas. It is also characterized by oscillations of the pressure in
the pipeline and oscillations of flow rates of gas and oil at the production end
of the pipe. Although the phenomenon itself can be observed and sometimes
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reproduced on test rigs, its causes are not always known. Because the severe
slugging flow regime can damage the installations (and most importantly re-
duce the oil production), various techniques have been investigated in view of
suppressing it. The riser length typically ranges from a few hundred meters to
several kilometers. To avoid instability, the most straightforward technique

Fig. 9. A vertical riser carrying a multiphase flow, from [3]. An elongated bubble
located at the bottom of the riser is subjected to a pressure buildup until it is
released and generate a slugging flow. The interface between this elongated bubble
and the rest of the riser is a virtually controlled interface.

Fig. 10. The successive steps of the slugging cycle reproduced by the simple model
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consists in choking down manually the pipes thanks to a choke located up-
stream the separator. Although this solution stabilizes the flow, it reduces
significantly the oil production which, in turn, motivates the investigation of
dynamic control of the valve. Indeed, it is possible, in closed-loop, to stabilize
at higher flow rates.

Two classes of models can be found in the literature. The most accurate
type is based on (usually nonlinear) partial differential equations represent-
ing two-phase (oil and gas) or three-phase (oil, water and gas) flows. These
models are able to reproduce the slugging phenomenon in many cases, but
fail to match the behavior of real-life wells in other cases, in particular when
the instability comes from reservoir dynamics, for which there is little knowl-
edge about. Unfortunately, it is not possible to derive control laws from these
models because of their complexity. The second class of models is based on
ordinary differential equations and represents a different trade-off between
accuracy and complexity. A prime example is the model presented in [13],
which, besides its numerous merits, does not sufficiently rely on physics to
accurately reproduce the physical response of the system. Finally, the model
is not general enough and is designed for a specific geometry. This is also the
case for the model of gas-lift presented in [23, 26, 25].

Consider a vertical riser subjected to a constant input flow. The output flow
of the riser is controlled by a choke. Unstable flow regime can occur, especially
when the choke is largely opened, which, unfortunately, corresponds to a
point of industrial interest. This kind of instability is also observed on related
systems: oil wells with a gas reservoir [28, 12], risers with low-point [27, 10, 9].
Generally, switches of valves are reported to be at the birth of the oscillating
phenomena: downhole choke plays a key role in the casing-heading in [23,
12, 24], while the geometric low-point acting as a valve is studied in [27]. In
the riser considered here, no such valve exists or is even suggested by the
geometry. Yet, one can model the riser using a virtual choke located at a
well chosen point at the bottom of the riser. In this approach, the riser is
modeled as a three-state set of ordinary differential equations. As is detailed
in [3], one can tune the model analytically to fit most physical systems of
interest. The equations reproduce the slugging flow regime as follows. The
elongated bubble is subjected to a pressure buildup until its pressure get high
enough so that the bubble is eventually released and travels through the rest
of the vertical riser and produced a slugging flow regime. Then, the pressure
buildup starts over again. The successive steps of this cycle are pictured in
Figure 10. Further, this model suggest a control design that allows to stabilize
the flow. One can refer to [3, 4] for an experimental study and a mathematical
derivation of this control law.

6 Conclusion

In this paper, several distributed parameter systems with an internal mo-
bile interface have been presented. In each case, the governing equations are
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relatively simple, and it appears that the introduction of a mobile interface
is a key feature to make this model realistic. At various levels, the location
or the nature of the mobile interface can be controlled by the input variables.
In the case of the DOC system, it is directly dependent on the amount of
reductants entering the system. In the Stefan problem, the liquid-solid inter-
face moves as the heat flux travels through the whole system. In the mixing
vessel, the interface moves according to sign of the time variations of the ro-
tation speed of the blender. In the multiphase flow, the interface is virtually
actuated by a the histories of the control variable. Interestlingly, all these
models are simple enough to provide direct insight into the solution of con-
trol problems of engineering interest: thermal response of the DOC system,
inverse control of crystal growth, optimization of blending dynamics, stabi-
lization of slugging flows. The interested reader can refer to [16, 8, 6, 3] and
the references therein for details.
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A Port-Hamiltonian Formulation of
Open Chemical Reaction Networks

Arjan van der Schaft and Bernhard Maschke

1 Introduction

This paper discusses the geometric formulation of the dynamics of chem-
ical reaction networks within the port-Hamiltonian formalism [10, 9, 6].
The basic idea dates back to the innovative work of Oster, Perselson and
Katchalsky [8, 7]. The main contribution concerns the formulation of a
Dirac structure based on the stoichiometric matrix, which is underlying the
port-Hamiltonian formulation. Interaction with the environment is modelled
through the boundary metabolites and their boundary fluxes and affinities.
This allows a compositional view on chemical reaction network dynamics.

2 Stoichiometry, 1-Complexes, and the Stoichiometry
Dirac Structure

Consider a chemical reaction network involving N chemical species (metabo-
lites), among which M chemical reactions take place. The basic
structure underlying the dynamics of the concentrations xi, i = 1, · · · , N,
of the metabolites is given by the balance laws

ẋ = Sv (1)
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where S is an N ×M matrix, called the stoichiometric matrix. The elements
of the vector v ∈ RM are commonly called the (reaction) fluxes. The stoichio-
metric matrix S, which consists of (positive and negative) integer elements,
describes the basic chemical structure of the reactions. For example, the single
chemical reaction

2H2 +O2 → 2H2O

involving the species H2, O2, H2O has the stoichiometric matrix

S =

⎡
⎣−2−1

2

⎤
⎦

Furthermore, for every set of chemical reactions one may define the so-called
elemental matrix E, which captures the conservation of elements constituting
the chemical species. In the above example the elemental matrix is given as

E =
[
0 2 1
2 0 2

]

where the first row corresponds to oxygen (O) conservation, and the second
row to hydrogen (H) conservation. It follows that

ES = 0 (2)

Chemical reaction networks do not immediately correspond to ordinary
graphs. For example, if one associates to every chemical species a vertex of a
graph then one cannot directly associate a chemical reaction to an edge, since
a chemical reaction usually involves more than two species. Nevertheless, it
is natural to associate to a chemical reaction network a 1-complex, which is
a notion generalizing that of a graph1. Indeed, because of (2), a chemical
reaction network with stoichiometric matrix S and elemental matrix matrix
E defines the 1-complex

Λ1
S→ Λ0

E→ Λ−1 (3)

Here Λ1 is the vector space of all functions from the set of chemical species
to R, identified with RN , while Λ0 is the vector space of all functions from
the set of chemical reactions to R, identified with RM . and finally Λ−1 is the
vector space of all functions from the set of chemical elements to R. (In the
above example Λ1 = R1, Λ0 = R3, and Λ−1 = R2.)

Remark 1. A directed graph with N vertices, M edges, and incidence matrix
B defines the 1-complex
1 Other possibilities are to look at the chemical reaction network as a species-

reaction graph [3], or as a Petri-net [4], with transitions corresponding to the
reactions and places corresponding to species. Still another option is to use
hypergraphs.
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Λ1
B→ Λ0

�→ Λ−1 = R

with Λ1 = RM , Λ0 = RN , and � the vector consisting of all ones. Hence one
can regard the stoichiometric matrix S to be the analogue of the incidence
matrix of a graph.

In the example above rankE = corankS. However in general we only
have rankE ≤ corankS. In fact, if k is another N -dimensional row-vector
satisfying kS = 0 then

d

dt
(kx) = kSv = 0,

and kx is a conserved quantity (conserved moiety).
In many cases of interest, especially in biochemical reaction networks,

chemical reaction networks are intrinsically open, in the sense that there
is a continuous exchange with the environment (in particular, other reaction
networks). This will be modelled by splitting the total vector of fluxes into a
vector of internal fluxes vi and a vector of boundary (or, exchange) fluxes vb,
corresponding to a splitting of the stoichiometric matrix S as

S =
[
Si Sb

]
whereby the dynamics takes the form

ẋ = Sivi + Sbvb (4)

Usually the boundary fluxes vb are uptake (or demand) reactions for part of
the metabolites, which we will call the boundary metabolites. Thus, boundary
metabolites may also participate in other chemical reaction networks.

Example 1. Consider the reactions

→ A
A+B → C +B

C →

having stoichiometric matrix

S =
[
Si Sb

]
=

⎡
⎣−1 | 1 0

0 | 0 0
1 | 0 −1

⎤
⎦

with boundary metabolites A and C.

In the next section we will consider the (generalized) Hamiltonian formula-
tion of chemical reaction networks. The generalized Hamiltonian formulation
of dynamics involves two notions [10, 9, 6]. The first one concerns the consti-
tutive relations, in particular those of energy storage and energy dissipation
(resistive relations). The second one is an underlying geometric structure,
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which ’regulates’ the power flow in the system. In classical mechanics this
geometric structure is given by a symplectic form or a Poisson structure. In
general, see e.g. [10, 9, 6] this geometric structure is given by a Dirac struc-
ture. For chemical reaction networks we will show how the Dirac structure is
determined by the stoichiometric matrix.

Recall [2, 10, 9] that a subspace D ⊂ V × V∗ for some vector space V and
its dual space V∗ defines a (constant) Dirac structure if

D = D⊥ (5)

where ⊥ denotes the orthogonal complement with respect to the indefinite
inner product � ·, · $ on V × V∗ defined as

� (v1, v
∗
1), (v2, v

∗
2)$:=< v∗1 | v2 > + < v∗2 | v1 >,

with v1, v2 ∈ V , v∗1 , v∗2 ∈ V∗, where < · | · > denotes the duality product
between V and V∗.

In the finite-dimensional case an equivalent characterization of Dirac
structures is given as follows [9], [6].

Proposition 1. A subspace

D ⊂ V × V∗

is a Dirac structure if and only if the following two conditions are satisfied:

(i) < v∗ | v >= 0, for all (v, v∗) ∈ D
(ii) dimD = dimV

(6)

The stoichiometric matrix S =
[
Si Sb

]
of a chemical reaction network with

internal and boundary fluxes defines the following Dirac structure, called
the stoichiometry Dirac structure. Recall that Λ1 is the vector space of all
functions from the set of chemical species to R. The dual space of Λ1, denoted
by Λ1, is going to define the space of chemical potentials μ. Recall furthermore
that Λ0 is the vector space of all functions from the set of chemical reactions
to R (that is, Λ0 is the vector space of fluxes). Corresponding to the splitting
of the fluxes into internal and boundary fluxes we will write Λ0 = Λi ⊕ Λb,
where vi ∈ Λi and vb ∈ Λb. The dual spaces of Λi and Λb will be denoted by
Λi, respectively Λb. They are going to define the space of thermodynamical
affinities. Then the subspace

D := {(f, μ, vi, Ai, vb, Ab) ∈ Λ1 × Λ1 × Λi × Λi × Λb × Λb |
−f = Sivi + Sbvb, Ai = ST

i μ,Ab = ST
b μ}

(7)

defines a Dirac structure, as follows from the following general, easily proven,
proposition [12]:
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Proposition 2. Let A : V →W be a linear map between the linear spaces V
and W with adjoint mapping A∗ :W∗ → V∗, that is

< w∗ | Av >=< A∗w∗ | v > (8)

for all v ∈ V , w∗ ∈ W∗ (where as before < · | · > denotes the duality product
between the dual spaces W and W∗, respectively V and V∗). Then

D := {(v, w, v∗, w∗) ∈ V ×W × V∗ ×W∗ | w = Av, v∗ = −A∗w∗} (9)

is a Dirac structure.

3 The Port-Hamiltonian Formulation of Chemical
Reaction Networks

The dynamics of the concentration vector x (or equivalently the vector n of
mole numbers) is given once the internal fluxes vi are specified as a function
r(x) of x, defining the reaction rates. The most basic possibility for specifying
the reaction rates is mass action kinetics. For example, the reversible reaction

A+B ↔ C

is considered as a combination of the forward reaction

A+B → C

with forward rate equation rf (a, b) = kfab (a, b denoting the concentrations
of species A, B), and the reverse reaction

A+B ← C

with rate equation rr(c) = krc, for certain constants kf , kr. The net reaction
rate given by mass action kinetics is thus

v = r(a, b, c) = rf (a, b)− rr(c) = kfab− krc

More generally, the reversible reaction

mA+ nB ↔ pC + qD

for positive integers m,n, p, q has according to mass action kinetics the net
reaction rate

v = kfa
mbn − krc

pdq
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How can we write this into a port-Hamiltonian form ? Consider the chemical
reaction part of Gibbs’ law2

dG =
N∑

i=1

μi(n)dni

with G the Gibbs free energy, μi the chemical potential of metabolite i, and
ni its mole number. In the ideal case the chemical potential μi is

μi(xi) = μ0
i +RT ln(

ni

V
) = μ0

i +RT ln(xi) (10)

with μ0
i the reference potential, R the gas constant, T the temperature, V

the volume, and xi = ni

V the concentration. Equivalently, we have the inverse
relation

xi = exp[
(μi − μ0

i )
RT

] (11)

In order to obtain a port-Hamiltonian description we would like to express
the change in vector of concentrations ẋ as a function of μ(x). Or better,
we want to express the flux vector v as a function of the vector of the
(thermodynamical) affinities A, defined as

A = STμ (12)

(For simplicity of exposition we first only consider internal fluxes vi = v.)
This will define the dynamics on R

M , the space of reaction extents [8].
However, it is well-known, see e.g. [8, 7], that in general (far from ther-

modynamical equilibrium) it is not possible to express the flux vector v as
a function of the affinities A. In particular, it is not possible to do this for
mass action kinetics3.

Nevertheless, see [7, 8, 1], the mass action reaction rate can be written
as a function of the so-called forward and reverse affinities. Decompose the
stoichiometric matrix S as the difference S = Sr − Sf of the two matrices
Sf , Sr with non-negative elements, where

Sf = forward stoichiometric matrix corresponding to reactants

Sr = reverse stoichiometric matrix corresponding to products

Example 2. The stoichiometric matrix
2 For clarity of exposition we will only consider this part of Gibbs’ law; see e.g. [5]

for a treatment of the other parts.
3 This is readily illustrated [7] by the simplest reaction A ↔ B with reaction rate

r(a, b) = kfa−krb. When a and b are doubled, then so is the reaction rate r(a, b).
However, the thermodynamical affinity remains the same.
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S =

⎡
⎢⎢⎢⎢⎣
−1 0 0
−1 0 −1
1 −1 0
0 2 −3
0 0 2

⎤
⎥⎥⎥⎥⎦

corresponding to the reactions

A+B ↔ C,C ↔ 2D, 3D +B ↔ 2E

is decomposed into

Sf =

⎡
⎢⎢⎢⎢⎣
1 0 0
1 0 1
0 1 0
0 0 3
0 0 0

⎤
⎥⎥⎥⎥⎦ , Sr =

⎡
⎢⎢⎢⎢⎣
0 0 0
0 0 0
1 0 0
0 2 0
0 0 2

⎤
⎥⎥⎥⎥⎦

Then the mass action reaction rate of the j-th reaction is given by

vj = kj
f

N∏
i=1

xis
f
ij − kj

r

N∏
i=1

xis
r
ij (13)

where sf
ij is the (i, j)-th element of the forward stoichiometric matrix Sf , sr

ij

is the (i, j)-th element of the reverse stoichiometric matrix Sr, and kj
f , k

j
r are

the forward/reverse reaction rate constants of the j-th reaction.
Define now the forward and reverse affinities Af , Ar as[

Af

Ar

]
=

[
ST

f

ST
r

]
μ =

[
Sf Sr

]T
μ, (14)

and expand the dynamics as

ẋ = Sv =
[
Sf Sr

] [vf

vr

]
,

where the forward and reverse fluxes vf , vr satisfy[
vf

vr

]
=
[
−I
I

]
v, (15)

with v the vector of fluxes. The relation dual to (15) is the following relation
between the forward/reverse affinities Af , Ar and the affinity A

A =
[
−I I

] [Af

Ar

]
= −Af +Ar = STμ (16)
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If we again assume ideal relations between concentrations xi and chemical
potentials μi given by (10,11) it follows that the mass action reaction rate
(13) of the j-th reaction can be rewritten as, see [7, 8] for details,

vj = κj(exp[
Aj

f

RT
]− exp[

Aj
r

RT
]) (17)

where κj is a constant related to the forward and reverse rate constants kj
f , k

j
r

and the reference potentials [7], and with Aj
f , A

j
r denoting the j-th component

of Af , Ar. We conclude that although the mass action reaction rate cannot
be written as a function of the thermodynamic affinity A it can be written
as a function of the forward and reverse affinities Af , Ar. Summarizing, we
have expressed the vector of fluxes v as

v = vr = −vf = −J(Af , Ar) (18)

for the mapping J whose components are specified in (17)4. It can be shown
[7, 8] that mass action kinetics is passive, and thus (18) corresponds to a kind
of resistive relation.

By also taking into account the exchange or boundary fluxes vb we may
thus write the dynamics of the chemical reaction network, with reaction rates
modeled by mass-action kinetics, as

ẋ =
[
Sf Sr

] [vf

vr

]
+ Sbvb = −SJ(Af , Ar) + Sbvb (19)

This leads to the following port-Hamiltonian description. Note that the
stacked matrix

[
Sf Sr Sb

]
defines a new 1-complex, as compared to the origi-

nal 1-complex defined by the stoichiometric matrix S =
[
Si Sb

]
. Correspond-

ingly, the splitting into the forward and reverse affinities and fluxes leads to
the extended stoichiometry Dirac structure

De :={(f, μ, vf , Af , vr, Ar, vb, Ab) ∈ Λ1 × Λ1× Λf× Λf× Λr× Λr × Λb × Λb |
−f=Sfvf + Srvr + Sbvb, Af = ST

f μ,Ar = ST
r μ,Ab = ST

b μ}
(20)

Now all elements are in place for the port-Hamiltonian formulation of the
chemical reaction network, following the basics of port-Hamiltonian theory
[10, 9, 6]. Indeed, consider the extended stoichiometry Dirac structure (20),
together with the constitutive relations for the energy storage

μ(x) =
∂G

∂x
(x), (21)

4 As shown in [7], reduced-order reaction rates such as Michaelis-Menten reaction
rates for enzymic reactions can also be written as a function of Af and Ar.
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interconnected to the variables in the definition of the modified stoichiometry
Dirac structure via

f = −ẋ, μ = μ(x) (22)

Furthermore, consider the following resistive relation between the forward
and reverse fluxes vf , vr and affinities Af , Ar

vf = J(Af , Ar)

vr = −J(Af , Ar)
(23)

where the components of J are given by (17). Substitution of the energy-
storage constitutive relation (21,22) and resistive relation (23) into the ex-
tended stoichiometry Dirac structure leads to the following port-Hamiltonian
system, with boundary variables being the boundary fluxes vb and boundary
affinities Ab given by

ẋ = −SJ
(
ST

f
∂G
∂x (x), S

T
r

∂G
∂x (x)

)
+ Sbvb

Ab = ST
b

∂G
∂x (x)

(24)

Note that for a boundary flux being the uptake reaction of some bound-
ary metabolite the corresponding boundary affinity is simply the chemical
potential of this metabolite.

As an immediate consequence of the port-Hamiltonian formulation we
obtain the following energy balance

d

dt
G(x) = −μT (x)SJ(Af , Ar)+AT

b vb = −(−AT
f +A

T
r )J(Af , Ar)+AT

b vb (25)

where (see [8, 7]) (−AT
f +AT

r )J(Af , Ar) ≥ 0, thus showing passivity.
Note that AT

b vb is the power provided to the chemical reaction network by
the interaction with its environment (through the boundary metabolites and
fluxes). This suggests, following basic ideas of port-based modeling and port-
Hamiltonian theory, how to interconnect chemical reaction networks. Indeed,
consider two reaction networks with boundary fluxes and affinities vb1 and
Ab1, respectively vb2 and Ab2 (all of equal dimension). Interconnection is
achieved by setting

Ab1 = Ab2, vb1 + vb2 = 0 (26)

4 Conclusions

In this paper we have aimed at merging the geometric approach to chemical
reaction dynamics and the formulation of mass action kinetics as a resistive
relation due the work of Oster, Perelson and Katchalsky, with a network
approach based on port-Hamiltonian systems theory. This was achieved by
defining a Dirac structure determined by the stoichiometry of the network.
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This allows for a compositional view on complex chemical reaction network
dynamics, and for the application of system-theoretic notions and tools to
open chemical reaction networks, which is a subject of current research.
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Bifurcations of Dynamical Systems,
Logistic and Gompertz Growth Laws
in Processes of Aggregation

Alex Shoshitaishvili and Andrei Raibekas

Abstract. From the systemic point of view protein aggregation is a compen-
satory mechanism allowing transition of a system (protein solution) from an
initially stable equilibrium, which became unstable under a stress, to another
stable equilibrium, which bifurcates from the initial one because of the stress.
The simplest bifurcation of this type is Logistic bifurcation with a positive
small parameter.

We realize this bifurcation as a model of protein aggregation through a
large-dimensional Becker-Döring system with a one-dimensional Logistic at-
tractor (BDL) containing two equilibria. BDL depends on the magnitude δ
of stress as a small parameter. Kinetics on the attractor is transformed by
the observable (which is a fewnomial, i.e., a high-degree polynomial with a
number of terms that is small relative to the degree) into the observed kinet-
ics of the experiment. This model explains Gompertzian growth, unimodality
of size distribution of aggregates, and relations between Rate, Plateau and
time elapsed from onset to inflection moments. The explanation is based on
the existence of a nonequilibrium partition function. It exists under the as-
sumption of formation of aggregation-competent monomer as a precursor of
the aggregation.

1 Protein Aggregation and Its Features

Protein aggregation is an important subject in medicine (neurological
diseases) and pharmaceutics (degradation of large molecules in protein thera-
peutics). Numerous papers are devoted to this subject (see, for example, sur-
veys [1, 2, 3, 4]). As a mathematical model for protein aggregation often the
Becker-Döring system of differential equations [5] is considered. This system

Alex Shoshitaishvili · Andrei Raibekas
California State University Channel Islands
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has been investigated in infinite-dimensional as well as in finite-dimensional
settings ([6, 9, 10, 11, 12, 15, 16, 18] and many others). We treat the finite-
dimensional Becker-Döring system from a different perspective of qualitative
geometrical theory of dynamical systems and their bifurcations.

We also follow the principle which arises from singularity theory [13] and
implies that any phenomenon of growth depending on one parameter (in
our case the parameter is a small excess of protein concentration above the
critical concentration) should be induced (i.e., transformed by a change of
parameters and by a change of the variables, depending on the parameters)
from the corresponding versal deformation, which in our case is multidimen-
sional Saddle-Node (SN) bifurcation with a positive parameter [14]. We will
use the Logistic form of this bifurcation. In the 1D case, transition from SN
bifurcation with a positive parameter ċ = τ−c2, τ > 0 to Logistic bifurcation
with a positive parameter ˙̃c = c̃ε− c̃ consists of the change of the parameters
τ = (1/4)ε2 and the change of the variables c̃ = c+ (1/2)ε.

In this work multidimensional Logistic bifurcation appears as a large-
dimensional Becker-Döring model with Logistic one-dimensional attractor
(BDL). Mass of aggregated protein is an observable and is a function of
states of BDL. The observable transforms the Logistic type of kinetics into
experimentally observed kinetics (in our case into Gompertzian kinetics).
To demonstrate this result we introduce new variables: coefficients of the
Nonequilibrium Partition Function. These variables resolve a singularity in
BDL.

We relate to each other the following features of aggregation which have
been observed in experiments: Gompertzian growth [7, 8, 19]; linear depen-
dences of ti,o = tinflection − tonset, which is the duration of time between
moments of onset and inflection on logarithm of the rate of growth (at the
inflection point) or on the logarithm of the plateau (which is the maximum
mass of aggregated protein) [7]; and finally, localization of the distribution
of sizes of aggregates in the vicinity of some predominant size during the
aggregation process [8].

In the frame of the suggested model the ratio of the slope and constant term
in the (ti,o, log(Plateau))-relationship is −1/n, where n is the predominant
size of the aggregate or (in another scenario) is −1/ν where ν is the size of
the nucleus.

2 A Phenomenological One-Dimensional Model

The following one-dimensional phenomenological model of aggregation will
be justified in the subsequent sections as a reduction to a one-dimensional
attractor of a large-dimensional Becker-Döring system of ordinary differential
equations.
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Let us introduce a small parameter δ which is the difference between the
concentration of native monomer p and the critical aggregation concentration.
δ and all other concentrations below are measured in mole fraction. Critical
aggregation concentration (CAC) is the concentration of the protein above
which the aggregation starts.

At the beginning of the experiment a sample of protein solution is heated
quickly to a higher temperature; the critical aggregation concentration drops
down and the difference between the concentration of native monomer p
and the critical aggregation concentration instantly becomes a small positive
number δ.

We will consider a case of aggregation in which the native monomer un-
der thermal stress (or some other kind of stress) produces an active (or,
in other terminology, aggregation-competent) monomer which in turn forms
aggregates of different sizes (see, for example,[12, 21]).

Denote the mole-fraction of active monomer by c1 and assume that c1
changes in time according to differential equation

ċ1 = c1(ε− c1)γ(c1, ε) (1)

where ε = ε(δ) is a small constant which depends on δ, ε(δ) < δ, ε(0) = 0, and
0 ≤ c1 ≤ ε.

Here γ(c1, ε) is a (sufficiently) smooth function, γ = γ0 + γ1(c1, ε), γ0 =
constant > 0, γ1(0, 0) = 0. This differential equation is similar to a logis-
tic differential equation, and can be transformed to it by a change of time.
Therefore we will call it a logistic equation too.

According to the thermodynamics of aggregation (see, for example, [22]),
at equilibrium c1 = ε the relationships cm = Qmc

m
1 , (m > 1) have place,

where cm is the mole-fraction of the aggregates containing m monomers, and
Qm, (m > 1), are positive constants (these constants are called coefficients of
the partition function). This is not true for the kinetic part of the process.
However, as we will show in other sections, it is almost true.

Assume that for some constant ω(ε), depending on ε, where ω, 0 ≤ ω < 1
and any integer m > 1, the mole fraction cm of the aggregates of size m is

cm = qmc
m
1 , ω ≤ c1 < ε,

qm = qm(c1, ε) > 0, qm = qm,0/ε
m−gm + qm,1(c1, ε)

qm,0 = constant > 0, qm,1 = O(c1, ε)

Coefficients qm are called coefficients of the non-equilibrium partition func-
tion. The presence of the powers of small parameter ε in the denominators
for coefficients qm of the partition function is an indication of the explosive
character of aggregation in the aggregates of sizes favorable from a ther-
modynamical point of view. These powers could have different magnitudes,
which are reflected in numbers gm. We will consider two main cases: (1)
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gm = m,m > 2 (meaning that qm,0 do not have ε in the denominators and
cm is of order εm) and (2) gm = 1,m > 2 (meaning that cm is of order ε).

Note that the mole fraction of the monomer which is consolidated in the
aggregates of size m is mcm = mqmc

m
1 .

Consider a scenario of aggregation with gm = 1,m > 1. At the late stage
of the process, when c1 is sufficiently close to ε, the terms γ1(c1, ε) (see (1)),
c1qm,1(c1, ε) and their derivatives become negligibly small. Also for this stage
of the process, the population of the aggregates of sizes m : n ≥ m ≥ n + k
become abundant for some n, k and the population of aggregates of other
sizes become scarce. Thus the mole-fraction of monomer

∑
m>1 mcm which is

consolidated in the aggregates (and which we observe in the experiment) can
be for sufficiently small ε closely approximated by some polynomial F with
nonnegative coefficients. So kinetics of the aggregation can be approximated
by a one-dimensional Logistic system with observable F

ċ1 = c1(ε− c1)γ0 (2)

F (c1) = cn1

k∑
i=0

(n+ i)(qn+i,0/ε
n−1)ci1 (3)

ω ≤ c1 ≤ ε (4)

0 < ε << 1, n >> 1, k << n, |ω − e−e/nε| << ε (5)

where n, k are positive integers, and the signs >>,<< mean ”much more”
and ”much less”.

The exact estimations which are required for the above-mentioned
γ1(c1, ε), qm,1(c1, ε) and for their derivatives, as well as estimations showing
the exact meaning for << and >> in each of these cases (5) are omitted here
for brevity.

In spite of the fact that we considered a late stage of the aggregation
with respect to accumulation of the active monomer c1, this stage is an early
enough stage with respect to the observed process. It means that the whole
onset-saturation period for the observable mass of aggregated protein is reg-
istered by the model. Namely the curve F (c1(t)) will be observed as a Gom-
pertzian curve on the time span from the onset moment of the Gompertzian
curve to the saturation moment of this curve.

Statement 1. The curve F (c1(t)) considered on interval of [tonset, tsaturation]
is uniformly close to a Gompertzian curve G(t)
|F (c1(t)) −G(t)| = ε(o(1/n) + o(ε))
where G(t) is a solution of Gompertz equation
Ġ = γ0(G(ln(n) + ln(F (ε)/ε)− ln(G)))

Remember that a Gompertzian curve is a solution of the Gompertz equation,
which describes some type of limited growth (see, for example,[20])



Bifurcations of Dynamical Systems, Logistic and Gompertz Growth Laws 353

d

dt
g(t) = βg(t)(α − ln(g(t))) (6)

where α, β are constants.
The solution of Gompertz equation is

g(t) = a ∗ e−e− t−x0
b (7)

where a = eα, b = 1
β , x0 = b ∗ ln(ln(a) − ln(g(0))). Constant a is equal

to g(∞); constant x0 is the moment when the inflection point of growth is
achieved; constant b is the time elapsed from the onset point of the growth to
its inflection point; and x0 − b is equal to the time (which is called lag) from
the initial moment to the onset moment. The onset and saturation moments
are the moments when the linear approximation of the Gompertzian curve
by its tangential line taken at the inflection point intersects horizontal lines
y = o and y = a respectively.

To prove the statement one should rescale time, c1 and F :

t = (1/ε)τ, c = (1/ε)c1, F̃ (c, ε) = F (εc)/(ε
∑k

i=0(n+ i)qn+i,0) ,

consider mapping F̃ : s1 → s1 as a change of variable c1 and then apply the
following lemma.

For a constant Δ, 0 < Δ < 1 let us determine segment sΔ = (c : Δ ≤ c ≤
1). Consider s0 and a vector field Lv on s0: Lvc = c(1− c)γ0.
Consider function Pn,k = cnPk where Pk = (

∑k
i=0 pnc

i). Here γ0 > 0, pn+i >
0, i = 0, .., k are constants. Assume that Pk(1) = 1. Then function Pn,k

monotonically increases on s1, and maps 0 to 0, 1 to 1. Hence it is a one-to-
one mapping of the segment s1 onto itself.

Lemma 1. For n → ∞ the sequence Rv,n,k = (Pn,k)∗Lv, n = 1, 2, ... of vector
fields on [0, 1] non-uniformly C0-converges to the vector field Gv = −uln(u)
This convergence is uniform on any segment sΔ, Δ > 0 and max|Rv,n −Gv|
on sΔ is O((1/n)ln(Δ)).

(For mapping f : s0 → s1, notation f∗v(x) means a vector at a point x ∈ s0
which is the image under the mapping f of a vector v at the point f−1(x).)

The lemma easily can be verified by application of Taylor approximation
with respect to the exponent y = 1/(n+ i) at y = 0 for the functions cy =
1 + ln(c)y + 1/2ln(c)2y2 + ... and approximation (1 − c) = 1 − eln(c) =
ln(c) + 1/2 ∗ ln(c)2 + ...

2.1 ti,o-Plateau Relation

From (3),(1),(6) one has that a = F (ε) = κεn, ti,o = tinflection − tonset = b =
1/(γ0ε), where a is Plateau , i.e., the saturation level of aggregated monomer
observed. So κ is some large constant. Assume that magnitudes a, 1/n are
such that approximation a1/n = 1 + (1/n)ln(a) is accurate enough. Then



354 A. Shoshitaishvili and A. Raibekas

ti,o = (1/γ0)κ1/n/a1/n. Let us substitute in this equation an approximation
1/a1/n = 1 − (1/n)ln(a). Comparing the result of the substitution with an
empirical linear regression lrio(ln(a)) which presents ti,o as a linear function
of ln(a), one has

Statement 2. Ratio of the slope to the intercept of lrio(ln(a)) is −1/n.

3 Nonequilibrium Partition Function (NPF)

The system of Becker-Döring differential equations is a model for a process
of coarsing (an aggregation). It represents the aggregation by a sequence of
attachment and disattachment of a monomer to an aggregate by one monomer
at a time

d

dt
cn = an−1c1cn−1 − bncn − anc1cn + bn+1cn+1, n ≥ 2 (8)

where cn is the mole fraction of an aggregate comprised by n monomer parti-
cles, n is called an aggregation number, and an and bn are rates of reactions
of attaching and releasing of monomer particles to/from an aggregate and
are determined by the thermodynamics of the aggregation.

Interactions of aggregates with differences of aggregation numbers greater
than one are considered thermodynamically unfavorable and are forbidden
(these interactions are considered in the more general Smoluchowski model
of coursing).

Becker-Döring differential equations as well as their different limits have
been investigated quite deeply mathematically (see [11] and references therein),
and have been successfully applied for the precise description and prediction
of the kinetics of many coarsing/coagulation/crystallization/aggregation phe-
nomena [24, 17, 16, 3, 18]. However for some types of aggregation, attempts
to describe and predict the kinetics of the aggregation in the frame of Becker-
Döring differential equations have failed (see remark on page 143 [19]). These
cases can be accurately treated through a phenomenological limited growth
model, namely the Gompertz model.

We will connect Becker-Döring equations to a Gompertz equation by
introducing a Logistic differential equation for c1.

The equation for the derivative of c1, which has to be a part of the BD
model, traditionally is derived from additional requirements like the require-
ment of mass conservation. Below we introduce an equation for c1 in a differ-
ent way to meet a requirement of the existence of a nonequilibrium partition
function.

One can see that at nonzero equilibrium c̄1, .., c̄n

c̄n = Qnc̄
n
1 , n ≥ 2 (9)
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where
Q1 = 1,

Qn+1

Qn
=

an

bn+1

and thus
Qn =

a1a2...an−1

b2b3...bn
(10)

Constants Qn have thermodynamical meaning. They are called coefficients
of the Partition Function (PF).

Suppose that ċ1 = c1φ(c1, .., cn, p, ε) for some smooth function φ which
depends on parameters ε and precursors p of the aggregation. Let us introduce
new variables qn such that

cn(t) = qn(t)cn1 (t), n ≥ 2, Tstart ≤ t ≤ Tfinish (11)

Substituting (11) in (8) and dividing by cn1 one has

d

dt
c1 = c1φ(c1, .., cn, p, ε) (12)

q1 = 1
d

dt
qn = −nqnφ(c1, .., cn, p, ε) +

+an−1qn−1 − bnqn − anc1qn + bn+1qn+1c1, n ≥ 2 (13)

We will show that under some conditions (12) can be approximated by Lo-
gistic ċ1 = c1(ε− c1)γ0. In this case the system (12),(13) has two equilibria

c1 = 0, q1 = 1, qn = Q̃n = a1..an−1/(b2 + 2ε)..(bn + nε), n ≥ 2 (14)
c1 = ε, q1 = 1, qn = Qn = a1..an−1/b2..bn, n ≥ 2 (15)

The system (12),(13) will be called the Nonequilibrium Partition Function
(NPF) System of differential equations.

4 1D Attractor in BD and NPF Systems

NPF system with Logistic-type equation for c1 is justified for aggregation
with aggregation-competent monomer-precursor.

To see this let us consider production of the active monomer c1 (see
section 2) from native monomer p as a precursor of aggregation and spending
of c1 on the aggregates:

The amount of mass mtot = p+ c1 +
∑

n≥2 ncn is conserved. So

d

dt
cn = Jn−1 − Jn, n ≥ 2, Jn = ancnc1 − bn+1cn

d

dt
c1 = ṽ(p, c1, δ)− J1 −

∑
n≥1

Jn = f(c1, .., cN , δ),
d

dt
p = −ṽ(p, c1, δ) (16)
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for some ṽ(p, c1, δ).
Assume that: an ≥ 0, bn ≥ 0 for all n, and that the system is finite, i.e.,

an = 0, bn+1 = 0, n > N for some N .
Using the conserved quantity p+

∑N
1 ncn = mtot = CAC+ δ where δ and

CAC are defined as in section 2 above, one can exclude variable p from the
system (16).

At the equilibrium c̄1, .., c̄N one has Obs(c̄2, ..., c̄N ) = (
∑N

n>1 nQnc̄
n
1 ) = a

where a is the maximum of observed mass Obs of aggregated protein ex-
pressed in a mole fraction. The aggregation stops when the excess of the
concentration p of native monomer above the critical concentration is zero.
So a + c̄1 = δ. It means that for a small enough δ, function ε = c̄1(δ) is an
analytical function of δ and vice-versa.

One obtains the following system which will be called a BD system (BDS)

d

dt
cn = an−1c1cn−1 − bncn − anc1cn + bn+1cn+1, n ≥ 2 (17)

d

dt
c1 = f̃(c1, .., cN , ε) (18)

where f̃(c1, .., cN , ε) = (ṽ(p, c1, δ)− J1 −
∑

n≥1 Jn)p=p(c1,..,cN ,δ(ε)),δ=δ(ε).
We assume that ṽ and hence f̃ are sufficiently smooth.

Remark 1. Sufficiently smooth means “having no fewer derivatives than are
necessary for future calculations”. In fact, for our purpose the necessary
number of derivatives is 5.

The following assumption guarantees that a NPF system exists and can be
derived from (23,24) similar to (12).

Assumption 1. If c1 = 0 then ċ1 = 0
Thus ċ1 = ṽ(p, c1, δ) = c1v(p, c1, ε) for some function v.

Assumption 2. For ε > 0 the system (17,18) has two equilibria which
become one of multiplicity 2 at δ = 0

Assumption 3. Assume that bn �= 0, n ≤ N .

Because the assumption (2) has place, the following condition, which we
formulate as a lemma, necessarily is true.

Lemma 2. Eigenvalues of (17,18) at the point (c1 = cn(n > 1) = ε = 0) are
split into group Eneg of negative eigenvalues −bn > 0, n > 1 and group E0

which consists of one zero eigenvalue and (∂c1 f̃)(c1 = 0, .., cN = 0, ε = 0) = 0.

As it follows from Lemma 2 and Assumption (3) the following statement has
place (see [14]).

Statement 3. For sufficiently small ε the system BDS has in a neighborhood
of the origin a 1D exponential attractor which is given by a sufficiently smooth
system of equations
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cn = fn(c1, ε), n > 1 (19)

and the restriction of the BDS on the attractor can be written in terms of
coordinate c1 as

ċ1 = f(c1, ε) = f̃(c1, f2(c1, ε), .., fN (c1, ε)) (20)

From here on we consider only non-negative small parameters ε and are
interested in the behavior of the BDS in the region c1 ≥ 0, .., cn ≥ 0, 0 ≥
c1 ≥ ε. This region is invariant under the BDS : any trajectory with an
initial condition in the region always stays in the region.

The following assumptions guarantee that no more than two equilibria
come together at ε = 0 and that the final equilibrium is stable.

Assumption 4.

∂2
c1,εf(0) > 0 (21)

∂2
c12f(0) < 0 (22)

Under the assumptions the equation (20) can be written in the form (2). The
system

d

dt
cn = an−1c1cn−1 − bncn − anc1cn + bn+1cn+1, n ≥ 2 (23)

ċ1 = c1(ε− c1)γ(c1, ε)
γ = γ0 + γ1(c1, ε), γ0 = constant > 0, γ1(0, 0) = 0 (24)

where γ(c1, ε) is a sufficiently smooth function, has the attractor which
coincides with the attractor of the system BDS (17,18).

This system is called the BDL system.

Remark 2. Because cm,m > 1 is of order cm1 (see below), Assumption 4
expresses the relationship between rates of production of active monomer from
native monomer and creation of dimers from the active monomer and depend
only on them.

Consider the NPF system which is derived from (23,24) similar to (12). Eigen-
values of its linear part at the origin also meet Lemma 2. So it also has an
exponential sufficiently smooth 1D attractor qn = qn(c1, ε), n > 1, 0 ≤ c1 ≤ ε
containing two equilibria (c1 = 0, Q̃), (c1 = ε,Q). It is clear that qn(c1, ε) =
fn(c1, ε)/cn1 , n > 1 and restriction of the NPF system on the attractor in
terms of coordinate c1 coincides with (20).

Remark 3. A NPF system can be introduced also when production of active
monomer is governed by any finite dimensional family of dynamical systems
depending on multiple parameters α
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ċ1 = c1v1(c1, x, α), ẋ = v2(c1, x),
v1(0, 0) = v2(0, 0) = 0, v1(c1(α), x(α)) = v2(c1(α), x(α)) = 0

ṗ = −(
1∑
k

ẋi +
∑
i>1

ċi) (25)

where x = (x1, ..., xk) are prerequisites for active monomer and α are param-
eters of stresses.

4.1 NPF and Observable Restricted to the Attractor

The kinetics on the attractor of the NPF system is determined by

qn = mn(c1, ε), n > 2

ċ1 = εc1 − c21 − c1O2(c1, ε,m(c1, ε)c1) =

= (εc1 − c21)(γ0 + γ1(c1, ε)), γ(0, 0) = 0
0 < c1 < ε (26)

where mn and γ are sufficiently smooth functions. The attractor contains
both equilibria of the NPF system which are (see (14,15))

c1 = ε, qn = 0, N ≥ n > 2 (27)

c1 = 0, q̃n = Q̃n −Qn, N ≥ n > 2

Qn = a1..an−1/b2..bn, Q̃n = a1..an−1/(b2 + 2ε)..(bn + nε) (28)

One can approximate the observable
∑

n nc
n by

∑
n n(qn +Qn)cn1 where qn

is on the attractor. Hence, the observable is close to
∑

nQnc
n
1 because all

variations of qn +Qn with qn on the attractor are between Q̃n and Qn (see
(27,28)) and can be made arbitrarily small together with first derivatives with
respect to time by diminution parameter ε.

4.2 c1Near-Saturated-cnOnset Stage of the Aggregation

The model of the aggregation described by formulas (17)-(23) and (26)-(28)
is a complete model of the aggregation.

If the observable
∑

n nc
n can be approximated by a polynomial cn1Pk(c1)

(see section 2), then it will have a very small magnitude of order εn.
In order to obtain observables of greater magnitude we will modify this

model and consider association and dissociation coefficients tending to infinity
or to zero when ε tends to zero.

Consider the NPF system and rescale time, dissociation constants and
variables

t = (1/ε)τ, C1 = c1/ε, b̃n = bn/ε, q̃n = qnε
n−1, n ≥ 1 (29)
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After rescaling, the NPF system from the previous section will take form

Ċ1 = C1(1− C1)γ(C1, ε), γ(0) = γ0 > 0,
q̃1 = 1

q̃n = −nq̃n(1 − C1)γ + an−1q̃n−1 − anq̃nC1 − b̃nq̃n + b̃n+1q̃n+1 (30)

Let us assume that bn > 1(n ≥ 2), 0 < a1 << 1, ai ≈ 1(i ≥ 2),
an+j >> 1(1 ≤ j ≤ k), ar << 1(r ≥ n+ k + 1).
Then for some Δ and Δl(l ≥ 2) where
0 < Δ < 1, 0 < Δl < Q̃l = a1 ∗ .. ∗ al/(b̃2, ∗.. ∗ b̃l)(l ≥ 2)
there is 1D attractor ql = φ(C1)(l ≥ 2) in a vicinity
Δ < C1 ≤ 1, Δl < q̃l ≤ Q̃l(l ≥ 2).
Indeed the spectrum of the linearization of the system at the equilibrium
C1 = 1, Q̃l(l ≥ 2) is split Q̃l(l ≥ 2). Due to the choice of coefficients al one
has Q̃l << 1, (2 ≤ l < n),
Q̃l >> 1, (n+ k ≥ l ≥ n), Q̃l << 1, (l > n+ k).

Thus for the C1 late stage of the process (i.e.,C1 > Δ or, in terms of
c1, c1 > εΔ) one has relationships cl ≈ Q̃lC

l
1 = (Q̃l/ε

l)εlcl1 = Qlc
l
1 which also

are relationships for the original BDL system. Because of the magnitudes of
Q̃l we are now in the situation described by the phenomenological model in
section 2.

To complete this construction one has to verify that the following two
statements are true.

First, that Δ and n can be chosen such that Δ ≤ e
−1
n in order for the

c1-late stage to include the cn-onset-saturation (see section 2) segment of the
aggregation. Because of an+j >> 1, (1 ≤ j ≤ k), one needs to use the fact
that the system (30) is close to linear (for the late stage): an+jC1, (1 ≤ j ≤ k)
are almost constant because C1 is almost 1, and, in fact, its eigenvalues are
close to −an+jC1 − bn+j which are as large as an+j are.

Second, that the system (23) still has a 1D attractor for all stages of
the aggregation, i.e. for 0 ≤ c1 ≤ 1. To prove it for earlier stages of
the aggregation one needs to use terms nq̃n(1 − C1)γ which increase ex-
ponential convergence to the 1D attractor when C1 is small. (Note that in-
stead of dealing with this statement, one could introduce an assumption
ċ1 = v(p, c1) = c1(ε − c1)v1(p, c1, ε) or assumptions similar to (21)(22) in
terms of variable c1,final = ε − c1 and consider only a final stage of the
aggregation.)

Complete proofs of these statements will be provided elsewhere.

5 Nucleation and Richards Growth

In this section we keep Assumptions (1) and(2). We do not assume that size
distribution of aggregates is concentrated around some n0 and we do not
suppose that Assumption (3) has place.
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Assume that in (17,18) only the first ν dissociation constants bn are pos-
itive and all others are zero. This means that above size ν the reaction of
aggregation is kinetically irreversible. Formulas (10) for n > ν are not deter-
mined and cn is not asymptotically equivalent to cn1 for n > ν. The aggregate
of size ν is called a nucleus (see, for example, [18]). Under this condition the
BD system (17),(18) with a small parameter can be presented as the following
BDL system

d

dt
c1 = c1((ε− c1) +O2(c1, ε) +O(c2, .., cN )) (31)

d

dt
cn = an−1c1cn−1 − bncn − anc1cn + bn+1cn+1, ν − 1 ≥ n ≥ 2 (32)

d

dt
cν = aν−1c1cν−1 − bνcν − aνc1cν + bNcN (33)

d

dt
cn = an−1c1cn−1 − anc1cn, N > n ≥ ν + 1 (34)

d

dt
cN = aN−1c1cN−1 − bNcN (35)

The term ±bNcN with positive bN is added to (35) and to (33) to avoid
degeneracy of the system. Without this term the system will have only one
equilibrium c=0 of infinite multiplicity. (Of course nondegeneracy of the sys-
tem can be achieved by other deformations. They will require analysis similar
to the following one.) The added terms mean that the aggregates of size N
can break into nuclei (size ν) and active monomer.

The system has two equilibria (36) and (37,38)

cn = 0, n ≥ 1 (36)
c1 = ε, cn = Qnε

n, Qn = a1..an−1/b2..bn(1 < n ≤ ν) (37)
cn = Qnε

ν , Qn = a1..aν ..an/b2..bνaν+1..an+1(ν < n ≤ N − 1)

cN = QN ε
ν+1, QN = a1..aν−1/b2..bνbN (38)

Consider the NPF system for the system (31)-(35). One has cn = qn(t)cν1(t),
N > n ≥ ν, cN = qNc

ν+1
1 where qn are solutions of the NPF system. There ex-

ists a neighborhood of final equilibrium (37,38) such that the onset-saturation
segment of the observable process belongs to the neighborhood and the
observable can be approximated by function

obsν =
N−1∑

ν

Qnc
ν
1 (39)

(under the assumption that Qm,m < ν and QN are small).
For (Qn ∼ 1, ν ≥ N) an estimate of the observable is N2εν and for suf-

ficiently large N ∼ (1/ε0)(ν−1)/2 is of order ε. Here ε0 is a value of small
parameter and we assume that ε varies in a vicinity of ε0.
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Thus in this scenario the observable is Kcν1(t) and ċ1 is close to logistic
c1(ε− c1). So for u = Kcν1 ,
d
dt (Kcν1) ≈ Kνcν1(ε− c1) = νu(ε− (u/K)1/ν),
which is Richards growth law ([23]). For large ν this law is close to
Gompertzian law.

In the case when (35) is not the ending of the system and other equations
are

d

dt
cN = JN−1 − JN , .., cn = Jn−1 − Jn, .., cnf = Jnf−1 (40)

one has cn = qnc
ν+1+n−N , nf ≥ n ≥ N . Thus considering linear fit ti,o ≈

d1ln(a/a0) + d0 one has d1/d0 ≈ −1/ν.

Remark 4. Further research in this direction will be concerned with bifur-
cations at zero of equilibria of the Becker-Döring system with a Logistic-like
equation for c1 when groups of bi or ai tend to zero (or infinity) driven
by small parameters tending to zero. Different kinds of groups and asymp-
totics will be considered and their effect on asymptotics with respect to c1 of
the solutions cn will be analyzed through Nonequilibrium Partition Function
coefficients.

Remark 5. Consider equation

Δ̇ = −Δ(ε−Δ) + ... (41)

where Δ = (p− CAC), ε = p0 − CAC which is the Logistic part of the equa-
tion describing decrease of excess of monomer concentration for the reaction
of aggregation. Note that we do not assume here that there is an aggregation-
competent monomer precursor of the aggregation. Then Gompertzian curves
of the mass of aggregate growth can be built through eigenfunctions of the cor-
responding differential operator f(Δ) �→ (∂Δf) ∗ (−Δ(ε−Δ)). This provides
a new scenario of logistic-based Gompertzian aggregation growth.
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Properties and Asymptotic Behaviour of Solutions. Commun. Math. Phys. 104,
657–692 (1986)
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Global Uncertainty Analysis for a
Model of TNF-Induced NF-κB
Signalling

Steffen Waldherr, Jan Hasenauer, Malgorzata Doszczak,
Peter Scheurich, and Frank Allgöwer

Abstract. In this work, we study the problem of computing outer bounds
for the region of steady states of biochemical reaction networks modelled by
ordinary differential equations, with respect to parameters that are allowed
to vary within a predefined region. An improved implementation of an algo-
rithm which we presented earlier is developed in order to increase the com-
putational efficiency. The gain in efficiency enables the analysis of medium
scale biochemical network models. The applicability of the algorithm to such
networks is illustrated by studying a newly developed model for a tumor
necrosis factor signalling pathway. This pathway is of major importance for
the inflammatory response in mammals and therefore of high biomedical in-
terest. The proposed uncertainty analysis algorithm is applied to the model
in order to understand how variations in the parameters and co-stimulation
of different receptor types may affect the signalling response in this pathway.

1 Introduction

In an effort to obtain further understanding of intracellular processes, re-
searchers are now constructing detailed computational models of biochemical
signalling pathways. One major problem with these models is that there are
large uncertainties concerning the values of reaction parameters and initial
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conditions. The reason for this type of uncertainty is that there is only a very
limited amount of experimental data available to determine the parameters.
This problem motivates the development of uncertainty analysis methods
which allow for a quantitative evaluation of the effect that large parametric
uncertainties have on the model predictions.

In this work, we consider specifically the effect of parametric uncertainty
on the steady state concentration values in a biochemical reaction network.
The goal is to compute certified bounds on steady state values being feasible
for a given set of possible parameter values. Such a result effectively gives
an upper bound on the steady state uncertainty that is generated by the
considered parametric uncertainty. In contrast to local approaches, which for
example are based on an extrapolation from a local sensitivity analysis, the
global analysis gives stringent bounds on the steady state uncertainty [27].

The first part of the paper aims to refine and to speed up the uncertainty
analysis algorithm presented in [30] in order to achieve increased computa-
tional efficiency. In the second part, we develop and analyse a medium scale
model of a tumor necrosis factor (TNF) signalling pathway [29] with this
algorithm, which is made possible by the increased efficiency compared to
the previous implementation.

The paper is structured as follows. In Section 2, we first give a formal prob-
lem formulation for global uncertainty analysis of steady states, and second
present an algorithm to compute an upper bound on the uncertainty based
on previous results in [30]. In Section 3, we develop a model of TNF signal
transduction, and analyse this model with the proposed uncertainty analysis
algorithm. Details about the proposed model of TNF signal transduction are
given in Appendix 4.

2 Global Uncertainty Analysis

2.1 Problem Formulation and Solution by Infeasibility
Certificates

Let us consider a dynamical model of the network given by the differential
equation

ẋ = F (x, p), (1)

where x ∈ R
n is the state vector of the network, p ∈ R

m the parameter vector,
and F : Rn × Rm → Rn a vector field describing the network’s dynamics.
We assume that F contains only polynomial and rational terms in x and p.
This assumption holds for most models of biochemical signal transduction
networks, for example those modelled with mass action or Michaelis-Menten
kinetics.

The problem under consideration can be formulated as follows. Given a
parametric uncertainty set P ⊂ Rm, define the set X ∗

s of all feasible steady
states of the system (1) as
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X ∗
s = {x ∈ R

n | ∃p ∈ P : F (x, p) = 0} . (2)

Due to the possible non-linearity of F , there are at present no general meth-
ods available to compute X ∗

s efficiently and reliably. In order to get an upper
bound on the uncertainty in the steady states, we therefore aim at computing
an outer approximation Xs of X ∗

s , such that Xs ⊇ X ∗
s . Then it can be guar-

anteed that all feasible steady states for any parameter from P are contained
in Xs. Hence, Xs constitutes an upper bound for the steady state uncertainty
induced by the parametric uncertainty p ∈ P .

We have previously developed a method to solve the formulated problem
[30], based on the application of so called infeasibility certificates. There, the
feasibility problem

find x ∈ X̂ , p ∈ P
subject to F (x, p) = 0,

(3)

has been constructed, which is employed for the classification of a test set
X̂ ⊂ Rn. If (3) is infeasible, then the set X̂ cannot contain any steady states
for parameters p ∈ P , and thus X̂ ∩ X ∗

s = ∅ holds. To compute infeasibility
certificates for (3) the Lagrange dual problem of (3) is derived. Exploiting
the properties of Lagrangian duality [3], existence of particular solutions in
the dual problem are certificates for infeasibility of the primal problem. Due
to convexity of the dual problem, we get a computationally efficient test for
non-existence of steady states in X̂ . The implementation of the infeasibil-
ity test is based on the freely available Matlab toolbox SeDuMi [28], which
is a general solver for the type of optimisation problems encountered here,
namely semidefinite programs. For details on the computation of infeasibility
certificates, we refer to [30]. The extension from polynomial to rational terms
is described in [15].

2.2 An Algorithm for Global Uncertainty Analysis

As discussed in [30], the infeasibility certificates for test regions X̂ can be
applied to compute an outer approximation Xs for the set X ∗

s of all steady
states. The algorithm requires an initial estimate in the form of a compact set
X0 ⊂ R

n, where all steady states have to be contained. Such an estimate can
typically be derived from physical constraints and biochemical conservation
relations, and may be a very coarse outer bound on the steady state set.
In order to refine the set X0 towards a tighter outer approximation of X ∗

s ,
the uncertainty analysis algorithm iteratively constructs suitable test regions
X̂ and tries to obtain infeasibility certificates for these. If an infeasibility
certificate can be computed, the test region X̂ is subtracted from the steady
state approximation set.

In this paper, we consider the specific problem of computing lower and up-
per bounds on the steady state values of each state variable for a parametric
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uncertainty given by the set P . These bounds are denoted by xmin, xmax ∈ Rn

and correspond to the approximation of the steady state set given by

Xs(xmin, xmax) = {x ∈ R
n | xi,min ≤ xi ≤ xi,max, i = 1, . . . , n}. (4)

A bisection algorithm to compute lower and upper bounds is proposed
in [30]. Let us denote the two versions of this algorithm for lower and
upper bounds as xi,min = computelowerboundi(X0,P) and xi,max =
computeupperboundi(X0,P), respectively. For the results presented in this
paper, we use these algorithms iteratively in order to compute tighter up-
per and lower bounds on the steady state values. The resulting algorithm
to compute an outer approximation Xs for the steady state set X ∗

s is briefly
described as follows.

Algorithm: Xs = computebounds(X0,P)

1. Initialize Xs = X0.
2. Repeat as long as there is an improvement in the bounds xmin and xmax:

a. xi,min = computelowerboundi(Xs,P) for all i = 1, . . . , n
b. xi,max = computeupperboundi(Xs,P) for all i = 1, . . . , n
c. Xs = {x ∈ Rn | xi,min ≤ xi ≤ xi,max, i = 1, . . . , n}

3 Case Study: The TNF Signalling Model

In this section, we apply the previously described algorithm to a model
of tumor necrosis factor (TNF) signal transduction. We thereby illustrate
the analysis of uncertain signal transduction models with the proposed ap-
proach, and discuss the biological conclusions that can be drawn from such an
analysis.

3.1 Overview of TNF Signalling and Model
Development

The tumor necrosis factor (TNF) is a cytokine which coordinates the mam-
malian immune response. TNF activates several intracellular pathways, no-
tably apoptotis via the caspase cascade and the NF-κB, JNK, and MAPK
pathways [29]. A misregulation of TNF and the associated pathways is in-
volved in various high-impact diseases, such as cancer or autoimmune diseases
[14, 24, 10]. The interplay between the apoptotic and anti-apoptotic path-
ways activated by TNF also makes these networks worth studying from a
more theoretical perspective.

TNF signalling is mediated by membrane receptors of the TNF receptor
family, comprising over twenty different receptors, of which the two receptors
TNF receptor 1 (TNFR1) and TNF receptor 2 (TNFR2) are the binding
partners for the TNF ligand [13]. TNFR1 plays a major role in apoptosis
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induction by signal transduction to the caspase cascade [29, 7], but it also
activates anti-apoptotic pathways. TNFR2 usually does not directly signal
to the caspase cascade, but may have a strong influence on the results of
TNFR1 signalling by crosstalk effects [12] and induction of TNF expression,
leading to autocrine signalling. The anti-apoptotic effects of TNF signalling
are mainly mediated via the transcription factor NF-κB, which is a known
inducer of several anti-apoptotic proteins like the inhibitor-of-apoptosis pro-
teins (IAP) [31, 26]. Physiologically, TNFR1 is mostly stimulated by soluble
TNF, while TNFR2 is usually activated by juxtacrine signalling with a mem-
brane bound form of the TNF ligand. Importantly, the analysis done in this
paper is for an experimental setup where the two TNF receptor types can
be stimulated selectively [4], which allows to study the contributions of the
individual receptor types to the signalling outcome.

We construct a biochemical reaction network model to describe the re-
sponse in nuclear NF-κB activity to the separate or combined stimulation
of TNFR1 and TNFR2. The structure of the model has been derived from
basic knowledge of relevant proteins which are involved in the signalling net-
work, and from literature data on their interactions. For the NF-κB pathway
downstream of the receptor complexes, we rely mainly on previous modelling
efforts. The structure of this part of the model is adapted from [20]. Other
sources are the models described in [17], [21], and [2]. For the receptor com-
plex formation, the construction of mathematical models is not as advanced
as for the NF-κB pathway. TNFR1 complex formation has been modelled
previously [25], although focusing on different adaptor proteins than consid-
ered here. For the formation of the TNFR2 complex and its signalling, no
previous mathematical models are known to the authors.

Upon ligand binding, TNF receptors start to recruit adaptor proteins to
form the relevant signalling complexes. TNFR1 first recruits TRADD [22, 23,
8], but for simplicity, this step is not explicitly included in the model. Rather,
TRADD is assumed to bind instantly, or to be already associated to TNFR1.
In the next step, TNFR1 recruits the adaptor proteins RIP1 and TRAF2.
From available biological data, it is not clear whether these adaptor proteins
can only bind sequentially, and, if so, what the sequence is, or whether RIP1
and TRAF2 can independently bind to TNFR1 under in vivo conditions. In
the model proposed here, TRAF2 is recruited to the receptor complex only
after RIP1, as suggested in [11].

For TNFR2, fewer adaptor proteins seem to be relevant: the receptor di-
rectly recruits TRAF2, and the thus formed complex transmits the signal
towards the NF-κB pathway [33, 5]. A relevant additional effect is the ubiq-
uitination and subsequent proteasomal degradation of TRAF2 at the TNFR2
complex [19, 32]. Such observations have not been made for TRAF2 when
recruited to the TNFR1 complex. The fact that both receptor complexes re-
quire TRAF2 for efficient signal transduction constitutes a crosstalk between
the two receptor complexes, with potentially important effects on TNF signal
transduction [5].
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The crucial mediator between the TNF receptor complexes and the NF-
κB pathway is the I-κB kinase complex (IKK) which is activated at the
TNF receptor complexes by TRAF2. Active IKK then phosphorylates I-κBα,
which is subsequently degraded, thus liberating NF-κB to move into the
nucleus [17]. For the NF-κB, IKK and part of the gene expression modules,
the species and reactions to be included in the model are adapted from a
previous model [20].

The resulting overall model structure is illustrated in Figure 1, while all
details are given in Appendix 4.

TNFR1 TNFR2Extracellular

Intracellular
TNFR1
complex

TNFR2
complex

TNF2TNF1

RIP TRAF2

IKK A20

NFκB IκBα

NFκB–IκBα

Nucleus NFκB IκBα

NFκB–IκBα

IκBα production

A20 production

TRAF2 production

Fig. 1. Structure of the TNF signalling model

3.2 Model Modularisation for Increased
Computational Efficiency

The methods developed in [30] and [15] to determine an outer approximation
of the set of feasible steady states rely on the formulation of a single optimi-
sation problem for the whole system. Unfortunately, for medium and large
scale systems, this approach yields a huge optimisation problem and becomes
computationally inefficient. In order to improve the computational efficiency
of the uncertainty analysis algorithm presented in Section 2.2, we split the
TNF network model in two interconnected blocks, as shown in Figure 2. The
first block (TNF receptor module) contains the two TNF receptor species
and the complexes they form with ligands and adaptor proteins, subject to
reactions A1 – A9. The second block (NF-κB module) contains IKK, A20,
and the downstream components of the NF-κB signalling pathway, including
the transcripts of NF-κB inducible genes, subject to reactions B1 – D6.

The modularisation allows to solve significantly smaller uncertainty
analysis problems, one for each block, where the uncertain parameters in
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the analysis are given by the intrinsic model parameters within each block
and, in addition, the input variables coming from the other block. In order
to obtain tight bounds on all state variables as well as the signals that are
exchanged among the two blocks, we iterate the uncertainty analysis over the
two blocks until no further improvement in the uncertainty bounds is made.

TNF receptor

module

TR1LRT

TR2LT

TR1LRT+TR2LRT

NF-κB

module

TRAF2t

P1 P2

Fig. 2. Modularisation of the TNF network model

In the considered uncertainty cases, the computation time for the steady
state bounds could be reduced by about 98 % by applying the modular-
isation approach. In the full model, each optimisation problem uses 2527
optimisation variables in SeDuMi, whereas with the modularised model, two
optimisation problems with 510 and 1081 variables need to be solved. The
significant reduction in computation time is due to both the reduction of the
total number of optimisation variables and the non-linear dependency of the
computation time for a single problem on the number of variables.

3.3 Results of the Global Uncertainty Analysis

In this section, we report the results of the global uncertainty analysis, as
described in Section 2, to the TNF signal transduction model. The specific
focus from the biological side will be on the mechanism of TRAF2 recruitment
to the TNF receptors, and how this affects the outcome of the signalling
process.

In a first step, we consider parametric uncertainty in the four parameters
that determine the binding affinity of TRAF2 to the two TNF receptor types,
namely the parameters kA3,f , kA3,b, kA5,f , and kA5,b for the forward and
backward reaction rates A3 and A5. For different values of this uncertainty, we
compute upper and lower bounds for each of the state variables in the model.
These bounds are illustrated in Figure 3. While the considered uncertainty
affects the states in the receptor part significantly, it has hardly any effect
on the activity of NF-κB in the nucleus. We thus see that the system has an
insulation property [6], in the sense that even a large uncertainty in TRAF2
binding for the receptor part of the pathway does not have a significant
influence on the core NF-κB part. While this can also be verified with classical
Monte-Carlo sampling techniques, they are in this case computationally less
efficient, and do not provide stringent upper bounds on the steady state
uncertainty.
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Fig. 3. Upper and lower bounds on individual state variables for uncertainty in the
binding affinity of TRAF2 to the two TNF receptor types (kA3,f , kA3,b, kA5,f , and
kA5,b). Proposed approach vs. Monte-Carlo sampling for a parametric uncertainty
of 10% (P1), and a parametric uncertainty of factor 2 (P2).

In the second step, we study the effects of variations in the stimulus
strength on the signalling outcome. Note that we have to consider two exter-
nal stimuli: first the specific stimulation of TNFR1, denoted by TNF1, and
second the specific stimulation of TNFR2, denoted by TNF2, as described
in Section 3.1. As signalling output, we consider the activity of the fully ac-
tivated TNFR1 complex. Since TNFR1 can, in contrast to TNFR2, directly
activate the caspase cascade [29], this output is relevant for potential initia-
tion of programmed cell death. Using the algorithm presented in Section 2.2,
we compute lower and upper bounds on the steady state value of TR1LRT,
the TNFR1 complex with RIP and TRAF2 associated. The resulting bounds
for a range of variations in the two stimuli is depicted in Figure 4. Interest-
ingly, we observe that the uncertainty in the output TR1LRT is much higher
for variations in the TNF2 stimulus, compared to variations in the TNF1
stimulus. Biologically, this result can be interpreted in the way that TNFR2
signalling seems to modulate the activity of the TNFR1 signalling complex
significantly. This interaction establishes strong crosstalk from the TNFR2
to the TNFR1 via the shared adaptor protein TRAF2, but not vice versa.

4 Discussion and Conclusions

The application of infeasibility certificates for global uncertainty analysis of
steady states in biochemical networks has been proposed in [30]. Here, we
refined the previously proposed algorithm in order to obtain both tighter
approximations to the steady state set and increased computational efficiency,
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making the approach useful for medium scale biochemical networks on the
order of tens of molecular species and reactions.

With these improvements in hand, we did steady state uncertainty analysis
for a model of tumor necrosis factor signal transduction, consisting of 24
molecular species and 35 reactions, mostly mass action. With the proposed
extensions, our uncertainty analysis algorithm could be applied successfully
to this model. In terms of new biological insight, our analysis first indicated
that the TNF network seems to have significant insulation from uncertainty
in TRAF2 binding characteristics to NF-κB induced gene expression. As
a second result, we observed that the model shows strong crosstalk from
TNFR2 stimulation to the signalling activity of the TNFR1 complex via the
adaptor protein TRAF2. The second result has implications for the process of
programmed cell death, as it indicates how stimulation of TNFR2, which does
not by itself directly activate the caspase cascade, still may have a profound
effect on cell death by its influence on TNFR1. The crosstalk via TRAF2
as discussed here is one example, others have been described in literature,
e.g. TNFR2-mediated stimulation of TNF production, which then acts via
TNFR1, signaling via the molecule RIP, and others [9].

Further extensions of the described uncertainty analysis algorithm consider
hybrid differential algebraic systems in process control, also with general non-
polynomial terms [15]. Secondly, the infeasibility certificates on which the
analysis is based can also be applied in feasible parameter set estimation
from uncertain dynamic measurements [18, 16].
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A Description of the TNF Signalling Model

The following 24 molecular species are included in the TNF signalling model.
Initial conditions are given in parenthesis, unless they are zero. The unit for
the initial conditions is in molecules per cell. TNF1 – TNF ligand specific for
receptor 1 ([TNF1]0 = 3.94·105); TR1 – TNF receptor type 1 ([TR1]0 = 103);
TR1L – complex of TR1 and TNF1; TR1LR – complex of TR1L and RIP;
TR1LRT – complex of TR1LR and TRAF2; TNF2 – TNF ligand specific for
receptor 2 ([TNF2]0 = 3.94 · 105); TR2 – TNF receptor type 2 ([TR2]0 =
104); TR2L – complex of TR2 and TNF2; TR2LT – complex of TR2L and
TRAF2; RIP – receptor interacting protein ([RIP]0 = 3.3 · 105); TRAF2 –
TNF receptor associated protein 2; A20 – A20 ubiquitin ligase, inactive form;
A20a – active form of A20; IKK – I-κB kinase, inactive form; IKKa – active
form of IKK; IkB – inhibitor of NF-κB, cytosolic; NFkB – nuclear factor κB,
cytosolic; NI – complex of NF-κB and I-κB, cytosolic ([NI]0 = 105); IkBn – I-
κB, nuclear; NFkBn – NF-κB, nuclear; NIn – complex of NF-κBn and I-κBn;
IkBt – i-κB transcript; A20t – a20 transcript; TRAF2t – traf2 transcript.

The considered TNF signalling pathway is described by the following set of
reactions. Most reactions are modelled according to the law of mass action [1],
meaning that if A and B are reactands, then the reaction rate is constructed
as v = k[A][B], with reaction parameter k. Reactions with a forward and
backward direction, for example A + B ↔ C, have a forward and backward
reaction parameter, kf and kb, respectively, and the rate is constructed as
v = kf [A][B] − kb[C]. The transcription reactions D1, D3, and D5 are not
modelled by the law of mass action, but with Hill reaction kinetics. The
corresponding reaction rate is given directly in the list of reactions. In all
cases, the given reaction rate parameters are considered as nominal values
for the uncertainty analysis in this study, and are taken from literature and
own measurements. Physical units for parameters are in molecules per cell
for concentrations and seconds for time.
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# Reaction Parameters (forward/backward)
A1 TR1 + TNF1 ↔ TR1L 9.13 · 10−9 / 3.5 · 10−4

A2 TR1L+ RIP ↔ TR1LR 1.04 · 10−8 / 2 · 10−7

A3 TR1LR+ TRAF2 ↔ TR1LRT 6.43 · 10−7 / 5 · 10−3

A4 TR2 + TNF2 ↔ TR2L 1.25 · 10−8 / 1.05 · 10−2

A5 TR2L+ TRAF2 ↔ TR2LT 6.43 · 10−7 / 5 · 10−3

A6 TRAF2 → ∅ 1.75 · 10−5

A7 TRAF2t → TRAF2t + TRAF2 8.47 · 10−1

A8 TR1LRT → TR1LR 1.75 · 10−5

A9 TR2LT → TR2L 1.75 · 10−3

B1 IKK ↔ ∅ 1.25 · 10−4 / 1.2 · 101

B2 IKK+ TR1LRT → IKKa + TR1LRT 1.14 · 10−5

B3 IKK+ TR2LT → IKKa + TR2LT 1.14 · 10−5

B4 IKKa → ∅ 1.25 · 10−4

B5 IKKa + A20a → A20a 1 · 10−6

B6 A20t → A20t + A20 0.5
B7 A20 → ∅ 5 · 10−4

B8 A20 + TR1LRT → A20a + TR1LRT 0.1
B9 A20 + TR2LT → A20a + TR2LT 0.1
B10 A20a → ∅ 5 · 10−4

C1 NFkB + IkB → NI 1.04 · 10−6

C2a IkB + IKKa → IkB IKKa 4.15 · 10−7

C2b IkB IKKa → IKKa 0.1
C3a NI + IKKa → NI IKKa 2.08 · 10−6

C3b NI IKKa → NFkB + IKKa 0.1
C4 IkBt → IkBt + IkB 0.5
C5 IkB → ∅ 1 · 10−4

C6 NI → NFkB 2 · 10−5

C7 NFkB → NFkBn 2.5 · 10−3

C8 IkB ↔ IkBn 2 · 10−3 / 5 · 10−3

C9 NFkBn + IkBn → NIn 4.15 · 10−6

C10 NIn → NI 0.01
D1 NFkBn → IkBt + NFkBn vD1 = 0.1[NFkBn]

(5·105)2+[NFkBn]2
1
s

D2 IkBt → ∅ 4 · 10−4

D3 NFkBn → A20t + NFkBn vD3 = 0.1[NFkBn]
(5·105)2+[NFkBn]2

1
s

D4 A20t → ∅ 7.5 · 10−4

D5 NFkBn → TRAF2t + NFkBn vD5 = 0.02[NFkBn]
(5·105)2+[NFkBn]2

1
s

D6 TRAF2t → ∅ 4 · 10−4
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