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Abstract. Many algorithms for grammatical inference can be viewed as
instances of a more general algorithm which maintains a set of primitive
elements, which distributionally define sets of strings, and a set of fea-
tures or tests that constrain various inference rules. Using this general
framework, which we cast as a process of logical inference, we re-analyse
Angluin’s famous lstar algorithm and several recent algorithms for the
inference of context-free grammars and multiple context-free grammars.
Finally, to illustrate the advantages of this approach, we extend it to
the inference of functional transductions from positive data only, and we
present a new algorithm for the inference of finite state transducers.

1 Introduction

Grammatical inference (gi) is concerned with learning various types of formal lan-
guages. In this paper, we consider two classic problems: the first is where we are
learning languages, that is to say sets of strings over a finite alphabet — subsets of
Σ∗; and the second is where we are learning transductions or functions – relations
between pairs of strings — a subset of Σ∗ × Δ∗. In the first case we will receive
information about the language, typically in the form of a sequence of positive ex-
amples drawn from the language; in the second we will receive input-output pairs,
and in both cases we wish to construct a representation of the language or function
from this information. At a certain point, as the amount of information we have
increases, we wish our representation to converge exactly to a correct hypothesis;
that is to say, a hypothesis that exactly defines the target concept.

We will work here in the Gold paradigm [1], which is mathematically conve-
nient although unrealistic as a model of learning in the real world. We assume
that the learner is provided with a sequence of examples from the target language
L subject only to the constraint that every string in the language must occur
at least once. We will denote such a sequence w1, w2, . . . . After processing each
example, the learner must produce a representation — G1, G2, . . . . We require
that for each such sequence, or presentation, there must be some finite point
N after which the learner no longer changes the hypothesis, and such that the
hypothesis is correct: ∀n > N , Gn = GN and L(GN ) = L.

There are two main problems with learning the sorts of richly structured repre-
sentations that are required to model natural languages. The first are the sorts
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of information theoretic problems that have been well-studied in many areas
of learning – these problems concern whether the learner has enough informa-
tion about the target to produce an accurate enough hypothesis. Concepts such
as finite elasticity, VC-dimension and so on have been developed in attempts,
largely successful, to characterise those cases where learning is impossible simply
because there is insufficient information to allow a learner to pick out the right
hypothesis. Such results consider the learner primarily as a function rather than
as an algorithm: if there is no suitable function then there can of course not be
an algorithm that implements that function.

The second class of problems are caused by the complexity involved in con-
structing a hypothesis given an adequate source of information about the lan-
guage [2, 3]. These are two rather different types of problems, and in our opinion
it is appropriate to try to solve them separately.

In this paper we will focus almost exclusively on the algorithmic aspects of
learning — in an attempt to overcome these complexity problems — and we will
therefore give ourselves a rich source of information. In addition to the positive
examples we will assume that the learner has access to an oracle that can answer
membership queries: the learner can construct a string w and query the oracle
with this string; the oracle will return true if w ∈ L and false if it is not.
This is an extremely powerful source of information. It is easy to see that if we
put no constraints on the amount of computation that we use, there are trivial
enumerative algorithms that the learner could use to learn any enumerable class
of recursive languages.

2 Objective Representations

We will now consider various algorithms for grammatical inference. These algo-
rithms all start by constructing the representation based on objectively defined
sets of strings; we discuss the methodological and representational basis of this
approach in more detail in [4].

We define representations where the symbols of the representation – non-
terminals, states etc – have well defined referents as sets of strings, or sets of
tuples of strings. Once we have fixed what each of these symbols represents, we
can think of the derivation rules of the grammar, the transitions, or productions
etc – as being logical deductive relationships between these sets. Some rules will
be valid – in the sense that the deductive relationships will be correct— and
others will be incorrect, in the sense that we may deduce that a string is in a set
when in fact it is not.

The crucial point is that once we have fixed what each representational prim-
itive is meant to do – that is to say defined what set of strings it should generate
or produce – each decision about the model becomes a local decision rather than
a global one. In the classic representations of the Chomsky hierarchy, the prim-
itive symbols are arbitrary. There is no fixed definition for what each symbol
need represent. In a normal cfg, if there is a rule N → PQ, there is no way of
evaluating that rule in isolation from the rest of the grammar. It is only as part
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of a global inference about the rules that generate N , and the strings that are
generated from P and from Q that we can decide whether this is a good rule
or not. This global inference is generally intractable. In the models we consider
here, we define in advance what the symbols should “mean”. Once we have done
this, we can determine for each indivdual production in the grammar whether
it is valid or not. This local inference procedure is tractable and indeed is often
quite trivial.

We define now the notation we will use in the rest of the paper. We will use
Σ (and Δ) to refer to non-empty finite alphabets. We will use Σ∗ to refer to
the set of all strings over Σ; λ is the empty string. Given two strings u, v we
denote their concatenation by uv. A context (l, r) is an element of Σ∗ × Σ∗;
we can combine a context with a string by wrapping it around the string: we
denote this by (l, r) � u = lur. A language L is any subset of Σ∗. Given two
subsets of Σ∗, X and Y , we define their concatenation in the normal way as
XY = {uv|u ∈ X, v ∈ Y }. Given a language L we define the distribution of u
in L as CL(u) = {(l, r)|lur ∈ L}. For a string w we define Sub(w) to be the
set of all substrings of w, {u|∃l, r ∈ Σ∗, lur = w}, and Con(w) = {(l, r)|∃u ∈
Σ∗, lur = w}. We extend this to sets of strings in the natural way.

The models maintain two classes of objects: the first is a set of primitive ele-
ments; we will denote these by Q. These correspond to the states or non-terminals
in standard representations. The second are a class of tests or experiments, which
we denote X . These are used to restrict and eliminate incorrect rules.

Each primitive element from Q will define a set of strings given a language L;
or more generally a tuple of strings. For a given element p ∈ Q, we will denote
by D(p) the set of strings defined by p; to avoid confusion we shall write [[p]]
to refer to the symbol as used in the representation. The definition of D(p) will
determine what the representation class is; different representational decisions
will give rise to different representation classes. In many cases, the elements of
p will be strings, and then some of the possibilities for D(p) are as follows:

{w|wp ∈ L} left quotient of p

{w|pw ∈ L} right quotient of p

{w|CL(w) = CL(p)} congruence class of p

{w|CL(w) ⊇ CL(p)}

For each algorithm, we will pick one of these; different decisions will give rise
to different representation classes. For example, we might pick the first of these;
D(p) = {w|wp ∈ L}. This will, as we shall see, lead us naturally to a repre-
sentation for regular languages. Clearly D(λ) = L no matter what L is. If the
language L = (ab)∗, then D(a) = b(ab)∗, D(b) = ∅, D(ab) = L and so on.

We might also define Q to be a set of pairs of strings. If we do this, and we
write an element as p = (u, v) we might have

D((u, v)) = {w|uwv ∈ L} (1)
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Given these sets of strings, we can then define a logical derivation relation. We
wish to define a set of deductive relations between these sets of strings. Given a
language L and a set Q, we will have the family of sets D(Q) = {D(p)|p ∈ Q}.
The simplest deductive relation we could have is this: suppose that D(p) ⊆ D(q).
Then if we know that a string u is in D(p), we can deduce that it is in D(q).

Similarly if we know that u is in D(p) and we know that v is in D(q), and we
know that D(p)D(q) ⊆ D(r) then we can deduce that uv ∈ D(r).

Finally if we know for example, that D(p) is a subset of L, or in particular
if D(p) = L, then if we have deduced that u ∈ D(p), then we can deduce that
u ∈ L. Obviously these deductions must start somewhere – there must be a few
base facts where we know that u ∈ D(p); typically we will know these for a few
short strings, at least the elements of Σ.

Thus the derived language representations will work by trying to predict, on
the basis of these deductive relationships, which elements of D(Q) a particular
string is in. In some cases the elements of this class may be a partition, and
a string can only occur in a single element, but in general they may overlap,
and a string may be in more than one of the classes. A derivation is therefore a
deduction; bringing to mind the “Parsing as deduction” slogan [5]. We assume
for the moment that we know which of these deductions are valid.

We will have various different rule schemas. We will now list some of these,
though these by no means exhaust all of the possibilities. The notation we use
is that p is an element of Q, [[p]] represents the corresponding symbol, and D(p)
represents the set of strings defined by p.

Type L (Lexical)
[[p]] → u. This allows us to deduce that a string u is in D(p). It is valid iff
u ∈ D(p). We will consider two special cases:
L0 [[p]]→ λ
L1 [[p]]→ a, where a ∈ Σ

Type R (Regular) [[p]] → u[[q]]. This is valid if uD(q) ⊆ D(p). We have the
special case:
R1 [[p]]→ a[[q]], where a ∈ Σ

Type LIN (Linear) [[p]] → u[[q]]v. This is valid if uD(q)v ⊆ D(p). We will
consider also the following special cases:
Type EL (Even Linear) [[p]]→ u[[q]]v where |u| = |v|
Type EL1 [[p]]→ a[[q]]b where a, b ∈ Σ

Type B (Binary Branching) [[p]]→ [[q]][[r]]. This allows us to deduce that if a
string u ∈ D(q) and v ∈ D(r), then uv ∈ D(p). This is valid iff D(q)D(r) ⊆
D(p).

Type S (Subset) [[p]]→ [[q]]. This allows us to deduce that if a string u ∈ D(q)
then u ∈ D(p). This is valid iff D(q) ⊆ D(p).

Type E (Equality) [[p]]↔ [[q]] or both [[p]]← [[q]] and [[p]]→ [[q]]. This allows
us to deduce that if a string u ∈ D(q) then u ∈ D(p) and vice-versa. This is
valid iff D(q) = D(p).

Type C (Conjunction) [[p]] → [[q]] ∧ [[r]]. This allows us to deduce that if a
string u ∈ D(q) and u is also in D(r) then u ∈ D(p). This is valid iff
D(q) ∩D(r) ⊆ D(p).
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We will also have one final class of rules, where we use the distinguished start
symbol S, just as we do in cfgs. In some cases we may have an element i of
Q that such that D(i) = L by definition, in which case we could dispense with
these initial rules and the separate symbols.

Type I (Initial) S → [[p]]. This is valid iff D(p) ⊆ L.

We will have a collection of these rules which we call G: this collection will
consist of the representation for the language. Given a collection of primitive
elements, Q, we can consider the set of all valid rules that relate these primitive
elements. Some of these rule schemas may give rise to unbounded numbers of
rules; in particular the first three schemas (L,R,LIN) will need to be bounded
in some way. Typically we will restrict these rules to those where u has length
at most 1.

An important aspect of this model is the use of the E rules. In many of
these models we will have a set of primitive elements Q, where several different
elements of Q will define the same sets; that is to say we might have p, q ∈ Q, and
D(p) = D(q). A natural way to handle this is to consider the primitive elements
to be equivalence classes of Q, under equality of D(q); or equivalently considering
them to be the elements of D(Q). This certainly gives some efficiency gains when
implementing them. However, Yoshinaka [6] introduced the idea of using “chain
rules” – these equality or E productions — to link distinct elements of Q that
define the same strings. This greatly simplifies the analysis of the algorithms,
and while it causes some decrease in efficiency it does not change the polynomial
nature of the algorithms. Accordingly we will adopt this refinement.

For a given decision about what D(p) is we can divide these rule schemas
into three types. There are those that we can be sure are correct, as a result
of the way D(p) has been defined – we will call these rules a priori. There are
those that we are certain are correct as a result of information that has already
been received — we will call these rules certain. Finally there are those which
we believe to be correct but might later turn out to be incorrect on the basis
of further information – we will call these defeasible. Defeasible rules will be
assumed to be correct until we receive a piece of information that tells us that
the rule is incorrect. Once we have seen such a piece of information, we will be
certain that the rule is incorrect, and no further information will cause us to
change our mind – once we know that a rule is incorrect then it is definitely
wrong, and until that point we will consider it to be true, though uncertain.

For example, if we have a rule of the type [[p]]→ u, then it might be the case
that D(p) is defined to include u; for example p might be u, and D(p) might be
an equivalence class that includes u. This would be a case where the rule is a
priori. Alternatively, we might have received information that tells us definitely
that u ∈ D(p); for example, D(p) might be defined to be the set of all strings
that occur in a given context, in which case, if we know that that string occurs
in a given context then we will be certain, as a result of this single piece of
information, that the rule is correct.
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Finally, and most importantly, there may be rules that no finite amount of
information can make certain – the defeasible rules. In general, checking these
rules will involve checking potentially infinite sets. For example, a rule of the
form [[p]]→ [[q]], is only valid if D(q) ⊆ D(p) and these two sets will in general
be infinite. In general given only a finite amount of information it will always be
possible that the language is different from what we would expect. There are an
infinite number of possible languages, and it might be that the language does
not include some very long strings that we would expect it to contain based on
the examples we have seen. This is a possibility that we can never conclusively
exclude, at least in the learning models that we consider here.

We therefore use a finite set of experiments that we denote by X , and that
we will gradually increase during the learning process. Typically, X will be a
set of strings or contexts that we will use to test the validity of rules. In one
formalisation, X is a set of strings and we can test whether D(q) ⊆ D(p) by
testing X ∩D(q) ⊆ X ∩D(p). Clearly if the inference is invalid, then when X is
sufficiently large we will detect this fact: if it is not the case that D(q) ⊆ D(p),
then there must be some x ∈ D(q) \ D(p), and if x ∈ X we will detect it by
testing whether X ∩D(q) ⊆ X ∩D(p).

Initially, we assume that all possible defeasible rules are valid unless they
are explicitly contradicted by a piece of information; typically an element or
elements of X . We will start with X being either empty or consisting of a small
set of elements, often only one. We will monotonically increase X based on the
examples that we observe from the language we are trying to learn. During the
course of the algorithm X will generally be increased without limit.

As we increase X we will remove incorrect defeasible rules; correct defeasible
rules will never be removed. For each incorrect defeasible rule it will suffice to
find a single element of X that will remove that rule; therefore in the best case we
only need to have an X that is of the same cardinality as the set of possible rules,
which will typically be bounded by a polynomial in the size of Q. Whether this
is possible or not depends on the learning model; under the Minimally Adequate
Teacher (mat) model we will receive counter-examples [7] and generally we can
construct a suitable element of X from the counter-example. If we have only
positive examples, we can increase X without limit. The larger X is the more
incorrect rules we will remove. The only limit is that the size of X be bounded
appropriately so that the overall algorithm is efficient.

We therefore have a deductive system or grammar G that we construct from
information about a language L using a defined set of primitive elements Q and a
set of tests or experiments X . We will write G(Q, X, L) for this system. Typically
L is fixed, and so we will write this as G(Q, X), but it is implicitly used in the
definition since we will use an oracle for L when constructing the system G.

3 Derivation

Having constructed this inference system, we are clearly interested in using it
to infer properties of novel strings that we have not observed before. Given any
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string w we wish to be able to tell whether it is in a particular class, and indeed
whether it is in L or not; therefore we wish to be able to say for any primitive
element q and any string w whether w ∈ D(q) or not.

We now consider a derivation relation or proof. Clearly we can chain these
inferences together in the natural way. The inference rules allow us to deduce that
a long string is in a particular class from the fact that its substrings are in another
class; using this, together with a set of rules that tell us which classes the strings
of length 1 are will allow us to construct efficient inference procedures. This is
a standard insight from logical grammar formalisms; [5]. Thus we consider the
grammatical formalisms here to be inference systems between distributionally
defined sets of strings. We will not formalise the inference system using a sequent
calculus; this seems unnecessarily complex.

These deductive procedures turn out to be the same as the derivation proce-
dures in various forms of grammars, such as context free grammars, conjunctive
grammars and so on. Standard techniques for dynamic programming can be used
to compute these efficiently. In particular, for a given string w, we will construct
a table which maintains for each string u which is a substring of w, a list or set
of the elements of Q, p such that we have a proof that u is in D(p). This can be
done in time polynomial in the length of the string and the size of Q.

We will write [[p]] ∗⇒G w if there is a proof that w ∈ D(p) using steps in the
set of productions or rules of the grammar G. If all of the inference steps are
valid then it is clear that we will only deduce that [[p]] ∗⇒G w if w is in fact in
D(p). As a special case, we will only have a proof S

∗⇒G w if w is in L.

Lemma 1. If all of the inference steps in P are valid, then if [[p]] ∗⇒ w then
w ∈ D(p).

Proof. Immediate by induction on the length of the proof; if each inference is
valid.

Clearly as we increase Q, and we assume that all of the rules are valid, then the
language will only increase, as the set of rules will increase.

The next step is to establish that the rules are in fact valid. First of all
note that as we increase the size of X , the set of tests, the set of rules will
monotonically decrease as we will remove defeasible rules. The following lemma
is thus immediate.

Lemma 2. If X1 ⊆ X2 then L(G(Q1, X1)) ⊇ L(G(Q1, X2))

Morover, given that there are only a finite number of defeasible rules, at some
point we will have removed all incorrect rule. We formalise this as a property of
the set of experiments which we call fiduciality.

Definition 1. A set of experiments X is fiducial for a set of primitive elements
Q iff every rule is valid; i.e. all incorrect defeasible rules have been removed.

As we increase the number of primitive elements, the set of rules will monoton-
ically increase, even if some of them are not valid.
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Lemma 3. If Q1 ⊆ Q2 then L(G(Q1, X)) ⊆ L(G(Q2, X))

Moreover if we have X1 fiducial for Q1 and X2 fiducial for Q2 then
L(G(Q1, X1)) ⊆ L(G(Q2, X2)).

We now define a very fundamental idea; at some point the set of primitive
elements may be large enough, so that the set of correct rules will define the lan-
guage. When we reach this point, if we have some additional incorrect defeasible
rules then we will overgenerate; indeed no matter how large or small X is, we
will always define a language which includes the target language. We formulate
this idea as follows:

Definition 2. A finite set of primitive elements Q is a kernel for the target
language L, if the set of valid rules derived from Q is sufficient that for every
string w ∈ L, we have a proof using these rules that S

∗⇒ w.

An easy consequence of the definition is that given any language L, then any
G(Q, X) where Q is a kernel for L will define a language that includes the
target language L – since we will have enough correct rules, and possibly some
defeasible incorrect rules if X is too small.

For any specific algorithm, the learnable class that we will have will be defined
as the set of languages which have a finite kernel. This is, broadly speaking, the
set of languages that can be finitely defined under the representational assump-
tions that we make. As we shall see, for the case of regular grammars, the class
corresponds exactly to the class of regular languages, but for other represen-
tation classes, the classes of languages do not correspond precisely to existing
language classes.

We will consider various specific models: but they all satisfy the following
criteria.

– As we increase X , the set of rules will monotonically decrease.
– No correct rules will be removed by increasing X
– Every incorrect rule will be removed.
– As we increase Q, the set of rules will monotonically increase.
– We can perform all of the computations in polynomial time. In particular

we can compute the derivation relations S
∗⇒G w in time polynomial in the

size of the rule set and the length of w.

4 Generic Algorithms

We can now define a generic algorithm for inferring these representations. We will
use the paradigm of identification in the limit from positive data and (optionally)
membership queries which is easy to handle and quite permissive. Algorithm 1
receives a stream of positive examples, and may use a membership oracle O. It
calls several functions:

– InitQ returns an initial set of primitive elements.
– InitX returns an initial set of experiments.
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– Make constructs a representation from the available data. We will consider
this to be an inference system and thus a collection of rules.

– IncreaseQ returns a set of primitive elements
– IncreaseX returns a set of experiments.

These must satisfy the following conditions: if there is a kernel for a language,
then IncreaseQ must eventually return a set that includes a kernel. Secondly,
for any incorrect defeasible rule, IncreaseX must eventually produce an element
that will remove it. Make simply produces all possible rules from Q and then
removes those that are contradicted by elements of X .

E ← ∅ ;1

Q← InitQ ;2

X ← InitX ;3

G←Make(Q,X, O, E) ;4

while wi is a positive example do5

E ← E ∪ {wi} ;6

for w ∈ E do7

if not S
∗⇒G w then8

Q← Q ∪ IncreaseQ(E) ;9

X ← X ∪ IncreaseX(wi) ;10

G = Make(Q, X, O, E) ;11

Algorithm 1. Generic meta-algorithm for learning from positive data and mem-
bership queries. O is a membership oracle for the language.

We can now see that given a specific set of representational assumptions that
the algorithm defined here will identify in the limit any language which has a
finite kernel. We state the theorem given some set of definitional assumptions,
and given definitions of the subroutines called by the algorithm.

Theorem 1. Algorithm 1 will identify in the limit any language with a finite
kernel.

Proof. We will use En, Qn, Xn, Gn to refer to the state of the variables at iter-
ation n. Note first that if there is some n such that Qn is a kernel it will never
change, and the grammar will always define a superset of the target language.
If at some point n there is a kernel then at some point n′ > n, all incorrect
defeasible rules will have been removed, and at that point Gn′ will be correct
and will never change. So we merely need to show that at some point we will
get a kernel. If L has a finite kernel, then let N be the smallest number such
that IncreaseQ({w1, . . . wN}) is a kernel. Suppose QN is not a kernel. Suppose
L(GN ) does not include L, then at some point n ≥ N we must find a wn which
will call line 1, and after that point Q is a kernel. Alternatively, suppose L(GN )
does include L, and since it is not a kernel it must include some incorrect rules.
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Then either there is some point when all incorrect rules will be removed, at which
point the hypothesis will under-generate and we will observe a string which will
trigger line 1, or line 1 will be triggered before that point, and in either case we
end up with a kernel.

5 Regular Languages

We will now make this rather abstract discussion concrete by producing a recon-
struction of Angluin’s celebrated lstar algorithm in this model. We will not try
to make this algorithm efficient; it will be polynomial, but we will not constrain
the representation to be deterministic and as such the algorithm will be much
less efficient that the lstar algorithm and will not have the elegant algorithmics
of that approach.

Our representational primitives will be strings, and so Q will be a finite set of
strings that will correspond to prefixes of the language. Each prefix w will define
a quotient or residual language as follows:

D(w) = {v|wv ∈ L} (2)

In terms of a dfa, each element of Q will therefore correspond to a state q. If
we let Q∗ denote the set of states of a minimal dfa that generates the languages
L∗, then for each w ∈ Q, we will have a corresponding state in the dfa which
will be the state δ(q0, w), using standard notation.

We will use the following rule schemas:

I S → [[λ]]
R [[w]]→ v[[wv]] if w, wv ∈ Q
L0 [[w]]→ λ if w ∈ L
E [[w]]→ [[v]] iff D(w) ∩X = D(v) ∩X

Note that each of these four rules have slightly different properties. The first
two rule schemas are universally valid – we know that they are correct a priori
without using any evidence from the oracle. The first schema is clearly correct
since by definition D(λ) = L. The second schema is correct since vD(wv) ⊆
D(w). The “proof” is trivial: suppose u ∈ D(wv); this means that wvu ∈ L.
Therefore vu ∈ D(w).

The third rule schema is also certain, but uses information from the oracle.
If w ∈ L then λ ∈ D(w), but it is only when we have tested the example w for
membership that we will know that the rule is valid.

The final E schema is non-trivial: it uses information from the oracle but
is defeasible. Given two strings in Q, w and v we will assume that they are
equivalent, (i.e. D(w) = D(v)) unless we observe some string s ∈ X such that
ws ∈ L and vs �∈ L or vice-versa. Once we observe such a string then we remove
this equality rule, as we know it is not valid.

Given a membership oracle for a language L, a finite set of strings Q and a
finite set of test suffixes X , we can construct a regular grammar based on these
rules schemas in time polynomial in the size of Q and X .

Let us now consider the notions of kernel and fiduciality in this concrete case.
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Lemma 4. The class of languages that have a finite kernel in this case is equal
to the class of regular languages.

Proof. Clearly if it has a finite kernel then it is regular since it will be correctly
defined by a regular grammar. Conversely if L is a regular language, then consider
a minimal dfa for L. A finite set of strings Q is a kernel for L if Q contains one
string for each state in the minimal dfa and a string for each transition. That
is to say for each transition q →a q′ there is a string u and a string ua in Q such
that δ(q0, u) = q and δ(q0, ua) = q′.

Thus the idea of a kernel is closely related to that of a structurally complete
sample as defined in for example [8]. Indeed, the set of prefixes of a structurally
complete sample for an automaton will be a kernel for the language defined by
that automaton.

Lemma 5. A set X is fiducial for a set of primitives Q iff for every pair of
strings that are not congruent there is an element of X that is in the symmetric
difference of their quotient languages.

5.1 Even Linear Grammars

Recall that an even linear grammar (elg) is a cfg where all of the productions
are either of the form X → uY v where u, v ∈ Σ+ and |u| = |v|, or of the form
X → u where |u| is even. We can clearly convert these to regular grammars by
“folding” them over and mapping them to automata over an alphabet consisting
of pairs of letters [9].

We can also can model them directly in this approach by considering the
primitive elements Q to be pairs of strings (u, v) where |u| = |v|, and considering
the experiments X to be strings of even length.

6 Congruence Based Approaches

Let us now move onto the theory of context free grammatical inference, in par-
ticular the theory of congruence based approaches as explored in [10, 11, 6, 12].

The most basic of these models, presented in [12] makes the representational
assumption that the non-terminals of the gramar generate congruence classes of
the language.

Recall that the syntactic congruence is defined as the relation u ≡L v iff
CL(u) = CL(v). We will define Q as a set of strings, and for each u ∈ Q,
we define D(u) = {w : CL(u) = CL(w)}. These are the congruence classes of
the language L. The set of experiments X will be a finite set of contexts; i.e.
X ⊂ Σ∗ ×Σ∗.

We will therefore have the following families of rules

B [[uv]]→ [[u]][[v]]
L0 [[a]]→ a
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L1 [[λ]]→ λ
E [[u]]→ [[v]] iff CL(u) ∩X = CL(v) ∩X
I S → [[u]] iff u ∈ L

In terms of the meta-algorithm 1 we will define the following functions:

InitQ returns Σ ∪ {λ}
InitX returns {(λ, λ)}
Make Returns a cfg with the productions defined above
IncreaseQ returns Sub(E)
IncreaseX returns Con(E)

In [12], a similar algorithm was shown to polynomially learn the class of congru-
ential CFGs from a minimally adequate teacher (mat).

7 Dual CFG Representations

In regular inference we are concerned with the relation between the prefix and
the suffix. Given a language L, we define a relation u ∼L v iff uv ∈ L: the dual
relation is basically the same except that we swap prefixes and suffixes. This
leads to representations where we have finite automata that read from right to
left – this is uninteresting.

In distributional learning we can find that there is a partial duality between
the context and the substring. We will now consider a dual representation, where
the primitive elements are contexts, and the set of experiments X is a set of
substrings.

We will consider Q as a finite set of contexts, i.e. a subset of Σ∗ × Σ∗, and
we shall assume that (λ, λ) ∈ Q. We now define, for a context p = (lp, rp) in Q

D((lp, rp)) = {u|lpurp ∈ L} (3)

Note that D((λ, λ)) = L. We will have as before various classes of rules. The
defeasible class of rules is thus the class of binary rules of the form [[p]]→ [[q]][[r]].
We will test these using the following criterion.

(D(q) ∩X)(D(r) ∩X) ⊆ D(p)
We can test this simply using a membership oracle by checking for each u, v ∈

X such that q � u ∈ L and r � v ∈ L, and if they are then we test whether
p � (uv) ∈ L; if this is not the case then we remove the rule. Otherwise we
include the rule.

The basic rules are thus

I S → [[(λ, λ)]]
L1 [[p]]→ a iff p� a ∈ L
L0 [[p]]→ λ iff p� λ ∈ L
B [[p]]→ [[q]][[r]] iff (D(q) ∩X)(D(r) ∩X) ⊆ D(p)
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Only the final rule is defeasible. we need to show that all and only the incorrect
rules will be removed. Suppose that the rule [[p]] → [[q]][[r]] is incorrect. Then
this means that D(q)D(r) is not a subset of D(p). Therefore there are strings
u, v such that u ∈ D(q) and v ∈ D(r) but uv �∈ D(p).

If we define IncreaseX(E) to return the set of all substrings in E, then clearly
once E includes q�u and r�v, this incorrect rule will be removed. The converse
is obvious; if the rule is valid then (D(q) ∩X)(D(r) ∩X) ⊆ D(p) is always true
even when X = Σ∗. Note that the class of languages learnable is rather different
as it will include non-deterministic and inherently ambiguous ones, whereas the
algorithm of Section 6 appears to only include deterministic languages.

This algorithm corresponds to the algorithm defined in [13] restricted to the
case where we consider only single contexts. It is instructive to contrast the
primal, congruence-based algorithm with this dual algorithm for context-free
inference. For the primal representation, the B rules are a priori and the E rules
are defeasible and the L and I rules are certain; for the dual representation, the
B rules are defeasible, the L rules are certain, the I rules are a priori, and we
do not use E rules.

Table 1. Table showing the basic representational assumptions of the models. All
models also have I rules, so we omit them. In Yoshinaka’s algorithm for mcfgs, the
range of B rules used is much wider. The final column gives the class of representation
that is used. osst stands for onward subsequential transducer.

Model Q X D(p) Rules Class

Angluin [7] Σ∗ Σ∗ {w|pw ∈ L} L0, R,E dfa

Sempere [9] Σk ×Σk Σ∗ {w|p �w ∈ L} L0, EL1, E elg
Clark et al. [14] Σ∗ Σ∗ ×Σ∗ {w|CL(w) ⊇ CL(p)} L, S,B,C bfg
Clark [12] Σ∗ Σ∗ ×Σ∗ {w|CL(w) = CL(p)} L1,L0,B,E cfg

Clark [13] (Σ∗ ×Σ∗)≤k Σ∗ {w|CL(w) ⊇ p} L1,L0,B cfg
Clark [15] (Σ∗ ×Σ∗)∗ Σ∗ {w|CL(w) ⊇ p} L1,L0,B,S,C dlg

Yoshinaka [16] (Σ∗)≤k (Σ∗)≤(k+1) {w|Ck
L(w) ⊇ Ck

L(p)} E, L, B+ mcfg

Oncina [17] Σ∗ Σ∗ ×Δ∗ (p, lcp(τL(pΣ∗)))−1L osst
This paper Σ∗ ×Δ∗ Σ∗ ×Δ∗ (u, v)−1L fst

8 Distributional Lattice Grammars

Distributional Lattice Grammars [15] are an algorithmically more refined version
of these approaches, which allow efficient learning and inference even when we
have an exponentially large set of primitive elements Q. The starting point is
the dual cfg approach; we start with a finite set F of contexts that includes the
empty context (λ, λ). The primitive elements are not, however, these individual
contexts but rather the set of all subsets of F . Thus rather than taking for a
context (l, r) ∈ F the set of strings {u|lur ∈ L}, we take as our primitive element
f a subset of F , say f = {(l1, r1), . . . (lk, rk)}, and define

D(f) = {u|l1ur1 ∈ L ∧ · · · ∧ lkurk ∈ L} (4)
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In other words, Q is just the power set of F ; each element of Q is a subset
of F . This clearly allows a much greater representational power: the sets of
strings that we define thus correspond to finite intersections of the sets defined
by individual contexts. This allows us to represent a larger class of languages.
Consider for example the language {anbn|n ≥ 0} ∪ {anb2n|n ≥ 0}; this language
cannot be represented using sets that are defined by a single context, because
the relevant sets of strings, such as {anbn|n ≥ 0} are not defined by a single
context. For example, the context (a, b) defines a set of strings that includes
{anbn|n ≥ 0} but also includes many other strings such as {abbb, aabbbbb . . .}.
However if we allow our primitives sets to be defined by pairs of contexts, then
the pair (a, b), (aa, bb) will succesfully pick out, “triangulate” in a sense, the
relevant set of strings. One approach to this, taken in [13] is simply to stipulate
a maximum cardinality for the sets of contexts, and consider all sets of contexts
of cardinality less than this. Considering this upper bound as fixed, the set of
primitive elements becomes polynomial.

This avoids the problem rather than solves it; for natural language, it is essen-
tial to recognise that the syntactically and linguistically relevant sets of strings
may require a large number of contexts to pick them out precisely.

An important insight of this approach is that there is a natural lattice struc-
ture that arises in these forms of learning. Since each primitive element p in
Q defines a set, D(p) we can see that there will inevitably be a lattice struc-
ture generated by this set. Once we realise this, then it is natural to extend the
set of primitive elements, by looking at the meet semi-lattice generated by the
set {D(p)|p ∈ Q}, and augmenting the inference system with conjunctive rules
(those of type C above).

dlgs take this path and for computational reasons it turns out to be essential
to add conjunctive rules. Given these rules, we can compute for every string w,
the set of all sets that it must be a member of Y (w) = {D(p)|w ∈ D(p)}. The
crucial observation is this: given that this is a lattice, rather than considering
all of the exponentially many elements of this set of sets, we can sum it up in a
single element; namely

⋂
s∈Y (w) s. If w lies in all of the sets in Y (w) then it must

lie in their intersection. Since we have extended our set of primitive elements
so it is a meet semi-lattice, (in fact a full lattice in the case of dlgs), then this
intersection element will be in our set Q. Thus though w may be a member of
very many sets defined by elements of Q, computationally we can consider just
this unique one: the smallest set that we can prove it is in.

The addition of the conjunctive rules increases the power of the formalism
to that of Conjunctive Grammars [18], or more precisely to a subclass of the
languages definable by conjunctive grammars. This insight, though it has so far
only been applied to the theory of cfg inference, is of more general application,
and we think it can potentially be applied to all of the models discussed here.

9 MCFGs

Yoshinaka [19, 16] shows how we can extend this model to the inference of
Multiple Context-Free Grammars [20]. We fix a natural number constant p and
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define the set Q to be a set of tuples of strings (u1, . . . , um) where 1 ≤ m ≤ p. X
is then a set of generalised contexts which again are tuples of strings, this time
of arity up to p + 1.

Given a tuple w = (u1, . . . , um) we can define the generalised distribution
with respect to a language L to be the set Cm

L (w) = {(v1, . . . , vm+1)|v1u1v2 . . .
vmumvm+1 ∈ L}. The representational assumption of Yoshinaka’s algorithm is
thus

D(w) = {u|Cm
L (u) ⊇ Cm

L (w)} (5)

Since the elements are no longer strings, but rather tuples of strings, the ways
in which they can be combined are significantly more complex. Rather than one
B rule, we have a whole family of such rules, each corresponding to a different
combination operation.

It is an open question whether the class of DLGs is sufficiently expressive
to represent the class of natural languages, or whether it will be necessary to
move into the MCFL hierarchy. It might be that even if DLGs are sufficiently
expressive, one might still want to use MCFGs because of the slightly richer
notion of dependency that they allow, which might permit a more principled
modeling of certain movement phenomena in natural languages.

10 Transductions

We now turn our attention to the study of transductions or bilanguages. We
assume that we have two alphabets Σ and Δ which may or may not be disjoint,
and rather than a language we are interested in bilanguages or transductions
which are subsets of Σ∗ × Δ∗; we will write an element of a bilanguage T as
an ordered pair (u, v) where u ∈ Σ∗ and v ∈ Δ∗. As defined like this, there is
a symmetry but we will often be interested in the cases where L considered as
a relation between Σ∗ and Δ∗ is a function. We say that a transduction T is
functional if (u, v), (u, w) ∈ T implies that v = w. We say that a transduction is
total if for all u ∈ Σ∗ there is a v ∈ Δ∗ such that (u, v) ∈ T .

If we are not interested in functional transductions, then this reduces to a
special case of the learnability of multiple context free languages, subclasses of
which can be learned directly using results already published [16]. However, as
is demonstrated by the well-known ostia algorithm [17], if we assume that the
data is functional, then we do not need to have membership queries or access
to negative evidence, as the positive examples are restricted enough to learn the
function.

We will consider now the case where we wish to infer a representation for a
total function T . We will define the function τT : Σ∗ → Δ∗ as τ(u) = v where
(u, v) ∈ T .

We will start by considering a basic model analogous to that of regular lan-
guages. We start by noting that our model above assumed only that the language
was a subset of a monoid. Note that we clearly have a natural monoid structure
over Σ∗ ×Δ∗, where (u, v) ◦ (u′, v′) = (uu′, vv′), and (λ, λ) is the identity. Thus
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E ← ∅ ;1

Q← InitQ ;2

X ← InitX ;3

G←Make(Q,X, E) ;4

while (ui, vi) is a positive example do5

E ← E ∪ {(ui, vi)} ;6

for (u, v) ∈ E do7

if not S
∗⇒G (u, v) then8

Q← Q ∪ IncreaseQ(E) ;9

X ← X ∪ IncreaseX(wi) ;10

G = Make(Q, X, E) ;11

Algorithm 2. Generic meta-algorithm for learning functional transductions
from positive data

we can now immediatelt lift our analysis to the case where D(p) is defined to be
a subset of Σ∗ ×Δ∗.

We start by defining our sets of primitive elements Q to be a finite set of pairs
(u, v) ∈ Σ∗ × Δ∗, and assume further that (λ, λ) ∈ Q. We define for a given
element p = (up, vp) ∈ Q

D((up, vp)) = {(u′, v′)|(upu
′, vpv

′) ∈ T } (6)

We define the following rule schemas:

I S → [[(λ, λ)]] which is a priori
R [[(u, v)]]→ (u′, v′)[[(uu′, vv′)]], also a priori
L0 [[(u, v)]]→ (λ, λ) iff (u, v) ∈ T . This is certain.

The defeasible rule schema will be E rules. We will only use positive data here
which is sufficient, since if we observe a pair (u, v) then we know that for all
v′ �= v that (u, v′) �∈ T , since T is a function. We will therefore have X being a
set of pairs that are a subset of T . We will say that an equality rule [[(u, v)]]→
[[(u′, v′)]] is incorrect with respect to X if there is a pair of elements of X of the
form (ux, vy), (u′x, w′) such that w′ �= v′y. Note that these two elements of X
need not be distinct, as we shall see below. If it is not incorrect w.r.t X then we
say it is correct w.r.t. X . The E rule schema is thus:

E [[(u, v)]]→ [[(u′, v′)]] iff it is correct w.r.t. X .

If the rule is correct, and (ux, w), (u′x, w′) ∈ X , and suppose that w = vy, then
(x, y) ∈ D(u, v) and therefore (x, y) ∈ D(u′, v′) and so (u′x, v′y) ∈ T and so w′ =
v′y since it is functional, and therefore it will be correct w.r.t any X On the other
hand, if a rule is incorrect, then there must be some (x, y) ∈ D(u, v)\D(u′, v′), or
D(u′, v′)\D(u, v). If we assume w.l.o.g. the first, then we know that τ(ux) = vy.
Let w = vy and w′ = τ(u′x); w′ cannot be equal to v′y since this would mean
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that (x, y) ∈ D(u′, v′) which would be a contradiction. Therefore if X contains
the two pairs (ux, τ(ux)), (u′x, τ(u′x)) then this rule will be incorrect w.r.t. X .

We are only interested in those cases where (u, v)−1T is non-empty. This set
could be empty, if for example all of the strings that start with u are mapped
to strings that start with a, and v starts with b. The algorithm we consider
will only add (u, v) when we have observed them as a prefix of a string, and
so we will assume in what follows that there is always at least one element of
(u, v)−1T . There are is a special cases that we should note: when u = u′ and
v �= v′ clearly these pairs will not be congruent. In this case, let (x, y) be some
element of (u, v)−1T ; then clearly (ux, vy) is a suitable element of X to show
that these pairs are not congruent.

We have implicitly defined Make; we now define the other subroutines.
IncreaseX just returns the current data E, and IncreaseQ will return the set
of all prefixes of E. We say that (u, v) is a prefix of (u′, v′) if there is some (x, y)
such that (u, v) ◦ (x, y) = (u′, v′). The initialisation functions just set X to the
empty set and Q to {(λ, λ)}. There is one detail we neglect in this informal presen-
tation: we also need to deal with the L0 rules. Since we are not using an oracle, we
set them when we observe the relevant pair (u, v) in the data.

Therefore Algorithm 2 will learn the class of all such transductions with a finite
kernel. Let us pause and consider the class of transductions that have a finite
kernel; these will clearly be a class of rational functions. These clearly include
all subsequential functions, which are those where the underlying automaton is
deterministic, and there is a final output function σ. The role of σ(q) is played
by λ-transitions leading to accepting states. However this clearly also includes
non-deterministic transductions. We consider now the classic example of such a
transduction (c.f. [21]).

Example 1. Suppose we have Σ = {a}, Δ = {b, c}, and T = {(a2n, b2n)|n ≥
0} ∪ {(a2n+1, c2n+1)|n ≥ 0}. This is clearly a total function; an is mapped to bn

if n is even and to cn if n is odd.

A kernel for this transduction is the following set Q:

{(λ, λ), (a, b), (aa, bb), (aaa, bbb), (a, c), (aa, cc), (aaa, ccc)}
We can easily verify that (a, b) ≡T (aaa, bbb) and that (a, c) ≡T (aaa, ccc). It
is easy to convert this to a finite state transducer (fst). Each element of Q
corresponds to a state; accepting states are those with a rule of type L0. The
initial state is [[(λ, λ)]]. Rules of type R such as [[(u, v)]] → (u′, v′)[[(uu′, vv′)]]

are written as a transition [[(u, v)]] u′:v′→ [[(uu′, vv′)]]. Figure 1 shows a minimal
set of primitive elements and transitions that define this transduction. The actual
output from the algorithm would contain many more states and transitions, but
would nonetheless not over-generate.

The relation to the ostia algorithm is not entirely clear. The ostia algorithm
infers a class of subsequential transducers; these are deterministic on the input
string: thus we can define an equivalence relation of finite index on the set of
pairs. If we define the longest common prefix of a set of strings to be lcp, the
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(e,e)

(a,c)
a:c

(aaa,ccc)

e:e

(a,b)

a:b

(aaa,bbb)

e:e

e:e

(aa,bb)

a:b

e:e

(aa,cc)

a:c

a:c

a:b

Fig. 1. State diagram for T = {(a2n, b2n)|n ≥ 0} ∪ {(a2n+1, c2n+1)|n ≥ 0}. The “e”
stands for the empty string λ; accepting states are drawn as rectangles. We write this
as a finite state transducer rather than a rewriting system.

primitives of the ostia algorithm are of the form (u, lcp(τ(uΣ∗))), extending τ
to sets of strings in the standard way. As can be seen from Figure 1, the output
of the algorithm here is not deterministic on the input string. It appears that
the class of transductions that can be learned includes all rational functions, but
this must remain a conjecture at a moment.

11 Discussion

We have presented a common framework which allows us to see many different
models and algorithms, at a suitable level of abstraction, as instances of the same
meta-algorithm. In Table 1 we lay out, somewhat crudely the range of represen-
tational assumptions of the models that we have looked at in this paper. We
have presented a meta-algorithm quite generally. As a result the specific algo-
rithms are significantly less efficient that they could be. Compare, for example,
the elegant algorithmics of the lstar or ostia algorithms with the very blunt
approach taken in this paper. Nonetheless, this rather abstract presentation has
allowed us to see that many classic and recent algorithms for GI are variants of
the same algorithm. Using these methods allows us to see the range of possible
new algorithms and GI techniques that result from combinations of different
representational assumptions and sets of rules.

The example of a transduction learning algorithm is meant to show the advan-
tages of this approach – applying this to the problems of learning transductions
or functions immediately gives us a new and powerful algorithm for learning
regular functions that extends previous results. There is also a natural extension
to context-free transductions that we will present elsewhere.
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The resulting algorithms are polynomial in the sense that each iteration re-
quires only polynomial time. This is, perhaps, not strict enough a criterion on
its own, but in some cases (e.g. [12]) we can get a result under the mat model.

The general approach we advocate is ultimately very simple – a decision about
what each representational element should mean; given this, we can define a
set of valid inferences; invalid inferences can be removed based on testing an
increasingly large set of experiments. The overall effect is a large and growing
family of efficient algorithms for many classic problems in grammatical inference.
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