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Abstract. The importance of a node in a directed graph can be mea-
sured by its PageRank. The PageRank of a node is used in a number
of application contexts – including ranking websites – and can be inter-
preted as the average portion of time spent at the node by an infinite
random walk. We consider the problem of maximizing the PageRank of a
node by selecting some of the edges from a set of edges that are under our
control. By applying results from Markov decision theory, we show that
an optimal solution to this problem can be found in polynomial time.
It also indicates that the provided reformulation is well-suited for rein-
forcement learning algorithms. Finally, we show that, under the slight
modification for which we are given mutually exclusive pairs of edges,
the problem of PageRank optimization becomes NP-hard.

Keywords: PageRank, graphs, complexity, Markov decision processes.

1 Introduction

The importance of a node in a directed graph can be measured by its PageRank.
The PageRank of a node [4] can be interpreted as the average portion of time
spent at the node by an infinite random walk [10]. It is traditionally applied
for ordering web-search results, but it also has many other applications [2], for
example, in bibliometrics, ecosystems, spam detection, web-crawling, semantic
networks, relational databases and natural language processing.

It is of natural interest to search for the maximum or minimum PageRank that
a node (e.g., a website) can have depending on the presence or absence of some of
the edges (e.g., hyperlinks) in the graph. For example, since PageRank is used for
ordering web-search results, a web-master could be interested in increasing the
PageRank of some of his websites by suitably placing hyperlinks on his own site
or by buying advertisements or making alliances with other sites [1, 5]. Another
motivation is that of estimating the PageRank of a node in the presence of
missing information on the graph structure. If some of the links on the internet

M. Hutter et al. (Eds.): ALT 2010, LNAI 6331, pp. 89–103, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



90 B.Cs. Csáji, R.M. Jungers, and V.D. Blondel

are broken, for example, because the server is down or there are network traffic
problems, we may have only partial information on the link structure of the web-
graph. However, we may still want to estimate the PageRank of a website by
computing the maximum and minimum PageRank that the node may possibly
have depending on the presence or absence of the hidden hyperlinks [9]. These
hidden edges are often referred to as fragile links.

It is known that if we place a new edge in a directed graph, the PageRank of
the terminal node of the edge can only increase. Optimal linkage strategies are
known for the case in which we want to optimize the PageRank of a node and
we only have access to the edges starting from this node [1]. This first result has
later been generalized to the case for which we are allowed to configure all of the
edges starting from a given set of nodes [5]. The general problem of optimizing
the PageRank of a node in the case where we are allowed to decide the absence
or presence of the edges in a given arbitrary subset of edges is proposed by
Ishii and Tempo [9]. They are motivated by the problem of “fragile links” and
mention the lack of efficient, polynomial time algorithms to this problem. Then,
using interval matrices, they propose an approximate solution to the problem.

We show that the PageRank optimization problem can be efficiently formu-
lated as a Markov decision process (MDP), more precisely, as a stochastic shortest
path (SSP) problem, and that it can therefore be solved in polynomial time. Our
proof provides a linear programming formulation that can then be solved by
standard techniques. Our result and the given reformulation indicate that this
problem is well-suited for reinforcement learning methods, as well. We also prove
that under the slight modification for which we are given mutually exclusive con-
straints between pairs of edges, the problem becomes NP-hard.

2 Definitions and Preliminaries

In this section we define the concept of PageRank and the PageRank optimization
problem as well as give an introduction to stochastic shortest path problems.

2.1 PageRank

Let G = (V , E) be a directed graph, where V = {1, . . . , n} is the set of vertices
and E ⊆ V × V is the set of edges. First, for simplicity, we assume that G
is strongly connected. The adjacency matrix of G is denoted by A. Since G is
strongly connected, A is irreducible. We are going to consider a random walk
on the graph defined as follows. If we are in node i, in the next step we will
go to node j with probability 1/deg(i) if j is an out-neighbor of i, where deg(·)
denotes out-degree. This defines a Markov chain with transition-matrix

P �
(
D−1

A A
)T

with DA � diag(A�) (1)

where � = 〈1, . . . , 1〉T is the all-one vector and diag(·) is an operator that creates
a diagonal matrix from a vector, more precisely, (DA)ii � (A�)i = deg(i). Note
that P is a column (left) stochastic matrix and the chain can be interpreted as
an infinite uniform random walk on the graph (e.g., a random surfing).
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The PageRank vector, π, of the graph is defined as the stationary distribution
of the above described homogeneous Markov chain, more precisely, as P π = π,
where π is non-negative and πT

� = 1. Since P is an irreducible stochastic
matrix, we know (Perron-Frobenius theorem) that π exists and it is unique.

Now, we turn to the general case, when we do not assume that G is strongly
connected, it can be an arbitrary directed graph. In this case, there may be nodes
which do not have any outgoing edges. They are usually referred to as dangling
nodes. There are many ways to handle them [2], e.g., we can delete them, we can
add a self-loop to them, each dangling node can be linked to an ideal node (sink)
or we can connect each dangling node to every other node. This last solution can
be interpreted as restarting the walk from a random starting state if we reach a
dangling node. Henceforth, we will assume that we have already dealt with the
dangling nodes and, hence, every node has at least one outgoing edge.

We can define a Markov chain similarly to (1), but this chain may not have
a unique stationary distribution. The solve this problem, the PageRank vector,
π, of G is defined as the stationary distribution of the “Google matrix” [10]

G � (1 − c)P + c z�T, (2)

where z is a positive personalization vector satisfying zT
� = 1, and c ∈ (0, 1) is

a damping constant. In practice, values between 0.1 and 0.15 are usually applied
for c and z = (1/n)� [2]. The Markov chain defined by G is ergodic that is
irreducible and aperiodic, hence, its stationary distribution uniquely exists and
the Markov chain converges to it from any initial distribution [11].

The idea of PageRank is that π(i) can be interpreted as the “importance” of
i. Thus, π defines a linear order on the nodes by treating i ≤ j if π(i) ≤ π(j).

The PageRank vector can be approximated by the iteration xn+1 � Gxn,
where x0 is an arbitrary stochastic vector. It can also be directly computed [1]

π = c (I − (1 − c)P )−1z, (3)

where I denotes an n×n identity matrix. Since c ∈ (0, 1) and P is stochastic, it
follows that matrix I − (1− c)P is strictly diagonally dominant, thus invertible.

2.2 PageRank Optimization

We will investigate a problem in which a subset of links are “fragile”, we do not
know their exact values or we have control over them, and we want to compute
the maximum (or minimum) PageRank that a specific node can have [9]. More
precisely, we are given a digraph G = (V , E), a node v ∈ V and a set F ⊆ E
corresponding to those edges which are under our control. It means that we can
choose which edges in F are present and which are absent, but the edges in
E \ F are fixed, they must be present in the graph. We will call any F+ ⊆ F
a configuration of fragile links: F+ determines those edges that we add to the
graph, while F− = F \F+ denotes those edges which we remove. The PageRank
of node v under the F+ configuration is defined as the PageRank of v with



92 B.Cs. Csáji, R.M. Jungers, and V.D. Blondel

The Max-PageRank Problem

Instance: A digraph G = (V, E), a node v ∈ V and a set of controllable edges F ⊆ E .
Optional: A damping constant c ∈ (0, 1) and a stochastic personalization vector z.
Task: Compute the maximum possible PageRank of v by changing the edges in F

and provide a configuration of edges in F for which the maximum is taken.

respect to the graph G0 = (V , E \ F−). The problem is how should we configure
the fragile links to maximize (or minimize) the PageRank of a given node v?

There are finitely many configurations, thus, we can try to compute them
one-by-one. If we have d fragile links, then there are 2d possible graphs. The
PageRank vector of a graph can be computed in O(n3) via a matrix inversion1.
The resulting “exhaustive search” algorithm has O(n32d) time complexity.

We note that if the graph was undirected, the Max-PageRank problem would
be easy. We know [13] that a random walk on an undirected graph (viz., a time-
reversible Markov chain) has the stationary distribution π(i) = deg(i)/2m for
all nodes i, where m denotes the number of edges and deg(i) is the degree of
node i. Therefore, it is easy to see that, in order to maximize the PageRank of
a given node v, we should keep edge (i, j) ∈ F if and only if i = v or j = v.

2.3 Stochastic Shortest Path Problems

In this section we give an overview on stochastic shortest path problems, since
our solutions to PageRank optimization are built upon their theory.

Stochastic shortest path (SSP) problems are generalizations of (deterministic)
shortest path problems [3]. In an SSP problem the transitions between the nodes
are uncertain, but we have some control over their probability distributions. We
aim at finding a policy (a function from nodes to controls) such that minimizes
the expected cost of reaching a given target state. SSP problems are undiscounted
Markov decision processes (MDPs) with an absorbing, cost-free terminal state.

An SSP problem can be stated as follows. We have given a finite set of states,
S, and a finite set of control actions, U. For simplicity, we assume that S =
{1, . . . , n, n + 1}, where τ = n + 1 is a special state, the target or termination
state. In each state i we can choose an action u ∈ U(i), where U(i) ⊆ U is the set
of allowed actions in state i. After the action was chosen, the system moves to
state j with probability p(j | i, u) and we incur cost g(i, u, j). The cost function is
real valued and the transition-probabilities are, of course, nonnegative as well as
they sum to one for each state i and action u. The target state is absorbing and
cost-free that is, if we reach state τ , we remain there forever without incurring
any more costs. More precisely, for all u ∈ U(τ), p(τ | τ, u) = 1 and g(τ, u, τ) = 0.

The problem is to find a control policy such that it reaches state τ with
probability one and minimizes the expected costs, as well. A (stationary, Markov)
deterministic policy is a function from states to actions, μ : S → U. A randomized
policy can be formulated as μ : S → Δ(U), where Δ(U) denotes the set of all
probability distributions over set U. It can be shown that every such policy
1 It can be done a little faster, in O(n2.376), using the Coppersmith-Winograd method.



PageRank Optimization in Polynomial Time by SSP Reformulation 93

induces a Markov chain on the state space [6]. A policy is called proper if, using
this policy, the termination state will be reached with probability one, and it
is improper otherwise. The value or cost-to-go function of policy μ gives us the
expected total costs of starting from a state and following μ thereafter; that is,

Jμ(i) � lim
k→∞

Eμ

[
k−1∑

t=0

g(it, ut, it+1)
∣
∣
∣
∣ i0 = i

]

, (4)

for all states i, where it and ut are random variables representing the state
and the action taken at time t, respectively. Naturally, it+1 is of distribution
p(· | it, ut) and ut is of distribution μ(it); or ut = μ(it) for deterministic policies.

Applying a proper policy, we arrive at a finite horizon problem, however, the
length of the horizon may be random and may depend on the policy, as well.

We say that μ1 ≤ μ2 if and only if for all states i, Jμ1(i) ≤ Jμ2(i). A policy
is (uniformly) optimal if it is better than or equal to all other policies. There
may be many optimal policies, but assuming that (A1) there exists at least one
proper policy and (A2) every improper policy yields infinite cost for at least one
initial state, they all share the same unique optimal value function, J∗. Then,
function J∗ is the unique solution of the Bellman optimality equation, TJ∗ = J∗,
where T is the Bellman optimality operator [3]; defined for all states i as

(TJ)(i) � min
u∈U(i)

n+1∑

j=1

p(j | i, u)
[
g(i, u, j) + J(j)

]
. (5)

Operator T is monotone and, assuming that (APP) all allowed policies are
proper, T is a contraction with respect to a weighted maximum norm [3].

From a given value function J , it is straightforward to get a policy, e.g., by
applying a greedy policy with respect to J [3]. There are several solution meth-
ods for solving MDPs, e.g., in the fields of reinforcement learning and [neuro-]
dynamic programming. Many of these algorithms aim at finding (or approximat-
ing) the optimal value function, since good approximations to J∗ directly lead
to good policies [3]. General solution methods include value iteration, policy
iteration, Q-learning, SARSA and TD(λ): temporal difference learning [3, 6, 15].

It is known that finite MDPs are P-complete [14] and SSP problems can be
reformulated as linear programming (LP) problems [3]. More precisely, the opti-
mal cost-to-go, J∗(1), . . . , J∗(n), solves the following LP in variables x1, . . . , xn :

maximize
n∑

i=1

xi (6a)

subject to xi ≤
n+1∑

j=1

p(j | i, u)
[
g(i, u, j) + xj

]
(6b)

for all states i and actions u ∈ U(i). Note that xn+1 is fixed at zero. This LP has
n variables and O(nm) constraints, where m is the maximum number of allowed
actions per state. Knowing that an LP can be solved in polynomial time [8], this
reformulation provides a polynomial time solution to SSP problems.



94 B.Cs. Csáji, R.M. Jungers, and V.D. Blondel

3 PageRank Optimization as a Markov Decision Process

Before we prove that efficient algorithms to the Max-PageRank problem do exist,
first, we recall a basic fact about stationary distributions of Markov chains.

Let (X0, X1, . . . ) denote a time-homogeneous Markov chain defined on a finite
set Ω. The expected first return time of a state i ∈ Ω is defined as follows

ϕ(i) � E [ inf { t ≥ 1 : Xt = i } |X0 = i ] . (7)

If state i is recurrent, then ϕ(i) is finite. Moreover, if the chain is irreducible,

π(i) =
1

ϕ(i)
, (8)

for all states i, where π is the stationary distribution of the chain [11]. This
naturally generalizes to unichain processes, viz., when we have a single commu-
nicating class of states and possibly some transient states. In this case we need
the convention that 1/∞ = 0, since the expected first return time to transient
states is ∞. Hence, the stationary distribution of state i can be interpreted as
the average portion of time spent in i during an infinite random walk. It follows
from (8) that maximizing (minimizing) the PageRank of a node is equivalent to
minimizing (maximizing) the expected first return time to this node.

We will show that the Max-PageRank problem can be efficiently formulated
as a stochastic shortest path (SSP) problem [3], where “efficiently” means that
the construction (reduction) takes polynomial time. First, we will consider the
PageRank optimization without damping, namely c = 0, but later, we will extend
the model to the case of damping and personalization, as well. We will start with
a simple, but intuitive reformulation of the problem. Though, this reformulation
will not ensure that Max-PageRank can be solved in polynomial time, it is good
to demonstrate the main ideas and to motivate the refined solution.

3.1 Assumptions

First, we will make two assumptions, in order to simplify the presentation of the
construction, but later, in the main theorem, they will be relaxed.

(AD) Dangling Nodes Assumption : We assume that there is a fixed (not fragile)
outgoing edge from each node. This assumption guarantees that there are
no dangling nodes and there are no nodes with only fragile links.

(AR) Reachability Assumption : We also assume that for at least one configura-
tion of fragile links we have a unichain process and node v is recurrent,
namely, we can reach node v with positive probability from all nodes. This
assumption is required to have a well-defined PageRank for at least one
configuration. In our SSP formulation this will be equivalent to assuming
that there is at least one proper policy. In case of damping this assump-
tion is automatically satisfied, since then the Markov chain is irreducible,
and hence unichain, no matter how we configure the fragile links, thus all
policies are proper.
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3.2 Simple SSP Formulation

First, let us consider an instance of Max-PageRank. We are going to build an
associated SSP problem that solves the original PageRank optimization. The
states of the MDP are the nodes of the graph, except for v which we “split” into
two parts and replace by two new states: vs and vt. Intuitively, state vs will be
our “starting” state: it has all the outgoing edges of v (both fixed and fragile),
but it does not have any incoming edges. The “target” state will be vt: it has all
the incoming edges of node v and, additionally, it has only one outgoing edge: a
self-loop. Note that τ = vt, namely, vt is the absorbing termination state.

An action in state i is to select a subset of fragile links (starting from i)
which we “turn on” (activate). All other fragile links from i will be “turned off”
(deactivated). Thus, for all states i, the allowed set of actions is U(i) � P(Fi),
where P denotes the power set and Fi the set of outgoing fragile edges from i.

Let us assume that we are in state i, where there are ai ≥ 1 fixed outgoing
edges and we have activated bi(u) ≥ 0 fragile links, determined by action u ∈
U(i). Then, the transition-probability to all states j that can be reached from
state i using a fixed or an activated fragile link is p(j | i, u) � 1/(ai + bi(u)).

We define the immediate-cost of all control actions as one, except for the
actions taken at the cost-free target state. Thus, the immediate-cost function is

g(i, u, j) �
{

0 if i = vt,
1 otherwise, (9)

for all states i, j and actions u. Note that taking an action can be interpreted as
performing a step in the random walk. Therefore, the expected cumulative cost
of starting from state vs until we reach the target state vt is equal to the expected
number of steps until we first return to node v according to our original random
walk. It follows, that the above defined SSP formalizes the problem of minimizing
(via a configuration) the expected first return time to state v. Consequently, its
solution is equivalent to maximizing the PageRank of node v.

Fig. 1. SSP reformulation: the starting state is s = vs, the target state is t = vt and
the dashed edges denote fragile links. The original nodes in the rectangle exclude v.

Each allowed deterministic policy μ defines a potential way to configure the
fragile links. Moreover, the vs component of the cost-to-go function, Jμ(vs),
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is the expected first return time to v using the fragile link configuration of μ.
Therefore, we can compute the PageRank of node v by

π(v) =
1

Jμ(vs)
, (10)

where we applied the convention of 1/∞ = 0, which is needed when v is not
recurrent under μ. Thus, the maximal PageRank of v is 1/J∗(vs).

It is known that MDPs can be solved in polynomial time in the number of
states, N , and the maximum number of actions per state, M (and the maximum
number of bits required to represent the components, L), e.g., by linear program-
ming [12, 14]. The size of the state space of the current formulation is N = n+1,
where n is the number of vertices of the original graph, but, unfortunately, its
action space does not have a polynomial size. For example, if we have maximum
m fragile links leaving a node, we had 2m possible actions to take, namely, we
could switch each fragile link independently on or off, consequently, M = 2m.
Since m = O(n), from the current reformulation of problem, we have that there
is a solution which is polynomial but in 2n, which is obviously not good enough.
However, we can notice that if we restrict the maximum number of fragile links
per node to a constant, k, then we could have a solution which is polynomial
in n (since the maximum number of actions per state becomes constant: 2k).
This motivates our refined solution, in which we reduce the maximum number
of actions per state to two while only slightly increasing the number of states.

3.3 Refined SSP Formulation

We are going to modify our previous SSP formulation. The key idea will be to
introduce an auxiliary state for each fragile link. Therefore, if we have a fragile
link from node i to node j in the original graph, we place an artificial state, fij ,
“between” them in the refined reformulation. The refined transition-probabilities
are as follows. Let us assume that in node i there were ai ≥ 1 fixed outgoing
edges and bi ≥ 0 fragile links. Now, in the refined formulation, in state i we have
only one available action which brings us uniformly, with 1/(ai + bi) probability,
to state j or to state fij depending respectively on whether there was a fixed or
a fragile link between i and j. Notice that this probability is independent of how
many fragile links are turned on, it is always the same. In each auxiliary state
fij we have two possible actions: we could either turn the fragile link on or off.
If our action is “on” (activation), we go with probability one to state j, however,
if our action is “off” (deactivation), we go back with probability one to state i.

We should check whether the transition-probabilities between the original
nodes of graph are not affected by this reformulation. Suppose, we are in node
i, where there are a fixed and b fragile links2, and we have turned k of the
fragile links on. Then, the transition-probability to each node j, which can be
reached via a fixed or an activated fragile link, should be 1/(a + k). In our
refined reformulation, the immediate transition-probability from state i to state
2 For simplicity, now we do not denote their dependence on node i.
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j is 1/(a + b), however, we should not forget about those b − k auxiliary nodes
in which the fragile links are deactivated and which lead back to state i with
probability one, since, after we returned to state i we have again 1/(a + b)
probability to go to state j an so on. Now, we will compute the probability of
eventually arriving at j if we start in i and only visit auxiliary states meantime.

To simplify the calculations, let us temporarily replace each edge leading to
an auxiliary sate corresponding to a deactivated fragile link with a self-loop. We
can safely do so, since these states lead back to state i with probability one,
therefore, the probability of eventually arriving at node j does not change by
this modification. Then, the probability of arriving at j can be written as

P (∃ t : Xt = j | ∀ s < t : Xs = i ) = (11a)

=
∞∑

t=1

P (Xt = j |Xt−1 = i )
t−1∏

s=1

P (Xs = i |Xs−1 = i ) = (11b)

=
∞∑

t=1

1
a + b

(
b − k

a + b

)t−1

=
1

a + b

∞∑

t=0

(
b − k

a + b

)t

=
1

a + k
. (11c)

With this, we have proved that the probability of eventually arriving at state
j if we start in state i, before arriving at any (non-auxiliary) state l that was
reachable via a fixed or a fragile link from state i in the original graph, is the
same as the one-step transition-probability was from state i to state j according
to the original random walk. This partially justifies the construction.

However, we should be careful, since we might have performed several steps
in the auxiliary nodes before we finally arrived at state j. Fortunately, this
phenomenon does not ruin our ability to optimize the expected first return time
to state v in the original graph, since we count the steps with the help of the
cost function, which can be refined according to our needs. All we have to do is
to allocate zero cost to those actions which lead us to auxiliary states:

g(i, u, j) �
{

0 if i = vt or j = fil or u = “off”,
1 otherwise, (12)

for all states i, j, l and action u. Consequently, we only incur cost if we directly
go from state i to state j, without visiting an auxiliary node (viz., it was a
fixed link), or if we go to state j via an activated fragile link, since we have
g(fij , u, j) = 1 if u = “on”. It is easy to see that in this way we only count
the steps of the original random walk and, for example, it does not matter how
many times we visit auxiliary nodes, since these visits do not have any cost.

This reformulation also has the nice property that Jμ(vs) is the expected first
return time to node v in the original random walk, in case we have configured
the fragile links according to policy μ. The minimum expected first return time
that can be achieved with suitably setting the fragile links is J∗(vs), where
J∗ is the optimal cost-to-go function of the above constructed SSP problem.
Consequently, the maximum PageRank node v can have is 1/J∗(vs).
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It is also easy to see that if we want to compute the minimum possible
PageRank of node v, we should simply define a new immediate-cost function
as ĝ = − g, where g is defined by equation (12). If the optimal cost-to-go func-
tion of this modified SSP problem is Ĵ∗, then the minimum PageRank v can have
is 1/|Ĵ∗(vs)|. Thus, Min-PageRank can be handled with the same construction.

The number of states of this formulation is N = n + d + 1, where n is the
number of nodes of the original graph and d is the number of fragile links.
Moreover, the maximum number of allowed actions per state is M = 2, therefore,
this SSP formulation provides a proof that, assuming (AD) and (AR), Max-
PageRank can be solved in polynomial time in the size of the problem.

The resulted SSP problem can be reformulated as a linear program, namely,
the optimal cost-to-go function solves the following LP in variables xi and xij ,

maximize
∑

i∈V
xi +

∑

(i,j)∈F
xij (13a)

subject to xij ≤ xi , and xij ≤ xj + 1 , and (13b)

xi ≤ 1
deg(i)

[
∑

(i,j)∈E\F
(xj + 1) +

∑

(i,j)∈F
xij

]

, (13c)

for all i ∈ V \ {vt} and (i, j) ∈ F , where xi is the cost-to-go of state i, xij

relates to the auxiliary states of the fragile edges, and deg(·) denotes out-degree
including both fixed and fragile links (independently of the configuration). Note
that we can only apply this LP after state v was “splitted” into a starting and
a target state. Also note that the value of the target state, xvt , is fixed at zero.

3.4 Handling Dangling Nodes

Now, we are going to show that assumption (AD) can be omitted and our com-
plexity result is independent of how dangling nodes are particularly handled.

Suppose that we have chosen a rule according to which the dangling nodes
are handled, e.g., we take one of the rules discussed by Berkhin [2]. Then, in
case (AD) is not satisfied, we can simply apply this rule to the dangling nodes
before the optimization. However, we may still have problems with the nodes
which only have fragile links, since they are latent dangling nodes, namely, they
become dangling nodes if we deactivate all of their outgoing edges. We call
them “fragile nodes”. Notice that in each fragile node we can safely restrict the
optimization in a way that maximum one of the fragile links can be activated.
This does not affect the optimal PageRank of v, since the only one allowed link
should point to a node that has the smallest expected hitting time to v. Even if
there are several nodes with the same value, we can select one of them arbitrarily.

It may also be the case that deactivating all of the edges is the optimal
solution, e.g., if the fragile links lead to nodes that have very large hitting times
to v. In this case, we should have an action that has the same effect as the
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dangling node handling rule. Consequently, in case we have a fragile node that
has m fragile links, we will have m + 1 available actions: u1, . . . , um+1. If uj is
selected, where 1 ≤ j ≤ m, it means that only the j-th fragile link is activated
and all other links are deactivated, while if um+1 is selected, it means that all
of the fragile links are deactivated and auxiliary links are introduced according
to the selected dangling node handling rule. If we treat the fragile nodes this
way, we still arrive at an MDP which has states and actions polynomial in n and
d, therefore, Max-PageRank can be solved in polynomial time even if (AD) is
not satisfied and independently of the applied rule. The modification of the LP
formulation if fragile nodes are allowed is straightforward.

3.5 Damping and Personalization

Now, we are going to extend our refined SSP formulation, in order to handle
damping, as well. For the sake of simplicity, we will assume (AD), but it is
easy to remove it in a similar way as it was presented in Section 3.4. Note that
assumption (AR) is always satisfied in case of damping (cf. Section 3.1).

Damping can be interpreted as follows: in each step we continue the random
walk with probability 1 − c and we restart it (“zapping”) with probability c,
where c ∈ (0, 1) is a given damping constant. In this latter case, we choose the
new starting state of the random walk according to the probability distribution
of a given positive and stochastic personalization vector z. In order to model this,
we introduce a new global auxiliary state, q, which we will call the teleportation
state, since random restarting is sometimes referred to as “teleportation” [10].

Fig. 2. An illustration of damping: the substructure of a node of the original digraph.
Circles represent states and boxes represent actions. State q denotes the global “tele-
portation” state. Dashed edges help determining zero cost events: if a state-action-state
path has only dashed edges, then this triple has zero cost, otherwise, its cost is one.
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In order to take the effect of damping into account, we place a new auxiliary
state hi “before” each (non-auxiliary) state i (see Figure 2). Each action that
leads to i in the previous formulation now leads to hi. In hi we have only one
available action (“nop” abbreviating “no operation”) which brings us to node i
with probability 1− c and to q with probability c, except for the target state, vt,
for which hvt leads with probability one to vt. In q, we have one available action
which brings us with z distribution to the newly defined nodes,

p(hi | q ) � p(hi | q, u ) �

⎧
⎨

⎩

z(i) if i �= vs and i �= vt

z(v) if i = vt

0 if i = vs.
(14)

All other transition-probabilities from q are zero. Regarding the cost function:
it is easy to see that we should not count the steps when we move through hi,
therefore, g(hi, u, i) = 0 and g(hi, u, q) = 0. However, we should count when we
move out from the teleportation state, i.e., g(q, u, i) = 1 for all i and u.

In this variant the size of the state space is N = 2n + d + 2 and we still have
maximum 2 actions per state, therefore, it can also be solved in polynomial time.

In this case, the LP formulation of finding the optimal cost-to-go is

maximize
∑

i∈V
(xi + x̂i) +

∑

(i,j)∈F
xij + xq (15a)

subject to xij ≤ x̂j + 1 , and x̂i ≤ (1 − c)xi + c xq , (15b)

xij ≤ xi , and xq ≤
∑

i∈V
ẑi (x̂i + 1) , (15c)

xi ≤ 1
deg(i)

[
∑

(i,j)∈E\F
(x̂j + 1) +

∑

(i,j)∈F
xij

]

, (15d)

for all i ∈ V \ {vt} and (i, j) ∈ F , where ẑi = p(hi | q), x̂i denotes the cost-to-go
of state hi and xq is the value of the teleportation state, q. All other notations
are the same as in LP (13) and we also have that xvt and x̂vt are fixed at zero.

We arrived at an LP problem with O(n+d) variables and O(n+d) constraints.
Given an LP with k variables and O(k) constraints, it can be solved in O(k3L),
where L is the binary input size (for rational coefficients) or in O(k3 log 1

ε ),
where ε is the desired precision [8]. Therefore, Max-PageRank can be solved
using O((n + d)3L) operations under the Turing model of computation. Thus:

Theorem 1. The Max-PageRank Problem can be solved in polynomial time
even if the damping constant and the personalization vector are part of the input.

Note that assumptions (AD) and (AR) are not needed for this theorem, since
dangling and fragile nodes can be treated as discussed in Section 3.4 (without
increasing the complexity) and, in case of damping, all policies are proper.
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4 PageRank Optimization with Constraints

In this section we are going to investigate a variant of the PageRank optimization
problem in which there are mutually exclusive constraints between the fragile
links. More precisely, we will consider the case in which we are given a set of
fragile link pairs, C ⊆ F × F , that cannot be activated simultaneously.

The Max-PageRank Problem under Exclusive Constraints

Instance: A digraph G = (V, E), a node v ∈ V, a set of controllable edges F ⊆ E
and a set C ⊆ F × F of those edge-pairs that cannot be activated together.
A damping constant c ∈ (0, 1) and a stochastic personalization vector z.

Task: Compute the maximum possible PageRank of v by activating edges in F
and provide a configuration of edges in F for which the maximum is taken.

We will show that the Max-PageRank problem under exclusive constraints is
already NP-hard, more precisely, that the decision version of it is NP-complete.
In the decision version, one is given a number p ∈ (0, 1) and is asked whether
there is a configuration such that the PageRank is larger or equal to p.

Theorem 2. The decision version of the Max-PageRank Problem under

Exclusive Constraints is NP-complete.

Proof. The problem is in NP because given a solution (viz., a configuration),
it is easy to verify in polynomial time, e.g., via a simple matrix inversion, cf.
equation (3), whether the corresponding PageRank is larger or equal than p.

We now reduce the 3SAT problem, whose NP-completeness is well known [7],
to this problem. In an instance of the 3SAT problem, we are given a Boolean
formula containing m disjunctive clauses of three literals that can be a variable or
its negation, and one is asked whether there is a truth assignment to the variables
so that the formula (or equivalently: each clause) is satisfied. Suppose now we
are given an instance of 3SAT. We will construct an instance of Max-PageRank
under exclusive constraints that solves this particular instance of 3SAT.

We construct a graph having m + 2 nodes in the following way: we first put
a node s and a node t. Figure it as a source node and a sink node respectively.
Each clause in the given 3SAT instance can be written as yj,1 ∨ yj,2 ∨ yj,3,
1 ≤ j ≤ m, where yj,l is a variable or its negation. For each such clause, we
add a node vj between s and t, we put an edge from vj to itself (a self-loop),
we put an edge from s to vj , and we put three edges between vj and t, labeled
respectively with yj,1, yj,2, and yj,3. We finally add an edge from t to s. We
now define the set of exclusive constrains, C, which concludes the reduction. For
all pairs (yj,l, yj′,l′) such that yj,l = ȳj′,l′ (i.e., yj,l is a variable and ȳj′,l′ is its
negation, or conversely), we forbid the corresponding pair of edges. Also, for
all pairs of edges (yj,l, yj,l′) corresponding to a same clause node, we forbid the
corresponding pair. This reduction is suitable, since the sizes of the graph and
C are polynomial in the size of the 3SAT instance.
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We claim that for c small enough, say c = 1/(100m), it is possible to obtain
an expected return time from t to itself which is smaller than 77 if and only if the
instance of 3SAT is satisfiable. The reason for that is easy to understand with
c = 0 : if the instance is not satisfiable, there is a node vj with no edge from it
to t. In that case, the graph is not strongly connected, and the expected return
time from t to itself is infinite. Now, if the instance is satisfiable, let us consider
a particular satisfiable assignment. We activate all edges which correspond to a
literal which is true and, if necessary, we deactivate some edges so that for all
clause nodes, there is exactly one leaving edge to t. This graph, which is clearly
satisfiable, is strongly connected, and so the expected return time to t is finite.

Now if c �= 0 is small enough, one can still show by continuity that the expected
return time is much larger if some clause node does not have an outgoing edge
to t. To see this, let us first suppose that the instance is not satisfiable, and thus
that a clause node (say, v1), has no leaving edge. Then, for all l ≥ 3, we describe
a path of length l from t to itself: this path passes through s, and then remains
during l − 2 steps in v1, and then jumps to t (with a zapping). This path has
probability (1 − c) 1

m (1 − c)l−2c. Thus, the expected return time

E1 ≥
∞∑

l=3

lp(l) ≥ c

m

∞∑

l=3

l(1 − c)l−1 ≥ c

m

[
c−2 − 3

] ≥ 99, (16)

where we assumed that c = 1/(100m) and the personalization vector is z =
(1/n)�. Note that c and z are part of the input, thus they can be determined.

Consider now a satisfiable instance, and build a corresponding graph so that
for all clause nodes, there is exactly one leaving edge. It appears that the expected
return time from t to itself satisfies E2 ≤ 77. To see this, one can aggregate all
the clause nodes in one macro-node, and then define a Markov chain on three
nodes that allows to derive a bound on the expected return time from vt to itself.
This bound does not depend on m because one can approximate the probabilities
m/(m + 2) and 1/(m + 2) that occur in the auxiliary Markov chain by one so
that the bound remains true. Then, by bounding c with 1/8 > 1/(100m), one
gets an upper bound on the expected return time. For the sake of conciseness, we
skip the details of the calculations. To conclude the proof, it is possible to find
an edge assignment in the graph so that the PageRank is greater than p = 1/77
if and only if the instance is satisfiable. �

5 Conclusions

The task of ordering the nodes of a directed graph according to their importance
arises in many applications. A promising and popular way to define such an
ordering is to use the PageRank method [4]. The problem of optimizing the
PageRank of a given node by changing some of the edges caused a lot of recent
interest [1, 5, 9]. We considered the general problem of finding the extremal
values of the PageRank a node can have in the case we are allowed to control
(activate or deactivate) some of the edges, which we referred to as fragile links.

Our main contribution was that we proved that these problems could be effi-
ciently formulated as stochastic shortest path problems (special Markov decision
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processes). This does not only imply that they can be solved in polynomial time,
but also show that they are well-suited for reinforcement learning methods.

We note that we do not need to assume that the graph is simple, namely, it
can have multiple edges (and self-loops). This allows the generalization of our
results to weighted graphs, in case the weights are positive integers or rationals.

We also showed that slight modifications of the problem, as for instance adding
mutual exclusive constraints between the activation of several fragile links, may
turn the problem NP-hard. We conjecture that several other modified variants of
the problem are also NP-hard, e.g., the Max-PageRank problem with restrictions
on the number of fragile links that can be simultaneously activated.
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