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Preface

This volume contains the papers presented at the 21st International Confer-
ence on Algorithmic Learning Theory (ALT 2010), which was held in Canberra,
Australia, October 6–8, 2010. The conference was co-located with the 13th In-
ternational Conference on Discovery Science (DS 2010) and with the Machine
Learning Summer School, which was held just before ALT 2010. The techni-
cal program of ALT 2010, contained 26 papers selected from 44 submissions
and five invited talks. The invited talks were presented in joint sessions of both
conferences.

ALT 2010 was dedicated to the theoretical foundations of machine learning
and took place on the campus of the Australian National University, Canberra,
Australia. ALT provides a forum for high-quality talks with a strong theoreti-
cal background and scientific interchange in areas such as inductive inference,
universal prediction, teaching models, grammatical inference, formal languages,
inductive logic programming, query learning, complexity of learning, on-line
learning and relative loss bounds, semi-supervised and unsupervised learning,
clustering, active learning, statistical learning, support vector machines, Vapnik-
Chervonenkis dimension, probably approximately correct learning, Bayesian and
causal networks, boosting and bagging, information-based methods, minimum
description length, Kolmogorov complexity, kernels, graph learning, decision tree
methods, Markov decision processes, reinforcement learning, and real-world ap-
plications of algorithmic learning theory.

DS 2010 was the 13th International Conference on Discovery Science and
focused on the development and analysis of methods for intelligent data anal-
ysis, knowledge discovery and machine learning, as well as their application to
scientific knowledge discovery. As is the tradition, it was co-located and held in
parallel with Algorithmic Learning Theory.

In addition to these two conferences, the Machine Learning Summer School
taught fundamental knowledge and recent results to PhD students and other
interested researchers.

The present volume contains the texts of the 26 papers presented at ALT
2010, divided into groups of papers on statistical learning, grammatical inference
and graph learning, probably approximately correct learning, query learning
and algorithmic teaching, on-line learning, inductive inference, reinforcement
learning, and kernel methods. The volume also contains the texts or abstracts
of the invited talks:
– Alexander Clark (Royal Holloway, University of London, UK), “Towards

General Algorithms for Grammatical Inference” (invited speaker for ALT
2010)

– Manfred K. Warmuth (University of California Santa Cruz, USA), “The
Blessing and the Curse of the Multiplicative Updates” (invited speaker for
ALT 2010)
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– Ivan Bratko (University of Ljubljana, Slovenia), “Discovery of Abstract Con-
cepts by a Robot” (invited speaker for DS 2010)

– Kotagiri Ramamohanarao (University of Melbourne, Australia), “Contrast
Pattern Mining and Its Application for Building Robust Classifiers” (invited
speaker for DS 2010)

– Peter L. Bartlett (University of California Berkeley, USA), “Optimal Online
Prediction in Adversarial Environments” (joint invited speaker for ALT 2010
and DS 2010).

Papers presented at DS 2010 are contained in the DS 2010 proceedings.
Since 1999, ALT has been awarding the E. M. Gold Award for the most out-

standing student contribution. This year, the award was given to Gábor Bartók
for his paper “Toward a Classification of Finite Partial-Monitoring Games,” co-
authored by Dávid Pál and Csaba Szepesvári.

ALT 2010 was the 21st in the ALT conference series, established in Japan in
1990. A second root is the conference series Analogical and Inductive Inference
previously held in 1986, 1989 and 1992 which merged with the conference se-
ries ALT after a co-location in the year 1994. From then on, ALT became an
international conference series which kept its strong links to Japan but also was
regularly held at overseas destinations including Australia, Germany, Hungary,
Italy, Portugal, Singapore, Spain and the USA.

The ALT series is supervised by its Steering Committee: Naoki Abe (IBM
Thomas J. Watson Research Center, Yorktown, USA), Shai Ben-David (Univer-
sity of Waterloo, Canada), Philip M. Long (Google, Mountain View, USA), Akira
Maruoka (Ishinomaki Senshu University, Japan), Takeshi Shinohara (Kyushu In-
stitute of Technology, Iizuka, Japan), Frank Stephan (National University of Sin-
gapore, Republic of Singapore), Einoshin Suzuki (Kyushu University, Fukuoka,
Japan), Eiji Takimoto (Kyushu University, Fukuoka, Japan), Győrgy Turán
(University of Illinois at Chicago, USA and University of Szeged, Hungary),
Osamu Watanabe (Tokyo Institute of Technology, Japan), Thomas Zeugmann
(Chair, Hokkaido University, Japan), and Sandra Zilles (Publicity Chair, Uni-
versity of Regina, Saskatchewan, Canada).

We would like to thank the many people and institutions who contributed
to the success of the conference. In particular, we want to thank our authors
for contributing to the conference and for coming to Canberra in October 2010.
Without their efforts and willingness to choose ALT 2010 as a forum to report
on their research, this conference would not have been possible.

We would like to thank the National ICT Australia for generously sponsoring
the conference ALT 2010; NICTA is an Australian research institute dedicated to
information and communications technology, and its founding members are the
University of New South Wales, the Australian National University, the NSW
Government and the ACT Government; later The University of Sydney, the
Victorian Government, the University of Melbourne, the Queensland Govern-
ment, the University of Queensland, the Griffith University and the Queensland
University of Technologies became partners. We are furthermore grateful to the
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Australian National University (ANU) for hosting the event; ANU is a lead-
ing public teaching and research university in Canberra, Australia. The support
of ANU and NICTA was a great help, organisationally and financially, for the
conferences ALT 2010 and DS 2010. We are also grateful that we could use
the excellent conference management system EasyChair for putting together the
programme for ALT 2010; EasyChair was developed mainly by Andrei Voronkov
and is hosted at the University of Manchester. The system is cost-free.

As already mentioned the conference series ALT has in this years, as in
many previous years, been co-located with the series Discovery Science. We are
grateful for this continuous collaboration. In particular, we would like to thank
the Conference Chair, Achim Hoffmann and the Programme Committee Chairs,
Geoffrey Holmes and Bernhard Pfahringer, of DS 2010.

We would like to thank Mark Reid for organising the conference and putting
in the tremendous amount of work he has dedicated to making ALT 2010 a
success. We want to extend our thanks to the other members of the local or-
ganisation committee, who were there to organise the reception, to sit at the
information desk and to do the other duties which are connected to organising
and hosting a conference.

We are grateful to the members of the Programme Committee for ALT 2010
and the subreferees for their hard work to select a good programme for ALT 2010.
Reviewing papers and checking the correctness of results is demanding in time
and skills and we very much appreciate this contribution to the conference. Last
but not least we thank Springer for their support in preparing and publishing
this volume of the Lecture Notes in Artificial Intelligence series.

July 2010 Marcus Hutter
Frank Stephan
Vladimir Vovk

Thomas Zeugmann
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Raphaël Bailly, Amaury Habrard, and François Denis



XII Table of Contents

PageRank Optimization in Polynomial Time by Stochastic Shortest
Path Reformulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
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Editors’ Introduction

Marcus Hutter, Frank Stephan, Vladimir Vovk, and Thomas Zeugmann

The conference “Algorithmic Learning Theory 2010” is dedicated to studies of
learning from a mathematical and algorithmic perspective. Researchers consider
various abstract models of the problem of learning and investigate how the learn-
ing goal in such a setting can be formulated and achieved. These models describe
ways to define

– the goal of learning,
– how the learner retrieves information about its environment,
– how to form of the learner’s models of the world (in some cases).

Retrieving information in some models is passive where the learner just views
a stream of data. In other models, the learner is more active, asking questions
or learning from its actions. Besides explicit formulation of hypotheses in an
abstract language with respect to some indexing system, there are also more
implicit methods like making predictions according to the current hypothesis
on some arguments which then are evaluated with respect to their correctness,
and wrong predictions (coming from wrong hypotheses) incur some loss on the
learner. In the following, a more detailed introduction is given to the five invited
talks and then to the regular contributions.

Invited Talks. The five joint invited speakers of the conferences ALT 2010 and
DS 2010 are eminent researchers in their fields and give either an introduction
to their specific research area or talk about a topic of wide general interest.

Alexander Clark (Royal Holloway University of London) received his bachelor
degree from Trinity College, Cambridge, and his Ph.D. from the University of
Sussex. He has throughout his career put a large emphasis on applying theo-
retical insights to solve the corresponding practical problems. In particular, he
studied the unsupervised learning of natural languages; his findings are also rele-
vant to first language acquisition in humans. His work included finding the right
definition of learnability in various linguistic contexts, designing learning algo-
rithms and implementing them. These algorithms were tested on both synthetic
and natural examples. He also studied the learnability of regular languages and
context-free languages; a sample result, obtained in collaboration with Franck
Thollard, is that the class of regular languages can be PAC-learned using a poly-
nomial amount of data and processing time, provided that the distributions of
the samples are restricted to be generated by one of a large family of related prob-
abilistic deterministic finite state automata. In his invited talk Towards General
Algorithms for Grammatical Inference, Alexander Clark deals with the learning
of context-free languages and multiple context-free languages. He formulates a
general framework for a large class of learning algorithms for such languages
and, using this framework, he reviews Angluin’s classical LSTAR algorithm and
compares it with various contemporary approaches.

M. Hutter et al. (Eds.): ALT 2010, LNAI 6331, pp. 1–10, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



2 M. Hutter et al.

Manfred K. Warmuth (University of California at Santa Cruz) is a leading
expert in computational learning theory. In his groundbreaking article “Learn-
ability and the Vapnik-Chervonenkis dimension”, he showed, jointly with Anselm
Blumer, Andrzej Ehrenfeucht and David Haussler, that a class is PAC learnable
if and only if it has finite Vapnik-Chervonenkis dimension, which established
a close connection between these two fields. He further showed, jointly with
Leonard Pitt, that there is no approximation algorithm to find the minimum
consistent DFA within a polynomial bound. He made important contributions
to the boosting algorithm, a very successful method to construct powerful learn-
ers. One of his main interests is on-line learning, where he originated several
novel approaches and obtained fundamental theoretical results. His most recent
work applies theoretical insights to the study of evolution. In his invited talk The
Blessings and the Curse of the Multiplicative Updates, Manfred K. Warmuth con-
siders learning settings in which parameters are updated in a multiplicative way;
the advantage is that the importance of major patterns might grow exponen-
tially, the disadvantage is that the importance of some minor pattern might go
down too fast so that this pattern is wiped out although the information it con-
tains might be needed later. The talk describes how modern machine learning
algorithms try to preserve relevant information and compares this to the strate-
gies nature has to preserve relevant genetic information during evolution. In his
conclusion, the author states that there are still various strategies which one can
take over from nature in order to use them in learning algorithms.

Ivan Bratko (University of Ljubljana) received his bachelor, masters and doc-
toral degrees from the University of Ljubljana. He is an eminent researcher in
machine learning, knowledge-based systems, heuristic programming, qualitative
modelling, intelligent robotics and computer chess. He is the author of the stan-
dard reference “Prolog Programming for Artificial Intelligence”, which has been
translated into German, Italian, French, Slovenian, Japanese and Russian; he
has furthermore authored about 200 research articles. In his invited talk Discov-
ery of Abstract Concepts by a Robot, Ivan Bratko reviews experiments in which
a robot is experimenting in its environment. In these experiments the robot is
not only required to discover laws that enable predictions, but also to discover
abstract concepts that are not explicitly observable in the data measured such
as the notions of a tool or stability. The approach reported is based on Inductive
Logic Programming.

Kotagiri Ramamohanarao (University of Melbourne) received the Bachelor of
Engineering from Andhra University, the Master of Engineering from the Indian
Institute of Science and the Ph.D. from Monash University. He is a leading ex-
pert in machine learning and data mining, robust agent systems, information
retrieval, intrusion detection, logic programming and deductive databases, dis-
tributed systems, bioinformatics and medical imaging. His invited talk Contrast
Pattern Mining and its Application for Building Robust Classifiers studies the
problem to distinguish, differentiate and contrast between different data sets and
introduces the techniques for contrasting data sets.
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Peter L. Bartlett (University of California at Berkeley) is an outstanding
researcher in the areas of machine learning and statistical learning theory. Jointly
with Martin Anthony, he co-authored the excellent textbook “Learning in Neural
Networks: Theoretical Foundations”. For his work in statistical learning theory,
in 2001 he was awarded the Malcolm McIntosh Prize for the Physical Scientist
of the Year in Australia. His research interests include, besides neural networks
and statistical learning theory, also privacy and security aspects of learning, on-
line learning algorithms and kernel methods. In his invited talk Optimal Online
Prediction in Adversarial Environments, Peter L. Bartlett deals with prediction
in statistical settings and investigates strategies to minimise the regret in a
prediction game against an adversarial environment. He explains that, although
not every environment is adversarial, it is often the mathematically most elegant
way to model the prediction situation.

Statistical Learning. Statistical learning theory studies methods of assigning
labels to data vectors under the statistical assumption that the labelled data
vectors are generated independently by an arbitrary unknown probability distri-
bution. Sometimes, the labels depend only on a small fraction of the variables
present while most components of the data vectors are irrelevant; the area of
feature selection studies methods of selecting the relevant variables (vector com-
ponents) so that in the future the learning algorithm can concentrate on the
data vectors compressed in this way and so easier to label. In active learning,
the learner does not get the labels together with the training data; instead the
learner has to request the labels from a teacher. Naturally this can be done only
with a small fraction of the data presented. Boosting is a method which improves
the properties of a learner by combining various primitive learners into a better
one.

Pierre Alquier’s paper An Algorithm for Iterative Selection of Blocks and Fea-
tures is about selecting variables from very long vectors of variables where in the
data, almost all variables are 0 and neighbouring variables are with high proba-
bility equal. This topic has been studied previously, but its theoretical treatment
so far has been insufficient. To obtain better results in the area, the author pro-
poses an alternative approach, based on the Iterative Feature Selection method.
This method is based on an iterative algorithm which takes the general form of
the vector to be learnt into account, but does not know the positions where the
blocks start and end. The algorithm improves the statistical performance of its
current guess (estimator) at each step. The obtained results are justified both
theoretically and through simulations on practically relevant data.

Liu Yang, Steve Hanneke, and Jaime Carbonell study in their paper Bayesian
Active Learning Using Arbitrary Binary Valued Queries how to learn a concept
to precision ε using as few binary queries as possible. The authors provide an
upper and lower bound on how many queries may be required to learn success-
fully. The model is generalised from the usual one in the sense that arbitrary
binary valued queries are taken into consideration and not only membership
queries. The analysis is Bayesian in the sense that the bound depends on a prior
distribution on the concept space.
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In their paper Approximation Stability and Boosting, Wei Gao and Zhi-Hua
Zhou revisit the notion of stability for boosting algorithms. It is known that algo-
rithms like AdaBoost have almost-everywhere uniform stability when the base
algorithm has L1 stability. The latter is however too restrictive: the authors
show that AdaBoost using such a learner becomes a constant learner unless
the underlying algorithm is a real-valued learner. Therefore the authors dedi-
cate themselves to the question on what can be said when the base learner is
not real-valued. For this analysis, they introduce a property called “approxima-
tion stability”. They show that AdaBoost has this property and prove that this
property is sufficient for generalisation and for the learnability of asymptotic
empirical risk minimisation in the general learning setting.

Grammatical Inference and Graph Learning. This section is dedicated
to learning specific structures such as formal languages, trees or graphs. These
types of structures are important in mathematics and computer science and
also play an important role in learning theory. Most prominent graphs occur
in the internet and social networks; for example, search machines collect a lot
of information on the graph structure of the internet where nodes are given by
webpages and edges by the hyperlinks.

In their paper A Spectral Approach for Probabilistic Grammatical Inference of
Trees, Raphaël Bailly, Amaury Habrard, and François Denis consider distribu-
tions over the set of trees which are computed by weighted automata. This is a
quite natural class of distributions which has an algebraic characterisation. By
concentrating on the finite dimensional subspace containing all the residuals of
such a distribution, the authors find an approach which allows them to define a
global solution for their inference problem, so that they can avoid to construct
the automaton to be built iteratively step by step.

Balázs Cs. Csáji, Raphaël M. Jungers, and Vincent D. Blondel dedicate their
paper PageRank Optimization in Polynomial Time by Stochastic Shortest Path
Reformulation to the question on how a member-node of a network can increase
its importance and visibility by small modifications of the network. The under-
lying idea is that the nodes in the network are evaluated using the well-known
PageRank algorithm which, roughly speaking, assigns to every node the expected
time which one spends on the node during a random walk. The task is now the
following: Given a set of possible new edges, one has to select a fixed number
of them and add them to the network in order to increase the PageRank. Csáji,
Jungers and Blondel show that the general problem on how to select these edges
is polynomial time solvable; they do this by reformulating the algorithm as a
stochastic shortest path problem and they then show that this new problem is
well-suited for reinforcement learning methods.

Dana Angluin, James Aspnes, and Lev Reyzin explore in their paper Inferring
Social Networks from Outbreaks a learning setting which stems from the study
of diseases. In a network, a disease might have travelled along the edges of
the network. Hence whenever there is an outbreak of the disease, the disease
is tracked down at the locations of its appearance and the observed locations
can be considered to be connected through the network. The learning task is
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to build a model of the network which explains how during an outbreak the
illness propagated in the network. Formally, an outbreak is a set Si of nodes,
called constraints, and the goal of the learner is to find a subset E of edges,
called connections, such that each constraint Si is connected by those members
of E which are between nodes from Si; then it is assumed that diseases can
travel along the so selected edges. Here the choice of E should be optimised with
respect to its minimum loglikelihood cost. In the off-line learning problem, the
learner receives all the constraints Si at the start of the algorithm; in the on-line
learning problem, the learner reads the constraints one by one and each time
has to add some edges in order to meet the constraint immediately. Angluin,
Aspnes and Reyzin obtain a lower bound of Ω(log(n)) for the off-line version
of the problem and an upper O(n log(n)) bound for the on-line version. Better
bounds are obtained for various special cases.

Probably Approximately Correct Learning. The basic idea of PAC learning
is that the learner observes the data according to a distribution, but it does not
need to figure out aspects of the concept to be learnt which are unlikely to
be observed. In other words, when learning a concept L, the learner observes
randomly drawn data according to some unknown probability distribution D
and the learner has to find with high probability a hypothesis H such that H is
similar to L with respect to the distribution D, that is, D({x : H(x) �= L(x)})
is below a bound given to the algorithm as a parameter.

Guy Lever, François Laviolette, and John Shawe-Taylor derive in their paper
Distribution-Dependent PAC-Bayes Priors a number of PAC-Bayes bounds for
Gibbs classifiers using prior and posterior distributions which are defined, re-
spectively, in terms of regularised empirical and true risks for a problem. The
results rely on a key bound on the Kolmogorov-Loveland divergence between
distributions of this form; this bound introduces a new complexity measure.

The purpose of Vladimir Pestov’s work is explained already in its title, PAC
Learnability of a Concept Class under Non-Atomic Measures: A Problem by
Vidyasagar. The characterisation of PAC learnability under the class of all non-
atomic measures is achieved by introducing an appropriate combinatorial param-
eter modifying the Vapnik-Chervonenkis dimension. This is a natural problem
(in fact it was asked by Vidyasagar 13 years ago) and the solution is non-trivial,
involving techniques from set theory and measure theory.

In A PAC-Bayes Bound for Tailored Density Estimation, Matthew Higgs and
John Shawe-Taylor consider the problem of density estimation with an unusual
twist: they want their solution to be tailored to the larger inference process of
which this problem is part. Formalization of this idea involves the theory of repro-
ducing kernel Hilbert spaces. Error bounds are stated in the framework of PAC-
Bayes theory, which is standard in the case of classification but rarely used in
density estimation.

In their paper Compressed Learning with Regular Concept, Jiawei Lv, Jianwen
Zhang, Fei Wang, Zheng Wang, and Changshui Zhang study the PAC learnability
of half spaces where, for any given distribution, only those half spaces are consid-
ered where the measure of the bounding hyperplane is 0. The learning is called
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compressed as some of the components of the data presented are replaced by a
random value; such compression is done for two reasons: (a) privacy as parts of
the data might otherwise reveal information which should not be compromised;
(b) efficiency reasons in order to reduce the overfitting in the learning process.
The algorithm used is the voted-perceptron algorithm invented by Freund and
Schapire.

Query Learning and Algorithmic Teaching. The basic scenario is that a
learner wants to learn a concept which a teacher is teaching; in that scenario the
learner has to be successful whenever the teacher satisfies the minimum require-
ments, that is, gives correct answers although those need not to be more helpful
than required. In most settings of query learning, the queries are of a fixed form,
for example the learner can ask equivalence queries to which the teacher provides
a counter example in the case that the hypothesis does not match the concept
to be learnt and also membership queries where the teacher answers “yes” or
“no,” depending on whether the queried item is an element of the concept to
be learnt or not. More recent research also looks at statistical queries where an
underlying distribution is assumed and the teacher returns a polynomial-time
program which has — with respect to the underlying distribution — an error
probability below a parameter given in the query.

Borja Balle, Jorge Castro, and Ricard Gavaldà investigate in their paper A
Lower Bound for Learning Distributions Generated by Probabilistic Automata
the limitations on the learnability of certain distributions. These distributions are
generated by probabilistic deterministic finite automata (PDFA). The authors
show that the learnability of such distributions using statistical queries depends
on a parameter μ which is quite frequently studied in the literature, and they
show that this parameter cannot be omitted without losing polynomial time
learnability for various important classes; in other words, the number of queries
needed depends on this parameter μ. For their results, they use in addition to
statistical queries also a new variant of these called L∞-queries.

Dana Angluin, David Eisenstat, Leonid (Aryeh) Kontorovich, and Lev Reyzin
study Lower Bounds on Learning Random Structures with Statistical Queries.
The researchers consider randomly composed DNF formulas, randomly selected
decision trees of logarithmic depth and randomly constructed deterministic fi-
nite automata. They show that each of these three concept cannot be weakly
learned with a polynomial number of statistical queries, where the underlying
distribution on the examples is arbitrary.

The paper Recursive Teaching Dimension, Learning Complexity and Maxi-
mum Classes by Thorsten Doliwa, Hans Ulrich Simon, and Sandra Zilles deals
with the recursive teaching dimension, which is the smallest number n such that
for each concept C in the class to be learnt there are n examples x1, x2, . . . , xn

such that C is the only concept D in the class satisfying C(y) = D(y) for
all y ∈ {x1, x2, ..., xn}. The authors show, among other results, that for maxi-
mum classes the recursive teaching dimension equals the Vapnik-Chervonenkis
dimension. In addition the authors show that the sequences defining the recursive
teaching dimension also arise from various famous algorithms.
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On-line Learning. The basic idea of on-line algorithms is that a learner com-
bines expert advice in the process of decision making. In each round, the experts
are asked which action to take, and then the learner makes its own decision
based on this advice. Experts can be free agents or just decision or prediction
strategies. Typical results in this areas are relative loss bounds: the goal is to
design prediction algorithms that are guaranteed to suffer a loss that is not much
worse than the loss suffered by the best experts. To achieve this goal, the learner
keeps some statistics on the reliability of each expert, which is taken into account
when making decisions.

Student Gábor Bartók received the E. Mark Gold Award for his paper Toward
a Classification of Finite Partial-Monitoring Games which is joint work with
Dávid Pál and Csaba Szepesvári. A finite partial-monitoring game is a two player
game; the two players are called Learner and Nature in order to express that a
learner explores and studies its natural environment which reacts to the learner’s
actions. In this game, Learner repeatedly chooses one of finitely many actions and
Nature reacts to the learner by choosing one of finitely many possible outcomes.
Depending on the action and outcome, the learner receives a feedback signal and
suffers a loss; the goal of the learner is to choose the actions such that the overall
loss is minimised. The authors make significant progress in classifying the games
with two outcomes.

The paper Switching Investments by Wouter M. Koolen and Steven de Rooij
is devoted to mathematical finance. As usual in on-line learning, the authors
do not make any statistical assumptions about the financial market, and design
investment algorithms competitive with a wide class of investment strategies
that “buy low and sell high”. One of their algorithms, in addition, possesses
linear time and space complexity.

Alexey Chernov and Fedor Zhdanov explore in their paper Prediction with
Expert Advice under Discounted Loss a relatively new type of performance guar-
antees in on-line learning. In the standard approach, the learner’s goal is to
be competitive with the best experts according to the learner’s and experts’
cumulative losses. Chernov and Zhdanov, following earlier work by Freund and
Hsu, establish similar results for cumulative discounted losses, where more recent
losses are taken with greater weights. The framework of discounted losses pro-
vides an elegant alternative to Herbster and Warmuth’s framework of “tracking
the best expert”.

Jacob Abernethy, Peter L. Bartlett, Niv Buchbinder, and Isabelle Stanton
address in their paper A Regularization Approach to Metrical Task Systems the
construction of randomised on-line algorithms for metrical task systems, where
the learner always follows one expert and where it incurs a cost for switching
from one expert to another. In the general case, the costs are an arbitrary met-
ric among states. The authors restrict themselves to the class of “work-based”
algorithms and obtain for this special case various algorithms.

Inductive Inference. The basic scenario of inductive inference is that a class C
of recursively enumerable languages is called learnable from positive data if there
is a recursive learner which can identify every language L ∈ C in the following
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sense: when reading the elements of L in arbitrary order from an infinite list, the
learner outputs in parallel finitely many hypotheses such that the last of these
generates L. Many variants of this notion of learning have been introduced and
compared with each other, and the topic remains active more than 40 years after
Gold’s papers started it.

John Case and Timo Kötzing investigate in their paper Solutions to Open
Questions for Non-U-Shaped Learning with Memory Limitations the question
when U-shaped learning behaviour can be avoided without losing learning power.
Here a learner is said to be U-shaped on a text for a language L in the class to
be learnt if at some time it conjectures L, later conjectures a language different
from L and at the end returns to conjecturing L. For basic learning criteria it
is known whether U-shaped learning behaviour can be avoided: in the case of
explanatory learning the answer is “yes” and in the case of behaviourally correct
learning the answer is “no”. But for various other learning criteria, in particular
those with limitations of the long term memory, this question remained open.
Case and Kötzing solve several of these open questions. One sample result is that
there are classes which are learnable with three memory states such that every
learner using only finitely many memory states for these classes has U-shaped
learning behaviour on some text for some language to be learnt.

Samuel E. Moelius III and Sandra Zilles study in their paper Learning Without
Coding notions of iterative learning which hinder or reduce the abilities of the
learner to code. Here an iterative learner is a learner which starts with a default
hypothesis and maps each datum plus the old hypothesis to the new hypothe-
sis; the hypothesis itself is the only memory the learner has of the previously
observed data. As there is some temptation for the learner to code observed
data into the hypothesis, the authors look for learning models which minimise
such coding by the learners. The authors investigate to which extent one can
overcome such behaviour by requiring that the learner uses a one-to-one hy-
pothesis space. Furthermore, they generalise learnability by considering learners
which are coded as enumeration operators and which do not need hypothesis
spaces. One sample result of the authors is that such learners can infer various
classes which cannot be learnt iteratively; conversely there are also classes learn-
able using a one-to-one hypothesis space which are not learnable under this new
model.

Mahito Sugiyama, Eiju Hirowatari, Hideki Tsuiki, and Akihiro Yamamoto
give in their paper Learning Figures with the Hausdorff Metric by Fractals a
theoretical foundation in the framework of inductive inference for learning with
discretisation of analog data. They study the learnability of geometric figures,
that is, fractals. The two main learnability notions employed are identification
in the limit as well as closer and closer approximations of the object to be learnt
where the approximations are measured with a Hausdorff metric.

Sanjay Jain and Efim Kimber analyse in their paper Inductive Inference of
Languages from Samplings the scenario where the learner is not given all the
data about the set to be learnt but only some part of it. In prior work they
studied the scenario where for every language L to be learnt and every subset
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X of L, the learner has to converge on a text for X to a target language L′

satisfying X ⊆ L′ ⊆ L. In this paper, rather than considering all subsets of
the target language, they consider A-sampling of the target language, where A
is some fixed set and A-sampling of a language L is the set formed by taking
the ith least-elements of L, for i ∈ A. Results show that the choice of A has a
large influence on the learnability of the class. Furthermore, the authors consider
when such a learner can be constructed independently of or uniformly in A, for
a collection of such sets A.

Reinforcement Learning. In reinforcement learning, a decision maker (agent)
interacts with an environment (world) by an alternating sequence of actions and
observations, including (occasional) rewards that should be maximised in the
long run. The environment is stochastic and unknown and has to be learned.
This setting encompasses most other learning scenarios, including active and
passive learning.

It has been argued that the AIXI theory represents the first general and formal
“optimal” but incomputable “solution” to this problem. Laurent Orseau in his
paper Optimality Issues of Universal Greedy Agents with Static Priors challenges
the optimality of AIXI. Unlike passive Solomonoff induction it is quite non-trivial
to come up with notions of optimality that are simultaneously strong enough
to be interesting and weak enough to be satisfiable by any agent at all. One
suggested notion is to require that the probability of a suboptimal actions tends
to zero, where an action is called suboptimal if it differs from the optimal action
of the informed agent on the same history. Environments with this property
are called asymptotically learnable. Orseau shows that there exist histories and
environments that AIXI cannot learn asymptotically, hence establishing that
this optimality notion is too strong.

At the other end of the spectrum are efficient but limited reinforcement learn-
ing algorithms. In particular, efficient learning and planning algorithms exist for
completely observable finite state Markov decision processes (MDPs). Real-world
problems can often be approximately modeled or reduced to finite MDPs. A nat-
ural idea is to formally define the quality of a reduction and to automatically
learn good reductions by optimizing the quality criterion. Peter Sunehag and
Marcus Hutter in their paper Consistency of Feature Markov Processes inves-
tigate a recently introduced such criterion. They show asymptotic consistency
in the sequence prediction case, and extend their result to prediction with side
information and to the active case.

Multi-armed bandit problems can be regarded as (reinforcement) learning
problems with a single state. Despite their apparent simplicity, they constitute
prototypical active learning problems that already require trading off explo-
ration and exploitation. Taishi Uchiya, Atsuyoshi Nakamura, and Mineichi Kudo
in their paper Algorithms for Adversarial Bandit Problems with Multiple Plays
consider the non-stochastic / online / adversarial setting and the case where
multiple arms are played simultaneously, which is relevant, e.g., for multiple ad-
vertisement placement. They analyze and present bounds for extensions of the
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Exp3 and CompBand algorithms in terms of time and space efficiency and regret
for the best fixed action set.

On-line Learning and Kernel Methods. The papers in this part of the
proceedings are in the intersection of two areas: on-line learning and kernel
methods. Kernel methods were popularised in machine learning by the work
of Vladimir Vapnik on support vector machines, but later became a powerful
tool used in many other areas of learning theory. The basic idea is the so-called
“kernel trick”: the instances (typically low-dimensional) are mapped to a high-
dimensional (often infinite-dimensional) feature space, where the prediction is
done and its analysis is performed. Popular methods used in the feature space
are separating positive and negative examples with a large-margin hyperplane
(in the case of classification) and fitting a linear function to the data (in the case
of regression). Even conventional linear methods become a powerful tool when
applied to high-dimensional feature spaces, and when mapped back to the origi-
nal instance space, they may become highly non-linear and yet computationally
efficient.

The paper Online Multiple Kernel Learning: Algorithms and Mistake Bounds
by Rong Jin, Steven C. H. Hoi, and Tianbao Yang constructs a number of on-line
kernel algorithms for classification and provides relative loss bounds for them. Its
goal is to merge classifiers based on several different kernels. The performance of
the resulting algorithms should be comparable with that of the algorithm based
on the best kernel; this is a non-trivial problem since which kernel is best becomes
known only after we see the data. The authors construct both deterministic
and randomised versions of such algorithms, the latter achieving computational
efficiency by applying ideas from the popular area of “multi-armed bandits” (see
above).

Fedor Zhdanov and Yuri Kalnishkan analyze in their work An Identity for
Kernel Ridge Regression properties of the popular method of kernel ridge re-
gression as an on-line prediction algorithm. The main result of the paper is the
equality between the quadratic loss (suitably reduced) of the kernel ridge regres-
sion algorithm applied in the on-line mode and the quadratic loss of the best
regressor (suitably penalised). This new identity makes it possible to derive, in
an elegant way, upper bounds for the cumulative quadratic loss of online kernel
ridge regression.
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Abstract. Many algorithms for grammatical inference can be viewed as
instances of a more general algorithm which maintains a set of primitive
elements, which distributionally define sets of strings, and a set of fea-
tures or tests that constrain various inference rules. Using this general
framework, which we cast as a process of logical inference, we re-analyse
Angluin’s famous lstar algorithm and several recent algorithms for the
inference of context-free grammars and multiple context-free grammars.
Finally, to illustrate the advantages of this approach, we extend it to
the inference of functional transductions from positive data only, and we
present a new algorithm for the inference of finite state transducers.

1 Introduction

Grammatical inference (gi) is concerned with learning various types of formal lan-
guages. In this paper, we consider two classic problems: the first is where we are
learning languages, that is to say sets of strings over a finite alphabet — subsets of
Σ∗; and the second is where we are learning transductions or functions – relations
between pairs of strings — a subset of Σ∗ × Δ∗. In the first case we will receive
information about the language, typically in the form of a sequence of positive ex-
amples drawn from the language; in the second we will receive input-output pairs,
and in both cases we wish to construct a representation of the language or function
from this information. At a certain point, as the amount of information we have
increases, we wish our representation to converge exactly to a correct hypothesis;
that is to say, a hypothesis that exactly defines the target concept.

We will work here in the Gold paradigm [1], which is mathematically conve-
nient although unrealistic as a model of learning in the real world. We assume
that the learner is provided with a sequence of examples from the target language
L subject only to the constraint that every string in the language must occur
at least once. We will denote such a sequence w1, w2, . . . . After processing each
example, the learner must produce a representation — G1, G2, . . . . We require
that for each such sequence, or presentation, there must be some finite point
N after which the learner no longer changes the hypothesis, and such that the
hypothesis is correct: ∀n > N , Gn = GN and L(GN ) = L.

There are two main problems with learning the sorts of richly structured repre-
sentations that are required to model natural languages. The first are the sorts
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of information theoretic problems that have been well-studied in many areas
of learning – these problems concern whether the learner has enough informa-
tion about the target to produce an accurate enough hypothesis. Concepts such
as finite elasticity, VC-dimension and so on have been developed in attempts,
largely successful, to characterise those cases where learning is impossible simply
because there is insufficient information to allow a learner to pick out the right
hypothesis. Such results consider the learner primarily as a function rather than
as an algorithm: if there is no suitable function then there can of course not be
an algorithm that implements that function.

The second class of problems are caused by the complexity involved in con-
structing a hypothesis given an adequate source of information about the lan-
guage [2, 3]. These are two rather different types of problems, and in our opinion
it is appropriate to try to solve them separately.

In this paper we will focus almost exclusively on the algorithmic aspects of
learning — in an attempt to overcome these complexity problems — and we will
therefore give ourselves a rich source of information. In addition to the positive
examples we will assume that the learner has access to an oracle that can answer
membership queries: the learner can construct a string w and query the oracle
with this string; the oracle will return true if w ∈ L and false if it is not.
This is an extremely powerful source of information. It is easy to see that if we
put no constraints on the amount of computation that we use, there are trivial
enumerative algorithms that the learner could use to learn any enumerable class
of recursive languages.

2 Objective Representations

We will now consider various algorithms for grammatical inference. These algo-
rithms all start by constructing the representation based on objectively defined
sets of strings; we discuss the methodological and representational basis of this
approach in more detail in [4].

We define representations where the symbols of the representation – non-
terminals, states etc – have well defined referents as sets of strings, or sets of
tuples of strings. Once we have fixed what each of these symbols represents, we
can think of the derivation rules of the grammar, the transitions, or productions
etc – as being logical deductive relationships between these sets. Some rules will
be valid – in the sense that the deductive relationships will be correct— and
others will be incorrect, in the sense that we may deduce that a string is in a set
when in fact it is not.

The crucial point is that once we have fixed what each representational prim-
itive is meant to do – that is to say defined what set of strings it should generate
or produce – each decision about the model becomes a local decision rather than
a global one. In the classic representations of the Chomsky hierarchy, the prim-
itive symbols are arbitrary. There is no fixed definition for what each symbol
need represent. In a normal cfg, if there is a rule N → PQ, there is no way of
evaluating that rule in isolation from the rest of the grammar. It is only as part
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of a global inference about the rules that generate N , and the strings that are
generated from P and from Q that we can decide whether this is a good rule
or not. This global inference is generally intractable. In the models we consider
here, we define in advance what the symbols should “mean”. Once we have done
this, we can determine for each indivdual production in the grammar whether
it is valid or not. This local inference procedure is tractable and indeed is often
quite trivial.

We define now the notation we will use in the rest of the paper. We will use
Σ (and Δ) to refer to non-empty finite alphabets. We will use Σ∗ to refer to
the set of all strings over Σ; λ is the empty string. Given two strings u, v we
denote their concatenation by uv. A context (l, r) is an element of Σ∗ × Σ∗;
we can combine a context with a string by wrapping it around the string: we
denote this by (l, r) � u = lur. A language L is any subset of Σ∗. Given two
subsets of Σ∗, X and Y , we define their concatenation in the normal way as
XY = {uv|u ∈ X, v ∈ Y }. Given a language L we define the distribution of u
in L as CL(u) = {(l, r)|lur ∈ L}. For a string w we define Sub(w) to be the
set of all substrings of w, {u|∃l, r ∈ Σ∗, lur = w}, and Con(w) = {(l, r)|∃u ∈
Σ∗, lur = w}. We extend this to sets of strings in the natural way.

The models maintain two classes of objects: the first is a set of primitive ele-
ments; we will denote these by Q. These correspond to the states or non-terminals
in standard representations. The second are a class of tests or experiments, which
we denote X . These are used to restrict and eliminate incorrect rules.

Each primitive element from Q will define a set of strings given a language L;
or more generally a tuple of strings. For a given element p ∈ Q, we will denote
by D(p) the set of strings defined by p; to avoid confusion we shall write [[p]]
to refer to the symbol as used in the representation. The definition of D(p) will
determine what the representation class is; different representational decisions
will give rise to different representation classes. In many cases, the elements of
p will be strings, and then some of the possibilities for D(p) are as follows:

{w|wp ∈ L} left quotient of p

{w|pw ∈ L} right quotient of p

{w|CL(w) = CL(p)} congruence class of p

{w|CL(w) ⊇ CL(p)}

For each algorithm, we will pick one of these; different decisions will give rise
to different representation classes. For example, we might pick the first of these;
D(p) = {w|wp ∈ L}. This will, as we shall see, lead us naturally to a repre-
sentation for regular languages. Clearly D(λ) = L no matter what L is. If the
language L = (ab)∗, then D(a) = b(ab)∗, D(b) = ∅, D(ab) = L and so on.

We might also define Q to be a set of pairs of strings. If we do this, and we
write an element as p = (u, v) we might have

D((u, v)) = {w|uwv ∈ L} (1)
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Given these sets of strings, we can then define a logical derivation relation. We
wish to define a set of deductive relations between these sets of strings. Given a
language L and a set Q, we will have the family of sets D(Q) = {D(p)|p ∈ Q}.
The simplest deductive relation we could have is this: suppose that D(p) ⊆ D(q).
Then if we know that a string u is in D(p), we can deduce that it is in D(q).

Similarly if we know that u is in D(p) and we know that v is in D(q), and we
know that D(p)D(q) ⊆ D(r) then we can deduce that uv ∈ D(r).

Finally if we know for example, that D(p) is a subset of L, or in particular
if D(p) = L, then if we have deduced that u ∈ D(p), then we can deduce that
u ∈ L. Obviously these deductions must start somewhere – there must be a few
base facts where we know that u ∈ D(p); typically we will know these for a few
short strings, at least the elements of Σ.

Thus the derived language representations will work by trying to predict, on
the basis of these deductive relationships, which elements of D(Q) a particular
string is in. In some cases the elements of this class may be a partition, and
a string can only occur in a single element, but in general they may overlap,
and a string may be in more than one of the classes. A derivation is therefore a
deduction; bringing to mind the “Parsing as deduction” slogan [5]. We assume
for the moment that we know which of these deductions are valid.

We will have various different rule schemas. We will now list some of these,
though these by no means exhaust all of the possibilities. The notation we use
is that p is an element of Q, [[p]] represents the corresponding symbol, and D(p)
represents the set of strings defined by p.

Type L (Lexical)
[[p]] → u. This allows us to deduce that a string u is in D(p). It is valid iff
u ∈ D(p). We will consider two special cases:
L0 [[p]] → λ
L1 [[p]] → a, where a ∈ Σ

Type R (Regular) [[p]] → u[[q]]. This is valid if uD(q) ⊆ D(p). We have the
special case:
R1 [[p]] → a[[q]], where a ∈ Σ

Type LIN (Linear) [[p]] → u[[q]]v. This is valid if uD(q)v ⊆ D(p). We will
consider also the following special cases:
Type EL (Even Linear) [[p]] → u[[q]]v where |u| = |v|
Type EL1 [[p]] → a[[q]]b where a, b ∈ Σ

Type B (Binary Branching) [[p]] → [[q]][[r]]. This allows us to deduce that if a
string u ∈ D(q) and v ∈ D(r), then uv ∈ D(p). This is valid iff D(q)D(r) ⊆
D(p).

Type S (Subset) [[p]] → [[q]]. This allows us to deduce that if a string u ∈ D(q)
then u ∈ D(p). This is valid iff D(q) ⊆ D(p).

Type E (Equality) [[p]] ↔ [[q]] or both [[p]] ← [[q]] and [[p]] → [[q]]. This allows
us to deduce that if a string u ∈ D(q) then u ∈ D(p) and vice-versa. This is
valid iff D(q) = D(p).

Type C (Conjunction) [[p]] → [[q]] ∧ [[r]]. This allows us to deduce that if a
string u ∈ D(q) and u is also in D(r) then u ∈ D(p). This is valid iff
D(q) ∩ D(r) ⊆ D(p).
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We will also have one final class of rules, where we use the distinguished start
symbol S, just as we do in cfgs. In some cases we may have an element i of
Q that such that D(i) = L by definition, in which case we could dispense with
these initial rules and the separate symbols.

Type I (Initial) S → [[p]]. This is valid iff D(p) ⊆ L.

We will have a collection of these rules which we call G: this collection will
consist of the representation for the language. Given a collection of primitive
elements, Q, we can consider the set of all valid rules that relate these primitive
elements. Some of these rule schemas may give rise to unbounded numbers of
rules; in particular the first three schemas (L,R,LIN) will need to be bounded
in some way. Typically we will restrict these rules to those where u has length
at most 1.

An important aspect of this model is the use of the E rules. In many of
these models we will have a set of primitive elements Q, where several different
elements of Q will define the same sets; that is to say we might have p, q ∈ Q, and
D(p) = D(q). A natural way to handle this is to consider the primitive elements
to be equivalence classes of Q, under equality of D(q); or equivalently considering
them to be the elements of D(Q). This certainly gives some efficiency gains when
implementing them. However, Yoshinaka [6] introduced the idea of using “chain
rules” – these equality or E productions — to link distinct elements of Q that
define the same strings. This greatly simplifies the analysis of the algorithms,
and while it causes some decrease in efficiency it does not change the polynomial
nature of the algorithms. Accordingly we will adopt this refinement.

For a given decision about what D(p) is we can divide these rule schemas
into three types. There are those that we can be sure are correct, as a result
of the way D(p) has been defined – we will call these rules a priori. There are
those that we are certain are correct as a result of information that has already
been received — we will call these rules certain. Finally there are those which
we believe to be correct but might later turn out to be incorrect on the basis
of further information – we will call these defeasible. Defeasible rules will be
assumed to be correct until we receive a piece of information that tells us that
the rule is incorrect. Once we have seen such a piece of information, we will be
certain that the rule is incorrect, and no further information will cause us to
change our mind – once we know that a rule is incorrect then it is definitely
wrong, and until that point we will consider it to be true, though uncertain.

For example, if we have a rule of the type [[p]] → u, then it might be the case
that D(p) is defined to include u; for example p might be u, and D(p) might be
an equivalence class that includes u. This would be a case where the rule is a
priori. Alternatively, we might have received information that tells us definitely
that u ∈ D(p); for example, D(p) might be defined to be the set of all strings
that occur in a given context, in which case, if we know that that string occurs
in a given context then we will be certain, as a result of this single piece of
information, that the rule is correct.



16 A. Clark

Finally, and most importantly, there may be rules that no finite amount of
information can make certain – the defeasible rules. In general, checking these
rules will involve checking potentially infinite sets. For example, a rule of the
form [[p]] → [[q]], is only valid if D(q) ⊆ D(p) and these two sets will in general
be infinite. In general given only a finite amount of information it will always be
possible that the language is different from what we would expect. There are an
infinite number of possible languages, and it might be that the language does
not include some very long strings that we would expect it to contain based on
the examples we have seen. This is a possibility that we can never conclusively
exclude, at least in the learning models that we consider here.

We therefore use a finite set of experiments that we denote by X , and that
we will gradually increase during the learning process. Typically, X will be a
set of strings or contexts that we will use to test the validity of rules. In one
formalisation, X is a set of strings and we can test whether D(q) ⊆ D(p) by
testing X ∩D(q) ⊆ X ∩D(p). Clearly if the inference is invalid, then when X is
sufficiently large we will detect this fact: if it is not the case that D(q) ⊆ D(p),
then there must be some x ∈ D(q) \ D(p), and if x ∈ X we will detect it by
testing whether X ∩ D(q) ⊆ X ∩ D(p).

Initially, we assume that all possible defeasible rules are valid unless they
are explicitly contradicted by a piece of information; typically an element or
elements of X . We will start with X being either empty or consisting of a small
set of elements, often only one. We will monotonically increase X based on the
examples that we observe from the language we are trying to learn. During the
course of the algorithm X will generally be increased without limit.

As we increase X we will remove incorrect defeasible rules; correct defeasible
rules will never be removed. For each incorrect defeasible rule it will suffice to
find a single element of X that will remove that rule; therefore in the best case we
only need to have an X that is of the same cardinality as the set of possible rules,
which will typically be bounded by a polynomial in the size of Q. Whether this
is possible or not depends on the learning model; under the Minimally Adequate
Teacher (mat) model we will receive counter-examples [7] and generally we can
construct a suitable element of X from the counter-example. If we have only
positive examples, we can increase X without limit. The larger X is the more
incorrect rules we will remove. The only limit is that the size of X be bounded
appropriately so that the overall algorithm is efficient.

We therefore have a deductive system or grammar G that we construct from
information about a language L using a defined set of primitive elements Q and a
set of tests or experiments X . We will write G(Q, X, L) for this system. Typically
L is fixed, and so we will write this as G(Q, X), but it is implicitly used in the
definition since we will use an oracle for L when constructing the system G.

3 Derivation

Having constructed this inference system, we are clearly interested in using it
to infer properties of novel strings that we have not observed before. Given any
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string w we wish to be able to tell whether it is in a particular class, and indeed
whether it is in L or not; therefore we wish to be able to say for any primitive
element q and any string w whether w ∈ D(q) or not.

We now consider a derivation relation or proof. Clearly we can chain these
inferences together in the natural way. The inference rules allow us to deduce that
a long string is in a particular class from the fact that its substrings are in another
class; using this, together with a set of rules that tell us which classes the strings
of length 1 are will allow us to construct efficient inference procedures. This is
a standard insight from logical grammar formalisms; [5]. Thus we consider the
grammatical formalisms here to be inference systems between distributionally
defined sets of strings. We will not formalise the inference system using a sequent
calculus; this seems unnecessarily complex.

These deductive procedures turn out to be the same as the derivation proce-
dures in various forms of grammars, such as context free grammars, conjunctive
grammars and so on. Standard techniques for dynamic programming can be used
to compute these efficiently. In particular, for a given string w, we will construct
a table which maintains for each string u which is a substring of w, a list or set
of the elements of Q, p such that we have a proof that u is in D(p). This can be
done in time polynomial in the length of the string and the size of Q.

We will write [[p]] ∗⇒G w if there is a proof that w ∈ D(p) using steps in the
set of productions or rules of the grammar G. If all of the inference steps are
valid then it is clear that we will only deduce that [[p]] ∗⇒G w if w is in fact in
D(p). As a special case, we will only have a proof S

∗⇒G w if w is in L.

Lemma 1. If all of the inference steps in P are valid, then if [[p]] ∗⇒ w then
w ∈ D(p).

Proof. Immediate by induction on the length of the proof; if each inference is
valid.

Clearly as we increase Q, and we assume that all of the rules are valid, then the
language will only increase, as the set of rules will increase.

The next step is to establish that the rules are in fact valid. First of all
note that as we increase the size of X , the set of tests, the set of rules will
monotonically decrease as we will remove defeasible rules. The following lemma
is thus immediate.

Lemma 2. If X1 ⊆ X2 then L(G(Q1, X1)) ⊇ L(G(Q1, X2))

Morover, given that there are only a finite number of defeasible rules, at some
point we will have removed all incorrect rule. We formalise this as a property of
the set of experiments which we call fiduciality.

Definition 1. A set of experiments X is fiducial for a set of primitive elements
Q iff every rule is valid; i.e. all incorrect defeasible rules have been removed.

As we increase the number of primitive elements, the set of rules will monoton-
ically increase, even if some of them are not valid.
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Lemma 3. If Q1 ⊆ Q2 then L(G(Q1, X)) ⊆ L(G(Q2, X))

Moreover if we have X1 fiducial for Q1 and X2 fiducial for Q2 then
L(G(Q1, X1)) ⊆ L(G(Q2, X2)).

We now define a very fundamental idea; at some point the set of primitive
elements may be large enough, so that the set of correct rules will define the lan-
guage. When we reach this point, if we have some additional incorrect defeasible
rules then we will overgenerate; indeed no matter how large or small X is, we
will always define a language which includes the target language. We formulate
this idea as follows:

Definition 2. A finite set of primitive elements Q is a kernel for the target
language L, if the set of valid rules derived from Q is sufficient that for every
string w ∈ L, we have a proof using these rules that S

∗⇒ w.

An easy consequence of the definition is that given any language L, then any
G(Q, X) where Q is a kernel for L will define a language that includes the
target language L – since we will have enough correct rules, and possibly some
defeasible incorrect rules if X is too small.

For any specific algorithm, the learnable class that we will have will be defined
as the set of languages which have a finite kernel. This is, broadly speaking, the
set of languages that can be finitely defined under the representational assump-
tions that we make. As we shall see, for the case of regular grammars, the class
corresponds exactly to the class of regular languages, but for other represen-
tation classes, the classes of languages do not correspond precisely to existing
language classes.

We will consider various specific models: but they all satisfy the following
criteria.

– As we increase X , the set of rules will monotonically decrease.
– No correct rules will be removed by increasing X
– Every incorrect rule will be removed.
– As we increase Q, the set of rules will monotonically increase.
– We can perform all of the computations in polynomial time. In particular

we can compute the derivation relations S
∗⇒G w in time polynomial in the

size of the rule set and the length of w.

4 Generic Algorithms

We can now define a generic algorithm for inferring these representations. We will
use the paradigm of identification in the limit from positive data and (optionally)
membership queries which is easy to handle and quite permissive. Algorithm 1
receives a stream of positive examples, and may use a membership oracle O. It
calls several functions:

– InitQ returns an initial set of primitive elements.
– InitX returns an initial set of experiments.
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– Make constructs a representation from the available data. We will consider
this to be an inference system and thus a collection of rules.

– IncreaseQ returns a set of primitive elements
– IncreaseX returns a set of experiments.

These must satisfy the following conditions: if there is a kernel for a language,
then IncreaseQ must eventually return a set that includes a kernel. Secondly,
for any incorrect defeasible rule, IncreaseX must eventually produce an element
that will remove it. Make simply produces all possible rules from Q and then
removes those that are contradicted by elements of X .

E ← ∅ ;1

Q← InitQ ;2

X ← InitX ;3

G←Make(Q,X, O, E) ;4

while wi is a positive example do5

E ← E ∪ {wi} ;6

for w ∈ E do7

if not S
∗⇒G w then8

Q← Q ∪ IncreaseQ(E) ;9

X ← X ∪ IncreaseX(wi) ;10

G = Make(Q, X, O, E) ;11

Algorithm 1. Generic meta-algorithm for learning from positive data and mem-
bership queries. O is a membership oracle for the language.

We can now see that given a specific set of representational assumptions that
the algorithm defined here will identify in the limit any language which has a
finite kernel. We state the theorem given some set of definitional assumptions,
and given definitions of the subroutines called by the algorithm.

Theorem 1. Algorithm 1 will identify in the limit any language with a finite
kernel.

Proof. We will use En, Qn, Xn, Gn to refer to the state of the variables at iter-
ation n. Note first that if there is some n such that Qn is a kernel it will never
change, and the grammar will always define a superset of the target language.
If at some point n there is a kernel then at some point n′ > n, all incorrect
defeasible rules will have been removed, and at that point Gn′ will be correct
and will never change. So we merely need to show that at some point we will
get a kernel. If L has a finite kernel, then let N be the smallest number such
that IncreaseQ({w1, . . . wN}) is a kernel. Suppose QN is not a kernel. Suppose
L(GN ) does not include L, then at some point n ≥ N we must find a wn which
will call line 1, and after that point Q is a kernel. Alternatively, suppose L(GN )
does include L, and since it is not a kernel it must include some incorrect rules.
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Then either there is some point when all incorrect rules will be removed, at which
point the hypothesis will under-generate and we will observe a string which will
trigger line 1, or line 1 will be triggered before that point, and in either case we
end up with a kernel.

5 Regular Languages

We will now make this rather abstract discussion concrete by producing a recon-
struction of Angluin’s celebrated lstar algorithm in this model. We will not try
to make this algorithm efficient; it will be polynomial, but we will not constrain
the representation to be deterministic and as such the algorithm will be much
less efficient that the lstar algorithm and will not have the elegant algorithmics
of that approach.

Our representational primitives will be strings, and so Q will be a finite set of
strings that will correspond to prefixes of the language. Each prefix w will define
a quotient or residual language as follows:

D(w) = {v|wv ∈ L} (2)

In terms of a dfa, each element of Q will therefore correspond to a state q. If
we let Q∗ denote the set of states of a minimal dfa that generates the languages
L∗, then for each w ∈ Q, we will have a corresponding state in the dfa which
will be the state δ(q0, w), using standard notation.

We will use the following rule schemas:

I S → [[λ]]
R [[w]] → v[[wv]] if w, wv ∈ Q
L0 [[w]] → λ if w ∈ L
E [[w]] → [[v]] iff D(w) ∩ X = D(v) ∩ X

Note that each of these four rules have slightly different properties. The first
two rule schemas are universally valid – we know that they are correct a priori
without using any evidence from the oracle. The first schema is clearly correct
since by definition D(λ) = L. The second schema is correct since vD(wv) ⊆
D(w). The “proof” is trivial: suppose u ∈ D(wv); this means that wvu ∈ L.
Therefore vu ∈ D(w).

The third rule schema is also certain, but uses information from the oracle.
If w ∈ L then λ ∈ D(w), but it is only when we have tested the example w for
membership that we will know that the rule is valid.

The final E schema is non-trivial: it uses information from the oracle but
is defeasible. Given two strings in Q, w and v we will assume that they are
equivalent, (i.e. D(w) = D(v)) unless we observe some string s ∈ X such that
ws ∈ L and vs �∈ L or vice-versa. Once we observe such a string then we remove
this equality rule, as we know it is not valid.

Given a membership oracle for a language L, a finite set of strings Q and a
finite set of test suffixes X , we can construct a regular grammar based on these
rules schemas in time polynomial in the size of Q and X .

Let us now consider the notions of kernel and fiduciality in this concrete case.
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Lemma 4. The class of languages that have a finite kernel in this case is equal
to the class of regular languages.

Proof. Clearly if it has a finite kernel then it is regular since it will be correctly
defined by a regular grammar. Conversely if L is a regular language, then consider
a minimal dfa for L. A finite set of strings Q is a kernel for L if Q contains one
string for each state in the minimal dfa and a string for each transition. That
is to say for each transition q →a q′ there is a string u and a string ua in Q such
that δ(q0, u) = q and δ(q0, ua) = q′.

Thus the idea of a kernel is closely related to that of a structurally complete
sample as defined in for example [8]. Indeed, the set of prefixes of a structurally
complete sample for an automaton will be a kernel for the language defined by
that automaton.

Lemma 5. A set X is fiducial for a set of primitives Q iff for every pair of
strings that are not congruent there is an element of X that is in the symmetric
difference of their quotient languages.

5.1 Even Linear Grammars

Recall that an even linear grammar (elg) is a cfg where all of the productions
are either of the form X → uY v where u, v ∈ Σ+ and |u| = |v|, or of the form
X → u where |u| is even. We can clearly convert these to regular grammars by
“folding” them over and mapping them to automata over an alphabet consisting
of pairs of letters [9].

We can also can model them directly in this approach by considering the
primitive elements Q to be pairs of strings (u, v) where |u| = |v|, and considering
the experiments X to be strings of even length.

6 Congruence Based Approaches

Let us now move onto the theory of context free grammatical inference, in par-
ticular the theory of congruence based approaches as explored in [10, 11, 6, 12].

The most basic of these models, presented in [12] makes the representational
assumption that the non-terminals of the gramar generate congruence classes of
the language.

Recall that the syntactic congruence is defined as the relation u ≡L v iff
CL(u) = CL(v). We will define Q as a set of strings, and for each u ∈ Q,
we define D(u) = {w : CL(u) = CL(w)}. These are the congruence classes of
the language L. The set of experiments X will be a finite set of contexts; i.e.
X ⊂ Σ∗ × Σ∗.

We will therefore have the following families of rules

B [[uv]] → [[u]][[v]]
L0 [[a]] → a
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L1 [[λ]] → λ
E [[u]] → [[v]] iff CL(u) ∩ X = CL(v) ∩ X
I S → [[u]] iff u ∈ L

In terms of the meta-algorithm 1 we will define the following functions:

InitQ returns Σ ∪ {λ}
InitX returns {(λ, λ)}
Make Returns a cfg with the productions defined above
IncreaseQ returns Sub(E)
IncreaseX returns Con(E)

In [12], a similar algorithm was shown to polynomially learn the class of congru-
ential CFGs from a minimally adequate teacher (mat).

7 Dual CFG Representations

In regular inference we are concerned with the relation between the prefix and
the suffix. Given a language L, we define a relation u ∼L v iff uv ∈ L: the dual
relation is basically the same except that we swap prefixes and suffixes. This
leads to representations where we have finite automata that read from right to
left – this is uninteresting.

In distributional learning we can find that there is a partial duality between
the context and the substring. We will now consider a dual representation, where
the primitive elements are contexts, and the set of experiments X is a set of
substrings.

We will consider Q as a finite set of contexts, i.e. a subset of Σ∗ × Σ∗, and
we shall assume that (λ, λ) ∈ Q. We now define, for a context p = (lp, rp) in Q

D((lp, rp)) = {u|lpurp ∈ L} (3)

Note that D((λ, λ)) = L. We will have as before various classes of rules. The
defeasible class of rules is thus the class of binary rules of the form [[p]] → [[q]][[r]].
We will test these using the following criterion.

(D(q) ∩ X)(D(r) ∩ X) ⊆ D(p)
We can test this simply using a membership oracle by checking for each u, v ∈

X such that q � u ∈ L and r � v ∈ L, and if they are then we test whether
p � (uv) ∈ L; if this is not the case then we remove the rule. Otherwise we
include the rule.

The basic rules are thus

I S → [[(λ, λ)]]
L1 [[p]] → a iff p � a ∈ L
L0 [[p]] → λ iff p � λ ∈ L
B [[p]] → [[q]][[r]] iff (D(q) ∩ X)(D(r) ∩ X) ⊆ D(p)
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Only the final rule is defeasible. we need to show that all and only the incorrect
rules will be removed. Suppose that the rule [[p]] → [[q]][[r]] is incorrect. Then
this means that D(q)D(r) is not a subset of D(p). Therefore there are strings
u, v such that u ∈ D(q) and v ∈ D(r) but uv �∈ D(p).

If we define IncreaseX(E) to return the set of all substrings in E, then clearly
once E includes q�u and r�v, this incorrect rule will be removed. The converse
is obvious; if the rule is valid then (D(q) ∩ X)(D(r) ∩ X) ⊆ D(p) is always true
even when X = Σ∗. Note that the class of languages learnable is rather different
as it will include non-deterministic and inherently ambiguous ones, whereas the
algorithm of Section 6 appears to only include deterministic languages.

This algorithm corresponds to the algorithm defined in [13] restricted to the
case where we consider only single contexts. It is instructive to contrast the
primal, congruence-based algorithm with this dual algorithm for context-free
inference. For the primal representation, the B rules are a priori and the E rules
are defeasible and the L and I rules are certain; for the dual representation, the
B rules are defeasible, the L rules are certain, the I rules are a priori, and we
do not use E rules.

Table 1. Table showing the basic representational assumptions of the models. All
models also have I rules, so we omit them. In Yoshinaka’s algorithm for mcfgs, the
range of B rules used is much wider. The final column gives the class of representation
that is used. osst stands for onward subsequential transducer.

Model Q X D(p) Rules Class
Angluin [7] Σ∗ Σ∗ {w|pw ∈ L} L0, R,E dfa

Sempere [9] Σk ×Σk Σ∗ {w|p �w ∈ L} L0, EL1, E elg

Clark et al. [14] Σ∗ Σ∗ ×Σ∗ {w|CL(w) ⊇ CL(p)} L, S,B,C bfg

Clark [12] Σ∗ Σ∗ ×Σ∗ {w|CL(w) = CL(p)} L1,L0,B,E cfg

Clark [13] (Σ∗ ×Σ∗)≤k Σ∗ {w|CL(w) ⊇ p} L1,L0,B cfg

Clark [15] (Σ∗ ×Σ∗)∗ Σ∗ {w|CL(w) ⊇ p} L1,L0,B,S,C dlg

Yoshinaka [16] (Σ∗)≤k (Σ∗)≤(k+1) {w|Ck
L(w) ⊇ Ck

L(p)} E, L, B+ mcfg

Oncina [17] Σ∗ Σ∗ ×Δ∗ (p, lcp(τL(pΣ∗)))−1L osst

This paper Σ∗ ×Δ∗ Σ∗ ×Δ∗ (u, v)−1L fst

8 Distributional Lattice Grammars

Distributional Lattice Grammars [15] are an algorithmically more refined version
of these approaches, which allow efficient learning and inference even when we
have an exponentially large set of primitive elements Q. The starting point is
the dual cfg approach; we start with a finite set F of contexts that includes the
empty context (λ, λ). The primitive elements are not, however, these individual
contexts but rather the set of all subsets of F . Thus rather than taking for a
context (l, r) ∈ F the set of strings {u|lur ∈ L}, we take as our primitive element
f a subset of F , say f = {(l1, r1), . . . (lk, rk)}, and define

D(f) = {u|l1ur1 ∈ L ∧ · · · ∧ lkurk ∈ L} (4)
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In other words, Q is just the power set of F ; each element of Q is a subset
of F . This clearly allows a much greater representational power: the sets of
strings that we define thus correspond to finite intersections of the sets defined
by individual contexts. This allows us to represent a larger class of languages.
Consider for example the language {anbn|n ≥ 0} ∪ {anb2n|n ≥ 0}; this language
cannot be represented using sets that are defined by a single context, because
the relevant sets of strings, such as {anbn|n ≥ 0} are not defined by a single
context. For example, the context (a, b) defines a set of strings that includes
{anbn|n ≥ 0} but also includes many other strings such as {abbb, aabbbbb . . .}.
However if we allow our primitives sets to be defined by pairs of contexts, then
the pair (a, b), (aa, bb) will succesfully pick out, “triangulate” in a sense, the
relevant set of strings. One approach to this, taken in [13] is simply to stipulate
a maximum cardinality for the sets of contexts, and consider all sets of contexts
of cardinality less than this. Considering this upper bound as fixed, the set of
primitive elements becomes polynomial.

This avoids the problem rather than solves it; for natural language, it is essen-
tial to recognise that the syntactically and linguistically relevant sets of strings
may require a large number of contexts to pick them out precisely.

An important insight of this approach is that there is a natural lattice struc-
ture that arises in these forms of learning. Since each primitive element p in
Q defines a set, D(p) we can see that there will inevitably be a lattice struc-
ture generated by this set. Once we realise this, then it is natural to extend the
set of primitive elements, by looking at the meet semi-lattice generated by the
set {D(p)|p ∈ Q}, and augmenting the inference system with conjunctive rules
(those of type C above).

dlgs take this path and for computational reasons it turns out to be essential
to add conjunctive rules. Given these rules, we can compute for every string w,
the set of all sets that it must be a member of Y (w) = {D(p)|w ∈ D(p)}. The
crucial observation is this: given that this is a lattice, rather than considering
all of the exponentially many elements of this set of sets, we can sum it up in a
single element; namely

⋂
s∈Y (w) s. If w lies in all of the sets in Y (w) then it must

lie in their intersection. Since we have extended our set of primitive elements
so it is a meet semi-lattice, (in fact a full lattice in the case of dlgs), then this
intersection element will be in our set Q. Thus though w may be a member of
very many sets defined by elements of Q, computationally we can consider just
this unique one: the smallest set that we can prove it is in.

The addition of the conjunctive rules increases the power of the formalism
to that of Conjunctive Grammars [18], or more precisely to a subclass of the
languages definable by conjunctive grammars. This insight, though it has so far
only been applied to the theory of cfg inference, is of more general application,
and we think it can potentially be applied to all of the models discussed here.

9 MCFGs

Yoshinaka [19, 16] shows how we can extend this model to the inference of
Multiple Context-Free Grammars [20]. We fix a natural number constant p and
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define the set Q to be a set of tuples of strings (u1, . . . , um) where 1 ≤ m ≤ p. X
is then a set of generalised contexts which again are tuples of strings, this time
of arity up to p + 1.

Given a tuple w = (u1, . . . , um) we can define the generalised distribution
with respect to a language L to be the set Cm

L (w) = {(v1, . . . , vm+1)|v1u1v2 . . .
vmumvm+1 ∈ L}. The representational assumption of Yoshinaka’s algorithm is
thus

D(w) = {u|Cm
L (u) ⊇ Cm

L (w)} (5)

Since the elements are no longer strings, but rather tuples of strings, the ways
in which they can be combined are significantly more complex. Rather than one
B rule, we have a whole family of such rules, each corresponding to a different
combination operation.

It is an open question whether the class of DLGs is sufficiently expressive
to represent the class of natural languages, or whether it will be necessary to
move into the MCFL hierarchy. It might be that even if DLGs are sufficiently
expressive, one might still want to use MCFGs because of the slightly richer
notion of dependency that they allow, which might permit a more principled
modeling of certain movement phenomena in natural languages.

10 Transductions

We now turn our attention to the study of transductions or bilanguages. We
assume that we have two alphabets Σ and Δ which may or may not be disjoint,
and rather than a language we are interested in bilanguages or transductions
which are subsets of Σ∗ × Δ∗; we will write an element of a bilanguage T as
an ordered pair (u, v) where u ∈ Σ∗ and v ∈ Δ∗. As defined like this, there is
a symmetry but we will often be interested in the cases where L considered as
a relation between Σ∗ and Δ∗ is a function. We say that a transduction T is
functional if (u, v), (u, w) ∈ T implies that v = w. We say that a transduction is
total if for all u ∈ Σ∗ there is a v ∈ Δ∗ such that (u, v) ∈ T .

If we are not interested in functional transductions, then this reduces to a
special case of the learnability of multiple context free languages, subclasses of
which can be learned directly using results already published [16]. However, as
is demonstrated by the well-known ostia algorithm [17], if we assume that the
data is functional, then we do not need to have membership queries or access
to negative evidence, as the positive examples are restricted enough to learn the
function.

We will consider now the case where we wish to infer a representation for a
total function T . We will define the function τT : Σ∗ → Δ∗ as τ(u) = v where
(u, v) ∈ T .

We will start by considering a basic model analogous to that of regular lan-
guages. We start by noting that our model above assumed only that the language
was a subset of a monoid. Note that we clearly have a natural monoid structure
over Σ∗ × Δ∗, where (u, v) ◦ (u′, v′) = (uu′, vv′), and (λ, λ) is the identity. Thus
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E ← ∅ ;1

Q← InitQ ;2

X ← InitX ;3

G←Make(Q,X, E) ;4

while (ui, vi) is a positive example do5

E ← E ∪ {(ui, vi)} ;6

for (u, v) ∈ E do7

if not S
∗⇒G (u, v) then8

Q← Q ∪ IncreaseQ(E) ;9

X ← X ∪ IncreaseX(wi) ;10

G = Make(Q, X, E) ;11

Algorithm 2. Generic meta-algorithm for learning functional transductions
from positive data

we can now immediatelt lift our analysis to the case where D(p) is defined to be
a subset of Σ∗ × Δ∗.

We start by defining our sets of primitive elements Q to be a finite set of pairs
(u, v) ∈ Σ∗ × Δ∗, and assume further that (λ, λ) ∈ Q. We define for a given
element p = (up, vp) ∈ Q

D((up, vp)) = {(u′, v′)|(upu
′, vpv

′) ∈ T } (6)

We define the following rule schemas:

I S → [[(λ, λ)]] which is a priori
R [[(u, v)]] → (u′, v′)[[(uu′, vv′)]], also a priori
L0 [[(u, v)]] → (λ, λ) iff (u, v) ∈ T . This is certain.

The defeasible rule schema will be E rules. We will only use positive data here
which is sufficient, since if we observe a pair (u, v) then we know that for all
v′ �= v that (u, v′) �∈ T , since T is a function. We will therefore have X being a
set of pairs that are a subset of T . We will say that an equality rule [[(u, v)]] →
[[(u′, v′)]] is incorrect with respect to X if there is a pair of elements of X of the
form (ux, vy), (u′x, w′) such that w′ �= v′y. Note that these two elements of X
need not be distinct, as we shall see below. If it is not incorrect w.r.t X then we
say it is correct w.r.t. X . The E rule schema is thus:

E [[(u, v)]] → [[(u′, v′)]] iff it is correct w.r.t. X .

If the rule is correct, and (ux, w), (u′x, w′) ∈ X , and suppose that w = vy, then
(x, y) ∈ D(u, v) and therefore (x, y) ∈ D(u′, v′) and so (u′x, v′y) ∈ T and so w′ =
v′y since it is functional, and therefore it will be correct w.r.t any X On the other
hand, if a rule is incorrect, then there must be some (x, y) ∈ D(u, v)\D(u′, v′), or
D(u′, v′)\D(u, v). If we assume w.l.o.g. the first, then we know that τ(ux) = vy.
Let w = vy and w′ = τ(u′x); w′ cannot be equal to v′y since this would mean
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that (x, y) ∈ D(u′, v′) which would be a contradiction. Therefore if X contains
the two pairs (ux, τ(ux)), (u′x, τ(u′x)) then this rule will be incorrect w.r.t. X .

We are only interested in those cases where (u, v)−1T is non-empty. This set
could be empty, if for example all of the strings that start with u are mapped
to strings that start with a, and v starts with b. The algorithm we consider
will only add (u, v) when we have observed them as a prefix of a string, and
so we will assume in what follows that there is always at least one element of
(u, v)−1T . There are is a special cases that we should note: when u = u′ and
v �= v′ clearly these pairs will not be congruent. In this case, let (x, y) be some
element of (u, v)−1T ; then clearly (ux, vy) is a suitable element of X to show
that these pairs are not congruent.

We have implicitly defined Make; we now define the other subroutines.
IncreaseX just returns the current data E, and IncreaseQ will return the set
of all prefixes of E. We say that (u, v) is a prefix of (u′, v′) if there is some (x, y)
such that (u, v) ◦ (x, y) = (u′, v′). The initialisation functions just set X to the
empty set and Q to {(λ, λ)}. There is one detail we neglect in this informal presen-
tation: we also need to deal with the L0 rules. Since we are not using an oracle, we
set them when we observe the relevant pair (u, v) in the data.

Therefore Algorithm 2 will learn the class of all such transductions with a finite
kernel. Let us pause and consider the class of transductions that have a finite
kernel; these will clearly be a class of rational functions. These clearly include
all subsequential functions, which are those where the underlying automaton is
deterministic, and there is a final output function σ. The role of σ(q) is played
by λ-transitions leading to accepting states. However this clearly also includes
non-deterministic transductions. We consider now the classic example of such a
transduction (c.f. [21]).

Example 1. Suppose we have Σ = {a}, Δ = {b, c}, and T = {(a2n, b2n)|n ≥
0} ∪ {(a2n+1, c2n+1)|n ≥ 0}. This is clearly a total function; an is mapped to bn

if n is even and to cn if n is odd.

A kernel for this transduction is the following set Q:

{(λ, λ), (a, b), (aa, bb), (aaa, bbb), (a, c), (aa, cc), (aaa, ccc)}

We can easily verify that (a, b) ≡T (aaa, bbb) and that (a, c) ≡T (aaa, ccc). It
is easy to convert this to a finite state transducer (fst). Each element of Q
corresponds to a state; accepting states are those with a rule of type L0. The
initial state is [[(λ, λ)]]. Rules of type R such as [[(u, v)]] → (u′, v′)[[(uu′, vv′)]]

are written as a transition [[(u, v)]] u′:v′
→ [[(uu′, vv′)]]. Figure 1 shows a minimal

set of primitive elements and transitions that define this transduction. The actual
output from the algorithm would contain many more states and transitions, but
would nonetheless not over-generate.

The relation to the ostia algorithm is not entirely clear. The ostia algorithm
infers a class of subsequential transducers; these are deterministic on the input
string: thus we can define an equivalence relation of finite index on the set of
pairs. If we define the longest common prefix of a set of strings to be lcp, the
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(e,e)

(a,c)
a:c

(aaa,ccc)

e:e

(a,b)

a:b

(aaa,bbb)

e:e

e:e

(aa,bb)

a:b

e:e

(aa,cc)

a:c

a:c

a:b

Fig. 1. State diagram for T = {(a2n, b2n)|n ≥ 0} ∪ {(a2n+1, c2n+1)|n ≥ 0}. The “e”
stands for the empty string λ; accepting states are drawn as rectangles. We write this
as a finite state transducer rather than a rewriting system.

primitives of the ostia algorithm are of the form (u, lcp(τ(uΣ∗))), extending τ
to sets of strings in the standard way. As can be seen from Figure 1, the output
of the algorithm here is not deterministic on the input string. It appears that
the class of transductions that can be learned includes all rational functions, but
this must remain a conjecture at a moment.

11 Discussion

We have presented a common framework which allows us to see many different
models and algorithms, at a suitable level of abstraction, as instances of the same
meta-algorithm. In Table 1 we lay out, somewhat crudely the range of represen-
tational assumptions of the models that we have looked at in this paper. We
have presented a meta-algorithm quite generally. As a result the specific algo-
rithms are significantly less efficient that they could be. Compare, for example,
the elegant algorithmics of the lstar or ostia algorithms with the very blunt
approach taken in this paper. Nonetheless, this rather abstract presentation has
allowed us to see that many classic and recent algorithms for GI are variants of
the same algorithm. Using these methods allows us to see the range of possible
new algorithms and GI techniques that result from combinations of different
representational assumptions and sets of rules.

The example of a transduction learning algorithm is meant to show the advan-
tages of this approach – applying this to the problems of learning transductions
or functions immediately gives us a new and powerful algorithm for learning
regular functions that extends previous results. There is also a natural extension
to context-free transductions that we will present elsewhere.
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The resulting algorithms are polynomial in the sense that each iteration re-
quires only polynomial time. This is, perhaps, not strict enough a criterion on
its own, but in some cases (e.g. [12]) we can get a result under the mat model.

The general approach we advocate is ultimately very simple – a decision about
what each representational element should mean; given this, we can define a
set of valid inferences; invalid inferences can be removed based on testing an
increasingly large set of experiments. The overall effect is a large and growing
family of efficient algorithms for many classic problems in grammatical inference.
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Abstract. Multiplicative updates multiply the parameters by nonnega-
tive factors. These updates are motivated by a Maximum Entropy Princi-
ple and they are prevalent in evolutionary processes where the parameters
are for example concentrations of species and the factors are survival rates.
The simplest such update is Bayes rule and we give an in vitro selection al-
gorithm for RNA strands that implements this rule in the test tube where
each RNA strand represents a different model. In one liter of the RNA
“soup” there are approximately 1020 different strands and therefore this
is a rather high-dimensional implementation of Bayes rule. We investigate
multiplicative updates for the purpose of learning online while processing
a stream of examples. The “blessing” of these updates is that they learn
very fast because the good parameters grow exponentially. However their
“curse” is that they learn too fast and wipe out parameters too quickly.
We describe a number of methods developed in the realm of online learn-
ing that ameliorate the curse of these updates. The methods make the
algorithm robust against data that changes over time and prevent the cur-
rently good parameters from taking over. We also discuss how the curse is
circumvented by nature. Some of nature’s methods parallel the ones de-
veloped in Machine Learning, but nature also has some additional tricks.
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Abstract. This paper reviews experiments with an approach to discov-
ery through robot’s experimentation in its environment. In addition to
discovering laws that enable predictions, we are particularly interested
in the mechanisms that enable the discovery of abstract concepts that
are not explicitly observable in the measured data, such as the notions of
a tool or stability. The approach is based on the use of Inductive Logic
Programming. Examples of actually discovered abstract concepts in the
experiments include the concepts of a movable object, an obstacle and a
tool.

Keywords: Autonomous discovery, robot learning, discovery of abstract
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Abstract. The ability to distinguish, differentiate and contrast between
different data sets is a key objective in data mining. Such ability can as-
sist domain experts to understand their data and can help in building
classification models. This presentation will introduce the techniques for
contrasting data sets. It will also focus on some important real world ap-
plications that illustrate how contrast patterns can be applied effectively
for building robust classifiers.
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In many prediction problems, including those that arise in computer security
and computational finance, the process generating the data is best modelled as
an adversary with whom the predictor competes. Even decision problems that
are not inherently adversarial can be usefully modeled in this way, since the as-
sumptions are sufficiently weak that effective prediction strategies for adversarial
settings are very widely applicable.

The first part of the talk is concerned with the regret of an optimal strategy
for a general online repeated decision problem: At round t, the strategy chooses
an action (possibly random) at from a set A, then the world reveals a function

t from a set L, and the strategy incurs a loss E
t(at). The aim of the strategy
is to ensure that the regret, that is, E

∑
t 
t(at) − infa∈A

∑
t 
t(a) is small. The

results we present [1] are closely related to finite sample analyses of prediction
strategies for probabilistic settings, where the data are chosen iid from an un-
known probability distribution. In particular, we relate the optimal regret to a
measure of complexity of the comparison class that is a generalization of the
Rademacher averages that have been studied in the iid setting.

Many learning problems can be cast as online convex optimization, a special
case of online repeated decision problems in which the action set A and the loss
functions 
 are convex. The second part of the talk considers optimal strategies
for online convex optimization [2, 3]. We present the explicit minimax strategy
for several games of this kind, under a variety of constraints on the convexity of
the loss functions and the action set A. The key factor is the convexity of the
loss functions: curved loss functions make the decision problem easier. We also
demonstrate a strategy that can adapt to the difficulty of the game, that is, the
strength of the convexity of the loss functions, achieving almost the same regret
that would be possible if the strategy had known this in advance.
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Abstract. We focus on the problem of linear regression estimation in
high dimension, when the parameter β is "sparse" (most of its coordi-
nates are 0) and "blocky" (βi and βi+1 are likely to be equal). Recently,
some authors defined estimators taking into account this information,
such as the Fused-LASSO [19] or the S-LASSO [10] among others. How-
ever, there are no theoretical results about the obtained estimators in
the general design matrix case. Here, we propose an alternative point of
view, based on the Iterative Feature Selection method [1]. We propose an
iterative algorithm that takes into account the fact that β is sparse and
blocky, with no prior knowledge on the position of the blocks. Moreover,
we give a theoretical result that ensures that every step of our algorithm
actually improves the statistical performance of the obtained estimator.
We provide some simulations, where our method outperforms LASSO-
type methods in the cases where the parameter is sparse and blocky.
Moreover, we give an application to real data (CGH arrays), that shows
that our estimator can be used on large datasets.

Keywords: Feature Selection, Sparsity, Linear Regression, Grouped
Variables, ArrayCGH.

1 Introduction

1.1 Setting of the Problem

We assume that we are in the gaussian linear regression setting

Y =

⎛⎜⎝ Y1
...

Yn

⎞⎟⎠ ∼ N

⎛⎜⎝Xβ,

⎛⎜⎝σ2 . . . 0
...

. . .
...

0 . . . σ2

⎞⎟⎠
⎞⎟⎠ (1)

where X is some (deterministic) real-valued matrix n×p and β = (β1, . . . , βp)′ ∈
Rp, with possibly p > n (we use the convention that any u ∈ Rp is a column vec-
tor and we use the notation u′ for its transpose). Let X1, . . . , Xp be the columns
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of X , and let P denote the probability distribution of Y given by Equation 1
(for the sake of simplicity, we assume that the data are normalized in such a
way that X ′

jXj = n). Our purpose is to estimate β, based on the observation of
both X and Y . We use as a criterion the quadratic loss, for any b ∈ Rp, we put

L(b) = ‖X(b − β)‖2
2 .

It is well known that, as soon as p > n, it is not possible to build an estimator
with a small loss L(·) - unless some additional condition is satisfied. For example,
one may assume that β is sparse, which means that the number of non-zero
coefficients in β (usually refered as ‖β‖0) is small. If ‖β‖0 � n, the LASSO
estimator [18], the Dantzig selector [6] or the nonnegative garrote [4], among
others, may achieve good performance: see for example the simulations in [18],
and the theoretical results in [5] and [3]. Also note that [21] provides a nice
survey of the theoretical results for the LASSO and the conditions needed to
prove these theoretical results.

Here, we focus on the case where β is sparse and blocky. By this, we mean
that the non-zero coefficients of β are "grouped" in blocks where they have the
same value. For example, a typical parameter β could be

β = (0, 0, 0, 5, 5, 5, 0, 0, 0, 0, 0, 1, 1, 1, 2, 2, 0, 0)′ .

An example of application is given in genomics, where models like the one in
(1) may appear. The observation Yi represents a characteristic of a tumor and
depends on some lesions appearing on the chromosomes of cancer cells Xj,i, the
index j representing the localization on the chromosome. Since a lesion generally
affects a whole part of a chromosome (duplication or deletion of a region), one
may expect that two consecutive parameters βj and βj+1 have some strong
relationship. For example, [15] use such an assumption - the main difference is
that [15] considers the context of classification, and not of regression. They use
a Support Vector Machine with a penalization of the type

λ

p∑
j=1

|βj | + μ

p∑
j=2

|βj − βj−1|,

called Fused-SVM in the paper. Using such a penalisation, we expect to find
a sparse and blocky solution: the first term ensures sparsity when λ is large,
the second term ensures that for most j, βj = βj−1 and so there are blocks of
similar values in the solution. Such a penalization is also used in [12] for genomic
applications, with a logistic regression model.

Some estimators have been proposed for the regression case. Let us mention
the Fused-LASSO [19], say β̃F

s,t, given by

min
b

⎧⎨⎩‖Y − Xb‖2
2 + 2ns

p∑
j=1

|βj | + 2nt

p∑
j=2

|βj − βj−1|

⎫⎬⎭
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with s, t > 0, or the S-LASSO estimator, say β̃S
s,t, by

min
b

⎧⎨⎩‖Y − Xb‖2
2 + 2ns

p∑
j=1

|βj | + 2nt

p∑
j=2

(βj − βj−1)2

⎫⎬⎭
proposed in [9] and studied in [10] (the S-LASSO does not actually lead to
blocky solutions, but to smooth solutions: most βj − βj−1 are small, but not
necessarily 0). See also the structured feature selection in [17]. These estimators
can be approximated in practice even for large p: for example the Pathwise
Coordinate Optimization algorithm [8] can be used for the S-LASSO, and is used
for the Fused-LASSO in [8] when X = In (from now Ik will denote the indentity
matrix of size k). The Fused-LASSO can be approximated in the general case
using for example the algorithms in [11] and [20]. However, note that no general
theoretical results were provided in order to estimate a sparse blockwise β. Hebiri
[9] provides good guarantees for the S-LASSO under the sparsity assumption but
does not take any advantage of the smooth aspect of β, if any. Rinaldo [16] gives
theoretical guarantees for the Fused-LASSO that can be applied only in the case
where X = In, and so n = p.

Finally, the Group-LASSO introduced by [22] has very interesting practi-
cal performance, as well as good theoretical properties studied in [7]. See also
[23]. However, this procedure requires the prior knowledge of the location of the
groups. The S-LASSO and Fused-LASSO do not require such a prior, and in this
paper, we are interested in the case where we do not have this knowledge. Our
setting is then:

– we know that most of the βj = 0 but we do not know the j’s such that
βj �= 0;

– we know that most of the βj = βj+1 but we do not know the j’s such that
βj �= βj+1.

1.2 Overview of the Paper

In this paper, we propose an algorithm to estimate a sparse and blockwise β in
the model given by (1), without prior knowledge on the location of the groups.
This algorithm is an iterative algorithm. It starts from the initial value β̂(0) =
(0, . . . , 0). Then, at each step m, we compute β̂(m+1) from β̂(m) in the following
way: a particular coordinate or group of consecutive coordinates is selected,
and then updated. The way to update this coordinate, or group of coordinates,
is described in Section 2. The way to select the coordinate, or the group, is
postponed to Section 3.

Actually, in Section 3, we give the following result: with large probability,
at each step, whatever the choice of the coordinate (or group) to be updated,
L(β̂(m+1)) ≤ L(β̂(m)). This is Theorem 1. A refinement of this result, Theorem
2, allows to choose the particular coordinate (or group) that ensures the largest
possible decrease from L(β̂(m)) to L(β̂(m+1)).
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We then provide a simulation study in Section 4 with a comparison to the S-
LASSO and the Fused-LASSO estimators. Our method outperforms the LASSO-
type estimators when the parameter is sparse and blocky. We also provide an
application to real data (arrayCGH) in Section 5.

Finally, the proof of Theorems 1 and 2 are given in Section 6.

2 Construction of Our Estimator

We now describe our algorithm. It is an iterative algorithm, that starts from
β̂(0) = (0, . . . , 0). At each step, we are going to compute β̂(m+1) from β̂(m). Let
us define the soft thresholding function

∀x ∈ R, ∀u ≥ 0, γ(x, u) = sign(x)(|x| − u)+

where sign(x) is the sign of x. For any given j ∈ {1, . . . , p} and k ∈ {1, ..., p−j+1}
let us define 1j,k ∈ Rp by (1j,k)i = 1 if i ∈ {j, . . . , j + k − 1}, and (1j,k)i = 0
otherwise (in other words, 1j,k ∈ Rp is the pattern of the group of variables
(j, j + 1, . . . , j + k − 1), of length k).

At each step, several possible moves are considered in our algorithm: a possible
move is to update a coordinate or a group of coordinates of maximal size K, for
a given K ∈ {1, . . . , p}. Let us now describe the move for a chosen coordinate
or group of coordinates. The way to choose what group of coordinates is to be
updated is discussed in the next section, in view of some theoretical results. Let
us choose s > 0 (the value of s is also discussed in the next section).

Parameter update. Let us assume that we are going to update the group of
coordinates (j, j + 1, . . . , j + k − 1) (a single coordinate is a particular case with
k = 1). We define β̂(m+1) by⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

β̂
(m+1)
j = β̂

(m)
j + γ

(
(Y −Xβ̂(m))′

∑ j+k−1
h=j Xh

1′
j,kX′X1j,k

, s

)
...

β̂
(m+1)
j+k−1 = β̂

(m)
j+k−1 + γ

(
(Y −Xβ̂(m))′

∑ j+k−1
h=j Xh

1′
j,kX′X1j,k

, s

) (2)

and β̂
(m+1)
� = β̂

(m)
� for any 
 /∈ {j, . . . , j + k − 1}.

Observe that in the case where k = 1, this expression is very natural:

β̂
(m+1)
j = β̂

(m)
j + γ

(
(Y − Xβ̂(m))′Xj

n
, s

)

and β̂
(m+1)
� = β̂

(m)
� for any 
 �= j. If we take K = 1, so we never consider groups

of coordinates, we obtain the Iterative Feature Selection algorithm studied in [1].
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3 Main Result and Comments

We now give some properties satisfied by any algorithm using only the kind
of moves described in the previous section. These results will also provide us a
rule to choose the group of coordinates that have to be updated at step m, to
calibrate the parameters s and K and, finally, to decide at which step m to stop
our iterations.

Note that the proof of the following result is given at the end of the paper, in
Section 6, page 44.
Theorem 1. Let us assume that, as described previously, we start from β̂(0) =
(0, . . . , 0), that at each step m we update one group of coordinates following
Equation 2 (the choice of the group may be data-driven). We assume that we
stop after M steps. We have

P

[
L(β̂(M)) ≤ L(β̂(M−1)) ≤ · · · ≤ L(β̂(0))

]
≥ 1 − Kpe−

ns2

2σ2 .

In a way, this result states that every strategy using only the kind of moves
described in Section 2 cannot result in overfitting: we are "almost certain" to
get closer to our (unknown) objective β at each step. We can quantify this
"almost certain": it means "with probability at least 1 − ε", if we choose s such
that Kp exp(−ns2/(2σ2)) ≤ ε. For example,

s =

√
2σ2 log(pK

ε )
n

gives a confidence level 1− ε. Note that it is very similar to the theoretical value
for the regularization parameter in the LASSO proposed in [3]. This link will be
made clearer in the conclusion of the paper.

Note that if we allow K = p (to test every group of size 1 to p), this will not
make a big difference because the threshold s will become

s =

√
2σ2 log(p2

ε )
n

≤
√

4σ2 log(p
ε )

n
.

However, when p is large, it could be more convenient to choose a smaller K
for algorithmic reasons. Let us stress this conclusion for K: K = p is probably
almost optimal in theory, but if p is large, we may want to choose a smaller
K to keep the computation time small (we will shortly discuss this point in
Subsection 3.1).

Also, note that this choice for s is not necessarily the best choice in practice:
it requires the knowledge of σ2, and it is usually too large (see the experiments
in [2] for the case K = 1). Moreover it is not data-driven. Cross-validation will
provide better results in practice.

Finally, we still do not know "how much closer to β" we can move at every
step, and we still have no idea of how to choose if we are going to update 1, 2 . . . or
K coordinates, and wich coordinates we are going to update - we just know that
in some sense, every choice is allowed. We now make some propositions.
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Sequential strategy. Just sequentially update j = 1, j = 2, . . . , j = p with 1
coordinates moves, then (j, j + 1) = (1, 2), . . . , (j, j + 1) = (p − 1, p) with 2
coordinates moves, then (j, j + 1, j + 2) = (1, 2, 3) . . . with 3 coordinates moves,
. . . up to K coordinates moves, and start again. This strategy (with K = 2) is
in some way similar to the one proposed for example in [8] for an algorithm
computing the Fused-LASSO estimate.

Now, a finer version of Theorem 1 will give us an opportunity to make a
data-driven choice of the group of coordinates to update at each step.

Theorem 2. In the same setting as for Theorem 1,

P

[
∀m ∈ {1, . . . , M} : L(β̂(m)) ≤ L(β̂(m−1)) − ‖X(β̂(m) − β̂(m−1))‖2

2

]
≥ 1 − Kpe−

ns2

2σ2 .

Note that the proof of Theorem 2 will be included in the proof of Theorem 1.

"Best single move" strategy. We propose, at each step, to choose the move
that maximises ‖X(β̂(m) − β̂(m−1))‖2

2. Moreover, this allows to define a stopping
criterion: we stop when all the possible moves give an improvement ‖X(β̂(m) −
β̂(m−1))‖2

2 < 1/n2 for example.
Note that in any case we do not claim that this strategy is the best possible

one. It is possible that iterations gets stuck in some regions of Rp that are not the
most interesting ones (in the same way that sequential optimization algorithms
may be trapped in some local minimum). A way to avoid this risk is not clear yet.
This is actually the object of an alternative estimator proposed in the conclusion
of this paper: see Equation 5 page 47. This estimator will be the object of a future
work. However, there are two things that we know for sure about this strategy:

1. Theorem 2 ensures that, after m steps, with probability at least 1−Kpe−
ns2

2σ2 ,

L(β̂(m)) ≤ L(β̂(0)) −
m∑

k=1

‖X(β̂(k) − β̂(k−1))‖2
2;

2. after m steps, only m coordinates, or groups of coordinates, have been up-
dated so we know that the solution is sparse and blocky, at least when m is
small. In our experimental study, very often, only a few moves are necessary,
i.e. ‖X(β̂(m) − β̂(m−1))‖2

2 becomes very small after only a few steps.

3.1 A Note on the Computational Complexity of Our Method

Let us remark that we can easily upper bound the computational complexity
of the “best single move” strategy with a limited number of steps M (like in
Theorems 1 and 2).
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First, we need to explore all the possible groups of variables, there are p +
(p − 1) · · · + (p − K + 1) ≤ Kp such groups. Then for each group we have to
compute the quantities in (2), this costs roughly O(nk) = O(nK) operations.

This means that the computation time is roughly O(npK2M). So, of course,
if we know that the blocks in β have a limited size, this is reasonable, but if we
do not have such an information and we take K = p, we can have trouble in the
case where p is large.

4 Simulations

4.1 Description of the Experiments

A toy example is proposed in the seminal paper of Tibshirani [18]. We slightly
modify this example to have

∀i ∈ {1, . . . , 50}, Yi = β′Xi + εi

with Xi ∈ Rp, β ∈ Rp and the εi are i. i. d. from a gaussian N (0, σ2). The
Xi’s are i.i.d., and each Xi is drawn from a Gaussian distribution with mean
(0, . . . , 0)′ and with variance matrix:

Σ(ρ) =
(
ρ|i−j|)

i∈{1,...,p}
j∈{1,...,p}

for ρ ∈ [0, 1[. Note that Tibshirani’s toy example is set with p = 8. Here we will
consider p > 8.

We will use two values for β:

β∗ = (5, 5, 5, 5, 5, 0, 0, 0, 0, 0, 2, 2, 2, 2, 0, . . . , 0) ∈ Rp,

β∗∗ = (5, 4.5, 4, 3.5, 3, 2.5, 2, 1.5, 1, 0.5, 0, . . ., 0) ∈ Rp,

β∗ is sparse and blocky while β∗∗ is sparse and, in some way, smooth (a context
that should be in favor of the S-LASSO estimator). We use two values for σ:
1 ("low noise") and 3 ("noisy case"); one value for ρ: ρ = 0.5, and finally two
values for p: p = 15 < n and p = 100 > n.

The S-LASSO and Fused-LASSO estimators are computed via the Pathwise
Coordinate Optimization procedure described in [8]. Our procedure will be called
in the experiments ISBF (Iterative Selection of Blocks of Features). It is used
with the "best single move" strategy, and with K = 10.

We will finally use the parameters s and t in a grid:

s, t ∈ G =

{
10−i/8

√
σ2 log(p)

n
; i = 0, . . . , 20

}
. (3)

4.2 Results

In a first time, we present in detail the results for one particular experiment. We
then give an overview of the results in the whole set of experiments.
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First, we focus on an experiment realized in the case β = β∗, σ = 1, ρ = 0.5
and p = 15. We define, for a given s ∈ G, LISBF,s as the loss obtained using the
ISBF method with threshold value s, and

LF,s = argmin
t∈G

L(β̃F
s,t)

the oracle for the Fused-LASSO with s fixed. We define in the same way LS,s

for the S-LASSO. Figure 1 gives a plot of LISBF,s, LF,s and LS,s as a function
of s.

Fig. 1. The quantities LISBF,s (thick line), LF,s (thin line) and LS,s (dotted line) as a
function of s. The horizontal axis gives i ∈ {0, . . . , 20}, the vertical axis is the value of
the risk LISBF,s, LF,s and LS,s with s = s(i) as defined in Equation 3.

Note that LISBF,s is almost always under LF,s and LS,s. So, for any reason-
able s, the ISBF procedure reaches a better performance than the oracle of the
Fused-LASSO and the S-LASSO – note that the oracles are not even available
to the practitioners. In practice, we use some data-driven method to choose s for
ISBF and (s, t) for the LASSO-type procedures, as cross-validation. Note that
ISBF is more easy to deal with as it involves only one parameter to tune.

Now, let us have a look at the whole set of experiments (for each pair (σ, p)
we run 20 experiments). For the Fused-LASSO and the S-LASSO, we report the
performance of the oracle: namely, for each simulation, we define

LF = arg min
(s,t)∈G2

L(β̃F
s,t)

the oracle loss for the Fused-LASSO, and we do the same to define the oracle
loss of the S-LASSO, LS, and for the ISBF, LISBF. The results for the estimation
of β∗ are reported in Table 1.
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Table 1. Results for the estimation of β∗ (sparse and blocky)

σ p LF LS LISBF

1 15 median 0.41 0.18 0.10
mean 0.52 0.24 0.14
s.d. 0.28 0.15 0.11

3 15 median 0.49 0.70 0.41
mean 0.75 0.71 0.46
s.d. 0.58 0.39 0.28

1 100 median 0.51 0.55 0.35
mean 0.64 0.55 0.38
s.d. 0.32 0.13 0.16

3 100 median 0.92 1.32 0.75
mean 0.95 1.25 0.77
s.d. 0.46 0.29 0.32

We can see that ISBF clearly outperforms the other methods on this particular
set of experiments. The results for the estimation of β∗∗ are reported in Table
2. Here, the S-LASSO is better.

Table 2. Results for the estimation of β∗∗ (sparse and smooth)

σ p LF LS LISBF

1 15 median 0.51 0.12 0.21
1 15 mean 0.61 0.13 0.24

s.d. 0.52 0.05 0.08
3 15 median 0.85 0.36 0.63

mean 0.91 0.39 0.76
s.d. 0.37 0.28 0.44

1 100 median 0.44 0.31 0.66
mean 0.47 0.35 0.64
s.d. 0.12 0.12 0.08

3 100 median 0.81 0.70 1.21
mean 1.08 0.71 1.22
s.d. 0.80 0.22 0.22

A conclusion to the very short experimental study is that the IFSF seems
better in the case of a sparse and blocky parameter, while the S-LASSO is
better in the case of a sparse and smooth parameter.

5 Application on CGH Data

We now present an application to the detection of amplification or deletion of
DNA using CGH arrays. The data we have are partial CGH arrays (only for
chromosome 17) of cancer cells. The model (for one patient) is the following:

Yi = βi + εi
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for 1 ≤ i ≤ n with n = 7728, here i represents ordered positions of measurements
on the chromosome. Remark that this is a particular case of Model (1) with p = n
and X = In (this context is the one studied by Rinaldo [16]), here i represents
ordered positions of measurements on the chromosome of the patient.

The data we use are on a logarithmic scale, so, βi = 0 means no amplification
or deletion of DNA at position i, βi < 0 means deletion and βi > 0 means
amplification. We use ISBF to estimate β, the results are given in Figures 2 and
3 (for two different patients, with K = 100 and s � 0.01). Note that there is work
left to compare this method to the already available ones in this context. As an
illustration we also give here the results of the estimation using the S-LASSO
procedure with s = t = 0.4, see Figures 4 and 5. However, it is a good point
to see that our method works in a reasonable time on a large dataset and gives
reasonable results, probably more suited for interpretation by a practitioner.

Remark 1. All simulations and experiments were performed with the R soft-
ware [14]. The code is available from the author.

6 Proof of Theorem 1

We now give the proof of our main result. First, we give some preliminary defi-
nitions and result.

Definition 1. For the sake of simplicity let us put Kj = min(K, p − j + 1).

Actually Kj is the maximal length for a group {j, j+1, . . . , j+k−1} constrained
by j + k − 1 ≤ p and k ≤ K.

Definition 2. Let us put, for any s > 0, j ∈ {1, . . . , p} and k ∈ {1, . . . , Kj}:

Rs(j, k) =

{
b ∈ Rp :

∣∣∣∣∣
∑j+k−1

h=j X ′
h(Y − Xb)

1′
j,kX ′X1j,k

∣∣∣∣∣ ≤ s

}

and, for any s > 0 and b ∈ Rp let us define the event

As(b) =
p⋂

j=1

Kj⋂
k=1

{b ∈ Rs(j, k)} .

Lemma 1. For any s > 0 we have

P [As(β)] ≥ 1 − K

(
p − K − 1

2

)
e−

s2n
2nσ2 .

Proof. First, let us note that (1) implies that

X ′(Y − Xβ) ∼ N (0, σ2X ′X)
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Fig. 2. The data Y (in black) and the es-
timated β (in red) using Iterative Selection
of Blocks of Features, for Patient 1

Fig. 3. The data Y (in black) and the esti-
mated β (in red) using Iterative Selection
of Blocks of Features, for Patient 2

Fig. 4. The data Y (in black) and the esti-
mated β (in red) using the S-LASSO esti-
mator, for Patient 1

Fig. 5. The data Y (in black) and the es-
timated β (in red) using the S-LASSO es-
timator, for Patient 2

and so for any j ∈ {1, . . . , p} and k ∈ {1, . . . , Kj},

j+k−1∑
h=j

X ′
h(Y − Xβ) ∼ N (0, σ21′

j,kX ′X1j,k)

or ∑j+k−1
h=j X ′

h(Y − Xβ)
1′

j,kX ′X1j,k
∼ N (0, σ2).
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This implies that, for any j ∈ {1, . . . , p}, for any k ∈ {1, . . . , Kj} and for any
s > 0,

P

(
|X ′

h(Y − Xβ)|
1′

j,kX ′X1j,k
> s

)
≤ e−

s2n
2σ2

and, by a union bound argument over all j ∈ {1, . . . , p} and k ∈ {1, . . . , Kj},

P

⎛⎝∃j ∈ {1, . . . , p}, ∃k ∈ {1, . . . , Kj} :

∣∣∣∑j+k−1
h=j X ′

h(Y − Xβ)
∣∣∣

1′
j,kX ′X1j,k

> s

⎞⎠
≤ e−

s2n
2σ2

K−1∑
�=0

(p − 
) =
[
Kp − K(K − 1)

2

]
e−

s2n
2σ2 .

This ends the proof. �

Definition 3. For any closed and convex set C ⊂ Rp we define ΠC(.) the or-
thogonal projection on C with respect to the norm induced by X:

ΠC(b) = arg min
p∈C

‖X(b − p)‖2
2.

We are now ready to give the proof of Theorem 1. The proof heavily uses the
geometrical considerations given in [2].

Proof of Theorem 1. From now, let us fix s > 0 and assume that we are in
the event As(β) (according to Lemma 1, this is true with probability at least
1 − pK exp(−ns2/(2σ2))).

So, for any j ∈ {1, . . . , p}, k ∈ {1, . . . , Kj}, we have β ∈ Rs(j, k). Moreover,
note that Rs(j, k) is convex and closed. Using classical convex analysis result
(see [2] for example), we have, for any b ∈ Rp,

‖X(ΠRs(j,k)(b) − β)‖2
2 ≤ ‖X(b − β)‖2

2 − ‖X(ΠRs(j,k)(b) − b)‖2
2, (4)

see Figure 6 for an illustration.
The last point of the proof will be to remark that, once that j and k are fixed,

the β̂(m+1) defined in the "1 coordinate move" satisfies

β̂(m+1) = ΠRs(j,k)(β̂(m)).

To see this, remark that the projection ΠRs(j,k)(β̂(m)) is defined by the program⎧⎪⎪⎨⎪⎪⎩
minu∈Rp ‖X(β̂(m) − u)‖2

2

s.t.

∣∣∣∣∑ j+k−1
h=j X′

h(Y −Xu)
1′

j,kX′X1j,k

∣∣∣∣ ≤ s,

of which the solution is given by (2). �
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Fig. 6. Illustration of Equation 4

7 Conclusion and Perspectives

In this paper, we tried to give an estimator that takes advantage of the sparsity of
β as well as of its blockwise aspect in the setting of regression in large dimension.

We proposed a very simple algorithm that performs well in practice, and give
directions for the study of its theoretical performances.

In future works, we would like to give more precise theoretical results - in the
spirit of [3] on the LASSO.

Eventually, we would like to point out some similarities between our estimator
and other well-known estimators. In the proof of our main result, we presented
our sequence of estimators (β̂(m))m as successive projections on various confi-
dence regions of the form

Rs(j, k) =

{
b ∈ Rp :

∣∣∣∣∣
∑j+k−1

h=j X ′
h(Y − Xb)

1′
j,kX ′X1j,k

∣∣∣∣∣ ≤ s

}
.

We may wonder what happens if we project directly the first value β̂(0) = 0
into the intersections of these confidence regions. We obtain an estimator β̂(s, t)
defined by the following program:

β̂(s, t) =

⎧⎪⎪⎨⎪⎪⎩
arg minb∈Rp ‖Xb‖2

2

s.t. supj,k

∣∣∣∣∑ j+k−1
h=j X′

h(Y −Xb)
1′

j,kX′X1j,k

∣∣∣∣ ≤ s.
(5)

If we fix K = 1 (so we only work with constraints defined by single variables
and not by groups of variables), we obtain⎧⎨⎩

minb∈Rp ‖Xb‖2
2

s.t. ‖ 1
nX ′(Y − Xb)‖∞ ≤ s
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that was proved to have as a solution the LASSO estimator given by

min
b∈Rp

⎧⎨⎩‖Y − Xb‖2
2 + 2ns

p∑
j=1

|bj |

⎫⎬⎭ ,

see for example [13] for the proof, and [2] for a discussion of the geometric role of
the constraint ‖(1/n)X ′(Y −Xb)‖∞ ≤ s . So, in some way, the estimator β̂(s, t)
is really a variant of the LASSO, that tries to take into account the fact that β
has blocks. The study of β̂(s, t) will be the object of future works.
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Abstract. We explore a general Bayesian active learning setting, in which the
learner can ask arbitrary yes/no questions. We derive upper and lower bounds on
the expected number of queries required to achieve a specified expected risk.

Keywords: Active Learning, Bayesian Learning, Sample Complexity, Informa-
tion Theory.

1 Introduction

In this work, we study the fundamental complexity of Bayesian active learning by ex-
amining the basic problem of learning from binary-valued queries. We are particularly
interested in identifying a key quantity that characterizes the number of queries required
to learn to a given accuracy, given knowledge of the prior distribution from which the
target is sampled. This topic is interesting both in itself, and also as a general setting in
which to derive lower bounds, which apply broadly to any active learning scenario in
which binary-valued queries are employed, such as the popular setting of active learn-
ing with label requests (membership queries). The analysis of the Bayesian variant of
this setting is important for at least two reasons: first, for practical reasons, as mini-
max analyses tend to emphasize scenarios much more difficult to learn from than what
the world often offers us, so that the smoothed or average-case analysis offered by a
Bayesian setting can often be an informative alternative, and second, for philosophical
reasons, owing to the decision-theoretic interpretation of rational inference, which is
typically formulated in a Bayesian setting.

There is much related work on active learning with binary-valued queries. However,
perhaps the most relevant for us is the result of (Kulkarni et al., 1993). In this classic
work, they allow a learning algorithm to ask any question with a yes/no answer, and
derive a precise characterization of the number of these binary-valued queries neces-
sary and sufficient for learning a target classifier to a prescribed accuracy, in a PAC-
like framework. In particular, they find this quantity is essentially characterized by

M. Hutter et al. (Eds.): ALT 2010, LNAI 6331, pp. 50–58, 2010.
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logM(ε), where 1 − ε is the desired accuracy, and M(ε) is the size of a maximal
ε-packing of the concept space.

In addition to being quite interesting in their own right, these results have played
a significant role in the recent developments in active learning with “label request”
queries for binary classification (Hanneke, 2007b; Hanneke, 2007a; Dasgupta, 2005).
Specifically, since label requests can be viewed as a type of binary-valued query, the
number of label requests necessary for learning is naturally lower bounded by the num-
ber of arbitrary binary-valued queries necessary for learning. We therefore always ex-
pect to see some term relating to logM(ε) in our sample complexity bounds for active
learning with label requests (though this factor is typically represented by its upper
bound: ∝ V C(C) log(1/ε), where V C(C) is the VC dimension).

Also related is a certain thread of the literature on sample complexity bounds for
Bayesian learning. In particular, (Haussler et al., 1994a) study the passive learning
problem in a Bayesian setting, and study the effect of the information made available
via access to the prior. In many cases, the learning problem is made significantly eas-
ier than the worst-case scenarios of the PAC model. In particular, (building from the
work of (Haussler et al., 1994b)) they find that V C(C)/ε random labeled examples are
sufficient to achieve expected error rate at most ε using the Bayes classifier.

Allowing somewhat more general types of queries than (Haussler et al., 1994a), a
paper by (Freund et al., 1997; Seung et al., 1992) studied an algorithm known as Query
by Committee (QBC). Specifically, QBC is allowed to sequentially decide which points
to select, observing each response before selecting the next data point to observe. They
found this additional flexibility can sometimes pay off significantly, reducing the ex-
pected number of queries needed exponentially to only O(log(1/ε)). However, these
results only seem to apply to a very narrow family of problems, where a certain ex-
pected information gain quantity is lower bounded by a constant, a situation which
seems fairly uncommon among the types of learning problems we are typically most
interested in (informative priors, or clustered data). Thus, to our knowledge, the general
questions, such as how much advantage we actually get from having access to the prior
π, and what fundamental quantities describe the intrinsic complexity of the learning
problem, remain virtually untouched in the published literature.

The “label request” query discussed in these Bayesian analyses represents a type
of binary-valued query, though quite restricted compared to the powerful queries an-
alyzed in the present work. As a first step toward a more complete understanding of
the Bayesian active learning problem, we propose to return to the basic question of
how many binary-valued queries are necessary and sufficient in general; but unlike the
(Kulkarni et al., 1993) analysis, we adopt the Bayesian perspective of (Haussler et al.,
1994a) and (Freund et al., 1997), so that the algorithms in question will directly de-
pend on the prior π. In fact, we investigate the problem in a somewhat more general
form, where reference to the underlying data distribution is replaced by direct reference
to the induced pseudo-metric between elements of the concept space. As we point out
below, this general problem has deep connections to many problems commonly stud-
ied in information theory (e.g., the analysis of lossy compression); for instance, one
might view the well-known asymptotic results of rate distortion theory as a massively
multitask variant of this problem. However, to our knowledge, the basic question of the
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number of binary queries necessary to approximate a single random target h∗ to a given
accuracy, given access to the distribution π of h∗, has not previously been addressed in
generality.

Below, we are able to derive upper and lower bounds on the query complexity based
on a natural analogue of the bounds of (Kulkarni et al., 1993). Specifically, we find that
in this Bayesian setting, under an assumption of bounded doubling dimension, the query
complexity is controlled by the entropy of a partition induced by a maximal ε-packing
(specifically, the natural Voronoi partition); in particular, the worst-case value of this
entropy is the logM(ε) bound of (Kulkarni et al., 1993), which represents a uniform
prior over the regions of the partition. The upper bound is straightforward to derive,
but nice to have; but our main contribution is the lower bound, the proof of which is
somewhat more involved.

The rest of this paper is organized as follows. In Section 2, we introduce a few im-
portant quantities used in the statement of the main theorem. Following this, Section 3
contains a statement of our main result, along with some explanation. Section 4 contains
the proof of our result, followed by Section 5, which states a few of the many remaining
open questions about Bayesian active learning.

2 Definitions and Notation

We will formalize our discussion in somewhat more abstract terms.
Formally, throughout this discussion, we will suppose C∗ is an arbitrary (nonempty)

collection of objects, equipped with a separable pseudo-metric ρ : C∗ ×C∗ → [0,∞).1

We suppose C∗ is equipped with its Borel σ-algebra induced by ρ. There is additionally
a (nonempty, measurable) set C ⊆ C∗, and we denote by ρ̄ = sup

h1,h2∈C

ρ(h1, h2). Finally,

there is a probability measure π with π(C) = 1, known as the “prior,” and a C-valued
random variable h∗ with distribution π, known as the “target.” As the prior is essentially
arbitrary, the results below will hold for any prior π.

As an example, in the special case of the binary classifier learning problem studied
by (Haussler et al., 1994a) and (Freund et al., 1997), C∗ is the set of all measurable
classifiers h : X → {−1, +1}, C is the “concept space,” h∗ is the “target function,” and
ρ(h1, h2) = PX∼D(h1(X) �= h2(X)), where D is the distribution of the (unlabeled)
data; in particular, ρ(h, h∗) = er(h) is the “error rate” of h.

To discuss the fundamental limits of learning with binary-valued queries, we define
the quantity QueryComplexity(ε), for ε > 0, as the minimum possible expected num-
ber of binary queries for any learning algorithm guaranteed to return ĥ with E[ρ(ĥ, h∗)]
≤ ε, where the only random variable in the expectation is h∗ ∼ π (and ĥ, which is itself
determined by h∗ and the sequence of queries). For simplicity, we restrict ourselves to
deterministic algorithms in this paper, so that the only source of randomness is h∗.

Alternatively, there is a particularly simple interpretation of the notion of an algo-
rithm based on arbitrary binary-valued queries, which leads to an equivalent definition

1 The set C∗ will not play any significant role in the analysis, except to allow for improper
learning scenarios to be a special case of our setting.
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of QueryComplexity(ε): namely, a prefix-free code. That is, any deterministic algo-
rithm that asks a sequence of yes/no questions before terminating and returning some
ĥ ∈ C∗ can be thought of as a binary decision tree (no = left, yes = right), with the
return ĥ values stored in the leaf nodes. Transforming each root-to-leaf path in the de-
cision tree into a codeword (left = 0, right = 1), we see that the algorithm corresponds
to a prefix-free binary code. Conversely, given any prefix-free binary code, we can con-
struct an algorithm based on sequentially asking queries of the form “what is the first
bit in the codeword C(h∗) for h∗?”, “what is the second bit in the codeword C(h∗) for
h∗?”, etc., until we obtain a complete codeword, at which point we return the value that
codeword decodes to. From this perspective, we can state an equivalent definition of
QueryComplexity(ε) in the language of lossy codes.

Formally, a code is a pair of (measurable) functions (C, D). The encoder, C, maps
any element h ∈ C to a binary sequence C(h) ∈

⋃∞
q=0{0, 1}q (the codeword). The

decoder, D, maps any element c ∈
⋃∞

q=0{0, 1}q to an element D(c) ∈ C∗. For any
q ∈ {0, 1, . . .} and c ∈ {0, 1}q, let |c| = q denote the length of c. A prefix-free code is
any code (C, D) such that no h1, h2 ∈ C have c(1) = C(h1) and c(2) = C(h2) with
c(1) �= c(2) but ∀i ≤ |c(1)|, c

(2)
i = c

(1)
i : that is, no codeword is a prefix of another

(longer) codeword.
Here, we consider a setting where the code (C, D) may be lossy, in the sense that

for some values of h ∈ C, ρ(D(C(h)), h) > 0. Our objective is to design the code to
have small expected loss (in the ρ sense), while maintaining as small of an expected
codeword length as possible, where expectations are over the target h∗, which is also
the element of C we encode. The following defines the optimal such length.

Definition 1. For any ε > 0, define the query complexity as

QueryComplexity(ε)

= inf
{

E

[
|C(h∗)|

]
: (C, D) is a prefix-free code with E

[
ρ
(
D(C(h∗)), h∗

)]
≤ ε

}
,

where the random variable in both expectations is h∗ ∼ π.

Recalling the equivalence between prefix-free binary codes and deterministic learning
algorithms making arbitrary binary-valued queries, note that this definition is equivalent
to the earlier definition.

Returning to the specialized setting of binary classification for a moment, we see
that this corresponds to the minimum possible expected number of binary queries for a
learning algorithm guaranteed to have expected error rate at most ε.

Given this coding perspective, we should not be surprised to see an entropy quantity
appear in the results of the next section. Specifically, define the following quantities.

Definition 2. For any ε > 0, define Y(ε) ⊆ C as a maximal ε-packing of C. That is,
∀h1, h2 ∈ Y(ε), ρ(h1, h2) ≥ ε, and ∀h ∈ C \ Y(ε), the set Y(ε) ∪ {h} does not satisfy
this property.

For our purposes, if multiple maximal ε-packings are possible, we can choose to
define Y(ε) arbitrarily from among these; the results below hold for any such choice.
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Recall that any maximal ε-packing of C is also an ε-cover of C, since otherwise we
would be able to add to Y(ε) the h ∈ C that escapes the cover.

Next we define a complexity measure, a type of entropy, which serves as our primary
quantity of interest in the analysis of QueryComplexity(ε). It is specified in terms of a
partition induced by Y(ε), defined as follows.

Definition 3. For any ε > 0, define

P(ε) =

{{
h ∈ C : f = argmin

g∈Y(ε)
ρ(h, g)

}
: f ∈ Y(ε)

}
,

where we break ties in the argmin arbitrarily but consistently (e.g., based on a pre-
defined preference ordering of Y(ε)). If the argmin is not defined (i.e., the min is not
realized), take any f ∈ Y(ε) with ρ(f, h) ≤ ε (one must exist by maximality of Y(ε)).

Definition 4. For any finite (or countable) partition S of C into measurable regions
(subsets), define the entropy of S

H(S) = −
∑
S∈S

π(S) log2 π(S).

In particular, we will be interested in the quantity H(P(ε)) in the analysis below.
Finally, we will require a notion of dimensionality for the pseudo-metric ρ. For this,

we adopt the well-known doubling dimension (Gupta et al., 2003).

Definition 5. Define the doubling dimension d as the smallest value d such that, for
any h ∈ C, and any ε > 0, the size of the minimal ε/2-cover of the ε-radius ball around
h is at most 2d.

That is, for any h ∈ C and ε > 0, there exists a set {hi}2d

i=1 of 2d elements of C such
that

{h′ ∈ C : ρ(h′, h) ≤ ε} ⊆
2d⋃
i=1

{h′ ∈ C : ρ(h′, hi) ≤ ε/2}.

Note that, as defined here, d is a constant (i.e., has no dependence on h or ε). See
(Bshouty et al., 2009) for a discussion of the doubling dimension of spaces C of binary
classifiers, in the context of learning theory.

3 Main Result

Our main result can be summarized as follows. Note that, since we took the prior to be
arbitrary in the above definitions, this result holds for any prior π.

Theorem 1. If d < ∞ and ρ̄ < ∞, then there is a constant c = O(d) such that
∀ε ∈ (0, ρ̄/2),

H (P (ε log2(ρ̄/ε))) − c ≤ QueryComplexity(ε) ≤ H (P (ε)) + 1.
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Due to the deep connections of this problem to information theory, it should not be
surprising that entropy terms play a key role in this result. Indeed, this type of entropy
seems to give a good characterization of the asymptotic behavior of the query com-
plexity in this setting. We should expect the upper bound to be tight when the regions
in P(ε) are point-wise well-separated. However, it may be looser when this is not the
case, for reasons discussed in the next section.

Although this result is stated for bounded psuedometrics ρ, it also has implications
for unbounded ρ. In particular, the proof of the upper bound holds as-is for unbounded
ρ. Furthermore, we can always use this lower bound to construct a lower bound for
unbounded ρ, simply restricting to a bounded subset of C with constant probability
and calculating the lower bound for that region. For instance, to get a lower bound for
π being a Gaussian distribution on R, we might note that π([−1/2, 1/2]) times the
expected error rate under the conditional π(·|[−1/2, 1/2]) lower bounds the total ex-
pected error rate. Thus, calculating the lower bound of Theorem 1 under the conditional
π(·|[−1/2, 1/2]) while replacing ε with ε/π([−1/2, 1/2]) provides a lower bound on
QueryComplexity(ε).

4 Proof of Theorem 1

We first state a lemma that will be useful in the proof.

Lemma 1. (Gupta et al., 2003) For any γ ∈ (0,∞), δ ∈ [γ,∞), and h ∈ C, we have

|{h′ ∈ Y(γ) : ρ(h′, h) ≤ δ}| ≤
(

4δ

γ

)d

.

Proof. See (Gupta et al., 2003). ��

Proof (of Theorem 1). Throughout the proof, we will consider a set-valued random
quantity Pε(h∗) with value equal to the set in P(ε) containing h∗, and a corresponding
C-valued random quantity Yε(h∗) with value equal the sole point in Pε(h∗) ∩ Y(ε):
that is, the target’s nearest representative in the ε-packing. Note that, by Lemma 1,
|Y(ε)| < ∞ for all ε ∈ (0, 1). We will also adopt the usual notation for entropy (e.g.,
H(Pε(h∗))) and conditional entropy (e.g., H(Pε(h∗)|X)), both in base 2; see (Cover &
Thomas, 2006) for definitions.

To establish the upper bound, we simply take C as the Huffman code for the random
quantity Pε(h∗) (Cover & Thomas, 2006). It is well-known that the expected length of
a Huffman code for Pε(h∗) is at most H(Pε(h∗))+1 (in fact, is equal H(Pε(h∗)) when
the probabilities are powers of 2) (Cover & Thomas, 2006), and each possible value
of Pε(h∗) is assigned a unique codeword so that we can perfectly recover Pε(h∗) (and
thus also Yε(h∗)) based on C(h∗). In particular, define D(C(h∗)) = Yε(h∗). Finally,
recall that any maximum ε-packing is also an ε-cover; that is, for every h ∈ C, there
is at least one h′ ∈ Y(ε) with ρ(h, h′) ≤ ε (otherwise, we could add h to the packing,
contradicting its maximality). Thus, since every element of the set Pε(h∗) has Yε(h∗) as
its closest representative in Y(ε), we must have ρ(h∗, D(C(h∗))) = ρ(h∗, Yε(h∗)) ≤ ε.
In fact, as this proof never relies on d < ∞ or ρ̄ < ∞, this establishes the upper bound
even in the case d = ∞ or ρ̄ = ∞.
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The proof of the lower bound is somewhat more involved, though the overall idea
is simple enough. Essentially, the lower bound would be straightforward if the regions
of P(ε log2(ρ̄/ε)) were separated by some distance, since we could make an argument
based on Fano’s inequality to say that since any ĥ is “close” to at most one region, the
expected distance from h∗ is at least as large as half this inter-region distance times a
quantity proportional to the entropy. However, it is not always so simple, as the regions
can generally be quite close to each other (even adjacent), so that it is possible for ĥ to be
close to multiple regions. Thus, the proof will first “color” the regions of P(ε log2(ρ̄/ε))
in a way that guarantees no two regions of the same color are within distance ε log2(ρ̄/ε)
of each other. Then we apply the above simple argument for each color separately (i.e.,
lower bounding the expected distance from h∗ under the conditional given the color of
Pε log2(ρ̄/ε)(h∗) by a function of the entropy under the conditional), and average over
the colors to get a global lower bound. The details follow.

Fix any ε ∈ (0, ρ̄/2), and for brevity let α = ε log2(ρ̄/ε). We suppose (C, D) is
some prefix-free binary code (representing the learning algorithm’s queries and return
policy).

Define a function K : P(α) → N such that ∀P1, P2 ∈ P(α),

K(P1) = K(P2) =⇒ inf
h1∈P1,h2∈P2

ρ(h1, h2) ≥ α, (1)

and suppose K has minimum H(K(Pα(h∗))) subject to (1). We will refer to K(P ) as
the color of P .

Now we are ready to bound the expected distance from h∗. Let ĥ = D(C(h∗))
denote the element returned by the algorithm (decoder), and let Pα(ĥ;K) denote the set
P ∈ P(α) having K(P ) = K with smallest infh∈P ρ(h, ĥ) (breaking ties arbitrarily).
We know

E[ρ(ĥ, h∗)] = E

[
E[ρ(ĥ, h∗)|K(Pα(h∗))]

]
. (2)

Furthermore, by (1) and a triangle inequality, we know no ĥ can be α/3-close to more
than one P ∈ P(α) of a given color. Therefore,

E[ρ(ĥ, h∗)|K(Pα(h∗))] ≥ α

3
P(Pα(ĥ;K(Pα(h∗))) �= Pα(h∗)|K(Pα(h∗))). (3)

By Fano’s inequality, we have

E

[
P(Pα(ĥ;K(Pα(h∗))) �=Pα(h∗)|K(Pα(h∗)))

]
≥H(Pα(h∗)|C(h∗),K(Pα(h∗)))−1

log2 |Y(α)| .

(4)
It is generally true that, for a prefix-free binary code C(h∗), C(h∗) is a lossless prefix-
free binary code for itself (i.e., with the identity decoder), so that the classic entropy
lower bound on average code length (Cover & Thomas, 2006) implies H(C(h∗))
≤ E[|C(h∗)|]. Also, recalling that Y(α) is maximal, and therefore also an α-cover, we
have that any P1, P2 ∈ P(α) with inf

h1∈P1,h2∈P2
ρ(h1, h2) ≤ α have ρ(Yα(h1), Yα(h2))

≤ 3α (by a triangle inequality). Therefore, Lemma 1 implies that, for any given P1 ∈
P(α), there are at most 12d sets P2 ∈ P(α) with inf

h1∈P1,h2∈P2
ρ(h1, h2) ≤ α. We there-

fore know there exists a function K′ : P(α) → N satisfying (1) such that max
P∈P(α)

K′(P )
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≤ 12d (i.e., we need at most 12d colors to satisfy (1)). That is, if we consider coloring
the sets P ∈ P(α) sequentially, for any given P1 not yet colored, there are < 12d sets
P2 ∈ P(α) \ {P1} within α of it, so there must exist a color among {1, . . . , 12d} not
used by any of them, and we can choose that for K′(P1). In particular, by our choice of
K to minimize H(K(Pα(h∗))) subject to (1), this implies

H(K(Pα(h∗))) ≤ H(K′(Pα(h∗))) ≤ log2(12d) ≤ 4d.

Thus,

H(Pα(h∗)|C(h∗),K(Pα(h∗))) (5)

= H(Pα(h∗), C(h∗),K(Pα(h∗))) − H(C(h∗)) − H(K(Pα(h∗))|C(h∗)) (6)

≥ H(Pα(h∗)) − H(C(h∗)) − H(K(Pα(h∗))) ≥ H(Pα(h∗)) − E [|C(h∗)|] − 4d

= H(P(α)) − E [|C(h∗)|] − 4d. (7)

Thus, combining (2), (3), (4), and (7), we have

E[ρ(ĥ, h∗)] ≥ α

3
H(P(α)) − E [|C(h∗)|] − 4d − 1

log2 |Y(α)|

≥ α

3
H(P(α)) − E [|C(h∗)|] − 4d − 1

d log2(4ρ̄/α)
,

where the last inequality follows from Lemma 1.
Thus, for any code with

E [|C(h∗)|] < H(P(α)) − 4d − 1 − 3d
log2(4ρ̄/ε)
log2(ρ̄/ε)

,

we have E[ρ(ĥ, h∗)] > ε, which implies

QueryComplexity(ε) ≥ H(P(α)) − 4d − 1 − 3d
log2(4ρ̄/ε)
log2(ρ̄/ε)

.

Since log2(4ρ̄/ε)/ log2(ρ̄/ε) ≤ 3, we have

QueryComplexity(ε) = H(P(α)) − O(d).

��

5 Open Problems

Generally, we feel this topic of Bayesian active learning is relatively unexplored, and as
such there is an abundance of ripe open problems ready for solvers.

In our present context, there are several interesting questions, such as whether the
log(ρ̄/ε) factor in the entropy argument of the lower bound can be removed, whether
the additive constant in the lower bound might be improved, and in particular whether a
similar result might be obtained without assuming d < ∞ (e.g., by making a VC class
assumption instead).
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Additionally, one can ask for necessary and sufficient conditions for this entropy
lower bound to be achievable via a restricted type of query, such as label requests (mem-
bership queries).

Overall, the challenge here is to understand, to as large an extent as possible, how
much benefit we get from having access to the prior, and what the general form of
improvements we can expect in the query complexity given this information are.
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Abstract. Stability has been explored to study the performance of
learning algorithms in recent years and it has been shown that stability is
sufficient for generalization and is sufficient and necessary for consistency
of ERM in the general learning setting. Previous studies showed that Ad-
aBoost has almost-everywhere uniform stability if the base learner has
L1 stability. The L1 stability, however, is too restrictive and we show that
AdaBoost becomes constant learner if the base learner is not real-valued
learner. Considering that AdaBoost is mostly successful as a classification
algorithm, stability analysis for AdaBoost when the base learner is not
real-valued learner is an important yet unsolved problem. In this paper,
we introduce the approximation stability and prove that approximation
stability is sufficient for generalization, and sufficient and necessary for
learnability of AERM in the general learning setting. We prove that Ad-
aBoost has approximation stability and thus has good generalization,
and an exponential bound for AdaBoost is provided.

1 Introduction

Stability has been considered as an important tool for studying the performance
of learning algorithms in recent years. Intuitively, the stability of a learning al-
gorithm can be referred as perturbation sensitivity in the training sample. It
was first introduced in [5] for estimating leave-one-out error and further used to
bound empirical risk of regression [10], which discovered a connection between
finite VC dimension and stability. Bousquet and Elisseeff [3] obtained an expo-
nential bound for uniform stability and proved that the Tikhonov regularized
algorithms hold uniform stability property. Kutin and Niyogi [12] generalized the
uniform stability to almost-everywhere algorithmic stability and derived general-
ization error bounds with extensions of McDiarmid’s inequality. Stability has also
been employed to bound the bias and variance of estimators for ERM (empirical
risk minimization) or general algorithm [17]. An influential work of Mukherjee
et al. [16] showed that stability is sufficient for generalization and sufficient and
necessary for consistency of ERM in supervised regression and classification.
Later, this result was extended to general learning setting by Shalev-Shwartz et
al. [22].

AdaBoost [6, 7] is one of the most influential learning algorithms during the
past decades. Many theoretical efforts have been devoted to studying the mys-
teries behind the great success of AdaBoost. There are different interpretations

M. Hutter et al. (Eds.): ALT 2010, LNAI 6331, pp. 59–73, 2010.
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from different aspects, and they have shed important insights for understanding
the behaviors of AdaBoost. However, debates are still lasting to date, for ex-
ample, on margin-based interpretation [4, 21, 19, 25] and statistical-view-based
interpretation [2, 9, 15].

Considering the recent advances in stability, it is interesting to study the
stability issues of AdaBoost. Kutin and Niyogi [11] proved that AdaBoost has
almost-everywhere uniform stability if the base learner is L1 stable. To the best
of our knowledge, this is the only stability result for AdaBoost. The requirement
of L1 stability, however, is too restrictive, and as we will show in Section 4,
AdaBoost becomes constant learner when the base learner is not real-valued
learner. Note that as Freund and Schapire [8] indicated, AdaBoost is a classi-
fication algorithm, and so it is important to study the situation when the base
learner is not real-valued learner.

In this paper, we introduce the notion of approximation stability, and prove
that the approximation stability is sufficient for generalization, and is sufficient
and necessary for learnability of AERM (asymptotical empirical risk minimiza-
tion) in the general learning setting. Then, we prove that AdaBoost has approx-
imation stability and thus has good generalization, and an exponential bound
for AdaBoost is provided. All bounds obtained in this paper do not rely on any
space complexity measure, but rather on the way the algorithm searches the
space, and thus can be used even when the VC dimension is infinite.

In the rest of this paper we begin by introducing some notations and back-
ground knowledge in Section 2. Then, we give our results in Sections 3 and 4,
and finally present the detail proofs in Section 5.

2 Preliminaries

2.1 Notations

Let Z denote an instance space and D denote an unknown probability distri-
bution over Z. We use PrD[·] to refer to the probability with respect to D and
PrS [·] to denote the probability with respect to a uniform distribution over the
training sample S. Similarly, we use ED[·] and ES [·] to denote the expected val-
ues, respectively. For a positive number n, we denote by [n] the set {1, 2, · · · , n}.
Given two distributions p and q with finite support, ||p − q|| is defined to be
the L1-norm of p − q, i.e., ||p − q|| =

∑
z∈Z |p(z) − q(z)|. For a given sample

S = {z1, z2, · · · , zn} drawn i.i.d. according to distribution D, let Si = S \ zi be
the sample with the i-th example zi removed from S. For any u ∈ Z, we denote
by Si,u = Si ∪ {u} the sample with the i-th example zi replaced by u in S.

A learning algorithm is a function A which maps a distribution p over Z onto
a function Ap ∈ H, where H is a specific hypothesis class. Note that AS means
Ap where p is the uniform distribution on the training sample S. Throughout
this paper, we consider symmetric algorithms, i.e., algorithms depend upon the
given sample but not on the order of examples in the sample.

To measure the performance, we introduce a cost function c : H × Z → R.
We assume such cost function is bounded by some constant B, i.e., |c(h, z)| ≤ B
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for every h ∈ H and z ∈ Z. Given a sample S with size n and function h ∈ H,
define the empirical risk and expect risk, respectively, as

RS(h) = Ez∼S [c(h, z)] =
1
n

∑
z∈S

c(h, z) and R(h) = Ez∼D[c(h, z)].

The general learning setting [24] is to minimize the expect risk, i.e., minh∈H R(h).
Such setting comprises density estimation, stochastic optimization and super-
vised classification and regression. For instance, in supervised learning, z = (x, y)
is an instance-label pair and c(h, z) = c(h(x), y) is the prediction loss for h ∈ H.

Classical learning theory focuses on ERM, that is,

RS(AS) = RS(ĥS) = min
h∈H

RS(h),

where we denote by ĥS = argminh∈H RS(h). A learning algorithm A is said to
be AERM with rate εerm(n) under distribution D if

ES∼Dn [RS(AS) − RS(ĥS)] ≤ εerm(n).

We focus on AERM learning problems in this paper and ERM can be resolved
in a similar way.

We say a learning algorithm A is consistent with rate εcon(n) under distribu-
tion D if

ES∼Dn [R(AS) − R(h∗)] ≤ εcon(n) for all n,

where h∗ = arg minh∈H R(h). An algorithm A is universally consistent with
rate εcon(n) if it is consistent with rate εcon(n) under all distributions D over
Z. A problem is learnable if there exists a universal consistent algorithm. The
most influential result in classical learning theory for supervised classification
and regression is that a problem is learnable if and only if the empirical risk
RS(h) converges to the expect risk R(h) [24]. This equivalence, however, does
not always hold in the general learning setting [1, 23].

We say a learning algorithm A generalizes with rate εgen(n) under distribution
D if

ES∼Dn [|R(AS) − RS(AS)|] ≤ εgen(n) for all n.

An algorithm A universally generalizes with εgen(n) if it generalizes with rate
εgen(n) under all distributions D over Z. In this paper we require εerm(n), εcon(n),
εgen(n) → 0 as n → ∞.

2.2 Stability

Stability has been explored as an alternative for learnability. Definitions 1 and
2 show the CV stability [12, 17] and uniform stability [3], respectively.

Definition 1. A learning algorithm A has CV stability η(n) under distribution
D if

∀ i ∈ [n], ES,u∼Dn+1[|c(AS , u) − c(ASi,u , u)|] ≤ η(n).
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Algorithm 1. AdaBoost
Input: Sample S = {z1 = (x1, y1), z2 = (x2, y2), · · · , zn = (xn, yn)} ∈ Zn, base learner
A and iteration rounds T .
Initialization: P 1

S(zi) = 1/n for each zi ∈ S.
for t = 1 to T do

1. Call A with respect to distribution P t
S to obtain a hypothesis AP t

S
.

2. Choose αt
S = 1

2
ln 1−errt

S

errt
S

with errt
S = Ez∼P t

S
[c(AP t

S
, z)], where c(AP t

S
, z) =

I [AP t
S
(x) 
= y].

3. Update P t+1
S (zi) = 1

Zt
P t

S(zi) exp(−αt
SyiAP t

S
(xi)), where Zt is a normalization

factor (such that P t+1
S is a distribution).

end for

Output: The learner sgn(HS(x)) where HS(x) =
∑T

t=1 αt
SAP t

S
(x).

Definition 2. A learning algorithm A has uniform stability β(n) if

∀ S ∈ Zn, ∀ i ∈ [n] and ∀ z, u ∈ Z, |c(AS , z) − c(ASi,u , z)| ≤ β(n).

A relevant concept, on-average-LOO stability [22], is defined as follows:

Definition 3. A learning algorithm A has on-average-LOO stability β(n) if∣∣∣ 1
n

∑n

i=1
ES∼Dn [c(ASi , zi) − c(AS , zi)]

∣∣∣ ≤ β(n).

Here and whenever talking about “stability” β(n) and η(n), we require β(n), η(n)
→ 0 as n → ∞.

In this paper we will introduce approximation stability which is a kind of re-
placement version stability. As Shalev-Shwartz et al. [22] indicated, previously
many researchers defined stability with respect to the deletion rather than re-
placement of an example. For instance, the deletion version uniform stability
[5], the hypothesis stability [3], the cross-validation-(deletion) stability [17], the
CVloo stability [16], etc. It is worth noting, however, that the deletion version
stability implies the replacement version stability but not vice versa1; this is the
reason why we focus on replacement version stability in this paper.

2.3 AdaBoost

Algorithm 1 shows a commonly used description of AdaBoost [6]. Kutin and
Niyogi [11] studied the stability of AdaBoost and proved that when the base
learner has L1 stability and is real-valued with loss function c(h, z) = |h(x)− y|,
AdaBoost has almost-everywhere uniform stability. The L1 stability is given in
Definition 4, which is equivalent to uniform stability, and the main result of [11]
is shown in Theorem 1 using our notations.
1 An example can be found in [16]: Let Z = X × {+1,−1} with X being uniform on

[0, 1]. Suppose the target function is t(x) = 1 with 0/1 loss function. Given a sample
Sn of size n, a non-AERM algorithm ASn(x) = (−1)n. Note that AS does not have
any deletion version stability but has replacement version uniform stability.
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Definition 4. A learning algorithm A has L1 stability λ (constant) if |c(Ap, z)−
c(Aq, z)| ≤ λ||p − q|| for any z ∈ Z and any given distributions p and q on Z
with finite support.

Theorem 1. Suppose the base learner A has L1 stability λ, and let

ε� =
1
2

lim
n→∞ inf ES∼Dn

[
inf

Ŝ∈Zm,m≤n
RS(AŜ)

]
> 0.

Then, for all sufficiently large n and for all T , it holds for AdaBoost that

PrS∼Dn [∀ i ∈ [n], ∀ u, z ∈ Z, |c(HS, z) − c(HSi,u , z)| ≤ β(n)] ≥ 1 − δ(n),

where β(n) = 2
n

∑T
t=1 2t2+1(λ + 1)t/ε2t−1

� and δ(n) = exp(−nε2�/2).

To the best of our knowledge, this is the only stability result for AdaBoost.
It is worth noting, however, that it was obtained based on real-valued learner
with the loss function c(h, z) = |h(x) − y|. We will show in Section 4 that
for this result, AdaBoost becomes constant learner when the base learner is
not real-valued learner. As Freund and Schapire [8] indicated, AdaBoost is a
classification algorithm and therefore, it is important to study the stability of
AdaBoost when the base learner is not real-valued learner, with the loss function
c(h, z) = I[h(x) �= y] that is popularly used by classification algorithms; this
remains an open problem and we will try to tackle it in the following sections.

3 Approximation Stability

We first introduce the empirical stability, expected empirical stability, validation
stability and expected validation stability:

Definition 5. A learning algorithm A has empirical stability β(n) if

∀ S ∈ Zn, ∀ i ∈ [n] and ∀ u ∈ Z, |RS(AS) − RSi,u(ASi,u)| ≤ β(n).

A learning algorithm A has expected empirical stability β(n) under distribution
D if

∀ i ∈ [n], ES,u∼Dn+1[|RS(AS) − RSi,u(ASi,u)|] ≤ β(n).

Definition 6. A learning algorithm A has validation stability β(n) under dis-
tribution D if

∀ S ∈ Zn and ∀ i ∈ [n], |R(AS) − Eu∼D[c(ASi,u , u)]| ≤ β(n).

A learning algorithm A has expected validation stability β(n) under distribution
D if

∀ i ∈ [n], ES∼Dn [|R(AS) − Eu∼D[c(ASi,u , u)]|] ≤ β(n).

An algorithm A has universally expected validation stability β(n) if the stability
holds with β(n) for all distributions D over Z. Combining the expected empirical
stability and expected validation stability gives approximation stability:



64 W. Gao and Z.-H. Zhou

Definition 7. A learning algorithm A has approximation stability (β1(n), β2(n))
under distribution D if it exhibits both expected empirical stability β1(n) and
expected validation stability β2(n).

We prove that approximation stability is sufficient for generalization in the fol-
lowing theorem:

Theorem 2. If an algorithm A has approximation stability (β1(n), β2(n)), then
A generalizes with rate εgen(n) = B/

√
n +

√
3β1(n)B/2 + 4β2(n)B + 3B2/

√
n,

that is,

ES∼Dn [|R(AS) − RS(AS)|] ≤ B/
√

n +
√

3β1(n)B/2 + 4β2(n)B + 3B2/
√

n.

Note that the CLT (central limit theorem) guarantees that the average of i.i.d.
random variables converges to expectation. However, AS is dependent on S and
thus the CLT is not applicable. The proof in Section 5 shows that the combi-
nation of expected validation stability and expected empirical stability implies
generalization, though neither the expected validation stability nor the expected
empirical stability is sufficient.

Next, we study the relationship between the approximation stability and the
learnability of AERM in the general learning setting. Lemma 1 shows that
AERM implies expected empirical stability. Hence we only need to study the
relationship between the expected validation stability and the learnability of
AERM. Theorem 3 establishes the equivalence between them.

Lemma 1 (AERM ⇒ Expected empirical stability). If a learning algo-
rithm A is AERM with rate εerm(n) under distribution D, then A has expected
empirical stability β(n) = 2εerm(n) + 2B/n.

Proof. For any i ∈ [n] and any u ∈ Z, we have

ES∼Dn [|RS(AS) − RSi,u(ASi,u)|] ≤ ES∼Dn [|RS(AS) − RS(ĥS)|]
+ ES∼Dn [|RS(ĥS) − RSi,u(ĥSi,u)|] + ES∼Dn [|RSi,u(ĥSi,u) − RSi,u(ASi,u)|]

≤ 2εerm(n) + 2B/n,

since |RS(ĥS) − RSi,u(ĥSi,u)| ≤ 2B/n from the definition of ERM. ��

Theorem 3. The following are equivalent for an AERM:

– Universal expected validation stability;
– Universal consistency;
– Universal generalization.

The equivalence between the on-average-LOO stability and learnability has been
established in [22]. We thus work by establishing the equivalence between the ex-
pected validation stability and on-average-LOO stability under AERM, though
this equivalence does not always hold in general and we use other techniques in
such case in the proof.
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It is worth noting that the uniform stability [3], which could be strictly
stronger than any other stability, is not necessary for learnability [22]. Mukherjee
et al. [16] suggested that LOO stability implies generalization, and is necessary
and sufficient for consistency of ERM via uniform convergence of RS(h) to R(h).
It is well-known that uniform convergence is not equivalent to ERM consistency
[1, 23] and thus their work is specific to supervised learning. In the general learn-
ing setting, the equivalence between on-average-LOO stability and learnability
has been established for AERM [22]. However, out of the AERM framework
there are also many useful learning algorithms, on which the on-average-LOO
stability could not be applied. For instance, we could not guarantee that Ad-
aBoost is AERM, and thus our approximation stability is meaningful for its
analysis. Overall, comparing to previous stabilities, our approximation stability
does not only promise generalization for general algorithm, but also guarantee
sufficiency and necessity of learnability of AERM in the general setting.

Finally, we derive a bound for learning algorithm A which has both empirical
stability and validation stability. The following theorem shows that the empirical
risk converges to expect risk with high probability when β1(n) = o(n− 1

2 ) and
β2(n) = o(n− 1

2 ) where o(n) represents o(n)
n → 0 as n → ∞.

Theorem 4. If a learning algorithm A has both empirical stability β1(n) and
validation stability β2(n) under distribution D, then, for all n ≥ 1 and ε > 0,

PrS∼Dn [|R(AS) − RS(AS)| ≥ ε + β2(n)] ≤ 2 exp
(

−2ε2

n(β1(n) + 2β2(n))2

)
.

Uniform stability is sufficient for exponential generalization bound [3], however,
it can only be used for regression or classification with real-valued learners. Note
that the uniform stability implies empirical stability and validation stability,
but not vice versa. Thus we get an exponential bound though our assumption is
weaker than that used by [3] for the uniform stability bound.

Proof. Let F (S) = R(AS) − RS(AS). For any i ∈ [n], we have

|ES∼Dn [F (S)]| ≤ |ES,u∼Dn+1[R(AS) − RSi,u(ASi,u)]|
+ |ES,u∼Dn+1[RSi,u(ASi,u) − RS(AS)]| = |ES,u∼Dn+1[R(AS) − RSi,u(ASi,u)]|,

by using ES,u∼Dn+1[RSi,u(ASi,u)] = ES∼Dn [RS(AS)]. From symmetry and i.i.d
assumption, ES,u∼Dn+1[RSi,u(ASi,u)] = ES,u∼Dn+1[c(ASi,u , u)], which leads to

|ES,u∼Dn+1[R(AS) − RSi,u(ASi,u)]|
= |ES∼Dn [R(AS) − Eu∼D[c(ASi,u , u)]]| ≤ β2(n).

Thus we bound |ES∼Dn [F (S)]| ≤ β2(n). Meanwhile, it holds

|F (S) − F (Si,u)| ≤ |R(AS) − R(ASi,u)| + |RS(AS) − RSi,u(ASi,u)|
≤ |R(AS) − Ez∼D[c(ASi,z , z)] + Ez∼D[c(ASi,z , z)] − R(ASi,u)|

+ β1(n) ≤ β1(n) + 2β2(n).

This theorem follows by applying McDiarmid formula [14] to F (S). ��
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4 Approximation Stability for AdaBoost

The following lemma shows that the L1 stability is too restrictive for non real-
valued learners with cost function c(h, z) = I[h(x) �= y].

Lemma 2. If a learning algorithm A has L1 stability λ, then ASn is a constant
algorithm for n > 2λ.

Proof. From the definition of L1 stability, we have

∀ S ∈ Zn, ∀ i ∈ [n] and ∀ z, u ∈ Z, |c(AS , z) − c(ASi,u , z)| ≤ 2λ/n.

It follows AS(z) = ASi,u(z) since c(h, z) ∈ {0, 1} and |c(AS , z) − c(ASi,u , z)| < 1
for n > 2λ. We can also prove AS(z) = ASi(z) for all z ∈ Z in a similar way. ��

If the base learner in AdaBoost is not real-valued learner for large-size sam-
ple, then the base learner is a constant learner according to the above lemma.
This follows that AdaBoost becomes a constant learner. Thus, Theorem 1, the
only stability result for AdaBoost, does not completely explain the stability of
AdaBoost for general base learner.

Since AdaBoost is mostly successful as a classification algorithm, in contrast
to considering real-valued base learner with loss function c(h, z) = |h(x) − y|,
it may be more interesting to consider non real-valued base learner with loss
function c(h, z) = I[h(x) �= y] which is adopted by classifiers such as decision
trees and decision stumps that are popularly used with AdaBoost in practice.

Below we will discuss the stability of AdaBoost. Observing that

Pr
S

[y �= sgn(HS(x))] = ES [I[yHS(x) ≤ 0]] ≤ ES [exp(−yHS(x))],

we choose the cost function for HS(x) as c(HS , z) = exp(−yHS(x)). This is also
in accordance with the theory that AdaBoost can be regarded as a coordinate
descent algorithm [4, 9, 13, 18] for minimizing RS(HS). For base learner, we set
the cost function c(At

S , z) = I[At
S(x) �= y] described in Algorithm 1.

We assume the iteration number T for AdaBoost is given in advance, and thus
T is a constant since stability could not be used to analyze AdaBoost for unfixed
or infinite T . We also assume γ ≤ errt

S ≤ 1 − γ for some small γ > 0, because
c(HS , z) may approach to infinity if errt

S → 0 or errt
S → 1, which goes beyond

our discussion (bounded cost function). Such assumption can be viewed as a
variation of “bounded edges” in [20]. A bound for c(HS, z) is given as follows.

Lemma 3. For constant T ≥ 1 and any S ∈ Zn, if the base learner in each
iteration satisfies γ ≤ errt

S ≤ 1 − γ with γ > 0, then c(HS , z) ≤
(
(1 − γ)/γ

)T/2.

Proof. Since αt
S = 1

2 ln((1−errt
S)/errt

S) and γ ≤ errt
S ≤ 1−γ, we have 1

2 ln(γ/(1−
γ)) ≤ αt

S ≤ 1
2 ln((1 − γ)/γ). It follows c(HS , z) = exp

(
− y

∑T
t=1 αt

SAP t
S
(x)

)
≤

exp
(∑T

t=1 |αt
S |
)
≤
(
(1 − γ)/γ

)T/2 as desired. ��

Denote by B the bound of c(HS , z) for notational simplicity. We have the fol-
lowing theorem on the approximation stability of AdaBoost:
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Theorem 5. AdaBoost has approximation stability (β1(n), β2(n)) for constant
T ≥ 1, if the base learner in each round has CV stability η(n), and for any
u ∈ Z, i ∈ [n], t ∈ [T ] and small γ > 0, the following holds:

ES,u∼Dn+1[|errt
S − errt

Si,u |] ≤ ζ(n) and γ ≤ errt
S , errt

Si,u ≤ 1 − γ.

Here

β1(n) =
ζ(n)T√
γ(1 − γ)

and β2(n) =
BT

2

(
η(n) ln

1 − γ

γ
+

ζ(n)
γ(1 − γ)

)
.

Also, we have

ES∼Dn [|R(HS) − RS(HS)|] ≤ B/
√

n +
√

3β1(n)B/2 + 4β2(n)B + 3B2/
√

n.

We can also have a tighter bound for AdaBoost by considering Theorem 4:

Theorem 6. AdaBoost has empirical stability β1(n) and validation stability
β2(n) for constant T ≥ 1, if for any u, S ∈ Zn+1, i ∈ [n], t ∈ [T ] and small
γ > 0, the following holds:

Eu∼D[|c(AS , u) − c(ASi,u , u)|] ≤ η(n), |errt
S − errt

Si,u | < ζ(n),

and γ ≤ errt
S , errt

Si,u ≤ 1 − γ. Here

β1(n) =
ζ(n)T√
γ(1 − γ)

and β2(n) =
BT

2

(
η(n) ln

1 − γ

γ
+

ζ(n)
γ(1 − γ)

)
.

For ε > 0, we have

PrS∼Dn [|R(HS) − RS(HS)]| ≥ ε + β2(n)] ≤ 2 exp
(

−2ε2

n(β1(n) + 2β2(n))2

)
.

5 Proofs

This section presents detail proofs of our main theorems. Before proceeding our
proofs, we introduce some tools which will be used:

Proposition 1. [22] Let |Xi| ≤ B and X =
∑n

i=1 Xi/n for i.i.d. Xi. Then we
have E[|X − E[X ]|] ≤ B/

√
n.

Proposition 2. [22] If X, Y are random variables s.t. X ≤ Y almost surely,
then E[|X |] ≤ |E[X ]| + 2E[|Y |].

Proposition 3. If a learning algorithm A has expected validation stability β(n)
under distribution D, then ES,u∼Dn+1[|R(AS)−R(ASi,u)|] ≤ 2β(n) for all i ∈ [n].

The last proposition follows from the fact ES,u∼Dn+1[|R(AS) − R(ASi,u)|] =
ES,u∼Dn+1[|Ez∼D[c(AS , z) − c(ASi,z , z) + c(ASi,z , z) − c(ASi,u , z)]|].
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5.1 Proof of Theorem 2

We start by introducing a ghost sample Ŝ = {ẑ1, ẑ2, · · · , ẑn} drawn i.i.d accord-
ing to distribution D and denote RŜ(AS) =

∑n
i=1 c(AS , ẑi)/n. It follows

ES∼Dn [|RS(AS) − R(AS)|] ≤ ES,Ŝ∼D2n [|R(AS) − RŜ(AS)|]
+ ES,Ŝ∼D2n [|RS(AS) − RŜ(AS)|].

We bound the first term by ES,Ŝ∼D2n [|R(AS) − RŜ(AS)|] ≤ B/
√

n from Propo-
sition 1 since AS is independent of Ŝ. For the second term, using the Jensen’s
inequality,

ES,Ŝ∼D2n [|RS(AS) − RŜ(AS)|] ≤
√

ES,Ŝ∼D2n [(RS(AS) − RŜ(AS))2].

To bound this expression, we introduce a random permutation which swaps
elements between S and Ŝ, i.e., a permutation σ on {1, 2, · · · , n, 1̂, 2̂, · · · , n̂} s.t.
{σ(i), σ(̂i)} = {i, î}. Denote by Sσ and Ŝσ the permuted samples of S and Ŝ,
respectively, and define zσ

i and ẑσ
i in an obvious way. Since S and Ŝ are chosen

i.i.d according to distribution D, ES,Ŝ∼D2n [(RS(AS) − RŜ(AS))2] equals to

ES,Ŝ∼D2n

[∑
σ

(
RSσ (ASσ ) − RŜσ (ASσ )

)2
/2n

]
=

1
n22n

ES,Ŝ∼D2n

[∑
i,j,σ

(
c(ASσ , zσ

i ) − c(ASσ , ẑσ
i )
)(

c(ASσ , zσ
j ) − c(ASσ , ẑσ

j )
)]

.

Given σ and i, we define two permutations σ1 and σ2 as follows: σ1(i) = i,
σ1 (̂i) = î, σ2(i) = î, σ2(̂i) = i and σ1(k) = σ2(k) = σ(k) for k �= i, î. It holds∑

σ

(
c(ASσ , zσ

i ) − c(ASσ , ẑσ
i )
)(

c(ASσ , zσ
j ) − c(ASσ , ẑσ

j

)
=
∑

σ1

(
c(ASσ1 , zσ1

i ) − c(ASσ1 , ẑσ1
i )

)(
c(ASσ1 , zσ1

j ) − c(ASσ1 , ẑσ1
j )

)
/2

+
∑

σ2

(
c(ASσ2 , zσ2

i ) − c(ASσ2 , ẑσ2
i )

)(
c(ASσ2 , zσ2

j ) − c(ASσ2 , ẑσ2
j )

)
/2

=
∑

(Θij + Δij)/2

where Θij = χ3(χ4 − χ2) and Δij = χ2(χ1 + χ3) with χ1 = c(ASσ1 , zσ1
i ) −

c(ASσ1 , ẑσ1
i ), χ2 = c(ASσ1 , zσ1

j ) − c(ASσ1 , ẑσ1
j ), χ3 = c(ASσ2 , zσ2

i ) − c(ASσ2 , ẑσ2
i )

and χ4 = c(ASσ2 , zσ2
j ) − c(ASσ2 , ẑσ2

j ). Noting σ1 and σ2 are independent of j,

ES,Ŝ

[∑n

i=1

∑n

j=1
Θij/n2

]
= ES,Ŝ

[∑n

i=1

(
c(ASσ2 , zσ2

i ) − c(ASσ2 , ẑσ2
i )

)
×
(
RSσ2 (ASσ2 ) − RSσ1 (ASσ1 ) + RŜσ1 (ASσ1 ) − RŜσ2 (ASσ2 )

)
/n

]
.
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Since |c(AS , z)| ≤ B and A has approximation stability (β1(n), β2(n)), we obtain
ES,Ŝ∼D2n [|RSσ1 (ASσ1 ) − RSσ2 (ASσ2 )|] ≤ β1(n) and

ES,Ŝ∼D2n [|RŜσ2 (ASσ2 ) − RŜσ1 (ASσ1 )|] ≤ ES,Ŝ∼D2n [|RŜσ2 (ASσ2 ) − R(ASσ2 )|]
+ ES,Ŝ∼D2n [|RŜσ1 (ASσ1 ) − R(ASσ1 )|] + ES,Ŝ∼D2n [|R(ASσ1 ) − R(ASσ2 )|]

≤ 2β2(n) + 2B/
√

n, (1)

from Proposition 1 and Proposition 3. Thus we show∣∣∣ES,Ŝ

[ 1
n2

n∑
i=1

n∑
j=1

Θij

]∣∣∣ ≤ 2Bβ1(n) + 4Bβ2(n) + 4B2/
√

n. (2)

For ES,Ŝ[
∑n

i=1
∑n

j=1 Δij/n2], we also have

ES,Ŝ

[ 1
n2

n∑
i=1

n∑
j=1

Δij

]
= ES,Ŝ

[ 1
n

n∑
i=1

(
RSσ1 (ASσ1 ) − RŜσ1 (ASσ1 )

)
×
(
c(ASσ1 , zσ1

i ) − c(ASσ1 , ẑσ1
i ) + c(ASσ2 , zσ2

i ) − c(ASσ2 , ẑσ2
i )

)]
.

This expression could not be summed directly since σ1 and σ2 are dependent on
i. But from symmetry and i.i.d assumption, we have

ES,Ŝ

[ 1
n2

n∑
i=1

n∑
j=1

Δij

]
= ES,Ŝ [

(
R

Sσ∗
1
(A

Sσ∗
1
) − R

Ŝσ∗
1
(A

Sσ∗
1
)
)

×
(
c(A

Sσ∗
1 , z1) − c(A

Sσ∗
1 , ẑ1) + c(A

Sσ∗
2 , ẑ1) − c(A

Sσ∗
2 , z1)

)
],

where σ∗
1(1) = 1, σ∗

1(1̂) = 1̂, σ∗
2(1) = 1̂, σ∗

2(1̂) = 1 and σ∗
1(k) = σ∗

2(k) = σ(k) for
k �= 1, 1̂. Let z, ẑ be two new examples and set S1 = S1,z, Ŝ1 = Ŝ1,ẑ. In a similar
way to prove Eq.(2), we have

ES,Ŝ,z,ẑ[|RSσ∗
1 (A

Sσ∗
1 ) − R

Ŝσ∗
1 (A

Sσ∗
1 ) − R

S
σ∗
1

1
(A

S
σ∗
1

1
) + R

Ŝ1
σ∗
1 (A

S
σ∗
1

1
)|]

≤ β1(n) + 2β2(n) + 2B/
√

n. (3)

Since z1 and ẑ1 are independent to S1 and Ŝ1, it holds∣∣∣ES,Ŝ,z,ẑ

[(
c(A

Sσ∗
1
, z1) − c(A

Sσ∗
1
, ẑ1) + c(A

Sσ∗
2
, ẑ1) − c(A

Sσ∗
2
, z1)

)
×(

R
S

σ∗
1

1
(A

S
σ∗
1

1
) − R

Ŝ1
σ∗
1 (A

S
σ∗
1

1
)
)]∣∣∣ =

∣∣∣ES1,Ŝ1,z,ẑ

[(
R

S
σ∗
1

1
(A

S
σ∗
1

1
) − R

Ŝ1
σ∗
1 (A

S
σ∗
1

1
)
)

×
(
Ez1∼D[c(A

Sσ∗
1
, z1) − c(A

Sσ∗
2
, z1)] + Eẑ1∼D[c(A

Sσ∗
2
, ẑ1) − c(A

Sσ∗
1
, ẑ1)]

)]∣∣∣
≤ 4Bβ2(n).

Thus we derive
∣∣∣ES,Ŝ

[
1

n2

∑n
i=1

∑n
j=1 Δij

]∣∣∣ ≤ 4B(β1(n)+3β2(n)+2B/
√

n) from

Eq.(3), which yields ES,Ŝ∼D2n [(RS(AS) −RŜ(AS))2] ≤ 3Bβ1(n)/2 + 4Bβ2(n) +
3B2/

√
n from Eq.(2). This theorem follows. ��
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5.2 Proof of Theorem 3

The equivalence between the universal consistency and universal generalization
has been established in [22]. Combining Lemma 1 and Theorem 2 proves that A

generalizes with rate εgen(n) =
√

3εerm(n)B + 4β2(n)B + 3B2/
√

n + 3B2/n +
B/

√
n if A is AERM with rate εerm(n) and has expected validation stability

β2(n). Thus Theorem 3 follows from the following lemma.

Lemma 4 (AERM + generalization + consistency ⇒ Expected vali-
dation stability). Suppose A is consistent with rate εcons(n), generalized with
rate εgen(n), and AERM with rate εerm(n) such that nεerm(n) → 0 as n → ∞.
Then A has expected validation stability β(n) = εgen + 4εcons + 2nεerm(n).

Proof. For i ∈ [n], since |Eu∼D[c(AS , u) − c(ASi,u , u)]| ≤ |Eu∼D[c(AS , u) −
Ez∼D[c(ASi,z , u)]]| + |Eu∼D[Ez∼D[c(ASi,z , u)] − c(ASi,u , u)]|, we have

ES∼Dn [|Eu∼D [c(AS , u) − c(ASi,u , u)]|]
≤ ES,z∼Dn+1[|Eu∼D[c(AS , u) − c(ASi,z , u)]|]+

ES∼Dn [|Eu,z∼D2 [c(ASi,z , u) − c(ASi,u , u) + c(ASi,u , z) − c(ASi,z , z)]|]/2.

For the first term, we can easily upper bound

ES,z∼Dn+1[|Eu∼D[c(AS , u) − c(ASi,z , u)]|] ≤ ES,z∼Dn+1[|R(AS) − R(h∗)|]
+ ES,z∼Dn+1[|R(h∗) − R(ASi,z)|] ≤ 2εcons(n) (4)

from the consistency of AS . For the second term, it holds

ES∼Dn [|Eu,z∼D2 [c(ASi,z , u) − c(ASi,u , u) + c(ASi,u , z) − c(ASi,z , z)]|] =
nES∼Dn [|Eu,z∼D2 [RSi,u(ASi,z) − RSi,u(ASi,u) + RSi,z (ASi,u) − RSi,z (ASi,z )]|]

= 2nES∼Dn [|Eu,z∼D2 [RSi,u(ASi,u)] − RSi,u(ASi,z )|].

We will use Proposition 2 to bound the above expression. It holds

|ES∼Dn [Eu,z∼D2 [RSi,u(ASi,u)] − RSi,u(ASi,z)]|
= |ES,u,z∼Dn+2[c(ASi,u , u) − c(ASi,z , u)]|/n.

Meanwhile, it is easy to obtain ES,u∼Dn+1[c(ASi,u , u)] = ES,u∼Dn+1[RSi,u(ASi,u)]
and ES,u,z∼Dn+2[c(ASi,z , u)] = ES,z∼Dn+1[R(ASi,z)] from symmetry and i.i.d
assumption. This leads to

|ES∼Dn [Eu,z∼D2 [RSi,u(ASi,u)] − RSi,u(ASi,z)]| ≤ εgen/n + 2εcons/n.

For ERM, RSi,u(ASi,u) − RSi,u(ASi,z ) ≤ RSi,u(ASi,u) − RSi,u(ĥSi,u) and

ES,u∼Dn+1[|RSi,u(ASi,u) − RSi,u(ĥSi,u)|] ≤ εerm(n).

By Proposition 2, we have

nES∼Dn [|Eu,z∼D2 [RSi,u(ASi,u)] − RSi,u(ASi,z )|] ≤ εgen + 2εcons + 2nεerm(n),

which concludes this lemma by combining with Eq.(4). ��
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5.3 Proofs of Theorems 5 and 6

The two proofs are relatively similar, and thus we only give the detail proof
of Theorem 6. Set err(t) = errt

S , err′(t) = errt
Si,u , α(t) = αt

S , α′(t) = αt
Si,u ,

ht(x) = AP t
S
(x) and h′

t(x) = AP t

Si,u
(x) for short in this subsection. The following

lemma establishes AdaBoost’s empirical stability.

Lemma 5. For any u, S ∈ Zn+1, any i ∈ [n], any t ∈ [T ] and small γ > 0, if
base learner satisfies γ ≤ errt

S , errt
Si,u ≤ 1 − γ and |errt

S − errt
Si,u | ≤ ζ(n), then

the combined learner HS(x) has empirical stability β1(n) = ζ(n)T/
√

γ(1 − γ).

Proof. From [21] we derive

RS(HS) = 2T
∏T

t=1

√
err(t)(1 − err(t))

RSi,u(HSi,u) = 2T
∏T

t=1

√
err′(t)(1 − err′(t)).

Since γ < err(t) < 1−γ, it is easy to get
√

γ(1 − γ) ≤
√

err(t)(1 − err(t)) ≤ 1/2,
which leads to

|
√

err(t)(1 − err(t)) −
√

err′(t)(1 − err′(t))|

=
|err(t) − err′(t)| × |1 − err(t) − err′(t)|√
err(t)(1 − err(t)) +

√
err′(t)(1 − err′(t))

≤ ζ(n)/2√
γ(1 − γ)

,

and RS(HS) < 1. Thus |RS(HS) − RSi,u(HSi,u)| is bounded by

2T−1
∣∣∣ T−1∏

t=1

√
err(t)(1 − err(t)) −

T−1∏
t=1

√
err′(t)(1 − err′(t))

∣∣∣
+ 2T

∣∣∣√err(T )(1 − err(T )) −
√

err′(T )(1 − err′(T ))
∣∣∣ T−1∏

t=1

√
err(t)(1 − err(t))

≤ 2T−1
∣∣∣ T−1∏

t=1

√
err(t)(1 − err(t)) −

T−1∏
t=1

√
err′(t)(1 − err′(t))

∣∣∣ +
ζ(n)√

γ(1 − γ)

which leads to |RS(HS) − RSi,u(HSi,u)| ≤ ζ(n)T/
√

γ(1 − γ) as desired. ��

Lemma 6. If ht(x), h′
t(x) are two binary learners with cost function c(h, z) =

I[h(x) �= y], then we have Ez∼D[|ht(x) − h′
t(x)|] = Ez∼D[|c(ht, z) − c(h′

t, z)|].

This lemma holds from the fact |I[ht(x) �= y] − I[h′
t(x) �= y]| = |ht(x) − h′

t(x)|.
The following lemma establishes the validation stability of AdaBoost.

Lemma 7. For any u, S ∈ Zn+1, any i ∈ [n], any t ∈ [T ] and 0 < γ < 1/2,
if the base learner satisfies γ ≤ errt

S , errt
Si,u ≤ 1 − γ, |errt

S − errt
Si,u | ≤ ζ(n)

and Eu∼D[|c(AS , u) − c(ASi,u , u)|] ≤ η(n), then HS(x) has validation stability
β2(n) = TB

(η(n)
2 ln 1−γ

γ + ζ(n)
2γ(1−γ)

)
.
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Proof. We first set u = (x, y). From mean value theorem and γ ≤ err(t), err′(t) ≤
1 − γ, we have |α(t) − α′(t)| ≤ ζ(n)/(2γ(1 − γ)). It follows from Lemma 6 that

Eu∼D[|α(t)ht(x) − α′(t)h′
t(x)|] ≤ Eu∼D[|α(t)||ht(x) − h′

t(x)|]

+ Eu∼D[|h′
t(x)||α(t) − α′(t)|] ≤ η(n)

2
ln

1 − γ

γ
+

ζ(n)
2γ(1 − γ)

, (5)

Using mean value theorem again, we obtain

|exp (−yα(t)ht(x)) − exp (−yα′(t)h′
t(x))|
≤

√
(1 − γ)/γ |α(t)ht(x) − α′(t)h′

t(x)| .

Combining with Eq.(5) gives

|R(HS) − Eu∼D[R(HSi,u)]| ≤ Eu∼D [|exp(−yα′(T )h′
T (x)) × Γ |] +

Eu∼D
[∣∣∣ exp(−y

T−1∑
t=1

α(t)ht(x))
(
exp(−yα(T )hT (x)) − exp(−yα′(T )h′

T (x))
)∣∣∣]

≤ (Bη(n)/2) ln((1 − γ)/γ) + Bζ(n)/(2γ(1 − γ)) + Eu∼D [|Γ |]
√

(1 − γ)/γ,

where Γ = exp
(
−y

∑T−1
t=1 α(t)ht(x)

)
− exp

(
−y

∑T−1
t=1 α′(t)h′

t(x)
)
. This com-

pletes the proof by straight evaluation. ��

By Lemmas 5 and 7 we get that AdaBoost has empirical stability and validation
stability, respectively. Thus, by using Theorem 4, we get Theorem 6.
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Abstract. We focus on the estimation of a probability distribution over a set of
trees. We consider here the class of distributions computed by weighted automata -
a strict generalization of probabilistic tree automata. This class of distributions
(called rational distributions, or rational stochastic tree languages - RSTL) has
an algebraic characterization: All the residuals (conditional) of such distributions
lie in a finite-dimensional vector subspace. We propose a methodology based on
Principal Components Analysis to identify this vector subspace. We provide an
algorithm that computes an estimate of the target residuals vector subspace and
builds a model which computes an estimate of the target distribution.

1 Introduction

In this article, we focus on the problem of learning probability distributions over trees.
This problem is motivated by the high need in XML applications or natural language
processing to represent large tree sets by probabilistic models. From a machine learning
standpoint, this problem can be formulated as follows. Given a sample of trees indepen-
dently drawn according to an unknown distribution p, a classical problem is to infer an
estimate of p in some class of probabilistic models [1]. This is a classical problem in
grammatical inference and the objective here is to find a good estimate of the model’s
parameters. A usual class of models is the class of probabilistic tree automata (PTA)
where the parameters lie in [0, 1].

Recent approaches propose using a larger class of representation: the class of ra-
tional distributions (also called rational stochastic tree languages, or RSTL) that can
be computed by weighted tree automata - with parameters in R, hence with weights
that can be negative and without any per state normalisation condition. This class has
two interesting properties: It has a high level of expressiveness since it strictly includes
the class of PTA and it admits a canonical form with a minimal number of parameters
(see [2] for an illustration in the string case). It has notably the characterization that the
residuals of a rational distribution (a special kind of conditional distributions) lie in a
finite-dimensional subspace. This set of residuals spans a vector subspace W of the vec-
tor space of real values functions over trees. W is finite dimensional and its dimension

� This work was partially supported by the ANR LAMPADA ANR-09-EMER-007 project and
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corresponds to the minimal number of states needed by a weighted tree automaton to
compute p. Thus, a goal of an inference algorithm might be to identify this subspace W .
This was illustrated by the algorithm DEES [3, 4] which builds iteratively a weighted
automaton computing an estimate of p. However, the iterative approach presented be-
fore suffers from the drawback to rely on statistical tests that are done on fewer and
fewer examples when the structure grows.

In order to overcome this drawback, in this paper we investigate the possibility of us-
ing Principal Component Analysis (PCA) to identify the target vector subspace spanned
by the residuals of a rational distribution, and then to build a representation from this
subspace. PCA has already been used in grammatical inference for learning rational
string distributions in [5], and in another framework in [6]. Another spectral approach
was proposed in [7, 8] for learning a class of Hidden Markov Models (HMM) over
sequences. In this paper, we show that considering the class of rational distributions
offers a natural framework for applying PCA to identify the target residuals subspace.
Moreover, we obtain a high gain of expressiveness since we are able to infer classes
of distributions that can not be computed by PTA. This gain in expressiveness has un-
fortunately two main drawbacks: the class of rational distributions is not recursively
enumerable and it is not decidable if a rational series defines a distribution [9]. In spite
of these strong constraints, we give some asymptotic error bounds and provide point-
wise convergence result.

The paper is organized as follows. Section 2 gives the preliminaries on trees and
rational tree series. Section 3 is devoted to our algorithm, while the convergence prop-
erties are presented in Section 4. Some experiments are provided in the last section.

2 Preliminaries

In this section, we introduce the objects that will be used all along in the paper. We
mainly follow notations and definitions from [10] about trees. Formal power tree se-
ries have been introduced in [11] where the main results appear. Some notations about
norms and matrices terminate this section.

2.1 Trees and Contexts

Unranked Trees. Let F be an unranked alphabet. The set of unranked trees over F
is the smallest set TF satisfying F ⊆ TF , and for any f ∈ F , and t1, . . . , tm ∈ TF ,
f(t1, . . . , tm) ∈ TF .

Ranked Trees. Let F = F0 ∪ · · · ∪ Fn be a ranked alphabet where the elements in F0
are also called constant symbols. The set of trees over F is the smallest set TF satisfying
F0 ⊆ TF , and for any f ∈ Fk, and any t1, . . . , tk ∈ TF , f(t1, . . . , tk) ∈ TF .

Any tree defined over an unranked alphabet F can be represented over a ranked
alphabet F@ = F@

2 ∪ F@
0 with only one binary symbol @, i.e. F@

2 = {@(·, ·)} where
@ �∈ F and constants that comprise all symbols in F : F@

0 = F . Figure 1(d) shows such
a representation (called curryfication) of the tree of Figure 1(c). Curryfication can be
formally defined by induction:
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– curry(f(t1, . . . , tn)) = @(curry(f(t1, . . . , tn−1)), curry(tn))
– curry(f(t)) = @(f, curry(t))
– curry(a) = a for a ∈ F

This particular class of ranked alphabet is in bijection with the set of unranked trees
[10], i.e. labeled trees in which any node may have an unbounded number of chil-
dren. Weighted automata on unranked trees are defined in [12], where it is proved
that weighted unranked tree automata on F are equivalent to weighted tree automata
on F@. As ranked trees are a particular case of unranked trees and weighted ranked
tree automata can be seen as a particular case of weighted unranked tree automata, the
results still hold for any ranked alphabet.

Hence, without loss of generality, and in all the rest of the paper, we will only con-
sider a ranked alphabet equipped with constant symbols and with only one binary sym-
bol in the following of the paper. For convenience, we will use f for denoting the binary
symbol instead of @.

Contexts. Contexts are element c of CF ⊂ TF∪{$} where $ is a variable that appears
exactly once as a leaf in c ($ is a constant and $ �∈ F ). Given a context c ∈ CF and a
tree t ∈ TF , one can build a tree c[t] ∈ TF by replacing the (unique) occurrence of $ in
c by the tree t.

Example 1. Let F0 = {a, b}, F1 = {g(·)} and F2 = {f(·, ·)}. Then t = f(a, g(b)) ∈
TF (Figure 1(a)), c = f(a, $) ∈ CF (Figure 1(b)) and c[t] = f(f(a, g(b)), a)
(Figure 1(c)).

f

g

b

a

(a) Tree t

f

$ a

(b) Context c

f

f

g

b

a

a

(c) Tree c[t]

@

@

f @

@

f @

g b

a

a

(d) Currified representation of the tree c[t]

Fig. 1. An example of tree t = f(a, g(b)), context c = f($, a) and their composition c[t] =
f(f(a, g(b)), a), as defined in Example 1. On the right a representation of t over an alphabet
with only one binary symbol @ and with the elements of F seen as constant symbols.

Definition 1. The length of a tree or a context is the number of functional symbols used
to define it, including the special symbol $.

T k
F (resp. T≥k

F ) will denote the set of trees of length k (resp. length greater or equal
than k).
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2.2 Tree Series

A (formal power) tree series on TF is a mapping r : TF → R. The vector space of
all tree series on TF is denoted by R[TF ]. We denote by 
2(TF ) the vector subspace of
R[TF ] of tree series r such that

∑
t∈TF

r(t)2 < ∞. This vector subspace is equipped
with a dot product (r, s) =

∑
t∈TF

r(t)s(t).
Given r ∈ R[TF ], a residual of r is a series s ∈ R[TF ] such that s(t) = r(c[t]) for

some c ∈ CF . This series is denoted ċr : t �→ r(c[t]). One defines the set of residuals of
r by {ċr|c ∈ CF }. Let ci be an enumeration of CF , and tj an enumeration of TF . Given
r ∈ R[TF ], one defines the (infinite) observation matrix X of r by: (X)i,j = r(ci[tj ]).⎛⎜⎜⎜⎜⎝

r(c1[t1]) . . . r(c1[tj ]) . . .
...

...
r(ci[t1]) . . . r(ci[tj ]) . . .

...
...

⎞⎟⎟⎟⎟⎠
Rational series (series computed by weighted automata) are the series with a finite
rank observation matrix. The rank of the observation matrix is the rank of the rational
series (i.e. the state number of a minimal automaton computing the series). From this
observation, one can define a canonical linear representation of a rational tree series as
introduced in [3]. We give here a simpler definition:

Definition 2. The linear representation of a rational tree series over TF is given by:

– the rank d of the series, and {q1, . . . qd} a basis of Rd.
– τ ∈ Rd.
– for each a ∈ F0, a vector a ∈ Rd.
– for f ∈ F2, a bilinear mapping f ∈ L(Rd, Rd; Rd).

The linear representation is denoted by (F, d, , τ).

The mapping can be inductively extended to a mapping : TF → Rd that satisfies
f(t1, t2) = f(t1, t2) for any t1, t2 ∈ TF .

Finally, the value of r(t) is given by: r(t) = t�τ where � denotes the transpose
operator.

Example 2. Let F = {a, f(·, ·)} a ranked alphabet, consider the linear representation
(F, 2, , τ) of the series r such that {e1, e2} is a basis of R2, τ = (1, 0) and defined by
the following expressions:

a = 2e1
3 + e2

3 , f(e1, e2) = e1
3 + 2e2

3 , f(ei, ej) = 0 for (i, j) �= (1, 2).

One has:

r(f(a, a)) = f(a, a)�τ = f(a, a)�τ = f(
2e1

3
+

e2

3
,
2e1

3
+

e2

3
)�τ

= (
2
3

2
3
f(e1, e1) +

2
3

1
3
f(e1, e2) +

1
3

2
3
f(e2, e1) +

1
3

1
3
f(e2, e2))�τ

= (
2
3

2
3
(0, 0) +

2
3

1
3
(
1
3
,
2
3
) +

1
3

2
3
(0, 0) +

1
3

1
3
(0, 0)) · τ =

2
33

.
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Rational tree series can be equivalently represented by weighted tree automata where
the number of states of the automata corresponds to the dimension of the linear repre-
sentations. Indeed, a tree automaton is a tuple (Q, F, τ, δ) where Q, τ and δ are respec-
tively the set of states, the terminal vector and the transition function. Let (F, 2, , τ)
be a linear representation and let (e1, . . . , ed) be a basis of Rd. Let Q = {e1, . . . , ed}.
Any linear relation of the form f(ei, ej) =

∑
k αk

i,jek yields to d transition rules of the

form f(ei, ej)
αk

i,j−−→ ek and τ(ei) is set to τ�ei. See [4, 13] for more details.

Example 3. A weighted automaton computing the series in example 2 would be Q =
{q1, q2}, F = {a, f}, δ defined by:

a
2/3−−→ q1, a

1/3−−→ q2, f(q1, q2)
1/3−−→ q1, f(q1, q2)

2/3−−→ q2 and τ(q1) = 1, τ(q2) = 0.

Let R[CF ] be the set of mappings s : CF → R. For r ∈ R[TF ] and t ∈ TF , one can
define t̄r ∈ R[CF ] by:

t̄r(c) = ċr(t) = r(c[t]).

The ċr correspond to the rows of the observation matrix X and the t̄r to its columns,
and one has the following equivalent properties:

1. r ∈ R[TF ] has an observation matrix X with finite rank d.
2. The vector subspace of R[TF ] spanned by {ċr|c ∈ CF } has dimension d.
3. The vector subspace of R[CF ] spanned by {t̄r|t ∈ TF } has dimension d.

Let us denote by Cn the set of contexts of length lower than n, and let ∼Cn be the
equivalence relation over R[CF ] defined by f ∼Cn g iff ∀c ∈ Cn, f(c) = g(c). One
defines R[Cn] as the quotient vector space R[CF ]/ ∼Cn , equipped with the regular dot
product (f, g) =

∑
c∈Cn

f(c)g(c).

2.3 Rational Distribution and Strong Consistency

Definition 3. A rational distribution (or rational stochastic tree language, RSTL) over
TF is a rational series computing a probability distribution.

In other words, a RSTL is a probability distribution that can be computed by a weighted
automaton (or that admits a linear representation). It can be shown that there exists some
rational distributions that cannot be computed by any probabilistic tree automaton. It is
undecidable to know whether a rational series given by a linear representation defines a
probability distribution (see [2] for an illustration in the string case).

Definition 4. A strongly consistent stochastic tree languages (or strongly consistent
distribution) over TF is a probability distribution over TF having a bounded average
tree size i.e.

∑
t∈TF

p(t)|t| < ∞.

It can be shown (see [4]) that, if p is a rational distribution having a bounded average
tree size, there exists some constants 0 < C and 0 < ρ < 1 such that:∑

t∈T
≥k
F

p(t) ≤ Cρk.
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3 Principle of the Algorithm

Let p be rational distribution on TF (strongly consistent or not). We give first a general
algorithm that takes a sample i.i.d. according to p as input. For this purpose, let Cn be
the set of contexts of length lower that n and let us make the assumption that {ċp|c ∈
Cn} and {ċp|c ∈ CF } span the same vector subspace of R[TF ]. In other words, we
suppose that considering the set Cn is sufficient to get the whole space of residuals.

Let V be the finite dimensional subspace of 
2(TF ) spanned by the set {ċp|c ∈
Cn}. V ∗ will denote the set {t̄p|Cn , t ∈ TF } ⊂ R[Cn] - for convenience we still
denote by t̄p the mapping t̄p|Cn . ΠV denotes the orthogonal projection over V relatively
to the dot product inherited from 
2(TF ), and ΠV ∗ denotes the orthogonal projection
over V ∗ relatively to the dot product inherited from R[Cn]. Let S be a sample of N
trees independently and identically drawn according to p and let pS be the empirical
distribution on TF defined from S. VS denotes the vector subspace of 
2(TF ) spanned
by {ċpS |c ∈ Cn}, and V ∗

S the subspace of R[Cn] spanned by {t̄pS |t ∈ TF }.
We first build from S an estimate V ∗

S,d of V ∗ and then we show that V ∗
S,d can be used

to build a linear representation such that its associated rational series approximate the
target p. In this section, we implicitly suppose that the dimension d of V ∗ is known. We
will show in the next section how it can be estimated from the data.

3.1 Estimating the Target Space

Let d > 0 be an integer. The first step consists in finding the d-dimensional vector
subspace V ∗

S,d of V ∗
S that minimizes the distance to {t̄pS |t ∈ TF }:

V ∗
S,d = arg min

dim(W∗)=d,W∗⊆V ∗
S

∑
t∈TF

‖t̄pS − ΠW∗(t̄pS)‖2.

V ∗
S,d can be computed using principal component analysis.

Let {tj} be an enumeration of TF , and {ci} be an enumeration of Cn. Let XS the
empirical mean matrix defined by: (XS)i,j = pS(ci[tj ]), and let X be the expectation
matrix defined by: (X)i,j = p(ci[tj ]).

V ∗
S,d corresponds to the vector subspace spanned by the d first (normalized) eigen-

vectors (corresponding to d largest eigenvalues) of the matrix MS = XSX�
S . NS will

denote the matrix X�
S XS which corresponds to the dual problem of the PCA. We will

denote by W ∗ = {w∗
1 , . . . , w∗

d} the set of eigenvectors (ordered by decreasing eigen-
values) of MS , and by W = {w1, . . . , wd} the corresponding eigenvectors of NS . W ∗

is the matrix with the vectors {w∗
1 , . . . , w∗

d} as columns - this matrix corresponds to the
projection operator ΠV ∗ , while W is the matrix with vectors {w1, . . . , wd} as columns,
because both W and W ∗ are orthonormal.

Let λ1, . . . , λd be the associated singular values; they also are the square roots of the
eigenvalues of MS .

We recall here the relationships between the wi and w∗
i eigenvectors: XSwi = λiw

∗
i

and X�
S w∗

i = λiwi. In particular,

MSw∗
i = XSX�

S w∗
i = λiXSwi = λ2

i w
∗
i .
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3.2 Building the Linear Representation from the Dual Space

The eigenvectors found in the previous section form the basis of the residual space.
In order to complete the linear representation, we now need to define, in the basis
{w∗

1 , . . . , w
∗
d}, the terminal vector τ , the mapping for the constant symbols a and

the bi-linear operator f .
The idea is to identify, for any tree t, the mapping t̄pS to its projection on the space

spanned by W ∗, that is W ∗W ∗�t̄pS . We shall see in next section that this identification
leads to a bounded error, decreasing as the size of the sample grows.

– The vector space is the space spanned by W ∗.
– For each a ∈ F0, a = W ∗�āpS .

In order to define f , we use a known relation between eigenvectors of the standard and

dual PCA: w∗
i =

∑
k

(wi)k

λi
t̄kpS . We use the bilinearity of f to obtain:

– f(w∗
i , w∗

j ) =
∑

1≤k,l≤d
(wi)k(wj)l

λiλj
W ∗�f(tk, tl)pS .

– τi = w∗
i ($), corresponding to the terminal weight of a tree in a bottom-up process.

– Finally, r(t) = t�.τ .

The different steps of the algorithm are described in Algorithm 1.

Data: A sample S of trees in TF i.i.d. according to a distribution p, a dimension d and a
set of contexts Cn.

Result: A linear representation A of a tree series (F, d, , τ ).
Let X the matrix defined by X[i, j] = pS(ci[tj ]);
M = XX� /* variance-covariance matrix */;
(λi, w

∗
i , wi)← square roots of eigenvalues of M in decreasing order and corresponding

eigenvectors, and eigenvectors in the dual;
Let w∗

1 , . . . , w∗
d be the eigenvectors corresponding to the d largest eigenvalues and let

W ∗ = [w∗
1 , . . . , w∗

d] be the matrix having the vectors w∗
i as columns

Let be the operator defined by:
foreach f ∈ F do

if a ∈ F0 then a = W ∗�āpS ;

if f ∈ F2 then f(w∗
i , w∗

j ) =
∑

1≤k,l≤d

(wi)k(wj)l

λiλj
W ∗�f(tk, tl)pS ;

end
(τ )i = w∗

i ($) ;
return A = (F, d, , τ );

Algorithm 1. Building a linear representation corresponding to a sample S and a
dimension d
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4 Consistency

Let us consider the observation matrix X defined by: Xij = p(ci[tj ]), where ci and
tj are respectively contexts and trees. Let S be a sample of size N i.i.d. from p. XS is
defined as the empirical observation matrix built from the empirical distribution pS . In
this section, we will bound the difference between those two matrices, and show how it
induces a bound for the convergence of the singular values and on the distance between
the estimate and the target distribution for a tree t.

First, here is a simple result straightforward from the properties of empirical mean:

Lemma 1. Let p a probability distribution over TF , and pS its empirical estimate from
a sample of size N drawn i.i.d. from p, one has

E(‖pS − p‖2
2) =

∑
t∈TF

E((pS(t) − p(t))2) =
∑
t∈TF

p(t)(p(t) − 1)
N

≤ 1
N

.

Let Cn be the set of contexts of length lower or equal than n, it can easily be shown
that:

Lemma 2. Let t be a tree. There is at most n contexts in Cn such that t = c[t′] for
some tree t′.

The previous lemma helps us to bound the occurrence number of a tree in the matrix
X , which will allow us to use some concentration inequality to bound the error over X .
One denotes ‖‖F as the Frobenius norm on matrices, and ΔX = ‖X − XS‖F .

Lemma 3. Let X be a probability observation matrix restricted to the contexts belong-
ing to Cn. Let XS the empirical estimator of X from a sample S of size N . Then, one
has with probability at least 1 − δ (δ > 0):

ΔX = ‖X − XS‖F ≤
√

n

N

(
1 +

√
log(

1
δ
)

)
.

Proof. This proof uses a construction similar to the proof of Proposition 19 in [8]. Let z
be a discrete random variable that takes values in TF . Let X be a probability observation
matrix built from a set Cn of contexts as lines and trees from TF as columns. One
estimates X from N i.i.d. copies of zi of z (i = 1, . . . , N ).

One associates to each variable zi a matrix Xi indexed by contexts of Cn and trees
of TF such that

Xi[j, k] = 1 if zi = cj [tk] and 0 otherwise.

From Lemma 2, Xi has at most n non null entries.
The empirical estimate of X is XS = 1

N

∑N
i=1 Xi. Our objective is to bound

‖XS − X‖F .
Let S′ be a sample that differs from S on at most one example z′k.
Then,

|‖XS − X‖F − ‖XS′ − X‖F | ≤ ‖XS − XS′‖F ≤
√

2n

N
.
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From McDiarmid inequality [14], one obtains:

Pr(‖XS − X‖F ≥ E(‖XS − X‖F ) + ε) ≤ e−
N
n ε2 .

By Lemma 1 and Lemma 2 and by using Jensen’s inequality, it can be proved that
E(‖XS − X‖F ) ≤

√
n
N . By fixing δ = e−

N
n ε2 , one gets the result. ��

4.1 Singular Values Convergence

We use the previous result to show how one can assess the correct dimension of the
target space. We will first recall some known result. Given an observation matrix X of
rank d in the target space, and given its empirical estimate XS , we can rewrite XS as
a sum X + E where E models the sampling error. We have the following result from
[15].

Lemma 4. (Theorem 4.11 in [15]). Let X ∈ Rm×n with m ≥ n, and let XS = X +E.
If the singular values of X and XS are (λ1 > . . . > λn) and (λS,1 > . . . > λS,n)
respectively, then

|λS,i − λi| ≤ ‖E‖2, i = 1, . . . , n.

Applied to our situation, this provides a valid way to assess the target dimension: let d
be the rank of the target rational series, XS be the observation matrix deduced from a
sample S, |S| = N .

Theorem 1. Let Λ be the set of singular values of XS . Let Λs be the subset of singular
values of XS greater than s. For a given confidence parameter δ, let d′ = |Λs| for

s =
√

n
N (1 +

√
log(1

δ )). With probability greater than 1 − δ, one has d ≥ d′.

Proof. Straightforward from Lemma 3 and Lemma 4: with probability greater than 1−
δ, the singular values in Λs match non-zeros singular values from the target observation
matrix X . ��

Theorem 2. Let λd the smallest non-zero eigenvalue of X . Let Λ be the set of singular
values of XS. Let Λs be the subset of singular values of XS greater than s. For a given

confidence parameter δ, let d′ = |Λs| for s =
√

n
N (1 +

√
log(1

δ )). Suppose that

N >
4n

λ2
d

(
1 +

√
log(

1
δ
)

)2

Then, with probability greater than 1 − δ, one has d = d′.

Proof. The condition N > 4n
λ2

d
(1 +

√
log(1

δ ))2 implies that s < λd

2 , thus the corre-

sponding singular value λS,d from XS satisfies λS,d > 2s−‖X −XS‖2. This quantity
is greater than s with probability at least 1 − δ. ��
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4.2 Bounds for the Estimation Error

We suppose here that the correct dimension has been found. We will not provide
exact bounds, but only asymptotic bounds, and we will often use the equivalence be-
tween norms of vectors and matrices - since the vector spaces considered are finite-
dimensional. Let us first introduce some notations corresponding to errors over the
objects handled by our algorithm:

– Δx = max ‖x−xS‖2 with x (resp. xS) a row or a column of the observation matrix
X (resp. XS).

– Δv = max ‖w − wS‖2 with w (resp. wS) a left singular vector of the observation
matrix X (resp. XS).

– Δλ = max ‖λ − λS‖2 with λ (resp. λS) a singular value of the observation matrix
X (resp. XS).

– ΔΠ = ‖WWT − WSWT
S ‖F with W (resp. WS) the d first singular vectors of the

observation matrix X (resp. XS).

Lemma 5. Δλ < ΔX and Δx < ΔX .

Proof. Straightforward from Lemma 4 and the norm relation ‖‖2 ≤ ‖‖F for the first
inequality, and the definition of Δx and ΔX for the second. ��

The following corollary gives an asymptotic bound on the error of the covariance matrix
used to compute the eigenvectors.

Corollary 1. ΔM = ‖M − MS‖F . One has ‖M − MS‖F ≤ O(ΔX)

Proof. One has ‖M − MS‖F ≤ ‖XX� − XX�
S + XX�

S − XSX�
S ‖F ≤ (‖X‖F +

‖X�
S ‖F )ΔX . Thus:

ΔM ≤ ΔX(2‖X‖F + ΔX). ��

In order to provide asymptotic bounds on the other errors, we need to introduce some
known results about eigenvectors and PCA from [16]. Let A be a symmetric posi-
tive Hilbert-Schmidt operator with positive eigenvalues1 λ2

1 > · · · > λ2
d > 0. δr =

1
2 (λ2

r − λ2
r+1), and let δ̃r = inf(δr, δr−1). Let B be a symmetric positive Hilbert-

Schmidt operator such that ‖B‖F < δ̃r/2 and that ‖B‖F < δd/2. The results from [16]
provide error bounds on projection operators and eigenvectors. In our framework, A
corresponds to the covariance matrix M and A + B to the empirical one MS . Let W
(resp. WS ) be the matrix of the d first eigenvectors of A (resp. A + B ), and wr (resp.
wS,r) the corresponding r-th eigenvector, we have the following results.

Lemma 6. (Theorem 2 - remark of [16]) ‖wr − wS,r‖2 ≤ 2‖B‖F

δ̃r
.

Theorem 3. (Theorem 3 of [16]) ‖WW� − WSW�
S ‖F ≤ ‖B‖F

δd
.

We are now able to provide asymptotic bounds for the two remaining errors.

1 Recall that according to our notation the λi denote singular values.
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Lemma 7. One has Δv = O(ΔX) and ΔΠ = O(ΔX ).

Proof. By using respectively Lemma 6 and Theorem 3, and from Corollary 1, one has

Δv ≤ 4ΔX(2‖X‖F + ΔX)
δ̃d

= O(ΔX)

and

ΔΠ ≤ ΔX(2‖X‖F + ΔX)
δ̃d

= O(ΔX).

��

Let us denote λ = inf1...d λi. We will now study some errors on the parameters of
the linear representation built by our algorithm. Let p = (F, d, , τ) be the target linear
representation equipped with the basis {w∗

1 , . . . , w
∗
d} and let rS = (F, d, S , τS) the

linear representation equipped with the basis {w∗
S,1, . . . , w

∗
S,d} found by our algorithm

from a sample S. Let us define the following error bounds on the coefficients:

– Δτ = supi(τ − τS)i,
– Δa = supi(a − aS)i for a ∈ F0 ,
– Δf = supi,j,k(f(w∗

j , w∗
k) − f

S
(w∗

S,j, w
∗
S,k))i.

One can check the following lemma.

Lemma 8

Δτ ≤ dO(Δv) ≤ 2d‖X‖FO(ΔX),
Δa ≤ 2O(ΔX),

Δf ≤ O(ΔX)
λ

[
‖wiw

�
j ‖F (2 + 2

‖X‖F

δ
+ 8

‖X‖F

δ
(‖wi‖1 + ‖wj‖1))

]
.

All the mappings considered through the algorithm are continuous, thus the mapping
deduced from the algorithm converges pointwisely towards the target distribution as
ΔX tends to zero. We provide then the following result which gives a bound for the
estimation error.

Theorem 4. Let p be a rational distribution with rank d. Let n be the maximum length
of a context used in the algorithm. If S is a sample i.i.d. from p, let rS be the mapping
deduced from the algorithm. There exists C such that for any 0 < δ < 1, for any tree
t of length k, if S is an i.i.d. sample of size N then, with confidence at least 1 − δ, one
has:

|rs(t) − p(t)| < Ckd2k

√
n

N
log(

1
δ
).

Proof. Let us prove the statement by induction on k. Let us denote Δk a bound for the
error made for the estimate the coefficient of t for a tree t of height k. One has:

Δ1 = Δa = O(ΔX)
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Using f(u, v) =
∑

1≤i≤d

∑
1≤i≤d(u)i(v)jf(w∗

i , w∗
j ), with |u|+ |v| = k − 1, one has:

Δk = O(d2(|u|d2|u| + |v|d2|v| + 1)ΔX) ≤ O(kd2kΔX) = O(kd2k

√
n

N
log(

1
δ
)).

Then, since p(t) = tT .τ and rs(t) = tTS .τS , one has the conclusion. ��

4.3 Strongly Convergent Case

In the case of strongly consistent distribution, one does not need to consider a finite
set of contexts to perform the algorithm: one has, with confidence greater than 1 − δ,
|t| < log(2C/δ)

log(1/ρ) . One can provide a bound result for this special case.

Theorem 5. Let p be a strongly consistent rational distribution with rank d. Let S be a
sample i.i.d. from p, let rS be the mapping deduced from the algorithm. There exists C
such that for any 0 < δ < 1, for any tree t of length k, if S is an i.i.d. sample of size N
then, with confidence at least 1 − δ, one has:

|rs(t) − p(t)| < Ckd2k

√
log(N)

N
log2(

1
δ
).

Proof. One bounds the length of a tree drawn by p: with a confidence greater than
1 − δ/2N ,

|t| <
log(2NC/δ)

log(1/ρ)
.

Thus, with confidence 1 − δ/2, S has only trees of length lower than log(2NC/δ)
log(1/ρ) . By

replacing n in the previous result, one obtains the conclusion. ��

5 Illustration

In order to illustrate the algorithm, we consider the distribution p defined by tree series
of Example 2.

To study the behavior our algorithm, we consider an observation matrix 5×5, built on
the set of trees T = {t1, t2, t3, t4, t5}, where t1 = a, t2 = f(a, a), t3 = f(a, f(a, a)),
t4 = f(f(a, a), a), t5 = f(f(a, a), f(a, a)) and the set of contexts

C = {$, f(a, $), f($, a), f(f(a, a), $), f($, f(a, a))}.

We generate i.i.d. samples from p of different sizes containing respectively 103, 104 ,
105 and 106 trees. On Figure 2, we show the different eigenvalues (square of singular
values) in decreasing order obtained from the different samples.

We can observe that the convergence of the computed series towards the target value,
and the convergence of singular values, is closely O( 1√

|S|) (in average values).

We also compared the average standard deviation of the probabilities of the trees in
T obtained with our model, with rank 2 learned from the different learning samples,
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with the theoretical standard deviation of the classical probability (binomial) estima-
tor. We have that p(t1) � 0.6666, p(t2) � 0.0741, p(t3) � 0.0329, p(t4) � 0.0082
and p(t5) � 0.0037. The values obtained are shown on Figure 3. The estimated stan-
dard deviation is, in majority (21/25), lower than the theoretical standard deviation of a
the binomial estimator: The algorithm seems to work better than the simple frequency
estimator for the task of density estimation.

Now, we consider the problem of the dimension estimate. The second singular value
λ2 ∼ 7.74 · 10−3. Using the bound ΔX to estimate the correct dimension (Theorem 2),
we can estimate that:

– For N = 106, the rank 2 is found with a parameter δ ∼ 0.59 (confidence 0.41).
– For N = 2 · 106, the rank 2 is found with a parameter δ ∼ 0.12 (confidence 0.88).
– For N = 3 · 106, the rank 2 is found with a parameter δ ∼ 0.02 (confidence 0.98).

Fig. 2. Eigenvalues Curves - square
of singular values - (in logarithmic
scale) for sample size of 103, 104 ,
105 and 106 trees (the lightest to the
darkest)

t σ102 σ103 σ104 σ105 σ106
t1 3.76.10−2 1.23.10−2 3.50.10−3 1.16.10−3 4.12.10−4

4.71.10−2 1.49.10−2 4.71.10−3 1.49.10−3 4.71.10−4

t2 2.04.10−2 6.77.10−3 1.94.10−3 7.30.10−4 2.36.10−4

2.62.10−2 8.28.10−3 2.62.10−3 8.28.10−4 2.62.10−4

t3 1.63.10−2 6.70.10−3 2.13.10−3 6.95.10−4 1.95.10−4

1.78.10−2 5.64.10−3 1.78.10−3 5.64.10−4 1.78.10−4

t4 9.01.10−3 2.23.10−3 6.93.10−4 2.20.10−4 5.73.10−5

9.03.10−3 2.86.10−3 9.03.10−4 2.86.10−4 9.03.10−5

t5 4.90.10−3 1.51.10−3 4.52.10−4 1.46.10−4 3.90.10−5

6.04.10−3 1.91.10−3 6.04.10−4 1.91.10−4 6.04.10−5

Fig. 3. Average standard deviation of trees in T mea-
sured from the 2-dimensional model learned on sam-
ples of size 102, 103, 104, 105 and 106. The standard
deviation of the theoretical binomial estimator is in-
dicated in italics.

6 Conclusion and Discussion

We have studied the problem of learning an unknown distribution p from finite indepen-
dently and identically drawn samples. We have proposed a new approach for identify-
ing rational distributions on trees, or rational stochastic tree languages. Most classical
inference algorithms in probabilistic grammatical inference build an automaton or a
grammar iteratively from a sample S. Starting from an automaton composed of only
one state, then they have to decide whether a new state must be added to the struc-
ture. This iterative decision relies on a statistical test with a known drawback: as the
structure grows, the test relies on fewer and fewer examples. Instead of this iterative
approach, we tackle the problem globally and our algorithm computes in one step the
space needed to build the output automaton. That is, we have reduced the problem set
in the classical probabilistic grammatical inference framework to a classical optimiza-
tion problem. This point offers the interesting opportunity to apply classical results in
statistical machine learning theory to probabilistic grammatical inference.
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We have provided three types of results. First, we have given a result for convergence
of eigenvalues which can be used for the estimation of the dimension of the target vector
space, which is a crucial point in probabilistic grammatical inference and may allow to
avoid costly cross-validation procedures. Second, we have provided error bounds for
the convergence of the parameters of a linear representation. We have finally obtained
pointwise convergence results for the probability estimate of a tree.

One perspective would then to obtain an 
1-convergence, probably restricted to the
case of strongly consistent stochastic tree languages, and to obtain tighter bounds. We
finally need to experimentally study and compare our approach to existing ones on
real data, this is a work in progress. Another perspective would consist in introducing
non linearity via the kernel PCA technique developed in [17] and by the Hilbert space
embedding of distributions proposed in [18, 19].
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Abstract. The importance of a node in a directed graph can be mea-
sured by its PageRank. The PageRank of a node is used in a number
of application contexts – including ranking websites – and can be inter-
preted as the average portion of time spent at the node by an infinite
random walk. We consider the problem of maximizing the PageRank of a
node by selecting some of the edges from a set of edges that are under our
control. By applying results from Markov decision theory, we show that
an optimal solution to this problem can be found in polynomial time.
It also indicates that the provided reformulation is well-suited for rein-
forcement learning algorithms. Finally, we show that, under the slight
modification for which we are given mutually exclusive pairs of edges,
the problem of PageRank optimization becomes NP-hard.

Keywords: PageRank, graphs, complexity, Markov decision processes.

1 Introduction

The importance of a node in a directed graph can be measured by its PageRank.
The PageRank of a node [4] can be interpreted as the average portion of time
spent at the node by an infinite random walk [10]. It is traditionally applied
for ordering web-search results, but it also has many other applications [2], for
example, in bibliometrics, ecosystems, spam detection, web-crawling, semantic
networks, relational databases and natural language processing.

It is of natural interest to search for the maximum or minimum PageRank that
a node (e.g., a website) can have depending on the presence or absence of some of
the edges (e.g., hyperlinks) in the graph. For example, since PageRank is used for
ordering web-search results, a web-master could be interested in increasing the
PageRank of some of his websites by suitably placing hyperlinks on his own site
or by buying advertisements or making alliances with other sites [1, 5]. Another
motivation is that of estimating the PageRank of a node in the presence of
missing information on the graph structure. If some of the links on the internet

M. Hutter et al. (Eds.): ALT 2010, LNAI 6331, pp. 89–103, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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are broken, for example, because the server is down or there are network traffic
problems, we may have only partial information on the link structure of the web-
graph. However, we may still want to estimate the PageRank of a website by
computing the maximum and minimum PageRank that the node may possibly
have depending on the presence or absence of the hidden hyperlinks [9]. These
hidden edges are often referred to as fragile links.

It is known that if we place a new edge in a directed graph, the PageRank of
the terminal node of the edge can only increase. Optimal linkage strategies are
known for the case in which we want to optimize the PageRank of a node and
we only have access to the edges starting from this node [1]. This first result has
later been generalized to the case for which we are allowed to configure all of the
edges starting from a given set of nodes [5]. The general problem of optimizing
the PageRank of a node in the case where we are allowed to decide the absence
or presence of the edges in a given arbitrary subset of edges is proposed by
Ishii and Tempo [9]. They are motivated by the problem of “fragile links” and
mention the lack of efficient, polynomial time algorithms to this problem. Then,
using interval matrices, they propose an approximate solution to the problem.

We show that the PageRank optimization problem can be efficiently formu-
lated as a Markov decision process (MDP), more precisely, as a stochastic shortest
path (SSP) problem, and that it can therefore be solved in polynomial time. Our
proof provides a linear programming formulation that can then be solved by
standard techniques. Our result and the given reformulation indicate that this
problem is well-suited for reinforcement learning methods, as well. We also prove
that under the slight modification for which we are given mutually exclusive con-
straints between pairs of edges, the problem becomes NP-hard.

2 Definitions and Preliminaries

In this section we define the concept of PageRank and the PageRank optimization
problem as well as give an introduction to stochastic shortest path problems.

2.1 PageRank

Let G = (V , E) be a directed graph, where V = {1, . . . , n} is the set of vertices
and E ⊆ V × V is the set of edges. First, for simplicity, we assume that G
is strongly connected. The adjacency matrix of G is denoted by A. Since G is
strongly connected, A is irreducible. We are going to consider a random walk
on the graph defined as follows. If we are in node i, in the next step we will
go to node j with probability 1/deg(i) if j is an out-neighbor of i, where deg(·)
denotes out-degree. This defines a Markov chain with transition-matrix

P �
(
D−1

A A
)T

with DA � diag(A�) (1)

where � = 〈1, . . . , 1〉T is the all-one vector and diag(·) is an operator that creates
a diagonal matrix from a vector, more precisely, (DA)ii � (A�)i = deg(i). Note
that P is a column (left) stochastic matrix and the chain can be interpreted as
an infinite uniform random walk on the graph (e.g., a random surfing).
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The PageRank vector, π, of the graph is defined as the stationary distribution
of the above described homogeneous Markov chain, more precisely, as P π = π,
where π is non-negative and πT

� = 1. Since P is an irreducible stochastic
matrix, we know (Perron-Frobenius theorem) that π exists and it is unique.

Now, we turn to the general case, when we do not assume that G is strongly
connected, it can be an arbitrary directed graph. In this case, there may be nodes
which do not have any outgoing edges. They are usually referred to as dangling
nodes. There are many ways to handle them [2], e.g., we can delete them, we can
add a self-loop to them, each dangling node can be linked to an ideal node (sink)
or we can connect each dangling node to every other node. This last solution can
be interpreted as restarting the walk from a random starting state if we reach a
dangling node. Henceforth, we will assume that we have already dealt with the
dangling nodes and, hence, every node has at least one outgoing edge.

We can define a Markov chain similarly to (1), but this chain may not have
a unique stationary distribution. The solve this problem, the PageRank vector,
π, of G is defined as the stationary distribution of the “Google matrix” [10]

G � (1 − c)P + c z�T, (2)

where z is a positive personalization vector satisfying zT
� = 1, and c ∈ (0, 1) is

a damping constant. In practice, values between 0.1 and 0.15 are usually applied
for c and z = (1/n)� [2]. The Markov chain defined by G is ergodic that is
irreducible and aperiodic, hence, its stationary distribution uniquely exists and
the Markov chain converges to it from any initial distribution [11].

The idea of PageRank is that π(i) can be interpreted as the “importance” of
i. Thus, π defines a linear order on the nodes by treating i ≤ j if π(i) ≤ π(j).

The PageRank vector can be approximated by the iteration xn+1 � Gxn,
where x0 is an arbitrary stochastic vector. It can also be directly computed [1]

π = c (I − (1 − c)P )−1z, (3)

where I denotes an n×n identity matrix. Since c ∈ (0, 1) and P is stochastic, it
follows that matrix I − (1 − c)P is strictly diagonally dominant, thus invertible.

2.2 PageRank Optimization

We will investigate a problem in which a subset of links are “fragile”, we do not
know their exact values or we have control over them, and we want to compute
the maximum (or minimum) PageRank that a specific node can have [9]. More
precisely, we are given a digraph G = (V , E), a node v ∈ V and a set F ⊆ E
corresponding to those edges which are under our control. It means that we can
choose which edges in F are present and which are absent, but the edges in
E \ F are fixed, they must be present in the graph. We will call any F+ ⊆ F
a configuration of fragile links: F+ determines those edges that we add to the
graph, while F− = F \F+ denotes those edges which we remove. The PageRank
of node v under the F+ configuration is defined as the PageRank of v with
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The Max-PageRank Problem

Instance: A digraph G = (V, E), a node v ∈ V and a set of controllable edges F ⊆ E .
Optional: A damping constant c ∈ (0, 1) and a stochastic personalization vector z.
Task: Compute the maximum possible PageRank of v by changing the edges in F

and provide a configuration of edges in F for which the maximum is taken.

respect to the graph G0 = (V , E \ F−). The problem is how should we configure
the fragile links to maximize (or minimize) the PageRank of a given node v?

There are finitely many configurations, thus, we can try to compute them
one-by-one. If we have d fragile links, then there are 2d possible graphs. The
PageRank vector of a graph can be computed in O(n3) via a matrix inversion1.
The resulting “exhaustive search” algorithm has O(n32d) time complexity.

We note that if the graph was undirected, the Max-PageRank problem would
be easy. We know [13] that a random walk on an undirected graph (viz., a time-
reversible Markov chain) has the stationary distribution π(i) = deg(i)/2m for
all nodes i, where m denotes the number of edges and deg(i) is the degree of
node i. Therefore, it is easy to see that, in order to maximize the PageRank of
a given node v, we should keep edge (i, j) ∈ F if and only if i = v or j = v.

2.3 Stochastic Shortest Path Problems

In this section we give an overview on stochastic shortest path problems, since
our solutions to PageRank optimization are built upon their theory.

Stochastic shortest path (SSP) problems are generalizations of (deterministic)
shortest path problems [3]. In an SSP problem the transitions between the nodes
are uncertain, but we have some control over their probability distributions. We
aim at finding a policy (a function from nodes to controls) such that minimizes
the expected cost of reaching a given target state. SSP problems are undiscounted
Markov decision processes (MDPs) with an absorbing, cost-free terminal state.

An SSP problem can be stated as follows. We have given a finite set of states,
S, and a finite set of control actions, U. For simplicity, we assume that S =
{1, . . . , n, n + 1}, where τ = n + 1 is a special state, the target or termination
state. In each state i we can choose an action u ∈ U(i), where U(i) ⊆ U is the set
of allowed actions in state i. After the action was chosen, the system moves to
state j with probability p(j | i, u) and we incur cost g(i, u, j). The cost function is
real valued and the transition-probabilities are, of course, nonnegative as well as
they sum to one for each state i and action u. The target state is absorbing and
cost-free that is, if we reach state τ , we remain there forever without incurring
any more costs. More precisely, for all u ∈ U(τ), p(τ | τ, u) = 1 and g(τ, u, τ) = 0.

The problem is to find a control policy such that it reaches state τ with
probability one and minimizes the expected costs, as well. A (stationary, Markov)
deterministic policy is a function from states to actions, μ : S → U. A randomized
policy can be formulated as μ : S → Δ(U), where Δ(U) denotes the set of all
probability distributions over set U. It can be shown that every such policy
1 It can be done a little faster, in O(n2.376), using the Coppersmith-Winograd method.
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induces a Markov chain on the state space [6]. A policy is called proper if, using
this policy, the termination state will be reached with probability one, and it
is improper otherwise. The value or cost-to-go function of policy μ gives us the
expected total costs of starting from a state and following μ thereafter; that is,

Jμ(i) � lim
k→∞

Eμ

[
k−1∑
t=0

g(it, ut, it+1)
∣∣∣∣ i0 = i

]
, (4)

for all states i, where it and ut are random variables representing the state
and the action taken at time t, respectively. Naturally, it+1 is of distribution
p(· | it, ut) and ut is of distribution μ(it); or ut = μ(it) for deterministic policies.

Applying a proper policy, we arrive at a finite horizon problem, however, the
length of the horizon may be random and may depend on the policy, as well.

We say that μ1 ≤ μ2 if and only if for all states i, Jμ1(i) ≤ Jμ2(i). A policy
is (uniformly) optimal if it is better than or equal to all other policies. There
may be many optimal policies, but assuming that (A1) there exists at least one
proper policy and (A2) every improper policy yields infinite cost for at least one
initial state, they all share the same unique optimal value function, J∗. Then,
function J∗ is the unique solution of the Bellman optimality equation, TJ∗ = J∗,
where T is the Bellman optimality operator [3]; defined for all states i as

(TJ)(i) � min
u∈U(i)

n+1∑
j=1

p(j | i, u)
[
g(i, u, j) + J(j)

]
. (5)

Operator T is monotone and, assuming that (APP) all allowed policies are
proper, T is a contraction with respect to a weighted maximum norm [3].

From a given value function J , it is straightforward to get a policy, e.g., by
applying a greedy policy with respect to J [3]. There are several solution meth-
ods for solving MDPs, e.g., in the fields of reinforcement learning and [neuro-]
dynamic programming. Many of these algorithms aim at finding (or approximat-
ing) the optimal value function, since good approximations to J∗ directly lead
to good policies [3]. General solution methods include value iteration, policy
iteration, Q-learning, SARSA and TD(λ): temporal difference learning [3, 6, 15].

It is known that finite MDPs are P-complete [14] and SSP problems can be
reformulated as linear programming (LP) problems [3]. More precisely, the opti-
mal cost-to-go, J∗(1), . . . , J∗(n), solves the following LP in variables x1, . . . , xn :

maximize
n∑

i=1

xi (6a)

subject to xi ≤
n+1∑
j=1

p(j | i, u)
[
g(i, u, j) + xj

]
(6b)

for all states i and actions u ∈ U(i). Note that xn+1 is fixed at zero. This LP has
n variables and O(nm) constraints, where m is the maximum number of allowed
actions per state. Knowing that an LP can be solved in polynomial time [8], this
reformulation provides a polynomial time solution to SSP problems.
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3 PageRank Optimization as a Markov Decision Process

Before we prove that efficient algorithms to the Max-PageRank problem do exist,
first, we recall a basic fact about stationary distributions of Markov chains.

Let (X0, X1, . . . ) denote a time-homogeneous Markov chain defined on a finite
set Ω. The expected first return time of a state i ∈ Ω is defined as follows

ϕ(i) � E [ inf { t ≥ 1 : Xt = i } |X0 = i ] . (7)

If state i is recurrent, then ϕ(i) is finite. Moreover, if the chain is irreducible,

π(i) =
1

ϕ(i)
, (8)

for all states i, where π is the stationary distribution of the chain [11]. This
naturally generalizes to unichain processes, viz., when we have a single commu-
nicating class of states and possibly some transient states. In this case we need
the convention that 1/∞ = 0, since the expected first return time to transient
states is ∞. Hence, the stationary distribution of state i can be interpreted as
the average portion of time spent in i during an infinite random walk. It follows
from (8) that maximizing (minimizing) the PageRank of a node is equivalent to
minimizing (maximizing) the expected first return time to this node.

We will show that the Max-PageRank problem can be efficiently formulated
as a stochastic shortest path (SSP) problem [3], where “efficiently” means that
the construction (reduction) takes polynomial time. First, we will consider the
PageRank optimization without damping, namely c = 0, but later, we will extend
the model to the case of damping and personalization, as well. We will start with
a simple, but intuitive reformulation of the problem. Though, this reformulation
will not ensure that Max-PageRank can be solved in polynomial time, it is good
to demonstrate the main ideas and to motivate the refined solution.

3.1 Assumptions

First, we will make two assumptions, in order to simplify the presentation of the
construction, but later, in the main theorem, they will be relaxed.

(AD) Dangling Nodes Assumption : We assume that there is a fixed (not fragile)
outgoing edge from each node. This assumption guarantees that there are
no dangling nodes and there are no nodes with only fragile links.

(AR) Reachability Assumption : We also assume that for at least one configura-
tion of fragile links we have a unichain process and node v is recurrent,
namely, we can reach node v with positive probability from all nodes. This
assumption is required to have a well-defined PageRank for at least one
configuration. In our SSP formulation this will be equivalent to assuming
that there is at least one proper policy. In case of damping this assump-
tion is automatically satisfied, since then the Markov chain is irreducible,
and hence unichain, no matter how we configure the fragile links, thus all
policies are proper.



PageRank Optimization in Polynomial Time by SSP Reformulation 95

3.2 Simple SSP Formulation

First, let us consider an instance of Max-PageRank. We are going to build an
associated SSP problem that solves the original PageRank optimization. The
states of the MDP are the nodes of the graph, except for v which we “split” into
two parts and replace by two new states: vs and vt. Intuitively, state vs will be
our “starting” state: it has all the outgoing edges of v (both fixed and fragile),
but it does not have any incoming edges. The “target” state will be vt: it has all
the incoming edges of node v and, additionally, it has only one outgoing edge: a
self-loop. Note that τ = vt, namely, vt is the absorbing termination state.

An action in state i is to select a subset of fragile links (starting from i)
which we “turn on” (activate). All other fragile links from i will be “turned off”
(deactivated). Thus, for all states i, the allowed set of actions is U(i) � P(Fi),
where P denotes the power set and Fi the set of outgoing fragile edges from i.

Let us assume that we are in state i, where there are ai ≥ 1 fixed outgoing
edges and we have activated bi(u) ≥ 0 fragile links, determined by action u ∈
U(i). Then, the transition-probability to all states j that can be reached from
state i using a fixed or an activated fragile link is p(j | i, u) � 1/(ai + bi(u)).

We define the immediate-cost of all control actions as one, except for the
actions taken at the cost-free target state. Thus, the immediate-cost function is

g(i, u, j) �
{

0 if i = vt,
1 otherwise, (9)

for all states i, j and actions u. Note that taking an action can be interpreted as
performing a step in the random walk. Therefore, the expected cumulative cost
of starting from state vs until we reach the target state vt is equal to the expected
number of steps until we first return to node v according to our original random
walk. It follows, that the above defined SSP formalizes the problem of minimizing
(via a configuration) the expected first return time to state v. Consequently, its
solution is equivalent to maximizing the PageRank of node v.

Fig. 1. SSP reformulation: the starting state is s = vs, the target state is t = vt and
the dashed edges denote fragile links. The original nodes in the rectangle exclude v.

Each allowed deterministic policy μ defines a potential way to configure the
fragile links. Moreover, the vs component of the cost-to-go function, Jμ(vs),
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is the expected first return time to v using the fragile link configuration of μ.
Therefore, we can compute the PageRank of node v by

π(v) =
1

Jμ(vs)
, (10)

where we applied the convention of 1/∞ = 0, which is needed when v is not
recurrent under μ. Thus, the maximal PageRank of v is 1/J∗(vs).

It is known that MDPs can be solved in polynomial time in the number of
states, N , and the maximum number of actions per state, M (and the maximum
number of bits required to represent the components, L), e.g., by linear program-
ming [12, 14]. The size of the state space of the current formulation is N = n+1,
where n is the number of vertices of the original graph, but, unfortunately, its
action space does not have a polynomial size. For example, if we have maximum
m fragile links leaving a node, we had 2m possible actions to take, namely, we
could switch each fragile link independently on or off, consequently, M = 2m.
Since m = O(n), from the current reformulation of problem, we have that there
is a solution which is polynomial but in 2n, which is obviously not good enough.
However, we can notice that if we restrict the maximum number of fragile links
per node to a constant, k, then we could have a solution which is polynomial
in n (since the maximum number of actions per state becomes constant: 2k).
This motivates our refined solution, in which we reduce the maximum number
of actions per state to two while only slightly increasing the number of states.

3.3 Refined SSP Formulation

We are going to modify our previous SSP formulation. The key idea will be to
introduce an auxiliary state for each fragile link. Therefore, if we have a fragile
link from node i to node j in the original graph, we place an artificial state, fij ,
“between” them in the refined reformulation. The refined transition-probabilities
are as follows. Let us assume that in node i there were ai ≥ 1 fixed outgoing
edges and bi ≥ 0 fragile links. Now, in the refined formulation, in state i we have
only one available action which brings us uniformly, with 1/(ai + bi) probability,
to state j or to state fij depending respectively on whether there was a fixed or
a fragile link between i and j. Notice that this probability is independent of how
many fragile links are turned on, it is always the same. In each auxiliary state
fij we have two possible actions: we could either turn the fragile link on or off.
If our action is “on” (activation), we go with probability one to state j, however,
if our action is “off” (deactivation), we go back with probability one to state i.

We should check whether the transition-probabilities between the original
nodes of graph are not affected by this reformulation. Suppose, we are in node
i, where there are a fixed and b fragile links2, and we have turned k of the
fragile links on. Then, the transition-probability to each node j, which can be
reached via a fixed or an activated fragile link, should be 1/(a + k). In our
refined reformulation, the immediate transition-probability from state i to state
2 For simplicity, now we do not denote their dependence on node i.
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j is 1/(a + b), however, we should not forget about those b − k auxiliary nodes
in which the fragile links are deactivated and which lead back to state i with
probability one, since, after we returned to state i we have again 1/(a + b)
probability to go to state j an so on. Now, we will compute the probability of
eventually arriving at j if we start in i and only visit auxiliary states meantime.

To simplify the calculations, let us temporarily replace each edge leading to
an auxiliary sate corresponding to a deactivated fragile link with a self-loop. We
can safely do so, since these states lead back to state i with probability one,
therefore, the probability of eventually arriving at node j does not change by
this modification. Then, the probability of arriving at j can be written as

P (∃ t : Xt = j | ∀ s < t : Xs = i ) = (11a)

=
∞∑

t=1

P (Xt = j |Xt−1 = i )
t−1∏
s=1

P (Xs = i |Xs−1 = i ) = (11b)

=
∞∑

t=1

1
a + b

(
b − k

a + b

)t−1

=
1

a + b

∞∑
t=0

(
b − k

a + b

)t

=
1

a + k
. (11c)

With this, we have proved that the probability of eventually arriving at state
j if we start in state i, before arriving at any (non-auxiliary) state l that was
reachable via a fixed or a fragile link from state i in the original graph, is the
same as the one-step transition-probability was from state i to state j according
to the original random walk. This partially justifies the construction.

However, we should be careful, since we might have performed several steps
in the auxiliary nodes before we finally arrived at state j. Fortunately, this
phenomenon does not ruin our ability to optimize the expected first return time
to state v in the original graph, since we count the steps with the help of the
cost function, which can be refined according to our needs. All we have to do is
to allocate zero cost to those actions which lead us to auxiliary states:

g(i, u, j) �
{

0 if i = vt or j = fil or u = “off”,
1 otherwise, (12)

for all states i, j, l and action u. Consequently, we only incur cost if we directly
go from state i to state j, without visiting an auxiliary node (viz., it was a
fixed link), or if we go to state j via an activated fragile link, since we have
g(fij , u, j) = 1 if u = “on”. It is easy to see that in this way we only count
the steps of the original random walk and, for example, it does not matter how
many times we visit auxiliary nodes, since these visits do not have any cost.

This reformulation also has the nice property that Jμ(vs) is the expected first
return time to node v in the original random walk, in case we have configured
the fragile links according to policy μ. The minimum expected first return time
that can be achieved with suitably setting the fragile links is J∗(vs), where
J∗ is the optimal cost-to-go function of the above constructed SSP problem.
Consequently, the maximum PageRank node v can have is 1/J∗(vs).
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It is also easy to see that if we want to compute the minimum possible
PageRank of node v, we should simply define a new immediate-cost function
as ĝ = − g, where g is defined by equation (12). If the optimal cost-to-go func-
tion of this modified SSP problem is Ĵ∗, then the minimum PageRank v can have
is 1/|Ĵ∗(vs)|. Thus, Min-PageRank can be handled with the same construction.

The number of states of this formulation is N = n + d + 1, where n is the
number of nodes of the original graph and d is the number of fragile links.
Moreover, the maximum number of allowed actions per state is M = 2, therefore,
this SSP formulation provides a proof that, assuming (AD) and (AR), Max-
PageRank can be solved in polynomial time in the size of the problem.

The resulted SSP problem can be reformulated as a linear program, namely,
the optimal cost-to-go function solves the following LP in variables xi and xij ,

maximize
∑
i∈V

xi +
∑

(i,j)∈F
xij (13a)

subject to xij ≤ xi , and xij ≤ xj + 1 , and (13b)

xi ≤ 1
deg(i)

[ ∑
(i,j)∈E\F

(xj + 1) +
∑

(i,j)∈F
xij

]
, (13c)

for all i ∈ V \ {vt} and (i, j) ∈ F , where xi is the cost-to-go of state i, xij

relates to the auxiliary states of the fragile edges, and deg(·) denotes out-degree
including both fixed and fragile links (independently of the configuration). Note
that we can only apply this LP after state v was “splitted” into a starting and
a target state. Also note that the value of the target state, xvt , is fixed at zero.

3.4 Handling Dangling Nodes

Now, we are going to show that assumption (AD) can be omitted and our com-
plexity result is independent of how dangling nodes are particularly handled.

Suppose that we have chosen a rule according to which the dangling nodes
are handled, e.g., we take one of the rules discussed by Berkhin [2]. Then, in
case (AD) is not satisfied, we can simply apply this rule to the dangling nodes
before the optimization. However, we may still have problems with the nodes
which only have fragile links, since they are latent dangling nodes, namely, they
become dangling nodes if we deactivate all of their outgoing edges. We call
them “fragile nodes”. Notice that in each fragile node we can safely restrict the
optimization in a way that maximum one of the fragile links can be activated.
This does not affect the optimal PageRank of v, since the only one allowed link
should point to a node that has the smallest expected hitting time to v. Even if
there are several nodes with the same value, we can select one of them arbitrarily.

It may also be the case that deactivating all of the edges is the optimal
solution, e.g., if the fragile links lead to nodes that have very large hitting times
to v. In this case, we should have an action that has the same effect as the
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dangling node handling rule. Consequently, in case we have a fragile node that
has m fragile links, we will have m + 1 available actions: u1, . . . , um+1. If uj is
selected, where 1 ≤ j ≤ m, it means that only the j-th fragile link is activated
and all other links are deactivated, while if um+1 is selected, it means that all
of the fragile links are deactivated and auxiliary links are introduced according
to the selected dangling node handling rule. If we treat the fragile nodes this
way, we still arrive at an MDP which has states and actions polynomial in n and
d, therefore, Max-PageRank can be solved in polynomial time even if (AD) is
not satisfied and independently of the applied rule. The modification of the LP
formulation if fragile nodes are allowed is straightforward.

3.5 Damping and Personalization

Now, we are going to extend our refined SSP formulation, in order to handle
damping, as well. For the sake of simplicity, we will assume (AD), but it is
easy to remove it in a similar way as it was presented in Section 3.4. Note that
assumption (AR) is always satisfied in case of damping (cf. Section 3.1).

Damping can be interpreted as follows: in each step we continue the random
walk with probability 1 − c and we restart it (“zapping”) with probability c,
where c ∈ (0, 1) is a given damping constant. In this latter case, we choose the
new starting state of the random walk according to the probability distribution
of a given positive and stochastic personalization vector z. In order to model this,
we introduce a new global auxiliary state, q, which we will call the teleportation
state, since random restarting is sometimes referred to as “teleportation” [10].

Fig. 2. An illustration of damping: the substructure of a node of the original digraph.
Circles represent states and boxes represent actions. State q denotes the global “tele-
portation” state. Dashed edges help determining zero cost events: if a state-action-state
path has only dashed edges, then this triple has zero cost, otherwise, its cost is one.
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In order to take the effect of damping into account, we place a new auxiliary
state hi “before” each (non-auxiliary) state i (see Figure 2). Each action that
leads to i in the previous formulation now leads to hi. In hi we have only one
available action (“nop” abbreviating “no operation”) which brings us to node i
with probability 1− c and to q with probability c, except for the target state, vt,
for which hvt leads with probability one to vt. In q, we have one available action
which brings us with z distribution to the newly defined nodes,

p(hi | q ) � p(hi | q, u ) �

⎧⎨⎩
z(i) if i �= vs and i �= vt

z(v) if i = vt

0 if i = vs.
(14)

All other transition-probabilities from q are zero. Regarding the cost function:
it is easy to see that we should not count the steps when we move through hi,
therefore, g(hi, u, i) = 0 and g(hi, u, q) = 0. However, we should count when we
move out from the teleportation state, i.e., g(q, u, i) = 1 for all i and u.

In this variant the size of the state space is N = 2n + d + 2 and we still have
maximum 2 actions per state, therefore, it can also be solved in polynomial time.

In this case, the LP formulation of finding the optimal cost-to-go is

maximize
∑
i∈V

(xi + x̂i) +
∑

(i,j)∈F
xij + xq (15a)

subject to xij ≤ x̂j + 1 , and x̂i ≤ (1 − c)xi + c xq , (15b)

xij ≤ xi , and xq ≤
∑
i∈V

ẑi (x̂i + 1) , (15c)

xi ≤ 1
deg(i)

[ ∑
(i,j)∈E\F

(x̂j + 1) +
∑

(i,j)∈F
xij

]
, (15d)

for all i ∈ V \ {vt} and (i, j) ∈ F , where ẑi = p(hi | q), x̂i denotes the cost-to-go
of state hi and xq is the value of the teleportation state, q. All other notations
are the same as in LP (13) and we also have that xvt and x̂vt are fixed at zero.

We arrived at an LP problem with O(n+d) variables and O(n+d) constraints.
Given an LP with k variables and O(k) constraints, it can be solved in O(k3L),
where L is the binary input size (for rational coefficients) or in O(k3 log 1

ε ),
where ε is the desired precision [8]. Therefore, Max-PageRank can be solved
using O((n + d)3L) operations under the Turing model of computation. Thus:

Theorem 1. The Max-PageRank Problem can be solved in polynomial time
even if the damping constant and the personalization vector are part of the input.

Note that assumptions (AD) and (AR) are not needed for this theorem, since
dangling and fragile nodes can be treated as discussed in Section 3.4 (without
increasing the complexity) and, in case of damping, all policies are proper.
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4 PageRank Optimization with Constraints

In this section we are going to investigate a variant of the PageRank optimization
problem in which there are mutually exclusive constraints between the fragile
links. More precisely, we will consider the case in which we are given a set of
fragile link pairs, C ⊆ F × F , that cannot be activated simultaneously.

The Max-PageRank Problem under Exclusive Constraints

Instance: A digraph G = (V, E), a node v ∈ V, a set of controllable edges F ⊆ E
and a set C ⊆ F × F of those edge-pairs that cannot be activated together.
A damping constant c ∈ (0, 1) and a stochastic personalization vector z.

Task: Compute the maximum possible PageRank of v by activating edges in F
and provide a configuration of edges in F for which the maximum is taken.

We will show that the Max-PageRank problem under exclusive constraints is
already NP-hard, more precisely, that the decision version of it is NP-complete.
In the decision version, one is given a number p ∈ (0, 1) and is asked whether
there is a configuration such that the PageRank is larger or equal to p.

Theorem 2. The decision version of the Max-PageRank Problem under

Exclusive Constraints is NP-complete.

Proof. The problem is in NP because given a solution (viz., a configuration),
it is easy to verify in polynomial time, e.g., via a simple matrix inversion, cf.
equation (3), whether the corresponding PageRank is larger or equal than p.

We now reduce the 3SAT problem, whose NP-completeness is well known [7],
to this problem. In an instance of the 3SAT problem, we are given a Boolean
formula containing m disjunctive clauses of three literals that can be a variable or
its negation, and one is asked whether there is a truth assignment to the variables
so that the formula (or equivalently: each clause) is satisfied. Suppose now we
are given an instance of 3SAT. We will construct an instance of Max-PageRank
under exclusive constraints that solves this particular instance of 3SAT.

We construct a graph having m + 2 nodes in the following way: we first put
a node s and a node t. Figure it as a source node and a sink node respectively.
Each clause in the given 3SAT instance can be written as yj,1 ∨ yj,2 ∨ yj,3,
1 ≤ j ≤ m, where yj,l is a variable or its negation. For each such clause, we
add a node vj between s and t, we put an edge from vj to itself (a self-loop),
we put an edge from s to vj , and we put three edges between vj and t, labeled
respectively with yj,1, yj,2, and yj,3. We finally add an edge from t to s. We
now define the set of exclusive constrains, C, which concludes the reduction. For
all pairs (yj,l, yj′,l′) such that yj,l = ȳj′,l′ (i.e., yj,l is a variable and ȳj′,l′ is its
negation, or conversely), we forbid the corresponding pair of edges. Also, for
all pairs of edges (yj,l, yj,l′) corresponding to a same clause node, we forbid the
corresponding pair. This reduction is suitable, since the sizes of the graph and
C are polynomial in the size of the 3SAT instance.
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We claim that for c small enough, say c = 1/(100m), it is possible to obtain
an expected return time from t to itself which is smaller than 77 if and only if the
instance of 3SAT is satisfiable. The reason for that is easy to understand with
c = 0 : if the instance is not satisfiable, there is a node vj with no edge from it
to t. In that case, the graph is not strongly connected, and the expected return
time from t to itself is infinite. Now, if the instance is satisfiable, let us consider
a particular satisfiable assignment. We activate all edges which correspond to a
literal which is true and, if necessary, we deactivate some edges so that for all
clause nodes, there is exactly one leaving edge to t. This graph, which is clearly
satisfiable, is strongly connected, and so the expected return time to t is finite.

Now if c �= 0 is small enough, one can still show by continuity that the expected
return time is much larger if some clause node does not have an outgoing edge
to t. To see this, let us first suppose that the instance is not satisfiable, and thus
that a clause node (say, v1), has no leaving edge. Then, for all l ≥ 3, we describe
a path of length l from t to itself: this path passes through s, and then remains
during l − 2 steps in v1, and then jumps to t (with a zapping). This path has
probability (1 − c) 1

m (1 − c)l−2c. Thus, the expected return time

E1 ≥
∞∑

l=3

lp(l) ≥ c

m

∞∑
l=3

l(1 − c)l−1 ≥ c

m

[
c−2 − 3

]
≥ 99, (16)

where we assumed that c = 1/(100m) and the personalization vector is z =
(1/n)�. Note that c and z are part of the input, thus they can be determined.

Consider now a satisfiable instance, and build a corresponding graph so that
for all clause nodes, there is exactly one leaving edge. It appears that the expected
return time from t to itself satisfies E2 ≤ 77. To see this, one can aggregate all
the clause nodes in one macro-node, and then define a Markov chain on three
nodes that allows to derive a bound on the expected return time from vt to itself.
This bound does not depend on m because one can approximate the probabilities
m/(m + 2) and 1/(m + 2) that occur in the auxiliary Markov chain by one so
that the bound remains true. Then, by bounding c with 1/8 > 1/(100m), one
gets an upper bound on the expected return time. For the sake of conciseness, we
skip the details of the calculations. To conclude the proof, it is possible to find
an edge assignment in the graph so that the PageRank is greater than p = 1/77
if and only if the instance is satisfiable. �

5 Conclusions

The task of ordering the nodes of a directed graph according to their importance
arises in many applications. A promising and popular way to define such an
ordering is to use the PageRank method [4]. The problem of optimizing the
PageRank of a given node by changing some of the edges caused a lot of recent
interest [1, 5, 9]. We considered the general problem of finding the extremal
values of the PageRank a node can have in the case we are allowed to control
(activate or deactivate) some of the edges, which we referred to as fragile links.

Our main contribution was that we proved that these problems could be effi-
ciently formulated as stochastic shortest path problems (special Markov decision
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processes). This does not only imply that they can be solved in polynomial time,
but also show that they are well-suited for reinforcement learning methods.

We note that we do not need to assume that the graph is simple, namely, it
can have multiple edges (and self-loops). This allows the generalization of our
results to weighted graphs, in case the weights are positive integers or rationals.

We also showed that slight modifications of the problem, as for instance adding
mutual exclusive constraints between the activation of several fragile links, may
turn the problem NP-hard. We conjecture that several other modified variants of
the problem are also NP-hard, e.g., the Max-PageRank problem with restrictions
on the number of fragile links that can be simultaneously activated.
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Abstract. We consider the problem of inferring the most likely social
network given connectivity constraints imposed by observations of out-
breaks within the network. Given a set of vertices (or agents) V and
constraints (or observations) Si ⊆ V we seek to find a minimum log-
likelihood cost (or maximum likelihood) set of edges (or connections) E
such that each Si induces a connected subgraph of (V, E). For the offline
version of the problem, we prove an Ω(log(n)) hardness of approxima-
tion result for uniform cost networks and give an algorithm that almost
matches this bound, even for arbitrary costs. Then we consider the online
problem, where the constraints are satisfied as they arrive. We give an
O(n log(n))-competitive algorithm for the arbitrary cost online problem,
which has an Ω(n)-competitive lower bound. We look at the uniform cost
case as well and give an O(n2/3 log2/3(n))-competitive algorithm against
an oblivious adversary, as well as an Ω(

√
n)-competitive lower bound

against an adaptive adversary. We examine cases when the underlying
network graph is known to be a star or a path, and prove matching upper
and lower bounds of Θ(log(n)) on the competitive ratio for them.

1 Introduction

In the real world, we often observe patterns that expose information about an un-
derlying structure that we are interested in discovering, and in this paper, we focus
our attention on learning social networks by passively observing such patterns.
Here, we consider inferring the structure of social networks by observing phe-
nomena that give us information about their connectivity. Our observations may
be limited, and we may not be able to infer the underlying networks precisely –
in that case, we can try to find the most likely structure given prior beliefs.

� Supported in part by the National Science Foundation under grant CCF-0916389.
�� Supported in part by the National Science Foundation under grants CNS-0435201

and CCF-0916389.
��� Work supported in part by the National Science Foundation under a National

Science Foundation Graduate Research Fellowship and in part under Grant #
0937060 to the Computing Research Association for the Computing Innovation
Fellowship program.

M. Hutter et al. (Eds.): ALT 2010, LNAI 6331, pp. 104–118, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



Inferring Social Networks from Outbreaks 105

For example, in the United States, the Centers for Disease Control and Pre-
vention release various data1 on persons affected by illnesses – where, ideally,
we would have information on exactly who is affected in each outbreak. From
this information we can try to learn the network’s underlying structure. In an
idealized setting, we can consider persons infected during one outbreak as con-
nected subsets in a population – for a disease spreads among persons in close
proximity, and such data impose constraints on the topology of the network.
Given such constraints, the problem would then be to find a maximum likelihood
social network from the disease data.

Thus, each set imposes a constraint on the network – namely that it be con-
nected in its induced subgraph. The goal of the learner is to infer the most
probable network that satisfies the connectivity requirements presented to it.

The learner can also have a prior belief about the probability each edge ap-
pears in the network. Let p(u,v) be the a priori probability of an edge appearing
between nodes u and v. If the prior distribution on edges is independent and
each edge appears with low probability, the goal of finding a maximum likeli-
hood social network given the constraints is to find a set of edges E that satisfies
all of the constraints, for which the quantity∏

{u,v}∈E

p(u,v)

∏
{u,v}/∈E

(
1 − p(u,v)

)
=

∏
{u,v}

(
1 − p(u,v)

) ∏
{u,v}∈E

p(u,v)(
1 − p(u,v)

)
is maximized. Taking the logarithm, we want a set of edges E that minimizes
the sum ∑

{v,u}∈E

− log

(
p(u,v)(

1 − p(u,v)
)).

We assume that all quantities p(u,v) ≤ 1/2, meaning that we a priori do not
expect any pair of given agents to be connected. This assumption implies that
each term in the sum—the log-likelihood cost of the edge—is non-negative.

We can now think of the priors in terms of these costs. The goal of the learner
becomes to construct the cheapest network (with respect to the prior costs) that
satisfies the connectivity constraints.

This task presents various natural variations. We can consider what happens
if the constraints are given to the learner in advance, and when the constraints
arrive online. If they arrive online, they can be chosen adversarially or obliviously.
We can imagine all edges in a network having the same cost, or that edges in a
network have arbitrary costs. There are also cases when some information about
the underlying social network is known, for example, that there exists a path
that satisfies all the constraints.

1.1 Past Work

In the area of active learning, Angluin et al. [7] study the problem of recon-
structing independent cascade social networks by activating and suppressing

1 For more on CDC statistics, we direct the reader to
www.cdc.gov/datastatistics/

www.cdc.gov/datastatistics/
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various nodes in the network. The problem of actively discovering various net-
works from connectivity queries has been much studied in [2, 6, 8, 9, 14, 18].
In active learning of hidden networks, the object of the algorithm is to learn
the network exactly. Our model is similar, except the learner is passive and has
only the constraints it is given. Our task is to output the most likely network
consistent with the constraints without the ability to query the network.

In a different passive learning model, Akutsu et al. [1] consider the problem
of completing networks consistently with observations. Their model assumes the
learner has more information and uses different target networks, but it is an
example of a model that captures some of the spirit of our problem.

A variant of our problem was also considered by Korach and Stern [16] in
another context where users in a trusted set in a network want to send messages
among themselves without having the messages travel outside the group. Trusted
sets of users can overlap, creating complicated structures, and these trusted sets
form connectivity constraints in their subgraphs, imposing similar requirements
to those in the social network inference problem.

In [16] Korach and Stern analyze the offline version of this problem for the
case where the constraints can be satisfied by a tree. They give a polynomial
time algorithm that finds the optimal solution in the tree-realizable case. In [17]
Korach and Stern consider this problem for the case where the optimal solution
forms a tree, and all of the connectivity constraints must be satisfied by stars.
They pose as an open question the case of general graphs. Among our other
results, we answer their question in this paper.

In a different line of work, Alon et al. [5] explore a wide range of network
optimization problems, including generalized connectivity, cuts, facility location,
and multicast. The connectivity problem they study involves ensuring a network
with fractional edge weights has a flow of 1 over cuts specified by the constraints.
In [3], Alon et al. also study approximation algorithms for the Online Set Cover
problem, which has connections to Network Inference problems which we explore
in this paper. In [15] Gupta et al. also consider a network design problem for
pairwise vertex connectivity constraints.

1.2 Preliminaries

In this paper, we consider the following Network Inference problem. V is a set
of vertices, and for each undirected edge e = (vi, vj), ce is the cost of constructing
edge e. A collection of connectivity constraints S = {S1, S2, . . . , Sr} is given,
where each Si is a subset of V . The task is to construct a set E of edges between
vertices of V such that for each i, the set Si induces a connected subgraph of
G = (V, E). The quality of the solution is measured by comparing the sum of the
costs of all the edges in E with the optimal cost of satisfying all the constraints.

In the offline version of the problem, the algorithm knows all of the constraints
at the outset; in the Online Network Inference problem, the constraints are
given to the algorithm one by one, and edges must be added to G to satisfy each
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new constraint. By default, we allow the edges to have arbitrary costs, but in
the uniform cost version of the problem the edge costs are all equal to 1.

When we restrict the underlying graph in a problem to a smaller class of
graphs, we mean that all constraints Si can be satisfied (for the online case, in
hindsight), by a graph from that class.

1.3 Our Results

In Section 2 we analyze the offline problem, where we show that the Uniform Cost
Network Inference problem (and therefore the arbitrary cost one) has a hardness
of approximation lower bound of Ω(log(n)) times the optimal solution. We give
an O(log(r)) approximation algorithm, where r is the number of constraints.
This matches the lower bound when r is polynomial in n.

In Section 3, we look at the Online Network Inference Problem. First, in
Subsection 3.1, we look at the case when the underlying uniform cost graph
is a star or path. In both cases, we show that the optimal algorithm has an
Ω(log(n))-competitive ratio and give a matching O(log(n))-competitive algo-
rithm. We also show that in the case when edges have non-uniform costs, there
is no cn-competitive algorithm for any c < 1, even when the underlying graph
is a path.

Then, in Subsection 3.2 we consider the general case of Online Network Infer-
ence, where the topology of the underlying graph is unrestricted. There we give
an O(n log(n))-competitive algorithm for the arbitrary cost case, that almost
matches our lower bound. For the Uniform Cost Network Inference problem,
we give an Ω(

√
n)-competitive lower bound, and in the case of an oblivious

adversary, we give an O(n2/3 log2/3(n))-competitive algorithm.

2 Offline Network Inference

We first examine the offline Uniform Cost Network Inference problem.

Theorem 1. If P�=NP, the approximation ratio for the Uniform Cost Net-
work Inference problem on n nodes is Ω(log n).

Proof. We reduce from the Hitting Set problem. The inputs to Hitting Set are
U = {v1, v2, . . . , vn} and {C1, C2, . . . , Cj} with Ci ⊆ U . The Hitting Set prob-
lem is to minimize |H |, where H ⊆ U such that ∀Ci, H ∩ Ci �= ∅. We define an
instance of the Uniform Cost Network Inference problem with n3 by n vertices
v(i,j), for all 1 ≤ i ≤ n3 (rows) and 1 ≤ j ≤ n (columns). For each i, the vertices
in row i, {v(i,1), v(i,2), . . . , v(i,n)}, correspond to the elements {v1, . . . , vn} in the
Hitting Set instance.

Now we define the connectivity constraints for the Uniform Cost Network In-
ference problem. First we enforce that all pairs of vertices in each row i are con-
nected, by adding a connectivity constraint for each pair of vertices {v(i,j), v(i,k)}.
For each constraint Ci in the Hitting Set problem, we create

(
n3

2

)
connectivity
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constraints. Without loss of generality, let Ci = {v1, v2, . . . , vk}. For each pair
l �= j such that 1 ≤ l, j ≤ n3 we add a connectivity constraint

Sl,j
Ci

= {v(l,1), v(l,2), . . . , v(l,k), v(j,1), v(j,2), . . . , v(j,k)} (1)

in the Uniform Cost Network Inference problem. This enforces the Hitting Set
constraints pairwise between the n3 rows of the network inference problem.

Each pair of rows in our new instance contains the original Hitting Set instance.
First, the algorithm has no choice but to place a clique on each row. Then, let equa-
tion (1) be a constraint. To satisfy Sl,j

Ci
, the algorithm must choose some edge be-

tween row l and row j among vertices 1, . . . , k. We observe that if the algorithm
chooses an edge between two vertices corresponding to different elements in the two
rows, it coulddoat least aswell by choosing the edgegoingbetween twocopies of one
of the two elements. To see this, if edge (v(l,x), v(j,y)), with x �= y, is chosen to sat-
isfy the constraint Sl,j

Ci
, edge (v(l,x), v(j,x)) would have also satisfied the constraint

(and corresponds to choosing element x in the Hitting Set). Then, for any other
constraint between the two rows, (v(l,x), v(j,y)) will satisfy it only if (v(l,x), v(j,x))
will. Hence an optimal algorithm may choose edges in one-to-one correspondence
with the elements in the original Hitting Set instance.

Because Hitting Set is the complement of Set Cover, if P �=NP, its optimal
approximation ratio is Ω(log(n)) [13], and there are Θ

(
n3

2

)
pairs of Hitting Set

instances (or rows). The optimal solution has
(
n3
(
n
2

)
+ OPT

(
n3

2

))
edges – the

first term counts the pairwise constraints in each row. So unless P=NP, the best
polynomial time algorithm will require

(
n3
(
n
2

)
+ Ω

(
log(n)OPT

(
n3

2

)))
edges,

giving us the result. �

Below, we give an algorithm that almost meets this lower bound, even in the
arbitrary cost case when r is polynomial in n.

Theorem 2. There is a polynomial time O(log(r))-approximation algorithm for
the Network Inference problem on n nodes and r constraints.

Proof. The inputs are the vertices V = {v1, v2, . . . , vn}, the cost ce of each
edge e = (vi, vj), and the constraints {S1, S2, . . . , Sr}. Let C(E) be a potential
function that takes in a set of edges and sums over all constraints Si, 1 minus
the number of components Si induces on (V, E). Let E be initially empty. Now,
consider the following greedy algorithm: until all constraints are satisfied (while
C(E) < 0), greedily add to E the edge that is argmaxe

C(E+e)−C(E)
ce

.
We now notice that C(E) is sub-modular in its edge set – as in, if A ⊆ B then

for all e, C(A+e)−C(A) ≥ C(B+e)−C(B). This is clear because A can induce
additional components for e to reduce compared to B. Now we use the result of
Wolsey [19] that says that a greedy algorithm for maximizing an integer-valued
submodular set function f on elements x gives a H(m) approximation to the
optimum of f , where m = maxx f({x}) and H(m) =

∑m
i (1

i ). Because each
edge can increase the value of C by at most r, we have m ≤ r, giving an O(log r)
approximation. �
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3 Online Network Inference

Oftentimes, the learner must commit to its choices as constraints arrive. For
example, when the constraints represent diseases, we may wish to commit re-
sources to fight an epidemic. This leads us to consider the natural extension of
network inference to the online setting.

In the online setting, the collection of connectivity constraints S1, S2, . . . , Sr is
now given one at a time, and we say that upon being presented Si the algorithm
is on round i. Also, let Ei be the edge set after the algorithm satisfies constraint
Si. To explore the worst-case performance of our algorithms, unless otherwise
stated, we assume an adaptive adversary, meaning that the adversary can
wait for the algorithm to satisfy constraint Si before determining constraint
Si+1.

In this section, we are interested in competitive analysis. An algorithm is c-
competitive if the cost of its solution is less than c times OPT, where OPT is
the best solution in hindsight. In the case when we know that the underlying
graph is, for instance, a uniform cost path or star, we know that OPT = (n−1).

First, we prove a lemma helpful for analyzing online algorithms.

Lemma 1. Let n(G, S) be the number of connected components S ⊆ V induces
in G, and let Gi = (V, Ei). For every algorithm for the Online Network In-
ference problem, there is an algorithm that performs at least as well and adds
exactly (n(Gi, Si+1) − 1) edges on every round i.

Proof. Let A be any algorithm for the online network inference problem. We can
make a new algorithm called Alazy, that on each round inserts only a subset of
edges that A has inserted up to that round, enough to keep the constraints sat-
isfied. Each edge that A inserts but Alazy does not, Alazy remembers as possible
edges for future rounds and adds them as needed to satisfy future constraints.
It is clear that Alazy needs to put down a spanning tree on the components in-
duced by constraint i, which is (n(Gi, Si+1) − 1) edges; any fewer edges would
not satisfy the constraint. Thereby, Alazy satisfies the constraints, and because
Alazy uses a subset of the edges of A, it performs at least as well. �

3.1 Stars and Paths

First, we examine the case when the underlying graph is a star. This represents
the extreme case of one influential agent having many connections.

Theorem 3. The optimal competitive ratio for the Online Uniform Cost
Network Inference problem on n nodes when the algorithm knows the under-
lying graph is a star is Θ(log(n)).

Proof. We first prove the lower bound – that the competitive ratio for any algo-
rithm is Ω(log(n)). The adversary maintains a partition of the vertices into two
sets: C, the possible centers, and D = (V − C), the non-centers. Initially C has
(n − 1) vertices and D has one vertex, and the initial two constraints given to
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the algorithm are V and C. At every step, the adversary looks for a vertex v ∈ C
that maximizes the number of edges (u, v) with u ∈ D given by the algorithm,
and moves v from C to D, that is, C′ = C \ {v} and D′ = D ∪ {v}. The new
constraints given by the adversary are C′ ∪u for all u ∈ D′. Thus, the algorithm
must ensure at least one edge from each element of D′ to some element of C′.
The adversary continues until it has moved all but one vertex from C to D.

To analyze, we consider the edges from elements of D to the element v moved
from C to D when |C| = i. Each element of D must have at least one edge to
an element of C, so the maximum number of edges from D to one element of C
is at least the average: (n − i)/i. These edges are all distinct, so the algorithm
must produce at least

∑n−1
i=2 (n − i)/i = Ω(n log(n)) edges in all. Yet, all these

constraints can be satisfied by a star with (n − 1) edges. This completes the
proof of the lower bound.

For the upper bound, we give an O(log(n))-competitive algorithm. The algo-
rithm will keep track of a set Ci of potential centers and Di = V − Ci known
non-centers at round i. Any node not appearing in some constraint cannot be
a center. The algorithm keeps nodes in Ci connected by a path, and each node
in Di is connected to some node in Ci, such that the number of edges going
into each node in Ci from Di is no more than #(|Di|)/|Ci|$, meaning that all
nodes in Ci have close to the same degree. Initially, C0 = V and is connected by
an arbitrary path (costing O(n) edges). At any stage of the algorithm, when a
constraint Si comes in, if it does not eliminate any potential centers, it is easy to
see Si is already satisfied. Otherwise, we remove any potential centers Ri ⊂ Ci−1
that are now known to be non-centers from Ci−1 (to form Ci), and we add them
to Di−1 (to form Di). Further, we ignore all edges to nodes in Ri. We re-stitch
the path connecting nodes in Ci, which takes at most |Ri| + 1 edges. Then, we
connect (in such a way that keeps the degrees of the nodes in Ci about equal)
all nodes in Ri to nodes in Ci, which takes |Ri| edges, and also all nodes in Di−1
that became disconnected from Ci because were connected to nodes in Ri, which
takes O

(
|R||Di−1|
|Ci−1|

)
edges. This clearly satisfies constraint Si.

To see why this gives us the needed result, we notice that at most n centers
can be removed from C, and therefore connections involving nodes in Ri take∑n

i=1 O(|Ri|) = O(n). The rest of the connections, by the analysis in the para-

graph above, cost
∑

i O
(

|R||Di−1|
|Ci−1|

)
≤

∑
i O

(
|Ri|n
|Ci−1|

)
. If we consider removing

one center at a time (as opposed to in groups Ri), we can bound this from above
by O(n

∑n
i=1

1
n−i) = O(n log(n)). �

Next, we examine another natural structure – when the underlying graph is a
path.

Theorem 4. The optimal competitive ratio for the Online Uniform Cost
Network Inference problem on n nodes when the algorithm knows the under-
lying graph is a path is Θ(log(n)).

Proof. First we prove the lower bound, that any algorithm has a competitive
ratio of Ω(log(n)). We show an adversarial strategy that forces the algorithm to
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use O(n log(n)) edges when the optimal solution in hindsight uses only (n − 1)
edges. The adversary first shows all the nodes, which by Lemma 1 the optimal
algorithm connects using (n − 1) edges. Then the adversary divides the nodes
into two independent sets and presents each of them to the algorithm in arbitrary
order. The optimal algorithm must connect the two subgraphs with trees (again
by Lemma 1), and the adversary repeats this process recursively. We say that
each depth in the recursion is a new level in this process. Because the algorithm
puts down O(n) edges per level, given this strategy for the adversary, the optimal
algorithm needs to put down a path at each step so as to balance the sizes of two
following independent sets and limit the algorithm to O(log(n)) levels. Hence,
the algorithm uses Ω(n log(n)) edges, but it is clear that knowing the sets in
advance, one can satisfy the connectivity requirements using O(n) edges - by
simply connecting the smallest sets and then merging them accordingly into a
path. This gives us the desired Ω(log(n)) gap.

Now we prove the upper bound by giving an O(log((n))-competitive algorithm.
We first observe that every constraint Si is a sub-interval of the path, and the
algorithm must put down enough edges to capture a permutation of the vertices
consistent with the Si’s. The algorithm we introduce maintains a pq-tree –
a data structure, introduced by Booth and Lueker in [10], that keeps track of
all consistent orderings of nodes given contiguous intervals in a permutation. A
pq-tree is a tree that consists of leaf nodes, p-nodes, and q-nodes. A leaf node
is an element (or vertex in our case). A p-node (permutation node) has 2 or
more children of any type, and its children form a contiguous interval, but can
be ordered in any order. A q-node has 3 or more children of any type and its
children form an interval in the given order or its reverse. Each new interval
constraint updates the pq-tree, and then the algorithm adds edges to satisfy the
new constraint.

We will show that the algorithm can satisfy the constraints using O(n log(n))
edges by using a potential function to keep track of the evolution of the pq-tree.
Let P be the set of p-nodes in a given tree and Q be the set of q-nodes. Also
for any node p, let c(p) count p’s children. For constants a and b, our potential
function is

Φ = a
∑
p∈P

((c(p) − 1)(log(c(p) − 1)) + b|Q|. (2)

We observe that the pq-tree before any constraints arrive has one p-node at
the root, and all its children are leaf nodes. This corresponds to an arbitrary
permutation of the vertices. So at the beginning, Φ = Θ(n log(n)). In comparison,
when the permutation is specified, the root is a q-node and the rest of the nodes
are leaves. In that case, Φ = Θ(1).

Now we look at what happens when a constraint comes in. We will argue that
the number of edges we need to insert into our graph is a lower bound on the
drop in the potential function, and because it is always the case that Φ ≥ 0, this
will complete the proof.

We first analyze the most common type of update to a pq-tree. A constraint
comes in and splits a known interval into two, that is, it splits a p-node with m
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children into two p-nodes (one with at most (k + 1) children and the other with
at most (m−k) children), and attaches them to a q-node parent. So the drop in
the potential function is as follows (where H(p) is the binary entropy function.).

−ΔΦ = a ((m − 1) log(m − 1) − (k log(k) + (m − k − 1) log(m − k − 1))) − b

= a(m − 1)
(

log(m − 1) − k

m − 1
log(k) − m − k − 1

m − 1
log(m − k − 1)

)
− b

= a(m − 1)
(
− k

m − 1
log

(
k

m − 1

)
− m − k − 1

m − 1
log

(
m − k − 1

m − 1

))
− b

= a(m − 1)H
(

k

m − 1

)
− b

≥ a(m − 1)min
(

k

m − 1
,
m − k − 1

m − 1

)
− b

= a min (k, m − k − 1) − b.

Now, 2 min (k, m − k − 1) is exactly how much is required in the worst case to
stitch up a split interval – because we have to connect up all of the nodes in
the smaller new interval, and patch at most as many gaps in the larger interval
(similar to the reasoning in the proof of the lower bound). It takes at most 4 more
edges to connect up the ends of the two new intervals to the rest of the graph, and
this can be paid for if a = 10 and b = 4. We remember min (k, m − k − 1) ≥ 1, so
we spend 2 on splitting the p-node, 4 on re-stitching, and 4 on the new q-node,
and thus a = 10.

Booth and Lueker in [10] characterized all of the possible updates to the pq-
tree using 10 patterns: L, P1, P2, P3, P4, P5, P6, Q1, Q2, and Q3, given in the
Appendix. Neither L, Q1, nor P1 changes the number of p-nodes or q-nodes.
P2-P6 split at most one p-node and create at most one q-node, and are covered
by our analysis above. Q2 and Q3 require us to reconnect at most 2 pairs of
endpoints (with 4 edges), but also reduce the number of q-nodes by 1 or 2 (this
is why b = 4), and the edges are paid for by the drop in Φ. �

In the arbitrary cost case, the competitive ratio becomes considerably worse.

Theorem 5. There is no (cn)-competitive algorithm for c < 1 for the Online
Network Inference problem on n vertices, even when the underlying graph is
a path.

Proof. We let all edges among (n − 1) of the vertices have cost 0, and all edges
from the remaining vertex, s, have cost 1. The adversary first tells the algorithm
that all the vertices are connected. When the algorithm satisfies this constraint,
the adversary excludes from the next constraint all vertices the algorithm has
chosen to directly connect to s. This continues until the adversary forces the
algorithm to use all the 1 edges. But because each constraint is a subset of the
previous constraint, the optimal solution only needs to contain the final cost 1
edge, and can connect the remaining vertices using a path that goes through the
vertices in the order they were excluded in the adversary’s choice of constraints.
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Hence, the algorithm was forced to pay a cost of (n − 1), while the optimal
solution pays a cost of 1. �

3.2 General Graphs

We introduce the Online Fractional Network Inference problem, in which
the algorithm is similarly given a set of vertices V and edge costs ce for all
e = (v, w) ∈ V , and sees a sequence of constraints {S1, S2, . . . , Sr}. The task
is to assign fractional weights we to the edges (or pairs of vertices), such that
for each i, the maximum flow between each pair of vertices in Si is at least 1,
given the weights we (to be interpreted as edge capacities). The quality of the
solution is measured by comparing

∑
cewe with the optimal cost of satisfying

all the connectivity constraints. In the online problem, the algorithm may not
decrease any edge weights from round to round.

Lemma 2. There is an O(log(n))-competitive polynomial time algorithm for the
Online Fractional Network Inference problem on n nodes.

Proof. We give Algorithm 1 for the Online Fractional Network Inference prob-
lem. Algorithm 1 is a modification of the algorithm in 3.1 of Alon et al. [5], and
this proof closely follows their logic.

Algorithm 1. An O(log(n))-competitive Algorithm for the Online Fractional
Network Inference Problem

Let |V | = n and |E| = m
Upon seeing first constraint, set all we = 1

m2

for each constraint S do
for each pair v, w ∈ S do

if the flow from v to w in S is at least 1 then
do nothing

else
while the flow from v to w in S is less than 1 do

compute a min-weight cut C between v and w in S.
for each edge e ∈ C, we = we(1 + 1/ce)

end while
end if

end for
end for

We say that the optimal solution OPT has cost α. We assume the value of α is
known, and we can then assume all edges have cost between 1 and m.2 We now

2 Alon et al. [5] argue that we can use all edges of cost less than α/m and stay within
our bound, and we can ignore all edges with cost greater than α, and then rescale.
They also show how to guess α to within a factor of 2, justifying the assumption
that α is known in advance.
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follow the argument in Alon et al. [5], which works for Algorithm 1 almost with-
out modification. First we note that the algorithm generates a feasible solution.
This is clear from its termination condition.

Now we will prove that the number of weight augmentation steps performed
during the run of the algorithm is O(α log(m)). Consider the potential function

Φ =
∑
e∈E

cew
∗
e lg(we),

where w∗
e is the weight of edge e in OPT. It is clear from the initial edge weights

that the potential function begins as Φ0 = −O(α lg(m)). Because the weight
update rule ensures that no edge gets weight more than 2, the potential function
never exceeds 2α. And the increase in the potential function with each weight
augmentation step is at least 1:

ΔΦ =
∑
e∈E

cew
∗
e lg(we(1 + 1/ce)) −

∑
e∈E

cew
∗
e lg(we)

=
∑
e∈E

cew
∗
e lg(1 + 1/ce)

≥
∑
e∈E

w∗
e

≥ 1.

Finally, we look at the cost of our solution,
∑

e∈E wece, (which begins at ≤ 1) and
notice that in a weight augmentation step, it does not exceed

∑
e∈E

we

ce
ce ≤ 1.

So, whenever Φ increases by at least 1, the cost of our solution increases by
no more than 1. This gives us an O(log(m)) = O(log(n)) approximation to the
Online Fractional Network Inference problem. �

We can now use Lemma 2 to develop an algorithm that almost matches the
lower bound from Theorem 5.

Theorem 6. There is an O(n log(n))-competitive polynomial time algorithm for
the Online Network Inference problem on n nodes.

Proof. We use Algorithm 1 together with a rounding scheme similar to the one
considered by Buchbinder [11] for solving linear programs, to get our result.

For each edge e, we choose 2n random variables X(e, i) independently and
uniformly from [0, 1]. For each edge, we let threshold T (e) = min2n

i=1 X(e, i).
Then we run the algorithm for the Online Fractional Network Inference problem,
and whenever we ≥ T (e), we add e to our integral solution, and continue. Now
we claim the following.

1. The integral solution has expected cost O(n) times the fractional solution.
2. The integral solution satisfies all the constraints with high probability.

To prove the first claim, for any edge e, the probability that X(e, i) < we is we.
The probability that e is chosen to be in the integral solution is the probability
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that some X(e, i) < we – we call this event Ai. Hence, the probability of ∪2n
i=1Ai

is 2nwe, and by linearity of expectation, on every round, the expected cost of
our solution is O(n) times the fractional solution, which is an O(log(n)) approx-
imation of OPT for the integral problem. Hence our solution is an O(n log(n))
approximation of OPT in expectation.

To prove the second claim, we pick a constraint S. The constraint S is satisfied
if and only if for every cut C ∈ S, there exists an edge crossing C in our solution.
We fix a cut C. The probability the cut is not crossed is the probability we have
not chosen any edge crossing the cut. This probability is

∏
e∈C (1 − we)2n ≤

e(−2n
∑

e∈C we). And because the cut is crossed with a flow of 1 in the fractional
solution (i.e.

∑
e∈C we ≥ 1) at the time it is considered by the algorithm, we can

bound this by 1
e2n . There are r constraints and at most 2n cuts per constraint, so

by the union bound, the probability our solution is not feasible is
(

r2n

e2n

)
. Because

r < 2n < en, the probability our solution is not feasible tends to 0 as n increases,
completing the proof. �

We note that it is tempting to try to improve the bound for the Online Network
Inference problem by reducing it to Online Set Cover with the hope of getting
better bounds by using algorithms from [4] or [11]. In Online Set Cover, the sets
to be covered are given in advance, and the elements come in online. In Online
Network Inference, the graph is known in advance, but there are exponentially
many constraints in the size of the graph that can arrive online. While a re-
duction that makes edges in the network graph correspond to sets and all cuts
induced by the connectivity constraints correspond to elements in the Online
Set Cover problem is possible, the resulting bound on the competitiveness ratio
is O(n log(n)), which yields no improvement over our algorithm.

We now make a simple observation for the uniform cost case.

Proposition 1. There is an O(n)-competitive polynomial time algorithm for the
Online Uniform Cost Network Inference problem on n nodes.

Proof. Consider the algorithm that puts down a clique for each constraint pre-
sented to it. Let q ≤ n be the number of nodes that appear in at least one
constraint. Our algorithm uses O(q2) edges, but the optimal algorithm must
clearly use at least Ω(q) edges. �

We also present a lower bound for the online uniform cost case.

Theorem 7. The Online Uniform Cost Network Inference problem on n
nodes has an Ω(

√
n)-competitive lower bound.

Proof. We divide the vertices into two sets Q and R, with |Q| =
√

n and |R| =
n − √

n. For each vi ∈ R, the adversary does the following. At stage t = 1
the adversary sets Q(i,1) = Q. At stage t, the adversary gives the learner the
constraint S(i,t) = Q(i,t) ∪ vi. Let C(i,t) be the set of vertices in Q which the
learner connects to vi in response to being presented S(i,t). The adversary sets
Q(i,t+1) = Q(i,t) \ C(i,t) and continues to the next stage. The adversary stops
when Q(i,t) = ∅.
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To analyze this strategy for the adversary, for each vi, we order the edges
from vi to R by the stage in which the learner has placed them, breaking ties
arbitrarily. It is clear that the last edge the learner places is sufficient to connect
vi to R for all constraints S(i,t). Hence, all of these constraints can be satisfied
in retrospect by placing a clique on Q using

(√
n

2

)
= O(n) edges and one edge

per vertex in R, also using O(n) edges. But the learner places Ω(n) edges per
vertex in Q, amounting to Ω (n

√
n) edges in total, giving the desired result. �

We now consider the Online Network Inference problem with an oblivious ad-
versary – an adversary who commits to the constraints {S1, S2, . . . , Sr} before
presenting any of them to the algorithm.

Theorem 8. There is a randomized polynomial time algorithm for the Online
Uniform Cost Network Inference problem on n nodes that gives an expected
O(n2/3 log2/3(n))-competitive ratio against an oblivious adversary.

Proof. We assume that the optimal solution has m = Ω(n) edges (that each
vertex appears in some constraint). We then create an Erdös Rényi random graph
on our graph G, by putting in edges independently with a specified probability.
Random graph connectivity has a sharp threshold of c log(n)

n for c > 1 [12].

When p = c log2/3(n)
n1/3 , G has O(n5/3 log2/3(n)) edges in expectation. Now, our

algorithm is simple – for each constraint Si such that |Si| ≥ n1/3 log1/3(n),
because of our choice of p, Si is already connected with high probability in G.
Because we assume that there are only polynomially many constraints (even in
the offline case, as in Theorem 2), for large enough c, all such constraints are
satisfied in expectation. For every constraint Si of size < n1/3 log1/3(n) that we
see, we can put a clique with O(n2/3 log2/3(n)) edges on that constraint, and
each time we do that, we are guaranteed to hit at least one edge in OPT. Hence,
this costs us O(n5/3 log2/3(n) + n2/3 log2/3(n)OPT) edges in expectation, and
because m = Ω(n), we have an O(n2/3 log2/3(n)) approximation ratio. �

4 Discussion and Open Problems

In this paper we present a theoretical study of the Network Inference problem.
This model allows us to estimate connections among populations from data that
exposes certain constraints. One challenge in using this model to learn real-world
networks is that oftentimes, due to issues of privacy, data is anonymized (for
example disease data), and it is hard to tell when the same person participates
in multiple constraints. However, there are other settings where this would not
be an issue. For network construction problems, our algorithms give network
designers methods of optimizing costs while satisfying their users’ constraints.

We leave open some interesting questions. In the offline case, we give an
Ω(log(n)) hardness of approximation lower bound and an O(log(r)) approxima-
tion algorithm for both the arbitrary cost and uniform cost Network Inference
problems. If r is polynomial in n these bounds match, but otherwise there can
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be a gap. We also have a log(n) asymptotic gap for the Online Network Infer-
ence problem. For the Online Uniform Cost Network Inference problem, we have
an Ω(

√
n) adversarial lower bound and an O(n2/3/log1/3(n)) algorithm for the

oblivious case. Improving these bounds is an important problem.
Another open problem is to find tight bounds for trees in the uniform cost case.

For stars and paths, the bounds are tight, and our arguments can be adapted
to give a Ω(log(n))-competitive lower bounds against an oblivious adversary.
Perhaps an O(log(n))-competitive algorithm can be found for trees in general,
but our algorithms for paths and stars rely on their specific properties and do not
immediately generalize. Finally, one can consider generalizations of the Network
Inference Problem, for example constraints could require the vertices to be k-
connected in the induced subgraphs.
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[12] Erdös, P., Rényi, A.: On the evolution of random graphs. Publ. Math. Inst. Hung.
Acad. Sci. 5, 17–61 (1960)

[13] Feige, U.: A threshold of ln for approximating set cover. J. ACM 45(4), 634–652
(1998)

[14] Grebinski, V., Kucherov, G.: Reconstructing a Hamiltonian cycle by querying
the graph: Application to DNA physical mapping. Discrete Applied Mathemat-
ics 88(1-3), 147–165 (1998)

[15] Gupta, A., Krishnaswamy, R., Ravi, R.: Online and stochastic survivable network
design. In: STOC, pp. 685–694 (2009)

[16] Korach, E., Stern, M.: The clustering matroid and the optimal clustering tree.
Mathematical Programming 98(1-3), 345–414 (2003)

[17] Korach, E., Stern, M.: The complete optimal stars-clustering-tree problem. Dis-
crete Applied Mathematics 156(4), 444–450 (2008)

[18] Reyzin, L., Srivastava, N.: Learning and verifying graphs using queries with a
focus on edge counting. In: Hutter, M., Servedio, R.A., Takimoto, E. (eds.) ALT
2007. LNCS (LNAI), vol. 4754, pp. 285–297. Springer, Heidelberg (2007)

[19] Wolsey, L.A.: An analysis of the greedy algorithm for the submodular set covering
problem. Combinatorica 2(4), 385–393 (1982)

Appendix: Updating a pq-Tree

We briefly describe the patterns in [10] for updating pq-trees, as broken down
into 10 cases. This can be used as a guide for tracking the changes in Equation 2.

L This pattern simply relabels some leaf nodes.
P1 This pattern simply relabels a p-node.
P2 This pattern moves some children of a p-node into their own p-node.
P3 This pattern moves some children of a p-node into their own p-node and

creates a parent q-node.
P4 This pattern moves some children of a p-node to be children of a newly

created p-node, whose parent is a q-node that is a child of the original p-
node.

P5 This pattern moves some children of a p-node into their own p-node that is
the child of the original p-node, which becomes transformed to a q-node.

P6 This pattern moves some children of a p-node to their own p-node that is
moved to be the child of a newly created q-node formed by merging two
q-nodes.

Q1 This pattern simply relabels a q-node.
Q2 This pattern deletes a q-node and moves its children to become children of

its parent q-node.
Q3 This pattern deletes two q-nodes and merges their children to become chil-

dren of their parent q-node.
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Abstract. We develop the idea that the PAC-Bayes prior can be informed by the
data-generating distribution. We prove sharp bounds for an existing framework,
and develop insights into function class complexity in this model and suggest
means of controlling it with new algorithms. In particular we consider control-
ling capacity with respect to the unknown geometry of the data-generating distri-
bution. We finally extend this localization to more practical learning methods.

1 Introduction

The paper takes its inspiration from Catoni (2007), who developed localised PAC-Bayes
analysis by using a prior defined in terms of the data generating distribution. At first
sight this might appear to be ‘cheating’, since we must define the prior before seeing
the data. However, by defining in terms of the distribution we avoid this difficulty since
the distribution itself can be considered as fixed before the sample is generated. PAC-
Bayes bounds are one of the sharper analyses of the learning process. A weakness
in the standard PAC-Bayes approach is that analysis is constrained by the choice of
prior distribution, since the divergence between prior and posterior forms part of the
bound. This choice of prior tends to be rather generic; typically not tailored to the
particular problem, so that, in particular, good classifiers do not generally receive large
prior weight. Thus the divergence term in the PAC-Bayes analysis can typically be large.
By tuning the prior to the distribution Catoni is able to remove the Kullback-Leibler
(KL) term from the bound hence significantly reducing the complexity penalty.

The paper begins by using Catoni’s definition of the prior involving a Boltzmann
distribution, but proves a new sharp bound (Theorem 3) using a new lemma (Lemma 1)
and the re-use of the PAC-Bayes bound to remove the KL term (Lemma 2). The result-
ing bound suggests a new complexity parameter γ that enters as a γ/m3/2 term (where
m is the sample size). This opens a potential new direction in generalization analysis of
learning machines.

In our context this suggests the need to regularize in this learning method. The
flexibility of the framework we develop is that it allows us to encode our prior meta-
assumptions about how we anticipate a good classifier will interact with the data; we
can control capacity, for example, with respect to the smoothness of a classifier over
the unknown data generating distribution thus giving high weight to classifiers that are
smooth over the manifold defined by the support of the data distribution. The analysis
is achieved with a novel PAC-Bayes bound on U-statistics estimation.

The final section of the paper covers the third main theme which is the extension of
the data distribution dependent priors to the Gaussian prior and posterior PAC-Bayes

M. Hutter et al. (Eds.): ALT 2010, LNAI 6331, pp. 119–133, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



120 G. Lever, F. Laviolette, and J. Shawe-Taylor

bounds for, for example, SVMs (Langford & Shawe-taylor, 2002). Here we are able
to remove the KL term again leaving a term that only involves a similar complexity
parameter γ appearing as O(γ/(η2m2)), where η is the regularization parameter, in
contrast to the usual O(‖w‖2/m). This again suggests a new measure of complexity
for SVM classifiers with the possibility of using the bound to optimise the regularization
parameter.

We now review the relation of our approach to earlier work. The luckiness frame-
work explored the possibility that we could learn the hierarchy of classes of hypotheses
from the data as part of the learning process giving rise to so-called data-dependent
structural risk minimization (Shawe-Taylor et al., 1998). The most successful exam-
ple of this approach was large margin classification such as support vector machines.
However, although we cannot measure a margin without seeing the data, by moving to
real-valued functions, we can equate large margin with small norm when we constrain
yif(xi) ≥ 1 on the training data, i = 1, . . . , m, resulting in a fixed prior. Nonetheless
this is equivalent to placing a prior over the classifiers in terms of the data generating
distribution, that is we favour hyperplanes that have low input density in the slab defined
by shifting the decision boundary parallel to itself by ±γ.

Further research in this direction has been developed by Balcan and Blum (Balcan &
Blum, 2010) with their notion of compatibility, which is used to restrict the hypotheses
considered in the learning process to those satisfying a given level of compatibility esti-
mated from the training data, hence reducing the effective complexity of the class. Per-
haps less well-known is work by Catoni (Catoni, 2007) where he introduces ‘localised’
PAC-Bayes analysis effectively defining the prior in terms of the data-generating distri-
bution in a PAC-Bayes bound on generalization.

We should finally distinguish between distribution defined priors and using part of
the data to learn a prior and the rest to learn the function (Ambroladze et al., 2006).

2 Preliminaries

We consider the general setting in which we are given a sample of labelled and unla-
belled1 points S = {(X1, Y1), ...(Xm, Ym)} ∪ {Xm+1, ...Xn} drawn i.i.d. from dis-
tribution D (with density d) over X × Y , the product space of labelled inputs (or its
marginalization to X ). Our analysis therefore includes the settings of supervised and
semi-supervised learning and some transductive settings. We are interested in the case
where Y = {−1, +1}, and study binary classification.

We are interested in the notion of risk of a hypothesis h ∈ H,

risk�(h) := IE(X,Y )∼D(h(X), Y ),

and its empirical counterpart on a labelled sample S,

r̂isk�
S(h) :=

1
|S|

∑
(X,Y )∈S

(h(X), Y ),

1 Throughout, the unlabelled set may be empty.
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where  : Y × Y → IR is some loss function. When (·, ·) is the 0 − 1 loss of binary

classification, 0−1(y, y′) :=
{

0 if y = y′

1 if y �= y′ , then for simplicity we denote the corre-

sponding binary classification risk and its empirical counterpart by risk(·) and r̂iskS(·)
respectively. Our objective is to obtain a probabilistic guarantee on the true binary clas-
sification risk of a classifier by relating it to its empirical counterpart.

The PAC-Bayes bounds apply to a stochastic Gibbs classifier GQ drawn from a dis-
tribution Q over a hypothesis class H. We denote risk(GQ) := IEh∼Qrisk(h). The
following quantities feature in these bounds: the Kullback-Leibler divergence between
distributions Q and P , and its specialization to Bernouilli distributions,

KL(Q||P ) := IEh∼Q ln
dQ

dP
(h), kl(q, p) := q ln

q

p
+ (1 − q) ln

1 − q

1 − p
q, p ∈ (0, 1),

and we define

ξ(m) :=
m∑

k=0

(
m

k

)(
k

m

)k (
1 − k

m

)m−k

∈ [
√

m, 2
√

m].

The following is a generalization of (Germain et al., 2009, Th 2.1) and is proved using
the same sequence of arguments.

Theorem 1. For any functions A(h), B(h) over H, either of which may be a statistic
of the sample S, any distributions P over H, any δ ∈ (0, 1], any t > 0, and a convex
function D : IR × IR → IR we have with probability at least 1 − δ over the draw of S,

∀Q onH : D(IEh∼QA(h), IEh∼QB(h)) ≤ 1
t

(
KL(Q||P ) + ln

[
LP

δ

])
,

where LP := IESIEh∼P

[
etD(A(h),B(h))

]
.

Theorem 1 is a recipe for generating a variety of PAC-Bayes bounds, by specializing to
a choice for D(·, ·), t, A(·) and B(·), and choosing P to be a “prior” (i.e. not sample-
dependent) so that the order of expectation in the r.h.s. can be exchanged and evaluated.
For example, one can derive Seeger’s bound and a slightly relaxed version of Catoni’s
bound, which will be needed later:

Theorem 2. (Seeger, 2002; Langford, 2005; Catoni, 2007) For any (unknown) distri-
bution D, any set H of classifiers, any distribution P of support H, any δ ∈ (0, 1], and
any positive constant C, we have, where C� := C

1−e−C ,

IPS
(
∀Q onH : kl(r̂iskS(GQ), risk(GQ)) ≤ 1

m

(
KL(Q||P ) + ln ξ(m)

δ

))
≥ 1 − δ

IPS
(
∀Q onH : risk(GQ) ≤ C�

(
r̂iskS(GQ) + 1

C·m
(
KL(Q||P ) + ln 1

δ

)))
≥ 1 − δ

Note that the PAC-Bayes bound proposed by McAllester in his pioneer work on the
subject (McAllester, 1999) can be retrieved from Seeger’s bound using the inequality

2(q − p)2 ≤ kl(q, p). (1)
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Note also that the KL(Q||P ) term can significantly deteriorate these bound if classifiers
with small empirical risk receive low probability from the prior P , i.e. if the prior has
been “badly” chosen. The data distribution-defined priors we investigate are specifically
constructed to give large weight to classifiers with low true risk, and the KL-divergence
between Q and P decays with the sample size.

2.1 Choosing a Distribution-Dependent Prior

Suppose an algorithm takes as input a training sample S from the distribution Dm over
Zm and outputs a posterior distribution Q over H. Let PH be the space of probability
distributions over H, and in the interest of obtaining a good PAC-Bayes bound for Q,
consider the minimizer of KL(Q||P ) in expectation: argminP∈PH IES [KL(Q||P )] =
IES [Q]. The implication of this result is noted in this context in (Catoni, 2007) as is
the immediate fact that the resulting divergence is equal to the mutual information,
I(h;S), between sample and classifier (considered as random variables drawn from
the distribution Q × Dm), IES [KL(Q||IES [Q])] = I(h;S). We note that PAC-Bayes
analysis using this prior appears to be quite difficult since the prior can be difficult
to manipulate. As suggested by Catoni we study other more flexible choices of prior
which enable us to obtain very sharp PAC-Bayes bounds. We assume that there exists a
reference measure μ on H (when H is of finite dimensionality this would typically be a
uniform measure such as Lebesgue measure). We consider the case when the posterior
and prior are from the exponential family, defined by their densities w.r.t. μ,

q(h) :=
dQ

dμ
(h) :=

1
Z

e−FQ(h) p(h) :=
dP

dμ
(h) :=

1
Z ′ e

−FP (h),

where FQ, FP are “energy functions”, to be chosen, and Z =
∫
H e−FQ(h)dμ, Z ′ =∫

H e−FP (h)dμ. We note the following upper bound on the KL divergence, which re-
duces obtaining a bound on the KL divergence to establishing a PAC-Bayesian concen-
tration result for the energy functions.

Lemma 1

KL(Q||P ) ≤ (IEh∼Q − IEh∼P ) [FP (h) − FQ(h)] . (2)

Proof

KL(Q||P ) = IEh∼Q ln
Z ′e−FQ(h)

Ze−FP (h)

= IEh∼Q [FP (h) − FQ(h)] − ln
∫

e−FQ(h)dμ

Z ′

= IEh∼Q [FP (h) − FQ(h)] − ln
∫

p(h)eFP (h)−FQ(h)dμ

≤ (IEh∼Q − IEh∼P ) [FP (h) − FQ(h)] , (3)

where the final line follows from the convexity of − ln(·). ��
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Note that the r.h.s. of (3) is precisely the type of quantity that PAC-Bayes theory
provides a bound for. In particular, the choice FP = IES [FQ] seems natural and we
remark that (3) is then reduced to obtaining a concentration inequality for FQ to its
expectation.

3 Stochastic Empirical Risk Minimization-Type Prediction

We first consider posterior and prior densities, w.r.t. μ, over H of the following forms:

q(h) =
1
Z

e−(γ r̂iskS(h)+ηFQ(h)) (4)

p(h) =
1
Z ′ e

−(γrisk(h)+ηFP (h)). (5)

where the F : H → IR are regularization functions, and Z a normalization constant.
The unregularized case corresponds to “Gibbs algorithms”, e.g. (Catoni, 2007). FQ(·)
and FP (·) may be different and in particular we will consider the special case where
FQ(·) is a sample statistic, allowing us to perform data-dependent regularization.

We note that Lemma 1 implies the following upper bound on the KL divergence

KL(Q||P ) ≤ (IEh∼Q − IEh∼P )
[
γrisk(h) − γ r̂iskS(h) + ηFP (h) − ηFQ(h)

]
. (6)

As we will see later, for suitable choices of parameters γ and η, the divergence decays
with the sample. We now consider several choices of FQ(·) and FP (·) and give PAC-
Bayes bounds for the resulting Gibbs classifiers.

3.1 The Non-regularized Case: η = 0

We recall that the distribution D over X ×Y is unknown, hence so is the prior distribu-
tion given by (5). To obtain a bound, we need to bound the KL divergence KL(Q||P ).
With reference to (6), in the situation where η = 0 such an upper bound can be
obtained given an upper bound for risk(GQ) − r̂iskS(GQ) and a lower bound for

risk(GP ) − r̂iskS(GP ), and such bounds can obtained via Theorem 2.

Lemma 2. Let P and Q be defined as in (4) and (5) with η = 0 then with probability
at least 1 − δ, the following holds,

KL(Q||P ) ≤ γ√
m

√
ln

ξ(m)
δ

+
γ2

4m
.

Proof. From (1) and the Seeger bound of Theorem 2 (applied for the choices Q = Q
and Q = P ) we obtain that, simultaneously,

risk(GQ) − r̂iskS(GQ) ≤ 1
2
√

m

√
KL(Q||P ) + ln

ξ(m)
δ

,

−
(
risk(GP ) − r̂iskS(GP )

)
≤ 1

2
√

m

√
ln

ξ(m)
δ

.
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Together with (6) the last inequalities give

KL(Q||P ) ≤ γ
(
risk(GQ)− r̂iskS(GQ)

)
− γ

(
risk(GP )− r̂iskS(GP )

)
≤ γ

2
√

m

√
KL(Q||P ) + ln

ξ(m)
δ

+
γ

2
√

m

√
ln

ξ(m)
δ

.

If KL(Q||P ) ≤ γ√
m

√
ln ξ(m)

δ , we are done. Otherwise, by straightforward algebraic
manipulations we then obtain the following inequality, which, together with the fact
that KL(Q||P ) ≥ 0, directly implies the result.

(KL(Q||P ))2 − 2γ

2
√

m

√
ln

ξ(m)
δ

KL(Q||P ) +
γ2

4m
ln

ξ(m)
δ

≤ γ2

4m
KL(Q||P ) +

γ2

4m
ln

ξ(m)
δ

.

��
Thus, Theorem 2 can be specialized to the following bound. (Note, for the first result
no union bound is required since we need to apply Theorem 2 once only.)

Theorem 3. Let P and Q be defined as in (4) and (5) with η = 0, then

IPS

(
kl(r̂iskS(GQ), risk(GQ))≤ 1

m

(
γ√
m

√
ln

ξ(m)
δ

+
γ2

4m
+ln

ξ(m)
δ

))
≥ 1 − δ,

IPS

(
risk(GQ)≤C� r̂iskS(GQ)+

C�

C · m

(
γ√
m

√
ln

2ξ(m)
δ

+
γ2

4m
+ln

2
δ

))
≥ 1 − δ

Observe that for a large value of γ, the posterior Gibbs classifier GQ will be concen-
trated on the classifiers of H with smallest empirical risk. Hence the two bounds of The-
orem 3 are risk bounds for a type of stochastic empirical risk minimization algorithm.
Since the KL-divergence term has been evaluated and is small, it appears that there is
no component of the bound that depends on the complexity of the learning problem or
the class of classifiers. In fact the parameter that controls the effective complexity is
the “inverse temperature”, γ (or γ2 if we view it in the role of a VC dimension). If the
problem is ‘easy’ in the sense that the measure of the set of classifiers with low empir-
ical risk is not too small then a low value of γ will deliver low empirical risk for the
Gibbs classifier. If, however, the measure of the classifiers that have low empirical risk
is very small (as would be likely if the function class itself is large) then we require a
larger value of γ before the Gibbs risk is controlled. The complexity that γ measures is
related to the fit between input distribution and function class in that it will depend on
the measure of the distribution Q on the low empirical risk functions.

In practice γ would need to be chosen from a grid Γ of values in response to the
particular training problem. Hence, in order to apply the bound we would need to use
the union bound over the |Γ | applications of the bound resulting in an extra log(|Γ |)
term in the right hand side brackets. Another possibility would be to make use the
generalized union bound known as Occam’s hammer (Blanchard & Fleuret, 2007).
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3.2 Regularization with FQ(·) = FP (·)
Given the above argument it appears necessary to control function class capacity in this
model in order to deliver low empirical Gibbs risk. We therefore consider the presence
of regularization terms in (4), (5) which encode a preference for classifiers which satisfy
some notion of simplicity. The flexibility of this model is such that, with reference
to (6), when FQ(·) = FP (·), the bounds of Theorem 3 hold for this case. We can
therefore apply arbitrary (non data-dependent) regularization and attain the same bound
of Theorem 3, and there are many natural possibilities. For example, if H is equipped
with a norm || · ||H we can choose FQ(·) = FP (·) = || · ||H. This should permit learning
with smaller γ.

3.3 Regularization in the Intrinsic Data Geometry

The flexibility of this model further permits, in a straightforward way, regularization
w.r.t. the geometry defined by the unknown data-generating distribution, and we detail
one way of achieving this. The regularization methods considered in Section 3.2 utilise
a geometry which is extrinsic to the data, that is, determined by the ambient representa-
tion space rather than the intrinsic geometry of data. For example, if the data generating
distribution has support on some submanifold of the ambient space, then encouraging
smoothness on the manifold ought to be more suitable for learning (since if the struc-
ture of data is a key factor in the learnability of a task, it is the intrinsic geometry which
will capture this relevant structure most accurately). In general, when using a regu-
larizer informed by the intrinsic geometry of the data-generating distribution the prior
and posterior regularizers must be different since the posterior regularizer will be an
empirical quantity (here, chosen to be an estimate, based on the sample, of the prior
regularizer).

Given a sample S = {(X1, Y1), ...(Xm, Ym)} ∪ {Xm+1, ...Xn}, we consider reg-
ularizing via the following smoothness functional (typical in semi-supervised learning
e.g. (Belkin et al., 2004; Zhu et al., 2003)) over functions from some function class H:

ÛS(h) :=
1

n(n − 1)

∑
ij

(h(Xi) − h(Xj))2W (Xi, Xj) (7)

where the symmetric W : X × X → IR captures similarity or “weight” between data

points, for example W (x, x′) =
{

1 if x, x′ are a pair of k−nearest neighbours
0 otherwise or

W (x, x′) = e−||x−x′||2 for some norm || · || over X . Note that ÛS(h) = 2
n(n−1)h

�Lh

where L = D − W is the graph Laplacian of a graph G whose vertices are the sample
instances and whose edge weights are controlled by W , and Dij = δij

∑
k Wik and

where h ∈ IRn is the “point evaluation” of h on the sample, hi := h(xi). Minimizing
(7) encourages functions to be smooth over the sample S. Note that ÛS(h) is a U -
statistic of order 2 with kernel fh(Xi, Xj) := (h(Xi) − h(Xj))2W (Xi, Xj) indexed
by H. A family of U -statistics indexed by a function space is often called a U -process.
We suppose that the weights are bounded, |W (x, x′)| ≤ w, for example if W (x, x′) =
e−||x−x′||2 we have w = 1, and that suph∈H,x∈X |h(x)| = b.
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A series of results (Hein et al., 2006) demonstrate that under certain conditions on
the distribution of instances, certain constructions of graph Laplacian converge to a
generalized Laplace operator on the support of the data generating distribution and
the smoothness functional converges to a natural distribution-dependent measure of
smoothness over functions defined over the data.

We choose FQ(·) = ÛS(·) so that,

q(h) =
1
Z

e−(γ r̂iskS (h)+ηÛS(h)). (8)

The exponent simply minimizes empirical risk plus the smoothness on the graph formed
on the sample, as is a typical methodology in semi-supervised learning (Belkin et al.,
2006; Belkin et al., 2004).

We further choose FP (h) = U(h) := IEX,X′ [(h(X) − h(X ′))2W (X, X ′)] =
IES [ÛS(h)], giving the prior p(h) = 1

Z′ e
−(γrisk(h)+ηU(h)).

Convergence of the smoothness functional. We consider PAC-Bayes convergence of
the U-process (see (Ralaivola et al., 2009) for an alternative PAC-Bayes analysis of U -
statistics). Let S = {X1, ...Xn} be an i.i.d. sample. For any second-order U -statistic
ÛS(h) = 1

n(n−1)

∑
i�=j fh(Xi, Xj) with expectation U(h), and with kernel fh(x, x′)

indexed by H and bounded, a ≤ fh(x, x′) ≤ b, we have the following.

Theorem 4. For all t, any prior P and simultaneously for all posteriors Q over H,

IPS

(
IEh∼Q[ÛS(h) − U(h)] ≤ 1

t

(
KL(Q||P ) +

t2(b − a)2

2n
+ ln

(
1
δ

)))
≥ 1 − δ

(9)

IPS

(
IEh∼Q[U(h) − ÛS(h)] ≤ 1

t

(
KL(Q||P ) +

t2(b − a)2

2n
+ ln

(
1
δ

)))
≥ 1 − δ.

(10)

In particular, choosing t =
√

n gives O( 1√
n
) convergence.

Proof. We note that Theorem 1 implies that with probability at least 1 − δ, ∀Q on H:

IEh∼Q[ÛS(h) − U(h)] ≤ 1
t

(
KL(Q||P ) + ln

(
1
δ

IEh∼P IES
[
et(ÛS(h)−U(h))

]))
,

so we simply need to bound IES
[
et(ÛS(h)−U(h))

]
. Employing Hoeffding’s canonical

decomposition of U -statistics into forward martingales (e.g. (Serfling, 1980)), let,

Vk :=
k∑

i=1

(IE[fh(Xi, X) | Xi] − U(h))

Wk :=
k∑

j=1

j−1∑
i=1

(fh(Xi, Xj) + U(h) − IE[fh(Xi, X) | Xi] − IE[fh(X, Xj) | Xj]) ,
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so that, ÛS(h) − U(h) = 2
nVn + 2

n(n−1)Wn. We then have that

Vk − Vk−1 = IE[fh(Xk, X | Xk)] − U(h)

Wk − Wk−1 =
k−1∑
i=1

fh(Xi, Xk) + U(h) − IE[fh(Xi, X) | Xi] − IE[fh(Xk, X) | Xk],

and note the martingale structure IEXk
[Vk − Vk−1] = IEXk

[Wk − Wk−1] = 0. Note
further that,

Vk − Vk−1 +
1

n − 1
(Wk − Wk−1) =

n − k

n − 1
(IE[fh(Xk, X) | Xk] − U(h))

+
1

n − 1

k−1∑
i=1

fh(Xi, Xk) − IE[fh(Xi, X) | Xi],

so that,

|Vk−Vk−1 +
1

n − 1
(Wk − Wk−1)| ≤ (b − a)

n − k

n − 1
+ (b − a)

k − 1
n − 1

= b − a. (11)

Now,

IES
[
et(ÛS(h)−U(h))

]
= IES

[
e

2t
n

∑n
i=1 Vi−Vi−1+ 1

n−1 (Wi−Wi−1)
]

=IEX1,...Xn−1

[
IEXn

[
e

2t
n

∑n
i=1 Vi−Vi−1+ 1

n−1 (Wi−Wi−1) | X1, ...Xn−1

]]
=IEX1,...Xn−1

[
e

2t
n

∑n−1
i=1 Vi−Vi−1+ 1

n−1 (Wi−Wi−1)IEXn

[
e

2t
n (Vn−Vn−1+ 1

n−1 (Wn−Wn−1))
]]

≤IEX1,...Xn−1

[
e

2t
n

∑n−1
i=1 Vi−Vi−1+ 1

n−1 (Wi−Wi−1)
]
e

t2(b−a)2

2n2

...

≤
n∏

i=1

e
t2(b−a)2

2n2 = e
t2(b−a)2

2n ,

where in the final lines we used Hoeffding’s lemma, Lemma 6, combined with (11)
recursively. This proves (9), and (10) follows by a symmetrical argument. ��
We can now give the following bound for the classification risk of the Gibbs classifier
GQ drawn from the distribution (8) over H:

Theorem 5. For η <
√

n,

IPS

(
kl(r̂iskS(GQ), risk(GQ))≤ 1

m

(
A2 +B+A

√
2B + A2 +ln

ξ(m)
δ

))
≥ 1 − δ,

where

A :=
γ
√

n

2
√

m(
√

n − η)
= O

(
1√
m

)
B :=

√
n√

n − η

(
γ

√
2
m

ln
4ξ(m)

δ
+

2η√
n

(
32b4w2 + ln

4
δ

))
= O

(√
ln m

m

)
.
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Proof. From (6) we have

KL(Q||P ) ≤ γ(risk(GQ) − r̂iskS(GQ)) + γ(r̂iskS(GP ) − risk(GP ))

+ηIEh∼Q

[
U(h) − ÛS(h)

]
+ ηIEh∼P

[
ÛS(h) − U(h)

]
. (12)

And now, recalling (1), and noting that, because |h(x)| ≤ b, W (x, x′) ≤ w, the kernel
satisfies |fh(x, x′)| ≤ 4b2w, as in Theorem 3 we apply Seeger’s bound of Theorem 2
and Theorem 4 to the relevant terms in (12), and apply the union bound, so that with
probability at least 1 − δ over the draw of S,

KL(Q||P ) ≤ γ

√
1

2m

(
KL(Q||P ) + ln

4ξ(m)
δ

)
+ γ

√
1

2m
ln

4ξ(m)
δ

+
η√
n

(
KL(Q||P ) + 32b4w2 + ln

4
δ

)
+

η√
n

(
32b4w2 + ln

4
δ

)
≤ γ

√
1

2m
KL(Q||P )+

η√
n

KL(Q||P )+γ

√
2
m

ln
4ξ(m)

δ
+

2η√
n

(
32b4w2 + ln

4
δ

)
(√

KL(Q||P ) − 1√
2
A

)2

≤ B +
A2

2

KL(Q||P ) ≤ A2 + B + A
√

2B + A2,

which we plug into the bound of Theorem 2. ��
We remark that the ease with which we can obtain this bound for regularization w.r.t.
the geometry defined by the unknown data-generating distribution, with apparently very
little deterioration in the bound, is unusual and that in classical frameworks this type of
structuring of a function class usually results in significant deterioration in the bound.

4 Prediction by RKHS Regularization

We now extend the localization framework to the more practical setting of predict-
ing with a Gaussian process whose mean is the solution to a loss minimization with
RKHS regularization, such as an SVM solution. We consider a separable2 RKHS
H = span{K(x, ·) : x ∈ X}, for some kernel K : X × X → IR, of functions which
are identified as binary classifiers via hclass(x) = sgn(h(x)) = sgn(〈h, K(x, ·)〉H).
For any chosen loss function  : Y × Y → IR, we are interested in the classifiers,

h∗
S := argmin

h∈H
{r̂isk�

S(h) + η||h||2H} and h∗ := IES [h∗
S ],

where η is a regularization parameter and expectation is taken with respect to sam-
ples S with m labelled points. For our intended applications, typically r̂isk�

S(·) will be
convex so that h∗

S is unique and h∗ well-defined. Our posterior Q and prior P will
be Gaussian processes on X with mean h∗

S and h∗ respectively. To define this, denote

2 This is a mild condition, an RKHSH is separable if X is and if the kernel K : X × X → IR
is continuous.



Distribution-Dependent PAC-Bayes Priors 129

by L2(X ) the Hilbert space of square integrable real-valued functions on X with in-
ner product 〈h, g〉L2 =

∫
X h(x)g(x)dx, and consider the countable orthonormal basis

{φi} for L2(X ) provided by the eigenfunctions of the integral operator AK defined
by (AKh)(x) :=

∫
K(x, x′)h(x′)dx′, i.e. such that AK(φi) = λiφi, for eigenval-

ues {λi} and 〈φi, φj〉L2 = δij . Denote hi := 〈h, φi〉L2 and consider the isomorphism
I : L2(X ) → 2 given by I(h) = (hi) identifying L2(X ) with the space of square
summable real-valued sequences. Denote by Nhi,

1
γ λi

the one-dimensional Gaussian

measure on (the Borel σ-algebra on) IR with mean hi and variance 1
γ λi. We then define

the product measures3,

Q :=
∞∏

i=1

N(h∗
S)i,

1
γ λi

and P :=
∞∏

i=1

Nh∗
i , 1

γ λi
. (13)

That Q and P define probability measures on L2(X ) is the subject of (Da Prato, 2006,
Chapter 1). A full treatment of this subject requires more space and will be presented
in a longer version of this paper (or see (Lever et al., 2010)). To build intuition, when
the distributions are of finite dimensionality they have density (w.r.t. Lebesgue measure
under the above isomorphism),

q(h) =
1
Z

e−
γ
2 ||h−h∗

S ||2H and p(h) =
1
Z ′ e

− γ
2 ||h−h∗||2H (14)

where, Z , Z ′ enforce normalization. When the dimension of H is infinite any marginal-
ization to a finite-dimensional linear subspace of L2(X ) has a similar density. Note
that γ is a parameter of the algorithm which controls the variance of the Gaussian
distribution.

We note, when predicting on a finite set of points, the equivalence between the Gibbs
classifier drawn from the posterior (13) and a Gaussian process {Gx}x∈X on X with
mean IE[Gx] = h∗

S(x) and covariance IE[(Gx−IE[Gx])(Gx′−IE[Gx′ ])] = 1
γ K(x, x′).

To obtain a PAC-Bayes bound for the Gibbs classifier drawn from Q, we proceed
to establish a bound for the relative entropy between Q and P . For any Mercer kernel
K : X × X → IR, we denote

κ(x) := sup
h∈H

|h(x)|
||h||H

=
√

K(x, x) and κ := sup
x∈X

κ(x),

and define the distance dK(x, x′) := ||K(x, ·) − K(x′, ·)||H. Note that dK(x, x′) ≤
2κ. Our analyses will make use of the following property of a loss function:

Definition 1. (Bousquet & Elisseeff, 2002, Definition 19)  : Y × Y → IR is α-
admissible with respect to H if it is convex in its first argument and for all y ∈ Y ,

|(y1, y) − (y2, y)| ≤ α|y1 − y2|,

for all y1, y2 in the domain of the functions from H.

3 These measures are defined on IR∞ but their support is precisely �2, i.e. L2(X ).
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We recall the following definition of Bregman divergence on a Hilbert space V : for
differentiable convex Φ : V → IR,

dΦ(u, v) := Φ(u) − Φ(v) − 〈∇Φ(v), u − v〉V . (15)

Lemma 3. KL(Q||P ) = γ
2 ||h∗

S − h∗||2H.

Proof. When Q and P are finite-dimensional distributions this is the well-known for-
mula for the KL divergence between Gaussians. When the dimensionality is infinite
some subtleties are required and due to lack of space we refer the reader to a longer
version of this paper (Lever et al., 2010). ��

We now proceed to upper bound this divergence via a method of bounded differences:
consider a sample S and its “perturbation” S(i),

S := {(X1, Y1), ...(Xm, Ym)}
S(i) := {(X1, Y1), ...(Xi−1, Yi−1), (X ′

i, Y
′
i ), (Xi+1, Yi+1), ...(Xm, Ym)}.

Lemma 4. If (·, ·) is α-admissible and differentiable4 then

||h∗
S(i) − h∗

S ||H ≤ α

2ηm
(κ(Xi) + κ(X ′

i)). (16)

Proof. The method of proof is a stability argument which follows (Bousquet & Elisse-
eff, 2002, Theorem 22). Denote the “objectives”

Ω(h) := r̂isk�
S(h) + η||h||2H,

Ω(i)(h) := r̂isk�
S(i)(h) + η||h||2H.

Since ∇Ω(h∗
S) = ∇Ω(i)(h∗

S(i)) = 0, we have,

dΩ(h∗
S(i) , h

∗
S) + dΩ(i)(h∗

S , h∗
S(i)) = Ω(h∗

S(i)) − Ω(h∗
S) + Ω(i)(h∗

S) − Ω(i)(h∗
S(i))

=
1
m

((h∗
S(i)(Xi), Yi) − (h∗

S(i)(X ′
i), Y

′
i )

+(h∗
S(X ′

i), Y
′
i ) − (h∗

S(Xi), Yi)).

Noting the additivity, dΦ+Ψ = dΦ + dΨ , and non-negativity of Bregman divergences
and that dη||·||2H(h, g) = η||h − g||2H we have,

2η||h∗
S − h∗

S(i) ||2H

≤ 1
m

(
(h∗

S(i)(Xi), Yi) − (h∗
S(i)(X ′

i), Y
′
i ) + (h∗

S(X ′
i), Y

′
i ) − (h∗

S(Xi), Yi)
)

≤ α

m
(|h∗

S(Xi) − h∗
S(i)(Xi)| + |h∗

S(X ′
i) − h∗

S(i)(X ′
i)|)

≤ α

m
(||h∗

S − h∗
S(i) ||H(κ(Xi) + κ(X ′

i))). ��

4 We note that for the case of the hinge loss or absolute loss this condition can be relaxed –
we can define the derivative to be zero at the point at which they are non-differentiable. For
general subdifferentiable convex loss functions we recover the results if we define the gradient
to be zero at the minimum.
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Lemma 5. If (·, ·) is α-admissible, differentiable4 and H is separable then

IPS

(
||h∗

S − h∗||H ≤ 2ακ

η

√
1
m

ln
4
δ

)
≥ 1 − δ. (17)

Proof. Define the Doob martingale,

Vi = IE[h∗
S − h∗ | (X1, Y1), ...(Xi, Yi)],

and note that V0 = 0, Vm = h∗
S − h∗, and that

IE[Vi | (X1, Y1), ...(Xi−1, Yi−1)] = IE[h∗
S − h∗ | (X1, Y1), ...(Xi−1, Yi−1)]

= Vi−1.

Thus {Vi}m
i=1 is a martingale and we have further, by Lemma 4, that

||Vi−Vi−1||H = ||IE[h∗
S | (X1, Y1), ...(Xi, Yi)]−IE[h∗

S | (X1, Y1), ...(Xi−1, Yi−1)]||H
≤ κα

ηm
.

Since H is separable it has a countable basis and so is isomorphic to either 2(IR) or IRd

and the result follows from the result of (Kallenberg & Sztencel, 1991, Theorem 3.1)
(which gives a version of Azuma’s inequality for 2-valued martingales, see the details
in Theorem 7 and Corollary 1 of the Appendix). ��

We can now give the PAC-Bayes bound for the classification risk of the Gibbs classifier,
GQ, drawn from H according to the distribution Q defined by (13).

Theorem 6. If (·, ·) is α-admissible, differentiable4 and H is separable then

IPS

(
kl(r̂iskS(GQ), risk(GQ)) ≤ 1

m

(
2γα2κ2

η2m
ln

8
δ

+ ln
2ξ(m)

δ

))
≥ 1 − δ.

Proof. Lemma 3 and Lemma 5 immediately imply that,

IPS

(
KL(Q||P ) ≤ 2γα2κ2

η2m
ln

8
δ

)
≥ 1 − δ

2
,

which we combine with Theorem 2 using the union bound. ��

Note that the PAC-Bayes bounds for Gibbs classifiers presented here will provide sharp
bounds on the mean classifier (which, with suitable choices for parameters, could be
various types of SVM), with an additional factor of 1 + ε, under a margin assump-
tion, by standard techniques (Langford & Shawe-taylor, 2002). We also remark that it
is straightforward to extend the analysis presented here to provide bounds for classi-
fiers obtained by regularizing in the geometry defined by the data, in the manner of
Section 3.3, such as LapSVM, and refer the reader to an extended version of this paper
(Lever et al., 2010).
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A Technical Lemmas

Lemma 6. (Hoeffding’s lemma) Let X be a random variable with IE[X ] = 0 and
a < X < b then for t > 0,

IE[etX ] ≤ e
t2(b−a)2

8 .

The following theorem demonstrates that many key properties of martingales are inde-
pendent of their dimension. The authors note that it is true for any Hilbert space-valued
martingale but the proof is just for martingales in 2.

Theorem 7. (Kallenberg & Sztencel, 1991, Theorem 3.1) Let {Vt} be a martingale in
IRd or 2. Then there exists a martingale {Ut} in IR2 such that ||Vt|| = ||Ut|| a.s. and
||Vt − Vt−1|| = ||Ut − Ut−1|| a.s..

Given the above result all that we must do to obtain a large deviation inequality for
2-valued martingales is to demonstrate a variation of Azuma-Hoeffding inequality for
a martingale in IR2, which is elementary if we are not concerned with obtaining the best
constants.

Corollary 1. For a martingale {Vi}m
i=1 in IRd or 2, such that, for all i,

||Vi − Vi−1|| ≤ ci,

we have for all δ > 0,

IP

⎛⎝||Vm − V0|| ≤ 2

√√√√ m∑
i=1

c2
i ln

4
δ

⎞⎠ ≥ 1 − δ.

Proof. Consider a martingale {Ui}m
i=1 in IR2 such that,

||Ui − Ui−1|| ≤ ci. (18)

Let Ui = (U (1)
i , U

(2)
i ), so that we have that {U (1)

i }n
i=1 and {U (2)

i }n
i=1 are clearly mar-

tingales and that,

|U (1)
i − U

(1)
i−1| ≤ ci

|U (2)
i − U

(2)
i−1| ≤ ci.

Now,

IP (||Um − U0|| ≥ ε) = IP
(
(U (1)

m − U
(1)
0 )2 + (U (2)

m − U
(2)
0 )2 ≥ ε2

)
≤ IP

(
|U (1)

m − U
(1)
0 | ≥ ε√

2

)
+ IP

(
|U (2)

m − U
(2)
0 | ≥ ε√

2

)
≤ 4 exp

(
− ε2

4
∑m

i=1 c2
i

)
,

where the last line follows by the Azuma-Hoeffding inequality (Azuma, 1967). The
result then follows by Theorem 7. ��



PAC Learnability of a Concept Class under Non-atomic
Measures: A Problem by Vidyasagar

Vladimir Pestov

Department of Mathematics and Statistics, University of Ottawa, 585 King Edward Avenue,
Ottawa, Ontario, Canada K1N 6N5

Abstract. In response to a 1997 problem of M. Vidyasagar, we state a neces-
sary and suÆcient condition for distribution-free PAC learnability of a concept
class C under the family of all non-atomic (di�use) measures on the domain
�. Clearly, finiteness of the classical Vapnik–Chervonenkis dimension of C is
a suÆcient, but no longer necessary, condition. Besides, learnability of C un-
der non-atomic measures does not imply the uniform Glivenko–Cantelli property
with regard to non-atomic measures. Our learnability criterion is stated in terms
of a combinatorial parameter VC(C mod�1) which we call the VC dimension
of C modulo countable sets. The new parameter is obtained by “thickening up”
single points in the definition of VC dimension to uncountable “clusters”. Equiv-
alently, VC(C mod�1) � d if and only if every countable subclass of C has VC
dimension � d outside a countable subset of �. The new parameter can be also
expressed as the classical VC dimension of C calculated on a suitable subset of
a compactification of �. We do not make any measurability assumptions on C ,
assuming instead the validity of Martin’s Axiom (MA).

1 Introduction

A fundamental result of statistical learning theory says that for a concept class C the
three conditions are equivalent: (1) C is distribution-free PAC learnable over the family
P(�) of all probability measures on the domain�, (2) C is a uniform Glivenko–Cantelli
class with regard to P(�), and (3) the Vapnik–Chervonenkis dimension of C is finite
[VC, BEHW]. In this paper we are interested in the problem, discussed by Vidyasagar
in both editions of his book [V1, V2] as problem 12.8, of giving a similar combinatorial
description of concept classes C which are PAC learnable under the family Pna(�) of
all non-atomic probability measures on �. (A measure � is non-atomic, or di�use, if
every set A of strictly positive measure contains a subset B with 0 � �(B) � �(A).)

The condition VC(C ) � �, while of course suÆcient for C to be learnable under
Pna(�), is not necessary. Let a concept class C consist of all finite and all cofinite
subsets of a standard Borel space �. Then VC(C ) � �, and moreover C is clearly
not a uniform Glivenko-Cantelli class with regard to non-atomic measures. At the same
time, C is PAC learnable under non-atomic measures: any learning rule � consistent
with the subclass ��� �� will learn C . Notice that C is not consistently learnable under
non-atomic measures: there are consistent learning rules mapping every training sample
to a finite set, and they will not learn any cofinite subset of �.

M. Hutter et al. (Eds.): ALT 2010, LNAI 6331, pp. 134–147, 2010.
c� Springer-Verlag Berlin Heidelberg 2010
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The point of this example is that PAC learnability of a concept class C under non-
atomic measures is not a�ected by adding to C symmetric di�erences C � N for each
C � C and every countable set N.

A version of VC dimension oblivious to this kind of set-theoretic “noise” is obtained
from the classical definition by “thickening up” individual points and replacing them
with uncountable clusters (Figure 1).
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Fig. 1. A family A1� A2� � � � � An of uncountable sets shattered by C

Define the VC dimension of a concept class C modulo countable sets as the supre-
mum of natural n for which there exists a family of n uncountable sets, A1� A2� � � � � An �

�, shattered by C in the sense that for each J � �1� 2� � � � � n�, there is C � C which
contains all sets Ai, i � J, and is disjoint from all sets A j, j � J. Denote this parameter
by VC(C mod�1). Clearly, for every concept class C

VC(C mod�1) 	 VC(C )�

In our example above, one has VC(C mod�1) � 1, even as VC(C ) � �.
Here is our main result.

Theorem 1. Let (��A ) be a standard Borel space, and let C � A be a concept class.
Under the Martin’s Axiom (MA), the following are equivalent.

1. C is PAC learnable under the family of all non-atomic measures.
2. VC(C mod�1) � d � �.
3. Every countable subclass C � � C has finite VC dimension on the complement to

some countable subset of � (which depends on C �).
4. There is d such that for every countable C � � C one has VC(C �) 	 d on the

complement to some countable subset of � (depending on C �).
5. Every countable subclass C � � C is a uniform Glivenko–Cantelli class with regard

to the family of non-atomic measures.
6. Same, with sample complexity s(�� Æ) which only depends on C and not on C �.

If C is universally separable [P], the above are also equivalent to:

7. VC dimension of C is finite outside of a countable subset of �.
8. C is a uniform Glivenko-Cantelli class with respect to the family of non-atomic

probability measures.
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Martin’s Axiom (MA) [F] is one of the most often used and best studied additional set-
theoretic assumptions beyond the standard Zermelo-Frenkel set theory with the Axiom
of Choice (ZFC). In particular, Martin’s Axiom follows from the Continuum Hypothesis
(CH), but it is also compatible with the negation of CH, and in fact it is namely the
combination MA�
CH that is really interesting.

The concept class in our initial simple example (which is even image admissible
Souslin [D]) shows that in general (7) and (8) are not equivalent to the remaining con-
ditions. Notice that for universally separable classes, (1), (7) and (8) are equivalent
without additional set-theoretic assumptions.

The core of the theorem — and the main technical novelty of our paper — is the
proof of the implication (3)�(1). It is based on a special choice of a consistent learning
rule � having the property that for every concept C � C , the image of all learning
samples of the form (��C � �) under � forms a uniform Glivenko–Cantelli class. It is
for establishing this property of � that we need Martin’s Axiom.

Most of the remaining implications are relavely straightforward adaptations of the
standard techniques of statistical learning. Nevertheless, (2)�(3) requires a certain
technical dexterity, and we study this implication in the setting of Boolean algebras.

We begin the paper by reviewing a general formal setting, followed by a dicussion of
Boolean algebras which seem like a natural framework for the problem at hand, espe-
cially in view of possible generalizations to learning under other intermediate families
of measures.

In particular, we will show that our version of the VC dimension modulo countable
sets, VC(C mod�1), is just the usual VC dimension of the class C of concepts ex-
tended over a suitable compactification of � and restricted to a certain subdomain of
the compactification.

Now the part of Theorem 1 for universally separable concept classes follows easily.
Afterwards, we discuss Martin’s Axiom, prove the existence of a learning rule with the
above special property, and deduce Theorem 1 for arbitrary concept classes.

2 The Setting

We need to fix a precise setting, which is mostly standard. The domain (instance space)
� � (��A ) is a measurable space, that is, a set � equipped with a sigma-algebra of
subsets A . Typically,� is assumed to be a standard Borel space, that is, a complete sep-
arable metric space equipped with the sigma-algebra of Borel subsets. We will clarify
the assumption whenever necessary.

A concept class is a family, C , of measurable subsets of �. (Equivalently, C can be
viewed as a family of measurable �0� 1�-valued functions on �.).

In the learning model, a set  of probability measures on � is fixed. Usually either
 � P(�) is the set of all probability measures (distribution-free learning), or  � ���
is a single measure (learning under fixed distribution). In our article, the case of interest
is the family  � Pna(�) of all non-atomic measures.

Every probability measure � on � defines a distance d� on A as follows:

d�(A� B) � � (A � B) �
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We will not distinguish between a measure � and its Lebesgue completion, that is,
an extension of � over the larger sigma-algebra of Lebesgue measurable subsets of
�. Consequently, we will sometimes use the term measurability meaning Lebesgue
measurability. No confusion can arise here.

Often it is convenient to approximate the concepts from C with elements of the hy-
pothesis space, H , which is, technically, a subfamily of A whose closure with regard
to each (pseudo)metric d�, � � , contains C . However, in our article we make no
distinction between H and C .

A learning sample is a pair s � (�� 	) of finite subsets of �, where 	 � �. It is
convenient to assume that elements x1� x2� � � � � xn � � are ordered, and thus the set of
all samples (�� 	) with ��� � n can be identified with (� � �0� 1�)n. A learning rule (for
C ) is a mapping

� :
��

n�1

�n � �0� 1�n � C

which satisfies the following measurability condition: for every C � C and � � , the
function

� � � �� � (�(��C � �) �C) � � (1)

is measurable.
A learning rule � is consistent (with C ) if for every C � C and each � � �n one has

�(��C � �) � � � C � ��

A learning rule � is probably approximately correct (PAC) under  if for every � 
 0

sup
���

sup
C�C

��n �� � �n : � (�(��C � �) �C) 
 �� � 0 as n � �� (2)

Here ��n denotes the (Lebesgue extension of the) product measure on �n. Now the
origin of the measurability condition (1) on the mapping � is clear: it is implicit in (2).

Equivalently, there is a function s(�� Æ) (sample complexity of �) such that for each
C � C and every � �  an i.i.d. sample � with � s(�� Æ) points has the property
�(C � �(��C � �)) � � with confidence � 1 � Æ.

A concept class C consisting of measurable sets is PAC learnable under , if there
exists a PAC learning rule for C under . A class C is consistently learnable (under
) if every learning rule consistent with C is PAC under . If  � P(�) is the set
of all probability measures, then C is said to be (distribution-free) PAC learnable. At
the same time, learnability under intermediate families of measures on � has received
considerable attention, cf. Chapter 7 in [V2].

Notice that in this paper, we only talk of potential PAC learnability, adopting a purely
information-theoretic viewpoint.

A closely related concept is that of a uniform Glivenko–Cantelli concept class with
regard to a family of measures , that is, a concept class C such that for each � 
 0

sup
���

��n

�
sup
C�C

��(C) � �n(C)� � �

�
� 0 as n � �� (3)
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(Cf. [D], Ch. 3; [M].) Here �n stands for the empirical (uniform) measure on n points,
sampled in an i.i.d. fashion from � according to the distribution �. One also says that C
has the property of uniform convergence of empirical measures (UCEM property) with
regard to  [V2].

Every uniform Glivenko–Cantelli class (with regard to ) is PAC learnable (under
), and in the distribution-free situation, the converse is true as well. Already in the case
of learning under a single measure, it is not so: a PAC learnable class under a single
distribution � need not be uniform Glivenko-Cantelli with regard to � (cf. Chapter 6 in
[V2]). Not every PAC learnable class under non-atomic measures is uniform Glivenko–
Cantelli with regard to non-atomic measures either: the class consisting of all finite and
all cofinite subsets of � is a counter-example.

We say, following Pollard [P], that a concept class C consisting of measurable sets
is universally separable if it contains a countable subfamily C � with the property that
every C � C is a pointwise limit of a suitable sequence (Cn)�n�1 of sets from C �: for
every x � � there is N with the property that, for all n � N, x � Cn if x � C, and x � Cn

if x � C. Such a family C � is said to be universally dense in C .
Probably the main source of uniform Glivenko–Cantelli classes is the finiteness of

VC dimension. Assume that C satisfies a suitable measurability condition, for instance,
C is image admissible Souslin, or else universally separable. (In particular, a countable
C satisfies either condition.) If VC(C ) � d � �, then C is uniform Glivenko–Cantelli,
with a sample complexity bound that does not depend on C , but only on �, Æ, and d.
The following is a typical (and far from being optimal) such estimate, which can be
deduced, for instance, along the lines of [M]:

s(�� Æ� d) 	
128
�2

�
d log

�
2e2

�
log

2e
�

�
� log

8
Æ

�
� (4)

For our purposes, we will fix any such bound and refer to it as a “standard” sample
complexity estimate for s(�� Æ� d).

A subset N � � is universal null if for every non-atomic probability measure � on
(��A ) one has �(N�) � 0 for some Borel set N� containing N. Universal null Borel sets
are just countable sets.

3 VC Dimension and Boolean Algebras

Recall that a Boolean algebra, B � �B�����
� 0� 1�, consists of a set, B, equipped with
two associative and commutative binary operations, � (“meet”) and � (“join”), which
are distributive over each other and satisfy the absorption principles a � (a � b) � a,
a � (a � b) � a, as well as a unary operation 
 (complement), and two elements 0 and
1, satisfying a � 
a � 1, a � 
a � 0.

For instance, the family 2� of all subsets of a set �, with the union as join, inter-
section as meet, the empty set as 0 and � as 1, as well as the set-theoretic complement

A � Ac, forms a Boolean algebra. In fact, every Boolean algebra can be realized as
an algebra of subsets of a suitable �. Even better, according to the Stone representa-
tion theorem, a Boolean algebra B is isomorphic to the Boolean algebra formed by all
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open-and-closed subsets of a suitable compact space, S (B), called the Stone space of B,
where the Boolean algebra operations are interpreted set-theoretically as above.

The space S (B) can be obtained in di�erent ways. For instance, one can think of ele-
ments of S (B) as Boolean algebra homomorphisms from B to the two-element Boolean
algebra �0� 1� (the algebra of subsets of a singleton). In this way, S (B) is a closed
topological subspace of the compact zero-dimensional space �0� 1�B with the usual Ty-
chono� product topology.

The Stone space of the Boolean algebra B � 2� is known as the Stone-Čech compact-
ification of �, and is denoted ��. The elements of �� are ultrafilters on �. A collection
� of non-empty subsets of � is an ultrafilter if it is closed under finite intersections and
if for every subset A � � either A � � or Ac � �. To every point x � � there corresponds
a trivial (principal) ultrafilter, x̄, consisting of all sets A containing x. However, if �
is infinite, the Axiom of Choice assures that there exist non-principal ultrafilters on �.
Basic open sets in the space �� are of the form Ā � � � �� : A � �, where A � �. It
is interesting to note that each Ā is at the same time closed, and in fact Ā is the closure
of A in ��. Moreover, every open and closed subset of �� is of the form Ā.

A one-to-one correspondence between ultrafilters on � and Boolean algebra homo-
morphisms 2� � �0� 1� is this: think of an ultrafilter � on � as its own indicator function
�� on 2�, sending A � � to 1 if and only if A � �. It is not diÆcult to verify that �� is a
Boolean algebra homomorphism, and that every homomorphism arises in this way.

The book [Jo] is a standard reference to the above topics.
Given a subset C of a Boolean algebra B, and a subset X of the Stone space S (B), one

can regard C as a set of binary functions restricted to X, and compute the VC dimension
of C over X. We will denote this parameter VC(C � X).

A subset I of a Boolean algebra B is an ideal if, whenever x� y � I and a � B,
one has x � y � I and a � x � I. Define a symmetric di�erence on B by the formula
x� y � (x� y)�
(x� y). The quotient Boolean algebra B�I consists of all equivalence
classes modulo the equivalence relation x � y �� x � y � I. It can be easily verified
to be a Boolean algebra on its own, with operations induced from B in a unique way.

The Stone space of B�I can be identified with a compact topological subspace of
S (B), consisting of all homomorphisms B � �0� 1� whose kernel contains I. For in-
stance, if B � 2� and I is an ideal of subsets of �, then the Stone space of 2��I is easily
seen to consist of all ultrafilters on � which do not contain sets from I.

Theorem 2. Let C be a concept class on a domain �, and let I be an ideal of sets on
�. The following conditions are equivalent.

1. The VC dimension of the (family of closures of the) concept class C restricted to
the Stone space of the quotient algebra 2��I is at least n: VC(C � S (2��I)) � n.

2. There exists a family A1� A2� � � � � An of measurable subsets of � not belonging to I,
which is shattered by C in the sense that if J � �1� 2� � � � � n�, then there is C � C
which contains all sets Ai, i � J, and is disjoint from all sets Ai, i � J.

Proof. (1)�(2). Choose ultrafilters �1� � � � � �n in the Stone space of the Boolean alge-
bra 2��I, whose collection is shattered by C . For every J � �1� 2� � � � � n�, select CJ � C
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which carves the subset ��i : i � J� out of ��1� � � � � �n�. This means CJ � �i if and only if
i � J. For all i � 1� 2� � � � � n, set

Ai �

�
J�i

CJ

��
J�i

Cc
J � (5)

Then Ai � �i and hence Ai � I. Furthermore, if i � J, then clearly Ai � CJ , and if i � J,
then Ai � CJ � �. The sets Ai are measurable by their definition.

(2)�(1). Let A1� A2� � � � � An be a family of subsets of � not belonging to the set ideal
I and shattered by C in sense of the lemma. For every i, the family of sets of the form
Ai � Bc, B � I is a filter and so is contained in some free ultrafilter �i, which is clearly
disjoint from I and contains Ai. If J � �1� 2� � � � � n� and CJ � C contains all sets Ai,
i � J and is disjoint from all sets Ai, i � J, then the closure C̄J of CJ in the Stone
space contains �i if and only if i � J. We conclude: the collection of ultrafilters �i,
i � 1� 2� � � � � n, which are all contained in the Stone space of 2��I, is shattered by the
closed sets C̄J .

It follows in particular that the VC dimension of a concept class does not change if the
domain � is compactified.

Corollary 1. VC(C � �) � VC(C � ��).

Proof. The inequality VC(C � �) 	 VC(C � ��) is trivial. To establish the converse,
assume there is a subset of �� of cardinality n shattered by C . Choose sets Ai as in
Theorem 2,(2). Clearly, any subset of � meeting each Ai at exactly one point is shattered
by C .

Definition 1. Given a concept class C on a domain � and an ideal I of subsets of �,
we define the VC dimension of C modulo I,

VC(C mod I) � VC(C � S (2��I))�

That is, VC(C mod I) � n if and only if any of the equivalent conditions of Theorem 2
are met.

Definition 2. Let C be a concept class on a domain �. If I is the ideal of all count-
able subsets of �, we denote the VC(C mod I) by VC(C mod�1) and call it the VC
dimension modulo countable sets.

4 Finiteness of VC Dimension Modulo Countable Sets Is
Necessary for Learnability

Lemma 1. Every uncountable Borel subset of a standard Borel space supports a non-
atomic Borel probability measure.

Proof. Let A be an uncountable Borel subset of a standard Borel space �, that is, � is
a Polish space equipped with its Borel structure. According to Souslin’s theorem (see
e.g. Theorem 3.2.1 in [A]), there exists a Polish (complete separable metric) space X
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and a continuous one-to-one mapping f : X � A. The Polish space X must be therefore
uncountable, and so supports a di�use probability measure, �. The direct image measure
f�� � �( f �1(B)) on � is a Borel probability measure supported on A, and it is di�use
because the inverse image of every singleton is a singleton in X and thus has measure
zero.

The following result makes no measurability assumptions on the concept class.

Theorem 3. Let C be a concept class on a domain (��B) which is a standard Borel
space. If C is PAC learnable under non-atomic measures, then the VC dimension of C
modulo countable sets is finite.

Proof. This is just a minor variation of a classical result for distribution-free PAC learn-
ability (Theorem 2.1(i) in [BEHW]; we will follow the proof as presented in [V2],
Lemma 7.2 on p. 279).

Suppose VC(C mod�1) � d. According to Theorem 2, there is a family of uncount-
able Borel sets Ai, i � 1� 2� � � � � d, shattered by C in our sense. Using Lemma 1, select
for every i � 1� 2� � � � � d a non-atomic probability measure �i supported on Ai, and let
� � 1

d

�d
i�1 �i. This � is a non-atomic Borel probability measure, giving each Ai equal

weight 1�d.
For every d-bit string � there is a concept C� � C which contains all Ai with �i � 1

and is disjoint from Ai with �i � 0. If A and B take constant values on all the sets
Ai, i � 1� 2� � � � � d, then d�(A� B) is just the normalized Hamming distance between the
corresponding d-bit strings. Now, given A � C and 0 	 k 	 d, there are

�
k	2�d

�
d
k

�

concepts B with d�(A� B) 	 2�. This allows to get the following lower bound on the
number of pairwise 2�-separated concepts:

2d

�
k	2�d

	
d
k


 �

The Cherno�–Okamoto bound allows to estimate the above expression from below by
exp[2(0�5 � 2�)2d]. We conclude: the metric entropy of C with regard to � is bounded
below as:

M(2��C � �) � exp[2(0�5 � 2�)2d]�

The assumption VC(C mod�1) � � now implies that for every 0 � � � 0�25,

sup
P��

M(2��C � �) � ��

where  denotes the family of all non-atomic measures on �. By Lemma 7.1 in [V2],
p. 278, the class C is not PAC learnable under .
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5 The Universally Separable Case

Lemma 2. Let C be a universally separable concept class, and let C � be a universally
dense countable subset of C . Then

VC(C ) � VC(C �)�

Proof. For every C � C there is a sequence (Cn) of elements of C � with the property
that for each x � � there is N such that if n � N and x � C, then x � Cn, and if x � C,
then x � Cn. Equivalently, for every finite A � �, there is an N so that whenever n � N,
one has Cn � A � C � A. This means that if A is shattered by C , it is equally well
shattered by C �. This established the inequaity VC(C ) 	 VC(C �), while the converse
inequality is obviously true.

Theorem 4. For a universally separable concept class C , the following conditions are
equivalent.

1. VC(C mod�1) 	 d.
2. There exists a countable subset A � � such that VC(C � (� � A)) 	 d.

Proof. (1)�(2): Choose a countable universally dense subfamily C � of C . Let B be the
smallest Boolean algebra of subsets of � containing C �. Denote by A the union of all
elements of B that are countable sets. Clearly, B is countable, and so A is a countable
set.

Let a finite set B � � � A be shattered by C . Then, by Lemma 2, it is shattered by
C �. Select a family S of 2
B
 sets in C � shattering B. For every b � B the set

[b] �
�

b�C�S

C
� �

b�C�S

Cc

is uncountable (for it belongs to B yet is not contained in A), and the collection of
sets [b], b � B is shattered by C �. This establishes the inequality VC(C � (� � A)) 	
VC(C mod�1).

(2)�(1): Fix an A � � so that VC(C mod Ac) 	 d. Suppose a collection of n un-
countable sets Ai, i � 1� 2� � � � � n is shattered by C in our sense. The sets Ai � A are
non-empty; pick a representative ai � Ai � A, i � 1� 2� � � � � n. The resulting set �ai�

n
i�1 is

shattered by C , meaning n 	 d.

Corollary 2. Let C be a universally separable concept class on a Borel domain �.
If d � VC(C mod�1) � �, then C is a universal Glivenko-Cantelli class with
regard to non-atomic measures and consistently PAC learnable under non-atomic
measures.

Proof. The class C has finite VC dimension in the complement to a suitable countable
subset A of �, hence C is a universal Glivenko-Cantelli class (in the classical sense) in
the standard Borel space � � A. But A is a universal null set in �, hence clearly C is
universal Glivenko-Cantelli with regard to non-atomic measures.
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The class C is distribution-free consistently PAC learnable in the domain � � A,
with the standard sample complexity s(�� Æ� d). Let� be any consistent learning rule for
C in �. The restriction of � to � � A (more exactly, to ��n�1 ((� � A)n � �0� 1�n)) is a
consistent learning rule for C restricted to the standard Borel space � � A, and together
with the fact that A has measure zero with regard to any non-atomic measure, it implies
that � is a PAC learning rule for C under non-atomic measures, with the same sample
complexity function s(�� Æ� d).

6 Martin’s Axiom and Learnability

Martin’s Axiom (MA) in one of its equivalent forms says that no compact Hausdor�
topological space with the countable chain condition is a union of strictly less than con-
tinuum nowhere dense subsets. Thus, it can be seen as a strengthening of the statement
of the Baire Category Theorem. In particular, the Continuum Hypothesis (CH) implies
MA. However, MA is compatible with the negation of CH, and this is where the most
interesting applications of MA are to be found. We will be using just one particular
consequence of MA.

Theorem 5 (Martin-Solovay). Let (�� �) be a standard Lebesgue non-atomic proba-
bility space. Under MA, the Lebesgue measure is 2�0 -additive, that is, if � � 2�0 and
A�, � � � is family of pairwise disjoint measurable sets, then ����A� is Lebesgue mea-
surable and

�

������
�
���

A�

������� �
�
���

�(A�)�

In particular, the union of less than continuum null subsets of � is a null subset. ��

For the proof and more on MA, see [K], Theorem 2.21, or [F], or [Je], pp. 563–565.

Lemma 3. Let C be an infinite concept class on a measurable space �. Denote � � �C �
the cardinality of C . There exists a consistent learning rule � for C with the property
that for every C � C and each n, the set

��(��C � �) : � � �n� � C (6)

has cardinality � �. Under MA the rule � satisfies the measurability condition (1).

Proof. Choose a minimal well-ordering of elements of C :

C � �C� : � � ���

and set for every � � �n and 	 � �0� 1�n the value �(�� 	) equal to C	, where

� � min�� � � : C� � � � 	��

provided such a � exists. Clearly, for each � � � one has

�(��C� � �) � �C	 : � 	 ���
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which assures (6). Besides, the learning rule � is consistent.
Fix C � C� � C , � � �. For every � 	 � define D	 � �� � �n : C � � � C	 � ��.

The sets D	 are measurable, and the function

�n � � �� �(�(C � �) � C) � �

takes a constant value �(C	 � C�) on each set D	 � �
�	D
, � 	 �. Such sets, as well
as all their possible unions, are measurable under MA by force of Martin–Solovay’s
Theorem 5, and their union is �n. This implies the condition (1) for �.

We again recall that a set A � � is universal null if it is Lebesgue measurable with
regard to every non-atomic Borel probability measure � on � and �(A) � 0.

Lemma 4 (Assuming MA). Let C be a class of Borel subsets on a standard Borel
space �. Suppose there is a natural d such that every countable subclass C � � C has
VC dimension 	 d outside of an universal null set (which depends on C ). Then every
subclass of C of cardinality � 2�0 has the same property.

Proof. By induction on the cardinality of C , which we denote � (notice that it never
exceeds 2�0 , and so the proof only makes sense under the negation of the Continuum
Hypothesis). Suppose the result is true for all �, �0 	 � � �. Choose a minimally
well-ordered chain C
� � � � of subclasses of C whose union is C . For every �, let
 
 be a universal null subset of � with the property that C
 has VC dimension 	 d
outside of  
. Martin–Sollovay’s Theorem implies that  � �
�� 
 is universal null.
Consequently, each C
 has VC dimension 	 d outside of , and the same applies to the
union of the chain.

Lemma 5 (Assuming MA). Let C be a concept class of cardinality � � �C � � 2�0 on a
standard Borel space �. If d � VC(C ) is finite, then C is a uniform Glivenko–Cantelli
class, with a standard sample complexity estimate s(�� Æ� d).

Proof. A transfinite induction on �. For � � �0 the result is classical. Else, represent C
as a union of an increasing transfinite chain of concept classes C�, � � �, for each of
which the statement of Lemma holds. For every � 
 0 and n � �, the set

�
� � �n : sup

C�C
��n(�) � �(C)� � �

�
�

�
���

�
� � �n : sup

C�C�

��n(�) � �(C)� � �

�

is measurable by Martin-Solovay’s Theorem 5. Given Æ 
 0 and n � s(�� Æ� d), another
application of the same result leads to conclude that for every � � P(�):

��n

�
� � �n : sup

C�C
��n(�) � �(C)� � �

�
� ��n

������
�
���

�
� � �n : sup

C�C�

��n(�) � �(C)� � �

��������
� inf

���
��n

�
� � �n : sup

C�C�

��n(�) � �(C)� � �

�

� 1 � Æ�

as required.
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The following is an immediate consequence of two previous lemmas.

Lemma 6 (Assuming MA). Under the assumptions of Lemma 4, every subclass of
C of cardinality � 2�0 is uniform Glivenko-Cantelli with regard to the family of non-
atomic measures on �. The sample complexity of this class is the usual sample com-
plexity s(Æ� �� d) of concept classes of VC dimension 	 d.

Lemma 7 (Assuming MA). Let C be a concept class consisting of Borel subsets of a
standard Borel space �. Assume that for some natural d, every countable subclass of C
has VC dimension 	 d outside of some universal null subset of �. Then the class C is
PAC learnable under the family of all non-atomic measures on �, with the usual sample
complexity s(Æ� �) of distribution-free PAC learning concept classes of VC dimension
	 d.

Proof. Using Lemma 3, choose a learning rule � for C with the property in Eq. (6).
Since the family of all Borel subsets of � is well-known to have cardinality continuum,
for every concept C and each n the cardinality of the image LC � ��C �� : � � �n� �

C is strictly less than 2�0 . By Lemma 6, LC is a uniform Glivenko-Cantelli class with
regard to non-atomic measures on �, satisfying the standard sample complexity bound.
The proof is now concluded in a standard way.

7 The Proof of the Main Theorem

(1)�(2): this is Theorem 3.
(2)�(3): follows from Theorem 4.
(3)�(4): assume that for every d there is a countable subclass Cd of C with the property
that the VC dimension of Cd is � d after removing any countable subset of �. Clearly,
the countable class ��d�1Cd will have infinite VC dimension outside of every countable
subset of �, a contradiction.
(4)�(6): as a consequence of a classical result of Vapnik and Chervonenkis, every
countable subclass C � is universal Glivenko-Cantelli with regard to all probability mea-
sures supported outside of some countable subset of �, and a standard bound for the
sample complexity s(Æ� �) only depends on d, from which the statement follows.
(6)�(5): trivial.
(5)�(3): modelling the classical argument that the uniform Glivenko-Cantelli property
implies finite VC dimension, in exactly the same spirit as in the proof of our Theorem
3, one shows that the uniform Glivenko-Cantelli property of a concept class with re-
gard to non-atomic measures implies a finite VC dimension modulo countable sets. But
for a countable (more generally, universally separable) class C � this means finite VC
dimension after a removal of a countable set, cf. Theorem 4.
(3)�(1): this is Lemma 7, and the only implication requiring Martin’s Axiom.

The equivalence of (1), (7) and (8) in the universally separable case follows from
Theorem 4 and Corollary 2. ��

8 Conclusion

We have characterized concept classes C that are distribution-free PAC learnable un-
der the family of all non-atomic probability measures on the domain. The criterion is
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obtained without any measurability conditions on the concept class, but at the expense
of making a set-theoretic assumption in the form of Martin’s Axiom. In fact, assuming
MA makes things easier, and as this axiom is very natural, perhaps it deserves its small
corner within the foundations of statistical learning.

It seems that generalizing the result from concept to function classes, using a version
of the fat shattering dimension modulo countable sets, will not pose particular technical
diÆculties, and we plan to perform this extension in a full journal version of the paper,
in order to keep the conference submission short. The Boolean algebras will however
have to give way to commutative C�-algebras [A].

It would be still interesting to know if the present results hold without Martin’s
Axiom, under the assumption that the concept class C is image admissible Souslin
([D], pages 186–187). The diÆculty here is selecting a measurable learning rule� with
the property that the images of all learning samples (��C � �), � � �n, are uniform
Glivenko-Cantelli. An obvious route to pursue is the recursion on the Borel rank of C ,
but we were unable to follow it through.

Now, a concept class C will be learnable under di�use measures provided there is a
hypothesis class H which has finite VC dimension and such that every C � C di�ers
from a suitable H � H by a null set. If C consists of all finite and all cofinite subsets
of �, this H is given by ��� ��. One may conjecture that C is learnable under di�use
measures if and only if it admits such a “core” H having finite VC dimension. Is this
true?

Another natural question is: can one characterize concept classes that are uniformly
Glivenko–Cantelli with regard to all non-atomic measures? Apparently, this task requires
yet another version of shattering dimension, which is strictly intermediate between Ta-
lagrand’s “witness of irregularity” [T] and our VC dimension modulo countable sets.
We do not have a viable candidate.

Finally, our investigation open up a possibility of linking learnability and VC di-
mension to Boolean algebras and their Stone spaces. This could be a glib exercise in
generalization for its own sake, or maybe something deeper if one manages to invoke
model theory and forcing.
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Abstract. In this paper we construct a general method for reporting on
the accuracy of density estimation. Using variational methods from sta-
tistical learning theory we derive a PAC, algorithm-dependent bound on
the distance between the data generating distribution and a learned ap-
proximation. The distance measure takes the role of a loss function that
can be tailored to the learning problem, enabling us to control discrepan-
cies on tasks relevant to subsequent inference. We apply the bound to an
efficient mixture learning algorithm. Using the method of localisation we
encode properties of both the algorithm and the data generating distribu-
tion, producing a tight, empirical, algorithm-dependent upper risk bound
on the performance of the learner. We discuss other uses of the bound for
arbitrary distributions and model averaging.

Keywords:Tailored density estimation, PAC-Bayes bounds, localisation.

1 Introduction

Estimating probability densities lies at the heart of statistical inference. Theoret-
ical analyses of learning methods have generally focused on induction; learning
a “rule” from a sequence of examples. More general cases of probabilistic infer-
ence involve two phases; the learning of a distribution and subsequently inference
based on the learned model. This type of learning utilises underlying structure
that is inherent in the data. It also produces machines that can be asked a vari-
ety of questions. If these questions are predefined then we can avoid accurately
approximating the data distribution in the sense of the traditional metrics used
in probability theory for problems of convergence. Instead, we tailor the measure
of accuracy to the learning problem. We therefore consider a family of tasks and
ask that the learned approximation be accurate on this class.

The supervised learning framework for pattern recognition has proved very
effective in explaining the performance of principled, and even “off the shelf”
algorithms. But many real world problems require a more complex modeling
process composed of multiple stages of learning and inference. The accuracy
of each step affects the performance of the learning machine, and therefore a
formal theory for this type of inference must utilise all information available. The
question is how to incorporate this information into a learning theory framework.

M. Hutter et al. (Eds.): ALT 2010, LNAI 6331, pp. 148–162, 2010.
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Here we consider the problem of tailored density estimation, an idea formalised
by [1]. If density estimation is part of some larger inference process, then we need
to consider how this knowledge affects how we measure the accuracy of the den-
sity estimate. To construct error bounds we formalise our notion of generalisation
to be the performance of an approximation, against the true distribution, on a
predefined set of tasks. We assume that tasks lie in a reproducing kernel Hilbert
space and use the technique of [2]; embedding distributions in the RKHS and
performing moment matching in that space. It is then through the choice of
kernel that we can tailor the density estimate to a function class of interest.

To construct the error bounds we use a toolbox of methods that is well es-
tablished within a small group of the statistical learning community. PAC-Bayes
theory is a framework for deriving some of the tightest generalisation bounds
available. The traditional style bounds of [3], [4] and [5] all focus on classifica-
tion. Extensions to regression [6] and [7] exist, but density estimation is only
examined briefly in [8] and restricted to finite domains in [9]. In [8] an informa-
tion theoretic loss is used. Here we derive a novel PAC-Bayes bound for density
estimation over general domains, with a loss function that can be tailored to
focus on functions of interest. We use techniques from [10] to commute the av-
eraging inside the loss. We then apply the chain rule for relative entropy to give
an upper risk bound on the performance of a non random algorithm. The upper
bound for the relative entropy works by a novel choice of prior and posterior and
is applicable to any random algorithm that learns a multinomial.

At the core of PAC-Bayes bounds lies a deviation inequality that restricts
our freedom when choosing risk functionals and performance measures. To allow
us to upper bound the complex Laplace transform we take a slight detour and
derive a second order U -statistic PAC-Bayes bound that extends the bounds of
[11] and [12] to more general convex performance measures. This detour allows us
to commute both the sample average and the posterior averaging inside the loss
at only the cost of a small multiplicative factor and a bias term of order O((n −
1)−1). We show how the U -statistic bound implies our bound and specialise our
bound to an efficient kernel moment matching algorithm that learns the mixing
coefficients of a mixture model. Using the method of localisation we encode
properties of both the algorithm and the data generating distribution, producing
a tight, empirical, algorithm-dependent upper risk bound on the performance of
the learner.

The paper is outlined as follows. Section 2 provides the necessary background
on PAC-Bayes theory and the idea of localisation. In section 3 we state the
required second order U -statistics bound and give its proof. In section 4 the
reproducing Kernel Moment Matching (KMM) method is explained and we apply
the U -statistic bound, with some tweaking, to the performance of an approximate
distribution. In Section 5 we localise the bound for a finite mixture learning
algorithm. This comprises of a subsection on stability analysis and a subsection
on the probabilistic aspect of the localisation. Section 6 draws conclusions and
discusses future work.
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2 Technical Background

We assume all mathematical objects adhere to the measurability issues of the
computations in which they are used. At the core of the analysis is the following
PAC form of Markov’s inequality.

Lemma 1 (The PAC lemma). For any real-valued random variable V s.t.
EeV ≤ 1 and for any δ ∈ (0, 1],

Pr
{
V ≤ ln(δ−1)

}
≥ 1 − δ. (1)

We are given a random sample S and follow a PAC-Bayes learning paradigm
where we are equipped with two distributions ρ and π on hypotheses h. Let
φ(h, S) denote a measurable function. Define the random variable

V = Eh∼ρφ(h, S) − KL(ρ||π) − lnLφ (2)

where Lφ = ESEh∼πeφ(h,S) is the Laplace transform of φ with h drawn from
π, and KL(ρ||π) = Eh∼ρ ln dρ(h)

dπ(h) is the relative entropy between ρ and π. Using
Jensen’s inequality we have

EeV = ESeEh∼ρφ(h,S)−KL(ρ||π)−lnLφ (3)

≤ ESEh∼ρ
dπ(h)
dρ(h) e

φ(h,S)−lnLφ (4)

= ESEh∼πeφ(h,S)−lnLφ (5)
= 1 (6)

and the PAC Lemma is applicable. This proves the following.

Lemma 2 (The PAC-Bayes lemma). For any two distributions π and ρ on
hypotheses h, for any measurable φ(h, S), for any δ ∈ (0, 1],

PrS

{
Eh∼ρφ(h, S) ≤ KL(ρ||π) + ln

Lφ

δ

}
≥ 1 − δ, (7)

where Lφ = ESEh∼πeφ(h,S).

Our choice of φ(h, S) describes the learning problem. Generally φ(h, S) will be
some measure of how close a sample statistic is to its mean, such as the squared
loss between a classifier’s empirical and generalisation errors. It is ρ that encodes
our choice of algorithm, e.g. letting ρ be a spherical gaussian centered at the
output of an SVM. But there is always some ambiguity over the choice of π. For
KL(ρ||π) to have a closed form π should belong to the same class as ρ and for Lφ

to be tractable it is required that π be independent of the sample. Essentially,
π is a free parameter with constraints, that can be used to tailor and tighten a
particular bound. An effective choice is to use a localised prior described below.
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2.1 Localisation

The first notion of localisation was developed in [13] and occurs in related works
[14], [8], [15] and [16]. The idea is to choose a prior π that is informative about the
data-generating distribution and preferably one that allows us to upper bound
the relative entropy KL(ρ||π). Let R(h) denote some measure of risk and let
rS(h) denote its empirical approximation and let ρ(R) and ρ(rS) denote their
expectations over ρ. A natural choice for ρ is the Gibbs estimator with density
proportional to e−αrS(h)dπ(h) for some flat prior π. This implies that the relative
entropy KL(ρ||π) is likely to be small for the Gibbs estimator if we replace π by a
distribution with density proportional to ESe−αrS(h)dπ(h). In [13], [15] and [16]
this is approximated by e−βR(h)dπ(h), β ∈ R, β ≤ α1, and they obtain empirical
bounds on the corresponding relative entropy (see [13], [15] and [16]).

In [12] they construct a Gaussian processes on the hypothesis space, in their
case a Hilbert space H, using posterior and prior with respective densities

q(h) :=
1
Z

e−
γ
2 ||h−λS||2H ; p(h) :=

1
Z ′ e

− γ
2 ||h−λ||2H (8)

where λS := argminh Λ(h, S) and λ = ES [μS ], for some convex risk functional
Λ(h, S). In [12] they consider the case when Λ(h, S) := rS(h) + η||h||2H̃S

where
|| · ||H̃S

is some possibly data dependent norm on hypotheses. This is localisation,
but without mention of a Gibbs estimator. It is a novel approach and we build on
it in the application of our bound to the problem of mixture learning. We have the
benefit of a finite dimensional problem, but the hassle of additional constraints.
All the above methods of localisation output a randomised predictor, whereas
here we upper bound an optimal value. Our KL term is well defined because
this value is a multinomial and makes the method unique to the problem of
mixture learning. We do not use ES [λS ] as a localised prior, instead we take
μ := argminν ESΛ(ν, S). This is a novel localised prior and allows us to use a
simple stability argument to upper bound KL(λS ||μ) and incorporate algorithmic
properties.

3 Second Order U -Statistic PAC-Bayes’ Bound

In this section we derive the required second order U -statistic PAC-Bayes bound,
using ideas from [11] and Hoeffding’s decomposition method, e.g. [17]. In [11]
they focus on the Bernoulli relative entropy and work in a very general setting
for non iid data. Here we specifically work with second order U -statistics and
the proof holds for more general convex functions. From this point on we assume
that S = (x1, . . . , xn) is a sample of data drawn iid from D.

Let {h} denote a measurable set of bounded U -statistic kernels, h : Rd×Rd →
[a, b] ⊂ R for all h ∈ {h}. For S ∼ Dn, S = (x1, . . . , xn), let US(h) denote the

1 β is smaller than α due to the mixing in ESe−αrS(h)dπ(h).
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normalised 2nd order U -statistic given by

US(h) =
1

n(n − 1)

∑
i�=j

h(xi, xj) − a

b − a
, (9)

and let U(h) := ES∼Dm [US(h)] denote its mean. By definition, US(h) is an un-
biased estimator of U(h), i.e. U(h) = E(x,x′)∼D2 [h(x, x′)]. Let M1

+({h}) denote
the set of probability measures on {h}. We have the following theorem.

Theorem 1 (2nd-Order U-Process Bound). For any π ∈ M1
+({h}), for any

convex D : [0, 1]2 → R, for any δ ∈ (0, 1], with probability ≥ 1 − δ over the draw
of S, for any ρ ∈ M1

+({h}),

D
(

Eh∼ρUS(h)), Eh∼ρU(h)
)

≤ 1
%n/2&

[
KL(ρ||π) + ln

LD
δ

]
, (10)

where LD = Eh∼πESe�n/2�D
(
US(h)),U(h)

)
.

Proof (Theorem 1). Define the random variable V given by

V := %n/2&D
(
Eh∼ρUS(h)), Eh∼ρU(h)

)
− KL(ρ||π) − lnLD. (11)

For any convex D : [0, 1]2 → R, using Jensen’s inequality, we have

EeV = ESe�n/2�D
(

Eh∼ρUS(h),Eh∼ρU(h)
)
−KL(ρ||π)−lnLD (12)

≤ ESEh∼ρ
dπ(h)
dρ(h) e

�n/2�D
(
US(h)),U(h)

)
−lnLD (13)

= ESEh∼πe�n/2�D
(

US(h)),U(h)
)
−lnLD (14)

= 1. (15)

The theorem then follows from PAC lemma 1.

A common choice for D(a, b) is the Bernoulli relative entropy kl(a||b), or the
closely related FC(a, b) = ΦC(b) − C · a, for some C ∈ R, where

kl(a||b) := a ln
a

b
+ (1 − a) ln

1 − a

1 − b
(16)

ΦC(b) := ln
1

1 − [1 − e−C ]b
. (17)

Here, these two choices lead to the following Corollary.

Corollary 1. For any π ∈ M1
+({h}), for any C ∈ R+, for any δ ∈ (0, 1], with

probability ≥ 1 − δ over the draw of S, for any ρ ∈ M1
+({h}),

kl
(

Eh∼ρUS(h))
∣∣∣∣∣∣Eh∼ρU(h)

)
≤ 1

%n/2&

[
KL(ρ||π) + ln

ξ(%n/2&)
δ

]
(18)

where ξ(m) = O(
√

m), and

FC

(
Eh∼ρUS(h)), Eh∼ρU(h)

)
≤ 1

%n/2&

[
KL(ρ||π) + ln

1
δ

]
. (19)
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Proof (Corollary 1). Let Σn denote the set of permutations on {1, . . . , n}. Let
h̄(·) := h(·)−a

b−a . For σ ∈ Σn, let BS,σ(h) denote the iid block given by

BS,σ(h) :=
1

%n/2&

�n/2�∑
i=1

h̄(xσ(i), xσ(�n/2�+i)), (20)

where each h̄(xσ(i), xσ(�n/2�+i)) ∈ [0, 1] and we have US(h) = 1
n!

∑
σ∈Σn

BS,σ(h).
Using Jensen’s inequality, we have

LD = Eh∼πESe�n/2�D
(
US(h),U(h)

)
(21)

≤ 1
n!

∑
σ∈Σn

Eh∼πESe�n/2�D
(
BS,σ(h),ESBS,σ(h)

)
. (22)

Let Zxσ(i) denote the unique, {0, 1} valued random variable such that

EZxσ(i) = ES h̄(xσ(i), xσ(�n/2�+i)), (23)

and let Ẑ = 1
�n/2�

∑�n/2�
i=1 Zxσ(i) denote its empirical mean. Note that Ẑ is a sum

of %n/2& iid random variables. Using (Lemma 3) from [18], and the fact that
eD(·,·) is convex, we have

ESeD(BS,σ(h),ESBS,σ(h)) ≤ EeD(Ẑ,EẐ). (24)

Therefore we can upper bound the Laplace transform LD in theorem 1 using the
binomial deviation inequalities, (see [19], for example)

Ee�n/2�kl(Ẑ||EẐ) ≤ ξ(%n/2&), (25)

Ee�n/2�FC(Ẑ,EẐ) ≤ 1, (26)

where (assuming 00 = 1)

ξ(m) :=
m∑

k=0

(
m

k

)(
k

m

)k(
1 − k

m

)m−k

= O(
√

m). (27)

4 Reproducing Kernel Moment Matching

Exposed in [20] and developed further in [21] is the novel technique for com-
paring distributions by mapping them to a reproducing kernel Hilbert space.
Let k denote a reproducing kernel and let H denote its Hilbert space and let
Ck = supx,x′k(x, x′). Let P be any input distribution and define the mapping
P �→ kP , where kP (·) = Ex∼P [k(x, ·)] and importantly kP ∈ H, (see [21]). For
particular kernels this mapping is injective, meaning to differentiate between
distributions we only need to examine the distance between their mappings as
measured by the norm || · ||H. Therefore we can formalise density estimation
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as “the minimisation of the distance ||kQ − kD||H between an approximation
Q and the true distribution D”. As usual we only have access to a sample S
drawn from D, and look to minimise the proxy distance ||kQ − kS ||H where
kS := 1

|S|
∑|S|

i=1[k(xi, ·)]. It is then natural to consider how close this proxy dis-
tance is to the true, and more importantly how close a minimiser of the proxy
is to the true distribution.

It may not be required that the mapping P �→ kP be injective. For example,
low order polynomial kernels are not dense in the space of continuous bounded
functions and therefore the mapping of distributions to a low order polynomial
feature space is not injective, but in [2, Table 4] they show how low order polyno-
mial kernels are sufficient for the kernel moment matching algorithm to perform
better on average on polynomial type tasks than various other density estima-
tors. The bounds below hold for a large number of kernels and therefore gives us
the freedom to choose a kernel that better suits a particular inference problem.

Here we consider parametric density estimation with a parameter space Θ. We
construct an approximate input distribution Qθ for θ ∈ Θ. Let kQθ

denote the
two stage mapping θ �→ Qθ �→ kQθ

and let M1
+(Θ) denote the set of probability

measures on Θ. For ρ ∈ M1
+(Θ) define ρ[kQθ

] := Eθ∼ρ[kQθ
].

Theorem 2 (RKMM PAC-Bayes Bound). For any π ∈ M1
+(Θ), for any

convex D : [0, 1]2 → R, for any δ ∈ (0, 1], with probability ≥ 1 − δ over the draw
of S, for any ρ ∈ M1

+(Θ),

D1/2

(
n||ρ[kQθ

] − kS ||2H − V (ρ)
2Ck(n − 1)

,
||ρ[kQθ

] − kD||2H
2Ck

)
≤ 1

%n/2&

[
2KL(ρ||π)+ln

LD
δ

]

where

V (ρ) :=
1
n

n∑
k=1

||Eθ∼ρ[kQθ
] − kxk

||2H ; D1/2(a, b) := D
(

1
2a + 1

2 , 1
2b + 1

2

)
.

Proof (Theorem 2). For (θ, θ′) ∈ Θ2 define the second order U -statistic kernel
h(θ,θ′)(x, x′) such that

|h(θ,θ′)(x, x′)| := |〈kQθ
− kx, kθ′ − kx′〉H| ≤ 2Ck. (28)

We have

E(θ,θ′)∼ρ2U
(
h(θ,θ′)

)
=

E(θ,θ′)∼ρ2

4Ck
E(x,x′)∼D2〈kQθ

− kx, kθ′ − kx′〉H + 1
2

=
E(θ,θ′)∼ρ2

4Ck
〈kQθ

− kD, kθ′ − kD〉H + 1
2

=
1

4Ck
||Eθ∼ρ[kQθ

] − kD||2H + 1
2 .
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For any ρ2 ∈ M1
+(Θ2) we have

E(θ,θ′)∼ρ2US

(
h(θ,θ′)

)
=

E(θ,θ′)∼ρ2

n(n − 1)

∑
i�=j

〈kQθ
− kxi , kθ′ − kxj 〉H + 2Ck

4Ck

=
(4Ck)−1

n(n − 1)

∑
i�=j

〈Eθ∼ρ[kQθ
] − kxi , Eθ′∼ρ[kθ′ ] − kxj 〉H + 1

2

=
(4Ck)−1

n(n − 1)

[
n∑

i=1

n∑
j=1

〈Eθ∼ρ[kQθ
] − kxi , Eθ′∼ρ[kθ′ ] − kxj 〉H

−
n∑

k=1

||Eθ∼ρ[kQθ
] − kxk

||2H

]
+ 1

2

=
(4Ck)−1

n(n − 1)

[〈
nEθ∼ρ[kQθ

] −
n∑

i=1

kxi , nEθ′∼ρ[kθ′ ]

−
n∑

j=1

kxj

〉
H

−
n∑

k=1

||Eθ∼ρ[kQθ
] − kxk

||2H

]
+ 1

2

=
1

4Ck(n − 1)

[
n||Eθ∼ρ[kQθ

] − kS ||2H − V (ρ)
]

+ 1
2 .

For any ρ2, π2 ∈ M1
+(Θ2) it holds that

KL
(
ρ2||π2) = 2 · KL(ρ||π). (29)

Inserting E(θ,θ′)∼ρ2US

(
h(θ,θ′)

)
, its mean E(θ,θ′)∼ρ2U

(
h(θ,θ′)

)
and the relative en-

tropy KL
(
ρ2||π2

)
into Theorem 1 completes the proof.

The preamble of the theorem has changed little from theorem 1, but there are
important properties we wish to highlight. Firstly, note that D1/2(a, b) is convex
in both arguments and zero for a = b and therefore not too different from D. In
the bound we pay roughly a multiplicative factor of 4, this is for commuting the
sample and the posterior average inside the squared loss || · ||2H. The introduction
of the bias term V (ρ) is a bi-product of the detour to U -statistics. In the worst
case we have V (ρ) ≤ 2Ck, but it is likely that Eθ∼ρ[kQθ

] will be chosen to be
close to kS and therefore V (ρ) will be small if the variance of the sample is not
too large. Future investigations will look at removing this object from the bound,
but note how it decays with (n − 1)−1 in a similar fashion to the bias between
a U -statistic and a V -statistic (see, e.g. [17, Chapter 5]). The denominator Ck

normalises the loss to [0, 1] so that the Laplace transform LD is easier to upper
bound, but it is the same constant that occurs in Rademacher arguments for
the convergence of empirical processes, where it is used as a measure of function
class complexity. Thus, with regards to tailoring the loss function to a particular
RKHS, the rescaling by 1/Ck means we can choose any kernel we wish and still
measure performance on a generic [0, 1] scale. In the following section we show
how the above bound can be specialised to a deterministic algorithm.



156 M. Higgs and J. Shawe-Taylor

5 Localised Bound for Finite Mixture Models

Assume the distribution Qθ is a mixture of the form

Qθ =
m+1∑
i=1

θiQi, θ ∈ 'm (30)

where {Qi}m+1
i=1 a fixed set of component distributions and 'm is the unit simplex

of dimension m. In this section we define a class of prior and posterior that
result in a single parameter bound. This allows us to measure the performance
of algorithms that focus on learning the best mixing coefficients θ for components
{Qi}m+1

i=1 . Let {ei}m+1
i=1 be the canonical basis in Rm+1 and for λ, μ ∈ 'm let

ρλ, πμ ∈ M1
+('m) be point-mass mixtures of the form

ρλ :=
m+1∑
i=1

λiδei ; πμ :=
m+1∑
i=1

μiδei . (31)

By the chain rule for relative entropy [22] it holds that

KL
(m+1∑

i=1

λiδei

∣∣∣∣∣∣m+1∑
i=1

μiδei

)
≤ KL(λ||μ). (32)

For λ, μ ∈ 'm, we have Eθ∼ρλ
[θ] = λ and Eθ∼πμ [θ] = μ, and importantly

Eθ∼ρλ
[kQθ

(·)] = Eθ∼ρλ

[
Ex∼Qθ

[k(x, ·)]
]

(33)

= Eθ∼ρλ

[
m+1∑
i=1

θiEx∼Qi [k(x, ·)]
]

(34)

=
m+1∑
i=1

λiEx∼Qi [k(x, ·)] (35)

= kQλ
(·). (36)

Let Qθ be a mixture distribution of the form of (30). For some regularisation
parameter r > 0, define

λS := argmin
θ∈�m

{
||kQθ

− kS ||2H + r||θ||22
}
. (37)

Let λS define a posterior ρλS and define a localised prior πμD where ρλS and
πμD are point-mass mixtures (31) and μD is given by

μD := arg min
θ∈�m

{
||kQθ

− kD||2H + r||θ||22
}
. (38)

Obviously πμD is independent of the sample and therefore a valid prior. Using
the reproducing property of the kernel and the mixture form of Qθ it is easy to
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write both (37) and (38) as quadratic programs (something highlighted in [2]).
Formally, we can expand the squared norm in (37) and (38), ignore constants
and write them both using the quadratic function

Ωu(θ) :=
1
2
θ�(A + rI)θ − u�θ (39)

where r ≥ 0, u ∈ Rm+1 and A(i, j) := kQiQj = Ex∼Qi,x′∼Qj [k(x, x′)], i, j =
1, . . . , m + 1. Taking vS , vD ∈ Rm+1 such that vS(i) = kQiS and vD(i) = kQiD

we have respectively λS := argminθ∈�mΩvS (θ) and μD := argminθ∈�mΩvD (θ).
By definition the ridged component matrix (A + rI) is positive definite and
therefore both λS and μD are unique and well defined. We have the following
theorem.

Theorem 3. For any r > 0, let λS ∈ 'm be the optimal value in (37) and let
σmin

r (A) be the minimal eigenvalue of (A + rI). For any convex D : [0, 1]2 → R

and any δ ∈ (0, 1], with probability ≥ 1 − δ over the draw of S, it holds that

D1/2

(
n||kQλS

− kS ||2H − V (λS)
2Ck(n − 1)

,
||kQλS

− kD||2H
2Ck

)
≤

2B∗ + ln 2LD
δ

%n/2&

where

B∗ := max
θ∈�m

{
kl(λS ||θ) :

||λS − θ||2√
m + 1

≤
Ck

(
2 +

√
1
2 ln 2

δ

)
√

n · σmin
r (A)

}
. (40)

Essentially, we have removed the complexity term KL(ρ||π) and replaced it with
an empirical, algorithm dependent upper bound. The form of prior and poste-
rior used has a big advantage over using Dirichlet of log-Normal distributions
for ρ and π, where if the mean of either distribution approaches the bound-
ary, KL(ρ||π) quickly approaches infinity. The value B∗ is the optimum of a
convex maximisation problem over convex constraints and the KKT conditions
can be solved numerically. It is important to note that for certain values of δ
the bound B∗ can be infinite. This occurs when δ is small enough that the set{

θ : ||λS−θ||2√
m+1 ≤ Ck

(
2+

√
1
2 ln 2

δ

)
√

n·σmin
r (A)

}
intersects the boundary of 'm. Note, for a

fixed δ, there will always exist a value of n large enough that this does not hap-
pen. This PAC-type value of n depends on the position of λS , the component
matrix A and the regularisation parameter r, therefore the bound is fully data
and algorithm dependent. Also, we would expect the complexity of the bound to
increase as the parameter space 'm increases in dimension, but the normalising
constant of

√
m + 1 in the 2-norm essentially makes the bound independent of

m. The proof of theorem 3 is split into the following two subsections.

5.1 Stability Analysis

In this subsection we examine the sensitivity of the reproducing KMM algorithm
to changes in the data. These changes can be viewed as perturbations in the data
vector u of (39). We apply techniques from [23, Section 4.4.1].
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Proposition 1. For any v, w ∈ Rm+1
+ , let θ̂v, θ̂w be solutions to the quadratic

program minθ∈�m Ωu(θ) of form (39) for respectively u = v and u = w. Let
σmin

r (A) > 0 denote the minimal eigenvalue of the matrix (A + rI). It holds that

||θ̂w − θ̂v||2 ≤ ||w − v||2
σmin

r (A)
. (41)

For the proof we require the following lemma.

Lemma 3. Let σmin
r (A) > 0 denote the minimal eigenvalue of the matrix (A +

rI) and let θ̂u denote the minimiser of Ωu(θ) over 'm. We have

Ωu(θ) − Ωu(θ̂u) ≥ σmin
r (A)||θ̂u − θ||22, ∀θ ∈ 'm. (42)

Proof (Lemma 3). As θ̂u is the minimiser of Ωu(θ), it holds that Ωu(θ̂u) −
Ωu(θ) ≤ 0 ∀θ ∈ 'm and therefore

0 ≤ (θ̂u − θ)�(A + rI)(θ̂u − θ) ≤ u�(θ̂u − θ), ∀θ ∈ 'm, (43)

where the first inequality follows from the fact that (A + rI) is positive definite.
From (43) and definition of the Rayleigh quotient, we have

Ωu(θ) − Ωu(θ̂u) = (θ − θ̂u)�(A + rI)(θ − θ̂u) + u�(θ̂u − θ) (44)

≥ σmin
r (A)||θ − θ̂u||22. (45)

Proof (Proposition 1). Define Λ(θ) := Ωv(θ) − Ωw(θ). From Lemma 3, using
Holder’s inequality and the fact that θ̂w minimises Ωw(θ) over 'm, it holds that

σmin
r (A)||θ̂w − θ̂v||22 ≤ Ωv(θ̂w) − Ωv(θ̂v) (46)

= Λ(θ̂w) − Λ(θ̂v) + Ωw(θ̂w) − Ωw(θ̂v) (47)

= (w − v)�(θ̂w − θ̂v) + Ωw(θ̂w) − Ωw(θ̂v) (48)

≤ ||w − v||2||θ̂w − θ̂v||2. (49)

Dividing through by ||θ̂w − θ̂v||2 completes the proof.

Remark 1. Note that the constraint θ̂w − θ̂v ∈ {θ − θ′ ∈ Rm+1 : θ, θ′ ∈ 'm}
makes the above bound vacuous for ||w−v||2

σmin
r (A) ≥

√
2.

5.2 Norm Convergence

In this subsection we adapt a proof from [24] to bound the norm ||kS−kD||2H with
high probability. As we only require a bound on ||vS − vD||2 where vS(i) = kQiS

and vD(i) = kQiD, we reduce the problem to a finite dimensional one.

Proposition 2. Let vS , vD ∈ Rm+1 be be define as above. For any δ ∈ (0, 1],
with probability ≥ 1 − δ over the draw of S,

||vS − vD||2 ≤ Ck

√
m + 1

n

(
2 +

√
1
2

ln
1
δ

)
. (50)
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Proof (Proposition 2). All norms in the proof are 2-norms. Define g(S) = ||vS −
vD||. At the core of the proof is Mcdiarmid’s inequality, therefore we first examine
the stability of g(S) with respect to changes in the sample. Let S(i) denote S
with xi replaced by x′

i. Then we have

|g(S) − g(S(i))| = ||vS − vD|| − ||vS(i) − vD|| ≤ ||vS − vS(i) || (51)

=
1
n

[
m+1∑
j=1

∣∣∣kQj (xi) − kQj (x
′
i)
∣∣∣2]1/2

(52)

≤
√

m + 1Ck

n
. (53)

Applying Mcdiarmid’s inequality we obtain

Pr
{

g(S) − ES [g(s)] ≥ ε
}

≤ exp
(

− 2nε2

(m + 1)C2
k

)
. (54)

Let σ = (σ1, . . . , σn) be Rademacher random variables. Using a symmetrisation
argument on a second sample S′ and Jensen’s inequality and the concavity of
the square root function, it holds that

ES [g(S)] = ES ||vS − vD|| = ES ||vS − ES′ [vS′ ]|| (55)
= ES ||ES′ [vS − vS′ ]|| ≤ ESS′ ||vS − vS′ || (56)

= ESS′σ

[
1
n

(
m+1∑
j=1

(
n∑

i=1

σi(kQj (xi) − kQj (x
′
i))

)2)1/2]
(57)

≤ 2ESσ

[
1
n

(
m+1∑
j=1

(
n∑

i=1

σikQj (xi)

)2)1/2]
(58)

≤ 2ES

[
1
n

(
m+1∑
j=1

Eσ

n∑
i,l=1

σiσlkQj (xi)kQj (xl)

)1/2]
(59)

= 2ES

[
1
n

(
m+1∑
j=1

n∑
i=1

kQj (xi)kQj (xi)

)1/2]
(60)

≤ 2

√
m + 1

n
Ck. (61)

Inserting the upper bound on ES [g(S)] into (54) and setting δ = e
− 2nε2

(m+1)C2
k

completes the proof.

5.3 Proof of Theorem 3

Combining proposition 1 and 2, for any δ ∈ (0, 1], with probability ≥ 1 − δ we
have

||λS − μD||2√
m + 1

≤
Ck

(
2 +

√
1
2 ln 2

δ

)
√

n · σmin
r (A)

, (62)
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where λS and μD are the minimisers of (37) and (38) respectively. Inserting into
theorem 2 posterior and prior ρλS and πμD respectively, of the form of (31),
ensures that Eθ∼ρλS

[kQθ
] = kQλS

and, with high probability, KL(ρλ||πμ) ≤
KL(λ||μ) ≤ B∗.

A simple numerical example for theorem 3 is shown in figure 1. Samples are
drawn from a mixture of two Gaussians. Means and variances of two prototype
Gaussians are constructed from the data using the EM algorithm. Mixing coeffi-
cients are then found using the KMM algorithm of (37). Note that the example
is shown not to measure the performance of the algorithm, but to exemplify the
validity of the bound2. Choosing D(a, b) = 2(a − b)2 we have

||kQλS
− kD||2H ≤

n||kQλS
− kS ||2H − V (λS)
(n − 1)

+

√
2B∗ + ln 2LD

δ

%n/2& (63)

and for m = 1 we can compute B∗ explicitly. Note in figure 1(b) how B∗ decays
with increasing sample size. This is the primary reason for using the localisation
method. Also note how the bias term is negligible for reasonable sample sizes.
Figure 1(c) shows a rescaled plot of the sample error ||kQλS

−kS ||2H and the upper
bound of theorem 3 against the regularisation parameter r. The shape plot is
not exact due to rescaling and additional constants, but its shape indicates the
expected trade off between data-fit and entropy.
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Fig. 1. Numerical example for theorem 3

2 We obviously benefit greatly from using the correct model.
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6 Conclusions and Future Work

In this paper we have derived a PAC-Bayes bound for density estimation with a
loss function that allows us to tailor the density estimate to a function class of
interest. This places the work of [2] in a more principled framework and connects
the theory of [1] to something more practical and applicable. We specialise the
bound to finite mixture learning algorithms that minimise the kernel moment
matching loss function and use methods of localisation to derive fully empirical
and algorithm dependent upper risk bounds. Theorem 2 covers a huge number
of learning scenarios, one of which is outlined below. Future work will look
at extending the method to sparse solutions and considering the possibility of
incorporating properties of the component matrix A into the norm convergence
analysis of subsection 5.2. There is also the possibility of deriving the U -statistic
bound directly for V -statistics; removing the need for a bias term.

If we let {δx}, where δx is a unit mass at x, be the set of candidate distributions
in theorem 2, then ρ and π become probability measures directly on the input
space. The proof of the following corollary is omitted.

Corollary 2. For any input distribution P , for any convex D : [0, 1]2 → R,
for any δ ∈ (0, 1], with probability ≥ 1 − δ over the draw of S, for any input
distribution Q,

D1/2

(
n||kQ − kS ||2H − V (Q)

2Ck(n − 1)
,
||kQ − kD||2H

2Ck

)
≤

2 · KL(Q||P ) + ln LD
δ

%n/2& .

where V (Q) := 1
n

∑n
k=1 ||kQ − kxk

||2H .

The above corollary exposes the generality of the bounding method. Let M1
+

denote the space of all input distributions. We can define QS such that

QS := argmin
Q∈M⊆M1

+

{
||kQ − kS ||2H + rΓ (Q)

}
(64)

where Γ (Q) is a regularisation operator and M is a subset of M1
+. How to

analyses the loss ||kQ −kS ||2H in a practical manner will form future work in this
direction.
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Abstract. We revisit compressed learning in the PAC learning frame-
work. Specifically, we derive error bounds for learning halfspace concepts
with compressed data. We propose the regularity assumption over a pair
of concept and data distribution to greatly generalize former assump-
tions. For a regular concept we define a robust factor to characterize
the margin distribution and show that such a factor tightly controls the
generalization error of a learned classifier. Moreover, we extend our anal-
ysis to the more general linearly non-separable case. Empirical results on
both toy and real world data validate our analysis.

1 Introduction

The recent years have witnessed a surge of interest in compressed learning [2],
i.e., learning with randomly projected data (compressed data) instead of original
data. Compressed learning is necessary in two aspects: efficiency and privacy [13].
On one hand, learning with compressed data saves considerable running time and
storage since random projection can effectively reduce the dimension of data. On
the other hand, compressed learning can also be served as an important alter-
native for protecting data privacy. For example, in health care, security and
finance related applications [9], data often contain sensitive information. Private
database owners are only permitted to provide analyst with factitiously per-
turbed data rather than the original data. Random projection is a commonly
used method to mask the original appearance of data for such privacy con-
cerns [9]. In these scenarios, learning and analysis is only permitted to carried
out on those randomly projected data. Existing works dealing with compressed
data cover a variety of topics in machine learning such as classification, regres-
sion and manifold learning [1, 2, 4, 7, 10, 12, 13]. In this paper, we concentrate
on the classification case.

A key issue in classification with compressed data is the learnability, whether
the concept in the original space can be accurately learnt using the randomly
projected data. There are two representative works on this problem.
� Supported by NSFC (Grant No. 60975003) and State Key Science and Technology
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One is the loss function based analysis presented in [2]. They analyze the hinge
loss of the linear classifier learned by support vector machine on compressed data
and show the hinge loss of the compressedly learned classifier would not deviate
much from that of the classifier learned on original data. However, they cannot
guarantee the two classifiers have similar generalization error rates.

The other directly addresses the generalization error of a learned classifier on
compressed data in the PAC framework [1]. The key factor affecting the gen-
eralization error of a learned classifier is the margin distribution of a concept,
where the margin is defined as the distance between a sample and the separating
boundary [6]. Since random projection perturbs data, a sample will very likely
be wrongly classified if its margin is tiny. Therefore the learnability can only
be guaranteed with some restrictions over the pair of concept and data distribu-
tion such that original data with small margins are of a nonessential proportion.
Arriaga and Vempala [1] introduce the -robustness assumption ( > 0) which
requires the margin of every sample is at least . Since random projection approx-
imately preserves the margin of a finite set of samples [1], compressed learning
of an -robust concept is in fact the classical problem of learning with a margin.
They further show that an -robust halfspace concept can be accurately learned
simply by a perceptron. However, the -robustness assumption is so restrictive
that every halfspace concept is not -robust under many commonly adopted
assumptions on data distributions (e.g., normal distributions and uniform dis-
tributions). Moreover, in real world problems, compressed data cannot always
be well separated with a margin.

In this paper, we propose the regularity assumption to relax the -robust as-
sumption to a more general case, under which the learnability of compressed
learning halfspace concepts is revisited. The regularity assumption also imposes
restrictions over a pair of concept and data distribution, but only requires that
“almost” every sample has a nonzero margin. For example, a halfspace concept
is regular with any continuous distribution. Hence we can work with more data
distributions. However, under this relaxed assumption, compressed data may be
wrongly classified since margins in the original space can be arbitrarily small.
Therefore, we further define the robust factor for each regular concept to charac-
terize the margin distribution. Under the regularity assumption, we revisit the
problem of learning halfspace concepts with compressed data. We use the voted-
perceptron algorithm proposed by Freund and Schapire [5] to perform the learn-
ing task on compressed data. Generalization error bounds based on the robust
factor are derived for a learned classifier. We show that under some reasonable
conditions on the robust factor, a regular halfspace concept can be accurately
learned. The error analysis is also extended to the linearly non-separable case.
Numerical experiments validate our analysis.

2 Preliminaries

The training set is denoted as S = {(x1, y1), ..., (xm, ym)}. xi ∈ Rn is sampled
independently from an unknown distribution D in Rn and then normalized onto
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the unit ball. The label yi ∈ {−1, +1} is given by an unknown halfspace concept
w ∈ Rn, i.e., yi = sign

(
wT xi

)
. Assume ‖w‖ = 1, where ‖·‖ is the Euclidean

norm. R is a matrix of size k × n. w′ = Rw is the projection of w under R. We
use w · x to denote the inner product between w and x. v(x) = |w · x| is the
distance between x and the hyperplane w. This is the margin of x with respect
to w as used in [6]. The generalization error of a classifier f(x) under distribution
D is defined as

errD (f) = PD {x : f(x) �= y} ,

where PD is the probability measure of D.

2.1 Random Projection

Random projection is the technique of projecting a set of samples into a lower
dimensional space by a random matrix. One of the most important properties
of random projection is that it approximately preserve distance, which is stated
by the following Johnson-Lindenstrauss lemma [1, 3, 8].

Theorem 1 (Johnson-Lindenstrauss lemma [1, 3, 8]). Let u, v ∈ Rn. R
is a k × n random matrix with entries chosen independently from N(0, 1/k).
u′ = Ru, v′ = Rv. For any ε with 0 < ε < 1,

P
{
(1 − ε) ‖u − v‖2 ≤ ‖u′ − v′‖2 ≤ (1 + ε) ‖u − v‖2

}
≥ 1 − e−

ε2k
8 .

The statement of Theorem 1 is due to Arriaga and Vempala [1].
In Theorem 1, the probability P is taken over the randomness of the matrix

R. Specifically, if denoting P as the set of all the possible random matrices as in
Theorem 1, then P is the probability measure over P defined by the construction
of R. The corresponding distribution is denoted as RP(k, n).

Theorem 1 has a direct corollary as follows, which states that random projec-
tion also approximately preserves inner product.

Corollary 2. Let u, v ∈ Rn with ‖u‖ , ‖v‖ ≤ 1. Let R ∼ RP(k, n) and u′, v′ be
the projections of u, v under R. Then for any ε > 0,

P {u · v − ε ≤ u′ · v′ ≤ u · v + ε} ≥ 1 − 2e−
ε2k
8 .

Theorem 1 and Corallary 2 are crucial to our analysis.

2.2 �-Robust Concepts

Our definition of a regular concept is motivated by the -robust concept, which
is firstly introduced in [1].

Definition 3 (-robust halfspace concepts). A half-space concept w ∈ Rn

in conjunction with a distribution D in Rn is said to be -robust ( > 0), if

PD {x : |w · x| ≤ } = 0. (1)



166 J. Lv et al.

Note that -robustness is an assumption placed over the couple (w,D). It requires
almost surely the margin of a sample is greater than . This margin measures
how much one can alter a sample value without affecting its label. Therefore, the
margin distribution characterizes the robustness of a concept to noise in sample
values.

3 Regular Concepts and Robust Factors

In this section, we define regular halfspace concepts to generalize their -robust
counterparts. For a regular concept, a corresponding robust factor is defined to
characterize its margin distribution.

3.1 Regular Concepts

The formal definition of a regular concept is as follows.

Definition 4 (regular halfspace concepts). Let (w,D) be a halfspace concept
and data distribution pair in Rn. (w,D) is called regular, if

PD {x : |w · x| = 0} = 0. (2)

When (w,D) is regular, we call w a regular concept with respect to D or simply a
regular concept when there is no confusion about D. Clearly, an -robust concept
is also a regular concept. A regular concept w requires points on the separating
hyperplane forming a set of measure zero under D. Therefore, almost surely
every sample has a nonzero margin. Since under any continuous distribution
in Rn the volume of an n − 1 dimensional simplex is zero, every hyperplane is
regular if the data distribution is continuous. Moreover, (w,D) is not regular if
there exists an ε > 0, such that PD {x : |w · x| = 0} = ε. Therefore, w is not
regular when distributions are those placing nonzero measures on the separating
hyperplane. This type of concept is unstable to noise in sample values, since any
slight perturbation of a sample lying on the separating boundary will make it
wrongly classified. We will not consider them here.

There exists an important property for a regular concept, which leads to the
definition of the robust factor. The proof is a simple use of the monotone property
of probability measures.

Proposition 5. (w,D) is regular if and only if for any ε > 0, there exists an
 > 0, such that

PD {x : |w · x| ≤ } ≤ ε. (3)

3.2 Robust Factors

The real number  in (3) plays a similar role as that in an -robust concept,
both characterizing the margin distribution of a concept. With a given ε > 0, it
is reasonable to believe that a pair (w,D) with a larger  corresponding to (3)
is more robust to noise. This inspires us to introduce the following definition of
the robust factor for a regular concept.
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Definition 6 (robust factor). The halfspace concept w is regular in conjunc-
tion with D in Rn. Denote

Lε = { ∈ [0, 1] :  satisfiesPD {|w · x| ≤ } ≤ ε}

for a given ε > 0. Define φ(ε) = sup�∈Lε
 as the robust factor with respect to

(w,D).

It can be easily shown that φ(ε) ∈ Lε. When the distribution is continuous,
φ(ε) is simply the largest real number  such that PD {|w · x| ≤ } = ε. See the
following examples, where φ(ε) can be explicitly expressed or bounded.

Example 7 (robust factor of uniform distribution on the unit sphere in R3). Let
w = [1, 0, 0]T be the halfspace concept. D is the uniform distribution on the unit
sphere in R3. Then φ(ε) = ε

4π .

Generally, the robust factor of uniform distribution on the unit sphere in Rn has
the following upper bounds.

Example 8. w = [1, 0, · · · , 0]T ∈ Rn (n > 3) is the halfspace concept. D is the
uniform distribution on the unit sphere in Rn. Then for any ε ∈ (0, 1), we have

φ(ε) ≤
{

Γ ( n
2 )ε

8π(n−1)/2 n is even,

sin
(

Γ ( n
2 )ε

4π(n−1)/2

)
n is odd.

Proof. Transforming to the spherical coordinate system, we can represent the n
Cartesian coordinates as follows

x1 = cos θ1,

x2 = sin θ1 cos θ2,

· · · ,

xn−1 = sin θ1 · · · sin θn−2 cos θn−1,

xn = sin θ1 · · · sin θn−2 sin θn−1,

where θi ∈ [0, π] for 1 ≤ i ≤ n − 2 and θn−1 ∈ [0, 2π]. Furthermore, we have
|w · x| = |cos θ1|. Let θ ∈ [0, π/2] such that cos θ = φ(ε). Denote Aφ(ε) =
PD {|w · x| ≤ φ(ε)}. We have

Aφ(ε) =
∫ π−θ

θ1=θ

∫ π

θ2=0
· · ·

∫ π

θn−2=0

∫ 2π

θn−1=0
dS

=
∫ π−θ

θ

dθ1 sinn−2 θ1

∫ π

0
dθ2 sinn−3 θ2 · · ·

∫ π

0
dθn−2 sin θn−2

∫ 2π

0
dθn−1

=
2π(n−1)/2

Γ
(

n−1
2

) ∫ π−θ

θ

dθ1 sinn−2 θ1,

where dS is the area element of the n-sphere, i.e.,

dS = sinn−2 θ1 sinn−3 θ2 · · · sin θn−2 dθ1 · · · dθn−1,
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and we obtain the last equality by using the surface area formula of the n-
sphere. By the technique of integration by parts, we have the following recurrence
formula: ∫ π−θ

θ

sinn−2 t dt =
2 sinn−3 θ cos θ

n − 2
+

n − 3
n − 2

∫ π−θ

θ

sinn−4 t dt.

Since θ ∈ [0, π/2], ∫ π−θ

θ

sinn−2 t dt ≥ n − 3
n − 2

∫ π−θ

θ

sinn−4 t dt. (4)

If n is even, by (4), we have∫ π−θ

θ

sinn−2 t dt ≥(n − 3)(n − 5) · · · 1
(n − 2)(n − 4) · · · 2

∫ π−θ

θ

dt = 2
Γ (n−1

2 )
Γ (n

2 )

(π

2
− θ

)
.

Therefore,

ε = Aφ(ε) ≥ 4π(n−1)/2

Γ (n
2 )

(π

2
− θ

)
.

We have π
2 − θ ≤ Γ ( n

2 )ε
4π(n−1)/2 . And the robust factor can be bounded by

φ(ε) = cos θ ≤ sin
(

Γ (n
2 )ε

4π(n−1)/2

)
.

If n is odd, we have∫ π−θ

θ

sinn−2 t dt ≥(n − 3)(n − 5) · · · 2
(n − 2)(n − 4) · · · 3

∫ π−θ

θ

sin t dt = 4
Γ (n−1

2 )
Γ (n

2 )
cos θ.

Therefore,

ε = Aφ(ε) ≥ 8π(n−1)/2

Γ (n
2 )

cos θ.

And this directly gives the upper bound of the robust factor, i.e.,

φ(ε) ≤
Γ (n

2 )ε
8π(n−1)/2 .

Thus the result follows.

The robust factor of an -robust concept satisfies φ(0) =  > 0. This is a very
strong condition and does not generally hold for a regular concept. We only
assume φ(0) = 0 in the following discussion. Hence, as ε → 0, φ(ε) also decreases
to 0. The speed that φ(ε) approaches zero is an important characteristic of the
margin distribution which greatly affects the learning result. We prefer those
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decreasing slowly near ε = 0. This is because the robust factor with a smaller
decreasing rate will eventually take a larger value when ε is sufficiently close to
zero. Only for those concepts with their robust factors not decreasing too fast
near ε = 0, can we learn a classifier accurate enough. Based on this idea, we
introduce the following additional assumption to control the decreasing rate of
a robust factor. This assumption can be viewed as a slight variant of Tsybakov’s
noise condition [11].

Assumption 9. Suppose there exist constants 0 < ε0 < 1, C > 0 and 0 ≤ α <
1/4 such that for every ε ∈ [0, ε0), φ(ε) satisfies

φ(ε) ≥ Cεα. (5)

If the assumption holds, there does not exist such a neighborhood of the origin
that φ(ε) ≤ C̄εβ holds for all ε in the neighborhood, where C̄ > 0 and β > α.
And the rate of φ(ε) decreasing to zero is no faster than that of a polynomial
with order less than 1/4. Not all robust factors satisfy this assumption, e.g., the
above two examples. We will give experimental results on toy data to show that
failing to satisfy it will greatly affect the accuracy of the compressedly learned
classifier. It will also be shown in the following section that if the assumption
holds, an sufficiently accurate classifier can be learned based on compressed data.

4 Learning Regular Halfspace Concepts

In this section, we present error bounds for learning regular halfspace concepts
with compressed data. We first summarize our main results then give the proofs.

4.1 Main Results

We use the voted-perceptron algorithm proposed in [5] as the base algorithm
to learn from compressed data. The outputs of the algorithm is a weighted
ensemble of linear classifiers. There is a parameter T in the algorithm which
represents the number of iterations. In the following analysis, we simply set
T = 1 for convenience. Note that our main results are not particular for the base
algorithm, since the analysis does not depend on the detailed structure of the
algorithm. In fact, any algorithm with a comparable generalization guarantee
can be used to obtain similar results.

Theorem 10. Let w ∈ Rn be a halfspace concept with ‖w‖ = 1. D is a distribu-
tion over Rn. Suppose (w,D) is regular. Let R ∼ RP(k, n) be a random matrix.
S is the training set of size m. S′ is its projection under R. For any given ε > 0
and δ > 4ε, with probability at least 1−δ, the generalization error of the classifier
f(x) output by the voted-perceptron algorithm based on S′ satisfies

errD (f) ≤ 1
φ2

(
16 (1 + ε)2 + 16δ

m + 1
+ 40ε + 18δ

)
, (6)
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if k = max
{

32
φ2 log 2

ε(δ/4−ε) ,
8
ε2 log 2(m+2)

δ

}
where φ = φ

(
ε2
)
, provided m + 1 ≥

1
2ε2 log(8/δ).

The generalization error depends critically on the robust factor. If the robust
factor takes a larger value, the learned classifier will be more accurate. This is
consistent with our intuition that, if samples own larger margins, the learning
problem should be easier.

Also, as the sample size m approaches infinity, the upper bound approaches
c(ε+δ)

φ2 , where c is some constant. And the convergence rate is 1/m. Hence, when
training sample is enough, the accuracy of the compressedly learned classifier is
determined by the intrinsic hardness of the problem, i.e., the margin distribution.

As a simple corollary of Theorem 10, it can be shown that under Assumption 9,
the learned classifier f(x) can be arbitrarily accurate by suitably choosing the
dimension k and sample size m. This guarantees we can learn a regular halfspace
concept with satisfactory accuracy on compressed data.

Corollary 11. We invoke Assumption 9. Let α and ε0 be the constants from
Assumption 9. For any ε > 0, let ε1 = min

{
ε0, c1 (ε/2)

1
1−4α

}
, where c1 is some

fixed constant. If δ satisfies 4ε1 < δ < c2ε1 for some constant c2, then with
probability at least 1 − δ, the learned classifier f(x) in Theorem 10 satisfies

errD (f) ≤ ε,

if k = max
{

32
φ2 log 2

ε1(δ/4−ε1) ,
8
ε21

log 2(m+2)
δ

}
and m ≥ max

{
160/φ2, log(8/δ)

2ε21

}
,

where φ = φ
(
ε21
)
.

Specifically, when (w,D) is -robust, the sample complexity in Corollary 11 is
Õ
(
1/2

)
in terms of , the same order as Arriaga and Vempala’s [1], where the

Õ(·) notation hides the logarithmic factors. However our lower bound on the
projection dimension k is k ≥ Ω (log m), which improves the bound k ≥ Ω (m)
obtained in [1] .

We will give the detailed proof of Theorem 10 in the following part of this
section. The proof of Corollary 11 is direct and mainly technical. We omit it
here.

4.2 Proofs

For a given w, define the product set E ⊂ P × Rn as

E = {(R, x) : sign (w · x) �= sign (w′ · x′)} ,

where w′ = Rw, x′ = Rx. For a point x ∈ Rn, the x cross section of E is defined
as Ex = {R : (R, x) ∈ E} = {R : sign (w · x) �= sign (w′ · x′)}. Similarly, the R
cross section of E is ER = {x : (R, x) ∈ E} = {x : sign (w · x) �= sign (w′ · x′)}.
We first need to build some propositions and lemmas.
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Lemma 12. Given w, x ∈ Rn with ‖w‖ = ‖x‖ = 1, for any  ∈ (0, 1),

P {Ex} ≤ 2e−
�2k
8 + I (|w · x| ≤ )

holds, where I (·) is the indicator function.

Proof. Decompose Ex according to whether F = {|w · x| ≤ } happens or not.
Since Ex ∩ F ⊆ F and Ex ∩ F c ⊆ {|w · x − w′ · x′| > }, the lemma follows
directly by Proposition 5 and Corollary 2.

Proposition 13. Let w ∈ Rn be a halfspace concept. ‖w‖ = 1. D is a distri-
bution over Rn. Suppose (w,D) is regular. R ∼ RP(k, n) and w′ ∈ Rk is the
projection of w under R. Then for any 0 < ε < δ, we have

P {errD (w′) > ε} ≤ δ,

if k ≥ 8
φ(ε2)2 log 2

ε(δ−ε) .

Proof. Clearly, |errD (w) − errD (w′)| = errD (w′). We will first show that for a
fixed R ∈ P,

|errD (w) − errD (w′)| ≤ PD {ER} . (7)

In fact by rewriting probability into an integral of the corresponding indicator
function, we have

∣∣errD (w)− errD
(
w′)∣∣ =

∣∣∣∣∫ I (sign (w · x) 
= y) dPD −
∫

I
(
sign

(
w′ · x′) 
= y

)
dPD

∣∣∣∣
≤
∫ ∣∣I (sign (w · x) 
= y)− I

(
sign

(
w′ · x′) 
= y

)∣∣ dPD

=
∫

I (ER) dPD = PD {ER} .

The expectation of errD (w′) with respect to the randomness of the random
matrix is

E {errD (w′)} =
∫

errD (w′) dP =
∫

|errD (w) − errD (w′)| dP

≤
∫

PD {ER} dP =
∫ ∫

I (E) dPD dP

=
∫ ∫

I (E) dP dPD =
∫

P {Ex} dPD

≤
∫

2e−
φ(ε2)2

k

8 + I
(
|w · x| ≤ φ

(
ε2
))

dPD

≤ 2e−
φ(ε2)2

k

8 + ε2,
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where the first equality of the third line is obtained by Fubini’s Theorem and
the last inequality but one is because of Lemma 12. Therefore, by Markov’s
Inequality, we have

P {errD (w′) > ε} ≤ E {errD (w′)}
ε

≤ 2
ε
e−

φ(ε2)2
k

8 + ε.

By solving 2
ε e−

φ(ε2)2
k

8 + ε ≤ δ for k, the proposition follows.

We also have the following result. The proof is very similar with that of Proposi-
tion 13. The key idea is using Fubini’s Theorem to change the integration orders.
We omit the details here.

Proposition 14. Let w ∈ Rn be a halfspace concept. ‖w‖ = 1. D is a distribu-
tion over Rn. Suppose (w,D) is regular. x is a random sample with distribution
D. R ∼ RP(k, n). Let w′, x′ ∈ Rk be the projection of w, x under R, respectively.
Then for any 0 < ε < 1/2, δ > ε, if k ≥ 32

φ2 log 2
ε(δ−ε) ,

P {PD {|w′ · x′| ≤ φ/2} > ε} < δ (8)

holds where φ = φ
(
ε2
)
.

We also need the following error bound of the base learning algorithm due to
Freund and Schapire [5].

Theorem 15. Let S be a set of m samples with ‖xi‖ ≤ r. Let (xm+1, ym+1) be
a test sample. For h ∈ Rn, ‖h‖ = 1 and γ > 0, let

Dh,γ =

√√√√m+1∑
i=1

ξ2
i =

√√√√m+1∑
i=1

max {0, γ − yi (h · xi)}2
.

Then the probability (over the choice of all m + 1 samples) that the voted-
perceptron algorithm with T = 1 does not predict ym+1 on the test sample xm+1
is at most

ED

{
2

m + 1
inf

‖h‖=1;γ>0

(
r + Dh,γ

γ

)2
}

,

where ED {·} is the expectation over the m + 1 samples.

Now we are in the position of presenting the complete proof of Theorem 10.
Proof of Theorem 10. Let (x′

m+1, ym+1) be the projection of the test sample

(xm+1, ym+1). Take k = max
{

32
φ2 log 2

ε(δ/4−ε) ,
8
ε2 log 2(m+2)

δ

}
, where φ = φ

(
ε2
)
.

By Proposition 13 and Proposition 14,

P {errD (w′) ≥ ε} ≤ δ/4,

P {PD {|w′ · x′| ≥ φ/2} ≥ ε} ≤ δ/4
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both holds. Moreover, by Theorem 1, ‖w‖ = 1, and ‖xi‖ = 1, 1 ≤ i ≤ m + 1, we
have P {‖w′‖ ≥ 1 + ε} ≤ δ

2(m+2) and P {‖x′
i‖ ≥ 1 + ε} ≤ δ

2(m+2) , for 1 ≤ i ≤
m + 1. Define the “good” set of random matrix as:

G = {R : errD (w′) ≤ ε} ∩ {R : PD {|w′ · x′| ≤ φ/2} ≤ ε}

∩ {R : ‖w′‖ ≤ 1 + ε}∩
{

R : max
1≤i≤m+1

‖x′
i‖≤1+ε

}
.

Hence P {G} ≥ 1 − δ. Fix a R ∈ G in the following. S′ is the projection of S
under R. Denote A′ = S′ ∪

{
(x′

m+1, ym+1)
}
. The empirical error of w′ on A′ is

errA′ (w′) =
1

m + 1

m+1∑
i=1

I (sign (w′ · x′
i) �= yi) .

By the Chernoff bound, we have

PD {|errA′ (w′) − errD (w′)| ≥ ε} ≤ 2e−2(m+1)ε2 <
δ

4
.

Since R ∈ G, errD (w′) ≤ ε. Therefore, we obtain

PD {(m + 1)errA′ (w′) ≤ 2ε(m + 1)} ≥ 1 − δ

4
,

provided m + 1 ≥ log(8/δ)
2ε2 . Similarly, we can also bound the number of samples

correctly classified by w′ but with margin less than φ/2, i.e.,

PD

{
m+1∑
i=1

I (0 < yi (w′ · x′
i) ≤ φ/2) ≤ 2ε(m + 1)

}

≥PD

{
m+1∑
i=1

I (|w′ · x′
i| ≤ φ/2) ≤ 2ε(m + 1)

}
≥ 1 − δ

4
.

Setting γ = φ/2, D2
h,γ can be upper bounded by (m + 1)(1 + ε + φ/2)2. Hence

inf
‖h‖=1,γ

(
r + Dh,γ

γ

)2

≤ 1+ε+2(m+1) (1+ε+φ/2)2

φ2/4
,

if m ≥ 4. What’s more, D has a tighter bound. With probability at least 1− δ/2
over the randomness of all m + 1 samples, we have

D2
w′,φ/2 =

m+1∑
i=1

max {0, φ/2 − yi (w′ · x′
i)}

2

≤(1+2ε+ε2+φ/2)2
m+1∑
i=1

I (sign (w′ · x′
i) �= yi)

+ φ2/4
m+1∑
i=1

I (0 < yi (w′ · x′
i) ≤ φ/2)

≤2ε(m + 1)
(
4 + 2φ + φ2/2

)
.
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Note that Dw′/‖w′‖,φ/(2‖w′‖) = Dw′,φ/2/ ‖w′‖. Therefore, if m ≥ 2/ε, with prob-
ability at least 1 − δ/2,

inf
‖h‖=1,γ

(
r + Dh,γ

γ

)2

≤
(

(1 + ε)2 + Dw′,φ/2

φ/2

)2

≤
(1 + ε)4 + 2D2

w′,φ/2

φ2/4

≤(1 + ε)4 + 4ε(m + 1)(4 + 2φ + φ2/2)
φ2/4

,

Hence, we can finally bound the error rate

errD (f) ≤ ED

{
2

m + 1
inf

‖h‖=1;γ>0

(
r + Dh,γ

γ

)2
}

≤
(

1 − δ

2

)
(1 + ε)4 + 4ε(m + 1)(4 + 2φ + φ2/2)

(m + 1)φ2/8

+
δ

2
1 + ε + 2(m + 1) (1 + ε + φ/2)2

(m + 1)φ2/8

≤ 16
m + 1

(1 + ε)2 + δ

φ2 +
40ε + 18δ

φ2 .

5 Linearly Non-separable Case

Our analysis can be further extended to the case when data are linearly non-
separable in the original space. We would like the compressedly learned classifier
to be not much worse than the best linear classifier in the original space. We
need to generalize the definition of regularity to a general linear classifier. Here,
we only consider linear classifiers passing through the origin.

Definition 16. A linear classifier h with a distribution D in Rn is regular, if

PD {x : |h · x| = 0} = 0. (9)

The definition is the same as that of a regular concept. However, here errD (h) is
generally nonzero. Let ĥ = argminh∈Rn errD (h) with η the minimal error rate.
The following result bounds the generalization error of the classifier f(x) learned
on compressed data in terms of η.

Theorem 17. D is a distribution in Rn. Let ĥ ∈ Rn be the linear classifier
with the minimal error rate η under D.

∥∥∥ĥ
∥∥∥ = 1. Suppose (ĥ,D) is regular. R ∼

RP(k, n). S is the training set of size m. Let S′ be the projection of S under R.
For any given ε > 0 and δ > 8ε, with probability at least 1− δ, the generalization
error of the classifier f(x) output by the voted-perceptron algorithm based on S′

satisfies,

errD (f) ≤ 1
φ2

(
4(1 + ε)2 + 2δ

m + 1
+ 10(ε + η) + 8δ

)
,
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if k = max
{

8
φ(ε2)2 log 2

ε(δ/8−ε) ,
32
φ2 log 2

ε(δ/8−ε) ,
8
ε2 log 2(m+1)

δ

}
,

where φ = φ
(
(ε + η)2

)
.

This result shows that if the margin distribution places little mass on small
margins, one can learn a linear classifier with compressed data which would not
be much too worse than the best linear classifier one can learned with original
data. When m is sufficiently large, the upper bound approximates c(ε+η+δ)

φ2 , and
the convergence rate is 1/m.

The proof is similar with that of Theorem 10. We omit it here and provide it
in the supplementary material.

6 Experiments

In this section, we provide experimental results on synthesize data. The purpose
of these experiments is to test how different distributions affect the accuracy of
a classifier trained on compressed data and whether these effects are consistent
with our analysis. We first introduce the experimental setups, and then provide
the detailed experimental results.

6.1 Experimental Setup

For each data set used in our experiment, we randomly choose 90% of the sam-
ples as the training set, and the rest is used as the testing set. We then train
two classifiers using the base algorithm on the original training set and com-
pressed training set respectively, where the compressed training set is obtained
by projecting the original training set to a k-dimensional space with a random
matrix. Finally the classification accuracy is evaluated on the original and com-
pressed testing set with the originally and compressedly trained classifier. To
reduce the training bias, we repeat the above procedure for N rounds and re-
port the averaged results. In this way, we totally trained M × N classifiers on
compressed data, and the averaged accuracy of compressedly trained classifiers
are also reported to compare with that of the classifiers trained on original data.
We choose several different values of dimension k and plot the test accuracy
curve as a function of the dimension. In the experiments, we set M = 50, N = 5
and T = 10 in the base algorithm.

6.2 Numerical Experiments

We synthesize data to test two aspects of our analysis: the effect of failing to
satisfy Assumption 9 and the effect of different values of robust factors, on the
compressedly learned classifiers.

First, we show that when Assumption 9 does not hold, the compressedly learned
classifier could be significantly worse than the classifier learned on the original
data. From Example 8, it can be seen that the robust factor of uniform distribu-
tion on the unit sphere in Rn fails to satisfy the assumption. We test this type of
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Fig. 1. Classification accuracy result on the uniform distribution over the unit n-sphere

distribution with n = 1000. The toy data set consists of 1000 i.i.d. samples gener-
ated from the distribution. w = [1, 0, · · · , 0]T is the halfspace concept to learn. The
averaged classification accuracy result is shown in Figure 1, which shows that the
compressedly learned classifier is much worse than the classifier trained on orig-
inal data, with a non-negligible error gap between the two classifiers even when
the dimension k is greatly larger than the original dimension n.

Second, we test the effect of the robust factor on the generalization error of
a learned classifier. Specifically, we want to show that if the robust factor of
a distribution takes a larger value, the learned classifier will be more accurate.
We choose w = [1, 0, · · · , 0]T as the common halfspace concept and obtain a
sequence of distributions with different robust factors near ε = 0 by modifying
a 1000-dimensional uniform distribution on the unit sphere as follows. When
a sample x is generated from the uniform distribution, we compute the value
v(x) = |w · x|. If v(x) is less than a threshold (0.01 in our experiments) we reject
this sample with probability 1 − p. Otherwise we simply accept it. The robust
factor of the obtained distribution has a larger value near ε = 0 than that of the
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Fig. 2. Accuracy curves for four distributions with different robust factors. Small values
of p give relatively large values of robust factor near ε = 0.
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uniform distribution. A smaller p gives a larger value of the robust factor near
ε = 0. We test four different values of p: 1, 0.5, 0.1, 0.01. From each distribution,
we generate 1000 samples. The averaged classification accuracy result is shown
in Figure 2. For a common k, a distribution with a larger robust factor near
the origin results in a more accurate classifier. This results approve our analysis
using robust factor to bound the error rate of a learned classifier.

7 Conclusion

In this paper, we study the problem of learning regular halfspace concepts with
compressed data. We notice that the hardness of compressed learning is captured
by the margin distribution. Therefore, we define the robust factor to characterize
the margin distribution of a regular concept. We show that the generalization
error of a compressedly learned classifier is tightly bounded in terms of the ro-
bust factor. Our analysis is also extended to the linearly non-separable case.
Both theoretical and experimental results are provided to show that under cer-
tain conditions, learning halfspace concepts accurately with compressed data is
possible.
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Abstract. Known algorithms for learning PDFA can only be shown to
run in time polynomial in the so-called distinguishability μ of the target
machine, besides the number of states and the usual accuracy and con-
fidence parameters. We show that the dependence on μ is necessary for
every algorithm whose structure resembles existing ones. As a technical
tool, a new variant of Statistical Queries termed L∞-queries is defined.
We show how these queries can be simulated from samples and observe
that known PAC algorithms for learning PDFA can be rewritten to access
its target using L∞-queries and standard Statistical Queries. Finally, we
show a lower bound: every algorithm to learn PDFA using queries with
a resonable tolerance needs a number of queries larger than (1/μ)c for
every c < 1.

1 Introduction

Probabilistic finite automata (PFA) are important as modeling formalisms as
well as computation models. They are closely related to Hidden Markov Models
(HMM’s) in their ability to represent distributions on finite alphabets and also
to POMDP’s; see e.g. [8, 17, 18] for background.

One of the main associated problems is that of approximating the distribution
generated by an unknown probabilistic automaton from samples. The problem
is relatively simple if the structure of the automaton is somehow known and only
transition probabilities have to be estimated, and much harder and poorly-solved
in practice if the transition graph is unknown. Probabilistic Deterministic Finite
Automata (PDFA) — in which the underlying automaton is deterministic but
transitions still have probabilities — have been often considered as a restriction
worth studying, even though they cannot generate all distributions generated by
PFA [8].

The grammatical inference community has produced a substantial number of
methods for learning (distributions generated by) PFA or PDFA, most of them
using so-called “state split-merge” or “evidence-driven” strategies; see the refer-
ences in [6, 17, 18, 7]. Many of these methods are only proved valid empirically,
but some have proofs of learning in the limit.

The problem has also been intensely studied in variants of the PAC model
adapted to distribution learning. Abe and Warmuth showed in [1] that hardness
is not information-theoretic: one can learn (distributions generated by) PFA
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with samples of size polynomial in alphabet size, number of states in the target
machine, and inverses of the accuracy and confidence parameters (ε and δ); but
also that the problem is computationally intractable for large alphabet sizes,
unless RP = NP. Kearns et al. [13] showed that learning PDFA even over 2-
letter alphabets is computationally as hard as solving the noisy parity learning
problem, of interest in coding theory and for which only super-polynomial time
algorithms are known.

It was later observed that polynomial-time learnability is feasible if one allows
polynomiality not only in the number of states but also in other measures of the
target automaton complexity. Specifically, Ron et al. [16] showed that acyclic
PDFA can be learned w.r.t the Kullback-Leibler divergence in time polynomial
in alphabet size, 1/ε, 1/δ, number of target states, and 1/μ, where μ denotes
the distinguishability of the target automaton, to be defined in Sect. 2. Clark
and Thollard extended the result to general PDFA by considering also as a
parameter the expected length of the strings generated by the automata [6].
Their algorithm, a state merge-split method, was in turn extended or refined in
subsequent work [10, 15, 9, 4]. Furthermore, in [11] a PAC algorithm for learning
PFA was given, similar in spirit to [7], whose running time is polynomial in the
inverse of a condition parameter, intuitively an analog of μ for PFA.

Here we consider the dependence on the distinguishability parameter μ of
known algorithms. We know that the sample complexity and running time of the
Clark-Thollard and related algorithms is polynomially bounded on 1/μ (as well
as other parameters), but it is conceivable that one could also prove a polynomial
bound in another parameter, much smaller but yet unidentified. We rule out this
possibility for a large class of learning algorithms, intuitively those that proceed
by applying statistical tests to subsets of the sample to distinguish distributions
generated at different states of the target automaton. To this end, we define
a variant of Kearns’ statistical queries [12], called L∞-queries. We observe that
known algorithms for learning PDFA, such as Clark-Thollard and our variant [4],
can be rewritten accessing the target distribution only through L∞-queries (to
infer the structure) plus standard statistical queries (to approximate transition
probabilities). We then show that any algorithm that learns the class of PDFA
with a given distinguishability μ from L∞-queries and statistical queries with
reasonably bounded tolerance will require more than (1/μ)c queries for every
c < 1. Our result thus indicates that, if PDFA learning algorithms of complexity
substantially smaller than 1/μ do exist, they must use their input sample quite
differently from known algorithms.

While we introduce our L∞-queries as a technical concept to formulate a lower
bound, we believe they may deserve further study. Interestingly, the hard targets
that force our lower bound are essentially the noiseless parity functions, which
are learnable in time polynomial in the number of variables, but by our result
not from L∞-queries. Recalling that noisy parity functions seem computationally
hard to learn, this suggests a connection to investigate between our L∞-queries
and noisy distribution learning, as there is one between SQ and noisy concept
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learning. Additionally, we give several indications (not rigorous proofs) that L∞-
queries cannot be efficiently simulated by standard SQ.

2 Preliminaries

We consider several measures of divergence between distributions. Let D1 and
D2 be probability distributions on a discrete set X . The Kullback–Leibler (KL)
divergence is defined as

KL(D1‖D2) =
∑
x∈X

D1(x) log
D1(x)
D2(x)

, (1)

where the logarithm is taken to base 2. The KL is sometimes called relative
entropy. The supremum distance is L∞(D1, D2) = maxx∈X |D1(x) − D2(x)|,
and the total variation distance is L1(D1, D2) =

∑
x∈X |D1(x) − D2(x)|.

An algorithm learns a class of distributions D over some set X if for any
D ∈ D and ε > 0 it is given access to D through some oracle and outputs a
hypothesis D̂ that is ε-close to D w.r.t. the KL divergence, that is, KL(D‖D̂) < ε.

A PDFA A is a tuple 〈Q, Σ, τ, γ, ξ, q0〉 where Q is a finite set of states, Σ is the
alphabet, τ : Q×Σ −→ Q is the transition function, γ : Q× (Σ ∪{ξ}) −→ [0, 1]
defines the probability of emitting each symbol from each state (γ(q, σ) = 0
when σ ∈ Σ and τ(q, σ) is not defined), ξ is a special symbol not in Σ reserved
to mark the end of a string, and q0 ∈ Q is the initial state. It is required that∑

σ∈Σ∪{ξ} γ(q, σ) = 1 for every state q. Transition function τ is extended to
Q × Σ∗ in the usual way. Also, the probability of generating a given string xξ
from state q can be calculated recursively as follows: if x is the empty word
λ the probability is γ(q, ξ), otherwise x is a string σ0σ1 . . . σk with k ≥ 0 and
γ(q, σ0σ1 . . . σkξ) = γ(q, σ0)γ(τ(q, σ0), σ1 . . . σkξ). Assuming every state of A has
non-zero probability of generating some string, one can define for each state q
a probability distribution Dq on Σ∗: for each x, probability Dq(x) is γ(q, xξ).
The one corresponding to the initial state Dq0 is called the distribution defined
by A.

Definition 1. We say distributions D1 and D2 are μ-distinguishable when μ ≤
L∞(D1, D2). A PDFA A is μ-distinguishable when for each pair of states q1 and
q2 their corresponding distributions Dq1 and Dq2 are μ-distinguishable.

Given a multiset S of strings from Σ∗ we denote by S(x) the multiplicity of
x in S, write |S| =

∑
x∈Σ∗ S(x). To each multiset S corresponds an empirical

distribution Ŝ defined in the usual way, Ŝ(x) = S(x)/|S|.
A parity on n variables is a function h : {0, 1}n → {0, 1} of the form

h(x1, . . . , xn) =
∑

i aixi mod 2, for some (a1, . . . , an) ∈ {0, 1}n.
The following is a simple consequence of Chebyshev-Cantelli inequality that

will be used when proving the lower bound.
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Lemma 1. Let X be a random variable with expectation μ and variance σ2. If
t > 2|μ| then:

P [|X | ≥ t] ≤ 2
σ2

t(t − 2|μ|) . (2)

3 L∞-Queries

In this section we present a new kind of query, the L∞-query, which we describe as
a call to an oracle DIFF∞. Roughly speaking, these queries can be used whenever
the learning task is to approximate a probability distribution whose support is
contained in a free monoid Σ∗. This query is an abstraction of a pattern of access
to distributions appearing in algorithms that learn (distributions generated by)
PDFA [3, 16, 6, 10, 15, 9, 4]. At some point, all algorithms described in these
papers use samples from suffix distributions to test for state-distinctness w.r.t.
the supremum distance.

Let D be a distribution over Σ∗, where Σ is a finite alphabet. If A ⊆ Σ∗ is
prefix-free, we denote by DA the conditional distribution under D of having a
prefix in A. That is, for every y ∈ Σ∗ we have

DA(y) =
D(Ay)

D(AΣ∗)
=

∑
x∈A D(xy)∑

x∈A D(xΣ∗)
, (3)

where D(xΣ∗) is the probability under D of having x as a prefix. The oracle
DIFF∞(D) answers queries of the form (A, B, α, β), where A, B ⊆ Σ∗ are (en-
codings of) disjoint and prefix-free sets, and α, β ∈ (0, 1) are real numbers. Let
μ denote the supremum distance between distributions DA and DB ; that is,
μ = L∞(DA, DB). Then oracle DIFF∞(D) must answer a query (A, B, α, β)
according to the following rules:

1. If either D(AΣ∗) < β or D(BΣ∗) < β, it answers “?”.
2. If both D(AΣ∗) > 3β and D(BΣ∗) > 3β, it answers some number μ̂ such

that |μ − μ̂| < α.
3. Otherwise, the oracle may either answer “?” or give an α-good approximation

μ̂ of μ, arbitrarily.

To be precise, the algorithm asking a query will provide A and B in the form of
oracles deciding the membership problems for AΣ∗ and BΣ∗.

Similarly to oracles answering statistical queries [12], the price an algorithm
has to pay for a call to DIFF∞(D) depends on the parameters of the query. As
will be seen in the next section, a call to DIFF∞(D) with a query (A, B, α, β)
can be simulated with Õ(α−2β−2) samples from D. Accordingly, we make the
following definition.

Definition 2. An algorithm for learning a class of distributions D over Σ∗

using L∞-queries will be called sample efficient if there exists polynomials p, q, r
such that for each D ∈ D the algorithm makes at most r(1/ε, |D|) queries with
α > 1/p(1/ε, |D|) and β > 1/q(1/ε, |D|) for each query, where |D| is some
measure of complexity, and it outputs a hypothesis D̂ which is ε-close to D.
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Remark 1 (The role of β). An algorithm asking an L∞-query does not know a
priori the probability under D of having a prefix in A. It could happen that
the region AΣ∗ had very low probability, and this might indicate that a good
approximation of D in this region is not necessary in order to obtain a good
estimate of D. Furthermore, getting this approximation would require a large
number of examples. Thus, β allows a query to fail when at least one of the
regions being compared has low probability. This prevents a learner from being
penalized for asking queries whose answer might be irrelevant after all.

Remark 2 (Representation of A and B). From now on we will concentrate on the
information-theoretic aspects of L∞-queries. Hence, only the number of samples
needed to simulate queries and the number of such queries needed to learn a
specific class of distributions will be taken into account. We are not concerned
with how A and B are encoded or how membership to them is tested from the
code: the representation could be a finite automaton, a Turing machine, a hash
table, a logical formula, etc.

3.1 Relation with Statistical Queries

Although L∞-queries compute a value which is statistical in nature, it is not
clear whether they can be simulated by statistical queries (or the other way
round). Indeed, we provide some evidence suggesting that they cannot, at least
efficiently.

To begin with, one has to say what would be the equivalent of statistical
queries when the target of the learning process is a distribution instead of a
concept. Recall that in the usual statistical query model one asks queries of the
form (χ, α) where χ : X × {0, 1} → {0, 1} is a predicate and 0 < α < 1 is
some tolerance. If D is a distribution over X and f : X → {0, 1} is a concept, a
query (χ, α) to the oracle SQ(f, D) answers with an α-good approximation p̂χ

of pχ = Px[χ(x, f(x)) = 1], where x is drawn according to D. Kearns interprets
this oracle as a proxy to the usual PAC example oracle EX(f, D) abstracting the
fact that learners usually use samples only to obtain statistical properties about
concept f under distribution D. Note that oracle SQ(f, D) can be simulated
online using EX(f, D): seeing one example (x, f(x)) at a time, check whether
χ(x, f(x)) = 1 and discard it, only keeping track of the number of examples seen
so far and how many of them satisfied the predicate. An obvious adaptation of
statistical queries for learning distributions over X is to do the same forgetting
about labels. Then χ : X → {0, 1} is again a predicate, and the oracle SQ(D)
returns an α-good approximation of Px[χ(x) = 1]. Since χ is the characteristic
function of some subset of X , learners can ask the oracle for an approximation
to the probability of any event. We assume that this is the natural translation
of statistical queries for distribution learning.

As in the case of concept learning, statistical queries for distributions can
be simulated online with essentially constant memory: just count elements in
the sample satisfying the predicate. Now, this does not seem possible for L∞-
queries, where in order to compute the supremum distance between two empirical
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distributions one needs to collect sets of examples, estimate the probabilities of
elements in the sets and compare these probabilities to see which one defines
the maximum difference. This indicates that a single statistical query can not
be used to simulate a L∞-query. However, this does not preclude the possibility
that L∞-queries can be simulated with a larger number of statistical queries.

An obvious such simulation is: given access to oracles SQ(DA) and SQ(DB),
obtain approximations of DA(x) and DB(x) for each x in the support and then
return the largest difference |DA(x)−DB(x)|. This is not feasible when the sup-
port is infinite, although for most reasonable classes of distributions with infinite
support the string defining the supremum distance cannot be very long. But even
for statistical queries that return exact probabilities, this approach amounts to
finding a string where the supremum distance between two distributions is at-
tained. A problem that was shown to be NP-hard for the case of distributions
generated by probabilistic automata in [14]. On the other hand, when one is not
asking for particular probabilities, but samples from the distributions are avail-
able instead, the empirical supremum distance is usually a good approximation
of the actual distance provided enough examples are available. This is the topic
of next section.

We currently have a candidate class of distributions which we believe can
rule out the possibility of simulating L∞-queries using a polynomial number of
statistical queries.

3.2 Simulation

In this section we show how to simulate calls to DIFF∞(D) using examples from
D provided by the classical PAC example oracle EX(D). Our fist lemma says
that the supremum distance between two arbitrary distributions over Σ∗ can be
approximated with a moderate number of examples provided a similar number
of examples from both distributions is available.

Let DA and DB be two distributions over Σ∗. Let SA be a sample of size nA

from DA and SB a sample of size nB from DB. Define μ = L∞(DA, DB) and
its empirical estimation μ̂ = L∞(ŜA, ŜB). Fix some error probability 0 < δ < 1,
an approximation factor 0 < α < 1, and an arbitrary constant 0 < c < 1. Now
define

N1 =
6

α2c
ln

24
α2cδ

. (4)

Lemma 2. If nA, nB ∈ [cN, N ] for some N > N1, then |μ̂ − μ| ≤ α with
probability at least 1 − δ/2.

The proof is based on Chernoff bounds and is omitted.
Now we describe a simulation of L∞-queries using the usual EX(D) oracle

from the PAC model. For any distribution D, each call to EX(D) takes unit
time and returns an example drawn according to D. As it is usual in the PAC
model, the simulation will have some error probability to account, among other
things, for the fact that with low probability examples provided by EX(D) can
be unrepresentative of D.
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Let D be a distribution over Σ∗. Fix some L∞-query (A, B, α, β) and some
error probability δ. Now DA and DB will be suffix distributions of D; that
is, conditional distributions obtained when words have a prefix in A or B. Let
pA = D(AΣ∗) (respectively, pB = D(BΣ∗)) denote the probability that a word
drawn according to D has a prefix in A (respectively, in B). As before, μ will be
the supremum distance between DA and DB.

Given a sample S from D, a sample SA from DA is obtained as follows. For
each word x ∈ S, check whether x = yz with y ∈ A. If this is the case, add z to
SA. The multiset obtained,

SA = {z : yz ∈ S and y ∈ A}, (5)

is a sample from DA. Note that since A is prefix-free, each word in S contributes
at most one word to SA, and thus all examples in SA are mutually independent.
Similarly, a sample SB from DB is obtained. Let nA and nB denote the respective
sizes of SA and SB.

In order to simulate a call to DIFF∞(D) with query (A, B, α, β), draw a
sample S of size N from D using EX(D). Then, build samples SA and SB

from S and obtain approximations p̂A = nA/N and p̂B = nB/N of pA and
pB, respectively. If either p̂A < 2β or p̂B < 2β, return “?”. Otherwise, return
μ̂ = L∞(ŜA, ŜB).

The following theorem shows that Õ(α−2β−2) samples are enough for the
simulation to succeed with high probability.

Theorem 1. For any distribution D over Σ∗, a L∞-query (A, B, α, β) to the
oracle DIFF∞(D) can be simulated with error probability smaller than δ using
N > N0 calls to the oracle EX(D), where

N0 = max
{

3
α2β

ln
12

α2βδ
,

1
2β2 ln

8
δ

}
. (6)

Proof. It follows from Chernoff bounds that p̂A and p̂B will both be β-good
approximations with probability at least 1 − δ/2 if N > (1/2β2) ln(8/δ). Thus,
the simulation will answer “?” correctly with high probability. On the other side,
if both p̂A ≥ 2β and p̂B ≥ 2β, then by Lemma 2 with c = 2β the estimate μ̂ will
be α-good with probability at least 1 − δ/2. ��

Remark 3 (Running time of the simulation). Although the number of examples
required by the simulation bounds its running time from below, this number does
not completely determine how long the simulation will take. In fact, the time
required to check if x ∈ Σ∗ belongs to AΣ∗ or BΣ∗ affects the total running time.
Furthermore, depending on the representation of A and B, checking whether
x has a prefix in one of them may depend on its length |x|. Thus, if TA(m)
and TB(m) represent the time needed to check if a string of length m has a
prefix in A and B, respectively, the expected running time of the simulation
using N examples is O(N Ex(max{TA(|x|), TB(|x|)})). Note that if A and B are
represented by automata, then TA(m), TB(m) ≤ cm for some constant c. In this
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case, the expected running time of the simulation is O(NL), where L = Ex[|x|]
is the expected length of D. This justifies the appearance of L in running time
bounds for algorithms learning PDFA in the PAC model.

4 Lower Bound

In this section we prove that no sample efficient L∞-query algorithm satisfying
some restrictions can learn a certain class of distributions Dn. Since this class is a
subclass of all PDFA with Θ(n) states, it will follow that the class of distributions
generated by PDFA is not learnable sample efficiently from L∞-queries.

Let Pn be the set of parities on n variables. Consider the class of distributions
Dn over {0, 1}n+1 where there is a distribution Dh for each parity h ∈ Pn which
for any x ∈ {0, 1}n and y ∈ {0, 1} satisfies Dh(xy) = 2−n if h(x) = y and
Dh(xy) = 0 otherwise. The class Dn contains 2n distributions. Note that each
one of these distributions can be represented by a PDFA with at most 2n + 2
states.

We will show that for n large enough, the class Dn can not be learned with
a sample efficient L∞-query algorithm. To do so, an adversary answering the
queries asked by a learning algorithm is provided. Then it is shown that very
little information about the underlying distribution can be gained with a sub-
exponential number of such queries when answers are provided by the adversary.
The argument is similar in nature to that used in [12] to prove that parities can
not be learned in the statistical query model. Basically, we show that for each
answer the number of distributions in Dn that are inconsistent with it is at most a
sub-exponential number. Since there are an exponential number of distributions
in Dn, after a sub-exponential number of queries only a small fraction of the
whole set of distributions has been ruled out. Thus, the adversary can always
find a distribution which is consistent with every answer given to the algorithm
but still has large error with respect to the hypothesis provided by the learner.

We present our lower bound for algorithms using L∞-queries only. The ar-
gument for dealing with standard SQ queries, in case the algorithm uses both
types, is exactly as in the lower bound proved by Kearns for concept learning
parities, and we omit it for brevity. Let L be a sample efficient algorithm for
learning Dn using L∞-queries only. Fix ε to be some constant smaller than 1/9.
Now, let p(n) and q(n) be two functions such that for each query (A, B, α, β)
asked by L the following holds: 1) α > 1/p(n), 2) β > 1/q(n), 3) p(n) and q(n)
are 2o(n), and 4) there exist positive kA and kB such that A ⊆ {0, 1}kA and
B ⊆ {0, 1}kB . A query (A, B, α, β) satisfying 4 will be called strict. Restricting
to strict queries is a technical condition which we believe can be removed in a
more careful analysis. Nonetheless, this condition holds for the PDFA learning
algorithms we are aware of when restricted to target PDFA representing pari-
ties. That is because a non-strict query in this setting means the algorithm is
considering states generating words of different lengths, and this in turn means
hypotheses having infinite KL with any D ∈ Dn.
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The following theorem states our lower bound formally. Its qualitative corol-
lary is immediate.

Theorem 2. Let functions p(n) and q(n) be 2o(n). If ε ≤ 1/9 and n is large
enough, an algorithm using strict L∞-queries where α > 1/p(n) and β > 1/q(n)
for any query (A, B, α, β) cannot learn Dn with o(2n/ max{p(n)2q(n), q(n)2})
queries.

Corollary 1. For ε ≤ 1/9 and n large enough, the class Dn cannot be learned
sample efficiently with L∞-queries.

Proof (of Theorem 2). Let (A, B, α, β) be a strict L∞-query asked by L. Without
loss of generality we assume that kA ≥ kB. If kA ≤ n, for any a ∈ {0, 1}, we
define the quantity θA,a as (−1)a/2 if the all zero string belongs to A and as 0
otherwise. If kA = n+1, the quantity θ′A is defined as (−1)a/2 if 0 · · · 0a ∈ A and
0 · · · 0ā /∈ A, where a ∈ {0, 1} and ā means negation; we let θ′A = 0 otherwise.
Quantities θB,b and θ′B are defined similarly.

The adversary is defined and analyzed in two parts. In the first part we con-
sider the cases where it answers “?”, while the situations where some μ̂ is an-
swered are considered in the second part. Our analysis begins by considering the
following three cases, where the adversary answers the query with “?”:

1. If either kA, kB > n + 1.
2. If either kA ≤ n with |A| < 2kAβ or kB ≤ n with |B| < 2kBβ.
3. If either kA = n + 1 with |A| < 2n+2β − 2θ′A or kB = n + 1 with |B| <

2n+2β − 2θ′B.

Recall that an oracle answering L∞-queries may answer “?” whenever the prob-
ability of the words with a prefix in A or B is smaller than 3β. We will only
reason about A; by symmetry, the same arguments work for B. In case 1, it is
obvious that Dh(A{0, 1}∗) = 0 for any parity h ∈ Pn and therefore the answer
“?” is consistent with all distributions in Dn. Now, in case 2, if kA ≤ n then
Dh(A{0, 1}∗) = 2−kA |A| independently of h. Thus, the answer “?” is consistent
with all parities if |A| < 2kAβ. Lastly, for case 3 assume that kA = n + 1. Now
Dh(A{0, 1}∗) = Dh(A), and this probability does depend on h since it equals
2−n times the number of words xy ∈ A such that h(x) = y. Hence, it is not
possible for the answer “?” to be consistent with all distributions, although we
show that it is consistent with most of them. If parity h is chosen uniformly at
random, by a routine calculation one shows that

Eh[Dh(A)] = 2−n

(
|A|
2

+ θ′A

)
. (7)

So, our adversary answers “?” whenever Eh[Dh(A)] < 2β. The number of dis-
tributions in Dn inconsistent with this answer can be upper bounded using a
probabilistic argument. By Chebyshev’s inequality,

Ph[Dh(A) > 3β] ≤ Ph[|Dh(A) − Eh[Dh(A)]| > β] ≤ Vh[Dh(A)]
β2 . (8)
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The leftmost probability in this equation is the number of inconsistent distri-
butions times 2−n. Now, write A as the disjoint union A = A01 ∪ A′, where for
any x ∈ {0, 1}n the words x0 and x1 belong to A01 if and only if x0, x1 ∈ A.
This partition implies that for any parity h exactly a half of the words xy ∈ A01
satisfy h(x) = y. It follows then that a part of Dh(A) does not depend on h:
Dh(A) = 2−n−1|A01|+Dh(A′). Thus only the part A′ contributes to the variance
of Dh(A). Taking this into account, a computation with indicator variables and
a standard linear algebra argument show that

Vh[Dh(A)] = 2−2n

(
|A′|
4

− θ′A
2
)

. (9)

Applying the bounds 1/q(n) < β < 1, the definition of θ′A and recalling the
assumption |A| < 2n+2β − 2θ′A, we see that (8) and (9) imply that the number
of distributions inconsistent with the answer “?” is, in this case, smaller than
q(n)2.

So far, we have shown that whenever the adversary answers “?”, at most q(n)2

distributions in Dn are inconsistent with this answer. Now we move ahead to
the second part of the analysis. In the rest of the cases the adversary answers
with some μ̂. In particular:

1. If kB < kA < n + 1 then μ̂ = 2kA−n−1.
2. If kB < kA = n + 1 then μ̂ = 1.
3. If kB = kA then μ̂ = 0.

In what follows we show that, if n is large enough, the number of distributions
inconsistent with the answer is, in each case, bounded by max{p(n)2q(n), q(n)2}.

Before proceeding, observe that in all these cases kA ≤ n+1 and for any parity
h the conditional distribution DA

h has support {0, 1}n+1−kA with the convention
that {0, 1}0 = {λ}, the set with the empty string. Furthermore, if kA ≤ n we
can write any parity h ∈ Pn as h = f + g where f ∈ PkA and g ∈ Pn−kA , with
the convention that P0 contains only the constant 0. Then, for any x = yz with
y ∈ {0, 1}kA and z ∈ {0, 1}n−kA we have h(x) = f(y) + g(z). Everything holds
equally when replacing A by B.

We start now with case 1. Like before, we have Dh(A{0, 1}∗) = 2−kA |A| = pA

and Dh(B{0, 1}∗) = 2−kB |B| = pB for any parity h. Now, given y ∈ {0, 1}n−kA

and z ∈ {0, 1}, by definition we can write

DA
h (yz) =

∑
x∈A Dh(xyz)

pA
. (10)

Writing h = f + g, define Aa
f = {x ∈ A : f(x) = a} for a ∈ {0, 1}. This yields

the partition A = A0
f ∪ A1

f . The numerator in (10) can then be written as∑
x∈A

Dh(xyz) =
∑

x∈A0
f

Dh(xyz) +
∑

x∈A1
f

Dh(xyz). (11)

Recall that Dh(xyz) = 2−n if and only if h(xy) = f(x) + g(y) = z. Hence, if
g(y) = z then Dh(xyz) = 2−n for all x ∈ A0

f . Similarly, Dh(xyz) = 2−n for all
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x ∈ A1
f if and only if g(y) �= z. Thus, the following expression for the conditional

distribution DA
h holds:

DA
h (yz) =

2−n

pA
·
{

|A0
f | if g(y) = z ,

|A1
f | if g(y) �= z .

(12)

Note that for any parity h both values can be attained for some choice of y and
z. With the obvious modifications, these expressions hold for B too.

Now we compute the supremum distance between DA
h and DB

h for any h ∈ Pn.
Write h = f + g = f ′ + g′ where f ∈ PkA , f ′ ∈ PkB , g ∈ Pn−kA and g′ ∈ Pn−kB .
Then L∞(DA

h , DB
h ) equals

max
{

2kA−n

|A| max
{
|A0

f |, |A1
f |
}

,
2kB−n

|B| max
{
|B0

f ′ |, |B1
f ′ |

}}
(13)

because DA
h and DB

h are distributions over suffixes of different lengths. Since
max{|A0

f |, |A1
f |} ≥ |A|/2 and max{|B0

f ′ |, |B1
f ′ |} ≤ |B|, we see that

L∞(DA
h , DB

h ) =
2kA−n

|A| max
{
|A0

f |, |A1
f |
}

. (14)

Note this distance only depends on the first kA bits of the parity h.
In order to count how many distributions in Dn are inconsistent with the an-

swer μ̂ = 2kA−n/2 given by the adversary we use another probabilistic argument.
Assume that a parity h ∈ Pn is chosen uniformly at random and let f ∈ PkA be
the parity obtained from the first kA bits of h. Then it is easy to verify that for
a ∈ {0, 1} we have

Eh[|Aa
f |] =

|A|
2

+ θA,a, and Vh[|Aa
f |] =

|A|
4

+
θA,a

2
. (15)

Using these computations and recalling that α ≥ 1/p(n) and pA = |A|/2kA >
β ≥ 1/q(n), we apply Lemma 1 and get, after some calculations,

Ph

[∣∣∣∣ |Aa
f |

|A| − 1
2

∣∣∣∣ > α2n−kA

]
≤

p(n)2q(n)
(
2kA + 2q(n)θA,a

)
2n+1 (2n − 2p(n)q(n)|θA,a|)

. (16)

Since kA ≤ n, |θA,a| ≤ 1/2 and θA,0 + θA,1 = 0, a union bound yields

Ph

[∣∣∣∣L∞(DA
h , DB

h ) − 2kA−n

2

∣∣∣∣ > α

]
≤ p(n)2q(n)

2n − p(n)q(n)
. (17)

Therefore, the number of distributions in Dn inconsistent with the answer given
by our adversary in this case is asymptotically bounded from above by p(n)2q(n).

Case 2 is next. Because the adversary has not answered “?” we know that
|A| ≥ 2n+2β − 2θ′A and |B| ≥ 2kBβ. Since kA = n + 1 it follows that DA

h (λ) = 1
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if Dh(A{0, 1}∗) �= 0, otherwise we define DA
h (λ) = 0. Hence, for any parity h the

supremum distance between DA
h and DB

h can be written as

L∞(DA
h , DB

h ) = max
{

DA
h (λ),

2kB−n

|B| max{|B0
f |, |B1

f |}
}

, (18)

where f corresponds to the first kB bits of h. Note that L∞(DA
h , DB

h ) �= 1 implies
that Dh(A{0, 1}∗) = 0. Now there are two possibilities. If A01 �= ∅ then for any
parity h we have Dh(A{0, 1}∗) �= 0 and therefore the answer μ̂ = 1 is consistent
with every parity. On the other hand, A01 = ∅ implies that A = A′ and |A| ≤ 2n

because for each prefix x ∈ {0, 1}n at most one of x0 and x1 belongs to A. In
the latter situation we have Ph[|L∞(DA

h , DB
h ) − 1| > α] ≤ Ph[L∞(DA

h , DB
h ) �=

1] = Ph[Dh(A{0, 1}∗) = 0]. This last probability is bounded by

Ph [|Dh(A{0, 1}∗) − Eh [Dh(A{0, 1}∗)]| ≥ Eh [Dh(A{0, 1}∗)]] , (19)

which in turn can be bounded using Chebyshev’s inequality by

Vh [Df (A{0, 1}∗)]
Eh [Dh(A{0, 1}∗)]2

. (20)

Therefore, by (7) and (9) and the bounds on |A|, θ′A and β, we see that the at
most q(n)2/16 distributions in Dn are inconsistent with the answer μ̂ = 1.

Now we consider case number 3, where k = kA = kB and the adversary
responds μ̂ = 0. Two distinct situations need to be considered: k = n + 1
and k ≤ n. Assume first that k = n + 1. An argument already used in case
2 shows that if both A01 �= ∅ and B01 �= ∅, then for each parity h it holds
that DA

h (λ) = DB
h (λ) = 1 and therefore L∞(DA

h , DB
h ) = 0 irrespective of h.

In this case the answer is consistent with every distribution. If exactly one of
A01 = ∅ and B01 = ∅ holds, suppose it is A01 = ∅ without loss of generality,
then L∞(DA

h , DB
h ) �= 0 whenever Dh(A{0, 1}∗) = 0, which, by case 2, happens

for at most q(n)2/16 distributions in Dn. Now, if both A01 = ∅ and B01 = ∅,
it is easy to see using a union bound that μ̂ = 0 is inconsistent with at most
q(n)2/8 distributions.

Assume now that k ≤ n. Then, from the fact that |A| = |A0
f | + |A1

f | and
|B| = |B0

f |+ |B1
f |, the following expression for the L∞ distance between DA

h and
DB

h can be deduced:

L∞(DA
h , DB

h ) = 2k−n max
a∈{0,1}

{∣∣∣∣ |Aa
f |

|A| −
|Ba

f |
|B|

∣∣∣∣} = 2k−n

∣∣∣∣∣ |A0
f |

|A| −
|B0

f |
|B|

∣∣∣∣∣ , (21)

where f ∈ Pk is formed with the first k bits of h. We will show that in this
case μ̂ = 0 is a response consistent with most of the distributions in Dn. Write
Xf = |A0

f |/|A| − |B0
f |/|B| and note that by (15) we have Eh[Xf ] = θA/|A| −

θB/|B|, where, for simplicity, we write θA and θB for θA,0 and θB,0 respectively.
Performing further computations one sees that

Eh

[
X2

f

]
=

1
4|A| +

1
4|B| +

θA

|A|2 +
θB

|B|2 . (22)
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Combining the last two expressions and observing that θAθB = 0, the following
formula for the variance of Xf is obtained:

Vh[Xf ] =
1

4|A| +
1

4|B| +
θA

2|A|2 +
θB

2|B|2 . (23)

Since β > 1/q(n) implies |A|, |B| > 2k/q(n), plugging these bounds in previous
formulas yields:

|Eh[Xf ]| ≤ q(n)
2k+1 , and Vh[Xf ] ≤ q(n)

2k+1 +
q(n)2

22k+1 . (24)

Lemma 1 then yields the bound

Ph[L∞(DA
h , DB

h ) > α] = Ph[|Xf | > α2n−k] ≤ p(n)2q(n)(1 + q(n)/2n)
2n+1 − 2p(n)q(n)

, (25)

where we have used that α > 1/p(n) and k ≤ n. From this bound, the number of
distributions for which the answer is inconsistent is asymptotically p(n)2q(n)/2.

So far we have seen that, if n is large enough, for any strict L∞-query is-
sued by L, the answer given by the adversary is inconsistent with at most
max{p(n)2q(n), q(n)2} distributions in Dn. Since there are 2n distributions for
any given n, after sub-exponentially many queries there will be still many differ-
ent distributions in Dn consistent with all the answers provided to the learner.

Now, note that the relative entropy between any two distributions in Dn

is infinite because they have different supports. Thus, for n big enough, if L
outputs a hypothesis in Dn, it will have infinite error with high probability
with respect to the random choice of a target distribution in Dn. Recalling
that for each pair of distributions in Dn we have L1(Df , Dg) = 1, we also get
a lower bound for learning Dn using the variation distance as error measure.
Now assume L outputs some distribution D̂, not necessarily in Dn, such that
KL(Df‖D̂) ≤ ε for some Df ∈ Dn. Then it follows from Pinsker’s inequality [5]
that KL(Dg‖D̂) ≥ (1/2 ln 2)(1−

√
2 ln 2ε)2 for any other distribution Dg different

from Df . Since ε ≤ 1/9, we then have KL(Dg‖D̂) > 2/9. Therefore, if a target
distribution in Dn is chosen at random, then L will have large error with high
probability. ��

4.1 A Lower Bound in Terms of Distinguishability

A lower bound on the complexity of learning the class of PDFA with a given
distinguishability now follows easily using a padding argument. We ignore the
dependence on ε in the statement.

An L∞-query algorithm is (p, q)-bounded if, for every query (A, B, α, β) it
asks, α > 1/p and β > 1/q, where p and q may depend on inputs of the algorithm
and the complexity of the target distribution.

Corollary 2. Let p and q be functions in nO(1) · (1/μ)o(1). For every c < 1,
there is no (p, q)-bounded L∞-query algorithm that, for every n and μ, learns
the class of distributions generated by PDFA with n states and distinguishability
μ with (1/μ)c queries.
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Proof. Recall the class of distributions Dk from the proof of Theorem 2. For every
m and k, define the class of distributions Cm,k as follows: for every distribution
D in Dk, there is a distribution in Cm,k that gives probability D(x) to each
string of the form 0mx, and 0 to strings not of this form. Every distribution in
Dk is generated by a PDFA with 2k states and distinguishability 2−k. It follows
that every distribution Cm,k is generated by a PDFA with m + 2k states and
distinguishability also 2−k.

Now let m = m(k) grow as 2o(k). Assume for contradiction the existence of an
algorithm as in the statement of the theorem. This algorithm is (p, q)-bounded
with p and q that grow like (m + 2k)O(1) · (1/2−k)o(1) = 2o(k). By an immediate
reduction, the algorithm can be used to learn the classes of distributions Dk

with 2kc queries for some c < 1. But since 2kc is in o(2k−o(k)), this contradicts
Theorem 2. ��

5 Conclusion

Let us remark that the lower bound in the previous section, as other lower bounds
for learning from statistical queries, is strangely both information-theoretic and
complexity-theoretic. We know, by the results in [1], that the barrier for learning
PDFA is complexity-theoretic, not information-theoretic. Yet, our result says
that, for algorithms that can only see their target through the lens of statistical
and L∞-queries, the problem becomes information-theoretic.

As open problems on which we are working, we shall mention possible relations
between L∞-queries and other variants of SQ proposed in the literature, and
in particular those by Ben-David et al. [2] for distribution learning. Another
problem is narrowing the gap between lower and upper bound: our lower bound
plus the simulation we describe does not forbid the existence of algorithms that
learn from O(1/μ) samples. Yet, the best bounds we can prove now for the
Clark-Thollard algorithm and its variants are larger, namely Θ(1/μ2) at best.
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[4] Castro, J., Gavaldà, R.: Towards feasible PAC-learning of probabilistic determin-
istic finite automata. In: Clark, A., Coste, F., Miclet, L. (eds.) ICGI 2008. LNCS
(LNAI), vol. 5278, pp. 163–174. Springer, Heidelberg (2008)

[5] Cesa-Bianchi, N., Lugosi, G.: Prediction, Learning, and Games. Cambridge Uni-
versity Press, New York (2006)

[6] Clark, A., Thollard, F.: PAC-learnability of probabilistic deterministic finite state
automata. Journal of Machine Learning Research (2004)

[7] Denis, F., Esposito, Y., Habrard, A.: Learning rational stochastic languages. In:
Lugosi, G., Simon, H.U. (eds.) COLT 2006. LNCS (LNAI), vol. 4005, pp. 274–288.
Springer, Heidelberg (2006)

[8] Dupont, P., Denis, F., Esposito, Y.: Links between probabilistic automata and
hidden markov models: probability distributions, learning models and induction
algorithms. Pattern Recognition 38(9), 1349–1371 (2005)
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Abstract. We show that random DNF formulas, random log-depth decision trees
and random deterministic finite acceptors cannot be weakly learned with a poly-
nomial number of statistical queries with respect to an arbitrary distribution on
examples.

1 Introduction

Polynomial time learning algorithms have been given for random log-depth decision
trees by Jackson and Servedio [6], random monotone DNF formulas by Jackson et
al. [5] and Sellie [12] and random general DNF formulas by Sellie [12], with respect to
the uniform distribution. These algorithms are based on statistical estimates of various
parameters and can be implemented using statistical queries as defined by Kearns [8].

Blum et al. [2] give upper and lower bounds on the number of statistical queries
required to learn concepts from a given class in terms of a distribution-dependent sta-
tistical query dimension of the class. A corollary of their characterization is that parity
functions with log n relevant variables cannot be weakly learned with respect to the
uniform distribution using a polynomial number of statistical queries. This implies that
arbitrary log-depth decision trees and DNF formulas with Θ(n) terms are not weakly
learnable with respect to the uniform distribution using a polynomial number of statis-
tical queries, because they can represent parity functions with log n relevant variables.

The key difference between these negative results and the positive results cited above
is that the choice of a structure (DNF formula or decision tree) to be learned is random.
In particular, “bad structures” (capable of representing a parity problem with log n rele-
vant variables with respect to the uniform distribution) occur with vanishing probability
as n increases.
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1.1 Learning DFAs

A deterministic finite acceptor M over the alphabet {0, 1} can be used to represent
the set L(M) ∩ {0, 1}n of accepted binary strings of length n. Gold [4] gave one of
the earliest hardness results for learning DFAs, that finding a smallest DFA consis-
tent with given positive and negative data is NP-hard. The PAC-reduction given by Pitt
and Warmuth [10] of learning Boolean formulas to learning DFAs, combined with the
negative results of Kearns and Valiant [7] for PAC-learning Boolean formulas, gives
cryptographic evidence for the hardness of PAC-learning arbitrary DFAs.

Because a DFA of 2n + 1 states can compute the parity of an arbitrary subset of a
string of n bits, the results of Blum et al. [2] imply that there is no algorithm to learn
arbitrary DFAs using a polynomial number of statistical queries with respect to the
uniform distribution. In light of the positive results described above for random DNF
formulas and random decision trees, it is natural to ask how hard it is to learn random
DFAs of O(nc) states with respect to the uniform distribution over strings of length n.

Trakhtenbrot and Barzdin [13] consider the problem of learning arbitrary finite au-
tomata using experiments – in each experiment the learning algorithm selects an input
string to query and receives the sequence of output symbols generated by the target ma-
chine on reading that input. For a DFA, this is equivalent to a sequence of membership
queries on all prefixes of the experiment string. Trakhtenbrot and Barzdin also consider
the problem of learning almost all automata under a natural distribution on DFAs.

Building on these results, Freund et al. [3] consider a model in which the target is
a DFA with an arbitrary transition graph and states independently labeled as accepting
or rejecting with probability 1/2. The learner sees the outputs of a random walk in the
transition graph, and must at each step predict the next output. Freund et al. show that
there is an algorithm that makes a number of mistakes bounded by a polynomial in n
for uniformly almost all automata of n states. In an empirical study of the effectiveness
of a learning algorithm based on Trakhtenbrot and Barzdin’s contraction algorithm,
Lang [9] studied what fraction of all 16n2−1 binary strings of length at most 2 logn+3
is needed to achieve high levels of generalization for randomly generated machines of
about n states.

These results do not directly shed light on the question of how difficult it is to learn a
set of binary strings of length n accepted by a random DFA of O(nc) states with respect
to the uniform distribution. We are interested in this problem, which is open to the best
of our knowledge.

1.2 Lower Bounds

In this paper we show that no algorithm using a polynomial number of statistical queries
can learn random DNF formulas, random decision trees, or random DFAs with respect
to an arbitrary distribution. Thus the random choice of a structure is not sufficient for the
positive results cited above for DNF formulas and decision trees. Even if the structure is
randomly chosen, it may be possible to find a “bad input distribution” that allows a hard
parity problem to be embedded in that random structure. This situation is a natural one
to consider in the case of a boosting algorithm attempting to learn a random structure,
because successive rounds of boosting may modify an initially simple input distribution
in complex ways that depend on the target concept.
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Specifically, we consider the problem of learning the behavior of a random structure
using statistical queries, where the distribution on examples is adversarial, and there-
fore may depend on the random structure to be learned. For the cases when the random
structure is a DNF formula, a log-depth decision tree, or a DFA we show that with at
least a constant probability, there is a distribution on the inputs that embeds a nontrivial
parity computation in the random structure. In general the “bad” distribution constrains
some variables to constant values and some variables to copy other variables or their
negations, and is uniform on the rest. These results provide some support for the distri-
butional assumptions made in the positive results of Jackson and Servedio [6], Jackson
et al. [5] and Sellie [11, 12].

2 Preliminaries

We consider concept classes over binary strings. Let Σ = {0, 1}. Σ∗ is the set of all
binary strings and ε is the empty string. The set of all binary strings of length n, length
at most n and length less than n are denoted Σn, Σ≤n and Σ<n. A concept class C is
a collection {Cn} indexed by the positive integer n, where each Cn is a set of concepts
over Σn (or Σ≤n) that is, a set of mappings f from Σn (or Σ≤n) to Σ. Concept classes
are generally specified by some representation, for example, log depth decision trees
over n variables. A concept class has polynomially bounded representations if there is
a fixed polynomial p such that every concept f in Cn has a representation of length
bounded by p(n).

2.1 Learning with Statistical Queries

Let X = Σn or Σ≤n, let D be a probability distribution over X and f a mapping from
X to {0, 1}. The goal of learning is to be able to predict f(x) well when x is drawn
according to D. Statistical queries provide a particular way of gathering information
about the function f . They were introduced by Kearns to characterize a wide class of
noise tolerant learning algorithms [8].

The statistics oracle STAT(f, D) answers statistical queries, each of which specifies
two arguments: a predicate χ mapping X × {0, 1} to {0, 1}, and a tolerance τ ∈ [0, 1].
The answer returned by the oracle is any number v such that

|ED[χ(x, f(x))] − v| ≤ τ.

That is, the oracle may return any number v within an additive error τ of the expected
value of χ on a labeled example (x, f(x)) where x is drawn according to D and clas-
sified using f . A statistical query abstracts the process of drawing a sample of labeled
examples (x, f(x)) according to D to estimate the probability that they satisfy the pred-
icate χ. For example, a statistical query might be used to estimate the probability that
the conjunction of two literals is equal to the label of an example.

A concept class C with polynomially bounded representations is (strongly) learnable
in polynomial time using statistical queries if there exists a polynomial p and a learning
algorithm A such that for every positive integer n, for every f ∈ Cn, for every proba-
bility distribution D on Σn and for every ε > 0, A with inputs n and ε and access to
the statistics oracle STAT(f, D) satisfies the following properties.
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1. For every statistical query (χ, τ) made by A, the predicate χ can be evaluated in
time bounded by p(1/ε, n) and 1/τ < p(1/ε, n).

2. A runs in time bounded by p(1/ε, n).
3. A outputs a hypothesis h such that h(x) can be evaluated in time bounded by

p(1/ε, n) and when x is drawn from D, the probability that h(x) �= f(x) is at
most ε.

For a concept class that does not have polynomially bounded representations, the poly-
nomial p has an additional parameter size(f) bounding the length of the representation
of the target concept f . For a randomized learning algorithm A we require that A return
an ε-good hypothesis h with at least an inverse polynomial probability. A single sta-
tistical query suffices to estimate the accuracy of a candidate hypothesis, allowing the
probability of success to be boosted easily using repeated runs.

To define weak learnability, we omit ε and ask that the probability that h(x) �= f(x)
be bounded by 1/2 − 1/q(n) for some polynomial q. That is, the error rate in this
case need only be better than 1/2 by an inverse polynomial. Polynomial time weak
learnability using statistical queries has been shown to imply polynomial time strong
learnability using statistical queries by Aslam and Decatur [1].

To define learnability using a polynomial number of statistical queries, we replace
the requirement that A run in polynomial time with the requirement that A make at most
a polynomial number of statistical queries. We still require that each statistical query
have a polynomial time evaluatable predicate and an inverse polynomial tolerance.

To define learnability of random target concepts, we assume that there is a probability
distribution on the elements of Cn that determines the choice of the target concept f .
We require that the probability that A fails to satisfy the required conditions be o(1) as
a function of n. Thus, there may be a subset of the concepts in Cn on which A always
fails, but the probability of that set must tend to zero as n increases.

2.2 The Parity Learning Problem

A parity function over n variables with  relevant variables is a mapping from Σn to
{0, 1} that is equal to the sum modulo 2 of a fixed subset of  of its arguments. For the
problem of learning a parity function ψ over n variables with (n) relevant variables
with respect to the uniform distribution on examples, a learning algorithm is given n,
(n) and access to the statistics oracle STAT(ψ, U), where U is the uniform distribution
over Σn. When (n) = Θ(log n), no learning algorithm, even a randomized one, can
achieve weak learning for this problem using polynomially many statistical queries [2].

3 Random DNF Formulas

In this section we prove the lower bound for random DNF formulas. The embedding is
quite straightforward in this case, and highlights the general framework of the reduction.
The framework is similar for random log depth decision trees and random deterministic
finite acceptors, but the embeddings are somewhat more complex.
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3.1 Model

Let n be positive integer and V = {v1, . . . , vn}. We adopt the model used by Sellie
of random DNF formulas over the variables V . Each term is a conjunction of c log(n)
literals created by selecting a random subset of c log(n) variables and negating each
variable independently with probability 1/2. The target random DNF formula is a dis-
junction of independently selected terms. Sellie gives a polynomial time algorithm to
learn a random DNF with at most nc log log(n) terms under the uniform distribution on
inputs [12].

For ease of description we first consider random monotone DNF formulas, in which
the step of negating variables is omitted; the general case is described later. Given a
positive integer , let n = 23�; then we have  = 1

3 log(n) and 2� = n1/3. Let φ
denote a random monotone DNF formula of t = 2�−1 terms, where each term contains
 variables.

We first show that with probability 1 − o(1), no variable occurs more than once in
φ, that is, φ is a read once formula. We can think of the process of choosing terms as
successive random choices of a set of  variables. If each set chosen avoids the variables
chosen by the previous sets, then the formula is read once. Consider the last set chosen;
it must avoid a collection of at most s = (t−1) variables, which it does with probability
at least (

(n − s)


)(
n



)−1

≥ 1 − s

n − s + 1
,

provided n is sufficiently large. Thus the probability of failure for the last term is
O((log2 n)/n2/3), and the probability that any of the O(n1/3) terms fails is at most
O((log2 n)/n1/3), which bounds the probability that φ is not read once.

In what follows we assume that φ is read once. As an example, for  = 3 we have
n = 512 and t = 4 and a possible value of φ is the following.

φ = v14v133v170 ∨ v22v101v337 ∨ v55v266v413 ∨ v10v332v507

3.2 Embedding Parity

We consider the problem of learning a parity function with  relevant variables from a
total of m = n/t variables Y = {y1, y2, . . . , ym} with respect to the uniform distribu-
tion on assignments to Y . Because  = Θ(log(n)) and m = Θ(n2/3), such a function
cannot be weakly learned using a polynomial number of statistical queries with respect
to the uniform distribution [2].

Let L denote the set of literals over Y . A mapping from V to L is an equi-grouping
if exactly n/(2m) = t/2 variables in V are mapped to each literal in L.

With respect to an arbitrary mapping f from V to L, an assignment a to the variables
Y induces an assignment af to the variables V by af (vi) = a(f(vi)), that is, the
value assigned to variable vi is the value assigned by a to the literal f(vi) ∈ L. More
generally, a distribution D over assignments a to variables in Y induces a distribution
Df over assignments b to variables in V , where Df (b) is the sum of D(a) such that
af = b.
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Fix an arbitrary parity function with  relevant variables from Y . It can be represented
by a DNF formula ψ of t = 2�−1 terms, where each term has exactly one literal for each
relevant variable, and the number of positive literals in each term is odd. For example,
if the relevant variables are {y33, y57, y108}, we have

ψ = y33y57y108 ∨ y33y
′
57y

′
108 ∨ y′

33y57y
′
108 ∨ y′

33y
′
57y108.

Note that the parity formula ψ and the random DNF φ each contain t terms of  literals
each. We describe a straightforward embedding of ψ into φ.

Choose a random bijection between the terms of φ and the terms of ψ, and for each
term, a random bijection between the variables in the term of φ and the literals in the
corresponding term of ψ. If vi is a variable in φ, let f(vi) be the corresponding literal
in ψ. Because the variables in φ are all distinct, f maps exactly t/2 distinct variables of
φ to each literal of ψ.

Extend f arbitrarily to an equi-grouping by randomly dividing the unused variables
in V into groups of size t/2 and mapping each group to a random distinct one of the
unused literals in L. For every assignment a to the variables Y , ψ(a) = φ(af ), so this
construction embeds the parity function ψ into the random monotone DNF formula φ.

Continuing the example of φ and ψ, we could choose f to map v14 and v22 to y33,
v55 and v10 to y′

33, also v133 and v266 to y57, v101 and v332 to y′
57 and finally, v170

and v507 to y108, v337 and v413 to y′
108, though different bijections are permitted. The

unused 500 variables vi are divided arbitrarily into groups of two and each group of two
is mapped to one of the 250 unused literals yj or y′

j . An assignment to the variables yj

induces an assignment to the variables vi in which the variables in each group of two
take on the value of the literal they are mapped to.

Note that the uniform distribution U on assignments to Y induces the distribution
Uf on assignments to V , in which groups of t/2 variables are assigned the same value,
the groups corresponding to a literal and its complement receive complementary values,
and groups corresponding to different variables are independent.

3.3 Reduction

We now describe a reduction showing that a learning algorithm A that weakly learns
a random monotone DNF formula φ (over n variables with t terms and  variables per
term) with respect to an arbitrary distribution D using a polynomial number of statistical
queries to oracle STAT(φ, D) could be used to weakly learn an arbitrary parity function
ψ (over m variables with  relevant variables) with respect to the uniform distribution
using the same number of statistical queries to oracle STAT(ψ, U).

For the reduction, we randomly choose an equi-grouping g mapping V to L. We then
run A with variables V , simulating access to a statistical query oracle STAT(φ, Ug),
where φ is a DNF formula that embeds ψ with respect to g. (That is, ψ(a) = φ(ag) for
all assignments a to the variables Y .)

A statistical query (χ, τ) made by A is transformed to (χ′, τ), where

χ′(a, b) = χ(ag, b).

That is, χ′ transforms the assignment a to Y into the assignment ag to V , keeps the label
b, and applies χ. The query (χ′, τ) is asked of the statistical query oracle STAT(ψ, U)
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for the parity problem, and the answer is returned as the answer to A’s query (χ, τ).
Even though we do not know a correct function φ embedding ψ, this transformation
allows us to answer the statistical queries of A correctly for some such φ.

When A halts and returns a hypothesis h, the reduction halts and outputs a hypothesis
h′(a) = h(ag). That is, the hypothesis h′ transforms an assignment a to Y to the
assignment ag to V and applies h.

3.4 Correctness

Suppose that instead of choosing a random equi-grouping g, we could generate a ran-
dom monotone DNF formula φ, rejecting if it is not read once, and otherwise choosing
an embedding f of ψ into φ as described in the embedding subsection. The resulting
distribution over equi-groupings f would still be uniform. Because φ is read once with
probability 1 − o(1), this means that if A succeeds in weakly learning random mono-
tone DNF formulas, the reduction gives a randomized algorithm to learn with probabil-
ity 1 − o(1) an arbitrary parity function over m variables with  relevant variables to
the same level of accuracy using the same number of statistical queries with the same
tolerances as A.

The extension to general (non-monotone) DNF formulas is straightforward; a gen-
eral DNF formula with n variables, t terms and  variables per term is read once with
probability 1 − o(1), and embedding a parity function ψ into a general read once for-
mula just requires mapping literals (rather than variables) over V to literals over Y and
modifying the definition of the induced assignment ag appropriately. Thus we conclude
the following.

Theorem 1. No algorithm can weakly learn random monotone (or general) DNF for-
mulas with n variables, n1/3 terms and log n variables per term with respect to an
arbitrary distribution using a polynomial number of statistical queries.

3.5 Extensions

This technique can also be used to show lower bounds for DNF formulas with more
or fewer terms. If (t)2 is o(n), then a random DNF with n variables, t terms and 
variables per term will be read once with probability 1 − o(1). If the number of terms
is larger than 2�−1, it can be trimmed by choosing one literal per excess term to fix
to the value 0 so that the term is eliminated under the constructed distribution. If the
number of terms is smaller than 2�−1, we can choose a number of literals per term to
fix to the value 1 so that the term effectively becomes smaller under the constructed
distribution. For example, we could use the same logic to embed parity functions with
Θ(log log(n)) relevant variables (which are still not weakly learnable with a polynomial
number of statistical queries) by using Θ(log(n)) terms.

To handle these cases, instead of just choosing an equi-grouping g from V to L,
the reduction first randomly chooses an appropriate number of variables from V to set
randomly and independently to 0 or 1, and then chooses an equi-grouping on the rest.
The resulting induced distribution on assignments to V is constant on some variables,
and behaves as before on the rest.
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4 Random Decision Trees

The reduction for decision trees is slightly more complex than that for DNF formulas:
with high probability the depth k top of a random decision tree of depth 3k will query
all distinct variables, which can be used to embed an arbitrary depth k decision tree by
choosing random paths of length 2k from the boundary nodes to leaf nodes.

4.1 Model

We consider binary decision trees over n variables V = {v1, . . . , vn} of uniform depth
k ≥ 0, where n = 2k. The nodes of the tree are indexed by binary strings of length at
most k, where the empty string is the root and the two children of x are x0 and x1. The
string indexing a node gives the sequence of query answers to reach that node.

A decision tree of depth k is specified by two maps, α : Σ<k → V and β : Σk → Σ,
where α determines the variable queried at each internal node and β determines the
binary label of each leaf. We require that the variables queried along any path in the
tree be distinct. The value of a decision tree on an assignment a mapping V to {0, 1} is
determined by querying the values of the variables indicated by α to reach a leaf of the
tree, whose β value is the desired output.

For a random decision tree of depth k ≥ 1, the values of α are chosen uniformly
at random and the values of β are chosen such that for all x ∈ Σk−1, one of β(x0)
and β(x1) is 0 and the other is 1, where both outcomes have equal probability and the
choices for different x’s are independent. This is one of the models of random decision
trees considered by Jackson and Servedio [6]; results for their other models should be
similar.

4.2 Embedding

We show that an arbitrary decision tree of depth k can be embedded with probability 1−
o(1) in a random decision tree of depth 3k (or, with a bit more work, depth (2+ε)k). Fix
an arbitrary decision tree T = (α, β) of depth k over the variables V = {v1, . . . , vn}.
Let T ′ = (α′, β′) be a random decision tree of depth k′ = 3k with n′ = 2k′

= n3

variables W = {w1, . . . , wn′}.
For each x ∈ Σk, let y(x) ∈ Σk′−1−k be chosen uniformly at random. That is, for

each internal node x at depth k in T ′, we choose a random extension y(x) of its path
that reaches the parent of a pair of leaves in T ′. Let H ′ be the set of prefixes of strings
xy(x); these are the nodes along any of the n chosen paths.

Define T ′ to be favorable if the map α′ is one-to-one on the domain H ′, that is,
all the variables queried along the chosen paths in T ′ are distinct. T ′ is favorable with
probability 1− o(1) by a union bound, because the set H ′ has O(n log n) elements. We
assume that T ′ is favorable in what follows. The embedding is illustrated in Figures 1
and 2.

We now define a map g from W to V ∪ {0, 1}. If g(wi) = vj we say wi copies vj ,
and if g(wi) = 0 or g(wi) = 1 we say that wi is fixed to the corresponding constant
value. For x ∈ Σ<k, we define g(α′(x)) = α(x), that is, the variable α′(x) copies the
variable α(x). For x ∈ Σk and z a proper prefix of y(x), we define g(α′(xz)) = b
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Fig. 1. The arbitrary decision tree T . Leaves
with output 1 are indicated by double
circles.
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Fig. 2. The subgraph of the embedding tree
T ′ containing a copy of T , the chosen ran-
dom paths, and the correctly chosen out-
puts. T ′ is favorable if all the internal nodes
of this subgraph have distinct variables.

where b ∈ Σ is the unique value such that xzb ∈ H ′, that is, the variable α′(xz) is
fixed to the value necessary to follow the path chosen below x. For x ∈ Σk, we define
g(α′(xy(x))) = b where b ∈ Σ is the unique value such that β′(xy(x)b) = β(x). That
is, the variable α′(xy(x)) is fixed to the value necessary to arrive at the leaf of T ′ with
the same output as T at x. This is possible because β′ takes on 0 and 1 in some order
for the two children of xy(x). At this point, each variable vi in V has been assigned a
distinct copy in W for each occurrence of vi in T , so each variable in V has at most
n − 1 copies in W . We now choose unused variables from W without replacement to
bring each variable in V up to exactly n − 1 copies. Each remaining unused variable in
W is fixed to 0 or 1 randomly and independently.

The mapping g induces a mapping from an assignment a to V to an assignment
ag to W by ag(wj) = a(g(wj)) for all j = 1, . . . , n′. For every assignment a to V ,
the output of T on a is the same as the output of T ′ on ag . Thus, for any distribution
D on assignments a, statistical queries to STAT(T ′, Dg) can be answered by making
statistical queries to STAT(T, D).

4.3 Reduction

Suppose A is an algorithm that weakly learns random log depth decision trees using
statistical queries with respect to an arbitrary distribution. Faced with the problem of
learning an arbitrary depth k decision tree T over the n = 2k variables V with respect to
a distribution D using statistical queries to STAT(T, D), we let k′ = 3k and n′ = n3
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and W = {w1, . . . , wn′}. Define the set of suitable reduction mappings to be all g
mapping g from W to V ∪ {0, 1} subject to the condition that |g−1(vi)| = n − 1 for
i = 1, . . . , n, that is, exactly n−1 variables in W are mapped to each variable in V and
the remaining variables in W are mapped to 0 or 1. Choose a random suitable reduction
mapping g.

We run A with the n′ variables W and depth parameter k′, simulating statistical
queries to STAT(T ′, Dg) for some decision tree T ′ of depth k′ over the variables W .
When A makes a statistical query (χ, τ), we define

χ′(a) = χ(ag),

make a statistical query to STAT(T, D) with (χ′, τ) and return the answer to A. When
A halts with output h, we output h′, where h′(a) = h(ag).

4.4 Correctness

The distribution over suitable reduction mappings g would be uniform if we could first
generate a random depth k′ decision tree T ′ and a random choice of paths y(x) from
its nodes at depth k (rejecting if T ′ is not favorable) and then proceed to choose g to
embed T in T ′ as described in the embedding subsection. Because the probability that
we reject T ′ as not favorable is o(1), with probability 1 − o(1), A weakly learns a tree
T ′ embedding T , which means that the reduction must weakly learn T . Because log
depth decision trees with n variables can express all parity functions over n variables
with log n relevant variables, our reduction proves the following.

Theorem 2. No algorithm can weakly learn random decision trees with n variables
and depth log n with respect to an arbitrary distribution using a polynomial number of
statistical queries.

5 Random Deterministic Finite Acceptors

The embedding for random DFAs is somewhat more complex. By the results of Trakht-
enbrot and Barzdin, we know that with high probability, if one state of a random DFA
is reachable from another, it is reachable by a path of length O(log n). In order to rep-
resent parity, we embed two trees of O(log n) depth in the machine, but we must also
find paths that return from the leaves of the trees to both their roots, in order to test the
parities of a sequence of variables.

5.1 Model of Random DFAs

Let n be a positive integer and let Q be a finite set of n states with start state q0 ∈ Q.
We consider a standard model of random deterministic finite acceptors, in which the
entries of the transition function δ : Q × Σ → Q and the set of accepting states F ⊆ Q
are chosen uniformly at random.
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5.2 Representing Parity

We name variables for the parity problem using strings from a prefix-free set V con-
structed as follows. Let σ : {1, 2, . . .} → Σ∗ be the bijection defined by

σ(1) = ε

σ(2m) = σ(m)0
σ(2m + 1) = σ(m)1.

Thus σ maps m to its binary representation after the first 1. Let  = #log2 n$ and let
V = {σ(m) : m ∈ {, . . . , 2 − 1}} be the set of variables. Note that |V | =  =
Θ(log2 n).

Our goal is to make a random machine compute a parity function whose relevant
variables are any subset U ⊆ V . To give some intuition, we first describe how to con-
struct a finite state machine that accepts a sequence of variables when the sequence has
an odd number of occurrences of variables from a given set U . As an example, assume
that  = 6, which gives the set of variables

V = {10, 11, 000, 001, 010, 011}.

Assume that the set of relevant variables is the following.

U = {10, 000, 001}.

The representation we choose for an assignment a : V → {0, 1} is to list (in some
order) the variables v ∈ V such that a(v) = 1. For example, if a assigns 1 to the
variables 10, 11, 000, and 010, one representation of a would be 1011000010.

Given this representation, we construct a finite automaton to accept the strings rep-
resenting assignments with odd parity on the variables in U as follows. Let V ′ be the
set of proper prefixes of strings from V . For each string v′ ∈ V ′ there are states [q0, v

′]
and [q1, v

′]. If for some b ∈ Σ both v′ ∈ V ′ and v′b ∈ V ′ then let

δ([q0, v
′], b) = [q0, v

′b] and δ([q1, v
′], b) = [q1, v

′b].

Suppose for some b ∈ Σ, v′ ∈ V ′ and vb ∈ V . If v′b ∈ U , that is, v′b is a relevant
variable, we exchange even and odd as follows:

δ([q0, v
′], b) = [q1, ε] and δ([q1, v

′], b) = [q0, ε].

If v′b �∈ U , we do not exchange even and odd:

δ([q0, v
′], b) = [q0, ε] and δ([q1, v

′], b) = [q1, ε].

The start state is [q0, ε] and the only accepting state is [q1, ε]. After reading in a sequence
of distinct variables, the machine is in state [q0, ε] if an even number of the variables
read are from U , and in state [q1, ε] if an odd number of them are from U .

The machine constructed by this process for the example values of U and V is illus-
trated in Figure 3. Note that on the input string 1011000010 the machine reaches state
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q0 q1
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 0  1

q1

 0

q1

 1

q0

 0

q0

 1

q1

 0

q0

 1  0  1

q0

 0

q0

 1

q1

 0

q1

 1

q0

 0

q1

 1

Fig. 3. One idea for a finite state machine to compute the parity of variables U = {10, 000, 001}
from V = {10, 11, 000, 001, 010, 011}. The in-degrees of q0 and q1 are in general too large.

q0 and rejects, which is correct because in this assignment exactly two of the variables
in U (namely 10 and 000) are set to 1.

An attempt to embed this kind of machine for computing parity into a random finite
state acceptor encounters the problem that the in-degrees of the states [q0, ε] and [q1, ε]
are in general too large. We avoid this problem by changing the input representation to
allow each variable to be followed by a string that prepares the machine to accept the
next variable. Even though each variable may have a different string, the contents and
assignments of these strings do not reveal any information about the relevant variables.

5.3 Embedding and Reduction

We show how to embed a parity computation on the variables V into a random finite
state acceptor M with n states with at least constant probability of success. The process
is illustrated in Figures 4, 5 and 6.

We first choose any state q1 different from the start state q0. We generate a random
finite acceptor M with n states. We think of the structure of M as being revealed to us
in stages. With probability 1/4, we have q0 �∈ F and q1 ∈ F .

Let V ′ = {σ(m) : m ∈ {1, . . . ,  − 1}}. These are all the proper prefixes of
the variables V . Because |V ′| = O(log2 n), with probability 1 − o(1), there are two
non-overlapping trees rooted at q0 and q1, that is, the set of states R = {δ(q, v′) :
q ∈ {q0, q1}, v′ ∈ V ′} has cardinality 2|V ′|. In this case, the values of δ(q, v) for
q ∈ {q0, q1} and v ∈ V are all independent random choices.

For each variable v ∈ V we would ideally like to find a string xv such that xv takes
δ(q0, v) and δ(q1, v) back to the states q0 and q1 (in some order), that is,

{δ(q0, vxv), δ(q1, vxv)} = {q0, q1}.

Depending on the order, the variable v is or is not relevant. Though we cannot achieve
this proper functioning for all variables, we can do so for a constant fraction of the
variables.
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q0 q1

 0  1  0  1

 0  1  0  1

Fig. 4. The even state is q0

and the odd state is q1. With
probability 1−o(1), there are
two non-overlapping trees
with � − 1 nodes rooted at
q0 and q1. We don’t yet com-
mit to the outgoing arcs of
the leaves.

q0 q1

 0  1  0  1

 0  1

a b

 0  1

 0

 1

 0

 0

 1

 0

Fig. 5. With constant proba-
bility, a pair (a, b) ∈ Q2

chosen uniformly at random
can reach (q0, q1) via the
same string while avoiding
the trees

q0 q1

 0  1  0  1

 0  1

a

 1

b

 1

 0  1

 1  1

 0

 1

 0

 0

 1

 0

Fig. 6. Now we choose the
outgoing arcs corresponding
to variable 011. With con-
stant probability, there is a
path back to (q0, q1). The
solid arcs signify a relevant
variable; the dashed ones,
an irrelevant variable. These
cases are equally likely and
independent of the string to
prepare for another variable.

We first show that with constant probability, for two random states (a, b) ∈ Q2, there
is a short string x such that {δ(a, x), δ(b, x)} = {q0, q1} and neither path touches the
states in R. The latter stipulation is important because it enables a bijection that swaps
the values of δ(q0, v) and δ(q1, v), which allows us to conclude that the return strings
xv don’t give away the relevant variables.

The proof of existence of the short string is as follows. Let (a, b) ∈ Q2 be chosen
uniformly at random, assume n is even, and let X = {σ(m) : m ∈ {n2/4, . . . , n2/2 −
1}}. We show that if x ∈ X is chosen uniformly at random, then with probability
(2 − o(1))/n2, we have {δ(a, x), δ(b, x)} = {q0, q1}, that is, x is good. Also, if y ∈ X
is chosen independently, then the probability that both x and y are good is (4−o(1))/n4.
By inclusion-exclusion, the probability that exactly one string in X is good is at least

|X |(2−o(1))/n2−2
(
|X |
2

)
(4−o(1))/n4 = (1 − o(1))/2 − 2

(
n2/4

2

)
(4 − o(1))/n4

= (1 − o(1))/2 − (1 − o(1))/4
= (1 − o(1))/4.
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The key observation is that the success event of x and the success event of y are very
close to being independent Bernoulli trials with success probability 2/n2. The strings
under consideration have length about 2 log n. If just before the final letter of each string
we have reached from a and b two different states whose outward transitions have not
been committed in any way, the success probabilities will be independent and exactly
2/n2. Of course, something may go wrong before then: we may touch a state in R or
have the paths loop or touch one another. With only O(log2 n) states to avoid however,
this event is probability o(1).

Finally, we observe that with constant probability, there will be log2 n/8 variables
that function properly. We can embed any parity function over these variables, which is
enough to make nΘ(log n) parity functions, ensuring that a superpolynomial number of
statistical queries are needed in expectation [2].

For the reduction, an assignment a to log2 n/8 variables is transformed to a string
containing the list of strings vxv for those variables v on which a takes the value 1. Note
that these strings are all of length O(log3 n). If desired, the strings could be padded by
repeating the variables they contain an odd number of times.

Theorem 3. No algorithm can weakly learn random deterministic finite acceptors with
n states with respect to an arbitrary distribution on strings of length at most Θ(log3 n)
using a polynomial number of statistical queries.

6 Discussion

As described in Section 1, there are polynomial time algorithms to learn certain classes
of random decision trees and random DNF formulas with respect to the uniform dis-
tribution, and these algorithms can be implemented with statistical queries. However,
it is open whether random deterministic finite acceptors of nc states can be learned in
polynomial time with respect to the uniform distribution on strings of length n.
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Abstract. This paper is concerned with the combinatorial structure of
concept classes that can be learned from a small number of examples. We
show that the recently introduced notion of recursive teaching dimension
(RTD, reflecting the complexity of teaching a concept class) is a relevant
parameter in this context.Comparing theRTDto self-directed learning,we
establish new lower bounds on the query complexity for a variety of query
learning models and thus connect teaching to query learning.

Formanygeneral cases, theRTDisupper-boundedby theVC-dimension,
e.g., classes of VC-dimension 1, (nested differences of) intersection-closed
classes, “standard” boolean function classes, and finite maximum classes.
The RTD thus is the first model to connect teaching to the VC-dimension.

The combinatorial structure defined by the RTD has a remarkable re-
semblance to the structure exploited by sample compression schemes and
hence connects teaching to sample compression. Sequences of teaching sets
defining the RTD coincide with unlabeled compression schemes both (i) re-
sulting from Rubinstein and Rubinstein’s corner-peeling and (ii) resulting
from Kuzmin and Warmuth’s Tail Matching algorithm.

1 Introduction

The complexity of the problem of learning a concept C in a given concept class
C can be measured in different ways. If A is a learning algorithm of a particular
type, one measures for instance how much information A must process, how
many prediction errors A will make on single attributes of C, or how expensive
the computation executed by A is, when identifying C. The worst-case behavior
of A is given by the highest such amount measured over all concepts C. The
complexity value assigned to C with respect to the underlying learning model is
then defined as the best possible worst-case behavior of any learning algorithm.

While run-time and memory complexity are important aspects of machine
learning problems, the aspect of “information complexity” (e.g., how many la-
beled data points are needed for learning) has at least equally important status.
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From an application point of view, the cost of a machine learning process is often
dominated by the amount of data needed. From a theoretical point of view, the
study of information complexity yields formal guarantees concerning the amount
of data that needs to be processed to solve a learning problem. Moreover, ana-
lyzing information complexity often helps to understand the structure of a given
class of target concepts. In addition, the theoretical study of information com-
plexity helps to identify parallels between various formal models of learning.

The reason for these parallels is that algorithms used in a number of different
formal learning models reflect principles related to sample compression schemes,
i.e., schemes for “encoding” a set of examples in a small subset of examples.
For instance, from the set of examples they process, learning algorithms often
extract a subset of particularly “significant” examples in order to represent their
hypotheses. This way sample bounds for PAC-learning of a class C can be ob-
tained from the size of a smallest sample compression scheme for C, see [14, 5].
Here the size of a scheme is the size of the largest subset resulting from compres-
sion of any sample consistent with some concept in C. Similarly teachers, which
provide examples to the learner in models of co-operative learning, compress
concepts to subsets of particularly “helpful” examples, cf. [6, 19, 10, 2].

In the past two decades, several learning models were defined with the aim
of achieving low information complexity in a non-trivial way. One such model is
learning from partial equivalence queries [15], which subsumes all types of queries
for which negative answers are witnessed by counterexamples, e.g., membership,
equivalence, subset, superset, and disjointness queries [1]. As lower bounds on
the information complexity in this model (here called query complexity) hold
for numerous learning models, they are particularly interesting objects of study.

In the query model of self-directed learning [7], a query is a prediction of
a label for an instance of the learner’s choice and the learner “pays” only for
wrong predictions. Self-directed learners are very powerful; they yield a query
complexity lower-bounding the one obtained from partial equivalence queries [8].
Even though the self-directed learning complexity can exceed the VC-dimension,
existing results show some connection between these two complexity measures.

A recent model of teaching with low information complexity is recursive teach-
ing, where a teacher chooses a sample based on a sequence of nested subclasses
of C, see [22]. The nesting is defined by (i) choosing all concepts in C that are
easiest to teach, i.e., that have the smallest sets of examples distinguishing them
from all other concepts in C and (ii) recursively repeating this process with the
remaining concepts. The largest number of examples required at any stage is the
recursive teaching dimension (RTD) of C. The RTD significantly improves on
bounds for previous teaching models. It lower-bounds not only the complexity of
the “classical” teaching model [6, 19] but also the complexity of iterated optimal
teaching [2], which is often significantly below the classical teaching dimension.

Using the RTD, this paper is the first one to establish a relation between teach-
ing complexity and complexity of query learning, between teaching complexity
and the VC-dimension, as well as between teaching complexity and sample com-
pression, in particular revealing a surprisingly strong connection to unlabeled
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sample compression, cf. [4, 12]. No such relations are exhibited by the classical
teaching models. Our main contributions are the following.

(i) We show that the RTD is never higher (and often considerably lower) than
the complexity of self-directed learning. Hence all lower bounds on RTD will hold
for self-directed learning, for learning from partial equivalence queries, and for
a variety of other query learning models.

(ii) We establish a connection between the RTD and theVC-dimension. Though
there are classes for which the RTD exceeds the VC-dimension, we present a num-
ber of quite general and natural cases in which the RTD is upper-bounded by
the VC-dimension. These include classes of VC-dimension 1, intersection-closed
classes and nested differences thereof, a variety of naturally structured boolean
function classes, and finite maximum classes in general (i.e., classes of maximum
possible cardinality for a given VC-dimension and domain size). It remains open
whether every class of VC-dimension d has an RTD linear in d.

(iii) We establish a connection between the RTD and unlabeled compression
schemes. To prove that the RTD of a finite maximum class equals its VC-
dimension, we use a recent result from [17]. Rubinstein and Rubinstein show
that, for all maximum classes, a technique called corner-peeling defines unla-
beled compression schemes whose size equals the VC-dimension. Corner-peeling
is a particular way of recursively removing concepts from the given concept class,
while representing every such peeling step by a small subset of the underlying
instance space, i.e., an unlabeled sample. Firstly, the recursive nesting of concept
classes is common to both peeling and RTD. Secondly, and more importantly, we
observe that every maximum class allows corner-peeling with an additional prop-
erty, which ensures that the resulting unlabeled samples contain exactly those
instances a teacher following the RTD model would use. A closer look reveals
the following two facts for any finite maximum class C of VC-dimension d:

• Both Rubinstein and Rubinstein’s corner-peeling and Kuzmin and War-
muth’s Tail Matching [12] construct unlabeled compression schemes for C that
map to samples exactly coinciding with those used in the RTD model for C. All
samples are of size at most d.

• The RTD model allows for a nesting of C that uses samples of size at most
d whose unlabeled versions form an unlabeled compression scheme of size d.

The correspondence between RTD and compression schemes is quite remark-
able, because these models arose in different branches of Learning Theory and,
for that reason, differ in several respects:

• The RTD-model has comparatively restrictive rules for producing teaching
sets (which is a kind of compression).

• It does not explicitly address the issue of sample compression (but rather
compresses the concept as a function on the whole domain).
Despite these differences, sample compression schemes lead to RTD-nestings for
a wide variety of classes (including linear arrangements and halfspaces). Conse-
quently, the question of whether or not the RTD is linear in the VC-dimension
appears to be related to the long-standing open question of whether or not the
sample compression complexity is linear in the VC-dimension, cf. [14]. We believe



212 T. Doliwa, H.U. Simon, and S. Zilles

that studying the RTD will continue to provide new insights into the combina-
torial structure of concept classes that possess small compression schemes.

2 Definitions, Notations and Facts

Throughout this paper, X denotes a finite set and C denotes a concept class
over the domain X . For X ′ ⊆ X , we define C|X′ := {C ∩ X ′| C ∈ C}. We treat
concepts interchangeably as subsets of X and as 0, 1-valued functions on X . A
labeled example is a pair (x, l) with x ∈ X and l ∈ {0, 1}. If S is a set of labeled
examples, we define X(S) = {x ∈ X | (x, 0) ∈ S or (x, 1) ∈ S}. For brevity,
[n] := {1, . . . , n}. VCD(C) denotes the VC-dimension of a concept class C.

Definition 1. Let K be a function that assigns a “complexity” K(C) ∈ N to each
concept class C. We say that K is monotonic if C′ ⊆ C implies that K(C′) ≤
K(C). We say that K is twofold monotonic if K is monotonic and, for every
concept class C over X and every X ′ ⊆ X, it holds that K(C|X′) ≤ K(C).

2.1 Learning Complexity

A partial equivalence query [15] of a learner is given by a function h : X →
{0, 1, ∗} that is passed to an oracle. The latter returns “YES” if the target
concept C∗ coincides with h on all x ∈ X for which h(x) ∈ {0, 1}; it returns
a “witness of inequivalence” (i.e., an x ∈ X such that C∗(x) �= h(x) ∈ {0, 1})
otherwise. LC-PARTIAL(C) denotes the smallest number q such that there is
some learning algorithm that exactly identifies each concept C∗ ∈ C with up to
q partial equivalence queries (regardless of the oracle’s answering strategy).

A query in the model of self-directed learning [7, 8] consists of an instance
x ∈ X and a label b ∈ {0, 1}, passed to an oracle. The latter returns the true label
C∗(x) assigned to x by the target concept C∗. We say the learner made a mistake
if C∗(x) �= b. The self-directed learning complexity of C, denoted SDC(C), is
defined as the minimum worst-case number of mistakes that a learning algorithm
A can achieve on C, if A exactly identifies every C∗ ∈ C.

The mistake bound [13] of a particular learning algorithm A for concept class
C, denoted MA(C), is the worst-case number of 0,1-prediction mistakes made
by A on any given sequence of instances labeled consistently according to some
target concept from C. The optimal mistake bound for a concept class C, denoted
Mopt(C), is the minimum of MA(C) over all learning algorithms A.

Clearly, LC-PARTIAL and SDC are monotonic, and Mopt is twofold mono-
tonic. The following chain of inequalities is well-known [8, 15]:

SDC(C) ≤ LC-PARTIAL(C) ≤ Mopt(C) (1)

2.2 Teaching Complexity

A teaching set for a concept C ∈ C is a set S of labeled examples such that C,
but no other concept in C, is consistent with S. Let T S(C, C) denote the family
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of teaching sets for C ∈ C, let TS(C; C) denote the size of the smallest teaching
set for C ∈ C, and let

TSmin(C) := min
C∈C

TS(C; C) , TSmax(C) := max
C∈C

TS(C; C) .

The quantity TD(C) := TSmax(C) is called the teaching dimension of C [6]. Note
that TD is monotonic. A concept class C consisting of exactly one concept C has
teaching dimension 0 because ∅ ∈ T S(C, {C}).
Definition 2 (see [22]). A teaching plan for C is a sequence

P = ((C1, S1), . . . , (CN , SN)) (2)

with the following properties:

– N = |C| and C = {C1, . . . , CN}.
– For all t = 1, . . . , N , St ∈ T S(Ct, {Ct, . . . , CN}).

The quantity ord(P ) := maxt=1,...,N−1 |St| is called the order of the teaching
plan P . Finally, we define

RTD(C) := min{ord(P ) | P is a teaching plan for C} ,

RTD∗(C) := max
X′⊆X

RTD(C|X′) .

The quantity RTD(C) is called the recursive teaching dimension of C.

A teaching plan (2) is said to be repetition-free if the sets X(S1), . . . , X(SN)
are pairwise distinct. (Clearly, the corresponding labeled sets, S1, . . . , SN , are
always pairwise distinct.) As observed in [22], the following holds:

– RTD is monotonic.
– The recursive teaching dimension coincides with the order of any teaching

plan that is in canonical form, i.e., a teaching plan ((C1, S1), . . . , (CN , SN ))
such that |St| = TSmin({Ct, . . . , CN}) holds for all t ∈ {1, . . . , N − 1}.

Intuitively, a canonical teaching plan is a sequence that is recursively built by
always picking an easiest-to-teach concept Ct in the class C \ {C1, . . . , Ct−1}
together with an appropriate teaching set St.

The definition of teaching plans immediately yields the following result:

Lemma 3. 1. If K is monotonic and TSmin(C) ≤ K(C) for every concept class
C, then RTD(C) ≤ K(C) for every concept class C.

2. If K is twofold monotonic and TSmin(C) ≤ K(C) for every concept class C,
then RTD∗(C) ≤ K(C) for every concept class C.

RTD and TSmin are related as follows:

Lemma 4. RTD(C) = maxC′⊆C TSmin(C′).

Proof. Let C1 be the first concept in a canonical teaching plan P for C so
that TS(C1; C) = TSmin(C) and the order of P equals RTD(C). It follows that
RTD(C) = max{TS(C1; C), RTD(C \ {C1})} = max{TSmin(C), RTD(C \ {C1})},
and RTD(C) ≤ maxC′⊆C TSmin(C′) follows inductively. As for the reverse di-
rection, let C′

0 ⊆ C be a maximizer of TSmin. Since RTD is monotonic, we get
RTD(C) ≥ RTD(C′

0) ≥ TSmin(C′
0) = maxC′⊆C TSmin(C′). �
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2.3 Intersection-Closed Classes and Nested Differences

A concept class C is called intersection-closed if C ∩ C′ ∈ C for all C, C′ ∈ C.
Among the standard examples for intersection-closed classes are the d-dimen-
sional boxes over domain [n]d:

BOXd
n := {[a1 : b1] × · · · × [ad : bd] | ∀i = 1, . . . , d : 1 ≤ ai, bi ≤ n}

Here, [a : b] is an abbreviation for {a, a+ 1, . . . , b}, where [a : b] is the empty set
if a > b. For the remainder of this section, C is assumed to be intersection-closed.

For T ⊆ X , we define 〈T 〉C as the smallest concept in C containing T , i.e.,

〈T 〉C :=
⋂

T⊆C∈C
C .

A spanning set for T ⊆ X w.r.t. C is a set S ⊆ T such that 〈S〉C = 〈T 〉C. S
is called a minimal spanning set w.r.t. C if, for every proper subset S′ of S,
〈S′〉C �= 〈S〉C . I(C) denotes the size of the largest minimal spanning set w.r.t. C.
It is well-known [16, 9] that every minimal spanning set w.r.t. C is shattered by
C. Thus, I(C) ≤ VCD(C). Note that, for every C◦ ∈ C, I(C|C◦) ≤ I(C), because
each spanning set for a set T ⊆ C◦ w.r.t. C is also a spanning set for T w.r.t. C|C◦ .

The class of nested differences of depth d (at most d) with concepts from C,
denoted DIFFd(C) (DIFF≤d(C), resp.), is defined inductively as follows:

DIFF1(C) := C ,

DIFFd(C) := {C \ D| C ∈ C, D ∈ DIFFd−1(C)} ,

DIFF≤d(C) :=
d⋃

i=1

DIFFi(C) .

Expanding the recursive definition of DIFFd(C) shows that, e.g., a set in DIFF4(C)
has the form C1\(C2\(C3\C4)) where C1, C2, C3, C4 ∈ C. We may assume without
loss of generality that C1 ⊇ C2 ⊇ · · · because C is intersection-closed.

Nested differences of intersection-closed classes were examined thoroughly at
an early stage of research on computational learning theory [9].

2.4 Maximum Classes and Unlabeled Compression Schemes

Let Φd(n) :=
∑d

i=0

(
n
i

)
. For d = VCD(C) and for any subset X ′ of X , we have∣∣C|X′

∣∣ ≤ Φd(|X ′|), according to Sauer’s Lemma [20, 18]. The concept class C is
called a maximum class if Sauer’s inequality holds with equality for every subset
X ′ of X . It is well-known [21, 5] that a class over a domain X is maximum iff
Sauer’s inequality holds with equality for X ′ = X .

The following definition is from [12]:

Definition 5. An unlabeled compression scheme for a maximum class of VC-
dimension d is given by an injective mapping r that assigns to every concept C
a set r(C) ⊆ X of size at most d such that the following condition is satisfied:

∀C, C′ ∈ C (C �= C′), ∃x ∈ r(C) ∪ r(C′) : C(x) �= C′(x) . (3)
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(3) is referred to as the non-clashing property. In order to ease notation, we
add the following technical definitions. A representation mapping of order k for
a (not necessarily maximum) class C is any injective mapping r that assigns
to every concept C a set r(C) ⊆ X of size at most k such that (3) holds. A
representation-mapping r is said to have the acyclic non-clashing property if
there is an ordering C1, . . . , CN of the concepts in C such that

∀1 ≤ i < j ≤ N, ∃x ∈ r(Ci) : Ci(x) �= Cj(x) . (4)

Considering maximum classes, it was shown [12] that a representation mapping
with the non-clashing property guarantees that, for every sample S labeled ac-
cording to a concept from C, there is exactly one concept C ∈ C that is consistent
with S and satisfies r(C) ⊆ X(S). This allows to encode (compress) a labeled
sample S by r(C) and, since r is injective, to decode (decompress) r(C) by C
(so that the labels in S can be reconstructed). This coined the term “unlabeled
compression scheme”.

A concept class C over a domain X of size n is identified with a subset of
{0, 1}n. The one-inclusion-graph G(C) associated with C is defined as follows:

– The nodes are the concepts from C.
– Two concepts are connected by an edge if and only if they differ in exactly

one coordinate (when viewed as nodes in the Boolean cube).

A cube C′ in C is a subcube of {0, 1}n such that every node in C′ represents a
concept from C. In the context of the one-inclusion graph, the instances (cor-
responding to the dimensions in the Boolean cube) are usually called “colors”
(and an edge along dimension i is viewed as having color i).

The following definitions are from [17] (although, stylistically, we are stressing
here the similarities to teaching plans):

Definition 6. A corner-peeling plan for C is a sequence

P = ((C1, C′
1), . . . , (CN , C′

N)) (5)

with the following properties:

1. N = |C| and C = {C1, . . . , CN}.
2. For all t = 1, . . . , N , C′

t is a cube in {Ct, . . . , CN} which contains Ct and all
its neighbors in G({Ct, . . . , CN}). (Note that this uniquely specifies C′

t.)

The nodes Ct are called the corners of the cubes C′
t, respectively. The dimension

of the largest cube among C′
1, . . . , C′

N is called the order of the corner-peeling
plan P . C can be d-corner-peeled if there exists a corner-peeling plan of order d.

C is called shortest-path closed if, for every pair of distinct concepts C, C′ ∈ C,
G(C) contains a path of length H(C, C′) that connects C and C′, where H
denotes the Hamming distance. [17] showed the following:

1. If a maximum class C has a corner-peeling plan (5) of order VCD(C), then
an unlabeled compression scheme for C is obtained by setting r(Ct) equal to
the set of colors in cube C′

t for t = 1, . . . , N .
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2. Every maximum class C can be VCD(C)-corner-peeled.

Although it was known before [12] that any maximum class has an unlabeled
compression scheme, the scheme resulting from corner-peeling has some very
special and nice features. We will see an application in Section 5, where we show
that RTD(C) = VCD(C) for every maximum class C.

3 Recursive Teaching and Query Learning

Kuhlmann proved the following result:

Lemma 7 (see [11]). For every concept class C: TSmin(C) ≤ SDC(C).

In view of (1), the monotonicity of LC-PARTIAL and SDC, the twofold mono-
tonicity of Mopt, and in view of Lemma 3, we obtain:

Corollary 8. For every concept class C, the following holds:

1. RTD(C) ≤ SDC(C) ≤ LC-PARTIAL(C) ≤ Mopt(C).
2. RTD∗(C) ≤ Mopt(C).

As demonstrated in [8], the model of self-directed learning is extremely powerful.
According to Corollary 8, recursive teaching is an even more powerful model so
that upper bounds on SDC apply to RTD as well, and lower bounds on RTD
apply to SDC and LC-PARTIAL as well. The following result, which is partially
known from [8, 22], illustrates this:

Corollary 9. 1. If VCD(C) = 1, then RTD(C) = SDC(C) = 1.
2. RTD(Monotone Monomials) = SDC(Monotone Monomials) = 1.
3. RTD(Monomials) = SDC(Monomials) = 2.
4. RTD(BOXd

n) = SDC(BOXd
n) = 2.

5. RTD(m-Term Monotone DNF) ≤ SDC(m-Term Monotone DNF) ≤ m.
6. SDC(m-Term Monotone DNF) ≥ RTD(m-Term Monotone DNF) ≥ m pro-

vided that the number of Boolean variables is at least m2 + 1.

Proof. All upper bounds on SDC are from [8] and, as mentioned above, they
apply to RTD as well. Lower bound 1 on RTD (for concept classes with at
most two distinct concepts) is trivial. RTD(Monomials) = 2 is shown in [22].
As a lower bound, this carries over to BOXd

n which contains Monomials as
a subclass. Thus the first five assertions are obvious from known results in
combination with Corollary 8. As for the last assertion, we have to show that
RTD(m-Term Monotone DNF) ≥ m. To this end assume that there are n ≥
m2 + 1 Boolean variables. According to Lemma 4, it suffices to find a subclass
C′ of m-Term Monotone DNF such that TSmin(C′) ≥ m. Let C′ be the class
of all DNF formulas that contain precisely m pairwise variable-disjoint terms
of length m each. Let F be an arbitrary but fixed formula in C′. Without loss
of generality, the teacher always picks either a minimal positive example (such
that flipping any 1-bit to 0 turns it negative) or a maximal negative example
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(such that flipping any 0-bit to 1 turns it positive). By construction of C′, the
former example has precisely m ones (and reveals one of the m terms in F ) and
the latter example has precisely m zeros (and reveals one variable in each term).
We may assume that the teacher consistently uses a numbering of the m terms
from 1 to m and augments any 0-component (component i say) of a negative
example by the number of the term that contains the corresponding Boolean
variable (the term containing variable xi). Since adding information is to the
advantage of the learner, this will not corrupt the lower-bound argument. We
can measure the knowledge that is still missing after having seen a collection of
labeled instances by the following parameters:

– m′, the number of still unknown terms
– l1, . . . , lm, where lk is the number of still unknown variables in term k

The effect of a teaching set on these parameters is as follows: a positive example
decrements m′, and a negative example decrements some of l1, . . . , lm. Note that
n was chosen sufficiently large1 so that the formula F is not uniquely specified
as long as none of the parameters has reached level 0. Since all parameters are
initially of value m, the size of any teaching set for F must be at least m. �

In powerful learning models, techniques for proving lower bounds become an
issue. One technique for proving a lower bound on RTD was applied already
in the proof of Corollary 9: select a subclass C′ ⊆ C and derive a lower bound
on TSmin(C′). We now turn to the question whether known lower bounds for
LC-PARTIAL or SDC remain valid for RTD. [15] showed that LC-PARTIAL is
lower-bounded by the logarithm of the length of a longest inclusion chain in C.
This bound does not even apply to SDC, which follows from an inspection of the
class of half-intervals over domain [n]. The longest inclusion chain in this class,
∅ ⊂ {1} ⊂ {1, 2} ⊂ · · · ⊂ {1, 2, . . . , n}, has length n + 1, but its self-directed
learning complexity is 1. Theorem 8 in [3] implies that SDC is lower-bounded
by log |C|/ log |X | if SDC(C) ≥ 2. A similar bound applies to RTD:

Lemma 10. Suppose RTD(C) ≥ 2. Then, RTD(C) ≥ log |C|
1+log |X| and repetition-

free teaching plans for C are of order at least log |C|
log |X| .

Proof. Let k := RTD(C), and let P be a teaching plan of order k for C. Clearly,
P contains |C| pairwise different teaching sets, and every teaching set is a labeled
subset of X of size at most k. Thus,

|C| ≤
k∑

i=1

(
|X |
i

)
2i ≤ 2kΦk(|X |) ≤ (2|X |)k . (6)

Solving for k yields the desired lower bound on RTD(C). In a similar calculation
for repetition-free teaching plans, a factor 2i (and later 2k) is missing in (6). �
1 A slightly refined argument shows that requiring n ≥ (m−1)2+1 would be sufficient.

But we made no serious attempt to make this assumption as weak as possible.
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A subset X ′ ⊆ X is called C-distinguishing if, for each pair of distinct concepts
C, C′ ∈ C, there is some x ∈ X ′ such that C(x) �= C′(x). The matrix associated
with a concept class C over domain X is given by M(x, C) = C(x) ∈ {0, 1}. We
call two concept classes C, C′ equivalent if their matrices are equal up to permu-
tation of rows or columns, and up to flipping all bits of a subset of the rows.2

The following result characterizes the classes of recursive teaching dimension 1:

Theorem 11. The following statements are equivalent:

1. SDC(C) = 1.
2. RTD(C) = 1.
3. There exists a C-distinguishing set X ′ ⊆ X such that C|X′ is equivalent to

a concept class whose matrix M is of the form M = [M ′|0] where M ′ is a
lower-triangular square-matrix with ones on the main-diagonal and 0 denotes
the all-zeros vector.

Proof. 1 implies 2. If SDC(C) = 1, C contains at least two distinct concepts.
Thus, RTD(C) ≥ 1. According to Corollary 8, RTD(C) ≤ SDC(C) = 1.

2 implies 3. Let P be a teaching plan of order 1 for C, and let X ′ be the set of
instances occurring in P (which clearly is C-distinguishing). Let (C1, {(x1, b1)})
be the first item of P . Let M be the matrix associated with C (up to equivalence).
We make C1 the first column and x1 the first row of M . We may assume that
b1 = 1. (Otherwise flip all bits in row 1.) Since {(x1, 1)} is a teaching set for C1,
the first row of M is of the form (1, 0, . . . , 0). We may repeat this argument for
every item in P so that the resulting matrix M is of the desired form. (The last
zero-column represents the final concept in P with the empty teaching set.)

3 implies 1. Since X ′ is C-distinguishing, exact identification of a concept
C ∈ C is the same as exact identification of C restricted to X ′. Let x1, . . . , xN−1
denote the instances corresponding to the rows of M . Let C1, . . . , CN denote
the concepts corresponding to the columns of M . A self-directed learner passes
(x1, 0), (x2, 0), . . . to the oracle until it makes the first mistake (if any). If the first
mistake (if any) happens for (xk, 0), the target concept must be Ck (because of
the form of M). If no mistake has occurred on items (x1, 0), . . . , (xN−1, 0), there
is only one possible target concept left, namely CN . Thus the self-directed learner
exactly identifies the target concept at the expense of at most one mistake. �

Note that concept classes of recursive teaching dimension 1 can have arbitrarily
large VC-dimension. However, [11] presents a family (Cm)m≥1 of concept classes
such that VCD(Cm) = 2m but RTD(Cm) ≥ TDmin(Cm) = 3m. This shows that
RTD cannot generally be upper-bounded by the VC-dimension (but leaves open
the possibility of an upper bound of the form O(VCD(C))).

As we have seen in this section, the gap between SDC(C) and LC-PARTIAL(C)
can be arbitrarily large (e.g., the class of half-intervals over domain [n]). We will
see below, that a similar statement applies to RTD(C) and SDC(C) (despite of
the fact that both measures assign value 1 to the same family of concept classes).
2 Reasonable complexity measures (including RTD, SDC, VCD) are invariant under

these operations.
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4 Recursive Teaching and Intersection-Closed Classes

As shown by Kuhlmann [11], TSmin(C) ≤ I(C) holds for every intersection-closed
concept class C. Kuhlmann’s central argument (which occurred first in a proof of
a related result in [8]) can be applied recursively so that the following is obtained:

Lemma 12. For every intersection-closed class C, RTD(C) ≤ I(C).

Proof. Let k := I(C). We present a teaching plan for C of order at most k. Let
C1, . . . , CN be the concepts in C in topological order such that Ci ⊃ Cj implies
i < j. It follows that, for every i ∈ [N ], Ci is an inclusion-maximal concept in
Ci := {Ci, . . . , CN}. Let Si denote a minimal spanning set for Ci w.r.t. C. Then:

– |Si| ≤ k and Ci is the unique minimal concept in C that contains Si.
– As Ci is inclusion-maximal in Ci, Ci is the only concept in Ci that contains Si.

Thus {(x, 1) | x ∈ Si} is a teaching set of size at most k for Ci in Ci. �

Since I(C) ≤ VCD(C), we get

Corollary 13. For every intersection-closed class C, RTD(C) ≤ VCD(C).

This implies RTD∗(C) ≤ VCD(C) for every intersection-closed class C, since
intersection-closedness is preserved when reducing a class C to C|X′ for X ′ ⊆ X .

For every fixed constant d (e.g., d = 2), [11] presents a family (Cm)m≥1 of
intersection-closed concept classes such that the following holds:3

∀m ≥ 1 : VCD(Cm) = d and SDC(Cm) ≥ m . (7)

This shows that SDC(C) can in general not be upper-bounded by I(C) or VCD(C).
It shows furthermore that the gap between RTD(C) and SDC(C) can be arbi-
trarily large (even for intersection-closed classes).

Lemma 12 generalizes to nested differences:

Theorem 14. If C is intersection-closed then RTD(DIFF≤d(C)) ≤ d · I(C).

Proof. Any concept C ∈ DIFF≤d(C) can be written in the form

C = C1 \
=:D1︷ ︸︸ ︷

(C2 \ (· · · (Cd−1 \ Cd) · · · )) (8)

such that, for every j, Cj ∈ C ∪ {∅}, Cj ⊇ Cj+1, and this inclusion is proper
unless Cj = ∅. Let Dj = Cj+1 \ (Cj+2 \ (· · · (Cd−1 \Cd) · · · )). We may obviously
assume that the representation (8) of C is minimal in the following sense:

∀j = 1, . . . , d : Cj = 〈Cj \ Dj〉C (9)

We define a lexicographic ordering, �, on concepts from DIFF≤d(C) as follows.
Let C be a concept with a minimal representation of the form (8), and let the
3 A family satisfying (7) but not being intersection-closed was presented previously [3].
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minimal representation of C′ be given similarly in terms of C′
j , D

′
j . Then, by

definition, C � C′ if C1 ⊃ C′
1 or C1 = C′

1 ∧ D1 � D′
1.

Let k := I(C). We present a teaching plan of order at most dk for DIFF≤d(C).
Therein, the concepts are in lexicographic order so that, when teaching concept C
with minimal representation (8), the concepts preceding C w.r.t. � are discarded
already. A teaching set T for C is then obtained as follows:

– For every j = 1, . . . , d, include in T a minimal spanning set for Cj \ Dj

w.r.t. C. Augment its instances by label 1 if j is odd, and by label 0 otherwise.

By construction, C as given by (8) and (9) is the lexicographically smallest
concept in DIFF≤d(C) that is consistent with T . Since concepts being lexico-
graphically larger than C are discarded already, T is a teaching set for C. �

Corollary 15. Let C1, . . . , Cr be intersection-closed classes over the domain X.
Assume that the “universal concept” X belongs to each of these classes.4 Then,

RTD
(
DIFF≤d(C1 ∪ · · · ∪ Cr)

)
≤ d ·

r∑
i=1

I(Ci) .

Proof. Consider the concept class C := C1 ∧ · · · ∧ Cr := {C1 ∩ · · · ∩ Cr | Ci ∈
Ci for i = 1, . . . , r}. According to [9], we have:

1. C1 ∪ · · · ∪ Cr is a subclass of C.
2. C is intersection-closed.
3. Let C = C1 ∩ · · · ∩ Cr ∈ C. For all i, let Si be a spanning set for C w.r.t. Ci,

i.e., Si ⊆ C and 〈Si〉Ci = 〈C〉Ci . Then S1 ∪ · · · ∪ Sr is a spanning set for C
w.r.t. C.

Thus I(C) ≤ I(C1) + · · · + I(Cr). The corollary follows from Theorem 14. �

5 Recursive Teaching Dimension and Maximum Classes

In this section, we show that the recursive teaching dimension coincides with the
VC-dimension on the family of maximum classes. In a maximum class C, every
set of k ≤ VCD(C) instances is shattered, which implies RTD(C) ≥ TSmin(C) ≥
VCD(C). Thus, we can focus on the reverse direction and pursue the question
whether RTD(C) ≤ VCD(C). We shall answer this question to the affirmative by
establishing a connection between “teaching plans” and “corner-peeling plans”.

We say that a corner-peeling plan (5) is strong if Condition 2 in Definition 6
is replaced as follows:

2’. For all t = 1, . . . , N , C′
t is a cube in {Ct, . . . , CN} which contains Ct and

whose colors (augmented by their labels according to Ct) form a teaching
set for Ct ∈ {Ct, . . . , CN}.

4 This assumption is not restrictive: adding the universal concept to an intersection-
closed class does not destroy the intersection-closedness.
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We denote the set of colors of C′
t as Xt and its augmentation by labels according

to Ct as St in what follows. The following result is obvious:

Lemma 16. A strong corner-peeling plan of the form (5) induces a teaching
plan of the form (2) of the same order.

The following result justifies the attribute “strong” of corner-peeling plans:

Lemma 17. Every strong corner-peeling plan is a corner-peeling plan.

Proof. Assume that Condition 2 is violated. Then there is a color x ∈ X \Xt and
a concept C ∈ {Ct+1, . . . , CN} such that C coincides with Ct on all instances
except x. But then C is consistent with set St so that St is not a teaching set
for Ct ∈ {Ct, . . . , CN}, and Condition 2’ is violated as well. �

Lemma 18. Let C be a shortest-path closed concept class. Then, every corner-
peeling plan for C is strong.

Proof. Assume that Condition 2’ is violated. Then some C ∈ {Ct+1, . . . , CN} is
consistent with St. Thus, the shortest path between C and Ct in G({Ct, . . . , CN})
does not enter the cube C′

t. Hence there is a concept C′ ∈ {Ct+1, . . . , CN} \ C′
t

that is a neighbor of Ct in G({Ct, . . . , CN}), and Condition 2 is violated. �

As maximum classes are shortest-path closed [12], we obtain:

Corollary 19. Every corner-peeling plan for a maximum class is strong, and
therefore induces a teaching plan of the same order.

Since [17] showed that every maximum class C can be VCD(C)-corner-peeled, we
may conclude that RTD(C) ≤ VCD(C). As mentioned above, RTD(C) ≥ VCD(C)
for every maximum class C, which implies

Corollary 20. For every maximum class C, RTD(C) = VCD(C).

The fact that, for every maximum class C and every X ′ ⊆ X , the class C|X′ is
still maximum implies that RTD∗(C) = VCD(C) for every maximum class C.

We close this section by establishing a connection between repetition-free
teaching plans and representations having the acyclic non-clashing property:

Lemma 21. Let C be an arbitrary concept class. Then the following holds:

1. Every repetition-free teaching plan (2) of order d for C induces a represen-
tation mapping r of order d for C given by r(Ct) = X(St) for t = 1, . . . , N .
Moreover, r has the acyclic non-clashing property.

2. Every representation mapping r of order d for C that has the acyclic non-
clashing property (4) induces a teaching plan (2) given by St = {(x, Ct(x)) |
x ∈ r(Ct)} for t = 1, . . . , N . Moreover, this plan is repetition-free.

Proof. 1. A clash between Ct and Ct′ , t < t′, on X(St) would contradict the
fact that St is a teaching set for Ct ∈ {Ct, . . . , CN}.
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2. Conversely, if St = {(x, Ct(x)) | x ∈ r(Ct)} is not a teaching set for Ct ∈
{Ct, . . . , CN}, then there must be a clash on X(St) between Ct and a concept
from {Ct+1, . . . , CN}. Repetition-freeness is obvious since r is injective. �

Corollary 22. Let C be maximum of VC-dimension d. Then, there is a one-one
mapping between repetition-free teaching plans of order d for C and unlabeled
compression schemes with the acyclic non-clashing property.

An inspection of [17] reveals that corner-peeling leads to an unlabeled com-
pression scheme with the acyclic non-clashing property (again implying that
RTD(C) ≤ VCD(C) for maximum classes C). An inspection of [12] reveals that
the unlabeled compression scheme obtained by the Tail Matching Algorithm has
the acyclic non-clashing property too. Thus, this algorithm too can be used to
generate a recursive teaching plan of order VCD(C) for any maximum class C.

6 Conclusions

This paper relates the RTD, a recent teaching complexity notion, to classical
learning complexity parameters. One of these parameters is SDC, the complexity
of self-directed learning—the most information-efficient query model known to
date. Our result lower-bounding the SDC by the RTD has implications for the
analysis of information complexity in teaching and learning. In particular, every
upper bound on SDC holds for RTD; every lower bound on RTD holds for SDC.

Another important parameter in our comparison is the VC-dimension. Al-
though the VC-dimension can be arbitrarily large for classes of recursive teaching
dimension 1 (see Theorem 11 and the remark thereafter) and arbitrarily smaller
than SDC [3, 11], it does not generally lie between the two. However, while the
SDC cannot be upper-bounded by any linear function of the VC-dimension, it
is still open whether such a bound is possible for the RTD.

As a partial solution to this open question, we showed that the VC-dimension
coincides with the RTD in the special case of maximum classes. Our results, and
in particular the remarkable correspondence to unlabeled compression schemes,
suggest that the RTD refers to a combinatorial structure that is of high relevance
for the complexity of information-efficient learning and sample compression. An-
alyzing the question whether teaching plans defining the RTD can in general be
used to construct compression schemes (and to bound their size) seems to be a
promising step towards new insights into the theory of sample compression.
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Abstract. In a finite partial-monitoring game against Nature, the
Learner repeatedly chooses one of finitely many actions, the Nature re-
sponds with one of finitely many outcomes, the Learner suffers a loss
and receives feedback signal, both of which are fixed functions of the
action and the outcome. The goal of the Learner is to minimize its total
cumulative loss. We make progress towards classification of these games
based on their minimax expected regret. Namely, we classify almost all
games with two outcomes: We show that their minimax expected regret
is either zero, Θ̃(

√
T ), Θ(T 2/3), or Θ(T ) and we give a simple and effi-

ciently computable classification of these four classes of games. Our hope
is that the result can serve as a stepping stone toward classifying all finite
partial-monitoring games.

1 Introduction

A full information matrix game is specified by a finite loss matrix, L = (ij),
where 1 ≤ i ≤ N denotes the actions of the row player and 1 ≤ j ≤ M denotes
the actions of the column player, while ij ∈ [0, 1] is the loss suffered by the
row player when he chose action i and the opponent chose action j. In games
against Nature, Nature plays the role of the column player. In these games, at
the beginning of the game Nature chooses an arbitrary sequence of actions of
length T , unknown to the row player (henceforth Learner). If the sequence was
known, the Learner could select the action that gives rise to the smallest possible
cumulated loss. The regret of the Learner is defined by his excess cumulated loss
compared to the mentioned best possible cumulated loss. Generally, the regret
grows with the time horizon T . If the growth is sublinear then in the long run
the Learner can be said to play almost as well as if he knew Nature’s sequence
of actions in advance. In a full information matrix game against Nature, the
Learner is told Nature’s action after every round, so that he has a chance to
make adjustments to what actions to play. The Learner in general needs to
randomize to prevent being second-guessed. In this situation, it is known that
the Learner can keep his expected regret, RT , below

√
T ln(N)/2, independently

of M (cf. Chapter 4 and the references in the book by Lugosi and Cesa-Bianchi
[1]).

When playing in a partial-information matrix game, the main topic of this
article, Nature’s actions can be masked. More precisely, at the beginning of the
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game the Learner is given a pair of N × M matrices, (L, H), where L is the
loss matrix as before, while H is a matrix that specifies what information the
Learner receives in each round. The elements of H belong to some alphabet,
which, without the loss of generality (WLOG), can be assumed to be the set
of natural numbers. The way the game is played is modified as follows: in any
round, if i and j are the actions chosen by the Learner and Nature, respectively,
then instead of j, the Learner receives Hij only as the feedback. It is then the
structure of H that determines how much information is revealed in each time
step: assuming the learner selects i, Hij may reveal the identity of j (i.e., if
Hij �= Hik, 1 ≤ j < k ≤ M) or it may mask it completely (i.e., if Hi,· ≡ const).
The goal of the Learner is still to keep its regret small, but the game has now
a new element: The learner might need to give up on using actions with small
losses in favour of playing informative actions i.e., the exploration vs. exploitation
tradeoff appears.

Let us now discuss some previous results and describe our contributions. A
special case of partial-information games is when the Learner learns the loss of
the action taken (i.e., when H = L), also known as the bandit case1. Then, the
INF algorithm due to Audibert and Bubeck [2] is known to achieve a regret
bound O(

√
NT ). (The Exp3 algorithm due to Auer et al. [3] achieves the same

bound up to logarithmic factors.) It is also known that this is the best possible
bound [3].

Now, consider another special case: Imagine a 3×2 game (L, H), where the first
action of the Learner gives full information about Nature’s choice (H11 �= H12),
but it has a high cost, independently of Nature’s choice (say, 11 = 12 = 1),
while the other two actions do not reveal any information about Nature’s choice
(i.e., Hi1 = Hi2, i = 2, 3). Further, assume that the cost of action 2 is low if
Nature chooses action 1 and the cost of action 3 is low if Nature chooses action
2, say, 21 = 32 = 0, 22 = 31 = 1:

L =

⎛⎝1 1
0 1
1 0

⎞⎠ , H =

⎛⎝0 1
0 0
0 0

⎞⎠ .

In this case, it is known that the regret growth-rate is bounded by Ω(T 2/3)
from below (cf. Theorem 5.1, [4]), showing that a game like this is intrinsically
harder than a bandit problem. Further, it is known that if certain conditions hold
then the regret of the “general forecaster for partial monitoring” is bounded by
O(T 2/3) (cf. Theorem 3.1, [4]).

It is also clear that in certain cases the best possible regret grows linearly
with T (i.e., when no information is received about Nature’s actions), while in
some other trivial cases the learner can achieve 0 regret.

Thus, we see, that the difficulty of a game depends on the structure of L
and H . However, as of yet, it is unclear what determines this difficulty. In fact,
1 The non-stochatic multi-armed bandit problem with losses constrained to a finite

set is an example of a game satisfying H = L. However, this condition allows also
other types of games where the Learner can recover the losses of actions not chosen.
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discussing the rate of decay of the regret per time-step, Cesa-Bianchi et al. [4]
note that “It remains a challenging problem to characterize the class of prob-
lems that admit rates of convergence faster than O(T−1/3)”.2 This is exactly the
question which motivated the research reported on in this paper. In particular,
we wish to answer the following questions:

1. Given L, H , how difficult is the game G = (L, H)? That is, given G what is
the growth-rate of the minimax regret,

RT (G) = inf
A∈A

sup
E∈E

RT (G, A, E) , (1)

corresponding to G, where A is the class of randomized strategies for the
learner, E is the class of Nature’s strategies and RT (G, A, E) denotes the
expected regret up to time T when the Learner using strategy A is playing
against Nature in game G and Nature uses strategy E.

2. Do there exist games where the exponent of the minimax regret rate is other
than 0, 1/2, 2/3, and 1?

3. Does there exist a strategy (and what is it), which, when fed with G =
(L, H), achieves the minimax regret?

In this paper, we make some initial steps toward answering these questions. In
particular, for games when Nature has at most two actions, apart from a set of
games of measure zero, we give complete answer to the above questions.

In particular, we show that the answer to the second question above is neg-
ative: Only exponents 0, 1/2, 2/3 and 1 can appear in the growth rate of the
minimax regret. As far as the lower bounds are concerned, an exponent of 1/2
follows since non-trivial partial-monitoring games are clearly at least as diffi-
cult as full-information games and, for the latter games, as it is well known,
a lower bound on the minimax regret with exponent 1/2 holds [5]. Thus, our
first contribution is to show that if the exponent of the minimax regret rate is
above 1/2 then it cannot be below 2/3. Precisely, we show that if, after sorting
the nondominated Learner’s actions according to their losses under either one of
Nature’s actions, there exist two consecutive actions under which Nature’s two
actions are indistinguishable (i.e., the actions are non-revealing) then Nature
can force a high regret. Here, a Learner’s action i is called nondominated if there
exists a distribution over Nature’s actions such that action i has the smallest
average loss over that distribution. Otherwise it is called dominated. An action
i is non-revealing if Hi1 = Hi2, otherwise it is called revealing.

Our next contribution is that we give a strategy which, apart from these
difficult games, achieves a regret growth rate with exponent 1/2. Here, the insight
is that if at least one of any pair of consecutive nondominated actions is a
revealing action then the Learner can gain enough information cheaply. Since
Corollary 4.2 due to Cesa-Bianchi et al. [4] states that a regret with exponent
2/3 is achievable for all non-trivial partial-monitoring games, we basically get a
complete classification of games with M = 2.
2 Here we renamed their n to T to match our notation.
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�·,2

�·,1

i3

i2

i1

i4

Revealing action

Non-revealing action
Dominated action

Fig. 1. The figure shows each action i as a point in R2 with coordinates (�i,1, �i,2).
The solid line connects the chain of nondominated actions, which, by convention are
ordered according to their loss for the first outcome.

2 Results

Consider a finite partial-monitoring game G = (L, H) of size N ×M . The regret
of the Learner playing sequence 1 ≤ It ≤ N against Nature playing sequence
1 ≤ Jt ≤ M is defined as

R̂T =
T∑

t=1

It,Jt − min
1≤i≤M

T∑
t=1

i,Jt . (2)

The expected regret is defined by RT = E[R̂T ]. (Note that since the Learner can
randomize, R̂T is a random variable.) In what follows Nature’s actions will also
be called outcomes.

From now on we consider only the case when M = 2. Dominated, nondomi-
nated, revealing and non-revealing actions were introduced in the introduction.
These concepts can be visualized by showing each action i as a point in R2 with
coordinates (i,1, i,2). Then the points corresponding to the nondominated ac-
tions lie on the boundary of the convex hull of the set of all the actions. See
Figure 1. Enumerating the nondominated actions in the counter-clockwise order
along the boundary of the convex hull gives rise to a sequence (i1, i2, . . . , iK),
which we call the chain of nondominated actions.

To avoid trivialities, WLOG we will assume that there are no duplicate actions,
that is, two actions i, j, i �= j, such that the i-th and the j-th rows of the loss
matrix are the same. Clearly, if duplicate actions exist then at least one of them
can be removed without changing the min-max expected regret: If both are
either revealing or non-revealing, it does not matter which action is removed.
Otherwise, we remove the non-revealing action.

To state the classification theorem, we introduce the following conditions.

Separation Condition. A game G satisfies the separation condition if its
chain of nondominated actions does not have a pair of consecutive actions
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ij, ij+1 such that both of them are non-revealing. The set of games satisfying
this condition will be denoted by S.

Non-degeneracy Condition. A game G satisfies the non-degeneracy condi-
tion if each of its nondominated actions is an extreme3 point of the convex hull
of all the actions.

As we will soon see, the separation condition is the key to distinguish between
“hard” and “easy” games. On the other hand, the non-degeneracy condition is
merely a technical condition that we need in our proofs. The Lebesgue measure
of the class of loss matrices it excludes is zero. We are now ready to state our
main result.

Theorem 1 (Classification of two-outcome partial-monitoring games).
Let G = (L, H) be a finite partial-monitoring game with two outcomes that
satisfies the non-degeneracy condition. Let K be the number of nondominated
actions in G. Let S be the set of games satisfying the separation condition. The
min-max expected regret RT (G) satisfies4

RT (G) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0, K = 1; (3a)

Θ̃
(√

T
)

, K ≥ 2, G ∈ S; (3b)

Θ
(
T 2/3

)
, K ≥ 2, G �∈ S, G has a revealing action; (3c)

Θ(T ), otherwise. (3d)

Cases (3a) and (3d) are trivial. The lower bound of case (3b) follows from the fact
that even the full information case has expected regret Ω(

√
T ) [5]. The upper

bound of case (3c) can be derived from a result of Cesa-Bianchi et al. [4]: Recall
that the entries of H can be changed without changing the information revealed
to the Learner as long as one does not change the pattern of which elements in
a row are equal and different. Cesa-Bianchi et al. [4] show that if the entries of

H can be chosen such that rank(H) = rank
(

H
L

)
then O(T 2/3) expected regret

is achievable. This condition holds trivially for two-outcome games with at least
one revealing action. It remains to prove the upper bound for (3b) and the lower
bound for (3c). We prove these in the next sections.

3 Upper Bound

In this section we present our algorithm, AppleTree, for games satisfying
the separation condition and the non-degeneracy condition, and prove that it
achieves Õ(

√
T ) regret with high probability. (The choice of the name of the

algorithm will be explained later.)
3 An extreme point of a convex set is a point which is not a non-trivial convex com-

bination of two different points of the set. In our case, the set is a convex polygon
and its extreme points are precisely its vertices.

4 Here, an = Θ̃(bn) stands for an = Ω(bn) and an = Õ(bn), where Õ(·) hides poly-
logarithmic terms.
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v
Child(v, 1) Child(v, 2)

Fig. 2. The binary tree built by the algorithm. The leaf nodes represent neighboring
action pairs.

3.1 Algorithm

In the first step of the algorithm we can purify the game by first removing the
dominated actions and then the duplicates as mentioned beforehand.

The idea of the algorithm is to recursively split the game until we arrive at
games with two actions only. Now, if one has only two actions in a partial-
information game, the game must be either a full-information game (if both
actions are revealing) or an instance of a one-armed bandit (with one action
revealing the outcome, the other revealing no information).

To see why this latter case corresponds to one-armed bandits assume WLOG
that the first action is the revealing action. Now, it is easy to see that the regret
of a sequence of actions in a game does not change if the loss matrix is changed
by subtracting the same number from a column.5 By subtracting 2,1 from the
first and 2,2 from the second column we thus get the equivalent game where the
second row of the loss matrix is zero. In this game, the Learner knows the loss
of the second action independently of the outcome, while, since the first action
is revealing, he learns the loss of the first action in any round when that action
is played, which is exactly what one has in a one-armed bandit game. Since a
one-armed bandit is a special form of a two-armed bandit, one can use Exp3.P
due to Auer et al. [3] to achieve the Õ(

√
T ) regret6.

Now, if there are more than two actions in the game, then the game is split,
putting the first half of the actions into the first and the second half into the sec-
ond subgame, with a single common shared action. Here the actions are ordered
according to their losses corresponding to the first outcome. This is continued
until the split results into games with two actions only. The recursive splitting of
the game results in a binary tree (see Figure 2). The idea of the strategy played
at an internal node of the tree is as follows: An outcome sequence of length T
determines the frequency ρT of outcome 2. If this frequency is small, the optimal
action is one of the actions of G1, the first subgame (simply because then the
frequency of outcome 1 is high and G1 contains the actions with the smallest loss
5 As a result, for any algorithm, if RT is its regret at time T when measured in

the game with the modified loss matrix, the algorithm’s “true” regret will also be
RT (i.e., the algorithm’s regret when measured in the original, unmodified game).
Piccolboni and Schindelhauer [6] exploit this idea, too.

6 Apparently, this is a new result for this kind of game, also known as apple tasting.
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for the first outcome). Conversely, if this frequency is large, the optimal action
is one of the actions of G2. In some intermediate range, the optimal action is
the action shared between the subgames. Let the boundaries of this range be
ρ∗1 < ρ∗2 (ρ∗1 is thus the solution to (1−ρ)1,s−1 +ρ2,s−1 = (1−ρ)1,s +ρ2,s and
ρ∗2 is the solution to (1−ρ)1,s+1 +ρ2,s+1 = (1−ρ)1,s +ρ2,s, where s = #K/2$
is the index of the action shared between the two subgames.)

If we knew ρT , a good solution would be to play a strategy where the actions
are restricted to that of either game G1 or G2, depending on whether ρT ≤
ρ∗1 or ρT ≥ ρ∗2. (When ρ∗1 ≤ ρT ≤ ρ∗2 then it does not matter which action-
set we restrict the play to, since the optimal action in this case is included in
both sets.) There are two difficulties. First, since the outcome sequence is not
known in advance, the best we can hope for is to know the running frequencies
ρt = 1

t

∑t
s=1 I(Js = 2). However, since the game is a partial-information game,

the outcomes are not revealed in all time steps, hence, even ρt is inaccessible.
Nevertheless, for simplicity, assume that ρt was available. Then one idea would
be to play a strategy restricted to the actions of either game G1 or G2 as long
as ρt stays below ρ∗1 or above ρ∗2. Further, when ρt becomes larger than ρ∗2
while previously the strategy played the action of G1 then we have to switch
to the game G2. In this case, we start a fresh copy of a strategy playing in
G2. The same happens when a switch from G2 to game G1 is necessary. The
resets are necessary because at the leaves we play according to strategies that
use weights that depend on the cumulated losses of the actions exponentially.
To see an example when without resets the algorithm fails to achieve a small
regret consider the case when there are 3 actions, the middle one being revealing.
Assume that during the first T/2 time steps the frequency of outcome 2 oscillates
between the two boundaries so that the algorithm switches constantly back and
forth between the games G1 and G2. Assume further that in the second half
of the game, the outcome is always 2. This way the optimal action will be 3.
Nevertheless, up to time step T/2, the player of G2 will only see outcome 1 and
thus will think that action 2 is the optimal action. In the second half of the
game, he will not have enough time to recover and will play action 2 for too
long. Resetting the algorithms of the subgames avoids this behavior.

If the number of switches was large, the repeated resetting of the strategies
could be equally problematic. Luckily this cannot happen, hence the resetting
does minimal harm. We will in fact show that this generalizes to the case even
when ρt is estimated based on partial feedback (see Lemma 3).

Let us now turn to how ρt is estimated. In any round, the algorithm re-
ceives feedback ht ∈ {1, 2, ∗}: if a revealing action is played in the round,
ht = Jt ∈ {1, 2}, otherwise ht = ∗. If the algorithm choosing the actions decides
with probability pt ∈ (0, 1] to play a revealing action (pt can depend on the
history Ht) then I(ht = 2)/pt is a simple unbiased estimate of I(Jt = 2) (in fact,
E [I(ht = 2)/pt|Ht] = I(Jt = 2)). As long as pt does not drop to a too low value,
ρ̂t = 1

t

∑t
s=1

I(ht=2)
pt

will be a relatively reliable estimate of ρt (see Lemma 4).
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function Main(G, T, δ)
Input: G = (L, H) is a game, T is

a horizon, 0 < δ < 1 is a confi-
dence parameter

1: G← Purify(G)
2: BuildTree(root, G, δ)
3: for t← 1 to T do
4: Play(root)
5: end for

Fig. 3. The main entry point of the
AppleTree algorithm

function InitEta(G, T )
Input: G is a game, T is a horizon
1: if IsRevealing(G, 2) then
2: η(v)←√

8 ln 2 /T
3: else
4: η(v)← γ(v)/4
5: end if

Fig. 4. The initialization routine
InitEta

function BuildTree(v,G, δ)
Input: G = (L, H) is a game, v is a tree node
1: if NumOfActions(G) = 2 then
2: if not IsRevealing(G, 1) then
3: G← SwapActions(G)
4: end if
5: wi(v)← 1/2, i = 1, 2
6: β(v)←√

ln(2/δ)/(2T )
7: γ(v)← 8β(v)/(3 + β(v))
8: InitEta(G, T )
9: else

10: (G1, G2)← SplitGame(G)
11: BuildTree(Child(v,1), G1, δ/(4T ) )
12: BuildTree(Child(v,2), G2, δ/(4T ) )
13: g(v)← 1, ρ̂(v)← 0, t(v)← 1
14: (ρ′

1(v), ρ′
2(v))← Boundaries(G)

15: end if
16: G(v)← G

Fig. 5. The tree building procedure

However reliable this estimate is, it can still differ from ρt. For this reason, we
push the boundaries determining game switches towards each other:

ρ′1 =
2ρ∗1 + ρ∗2

3
, ρ′2 =

ρ∗1 + 2ρ∗2
3

. (4)

We call the resulting algorithm AppleTree, because the elementary partial-
information 2-action games in the bottom essentially correspond to instances of
the apple tasting problem (see Example 2.3 of [4]). The algorithm’s main entry
point is shown on Figure 3. Its inputs are the game G = (L, H), the time horizon
and a confidence parameter 0 < δ < 1. The algorithm first eliminates the dom-
inated and duplicate actions. This is followed by building a tree, which is used
to store variables necessary to play in the subgames (Figure 5): If the number
of actions is 2, the procedure initializes various parameters that are used either
by a bandit algorithm (based on Exp3.P [3]), or by the exponentially weighted
average algorithm (EWA) [5]. In the other case, it calls itself recursively on the
splitted subgames and with an appropriately decreased confidence parameter.

The main worker routine is called Play. This is again a recursive function
(see Figure 6). The special case when the number of actions is two is handled in
routine PlayAtLeaf, which will be discussed later. When the number of actions
is larger, the algorithm recurses to play in the subgame that was remembered
as the game to be preferred from the last round and then updates its estimate
of the frequency of outcome 2 based on the information received. When this
estimate changes so that a switch of the current preferred game is necessary,
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function Play(v)
Input: v is a tree node
1: if NumOfActions(G(v)) = 2 then
2: (p, h)← PlayAtLeaf(v)
3: else
4: (p, h)← Play(Child(v, g(v)))
5: ρ̂(v)← (1− 1

t(v)
)ρ̂(v) + 1

t(v)
I(h=2)

p

6: if g(v) = 2 and ρ̂(v) < ρ′
1(v) then

7: Reset(Child(v,1)); g(v)← 1
8: else if g(v) = 1 and ρ̂(v) > ρ′

2(v) then
9: Reset(Child(v,2)); g(v)← 2

10: end if
11: t(v)← t(v) + 1
12: end if
13: return (p, h)

Fig. 6. The recursive function Play

function Reset(v)
Input: v is a tree node
1: if NumOfActions(G(v)) = 2

then
2: wi(v)← 1/2, i← 1, 2
3: else
4: g(v)← 1, ρ̂(v)← 0, t(v)← 1
5: Reset(Child(v, 1))
6: end if

Fig. 7. Function Reset

the algorithm resets the algorithms in the subtree corresponding to the game
switched to, and changes the variable storing the index of the preferred game.
The Reset function used for this purpose, shown on Figure 7, is also recursive.

At the leaves, when there are only two actions, either EWA or Exp3.P is
used. These algorithms are used with their standard optimized parameters (see
Corollary 4.2 for the tuning of EWA, and Theorem 6.10 for the tuning of Exp3.P,
both from the book of Lugosi and Cesa-Bianchi [1]). For completeness, their
pseudocodes are shown in Figures 8–9. Note that with Exp3.P (lines 6–14) we
use the loss matrix transformation described earlier, hence the loss matrix has
zero entries for the second (non-revealing) action, while the entry for action 1
and outcome j is 1,j(v)− 2,j(v). Here i,j(v) stands for the loss of action i and
outcome j in the game G(v) that is stored at node v.

3.2 Proof of the Upper Bound

Theorem 2. Assume G = (L, H) satisfies the separation condition and the non-
degeneracy condition and i,j ≤ 1. Denote by R̂T the regret of Algorithm Apple-

Tree up to time step T . There exist constants c, p such that for any 0 < δ < 1
and T ∈ N, the algorithm with input G, T, δ achieves P

(
R̂T ≤ c

√
T lnp(2T/δ)

)
≥

1 − δ .

Throughout the proof we will analyze the algorithm’s behavior at the root
node. We will use time indices as follows. Let us define the filtration {Ft =
σ(I1, . . . , It)}t, where It is the action the algorithm plays at time step t. To any
variable x(v) used by the algorithm, we denote by xt(v) the value of x(v) that is
measurable with respect to Ft, but not measurable with respect to Ft−1. From
now on we abbreviate xt(root) by xt. We start with two lemmas. The first lemma
shows that the number of switches the algorithm makes is small.
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function PlayAtLeaf(v)
Input: v is a tree node
1: if RevealingActionNumber(G(v)) = 2

then � Full information case
2: (p, h)← Ewa(v)
3: else � Partial information case
4: p← (1− γ(v)) w1(v)

w1(v)+w2(v)
+ γ(v)/2

5: U ∼ U[0,1) � U is uniform in [0, 1)
6: if U < p then � Play revealing action
7: h← CHOOSE(1) � h ∈ {1, 2}
8: L1 ← (�1,h(v)− �2,h(v) + β(v))/p
9: L2 ← β(v)/(1− p)

10: w1(v)← w1(v) exp(−η(v)L1)
11: w2(v)← w2(v) exp(−η(v)L2)
12: else
13: h← CHOOSE(2) � here h = ∗
14: end if
15: end if
16: return (p, h)

Fig. 8. Function PlayAtLeaf

function Ewa(v)
Input: v is a tree node
1: p← w1(v)

w1(v)+w2(v)

2: U ∼ U[0,1) � U is uniform in [0, 1)
3: if U < p then
4: I ← 1
5: else
6: I ← 2
7: end if
8: h← CHOOSE(I) � h ∈ {1, 2}
9: w1(v)← w1(v) exp(−η(v)�1,h(v))

10: w2(v)← w2(v) exp(−η(v)�2,h(v))
11: return (p, h)

Fig. 9. Function Ewa

Lemma 3. Let S be the number of times AppleTree calls Reset at the root
node. Then there exists a universal constant c∗ such that S ≤ c∗ ln T

Δ , where
Δ = ρ′2 − ρ′1, ρ′1 and ρ′2 given by (4).

Note that here we use the non-degeneracy condition to ensure that Δ > 0.
Proof. Let s be the number of times the algorithm switches from G2 to G1. Let
t1 < . . . < ts be the time steps when ρ̂t becomes smaller than ρ′1. Similarly, let
t′1 < . . . < t′s+ξ, (ξ ∈ {0, 1}) be the time steps when ρ̂t becomes greater than ρ′2.
Note that for all 1 ≤ j < s, t′j < tj < t′j+1. The number of times the algorithm
resets is at most 2s + 1. For any 1 ≤ j ≤ s, ρ̂t′j > ρ′2 and ρ̂tj < ρ′1. According to
the update rule we have for any t that

ρ̂t =
(

1 − 1
t

)
ρ̂t−1 +

1
t
· I(Jt = 2)

pt
≥ t − 1

t
ρ̂t−1 = ρ̂t−1 − 1

t
ρ̂t−1

and hence ρ̂t−1 − ρ̂t ≤ 1
t . Summing this inequality for all t′j + 1 ≤ t ≤ tj we

get Δ ≤ ρ̂t′j − ρ̂tj ≤
∑tj−1

t=t′j
1
t = O

(
ln tj

t′j

)
, using that Δ = ρ′2 − ρ′1. Thus, there

exists c∗ > 0 such that for all 1 < j ≤ s

1
c∗

Δ ≤ ln
tj
t′j

≤ ln
tj

tj−1
. (5)

Adding (5) for 1 < j ≤ s we get (s − 1) 1
c∗ Δ ≤ ln ts

t1
≤ ln T, which yields the

desired statement. ��
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The next lemma shows that the estimate of the relative frequency of outcome 2
is not far away from its true value.

Lemma 4. Let c = 8
3Δ2 . Then for any 0 < δ < 1, with probability at least 1− δ,

for all t ≥ c
√

T ln(2T/δ), |ρ̂t − ρt| ≤ Δ.

Proof. Using Bernstein’s inequality for martingales (see Lemma A.8 in Lugosi
and Cesa-Bianchi [1]) and the fact that, due to the construction of the algo-
rithm, the probability pt of playing a revealing action at time step t is always
greater than 1/

√
T , we get that for any t, Pr (|ρ̂t − ρt| > Δ) ≤ 2 exp

(
− 3Δ2t

8
√

T

)
.

Reordering the inequality and applying the union bound for all 1 ≤ t ≤ T we
get the result. ��

Proof. of Theorem 2. To prove that the algorithm achieves the desired regret
bound we use induction on the depth of the tree, d. If d = 1, AppleTree

plays either EWA or Exp3.P. EWA is known to satisfy Theorem 2, and, as we
discussed earlier, Exp3.P achieves O(

√
T ln T/δ) regret as well. As the induction

hypothesis we assume that Theorem 2 is true for any T and any game such that
the tree built by the algorithm has depth d′ < d.

Let Q1 = {1, . . . , #K/2$}, Q2 = {#K/2$, . . . , K} be the set of actions asso-
ciated with the subgames in the root7. Furthermore, let us define the following
values: Let T 0

0 = 1, let T 0
i be the first time step t after T 0

i−1 such that gt �= gt−1.
In other words, T 0

i are the time steps when the algorithm switches between
the subgames. Finally, let Ti = min(T 0

i , T + 1). From Lemma 3 we know that
TSmax+1 = T + 1, where Smax = c∗ ln T

Δ . It is easy to see that Ti are stopping
times for any i ≥ 1.

WLOG, from now on we will assume that the optimal action i∗ ∈ Q1. If
i∗ = #K/2$ then, since it is contained in both subgames, the bound trivially
follows from the induction hypothesis and Lemma 3. In the rest of the proof we
assume i∗ < K/2.

Let S = max{i ≥ 1 | T 0
i ≤ T } the number of switches and B be the event

that for all t ≥ c
√

T ln(4T/δ), |ρ̂t − ρt| ≤ Δ. We know from Lemma 4 that
P(B) ≥ 1−δ/2. On B we have that |ρ̂T −ρT | ≤ Δ, and thus, using that i∗ < K/2,
ρT ≤ ρ∗1. This implies that in the last phase the algorithm plays on G1. It is
also easy to see that before the last switch, at time step TS − 1, ρ̂ is between
ρ∗1 and ρ∗2, if TS is large enough. Thus, up to time step TS − 1, the optimal
action is #K/2$, the one that is shared by the two subgames. This implies that∑TS−1

t=1 i∗,Jt − �K/2�,Jt
≥ 0. On the other hand, if TS ≤ c

√
T ln(4T/δ) then

TS−1∑
t=1

i∗,Jt − �K/2�,Jt
≥ −c

√
T ln(4T/δ) .

7 Recall that the actions are ordered with respect to �·,1.
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Thus, we have

R̂T =
T∑

t=1

It,Jt − i∗,Jt

=
TS−1∑
t=1

(It,Jt − i∗,Jt) +
T∑

t=TS

(It,Jt − i∗,Jt)

≤ I(B)

(
TS−1∑
t=1

(
It,Jt − �K/2�,Jt

)
+

T∑
t=TS

(It,Jt − i∗,Jt)

)
+ c

√
T ln(4T/δ) + (I(Bc)) T︸ ︷︷ ︸

D

≤ D + I(B)
Smax∑
r=1

max
i∈Qπ(r)

Tr−1∑
t=Tr−1

(It,Jt − i,Jt)

= D + I(B)
Smax∑
r=1

max
i∈Qπ(r)

T∑
m=1

I(Tr − Tr−1 = m)
Tr−1+m−1∑

t=Tr−1

(It,Jt − i,Jt) ,

where π(r) is 1 if r is odd and 2 if r is even. Note that for the last line of the
above inequality chain to be well defined, we need outcome sequences of length
at most 2T . It makes us no harm to assume that for all T < t ≤ 2T , say, Jt = 1.

Recall that the strategies that play in the subgames are reset after the switches.

Hence, the sum R̂
(r)
m =

∑Tr−1+m−1
t=Tr−1

(It,Jt − i,Jt) is the regret of the algorithm
if it is used in the subgame Gπ(r) for m ≤ T steps. Then, exploiting that Tr are

stopping times, we can use the induction hypothesis to bound R̂
(r)
m . In particular,

let C be the event that for all m ≤ T the sum is less than c
√

T lnp(2T 2/δ). Since
the root node calls its children with confidence parameter δ/(2T ), we have that
P(Cc) ≤ δ/2. In summary,

R̂T ≤ D + I(Cc)T + I(B)I(C)Smaxc
√

T lnp 2T 2/δ

≤ I(Bc ∪ Cc)T + c
√

T ln(4T/δ) + I(B)I(C)
c∗ ln T

Δ
c
√

T lnp 2T 2/δ.

Thus, on B∩C, R̂T ≤ 2pcc∗
Δ

√
T lnp+1 (2T/δ) , which, together with P(Bc∪Cc) ≤ δ

concludes the proof. ��

Remark. The above theorem proves a high probability bound on the regret. We
can get a bound on the expected regret if we set δ to 1/T . Also note that the
bound given by the induction grows in the number of nondominated actions as
O(K log2 K).

4 Lower Bound

In this section we present a lower bound for the expected regret in the case when
the separation condition does not hold.
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Theorem 5. If G satisfies the non-degeneracy condition and the separation
condition does not hold then there exists a constant C such that for any al-
gorithm A and time horizon T there exists a sequence of outcomes such that the
expected regret RT (A) of the algorithm satisfies RT (A) ≥ CT 2/3.

Proof. We follow the steps of the lower bound proof for the label efficient pre-
diction from Cesa-Bianchi et al. [4] with a few changes. The most important
change, as we will see, is the choice of the models we randomize over.

We can assume WLOG that actions 1 and 2 are the two consecutive non-
dominated non-revealing actions, while all the other actions are revealing and
(1,1, 1,2) = (0, α), (2,1, 2,2) = (1 − α, 0) with some α ∈ [0, 1]. That this can
be assumed follows by scaling and a reduction similar to the one we used in
Section 3.1. Using the non-degeneracy condition and that actions 1 and 2 are
consecutive, we get that for all i ≥ 3, there exists some λi ∈ R such that

i,1 > λi1,1 + (1 − λi)2,1 = (1 − λi)(1 − α) ,

i,2 > λi1,2 + (1 − λi)2,2 = λiα .
(6)

We denote λmin = mini≥3 λi, λmax = maxi≥3 λi and λ∗ = λmax − λmin.
We construct random outcome sequences as follows. We define two models

for generating outcome sequences. We use pi(·) and Ei[·] to denote probability
mass function and expectation given model i ∈ {1, 2}, respectively. In model 1
the outcomes are i.i.d. random variables with p1(1) = α + ε whereas in model 2,
p2(1) = α − ε with ε < 1 to be chosen later. Note that, if ε is small enough then
only actions 1 and 2 can be optimal. Namely, action i is optimal in model i.

Let ht ∈ {∗, 1, 2} denote the observation of the algorithm at time step t,
and let ht denote the observation sequence (h1, . . . , ht). Let At(ht−1) denote the
choice of the algorithm8 at time step t, given the history of observations ht−1.
Let N j

i = Ej [
∑T

t=1 I(It = i)], that is, the expected number of times action i is
played up to time step T , given model j. Finally, let N j

≥3 =
∑

i≥3 N j
i .

Let D(p||q) be the KL divergence of Bernoulli distributions with parameters
p and q. We need the following technical lemma.

Lemma 6. Let 0 < ε < α be such that α + ε < 1. Then D(α − ε||α + ε) =
2ε2

α(1−α) + O
(
ε3
)
.

Proof. The result follows from the definition of KL divergence and the second
order Taylor expansion of ln(1 + x). ��
The next lemma states that the expected number of times actions 1 and 2 are
played by A does not change too much if we change the model:

Lemma 7. There exists a constant c (depending on α only) such that

N1
2 ≥ N2

2 − cT ε
√

N2
≥3 and N2

1 ≥ N1
1 − cT ε

√
N1

≥3 .

8 Conditioning on the internal randomization of A if necessary, we can assume WLOG
that algorithm A is deterministic.
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Proof. We only prove the first inequality, the other one is symmetric. We have

N2
2 − N1

2 =
∑
hT−1

(
p2

(
hT−1)− p1

(
hT−1)) T∑

t=1

I
(
At

(
ht−1) = 2

)
≤ T

∑
hT−1:

p2(hT−1)≥p1(hT−1)

(
p2

(
hT−1)− p1

(
hT−1))

=
T

2
‖p2 − p1‖1 ≤ c1T

√
D (p2||p1),

where the last step follows from Pinsker’s inequality [7]. Using the chain rule for
KL divergence we can write

D (p2||p1) =
T∑

t=1

D
(
p2(ht|ht−1)||p1(ht|ht−1)

)
=

T∑
t=1

∑
ht−1

p2(ht−1)
∑
ht

p2(ht|ht−1) ln
p2(ht|ht−1)
p1(ht|ht−1)

=
T∑

t=1

∑
ht−1

I(At(ht−1) ≥ 3)p2(ht−1)
∑

ht∈{1,2}
p2(ht|ht−1) ln

p2(ht|ht−1)
p1(ht|ht−1)

(7)

=
T∑

t=1

∑
ht−1

I(At(ht−1) ≥ 3)p2(ht−1)
(

2ε2

α(1 − α)
+ O

(
ε3
))

(8)

=
(

2ε2

α(1 − α)
+ O

(
ε3
))

N2
≥3 .

In (7) we used that if we play action 1 or 2 then our observation ht will be ∗
in both models 1 and 2, whereas if we play action i ≥ 3 then ht ∈ {1, 2}, while
in (8) we used Lemma 6. ��
The expected regret of the algorithm can be bounded in terms of N j

i :

E1[R̂T ] ≥ (1
1(α + ε) + 1

2(1 − α − ε) − α(1 − α − ε))︸ ︷︷ ︸
f1

N1
≥3 + εN1

2

E2[R̂T ] ≥ (2
1(α − ε) + 2

2(1 − α + ε) − (1 − α)(α − ε))︸ ︷︷ ︸
f2

N2
≥3 + εN2

1

where, for an outcome i, j
i is the loss of the best revealing action given model j.

Now, by (6), there exists τ > 0 such that for all i ≥ 3, i,1 ≥ (1 − λi)(1 − α) + τ
and i,2 ≥ αλi + τ. Simple algebra gives that f1 ≥ (1 − λmax)ε + τ and
f2 ≥ λminε + τ . Hence, if ε is small enough then both f1 and f2 are posi-
tive. Therefore, choosing j = arg minl∈{1,2}(N l

≥3) and using Lemma 7 we get
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Ei[R̂T ] ≥ fiN
j
≥3 + ε

(
N j

3−i − cT ε
√

N j
≥3

)
, i = 1, 2. Finally, randomizing over the

two models such that each of them is chosen with equal probability and denot-
ing the corresponding expectation by E[·], setting ε to c2T

−1/3 we have E[R̂T ] ≥
(τ− λ∗c2T−1/3

2 )N j
≥3+c2T

2/3−c2
2cT

1/3
√

N j
≥3 > T 2/3

(
(τ − λ∗c2

2 )x2 + c2 − c2
2cx

)
,

where x =

√
Nj

≥3

T 2/3 . Now it is easy to see that c2 can be set such that, indepen-

dently of x, the right hand side is always positive and thus it is Ω(T 2/3). ��

5 Discussion

In this paper we classified partial-monitoring games with two outcomes based on
their minimax regret. The most important open question is whether our results
generalize to games with more outcomes.

A simple observation is that, given a finite partial-monitoring game, if we re-
strict Nature’s set of actions to any two outcomes, the resulting game’s hardness
serves as a lower bound on the minimax regret of the original game. This gives
us a sufficient condition that a game has Ω(T 2/3) minimax regret. We believe
that the Ω(T 2/3) lower bound can also be generalized to situations where two
“ε-close” outcome distributions are not distinguishable by playing only their
respective optimal actions. Generalizing the upper bound result seems more
challenging. The algorithm AppleTree heavily exploits the two-dimensional
structure of the losses and, as of yet, in general we do not know how to con-
struct an algorithm that achieves Õ(

√
T ) regret on partial-monitoring games

with more than two outcomes.
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Abstract. We present a simple online two-way trading algorithm that
exploits fluctuations in the unit price of an asset. Rather than analysing
worst-case performance under some assumptions, we prove a novel, un-
conditional performance bound that is parameterised either by the actual
dynamics of the price of the asset, or by a simplifying model thereof. The
algorithm processes T prices in O(T 2) time and O(T ) space, but if the
employed prior density is exponential, the time requirement reduces to
O(T ). The result translates to the prediction with expert advice frame-
work, and has applications in data compression and hypothesis testing.

1 Introduction

We consider a two-player game played between Investor and Nature. Investor
starts out with one unit of cash. At each time, Investor decides which fraction of
his current capital to invest in an asset (denoted A), and how much to keep in
his boot (denoted B). Nature, on the other hand, chooses the price of the asset.

A play for Nature is a function Λ : [0, T ] → R that specifies the natural
logarithm of the unit price of A as a function of time. The end-time T is part of
Nature’s move and unknown to Investor. An example play is shown in Figure 1.

Investor’s payoff is defined as the natural logarithm of his capital at the end-
time T , where shares owned are valued at the final logprice Λ(T ). In hindsight,
it would have been optimal for Investor to follow the strategy SΛ that invests
all capital in A at local minima of Λ, and liquidates all shares into B at local
maxima. Let z = z0, . . . , zm denote the sequence of logprices at local extrema of
Λ, with z0 = Λ(0) and zm = Λ(T ). The payoff of the strategy SΛ thus equals

SΛ∗Λ :=
∑

1≤i≤m

max{0, zi − zi−1}.

We construct a foresight-free, computationally efficient strategy π that guaran-
tees payoff π∗Λ close to SΛ∗Λ. The definition of π relies on the selection of a
probability density function on [0,∞) that for convenience we identify with π
itself (see Section 2), and we abbreviate − lnπ(h) to �(h). We then prove

π∗Λ ≥ SΛ∗Λ −
∑

1≤i≤m

�
(
|zi − zi−1|

)
− (m− 1)cπ − ln 2 − 2επ, (1)

M. Hutter et al. (Eds.): ALT 2010, LNAI 6331, pp. 239–254, 2010.
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Fig. 1. An example play Λ for Nature, with a regularised trend line Λ′

where cπ and επ are two constants that depend on π. Thus the payoff of π on Λ
falls short of the optimum by an overhead that depends on the complexity of Λ,
measured in terms of both the length of the vector z, and the sizes of its entries.
The bound is entirely independent of the time scale T .

When Λ is simple, i.e. has few large fluctuations, (1) shows that π exploits
almost all achievable payoff. The bound degenerates when Λ sports many small
fluctuations, for which the overhead �(x) exceeds the benefit x of trading. How-
ever, we prove that for any regularisation Λ′ of Λ, as illustrated by the dashed
line in Figure 1 and defined precisely in Section 3.2, π’s payoff satisfies

π∗Λ′ ≤ π∗Λ. (2)

Thus, we may pretend that Nature actually played Λ′, and apply the bound (1)
with Λ′ in place of Λ. In fact the regulariser Λ′ may be interpreted as a model for
Nature’s play Λ. The most complex model then yields the bound as presented in
(1), but we may now concern other models, that strike a better balance between
model complexity and goodness of fit. Such tradeoff models will usually yield
better bounds. In conclusion, if in hindsight a simple regulariser can be found
with large payoff, then π will collect most of that payoff as well.

Example 1. Let Λ and Λ′ be, respectively, the play for Nature and the regu-
lariser shown in Figure 1. The extrema of the regulariser are given by z′ =
(0, 42, 36, 82, 68, 112, 57, 90, 77, 90). Then SΛ′∗Λ′ = (42 − 0) + (82 − 36) + . . . +
(90 − 77) = 178. Now we select the exponential density listed in Table 1 for the
definition of π; the values for cπ and επ are also listed there. We can now apply
bounds (2) and (1) to find

π∗Λ ≥ π∗Λ′ ≥ 178 − 64.8 − 8 · 0.034 − ln 2 − 2 · 3.40 ≈ 105.4.
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Note that there may be choices of Λ′ for which the bound is better, and even for
the optimal choice of Λ′ the strategy π may perform substantially better than
our bound indicates. The actual payoff of π on these data is π∗Λ = 175.4. ♦

Applications and Related Work. Our model and its analysis are phrased in
financial terms. However, it applies much more widely. We list four examples.

One-Way Trading and Two-Way Trading. This is the most direct example. We
let Λ be the logarithm of the exchange rate between any two assets, say dollar and
yen. If we forbid selling A, we obtain the setting called One-way Trading. Efficient
algorithms with minimax payoff for one-way trading under various restrictions
on Nature’s play Λ are known. E.g. fixed daily price growth range [2], fixed price
range [7] and bounded quadratic variation [6]. Two-way trading guarantees are
derived in [4] by iterating a unidirectional trading algorithm back and forth.
Both the algorithms and the bounds are parametrised by the restrictions placed
on Nature’s play.

Our results are of a different kind. First, no restrictions are placed on Nature’s
play. Second, our guarantees are expressed in terms of Nature’s actual play (or
a regularisation thereof), and hence remain informative when Nature does not
play to ruin Investor.

Prediction with Expert Advice. Two experts, say A and B sequentially issue
predictions. We denote their cumulative loss at time t by LA(t) and LB(t).
We let Λ(t) = LB(t) − LA(t). In prediction tasks with so-called mixable loss
[13], guarantees for our financial game directly translate to expert performance
bounds and vice versa. Efficient strategies include the seminal Fixed Share [9],
the Switching Method [12], and the Switch Distribution and its derivatives [8, 10].
These algorithms guarantee payoff ρ∗Λ ≥ SΛ′∗Λ′ − O(m′ lnT ) for each Λ′ with
m′ blocks. The logarithmic dependence of the bound on the time T of these
algorithms means that for any arbitrary number h, if by switching just a single
time the payoff could be improved by h, there is a sample size T such that these
algorithms are not able to exploit this.

Variable Share [9] switches based on the losses LA and LB. Its payoff guarantee
depends logarithmically on the loss of the best reference strategy with m′ blocks.
However, its analysis assumes so-called bounded loss, and does not apply to
financial games (which involve logarithmic loss, which is unbounded).

Prefix Coding/Compression. Fix two prefix codes A and B for a sequence of
outcomes x1, . . . , xT . Let LA(t) and LB(t) denote the code-length of A and B
on the outcomes x1, . . . , xt measured in nats. Now let Λ(t) = LB(t) − LA(t). It
is well-known that we can build a prefix code that attains code length ln(2) +
min

{
LA(T ), LB(T )

}
on the data. When different codes are good for different

segments of the data, we observe fluctuation in Λ. Using standard information-
theoretic methods, e.g. [3], our financial prediction scheme can be transformed
into a prefix code that exploits these fluctuations.
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Hypothesis Testing. We are given a null hypothesis P0 and an alternative hypoth-
esis P1. Both candidate hypotheses are probabilistic models for some sequence of
observations x1, x2, . . . , xT . Let Λ(t) = ln

(
P1(x1, . . . , xt)/P0(x1, . . . , xt)

)
be the

loglikelihood ratio between P1 and P0. Thus Λ measures the amount of evidence
against the null hypothesis and can be used as a test statistic. Traditionally [1],
we choose a threshold τ > 0 and reject the null hypothesis when Λ(T ) ≥ τ , an
event that is extremely unlikely under P0. The case where Λ(T ) is below the
threshold τ , while Λ(t) ≥ τ at some earlier time t is considered in [11, 5], and
tests are presented that lose as little evidence as possible while remaining un-
biased. These tests are based on strategies that switch only once, and resemble
strategies for one-way trading. By the same method, our strategy induces a fair
test statistic that can be used to reject P0 whenever Λ fluctuates heavily; an
event that is also unlikely under P0.

Outline. We explicate the setting and describe the strategy π for Investor in
Section 2. We analyse the payoff of π and prove our payoff guarantee in Section 3.
We then show how to implement the strategy π efficiently in Section 4.

2 Setting

We introduce the details of our financial game. We first review Nature’s play Λ.
We then construct strategies for Investor, culminating in the definition of the
strategy π. We conclude this section with a lemma that simplifies all later proofs
by exploiting the symmetry between A and B.

2.1 Nature’s Play Λ

A play for Nature is a logprice function Λ : [0, T ] → R. The end-time T is part
of Nature’s move, and unknown to Investor.

For simplicity, we restrict attention to the setting where Λ is discrete, i.e.
piecewise constant with jumps at integer times. This is sufficient for the practical
scenario where Λ is monitored intermittently (albeit possibly very often). Later
in the analysis it will be convenient for technical reasons to generalise to piecewise
continous plays for Nature with finitely many local extrema and finitely many
discontinuities; nevertheless ultimately we remain concerned with the discrete
setting only.

Our results do extend quite readily to the wide class of càdlàg logprice func-
tions (right-continuous with left limits). These encompass continuous time mod-
els that are often considered in the financial literature, such as Brownian motion
with drift, etc. Such theoretically interesting generalisations are deferred to fu-
ture publications.

2.2 Investor’s Strategy π

We now construct the strategy π for Investor in three stages. Two basic strategies
exist. Strategy A invests the initial unit capital in the asset, whereas strategy
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B keeps all capital in the boot. At the end of the game, all shares are valued at
the final logprice Λ(T ). The payoffs, defined as Investor’s final logcapital, of the
basic strategies equal

A∗Λ := Λ(T ) − Λ(0) and B∗Λ := 0.

Since we use logprice differences extensively, we abbreviate Λ(t) − Λ(s) to Λ|ts.

Time-Switched Strategies. From these basic strategies A and B we construct
more interesting strategies. Let t = t0, t1, t2, t3, . . . be a sequence of times such
that 0 = t0 ≤ t1 ≤ t2 ≤ . . . The strategy tA switches at times t starting with A.
That is, tA invests all capital in A until time t1. At that time it sells all shares,
and keeps all money in B until time t2. Then it again invests all capital in A until
time t3 etc. Symmetrically, tB is the strategy that switches at times t starting
with B. Thus the payoffs of tA and tB when Nature plays Λ are

tA∗Λ :=
∞∑

i=0

Λ|T∧t2i+1
T∧t2i

and tB∗Λ :=
∞∑

i=0

Λ|T∧t2i+2
T∧t2i+1

.

Of course, a good time switch sequence t for Investor depends on Nature’s un-
known move Λ. However, Investor may hedge by dividing his initial capital ac-
cording to some prior distribution ρ on the switch time sequence t, and construct
time-switched strategies ρA and ρB with payoffs

ρA∗Λ := ln
∫

exp
(
tA∗Λ

)
dρ(t) and ρB∗Λ := ln

∫
exp

(
tB∗Λ

)
dρ(t),

and the meta strategy ρ with payoff ρ∗Λ := ln
( 1

2 exp
(
ρA∗Λ

)
+ 1

2 exp
(
ρB∗Λ

))
.

Price-Switched Strategies. Price-switched strategies decide when to trade
based on the logprice Λ(t) instead of the time t itself. This renders their payoff
independent of the time-scale. Fix a sequence of nonnegative reals δ = δ1, δ2, . . .
We denote by δA the strategy that initially invests all capital in A, and waits
until the first time s1 where the logprice difference Λ|s1

0 is at least δ1. It then sells
all shares and puts the money into B, until the first subsequent time s2 that the
logprice difference Λ|s2

s1
is at most −δ2. Then it invests all capital into A again,

until the logprice difference Λ|s3
s2

is at least δ3, etc. The strategy δB is defined
symmetrically, with switching times r0, r1, . . . The switching time sequences s
and r are obtained as follows. First s0 = r0 = 0. Then recursively

si := min
{
t ≥ si−1

∣∣ Λ|tsi−1
≥ +δi

}
ri := min

{
t ≥ ri−1

∣∣ Λ|tri−1
≤ −δi

}
i even,

si := min
{
t ≥ si−1

∣∣ Λ|tsi−1
≤ −δi

}
ri := min

{
t ≥ ri−1

∣∣ Λ|tri−1
≥ +δi

}
i odd.

Both s and r are a function of δ and Λ and satisfy s(δ, Λ) = r(δ,−Λ). By
convention, the minimum is infinite if no suitable successor time exists in the
domain of Λ, i.e before time T . The payoffs of δA and δB are given by

δA∗Λ := sA∗Λ and δB∗Λ := rB∗Λ.
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The strategy δA has the following property. Whenever it sells its shares, say at
time si for some odd i, the asset price, and hence its capital, has multiplied by
at least exp(δi) ≥ 1 since the acquisition at time si−1. This holds irrespective of
Nature’s play. In particular, between time si and si+1 for odd i, the logarithm
of its capital equals

Λ|s1
s0

+ Λ|s3
s2

+ Λ|s5
s4

+ . . . + Λ|si
si−1

≥ δ1 + δ3 + δ5 + . . . + δi.

Of course, for each logprice difference sequence δ, the number of switches that
is executed, and hence the quality of δA depends on Nature’s move Λ. Let
D =

{
δA, δB ∣∣ δ ∈ [0,∞)∞

}
be the set of price-switched strategies for Investor.

The Strategy π. Again, we may hedge by dividing our initial capital according
to some prior π on δ, and obtain strategies πA and πB with payoffs

πA∗Λ := ln
∫

exp
(
δA∗Λ

)
dπ(δ) and πB∗Λ := ln

∫
exp

(
δB∗Λ

)
dπ(δ),

and the meta strategy π with payoff π∗Λ := ln
( 1

2 exp
(
πA∗Λ

)
+ 1

2 exp
(
πB∗Λ

))
.

Note that the price-switched strategies in D are independent of the time scale,
and so are these strategies based on them.

Requirements on π. The above construction works for any prior π. In this paper
we analyse the behaviour of strategies π that satisfy these requirements:

1. π is the independent infinite product distribution of some probability density
function on [0,∞). Since the distinction is always clear, we also denote the
univariate density by π.

2. the function x �→ exπ(x) is increasing.
3. the density π is log-convex.

The first requirement ensures that we can hedge capital according to π. The
second requirement ensures that paying − lnπ(x) to gain x is a better deal when
x is larger. The third requirement ensures that we rather pay − lnπ(x+ y) than
− lnπ(x)−ln π(y) to gain x+y. We use the following consequences in our bounds.

Lemma 1. Let π satisfy the requirements 1–3 above. Then

1. π is strictly positive.
2. π is strictly decreasing.
3.

∫∞
h π(x) dx ≥ π(h) for each h ≥ 0.

Proof. Since π is a convex probability density, it is decreasing and thus 0 <
π(0) = e0π(0). Since exπ(x) increases, we have π(x) > 0 for all x. Then,
since π is a non-zero convex probability density, it must be strictly decreas-
ing. Finally, for 0 ≤ h ≤ x we have π(x) = π(x)exe−x ≥ π(h)ehe−x. Therefore∫∞

h
π(x) dx ≥ π(h)

∫∞
h

eh−x dx = π(h). ��

The last fact implies that the density π(x) ≤ 1 for all x. Throughout this paper,
we abbreviate − lnπ(x) to �(x). Thus � is nonnegative, concave and increasing.
Example 2. The densities shown in Table 1, ordered from heavy to light tails,
satisfy all the requirements. ♦
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Table 1. Example priors

Fat tail Pareto Exponential

π(x)
log(o)

(x + o)(log(x + o))2
(c− 1)oc−1(x + o)−c αe−αx

Condition 2 ≤ (o− 1) log o
(Sufficient: o ≥ 2.89)

1 < c ≤ o 0 < α ≤ 1

Parameters o = 3 c = 2, o = 3 α = 1/3

επ 4.10396 3.55884 3.39788

cπ 0.016645 0.0288849 0.034016

2.3 Exploiting Symmetry

Payoff is measured as (the natural logarithm of) Investor’s final amount of cash.
Of course, cash and asset are intrinsically symmetric. We make this precise as
follows. We say that the following pairs of strategies are dual

A,B tA, tB ρA, ρB ρ, ρ δA, δB πA, πB π, π

and vice versa in each case. The meta strategies ρ and π are self-dual.

Lemma 2 (Duality). Let S and S′ be dual strategies. Then for each Λ

S∗Λ = S′∗(−Λ) + Λ|T0 .

Proof. The lemma is trivial for the dual pair A and B. We proceed to prove
the lemma for the dual strategies tA and tB, the other cases follow simply by
definition. Recall that exp(Λ) is the asset price in cash per share, so that exp(−Λ)
is the price in shares per cash. Thus tB∗(−Λ) is the log-number of shares resulting
from investing one share according to the strategy tA. Finally, Λ|T0 = Λ(T )−Λ(0)
is the result of exchanging cash to asset initially, and asset to cash at the end. ��

3 Payoff Bound

In this section we prove the payoff guarantees for the strategy π that were given
in the introduction. We build towards the statement and proof of a more precise
version of the bounds in the following subsections. First, in Section 3.1 we show
that Nature’s worst-case logprice functions are continuous. Then, in Section 3.2
we show that Investor’s payoff decreases when Nature plays more regular. In
Section 3.3 we analyse Investor’s payoff under a regularity assumption on Λ
called γ-separation. Finally, in Section 3.4 we show how to establish γ-separation
if it does not obtain and establish the bound in the form of Theorem 5.
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3.1 Nature Plays a Continuous Logprice Function Λ

We now prove that it is sub-optimal for Nature to play a discontinuous Λ. To
do so, we show that Investor’s payoff is reduced when Nature eliminates a jump
by inserting a linear interpolation. Let Λ have a discontinuity at t. We define Λ′,
the t-ironing of Λ, by Λ′(s) := Λ(s) for s < t, Λ′(s + 1) := Λ(s) for s > t, and
Λ′(s) := (1+t−s)Λ(t−)+(s−t)Λ(t) for t ≤ s ≤ t+1, where Λ(t−) := lims↑t Λ(s).
This definition is illustrated by Figure 2.

Theorem 1 (Continuous Free Lunch). Fix any play for Nature Λ with a
discontinuity at time t, and let Λ′ be the t-ironing of Λ. Then

π∗Λ′ ≤ π∗Λ.

Proof. See Figure 2. By duality (Lemma 2), we may assume that the jump is
upward. Obviously, any strategy δ′ that does not switch at time t on Λ has
identical payoff on Λ and Λ′. Now consider any strategy δ′ = (. . . , h, h− l, . . .),
where h prompts a switch at time t on Λ. We now modify the strategy to
δ = (. . . , h, u − l, . . .) and we compare the term corresponding to δ′ in the
integral for π∗Λ′ to the term corresponding to δ in the integral for π∗Λ:

exp(δ′∗Λ′)π(δ′)
exp(δ∗Λ)π(δ)

=
exp(h− l)π(h − l)
exp(u − l)π(u − l)

≤ 1,

where the inequality uses that ehπ(h) is increasing (see Section 2.2). The proof
follows by observing that the mapping that takes δ′ to δ is a translation. ��

When Investor follows the strategy π, there is no benefit for Nature to playing a
logprice function Λ with jumps. Without loss of generality we henceforth restrict
Nature to continuous plays. This simplifies analysis considerably, as it allows us
to assume that switches specified by any δ occur at exactly the specified logprices.

u
h
l

t

(a) Nature’s move Λ with jump at time t,
and strategy δ = (. . . , h, u− l, . . .).

u
h
l

t t+1

(b) The t-ironing Λ′ of Λ, and strategy
δ′ = (. . . , h, h− l, . . .).

Fig. 2. Worst-Case Plays for Nature are Continuous
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3.2 Ordering by Regularity

Given a move for Nature Λ : [0, T ] → R, we say that another move Λ′ : [0, T ′] →
R is more regular than Λ, denoted Λ′ � Λ, if there is a monotonic function f :
[0, T ′] → [0, T ] such that f(0) = 0, f(T ′) = T and Λ′ = Λ ◦ f . That is, the price
levels of the regularisation Λ′ are a subsequence of the price levels of Nature’s
move Λ, with the same initial and final price, but potentially less fluctuation. We
now show that by following a fixed price-switched strategy, Investor gets richer
whenever Nature’s move is less regular.

Theorem 2 (Monotonicity). For each price-switched strategy S ∈ D and con-
tinuous logprice functions Λ and Λ′

Λ′ � Λ implies S∗Λ′ ≤ S∗Λ.

Proof. First note that Λ′ � Λ iff −Λ′ � −Λ. So by symmetry (Lemma 2) it
suffices to prove the theorem for the strategies in D that start with A. We
proceed by induction on the number of switches executed by the strategy δA on
the regulariser Λ′. For the base case, suppose this number is zero, i.e Λ′|t0 < δ1
for each 0 ≤ t ≤ T ′. Let m ≥ 1 denote the number of blocks of δA on Λ. There
are two cases. If m is even then δA follows B on the last block. Since δ1 > Λ′|T ′

0

δA∗Λ =
∑

1≤i<m odd

δi ≥ δ1 > Λ′|T
′

0 = δA∗Λ′.

If m is odd, then δA follows A on the last block. Again using Lemma 2, we get

δA∗Λ =
∑

1≤i<m even

δi + Λ|T0 ≥ Λ|T0 = Λ′|T
′

0 = δA∗Λ′.

To prove the induction step, suppose a switch is executed, i.e. the first difference
δ1 is present in the regulariser Λ′, and hence also in Nature’s play Λ, then the
strategy δA switches at price level Λ(0)+ δ1 on either play, resulting in the same
capital. The switches may occur at different times on Λ and Λ′. Nevertheless,
the induction hypothesis applies to the tails of the plays since the remainder of
the regulariser Λ′ is more regular than the remainder of Nature’s move Λ. ��

Since the theorem holds pointwise in D, it also holds for the mixture strategy π.

3.3 With γ-Separation

Fix a logprice function Λ. Throughout this section, we use the following notation:

Definition 1. We denote by z = z0, z1, . . . , zm the sequence of logprices at the
local extrema of Λ (attained or not), with z0 = Λ(0) and zm = Λ(T ), and we
say that Λ has m blocks. Let Δ = Δ1, . . . , Δm denote the sequence of absolute
logprice differences, i.e. Δi := |zi − zi−1|.
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Definition 2. We say that Λ has γ-separation if Δ1, Δm ≥ γ and Δi ≥ 2γ for
each 1 < i < m. That is, the border optima have logprice difference at least γ
with the border and each subsequent pair of local extrema has at least logprice
difference 2γ.

We now analyse the payoff of the strategy π, assuming that Λ has γ-separation.

0 T
z0

z1

z2

z3

z4

Fig. 3. Domain of Integration Example. Some Λ, with m = 4, is shown in black.
The height of the dark gray triangles equals γ. This Λ has γ-separation. In particular
Δ2 = z1 − z2 = 2γ. Theorem 3 integrates over the strategies that are optimal for
log-price functions in the light gray region.

Theorem 3 (γ-Separation Payoff). For each Λ with γ-separation

π∗Λ ≥
∑

1≤i≤m

(zi − zi−1)+︸ ︷︷ ︸
gain

−
∑

1≤i≤m

�(Δi)︸ ︷︷ ︸
complexity penalty

+ (m− 1) ln(1 − e−γ)︸ ︷︷ ︸
overhead per switch

− ln 2︸︷︷︸
parity

.

Proof. We saw in Section 2.3 that π is self-dual, so by symmetry (Lemma 2)
we may assume that z0 ≤ z1. As our first bound, we use π∗Λ ≥ πA∗Λ − ln 2.
Recall that the payoff πA∗Λ is defined as ln

∫
exp

(
δA∗Λ

)
dπ(δ). As the next

step, we re-parameterise the integral by introducing variables h, with hi :=
z0 −

∑
1≤j≤i(−1)jδj . That is, hi is the logprice at the ith switch of δA. Then we

obtain a lower bound by restricting the domain of integration. For 1 ≤ i < m we
restrict hi ∈ [zi − γ, zi] for odd i and hi ∈ [zi, zi + γ] for even i. Thus, we keep
all prior mass on strategies that switch at logprices hi that are at most γ nats
short of the optimal switching logprice level zi. We restrict the last logprice to
hm ∈ [zm,∞) for even m and hm ∈ (−∞, zm] for odd m. This ensures that we do
not switch between hm−1 and zm. Thus, we only integrate over those strategies
that closely follow Λ, as illustrated by Figure 3. We first consider even m. Then

πA∗Λ ≥ ln

z1∫
z1−γ

eh1−h0π(h1 − h0)

z2+γ∫
z2

π(h1 − h2)

z3∫
z3−γ

eh3−h2π(h3 − h2) · · ·

· · ·
zm−1+γ∫
zm−1

π(hm−2 − hm−1)

∞∫
zm

ezm−hm−1π(hm − hm−1) dh
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Apply the tail probability bound (Lemma 1(3)) to the innermost integral to get∫ ∞

zm

ezm−hm−1π(hm − hm−1) dhm ≥ ezm−hm−1π(zm − hm−1).

Since |hi − hi−1| ≤ Δi and π decreases (Lemma 1(2)) we get

πA∗Λ ≥ ln
∏

1≤i≤m

π(Δi) +

ln

⎛⎝ezm−z0

z1∫
z1−γ

eh1

z2+γ∫
z2

e−h2

z3∫
z3−γ

eh3 · · ·
zm−2∫

zm−2−γ

ehm−2

zm−1+γ∫
zm−1

e−hm−1 dh

⎞⎠
Now all integrals have become independent. Rewrite odd/even instances like∫ z1

z1−γ

eh1 dh1 = ez1(1 − e−γ) and
∫ z2+γ

z2

e−h2 dh2 = e−z2(1 − e−γ).

By rearranging terms we obtain

πA∗Λ ≥
∑

1≤i≤m

(zi − zi−1)+ −
∑

1≤i≤m

�(Δi) + (m− 1) ln(1 − e−γ).

The case for odd m is analogous. ��

3.4 Establishing γ-Separation

Say we have a Λ with γ-separation, and hence a performance guarantee by
Theorem 3. If γ is small, then a better bound can be obtained by first regularising
Λ to a price function Λε with ε-separation for some ε > γ, and only then applying
the theorem. In this section we quantify the gain of going from γ = 0 to ε, and
then derive our main payoff bound by tuning ε.

The regulariser Λε is constructed by the algorithm shown in Figure 4a. The
key idea of the algorithm, implemented by lines 4–6, is to iteratively remove the
smallest fluctuation from z. This process is illustrated by Figure 4b. The solid
line shows a segment of the logprice function before regularisation. The logprice
difference between the two open circles is too small, i.e. < 2ε. The dashed line is
the logprice function resulting from fluctuation removal. The other lines of the
algorithm establish ε-separation at the boundaries of Λ.

For any sequence z = z0, . . . , zm we abbreviate the terms in the bound of
Theorem 3 that depend on z by defining g = g1, . . . , gm and G by

gi := (zi − zi−1)+ − �(Δi) and G :=
∑

1≤i≤m

gi.

We first study the effect of a single execution of lines 4–6.
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1: u← (2ε−Δ1)+ · sign(z1 − z0).
2: v ← (2ε −Δm)+ · sign(zm − zm−1).
3: z ← (z0, z1 + u, z2 + u, . . . , zm + u + v) � Ensure Δ1, Δm ≥ 2ε
4: while the minimal Δi is (strictly) less than 2ε do
5: z ← (z0, z1, . . . , zi−2, zi+1, . . . , zm) � See (b)
6: end while
7: z ← (z0, z1 − u, z2 − u, . . . , zm − u− v) � Reverse line 3
8: if Δ1 < ε then z ← (z0, z2, z3, . . . , zm) � Ensure Δ1 ≥ ε
9: if Δm < ε then z ← (z0, z1, . . . , zm−2, zm) � Ensure Δm ≥ ε

(a) ε-Pruning Algorithm (b) Regularise

Fig. 4. ε-Pruning Algorithm and its main regularisation

Lemma 3. Let z◦ and z† be the sequences before and after line 5. Then

G† − G◦ ≥ (m◦ − m†)min
{
0, �(2ε) − ε

}
Proof. Let i be the index of the minimal Δ◦

i . Let l = Δ◦
i−1, c = Δ◦

i and r = Δ◦
i+1,

so that Δ†
i−1 = l + r − c and 2ε > c ≤ l, r. By definition G† − G◦ equals(

l + r − c− �(l + r − c)
)
−
(
l + r − �(l) − �(c) − �(r)

)
if zi−1 ≤ zi, or(

−�(l + r − c)
)
−
(
c − �(l) − �(c) − �(r)

)
if zi−1 ≥ zi.

In either case G† − G◦ simplifies to −c − �(l + r − c) + �(l) + �(c) + �(r). Since
� is concave, the worst-case values for l and r are c. For the same reason, the
worst-case value for c is either 0 or 2ε. Then since � is nonnegative

G† − G◦ ≥ 2�(c) − c ≥ 2 min{�(0), �(2ε) − ε} ≥ 2 min{0, �(2ε) − ε}. ��

Now fix ε ≥ 0. Let zε = zε
0, z

ε
1, . . . , z

ε
mε be the result of applying Algorithm 4a

with parameter ε to the sequence z of local extrema of Λ, and let Λε be any
continuous function with local extrema zε. By construction Λε has ε-separation
and regularises Λ. Theorem 3 gives us a bound on the payoff in terms of Λε. We
now show how to get a bound in terms of the original Λ.

Theorem 4 (Enforcing ε-Separation). For all ε ≥ 0 such that �(2ε) < ε

Gε − G ≥
(
m − mε

)(
�(2ε) − ε

)
− 2�(2ε).

Proof. Let z+, z�, z− be the sequences after lines 3, 6 and 7 of Algorithm 4a.
Thus the algorithm produces (denoted →) in order

z → z+ → z� → z− → zε.

with numbers of blocks m = m+ ≥ m� = m− ≥ mε. By Lemma 3 G� − G+ ≥(
m+ − m�

)(
�(2ε) − ε

)
. It thus remains to show that

(G+ − G) + (G− − G�) + (Gε − G−) ≥ (m� − mε)
(
�(2ε) − ε

)
− 2�(2ε).
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We have G+ −G = g+
1 − g1 + g+

m+ − gm, G− −G� = g−1 − g�
1 + g−m− − g�

m− and

Gε−G− =

{
gε
1 − g−1 − g−2 if Δ−

1 < ε,
0 otherwise,

+

{
gε

mε − g−m− − g−m−−1 if Δ−
m− < ε,

0 otherwise.

These three expressions are symmetric in the first and last element of the se-
quences concerned. The contributions of the first elements are

g+
1 − g1 = u+ − �

(
Δ1 + |u|

)
+ �(Δ1), (3)

g−1 − g�
1 = − u+ − �(Δ−

1 ) + �
(
Δ−

1 + |u|
)
, (4)

gε
1 − g−1 − g−2 = − Δ−

1 + �(Δ−
1 ) + �(Δ−

2 ) − �(Δ−
2 − Δ−

1 ). (5)

If Δ−
1 ≥ ε then no element is dropped in line 8. The sum of (3) and (4) equals

−�
(
Δ1 + |u|

)
+ �(Δ1) − �(Δ−

1 ) + �
(
Δ−

1 + |u|
)

≥ −�(2ε).

Since � increases the last two terms are positive and can be dropped from the
bound; the remaining expression is increasing in Δ1 by concavity of � and is
decreasing in |u|. Substitute the worst-case values Δ1 = 0 and |u| = 2ε.

If on the other hand Δ−
1 < ε then one element was dropped in line 8. In this

case the sum of (3)–(5) equals

−�
(
Δ1 + |u|

)
+ �

(
Δ−

1 + |u|
)

+ �(Δ1) − Δ−
1 + �(Δ−

2 ) − �(Δ−
2 − Δ−

1 ) ≥ − Δ−
1 .

The lower bound is obtained by cancelling the first two terms and the last two
terms since � is increasing and 0 ≤ Δ1 ≤ Δ−

1 . Since � is nonnegative, we omit
the third term as well. We then use −Δ−

1 ≥ − ε =
(
�(2ε) − ε

)
− �(2ε).

The bound for the contribution of the final elements is analogous. In each
case, a dropped intermediate elements contributes at most �(2ε) − ε, while the
borders lose at most �(2ε) each. ��
We now put everything together, and in particular we optimise the value of ε.

Theorem 5 (Payoff Bound). Fix logprice functions Λ and Λ′, the latter with
associated z′, m′ and Δ′ as in Definition 1. If Λ′ � Λ then

π∗Λ ≥
∑

1≤i≤m′
(z′i − z′i−1)+ −

∑
1≤i≤m′

�(Δ′
i) − (m′ − 1)cπ − ln 2 − 2επ,

where επ is the unique solution to π(2ε) = 1
eε−1 , and cπ = − ln(1 − e−επ).

Proof. For each ε ≥ 0 with �(2ε) < ε

π∗Λ ≥ π∗Λ′ ≥ π∗Λε ≥ Gε + (mε − 1) ln(1 − e−ε) − ln 2

≥ G′ + (mε − 1) ln(1 − e−ε) + (m′ − mε)
(
�(2ε) − ε

)
− 2�(2ε) − ln 2

≥ G′ + (m′ − 1)min
{
ln(1 − e−ε), �(2ε) − ε

}
− 2�(2ε) − ln 2 .

The inequalities are twice Theorem 2, then Theorem 3, then Theorem 4. To
complete the proof we set ε to equalise the arguments of the minimum. ��
Typical values for επ and cπ are shown in Table 1.
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4 Implementation

The following algorithm implements the strategy π. For arbitrary prior densities
it runs in O(T 2) time. For exponential priors, we reduce the running time to
O(T ). The key to efficiency is the independent product form of π, which renders
the last switching price a sufficient statistic.

For concreteness, we measure discrete time in days. As its data structure, the
algorithm maintains a set of bank accounts. Each bank account has a balance,
a type that is either A or B, and a birthday. The balance of type A accounts is
measured in shares, whereas that of type B accounts is measured in cash.

On day zero the initial unit cash is divided evenly into two bank accounts:
one account of type B with half a unit of cash, and one account of type A with
1
2 exp(−Λ(0)) shares, i.e. half a unit of cash worth of shares at the initial logprice.

The algorithm then proceeds as follows. Each day t = 1, 2, . . . the new price
Λ(t) is announced. The algorithm creates a single new bank account with birth-
day t. If Λ(t − 1) ≤ Λ(t), then the new account is of type B, and a portion of
the shares in existing accounts of type A is sold to fill it with cash. On the other
hand if Λ(t−1) ≥ Λ(t), then a new account of type A is endowed with shares by
investing a fraction of the capital of existing accounts of type B. In either case,
the amount traded reestablishes the following invariant. At the end of day t:

– Each account of type A that was created with c shares on birthday i has
balance c

∫∞
λ π(h) dh, where λ = maxi≤j≤t Λ|ji .

– Each account of type B that was created with capital c on birthday i has
balance c

∫∞
λ

π(h) dh, where λ = maxi≤j≤t −Λ|ji .

To see how this works, consider an A-type account with birthday i and initial
balance c, and assume that the invariant was maintained at the end of day t−1.
First, note that it can only become violated if the maximum changes, that is, if
Λ|ti exceeds the previous maximum λ = maxi≤j<t Λ|ji . Then the balance still is
c
∫∞

λ π(h) dh but should become c
∫∞

Λ|ti π(h) dh. The fraction

1 −
∫∞

Λ|ti π(h) dh∫∞
λ

π(h) dh
=

∫ Λ|ti
λ

π(h) dh∫∞
λ

π(h) dh
= π

(
H ≤ Λ|ti

∣∣H ≥ λ
)

(6)

of the balance must be sold to reestablish the invariant, and the resulting cash
is transferred to the new account. Note that we only query π via its cumulative
distribution function.

Complexity Analysis. After t days, there are t+2 bank accounts to maintain,
and each bank account potentially requires work each round. Thus, trading for
T days takes O(T 2) time and O(T ) space.

For exponential priors we can do better by merging several bank accounts into
a single account with the sum of their balances. This is because for memoryless
priors, the fraction (6) to be traded away does not depend on the birthday i,
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but only on the maximum λ, allowing us to merge bank accounts with the same
maximum. Now observe that all bank accounts that are tapped to reestablish
the invariant share the same maximum afterwards, and can hence all be merged.
This means that a bank account requires work at most once, namely when it is
merged away. By maintaining two stacks of bank accounts, one for each type,
each ordered by the maximum λ, the running time is brought down to O(T ).
Since we do not know when merges happen, the space requirement is still O(T ),
and the running time is amortised O(1) per day.

5 Conclusion

We presented a simple online algorithm that can be applied to two-way trad-
ing, but also to prediction with expert advice, data compression and hypothesis
testing (see Section 1). Compared to the many hedging algorithms described in
the literature, our approach has two novel properties. First, the overhead of our
algorithm is independent of the times at which prices are processed, and second,
our bound is free of any conditions on the evolution of the price of the asset,
and is parameterised either by the asset price function itself or by a regularised
model of it.

The surprisingly simple implementation (Section 4) processes a sequence of T
asset prices in O(T 2) time and O(T ) space. The algorithm models the scale of
the fluctuations of the price using a density function on [0,∞); if an exponential
density is employed, the running time is reduced to O(T ).
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Abstract. We study prediction with expert advice in the setting where
the losses are accumulated with some discounting and the impact of old
losses can gradually vanish. We generalize the Aggregating Algorithm
and the Aggregating Algorithm for Regression, propose a new variant
of exponentially weighted average algorithm, and prove bounds on the
cumulative discounted loss.

1 Introduction

Prediction with expert advice is a framework for online sequence prediction. Pre-
dictions are made step by step. The quality of each prediction (the discrepancy
between the prediction and the actual outcome) is evaluated by a real number
called loss. The losses are accumulated over time. In the standard framework
for prediction with expert advice (see the monograph [2] for a comprehensive
review), the losses from all steps are just summed. In this paper, we consider a
generalization where older losses can be devalued; in other words, we use dis-
counted cumulative loss.

Predictions are made by Experts and Learner according to Protocol 1. In this
protocol, Ω is the set of possible outcomes and ω1, ω2, ω3 . . . is the sequence
to predict; Γ is the set of admissible predictions, and λ : Γ × Ω → [0,∞] is the
loss function. The triple (Ω,Γ, λ) specifies the game of prediction. The most
common examples are the binary square loss, log loss, and absolute loss games.

Protocol 1. Prediction with expert advice under general discounting
L0 := 0.
Lθ

0 := 0, θ ∈ Θ.
for t = 1, 2, . . . do

Accountant announces αt−1 ∈ (0, 1].
Experts announce γθ

t ∈ Γ , θ ∈ Θ.
Learner announces γt ∈ Γ .
Reality announces ωt ∈ Ω.
Lθ

t := αt−1Lθ
t−1 + λ(γθ

t , ωt), θ ∈ Θ.
Lt := αt−1Lt−1 + λ(γt, ωt).

end for

M. Hutter et al. (Eds.): ALT 2010, LNAI 6331, pp. 255–269, 2010.
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They have Ω = {0, 1} and Γ = [0, 1], and their loss functions are λsq(γ, ω) =
(γ − ω)2, λlog(γ, 0) = − log(1 − γ) and λlog(γ, 1) = − log γ, λabs(γ, ω) = |γ − ω|,
respectively.

The players in the game of prediction are Experts θ from some pool Θ,
Learner, and also Accountant and Reality. We are interested in (worst-case op-
timal) strategies for Learner, and thus the game can be regarded as a two-player
game, where Learner opposes the other players. The aim of Learner is to keep
his total loss Lt small as compared to the total losses Lθ

t of all experts θ ∈ Θ.
The standard protocol of prediction with expert advice (as described in [18,

19]) is a special case of Protocol 1 where Accountant always announces αt = 1,
t = 0, 1, 2, . . .. The new setting gives some more freedom to Learner’s opponents.

Another important special case of Protocol 1 is the exponential (geometric)
discounting αt = α ∈ (0, 1) for all t = 0, 1, 2, . . .. Exponential discounting is
widely used in finance and economics (see, e. g., [15]), time series analysis (see,
e. g., [9]), reinforcement learning [17], and other applications. In the context of
prediction with expert advice, Freund and Hsu [7] noted that the discounted loss
provides an alternative to “tracking the best expert” framework [12]. Indeed, an
exponentially discounted sum depends almost exclusively on the last O(log(1/α))
terms. If the expert with the best one-step performance changes at this rate,
then Learner observing the α-discounted losses will mostly follow predictions
of the current best expert. Under our more general discounting, more subtle
properties of best expert changes may be specified by varying the discount factor.
In particular, one can cause Learner to “restart mildly” giving αt = 1 (or αt ≈ 1)
most of the time and αt � 1 at crucial moments.

Our discounting scheme has a straightforward financial interpretation, if we
interpret λ as gains rather than losses. (These interpretations are interchangeable
in the case of bounded loss functions if we consider bounds in terms of the
number of steps and not of the minimal loss.) We save our gains in cash, and
there is inflation of this currency. Inflation n% in period t corresponds to αt =
1/(1 + n/100). Then LT is the value of our total savings expressed in some
conventional currency corrected for inflation or in quantities of some goods.

Cesa-Bianchi and Lugosi [2, § 2.11] discuss another kind of discounting

LT =
T∑

t=1

βT−tlt , (1)

where lt are one-step losses and βt are some decreasing discount factors. To see
the difference, let us rewrite our definition in the same style:

LT = αT−1LT−1 + lT =
T∑

t=1

αt · · ·αT−1lt =
1
βT

T∑
t=1

βtlt , (2)

where βt = 1/α1 · · ·αt−1, β1 = 1. The sequence βt is non-decreasing, β1 ≤ β2 ≤
β3 ≤ . . .; but it is applied “in the reverse order” compared to (1). So, in both
definitions, the older losses are the less weight they are ascribed. However, ac-
cording to (1), the losses lt have different relative weights in LT , LT+1 and so
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on, whereas (2) fixes the relative weight of lt with respect to all previous losses
forever starting from the moment t. The latter property allows us to get uniform
algorithms for Learner with loss guarantees that hold for all T = 1, 2, . . .; in
contrast, Theorem 2.8 in [2] gives a guarantee only at one moment T chosen in
advance. The only kind of discounting that can be expressed both as (1) and
as (2) is the exponential discounting

∑T
t=1 α

T−tlt. Under this discounting, Nor-
malHedge algorithm is analysed in [7]; we briefly compare the obtained bounds
in Section 3.

The rest of the paper is organized as follows. In Section 2, we propose a gener-
alization of the Aggregating Algorithm [19] and prove the same bound as in [19]
but for the discounted loss. In Section 3, we consider convex loss functions and
propose an algorithm that extends the Weak Aggregating Algotihm [14] and the
exponentially weighted average forecaster with time-varying learning rate [2,
§ 2.3], with a similar loss bound. In Section 4, we consider the use of predic-
tion with expert advice for the regression problem and adapt the Aggregating
Algorithm for Regression [21] (applied to spaces of linear functions and to repro-
ducing kernel Hilbert spaces) to the discounted square loss. All our algorithms
are inspired by the methodology of defensive forecasting [4]. We do not explicitly
use or refer to this technique here. However, we need it in the full version [6] of
this paper (for Theorem 3), and also illustrate the ideas of defensive forecast-
ing on the regression task in Appendix A.2 of [6]; Appendix A.1 contains some
proofs omitted here.

2 Linear Bounds for Learner’s Loss

In this section, we assume that the set of experts is finite, Θ = {1, . . . ,K}, and
show how Learner can achieve a bound of the form Lt ≤ cLk

t + (c lnK)/η for
all Experts k, where c ≥ 1 and η > 0 are constants. Bounds of this kind were
obtained in [18]. Loosely speaking, such a bound holds for certain c and η if and
only if the game (Ω,Γ, λ) has the following property:

∃γ ∈ Γ ∀ω ∈ Ω λ(γ, ω) ≤ − c

η
ln

(∑
i∈I

pie−ηλ(γi,ω)

)
(3)

for any finite index set I, for any γi ∈ Γ , i ∈ I, and for any pi ∈ [0, 1] such that∑
i∈I pi = 1. This property turns out to be sufficient for the discounted case too.

Theorem 1. Suppose that the game (Ω,Γ, λ) satisfies condition (3) for certain
c ≥ 1 and η > 0. In the game played according to Protocol 1, Learner has a
strategy guaranteeing that, for any T and for any k ∈ {1, . . . ,K}, it holds

LT ≤ cLk
T +

c lnK

η
. (4)

For the standard undiscounted case (Accountant announces αt = 1 at each step
t), this theorem was proved by Vovk in [18] with the help of the Aggregating
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Algorithm (AA) as Learner’s strategy. It is known ([11, 19]) that this bound
is asymptotically optimal for large pools of Experts (for games satisfying some
assumptions): if the game does not satisfy (3) for some c ≥ 1 and η > 0, then,
for sufficiently large K, there is a strategy for Experts and Reality (recall that
Accountant always says αt = 1) such that Learner cannot secure (4). For the
special case of c = 1, bound (4) is tight for any fixed K as well [20]. These re-
sults imply optimality of Theorem 1 in the new setting with general discounting
(when we allow arbitrary behaviour of Accountant with the only requirement
αt ∈ (0, 1]). However, they leave open the question of lower bounds under dif-
ferent discounting assumptions (that is, when Accountant moves are fixed); a
particularly interesting case is the exponential discounting αt = α ∈ (0, 1).

Proof. As Learner’s strategy we exploit a minor modification of the Aggregat-
ing Algorithm, the AA with Discounting (AAD). The pseudocode is given as
Algorithm 1.

Algorithm 1. Aggregating algorithm with discounting
1: Initialize weights of Experts wk

0 := 1, k = 1, . . . , K.
2: for t = 1, 2, . . . do
3: Get discount αt−1 ∈ (0, 1].
4: Get Experts’ predictions γk

t ∈ Γ, k = 1, . . . , K.
5: Calculate gt(ω) = − c

η
ln
(∑K

k=1
1
K

(wk
t−1)αt−1e−ηλ(γk

t ,ω)
)
, for all ω ∈ Ω.

6: Output γt := σ(gt) ∈ Γ .
7: Get ωt ∈ Ω.
8: Update the weights wk

t := (wk
t−1)αt−1eηλ(γt,ωt)/c−ηλ(γk

t ,ωt), k = 1, . . . , K.
9: end for.

The algorithm has three parameters, which depend on the game (Ω,Γ, λ):
c ≥ 1, η > 0, and a function σ : RΩ → Γ . The function σ is called a substitution
function and must have the following property: λ(σ(g), ω) ≤ g(ω) for all ω ∈ Ω
if for g ∈ RΩ there exists any γ ∈ Γ such that λ(γ, ω) ≤ g(ω) for all ω ∈ Ω. A
natural example of substitution function is given by

σ(g) = argmin
γ∈Γ

(
λ(γ, ω) − g(ω)

)
(5)

(if the minimum is attained in several points, one can take any of them). An
advantage of this σ is that one can use in line 8 of the algorithm the update rule
wk

t := (wk
t−1)

αt−1e−ηλ(γk
t ,ωt), which does not contain Learner’s losses. Indeed,

multiplying all wk
t by a constant (independent of k), we add to all gt(ω) a

constant (independent of ω), and σ(gt) does not change.
Assume that c and η are such that condition (3) holds for the game. Now let

us show by induction over t that Algorithm 1 preserves the following condition:

K∑
k=1

1
K

wk
t ≤ 1 . (6)
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Indeed, assume that
∑K

k=1 w
k
t−1/K ≤ 1. Then we have

∑K
k=1(w

k
t−1)

αt−1/K ≤(∑K
k=1 w

k
t−1/K

)αt−1

≤ 1, since the function x �→ xα is concave and monotone
for α ∈ (0, 1] and x ≥ 0.

Let w̃k be any reals such that w̃k ≥ (wk
t−1)

αt−1/K and
∑K

k=1 w̃
k = 1 (for

example, w̃k = (wk
t−1)αt−1

/∑K
j=1(w

j
t−1)

αt−1 ). Due to condition (3), there exists

γ ∈ Γ such that for all ω ∈ Ω we have λ(γ, ω) ≤ − c
η ln

(∑K
k=1 w̃

ke−ηλ(γk
t ,ω)

)
≤

− c
η ln

(∑K
k=1

1
K (wk

t−1)
αt−1e−ηλ(γk

t ,ω)
)

= gt(ω) (the second inequality holds due

to our choice of w̃k). Thus, due to the property of σ, we have λ(γt, ω) ≤ gt(ω)
for all ω ∈ Ω. In particular, this holds for ω = ωt, and we get (6).

To get the loss bound (4), it remains to note that lnwk
t = η

(
Lt/c− Lk

t

)
. In-

deed, this is trivial for t = 0. If this holds for wk
t−1, then lnwk

t = αt−1 ln(wk
t−1)+

ηλ(γt, ωt)/c− ηλ(γk
t , ωt) = αt−1η

(
Lt−1/c− Lk

t−1
)
+ ηλ(γt, ωt)/c− ηλ(γk

t , ωt) =
η
(
(αt−1Lt−1 + λ(γt, ωt))/c − (αt−1Lk

t−1 + λ(γk
t , ωt))

)
= η

(
Lt/c− Lk

t

)
. Thus,

condition (6) is equivalent to

K∑
k=1

1
K

eη(Lt/c−Lk
t ) ≤ 1 , (7)

and (4) follows by lower-bounding the sum by any of the additive terms. ��

Remark 1. Everything in this section remains valid, if we replace the equal initial
Experts’ weights 1/K by arbitrary non-negative weights wk,

∑K
k=1 w

k = 1. This
leads to a variant of (4), where the last additive term is replaced by c

η ln 1
wk .

Additionally, we can consider any measurable space Θ of Experts and a non-
negative weight function w(θ), and replace sums over K by integrals overΘ. Then
the algorithm and its analysis remain valid (if we impose natural integrability
conditions on Experts’ predictions γθ

t ; see [21] for more detailed discussion)—this
will be used in Section 4.

3 Learner’s Loss in Bounded Convex Games

For many games (for example, the absolute loss game), condition (3) does not
hold with c = 1 (for any η > 0), and one cannot get a bound of the form
Lt ≤ Lk

t +O(1). Since Experts’ losses Lθ
T may grow as T in the worst case, any

bound of the form (4) with c > 1 may be loose and Learner’s loss may exceed
an Expert’s loss by δT for some constant δ > 0. However, for a large class of
interesting games (including the absolute loss game), one can obtain guarantees
of the form LT ≤ Lk

T + O(
√
T ) in the undiscounted case. In this section, we

prove an analogous result for the discounted setting.
A game (Ω,Γ, λ) is non-empty if Ω and Γ are non-empty. The game is called

bounded if L = maxω,γ λ(γ, ω) < ∞. One may assume that L = 1 (if not, consider
the scaled loss function λ/L). The game is called convex if for any predictions
γ1, . . . , γM ∈ Γ and for any weights p1, . . . , pM ∈ [0, 1],

∑M
m=1 pm = 1, there
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exists γ ∈ Γ such that λ(γ, ω) ≤
∑M

m=1 pmλ(γm, ω) for all ω ∈ Ω. Note that if
Γ is a convex set (e. g.,Γ = [0, 1]) and λ(γ, ω) is convex in γ (e. g.,λabs), then
the game is convex.

Theorem 2. Suppose that (Ω,Γ, λ) is a non-empty convex game and λ(γ, ω) ∈
[0, 1] for all γ ∈ Γ and ω ∈ Ω. In the game played according to Protocol 1,
Learner has a strategy guaranteeing that, for any T and for any k ∈ {1, . . . ,K},
it holds

LT ≤ Lk
T +

√
lnK

√
BT

βT
, (8)

where βt = 1/(α1 · · ·αt−1) and BT =
∑T

t=1 βt.

Note that BT /βT is the maximal predictors’ loss, which incurs when the pre-
dictor suffers the maximal possible loss lt = 1 at each step. In the undiscounted
case, αt = 1, thus βt = 1, BT = T , and (8) becomes LT ≤ Lk

T +
√
T lnK. A sim-

ilar bound (but with worse constant
√

2 instead of 1 before
√
T lnK) is obtained

in [2, Theorem 2.3]: LT ≤ Lk
T +

√
2T lnK +

√
(lnK)/8. For the exponential

discounting αt = α, we have βt = α−t+1 and BT = (1−α−T )/(1−1/α), and (8)
transforms into LT ≤ Lk

T +
√

lnK
√

(1 − αT )/(1 − α) ≤ Lk
T +

√
(lnK)/(1 − α).

A similar bound (with worse constants) is obtained in [7] for NormalHedge:
LT ≤ Lk

T +
√

(8 ln 2.32K)/(1 − α). The NormalHedge algorithm has an im-
portant advantage: it can guarantee the last bound without knowledge of the
number of experts K (see [3] for a precise definition). We can achieve the same
with the help of a more complicated algorithm but at the price of a worse bound
(see also the remark after the proof).

Proof. The pseudocode of Learner’s strategy is given as Algorithm 2. It contains
a constant a > 0, which we will choose later in the proof.

Similarly to Theorem 1, let us show by induction over t that Algorithm 2
always can find γ in lines 6–7 and preserves the following condition:

K∑
k=1

1
K

wk
t ≤ 1 . (9)

First note that αt−1ηt/ηt−1 ≤ 1 for ηt = a
√

βt/Bt. Indeed, substituting

αt−1 = βt−1/βt, we get αt−1(ηt/ηt−1) = (βt−1/βt)
(
a
√

βt/Bt/a
√

βt−1/Bt−1

)
=√

(βt−1/βt)(Bt−1/Bt) = √
αt−1

√
Bt−1/(Bt−1 + βt) ≤ 1.

Assume that
∑K

k=1 w
k
t−1/K ≤ 1. By the same argument as in Theorem 1, we

can deduce that
∑K

k=1(w
k
t−1)

αt−1ηt/ηt−1/K ≤
(∑K

k=1 w
k
t−1/K

)αt−1ηt/ηt−1

≤ 1.

Let w̃k be any reals such that w̃k ≥ (wk
t−1)αt−1ηt/ηt−1/K and

∑K
k=1 w̃

k = 1.
By the Hoeffding inequality (see, e. g., [2, Lemma 2.2]), we have for any ω ∈ Ω

ln

(
K∑

k=1

w̃ke−ηtλ(γk
t ,ω)

)
≤ −ηt

K∑
k=1

w̃kλ(γk
t , ω) +

η2
t

8
, (10)
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Algorithm 2. Learner’s strategy for convex games
1: Initialize weights of Experts wk

0 := 1, k = 1, . . . , K.
Set β1 = 1, B0 = 0.

2: for t = 1, 2, . . . do
3: Get discount αt−1 ∈ (0, 1]; update βt = βt−1/αt−1, Bt = Bt−1 + βt.
4: Compute ηt = a

√
βt/Bt.

5: Get Experts’ predictions γk
t ∈ Γ , k = 1, . . . , K.

6: Find γ ∈ Γ s.t. for all ω ∈ Ω

7: λ(γ, ω) ≤ − 1
ηt

ln
(∑K

k=1
1
K

(
wk

t−1

)αt−1ηt/ηt−1 e−ηtλ(γk
t ,ω)−η2

t /8
)
.

8: Output γt := γ.
9: Get ωt ∈ Ω.

10: Update the weights wk
t :=

(
wk

t−1

)αt−1ηt/ηt−1 eηt

(
λ(γt,ωt)−λ(γk

t ,ωt)
)
−η2

t /8,
11: k = 1, . . . , K.
12: end for.
Remark:
If λ(γ,ω) is convex in γ, lines 6–7 can be replaced by γ =

∑K
k=1 w̃kγk

t , see (11).

since λ(γ, ω) ∈ [0, 1] for any γ ∈ Γ and ω ∈ Ω. Since the game is convex, there
exists γ ∈ Γ such that λ(γ, ω) ≤

∑K
k=1 w̃

kλ(γk
t , ω) for all ω ∈ Ω. Therefore, for

this γ and for all ω ∈ Ω we have

λ(γ, ω) ≤
K∑

k=1

w̃kλ(γk
t , ω) ≤ − 1

ηt
ln

(
K∑

k=1

w̃ke−ηtλ(γk
t ,ω)−η2

t /8

)

≤ − 1
ηt

ln
(∑ 1

K

(
wk

t−1
)αt−1ηt/ηt−1 e−ηtλ(γk

t ,ω)−η2
t /8

)
(11)

(the second inequality follows from (10), and the third inequality holds due to our
choice of w̃k). Thus, one can always find γ in lines 6–7 of Algorithm 2. It remains
to note that the inequality in line 7 with γt substituted for γ and ωt substituted
for ω is equivalent to 1 ≥

∑K
k=1

(
wk

t−1
)αt−1ηt/ηt−1 eηtλ(γt,ωt)−ηtλ(γk

t ,ωt)−η2
t /8/K =∑K

k=1 w
k
t /K.

It is easy to check that the update rule in line 10 of the algorithm implies

lnwk
t = ηt

(
Lt − Lk

t

)
− ηt

8βt

t∑
τ=1

βτητ .

Condition (9) implies that wk
T ≤ K for all k and T , hence we get a loss bound

LT ≤ Lk
T +

lnK

ηT
+

1
8βT

T∑
t=1

βtηt . (12)

It remains to estimate the last term. Since ηt = a
√

βt/Bt, the following inequal-
ity helps (see [6, Appendix A.1] for the proof).
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Lemma 1. Let βt be any reals such that 1 ≤ β1 ≤ β2 ≤ . . .. Let BT =
∑T

t=1 βt.
Then, for any T , it holds

1
βT

T∑
t=1

βt

√
βt

Bt
≤ 2

√
BT

βT
.

Then (12) implies

LT ≤ Lk
T +

lnK

a

√
BT

βT
+

2a
8

√
BT

βT
= Lk

T +
(

lnK

a
+

a

4

)√
BT

βT
.

Choosing a = 2
√

lnK, we finally get the bound. ��

Remark 2. Algorithm 2 was obtained as a modification of the “Fake Defensive
Forecasting” algorithm from [5], but it turned out to be an extension of the
exponentially weighted average forecaster with time-varying learning rate [2,
§ 2.3] and the Weak Aggregating Algorithm [14], and its analysis here follows
the lines of [2, Theorem 2.2] and [13]. A more involved version of Algorithm 2
can achieve a bound for ε-quantile regret [3], but the analysis becomes more
complicated, requires application of the supermartingale technique, and gives a
worse bound (see [6]).

4 Regression with Discounted Loss

In this section we consider a task of regression, where Learner must predict
“labels” yt ∈ R for input instances xt ∈ X ⊆ Rn. The predictions proceed
according to Protocol 2. This task can be embedded into prediction with expert

Protocol 2. Competitive online regression
for t = 1, 2, . . . do

Reality announces xt ∈ X.
Learner announces γt ∈ Γ .
Reality announces yt ∈ Ω.

end for

advice if Learner competes with all functions x → y from some large class serving
as a pool of (imaginary) Experts.

4.1 The Framework and Linear Functions as Experts

Let the input set be X ⊆ Rn, the set of predictions be Γ = R, and the set of
outcomes be Ω = [Y1, Y2]. In this section we consider the square loss λsq(γ, y) =
(γ − y)2. Learner competes with a pool of experts Θ = Rn (treated as linear
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functionals on Rn). Each individual expert is denoted by θ ∈ Θ and predicts
θ′xt at step t.

Let us take any distribution over the experts P (dθ). It is known from [18]
that (3) holds for the square loss with c = 1, η = 2

(Y2−Y1)2
:

∃γ ∈ Γ ∀y ∈ Ω = [Y1, Y2] (γ − y)2 ≤ −1
η

ln
(∫

Θ

e−η(θ′xt−y)2P (dθ)
)
.

Denote by X the matrix of size T ×n consisting of the rows of the input vectors
x′

1, . . . , x
′
T . Let also WT = diag(β1/βT , β2/βT , . . . , βT /βT ), i.e., WT is a diagonal

matrix T × T . In a manner similar to [21], we prove the following upper bound
for Learner’s loss.

Theorem 3. For any a > 0, there exists a prediction strategy for Learner in
Protocol 2 achieving, for every T and for any linear predictor θ ∈ Rn,

T∑
t=1

βt

βT
(γt − yt)2 ≤

T∑
t=1

βt

βT
(θ′xt − yt)2

+ a‖θ‖2 +
(Y2 − Y1)2

4
ln det

(
X ′WTX

a
+ I

)
. (13)

If, in addition, ‖xt‖∞ ≤ Z for all t, then

T∑
t=1

βt

βT
(γt − yt)2 ≤

T∑
t=1

βt

βT
(θ′xt − yt)2

+ a‖θ‖2 +
n(Y2 − Y1)2

4
ln

(
Z2

a

∑T
t=1 βt

βT
+ 1

)
. (14)

Without discounting (αt = 1 for all t), the bounds in the theorem coincide
with the bounds for the Aggregating Algorithm for Regression [21, Theorem 1]
with Y2 = Y and Y1 = −Y , since, as remarked after Theorem 2, βt = 1 and(∑T

t=1 βt

)
/βT = T in the case without discounting. Recall also that in the

case of the exponential discounting (αt = α ∈ (0, 1)) we have βt = α−t+1 and(∑T
t=1 βt

)
/βT = (1 − αT−1)/(1 − α) ≤ 1/(1 − α).

4.2 Functions from an RKHS as Experts

In this section we apply the kernel trick to the linear method to compete with
wider sets of experts. Each expert f ∈ F predicts f(xt). Here F is a reproducing
kernel Hilbert space (RKHS) with a positive definite kernel k : X × X → R. For
the definition of RKHS and its connection to kernels see [16]. Each kernel defines
a unique RKHS. We use the notation KT = {k(xi, xj)}i,j=1,...,T for the kernel
matrix for the input vectors at step T . In a manner similar to [8], we prove the
following upper bound on the discounted square loss of Learner.
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Theorem 4. For any a > 0, there exists a strategy for Learner in Protocol 2
achieving, for every positive integer T and any predictor f ∈ F ,

T∑
t=1

βt

βT
(γt − yt)2 ≤

T∑
t=1

βt

βT
(f(xt) − yt)2

+ a‖f‖2
F +

(Y2 − Y1)2

4
ln det

(√
WT KT

√
WT

a
+ I

)
. (15)

Corollary 1. Assume that c2F = supx∈X k(x, x) < ∞ for the RKHS F . Un-
der the conditions of Theorem 4, given in advance any constant T such that(∑T

t=1 βt

)
/βT ≤ T , one can choose parameter a such that the strategy in The-

orem 4 achieves for any f ∈ F

T∑
t=1

βt

βT
(γt−yt)2 ≤

T∑
t=1

βt

βT
(f(xt)−yt)2 +

(
(Y2 − Y1)2

4
+ ‖f‖2

F

)
cF

√
T . (16)

Proof. The determinant of a symmetric positive definite matrix is upper bounded
by the product of its diagonal elements (see Chapter 2, Theorem 7 in [1]), and
thus we have

ln det
(
I +

√
WT KT

√
WT

a

)
≤ T ln

⎛⎜⎝1 +
c2F

(∏T
t=1

βt

βT

)1/T

a

⎞⎟⎠
≤ T

c2F
a

(
T∏

t=1

βt

βT

)1/T

≤ T
c2F
aβT

∑T
t=1 βt

T
≤ c2FT

a

(we use ln(1 + x) ≤ x and the inequality between the geometric and arithmetic
means). Choosing a = cF

√
T , we get bound (16) from (15). ��

Recall again that
(∑T

t=1 βt

)
/βT = (1 − αT−1)/(1 − α) ≤ 1/(1 − α) in the case

of the exponential discounting (αt = α ∈ (0, 1)), and we can take T = 1/(1−α).
Without discounting (αt = 1), we have

(∑T
t=1 βt

)
/βT = T , so we need to

know the number of steps in advance. Then, bound (16) matches the bound
obtained in [22, the displayed formula after (33)]. If we do not know an upper
bound T in advance, it is still possible to achieve a bound similar to (16) using
the Aggregating Algorithm with discounting to merge Learner’s strategies from
Theorem 4 with different values of parameter a, in the same manner as in [22,
Theorem 3]—see [6, Corollary 2] for details.

4.3 Proofs of Theorems 3 and 4

Let us begin with several technical lemmas from linear algebra. For complete
proofs of them see [6, Appendix A.1].
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Lemma 2. Let A be a symmetric positive definite matrix of size n × n. Let
θ, b ∈ Rn, and c ∈ R. Let Q(θ) = θ′Aθ + b′θ + c and Q0 = minθ∈Rn Q(θ). Then∫

Rn

e−Q(θ)dθ = e−Q0
πn/2

√
detA

.

The proof of this lemma can be found in [10, Theorem 15.12.1].

Lemma 3. Let A be a symmetric positive definite matrix n× n, b, z ∈ Rn, and

F (A, b, z) = min
θ∈Rn

(θ′Aθ + b′θ + z′θ) − min
θ∈Rn

(θ′Aθ + b′θ − z′θ) .

Then F (A, b, z) = −b′A−1z.

Lemma 4. Let A be a symmetric positive definite matrix of size n × n. Let
θ, b1, b2 ∈ Rn, c1, c2 be real numbers, and Q1(θ) = θ′Aθ + b′1θ + c1, Q2(θ) =
θ′Aθ + b′2θ + c2. Then∫

Rn e−Q1(θ)dθ∫
Rn e−Q2(θ)dθ

= ec2−c1− 1
4 (b2+b1)′A−1(b2−b1) .

The previous three lemmas were implicitly used in [21] to derive a bound on
the cumulative undiscounted square loss of the algorithm competing with linear
experts.

Lemma 5. For any matrix B of size n × m, any matrix C of size m × n, and
any real a such that the matrices aIm + CB and aIn + BC are nonsingular, it
holds that

B(aIm + CB)−1 = (aIn + BC)−1B ,

where In, Im are the unit matrices of sizes n× n and m × m, respectively.

Proof. Note that this is equivalent to (aIn + BC)B = B(aIm + CB). ��

Lemma 6. For any matrix B of size n × m, any matrix C of size m × n, and
any real number a, it holds

det(aIn + BC) = det(aIm + CB) ,

where In, Im are the unit matrices of sizes n× n and m × m, respectively.

Proof of Theorem 3. We take the Gaussian initial distribution over the experts
with a parameter a > 0:

P0(dθ) =
(aη
π

)n/2
e−aη‖θ‖2

dθ.

and use “Algorithm 1 with infinitely many Experts”. Repeating the derivations
from the proof of Theorem 1, we obtain the following analogue of (7):(aη

π

)n/2
∫

Θ

eη
(∑T

t=1
βt
βT

(γt−yt)2−
∑T

t=1
βt
βT

(θ′xt−yt)2
)
e−aη‖θ‖2

dθ ≤ 1.
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The simple equality

T∑
t=1

βt

βT
(θ′xt−yt)2+a‖θ‖2 = θ′(aI+X ′WTX)θ−2

T∑
t=1

βt

βT
ytθ

′xt+
T∑

t=1

βt

βT
y2

t (17)

shows that the integral can be evaluated with the help of Lemma 2:(aη
π

)n/2
∫

Θ

e−η
(∑T

t=1
βt
βT

(θ′xt−yt)2+a‖θ‖2
)
dθ

=
( a

π

)n/2
e−η minθ

(∑T
t=1

βt
βT

(θ′xt−yt)2+a‖θ‖2
)

πn/2√
det(aI + X ′WTX)

.

We take the natural logarithms of both parts of the bound and using the
value η = 2

(Y2−Y1)2
obtain (13). As in the proof of Corollary 1, we note that

det
(

X′WT X
a + I

)
≤

(
Z2 ∑T

t=1 βt

aβT
+ 1

)n

, and (14) follows.

Proof of Theorem 4. We need to prove that the guarantee (15) is satisfied for
each T and each (x1, y1, . . . , xT , yT ) ∈ (X× R)T . Fix T and (x1, y1, . . . , xT , yT ).
Fix an isomorphism between the linear span of kx1 , . . . , kxT obtained for the
Riesz Representation theorem and RT̃ , where T̃ is the dimension of the linear
span of kx1 , . . . , kxT . Let x̃1, . . . , x̃T ∈ RT̃ be the images of kx1 , . . . , kxT under
this isomorphism. We have then k(·, xi) = 〈·, x̃i〉 for any xi.

We apply the strategy from Theorem 3 to x̃1, . . . , x̃T . The predictions of the
strategies are the same due to Proposition 1 below. Any expert θ ∈ RT̃ in
bound (13) can be represented as θ =

∑T
i=1 cix̃i =

∑T
i=1 cik(·, xi) for some

ci ∈ R. Thus the experts’ predictions are θ′x̃t =
∑T

i=1 cik(xt, xi), and the norm
is ‖θ‖2 =

∑T
i,j=1 cicjk(xi, xj).

Denote by X̃ the T ×T̃ matrix consisting of the rows of the vectors x̃′
1, . . . , x̃

′
T .

From Lemma 6 we have

det

(
X̃ ′WT X̃

a
+ I

)
= det

(√
WT X̃X̃ ′√WT

a
+ I

)
.

Therefore, using KT = X̃X̃ ′, we obtain the upper bound

T∑
t=1

βt

βT
(γt − yt)2 ≤

T∑
t=1

βt

βT

(
T∑

i=1

cik(xt, xi) − yt

)2

+ a

T∑
i,j=1

cicjk(xi, xj) +
(Y2 − Y1)2

4
ln det

(√
WT KT

√
WT

a
+ I

)
for any ci ∈ R, i = 1, . . . , T . By the Representer theorem (see Theorem 4.2 in
[16]) the minimum of

∑T
t=1

βt

βT
(f(xt)−yt)2+a‖f‖2

F over all f ∈ F is achieved on
one of the linear combinations from the bound obtained above. This concludes
the proof.
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4.4 Regression Algorithms

In this subsection we derive explicit form of the prediction strategies for Learner
used in Theorems 3 and 4.

Strategy for Theorem 3. In [21] Vovk suggests the following substitution
function satisfying (5) for the square loss:

γT =
Y2 + Y1

2
− gT (Y2) − gT (Y1)

2(Y2 − Y1)
.

It allows us to calculate gT with unnormalized weights (and omitting the multi-
plicative factor):

gT (y) = −1
η

(
ln
∫

Θ

e−η
(

θ′AT θ−2θ′(bT−1+yxT )+
∑T−1

t=1
βt
βT

y2
t +y2

)
dθ

)
for any y ∈ Ω = [Y1, Y2] (here we use the expansion (17)), where

AT = aI +
T−1∑
t=1

βt

βT
xtx

′
t + xTx

′
T = aI + X ′WTX,

and bT−1 =
∑T−1

t=1
βt

βT
ytxt. The direct calculation of gT is inefficient: it requires

numerical integration. Instead, we notice that

γT =
Y2 + Y1

2
− gT (Y2) − gT (Y1)

2(Y2 − Y1)

=
Y2 + Y1

2
− 1

2(Y2 − Y1)η
ln

∫
Θ e−η

(
θ′AT θ−2θ′(bT−1+Y1xT )+

∑T−1
t=1

βt
βT

y2
t +Y 2

1

)
dθ∫

Θ
e−η

(
θ′AT θ−2θ′(bT−1+Y2xT )+

∑T−1
t=1

βt
βT

y2
t +Y 2

2

)
dθ

=
Y2 + Y1

2
− 1

2(Y2 − Y1)η
ln eη

(
Y 2
2 −Y 2

1 −(bT−1+(Y2+Y1
2 )xT )′

A−1
T (Y2−Y1

2 xT )
)

=
(
bT−1 +

(
Y2 + Y1

2

)
xT

)′
A−1

T xT , (18)

where the third equality follows from Lemma 4.
The strategy which predicts according to (18) requires O(n3) operations per

step. The most time-consuming operation is the inversion of matrix AT .

Strategy for Theorem 4. We use following notation. Let

kT be the last column of the matrix KT ,kT = {k(xi, xT )}T
i=1,

YT be the column vector of the outcomes YT = (y1, . . . , yT )′.

When we write Z = (V;Y) or Z = (V′;Y′)′ we mean that the column vector
Z is obtained by concatenating two column vectors V,Y vertically or V′,Y′

horizontally.
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As it is clear from the proof of Theorem 4, we need to prove that the strategy
for this theorem is the same as the strategy for Theorem 3 in the case when the
kernel is the scalar product.

Proposition 1. The predictions (18) can be represented as

γT =
(
YT−1;

Y2 + Y1

2

)′√
WT

(
aI +

√
WT KT

√
WT

)−1 √
WT kT (19)

for the scalar product kernel k(x, y) = 〈x, y〉, the unit T ×T matrix I, and a > 0.

Proof. For the scalar product kernel we have we have KT = X ′X and
√
WT kT =√

WTXxT . By Lemma 5 we obtain(
aI +

√
WTXX ′√WT

)−1 √
WTXxT =

√
WTX

(
aI + X ′WTX

)−1
xT .

It is easy to see that(
YT−1;

Y2 + Y1

2

)′
WTX =

(
T−1∑
t=1

βt

βT
ytxt +

(
Y2 + Y1

2

)
xT

)′

and

X ′WTX =
T−1∑
t=1

βt

βT
xtx

′
t + xTx

′
T .

Thus we obtain (18) from (19). ��
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Abstract. We address the problem of constructing randomized online algorithms
for the Metrical Task Systems (MTS) problem on a metric δ against an oblivious
adversary. Restricting our attention to the class of “work-based” algorithms, we
provide a framework for designing algorithms that uses the technique of regular-
ization. For the case when δ is a uniform metric, we exhibit two algorithms that
arise from this framework, and we prove a bound on the competitive ratio of each.
We show that the second of these algorithms is ln n + O(log log n) competitive,
which is the current state-of-the art for the uniform MTS problem.

1 Introduction

Consider the problem of driving on a congested multi-lane highway with the goal of
getting home as fast as possible. You are always able to estimate the speed of all of the
lanes, and must pick some lane in which to drive. At any time you are able to switch
lanes, but pay an additional penalty for doing so proportional to the distance from your
current lane. How should you pick lanes and when should you switch?

This is a concrete example of the metrical task system (MTS) problem, first intro-
duced by Borodin, Linial and Saks [1]. The problem is defined on a space of n states
with an associated distance metric function. The input to the problem is a series of cost
vectors c ∈ Rn

+. A MTS algorithm must choose a state i after seeing each c and must
pay the service cost ci. In addition, the algorithm pays a cost for switching between
states that is their distance in the given metric. An alternative model, and the focus of
the present work, is to imagine a randomized algorithm that maintains a distribution
over the states on each round, and pays the expected switching and servicing cost.

Metrical task systems form a very general framework in which many well-known on-
line problems can be posed. The k-server problem on an n-state metric [2], for example,
can be modeled as a metrical task system problem with

(
n
k

)
states1 Another example is

process migration over a compute cluster - in this view each node is a state, the distance
metric represents the amount of time it takes for a process to migrate from one node to
another and the cost vector represents the current load on the machine.

The randomized MTS problem looks strikingly similar to one much more familiar
to the learning community: the “experts” setting [3]. The experts problem also requires
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1 The reduction of making each k-subset a state leads to a bound that is linear in k, which is

much greater than the conjectured O(log k) ratio.
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choosing a distribution on [n] on each of a sequence of rounds, witnessing a cost vector,
and paying the associated expected cost of the selected distribution. The two primary
distinctions are that (a) no switching cost is paid in the experts problem and (b) the MTS
comparator, i.e. the offline strategy against which we compare the online algorithm, is
given much more flexibility. In the experts problem, the algorithm is only compared
to an offline algorithm that must fix its state throughout the game, whereas the MTS
offline comparator may choose the cheapest sequence of states knowing all service cost
vectors in advance.

The most common measure of the quality of an MTS algorithm is the competitive
ratio, which takes the performance of the online algorithm on a worst-case sequence
of cost vectors and divides this by the cost of the optimal offline comparator on the
same sequence. This is a notable departure from the notion of regret, which measures
the difference between the worst-case online and offline cost, and is a much more com-
mon metric for evaluating learning algorithms. This extension is necessary because the
complexity of the MTS comparator grows over time.

Prior Work. Borodin, Linial and Saks [1] showed that the lower bound on the compet-
itive ratio of any deterministic algorithm over any metric is 2n− 1. They also designed
an algorithm, the Work-Function algorithm, that achieves exactly this bound. This al-
gorithm was further analyzed by Schafer and Sivadasan using the smoothed analysis
techniques of Spielman and Teng to show that the average competitive ratio can be
improved to o(n) when the topological features of the metric are taken into account [4].

Results improve dramatically when randomization is allowed. The first result for
general metrics was an algorithm that achieved a competitive ratio of e

e−1n− 1
e−1 , [5]

by Irani and Seiden. In a breakthrough result, Bartal, Blum, Burch and Tompkins [6]
gave the first poly-logarithmic competitive algorithm for all metric spaces. This algo-
rithm uses Bartal’s result for probabilistically embedding general metric spaces into hi-
erarchically well-separated trees [7, 8]. Fiat and Mendel [9] improved this result further
to the currently best competitive algorithm that is O(log2 n log logn). Recently, Bansal,
Buchbinder and Naor [10] proposed another algorithm for general metrics based on a
primal-dual approach that is only O(log3 n)-competitive, but has an optimal competi-
tive factor with respect to service costs. The best known lower bound on the competitive
ratio for general metrics is Ω(log n/ log2 logn) [11]. This improves upon the previous

bound ofΩ(
√

logn/ log2 logn) [12]. A widely believed conjecture is that an O(log n)-
competitive algorithm exists for all metric spaces.

Better bounds are known for some special metrics. For example, for the line metric a
slightly better result of O(log2 n) is known [9]. Another metric for which better results
are known is the weighted star metric which has an O(log n)-competitive algorithm [9,
13]. The best understood, and most extensively studied metric space is the uniform
metric. For the uniform case, Bartal, Linial and Saks [1] showed a lower bound on
the competitive ratio for any algorithm of Hn, the nth harmonic number. They [1] also
designed an algorithm, Marking, that has competitive ratio 2Hn. An alternate algorithm,
Odd-Exponent [6], bears some similarity to one of the algorithms in this paper, and has
a 4 logn + 1 competitive ratio on the uniform metric. This upper bound was further
improved by the Exponential algorithm [5] to Hn + O(

√
logn). Recently, the Wedge
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algorithm [14] was introduced with competitive ratio of 3
2Hn − 1

2n . They claim that this
achieves a better competitive ratio when n < 108. Bansal, Buschbinder and Naor [15,
16] designed an algorithm for the uniform metric that is based on a previous primal-dual
approach and has near optimal competitive ratio.

Our Contributions. We make several contributions to the randomized metrical task
system problem. In Section 2, we propose a clear and coherent framework for devel-
oping and analyzing algorithms for the MTS problem. We appeal to the class of work-
based algorithms for which the probability distribution is chosen as a function of the
work vector, to be defined in the Preliminaries. We provide the most comprehensive set
of analytical tools for bounding the competitive ratio of work-based algorithms.

In Section 3, we develop an approach to the MTS problem using a regularization
framework. This provides a generic template for constructing randomized MTS algo-
rithms based on certain parameters of the regularized objective. For the case of the
uniform metric, we employ the entropy function as a regularizer and exhibit two novel
algorithms. The second of these achieves the current state-of-the-art competitive ratio
of Hn + O(log log n). We discuss potential methods for constructing general-metric
algorithms as well.

1.1 Preliminaries

The set [n] := {1, . . . , n} is a metric space if there exists a distance metric δ : [n] ×
[n] → R+. The primary feature of metrics that we will use is that they satisfy the
triangle inequality. Given p1,p2 ∈ Δn, where Δn is the n-simplex, we define the Earth
Mover Distance (EMD), or Wasserstein Distance, distδ(p1,p2), as the least expensive
way to transition between p1 and p2. It can be computed by the program

min
∑

i,j∈[n] δ(i, j)xi,j

subject to 1�
n [xi,j ] = p1, [xi,j ]1n = p2, xi,j ≥ 0 ∀i, j ∈ [n]

We note that, when working with the uniform metric, the EMD is simply the total
variational distance. In addition, in an important special case, we can express the EMD
in closed form, as described by the following Lemma.

Lemma 1. Assume we are given p1,p2 ∈ Δn with the property that p1 dominates p2

at every coordinate but i, that is p1
j ≥ p2

j whenever j �= i. Then

distδ(p1,p2) =
∑

j∈[n]\{i}
(p1

j − p2
j)δ(i, j)

The Randomized Metrical Task Systems Problem. Given n states and a metric δ over
[n], a randomized algorithm is given a sequence of service cost vectors c1, c2, . . . , cT ∈
Rn

+ as input and must choose a sequence of distributions p1,p2, . . . ,pT ∈ Δn. The
cost of some algorithm A is the total expected “servicing cost” plus the total “moving”
cost, i.e.

costA(c1, . . . , cT ) :=
T∑

t=1

(
pt · ct + distδ(pt,pt−1)

)
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where p0 is some default distribution, 〈1, 0, . . . , 0〉 by convention.
An offline MTS algorithm may select pt with knowledge of the entire sequence of

cost vectors c1, . . . , cT . We refer to the optimal offline algorithm by OPT(c1, . . . , cT ).
In this Section we discuss how OPT is computed easily with a simple dynamic program.

An online MTS algorithm can select pt with knowledge only of c1, . . . , ct. Notice
that, unlike in the usual “expert setting”, we let an online algorithm have access to the
cost vector ct before the distribution pt is chosen and the cost pt · ct is paid.

We measure the performance of an online algorithm by its Competitive Ratio (CR),
which is the ratio of the cost of this algorithm relative to the cost of the optimal offline
algorithm on a worst-case sequence. More precisely, the CR is the infimal value C > 0
for which there is some b such that, for any T and any sequence c1, c2, . . . , cT ,

costA(c1, c2, . . . , cT ) ≤ C · costOPT(c1, c2, . . . , cT ) + b

The additive term b, which can depend on the fixed parameters of the problem, is in-
cluded to deal with potential one-time “startup costs”.

The Work Function. We observe that the offline algorithm OPT need not play in a
randomized fashion because the optimal distributions pt will occur at the corners of the
simplex. Hence, computing OPT is not difficult, and can be reduced to a simple dynamic
programming problem. The elements of this dynamic program are fundamental to all of
the results in this paper, and we now define it precisely. Given a sequence c1, . . . , cT ,
we define the work function vector Wt at time t by the following recursive definition:

W0 := 〈0,∞, . . . ,∞〉 W t
i := min

j∈[n]

{
W t−1

j + δ(i, j) + ct
j

}
The work function value W t

i on cost sequence c1, . . . , ct is exactly the smallest to-
tal cost incurred by an offline algorithm for which pt = ei, i.e. one which must
be at location i at time t. Indeed, if we define W t

min := mini W
t
i , then we see that

OPT(c1, . . . , cT ) = WT
min.

If we think of the work vector Wt as a function from [n] to R, where Wt(i) := W t
i ,

then it is easily checked that Wt is 1-Lipschitz with respect to the metric δ. That is,
for all i, j ∈ [n], |W t

i − W t
j | ≤ δ(i, j). We define a notion of a supported state which

occurs when this Lipschitz constraint becomes tight.

Definition 1. Given some work vector Wt with respect to a metric δ, the state i is
supported if there exists a j �= i such that W t

i = W t
j + δ(i, j). In this case, we say that

state i is supported by j.

Intuitively, when a state i becomes supported by j at time t, it has essentially become
“useless” for an offline algorithm. In such a case, the total cost of arriving at i after t
rounds is no more than the total cost of arriving at j plus the cost δ(i, j) of switching to
i. By a simple application of the triangle inequality, we may conclude that there is an
optimal offline algorithm that visits only unsupported states.

Throughout this text, when it is unnecessary, we will drop the superscript t from Wt,
W t

i , pt and pt
i.
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2 The Work-Based MTS Framework

We now develop a very general framework, characterized by a set of conditions and
assumptions on the algorithm and cost sequences, in which to develop techniques for
the randomized MTS problem. The only actual restriction we impose on the algorithm
is Condition 1, although we conjecture that this can be made without loss of optimality.
The remaining Conditions either follow from the latter, or can be made without loss of
generality as we describe.

Condition 1. The algorithm will be “work-based”, that is, we choose pt = p(Wt)
for some fixed function p regardless of the sequence of cost vectors that resulted in W.

This paper focuses entirely on the construction of work-based algorithms, where the
algorithm can forget about the sequence of cost vectors c1, . . . , ct and simply use Wt

to choose pt. This algorithmic restriction has been used as early as [1] and appears
elsewhere. It has not been shown, to the best of our knowledge, that this restriction is
made without sacrificing optimality. We conjecture this to be true.

Conjecture 1. There is an optimal randomized MTS algorithm that is work-based. In
other words, there is an optimal algorithm such that, after receiving c1, . . . , ct, the
probability pt need only depend on the resulting work vector Wt.

Strictly speaking, we need not settle this conjecture to proceed with developing al-
gorithms within this restricted class. However, if it were settled in the affirmative this
would suggest that the algorithmic design problem can be safely restricted to this smaller
class of algorithms. Indeed, by making this assumption we gain a number of other prop-
erties that we list below.

Condition 2. All cost vectors are “elementary”: every ct has the form αei for some
α > 0 and some i.

It has been shown that a worst-case adversary need only assign cost to a single state on
each round. Intuitively this is because, rather than revealing the costs of several states
at once to the player, an adversary can spread these costs out over a sequence of rounds
at no cost to OPT. This intuition can be more formally justified, and we refer the reader
to Irani and Seiden [5] for more details.

Condition 3. The algorithm will be “reasonable”: whenever Wi = Wj + δ(i, j) for
some j (i.e. i is a supported state) then it must be that pi(W) = 0.

To reiterate, this condition requires that the probability assigned to state i must vanish
whenever i is support within W. This is an unusual condition but it is required for any
work-based MTS algorithm and it follows from Condition 1. Whenever this property
is broken an adversary can induce an unbounded competitive ratio. If pi(W

t−1) > 0
and W t−1

i = W t−1
j + δ(i, j) for some j, then the adversary can select, say, the cost

vector ct = ei (or any positive scaling of ei). By construction, the work vector will
be unchanged, Wt = Wt−1, and hence the work-based algorithm will not change its
distribution, p(Wt) = p(Wt−1). However, the algorithm will pay at least pt · ct =
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pi(W
t) = pi(W

t−1) > 0. The adversary can repeat this process, leaving the work
vector (and hence the cost of OPT) unchanged, leading to an unbounded cost for the
algorithm. For more discussion, see Bartal et al [6].

Condition 4. The cost vectors will be “reasonable” as well: Given a current work
vector W, if a cost ct+1 = αei is received then α ≤ W t

j − W t
i + δ(i, j) for all j.

This assumption can be made, without loss of generality, when Condition 3 is satisfied.
More specifically, we can convert a sequence of elementary cost vectors which does
not satisfy this property to a sequence which does, without any change to the online
algorithm or offline cost OPT. Consider an elementary cost vector ct = αei for some
state i and some α > W t−1−1

j − W t
i + δ(i, j) for some j, and imagine converting this

to ct = α′ei defined by “rounding down”, α′ := W t−1
j −W t−1

i +δ(i, j). The resulting
work vector Wt′ after ct′ is identical to Wt after ct, and the algorithm’s distribution
p(Wt) is also identical. Furthermore, as a result of Condition 3, the servicing cost is 0,
i.e. p(Wt) · ct′ = p(Wt) · ct = 0. Hence, we may assume that α is already rounded
down and thus ct is reasonable. The observation was first shown by Fiat and Mendel
[9]. With this condition we arrive at a useful Lemma:

Lemma 2. Under the assumption that the sequence of cost vectors c1, . . . , ct is rea-
sonable, the work vector is precisely Wt = c1 + . . . + ct.

Condition 5. The algorithm will be “conservative”: Given a work vector W, whenever
a cost c = αei is received, then for each j �= i we have pj(W) ≤ pj(W +αei) – that
is, the probabilities at the locations not receiving cost can not decrease.

We include this condition to make the analysis easier, in particular because we may
now use the more convenient form of the Earth Mover Distance described in Lemma 1.
In general it is not strictly necessary to require an MTS algorithm to be conservative.
On the other hand, it is easy to show that it is a beneficial assumption, and it is used
throughout the literature.

2.1 Relationship to the Experts Setting

Before proceeding, let us show why the proposed framework brings us closer to a
well-understood problem, the “experts” setting [3]. Here, the algorithm must choose
a probability distributions pt ∈ Δn on each round t, and an adversary then chooses a
loss vector lt ∈ [0, 1]n. Let Lt =

∑t
s=1 ls. Then the algorithm’s goal is to minimize∑T

t=1 pt · lt relative to the loss of the “best expert”, i.e. mini L
t
i.

Within our MTS framework, the story is quite similar. The algorithm and adversary
choose pt and ct on each round. By Lemma 2, WT =

∑T
t=1 ct, and the algorithm’s

goal is to pay as little as possible relative to mini W
t
i .

These problems have a strong resemblance, yet there are several critical differences:

– The MTS algorithm has one-step lookahead: it can select pt with knowledge of ct

– An additional penalty distδ(pt−1,pt) for moving is added to the objective for MTS
– The algorithm must be “reasonable”, requiring that the probability pt

i must vanish
under certain conditions of Wt.
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While the first point would appear quite advantageous for MTS, the benefit is spoiled by
the latter two. In the expert setting we can ensure that the average cost of the algorithm
approaches the comparator mini L

t
i using an algorithm like Hedge, whereas in the MTS

setting a lower bound shows that this ratio is at least Ω(log n/ log2 logn) for the work
function comparator [11]. At a high level, this is because charging the algorithm for
adjusting its distribution and requiring that the probability vanishes on certain states
causes the algorithm to pay a huge amount in transportation.

In Section 3, we borrow some tools from the experts setting such as entropy regu-
larization and potential functions. Algorithms from the experts setting have been used
on the MTS problem before, most notably by [17]. Their approach is quite different
from the one we take. They imagine competing against a “switching expert” and mod-
ify known results developed by [18]. Their approach, while quite interesting, is not a
work-based algorithm and does not achieve an optimal bound.

2.2 Bounding Costs Using Potential Functions

We turn our attention to bounding the cost of a work-based MTS algorithm p on a
worst-case sequence of costs. First, we make a simple observation about work-based
algorithms that adhere to our framework. Given a work vector W, consider the cost to
the algorithm when vector c = εei is received and the work vector becomes W1 =
W + εei. The probability distribution transitions to p(W1), and the service cost is
p(W1) · c = εpi(W

1). By the conservative assumption, we compute the switching
cost by appealing to Lemma 1. Hence, the total cost is

p(W1) · c + distδ(p(W),p(W1)) = εpi(W
1)+

∑
j∈[n]\{i}

(pj(W
1)− pj(W))δ(i, j).

(1)
In the present work, we will consider designing algorithms with p(W) which are both
continuous and differentiable. With this in mind, we can take (1) a step further and let
ε → 0 to get the instantaneous increase in cost to the algorithm as we add cost to state i.
Using continuity, we see that W1 → W as ε → 0, which gives that the instantaneous

cost at W in the direction of ei as pi(W) +
∑

j∈[n]\{i}
∂pj(W)

∂Wi
δ(i, j).

Ultimately, we need to bound the total cost of the algorithm on any sequence. The
typical way to achieve this is with a potential function that maintains an upper bound on
the worst case sequence of cost vectors that results in the current W. There is a natural
“best” potential function Φ∗

p(w) for a given algorithm p, which we now construct.
For any measurable function I : R+ → [n], we can define a continuous path through

the space of work vectors by WI(s) =
∫ s

0 eI(α)dα. This is exactly the continuous ver-
sion of Lemma 2. The function I(s) specifies which coordinate of WI(s) is increasing
at time s. Let ρ(W) be the set of all functions I which induce paths starting at 0 that
lead to W. We now construct a potential function,

Φ∗
p(W) = sup

I∈ρ(W)

∫ T :WI(T )=W

0

⎛⎝pI(s)(WI(s)) +
∑

j =I(s)

∂pj(WI(s))
∂WI(s)

δ(i, j)

⎞⎠ ds.
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This potential function measures precisely the worst case cost of arriving at a work
vector W.

Lemma 3. For any sequence of reasonable elementary vectors c1, c2, . . . , cT with
W =

∑
t c

t, the cost to algorithm p is no more than Φ∗
p(W). Furthermore, Φ∗

p(W)
is the supremal cost over all possible cost sequences {ct} that lead to W.

Proof. This fact is straightforward and we sketch the proof. For any W and any cost
vector c = εei (enough by Condition 2), the cost to the algorithm is expressed in
Equation (1). Now, instead of applying the cost all at once, consider applying it in a
continuous fashion, then the cost is∫ ε

0

⎛⎝pi(W + sei) +
∑
j =i

∂pj(W + sei)
∂Wi

δ(i, j)

⎞⎠ ds.

By Condition 5, pi(W + sei) ≥ pi(W + εei) for any s ∈ [0, ε] and hence this expres-
sion is an upper bound on Equation (1). In addition, for any sequence of ct’s, we can
construct an associated smooth path I that leads to W by integrating the cost smoothly
for each ct in the same fashion. But Φ∗

p(W) was defined as the supremum cost over
such paths. Thus, both the lower and upper bound follow.

Once we have Φ∗
p , the competitive ratio of p has the following characterization.

Lemma 4. The competitive ratio of algorithm p is the infimal value C such that
Φ∗

p(W) − CWmin is bounded away from +∞ for all W.

Certain work-based algorithms, which we will call shift-invariant algorithms, satisfy
p(W) = p(W + c1) for any W and any c.

Lemma 5. The competitive ratio of a shift-invariant algorithm is 1 · ∇Φ∗
p(W) for any

W.

Finding the optimal Φ∗
p for the algorithm p may be difficult. To prove an upper bound

on the competitive ratio, however, we need only construct a valid Φ. Precisely, define
Φ(W) to be valid with respect to the algorithm p if, for all W and all i, we have

∂Φ(W)
∂Wi

≥ pi(W) +
∑
j =i

∂pj(W)
∂Wi

δ(i, j)

Lemma 6. Given any p and any valid potential Φ, C is an upper bound on the com-
petitive ratio if Φ(W) − CWmin is bounded away from +∞.

In the following Section, we show how to design algorithms and construct potentials
for the case of uniform metrics using regularization techniques.

3 Work-Based Algorithms via Regularization

We begin this Section by providing a general tool for the construction of work-based
MTS algorithms. We present a regularization approach, common in the adversarial on-
line learning community, which we modify to ensure the required conditions for the
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MTS setting. We present two algorithms for the uniform metric from this framework,
with associated potential functions, and we prove a bound on the competitive ratio of
each. We finish by discussing how to extend this approach to general metric spaces.

3.1 Regularization and Achieving Reasonableness

We now turn our attention to the problem of designing competitive work-based algo-
rithms for the case when δ is the uniform metric. The uniform metric is such that all
states are the same distance from each other–that is, we assume without loss of gener-
ality δ(i, j) = 1 whenever i �= j and 0 otherwise.

To obtain a competitive work-based algorithm, we need to find a function p and
construct an associated potential function Φ with the following properties:

– (Conservativeness) We require that
∂pj(W)

∂Wi
≥ 0 for any W and ∀j �= i

– (Reasonableness) The probability pi(W) must vanish whenever i is a supported
state for W, i.e. when Wi = Wj + δ(i, j) for some j

– (Valid Potential) ∀W, i, the potential Φ must satisfy ∂Φ(W)
∂Wi

≥ pi(W) − ∂pi(W)
∂Wi

Notice that the term −∂pi(W)
∂Wi

has replaced
∑

j =i

∂pj(W)
∂Wi

δ(i, j) in the last expression.
These two quantities are equal when δ is the uniform metric, precisely because for any
j we have

∑
i

∂pi(W)
∂Wj

= 0 since
∑

i pi(W) = 1.

In order to obtain an algorithm with a low competitive ratio, we must construct a
slowly-changing p(W) and a valid potential Φ(W) that controls the motion of p(W)
as W varies in each direction. In other words, we would like to enforce a level of stabil-
ity in p(W). Stability is a central concept within both the batch-learning and the adver-
sarial online-learning literature. The most common and thoroughly analyzed approach
is to employ regularization. To describe this approach, let us return our attention to the
experts setting discussed in Section 2.1. Recall that, at time t, a distribution pt ∈ Δn

is to be chosen with knowledge of l1, . . . , lt−1. This can be achieved by solving the
following regularized objective,

pt = argmin
p∈Δn

(R(p) + λ
t−1∑
s=1

p · ls) (2)

where generally the “regularizer” R is selected as some smooth convex function and λ
is a learning parameter. How to select the correct regularizer is a major area of research,
but for the experts setting the most common is the negative of the entropy function,
R(p) :=

∑
i∈[n] pi log pi. This choice leads to the well-known exponential weights:

pt
i =

exp
(
−λ

∑t−1
s=1 l

s
i

)
∑

j exp
(
−λ

∑t−1
s=1 l

s
j

) (3)

Regularization in online learning appears in the literature at least as early as [19] and
[20], and more modern analyses can be found in [21] and [22].
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In this paper, we use the regularization framework to produce an algorithm p(W). It
is tempting to suggest solving the equivalent objective of Equation (2), where we treat
W as the cumulative costs; this leads to setting

p(W) = argmin
p

(R(p) + λp · W). (4)

This approach can indeed guarantee stability with the correct R, and it’s easy to check
that the objective induces a conservative algorithm. Unfortunately, it does not enforce
the reasonableness property that we require. (It has been shown that an unreasonable
work-based algorithm must admit an unbounded competitive ratio [17].).

The question we are thus left with is, how can we adjust the objective to maintain
stability and ensure reasonableness? Recall, when δ is the uniform metric, the reason-
ableness property requires that pi(W) → 0 whenever 1 + Wj − Wi approaches 0 for
any j, or equivalently when 1 + Wmin − Wi → 0. To guarantee this behavior, we
propose replacing the term p ·W in Equation (4) with

∑
i pifi(W, λ) where the func-

tion fi(W, λ) will be a Lipschitz penalty: for any metric δ on [n] and any 1−Lipschitz
vector W with respect to δ, we say that fi(W, λ) is a Lipschitz penalty function if
fi(W, λ) → ∞ as minj

(
Wj − Wi + δ(i, j)

)
→ 0. λ is a learning parameter that may

be tuned. Hence, we propose the following method to find p(W):

p(W) = argmin
p

(R(p) +
∑

i

pifi(W, λ)). (5)

For both algorithms in the following Section, we employ the entropy function for our
regularizer R(p).

3.2 Two Resulting Algorithms for the Uniform Metric

We will consider the following two Lipschitz penalty functions, and analyze the result-
ing algorithms:

(Alg 1) fi(W, λ) = −λ log(1 + Wmin − Wi)
(Alg 2) fi(W, λ) = − log(eλ(1+Wmin−Wi) − 1)

The analysis of both algorithms proceeds by solving the regularization function to find
pi as a function of W and then using the potential function technique of Section 2.2
to bound the switching and servicing costs regardless of which state receives cost. For
both, we separate the analysis into two cases: when increasing Wi causes Wmin =
minj Wj to increase, and when increasing Wi does not affect Wmin.

Theorem 1. Choosing R(p) :=
∑

i∈[n] pi log pi, and with Lipschitz penalty fi(W, λ)
= −λ log(1+Wmin −Wi), when λ = log n, we achieve an algorithm with competitive
ratio no more than e logn + 1 for the uniform metric.

Proof. We can solve (5) explicitly when R(·) is the negative entropy function. By com-
puting the Lagrangian, we arrive at

pi =
(1 + Wmin − Wi)

λ∑n
j=1(1 + Wmin − Wj)λ
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We will show that each of the components of the cost of the algorithm is bounded by a
multiple of the following potential function:

Φ(W) = cWmin − log
n∑

i=1

(1 + Wmin − Wi)
λ

The parameters will be set so that c = e(logn − 1) + 1 and λ = logn. We will show
that these have been tuned optimally.

As discussed in the beginning of this section, we must show that pi − ∂pi

∂Wi
≤ ∂Φ

∂Wi

for all i. We will vary from that slightly and show that when i �= min, pi − ∂pi

∂Wi
≤

(1 + 1
λ ) ∂Φ

∂Wi
and if i = min then pmin − ∂pmin

∂Wmin
≤ ∂Φ

∂Wmin
. Combining these facts, the

competitive ratio will be upper bounded by (1 + 1
λ)c.

First, we will show that if i �= min, pi −
∂pi

∂Wi
≤ (1 + 1

λ) ∂Φ
∂Wi

.

pi − ∂pi

∂Wi

=
(1 + Wmin − Wi)

λ∑
j(1 + Wmin − Wj)λ

+
λ(Wmin − Wi + 1)λ−1

(
∑

j(1 + Wmin − Wj)λ)2

≤ (1 + Wmin − Wi)
λ−1(λ + 1 + Wmin − Wi)∑

j(1 + Wmin − Wj)λ

≤ (λ + 1)(Wmin − Wi + 1)λ−1∑
j(1 + Wmin − Wj)λ

=
λ + 1
λ

∂Φ

∂Wi

Next, we consider pmin − ∂pmin
∂Wmin

≤ ∂Φ
∂Wmin

. Notice that pmin = 1
Z where Z =

∑
j(1 +

Wmin − Wj)
λ. We have

pmin − ∂pmin

∂Wmin
=

1
Z

+
1
Z2

∂Z

∂Wmin
≤ 1 +

1
Z2

∂Z

∂Wmin

In addition, we see that ∂Φ
∂Wmin

= c − 1
Z

∂Z
∂Wmin

. In order to show that pmin − ∂pmin
∂Wmin

≤
∂Φ

∂Wmin
, using the above two statements it is equivalent to show that

1
Z

∂Z

∂Wmin
+

1
Z2

∂Z

∂Wmin
≤ c− 1

We now show this fact. First, let αj := 1 + Wmin − Wj . Now we need to maximize(
1 +

1
1 +

∑
j =min α

λ
j

)
λ
∑

j =min α
λ−1
j

1 +
∑

j =min α
λ
j

This is maximized when αj = (λ−1
n−1 )1/λ and attains a max value of λ+1

λ (λ − 1)(n −
1)1/λ(λ− 1)−1/λ. This can be seen by first noting that it is maximized when all αj are
some value α and then taking the derivative with respect to α and setting it equal to 0.
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We note that as λ → ∞, (λ − 1)−1/λ → 1, as does λ+1
λ . Thus, we only concern

ourselves with the limit of (n − 1)1/λ. Let this quantity be L. By L’Hopital’s rule:

lim
n→∞ logL = lim

n→∞
log(n − 1)

λ
= lim

n→∞

1
n−1
dλ
dn

If we let λ = logn then we have 1
(n−1)/

1
n → 1. Thus, L = e and pmin − ∂pmin

∂Wmin
≤

∂Φ
∂Wmin

if c− 1 > (λ − 1)(n− 1)1/λ = e(logn− 1). Therefore, c = e(log n− 1) + 1.

Finally, we note that we have both requirements, pmin − ∂pmin
∂Wmin

≤ ∂Φ′
∂Wmin

and pi −
∂pi

∂Wi
≤ ∂Φ′

∂Wi
for Φ′ = (1 + 1

λ)Φ. Therefore, the total cost of this algorithm is bounded

by (1 + 1
λ)cOPT = (1 + 1

log n )(e(log n− 1) + 1)OPT ≤ (e logn + e + 1)OPT.

The previous algorithm demonstrates our analysis technique for a very simple and
natural Lipschitz-penalty function. However, it has a somewhat unsatisfying compet-
itive ratio of e logn. Even the very simple Marking algorithm has a better compet-
itive ratio of 2Hn. Next, we will show that a different Lipschitz penalty function,
fi(W, λ) = log(exp(λ(1 + Wmin − Wi)) − 1), produces an algorithm that achieves
the current best competitive ratio for the uniform MTS problem.

Theorem 2. If we employ the Lipschitz penalty fi(W, λ) = − log(exp(λ(1+Wmin −
Wi)) − 1) with λ = logn + 2 log logn, with R(·) the negative entropy as before, then
we achieve a competitive ratio of no more than logn + O(log logn) for the uniform
metric.

Proof. Solving the regularization problem when fi(W, λ) = log(exp(λ(1 + Wmin −
Wi)) − 1) results in

pi =
eλ(1+Wmin−Wi) − 1∑
j e

λ(Wmin−Wj+1) − 1

We will show that the following is a valid potential function:

Φ(W) = cWmin − 1 + λ

λ
log

n∑
i=1

(eλ(1+Wmin−Wi) − 1).

This analysis requires tuning the parameter λ, which we will do at the end.
In the same vein as the previous proof, we will show that pi − ∂pi

∂Wi
≤ ∂Φ

∂Wi
. We will

break this up into two steps, one where i �= min and when i = min.
Let us consider the case when i �= min. Let Z =

∑
j(e

λ(1+Wmin−Wj) − 1), the
normalization term of the above distribution. For any i �= min, we see that

pi − ∂pi

∂Wi

= pi +
λeλ(1+Wmin−Wi)

Z
+

1
Z2

∂Z

∂Wi

(eλ(1+Wmin−Wi) − 1) +
λ

Z
− λ

Z

= pi +
λ(eλ(1+Wmin−Wi) − 1)

Z
+

λ

Z
+ pi

1
Z

∂Z

∂Wi

= (1 + λ +
1
Z

∂Z

∂Wi

)pi +
λ

Z
≤ (1 + λ)pi +

λ

Z
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Notice that the final inequality follows since ∂Z
∂Wi

≤ 0.

Then, we consider ∂Φ
∂Wi

.

∂Φ

∂Wi

=
λ + 1
λ

1
Z

∂Z

∂Wi

=
λ + 1
λ

1
Z

(λeλ(Wmin−Wi+1))

=
1 + λ

Z
eλ(Wmin−Wi+1) +

1 + λ

Z
− 1 + λ

Z
= (1 + λ)(pi + 1/Z)

pi − ∂pi

∂Wi
≤ ∂Φ

∂Wi
follows immediately.

Now let i = min. Notice that pmin = eλ−1
Z , so we have

pmin − ∂pmin

∂Wmin
= pmin + (eλ − 1)

1
Z2

∂Z

∂Wmin
= pmin

(
1 +

1
Z

∂Z

∂Wmin

)
Furthermore,

∂Φ

∂Wmin
= c− 1 + λ

λ

1
Z

∂Z

∂Wmin

We compute

1
Z

∂Z

∂Wmin
=

λ

Z

∑
j =min

eλ(Wmin−Wj+1) =
λ

Z

∑
j =min

(eλ(Wmin−Wj+1) − 1) + λ
n − 1
Z

= λ

(
1 − pmin +

n− 1
Z

)
Putting the last three statements together, we can restate pmin − ∂pmin

∂Wi
≤ ∂Φ

∂Wmin
as

pmin

(
1 + λ

(
1 − pmin +

n− 1
Z

))
≤ c− (1 + λ)

(
1 − pmin +

n − 1
Z

)
n− 1
Z

(1 + λ + λpmin) + 1 + λ(1 − p2
min) ≤ c

Noting that Z ≥ eλ−1 and λpmin ≤ λ, it is equivalent to show that (2λ+1)n
eλ−1 +1+λ ≤ c.

Setting λ = logn + 2 log logn gives that the first term is o(1), and we can then set
c = λ + 1 + o(1). Thus the competitive ratio of this algorithm is logn + O(log logn),
the best achieved thus far.

3.3 Extending to General Metrics

It has become relatively well-established in the online learning literature that the nega-
tive entropy function is an ideal regularizer when we want to control the L1-stability of
our hypothesis, which is the relevant distance function for distributions over a uniform
metric space. On the other hand, notice that the algorithmic template we propose in (5)
does not rely on the uniform metric, and can be posed in general. Constructing algo-
rithms for arbitrary metrics has been the biggest challenge for the MTS problem, and
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we still have a gap in the minimax competitive ratio between Ω(logn) and O(log2 n).
Unfortunately, extending our results to general metrics does not lead to an algorithm
with an O(log n)-competitive ratio.

For other metrics, it is clear that entropy is not at all the correct regularizer. Instead,
what is needed is a regularization function that controls the stability of p with respect
to the norm induced by the Earth Mover Distance distδ(·, ·). It would be of particular
interest if such a function existed and could be constructed.

Conjecture 2. For any metric δ on [n], there is some regularization function R(·) such
that the algorithm resulting from Equation (5) is O(log n)-competitive.

As an example, in the case of the weighted star metric, which is slightly more general
than the uniform metric, we conjecture that the weighted entropy [23] is the correct
choice of regularizer. We note that the resulting algorithm is similar in flavor to the
MTS algorithm of Bansal et al [13], which is known to achieve an O(log n) algorithm
for this metric.

4 Conclusions and Open Problems

We have introduced a framework for developing and analyzing algorithms for the metri-
cal task system problem. This framework presupposes that an optimal algorithm that is
work-based exists, and we conjecture that this is this the case. Given this framework we
are able to use the popular entropy regularization approach to develop state-of-the-art
algorithms. We believe this system gives good insight into how to develop algorithms
for the general metric case.

Our work leaves open several important questions. The most obvious are the answers
to our conjectures - is it true that assuming that the algorithm will be work vector based
does not preclude optimality? All of the current algorithms for general metrics rely on
embedding the metric into a hierarchical search tree and then using MTS algorithms for
this metric space and none are known to be based on the work vector.

There is also an open question with regards to the regularization approach. What
is the correct regularization function for general distance metrics? We believe that an
algorithm for the general metric with even a polylogn bound on the competitive ratio
that is worse than the current results achieved by metric embedding would be interesting
due to its potential relative simplicity.
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Abstract. A U-shape occurs when a learner first learns, then unlearns,
and, finally, relearns, some target concept. Within the framework of
Inductive Inference, previous results have shown, for example, that U-
shapes are unnecessary for explanatory learning, but are necessary for
behaviorally correct learning.

This paper solves the following two problems regarding non-U-shaped
learning posed in the prior literature.

First, it is shown that there are classes learnable with three memory
states that are not learnable non-U-shapedly with any finite number of
memory states. This result is surprising, as for learning with one or two
memory states, U-shapes are known to be unnecessary.

Secondly, it is shown that there is a class learnable memorylessly
with a single feedback query such that this class is not learnable
non-U-shapedly memorylessly with any finite number of feedback
queries. This result is complemented by the result that any class of
infinite languages learnable memorylessly with finitely many feedback
queries is so learnable without U-shapes – in fact, all classes of infinite
languages learnable with complete memory are learnable memorylessly
with finitely many feedback queries and without U-shapes. On the
other hand, we show that there is a class of infinite languages learn-
able memorylessly with a single feedback query, which is not learnable
without U-shapes by any particular bounded number of feedback queries.

Keywords: Inductive Inference.

1 Introduction and Motivation

In Section 1.1 we explain U-shaped learning and in Section 1.2 memory-limited
learning. In Section 1.3 we summarize our main results of the present paper with
pointers to later sections where they are treated in more detail.
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1.1 U-Shaped Learning

U-shaped learning occurs when a learner first learns a correct behavior, then
abandons that correct behavior and finally returns to it once again. This pat-
tern of learning has been observed by cognitive and developmental psychologists
in a variety of child development phenomena, such as language learning [SS82],
understanding of temperature [SS82], weight conservation [SS82], object perma-
nence [SS82] and face recognition [Car82]. The case of language acquisition is
paradigmatic. In the case of the past tense of English verbs, it has been observed
that children learn correct syntactic forms (call/called, go/went), then undergo
a period of overregularization in which they attach regular verb endings such as
‘ed’ to the present tense forms even in the case of irregular verbs (break/breaked,
speak/speaked) and finally reach a final phase in which they correctly handle
both regular and irregular verbs. This example of U-shaped learning behavior
has figured prominently in cognitive science [MPU+92, TA02].

While the prior cognitive science literature on U-shaped learning was typically
concerned with modeling how humans achieve U-shaped behavior, [BCM+08,
CCJS07a] are motivated by the question of why humans exhibit this seemingly
inefficient behavior. Is it a mere harmless evolutionary inefficiency or is it nec-
essary for full human learning power? A technically answerable version of this
question is: are there some formal learning tasks for which U-shaped behavior is
logically necessary? We first need to describe some formal criteria of successful
learning.

An algorithmic learning function h is, in effect, fed an infinite sequence con-
sisting of the elements of a (formal) language L in arbitrary order with possibly
some pause symbols # in between elements. During this process the machine out-
puts a corresponding sequence p(0), p(1), . . . of hypotheses (grammars) which may
generate the languageL to be learned. A fundamental criterion of successful learn-
ing of a language is called explanatory learning (TxtEx-learning) and was intro-
duced by Gold [Gol67]. Explanatory learning requires that the learner’s output
conjectures stabilize in the limit to a single conjecture (grammar/program, de-
scription/explanation) that generates the input language. Formally, behaviorally
correct learning [CL82, OW82] requires, for successful learning, only convergence
in the limit to possibly infinitely many syntactically distinct but correct conjec-
tures. Another interesting class of criteria features vacillatory learning [Cas99,
JORS99]. This paradigm involves learning criteria which allow the learner to vac-
illate in the limit between at most some finite number of syntactically distinct but
correct conjectures. For each criterion thatwe consider above (andbelow), anonU-
shaped learner is naturally modeled as a learner that never semantically returns to
a previously abandoned correct conjecture on languages it learns according to that
criterion.

[BCM+08] showed that every TxtEx-learnable class of languages is TxtEx-
learnable by a non U-shaped learner, that is, for TxtEx-learnability, U-shaped
learning is not necessary. Furthermore, based on a proof in [FJO94], [BCM+08]
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noted that, by contrast, for behaviorally correct learning [CL82, OW82], U-
shaped learning is necessary for full learning power. In [CCJS07a] it is shown
that, for non-trivial vacillatory learning, U-shaped learning is again necessary
(for full learning power). Thus, in many contexts, seemingly inefficient U-shaped
learning can actually increase one’s learning power.

1.2 Memory-Limited Learning

It is clear that human learning involves memory limitations. In the present pa-
per (as in [CCJS07b]) we consider the necessity of U-shaped learning in some
formally memory-limited versions of language learning. In the prior literature
many types of memory-limited learning have been studied [LZ96, WC80, Wie76,
OSW86, FJO94, CJLZ99, CCJS07b]. Herein we study the types from [CCJS07b]
about which that paper has some results, and answer the open questions from
that paper about those types.

1.3 Brief Summary of Main Results

The paper [CCJS07b] introduces Bounded Memory State (BMS) learning. As-
sociated learners do not have access to any previously seen data. Instead, after
each datum presented, the learner may choose one out of a bounded number of
memory states, and, when presented with another datum, will be passed this
memory state along with the new datum. Thus, each output of new conjecture
and new memory state may depend only on the new datum and the just pre-
vious memory state. Intuitively, such a learner can be pictured as a finite state
machine, where the transitions depend on each new datum.1

In [CCJS07b], the authors show that Bounded Memory States learning with
up to two memory states does not require U-shapes.

As an open problem (Problem 40) they ask whether or not U-shapes are
similarly unnecessary for higher numbers of memory states. Surprisingly, Theo-
rem 3 says that there is a class learnable with three memory states which is not
learnable for any number of memory states and without U-shapes. Hence, in all
but the bottom two cases for number of memory states available, U-shapes are
necessary for increased learning power.

Also in [CCJS07b], Memoryless Feedback (MLF) learning is introduced. This
is similar to BMS learning in that a learner does not have access to any strictly
previously seen data. Instead, for a given natural number n, the learner may
query, in parallel, for up to n different datapoints, whether those datapoints have

1 For such a learner with a number of memory states equal c ≥ 1, intuitively, the
learner can store any one out of c different values in its long term memory [FKS95,
KS95]. For example, when c = 2k, the memory is equivalent to the learner having k
bits of memory.

For the criteria studied for example in [Wie76, CJLZ99, JK09, JLMZ10], learning
functions also have access to their just prior output conjecture (if any), but, for the
criteria studied herein, learning functions have no such access.
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been seen previously. No query may depend on the outcome of another query,
and all queries will be individually answered truthfully, so that the learner knows
for each queried datum whether it has been seen before.

In [CCJS07b], the authors show that, for each choice of parameter n > 0,
U-shapes are necessary for the full learning power of MLF learning. As an open
problem (Problem 39), they ask, for any given parameter m > 0, whether there is
a parameter n > m such that MLF learning with a (possibly high) parameter of
n allows for non-U-shaped learning of all classes of languages that are MLF learn-
able with parameter m. We answer this question negatively, and show a much
stronger result: Theorem 5 below says that there is a class of languages learnable
memorylessly with a single feedback query which is not non-U-shapedly MLF
learnable with arbitrarily many sequential recall queries For this, the learner may
even continue asking queries, dependent on the outcome of previous queries, and
not be limited to any finite number.

We complement this latter result by showing that any class of infinite lan-
guages learnable memorylessly with finitely many feedback queries is so learnable
without U-shapes. Even stronger, Theorem 6 states that each TxtEx-learnable
class of infinite languages is learnable memorylessly with arbitrarily many feed-
back queries and without U-shapes.

For this theorem, it is essential that the number of feedback queries is not
bounded: Theorem 7 states that there is a class of infinite languages learnable
memorylessly with a single feedback query, which is not learnable without U-
shapes by any particular bounded number of feedback queries.

We conclude our analysis of MLF learning by showing that it is essential that
a query can be used to find out whether the current datum has been seen before
(see Theorem 9).

Many proofs involve subtle infinitary program self-reference arguments em-
ploying the Operator Recursion Theorem (ORT) and variants from [Cas74,
Cas94]. Because of space limitations, some proofs are omitted herein.

2 Mathematical Preliminaries

Unintroduced computability-theoretic notions follow [Rog67].
N denotes the set of natural numbers, {0, 1, 2, . . .}.
The symbols ⊆,⊂,⊇,⊃ respectively denote the subset, proper subset, superset

and proper superset relation between sets. The symbol \ denotes set-difference.
The quantifier ∀∞x means “for all but finitely many x”, the quantifier ∃∞x

means “for infinitely many x”. For any set A, card(A) denotes its cardinality.
With P and R we denote, respectively, the set of all partial and of all total

functions N → N. With dom and range we denote, respectively, domain and
range of a given function.

We sometimes denote a partial function f of n > 0 arguments x1, . . . , xn in
lambda notation (as in Lisp) as λx1, . . . , xn f(x1, . . . , xn). For example, with
c ∈ N, λx c is the constantly c function of one argument.

For any predicate P , we let μx P (x) denote the least x such that P (x).
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We fix any computable 1-1 and onto pairing function 〈·, ·〉 : N × N → N.2
Whenever we consider tuples of natural numbers as input to f ∈ P, it is
understood that the general coding function 〈·, ·〉 is used to (left-associatively)
code the tuples into a single natural number.

If f ∈ P is not defined for some argument x, then we denote this fact by
f(x)↑, and we say that f on x diverges; the opposite is denoted by f(x)↓, and
we say that f on x converges. If f on x converges to p, then we denote this fact
by f(x)↓ = p.

We say that f ∈ P converges to p iff ∀∞x : f(x)↓ = p; we write f → p to
denote this.3

A partial function ψ ∈ P is partial computable iff there is a deterministic,
multi-tape Turing machine which, on input x, returns ψ(x) if ψ(x)↓, and loops
infinitely if ψ(x)↑. P and R denote, respectively, the set of all partial computable
and the set of all computable functions N → N. The functions in R are called
computable functions.

We let ϕ be any fixed acceptable programming system for the partial com-
putable functions N → N with associated complexity measure Φ. Further, we
let ϕp denote the partial computable function computed by the ϕ-program with
code number p, and we let Φp denote the partial computable complexity function
of the ϕ-program with code number p.

A set L ⊆ N is computably enumerable (ce) iff it is the domain of a computable
function. Let E denote the set of all ce sets. We let W be the mapping such that
∀e : W (e) = dom(ϕe). For each e, we write We instead of W (e). W is, then, a
mapping from N onto E . We say that e is an index, or program, (in W ) for We.

Whenever we consider sequences or finite sets as input to functions, we assume
these objects to be appropriately coded as natural numbers.

2.1 Learning in the Limit

In this section we formally define several criteria for learning in the limit.
A learner is a partial computable function.
A language is a ce set L ⊆ N. Any total function T : N → N∪ {#} is called a

text. For any given language L, a text for L is a text T such that content(T ) = L.
A sequence generating operator is an operator β taking as arguments a learner

h and a text T and that outputs a function p. We call p the learning sequence
of h given T .
Let β be a sequence generating operator and h a learner. We proceed by giving
definitions for β-learning, and, additionally, for non-U-shaped variants. The non-
U-shaped variants will require a learner never to change semantically any correct
conjecture (on a path to successful learning).

We say that h β-learns a language L iff, for all texts T for L and p = β(h, T ),
there is i0 such that, for all i ≥ i0, p(i) ∈ {?, p(i0)} and Wp(i0) = L. We denote
the class of all languages β-learned by h with β(h). By β we denote the set of
all classes of languages β-learnable by learners.
2 For a linear-time example, see [RC94, Section 2.3].
3 f(x) converges should not be confused with f converges to.



290 J. Case and T. Kötzing

As the first example sequence generating operator we define TxtEx
thus. ∀h, T, i : TxtEx(h, T )(i) = h(T [i]). Then, for example, we see that h
TxtEx-learns L iff, for all texts T for L, for some i0, the sequence of learner
h’s outputs, h(T [ii0 ]), h(T [ii0 + 1]), h(T [ii0 + 2]), . . . , begins with some correct
W -program p(i0) for L and, after that the elements of the sequence are either p(i0)
or ?.

We say that h NUβ-learns a language L iff h β-learns L and, for all texts T
for L and p = β(h, T ), for all i0 such that Wp(i0) = L and all i ≥ i0, Wp(i) = L.
We denote the class of all languages NUβ-learned by h with NUβ(h). With
NUβ we denote the set of all classes of languages NUβ-learnable by learners.

For Bounded Memory States learning with n ≥ 1 states, learners are functions
of the kind 〈h, f〉, i.e., learners with two outputs: the first for a new conjecture,
the second for a new memory state. Given such a learner 〈h, f〉 and a text T , we
define recursively the BMSn learning sequence p and the sequence q of states4
of 〈h, f〉 given T thus.

p(0) = ?; (1)
q(0) = 0; (2)

∀i : p(i + 1) = h(T (i), q(i)); (3)
∀i : q(i + 1) = min(n − 1, f(T (i), q(i))). (4)

The sequence generating operator BMSn is defined accordingly.
Memoryless Feedback learning, as given in [CCJS07b], is a learning criterion

where the learner works in two stages. In the first stage, the learner is presented
a datum and uses it to compute a finite set. In the second stage, the learner
computes a new conjecture, given the same datum and, additionally, for each
element x of the finite set computed in the first stage, an indicator of whether
x occurred previously in the current text.

Intuitively, each element x in the set resulting from the first stage represents
the question “have I seen datum x previously?”.

Variants of memoryless feedback learning, where the size of each such set is
bounded by a fixed parameter n ∈ N, are also studied in [CCJS07b]. Herein, we
additionally study a variant where a learner is allowed to make queries sequen-
tially, which we call memoryless recall learning (MLR).

We will not give formal details for modeling the associated sequence generating
operators. Instead, we employ an informal query function rcl described below.
For each n ∈ N∪{∗}, let MLFn be the sequence generating operator associated
with allowing n parallel queries (feedback learning). Further, for all m ∈ N∪{∗},
we let MLRm be the sequence generating operator associated with allowing m
sequential queries (recall learning).

As indicated, for specifying learners with feedback or recall queries, we intro-
duce the use of rcl as follows.5

4 Without loss of generality, the set of states is {0, . . . , n− 1}.
5 The use of rcl is “syntactic sugar”.
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For a, b, c ∈ P and d ∈ N we will frequently make statements such as the
following.

∀x : ϕd(x) =

{
a(x), if rcl(c(x));
b(x), otherwise.

(5)

Intuitively, this means that ϕd on input (new datum) x will first recall c(x),
and then, if c(x) was seen previously, output a(x), otherwise b(x). Furthermore,
for a finite set D, we use rcl(D) to denote the set {x ∈ D | rcl(x)}.

Starred Learners
For a learner h, possibly learning with restricted access to past data, we write
h∗(σ) for what the current output of h is after being fed the sequence σ of data
items.

3 Bounded Memory States Learning (BMS)

Definition 1. Let f ∈ P . For this definition, we let f∗ ∈ P be such that
f∗(∅) = 0 and ∀σ, x : f∗(σ . x) = f(x, f∗(σ)).6

For all g ∈ R, let Yg be such that

Yg = {j | (∀k ≤ j + 1 : f∗(g[k])↓) ∧ (∀k ≤ j)f∗(g[k]) �= f∗(g[j + 1])}. (6)

Intuitively, Yg is the set of all j such that f , when presented the text g, changes
into a previously not visited state after seeing element g(j).

Lemma 2. Let f ∈ P . Let f∗ be as in Definition 1 above. For g ∈ P , we will
below refer to the following statement.

∀k : f∗(g[k])↓. (7)

(i) There is an effective operator Θ : P → P 7 such that, for all g ∈ R, if (7),
then Θ(g) is total and decides Yg.

(ii) If range(f) is finite, then, for all g ∈ R, Yg is finite.
(iii) For all g ∈ R, if (7), then

∀τ ⊂ g ∃σ ∈ Seq({g(j) | j ∈ Yg}) : f∗(τ) = f∗(σ). (8)

Proof. Obviously, Θ as follows satisfies (i).

∀x, j : Θ(ϕx)(j) =

⎧⎪⎨⎪⎩
↑, if (∃k ≤ j + 1 : f∗(ϕx[k])↑);
1, else if (∀k ≤ j)f∗(ϕx[k]) �= f∗(ϕx[j + 1]);
0, otherwise.

(9)

(ii) is easy to see.
6 Note that f∗(∅) = 0 is the initial state of any given BMS-learner.
7 I.e. there exists a computable f ∈ R such that, for all ϕ-programs q, Θ(ϕq) = ϕf(q)

[Rog67].
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(iii) can be seen by ⊆-induction on τ as follows. Let τ ⊂ g be such that,
for all τ̂ ⊂ τ , ∃σ ∈ Seq({g(j) | j ∈ Yg}) : f∗(τ̂ ) = f∗(σ). Let τ0 ⊆ τ be the
⊆-minimum such that f∗(τ0) = f∗(τ). The conclusion is trivial if τ0 = ∅. Else,
#elets(τ0) − 1 ∈ Ys. Let σ ∈ Seq({s(j) | j ∈ Ys}) such that f∗(τ−0 ) = f∗(σ).
Therefore,

f∗(τ) = f∗(τ0) = f(last(τ0), f∗(τ−0 )) = f(last(τ0), f∗(σ)) = f∗(σ . last(τ0)).
(10)

Hence, (σ . last(τ0)) ∈ Seq({g(j) | j ∈ Yg}) is the desired sequence witnessing
(iii) for τ .

Contrasting BMS1 = NUBMS1 and BMS2 = NUBMS2 from [CCJS07b],
we have the following theorem, solving an open problem, Problem 40, from
[CCJS07b].

Theorem 3. We have

BMS3 \
⋃
n>0

NUBMSn �= ∅.

Proof. Let M ∈ P be such that

∀v, x : M(x, v) =

{
〈?, v〉, if x = #;
ϕx(v), otherwise.

(11)

Let L = BMS3(M). Let n > 0. Suppose, by way of contradiction, L ∈
NUBMSn, as witnessed by 〈h, f〉 (h returns the new conjecture, f the new
state). Suppose, without loss of generality, range(f) is finite. Let f∗ be as in Def-
inition 1 above. Let h∗ be such that h∗(∅) = ? and ∀σ, x : h∗(σ.x) = h(x, f∗(σ)).
Let, for all s ∈ R, Ys be as in Definition 1 above, and let Θ be as shown existent
in Lemma 2 (i).

Intuitively, h∗(σ) is the hypothesis of the learner after seeing σ as input.
We define ce sets P,Q in uniform dependence of r, s ∈ P (we abbreviate, for

all i, si = λj s(i, j)) such that ∀a, b, σ, τ :

Q(b, τ)⇔ ∃ξ ∈ Seq(range(τ)) : ∅ �= Wh∗(τ�r(b)�ξ) ∩ (range(sb) \ range(τ)); (12)

P (a, b, σ, τ) ⇔

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

a �= b ∧
σ ∈ Seq({sa(j) | Θ(sa)(j) = 1}) ∧
τ ∈ Seq(range(sb)) ∧
f∗(σ) = f∗(τ) ∧
f∗(σ . r(a)) = f∗(τ . r(b)) ∧
Q(b, τ).

(13)

Fix a ce-index for P . By 1-1 ORT, there are 1-1 e, r, s, t, y, z ∈ R with pairwise
disjoint ranges and p ∈ N such that a number of restrictions are satisfied. The
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first group of restrictions is given by the following four equations. ∀x, i :

ϕp(x) = μ〈a, b, σ, τ, d〉 [P (a, b, σ, τ) in ≤ d steps]; (14)
Wy(i) = range(si) ∪ {r(i)}; (15)
Wz(i) = range(si); (16)

We(i) = {r(i)} ∪ range(t) ∪

⎧⎪⎨⎪⎩
∅, if ϕp(0)↑;
content(π3(ϕp(0))), else if i = π1(ϕp(0));
content(π4(ϕp(0))), otherwise.

(17)

The second group of restrictions in our application of ORT is indicated by a
labeled graph using vertices {0, 1, 2}. For all elements x ∈ range(r) ∪ range(s) ∪
range(t) and � ∈ N, an edge from vertex v to vertex w labeled x

� (we use this
kind of label for readability; k

� is not to be confused with a fraction) in the graph
just below adds the restriction ϕx(v) = 〈�, w〉 as part of our application of ORT.

The third and last group of restrictions is as follows.

(∀i, j | Θ(si)(j)↑)ϕsi(j)(1)↑ (18)

and, for all x ∈ range(r)∪ range(s)∪ range(t) and vertices v such that ϕx(v) was
not previously specified, we have the restriction ϕx(v) = 〈?, v〉.

It is easy to verify that these three groups are not contradictory and embody
a valid application of ORT.

The above graph now allows us to easily determine whether certain interesting
subsets of range(r) ∪ range(s) ∪ range(t) are in L. For example,

∀i ∈ N : range(si) = Wz(i) ∈ L. (19)

Statement (19) can be derived from with the help of the graph, as the graph
shows that, for all i, M , on any element from range(si), stays in state 0 and
outputs z(i) as hypothesis.

From (19) we get, for all i and σ ∈ Seq(range(si)), f∗(σ)↓; in particular, for
all i, we have (7) with si in the place of g. Therefore, for all i, using Lemma 2
(i), Θ(si) is total and (18) is vacuous. By Lemma 2 (ii), for each i, Ysi is finite,
and, thus, the above graph easily shows

∀i ∈ N : range(si) ∪ {r(i)} = Wy(i) ∈ L. (20)

Hence,
∀i ∈ N, ∀ρ ∈ Seq(Wy(i)) : 〈h∗, f∗〉(ρ)↓. (21)
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Claim 1. ∀b ∈ N ∃τ ⊂ sb : Q(b, τ).

Proof of Claim 1. Let b ∈ N. By the Pigeonhole Principle, as range(f) is finite,
there is v such that ∃∞k : f∗(sb[k]) = v. By (19), there is j0 such that

Wh∗(sb[j0]) = Wz(b); and ∀j ≥ j0 : h∗(sb[j]) ∈ {?, h∗(sb[j0])}. (22)

Let j1 > j0 be such that f∗(sb[j1]) = v. By (20), there is k ∈ N such that

Wh∗(sb[j1]�r(b)�sb[k]) = Wy(b). (23)

Let j2 > k be such that f∗(sb[j2]) = v. Then

Wh∗(sb[j2]�r(b)�sb[k]) = Wy(b). (24)

Hence, ∃τ ⊂ sb : Q(b, τ) as witnessed by sb[j2] for τ and sb[k] for ξ.
(for Claim 1)

Claim 2. ϕp(0)↓.

Proof of Claim 2. For the proof of this claim only, for each b ∈ N, we fix τb as
shown existent by Claim 1.

There are only finitely many pairs of states (elements of range(f)), while there
are infinitely many b ∈ N. Hence, by the Pigeonhole Principle, there are a, b ∈ N

such that a �= b, f∗(τa) = f∗(τb) and f∗(τa . r(a)) = f∗(τb . r(b)). To show the
claim, we use Lemma 2 (iii) with sa in place of g to replace τa by σ such that
σ ∈ Seq({sa(j) | j ∈ Ysa}) and f∗(τa) = f∗(σ). Thus,

f∗(σ . r(a)) = f∗(τa . r(a)) = f∗(τb . r(b)) (25)

and
f∗(σ) = f∗(τa) = f∗(τb). (26)

Now we see that P (a, b, σ, τb), as

a �= b by choice of a, b;
σ ∈ Seq({sa(j) | Θ(sa)(j) = 1}) by choice of σ and Θ(sa) decides Ysa ;

τb ∈ Seq(range(sb)) as τb ⊂ sb;
f∗(σ) = f∗(τb) as (26);

f∗(σ . r(a)) = f∗(τb . r(b)) because of (25);
Q(b, τ) by choice of τb.

(for Claim 2)

Let
〈a, b, σ, τ, d〉 = ϕp(0), (27)

and let ξ be as stated existent by Q(b, τ). We have

We(a) = {r(a)} ∪ range(t) ∪ content(σ), and (28)
We(b) = {r(b)} ∪ range(t) ∪ content(τ). (29)
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It is easy to see (from the graph above) that We(a),We(b) ∈ L.
Let

ρa = σ . r(a), (30)
ρb = τ . r(b), (31)
Ta = ρa . t, (32)
Tb = ρb . t, and (33)
T ′

b = ρb . ξ . t. (34)

Then Ta is a text for We(a) and Tb, T
′
b are texts for We(b). As f∗(ρa) = f∗(ρb),

and, as h has to identify We(a) from ρa . t = Ta and We(b) from ρb . t = Tb, we
have, for all k, h∗(ρa . t[k]) =? and h∗(ρb . t[k]) =?. Thus, there is � such that
Wh∗(ρb[�]) = We(b).

To see that we have a U-shape with text T ′
b:

1. ∃� : Wh∗(ρb[�]) = We(b) (as stated just above);
2. Wh∗(ρb�ξ) �= We(b) (by ξ witnessing Q(b, τb)); and
3. ∃� : Wh∗(ρb�ξ�t[�]) = We(b) (as T ′

b is a text for We(b) ∈ L).

This is a contradiction to L ∈ NUBMSn(〈h, f〉).

4 Memoryless Feedback Learning (MLF)

The main theorem in this section is Theorem 5 just below. This theorem an-
swers the open question mentioned in Section 1.3 above regarding memory-less
feedback learning.

Theorem 6 shows that memoryless learning with arbitrarily many feedback
queries is equivalent to TxtEx-learning on classes of infinite languages.

Memoryless feedback learning, as defined above, trivially allows a learner to
query for whether the current input element has been seen strictly previously.
In Definition 8 below we give a variant of memoryless feedback learning, called
MLF′ learning, where all queries are answered based on all data seen so far,
including the current datum. For MLF′ learning, it is no longer possible to
query to see if the current datum has been seen previously. From Theorem 9 we
have that the learning power of MLF′ learning is strictly lower.

Some results in this section make use of the following definition.

Definition 4. Let h0 ∈ P be such that ∀i, x,D :

h0(i, x,D) =

⎧⎪⎨⎪⎩
∅, if x = # and i = 0;
?, if x = # and i �= 0;
ϕx(i,D), otherwise.

(35)

Let L0 = MLF1(h0).

Intuitively, h0 is a learner which learns languages by interpreting each input
datum as a program for the computations to make to get an appropriate output.
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In fact, one can argue that not much information about how to identify L0
is actually in h0; instead, one could say that “L0 learns itself.” We call such
classes of languages “self-learning classes of languages.” Using such classes to
show something is learnable with respect to one criterion and not with respect
to some other is beneficial in two ways. We explain using L0 as an example. First,
trivially, L0 is MLF1-learnable – L0 was defined to be the set of all languages
so learnable by the explicitly given learner h0. Secondly, one merely has to use
recursion theorems, such as variants of ORT, to diagonalize out of L0. We so use
the self-learning L0 in the proofs of Theorems 5 and 9 (but the latter proof is
omitted herein) and we employ a variant in the (omitted) proof of Theorem 7.

Theorem 5
MLF1 \ NUMLR∗ �= ∅.

Proof. We consider L0 from Definition 4. Suppose h1 ∈ P MLR∗-learns L0. We
show that h1 is not non-U-shaped. It is easy to see that we can assume, without
loss of generality,

∀τ, x : h∗
1(τ . x . x) ∈ N ⇒ h∗

1(τ . x) = h∗
1(τ . x . x). (36)

Let f ∈ P be such that, on input x, f first computes h1(x) where all queries are
answered with “false”. If h1(x)↓, f outputs the maximum recalled element plus
1 (or 0, if no queries were asked). Then we have

∀x : h∗
1(x)↓ ⇒ f(x)↓ and h∗

1 on x does not recall any y ≥ f(x). (37)

By padded ORT, there are e0, e1, a ∈ N and strictly monotonic increasing func-
tions b̂, ĉ ∈ R such that b̂ and ĉ have disjoint ranges, neither containing a, and,
abbreviating

b = b̂(f(a));
c = λi ĉ(i + f(a));
E = {c(i) | ∃j ≥ i : h∗

1(a . c[j])↓ �= h∗
1(a . c[j + 1])↓}

we have ∀i, x :

We0 = {a} ∪ range(c); (38)

We1 =

{
{a}, if h∗

1(a)↑ or h∗
1(a) =?;

{a, b} ∪ E, otherwise;
(39)

ϕa(x) =

{
?, if rcl(a);
e1, otherwise;

(40)

ϕb̂(i)(x) =

{
?, if rcl(b̂(i));
e1, otherwise;

(41)

ϕĉ(i)(x) =

{
e1, if rcl(b);
e0, otherwise.

(42)
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Claim 3. h∗
1(a) ∈ N.

Proof of Claim 3. Suppose, by way of contradiction, otherwise. We have {a} =
We1 ∈ L0. If h∗

1(a)↑, then h1 would not learn We1 ∈ L0, a contradiction. Hence,
h∗

1(a) =?. Using (36), we get that h1, on the text λi a, does not learn {a} =
We1 ∈ L0, a contradiction. (for Claim 3)

Using (37) and Claim 1, we have f(a)↓. Hence, b is defined and c is total. It is
now easy to see that

We0 ∈ L0. (43)

Therefore, h1 MLR∗-learns We0 . Let k be minimal such that

∀i ≥ k : h∗
1(a . c[i]) ∈ {?, h∗

1(a . c[k])}. (44)

In particular,
Wh∗

1(a�c[k]) = We0 . (45)

Hence, We1 is the finite set {a, b, c(0)} ∪ content(c[k]). It is easily verified that
We1 ∈ L0.

Note that, as b̂ and ĉ are strictly monotone increasing,

∀x ∈ {b} ∪ range(c) : x ≥ f(a). (46)

Hence, by choice of f (see (37)), h1 on a cannot recall any x ∈ {b} ∪ range(c).
Therefore,

h∗
1(a) = h∗

1(c[k] . b . a). (47)

Claim 4. Wh∗
1(a) = We1 .

Proof of Claim 4. From Claim 1 we have that h∗
1(a) ∈ N. As h1 MLR∗-identifies

We1 from the text c[k] . b . λi a and using (36),

Wh∗
1(c[k]�b�a) = We1 . (48)

Using (47), we get the claim. (for Claim 4)

We consider the text T = a . c[k] . b . λx # for We1 . The following shows that
h1 has a U-shape on T .

1. Wh∗
1(a) = We1 by Claim 2;

2. Wh∗
1(a�c[k]) = We0 by (45);

3. ∃j ≥ k + 1 : Wh∗
1(T [j]) = We1 as h1 MLR∗-identifies We1 .

Therefore, h1 is not non-U-shaped on L0.

With Pow(E∞) we denote the powerset of all infinite ce sets.

Theorem 6

Pow(E∞) ∩ NUMLF∗ = Pow(E∞) ∩ TxtEx.
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Theorem 7
(MLF1 ∩ Pow(E∞)) \

⋃
n∈N

NUMLFn �= ∅.

Note that MLF allows for a learner to determine (at the cost of a query) whether
the current datum has been seen previously (i.e., is a repetition), and the previous
proofs in this section sometimes made use of this ability. The next theorem states
that this ability is important for learning power.

Definition 8. Call MLF′ the sequence generating functional that one gets by
modifying MLF to answer true to recalls for the current datum.

The sequence generating functional MLF′ destroys a learners ability to deter-
mine whether the current datum has been seen previously (i.e., is a repetition).

Theorem 9
MLF1 \ MLF′

∗ �= ∅.
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Abstract. Iterative learning is a model of language learning from posi-
tive data, due to Wiehagen. When compared to a learner in Gold’s orig-
inal model of language learning from positive data, an iterative learner
can be thought of as memory-limited . However, an iterative learner can
memorize some input elements by coding them into the syntax of its
hypotheses. A main concern of this paper is: to what extent are such
coding tricks necessary?

One means of preventing some such coding tricks is to require that
the hypothesis space used be free of redundancy, i.e., that it be 1-1. By
extending a result of Lange & Zeugmann, we show that many interesting
and non-trivial classes of languages can be iteratively identified in this
manner. On the other hand, we show that there exists a class of languages
that cannot be iteratively identified using any 1-1 effective numbering as
the hypothesis space.

We also consider an iterative-like learning model in which the
computational component of the learner is modeled as an enumeration
operator , as opposed to a partial computable function. In this new
model, there are no hypotheses, and, thus, no syntax in which the
learner can encode what elements it has or has not yet seen. We show
that there exists a class of languages that can be identified under this
new model, but that cannot be iteratively identified. On the other hand,
we show that there exists a class of languages that cannot be identified
under this new model, but that can be iteratively identified using a
Friedberg numbering as the hypothesis space.

Keywords: Coding tricks, inductive inference, iterative learning.

1 Introduction

Iterative learning (It-learning, Definition 1(a)) is a model of language learning
from positive data, due to Wiehagen [Wie76]. Like many models based on posi-
tive data, the It-learning model involves a learner that is repeatedly fed elements
drawn from {#} and from some unknown target language L ⊆ N, where N is
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the set of natural numbers, {0, 1, 2, ...}.1 After being fed each such element, the
learner outputs a hypothesis (provided that the learner does not diverge). The
learner is said to identify the target language L iff there is some point from
whence on the learner outputs only one hypothesis, and that hypothesis corre-
sponds to L. Furthermore, the learner is said to identify a class of languages L
iff the learner identifies each L ∈ L when fed the elements of L (and possibly
#).

In the It-learning model, the learner itself is modeled as a triple.

– The first element of the triple is a two-place partial computable function,
whose arguments are, respectively, the learner’s most recently output hy-
pothesis, and the next input element.

– The second element of the triple is a preliminary hypothesis, i.e., the hy-
pothesis output by the learner before being fed any input.

– The third element of the triple is a hypothesis space. The hypothesis space
determines the language that corresponds to each of the learner’s hypotheses.
Formally, a hypothesis space is a numbering (Xj)j∈N of some collection of
subsets of N, and that is effective in the sense that the two-place predicate
λj, x [x ∈ Xj] is partial computable.2

It-learning is a special case of Gold’s original model of language learning from
positive data [Gol67]. In Gold’s original model, the learner is provided access
to all previously seen input elements, in addition to the next input element.
In this sense, a learner in Gold’s model can be thought of as memorizing all
previously seen input elements. When compared to learners in Gold’s model,
iterative learners are restricted in terms of the classes of languages that they can
identify.3 In this sense, the memory-limited aspect of iterative learners is a true
restriction, and not a mere superficial difference in definitions.

This does not however mean that iterative learners are memory-less. In par-
ticular, an iterative learner can memorize some input elements by employing
coding tricks, which we define (informally) as follows.

– A coding trick is any use by an iterative learner of the syntax of a hypothesis
to determine what elements that learner has or has not yet seen.

The following is an example. Suppose that an iterative learner (M,p, (Xj)j∈N)
identifies a class of languages L. Further suppose that one desires a learner that
identifies the class L ′, where

L ′ = L ∪ {L ∪ {0} | L ∈ L}. (1)

1 The symbol ‘#’ is pronounced “pause”. The inclusion of # in the model allows the
target language L to be empty, i.e., in such a case, the learner is repeatedly fed #.

2 Not-necessarily-effective hypothesis spaces have also been considered [dBY10]. How-
ever, such hypothesis spaces are not needed herein. For the remainder, we use the
terms hypothesis space and effective numbering interchangeably.

3 Many variants of the It-learning model have been considered, and have also been
shown to be restricted in this sense [LZ96, CCJS07, JLMZ10].
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Such a learner (M ′, p′, (Yk)k∈N) may be obtained as follows. Let (Yk)k∈N be such
that, for each j:

Y2j = Xj ; Y2j+1 = Xj ∪ {0}.
Then, let M ′ be such that, for each x ∈ (N ∪ {#}) − {0}:

M ′(2j, x) = 2M(j, x);
M ′(2j + 1, x) = 2M(j, x) + 1;

M ′(2j, 0) = 2M(j, 0) + 1;
M ′(2j + 1, 0) = 2M(j, 0) + 1.

It is easily seen that (M ′, 2p, (Yk)k∈N) iteratively identifies L ′. Intuitively, M ′

simulates M , while using the least-significant bit of each hypothesis to encode
whether or not M ′ has seen a 0 (e.g., M ′ switches from an even to an odd hy-
pothesis when it sees a 0). Further note that, if L already contains languages for
which 0 is a member, then there is redundancy in the hypothesis space (Yk)k∈N. In
particular, if 0 ∈ Xj , then Y2j = Y2j+1. For such hypotheses, the least-significant
bit affects only their syntax, and not their semantics.

This example demonstrates how coding tricks can at least facilitate the iden-
tification of a class of languages. A main concern of this paper is: to what extent
are such coding tricks necessary?

One approach to preventing some such coding tricks is to require that the hy-
pothesis space be free of redundancy, i.e., that it be 1-1. One means of doing this
is to require that the hypothesis space be a Friedberg numbering [Fri58, Kum90].
A Friedberg numbering is a 1-1 effective numbering of all computably enumer-
able (ce) subsets of N. The use of such numberings as hypothesis spaces was
considered by Jain & Stephan [JS08].4 They observed, for example, that Fin,
the collection of all finite subsets of N, cannot be iteratively identified using a
Friedberg numbering as the hypothesis space [JS08, Remark 28]. For the remain-
der, to FrIt-identify a class of languages L shall mean to iteratively identify L
using a Friedberg numbering as the hypothesis space (see Definition 1(b)).

Our first main result is to show that, despite this observation of Jain &
Stephan, many interesting and non-trivial classes can be FrIt-identified. More
specifically, we extend a result of Lange & Zeugmann [LZ96, Theorem 12] by
showing that, for each class L, if there exists a single hypothesis space wit-
nessing that L is both uniformly decidable and computably finitely thick (see
Definition 3 below), then L can be FrIt-identified (Theorem 6). By comparison,
Lange & Zeugmann showed that such a class can be It-identified. One significant
application of this result is the following. A pattern language [Ang80] is a type of
language with applications to molecular biology (see, e.g., [SSS+94]). Further-
more, the pattern languages naturally form classes that are It-identifiable by
Lange & Zeugmann’s result,5 and, thus, are FrIt-identifiable, by ours.

As the reader may have already noticed, if one’s intent is simply to eliminate
redundancy in the hypothesis space, then to require that the hypothesis space
be a Friedberg numbering is really overkill. That is because to require that
4 Freivalds, et al. [FKW82] considered the use of Friedberg numberings as hypothesis

spaces in the context of function learning.
5 The pattern languages were first shown to be It-identifiable by Lange & Wieha-

gen [LW91].
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the hypothesis space be a Friedberg numbering is to require that it be free of
redundancy and that it represent all of the ce sets.

Thus, we consider a milder variant of FrIt-learning, which we call injective
iterative learning (InjIt-learning, Definition 1(c)). In this variant, the hypothesis
space is required to be free of redundancy (i.e., be 1-1), but need not represent
all of the ce sets.6 Clearly, for each class L, if L can be FrIt-identified, then L can
be InjIt-identified. On the other hand, Fin can be InjIt-identified, but, as per
Jain & Stephan’s observation mentioned above, Fin cannot be FrIt-identified.

Going further, if one’s intent is to prevent coding tricks , then to require that
the hypothesis space be free of redundancy may still be overkill. In particu-
lar, one might allow that there be redundancy in the hypothesis space, but
require that the learner not benefit from this redundancy. This idea is captured
in our next model, which is called extensional iterative learning (ExtIt-learning,
Definition 1(d)).

For a learner to ExtIt-identify a class of languages, it is required that, when
presented with equivalent hypotheses and identical input elements, the learner
must produce equivalent hypotheses. More formally: suppose that L is a class of
languages, that σ0 and σ1 are two non-empty sequences of elements drawn from
{#} and from two (possibly distinct) languages in L, and that the following
conditions are satisfied.

– When fed all but the last elements of σ0 and σ1, the learner outputs hypothe-
ses for the same language (though those hypotheses may differ syntactically).

– The last elements of σ0 and σ1 are identical.

Then, for the learner to ExtIt-identify L, it is required that:

– When fed all of σ0 and σ1, the learner outputs hypotheses for the same
language (though those hypotheses may differ syntactically).

Clearly, if a learner identifies a class of languages using a 1-1 hypothesis space,
then that learner satisfies the just above requirement. Thus, every class of lan-
guages that can be InjIt-identified can be ExtIt-identified. On the other hand,
we show that there exists a class of languages that can be ExtIt-identified, but
that cannot be InjIt-identified (Theorem 9).

Before introducing our final model, let us recall the definition of an enumera-
tion operator [Rog67, §9.7].7 Let P(N) be the powerset of N, i.e., the collection
of all subsets of N. Let 〈·, ·〉 be any pairing function, i.e., a computable, 1-1, onto
function of type N2 → N [Rog67, page 64]. Let #̂ = 0, and, for each x ∈ N, let
x̂ = x + 1. Let (Dj)j∈N be any canonical enumeration of Fin.

An enumeration operator of type P(N) × (N ∪ {#}) → P(N) is a mapping
that is algorithmic in the following precise sense. To each enumeration operator

6 The use of 1-1 hypothesis spaces was also considered in [BBCJS10] in the context of
learning certain specific classes of languages.

7 Herein, we focus on the enumeration operators of a particular type. A more general
definition can be found in [MZ10].
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Θ (of the given type), there corresponds a ce set H , such that, for each X ⊆ N

and x ∈ N ∪ {#},

Θ(X,x) =
{
y |

〈
j, 〈x̂, y〉

〉
∈ H ∧ Dj ⊆ X

}
. (2)

Thus, given an enumeration of X , and given x, one can enumerate Θ(X,x) in
the following manner.

– Enumerate H . For each element of the form
〈
j, 〈x̂, y〉

〉
∈ H , if ever the finite

set Dj appears in the enumeration of X , then list y into Θ(X,x).

Enumeration operators exhibit certain notable properties, including mono-
tonicity [Rog67, Theorem 9-XXI]: for each enumeration operator M of type
P(N) × (N ∪ {#}) → P(N), each X,Y ⊆ N, and each x ∈ N ∪ {#},

X ⊆ Y ⇒ M (X,x) ⊆ M (Y, x). (3)

Intuitively, this means that an enumeration operator can tell from its set argu-
ment X what elements are in X , but it cannot tell from X what elements are
in the complement of X .

The final model that we consider is called iterative learning by enumeration
operator (EOIt-learning, Definition 1(e)). As the name suggests, the compu-
tational component of the learner is modeled as an enumeration operator, as
opposed to a partial computable function. Specifically, the learner is modeled as
a pair , where:

– The first element of the pair is an enumeration operator of type P(N) ×
(N ∪ {#}) → P(N), whose arguments are, respectively, the learner’s most
recently output language, and the next input element.

– The second element of the pair is the learner’s preliminarily output language,
i.e., the language output by the learner before being fed any input. (We
require that this preliminary language be ce.)

Thus, there are no hypotheses in this model. Since there are no hypotheses, there
is no syntax in which the learner can encode what elements it has or has not yet
seen.

The expulsion of hypotheses from the model has an additional consequence,
and that is that the success criterion has to be adjusted. Specifically, we say
that a learner in this model identifies a language L iff when fed the elements
of L (and possibly #), there is some point from whence on the learner outputs
only the language L. The success criterion for identifying a class of languages
is adjusted similarly. This more liberal approach to language identification, in
some sense, gives an advantage to learners in this model. In particular, there
exists a class of languages that can be EOIt-identified, but that cannot be
It-identified (Corollary 13).

Interestingly, there also exists a class of languages that cannot be EOIt-
identified, but that can be FrIt-identified (Theorem 14). To help to see why,
consider the following two scenarios. First, suppose that (M , X) is a learner in
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Fig. 1. A summary of main results and open problems. PatΣ is the collection of all
pattern languages over Σ, where Σ is an arbitrary alphabet. Fin is the collection of all
finite subsets of N. The classes L0, L1, and L2 are defined in the proofs of Theorems 7, 9,
and 14, respectively. The existence of the class L3 was shown by Jain (see Theorem 10).

the enumeration operator model, and that Y is its most recently output language.
Then, since M is an enumeration operator, M can tell from Y what elements
are in Y , but it cannot tell from Y what elements are in the complement of Y .
Next, consider the analogous situation for a conventional iterative learner. That
is, suppose that (M,p, (Xj)j∈N) is such a learner, and that j is its most recently
output hypothesis. Then, in many cases, M can tell from j what elements are in
the complement of Xj . In this sense, one could say that a hypothesis implicitly
encodes negative information about the language that it represents. (In fact,
this phenomenon can clearly be seen in the full proof of Theorem 14. See [MZ10,
Theorem 20].)

A question to then ask is: is this a coding trick , i.e., is it the case that every
learner that operates on hypotheses (as opposed to languages) is employing
coding tricks? At present, we do not see a clear answer to this question. Thus,
we leave it as a subject for further study.

The main points of the preceding paragraphs are summarized in Figure 1.
The remainder of this paper is organized as follows. Section 2 covers pre-
liminaries. Section 3 presents our results concerning uniformly decidable and
computably finitely thick classes of languages. Section 4 presents our results
concerning Friedberg, injective, and extensional iterative learning (FrIt, InjIt,
and ExtIt-learning, respectively). Section 5 presents our results concerning it-
erative learning by enumeration operator (EOIt-learning).

Due to space constraints, only partial proofs are given. Complete proofs of all
of our results can be found in the associated tech-report [MZ10].

2 Preliminaries

Computability-theoretic concepts not covered below are treated in [Rog67].
Lowercase math-italic letters (e.g., a, j, x), with or without decorations, range

over elements of N, unless stated otherwise. Uppercase italicized letters (e.g.,
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A, J , X), with or without decorations, range over subsets of N, unless stated
otherwise. For each non-empty X , minX denotes the minimum element of X .
min ∅ def= ∞. For each non-empty, finite X , maxX denotes the maximum element
of X . max ∅ def= −1. The symbol L, with or without decorations, ranges over
subsets of P(N), unless stated otherwise.

For each x, 〈x〉 def= x. For each x0, ..., xn−1, where n > 2, 〈x0, ..., xn−1〉 def=〈
x0, 〈x1, ..., xn−1〉

〉
.

N#
def= N ∪ {#}. A text is a total function of type N → N#. For each text

t and i ∈ N, t[i] denotes the initial segment of t of length i. For each text t,
content(t) def= {t(i) | i ∈ N} − {#}. For each text t and L ⊆ N, t is a text for L
def⇔ content(t) = L.

Seq denotes the set of all initial segments of texts. Lowercase Greek letters
(e.g., ρ, σ, τ), with or without decorations, range over elements of Seq, unless
stated otherwise. λ denotes the empty initial segment (equivalently, the every-
where divergent function). For each σ, |σ| denotes the length of σ (equivalently,
the size of the domain of σ). For each σ and i ≤ |σ|, σ[i] denotes the initial
segment of σ of length i. For each σ, content(σ) def= {σ(i) | i < |σ|} − {#}. For
each σ and τ , σ ·τ denotes the concatenation of σ and τ . For each σ ∈ Seq−{λ}:

σ− def= σ[|σ| − 1]; last(σ) def= σ(|σ| − 1).

For each L and L, Txt(L), Txt(L), Seq(L), and Seq(L) are defined as follows.

Txt(L) = { t | t is a text for L}.
Txt(L) = { t | (∃L ∈ L)[t ∈ Txt(L)]}.

Seq(L) = {σ | content(σ) ⊆ L}.
Seq(L) = {σ | (∃L ∈ L)[σ ∈ Seq(L)]}.

For each one-argument partial function ψ and x ∈ N, ψ(x)↓ denotes that ψ(x)
converges; ψ(x)↑ denotes that ψ(x) diverges. We use ↑ to denote the value of a
divergent computation.

EN denotes the collection of all effective numberings. CE denotes the collection
of all computably enumerable (ce) subsets of N. For each m and n, PCm,n denotes
the collection of partial computable functions mapping Nm×Nn

# to N. We shall be
concerned primarily with PC1,0 and PC1,1. (ϕp)p∈N denotes any fixed, acceptable
numbering of PC1,0. For each i, Wi

def= {x | ϕi(x)↓}. Thus, (Wi)i∈N is an effective
numbering of CE .

Iter def= PC1,1 × N× EN . For each M ∈ PC1,1 and p, the partial function M∗
p is

such that, for each σ ∈ Seq and x ∈ N#:

M∗
p (λ) = p; M∗

p (σ · x) =
{
M

(
M∗

p (σ), x
)
, if M∗

p (σ)↓;
↑, otherwise.

EO1,1 denotes the collection of all enumeration operators of type P(N) × N# →
P(N). For each M ∈ EO1,1 and X , the function M ∗

X : Seq → P(N) is such that,
for each σ ∈ Seq and x ∈ N#:

M ∗
X(λ) = X ; M ∗

X(σ · x) = M
(

M ∗
X(σ), x

)
.

The following are the formal definitions of the learning models described in
Section 1. The symbols Fr, Inj, Ext, and EO are mnemonic for Friedberg,
injective, extensional , and enumeration operator , respectively.
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Definition 1. For each L, (a)-(e) below. In parts (a)-(d), (M,p, (Xj)j∈N) ∈ Iter .
In part (e), (M , X) ∈ EO1,1 × CE .

(a) (Wiehagen [Wie76]) (M,p, (Xj)j∈N) It-identifies L ⇔ for each t ∈
Txt(L), there exists i0 ∈ N such that XM∗

p (t[i0]) = content(t), and, for each
i ≥ i0,

[
M∗

p (t[i]) = M∗
p (t[i0])

]
.

(b) (Jain & Stephan [JS08]) (M,p, (Xj)j∈N) FrIt-identifies L ⇔ (M,p,
(Xj)j∈N) It-identifies L, and (Xj)j∈N is a Friedberg numbering.

(c) (M,p, (Xj)j∈N) InjIt-identifies L ⇔ (M,p, (Xj)j∈N) It-identifies L, and
(Xj)j∈N is 1-1.

(d) (M,p, (Xj)j∈N) ExtIt-identifies L ⇔ (M,p, (Xj)j∈N) It-identifies L, and,
for each σ0, σ1 ∈ Seq(L) − {λ},

[XM∗
p (σ−

0 ) = XM∗
p (σ−

1 ) ∧ last(σ0) = last(σ1)] ⇒ XM∗
p (σ0) = XM∗

p (σ1). (4)

(e) (M , X) EOIt-identifies L ⇔ for each t ∈ Txt(L), there exists i0 ∈ N such
that (∀i ≥ i0)

[
M ∗

X(t[i]) = content(t)
]
.

Definition 2. Let It be as follows.

It =
{

L |
(
∃(M,p, (Xj)j∈N) ∈ Iter

)
[(M,p, (Xj)j∈N) It-identifies L]

}
. (5)

Let FrIt, InjIt, ExtIt, and EOIt be defined similarly.

3 Uniform Decidability and Computable Finite Thickness

In this section, we extend a result of Lange & Zeugmann by showing that,
for each class L, if there exists a single hypothesis space witnessing that L is
both uniformly decidable and computably finitely thick, then L can be FrIt-
identified (Theorem 6). We also show that there exists a class of languages that
is uniformly decidable and computably finitely thick, but that is not in It, let
alone FrIt (Theorem 7). Thus, one could not arrive at the conclusion of the just
mentioned Theorem 6 if one were to merely require that: there exists a uniformly
decidable effective numbering of L, and a possibly distinct computably finitely
thick effective numbering of L.

The following are the formal definitions of the terms uniformly decidable and
computably finitely thick . For additional background, see [LZZ08].

Definition 3

(a) An effective numbering (Xj)j∈N is uniformly decidable ⇔ the predicate
λj, x [x ∈ Xj] is decidable.

(b) A class of languages L is uniformly decidable ⇔ there exists a uniformly
decidable effective numbering of L.

(c) An effective numbering (Xj)j∈N is computably finitely thick ⇔ there exists
a computable function f : N → N such that, for each x,

{Xj | j ∈ Df(x)} = {L | x ∈ L ∧ (∃j)[Xj = L]}. (6)
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(d) (Lange & Zeugmann [LZ96, Definition 9]) A class of languages L is
computably finitely thick ⇔ there exists a computably finitely thick effective
numbering of L.

N.B. In part (c) just above, the function f need not satisfy Df(x) = {j | x ∈ Xj}.
However, see the proof of Theorem 6 below.

Example 4

(a) Fin is uniformly decidable, but is not computably finitely thick.
(b) CE is neither uniformly decidable nor computably finitely thick.
(c) The class

{
{e}, {e} ∪ (We + e + 1) | e ∈ N

}
is not uniformly decidable, but

is computably finitely thick.8
(d) The class {N + e | e ∈ N} is both uniformly decidable and computably

finitely thick. Moreover, there exists a single effective numbering witness-
ing both properties simultaneously.

(e) Let L be as follows.

L =
{
{e} | e ∈ N

}
∪
{
{e, ϕe(0) + e + 1} | e ∈ N ∧ ϕe(0)↓

}
. (7)

Then, L is both uniformly decidable and computably finitely thick,9 but
there is no effective numbering of L witnessing both properties simultane-
ously. In fact, no such numbering exists for any class containing L.

The following result, due to Lange & Zeugmann, gives a sufficient condition for
a class of languages to be It-identifiable.

Theorem 5 (Lange & Zeugmann [LZ96, Theorem 12]). For each L, if
there exists an effective numbering of L that is both uniformly decidable and
computably finitely thick, then L ∈ It.10

The following result strengthens Theorem 5 (Lange & Zeugmann) just above.

Theorem 6. For each L, if there exists an effective numbering of L that is both
uniformly decidable and computably finitely thick, then L ∈ FrIt.

Proof (Sketch). Suppose that L satisfies the conditions of the theorem. Then
it can be shown that there exists an effective numbering (Xj)j∈N of L and a
computable function f : N → N such that, for each x,

Df(x) = {j | x ∈ Xj}. (8)

For each x and J , say that x narrows J ⇔ by letting J ′ = {j ∈ J | x ∈ Xj},

∅ �= J ′ ⊂ J ∧ {w ∈ (
⋂

j∈J′Xj) | w < x} = {w ∈ (
⋂

j∈JXj) | w < x}. (9)

8 One can construct computably finitely thick effective numberings of the classes given
in parts (c) and (e) of Example 4 using a technique similar to that used in Figure 3(b)
below.

9 See footnote 8.
10 In [LZ96], Theorem 12 is not stated exactly as Theorem 5 is stated here. However,

based on the proof of this result, we believe that what is stated here is what is meant.
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List ∅ into (Z�)�∈N exactly once. Then, for each x, run survey(x).

survey(x): Act according the following conditions.

– Cond. (a) [Df(x) = ∅ ∨ min(
⋂

j∈Df(x)
Xj) 
= x]. For each k, list {x}∪ (Yk +x+1)

into (Z�)�∈N exactly once.

– Cond. (b) [Df(x) 
= ∅ ∧ min(
⋂

j∈Df(x)
Xj) = x]. List (

⋂
j∈Df(x)

Xj) into (Z�)�∈N

exactly once, set ζ(Df(x)) to the index used to list this set, and run
descend(Df(x), x + 1).

descend(J, x): Let J ′, x0, and A be such that:

J ′ = {j ∈ J | x ∈ Xj}; x0 = min(
⋂

j∈JXj); A = {w ∈ (
⋂

j∈JXj) | w < x}.
Act according to the following conditions.

– Cond. (i)
[
J ′ = J

]
. For each k, list A ∪ (Yk + x + 1) into (Z�)�∈N exactly once,

and run descend(J, x + 1).

– Cond. (ii)
[
x ≤ x0 ∨ [J ′ ⊂ J ∧ x does not narrow J ]

]
. For each k, list A∪{x}∪

(Yk + x + 1) into (Z�)�∈N exactly once, and run descend(J, x + 1).

– Cond. (iii)
[
x > x0 ∧ x narrows J

]
. List (

⋂
j∈J′Xj) into (Z�)�∈N exactly once,

set ζ(J ′) to the index used to list this set, and run both descend(J, x + 1) and
descend(J ′, x + 1).

Fig. 2. The construction of (Z�)�∈N in the proof of Theorem 6

Let (Yk)k∈N be any Friedberg numbering.
An effective numbering (Z�)�∈N is constructed in Figure 2. The construction

makes use of two procedures: survey and descend. The procedure survey takes
one argument: an element of N. The procedure descend takes two arguments: a
finite subset of N, and an element of N.

In conjunction with (Z�)�∈N, a partial computable function ζ from Fin to
N is constructed. It is clear from the construction that ζ is 1-1, i.e., for each
J, J ′ ∈ Fin, [ζ(J)↓ = ζ(J ′) ⇒ J = J ′].

It can be shown that (Z�)�∈N is a Friedberg numbering. For ease of presenta-
tion, suppose that Z0 = ∅. Let M be such that, for each � > 0 and x:

M(0,#) = 0; M(0, x) =
{
ζ(Df(x)), if ζ(Df(x))↓;
↑, otherwise;

M(�,#) = �; M(�, x) =

⎧⎪⎪⎨⎪⎪⎩
ζ(J ′), where J and J ′ are such that ζ(J) = � and

J ′ = {j ∈ J | x ∈ Xj}, if such a J exists
and ζ(J ′)↓;

↑, otherwise.

It can be shown that (M, 0, (Z�)�∈N) FrIt-identifies L. ≈ � (Theorem 6)
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(a) For each i, execute stage 0 below.

– Stage 0. For each i, include (N + i) and {i} in L0. Go to stage 1.

– Stage 1. Let (M, p) be the ith pair in ((M, p)i)i∈N. Search for a k ≥ i such
that

M∗
p

(
(i · · · · · k) · (k + 1)

)↓ = M∗
p

(
(i · · · · · k) · k) = M∗

p (i · · · · · k).

If such a k is found, then include {i, ..., k} and {i, ..., k+1} in L0, and terminate
the construction (for i). If no such k is found, then search indefinitely.

(b) For each i, execute stage 0 below.

– Stage 0. Set Xstart(i) = N+i, and, for each j ∈ {start(i)+1, ..., start(i+1)−1},
set Xj = {i}. Go to stage 1.

– Stage 1. In a dovetailing manner, monitor and act according to the following
conditions.

• Cond. [in the construction of L0 above, a k is found for i].
Set Xstart(i)+2 = {i, ..., k} and Xstart(i)+3 = {i, ..., k + 1}.

• Cond. [i ∈ Xj , where j < start(i)]. Set Xstart(i)+j+4 = Xj .

Fig. 3. (a) The construction of L0 in the proof of Theorem 7. (b) The construction of
(Xj)j∈N in the proof of Theorem 7. The function start is defined in (10).

The proof of Theorem 7 below exhibits a class of languages L0 that is uniformly
decidable and computably finitely thick, but L0 �∈ It. Thus, one could not arrive
at the conclusion of Theorem 6 if one were to merely require that: there exists a
uniformly decidable effective numbering of L, and a possibly distinct computably
finitely thick effective numbering of L.

Theorem 7. There exists a class of languages L0 that is uniformly decidable
and computably finitely thick, but L0 �∈ It.

Proof (Sketch). Let ((M,p)i)i∈N be an algorithmic enumeration of all pairs of
type PC1,1 × N. Let start : N → N be such that, for each i,

start(i) = 2i+1 − 4. (10)

Note that, for each i, start(i + 1) − start(i) = start(i) + 4. The class L0 is
constructed in Figure 3(a). An effective numbering (Xj)j∈N, which is easily seen
to be of L0, is constructed in Figure 3(b). Let f : N → N be such that, for each i,

Df(i) = {start(i), ..., start(i + 1) − 1}, (11)

It can be shown that (Xj)j∈N and f witness that L0 is computably finitely thick.
It is straightforward to construct an effective numbering witnessing that L0 is
uniformly decidable. Finally, it can be shown that L0 �∈ It. ≈ � (Theorem 7)
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4 Friedberg, Injective, and Extensional Iterative Learning

This section examines the Friedberg, injective, and extensional iterative learn-
ing models (FrIt, InjIt, and ExtIt, respectively). In terms of the classes of
languages learnable by these models and by It, they are clearly related as
follows.

FrIt ⊆ InjIt ⊆ ExtIt ⊆ It. (12)

In this section we establish that InjIt �⊆ FrIt (Proposition 8), and that ExtIt �⊆
InjIt (Theorem 9). The fact that It �⊆ ExtIt is due to Jain (Theorem 10).

Proposition 8 just below establishes that InjIt �⊆ FrIt.

Proposition 8. InjIt �⊆ FrIt.

Proof. Recall that Fin is the collection of all finite subsets of N. Jain & Stephan
observed that Fin �∈ FrIt [JS08, Remark 28]. However, it is easily seen that
Fin ∈ InjIt. � (Proposition 8)
Theorem 9 just below establishes that ExtIt �⊆ InjIt.

Theorem 9. ExtIt �⊆ InjIt.

Proof (Sketch). Let L1 be as follows.

L1 =
{
2N

}
∪

{
{0, 2, ..., 2e} ∪ {2e + 1} ∪ 2We,
{0, 2, ..., 2e} ∪ {2e + 1} ∪ 2X | e ∈ N ∧ (a)-(c) below

}
.

(a) (∀e′ ∈ X)[We′ = X ].
(b) If We = X , then We and X are finite.
(c) If We �= X , then 2We ⊆ {0, 2, ..., 2e} and X is infinite.

It can be shown that L1 ∈ ExtIt. To complete the sketch of the proof: by way of
contradiction, suppose that L1 ∈ InjIt, as witnessed by (M,p, (Xj)j∈N) ∈ Iter .
Then, there exists a k0 such that

(∀e ≥ k0)[M∗
p (0 · 2 · · · · · 2k0 · 2e)↓ = M∗

p (0 · 2 · · · · · 2k0)]. (13)

By Case’s 1-1 Operator Recursion Theorem [Cas74, Cas94],11 there exists a
computably enumerable sequence of pairwise-distinct ϕ-programs (ei)i∈N such
that (∀i)[ei ≥ k0], and such that the behavior of (ei)i∈N is as in Figure 4. It
can be shown that {We0 ,We1} ⊆ L1, but that (M,p, (Xj)j∈N) does not InjIt-
identify at least one of We0 and We1 (a contradiction). ≈ � (Theorem 9)
As mentioned above, the fact that It �⊆ ExtIt is due to Jain.

Theorem 10 (Jain [Jai10]). It �⊆ ExtIt.

We conclude this section with the following remark.
11 Intuitively, the 1-1 Operator Recursion Theorem allows one to construct a com-

putably enumerable sequence of pairwise-distinct ϕ-programs (ei)i∈N such that each
program ei knows all programs in the sequence and its own index i.
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– Stage 0. Search for an m ≥ 1 such that

M∗
p

(
(0 · 2 · · · · · 2e0) · (2e0 + 1)m+1)↓ = M∗

p

(
(0 · 2 · · · · · 2e0) · (2e0 + 1)m)

.

If such an m is found, then set σ1 = (0 · 2 · · · · · 2e0) · (2e0 + 1)m, and go to stage 1.
If no such m is found, then search indefinitely.

– Stage 1. For larger and larger values of n, make it the case that We1 = · · · =
Wen = {e1, ..., en}. Simultaneously, search for an i ∈ {1, ..., n} such that

M∗
p (σ1 · 2ei)↓ 
= M∗

p (σ1).

If such i and n are found, then make it the case that We0 = {e1, ..., en}, and
terminate the construction. If no such i and n are found, then search indefinitely,
while making it the case that (∀i ≥ 1)[Wei = {ei | i ≥ 1}].

Fig. 4. The construction of (ei)i∈N in the proof of Theorem 9

Remark 11. The fact It �⊆ InjIt (as opposed to It �⊆ ExtIt or ExtIt �⊆ InjIt)
can be shown directly using either of the next two pre-existing results.

– There exists a class of languages that can be It-identified, but that cannot
be so identified order-independently (in the sense of [BB75, Ful90]).12

– There exists a class of languages that can be It-identified, but that cannot be
so identified strongly non-U-shapedly [CK10, Theorem 5.4] (see also [Bei84,
Wie91, CM08]).

5 Iterative Learning by Enumeration Operator

This section examines the iterative learning by enumeration operator model
(EOIt). Recall that EOIt is similar to It, except that the computational com-
ponent of the learner is modeled as an enumeration operator, as opposed to a
partial computable function. Our main results of this section are the following.

– Every computably finitely thick class of languages (see Definition 3) can be
EOIt-identified (Theorem 12).

– EOIt �⊆ It (Corollary 13).
– FrIt �⊆ EOIt (Theorem 14).

An open problem that remains is whether It ∩ EOIt ⊆ ExtIt, i.e., whether
every class of languages that can be It-identified and EOIt-identified can be
ExtIt-identified (Problem 15).

Recall that Fin ∈ InjIt − FrIt (Proposition 8). Further recall that the class
L1 from the proof Theorem 9 satisfies: L1 ∈ ExtIt− InjIt. It is straightforward
to show that {Fin,L1} ⊆ EOIt.

Theorem 12 just below is our first main result of this section.
12 An anonymous referee attributes this result to Liepe & Wiehagen.
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Theorem 12. Suppose that L is computably finitely thick. Then, L ∈ EOIt.

Proof (Sketch). Suppose that L is computably finitely thick. Let ψ : Fin → CE
be such that, for each A ∈ Fin − {∅}:

ψ(∅) = ∅; ψ(A) =
⋂

{L ∈ L | A ⊆ L}.

Let M : P(N) × N# → P(N) be such that, for each X ⊆ N and x:

M (X,#) = X ; M (X,x) =
⋃{

ψ(A) | A is finite ∧ A ⊆ X ∪ {x}
}
.

It can be shown that (M , ∅) EOIt-identifies L. ≈ � (Theorem 12)

Recall that the proof of Theorem 7 exhibited a computably finitely thick class
of languages L0 �∈ It. By Theorem 12, L0 ∈ EOIt. Thus, one has the following.

Corollary 13 (of Theorems 7 and 12). EOIt �⊆ It.

The proof of Theorem 14 below exhibits a class L2 ∈ FrIt − EOIt.

Theorem 14. FrIt �⊆ EOIt.

Proof (Sketch). It is straightforward to construct a Friedberg numbering
(Xj)j∈N satisfying:

(∀j)[1 ≤ |Dj | ≤ 3 ⇒ Xj = Dj ]. (14)

Let (Yk)k∈N be any Friedberg numbering satisfying: Y0 = ∅. Let (Z�)�∈N be such
that, for each j and k, Z〈j,k〉 = (2Xj) ∪ (2Yk + 1). It is straightforward to show
that (Z�)�∈N is a Friedberg numbering. Let L2 be the following class of languages.

L2 = {Z〈j,maxDj〉 | 1 ≤ |Dj | ≤ 3}. (15)

Note that, for each j such that 1 ≤ |Dj | ≤ 3,

Z〈j,max Dj〉 = (2Xj) ∪ (2Ymax Dj + 1) = (2Dj) ∪ (2Ymax Dj + 1). (16)

It is straightforward to show that L2 ∈ FrIt (e.g., using (Z�)�∈N as the hypothesis
space). On the other hand, it can be shown that L2 �∈ EOIt. ≈ � (Theorem 14)
As mentioned above, the following problem remains open.

Problem 15. Is it the case that It ∩ EOIt ⊆ ExtIt?
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Abstract. Discretization is a fundamental process for machine learning
from analog data such as continuous signals. For example, the discrete
Fourier analysis is one of the most essential signal processing methods
for learning or recognition from continuous signals. However, only the di-
rection of the time axis is discretized in the method, meaning that each
datum is not purely discretized. To give a completely computational the-
oretical basis for machine learning from analog data, we construct a learn-
ing framework based on the Gold-style learning model. Using a modern
mathematical computability theory in the field of Computable Analysis,
we show that scalable sampling of analog data can be formulated as ef-
fective Gold-style learning. On the other hand, recursive algorithms are a
key expression for models or rules explaining analog data. For example,
FFT (Fast Fourier Transformation) is a fundamental recursive algorithm
for discrete Fourier analysis. In this paper we adopt fractals, since they
are general geometric concepts of recursive algorithms, and set learning
objects as nonempty compact sets in the Euclidean space, called figures,
in order to introduce fractals into Gold-style learning model, where the
Hausdorff metric can be used to measure generalization errors. We an-
alyze learnable classes of figures from informants (positive and negative
examples) and from texts (positive examples), and reveal the hierarchy
of learnabilities under various learning criteria. Furthermore, we measure
the number of positive examples, one of complexities of learning, by using
the Hausdorff dimension, which is the central concept of Fractal Geom-
etry, and the VC dimension, which is used to measure the complexity
of classes of hypotheses in the Valiant-style learning model. This work
provides theoretical support for machine learning from analog data.

1 Introduction

The aim of this paper is giving a theoretical foundation for machine learning in-
tegrated with discretization of analog data. We construct a learning framework
based on the Gold-style learning model [10], which is a traditional and basic
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FIGEX-INF = FIGCONS-INF = FIGRELEX-INF

FIGEFEX-INF

FIGREFEX-INF

FIGEX-TXT = FIGCONS-TXT
= FIGEX -INF = FIGEX -TXT

FIGRELEX-TXT

FIGREFEX-TXT

FIGEFEX-TXT = 

Fig. 1. The hierarchy of learnabilities. In each line, the lower set is a proper subset of
the upper set.

model of computational learning theory [16]. Learners use fractals to represent
models that explain given discretized analog data. We set learning targets as
nonempty compact sets in the Euclidean space, called figures, in order to intro-
duce the notion of fractals into the Gold-style learning model. We construct the
hierarchy of learnabilities under various criteria, summarized in Fig. 1.

1.1 Background and Problems

Discretization is a fundamental process in machine learning from analog data.
For example, Fourier analysis is one of the most essential signal processing meth-
ods, and the discrete version of the method, the discrete Fourier analysis, is used
for learning or recognition on a computer from continuous signals. However, in
the method, only the direction of the time axis is discretized, hence each datum
is not purely discretized. This means that the gap between analog and digital
data still remains.

In contrast, computational learning of languages or recursive functions from
discrete data has been studied in detail based on the Gold-style learning model.
However, computational learning of continuous objects, such as real-valued func-
tions, from analog data is difficult and still under development [11, 12], since
every datum has an intrinsic numerical error when it discretized.

1.2 Solutions

Mathematically, discretization is realized as a partition of rational intervals,
which is a general model of sampling of continuous signals. We generate positive
examples and negative examples of a target by partitioning intervals recursively,
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where a positive example is a rational interval intersecting the target, and a
negative example is the one that does not intersect the target.

Recursive algorithms are key discrete expressions for models or rules explain-
ing discretized analog data. For example, FFT (Fast Fourier Transformation)
is a fundamental recursive algorithm for the discrete Fourier analysis. By gen-
eralizing such algorithms, we can extract the concept of fractals, which is an
essential geometric concept of such algorithms. Moreover, lots of natural objects
are known to be in the form of fractals [2]. Thus setting fractals as a basis of
representation is one of straightforward ways in the learning from analog data.
Here, the notion “learning of figures” is derived from abstraction and generaliza-
tion of the concept of the discrete Fourier analysis, where fractals, which learners
use to represent and compute figures, correspond to FFT intuitively.

In this paper, we use only self-similar sets, which are in a major family of
fractals, since it is known that we can approximate every figure by some self-
similar set arbitrarily closely, and can compute by a simple recursive algorithm
(sometimes such an algorithm is called an Iterated Function System) [8].

In the process of sampling from analog data in the discrete Fourier analysis,
scalability is a desirable property, meaning that when sample resolution increases,
the accuracy of the result is refined. We formulate this property as effective learn-
ing of figures, which is inspired by effective computing in the framework of Type-2
Theory of Effectivity (TTE) in Computable Analysis [23]. This model guarantees
that while a computer reads more and more precise information of the input, it
produces more and more accurate approximations of the result. Here we interpret
this model as effective learning from an infinite sequence of rational intervals to
an infinite sequence of self-similar sets.

For effective learning of figures, we introduce the concept of generalization
errors to evaluate “goodness” of each hypothesis. We use the Hausdorff metric
to measure generalization errors, since the metric induces the standard topology
on the set of figures [3].

1.3 Related Works

Lots of statistical methods are used in machine learning of continuous objects
such as real-valued functions. The statistical approach fits to data mining and
knowledge discovery from experimental data, and now it is achieving a great
success in the fields [4]. However, they do not pay attention to treat continuous
data themselves by discretization. For example, multi-layer perceptrons are used
to learn real-valued functions, since they can approximate every continuous func-
tion arbitrarily closely. However, a perceptron is based on the idea of regulating
analog wiring [20], hence such learning is not purely computable; i.e., it ignores
the gap between analog raw data and digital discretized data.

1.4 Organization of This Paper

The rest of the paper is organized as follows: Section 2 gives some notation
about analysis and computability theory, and an overview of fractals, dimensions,
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and self-similar sets. We prepare methods for learning figures, partitions and
self-similar programs, in Section 3, and formulate learning of figures in Section
4 (some methods have been introduced in the previous paper [22]). Section 5
gives learning of self-similar sets, and Section 6 gives learning of figures. The
number of positive examples is measured with the Hausdorff and VC dimensions
in Section 7. Section 8 gives conclusion.

2 Preliminaries

2.1 Notation

We assume that readers are familiar with the basic concepts of analysis and
the ordinary computability theory [7, 13]. In the following let N be the set of
natural numbers including 0, Q the set of rational numbers, and R the set of
real numbers. The set N+ (resp. R+) is the set of positive natural (resp. real)
numbers. The n product of R is denoted by Rn. The set of nonempty compact
sets of Rn is denoted by K∗. The set of finite sequences over an alphabet Σ is
denoted by Σ∗, and the length of a string w is denoted by |w|. The empty string
λ is the string whose length is 0.

A diameter of a nonempty subset X of Rn is defined by |X | := sup{dE(x, y) |
x, y ∈ X} for all x, y ∈ Rn with x = (x1, . . . , xn) and y = (y1, . . . , yn), where
dE is the Euclidean metric defined by dE(x, y) :=

√∑n
i=1(xi − yi)2. A set X is

countable if there is a bijection from N to X . The cardinality of X is denoted by
‖X‖. A set U is a cover of X ⊆ Rn if U is countable and X ⊆

⋃
U∈U U , and U

is a δ-cover of X if U is a cover of X and |U | � δ for all U ∈ U .

2.2 Fractals and Dimensions

A fractal usually means a set with the following properties: It has a fine structure;
it is too irregular to be described in the traditional geometrical language; it has
some form of self-similarity; it is defined in a simple recursive manner [8].

For X ⊆ Rn and s ∈ R with s > 0, define Hs
δ(X) := inf{

∑
U∈U |U |s |

U is a δ-cover of X}. The s-dimensional Hausdorff measure of X is limδ→0
Hs

δ(X), denoted by Hs(X). When we fix a set X , a graph of Hs(X) with
respect to s shows that there is at most one critical value at which Hs(X)
jumps from ∞ to 0 [9]. This value is called the Hausdorff dimension of X . For-
mally, the Hausdorff dimension of a set X , written by dimH X , is defined by
dimH X := sup { s | Hs(X) = ∞ } = inf { s 	 0 | Hs(X) = 0 }.

We have dimT X � dimH X for all X ⊆ Rn, and the term “fine structure”
in the above properties of a fractal X usually means dimT X < dimH X . Here,
dimT X denotes the topological dimension of X (see literature [14] for detail).

2.3 Self-similar Sets

A self-similar set is a fractal that is defined as the fixed point of a finite set of
contractions [8].



Learning Figures with the Hausdorff Metric by Fractals 319

For a nonempty compact set K, δ-neighborhood of K is defined by Kδ :=
{ x ∈ Rn | dE(x, a) � δ for some a ∈ K }. The Hausdorff metric dH is defined by
dH(K,L) := inf { δ | K ⊆ Lδ and L ⊆ Kδ } for every pair of nonempty compact
sets K and L. It is known that the metric space (K∗, dH) is complete.

Let (X, d) be a metric space. A mapping ϕ : X → X is a contraction if there
is a real number c with 0 < c < 1 such that d(ϕ(x), ϕ(y)) � cd(x, y) for all
x, y ∈ X . The infimum of such a real number c is called contractivity factor and
denoted by L(ϕ). If d(ϕ(x), ϕ(y)) = cd(x, y) for all x, y ∈ X , then the contraction
ϕ is called contracting similarity.

Let C be a finite set of contractions on (Rn, dE). A self-similar set of C is
a nonempty compact set F such that F =

⋃
ϕ∈C ϕ(F ). Moreover, if we define

a mapping Φ : K∗ → K∗ by Φ(K) :=
⋃

ϕ∈C ϕ(K) for all K ∈ K∗, then Φ is a
contraction on (K∗, dH) with the contractivity factor L(Φ) = max{L(ϕ) | ϕ ∈
C}, and F = Fix(Φ), where Fix(Φ) is the fixed point of Φ. It is unique since the
space (K∗, dH) is complete. We say that L(Φ) is the contractivity factor of C.
In addition, if we define Φ0(K) := K and Φk+1(K) := Φ(Φk(K)) for each k ∈ N

recursively, then F =
⋂∞

k=0 Φ
k(K) for every set K ∈ K∗ such that ϕ(K) ⊂ K

for every ϕ ∈ C. This means that we have a level-wise constructing method with
Φ to obtain the self-similar set F .

Example 1. Let contractions ϕ1, ϕ2, ϕ3 : R2 → R2 be as follows:

ϕ1

[
x1
x2

]
=

1
2

[
x1
x2

]
+
[
0
0

]
, ϕ2

[
x1
x2

]
=

1
2

[
x1
x2

]
+
[

0
1/2

]
, ϕ3

[
x1
x2

]
=

1
2

[
x1
x2

]
+
[
1/2
1/2

]
.

A self-similar set of the set {ϕ1, ϕ2, ϕ3 } is called the Sierpiński triangle.

We can bound the Hausdorff distance between a compact set and a self-similar
set using the following theorem known as Collage Theorem [2].

Theorem 1. Let C be a finite set of contractions and K ∈ K∗. We have
dH(K,F ) � dH(K,

⋃
ϕ∈C ϕ(K))/(1 − c), where F is the self-similar set of C

and c is the contractivity factor of C.

This theorem shows that every compact set can be approximated arbitrarily
closely by a self-similar set in the sense of the Hausdorff metric.

Corollary 1 (Falconer [8]). Let K ∈ K∗. Given δ > 0, then there exists a
finite set of contractions with its self-similar set F satisfying dH(K,F ) < δ.

It is usually difficult to know the Hausdorff dimension of a given set. However,
we can obtain the dimension of a certain class of self-similar sets in the following
manner. Let C be a finite set of contractions, and F be the self-similar set of C.
The similarity dimension of F , denoted by dimS F , is defined by the equation∑

ϕ∈C L(ϕ)dimS F = 1. We have dimH F � dimS F , and if C satisfies the open
set condition, dimH F = dimS F [8]. Here, a finite set of contractions C satisfies
the open set condition if there exists a nonempty bounded open set O ⊂ Rn such
that ϕ(O) ⊂ O for all ϕ ∈ C and ϕ(O)∩ϕ′(O) = ∅ for all ϕ,ϕ′ ∈ C with ϕ �= ϕ′.
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3 Methods for Learning

3.1 Partitions

We realize discretization by partition of rational closed intervals (closed intervals
whose end points are rational numbers). First of all, we define a partition for
the unit interval, which is the closed interval [0, 1] × [0, 1] × · · · × [0, 1] on Rn,
denoted by IU. We denote the set of rational closed intervals by CI, and the
interior of X by intX .

Definition 1. Let Σ be the set {1, 2, . . . , k} for some k ∈ N. A mapping ψ
from Σ to CI is a partition if

⋃
i∈Σ ψ(i) = IU. A partition ψ is a net if for all

I, J ∈ range(ψ) with I = I1 × · · · × In and J = J1 × · · · × Jn, int I ∩ intJ = ∅
and |Ii| = |Jj | for all i, j ∈ {1, . . . , n}.
We identify an alphabet Σ with the domain of a partition dom(ψ). If ψ is a net,
there exists b ∈ N such that ‖Σ‖ = bn and |I| = |IU|/b for all I ∈ range(ψ).

We define a way for dividing arbitrary intervals using a partition as a template.
Let a pair of intervals I = I1 ×· · ·×In and J = J1 ×· · ·×Jn. Define ϕI→J (x) :=
[aij ]n×nx+[bij ]n×1 for all x ∈ Rn, where [aij ]n×n is a n×n diagonal matrix and
[bij ]n×1 is a n× 1 matrix, such that aii = |Ji| / |Ii| and bi1 = minJi − aii min Ii

for all i ∈ {1, . . . , n}.
Here we define Sψ,I := {ϕIU→I(ψ(a)) | a ∈ Σ} for all I ∈ CI. It is a set

of intervals obtained by partitioning I using the template partition ψ. By par-
titioning a fixed interval recursively, we can obtain a unique set of intervals.

Definition 2. Define S0
ψ,I := { I } and Sk+1

ψ,I :=
⋃

J∈Sk
ψ,I

Sψ,J for all k ∈ N

recursively, and define S∗
ψ,I :=

⋃
k∈N

Sk
ψ,I . We say that S∗

ψ,I is the partitioning
space from I, Sk

ψ,I is the level k partitioning space from I, and I is an initial
interval of S∗

ψ,I .

Example 2. Let n = 1, Σ = {0, 1}, ψ(0) = [0, 1/2], and ψ(1) = [1/2, 1]. Then
S0

ψ,IU
= {[0, 1]}, S1

ψ,IU
= {[0, 1/2], [1/2, 1]}, . . . . This corresponds to the standard

binary representation of real numbers.

Definition 3. Let I ∈ CI be an initial interval and ψ : Σ → CI be a partition.
We define a representation ρψ,I : Σ∗ → S∗

ψ,I by ρψ,I(λ) := I and ρψ,I(wa) :=
ϕIU→ρψ,I (w)(ψ(a)), where w ∈ Σ∗ and a ∈ Σ.

Example 3. Let n = 1 and ψ be the partition defined in Example 2. Then
ρψ,I(010) = [1/4, 3/8] if I = [0, 1], and ρψ,J(10) = [1/4, 3/8] if J = [0, 1/2].

3.2 Self-similar Programs

We introduce a class of logic programs corresponding to a class of finite sets of
contractions by using the predicate symbol Path(·). A logic program is a finite
set of definite clauses, which are sentences of the form A ← A1, . . . , Am (m 	 0),
where all of A, A1, . . . , and Am are atoms [18]. We assume that every term is a
list, which is used in Prolog, and identify lists [], [a1, . . . , am], and [a1, . . . , am | x]
with λ, a1 . . . am, and a1 . . . amx, respectively, where x is a variable.
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Definition 4. We define SP(W ) := {Path(λ)} ∪ {Path(wx) ← Path(x) | w ∈
W} for every nonempty finite set W ⊂ Σ∗, where x is a variable. We say that
SP(W ) is a self-similar program.

The set of all self-similar programs is denoted by P , and for N ⊆ N, the set
{SP(W ) ∈ P | ‖W‖ ∈ N} by PN . For simplicity, we denote P{m} (m ∈ N) by
Pm. Trivially, the set P is recursively enumerable.

Each self-similar program corresponds to a finite set of contractions, and its
representation is defined as follows.

Definition 5. Let a self-similar program P = SP(W ). We define κψ,I(P ) :=⋂∞
k=0 Γ

k
ψ,I(P ), where for all k ∈ N, Γ k

ψ,I(P ) :=
⋃

{ρψ,I(w0 . . . wk) | wi ∈ W for
all i ∈ {0, . . . , k}}.

We say that a program P represents the self-similar set κψ,I(P ). We have shown
that the process of building a self-similar set from a self-similar program is guar-
anteed to be unique and constructive, where we interpret self-similar programs
as their least Herbrand models [22].

We can easily obtain the similarity dimension for every set represented by a
self-similar program. We have dimS κψ,I(SP(W )) = d, where

∑
ϕ∈C L(ϕ)d = 1

with C = {ϕI→ρψ,I (w) | w ∈ W }. Moreover, if ψ is a net, such a set C always
holds the open set condition. Thus dimH κψ,I(P ) = dimS κψ,I(P ) for all P ∈ P .

Example 4. Let ψ be a partition defined by Σ := {0, 1, 2, 3}, ψ(0) := [0, 1/2] ×
[0, 1/2], ψ(1) := [0, 1/2]×[1/2, 1],ψ(2) := [1/2, 1]×[0, 1/2], and ψ(3) := [1/2, 1]×
[1/2, 1]. Assume that P = SP({ 0, 1, 3 }). Then ψ is a net and the set κψ,I(P ) is
the Sierpiński triangle shown in Example 1. Its Hausdorff dimension is equal to
its similarity dimension, and dimH κψ,I(P ) = log 3/ log 2.

4 Learning Framework

Using the above methods, we formulate learning of figures. In the following in
this paper, we fix a partition ψ and an initial interval for the partitioning space,
and assume that ψ is a net and every figure is a subset of the initial interval.
We omit the indexes ψ and I; e.g., write ρ and κ for ρψ,I and κψ,I , respectively.

Define Q(K) := { I ∈ S∗ | K ∩ I �= ∅ } for a figure K ∈ K∗. Each element of
Q(K) corresponds to a discretized positive datum of the figure K.

Definition 6. An example of a figure K is a signed finite sequence 〈l, w〉 with
l ∈ {+,−}, where ρ(w) ∈ Q(K) if l = +, and ρ(w) �∈ Q(K) if l = −.

An example 〈l, w〉 is positive if l = +, and negative if l = −. Here, if 〈+, w〉 is
an example of K, then 〈+, v〉 is an example of K for every prefix v of w, and
〈+, wa〉 is an example of K for some a ∈ Σ. If 〈−, w〉 is an example of K, then
〈−, wv〉 is an example of K for all v ∈ Σ∗.

We say that an infinite sequence of examples of a figure K, denoted by σK ,
is a presentation of K. The set of all examples occurring in σK is denoted by
range(σK), and the initial segment of σK of length m is denoted by σK [m−1]. A
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text is a presentation σK such that { ρ(w) | 〈+, w〉 ∈ range(σK) } = Q(K), and an
informant is a presentation σK such that { ρ(w) | 〈+, w〉 ∈ range(σK) } = Q(K)
and { ρ(w) | 〈−, w〉 ∈ range(σK) } = S∗ \ Q(K).

A learner is a procedure that reads a presentation of a target figure from time
to time, and outputs self-similar programs from time to time. A hypothesis is a
program produced by a learner. In the following, let M denote a learner, and
M(σK) denote an infinite sequence of hypotheses produced by M on the input
σK , thereby M(σK)(i − 1) denotes the ith hypothesis produced by M. We say
that an infinite sequence of hypotheses M(σK) converges to a hypothesis P if
there exists m ∈ N such that M(σK)(i) = P for all i 	 m.

5 Learning Self-similar Sets in the Limit

We consider the learning criterion corresponding to EX-learning (learning in the
limit), called FIGEX-INF- and FIGEX-TXT-learning, and analyze the learn-
abilities. A generalization error is a distance between a target figure K and a
hypothesis P , written by GE(K,P ), and measured by the Hausdorff metric, that
is, GE(K,P ) := dH(K,κ(P )). Trivially, GE(K,P ) = 0 if and only if K = κ(P ).

Definition 7. A learner M FIGEX-INF-learns (resp. FIGEX-TXT-learns) a set
of figures F ⊆ K∗ if for all K ∈ F and for every informant (resp. text) of K,
M(σK) converges to a hypothesis P such that GE(K,P ) = 0.

For every learning criterion CR introduced in the following, we say that a set of
figures F is CR-learnable if there is some learner that CR-learns F , and denote
CR by the collection of sets of figures that are CR-learnable.

Let us consider the learnability of the set κ(P) = { κ(P ) | P ∈ P }, where
every figure can be represented by some self-similar program.

Lemma 1. For every K,L ∈ κ(P), K �= L if and only if Q(K) �= Q(L).

A figure K ∈ κ(P) and the set of intervals Q(K) are therefore identifiable.
Furthermore, we can easily check that Q(K) ⊆ Q(L) if and only if K ⊆ L. Thus
a figure corresponds to a concept in the Gold-style learning.

An infinite sequence P0, P1, . . . is a normal enumeration if {Pi | i ∈ N } = P
and for all i, j ∈ N, i < j implies |Pi| � |Pj |, where |SP(W )| denotes maxw∈W |w|.
Trivially, some procedure can enumerate P through a normal enumeration.

We say that a hypothesis P is consistent with an example 〈l, w〉 if l = +
implies ρ(w) ∈ Q(κ(P )) and l = − implies ρ(w) �∈ Q(κ(P )), and consistent with
a set of examples E if P is consistent with all examples in E. Here we show that
this notion of consistency is effective, since κ(P) corresponds to the well known
notion of indexed family of recursive concepts [1].

Lemma 2. Let P be a self-similar program. For all I ∈ S∗, I ∈ Q(κ(P )) if and
only if I ∩ J �= ∅ for some J ∈ Γ k(P ) such that |J | < |I|.
This means that there is an algorithm that can judge consistency of P w.r.t.
〈l, w〉, since it is enough to check intervals in Γ |w|+1(P ). In the following in this
paper, we assume that learners can judge the consistency of hypotheses.
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First, we analyze FIGEX-INF-learning. A learner can FIGEX-INF-learn a set
of figures if it has an ability to enumerate all hypotheses and judge whether or
not each hypothesis is consistent with received examples [10].
Theorem 2. The set κ(P) ∈ FIGEX-INF.
Next, we consider FIGEX-TXT-learning. The necessary and sufficient conditions
to achieve learning of languages from texts have been studied in detail [1], and
characterization with finite tell-tale sets is well known. We use these results.
Definition 8. Let F be a subset of κ(P). For a figure K ∈ F , a finite subset T
of Q(K) is a finite tell-tale set of K with respect to F if for all L ∈ F , T ⊆ Q(L)
implies Q(L) �⊂ Q(K) (i.e., L �⊂ K).

Theorem 3. Let F be a subset of κ(P). Then F is FIGEX-TXT-learnable if
and only if for every figure K ∈ F , there is a procedure that enumerates a set
W ⊂ Σ∗ such that ρ(W ) is a finite tell-tale set of K with respect to F .

Here we show that the set κ(P) is not FIGEX-TXT-learnable. However, if we
fix the number of contractions, that is, fix the cardinality of a parameter W of a
self-similar program SP(W ) a priori, such a set becomes FIGEX-TXT-learnable.

Theorem 4. The set κ(P) �∈ FIGEX-TXT, and for every finite set N ⊂ N,
κ(PN ) ∈ FIGEX-TXT.
It is natural that every hypothesis generated by a learner is consistent with exam-
ples received by it so far. Here we introduce FIGCONS-INF- and FIGCONS-TXT-
learning (CONS means CONSistent) that correspond to CONS-learning studied
in the learning of languages and recursive functions [16].
Definition 9. A learner M FIGCONS-INF-learns (resp. FIGCONS-TXT-
learns) a set of figures F ⊆ K∗ if M FIGEX-INF-learns (resp. FIGEX-TXT-
learns) F , and for all K ∈ F and all informants (resp. texts) σK , M(σK)(i) is
consistent with Ei for all i ∈ N, where Ei is the set of examples that M received
until just before generating the hypothesis M(σK)(i).

Corollary 2. FIGEX-INF = FIGCONS-INF, FIGEX-TXT = FIGCONS-TXT.

6 Towards Learning Figures out of κ(P)

Here we consider learning of figures that might not be represented by any hy-
pothesis, since generally there is no guarantee of existence of a correct hypothesis
that represents a target figure exactly. Moreover, the set of figures K∗ has the
cardinality of the continuum, thereby no learner is able to learn K∗ in the limit.
To deal with learning of an arbitrary figures, we have to introduce other learning
criteria extending FIGEX-INF- and FIGEX-TXT-learning.

In the learning of languages and recursive functions, two learning criteria
with the concepts of reliability and refutability have been proposed and studied
to deal with targets out of a hypothesis space [19, 21]. First, we introduce these
concepts into learning of figures. Next, we investigate our original criterion, where
a target is learned effectively. Finally, we introduce generalization error bounds
into Gold-style learning model. We compare learnability under each criterion.
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6.1 Reliable Learning

Let us consider reliable learning of figures. Intuitively, reliability requires that
an infinite sequence of hypotheses converges to only a correct hypothesis.

Definition 10. A learner M FIGRELEX-INF-learns (resp. FIGRELEX-TXT-
learns) a set of figures F ⊆ K∗ if M satisfies the following conditions:
1. The learner M FIGEX-INF-learns (resp. FIGEX-TXT-learns) F .
2. If a target figure K ∈ K∗ \ F , then for all informants (resp. texts) σK , the

infinite sequence of hypotheses M(σK) does not converge to any hypothesis.

Let a target figure K ∈ K∗ \F . Intuitively, for any hypothesis P , if M can judge
κ(P ) �= K in finite time, then a set of figures F can be learned reliably.

Theorem 5. FIGEX-INF = FIGRELEX-INF.

Next, we analyze FIGRELEX-TXT-learnability of the set κ(PN ). Note that for
all K ∈ κ(PN ), N = {1} implies that K is a singleton.

Theorem 6. The set κ(PN ) is FIGRELEX-TXT-learnable iff N = {1}.

Corollary 3. FIGRELEX-TXT ⊂ FIGEX-TXT.

It is known that a set of concepts C is reliably EX-learnable from texts if and
only if C contains no infinite concept [19]. However, we have shown that the set
κ(P1) is FIGRELEX-TXT-learnable, where Q(K) is infinite for all K ∈ κ(P1).
The monotonicity of the set Q(K) causes this remarkable difference.

6.2 Refutable Learning

We extend FIGEX-INF- and FIGEX-TXT-learning by paying our attention to
refutability. In refutable learning, a learner tries to learn figures in the limit, and
it refutes the given space if there is no correct hypothesis in the space.

Definition 11. A learner M FIGREFEX-INF-learns (resp. FIGREFEX-TXT-
learns) a set of figures F ⊆ K∗ if M satisfies the following conditions. Here, ⊥
is the refutation symbol.
1. The learner M FIGEX-INF-learns (resp. FIGEX-TXT-learns) F .
2. If a target figure K ∈ F , then for all informants (resp. texts) σK , M(σK)(i) �=

⊥ for all i ∈ N.
3. If K ∈ K∗ \ F , then for all informants (resp. texts) σK , there exists m ∈ N

such that M(σK)(i) �= ⊥ for all i < m, and M(σK)(i) = ⊥ for all i 	 m.

Conditions 2 and 3 in the above definition means that a learner M refutes the
set F in finite time only if a target figure K ∈ K∗ \ F .

Lemma 3. Let a learner M FIGREFEX-INF-learns (resp. FIGREFEX-TXT-
learns) a set of figures F , and let a target figure K ∈ K∗\F . For every informant
(resp. text) σK , if M outputs ⊥ after receiving σK [m], then for any L ∈ F , the
set of examples range(σK [m]) is not consistent with L.
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We show that the set κ(Pm) is not FIGREFEX-INF-learnable. Intuitively, the
reason is that for some figure K ∈ K∗ \ κ(Pm), there exists an arbitrarily close
figure L ∈ κ(Pm), and M cannot refute κ(Pm) in finite time.

Theorem 7. For any m ∈ N, κ(Pm) �∈ FIGREFEX-INF.

We can easily find a set F ⊂ κ(P) such that F ∈ FIGREFEX-INF and
F �∈ FIGRELEX-TXT. Thus both FIGREFEX-INF �⊆ FIGRELEX-TXT and
FIGRELEX-TXT �⊆ FIGREFEX-INF hold.

Theorem 8. FIGREFEX-TXT ⊂ FIGREFEX-INF.

Corollary 4. FIGREFEX-TXT ⊂ FIGRELEX-TXT.

6.3 Effective Learning

In reliable and refutable learning, we cannot know how far it is from the recent
hypothesis to the correct hypothesis. It is therefore more useful if we can measure
the amount of an error of each hypothesis.

Define diam(k) by the diameter of an interval in Sk. If a hypothesis P is con-
sistent with all level k examples, we can bound the Hausdorff distance between
a target figure and the figure κ(P ) with diam(k).

Lemma 4. Let σK be an informant of a figure K and P be a self-similar pro-
gram that is consistent with the set {〈l, w〉 ∈ range(σK) | |w| = k}. We have
dH(K,κ(P )) � diam(k).

We now define a novel effective learning criteria, FIGEFEX-INF- and FIGEF

EX-TXT-learning (EF means EFfective). Intuitively, these criteria guarantee
that for any target figure, a generalization error becomes smaller and smaller
monotonically, and converges to zero. Thus we can know when the learner learns
the target figure “well enough”. Furthermore, if a target figure is learnable in
the limit, then a generalization error goes to zero in finite time.

Definition 12. A learner M FIGEFEX-INF-learns (resp. FIGEFEX-TXT-
learns) a set of figures F ⊆ K∗ if M satisfies the following conditions:
1. The learner M FIGEX-INF-learns (resp. FIGEX-TXT-learns) F .
2. For an arbitrary target figure K ∈ K∗ and all informants (resp. texts) σK ,

there is a monotone decreasing function ε : N → R+ such that limi→∞ ε(i) =
0 and GE(K,M(σK)(i)) � ε(i) for all i ∈ N.

This effective learning is different from well-known learning criterion of BC-
learning [16], since BC-learning only guarantees that generalization errors go to
zero in finite time. Thus BC-learning is not effective.

Theorem 9. The set κ(P) ∈ FIGEFEX-INF (see Fig. 2).

However, the set κ(PN ) with finite N ⊂ N is not FIGEFEX-INF-learnable.
Informally, the reason is that κ(PN ) does not have enough ability to approximate
an arbitrary figure.
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Input: an informant σK = 〈l0, w0〉, 〈l1, w1〉, . . .
Output: an infinite sequence of hypotheses M(σK)(0),M(σK)(1), . . .

i := 0 ; k := 0 ; E := ∅ ; /* E is a set of received examples */
repeat

read σK(i) and add to E ; /* σK(i) = 〈li, wi〉 */
if {〈l, w〉 ∈ range(σK) | |w| = k} ⊆ E then

search the first P that is consistent with E through a normal enumeration ;
output P ; /* M(σK)(i) = P */
k := k + 1 ;

i := i + 1 ;
until forever

Fig. 2. A learning procedure that FIGEFEX-INF-learns κ(P)

Theorem 10. For any finite set N ⊂ N, κ(PN ) �∈ FIGEFEX-INF.

We analyze the hierarchy of learnabilities under reliable, refutable, and ef-
fective learning. From the above results, FIGEFEX-INF �⊆ FIGEX-TXT and
FIGEX-TXT �⊆ FIGEFEX-INF hold. In the learning from informants, if F ∈
FIGREFEX-INF, then F ∈ FIGEFEX-INF. Thus the following holds.

Corollary 5. FIGREFEX-INF ⊂ FIGEFEX-INF ⊂ FIGRELEX-INF.

Theorem 11. FIGEFEX-TXT = ∅.

6.4 Learning with Generalization Error Bounds

In the effective learning, we used generalization errors to measure the difference
between a hypothesis and a target figure. However, achieving the learning is
difficult, since we have proved that κ(PN ) is not FIGEFEX-INF-learnable and
any set of figures is not FIGEFEX-TXT-learnable. Here we propose an another
new learning criterion with generalization error bounds, and show the interesting
result: The learnabilities from informants and from texts become same.

Definition 13. For ε ∈ R+, a learner M FIGEX
ε-INF-learns (resp. FIGEX

ε-
TXT-learns) a set of figures F ⊆ K∗ if for all target figures K and all infor-
mants (resp. texts) σK , K ∈ F implies that M(σK) converges to a hypothesis
P such that GE(K,P ) = 0, and K ∈ K∗ \ F implies that M(σK) converges to
a hypothesis P such that GE(K,P ) � ε.

First, we compare FIGEX
ε-INF- and FIGEFEX-INF-learning.

Theorem 12. For any ε ∈ R+, κ(P) �∈ FIGEX
ε-INF.

Intuitively, the reason is that FIGEX
ε-INF-learning demands convergence of

hypotheses for every target figure, but FIGEFEX-INF-learning does not. Here
we show that F is FIGEX-TXT-learnable iff it is FIGEX

ε-TXT-learnable.
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Theorem 13. For all ε ∈ R+, FIGEX-TXT = FIGEX
ε-TXT.

Next, we compare FIGEX
ε-INF- and FIGEX

ε-TXT-learning. The learnability
from informants is usually properly larger than that from texts. However, they
become same in this case.

Theorem 14. For all ε ∈ R+, FIGEX
ε-INF = FIGEX

ε-TXT.

Corollary 6. For all ε, ε′ ∈ R+, FIGEX
ε-INF = FIGEX

ε′
-INF.

Moreover, we have the following hierarchy.

Theorem 15. For all ε ∈ R+, FIGREFEX-INF ⊂ FIGEX
ε-INF.

7 Measuring the Complexity of Learning with the
Hausdorff Dimension and the VC Dimension

Here we measure the number of positive examples, one of the complexity of
learning, by using the Hausdorff dimension and the VC dimension. First, we
show that the Hausdorff dimension of a target figure gives the lower bound of
the number of positive examples.

In the following, assume that the initial interval is IU for simplicity, and fix
a partition that is a net, where ‖Σ‖ = bn. Let Nk(K) denote the number of
positive examples of a target figure K at level k, that is, Nk(K) = ‖Q(K)∩Sk‖.
Note that for all k ∈ N, ‖Sk‖ = bkn and the diameter diam(k) =

√
nb−k.

Theorem 16. For every figure K ∈ K∗ and for any s < dimH K, if we take k
large enough, the number Nk(K) 	 bks.

If a target figure K ∈ κ(P), we can bound the number Nk(K) more precisely.
In addition, we can decide when k becomes large enough.

Theorem 17. For every figure K ∈ κ(P) with K = κ(SP(W )) and for every
k 	 max{|w| | w ∈ W}, the number Nk(K) 	 bk dimH K .

Example 5. Let n = 2, a target figure K be the Sierpiński triangle, and ψ be the
partition defined in Example 4. Note that ‖Σ‖ = 2n and dimH K = log 3/ log 2 =
1.584 . . . . From Theorem 17, 2dimH K = 3 � N1(K) at level 1 and 4dimH K =
9 � N2(K) at level 2. Actually, N1(K) = 4 and N2(K) = 13. Note that K is
already covered by 3 and 9 intervals at level 1 and 2, respectively (Fig. 3).

Next, we introduce the Vapnik-Chervonenkis (VC) dimension and show that we
can also use the VC dimension to characterize the number of positive examples.
Intuitively, the VC dimension is a parameter of the separability and well known
that we can bound example sizes in the Valiant-style learning model (also called
PAC learning model) with the VC dimension [17].

For all R ⊆ P and I ⊆ S∗, define ΠR(I) := {Q(κ(P )) ∩ I | P ∈ R}. If
ΠR(I) = 2I , we say that I is shattered by R. Here the VC dimension of R,
denoted by dimVC R, is the cardinality of the largest set I shattered by R.

We define Pk := { SP(W ) ∈ P | |w| = k for all w ∈ W } ∪ {SP(∅)}, where
κ(SP(∅)) = ∅ for technical reasons. The VC dimension of the set of level k
programs Pk is equal to the cardinality of Sk.
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Fig. 3. Positive and negative examples for the Sierpiński triangle at level 1 and 2.
White (resp. gray) squares mean positive (resp. negative) examples.

Lemma 5. At each level k, we have dimVC Pk = ‖Sk‖.
Therefore we can rewrite Theorems 16 and 17 as follows.

Theorem 18. For every figure K ∈ K∗ and for any s < dimH K, if we take
k large enough, Nk(K) 	 (dimVC Pk)ks. Moreover, if K ∈ κ(P) with K =
κ(SP(W )), for every k 	 max{|w| | w ∈ W}, Nk(K) 	 (dimVC Pk)k dimH K .

These results demonstrate a relationship among the complexities of learning
figures (numbers of positive examples), classes of hypotheses (VC dimension),
and target figures (Hausdorff dimension).

8 Conclusion

We have formulated learning of figures using self-similar sets based on the Gold-
style learning model, and demonstrated the hierarchy of learning criteria (Fig. 1).
This learning model can be viewed as the constructive interpretation of Collage
Theorem, which is well known theorem in Fractal Geometry. Furthermore, we
have measured the lower bound of the number of positive examples by using
the Hausdorff dimension of a target figure and the VC dimension of a set of
self-similar programs. Our results indicate that Gold-style learning model can
be a basis of machine learning for continuous objects (i.e., uncountable sets).

Self-similar sets can be viewed as a geometric interpretation of languages
recognized by ω-automata (Büchi-automata), and learning of such languages
has been already investigated [6, 15]. Thus comparison of the study and our
study is a important future work.

In the field of Computable Analysis, representations of compact sets have been
studied [5], and admissible representations are known as a key concept in the field
[23]. It is a future work to study the relationship between such representations
and the representations of figures in our learning model.
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Abstract. We introduce, discuss, and study a model for inductive in-
ference from samplings, formalizing an idea of learning different “pro-
jections” of languages. One set of our results addresses the problem of
finding a uniform learner for all samplings of a language from a certain
set when learners for particular samplings are available. Another set of
results deals with extending learnability from a large natural set of sam-
plings to larger sets. A number of open problems is formulated.
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1 Introduction

Consider the following model of learning. A learner gets data about a target
concept, one piece at a time. As the learner is receiving the data, it outputs
its conjectures on what the target might be. If the sequence of conjectures of
the learner converges to a correct hypothesis about the target concept, then one
might say that the learner has successfully learnt the concept. This is essentially
the model of TxtEx-learning considered by Gold [Gol67].

In our paper, the target concept is a language L from a class L of possible lan-
guages. The learner gets as input, one element at a time, in arbitrary order with
repetitions allowed, members of the target language (such a presentation is called
a text of the language; note that negative data is not presented to the learner
in this model). The conjectures made by the learner take the form of a gram-
mar or acceptor in some acceptable programming system [Rog67]. The learner
is then successful (that is, the learner TxtEx-identifies the target language) if
the sequence of conjectures converges to a grammar which generates/accepts the
target language L.

Expecting that the learner gets all elements of the target language is unreal-
istic. Often it is difficult to obtain full data, and a learner gets actually elements
of only a subset X of the target language L. Of course, then it may be unrealistic
to expect the learner to learn the full language. Thus, in such a situation one
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says that the learner is successful if it converges to a grammar for a language L′

such that X ⊆ L′ ⊆ L. In [JK08], the authors considered this model of learning.
Note that here, the learner is supposed to be successful in the above sense for
all subsets X of the target language L.

In this paper, we consider a different variant of the model explored in [JK08]:
every language from a target class is being learnt from inputs defined by the
same sampling. As in the model in [JK08], the learner must produce in the limit
a grammar covering the input sampling of the target language, and the final
grammar must represent a subset of the target language containing all data
from the input sampling. The difference of our variant from the model in [JK08]
is that, in [JK08], any arbitrary subset of the target language may appear on the
input, whereas in our model the input is defined by a certain (fixed) sampling.

Since positive data in the process of inductive inference can be viewed as
being supplied by a teacher, it is natural to assume that, in some situations, the
teacher may have difficulty providing full positive data — because, for example,
it is too time-consuming, or it is too lengthy. In such a situation, the teacher may
provide just a part of the target language using some natural representation of
the language known to the teacher. For example, the teacher may provide, say,
the 2nd, 4th, 6th, etc. elements of this representation, or some other sequence
of positive data that is representative of the target language as a whole and/or
represents one or another salient aspect of it. Say, if the target language consists
of all primes, the teacher may provide the sampling containing just every other
prime (or another sampling of a similar sort) to give the learner a good idea of
what the language is about. Or, if all languages in the target class are infinite,
the teacher may omit some elements of the target language as being of lesser
importance for the overall understanding of the concept. (Our idea of sampling
can be traced to Trakhtenbrot’s paper [Tra73]).

The learner is required to be able to produce in the limit a grammar that
covers the input part (representing a given sampling) of the target language and
does not exceed the target language (in set containment sense). Now, obviously,
there are many different issues of interest: for example, does learnability of every
specific sampling (from some class of samplings) imply overall (uniform) learn-
ability for all samplings, how does knowledge of the sampling choice (provided
by the teacher) affect learning capabilities, etc.

The idea of considering inductive inference from inputs defined by different
samplings was first suggested by R. Freivalds in [Fre74], where he studied how
learnability on different specific orderings of the input function graph (provided
by the teacher) can affect overall learnability of the function regardless of the
order of input. When one assumes that languages are sets of positive integers
(as, following the tradition of classic inductive inference, it is done in our pa-
per), and considers learning languages from positive data only, the teacher may
use samplings based on many different natural representations of all positive
data. For example, one can fix some standard way of enumerating all recur-
sively enumerable sets, and then, for a given enumeration a0, a1, a2, a3, . . . of a
(recursively enumerable) language L, the sampling, say, A = {1, 3, 5, . . .} will
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define the sublanguage a1, a3, a5, . . .. However, it turns out that this approach
makes learnability dependent on the choice of enumerating mechanism, and,
thus, rather unnatural.

We have chosen a formalization of the concept of sampling based on the rep-
resentation of target languages in the increasing order. Namely, for any language
L, consider the increasing order of all elements a0, a1, a2, a3, . . .. Then a sampling
A is a set of positive integers, say, i1, i2, . . . and the corresponding A-sampling
(sublanguage) of L is the language {ai1 , ai2 , ai3 , . . .}. For example, for the sam-
pling A = {5, 6, 7, . . .}, one gets the A-sampling of L containing all the elements
of L except the first five smallest ones.

Given the aforementioned formalization, we study several natural questions.
The first question is if, given a class of languages L and a set of samplings A,
learnability of A-samplings of languages from L for every specific A ∈ A implies
uniform learnability (that is, by one learner) of all A-samplings of languages
from L for all A ∈ A. We answer this question in the negative in Theorem 7,
using the set of all possible samplings. For some special set of samplings, we also
show that a class witnessing separation of non-uniform and uniform learnability
for this set of samplings can be uniformly learned with just one error in the final
conjecture (Theorem 8). A related result addresses the question whether uni-
form learnability on each of the two different sets of samplings implies uniform
learnability on all samplings from the union of these two sets: as we show in
Theorem 10, the answer is negative even if each set contains just one recursive
sampling. On the other hand, we suggest a simple sufficient condition for learn-
ability on the union of two sets of samplings when the learner gets access to the
sampling A (from the oracle, or as a separate input), see Proposition 12.

We also studied the following problem: what are the circumstances when
learnability of a class from some natural set of samplings ensures learnability
of the class from a larger natural set of samplings? For example, is learnability
of a class on the set of A-samplings for all infinite recursively enumerable A-s
powerful enough to ensure learnability of the class from all infinite samplings?
We were able to get only some negative results so far. In particular, we have
shown that learnability of a class from all A-samplings for all infinite recursively
enumerable A-s does not imply the learnability of the class from all infinite
samplings (Theorem 16). Similarly, it turns out that learnability of a class from
all simple recursively enumerable samplings does not imply learnability of the
class from all infinite recursively enumerable samplings (Theorem 17). Moreover,
it turns out that the learnability of a class from all samplings but some recursive
sampling A (and all its subsets), does not imply that the class is learnable from
all samplings (Theorem 18).

2 Preliminaries

2.1 Notations

Any unexplained recursion theoretic notation is from [Rog67]. Let N denote the
set of natural numbers, {0, 1, 2, 3, . . .}. Symbols ∅, ⊆, ⊂, ⊇, and ⊃ denote the
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empty set, subset, proper subset, superset, and proper superset, respectively.
Symmetric difference of A and B is denoted by AΔB. That is, AΔB = (A −
B) ∪ (B − A). P(A) denotes the power set of A, that is, P(A) = {B | B ⊆ A}.
The maximum and minimum of a set are respectively denoted by max(·),min(·),
where we take max(∅) = 0 and min(∅) = ∞. For a set S = {x0, x1, . . .}, where
x0 < x1 < . . ., we call xi the i-th minimal element (or just the i-th element)
of S (thus, the 0-th (minimal) element is the minimal element of a set). The
cardinality of a set S is denoted by card(S). We use card(S) ≤ ∗ to denote
that the cardinality of S is finite. For a ∈ N ∪ {∗}, A =a B denotes that
card(AΔB) ≤ a. Quantifiers ∀∞ and ∃∞ respectively denote ‘for all but finitely
many’ and ‘there exist infinitely many’.

We let 〈·, ·〉 denote a computable 1–1 and onto mapping from N × N to
N (see [Rog67]). We assume without loss of generality that 〈·, ·〉 is increas-
ing in both its arguments. Let π2

1(〈x, y〉) = x and π2
2(〈x, y〉) = y. The pair-

ing function can be extended to coding of n-tuples in a natural way by taking
〈x1, x2, . . . , xn〉 = 〈x1, 〈x2, x3, . . . , xn〉〉, for n > 2. The corresponding projection
functions are πn

i (〈x1, x2, . . . , xn〉) = xi.
Let R denote the set of all recursive functions. For a partial function η, η(x)↓

denotes that η(x) is defined. η(x)↑ denotes that η(x) is undefined. We let η[n]
denote the partial function, {(x, η(x)) | x < n}. By ϕ we denote a fixed acceptable
programming system for the partial computable functions from N to N [Rog67,
HU79]. Then,ϕi denotes the i-th partial computable function in this programming
system, and i is called a program for the partial function ϕi. By Φ we denote a
fixed Blum complexity measure [Blu67, HU79] for the ϕ-system. Intuitively, Φi(x)
denotes the resources (say time or space) needed to compute ϕi(x).

Languages are subsets of N . By Wi we denote domain(ϕi). Thus, Wi is the
recursively enumerable (r.e.) set/language accepted by ϕi. We also say that i
is a grammar for Wi. Symbol E denotes the set of all r.e. languages. By Wi,s

we denote the set {x < s | Φi(x) < s}. L, with or without decorations, ranges
over E . We let χL denote the characteristic function of L. We let L = N − L,
that is the complement of L. Symbol L, with or without decorations, ranges over
subsets of E .

A set S is called immune [Rog67] iff S is infinite, and for all infinite r.e. sets
X , X �⊆ S. A set S is called simple [Rog67] iff S is recursively enumerable and
S is immune.

For a total function f , let Lf = {〈x, f(x)〉 | x ∈ N}. For any, possibly partial,
function g, let Zextg be the function defined as follows: Zextg(x) = g(x), if
x ∈ domain(g); Zextg(x) = 0, otherwise.

We will consider the following classes of languages and functions:

– INF is the class of all infinite sets.
– REinf is the class of all infinite recursively enumerable sets.
– INIT = {L | (∃n)[L = {x | x < n}]}, the class of initial segments of N .
– COINIT = {L | (∃n)[L = {x | x ≥ n}]}, the class of coinitial segments of N .
– SD = {f ∈ R | ϕf(0) = f}.
– AZext = {f ∈ R | domain(ϕf(0)) ∈ INIT, and f = Zextϕf(0)}.
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2.2 Preliminaries for Learning

A text T is a mapping from N into (N∪{#}). Thus, T (i) represents the (i+1)-st
element in the text. Intuitively, a text denotes the presentation of elements of
a language, with #s representing pauses in the presentation. We let T , with or
without decorations, range over texts. Content of a text T , denoted content(T ),
is the set of natural numbers in the range of T . A text T is for a language L
iff content(T ) = L. T [n] denotes the initial sequence of T of length n, that is
T [n] = T (0)T (1) . . . T (n− 1).

A finite sequence is a mapping from an initial segment of N into (N ∪ {#}).
The empty sequence is denoted by Λ. Content of σ, denoted content(σ), is the
set of natural numbers in the range of σ. The length of σ, denoted by |σ|, is the
number of elements in σ. For i < |σ|, σ(i) denotes the (i + 1)-th element in σ.
For n ≤ |σ|, σ[n] denotes the initial sequence of σ of length n. SEQ denotes the
set of all finite sequences. Thus, SEQ = {T [n] | n ∈ N,T is a text}. We let σ
and τ , with or without decorations, range over SEQ. We denote the sequence
formed by the concatenation of τ at the end of σ by στ .

An inductive inference machine (IIM) [Gol67] is an algorithmic mapping from
SEQ to N . We also use the term learner or learning machine for IIM. We let
M, with or without decorations, range over IIMs. We say that M converges on
T to i, (written: M(T )↓ = i) iff (∀∞n)[M(T [n]) = i].

The following define some of the notions of learning.

Definition 1. [Gol67, CL82]
(a) M TxtEx-identifies an r.e. language L (written: L ∈ TxtEx(M)) just

in case, for all texts T for L, M(T [n]) is defined for all n and (∃i | Wi =
L)(∀∞n)[M(T [n]) = i].

(b) M TxtEx-identifies a class L of r.e. languages (written: L ⊆ TxtEx(M))
just in case M TxtEx-identifies each language from L.

(c) TxtEx = {L ⊆ E | (∃M)[L ⊆ TxtEx(M)]}.

Definition 2. [OW82, Gol67, CL82]
(a) M TxtBc-identifies an r.e. language L (written: L ∈ TxtBc(M)) just in

case, for all texts T for L, for all but finitely many n, WM(T [n]) = L.
(b) M TxtBc-identifies a class L of r.e. languages (written: L ⊆ TxtBc(M))

just in case M TxtBc-identifies each language from L.
(c) TxtBc = {L ⊆ E | (∃M)[L ⊆ TxtBc(M)]}.

There exists a recursive sequence of total IIMs, M0,M1, . . . such that, for the
criteria of learning I discussed in this paper, for each L ∈ I, some Mi witnesses
that L ∈ I. This can be shown essentially along the same lines as done for
TxtEx-learning in [OSW86]. Thus, any learner M can be considered to be
equivalent to some Mj from such an enumeration (with respect to being able to
learn a class of languages under a criterion of inference considered in this paper).
We fix one such enumeration M0,M1, . . ., and will from now on consider only
learners from this list.
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Definition 3. (a) [Ful90] σ is said to be a TxtEx-stabilizing sequence for M on
L, iff (i) content(σ) ⊆ L, and (ii) for all τ such that content(τ) ⊆ L, M(στ) =
M(σ).

(b) [BB75, Ful90] σ is said to be a TxtEx-locking sequence for M on L, iff
(i) σ is a TxtEx-stabilizing sequence for M on L and (ii) WM(σ) = L.

If M TxtEx-identifies L, then every TxtEx-stabilizing sequence for M on L is
a TxtEx-locking sequence for M on L. Furthermore, one can show that if M
TxtEx-identifies L, then for every σ such that content(σ) ⊆ L, there exists a
TxtEx-locking sequence, which extends σ, for M on L (see [BB75, Ful90]).

Similar locking sequence results can be proved for other criteria of inference
considered in this paper.

3 Definitions for Learning from Samplings

Suppose S = {y0, y1, y2, . . .}, where y0 < y1 < . . ., and R ⊆ S. Then, define
Order(R,S) = {i | yi ∈ R}. We call any subset of N a sampling. For a sampling
A and a set S, we call X an A-sampling of S iff Order(X,S) = A.

Note that, if A is infinite and S is finite, then there is no A-sampling of S. On
the other hand, for every infinite set S, and every sampling A, there is a (unique)
A-sampling of S. Thus, for ease of notation, when learning from samplings, we
will only consider infinite languages, without always explicitly mentioning so.
This does not effect our results, as all the diagonalizations in this paper can be
achieved using classes of infinite languages. Note that the samplings themselves
may or may not be infinite.

The following definition now formalizes our notion of learning from samplings.
Note that the model for learning sublanguages of a target language in [JK08] is
different from the one formalized in the definition below, as the model in [JK08]
requires learners to learn arbitrary input sublanguages, rather than the ones
defined by specific samplings as considered in this paper. In other words, the
model in [JK08] is UniSublangP(N), a special case of the models considered in
this paper.

Definition 4. (a) Suppose a sampling A ⊆ N is given. M SublangExA-
identifies an infinite language L iff, for A-sampling X of L, for any text T for
X , there exists an n such that, (i) for all m ≥ n, M(T [m]) = M(T [n]), and (ii)
X ⊆ WM(T [n]) ⊆ L.

M SublangExA-identifies a class L of infinite languages iff M SublangExA-
identifies each language in L.

SublangExA denotes the collection of all L which can be SublangExA-
identified by some learner M.

(b) Let A ⊆ P(N) be a set of samplings.
(b.1) SublangExA denotes the collection of all L such that, for each A ∈ A,

L ∈ SublangExA (this is the non-uniform version).
(b.2) UniSublangExA denotes the collection of all L for which there exists

a learner M such that, for each A ∈ A, M SublangExA-identifies L (this is the
uniform version).
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(b.3) PUniSublangExA denotes the collection of all L for which there exists
a learner M such that, for each A ∈ A, M using an oracle for A, SublangExA-
identifies L (this is the pseudo-uniform version, where the learner has access to
the sampling A in oracle form).

One can similarly define the criteria for SublangBc-learning. We say that M
SublangBcA-identifies L iff for all L ∈ L, for X ⊆ L such that Order(X,L) = A,
for any text T for X , for all but finitely many n, X ⊆ WM(T [n]) ⊆ L.

In this paper, we will be mainly concentrating on Sublang and UniSublang-
learning paradigms. The criterion PUniSublangEx is used more for emphasiz-
ing what happens if a uniform learner “knows”, in some way, the sampling A
which it is getting. The usage of an oracle here is more for convenience, and the
results presented in the paper will hold even if one gives the set A to the learner
in the form of a separate text containing exactly the elements of A.

4 Results

Our first goal is to show that there are classes of languages non-uniformly learn-
able on all samplings, but not uniformly learnable, even just on samplings from
COINIT. We begin with the following useful proposition and a corollary from it.

Proposition 5. L = {Lf | f ∈ SD ∪ AZext} �∈ TxtBc, even when the texts
given to the learner are increasing texts.

Proof. This proposition can be proved essentially along the same lines as the
proof of the non-union theorem [BB75]. For ease of presentation, we will give
the proof for learning from arbitrary texts. As the class L used consists only of
Lf such that f ∈ R, such texts can be effectively converted to increasing texts.
Suppose, by way of contradiction, that M TxtBc-identifies L. Then, by implicit
use of Kleene’s recursion theorem [Rog67], there exists an e such that ϕe may be
defined as follows. Let ϕe(0) = e. ϕs

e denotes ϕe defined before stage s, and xs

denotes the largest x such that ϕe(x) is defined before stage s. Let σ0 contain just
one element: 〈0, e〉. It will be the case that content(σs) = {〈x, ϕe(x)〉 | x ≤ xs}.
Go to stage 0.

Stage s:
1. Search for a σ ⊇ σs and y ∈ N such that: content(σ) ⊆ LZextϕs

e

, y > xs,
〈y, 0〉 �∈ content(σ) and 〈y, 0〉 ∈ WM(σ).

2. If and when such a σ and y are found,
let z be maximum such that 〈z, 0〉 ∈ content(σ),
let ϕe(y) = 1,
let ϕe(x) = 0, for x �= y such that xs < x ≤ y + z + 1.
let xs+1 = y + z + 1.
let σs+1 be an extension of σ such that content(σs+1) = {〈x, ϕe(x)〉 |

x ≤ xs+1}.
Go to stage s + 1

End stage s
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It is easy to verify that, if all stages terminate, then ϕe is total, ϕe ∈ SD,
T =

⋃
s∈N σs is a text for Lϕe, and WM(T [n]) �= Lϕe, for infinitely many n (as

WM(σ) �= Lϕe , for each of σ found in the stages).
On the other hand, if stage s starts but does not finish, then for g = Zextϕe ∈

AZext, we have that for any text T for Lg which extends σs, M(T [n]) is not a
grammar for Lg for any n > |σs| (otherwise, the search in step 1 would succeed).

Thus, we have that M cannot TxtBc-identify L.

Corollary 6. Let SDj = {f | (∃g ∈ SD)[(∀x < j)[f(x) = 〈j, g(0), 1〉] and
(∀x ≥ j)[f(x) = 〈j, g(0), g(x − j) + 2〉]]}.

Let AZextj = {f | (∃g ∈ AZext)[(∀x < j)[f(x) = 〈j, g(0), 0〉] and (∀x ≥
j)[f(x) = 〈j, g(0), g(x − j) + 2〉]]}.

Let Lj = {Lf | f ∈ SDj ∪ AZextj}.
Then Lj �∈ UniSublangBcA, where A = {j, j + 1, j + 2, . . .}. Thus, Lj �∈

UniSublangBcCOINIT.

Note: We used +2 above just to make sure that 〈j, e, f(x)〉 for x < j are smaller
than 〈j, e, f(x)〉, for x ≥ j.

Now we can prove the separation result for the uniform and non-uniform
learnability from samplings. The following Theorem holds even if we replace
Uni by PUni.

Theorem 7. SublangExP(N) − UniSublangBcCOINIT �= ∅.

Proof. Let Lj be as in the Corollary 6. Fix Lj ∈ Lj that witnesses that Mj does
not UniSublangBcCOINIT-identify Lj . Let L = {Lj | j ∈ N}. Then, clearly
L �∈ UniSublangBcCOINIT.

To see that L ∈ SublangExP(N), let A ∈ P(N) be given. If A = ∅, then L is
trivially in SublangExA, as the learner can just output ∅.

If A �= ∅, then let k ∈ A. Now, the learner can SublangExA-learn L as
follows. If the input text contains an element 〈x, 〈j, e, y〉〉, for some j ≤ k, then
output a grammar for Lj (as there are only finitely many such j, the learner can
“code” these finitely many cases).

Otherwise, the input text will contain 〈k, 〈j, e, y〉〉 for some j > k, for some
y ∈ {0, 1} (as the k-th least element in Lj is 〈k, 〈j, e, y〉〉, for some y ∈ {0, 1}).
If y = 1, then output a grammar for Lf , where f(x) = 〈j, e, 1〉, if x < j, and
f(x) = 〈j, e, ϕe(x − j) + 2〉, if x ≥ j. If y = 0, then, in the limit, search for
the least x0 such that ϕe(x0) is not defined. Then, output a grammar for Lf ,
where f(x) = 〈j, e, 0〉, if x < j, and f(x) = 〈j, e, g(x − j) + 2〉, if x ≥ j, where
g = Zextϕe[x0]. It is easy to verify that the above learner will SublangExA-
identify L.

Now we exhibit a different result on separation of non-uniform and uniform
learnability from samplings: for a certain set A of samplings, there exists a class
of languages, which is non-uniformly learnable on all samplings from the given
set A, uniformly learnable with just one error in the final conjecture, but not
uniformly learnable without errors in conjectures even in Bc style.
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Here a learner M SublangExa
A-identifies L iff, for all L ∈ L, if X ⊆ L is

an A-sampling of L, then for any text T for X , there exists an n and a set Z
such that, (i) for all m ≥ n, M(T [m]) = M(T [n]), (ii) X ⊆ Z ⊆ L, and (iii)
Z =a WM(T [n]).

Theorem 8. There exists a class L such that for A = {N}∪{N−{k} | k ∈ N},
L ∈ SublangExA, UniSublangEx1

A, but not in UniSublangBcA.

Proof. Let cylej = {〈j, 2x〉 | x ∈ N}.
Let cylek

j = {〈j, 2x〉 | x ∈ N, x �= k} ∪ {〈j, 2k + 1〉}
Let Lj = {cylej} ∪ {cylek

j | k ∈ N}.
Let Lj = cylej , if Mj does not TxtBc-learn cylej . Otherwise, let Lj =

cylekj

j , where kj is the least number such that 〈j, 2kj〉 does not belong to the
least TxtBc-locking sequence (say τj) for Mj on cylej . Note that on any text
extending τj for the set cylekj

j − {〈j, 2kj + 1〉}, Mj almost always outputs a
grammar for cylej .

Let L = {Lj | j ∈ N}. It follows immediately by definition of Lj above that
L �∈ UniSublangBcA.

On the other hand, L is easily seen to be in SublangExA. To see, this suppose
A ∈ A is given. A learner can obtain the unique j such that the input text
contains only elements of the form 〈j, ·〉. Now, if the input text contains 〈j, 2k+
1〉, for some k, then the target language must be cylek

j and the learner can
appropriately converge to a grammar for cylek

j ; otherwise the target language is
either cylej or cylek

j , for the unique k, if any, which is missing from A, and the
learner can converge to a grammar for cylej or cylej − {〈j, 2k〉} depending on
whether 〈j, 2k〉 belongs to the given input text or not.

Also, L ∈ UniSublangEx1
A, as witnessed by a learner which converges to a

grammar for cylek
j , if it sees an element of the form 〈j, 2k+ 1〉 in the input text;

otherwise, the learner converges to a grammar for cylej , where the input text
only contains elements from cylej .

Next, we establish a non-union result: learnability of a class of languages on each
of two recursive samplings does not imply uniform learnability of the class on the
set consisting of the two given samplings. First we establish a useful proposition.

Proposition 9. Fix j,m ∈ N and an IIM M. Let Sj be a subset of {〈j, 1, x〉 |
x ≤ m}.

Let Zf = Sj ∪ {〈j, 2, 〈x, f(0), f(x)〉 + m〉 | x ∈ N}.
Then one of the following holds:
(a) there exists an f ∈ SD such that for an increasing text T for Xj = Zf ,

for infinitely many n, WM(T [n]) ∩ {〈j, 2, y〉 | y ∈ N} �= Xj − Sj;
(b) not part (a) and there exists an f ∈ AZext such that for an increasing text

T for Xj = Zf , for infinitely many n, WM(T [n]) ∩ {〈j, 2, y〉 | y ∈ N} �= Xj − Sj.

Proof. Follows from Proposition 5.

Now we establish the desired non-union result.
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Theorem 10. Suppose A1 = {A1} and A2 = {A2}, where A1 and A2 are
two distinct infinite recursive sets. Then, SublangExA1 ∩ SublangExA2 −
UniSublangBcA1∪A2 �= ∅.

Proof. Without loss of generality we assume that the pairing function is increas-
ing in all its arguments and that, for each j, if {w0, w1, . . .} = {〈j, r, x〉 | r ∈
{1, 2}}, where for all i, wi < wi+1, then card({〈j, 0, x〉 | x ∈ N} ∩ {x | wi <
x < wi+1}) ≥ (i+ 2)-th minimal elements of both A1 and A2. This ensures that
there are enough gaps between elements of the form 〈j, 1, ·〉 and 〈j, 2, ·〉 to insert
several elements of the form 〈j, 0, ·〉 as needed in the construction of Lj from Xj

below.
Let i0 = min(A1ΔA2). Without loss of generality assume that i0 ∈ A1. Let

i1 be the smallest element in A2 − {x | x ≤ i0}.
Let Sj = {〈j, 1, x〉 | x < i0, x ∈ A1}∪{〈j, 1, 2i0 +2〉}∪{〈j, 1, 2i0+2+2y+1〉 |

i0 < y ≤ i1, y ∈ A1}.
Let mj = 2i0 + 2 + 2i1 + 1.
Now, if in Proposition 9, (a) holds for S = Sj , m = mj and M = Mj , then let

Xj be as in Proposition 9 and let Lj be an r.e. set formed by adding elements of
the form 〈j, 0, ·〉 to Xj ∪{〈j, 1, 2i0+2+2i1+1〉} such that Order(Xj ∪{〈j, 1, 2i0+
2+2i1+1〉}, Lj) = A1∪{i1} (here we assume that the elements of the form 〈j, 0, ·〉
which are added are the least ones possible so that one can, effectively from Xj ,
determine the elements which are added). We added 〈j, 1, 2i0 + 2 + 2i1 + 1〉
above just to make sure that the i1-th element of Lj is 〈j, 1, 2i0 + 2 + 2i1 + 1〉
in case i1 �∈ A1; in case i1 ∈ A1, 〈j, 1, 2i0 + 2 + 2i1 + 1〉 would already be in Xj .
Note that the i0-th element of Lj is 〈j, 1, 2i0 + 2〉 and the i1-th element of Lj is
〈j, 1, 2i0 + 2 + 2i1 + 1〉 (that is, the i0-th element of Lj is of the form 〈j, 1, 2x〉
for some x, and the i1-th element of Lj is of the form 〈j, 1, 2x + 1〉 for some x).

Otherwise, if in Proposition 9, (b) holds for S = Sj , m = mj , and M =
Mj, then let Xj be as in Proposition 9 and let Lj be an r.e. set formed by
adding elements of the form 〈j, 0, ·〉 to Xj ∪{〈j, 1, 2i0 +1〉} such that Order(Xj ∪
{〈j, 1, 2i0 + 1〉}, Lj) = A2 ∪ {i0} (here we assume that the elements of the form
〈j, 0, ·〉 which are added are the least ones possible so that one can, effectively
from Xj, determine the elements which are added). Note that the i0-th element
of Lj is 〈j, 1, 2i0 + 1〉 and the i1-th element of Lj is 〈j, 1, 2i0 + 2〉 (that is, the
i0-th element of Lj is of the form 〈j, 1, 2x+ 1〉 for some x, and the i1-th element
of Lj is of the form 〈j, 1, 2x〉 for some x).

Let L = {Lj | j ∈ N}. Note that for all j, if one can determine whether (a) or
(b) holds in Proposition 9 for S = Sj , m = mj , M = Mj , then from any element
for Xj − Sj , one can determine Xj and thus Lj . Note that one can determine
whether (a) or (b) holds in Proposition 9 for S = Sj , m = mj , M = Mj , from
the i0-th element of Lj. Similarly, one can determine whether (a) or (b) holds
in Proposition 9 for S = Sj , m = mj, M = Mj , from the i1-th element of Lj .
Thus, L ∈ SublangExA1 and L ∈ SublangExA2 .

On the other hand, it follows from the construction of Xj and Lj that
Mj cannot SublangBc-identify Lj from a text for Xj . It follows that, L �∈
UniSublangBcA1∪A2 .
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Corollary 11. There exists a class A of samplings such that PUniSublangExA
− UniSublangBcA �= ∅.

The next proposition establishes a sufficient condition for the existence of a
uniform learner on the union of the two sets of samplings when a class is learnable
on each of the two sets of samplings separately, provided that all learners have
access to samplings A (using an oracle).

Proposition 12. Let A1,A2 be two sets. Suppose there exists a computable F
such that F on any text T for A converges to 1, if A ∈ A1 − A2; F on any text
T for A converges to 2, if A ∈ A2 − A1; and F on any text T for A converges
to either 1 or 2, if A ∈ A2 ∩ A1. Then,

PUniSublangExA1 ∩ PUniSublangExA2 ⊆ PUniSublangExA1∪A2 .

Now we turn our attention to the problem of extending learners from large
natural sets of samplings to larger sets of samplings. For example, can a learner
inferring correct grammars on all recursive samplings be extended to a learner on
all recursively enumberable samplings? Or, can a learner on all recursively enu-
merable samplings be extended to a learner on all infinite samplings? So far, we
have been able to establish only negative results. Our first result demonstrates
that there is a class of languages uniformly learnable from all infinite recur-
sively enumerable samplings, but not learnable from all infinite samplings, even
non-uniformly.

We begin with a number of technical propositions.

Proposition 13. Let R = {x0, x1, x2, . . .}, be any infinite recursive set such
that, for all i, xi+1 − xi ≥ i + 2. Then, there exists a recursively enumerable set
S ⊇ R such that Order(R,S) is immune, x0 is the least element of S, and, for
all i, card(S ∩ {x | xi < x < xi+1}) ≤ i + 1.

Proof. Let R = {x0, x1, . . .} be as given in the hypothesis of the proposition.
By implicit use of Kleene’s recursion theorem [Rog67] one can define S = We in
stages as follows. Initially, We contains all of R, and for all k, satk is false and
bk = 0. Intuitively, if satk is true at the beginning of any stage, then

Reqk : Wk intersects with Order(S − R,S)

is satisfied at the beginning of stage s, and this holds as long as we do not
change membership in We for elements ≤ bk. We will also enumerate at most
r + 1 elements x in We such that xr < x < xr+1.

Go to stage 0.

Stage s
1. If there exists a k ≤ s such that satk is currently false and Wk,s enumerates

an element w > {br | r ≤ k} and the w-th element of We (as of now) is
> xk, then pick the least such k and go to step 2. Otherwise, go to stage
s + 1.

2. Let z be the w-th element in We as of now.
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3. If z = xr+1 for some r, then insert a new element (xr + k + 1) in We.
4. Set satk = true and set bk = z.
5. Set satk′ = false, for all k′ > k.
6. Go to stage s + 1.
End stage s

By induction on k, one can show that satk eventually takes a fixed value: once
satk′ get stabilized for k′ < k, then satk can change at most once, from false to
true. Furthermore, if Wk is infinite then satk is eventually always true. Thus,
Reqk eventually holds for all infintie Wk. Also clearly, the algorithm adds at
most r + 1 elements in between xr and xr+1 to We (see the requirement on the
w-th element of We being > xk in step 1). It follows that S = We satisfies the
requirements of the Proposition.

Proposition 14. Let R,S be as in Proposition 13. Fix j ∈ N . Let {z0, z1, . . .},
where z0 < z1 < . . ., be an infinite recursive set such that, for all i and for all
e ≤ i, number of elements in {〈j, e+1, x〉 | 〈j, 0, zi〉 < 〈j, e+1, x〉 < 〈j, 0, zi+1〉} ≥
i + 1.

Then, for Rj = {〈j, 0, zi〉 | i ∈ N}, there exists an e and a set Sj ⊇ Rj such
that

(a) Sj − Rj is an infinite subset of {〈j, r + 1, x〉 | r, x ∈ N}.
(b) for all but finitely many 〈j, r + 1, x〉 ∈ Sj − Rj , r = e,
(c) We = Sj, and
(d) Order(Rj , Sj) = Order(R,S).

Proof. Let Rj = {z0, z1, . . .} be as in the hypothesis of the proposition. Let
R = {x0, x1, . . .} and S be as in Proposition 13. Then, by implicit use of Kleene’s
recursion theorem [Rog67] there exists an e such that We may be defined as
follows.

We contains Rj , 〈j, 0, z0〉 is the minimal element of We and for each i, We

contains exactly card(S ∩ {x | xi < x < xi+1}) elements from the set:
(i) {〈j, e + 1, x〉 | 〈j, 0, zi〉 < 〈j, e + 1, x〉 < 〈j, 0, zi+1〉}, if i > e and
(ii) {〈j, 1, x〉 | 〈j, 0, zi〉 < 〈j, 1, x〉 < 〈j, 0, zi+1〉}, if i ≤ e.
Note that, for each i, the gap between 〈j, 0, zi〉 and 〈j, 0, zi+1〉 is large enough

to allow the above, and thus, We can be so defined. It is easy to verify that
Sj = We satisfies the requirements of the Proposition.

Proposition 15. Suppose X is an infinite recursive set and M is an IIM. Then
for all finite Y ⊆ X, there exists an infinite recursive Z such that Y ⊆ Z ⊆ X,
and for an increasing text T for Z, for infinitely many n, WM(T [n]) ∩X �= Z.

Proof. The proof of {Lf | f ∈ R} not being TxtBc-learnable (see [Gol67]), can
be easily modified to show this proposition.

Now we can prove the desired result.

Theorem 16. UniSublangExREinf − SublangBcINF �= ∅.
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Proof. For each j, let yj
0 < yj

1 < . . . be such that {yj
0, y

j
1, . . .} is recursive, and

for all i and for all e ≤ i, number of elements in {〈j, e + 1, x〉 | 〈j, 0, yi〉 <
〈j, e + 1, x〉 < 〈j, 0, yi+1〉} ≥ i + 1.

Let Rj be Z as obtained by Proposition 15, when Y = ∅, X = Xj = {〈j, 0, yj
r〉 |

r ∈ N} and M = Mj. Let Sj be as obtained in Proposition 14 for this Rj .
Let L = {Sj | j ∈ N}.
Then, Sj witnesses that L is not SublangBcOrder(R,S)-identified by Mj .

Thus, L �∈ SublangBcOrder(R,S) and, therefore, L �∈ SublangBcINF.
On the other hand, L is clearly in UniSublangExREinf, as for any Sj ∈ L,

for any Y such that Order(Y, Sj) is an infinite r.e. set, we have that Y contains
infinitely many elements in Sj − Rj . It follows that Y contains infinitely many
elements of the form 〈j, r + 1, x〉, and all but finitely many such r are equal to
some grammar e for Sj .

The next result shows that the learnability of a class from all simple recur-
sively enumerable samplings does not imply its learnability from all recursively
enumerable samplings.

Theorem 17. Let A1 = {A | A is an infinite simple set }. Let A2 = {2y | y ∈
N}.

Then, UniSublangExA1 − SublangBcA2 �= ∅.

Proof. For each j, let yj
0 < yj

1 < . . . be such that {yj
0, y

j
1, . . .} is recursive, and

for all i and for all e ≤ i, number of elements in {〈j, e + 1, x〉 | 〈j, 0, yj
i 〉 <

〈j, e + 1, x〉 < 〈j, 0, yj
i+1〉} ≥ 1.

Let Rj = Z, as in Proposition 15 for M = Mj, X = Xj = {〈j, 0, yj
r〉 | r ∈ N}

and Y = ∅.
By implicit use of Kleene’s recursion theorem [Rog67], there exists an e such

that We = Sj satisfies (i) Sj−Rj ⊆ {〈j, y+1, x〉 | x, y ∈ N}, (ii) Order(Rj , Sj) =
{2y | y ∈ N}, and (iii) for all but finitely many 〈j, y + 1, x〉 ∈ Sj , y = e.

Let L = {Sj | j ∈ N}. It is easy to verify that L ∈ UniSublangExA1 ,
as any simple set intersects with {2y + 1 | y ∈ N} infinitely often. Also, by
Proposition 15, it follows that Mj does not SublangBcOrder(Rj ,Sj)

-identify

Sj . As Order(Rj , Sj) is {2y | y ∈ N}, we have that L �∈ SublangBcA2 .

Our next result shows that, even learnability of a class from all samplings but
subsets of one sampling does not imply its learnability from all samplings.

Theorem 18. Suppose A is an infinite recursive set different from N . Then,
SublangExP(N)−P(A) − SublangBcA �= ∅.

Proof. Without loss of generality assume 0 ∈ A. (Proof can be easily modified
for any other element in A, by considering appropriate modification of SD and
AZext).

Let p0, p1, p2, . . . be a recursive sequence of increasing prime numbers. Let
A = {x0, x1, . . .}, where x0 < x1 < . . ..
For g ∈ SD, let hg(x) = p

g(0)
0 · p2g(x)

x+1 · Πy<x(p2g(y)+1
y+1 ).
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For g ∈ AZext, let
hg(x) = p

g(0)
0 · p2g(x)

x+1 · Πy<x(p2g(y)+1
y+1 ), if x ∈ A, and

hg(x) = p
g(0)
0 · p2g(x)+1

x+1 · Πy<x(p2g(y)+1
y+1 ), if x �∈ A.

Note that hg is an increasing function in both the above cases (thus the r-th
element of Lhg is 〈r, hg(r)〉). Also, every hg(x) gives away the value of g(0).
Furthermore, the only difference in the two cases (of g ∈ SD or g ∈ AZext) is
how hg(x) is defined for x �∈ A.

Let L = {Lhg | g ∈ SD ∪ AZext}.
It is easy to verify that L ∈ SublangExP(N)−P(A), as from any input element

〈x, hg(x)〉, for x �∈ A, one can determine g(0) and whether g ∈ SD or g ∈ AZext.
Now for g, g′ ∈ SD ∪ AZext,
(i) one can effectively convert an infinite subgraph for hg into a graph for g,
(ii) one can effectively convert a graph for g into a graph for hg restricted to

the domain A,
(iii) if g �= g′, then hg(x) = hg′(x) only for finitely many x.

Thus, L ∈ SublangBcA implies that {Lf | f ∈ SD ∪ AZext} ∈ TxtBc, contra-
dicting Theorem 5. It follows that L �∈ SublangBcA.

A corollary from the above theorem shows that Ex-learners from all positive
data may sometimes be more powerful than any Bc-learner from an A-sampling
defined by any infinite recursive sampling A �= N .

Corollary 19. TxtEx − SublangBcA �= ∅, for all infinite recursive A �= N .

On the other hand, uniform Bc-learners from all infinite samplings can some-
times be more powerful than Ex-learners from all positive data.

Theorem 20. UniSublangBcINF − TxtEx �= ∅.

Proof. Let C = {f | (∀∞x)[ϕf(x) = f ]}. Let L = {Lf | f ∈ C}. Then, it is easy
to verify that L ∈ UniSublangBcINF. On the other hand [CS83] showed that
L �∈ TxtEx ([CS83] actually showed this for function learning, which implies
the result for language learning).

5 Conclusion

This paper can be viewed as the first step in the study of learnability of various
projections of target languages. Firstly, as we mentioned in the Introduction,
several different formalizations of the concept of samplings are possible, and the
notion of projection itself can be formalized in several ways. For example, a
projection of a language may be defined as the set of examples satisfying some
predicate — say, when one considers a language of strings over the alphabet
{a, b, c}, a projection may be its sublanguage consisting of all strings over the
alphabet {a, b}.

Yet, even within the framework of formalization suggested in our paper, many
interesting questions remain open. We obtained some non-union type results,
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however, we have not been able to establish more general non-union results for
large (and natural, say, containing all recursive samplings) sets of samplings, or,
alternatively, find situations when learnability on two different sets of samplings
implies uniform learnability on the union of the given sets. The problem of ex-
panding learnability from all samplings from some natural large class to another
class of samplings embracing it is also far from being fully explored. For exam-
ple, we have not been able to find out if learnability from all recursive infinite
samplings implies learnability on all infinite recursively enumerable samplings.
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Abstract. Finding the universal artificial intelligent agent is the old
dream of AI scientists. Solomonoff Induction was one big step towards
this, giving a universal solution to the general problem of Sequence
Prediction, by defining a universal prior distribution. Hutter defined
AIXI which extends the latter to the Reinforcement Learning frame-
work, where almost all if not all AI problems can be formulated. How-
ever, new difficulties arise, because the agent is now active, whereas it is
only passive in the Sequence Prediction case. This makes proving AIXI’s
optimality difficult. In fact, we prove that the current definition of AIXI
can sometimes be only suboptimal in a certain sense, and we generalize
this result to infinite horizon agents and to any static prior distribution.

Keywords: AIXI, Universal Artificial Intelligence, Solomonoff Induc-
tion, Reinforcement Learning.

1 Introduction

In [2], Hutter developed what could be called the optimally rational agent AIXI.
By merging the very general framework of Reinforcement Learning [12] with the
universal sequence predictor defined by Solomonoff Induction [11], AIXI is sup-
posed to optimally solve any problem, at least when the solution is computable.
Hutter even proved that AIXI is Pareto optimal [3], i.e. that no other agent
can do better in at least one environment and do at least as well in all other
environments. AIXI is parameter-free, apart from the horizon function, which is
a (usually decreasing) weighting function of the future time steps.

One important problem is that, like Solomonoff Induction, the AIXI model
is not computable. But since it is an upper-bound of intelligent agents, this
can be used as a lighthouse for defining computable agents. With this in mind, a
Monte-Carlo version of AIXI was created [13], showing that MC-AIXI could solve
several different problems with the exact same setting. However, the authors had
to augment MC-AIXI with an exploration strategy to obtain better results. They
state:

It is worth noting that, in principle, the AIXI agent does not need to
explore according to any heuristic policy. This is since the value of in-
formation, in terms of expected future reward, is implicitly captured in
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the expectimax operation [...]. Theoretically, ignoring all computational
concerns, it is sufficient just to choose a large horizon and pick the ac-
tion with the highest expected value at each timestep. Unfortunately,
this result does not carry over to our approximate AIXI agent.

The following shows that this is a concern with AIXI in general, and not specif-
ically of the scaled-down version. It is the transposition of the exploration/ex-
ploitation dilemma [12] in the universal setting of computable environments.

Intuitively, suppose that at each time step, the agent AIXI is given a choice
between actions a and b. At first, doing a will give the agent a reward, whereas
b returns a punishment. As time goes on, AIXI infers with higher and higher
probability that this setting will remain as is forever, although it may still try
action b from time to time. But, after some sufficiently long time, the inferred
probability that b is useless is so high that AIXI considers it a waste of time (and
resources) to try it. In one sense (that of Pareto optimality), it is in fact right.
But if after such long time b eventually starts to return an even higher reward
than a, AIXI will never find it out. In such a setting, AIXI could do better at
each time step, but does not: its number of suboptimal choices tends to infinity.

First, some notation is introduced, followed by the definition of how an agent
that has full knowledge about the real distribution of the possible environments
can act optimally. The next section defines agents that do not have knowledge
about that distribution but use the interaction history with the environment to
act in the most rational way, given some prior distribution. Then the special
case of the universal agent AIXI is defined. The following section proves that no
such agent can sufficiently explore to converge to the current optimal policy. We
conclude by some remarks on how to solve this issue.

2 Notation

The notation is similar to that in [5].
X and Y are the vocabulary of the interaction between the agent and the

environment. An action/output yk ∈ Y of the agent at step k is also the input
of the environment. The output xk ∈ X of the environment is also the input of
the agent, and is composed of a reward part rk = r(xk) and of some information
ok = o(xk). One interaction cycle is noted by yxk = ykxk.

A string x1x2 . . . xn is a succession of xt ∈ X , ordered by t. We write xn:m =
xnxn+1 . . . xm, and also x<k = x1:k−1 and similarly for y and yx. The empty
string is denoted by ε.

At each new step k, the agent outputs an action yk depending on history
yx<k, then the environment outputs xk depending on yx<kyk, and then the next
step k + 1 begins. The string yx1:k = y1x1y2x2 . . . ykxk is the interaction string
between the agent and the environment.

The size of a string is denoted |yx1:k| = |x1:k| = k. Note that this is different
from the length l(x) of a string which is defined as the number of bits used to
encode x on the device under consideration, such as a Turing machine.
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3 AIMU

The definition of the agent AIMU can be reduced to the following question: what
is the best action to do at current step k, given the history yx<k of inputs and
outputs, and the knowledge of the true/generating probability distribution μ of
the environment?

In the following, we provide a generalization of AIMU and AIXI to general
horizon functions. This is directly based on [5, p.8-10], where the binary horizon
function mk is replaced by a general function wk,t. See also [3] for an iterative
definition to general horizon functions. We use the functional definition of AIMU,
modifying it slightly to be able to compare the values of the different choices for
finding the next action yk.

First, we recall the functional definition of AIMU.
Let Qk be the set of programs/environments as partial functions q : Y ∗ → X∗,

defined on chronological Turing Machines [5, p.8], that are consistent with the
history yx<k:

Qk = {q : q(y<k) = x<k}.
Also define Pk the set of programs/policies of the agent that are consistent with
the history yx<k:

Pk = {p : ∃yk ∈ Y : p(x<k) = y<kyk}.

In the remainder, the sets Q and P contain all environments and all policies,
respectively.

For a given horizon function wk,t (a temporal weight), the value of a given
policy p in a given environment q at step k is:

V qp
k =

∞∑
t=k

wk,t · rt (1)

with rt = r(xt), where xt is defined by x<txt = q(y1:t), and yt is defined by
y<tyt = p(x<t). Various possibilities for wk,t are discussed in the next section.
In the remainder, without loss of generality, we always consider that rt ∈ [0; 1].

The value of a given policy p on average in all environments is:

V μp
k =

∑
q∈Qk

μ(q) · V qp
k (2)

where μ(q) is the prior probability of environment q, and the normalizing de-
nominator

∑
q∈Qk

μ(q) is omitted as it plays no role in the comparison of the
different policies.

The best policy, that the agent must follow (only) in step k to maximize the
expected reward is:

pμ∗
k = arg max

p∈Pk

V μp
k .

If there are more than one best policy p, we take the first one in lexicographical
order.
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Finally, the action yμ
k chosen by the agent at step k is thus defined by:

pμ∗
k (x<k) = y<ky

μ
k . (3)

Now, in order to define the expected value of each potential yk, we split Pk into
|Y | sets P i

k, which are the sets of programs in Pk that output yi at step k:

∀i, yi ∈ Y : P i
k = {p : p(x<k) = y<ky

i}.

We have then:
Pk =

⋃
i:yi∈Y

P i
k.

For a given action yk = yi, the best policy is:

pμ∗i
k = arg max

p∈P i
k

V μp
k .

The optimal policy is then the best among the best policies for each yi:

pμ∗
k = arg max

pμ∗i
k :yi∈Y

V
μpμ∗i

k

k .

The action yμ
k that the agent chooses can be redefined as:

∀i, yi ∈ Y : yμ
k = yi ⇔ pμ∗

k = pμ∗i
k .

We can now define the value of a given action:

∀i, yi ∈ Y : V μ
k (yi) = V

μpμ∗i
k

k = max
p∈P i

k

V μp
k . (4)

Finally, actions can now be compared to determine the best one:

∀i, yi ∈ Y :
(
∀j, j �= i : V μ

k (yi) > V μ
k (yj)

)
⇒ yμ

k = yi. (5)

3.1 Horizon Functions

In this section we give some simple examples of horizon functions wk,t, which
weight the future time steps and define “how far” the agent can foresee. See [4,5]
for additional discussion.

The horizon function must fulfill some properties:

∀t ≥ k, wk,t ≥ 0,

lim
t→∞

∞∑
t=k

wk,t < ∞. (6)

Equation (6) avoids convergence problems in (1).
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Fixed Lifetime. If the agent has a fixed initial lifetime T ,

wk,t =

{
1 if t ≤ T

0 otherwise
. (7)

Constant Horizon. With a constant horizon, the agent can see m steps ahead:

wk,t =

{
1 if (t − k) < m

0 otherwise
, m > 0. (8)

Variable Horizon. With a variable horizon mk, the agent can see a number
of steps ahead, depending on its own age k:

wk,t =

{
1 if (t− k) < mk

0 otherwise
, mk > 0.

Hyperbolic/Harmonic Discounting. It seems that humans and animals
have a hyperbolic discounting horizon [1]:

wk,t =
1

1 + α · i , i = t− k, α > 0.

However, it is not clear whether the hyperbolic function is built in the reward
system or if it is an epi-phenomenon, due for example to the growing (with time)
uncertainty of the future.

Note that this does not satisfy (6), so we will not consider that case in the
remainder. In order to ensure convergence, we can generalize to over-harmonic
discounting:

wk,t =
1

(1 + α · i)β
, i = t − k, α > 0, β > 1.

Exponential/Geometric Discounting. The exponential/geometric discount-
ing is often used in Reinforcement Learning [12]:

wk,t = γi, i = k − t, γ > 1.

In contrast to harmonic discounting, it has the property to be time independent:
If one is offered $50 today or $100 tomorrow, then for γ = 2 : 20 ∗50 = 2−1 ∗100,
the expected value is the same, and it remains so if the same problem is given
in a distant future, e.g. if one is offered $50 in 100 days or $100 in 101 days:
2−100 ∗ 50 = 2−101 ∗ 100.



350 L. Orseau

4 Universal Agents

Now we turn to agents that have no initial specific knowledge about the true
distribution μ of the environment. They have to gather information, and thus
acquire knowledge, by interacting with the environment. After sufficient inter-
action steps, we would like the agent to act as well as possible.

For a given prior ρ about the a priori distribution of all environments/pro-
grams, we can define an agent AIρ by replacing μ by ρ in equations (2)-(5). The
prior ρ defines the initial or model-free or μ-independent knowledge of the agent
about the prior probabilities of environments. ρ does not need to be a probability
distribution, but can be only a semi-measure that satisfies:∑

q∈Q

ρ(q) < ∞ (9)

so that equation (1) does not diverge, and of course: ∀q, ρ(q) ≥ 0.

Definition 1. For a given agent AIρ with a prior distribution ρ on program-
s/environments, AIρ is said to be a universal agent iff:

∀q ∈ Q : ρ(q) > 0. (10)

A universal agent does not discard any environment possibility a priori.
AIMU is in general not universal as its knowledge allows it to give a null

probability to most environments.
Note that in this paper we consider only agents with a static prior, i.e. ρ(q)

does not change with the history (except if the program is not consistent with
the history). Other, dynamic priors, such as the Speed Prior S [9], have different
properties that are not investigated here.

5 Solomonoff Induction and AIXI

Suppose a predictor is given a sequence of only 0s and 1s. What is the best guess
it could do about the next symbol, knowing only that this sequence is generated
by some computable but unknown program?

Solomonoff Induction [11] addresses this exact problem. The predictor knows
there is an infinity of possible environments that are compatible with the given
sequence. Are all these environments equally probable? Or is there an a priori
order upon them? Following both Occam’s Razor Principle, which roughly states
that the best hypothesis is the simplest one, and the Epicurean Principle, which
recommends to keep all consistent hypotheses, Solmonoff’s answer is to give a
higher probability to simpler environments, and that all consistent environments
should have a positive probability. He defines the notion of simplicity as the
length l(q) in bits of a given program q on a prefix universal Turing machine:
the shortest programs are the simplest ones. For a sequence x, its simplicity
measure is defined by:

M(x) =
∑

q:q produces x∗
2−l(q)
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where x∗ is any string that begins with the the string x.
M is in fact only a semi-measure and satisfies Kraft’s inequality [6] on a prefix

universal Turing machine with a binary alphabet:
∑

q∈Q 2−l(q) ≤ 1.
Solomonoff showed that M converges to the true generator μ when the size

of the sequence grows [10].
Based on this work, Hutter extended M to the Reinforcement Learning frame-

work [2,5,4], where the agent is no longer a passive predictor, but an active agent
which outputs actions that the environment may take into account. He also gen-
eralized the binary alphabet to a vocabulary of (words of) inputs X and outputs
Y . Within this setting, the new semi-measure ξ is essentially equivalent to M .
For a program q that is consistent with some history yx<k:

ξ(q) = 2−l(q).

Taking ρ = ξ in the previous section gives the definition of the agent AIXI.
Since ξ satisfies Kraft’s inequality, it is a semi-measure, and since the definition

of ξ implies (10), AIXI is a universal agent. It can even be thought of as the
universal agent, or the optimally rational agent ; In [5, p.23], the author states:

we expect no other model to converge faster to AIμ by analogy to
S[equence]P[rediction]

Hutter has proved that AIXI is Pareto optimal[3], which could make one confi-
dent that it always ends up in finding the optimal policy for a given history, but
we shall see that this is not true.

The Good Enough and Not Good Enough Effects:

Theorem 1. For any history yx<k, there exist programs that are consistent with
the history, and that predict a constant reward R, 0 ≤ R ≤ 1:

∀yx<k, ∀R, 0 ≤ R ≤ 1, ∃q ∈ Qk, ∀n ≥ k : r(xn) = R with q(y1:n) = x1:n.

Proof. By construction.

This means that even if the most probable environments predict a null reward
for all actions, other lower probability programs will predict high rewards. As
the agent is optimistic about other possible environments, it will explore those
possibilities. We call this the not good enough effect.

There is an opposite good enough effect that can make the agent lazy when the
most probable environments predict a constant high reward for a given action.
The other environments will not have a sufficiently high cumulative weight to
make the agent try other actions. The latter may then get stuck in some local
“good enough” maximum.

We are now going to develop the good enough effect in details.
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6 Asymptotic Non-learnability

Hutter mentions the simple Heaven&Hell environment [5, p.26], where the agent
cannot converge to AIMU. At the first time step, the agent must choose between
left and right, one direction leading to Heaven and the other to Hell. Then, for
all the following time steps, the agent has no other choice than staying where
it is, and receiving a constant reward (+1) in Heaven or a constant punishment
(0) in Hell. An uninformed agent cannot know in what direction Heaven is,
whereas AIMU does know. The difference of total rewards gathered by AIXI (or
any universal AIρ) and AIMU can then tend to infinity. This is, in fact, not a
problem concerning AIXI directly, since no agent that has no initial μ-specific
information can do better.

As stated by Hutter, we should then consider other, more plausible criteria:
the performance of the agent should then be compared with that of AIMU, but
the history of AIMU should be the same as that of the agent, in order to compare
the mistakes (suboptimal choices) of the agent, and not their consequences. He
refers to this as asymptotic learnability and states [5, p.28]:

We claim that AIξ (for mk → ∞) can asymptotically learn every problem
μ of relevance, i.e. AIξ is asymptotically optimal.

The main claim of this paper is that, contrary to Hutter’s expectations, AIXI
cannot asymptotically learn every problem μ of relevance.

Intuitively, AIXI, in its current definition, as other universal agents AIρ choos-
ing their actions with (3), is too greedy, and is in fact optimally greedy: explo-
ration can sometimes lead to an expected average loss of rewards. It prevents the
agent from sufficiently exploring the environment to find better rewards, even in
some simple environments.

Note that since AIXI is Pareto optimal, this means that improving the con-
vergence to AIMU will not improve the average performance of the agent.

There exists at least one class of environments where AIρ, and more specif-
ically AIXI, given some particular history, does not explore sufficiently to find
the optimal policy: ρ does not always converge toward the true distribution μ,
and can get stuck in local maxima.

We use Hutter’s asymptotic learnability and extend it to general horizon
functions. Let:

Dμρ
k =

(V μ∗
k − V

μpρ
k

k )∑∞
t=k wk,t

be the μ-expected policy value difference between AIMU and AIρ at step k,
where V μ∗

k is the expected value by the optimal policy in μ, and V
μpρ

k

k is the
expected value computed by AIMU with the best current policy of AIρ. There is
no need to consider the case of a null denominator, since in such case the agent
has no longer any rational choice to make, since no future step has the least
importance.
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Definition 2. An agent AIρ is said to asymptotically learn a problem μ iff:

∀yx<i, lim
k→∞

Dμρ
k = 0 (11)

when history yxi:k is generated by AIρ.

This simply means that the optimal policy of AIρ converges to the optimal policy
of AIMU when they have the same growing history.

Theorem 2. For any universal agent AIρ, there exists at least one computable
environment μ where AIρ, given some initial history yx<i, does not asymptoti-
cally learn μ.

In the following subsections, we give constructive proofs, first for the case where
the agent has a constant horizon, and then for more general horizon functions.

6.1 Proof for Bounded Horizons

We set X = [0; 1], r(xt) = xt, Y = {a0, a1}, and we take wk,t as in (8). The
agent has a constant horizon m, such that it can foresee the future up to step
k + m − 1.

Define environment/program q1 as follows:

q1 : xk = rk =

{
R if yk = a1

0 if yk = a0

with 0 < R < 1.

Definition 3. A program qa is said to be H-equivalent to a program qb for a
history H = yx<k iff:

∀n ≥ k,
(
� ∃yk:n : qa(y1:n) �= qb(y1:n)

)
∧ qa(y<k) = qb(y<k) = x<k.

This means that no future sequence can distinguish qa from qb. Note that there
might have been a different (past) history that would have distinguished them.

Then run pseudo-algorithm 1.1, taking c1 = R
m (note that the horizon m =

0 does not make sense), to find a history H , the set Q1 of high probability
environments that are H-equivalent to q1, and the set Q1 of low probability
environments.

At the end of this (uncomputable) pseudo-algorithm, we have a history H
that “discards” all the most probable programs that are not H-equivalent to q1,
so that the total weight of the remaining ones1 in Q1 is lower than a fraction of
the ones in Q1. We do not need this algorithm to be computable, since we only
need to show that the history H (which is finite) exists.

1 Q1 may also contain some low probability programs H-equivalent to q1 or not even
consistent with H , but this has no influence on the remainder.
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Listing 1.1. Generate history H that discards the most probable programs that are
not H-equivalent to q1

Inputs : a measure or semi−measure ρ , a constant c1 : 0 < c1 ≤ 1
Outputs : a h i s t o r y H , a s e t Q1 o f programs H−equ iva l en t to q1 ,

a s e t Q1 o f low p robab i l i t y programs .
// S ta r t wi th empty h i s t o r y
H := ε
// I n i t i a l i z e Q1 wi th the empty s e t :
Q1 := φ
// I n i t i a l i z e Q1 to the s e t o f a l l programs :
Q1 := Q
// Enumerate a l l programs in decreas ing p r o b a b i l i t y ,
// and d i scard the ones t ha t are not H−e q u i v a l e n t to q1 :
Repeat

// Take the next most probab l e program
// ( or the f i r s t one in l e x i c o g r a p h i c a l order ) in Q1 :
qa := arg maxq∈Q1

ρ(q)
// Remove qa from Q1 :
Q1 := Q1 \ {qa}
// Look f o r a sequence o f act ions , a f t e r h i s t o r y H = yx<i

// where at l e a s t one output o f qa

// d i f f e r s from one output o f q1 :
Let yi:j be such that qa(y1:j) 
= q1(y1:j), i = |H |+ 1, j ≥ i
I f yi:j e x i s t s Then

// Ei ther qa produces another output than
// the output o f q1 ,
// or qa h a l t s prematurely ,
// or qa does not h a l t and cannot produce some output yt .
// Then qa i s not H−e q u i v a l e n t to q1 .
// Discard i t , by ex tend ing the h i s t o r y app rop r i a t e l y :
H := Hyi:j

Else
// qa i s H−e q u i v a l e n t to q1 , add i t to Q1 :
Q1 := Q1 ∪ {qa}

EndIf
Until

∑
q∈Q1

ρ(q) < c1

∑
q∈Q1

ρ(q)

The stopping condition of the loop is always satisfied at some point, since Q1
and thus

∑
q∈Q1

ρ(q) always grow, Q1 always decreases in size, and
∑

q∈Q1
ρ(q)

tends to 0 because we always remove the program with the highest ρ-value.
Define environment q2 as follows:

q2 : xk = rk =

⎧⎪⎨⎪⎩
R if yk = a1

0 if yk = a0 and k ≤ |H |
1 if yk = a0 and k > |H |

.
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By construction, q2 is consistent with q1 for the first |H | steps and has not been
discarded by the history H . So we have q2 ∈ Q1.

Now, run the agent in the true environment μ ≡ q2 with history yx<k = H .
Following equation (4), we can compute bounds for the expected values for the
two actions for step k.

If the agent chooses action a1 given history yx<k = H then it can guarantee
a minimal payoff by choosing action a1 for all the following time steps and thus
receive at least m · R rewards in each environment H-equivalent to q1:

V ρ
k (a1) ≥

∑
q∈Q1

ρ(q) · m ·R. (12)

Choosing action a0 may at most give a constant reward of 1 for all programs
not H-equivalent to q1, and for the H-equivalent ones, no reward for the first
step (a0) and then a constant reward of R if the agent always chooses action a1
afterwards. Still following equation (4) but splitting Q into the sets2 Q1 and Q1,
the value of action a0 is thus bounded by:

V ρ
k (a0) ≤

∑
q∈Q1

ρ(q) · m · 1 +
∑

q∈Q1

ρ(q) · (m− 1) ·R. (13)

Then we have:

V ρ
k (a1) > V ρ

k (a0) ⇐=
∑

q∈Q1

ρ(q) <
R

m

∑
q∈Q1

ρ(q) (14)

which r.h.s. is true since H has been generated by the listing 1.1, if we take
c1 = R

m . Therefore, from (5), the agent chooses yρ
k = a1.

We must show now that this remains true for all the following steps.
The agent then receives xk = rk = R, which is still consistent with q1, so no

program H−equivalent to q1 is discarded:∑
q∈Q1

ρ(q) =
∑

q : q ∈ Q1,
q(y<ka1) = x<kR

ρ(q)

but it is possible that some program that is not H−equivalent to q1 is removed:∑
q∈Q1

ρ(q) ≥
∑

q : q ∈ Q1,
q(y<ka1) = x<kR

ρ(q).

This means that at step k + 1, V ρ
k+1(a1) = V ρ

k (a1) and V ρ
k+1(a0) ≤ V ρ

k (a0)
and thus equations (12), (13) and (14) are still satisfied with the new history

2 Note that Q1 ∪ Q1 possesses at least all the programs compatible with history H ,
so no q is missing.
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H := Ha1R. Therefore, by recurrence, from now on the agent will always choose
a1 and will never try action a0.

The optimal policy of AIρ is to always choose a1 whereas for AIMU it is to
always choose a0. From equation (11), the expected difference of values computed
by AIMU at any further step k is Dμρ

k = (1 − R).
Therefore, AIρ does not asymptotically learn the computable problem q2. ��

6.2 Proof Extension for General Horizons

The previous proof only holds for agents that have a constant horizon. But what
if m is not bounded, but rather depends on k? What if the horizon function
follows a geometric progression?

The problem with the previous proof is that if m is not bounded anymore
but is replaced by some mk and depends on the current time step, then the
recurrence step does not hold: at k + 1, if mk grows, then R/mk decreases, thus
the value of the r.h.s. of the stopping condition in listing 1.1 decreases, and the
r.h.s of equation (14) may not be satisfied anymore.

In order to solve this problem, we need to modify q1 as follows: If the agent
once chooses a0, then a1 will not return a reward for the next Nk time steps,
where Nk must be defined according to wk,t as will be made clear later. Let B
be the set of “banned” steps where a1 returns 0:

∀k, yk = a0 ⇒ ∀i, k < i ≤ k + Nk, i ∈ B.

We redefine q1 as follows:

q1 : xk = rk =

⎧⎪⎨⎪⎩
R if yk = a1 and k �∈ B

0 if yk = a1 and k ∈ B

0 if yk = a0

.

We also need to modify q2 to make it consistent with H and the new definition
of q1:

q2 : xk = rk =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
R if yk = a1 and k �∈ B

0 if yk = a1 and k ∈ B

0 if yk = a0 and k ≤ |H |
1 if yk = a0 and k > |H |

.

We now need to find the new value of c1 for the listing 1.1, so that V ρ
k (a1) >

V ρ
k (a0). This is the aim of what follows.
After running the pseudo-algorithm 1.1, we need to increase the history with

Nk steps of a1 (with k = |H | + 1), to make sure the agent is not in a banned
step after H , so that it can then choose a1 and receive a reward:

H := H a1 . . . a1︸ ︷︷ ︸
Nk times

.



Optimality Issues of Universal Greedy Agents with Static Priors 357

In this new setting, the values of the actions at the new step k, for yx<k = H ,
are:

V ρ
k (a1) ≥

∑
q∈Q1

ρ(q)
∞∑

t=k

wk,t ·R. (15)

V ρ
k (a0) ≤

∑
q∈Q1

ρ(q)
∞∑

t=k

wk,t · 1 +
∑

q∈Q1

ρ(q)
∞∑

t=k+Nk+1

wk,t ·R. (16)

Then for the agent to choose a1:

V ρ
k (a1) > V ρ

k (a0)
⇐=∑

q∈Q1

ρ(q) <
∑k+Nk

t=k wk,t∑∞
t=k wk,t

R
∑

q∈Q1

ρ(q)

. (17)

Then, Nk must satisfy the following equation in function of wk,t, in order to
have a positive c1 for listing 1.1:

∃Nk, ∀k, 0 < c1 ≤
∑k+Nk

t=k wk,t∑∞
t=k wk,t

R.

By (6) such Nk always exists, unless
∑∞

n=k wk,t = 0, but that case does not need
to be considered, as no rational choice of action will never need to be made, and
the agent may well be considered “dead”.

Now, by recurrence, as in the previous proof, the agent then always chooses
action a1 which is suboptimal compared to a0: D

μρ
k = (1 − R).

Therefore AIρ does not asymptotically learn q2.
��

Examples of Nk for some horizon functions. For a constant horizon or
an exponential or over-harmonic discounting horizon that depends only on the
index i = (t− k) and not directly on k or t alone, even if the horizon is infinite,
we can trivially take Nk = 0.

For a variable horizon mk we can take for example Nk = mk so that the agent
cannot receive any reward up to its horizon if it chooses a0 at some step.

For a fixed lifetime T , we can simply take Nk = T − k.

7 Conclusion and Outlook

We have shown that no greedy universal agent with a prior that is independent
of the history, and AIXI in particular, can always asymptotically converge to
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AIMU, even when comparing the number of mistakes (suboptimal choices) made
by the agent.

These proofs raise some questions. Is environment q2 a plausible problem?
The definition of q2 is quite simple, and one can easily imagine an environment
where some previously bad option suddenly turns, after a long time, into a better
option that what the agent already has. Without further information from the
environment, it is plausible that a human being or a animal will be very reluctant
to try once in a while some option that generally returns the worst possible
instantaneous reward 0, which is then a punishment. But that should not mean
that it should never try again.

Another question is whether the initial history H given to the agent is plau-
sible, i.e. whether the agent would generate such history itself. It is not easy
to answer this question, but like listing 1.1 that discards the most probable en-
vironments, it is plausible to think that the agent will try by itself to quickly
discard such environments in order to rapidly gain information about μ.

Is it possible to modify AIρ to make it a universal asymptotic learner? One
possible way is to use exploration strategies like ε-greedy or Softmax [12], as
proposed in [5, p.33] and as used in [13].

However, such setting always needs an additional parameter that must be
tuned to the problem at hand, which is exactly what the AIXI framework is
supposed to avoid. There is currently no known optimal stochastic exploration
strategy for all computable problems, however there is hope that some variant
of AIXI could expect to converge faster to AIMU than any other learner. We
are currently working along these lines.

One of the most important questions is whether there exists a determinis-
tic (non-stochastic) strategy that achieves the desired behavior, as Solomonoff
Induction is for Sequence Prediction, and as AIXI was hoped to be for Rein-
forcement Learning.

Dynamic priors, that assign different probabilities to a given environment
in function of the interaction history, might also be a solution to avoid local
maxima while keeping a deterministic greedy agent, thus hopefully avoiding the
introduction of a new parameter.

Acknowledgments. Many thanks to Marcus Hutter, Antoine Cornuéjols and
the ALT reviewers for useful comments on previous versions of this paper.
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Abstract. We are studying long term sequence prediction (forecast-
ing). We approach this by investigating criteria for choosing a compact
useful state representation. The state is supposed to summarize useful
information from the history. We want a method that is asymptotically
consistent in the sense it will provably eventually only choose between
alternatives that satisfy an optimality property related to the used crite-
rion. We extend our work to the case where there is side information that
one can take advantage of and, furthermore, we briefly discuss the active
setting where an agent takes actions to achieve desirable outcomes.

1 Introduction

When studying long term sequence prediction one is interested in answering
questions like: What will the next k observations be? How often will a certain
event or a sequence of events occur? What is the average rate of a variable
like cost or income? This can be interesting for forecasting time series and for
choosing policies with desirable outcomes.

Hidden Markov Models [CMR05, EM02] are often used for long term fore-
casting and sequence prediction. In this article we will restrict our study to
models based on states that result from a deterministic function of the his-
tory, in other words, states that summarize useful information that has been
observed so far. We will consider finite state space maps with the property
that given the current state and the next observation we can determine the
next state. These maps are sometimes called Probabilistic-Deterministic Finite
Automata (PDFA) [VTdlH+5a] and they have recently been applied in rein-
forcement learning [Mah10]. A particular example of this is to use suffix trees
[Ris83, Sin96, McC96].

Our goal is to prove consistency for our penalized Maximum Likelihood cri-
teria for picking a map from histories to states in the sense that we want to
eventually only choose between alternatives that are optimal for prediction. The
sense of optimality could relate to predicting the next symbol, the next k symbols
or to have minimal entropy rate for an infinite horizon.

After the preliminary Section 2 we begin our theory development in Section 3.
In our problem setting we have a finite set Y, a sequence yn of elements from
Y, and we are interested in predicting the future of the sequence yn. To do
this, being inspired by [Hut09] where general criteria for choosing a feature map

M. Hutter et al. (Eds.): ALT 2010, LNAI 6331, pp. 360–374, 2010.
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for reinforcement learning were discussed, we first want to learn a feature map
Φ(y1:n) = sn where y1:t := y1, ...., yt.

We would like the map to have the following properties:

1. The distribution for the sequence sn induced by the distribution for the
sequence yn should be that of a Markov chain or should be a distribution
which is indistinguishable from a Markov chain for the purpose of predicting
the sequence yn.

2. We want as few states as possible so that we can learn a model from a modest
amount of data.

3. We want the model of the sequence yn that arises as a function of the Markov
chain sn to be as good as possible. Ideally it should be the true distribution.

Our approach consists of defining criteria that can be applied to any class of
Φ, but later we restrict our study to a class of maps that are defined by finite-
state machines. These maps are defined by introducing a deterministic function
ψ such that sn = ψ(sn−1, yn). If we have chosen such a map ψ and a first state
s0 then the sequence yn determines a unique sequence sn and therefore we have
also defined a map Φ(y1:n) = sn.

In Section 2 we provide some preliminaries on random sequences and Hid-
den Markov Models. We introduce a class of ergodic sequences which is the
class of sequences that we work with in this article. They are sequences with
the property that an individual sequence determines a distribution over infinite
sequences. We present our consistency theory by first presenting very generic
results in the beginning of Section 3 and then we show how various classes of
maps and models fit into this. This has the consequence that we first have results
where we guarantee optimality given that the individual sequence that we work
with has certain properties (and these results, therefore, have no “almost sure”
in the statement since the setting is not probabilistic) while in the latter part
we show that if we sample the sequence in certain ways we will almost surely
get a sequence with these properties. In particular in Section 4 we will take a
closer look at suffix tree sources and maps based on finite state machines related
to probabilistic deterministic finite automata. Section 5 summarizes the findings
in a main theorem that says under some assumptions (a class of maps based
on finite state machines of bounded memory and ergodicity) we will recover the
true model (or the closest we can get to the true model). Section 6 contains a
discussion of sequence prediction with side information, Section 7 briefly dis-
cusses the active case where an agent acts in an environment and earns rewards,
and finally Section 8 contains our conclusions.

2 Preliminaries

In this section we will review some notions and results that the rest of the article
will rely upon. We start with random sequences and then follows a section on
Hidden Markov Models (HMM).
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Random Sequences. Consider the set of all infinite sequences yt, t = 1, 2, ...
of elements from a finite alphabet Y. We equip the set with the σ-algebra that
is generated by the cylinder sets Γy1:n = {x1:∞| xt = yt, t = 1, ..., n}. A measure
with respect to this space is determined by its values on the cylinder sets. Not
every set of values is valid. We need to assume that the measure of Γy1:t is the
sum of the measures of the sets Γy1:tỹ for all possible ỹ ∈ Y. If we want it to
be a probability measure we furthermore need to assume that the measure of
the whole space Y∞ (which is the cylinder set Γε of the empty string ε) equals
to one. The concept that is introduced in the following two definitions is of
central importance to this article. In particular ergodic sequences is the class
of sequences that we intend to model. They are sequences that can be used to
define a distribution over infinite sequences that we will be interested in learning.

Definition 1 (Distribution defined from one sequence). A sequence y1:∞
defines a probability distribution on infinite sequences if the (relative) frequency
of every finite substring of y1:∞ converges asymptotically. The probabilities of
the cylinder sets are defined to equal those limits:

Γz1:m := limn→∞ #{t ≤ n : yt+1:t+m = z1:m}/n

Definition 2 (ergodic sequence). We say that a sequence is ergodic if the
frequencies of every finite substring are converging asymptotically.

As probabilistic models for random sequences we will in this article focus on
Hidden Markov Models (HMMs) [BP66, Pet69]. More recent surveys on Hidden
Markov Models are [EM02, CMR05].

Hidden Markov Models. Here we define distributions over sequences of el-
ements from a finite set Y of size Y based on an unobserved Markov chain of
elements from a finite state set S of size S.

Definition 3 (Hidden Markov Model, HMM). Assume that we have a
Markov chain with an S×S transition matrix T = (Ts,s′) and that we also have
an S × Y emission matrix E = (Es,y) where Es,y is the probability that state
s will generate outcome y ∈ Y. If we introduce a starting probability vector we
have defined a probability distribution over sequences of elements from Y. This
is called a Hidden Markov Model (HMM).

Sequence Prediction. One use of Hidden Markov Models (and functions of
Markov chains) is sequence prediction. Given a history y1, ..., yn we want to pre-
dict the future yn+1, .... In some situations we know what state we are in at time
n and that state then summarizes the entire history without losing any useful
information since the future is conditionally independent of the past, given the
current state. If we are doing one step prediction we are interested in know-
ing Pr(yn+1|sn). We can also consider a zero step lookahead (called filtering)
Pr(yn|sn) or an m step Pr(yn+1, ..., yn+m|sn). The m step could also be just
Pr(yn+m|sn). In a sense we can consider an infinite lookahead ability evaluated
by the entropy rate − limm→∞ 1

m logPr(yn+1, ..., yn+m|sn). If the Markov chain
is ergodic this limit does not depend on the state sn.
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Limit Theorems. The following theory that is the foundation for studying
consistency of HMMs was developed in [BP66] and [Pet69]. See [CMR05] chapter
12 for the modern state of the art.

Definition 4 (ergodic Markov chain). A Markov chain (and the stochastic
matrix that contains its transition probabilities) is called ergodic if it is possible
to move from state s to state s′ in a finite number of steps for all s and s′.

The following theorem [CMR05] introduces the generalized cross-entropy H and
shows that it is well defined and that it can be estimated for ergodic HMMs. It
can be interpreted as the (idealized) expected number of bits needed for coding
a symbol generated by a distribution defined by θ0 but using the distribution
defined by θ.

Theorem 5 (ergodic HMMs). If θ and θ0 are HMM parameters where the
transition matrix for θ0 is an ergodic stochastic matrix, then there exists a finite
number H(θ0, θ) (which can also be defined as limn→∞ Hn,s(θ0, θ) for any initial
state s where Hn,s(θ0, θ) := 1

nIEθ0 logPr(y1, ..., yn|s0 = s, θ)) such that Pθ0 a.s.

− lim
n→∞

1
n

logPr(y1, ..., yn| θ) = H(θ0, θ)

and the convergence is uniform in the parameter space.

Definition 6 (Equivalent HMMs). For an HMM θ0, let M [θ0] be the set of
all θ such that the HMM with parameters θ define the same distribution over
outcomes as the HMM with parameters θ0.

Theorem 7 (Minimal cross-entropy for the truth and only the truth).
H(θ0, θ) ≥ H(θ0, θ0) with equality if and only if θ ∈ M [θ0].

3 Maps from Histories to States

Given a sequence of elements yn from a finite alphabet we want to define a
map Φ : Y∗ → S, which maps histories (finite strings) of elements to states
Φ(y1:n) = sn. The reasons for this include, as was explained in the introduction,
in particular the ability to learn a model efficiently. Suppose that every Φ under
consideration is such that the size of its state space S is a finite number that
depends on Φ.

We are also interested in the case when we have side information xn ∈ X and
we define a map Φ : (X × Y)∗ → S. In this more general case the models that
we consider for the sequence y will have hidden states while in the case without
side information the state (given the y sequence) is not hidden. We have two
reasons for expressing everything in an HMM framework. We can model long-
range dependence in the yn sequence through having states and we include the
more general case where there is side information.
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Definition 8 (Feature sequence/process). A map Φ from finite strings of
elements from Y (or X × Y) to elements in a finite set S and a sequence y1:n
induces a state sequence s1:n. Define an HMM through maximum likelihood es-
timation: The sequence st = Φ(y1:t) gives transition matrix T (n) = (Ts,s′) of
probabilities

Ts,s′(n) :=
#{t ≤ n|st = s, st+1 = s′}

#{t ≤ n|st = s}

and emission matrix E(n) of probabilities

Es,y(n) :=
#{t ≤ n|st = s, yt = y}

#{t ≤ n|st = s} .

Denote those HMMs by θ̂n := (T (n), E(n)). We will refer to the sequence θ̂n as
the parameters corresponding to Φ or generated by Φ.

We will first state results based on some generic properties that we have defined
with just the goal of making the proofs work. Then we will show that some more
easily understandable cases will satisfy these properties. We structure it this way
not only for generality but also to make the proof techniques clearer.

Ergodic Sequences. We begin by defining the fundamental ergodicity prop-
erties that we will rely upon. We provide asymptotic results for individual se-
quences that satisfy these properties. In the next two subsections we identify
situations where we will almost surely get such a sequence which satisfies these
ergodicity properties.

Definition 9 (ergodic w.r.t. Φ). As stated in Definition 2, we say that a se-
quence yt is ergodic if all substring frequencies converge as n → ∞. Furthermore
we say that
1. the sequence yt is ergodic with respect to a map Φ(y1:t) = st if all state tran-
sition frequencies Ts,s′(n) and emission frequencies Es,y(n) converge as n → ∞.
2. the sequence yt is ergodic with respect to a class of maps if it is ergodic with
respect to every map in the class.

Definition 10 (HMM-ergodic). We say that a sequence yt is HMM-ergodic
for a set of HMMs Θ if there is an HMM with parameters θ0 such that

− 1
n

logPr(y1, ..., yn | θ) → H(θ0, θ)

uniformly on compact subsets of Θ.

Definition 11 (Log-likelihood). Ln(Φ) = − logPr(y1, ..., yn|θ̂n)

We will prove our consistency results by first proving consistency using Maximum
Likelihood (ML) for a finite class of maps and then we prove that we can add a
sublinearly growing model complexity penalty and still have consistency.
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Proposition 12 (HMM consistency of ML for finite class). Suppose that
yt is HMM-ergodic for the parameter set Θ with optimal parameters (in the
sense of Definition 10) θ0, yt is ergodic for the finite class of maps {Φi}K

i=1 and
suppose that θi ∈ Θ are the limiting parameters generated by Φi. Then it follows
that there is N < ∞ such that for all n ≥ N the map Φi selected by minimizing
Ln generates parameters θ̂n

i whose limit is in argminθi H(θ0, θi).

Proof. It follows from Definition 10 and continuity (in θ) of the log-likelihood
that

lim
n→∞

1
n
Ln(Φi) = H(θ0, θi)

since the convergence in Definition 10 is uniform. Note that the parameters that
define the log-likelihood Ln(Φi) can be different for every n so the uniformity of
the convergence is needed to draw the conclusion above. By Definition 9 we know
that if θ̂i

n are the parameters generated by Φi at time n, then limn→∞ θ̂i
n = θi

exists for all i. It follows that if θi /∈ argminθj H(θ0, θj) then there must be an
N < ∞ such that Φi is not selected at times n ≥ N . Since there are only finitely
many maps in the class there will be a finite such N that works for all relevant i.

Definition 13 (HMM Cost function). If the HMM with parameters θ̂n that
has been estimated from Φ at time n has S states, then let

Costn(Φ) = − logPr(y1, ..., yn|θ̂n) + pen(n, S)

where pen(n, S) is a positive function that is increasing in both n and S and is
such that pen(n, S)/n → 0 for n → ∞ for all S.

We call the negative log-probability term the data coding cost and the other term
is the model complexity penalty. They are both motivated by coding (coding the
data and the model). For instance in MDL/MML/BIC, pen(n, S) = d

2 logn +
O(1), where d is the dimensionality of the model θ.

Proposition 14. Suppose that Φ0 has optimal limiting parameters θ0 with as
few states as possible. In other words if an HMM has fewer states than the
HMM defined by θ0, then it has a strictly larger entropy rate. We use a (finite,
countable, or uncountable) class of maps that includes only Φ0 and maps that
have strictly fewer states. We assume that all the maps generate converging
parameters. Then there is an N such that the function Cost is minimized by Φ0
at all times n ≥ N .

Proof. Suppose that θ0 has S0 states. We will use a bound for how close one
can get to the true HMM using fewer states. We would like to have a constant
ε > 0 such that H(θ0, θ) > H(θ0, θ0) + ε for all θ with fewer then S0 states.
The existence of such an ε follows from continuity of H (which is actually also
differentiable [BP66]), the fact that the HMMs with fewer than S0 states can be
compactly (in the parameter space) embedded into the space of HMMs with ex-
actly S0 states, and that this embedded subspace has a strictly positive minimum
Euclidean distance from θ0 in this parameter space.
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The existence of ε > 0 with this property implies the existence of D > 0
such that the alternatives with fewer than S0 states have, for large n, at least
Dn worse log probabilities than the distribution θ0. Therefore the penalty term
(for which pen(n, S)/n → 0) will not be able to indefinitely compensate for the
inferior modeling.

Theorem 15 (HMM consistency of Cost for finite class). Proposition 12
is also true for Cost.

Proof. H(θ0, θk) < H(θ0, θj) implies that there is a constant C > 0 such that
for large n, Ln(Φj) −Ln(Φk) ≥ Cn. Since pen(n, S)/n → 0 for n → ∞ we know
that any difference in model penalty will be overtaken by the linearly growing
difference in data code length.

Maps that induce HMMs. In this section we will assume that we use a class

of maps whose states we know form a Markov chain.

Definition 16 (Feature Markov Process, ΦMP). Suppose that

Pr(yn|Φ0(y1), ..., Φ0(y1:n)) = Pr(yn|Φ0(y1:n))

and that the state sequence is Markov, i.e.

Pr(Φ0(y1:n)|Φ0(y1), ..., Φ0(y1:n−1)) = Pr(Φ0(y1:n)|Φ0(y1:n−1)).

Then we say that Φ0 induces an HMM. We call HMMs induced by Φ0, Feature
Markov Process (ΦMP). If the HMM that is defined this way by Φ0 is the true
distribution for the sequence y1, y2, ..., then we say that “Φ0 is correct”.

We will only discuss the situation when the true HMM is ergodic so we will
only say that there is a correct Φ0 in those situations, hence the statement Φ0 is
correct will contain the assumption that the truth is ergodic.

Example 17. The map Φ which sends everything to the same state always in-
duces an HMM but, unless the sequence y1, y2, ... is i.i.d, it is not correct. ♦

Proposition 18 (Convergence of estimated distributions). If Φ0 is cor-
rect then Pθ̂n

→ Pθ0 for n → ∞ (as distributions on finite strings of a (any)
fixed length), where Pθ0 is the true HMM distribution for the outcomes, Pθ is
the HMM distribution defined by θ and θ̂n are the parameters generated by Φ0.

Proof. We are estimating the parameters θ̂n through maximum likelihood for
the generated sequence of states. Consistency of maximum likelihood estimation
for Markov chains implies that θ̂n → θ0. This implies the proposition due to con-
tinuity with respect to the parameters of the likelihood (for any finite sequence
length).
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Proposition 19 (Inducing HMM implies drawing ergodic sequences).
If we have a set of maps that induce HMMs and the sequence yt is drawn from
one of the induced ergodic HMMs, then almost surely
1. yt is HMM-ergodic
2. we will draw an ergodic sequence yt with respect to the considered class of
maps.

Proof. 1. is a consequence of Theorem 5.
2. This follows from consistency of maximum likelihood for Markov chains (gen-
eralized law of large numbers) since the claim is that state transition frequencies
and emission frequencies converge.

4 Maps Based on Finite State Machines (FSMs)

We will in this section consider maps of a special form that are related to PDFAs.
We will assume that Φ is such that there is a ψ such that

Φ(y1:n) = ψ(Φ(y1:n−1), yn).

In other words, the current state is derived deterministically from the previous
state and the current perception. Given an initial state the state sequence is then
deterministically determined by the perceptions and therefore the combination
of ψ with an initial state defines a map Φ from histories to states. This class
of maps Φ can also define a class of probabilistic models of the sequence yn by
assuming that yn only depends on sn−1 = Φ(y1:n−1). This leads to the formula

Pr(s′|s) =
∑

y:ψ(s,y)=s′
Pr(y|s)

and as a result we have defined an HMM for the sequence yn.

Definition 20 (Sampling from FSM). If we follow the procedure above we
say that we have sampled the sequence yt from the FSM. If the Markov chain of
states is ergodic we say that we have sampled yt ergodically from the FSM.

Suffix Trees. We consider a class of maps based on FSMs that can be expressed
using Suffix Trees [Ris86] with the same states (suffixes) as the FSM. The re-
sulting models are sometimes called FSMX sources. A suffix tree is defined by
a suffix set which is a set of finite strings. The set must have the property that
none of the strings is an ending substring (a suffix) of another string in the set
and such that any sufficiently long string ends with a substring in the suffix set.
Given any sufficiently long string we then know that it ends with exactly one
of the suffixes from the suffix set. If the suffix set furthermore has the property
that given the previous suffix and the new symbol there is exactly one element
(state) from the suffix set that can (and is) the end of the new longer string,
then it is an FSMX source. Another terminology says that the suffix set is FSM
closed. The property implies (directly by definition) that there is a map ψ such
that ψ(st−1, yt) = st.
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The following proposition shows a very nice connection between ergodic se-
quences and FSMX sources which will be generalized in Proposition 25 to more
general sources based on bounded-memory FSMs.

Proposition 21 (ergodicity of suffix trees). If we have a set of maps based
on FSMs that can be expressed by suffix trees, and the sequence yt is sampled
ergodically (Definition 20) using one of the maps, then almost surely we get a
sequence yt that is ergodic with respect to the considered class of maps and yt is
HMM-ergodic.

Lemma 22. If the sequence yt is ergodic, then the state transition frequencies
and emission (of y) frequencies for a FSM closed suffix tree are converging.

Proof. Let the map Φ be defined by the suffix set in question. Suppose that s′ is
a suffix that can follow directly after s. This means that there is a symbol y such
that if you concatenate it to the end of the string s, then this new string s̃ ends
with the string s′. This means that whenever a string of symbols y1:n ends with
s̃, then the sequence of states generated by applying the map Φ to the sequence
y1:n will end with sn−1 = s and sn = s′. It is also true that whenever the state
sequence ends with ss′ then y1:n ends with s̃. Therefore, the counts (of ss′ in
the state sequence and s̃ in the y sequence) up until any finite time point are
also equal. We will in this proof say that s̃ is the string that corresponds to ss′.
Given any ordered pair of states (s, s′) where s′ can follow s, let cs,s′(n) be the
number of times ss′ occurs in the state sequence up to time n and let ds,s′(n) be
the number of times the string s̃ that corresponds to ss′ has occurred. We know
that cs,s′(n) = ds,s′(n) for any such pair ss′ and any n. If s′ cannot follow s we
let both cs,s′ = 0 and ds,s′ = 0. The state transition frequency for the transition
from s to s′ up until time n is

cs,s′(n)∑
s′ cs,s′(n)

=
ds,s′(n)∑
s′ ds,s′ (n)

=
ds,s′(n)
ds(n)

=
ds,s′(n)

n

n

ds(n)

where ds(n) is the number of times that the string that defines s has occurred up
until time n in the y sequence. The right hand side converges to the frequency of
the string s̃ divided by the frequency of the string that defines s. Thus we have
proved that state transition frequencies converge. Emissions work the same way.

Lemma 23. If we sample yt ergodically from a suffix tree FSM, then the fre-
quency for each finite substring will converge almost surely. In other words the
sequence yt is almost surely ergodic.

Proof. If the suffix tree defines an FSM as we have defined it above, the states
of the suffix tree will form an ergodic Markov chain. An ergodic Markov chain is
stationary. For any state and finite string of perceptions there is a certain fixed
probability of drawing the string in question. The frequency of the string str
is
∑

s Pr(s)Pr(str|s) where Pr(s) is the stationary probability of seeing s and
Pr(str|s) is the probability of directly seeing exactly str conditioned on being
in state s. It follows from the law of large numbers that the frequency of any
finite string str converges.
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Another way of understanding this result is that it is implied by the con-
vergence of the frequency of any finite string of states in the state sequence.

Proof. of Proposition 21. Lemma 22 and Lemma 23 together imply the propo-
sition since they say that if we sample from a suffix tree then we almost surely
get converging frequencies for all finite substrings and this implies converging
transition frequencies for the states from any suffix tree.

Bounded-Memory FSMs. We here notice that the reasons that the suffix tree
theory above worked actually relate to a larger class, namely a class of FSMs
where the internal state is determined by at most a finite number of previous
time steps in the history.

Definition 24 (bounded memory FSM). Suppose that there is a constant κ
such that if we know the last κ + 1 perceptions yt−κ, ..., yt then the present state
st is uniquely determined. Then we say that the FSM has memory of at most
length κ (not counting the current) and that it has bounded memory.

Proposition 25 (ergodicity of FSMs). 1. Consider a sequence yt whose fi-
nite substring frequencies converge (i.e. the sequence is ergodic) and an FSM of
bounded memory, then the sequence is ergodic with respect to the map defined by
the FSM.
2. If we sample a sequence yt ergodically from an FSM with bounded memory then
almost surely yt is HMM-ergodic and its finite substring frequencies converge.

Proof. The proof works the same way as for suffix tree FSMs. If an FSM has
finite memory of length κ then there is a suffix tree of that depth with every
suffix of full length and every state of the FSM is a subset of the states of that
suffix tree. The FSM is a partition of the suffix set into disjoint subsets. Every
state transition for the FSM is exactly one of a set of state transitions for the
suffix tree states and the frequency of every ordered pair of suffix tree states
converge almost surely as before. Therefore, the state transition frequencies for
the FSM will almost surely converge.

A distribution that is defined using an FSM of bounded memory can also be
defined using a suffix tree, so 2. reduces to this case

5 The Main Result for Sequence Prediction

In this section we summarize our results in a main theorem. It follows directly
from a combination of results in previous sections. They are stated with respect
to our main class of maps, namely the class that is defined by bounded-memory
FSMs. The generating models that we consider are models that are defined
from a map in this class in such a way that the states form an ergodic Markov
chain. We refer to this as sampling ergodically from the FSM. Our conclusion
is that we will under these circumstances eventually only choose between maps
which generate the best possible HMM parameters that can be achieved for the
purpose of long-term sequence prediction. The model penalty term will influence
the choice between these options towards simpler models.
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The following theorem guarantees that we will almost surely asymptotically
find a correct HMM for the sequence of interest under the assumption that it is
possible.

Theorem 26. If we consider a finite class of maps Φi, i = 0, 1, ..., k based on
finite state machines of bounded memory and if we sample ergodically from a
finite state machine of bounded memory, then there almost surely exist limiting
parameters θi for all i and there is N < ∞ such that for all n ≥ N the map Φi

selected at time n ≥ N by minimizing Cost, generates parameters whose limit is
θ0 which is assumed to be the optimal HMM parameters.

Proof. We are going to make use of Proposition 25 together with Theorem 15.
Proposition 25 shows that our assumptions imply the assumptions of Theorem
15 which provides our conclusion.

Extension to countable classes. To extend our results from finite to count-
able classes of maps we need the model complexity penalty to be sufficiently
rapidly growing in n and m. This is also necessary if we want to be sure that
we eventually find a minimal representation of the optimal model that can be
achieved by the class of maps.

Proposition 27 (Consistency for countable class). Suppose that we have
a countable class of maps Φi, i = 0, 1, ... and

1. Suppose that our class is such that for every finite k, there are at most finitely
many maps with at most k states.

2. Suppose that θ0 is an optimal HMM for the sequence yt, that it has m states
and that θ0 is the limit of the parameters generated by Φ0. Furthermore,
suppose that there is finite N such that whenever n > N , m̃ > m and θ̃ is any
HMM with m̃ states we have pen(n,m) − logPθ̂n

0
(y1, ..., yn) < pen(n, m̃) −

logPθ̃(y1, ..., yn). where θ̂n
0 are the parameters generated by Φ0.

then Theorem 15 is true also for this countable class and we will furthermore
eventually pick a map with at most m states.

Proof. The idea of the proof is to reduce the countable case to the finite case that
we have already proven by using that when n > N we will never pick a Φ with
more than m states and then use the first property to say that the remaining
class if finite. This reduction also shows that we will eventually not pick a map
with more states than m.

The first property in the proposition above holds for the class of suffix trees
and for the class based on FSMs with bounded memory. The second property,
but with the HMM maximum likelihood parameters θ(n) with m states (while
we have ML for a sequence of states and observations) will almost surely hold
if the penalty is such that we have strong consistency for the HMM criteria
θ∗ = arg max logPθ(y1, ..., yn)− pen(n,m). This is studied in many articles, e.g.
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[GB03] where strong consistency is proven for a penalty of the form β(m) log n
where β is a cubic polynomial. Note that in the case without side information
(if our map has the properties that Φ0(y1:n) determine yn and that Φ(yn−1) and
yn determine Φ(y1:n)) the emissions are deterministic and the state sequence
generated by any map is determined by the y sequence. This puts us in a simpler
situation akin to the Markov order estimation problem [FLN96, CS00] where it
is studied which penalties (e.g. BIC) will give us property 2. above.

Conjecture 28. We almost surely have Property 2. from Proposition 27 for the
BIC penalty studied in [CS00].

6 Sequence Prediction with Side Information

In this section we will broaden our problem to the setting where we have side
information available to help in our prediction task. In our problem setting we
have two finite sets X and Y, a sequence pn = (xn, yn) of elements from X ×Y,
and we are interested in predicting the future of the sequence yn. To do this
we first want to learn a feature map Φ(p1:n) = sn. In other words we want our
current state to summarize all useful information from both the x and y sequence
for the purpose of predicting the future of y only.

One obvious approach is to predict the future of the entire sequence p, i.e.
predicting both x and y and then in the end only notice what we find out about
y. This brings us back to the case we have studied already, since from this point
of view there is no side information. A drawback with that approach can be that
we create an unnecessarily complicated state representation since we are really
only interested in predicting the y sequence.

In the case when there is no side information, st = Φ(y1:t). An important
difference of the case with side information is that the sequence s1:t depends on
both y1:t and x1:t. Therefore for the latter case, if we would like to consider a
distribution for y only, y1, ..., yn does not determine the state sequence s1, ..., sn:

Pr(y1, ..., yn|θ̂n) =
∑

s1:n,x1:n

Pr(s1, ..., sn)Pr(x1, ..., xn, y1, ..., yn|s1, ..., sn, θ̂n).

This is expression is of course also true in the absence of side information x, but
then the sum collapses to one term since there is only one sequence of states s1:n
that is compatible with y1:n.

An alternative to using the Cost criteria on the p sequence is to only model
the y sequence and let

Ln(Φ) = − logPr(y1, ..., yn|θ̂n)

and then define Cost in exactly the same way as before. This cost function was
called ICost in [Hut09].

Theorem 29. Theorem 26 is true for sequence prediction with side information
using

ICostn(Φi) = − logPr(y1, ..., yn|θ̂n) + pen(n, S)
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if we define “sample ergodically” to refer to the sequence pt = (xt, yt) instead of
yt.

Proof. The proofs work exactly as they are written for the case without side
information.

Note that a map that is optimal for predicting the y sequence can have fewer
states than a minimal map that can generate the model of the p sequence.

It is interesting to note that the interpretation of this result is not as clear as
the case without side information. It guarantees that, given enough history, the
chosen Φ can and will (with the asymptotic parameters) define the correct model
for the yt sequence but the xt sequence has only played a part in the estimation
and we are not guaranteed that we will make use of the extra information if
it does not impact the entropy rate. In particular it is true if the information
in xt is only helpful for a finite number of time steps forward. In this case
that gain will not affect the entropy rate which is a limit of averages. We have
a more conclusive result for the case with side information when we use the
first mentioned approach of applying Cost to the sequence p, since we proved
consistency in the previous section in the sense of finding the true model when
possible.

If we have injective maps Φ, e.g. maps defined by non-empty suffix trees, then
we can rewrite Cost in a form that was used in [Hut09] also more generally.
Therein a cost called original cost was defined as follows:

Definition 30 (OCost)

OCost = − logPr(s1, ..., sn) − logPr(y1, ..., yn|s1, ..., sn, θ̂n) + pen(n, S).

Remark 31. If Φi is injective and we calculate Cost in the side information case
then Cost = OCost. .

If we have no side information both OCost and ICost will be the same as Cost
but they may differ when there is side information available. We remarked above
that if we consider only injective Φ (e.g. non-empty suffix tree based maps) then
OCost equals using Cost on the joint sequence pt = (xt, yt). As noted in [Hut09]
OCost penalizes having many states more than ICost does and when considering
non-injective Φ one risks getting a smaller than desired state space.

7 The Active Case

In this very brief section we will discuss how to map the active case to the
previously introduced notions. The active case will be treated in depth in future
articles. In the active case [RN10, SB98] we have an agent that interacts with
an environment. The agent perceives observations ot and real-valued rewards rt

and the agent takes actions at from a finite set of possible actions A with the
goal of receiving high total reward in some sense. We will denote the events that
have just occurred when the agent will take an action at time step t, i.e. at,
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ot, and rt by et. We consider maps based on FSMs (PDFAs) that takes event
sequences et as input. In the previous section’s notation xt = (ot, at) and yt = rt

and pt = et. We chose this since we are interested in predicting which future
rewards will result from actions chosen with the help of the observations. This
would give us the possibility of determining which actions will earn the highest
rewards.

At time t−1 the past e1, ..., et−1 determines st−1 and the agent takes an action
at−1 and ot and rt are generated according to distributions that only depend on
st−1 and at−1. Then we have generated et and st = ψ(st−1, et).

Definition 32. The above describes what we mean when we say that the FSM
generates the environment. We say that the FSM generates the environment
ergodically, if for any sequence of actions chosen such that the action frequencies
for any state converge asymptotically, we will have state transitions and emission
frequencies that converge almost surely to an ergodic HMM.

Proposition 33. Suppose that we have an FSM of bounded-memory generating
the environment ergodically and the action frequencies for any state converge
asymptotically, then we will almost surely generate an ergodic sequence of events
and the reward sequence is HMM-ergodic.

Proof. The situation reduces through Definition 32 to that of Proposition 25.

Theorem 34. If we consider a finite class of maps Φi, i = 0, 1, ..., k based on
finite state machines of bounded memory and if the environment is generated
ergodically by a finite state machine of bounded memory and if the action fre-
quencies for any internal state of the generating finite state machine converge,
then there almost surely exist limiting state transition parameters θi for all i and
there is N < ∞ such that for all n ≥ N the map Φi selected by minimizing
ICost at time n ≥ N generates parameters whose limit is θ0 which is the optimal
HMM.

Proof. We combine Proposition 33 with Theorem 29.

How to choose the actions to make the implications for reinforcement learning
what we want them to be is the subject of ongoing work [Hut09].

8 Conclusions

Feature Markov Decision Processes were introduced [Hut09] as a framework for
creating generic reinforcement learning agents that can learn to perform well in
a large variety of complex environments. It was introduced as a concept without
theory or empirical studies. First empirical results are reported in [Mah10]. Here
we provide a consistency theory by focusing on the sequence prediction case with
and without side information. We briefly discuss the active case where an agent
takes actions that may affect the environment. The active case and empirical
studies is the subject of ongoing and future work.
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Abstract. Adversarial bandit problems studied by Auer et al. [4] are
multi-armed bandit problems in which no stochastic assumption is made
on the nature of the process generating the rewards for actions. In this
paper, we extend their theories to the case where k(≥ 1) distinct actions
are selected at each time step. As algorithms to solve our problem, we
analyze an extension of Exp3 [4] and an application of a bandit online
linear optimization algorithm [1] in addition to two existing algorithms
(Exp3,ComBand [5]) in terms of time and space efficiency and the re-
gret for the best fixed action set. The extension of Exp3, called Exp3.M,
performs best with respect to all the measures: it runs in O(K(log k+1))
time and O(K) space, and suffers at most O(

√
kTK log(K/k)) regret,

where K is the number of possible actions and T is the number of it-
erations. The upper bound of the regret we proved for Exp3.M is an
extension of that proved by Auer et al. for Exp3.

Keywords: Multi-armed bandit problem, adversarial bandit problem,
online learning.

1 Introduction

Multi-armed bandit problems are a kind of sequential resource allocation prob-
lems in which one resource is allocated to one action among several alternative
actions at each time step. Each allocation yields a reward and the objective of
the problem is the maximization of the total reward. The problems are known
as paradigms of the trade-off between exploration (for better future rewards)
and exploitation (for high current rewards). These problems have been becom-
ing more and more important in this Internet age because several problems such
as server selection in network, Internet ad placement and market pricing at e-
commerce sites [8] can all be formulated as multi-armed bandit problems.

Vast studies have been done so far on these problems [10], and the majority
of them assumes that the bandit processes are stochastic. However, adversarial
bandit problems studied by Auer et al. [4] make no stochastic assumption on the
nature of the process generating the rewards for the actions, and they also have
been becoming popular recently. There have been several extensions on this line
such as the on-line shortest path problem [7], bandit online linear optimization
[1] and combinatorial bandits [5].

M. Hutter et al. (Eds.): ALT 2010, LNAI 6331, pp. 375–389, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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In this paper, we study adversarial bandit problems extended in one direction,
namely, those problems with multiple plays. In this extension, k resources are
allocated at each time step. The multiple play setting is practically useful for
such problems as multiple ad placement on one web page, which is studied as the
problem of multi-impressions in [11]. As for stochastic bandit problems, there
are already several studies along this direction [2, 3, 13, 14], but, to the best of
our knowledge, only the study made so far in the adversarial setting is combina-
torial bandits of Cesa-Bianchi and Lugosi [5]. They considered a general bandit
problem in which a player select one binary vector from a fixed set S ⊆ {0, 1}K

at each time step. The k-sized subset version of their algorithm ComBand is
just an algorithm for the multiple play setting. The regret for the best fixed
k-sized action subset is O(k

3
2
√
TK lnK), where T is the number of iterations

and K is the number of possible actions. The time and space complexities of this
algorithm are O(kK3) and O(K3), respectively. Note that here we only consider
the case where selected k actions must be distinct, different from the studies in
[12, 15].

Time and space complexities of ComBand can be improved a little by algo-
rithm BOLOM, which is made by applying the bandit online linear optimization
algorithm [1] to our problem. BOLOM runs in O(K3) time per iteration and
O(K2) space regardless of the value of k. The regret of BOLOM for the best
fixed action set is bounded by O(kK

3
2
√
T logT ), which is worse than Com-

Band. The best algorithm for the multiple play setting is algorithm Exp3.M,
which is an extension of Exp3 [4]. The action space is the same as that of Exp3,
namely, Exp3.M keeps just K weights. Using the efficient k-combination selec-
tion procedure developed by Gandhi et al. [6], which can select a set S of k
distinct actions so as to satisfy that each action i is selected with given probabil-
ity pi, Exp3.M runs in O(K(log k+1)) time per iteration and O(K) space, and
achieves an upper bound O(

√
kTK log(K/k)) on the regret for the best fixed

action set. Note that this upper bound is an extension of that proved by Auer
et al. [4] because they coincide when k = 1. We also show that a lower bound of
the regret on the problem is Ω(((K − k)/K)2

√
KT ), which is also an extension

of that proved in [4] on the original problem.

2 Problem Setting

An adversarial bandit problem [4] is specified by a set of possible player’s actions
[K]( .= {1, 2, . . . ,K}) and an assignment of rewards x(t)=(x1(t), x2(t), . . . , xK(t))
at time step t = 1, 2, . . . , T , where xi(t) ∈ [0, 1] denotes the reward obtained by
the player. In multiple play setting, the player selects a set of k distinct actions
S(t) ∈ C ([K], k) at each time step t, and after that, the player gets rewards
xi(t) for i ∈ S(t), where C ([K], k) = {S ⊆ [K] : |S| = k}, namely, the set of
all subsets of size k in [K]. Throughout the paper, we use |S| as the number
of elements in S for any set S. Note that we also use notation C (K, k) which

denotes the number |C ([K], k) |
(

=
(
K
k

))
. All the information the player can
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obtain at time step t is only the rewards for the actions the player has selected
at that time step.

The cumulative reward GA of a player algorithm A is defined as

GA
.=

T∑
t=1

∑
i∈S(t)

xi(t)

if the algorithm A chooses an action sequence S(1), S(2), . . . , S(T ). The problem
is to design a player algorithm A that maximizes its cumulative reward under the
condition that an adversary who knows the strategy of A decides an assignment
of rewards.

We measure the performance of algorithm A by the regret of A for the best
fixed set of actions (that is called weak regret in [4]), which is defined by Gmax-k−
GA, where

Gmax-k
.= max

S∈C([K],k)

T∑
t=1

∑
i∈S

xi(t)

is the cumulative reward for the best fixed set of k distinct actions.

3 Previous Works

First, an adversarial multi-armed bandit problem with multiple plays can be
solved by using Exp3 developed by Auer et. al [4]. Regarding a set of k actions
as one action makes Exp3 applicable to our multiple play setting1. However, this
arises a problem that the size of action space becomes large, namely, C (K, k) =
Ω(Kk). As a result, the regret upper bound obtained by Corollary 3.2 in [4]
becomes

Gmax-k − E[GExp3] ≤ 2k
√
e − 1

√
TC (K, k) lnC (K, k) ≤ 2.63

√
k3TKk lnK,

and the time and space complexities becomes Ω(Kk).
The regret upper bound can be improved significantly even using C (K, k)

weights like Exp3. Algorithm ComBand shown in Fig. 1 is the k-sized subset
version of the algorithm developed by Cesa-Bianchi and Lugosi [5], which is just
the algorithm that solves our problem as it is. Like Exp3, ComBand has one
weight for each k-sized subset. At each time step, it randomly selects one k-sized
subset according to a distribution calculated by the weights, and updates the
weights depending on the obtained reward. The randomized selection method of
ComBand is the same as that of Exp3, but ComBand uses more sophisticated
method of weight update than Exp3. ComBand calculates a K × K matrix
Pt that is defined as EpU [1U1�

U ], where 1U is a K-dimensional vector whose ith
component is 1 if i ∈ U and 0 otherwise, and 3 denotes transpose. Then, the

1 A reward for a set of k actions must be divided by k in the application.
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ComBand(The k-sized subset version of the algorithm for Combinatorial Bandits)
Parameters: γ ∈ (0, 1]
Initialization: wU (1) = 1 for U ∈ C ([K], k)
For each t = 1, 2, . . . , T ,

1. For U ∈ C ([K], k) set

pU (t) = (1− γ)
wU (t)∑

U′∈C([K],k) wU′(t)
+

γ

C (K, k)
.

2. Choose S(t) randomly according to the distribution pU (t) for U ∈ C ([K], k).
3. Receive a reward

∑
i∈S(t) xi(t) ∈ [0, k].

4. Set

Pt =
∑

U∈C([K],k)

pU(t)1U1�
U and

l̂(t) =

⎛⎝k −
∑

i∈S(t)

xi(t)

⎞⎠P+
t 1S(t).

5. For U ∈ C ([K], k) set

wU (t + 1) = wU (t) exp

(
−γ(K − k)

∑
i∈U l̂i(t)

kK(K − 1)

)
.

Fig. 1. Pseudocode of algorithm ComBand [5] (k-sized subset version)

K-dimensional vector of pseudo-losses l̂(t) is calculated as P+
t 1S(t) multiplied by

the loss k−
∑

i∈S(t) xi(t), where P+
t is the pseudo-inverse of Pt. For each k-sized

subset U , the weight wU (t+1) is wU (t) multiplied by exp
(
−η

∑
i∈U l̂i(t)

)
, where

l̂i(t) is the ith component of l̂(t) and η = γ(K − k)/kK(K − 1). By Theorem 1
and Proposition 15 in [5], for k ≤ K/2, we obtain

Gmax-k − E[GComBand] ≤
(

2 +
K − 1
K − k

)
k
√

TK lnC (K, k) ≤ 4
√
k3TK lnK.

As commented in [5], there is an implementation of ComBand in which the
time and space complexity is also significantly improved. In the efficient imple-
mentation, one weight wi for each original action i is enough because weight wU

for a k-sized subset can be represented by
∏

i∈U wi and Step 5 in ComBand
can be replaced with

5’. For i ∈ [K] set wi(t + 1) = wi(t) exp

(
−γ(K − k)l̂i(t)

kK(K − 1)

)
.

Since each k-sized subset can be represented by a path from the source to the sink
in G of Fig. 2, by dynamic programming technique of Takimoto and Warmuth
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Fig. 2. The directed graph G such that a path in G has one-to-one correspondence to
a k-sized subset of [K]

[16], S(t) can be chosen without calculating pU (t) for all U ∈ C ([K], k) in Step 2,
and Pt can be calculated without taking a sum over all U ∈ C ([K], k) in Step 4.
(See also the proof of Theorem 3 in [7].) From the fact that the number of nodes
in G is O(kK) and the weights of the edges incoming into the same vertex are
the same, S(t) can be chosen in O(kK) time and O(kK) space, and Pt can be
calculated in O(kK3) time and O(K3) space. Note that we do not have to keep
edge information in memory because of its regularity. The pseudo-inverse P+

t

can be calculated in O(K3) time and O(K2) space. In total, the time and space
complexities of ComBand is O(kK3) and O(K3), respectively.

4 Application of Bandit Online Linear Optimization

A more efficient algorithm for large k can be obtained by applying an algorithm
developed in the context of bandit online linear optimization [1]. In the bandit
online linear optimization problem, the space corresponding to the action space
is a compact closed convex set K in Rn. At each time step t, a player chooses
qt ∈ K, then an adversary returns x�

t qt to the player. The player’s goal is to
minimize his regret defined as

max
q∗∈K

T∑
i=1

x�
t q∗ −

T∑
i=1

x�
t qt.

To consider our multiple play setting bandit problem in this framework, set K
to the convex hull of

{
1U ∈ RK : U ∈ C ([K], k)

}
, where 1U is a vector whose

ith component is 1 if i ∈ U and 0 otherwise. The following proposition holds.

Proposition 1. The convex hull of
{
1U ∈ RK : U ∈ C ([K], k)

}
is equal to{

q : 0 ≤ qi ≤ 1 for i = 1, 2, . . . ,K,
∑K

i=1 qi = k
}
.

Proof. Let A =
{
q : 0 ≤ qi ≤ 1 for i = 1, 2, . . . ,K,

∑K
i=1 qi = k

}
and

B =
{
1U ∈ RK : U ∈ C ([K], k)

}
. Then, B is a compact convex subset of RK
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and the set of its extreme points is A. Thus, the convex hull of A is B by Krein-
Milman theorem [9]. ��

By the above proposition, any q ∈ K satisfies
∑K

i=1 qi = k, so K can be regarded
as a (K − 1)-dimensional subspace KK−1 defined by

KK−1
.=

{
q : 0 ≤ qi ≤ 1 for i = 1, 2, . . . ,K − 1, 0 ≤ k −

K−1∑
i=1

qi ≤ 1

}
.

Therefore, a linear optimization problem under the constraint of range KK−1
can be solved as the unconstrained linear optimization problem with the θ-self
concordant barrier

R(q) .= − ln

[{
K−1∏
i=1

qi(1 − qi)

}(
k −

K−1∑
i=1

qi

)(
1 − k +

K−1∑
i=1

qi

)]

on KK−1, where θ = 2K for this barrier R. By applying Algorithm 1 in [1] to
our multiple play setting bandit problem, we can obtain algorithm BOLOM
shown in Fig. 3. In the application, there are two things we have to take care
of. One is the difference of the problem settings: in linear optimization setting,
the player can select any element p in K, but in the multiple play setting, the
player must select a set U from C ([K], k), which corresponds to the original set
of C (K, k) vectors before taking its convex hull.

This can be overcome by selecting a set U ∈ C ([K], k) at random so as
to satisfy the condition that each action i is selected with probability pi. This
selection guarantees that E(1U ) = p holds, and the bound of Theorem 1 in [1]
is still valid for the algorithm of the above modification by their Proposition 1
in Sec. 7 in [1]. Function DepRound [6] used in our algorithm is an efficient
algorithm that makes such a selection, whose details are described in Sec. 7.

The other problem is that the reward x(t)�p(t) expectedly received by the
player at each time step t cannot be expressed linearly in KK−1: it is expressed
as

(x1(t) − xK(t), . . . , xK−1(t) − xK(t))

⎛⎜⎝ p1(t)
...

pK−1(t)

⎞⎟⎠ + kxK(t),

that is, it is expressed as a combination of a linear part with a new reward vector
(x1(t) − xK(t), · · · , xK−1(t) − xK(t))� and a bias kxK(t).
Let y(t) = 1

k (x1(t) − xK(t), · · · , xK−1(t) − xK(t))�. Then,

ES(t)
1
k

x(t)�1S(t) =
1
k
x(t)�ES(t)1S(t) =

1
k
x(t)�p(t)

= y(t)�

⎛⎜⎝ p1(t)
...

pK−1(t)

⎞⎟⎠ + xK(t) = y(t)�(q(t) + εtλ
− 1

2 eit) + xK(t)
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BOLOM(Bandit Online Linear Optimization with Multiple plays)
Parameters: η > 0
Initialization:

R(q) = − ln

[{
K−1∏
i=1

qi(1− qi)

}(
k −

k−1∑
i=1

qi

)(
1− k +

K−1∑
i=1

qi

)]
for q ∈ KK−1,

qi(1) =
k

K
for i = 1, 2, . . . , K − 1

For each t = 1, 2, . . . , T
1. Calculate the set of eigenvectors {e1, . . . , eK−1} and

eigenvalues {λ1, . . . , λK−1} of ∇2R(q(t)).
2. Choose it uniformly at random from {1, . . . , K − 1} and

εt = ±1 with probability 1/2.
3. Set

pj(t) = qj(t) + εtλ
− 1

2 eit,j for j = 1, 2, . . . , K − 1,

pK(t) = k −
K−1∑
i=1

pi(t).

4. Set
S(t) = DepRound(k, (p1(t), p2(t), . . . , pK(t))).

5. Receive rewards xi(t) ∈ [0, 1] for i ∈ S(t).
6. Set

ŷ(t) = (K − 1)

⎛⎝ 1
k

∑
i∈S(t)

xi(t)

⎞⎠ εtλ
1
2 eit ,

q(t + 1) = arg min
q∈KK−1

[
−η

t∑
s=1

ŷ(s)�q + R(q)

]
.

Fig. 3. Pseudocode of algorithm BOLOM

holds. Thus, by virtue of random choice of εt,

EεtES(t)ŷ(t) =
1
2
(K − 1)(y(t)�(q(t) + λ− 1

2 eit) + xK(t))λ
1
2
it

eit

−1
2
(K − 1)(y(t)�(q(t) − λ− 1

2 eit) + xK(t))λ
1
2
it

eit

= (K − 1)(y(t)�eit)eit

holds, so Eŷ(t) = EitEεtES(t)ŷ(t) = y(t) is still implied.
Therefore, by Theorem 1 in [1], we obtain the following theorem.

Theorem 1. Set η =
√

2K logT/(4(K − 1)
√
T ). Then

Gmax-k − E[GBOLOM] ≤ 16k(K − 1)
√

2KT logT +
√

(K − 1)T
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holds for any T > 16K logT and for any assignment of rewards.

The regret upper bound of BOLOM is worse than that of ComBand in both T
and K. Algorithm BOLOM runs in O(K3) time per iteration and needs O(K2)
space. Thus, BOLOM is more efficient than ComBand.

5 Multiple Play Version of Exp3

In Sec. 3, we saw that a direct application of Exp3 for action space C ([K], k)
have to deal with Ω(Kk) weights, which caused a large regret upper bound
and large time and space complexities. Can we apply algorithm Exp3 for the
original action space [K] to solve the multiple play setting of a bandit problem?
The answer is yes, and we develop such an algorithm in this section.

As Exp3 does, our algorithm selects action i with probability pi(t) and es-
timates xi(t) by x̂i(t) = xi(t)/pi(t) when action i is selected and by x̂i(t) = 0
otherwise. This calculation guarantees our algorithm to satisfy E[x̂i(t)] = xi(t)
if action i is selected randomly with probability pi(t). Then, the problem is re-
duced to how to select k distinct actions under the condition that each action i
is selected randomly with probability pi(t). This can be done in O(K) time per
iteration by using function DepRound [6]. (See Sec. 7.) Note that

∑K
i=1 pi(t)

must be k in this problem setting because the expected total number of selection
is
∑K

i=1 pi(t).
However, a new problem arises using this selection: probability pi(t) possibly

becomes more than 1 if it is set to a value proportional to weight wi(t) that is
more than 1

k

∑K
j=1 wj(t). Our countermeasure for this situation is to let pi(t)

linearly depend on modified weight w′
i(t) that is made from wi(t) by cutting off

at some threshold αt.
Our extension of algorithm Exp3 for multiple play setting is algorithm

Exp3.M shown in Fig. 4. If all wj(t) are less than
( 1

k − γ
K

)∑K
i=1 wi(t)/(1 − γ),

which is checked at Step 1, pj(t) calculated at Step 3 is less than 1 for all
i = 1, 2, . . . ,K without weight modification. In this case, S0(t) is set to ∅ at Step
1. Otherwise, threshold αt is set to an appropriate value, and all the actions i
with wi(t) ≥ αt are classified into S0(t). The temporal weight w′

i(t) is set to αt

for i ∈ S0(t) and wi(t) for i �∈ S0(t). Since

w′
i(t)∑K

j=1 w
′
j(t)

=
αt∑

wj(t)≥αt
αt +

∑
wj(t)<αt

wj(t)

holds for all i ∈ S0(t), pi(t) is set to 1 for all i ∈ S0(t) in Step 3 if αt is decided
as in Step 1, namely, αt is decided so as to satisfy

αt∑
wi(t)≥αt

αt +
∑

wi(t)<αt
wi(t)

=
(

1
k

− γ

K

)
/(1 − γ).
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Exp3.M(The extended version of Exp3 for bandit problems with Multiple plays)
Parameters: γ ∈ (0, 1]
Initialization: wi(1) = 1 for i = 1, 2, ..., K
For each t = 1, 2, ...

1. if arg maxj∈[K] wj(t) ≥
(

1
k
− γ

K

)∑K
i=1 wi(t)/(1− γ) then

Decide αt so as to satisfy

αt∑
wi(t)≥αt

αt +
∑

wi(t)<αt
wi(t)

=
(

1
k
− γ

K

)
/(1− γ).

Set S0(t) = {i : wi(t) ≥ αt} and w′
i(t) = αt for i ∈ S0(t).

else
Set S0(t) = ∅.

2. Set
w′

i(t) = wi(t) for i ∈ {1, 2, ..., K} − S0(t).

3. Set

pi(t) = k

(
(1− γ)

w′
i(t)∑K

j=1 w′
j(t)

+
γ

K

)
for i = 1, 2, ..., K.

4. Set
S(t) = DepRound(k, (p1, p2, . . . , pn)).

5. Receive rewards xi(t) ∈ [0, 1] for i ∈ S(t).
6. For i = 1, 2, ..., K set

x̂i(t) =
{

xi(t)/pi(t) if i ∈ S(t),
0 otherwise.

wi(t + 1) =
{

wi(t)exp(kγx̂i(t)/K) if i 
∈ S0(t),
wi(t) otherwise.

Fig. 4. Pseudocode of algorithm Exp3.M

Note that S0(t) ⊆ S(t) since pi(t) = 1 for all i ∈ S0(t). Another point of our
algorithm is that weights wi(t) are not updated for i ∈ S0(t) in Step 6, namely,
wi(t+1) = wi(t) for actions i with relatively too large weights. The bottleneck of
the algorithm is the calculation of αt, which can be calculated in O(K(log k+1))
time by finding the largest k weights. Therefore, Exp3.M runs in O(K(log k+1))
time at each time step and needs O(K) space.

The following theorem is an extension of Theorem 3.1 in [4].

Theorem 2. For any K > 0 and for any γ ∈ (0, 1],

Gmax-k − E[GExp3.M] ≤ (e − 1)γGmax-k +
K

γ
ln

K

k

holds for any assignment of rewards and for any T > 0.
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Proof. Let Wt,W
′
t denote

∑K
i=1 wi(t),

∑K
i=1 w

′
i(t), respectively. Then, for any

t = 1, 2, ..., T ,

Wt+1

Wt
=

∑
i∈[K]−S0(t)

wi(t + 1)
Wt

+
∑

i∈S0(t)

wi(t + 1)
Wt

=
∑

i∈[K]−S0(t)

wi(t)
Wt

exp
(
kγ

K
x̂i(t)

)
+

∑
i∈S0(t)

wi(t)
Wt

≤
∑

i∈[K]−S0(t)

wi(t)
Wt

[
1+

kγ

K
x̂i(t)+(e − 2)

(
kγ

K
x̂i(t)

)2
]
+
∑

i∈S0(t)

wi(t)
Wt

(1)

= 1 +
W ′

t

Wt

∑
i∈[K]−S0(t)

wi(t)
W ′

t

[
kγ

K
x̂i(t) + (e − 2)

(
kγ

K
x̂i(t)

)2
]

= 1 +
W ′

t

Wt

∑
i∈[K]−S0(t)

pi(t)
k − γ

K

1 − γ

[
kγ

K
x̂i(t) + (e − 2)

(
kγ

K
x̂i(t)

)2
]

≤ 1+
γ

K(1 − γ)

∑
i∈[K]−S0(t)

pi(t)x̂i(t) +
(e − 2)kγ2

K2(1 − γ)

∑
i∈[K]−S0(t)

pi(t)x̂i(t)2 (2)

≤ 1 +
γ

K(1 − γ)

∑
i∈S(t)−S0(t)

xi(t) +
(e − 2)kγ2

K2(1 − γ)

∑
i∈[K]

x̂i(t). (3)

Inequality (1) uses ea ≤ 1 + a + a2 for a ≤ 1, inequality (2) holds because
W ′

t/Wt ≤ 1, and inequality (3) uses the fact that pi(t)x̂i(t) = xi(t) ≤ 1 for
i ∈ S(t) and pi(t)x̂i(t) = 0 for i �∈ S(t). Since 1 + x ≤ ex, we have

ln
Wt+1

Wt
≤ γ

K(1 − γ)

∑
i∈S(t)−S0(t)

xi(t) +
(e − 2)kγ2

K2(1 − γ)

∑
i∈[K]

x̂i(t).

By summing over t, we obtain

ln
WT+1

W1
≤ γ

K(1 − γ)

T∑
t=1

∑
i∈S(t)−S0(t)

xi(t) +
(e − 2)kγ2

K2(1 − γ)

T∑
t=1

∑
i∈[K]

x̂i(t). (4)

On the other hand, for the set A∗ ⊂ [K] of k elements with the maximum total
reward

∑
j∈A

∑T
t=1 xj(t) among all subsets A containing k elements,

ln
WT+1

W1
≥ ln

∑
j∈A∗ wj(T + 1)

W1
≥

∑
j∈A∗ lnwj(T + 1)

k
+ ln

k

K
(5)

=
γ

K

∑
j∈A∗

∑
t:j ∈S0(t)

x̂j(t) + ln
k

K
. (6)

The second inequality in (5) uses the fact that∑
j∈A∗

wj(T + 1) ≥ k(
∏

j∈A∗
wj(T + 1))1/k
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and equation (6) uses wj(T + 1) = exp((kγ/K)
∑

t:j ∈S0(t) x̂j(t)).
From (4) and (6), we get

∑
j∈A∗

∑
t:j ∈S0(t)

x̂j(t)+
K

γ
ln

k

K
≤ 1

(1 − γ)

T∑
t=1

∑
i∈S(t)−S0(t)

xi(t)+
(e − 2)kγ
K(1 − γ)

T∑
t=1

∑
i∈[K]

x̂i(t).

Since
∑

j∈A∗
∑

t:j∈S0(t) xj(t) ≤ 1
1−γ

∑T
t=1

∑
i∈S0(t) xi(t) trivially holds, we have

∑
j∈A∗

∑
t:j ∈S0(t)

x̂j(t) +
∑

j∈A∗

∑
t:j∈S0(t)

xj(t) +
K

γ
ln

k

K

≤ 1
(1 − γ)

GExp3.M +
(e − 2)kγ
K(1 − γ)

T∑
t=1

∑
i∈[K]

x̂i(t).

Taking expectation of both sides of this inequality, we obtain

Gmax-k +
K

γ
ln

k

K
≤ 1

(1 − γ)
E[GExp3.M] +

(e − 2)kγ
K(1 − γ)

T∑
t=1

∑
i∈[K]

xi(t)

because equation E[x̂i(t)|S(1), S(2), . . . , S(i − 1)] = xi(t) holds from the fact
that DepRound selects action i with probability pi(t).

From the fact that
T∑

t=1

K∑
i=1

xi(t) ≤ K

k
Gmax-k,

we obtain the inequality in the statement of the theorem. ��

The following corollary can be obtained by an appropriate choice of parameter
γ. The proof is the same as that of Corollary 3.2 in [4].

Corollary 1. Set γ = min
{
1,
√

K ln(K/k)/((e − 1)kT )
}
. Then

Gmax-k − E[GExp3.M] ≤ 2
√

(e − 1)

√
kTK ln

K

k
≤ 2.63

√
kTK ln

K

k

holds for any T > 0 and for any assignment of rewards.

6 Lower Bounds on the Regret

Auer et al. showed a lower bound Ω(
√
KT ) on the regret of any player for

adversarial bandit problem with single play (k = 1). Their theorem can be
extended easily to the multiple play setting.
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Theorem 3. For any number of actions K, for any time horizon T and for any
k ∈ [K], there exists a distribution over the assignment of rewards such that

E[Gmax-k − GA] ≥ min

{
1
5

(
K − k

K

)2 √
KT,

K − k

8K
kT

}
,

holds for any algorithm A.

Proof. This theorem can be proved by modifying the proof of Theorem 5.1 [4]
a little. The reward assignment by the distribution whose existence is insisted
by the theorem is made as follows. First, select a set of k actions I according to
uniform distribution over C ([K], k). For each (i, t) ∈ [K] × [T ], independently
assign 1 to reward xi(t) with probability 1

2 + ε when i ∈ I and with probability
1
2 otherwise, where ε is a small constant value belonging to (0, 1

2 ). Value 0 is
assigned to xi(t) with the rest of the probability. Note that this distribution
over reward assignment coincides with the one used to prove Theorem 5.1 in [4]
when k = 1. Let E∗[·] denote expectation of some random variable with respect
to this distribution. Then, we can prove

E∗[Gmax-k − GA] ≥ kε

(
T − kT

K
− 2

√
ln

4
3
kT

√
T

K
ε

)
, (7)

when 0 ≤ ε ≤ 1/4. By choosing ε = (1/4)min{(K − k)/(k
√

ln(4/3)
√
KT ), 1},

the lower bound of this theorem can be obtained.
The proof of Inequality (7) can be done by evaluating a random variable Ni

which denotes the number of times action i ∈ i (∈ C ([K], k)) is chosen, namely,
Ni =

∑T
t=1 |S(t) ∩ i|. Let Ei[·] denote conditional expectation E∗[·|I = i]. Then,

E∗[GA] =
kT

2
+

ε

C (K, k)

∑
i∈C([K],k)

Ei[Ni] (8)

holds. We use the following lemma, which is a straightforward extension of
Lemma A.1 in [4].

Lemma 1. Let f : {0, 1}kT → [0,M ] be any function defined on reward se-
quences r.Then for any set of actions i ∈ C ([K], k),

Ei[f(r)] ≤ Eunif[f(r)] +
M

2

√
−Eunif[Ni] ln(1 − 4ε2),

where Eunif[·] is the uniform distribution over assignment of rewards.

By Lemma 1, we obtain

Ei [Ni] ≤ Eunif [Ni] +
kT

2

√
−Eunif [Ni] ln(1 − 4ε2). (9)
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Combining (8) and (9), and using Jensen’s Inequality and the fact that∑
i∈C([K],k) Eunif [Ni] = C (K − 1, k − 1) kT , we can prove

E∗[GA] ≤ kT

2
+ kε

(
kT

K
+

kT

2

√
− T

K
ln(1 − 4ε2)

)
.

Inequality (7) can be derived from this inequality using the fact that E∗[Gmax-k]
≥ kT (1/2 + ε) and the inequality − ln(1 − x) ≤ (4 ln(4/3))x for x ∈ [0, 1/4]. ��

Remark 1. When k = K, there exists only one strategy, which means 0-regret
for all algorithms. In this case, our upper bound shown in Corollary 1 and our
lower bound shown in Theorem 3 become 0.

7 Efficient k-Combination Selection

In this section, we describe how to select efficiently a set of k distinct actions
from [K] so as to satisfy that each action i is selected with probability pi for
any given distribution (p1, p2, . . . , pK) with 0 ≤ pi ≤ 1 for i = 1, 2, . . . ,K and∑K

i=1 pi = k. How to realize this selection plays an important role for efficient
implementations of both algorithms BOLOM and Exp3.M. One solution is to
select a set S according to a distribution qS for S ∈ C ([K], k) after solving the
following problem.

Problem 1. For a given (p1, p2, . . . , pK) ∈ [0, 1]K with
∑K

i=1 pi = k, find qS for
S ∈ C ([K], k) satisfying∑

i∈S

qS = pi(t) for all i = 1, 2, . . . ,K,

0 ≤ qS ≤ 1 for all S ∈ C ([K], k) .

Note that Problem 1 always has a solution by Proposition 1. However, solving
Problem 1 is not a good idea because it takes at least C (K, k) = Ω(Kk) time
for fixed k using a general solver. Note that

∑
i∈S qS = pi for i = 1, 2, . . . ,K

can be expressed as Aq = p using K ×C (K, k) matrix A, C (K, k)-dimensional
vector q = (· · · , qS , · · · )� and K-dimensional vector p = (p1, · · · , pK)� and for
any mutually independent K column vectors aS1 ,aS2 , . . . ,aSK of A, there is a
solution of Aq = p whose variables are zero except qS1 , qS2 , . . . , qSK , but it is
not guaranteed that 0 ≤ qSi ≤ 1 holds for all i = 1, 2, . . . ,K.

Fortunately, there is a nice technique called dependent rounding [6], which
can efficiently select a set of k distinct actions from [K] while satisfying the
condition that each action i is selected with probability pi. Dependent rounding
developed by Gandhi et al. [6] is a kind of technique that randomly selects a set of
edges from a bipartite graph under some cardinality constraints. Our selection
problem is a special case of the problems they considered, the case that the
bipartite graph is a star. In such case, the algorithm can be described as shown
in Fig. 5, which we call DepRound here. In the algorithm, (p1, p2, ..., pK) is
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DepRound % Dependent Rounding
Inputs: Natural number k(< K), (p1, p2, ..., pK) with

∑K
i=1 pi = k

Output: Subset of [K] with k elements
while there is an i with 0 < pi < 1 do

Choose distinct i and j with 0 < pi < 1 and 0 < pj < 1
Set α = min{1− pi, pj} and β = min{pi, 1− pj}
Update pi and pj as

(pi, pj) =

{
(pi + α, pj − α) with probability β

α+β

(pi − β, pj + β) with probability α
α+β

end while
return {i : pi = 1, 1 ≤ i ≤ K}

Fig. 5. Pseudocode of algorithm DepRound [6]

Table 1. Performance Comparison of the algorithms for multiple play setting

Algorithm Base Algorithm regret time comp. space comp.
Exp3 [4] - O(k

3
2 T

1
2 K

k
2
√

log K) Ω(Kk) Ω(Kk)
ComBand [5] - O(k

3
2
√

TK ln K) O(kK3) O(K3)
BOLOM Algorithm 1 [1] O(kK

3
2
√

T log T ) O(K3) O(K2)
Exp3.M Exp3 [4] O(

√
kTK log(K/k)) O(K(log k + 1)) O(K)

probabilistically updated until all the components are 0 or 1 while keeping the
condition that

∑K
i=1 pi = k. The inside of the while-loop is executed at most

K times because at least one of pi and pj becomes 0 or 1 in each time of the
execution. The nice property of the update is to keep the expectation values of
pi, namely, E[pt+1

i ] = E[pt
i] for every i ∈ [K], where pt

i denotes pi after the tth
execution of the inside of the while-loop. This is trivial when i is not chosen at
the tth execution, and holds even when i is chosen since

(pi +α)× β

α + β
+ (pi − β)× α

α + β
= (pi −α)× β

α + β
+ (pi + β)× α

α + β
= pi.

Each execution of the inside of the while-loop needs a constant time, so De-
pRound runs in O(K) time and O(K) space.

8 Concluding Remarks

We have extended adversarial bandit problems studied by Auer et al. [4] to those
with multiple plays, and analyzed algorithms for the problem.

From the result shown in Table 1, we can know that Exp3.M is the best
algorithm for this problem among the four algorithms analyzed here, which might
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be caused by the difference of used information; only Exp3.M uses each rewards
for selected k actions. We are now interested in applying our algorithms to real
problems and demonstrating their practical usefulness.
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Abstract. Online learning and kernel learning are two active research topics in
machine learning. Although each of them has been studied extensively, there is a
limited effort in addressing the intersecting research. In this paper, we introduce a
new research problem, termed Online Multiple Kernel Learning (OMKL), that
aims to learn a kernel based prediction function from a pool of predefined kernels
in an online learning fashion. OMKL is generally more challenging than typical
online learning because both the kernel classifiers and their linear combination
weights must be learned simultaneously. In this work, we consider two setups for
OMKL, i.e. combining binary predictions or real-valued outputs from multiple
kernel classifiers, and we propose both deterministic and stochastic approaches
in the two setups for OMKL. The deterministic approach updates all kernel clas-
sifiers for every misclassified example, while the stochastic approach randomly
chooses a classifier(s) for updating according to some sampling strategies. Mis-
take bounds are derived for all the proposed OMKL algorithms.

Keywords: On-line learning and relative loss bounds, Kernels.

1 Introduction

In recent years, we have witnessed increasing interests on both online learning and
kernel learning. Online learning refers to the learning process of answering a sequence
of questions given the feedback of correct answers to previous questions and possibly
some additional prior information [26]; Kernel learning aims to identify an effective
kernel for a given learning task [19, 27, 12]. A well-known kernel learning method is
Multiple Kernel Learning (MKL) [3, 27], that seeks the combination of multiple kernels
in order to optimize the performance of kernel based learning methods (e.g., Support
Vector Machines (SVM)).

Although kernel trick has been explored in online learning [10, 7], it is often assumed
that kernel function is given apriori. In this work, we address a a new research prob-
lem, Online Multiple Kernel Learning (OMKL), which aims to simultaneously learn
multiple kernel classifiers and their linear combinations from a pool of given kernels in
an online fashion. Compared to the exiting methods for multiple kernel learning (see
[31] and reference therein), online multiple kernel learning is computationally advan-
tageous in that it only requires going through training examples once. We emphasize

M. Hutter et al. (Eds.): ALT 2010, LNAI 6331, pp. 390–404, 2010.
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that online multiple kernel learning is significantly more challenging than typical online
learning because both the optimal kernel classifiers and their linear combinations have
to be learned simultaneously in an online fashion.

In this paper, we consider two different setups for online multiple kernel learning. In
the first setup, termed as Online Multiple Kernel Learning by Predictions or OMKL-P,
its objective is to combine the binary predictions from multiple kernel classifiers. The
second setup, termed as Online Multiple Kernel Learning by Outputs or OMKL-O, im-
proves OMKL-P by combining the real-valued outputs from multiple kernel classifiers.
Our online learning framework for multiple kernel learning is based on the combination
of two types of online learning techniques: the Perceptron algorithm [24] that learns a
classifier for a given kernel, and the Hedge algorithm [9] that linearly combines multi-
ple classifiers. Based on the proposed framework, we present two types of approaches
for each setup of OMKL , i.e., deterministic and stochastic approaches. The determin-
istic approach updates each kernel classifier for every misclassified example, while the
stochastic approach chooses a subset of classifiers for updating based on certain sam-
pling strategies. Mistake bounds are derived for all the proposed algorithms for online
kernel learning.

The rest of this paper is organized as follows. Section 2 reviews the related work
on both online learning and kernel learning. Section 3 overviews the problem of online
multiple kernel learning. Section 4 presents the algorithms for Online Multiple Ker-
nel Learning by Predictions and their mistake bounds; Section 5 presents algorithms
for Online Multiple Kernel Learning by Outputs and their mistake bounds. Section 6
concludes this study with future work.

2 Related Work

Our work is closely related to both online learning and kernel learning. Below we
briefly review the important work in both areas.

Extensive studies have been devoted to online learning for classification. Starting
from Perceptron algorithm [1, 24, 22], a number of online classification algorithms
have been proposed including the ROMMA algorithm [20], the ALMA algorithm [11],
the MIRA Algorithm [8], the NORMA algorithm [16, 15], and the online Passive-
Aggressive algorithms [7]. Several studies extended the Perceptron algorithm into a
nonlinear classifier by the introduction of kernel functions [16, 10]. Although these al-
gorithms are effective for nonlinear classification, they usually assume that appropriate
kernel functions are given apriori, which limits their applications. Besides online clas-
sification, our work is also related to online prediction with expert advices [9, 21, 29].
The most well-known work is probably the Hedge algorithm [9], which was a direct
generalization of Littlestone and Warmuth’s Weighted Majority (WM) algorithm [21].
We refer readers to the book [4] for the in-depth discussion of this subject.

Kernel learning has been actively studied thanks to the great successes of kernel
methods, such as support vector machines (SVM) [28, 25]. Recent studies of kernel
learning focus on learning an effective kernel automatically from training data. Var-
ious algorithms have been proposed to learn parametric or semi-parametric kernels
from labeled and/or unlabeled data. Example techniques include cluster kernels [5],
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diffusion kernels [17], marginalized kernels [14], graph-based spectral kernel learn-
ing approaches [32, 13], non-parameric kernel learning [12, 6], and lower-rank kernel
learning[18]. Among various approaches for kernel learning, Multiple Kernel Learn-
ing(MKL) [19], whose goal is to learn an optimal combination of multiple kernels,
has emerged as a promising technique. A number of approaches have been proposed
to solve the optimization problem related to MKL, including the conic combination
approach via regular convex optimization [19], the semi-infinite linear program (SILP)
approach [27], the Subgradient Descent approach [23], and the recent level method [30].

We emphasize that although both online learning and kernel learning have been ex-
tensively studied, little work has been done to address online kernel learning, especially
online multiple kernel learning. To the best of our knowledge, this is the first theoretic
study that addresses the OMKL problem.

3 Online Multiple Kernel Learning

Before presenting the algorithms for online multiple kernel learning, we first briefly de-
scribe the Multiple Kernel Learning (MKL) problem. Given a set of training examples
DT = {(xt, yt), t = 1, . . . , T} where yt ∈ {−1,+1}, t = 1, . . . , T , and a collection of
kernel functions Km = {κi : X ×X → R, i = 1, . . . ,m}, our goal is to identify the op-
timal combination of kernel functions, denoted by u = (u1, · · · , um)�, that minimizes
the margin classification error. It is cast as the following optimization problem:

min
u∈Δ

min
f∈Hκu

1
2
‖f‖2

Hκu
+ C

T∑
t=1

�(f(xt), yt) (1)

where Hκ denotes the reproducing kernel Hilbert space defined by kernel κ, Δ denotes
a simplex, i.e. Δ = {θ ∈ Rm

+ |
∑m

i=1 θi = 1}, and

κu(·, ·) =
m∑

j=1

ujκj(·, ·), �(f(xt), yt) = max(0, 1 − ytf(xt))

It can also be cast into the following minimax problem:

min
u∈Δ

max
α∈[0,C]T

{
T∑

t=1

αt − 1
2
(α ◦ y)�

(
m∑

i=1

uiK
i

)
(α ◦ y)

}
(2)

where Ki ∈ Rn×n with Ki
j,l = κi(xj , xl), y = (y1, · · · , yT )�, and ◦ is the element-

wise product between two vectors.
The formulation for batch mode multiple kernel learning in (1) aims to learn a single

function in the space of Hκu . It is well recognized that solving the optimization problem
in (1) is in general computationally expensive. In this work, we aim to alleviate the
computational difficulty of multiple kernel learning by online learning that only needs
to scan through training examples once.

The following theorem allows us to simplify this problem by decomposing it into two
separate tasks, i.e., learning (i) a classifier for each individual kernel, and (ii) weights
that combine the outputs of individual kernel classifier to form the final prediction.
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Theorem 1. The optimization problem in (1) is equivalent to

min
u∈Δ,{fi∈Hκi

}m
i=1

m∑
i=1

ui

2
‖fi‖2

Hκi
+ C

T∑
t=1

�

(
m∑

i=1

uifi(xt), yt

)
(3)

Proof. It is important to note that problem in (3) is non-convex, and therefore we can
not directly deploy the standard approach to convert it into its dual form. In order to
transform (3) into (1), we rewrite �(z, y) = max

α∈[0,1]
α(1− yz), and rewrite (3) as follows

min
u∈Δ

min
{fi∈Hκi

}m
i=1

max
α∈[0,C]T

m∑
i=1

ui

2
‖fi‖2

Hκi
+

T∑
t=1

αt

(
1 − yt

m∑
i=1

uifi(xt)

)
Since the problem is convex in fi and concave in α, we can switch the minimization of
fi with the maximization of α. By taking the minimization of fi, we have

fi(·) =
T∑

t=1

αtytκi(xt, ·), i = 1, . . . ,m

and the resulting optimization problem becomes

min
u∈Δ

max
α∈[0,C]T

T∑
t=1

αt −
m∑

i=1

ui

2
(α ◦ y)�Ki(α ◦ y),

which is identical to the optimization problem of batch mode multiple kernel learning
in (2).

Based on the results of the above theorem, our strategy toward online kernel learning is
to simultaneously learn a set of kernel classifiers fi, i = 1, . . . ,m and their combination
weighs u. We consider two setups for Online Multiple Kernel Learning (OMKL). In the
first setup, termed Online Multiple Kernel Learning by Predictions (OMKL-P), we sim-
plify the problem by only considering combining the binary predictions from multiple
kernel classifiers, i.e., ŷ =

∑m
i=1 uisign(fi(x)). In the second setup, termed Online

Multiple Kernel Learning by Outputs (OMKL-O), we learn to combine the real-valued
outputs from multiple kernel classifiers, i.e. ŷ =

∑m
i=1 uifi(x). In the next two sec-

tions, we will discuss algorithms and theoretic properties for OMKL-P and OMKL-O,
respectively.

For the convenience of analysis, throughout the paper, we assume κi(x, x) ≤ 1 for all
the kernel functions κi(·, ·) and for any example x. Below we summarize the notations
that are used throughout this paper:

– DT = {(xt, yt), t = 1, . . . , T} denotes a sequence of T training examples. Km =
{κi : X × X → R, i = 1, . . . ,m} denotes a collection of m kernel functions.

– ft(·) = (f t
1(·), · · · , f t

m(·))� denotes the collection of m classifiers in round t,
where f t

i (·) represents the classifier learned using the kernel κi(·, ·). For the pur-
pose of presentation, we use ft, f t

i for short. ft(x) = (f t
1(x), · · · , f t

m(x))� denotes
the real-valued outputs on example x by the m classifiers learned in round t, and
sign(ft(x)) = (sign(f t

1(x)), · · · , sign(f t
m(x)))� denotes the binary predictions by

the corresponding classifiers on example x.
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– wt = (wt
1, · · · , wt

m)� denotes the weight vector for the m classifiers in round t;
Wt =

∑m
i=1 w

t
i represents the sum of weights in round t; qt = (qt

1, . . . , q
t
m)�

denotes the normalized weight vector, i.e. qt
i = wt

i/Wt.
– zt = (zt

1, · · · , zt
m)� denotes the indicator vector, where zt

i = I(ytf
t
i (xt) ≤ 0)

indicates if the ith kernel classifier makes a mistake on example xt, where I(C)
outputs 1 when C is true and zero otherwise.

– mt = (mt
1, · · · ,mt

m)� denotes the 0-1 random variable vector, where mt
i ∈ {0, 1}

indicates if the ith kernel classifier is chosen for updating in round t.
– pt = (pt

1, · · · , pt
m)� denotes a probability vector, i.e. pt

i ∈ [0, 1].
– a · b denotes the dot-product between vector a and vector b, 1 denotes a vector

with all elements equal to 1, and 0 denotes a vector with all elements equal to 0.
– Multi Sample(pt) denotes a multinomial sampling process following the probabil-

ity distribution pt ∈ Δ that outputs it ∈ {1, . . . ,m}. Bern Sample(pt
i) denotes a

Bernoulli sampling process following the probability pt
i that outputs a binary vari-

able mt
i ∈ {1, 0}.

4 Algorithms for Online Kernel Learning by Predictions
(OMKL-P)

4.1 Deterministic Approaches(DA)

As already pointed out, the main challenge of OMKL is that both the kernel classifiers
and their combination are unknown. The most straightforward approach is to learn a
classifier for each individual kernel function and decide its combination weight based
on the number of mistakes made by the kernel classifier. To this end, we combine the
Perceptron algorithm and the Hedge algorithm together. In particular, for each kernel,
the Perceptron algorithm is employed to learn a classifier, and the Hedge algorithm is
used to update its weight. Algorithm 1 shows the deterministic algorithm for OMKL-P.

The theorem below shows the mistake bound for Algorithm 1. For the convenience
of presentation, we define the optimal margin error for kernel κi(·, ·) with respect to a
collection of training examples DT as:

g(κi, �) = min
f∈Hκi

(
‖f‖2

Hκi
+ 2

T∑
t=1

�(f(xt), yt)

)
Theorem 2. After receiving a sequence of T training examples DT , the number of
mistakes made by running Algorithm 1 is bounded as follows

M =
T∑

t=1

I (qt · zt ≥ 0.5) ≤ 2 ln(1/β)
1 − β

min
1≤i≤m

g(κi, �) +
2 lnm

1 − β
(4)

The proof for the theorem as well as the following theorems is sketched in the
Appendix.

Note that in Algorithm 1 the weight for each individual kernel classifier is based on
whether they classify the training example correctly. An alternative approach for up-
dating the weights is to take into account the output values of {f t

i }m
i=1 by penalizing a
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Algorithm 1. DA for OMKL-P (1)
1: INPUT:

– Kernels: Km

– Discount weight: β ∈ (0, 1)
2: Initialization: f1 = 0, w1 = 1
3: for t = 1, 2, . . . do
4: Receive an instance xt

5: Predict: ŷt = sign (qt · sign(ft(xt)))
6: Receive the class label yt

7: for i = 1, 2, . . . , m do
8: Set zt

i = I(ytf
t
i (xt) ≤ 0)

9: Update wt+1
i = wt

iβ
zt

i

10: Update f t+1
i = f t

i + zt
iytκi(xt, ·)

11: end for
12: end for

Algorithm 2. DA for OMKL-P (2)
1: INPUT:

– Kernels: Km

– Discount weight: β ∈ (0, 1)
– Max-misclassification level: γ > 0

2: Initialization: f1 = 0, w1 = 1
3: for t = 1, 2, . . . do
4: Receive an instance xt

5: Predict: ŷt = sign (qt · sign(ft(xt)))
6: Receive the class label yt

7: for i = 1, 2, . . . , m do
8: Set zt

i = I(ytf
t
i (xt) ≤ 0), νt

i =
zt

i(1/2 + min(γ,−ytf
t
i (xt)))

9: Update wt+1
i = wt

iβ
νi(t)

10: Update f t+1
i = f t

i + zt
iytκi(xt, ·)

11: end for
12: end for

kernel classifier more if its degree of misclassification, measured by −ytf
t
i (xt), is large.

To this end, we present the second version of the deterministic approach for OMKL-
P in Algorithm 2 that takes into account the value of {f t

i }m
i=1 when updating weights

{wi}m
i=1. In this alternate algorithm, we introduce the parameter γ, which can be inter-

preted as the maximum level of misclassification. The key quantity introduced in Algo-
rithm 2 is νt

i that measures the degree of misclassification by 1/2+ min(γ,−ytf
t
i (x)).

Note that we did not directly use −ytf
t
i (x) for updating weights {wi}m

i=1 because it is
unbounded.

Theorem 3. After receiving a sequence of T training examples DT , the number of
mistakes made by Algorithm 2 is bounded as follows

M =
T∑

t=1

I (qt · zt ≥ 0.5) ≤ 2(1/2 + γ) ln(1/β)
1 − β1/2+γ

min
1≤i≤m

g(κi, �) +
4(1/2 + γ) lnm

1 − β1/2+γ

The proof is essentially similar to that of Theorem 2 with the modification that addresses
variable νi(t) introduced in Algorithm 2.

One problem with Algorithm 1 is how to decide an appropriate value for β. A
straightforward approach is to choose β that minimizes the mistake bound, leading to
the following corollary.

Corollary 4. By choosing β =

√
min

1≤i≤m

∑T
t=1 zt

i√
min

1≤i≤m

∑
T
t=1 zt

i+
√

lnm
, we have the following mistake

bound

M ≤ 2

(
min

1≤i≤m
g(κi, �) + lnm + 2

√
min

1≤i≤m
g(κi, �) lnm

)
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Proof. Followed by inequality in (4), we have

M ≤ 2
β

min
1≤i≤m

T∑
t=1

zt
i +

2 lnm

1 − β

where we use ln(1/β) ≤ 1/β − 1. By setting the derivative of the above upper bound
with respect to β to zero, and using the inequality

∑T
t=1 z

t
i ≤ g(κi, �) as shown in the

appendix, we have the result.

Directly using the result in Corollary 4 is unpractical because it requires foreseeing the
future to compute the quantity min

1≤i≤m

∑T
t=1 z

t
i . We resolve this problem by exploiting

the doubling trick [4]. In particular, we divide the sequence 1, 2, . . . , T into s segments:

[T0 + 1 = 1, T1], [T1 + 1, T2], . . . , [Ts−1 + 1, Ts = T ]

such that min
1≤i≤m

∑Tk+1
t=Tk+1 z

t
i ≤ 2k for k = 0, . . . , s − 2, s − 1, and equality holds for

k = 0, 1, · · · , s− 2. Now, for each segment [Tk + 1, Tk+1], we introduce a different β,
denote by βk, and set its value as

βk =
2k/2

√
lnm + 2k/2

, k = 0, . . . , s − 1 (5)

The following theorem shows the mistake bound of Algorithm 1 with such β.

Theorem 5. By running Algorithm 1 with βk specified in (5), we have the following
mistake bound

M ≤2

(
min

1≤i≤m
g(κi, �) + lnm +

2√
2 − 1

√
min

1≤i≤m
g(κi, �) lnm

)

+ 2
⌈
log2

(
min

1≤i≤m
g(κi, �)

)⌉
lnm

where #x$ computes the smallest integer that is larger than or equal to x.

4.2 Stochastic Approaches

The analysis in the previous section allows us to bound the mistakes when classifying
examples with a mixture of kernels. The main shortcoming with the deterministic ap-
proach is that in each round, all the kernel classifiers have to be checked and potentially
updated if the training example is classified incorrectly. This could lead to a high com-
putational cost when the number of kernels is large. In this section, we present stochastic
approaches for online multiple kernel learning that explicitly address this challenge.

Single Update Approach(SUA). Algorithm 3 shows a stochastic algorithm for OMKL-
P. In each round, instead of checking every kernel classifier, we sample a single kernel
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classifier according to the weights that are computed based on the number of mistakes
made by individual kernel classifiers. However, it is important to note that rather than
using qt

i directly to sample one classifier to update, we add a smoothing term δ/m to
the sampling probability pt

i, This smoothing term guarantees a low bound for pt
i, which

ensures that each kernel classifier will be explored with at least certain amount of prob-
ability, which is similar to methods for the multi-arm bandit problem [2] to ensure the
tradeoff between exploration and exploitation. The theorem below shows the mistake
bound of Algorithm 3.

Theorem 6. After receiving a sequence of T training examples DT , the expected num-
ber of mistakes made by Algorithm 3 is bounded as follows

E[M ] = E

[
T∑

t=1

I (qt · zt ≥ 0.5)

]
≤ 2m ln(1/β)

δ(1 − β)
min

1≤i≤m
g(κi, �) +

2m lnm

δ(1 − β)

Remark. Comparing to the mistake bound in Theorem 2 by Algorithm 1, the mistake
bound by Algorithm 3 is amplified by a factor of m/δ due to the stochastic procedure of
updating one out of m kernel classifiers. The smoothing parameter δ essentially controls
the tradeoff between efficacy and efficiency. To see this, we note that the bound for
the expected number of mistakes is inversely proportional to δ; in contrast, the bound

for the expected number of updates E
[∑T

t=1
∑m

i=1 m
t
iz

t
i

]
= E

[∑T
t=1

∑m
i=1 p

t
iz

t
i

]
≤

(1 − δ)E
[∑T

t=1
∑m

i=1 q
t
iz

t
i

]
+ δT has a leading term δT when δ is large, which is

proportional to δ.

Multiple Updates Approach(MUA). Compared with the deterministic approaches,
the stochastic approach, i.e. the single update algorithm, does significantly improve the
computational efficiency. However, one major problem with the single update algorithm
is that in any round, only one single kernel classifier is selected for updating. As a
result, the unselected but possibly effective kernel classifiers lose their opportunity for
updating. This issue is particularly critical at the beginning of an online multiple kernel
learning task where most individual kernel classifiers could perform poorly.

In order to make a better tradeoff between efficacy and efficiency, we develop another
stochastic algorithm for online multiple kernel learning. The main idea of this new
algorithm is to randomly choose multiple kernel classifiers for updating and predictions.
Instead of choosing a kernel classifier from a multinomial distribution, the updating
of each individual kernel classifier is determined by a separate Bernoulli distribution
governed by pt

i for each classifier. The detailed procedure is shown in Algorithm 4. The
theorem below shows the mistake bound of the multiple updates algorithm.

Theorem 7. After receiving a sequence of T training examples DT , the expected num-
ber of mistakes made by Algorithm 4 is bounded as follows

E[M ] = E

[
T∑

t=1

I (qt · zt ≥ 0.5)

]
≤ 2 ln(1/β)

δ(1 − β)
min

1≤i≤m
g(κi, �) +

2 lnm

δ(1 − β)
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Algorithm 3. SUA for OMKL-P
1: INPUT:

– Kernels: Km

– Discount weight: β ∈ (0, 1)
– Smoothing parameter: δ ∈ (0, 1)

2: Initialization: f1 = 0, w1 = 1, p1 = 1
m

3: for t = 1, 2, . . . do
4: Receive an instance xt

5: Predict: ŷt = sign
(
qt · sign(ft(xt))

)
6: Receive the class label yt

7: it=Multi Sample(pt)
8: for i = 1, 2, . . . , m do
9: Set mt

i = I(i = it)
10: Set zt

i = I(ytf
t
i (xt) ≤ 0)

11: Update wt+1
i = wt

iβ
mt

izt
i

12: Update f t+1
i = f t

i +mt
iz

t
iytκi(xt, ·)

13: end for
14: Update pt+1 = (1− δ)qt+1 + δ1/m
15: end for

Algorithm 4. MUA for OMKL-P
1: INPUT:

– Kernels: Km

– Discount weight: β ∈ (0, 1)
– Smoothing parameter: δ ∈ (0, 1)

2: Initialization: f1 = 0, w1 = 1, p1 = 1
3: for t = 1, 2, . . . do
4: Receive an instance xt

5: Predict: ŷt = sign
(
qt · sign(ft(xt))

)
6: Receive the class label yt

7: for i = 1, 2, . . . , m do
8: Sample mt

i = Bern Sample(pt
i)

9: Set zt
i = I(ytf

t
i (xt) ≤ 0)

10: Update wt+1
i = wt

iβ
mt

izt
i

11: Update f t+1
i = f t

i +mt
iz

t
iytκi(xt, ·)

12: end for
13: Update pt+1 = (1− δ)qt+1 + δ1
14: end for

Remark. Compared to the mistake bound in Theorem 2 by Algorithm 1, the mistake
bound by Algorithm 4 is amplified by a factor of 1/δ due to the stochastic procedure.
On the other hand, compared to the mistake bound of single update in Theorem 6,
the mistake bound by Algorithm 4 is improved by a factor of m, mainly due to si-
multaneously updating multiple kernel classifiers in each round. The expected num-

ber of updates for multiple updates approach is bounded by E
[∑T

t=1
∑m

i=1 m
t
iz

t
i

]
=

E
[∑T

t=1
∑m

i=1 p
t
iz

t
i

]
≤ (1 − δ)E

[∑T
t=1

∑m
i=1 q

t
iz

t
i

]
+ δmT , where the first term is

discounted by a factor of m and the second term is amplified by a factor of m compared
to that of single update approach.

5 Algorithms for Online Multiple Kernel Learning by Outputs
(OMKL-O)

5.1 A Deterministic Approach

In the following analysis, we assume the functional norm of any classifier fi(·) is
bounded by R, i.e., ‖fi‖Hκi

≤ R. We define domain Ωκi as Ωκi = {f ∈ Hκi :
‖f‖Hκi

≤ R}. Algorithm 5 shows the deterministic algorithm for OMKL-O. Com-
pared to Algorithm 1, there are three key features of Algorithm 5. First, in step 11,
the updated kernel classifier fi(·) is projected into domain Ωκi to ensure its norm is
no more than R. This projection step is important for the proof of the mistake bound
that will be shown later. Second, each individual kernel classifier is updated only when
the prediction of the combined classifier is incorrect i.e., ytŷt ≤ 0. This is in contrast
to the Algorithm 1, where each kernel classifier f t

i (·) is updated when it misclassifies
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the training example xt. This feature will make the proposed algorithm significantly
more efficient than Algorithm 1. Finally, in step 9 of Algorithm 5, we update weights
wt+1

i based on the output f t
i (xt). This is in contrast to Algorithm 1 where weights are

updated only based on if the individual classifiers classify the example correctly.

Theorem 8. After receiving a sequence of T training examples DT , the number of
mistakes made by Algorithm 5 is bounded as follows if R2 ln(1/β) < 1

M ≤ 1
1 − R2 ln(1/β)

min
u∈Δ,{fi∈Ωκi

}m
i=1

g (u, {fi}m
i=1) +

2 lnm

(1 − R2 ln(1/β)) ln(1/β)

where g (u, {fi}m
i=1) =

∑m
i=1 ui‖fi‖2

Hκi
+ 2

∑T
t=1 � (u · f(xt), yt).

Using the result in Theorem 1, we have the following corollary that bounds the number
of mistakes of online kernel learning by the objective function used in the batch mode
multiple kernel learning.

Corollary 9. We have the following mistake bound for running Algorithm 5 if the in-
equality R2 ln(1/β) < 1 holds

M ≤ 1
1 − R2 ln(1/β)

min
u∈Δ,f∈Ωκ(u)

g (κ(u), �) +
2 lnm

(1 − R2 ln(1/β)) ln(1/β)

where g (κ(u), �) = ‖f‖2
Hκ(u)

+ 2
∑T

t=1 � (f(xt), yt).

5.2 A Stochastic Approach

Finally, we present a stochastic strategy in Algorithm 6 for OMKL-O. In each round,
we randomly sample one classifier to update by following the probability distribution
pt. Similar to Algorithm 3, the probability distribution pt is a mixture of the normalized
weights for classifiers and a smoothing term δ/m. Different from Algorithm 5, the up-
dating rule for Algorithm 6 has two additional factors, i.e. m̃t

i which is non-zero for the
chosen classifier and has expectation equal to 1, and the step size η which is essentially
introduced to ensure a good mistake bound as shown in the following theorem.

Theorem 10. After receiving a sequence of T training examples DT , the expected num-
ber of mistakes made by Algorithm 6 is bounded as follows

E[M ] ≤ min
u∈Δ,{fi∈Ωκi

}m
i=1

T∑
t=1

� (u · f(xt), yt) + 2
√

a(R, β, δ)b(R, β, δ)T

where a(R, β, δ) =
R2

2
+

lnm

ln(1/β)
, b(R, β, δ) =

ln(1/β)R2m2

2δ2 +
m

2δ
, and η is set to

η =

√
a(R, β, δ)
b(R, β, δ)
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Algorithm 5. DA for OMKL-O
1: INPUT:

– Kernels: Km

– Discount weight: β ∈ (0, 1)
– Maximum functional norm: R

2: Initilization: f1 = 0,w1 = 1
3: for t = 1, 2, . . . do
4: Receive an instance xt

5: Predict: ŷt = sign
(
qt · ft(xt)

)
6: Receive the class label yt

7: if ŷtyt ≤ 0 then
8: for i = 1, 2, . . . , m do
9: Update wt+1

i = wt
iβ

−ytft
i (xt)

10: Update f̃ t+1
i = f t

i + ytκi(xt, ·)
11: Project f̃ t+1

i into Ωκi by

f t+1
i = f̃ t+1

i /max(1, ‖f̃ t+1
i ‖Hκi

/R)

12: end for
13: end if
14: end for

Algorithm 6. SUA for OMKL-O
1: INPUT:

– Km, β, R as in Algoirthm 5
– Smoothing parameter δ ∈ (0, 1), and

Step size: η > 0
2: Initialization: f1 = 0, w1 = 1,p1 = 1/m
3: for t = 1, 2, . . . do
4: Receive an instance xt

5: Predict: ŷt = sign
(
qt · ft(xt)

)
6: Receive the class label yt

7: if ŷtyt ≤ 0 then
8: it=Multi Sample(pt)
9: for i = 1, 2, . . . , m do

10: Set mt
i = I(i = it), m̃t

i = mt
i/pt

i

11: Update wt+1
i = wt

iβ
−ηm̃t

iytft
i (xt)

12: Update f̃ t+1
i = f t

i +ηm̃t
iytκi(xt, ·)

13: Project f̃ t+1
i (x) into Ωκi .

14: end for
15: Update pt = (1− δ)qt + δ1/m
16: end if
17: end for

6 Conclusions

This paper investigates a new research problem, online multiple kernel learning, which
aims to attack an online learning task by learning a kernel based prediction function
from a pool of predefined kernels. We consider two setups for online kernel learning,
online kernel learning by predictions that combines the binary predictions from multiple
kernel classifiers and online kernel learning by outputs that combines the real-valued
outputs from kernel classifiers. We proposed a framework for OMKL by learning a
combination of multiple kernel classifiers from a pool of given kernel functions. We
emphasize that OMKL is generally more challenging than typical online learning be-
cause both the kernel classifiers and their linear combination are unknown. To solve
this challenge, we propose to combine two online learning algorithms, i.e., the Percep-
tron algorithm that learns a classifier for a given kernel, and the Hedge algorithm that
combines classifiers by linear weighting. Based on this idea, we present two types of
algorithms for OMKL, i.e., deterministic approaches and stochastic approaches. Theo-
retical bounds were derived for the proposed OMKL algorithms.
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Appendix

Proof of Theorem 2

Proof. The proof essentially combines the proofs of the Perceptron algorithm [24] and
the Hedge algorithm [9]. First, following the analysis in [9], we can easily have

T∑
t=1

qt · zt ≤ ln(1/β)
1 − β

min
1≤i≤m

T∑
t=1

zt
i +

lnm

1 − β

Second, due to the convexity of � and the updating rule for fi, when zt
i = 1 we have

�(f t
i (xt), yt) − �(f(xt), yt) ≤ −yt〈f t

i − f, zt
iκi(xt, ·)〉Hκi

= −〈f t
i − f, f t+1

i − f t
i 〉Hκi

≤ 1
2

(
‖f t

i − f‖2
Hκi

− ‖f t+1
i − f‖2

Hκi
+ zt

i

)
Since �(f t

i (xt), yt) ≥ zt
i , then zt

i ≤ ‖f t
i − f‖2

Hκi
− ‖f t+1

i − f‖2
Hκi

+ 2�(f(xt), yt).
Taking summation on both sides, we have

T∑
t=1

zt
i ≤ min

f∈Hκi

T∑
t=1

(
‖f t

i − f‖2
Hκi

− ‖f t+1
i − f‖2

Hki

)
+ 2

T∑
t=1

�(f(xt), yt) ≤ g(κi, �)

Using the above inequality and noting that M =
∑T

t=1 I (qt · zt ≥ 0.5) ≤ 2
∑T

t=1 qt ·
zt, we have the result in the theorem.

Proof of Theorem 3

Proof. The proof can be constructed similarly to the proof for Theorem 2 by noting the
following three differences. First, the updating rule for the weights can be written as
wt+1

i = wt
i(β

1/2+γ)νt
i /(1/2+γ), where νt

i ≤ 1/2 + γ. Second,
∑

i q
t
iν

t
i ≥

∑
i q

t
iz

t
i/2.

Third, we have �(f t
i (xt), yt) ≥ νi(t) + zi(t)/2, and therefore

T∑
t=1

νt
i ≤ g(κi, �)/2.
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Proof of Theorem 5

Proof. We denote by Mk the number of mistakes made during the segment [Tk +
1, Tk+1]. It can be shown that the following equality

Mk ≤ 2

⎛⎝ min
1≤i≤m

Tk+1∑
t=Tk+1

zt
i + lnm + 2

√
lnm2k/2

⎞⎠ ,

holds for any k = 0, . . . , s− 1. Taking summation over all Mk

M =
s−1∑
k=0

Mk ≤ 2

⎛⎝s−1∑
k=0

⎡⎣ min
1≤i≤m

Tk+1∑
t=Tk+1

zt
i + 22k/2

√
lnm

⎤⎦⎞⎠ + 2s lnm

we can obtain the bound in the theorem by noting that
∑s−1

k=0 min
1≤i≤m

∑Tk1
t=Tk+1 z

t
i ≤

min
1≤i≤m

∑T
t=1 z

t
i , and 2s−1 − 1 ≤ min

1≤i≤m

∑T
t=1 z

t
i ≤ min

1≤i≤m
g(κi, �).

Proof of Theorem 6

Proof. Similar to the proof for Theorem 2, we can prove

T∑
t=1

m∑
i=1

qt
im

t
iz

t
i ≤ ln(1/β)

1 − β

T∑
t=1

mt
iz

t
i +

lnm

1 − β
, and

T∑
t=1

mt
iz

t
i ≤ g(κi, �)

Taking expectation on both sides, and noting that E[mt
i] = pt

i ≥ δ/m, we have

E

(
T∑

t=1

qt · zt

)
≤ m ln(1/β)

δ(1 − β)
min

1≤i≤m
g(κi, �) +

m lnm

δ(1 − β)

Since M ≤ 2
∑T

t=1 qt · zt, we have the result stated in the theorem.

Proof of Theorem 7

Proof. The proof can be duplicated similarly to the proof for Theorem 6, except for
pt

i ≥ δ, i = 1, . . . ,m in this case.

Proof of Theorem 8

Proof. In the following analysis, we only consider the subset of iterations where the
algorithm makes a mistake. By slightly abusing the notation, we denote by 1, 2, . . . ,M
the trials where the examples are misclassified by Algorithm 5. For any combination
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weight u = (u1, · · · , um)� ∈ Δ and any kernel classification function fi ∈ Ωκi , i =
1, . . . ,m, we have

�
(
qt · ft(xt), yt

)
− �

(
u · f(xt), yt

)
≤ gtyt (qt · ft(xt) − u · f(xt))

= gtyt (qt · ft(xt) − u · ft(xt)) + gtyt (u · ft(xt) − u · f(xt))

where gt = ∂ max(0,1−z)
∂z

∣∣∣
z=ytqt·ft(xt)

= −1 because examples are misclassified in

these trials. For the first term, following the proof for Theorem 11.3 in [4], we can have

gtyt(qt − u) · ft(xt) ≤ ln(1/β)
2

R2 +
1

ln(1/β)
{KL(u‖qt) − KL(u‖qt+1)}

For the second term, following the analysis in the proof for Theorem 2, we can have

gtyt (u · ft(xt) − u · f(xt)) =
m∑

i=1

ui〈f i
t − f i, gtytκi(xt, ·)〉Hκi

≤ 1
2

+
m∑

i=1

ui

2

(
‖f t

i − fi‖2
Hκi

− ‖f t+1
i − fi‖2

Hκi

)
Combining the above results together and noting � (qt · ft(xt), yt) ≥ 1, we can have
the result in the theorem.

Proof of Theorem 10

Proof. Similar to the proof for the Theorem 8, we have the following bound for the two
terms

E [gtyt (qt · ft(xt) − u · ft(xt))] =
1
η
E
[
gtyt(qt − ut) ·

(
ηm̃t ◦ ft(xt)

)]
≤ 1

η ln(1/β)
E [KL(u‖q(t)) − KL(u‖q(t + 1))] +

ln(1/β)R2η2m2

2δ2

E [gtytu · (ft(xt) − f(xt))] = E
m∑

i=1

ui

η

〈
f t

i − fi, ηm̃
t
igtytκi(xt, ·)

〉
Hκi

≤ mη

2δ
+ E

[
m∑

i=1

ui

2η
(‖f t

i − fi‖2
Hκi

− ‖f t+1
i − fi‖2

Hκi
)

]

Combining the above results together, and setting η as in the theorem, we have the result
in the theorem.
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Abstract. This paper provides a probabilistic derivation of an identity
connecting the square loss of ridge regression in on-line mode with the
loss of a retrospectively best regressor. Some corollaries of the identity
providing upper bounds for the cumulative loss of on-line ridge regression
are also discussed.

1 Introduction

Ridge regression is a powerful technique of machine learning. It was introduced
in [9]; the kernel version of it is derived in [15].

Ridge regression can be used as a batch or on-line algorithm. This paper proves
an identity connecting the square losses of ridge regression used on the same data
in batch and on-line fashions. The identity and the approach to the proof are not
entirely new. The identity implicitly appears in [2] for the linear case (it can be
obtained by summing (4.21) from [2] in an exact rather than estimated form).
The proof method based essentially on Bayesian estimation features in [10],
which focuses on probabilistic statements and stops one step short of formulating
the identity. In this paper we put it all together, explicitly formulate the identity
in terms of ridge regression, and give a simple proof for the kernel case. The
identity is obtained by calculating the likelihood in a Gaussian processes model
by different ways. Another proof of this fact is given in unpublished technical
report [18].

We use the identity to derive several inequalities providing upper bounds for
the cumulative loss of ridge regression applied in the on-line fashion. Corollaries 2
and 3 deal with ‘clipped’ ridge regression. The later reproduces Theorem 4.6 from
[2] (this result is often confused with Theorem 4 in [17], which, in fact, provides
a similar bound for an essentially different algorithm). Corollary 4 (reproduced
from [18]) shows that in the linear case the loss of (unclipped) on-line ridge
regression is asymptotically close to the loss of a retrospectively best regressor.

In the literature there is a range of specially designed regression-type algo-
rithms with better worst-case bounds or bounds covering wider cases. Aggre-
gating algorithm regression (also known as Vovk-Azoury-Warmuth predictor) is
described in [17], [2], and Section 11.8 of [6]. Theorem 1 in [17] provides an up-
per bound for aggregating algorithm regression, which is better than the bound
given by Corollary 3 for clipped ridge regression. The bound from [17] has also
been shown to be optimal. The exact relation between the performances of ridge

M. Hutter et al. (Eds.): ALT 2010, LNAI 6331, pp. 405–419, 2010.
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regression and aggregating algorithm regression is not known. Theorem 3 in [17]
describes a case where aggregating algorithm regression performs better, but in
the case of unbounded signals. An important class of regression-type algorithms
achieving different bounds is based on the gradient descent idea; see [5], [11], and
Section 11 in [6]. Algorithms in [8] and [4] provide regression-type algorithms
dealing with changing dependencies.

The paper is organised as follows. Section 2 introduces kernels and kernel
ridge regression in batch and on-line settings. We take the simplest approach
and use an explicit formula to introduce ridge regression. Section 3 contains the
statement of the identity and Section 4 discusses corollaries of the identity. The
rest of the paper is devoted to the proof of the identity. Section 5 introduces a
probabilistic interpretation of ridge regression in the context of Gaussian fields
and Section 6 contains the proof. Section 7 contains an outline of an alternative
proof based on the aggregating algorithm.

2 Kernel Ridge Regression in On-Line and Batch Settings

2.1 Kernels

A kernel on a domain X , which is an arbitrary set with no structure assumed, is a
symmetric positive semi-definite function of two arguments, i.e., K : X×X → R

such that

1. for all x1, x2 ∈ X we have K(x1, x2) = K(x2, x1) and
2. for any positive integer T , any x1, x2, . . . , xT ∈ X and any real numbers

α1, α2, . . . , αT ∈ R we have
∑T

i,j=1 K(xi, xj)αiαj ≥ 0.

An equivalent definition can be given as follows. There is a Hilbert space F of
functions on X such that

1. for every x ∈ X the function K(x, ·), i.e., K considered as a function of the
second argument with the first argument fixed, belongs to F and

2. for every x ∈ X and every f ∈ F the value of f at x equals the scalar
product of f by K(x, ·), i.e., f(x) = 〈f,K(x, ·)〉F ; this property is often
called the reproducing property.

The second definition is sometimes said to specify a reproducing kernel. The
space F is called the reproducing kernel Hilbert space (RKHS) for the kernel K
(it can be shown that the RKHS for a kernel K is unique). The equivalence of
the two definitions is proven in [1].

2.2 Regression in Batch and On-Line Settings

Suppose that we are given a sample of pairs

S = ((x1, y1), (x2, y2), . . . , (xT , yT )) ,
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where all xt ∈ X are called signals and yt ∈ R are called outcomes for the
corresponding signals. A pair (xt, yt) is called an example.

The task of regression is to fit a function (usually from a particular class) to
the data. The method of kernel ridge regression with a kernel K and a real reg-
ularisation parameter a > 0 suggests the function fRR(x) = Y ′(K + aI)−1k(x),
where Y = (y1, y2, . . . , yT )′ is the column vector of outcomes,

K =

⎛⎜⎜⎜⎝
K(x1, x1) K(x1, x2) . . . K(x1, xT )
K(x2, x1) K(x2, x2) . . . K(x2, xT )

...
...

. . . . . .
K(xT , x1) K(xT , x2) . . . K(xT , xT )

⎞⎟⎟⎟⎠
is the kernel matrix and

k(x) =

⎛⎜⎜⎜⎝
K(x1, x)
K(x2, x)

...
K(xT , x)

⎞⎟⎟⎟⎠ .

Note that the matrix K is positive-semidefinite by the definition of a kernel,
therefore the matrix K + aI is positive-definite and thus non-singular.

It is easy to see that fRR(x) is a linear combination of functions K(xt, x)
(note that x does not appear outside of k(x) in the ridge regression formula)
and therefore it belongs to the RKHS F specified by the kernel K. It can be
shown that on this f the minimum of the expression

∑T
t=1(f(x) − yt)2 + a‖f‖2

F
(where ‖ · ‖F is the norm in F) over all f from the RKHS F is achieved.

Suppose now that the sample is given to us example by example. For each
example we are shown the signal and then asked to produce a prediction for
the outcome. One can say that the learner operates according to the following
protocol:

Protocol 1
for t = 1, 2, . . .
read signal xt

output prediction γt

read true outcome yt

endfor

This learning scenario is called on-line or sequential. The scenario when the
whole sample is given to us at once as before is called batch to distinguish it
from on-line.

One can apply ridge regression in the on-line scenario in the following nat-
ural way. On step t we form the sample St from the t − 1 known examples
(x1, y1), (x2, y2), . . . , (xt−1, yt−1) and output the prediction suggested by the
ridge regression function for this sample.

For the on-line scenario we will use the same notations as in the batch mode
but with the index t denoting the time. Thus Kt is the kernel matrix on step t
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(note that its size is (t−1)×(t−1)), Yt is the vector of outcomes y1, y2, . . . , yt−1,
and kt is k(x) for step t. We will be referring to the prediction output by on-line
ridge regression on step t as γRR

t .

3 The Identity

Theorem 1. Take a kernel K on a domain X and a parameter a > 0. Let F
be the RKHS for the kernel K. For a sample (x1, y1), (x2, y2), . . . , (xT , yT ) let
γRR
1 , γRR

2 , . . . , γRR
T be the predictions output by ridge regression with the kernel

K and the parameter a in the on-line mode. Then

T∑
t=1

(γRR
t − yt)2

1 + dt/a
= min

f∈F

(
T∑

t=1

(f(xt) − yt)2 + a‖f‖2
F

)
= aY ′(KT+1 + aI)−1Y ,

where dt = K(xt, xt) − k′t(xt)(Kt + aI)−1kt(xt) > 0 and all other notation is as
above.

The left-hand side term in this equality is close to the cumulative squared loss
of ridge regression in the on-line mode. The difference is in the denominators 1+
dt/a. The values dt have the meaning of variances of ridge regression predictions
according to the probabilistic view discussed below.

Note that the minimum in the middle term is attained on f specified by batch
ridge regression knowing the whole sample. It is thus nearly the squared loss of
the retrospectively best fit f ∈ F .

The right-hand side term is a simple closed-form expression.

4 Corollaries

In this section we use the identity to obtain upper bounds on cumulative losses
of on-line algorithms.

It is easy to obtain a basic multiplicative bound on the loss of on-line ridge
regression. The matrix (Kt+aI)−1 is positive-definite as the inverse of a positive-
definite, therefore k′t(xt)(Kt+aI)−1kt(xt) ≥ 0 and dt ≤ K(xt, xt). Assuming that
there is cF > 0 such that K(x, x) ≤ c2F on X (i.e., the evaluation functional on
F is uniformly bounded by cF), we get

T∑
t=1

(γRR
t − yt)2 ≤

(
1 +

c2F
a

)
min
f∈F

(
T∑

t=1

(f(xt) − yt)2 + a‖f‖2
F

)
=

a

(
1 +

c2F
a

)
Y ′(KT+1 + aI)−1Y . (1)

More interesting bounds can be obtained on the following assumption. Suppose
that we know in advance that outcomes y come from an interval [−Y, Y ], and Y
is known to us. It does not make sense then to make predictions outside of the
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interval. One may consider clipped ridge regression, which operates as follows.
For a given signal the ridge regression prediction γRR is calculated; if it falls
inside the interval, it is kept; if it is outside of the interval, it is replaced by the
closest point from the interval. Denote the prediction of clipped ridge regression
by γRR,Y . If y ∈ [−Y, Y ] indeed holds, then (γRR,Y − y)2 ≤ (γRR − y)2 and
(γRR,Y − y)2 ≤ 4Y 2.

Corollary 2. Take a kernel K on a domain X and a parameter a > 0. Let F be
the RKHS for the kernel K. For a sample (x1, y1), (x2, y2), . . . , (xT , yT ) such that
yt ∈ [−Y, Y ] for all t = 1, 2, . . . , T , let γRR,Y

1 , γRR,Y
2 , . . . , γRR,Y

T be the predictions
output by clipped ridge regression with the kernel K and the parameter a in the
on-line mode. Then

T∑
t=1

(γRR,Y
t − yt)2 ≤

min
f∈F

(
T∑

t=1

(f(xt) − yt)2 + a‖f‖2
F

)
+ 4Y 2 ln det

(
I +

1
a
KT+1

)
,

where KT+1 is as above.

Proof. We have
1

1 + dt/a
= 1 − dt/a

1 + dt/a

and
dt/a

1 + dt/a
≤ ln(1 + dt/a) ;

indeed, for b ≥ 0 the inequality b/(1 + b) ≤ ln(1 + b) holds and can be checked
by differentiation. Therefore

T∑
t=1

(γRR,Y
t − yt)2 =

T∑
t=1

(γRR,Y
t − yt)2

1
1 + dt/a

+
T∑

t=1

(γRR,Y
t − yt)2

dt/a

1 + dt/a

≤
T∑

t=1

(γRR
t − yt)2

1
1 + dt/a

+ 4Y 2
T∑

t=1

ln(1 + dt/a) .

Lemma 7 proved below yields
T∏

t=1

(1 + dt/a) =
1
aT

det(KT+1 + aI) = det
(
I +

1
a
KT+1

)
.

��
There is no sublinear upper bound on the regret term 4Y 2 ln det

(
I + 1

aKT+1
)

in the general case; indeed, consider the kernel

δ(x1, x2) =

{
1 if x1 = x2;
0 otherwise.

However we can get good bounds in special cases.
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It is shown in [16] that for the radial-basis kernel K(x1, x2) = e−b‖x1−x2‖2
,

where x1, x2 ∈ Rd, we can get an upper bound on average. Suppose that all
xs are independently identically distributed according to the Gaussian distribu-
tion with the mean of 0 and variance of cI. Then for the expectation we have
E ln det

(
I + 1

aKT+1
)

= O((ln T )d+1) (see Section IV.B in [16]). This yields a
bound on the expected loss of clipped ridge regression.

Consider the linear kernel K(x1, x2) = x′
1x2 defined on column vectors from

Rn. We have K(x, x) = ‖x‖2, where ‖ · ‖ is the quadratic norm in Rn. The
reproducing kernel Hilbert space is the set of all linear functions on Rn. We
have Kt = X ′

tXt, where XT+1 is the design matrix made up of column vectors
x1, x2, . . . , xT . The Sylvester determinant identity (see, e.g., [7]) implies that

det
(
I +

1
a
X ′

T+1XT+1

)
= det

(
I +

1
a
XT+1X

′
T+1

)
= det

(
I +

1
a

T∑
t=1

xtx
′
t

)
.

Estimating the determinant by the product of its diagonal elements (see, e.g.,
Theorem 7 in Chapter 2 of [3]) and assuming that all coordinates of xt are
bounded by B, we get

det

(
I +

1
a

T∑
t=1

xtx
′
t

)
≤
(

1 +
TB2

a

)n

.

We get the following corollary.

Corollary 3. For a sample (x1, y1), (x2, y2), . . . , (xT , yT ), where xt ∈ [−B,B]n

and yt ∈ [−Y, Y ] for all t = 1, 2, . . . , T , let γRR,Y
1 , γRR,Y

2 , . . . , γRR,Y
T be the pre-

dictions output by clipped linear ridge regression with a parameter a > 0 in the
on-line mode. Then

T∑
t=1

(γRR,Y
t − yt)2 ≤ min

θ∈Rn

(
T∑

t=1

(θ′xt − yt)2 + a‖θ‖2

)
+ 4Y 2n ln

(
1 +

TB2

a

)
.

It is an interesting problem if the bound is optimal. As far as we know, there
is a gap in existing bounds. Theorem 2 in [17] shows that Y 2n lnT is a lower
bound for any learner and in the constructed example ‖xt‖∞ = 1. Theorem 3 in
[17] provides a stronger lower bound, but at a cost of allowing unbounded xs.

For the linear kernel the expression dt/a in the denominator of the identity
can be rewritten as follows:

dt

a
=

1
a

[
K(xt, xt) − k′t(xt)(Kt + aI)−1kt(xt)

]
=

1
a

[
x′

txt − (x′
tXt)(X ′

tXt + aI)−1(X ′
txt)

]
.

We can apply the matrix identity A(BA+ I)−1 = (AB+ I)−1A (it holds if both
the inversions can be performed and can be proven by multiplying both the sides
by BA + I and AB + I and opening up the brackets) and further obtain
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dt

a
=

1
a

[
x′

txt − x′
t(XtX

′
t + aI)−1XtX

′
txt

]
=

1
a

[
x′

t(I − (XtX
′
t + aI)−1XtX

′
t)xt

]
= x′

t(XtX
′
t + aI)−1xt

We will denote XtX
′
t + aI by At. One can easily see that

At = aI +
t−1∑
i=1

xix
′
i = a

n∑
i=1

eie
′
i +

t−1∑
i=1

xix
′
i ,

where ei are unit vectors from the standard basis. If one assumes that the norms
‖xt‖, t = 1, 2, . . . are bounded, one can apply Lemma A.1 from [12] and infer
that x′

tA
−1
t xt → 0 as t → ∞. Note that this convergence does not hold in the

general kernel case. Indeed, if K = δ defined above and all xt are different, we
get dt = 1.

The leftmost side of the identity is thus asymptotically close to the cumulative
loss of on-line ridge regression and the regularised loss of the retrospectively best
regressor in the linear case. We will reproduce a corollary from [18] formalising
this intuition.

Corollary 4. Let xt ∈ Rn, t = 1, 2, . . . and supt=1,2,... ‖xt‖ < ∞; let γRR
t be

the predictions output by on-line ridge regression with the linear kernel and a
parameter a > 0. Then

1. if there is θ ∈ Rn such that
∑∞

t=1(yt − θ′xt)2 < +∞ then

∞∑
t=1

(yt − γRR
t )2 < +∞ ;

2. if for all θ ∈ Rn we have
∑∞

t=1(yt − θ′xt)2 = +∞, then

lim
T→∞

∑T
t=1(yt − γRR

t )2

minθ∈Rn

(∑T
t=1(yt − θ′xt)2 + a‖θ‖2

) = 1 . (2)

Proof. Part 1 follows from bound (1).
Let us prove Part 2. First note that x′

tA
−1
t xt ≥ 0 implies

T∑
t=1

(yt − γRR
t )2 ≥

T∑
t=1

(yt − γRR
t )2

1 + x′
tA

−1
t xt

= min
θ∈Rn

(
T∑

t=1

(yt − θ′xt)2 + a‖θ‖2

)

and thus the fraction in (2) is always greater than or equal to 1.
Let us show that minθ∈Rn

(∑T
t=1(yt − θ′xt)2 + a‖θ‖2

)
→ +∞ as t → ∞.

Suppose that this does not hold. Then there is a sequence Tk and θTk
such

that the expressions
∑Tk

t=1(yt − θ′Tk
xt)2 + a‖θTk

‖2 are bounded. Hence there
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is C < +∞ such that
∑Tk

t=1(yt − θ′Tk
xt)2 ≤ C for all k = 1, 2, . . . and the

norms of θTk
are also bounded uniformly in k. Therefore the sequence θTk

has
a converging subsequence. Let θ0 be the limit of this subsequence. Let us show
that

∑Tk

i=1(yt − θ′0xt)2 ≤ C. Indeed, let
∑Tk

i=1(yt − θ′0xt)2 > C. For sufficiently
large m the sum

∑Tk

i=1(yt − θ′Tm
xt)2 is sufficiently close to

∑Tk

i=1(yt − θ′0xt)2 so
that

Tm∑
i=1

(yt − θ′Tm
xt)2 ≥

Tk∑
i=1

(yt − θ′Tm
xt)2 > C ,

which contradicts
∑Tm

t=1(yt−θ′Tm
xt)2 ≤ C. In the limit we get

∑∞
i=1(yt−θ′0xt)2 ≤

C < +∞, which contradicts the condition of Part 2.
Take ε > 0. There is T0 such that for all T ≥ T0 we have 1+x′

TA
−1
T xT ≤ 1+ε

and

T∑
t=1

(yt − γRR
t )2 =

T0∑
t=1

(yt − γRR
t )2 +

T∑
t=T0+1

(yt − γRR
t )2

≤
T0∑
t=1

(yt − γRR
t )2 + (1 + ε)

T∑
t=1

(yt − γRR
t )2

1 + x′
TA

−1
T xT

=
T0∑
t=1

(yt − γRR
t )2 + (1 + ε) min

θ∈Rn

(
T∑

t=1

(yt − θ′xt)2 + a ‖θ‖2

)
.

Therefore for all sufficiently large T the fraction in (2) does not exceed 1+ε. ��

5 Probabilistic Interpretation

We will prove the identity by means of the probabilistic interpretation of ridge
regression.

Suppose that we have a Gaussian random field1 zx with the means of 0 and the
covariances cov(zx1 , zx2) = K(x1, x2). Such a field exists. Indeed, for any finite set
of x1, x2, . . . , xT our requirements imply the Gaussian distribution with the mean
of 0 and the covariance matrix of K. These distributions satisfy the consistency
requirements and thus the Kolmogorov extension (or existence) theorem (see,
e.g., [13], Appendix 1 for a proof sketch2) can be applied to construct a field
over X .

Let εx be a Gaussian field of mutually independent and independent of zx

random values with the variance σ2. The existence of such a field can be shown
using the same Kolmogorov theorem. Now let yx = zx + εx. Intuitively, εx can
1 We use the term ‘field’ rather than ‘process’ to emphasise the fact that X is not

necessarily a subset of R and its elements do not have to be moments of time; some
textbooks still use the word ‘process’ in this case.

2 Strictly speaking, we do not need to construct the field for the whole X in order to
prove the theorem; is suffices to consider a finite-dimensional Gaussian distribution
of (zx1 , zx2 , . . . , zxT ).
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be thought of as random noise introduced by measurements of the original field
zx.

The learning process can be thought of as estimating the values of the field yt

given the values of the field at sample points. One can show that the conditional
distribution of zx given a sample S = ((x1, y1), (x2, y2), . . . , (xT , yT )) is Gaussian
with the mean of γRR

x = Y ′(K + σ2I)−1k(x) and the variance dx = K(x, x) −
k′(x)(K + σ2I)−1k(x). The conditional distribution of yx is Gaussian with the
same mean and the variance σ2 + K(x, x) − k′(x)(K + σ2I)−1k(x) (see [14],
Section 2.2, p. 17).

If we let a = σ2, we see that γRR
t and a + dt are, respectively, the mean and

the variance of the conditional distributions for yxt given the sample St.

Remark 5. Note that in the statement of the theorem there is no assumption
that the signals xt are pairwise different. Some of them may coincide. In the
probabilistic picture all xs must be different though, or the corresponding prob-
abilities make no sense. This obstacle may be overcome in the following way. Let
us replace the domain X by X ′ = X × N, where N is the set of positive integers
{1, 2, . . .}, and replace xt by x′

t = (xt, t) ∈ X ′. For X ′ there is a Gaussian field
with the covariance function K′((x1, t1), (x2, t2)) = K(x1, x2). The argument
concerning the probabilistic meaning of ridge regression stays for K′ on X ′. We
can thus assume that all xt are different.

6 Proof of the Identity

The proof is based on the Gaussian field interpretation. Let us calculate the
density of the joint distribution of the variables (yx1 , yx2 , . . . , yxT ) at the point
(y1, y2, . . . , yT ). We will do this in three different ways: by decomposing the
density into a chain of conditional densities, marginalisation, and, finally, direct
calculation. Each method will give us a different expression corresponding to a
term in the identity. Since all the three terms express the same density, they
must be equal.

6.1 Conditional Probabilities

We have

pyx1 ,yx2 ,...,yxT
(y1, y2, . . . , yT ) =

pyxT
(yT | yx1 = y1, yx2 = y2, . . . , yxT−1 = yT−1)·

pyx1 ,yx2 ,...,yxT−1
(y1, y2, . . . , yT−1) .

Expanding this further yields

pyx1 ,yx2 ,...,yxT
(y1, y2, . . . , yT ) =

pyxT
(yT | yx1 = y1, yx2 = y2, . . . , yxT−1 = yT−1)·

pyxT−1
(yT | yx1 = y1, yx2 = y2, . . . , yxT−1 = yT−2) · · · pyx1

(y1) .
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As we have seen before, the distribution for yxt given that yx1 = y1, yx2 =
y2, . . . , yxt−1 = yt−1 is Gaussian with the mean of γRR

t and the variance of
dt + σ2. Thus

pyxT
(yt | yx1 = y1, yx2 = y2, . . . , yxt−1 = yt−1) =

1√
2π

1√
dt + σ2

e
− 1

2
(yt−γRR

t )2

dt+σ2

and

pyx1 ,yx2 ,...,yxT
(y1, y2, . . . , yT ) =

1
(2π)T/2

√
(d1 + σ2)(d2 + σ2) . . . (dT + σ2)

e
− 1

2
∑T

t=1
(γRR

t −yt)2

dt+σ2 .

6.2 Dealing with Singular Kernel Matrix

The expression for the second case looks particularly simple for non-singular K.
Let us show that this is sufficient to prove the identity.

All the terms in the identity are in fact some continuous functions of T (T+1)/2
values of K at the pairs of points xi, xj , i, j = 1, 2, . . . , T . Indeed, the values of
γRR

t in the left-hand side expression are ridge regression predictions given by
respective analytic formula. Note that the coefficients of the inverse matrix are
continuous functions of the original matrix.

The optimal function minimising the second expression is in fact fRR(x) =∑T
t=1 ctK(xt, x), where the coefficients ct are continuous functions of the values

of K. The reproducing property implies that

‖fRR‖2 =
T∑

i,j=1

cicj〈K(xi, ·),K(xj , ·)〉F =
T∑

i,j=1

cicjK(xi, xj) .

We can thus conclude that all the expressions are continuous in the values of K.
Consider the kernel Kα(x1, x2) = K(x1, x2) + αδ(x1, x2), where

δ(x1, x2) =

{
1 if x1 = x2;
0 otherwise

and α > 0. Clearly, δ is a kernel and thus Kα is a kernel. If all xt are differ-
ent (recall Remark 5), kernel matrix for Kα equals K + αI and therefore it is
nonsingular.

However the values of Kα tend to the corresponding values of K as α → 0.

6.3 Marginalisation

The method of marginalisation consists of introducing extra variables to ob-
tain the joint density in some manageable form and then integrating over the
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extra variables to get rid of them. The variables we are going to consider are
zx1 , zx2, . . . , zxT .

Given the values of zx1 , zx2, . . . , zxT , the density of yx1 , yx2 , . . . , yxT is easy
to calculate. Indeed, given zs all ys are independent and have the means of
corresponding zs and variances of σ2, i.e.,

pyx1 ,yx2 ,...,yxT
(y1, y2, . . . , yT | zx1 = z1, zx2 = z2, . . . , zxT−1 = zT−1) =

1√
2π

1
σ
e−

1
2

(y1−z1)2

σ2
1√
2π

1
σ
e−

1
2

(y2−z2)2

σ2 · · · 1√
2π

1
σ
e−

1
2

(yT −zT )2

σ2 =

1
(2π)T/2σT

e−
1

2σ2
∑T

t=1(yt−zt)2

The density of zx1, zx2 , . . . , zxT is given by

pzx1 ,zx2 ,...,zxT
(z1, z2, . . . , zT ) =

1
(2π)T/2

√
detKT+1

e−
1
2 Z′K−1

T+1Z ,

where Z = (z1, z2, . . . , zT ), provided KT+1 is nonsingular.
Using

pyx1 ,yx2 ,...,yxT
,zx1 ,zx2 ,...,zxT

(y1, y2, . . . , yT , z1, z2, . . . , zT ) =

pyx1 ,yx2 ,...,yxT
(y1, y2, . . . , yT | zx1 = z1, zx2 = z2, . . . , zxT−1 = zT−1)·

pzx1 ,zx2 ,...,zxT
(z1, z2, . . . , zT )

and

pyx1 ,yx2 ,...,yxT
(y1, y2, . . . , yT ) =∫

RT

pyx1 ,yx2 ,...,yxT
,zx1 ,zx2 ,...,zxT

(y1, y2, . . . , yT , z1, z2, . . . , zT )dZ

we get

pyx1 ,yx2 ,...,yxT
(y1, y2, . . . , yT ) =

1
(2π)T/2σT

1
(2π)T/2

√
detKT+1

∫
RT

e−
1

2σ2
∑T

t=1(yt−zt)2− 1
2 Z′K−1

T+1ZdZ .

To evaluate the integral we need the following lemma (see [3], Theorem 3 of
Chapter 2) .

Lemma 6. Let Q(θ) be a quadratic form of θ ∈ Rn with the positive definite
quadratic part, i.e., Q(θ) = θ′Aθ + θ′b + c, where the matrix A is symmetric
positive definite. Then ∫

Rn

e−Q(θ)dθ = e−Q(θ0) πn/2
√

detA
,

where θ0 = arg minRn Q.
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The quadratic part of the form in our integral has the matrix 1
2K

−1
T+1 + 1

2σ2 I and
therefore

pyx1 ,yx2 ,...,yxT
(y1, y2, . . . , yT ) =

1
(2π)TσT

√
detKT+1

πT/2√
det(1

2K
−1
T+1 + 1

2σ2 I)
×

e−minZ( 1
2σ2

∑T
t=1(yt−zt)2− 1

2 Z′K−1
T+1Z)

We have

√
detKT+1

√
det

(
1
2
K−1

T+1 +
1

2σ2 I

)
=

√
det

(
1
2
I +

1
2σ2KT+1

)
=

1
2T/2σT

√
det(KT+1 + σ2I) .

Let us deal with the minimum. We will link it to

M = min
f∈F

(
T∑

t=1

(f(xt) − yt)2 + σ2‖f‖2
F

)
.

The representer theorem implies that the minimum in the definition of M is
achieved on f from the linear span of K(x1, ·),K(x2, ·), . . . ,K(xT , ·), i.e., on a
function of the form f(x) =

∑T
t=1 ctK(xt, ·). For the column vector Z(x) =

(f(x1), f(x2), . . . , f(xT ))′ we have Z(x) = KT+1C, where C = (c1, c2, . . . , cT )′.
Since KT+1 is supposed to be non-singular, there is a one-to-one correspon-
dence between C and Z(x); we have C = K−1

T+1Z(x) and ‖f‖2
F = C′KT+1C =

Z ′(x)K−1
T+1Z(x). Thus

min
Z

(
1

2σ2

T∑
t=1

(yt − zt)2 +
1
2
Z ′K−1

T+1Z

)
=

1
2σ2M .

For the density we get the expression

pyx1 ,yx2 ,...,yxT
(y1, y2, . . . , yT ) =

1
(2π)T/2

√
det(KT+1 + σ2I)

e−
1

2σ2 M .

6.4 Direct Calculation

One can easily calculate the covariances of ys:

cov(yx1 , yx2) = E(zx1 + εx1)(zx2 + εx2)
= Ezx1zx2 + Eεx1εx2

= K(x1, x2) + σ2δ(x1, x2) .
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Therefore, one can write down the expression

pyx1 ,yx2 ,...,yxT
(y1, y2, . . . , yT ) =

1
(2π)T/2

√
det(KT+1 + σ2I)

e−
1
2 Y ′

T+1(KT+1+σ2I)−1YT+1 .

6.5 Equating the Terms

It remains to take the logarithms of the densities calculated in different ways.
We need the following matrix lemma.

Lemma 7

(d1 + σ2)(d2 + σ2) . . . (dT + σ2) = det(KT+1 + σ2I)

Proof. The lemma follows from Frobenius’s identity (see, e.g., [7]):

det
(
A u
v′ d

)
= (d − v′A−1u) detA ,

where d is a scalar and the submatrix A is non-singular.
We have

det(KT+1 + σ2I) = (K(xT , xT ) + σ2 − k′T (xT )(KT + σ2I)−1kT (xT ))·
det(KT + σ2I)

= (dT + σ2) det(KT + σ2I)
= . . .

= (dT + σ2)(dT−1 + σ2) . . . (d2 + σ2)(d1 + σ2) . ��

We get
T∑

t=1

(γRR
t − yt)2

dt + σ2 =
1
σ2M = Y ′(KT+1 + σ2I)−1Y .

The theorem follows.

7 Alternative Derivations for the Linear Case

In this section we outline alternative ways of obtaining the identity in the linear
case.

A Gaussian field zx with the covariance function x′
1x2 on Rn can be obtained

as follows. Let θ be an n-dimensional Gaussian random variable with the mean
of 0 and the covariance matrix I; let zx = θ′x and yx = zx + εx, where εx is
independent Gaussian with the mean of 0 and the variance of σ2 (recall that we
let σ2 = a). Estimating yx given a sample of pairs (xt, yt) can be thought of as
going from the prior distribution for θ to a posterior distribution. The learning
process described in Section 5 can thus be thought of as Bayesian estimation. It



418 F. Zhdanov and Y. Kalnishkan

can be performed in an on-line fashion (the term ‘sequential’ is more common
in Bayesian statistics): the posterior distribution serves as the prior for the next
step. This procedure leads to the Gaussian distribution for y with the mean
equal to the on-line ridge regression prediction. The linear case is thus a special
case of the kernel case.

There is an entirely different way to look at this procedure; it is based on
the aggregating algorithm (described, e.g., in [17]). Consider the following game
between a predictor and the reality. On step t the reality produces xt; the pre-
dictor sees it and outputs a prediction, which is a Gaussian distribution on R

with the density function pt. Then the reality announces yt and the predictor
suffers loss − ln pt(yt). Suppose that there is a set of experts who play the same
game and we are able to see their predictions before making ours. The aim of
aggregating algorithm is to merge experts’ predictions so as to suffer cumulative
loss comparable to that of the best expert. The game we have described happens
to be perfectly mixable, so the merging can be done relatively easily.

Let us consider a pool of experts Eθ, θ ∈ Rn, such that on step t expert Eθ

outputs the Gaussian distribution with the mean of θ′xt and the variance σ2. The
aggregating algorithm requires a prior distribution on the experts. Let us take
the Gaussian distribution with the mean of 0 and the covariance matrix I. The
distribution is updated on each step; one can show that the update corresponds
to the Bayesian update of the distribution for θ. Finally, it is possible to show that
the distribution output by the aggregating algorithm on step t is the Gaussian
distribution with the mean γt = YtXtA

−1
t xt, i.e., the ridge regression prediction,

and the variance σ2xtA
−1
t xt + σ2, i.e., the conditional variance of yt in the

estimation procedure.
The equality between the first two terms in the identity from Theorem 1 can

be derived from a fundamental property of the aggregating algorithm, namely,
Lemma 1 in [17], which links the cumulative loss of the predictor to experts’
losses. For more details see [18].

An advantage of this approach is that we do not need to consider random
fields, estimation, prior and posterior distributions etc. All probabilities are no
more than weights or predictions. This is arguably more intuitive.
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