

Lecture Notes in Computer Science 6348
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Alan Dearle Roberto V. Zicari (Eds.)

Objects and Databases

Third International Conference, ICOODB 2010
Frankfurt/Main, Germany, September 28-30, 2010
Proceedings

13

Volume Editors

Alan Dearle
University of St Andrews, School of Computer Science
Jack Cole Building, North Haugh, St Andrews, KY16 9SX, UK
E-mail: al@cs.st-andrews.ac.uk

Roberto V. Zicari
Johann-Wolfgang-Goethe University, Institute of Computer Science
Robert-Mayer-Str. 10, 60325 Frankfurt/Main, Germany
E-mail: roberto@zicari.de

Library of Congress Control Number: 2010934756

CR Subject Classification (1998): H.2, H.4, D.2, H.3, H.5, C.2.4

LNCS Sublibrary: SL 3 – Information Systems and Application, incl. Internet/Web
and HCI

ISSN 0302-9743
ISBN-10 3-642-16091-3 Springer Berlin Heidelberg New York
ISBN-13 978-3-642-16091-2 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

springer.com

© Springer-Verlag Berlin Heidelberg 2010
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper 06/3180

Preface

According to Francois Bancillon and Won Kim [SIGMOD RECORD, Vol. 19, No.
4, December 1990], object-oriented databases started in around 1983. Twenty-
seven years later this publication contains the proceedings of the Third Interna-
tional Conference on Object-Oriented Databases (ICOODB 2010).

Two questions arise from this – why only the third, and what is of interest
in the field of object-oriented databases in 2010? The first question is easy – in
the 1980s and 1990s there were a number of conferences supporting the com-
munity – the International Workshops on Persistent Object Systems started by
Malcolm Atkinson and Ron Morrison, the EDBT series, and the International
Workshop on Database Programming Languages. These database-oriented con-
ferences complimented other OO conferences including OOPSLA and ECOOP,
but towards the end of the last century they dwindled in popularity and even-
tually died out.

In 2008 the First International Conference on Object Databases was held in
Berlin. In 2009 the second ICOODB conference was held at the ETH in Zurich
as a scientific peer-reviewed conference.

What is particular about ICOODB is that the conference series was estab-
lished to address the needs of both industry and researchers who had an interest
in object databases, in innovative ways to bring objects and databases together
and in alternatives/extensions to relational databases. The first conference set
the mould for those to follow – a combination of theory and practice with one
day focusing on the theory of object databases and the second focusing on their
practical use and implementation.

The second conference helped re-establish the research agenda in the field of
objects and databases.

This third conference took place in Frankfurt, and continued the tradition
set forth in Zurich as a scientific peer-reviewed conference. The key goal of the
2010 conference remained to bring together developers, users, and researchers in
objects and database technologies.

So what of the second question – what is of interest in the field of object-
oriented databases in 2010? This is more complex. Firstly, the management
of large bodies of programs and data that are potentially long-lived is of the
upmost social and economic importance. We have an increased and increasing
need for technologies that support the design, construction, maintenance, and
operation of long-lived, concurrently accessed, and potentially large bodies of
data and programs. A recent (2007) quote from Microsoft illustrates the current
technological situation well:

“Most programs written today manipulate data in one way or another and of-
ten this data is stored in a relational database. Yet there is a huge divide be-
tween modern programming languages and databases in how they represent and

VI Preface

manipulate information. This impedance mismatch is visible in multiple ways.
Most notable is that programming languages access information in databases
through APIs that require queries to be specified as text strings. These queries
are significant portions of the program logic. Yet they are opaque to the language,
unable to benefit from compile-time verification and design-time features like In-
telliSense.” [Kulkarni, D., Bolognese, L., Warren, M., Hejlsberg, A., George, K.:
LINQ to SQL: .NET Language-Integrated Query for Relational Data.
http://msdn.micro soft.com/en-gb/library/bb425822.aspx (2007)]

Secondly, the world has changed since 1983 (pre-Web) and database appli-
cations are pretty much the norm in the Web space of 2010. Most of these
applications are being coded in object-oriented languages, primarily Java but
also in .Net languages such as C# and hybrid languages such as Python and
Ruby. These Web-based database applications have complex data management
needs. As stated on the ICOODB 2008 Web pages, “Object databases are the
right choice for a certain class of application, to save developers cost and time
and help them to build more feature rich OO applications”. Such applications
are a new driver for the development of OODB systems.

Another 21st century driver is mobile application systems. Smart devices
such as iPhones are now ubiquitous. These all have complex database require-
ments – both for local (mobile) databases and those associated with Web servers;
highlighting the variations in scale that database systems must address – from
small databases to support personal data up to large scientific databases. We
require appropriate technologies to address both these domains and all those in
between.

In the 1980s the data-models such as hierarchical and relational were char-
acterized by having a strong separation between schema and data. Since then
new data-models have arrived with a much looser relationship between schema
and data. Many of the persistent and object-oriented systems of the last three
decades have featured such a loose relationship. This trend has been continued
in semi-structured databases, which have recently become prevalent, fuelled by
the Web, XML, and the need to model and compute over richer data sets.

This need has also fuelled another trend – the so-called NoSQL model that in
turn is driven by another trend namely cloud computing. Like semi-structured
databases, the NoSQL data models move away from the traditional relational
data model favouring instead horizontally partitioned collections of records.
NoSQL databases typically do not provide an SQL query language and instead
rely upon the ability to perform massively parallel computation against the data.

Lastly, the use of hybrid object-relational technologies remains strong. Typ-
ically data represented in object-oriented language is mapped to and from a
relational schema. Such Object-Relational Mapping (ORM) technologies are an
important feature of the 21st Century Web Service provision.

The ICOODB 2010 program committee recognized that the world of data
management is changing. We therefore expanded the focus of ICOODB 2010 to
include new areas that are becoming hot topics both in academia and indus-
try, such as the linkage to service platforms, operation within scalable (cloud)

Preface VII

platforms, object-relational bindings, NoSQL databases, and new approaches to
concurrency control.

These recent trends in what might be termed alternative database technolo-
gies are reflected in the papers that we have selected for the third ICOODB.

Three of the papers relate to ORM. One, “Solving ORM by MAGIC: MAp-
ping GeneratIon and Composition,” is related to the problem of maintaining the
mappings between objects and relations – a problem that has been called the
Vietnam of Computer Science [The Vietnam of Computer Science, Ted Neward –
June 26, 2006 ODBMS.ORG (www.odbms.org)]. The second, “Closing Schemas
in Object-Relational Databases,” is concerned with schema closure – that is
ensuring that the types used in a particular domain are complete in that the ob-
jects involved in a computation do not contain references to types that are not
defined outside that domain. The last, “A Comperative Study of the Features
and Performance of ORM Tools in a .NET Environment,” combines two areas –
a comparative study of the ORM techniques used within the .Net environment.

XML semi-structured data models are addressed in one paper entitled “Object-
Oriented Constraints for XML Schema.” This paper examines the type system
of XML schema and proposes an object-oriented assertion language that is ca-
pable of expressing concepts such as range constraints, keys, and referential
integrity that are not normally expressible in a programming language. This pa-
per addresses the problem domain of expressing object-XML rather than object-
relational mappings.

The mapping of data models onto Web-based systems is addressed in the
paper “Data Model Driven Implementation of Web Cooperation Systems with
Tricia.” The paper demonstrates the benefits, namely expressiveness, modular-
ity, and reuse, derived from the use of a data modeling framework by appli-
cation developers. The development cycle of data-intensive application systems
is also examined in the paper entitled “Revisiting Schema Evolution in Object
Databases in Support of Agile Development.”

Querying and data models remain another mainstay of the database world
and the proceedings contain two papers on that topic. One of these, “A Flex-
ible Object Model and Algebra for Uniform Access to Object Databases,” is
concerned with query optimization in embedded language contexts. The other,
“Query Optimization by Result Caching in the Stack-Based Approach,” relates
to query algebras for object databases.

Scientific database applications in the domains of genomic, multimedia, and
geo-spatial data have requirements for handling complex binary data objects that
are highly structured, large, and of variable length. This domain is the subject of
“iBLOB: Complex Object Management in Databases through Intelligent Binary
Large Objects” which combines the domains of application programming and
type systems and proposes both a new conceptual framework and a novel data
type.

The paper “The Case for Object Databases in Cloud Data Management” is
very forward-looking. The author argues that there are strong indicators that
the full potential of cloud computing data management can only be leveraged

VIII Preface

by exploiting object database technologies. The paper examines the challenges
of cloud computing data management and shows the opportunities for object
database technologies. Perhaps this will be the start of a whole new research
domain unanticipated by the early object database pioneers such as Bancillon,
Kim, and Atkinson in the 1980s.

July 2010 Alan Dearle
Roberto V. Zicari

Organization

Steering Committee

Mike Card Syracuse Research, USA
Rick Cattell Independent Consultant, USA
William R. Cook University of Texas at Austin, USA
Stefan Edlich TFH Berlin, Germany
Anat Gafni db4objects, USA
Robert Greene Versant Corporation, USA
Leon Guzenda Objectivity Inc., USA
Moira C. Norrie ETH Zurich, Switzerland
James Paterson Glasgow Caledonian University, UK
Roberto V. Zicari Goethe University Frankfurt, Germany

Conference Organization

ICOODB 2010 was organized by the database group (DBIS) at the Institute of
Computer Science, Goethe University Frankfurt in cooperation with ODBMS.ORG
(www.odbms.org).

General Chair

Roberto V. Zicari Goethe University Frankfurt, Germany

Scientific Program Chairs

Alan Dearle University of St Andrews, Scotland
Roberto V. Zicari Goethe University Frankfurt, Germany

Industrial Track Chairs

Anat Gafni db4objects, USA
Roberto V. Zicari Goethe University Frankfurt, Germany

Tutorial Track Chairs

Beat Signer Vrije Universiteit Brussel, Belgium
Jim Paterson Glasgow Caledonian University, UK

X Organization

Workshops Chairs

Stefan Edlich TFH Berlin, Germany
Jim Paterson Glasgow Caledonian University, UK

Demonstrations and Posters Chairs

Stefan Edlich TFH Berlin, Germany
Roberto V. Zicari Goethe University Frankfurt, Germany

Local Organization

Natascha Hoebel Goethe University Frankfurt, Germany
Naveed Mushtaq Goethe University Frankfurt, Germany
Clemens Schefels Goethe University Frankfurt, Germany
Marion Terrell Goethe University Frankfurt, Germany
Karsten Tolle Goethe University Frankfurt, Germany

Program Committee

Suad Alagic University of Southern Maine, USA
William R. Cook University of Texas at Austin, USA
Suzanne W. Dietrich Arizona State University, USA
Manfred Jeuseld Tilburg University, The Netherlands
David Jordan SAS Institute, Inc., Germany
Michael Grossniklaus Politecnico di Milano, Italy
Giovanna Guerrini University of Genoa, Italy
Theo Härder TU Kaiserslautern, Germany
Natascha Hoebel Goethe University Frankfurt, Germany
Daniel Lieuwen Google Inc., USA
Moira C. Norrie ETH Zurich, Switzerland
Tore J.M. Risch University of Uppsala, Sweden
Elke A. Rundensteiner Worcester Polytechnic Institute, USA
Clemens Schefels Goethe University Frankfurt, Germany
Nicolas Spyratos University of Paris South, France
Kazimierz Subieta Polish-Japanese Institute of Tech., Poland
Karsten Tolle Goethe University Frankfurt, Germany
Susan D. Urban Arizona State University, USA

Additional Referees

Sebastian Bächle
Véronique Benzaken
Vassilis Christophides

Dimitris Kotzinos
Viet Phan-Luong

Karsten Schmidt
Andreas Weiner

Organization XI

Sponsoring Institutions

Versant Corporation
db4objects
InterSystems Corporation
IBM Deutschland
sones

Supported by

DBIS - Institute of Informatics, Goethe University Frankfurt
Goethe University Frankfurt
ODBMS.ORG

Media Partners

CRC Press Taylor and Francis
OBJEKTspektrum
Apress

Table of Contents

Keynotes

Search Computing Challenges and Directions . 1
Stefano Ceri, Daniele Braga, Francesco Corcoglioniti,
Michael Grossniklaus, and Salvatore Vadacca

Searching the Web of Objects . 6
Ricardo Baeza-Yates

Unifying Remote Data, Remote Procedures, and Web Services 8
William R. Cook

Keynote Panel: “New and Old Data Stores” (Abstract) 9
Ulf Michael Widenius, Michael Keith, Patrick Linskey,
Robert Greene, Leon Guzenda, and Peter Neubauer

Regular Papers

Revisiting Schema Evolution in Object Databases in Support of Agile
Development . 10

Tilmann Zäschke and Moira C. Norrie

The Case for Object Databases in Cloud Data Management 25
Michael Grossniklaus

Query Optimization by Result Caching in the Stack-Based Approach . . . 40
Piotr Cybula and Kazimierz Subieta

A Flexible Object Model and Algebra for Uniform Access to Object
Databases . 55

Michael Grossniklaus, Alexandre de Spindler,
Christoph Zimmerli, and Moira C. Norrie

Data Model Driven Implementation of Web Cooperation Systems with
Tricia . 70

Thomas Büchner, Florian Matthes, and Christian Neubert

iBLOB: Complex Object Management in Databases through Intelligent
Binary Large Objects . 85

Tao Chen, Arif Khan, Markus Schneider, and Ganesh Viswanathan

Object-Oriented Constraints for XML Schema . 100
Suad Alagić, Philip A. Bernstein, and Ruchi Jairath

XIV Table of Contents

Solving ORM by MAGIC: MApping GeneratIon and Composition 118
David Kensche, Christoph Quix, Xiang Li, and Sandra Geisler

Closing Schemas in Object-Relational Databases . 133
Manuel Torres, José Samos, and Eladio Garv́ı

A Comparative Study of the Features and Performance of ORM Tools
in a .NET Environment . 147

Stevica Cvetković and Dragan Janković

Author Index . 159

Search Computing Challenges and Directions

Stefano Ceri, Daniele Braga, Francesco Corcoglioniti,
Michael Grossniklaus, and Salvatore Vadacca

Dipartimento di Elettronica e Informazione, Politecnico di Milano
P.za Leonardo Da Vinci, 32

I-20133 Milano, Italy
{ceri,braga,corcoglioniti,grossniklaus,vadacca}@elet.polimi.it

Abstract. Search Computing (SeCo)1 is a project funded by the Eu-
ropean Research Council (ERC). It focuses on building the answers to
complex search queries like “Where can I attend an interesting conference
in my field close to a sunny beach?” by interacting with a constellation
of cooperating search services, using ranking and joining of results as
the dominant factors for service composition. SeCo started on November
2008 and will last 5 years. This paper will give a general introduction to
the Search Computing approach and then focus on its query optimiza-
tion and execution engine, the aspect of the project which is most tightly
related to “objects and databases” technologies.

1 Introduction

Search engine technology provides worldwide users with the ability to get to the
“best” Internet pages with the simplest possible query language. However, this
simple query paradigm shows its limits when search is complex and the query
cannot be compressed to keywords, or the query results are complex and cannot
be included into a single page.

Performing a complex search process with a conventional search engine chal-
lenges the user’s ability to break the process into several tasks, then interacting
with the search engine multiple times, and then mentally reconstructing a global
solution. Normally, each task can be made small enough to address a single do-
main. However, the answer of the global process is usually based upon compar-
isons and trade-offs which span over the various domains of interest, and require
compositional activities performed in the user’s mind (maybe augmented with
notes). Such processes take place routinely, but they are far from being supported
by current technology.

We define search computing systems [1] as a new class of systems aimed at
responding to multi-domain queries, i.e., queries over multiple semantic fields of
interest. Such systems support users in expressing complex queries, then decom-
posing queries into subqueries that can be addressed to a specific data source,
then assembling complete results from partial answers, and making sure that the

1 http://www.search-computing.eu

A. Dearle and R.V. Zicari (Eds.): ICOODB 2010, LNCS 6348, pp. 1–5, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

http://www.search-computing.eu

2 S. Ceri et al.

order in which complete results are produced takes into account their “global”
ranking. In addition to generic search engines, this process may also involve
more specific data sources and search systems. In accordance with the current
software trends, we assume that component systems will be accessible through
service interfaces, possibly hiding data management languages.

Building such systems requires solving many research problems. First, data
sources must be semantically described so as to enable a query understand-
ing and decomposition process. Then, a rank-aware query execution technology
should support scalable and efficient query execution execution. Then, query re-
sults should be made available to users, in formats which allow their browsing
and their comparative visualization. All these research areas are present in the
SeCo project, together with many other research focuses, describing interaction
aspects, rank-join theory, application design methods and scenarios, design tools,
business and legal models.

This paper focuses on the query optimization and execution engine, which
exhibits many interesting properties from a systems’ perspective.

2 Query Optimization and Execution Engine

In this section, we describe Panta Rhei, the physical query algebra and runtime
used in the SeCo query processor. We start by introducing the underlying data
and control models, and then describe the topology of query execution plans,
that are graphs consisting of nodes that represent operands (units) and edges
that represent the data and control flow. We then define all types of edges and
units in detail. Finally, we describe how query plans can be composed by giving
a minimal set of recursive rewriting rules to define the concept of a well-formed
plan. An overview of the concepts of Panta Rhei is given in Figure 1.

Search ServiceExact Service Joiner Continuous SortSelection

Start Node Stop Node Blocking SortParallel Strategy Pipe Strategy

A
Z

Data Edge

σ
A
Z

Command Edge Feedback Edge Query Execution Plan

QEP

Fig. 1. Panta Rhei concepts

Search Computing Challenges and Directions 3

2.1 Data and Control Flow

The data model is based on an abstraction that represents the underlying data
sources in terms of access patterns that define a list of input, output and ranked
attributes which can be atomic or set-valued. Result tuples are progressively
composed by using service results as the query evaluation progresses. The data
flow of a query execution plan consists of data edges that form a directed
acyclic graph. Every data edge carries tuples whose schema is obtained as the
concatenation of all the schemes of the services which are invoked by antecedent
nodes of that edge.

The control model of the execution engine addresses the fact that, in Search
Computing, query processing involves a wide scope of data sources, ranging from
traditional databases to Web services and search engines. If the query planner
and optimizer can rely on accurate data statistics and estimations of the behavior
of the data sources involved in a query, it is possible to completely specify the
execution of a query at compile-time. However, if this information is not available
at compile-time, the control model must be flexible enough to adapt at run-time.
Moreover, plans which want to guarantee optimality (top-k) must adapt their
behavior to the actual ranking values which are read from service results. The
control flow of a query execution plan is bidirectional and comprises command
edges and feedback edges to support both forward and backward scheduling
of plans. The forward control flow transports instructions to a query execution
plan indicating how the tuples in input must be considered by the plan, the
backward control flow reports as feedback statistical data characterizing the
plan execution.

2.2 Query Execution Plans

A query execution plan (QEP) is a component that accepts an incoming data
and control flow edge and produces a data and control flow edge in output. The
incoming data edge transmits chunks of tuples in input to the QEP, while the
outgoing data edge transmits chunks of tuples to a downstream query execution
plan or to the stop node. The incoming control edge expresses how the tuples in
input should be processed within the QEP. The outgoing control edge transmits
feedback data about the execution of the QEP.

The start node injects the constant values specified by the query into the
query execution plan along the data flow edge. Additionally, it transmits the
“start command” along the control flow edge. Apart from acting as a sink for
all feedbacks, the stop node collects the results of a query execution plan and
makes them available to clients of the execution engine. There is exactly one
start and one end node per query.

The parallel and pipe strategy unit control two query execution plans
that perform a parallel or pipe join, respectively, as illustrated in Figure 2.
A parallel execution plan is built by two QEPs which are invoked in parallel,
followed by a joiner unit which receives chunks of tuples from two different
QEPs and joins them as instructed by the parallel strategy unit. In contrast, a

4 S. Ceri et al.

pipe execution plan is built by two QEPs which are invoked in sequence. The
join of results is implicitly performed by the second QEP, whose input data flow
is produced by the first QEP. In both cases, the actual strategy of the strategy
unit depends on whether the query execution plan is scheduled in forward or
backward manner. Forward strategies are static, completely pre-configured by an
optimizer. Backward strategies are dynamic and internally generated or altered.

QEP QEP

QEP

QEP

Fig. 2. QEPs for pipe and parallel joins

In our model, data sources are classified in two neatly distinguished cate-
gories, called search and exact services. While this classification is of course a
simplification, it is capable of capturing the characteristics of most actual ser-
vices. Accordingly, the search and exact service units invoke services of the
respective types, using the given input to return result tuples. Search services
exhibit a behavior similar to Web search engines: results are unbound, ranked
and chunked, and normally there is no need to obtain a complete result, but only
the first chunks. Exact services produce a finite set of tuples that represent the
exact (and thus complete) response to the service call with the given the input
parameters. The output tuples are neither ranked nor chunked.

The blocking sort unit buffers all chunk flowing along its input data edge
until it receives the EOF message. At that point, it sorts the tuples across all
chunks according to a given sort function and emits a sorted output, structured
as a series of new chunks of a configurable size. In contrast, the continuous sort
unit sorts data on a per-chunk basis as the data flows along a data edge. Each
chunk in input corresponds to one sorted chunk in output, containing the same
tuples. The selection unit filters chunks of tuples according to a configured
selection predicate. Since the selection unit does not re-chunk the tuples, the
chunk size can decrease due to the selectivity of the given predicate.

2.3 Plan Composition

The following set of production rules defines how QEPs can be recursively sub-
stituted to compose more complex plans. The axiom QEP consists of a single
service unit with a start node as predecessor and a stop node as successor. Rules
indicate that the pipe or parallel composition of two QEPs gives a QEP, and that
a QEP can be composed with any unary units (i.e. units with a single input and

Search Computing Challenges and Directions 5

output data and control flow) yielding a QEP. Plans obtained by arbitrary ap-
plications of these rules to the axiom are called well-formed and have associated
well-defined semantics.

QEP := ∨ QEP := QEP ��pipe QEP
QEP := QEP ∪ { A

Z , A
Z , } QEP := QEP ��parallel QEP

2.4 Example

The example query shown in Fig. 3 searches for a good and recent adventure
movie in a theater not too far from the user’s home and a good restaurant nearby.

Movie

Theater

Restaurant

(1,10,R)

(1,1,T)

Fig. 3. A simple example query

The query execution plan uses a pipe join strategy unit to schedule the outer
join. The first sub-plan of the outer pipe join is the parallel join of the movie
and theater services. The results of these fetches are combined by the joiner unit
and forwarded to the second sub-plan of the outer pipe join, i.e., the restaurant
service.

3 Conclusion

Panta Rhei is the core component of a complete architecture for building search
computing systems that process queries over data sources ranging from tradi-
tional databases to Web services and search engines. Our engine effectively op-
timizes the combination of data sources in two ways, namely through pipe and
parallel joins. The controllers of these operations implement several strategies
that guarantee good performance by limiting the performance bottleneck of ser-
vice calls. In future work, we plan to port the current implementation to a tuple
space environment in order to obtain a scalable Panta Rhei implementation for
cloud computing.

References

1. Ceri, S., Brambilla, M. (eds.): Search Computing: Challenges and Directions.
Springer, Heidelberg (March 2010)

Searching the Web of Objects

Ricardo Baeza-Yates

Yahoo! Research, Barcelona, Spain

Abstract. We present a pragmatic approach to search the Web of Ob-
jects, that is, a Web where entities such as people or places are recognized
and exploited. We outline a search architecture where information extrac-
tion and semantic technologies play key roles. This architecture has to
cope with incompleteness as well as noise to expand the capabilities of
current search engines. The main open problems for research are related
with recognizing the entities in the query and ranking objects. We show
some of these ideas through features or demos already available.

1 Summary

The Web of Objects (WOO) is a new way of organizing Web content in terms
of entities and relationships between them. That is, a Web page is now a set of
objects and relations among them. The WOO is related to the Semantic Web
initiative and the Open Linking Data project1 is one of the best examples of
what could be this Web in the future. Important basic objects are entities like
persons, places, dates, etc. This is also called the Web of Concepts [7]. Notice
that the WOO is different from the Web of Things, which are physical objects
that contain embedded devices connected to Internet that are integrated through
the Web.

Searching the WOO implies several challenges, at pre-processing time and at
query time, as we outline in [4]. At pre-processing time the main ones are:

1. Object crawling.
2. Object extraction [6,8].
3. Object disambiguation as well as object reconciliation.
4. Object normalization.

At query time we need to:

1. Extract objects from the query and the context of the search.
2. Predict the intent of the query [1,9].
3. Ranking the objects matching the query [13].
4. Laying out the answer (not trivial when we have multiple object types).

1 URL:
http://esw.w3.org/topic/SweoIG/TaskForces/

CommunityProjects/LinkingOpenData

A. Dearle and R.V. Zicari (Eds.): ICOODB 2010, LNCS 6348, pp. 6–7, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

http://esw.w3.org/topic/SweoIG/TaskForces/CommunityProjects/Linking\discretionary {-}{}{}OpenData
http://esw.w3.org/topic/SweoIG/TaskForces/CommunityProjects/Linking\discretionary {-}{}{}OpenData

Searching the Web of Objects 7

To these problems we have to add horizontal ones like scalability, on-line per-
formance and the integration of the social dimension [11]. More details on these
challenges can be found in [5].

Important tools to solve these problems include machine learning applied to
information extraction (e.g. see [10]), semantic Web technology [3] and Web
usage mining [2,12].

References

1. Baeza-Yates, R., Calderón-Benavides, L., González-Caro, C.: The intention behind
Web queries. In: Crestani, F., Ferragina, P., Sanderson, M. (eds.) SPIRE 2006.
LNCS, vol. 4209, pp. 98–109. Springer, Heidelberg (2006)

2. Baeza-Yates, R., Tiberi, A.: Extracting Semantic Relations from Query Logs. In:
ACM KDD 2007, San Jose, California, USA, pp. 76–85 (August 2007)

3. Baeza-Yates, R., Mika, P., Zaragoza, H.: Search, Web 2.0, and the Semantic Web.
In Trends and Controversies: Near-Term Prospects for Semantic Technologies. In:
Benjamins, R. (ed.) IEEE Intelligent Systems, vol. 23 (1), pp. 80–82 (2008)

4. Baeza-Yates, R., Ciaramita, M., Mika, P., Zaragoza, H.: Towards Semantic Search.
In: Kapetanios, E., Sugumaran, V., Spiliopoulou, M. (eds.) NLDB 2008. LNCS,
vol. 5039, pp. 4–11. Springer, Heidelberg (2008)

5. Baeza-Yates, R., Raghavan, P.: Next Generation Web Search. In: Ceri, S., Brambilla,
M. (eds.) SearchComputing. LNCS, vol. 5950, pp. 11–23. Springer,Heidelberg (2010)

6. Chen, F., Doan, A., Yang, J., Ramakrishnan, R.: Efficient Information Extraction
over Evolving Text Data. In: ICDE, pp. 943–952 (2008)

7. Dalvi, N., Kumar, R., Pang, B., Ramakrishnan, R., Tomkins, A., Bohannon, P.,
Keerthi, S., Merugu, S.: A Web of concepts. In: PODS, pp. 1–12 (2009)

8. Doan, A., Naughton, J., Ramakrishnan, R., Baid, A., Chai, X., Chen, F., Chen,
T., Chu, E., DeRose, P., Gao, B., Gokhale, C., Huang, J., Shen, W., Vuong, B.-
Q.: Information extraction challenges in managing unstructured data. SIGMOD
Record 37(4), 14–20 (2008)

9. Jansen, B.J., Booth, D.L., Spink, A.: Determining the user intent of Web search
engine queries. In: Proc. of the 16th international conference on World Wide Web,
pp. 1149–1150. ACM Press, New York (2007)

10. Mika, P., Ciaramita, M., Zaragoza, H., Atserias, J.: Learning to Tag and Tagging to
Learn: A Case Study on Wikipedia. IEEE Intelligent Systems 23(5), 27–33 (2008)

11. Ramakrishnan, R., Tomkins, A.: Toward a PeopleWeb. Computer 40(8), 63–72
(2007)

12. Surowiecki, J.: The Wisdom of Crowds. Random House, New York (2004)
13. Zaragoza, H., Rode, H., Mika, P., Atserias, J., Ciaramita, M., Attardi, G.: Ranking

Very Many Typed Entities on Wikipedia. In: CIKM 2007: Proceedings of the six-
teenth ACM international conference on Information and Knowledge Management,
Lisbon, Portugal (2007)

Unifying Remote Data,
Remote Procedures,
and Web Services

William R. Cook

Department of Computer Science, University of Texas at Austin

Abstract. Most large-scale applications integrate remote services and/
or transactional databases. Yet building software that efficiently invokes
distributed service or accesses relational databases is still quite difficult.
Existing approaches to these problems are based on the Remote Proce-
dure Call (RPC), Object-Relational Mapping (ORM), or Web Services
(WS). RPCs have been generalized to support distributed object sys-
tems. ORM tools generally support a form of query sublanguage for effi-
cient object selection, but it is not well-integrated with the host language.
Web Services may seems to be a step backwards, yet document-oriented
services and REST are gaining popularity. The last 20 years have pro-
duced a long litany of technologies based on these concepts, including
ODBC, CORBA, DCE, DCOM, RMI, DAO, OLEDB, SQLJ, JDBC,
EJB, JDO, Hibernate, XML-RPC, WSDL, Axis and LINQ. Even with
these technologies, complex design patterns for service facades and/or
bulk data transfers must be followed to optimize communication be-
tween client and server or client and database, leading to programs that
are difficult to modify and maintain.

While significant progress has been made, there is no widely accepted
solution or even agreement about what the solution should look like. In
this talk I present a new unified approach to invocation of distributed
services and data access. The solution involves a novel control flow con-
struct that partitions a program block into remote and local compu-
tations, while efficiently managing the communication between them.
The solution does not require proxies, an embedded query language, or
constructions/decoding of service requests. The end result is a natural
unified interface to distributed services and data, which can be added to
any programming language.

A. Dearle and R.V. Zicari (Eds.): ICOODB 2010, LNCS 6348, p. 8, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Keynote Panel “New and Old Data Stores”

Panelists:

– Ulf Michael (Monty) Widenius, main author of the original version of the open-
source MySQL database.

– Michael Keith, architect at Oracle.
– Patrick Linskey, Apache OpenJPA project.
– Robert Greene, Chief Strategist Versant.
– Leon Guzenda, Chief Technology Officer Objectivity.
– Peter Neubauer, COO NeoTechnology.

Abstract. The world of data management is changing. The linkage to
service platforms, operation within scalable (cloud) platforms, object-
relational bindings, NoSQL databases, and new approaches to concur-
rency control are all becoming hot topics both in academia and industry.

The name NoSQL databases attempts to label the emergence of such
growing number of non-relational, distributed data stores that often
did not attempt to provide ACID properties. ACID properties are the
key attributes of classic relational database systems. Such “new data
stores” differ from classic relational databases, they may not require fixed
table schemas, and usually avoid join operations and typically scale
horizontally.

The panel discusses the pros and cons of new data stores with respect
to classical relational databases.

A. Dearle and R.V. Zicari (Eds.): ICOODB 2010, LNCS 6348, p. 9, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Revisiting Schema Evolution in Object
Databases in Support of Agile Development

Tilmann Zäschke and Moira C. Norrie

Institute for Information Systems, ETH Zurich
CH-8092 Zurich, Switzerland

{zaeschke,norrie}@inf.ethz.ch

Abstract. Based on a real-world case study in agile development, we
examine issues of schema evolution in state-of-the-art object databases.
In particular, we show how traditional problems and solutions discussed
in the research literature do not match the requirements of modern agile
development practices. To highlight these discrepancies, we present the
approach to agile schema evolution taken in the case study and then focus
on the aspects of backward/forward compatibility and object structures.
In each case, we discuss the impact on managing software evolution and
present approaches to dealing with these in practice.

1 Introduction

The introduction of agile software development methods impacts on schema evo-
lution in at least two aspects. First, the agile preference for continuous evolution
and refactoring of the data model results in more frequent schema evolution. Sec-
ond, the shortened release cycles mean that not only the in-house data model
has to be updated more often, but also the customers have to be more frequently
provided with means to make their existing data usable with new software re-
leases. Accordingly, and depending on the complexity of the data model and the
environment, managing and implementing schema evolution can require signifi-
cant effort in a software project.

The integration of traditional relational databases into object-oriented sys-
tems can restrict agility because of the need to maintain the object to relational
mapping. The case has therefore been made that object databases are better
suited to agile development methods [1]. Yet the support for schema evolution
offered by the various object database products tends to be limited. As a result,
application developers often have to produce significant custom code to manage
evolution. At the same time, most of the solutions proposed in the research com-
munity precede modern software development practices and are based on invalid
assumptions or address challenges that no longer represent the key issues.

To analyse the requirements and solutions for managing schema evolution,
we examined the real-world case study of a software project that adopted agile
development practices and uses an object database to store persistent data.
The system was developed by the European Space Agency (ESA) to manage

A. Dearle and R.V. Zicari (Eds.): ICOODB 2010, LNCS 6348, pp. 10–24, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Revisiting Schema Evolution in Object Databases 11

the scientific operation of their Herschel Space Observatory. It was found that
little of the available research was applicable to the project, in part due to
preconditions assumed (if not explicitly stated) by many researchers. While these
preconditions are certainly valid for some projects, we believe that the features
and requirements of the Herschel system are characteristic of many modern
applications. Further, for some of the challenges faced by the developers of the
Herschel system, we were unable to find any scientific references at all. The
main contribution of this paper is to point out and give possible explanations
for the differences between research and practice, thereby showing the demand
and opportunities for further research.

We note that while our discussion is set in the Java/Versant world due to the
case study considered, we believe that most of the lessons learned can be easily
applied to other languages and object databases. Any parts of the discussion
that are specific to the Java/Versant setting will be clearly indicated.

We begin in Sect. 2 with a discussion of the state of the art in terms of re-
search and also support for schema evolution in object database products. An
overview of the Herschel project is presented in Sect. 3 followed by a discus-
sion of agile practices and their impact on requirements for managing schema
evolution in Sect. 4. Sect. 5 discusses the issue of supporting backward and for-
ward compatibility under schema evolution, while Sect. 6 examines the object
structures supported in object database products and their effect on schema evo-
lution. Sect. 7 provides a summary and discussion of our findings and concluding
remarks are given in Sect. 8.

2 Background

In object databases, the schema evolution process consists of two main parts:
evolution of the class schema followed by evolution of the object instances to
reflect these changes. We will refer to these as class evolution and data evolution,
respectively. Data evolution may require new values to be initialised or existing
values to be restructured or transformed in some way and products typically
offer an API which allows developers to write custom evolution code.

Schema evolution has been studied extensively over the years with many so-
lutions proposed for both relational and object databases [14,13]. For object
databases, two main categories of solutions have been proposed in research: a)
methods that address the evolution of individual classes and b) methods to ad-
dress the evolution of the entire database class schema.

In the first category, changes to a class include changes to attribute definitions,
the creation or deletion of a class, and the creation or deletion of sublasses or
superclasses. Such changes are no longer an issue in that most commercial object
databases provide support for handling them, although the basic approach varies
in terms of whether it is automated or under the control of the developer. For
example, Objectivity1 handles some changes automatically, while db4o2 provides
1 http://www.objectivity.com
2 http://www.db4o.com

http://www.objectivity.com
http://www.db4o.com

12 T. Zäschke and M.C. Norrie

only an API that the developer can use to manage evolution. Versant3 opts for
semi-automatic support in that basic class changes can be handled automatically,
whereas complex modification of the class hierarchy require the use of an API
they provide.

The second category of solutions focus more on the evolution process and
how to manage the evolution of the entire database class schema. For instance,
in OTGen [8], the output of a schema change is a copy of the whole database
for a new schema. In [5], Clamen proposes a functional mechanism to support
schema evolution for centralised and distributed object databases that maintains
compatibility for old applications. Other researchers have addressed the issue of
backward compatibility of schema changes, e.g. CLOSQL [9]. However, as we
will show later, this adds considerable complexity, especially in the case of agile
development where evolution is frequent. Another major distinction between ap-
proaches is whether they version classes under evolution, see for example [15,3].

Although cycles in object graphs were used in the Herschel project, many
research works assume directed acyclic graph (DAG) structures for both the
class hierarchy and object graphs. Only a few publications discuss data structures
including graphs with cycles. For example, [2] describes object structures with
cycles but does not discuss the implementation of a schema evolution solution.

Similarly, the actual object structures supported in object database products
cause some issues which have not been addressed by the research community.
For example, several products introduce some concept of embedded or dependent
objects to meet different requirements with respect to persistence. Specifically,
many vendors introduce two categories of objects, first class objects (FCO) and
second class objects (SCO). One of the key properties of SCOs that impacts on
schema evolution is the fact that they do not have a class schema.

In summary, research has tended to focus mainly on primitives, rules, invari-
ants and semantics of schema changes and less on managing the data evolution
process. Further, much of this research was carried out before the adoption of
agile development methods where evolution is much more frequent and one can-
not assume that it is a case of evolving one complete and correct system into
another. In the remainder of the paper, we will show how data evolution often
proves to be the most complicated part, especially in very large systems under
agile development.

3 Herschel System

The Herschel Common Science System (HCSS) is a project of the European
Space Agency to support the scientific operation of the Herschel Space Observa-
tory4, an Infrared Observatory Satellite that was launched in May 2009. On the
pre-observation side, the HCSS software provides the whole chain of submitting,
evaluating and scheduling proposals for observation, instrument programming,
editing of calibration tables and finally the generation of control commands for
3 http://www.versant.com
4 http://www.esa.int/science/herschel

http://www.versant.com
http://www.esa.int/science/herschel

Revisiting Schema Evolution in Object Databases 13

the satellite. On the post-observation side, it is used for storing, extracting,
calibrating, post-processing and distributing observational data. Excluding the
post-processing, virtually all data is stored in object databases (Figure 1).

Satellite

Astronomer

Observation
Time Allocator

Calibration Scientist/
Instrument Engineer

Mission Planner

Calibration Scientist/
Instrument Engineer

Further processing Decompression and
calibration Telemetry ingestion

Satellite command
generationProposal schedulingProposal evaluationSubmission of

observation proposals

Calibration tables and
instrument

programming

Replication to partner sites

Replication to partner sites

Replication to partner sites

Astronomer

Fig. 1. Data flow between the subsystems of the HCSS software. All data (except
for the last process) is stored in a central database system with multiple nodes. The
database system is replicated to associated research institutions.

The operational time of the satellite is limited to 3-4 years, during which the
expected data is in the order of 2*109 objects which will amount to 10-15TB5.
The data is partially replicated to other sites, so in total there are expected
to be over 100 interconnected database nodes in the system. The software is
implemented in Java 6, and the database used is the Versant Object Database
accessed via Versant’s Java interface (Versant JVI).

The project followed the agile manifest6 quite closely, emphasizing continuous
user involvement. In particular, the following agile practices used in the project
were relevant to schema evolution: Continuous integration with builds being
used by interested users, frequent user releases (6-8 weeks), partly test-driven
development, continuous evolution and re-evaluation of design and requirements

5 This depends on the usage of the different observation modes of the satellite, each
of which produces data at a different rate.

6 http://agilemanifesto.org

http://agilemanifesto.org

14 T. Zäschke and M.C. Norrie

with close interaction between users and developers. A full description of all agile
aspects of the project is outside the scope of this paper.

Agile development was the method of choice for this project for several rea-
sons. Scientific satellites do not follow an off-the-shelf design but feature unique
capabilities, requirements and operational concepts. Furthermore, HCSS is the
first ever project in ESA using such a complete end-to-end software suite to
operate a satellite. Therefore, there was little experience with similar software.

Starting with a general architecture and an initial set of user requirements,
the software architecture evolved continuously as users gained experience with
operating the satellite hardware which was still in the laboratories. Similarly,
the capabilities and requirements of the satellite hardware continuously evolved,
leading to more adjustments to the initial design and requirements of the soft-
ware. The continuous use of early software releases by users (scientists) with
their instrument hardware ensured that problems and any misunderstandings
common to multi-party development7 had been cleared and that users were fa-
miliar and satisfied with the resulting software. The fact that most parts of the
software would only be used by few expert users made the project ideal for close
interaction between these users and developers.

In summary, one major achievement of using agile concepts was that, at the
time of launch, not only were the users highly experienced with the software, but
also the software itself was really mature and could be trusted with the operation
of a multi billion Euro space observatory. This reliability was especially critical
because the lifetime of the satellite is strictly limited to 3-4 years8, meaning that
every lost day would have cost over one million Euro.

According to plan, development is now frozen for most parts of the system
since launch, except for critical bug fixes. The only part still under develop-
ment is the data processing module. Similar to the other parts of the software,
which continuously evolved with the hardware and users gaining experience in
hardware operation, the data processing module now evolves as users gain ex-
perience in processing the satellite imagery. Data processing was already under
heavy development before launch, as it was also required for satellite hardware
development and because it had to be sufficient to process the first incoming
data after launch. However, since launch, the software has been developed fur-
ther due, not only experience gained with real satellite imagery, but feedback
from a much larger user community of astronomers who previously had little
involvement in the project.

The use of agile development practices was not the only property of the project
that was relevant to schema evolution. The size and complexity of the data
structure with about 250 persistent classes, including cycles and redundancies,
some of which have around 2*109 instances, played a major role. Further, some
large database systems consisted of up to 30-40 database nodes which were also
replicated to other sites (shared administration). Other features of note are that

7 USA and many ESA member states contributed software or hardware via national
institutes.

8 Operation is limited by the cooling liquid which is required for the infrared detectors.

Revisiting Schema Evolution in Object Databases 15

the DBAs were mostly non-professional and regular down-times of databases
and the system were acceptable.

In the following sections, we will first examine the impact of agility on schema
evolution strategies and then discuss the issues of backward/forward compati-
bility and support for complex object structures in detail.

4 Agile Schema Evolution

In the HCSS project, the use of agile development methodologies had consid-
erable impact on schema evolution. For schema versioning, the project chose a
concept where only one version of a class schema was accessible in any database.
To ensure schema compatibility, each database contained a database schema ID
which defined the schema versions in the database. The database schema ID
allowed connection only from a limited range of software versions with a cor-
relating software schema ID. The compatible software typically comprised only
one user release and correlating nightly builds. The mechanism with the single
ID can also be used to prevent accidental connection by indicating an ongoing
or failed schema update by setting the ID to a defined invalid schema version.

The schema evolution procedure was split into two parts, each performed by
a dedicated application. The first application required database downtime to
perform evolution of the class schema and critical data. The application also
incremented the database schema ID. Where possible, the evolution of non-
critical data was performed later by a second application which did not require
downtime as it performed data evolution on a live database. Consequently, this
requires clients to tolerate data that has not yet evolved.

The two applications were maintained by one dedicated developer who col-
lected schema change requests and draft code for data evolution from other
developers. According to a schedule, the developer would then implement and
release the schema changes and the two schema evolution applications. The task
of implementing schema evolution was simplified by the fact that all persistent
classes were under the custodianship of the database developer.

In order to evolve a database, the DBAs had to execute the evolution ap-
plications on their databases. The challenges of implementing schema evolution
applications included usability for clients with little database expertise, evolution
of large databases, evolution of a database system comprising multiple depen-
dent databases and the evolution of data. In particular, implementing the data
evolution could be difficult. First, it had to account for sometimes very complex
calculations of initialisation values for new fields based on data from many other
objects. Second, it also had to deal with variably inconsistent databases caused
by occasional bugs in the frequent user releases, occasionally used less stable
nightly builds and even custom applications.

The effects, both negative and positive, of using agile development practices
included:

Constantly evolving design. Constantly evolving design results in continu-
ally incoming requests for schema evolution. The HCSS project decided not

16 T. Zäschke and M.C. Norrie

to implement forward or backward compatibility between schema versions
for reasons discussed in the next section, instead using the concept of schema
IDs introduced earlier to enforce compatibility between a database and any
application accessing it. Based on the schema change requests collected to-
gether with draft code for the data evolution, the developer responsible for
schema evolution implemented the schema evolution tool and scheduled a
release date.

Fast release cycle. To avoid holding back new features and fixes, schema evo-
lution had to be performed at least once per user release. To accommodate
the fast release cycle of only 6-8 weeks (Figure 2) and give developers time
of uninterrupted development between releases, the schedule usually placed
schema evolution in the week before the following code freeze. This left only
one week for beta-testing the changes.

Request schema changes

Week 1 Week 4 Week 6 Week 7

User
Release

Release of New
Schema Version

User
Release

Week 3Week 2 Week 5

Further
testing

Code
Freeze

Developers

Schema Developer

Customers

Implementa-
tation and

testing

Fig. 2. Software release cycle with respect to the release of new schema versions.

Close interaction with users. During the one week of beta-testing, the close
interaction with the users allowed them to run the new schema evolution
code on copies of their most critical databases. The close interaction also
made it possible to fix any issues that arose which would have not been
possible otherwise.

Evolving incomplete or incorrect data. The beta-testing by users was es-
sential because users often used nightly builds, patched builds and even
custom software, which resulted in sometimes rare and unpredictable incon-
sistencies in their databases. Some inconsistencies would only occur in one or
two of the more than 100 databases across the whole project, were virtually
impossible to foresee and would not occur during previous internal tests by
the schema evolution developer.

Flexibility. Another aspect of the close interaction with the users was the flex-
ibility of the schedule, which was every time agreed with all developers and
users, and had at times to be changed to avoid impact on other tasks.

Stacked evolution. The frequency of schema evolution and the fact that users
sometimes skipped a release also meant that any schema evolution process
had to support evolution of databases over several schema versions at a time
(stacked evolution), without requiring the user to install any intermediate

Revisiting Schema Evolution in Object Databases 17

releases. At the same time, the software should not accumulate schema evo-
lution code for every schema evolution, so it was decided to implement a
central repository from which schema evolution applications would down-
load evolution code for older databases, if required. Database servers that
did not have internet connections were accommodated by making the repos-
itory portable to custom locations.

Maturity and training. By the time the project switched from the develop-
ment phase to the critical operational phase, the procedure and user inter-
face for schema evolution were matured and users were routinely applying
the tools to their databases.

5 Forward and Backward Compatibility

Forward and backward compatibility for schema versions is a frequently dis-
cussed topic in research related to schema evolution. Forward compatibility
allows old software to access a newer database, while backward compatibility
allows new software to access an older database. Although compatibility and
the resulting flexibility is an obvious advantage, the HCSS project chose not to
support forward and backward compatibility for several reasons:

Old software accessing new data. Allowing old software to access a new
database also implies that old known problems in that software continue
to affect data in the database. In other words, locking out old software im-
plicitly enforces a minimum patch level for all accessing applications.

New software accessing old data. Allowing a new software version to access
old data means that new software always has to be prepared to encounter old
inconsistent data that would have otherwise been fixed by schema evolution.

Forward compatibility. This requires additional implementation effort, be-
cause it is the inverse implementation of normal schema evolution.

Code cluttering. The code allowing backward compatibility is similar to the
schema evolution code. However, having this code in the client has the dis-
advantage that there have to be as many versions of the code as there are
schema versions. In the HCSS project, there were over 35 schema versions
in 5 years. This can significantly affect performance if old objects have to be
evolved over multiple versions.

Errors during data conversion. Failures in the forward or backward conver-
sion code confront the end-user with unrecoverable application errors which
can only be fixed by developers or DBAs.

Performance and quality of service. Loading objects from an incompatible
schema version can impact performance in the case of complex evolution al-
gorithms or algorithms that require loading of additional objects. The latter
can even cause the data evolution code to hang or cause other applications to
fail, because the additionally required objects may cause unexpected locking
problems. These issues are aggravated by the possibility that some objects
may need to be evolved over many schema versions. An additional prob-
lem is that these issues only occur for objects of particular schema versions,
meaning that application performance can become unpredictable.

18 T. Zäschke and M.C. Norrie

Forensics. Determining the cause of database inconsistencies gets considerably
more complicated through the increased number of software versions access-
ing the database and through the different paths of data access, namely
multi-level forward or backward conversion, or direct access.

Separation of concerns. From a design point of view, schema evolution code
does not belong in the domain of user applications. The design in the HCSS
project kept normal applications free from such code.

A direct consequence of separating evolution code from clients is the need for
standalone tools, i.e. applications, for schema evolution. Besides avoiding the
above problems, some advantages of standalone evolution tools are:

– By the time the tool is finished, no more failures can occur, because all
objects are evolved.

– If the tool requires a downtime, it can take advantage of being the only
application accessing the database. For example, disabling locking improves
performance and simplifies the evolution code.

The HCSS project implemented two distinct schema evolution tools. The first
requires database downtime and evolves the class schema and some of the data.
The second tool runs later in parallel to other client applications and evolves
remaining data.

To minimize the required downtime, the first tool uses a kind of partially
delayed class evolution, known as lazy evolution in Versant terminology. This
means that the tool can update a class that requires only a simple change such
as adding a primitive attribute within less than a second, independent of the
number of instances of this class. The instances are later evolved transparently
when the objects are accessed by clients. This functionality allows only simple
updates such as removing or adding an attribute initialised to ’0’. Apart from the
minimised downtime, there is virtually no impact on client applications, because
they need no extra code, the initialisation to ’0’ is very fast, and it is unlikely
to fail.

The second tool runs later in parallel to other applications and evolves non-
critical data. Non-critical data refers to data where clients are either prepared to
encounter non-evolved data, or where the client itself is not critical and can afford
an extended downtime until data evolution is finished. In the HCSS project, this
delayed data evolution was only used for data with large cardinality that would
have otherwise increased the required downtime by several hours.

We conclude that including schema evolution code in client applications needs
careful evaluation. Especially projects that can afford database downtime are
likely to fare better with simpler solutions. We can see advantages of forward
and backward compatibility for short-term use to support smooth transition
between schema changes when the additional effort is justified by the possibility
of avoiding database downtime altogether. However, our experience with the
HCSS project showed that its simple approach can be superior given the right
circumstances. In the HCSS project, even for larger databases, using the above
concept with two distinct tools resulted in downtimes rarely exceeding a few

Revisiting Schema Evolution in Object Databases 19

minutes. So far, we could not find any research paper that discusses all of the
above issues or gives recommendations for cases in which forward or backward
compatibility should be implemented.

6 Object Structures

While most research tends to assume a relatively simple and pure object model,
in practice, many object databases have constructs with special semantics, such
as second class objects (SCOs) or non-DAG structures, that require special han-
dling in schema evolution. We will first look SCOs and their counterpart first
class objects (FCOs). The JDO specification [7] defines them as follows:

“A First Class Object (FCO) is an instance of a persistence-capable
class that has a JDO Identity, can be stored in a datastore, and can be
independently deleted and queried. A Second Class Object (SCO) has
no JDO Identity of its own and is stored in the datastore only as part
of a First Class Object.”

Versant uses an equivalent definition [16] in their (non-JDO) Java API, where
JDO Identity is substituted by Object Identity. Objectivity supports a similar
concept to SCOs for both Java [10] and C++ [11] called embedded objects. A
common feature of SCOs is that they do not have an identity in the database,
and their existence depends on an FCO or another SCO that references them.
Note that primitive types, arrays and java.lang.String (in Java) are generally
supported and not considered as SCOs.

Object ID (this) int (_age) Object ID (_spouse) byte[] (_website) Object ID[] (_website)

Person (FCO)

Person_ spouse;

int _age;

URL _website;

URL (SCO)

String_ url;

Representation in memory

Representation in thed atabase

Fig. 3. FCO (Person) references SCO (URL)

Figure 3 shows an example of an FCO of class Person and an SCO of class
URL. Person has a schema defined in the database, but URL has not. Looking
at Versant, when a URL is stored in a database, it becomes part of the Person
and is serialized into an array of bytes and an array of object IDs for storing
possible references from the SCO to other FCOs. The relationship changes from
aggregation in memory, where the URL is an independent object, to composition
in the database which means that deleting the Person from the database will
also delete the URL.

20 T. Zäschke and M.C. Norrie

The properties of SCOs can be summarised as follows:

No schema. They do not have a schema defined in the database.
References to FCOs. When serialised, references from SCOs to FCOs are re-

placed by their respective object IDs. Referenced SCOs are serialised in-line.
Not managed. SCOs typically do not contain any database related code (in-

serted manually or automatically via byte-code enhancement (Java) or macros
(C/C++)).This allows the storage of third party objects asSCOs in a database.
One resulting issue is that they are stateless (see below).

Dependent objects. While stored in a database, they behave much like de-
pendent objects [2] in that they can have only one owner, and their existence
depends on that owner. Like dependent objects, they can reference other
dependent or independent objects. Their owner can be an independent or
dependent object. These restrictions do not apply to SCOs in memory.

Although common in practice, to the best of our knowledge, no research paper
has yet fully discussed SCOs. In particular, we have not seen any mention of the
implications of the above properties. Some implications and issues are:

Stateless / Not managed. SCOs do not have state flags and access is not
monitored. For example, an SCO cannot be marked dirty, and modifying an
SCO from unmanaged code will not flag its FCO as dirty either. Instead,
an FCO has to manually be flagged as dirty whenever one of its SCOs is
modified.

Queries and indexing. We do not know of any object database that supports
indexes or queries on SCOs.

SCO duplication. SCOs are vulnerable to object duplication. Duplication oc-
curs when an SCO is referenced by two FCOs. When the FCOs are stored,
the FCO will be serialised twice in the database, resulting in two separate
SCOs as shown in Fig. 4. This results in unwanted object duplication since
when they are later loaded from the database, the two FCOs will no longer
reference the same SCO but two distinct copies of the original SCO.

Uncontrolled schema evolution. One problem with SCOs that was encoun-
tered in the HCSS project occurred when a developer changed one of the
serialised classes, but was not aware of the implications regarding schema
evolution. The software continued to function correctly, because storing ob-
jects still worked and because the affected type of objects was rarely read.
The problem was only discovered a few weeks later when someone tried to
look at objects that were serialised before the class was changed and found
that de-serialisation of these old objects failed. Versant provides no API ded-
icated to schema evolution of SCOs, but writing a custom de-serialisation
class solved the problem.

A similar problem can occur when the SCOs stem from a third party
library. Libraries usually only keep their API stable, not their internals.
Therefore, any library update may contain changes in the fields of its classes.
Furthermore, clients may have different versions of a library installed, with
compatible APIs but possibly incompatible internal fields.

Revisiting Schema Evolution in Object Databases 21

Object ID (this #1) int (_age) Object ID (_spouse) byte[] (_website) Object ID[] (_website)

Person #1 (FCO)

URL _website; URL (SCO)

String_ url;

Representation in memory before commit

Representation in the database

Object ID (this #2) int (_age) Object ID (_spouse) byte[] (_website) Object ID[] (_website)

Person #2 (FCO)

URL _website;

...

...

...

...

Person #1 (FCO)

URL _website;

URL (SCO)

String _url;

Person #2 (FCO)

URL _website;

...

...

...

... URL (SCO)

String _url;

store
res

tor
e

Representation in memory afterr estore

Fig. 4. SCO duplication during storage

False schema evolution. In Versant, only objects of classes that implement
the Serializable interface can become SCOs. The catch here is that even
changes that do not directly affect the schema, such as changing a field to
final, can cause serialisation exceptions, because the serialVersionUID
changes. This problem can be avoided by explicitly specifying this ID when
the class is created, with the disadvantage that real schema changes may not
be detected if the ID is not correctly updated.

Varying support. Support of SCOs varies between vendors such as Objectiv-
ity [10] (containers, Date and Time), Versant [16] (containers and classes
that implement java.io.Serializable or java.io.Externalizable) and
ObjectStore [12] (SCOs are completely prohibited).

Despite these problems, SCOs can be quite useful. There seem to be two main
reasons for using SCOs.

The first reason is persistence of third party classes. Storing third party classes
as SCOs directly in a database avoids having to map third party data to local
classes. Often third party classes cannot be made persistent, mainly because
the injection of management code (byte code enhancement in Java or macros
in C/C++) is difficult or even impossible with third party libraries. Enhancing
third party classes can also be problematic if the application requires these classes
to have a certain structure, e.g. when serializing them into files or for network
transport and communication with other applications. Using third party SCOs
can also cause problems like false schema evolution described above.

The second reason for using SCOs concerns performance and storage effi-
ciency. SCOs have no storage overhead and improve performance because they
do not need unique object identifiers nor information about their location in

22 T. Zäschke and M.C. Norrie

a database. In the case of small SCOs, performance is also improved because
SCOs provide a very efficient way of implementing clustering and group-load
operations without special API calls.

In the HCSS project, SCOs were only used for the second reason, improving
performance of numerous small objects. One example was the logging of function
calls, with the parameters being stored as an array of type-value pairs, each
pair being an SCO. We conclude that SCOs are useful and safe when used
carefully. Our recommendations regarding SCOs in first party classes are to
use serialVersionUID (in Java) to avoid false schema evolution and to have a
dedicated developer manage SCO classes along with FCOs, possibly in a separate
package in Java, to avoid accidental modification by other developers. For third
party SCOs, we recommend ensuring that third party libraries can be strongly
linked to the product so that users cannot accidentally load a different version
of the library. It can also not be emphasized enough that third party library
updates need to be checked very carefully and that a plan should be prepared
for performing library updates that cause SCO incompatibility.

Two other common features of object structures encountered in practice have
received little or no attention by the research community. The first of these con-
cerns the general assumption in most fundamental research on schema evolution
(for example [17]) that the class hierarchy is a DAG structure with all of its
complexities. While single inheritance is technically covered by this research, no
research investigates how much schema evolution is simplified by languages like
Java that do not allow multiple inheritance.

As mentioned previously, many researchers also assume that the object graph
is a DAG structure. While DAG-like data structures are clean and may be used
in some projects, cycles and other redundancies are often introduced for prag-
matic reasons. The HCSS project frequently used cycles to provide short cuts for
navigation for applications with differing access patterns and to simplify queries
with joins. Similarly, the HCSS project sometimes stored the same data in fields
of different classes to avoid navigation altogether, thereby allowing for better
indexing or avoiding joins in queries.

7 Discussion

As we have shown, the use of agile development methods has a strong impact on
schema evolution. The issues resulted from the increased frequency and amount
of schema evolution requests, from reduced time for implementing and testing
schema evolution code and from the widespread use of nightly builds and custom
applications, which lead to unpredictable inconsistencies in the databases and
further complicated the testing of schema evolution code.

These issues were mitigated by other aspects of agile development and by
additional techniques to manage schema evolution, for example the close in-
teraction with end users which allowed for regular and efficient beta-testing
of schema evolution code. Also, the use of the two distinct schema evolution
tools proved to be very helpful, especially because their simple handling posed

Revisiting Schema Evolution in Object Databases 23

little problems to users. Finally, the policy of accumulating changes and releasing
them at a regular, yet flexible, interval reduced the impact on other tasks.

Regarding the often proposed concept of forward and backward compatibility,
we found that it can result in considerable problems when combined with agile
techniques. The HCSS project did not implement forward and backward schema
compatibility, instead using a simple yet powerful one-version concept, which
was shown to be advantageous in all respects except the need for downtime.
The advantages can be summarised as reduced development effort, better and
more predictable application performance and the fact that only DBAs will be
faced with schema evolution problems. Here we see an opportunity for further
research that examines the impact of agile development methods on projects that
use object databases. Moving away from backward and forward compatibility,
this research could investigate alternative concepts and compare their fitness for
different project settings.

Due to the use of SCOs and non-DAG structures, many schema evolution
solutions proposed in research were not applicable. While their use may ap-
pear unorthodox, we believe that their benefits cannot be ignored in real-life
projects like the HCSS. SCOs need careful handling, but can improve perfor-
mance significantly. Non-DAG structures could be exploited to greatly simplify
access code and improve performance and did not cause notable complications
during schema evolution. We believe that the use of both SCOs and non-DAG
structures deserve and could benefit from further research.

Considering the implementation of schema evolution code, another opportu-
nity for further research would be the implementation of tools and a standardised
API9 for schema evolution, possibly embedded in an IDE. Contrary to frame-
works proposed in earlier research [4,9,17,6], it would focus on the challenges
of agile development and provide a standardised solution for multiple major
vendors. We are currently planning to design such a framework based on our ex-
periences from the HCSS project. We also plan to investigate improved support
for SCOs and similar concepts, multi-node schema evolution and, depending on
requirements, a system for deployment of stand-alone schema evolution applica-
tions as used in HCSS.

Finally, we note that in HCSS data evolution tended to be considerably more
complex than class evolution, but is an issue that has received much less attention
in research.

8 Conclusion

The HCSS project shows that agile development methodologies have a strong
impact on schema evolution. Some agile aspects clearly increase schema evolution
effort, while other aspects and good management practices help mitigating the
effect. Considering technical decisions like forward and backward compatibility
or details of object structures, we found that many of the questions faced during

9 The latest JDO draft 2.3 proposes such an API.

24 T. Zäschke and M.C. Norrie

the HCSS project are at most only briefly discussed in existing research literature
and provide opportunities for further research.

Acknowledgements

We would like to thank Tilmann Zäschke’s former employer VEGA10, his former
colleagues at ESA11 who worked on the HCSS project and of course ESA itself,
who own the HCSS project.

References

1. Ambler, S.W.: Agile Techniques for Object Databases (September 2005),
http://www.db4o.com/about/productinformation/whitepapers/

2. Banerjee, J., Chou, H.T., Garza, J.F., Kim, W., Woelk, D., Ballou, N., Kim, H.J.:
Data Model Issues for Object-Oriented Applications. ACM Transactions on Infor-
mation Systems 5(1), 26 (1987)

3. Bjornerstedt, A., Britts, S.: AVANCE: an Object Management System. ACM SIG-
PLAN Notices 23(11) (1988)

4. Breche, P., Ferrandina, F., Kuklok, M.: Simulation of Schema Change Using Views.
In: Proc. 6th Int. Conf. on Databases and Expert Systems Applications (1995)

5. Clamen, S.M.: Schema Evolution and Integration. Distributed and Parallel
Databases 2(1) (1994)

6. Claypool, K.T., Jin, J., Rundensteiner, E.A.: Serf: Schema evolution through an
extensible, re-usable and flexible framework. In: Proc. of the 7th Int. Conf. on
Information and knowledge management. ACM, New York (1998)

7. Java Data Objects Expert Group. Java Data Objects 2.2. Technical Report JSR
243, SUN Microsystems Inc. (2008)

8. Lerner, B.S., Habermann, A.N.: Beyond Schema Evolution to Database Reorgani-
zation. In: Proc. ECOOP (1990)

9. Monk, S., Sommerville, T.: Schema Evolution in OODBs Using Class Versioning.
ACM SIGMOD Record (1993)

10. Objectivity, Inc. Objectivity for Java Programmeŕıs Guide Release 9.4 (2007)
11. Objectivity, Inc. Objectivity/C++ Programmeŕıs Guide Release 9.4 (2007)
12. Progress Software Corporation. PSE Pro for Java User Guide Release 7.1 (2008)
13. Ram, S., Shankaranarayanan, G.: Research Issues in Database Schema Evolution:

The Road Not Taken. Technical report, Boston University School of Management,
Department of Information Systems (2003)

14. Roddick, J.F.: A Survey of Schema Versioning Issues For Database Systems. In-
formation and Software Technology 37(7) (1995)

15. Skarra, A.H., Zdonik, S.B.: The Management of Changing Types in an Object-
Oriented Database. In: Proc. OOPSLA 1986 (1986)

16. Versant Corporation. Java Versant Interface Usage Manual Release 7.0.1.4 (2008)
17. Zicari, R.: Primitives for Schema Updates in an Object-Oriented Database System:

A Proposal. Computer Standards & Interfaces 13(1-3), 271–284 (1991)

10 http://www.vegaspace.eu
11 http://www.esa.int

http://www.db4o.com/about/productinformation/whitepapers/
http://www.vegaspace.eu
http://www.esa.int

The Case for Object Databases in
Cloud Data Management

Michael Grossniklaus

Dipartimento di Elettronica e Informazione, Politecnico di Milano
P.za Leonardo Da Vinci, 32

I-20133 Milano, Italy
grossniklaus@elet.polimi.it

Abstract. With the emergence of cloud computing, new data manage-
ment requirements have surfaced. Currently, these challenges are stud-
ied exclusively in the setting of relational databases. We believe that
there exist strong indicators that the full potential of cloud computing
data management can only be leveraged by exploiting object database
technologies. Object databases are a popular choice for analytical data
management applications which are predicted to profit most from cloud
computing. Furthermore, objects and relationships might be useful units
to model and implement data partitions, while, at the same time, help-
ing to reduce join processing. Finally, the service-oriented view taken by
cloud computing is in its nature a close match to object models. In this
position paper, we examine the challenges of cloud computing data man-
agement and show opportunities for object database technologies based
on these requirements.

1 Introduction

Database management systems are used in a wide variety of applications, rang-
ing from mobile or embedded scenarios to large-scale solutions to support data-
intensive and global applications. To address the requirements of different appli-
cations, different database technologies have emerged and the consensus today
is that “no size fits it all” [1]. Therefore, one of the challenges has become to
match technologies to requirements. The vision of cloud computing is to solve this
problem by making computing a commodity that adapts to initial application
requirements, but can also evolve and gracefully scale when these requirements
change.

While people from different fields have slightly different definitions of the term
Cloud Computing1, the common denominator of most of these definitions is to
look at processing power, storage and software as commodities that are readily
available from large infrastructures and, thus, no longer have to be provided by
desktop computers or local servers. As a consequence, cloud computing unifies el-
ements of distributed, grid, utility and autonomic computing to provide software,
1 Multiple Experts Try Defining “Cloud Computing”:
http://tech.slashdot.org/article.pl?sid=08/07/17/2117221

A. Dearle and R.V. Zicari (Eds.): ICOODB 2010, LNCS 6348, pp. 25–39, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

http://tech.slashdot.org/article.pl?sid=08/07/17/2117221

26 M. Grossniklaus

platforms and infrastructure as a service. At the lowest level, Infrastructure-as-a-
Service (IaaS) offers resources such as processing power or storage as a service.
Examples include Amazon’s Elastic Compute Cloud (EC2)2, Sun Cloud3 and
GoGrid4. One level above, Platform-as-a-Service (PaaS) provides development
tools to build applications based on the service provider’s API. Notable solutions
on this level are Microsoft’s Windows Azure Platform5 and the Google App En-
gine6. Finally, on the top-most level, Software-as-a-Service (SaaS) describes the
model of deploying applications to clients on demand.

The impact of cloud computing on data management research, and on query
processing in particular, has recently been studied by Abadi [2] and Gounaris [3],
respectively. Abadi argues that characteristics such as scalability through par-
allelization, storing data on untrusted hosts, and wide geographic distribution
or replication, render cloud computing unsuitable for transactional data man-
agement. These applications are typically quite write-intensive and require strict
ACID guarantees. Both of these characteristics do not match well with the prop-
erties of a cloud computing environment. However, analytical data management
applications that mostly query large data stores for decision support or problem
solving will profit from these properties. Further, this type of application is also
becoming increasingly important both in science and industry [4]. Both authors
agree that the requirements of data management in cloud computing can be
partially addressed by integrating existing results from database research into
systems that combine features from parallel, distributed and stream database
management systems. However, they also point out that, in order to deliver
on the cloud computing vision, hybrid solutions that integrate other execution
paradigms have to be considered to better support complex analytic and extract-
transform-load tasks [5].

The direction into which cloud computing data management is evolving,
makes it an ideal setting to investigate the use of object databases as they
have become a popular choice for data-intensive analytical processing tasks.
For instance, the Herschel project7 of the European Space Agency (ESA) uses
the Versant Object Database8 to store, manage and process all data gathered
by the telescope in outer space. Another example is Objectivity/DB9 that is
often selected for analytical scenarios such as the Space Situational Aware-
ness Foundational Enterprise (SSAFE) that tracks space debris in real-time to
avoid collisions in future space missions. Additionally, Objectivity has recently
released a version of their product that can be deployed on cloud computing
infrastructures.

2 http://aws.amazon.com/ec2/
3 http://www.sun.com/solutions/cloudcomputing/
4 http://www.gogrid.com
5 http://www.microsoft.com/windowsazure/
6 http://appengine.google.com/
7 http://www.esa.int/herschel
8 http://www.versant.com
9 http://www.objectivity.com

http://aws.amazon.com/ec2/
http://www.sun.com/solutions/cloudcomputing/
http://www.gogrid.com
http://www.microsoft.com/windowsazure/
http://appengine.google.com/
http://www.esa.int/herschel
http://www.versant.com
http://www.objectivity.com

The Case for Object Databases in Cloud Data Management 27

In this position paper, we will examine the exact requirements of cloud com-
puting data management and, based on these challenges, demonstrate the corre-
sponding opportunities for and benefits of object databases. We begin in Sect. 2
by introducing the three main challenges of cloud computing data management.
The current state of the art in cloud computing data management is highlighted
in Sect. 3. As this body of research is very vast, we have decided to point out
the most influential approaches, rather than to give a comprehensive survey.
In Sect. 4, we revisit the three main challenges and show how object database
technologies can be leveraged to address these requirements. We conclude in
Sect. 5.

2 Challenges of Cloud Data Management

The challenges of cloud computing data management can be summarized as mas-
sively parallel and widely distributed data storage and processing, integration of
novel processing paradigms as well as the provision of service-based interfaces.
In the following, we will examine each of these challenges in more detail.

2.1 Parallel and Distributed Data Storage and Processing

One of the promises of cloud computing is to make computing power a commod-
ity that can easily scale based on the current requirements of the application.
This elasticity is typically achieved by allocating more resources in terms of
servers, processor cores or memory and storage space to an application. As a
consequence, leveraging these additional resources is more complex than migrat-
ing an application to a single more powerful machine. As pointed out in [2], the
workload of an application has to be parallelizable in order to profit from cloud
computing. In the context of data management, this means that applications
which have been designed to run on a shared-nothing architecture [6] are good
candidates for cloud computing.

Replication and distribution of data are further important characteristics of
cloud computing data management [2]. Apart from delivering scalable comput-
ing power, reliability and quality of service are important goals of cloud comput-
ing. In terms of data management, this translates to providing highly available
and durable cloud storage solutions. On the one hand, replication on a large
geographic scale serves a dual purpose in this setting. First, the possibility to
transparently replicate data ensures availability and durability. Second, a global
network of cloud storages also allows the computation to be moved close to the
client. Distribution, on the other hand, will arise as a natural consequence of
the service-oriented architecture of cloud computing. In this service-based set-
ting, it is foreseeable that a loosely coupled form of distribution will have to be
supported, where many of the traditional assumptions about the data schema,
distribution and statistics are no longer guaranteed to hold.

As we will discuss in the next section, both parallelism and distribution are
topics that have been studied in detail. While these results are a good start-
ing point, their applicability in widely distributed and heterogeneous settings is

28 M. Grossniklaus

limited [3]. As a consequence, the challenge of parallelism and distribution in
cloud computing data management lies in developing paradigms and technolo-
gies that are capable to address the requirement of massively parallel and widely
distribution data processing and storage.

2.2 Integration of Novel Processing Paradigms

Data stream management systems [7] have introduced a processing paradigm
that is different from the one of traditional database management systems.
Instead of dynamically running queries over mostly static data, data stream
management system register static queries over dynamic data. This property
has made them a successful choice in the analysis of large volumes of rapidly
changing data that arise, for example, in the real-time monitoring of complex
systems. Most data stream management systems operate by evaluating the reg-
istered queries over so-called windows that extract a finite set of data out of an
otherwise infinite data stream. Depending on the systems capabilities, these win-
dows are advanced based on their size or at predefined intervals and the results
can be recomputed or maintained incrementally. As applications in this domain
are becoming more important, data processing in cloud computing needs to be
applicable to both stored and streaming data [3].

By its very nature, cloud computing takes a very service-centric view on com-
puting. In terms of data management, this signifies that database management
systems will only be accessible through service-based interfaces. This develop-
ment can already be observed on the Web today as many data sources are ex-
posed using interfaces such as REST or SOAP, rather than a traditional database
interface. The consequences of this evolution to data management and, in partic-
ular, data processing are manifold. In traditional database management systems,
the performance of query processing depends on a number of factors. At query
compilation-time, precise statistics about data distribution are required by the
optimizer in order to determine the evaluation order of the query and chose the
most appropriate physical implementations of the logical operators. At run-time,
the query execution time is additionally governed by the storage layout, data
clustering and access methods such as indexes. While traditional query process-
ing is by no means trivial, the problem becomes even more complex in the setting
of service-based data sources. As the data itself might not be under the control
of the data management system, it is difficult to obtain complete and reliable
data statistics. However, as query execution time is mainly dominated by the
time it takes to invoke a service and the distribution of the data it returns [8],
precise statistics are even more important. A successful cloud computing data
management system will need to address these challenges in order to leverage
data sources with service-based interfaces.

Finally, the paradigm of map-reduce [9] has recently been proposed to execute
massively parallel data processing tasks. The name “map-reduce” stems from the
fact that these systems decompose processing tasks into a map and a reduce step.
Both functions are provided by the client of the system and defined based on
a data set that is given as 〈key, value〉 pairs. The map function is defined as

The Case for Object Databases in Cloud Data Management 29

map(ki, v1) → list(kj , vj), i.e. it takes an input data tuple of one domain and
returns a list of output data tuples of another domain. In the first processing
step, a map-reduce system applies the map function to all input in the data set.
It then collects the resulting lists of output tuples and regroups them according
to keys. Then the reduce function, defined as reduce(k2, list(v2)) → list(v3), is
applied to each group producing zero or more result values. Finally, these values
are collected in one list and returned to the client. Typically, the map operation
works as a kind of fork that splits the data set into smaller pieces, while the
reduce operation is comparable to a join or aggregation that reassembles the
final result. Therefore, the authors of [5] argue that map-reduce is more similar
to extract-transform-load systems than to a database system. However, since
neither map-reduce nor traditional parallel database systems can deliver the full
promise of cloud computing data management, there is agreement that hybrid
solutions that integrate both processing paradigms have to be built [2].

2.3 Provision of Service-Based Interfaces

In Sect. 2.2, we have reasoned that a cloud computing data management system
has to be able to process tasks over service-based data sources. In this section,
we make the complementary argument and motivate why cloud computing data
management systems themselves have to offer a service-based interface.

Server Hardware

Client Software

Infrastructure
(IaaS)

Platform
(PaaS)

Software
(SaaS) Machine InterfaceUser Interface

ServicesComponents

NetworkComputation Storage

Application
Developer

System
Administrator

End User

Fig. 1. Cloud computing stack, adapted from Wikipedia (http://www.wikipedia.org)

Figure 1 shows an overview of the cloud computing stack as it is generally
agreed upon. The lowest layer, Infrastructure-as-a-Service (IaaS), provides com-
puting resources such as processing power, network and data storage as services.
The main goal of this layer is to deliver on the previously mentioned promise
of providing elastic computing resources that scale gracefully in correspondence
to the application’s demand. Typically, this elasticity is achieved using platform

30 M. Grossniklaus

virtualization. As a consequence, scalability signifies more resources, i.e. more
processor cores, more network bandwidth and more storage space, rather than
migrating an application to a more powerful machine behind the scenes. The
IaaS layer is built on top of the server layer that consists of hardware products
that support the delivery of cloud services through technologies as multi-core
processors and hardware virtualization.

The aim of the Platform-as-a-Service (PaaS) layer is to provide an integrated
computing platform that facilitates the development and deployment of appli-
cations. As the PaaS layer is built on the service-based interfaces of the IaaS
layer, PaaS solutions typically offer software components and high-level services
that can be used to implement applications. Examples of high-level services
include relational database engines, payment services or costumer relationship
management. Apart from development support, some PaaS solution also offer
application hosting in the sense that an application that has been implemented
using the offered components and services can be deployed to the vendor’s cloud
computing infrastructure.

Finally, the Software-as-a-Service (SaaS) provides end-user applications as a
service. The advantages of delivering software as a service over the Internet are
numerous. SaaS eliminates the need for customers to install the software on
their local machines, while, at the same time, always working with the most
up-to-date version of the application. For the software manufacturer, the advan-
tage of SaaS lies in better control over the licenses that are in use and prevention
of illegal duplication of the application. Cloud application services are built using
the service-based interfaces of the PaaS layer. Furthermore, they typically
expose service-based interfaces themselves in order to enable application
interoperability.

With respect to data management, we note that there are challenges on all three
layers of the cloud computing stack. Cloud computing data management starts on
the IaaS layer with the provision of appropriate storage management services. In
particular, the challenge on this layer is to provide a service-based interface for
the functionality that corresponds to the physical layer of a traditional database
management system. A declarative interface to the cloud computing data man-
agement system that facilitates data definition, manipulation and querying would
typically be situated on the PaaS layer. In particular, data processing function-
ality such as traditional query evaluation or the aforementioned novel paradigms
will be realized on this layer and offered using service-based interfaces to upper
layers. Finally, user interfaces such as database browsing, designing or adminis-
tration applications will be provided on the SaaS layer. Apart from these generic
tools, also custom end-user applications will be deployed and hosted on this layer.
As a consequence, a cloud computing data management system needs to address
the challenge of providing service-based interfaces at various levels. Furthermore,
system components located at higher layers need to be capable of leveraging and
orchestrating the services on lower layers to implement their functionality.

The Case for Object Databases in Cloud Data Management 31

3 State of the Art

Since cloud computing data management is a rather new discipline, the current
state of the art is still quite limited. However, several works exist that identify
challenges of cloud computing data management [2,3]. The requirement of storing
and processing data in a parallel and distributed setting has been addressed
in several existing works. On the one hand, research on parallel databases has
led to a good understanding of parallelism, both in architectures [6] and query
processing [10]. Research on distributed databases [11], on the other hand, has
lead to results that can be leveraged to address distributed query processing [12].

Due to the focus on analytic data management, processing tasks in cloud
computing are expected to be complex and long-running. Therefore, another
requirement is fault tolerance in terms of self-optimizing and self-healing sys-
tems. This requirement relates cloud computing data management to the field
of autonomic computing [13] and corresponding approaches to query process-
ing (e.g. [14]). Another field of interest is adaptive query processing [15], where
adaptive execution models (e.g. [16]) have been developed that demonstrate how
entire query plans can be continuously adapted to available resources. The same
goal is attained by adaptive query operators (e.g. [17]) that provide adaptation
within individual nodes of an otherwise static query plan.

Data stream management systems [7] (e.g. [18]) are often mentioned for their
capability to process rapidly changing data sets. However, it has to be noted
that their data processing paradigm is fundamentally different from traditional
query processing. As discussed in [3], significant advances have been made in this
area in terms of query optimization, but they do not yet extend to the widely
distributed and massively parallel setting of cloud computing.

With respect to integrating traditional data processing and service-oriented
computing, approaches such as query processing over Web services [19,20] or
search computing [21] have also to be considered relevant. In [19], a general-
purpose Web Service Management System (WSMS) is described that can opti-
mize and execute select-project-join queries spanning multiple Web services. The
authors of [20] propose the “Serena” (service-enabled) algebra and a correspond-
ing execution environment. Serena is based on the relational algebra, extended
with service calls that can either be “get” or “set” calls and are classified accord-
ing to whether they have or do not have side-effects. The authors also present
rewrite rules for Serena that form the basis of rudimentary optimizations. Fi-
nally, search computing [21] extends query processing over services to search
engines that return ranked results. The query processor developed in the project
follows a traditional database approach in the sense that declarative queries
are transformed into a logical plan. This plan is then optimized and translated
into an executable physical plan. The optimizer choses the best query plan us-
ing a branch-and-bound algorithm that uses heuristics for determining the plan
topology and load-balancing. Similarly to a traditional databases management
system, the query execution environment supports different implementations of

32 M. Grossniklaus

the logical operators such as join strategies that govern in which order the results
from two search services are combined.

The field of grid computing, which can be considered a predecessor to cloud
computing, also takes a service-centric approach on computing. Data manage-
ment in grid computing has been studied intensely by several surveys (e.g. [22])
and research in this field has yielded results both in grid database systems
(e.g. [23]) and grid query processing (e.g. [24]).

MapReduce [9] and related software are designed with built-in fault toler-
ance and capable of processing massively parallel and complex execution tasks
at a large scale. Early approaches that point into the direction of integrating
database functionality and map-reduce software have already been proposed,
e.g. Yahoo’s Pig Latin [25] or Microsoft’s DryadLINQ [26], and SCOPE [27].
These approaches are only able to integrate the two paradigms at the language
and not at the system level, since they layer map-reduce interfaces on top of tra-
ditional parallel databases. The approach of a hybrid architecture that supports
multiple paradigms side-by-side is taken by HadoopDB [28] and Clustera [29],
an integrated computation and data management system that is capable of exe-
cuting database queries, workflows over Web services and map-reduce processes.
In [30], a benchmark for large-scale data analysis systems is defined and imple-
mentation concepts for future hybrid systems are recommended.

In summary, numerous approaches exist that contribute to addressing these
requirements. However, the core challenge of extending and integrating them
into a comprehensive platform has not been fully addressed so far. Furthermore,
most of these existing works were conducted in the context of the relational
model. We believe that it is also imperative to study the possibility to exploit
technologies from object databases [31] for cloud computing data management.
This claim is motivated by the above-mentioned observation that analytical data
management applications will benefit most from cloud computing and the fact
that this class of applications is an ideal use case for object databases. Existing
results from the domain of object databases that are relevant in this context
include the works on object algebras (e.g. [32]), query processing (e.g. [33]), and
query optimization (e.g. [34]). Further, approaches such as OMS Connect [35]
have shown how features unique to object databases can be used to support
multi-databases and modular peer-to-peer databases.

4 Opportunities for Object Databases

Object databases are a good match to both the type of data management ap-
plications that is anticipated to benefit most from cloud computing and the
service-oriented view taken by cloud computing. As a consequence, we believe
that cloud computing research needs to include these technologies. In order to
make the case for object databases in cloud computing data management, we
will now revisit the challenges outlined in Sect. 2 and show possible opportunities
for object database technologies.

The Case for Object Databases in Cloud Data Management 33

4.1 Parallel and Distributed Data Storage and Processing

As explained in Sect. 2, cloud computing takes parallel and distributed data
storage and processing to a new level by requiring it to be massively parallel and
widely distributed. In the following, we will first examine the case of data storage
before looking at the case of data processing. Typically, parallel and distributed
data storage is addressed through horizontal and vertical partitioning of the
dataset.

In the setting of parallel databases that use the relational model, tables can be
partition horizontally using selection predicates that segment a table into smaller
ones. These table segments are then placed on different computing nodes and
thus provide support for parallel processing of data manipulation operations. In
contrast to the relational model, object data models provide more opportunities
for application developers to define horizontal partitions. While the value-based
approach is still possible, object databases can also leverage the existence of
class extents or object collections for horizontal partitions. For example, Ob-
jectivity/DB and ObjectStore both support concepts that support the explicit
clustering of objects into “containers”, i.e. object collections that also govern
the physical storage layout. Furthermore, Objectivity/DB is built around the
concept of federated databases that could prove helpful in realizing such dataset
partitions.

A vertical partition in a relational database management system segments a
table in terms of columns, i.e. a (not necessarily strict) subset of the columns of a
table are placed on different computing nodes. Object data models also provide
ampler possibilities to realize vertical partitions. For example, the object-slicing
technique [36] could be used to partition classes by leveraging the inheritance
hierarchy and to distribute object data accordingly. Additionally, the existence
of references and relationships between objects is a valuable asset to partition a
dataset vertically as they can serve as natural points of decomposition [35]. As
most existing object databases support binary relationships that are managed
independent of the objects themselves, references can easily be traversed in both
directions and thus bridging different partitions is straightforward.

In the past, several techniques (e.g. [37]) have been proposed to support hori-
zontal, vertical and method-induced class partitioning in object databases. How-
ever, the requirements of cloud data management raise the question whether
these partitioning schemes are still sufficient or whether more advanced tech-
niques are required. For example, a recent article in InformationWeek10 discusses
the adoption of cloud computing in industry. The authors state that companies
are attempting to split their data management needs between in-house and cloud
computing platforms. This new form of partitioning allows transactional and an-
alytical processes to be delegated to the appropriate computing infrastructure.
We believe that also in this setting, objects and relationships are a useful unit
to model, support and bridge such partitions.

10 http://www.informationweek.com/news/showArticle.jhtml?

articleID=221901196

http://www.informationweek.com/news/showArticle.jhtml?articleID=221901196
http://www.informationweek.com/news/showArticle.jhtml?articleID=221901196

34 M. Grossniklaus

According to [11], the cost of data processing in parallel and distributed
databases is generally a weighted combination of disk I/O, CPU and commu-
nication cost, where communication cost is typically considered as the most
important factor. Therefore, query operators that require access to data from
different partitions are typically associated with high costs. For example, in the
case of vertical partitions, a processing node that executes a relational join of
two tables or table segments has to access both operands. If the two operands
are not stored on the same node, such a join operation can be very expensive. In
the setting of object databases, it is again possible to profit from the existence of,
potentially bidirectional, references. In contrast to the relational join operation
that computes relationships between data at query execution time, references are
managed statically by the database. Therefore, they do not have to be material-
ized, but can simply be navigated without accessing the referenced object. The
benefits of leveraging references or pointers in parallel and distributed object
databases have been demonstrated in the past. For example, the authors of [38]
present several parallel pointer-based join algorithms for set-valued attributes,
together with an evaluation of their performance. Similarly, ParSets [39] have
also been shown to increase the performance of object graph traversals through
parallelization. In the case of horizontal partitions, the costly operation is the
one that performs a union over the data segments that contribute to the query
result. However, in contrast to the traversal of relationships, this operation is
typically less costly as a query optimizer can avoid to access remote data that
does not contribute to the final result. Nevertheless, we point out that most ob-
ject databases already feature collection data structures including the associated
collection operations such as union, intersection and difference [40].

4.2 Integration of Novel Processing Paradigms

As object databases are situated at the intersection of object-oriented program-
ming languages and database management systems [31], they are already tightly
integrated with programming languages. As a consequence, the separation be-
tween the language and the system level is less pronounced. In fact, many object
databases rely on programming rather than dedicated query languages to specify
processing tasks. In the following, we will examine the characteristics of object
databases that facilitate the integration of the processing paradigms introduced
in Sect. 2, i.e. data streams, services and map-reduce.

The integration of data stream and traditional data management is difficult
because the two processing paradigms are fundamentally different. In traditional
data management, various dynamic queries run over a slowly changing database,
whereas in data stream management queries are statically registered and process
rapidly changing streams. Regardless of the fact that early data stream manage-
ment systems have been proposed over a decade ago, the processing of streaming
object data has not yet been investigated. Nevertheless, object databases are a
suitable candidate for the integration of these two paradigms. On the one hand,
the fact that classes of objects can define methods and the object database sup-
ports their execution provides a mechanism to “register” queries. On the other

The Case for Object Databases in Cloud Data Management 35

hand, the presence of events and listeners as, for example, in the Versant Object
Database forms the basis for event-based processing which can be applied to
realize data stream management.

To process data over service-based data sources, data management systems
need to address the issues of long access times for data and uncertainty be-
cause of lacking data statistics. Furthermore, services have, in contrast to other
data sources, interfaces that distinguish between ingoing and outgoing fields. As
a consequence, selections and join predicates can be delegated to the services
themselves whenever constants or outgoing fields of one service can be matched
to ingoing fields of another. This property of service-based data processing gives
rise to two types of joins, namely parallel and pipe joins [21]. In a parallel join,
two services are invoked at the same time and the returned results are combined
using a join predicate. This type of join corresponds to a relational join and the
fact that services are invoked in parallel reduces execution time. If, however, the
overlap in the output of the two services is small, it can also lead to costly and
superfluous service invocations. In a pipe join, one service is invoked first and its
output is used as input for the second service. While the sequential invocation
of services might be less efficient, it allows the second service to be queried in a
more directed way. This second type of join is similar to index-based joins or the
notion of navigating object references. Therefore, object databases also provide
a good basis for the integration of service-based data processing with traditional
data management.

As mentioned before, map-reduce is a paradigm which provides a simple model
that allows complex distributed processes to be specified. One of the advantages
of map-reduce is that the base data (e.g. Web pages) can be cast into differ-
ent implicit models such as bag of words, set of paragraphs, set of links, or
list of links. The disadvantage of this approach is that there is no type check-
ing during query processing since the model or type is constructed on the fly.
Object databases could be used to support typing of queries by defining differ-
ent object wrappers for the same base data instances. However, database and
so-called extract-transform-load systems have very different architectures which
makes their integration challenging. Early hybrid approaches can be classified
into vertical architectures that build higher-level map-reduce interfaces on top of
existing database systems and horizontal architectures where the two paradigms
exist in parallel. However, as most object databases are already tightly coupled
with object-oriented programming languages, they present a unique opportunity
to investigate the integration of further processing paradigms. One possible ap-
proach to do so is to extend an object-oriented programming language with a
domain-specific component that is handled by a compiler plug-in. In this way,
DryadLINQ [26] has integrated map-reduce at the language level in the same
way as LINQ has extended C# with query capabilities. Another interesting di-
rection is to investigate object query languages that already provide operations
similar to map and reduce as, for example, the algebra associated with the OM
data model [41].

36 M. Grossniklaus

4.3 Provision of Service-Based Interfaces

In Sect. 2.3, we have motivated the challenge of providing service-based inter-
faces at all layers of the cloud computing stack as the complementary chal-
lenge to support data management over services. The limitation of relational
database management systems in this context is twofold. On the one hand, ser-
vices and relational data management are difficult to integrate as the two models
do not align well. On the other hand, using relational systems and the software
stacks that surround them in a service-oriented architecture is challenging due
to the complexity of mapping service-based interfaces to the relational model.
In a sense, this criticism goes back to the original impedance mismatch between
object-oriented systems and relational databases [42], with the difference that it
nowadays also applies to service-oriented architectures. With the the large-scale
deployment of service-based data sources that is to be expected in the setting
of cloud computing, the object-relational mapping overhead will grow to new
dimensions, too.

As object data models and service-oriented interfaces are closely related, we
are convinced that object databases have a lot to offer to cloud computing data
management. The concept of orthogonal persistence, that is an essential feature
of most recent object databases, is particularly relevant in this context. For
example, the authors of [43] point out that the use of orthogonal persistence can
already be observed in many modern systems. They speculate that the notion of
orthogonal persistence could be extended in order to simplify the development
of cloud applications. Instead of only abstracting from the the storage hierarchy,
this extended orthogonal persistence would also abstract from replication and
physical location, giving transparent access to distributed objects.

5 Conclusion

The promise of cloud computing to render computing a commodity is a promising
direction that should also include data management capabilities. In this paper,
we summarized the challenges that are associated with delivering cloud comput-
ing data management. We argued that data management solutions in the cloud
need to be capable of storing data massively parallel and widely distributed.
Further they need to integrate novel processing paradigms, such as data stream,
service-based and map-reduce processing. Finally, cloud computing data man-
agement systems must themselves provide service-based interfaces in order to
integrate horizontally and vertically in the cloud computing stack. While some
of these challenges have previously been identified by other authors [2,3], this
paper presents an integrated and extended view of the requirements of cloud
computing data management. We also showed that these challenges clearly sur-
pass the requirements that current data management systems are capable to
address.

Based on an overview of the current state of the art in cloud computing data
management, we argued that these challenges have, so far, only been addressed
by using and extending relational technologies. As a consequence, we revisited

The Case for Object Databases in Cloud Data Management 37

the requirements of cloud computing data management and identified several
opportunities for object databases. Due to the unique properties of object data
models and algebras, these opportunities exist in the context of all identified
requirements. Finally, these opportunities will foster technological innovation in
industry and, at the same time, present interesting challenges for research in the
domain of object databases. We believe that, in order for cloud computing data
management to be successful, it is essential to pursue both of these directions.

To conclude, we would like to clearly state that object databases are not the
only technology that needs to be considered for cloud computing data manage-
ment. Rather, we have made the case that object databases have a lot to offer in
the context of cloud computing. As many of their concepts align well with both
the cloud computing stack and novel processing paradigms, object databases are
a good basis for the integration of these other technologies.

Acknowledgment

The author would like to thank Moira C. Norrie, David Maier and Alan Dearle
for the discussions about the work presented in this paper and their valuable
feedback on initial drafts.

References

1. Stonebraker, M., Çetintemel, U.: One Size Fits All: An Idea Whose Time Has
Come and Gone. In: Proc. Intl. Conf. on Data Engineering, pp. 2–11 (2005)

2. Abadi, D.J.: Data Management in the Cloud: Limitations and Opportunities. IEEE
Data Eng. Bull. 32(1), 3–12 (2009)

3. Gounaris, A.: A Vision for Next Generation Query Processors and an Associated
Research Agenda. In: Proc. Intl. Conf. on Data Management in Grid and Peer-to-
Peer Systems, pp. 1–11 (2009)

4. Vesset, D.: Worldwide Data Warehousing Tools 2005 Vendor Shares. Technical
Report 203229, IDC (August 2005)

5. Stonebraker, M., Abadi, D.J., DeWitt, D.J., Madden, S., Paulson, E., Pavlo, A.,
Rasin, A.: MapReduce and Parallel DBMS: Friends or Foes? Commun. ACM 53(1),
64–71 (2010)

6. Stonebraker, M.: The Case for Shared Nothing. IEEE Data Eng. Bull. 9(1), 4–9
(1986)

7. Golab, L., Özsu, M.T.: Issues in Data Stream Management. SIGMOD Rec. 32,
5–14 (2003)

8. Braga, D., Ceri, S., Daniel, F., Martinenghi, D.: Optimization of Multi-Domain
Queries on the Web. In: Proc. Intl. Conf. on Very Large Databases, Auckland,
New Zealand, August 23-28, pp. 562–573 (2008)

9. Dean, J., Ghemawat, S.: MapReduce: Simplified Data Processing on Large Clus-
ters. In: Proc. Symp. on Operating Systems Design and Implementation, pp. 137–
149 (2004)

10. DeWitt, D.J., Gray, J.: Parallel Database Systems: The Future of High Performance
Database Systems. ACM Commun. 35(6), 85–98 (1992)

38 M. Grossniklaus

11. Özsu, M.T., Valduriez, P.: Principles of Distributed Database Systems, 2nd edn.
Prentice-Hall, Englewood Cliffs (1999)

12. Kossmann, D.: The State of the Art in Distributed Query Processing. ACM Com-
put. Surv. 32(4), 422–469 (2000)

13. Kephart, J.O., Chess, D.M.: The Vision of Autonomic Computing. Computer 36(1),
41–50 (2003)

14. Gounaris, A., Smith, J., Paton, N.W., Sakellariou, R., Fernandes, A.A., Watson, P.:
Adaptive Workload Allocation in Query Processing in Autonomous Heterogeneous
Environments. Distrib. Parallel Databases 25(3), 125–164 (2009)

15. Deshpande, A., Ives, Z., Raman, V.: Adaptive Query Processing. Found. Trends
Databases 1(1), 1–140 (2007)

16. Avnur, R., Hellerstein, J.M.: Eddies: Continuously Adaptive Query Processing. In:
Proc. ACM SIGMOD Intl. Conf. on Management of Data, pp. 261–272 (2000)

17. Luo, G., Ellmann, C.J., Haas, P.J., Naughton, J.F.: A Scalable Hash Ripple Join
Algorithm. In: Proc. ACM SIGMOD Intl. Conf. on Management of Data, pp. 252–
262 (2002)

18. Abadi, D.J., Ahmad, Y., Balazinska, M., Çetintemel, U., Cherniack, M., Hwang,
J.H., Lindner, W., Maskey, A.S., Rasin, A., Ryvkina, E., Tatbul, N., Xing, Y.,
Zdonik, S.: The Design of the Borealis Stream Processing Engine. In: Proc. Intl.
Conf. on Innovative Data Systems Research, Asilomar, CA, USA, January 4-7, pp.
277–289 (2005)

19. Srivastava, U., Munagala, K., Widom, J., Motwani, R.: Query Optimization over
Web Services. In: Proc. Intl. Conf. on Very Large Data Bases, pp. 355–366 (2006)

20. Gripay, Y., Laforest, F., Petit, J.M.: A Simple (Yet Powerful) Algebra for Pervasive
Environments. In: Proc. Intl. Conf. on Extending Database Technology, 359–370
(2010)

21. Ceri, S., Brambilla, M. (eds.): Search Computing – Challenges and Directions.
Springer, Heidelberg (2010)

22. Pacitti, E., Valduriez, P., Mattoso, M.: Grid Data Management: Open Problems
and New Issues. J. Grid Comput. 5(3), 273–281 (2007)

23. Antonioletti, M., Atkinson, M.P., Baxter, R., Borley, A., Hong, N.P.C., Collins, B.,
Hardman, N., Hume, A.C., Knox, A., Jackson, M., Krause, A., Laws, S., Magowan,
J., Paton, N.W., Pearson, D., Sugden, T., Watson, P., Westhead, M.: The Design
and Implementation of Grid Database Services in OGSA-DAI: Research Articles.
Concurr. Comput.: Pract. Exper. 17(2-4), 357–376 (2005)

24. Lynden, S., Mukherjee, A., Hume, A.C., Fernandes, A.A.A., Paton, N.W., Sakellar-
iou,R.,Watson,P.:TheDesign and Implementation ofOGSA-DQP:AService-Based
Distributed Query Processor. Future Gener. Comput. Syst. 25(3), 224–236 (2009)

25. Olston, C., Reed, B., Srivastava, U., Kumar, R., Tomkins, A.: Pig Latin: A Not-
So-Foreign Language for Data Processing. In: Proc. ACM SIGMOD Intl. Conf. on
Management of Data, 1099–1110 (2008)

26. Yu, Y., Isard, M., Fetterly, D., Budiu, M., Erlingsson, Ú., Gunda, P.K., Currey, J.:
DryadLINQ: A System for General-Purpose Distributed Data-Parallel Computing
Using a High-Level Language. In: Proc. Symp. on Operating Systems Design and
Implementation, pp. 1–14 (2008)

27. Chaiken, R., Jenkins, B., Larson, P.Å., Ramsey, B., Skakib, D., Weaver, S., Zhou,
J.: SCOPE: Easy and Efficient Parallel Processing of Massive Data Sets. In: Proc.
Intl. Conf. on Very Large Databases, pp. 1265–1276 (2008)

The Case for Object Databases in Cloud Data Management 39

28. Abouzeid, A., Bajda-Pawlikowski, K., Abadi, D.J., Rasin, A., Silberschatz, A.:
HadoopDB: An Architectural Hybrid of MapReduce and DBMS Technologies for
Analytical Workloads. In: Proc. Intl. Conf. on Very Large Databases, pp. 922–933
(2009)

29. DeWitt, D.J., Paulson, E., Robinson, E., Naughton, J., Royalty, J., Shankar, S.,
Krioukov, A.: Clustera: An Integrated Computation and Data Management Sys-
tem. In: Proc. Intl. Conf. on Very Large Databases, pp. 28–41 (2008)

30. Pavlo, A., Paulson, E., Rasin, A., Abadi, D.J., DeWitt, D.J., Madden, S., Stone-
braker, M.: A Comparison of Approaches to Large-Scale Data Analysis. In: Proc.
ACM SIGMOD Intl. Conf. on Management of Data, pp. 165–178 (2009)

31. Atkinson, M.P., Bancilhon, F., DeWitt, D.J., Dittrich, K.R., Maier, D., Zdonik,
S.B.: The Object-Oriented Database System Manifesto. In: Building an Object-
Oriented Database System, The Story of O2, pp. 3–20. Morgan Kaufmann, San
Francisco (1992)

32. Fegaras, L., Maier, D.: Towards an Effective Calculus for Object Query Languages.
In: Proc. ACM SIGMOD Intl. Conf. on Management of Data, pp. 47–58 (1995)

33. Özsu, M.T., Blakeley, J.A.: Query Processing in Object-Oriented Database Systems.
In: Modern Database Systems: The Object Model, Interoperability, and Beyond, pp.
146–174. ACM Press/Addison-Wesley Publishing Co. (1995)

34. Wang, Q., Maier, D., Shapiro, L.D.: The Hybrid Technique for Reference Material-
ization in Object Query Processing. In: Proc. Intl. Symp. on Database Engineering
and Applications, pp. 37–46 (2000)

35. Norrie, M.C., Palinginis, A., Würgler, A.: OMS Connect: Supporting Multi-
database and Mobile Working through Database Connectivity. In: Proc. Intl. Conf.
on Cooperative Information Systems, pp. 232–240 (1998)

36. Kuno, H.A., Ra, Y.G., Rudensteiner, E.A.: The Object-Slicing Technique: A Flex-
ible Object Representation and its Evaluation. Technical Report CSE-TR-241-95,
University of Michigan (1995)

37. Karlapalem, K., Li, Q.: A Framework for Class Partitioning in Object-Oriented
Databases. Distrib. Parallel Databases 8(3), 333–366 (2000)

38. Lieuwen, D.F., DeWitt, D.J., Mahta, M.: Parallel Pointer-based Join Techniques
for Object-Oriented Database. In: Proc. Intl. Conf. on Parallel and Distributed
Information Systems, pp. 172–181 (1993)

39. Witt, D.J.D., Naughton, J.F., Shafer, J.C., Venkataraman, S.: Parallelizing
OODBMS Traversals: A Performance Evaluation. The VLDB Journal 5(1), 3–18
(1996)

40. Cattell, R.G.G., Barry, D.K., Berler, M., Eastman, J., Jordan, D., Russell, C.,
Schadow, O., Stanienda, T., Velez, F. (eds.): The Object Data Standard: ODMG
3. Morgan Kaufmann, San Francisco (2000)

41. Norrie, M.C.: An Extended Entity-Relationship Approach to Data Management
in Object-Oriented Systems. In: Proc. Intl. Conf. on the Entity-Relationship Ap-
proach, pp. 390–401 (1993)

42. Maier, D.: Representing Database Programs as Objects. In: Proc. Intl. Workshop
on Database Programming Languages, pp. 377–386 (1987)

43. Dearle, A., Kirby, G.N.C., Morrison, R.: Orthogonal Persistence Revisited. In:
Proc. Intl. Conf. on Object Databases, pp. 1–23 (2009)

A. Dearle and R.V. Zicari (Eds.): ICOODB 2010, LNCS 6348, pp. 40–54, 2010.
© Springer-Verlag Berlin Heidelberg 2010

Query Optimization by Result Caching in the
Stack-Based Approach

Piotr Cybula1 and Kazimierz Subieta2,3

1 Institute of Mathematics and Computer Science, University of Lodz, Lodz, Poland
cybula@math.uni.lodz.pl

2 Polish-Japanese Institute of Information Technology, Warsaw, Poland
subieta@pjwstk.edu.pl

3 Institute of Computer Science, Polish Academy of Sciences, Warsaw, Poland

Abstract. We present a new approach to optimization of query languages using
cached results of previously evaluated queries. It is based on the stack-based ap-
proach (SBA) and object-oriented query language SBQL. SBA assumes descrip-
tion of semantics in the form of abstract implementation of query/programming
language constructs. Pragmatic universality of SBQL and its precise, formal op-
erational semantics make it possible to investigate various crucial issues related
to this kind of optimization. Two main issues are: organization of the cache ena-
bling fast retrieval of cached queries and development of fast methods to recog-
nize consistency of queries and incremental altering of cached query results after
database updates. This paper is focused on the first issue concerning optimal, fast
and transparent utilization of the result cache, involving methods of query nor-
malization enabling higher reuse of cached queries with preservation of original
query semantics and decomposition of complex queries into smaller ones. We
present experimental results of the optimization that demonstrate the effective-
ness of our technique.

1 Introduction

Caching results of previously evaluated queries seems to be an obvious method of
query optimization. It assumes that there is a relatively high probability that the same
query will be issued again by the same or another application, thus instead of evaluat-
ing the query the cached result can be reused. There are many cases when such an
optimization strategy makes a sense. This concerns the environments where data are
not updated or are updated not frequently (say, one update for 100 retrieval opera-
tions). Examples are data warehouses (OLAP applications), various kinds of archives,
operational databases, knowledge bases, decision support systems, etc.

Besides the frequency of database updates, which is critical to such methods, an-
other critical factor concerns the probability of caching query reuse. For instance, in a
typical internet shop we can estimate that 90% of requests concerns some 10% of
products, hence queries addressing these 10% products are worth to be cached. Such
caching (in the form of HTML pages or XML files) is assumed in many commercial
Web applications.

 Query Optimization by Result Caching in the Stack-Based Approach 41

Conceptually, the cache can be understood as a two-column table, where one col-
umn contains cached queries in some internal format (e.g. normalized syntactic query
trees), and the second column contains query results. A query result can be stored as a
collection of OIDs, but for special purposes can also be stored e.g. as an XML file
enabling further quick reuse in Web applications. A cached query can be created as a
side effect of normal evaluation of user query or by the database administrator in
advance.

A transparency is the most essential property of a cached query. It implies that
programmers need not to involve explicit operations on cached results into an applica-
tion program. Caching of query results yields the major improvement in query evalua-
tion performance, i.e. significantly decreases the response time from a database
management system. The main reason is that receiving a result from a cache for a
previously performed query, instead of its consecutive reevaluation, is much quicker
than time-consuming query processing. In contrast to other query optimization meth-
ods, which strongly depend on the semantics of a particular query, the query caching
method is independent of a query type, its complexity and a current database state.

On the other hand there are some costs of result materialization. Firstly, some
memory resources are necessary for the cache storing queries and their results. Sec-
ondly, the optimization method needs some time for storing queries and their results,
together with proper structures for maintenance purposes, recognizing the usability of
currently cached results for new queries, removing some rarely used cached queries in
order to optimal cache utilization and finally, updating cached results after database
changes.

Our concept of cached queries follows the work presented in [20] and [24], de-
voted to a kind of a network database model. In comparison, object-oriented and
XML-oriented data models and their query languages present new qualities, thus the
methods that we discuss and propose are significantly different. Our research is done
within the Stack-Based Approach (SBA) to object-oriented query/programming lan-
guages. SBA is a formal theory and a universal conceptual frame addressing this kind
of languages, thus it allows precise reasoning concerning various aspects of cached
queries, in particular, query semantics, query decomposition, query indexing in the
cache, and so on. We have implemented the caching methods as a part of the opti-
mizer developed for the query language SBQL (Stack-Based Query Language) in our
last project ODRA (Object Database for Rapid Application development) devoted to
Web and grid applications [18]. In [8] we have described how query caching can be
used to enhance performance of applications operating on grids.

There are two key aspects concerning the development of database query optimiza-
tion using cached queries:

• organization of the cache enabling fast retrieval of cached queries (for optimal
queries selection and rewriting new queries with use of cached results) and opti-
mal, fast and transparent utilization of the cache, involving methods of query nor-
malization with preservation of original query semantics (enabling higher reuse of
cached queries for semantically equivalent but syntactically different queries), de-
composition of complex queries into smaller ones and maintenance of assigned re-
sources by removing rarely used results;

42 P. Cybula and K. Subieta

• development of fast methods to recognize consistency of queries and automatic
incremental altering of cached query results after database updates (sometimes re-
moving or re-calculating).

In this paper we deal mainly with the first issue of the optimization method. The
second aspect is widely researched in [7, 9, 10]. The paper is organized as follows.
Section 2 discusses known solutions that are related to the contributions of the paper.
In section 3 we briefly present the Stack-Based Approach. Section 4 describes the
architecture of the caching query optimizer. Section 5 contains the description of
optimization strategies, in particular query normalization, decomposition and rewrit-
ing rules. Section 6 presents experimental results and Section 7 concludes.

2 Related Work

Cached queries remind materialized views, which are also snapshots on database
states and are used for enhancing information retrieval [2, 4, 5]. Such materialized
views are currently implemented in popular relational database systems as DB2 and
Oracle [12, 19]. Materialization of query results in object-oriented algebras in the
form of materialized views is considered in [1] and [13]. Some solutions for view
result caching at client-side in object and relational databases and for optimal combi-
nation of materialized results in cache to answer a given query are presented in [11].
In [6] and [21] a solution for XML query processing using materialized XQuery
views is proposed. Authors present an algebraic approach for incremental update of
materialized XQuery views built using some selected query operators.

There are, however, two essential differences between materialized views and
cached queries. The first one concerns the scale. One can expect that there will be at
most dozens of materialized views, but the number of cached queries could be thou-
sands or millions. Such scale difference implies the conceptual difference. The second
difference concerns transparency: while materialized views are explicit for software
developers, cached queries are an internal feature that is fully transparent for them.
Our research is just about how this transparent mechanism can be used to query opti-
mization, assuming no changes to syntax, semantics and pragmatics of the query
language itself.

Cached queries are also similar to database indices [14]. Both cached queries and
indices are server-side auxiliary structures that are used for fast retrieval. For instance,
an item of a dense index having a key value “designer” from the job attribute of the
Emp table can be perceived as a cached SBQL query

<Emp where job = “designer”, collection of OIDs>

where the ‘collection of OIDs’ is a non-key index value (object identifiers returned by
the query) associated with the key value “designer” in the index. For fast retrieval
such a structure can be implemented e.g. as a hash table or B-tree, similarly to the
methods of organizing indices. However cached queries are conceptually different
from indices. Indices usually materialize very simple queries, while in general we can
cache arbitrarily complex queries if they are promising to be reused. For instance, we
can consider caching queries containing multi-parameterized selections, aggregations,

 Query Optimization by Result Caching in the Stack-Based Approach 43

long path expressions, grouping, etc. Indices are also made in advance, while cached
queries are a side effect of previous query evaluations. Indices contain items for all
database values of the given attribute (e.g. for all values of the job attribute), while
cached queries usually contain only a subset of them. For these reasons cached que-
ries imply quite new research and implementation problems.

New Oracle 11g database system [19] offers also caching of SQL and PL/SQL re-
sults. The cached results of SQL queries and PL/SQL functions are automatically
reused while subsequent invocation and updated after database modifications. On the
other hand, in opposition to our proposal, materialization of the results is not fully
transparent. Query results are cached only when query code contains a comment with
a special parameter 'result_cache', so the evaluation of old codes without the parame-
ter is not optimized.

Query cache is also implemented in MySQL database [17], where only full SE-
LECT query texts together with the corresponding results are stored in the cache. In
the solution caching does not work for subselects and stored procedure calls (even if it
simply performs a SELECT query). Queries must be absolutely the same - they have
to match byte by byte for cache utilization, because of matching of not normalized
query texts (e.g. the use of different letter case causes insertion of different queries
into the query cache).

There is in Microsoft .NET query language LINQ [15] some kind of query result
caching as an optimization technique for often requested queries, but it is also not
transparent for programmers. They have to explicitly place the results of queries into
a list or an array (calling one of the methods ToList or ToArray) and in a consequence
each subsequent request of such query will cause getting its results from the cache
instead of the query reevaluation.

But there is not any result caching solutions implemented in current leading com-
mercial and non-commercial object-oriented database systems. Most of them bases
their query languages on OQL (Object Query Language) proposed as a model query
language by ODMG (Open Database Management Group) [3]. Only a cache of ob-
jects is introduced in some implementations for fast access of data in a distributed
database environment.

3 Overview of the Stack-Based Approach (SBA)

The Stack-Based Approach (SBA) along with its query language SBQL (Stack-Based
Query Language) is the result of investigations into a uniform conceptual and seman-
tic platform for integrated query and programming languages for object-oriented
databases. SBA assumes that query languages are a special case of programming
languages. The approach is abstract and universal, which makes it relevant to a gen-
eral object model. In SBA each object has the following features:

• internal identifier (i ∈ I) – OID, which cannot be directly written in queries,
• external name (n ∈ N) that is used to access objects from queries,
• content (v ∈ V) that can be a value (integer, string, blob, etc.), a link, or a set of

objects. Atomic values include also codes of procedures, functions, methods,
views, etc.

44 P. Cybula and K. Subieta

Formally, objects are recursively modeled as triples, where i, i1, i2 ∈ I, n ∈ N, v ∈ V:
atomic objects as <i, n, v>, link objects as <i1, n, i2>, complex objects as <i, n, S>,
where S denotes a set of objects.

SBA respects the naming-scoping-binding principle, which means that each name
occurring in a query is bound to the appropriate run-time entity (an object, attribute,
method parameter, etc) according to the scope of this name. One of its basic mecha-
nisms is an environment stack (ENVS), which is responsible for scope control and for
binding names. In contrast to classical stacks, it does not store objects, but some struc-
tures built upon object identifiers, names, and values. SBA assumes the principles of
semantic relativity, orthogonal persistence and full internal identification of runtime
entities (objects).

Stack-Based Query Language (SBQL) is thoroughly described in [22, 23]. The
language has several implementations - for the XML DOM model, for OODBMS
Objectivity/DB, and recently for the object-oriented ODRA system [18]. SBQL is
based on an abstract syntax and the principle of compositionality: it avoids syntactic
sugar and syntactically separates as far as possible query operators. In contrast to SQL
and OQL, SBQL queries have the useful property: they can be easily decomposed
into subqueries, down to atomic ones, connected by unary or binary operators. The
property simplifies implementation and greatly supports query optimization. The
SBQL operational semantics introduces another stack, known as query result stack
(QRES), for storing temporary and final query results. The two stacks architecture is
the core of the Stack-Based Approach (SBA).

received_by [1..*]

Student [0..*]

year: integer
grades [0..*]: integer

avgGrade(): real

Training [0..*]

subject: string
duration: integer

Dept [0..*]

dname: string

Person [0..*]

name: string
birthday: date
age(): integer

Emp [0..*]

 job: string
salary: real
rating: real

prev_job [0..*]

company: string
years: string

receives [1..*]

works_in

employs [0..*]

supervises [0..*]

supervised_by

boss

Fig. 1. Class diagram of the example database

The syntax of SBQL is as follows:

• A single name or a single literal is an (atomic) query. For instance, Student, name,
year, x, y, “Smith”, 2, 2500, etc, are queries.

• If q is a query, and σ is a unary operator (e.g. sum, count, distinct, sin, sqrt), then
σ(q) is a query.

 Query Optimization by Result Caching in the Stack-Based Approach 45

• If q1 and q2 are queries, and θ is a binary operator (e.g. where, dot, join, +, =,
and), then q1 θ q2 is a query.

• There are not other queries in SBQL.

SBQL, unlike SQL and other query languages, avoids big syntactic and semantic pat-
terns. Atomic queries are single names and literals. Nested queries can be arbitrarily
composed from atomic and nested queries by unary and binary operators, providing
they have a sense for the programmer and do not violate typing constraints. Classical
query operators, such as selection, projection/navigation, join, quantifiers, etc. are also
binary operators, but their semantics involves ENVS. For this reason they are called
“non-algebraic” – their semantics cannot be expressed by any algebra designed in the
style of the relational algebra. Below we present the exemplary operational semantics
for one of the often used “non-algebraic” operator of projection (dot operator):

1. Initialize an empty bag (eres).
2. Execute the left subquery.
3. Take a result collection from QRES (colres).
4. For each element el of the colres result do:

4.1. Open new section on ENVS.
4.2. Execute function nested(el).
4.3. Execute the right subquery.
4.4. Take its result from QRES (elres).
4.5. Insert elres result into eres.

5. Push eres on QRES.
Step 4.2 employs a special function nested which formalizes all cases that require

pushing new sections on the ENVS, particularly the concept of pushing the interior of
an object. This function takes any query result as a parameter and returns a set of
binders. For the operator where all steps are the same except for 4.5 and a new 4.6:

4.5. Verify whether elres is a single result (if not exception is raised).
4.6. If elres is equal to true add el to eres.

For the navigational join operator (join) the steps are:
4.5. Perform Cartesian Product operation on el and elres.
4.6. Insert obtained structure into eres.

For SBA optimization examples presented in next sections we assume the class dia-
gram in Fig. 1. The schema defines five classes (i.e. five collections of objects):
Training, Student, Emp, Person, and Dept. The classes Training, Student, Emp and
Dept model students receiving trainings, which are supervised by employees of de-
partments organizing these trainings. Person is the superclass of the classes Student
and Emp. Emp objects can contain multiple complex prev_job subobjects (previous
jobs). Names of classes (as well as names of attributes and links) are followed by
cardinality numbers, unless the cardinality is 1.

4 Query Optimizer Architecture

In most commercial client/server database systems (c.f. SQL processors) all the query
processing is performed on the server. In SBA majority of query processing is shifted

46 P. Cybula and K. Subieta

to the client side, to avoid server overloading. Fig. 2 presents query processing archi-
tecture in SBA. Firstly, similarly to indices, the query cache registry is stored at the
server. The reason is the ability to share cached results between all users, and easier
way to maintain the results after data modifications. Hence the client-side query opti-
mizer looks up in this registry before starts optimization and processing a given
query. Secondly, in opposite to the traditional approaches, the storing of the query
result should also be processed differently. Because only the client knows the form of
the query and its result, the client is responsible to send the pair <query, result> to the
server in order to include it within the query cache registry (as presented in the next
section).

One of the main components of the optimization uses cached results is query cache
registry. Since the amount of cached queries can be very large, the structures used to
implement the query registry must ensure very fast access and search capabilities. We
propose a linear hashing table [16] with a single, primary key as fast and efficient
search data structure for cached results. The single key retrieval is very simple to
implement and is independent of the query type - the response time is short and al-
ways the same regardless of the complexity of request. There are several candidate
solutions for the search key. The simplest one is simply a query text (normalized
using some sophisticated techniques mentioned in the next section) considered as a
character string. Taking into account the equivalence of text of a query and its syntac-
tic tree, instead of difficult searching within the set of syntactic trees of cached
queries, we can search in the efficient and proved linear hashing index structure con-
taining texts. Non-key values of the query index are references to the metabase nodes
(MB_ID) containing meta-information concerning cached queries:

• signature of cached results for type-checking purposes;
• reference to the object store node (DB_ID) containing compiled cached query (for

further reevaluation), cached results, statistic data and auxiliary structures for effi-
cient update of the results after database change.

Queries are cached both in the physical object store DB (persistent memory cache
guarantying maintenance of the cache after database restart) and in a virtual object
store TMP (a volatile main memory cache guarantying fast access). Query optimiza-
tion using cached results involves main subsystems of query evaluation environment,
such query optimizer, query interpreter and query cache registry placed in the object
store and a metabase.

We propose the following scenario of the optimization using cached queries in
query evaluation environment for SBA (step numbers correspond to subsequent label
numbers in Fig. 2):

1. A user sends a query to a client-side database interface.
2. The parser receives it and transforms into a syntactic tree.
3. The tree is statically evaluated for type checking with the use of the static stacks

(ENVS and QRES) and a database schema stored in the metabase at the server-
side. After successful static evaluation the nodes of the query tree are augmented
with type signatures for easier optimization reasoning.

4. The tree is sent to the cache optimizer being one in a sequence of optimizers em-
ployed at the client-side database system.

 Query Optimization by Result Caching in the Stack-Based Approach 47

5. The cache optimizer rewrites it using strategies presented in the next section. It
employs the server-side cache manager which proposes optimal matching of re-
sults cached in the query cache registry, performs proper steps for a new query
caching if suggested by the optimizer and maintains cache usage statistics for
optimal cache utilization and cleaning. For each new cached query the manager
generates additional structures, which describe a subset of involved objects for
maintenance purposes. The system updates cached results after changes in the da-
tabase accordingly to the algorithms presented thoroughly in [7, 9, 10].

6. Finally a modified, optimized, type-checked and compiled query evaluation plan is
produced and sent for execution by the query interpreter.

7. The plan is evaluated by the query interpreter. Some parts of the plan rewritten by
the cache optimizer suggest taking the cached results from the server-side object
store instead of reevaluation of them. For new queries being candidates for caching
the interpreter generates their results and sends it to the cache manager for storing
at the database server. The operations are described in the next section.

ParserQuery Client

Query syntax tree

Static evaluator
and type checker

Interpreter

Local data

ENVS

QRES

Static
ENVS

Static
QRES

Database: metabase, object store, query
cache registry, indices, ...

Object
management

Transaction
and procedure

processing

Server Query cache
manager

Otimizer

Cache
optimizer

1

2

3

4

5

6

7

Fig. 2. Query optimization steps

5 Query Optimization Using Cached Results

The cache optimizer acts (step 5 in Fig. 2) in four steps. (1) The optimizer normalizes
a query, then (2) the query is decomposed. (3) The main step – the query is analyzed
and rewritten, and finally (4) it is type-checked before forwarding to other optimizers
or final compilation into an evaluation plan. In the last two steps the optimizer com-
municates with the server-side cache manager. Below we present a short description

48 P. Cybula and K. Subieta

of strategies developed in all the optimization steps. Precise algorithms for each solu-
tion are included in [7].

5.1 Query Normalization

To prevent from placing in the cache queries with different textual forms but the same
semantic meaning we introduce several query text normalization methods. These
methods are applied in a way of reconstructing a query text from early generated
query syntactic tree or directly by change some nodes or their order within the tree.
The main methods are:

• alphabetical ordering of operands for operators, which for a succession of op-
erands is not substantial, such as comparing operators (=, ≠, <=, <, >, >=), arithme-
tic operators (+, *), logical operators (or, and), operators of sum and intersection
of sets, i.e.:

Emp where salary >= 1100 or salary = 1000

is normalized to:

Emp where 1000 = salary or 1100 <= salary

• ordering of operators (e.g. putting sum operations before subtractions or multipli-
cation before division), i.e.:

a / b / c * d / e

is transformed to:

a * d / b / c / e

• unification of auxiliary names used by the programmer for as or group as opera-
tor, but only if such an operator doesn’t finalize the evaluation of the query (it is
not the root of the syntactic tree, which case is easy to recognize based on query
result signature evaluated earlier by the static evaluator), i.e.:

(((Emp where salary > 1000) as e)
 join (e.works_in.Dept as d)).
 (e.name,d.dname)

is normalized to:

(((Emp where salary > 1000) as $cache_aux1)
 join ($cache_aux1.works_in.Dept as $cache_aux2)).
 ($cache_aux1.name,$cache_aux2.dname)

5.2 Query Decomposition and Rewriting

After normalization phase query is virtually decomposed, if possible, into one or
many simpler candidate subqueries. Query decomposition is a useful mechanism to
speed up evaluating a greater number of new queries. If we materialize a small

 Query Optimization by Result Caching in the Stack-Based Approach 49

independent subquery instead of a whole complex query, then the probability of reus-
ing of its results is risen. In addition, a simple semantic of the decomposed query
reduces the costs of its updating. Each, isolated while decomposition process, sub-
query and finally a whole query is independently analyzed and rewritten in context of
the set of cached queries defined in the query cache registry and if it hasn’t yet
cached, it becomes a new candidate for caching.

Too simple queries (without object names or non-algebraic operators) are omitted.
While analyzing, query is converted to the text form and the optimizer performs
search process using the query index stored in the query cache registry. If found, the
tree of the query is replaced with a call of a special cache function parameterized with
unique references to nodes of matched cached query in the metabase (MB_ID) and
the object store (DB_ID) – these parameters are non-key elements of cached query
index mentioned earlier).

Each not yet cached candidate query is also replaced with a call of the cache func-
tion – new cached query is placed into the query index with its new created meta and
data node references (MB_ID and DB_ID). In this case a new query node in the ob-
ject store (identified by DB_ID) doesn't contain query results – it is marked as “not
fully cached” and will be populated with its results while the first need of use (when
the interpreter will evaluate it). A new meta node of the query (identified by MB_ID)
contains DB_ID and a type signature of the candidate query results (evaluated with
use of static query evaluator).

We use such decomposition techniques as:

• factoring out independent subqueries (being thoroughly investigated in [22]) –
instead of caching such a complex query as:

Emp where salary < ((Emp where name = ”Smith”).salary)

we isolate an internal independent query:

(Emp where name = ”Smith”).salary

which is matched or proposed as cached query uniquely identified by its node ref-
erences MB_ID and DB_ID, and finally the original query is rewritten to:

Emp where salary < $cache_fun(MB_ID,DB_ID)

The produced query can be then cached or not.
• removing path expressions finalizing query evaluation, that is, isolating a query

without such expressions only if they are quickly evaluable (thanks to referential
nature of object-oriented database). If a query is finalized with a sequence of navi-
gational operators (dot) or the constructor of a structure (struct) containing such
sequences, and all the objects within such expressions are unique subobjects or ref-
erence objects (with cardinality 1 or 0..1), the longest expressions fulfilling this
condition are cut forming simpler independent query for caching, i.e. query:

(Training where count(received_by) > 12).(subject,
duration, supervised_by.Emp.salary)

is ended with an implicit structure constructor with a path expression. Each expres-
sion has the cardinality 1, so all expressions (and in consequence structure con-
structor, too) are ignored while isolating the query:

50 P. Cybula and K. Subieta

(Training where count(received_by) > 12)

and finally rewriting the input query to:

$cache_fun(MB_ID,DB_ID).(subject, duration,
supervised_by.Emp.salary)

In case of another query:

(Dept where dname = ”Database”).employs.Emp.prev_job

both prev_job (subobject) and employs (reference object) attributes have cardinal-
ity 0..*, so the optimal solution is to cache the whole query.

• factoring out aggregations (avg, min, max, sum, count), which are in many cases
time consuming queries and can be interpreted as virtual materialized attributes of
database objects, i.e. queries containing join operator, such as:

Dept join avg(employs.Emp.salary)

are cached as a group of cached queries for each Dept object instance which be-
comes an additional third parameter of cache function $cache_fun.

Fig. 3. Sample query optimization

In such a case another query:

Emp where salary >works_in.Dept.avg(employs.Emp.salary)

is decomposed by isolating cached query:

Dept.avg(employs.Emp.salary)

and rewriting the whole query as follows:

Emp where salary >works_in.$cache_fun(MB_ID,DB_ID,Dept)

This optimization case on a query syntactic tree is presented in Fig. 3.

 Query Optimization by Result Caching in the Stack-Based Approach 51

• transforming queries into equivalent forms using operations on Boolean expres-
sions and on sets of query results (bags) – thanks to the distributivity property of
the selection operator in SBQL (where) it is possible to decompose queries with
complex predicates containing some logical operators (or, and, not) into two or
more simpler queries joined by set operators (sum, intersection, subtraction). For
instance, the complex query:

Emp where (job = ”clerk”) or (job = ”consultant”)

is transformed into query:

(Emp where job = ”clerk”) ∪ (Emp where job =
”consultant”)

and finally into:

$cache_fun(MB_ID1,DB_ID1) ∪ $cache_fun(MB_ID2,DB_ID2)

5.3 Usage of Cached Results and Cache Adaptability

After all optimization steps the compiled evaluation plan is executed by the inter-
preter at the client-side (step 7 in Fig. 2). Call of the special cache function (with
MB_ID and DB_ID parameters) inserted by the optimizer causes requesting for mate-
rialized results of used cached query stored in the query cache registry at the database
server. Not yet cached (“not fully cached”) or marked for update queries are evalu-
ated, their results are sent to the registry (where placed in proper node identified by
given DB_ID) and immediately utilized. Results of some queries are not placed in the
cache, as a result of cache policies configured by system administrator:

• minimal query evaluation time,
• minimal query usage count for placing into the cache,
• maximal size of cached results for one query.

Queries not fulfilling the conditions will be normally evaluated each time they will be
requested or until their features change.

If the result of a cached query is requested, the cache manager updates its use
counter placed in the object store node of the query. Use counters are used to generate
global cache statistics implemented as priority lists of use levels in the form of MRU
lists. Each level is treated as a range of query usage. Sample levels are 1..2, 3..5,
5..20, 21..1000, 1001..∞. Each level is assigned with:

• the number of cached queries which usage counters belong to the level’s range;
• the total size of results of all cached queries of the level.

After the use of some cached query, its usage counter is incremented and as a result
the query may move to higher usage level. After query reevaluation (while first use,
too) or update of its results, the size of cached results may change, so the total size of
appropriate usage level changes too. The query cache manager controls the cache by
deleting unprofitable, rarely used cached queries (using the statistics) or queries too
often updated. Such cache adaptability is performed under the control of the adminis-
trator, who configures cache system parameters, such as:

52 P. Cybula and K. Subieta

• maximal total cache size,
• maximal percent of the cache utilization (usage size),
• maximal percent of the cache utilization after cache reduction (clear size).

After each change of cached results (insertion or update), the cache manager recalcu-
lates total sizes of each changed use levels, summarizes all levels, and if the usage
size permitted was exceeded, calculates a reduction factor being the top constraint of
the lowest use level, for which summary sizes for all levels below are sufficient to
reduce the cache size to the proposed clear size. All cached queries (with their results
and all data stored in the metabase and the object store) are deleted beginning from
the queries belonging to the lowest use levels until the level with the reduction factor
calculated. Appropriate statistics for cleared use levels are also cleared.

Optionally, use counters and statistics for all remaining, still cached queries, are set
to zero, as a way to give equal rights to all other queries, especially those of new
cached queries that will be often utilized in the near future but not in the past.

6 Experimental Results

We have tested the performance of the optimizer by calculating response times for
100 subsequent requests using a set of the same queries retrieving data from database
containing over 100000 objects being instances of Dept or Emp class according to the
schema presented in Fig. 1.

0

5

10

15

20

25

 1 10 20 30 40 50 60 70 80 90 100

su
m

m
ar

y
re

sp
on

se
 ti

m
e

[s
]

NoCache TMP DB TMP+DB

0

50

100

150

200

250

av
er

ag
e

re
sp

on
se

 ti
m

e
[m

s]
 .

NoCache TMP DB TMP+DB

Fig. 4. Efficiency of optimization using cached queries

Some input queries with the same semantics were syntactically different, but after
the normalization or decomposition they became unified. We have compared four
optimization strategies: without optimization (NoCache), caching in volatile memory
(TMP), caching in persistent memory (DB) and mixed caching (TMP+DB). The re-
sults presented in Fig. 4 show that in case of the TMP strategy average response time
is more than 10 times shorter than response without using of the cache. In many cases,
especially for more complex queries (using multi-parameterized predicates or aggre-
gations), responses were 100 times faster.

 Query Optimization by Result Caching in the Stack-Based Approach 53

7 Conclusions and Future Work

We have presented an approach to optimization of query execution using caching of
the results of previously answered queries. Our solution addresses the stack-based
approach to object-oriented query languages. The cached queries method as a tool for
optimization ensures short and scalable response time to any user request types.
Proper structures and strategies for fast retrieval of cached queries results have been
proposed. We have presented organization of the query cache registry (for optimal
queries selection and rewriting new queries with the use of cached results) and opti-
mal, fast and transparent utilization of the cache. Methods of query normalization
were developed, with preservation of the original query semantics (enabling higher
reuse of cached queries for semantically equivalent but syntactically different que-
ries). Query decomposition of complex queries into smaller ones was presented and
the maintenance strategies for optimal managing of cache resources by removing
rarely used, unprofitable results were described. Some experimental results of the
optimization were introduced that demonstrate the effectiveness of our method.

The work on cached queries is continued. There are many open research areas con-
cerning this optimization method. The main areas concern some additional features of
SBA and SBQL not mentioned in this paper, such as inheritance and dynamic object
roles. In general, the problem is practical rather than theoretical, hence much effort
should be devoted to experiments with different strategies of caching queries and
keeping in sync their stored results.

References

1. Ali, M.A., Fernandes, A.A.A., Paton, N.W.: MOVIE: An Incremental Maintenance Sys-
tem for Materialized Object Views. In: Proc. of Data & Knowledge Engineering, vol. 47,
pp. 131–166 (2003)

2. Blakeley, J.A., Larson, P., Tompa, W.M.: Efficiently Updating Materialized Views. In:
Proc. of ACM SIGMOD, pp. 61-71 (1986)

3. Cattell, R.G.G., Barry, D.K. (eds.): The Object Data Standard: ODMG 3.0. Morgan Kauf-
mann, San Francisco (2000)

4. Chaudhuri, S., Krishnamurthy, R., Potamianos, S., Shim, K.: Optimizing Queries with Ma-
terialized Views. In: Proc. of Intl. Conf. on Data Engineering, pp. 190-200 (1995)

5. Chen, C.M., Roussopoulos, N.: The Implementation and Performance Evaluation of the
ADMS Query Optimizer: Integrating Query Result Caching and Matching. In: Proc. of
Intl. Conf. On Extending Database Technology (1994)

6. Chen, L., Rundensteiner, E.A.: ACE-XQ: A CachE-ware XQuery Answering System. In:
Proc. of WebDB, pp. 31-36 (2002)

7. Cybula, P.: Cached Queries as an Optimization Method in the Object-Oriented Query Lan-
guage SBQL, Ph.D. Thesis, Institute of Computer Science, Polish Academy of Sciences,
Warsaw (2010) (in Polish)

8. Cybula, P., Kozankiewicz, H., Stencel, K., Subieta, K.: Optimization of Distributed Que-
ries in Grid via Caching. In: Meersman, R., Tari, Z., Herrero, P. (eds.) OTM-WS 2005.
LNCS, vol. 3762, pp. 387–396. Springer, Heidelberg (2005)

9. Cybula, P., Subieta, K.: Cached Queries in the Stack-Based Approach, Institute of Com-
puter Science, Polish Academy of Sciences, Report 985, Warsaw (2005)

54 P. Cybula and K. Subieta

10. Cybula, P., Subieta, K.: Query Optimization through Cached Queries for Object-Oriented
Query Language SBQL. In: van Leeuwen, J., Muscholl, A., Peleg, D., Pokorný, J., Rumpe,
B. (eds.) SOFSEM 2010. LNCS, vol. 5901, pp. 308–320. Springer, Heidelberg (2010)

11. Dar, S., Franklin, M.J., Jonsson, B.T., Srivastava, D., Tan, M.: Semantic Data Caching and
Replacement. In: Proc. of VLDB (1996)

12. IBM DB2 Universal Database SQL Reference, Version 8, vol. 2, (2002),Faster Federated
Queries with MQTs. DB2 Magazine 8(3) (2003)

13. Kemper, A., Moerkotte, G.: Access Support in Object Bases. In: Proc. of ACM SIGMOD,
pp. 364-376 (1990)

14. Kowalski, T., Wiślicki, J., Kuliberda, K., Adamus, R., Subieta, K.: Optimization by Indi-
ces in ODRA. In: Proceedings of the First International Conference on Object Databases,
ICOODB 2008, pp. 97-117 (2008)

15. LINQ:NET Language-Integrated Query, Microsoft Corporation (February 2007)
16. Litwin, W.: Linear hashing: A new tool for file and table addressing. In: Proc. of 6th

VLDB, pp. 212-223 (1980)
17. MySQL 5.4 Reference Manual, Chapter 7.5.5: The MySQL Query Cache (2009)
18. ODRA (Object Database for Rapid Application development), Description and Program-

mer Manual, http://sbql.pl/various/ODRA/ODRA_manual.html
19. Oracle 9i Materialized Views, An Oracle White Paper (May 2001), On Oracle Database

11g, Oracle Magazine XXI (5) (2007)
20. Rzeczkowski, W., Subieta, K.: Stored Queries – a Data Organization for Query Optimiza-

tion. Proc. of Data & Knowledge Engineering 3, 29–48 (1988)
21. EL-Sayed, M., Wang, L., Ding, L., Rundensteiner, E.A.: An Algebraic Approach for In-

cremental Maintenance of Materialized XQuery Views. In: Proc. of WIDM (2002)
22. Subieta, K.: Theory and practice of object query languages. Polish-Japanese Institute of In-

formation Technology (2004) (in Polish)
23. Subieta, K., Beeri, C., Matthes, F., Schmidt, J.W.: A Stack Based Approach to Query Lan-

guages. In: Proc. of 2nd Springer Workshops in Computing (1995)
24. Subieta, K., Rzeczkowski, W.: Query Optimization by Stored Queries. In: Proc. of VLDB,

pp. 369-380 (1987)

A Flexible Object Model and Algebra for
Uniform Access to Object Databases

Michael Grossniklaus1, Alexandre de Spindler2,
Christoph Zimmerli2, and Moira C. Norrie2

1 Dipartimento di Elettronica e Informazione, Politecnico di Milano
I-20133 Milano, Italy

grossniklaus@elet.polimi.it
2 Institute for Information Systems, ETH Zurich

CH-8092 Zurich, Switzerland
{despindler,zimmerli,norrie}@inf.ethz.ch

Abstract. In contrast to their relational counterparts, object databa-
ses are more heterogeneous in terms of their architecture, data model
and functionality. To this day, this heterogeneity poses substantial dif-
ficulties when it comes to benchmark or interoperate object databases.
While standardisation proposals have been made in the past, they have
had limited impact as neither industry nor research has fully adopted
them. We believe that one reason for this lack of adoption is that these
standards were too restrictive and thus not capable of dealing with the
heterogeneity of object databases. In this paper, we propose a uniform
interface for access to object databases that is based on a flexible object
model and algebra.

1 Introduction

Since their emergence in the 1980s, object databases have always been hetero-
geneous to an extent far greater than their relational siblings. One reason for
heterogeneity is the fact that object databases are situated at the intersection
of database management and object-oriented systems [1]. As a consequence, dif-
ferent object databases provide different sets of capabilities depending on their
origin. On a very general level, the two approaches can be characterised in terms
of whether they aim at supporting the compile-time or the run-time of an object
data management system. Typically, object-oriented systems focus on aspects
related to the design and development, whereas database management systems
also address issues related to operation and evolution.

This difference is most pronounced in the object data models on which these
systems are based. Models originating from object-oriented systems emphasise
aspects such as encapsulation and language integration [2] and, since their main
goal is to persist the objects of a programming language, these data models are
usually very similar to, or even tied in with, the one of the language. In contrast,
models that emerged from database management are designed to support tradi-
tional database features such as concurrency and recovery through transactions

A. Dearle and R.V. Zicari (Eds.): ICOODB 2010, LNCS 6348, pp. 55–69, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

56 M. Grossniklaus et al.

and to efficiently query large object graphs. Additionally, these models tend to
address issues related to the longevity of data and, therefore, provide features
to support object and schema evolution such as roles and dynamic typing.

While the different origins have led to a diverse palette of systems that are
all uniquely suited to address specific application requirements, they have also
hindered interoperability, data exchange, performance evaluation and, as argued
by Greene [3], ultimately market adoption. Early on, efforts to rectify this sit-
uation have been undertaken in terms of defining [1], benchmarking [4,5] and
standardising [6] object databases. And even though these attempts have all
made important contributions, they have failed to fully deliver on the hopes in-
vested in them. Successful object databases have become so by occupying niche
markets and expanding from there, rather than by following definitions and im-
plementing standards. We believe that one reason for this lack of adoption is
that the proposals were too restrictive in the sense that the trade-off between a
common core and individual strengths was not well balanced.

Nevertheless, as object databases have recently gained importance in both
academia and industry, it is critical to also resume these standardisation ef-
forts. This requirement has also been identified by the Object Management
Group (OMG) which recently formed a working group to develop the next-
generation object database standard [7]. We believe that the current proposal is
far too generic and, in this paper, propose an alternative object model and alge-
bra that offers a better trade-off between diversity and specificity. In the context
of this model, we have also defined an algebra that supports both unordered and
ordered collections with or without duplicates. Based on this model and algebra,
we propose an interface to provide uniform access to object databases.

We begin in Sect. 2 with the background and discussion of related work. The
object data model and corresponding algebra are presented in Sect. 3 and Sect. 4,
respectively. In Sect. 5, we discuss a prototype implementation of the proposed
interface that serves as a proof-of-concept. The contributions of this work as well
as open issues are discussed in Sect. 6 and we conclude in Sect. 7.

2 Background

Several efforts to standardise object databases in terms of object data models and
algebras have been made in the past or are still ongoing. We start by summarising
the most influential approaches, before introducing the background of the object
representation used in our proposal.

The best-known object database standard was defined by the Object Data
Management Group (ODMG) [6]. Its object data model is based on the OMG
object model and distinguishes between modelling primitives with and without
unique identifier, called objects and literals, respectively. An object has a state
comprised by its attributes and relationships as well as behaviour given by its
methods. Objects are defined by types that consist of a specification and an im-
plementation part. The former defines the abstract state and behaviour, while
the latter furnishes a concrete realisation of the specification through a language

A Flexible Object Model and Algebra Uniform Access to Object Databases 57

binding. Abstract types are specified in terms of interfaces that define abstract
behaviour and classes that define abstract state and behaviour. For classes, the
model supports only single inheritance, whereas for interfaces multiple inheri-
tance is allowed. Finally, predefined collection types such as set, bag, list, array
and dictionary are available both as objects and as literals.

Following the renewed interest in object databases, OMG recently resumed
standardisation efforts and formed the object database technology working group.
The proposal in the current white paper [7] is based on a Stack-Based Architec-
ture (SBA) [8] that features a storage model and a query language. The storage
model uses 〈subject, predicate, object〉 triples to represent objects. The formalisa-
tion of this model is straightforward and therefore its main advantage. However,
we believe that the fact that it is not specific to object databases and hence does
not capture their essential features makes it unsuitable as a standard. It has been
shown that storages based on triples are generic to the point of being able to
represent any data model [9]. As a consequence, the current proposal has to be
considered a step backwards as its low level of granularity cannot compete with
earlier and semantically richer models, such as OEM [10] that uses quadruples
to represent objects or the previously discussed ODMG data model.

In order to interact with object data, algebras and query languages have been
defined in addition to data models. The Object Query Language (OQL) [6] was
defined within the ODMG standard. OQL is a declarative query language with
a syntax similar to SQL. The semantics, however, is quite different as OQL op-
erates on sets of objects and is capable of handling path expressions. Unlike
the ODMG data model that is supported by some vendors, OQL has not seen
widespread adoption. Today, the Versant Query Language (VQL) [11] represents
the most complete implementation, even though it only supports a very limited
subset of OQL. The Stack-Based Query Language (SBQL) [8] is based on an
algebra that complements the stack-based architecture introduced above. SBQL
queries can be expressed using its proprietary syntax or through SBQL4J, a
language-integrated query interface for the Java programming language. The
latter is again confirmation of the fact that there is a trend in object databases
to integrate the query language with the programming language. This approach
has been pioneered by Microsoft’s Language-Integrated Query (LINQ) [12,13]
which is capable of accessing object, relational and XML data uniformly. Other
approaches that fall into this category are db4o’s programmatic query inter-
faces [14], namely Native Query (NQ) and Simple Object Data Access (SODA).
Acknowledging this development, we are convinced that a future object database
standard should specify a programmatic or language-integrated query interface,
rather than a stand-alone query language.

The object model and algebra that we propose as the theoretical foundation
for building a standardised interface to object databases is based on object-
slicing [15]. An object representation that uses the object-slicing technique is a
suitable basis for a standard as it is flexible enough to capture the diversity of
object databases while, at the same time, specific enough to address their unique
requirements. For example, it can uniformly represent object models regardless

58 M. Grossniklaus et al.

of whether they use single or multiple inheritance and whether multiple instan-
tiation is possible or not [16]. In the past, object-slicing has, therefore, been
proposed as an implementation technique to support features such as views,
schema evolution, versions and roles. MultiView [17,18] is an implementation of
object-slicing on top of GemStone and has been applied both to object-oriented
views and schema evolution. While MultiView implements object-slicing based
on an object database, Iris [19] follows the same approach but uses a relational
back-end to store its objects. This approach is similar to more recent Object-
Relational Mapping (ORM) tools that also persist objects in relational databases
using model mapping [20]. However, while MultiView and Iris assume a fixed
mapping between classes and so-called implementation objects, Hibernate [21],
for example, offers several mapping strategies to define how objects are stored.

In summary, previous work has focused on object-slicing at the implementa-
tion level to support advanced features and to store objects flexibly. In contrast,
our proposal is to leverage object-slicing at the conceptual level to unify the dif-
ferent approaches that exist. Unlike earlier standards, our approach recognises
the importance of having diverse object databases. Therefore, our main goal is
not to limit these systems by forcing them to adopt a restrictive interface. On
the contrary, we propose a uniform and consistent interface to object databases
that could easily be implemented by existing systems. As a consequence, the
focus of our interface is more on data exchange and benchmarking, rather than
application development and portability.

3 Object Data Model

In this section, we present an object data model based on object-slicing [15].
Figure 1 introduces the example used to illustrate our approach. The left shows
a class hierarchy, rooted at class Contact with subclasses Organisation, Person
and Private. The graphical representation of two objects based on object-slicing
is given on the right. Object id1 is an instance of class Person, whereas object id2
is an instance of class Organisation. As can be seen, both objects consist of two
so-called object slices which we refer to as information units. Each information
unit corresponds to exactly one class and stores the attribute values for the
fields declared by that class. Object instantiation in our model is captured by
the dress and strip primitives that add or remove information units, respectively.
As shown in the figure, object id1 can be instantiated with class Private using
a dress operation, whereas object id1 could be reclassified as an instance of
Contact using a strip operation. Based on this representation, we now present
the formal definition of the object data model.

The type system of our object data model distinguishes four different kinds
of types—base, object, structured and extent types—that describe the domain
T of all possible values V. Let T

∗ = {Tbase, Tobj , Tstruct, Text}, then ∀ Ti, Tj ∈
T
∗ : Ti 	= Tj : Ti ∩ Tj = ∅ and T =

⋃
Ti∈T∗ Ti. We will describe each of these

types in more detail.

A Flexible Object Model and Algebra Uniform Access to Object Databases 59

name: String
phones: Set<String>

Contact

address: Address

Organisation

title: String

Person

birthdate: Date

Private
street: String
number: Integer

«literal»
Address

employees

id1

name: "Fred Bloggs"
phones: { "555-123456" }

title: "Mr"

id2

name: "ACME"
phones: { "555-234567" }

employees: { id1 }
address: (street: "Main St.", number: 9)

birthdate: 01-02-1993

Contact

Person

Private

Contact

Organisation

dress
strip

Fig. 1. Overview of our approach

Base Types. A base type Tbase ∈ Tbase defines the, possibly infinite, domain of
a basic type that is predefined by the object database. As a consequence, Tbase

can change from one system to another. For the scope of this paper, we assume
the following definition.

Tbase = {boolean, integer,real,date, string}

We use the names of the base type as a short-hand to denote their value domains.
For example, boolean is used to denote Tboolean = {true, false}.

A base value, vbase ∈ Vbase, has no identity and is said to be an instance of
a base type Tbase ∈ Tbase, denoted as vbase � Tbase, iff vbase ∈ Tbase. Generally,
base types and their instances cannot be explicitly created, modified or deleted
as their existence is taken for granted.

Object Types. An object type Tobj ∈ Tobj describes the properties of a class of
objects.1 It is defined as a set of field names {F1, F2, . . . , Fn} each of which is
associated with a type Ti ∈ T, where 1 ≤ i ≤ n.

An object type Tsub can be a subtype of one or more object types Tsuper ,
denoted as Tsub � Tsuper . The relation � is transitive, i.e. T1 � T2 ∧ T2 � T3 ⇒
T1 � T3 and reflexive, i.e. Tobj � Tobj. Based on these properties, we define

T ∗
obj =

⋃

∀ Ti∈Tobj : Tobj�Ti

Ti

to be the set of all defined and inherited field names of an object type Tobj.2

An object, vobj ∈ Vobj , is defined as the structure 〈id, Ω〉, where id is the
object’s unique and immutable identifier and Ω = {μ | μ : Tobj → V} is a set

1 Due to space limitations, we omit the discussion of methods in this paper.
2 Note that the precise definition of the set T ∗

obj depends on the model of inheritance
used by the object database. Since our object model does not preclude any inheri-
tance model, different systems may return different sets.

60 M. Grossniklaus et al.

of mappings. Each mapping μ : (F1 = v1, F2 = v2, . . . , Fn = vn) is a function
relating field names Fi ∈ Tobj to values vi ∈ V with the restriction that μ(Fi) �
Ti. We say a mapping μ satisfies Tobj , denoted by μ |= Tobj, iff ∀Fi ∈ Tobj , ∃ v ∈
V : μ(Fi) = v. An object vobj = 〈id, Ω〉 is said to be an instance of Tobj , denoted
as vobj � Tobj, iff ∀ Ti ∈ Tobj : Tobj � Ti, ∃ μ ∈ Ω : μ |= Ti. Mappings correspond
to the information units introduced earlier.

Both object types and objects can be created, modified and deleted. Due
to space limitations, we limit our presentation to the dress, strip and browse
operations that are specific to our object data model. A more comprehensive
discussion can be found in [22]. The dress and strip operations are used respec-
tively to add or remove information units to or from an object, while the browse
operation computes a mapping that represents the object in the context of the
given type.

dress(〈id, Ω〉, Tobj) : if 	 ∃ μ ∈ Ω : μ |= Tobj then Ω := Ω ∪ {μnew} end

strip(〈id, Ω〉, Tobj) : if ∃ μ ∈ Ω : μ |= Tobj then Ω := Ω\{μ} end

browse(〈id, Ω〉, Tobj) : return μ : μ |= T ∗
obj

Structured Types. A structured type Tstruct ∈ Tstruct describes the structure
of literals. Similar to object types, structured types are defined as a set of field
names {F1, F2, . . . , Fn} where each Fi is associated with a type Ti ∈ T, where
1 ≤ i ≤ n. In contrast to object types, structured types cannot define methods
and there is no notion of subtyping or inheritance.

Since a structured value or struct, vstruct ∈ Vstruct, has no identity, it is simply
defined as a mapping μ : Tstruct → V, denoted as (F1 = v1, F2 = v2, . . . , Fn =
vn), where μ(Fi) � Ti. We say a structured value vstruct = μ is an instance of
Tstruct, denoted as vstruct � Tstruct, iff μ |= Tstruct, where μ |= Tstruct ⇔ ∀ Fi ∈
Tstruct, ∃ v ∈ V : μ(Fi) = v.

Extent Types. An extent type Text ∈ Text describes a collection of values in terms
of its bulk behaviour and the type of its members. Accordingly, it is defined as
a structure 〈bulk, T 〉, where bulk ∈ {set, bag, ranking, sequence} and T ∈ T.

An extent value or extent, vext ∈ Vext, for an extent type Text = 〈bulk, T 〉 is
a finite collection of values, denoted as vext = 〈〈v1, v2, . . . , vn〉〉. Corresponding
to the four bulk behaviours introduced above, we distinguish set, bag, ranking
and sequence extent values, depending on whether they are ordered and allow
duplicates. We denote a set (unordered, no duplicates) as vset = {v1, v2, . . . , vn},
a bag (unordered, duplicates) as vbag = �v1, v2, . . . , vn�, a ranking (ordered, no
duplicates) as vrnk = �v1, v2, . . . , vn�, and a sequence (ordered, duplicates) as
vseq = [v1, v2, . . . , vn]. An extent value vext is an instance of an extent type
Text = 〈bulk, T 〉, denoted as vext � Text, iff its behaviour matches bulk and
∀ v ∈ vext : v � T . We will discuss the operations defined over collections of
values in the next section.

Example. For the example introduced in Fig. 1, the representation of a database
containing objects id1 and id2 based on the formal object data model is given

A Flexible Object Model and Algebra Uniform Access to Object Databases 61

by
V = {〈id1, {μcontact

1 , μperson
1 }〉, 〈id2, {μcontact

2 , μorganisation
2 }〉},

where

μcontact
1 : (name = "Fred Bloggs", phones = {"555-123456"})

μperson
1 : (title = "Mr")

μcontact
2 : (name = "ACME", phones = {"555-234567"})

μorganisation
2 : (address = (street = "Main St.",number = 9), employees={id1}).

4 Collection Algebra

We now present the algebra associated with our model. Since, for the most part,
its operators apply to collections of values, i.e. extent values, we refer to it as a
collection algebra. Our algebra is an extension of traditional set algebra as it in-
troduces functionality specific to object data management and provides support
for collections other than sets. However, in order to define how these operators
manipulate collections of values, we first need to specify their behaviour in terms
of the type system of our object data model.

Table 1. Most-specific types
(a) Base types

⊔
boolean integer real date string

boolean boolean ⊥ ⊥ ⊥ string
integer integer real ⊥ string

real real ⊥ string
date date string

string string

(b) Extent types
⊔

set bag ranking sequence

set set set set set
bag bag set bag

ranking ranking ranking
sequence sequence

Most-specific Type. We define the most-specific type of two types T1 and T2,
denoted as T̂ = T1 � T2, where T1, T2 ∈ Ti and Ti ∈ T

∗. In the case that
Ti = Tbase, the most-specific type of two base types is defined by Tab. 1(a), where
⊥ stands for undefined. The most-specific type of two object types T1, T2 ∈ Tobj

is defined as

T̂ = T1 � T2 ⇔ T1 � T̂ ∧ T2 � T̂ ∧ (∃ Ti 	= T̂ : T1 � Ti � T̂ ∧ T2 � Ti � T̂).

If Ti = Tstruct, the most-specific type of two structured types T1 and T2 is defined
as follows. Let T1 = {F 1

1 , F 1
2 , . . . , F 1

n} with associated types T 1
i , where 1 ≤ i ≤ n

and T2 = {F 2
1 , F 2

2 , . . . , F 2
m} with associated types T 2

j , where 1 ≤ j ≤ m. If n = m

and ∀1≤k≤n F 1
k , F 2

k : F 1
k = F 2

k , then T̂ = T1�T2 is given as the set of field names
{F1 = F 1

1 , F2 = F 1
2 , . . . , Fn = F 1

n} with associated types Ti = T 1
i �T 2

i , 1 ≤ i ≤ n.
Finally, in the case that T1 = 〈bulk1, T

′
1〉 and T2 = 〈bulk2, T

′
2〉 ∈ Text, the most-

specific type of two extent types is given by the structure T̂ = 〈bulk, T ′〉, where
bulk = bulk1�bulk2, according to Tab. 1(b) and T ′ = T ′

1�T ′
2. In all other cases,

the most-specific type of two types is undefined (⊥).

62 M. Grossniklaus et al.

Type Compatibility. Two types Ti and Tj are said to be compatible, denoted as
Ti ∼ Tj, iff Ti � Tj 	= ⊥.

Support Operations. Finally, we introduce the following operations to support
the definition of operators over ordered collections. For an ordered collection
C = 〈〈x|C′〉〉, the | operator decomposes C into its first element x and the
ordered collection of the remaining elements C′. The operation append(C, x) :
(coll[T], T) → coll[T] inserts an element x at the end of an ordered collection C.
The operation remove(C, x) : (coll[T], T) → coll[T] removes the element x with
the smallest index from the ordered collection C.

Note that we will use the set representation of bags in some of the following
definitions, where �1, 1, 1, 2, 2, 3� ≡ {(1, 3), (2, 2), (3, 1)}. Then we use x ∈bag B
to denote the membership of x in a bag B and (x, n) ∈set B to denote the
membership of (x, n) in the set representation of B where n is an integer giving
the number of occurrences of x. The full definition of collection membership
∈ : (T, coll[T]) → boolean, is given below.

x ∈set S = x ∈ S x ∈bag B = ∃n : (x, n) ∈set B ∧ n > 0
x ∈rnk R = ∃i : R[i] = x x ∈seq Q = ∃i : Q[i] = x

Finally, we also include a definition of bag addition here, which will be used to
define other operators over bags that are part of the collection algebra.

B1 � B2 = {(x, y) | ∃n1, n2 : (x, n1) ∈set B1 ∧ (x, n2) ∈set B2 ∧ n = n1 + n2)}

Collection Operations. The extent operation, ⊗ : T → coll[T], where T ∈ Tobj ,
returns all objects vobj in the databases, such that vobj � T .

The union, ∪ : (coll[t1], coll[t2]) → coll[t1 � t2], of two collections is defined as
follows.

S1 ∪set S2 = {x | x ∈set S1 ∨ x ∈set S2}
B1 ∪bag B2 = {(x, n) | ∃n1, n2 : (x, n1) ∈set B1∧(x, n2) ∈set B2∧n=max(n1, n2)}

R1 ∪rnk R2 =
{

R1 if R2 = ∅
append(R1, x) ∪rnk R′

2, where R2 = �x|R′
2� otherwise

Q1 ∪seq Q2 =
{

Q1 if Q2 = ∅
append(Q1, x) ∪seq Q′

2, where Q2 = [x|Q′
2] otherwise

The definition of the intersection, ∩ : (coll[t1], coll[t2]) → coll[t1 � t2], of two
collections is given below.

S1 ∩set S2 = {x | x ∈set S1 ∧ x ∈set S2}
B1 ∩bag B2 = {(x, n) | ∃n1, n2 : (x, n1) ∈bag B1∧(x, n2) ∈bag B2∧n=min(n1, n2)}

R1 ∩rnk R2 =

⎧
⎨

⎩

∅ if R1 = ∅
�x|(R′

1 ∩rnk R2)�, where R1 = �x|R′
1� if x ∈rnk R2

R′
1 ∩rnk R2, where R1 = �x|R′

1� otherwise

Q1 ∩seq Q2 =

⎧
⎨

⎩

∅ if Q1 = ∅
[x|(Q′

1 ∩seq remove(Q2, x))], where Q1 = [x|Q′
1] if x ∈seq Q2

Q′
1 ∩seq Q2, where Q1 = [x|Q′

1] otherwise

A Flexible Object Model and Algebra Uniform Access to Object Databases 63

The following definition specifies the difference, − : (coll[t1], coll[t2]) → coll[t1],
of two collections.

S1 −set S2 = {x | x ∈set S1 ∧ x /∈set S2}
B1 −bag B2 = {(x, n) | ∃n1 : (x, n1) ∈set B1 ∧

((x /∈bag B2 ∧ n = n1) ∨ ∃n2 : (x, n2) ∈set B2 ∧ n = n1 − n2)}

R1 −rnk R2 =

⎧
⎨

⎩

R1 if R2 = ∅
remove(R1, x) −rnk R′

2, where R2 = �x|R′
2� if x ∈rnk R1

R1 −rnk R′
2, where R2 = �x|R′

2� otherwise

Q1 −seq Q2 =

⎧
⎨

⎩

Q1 if Q2 = ∅
remove(Q1, x) −seq Q′

2, where Q2 = [x|Q′
2] if x ∈seq Q1

Q1 −seq Q′
2, where Q2 = [x|Q′

2] otherwise

Selection. The selection operation, σ : (coll[t], t → boolean) → coll[t], forms a
subcollection of a given collection C that only contains elements that satisfy a
predicate p. Using the reduce operation (�), which will be introduced later, it
is defined as follows.

σset p S = {x | x ∈set S ∧ p(x) = true}
σbag p B = {(x, n) | (x, n) ∈set B ∧ p(x) = true}
σrnk p R = �rnk λ(x, R′).(if p(x) then �x� ∪rnk R′ else R′) ∅ R

σseq p Q = �seq λ(x, Q′).(if p(x) then [x] ∪seq Q′ else Q′) ∅ Q

Map Operations. Our algebra also supports map operations that apply a given
function f to all members of a collection C and return a new collection con-
taining the results of this function application. The general map operator, � :
(coll[t1], t1 → t2) → coll[t2], is given as follows.

�set f S = {f(x) | x ∈set S}
�bag f B = �bag λ((x, n), B′).({(f(x), n)} � B′) ∅ B

�rnk f R = �rnk λ(x, R′).(�f(x)� ∪rnk R′) ∅ R

�seq f Q = �seq λ(x, Q′).([f(x)] ∪seq Q′) ∅ Q

The navigation operation, · : (coll[T], Fi) → coll[Ti], where T ∈ Tobj , Fi ∈ T
and μ(Fi) � Ti, is a special case of a map operation that substitutes each object
x = 〈id, Ω〉 with the value of its field Fi, denoted as x.Fi = μ(Fi), where μ ∈ Ω.

S ·set F = �set λx.(x.F) S B ·bag F = �bag λx.(x.F) S
R ·rnk F = �rnk λx.(x.F) S Q ·seq F = �seq λx.(x.F) S

Reduce Operations. The last group of operators provided in our algebra are
reduce operations which, given an aggregation function f and a default value v,
compute one or more aggregated values over a collection C. The general reduce

64 M. Grossniklaus et al.

operator, � : (coll[t1], ((t1, t2) → t2), t2) → t2 is defined as follows.

�set f v S = if S = ∅ then v else f(x, �set f v S′), where S = S′ ∪set {x}
�bag f v B = if B = ∅ then v else f(x, �bag f v B′), where B = B′ � {(x, 1)}
�rnk f v R = if R = ∅ then v else f(x, �rnk f v R′), where R = �x� ∪rnk R′

�seq f v Q = if Q = ∅ then v else f(x, �seq f v Q′), where Q = [x] ∪rnk Q′

Examples. Based on the example given in Fig. 1, assume we want to find the
names of all employees working for the "ACME" company. Then this query could
be expressed as follows.

(σname="ACME"(⊗organisation)) · employees · name

Another example is the following query to retrieve the names of the organisations
for which "Fred Bloggs" works. Note that we have split it into two steps purely
for the sake of legibility.

fred := σname="Fred Bloggs"(⊗person)

σfred⊆employees(⊗organisation) · name

Apart from the operators presented in this section, our algebra provides fur-
ther functionality that had to be omitted due to space limitations. A complete
overview of our collection algebra can be found in [22].

5 Implementation

Based on the formal definitions given in the previous sections, we have speci-
fied an application programming interface (API) and realised a proof-of-concept
implementation. The aim of the proposed API is to serve as a standard for
uniform access to object databases, rather than as a standard for application
development. As a consequence, our API is quite low-level and procedural. Its
main concepts are two interface classes that respectively define the methods to
manage and query data according to the object data model and algebra. The
signatures of the most commonly used methods of the first interface class are
outlined in Tab. 2. These methods allow types to be created and instantiated,
and their instances to be read, manipulated and deleted.

For example, an object type can be created with the createObjectType
method by providing its name and a list of attribute types. Attributes may
be of base, structured, object or extent types, which are commonly generalised
as Type. An object is created using createObject and dressed with an object
type using the dress method which takes the object to be dressed and an object
type as argument. Given such an object and its type, attribute values may be
read and written with the get/setAttributeValues methods. Finally, an ob-
ject may be deleted with the deleteObject method. All other types and their
instances are managed similarly.

A Flexible Object Model and Algebra Uniform Access to Object Databases 65

Table 2. Signatures of API methods

createObjectType(Transaction, String, Type[]): ObjectType
createStructuredType(Transaction, String, Type[]): StructuredType
createExtentType(Transaction, String, BulkType, Type): ExtentType
getType(String): Type
createObject(Transaction): Identifier
dressObject(Transaction, Identifier, ObjectType)
stripObject(Transaction, Identifier, ObjectType)
deleteObject(Transaction, Identifier)
getAttributeValues(Transaction, Identifier, ObjectType): Object[]
setAttributeValues(Transaction, Identifier, ObjectType, Object[])
createExtent(Transaction, ExtentType): ExtentValue
deleteExtent(Transaction, ExtentValue)

The interface of the algebra is based on the iterator model [23] and thus
follows a language-integrated rather than a declarative approach. The signatures
of the algebra operators defined in the previous section are shown in Tab. 3.
Additionally, our interface provides a scan method that, given an ExtentValue,
returns an iterator. Thus, the scan method interfaces between the collection
representation of the object data model and the one used in the algebra. The
signatures of the remaining operator methods closely correspond to the formal
definitions of Sect. 4 and therefore require no further explanation. Note that all
of these methods take one or more iterators as input and return one iterator as
output. Therefore, operators can be arbitrarily nested to form complex queries.

As a proof-of-concept, we show how the API was implemented using Berkeley
DB Java Edition which is a light-weight key-value database providing direct ac-
cess to its data structures. Due to the nature of our interface, we wanted to avoid
the complexity of interacting with a relational or object database system. While
this might sound counter-intuitive, it is motivated by the fact that we do not
propose an interface for application development and, therefore, do not believe it
should be implemented “on top” of an existing database interface. Rather, ven-
dors should offer the proposed interface as an alternative that supports use-cases
such as benchmarking and data exchange.

Table 3. Signatures of algebra operators

scan(ExtentValue): Iterator
map(Iterator, Function): Iterator
reduce(Iterator, Function, Object): Iterator
selection(Iterator, Predicate): Iterator
navigate(Iterator, String): Iterator
union(Iterator, Iterator): Iterator
intersection(Iterator, Iterator): Iterator
difference(Iterator, Iterator): Iterator

66 M. Grossniklaus et al.

In order to store information about the different types, we use separate data-
bases3 for base, structured, object and extent types. These four databases con-
stitute the metadata over the persistent data and their record layouts are shown
in Fig. 2. As every type is identified by a unique name, we map these names to
UUID values which are used as database keys. For object types shown in Fig. 2(a),
we store a header (grey fields) containing the field and supertype count as well
as the offset for the supertypes within the record. We then have a sequence of
(Position, ^Type) pairs describing the type’s attributes. Position is used for
schema evolution, while ^Type is a type reference represented as the UUID of
the attribute type. A sequence of UUID values referring to a type’s supertypes
forms the end of such records. The numbers in parenthesis show the sizes of
each record part in bytes. Figure 2(b) shows how base types are described by a
Type which encodes the basic type from Tbase. A record describing a structured
type is shown in Fig. 2(c). It consists of a header containing the field count and
a sequence of ^Type containing the UUID values of the field types. As shown
in Fig. 2(d), extent types are stored as an encoded bulk type such as set, bag,
sequence or ranking, and the UUID of the type describing the extent members.

UUID
(16)

#Fields
(2)

header

#Super
(2)

^Super
(4)

Position
(2)

^Type
(16)

Position
(2)

^Type
(16)

^Type
(16)

^Type
(16)

key value

(a) Object type unit

UUID
(16)

Type
(1)

key value

(b) Base
type unit

UUID
(16)

#Fields
(2)

^Type
(16)

^Type
(16)

key value

(c) Structured type unit

UUID
(16)

Bulk
(1)

^Type
(16)

key value

(d) Extent type unit

Fig. 2. Record layouts in the type metadata databases

In addition to the metadata, a user partition contains the objects, their infor-
mation units and the extent values. For each object type, we create a separate
database containing all of its instances. The entries of such databases start with
the instance object’s identifier encoded as a UUID key, followed by a value part as
shown in Fig. 3. The value part contains the information unit’s attribute values.
Internally, we divide an entry’s value part into a fixed-size and a variable-size
part. For variable-size attributes such as strings, we store their length and a
pointer to the beginning of the variable-size part following the fixed-size part
(light grey). This record layout enables the execution of some schema evolution
operations without having to re-write all instances of the type under change.

The dress types database shown in Fig. 4 is used to keep track of all informa-
tion units that belong to an object. In this database, we map the object’s UUID
3 In Berkeley DB, the term database refers to what would be called a relation or table

in the relational world.

A Flexible Object Model and Algebra Uniform Access to Object Databases 67

UUID
(16)

Size
(4)

^Value
(8)

Value
(Fixed Size)

Value
(Fixed Size)

Size
(4)

^Value
(8)

Value
(Variable Size)

Value
(Variable Size)

Fixed-Size Values Variable-Size Values

key value

Fig. 3. Record layout for object information units

UUID
(16)

#Types
(2)

^Type
(16)

^Type
(16)

key value

Fig. 4. Record layout for object dress types

to a sequence of UUID values referring to all types an object has been dressed
with. This database duplicates information that could be found by accessing all
type extents, however, we use it as an index to accelerate look-up operations.

Each extent is stored in its own database. Depending on the bulk type, addi-
tional index structures such as Berkeley DB’s secondary databases are employed
for fast access to extent members. The members are UUID values in the case
of objects and extents or the actual values in the case of base and structured
values.

6 Discussion

We now discuss and position our work with respect to the related approaches
that were introduced in Sect. 2. The object data model that we presented in this
paper can be classified as an evolution of the ODMG 3.0 data model. The ODMG
modelling primitives of objects and literals correspond to object and structured
types in our model. The distinction of whether information is modelled as an
identifiable object or an inlined value is present in most object databases. For
example, the Versant Object Database (VOD) introduced the notion of first-class
and second-class objects, while Objectivity/DB uses the concept of embedded
objects to support this feature. As a consequence, we believe that any new
object database standard should also include these capabilities. Finally, we note
that the collection types defined in our model are slightly different from the
ones offered by the ODMG model. Nevertheless, we share the conviction that
different collection types and their associated operations are an essential part of
an object data model.

The approach that is currently proposed as the next-generation object data-
bases standard takes an altogether different stance in this respect. Instead of
defining the characteristics of a standard object data model, their data model
decomposes objects into triples that are used to represent all information. While
this model is very flexible and easily formalised, it is too general and lacks
specificity for the domain of object databases. Our model acknowledges the im-
portance of a formal specification as the foundation of consistent semantics,

68 M. Grossniklaus et al.

however we position it differently in terms of the trade-off between flexibility
and specificity. Based on object-slicing, our approach supports different models
of inheritance and instantiation. At the same time, its type model and collection
algebra are truly object-oriented.

When defining a standard, there are different objectives that can be taken into
consideration. For example, the ODMG 3.0 standard has been defined to provide
better support for unified application development and portability. The goal of
the interface proposed in this paper is different as it was designed to facilitate
standardised evaluation of object databases in terms of benchmarking or as a
format for data exchange. Consequently, our application programming interface
does not provide transparent persistence that is nowadays the standard for object
database application development. Nevertheless, we believe that the adoption of
our proposal is likely as many vendors already offer lower-level interfaces to their
databases, e.g. Versant’s JVI Fundamental Binding [24].

7 Conclusion

We have presented an object data model that uses object-slicing to support
different styles of inheritance and instantiation. We have defined the model for-
mally and used this specification as the basis for a collection algebra that provides
query facilities in the context of our object data model. Finally, we have proposed
an interface that supports both uniform access and querying of object data that
is represented according to the proposed model. As a proof-of-concept, the inter-
face that is intended for benchmarking and data exchange has been implemented
using Berkeley DB Java Edition.

As future work, we plan to experiment with different object-slicing strategies.
In this paper, we have assumed a one-to-one correspondence between object
classes and information units. However, if an object database does not provide
multiple inheritance nor multiple instantiation, this assumption might be un-
reasonable and lead to increased complexity. To experiment with this, we plan
to implement our interface based on different existing object databases. At the
same time, this will help to demonstrate its value for benchmarking and data
exchange.

References

1. Atkinson, M.P., Bancilhon, F., DeWitt, D.J., Dittrich, K.R., Maier, D., Zdonik,
S.B.: The Object-Oriented Database System Manifesto. In: Building an Object-
Oriented Database System: The Story of O2, pp. 3–20. Morgan Kaufmann, San
Francisco (1992)

2. Dearle, A., Kirby, G.N.C., Morrison, R.: Orthogonal Persistence Revisited. In:
Proc. Intl. Conf. on Object Databases (ICOODB), pp. 1–23 (2009)

3. Greene, R.: OODBMS Architectures: An Examination of Implementations. Tech-
nical report, Versant Corp. (2006)

4. Cattell, R.G.G., Skeen, J.: Object Operations Benchmark. ACM Trans. Database
Syst. 17(1), 1–31 (1992)

A Flexible Object Model and Algebra Uniform Access to Object Databases 69

5. Carey, M.J., DeWitt, D.J., Naughton, J.F.: The OO7 Benchmark. In: Proc. Intl.
Conf. on Management of Data (SIGMOD), pp. 12–21 (1993)

6. Cattell, R.G.G., Barry, D.K., Berler, M., Eastman, J., Jordan, D., Russell, C.,
Schadow, O., Stanienda, T., Velez, F. (eds.): The Object Data Standard: ODMG
3.0. Morgan Kaufmann, San Francisco (2000)

7. Card, M.: Next-Generation Object Database Standardization. Technical report,
Object Management Group (OMG) (2007)

8. Adamus, R., Habela, P., Kaczmarski, K., Lentner, M., Stencel, K., Subieta, K.:
Stack-Based Architecture and Stack-Based Query Language. In: Proc. Intl. Conf.
on Object Databases (ICOODB), pp. 77–95 (2008)

9. Frost, R.A.: Binary-Relational Storage Structures. Comput. J. 25(3), 358–367
(1982)

10. Papakonstantinou, Y., Garcia-Molina, H., Widom, J.: Object Exchange Across
Heterogeneous Information Sources. In: Proc. Intl. Conf. on Data Engineering
(ICDE), pp. 251–260 (1995)

11. Versant Corp.: Versant Object Database Fundamentals Manual, Release 8.0 (2009)
12. Box, D., Hejlsberg, A.: The LINQ Project. Technical report, Microsoft Corporation

(2005)
13. Meijer, E., Beckman, B., Bierman, G.: LINQ: Reconciling Object, Relations and

XML in the.NET Framework. In: Proc. Intl. Conf. on Management of Data (SIG-
MOD), pp. 706–706 (2006)

14. Paterson, J., Edlich, S., Hörning, H., Hörning, R.: The Definitive Guide to db4o.
Apress (2006)

15. Martin, J., Odell, J.J.: Object-Oriented Analysis and Design. Prentice-Hall, Inc.,
Englewood Cliffs (1992)

16. Parsons, J., Wand, Y.: Emancipating Instances from the Tyranny of Classes in
Information Modeling. ACM Trans. Database Syst. 25(2), 228–268 (2000)

17. Ra, Y.G., Kuno, H.A., Rundensteiner, E.A.: A Flexible Object-Oriented Database
Model and Implementation for Capacity-Augmenting Views. Technical Report
CSE-TR-215-94, University of Michigan (1994)

18. Kuno, H.A., Ra, Y.G., Rudensteiner, E.A.: The Object-Slicing Technique: A Flex-
ible Object Representation and its Evaluation. Technical Report CSE-TR-241-95,
University of Michigan (1995)

19. Fishman, D.H., Beech, D., Cate, H.P., Chow, E.C., Connors, T., Davis, J.W.,
Derrett, N., Hoch, C.G., Kent, W., Lyngbæk, P., Mahbod, B., Neimat, M.A., Ryan,
T.A., Shan, M.C.: Iris: An Object-Oriented Database Management System. ACM
Trans. Office Info. Syst. 5(1), 48–69 (1987)

20. Bernstein, P.A., Halevy, A.Y., Pottinger, R.A.: A Vision for Management of Com-
plex Models. SIGMOD Rec. 29(4), 55–63 (2000)

21. Bauer, C., King, G.: Java Persistence with Hibernate. Manning Publications Co.
(2006)

22. Würgler, A.P.: OMS Development Framework: Rapid Prototyping for Object-
Oriented Databases. PhD thesis, ETH Zurich (2000)

23. Graefe, G.: Volcano–An Extensible and Parallel Query Evaluation System. IEEE
Trans. on Knowl. and Data Eng. 6(1), 120–135 (1994)

24. Versant Corp.: Java Versant Interface Usage Manual, Release 8.0 (2009)

Data Model Driven Implementation of Web
Cooperation Systems with Tricia

Thomas Büchner, Florian Matthes, and Christian Neubert

Technische Universität München, Institute for Informatics,
Boltzmannstr. 3, 85748 Garching, Germany
{buechner,matthes,neubert}@in.tum.de

http://wwwmatthes.in.tum.de

Abstract. We present the data modeling concepts of Tricia, an open-
source Java platform used to implement enterprise web information sys-
tems as well as social software solutions including wikis, blogs, file shares
and social networks. Tricia follows a data model driven approach to sys-
tem implementation where substantial parts of the application seman-
tics are captured by domain-specific models (data model, access control
model and interaction model). In this paper we give an overview of the
Tricia architecture and development process and present the concepts of
its data model: plugins, entities, properties, roles, mixins, validators and
change listeners are motivated and described using UML class diagrams
and concrete examples from Tricia projects. We highlight the benefits of
this data modeling framework for application developers (expressiveness,
modularity, reuse, separation of concerns) and show its impact on user-
related services (content authoring, integrity checking, link management,
queries and search, access control, tagging, versioning, schema evolution
and multilingualism). This provides the basis for a comparison with other
model based approaches to web information systems.

Keywords: Data modeling, web framework, web application, software
engineering, software architecture, domain specific language.

1 Motivation and Introduction

Developers of enterprise web information systems and social software solutions
are faced with a complex technology stack of programming languages (Java,
PHP, Python, . . .), persistence managers (Hibernate, JPA, JCR, . . .), autho-
rization and access control frameworks, template engines (Servlets, JSP, . . .)
and web form validation solutions. In order to support access via web APIs from
third-party applications or stateful, rich, mobile clients (iPhone, Android, . . .)
even more technologies have to be employed.

These software development approaches suffer from the fact that small changes
in the customer requirements (e.g., adding an attribute to a persistent entity,
changing the cardinality of an association or changing the access policy for a
certain user group) lead to numerous changes in all the layers of the server and

A. Dearle and R.V. Zicari (Eds.): ICOODB 2010, LNCS 6348, pp. 70–84, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

http://wwwmatthes.in.tum.de

Data Model Driven Implementation of Web Cooperation Systems with Tricia 71

even on the client (e.g., JavaScript code for AJAX validation). These changes are
very error-prone because of the mismatches between the type systems and data
models involved (object-oriented, relational, tree-based). Based on our industrial
experience of the last ten years implementing content management solutions,
knowledge management solutions and community platforms we have developed
during the last three years a data model driven approach which is supported by
Tricia, an open source Java platform [3, 13].

The core of Tricia is an innovative modeling language tailored specifically to
the needs of this problem domain. The main idea is to derive all necessary boiler-
plate implementation details from model-representations (data, access control,
interaction) available at runtime as Java classes and objects. The application
developer can thus focus on the pure application-specific business logic which is
implemented in Java with language (typing, binding, scoping) and IDE support
(auto-completion, refactoring, dependency checking, . . .).

The purpose of this paper is to give an overview of the Tricia software archi-
tecture and development process (Section 2) and to present and motivate the
concepts of its domain-specific data model (Section 4). In Section 3 we use the
running example of a small Wiki application that allows end users to create
wikis with wiki pages, comments, tags, etc. Throughout the text we highlight
the benefits of this particular data model for application developers and for end
users. This is the basis for a comparison with related work on model driven im-
plementation of web applications in Section 6. We present exemplary views on
the data model generated by model introspection (Section 5). The paper ends
with concluding remarks and points to subsequent publications which will de-
scribe Tricia’s access control model and interaction model that builds on the
data model described in this paper.

2 Overview of the Tricia Software Architecture and
Development Process

Figure 1 provides an architectural overview of a typical web application imple-
mented on the Tricia platform using a notation similar to an UML deployment
diagram. Such an application provides HTTP(S) access for its web clients (pos-
sibly including AJAX-style asynchronous interactions), a REST-ful web API to
allow third parties to query and update the content managed by the application
and a Model Introspection interface to allow third parties to discover and query
the data model, access control model and interaction model implemented by
the application. Our current implementation only supports a single server (up
to fifteen page requests per second on stock hardware) but the architecture is
designed for a scale-out to multiple servers using a cluster database.

A Tricia application requires a Java 1.6 runtime environment on Windows or
Linux, a database server, and a Lucene full-text search engine. Currently Tri-
cia supports MySQL, Oracle, and for testing purposes the in-memory database
HSQLDB. There also exists a prototypical implementation which persists data
using the NoSQL database MongoDB.

72 T. Büchner, F. Matthes, and C. Neubert

Fig. 1. Architectural overview of a typical web application implemented on the Tricia
platform

A Tricia application consists of a core and one or more plugins that define
the application in a modular fashion (see shaded areas in Figure 1). Each plugin
specifies the plugins it depends on. Cyclic plugin dependencies are not allowed
and are detected at construction time. For example, the plugin Wiki depends on
the plugin File, since files may be attached to wiki pages and wiki management
thus requires file management.

The core defines abstractions required by virtually all applications of the
domain, for example user profiles, groups, memberships, login and registration
procedures. The plugins Wiki and File both use such user profiles to identify
the last editor of a wiki or a file. Other abstractions provided by the core are
discussed in Section 4.4.

Each plugin and the core define a data model, an access control model and
an interaction model. Each model defines a fragment of the data structures and
behavior of the entire application. These models are expressed by graphical and
textual notations (see Section 4) and are available at runtime for introspec-
tion (ovals in Figure 1). If necessary, they can be augmented by customizations
written in Java (e.g., to express business logic). Models from a plugin P may
reference models in P and in plugins imported by P (depicted by arrows in
Figure 1). The following rules apply: Interaction models may reference other
interaction models, access control models or data models. Access control models
may reference other access control models or data models. Data models may ref-
erence other data models only. The core is provided as part of the Tricia platform

Data Model Driven Implementation of Web Cooperation Systems with Tricia 73

and consists of three layered Java frameworks (c.f. layered architecture in [8])
for data modeling, access control and user interaction (views and controllers).
Each framework provides abstractions and extension points, which have to be
instantiated or customized in order to build a Tricia application. Frameworks
are developed and maintained by the Tricia core developers as part of the core
development process, customizations are developed by application developers as
part of the application development process [12]. There are two different kinds
of customizations. The majority of customizations can be done in a declarative,
model driven way. This results in models to be created. For some aspects to be
customized it is more convenient to specify them using the full expressive power
of the base language, which is Java in our case. An example for this kind of cus-
tomization is complex business logic. Figure 1 emphasizes the central role of the
data modeling framework as the foundation for model driven web application
development. Due to space limitations we focus in this paper on the concepts
of the data modeling framework. We plan to describe the other frameworks and
their meta models in subsequent papers. The following examples should suffice
to highlight the use of the application-specific data model in all frameworks:

– For each entity type, the Tricia interaction framework can generate multi-
lingual element-oriented CRUD views (create, read, update, delete) and set-
oriented table controls. These views may include rich text attributes and
media attachments (images and files).

– Associations between entities can be navigated in an element-oriented (via
hyperlinks) or set-oriented (declarative queries) style. End users can inter-
actively create full-text and structured queries for entities of a given type or
any type (Google-like searches).

– Tricia can also expose these views and controllers as REST-ful web APIs to
allow external systems to interact with Tricia applications.

– The Tricia access control framework allows application developers or end
users to associate access control policies with entity types or even individual
entities. These policies can restrict read, write and administration rights to
user groups or to individual users (role based access control or discretionary
access control). The policies are enforced automatically at the user interface
and at the web API level.

– The Tricia data modeling framework automates the data migration steps
necessary after (series of) typical incremental schema changes.

3 A Small Sample Application

In the following, we will introduce the concepts of the Tricia data model step by
step using a simple sample application, which allows registered users to manage
a collection of wikis. Each of these wikis contains multiple wiki pages. One of
the pages of a wiki can be specified as the wiki home page. Wikis and wiki pages
are identified by a unique name and a readable, structured and persistent URL.

74 T. Büchner, F. Matthes, and C. Neubert

Fig. 2. Overview of an exemplary Tricia data model in a UML-based notation

The content of a wiki page is a rich text (with markup, embedded hyperlinks
and attached media files). This Tricia application consists of a plugin with a
data model that defines the entities Wiki and WikiPage.

Tricia data models can be visualized at construction time and at run-time in
two different notations:

– A graphical overview notation similar to UML class diagrams (see Figure 2).
– A domain-specific textual syntax which contains all model details (see

Figure 3).

The first notation should be self-explanatory and the reader should already get
a first idea of the concepts of the DSL used in Figure 3 which are described in
the next section.

4 The Data Modeling Concepts of Tricia

As explained in the architecture overview section, the data modeling framework
is responsible for the management of persistent and volatile data as specified by
the data models of the core and the plugins. Technically speaking, the framework
provides (possibly abstract and polymorphic) Java classes for each data modeling
concept of Tricia. These classes are instantiated and customized based on the
data model of the specific application.

Figure 4 provides an overview of all concepts of the Tricia data modeling
framework. In the following subsections we present each of these classes and
some of their extension points and illustrate their use with the wiki sample
application introduced in the previous section.

4.1 Entities, Properties and Roles

Entities. Tricia domain objects are represented as objects of type Entity. The
example defines Wiki and WikiPage entities. Entities have a name, identifying
the concept in the data model, and an internationalized label, which is used to
generate views for end users. In our example, a WikiPage has an internationalized

Data Model Driven Implementation of Web Cooperation Systems with Tricia 75

entity Wiki

label = (en : "Wiki")

mandatoryMixins

Linkable

Seachable

features

name : StringProperty

maxLength = 255

isIndexed = false

isPersistent = true

label = (en : "Name")

validate

MinimalLengthValidator(length = 1)

urlName : UrlNameProperty

maxLength = 255

isIndexed = false

isPersistent = true

label = (en : "Name in URL")

pages : ManyRole (WikiPage)

oppositeRole = wiki : OneRole

isCascadeDelete = true

isPersistent = true

home : OneRole (WikiPage)

oppositeRole = wikiIfHome : OneRole

isCascadeDelete = false

isOwner = true

isPersistent = true

label = (en : "Home Page")

entity WikiPage

label = (en : "Wiki Page",de : "Wikiseite")

mandatoryMixins

Commentable

Linkable

Taggable

Seachable

features

name : StringProperty

maxLength = 255

isIndexed = false

isPersistent = true

label = (en : "Name")

validate

MinimalLengthValidator(length = 1)

onChange

updateUrlName (

WikiPage.name,

WikiPage.urlName

)

urlName : UrlNameProperty

maxLength = 255

isIndexed = false

isPersistent = true

label = (en : "Name in URL")

content : RichStringProperty

maxLength = 16777216

isIndexed = false

isPersistent = true

label = (en : "Content")

wiki : OneRole (Wiki)

oppositeRole = pages : ManyRole

isCascadeDelete = false

isOwner = false

isPersistent = true

label = (en : "Wiki")

validate

NotNullOneValidator

wikiIfHome : OneRole (Wiki)

oppositeRole = home : OneRole

isCascadeDelete = false

isOwner = false

isPersistent = true

Fig. 3. Detailed Tricia data model in a textual DSL

label with the English text “Wiki Page” as well as the German text “Wiki-
seite”. The textual representation of the label is as follows (see also Figure 3)

entity WikiPage
label = (en : "Wiki Page",de : "Wikiseite")

Properties. Properties of domain objects are represented as objects of type
Property. The data modeling framework provides the following predefined
basic property types: BooleanProperty, IntProperty, StringProperty,
DomainValueProperty, DateProperty, TimestampProperty. Each property

76 T. Büchner, F. Matthes, and C. Neubert

Fig. 4. Concepts of the Tricia data modeling framework

type may introduce certain attributes, which can be customized. For instance,
StringProperty represents a character sequence, with a size limited by the
maxLength attribute. The attribute isIndexed indicates whether an index shoud
be created to speed up value-based queries for that property.

Building on the basic property types (e.g., StringProperty) the Tricia core
provides the following domain-specific property types:

– A RichStringProperty is a sub type of StringProperty, which holds
HTML content. The implementation of RichStringProperty ensures, that
the content does not contain malicious scripts, automatically detects dan-
gling hyperlinks and supports a consistent application-wide URL renaming.

– An UrlNameProperty is used to provide meaningful URLs for domain ob-
jects. URLs should match as closely as possible the name of the object, but
may be subject to additional constraints due to character set limitations for
URLs.

– A PasswordProperty holds encrypted passwords and makes sure that the
content of the property is never displayed in views.

– An IdProperty is a sub type of StringProperty with the special semantics
of being a unique identifier for an entity. Each entity has a property of type
IdProperty.

In our example of Section 3, properties of a Wiki are name of type String
Property and urlName of type UrlNameProperty. A WikiPage also
has the properties name, urlName, and additionally a content property of type
RichStringProperty.

Data Model Driven Implementation of Web Cooperation Systems with Tricia 77

Roles. Associations between domain objects are represented in Tricia by mod-
eling the association ends as objects of type Role. A role specifies the type of the
associated entity, which is represented in the data model framework of Figure 4
by the to reference.

There are two kinds of multiplicities: A single-valued association is mod-
eled using the class OneRole and a multi-valued association through the class
ManyRole. The directionality of a role is expressed by the mandatory concept
Directionality. Bidirectional roles reference the corresponding opposite role.
In this case the multiplicity of the counterpart is given implicitly through the
type of the opposite role instance (OneRole or ManyRole). The bidirectional
pages role from the example data model of Figure 2 is textually represented as
follows:

pages : ManyRole (WikiPage)
oppositeRole = wiki : OneRole

Since an unidirectional role does not specify an opposite role, its multiplicity can-
not be derived and has to be defined explicitly through the otherMultiplicity
attribute.

The attribute isCascadeOnDelete indicates to delete the referenced entities
if the owning entity is deleted (c.f. UML composition). In our example, a wiki is
used as a container for a set of wiki pages:

pages : ManyRole (WikiPage)
isCascadeDelete = true

Features. Properties and roles share some common attributes, which are cap-
tured by the abstract super concept Feature. Each feature has a name, an in-
ternationalized label (c.f. entity attributes), as well as the two internationalized
attributes longHelp and shortHelp. These labels are used in generated views
to describe the meaning of a feature to end users in their own language.

The flag isPersistent indicates whether the value of a feature is to be stored
persistently in a database, by default this flag is set. A non-persistent property
can be used for derived values, which are calculated depending on the values of
other persistent properties, and can be shown in certain views. The Tricia data
modeling framework also supports inheritance, i.e., a derived entity inherits all
features of its parent entity. By default, a single-table strategy [11] is used to
map the inheritance tree to a single database table.

4.2 Validators

An important aspect of data modeling is the specification of constraints to ensure
data integrity. In the Tricia data modeling framework constraints can be modeled
through Validators. As part of the declarative model, a validator has a name
and provides error messages, which are shown to end users in case of a validation

78 T. Büchner, F. Matthes, and C. Neubert

failure. The actual algorithm, which computes the state of a validator, is provided
as a hand-written customization as introduced in section 2. Validators can be
specified for all features, i.e., for roles and properties equally.

As an example, a validator verifies whether the value of a StringProperty
satisfies a specific pattern (e.g., e-mail address). An example for role validation
is to constrain the cardinality of an association. In our example, a wiki page has
to be part of a wiki. This can be realized by a role validator applied on role wiki :

wiki : OneRole (Wiki)
validate
NotNullOneValidator

The Tricia data modeling framework provides a set of built-in property val-
idators, e.g., EmailValidator, MinimalLengthValidator, as well as predefined
role validators, e.g., NotNullOneValidator, NotEmptyManyValidator. Valida-
tors can be parameterized with values:

name : StringProperty
validate
MinimalLengthValidator(length = 1)

4.3 Change Listener

In the Tricia data modeling framework ChangeListeners are used to propagate
data model changes through the system. A change listener has a name and is
registered on a feature in order to be notified when the value of the feature
changes. Change listeners apply for both kinds of features, i.e., roles and prop-
erties equally.

For example, a change listener updateUrlName can be defined for the name
property (StringProperty) of a WikiPage. If the name property is set for a newly
created page and no URL is given by the end user, the value of the name property
is used as default for the URL. In this case, the URL cannot be empty, this is en-
sured by the validation rule of the name property (cf. MinimalLengthValidator
in section 4.2).

4.4 Entities and Mixins

The only way of realizing reuse at the data model level introduced so far is
the mechanism of inheritance. Since models in Tricia are realized by subclassing
framework classes, this mechanism is constrained by having a single inheritance
chain, which means that an entity can have only one entity it inherits from.
This imposes a severe limitation, and is not sufficient for real-world modeling

Data Model Driven Implementation of Web Cooperation Systems with Tricia 79

problems. To enable reuse on a more fine-grained level, Tricia utilizes the concept
of mixins [1].

Mixins extend entities with additional properties and roles. As shown in Figure
4, the Entity and Mixin classes are subtypes of the abstract class Asset, which
provides the capability of having features as introduced in 4.1. Mixins can be
assigned to other entities and vice versa, which is expressed by a many-to-many
association between Entity and Mixin as shown in the class diagram in Figure 4.

We distinguish two kinds of mixins, which are realized by the framework
classes MandatoryMixin and OptionalMixin. Mandatory mixins are assigned
statically to a certain entity and cannot be removed at runtime. In Table 1
an extract of existing mandatory mixin types and their use by entity classes is
shown. These mixins enable fine-grained re-use.

A mixin can depend on other mixins, e.g., a searchable entity (i.e., an entity
the mandatory mixin Searchable is assigned to) requires to be linkable (have a
URL) too, otherwise the asset cannot be accessed if it is shown in a search result
list. In this example, it is not permitted to define searchable entities, which are
not linkable.

Table 1. Mandatory mixins and their usage in the core and in the Wiki plugin

Linkable Searchable Taggable Commentable Versionable

Group x x x
Membership

Person x x x
Principal x x
Comment x x
Search x x x

Version x
Wiki x x

WikiPage x x x x x

In contrast, optional mixins can be assigned to objects and can be removed at
runtime by end users. An example of an optional mixin is the class CalendarItem,
which can be assigned to wiki pages. It marks the assigned wiki page as rep-
resenting a temporal event, which is characterized by additional features such
as startDate, endDate, and eventCategory. As opposed to mandatory mixins,
this capability is not required for all wiki pages, but can be assigned by end users
at runtime. The existence of this mixin type then indicates whether a specific
wiki page is displayed in a calendar view, or not.

As shown in Table 1, the Tricia core includes predefined entity types which are
essential for the domain of enterprise web applications. They comprise entities for
modeling users and user groups: Person, Group, Membership, and Principal.
These entities are the foundation for the access control framework (see Section 2).
Other built-in entites are Link, Comment, Version, which are associated with

80 T. Büchner, F. Matthes, and C. Neubert

the respective mandatory mixin types. For example, the mixin Commentable
establishes a one-to-many association to entities of type Comment:

mandatoryMixin Commentable
requires
Linkable

features
showComments : BooleanProperty
isIndexed = false
isPersistent = true
label = (en : "Show Comments")
comments : ManyRole (Comment)
isCascadeDelete = true
isPersistent = true
oppositeRole = commentable : OneRole

entity Comment
label = (en : "Comment")
mandatoryMixins
Linkable
Searchable
features
authorName : StringProperty
maxLength = 255
isIndexed = false
isPersistent = true
content : StringProperty
maxLength = 16777216
isIndexed = false
isPersistent = true
label = (en : "Content")
validate
MinimalLengthValidator(length = 5)

creationDate : TimestampProperty
isPersistent = true
commentable : OneRole (Commentable)
isCascadeDelete = false
isOwner = false
isPersistent = true
oppositeRole = comments : ManyRole

Fig. 5. Comment and Commentable - textual representation

5 Introspective Implementation

As presented in sections 2 and 4, data models are represented in Tricia as Java
classes, which instantiate and customize classes of the data modeling framework.
In order to enable a model driven development process, declarative models can
be extracted from the Java code by introspection [4–6]. Technically speaking,
the data modeling framework is an introspective whitebox framework, since it
provides annotations in the framework classes, which mark the extension points.
Customizations have to follow an introspective programming model, which en-
ables the extraction of the model information. For more details see [4–6].

As already mentioned, Tricia provides different views to visualize the data
models. The most generic view presents a data model in a tree structure, which
is shown in Figure 6. As it is shown in this Figure, the model view is integrated
with the Java source it is derived from.

In order to get an overview of a data model, a graphical presentation similar
to UML class diagram notation is provided for Tricia application developers. A
screenshot showing the wiki data model is depicted in Figure 7. More details on
all features in the graphical view are accessible via the textual representation
already introduced as shown in the screenshot.

Data Model Driven Implementation of Web Cooperation Systems with Tricia 81

Fig. 6. Tree view of the entity type Wiki generated through introspection

6 Related Work

There exist numerous approaches to model driven web development [9, 15–17,
19]. Since the main focus of this paper is on the data model, we will characterize
the data modeling capabilities of the following approaches:

– WebML [9] uses a notation which is compatible with classical E/R models
and with UML class diagrams. To cope with the requirement of expressing
redundant and calculated information, the structural model also offers a
simplified, OQL-like query language, by which it is possible to specify derived
information.

– UWE [15] uses the graphical UML class diagram notation for data modeling.
The main modeling elements used in the conceptual model are: class and
association. Additional features which can be used to semantically improve
data models are: association and role names, multiplicities, different forms of
associations supported by the UML like aggregation, inheritance, composition
and association class.

– Mod4j [17], WebDSL [19], and MontiWeb [16] specify models using a textual
representation, which is transformed by a generator into JPA code.

82 T. Büchner, F. Matthes, and C. Neubert

Fig. 7. Introspective Graphical View

None of the existing approaches supports mixin types, which enable reuse as
shown in section 4.4.

These existing solutions all use the generative approach to model driven de-
velopment, which means that source code is generated from models. What dif-
ferentiates our approach from these approaches is the idea to extract models
from the source code through introspection, which improves the integration of
the models with the underlying system [6].

Our introspective approach is closely related to the one introduced in [2] in the
sense that declarative model views are extracted from Java source code. In [2]
this idea is being applied to behavioral models.

7 Summary

We presented Tricia, an open source Java-based platform for the development of
dynamic data intensive enterprise web applications and social software solutions.

We introduced Tricias architecture, its constituents and interfaces. Tricias
plugins enable componentized large applications and provide with mixins the
basis for supporting software product lines [18] at the data modeling level. Tri-
cia follows a data model driven approach to system implementation. We gave
an example of declarative application development based on the data modeling
framework in the domain of social software. Tricia provides compile-time and
runtime introspection with a strongly typed generic meta-model. We illustrated

Data Model Driven Implementation of Web Cooperation Systems with Tricia 83

how textual and graphical views of introspective models facilitate the under-
standing of complex web applications.

Based on the proposed architecture we built an Enterprise 2.0 tool, which we
compared in [7] to existing commercial and open source tools. Our tool consists
of 15 plugins with 40 entities and about 500 features and is used in production
in several places (e.g., [10, 14]). Our experiences in building and maintaining
a system of this size show that a data model driven approach improves the
understandability and quality of the system.

Due to space limitations this paper focuses on the data modeling framework.
The access control and interaction modeling framework will be subject of sub-
sequent papers.

References

1. Ancona, D., Lagorio, G., Zucca, E.: Jam - designing a Java extension with mixins.
ACM Trans. Program. Lang. Syst. 25(5), 641–712 (2003)

2. Balz, M., Striewe, M., Goedicke, M.: Embedding Behavioral Models into Object-
Oriented Source Code. In: Liggesmeyer, P., Engels, G., Münch, J., Dörr, J., Riegel,
N. (eds.) Software Engineering. LNI, vol. 143, pp. 51–62. GI (2009)

3. Bitbucket - Tricia. Website, http://bitbucket.org/infoasset/tricia-core,
(visited on May 30, 2010)

4. Büchner, T.: Introspektive Modellgetriebene Softwareentwicklung. PhD thesis,
Technische Universität München (2007)

5. Büchner, T., Matthes, F.: Introspective Model-Driven Development. In: Gruhn, V.,
Oquendo, F. (eds.) EWSA 2006. LNCS, vol. 4344, pp. 33–49. Springer, Heidelberg
(2006)

6. Büchner, T., Matthes, F.: Using Framework Introspection for a Deep Integration
of Domain-Specific Models in Java Applications. In: Proceedings of the 1. Work-
shop des GI-Arbeitskreises Langlebige Softwaresysteme (L2S2): Design for Future
- Langlebige Softwaresysteme, pp. 123–135 (2009)

7. Büchner, T., Matthes, F., Neubert, C.: A concept and service based analysis of
commercial and open source enterprise 2.0 tools. In: Liu, K. (ed.) KMIS, pp. 37–
45. INSTICC Press (2009)

8. Buschmann, G., Meunier, R., Rohnert, H., Sommerlad, P., Stal, M.: Pattern-
Oriented Software Architecture: a system of patterns, vol. 1. John Wiley and Sons,
Chichester (1996)

9. Ceri, S., Fraternali, P., Bongio, A.: Web Modeling Language (WebML): a modeling
language for designing Web sites. Computer Networks 33(1-6), 137–157 (2000)

10. ECHORD (European Clearing House for Open Robotics Development),
http://www.echord.info (visited on May 30, 2010)

11. Fowler, M.: Patterns of Enterprise Application Architecture. Addison-Wesley,
Reading (2003); With contributions from Rice, D., Foemmel, M., Hieatt, E., Mee,
R. and Stafford, R

12. Froehlich, G., Hoover, H., Liu, L., Sorenson, P.: Designing object-oriented frame-
works. University of Alberta, Canada (1998)

13. infoAsset, http://www.infoasset.de, (visited on May 30, 2010)
14. Intranet, Faculty of Informatics, Technical University Munich,

http://intranet.in.tum.de (visited on May 30, 2010)

http://bitbucket.org/infoasset/tricia-core
http://www.echord.info
http://www.infoasset.de
http://intranet.in.tum.de

84 T. Büchner, F. Matthes, and C. Neubert

15. Koch, N., Kraus, A.: The Expressive Power of UML-based Web Engineering. In:
Second International Workshop on Web-oriented Software Technology (IWWOST
2002), vol. 16. Citeseer (2002)

16. Dukaczewski, B.R.M., Reiss, D., Stein, M.: MontiWeb - Modular Development
of Web Information Systems. In: Proceedings of the 9th OOPSLA Workshop on
Domain-Specific Modeling (DSM 2009), Orlando, Florida, USA (2009)

17. Mod4j. Website. http://www.mod4j.org/ (visited on May 30, 2010)
18. Pohl, K., Böckle, G., van der Linden, F.J.: Software Product Line Engineering:

Foundations, Principles, and Techniques. Springer, Berlin (2005)
19. Visser, E.: WebDSL: A case study in domain-specific language engineering. In:

Lämmel, R., Visser, J., Saraiva, J. (eds.) Generative and Transformational Tech-
niques in Software Engineering II. LNCS, vol. 5235, pp. 291–373. Springer, Heidel-
berg (2008)

http://www.mod4j.org/

iBLOB: Complex Object Management in Databases
through Intelligent Binary Large Objects

Tao Chen, Arif Khan, Markus Schneider�, and Ganesh Viswanathan

Department of Computer & Information Science & Engineering
University of Florida

Gainesville, FL 32611, USA
{tachen,ahkhan,mschneid,gv1}@cise.ufl.edu

Abstract. New emerging applications including genomic, multimedia, and geo-
spatial technologies have necessitated the handling of complex application
objects that are highly structured, large, and of variable length. Currently, such
objects are handled using filesystem formats like HDF and NetCDF as well as
the XML and BLOB data types in databases. However, some of these approaches
are very application specific and do not provide proper levels of data abstraction
for the users. Others do not support random updates or cannot manage large vol-
umes of structured data and provide their associated operations. In this paper, we
propose a novel two-step solution to manage and query application objects within
databases. First, we present a generalized conceptual framework to capture and
validate the structure of application objects by means of a type structure speci-
fication. Second, we introduce a novel data type called Intelligent Binary Large
Object (iBLOB) that leverages the traditional BLOB type in databases, preserves
the structure of application objects, and provides smart query and update capa-
bilities. The iBLOB framework generates a type structure specific application
programming interface (API) that allows applications to easily access the compo-
nents of complex application objects. This greatly simplifies the ease with which
new type systems can be implemented inside traditional DBMS.

1 Introduction

Many fields in computer science are increasingly confronted with the problem of han-
dling large, variable-length, highly structured, complex application objects and en-
abling their storage, retrieval, and update by application programs in a user-friendly,
efficient, and high-level manner. Examples of such objects include biological sequence
data, spatial data, spatiotemporal data, multimedia data, and image data, just to name
a few. Traditional database management systems (DBMS) are well suited to store and
manage large, unstructured alphanumeric data. However, storing and manipulating large,
structured application objects at the low byte level as well as providing operations on
them are hardly supported. Binary large objects (BLOBs) are the only means to store
such objects. However, BLOBs represent them as low-level, binary strings and do not
preserve their structure. As a result, this database solution turns out to be unsatisfactory.

� This work was partially supported by the National Aeronautics and Space Administration
(NASA) under the grant number NASA-AIST-08-0081.

A. Dearle and R.V. Zicari (Eds.): ICOODB 2010, LNCS 6348, pp. 85–99, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

86 T. Chen et al.

Hence, scientists have designed special file formats like NetCDF (network Common
Data Form) and HDF5 (Hierarchical Data Format) to store such objects in files. Un-
fortunately, without the support of a DBMS, standard features like a query language,
concurrency control, transaction management, security, and recovery are unavailable
(data management problem). A widely accepted approach to handling complex data
in databases is to model and implement them as values of abstract data types (ADT)
in a type system, or algebra, which is then embedded into an extensible DBMS and its
query language. This enables their use as attribute data types in a database schema with-
out disclosing the implementation details of their complex internal structure to the user
and DBMS. At the type system level, extensible DBMS enable the specification of new
ADTs like spatial, image, and XML data types. However, these ADTs have DBMS spe-
cific implementations and are not universally deployable (generality problem). On the
other hand, BLOBs are not well suited for structured object management. They have
originally been designed for storing unstructured data as byte sequences and offer a
low-level interface for simple read/write access to byte ranges. Thus BLOBs do not un-
derstand the semantics of the internal structure of the application objects stored in them
and therefore do not include methods to access internal components of them (abstrac-
tion problem). This makes the access to a component of an application object rather
expensive since the entire object needs to be loaded into main memory to understand
its structural semantics and get access to the component of interest. Further, BLOBs
typically allow data to be appended, truncated, and modified through the overwriting of
bytes. However, general data insertions and deletions are not supported unless the user
explicitly shifts data (update problem).

In this paper, we present a novel, generic model for complex object management that
focuses on providing the required functionality to address the data management, gener-
ality, abstraction, and update problems. We first propose a generalized method, named
type structure specification, for representing and interpreting the structure of application
objects. This specification provides an interface for the ADT implementer to describe
the structure of complex objects at the conceptual level. Based on this specification,
we employ a generalized framework, called intelligent binary large objects (iBLOBs),
for the efficient and high-level storage, retrieval, and update of hierarchically structured
complex objects in databases. iBLOBs store complex objects by utilizing the unstruc-
tured storage capabilities of DBMS and provide component-wise access to them. In
this sense, they serve as a communication bridge between the high-level abstract type
system and the low-level binary storage. This framework is based on two orthogonal
concepts called structured index and sequence index. A structured index facilitates the
preservation of the structural composition of application objects in unstructured BLOB
storage. A sequence index is a mechanism that permits full support of random updates
in a BLOB environment.

Section 2 describes relevant research related to the iBLOB concept. In Section 3, we
describe the applications that involve large structured application objects, the existing
approaches to handling them, and our approach to dealing with structured objects in
a database context. We introduce the concept of type structure specification and the
iBLOB framework in Sections 4 and 5. Finally, in Section 6, we draw some conclusions
and discuss future work.

iBLOB: Complex Object Management in Databases through Intelligent BLOBs 87

2 Related Work

The need for extensibility in databases, in general, and for new data types in databases
[11], in particular, has been the topic of extensive research from the late eighties. In
this section, we review work related to the storage and management of structured large
application objects. The four main approaches can be subdivided into specialized file
formats, new DBMS prototypes, traditional relational DBMS, and object-oriented ex-
tensibility mechanisms in DBMS.

The specialized file formats can be further categorized into text formats and binary
formats [8]. Text formats organize data as a stream of Unicode characters whereas bi-
nary formats store numbers in “native” formats. XML [4] is a universal standard text
data format primarily meant for data exchange. A critical issue with all text data formats
is that they make the data structure visible and that one cannot randomly access spe-
cific subcomponent data in the middle of the file. The whole XML file has to be loaded
into the main memory to extract the data portion of interest. Moreover, the methods
used to define the legal structure for a XML document such as Document Type Defini-
tion (DTD) and XML Schema Definition (XSD) have several shortcomings. DTD lacks
support for datatypes and inheritance, while XSD is really over-verbose and unintuitive
when defining complex hierarchical objects. On the other hand, binary data formats
like NetCDF [8,9] and HDF [1,8] support random access of subcomponent data. But
updating an existing structure is not explicitly supported in both formats. Further, since
HDF stores a large amount of internal structural specifications, the size of a HDF file is
considerably larger than a flat storage format. Further, these file formats do not benefit
from DBMS properties such as transactions, concurrency control, and recovery.

The second approach to storing large objects is the development of new DBMS pro-
totypes as standalone data management solutions. These include systems such as BSSS
[7], DASDBS, [10], EOS [3], Exodus [5], Genesis [2], and Starburst [6]. These sys-
tems operate on variable-length, uninterpreted byte sequences and offer low-level byte
range operations for insertion, deletion, and modification. However, these systems do
not manage structural information of large application objects and are hence unable to
provide random access to object components.

The third approach taken to store large objects is the use of tables and BLOBs in
traditional object-relational database management systems. Any hierarchical structure
within an object can be incorporated in tables using a separate attribute column that
cross-references tuples with their primary keys. Some database such as Oracle even
support hierarchical SQL queries on such tables. However, the drawback of this method
is that the querying becomes unintuitive and has to be supported by complex procedural
language functions inside the database. Further, these queries are slow because of the
need of multiple joins between tables. Binary Large OBjects (BLOBs) provide another
means to store large objects in databases. However, this is a mechanism for storing
unstructured, binary data. Hence, the entire BLOB has to be loaded into main memory
each time for processing purposes.

The fourth approach to storing large objects is the use of object-oriented extension
mechanisms in databases. Most popular DBMS support the CREATE TYPE construct
to create user-defined data types. However, the type constructors provided (like array
constructors) do not allow to create large and variable-length application objects.

88 T. Chen et al.

3 Problems with Handling Structured Application Objects in
Database Systems and Our Solution

Application objects like DNA structures, 3D buildings, and spatial regions are com-
plex, highly structured, and of variable representation length. The desired operations
on the application objects usually involve high complexity, long execution time and
large memory. For example, region objects are complex application objects that are fre-
quently used in GIS applications. As shown in Figure 1, a region object consists of
components called faces, and faces are enclosed by cycles. Each cycle is a closed se-
quence of connected segments. Applications that deal with regions might be interested
in numeric operations that compute the area, the perimeter and the number of faces of
a region. They might also be interested in geometric operations that compute the in-
tersection, union, and difference of two regions. Many more operations on regions are
relevant to applications that work with maps and images. In any case, the implemen-
tation of an operation requires easy access to components of structured objects (e.g.,
segments, cycles, and faces of a region) that uses less memory and runs in less time.

Since database systems provide built-in advanced features like the SQL query lan-
guage, transaction control, and security, handling complex objects in a database context
is an expedient strategy. Most approaches are built upon two important architectures
that enable database support for applications involving complex application objects.

Early approaches apply a layered architecture as shown in Figure 2a, in which a
middleware that handles complex application objects is clearly separated from the ap-
plication front-end that provides services and analysis methods to its users. In this archi-
tecture, only the underlying primitive data are physically stored in traditional RDBMS
tables. The knowledge about the structure of complex objects is maintained in the mid-
dleware. It is the responsibility of the middleware to load the primitive data from the
underlying database tables, to reconstruct complex objects from the primitive data, and
to provide operations on complex objects. The underlying DBMS in the layered archi-
tecture does not understand the semantics of the complex data stored. In this sense, the
database is of limited value, and the burden is on the application developer to imple-
ment a middleware for handling complex objects. This complicates and slows down the
application development process.

A largely accepted approach is to model and implement complex data as abstract
data types (ADTs) in a type system, or algebra, which is then embeded into an

Fig. 1. A region object as an example of a complex, structured application object. It contains the
faces F1, F2, and F3, which consist of the cycles C1 and C2 for F1, C3 for F2, and C4 for F3.

iBLOB: Complex Object Management in Databases through Intelligent BLOBs 89

Application 1 Application n

Extensible DBMS

ADT 1

iBLOB

Unstructured BLOB

Type Structure Specification

. . .
. . .

. . . ADT m

(a) (b) (c)

Fig. 2. The layered architecture (a) and the integrated architecture (b) and our solution (c)

extensible DBMS and its query language. This approach employs an integrated archi-
tecture (Figure 2(b)), where the applications directly interact with the extended database
system, and use the ADTs as attribute data types in a database schema. Some commer-
cial database vendors like Oracle and Postgres have included some ADTs like spatial
data types as built-in data types in their database products. Extensible DBMS provides
users the interfaces for implementing their own ADT so that all types of applications
can be supported. Since the only available data structure for storing complex objects
with variable length is BLOB, the implementations of ADTs for complex objects are
generally based on BLOBs. The implementation of an abstract data type involves three
tasks, the design of binary representation, the implementation of component retrieval
and update, and the implementation of high level operations and predicates.

The integrated architecture has obvious advantages. It transfers the burden of han-
dling complex objects from the application developer to databases. Once abstract data
types are designed and integrated into a database context, applications that deal with
complex objects become standard database applications, which require no special treat-
ment. This simplifies and speeds up the development process for complex applications.
However, the drawback of this approach is that ADTs for structured application objects
rely on the unstructured BLOB type, which provides only byte level operations that
complicate, or even foil, the implementation of component retrieval and update. Byte
manipulation is a redundant and tedious task for type system implementers who want
to implement a high-level type system because they want to focus on the design of the
data types and the algorithms for the high-level operations and predicates.

In this paper, we propose a new concept that extends the integrated architecture ap-
proach, provides the type system implementers with a high level access to complex ob-
jects, and is capable of handling any structured application objects. In our concept, we
apply the integrated architecture approach and extend it with a generalized framework
(Figure 2c) that consists of two components, the type structure specification (Section 4)
and the intelligent BLOB concept (Section 5). The type structure specification consists
of algebraic expressions that are used by type system implementers to specify the inter-
nal hierarchy of the abstract data type. It is later used as the meta data for the intelligent

90 T. Chen et al.

BLOB to identify the semantic meaning of each structure component. Further, as part of
the type structure specification we provide a set of high-level functions as interfaces for
type system implementers to create, access, or manipulate data at the component level.
To support the corresponding interfaces, we propose a generic storage method called in-
telligent BLOB (iBLOB), which is a binary array whose implementation is based on the
BLOB type and which maintains hierarchical information. It is “intelligent” because,
unlike BLOBs, it understands the structure of the object stored and supports fast access,
insertion and update to components at any level in the object hierarchy.

The type structure specification in the framework provides an abstract view of the
application object which hides the implementation details of the underlying data struc-
ture. The underlying intelligent BLOBs ensure a generic storage solution for any kinds
of structured application objects, and enable the implementation of the high-level inter-
faces provided by the type structure specification. Therefore, the type structure speci-
fication and the concept of intelligent BLOBs together enable an easy implementation
for abstract data types. type system implementers can be released from the task of in-
terpreting the logical semantics of binary unstructured data, and the component level
access is natively supported by the underlying iBLOB.

4 Representing and Interpreting Structured Application Objects
with Type Structure Specifications

The structures of different application objects can vary. Examples are the structure of
a region (Figure 1) and the structure of a book. We aim at developing a generic plat-
form that accommodates all kinds of hierarchical structures. Thus, the first step is to
explore and extract the common properties of all structured objects. Unsurprisingly, the
hierarchy of a structured object can always be represented as a tree. Figure 3a shows
the tree structure of a region object. In the figure, face[], holeCycle[], and segment[]
represent a list of faces, a list of hole cycles and a list of segments respectively. In the
tree representation, the root node represents the structured object itself, and each child
node represents a component named sub-object. A sub-object can further have a struc-
ture, which is represented in a sub-tree rooted with that sub-object node. For example,
a region object in Figure 3a consists of a label component and a list of face compo-
nents. Each face in the face list is also a structured object that contains a face label, an
outer cycle, and a list of hole cycles, where both the outer cycle and the hole cycles are
formed by segments lists. Similarly, the structure of a book can also be represented as
a tree (Figure 3b).

Further, we observe that two types of sub-objects can be distinguished called struc-
tured objects and base objects. Structured objects consist of sub-objects, and base ob-
jects are the smallest units that have no further inner structure. In a tree representation,
each leaf node is a base object while internal nodes represent structured objects.

A tree representation is a useful tool to describe hierarchical information at a concep-
tual level. However, to give a more precise description and to make it understandable
to computers, a formal specification would be more appropriate. Therefore, we pro-
pose a generic type structure specification as an alternative of the tree representation
for describing the hierarchical structure of application objects.

iBLOB: Complex Object Management in Databases through Intelligent BLOBs 91

(a) (b)

Fig. 3. The hierarchical structure of a region object and the hierarchical structure of a book object

We first introduce the concept of structure expressions. Structure expressions define
the hierarchy of a structured object. A structure expression is composed of structure
tags (TAGs) and structure tag lists (TAGLISTs). A structure tag (TAG) provides the
declaration for a single component of a structured object, whereas a structure tag list
(TAGLIST) provides the declaration for a list of components that have the same struc-
ture. The declaration of a TAG, named tag declaration, is 〈NAME : TY PE〉, where
NAME is the identifier of the tag and the value of TY PE is either SO, which is a flag
that indicates a structured object, or BO, which is a flag that indicates a base object. An
example of a structured object tag is 〈region : SO〉, and 〈segment : BO〉 is an example
of a base object tag. We first define a set of terminals that will be used in structure
expressions as constants. Then, we show the syntax of structure expressions.

Terminal Set S = {:=, 〈, 〉, |, [,] , SO, BO, :}

Expression ::= TAG := 〈TAG | TAGLIST〉+;
TAGLIST ::= TAG []
TAG ::= 〈NAME : TY PE〉
TY PE ::= 〈SO | BO〉
NAME ::= IDENT IFIER

In the region example, we can define the structure of a region object with the following
expression: 〈region : SO〉 := 〈regionLabel : BO〉〈 f ace : SO〉[]. In the expression, the
left side of := gives the tag declaration of a region object and the right side of := gives
the tag declarations of its components, in this case, the region label and the face list.
Thus, we say the region object is defined by this structure expression.

With structure expressions, the type system implementer can recursively define the
structure of structured sub-objects until no structured sub-objects are left undefined.
A list of structure expressions then forms a specification. We call a specification that
consists of structure expressions and is organized following some rules a type structure
specification (TSS) for an abstract data type. Three rules are designed to ensure the cor-
rectness and completeness of a type structure specification when writing structure ex-
pressions: (1) the first structure expression in a TSS must be the expression that defines
the abstract data type itself (correctness); (2) every structured object in a TSS has to
be defined with one and only one structure expression (completeness and uniqueness);
(3) none of the base objects in a TSS is defined (correctness). By following these rules,
the type system implementer can write one type structure specification for each abstract

92 T. Chen et al.

data type. Further, it is not difficult to observe that the conversion between a tree repre-
sentation and a type structure specification is simple. The root node in a tree maps to the
first structure expression in the TSS. Since all internal nodes are structured sub-objects
and leaf nodes are base sub-objects, each internal node has exactly one corresponding
structure expression in the TSS, and leaf nodes require no structure expressions. The
type structure specification of the abstract data type region corresponding to the tree
structure in Figure 3a is as follows:

〈region : SO〉 := 〈regionLabel : BO〉〈 f ace : SO〉[];
〈 f ace : SO〉 := 〈 f aceLabel : BO〉〈outerCycle : SO〉〈holeCycle : SO〉[];
〈outerCycle : SO〉 := 〈segment : BO〉[];
〈holeCycle : SO〉 := 〈segment : BO〉[];

The next step after specifying the structure is to create and store the application object
into the database. The TSS provides a workable interface for the type system imple-
menter to create, access and navigate through the object. This higher-level interface
is the abstraction of the iBLOB interface. This abstraction along with the specifica-
tion, frees the type system implementer from understanding the underlying data type
iBLOB that is used for finally representing the application object in the database. Nav-
igating through the structure of the object is done by specifying a path from the root to
the node by a string using the dot-notation. For example, to point to the first segment
of the outer cycle of the third face of a region object can be specified by the string
region.face[3].outerCycle.segment[1]. A component number (e.g., first segment, third
face) is determined by the temporal order when a component was inserted. An impor-
tant point to mention is that the structural validity of a path (e.g., whether an outer cycle
is a subcomponent of a face) can be verified by parsing the TSS. However, the exis-
tence of a third face can only be detected during runtime. The set of operators which
are defined by the interface are given below:

create :→ SO
get : path → BO[]
set : path → bool
set : path× char∗→ bool
baseOb jectCount: path → int
subOb jectCount : path → int

An application object can be created by the operator create() which generates an empty
application object. The operator get(p) returns all base objects at leaf nodes under the
node specified by any valid path p. Since no data types are defined for the structured
objects in intermediate nodes, these objects are not accessible, and paths to them are
undefined. Hence, paths to intermediate nodes are interpreted differently in the sense
that the operator get(p) recursively identifies and returns all base objects under p. The
operator set(p) creates an intermediate component. The operator set(p,s) inserts a base
object given as a character string s at the location specified by the path p. The last two
operators baseObjectCount(p) and subObjectCount(p) return the number of base ob-
jects and the number of sub-objects under a node specified by the path p. As an example,
for a region object with one face that contains an outer cycle with three segments, the
corresponding code for creating the region object is given below:

iBLOB: Complex Object Management in Databases through Intelligent BLOBs 93

region r = create(); r.set(region.regionLabel,”MyRegion”);
r.set(region. f ace[1]); r.set(region. f ace[1]. f aceLabel,”Face1”);
r.set(region. f ace[1].outerCycle);
r.set(region. f ace[1].outerCycle.segment[1],seg1);
r.set(region. f ace[1].outerCycle.segment[2],seg2);
r.set(region. f ace[1].outerCycle.segment[2],seg3);

The first line of the code shows how the type system implementer can create a region
object based on the specified type structure specification. The second line creates the
first face and the third line its outer cycle as intermediate components. The following
three lines store the three segments seg1, seg2, seg3 as components of the outer cycle.

5 Intelligent Binary Large Objects (iBLOBs)

In this section, we present the conceptual framework for a new database data type called
iBLOB for Intelligent Binary Large Objects. This type enhances the functionality of
traditional binary large objects (BLOBs) in database systems. Our concept also helps to
solve the generality, abstraction and update problems (described in Section 1) that are
exhibited by current approaches (see Section 2) to manage large application objects.
BLOBs serve currently as the only means to store large objects in DBMS. However,
they do not preserve the structure of application objects and do not provide access,
update and query functionality for the sub-components of large objects. iBLOBs help
to smartly extend traditional BLOBs by preserving the object structure internally and
providing application-friendly access interfaces to the object components. All this is
achieved while maintaining low level access to data and extending existing database
systems using object-oriented constructs and abstract data types (ADTs).

The iBLOB framework consists of two main sections called the structure index and
the sequence index (Figure 4). The first section contains the structure index which helps
us represent the object structure as well as the base data. The second section contains
the sequence index that dictates the sequential organization of object fragments and
preserves it under updates. Since the underlying storage structure of an iBLOB is pro-
vided through a BLOB, which is available in most DBMSs, the iBLOB data type can
be registered as a user-defined data type and be used in SQL.

5.1 iBLOB Structure Index: Preserving Structure in Unstructured Storage

A structure index is a mechanism that allows an arbitrary hierarchical structure to be
represented and stored in an unstructured storage medium. It consists of two compo-
nents for, first, the representation of the structure of the data and, second, the actual data

comp 2comp 1 ... comp n Indexoffset n...offset 2offset 1 Sequence

Structure Index

Fig. 4. Illustration of an iBLOB object consisting of a structure index and a sequence index

94 T. Chen et al.

offset 1 offset 2 offset n... ...

Region

face 1 face 2 face n

Fig. 5. A structured object consisting of n sub-objects and n internal offsets

themselves. The structural component is used as a reference to access the data’s struc-
tural hierarchy. The mechanism is not intended to enforce constraints on the data within
it; thus, it has no knowledge of the semantics of the data upon which it is imposed.
This concept considers hierarchically structured objects as consisting of a number of
variable-length sub-objects where each sub-object can either be a structured object or
a base object. Within each structured object, its sub-objects reside in sequentially num-
bered slots. The leaves of the structure hierarchy contain base objects.

To illustrate the concept of a structure index, we show an example how to store a
spatial region object with a specific structure in a database. A region data type may be
described by a hierarchical structure as shown in Figure 3a. Consider a region made up
of several faces. If we needed to access the 50th face of a region object using a tradi-
tional BLOB storage mechanism, one would have to load and sequentially traverse the
entire BLOB until the desired face would be found. Further, since the face objects can
be of variable length, the location of the 50th face cannot be easily computed without
extra support built in to the BLOB. In order to avoid an undesirable sequential traversal
of the BLOB, we introduce the notion of offsets to describe structure. Each hierarchical
level of a structure in a structure index stored in a BLOB is made up of two components
(corresponding to the two components of the general structure index described above).
The first component contains offsets that represent the location of specific sub-objects.
The second component represents the sub-objects themselves. We define offsets to have
a fixed size; thus, the location of the ith face can be directly determined by first calcu-
lating the location of the ith offset and then reading the offset to find the location of the
face. Figure 5 shows a structured object with internal offsets.

The recursive nature of hierarchical structures allows us to generalize the above de-
scription. Each sub-object can itself have a structure like the region described above.
Objects at the same level are not required to have the same structure; thus, at any given
level it is possible to find both structured sub-objects and base objects (raw data). For
example, we can extend the structure of a region object so that it is made up of a collec-
tion of faces each of which contains an outer cycle and zero or more hole cycles, which
in turn are made up of a collection of segments. Segments can be implemented as a pair
of (x,y)-coordinate values. This example is illustrated in terms of structured and base
objects in Figure 6 where the top level object represents a region with an information
part, a label, and one of its face sub-objects.

In general, a specific structure index implementation must be defined with respect
to the underlying unstructured storage medium. Because we have to use BLOBs as

iBLOB: Complex Object Management in Databases through Intelligent BLOBs 95

offset 1 offset 2 offset m...

offset 2 ...

base object structured object

info label face 1offset 1 offset n ... face n

oCycle hCycle 1 ... hCycle n

Fig. 6. A structured object consisting of a base object and structured sub-objects

the only alternative in a database context, we are forced to embed both the structure
index and the data into a BLOB. Thus, using an offset structure embedded within the
data itself is an appropriate solution. However, this may not be ideal in all cases. For
instance, one could implement a structure index for data stored in flat files. In this case,
the structure index and the data could be represented in seperate files. In general, the
structure index concept must be adapted to the capabilities of the user’s desired storage
medium for implementation.

5.2 iBLOB Sequence Index: Tracking Data Order for Updates

Different DBMSs provide different implementations of the BLOB type with varied
functionalities. However, most advanced BLOB implementations support three oper-
ations at the byte level, namely, random read and append (write bytes at end of BLOB),
truncate (delete bytes at end) and overwrite (replace bytes with another block of bytes
of the same or smaller length).

Structured large objects require the ability to update sub-objects within a structure.
Specifically, they require random updates which include insertion, deletion and the abil-
ity to replace data with new data of arbitrary size. Examples are the replacement of a
segment by several segments in a cycle of a region object, or adding a new face. Given
a large region object, updating it entirely for each change in a face, cycle or segment
becomes very costly when stored in BLOBs (update problem). Thus, it is desirable to
update only the part of the structure that needs updating. For this purpose, we present
a novel sequence index concept that is based on the random read and data append op-
erations supported by BLOBs Extra capabilities provided by higher level BLOBs are a
further improvement and serve for optimization purposes. The sequence index concept
is based on the idea of physically storing new data at the end of a BLOB and providing
an index that preserves the logically correct order of data.

Consequently, data will have internal fragmentation and will be physically stored
out-of-order, as illustrated in Figure 7. In this figure, the data blocks (with start and end

l...mi...j k...l j...k
SequenceIndex:

face 1 face 4 face 3 face 2

i j k l m

Fig. 7. An out-of-order set of data blocks and their corresponding sequence index

96 T. Chen et al.

i...j1

i j

SequenceIndex:

Fig. 8. The initial in-order and defragmented data and sequence index

byte addresses represented by letters under each boundary) representing faces should
be read in the order 1,2,3,4, even though physically they are stored out-of-order in the
BLOB (we will study the possible reasons shortly). By using an ordered list of physical
byte address ranges, the sequence index specifies the order in which the data should be
read for sequential access. The sequence index from Figure 7 indicates that the block
[i . . . j] must be read first, followed by the block [l . . .m], etc.

Based on the general description of the sequence index given above, we now show
how to apply it as a solution to the update problem. Assume that the data for a given
structured object is initially stored sequentially in a BLOB, as shown in Figure 8. Sup-
pose further that the user then makes an insertion at position k in the middle of the
object. Instead of shifting data after position k within the BLOB to make room for the
new data, we append it to the BLOB as block [j . . . l], as shown in Figure 9. By modify-
ing the sequence index to reflect the insertion, we are able to locate the new data at its
logical position in the object.

Figure 10 illustrates the behavior of the sequence index when a block is intended
to be deleted from the structured object. Even though there is no new data to append
to the BLOB, the sequence index must be updated to reflect the new logical sequence.
Because the BLOB does not actually allow for the deletion of data, the sequence index
is modified in order to prevent access to the deleted block [m . . .n] of data. This can
result in internal fragmentation of data in the iBLOB which can be managed using a
special resequence operation shown later in the iBLOB interface.

Finally, Figure 11 illustrates the case of an update where the values of a block of data
[o . . . p] as a portion of block [j . . . l] are replaced with values from a new block [l . . .q].
For this kind of update, it is possible for the new set of values to generate a block size
different from that of the original block being replaced.

iBLOBs enhance BLOBs by providing support for truncate and overwrite operations
at the higher component level of an application object’s structure. The truncate oper-
ation in BLOB (delete bytes at end) is enhanced in iBLOB with a remove function
which can perform deletion of components at any location (beginning, middle or at the
end of structure) as shown in Figure 10. The overwrite operation in BLOB (replace
byte array with another of same length) is enhanced in iBLOB with a combination of

i...k j...l k...j3 2
Index:Sequence

k j li

1

Fig. 9. A sequence index after inserting block [j . . . l] at position k

iBLOB: Complex Object Management in Databases through Intelligent BLOBs 97

i...k k...mi...k n...jj...l
Sequence Index:

4 231

i nmk j l

Fig. 10. A sequence index after deleting block [m . . .n]

1 5 6 2 4 3

Sequence Index:
i k nm qoj lp

k...mi...k j...o l...q p...l n...j

Fig. 11. A sequence index after replacing block [o . . . p] by block [l . . .q]

remove and insert functions and sequence index adjustments, to perform the overwrite
of components with other components of different sizes as shown in Figure 10.

5.3 The iBLOB Interface

In this section, we present a generic interface for constructing, retrieving and manipu-
lating iBLOBs. Within this iBLOB interface, we assume the existence of the following
data types: the primitive type Int for representing integers, Storage as a storage structure
handle type (i.e., blob handle, file descriptor, etc.), Locator as a reference type for an
iBLOB or any of its sub-objects, Stream as an output channel for reading byte blocks of
arbitrary size from an iBLOB object or any of its sub-objects, and data as a represen-
tation of a base object. Figure 12 lists the operations offered by the interface. We use
the term l-referenced object to indicate the object that is referred to by a given locator
l. The following descriptions for these operations are organized by their functionality:

– Construction and Duplication: An iBLOB object can be constructed in three dif-
ferent ways. The first constructor create() (1) creates an empty iBLOB object. The
second constructor create(sh) (2) constructs an iBLOB object from a specific stor-
age structure handle sh such as a BLOB object handle or a file descriptor. The third
constructor create(s) (3) is a copy constructor and builds a new iBLOB object from
an existing iBLOB object s. Similarly, an iBLOB object s2 can also be copied into
another iBLOB object s1 by using the copy(s1,s2) operator (4).

– Internal Reference: In order to provide access to an internal sub-object of an
iBLOB object, we need a way to obtain the reference of such a sub-object. The
sub-object referencing process must start from the topmost hierarchical level of the
iBLOB object s whose locator l is provided by the operator locateiBLOB(s) (5).
From this locator l, a next level sub-object can be referenced by its slot i in the
operator locate(s, l, i) (6).

– Read and Write: Since iBLOBs support large objects which may not fit into main
memory, we provide a stream based mechanism through the operator getStream(s, l)
(7) to consecutively read arbitrary size data from any l-referenced object. The

98 T. Chen et al.

create : → iBLOB (1)

create : Storage → iBLOB (2)

create : iBLOB → iBLOB (3)

copy : iBLOB × iBLOB

→ iBLOB (4)

locateiBLOB : iBLOB → Locator (5)

locate : iBLOB ×Locator× Int

→ Locator (6)

getStream : iBLOB ×Locator

→ Stream (7)

insert : iBLOB ×data× Int

×Locator× Int → iBLOB
(8)

insert : iBLOB × iBLOB

×Locator× Int → iBLOB (9)

remove : iBLOB ×Locator× Int

→ iBLOB (10)

append : iBLOB ×data× Int

×Locator → iBLOB (11)

append : iBLOB × iBLOB ×Locator

→ iBLOB (12)

length : iBLOB ×Locator → Int (13)

count : iBLOB ×Locator → Int (14)

resequence : iBLOB → iBLOB (15)

Fig. 12. The standardized iBLOB interface

stream obtained from this operator behaves similarly to a common file output stream.
Other than reading data, the interface allows insertion of either a base object d of
specified size z through the operator insert(s,d,z, l, i) (8) or an entire iBLOB ob-
ject s1 through the operator insert(s,s1, l, i) (9) into any l-referenced object at a
specified slot i. A base object d such as in the operator append(s,d,z, l) (11) or a
iBLOB object s1 such as in operator append(s,s1, l) (12) can be appended to an
l-referenced object. This is effectively the same as inserting the input as the last
sub-object of the referenced object. The operator remove(s, l, i) (10) removes the
sub-object at slot i from the parent component with Locator l.

– Properties and Maintenance: The actual size of an l-referenced object is obtained
by using the operator length(s, l) (13) while the number of sub-objects of the object
is provided by the operator count(s, l) (14). Finally, the operator resequence(s) (15)
reorganizes and defragments the iBLOB object s collapsing its sequence index such
that it contains a single range. This operation effectively synchronizes the physical
and logical representations of the iBLOB object and minimizes the storage space.

To test the functionality we have implemented the iBLOB data type in Oracle, Informix
and PostgreSQL using object oriented extensions and programming API of the DBMS.
Due to space constraints, we have omitted the iBLOB implementation details in this
paper. Each operator in the TSS interface can be implemented using the correspond-
ing iBLOB interface operator. For e.g., to implement get(region. f ace[1].outerCycle.
segment[1]), we first use locateiBLOB (5) to get a Locator to the iBLOB, then use
locate() (5) repeatedly to move across levels and navigate to the required component
(i.e., first segment), and finally, getStream() (7) to retrieve the first segment of the
outerCycle in fifth face. Other TSS interface functions like set, baseOb jectCount and
subOb jectCount can also be implemented in a similar manner.

iBLOB: Complex Object Management in Databases through Intelligent BLOBs 99

6 Conclusions

In this paper, we provide a novel solution to store and manage complex application
objects (i.e., variable length, structured, hierarchical data) by introducing a new mecha-
nism for handling structured objects inside DBMSs. This includes two major concepts.
First, we present a type structure specification (TSS) that helps to describe the struc-
ture of complex application objects. Then we introduce a special SQL data type called
Intelligent Binary Large Object or iBLOB that enables the database to handle structured
objects. The combination of type structure specification and iBLOBs provides the nec-
essary tools to easily implement type systems in databases. However, the focus of this
paper is to extend database functionality to natively support complex objects. As future
work, we plan to optimize iBLOBs for performance.

References

1. HDF-Hierarchical Data Format, http://www.hdfgroup.org/
2. Batory, D.S., Barnett, J.R., Garza, J.F., Smith, K.P., Tsukuda, K., Twichell, B.C., Wise, T.E.:

Genesis: an Extensible Database Management System. IEEE Trans. on Software Engineer-
ing 14, 1711–1730 (1988)

3. Biliris, A.: The Performance of Three Database Storage Structures for Managing Large Ob-
jects. In: ACM SIGMOD Int. Conf. on Management of Data, pp. 276–285 (1992)

4. Bray, T., Paoli, J., Sperberg-McQueen, C.M., Maler, E., Yergeau, F.: Extensible markup lan-
guage (XML) 1.0. W3C recommendation, 6 (2000)

5. Carey, M.J., DeWitt, D.J., Vandenberg, S.L.: A Data Model and Query Language for Exodus.
ACM SIGMOD Record 17, 413–423 (1988)

6. Haas, L.M., Chang, W., Lohman, G.M., McPherson, J., Wilms, P.F., Lapis, G., Lindsay, B.G.,
Pirahesh, H., Carey, M.J., Shekita, E.J.: Starburst Mid-flight: As the Dust Clears. IEEE Trans.
on Knowledge and Data Engineering (TKDE) 2, 143–160 (1990)

7. Hwang, B., Jung, I., Moon, S.: Efficient storage management for large dynamic objects. In:
EUROMICRO 1994, System Architecture and Integration 20th EUROMICRO Conference,
pp. 37–44 (September 1994)

8. McGrath, R.E.: XML and Scientific File Formats. The Geological Society of America (2003)
9. Rew, R.K., Ucar, B., Hartnett, E.J.: Merging netCDF and HDF5. In: 20th Int. Conf. on Inter-

active Information and Processing Systems (2004)
10. Schek, H.-J., Paul, H.-B., Scholl, M.H., Weikum, G.: The DASDBS Project: Objectives,

Experiences, and Future Prospects. IEEE Trans. on Knowledge and Data Engineering
(TKDE) 2(1), 25–43 (1990)

11. Stonebraker, M.: Inclusion of New Types in Relational Data Base Systems. Int. Conf. on
Data Engineering Conference (ICDE), pp. 262–269 (1986)

http://www.hdfgroup.org/

Object-Oriented Constraints for XML Schema

Suad Alagić1, Philip A. Bernstein2 and Ruchi Jairath1

1 Department of Computer Science,
University of Southern Maine

alagic@usm.maine.edu, ruchi.jairath@maine.edu
2 Microsoft Research
philbe@microsoft.com

Abstract. This paper presents an object-oriented representation of the
core structural and constraint-related features of XML Schema. The struc-
tural features are represented within the limitations of object-oriented type
systems including particles (elements and groups) and type hierarchies
(simple and complex types and type derivations). The applicability of the
developed representation is demonstrated through a collection of complex
object-oriented queries. The main novelty is that features of XML Schema
that are not expressible in object-oriented type systems such as range con-
straints, keys and referential integrity, and type derivation by restriction
are specified in an object-oriented assertion language Spec#. An assertion
language overcomes major problems in the object-oriented/XML
mismatch. It allows specification of schema integrity constraints and trans-
actions that are required to preserve those constraints. Most importantly,
Spec# technology comes with automatic static verification of code with
respect to the specified constraints. This technology is applied in the pa-
per to transaction verification.

1 Introduction

XML Schema Definition language (XSD for short) is a widely-used standard
for specifying structural features of XML data [18]. In addition, XSD allows
specification of constraints that XML data is required to satisfy. But producing
an object-oriented schema that reflects correctly the source XSD schema and
adheres to the type systems of mainstream object-oriented languages presents
a major challenge [9]. Such an object-oriented interface is required by database
designers, users writing queries and transactions, and application programmers
in general when processing XML data that conforms to XSD.

There are two broad types of features in XSD: structural and constraint-based.
The structural features are represented by the features of the type system. This
includes elements, attributes, groups, and simple and complex types. Typical
XSD constraints are range constraints that specify the minimum and maximum
number of repeated occurrences, rules for type derivation by restriction that
restrict the set of valid instances of a type, and identity constraints that define
keys and referential integrity. Unfortunately, object-oriented type systems have
severe limitations in representing these XSD constraints.

A. Dearle and R.V. Zicari (Eds.): ICOODB 2010, LNCS 6348, pp. 100–117, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Object-Oriented Constraints for XML Schema 101

Most of the existing object-oriented interfaces to XSD exhibit a number
of problems due to the mismatch of XML and object-oriented type systems
[7,8,11,12,19,20]. A more detailed account of these issues as they apply to spe-
cific approaches is given in [3]. Here we just mention some of these problems:

– Not distinguishing between elements and attributes in the object-oriented
representation or not representing attributes at all.

– Not being able to represent repetition of elements and attributes with iden-
tical names (tags).

– Failing to represent correctly the particle structure of XSD (with elements
and groups) and the range of occurrences constraints in particular.

– Confusing the particle hierarchy (with elements and groups) and the type
hierarchy (with simple and complex types and type derivations) of XSD.

– Not distinguishing different types of XSD groups in the object-oriented rep-
resentation (sequence versus choice) or not representing groups at all.

– In the object-oriented representation, not distinguishing the two type deriva-
tion techniques in XSD: by restriction and by extension.

– Failing to represent accurately XSD type derivation by restriction, facets
and range constraints in particular.

– Having no representation of the XSD identity constraints (keys and referen-
tial integrity) and thus no way of enforcing them.

The key question is whether it is possible to develop an object-oriented interface
that captures the core XSD structural features while avoiding at least some of the
above problems. The main problem lies in the complexity of XSD, its semantics,
and its mismatch with features of object-oriented type systems.

Our research contributions are as follows:

– We isolate the structural core of XSD which contains the essential structural
features of XSD and abstracts away a variety of other XSD features [2,3].

– We demonstrate the utility of our interfaces by giving a variety of typical
object-oriented queries specified in LINQ [10].

– We specify the object-oriented meta-level which consists of a full represen-
tation of features of the XSD core including particle structures (elements
and groups), types and type derivations, content models and identity con-
straints).

– We specify XML Schema constraints in an object-oriented assertion language
Spec#.

– We show how object-oriented schemas and transactions could be specified
using general object-oriented constraints.

– We show how transactions are verified using static automatic verification in
Spec#.

Due to the limitations of object-oriented type systems, we can represent only
some of the constraints of the source XML Schema structurally. In the gener-
ated object-oriented schemas, range constraints are present as minOccurs and
maxOccurs methods that return the bounds. The distinction in the semantics

102 S. Alagić, P.A. Bernstein, and R. Jairath

of different types of groups is represented by different interfaces whose default
implementation is required to support different semantics. Type derivation by
restriction is represented using not only inheritance, but also a hierarchy of
interfaces representing different types of facets and overriding minOccurs and
maxOccurs methods. Full details of the XSD schema are represented at the
meta level. The XSD identity constraints are represented at the meta level by
a hierarchy of interfaces representing different types of identity constraints. The
same applies to the content models and the type derivation hierarchies.

While we can overcome some of the representation problems using a suitable
structural representation, the key problem of the object-oriented/XML mismatch
is that type systems cannot represent constraints expressible in XML Schema.
This is why we use an object-oriented assertion language Spec# [13] which al-
lows specification of range constraints, key and referential integrity constraints,
and type derivation by restriction. In addition, more general application-oriented
constraints not expressible in XML Schema or standard database technologies can
now be specified and enforced using automatic verification that Spec# offers. Note
that we always assume that the original XML Schema has been validated. For
checking satisfaction of XML Schema constraints such as keys and referential in-
tegrity see [15]. In this research we consider object-oriented representation of those
constraints. Automatic static verification of the object-oriented representation of
XSD constraints is a major distinction with respect to our previous work [1,4,5]
as well as with respect to other work [6,16,17].

The idea of static verification of transaction safety with respect to the database
integrity constraints is not new [6,16,17] but it has never been implemented at a
very practical level so that it can be used by typical database programmers. The
first problem with object-oriented technology is that object-oriented schemas are
not equipped with general integrity constraints, primarily because mainstream
object-oriented languages do not have them. This problem gets resolved using
an object-oriented assertion language such as JML, OCL or Spec#. Using an
assertion language, schemas can now be specified with general database integrity
constraints (invariants) and transactions can be specified in a declarative fashion
with preconditions and postconditions.

However, the ability to verify statically that a transaction implemented in
a mainstream object-oriented language satisfies those constraints has been out
of reach. Our previous results [1,4,5] were based on a higher-order interactive
verification system which is so sophisticated that it is unlikely to be used by
database programmers. A pragmatic goal has been static automatic verification
which hides completely the prover technology from users. With recent develop-
ment in the Spec# technology this becomes possible. This is the main novelty
of this paper.

Spec# has limitations in expressiveness dictated by the requirement for auto-
matic static verification. We show that the range of Spec# features is surprisingly
suitable for specification for XML Schema and other typical database integrity
constraints. This specifically applies to existential and universal quantification
required for key and referential constraints and Spec# comprehensions (sum,

Object-Oriented Constraints for XML Schema 103

max, min, count etc.). The Spec# type system includes non-null object types
and hence eliminates statically a very frequent error in application programs
(and transactions) of trying to dereference a null pointer. Spec# allows explicit
representation of aggregation of a complex object in terms of its components
and constraints (invariants) that apply to a complex object and its components.
Typically, a transaction does not maintain the required integrity constraints un-
til its completion (commit). Spec# has a mechanism that allows specification of
this situation so that it is properly handled by the verifier.

This paper is organized as follows. In sections 2, 3 and 5 we discuss the
structural representation of the core of XML Schema within the limitations
of object-oriented type systems. Sections 4, 6 and 7 deal with XML Schema
constraints, their representation in Spec#, and their static automatic verification
as it applies to transactions.

2 Object-Oriented Core of XML Schema

An XML document is a single element, which is the basic case of the XSD notion
of a particle. The particle hierarchy contains a direct specification of the actual
XML instances, which are documents. In general, a particle consists of a sequence
of other particles, which may be elements or more general particles. The range
of occurrences in a sequence is determined by invoking methods minOccurs and
maxOccurs, but this range cannot be enforced by the type system. The default
values of minOccurs and maxOccurs are both equal to 1.

interface XMLParticle

{ int minOccurs();

int maxOccurs();

}

An element is a particular case of a particle. An element has a name (i.e., a tag)
and a value. The value of an element may be simple or complex. The types of
values of elements are structured into a separate hierarchy. If an element has
a value of a complex type, that type contains the specification of the complex
element structure.

interface XMLElement: XMLParticle

{ XMLName name();

XMLanyType value();

}

Types of values of elements are structured into the type hierarchy specified
below. The root of this type hierarchy is XMLanyType. An XML type may
be simple or complex, hence the two immediate subtypes of XMLanyType are
XMLanySimpleType and XMLanyComplexType.

interface XMLanySimpleType: XMLanyType {...}

A value of an XML complex type in general consists of a set of attributes and
a content model, where the latter is represented in this interface by its particle
structure:

104 S. Alagić, P.A. Bernstein, and R. Jairath

interface XMLanyComplexType: XMLanyType {

XMLSequence<XMLAttribute> attributes();

XMLParticle particle();

}

XMLSequence is a parametric type whose implementation is C# IList. An at-
tribute has a name (its tag) and a value. The value of an attribute is required
to be simple, hence the following specification of an attribute type:

interface XMLAttribute {

XMLName name();

XMLanySimpleType value();

}

A particle amounts to a sequence of terms. A term is either an element or a
group. Since a range constraint may be associated with any type of a term, in a
slightly simplified view, elements and groups are viewed as particles, which have
range constraints. So we have:

interface XMLGroup: XMLParticle {

XMLSequence<XMLParticle> particles();

}

There are three types of groups in XSD. Each of them is specified as a sequence
of particles. For an all-group these particles must be elements. Hence the result
of the method particles is covariantly overridden in the all-group. This is a
situation that appears often and violates the typing rules for parametric types.
This problem is circumvented somewhat below using the new feature of C#
which amounts to hiding rather than overriding.

interface XMLSequenceGroup: XMLGroup {. . .}

interface XMLChoiceGroup: XMLGroup {. . .}

interface XMLAllGroup: XMLGroup {// . . .

new XMLSequence<XMLElement> particles();

}

The semantics of sequence-group and choice-group are very different in XSD. An
instance of a sequence-group is a sequence of particle instances. An instance of a
choice-group contains just one of the particles specified in the choice-group. Spec-
ification of this semantic difference cannot be expressed in a satisfactory manner
in an object-oriented type system alone [9]. It requires an assertion language.
The underlying classes implementing the above interfaces have to correctly im-
plement this semantics.

3 Object-Oriented Queries

In this section we illustrate the usage and suitability of the presented object-
oriented interfaces to XSD by presenting a collection of object-oriented queries in
the Language-Integrated Query (LINQ) feature of .NET [10]. The queries given
below reflect complex group structure. AllJobOffers is an element whose type
is a complex type JobOffers:

Object-Oriented Constraints for XML Schema 105

<xsd:element name = "AllJobOffers" type= "JobOffers" />

The particle structure of the type JobOffers is a sequence group. The first parti-
cle of this sequence-group is an element JobID. The second particle is a sequence-
group which consists of two elements: Name and SSN. This latter sequence-group
is repeated an unbounded but finite number of times, including zero times.

<xsd:complexType name = "JobOffers" >

<xsd:sequence >

<xsd:element name = "JobID" type = "xsd:string" />

<xsd:sequence minOccurs="0" maxOccurs="unbounded"/>

<xsd:element name = "Name" type = "xsd:string"/>

<xsd:element name = "SSN" type = "xsd:int"/>

</xsd:sequence>

</xsd:sequence>

</xsd:complexType>

In the object-oriented representation AllJobOffers is an element whose value
has the type JobOffers.

interface AllJobOffers: XMLElement {

new JobOffers value();

}

JobOffers is a complex type whose particle is of type JobSequence.JobSequence
is a sequence-group.

interface JobOffers: XMLanyComplexType {

new JobSequence particle();

}

interface JobSequence: XMLSequenceGroup {

XMLString JobID();

XMLSequence<JobGroup> jobOffers();

// set minOcurs and maxOccurs

}

XMLString and XMLInt are simple types derived from XMLanySimpleType and
represented by C# string and int types respectively. JobGroup is a sequence-
group whose particles are two elements: Name and SSN. The representation given
below is based on [2].

interface JobGroup: XMLSequenceGroup {

new XMLsequence<XMLElement> particles();

XMLString Name();

XMLInt SSN(); }

An example of a LINQ query is given below:

static AllJobOffers J;

static JobSequence offers = J.value().particle();

IEnumerable<JobGroup> ProgrammingJobs =

from x in offers.jobOffers()

where offers.JobID() == "Programmer"

select x;

106 S. Alagić, P.A. Bernstein, and R. Jairath

To construct instances of a new type, the corresponding class must be defined
first. Given a class

class AnOffer: XMLElement

{ AnOffer(XMLString name, XMLint salary){// . . .};

}

the query given below now makes use of the constructor in the above class for
producing the output sequence of objects:

static AllJobOffers J;

static JobSequence G = J.value().particle();

IEnumerable<AnOffer> ProgrammerOffer =

from j in G.jobOffers()

where G.JobID() == "Programmer"

select (new AnOffer(G.JobID(), 100000));

4 Constraints in XML Schema

In this section we illustrate a variety of constraint related features of XML
Schema that are not expressible in object-oriented type systems and hence re-
quire a strictly more powerful paradigm offered by object-oriented assertions
languages. A range constraint is illustrated in the example below where the
number of occurrences of a job offer is at least 1 and at most 100:

<xsd:complexType name ="JobOfferType" >

<xsd:sequence>

<xsd:element name="JobID" type ="xsd:string" />

<xsd:element name="candidateName" type ="xsd:string" />

<xsd:element name ="SSN" type ="xsd:string"/>

</xsd:sequence>

</xsd:complexType>

<xsd:complexType name = "JobOffersType">

<xsd:sequence>

<xsd:element name = "jobOffer" type = "JobOfferType"

minOccurs = "1" maxOccurs = "100" />

</xsd:sequence>

</xsd:complexType>

Type derivation by restriction is illustrated below by a short list of job offers. The
type ShortListedOffers is derived by restriction from the type JobOffersType
by restricting the range of occurrences constraint in the type JobOffersType.

<xsd:complexType name = "ShortListedOffers"

<xsd:restriction base = "JobOffersType"

<xsd:sequence>

<xsd:element name = "jobOffer" type = "JobOfferType"

minOccurs = "1" maxOccurs = "10" />

</xsd:sequence>

</xsd:restriction>

</xsd:complexType>

Object-Oriented Constraints for XML Schema 107

The XML Schema style of specification of a key constraint is given below. This
key is specified on the field JobID. The scope to which this key applies is specified
by a selector which is a simplified XPath expression.

<xsd:complexType name="JobType" >

<xsd:sequence>

<xsd:element name ="JobID" type="xsd:string" />

<xsd:element name ="JobTitle" type ="xsd:string" />

<xsd:element name = "salary" type ="xsd:float" />

</xsd:sequence>

</xsd:complexType>

<xsd:complexType name="JobsType" >

<xsd:sequence>

<xsd:element name="job" type = "JobType"

minOccurs = "1" maxOccurs ="1000" />

</xsd:sequence>

<xsd:key name = "JobIDkey" >

<xsd:selector xpath=" ./job" >

<xsd:field xpath ="JobID" >

</xsd:key>

</xsd:complexType>

The example below illustrates a key and referential integrity constraint. The
key constraint specifies that JobID is a key in the sequence of job offers. The
referential integrity constraint refers to the key constraint in the sequence of
jobs. It requires that a job offer refers to an existing job in the sequence of jobs.

<xsd:complexType name = "JobOffersType">

<xsd:sequence>

<xsd:element name = "jobOffer" type = "JobOfferType"

minOccurs = "1" maxOccurs = "100" />

</xsd:sequence>

<xsd:key name="candidateKey" >

<xsd:selector xpath = "./jobOffer" />

<xsd:field xpath="JobID" />

</xsd:key>

<xsd:keyref name = "JobRef" >

<xsd:selector xpath="JobsType/job" />

<xsd:field xpath="JobID" />

</xsd:keyref>

</xsd:complexType>

5 Meta Level

The meta (schema) level contains as complete and accurate a representation of
an XSD source schema as is possible within the framework of object-oriented
type systems. Like in SOM [14] there exists an abstraction XMLSchemaObject so
that all other schema object types are derived from it. A content model consists
of a specification of a type and its type derivation:

108 S. Alagić, P.A. Bernstein, and R. Jairath

interface XMLSchemaContentModel: XMLSchemaObject

{XMLSchemaType content();

XMLSchemaTypeDerivation typeOfDerivation();

}

A content model may be simple or complex. If it is simple, the underlying type
is simple and so is its type derivation:

interface XMLSchemaSimpleContent: XMLSchemaContentModel {

new XMLSchemaSimpleType content();

new XMLSchemaSimpleTypeDerivation typeOfDerivation();

}

In the above interface the result types of both methods are overridden covari-
antly. Unlike Java, for some reason C# does not allow this type safe change of
the signatures of inherited methods and hence requires hiding.

If a content model is complex, its underlying type may be either simple or com-
plex. This is why the result type of the method content remains XMLSchemaType.
If the underlying type is simple, the content model still may contain attributes.
But if the content model is complex, the type derivation will be one of complex
type derivations, as reflected in the result type of the method typeOfDerivation:

interface XMLSchemaComplexContent: XMLSchemaContentModel {

XMLSchemaComplexTypeDerivation typeOfDerivation();

}

The interfaces that follow represent XSD type derivation rules. Every type
derivation has a base type. If the type derivation is simple, the base type must
be simple:

interface XMLSchemaTypeDerivation: XMLSchemaObject {

XMLSchemaType base();

}

interface XMLSchemaSimpleTypeDerivation: XMLSchemaTypeDerivation {

new XMLSchemaSimpleType base();

}

There are two types of simple type derivation. Simple type derivation by re-
striction requires specification of a set of constraining facets. This structural
representation is augmented in our approach using assertions as explained in
section 6. Simple type extension allows only additional attributes:

interface XMLSimpleTypeRestriction: XMLSchema SimpleTypeDerivation {

XMLSchemaSet<XMLFacet> facets();

}

interface XMLSchemaSimpleTypeExtension: XMLSchemaSimpleTypeDerivation {

XMLSchemaSet<XMLSchemaAttribute> attributes();

}

In a complex type derivation the base type is complex, hence the result type
of the method base should be overridden covariantly, but we are forced to use
the previously described C# technique. In a complex type derivation additional
attributes may be added and the new particle structure is specified:

Object-Oriented Constraints for XML Schema 109

interface XMLSchemaComplexTypeDerivation: XMLSchemaTypeDerivation {

new XMLSchemaComplexType base();

XMLSchemaSet<XMLSchemaAttribute> attributes();

XMLSchemaParticle particle();

}

A complex type extension amounts to extending the particle structure of the
base type. The new particle structure is a sequence group, the first component
of which is the base particle, and the rest are particles that are appended.

interface XMLSchemaComplexTypeExtension: XMLSchemaComplexTypeDerivation {

new XMLSchemaSequenceGroup particle();

}

In a complex type restriction changes may be made to the attributes, and the
particle structure of the base is restricted by restricting the ranges of occurrences
or omitting optional elements. The structural representation below is augmented
by assertions as explained in section 6.

interface XMLSchemaComplexTypeRestriction: XMLSchemaComplexTypeDerivation {

//restricted attributes and particle structure

}

XSD allows structural specification of typical database integrity constraints such
as uniqueness, keys and referential integrity. In XSD these constraints are called
identity constraints, modeled by an XSD schema interface
XMLSchemaIdentityConstraint given below. We use assertions to specify these
constraints as explained in section 6. An identity constraint has a name, a selector
that specifies the XML structure for which the constraint holds, and a sequence
of fields whose values will have the desired property. The selector is specified
by a simple XPath expression. These expressions will be instances of the type
XMLPath. A referential integrity constraint requires an additional reference to
a key which is given by the key name.

interface XMLSchemaIdentityConstraint: XMLSchemaObject {

XMLString name();

XMLSchemaSequence<XPath> fields();

XMLPath selector();

}

interface XMLSchemaKeyRef: XMLSchemaIdentityConstraint {

XMLString referTo();

}

6 Object-Oriented Constraints

The fundamental requirement for automatic static verification dictates some
limitations on expressiveness of Spec# constraints. In this section we show that
these limitations fit precisely the XML Schema constraints. On the other hand,
Spec# allows specification of application oriented constraints that are not XML
Schema constraints.

110 S. Alagić, P.A. Bernstein, and R. Jairath

A frequent problem in object-oriented programs is an attempt to dereference
a null reference. If this happens in a database transaction, the transaction may
fail at run-time with nontrivial consequences. The Spec# type system allows
specification of non-null object types. Static checking will indicate situations
in which an attempt is made to access an object via a possibly null reference.
Examples presented in this paper include a non-null reference to a job to be
inserted in the sequence of jobs, and a non-null reference to a job identifier
when updating or deleting a job. Further examples of the non-null constraint are
references to a sequence of jobs and a sequence of job offers which are required
to be non-null.

A method in Spec# is in general equipped with a precondition expressed
by the requires clause, and a postcondition specified by the ensures clause. A
postcondition in general refers both to the object state before method execution,
denoted by the keyword old, and the object state after method execution. A class
is in general equipped with an invariant which specifies valid object states outside
of method execution. These assertions allow usage of universal and existential
quantifiers as in first-order predicate calculus, as well as combinators typical for
database languages such as min, max, sum, count, avg etc.

Spec# constraints limit universal and existential quantification to variables
ranging over finite integer intervals. Such intervals are in XML Schema deter-
mined by minOccurs and maxOccurs and thus it is possible to specify Spec#
constraints that apply to finite sequences of particles. This is precisely what is
needed for specification of keys and referential integrity in XML Schema. The
limitation that quantifiers are restricted to integer variables ranging over finite
intervals was a design decision to sacrifice expressiveness in order to allow au-
tomatic static verification. As explained above, this limitation is no problem in
the application considered in this paper.

To make the job of the verifier possible, Spec# requires specification of the
frame conditions for methods that change the object state, such as database
updates. This is done by the modifies clause, which specifies those objects and
their components that are subject to change. The frame assumption is that these
are the only objects that will be affected by the change, and the other objects
remain the same. An attempt to assign to the latter objects will be a static error.

One of the features that makes Spec# suitable for database applications is
explicit support for the aggregation abstraction. A complex object is represented
by its root object called the owner along with references to the immediate com-
ponents of the owner specified as [Rep] fields. This way a complex object is
defined as a logical unit that includes all of its components, direct and indirect.
Object invariants may now be specified in such a way that they refer both to
the owner object and to its components defined by the [Rep] fields.

Yet another feature that makes Spec# suitable for database transactions is an
explicit mechanism for allowing methods to temporarily violate object invariants.
This typically happens in database transactions where the integrity constraints
are violated during transaction execution and then the constraints are reinstated
when the transaction is completed and enforced at commit time. For example,

Object-Oriented Constraints for XML Schema 111

the structure of the job deletion transaction presented in this paper has the
following form:

expose(schema){

delete job;

delete offers that refer to the deleted job;}

After the first action of job deletion the referential integrity constrains are tem-
porarily violated to be reinstated after the second action of deletion of the re-
lated job offers. The purpose of the expose block is precisely to indicate that the
schema object invariant may be violated in this block. Otherwise, the verifier
will indicate violation of the schema invariant. In the expose block the object
is assumed to be in a mutable state and hence violation of the object invari-
ant is allowed. Outside of the expose block every assignment that violates the
invariant will be a static error.

The code in this section and in section 7 is for presentation purposes and
differs somewhat from the actual Spec# code. A very simple example is the
range-of-salary constraint given in the class JobType.

public class JobType : XMLSequenceGroupClass {

//constructor

//definition of properties JobID, jobTitle and salary

invariant salary >0 && salary < 500000;

}

The salary range constraint can be strengthened in the subtype
WellPaidJobType in accordance with the rules of behavioral subtyping. Type
derivation by restriction in XML Schema is based on a similar idea.

public class WellPaidJobType: JobType {// constructor

invariant salary >= 100000;

}

Two typical XML Schema constraints are given in the class JobSequence. One
of them specifies the range of occurrences of jobs in the sequence of jobs in terms
of properties minOccurs and maxOccurs. XMLSequenceGroupClass implements
properties minOccurs and maxOccurs. Here we override them so that they will
denote the actual range of occurrences. The other constraint specifies that the
property JobID is a key for the sequence of jobs. This key constraint requires
universal quantification that is expressible in Spec# with the already explained
limitations, but then it is statically verifiable. A distinctive feature of the Spec#
type system and its verification technology is non-null types illustrated by the
type List<JobType>!.

public class JobSequence : XMLSequenceGroupClass {

// constructor

[Rep] [ElementsRep] List<JobType>! jobs;

[Pure] public List<JobType> jobList{get{ return jobs;}}

[Pure] public new int minOccurs{get{return 0;}}

[Pure] public new int maxOccurs{get{return (jobs.Count-1);}}

112 S. Alagić, P.A. Bernstein, and R. Jairath

invariant minOccurs >=0 && maxOccurs < 1000 ;

invariant jobs.Count <= maxOccurs - minOccurs +1;

invariant forall {int i in (minOccurs..maxOccurs),

int j in (minOccurs..maxOccurs);

jobs[i].JobID.Equals(jobs[j].JobID) ==>

jobs[i].Equals(jobs[j])};

}

In the above specification we see two cases of the aggregation abstraction as
supported by the Spec# ownership model. The attribute [Rep] indicates that
a list of jobs is a representation of a job sequence so that an object of type
JobSequence is the owner of this list. Moreover, the attribute [ElementsRep]
indicates that list elements are components of the list object which is their
owner. These elements are then peers according to the Spec# ownership model.
This has implications on invariants that can now be defined to apply to entire
complex objects, i.e., including their components determined by the [Rep] and
[ElementsRep] fields. These are called ownership-based invariants.

A sequence of job offers has a similar representation with some additional com-
plexity. It has the range constraint for the number of offers and a key constraint
on JobID. In addition, it has a referential integrity constraint which specifies
that a job offer must refer to an existing job in the given list of jobs out of
which the offers are constructed. This referential integrity constraint requires
both universal and existential quantification expressible and verifiable as shown
in the last invariant of the class OfferSequence.

public class OfferType : XMLSequenceGroupClass {

// constructor

// definition of properties JobID, candidate name and SSN

}

public class OfferSequence: XMLSequenceGroupClass {

// constructor

[Rep][ElementsRep] List<OfferType>! offers;

[Rep] JobSequence! jobseq;

[Pure] public List<OfferType>! joffers {get{return offers;}}

[Pure] public new int minOccurs{get{return 0;}}

[Pure] public new int maxOccurs{get{return (offers.Count-1);}}

invariant minOccurs >=0 && maxOccurs < 100;

invariant offers.Count <= maxOccurs - minOccurs +1;

invariant forall {int i in (minOccurs..maxOccurs),

int j in (minOccurs.. maxOccurs);

offers[i].JobID.Equals(offers[j].JobID) ==>

offers[i].Equals(offers[j])};

invariant forall {int i in (minOccurs..maxOccurs);

exists {int j in (jobseq.minOccurs..jobseq.maxOccurs);

jobseq.jobList[j].JobID.Equals(offers[i].JobID)}};

}

Representation of type derivation by restriction as defined in XML Schema is
illustrated in the class ShortListed in which the range of occurrences of job

Object-Oriented Constraints for XML Schema 113

offers is narrowed with respect to the range of occurrences in the base class
OfferSequence. This pattern fits precisely the discipline of behavioral subtyping
as implemented in Spec#.

public class ShortListed: OfferSequence {

invariant minOccurs >=1 && maxOccurs <= 10;

}

7 Transaction Verification

Our final contribution is integration of the technologies presented in this paper
into an implemented model of automatic static verification of object-oriented
transactions with respect to the object-oriented representation of XSD schemas
equipped with constraints. To our knowledge this is the first time this was pos-
sible for a full-fledged mainstream object-oriented language and object-oriented
schemas and transactions extended with very general constraints. The compo-
nents of this model are more sophisticated features of the type system such as
bounded parametric polymorphism available and statically verifiable in C#, rep-
resentation of XML Schema constraints, pre and post conditions for transactions
in Spec#, and their automatic static verification.

In our approach, the class Transaction is bounded parametric, where the
bound type is the type of schema to which a specific transaction type is bound.

interface Schema {//. . .}

class Transaction<T> where T: Schema {

Transaction(T! schema) {. . .}

T schema(){get{return schema;}}

//. . .

}

With the examples developed in the previous section the simplest way of specify-
ing a schema of job offers is an aggregation of a sequence of jobs and a sequence
of job offers.

class JobSchema: Schema {

[Rep] public JobSequence! jobsSeq;

[Rep] public OfferSequence! offerSeq;

JobSchema(JobSequence! jobs, OfferSequence! offers){

this.jobsSeq = jobs;

this.offerSeq= offers; }

}

class JobTransaction: Transaction<JobSchema> {//...}

A transaction that creates (inserts) a new job and maintains the schema integrity
constraints is JobInsert given below. The precondition of this transaction in-
cludes a constraint on the admissible range of salaries and a condition which
guarantees that the insertion would not violate the key constraint. Yet another
constraint requires that the argument is in fact a non-null pointer to a job object.
The postcondition guarantees that the insertion is actually performed.

114 S. Alagić, P.A. Bernstein, and R. Jairath

class JobInsert: JobTransaction {

// constructor

void addJob(JobType! job)

modifies schema.jobsSeq;

requires forall {int i in

(schema.jobsSeq.minOccurs..schema.jobsSeq.maxOccurs)

!schema.jobsSeq.jobList[i].JobID.Equals(job.JobID)};

requires job.salary >0 && job.salary < 500000;

ensures exists {int j in

(schema.jobsSeq.minOccurs..schema.jobsSeq.maxOccurs);

(schema.jobsSeq.jobList[j].Equals(job))};

{expose(schema.jobsSeq)

{schema.jobsSeq.jobList.Add(job);}}

}

A salary update transaction given below takes a non-null jobId pointer and
requires that this jobId actually appears in the list of jobs. The postcondition
guarantees the salary update is performed correctly.

class SalaryUpdate: JobTransaction {

// constructor

void updateSalaries(string! jobId)

modifies schema.jobsSeq;

requires exists {int j in

(schema.jobsSeq.minOccurs..schema.jobsSeq.maxOccurs);

schema.jobsSeq.jobList[j].JobID.Equals(jobId)};

ensures forall {int j in

(schema.jobsSeq.minOccurs..schema.jobsSeq.maxOccurs);

schema.jobsSeq.jobList[j].JobID.Equals(jobId)==>

schema.jobsSeq.jobList[j].salary >= 100000 };

{expose(schema.jobsSeq)

{foreach (JobType! job in schema.jobsSeq.jobList){

if ((job.JobID.Equals(jobId)) && (job.salary < 100000))

{job.salary= 100000;}}} }

}

The most complex example of a transaction is JobDeletion. This transaction
deletes a job with an existing given jobId. This requirement is expressed in the
precondition. There are two postconditions. The first one guarantees that there
is no job with the given jobId in the list of jobs, i.e., the job has been deleted.
The other postcondition guarantees that the referential integrity is maintained,
i.e., this jobId does not appear in the list of offers either.

class JobDeletion: JobTransaction {

// constructor

void deleteJobs(string! jobId)

modifies schema.jobsSeq, schema.offerSeq;

requires exists {int j in

(schema.jobsSeq.minOccurs..schema.jobsSeq.maxOccurs);

schema.jobsSeq.jobList[j].JobID.Equals(jobId)};

ensures forall {int j in

Object-Oriented Constraints for XML Schema 115

(schema.jobsSeq.minOccurs..schema.jobsSeq.maxOccurs);

!schema.jobsSeq.jobList[j].JobID.Equals(jobId)};

ensures forall {int j in

(schema.offerSeq.minOccurs..schema.offerSeq.maxOccurs);

!(schema.jobsSeq.jobList[j].JobID.Equals(jobId))};

{expose(schema)

{foreach (JobType! job in schemaJob.jobsSeq.jobList)

if (job.JobID.Equals(jobId))

schema.jobsSeq.jobList.Remove(job);

foreach (OfferType! job in schema.offerSeq.joffers)

if (job.JobID.Equals(jobId))

schema.offerSeq.joffers.Remove(job); }}

}

As of this writing, the Spec# implementation is a prototype with problems that
one can naturally expect from software that is still not a product. But even
where static verification does not succeed, the Spec# compiler generates code
that enforces the constraints at run-time, which is the prevailing technique in
current object-oriented assertion languages such as JML and Eiffel.

8 Conclusions

As a rule, object-oriented application programmers have very limited under-
standing of what XML Schema is all about. The reason is the complexity of
XSD and its mismatch with object-oriented languages. Our initial contribution
is the design of an object-oriented interface to the structural core of XSD which
has not been available so far. The presented collection of interfaces constitutes a
library which database designers, object-oriented application programmers, and
users writing queries can understand and use in developing their applications
that manage data that conforms to XSD.

More importantly, we argue that the only way to resolve major issues in the
object-oriented/XML mismatch is to make use of an object-oriented assertion
language that allows specification of constraints-based features of XML Schema.
This approach has an additional major advantage: it allows specification of more
general constraints in object-oriented schemas that reflect constraints in the ap-
plication environment and are not expressible in common database technologies.

Most importantly, the assertion language that we used in this paper comes
with automatic verification not available in other object-oriented assertion lan-
guages. This means that for the first time we can specify object-oriented schemas
and transactions equipped with general constraints and carry out static auto-
matic verification of transactions with respect to the specified constraints. The
implications on data integrity, efficiency and reliability of transactions are obvi-
ous and non-trivial.

However, the presented technology has its limitations. Spec# is a promising
development, but at the moment it is an industrial prototype and not a prod-
uct. Its current limitations in expressiveness dictated by the requirement for

116 S. Alagić, P.A. Bernstein, and R. Jairath

automatic static verification did not present a problem in our quite complex ap-
plication. But the error messages and the current tutorial [13] need improvement,
which often makes it hard to drive programs through verification. The ownership
model is complex, which many users may find hard to fully understand and ap-
ply correctly. All of this implies that Spec# run-time checks for assertions that
have not been statically verified is at the moment an important feature of this
technology. But the technology itself is clearly still under development.

References

1. Alagić, S., Royer, M., Briggs, D.: Verification technology for object-oriented/XML
transactions. In: Norrie, M.C., Grossniklaus, M. (eds.) ICOODB 2009. LNCS,
vol. 5936, pp. 23–40. Springer, Heidelberg (2010)

2. Alagić, S., Bernstein, P.: An object-oriented core for XML Schema, Microsoft Re-
search Technical Report MSR-TR-2008-182 (December 2008),
http://research.microsoft.com/apps/pubs/default.aspx?id=76533

3. Alagić, S., Bernstein, P.: Mapping XSD to OO schemas. In: Norrie, M.C., Gross-
niklaus, M. (eds.) ICOODB 2009. LNCS, vol. 5936, pp. 149–166. Springer, Heidel-
berg (2010)

4. Alagić, S., Royer, M., Briggs, D.: Verification theories for XML Schema. In: Bell,
D.A., Hong, J. (eds.) BNCOD 2006. LNCS, vol. 4042, pp. 262–265. Springer, Hei-
delberg (2006)

5. Alagić, S., Logan, J.: Consistency of Java transactions. In: Lausen, G., Suciu, D.
(eds.) DBPL 2003. LNCS, vol. 2921, pp. 71–89. Springer, Heidelberg (2004)

6. Benzanken, V., Schaefer, X.: Static integrity constraint management in object-
oriented database programming languages via predicate transformers. In: Aksit,
M., Matsuoka, S. (eds.) ECOOP 1997. LNCS, vol. 1241, pp. 60–84. Springer, Hei-
delberg (1997)

7. Data Contracts, http://msdn.microsoft.com/en-us/library/ms733127.aspx
8. Document Object Model (DOM), http://www.w3.org/TR/REC-DOM-Level-1/
9. Lammel, R., Meijer, E.: Revealing the X/O impedance mismatch, Datatype-

Generic Programming. In: Backhouse, R., Gibbons, J., Hinze, R., Jeuring, J. (eds.)
SSDGP 2006. LNCS, vol. 4719, pp. 285–367. Springer, Heidelberg (2007)

10. Language Integrated Query, Microsoft Corporation,
http://msdn.microsoft.com/en-us/vbasic/aa904594.aspx

11. Microsoft Corp., LINQ to XML,
http://msdn.microsoft.com/en-us/library/bb387098.aspx

12. Microsoft Corp., LINQ to XSD Alpha 0.2 (2008),
http://blogs.msdn.com/xmlteam/archive/2006/11/27/

typed-xml-programmer-welcome-to-LINQ.aspx

13. Microsoft Corp., Spec#, http://research.microsoft.com/specsharp/
14. Microsoft Corp., XML Schema etc. Object Model (SOM) (vs.71).aspx,

http://msdn2.microsoft.com/en-us/library/bs8hh90b

15. Shariar, Md.S., Liu, J.: Checking satisfaction of XML referential integrity con-
straints. In: Liu, J., Wu, J., Yao, Y., Nishida, T. (eds.) AMT 2009. LNCS, vol. 5820,
pp. 148–159. Springer, Heidelberg (2009)

16. Sheard, T., Stemple, D.: Automatic verification of database transaction safety.
ACM Transactions on Database Systems 14, 322–368 (1989)

http://research.microsoft.com/apps/pubs/default.aspx?id=76533
http://msdn.microsoft.com/en-us/library/ms733127.aspx
http://www.w3.org/TR/REC-DOM-Level-1/
http://msdn.microsoft.com/en-us/vbasic/aa904594.aspx
http://msdn.microsoft.com/en-us/library/bb387098.aspx
http://blogs.msdn.com/xmlteam/archive/2006/11/27/typed-xml-programmer-welcome-to-LINQ.aspx
http://blogs.msdn.com/xmlteam/archive/2006/11/27/typed-xml-programmer-welcome-to-LINQ.aspx
http://research.microsoft.com/specsharp/
http://msdn2.microsoft.com/en-us/library/bs8hh90b

Object-Oriented Constraints for XML Schema 117

17. Spelt, D., Even, S.: A theorem prover-based analysis tool for object-oriented
databases. In: Cleaveland, W.R. (ed.) TACAS 1999. LNCS, vol. 1579, pp. 375–
389. Springer, Heidelberg (1999)

18. W3C: XML Schema 1.1, http://www.w3.org/XML/Schema
19. XML Data Binder,

http://www.liquid-technologies.com/XmlStudio/Xml-Data-Binder.aspx

20. XMLBeans, http://xmlbeans.apache.org

http://www.w3.org/XML/Schema
http://www.liquid-technologies.com/XmlStudio/Xml-Data-Binder.aspx
http://xmlbeans.apache.org

Solving ORM by MAGIC:
MApping GeneratIon and Composition

David Kensche, Christoph Quix, Xiang Li, and Sandra Geisler

RWTH Aachen University, Informatik 5 (Information Systems), 52056 Aachen, Germany
{kensche,quix,lixiang,geisler}@dbis.rwth-aachen.de

Abstract. Object-relational mapping (ORM) technologies have been proposed
as a solution for the impedance mismatch problem between object-oriented ap-
plications and relational databases. Existing approaches use special-purpose map-
ping languages or are tightly integrated with the programming language. In this
paper, we present MAGIC, an approach using bidirectional query and update
views, based on a generic metamodel and a generic mapping language. The map-
ping language is based on second-order tuple-generating dependencies and allows
arbitrary restructuring between the application model and the database schema.
Due to the genericity of our approach, the core part including mapping genera-
tion and mapping composition is independent of the modeling languages being
employed. We show the formal basis of MAGIC and how queries including ag-
gregation can be defined using an easy to use query API. The scalability of our
approach is shown in the evaluation using the TPC benchmark.

1 Introduction

A common design pattern for current information systems is an architecture in which
a set of object-oriented classes (in the following called the application model), repre-
senting business objects, is stored in a relational database that conforms to a relational
schema. The heterogeneous models are tailored for different requirements. The rela-
tional schema is usually specified with strong efficiency requirements in mind, whereas
the object-oriented application model aims at abstraction, extensibility and maintain-
ability of the application. This usage of different modeling languages gives rise to some
problems summarized as the object-relational impedance mismatch [6,15].

The application model, implemented in Java classes, contains different kinds of
model elements such as simple properties, multi-valued properties, or associations be-
tween classes. However, some of these model elements are not available in the relational
model which can only express flat first normal-form relations with simple single-valued
attributes. Consequently, the relational representation must somehow mimic such con-
structs. For instance, an inheritance relationship may in one case be mapped to a boolean
attribute, or in another case to some enumeration of disjoint subtypes. Application de-
velopers want to query objects from the underlying database by specifying queries over
the object model, but the database requires SQL queries to be posed against its rela-
tional schema. Properties of objects are manipulated by the application. These updates
must also be propagated to the relational datastore. Thus, using a relational database
to store objects in the application model requires posing queries against the relational

A. Dearle and R.V. Zicari (Eds.): ICOODB 2010, LNCS 6348, pp. 118–132, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Solving ORM by MAGIC: MApping GeneratIon and Composition 119

schema and unmarshalling the objects, i.e., transforming the fetched records into in-
stances of classes in the application model. Storing objects requires translation from
the object-oriented model to the underlying relational schema. These tasks are tedious
and error-prone; studies reported that 30-40% of the total project effort are spent on im-
plementing object-relational data access [7]. Object-relational mapping (ORM) tools
help solving these problems by mapping between the two paradigms and providing
querying and updating capabilities.

Existing ORM tools use special-purpose mapping languages (e.g., Hibernate) or are
tightly integrated with the programming language (e.g., LINQ [13]), which avoids the
general application of such technologies in other languages which are not based on
the .NET framework. In this paper, we present our ORM framework MAGIC (MAp-
ping GeneratIon and Compilation), that we developed based on our generic metamodel
GeRoMe [8] and its formal generic schema mappings [10].

In MAGIC, the developer performs queries and updates against the object-oriented
application model by creating instances of a special Query class. The query results are
instantiated as objects of the application model. Updates on these objects can be prop-
agated to the underlying database. Details of accessing and manipulating data in the
underlying database are hidden by the MAGIC interface. This hiding of the persistent
storage is achieved through a pair of declarative generic schema mappings, the query
and update views. Our generic mapping language allows arbitrary restructuring of the
data between the application model and the database schema, as it is based on second-
order tuple-generating dependencies supporting grouping and nesting of data [10]. The
object-oriented Query is represented by a query mapping in this generic mapping lan-
guage that is rewritten into a query against the relational model by composing it with
the query view. The resulting generic query can be translated into a SQL query for the
relational database. As queries and mappings are represented in our generic mapping
language, independently of a specific query and modeling language, they can be trans-
lated also into another concrete query language such as XQuery. Thus, our approach is
not limited to relational databases as persistent storage, also other sources such as XML
databases can be accessed.

The contribution of this paper is a generic mapping framework to solve the impedance
mismatch between object-oriented applications and the persistent data storage. The ex-
pressivity of the mapping language allows complex restructuring between the applica-
tion model and the database schema, and thus enabling more complex mappings than
just 1:1 mappings between classes and tables as in most other approaches. Due to the
genericity of our modeling and mapping languages, other mapping problems such as
object-XML mappings can be solved, too.

The paper is structured as follows. In section 2, we introduce the simple generic
metamodel and the generic mapping language, which are the basis of MAGIC. The
main functionality of MAGIC, the ability to query stored data using an object-oriented
query API is described in section 3. This section also explains query views and query
mappings and their composition. Section 4 presents how updates can be performed us-
ing MAGIC. The scalability of MAGIC is shown in the evaluation in section 5. Related
work is discussed in section 6, before we conclude the paper in section 7.

120 D. Kensche et al.

2 Background

In this section, we will briefly present a simple generic model representation which is a
subset of our more comprehensive generic metamodel GeRoMe [8]. The simple meta-
model is sufficient for the purpose of this paper. We sketch the formal semantics for our
simple metamodel representation based on the semantics of GeRoMe [8]. The represen-
tation of generic schema mappings taken from [10] is based on this representation of
schema instances. Due to space constraints, we focus on showing the key features using
a running example; the formal definitions are elaborated in [8,10].

2.1 A Simple Generic Model Representation

We identified a set of modeling constructs which are common in most data model-
ing languages: complex types with attributes and associations with association ends.
A model (or schema) consists of complex types, such as XML Schema complex types
or Java classes. A complex type may have attributes; the type of an attribute is either
a simple domain (e.g. integer, float) or a complex type. Associations are relationships
between complex types, or between a complex type and a domain. The degree of an
association is at least two. Each participating type is connected to the association via
an association end. There is a specialized association end that denotes composition re-
lationships (a composition end), i.e. an instance of the component type cannot exist
without being a component of a single parent type instance.

There are two types of constraints which both can be attached to attributes and asso-
ciation ends: cardinality constraints and uniqueness (key) constraints.

Fig. 1 gives examples how different modeling languages can be mapped to such a
generic model representation. In the examples we abstain from showing simple types
of attributes, since they are not important in our context. For visualization we adopt
an informal ER-like notation showing complex types as boxes, attributes as ellipses,
associations as diamonds and association ends as arrows pointing to the participating
types. We assume min and max cardinality of all attributes to be 1. Keys are underlined.

Relational Schemas: Relations are modeled as complex types with attributes. In 1NF
only domains are allowed as attribute types, whereas in the nested relational model at-
tributes may have complex types themselves. All attributes have a maximum cardinality
of 1, and a minimum cardinality of 0 or 1.

Object-oriented models: A class is modeled as a complex type. Properties with sim-
ple types are represented as attributes with domains. References to other classes are
represented as association ends with the property name as role name.

The representation of the simple example schemas is straightforward, but also more
complex models (such as nested relational models or XML schemas) can be repre-
sented in this generic representation. For more complex examples, we refer the inter-
ested reader to [8] and [10].

2.2 Instance Semantics

Schema mappings define relationships between schema instances. Therefore, a prereq-
uisite for the definition of mappings is the characterization of instances for generic

Solving ORM by MAGIC: MApping GeneratIon and Composition 121

public class Course {
public List<Student> getStudents(){…}
public String getCname() {…}

CREATE TABLE Course (
cid INT(4) NOT NULL,
cname VARCHAR(63) NOT NULL,
PRIMARY KEY (id) public int getCid() {…}

…
}

public class Student {

PRIMARY KEY (cid)
);
CREATE TABLE Student (

sid INT(4) NOT NULL,
sname VARCHAR(63) NOT NULL,
PRIMARY KEY (cid)

); public class Student {
public int getSid() {…}
public String getSname() {…}
public List<Course> getCourses(){…}
…

}

);
CREATE TABLE StudentCourse (

scSid INT(4) NOT NULL,
scCid INT(4) NOT NULL,
PRIMARY KEY (sid, cid)

);

sid
Student sname

cidCourse
cname

scSid Course Studentattends

cname sname sid

courses students

(0, n)(0, n)

cid

scCidStudentCourse
(,)

Fig. 1. Generic schema representations

1 inst(#1, Student) ∧ av(#1, sname, ‘John’) ∧ av(#1, sid, 123) ∧
2 inst(#2, attends) ∧ part(#2, students, #1) ∧ part(#2, courses, #3) ∧
3 inst(#3, Course) ∧ av(#3, cname, ‘Databases’) ∧ av(#3, cid, 456)

Fig. 2. Example generic instance for the Java model in fig. 1

models, i.e., a semantics for the modeling language described. An instance of a model
is a set of abstract objects with specific properties and relationships to other objects. We
describe the objects, their properties and relationships by a set of logical facts.

Fig. 2 shows an example instance of the Java model in fig. 1. Each “feature” of an
instance object is represented by a separate fact. The abstract IDs (e.g., #1, #2, and#3)
connect these features so that the complete object can be reconstructed.

The first line defines an instance of the Student class with two attributes, e.g.,
inst(#1, Student) declares #1 to be an instance of Student, and the av predicates
define values for the attributes sname and sid. The av predicates are a shortcut for
a combination of attr and value predicates: av(id1, a, v) ⇔ ∃id2attr(id1, a, id2) ∧
value(id2, v). Thus, also values are represented by abstract objects, but we will usually
omit these value objects and use the av predicates for simplification. Line 2 defines an
instance of the association with two participators, the Student object defined in line
1 and the Course object in line 3. Participation in an association is represented by
the part predicates. Please note that all inst predicates in this example are implied by
av and part predicates, because the underlying model defines the complex types that
own the attributes, the associations that own association ends, and participating types
of association ends, respectively. Therefore, we will often omit the inst predicates in
the following examples.

The model representation is not only able to define flat structures like tables, but
also hierarchical structures, e.g., element hierarchies in XML schemas. In the following
subsection, this representation is applied to SO tgds which results in an expressive,
generic, composable, and executable mapping language.

122 D. Kensche et al.

∃s, c, sc
(∀o0, SI, SN
inst(o0, StudentD) ∧ av(o0, sidD, SI) ∧ av(o0, snameD, SN) →

inst(s(SI), StudentA) ∧ av(s(SI), sidA, SI) ∧ av(s(SI), snameA, SN))∧
(∀o0, CI, CN
inst(o0, CourseD) ∧ av(o0, cidD, CI) ∧ av(o0, cnameD, CN) →

inst(c(CI), CourseA) ∧ av(c(CI), cidA, CI) ∧ av(c(CI), cnameA, CN))∧
(∀o0, SI, CI
inst(o0, StudentCourseD) ∧ av(o0, scSidD, SI) ∧ av(o0, scCidD, CI) →

inst(s(SI), StudentA) ∧ inst(c(CI), CourseA)∧
inst(sc(SI, CI), AttendsA)∧
part(sc(SI, CI), studentsA, s(SI)) ∧ part(sc(SI, CI), coursesA, c(CI)))

Fig. 3. Query views between relational and object-oriented schemas

2.3 Generic Schema Mappings

Having defined a generic metamodel and its formalization on the instance level it is
possible to define a mapping language between two such models. This yields a generic
mapping language that is agnostic about the native modeling languages. We adopt here
the mapping language defined in [10] which, while being generic, still fulfills many im-
portant requirements [2] such as rich expressivity and executability. This allows generic
solutions of model- and mapping-intensive problems. The mappings are second-order
tuple-generating dependencies (SO tgds, [5]) with a limited set of predicates (e.g.,
those used in the example above of fig. 2). A mapping is an expression of the form
∃f((∀x1(ϕ1 → ψ1))∧ . . .∧ (∀xn(ϕn → ψn))) in which f is a set of function symbols,
each xi is a set of variables, and ϕi and ψi are conjunctions of atomic predicates. Pred-
icates in ϕi refer to a source model S and might include equality predicates, predicates
in ψi refer to a target model T. Thus, our mappings are source-to-target.

Fig. 3 shows as an example mapping the query views for our small university exam-
ple. In the relational database, we have three tables, Student, Course, and a table rep-
resenting the connection between students and courses. Consequently, we have three
implications, one for each of the classes and the last one that maps only the association.
To distinguish the model elements in the database schema and the application model,
we indexed the elements with D and A, respectively.

To describe the structure of instances on the target side, we have to provide a group-
ing functionality. This is enabled by using abstract functions, which are interpreted as
Skolem functions, i.e., they are only instantiated as ground terms that uniquely identify
instances of model elements on the target side. Consequently, the choice of arguments
for an abstract function determines the grouping behaviour defined by the mapping. In
the example, s, c, and sc are abstract functions to identify the objects on the target side.
Abstract functions can also be used to merge data on the target side, as the same func-
tion symbol can be used in different implications; then, each implication ϕi → ψi gives
only a partial description of the target object.

Our mapping language allows also concrete functions (e.g., value transformations
or string concatenation) which are evaluated during mapping execution. An important
feature of our mapping language is that they are closed under composition, i.e., when we
compose two generic schema mappings, we will get a valid generic schema mapping as

Solving ORM by MAGIC: MApping GeneratIon and Composition 123

SA

SD

SQMSA→SQ

MSD→SA MSD→SQ

MSD→SQ = MSD→SA◦MSA→SQ

Fig. 4. Querying in MAGIC

result. This property of the mappings is the formal foundation for our object-relational
mapping approach, as mapping composition will be used to perform query rewriting.

The corresponding update views, i.e., mappings from the application model to the
database, are in the example easy to define by just reversing the implications in the
query views. Please note, that inverting schema mappings might be more complex [4].

3 Querying in MAGIC

Fig. 4 depicts the process of querying a database with MAGIC. It shows the relational
schema SD, the application model SA, and a query model SQ. Moreover, the figure
depicts three different mappings, the query views MSD→SA , e.g., the mapping from
fig. 3, the query mapping MSA→SQ , and the query composition mapping MSD→SQ .

The query model describes the structure of the query results. This model is built ac-
cording to the definition of the query mapping MSA→SQ for each query. The query
model contains elements from the application model as the results of the query are usu-
ally instances of classes in the application model. The consequent of the query mapping
describes the objects that must be generated from the data returned by the query. Thus,
the query model describes the part of the application model required to be instantiated.

The query view MSD→SA and also its inverse, the update view MSA→SD have to
be provided as input to MAGIC. We provide a comfortable graphical mapping editor as
part of our holistic model management system GeRoMeSuite [9].

To translate the object-oriented query represented by the query mapping MSA→SQ

to a new query against the underlying database, MSA→SQ is composed with the query
view MSD→SA . The result is the query composition mapping MSD→SQ that maps di-
rectly from the relational database schema to the query model. Our model management
system GeRoMeSuite provides a function to export such a mapping into a SQL query
to fetch the data from the database that is required for populating instances of classes in
the query model [10]. Thus, there are several steps to be taken when executing a query
against the object-oriented application model:

Mapping Generation: Specify an object-oriented query against the application model
by creating a Query object and invoking appropriate methods of this object.

Mapping Composition: Compose the resulting query mapping MSA→SQ with the
known query views MSD→SA to yield a new mapping MSD→SQ from the rela-
tional schema to the model of the objects queried for.

124 D. Kensche et al.

01 Query query = new Query(queryview);
02 query.addClass("S", Student.class);
03 query.addRestriction(Restrictions.eq("S.name","Helen"));
04 query.instantiateProperty("S.courses");
05 query.addResultVariable("S");
06 List<Object[]> results = query.execute();

Fig. 5. A simple selection query

Mapping Compilation: Compile this new query composition mapping MSD→SQ to
a native SQL query.

Execution: Execute the generated native query and construct objects conforming to
the query model. To do so, populate properties of the objects using setter methods.

3.1 Generating the Query Mapping

We provide an application programming interface (API) to generate the query mapping
in the application at runtime. Method calls to the query API (class i5.modelman.magic.
Query) cause predicates to be added to the query mapping. The developer can specify
various features of the query, including selection conditions, selection of associations,
grouping, and aggregration functions.

Fig. 5 lists the Java code for a simple selection query including retrieval of an as-
sociation. After creating the Query object, the second line adds a variable named S
of class Student to the query. The third line restricts the name attribute of S to the
value "Helen". When selecting associated objects from an object model stored in a
database, the developer must specify which edges to be retrieved from the graph. Line
4 tells MAGIC to retrieve all Course objects associated to the students with name
"Helen" via the property courses which is of type List<Student>. The devel-
oper specifies variables to be returned by the query by calling the overloaded method
addResultVariable(...). Called with the name of a variable that has the type
of a Java class, the method selects all generated instances. Here, the query will return
instances of the Student class.

When calling the execute method of the Query class, the query mapping will
be built. For each call to addClass(var,clazz), MAGIC will add the predicate
inst(var, clazz) to the antecedent of the query mapping. Thus, the variable var repre-
sents an abstract variable in terms of our generic schema mappings. When instantiate−
Property(path) is called, appropriate part predicates are added to the antecedent that
query for the association. Likewise, adding restrictions causes comparison predicates
to be added to the query antecedent. When the query does not contain aggregation
functions, MAGIC will fetch all simple properties of abstract variables specified in the
query. Corresponding av predicates will be added for these simple attributes. For the
example of fig. 5, the resulting query mapping is shown in fig. 6. The antecedent queries
for student and course identifiers and their names. Moreover, it queries for the associa-
tion between students bound to the variable S and courses bound to the variable C.

The predicates in the consequent mimic the structure defined by the antecedent. The
reason for this is that the target expresses the structure of the object model retrieved,

Solving ORM by MAGIC: MApping GeneratIon and Composition 125

∃s, c, sc (∀S,C, SC, SI, SN, CI,CN

av(S, SIdA, SI) ∧ av(S, SNameA, SN) ∧ av(C, CIdA, CI) ∧ av(C, CNameA, CN)∧
part(SC,StudentsA, S) ∧ part(SC,CoursesA, C) ∧ equals(SN, ”Helen”) →

av(s(SI), SIdA, SI) ∧ av(s(SI), SNameA, SN) ∧ av(c(CI), CIdA, CI)∧
av(c(CI), CNameA, CN)∧
part(sc(SI,CI), StudentsA, s(SI)) ∧ part(sc(SI,CI), CoursesA, c(CI)))

Fig. 6. Query mapping for the query in fig. 5

01 Query query = new Query(queryview);
02 query.addClass("C", Course.class);
03 Aggregate agg = AggFunctions.count("C.students");
04 query.addRestriction(Restrictions.gt(agg, 9));
05 query.addGroupProperty("C.id");
06 query.addResultVariable("C.id", "CI");
07 query.addResultVariable(agg, "CC");
08 List<Object[]> results = query.execute();

Fig. 7. Java code for generating an aggregation query

which is exactly the query specified by the developer. The information, which abstract
functions must be used with which arguments is taken from the query views that were
given as input to MAGIC. In the query view the term s(SI) identifies an instance of the
Student class where SI is the value of the property SIdA. In the query mapping in
fig. 6, the variable SI is used to assign a value to the same property of the Student
object. Hence, the SI of the query view is unified with SI of the query mapping to yield
s(SI) as the abstract function term to be used in the consequent of the query mapping.

3.2 Aggregation Queries

Sometimes, also in object-oriented applications, the query is required to return tuples
(and not objects), e.g., if aggregation functions are applied. Fig. 7 shows how to use
aggregation functions and how to add a selection condition about aggregated values to
the query, resulting in a HAVING expression in SQL. First, an instance of the query
class is created in line 1. In line 2 the variable C of type Course is added to the
query. Internally, MAGIC will add a set of predicates to the query mapping that describe
the instance and its attributes. Line 3 creates an aggregation function that counts the
number of students associated to the Course objectC via its students property. This
implicitly requires information about associated students to be retrieved as well. Line 4
adds the restriction that we are only interested in courses that have at least ten students
assigned. Records in the query are to be grouped by the course identifiers (line 5).
The method call addResultVariable(agg), selects the value of the aggregation
function. The query defined this way corresponds to the generic query shown in fig. 8.

If aggregation functions are used it is not required to fetch all the simple properties
of instances queried for. The query mapping generated for the query in fig. 7 is shown
in fig. 8. Its antecedent includes av predicates for the identifiers of courses and students

126 D. Kensche et al.

∃count, g (∀S,C, SC, SI, CI

av(S, SIdA, SI) ∧ av(C, CIdA, CI)∧
part(SC,StudentsA, S) ∧ part(SC,CoursesA, C) ∧ (count(SI) > 9) →
Q(CI, count(SI)) ∧ group(g(CI), count(SI))

Fig. 8. An example of a generic query with aggregation

and queries for the association in between using part predicates. The restriction on
the number of course participants is given as a > comparison predicate involving the
aggregation function.

The consequent of the query mapping in case of aggregation will contain a query
head predicate including the selected variables and appropriate group predicates. The
group predicates are similar to GROUP BY statements in SQL. Its first argument is
defined as an abstract function defining the desired grouping behavior. The second ar-
gument is the required aggregation function.

3.3 Compiling and Executing the Mapping

When the query mapping MSA→SQ has been built, it is composed with the query views
MSD→SA (cf. fig. 3). In doing so, the antecedent of MSA→SQ which is a query against
the generic representation of the Java application model is translated to a new query
against a generic representation of the database schema. The resulting query composition
mappingMSD→SQ is a direct mapping from the relational schema to the structure of the
desired result. This new mapping is then exported to the native query language. Please
note that, although our mapping language can express disjunction, currently MAGIC
cannot handle disjunction. To overcome this limitation the algorithm for generating na-
tive queries has to be extended to handle multiple implications as well.

When the query is executed, MAGIC will use the retrieved values to create instances
of the classes in the application model, according to the query composition mapping.
The executemethod will return a list of arrays of type Object. Each array will con-
tain one element for each variable selected by calling addResultVariable(...)
in the order of the calls to this method. Thus, for the query in fig. 5 the result will be
a one-dimensional array containing instances of Student with associated Courses
whereas for the aggregation query defined in fig. 7, the result will be a two-dimensional
array with each component array containing a course identifier in the first component
and the number of students in the second component.

4 Propagating Updates to the Database

During operation, the application creates new instances of classes in the application
model, associates instances with each other, and sets properties of instances. MAGIC
also allows to propagate these updates to the underlying persistent storage. MAGIC
offers a set of updating methods that accept objects as arguments. When calling these

Solving ORM by MAGIC: MApping GeneratIon and Composition 127

01 Session session = new Session();
02 try {
03 Transaction tx = session.beginTransaction();
04 session.updateProperty("Student.courses");
05 session.update(student);
06 tx.commit();
07 } catch { tx.rollback();
08 } finally { session.close(); }

Fig. 9. Java code for updating an object student in the database

methods MAGIC updates the appropriate rows in the underlying database. Unlike query-
ing, updating does not require a new mapping to be generated. Instead, we use the up-
date view MSA→SD from the application model to the database model directly.

The method save(obj) must be called if obj is a new object that needs to be
stored persistently in the database. On the other hand, the method update(obj)
will update the tuples corresponding to the object and its associated objects in the
database. In the same way as instantiateProperty defines which associated ob-
jects to retrieve in a query, updateProperty(...) specifies which objects asso-
ciated to obj shall be persisted. The method gets as input a path to the property, e.g.,
"Student.courses". This is to avoid that every update writes the whole object
graph. Usually only certain objects in the graph must be updated. Fig. 9 lists the code
for updating a modified Student object and its associated courses.

To execute an update against a set of objects in the application model, MAGIC first
finds the implications in the update views that contain the properties to be updated in the
antecedent. Using an appropriate update code generator component, the required im-
plications are translated to SQL INSERT and UPDATE statements in case of relational
databases. Of course, the API allows to realize updates as transactions. Having gener-
ated the update statements, MAGIC assigns the values of properties to the appropriate
variables in the update statements and then executes the updates against the database.

Fig. 10 depicts an example SQL update code generator algorithm. By examining the
inst predicates of the consequent of the update view the algorithm first collects a set
T of the tables which are affected. We also keep the Skolem function f(x) which is
used as abstract identifier of a tuple of this table. Then, the av predicates are analyzed
to identify those keys and columns which are included in the mapping. Finally, the
statements are created. They set all columns of the table a which are included in the
update view, i.e., the sets Kf(x) and Cf(x); if there is already a tuple with the specified
key, then only the columns in Cf(x) will be updated. We assume objects are uniquely
determined by primary key.

Calling the methodsupdate(. . .),save(. . .), andupdateProperty(. . .) ex-
plicitly to persist changes to the object model in the database can be inconvenient for
the programmer. A possible solution uses aspect oriented programming (AOP) [11]. In
AOP, such cross-cutting concerns as calling update methods of the database can be de-
fined in separate modules, so called aspects. For instance, AspectJ1 can be used to regis-
ter pointcut expressions with setter methods of instantiated business objects. Whenever
a setter method is called, this can be logged to a cache of updated properties for each

1 http://www.eclipse.org/aspectj/

http://www.eclipse.org/aspectj/

128 D. Kensche et al.

Input: An implication χ = ϕ → ψ taken from an update view.
Output: A set of parameterized SQL select statements.
Initialization: T = C = K = ∅
Construct the table set T :

for each predicate inst(f(x), a) in ψ
add (f(x), a) to T

Construct column set C and key column set K:
for each predicate av(f(x), attr, term) in ψ

if T declares attr to be a key component for table t
add (f(x), attr, term) to K.

else
add (f(x), attr, term) to C.

Construct the update:
for each (f(x), a) ∈ T

let Kf(x) = {t|t = (f(x), attr, term) ∈ K} =
{(f(x), attr1, term1), ..., (f(x), attrm, termm)}

let Cf(x) = {t|t = (f(x), attr, term) ∈ C} =
{(f(x), attr1a, term1a), ..., (f(x), attrna, termna)}

add the following SQL statement to the result
insert into a(attr1, ..., attrm, attr1a, ..., attrna)
values (?term1, ..., ?termm, ?term1a, ..., ?termna)
on duplicate key update set attr1a =?term1a, ..., attrna =?termna

Fig. 10. Algorithm SQLUpdateGen with update and insert

object without changing the code of the business classes. Upon updating the object all
updated simple and complex properties can be included into the update statement. Al-
ternatively, the update of a property of an object could directly be propagated to the
database. In this case, however, all update statements could be precompiled on startup
of the system. Moreover, by registering appropriate aspects with the getter methods we
can realize lazy fetching of associated objects and, hence, transparent persistence.

5 Evaluation

To evaluate MAGIC we performed a set of queries against 1GB of data conforming to
the schema of the TPC-H benchmark. We defined a set of queries of different complex-
ity that were answered by MAGIC. The evaluation has been performed on an Intel Core
2 Duo processor with 2.6GHz CPU and 850MB Java heap space running Windows XP.
The database resided in a MySQL 5.1 server on the same system. We defined a Java ob-
ject model for the TPC database, including corresponding query and update views. The
following queries have been posed against the Java object model of the TPC database.
To explore how MAGIC scales we varied the size of the result sets.

Query 1: The first query is a simple select query that fetches 10 to 10,000 suppli-
ers without any associated objects. As each Supplier object has 6 attributes,
MAGIC sets 60 to 60,000 attribute values.

Query 2: The second query selects 1 nation and 10 to 5,000 customers in that nation.
MAGIC instantiates 11 to 5,001 objects and sets 10 to 50,000 attribute values.

Query 3: This query fetches 10 to 10,000 orders together with the associated customer
objects. MAGIC must generate 20 to 19,521 objects from the results returned by
the database and sets 140,000 attribute values for the largest result.

Solving ORM by MAGIC: MApping GeneratIon and Composition 129

Q1: q.addClass("S", Supplier.class);
q.addRestriction(Restrictions.gt("S.key", 9900));
q.addResultVariable("S");

Q2: q.addClass("N", Nation.class);
q.instantiateProperty("N", "customers");
q.addRestriction(Restrictions.eq("N.name", "GERMANY"));
q.addRestriction(Restrictions.gt("N.customers.key", 147712));
q.addResultVariable("N");

Q3: q.addClass("O", Order.class);
q.addRestriction(Restrictions.leq("O.key", 388));
q.instantiateProperty("O", "customer");
q.addResultVariable("O");

Q4: q.addClass("P", Part.class);
q.addClass("S", Supplier.class);
q.addClass("PS", PartSupp.class);
q.addRestriction(Restrictions.leq("P.key", 100));
q.instantiateProperty("P", "partSupps", "PS");
q.instantiateProperty("S", "partSupps", "PS");
q.addResultVariable("P");

Fig. 11. Object-oriented queries used for evaluation

Query 4: The fourth query fetches objects from three classes connected by two asso-
ciations which realizes an n-to-m relationship. In particular, it returns 10 to 10,000
Parts and their Suppliers together with the PartSupp objects that connect
them. The largest result set generates 60,005 objects, sets 720,072 attribute values,
and creates more than 80,000 associations between the objects.

Fig. 11 depicts the Java code for these queries. For the sake of space we omitted creation
and execution of the query q. The version of instantiateProperty which takes
three arguments defines PS to be the PartSupp that associates P and S.

For each of these test cases, we have measured the execution time of MAGIC with
the YourKit Java Profiler 7.5. The performance results in milliseconds are depicted in
fig. 12. All selection predicates were defined using primary keys because our aim was to
evaluate the performance of MAGIC and not the performance of the DBMS. Moreover,
to avoid a bias against the DBMS, we posed each query against the database once
before measuring it in 10 subsequent runs. This allows the DBMS to cache the results.
The results are depicted in the figures as average values.

The figures show the total time for each query depending on the number of results,
and the fractions of time needed by mapping composition, the DBMS, and MAGIC.
We also compared the performance of MAGIC with Hibernate; the figures show the
total time for each query in Hibernate. The composition algorithm includes various op-
timizations because mapping composition has exponential time complexity in general.
An alternative is the more efficient MiniCon algorithm for rewriting [14], which we con-
sider for future work. The time for composing the query mapping with the query views
is constant for each query because the query mapping does not depend on the number
of results. Consequently, the more results are returned, the more neglectable is the time
for mapping composition. For small result sets, the total time required by MAGIC is
less than the total time required for Hibernate. For larger result sets, the queries gener-
ated by Hibernate are significantly faster than our queries as the Hibernate queries use
INNER JOIN. MAGIC produces queries with the join condition in the WHERE clause.

130 D. Kensche et al.

80

100

120

140

160

(m
s)

0

20

40

60

80

100

120

140

160

10 100 1000 10000

ti
m
e
(m

s)

number of instantiated objects
Total Compose DBMS MAGIC Hibernate

0

20

40

60

80

100

120

140

160

10 100 1000 10000

ti
m
e
(m

s)

number of instantiated objects
Total Compose DBMS MAGIC Hibernate

100

150

200

250

ti
m
e
(m

s)

0

50

100

150

200

250

10 100 1000 5000

ti
m
e
(m

s)

number of intantiated objects
Total Compose DBMS MAGIC Hibernate

0

50

100

150

200

250

10 100 1000 5000

ti
m
e
(m

s)

number of intantiated objects
Total Compose DBMS MAGIC Hibernate

0

50

100

150

200

250

10 100 1000 5000

ti
m
e
(m

s)

number of intantiated objects
Total Compose DBMS MAGIC Hibernate

0

50

100

150

200

250

10 100 1000 5000

ti
m
e
(m

s)

number of intantiated objects
Total Compose DBMS MAGIC Hibernate

350
400
450
500

0
50

100
150
200
250
300
350
400
450
500

ti
m
e
(m

s)

0
50

100
150
200
250
300
350
400
450
500

10 100 1000 10000

ti
m
e
(m

s)

number of instantiated objects
Total Compose DBMS MAGIC Hibernate

2000

2500

3000

3500

m
s)

0

500

1000

1500

2000

2500

3000

3500

10 100 1000 10000

ti
m
e
(m

s)
number of instantiated objects

0

500

1000

1500

2000

2500

3000

3500

10 100 1000 10000

ti
m
e
(m

s)
number of instantiated objects

Total Compose DBMS MAGIC Hibernate

0

500

1000

1500

2000

2500

3000

3500

10 100 1000 10000

ti
m
e
(m

s)
number of instantiated objects

Total Compose DBMS MAGIC Hibernate

0

500

1000

1500

2000

2500

3000

3500

10 100 1000 10000

ti
m
e
(m

s)
number of instantiated objects

Total Compose DBMS MAGIC Hibernate

0

500

1000

1500

2000

2500

3000

3500

10 100 1000 10000

ti
m
e
(m

s)
number of instantiated objects

Total Compose DBMS MAGIC Hibernate

Fig. 12. Results for Queries 1 to 4

This problem holds especially for queries 1 and 4: the time required by the DBMS for
the MAGIC is about the same as the total time Hibernate. This difference in the SQL
query performance is probably not present in another DBMS with a different query op-
timizer. In summary, we can say that the performance of MAGIC is reasonable as the
largest result requires only about 3 seconds to instantiate more than 60,000 objects and
associating them with each other. MAGIC is scalable as the time for MAGIC increases
by the same factor as the size of the result set, similar to Hibernate.

Beside the queries returning objects associated with each other, we also posed ag-
gregation queries in our evaluation. The first aggregation query asks for the numbers
of parts of each type that are offered by one particular manufacturer. This query re-
turned 150 part types and their numbers. The second aggregation query asks for the
average account balance of customers in each nation. This query returns 25 results, one
for each nation. In both cases the amount of time needed by composition, and MAGIC
was neglectable as compared to the time required by the DBMS to answer the queries.

6 Existing Approaches to the Impedance Mismatch

Various approaches exist for solving the object-relational impedance mismatch using
different programming languages and offering different features. For the Hibernate
ORM tool2, mappings between the object model and the underlying relational database
are specified as annotations of Java classes and methods or as XML files. Hibernate can
perform both, queries and updates, using the information in such mapping files. Devel-
opers pose queries either in SQL against the relational schema (which does not solve the
impedance mismatch) or using the HQL query language. HQL is a proprietary query
language which allows specification of queries in a syntax similar to SQL. However,

2 http://www.hibernate.org/

http://www.hibernate.org/

Solving ORM by MAGIC: MApping GeneratIon and Composition 131

HQL is not parsed by the Java compiler. Therefore, the compiler cannot report errors
in the query. Additionally, like in MAGIC query objects can be built in Java code. This
approach is also more convenient for dynamic creation of query objects at runtime.

The ADO.NET Entity Framework [13,3,1] is another solution approach to the object-
relational impedance mismatch. It has recently been extended for object-oriented ac-
cess to XML data [16]. Queries are posed against a conceptual model specified in the
proprietary modeling language Entity Data Model (EDM). The EDM supports asso-
ciations between classes and inheritance. Mappings of superclasses are not inherited
by subclasses. Thus, like in MAGIC inherited features must be mapped for both the
superclass and the subclass. Moreover, ADO.NET supports the LINQ (Language INte-
grated Query) query language. LINQ is a novel query language integrated into the .NET
framework at the programming language level [12]. This allows to define queries that
are statically compiled and checked by the compiler of the host programming language.
Integration of ADO.NET with the LINQ language hence enables compile-time check-
ing of declarative queries against the object model. Like our approach, the ADO.NET
Entity Framework internally uses bidirectional views for rewriting queries against the
object model. Views are defined as equalities between queries over the entities and
queries over the relational schema. These queries are compiled to query views and up-
date views. The views satisfy the roundtripping criterion which means that given a set
E of entities, we have E = VQuery(VUpdate(E)). Most notably, view maintenance
techniques are employed for propagating updates to the underlying database.

In MAGIC we used similar techniques to show the usefulness of generic schema
mappings for ORM. Although the examples presented in this section seem simple, they
represent already a large class of queries required by real applications. More complex
queries could also be realized using our mapping language. For instance, a developer
may want to retrieve all the objects representing courses, that have more than ten partic-
ipants (instead of only their identifiers). This query could be expressed in our language
as well by simply adding the respective av predicates to the example of figure 8. Al-
beit such an extension would require changes to the Java code of MAGIC, it is not a
conceptual challenge for our generic mapping language.

7 Conclusion

We presented a solution for the object-relational impedance mismatch. Our prototype
MAGIC relies on a pair of schema mappings between the object-oriented application
model and an underlying relational database. Generic queries against the OO model are
rewritten into queries against the relational database by means of our mapping compo-
sition algorithm. Definition of Select-Project-Join and aggregation queries is possible
through an easy to use query API. MAGIC generates SQL queries which are executed
to retrieve a result set from which objects in the application model are instantiated
without creating intermediate objects. A natural extension is to replace the SQL query
generation by a component for generating XQuery. In doing, so MAGIC could as well
provide object-oriented access to XML databases. In previous work [10], we developed
already a component for generating XQueries for the core generic mapping language.
This component could be easily extended to cover also the more expressive queries

132 D. Kensche et al.

in this work (including aggregration). Other modeling languages could be included by
providing appropriate query generation components which would require no changes to
the core part of MAGIC, i.e., the mapping composition algorithm and query API.

Please note, that a research prototype like MAGIC cannot achieve the same rich
feature set as a commercial product offered by a company that is able to extend the
programming language, the programming environment, and the database system, as in
the case of the ADO.NET Entity Framework. Nevertheless, our prototype shows that an
ORM solution based on a generic metamodel and a generic mapping language is pos-
sible and feasible. Generic approaches have been critized because of low performance
and too much overhead. However, our approach does not create any intermediate ob-
jects as our mappings can be translated directed into native query languages. Thus, we
achieve a similar, for small queries even better performance than Hibernate.

Acknowledgements. The work is supported by the Research Cluster on Ultra High-
Speed Mobile Information and Communcation UMIC (www.umic.rwth-aachen.de).

References

1. Adya, A., Blakeley, J.A., Melnik, S., Muralidhar, S.: Anatomy of the ado.net entity frame-
work. In: Proc. SIGMOD Beijing, China, pp. 877–888 (2007)

2. Bernstein, P.A., Halevy, A.Y., Pottinger, R.: A vision for management of complex models.
SIGMOD Record 29(4), 55–63 (2000)

3. Castro, P., Melnik, S., Adya, A.: Ado.net entity framework: raising the level of abstraction in
dataprogramming. In: Proc. SIGMOD, pp. 1070–1072 (2007)

4. Fagin, R.: Inverting schema mappings. ACM Transactions on Database Systems 32(4) (2007)
5. Fagin, R., Kolaitis, P.G., Popa, L., Tan, W.C.: Composing schema mappings: Second-order

dependencies to the rescue. ACM Trans. Database Syst. 30(4), 994–1055 (2005)
6. Ireland, C., Bowers, D., Newton, M., Waugh, K.: A classification of object-relational

impedance mismatch. In: Proc. DBKDA, pp. 36–43. IEEE, Los Alamitos (2009)
7. Keene, C.: Data services for next-generation soas. Web Services Journal 4(12) (2004)
8. Kensche, D., Quix, C., Chatti, M.A., Jarke, M.: GeRoMe: A generic role based metamodel

for model management. Journal on Data Semantics VIII, 82–117 (2007)
9. Kensche, D., Quix, C., Li, X., Li, Y.: GeRoMeSuite: A system for holistic generic model

management. In: Proc. VLDB, pp. 1322–1325 (2007)
10. Kensche, D., Quix, C., Li, X., Li, Y., Jarke, M.: Generic schema mappings for composition

and query answering. Data Knowl. Eng. 68(7), 599–621 (2009)
11. Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C.V., Loingtier, J.-M., Irwin,

J.: Aspect-oriented programming. In: Aksit, M., Matsuoka, S. (eds.) ECOOP 1997. LNCS,
vol. 1241, pp. 220–242. Springer, Heidelberg (1997)

12. Meijer, E., Beckman, B., Bierman, G.: LINQ: Reconciling object, relations and XML in the
.NET framework. In: Proc. SIGMOD, pp. 706–706 (2006)

13. Melnik, S., Adya, A., Bernstein, P.A.: Compiling mappings to bridge applications and
databases. In: Proc. SIGMOD, Beijing, China, pp. 461–472 (2007)

14. Pottinger, R., Halevy, A.Y.: Minicon: A scalable algorithm for answering queries using
views. VLDB Journal 10(2-3), 182–198 (2001)

15. Russell, C.: Bridging the object-relational divide. ACM Queue 6(3), 18–28 (2008)
16. Terwilliger, J.F., Bernstein, P.A., Melnik, S.: Full-fidelity flexible object-oriented xml access.

Proc. VLDB Endow. 2(1), 1030–1041 (2009)

www.umic.rwth-aachen.de

A. Dearle and R.V. Zicari (Eds.): ICOODB 2010, LNCS 6348, pp. 133–146, 2010.
© Springer-Verlag Berlin Heidelberg 2010

Closing Schemas in Object-Relational Databases

Manuel Torres1, José Samos2, and Eladio Garví2

1 Universidad de Almería, Spain
mtorres@ual.es

2 Universidad de Granada, Spain
jsamos@ugr.es, egarvi@ugr.es

Abstract. Schema closure is a property that guarantees that no schema compo-
nent has external references, that is, references to components that are not
included in the schema. In the context of object-relational databases, schema
closure implies that types, tables and views do not have references to compo-
nents that are not included in the schema. In order to achieve schema closure, in
this work two basic approaches known as enlargement closure and reduction
closure are proposed. Enlargement closure includes in the schema every refer-
enced component. Reduction closure, on the other hand, is based on the trans-
formation of the components that have external references, eliminating these
references to fulfill schema closure. In this work, both closure approaches and
the algorithms to carry out the closure in each of them are described. These al-
gorithms generate and incorporate the needed components, whether being types
or views, to reach the schema closure making easier therefore the definition of
external schemas. Finally, to illustrate the concepts proposed in this work, we
explain how to carry out schema closure in SQL:2008.

1 Introduction

Object-relational databases (ORDB) extend relational databases with object- oriented
features, allowing user-defined types (UDT), complex objects, inheritance and so on.
From UDTs, we can build object tables and object views (also known as typed-tables
and typed-views, respectively), and include them in an object-relational schema. Sub-
types based on existing types may also be defined, giving rise to a type hierarchy.
Analogously, subtables of existing tables, and subviews of existing views may also be
defined, giving rise to a table hierarchy and a view hierarchy, respectively. These
features have been added to the SQL standard and for example, since SQL:1999
typed-tables can be defined, each containing a set of objects accessed via methods,
and typed-views. Subtypes, subtables and subviews of existing types, tables and
views can also be defined respectively [4]. This is an enormous advance in the useful-
ness and applicability of SQL, reducing the impedance mismatch between databases
and programming languages.

The fact that ORDBs incorporate some object-oriented features, however, give rise
to some of the common problems of object-oriented databases (OODBs), like the
well-known schema closure [2,10,7,11]. Schema closure is a property that guarantees
that no schema component has external references, that is, references to components

134 M. Torres, J. Samos, and E. Garví

that are not included in the schema. In this paper, the closure of object-relational
schemas following two approaches, named as enlargement and reduction closure are
proposed.

Basically, enlargement closure is based on including recursively each component
that is referenced by schema components, so that the original schema is enlarged with
the referenced components. The main drawback that can show the enlargement clo-
sure is that the systematic inclusion of referenced components in non-closed schemas
may lead, in certain situations, to obscure the schema that was originally specified by
the schema definer.

Reduction closure is based on the assumption that the schema definer is interested
only in the components that he or she has selected, and no one else. If the schema
includes some components with external references, in order to guarantee the schema
closure, but without adding more components, schema components that have external
references are replaced with views that hide those references.

The study of schema closure in ORDBs is important because throughout the life of
the database, external schemas or view schemas may be defined to provide a particu-
lar perspective of the conceptual schema. However, the defined external schemas may
be not closed. We can find an example when the schema definer has not included
some of the types used by a typed-table or by a typed-view of the schema. In such a
case, the schema is not closed. In this paper, we will describe how schema closure can
be carried out on ORDBs. The paper also describes how schema closure can be
achieved on SQL:2008 [1], because the application of reduction closure in SQL is not
straightforward. This is because of reduction closure may require the generation of
intermediate types and the modification of the type hierarchy (that may entail the
modification of the supertypes of a type), which is not directly allowed in SQL. The
remainder of this paper is organized as follows. Section 2 overviews how ORDBs
may include some object-oriented features, and also introduces the example that will
be used along the paper. In Section 3, the concepts of enlargement and reduction are
described. Section 4 describes how closure concepts can be applied in SQL:2008. In
Section 5 the related work is described. Finally, we conclude the paper in Section 6.

2 Main Features of Object-Relational Databases

In ORDBs, a schema may include tables and views as in relational databases, but in
addition, object-relational schemas may include some of the features of object ori-
ented schemas, like UDTs which consist of attributes (whose types may also be
UDTs) and methods. An UDT may be defined to be a subtype of another UDT, known
as its direct supertype. A subtype inherits every attribute and method of its direct
supertype. Subtypes may also have additional attributes and methods. Besides, it is
possible to redefine inherited methods.

From these UDTs, typed-tables can be defined. Every row of a typed-table, also
known as row object, is an instance of the UDT that is acting as the type of the table.
The typed table will have a column for each UDT attribute. Methods defined in
the UDT may be applied to each table row. Typed tables can be defined as subtables
of another typed table making up a hierarchy. For example, we could define a type

 Closing Schemas in Object-Relational Databases 135

person-type for persons including the attributes first-name, last-name,
age, address, and ss-number. From this type, we could define a typed-table
person-table to store objects whose type is person-type. In order to make
the example easier, types are defined without methods. Figure 1.a illustrates how the
definition of the type, the table, as well as the relationship between the table and the
type can be represented. This relationship has been named as type-of to show that the
type of the table person-table is person-type.

If a subtable student-table of person-table has to be created including
the attributes IQ and entry-date, the type of the subtable must be created and
positioned accordingly in the type hierarchy before. In this case, a type student-
type as subtype of person-type must be created, The attributes of the new type
are IQ and entry-date.

From typed-tables, object views may be defined, although object views may also
be defined from existing object views. Object views allow the data customization of
their underlying tables or views. To define an object view, we must take into account
that the view type must be defined before defining the view, and this type must be
placed accordingly in the type hierarchy.

In order to illustrate how a view can be defined in ORDBs, let us suppose that we
are interested in creating an object view on person-table that selects those people
less than 40 years old. This view is named as YoungerThan40-view. In this ex-
ample, given that the view type is the same as the type of the base table, the view type
has not to be created.

Now, if we want to define an external schema from the previous schema replacing
person-table with YoungerThan40-view, the schema definer must select
only the type person-type and the view YoungerThan40-view as schema
components. Figure 1.b illustrates such an external schema.

Fig. 1. a) Definition of an object type and a typed-table; b) External schema selecting those
people with less than 40 years old

In order to illustrate the closure concepts that will be introduced in the next section,
Figure 2 depicts the schema of a database of an insurance company that will be used
along this paper. The database stores data about policies and policy covers. Each
policy has one policyholder. Each policyholder is associated to his or her contact
employee. Employees work in a department and they share some properties and
methods with policyholders. In order to make the schema easier, ISA and type-of rela-
tionships have been depicted, but attributes and methods have not.

136 M. Torres, J. Samos, and E. Garví

Fig. 2. Database schema for a database of an insurance company

3 Schema Closure

Schema closure is a property to guarantee that no component of a schema includes
references to other components that are not included in the schema. That is, on the
one hand, the types included in a schema do not have references to types that are not
included in the schema; on the other hand, object tables and object views do not have
references to types that are not included in the schema, and so on.

In [10], a closed schema was defined as follows: Let C be the set of components of
a schema and R the set of inheritance relationships defined in it. Uses(Ci) can be de-
fined as the set of components used by the properties and operations of Ci.

Definition 1 (Closed schema). A schema S = (C, R) is closed if, and only if, C =
Uses(Ci) ∪ C,∀ Ci∈ C.

Next, we propose the closure of object-relational schemas following two approaches,
named as enlargement and reduction closure.

3.1 Enlargement Closure

Enlargement closure [10] includes every component referenced by a schema compo-
nent. If we apply this idea to ORDBs, each object type, table and view referenced by
object types, tables and views of the schema must also be included in the schema.

In order to illustrate the operation of enlargement closure, let us suppose that from
the insurance company schema of Figure 2, an external schema must be defined
hiding data of employees, as well as the departments they work in. Therefore, the
components selected to make up the external schema are the object tables address-
table, person-table, policyHolder-table, policy-table and cov-
ers-table, as well as their types, as can be seen in Figure 3.a. If we observe this
figure, we conclude that the schema is not closed because policyHolder-type
has an external reference to employee-type. In order to close this schema follow-
ing an enlargement approach, employee-type must also be included in the exter-
nal schema. However, the inclusion of employee-type does not solve the problem
because the schema is still not closed. Now, the schema is not closed because the just
added employee-type has an external reference to department-type. There-
fore, department-type must also be included in the schema. Once the types
employee-type and department-type have been added to the external
schema, the schema is now closed, as it is depicted in Figure 3.b.

 Closing Schemas in Object-Relational Databases 137

Fig. 3. a) Components selected by the schema definer; b) External schema closed following the
enlargement approach

This kind of closure is based on the idea that the user wants a schema with the
components that he or she has selected and, if it is necessary, other components can
also be included into it in order to achieve the schema closure. Below, the enlarge-
ment closure algorithm is shown.

Function EnlargementClosure (S): NeededComponents
1. Temp = C = GetComponents(S); NeededComponents =
2. while Temp
3. Ci = GetAndRemoveNext(Temp)
4. if Ci C and Ci NeededComponents then

5. NeededComponents = NeededComponents {Ci}
6. end if
7. for all Ck Uses(Ci)
8. if Ck C and Ck Temp and

Ck NeededComponents then

9. Temp = Temp {Ck}
10. end if
11. end for
12. end while
13. return NeededComponents

This algorithm takes as input the set of components S selected to make up the ex-

ternal schema. The algorithm returns in NeededComponents the components that
are needed to close the schema.

The schema S only consists of the set of schema components C specified by the
schema definer. This set is obtained by the function GetComponents that is not
described here. This function returns the set of components that make up the schema
S, that can be obtained from the data dictionary. The set of components C that make

138 M. Torres, J. Samos, and E. Garví

up the schema S is copied to an auxiliary variable Temp which will be used to check
the schema closure.

The algorithm processes the components of Temp one by one pulling out from this
set by a function GetAndRemoveNext, that is not described here. If the component
that is being processed does not belong to the set of schema components or to the set
of needed components (i.e. NeededComponents), it is added to the set of needed
components. Checking whether NeededComponents is empty we can know if the
schema is closed.

Next, the components used by the current component are added to Temp if they
have not been already added; this is checked at this way: a component does not have
to be added to Temp if it is a component of C (it was already included in Temp at the
beginning of the algorithm), if it is a component that is already in Temp (it is a com-
ponent that is not still processed) or if it belongs to NeededComponents (it is an
external reference added by another component).

3.2 Reduction Closure

Enlargement closure may add some components to external schemas because all the
referenced components are also included into the schema, as well as all the compo-
nents referenced by them, and so on. However, in some situations the schema definer
may not want to include into the external schema all the referenced components, or
some of them. For example, this would mean that the schema definer selects only the
components person-table and person-type, as shown in Figure 4.a, and he or
she does not want to include address-type, which is referenced by person-
type. However, since schema closure must be fulfilled, but no additional compo-
nents are wanted, components with external references must be replaced with another
component, which do no not include external references. This is the premise which
reduction closure is based on, that is, to replace components that have external refer-
ences in order to remove such references. Thus, schema closure is fulfilled and no
components are added to the schema.

Figure 4.b illustrates the resulting external schema after applying reduction closure.
Following this closure approach, person-table is replaced with an object-view
person-view, which hides the external references of its base table. The definition
of this object view implies the definition of a new type, person-view-type,
which hides the reference to address-type that has the original person-type.
The type newly defined will be the type of the object view person-view.

Fig. 4. a) Components selected by the schema definer; b) External schema closed following the
reduction approach

Summarizing, reduction closure assumes that the user wants to include only the
components that he or she has selected, and no one else. In order to remove the refer-
ences to non-included components, new types and/or object views have to be defined

 Closing Schemas in Object-Relational Databases 139

to replace them. Components with external references cannot be directly modified
because, if we modify them instead of defining new ones, we would produce collat-
eral effects in other schemas where those components were also included (e.g. the
conceptual schema or other external schemas).

A priori, reduction closure is only another alternative to reach schema closure.
However, it can also be used as a mechanism to define external schemas because it
simplifies the external schema definition process. In fact, object views and new types
that hide external references are defined automatically, and existing relationships are
updated automatically. However, the definition of the new components has to be
scheduled carefully in order to avoid multiple modifications of the same type or the
same object view, doing the needed modifications in one go. In order to obtain which
are the types, tables and object views that must be replaced, we propose a set of rules
to decide whether a component has to be replaced with a view component to update
its references.

Obtaining the types to be modified
These rules consider the five cases that may occur, which are illustrated in Figure 5.
In the figure, modified types are marked with an asterisk (*), and the dotted arrow
points to affected types.

• If a type A is modified and B is an aggregated type of A, B does not need to be
modified because of the modification of A. That is, aggregated types of a modified
type do not need to be adapted (Figure 5.a).

• If a type A has an aggregation relationship with a type B, and B is modified, the
type A must be modified. That is, if an aggregated type has to be adapted, the types
that have a reference to it have to be modified after it (Figure 5.b).

• If two types A and B are related with an association, and at least, one of them has to
be modified, both types have to be adapted (Figure 5.c).

• If A is a type that must be modified and B is a subtype of A, B must be modified
after modifying A. That is, subtypes of a modified type must be modified after it
(Figure 5.d).

• If A is a supertype of a type B to be modified, A does not need to be modified be-
cause of the modification of B. That is, supertypes of an adapted type do not need
to be modified if they have not to be modified for another reason (Figure 5.e).

Fig. 5. Cases for propagating modifications of types in a schema

Following these indications, a list of nodes can be built. Nodes symbolize types to
be modified, either because of having external references, or to propagate the
modifications. The node structure is depicted in Figure 6. Each node contains the
name of the type to be modified (OldTypeName) and the name of the type that is

140 M. Torres, J. Samos, and E. Garví

going to replace it (NewTypeName -this name may be generated automatically add-
ing a numerical su� x indicating the number of types defined from its base type). In
addition, the node includes the list of types included in the schema that are referenced
by the type (ReferencesTo), the list of external references that must be deleted
(ToBeDropped), and the list of references that must be updated (ToBeUpdated).
Adding the list of external references (ToBeDropped) in each node makes easier the
later definition of the type that will replace the type corresponding to that node in
order to hide the external references. The list ReferencesTo is used to check
whether a type has references to types that have been replaced with new types, and
therefore, must update its references

Obtaining the tables and object views to be modified
After applying the previous set of rules, new types have been defined to replace the
types with external references, as well as to replace those types affected by the re-
placement of the types with external references. Now, we must obtain the set of object
tables and object views that were defined from a type that has been replaced with a
new type. These object tables and views must also be replaced with object views
defined from them, but using the new type definitions. That is, if an object table or an
object view OV was defined originally from a type T, and this type has been replaced
with a type T’, then a new object view OV’ must be defined from OV. The type of
OV’ is T’.

Fig. 6. Node structure corresponding to types to be modified

This set of object views may be obtained going all over the node list built follow-
ing the previous set of rules. For each node in the list, if a table or object view was
defined using the type represented by the node, a new object view must be defined.
The name of the type of this new object view may be found in the NewTypeName of
the node.

Figure 7 illustrates how to obtain the object views that replace the object tables and
views whose types have been replaced with new types to reach reduction closure.

Fig. 7. Propagating type modifications to existing tables or views

 Closing Schemas in Object-Relational Databases 141

The figure depicts how the type T has been replaced with T’, and how an object
view OV’ with type T’ is view of OV. The name of this relationship, IS VIEW OF,
is inspired in the name of the relationship introduced in [5] to relate views with their
base classes in ODMG databases.

If the external schema we are defining includes an object view OV whose type has
external references, the process is the same. That is, a new type must be defined from
the original type in order to hide the external references. Now, the external schema,
instead of including the object view OV and its original type, will include the newly
defined type and an object view OV’ defined from OV. The type of OV’ is the new
defined type, which hides the external references of the type of the original object
view OV. After, the five rules must be applied in order to propagate the changes of
reduction closure.

Reduction closure algorithm
Reduction closure is carried out by an algorithm that takes as input the set of compo-
nents S selected to make up the external schema. If the schema is not closed, the algo-
rithm returns the set S incorporating the needed modifications, so that the closure of
the schema is reached.

Procedure ReductionClosure (S)
1. List = FindComponentsWithExternalReferences (S)
2. if List ≠ NIL
3. List = PropagateChanges (S, List)
4. UpdateSchema (S, List)
5. end if

The algorithm works as follows. First, the function FindComponentsWith-
ExternalReferences is called to obtain the set of components that have external
references (step 1). If the schema is closed, this function returns an empty list. How-
ever, if the schema is not closed, this function returns the list of nodes corresponding
to types with external references.

Once the existence of external references has been checked, if the schema is not
closed, then a non-empty list is returned, and the function PropagateChanges is
called (steps 2 and 3). If there exists any type affected by the replacement of types
having external references with derived types, this function includes new nodes to the
list. The function updates the list propagating the modifications following the rules
described before, depicted in Figure 5, generating a new node for each affected type,
and updating existing nodes. After propagating the changes, the list contains a node
for each type that must be replaced with a new type, so that types do not have external
references. All the needed information to define the new components is stored in the
nodes.

Finally, when the list is built, new types and object views must be defined. Then,
the schema is updated replacing with new types and object views those types, object
tables and object views that have external references as well as those affected. This
process is carried out by the function UpdateSchema (step 4).

142 M. Torres, J. Samos, and E. Garví

4 Schema Closure in SQL:2008

Since 2008, it is available the release SQL:2008 of the SQL standard [1]. In this sec-
tion we will see by means of examples the basic syntax used in SQL:2008 to define
types, subtypes, typed-tables, object views and the issues to obtain the SQL code for
schema closure. Nevertheless, the syntax used is the same the one proposed in
SQL:1999, so that the issues described in this section can also be applied to
SQL:1999.

4.1 Basic Commands in SQL:2008 to Define Object-Relational Schemas

In Section 2, we described the main features of object-relational databases, and we
also mentioned that in such databases, types, typed-tables and object views may be
defined. In that section we also discussed that these components can be organized in
hierachies, giving rise to the existence of type hierarchies, table hierarchies and view
hierarchies in the schemas. Finally, in that section we used a relationship that we
called type-of to indicate the type of a typed-table or an object view. In order to
achieve schema closure in SQL:2008, we only need to know how to define object
types, object tables, object views, and how to define subtypes and subtables of exist-
ing types and tables, respectively.

To define an object type in SQL:2008, we have to indicate the name of the type,
and the name and data type of the constituent pieces, which can also be object types.
In SQL:2008, types are created with a CREATE TYPE statement. Once defined the
object type, we can create a typed-table to hold instances of the object type. The fol-
lowing example illustrates the definition of the object type person-type intro-
duced in Section 2.

CREATE TYPE person-type AS (
ss-number varchar(10),
first-name varchar(50),
last-name varchar(50),
age int,
address varchar(50));

To define a typed-table we will use a CREATE TABLE statement indicating the
type of the table as described below. The example creates a typed-table person-
table to hold instances of the type person-type.

 CREATE TABLE person-table OF TYPE person-type;

The definition of object views is carried out adding to the view definition the type
of the view as described below. The example defines a view of person-table for
selecting those whose age is less than 40 years old. Given that this view makes only a
selection and does not make a projection, the type of the view is the same as the type
of its base table (i.e. person-type) as is shown in the code.

CREATE VIEW YoungerThan40-view OF TYPE person-type AS
select *
from person-table
where age < 40;

 Closing Schemas in Object-Relational Databases 143

The definition of subtypes, subtables and subviews is carried out adding UNDER to
the type, table, or view we are defining as well as the name of the supertype, supert-
able or superview as described below, taking into account that multiple inheritance is
not allowed in SQL:2008.

The first statement of the next example creates a type student-type as a sub-
type of person-type adding new properties. The second statement creates a subt-
able of person-table, whose instances are of the type student-type defined
in the first sentence. The last statement creates a subview students- Younger-
Than40-view that selects those students having an age lower than 40 years old.
Given that the view has been defined using a selection only, its type is the same as the
type of its base table, that is, student-type, as is shown in the statement.

CREATE TYPE student-type UNDER person-type AS (
IQ int,
entry-date date);
CREATE TABLE student-table OF TYPE student-type UNDER

person-table;
CREATE VIEW studentsYoungerThan40-view OF TYPE student-

type UNDER YoungerThan40-view AS
select *
from student-table
where age < 40;

The next figure illustrates the effect of these definitions in the data dictionary.

Fig. 8. Data dictionary after running the preceding definitions

4.2 The Positioning Problem in SQL:2008

Enlargement closure can be carried out in SQL:2008 just including a definition for
each schema component, both those selected by schema definer and those that are
referenced.

However, if we want to obtain in SQL:2008 the resulting schema of applying re-
duction closure, the translation is not straightforward. The problem we find is because
of reduction closure may require the modification of the type hierarchy. This is a well-
known problem in OODBs, named the positioning problem, that is related to find the
right place for a type in the type hierarchy identifying existing subtype and supertype
relationships with existing types. In [8], we can find some alternatives to solve this
problem.

144 M. Torres, J. Samos, and E. Garví

In order to illustrate the positioning problem, let us suppose that from person-
table, whose type person-type includes the properties first-name, last-
name, age, address and ss-number, we are interested in creating an object
view, named personWithoutAge-view, which hides the age of people. For this
view we can create a type personWithoutAge-type that has the same properties
that person-type except age. This new type is a supertype of person-type, so
that person-type must be modified to be subtype of personWithoutAge-type.
This modification is transparent to other schema objects that depend on person- type
because the type itself remains the same. The only that has changed is that some of its
properties now are inherited from a more generic type.

Next, we describe how the previous example can be carried out. Figure 9.a illus-
trates the table person-table defined from the type person-type before creat-
ing the view personWithoutAge-view. Figure 9.b illustrates an excerpt of the
data dictionary after defining the view personWithoutAge-view. As the figure
illustrates, a new type personWithoutAge-type has been defined, and it has
been integrated in the type hierarchy. Besides, the figure shows the relationship IS-
VIEW-OF between the view and its base table to represent that personWithout-
Age-view is a view defined from person-table. As can be seen in the figure,
the proposed modifications do not affect to schema components defined before the
modification, because person-table is still based on person-type, which still
preserves its properties.

Fig. 9. a) A fragment of the data dictionaty before defining the view; b) the fragment of the data
dictionary after defining the view

Therefore, applying reduction closure to a schema may entail the modification of
the supertype of a type. However, SQL:2008 does not allow modifying the supertype
of a type, as well as does not allow modifying types if there are schema objects that
depend on the type. So, reduction closure and, in general, any operation involving the
modification of the type, table or view hierarchies cannot be carried out directly in
SQL:2008. A solution to overcome this limitation may be based on the next idea. If
we have to change the supertype of a type (or the supertable of a table, or the super-
view of a view), a new definition of the subtype has to be created specifying the new
supertype (or the new supertable, or the the new superview, respectively). This may
be carried out deleting first the type to be modified, and creating after the new type,
preserving the name of the deleted type. The new type will have implemented the
needed modifications. (That is, if A has no supertypes and now it has to be subtype of
a type B, first we have to delete A and then, we have to create a new type A that is

 Closing Schemas in Object-Relational Databases 145

subtype of B.) However, this solution does not finish here because if the type to be
modified (i.e. replaced) is referenced by other types, tables or views, the type cannot
be deleted until no schema component has references to it. In such a case, before
deleting the type, all the types, tables and views that are using it must stop referencing
it and update their references to the type that is going to replace it. However, and as
can be supposed, these types, tables and views that we have just modified can also be
used by other schema components and the show goes on until the last link of the chain
is reached. This link is really a schema component that is not referenced by anything.
Then, in order to optimize this solution, before defining types, tables and views that
have direct references to the type to be modified, we must find which are the schema
components affected by the modification and start from the last links of the chain.

5 Related Work

Schema closure is a well-known problem in object-oriented databases. In such a con-
text, schema closure involves that no class of the schema has references to classes that
are not included in the schema. In this kind of databases the most used approach is
enlargement closure [10,7], which proposes the recursive inclusion of referenced
classes [2,7]. In [6], the inclusion of the necessary classes is proposed, but without
indicating how; in addition, given that in that work external schemas only can include
view classes, they propose a ”virtualization” process, so that if a base class is needed
to achieve schema closure, a view class is generated for this class and the view, but
not the base class, is included in the schema. Regarding to the solutions proposed to
reach schema closure, apart from the closure algorithm proposed by Rundensteiner in
[10], the remainder of papers about schema closure does not include a detailed solu-
tion for such a problem, discussing it superficially.

If we focus in OODBs defined following the ODMG standard [3], whose object
model allows the definition of interfaces and classes, an ODMG schema is closed if
the next two conditions are fulfilled: on the one hand, no interface can include refer-
ences to interfaces that are not included in the schema; on the other hand, no class can
include references to interfaces or classes that are not included in the schema. In
ODMG databases, most of the works [5,9] propose the inclusion of referenced com-
ponents, that is enlargement closure, but without indicating how to achieve it. Reduc-
tion closure was introduced in [11].

6 Conclusions

In this paper, the concept of schema closure in ORDBs and the algorithms to achieve
it have been proposed. Schema closure has been studied deeply in OODBs, but to the
best of our knowledge it has not been studied so deeply in ORDBs. However, the
closure of a schema is so important in ORDBs as in OODBs. Schema closure states
that all the referenced components (object views, types, and so on) of a schema must
be included into it. The most extended approach adds all the referenced components
to the schema in order to fulfill this property, and we call it enlargement closure. In
this work, an additional schema closure method, named as reduction closure, has been

146 M. Torres, J. Samos, and E. Garví

discussed. Unlike the enlargement closure, it replaces the components that have ex-
ternal references with view components that hide those references. In addition, this
replacement must be propagated and such a propagation may entail the definition of
other view components. Reduction closure carries out this propagation automatically,
simplifying the definition of external schemas.

Finally, in this work we have shown how the closure concepts introduced in this
paper can be applied in SQL:2008. In addition, the issues to overcome the limitation
of SQL:2008 for modifying which is the supertype, supertable or superview of a type,
object table or object view, respectively, or for modifying the type of an object table
or object view have also been discussed.

Acknowledgements

The authors would like to thank the anonymous reviewers for their helpful comments
on earlier versions of this paper.

References

1. ISO IEC 9075-*:2008. Database languages - SQL (2008)
2. Abiteboul, S., Bonner, A.J.: Objects and views. In: SIGMOD Conference, pp. 238–247

(1991)
3. Cattell, R.G.G., Barry, D.K.: The Object Data Standard: ODMG 3.0. Morgan Kaufmann,

San Francisco (2000)
4. Eisenberg, A., Melton, J., Kulkarni, K.G., Michels, J.-E., Zemke, F.: SQL:2003 has been

published. SIGMOD Record 33(1), 119–126 (2004)
5. Garcia, J., Ortin, M.J., Garcia, G.: Extending the ODMG standard with views. Information

& Software Technology 44(3), 161–173 (2002)
6. Guerrini, G., Bertino, E., Catania, B., Molina, J.G.: A formal view of object-oriented data-

base systems. TAPOS 3(3), 157–183 (1997)
7. Lacroix, Z., Delobel, C., Breche, P.: Object views. Networking and Information Sys-

tems 1(2-3), 231–250 (1998)
8. Motschnig-Pitrik, R.: Requirements and comparison of view mechanisms for object-

oriented databases. Information Systems 21(3), 229–252 (1996)
9. Roantree, M., Kennedy, J.B., Barclay, P.J.: Providing views and closure for the object data

management group object model. Information & Software Technology 41(15), 1037–1044
(1999)

10. Rundensteiner, E.A.: Multiview: A methodology for supporting multiple views in object-
oriented databases. In: Proceedings of the 18th International Conference on Very Large
Data Bases (VLDB), pp. 187–198 (1992)

11. Torres, M., Samos, J.: Closed external schemas in object-oriented databases. In: Mayr,
H.C., Lazanský, J., Quirchmayr, G., Vogel, P. (eds.) DEXA 2001. LNCS, vol. 2113, pp.
826–835. Springer, Heidelberg (2001)

A. Dearle and R.V. Zicari (Eds.): ICOODB 2010, LNCS 6348, pp. 147–158, 2010.
© Springer-Verlag Berlin Heidelberg 2010

A Comparative Study of the Features and Performance
of ORM Tools in a .NET Environment

Stevica Cvetković and Dragan Janković

Faculty of Electronic Engineering, Aleksandra Medvedeva 14,
18000 Niš, Serbia

{stevica.cvetkovic,dragan.jankovic}@elfak.ni.ac.rs

Abstract. Object Relational Mapping (ORM) tools are increasingly becoming
important in the process of information systems development, but still their
level of use is lower than expected, considering all the benefits they offer. In
this paper, we have presented comparative analysis of the two most used ORM
tools in .NET programming environment. The features, usage and performance
of Microsoft Entity Framework and NHibernate were analyzed and compared
from a software development point of view. Various query mechanisms were
described and tested against conventional SQL query approach as a benchmark.
The results of our experiments have shown that the widely accepted opinion
that ORM introduces translation overhead to all persistence operations is not
correct in the case of modern ORM tools in .NET environment. Therefore, at
the end of this paper we have discussed some reasons for insufficiently wide-
spread application of ORM technology.

Keywords: Object-relational mapping (ORM), persistence, performance
evaluation.

1 Introduction

Modern information systems rely heavily on relational databases, mostly because of
their reliability and standardized query language. Design of these kinds of systems is
based on layered software architecture which implies three logical layers: presenta-
tion, business and data layer. Implementation of the data layer is essential step in the
process of information system development and could take up to 40% of complete
development time [5]. It is usually developed in the object oriented environment,
where objects are used to represent data that needs to be persisted in a relational data-
base. Traditional data layer development approach has shown numerous disadvan-
tages that could be summarized in the following:

• The "object-relational impedance mismatch" problem occurs because the object-

oriented and relational database paradigms are based on different principles [2].
The impedance mismatch is manifested in several specific differences: inheritance
implementation, association implementation, data types, etc.

148 S. Cvetković and D. Janković

• Development of advanced data layer mechanisms, such as concurrency control,
caching or navigating relationships could be very complex for implementation.

• Frequent database structure changes could cause application errors due to mis-
match of application domain objects with latest database structure. Those errors
can’t be captured at compile-time and therefore require development of complex
test mechanisms.

• Developed information systems become significantly dependent on concrete data-
base managing system (DBMS), and porting of such a system to another DBMS is
complex and tedious task.

Object Relational Mapping (ORM) tools have been developed in an attempt to over-
come the above listed problems. As described in the agile methodology for software
and databases development [2], these tools automatically create data layer and pro-
vide a mapping between the application object model and the database relational
model. They act as an intermediary between an object oriented code and a relational
database. The most successful examples of ORM tools are Hibernate [3], Oracle
TopLink [9] and recently introduced Microsoft Entity Framework (EF) [1], [4]. With
these tools, application developer is encouraged to think in terms of data layer objects
(persistent objects) and their relationships. The system takes over all the details of
handling objects and relationships at runtime. It automatically tracks updates made to
the objects and performs the necessary SQL insert, update, and delete statements at
commit time. This way, business layer development can be done in the comfort of
object-oriented languages which dramatically reduces the overall complexity and
increases code understandability in applications.

However, application of ORM tools requires a very deep understanding of the con-
crete object model, the relational model and the DBMS used. All software design and
implementation decisions should be done with this fact kept firmly in mind, since a
large part of the transferring of persistent objects to the database is performed by the
underlying DBMS. Different DBMS-s can implement common database functional-
ities (e.g. integrity control) in specific way, causing a part of the software errors to be
produced by the underlying DBMS. This is the reason why the ORM generated data
layers are not fully database independent.

The aim of this paper is to investigate the usage and performances of the most
commonly used ORM tools in a .NET environment – NHibernate and EF. Beside a
comparison of the tools from a software development point of view, we concentrate
heavily on the performance analysis in order to check the common opinion that ORM
tools introduce a significant slowdown compared to conventional data layer approach.
In the literature there is already a comparison between different Java based ORM
tools and object databases [6], [10], [11]. However, to the best of our knowledge, no
scientific studies have been made comparing the different .NET ORM tools such as
EF and NHibernate.

In the rest of the paper ORM specific concepts are analysed for both tools. After
that, different query mechanisms are described, including query samples. Finally,
performance test results are presented and discussed.

 A Comparative Study of the Features and Performance of ORM Tools 149

2 ORM Tools: Entity Framework vs. NHibernate

EF and NHibernate are compared from a software development point of view. Sum-
mary overview of compared features is given in Table 1. More detailed comparison is
given below.

Table 1. Comparison of features between Entity Framework and NHibernate

Feature Entity Framework NHibernate

Programming languages .NET (C#, VB) .NET (C#, VB), Java

Generation of XML mapping
file

Automatic Only with 3rd party tools

Bi-directional relationships Yes Yes

Transactions handling Automatic Automatic

Locking mechanisms Optimistic and pessimistic Optimistic and pessimistic

Optimization Lazy loading, caching Lazy loading, caching

Query methods LINQ, Entity SQL, SQL HQL, Criteria API, SQL

Supported DBMS MS SQL Server, MySQL,
commercial for other DBMSs

MS SQL Server, Oracle,
MySQL, PostgreSQl,...

2.1 Mapping Mechanism

In the context of ORM tools, Ambler [2] provides the following definition of map-
ping: “Mapping: The act of determining how objects and their relationships are
persisted in permanent data storage, in this case a relational database”. Mapping
mechanism, that establishes a relationship between the persistent objects and the data
stored in the database, is the backbone of an ORM tool (Figure 1). There are a number
of technical challenges that have to be addressed by any mapping solution. It is rela-
tively straightforward task to build an ORM that uses one-to-one mapping to expose
each row in a database table as an object. However, when dealing with the relation-
ships, inheritance mappings, multi-DBMS-vendor support and performance issues,
mapping mechanism could become extremely complex.

Both EF and NHibernate provide a comprehensive mapping mechanism, and have
GUI tools to increase developer productivity. While EF includes a collection of de-
sign-time tools for automatic mapping schema generation (integrated in Microsoft
Visual Studio IDE), NHibernate mapping can be generated only by 3rd party tools.
Commonly used approach is describing mapping details in XML files. The syntax and
structure of mapping files are specified using a declarative language that has well-
defined semantics and covers a wide range of mapping scenarios. Both tools support
bidirectional relationships when the objects on both ends of the relationship contain
references of each other.

150 S. Cvetković and D. Janković

Fig. 1. Simplified general architecture of ORM Tools

Compared to NHibernate, EF introduces more general mapping mechanism repre-
sented with three separate XML sections incorporated in one file [1]. The bottom-level
section of mapping file uses Store Schema Definition Language (SSDL) to describe the
data source (tables, columns, constraints, etc.) that persist data for applications. Con-
ceptual Schema Definition Language (CSDL) is used to declare and define the entities
and associations of the object model being designed. The programmable data layer
classes are built from this schema. The third section is written in Mapping Specifica-
tion Language (MSL) which connects (maps) the declarations in the CSDL section to
the data source described in the SSDL section of mapping file.

2.2 The Data Context

EF and NHibernate both provide a private cache of database persistent objects for the
application execution in one thread. EF ObjectContext and the NHibernate Session are
terms used for this common concept that we will call Data Context. The Data Context
is a core which handles the loading and saving of persistent objects, where database
updates are deferred until synchronization between the object cache and database is
needed. It is also responsible for the management of database connections, transac-
tions, concurrent access, etc.

In the typical scenario, when a new persistent object is created, it has no connec-
tion to the Data Context and must be explicitly introduced. In-memory changes to the
object are then tracked until synchronization with database is explicitly requested.
When the object is accessed again, the Data Context provides the needed data out
of the cache, or if it is not found, the database is accessed. In both tools, persistent
objects data obtained during the Data Context lifetime, is still there after the Data

 A Comparative Study of the Features and Performance of ORM Tools 151

Context is disposed. In the typical three-layer architecture, the persistent objects are
filled out in the Business Layer and returned for display in the Presentation Layer,
after the Data Context is disposed.

All EF persistent objects are inherited from one system super class, while in
NHibernate there is no such a class. This EF approach could raise a question about
code reusability because of .NET languages limitation that class can inherit only one
base class. However, the problem is overcame with “partial classes” concept so that
all the ORM tool provided code can be in one file and the application extended code
in another.

2.3 Transactions and Concurrency

When the Data Context actually interacts with the database (insert or update opera-
tions), the database will open a transaction if none is currently open, and commit it
after the statement. This process is known as “auto-commit". To extend a transaction
lifetime to contain multiple database accesses, both ORM tools provide a transaction
interface with methods for enclosing a database transaction. Actual propagation of
any of the database actions is deferred until transaction commit is called. This triggers
a synchronization of the Data Context with the database.

In order to maintain transaction isolation, databases rely on locking, which pre-
vents concurrent access to particular data structures. Both tools provide optimistic and
pessimistic concurrency models and always use the locking mechanism provided by
DBMS (never lock persistent objects in memory). Optimistic locking strategy as-
sumes that conflicting updates will cause an application exception that should be
properly handled. Concurrency model could be defined for separate table columns, by
setting XML mapping file, or directly in source code.

2.4 Query Approaches

Although both tools are designed to work with multiple query languages, including
native SQL, this study will be focused on the two most widely used approaches –
SQL Derivatives and Language Queries.

2.4.1 SQL Derivatives
SQL derivatives represent extensions of standard SQL that allows query definition on
persistent objects instead of tables. They extend standard SQL in the following ways:

• Introduce native support for persistent objects within SQL queries (member ac-

cesses, relationship navigation, etc.)
• Add support for aggregation functions against objects (min, max, sum, average,

etc.)
• Query results are strongly-typed .NET objects and not rows or columns.

EF EntitySQL and Hibernate Query Language (HQL) are derivatives of SQL, de-
signed to support previously described mechanisms. Both tools use dot notation when
referring child objects. While the query result of NHibernate query is a List object, in
EF it is a special ObjectQuery object which contains methods to get List of objects.

152 S. Cvetković and D. Janković

2.4.2 Language Queries
One of the main disadvantage of SQL derivative queries, common to all string repre-
sented queries, is a software compiler inability to detect errors during compilation.
Therefore, compiler cannot help the developer with compile-time checking of syntac-
tic and semantic correctness, like it does for the rest of the program. In order to over-
come the problems, both tools introduce approaches that we will identify as Language
Queries. EF introduces LINQ [7], while NHibernate provides Criteria API for the
purpose.

EF LINQ is an innovation in the programming languages that introduces query-
related constructs to .NET programming languages. The query constructs are not
processed by an external tool. They are rather expressions of the languages them-
selves. LINQ introduces nine new operators into .NET programming languages: from,
join, join...into, let, where, orderby, group...by, select, and into. In addition, queries
formulated using LINQ can run against various data sources such as in-memory data
structures (Lists), XML documents and databases.

NHibernate offers Criteria API that uses actual .NET classes and methods to set
restrictions for the query. Unlike LINQ, it doesn’t introduce new operators into pro-
gramming language; it only uses a new API for retrieving entities. Queries are con-
structed by composing API class method calls on corresponding persistent objects.
This form of queries is usually called method-based queries. EF also provides this
kind of query formulation, but it is not described in more details in this text, since
LINQ has been proven as more robust method for query representation.

3 Performance Testing

In order to test EF and NHibernate performances and answer the question of whether
ORM tools significantly harm overall performance, we will measure query execution
speed against conventional SqlClient approach as a benchmark. Seven typical SQL
test queries are defined, together with the corresponding HQL, EntitySQL and LINQ
representations (Table 2). First five are SELECT queries chosen to cover various
reading scenarios (joins, grouping, subqueries...), while the last two are INSERT and
DELETE tests. For the first five queries, each query was executed 100 times, and the
average execution time was calculated. For the last two, we calculated execution time
for INSERT and DELETE of 100 records. All of the queries involve iterating through
the returned results and sending back a number of objects found.

3.1 Testing Environment

Tests were executed on a PC with hardware consisted of an AMD Dual Core
2.51GHz processor, 2 GB of DDR2 RAM, 500GB hard disk (7300 rpm). Machine
runs MS Windows XP Pro (SP2), with MS SQL Server 2005 installed with default
settings and parameters. All tests were performed on a single machine in a computer
laboratory. The software configuration that we used to run tests includes:

• MS Visual Studio 2010 (C#)
• .NET Framework 4.0 including Entity Framework
• NHibernate 2.0.1

 A Comparative Study of the Features and Performance of ORM Tools 153

• MS SQL Server 2005 – Standard Edition
• AdventureWorks database which is part of the SQL Server 2005 Sample Databases

[8]. List of all database tables used for testing, including approximate number of
records is as follows: Sales.Customer ≈ 20000, Sales.SalesOrderHeader ≈ 31500,
Sales.SalesTerritory ≈ 10, Sales.SalesOrderDetail ≈ 121000.

3.2 Data Context Initialization

It is important to emphasize that in both cases, the initialization of Data Context is
“expensive” operation due to one-time costs of establishing database connection and
generating execution plan. Approaches for the initialization are different in EF and
NHibernate. While NHibernate contains specific class methods for this purpose, EF
implicitly initializes Data Context the first time an application executes a query. Ex-
plicit method call is a more flexible solution which allows a developer to implement
Data Context initialization during the application initialization. It is much more ac-
ceptable solution from user’s point of view, than to wait for certain period of time on
first query execution when application is already started. EF can overcome lack of
explicit initialization by calling some “unnecessary” query during application start
just in order to initialize Data Context. The costs associated with the first-time ini-
tialization in both tools were around 3 seconds and were disregarded from the results
presented in Table 2.

3.3 Test Results Analysis

A comparative evaluation of query performances between SqlClient, EF, and
NHibernate approaches are given in Table 2. Additionally, graphical illustration is
presented in Figure 2. Expectedly, SqlClient shows the best test results. However,
query performances of the two described ORM frameworks were not significantly
slower than SqlClient in the most of test cases.

The EF appears to perform better than NHibernate, except in case of Q4_Select_
GroupBy. The slow performance of EF for this query type can be explained with the
non-optimal way in which group-by statements are translated into native SQL form.
In fact, they will not be translated into SQL group-by statement. The EF group-by
query, either EntitySQL or LINQ, is a hierarchical query that returns a sequence of
groups, where each group contains the key and all the elements (records) that made up
the group. It means that Entity Framework group-by is translated into simple SQL
select query that fetches all the records which are further processed in the memory to
get group-by results.

Performances of SQL set-based updating statement were intentionally omitted in
previous discussion because they need careful consideration. From ORM tool point of
view, this kind of statement cannot be expressed in its original form. Instead, ORM
update query must be simulated in three successive steps including querying for the
objects to be updated followed by in-memory properties update and finally submit of
changes to the database. It introduces obvious performance overhead which is not
dramatic in case of updating a small number of records. However, when dealing with
applications that require large sets of records to be updated at once ("bulk updates"),
ORM performance is hundred times worse. This is probably the weakest and the most

154 S. Cvetković and D. Janković

Table 2. A comparative evaluation of query performances using SqlClient, HQL (NHibernate),
EntitySQL (Entity Framework) and LINQ (Entity Framework)

Execution Time (ms)

Id SQL query string
SqlClient HQL

Entity

SQL
LINQ

Q
1_

Se
le

ct
_S

im
pl

e

SELECT AccountNumber

FROM Sales.Customer AS c

WHERE c.ModifiedDate > '2001-12-06' AND
c.CustomerType = 'S' AND

c.AccountNumber LIKE 'AW000002%'

102.3 109.6 108.1 149.8

Q
2_

Se
le

ct
_J

oi
n

SELECT soh.AccountNumber

FROM Sales.SalesOrderHeader soh

JOIN Sales.Customer c ON soh.CustomerID =
c.CustomerID

JOIN Sales.SalesTerritory t ON c.TeritoryID =
t.TerritoryID

WHERE t.Name = 'Australia'

ORDER BY soh.AccountNumber

55.3 65.2 55.7 61.7

Q
3_

Se
le

ct
_S

ub
qu

er
y

SELECT c. AccountNumber

FROM Sales.Customer c

WHERE c.TerritoryID =

(SELECT c1.TerritoryID

 FROM Sales.Customer c1

 WHERE c1.AccountNumber = 'AW00000021')

21.7 22.3 15.4 37.9

Q
4_

Se
le

ct
_G

ro
up

B
y

SELECT t.Name FROM Sales.Customer c

JOIN Sales.SalesTerritory t ON c.TerritoryID =
t.TerritoryID

GROUP BY t.Name

ORDER BY t.Name

0.7 0.9 21.3 22.5

Q
5_

Se
le

ct
_T

op

SELECT TOP 1000 sod.CarrierTrackingNumber

FROM Sales.SalesOrderDetail sod

WHERE sod.UnitPrice > 123

ORDER BY sod.SalesOrderID

2.1 5.5 5.9 6.1

Q
6_

In
se

rt

INSERT INTO Sales.Customer(TerritoryID,
CustomerType, rowguid, ModifiedDate)
VALUES (1, 'S', NEWID(), GETDATE())

48.9 63.5 62.5 62.5

Q
7_

D
el

et
e

DELETE FROM Sales.Customer WHERE
ModifiedDate > @x

19.9 30.2 31.2 31.2

 A Comparative Study of the Features and Performance of ORM Tools 155

Fig. 2. Graphical representation of query performances comparison between SqlClient, HQL,
EntitySQL and LINQ

criticized part of ORM concept. However, in practical applications bulk updates are
not so frequent operations. In such cases there is always possibility for "hybrid" solu-
tion by explicit use of SQL updating statements via SqlClient approach.

EF offers few mechanisms for query performance improvement: use of compiled
queries, defining the smart connection strings, disable change tracking, etc. According
to documentation as well as some technical articles, highest LINQ performance im-
provement could be achieved using so-called compiled queries. It is due to obvious
drawback that every time LINQ query is executed, it needs to be converted to SQL
statement. The query is first checked for syntax errors by LINQ query engine and then
translated into SQL statement. As a solution, compiled LINQ queries provide mecha-
nism to cache the query plan in a static class so it can be executed much faster. Tests
that were conducted on compiled and non-compiled LINQ queries have shown that
the time saved with compiled queries is almost constant (in our case around 5ms) and
doesn’t depend on query complexity. Therefore, its relative impact on complex que-
ries execution performance (those that last over 100ms) is insignificant. Note that all
the results in Table 2 are measured for compiled LINQ queries. Also, when analyzing
results, it should be taken into account that ORM tools assume additional costs of the
first-time Data Context initialization, which were not included in presented results
because they are performed only once per application.

156 S. Cvetković and D. Janković

The overall results have shown that widely held opinion that ORM is significantly
slower than the conventional data layer approach for all persistent operations, is not
correct in the case of modern ORM tools. Although there are some specific cases, like
bulk updates or EF group-by statements, where ORM extremely degrades perform-
ances, for most of the typical data access scenarios, performances are comparable.
Early ORM systems were actually slower than custom data layer solutions, because
they were introducing overheads of reading metadata, reflecting on classes, generat-
ing queries, etc. In a custom data layer solution, these tasks would be completed at
design time by the developer and would not affect system performance. However,
modern-day ORM systems like EF and NHibernate are based on advanced architec-
ture. They apply a variety of performance improvement mechanisms like caching,
lazy loading or dirty checking that manage to compensate the overhead that ORM
introduce by nature.

4 Barriers to the Adoption of ORM

Although our comparison showed that performances of modern ORM tools are close
to the conventional data layer approach for the most of the typical data access scenar-
ios, there is still skepticism toward massive adoption of ORM for information system
development. In this section, we present a number of technical and cultural barriers
that are responsible for insufficiently widespread application of ORM.

4.1 Learning Time Period and Costs

From the perspective of a software development company, period of time needed to
learn general ORM concepts as well as specific solution details, could present serious
obstacle to its adoption. Setting up and installing ORM software on all the develop-
ment, testing and production machines can be a substantial undertaking. Also, new
query definition approaches (like LINQ, HQL, etc.) require software developers to
learn a new API that may be quite complex. Regardless of which ORM solution is
chosen for adoption, it is likely that the company will have to invest in the training of
software developers. However, the long-term benefits afforded by ORM can defi-
nitely outweigh these one-time personnel and technological costs.

4.2 Legacy Database Adoption

Very often, new systems need to use data from a legacy database. In this case, the
software developers don’t have any impact on the architecture of the database; they
have to work with what is available. By the rule, legacy databases have a questionable
structure reflected in poor normalization, incomplete definition of constraints, etc.
With a complex OR mapping definition mechanism, it may be difficult or even im-
possible to represent the mapping to the legacy database. Redefinitions of OR map-
ping file require developers to think carefully about details that had previously been
largely hidden from them. Additional problem could represent inadequate support for
old versions of DBMS.

 A Comparative Study of the Features and Performance of ORM Tools 157

4.3 Distrust of ORM

In addition to the previously described objective barriers, there may also be bureau-
cratic obstacles to the adoption of new technologies, including ORM, from the ranks
of project managers. Unfamiliarity with ORM concepts could represent a significant
problem. Many project managers as well as software developers are not familiar with
the scope of application and exact features of ORM tools. Usually, developers have
outdated notions of the capabilities of ORM, believing it to be slow and incapable of
supporting sophisticated database operations. Therefore, improving awareness of the
features that modern ORM tools provide is an important step to their more widespread
adoption.

5 Conclusion

This paper reports on the first findings of our investigation into the usage and per-
formance of ORM technologies in .NET environment. It was found that overall per-
formances of conventional SqlClient approach are comparable to ORM tools for the
most of the typical data access scenarios. It is in contrast to the popular opinion that
ORM tools add translation overhead to all persistence operations and hence are pro-
portionally slower. ORM tools allow developers to use more powerful object oriented
modeling techniques, to benefit from ease of development and provide unified pro-
gramming model for different data sources. On the other side, their effective use will
largely depend on the skill set possessed by project team members.

In the future, our plans are directed towards comparing ORM tools using modified
versions of some standard SQL benchmarks. In addition, issues at more of an archi-
tectural level should also be investigated, for instance a comparison between distrib-
uted and a multi-user benchmark.

Acknowledgments. Work on this paper was supported in part by the Ministry of
Science and Technological Development of the Republic of Serbia (Project number
TR13015).

References

1. Adya, A., Blakeley, J., Melnik, S., Muralidhar, S.: Anatomy of the ADO.NET Entity
Framework. In: ACM SIGMOD International Conference on Management of Data, Bei-
jing, China, pp. 877–888 (2007)

2. Ambler, S.: Agile Database Techniques. Wiley, Chichester (2003)
3. Bauer, C., King, G.: Java Persistence with Hibernate. Manning Publications (2006)
4. Castro, P., Melnik, S., Adya, A.: ADO.NET entity framework: raising the level of abstrac-

tion in data programming. In: ACM SIGMOD International Conference on Management
of Data, Beijing, China, pp. 1070–1072 (2007)

5. Keene, C.: Data Services for Next-Generation SOAs. SOA World Magazine (2004),
http://soa.sys-con.com/node/47283

6. Kopteff, M.: The Usage and Performance of Object Databases compared with ORM tools
in a Java environment. In: 1st International Conference on Objects and Databases
(ICOODB 2008), Berlin, Germany (2008),

 http://soa.sys-con.com/node/47283

158 S. Cvetković and D. Janković

7. Meijer, E., Beckman, B., Bierman, G.M.: LINQ: Reconciling Objects, Relations and XML
in the.NET Framework. In: ACM SIGMOD International Conference on Management of
Data, Chicago, IL, USA, pp. 706–706 (2006)

8. Microsoft Download Center SQL Server, Samples and Sample Databases (2005),
http://www.microsoft.com/downloads/
details.aspx?familyid=e719ecf7-9f46-4312-af89-6ad8702e4e6e

9. OracleTopLink,
http://www.oracle.com/technology/products/ias/toplink

10. Van Zyl, P., Kourie, D.G., Boake, A.: Comparing the performance of object databases and
ORM tools. In: Bishop, J., Kourier, D. (eds.) Annual research conference of the South Af-
rican institute of computer scientists and information technologists on IT research in de-
veloping countries (SAICSIT 2006), Somerset West, South Africa, pp. 1–11 (2006)

11. Zhang, W., Ritter, N.: The Real Benefits of Object-Relational DB-Technology for Object-
Oriented Software Development. In: 18th British National Conference on Databases:
Advances in Databases, Chilton, UK, pp. 89–104 (2001)

Author Index

Alagić, Suad 100

Baeza-Yates, Ricardo 6
Bernstein, Philip A. 100
Braga, Daniele 1
Büchner, Thomas 70

Ceri, Stefano 1
Chen, Tao 85
Cook, William R. 8
Corcoglioniti, Francesco 1
Cvetković, Stevica 147
Cybula, Piotr 40

de Spindler, Alexandre 55

Garv́ı, Eladio 133
Geisler, Sandra 118
Greene, Robert 9
Grossniklaus, Michael 1, 25, 55
Guzenda, Leon 9

Jairath, Ruchi 100
Janković, Dragan 147

Keith, Michael 9
Kensche, David 118
Khan, Arif 85

Li, Xiang 118
Linskey, Patrick 9

Matthes, Florian 70

Neubauer, Peter 9
Neubert, Christian 70
Norrie, Moira C. 10, 55

Quix, Christoph 118

Samos, José 133
Schneider, Markus 85
Subieta, Kazimierz 40

Torres, Manuel 133

Vadacca, Salvatore 1
Viswanathan, Ganesh 85

Widenius, Ulf Michael 9

Zäschke, Tilmann 10
Zimmerli, Christoph 55

	Title
	Preface
	Organization
	Table of Contents
	Keynotes
	Search Computing Challenges and Directions
	Introduction
	Query Optimization and Execution Engine
	Data and Control Flow
	Query Execution Plans
	Plan Composition
	Example

	Conclusion
	References

	Searching the Web of Objects
	Summary
	References

	Unifying Remote Data, Remote Procedures, and Web Services
	Keynote Panel “New and Old Data Stores”

	Regular Papers
	Revisiting Schema Evolution in Object Databases in Support of Agile Development
	Introduction
	Background
	Herschel System
	Agile Schema Evolution
	Forward and Backward Compatibility
	Object Structures
	Discussion
	Conclusion
	References

	The Case for Object Databases in Cloud Data Management
	Introduction
	Challenges of Cloud Data Management
	Parallel and Distributed Data Storage and Processing
	Integration of Novel Processing Paradigms
	Provision of Service-Based Interfaces

	State of the Art
	Opportunities for Object Databases
	Parallel and Distributed Data Storage and Processing
	Integration of Novel Processing Paradigms
	Provision of Service-Based Interfaces

	Conclusion
	References

	Query Optimization by Result Caching in the Stack-Based Approach
	Introduction
	Related Work
	Overview of the Stack-Based Approach (SBA)
	Query Optimizer Architecture
	Query Optimization Using Cached Results
	Query Normalization
	Query Decomposition and Rewriting
	Usage of Cached Results and Cache Adaptability

	Experimental Results
	Conclusions and Future Work
	References

	A Flexible Object Model and Algebra for Uniform Access to Object Databases
	Introduction
	Background
	Object Data Model
	Collection Algebra
	Implementation
	Discussion
	Conclusion
	References

	Data Model Driven Implementation of Web Cooperation Systems with Tricia
	Motivation and Introduction
	Overview of the Tricia Software Architecture and Development Process
	A Small Sample Application
	The Data Modeling Concepts of Tricia
	Entities, Properties and Roles
	Validators
	Change Listener
	Entities and Mixins

	Introspective Implementation
	Related Work
	Summary
	References

	iBLOB: Complex Object Management in Databases through Intelligent Binary Large Objects
	Introduction
	Related Work
	Problems with Handling Structured Application Objects in Database Systems and Our Solution
	Representing and Interpreting Structured Application Objects with Type Structure Specifications
	Intelligent Binary Large Objects (iBLOBs)
	iBLOB Structure Index: Preserving Structure in Unstructured Storage
	iBLOB Sequence Index: Tracking Data Order for Updates
	The iBLOB Interface

	Conclusions
	References

	Object-Oriented Constraints for XML Schema
	Introduction
	Object-Oriented Core of XML Schema
	Object-Oriented Queries
	Constraints in XML Schema
	Meta Level
	Object-Oriented Constraints
	Transaction Verification
	Conclusions
	References

	Solving ORM by MAGIC: MApping GeneratIon and Composition
	Introduction
	Background
	A Simple Generic Model Representation
	Instance Semantics
	Generic Schema Mappings

	Querying in MAGIC
	Generating the Query Mapping
	Aggregation Queries
	Compiling and Executing the Mapping

	Propagating Updates to the Database
	Evaluation
	Existing Approaches to the Impedance Mismatch
	Conclusion
	References

	Closing Schemas in Object-Relational Databases
	Introduction
	Main Features of Object-Relational Databases
	Schema Closure
	Enlargement Closure
	Reduction Closure

	Schema Closure in SQL:2008
	Basic Commands in SQL:2008 to Define Object-Relational Schemas
	The Positioning Problem in SQL:2008

	Related Work
	Conclusions
	References

	A Comparative Study of the Features and Performance of ORM Tools in a .NET Environment
	Introduction
	ORM Tools: Entity Framework vs. NHibernate
	Mapping Mechanism
	The Data Context
	Transactions and Concurrency
	Query Approaches

	Performance Testing
	Testing Environment
	Data Context Initialization
	Test Results Analysis

	Barriers to the Adoption of ORM
	Learning Time Period and Costs
	Legacy Database Adoption
	Distrust of ORM

	Conclusion
	References

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

