
Chapter 4
Frequency Distributions for Simulated Spatially
Autocorrelated Random Variables

4.1 Introduction

Often quantitative data analysis begins with an inspection of attribute variable his-
tograms. Ratio scale demographic variables, such as population density (which has
a natural, meaningful absolute 0 value), are expected to conform, at least approx-
imately, to a normal probability distribution. Frequently this conformity requires
that these variables be subjected to a symmetricizing, variance stabilizing transfor-
mation, such as the Box-Cox class of power functions or the Manley exponential
function. Counts (i.e., aggregated nominal measurement scale) data used to con-
struct ratios, such as the crude fertility rate (i.e., number of births per number of
women in the child bearing age cohort), are expected to conform to a Poisson prob-
ability distribution. And, counts data that constitute some subset of a total, such as
the percentage of people at least 100 years of age or the percentage of a population
that is the women in the child bearing age cohort, are expected to conform to a bino-
mial probability distribution. Until the advent of implemented generalized linear
models (GLMs), these latter two categories of data also were subjected to variable
transformations in order to secure normal probability distribution approximations.
Various scholars today argue that GLM technology has made the use of such previ-
ously popular variable transformations as the square root for Poisson counts, or the
arcsine for percentages, obsolete.

Most spatial statistical work to date addresses impacts of spatial autocorrelation
(SA) on parameter estimates, with the general conclusion that positive SA tends to
have little or no impact on first moment types of parameter estimates, while inflating
their respective standard errors. SA also tends to improve model prediction capa-
bilities, serving remarkably well as a surrogate for missing covariates displaying
particular geographic map patterns. This result implies that as SA in a random vari-
able (RV) increases, its tails should become heavier and its center should become
flatter. Dutilleul and Legendre (1992) appear to be about the only researchers to sys-
tematically investigate this topic, although they do so in a rather pseudo-geographic
context.

As is widely acknowledged, positive SA is a source of variance inflation for
normal RVs, and a source of overdispersion (i.e., excess variance) for Poisson
and binomial RVs. But how does this increased variation impact upon a variable’s
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Fig. 4.1 Surface partitionings used for simulation work. Left (a): a 44-by-54 regular hexagonal
tessellation forming a rectangular region. Right (b): the China county outline map

histogram? This is the question addressed in this chapter. Intuitively speaking, vari-
ance increases as increasingly extreme values (i.e., outliers) appear in a histogram.
SA-generated heavy tails in a normal distribution are consistent with this data fea-
ture. But a binomial RV cannot have extreme values, since its values are constrained
by given totals, so that percentages always are contained in the closed interval
[0, 100]. A Poisson RV can have extreme large counts; its extreme small counts,
however, can only become excessive zeroes. In other words, is some of the quite
bothersome noise in or potential dirtiness of data researchers routinely encounter
simply a manifestation of SA?

This chapter demonstrates positive SA impacts upon histograms with illustra-
tions based upon simulated data. These data are generated both with autoregressive
and with spatial filter (SF; see Sect. 2.5) models (Griffith, 2000a, 2002a, 2004a).
Autoregressive models more explicitly focus on SA arising from spatial interaction,
whereas SF models more explicitly focus on SA arising from missing variables
with specific map patterns—here these map patterns have been selected to represent
global, regional, and local spatial effects (Borcard and Legendre, 2002; Borcard
et al., 2004). The primary difference is between a variance and a mean response
specification that captures SA effects. Furthermore, SF models enable much greater
degrees of SA to be explored, primarily because autoregressive models tend to
encounter such problems as phase transitions when positive SA becomes exces-
sively strong (Guyon, 1995). The simulated data, which is for an ideal 44-by-54
[n = 2,376; maximum Moran Coefficient (MCmax) of 1.02239] regular hexagonal
tessellation (Fig. 4.1a), also is supplemented by simulations for the irregular China
county surface partitioning (Fig. 4.1b).

4.2 The Normal Probability Model

Haining et al. (1983) outline a technique, in keeping with normal theory in multivari-
ate statistics, to simulate spatially autocorrelated normal RVs with, for example, the
simultaneous autoregressive (SAR; Cliff and Ord, 1973) model. A recent approach
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sharing a number of the features of their procedure is furnished by Gneiting et al.
(2005). Goodchild (1980) offers an alternative procedure that involves permuting
independent and identically distributed (iid) values over a map until a prespecified
level of SA is attained. Goodchild’s method is employed here to remove any con-
spicuous spurious SA from the simulated data. However, it cannot be used to explore
SA impacts upon histograms because histograms are completely insensitive to the
locational arrangement of values, simulated or actual, on a map. Furthermore, the
resulting observed map would need to have its underlying iid counterpart uncovered
in order to explore SA effects.

In keeping with linear statistical models theory, eigenvector-based spatial filter-
ing offers a striking alternative mechanism for simulating spatially autocorrelated
normal RVs (see Boots and Tiefelsdorf, 2000, p. 327; Griffith, 2000, p. 146). This
technique still begins with a set of iid values.

4.2.1 Simulating Spatially Autocorrelated Normal RVs

The simulated iid normal RV, say n-by-1 vector ε, displays ideal properties (see
Fig. 4.2 and Table 4.1). All levels of SA have been embedded into this RV.

Consider a surface that is partitioned into n mutually exclusive and collectively
exhaustive areal units. Here these units are regular hexagons forming a 44-by-54
rectangular region (see Fig. 4.1a), or the counties into which China is divided (see
Fig. 4.1b). The n-by-n binary geographic connectivity matrix C contains the ele-
ments cij = 1 if areal units (e.g., hexagons, counties) i and j share a common
boundary, and cij = 0 otherwise; cii = 0 by construction (i.e., an areal unit cannot be
spatially autocorrelated with itself). This definition of matrix C highlights the rea-
son for selecting a hexagonal surface partitioning as the ideal surface, namely the

Fig. 4.2 Normal quantile plot for the simulated iid normal RV ε values
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Table 4.1 Descriptive statistics for the SAR model-based simulated data and the hexagonal
tessellation geographic configuration

Variable autocorrelation MC/MCmax GR ȳ sy |zskewness| a |zkurtosis| a

None (i.e., iid) –0.01 1.00 –0.000 1.000 0.20 0.30
Weak 0.11 0.89 –0.000 1.025 0.40 0.30
Low-moderate 0.40 0.59 –0.001 1.281 1.19 0
High-moderate 0.60 0.37 –0.006 1.711 1.59 1.29
Strong 0.90 0.07 –0.092 4.707 5.97 4.08

aThe mean of skewness and kurtosis is 0; the respective standard errors, which can be established
using the moment generating function eμt+(σ2/2)t2 , respectively are

√
6/n and

√
24/n

lack of areal units sharing only a common point (i.e., a non-zero length boundary)—
the difference between rook’s and queen’s adjacencies, using analogies with chess
moves, in the spatial weights matrix literature.

Next, following Haining et al. (1983), matrix C was converted to its row-
standardized version, matrix W, by dividing each cij value by its row sum(

i.e.,
n∑

j=1
cij

)

. Then spatially autocorrelated variables were constructed with the

simultaneous autoregressive (SAR)-based equation

Yj = (I − ρjW)−1ε, (4.1)

where I is the n-by-n identity matrix, and the SA parameter ρj was assigned the
values 0.30, 0.73, 0.88, and 0.987 (i.e., j = 1, 2, 3, 4) in order to secure the relative
MC and Geary Ratio (GR) values reported in Tables 4.1 and 4.3.

Finally, following especially Griffith (2000), the eigenvectors were extracted
from matrix

(I − iiT/n)C(I − iiT/n), (4.2)

where T denotes matrix transpose, and i denotes an n-by-1 vector of ones. This
matrix expression appears in the numerator of the MC. Each eigenvector represents
a distinct map pattern with a level of SA indexed by its corresponding eigenvalue.
These eigenvectors, and hence map patterns, are both orthogonal and uncorrelated.
Then, employing the same random iid vector ε used to generate the SAR-induced
spatially autocorrelated variates, spatially autocorrelated variables were constructed
with the SF-based equation

Yj = αj

(√
n − 1

) (aEG + bER + cEL)/
√

n − 1
√

a2 + b2 + c2
+ βε, (4.3)

where EG
/√

pk(n − 1) , ER
/√

pk(n − 1) and EL
/√

pk(n − 1) respectively denote
the z-score versions of pk (k > 0) summed global (G), regional (R), and local (L)
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eigenvectors, coefficients a, b, and c are weights that enable a particular level of SA
to be induced (Boots and Tiefelsdorf, 2000; Griffith, 2000), and here coefficients

β = 1 and αj =
√

MCj− MCε

MCeigenvectors−MCj
, for some target value of MC (i.e., MCj) for

variate Yj, where MCeigenvectors = a2MCG+b2MCR+c2MCL

a2+b2+c2 denotes the MC value for a
given eigenvector sum. The formula for coefficient αj assumes that the random error
variate and the eigenvectors are uncorrelated.1 Judiciously selected eigenvectors
allow global, regional, and local spatial effects (this interpretation is from Borcard
and Legendre, 2002; Borcard et al., 2004) to be simulated with a SF model. The
relative MC and GR values obtained with this simulation method are reported in
Tables 4.2 and 4.4.

4.2.2 Simulation Results for an Ideal Regular Hexagonal Surface
Partitioning

Summary descriptive statistics appear in Table 4.1 for the SAR-induced simulated
spatially autocorrelated data. These statistics confirm that the mean essentially is
unaffected, while the variance is inflated, by SA. Within the moderate SA range,
representing a preponderance of empirical studies to date, variance inflation is prob-
lematic, increasing as much as nearly 300%. The histograms appearing in Fig. 4.3
confirm the expectations that low levels of SA have little effect, whereas high levels
of SA thicken the tails and squash the center of a normal frequency distribution;
this trend is less noticeable with SAR models (see Fig. 4.4). But this latter outcome
primarily is because of variance inflation.

Somewhat less noticeable skewness and kurtosis features are better portrayed by
inspecting standardized normal curves. Z-score test statistics reported in Table 4.1
reveal that skewness and kurtosis increase as positive SA increases. Skewness
becomes more problematic because, similar to a product moment correlation coef-
ficient, the SAR SA parameter is restricted to be < 1, causing a truncation effect
in the distribution of values. A surprising outcome is best seen when MC = 0.90:
as SA becomes strong, not only do the tails become thicker, but values become
more concentrated about 0 (the mean), resulting in a relative decrease in the number
of intermediate values (the histogram columns are shrinking away from the nor-
mal curve outline toward the horizontal axis). This squashing toward the center of
the distribution increases kurtosis. Moreover, SA produces more extreme and more
near-zero values.

1The correlations between the simulated random normal variate and the sum of two eigenvectors
representing global map, two representing regional, and two representing local map patterns used
to construct Table 2 respectively are 0.031, 0.018 and –0.004—essentially 0.
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Fig. 4.3 Histograms for iid and two SAR model-induced extreme levels of SA

Because impacts beyond that of variance inflation are difficult to detect visu-
ally in the histograms themselves, normal quantile plots also can be inspected (see
Fig. 4.5). These plots help highlight the noted changes in the histograms.

Summary descriptive statistics appearing in Table 4.2 for the SF-simulated spa-
tially autocorrelated data (see Fig. 4.6 for maps of the global, regional, and local
map patterns employed; as SA decreases in strength, the map patterns become more
fragmented) distributed over the hexagonal surface partitioning corroborate find-
ings gleaned from Table 4.1. These statistics confirm that the mean essentially is
unaffected, while the variance is inflated, by SA. Again variance inflation is prob-
lematic within the moderate SA range, increasing anywhere from 1- to 10-fold,
depending upon the mixture of global, regional, and local map patterns. The quan-
tile plots appearing in Fig. 4.7 confirm the expectations that low levels of SA have
little effect, whereas high levels of SA thicken the tails and squash the center of a
normal frequency distribution—as before, SA produces more extreme and more
near-zero values—with this trend being less noticeable with moderate levels of
SA. The central tendency concentration is more conspicuous with the global SF-
based results than with the preceding SAR-based results. To some degree, local
sources of SA seem to dampen more extreme impacts of regional sources, whereas
local and regional sources of SA seem to dampen more extreme impacts of global
sources. However, a mixture of map patterns—the more common case in practice—
appears to produce a more marked impact on variance inflation for moderate levels
of SA, but without noticeably affecting kurtosis. Once again, z-score test statistics
reported in Table 4.2 reveal that as positive SA becomes marked, kurtosis—but not
skewness—increases, with global sources of SA causing the most significant change
in kurtosis.
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Fig. 4.4 Standard normal deviate histograms for iid and four SAR model-induced levels of SA.
Left (a): induced extreme levels. Right (b): induced moderate levels
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Fig. 4.5 Normal quantile plots for SAR model-induced levels of SA. Left (a): iid. Middle (b):
weak SA. Right (c): strong SA

Table 4.2 Descriptive statistics for the SF model-based simulated data and the hexagonal
tessellation geographic configuration

Variable autocorrelation MC GR ȳ sy |zskewness| |zkurtosis|
None (i.e., iid) –0.01 1.00 –0.000 1.000 0.20 0.30

Global map pattern-base results

Weak (using 0.35EG) 0.11 0.89 –0.000 1.060 0.40 0.50
Low-moderate (using 0.85EG) 0.42 0.59 –0.000 1.306 0.60 0.20
High-moderate (using 1.25EG) 0.62 0.40 –0.000 1.600 0.80 0.90
Strong (using 3.00EG) 0.92 0.10 –0.000 3.181 0.40 3.58

Global + regional map pattern-base results

Weak (using 0.50ER) 0.10 0.89 –0.000 1.126 1.19 0.70
Low-moderate [using 0.75(EG+ER)] 0.40 0.60 –0.000 1.452 1.99 1.39
High-moderate [using 1.33(EG+ER)] 0.60 0.41 –0.000 2.123 1.79 0.20
Strong [using 2.50(3EG+ER)] 0.91 0.11 –0.000 4.112 0.80 3.08

Global + regional + local map pattern-base results

Weak (using 0.85EL) 0.10 0.90 –0.000 1.297 0.20 0.10
Low-moderate [using 1.80(1.5ER+EL)] 0.40 0.60 –0.000 3.403 0.40 0.99
High-moderate [using 1.10(1.5EG+ER+EL)] 0.61 0.41 –0.000 2.444 1.59 0.50
Strong [using 1.00(5EG+2ER+EL)] 0.90 0.12 –0.000 5.624 0.80 3.18
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Fig. 4.6 SF map patterns. Left (a): global map pattern [the sum of eigenvectors # 1 and #2 (÷√
2)].

Middle (b): regional map pattern [the sum of eigenvectors #365 and # 366 (÷√
2)]. Right (c): local

regional map pattern [the sum of eigenvectors a #1532 and #1533 (÷√
2)]

4.2.3 Simulation Results for the China County Geographic
Configuration

The simulated data coupled with the China county geographic configuration (see
Fig. 4.1b) includes the 2,376 values used for the regular hexagonal tessellation
simulation together with three additional values that were carefully selected so
that the descriptive statistics appearing in Table 4.1 and the normal quantile plot
appearing in Fig. 4.2 essentially remain unchanged. Once again the SA parame-
ter ρj has taken on the values 0.30, 0.78, 0.93, and 0.986 (at this point a phase
transition is encountered), rendering the relative MC and GR values reported in
Table 4.3. The goal here is to explore impacts in terms of an irregular lattice surface
partitioning.

Summary descriptive statistics appear in Table 4.3 for the SAR-induced simu-
lated spatially autocorrelated data. These statistics confirm that the mean essentially
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Fig. 4.7 Normal quantile plots for global map pattern SF model-induced levels of SA. Left (a):
iid. Middle (b): weak SA. Right (c): strong SA

Table 4.3 Descriptive statistics for the SAR model-based simulated data and the China county
geographic configuration

Variable autocorrelation MC/MCmax GR ȳ sy |zskewness| |zkurtosis|
None (i.e., iid) –0.00 1.00 0.000 1.000 0.20 0.30
Weak 0.11 0.86 –0.001 1.031 0.20 0.20
Low-moderate 0.41 0.49 –0.008 1.426 0.00 0.50
High-moderate 0.61 0.24 –0.037 2.253 1.00 3.78
Strong 0.73 0.07 –0.222 4.760 10.75 61.33

is unaffected, while the variance is inflated, by SA. Variance inflation is problem-
atic within the moderate range, increasing as much as nearly 500%. The normal
quantile plots appearing in Fig. 4.8 again confirm the expectations that low levels of
SA have little effect, whereas high levels of SA thicken the tails and squash the cen-
ter of a normal frequency distribution. In this case, pronounced levels of SA interact
with the irregularness of the surface partitioning to result in the generation of rather
dramatic extreme values.

As mentioned previously, less noticeable skewness and kurtosis features are
better portrayed by inspecting standardized normal curves. Z-score test statistics
reported in Table 4.3 reveal that as positive SA increases, so do skewness and
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Fig. 4.8 Normal quantile plots for SAR model-induced levels of SA. Left (a): iid. Middle
(b): weak SA. Right (c): strong SA

kurtosis. In part, skewness becomes more problematic because of the irregularness
of the underlying county geographic configuration. As before, relatively strong lev-
els of SA are accompanied by not only thicker tails, but also values that are more
concentrated about 0 (the mean), resulting in a relative decrease in the number of
intermediate values (the histogram columns shrink away from the normal curve
outline toward the horizontal axis), with this squashing toward the center of the
distribution increasing kurtosis.

SF induced SA coupled with the China county geographic configuration, based
upon mixtures of global, regional (two levels, R-1 and R-2), and local map pat-
tern eigenvectors render the MC and GR values reported in Table 4.4 (see Fig. 4.9
for maps of the global, two regional, and local map patterns employed here). A
lack of impact upon the mean as well as variance inflation continue to characterize
these variables. But histogram distortions affiliated with the underlying histogram
for the global trend dominate the skewness and kurtosis modifications arising from
positive SA. The example normal quantileplots appear in Fig. 4.10 (histograms por-
tray a situation of more extreme values materializing under strong positive SA;
a denser concentration about the mean still occurs). Here histogram distortions
already become quite apparent at moderate levels of positive SA. Again these ten-
dencies are more apparent visually by inspecting the corresponding standard normal
curves.
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Table 4.4 Descriptive statistics for the global SF model-based simulated data and the China
county geographic configuration

Variable
autocorrelation MC GR ȳ sy |zskewness| |zkurtosis|

None (i.e., iid) –0.00 1.00 0.000 1.000 0.20 0.30

Global map pattern-base results

Weak (using 0.33EG) 0.11 0.91 0.000 1.052 1.19 0.20
Low-moderate (using

0.75EG)
0.40 0.67 0.000 1.254 8.56 6.17

High-moderate (using
1.10EG)

0.61 0.50 0.000 1.484 15.73 16.13

Strong (using 2.10EG) 0.90 0.26 0.000 2.296 28.47 38.33

Global + regional map pattern-base results

Weak (using 0.55ER–1) 0.10 0.90 0.000 1.136 0.20 0.30
Low-moderate [using

1.00(ER–1+ER–2)]
0.41 0.63 0.000 1.758 0.40 0.00

High-moderate [using
1.10(EG+ER–1+ER–2)]

0.60 0.48 0.000 2.141 4.18 4.48

Strong [using
2.20(EG+ER–1)]

0.90 0.23 0.000 6.229 9.96 17.03

Global + regional + local map pattern-base results

Weak [using
0.55(ER–1+EL)]

0.10 0.87 0.000 1.25 1.39 0.70

Low-moderate [using
1.80(ER–1+ER–2+EL)]

0.40 0.59 0.000 3.30 0.60 1.10

High-moderate [using
1.375(1.25EG+ER–1+
ER–2+EL)]

0.60 0.46 0.000 3.10 5.77 5.38

Strong [using
1.30(3EG+ER–1+ER–2+EL)]

0.90 0.25 0.000 4.60 23.10 30.27

4.2.4 Implications

The conceptual discussions allow expectations to be posited with regard to impacts
of SA on histograms of normal RVs. In absolute terms, variance inflation generated
by positive SA makes a histogram appear flatter. Positive SA also encourages more
extreme values (thickening of the tails) to materialize.

The principal implications for normal RVs are: (1) positive SA generates variance
inflation, which flattens a frequency distribution; (2) kurtosis tends to be dramati-
cally altered when positive SA becomes very strong; and, (3) tail thickening and
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Fig. 4.9 SF map patterns. Top left (a): local (MC = 0.11). Top right (b): regional (MC = 0.47).
Bottom left (c): regional (MC = 0.73). Bottom right (d): global (MC = 1.11)

Fig. 4.10 Normal quantile plots for global map pattern SF model-induced levels of SA. Left (a):
iid. Middle (b): weak SA. Right (c): strong SA
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variance inflation are problematic in the moderate positive SA range that often is
encountered in real world data.

4.3 The Poisson Probability Model

Little is known about the impacts of SA on Poisson RVs. Because this type of RV is
a member of the exponential family of statistical distributions, just like for a normal
RV, positive SA should induce variance inflation in Poisson RVs, too. This expec-
tation is further supported by the close similarity between a normal and a Poisson
frequency distribution when the latter’s mean, μ, becomes very large. Thus, one
should expect that positive SA will create extra-Poisson variation, a notion consis-
tent with discussions in the overdispersion literature. But what happens to the mean
of a Poisson RV?

One way that a Poisson RV differs from a normal RV is that its lower tail is
truncated at 0. A Poisson RV describes counts of rare events, which naturally yields
many zeroes as the event in question becomes increasingly rarer. Accordingly, the
best way for Poisson variance to increase, then, is for extremely large counts to
materialize, and/or perhaps for an over-concentration of zero or near-zero values to
occur (i.e., excessive zeroes) to balance very large values in order to preserve μ.
But what happens to the kurtosis of a Poisson RV? And, because it is a discrete RV
(whereas a normal RV is continuous over the entire real number line), what happens
to its modal value?

A bivariate regression tool for evaluating the Poissonness of a distribution, which
is analogous to a normal quantile plot, is the Poissonness plot (Hoaglin, 1980;
Hoaglin and Tukey, 1985). The ideal line for this plot, which can be estimated with
ordinary bivariate linear regression techniques, is given by

ln(nk) +
k∑

j=1

ln( j ) − ln

(
n∑

i=1

yi

)

= β0 + β1k , k = 0, 1, 2, . . . , (4.4)

where k denotes the discrete non-negative values taken on by some Poisson RV Y,
nk is the count for discrete value k in a dataset, and β0 = −μ and β1 = ln(μ),

where μ is the mean of Y; of note is that the term
k∑

j=1
ln( j ) disappears for k = 0

(which corresponds to a 0! = 1 term, whose logarithm is 0). The left-hand side of
this equation is referred to as the metaparameter. The Ord plot (Ord, 1967) furnishes
an additional assessment tool. For this second regression analysis, which involves
weighted least squares (WLS) estimation, the equation is given by

k nk

nk−1
= β0 + β1 k, (4.5)

where β0 = μ and β1 = 0 for a Poisson distribution, and the weights are
√

nk − 1.
As a benchmark, a judiciously selected ideal set (n = 2,376) of independent and
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Fig. 4.11 Graphical diagnostic tools for a Poisson RV. Left (a): a dot-plot histogram. Middle (b):
a normal quantile plot. Right (c): a Poissonness plot

identically distributed (iid) Poisson RVs with μ = 9 was simulated; the mean and
standard deviation for this set are ȳ = 8.99790 and sy = 3.00701. Graphics por-
traying it appear in Fig. 4.11. Normal curve theory states that as μ increases beyond
some sufficiently large value (e.g., 1,000), a Poisson probability distribution increas-
ingly resembles a normal probability distribution, a feature that already is becoming
visible in Fig. 4.11a. But with a mean of only 9, the normal quantile plot (Fig. 4.11b)
confirms that the frequency distribution for this simulated Poisson RV deviates sub-
stantially from mimicking the form of a bell-shaped curve, particularly in its tails. A
Poissonness plot (Fig. 4.11c) confirms that this is a Poisson RV. Its accompanying

regression equation yields β̂ 0 = −9.01112 and eβ̂1 = 9.00932. Meanwhile, the Ord
plot results in bivariate linear WLS estimates of β̂0 = 9.00614 and β̂1 = 0.00273.
All of these Poisson diagnostics confirm that this is a Poisson RV. In addition, when
distributed across the 44-by-54 regular hexagonal surface partitioning employed in
this study, this RV yields MC = 0.00143 (zMC = 0.15) and GR = 0.99698; at most
it contains only a trace amount of positive SA.

One spatial autoregression2 theoretical statistical difficulty is that the auto-
Poisson model can handle only negative SA; this drawback is problematic both
because most georeferenced Poisson-distributed data contain positive SA, and
because the normal and binomial approximations to an auto-Poisson model can

2Auto- models have values of the response variable, Y, on both sides of the equation. The right-
hand side, which relates to a probability model, contains a linear combination of values of Y for
other than the observation in question.
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account for this positive SA. But when avoiding specification error, neither a nor-
mal nor a binomial approximation to a Poisson RV is desirable. Fortunately, Kaiser
and Cressie (1997) and Griffith (2002) suggest two different ways that positive SA
can be accommodated—and hence simulated—in a Poisson RV. The first of these
methods truncates the auto-Poisson distribution and employs Markov chain Monte
Carlo (MCMC) techniques, whereas the second employs spatial filtering techniques.
A distinct difference between these two specifications is that the truncated auto-
Poisson version can capture at most weak-to-moderate levels of positive SA (e.g.,
also see Augustin et al., 2004), whereas the SF version can capture even very strong
levels (e.g., see Haining et al., 2009).

4.3.1 Simulating Spatially Autocorrelated Poisson RVs

Kaiser and Cressie (1997) circumvent the negative SA limitation of an auto-Poisson
specification by Winsorizing counts to a finite set of integers, which sets an upper
limit on the largest count that can occur. This adjustment yields an approximation
whose probabilities sum to slightly less than 1, rather than to exactly 1, and allows
the following auto-Poisson mean specification to be posited, using matrix notation:

ln(μ) =
⎡

⎣α − ln

⎛

⎝1

n

n∑

i=1

e
ρ

n∑

j=1
wij(yj−eα)

⎞

⎠
/

K

⎤

⎦ i + ρW(Y − eαi), (4.6)

where α is the regression intercept term (μ = eα is the mean of the Poisson RV
in question), ρ is the spatial autoregression parameter, and this second term cor-
rects for artificial inflation of the intercept term (i.e., an adjustment for trend)—K
takes on the value of 1 until the mean begins to explode (see Augustin et al.,
2004), at which point it increases to further compensate for this explosion. Equation
(4.6) has a functional form very similar to an SAR model; here because matrix
W mathematically is required to be symmetric, its (i, j) entry is defined as wij =

cij

/
√√√√
(

n∑

i=1
cij

)(
n∑

j=1
cij

)

.

Explosion of the mean occurs as the autoregressive parameter ρ becomes rel-
atively large. This same outcome can be observed with the SAR model just as ρ

approaches the boundary of its feasible parameter space (e.g., see Tables 4.1 and
4.3). Winsorizing the auto-Poisson probability distribution does not control for this
explosion of the mean value; rather, it seeks to avoid entering a transition phase
of instability, which tends to coincide with this explosion. However, because SA
encourages relatively large counts to materialize (with the resulting contrasts with
nearby values leading to local negative SA), the truncation point becomes critical.
If it is too low, impacts on the mean and variance become more a function of it
than of positive SA; if it is too high, phase transitions can be encountered. The two
lowest levels of positive SA simulated for Sect. 4.3.2 employed a truncation point
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of 3ymax, where ymax denotes the maximum count from each MCMC initial set of
iid randomly generated counts (i.e., because the maximum count by chance when
μ = 9 is approximately 29, this truncation point is 26 deviations above the mean); no
truncations had to be performed during chain generation. In contrast, for the highest
level of positive SA, this truncation point was set to 6ymax (i.e., 55 deviations above
the mean), resulting in roughly 20 million truncations being performed during chain
generation.

4.3.1.1 MCMC Map Simulation

A Markov chain is a stochastic process consisting of a finite number of states (i.e.,
for a Poisson RV, a vector of length n containing integer-valued counts correspond-
ing to n locations) and known transition probabilities of moving from state i to state
j at each computational iteration. Here, the matrix of transition probabilities, M, is
defined by a Winsorized auto-Poisson model probability mass function. An impor-
tant part of Markov chain theory is based on the Ergodicity Theorem, which requires
M to be irreducible (i.e., any state can be reached from any other state)—the geo-
graphic weights matrix used is irreducible—recurrent non-null (the average return
time to a given state is finite), and aperiodic (a state cannot be returned to repeatedly
after a specific finite number of transition steps)—each areal unit in a hexagonal
tessellation has at most 6 neighbors. If a Markov chain is ergodic, then a unique
steady state distribution exists, say M∗, which is independent of the initial state.
This steady state distribution is given by M∗ = limit

k→∞ Mk, where k represents tran-

sition steps. Monte Carlo simulation is a technique for obtaining realizations of the
limiting steady state distribution of a stochastic process through the use of a Poisson
random number generator.

MCMC provides a mechanism for taking dependent samples from probability
distributions in situations where the usual sampling is difficult, if not impossible.
A case in point is where the normalizing constant for a joint probability distribu-
tion is either too difficult to calculate or analytically intractable. This is exactly
the case for the auto-Poisson model. MCMC is used to simulate from some joint
probability distribution p known only up to a constant factor, C. That is, p = Cq,
where q is known but C is unknown and an intractable mathematical expression
(see Cressie, 1991, p. 428, for a mathematical statement of C for the auto-Poisson
model). MCMC sampling begins with conditional (marginal) probability distribu-
tions, and with parameter estimates for the auto-Poisson model that can be obtained
in practice using pseudo-likelihood estimation. This exercise involves estimating α

and ρ as though observations are independent. MCMC outputs a sample of values
for each parameter drawn from the joint probability distribution. Gibbs sampling
is a MCMC scheme for simulation from p where the Markov chain transition
matrix (i.e., M) is defined by the n conditional probability distributions of p. It is a
stochastic process that returns a different result with each execution, a method for
generating a joint empirical distribution of several variables from a set of modeled
conditional distributions for each variable when the structure of data is too complex
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to implement mathematical formulae or directly simulate. It is a recipe for produc-
ing a Markov chain that yields simulated data that have the correct unconditional
model properties, given the conditional distributions of those variables under study
(Robert and Casella, 1999). The principal idea behind it is to convert a multivariate
problem into a sequence of univariate problems, which then are iteratively solved to
produce a Markov chain. The following Gibbs sampling algorithm description (see
Haining et al., 2009; Augustin et al., 2004) for a Winsorized auto-Poisson model
begins with pre-specified values of the parameters α and ρ (e.g., pseudo-likelihood
parameter estimates in the ensuing China data analysis):

Step 1: initialize a map (τ = 0, where τ denotes the number of iterations)
by taking i = 1, . . ., n independent random samples {yi,τ=0} from a
Poisson probability distribution and determine ymax;

Step 2: obtain new values (initially τ = 1) yi,τ by sequentially moving from
one location (i) to another ( j) on the initial map and randomly sam-
pling from the Winsorized auto-Poisson probability distribution [i.e.,
Eq. (4.6) coupled with a truncation value that is a function of ymax]
using pre-specified parameter values—site selection for this process
of obtaining {yi,τ=1} from {yi,τ=0} can follow random permutations
of location sequences or simply a systematic sweep across a map;

Step 3: obtain new values (initially τ = 2) yi,τ+1 by sequentially mov-
ing from one location to another on the τth map, again randomly
sampling from the Winsorized auto-Poisson distribution, and imme-
diately updating the value at each location; and,

Step 4: repeat Step 3 for iterations τ = 3, 4, 5, . . ., until convergence of the
sufficient statistics of the parameters of interest occurs.

Once a Markov chain transition matrix is constructed, a sample of (correlated)
drawings from a target distribution can be obtained. This is done by simulating
the Markov chain a large number of times (say, 100,000) and recording its suf-
ficient statistics after removing a burn-in set (e.g., the first 25,000) of iterations.
Convergence needs to be monitored (e.g., time series plots and correlograms need to
be inspected), and hence the sufficient statistics need to be recorded. This recording
should be done after each iteration. A suitable burn-in period is needed in order to
generate M∗, and hence before collecting statistics, and because iteration outcomes
may well be correlated, the chain needs to be weeded (e.g., only every hundredth
iteration result is retained).

The sufficient statistics for the estimators of the simple auto-Poisson model

parameters here are 1 ×
n∑

i=1
yi and

n∑

i=1
yi

n∑

j=1
cij yj; this first statistic is required for a

Poisson model intercept term, whereas this second statistic is required for an auto-
Poisson model autoregressive parameter term. Once convergence has been attained
(e.g., the accompanying trend line for a time series plot is flat, and the accompanying
correlogram displays no significant serial autocorrelation), the last map in the chain
is the simulated Winsorized auto-Poisson realization.
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4.3.1.2 SF Map Simulation

Meanwhile, SF versions of the Poisson model involve specifying a geographically
heterogeneous mean and variance in order to capture positive SA. This imple-
mentation requires the usual set of covariates, X1,. . ..,Xp, to be replaced by the
eigenvectors of matrix expression (4.2) in order to embed SA in a response counts
variable. Compared with the auto- models, spatial dependence effects are shifted to
the mean, resulting in the spatial autoregressive parameter [i.e., ρ in Eq. (4.6)] being
forced to 0. Accordingly, a realization can be obtained by sampling from a Poisson
distribution with mean

LN( μ) =
⎡

⎣α − ln

⎛

⎝1

n

n∑

i=1

e

K∑

k=1
Ekβk

⎞

⎠

⎤

⎦ 1 +
K∑

k=1

Ekβk, (4.7)

where Ek denotes eigenvector k of matrix expression (4.2), βk is its relative weight
(somewhat similar to ρ in the autoregressive specification), and this second term
corrects for artificial inflation of the intercept term α (i.e., an adjustment for trend)
due to the presence of covariates. An additional adjustment for α in the third term is
unnecessary here because the mean of each Ekβk is zero, by construction.

4.3.2 Simulation Results for an Ideal Regular Hexagonal Surface
Partitioning

Figure 4.12, which characterizes all three chains, furnishes strong evidence that
the generated MCMC chains converged, rendering useful maps with positive SA
embedded in them. The time series plots exhibit random stability. For example, for
ρ = 0.06—the maximum positive SA that was successfully embedded into simu-
lated data here—the trend line has not converged within the burn-in set of iterations,
but does converge long before the end of the chain; here this situation is accept-
able since only the last map of the chain is used here. Meanwhile, the correlograms
reveal that virtually no serial autocorrelation is present in the three chains.

The Poissonness plots for the autoregressive model results appear in Fig. 4.13.
These plots begin to exhibit slight but detectable tail disturbances beginning with
low-weak positive SA. Moderate positive SA results in a complete deterioration of
linearity.

Summary descriptive statistics appear in Table 4.5 for the Winsorized auto-
Poisson simulated data containing positive SA. These statistics confirm that the
(controlled for trend) mean essentially is unaffected, while the variance is inflated
(i.e., overdispersion), quite noticeably by moderate positive SA. Corresponding his-
tograms confirm the expectations that low levels of positive SA have little effect,
whereas moderate levels tend to stretch the right-hand tail and shift the concentra-
tion of values toward 0. This same pattern is displayed by: the maximum values,
the mode, and kurtosis. Plot diagnostic statistics begin detecting deviation from
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Fig. 4.12 MCMC time series plot and correlogram diagnostic graphics based on the ideal hexag-
onal surface partitioning when ρ = 0.06 (bottom). Left (a): for the intercept term. Right (b): for the
autoregressive term

a Poisson RV at weak levels of positive SA; the Ord plot statistics emphatically
detect deviation at the low-moderate level, whereas both sets of these statistics
unambiguously detect deviation at the moderate level, of positive SA.

The Poissonness plots for the SF model-embedded positive SA results are illus-
trated in Fig. 4.14. Not only do these results confirm those found for the Winsorized
auto-Poisson model, but the SF model, because it is able to capture much stronger
levels of positive SA, extends the autoregressive findings. Furthermore, the cor-
responding summary descriptive statistics, which appear in Table 4.6, corroborate
those trends detected in Table 4.5. Overall, as positive SA increases in a Poisson
RV, variance increases, both near-zero and extreme values become more likely, kur-
tosis increases, and the Ord plot bivariate regression parameter estimates provide a
very good diagnostic of its presence, one that furnishes superior diagnostics to those
associated with the Poissonness plot.

4.3.3 Simulation Results for the China County Geographic
Configuration

As before, MCMC simulation of Winsorized auto-Poisson model-based maps
employing the China county irregular surface partitioning at most could embed
only moderate positive SA. A bifurcation point appears to be present because of
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Fig. 4.13 Poissonness plots for the Winsorized auto-Poisson-model induced levels of positive SA
based upon the ideal hexagonal surface partitioning. Left (a): iid with no SA. Middle left (b): weak
positive SA. Middle right (c): low-moderate positive SA. Right (d): moderate positive SA

the irregularness of the surface partitioning; MCMC simulation produces maps con-
taining either weak or moderate positive SA, without a transition between them.
Nevertheless, graphical diagnostics indicate that the resulting maps are properly
generated. In addition, summary descriptive statistics reported in Table 4.7 are con-
sistent with those appearing in Tables 4.5 and 4.6: overdispersion is induced, outliers
are generated, relatively small values become more likely, and kurtosis is affected

Table 4.5 Descriptive statistics for the Winsorized auto-Poisson model-based simulated data and
the hexagonal tessellation geographic configuration

Poissonness
plot

Ord
plotVariable

autocorre-
lation MC GR ȳ sy ymax mode |zkurtosis| a –β̂0 eβ̂1 β̂0 β̂1

None (i.e.,
iid)

0.00 1.00 9.00 3.007 19 8 0.04 9.01 9.01 9.01 0.00

Weak 0.11 0.89 8.99 3.050 21 8 0.19 9.29 9.27 9.88 –0.04
Low-
moderate

0.19 0.82 8.90 3.210 21 8 0.23 9.08 9.19 2.48 0.85

moderate 0.47 0.55 9.05 16.477 123 4 67.77 –3.32 1.05 –6.83 2.26

aThe mean of kurtosis is 1/μ = 1/9 = 0.111; the standard error, which can be established using
the moment generating function eμ(et - 1), is

√
151.23594 / n for μ = 9
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Fig. 4.14 Poissonness plots for SF-model induced positive SA using an ideal hexagonal surface
partitioning and a mixture of global, regional and local map patterns. Left (a): weak positive SA.
Middle left (b): low-moderate positive SA. Middle right (c): high-moderate positive SA. Right (d):
strong positive SA

by even moderate amounts of positive SA. Meanwhile, corresponding histograms
once more confirm the expectations that low levels of positive SA have little effect,
whereas moderate levels tend to stretch the right-hand tail and shift the concentration
of counts toward 0.

Poissonness plots for the SF model-embedded positive SA results appearing
in Fig. 4.15 reveal that the irregularness of the China county surface partition-
ing introduces additional skewness into count distributions; the upper tail becomes
increasingly separated from the middle and lower tail as positive SA increases.
In other words, positive SA and the irregularness of a geographic configuration
appear to interact. Meanwhile, Tables 4.7 and 4.8 exhibit the same histogram trends
detectable in Tables 4.5 and 4.6: low levels of positive SA have little effect, whereas
moderate and strong levels tend to stretch the right-hand tail and shift the concen-
tration of values toward 0 (i.e., the mode tends to decrease), while maximum values
and kurtosis increase with increasing positive SA. Plot diagnostic statistics begin
detecting deviation from a Poisson RV at weak levels of positive SA, again with the
Ord plot statistics being more sensitive to the presence of positive SA. A distinction
between Tables 4.7 and 4.8 is that SF-induced positive SA can cover the entire
range of SA, while a Winsorized auto-Poisson model encounters difficulties and
phase transition problems at moderate levels. SF simulations also do not encounter
a bifurcation point, and because they lack truncation, they allow much larger counts
to materialize.
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Table 4.7 Descriptive statistics for the Winsorized auto-Poisson model-based simulated data and
the China county geographic configuration

Variable
autocorrelation

MC GR ȳ sy ymax mode |zkurtosis| a
Poissonness
plot Ord plot

–β̂0 eβ̂1 β̂0 β̂1

None (i.e., iid) 0.02 0.98 8.99 3.032 20 8 0.64 9.05 9.04 8.97 0.02
Very weak 0.13 0.87 9.10 3.249 23 8, 9 0.40 9.05 9.27 6.76 0.23
Low-moderate 0.53 0.56 9.79 14.990 120 5 79.99 40.47 48.23 –

10.67
2.32

aThe mean of kurtosis is 1/μ = 1/9 = 0.111; the standard error, which can be established using
the moment generating function eμ(et - 1), is

√
151.23594 / n for μ = 9

Fig. 4.15 Poissonness plots for SF-model induced levels of positive SA using the China county
surface partitioning for a mixture of global, regional, and local map patterns. Left (a): weak positive
SA. Middle left (b): low-moderate positive SA. Middle right (c): high-moderate positive SA. Right
(d): strong positive SA

4.3.4 Implications

In conclusion, numerical results reported in this section suggest the following
implications about a georeferenced Poisson RV:

(1) by controlling for trend in data when estimating a mean, positive SA has no
impact upon the resulting estimated mean value;

(2) positive SA increases the chances of much larger counts materializing;
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(3) especially strong positive SA increases the chances of counts toward 0 materi-
alizing;

(4) as positive SA increases, a histogram moves toward the exponential distribution
in form;

(5) strong positive SA increases kurtosis;
(6) as positive SA increases, the linearity of a Poissoness plot deteriorates, espe-

cially in the tails of an empirical distribution;
(7) the Ord-plot appears very sensitive to the presence of positive SA, and appears

to out-perform the Poissonness plot as a diagnostic tool in this context;
(8) a particular mixture of eigenvectors in a SF plays an important role in terms of

the impacts of positive SA that materialize (see Table 4.6); and,
(9) the Winsorized auto-Poisson model is unable to capture more than weak-to-

moderate positive SA.

In other words, even modest amounts of positive SA do make a difference!
The general importance of these findings concerns data analysis problems, such

as excessive zeroes and outliers, that spatial scientists frequently encounter with
real world data. These implications should cause a spatial researcher to think more
earnestly about the georeferenced nature of his/her data when faced with such
problems. In addition, particularly results for the SF-model-based simulations pre-
sented here demonstrate that georeferenced Poisson RVs are capable of containing
markedly high levels of positive SA.

4.4 The Binomial Probability Model, N > 1

As with Poisson RVs, little is known about the impacts of SA on binomial RVs.3

Because these RVs also are a member of the exponential family of statistical distri-
butions, just like the normal and Poisson RVs, positive SA should induce variance
inflation in them, too. This expectation is further supported by the close similarity
between a normal and a binomial frequency distribution when the binomial proba-
bility of an event occurring is p = 0.5, and the number of events N becomes very
large. Thus, one should expect that positive SA will create extra-binomial varia-
tion, a notion consistent with discussions in the overdispersion literature.4 But what
happens to the mean of a binomial RV?

One way that a binomial RV differs from both a normal and a Poisson RV is that
its values are restricted to the range [0, N], where N is the maximum number of
items that can occur at a location. In other words, it is a count with both a lower and

3More work has been done on the Bernoulli, vis-à-vis the autologistic model, than on the general
binomial RV.
4This is not the case for binary 0–1 Bernoulli RVs, which by their very nature cannot exhibit extra
variation. The concept of extra variation in a logistic regression has to be teased out of data by, for
example, grouping values in order to have an N > 1.
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an upper bound. The best way for binomial variance to increase is for the relative
frequencies of 0 and N to increase when p = 0.5, or for the frequency of 0 to increase
when p > 0.5, or of N when p < 0.5. The restricted range should help preserve the
mean, μ.

The Ord plot (Ord, 1967) also can be used here for diagnostic purposes. In
this context the slope parameter, β1, becomes negative (< 0). Through the Poisson
approximation of a binomial distribution when p is very small (or by symmetry,
very large) and Np < 5, the preceding Poisson analysis reveals impacts of SA on
binomial histograms when p becomes very small; hence, only the case of p = 0.5 is
treated here. So that more direct comparisons can be made with the preceding find-
ings, N is set to 18 (i.e., μ = 18/2 = 9). The simulated iid values have the following
descriptive statistics:

Mean Standard deviation Skewness Kurtosis
theoretical 9 2.1232 0 –0.11111
observed: n = 2,376 8.9933 2.1220 −0.01 –0.10
observed: n = 2,379 8.9975 2.1196 0.00 –0.11

The MCs and GRs for the simulated data are as follows:

n = 2,376: MC = 0.00431, GR = 0.99488
n = 2,379: MC = –0.00168, GR = 1.00731

In other words, these simulated binomial RVs display the necessary characteris-
tics of iid.

Illustrative graphic portrayals of these values appear in Fig. 4.16. Of note is that
weighted least squares regression estimation yields b = –0.9995 for the theoretical
Ord plot, and b = –0.9981 and –1.0178 for the two simulation data Ord plots, con-
firming that the values are for binomial RVs. These slope parameter estimates can
be converted to their corresponding binomial probability estimates with the equa-

tion p = β̂1

β̂1 − 1
, respectively yielding 0.49988 for the theoretical binomial data,

and 0.50441 and 0.49953 for the simulated data; the true value is 0.5.
Bernoulli RVs (i.e., N = 1) are not be treated in this section, since their

histograms tend to be too simple to display conspicuous impacts of SA.

4.4.1 Simulating Spatially Autocorrelated Binomial RVs

The simulation of either multivariate binary or multivariate binomial georeferenced
data has not been given as much attention in the literature as has the simula-
tion of spatially autocorrelated normal or Poisson RVs. Dolan et al. (2000), for
example, simulate a spatially autocorrelated log-normal RV and then do a back-
transformation, an approach not endorsed here. Heagerty and Lele (1998), for
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Fig. 4.16 Graphical diagnostic tools for the iid binomial RVs; n = 2,379. Left (a): a dot-plot
histogram. Middle (b): a normal quantile plot. Right (c): an Ord plot with its trend line (solid line
with solid circles) together with and Ord plot of the theoretical counterpart (broken line with solid
squares)

instance, promote the use of a generalized linear mixed model coupled with a geo-
statistical perspective for binary georeferenced data. And, Augustin et al. (1998),
for example, promote the use of the autologistic model. As in the Sects. 4.2 and 4.3,
auto-binomial model RVs are simulated here with MCMC and SF techniques. The
autoregressive equation employed with MCMC is given by

P(Yi = y|αi, CiY)

= exp

⎛

⎝αi + ρ

n∑

j=1

cij(yj − ȳ)

⎞

⎠
/⎡

⎣1 + exp

⎛

⎝αi + ρ

n∑

j=1

cij(yj − ȳ)

⎞

⎠

⎤

⎦ ,

(4.8)

where y is contained in the interval [0, N], and including subtraction of the mean ȳ
in parallel with Kaiser and Cressie’s (1997) specification for the Winsorized auto-
Poisson model specification. Meanwhile, the SF equation employed is given by

P
(
Yi = y|Ei,K

) = exp(α + Ei,Kβ)/[1 + exp(α + Ei,Kβ)], (4.9)

where EK is the n-by-K matrix of SF eigenvectors. The procedural steps for
using these equations to simulate geographic distributions are exactly the same as
those outlined in the preceding section for Poisson RVs, except that the Poisson
probability model is replace with the binomial probability model.
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4.4.2 Simulation Results for an Ideal Regular Hexagonal Surface
Partitioning

MCMC map simulation can exploit the particular relationship between the inter-
cept and autoregressive parameter when p = 0.5, namely asymptotically α = −3ρ,
which was done here. As with Poisson RVs, phase transitions tend to be encoun-
tered beyond moderate SA. Consequently, only weak and low-moderate SA have
been simulated for analysis purposes.

Figure 4.17 furnishes strong evidence that the generated MCMC chains con-
verged, rendering useful maps with positive SA embedded in them. The time series
plots exhibit random stability. Meanwhile, the correlograms reveal that virtually
no serial autocorrelation is present in the three chains. As with the Poisson RVs
simulated in the preceding section, only the last map of a chain is used here.

Summary descriptive statistics appear in Table 4.9 for the auto-binomial sim-
ulated data containing positive SA. These statistics confirm that the (controlled
for trend) mean essentially is unaffected, while the variance is inflated (i.e.,
overdispersion). Dot plot versions of histograms appearing in Fig. 4.18 confirm
the expectations that low levels of positive SA have little effect, whereas low-
moderate levels already tend to redistribute counts to the two tails. In addition, the
Kolmogorov-Smirnov (K-S) statistic quantifies a movement away from the corre-
sponding theoretical binomial distribution as positive SA increases. Unfortunately,

Fig. 4.17 MCMC time series plot and correlogram diagnostic graphics based on the ideal hexag-
onal surface partitioning when ρ = 0.60 (bottom). Left (a): for the intercept term. Right (b): for the
autoregressive term
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Table 4.9 Descriptive statistics for the auto-binomial model-based MCMC simulated data and the
hexagonal tessellation geographic configuration

Variable autocorrelation MC GR ȳ sy ymin ymax Skewness Kurtosis K-Sa

None (i.e., iid) 0.00 0.99 8.99 2.122 2 16 –0.01 –0.10 0.0038
Weak 0.10 0.89 8.81 2.212 2 15 –0.02 –0.19 0.0400
Low-moderate 0.39 0.55 9.07 2.759 0 18 –0.24 –0.07 0.0700

aK-S denotes the Kolmogorov-Smirnov statistic, used here to index deviation from the theoreti-
cal binomial distribution for which N = 18 and p = 0.5

Fig. 4.18 Dot plot versions of histograms for the MCMC auto-binomial simulated data. Top (a):
iid. Middle (b): weak positive SA. Bottom (c): low moderate positive SA

because strong positive SA cannot be embedded with MCMC techniques, its
impacts cannot be assessed in terms of an auto-binomial model.

Summary statistics for the SF model-embedded positive SA results appear in
Table 4.10; the corresponding dot plot versions of histograms appear in Fig. 4.19
for a global map pattern. These results both confirm and extend those found for
the auto-binomial. Figure 4.19a includes the dot plot for extremely strong positive
SA to complete the trend being revealed by these illustrative results: as positive
SA approaches its maximum, the binomial histogram increasingly resembles that
for a sinusoidal RV—this is the reason for change in the kurtosis statistic. Overall,
as positive SA increases in a binomial RV, variance increases, and the center of a
histogram flattens, converging first on a uniform distribution in appearance, and then
on a near-dichotomous 0/N frequency distribution.

Dot plot versions of histograms for SFs constructed with global and regional
map patterns appear in Fig. 4.19b. As with the global map pattern results, the mean
remains unaffected, variance is inflated and kurtosis is impacted upon by positive
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Fig. 4.19 Dot plot versions of histograms for the SF binomial simulated data using the regular
hexagonal surface partitioning. Left (a): SF results from a global map pattern. Middle (b): SF
results from a global combined with a regional map pattern. Right (c): SF results from a global
combined with a regional and a local map pattern

SA. Again, these results both confirm and extend those found for the auto-binomial.
Furthermore, the tendency toward a sinusoidal RV shaped histogram already is
becoming apparent here for MC = 0.90. The same histogram patterns appear for
SFs constructed with global, regional and local map patterns. As with the Poisson
case, Fig. 4.19c (as well as its corresponding part of Table 4.10) indicates that the
mixture of map patterns constituting a SF, rather than only the level of positive SA,
plays an important role, too.

4.4.3 Simulation Results for the China County Geographic
Configuration

As with the hexagonal surface partitioning, MCMC simulation of auto-binomial
model-based maps employing the China county irregular surface partitioning at
most could embed only moderate positive SA. The graphical diagnostics appearing
in Fig. 4.20 indicate that the resulting maps are properly generated. In addition, sum-
mary descriptive statistics reported in Table 4.11 are consistent with those appearing
in Table 4.10: overdispersion is induced, and the distribution appears more uni-
form in shape. Meanwhile, dot plot versions of histograms appearing in Fig. 4.21
once more confirm the expectations that low levels of positive SA have little effect,
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Fig. 4.20 MCMC time series plot and correlogram diagnostic graphics based on the China county
surface partitioning when ρ = 1.00 (bottom). Left (a): for the intercept term. Right (b): for the
autoregressive term

Table 4.11 Descriptive statistics for the auto-binomial model-based MCMC simulated data and
the China irregular county geographic configuration

Variable autocorrelation MC GR ȳ sy ymin ymax Skewness Kurtosis K-Sa

None (i.e., iid) 0.00 0.99 8.99 2.122 2 16 –0.01 –0.10 0.0038
Weak 0.12 0.86 9.18 2.511 1 16 –0.11 –0.27 0.0697
Low-moderate 0.40 0.55 11.96 4.167 0 18 –0.73 –0.73 0.5007
moderate 0.51 0.25 13.79 5.128 0 18 –1.37 0.61 0.6963

aK-S denotes the Kolmogorov-Smirnov statistic, used here to index deviation from the theoreti-
cal binomial distribution for which N = 18 and p = 0.5

whereas moderate levels tend to squash the center of a distribution and thicken
its tails—in this case the irregularity of the surface partitioning distorts this tail
thickening by skewing it to one side of its distribution. Of note is that the irregular
surface partitioning introduces some trend in the mean, indicating that the relation-
ship between α and ρ most likely needs to be more carefully articulated for irregular
surface partitionings. Furthermore, the Kolmogorov-Smirnov statistics reported in
Table 4.11 are indexing this deviation from p = 0.5 as much, if not more, than the
change in the shape of the histogram. Skewness distortion with increasing positive
SA appears in both the MCMC auto-binomial and the SF model-based simulation
data.
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Fig. 4.21 Dot plot versions of histograms for the MCMC auto-binomial simulated data. Top (a):
iid. 2nd from top (b): weak positive SA. 2nd from bottom (c): low moderate positive SA. Bottom
(d): moderate positive SA

As is also seen with the Poisson RV analysis, one conspicuous difference between
Figs. 4.18 and 4.19, and Figs. 4.21 and 4.22, is the interaction effect between posi-
tive SA impacts and the irregularness of the geographic configuration. One outcome
of this interaction is that the flattening of a binomial histogram is followed by less
of a sinusoidal RV shape as positive SA approaches its maximum value.

4.4.4 Implications

In conclusion, numerical results reported in this section suggest the following
implications about a georeferenced binomial RV:

(1) by controlling for trend in data when estimating a mean (apparently this only
needs to be done with MCMC simulation, not with SF simulation), positive SA
has no impact upon the resulting estimated mean value;

(2) positive SA increases the chances of a histogram resembling that for a uniform
distribution, and in the extreme, for a sinusoidal distribution;

(3) especially strong positive SA increases the chances of most counts being only
0 or N;

(4) as positive SA increases, the Kolmogorov-Smirnov test statistic tends to
increase;
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Fig. 4.22 Dot plot versions of histograms for the SF binomial simulated data using the China
irregular surface partitioning. Left (a): SF results from a global map pattern. Middle (b): SF results
from a global combined with a regional map pattern. Right (c): SF results from a global combined
with a regional and a local map pattern

(5) a particular mixture of eigenvectors in a SF plays an important role in terms of
the impacts of positive SA that materialize (see Tables 4.10 and 4.12);

(6) an interaction effect appears to occur between SA and the irregular nature of a
surface partitioning; and,

(7) the conventional auto-binomial model is able to capture only weak-to-moderate
positive SA.

In other words, just as with a Poisson RV, even modest amounts of positive SA
do make a difference!

4.5 Discussion

This chapter indicates what a spatial scientist should expect from commonly
encountered levels of SA when inspecting histograms constructed with georefer-
enced data. Regardless of whether a RV is normal, binomial, or Poisson in nature, its
variance will tend to be inflated, with inflation increasing as positive SA increases.
This is the single most common impact, which results in histograms being flatter
than they would otherwise be if the data observations were iid. It leads to hetero-
geneity for normal RVs, excessive 0 s and extreme values (i.e., overdispersion) for



72 4 Frequency Distributions for Simulated Spatially Autocorrelated Random Variables

Ta
bl

e
4.

12
D

es
cr

ip
tiv

e
st

at
is

tic
s

fo
r

th
e

au
to

-b
in

om
ia

lm
od

el
-b

as
ed

SF
si

m
ul

at
ed

da
ta

an
d

th
e

C
hi

na
ir

re
gu

la
r

co
un

ty
ge

og
ra

ph
ic

co
nfi

gu
ra

tio
n

V
ar

ia
bl

e
au

to
co

rr
el

at
io

n
M

C
G

R
ȳ
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Poisson RVs, and overdispersion for binomial RVs. Positive SA corrupts quantile
plots when assessing normality, Poissonness plots, and other goodness-of-fit test,
even when only its most commonly encountered moderate levels are present.

SF model specifications furnish an efficient and effective way of capturing SA
effects, and render simulation results that are consistent with those obtained with the
more conventional auto- model specifications. Because these models are constructed
with stepwise regression techniques when an empirical analysis is being undertaken,
they signal that Gaussian approximations actually are not obsolete. The role of these
approximations is to supply a first glimpse of SA, as well as a first screening of a
large number of candidate eigenvectors when constructing a SF.

Finally, the lessons to be learned from this chapter may be summarized as fol-
lows: caution SA at work! Cursory initial graphical inspections of empirical data
can be misleading when SA is present. Spatial scientists need to heed this warning.
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