
Chapter 2
Individual Versus Ecological Analyses

2.1 Introduction

Analyses of disease maps frequently require the use of an ecological approach,
partially because aggregates of cases allow such measures as rates to be computed.
In addition, group averages of individual measures often are more readily available,
tend to reduce impacts of measurement error, and help to preserve the confiden-
tiality of individuals in each aggregation group. Given this context, the resulting
problematic issue concerns drawing sound inferences about individuals from such
grouped data. The general drawback to this type of inference is known as the ecolog-
ical fallacy: most often a difference exists between an ecological regression and the
regression based upon individuals underlying it (i.e., aggregate-level relationships
do not necessarily hold at the individual level). Well-recognized impacts corrupt-
ing inference are aggregation bias (i.e., distortions of the information content of
data attributable to loss of variability through observation aggregation), confound-
ing variables (i.e., hidden or unknown variables lurking about in a study that cause
distortions through their correlations with the response variable), and nonlinearity.
One interesting exchange about this topic appears in the Annals of the Association
of American Geographers (2000).

In this chapter, results of experiments with Syracuse, NY pediatric lead poison-
ing data demonstrate selected nonstandard spatial statistical analyses concerning
individual versus ecological inference.

2.2 Spatial Autocorrelation Effects

Frequently georeferenced data comprise geographic aggregates, with geographic
variability constituting part of the focus of a study. Accordingly, analyses of disease
maps are further complicated by the presence of spatial autocorrelation (SA) effects
associated with georeferenced data, especially because less is known about impacts
of these effects on binomial or Poisson random variables. Generally speaking, vari-
ance inflation is the principal impact of positive SA in linear statistical analyses.
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6 2 Individual Versus Ecological Analyses

This holds for binomial and Poisson variables, too, where it operates as a source of
overdispersion.

Consider a P-by-Q regular square tessellation network of locations. Simple bino-
mial models were estimated for P = 91 and Q=92 (i.e., n = 8,372), and the Syracuse
pediatric blood lead level (BLL) data parameter estimates based upon the three cur-
rent threshold values of concern: 5 micrograms/deciliter (μg/dl; the detection level),
10 μg/dl (the concern threshold), and 20 μg/dl (the intervention threshold); these
data contain 8,343 child-parcel matched locations, with global parameter estimates
reported in Table 2.1. Impacts of SA in this numerical example are illustrated in
Fig. 2.1. As SA latent in the data increases from none, to a moderate level, and
then to a marked level, variance indeed increases, with the principal impact being a
noticeable decrease in kurtosis (i.e., peakedness; Fig. 2.1a). In other words, the dis-
tribution is being flattened, with more extreme counts becoming increasingly likely,
and more central counts becoming increasingly less likely.

The moderate levels of positive SA (msa) employed to construct Fig. 2.1 are
those more commonly encountered in the real world. These levels are accompanied
by a noticeable, but not a dramatic, distortion of the affiliated histogram. The strong
level of positive SA (ssa) employed to construct Fig. 2.1 is rarely encountered in
the real world. Nevertheless, it distorts histograms in a way that makes them more
closely resemble a uniform distribution, even when the sample size implies a bell-
shaped curve should be expected. Figure 2.2 portrays the impact of near-perfect
positive SA. It demonstrates that further increasing the level of positive SA results
in additional squashing of the more central frequencies, essentially forcing all counts
to be either of the two extremes of the range of counts. In other words, the frequency
distribution now is sinusoidal in form.

2.3 Aggregation Impacts

For independent and identically distributed (iid) observations, the number of ways
the total number of individuals (P) can be allocated to n aggregate groups is given by
the following Stirling number of the second kind (Abramowitz and Stegun, 1964):

1

n!

n∑

k=0

( − 1)n−k n!

k!(n − k)!
kP (2.1)

One reason to note SA impacts, beyond variance inflation, is that the clustering of
similar values on a map means the actual number of geographic areal unit aggregates
is constrained to be less than the quantity rendered by expression (1). Accordingly,
positive SA reduces within areal unit variation, and hence accentuates between areal
unit variation. For example, if all of an even number of observations were linked
pairs (i.e., correlated), with the net effect being that P/2 is the total number of items
for allocation, then for two groups and 10 observations, this constraint reduces the
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Fig. 2.1 Binomial distribution histograms for n = 8,372. Left (a): impacts of spatial autocorrela-
tion. Right (b): comparable binomial histograms based upon the logistic regression intercept term
variance

Fig. 2.2 Binomial distribution histograms for n = 8,372: impacts of near-perfect positive spatial
autocorrelation

number of possible groups from 511 to 15. In other words, SA may well help data
analysts contend with the ecological fallacy to some degree.

2.3.1 The Syracuse Data

BLL data were collected by the Onondaga County Health Department for chil-
dren, ages 0–6, residing in the City of Syracuse during 1992–1996, and then made
digitally available for scientific analysis, with confidentiality being maintained by
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masking names with unique identification numbers. These data have undergone con-
siderable editing and cleaning, and have been geocoded using the 2002 cadastral
property tax map, which contains 35,500 parcels (Griffith et al., 2008). This data set
comprises a total of 16,383 BLL measurements, of which 37 fail to have addresses
that matched any of the city parcel addresses (i.e., they are located outside of the
city boundaries), and 73 final address matchings fail to have consistent block and
block group allocations (which introduces a small amount of noise into some of the
aggregate data analyses). Repeated measures for children are summarized by retain-
ing only the maximum BLL for each child. These observations are geographically
distributed across 8,208 parcel locations in the City (see Fig. 2.3), with three parcels
failing to link to census tracts (of which there are 57) or census block groups (of
which there are 147), and an additional two parcels failing to link to census blocks
(of which there are 2,025).

The handful of cases available for a non-geographic analysis that had to be set
aside for a geographical analysis introduce some, but not much, noise into the analy-
sis. In all cases for BLL > 5 μg/dl, regardless of geographic aggregation, the simple
constant mean logistic regression model yields an intercept estimate of 0.6965, with
a standard error of 0.0234 (see Table 2.2). In other words, the geographic aggrega-
tion does not distort this parameter estimate or the inference that accompanies it.
Rather, ecological distortion enters here in terms of the deviance statistic. Although
somewhat meaningless for a binary variable, the individual data analysis is accom-
panied by a deviance statistic of 1.27. This value increases to 2.06 for census blocks,
to 6.02 for census block groups, and to 19.81 for census tracts. Results for BLL >

Fig. 2.3 The geographic
distribution of individual
BLLs across the City of
Syracuse. Black: 0–5 μ g/dl;
dark gray: 5–10 μg/dl; μ

medium gray: 10–20 μ g/dl;
and, light gray: 20–47 μ g/dl
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Table 2.2 Logistic regression estimation results for a constant mean model specification, for
threshold BLL values and the different levels of geographic aggregation

Statistic Individual Block Block group Tract

Estimate SE Estimate SE Estimate SE Estimate SE

BLL >5 μg/dl

α̂ 0.6965 0.0234 0.6965 0.0234 0.6965 0.0234 0.6965 0.0234
Deviance 1.27 2.06 6.02 19.81

BLL >5 μg/dl

α̂ –1.3643 0.0274 –1.3643 0.0274 –1.3643 0.0274 –1.3643 0.0274
Deviance 1.01 1.49 4.17 12.99

BLL >20 μg/dl

α̂ –4.2532 0.0939 –4.2532 0.0939 –4.2532 0.0939 –4.2532 0.0939
Deviance 0.15 0.34 0.76 1.74

10 and >20 μg/dl (see Table 2.2) are consistent with these findings. Not only may
the deviance statistic be detecting a mixture of heterogeneous Bernoulli random
variables, but it also may be detecting the presence of SA.

In summary, for the simple intercept-only logistic regression model, ecologi-
cal distortions appear to manifest themselves most noticeably through the deviance
statistic, with aggregate data cross-tabulated by geographic areal units rendering the
same inference as individual data.

2.3.2 Previous Findings for Syracuse

Griffith et al. (1998) report findings based upon a spatial analysis of part of the
database employed here. Their study found that the general pattern of elevated BLLs
across the City persists through successive levels of aggregation, from the individ-
ual child through 1990 census tract groupings. Conspicuous SA is identifiable at
each level of geographic aggregation. On both substantive and empirical grounds,
housing value is the single covariate that is strongly associated with elevated BLLs.
Pediatric lead poisoning tends to be a completely preventable inter-city/poverty
disease.

Griffith et al. (1998) also report sets of socio-economic/demographic census
variables that strongly covary with pediatric lead poisoning at aggregate levels. In
additional to housing value (e.g., median house value, percentage renter occupied),
these include:

census tracts: population density, percentage in cohort < 18 years of age
census block group: population density, percentage black, number of cases
census block: percentages black and Hispanic, number of cases, percentage in

cohort < 18 years of age



2.4 Spatial Autocorrelation in the Syracuse Data 11

Covariate surrogates for SA also appear in the models. In addition, the census
block resolution is sufficiently fine that many geographic areas are non-residential,
resulting in many areal units having zeroes; this is one problematic feature associ-
ated with using fine resolution census geographies or individual data for analysis
purposes.

2.4 Spatial Autocorrelation in the Syracuse Data

Two sources of SA in the Syracuse BLL data are of particular interest. The first is
latent in the BLL values themselves: children who are neighbors tend to have similar
BLLs. The second is latent in the housing value covariate: neighboring houses tend
to have a similar market value.

2.4.1 Spatial Autocorrelation in the Syracuse Data: LN(BLL + 1)
Values

A Thiessen polygon partitioning of the Syracuse city surface based upon locations
with children for which BLL values have been measured appears in Fig. 2.4. Below-
detection-level BLL anomalies are conspicuous, whereas high BLL anomalies are
not, according to a simple normal quantile plot of individual LN(BLL + 1) values,
where one is the maximum likelihood translation parameter estimate for aligning
the log-BLL values with a bell-shaped curve (see Fig. 2.5).

Fig. 2.4 Thiessen polygon
surface partitioning of the
City of Syracuse, for the
locations of children for
which BLL values were
obtained during 1992–1996
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Fig. 2.5 Normal quantile plot for individual log-BLL values

SA for individual LN(BLL + 1) value locations (a total of 8,208 parcels), por-
trayed with a semivariogram plot (see Fig. 2.6) for distance not exceeding roughly
a third of the span of the geographic landscape, is weak-to-moderate and pos-
itive. Based upon roughly 37.3 million distance pairs, where distance hasbeen

Fig. 2.6 Semivariogram plot for LN(BLL + 1) values, City of Syracuse, NY. Black asterisks
denote observed values; gray open circles denote spherical model predicted values
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standardized to the unit square, the following spherical and circular semivariogram
models1 (where γ̂ij denotes semivariance) best describe these data:

penta−spherical model: γ̂ij = 0.14+0.03

[
15

8

dij

0.32
− 5

4

(
dij

0.32

)3

+ 3

8

(
dij

0.32

)5
]

,

dij ≤ 0.32;

γ̂ij = 0.14 + 0.03 = 0.17 , dij > 0.32

spherical model: γ̂ij = 0.14 + 0.03

[
3

2

dij

0.26
− 1

2

(
dij

0.26

)3
]

, dij ≤ 0.26

γ̂ij = 0.14 + 0.03 = 0.17 , dij > 0.26

These models respectively yield 0.074 and 0.075 relative error sums of squares.
The scatterplot reveals very marked in situ variability of log-BLL values, and a
well-defined geographic pattern to their covariation.

2.4.2 Spatial Autocorrelation in the Syracuse Data: Appraised
House Value

The correlation between individual log-BLLs and 2002 appraised house values is
–0.29 (see Fig. 2.7).

In general, house values tend to display strong positive SA. Indices for the City of
Syracuse, calculated with median values for geographic aggregates, are as follows
(also see Fig. 2.7):

These statistics are based upon 2002 assessed values, per $10,000, for houses
in which children were tested for pediatric lead poisoning (a total of 7,057 houses).

aggregation unit Moran Coefficient (MC) Geary Ratio (GR) n
census tract 0.40902 0.62080 56 (#32 missing)
census block group 0.55331 0.45103 145 (#32.001 and

#32.002 missing)
census block 0.66111 0.32304 1,485 (540 blocks

missing)

1 The semivariance is one half of the squared difference between the values of an attribute at
two locations. A scatterplot is constructed between these values and the distance separating the
two locations. A semivariogram model (e.g., penta-spherical, spherical, circular) describes the
nonlinear trend line for this scatterplot.
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Fig. 2.7 Scatterplot and
trend line portraying the
relationship between BLL
and 2002 appraised house
value

Areal units without residential properties were set aside during the SA index compu-
tations. These results simply indicate that latent SA in the geographic aggregations
is moderate and positive, increasing with increasingly finer resolution.

SA for individual residential properties, portrayed with a semivariogram plot (see
Fig. 2.8) for distance not exceeding a third of the span of the geographic landscape,
is strong and positive. Based upon roughly 16.9 million distance pairs, where dis-
tance has been standardized to the unit square, the following spherical and circular
semivariogram models (again where γ̂ij denotes semivariance) best describe these
data:

circular model: γ̂ij = 1.58 + 4.82
2

π

⎡

⎣ dij

0.18

√

1 −
(

dij

0.18

)2

+ SIN−1
(

dij

0.18

)
⎤

⎦ ,

dij ≤ 0.18 ;

Fig. 2.8 Semivariogram plot for 2002 appraised house values, City of Syracuse, NY. Black
asterisks denote observed values; gray circles denote circular model predicted values
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γ̂ij = 1.58 + 4.82 = 6.40 , dij > 0.18

spherical model: γ̂ij = 1.47 + 4.96

[
3

2

dij

0.21
− 1

2

(
dij

0.21

)3
]

, dij ≤ 0.21

γ̂ij = 1.47 + 4.96 = 6.43, dij > 0.21

These models respectively yield 0.005 and 0.008 relative error sums of squares.
The scatterplot reveals sizeable in situ variability of house values, a pronounced
geographic pattern to their covariation, and a not surprising city-wide trend
possibility.

Including house value in the logistic regression specification accounts for some
of the SA in BLLs. Because appraised house values are not reported for apartment
complexes, the values for these locations were set to 0, and then an indicator vari-
able was created to differentiate these rental locations from the other residential
locations (the numeral 1 denotes non-rental, and –1 denotes rental). Logistic regres-
sion estimation results for this situation appear in Table 2.3. As expected, house
value is negatively related, whereas rental property is positively related, to elevated
BLLs. Inclusion of the housing variables reduces overdispersion across the indi-
vidual and ecological analyses (see Sect. 3.1). In addition, ecological bias now is
detectable in all of the parameter estimates as well as their corresponding standard

Table 2.3 Logistic regression estimation results when house value is used as a covariate, for
threshold BLL values and the different levels of geographic aggregation

Statistic
Individual Block Block group Tract

Estimate SE Estimate SE Estimate SE Estimate SE

BLL > 5 μg/dl

α̂ 1.4552 0.0484 1.2539 0.0838 0.9241 0.1710 1.2624 0.2613
β̂house value –0.2442 0.0118 –0.2669 0.0120 –0.3192 0.0135 –0.3540 0.0141
β̂Ihouse value

0.5686 0.0484 0.7491 0.0838 1.3071 0.1710 1.1288 0.2613
Deviance 1.21 1.71 4.60 8.89

BLL >10 μg/dl

α̂ –0.8165 0.0539 –1.2567 0.1396 –1.1597 0.3038 –0.8042 0.3821
β̂house value –0.2731 0.0142 –0.2787 0.0162 –0.3404 0.0186 –0.3773 0.0198
β̂Ihouse value

0.8462 0.0539 1.1290 0.1396 1.2680 0.3038 1.0676 0.3821
Deviance 0.96 1.26 3.50 6.21

BLL > 20 μg/dl

α̂ –4.1665 0.2006 –3.5970 0.2306 –3.4234 0.2554 –3.2939 0.2693
β̂house value –0.1384 0.0429 –0.1429 0.0505 –0.1897 0.0582 –0.2210 0.0622
β̂Ihouse value 0.6742 0.2006 ∗∗∗ ∗∗∗ ∗∗∗

Deviance 0.14 0.38 1.09 1.67
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errors (Green, 1993; Wrigley, 1995; Holt et al., 1996). Although inferences tend not
to be dramatically altered for BLL > 5 or 10 μg/dl, nevertheless they are altered.
The case of BLL > 20 μg/dl illustrates how ecological analysis findings can deviate
radically from individual-based findings. Furthermore, the rareness of BLLs > 20
creates numerical problems with estimation of the house value binary 0–1 indicator
variable parameter, which had to be set aside for its aggregate analyses. This com-
plication resulted in a loss of observations: 121 blocks, five block groups, and one
census tract.

2.5 Spatial Autocorrelation in the Syracuse Data: Other Sources

Other sources of SA (e.g., geographic concentration of poverty, siblings)—which
may well represent the presence of confounders—beyond house value can be cap-
tured in part by employing a spatial filter (SF) model specification. Spatial filtering
involves regressing a disease map variable on a set of synthetic variates represent-
ing distinct map patterns that accounts for SA. Griffith (2003) develops one form
of spatial filtering whose synthetic variates are the set of n eigenvectors extracted
from matrix (I – iiT/n)C(I – iiT/n), the matrix appearing in the numerator of the MC
index of SA, where C is a binary 0–1 n-by-n geographic weights matrix (i.e., cij

= 1 if areal units i and j are neighbors, and 0 otherwise), and i is an n-by-1 vec-
tor of ones.2 This procedure is similar to executing a principal components analysis
in which the covariance matrix is given by (I – iiT/n)C(I – iiT/n). But rather than
using the resulting eigenvectors to construct linear combinations of attribute vari-
ables, the eigenvectors themselves (instead of principal components scores) are the
desired synthetic variates, each containing n elements, one for each areal unit. The
extracted eigenvector 1√

n
i relates to the mean response, and the remaining (n–i)

extracted eigenvectors relate to distinct map patterns characterizing latent SA—
whose MCs are given by standardizing their corresponding eigenvalues (Tieflesdorf
and Boots, 1995)—that can materialize with matrix C. Furthermore, for a given
geographic landscape surface partitioning, the eigenvectors represent a fixed effect
in that matrix (I – iiT/n)C(I – iiT/n) does not, and hence they do not, change from
one attribute variable to another.

Because this eigenfunction decomposition yields n eigenvectors, a spatial sci-
entist needs to restrict attention to only those eigenvectors describing substantive
positive/negative (e.g., MC > 0.25) SA, reducing the candidate set to a more man-
ageable number for describing a given disease map. Supervised stepwise selection
from this set of eigenvectors is a useful and effective approach to identifying the
subset of eigenvectors that best describes latent SA in a particular disease map. This
procedure begins with only the intercept included in a regression specification. Next,
at each step an eigenvector is considered for addition to the model specification. For

2This vector almost always is denoted by 1 in the spatial statistics literature.
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the stepwise generalized linear binomial model regression, the eigenvector that pro-
duces the greatest reduction in the log-likelihood function chi-square test statistic is
selected, but only if it produces at least a prespecified minimum reduction; this is the
criterion used to establish statistical importance of an eigenvector. At each step all
eigenvectors previously entered into a SF equation are reassessed, with the possibil-
ity of removal of vectors added at an earlier step. The forward/backward stepwise
procedure terminates automatically when some prespecified threshold chi-square
statistic values are encountered for entry and removal of all candidate eigenvectors.

SFs were constructed for the three geographic aggregations from the 15 candidate
eigenvectors for census tract, the 37 for block group, and the 483 for block surface
partitionings. Spatial filtering results appear in Table 2.4. Although SA is being
accounted for in the parameter estimations for these models, ecological bias still
persists. The constructed SFs represent moderate-to-strong levels of positive SA:

Aggregation
unit

BLL >5 BLL >10 BLL >20
MC GR MC GR MC GR

census tract 0.52360 0.46773 0.57387 0.42043 0.82900 0.19180
census block group 0.78798 0.21419 0.80439 0.24604 0.89953 0.22550
census block 0.96443 0.28303 0.90625 0.29532 0.97343 0.31957

Individual results are not available here, since eigenvectors were not computed
for the set of individual locations (see Fig. 2.4 for a possible surface partitioning
supporting this purpose). Of note is that, as before, the rareness of BLLs > 20 con-
tinues to create numerical problems with estimation of the house value binary 0–1
indicator variable parameter, which has been removed from the model specification.

2.6 Bayesian Analysis Using Gibbs Sampling (BUGS) and Model
Prediction Experiments

The parallel analyses of individual and ecological data in preceding sections
reveal the presence of positive spatial dependence beyond house value, most likely
attributable to other unmeasured cofounders with spatial structure, in elevated pedi-
atric BLLs. These parallel analyses also document the presence of ecological biases.
A previous ecological investigation of these data uncovers population density, an
indicator of urban poverty that could not be detected with the individual-level data,
as a covariate of elevated BLLs. This finding illustrates Darby et al.’s contention that
“the ecological result [is not always the one] that is wrong” (2001, p. 202). But even
findings reported here from ecological analyses conducted by changing geographic
aggregation resolution do not agree. This ecological variation arises from a suppres-
sion of within-areal unit variability, a finding established in Sect. 2.3.1: “within-area
information . . . is vital for analysis and interpretation” (Wakefield and Salway, 2001,
p. 136). Wakefield (2003) notes that this is particularly true for regression anal-
yses, in which SA components potentially account for unmeasured confounders.
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Accordingly, the question of interest now asks if this within-areal unit variation can
be recovered. Richardson and Montfort (2000) argue that one method of recovery
is to posit a parametric form for this variation in order to adjust the corresponding
individual-level model, noting that even a parametric form that describes the varia-
tion poorly is better than none at all. Wakefield and Salway (2001) allude to the use
of random effects, which is explored in this section.

The experiments conducted to explore the utility of random effects estimates
as surrogates for within-areal unit variation include those ecological covariates
found in the previous study (Griffith et al., 1998). Besag et al. (1991) suggest that
these random effects could be spatially structured using a conditional autoregressive
(CAR) covariance specification. Wakefield and Salway (2001) suggest that the sim-
plest approach is to employ non-spatial random effects. As a compromise between
these two specifications, a SF is employed here to specify spatially structured ran-
dom effects; the SF becomes the mean of the effects. As is done in the tradition
of principal components regression, this SF is computed exogenously, and then
its coefficient—which subsequently is distributed across the linear combination of
eigenvectors—is estimated; this procedure is analogous to introducing starting val-
ues in nonlinear regression estimation (e.g., logistic regression). Next, this analysis
is repeated with a proper CAR specification for spatially structured random effects.

Various different completed analyses facilitate exploring relationships between
individual- and ecological-based model predictions. One hypothesis evaluated here
may be stated as follows:

The variance of a spatially structured ecological random effects term is directly proportional
to the within areal unit variability suppressed by undertaking an ecological analysis.

Preparatory work for assessing this hypothesis involved a Bayesian analysis of the
pediatric BLL data. This analysis was executed with the WinBUGS software (the
Windows version of BUGS; Thomas et al., 2004), employing a SF model speci-
fication, normal priors for the parameter estimates and the random effects term, a
gamma prior for the inverse of the error variance, a 25,000-iteration burn-in period,
and 500,000 subsequent Markov chain Monte Carlo (MCMC) iterations that then
had only every hundredth one retained (weeding), yielding chains of length 5,000
for estimation purposes. With regard to diagnostics, accompanying temporal cor-
relograms and time series plots suggest the generated chains are sound. A CAR
comparison also is made, using a 5,000-iteration burn-in period, and 100,000 sub-
sequent MCMC iterations that then had only every hundredth one retained, yielding
chains of length 1,000 for estimation purposes.

A second hypothesis evaluated here may be stated as follows:

Individual level prediction improves by adding to its model specification those neighbor-
hood variables identified as important factors with ecological modeling.

The resulting model is labeled mixed here.
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2.6.1 Results for the 2000 Census Tracts

Results of parameter estimation for both generalized linear and BUGS binomial
regressions are reported in Table 2.5. For the most part, the BUGS results corrobo-
rate the frequentist generalized linear model results. The SFs capture strong positive
SA. Maps for two eigenvectors common to all three SFs (i.e., E3 and E9) appear
in Fig. 2.9. One conspicuous difference between these two sets of results is the
standard errors for BLL > 5 μg/dl and BLL > 10 μg/dl: Bayesian-based standard
errors tend to be noticeably larger in these two cases. Nevertheless, models for BLL
> 5 μg/dl and BLL > 10 μg/dl appear to furnish respectable descriptions of the
ecological data.

The suppressed variation induced by aggregation for ecological analysis is for
appraised house values. The following battery of descriptive statistics for the 5,000
MCMC generated random error terms, aggregated by census tract, were calculated:
mean, median, standard deviation, minimum value, maximum value, skewness, and
kurtosis. Next, a stepwise regression was executed using these statistics as predic-
tor variables, and the standard deviation of house value as the regressor variable.
Kurtosis was the single statistic selected in the stepwise analysis for BLL > 5 μg/dl;
it accounts for roughly 15% of the variability in the standard deviation of house val-
ues. The standard deviation was the single statistic selected in the stepwise analyses
for BLL > 10 μg/dl and BLL > 20 μg/dl; it accounts for, respectively, roughly 6.6%
and 4.6% of the variability in the standard deviation of house values. Meanwhile,
replacing kurtosis with this standard deviation for BLL > 5 results in roughly 4.6%
of the variability in the standard deviation of house values being accounted for. The
ideal result would be for nearly 100% of the variability in the standard deviation
of house values to be accounted for by the standard deviation in estimated random
error terms. Therefore, the hypothesis positing direct proportionality between these
two statistics is not supported here. Apparently the type of approach promoted by
Richardson and Montfort (2000) can neither be recaptured nor receive empirical
guidance from ecological Bayesian spatial modeling.

Of note is that random effects results from a proper CAR model also were gener-
ated for BLL > 5 μg/dl. Here the spatial autoregressive parameter estimate is 0.7870
(SE = 0.2063), indicating the presence of strong, positive SA; now the degrees of
freedom are 13. These random effects failed to exhibit any covariation whatsoever
with the suppressed variability.

A cross-tabulation of individual observed and prediction results for 0 (non-
elevated BLL) and 1 (elevated BLL) appear in Table 2.6; predicted probabilities
less than 0.5 have been classified as and rounded to 0, whereas those greater than
0.5 have been classified as and rounded to 1. As the ecological fallacy warns, apply-
ing an ecological model to individuals is unsuccessful here. Of note is that even the
individual-level model predictions loose reliability as elevated BLL increasingly
becomes a rare event. Nevertheless, as Darby et al. (2001) argue, enhanced model
results are obtained by formulating a mixed individual-ecological model specifica-
tion. Not only are covariates like population density detectable at the aggregate level,
while not at the individual level, but adding these covariates to an individual-level
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Fig. 2.9 Eigenvectors common to the spatial filters for the BLL >5 μg/dl, BLL > 10 μg/dl, and
BLL > 20 μg/dl. Left (a): eigenvector E3. Right (b): eigenvector E9

Table 2.6 Cross-tabulations of observed and model predicted elevated BLLs, for threshold BLL
values

Equation BLL >5 μg/dl BLL >10 μg/dl BLL >20 μg/dl
Predicted
observed

0 1 0 1 0 1

Ecological 0 2698 31 6535 0 8090 0
1 5413 63 1670 10 115 0

(ϕ̂ = 0.001) (ϕ̂ = 0) (ϕ̂ = 0)
Individual 0 367 2362 6516 19 8090 0

1 291 5185 1663 7 115 0
(ϕ̂ = 0.141) (ϕ̂ = 0.009) (ϕ̂ = 0)

Mixed 0 983 746 6522 13 8090 0
1 660 4816 1659 11 115 0

(ϕ̂ = 0.282) (ϕ̂ = 0.034) (ϕ̂ = 0)

model also improves predictability for BLL > 5 μg/dl, and very marginally for
BLL > 10 μg/dl. Of note is that any individual-model gains by including these
ecologically determined covariates is lost as these covariates become statistically
nonsignificant in their ecological analyses.

Because the results here were so poor, analyses were not repeated for either the
census block group or census block aggregations.

2.7 Discussion and Implications

The empirical case study explored here reveals that geographic aggregation com-
bined with SA can cause diagnostic statistics to be misleading. Nevertheless, four
general ecological inference conclusions can be drawn from findings summarized
here. First, spatial filtering may furnish a blurred, but still unsatisfactory, glimpse of
within-areal unit covariation by serving as the spatial structuring term for random
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effects. Second, the failure of estimated random effects to furnish a useful within-
areal units variability surrogate implies that the Richardson-Montfort suggestion of
specifying individual-level covariance structure a priori should be a more fruitful
pursuit. But guidelines for undertaking this task remain to be established; the ulti-
mate goal is to be able to draw the same statistical inferences from aggregate-level
data that would be drawn from individual-level data, but without having the individ-
ual details. Third, a posited covariance structure should include prominent attributes
identified via ecological analysis, resulting in a mixed formulation, as advocated
by Darby et al. (2001). Prominent ecological covariates that remain invisible at an
individual level of analysis offer the potential to dramatically improve statistical
description. In addition, these ecologically-based attributes may at least partially
account for SA that impacts upon individual data. Finally, the ability to develop far
better ecological-level predictive models for rare events is a continuing need.
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