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Preface

Despite spatial statistics and spatial econometrics both being recent sprouts of the
general tree “spatial analysis with measurement”—some may remember the debate
after WWII about “theory without measurement” versus “measurement without
theory”—several general themes have emerged in the pertaining literature.

But exploring selected other fields of possible interest is tantalizing, and this is
what the authors intend to report here, hoping that they will suscitate interest in the
methodologies exposed and possible further applications of these methodologies.
The authors hope that reactions about their publication will ensue, and they would
be grateful to reader(s) motivated by some of the research efforts exposed hereafter
letting them know about these experiences.

Lectori salutem . . .

Richardson, Texas Daniel A. Griffith
Dallas, Texas Jean H.P. Paelinck
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Prologue

We began this work by writing the joint paper entitled “An equation by any other
name is still the same: on spatial statistics and spatial econometrics,” which appears
in a very abridged form in Annals of Regional Science (2007, 41: 209–227). Here
we present the unabridged version of this paper in its entirety, so that readers can
appreciate the full set of discussions we were forced to dramatically condense to
shorten the length of the published paper. They introduce the main theme of the
present book: non-standard spatial statistical and econometric analysis.

Abstract

Statistics is a branch of mathematics concerned with the collection, quantification,
analysis, interpretation, and presentation of real-world data, and the use of probabil-
ity theory to estimate population parameters with these data. Spatial statistics is a
subset of statistics that is concerned with handling the special problems associated
with geographically distributed data, which include spatial point patterns, regional
and lattice measurement aggregations, and irregularly spaced site-specific measure-
ments on a surface. Meanwhile, econometrics is concerned with the application of
statistical methods to the study of economic data and problems. When coining the
term spatial econometrics in 1979, Paelinck and Klaassen characterized it as a sub-
set of econometrics that is concerned with the role of spatial dependence in regional
economic model response and explanatory variables, asymmetries in spatial rela-
tionships, the specification of geographic structure governing spatial interactions,
and the explicit modeling of space. We outline and discuss similarities (e.g., testing
for the presence of spatial autocorrelation) and differences (e.g., map generaliza-
tion) between spatial statistics and spatial econometrics. In doing so, our goal is to
help clarify past, present, and future relationships between these two subfields.

A reader should note that the table, figure, and equation numbering in the prologue is particular to
it, and is not part of the number sequencings of these items in the book.
The original version of this paper is reprinted here with kind permission of Springer
Science+Business Media, holder of the copyright for this paper.

vii



viii Prologue

I Introduction

Spatial statistics (e.g., see Cressie, 1991) addresses the patterns and stochastic vari-
ation in attribute data across their geographic locations, given that all data have
implicit, and hopefully explicit, geographic tags (i.e., georeferencing, such as lon-
gitude and latitude coordinates). The primary pattern being exploited is that data
nearby in space tend to be more alike than those farther apart. This distance-based
inter-values correlation complicates statistical inference—the assumption of inde-
pendent observations is violated—whose principal form here often is prediction of
values at unobserved locations from those at observed locations, and estimation of
unknown parameters of models whose specifications incorporate this spatial corre-
lation and, in some analyses, other forms of distance relationships. Spatial statistics
primarily covers the topics of centrographic measures, statistics for spatial data (spa-
tial autoregression and geostatistics), point pattern analysis, and image analysis.
Most applications of spatial statistics to date have been concerned with modelling
quantitative attribute measurements on an interval/ratio scale with a normal prob-
ability model—the auto-normal specification. More recently, binary, percentage,
and counts data have been addressed through generalized linear modelling with
the binomial and Poisson probability models–the auto-logistic, auto-binomial, and
Winsorized (i.e., truncated) auto-Poisson specifications.

Spatial econometrics (e.g., see Anselin, 1988) addresses, inter alia (see Sect. III),
two complications that arise when the locational tagging of sample economic data
is explicitly recognized: (1) again, the spatial correlation (or dependence) that exists
between observed values; and, (2) spatial heterogeneity, the place-to-place noncon-
stant variance of georeferenced data. These two features of geographic data are
at odds with two Gauss-Markov Theorem assumptions used in regression mod-
eling. With regard to spatial correlation, the Gauss-Markov view of sample data,
say Y, is that geographic variation across locations can be accounted for with a
battery of judiciously selected covariates, say X, where the values of each X are
fixed at each location, and regression parameters are constant from place to place.
Repeated sampling results in place-to-place variation in Y being attributed only to a
stochastically varying error term. The critical assumption is that this error term has
constant variance across locations, and zero covariance amongst its location-specific
errors—the presence of non-zero spatial autocorrelation violates this second prop-
erty. Meanwhile, spatial heterogeneity violates the Gauss-Markov assumption that
a single linear relationship exists across locations.

In practice, spatial statistics and spatial econometrics reflect traditions of their
respective parent disciplines, namely statistics and econometrics. In other words,
they share much in common, with some notably differing emphases. “Statistics is
the science of gaining information from numerical data” (Moore, 1995, p. 2). It pro-
vides data-interrogative tools and conceptual frameworks for gaining understanding
through empirical-based induction, and involves data acquisition, data analysis, and
statistical inference. Econometrics, which literally means economic measurement,
is the “setting up of mathematical models describing economic relationships (such
as that the quantity demanded of a good is dependent positively on income and
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negatively on price), testing the validity of such hypotheses and estimating the
parameters in order to obtain a measure of the strengths of the influences of the
different independent variables” (Bannock et al., 2003). It is a collection of quanti-
tative techniques, both statistical and mathematical (e.g., operations research), that
supports economic theory testing and decision-making.

The main objective of this paper is to describe conspicuous similarities and differ-
ences between the two subdisciplines of spatial statistics and spatial econometrics,
especially as they are practiced in the social sciences. Of particular interest is the
question asking where these two subdisciplines diverge.

II Similarities and Differences Between Spatial Statistics
and Spatial Econometrics: An Overview

A simple comparison between spatial statistics and spatial econometrics may
be derived from a tabulating of their focal problems, which are summarized in
Table 2.1.

Both subdisciplines contain methodology, such as resampling techniques, and
a focus on model diagnostics supporting model-based (i.e., the essential tool for
describing a map is a model, and inferences are to a superpopulation), rather than
simply design-based (i.e., locations have unique fixed but unknown values that
can be estimated with a proper sampling design), inference (Brus and de Gruijter,

Table 2.1 Focal problems in spatial statistics and spatial econometrics

Spatial statistics Spatial econometrics

Super population perspective (i.e., realizations from a theoretical population): model-based
inference

Properties of estimators
Specification of geographic neighbourhood structure

Modifiable areal unit problem (MAUP)
Quantifying spatial autocorrelation

Variable transformations: Box-Cox, Box-Tidwell
Spatially adjusted statistical techniques

Cluster detection: hot and cold spots; LISA statistics
Distance as a covariate

Bayesian hierarchical models
Exploratory spatial data analysis

Space-time modelling
Sampling network structure: design-based inference Constrained parameter estimation
Ecological fallacy Optimization models
Map generalization: spatial interpolation Endogenous versus exogenous variables
Missing spatial data imputation Spatial complexity and spatial regimes
Auto- model specification: normal, Poisson, binomial
Spatial structure as a covariate (spatial filtering)
Bayesian smoothing of map values
Error propagation
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1993). Until recently, the auto-normal model has been the specification of necessity,
accompanied by a focus on Box-Cox variance stabilizing and Box-Tidwell lin-
earizing transformations to strengthen auto-normal approximations for non-normal
data (e.g., Griffith et al., 1998). A natural outcome of this work has been the
development of cluster detection techniques, such as the LISA statistic (Anselin,
1995). Distributional properties of parameter estimates are common to both sub-
disciplines, too. Unbiasedness was the first property to be assessed (Cliff and Ord,
1981; Anselin, 1988), followed by efficiency (e.g., Cordy and Griffith, 1993) and
consistency (Mardia and Marshall, 1984) assessments. And, more recent Markov
chain Monte Carlo (MCMC) work has focused attention on the property of suffi-
ciency (e.g., Graham, 1994) in spatial statistics, and Bayesian analysis in spatial
econometrics (e.g., Le Sage 1997, 2000). Meanwhile, articulation of geographic
neighbourhoods for constructing a geographic weights matrix was one of the first
specification issues addressed (Florax and Rey, 1995; Griffith and Lagona, 1998).
Both subdisciplines address the modifiable areal unit problem (MAUP)–the sensi-
tivity of findings to the repartitioning of a landscape into a different set of n zones,
and/or the reaggregation of locations into a different number of zones (e.g., Amrhein
and Wong, 1996; Amrhein and Reynolds, 1996, 1997). Spatial statistics and spa-
tial econometrics began with the problems of incorporating various distance effects
into data analyses, and quantifying spatial correlation. Following these efforts, both
subdisciplines moved on to hypothesis testing, and then to modelling issues (Cliff
and Ord, 1973; Paelinck and Klaassen, 1979). One consequence of these efforts
is that currently a wide range of autoregressive-based spatially adjusted statisti-
cal techniques is available to spatial scientists. These techniques also have been
extended to space-time data analyses. Of note is that time, which is one-dimensional
and unidirectional, can house stronger covariations than can space, whose two-
dimensional and multidirectional nature can dilute covariations. Current fashionable
analyses address regional convergence (see Arbia, 2004). Meanwhile, all real world
data are noisy (are characterized by uncertainty/variability/stochastic error), dirty
(are incomplete and/or include outliers/anomalies), and messy (permeated with
observational dependencies and/or nonlinear relationships). Noisy data contain
obscured/masked trends of various degrees; dirty data contain corruptions from
inaccuracies and/or inconsistencies; messy data can motivate inscrutable model
specifications. Exploratory spatial data analysis (ESDA) seeks to better understand
georeferenced data in an attempt to neutralize effects of these three real world data
properties. Geographic information systems (GIS) support some of the visualization
critical to ESDA, helping to uncover potentially inexplicable data patterns. Spatial
statistics furnishes some of the tools for geographic pattern detection, some of the
inputs to spatial data generated hypothesis formulation, and part of the crucial per-
spective for spatial model specification. (See Haining et al., 1998; Anselin, 1998)
And, today both subdisciplines are expanding the frontiers of Bayesian hierarchi-
cal modelling to include georeferenced data analysis (e.g., Haining, 2003; Le Sage,
1997, 2000).

The more catholic view of spatial statistics has produced a more diversified set
of research problems. The data collection tradition of statistics results in spatial
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Table 2.2 Thematic results
obtained from four volumesa

containing 36 papers about
spatial econometrics

Topic %

Spatial interaction and test 53
Model specification and test 14
Data analysis. 14
Estimation. 9

statistics addressing the problem of designing sampling networks to ensure appro-
priate geographic as well as inter-point distance coverage (e.g., Stehman and
Overton, 1996; Diggle and Lophaven, 2004). Because considerable spatial data
result from aggregating georeferenced individuals into regions, the ecological fal-
lacy (i.e., an inference about some individual event based upon the aggregate
group data to which it belongs being the observational unit in an analysis) has
received much attention in spatial statistics (e.g., see Richardson, 1992; King, 1997;
Freedman, 2001). Geographers have constructed contour maps for centuries (see
Meijering, 2002); this spatial interpolation focus has promoted the development of
kriging techniques, yielding best linear unbiased predictor map generalizations (e.g.,
Stein, 1999). This tradition also has spawned research addressing the data imputa-
tion problem of filling holes in maps: missing data estimation, as well as Bayesian
smoothing to bolster grouped data based upon insufficiently small sample sizes (see
Pascutto et al., 2000; Griffith and Layne, 1999). Meanwhile, the MCMC procedures
enabling implementation of Bayesian analysis also support maximum likelihood
estimation of auto- model parameters other than those for the auto-normal proba-
bility model (e.g., Kaiser and Cressie, 1997; Gotway and Stroup, 1997; Huffer and
Wu, 1998). Consequently, generalized linear spatial modelling now is feasible, from
both a frequentist and a Bayesian point of view. The theory and development of spa-
tial filtering models, which have some parallels with impulse-response time-series
modelling, is beginning to unfold (see Getis, 1995; Griffith, 2000a, 2002, 2004;
Getis and Griffith, 2002; Borcard and Legendre, 2002). Finally, error propagation–
both locational and attribute—especially through GIS operations and its impacts on
spatial statistical inference, has been topical for about two decades.

Meanwhile, a scanning of four sources produces the tabulation for recent spatial
econometrics work appearing in Table 2.2. Of course, papers may treat different
aspects at the same time, but the central interest of a study determined its classifi-
cation in the listing. The absolute majority of these papers treat spatial interaction.
The model specification tests and estimation topics are enfants pauvres, constitut-
ing a mere 23% of the total. It is precisely on these two topics that our non-standard
view about spatial econometrics concentrates.

III Toward Non-standard Spatial Econometrics

The following are selected non-conventional problems encountered in the practice
of spatial econometrics:
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(1) the fundamental bias of regional statistical data, resulting from spatial aggre-
gation;

(2) the specification of spatial models is very often “classical,” but other alterna-
tives exist and should be explored;

(3) spatial characteristics continue to pose econometric problems, alluding to the
need to develop more appropriate estimators; and,

(4) complexity, especially spatial complexity, is the feature that covers these three
preceding points, often in terms of uncovering latent spatial regimes.

Possible solutions to these specific problems are addressed in the ensuing
discussion.

3.1 Spatial Bias

A problem studied in particular by spatial statisticians is the “Modifiable Areal
Unit Problem” (MAUP), the possible use of territorial units of different sizes. In
a genuine econometric spirit, this can be treated as a spatial aggregation problem,
producing some disturbing consequences for a spatial econometrician. One of these
consequences may be summarized as follows: “The important result is that in gen-
eral econometric aggregation, if only one macro-aggregate is considered, just one
parameter bias is present in the macro-model; in meso-aggregation, as it took place
here, every meso-area has its own specific aggregation bias, which leads to parame-
ter variability between meso-areas, and this might result, in econometric estimation,
in some sort of (biased) average value, depending on the characteristics of the sam-
ple being investigated and the particular spatial aggregation specification” (Paelinck,
2000).

In larger models the implicit bias will be even more complex; moreover, the
stochastic terms of a model will reveal heteroscedasticity and spatial autocorrelation
under very general conditions. Of note here is that resulting conclusions impose the
use of appropriate specifications adapted to each problem at hand (see Sect. 3.2); a
possible technique for achieving this end is that of composite parameters—at least
when the number of degrees of freedom permits—in order to take account of the
specific bias inherent in each meso-economic spatial unit included in a cross-section
analysis. But then, what is spatial heterogeneity, and what is spatial bias? Recently
filtering data for observational errors, and then for spatial aggregation bias, was
proposed by Paelinck (2003). The method was applied to a series with maximal
spatial complexity (see Sect. 3.4), after which complexity was reduced by two thirds,
and a simple linear model could be fitted to the filtered data.

3.2 Specification

The specification of spatial models—either regional or urban in nature—should
obligatorily reproduce the workings of spatial economies. Consider, for example,



Prologue xiii

the problem of multi-regional convergence in terms of per capita incomes. A pos-
sible specification here could be the so-called Lotka-Volterra model, which allows
spatial interdependencies to be introduced; this specification is non-linear in form.
If column-vector y represents regional per capita incomes, this model can be written
as:

�’ln
(
yt
) = A yt−1 + a, (3.1)

where �’ is the backward difference operator, A is a transition matrix, and a is
a column vector of autonomous growth rates that take into account all factors not
covered by the transition matrix A (e.g., regional policy, foreign trade). The interest-
ing point, with respect to pure tendency models, is that one can verify the presence
of convergence (via the eigenvalues of matrix A; Paelinck, 1992)—i.e., whether a
stable singular point exists—the latter being defined by

yo = −A−1a, (3.2)

if A–1 exists. Vector yo should not differ significantly from the unit vector when con-
vergence is attained. An appropriate estimation method for the parameters of A and
a is mentioned in the subsequent discussions. The model for 119 European regions
converged mathematically (119 eigenvalues have the correct signs and values), but
diverged in an economic sense; those eigenvalues are of course stochastic variables,
but if the condition were not to be satisfied, the model would even be mathematically
divergent, and certainly no economic convergence could be present.

An even more important problem is that of the algebraic structure to be given to
the model under construction. Paelinck (2002) investigates the possibilities of model
specification based on a so-called min-algebra, which he uses to generalize the spec-
ification of the European FLEUR-model (Ancot and Paelinck, 1983), the latter being
based on the idea of a growth threshold. In min-algebra, one or several explanatory
terms (variables with their reaction coefficients) of minimal value determine the
value of the endogenous variable(s). This perspective is reminiscent of the mini-
mum requirements approach found in the urban geography literature (see Ullman
and Dacey, 1960). Thus, instead of considering a (linear or non-linear) combina-
tion of endogenous, exogenous or predetermined variables, only one (or a limited
number of) explanatory variable(s) appears in each equation. For instance, the devel-
opment of a region could be hampered by the absence of a strategic factor, such as
technologically highly trained manpower. In mathematical terms, an equation of the
model presents itself as:

yi = min
(
ai1y1 + ci1, .., ainyn + cin; bi1x1 + di1, .., bimxm + dim

)
, (3.3)

where the yi are endogenous variables, and the xjs are exogenous variables or
economic policy instruments (i.e., control variables). Such a specification can be
illustrated in terms of the efficiency of instruments problem of regional policy or
physical planning. Often such instruments reveal themselves as inefficient, one



xiv Prologue

reason being that a development process is blocked by an absence of the needed
minimal value of one or another of the driving terms. This reasoning sheds new
light on the theory of endogenous regional growth. It is indeed possible that one of
the key-factors of regional development (e.g., entrepreneurial initiatives, appropriate
manpower, even cultural factors) is not sufficiently present in a region. To promote
its growth in this context, a region has to favour factor expansion, rather than out-
comes from applying classical recipes, such as financial stimuli or the creation of
technopoles.

A bad specification of regional models becomes really dramatic when they are
used to derive baskets of regional policy measures. For example, borrowing an opti-
mal regional policy from the aforementioned study (Paelinck, 2003), assume the
following objective function:

y = min (65 + x1, 13 + x2, 2 + x3, 60 + x4) , (3.4)

where the xi, i=1, ..,4 represent restrictive factors. Equation (3.4) has to be
maximised under the condition

4 x1 + 3 x2 + 2 x3 + x4 ≤ 50, (3.5)

together with the usual non-negativity conditions.
One can show that the following is the solution to this problem:

Variables x1 x2 x3 x4 y
Values 0 5.6 16.6 0 18.6

The logic of the chosen algebra produces a solution with two non-zero decision
variables, whereas a linear program (LP) under a classical algebra would, in gen-
eral, produce only one non-zero decision variable; the solution could of course be
obtained by LP, but given the algebra used, extra side conditions would have to be
introduced.

Finite automaton is still another specification (for a formal definition, see Linz
1996, p. 2) to be systematically investigated. This specification can be viewed as an
“if”-specification; in symbolic terms,

y : if(αxi + β < γ zi + δ;αxi + β; γ zi + δ), (3.6)

which reads as follows: if αxi + β < γ zi + δ, then the values of the left-hand side
hold; otherwise, those on the right-hand side hold. Comparing expressions (3.5) and
(3.6) reveals that both specifications are in fact isomorphic. Therefore, problems of
the types just listed can be treated by either method.

In order to subject a finite automaton model to a well-documented empirical test,
gross regional product figures for the Netherlands were divided into two macro-
regional sets, one for the western provinces (Noord-Holland, Zuid-Holland and
Utrecht, the so-called “Rimcity”), and the other comprising data for the remaining
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provinces. Both a binary and a fuzzy version of the automaton model were devel-
oped. One conspicuous, and rather curious, insight gleaned from the obtained results
is the behavior of the growth rate values for the non-Rimcity provinces: whatever
the state of the location factors’ attractiveness, they follow the ups and downs of the
Rimcity growth rates. This finding is consistent with the Rimcity being the motor of
the Dutch economy (Paelinck, 1973, pp. 25–40, especially pp. 37–40), imposing its
evolutionary rhythm on the other regions, and corresponding to a sort of non-Fick
diffusion in thermodynamics.

Of note is that the specifications presented here can be readily generalized to
three or more alternatives (e.g., regions, test specifications). For the finite automaton
version, for example, the following illustration shows how AND and OR statements
can be added:

yi : if((czi + d < axi + b)
AND (eui + f < axi + b); (czi + d) OR(eui + f); axi + b).

(3.7)

All of these specifications should be tested against each other; examples of this
pairwise testing can be found in Griffith and Paelinck (2009).

Finally, the specification of spatial lags, in the endogenous and/or exogenous
variables, may be referred to as the W-matrix problem. Several suggestions for
dealing with this problem appear in the literature, some of them being purely
mechanical. As spatial econometrics is about economics in pre-geographical space,
some economic background for a solution is desirable. One possibility is the
inspection of the residuals (the “doggy-bag principle”); relatively high and/or low,
positive and/or negative values should be inspected, in an attempt to generate
assumptions (e.g., competition and/or cooperation could be present at short or long
distances: distance can be hampering or protecting). Examples are known where,
for instance, mapped locations of residuals have led to identification of the cor-
rect complementary variable missing from a model specification (e.g., see Thomas,
1968).

A more recent solution has been proposed in Chapter 11, to wit the use of a bivari-
ate Poisson distribution to jointly estimate the parameters of space- and time-lags;
a first application to regional products of Belgian regions has shown the method to
be operational.

3.3 Estimators

The fundamental structure of spatial models invites development of different types
of estimators adapted to the special situations encountered. Indeed, established
software does not always fit the specific estimation problem encountered.

Now Chapter 17 proposes various estimators especially appropriate for handling
particular circumstances. One is a simultaneous least squares estimator, perfectly
well adapted for use with the Lotka-Volterra-type models already mentioned—i.e.,
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models with simultaneous spatial and temporal interdependencies. The computation
can proceed by iterative ordinary least squares (OLS) employing the expression

β̂ = (X’X̂)– 1X’Y, (3.8)

where X endogenous variables take on the values computed by the model itself,
the method integrating the computation of optimal—spatial and temporal—starting
points for endogenous simulations. This estimator is consistent, and the probability
limit of its variance-covariance matrix is known (in fact, it is the usual OLS matrix).
Meanwhile, in recent research (Paelinck, 2006), the estimating procedure has
been endogenized, resulting in the parameters and the estimated—endogenous—
variables being computed in the same iteration. This method can be applied to static
and dynamic spatial models—with their typical spatial lags.

Also of note is that most spatial models are inherently non-linear, so that after
appropriate specification, estimation methods other than OLS need to be used. For
example, a recently devised estimation method combines Box-Cox and Box-Tidwell
transformations (Paelinck and van Gastel, 1995; Griffith, Paelinck and van Gastel,
1998), and proceeds from the (partial) elasticities of the transformed function.

Here estimation may be obtained with some semi-parametric method. Consider
the following second order differential expansion (derived from a second order
MacLaurin expansion):

df (x, y) = fxdx + fydy + fxxx dx + fyyy dy + fxy (y dx + x dy) , (3.9)

where the coefficients of the linear terms are changed by adding periodically the
coefficients of the quadratic terms, which, in production functions, for example,
express the changes in marginal productivities. Now the question of interest asks
how to apply this technique, originally developed for time series, to a problem in
spatial econometrics? The difficulty originates from the difference between time’s
arrow and the non-oriented multi-directional and reciprocal dependencies latent in
spatial data.

Suppose regions 1, 2 and 3 coexist on a line, such that the degree of contiguity
between 1 and 2, and between 2 and 3 is one; we will limit ourselves to that degree
and skip further problems of spatial autocorrelation. Let the regressand be y, and the
unique regressor x. The model, adapted from Eq. (3.9), can be specified as follows.

�′y12 = a12�
′x12 + bx1�

′x12 (3.10)

�′ý 23 = a23�
′x23 + bx2�

′x23 (3.11)

�′y21 = a21�
′x21 + bx2�

′x21 (3.12)

�′y32 = a32�
′x32 + bx3�

′x32 (3.13)

a12 = a21 (3.14)
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a23 = a32 (3.15)

a23 = a12 + (d12 − e12)b (3.16)

a21 = a32 + (d32 − e32)b (3.17)

d12 + e12 = 1 (3.18)

d32 + e32 = 1 (3.19)

d12 = e32 (3.20)

d32 = e12 (3.21)

The variables in equations (3.10)–(3.21) are binary 0–1. This specification does
not privilege any direction in space, and allows for increases or decreases of the reac-
tion parameter between pairs of regions with the same separating distance. Finally,
min-algebraic and finite automata parameters can be estimated and the specification
tested (see Paelinck, 2003).

3.4 Complexity, Estimation and Testing

The problem studied in this section arose when spatial data were tested to deter-
mine whether or not they belonged to one or more possible regimes. In particular, a
classical linear model and a min-algebraic one (Paelinck, 2003) were considered.

One idea about the relevance of one or another specification is to look into
the computational complexity of a problem (Chaitin, 1975; Wolfram, 2002, pp.
557–559). This complexity, which we will call conditional complexity—due to the
presence of exogenous variables—can be expressed as a function of the number
of parameters necessary to fit a polynomial to endogenous variable. Consider the
following index on [0,1] (Getis and Paelinck, 2004):

c = (np − 1)/(npm − 1) , (3.22)

where np is the number of non-zero parameters, and npm is their maximum number
(equal to the length of the series of endogenous variables; i.e., the size of a sample).
Suppose especially the endogenous variables are void of measurement errors; after
all, the observed values are the only ones available for analysis.

In Paelinck (2004), Eq. (3.22) has been applied to a series of test data. It first
resulted in c = 1, meaning that the number of parameters equal to the sample size
was necessary to satisfy the cubic equation:

yi = ai + a′ui + ui
′Aui + ui

′B′ ûi Bui, (3.23)
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where ui is observation i′s vector of exogenous variables. When this test was applied
to figures generated by yi = xi + 2zi, only two parameters were necessary, rendering
c = 0 .11. This finding gives a clue to a more complex specification for the first
series than would be the case for the second one.

The following model was formulated to test the first series according to this
aforementioned clue:

yi = θ (axi + bzi + c) + (1 − θ)min(αxi + β; γzi + δ) + εi, (3.24)

where θ is binary, and for which ϕ = min Σiε
2
i was chosen as a selection

criterion—in fact, a minimal variance one (Theil, 1971, pp. 543–545; Aznar Grasa,
1989, p. 133). The second term on the right-hand side of Eq. (3.32) represents a
min-algebraic specification (Paelinck, 2003).

The computation based upon Eq. (3.24) results in θ = 0. Quite logically, the
min-algebraic model was selected over the classical linear combination one. This
procedure can be generalized to more than two competing model specifications.
Equation (3.32) was set up in its present form because this form naturally leads to
a fuzzy generalisation, by first relaxing the binary condition on θ to 0 ≤ θ ≤ 1, and
to the split between min-regimes. In both cases, the min-algebraic regime remained
dominant. Finally, if one applies this method to the exact case, then θ = 1 and the
exact equation is selected with ϕ = 1.96x10–13.

In conclusion, the observed series may contain errors, and moreover (see
Sect. 3.1), spatial bias is always present. Thus, the question arises as to whether cor-
rections for these two features could be devised. This problem has been addressed
in Paelinck (2004; see Sect. 3.1), where a solution to this twofold complication has
been proposed. Applied to the data mentioned earlier in this section, the procedure
resulted in a significant decline of the complexity coefficient given by Eq. (3.22).

IV On the Frontiers of Applied Spatial Statistics

Methodological advances are underway in the eight thematic areas of spatial
statistics in which spatial econometricians tend to have less interest (see Table 2.1)–
sampling network design, the ecological fallacy, map generalization, missing spatial
data imputation, non-normal auto- model specification, spatial filtering, Bayesian
smoothing of map values, and error propagation.

4.1 Non-normal Georeferenced Data Analysis

The description and explanation of map patterns of objects or events has been a
continuing interest in geography and regional science for more than half a century.
The normal probability model describes a bell-shaped curve, a statistical frequency
distribution that adequately characterizes many attributes, especially interval-ratio
measurement scale ones. The Poisson probability model has played an important
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role in quantitative geographic work involving counts and rare events. And, the bino-
mial probability model describes situations in which responses are categorical or
limited to a particular range, resulting in binary indicator variables or percentages.
In this first binomial situation a response is, say, presence/absence; in this second
situation a response is a constrained event count. Historically, because of difficulties
associated with analyzing Poisson or binomial georeferenced data, Box-Cox types
of transformations often were employed in an attempt to devise good bell-shaped or
normal curve approximations for non-normal data. The development of generalized
linear modelling techniques was a first step supporting the direct analysis of non-
normal data. Formulation of MCMC procedures supplied a necessary second step
for their auto- versions. Now, autoregressive versions of a wide range of probability
models can be estimated. Consequently, the use of normal approximations, with or
without spatial model elements, should be a practice of the past.

Beginning with the work of Nelder and McCullagh (1983), applied statisti-
cians increasingly have been successful in devising user-friendly implementations
of probability models beyond that for the normal curve. Beginning with Wrigley
(1985), spatial auto- versions of these model implementations have been devel-
oped in parallel, but with a time lag. “The central role of the Poisson distribution
with respect to the analysis of counts is analogous to the position of the normal
distribution in the context of models for continuous data” (Upton and Fingleton,
p. 71). But development of an auto-Poisson model proved to be a failure, with this
particular model specification being unable to capture the more commonly encoun-
tered case of positive spatial autocorrelation (Besag, 1974). Circumventing this
restriction has been achieved in several different ways: Kaiser and Cressie (1997)
propose an approach based upon Winsorizing counts (i.e., systematically replacing
extremely high counts with the value of some cut-off criterion; after Barnett and
Lewis, 1978); and, Griffith (2002) proposes an approach based upon spatial filtering
(i.e., transforming a variable containing spatial dependence into one free of spatial
dependence by partitioning the original georeferenced attribute variable into two
synthetic variates, a spatial filter variate capturing latent spatial dependency that
otherwise would remain in the response residuals, and a nonspatial variate that is
free of spatial dependence; e.g., Griffith, 2000a). Meanwhile, statistical techniques
for analyzing correlated binary variables are not as plentiful as those for analyzing
correlated continuous data. When binary spatial data are of interest, the first model
that should come to mind for describing these data and their latent spatial auto-
correlation is the auto-logistic/binomial specification, whose development has been
successful, although estimation of its parameters is rather daunting. Again, Griffith
(2004) proposes an approach based upon spatial filtering.

Parameters of both the Winsorized auto-Poisson and the auto-logistic/binomial
models became estimable with the advent of MCMC techniques. A Markov chain
is a process consisting of a finite number of states and known probabilities, pij,
of moving from state i to state j. Markov chain theory is based on the Ergodicity
Theorem: the transition matrix of state-to-state probabilities must be irreducible,
recurrent non-null, and aperiodic. If a Markov chain is ergodic, then a unique
steady state distribution exists, independent of the initial geographic distribution:
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for transition matrix M, lim
k→∞ Mk = M∗. Meanwhile, the Monte Carlo method pro-

vides approximate solutions to a variety of mathematical problems by performing
statistical sampling experiments with a computer using pseudo-random numbers.
Consequently, MCMC provides a mechanism for taking dependent samples in situa-
tions where regular sampling is difficult, if not completely impossible. The standard
situation is where the normalizing constant for a joint or a posterior probability dis-
tribution is either too difficult to calculate or analytically intractable. Accordingly,
MCMC begins with conditional (or marginal) distributions, and MCMC sampling
outputs a sample of parameters drawn from their joint (or posterior) distribution.

For auto-Poisson and auto-logistic/binomial models, MCMC is implemented
with Gibbs sampling, a recipe for producing a Markov chain that yields simulated
data that have the correct unconditional model properties, given the conditional
frequency distributions of those variables under study (see Casella and George,
1992). MCMC exploits sufficient statistics, makes use of marginal probabilities,
and frequently utilizes pseudo-likelihood results. Beginning with pseudo-likelihood
estimates, and a set of initial random numbers geographically distributed across
a map, Gibbs sampling involves visiting each location, in turn, and updating its
value by computing a new value with the auto- model specification of interest,
using pseudo-likelihood parameter estimates obtained from observed data. A single
MCMC iteration is completed when all n locations have had their values updated.
Iterations are repeated until the sufficient statistics converge, which often involves
tens of thousands of iterations. Finally, MCMC maximum likelihood estimates
(MCMC-MLEs) are calculated by constructing a ratio of two likelihood functions,
one with the unknown parameters and a reference one based upon the observed data
(e.g., the pseudo-likelihood specification). The formulae for this, as well as for the
accompanying asymptotic standard errors, appear in Huffer and Wu (1998).

For illustrative purposes, consider results of the empirical example appearing in
Table 4.1; two additional examples can be found in Griffith (2005b, 2006b). As with
auto-normal models, these examples illustrate that one of the principal impacts of
spatial autocorrelation is on the estimates of standard errors. This findings holds
even when the numbers involved are quite large (e.g., for Wales, 1,112,912 of
2,218,850 voters cast ballots, yielding very small standard errors).

MCMC techniques also have made Bayesian analysis based upon hierarchical
generalized linear models feasible. This category of model is called “hierarchi-
cal” because it has two levels. At the higher level, hyper-parameter distribu-
tions are described by multivariate priors. Such distributions are characterized

Table 4.1 Auto-binomial description of % Welsh voter turnout: 1997 referendum

Maximum pseudo-likelihood MCMC-MLE

Parameter Estimate Standard error Estimate Asymptotic standard error

α –0.1463 0.003 –0.1296 0.0004
ρ 0.0519 0.001 0.0179 0.0003
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by vectors of means and covariance matrices; spatial autocorrelation is captured
here. At the lower level, individuals’ behavior is described by probabilities of
achieving some outcome that are governed by a particular model specification.
This type of analysis can be implemented with software such as GeoBUGS
(see Casella, 1985; Casella and George, 1992), the spatial statistical module
add-on to WinBUGS (see Cowles, 2004), an MSWindows-based program sup-
porting Bayesian inference Using Gibbs Sampling (BUGS; see http://www.mrc-
bsu.cam.ac.uk/bugs/winbugs/contents.shtml). Bayesian inference is used to spa-
tially smooth georeferenced data values using MCMC methods. GeoBUGS imple-
ments models for data that are collected within discrete regions (not at the individual
level), and smoothing is done based on Markov random field models for the neigh-
borhood structure of the regions relative to each other, specified in terms of a
conditional autoregressive model and the queen’s definition of geographic adja-
cency as the default. Random effects are included that are either spatially structured
(i.e., contain spatial autocorrelation) or spatially unstructured (i.e., contain no spa-
tial autocorrelation). The perspective here is similar to that for spatial filtering.
Rather than having observed values directly correlated, spatial autocorrelation is
accounted for through the mean response parameter capturing spatial dependency
effects. In fact, spatial filter eigenvectors can be used as covariates to account for
spatial autocorrelation in GeoBUGS.

For illustrative purposes, consider the 2000 geographic distribution of per-
centage urban population by municipio across the island of Puerto Rico (see
Fig. 4.1a) employing a binomial probability model. The MCMC Bayesian anal-
ysis involved 50,000 iterations, of which 10,000 were discarded for the burn-in
period, after which only ever 5th map was retained for analysis. The iteration time-
series plot and correlogram for the spatial autocorrelation parameter, ρ̂

CAR
, appear

to be well behaved. Grouping the MCMC results for the spatial autocorrelation
parameter into 100 groups of 100 consecutive estimates produced the following
ANOVA results: for variance homogeneity, Levene = 1.14 (p = 0.156), and for
difference of means, F = 1.30 (p = 0.023)—suggesting, perhaps, the need for
more iterations or designating a larger burin-in period. Given a multivariate nor-
mal conditional autoregressive (CAR) model specification, a uniform prior for the
logistic intercept term, and a gamma prior for the spatial autocorrelation param-
eter, the 8,000 retained maps rendered ρ̂

CAR
= 0.9378(Sρ̂ = 0.0526)–where

[

< 1/
√∑

j=1

n
cij >diag (I − ρCARC) < 1/

√∑

j=1

n
cij >diag

]−1

is the covariance struc-

ture matrix, with

[

< 1/
√∑

j = 1

n
cij > diag

]

being a diagonal matrix. For positive

spatial autocorrelation, this specification of the covariance matrix allows positive
values of ρ̂

CAR
to fall between 0 and 1, permitting a more intuitive interpretation for

it. The geographic distribution of random effects appears in Fig. 4.1b, and reflects
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(a) (b)

Fig. 4.1 Quantile classifications. Left: (a) geographic distribution of the 2000 percentage of urban
population: white – 34–86%; light grey – 87–92%; medium grey – 93–96%; dark grey – 97–99%;
and, black – 100%. Right: (b) geographic distribution of the mean random effect: white – –0.6 –
1.8; light grey – 1.8 – 2.5; medium grey – 2.5 – 3.1; dark grey – 3.1 – 4.8; and, black – 4.8 – 13.3

much of the geographic pattern visible in Fig. 4.1a. Spatial autocorrelation indices
for this random effects map are: Moran Coefficient = 0.49836, Geary Ratio =
0.44382.

Clearly MCMC furnishes a powerful implementation tool for spatial statistics
dealing with non-normal data and especially mixed effects modelling.

4.2 Sampling in Geographic Space

As spatial autocorrelation latent in georeferenced data increases, the amount of
duplicate information contained in these data also increases. This property suggests
the research question asking what is the number of independent observations, say
n∗, that is equivalent to the sample size, n, of a geographic data set (Griffith, 2005a;
also see Cressie, 1991, p. 15). This is the notion of effective sample size. Intuitively
speaking, for a univariate situation, when zero spatial autocorrelation prevails, n∗ =
n; when perfect positive spatial autocorrelation prevails, n∗ = 1. Equations may be
derived for estimating n∗ based upon the sampling distribution of a sample mean
with the goal of obtaining some predetermined level of precision, using the fol-
lowing spatial statistical model specifications: (1) simultaneous autoregressive; (2)
geostatistical semivariogram; and, (3) spatial filter. In this first case, for a given
simultaneous autoregressive (SAR) model estimate of spatial autocorrelation, ρ̂

n̂∗ ≈ n ×
[

1 − 1

1 − e−1.92369

n - 1

n

(
1 − e−2.12373ρ̂+0.20024

√
ρ̂
)]

. (4.2.1)

In this second case,

n∗ = n

n -
n∑

i = 1

n∑

j = 1
j 	= 1

γ (dij)/(C0 + C1)/n
, (4.2.2)
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where γ (dij) denotes a particular semivariogram model with respective nugget and
slope parameters of C0 and C1. And, in this third case,

n∗ =
(

1 − R2
)

n, (4.2.3)

where R2 is the squared multiple correlation for the corresponding spatial filter
regression model.

These preceding three formulae enable the computation of appropriate sample
sizes for quantitative studies when nonzero spatial autocorrelation is present in
georeferenced data. In order to do so, a pilot study must be carried out to obtain
initial estimates of spatial autocorrelation and variable variance (also see Flores
et al., 2003). If a spatial scientist chooses to obtain a variance estimate from the
literature, then assuming moderate, positive spatial autocorrelation for most vari-
ables, and extremely strong, positive spatial autocorrelation for remotely sensed
images, would be reasonable, too. Although this model-informed sampling design
approach is somewhat sensitive to the way in which spatial autocorrelation is
modelled, all three alternative model specifications indicate that geographic stud-
ies require substantially larger sample sizes than are suggested by conventional
statistical theory.

4.3 Error Propagation in a GIS Environment

Source errors in georeferenced data give rise to further errors when data analysis
operations (e.g., overlay, addition and ratioing) are performed with them present,
resulting in error propagation. The errors that are present in maps are modified by
data transformations in ways that undermine the purpose of analysis and lead to
uncertainty in the validity of inferences/conclusions that are drawn. Arbia et al.
(1998, 1999) analyze, for a univariate context, how source map error propagates as
a result of map operations; extend this evaluation to the multivariate case of lin-
ear combinations of georeferenced variables. Conceptualizing this problem of error
propagation requires recognition that attribute values on maps are spatially corre-
lated, attribute measurement error also may be spatially correlated, and the location
of attribute values may contain errors. There also may be inter-map correlation.

One preliminary set of findings includes an importance ranking of sources of
error, established with quantitative analyses of simulation experimental results,
ordering their relative magnitudes in terms of error propagation. For various over-
lay operations, error propagation primarily is attributable to the underlying attribute
spatial correlation in a source map, the signal-to-noise ratio, location error, spa-
tial correlation in the error process, and interaction effects among selected pairs
of these components. For addition and ratioing, error process variance tends to
play the single most important role. For addition, location error is the next most
important factor, followed by location error interacting with different scales of
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source-map spatial correlation. For ratioing, factors other than error process vari-
ance play a far less important role; nevertheless, error-process spatial correlation
and source-map spatial correlation are important contributors to error propagation.
Meanwhile, inter-map correlation impacts upon error properties of map opera-
tions, but apparently without altering the relative importance of the sources of
error.

In a study of positional error attributable to geocoding via automated address
matching of individual observations, Griffith et al. (2004) found that positional error
also matters in terms of error propagation in sophisticated spatial statistical anal-
ysis. In a study of pediatric lead poisoning in Syracuse, NY, location error (the
difference between TIGER line file-based and cadastral parcel-based geocoding)
caused model parameter estimation results to be noticeably different. But for all
models estimated, essentially every parameter estimate obtained with TIGER-based
geocoding falls within the 95% confidence interval of its corresponding cadastral
parcel-based geocoding estimate, across the 10% to 50% range of location error
found in the sample data. In other words, on average, positional error may well
produce conspicuous, but not shockingly dramatic, differences in spatial statistical
analysis results.

4.4 The Ecological Fallacy Revisited

Two serious weaknesses of the ecological approach commonly employed in spa-
tial statistical analysis are an inability to: draw proper inferences from areally
aggregated entities to the individual entities constituting these aggregates; and, dis-
entangle the impacts of overlooked confounders. Richardson and Monfort (2000,
pp. 218–19) emphasize that such ecological correlation studies assessing the health
effects of environmental exposure, for example, are in increasing demand because
individual-level assessments in these types of situations frequently are too dif-
ficult. Emphasizing advantages of ecological analysis, they also point out (p.
206) that geographically aggregated data: tend to be straightforward to obtain,
dampen measurement error by averaging, lead to increased power by increasing
the range of a response over that for individuals, and furnish “natural experiments”
when a response variable links to contextual physical geography features of a
landscape.

Recognizing that migration introduces a serious complication to spatial analy-
sis studies, Elliott and Wakefield (2000, p. 71) underscore that some georeferenced
phenomena have less opportunity for bias to occur because of cause-effect corrup-
tions attributable to migration factors. Furthermore, individual-level inferences can
be drawn from ecological analyses when the predictor-response relationship is linear
(Elliott & Wakefield, 200, p. 77; Richardson & Monfort, 2000, p. 207):

Y = α1 + Xβ, (4.4.1)
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where α denotes a conditional mean, 1 is an n-by-1 vector of ones,1 X is an n-
by-p vector of p mean aggregate predictors, and βis a p-by-1 vector of regression
coefficients. But in practice this additive specification often is unlikely. Rather,
predictors frequently act synergistically, resulting in a disproportionate increase in
a response outcome as they individually increase, due to amplifications by their
interactions. This nonlinear, exponential functional form of the predictor-response
relationship, which is multiplicative in nature, is the norm in many spatial anal-
yses. Accordingly, the mean response for geographic aggregates is a function of
within-area individual-level means and variances/covariances:

Y = EXP[α + Xβ + 0.5β′�β], (4.4.2)

where � is the within-area predictor covariances matrix. If some power function of
an individual-level response within a geographic aggregate is normally distributed,
a third functional form can be established that represents an increase in predictor
values accompanied by a decline in their impacts on the response outcome:

Y = [α+Xβ + 0.0370(−1 + γ )β′�β]γ , 0 < γ < 1. (4.4.3)

In other words, as the level of one predictor increases while all other predictors
remain the same, beyond some point the resulting increase in the response outcome
becomes smaller and smaller. This decline may arise because of diminishing returns,
and/or because the suite of predictors is multicollinear. A fourth functional form
pertains to solutions where interactions amplify but are not purely multiplicative:

Y = (α + Xβ)γ +
k∑

j=1

cj < β
γ
2 −j > ′�j >, j ≤ γ

2
, (4.4.4)

where <> denotes a vector, cj =
[[γ ]]∏

h = 1
( 1

2h )[− 1
4 + (γ − 2h+ 3

2 )2], γ ≥ 1, and [[]]

denotes the integer value.2 This last specification reduces to the additive case when
the exponent is γ = 1, and in a limiting sense relates to the multiplicative case
as the exponent γ increases. Additional research needs to confirm these theoreti-
cal specifications, which expand the family of models that allows a minimization
of ecological bias due to nonlinearity, in terms of correlations between the mean
response and covariances, based upon integration of the response relationship at the
individual level in order to approximate the ecological aggregate mean response.
Most databases fail to contain enough information to compute an estimate of the
within-area covariance matrix �. Of note is that Richardson and Monfort (2000, p.

1This vector of ones often is denoted by the n-by-1 vector i in the spatial econometrics literature.
2This equation was established with bootstrap analyses of selected empirical data using 25,000
replications.
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209) find that approximating this matrix by assuming independence (hence, matrix
� is diagonal) is an improvement over completely neglecting it.

Meanwhile, ecological bias can result from confounding both within and across
areal units. Socio-economic/demographic variables often furnish useful surrogates
for unknown/unmeasured confounders, and tend to dominate geographic variation
(Elliott and Wakefield, 2000, pp. 78–79). In addition, accounting for spatial autocor-
relation when analyzing a georeferenced variable further accounts for the aggregate
effect of unobserved confounding predictors (Richardson and Monfort, 2000, p.
210), as does including random effects terms in a hierarchical Bayesian analysis
(see Sect. 4.1).

4.5 Filling Maps with Gaps: Imputation of Georeferenced
Data Values

The Estimation-Maximization (EM) algorithm (Dempster, Laird, and Rubin 1977),
an iterative procedure for computing MLEs when datasets are incomplete, is a use-
ful device for helping to solve model-based small area—especially small geographic
area—estimation problems, which currently are receiving considerable attention
(see, for example, Datta et al., 1999, and Rao, 1999), with even more attention being
argued for (see Citro, 1998).

Descriptions of the EM algorithm may be found in Flury and Zoppè (2000),
Meng (1997), and McLachlan and Krishnan (1997), among others. Because the
EM procedure requires imputation of the complete-data sufficient statistics, rather
than just simply the individual missing observed values, the equivalency discussed
here derives from an assumption of normality, for which the means and covariances
constitute the sufficient statistics. Of note is that this generally is not true of non-
normal populations, although it is for the Poisson and binomial probability models.
An assumption of normality links OLS and MLE regression results; application of
the Rao-Blackwell factorization theorem of mathematical statistics verifies that the
means and covariances are sufficient statistics in this situation.

Yates (1933) shows for analysis of variance (ANOVA) that if each missing obser-
vation is replaced by a parameter to be estimated (i.e., the conditional expectation for
a missing value), the resulting modified analysis becomes straightforward by treat-
ing the estimated missing value as an observation (i.e., an imputation). Rewriting the
ANOVA as an OLS regression would involve introducing a binary indicator variable
for each missing value—the value of –1 denoting the missing value observation
in question, and 0 otherwise—with the estimated regression coefficients for these
indicator variables being the missing value estimates. Generalizing this regression
formulation allows missing values to be estimated with an analysis of covariance
(ANCOVA) regression specification, one in fact suggested by Bartlett (1937) and
by Rubin (1972).

Consider a bivariate set of n observed values, each pair denoted by (yi , xi ), i=1,
2, . . ., n. Suppose only the response variable, Y, contains incomplete data. First, the
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nm missing values need to be replaced by 0. Second, nm 0/–1 indicator variables,
Im (m = 1, 2, . . ., nm), need to be constructed; Im contains (n–1) 0 s and a single
–1 corresponding to the mth missing value observation. Regressing Y on X together
with the set of indictor variables constitutes the ANCOVA.

Suppose Yo denotes the no-by-1 (no = n – nm) vector of observed response val-
ues, and Ym denotes the nm–by-1 vector of missing response values. Let Xo denote
the vector of predictor values for the set of observed response values, and Xm denote
the vector of predictor values for the set of missing response values. Further, let 1
denote an n-by-1 vector of ones that can be partitioned into 1o , denoting the vec-
tor of ones for the set of observed response values, and 1m , denoting the vector of
ones for the set of missing response values. Then the ANCOVA specification of the
regression model may be written as

(
Yo
0m

)
=
(

1o Xo
1m Xm

)(
α

β

)
+
(

0o,m
−Im,n

) (
βm
)+
(

εo
0m

)
⇒ Y = α1 + Xβ −

nm∑

m=1

ymIm + ε,

(4.5.1)
where 0m is an nm-by-1 vector of zeroes, 0o,m is an no-by- nm matrix of zeroes, α

and β respectively are the bivariate intercept and slope regression parameters, βm
is an nm-by-1 vector of conditional expectation regression parameters, Im,m is an
nm-by- nm identity matrix, and ε0 is an no-by-1 vector of random error terms. The
bivariate OLS regression coefficients, a and b, for this ANCOVA specification are
the regression results for the observed data only [e.g., b = (XT

o Xo)−1XT
o Yo, where

T denotes matrix transpose]. In addition, the regression coefficients, bm , for the
indicator variables are given by

bm = a1m + bXm = Ŷm, (4.5.2)

which is the vector of point estimates for additional observations (i.e., the prediction
of new observations) that should have X values within the interval defined by the
extreme values contained in the vector Xo. This is a standard OLS regression result,
as is the prediction error that can be attached to it (see, for example, Montgomery
and Peck, 1982, pp. 31–33). Dodge (1985, p. 159) cautions that the OLS equiva-
lency highlighted here rests on the existence of estimable equations, which in some
instances means that the ANCOVA solution is appropriate only when the number
of missing values is not excessive. If enough observations are missing, the number

of degrees of freedom can become zero or negative, the matrix

(
no 1T

o Xo

XT
o 1o XT

o Xo

)
can

become singular, and as such not all of the parametric functions would be estimable.
For the SAR model specification, Eq. (4.5.3) is replaced with

Y = ρWY + (I − ρW)Xβ +
M∑

m = 1

ym(−Im + ρWom) + ε, (4.5.3)

where matrix W often is the row-standardized version of the conventional binary
geographic connectivity matrix. Estimation of this equation is discussed in Martin
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Table 4.2 Imputation of turnip production in 3 vandalized field plots

Field plot
Conventional
EM estimate

Spatial SAR-EM estimate
∧
ρ = 0.443

Spatial filter: 3 selected
eigenvectors

(6,5) 28.9 29.99 24.31
(5,6) 18.8 17.66 13.62
(6,6) 27.8 28.26 23.93

(1984) and Haining et al. (1989). For the spatial filter model, equation (4.5.3) is
replace with

Y = XβX −
M∑

m - 1

ymIm + EkβEk
+ε, (4.5.4)

where Ek are the set of k selected eigenvectors extracted from the Moran Coefficient
numerator matrix (I – 11T/n)C(I – 11T/n) (see Griffith, 2000a); the projection matrix
(I – 11T/n) centers a variable and is found throughout the multivariate statistics
literature.

For illustrative purposes, consider the agricultural field plot turnip production
data reported by Rayner (1969). The originally devised latin square experimental
design was destroyed by a cluster of three plots in one corner of the field being
vandalized. Imputation results from Eqs. (4.5.2), (4.5.3), and (4.5.4) are reported in
Table 4.2. Equation (4.5.2) simply yields the mean of observed harvest values for
the variety type that is missing. Equation (4.5.3) yields modifications of these impu-
tations that exploit redundant locational information in the values, increasing the
two preceding imputations immediately adjacent to observed values, and decreas-
ing the preceding imputation that is adjacent only to missing values. And, Eq. (4.5.4)
shrinks all three spatial autocorrelation adjusted imputations toward the field-wide
mean.

Substantially more sophisticated versions of these estimators, involving both
missing X and Y values and constrained estimation, appear in Griffith (1999,
2000b).

V Concluding Comments: Commonalities and Distinctions
Between Spatial Statistics and Spatial Econometrics

Not surprisingly, spatial econometrics and spatial statistics share much subject
matter. But they also embrace a number of thematic differences. The preced-
ing discussion describes conspicuous similarities and differences between these
two subdisciplines, especially as they are practiced in the social sciences, and
particularly highlighting where they diverge.
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5.1 Lessons from Spatial Econometrics

As to spatial econometrics, its practitioners should have to learn how to work sys-
tematically with spatially biased data, that bias being responsible not only for spatial
heterogeneity and asymmetry, but also for complex spatial patterns.

A second conclusion outlined above refers to the importance of pre-econometric
specifications, especially if models are going to be used for future exploratory pur-
poses, such as forecasts or regional policy computations. Almost certainly future
spatial econometric work will remain fundamentally theory-laden (Aznar Grasa,
1989, p.10), and accordingly theoretical spatial economics will continue to be an
indispensable guide to spatial econometric modelling.

The same remark applies to estimators employed in spatial econometrics; these,
too, need to be decided on in terms of the uses to which a model will be put. As a
last word of caution here: attention should be given to identifiability, a topic rarely
encountered in spatial econometric work.

Finally, complexity of spatial patterns has to be addressed explicitly and more
fully. An appropriate complexity analysis should be the firsts step in every spatial
econometric exercise.

5.2 Lessons from Spatial Statistics

The analysis of non-normal data and missing value imputation are two topics for
which considerable progress has been made to date. MCMC allows spatial scientists
to have a much richer data analytic toolbox, one that includes Bayesian modelling.
A spatial EM algorithm allows both redundant attribute and locational information
to be exploited for imputation purposes; algebraically, the resulting equations are the
same as those used for kriging in geostatistics. At this point in time, dissemination
of these techniques has become an important goal for spatial statistics.

As soon as individuals must be aggregated in order to establish sound incidence
rates, or because their attributes are to be related to areal-extensive environmental
exposure, the ecological approach is the only sensible option for data analysis. The
ecological fallacy problem, which now is much closer to being resolved, must be
solved in order to bolster ecological inferences/conclusion.

Finally, much more research work is needed before a sound understanding is
attained about how to devise appropriate spatial sampling designs, and how to
control error propagation in georeferenced data analyses.
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Part I
Non-standard Spatial Statistics

[Georeferenced v]ariables . . . tend to have distributions with high temporal and
spatial autocorrelation, very high variance due to outliers and nonrandom
missing value[s]. In such cases, the departures from normality are so great that
even robust techniques such as the Gauss-Markov linear model may behave
unpredictably.

Philip A. Schrodt, Patterns, Rules and Learning (2nd ed.), 2004, p. 19.



Chapter 1
Introduction: Spatial Statistics

A wide array of topics in spatial statistics introduce methodological controversy:
aggregate versus disaggregated data inference (e.g., the ecological fallacy), mod-
elling the spatial covariance versus the spatial inverse covariance matrix, including
fixed and/or random effects terms in a model specification, spatial autocorrelation
specified as part of the mean response versus part of the variance parameter, and
methods for simulating spatially autocorrelated random variables.

A spatial statistician often pursues a data-driven, rather than a model-
specification-driven, analysis. This perspective reflects the sampling design origins
of statistical inference. A critical issue in this approach is accounting for all trends in
a data set, in turn allowing residual values to be reduced to ones that mimic indepen-
dent and identically distributed (iid) random variables. These trends may be related
to covariate as well as autoregressive relationships. Complexity associated with
these trends often is a function of noisy (e.g., considerable dispersion), dirty (e.g.,
nonlinear relationships), and/or messy (e.g., unbalanced factors) data. Experience
with the normal-linear statistical model (especially with regard to variable trans-
formations) has taught that flexibility is needed in order to properly address this
complexity.

In this part, a certain number of working papers are brought together, most of
which have been presented and commented on in departmental colloquia and/or
in special sessions devoted to spatial statistics and its applications at national and
international conferences.

Although this set of papers appears to be articulated with rather loose couplings,
these papers share the common thread of dealing with spatial autocorrelation and
its associated problems in an advanced way. Hopefully they will stimulate fresh
thinking about some of the more complicated problems in spatial statistics.

3D.A. Griffith, J.H.P. Paelinck, Non-standard Spatial Statistics and Spatial
Econometrics, Advances in Geographic Information Science 1,
DOI 10.1007/978-3-642-16043-1_1, C© Springer-Verlag Berlin Heidelberg 2011



Chapter 2
Individual Versus Ecological Analyses

2.1 Introduction

Analyses of disease maps frequently require the use of an ecological approach,
partially because aggregates of cases allow such measures as rates to be computed.
In addition, group averages of individual measures often are more readily available,
tend to reduce impacts of measurement error, and help to preserve the confiden-
tiality of individuals in each aggregation group. Given this context, the resulting
problematic issue concerns drawing sound inferences about individuals from such
grouped data. The general drawback to this type of inference is known as the ecolog-
ical fallacy: most often a difference exists between an ecological regression and the
regression based upon individuals underlying it (i.e., aggregate-level relationships
do not necessarily hold at the individual level). Well-recognized impacts corrupt-
ing inference are aggregation bias (i.e., distortions of the information content of
data attributable to loss of variability through observation aggregation), confound-
ing variables (i.e., hidden or unknown variables lurking about in a study that cause
distortions through their correlations with the response variable), and nonlinearity.
One interesting exchange about this topic appears in the Annals of the Association
of American Geographers (2000).

In this chapter, results of experiments with Syracuse, NY pediatric lead poison-
ing data demonstrate selected nonstandard spatial statistical analyses concerning
individual versus ecological inference.

2.2 Spatial Autocorrelation Effects

Frequently georeferenced data comprise geographic aggregates, with geographic
variability constituting part of the focus of a study. Accordingly, analyses of disease
maps are further complicated by the presence of spatial autocorrelation (SA) effects
associated with georeferenced data, especially because less is known about impacts
of these effects on binomial or Poisson random variables. Generally speaking, vari-
ance inflation is the principal impact of positive SA in linear statistical analyses.

5D.A. Griffith, J.H.P. Paelinck, Non-standard Spatial Statistics and Spatial
Econometrics, Advances in Geographic Information Science 1,
DOI 10.1007/978-3-642-16043-1_2, C© Springer-Verlag Berlin Heidelberg 2011



6 2 Individual Versus Ecological Analyses

This holds for binomial and Poisson variables, too, where it operates as a source of
overdispersion.

Consider a P-by-Q regular square tessellation network of locations. Simple bino-
mial models were estimated for P = 91 and Q=92 (i.e., n = 8,372), and the Syracuse
pediatric blood lead level (BLL) data parameter estimates based upon the three cur-
rent threshold values of concern: 5 micrograms/deciliter (μg/dl; the detection level),
10 μg/dl (the concern threshold), and 20 μg/dl (the intervention threshold); these
data contain 8,343 child-parcel matched locations, with global parameter estimates
reported in Table 2.1. Impacts of SA in this numerical example are illustrated in
Fig. 2.1. As SA latent in the data increases from none, to a moderate level, and
then to a marked level, variance indeed increases, with the principal impact being a
noticeable decrease in kurtosis (i.e., peakedness; Fig. 2.1a). In other words, the dis-
tribution is being flattened, with more extreme counts becoming increasingly likely,
and more central counts becoming increasingly less likely.

The moderate levels of positive SA (msa) employed to construct Fig. 2.1 are
those more commonly encountered in the real world. These levels are accompanied
by a noticeable, but not a dramatic, distortion of the affiliated histogram. The strong
level of positive SA (ssa) employed to construct Fig. 2.1 is rarely encountered in
the real world. Nevertheless, it distorts histograms in a way that makes them more
closely resemble a uniform distribution, even when the sample size implies a bell-
shaped curve should be expected. Figure 2.2 portrays the impact of near-perfect
positive SA. It demonstrates that further increasing the level of positive SA results
in additional squashing of the more central frequencies, essentially forcing all counts
to be either of the two extremes of the range of counts. In other words, the frequency
distribution now is sinusoidal in form.

2.3 Aggregation Impacts

For independent and identically distributed (iid) observations, the number of ways
the total number of individuals (P) can be allocated to n aggregate groups is given by
the following Stirling number of the second kind (Abramowitz and Stegun, 1964):

1

n!

n∑

k=0

( − 1)n−k n!

k!(n − k)!
kP (2.1)

One reason to note SA impacts, beyond variance inflation, is that the clustering of
similar values on a map means the actual number of geographic areal unit aggregates
is constrained to be less than the quantity rendered by expression (1). Accordingly,
positive SA reduces within areal unit variation, and hence accentuates between areal
unit variation. For example, if all of an even number of observations were linked
pairs (i.e., correlated), with the net effect being that P/2 is the total number of items
for allocation, then for two groups and 10 observations, this constraint reduces the
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8 2 Individual Versus Ecological Analyses

Fig. 2.1 Binomial distribution histograms for n = 8,372. Left (a): impacts of spatial autocorrela-
tion. Right (b): comparable binomial histograms based upon the logistic regression intercept term
variance

Fig. 2.2 Binomial distribution histograms for n = 8,372: impacts of near-perfect positive spatial
autocorrelation

number of possible groups from 511 to 15. In other words, SA may well help data
analysts contend with the ecological fallacy to some degree.

2.3.1 The Syracuse Data

BLL data were collected by the Onondaga County Health Department for chil-
dren, ages 0–6, residing in the City of Syracuse during 1992–1996, and then made
digitally available for scientific analysis, with confidentiality being maintained by
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masking names with unique identification numbers. These data have undergone con-
siderable editing and cleaning, and have been geocoded using the 2002 cadastral
property tax map, which contains 35,500 parcels (Griffith et al., 2008). This data set
comprises a total of 16,383 BLL measurements, of which 37 fail to have addresses
that matched any of the city parcel addresses (i.e., they are located outside of the
city boundaries), and 73 final address matchings fail to have consistent block and
block group allocations (which introduces a small amount of noise into some of the
aggregate data analyses). Repeated measures for children are summarized by retain-
ing only the maximum BLL for each child. These observations are geographically
distributed across 8,208 parcel locations in the City (see Fig. 2.3), with three parcels
failing to link to census tracts (of which there are 57) or census block groups (of
which there are 147), and an additional two parcels failing to link to census blocks
(of which there are 2,025).

The handful of cases available for a non-geographic analysis that had to be set
aside for a geographical analysis introduce some, but not much, noise into the analy-
sis. In all cases for BLL > 5 μg/dl, regardless of geographic aggregation, the simple
constant mean logistic regression model yields an intercept estimate of 0.6965, with
a standard error of 0.0234 (see Table 2.2). In other words, the geographic aggrega-
tion does not distort this parameter estimate or the inference that accompanies it.
Rather, ecological distortion enters here in terms of the deviance statistic. Although
somewhat meaningless for a binary variable, the individual data analysis is accom-
panied by a deviance statistic of 1.27. This value increases to 2.06 for census blocks,
to 6.02 for census block groups, and to 19.81 for census tracts. Results for BLL >

Fig. 2.3 The geographic
distribution of individual
BLLs across the City of
Syracuse. Black: 0–5 μ g/dl;
dark gray: 5–10 μg/dl; μ

medium gray: 10–20 μ g/dl;
and, light gray: 20–47 μ g/dl



10 2 Individual Versus Ecological Analyses

Table 2.2 Logistic regression estimation results for a constant mean model specification, for
threshold BLL values and the different levels of geographic aggregation

Statistic Individual Block Block group Tract

Estimate SE Estimate SE Estimate SE Estimate SE

BLL >5 μg/dl

α̂ 0.6965 0.0234 0.6965 0.0234 0.6965 0.0234 0.6965 0.0234
Deviance 1.27 2.06 6.02 19.81

BLL >5 μg/dl

α̂ –1.3643 0.0274 –1.3643 0.0274 –1.3643 0.0274 –1.3643 0.0274
Deviance 1.01 1.49 4.17 12.99

BLL >20 μg/dl

α̂ –4.2532 0.0939 –4.2532 0.0939 –4.2532 0.0939 –4.2532 0.0939
Deviance 0.15 0.34 0.76 1.74

10 and >20 μg/dl (see Table 2.2) are consistent with these findings. Not only may
the deviance statistic be detecting a mixture of heterogeneous Bernoulli random
variables, but it also may be detecting the presence of SA.

In summary, for the simple intercept-only logistic regression model, ecologi-
cal distortions appear to manifest themselves most noticeably through the deviance
statistic, with aggregate data cross-tabulated by geographic areal units rendering the
same inference as individual data.

2.3.2 Previous Findings for Syracuse

Griffith et al. (1998) report findings based upon a spatial analysis of part of the
database employed here. Their study found that the general pattern of elevated BLLs
across the City persists through successive levels of aggregation, from the individ-
ual child through 1990 census tract groupings. Conspicuous SA is identifiable at
each level of geographic aggregation. On both substantive and empirical grounds,
housing value is the single covariate that is strongly associated with elevated BLLs.
Pediatric lead poisoning tends to be a completely preventable inter-city/poverty
disease.

Griffith et al. (1998) also report sets of socio-economic/demographic census
variables that strongly covary with pediatric lead poisoning at aggregate levels. In
additional to housing value (e.g., median house value, percentage renter occupied),
these include:

census tracts: population density, percentage in cohort < 18 years of age
census block group: population density, percentage black, number of cases
census block: percentages black and Hispanic, number of cases, percentage in

cohort < 18 years of age



2.4 Spatial Autocorrelation in the Syracuse Data 11

Covariate surrogates for SA also appear in the models. In addition, the census
block resolution is sufficiently fine that many geographic areas are non-residential,
resulting in many areal units having zeroes; this is one problematic feature associ-
ated with using fine resolution census geographies or individual data for analysis
purposes.

2.4 Spatial Autocorrelation in the Syracuse Data

Two sources of SA in the Syracuse BLL data are of particular interest. The first is
latent in the BLL values themselves: children who are neighbors tend to have similar
BLLs. The second is latent in the housing value covariate: neighboring houses tend
to have a similar market value.

2.4.1 Spatial Autocorrelation in the Syracuse Data: LN(BLL + 1)
Values

A Thiessen polygon partitioning of the Syracuse city surface based upon locations
with children for which BLL values have been measured appears in Fig. 2.4. Below-
detection-level BLL anomalies are conspicuous, whereas high BLL anomalies are
not, according to a simple normal quantile plot of individual LN(BLL + 1) values,
where one is the maximum likelihood translation parameter estimate for aligning
the log-BLL values with a bell-shaped curve (see Fig. 2.5).

Fig. 2.4 Thiessen polygon
surface partitioning of the
City of Syracuse, for the
locations of children for
which BLL values were
obtained during 1992–1996
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Fig. 2.5 Normal quantile plot for individual log-BLL values

SA for individual LN(BLL + 1) value locations (a total of 8,208 parcels), por-
trayed with a semivariogram plot (see Fig. 2.6) for distance not exceeding roughly
a third of the span of the geographic landscape, is weak-to-moderate and pos-
itive. Based upon roughly 37.3 million distance pairs, where distance hasbeen

Fig. 2.6 Semivariogram plot for LN(BLL + 1) values, City of Syracuse, NY. Black asterisks
denote observed values; gray open circles denote spherical model predicted values
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standardized to the unit square, the following spherical and circular semivariogram
models1 (where γ̂ij denotes semivariance) best describe these data:

penta−spherical model: γ̂ij = 0.14+0.03

[
15

8

dij

0.32
− 5

4

(
dij

0.32

)3

+ 3

8

(
dij

0.32

)5
]

,

dij ≤ 0.32;

γ̂ij = 0.14 + 0.03 = 0.17 , dij > 0.32

spherical model: γ̂ij = 0.14 + 0.03

[
3

2

dij

0.26
− 1

2

(
dij

0.26

)3
]

, dij ≤ 0.26

γ̂ij = 0.14 + 0.03 = 0.17 , dij > 0.26

These models respectively yield 0.074 and 0.075 relative error sums of squares.
The scatterplot reveals very marked in situ variability of log-BLL values, and a
well-defined geographic pattern to their covariation.

2.4.2 Spatial Autocorrelation in the Syracuse Data: Appraised
House Value

The correlation between individual log-BLLs and 2002 appraised house values is
–0.29 (see Fig. 2.7).

In general, house values tend to display strong positive SA. Indices for the City of
Syracuse, calculated with median values for geographic aggregates, are as follows
(also see Fig. 2.7):

These statistics are based upon 2002 assessed values, per $10,000, for houses
in which children were tested for pediatric lead poisoning (a total of 7,057 houses).

aggregation unit Moran Coefficient (MC) Geary Ratio (GR) n
census tract 0.40902 0.62080 56 (#32 missing)
census block group 0.55331 0.45103 145 (#32.001 and

#32.002 missing)
census block 0.66111 0.32304 1,485 (540 blocks

missing)

1 The semivariance is one half of the squared difference between the values of an attribute at
two locations. A scatterplot is constructed between these values and the distance separating the
two locations. A semivariogram model (e.g., penta-spherical, spherical, circular) describes the
nonlinear trend line for this scatterplot.
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Fig. 2.7 Scatterplot and
trend line portraying the
relationship between BLL
and 2002 appraised house
value

Areal units without residential properties were set aside during the SA index compu-
tations. These results simply indicate that latent SA in the geographic aggregations
is moderate and positive, increasing with increasingly finer resolution.

SA for individual residential properties, portrayed with a semivariogram plot (see
Fig. 2.8) for distance not exceeding a third of the span of the geographic landscape,
is strong and positive. Based upon roughly 16.9 million distance pairs, where dis-
tance has been standardized to the unit square, the following spherical and circular
semivariogram models (again where γ̂ij denotes semivariance) best describe these
data:

circular model: γ̂ij = 1.58 + 4.82
2

π

⎡

⎣ dij

0.18

√

1 −
(

dij

0.18

)2

+ SIN−1
(

dij

0.18

)
⎤

⎦ ,

dij ≤ 0.18 ;

Fig. 2.8 Semivariogram plot for 2002 appraised house values, City of Syracuse, NY. Black
asterisks denote observed values; gray circles denote circular model predicted values
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γ̂ij = 1.58 + 4.82 = 6.40 , dij > 0.18

spherical model: γ̂ij = 1.47 + 4.96

[
3

2

dij

0.21
− 1

2

(
dij

0.21

)3
]

, dij ≤ 0.21

γ̂ij = 1.47 + 4.96 = 6.43, dij > 0.21

These models respectively yield 0.005 and 0.008 relative error sums of squares.
The scatterplot reveals sizeable in situ variability of house values, a pronounced
geographic pattern to their covariation, and a not surprising city-wide trend
possibility.

Including house value in the logistic regression specification accounts for some
of the SA in BLLs. Because appraised house values are not reported for apartment
complexes, the values for these locations were set to 0, and then an indicator vari-
able was created to differentiate these rental locations from the other residential
locations (the numeral 1 denotes non-rental, and –1 denotes rental). Logistic regres-
sion estimation results for this situation appear in Table 2.3. As expected, house
value is negatively related, whereas rental property is positively related, to elevated
BLLs. Inclusion of the housing variables reduces overdispersion across the indi-
vidual and ecological analyses (see Sect. 3.1). In addition, ecological bias now is
detectable in all of the parameter estimates as well as their corresponding standard

Table 2.3 Logistic regression estimation results when house value is used as a covariate, for
threshold BLL values and the different levels of geographic aggregation

Statistic
Individual Block Block group Tract

Estimate SE Estimate SE Estimate SE Estimate SE

BLL > 5 μg/dl

α̂ 1.4552 0.0484 1.2539 0.0838 0.9241 0.1710 1.2624 0.2613
β̂house value –0.2442 0.0118 –0.2669 0.0120 –0.3192 0.0135 –0.3540 0.0141
β̂Ihouse value

0.5686 0.0484 0.7491 0.0838 1.3071 0.1710 1.1288 0.2613
Deviance 1.21 1.71 4.60 8.89

BLL >10 μg/dl

α̂ –0.8165 0.0539 –1.2567 0.1396 –1.1597 0.3038 –0.8042 0.3821
β̂house value –0.2731 0.0142 –0.2787 0.0162 –0.3404 0.0186 –0.3773 0.0198
β̂Ihouse value

0.8462 0.0539 1.1290 0.1396 1.2680 0.3038 1.0676 0.3821
Deviance 0.96 1.26 3.50 6.21

BLL > 20 μg/dl

α̂ –4.1665 0.2006 –3.5970 0.2306 –3.4234 0.2554 –3.2939 0.2693
β̂house value –0.1384 0.0429 –0.1429 0.0505 –0.1897 0.0582 –0.2210 0.0622
β̂Ihouse value 0.6742 0.2006 ∗∗∗ ∗∗∗ ∗∗∗

Deviance 0.14 0.38 1.09 1.67
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errors (Green, 1993; Wrigley, 1995; Holt et al., 1996). Although inferences tend not
to be dramatically altered for BLL > 5 or 10 μg/dl, nevertheless they are altered.
The case of BLL > 20 μg/dl illustrates how ecological analysis findings can deviate
radically from individual-based findings. Furthermore, the rareness of BLLs > 20
creates numerical problems with estimation of the house value binary 0–1 indicator
variable parameter, which had to be set aside for its aggregate analyses. This com-
plication resulted in a loss of observations: 121 blocks, five block groups, and one
census tract.

2.5 Spatial Autocorrelation in the Syracuse Data: Other Sources

Other sources of SA (e.g., geographic concentration of poverty, siblings)—which
may well represent the presence of confounders—beyond house value can be cap-
tured in part by employing a spatial filter (SF) model specification. Spatial filtering
involves regressing a disease map variable on a set of synthetic variates represent-
ing distinct map patterns that accounts for SA. Griffith (2003) develops one form
of spatial filtering whose synthetic variates are the set of n eigenvectors extracted
from matrix (I – iiT/n)C(I – iiT/n), the matrix appearing in the numerator of the MC
index of SA, where C is a binary 0–1 n-by-n geographic weights matrix (i.e., cij

= 1 if areal units i and j are neighbors, and 0 otherwise), and i is an n-by-1 vec-
tor of ones.2 This procedure is similar to executing a principal components analysis
in which the covariance matrix is given by (I – iiT/n)C(I – iiT/n). But rather than
using the resulting eigenvectors to construct linear combinations of attribute vari-
ables, the eigenvectors themselves (instead of principal components scores) are the
desired synthetic variates, each containing n elements, one for each areal unit. The
extracted eigenvector 1√

n
i relates to the mean response, and the remaining (n–i)

extracted eigenvectors relate to distinct map patterns characterizing latent SA—
whose MCs are given by standardizing their corresponding eigenvalues (Tieflesdorf
and Boots, 1995)—that can materialize with matrix C. Furthermore, for a given
geographic landscape surface partitioning, the eigenvectors represent a fixed effect
in that matrix (I – iiT/n)C(I – iiT/n) does not, and hence they do not, change from
one attribute variable to another.

Because this eigenfunction decomposition yields n eigenvectors, a spatial sci-
entist needs to restrict attention to only those eigenvectors describing substantive
positive/negative (e.g., MC > 0.25) SA, reducing the candidate set to a more man-
ageable number for describing a given disease map. Supervised stepwise selection
from this set of eigenvectors is a useful and effective approach to identifying the
subset of eigenvectors that best describes latent SA in a particular disease map. This
procedure begins with only the intercept included in a regression specification. Next,
at each step an eigenvector is considered for addition to the model specification. For

2This vector almost always is denoted by 1 in the spatial statistics literature.
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the stepwise generalized linear binomial model regression, the eigenvector that pro-
duces the greatest reduction in the log-likelihood function chi-square test statistic is
selected, but only if it produces at least a prespecified minimum reduction; this is the
criterion used to establish statistical importance of an eigenvector. At each step all
eigenvectors previously entered into a SF equation are reassessed, with the possibil-
ity of removal of vectors added at an earlier step. The forward/backward stepwise
procedure terminates automatically when some prespecified threshold chi-square
statistic values are encountered for entry and removal of all candidate eigenvectors.

SFs were constructed for the three geographic aggregations from the 15 candidate
eigenvectors for census tract, the 37 for block group, and the 483 for block surface
partitionings. Spatial filtering results appear in Table 2.4. Although SA is being
accounted for in the parameter estimations for these models, ecological bias still
persists. The constructed SFs represent moderate-to-strong levels of positive SA:

Aggregation
unit

BLL >5 BLL >10 BLL >20
MC GR MC GR MC GR

census tract 0.52360 0.46773 0.57387 0.42043 0.82900 0.19180
census block group 0.78798 0.21419 0.80439 0.24604 0.89953 0.22550
census block 0.96443 0.28303 0.90625 0.29532 0.97343 0.31957

Individual results are not available here, since eigenvectors were not computed
for the set of individual locations (see Fig. 2.4 for a possible surface partitioning
supporting this purpose). Of note is that, as before, the rareness of BLLs > 20 con-
tinues to create numerical problems with estimation of the house value binary 0–1
indicator variable parameter, which has been removed from the model specification.

2.6 Bayesian Analysis Using Gibbs Sampling (BUGS) and Model
Prediction Experiments

The parallel analyses of individual and ecological data in preceding sections
reveal the presence of positive spatial dependence beyond house value, most likely
attributable to other unmeasured cofounders with spatial structure, in elevated pedi-
atric BLLs. These parallel analyses also document the presence of ecological biases.
A previous ecological investigation of these data uncovers population density, an
indicator of urban poverty that could not be detected with the individual-level data,
as a covariate of elevated BLLs. This finding illustrates Darby et al.’s contention that
“the ecological result [is not always the one] that is wrong” (2001, p. 202). But even
findings reported here from ecological analyses conducted by changing geographic
aggregation resolution do not agree. This ecological variation arises from a suppres-
sion of within-areal unit variability, a finding established in Sect. 2.3.1: “within-area
information . . . is vital for analysis and interpretation” (Wakefield and Salway, 2001,
p. 136). Wakefield (2003) notes that this is particularly true for regression anal-
yses, in which SA components potentially account for unmeasured confounders.
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Accordingly, the question of interest now asks if this within-areal unit variation can
be recovered. Richardson and Montfort (2000) argue that one method of recovery
is to posit a parametric form for this variation in order to adjust the corresponding
individual-level model, noting that even a parametric form that describes the varia-
tion poorly is better than none at all. Wakefield and Salway (2001) allude to the use
of random effects, which is explored in this section.

The experiments conducted to explore the utility of random effects estimates
as surrogates for within-areal unit variation include those ecological covariates
found in the previous study (Griffith et al., 1998). Besag et al. (1991) suggest that
these random effects could be spatially structured using a conditional autoregressive
(CAR) covariance specification. Wakefield and Salway (2001) suggest that the sim-
plest approach is to employ non-spatial random effects. As a compromise between
these two specifications, a SF is employed here to specify spatially structured ran-
dom effects; the SF becomes the mean of the effects. As is done in the tradition
of principal components regression, this SF is computed exogenously, and then
its coefficient—which subsequently is distributed across the linear combination of
eigenvectors—is estimated; this procedure is analogous to introducing starting val-
ues in nonlinear regression estimation (e.g., logistic regression). Next, this analysis
is repeated with a proper CAR specification for spatially structured random effects.

Various different completed analyses facilitate exploring relationships between
individual- and ecological-based model predictions. One hypothesis evaluated here
may be stated as follows:

The variance of a spatially structured ecological random effects term is directly proportional
to the within areal unit variability suppressed by undertaking an ecological analysis.

Preparatory work for assessing this hypothesis involved a Bayesian analysis of the
pediatric BLL data. This analysis was executed with the WinBUGS software (the
Windows version of BUGS; Thomas et al., 2004), employing a SF model speci-
fication, normal priors for the parameter estimates and the random effects term, a
gamma prior for the inverse of the error variance, a 25,000-iteration burn-in period,
and 500,000 subsequent Markov chain Monte Carlo (MCMC) iterations that then
had only every hundredth one retained (weeding), yielding chains of length 5,000
for estimation purposes. With regard to diagnostics, accompanying temporal cor-
relograms and time series plots suggest the generated chains are sound. A CAR
comparison also is made, using a 5,000-iteration burn-in period, and 100,000 sub-
sequent MCMC iterations that then had only every hundredth one retained, yielding
chains of length 1,000 for estimation purposes.

A second hypothesis evaluated here may be stated as follows:

Individual level prediction improves by adding to its model specification those neighbor-
hood variables identified as important factors with ecological modeling.

The resulting model is labeled mixed here.
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2.6.1 Results for the 2000 Census Tracts

Results of parameter estimation for both generalized linear and BUGS binomial
regressions are reported in Table 2.5. For the most part, the BUGS results corrobo-
rate the frequentist generalized linear model results. The SFs capture strong positive
SA. Maps for two eigenvectors common to all three SFs (i.e., E3 and E9) appear
in Fig. 2.9. One conspicuous difference between these two sets of results is the
standard errors for BLL > 5 μg/dl and BLL > 10 μg/dl: Bayesian-based standard
errors tend to be noticeably larger in these two cases. Nevertheless, models for BLL
> 5 μg/dl and BLL > 10 μg/dl appear to furnish respectable descriptions of the
ecological data.

The suppressed variation induced by aggregation for ecological analysis is for
appraised house values. The following battery of descriptive statistics for the 5,000
MCMC generated random error terms, aggregated by census tract, were calculated:
mean, median, standard deviation, minimum value, maximum value, skewness, and
kurtosis. Next, a stepwise regression was executed using these statistics as predic-
tor variables, and the standard deviation of house value as the regressor variable.
Kurtosis was the single statistic selected in the stepwise analysis for BLL > 5 μg/dl;
it accounts for roughly 15% of the variability in the standard deviation of house val-
ues. The standard deviation was the single statistic selected in the stepwise analyses
for BLL > 10 μg/dl and BLL > 20 μg/dl; it accounts for, respectively, roughly 6.6%
and 4.6% of the variability in the standard deviation of house values. Meanwhile,
replacing kurtosis with this standard deviation for BLL > 5 results in roughly 4.6%
of the variability in the standard deviation of house values being accounted for. The
ideal result would be for nearly 100% of the variability in the standard deviation
of house values to be accounted for by the standard deviation in estimated random
error terms. Therefore, the hypothesis positing direct proportionality between these
two statistics is not supported here. Apparently the type of approach promoted by
Richardson and Montfort (2000) can neither be recaptured nor receive empirical
guidance from ecological Bayesian spatial modeling.

Of note is that random effects results from a proper CAR model also were gener-
ated for BLL > 5 μg/dl. Here the spatial autoregressive parameter estimate is 0.7870
(SE = 0.2063), indicating the presence of strong, positive SA; now the degrees of
freedom are 13. These random effects failed to exhibit any covariation whatsoever
with the suppressed variability.

A cross-tabulation of individual observed and prediction results for 0 (non-
elevated BLL) and 1 (elevated BLL) appear in Table 2.6; predicted probabilities
less than 0.5 have been classified as and rounded to 0, whereas those greater than
0.5 have been classified as and rounded to 1. As the ecological fallacy warns, apply-
ing an ecological model to individuals is unsuccessful here. Of note is that even the
individual-level model predictions loose reliability as elevated BLL increasingly
becomes a rare event. Nevertheless, as Darby et al. (2001) argue, enhanced model
results are obtained by formulating a mixed individual-ecological model specifica-
tion. Not only are covariates like population density detectable at the aggregate level,
while not at the individual level, but adding these covariates to an individual-level
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Fig. 2.9 Eigenvectors common to the spatial filters for the BLL >5 μg/dl, BLL > 10 μg/dl, and
BLL > 20 μg/dl. Left (a): eigenvector E3. Right (b): eigenvector E9

Table 2.6 Cross-tabulations of observed and model predicted elevated BLLs, for threshold BLL
values

Equation BLL >5 μg/dl BLL >10 μg/dl BLL >20 μg/dl
Predicted
observed

0 1 0 1 0 1

Ecological 0 2698 31 6535 0 8090 0
1 5413 63 1670 10 115 0

(ϕ̂ = 0.001) (ϕ̂ = 0) (ϕ̂ = 0)
Individual 0 367 2362 6516 19 8090 0

1 291 5185 1663 7 115 0
(ϕ̂ = 0.141) (ϕ̂ = 0.009) (ϕ̂ = 0)

Mixed 0 983 746 6522 13 8090 0
1 660 4816 1659 11 115 0

(ϕ̂ = 0.282) (ϕ̂ = 0.034) (ϕ̂ = 0)

model also improves predictability for BLL > 5 μg/dl, and very marginally for
BLL > 10 μg/dl. Of note is that any individual-model gains by including these
ecologically determined covariates is lost as these covariates become statistically
nonsignificant in their ecological analyses.

Because the results here were so poor, analyses were not repeated for either the
census block group or census block aggregations.

2.7 Discussion and Implications

The empirical case study explored here reveals that geographic aggregation com-
bined with SA can cause diagnostic statistics to be misleading. Nevertheless, four
general ecological inference conclusions can be drawn from findings summarized
here. First, spatial filtering may furnish a blurred, but still unsatisfactory, glimpse of
within-areal unit covariation by serving as the spatial structuring term for random
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effects. Second, the failure of estimated random effects to furnish a useful within-
areal units variability surrogate implies that the Richardson-Montfort suggestion of
specifying individual-level covariance structure a priori should be a more fruitful
pursuit. But guidelines for undertaking this task remain to be established; the ulti-
mate goal is to be able to draw the same statistical inferences from aggregate-level
data that would be drawn from individual-level data, but without having the individ-
ual details. Third, a posited covariance structure should include prominent attributes
identified via ecological analysis, resulting in a mixed formulation, as advocated
by Darby et al. (2001). Prominent ecological covariates that remain invisible at an
individual level of analysis offer the potential to dramatically improve statistical
description. In addition, these ecologically-based attributes may at least partially
account for SA that impacts upon individual data. Finally, the ability to develop far
better ecological-level predictive models for rare events is a continuing need.



Chapter 3
Statistical Models for Spatial Data: Some
Linkages and Communalities

3.1 Introduction

Introductory mathematical statistics textbooks discuss topics such as the sample
variance by invoking the assumption of independent and identically distributed (iid).
In other words, in terms of second moments, of the n2 possible covariations for a set
of n observations, the independence assumption posits that n(n – 1) of these covaria-
tions have an expected value of 0, leaving only the n individual observation variance
terms for analysis. This independence assumption is for convenience, historically
making mathematical statistical theory tractable. But it is an arcane specification that
fails to provide an acceptable approximation to reality in many contexts. Moreover,
the iid assumption so popular in theoretical statistics over the years “should not be
taken for granted, particularly when there are good physical reasons to abandon it”
(Cressie 1989, p. 197). Pursuing this thinking, theoretical and applied statisticians
began to explore situations in which the independence part of the iid assumption is
relaxed. Most notably is time series analysis; more recently is spatial statistics.

Spatial statistics includes spatial autoregression and geostatistics, two branches
that evolved separately over a number of decades. In a very general sense spatial
statistics is concerned with the statistical analysis of georeferenced data, or data for
which observations may be ordered on a two-dimensional surface and tagged with
Cartesian coordinates. These observations are correlated strictly due to their rela-
tive locational positions [spatial autocorrelation (SA)—data located relatively close
together geographically tend to be correlated], resulting in information redundancies
being present in georeferenced data values. Spatial autoregression links directly to
the Moran Coefficient used to index SA, while geostatistics links directly to the
Geary Ratio index. The purpose of this chapter is to focus attention on the linkages
between and commonalities spanning these two branches of spatial statistics, and
progress that has been made in merging them. The interested reader also should
read the two seminal articles by Ord (1975) and Cressie (1989); the two classic trea-
tises reviewing and extending spatial statistical theory are by Cliff and Ord (1981),
who have motivated research involving spatial autoregression, and Cressie (1991),
who has crystallized research involving geostatistics.

25D.A. Griffith, J.H.P. Paelinck, Non-standard Spatial Statistics and Spatial
Econometrics, Advances in Geographic Information Science 1,
DOI 10.1007/978-3-642-16043-1_3, C© Springer-Verlag Berlin Heidelberg 2011
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3.2 Background: Quantifying Spatial Autocorrelation

SA, the underlying statistical concept linking spatial autoregression and geostatis-
tics, directly parallels that of correlation in traditional statistics (see Griffith, 1992b).
Given a conventional statistical situation, if two variables, say X and Y, are posi-
tively correlated, then high values of X tend to be paired with the high values of Y,
medium values of X with the medium values of Y, and low values of X with the low
values of Y. The spatial statistical parallel involves a single variable, say Y. If SA is
positive, then locations with high values of Y tend to be surrounded by nearby high
values of Y, locations with medium values of Y tend to be surrounded by nearby
medium values of Y, and locations with low values of Y tend to be surrounded by
nearby low values of Y. Similar sets of statements can be composed for correlations
and autocorrelations that are either negative or zero.

SA’s literal definition is self-correlation. Extending the foregoing parallel
between traditional correlation and SA, the Pearson product moment correlation
coefficient (rP) formula can be translated into the Moran Coefficient (MC):

rp =

n∑

i = 1

( xi − x)( yi − y)
n

√
n∑

i = 1

( xi − x )2

n

√
n∑

i = 1

( yi − y )2

n

→ MC =

n∑

i = 1

n∑

j = 1
cij

( yi − y)( yj − y)
n∑

i = 1

n∑

j = 1
cij

√
n∑

i = 1

( yi − y )2

n

√
n∑

i = 1

( yi − y )2

n

. (3.1)

The left-hand term in the denominator of rP accounts for the variation in variable
X. This term is replaced with that for the variation in Y (the right-hand term in the
denominator of rP), in keeping with the meaning of the prefix auto-. The numerator
of rP is an average over the total number of pairings of X and Y, namely n. This term
is replaced with an average over the total number of geographic pairings, namely

n∑

i = 1

n∑

j = 1
cij, where cij is a binary (i.e., 0–1) indicator variable denoting whether or

not locations i and j are nearby. In other words, variable X in the formula for rP is
replaced by variable Y. Unlike conventional correlation coefficients, however, MC
is not restricted to the range [–1, 1]; rather, its range is dictated by what essentially
are the second largest positive and most negative eigenvalues of matrix C, which is
constructed from the n2 cij binary values (de Jong et al., 1984), and consequently
can go slightly beyond these two endpoint values.

SA also can be interpreted as quantifying pattern on a map (e.g., trends, gradients,
mosaics, hot/cold spots). As such, positive SA indicates that similar values tend to
cluster on the map, while negative SA indicates that dissimilar values tend to cluster.
This particular interpretation may be translated into paired comparisons of nearby
values, with positive SA rendering a near-zero average paired comparison value.
This perspective produced the Geary Ratio (GR) index:
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GR =

n∑

i = 1

n∑

j = 1
cij

( yi − yj )2

2
n∑

i = 1

n∑

j = 1
cij

√
n∑

i = 1

( yi − y )2

n−1

√
n∑

i = 1

( yi − y )2

n−1

. (3.2)

The denominator of this index employs the unbiased variance estimate (division
by n–1 rather than n). The numerator has a squared differences term, so that the sign
of the difference is neutralized. And, the numerator has division by 2 because (yi –
yj)2 = (yj – yi)2, both of which appear in the numerator, producing 2yi

2 and 2yj
2.

The numerator term is the basis of geostatistics, with cij being replaced with dij, the
distance separating locations i and j. Division by 2 is retained, and the relationship
between (yi – yj)2/2, labelled the semivariance, and dij characterizes latent spatial
dependency.

The Moran scatterplot, for spatial autoregression, and the semivariogram plot,
for geostatistics, are two graphical tools, which are special cases of the conventional
bivariate scatter diagram, that can be used to portray these relationships. This first
scatter diagram plots the sum or the average of neighbouring values (vertical axis)
against the values themselves (horizontal axis). The second scatter diagram plots
half the squared difference between two values (vertical axis) against the distance
separating these two values (horizontal axis); virtually always, in part because there
are so many distance pairs, the set of paired comparisons is aggregated into distance
groups, and then group averages are plotted.

3.2.1 The Moran Scatterplot

When undertaking a spatial autoregression analysis, a useful graphical tool for first
gauging the spatial dependency structure latent in georeferenced data is the Moran
scatterplot (Anselin, 1995). This scatterplot allows an investigator to examine the
nature, degree and extent of SA latent in georeferenced data. A modified version
of the scatterplot links the MC to regression by focusing on the numerator of
Eq. (3.1). Because the MC is computed with deviations from the mean, the geo-
referenced data first needs to be centred; hence, the plot becomes C(Y − ȳ1) on the
vertical axis versus (Y − ȳ1) on the horizontal axis. Now the MC can be computed
with results obtained from two simple linear regressions. In the first regression,
the spatially lagged deviation vector C(Y − ȳ1) is regressed on the deviation vec-
tor (Y − ȳ1), producing regression coefficient bYCY. In the second regression, the
row sum of connections C1 is regressed on the vector 1, producing regression
coefficient b1C1. Combining these results produces MC = bYCY

b1C1
. The regression

analyses should be executed with no-intercept equations. This result reveals that
the MC actually is a rescaled slope of the best-fitting line traversing the Moran
scatterplot.
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Calculating the Geary Ratio requires the additional bivariate regression of

(yi − ȳ)
n∑

j=1
cij on (yi − ȳ), again executed with a no-intercept option, yielding the

regression coefficient bGR, and equals

n − 1

n

(
bGR

b1C1
− bYCY

b1C1

)
.

These regressions emphasize that SA calculations are traditional regressions
involving geographical weightings.

3.2.2 The Semivariogram Plot

SA in geostatistics is visualized using the semivariogram plot (Cressie, 1989). The
semivariogram allows an investigator to examine the nature, degree and extent of
SA latent in georeferenced data. It is denoted by γ(d), and may be written as

γ(d̄g) = 1

2ng

n∑

j=1

n∑

i = 1

δij(yi − yj)
2, (3.3)

where ng denotes the number of location pairs contained in distance group g, dij is
the distance separating locations i and j, δij is a binary 0–1 variable denoting whether
or not both locations I and j belong to group g, and d̄g is the average distance for
group g.

The semivariogram plot is constructed using the average interlocation distance
for distance interval g, d̄g, along the horizontal axis, and the average semivariances,
γ(d̄g), along the vertical axis. Pairings of similar attribute values give smaller values
of γ(d̄g); if positive SA is present in georeferenced data, γ(d̄g) goes toward zero as
d̄g decreases. For many data sets, γ(d̄g) increases with increasing distance until it
reaches a relatively constant value, a value that commonly is referred to as the sill.
The scatter of points in the semivariogram plot can portray various functional forms,
all of which give some description of SA across a surface. A high degree of positive
SA results in a semivariogram plot displaying a relatively shallow slope, while near-
zero SA results in a steep slope. Here weighted nonlinear regression analysis is
required to analytically determine the best-fitting line describing the semivariogram
plot.

3.3 Specifications of Spatial Autoregressive and Geostatistical
Models

Rather than invoking the iid assumption, suppose a set of observed values con-
tains correlation, with their covariation denoted by V–1σ2, where σ2 is the common
variance across the set of values, and V = I in classical statistics. A distinction
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between the two spatial statistics modelling approaches is that spatial autoregres-
sion parameterises matrix V whereas geostatistics parameterises matrix V–1. These
respective perspectives are analogous to those in time series analysis, with spatial
autoregression exploiting the partial correlogram (the partial SA function) and geo-
statistics exploiting the correlogram (the SA function). In their simplest forms, each
is specified such that spatial covariation behaves the same regardless of position on
a map surface or direction in which the covariation occurs (i.e., isotropy).

3.3.1 Spatial Autoregressive Models

The simplest way to view spatial autoregression is to consider a standard linear
regression model in which the predictor matrix X is augmented by a vector whose
element i is calculated from values for locations nearby to location i. In keeping
with Eq. (3.1), one example of this specification may be written as

Y = ρCY + Xβ+ ∈, (3.4)

where ρ denotes the regression coefficient that captures SA, and CY is the vector
containing sums of nearby values. This specification directly links spatial autore-
gression to classical regression techniques, and hence to the normal distribution.
But Eq. (3.4) furnishes an example where ordinary least squares (OLS) results are
not equivalent to maximum likelihood results.

Gaussianity has been central to spatial autoregressive analyses, in part because
the accompanying probability density function yields tractable maximum likelihood
estimators, and in part because of the versatility of regression. Three model specifi-
cations dominate the spatial autoregressive literature: the conditional autoregressive
(CAR, a 1st-order model), the simultaneous autoregressive (SAR, a 2nd-order
model), and the autoregressive response (AR, a second-order model) models.
Descriptions of these models are presented in Anselin (1988), Cressie (1991),
Griffith (1988), Haining (1990), Ripley (1988), and Upton and Fingleton (1985),
among others. In general, though, the constant mean and constant variance spa-
tial autoregressive log-likelihood function based upon any inverse-covariance matrix
Vσ–2 may be written, in terms of a standard probability density function expression
found in introductory multivariate textbooks, as

constant − n

2
ln(σ 2) + 1

2
ln[det(V)] − (X − μ1)TV(X − μ1)/(2σ 2), (3.5)

where det denotes the matrix determinant operation, and matrix V is a function of
the connectivity matrix C and the SA parameter ρ. The normalizing constant (techni-
cally speaking, the Jacobian of the transformation from a spatially autocorrelated to
a spatially unautocorrelated mathematical space, a concept discussed both in calcu-

lus and in introductory mathematical statistics textbooks),
1

2
ln[det(V)] in this case,
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complicates spatial autoregressive analyses. Fortunately, for the Gaussian distribu-
tion it can be easily rewritten in terms of the eigenvalues of matrix V. Griffith and
Sone (1995) also propose a very good approximation for this normalizing constant,
one that facilitates the analysis of extremely large georeferenced data sets.

For the CAR spatial autoregressive model, matrix V in expression (3.5) becomes
(I – ρC). For the AR or SAR spatial autoregressive models, matrix V becomes
(I – ρC)T (I – ρC), where T denotes the operation of matrix transpose, or (I –
ρW)T(I – ρW) if a row-standardized (or stochastic) version of matrix C (namely
matrix W) is preferred. Estimation of the parameters μ, σ2, and ρ is complicated
because there is no closed form estimator for the spatial autoregressive parame-
ter ρ. The simplest way to estimate these three parameters is to use a non-linear
algorithm to simultaneously solve the following triplet of first derivative equations:
∂ln(L)
∂μ

= 0, ∂ln(L)
∂ σ 2 = 0, and ∂ln(L)

∂ρ
= 0. Initial values for the parameter estimates can be

obtained by: (1) shifting the data to a mean of 0 for μ; (2) using a descriptive statis-
tics procedure to compute s2 for σ2; and (3) regressing vector X on vector CX for
ρ. The non-linear estimate for μ then can be added to x̄ in order to compute the
estimated mean of the original data. A non-constant mean version can be obtained
by replacing μ with a vector of regression coefficients, ß, and then including a
differential equation in the non-linear analysis for each of the regression coefficients.

This estimation processes can be recast as a weighted least squares regression
problem. Now a simple way to estimate the three parameters is to solve the pair of
differential equations ∂ln(L)

∂μ
= 0 and ∂ln(L)

∂ σ 2 = 0, substitute the resulting two estima-
tors into the likelihood function, and then employ a non-linear algorithm to optimise
the reduced likelihood function. To illustrate this situation, this substitution results
in the following non-linear regression model for the AR autoregression specification
employing matrix W:

Y/EXP

[

−1

n

n∑

i=1

LN(1 − ρ λi)

]

= [ρW + Xß] /EXP

[

−1

n

n∑

i = 1

LN(1 − ρ λi )

]

+

ε/EXP

[

−1

n

n∑

i = 1

LN(1 − ρ λi )

]

(3.6)

This non-linear regression formulation uncovers the interesting feature that a sys-
tematic set of values spanning the feasible parameter space for ρ, namely [1/λmin,
1/λmax], can be sequentially substituted into Eq. (3.6), each time followed by the
execution of a conventional linear regression routine. The estimated value of ρ is
that value for which the accompanying linear regression has the smallest MSE. A
non-linear algorithm merely automates this sequence of linear regressions, being
able to converge more efficiently on a more precise estimate of ρ.

SAS and SPSS code for implementing the estimation of parameters for the CAR
and SAR spatial autoregressive specifications appears in Griffith and Layne (1999);
SAS code for the AR model appears in Griffith (1993a).
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3.4 Geostatistical Models

Various valid semivariogram functions can be fitted to a semivariogram plot in order
to more concisely summarize the spatial similarity that may be present in georef-
erenced data (Cressie 1991; Christensen 1991; Isaaks and Srivastava 1989). Then
parameter estimates of these functions can be used to define coefficients for optimal
linear predict of unknown attribute values for unsampled areas from the data col-
lected for sampled locations; that is, kriging (Cressie 1989). Semivariogram models
that have been shown to be valid and/or useful include the exponential, circular,
spherical, Gaussian, Bessel, power and wave/hole; they routinely appear throughout
the geostatistics literature. As an example, the equation for the exponential model
may be written as

γ(d) =

{
0, for |d| = 0

C0 + C1 [(1 - e(d/r))], for |d| > 0
, (3.7)

where C0 is an intercept term, C1 defines the slope of the semivariogram curve, and
r is the range parameter for spatial dependency. Semivariogram models have only a
few parameters that need to be estimated. Theoretically, γ(d) at lag 0 should be 0;
however, a discontinuity may exist, called the nugget effect, which is represented as
C0 in Eq. (3.7). Since the semivariogram is similar to a covariance plot, the other
two parameters that need to be estimated can be defined in terms of a covariance.
The range parameter (r) defines the distance at which the covariance effectively
becomes 0. The sill is the value at which the covariance stabilizes with increasing
distance. Because a semivariogram plot essentially is an inverted covariance plot, the
range for a semivariogram plot is identified as the distance at which γ(d) becomes
approximately constant.

Another semivariogram model that shows considerable data analytic promise, but
has not been extensively employed by practitioners, is the modified Bessel function
(motivated by Whittle 1954); it is one model that appears to be quite relevant but
has been little discussed and little used. Preliminary investigation by Griffith and
Csillag (1993) found it to be an important geostatistical model that provides a link
to the SAR model of spatial autoregression. This model is specified as

γ(d) =

{
0, for |d| = 0

C0 + C1

[(
1 −

(
d
r

)
K1

(
d
r

) )]
, for |d| > 0

, (3.8)

where K1 is the modified Bessel function of the first-order, second-kind.
SAS and SPSS code used for estimating parameters of semivariogram mod-

els, including the Bessel function, appears in Griffith and Layne (1999). ESRI’s
Geostatistical Analysis (Johnson et al., 2001) also offers this estimation capability.
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3.5 Linkages Between Spatial Autoregression and Geostatistics

Two salient distinctions between spatial autoregression and geostatistics can be
made. For the most part, spatial autoregressive models are used to describe dis-
cretized georeferenced data (i.e., attributes located at distinct points or of objects
aggregated because they are contained in the same cell of a surface partitioning),
while geostatistical models are used to describe continuous georeferenced data (e.g.,
air pollution). In practice a researcher can move between these two types of geo-
referenced data by using areal unit centroids to perform a geostatistical analysis
on aggregates of locations, and using a Thiessen polygon (see Okabe et al., 1992)
surface partitioning to perform a spatial autoregression on sampled continuously
distributed data. Also, in contrast with spatial autoregression, the emphasis of geo-
statistics is that of description and prediction and not inferential testing, per se,
although prediction/confidence intervals can be constructed for predicted values and
model parameter estimates.

Given that matrix V is common to both spatial autoregression and geostatistics,
natural linkages should exist between models each sub-field specifies. Consider
a regular square tessellation surface partitioning like the one associated with a
remotely sensed image. Theoretical spatial correlations for this surface can be
calculated using the following spectral density function:

ρh,k =
π∫
0

π∫
0

cos(hu) × cos(kv)

[1 − 2ρ[cos(u) + cos(v)]]κ
dxdy

π∫
0

π∫
0

1

[1 − 2ρ[cos(u) + cos(v)]]κ
dxdy

(3.9)

(after Bartlett 1975), where u and v respectively are the horizontal and vertical axes,
and h represents the easting lag distances and k the northing lag distances. The CAR
model is specified when the exponent is κ = 1 (rendering it a first-order model) and
the SAR specified when κ = 2 (rendering it a second-order model). The values of
ρh,k are the entries in matrix V–1.

Geostatistics specifies models to describe the quantity (1 – ρh,k). Griffith and
Csillag (1993) show that the exponential semivariogram model provides a near-
perfect fit to this quantity when κ = 1 (the case of the CAR spatial autoregressive
model). Griffith et al. (1996) show that the Bessel function semivariogram model
provides a near-perfect fit to this quantity when κ = 2 (the case of the SAR spa-
tial autoregressive model). Griffith and Layne (1996) show that generation of the
correlations entered into matrix V–1 with Eq. (3.7) or (3.8), respectively for the
exponential and Bessel function semivariogram models, followed by inversion to
obtain matrix V, the covariance matrix form used in spatial autoregression, performs
well but fails to render as close a correspondence between these two model pair-
ings. Because of the differences between discretized and continuously distributed
phenomena, these linkages are not necessarily exact correspondences.

Empirical evidence is less supporting of these numerical linkages. In an analysis
of 35 data sets, Griffith and Layne (1999) find that frequently there is no clearly
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Table 3.1 Numerical links between spatial statistical models used in selected empirical analyses

Spatial autoregressive model

Geostatistical model CAR SAR AR

Power 1 4 1
Spherical 0 17 2
Exponential 1 6 3

Table 3.2 ANOVA table for difference of mean levels of spatial autocorrelation

Model source Sequential sum of squares Degrees of freedom

Geostatistics 0.04383 2
Spatial autoregression 0.21867 2
Interaction 0.01818 4
Error 1.05016 26
Total 1.33084 34

best geostatistical model. Choosing that model with the smallest relative error sum
of squares (RSSE), the tabulation of their results appearing in Table 3.1 can be
constructed. In no case does the Bessel function achieve the lowest RSSE. In addi-
tion, the ANOVA sum of squares decomposition, appearing in Table 3.2, for the
spatial autoregression parameter estimate ρ̂ suggests that these models do not link
to differential levels of SA, either. In other words, most of the variation is within
groups.

In summary, theoretically spatial autoregressive models tend to suggest partic-
ular geostatistical models, with this linkage being weaker in the other direction.
Empirically these linkages remain elusive. Part of the complication here arises from
edge effects introduced when moving between these two realms by matrix inversion
(i.e., moving from V to V−1, or vice versa), and part from the discrete /continuous
nature of georeferenced data.

3.6 A Major Commonality of Spatial Autoregression and
Geostatistics

After SA, the most conspicuous unifying concept common to spatial autoregression
and geostatistics is the need to predict attribute values for locations for which data
are not present. Both spatial autoregression and geostatistics reside in the realm of
multivariate analysis, and interface where they focus on the missing data problem.

Generally speaking, the missing data problem (see Little and Rubin, 1987)
exploits redundant information contained in two variables, X and Y. In other words,
values missing in variable Y are replaced by their conditional expectations through
an iterative regression of Y on X, with the accompanying estimation being non-
linear. The popular EM algorithm has been formulated to solve this estimation
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problem. Letting the subscript “o” denote observed data values, and the subscript

“m” denote missing data values, such that YT =< YT
o

... Ŷ
T
m >, the missing data

sub-vector solution may be written as

Ŷm = Xmβ̂. (3.10)

When covariations amongst observations are present, Eq. (3.10) becomes

Ŷm = Xmβ̂ − A−1
mmAmo(Yo − Xoβ̂), (3.11)

where matrix A contains covariation-based terms depicting dependencies amongst
observations, and may be written as the following partitioned matrix

(
Aoo Aom
Amo Amm

)
.

Matrix Aoo is a function of covariations amongst the observed values, matrices
Aom and Amo are functions of covariations between the observed and missing val-
ues, and matrix Amm is a function of covariations amongst the missing values. In Eq.
(3.11), given the iid assumption, Amo = Amo

T = 0. Accordingly, the missing spatial
values problem exploits correlation between variables X and Y as well as correlation
between some observation yi and other observations yj (i 	= j). In the case of spatial
autoregression, matrix A is constructed from matrix ρC or ρW. Consequently, for
the conditional autoregressive (CAR) spatial statistical model, where using tradi-
tional multivariate notation the variance-covariance matrix may be written as � =
(I – ρC)–1σ2, Eq. (3.11) may be rewritten as

Ŷm = Xmβ̂ + ρ(I − ρCmm)−1Cmo(Yo − Xoβ̂). (3.12)

This result can be generalized to other popular spatial autoregressive specifica-
tions, such as the simultaneous autoregressive (SAR) model, by considering the
inverse-covariance matrix Vσ–2, which is some function of matrix ρC, and which
allows the variance-covariance matrix to be written as � = V–1σ2, rendering

Ŷm = Xmβ̂ − V−1
mmVmo(Yo − Xoβ̂). (3.13)

Griffith (1992a, 1988) outlines the specification of Eq. (3.13) for other popu-
lar spatial autoregressive models. Meanwhile, in the case of geostatistics, matrix
A is modelled from the semivariogram plot, which depicts the nature, degree,
and geographic extent of SA effects. The accompanying kriging equation may be
written as

Ŷm = Xmβ̂ −
∑

mo

∑−1

oo
(Yo − Xoβ̂). (3.14)
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The algebraic relationship between Eqs. (3.13) and (3.14) can be established by
inspecting standard partitioned matrix inverse results:

�oo = (Voo − VomVmm
−1Vmo)−1σ2 and �mo = −Vmm

−1Vmo(Voo − VomVmm
−1Vmo)−1σ2

and

Vmm = (�mm − �mo�oo
−1�om)−1σ2 and Vmo = −(�mm − �mo�oo

−1�om)−1�mo�oo
−1σ2.

In other words, there is an exact algebraic correspondence between these two
results (Griffith 1993b), one highlighting that spatial autoregression directly deals
with the inverse variance-covariance matrix while geostatistics directly deals with
the variance-covariance matrix itself.

3.7 Implications for Quantitative Human Geography

This chapter presents a general overview of two sub-fields of spatial statistics known
as spatial autoregression and geostatistics, with explicit reference to SA. Although
some subtle details have been omitted, one aim of the chapter is to emphasize the
current status of connections established between geostatistical analysis and spatial
autoregression. The most striking feature of progress to date along these lines is the
ability to use either of these modelling strategies to do spatial forecasting. For exam-
ple, Cressie (1991: 160) reports the kriging estimate for a missing coal ash value as
10.27%, using a spherical semivariogram model; Griffith and Layne (1999: 440)
report a value of 10.17% using a missing-data SAR model. A second noteworthy
feature emphasized in this chapter is that conventional regression actually underlies
much of spatial analysis; regression truly is the workhorse of empirical statistical
analyses. This latter notion is echoed by a geostatistical capability implementation
in the SAS MIXED procedure.

But much work remains to be done! For example, progress still needs to be
made in the areas of the auto-logistic and auto-Poisson models. And advantages
of each approach—such as geostatistics more easily handles anisotropy—need to
be established.

Acknowledgment Contributions made to the development of this chapter by Dr. Larry Layne,
University of New Mexico, are greatly appreciated.



Chapter 4
Frequency Distributions for Simulated Spatially
Autocorrelated Random Variables

4.1 Introduction

Often quantitative data analysis begins with an inspection of attribute variable his-
tograms. Ratio scale demographic variables, such as population density (which has
a natural, meaningful absolute 0 value), are expected to conform, at least approx-
imately, to a normal probability distribution. Frequently this conformity requires
that these variables be subjected to a symmetricizing, variance stabilizing transfor-
mation, such as the Box-Cox class of power functions or the Manley exponential
function. Counts (i.e., aggregated nominal measurement scale) data used to con-
struct ratios, such as the crude fertility rate (i.e., number of births per number of
women in the child bearing age cohort), are expected to conform to a Poisson prob-
ability distribution. And, counts data that constitute some subset of a total, such as
the percentage of people at least 100 years of age or the percentage of a population
that is the women in the child bearing age cohort, are expected to conform to a bino-
mial probability distribution. Until the advent of implemented generalized linear
models (GLMs), these latter two categories of data also were subjected to variable
transformations in order to secure normal probability distribution approximations.
Various scholars today argue that GLM technology has made the use of such previ-
ously popular variable transformations as the square root for Poisson counts, or the
arcsine for percentages, obsolete.

Most spatial statistical work to date addresses impacts of spatial autocorrelation
(SA) on parameter estimates, with the general conclusion that positive SA tends to
have little or no impact on first moment types of parameter estimates, while inflating
their respective standard errors. SA also tends to improve model prediction capa-
bilities, serving remarkably well as a surrogate for missing covariates displaying
particular geographic map patterns. This result implies that as SA in a random vari-
able (RV) increases, its tails should become heavier and its center should become
flatter. Dutilleul and Legendre (1992) appear to be about the only researchers to sys-
tematically investigate this topic, although they do so in a rather pseudo-geographic
context.

As is widely acknowledged, positive SA is a source of variance inflation for
normal RVs, and a source of overdispersion (i.e., excess variance) for Poisson
and binomial RVs. But how does this increased variation impact upon a variable’s

37D.A. Griffith, J.H.P. Paelinck, Non-standard Spatial Statistics and Spatial
Econometrics, Advances in Geographic Information Science 1,
DOI 10.1007/978-3-642-16043-1_4, C© Springer-Verlag Berlin Heidelberg 2011
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Fig. 4.1 Surface partitionings used for simulation work. Left (a): a 44-by-54 regular hexagonal
tessellation forming a rectangular region. Right (b): the China county outline map

histogram? This is the question addressed in this chapter. Intuitively speaking, vari-
ance increases as increasingly extreme values (i.e., outliers) appear in a histogram.
SA-generated heavy tails in a normal distribution are consistent with this data fea-
ture. But a binomial RV cannot have extreme values, since its values are constrained
by given totals, so that percentages always are contained in the closed interval
[0, 100]. A Poisson RV can have extreme large counts; its extreme small counts,
however, can only become excessive zeroes. In other words, is some of the quite
bothersome noise in or potential dirtiness of data researchers routinely encounter
simply a manifestation of SA?

This chapter demonstrates positive SA impacts upon histograms with illustra-
tions based upon simulated data. These data are generated both with autoregressive
and with spatial filter (SF; see Sect. 2.5) models (Griffith, 2000a, 2002a, 2004a).
Autoregressive models more explicitly focus on SA arising from spatial interaction,
whereas SF models more explicitly focus on SA arising from missing variables
with specific map patterns—here these map patterns have been selected to represent
global, regional, and local spatial effects (Borcard and Legendre, 2002; Borcard
et al., 2004). The primary difference is between a variance and a mean response
specification that captures SA effects. Furthermore, SF models enable much greater
degrees of SA to be explored, primarily because autoregressive models tend to
encounter such problems as phase transitions when positive SA becomes exces-
sively strong (Guyon, 1995). The simulated data, which is for an ideal 44-by-54
[n = 2,376; maximum Moran Coefficient (MCmax) of 1.02239] regular hexagonal
tessellation (Fig. 4.1a), also is supplemented by simulations for the irregular China
county surface partitioning (Fig. 4.1b).

4.2 The Normal Probability Model

Haining et al. (1983) outline a technique, in keeping with normal theory in multivari-
ate statistics, to simulate spatially autocorrelated normal RVs with, for example, the
simultaneous autoregressive (SAR; Cliff and Ord, 1973) model. A recent approach
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sharing a number of the features of their procedure is furnished by Gneiting et al.
(2005). Goodchild (1980) offers an alternative procedure that involves permuting
independent and identically distributed (iid) values over a map until a prespecified
level of SA is attained. Goodchild’s method is employed here to remove any con-
spicuous spurious SA from the simulated data. However, it cannot be used to explore
SA impacts upon histograms because histograms are completely insensitive to the
locational arrangement of values, simulated or actual, on a map. Furthermore, the
resulting observed map would need to have its underlying iid counterpart uncovered
in order to explore SA effects.

In keeping with linear statistical models theory, eigenvector-based spatial filter-
ing offers a striking alternative mechanism for simulating spatially autocorrelated
normal RVs (see Boots and Tiefelsdorf, 2000, p. 327; Griffith, 2000, p. 146). This
technique still begins with a set of iid values.

4.2.1 Simulating Spatially Autocorrelated Normal RVs

The simulated iid normal RV, say n-by-1 vector ε, displays ideal properties (see
Fig. 4.2 and Table 4.1). All levels of SA have been embedded into this RV.

Consider a surface that is partitioned into n mutually exclusive and collectively
exhaustive areal units. Here these units are regular hexagons forming a 44-by-54
rectangular region (see Fig. 4.1a), or the counties into which China is divided (see
Fig. 4.1b). The n-by-n binary geographic connectivity matrix C contains the ele-
ments cij = 1 if areal units (e.g., hexagons, counties) i and j share a common
boundary, and cij = 0 otherwise; cii = 0 by construction (i.e., an areal unit cannot be
spatially autocorrelated with itself). This definition of matrix C highlights the rea-
son for selecting a hexagonal surface partitioning as the ideal surface, namely the

Fig. 4.2 Normal quantile plot for the simulated iid normal RV ε values
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Table 4.1 Descriptive statistics for the SAR model-based simulated data and the hexagonal
tessellation geographic configuration

Variable autocorrelation MC/MCmax GR ȳ sy |zskewness| a |zkurtosis| a

None (i.e., iid) –0.01 1.00 –0.000 1.000 0.20 0.30
Weak 0.11 0.89 –0.000 1.025 0.40 0.30
Low-moderate 0.40 0.59 –0.001 1.281 1.19 0
High-moderate 0.60 0.37 –0.006 1.711 1.59 1.29
Strong 0.90 0.07 –0.092 4.707 5.97 4.08

aThe mean of skewness and kurtosis is 0; the respective standard errors, which can be established
using the moment generating function eμt+(σ2/2)t2 , respectively are

√
6/n and

√
24/n

lack of areal units sharing only a common point (i.e., a non-zero length boundary)—
the difference between rook’s and queen’s adjacencies, using analogies with chess
moves, in the spatial weights matrix literature.

Next, following Haining et al. (1983), matrix C was converted to its row-
standardized version, matrix W, by dividing each cij value by its row sum(

i.e.,
n∑

j=1
cij

)

. Then spatially autocorrelated variables were constructed with the

simultaneous autoregressive (SAR)-based equation

Yj = (I − ρjW)−1ε, (4.1)

where I is the n-by-n identity matrix, and the SA parameter ρj was assigned the
values 0.30, 0.73, 0.88, and 0.987 (i.e., j = 1, 2, 3, 4) in order to secure the relative
MC and Geary Ratio (GR) values reported in Tables 4.1 and 4.3.

Finally, following especially Griffith (2000), the eigenvectors were extracted
from matrix

(I − iiT/n)C(I − iiT/n), (4.2)

where T denotes matrix transpose, and i denotes an n-by-1 vector of ones. This
matrix expression appears in the numerator of the MC. Each eigenvector represents
a distinct map pattern with a level of SA indexed by its corresponding eigenvalue.
These eigenvectors, and hence map patterns, are both orthogonal and uncorrelated.
Then, employing the same random iid vector ε used to generate the SAR-induced
spatially autocorrelated variates, spatially autocorrelated variables were constructed
with the SF-based equation

Yj = αj

(√
n − 1

) (aEG + bER + cEL)/
√

n − 1
√

a2 + b2 + c2
+ βε, (4.3)

where EG
/√

pk(n − 1) , ER
/√

pk(n − 1) and EL
/√

pk(n − 1) respectively denote
the z-score versions of pk (k > 0) summed global (G), regional (R), and local (L)
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eigenvectors, coefficients a, b, and c are weights that enable a particular level of SA
to be induced (Boots and Tiefelsdorf, 2000; Griffith, 2000), and here coefficients

β = 1 and αj =
√

MCj− MCε

MCeigenvectors−MCj
, for some target value of MC (i.e., MCj) for

variate Yj, where MCeigenvectors = a2MCG+b2MCR+c2MCL

a2+b2+c2 denotes the MC value for a
given eigenvector sum. The formula for coefficient αj assumes that the random error
variate and the eigenvectors are uncorrelated.1 Judiciously selected eigenvectors
allow global, regional, and local spatial effects (this interpretation is from Borcard
and Legendre, 2002; Borcard et al., 2004) to be simulated with a SF model. The
relative MC and GR values obtained with this simulation method are reported in
Tables 4.2 and 4.4.

4.2.2 Simulation Results for an Ideal Regular Hexagonal Surface
Partitioning

Summary descriptive statistics appear in Table 4.1 for the SAR-induced simulated
spatially autocorrelated data. These statistics confirm that the mean essentially is
unaffected, while the variance is inflated, by SA. Within the moderate SA range,
representing a preponderance of empirical studies to date, variance inflation is prob-
lematic, increasing as much as nearly 300%. The histograms appearing in Fig. 4.3
confirm the expectations that low levels of SA have little effect, whereas high levels
of SA thicken the tails and squash the center of a normal frequency distribution;
this trend is less noticeable with SAR models (see Fig. 4.4). But this latter outcome
primarily is because of variance inflation.

Somewhat less noticeable skewness and kurtosis features are better portrayed by
inspecting standardized normal curves. Z-score test statistics reported in Table 4.1
reveal that skewness and kurtosis increase as positive SA increases. Skewness
becomes more problematic because, similar to a product moment correlation coef-
ficient, the SAR SA parameter is restricted to be < 1, causing a truncation effect
in the distribution of values. A surprising outcome is best seen when MC = 0.90:
as SA becomes strong, not only do the tails become thicker, but values become
more concentrated about 0 (the mean), resulting in a relative decrease in the number
of intermediate values (the histogram columns are shrinking away from the nor-
mal curve outline toward the horizontal axis). This squashing toward the center of
the distribution increases kurtosis. Moreover, SA produces more extreme and more
near-zero values.

1The correlations between the simulated random normal variate and the sum of two eigenvectors
representing global map, two representing regional, and two representing local map patterns used
to construct Table 2 respectively are 0.031, 0.018 and –0.004—essentially 0.
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Fig. 4.3 Histograms for iid and two SAR model-induced extreme levels of SA

Because impacts beyond that of variance inflation are difficult to detect visu-
ally in the histograms themselves, normal quantile plots also can be inspected (see
Fig. 4.5). These plots help highlight the noted changes in the histograms.

Summary descriptive statistics appearing in Table 4.2 for the SF-simulated spa-
tially autocorrelated data (see Fig. 4.6 for maps of the global, regional, and local
map patterns employed; as SA decreases in strength, the map patterns become more
fragmented) distributed over the hexagonal surface partitioning corroborate find-
ings gleaned from Table 4.1. These statistics confirm that the mean essentially is
unaffected, while the variance is inflated, by SA. Again variance inflation is prob-
lematic within the moderate SA range, increasing anywhere from 1- to 10-fold,
depending upon the mixture of global, regional, and local map patterns. The quan-
tile plots appearing in Fig. 4.7 confirm the expectations that low levels of SA have
little effect, whereas high levels of SA thicken the tails and squash the center of a
normal frequency distribution—as before, SA produces more extreme and more
near-zero values—with this trend being less noticeable with moderate levels of
SA. The central tendency concentration is more conspicuous with the global SF-
based results than with the preceding SAR-based results. To some degree, local
sources of SA seem to dampen more extreme impacts of regional sources, whereas
local and regional sources of SA seem to dampen more extreme impacts of global
sources. However, a mixture of map patterns—the more common case in practice—
appears to produce a more marked impact on variance inflation for moderate levels
of SA, but without noticeably affecting kurtosis. Once again, z-score test statistics
reported in Table 4.2 reveal that as positive SA becomes marked, kurtosis—but not
skewness—increases, with global sources of SA causing the most significant change
in kurtosis.
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Fig. 4.4 Standard normal deviate histograms for iid and four SAR model-induced levels of SA.
Left (a): induced extreme levels. Right (b): induced moderate levels
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Fig. 4.5 Normal quantile plots for SAR model-induced levels of SA. Left (a): iid. Middle (b):
weak SA. Right (c): strong SA

Table 4.2 Descriptive statistics for the SF model-based simulated data and the hexagonal
tessellation geographic configuration

Variable autocorrelation MC GR ȳ sy |zskewness| |zkurtosis|
None (i.e., iid) –0.01 1.00 –0.000 1.000 0.20 0.30

Global map pattern-base results

Weak (using 0.35EG) 0.11 0.89 –0.000 1.060 0.40 0.50
Low-moderate (using 0.85EG) 0.42 0.59 –0.000 1.306 0.60 0.20
High-moderate (using 1.25EG) 0.62 0.40 –0.000 1.600 0.80 0.90
Strong (using 3.00EG) 0.92 0.10 –0.000 3.181 0.40 3.58

Global + regional map pattern-base results

Weak (using 0.50ER) 0.10 0.89 –0.000 1.126 1.19 0.70
Low-moderate [using 0.75(EG+ER)] 0.40 0.60 –0.000 1.452 1.99 1.39
High-moderate [using 1.33(EG+ER)] 0.60 0.41 –0.000 2.123 1.79 0.20
Strong [using 2.50(3EG+ER)] 0.91 0.11 –0.000 4.112 0.80 3.08

Global + regional + local map pattern-base results

Weak (using 0.85EL) 0.10 0.90 –0.000 1.297 0.20 0.10
Low-moderate [using 1.80(1.5ER+EL)] 0.40 0.60 –0.000 3.403 0.40 0.99
High-moderate [using 1.10(1.5EG+ER+EL)] 0.61 0.41 –0.000 2.444 1.59 0.50
Strong [using 1.00(5EG+2ER+EL)] 0.90 0.12 –0.000 5.624 0.80 3.18
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Fig. 4.6 SF map patterns. Left (a): global map pattern [the sum of eigenvectors # 1 and #2 (÷√
2)].

Middle (b): regional map pattern [the sum of eigenvectors #365 and # 366 (÷√
2)]. Right (c): local

regional map pattern [the sum of eigenvectors a #1532 and #1533 (÷√
2)]

4.2.3 Simulation Results for the China County Geographic
Configuration

The simulated data coupled with the China county geographic configuration (see
Fig. 4.1b) includes the 2,376 values used for the regular hexagonal tessellation
simulation together with three additional values that were carefully selected so
that the descriptive statistics appearing in Table 4.1 and the normal quantile plot
appearing in Fig. 4.2 essentially remain unchanged. Once again the SA parame-
ter ρj has taken on the values 0.30, 0.78, 0.93, and 0.986 (at this point a phase
transition is encountered), rendering the relative MC and GR values reported in
Table 4.3. The goal here is to explore impacts in terms of an irregular lattice surface
partitioning.

Summary descriptive statistics appear in Table 4.3 for the SAR-induced simu-
lated spatially autocorrelated data. These statistics confirm that the mean essentially
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Fig. 4.7 Normal quantile plots for global map pattern SF model-induced levels of SA. Left (a):
iid. Middle (b): weak SA. Right (c): strong SA

Table 4.3 Descriptive statistics for the SAR model-based simulated data and the China county
geographic configuration

Variable autocorrelation MC/MCmax GR ȳ sy |zskewness| |zkurtosis|
None (i.e., iid) –0.00 1.00 0.000 1.000 0.20 0.30
Weak 0.11 0.86 –0.001 1.031 0.20 0.20
Low-moderate 0.41 0.49 –0.008 1.426 0.00 0.50
High-moderate 0.61 0.24 –0.037 2.253 1.00 3.78
Strong 0.73 0.07 –0.222 4.760 10.75 61.33

is unaffected, while the variance is inflated, by SA. Variance inflation is problem-
atic within the moderate range, increasing as much as nearly 500%. The normal
quantile plots appearing in Fig. 4.8 again confirm the expectations that low levels of
SA have little effect, whereas high levels of SA thicken the tails and squash the cen-
ter of a normal frequency distribution. In this case, pronounced levels of SA interact
with the irregularness of the surface partitioning to result in the generation of rather
dramatic extreme values.

As mentioned previously, less noticeable skewness and kurtosis features are
better portrayed by inspecting standardized normal curves. Z-score test statistics
reported in Table 4.3 reveal that as positive SA increases, so do skewness and
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Fig. 4.8 Normal quantile plots for SAR model-induced levels of SA. Left (a): iid. Middle
(b): weak SA. Right (c): strong SA

kurtosis. In part, skewness becomes more problematic because of the irregularness
of the underlying county geographic configuration. As before, relatively strong lev-
els of SA are accompanied by not only thicker tails, but also values that are more
concentrated about 0 (the mean), resulting in a relative decrease in the number of
intermediate values (the histogram columns shrink away from the normal curve
outline toward the horizontal axis), with this squashing toward the center of the
distribution increasing kurtosis.

SF induced SA coupled with the China county geographic configuration, based
upon mixtures of global, regional (two levels, R-1 and R-2), and local map pat-
tern eigenvectors render the MC and GR values reported in Table 4.4 (see Fig. 4.9
for maps of the global, two regional, and local map patterns employed here). A
lack of impact upon the mean as well as variance inflation continue to characterize
these variables. But histogram distortions affiliated with the underlying histogram
for the global trend dominate the skewness and kurtosis modifications arising from
positive SA. The example normal quantileplots appear in Fig. 4.10 (histograms por-
tray a situation of more extreme values materializing under strong positive SA;
a denser concentration about the mean still occurs). Here histogram distortions
already become quite apparent at moderate levels of positive SA. Again these ten-
dencies are more apparent visually by inspecting the corresponding standard normal
curves.
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Table 4.4 Descriptive statistics for the global SF model-based simulated data and the China
county geographic configuration

Variable
autocorrelation MC GR ȳ sy |zskewness| |zkurtosis|

None (i.e., iid) –0.00 1.00 0.000 1.000 0.20 0.30

Global map pattern-base results

Weak (using 0.33EG) 0.11 0.91 0.000 1.052 1.19 0.20
Low-moderate (using

0.75EG)
0.40 0.67 0.000 1.254 8.56 6.17

High-moderate (using
1.10EG)

0.61 0.50 0.000 1.484 15.73 16.13

Strong (using 2.10EG) 0.90 0.26 0.000 2.296 28.47 38.33

Global + regional map pattern-base results

Weak (using 0.55ER–1) 0.10 0.90 0.000 1.136 0.20 0.30
Low-moderate [using

1.00(ER–1+ER–2)]
0.41 0.63 0.000 1.758 0.40 0.00

High-moderate [using
1.10(EG+ER–1+ER–2)]

0.60 0.48 0.000 2.141 4.18 4.48

Strong [using
2.20(EG+ER–1)]

0.90 0.23 0.000 6.229 9.96 17.03

Global + regional + local map pattern-base results

Weak [using
0.55(ER–1+EL)]

0.10 0.87 0.000 1.25 1.39 0.70

Low-moderate [using
1.80(ER–1+ER–2+EL)]

0.40 0.59 0.000 3.30 0.60 1.10

High-moderate [using
1.375(1.25EG+ER–1+
ER–2+EL)]

0.60 0.46 0.000 3.10 5.77 5.38

Strong [using
1.30(3EG+ER–1+ER–2+EL)]

0.90 0.25 0.000 4.60 23.10 30.27

4.2.4 Implications

The conceptual discussions allow expectations to be posited with regard to impacts
of SA on histograms of normal RVs. In absolute terms, variance inflation generated
by positive SA makes a histogram appear flatter. Positive SA also encourages more
extreme values (thickening of the tails) to materialize.

The principal implications for normal RVs are: (1) positive SA generates variance
inflation, which flattens a frequency distribution; (2) kurtosis tends to be dramati-
cally altered when positive SA becomes very strong; and, (3) tail thickening and
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Fig. 4.9 SF map patterns. Top left (a): local (MC = 0.11). Top right (b): regional (MC = 0.47).
Bottom left (c): regional (MC = 0.73). Bottom right (d): global (MC = 1.11)

Fig. 4.10 Normal quantile plots for global map pattern SF model-induced levels of SA. Left (a):
iid. Middle (b): weak SA. Right (c): strong SA
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variance inflation are problematic in the moderate positive SA range that often is
encountered in real world data.

4.3 The Poisson Probability Model

Little is known about the impacts of SA on Poisson RVs. Because this type of RV is
a member of the exponential family of statistical distributions, just like for a normal
RV, positive SA should induce variance inflation in Poisson RVs, too. This expec-
tation is further supported by the close similarity between a normal and a Poisson
frequency distribution when the latter’s mean, μ, becomes very large. Thus, one
should expect that positive SA will create extra-Poisson variation, a notion consis-
tent with discussions in the overdispersion literature. But what happens to the mean
of a Poisson RV?

One way that a Poisson RV differs from a normal RV is that its lower tail is
truncated at 0. A Poisson RV describes counts of rare events, which naturally yields
many zeroes as the event in question becomes increasingly rarer. Accordingly, the
best way for Poisson variance to increase, then, is for extremely large counts to
materialize, and/or perhaps for an over-concentration of zero or near-zero values to
occur (i.e., excessive zeroes) to balance very large values in order to preserve μ.
But what happens to the kurtosis of a Poisson RV? And, because it is a discrete RV
(whereas a normal RV is continuous over the entire real number line), what happens
to its modal value?

A bivariate regression tool for evaluating the Poissonness of a distribution, which
is analogous to a normal quantile plot, is the Poissonness plot (Hoaglin, 1980;
Hoaglin and Tukey, 1985). The ideal line for this plot, which can be estimated with
ordinary bivariate linear regression techniques, is given by

ln(nk) +
k∑

j=1

ln( j ) − ln

(
n∑

i=1

yi

)

= β0 + β1k , k = 0, 1, 2, . . . , (4.4)

where k denotes the discrete non-negative values taken on by some Poisson RV Y,
nk is the count for discrete value k in a dataset, and β0 = −μ and β1 = ln(μ),

where μ is the mean of Y; of note is that the term
k∑

j=1
ln( j ) disappears for k = 0

(which corresponds to a 0! = 1 term, whose logarithm is 0). The left-hand side of
this equation is referred to as the metaparameter. The Ord plot (Ord, 1967) furnishes
an additional assessment tool. For this second regression analysis, which involves
weighted least squares (WLS) estimation, the equation is given by

k nk

nk−1
= β0 + β1 k, (4.5)

where β0 = μ and β1 = 0 for a Poisson distribution, and the weights are
√

nk − 1.
As a benchmark, a judiciously selected ideal set (n = 2,376) of independent and
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Fig. 4.11 Graphical diagnostic tools for a Poisson RV. Left (a): a dot-plot histogram. Middle (b):
a normal quantile plot. Right (c): a Poissonness plot

identically distributed (iid) Poisson RVs with μ = 9 was simulated; the mean and
standard deviation for this set are ȳ = 8.99790 and sy = 3.00701. Graphics por-
traying it appear in Fig. 4.11. Normal curve theory states that as μ increases beyond
some sufficiently large value (e.g., 1,000), a Poisson probability distribution increas-
ingly resembles a normal probability distribution, a feature that already is becoming
visible in Fig. 4.11a. But with a mean of only 9, the normal quantile plot (Fig. 4.11b)
confirms that the frequency distribution for this simulated Poisson RV deviates sub-
stantially from mimicking the form of a bell-shaped curve, particularly in its tails. A
Poissonness plot (Fig. 4.11c) confirms that this is a Poisson RV. Its accompanying

regression equation yields β̂ 0 = −9.01112 and eβ̂1 = 9.00932. Meanwhile, the Ord
plot results in bivariate linear WLS estimates of β̂0 = 9.00614 and β̂1 = 0.00273.
All of these Poisson diagnostics confirm that this is a Poisson RV. In addition, when
distributed across the 44-by-54 regular hexagonal surface partitioning employed in
this study, this RV yields MC = 0.00143 (zMC = 0.15) and GR = 0.99698; at most
it contains only a trace amount of positive SA.

One spatial autoregression2 theoretical statistical difficulty is that the auto-
Poisson model can handle only negative SA; this drawback is problematic both
because most georeferenced Poisson-distributed data contain positive SA, and
because the normal and binomial approximations to an auto-Poisson model can

2Auto- models have values of the response variable, Y, on both sides of the equation. The right-
hand side, which relates to a probability model, contains a linear combination of values of Y for
other than the observation in question.
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account for this positive SA. But when avoiding specification error, neither a nor-
mal nor a binomial approximation to a Poisson RV is desirable. Fortunately, Kaiser
and Cressie (1997) and Griffith (2002) suggest two different ways that positive SA
can be accommodated—and hence simulated—in a Poisson RV. The first of these
methods truncates the auto-Poisson distribution and employs Markov chain Monte
Carlo (MCMC) techniques, whereas the second employs spatial filtering techniques.
A distinct difference between these two specifications is that the truncated auto-
Poisson version can capture at most weak-to-moderate levels of positive SA (e.g.,
also see Augustin et al., 2004), whereas the SF version can capture even very strong
levels (e.g., see Haining et al., 2009).

4.3.1 Simulating Spatially Autocorrelated Poisson RVs

Kaiser and Cressie (1997) circumvent the negative SA limitation of an auto-Poisson
specification by Winsorizing counts to a finite set of integers, which sets an upper
limit on the largest count that can occur. This adjustment yields an approximation
whose probabilities sum to slightly less than 1, rather than to exactly 1, and allows
the following auto-Poisson mean specification to be posited, using matrix notation:

ln(μ) =
⎡

⎣α − ln

⎛

⎝1

n

n∑

i=1

e
ρ

n∑

j=1
wij(yj−eα)

⎞

⎠
/

K

⎤

⎦ i + ρW(Y − eαi), (4.6)

where α is the regression intercept term (μ = eα is the mean of the Poisson RV
in question), ρ is the spatial autoregression parameter, and this second term cor-
rects for artificial inflation of the intercept term (i.e., an adjustment for trend)—K
takes on the value of 1 until the mean begins to explode (see Augustin et al.,
2004), at which point it increases to further compensate for this explosion. Equation
(4.6) has a functional form very similar to an SAR model; here because matrix
W mathematically is required to be symmetric, its (i, j) entry is defined as wij =

cij

/
√√√√
(

n∑

i=1
cij

)(
n∑

j=1
cij

)

.

Explosion of the mean occurs as the autoregressive parameter ρ becomes rel-
atively large. This same outcome can be observed with the SAR model just as ρ

approaches the boundary of its feasible parameter space (e.g., see Tables 4.1 and
4.3). Winsorizing the auto-Poisson probability distribution does not control for this
explosion of the mean value; rather, it seeks to avoid entering a transition phase
of instability, which tends to coincide with this explosion. However, because SA
encourages relatively large counts to materialize (with the resulting contrasts with
nearby values leading to local negative SA), the truncation point becomes critical.
If it is too low, impacts on the mean and variance become more a function of it
than of positive SA; if it is too high, phase transitions can be encountered. The two
lowest levels of positive SA simulated for Sect. 4.3.2 employed a truncation point
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of 3ymax, where ymax denotes the maximum count from each MCMC initial set of
iid randomly generated counts (i.e., because the maximum count by chance when
μ = 9 is approximately 29, this truncation point is 26 deviations above the mean); no
truncations had to be performed during chain generation. In contrast, for the highest
level of positive SA, this truncation point was set to 6ymax (i.e., 55 deviations above
the mean), resulting in roughly 20 million truncations being performed during chain
generation.

4.3.1.1 MCMC Map Simulation

A Markov chain is a stochastic process consisting of a finite number of states (i.e.,
for a Poisson RV, a vector of length n containing integer-valued counts correspond-
ing to n locations) and known transition probabilities of moving from state i to state
j at each computational iteration. Here, the matrix of transition probabilities, M, is
defined by a Winsorized auto-Poisson model probability mass function. An impor-
tant part of Markov chain theory is based on the Ergodicity Theorem, which requires
M to be irreducible (i.e., any state can be reached from any other state)—the geo-
graphic weights matrix used is irreducible—recurrent non-null (the average return
time to a given state is finite), and aperiodic (a state cannot be returned to repeatedly
after a specific finite number of transition steps)—each areal unit in a hexagonal
tessellation has at most 6 neighbors. If a Markov chain is ergodic, then a unique
steady state distribution exists, say M∗, which is independent of the initial state.
This steady state distribution is given by M∗ = limit

k→∞ Mk, where k represents tran-

sition steps. Monte Carlo simulation is a technique for obtaining realizations of the
limiting steady state distribution of a stochastic process through the use of a Poisson
random number generator.

MCMC provides a mechanism for taking dependent samples from probability
distributions in situations where the usual sampling is difficult, if not impossible.
A case in point is where the normalizing constant for a joint probability distribu-
tion is either too difficult to calculate or analytically intractable. This is exactly
the case for the auto-Poisson model. MCMC is used to simulate from some joint
probability distribution p known only up to a constant factor, C. That is, p = Cq,
where q is known but C is unknown and an intractable mathematical expression
(see Cressie, 1991, p. 428, for a mathematical statement of C for the auto-Poisson
model). MCMC sampling begins with conditional (marginal) probability distribu-
tions, and with parameter estimates for the auto-Poisson model that can be obtained
in practice using pseudo-likelihood estimation. This exercise involves estimating α

and ρ as though observations are independent. MCMC outputs a sample of values
for each parameter drawn from the joint probability distribution. Gibbs sampling
is a MCMC scheme for simulation from p where the Markov chain transition
matrix (i.e., M) is defined by the n conditional probability distributions of p. It is a
stochastic process that returns a different result with each execution, a method for
generating a joint empirical distribution of several variables from a set of modeled
conditional distributions for each variable when the structure of data is too complex
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to implement mathematical formulae or directly simulate. It is a recipe for produc-
ing a Markov chain that yields simulated data that have the correct unconditional
model properties, given the conditional distributions of those variables under study
(Robert and Casella, 1999). The principal idea behind it is to convert a multivariate
problem into a sequence of univariate problems, which then are iteratively solved to
produce a Markov chain. The following Gibbs sampling algorithm description (see
Haining et al., 2009; Augustin et al., 2004) for a Winsorized auto-Poisson model
begins with pre-specified values of the parameters α and ρ (e.g., pseudo-likelihood
parameter estimates in the ensuing China data analysis):

Step 1: initialize a map (τ = 0, where τ denotes the number of iterations)
by taking i = 1, . . ., n independent random samples {yi,τ=0} from a
Poisson probability distribution and determine ymax;

Step 2: obtain new values (initially τ = 1) yi,τ by sequentially moving from
one location (i) to another ( j) on the initial map and randomly sam-
pling from the Winsorized auto-Poisson probability distribution [i.e.,
Eq. (4.6) coupled with a truncation value that is a function of ymax]
using pre-specified parameter values—site selection for this process
of obtaining {yi,τ=1} from {yi,τ=0} can follow random permutations
of location sequences or simply a systematic sweep across a map;

Step 3: obtain new values (initially τ = 2) yi,τ+1 by sequentially mov-
ing from one location to another on the τth map, again randomly
sampling from the Winsorized auto-Poisson distribution, and imme-
diately updating the value at each location; and,

Step 4: repeat Step 3 for iterations τ = 3, 4, 5, . . ., until convergence of the
sufficient statistics of the parameters of interest occurs.

Once a Markov chain transition matrix is constructed, a sample of (correlated)
drawings from a target distribution can be obtained. This is done by simulating
the Markov chain a large number of times (say, 100,000) and recording its suf-
ficient statistics after removing a burn-in set (e.g., the first 25,000) of iterations.
Convergence needs to be monitored (e.g., time series plots and correlograms need to
be inspected), and hence the sufficient statistics need to be recorded. This recording
should be done after each iteration. A suitable burn-in period is needed in order to
generate M∗, and hence before collecting statistics, and because iteration outcomes
may well be correlated, the chain needs to be weeded (e.g., only every hundredth
iteration result is retained).

The sufficient statistics for the estimators of the simple auto-Poisson model

parameters here are 1 ×
n∑

i=1
yi and

n∑

i=1
yi

n∑

j=1
cij yj; this first statistic is required for a

Poisson model intercept term, whereas this second statistic is required for an auto-
Poisson model autoregressive parameter term. Once convergence has been attained
(e.g., the accompanying trend line for a time series plot is flat, and the accompanying
correlogram displays no significant serial autocorrelation), the last map in the chain
is the simulated Winsorized auto-Poisson realization.
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4.3.1.2 SF Map Simulation

Meanwhile, SF versions of the Poisson model involve specifying a geographically
heterogeneous mean and variance in order to capture positive SA. This imple-
mentation requires the usual set of covariates, X1,. . ..,Xp, to be replaced by the
eigenvectors of matrix expression (4.2) in order to embed SA in a response counts
variable. Compared with the auto- models, spatial dependence effects are shifted to
the mean, resulting in the spatial autoregressive parameter [i.e., ρ in Eq. (4.6)] being
forced to 0. Accordingly, a realization can be obtained by sampling from a Poisson
distribution with mean

LN( μ) =
⎡

⎣α − ln

⎛

⎝1

n

n∑

i=1

e

K∑

k=1
Ekβk

⎞

⎠

⎤

⎦ 1 +
K∑

k=1

Ekβk, (4.7)

where Ek denotes eigenvector k of matrix expression (4.2), βk is its relative weight
(somewhat similar to ρ in the autoregressive specification), and this second term
corrects for artificial inflation of the intercept term α (i.e., an adjustment for trend)
due to the presence of covariates. An additional adjustment for α in the third term is
unnecessary here because the mean of each Ekβk is zero, by construction.

4.3.2 Simulation Results for an Ideal Regular Hexagonal Surface
Partitioning

Figure 4.12, which characterizes all three chains, furnishes strong evidence that
the generated MCMC chains converged, rendering useful maps with positive SA
embedded in them. The time series plots exhibit random stability. For example, for
ρ = 0.06—the maximum positive SA that was successfully embedded into simu-
lated data here—the trend line has not converged within the burn-in set of iterations,
but does converge long before the end of the chain; here this situation is accept-
able since only the last map of the chain is used here. Meanwhile, the correlograms
reveal that virtually no serial autocorrelation is present in the three chains.

The Poissonness plots for the autoregressive model results appear in Fig. 4.13.
These plots begin to exhibit slight but detectable tail disturbances beginning with
low-weak positive SA. Moderate positive SA results in a complete deterioration of
linearity.

Summary descriptive statistics appear in Table 4.5 for the Winsorized auto-
Poisson simulated data containing positive SA. These statistics confirm that the
(controlled for trend) mean essentially is unaffected, while the variance is inflated
(i.e., overdispersion), quite noticeably by moderate positive SA. Corresponding his-
tograms confirm the expectations that low levels of positive SA have little effect,
whereas moderate levels tend to stretch the right-hand tail and shift the concentra-
tion of values toward 0. This same pattern is displayed by: the maximum values,
the mode, and kurtosis. Plot diagnostic statistics begin detecting deviation from
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Fig. 4.12 MCMC time series plot and correlogram diagnostic graphics based on the ideal hexag-
onal surface partitioning when ρ = 0.06 (bottom). Left (a): for the intercept term. Right (b): for the
autoregressive term

a Poisson RV at weak levels of positive SA; the Ord plot statistics emphatically
detect deviation at the low-moderate level, whereas both sets of these statistics
unambiguously detect deviation at the moderate level, of positive SA.

The Poissonness plots for the SF model-embedded positive SA results are illus-
trated in Fig. 4.14. Not only do these results confirm those found for the Winsorized
auto-Poisson model, but the SF model, because it is able to capture much stronger
levels of positive SA, extends the autoregressive findings. Furthermore, the cor-
responding summary descriptive statistics, which appear in Table 4.6, corroborate
those trends detected in Table 4.5. Overall, as positive SA increases in a Poisson
RV, variance increases, both near-zero and extreme values become more likely, kur-
tosis increases, and the Ord plot bivariate regression parameter estimates provide a
very good diagnostic of its presence, one that furnishes superior diagnostics to those
associated with the Poissonness plot.

4.3.3 Simulation Results for the China County Geographic
Configuration

As before, MCMC simulation of Winsorized auto-Poisson model-based maps
employing the China county irregular surface partitioning at most could embed
only moderate positive SA. A bifurcation point appears to be present because of
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Fig. 4.13 Poissonness plots for the Winsorized auto-Poisson-model induced levels of positive SA
based upon the ideal hexagonal surface partitioning. Left (a): iid with no SA. Middle left (b): weak
positive SA. Middle right (c): low-moderate positive SA. Right (d): moderate positive SA

the irregularness of the surface partitioning; MCMC simulation produces maps con-
taining either weak or moderate positive SA, without a transition between them.
Nevertheless, graphical diagnostics indicate that the resulting maps are properly
generated. In addition, summary descriptive statistics reported in Table 4.7 are con-
sistent with those appearing in Tables 4.5 and 4.6: overdispersion is induced, outliers
are generated, relatively small values become more likely, and kurtosis is affected

Table 4.5 Descriptive statistics for the Winsorized auto-Poisson model-based simulated data and
the hexagonal tessellation geographic configuration

Poissonness
plot

Ord
plotVariable

autocorre-
lation MC GR ȳ sy ymax mode |zkurtosis| a –β̂0 eβ̂1 β̂0 β̂1

None (i.e.,
iid)

0.00 1.00 9.00 3.007 19 8 0.04 9.01 9.01 9.01 0.00

Weak 0.11 0.89 8.99 3.050 21 8 0.19 9.29 9.27 9.88 –0.04
Low-
moderate

0.19 0.82 8.90 3.210 21 8 0.23 9.08 9.19 2.48 0.85

moderate 0.47 0.55 9.05 16.477 123 4 67.77 –3.32 1.05 –6.83 2.26

aThe mean of kurtosis is 1/μ = 1/9 = 0.111; the standard error, which can be established using
the moment generating function eμ(et - 1), is

√
151.23594 / n for μ = 9
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Fig. 4.14 Poissonness plots for SF-model induced positive SA using an ideal hexagonal surface
partitioning and a mixture of global, regional and local map patterns. Left (a): weak positive SA.
Middle left (b): low-moderate positive SA. Middle right (c): high-moderate positive SA. Right (d):
strong positive SA

by even moderate amounts of positive SA. Meanwhile, corresponding histograms
once more confirm the expectations that low levels of positive SA have little effect,
whereas moderate levels tend to stretch the right-hand tail and shift the concentration
of counts toward 0.

Poissonness plots for the SF model-embedded positive SA results appearing
in Fig. 4.15 reveal that the irregularness of the China county surface partition-
ing introduces additional skewness into count distributions; the upper tail becomes
increasingly separated from the middle and lower tail as positive SA increases.
In other words, positive SA and the irregularness of a geographic configuration
appear to interact. Meanwhile, Tables 4.7 and 4.8 exhibit the same histogram trends
detectable in Tables 4.5 and 4.6: low levels of positive SA have little effect, whereas
moderate and strong levels tend to stretch the right-hand tail and shift the concen-
tration of values toward 0 (i.e., the mode tends to decrease), while maximum values
and kurtosis increase with increasing positive SA. Plot diagnostic statistics begin
detecting deviation from a Poisson RV at weak levels of positive SA, again with the
Ord plot statistics being more sensitive to the presence of positive SA. A distinction
between Tables 4.7 and 4.8 is that SF-induced positive SA can cover the entire
range of SA, while a Winsorized auto-Poisson model encounters difficulties and
phase transition problems at moderate levels. SF simulations also do not encounter
a bifurcation point, and because they lack truncation, they allow much larger counts
to materialize.
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Table 4.7 Descriptive statistics for the Winsorized auto-Poisson model-based simulated data and
the China county geographic configuration

Variable
autocorrelation

MC GR ȳ sy ymax mode |zkurtosis| a
Poissonness
plot Ord plot

–β̂0 eβ̂1 β̂0 β̂1

None (i.e., iid) 0.02 0.98 8.99 3.032 20 8 0.64 9.05 9.04 8.97 0.02
Very weak 0.13 0.87 9.10 3.249 23 8, 9 0.40 9.05 9.27 6.76 0.23
Low-moderate 0.53 0.56 9.79 14.990 120 5 79.99 40.47 48.23 –

10.67
2.32

aThe mean of kurtosis is 1/μ = 1/9 = 0.111; the standard error, which can be established using
the moment generating function eμ(et - 1), is

√
151.23594 / n for μ = 9

Fig. 4.15 Poissonness plots for SF-model induced levels of positive SA using the China county
surface partitioning for a mixture of global, regional, and local map patterns. Left (a): weak positive
SA. Middle left (b): low-moderate positive SA. Middle right (c): high-moderate positive SA. Right
(d): strong positive SA

4.3.4 Implications

In conclusion, numerical results reported in this section suggest the following
implications about a georeferenced Poisson RV:

(1) by controlling for trend in data when estimating a mean, positive SA has no
impact upon the resulting estimated mean value;

(2) positive SA increases the chances of much larger counts materializing;
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(3) especially strong positive SA increases the chances of counts toward 0 materi-
alizing;

(4) as positive SA increases, a histogram moves toward the exponential distribution
in form;

(5) strong positive SA increases kurtosis;
(6) as positive SA increases, the linearity of a Poissoness plot deteriorates, espe-

cially in the tails of an empirical distribution;
(7) the Ord-plot appears very sensitive to the presence of positive SA, and appears

to out-perform the Poissonness plot as a diagnostic tool in this context;
(8) a particular mixture of eigenvectors in a SF plays an important role in terms of

the impacts of positive SA that materialize (see Table 4.6); and,
(9) the Winsorized auto-Poisson model is unable to capture more than weak-to-

moderate positive SA.

In other words, even modest amounts of positive SA do make a difference!
The general importance of these findings concerns data analysis problems, such

as excessive zeroes and outliers, that spatial scientists frequently encounter with
real world data. These implications should cause a spatial researcher to think more
earnestly about the georeferenced nature of his/her data when faced with such
problems. In addition, particularly results for the SF-model-based simulations pre-
sented here demonstrate that georeferenced Poisson RVs are capable of containing
markedly high levels of positive SA.

4.4 The Binomial Probability Model, N > 1

As with Poisson RVs, little is known about the impacts of SA on binomial RVs.3

Because these RVs also are a member of the exponential family of statistical distri-
butions, just like the normal and Poisson RVs, positive SA should induce variance
inflation in them, too. This expectation is further supported by the close similarity
between a normal and a binomial frequency distribution when the binomial proba-
bility of an event occurring is p = 0.5, and the number of events N becomes very
large. Thus, one should expect that positive SA will create extra-binomial varia-
tion, a notion consistent with discussions in the overdispersion literature.4 But what
happens to the mean of a binomial RV?

One way that a binomial RV differs from both a normal and a Poisson RV is that
its values are restricted to the range [0, N], where N is the maximum number of
items that can occur at a location. In other words, it is a count with both a lower and

3More work has been done on the Bernoulli, vis-à-vis the autologistic model, than on the general
binomial RV.
4This is not the case for binary 0–1 Bernoulli RVs, which by their very nature cannot exhibit extra
variation. The concept of extra variation in a logistic regression has to be teased out of data by, for
example, grouping values in order to have an N > 1.
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an upper bound. The best way for binomial variance to increase is for the relative
frequencies of 0 and N to increase when p = 0.5, or for the frequency of 0 to increase
when p > 0.5, or of N when p < 0.5. The restricted range should help preserve the
mean, μ.

The Ord plot (Ord, 1967) also can be used here for diagnostic purposes. In
this context the slope parameter, β1, becomes negative (< 0). Through the Poisson
approximation of a binomial distribution when p is very small (or by symmetry,
very large) and Np < 5, the preceding Poisson analysis reveals impacts of SA on
binomial histograms when p becomes very small; hence, only the case of p = 0.5 is
treated here. So that more direct comparisons can be made with the preceding find-
ings, N is set to 18 (i.e., μ = 18/2 = 9). The simulated iid values have the following
descriptive statistics:

Mean Standard deviation Skewness Kurtosis
theoretical 9 2.1232 0 –0.11111
observed: n = 2,376 8.9933 2.1220 −0.01 –0.10
observed: n = 2,379 8.9975 2.1196 0.00 –0.11

The MCs and GRs for the simulated data are as follows:

n = 2,376: MC = 0.00431, GR = 0.99488
n = 2,379: MC = –0.00168, GR = 1.00731

In other words, these simulated binomial RVs display the necessary characteris-
tics of iid.

Illustrative graphic portrayals of these values appear in Fig. 4.16. Of note is that
weighted least squares regression estimation yields b = –0.9995 for the theoretical
Ord plot, and b = –0.9981 and –1.0178 for the two simulation data Ord plots, con-
firming that the values are for binomial RVs. These slope parameter estimates can
be converted to their corresponding binomial probability estimates with the equa-

tion p = β̂1

β̂1 − 1
, respectively yielding 0.49988 for the theoretical binomial data,

and 0.50441 and 0.49953 for the simulated data; the true value is 0.5.
Bernoulli RVs (i.e., N = 1) are not be treated in this section, since their

histograms tend to be too simple to display conspicuous impacts of SA.

4.4.1 Simulating Spatially Autocorrelated Binomial RVs

The simulation of either multivariate binary or multivariate binomial georeferenced
data has not been given as much attention in the literature as has the simula-
tion of spatially autocorrelated normal or Poisson RVs. Dolan et al. (2000), for
example, simulate a spatially autocorrelated log-normal RV and then do a back-
transformation, an approach not endorsed here. Heagerty and Lele (1998), for
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Fig. 4.16 Graphical diagnostic tools for the iid binomial RVs; n = 2,379. Left (a): a dot-plot
histogram. Middle (b): a normal quantile plot. Right (c): an Ord plot with its trend line (solid line
with solid circles) together with and Ord plot of the theoretical counterpart (broken line with solid
squares)

instance, promote the use of a generalized linear mixed model coupled with a geo-
statistical perspective for binary georeferenced data. And, Augustin et al. (1998),
for example, promote the use of the autologistic model. As in the Sects. 4.2 and 4.3,
auto-binomial model RVs are simulated here with MCMC and SF techniques. The
autoregressive equation employed with MCMC is given by

P(Yi = y|αi, CiY)

= exp

⎛

⎝αi + ρ

n∑

j=1

cij(yj − ȳ)

⎞

⎠
/⎡

⎣1 + exp

⎛

⎝αi + ρ

n∑

j=1

cij(yj − ȳ)

⎞

⎠

⎤

⎦ ,

(4.8)

where y is contained in the interval [0, N], and including subtraction of the mean ȳ
in parallel with Kaiser and Cressie’s (1997) specification for the Winsorized auto-
Poisson model specification. Meanwhile, the SF equation employed is given by

P
(
Yi = y|Ei,K

) = exp(α + Ei,Kβ)/[1 + exp(α + Ei,Kβ)], (4.9)

where EK is the n-by-K matrix of SF eigenvectors. The procedural steps for
using these equations to simulate geographic distributions are exactly the same as
those outlined in the preceding section for Poisson RVs, except that the Poisson
probability model is replace with the binomial probability model.
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4.4.2 Simulation Results for an Ideal Regular Hexagonal Surface
Partitioning

MCMC map simulation can exploit the particular relationship between the inter-
cept and autoregressive parameter when p = 0.5, namely asymptotically α = −3ρ,
which was done here. As with Poisson RVs, phase transitions tend to be encoun-
tered beyond moderate SA. Consequently, only weak and low-moderate SA have
been simulated for analysis purposes.

Figure 4.17 furnishes strong evidence that the generated MCMC chains con-
verged, rendering useful maps with positive SA embedded in them. The time series
plots exhibit random stability. Meanwhile, the correlograms reveal that virtually
no serial autocorrelation is present in the three chains. As with the Poisson RVs
simulated in the preceding section, only the last map of a chain is used here.

Summary descriptive statistics appear in Table 4.9 for the auto-binomial sim-
ulated data containing positive SA. These statistics confirm that the (controlled
for trend) mean essentially is unaffected, while the variance is inflated (i.e.,
overdispersion). Dot plot versions of histograms appearing in Fig. 4.18 confirm
the expectations that low levels of positive SA have little effect, whereas low-
moderate levels already tend to redistribute counts to the two tails. In addition, the
Kolmogorov-Smirnov (K-S) statistic quantifies a movement away from the corre-
sponding theoretical binomial distribution as positive SA increases. Unfortunately,

Fig. 4.17 MCMC time series plot and correlogram diagnostic graphics based on the ideal hexag-
onal surface partitioning when ρ = 0.60 (bottom). Left (a): for the intercept term. Right (b): for the
autoregressive term
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Table 4.9 Descriptive statistics for the auto-binomial model-based MCMC simulated data and the
hexagonal tessellation geographic configuration

Variable autocorrelation MC GR ȳ sy ymin ymax Skewness Kurtosis K-Sa

None (i.e., iid) 0.00 0.99 8.99 2.122 2 16 –0.01 –0.10 0.0038
Weak 0.10 0.89 8.81 2.212 2 15 –0.02 –0.19 0.0400
Low-moderate 0.39 0.55 9.07 2.759 0 18 –0.24 –0.07 0.0700

aK-S denotes the Kolmogorov-Smirnov statistic, used here to index deviation from the theoreti-
cal binomial distribution for which N = 18 and p = 0.5

Fig. 4.18 Dot plot versions of histograms for the MCMC auto-binomial simulated data. Top (a):
iid. Middle (b): weak positive SA. Bottom (c): low moderate positive SA

because strong positive SA cannot be embedded with MCMC techniques, its
impacts cannot be assessed in terms of an auto-binomial model.

Summary statistics for the SF model-embedded positive SA results appear in
Table 4.10; the corresponding dot plot versions of histograms appear in Fig. 4.19
for a global map pattern. These results both confirm and extend those found for
the auto-binomial. Figure 4.19a includes the dot plot for extremely strong positive
SA to complete the trend being revealed by these illustrative results: as positive
SA approaches its maximum, the binomial histogram increasingly resembles that
for a sinusoidal RV—this is the reason for change in the kurtosis statistic. Overall,
as positive SA increases in a binomial RV, variance increases, and the center of a
histogram flattens, converging first on a uniform distribution in appearance, and then
on a near-dichotomous 0/N frequency distribution.

Dot plot versions of histograms for SFs constructed with global and regional
map patterns appear in Fig. 4.19b. As with the global map pattern results, the mean
remains unaffected, variance is inflated and kurtosis is impacted upon by positive
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Fig. 4.19 Dot plot versions of histograms for the SF binomial simulated data using the regular
hexagonal surface partitioning. Left (a): SF results from a global map pattern. Middle (b): SF
results from a global combined with a regional map pattern. Right (c): SF results from a global
combined with a regional and a local map pattern

SA. Again, these results both confirm and extend those found for the auto-binomial.
Furthermore, the tendency toward a sinusoidal RV shaped histogram already is
becoming apparent here for MC = 0.90. The same histogram patterns appear for
SFs constructed with global, regional and local map patterns. As with the Poisson
case, Fig. 4.19c (as well as its corresponding part of Table 4.10) indicates that the
mixture of map patterns constituting a SF, rather than only the level of positive SA,
plays an important role, too.

4.4.3 Simulation Results for the China County Geographic
Configuration

As with the hexagonal surface partitioning, MCMC simulation of auto-binomial
model-based maps employing the China county irregular surface partitioning at
most could embed only moderate positive SA. The graphical diagnostics appearing
in Fig. 4.20 indicate that the resulting maps are properly generated. In addition, sum-
mary descriptive statistics reported in Table 4.11 are consistent with those appearing
in Table 4.10: overdispersion is induced, and the distribution appears more uni-
form in shape. Meanwhile, dot plot versions of histograms appearing in Fig. 4.21
once more confirm the expectations that low levels of positive SA have little effect,
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Fig. 4.20 MCMC time series plot and correlogram diagnostic graphics based on the China county
surface partitioning when ρ = 1.00 (bottom). Left (a): for the intercept term. Right (b): for the
autoregressive term

Table 4.11 Descriptive statistics for the auto-binomial model-based MCMC simulated data and
the China irregular county geographic configuration

Variable autocorrelation MC GR ȳ sy ymin ymax Skewness Kurtosis K-Sa

None (i.e., iid) 0.00 0.99 8.99 2.122 2 16 –0.01 –0.10 0.0038
Weak 0.12 0.86 9.18 2.511 1 16 –0.11 –0.27 0.0697
Low-moderate 0.40 0.55 11.96 4.167 0 18 –0.73 –0.73 0.5007
moderate 0.51 0.25 13.79 5.128 0 18 –1.37 0.61 0.6963

aK-S denotes the Kolmogorov-Smirnov statistic, used here to index deviation from the theoreti-
cal binomial distribution for which N = 18 and p = 0.5

whereas moderate levels tend to squash the center of a distribution and thicken
its tails—in this case the irregularity of the surface partitioning distorts this tail
thickening by skewing it to one side of its distribution. Of note is that the irregular
surface partitioning introduces some trend in the mean, indicating that the relation-
ship between α and ρ most likely needs to be more carefully articulated for irregular
surface partitionings. Furthermore, the Kolmogorov-Smirnov statistics reported in
Table 4.11 are indexing this deviation from p = 0.5 as much, if not more, than the
change in the shape of the histogram. Skewness distortion with increasing positive
SA appears in both the MCMC auto-binomial and the SF model-based simulation
data.
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Fig. 4.21 Dot plot versions of histograms for the MCMC auto-binomial simulated data. Top (a):
iid. 2nd from top (b): weak positive SA. 2nd from bottom (c): low moderate positive SA. Bottom
(d): moderate positive SA

As is also seen with the Poisson RV analysis, one conspicuous difference between
Figs. 4.18 and 4.19, and Figs. 4.21 and 4.22, is the interaction effect between posi-
tive SA impacts and the irregularness of the geographic configuration. One outcome
of this interaction is that the flattening of a binomial histogram is followed by less
of a sinusoidal RV shape as positive SA approaches its maximum value.

4.4.4 Implications

In conclusion, numerical results reported in this section suggest the following
implications about a georeferenced binomial RV:

(1) by controlling for trend in data when estimating a mean (apparently this only
needs to be done with MCMC simulation, not with SF simulation), positive SA
has no impact upon the resulting estimated mean value;

(2) positive SA increases the chances of a histogram resembling that for a uniform
distribution, and in the extreme, for a sinusoidal distribution;

(3) especially strong positive SA increases the chances of most counts being only
0 or N;

(4) as positive SA increases, the Kolmogorov-Smirnov test statistic tends to
increase;
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Fig. 4.22 Dot plot versions of histograms for the SF binomial simulated data using the China
irregular surface partitioning. Left (a): SF results from a global map pattern. Middle (b): SF results
from a global combined with a regional map pattern. Right (c): SF results from a global combined
with a regional and a local map pattern

(5) a particular mixture of eigenvectors in a SF plays an important role in terms of
the impacts of positive SA that materialize (see Tables 4.10 and 4.12);

(6) an interaction effect appears to occur between SA and the irregular nature of a
surface partitioning; and,

(7) the conventional auto-binomial model is able to capture only weak-to-moderate
positive SA.

In other words, just as with a Poisson RV, even modest amounts of positive SA
do make a difference!

4.5 Discussion

This chapter indicates what a spatial scientist should expect from commonly
encountered levels of SA when inspecting histograms constructed with georefer-
enced data. Regardless of whether a RV is normal, binomial, or Poisson in nature, its
variance will tend to be inflated, with inflation increasing as positive SA increases.
This is the single most common impact, which results in histograms being flatter
than they would otherwise be if the data observations were iid. It leads to hetero-
geneity for normal RVs, excessive 0 s and extreme values (i.e., overdispersion) for
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Poisson RVs, and overdispersion for binomial RVs. Positive SA corrupts quantile
plots when assessing normality, Poissonness plots, and other goodness-of-fit test,
even when only its most commonly encountered moderate levels are present.

SF model specifications furnish an efficient and effective way of capturing SA
effects, and render simulation results that are consistent with those obtained with the
more conventional auto- model specifications. Because these models are constructed
with stepwise regression techniques when an empirical analysis is being undertaken,
they signal that Gaussian approximations actually are not obsolete. The role of these
approximations is to supply a first glimpse of SA, as well as a first screening of a
large number of candidate eigenvectors when constructing a SF.

Finally, the lessons to be learned from this chapter may be summarized as fol-
lows: caution SA at work! Cursory initial graphical inspections of empirical data
can be misleading when SA is present. Spatial scientists need to heed this warning.

Acknowledgment This research was completed while the author was a visiting scientist at the
Max Planck Institute for Demographic Research, Rostock, Germany, 2005.



Chapter 5
Understanding Correlations Among Spatial
Processes

5.1 Introduction

The Pearson product-moment, Spearman’s rank, point biserial and phi correlation
coefficients are calculated to quantify the nature and degree of linear correspon-
dence between observation pairs of attributes. Bivand (1980) and Griffith (1980)
were among the very first spatial analysts to address the impacts of spatial autocor-
relation (SA) on conventional Pearson correlation coefficients. In the decades since
their studies, an increasing understanding has been attained about correlation coef-
ficients computed with georeferenced data. This understanding includes how: SA
alters conventional degrees of freedom and sample size, the nature and degree of
SA affects correlation coefficients, and SA can simultaneously inflate and deflate
correlation coefficients. The primary objective of this chapter is to review each of
these topics, adding some extensions when possible.

5.2 Two Illustrative Examples

Two georeferenced data sets have been selected for illustrative purposes here. One
is the famous geocoded (by district) Scottish lip cancer data reported by Clayton
and Kaldor (1987, pp. 676–677), which comprises the number of observed lip
cancer cases (Oi) geographically aggregated (i.e., post-stratified) into 56 district,
expected values (Ei) computed on the basis of age and sex compositions of district
populations, and the percentage of each district’s outdoor labor force employed in
agriculture, fishing, or forestry. Six districts consist of multiple islands, and some-
times parts of the mainland; centroids for these districts were approximated by
selecting a central location for georeferencing purposes. The other data set com-
prises a number of surface (0–2") soil samples collected in and around the vacant
industrially contaminated Murray (Utah, USA) smelter site (see Griffith, 2002).
Three samples failed to have a geocode recorded, 173 samples were collected from
the smelter site itself, and a total of 101 samples were collected from two adjacent
residential neighborhoods, yielding 253 locations from which soil samples were
taken. Each locationally tagged sampling quantity is a pooled composite result of

75D.A. Griffith, J.H.P. Paelinck, Non-standard Spatial Statistics and Spatial
Econometrics, Advances in Geographic Information Science 1,
DOI 10.1007/978-3-642-16043-1_5, C© Springer-Verlag Berlin Heidelberg 2011
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Fig. 5.1 Georeferencing of the illustrative data by surface tessellations (areal unit outlines) and
Cartesian coordinates (solid circles, •). Left (a): Scotland districts.Right (b): Murray smelter site
Thiessen polygons

assays for a number (usually four) of nearly adjacent soil samples for which lead
(Pb) and arsenic (As) were measured. A tessellation for these points was established
by generating Thiessen polygons. Maps of the surface partitionings and locational
coordinates for these two landscapes appear in Fig. 5.1.

For the Scottish lip cancer data, one variable is the standardized mortality ratio
(SMR), which, after application of a suitable Box-Cox power transformation, results

in the variable YSMR = LN
(

O+0.5
E+0.5

)
conforming closely to a normal distribution

[Shapiro-Wilk statistic (S-W) = 0.971, p = 0.20]. The estimated optimal transla-
tion parameter, 0.5, is necessary here because some counts are 0. The detected SA
changes little when this transformation is applied: the Moran Coefficient (MC) is
0.49652 and the Geary Ratio (GR) is 0.43830. Meanwhile, the Box-Tidwell lin-
earization transformation identified for the outdoor labor percentage covariate is
XOLP = LN(% + 1.2). The S-W for this transformed variable is 0.860 (p < 0.01); but
its linear relationship with YSMR is near optimal. The estimated translation param-
eter, 1.2, is necessary here because some percentages are 0. The detected SA is
indexed as follows: MC = 0.39787, and GR = 0.56661. Significant (σ̂MC ≈ 0.086),
moderate positive SA is detected in each of these two variables.

The following optimal heterogeneous Box-Cox power transformations were
employed with the Murray smelter site geographic landscape:

YAs = LN(As − 38.5 + 98.1

(
ηAs

n + 1

)0.31 (
1 − ηAs

n + 1

)2.90

,
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and

XPb = LN(Pb − 25.9 + 2287.5

(
ηPb

n + 1

)1.45 (
1 − ηPb

n + 1

)−0.93

,

where ηAs and ηPb respectively denote the ranking of As and Pb values, in descend-
ing order. These two transformations are consistent with the common finding that
pollution data are log-normally distributed. Each of the two translation parameters
relates to its variable’s minimum contaminant value, as well as heterogeneity associ-
ated with size of values (captured by letting the translation parameter be a function
of rank order). The primary impact of the translation parameters is better align-
ment of distributional tails in a normal quantile plot. The respective S-W statistics
are 0.972 (p < 0.01) and 0.999 (p ≈ 1.00). The detected SA is indexed as follows:
for YAs, MC = 0.29114 and GR = 0.60855; and, for YPb, MC = 0.25534 and
GR = 0.77245. Significant (σ̂MC ≈ 0.038), weak positive SA is detected in each of
these two variables.

5.3 Geostatistical Semivariogram Model Implications

Clifford, Richardson and Hémon (1989), and Richardson (1990), use semivariogram
modeling to link the correlation coefficient, r, to its correct sampling distribution.
They develop the notion of effective degrees of freedom (edfs), which are the equiv-
alent number of degrees of freedom for n∗ independent and identically distributed
(iid) observations. In other words, SA represents redundant, or duplicated, informa-
tion contained in georeferenced data due to the relative locations of observations.
One way of adjusting for this redundancy is to prorate the number of observations,
n, to n∗. Calculations are based upon the formula

n∗ = 1 + σ−2
r (5.1)

where σ 2
r denotes the variance of the sampling distribution of the correlation coef-

ficient, r. If zero SA is present, then n∗ = n; if perfect positive SA is present, then
n∗ = 1.

Dutilleul (1993) further clarified this notion of edfs by incorporating impacts of
estimating means and variances for a correlation coefficient, an adjustment that is
set aside here for simplicity (these types of adjustments also are outlined in Griffith
and Zhang, 1999), and rewriting σ -2

r in matrix notation as

TR(V−1
X )TR(V−1

Y )

TR(V−1
X V−1

Y )
, (5.2)

where V−1
X and V−1

Y respectively are the n-by-n SA covariance structure matrices
for variables X and Y, and TR denotes the matrix trace operator. If the n observations
contain zero SA, then V−1

X = V−1
Y = I, the n-by-n identity matrix, and expression
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(5.2) becomes
TR(I)TR(I)

TR(I × I)
= n2

n
= n; if the n observations contain perfect posi-

tive SA, then conceptually V−1
X = V−1

Y = 11T and hence expression (5.2) becomes
TR(11T)TR(11T)

TR(11T11T)
= n2

n2
= 1.

For a semivariogram model of the form

C0 + C1f(rd, d̄k)

where C0 denotes the nugget effect (e.g., variation due to measurement error and/or
model misspecification), C1 is the SA adjusted variance when C0 = 0, rd is a range
parameter (i.e., an index of the distance beyond which SA is trivial), f denotes one of
the various valid semivariogram model distance decay functions, and d̄k denotes the
average inter-location distance for some distance range k, expression (5.2) becomes

n2

TR(V−1
X V−1

Y )
, (5.3)

where cell entry (i, j) in the covariance structure matrix V−1
j ( j = X, Y) may be

defined by

1 − [
C0/C1 + f

(
r, dij

)]1 .

Accordingly, matrices V−1
X and V−1

Y in expression (5.3) have 1s in their diago-
nal entries. Again, if zero SA prevails, this expression reduces to n. An assortment
of semivariogram models has been estimated with the two illustrative data sets.
Iteratively customized distance intervals were constructed, and maximum dis-
tance included was determined by visual inspection of the semivariogram plots.
Georeferencing coordinates were standardized to a near-unit square, for ease of
comparison between the two geographic landscapes, resulting in a maximum dis-
tance of 1.12625 for the Scotland landscape, and of 1.05010 for the Murray smelter
landscape. One guiding principle for estimation purposes was that any distance
interval k had a sample size of at least 30. Estimation results appear in Tables 5.1
and 5.2. Practical ranges were computed following Griffith and Layne (1999,
p. 468). Because the MC and GR indices indicate the presence of positive SA, the
wave-hole semivariogram model was not estimated. And, because it has neither a
range nor a practical range, the power semivariogram model was not estimated.

Estimation results for Scotland appear in Table 5.1. Because excessively large
nugget estimates were obtained for it, the cubic semivariogram model was set aside.
Both the stable and the Cauchy semivariogram model specifications yielded unreli-
able results, perhaps because geographically aggregated data are being assigned to
tessellation centroids here. Noticeable variation is apparent in the ranges/practical

1See Cressie (1991) for the specific equations for many of the semivariogram models.
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ranges for SMRs, while these values are very similar for the worker percentages;
the same patterns appear in the relative error sums of squares (REESs) and the C1
values. Nevertheless, all of the calculated effective sample sizes, denoted by n∗, are
roughly the same. In other words, for the most part, the model specification makes
little difference when numerically evaluating expression (5.3). The exponent for the
stable semivariogram model specification that is estimated with the percentage of
outside workers suggests that this model specification is better than the Gaussian
specification. The MC and GR values suggest that the exponential or Bessel func-
tion model specifications should be preferable (see Griffith and Layne, 1999,
pp. 142–152), an implication largely corroborated by the RESSs.

See Cressie (1991) for the mathematical equations for these model specifications.
Estimation results for the Murray smelter site appear in Table 5.2. Once more,

because excessively large nugget estimates were obtained for it, the cubic model
was set aside. Of note is that, except for the Cauchy model specification, all of
the ranges/practical ranges are very similar, as are the REESs and the C1 values.
Estimated exponents for the stable model specification suggest that the exponen-
tial model specification is better than the Gaussian specification. The MC and GR
values suggest that the exponential or Bessel function model specifications should
be preferable, an implication largely corroborated by the RESSs. Except for the
Cauchy model specification, all of the effective sample sizes (n∗) are roughly the
same. In other words, again, the model specification tends to make little difference
when numerically evaluating expression (5.3).

A better understanding of correlations among spatial processes, in terms of sam-
pling distribution degrees of freedom, exists because of this work. But in many
empirical cases the reduction from n to n∗ makes little difference in resulting t-
distribution values. For example, for the Scotland data, t0.95,30–2 = 1.70113 differs
little from t0.95,56–2 = 1.67356; an even smaller difference exists between t0.95, 120-2
= 1.65781 and t0.95,253-2 = 1.65095 for the Murray smelter site. Meanwhile, what
already is known may be supplemented by considering the relationship between n∗
obtained for a correlation coefficient and individual variable values, say n*

X and n*
Y.

Griffith and Zhang (1999), for instance, report that the univariate values of n∗ are

given by
TR(V−1

j )

1TV−1
j 1

(j = X, Y), based on the sampling distribution of a sample mean.

Suppose the value produced by expression (5.3) is denoted by n*
XY–1. A simula-

tion experiment based upon the Bessel function semivariogram model, the Scotland
coordinates, and independent pairs of range parameters randomly selected from the
uniform distribution, U(0, 0.25), and replicated 10,000 times, rendered the following
equation:

n̂*
XY = 1 − 1.3594

n1.7842 − n

n1.7842 − 1
+
[(

n*
X

)0.8075 + (n*
Y)0.8075

]1.2384

− 1.3594
n1.7842 − 1

n1.7842 − 1

(
n*

Xn*
Y

)0.8921
, n = 56 and R2 = 0.9999.

(5.4a)

A graph of Eq. (5.4a) appears in Fig. 5.2a. A second simulation experiment based
upon the Bessel function semivariogram model, the Murray smelter site coordinates,
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Fig. 5.2 Simulation-based relationships between a composite of individual univariate effective
sample sizes and their corresponding bivariate effective sample size. Left (a): Scotland results
based upon a Bessel function and Eq. (5.4a). Right (b): Murray smelter site results based upon a
Bessel function and Eq. (5.4b)

and independent pairs of range parameters randomly selected from the uniform dis-
tribution, U(0, 0.25), and replicated 10,000 times, rendered the following equation:

n̂*
XY = 1 − 1.4731

n1.6212 − n

n1.6212 − 1
+ [(n*

X)0.7655 + (n*
Y)0.7655]1.3063

− 1.4731
n1.6212 − 1

n1.6212 − 1

(
n*

Xn*
Y

)0.8106
, n = 253 and R2 ≈ 1.0000.

(5.4b)

A graph of Eq. (5.4b) appears in Fig. 5.2b. These two graphs reveal a close
correspondence between univariate and bivariate results, for the Bessel function
semivariogram model. A third simulation, in which the model also was randomly
selected, produced very similar output, but, as expected, output displaying more
variation. One important implication here is that impacts of SA can be mitigated,
to some degree, by incorporating redundant georeferenced attribute information, a
natural form of which arises in space-time series data. Lahiri (1996) notes that this is
one way of regaining estimator consistency when employing infill asymptotics (i.e.,
the sample size increases by keeping the study area size constant and increasing the
sampling intensity). The interplay between spatial auto- and attribute correlation
also is addressed by, among others, Wartenberg (1985) and Lee (2001).

5.4 Spatial Autoregressive Model Implications

Haining (1991) follows the prewhitening, impulse-response function approach of
time series analysis to adjust for SA effects on correlation coefficients (i.e., the
spatial version of a Cochrane-Orcutt time-series transformation). In doing so, he
compares this prewhitening approach with that of Clifford, Richardson and Hémon
(1989), and extends findings to the Spearman’s rank correlation coefficient. One
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of his findings is that the Clifford-Richardson- Hémon adjustment discussed in the
preceding section improves the large sample test for Spearman’s rank correlation.

Prewhitening two georeferenced variables often takes a spatial analysis into the
realm of spatial autoregressive models. As such, the inverse covariance matrix
Vσ−2, rather than the covariance matrix itself, is modeled. Accordingly, for purely
spatial processes (i.e., not including covariates),

Y = μY1 + V−1
X ξY, and (5.5a)

X = μX1 + V−1
Y ξX (5.5b)

where μY and μX respectively denote the means of variables Y and X, the n-by-1
vectors X and Y respectively are the observed values of variables X and Y, 1 is an
n-by-1 vector of ones, and ξX and ξY are n-by-1 vectors of iid random variables
frequently assumed to be distributed N(0, σ 2

ξj
), j = X or Y. Two model specifications

are popular for matrices V - 1
X and V - 1

Y . The conditional autoregressive (CAR) model
includes the definition V = (I – ρ C), where ρ is an autocorrelation parameter indi-

cating the nature and degree of SA
(

1
λmin

< ρ < 1
λmax

, where λmin and λmax are the

extreme eigenvalues of matrix C), and the simplest version of the n-by-n geographic
weights matrix C is a binary form whose entries are cij = 1 if areal units i and j are
neighbors, and cij = 0 otherwise. The simultaneous autoregressive (SAR) model
includes the definition V = [(I – ρ W)T(I – ρ W)], where matrix W frequently is

the row standardized (i.e., each row sums to 1) version of matrix C
(

1
λmin

< ρ < 1,

where λmin and 1 are the extreme eigenvalues of matrix W). Based upon the SAR
model, Eqs. (5.5a) and (5.5b) produce the following pair of equations:

Y = ρYWY + (1 − ρY)μY1 + (I − ρYW)[(I − ρYW)−1]ξY, (5.6a)

and

X = ρXWY + (1 − ρX)μX1 + (I − ρXW) [(I − ρXW)−1]ξX, (5.6b)

where ρX and ρY respectively denote the autoregressive parameters for variables X
and Y. The matrix multiplications [(I – ρY W) [(I – ρY W)–1] and [(I – ρX W) [(I –
ρX W)–1] remove SA from the error terms, which is the process of prewhitening.

Griffith and Layne (1999) establish numerical links between the CAR and expo-
nential, and the SAR and Bessel function, semivariogram models. Although an
increase in the range of semivariogram models accompanies an increase in the
degree of SA, one functional advantage Eqs. (5.6a) and (5.6b) have over the pre-
ceding semivariogram models is that n∗, for instance, can be written explicitly in
terms of the nature and degree of SA as indexed by ρ. Haining (1991) also notes
that the semivariogram approach may well require a detrending of georeferenced
data prior to model estimation. This necessity is easily accommodated with Eqs.
(5.6a) and (5.6b) by including covariates in their specifications.
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Table 5.3 Summary statistics that are informative about spatial autocorrelation and bivariate
attribute correlation

Scottish lip cancer data Murray smelter site data

Statistic SMR % Outdoor workers As Pb

r 0.54087 0.74775
rξXξY 0.26979 0.70058

sξj (j = X, Y) 0.61169 0.77922 1.87642 1.65854
SAR ρ̂ 0.72021 0.58082 0.53180 0.49363
Residual MC –0.03685 0.02085 –0.02978 –0.03362
Residual GR 1.01248 0.89913 1.04530 1.08512
Residual R-J 0.9693 (p = 0.01) 0.9850 (p > 0.10) 0.9980 (p > 0.10) 0.9979 (p > 0.10)

NOTE: R-J denotes the Ryan-Joiner normality test statistic

Table 5.3 summarizes descriptive statistics affiliated with spatial autoregressive
models for the two empirical data sets being used here for illustrative purposes.
The autoregressive parameter estimates indicate the presence of moderate, positive
SA in all four variables. Although the MC and GR values for the residuals are only
approximations, they do suggest the absence of all but trace SA in the SAR residuals.
And, each of the four sets of residuals appears to conform reasonably well to a
normal distribution. For the Scottish lip cancer data, the correlation is markedly
inflated by the presence of SA; for the Murray smelter data, the correlation is only
moderately inflated by the presence of SA.

Simulation and resampling experiments, involving 10,000 replications, were con-
ducted based upon the vectors ξ̂X and ξ̂Y. The simulation experiment involved sam-
pling from a bivariate normal distribution with the following attribute covariance
matrices:

Scotland

(
0.61169 0.12859
0.12859 0.77922

)
; Murray

(
1.87642 2.19585
2.19585 1.65854

)
.

The bootstrapping experiment involved simple random sampling, with replace-
ment, of pairs of estimated errors (ξ̂X, ξ̂Y). And, the permutation experiment (see, for
example, Costanzo, 1983) involved randomly permuting pairs of estimated errors
(ξ̂X, ξ̂Y). Summary results from these experiments are reported in Table 5.4. During
each replication, after experimental errors were obtained for each location, the esti-
mated versions of Eqs. (5.6a) and (5.6b) were used to compute the X and Y values
for which correlation coefficients were calculated. Of note is that the sampling distri-
bution means are corroborated by the different experiments, and are closely related
to the values obtained by prewhitening. None of the standard errors are very close

to the theoretical value of

√
1−r2

ξXξY
n−2 , which is 0.13104 for the Scottish data, and

0.04504 for the Murray data. All three of the Scottish lip cancer data computer-
generated sampling distributions tend to have marked deviations in their upper tails,
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Table 5.4 Simulation and resampling experiment sampling distribution results using Eqs. (5.6a)
and (5.6b); 10,000 replications

Error
source

Scottish lip cancer data
(r = 0.54087) Murray smelter site data (r = 0.74775)

μ̂r σ̂r R-J μ̂r σ̂r R-J

Bivariate normal 0.2622 0.1777 0.9976 (p < 0.01) 0.70379 0.03794 0.9970 ( p < 0.01)
Permutation 0.2625 0.1264 0.9988 (p < 0.01) 0.70500 0.02065 0.9989 (p < 0.01)
Bootstrap 0.2723 0.1870 0.9973 (p < 0.01) 0.70437 0.04885 0.9960 ( p < 0.01)

resulting in the Ryan-Joiner (R-J) normality test statistics implying non-normality.
The Murray data tend to have marked deviations in both tails.

Figure 5.3 portrays the impact of SA on the sampling distribution of r, which con-
tains graphs of the simulated bivariate normal data for the Murray smelter pollution
case. As these graphs demonstrate, positive SA deflates the central part and inflates
the tails of the sampling distribution. In other words, it increases the variance of the
sampling distribution. In this example—which involves moderate, positive SA—the
variance is inflated by a factor of 1.41578. These graphs also show that SA basically
does not alter the mean of the sampling distribution of r.

5.4.1 Variance and Covariance Inflation Attributable to Spatial
Autocorrelation

Variance inflation may be written for attribute variables X and Y, in terms of spa-

tial autoregressive models, as
TR(V−1

X )
n and

TR(V−1
Y )

n [see expression (5.2)]. When
V = (I – ρ C) or V = [(I – ρ W)T(I – ρ W)], these traces no longer equal n, as is the
case with the semivariogram modeling [see expression (5.3)]. The covariance term

Fig. 5.3 Computer-generated sampling distributions of the correlation coefficient, r. Broken lines
(---) denote r computed with spatially unautocorrelated data values; solid lines (—) denote r
computed with spatially autocorrelated data values. Left (a): histograms.Right (b): normal curve
approximations to the histograms
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of the correlation coefficient numerator becomes
TR[(V−1/2

X )TV−1/2
Y ]

n ; this and the two
univariate variance inflation factors (VIFs) are the same forms found in the preced-
ing discussion about semivariogram models. The ratio of these terms that is part of
the calculation of the correlation coefficient, namely

TR
[
(V−1/2

X )TV−1/2
Y

]

√
TR(V−1

X )
√

TR(V−1
Y )

,

highlights how the variance and covariance inflation factors compensate for each
other; a correlation coefficient cannot exceed 1 in absolute value, constraining the
joint effects of variance and covariance inflations.

A simulation experiment, involving 10,000 replications, was conducted in which
n pairs of random numbers were drawn from a bivariate normal distribution with
attribute correlations ranging from –1 to 1, and using the SA covariance structure
matrices for the Murray smelter site data (n = 253). Results of this experiment
appear in Table 5.5 and Fig. 5.4. The resulting average spatially autocorrelated cor-
relations are indistinguishable from their unautocorrelated counterparts. Of note is
that a slight amount of variation appears in the extreme cases of ±1 for the spa-
tially autocorrelated case. Except for correlations very close to the near-degenerate
case of zero, the VIF is approximately constant (i.e., 1.22570 from the simulation

Table 5.5 Simulation experiment sampling distribution results for cross-product terms; 10,000
replications

Correlation μ̂rXY μ̂rξXξY
VIF

1.0 0.99957 1.00000 1.22604
0.9 0.89918 0.89966 1.22577
0.8 0.79840 0.79923 1.22347
0.7 0.69922 0.69926 1.22664
0.6 0.59907 0.59926 1.22718
0.5 0.49884 0.49894 1.22641
0.4 0.39945 0.39981 1.22482
0.3 0.29932 0.29922 1.22615
0.2 0.19954 0.19932 1.22806
0.1 0.09971 0.09967 1.22879
0.0 0.00061 0.00018 4.84194

–0.1 –0.09931 –0.09954 1.22497
–0.2 –0.19923 –0.19929 1.22617
–0.3 –0.30004 –0.30025 1.22510
–0.4 –0.39865 –0.39921 1.22467
–0.5 –0.49814 –0.49870 1.22503
–0.6 –0.59836 –0.59880 1.22626
–0.7 –0.69923 –0.69977 1.22568
–0.8 –0.79916 –0.79960 1.22523
–0.9 –0.89886 –0.89958 1.22307
–1.0 –0.99957 –1.00000 1.22455
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Fig. 5.4 Average cross-product terms for simulated data based upon the Murray smelter site.
Asterisks (∗) denote spatially autocorrelated data; solid circles (•) denote spatially unautocorrelated
data

experiment, excluding the case of 0 correlation, and 1.23701 from the covariance
inflation factor formula). Figure 5.4 reveals that the cross-product terms remain a
linear function of attribute correlation, regardless of whether or not SA is present.
The numerical results demonstrate that the associated univariate VIFs completely
compensate for the covariance inflation factor.

5.4.2 Effective Sample Size as a Function of ρX and ρY

One advantage of the spatial autoregressive over the semivariogram modeling
approach is that specific natures and degrees of SA can be specified with param-
eter ρ. The same effect can be obtained with semivariogram models by altering the
range parameter, but the degree of SA change is not obvious from this manipula-
tion. Another advantage is that the full gamut of SA, from strong negative to strong
positive, can be studied with autoregressive models. The wave-hole semivariogram
model is one of the very few that captures negative SA. One disadvantage is that
when the inverse covariance matrix is modeled, boundary effects introduce more
complications in spatial autoregression. This in part is why, for the Murray smelter
site, n̂*

XY = 177.60 obtained with the SAR model specification differs from the range
of semivariogram model results (i.e., 115 to 126) reported in Table 5.2.

A simulation experiment, involving 10,000 replications, was conducted in which
each entry of an independent pair of SA values (ρX, ρY) was randomly drawn from
the uniform distribution U(–1, 1), and using the W matrix for the Murray smelter
site data (n = 253). Although the sampling range does not span the full range
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of negative SA
(

1
−0.57823 = −1.72294 < −1

)
, if furnishes a practical range for

assessment purposes. These simulated data were used to evaluate expression (5.2)
in order to establish an effective sample size equation for spatial autoregression that
is comparable with Eq. (5.4b).

Impacts of SA appear to vary by its nature. For example, n∗ exceeds n for nega-
tive SA, whereas it lies in the range [1, n] for positive SA. Let I++ denote the case
where ρX > 0 and ρY > 0; approximately 25% of the simulated cases fall into this
category. Let I-– denote the case where ρX < 0 and ρY < 0; again, approximately
25% of the simulated cases fall into this category. A reasonably good description of
n̂∗

XY (e.g., pseudo-R 2 = 0.9458) is furnished by

n̂∗
XY = 1 + a + {253[1 −

(
{253[1 − 1

1 − e−α

253 − 1

253
(1 − e−α×ρX)}c

+{253[1 − 1

1 − e−α

253 − 1

253
(1 − e−α×ρY)}c

)
−

d{253[1− 1

1 − e−α

253 − 1

253
(1−e−α×ρX)} {253[1 − 1

1 − e−α

253 − 1

253
(1 − e−α×ρY)},

(5.7)
where the coefficients depend upon the nature of the autocorrelation (see Table 5.6).
Although Eq. (5.7) needs further refinement, especially when SA differs in nature

Table 5.6 Estimation results for Eq. (5.7)

Coefficient ρX > 0, ρY > 0 ρX < 0, ρY < 0 ρX > 0, ρY < 0 ρX < 0, ρY > 0

a –33.4318 50.4059 35.2668 28.0208
c 0.7412 1.3069 1.1032 1.0726
d –0.0058 –0.0035 –0.0038 –0.0038
α 0.5519 –0.5784 1.2554; –4.4807 1.2590; –4.3611
Pseudo-R 2 0.9971 0.9997 0.9886 0.9890

Fig. 5.5 Left (a): the approximate bivariate relationship between n̂*
XY and n̂*

X and n̂*
Y for ρX

> 0 & ρY > 0 denoted by dots (.), ρX < 0 & ρY < 0, denoted by solid circles (•), and mixtures,
denoted by asterisks (∗).Right (b): a contour map of the joint relationship between n̂*

XY and ρX
and ρY
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for a pair of variables, it provides a reasonably good description of the positive only
and negative only situations, and a slightly poorer description of mixed situations
(see Fig. 5.5a). Furthermore, the mixture situations are the ones that tend to result
in dramatically larger n∗ values (see Fig. 5.5b).

The counterintuitive feature of SA more clearly revealed through spatial autore-
gression model specifications is that effective sample size, n∗, exceeds actual sample
size, n, for negative SA. In other words, more information is contained in the geo-
graphic sample than would be contained in n iid random sample values. Of note,
however, is that negative SA rarely is encountered in practice.

5.5 Spatial Filtering Model Implications

Spatial filtering techniques (Getis, 1990, 1995; Griffith 2000a, 2003; Getis and
Griffith, 2002) allow spatial analysts to employ traditional regression techniques
while insuring that regression residuals behave according to the traditional model
assumption of no SA in residuals. One spatial filtering method exploits an eigen-
function decomposition associated with the MC. A spatial filter (SF) is constructed
from the eigenfunctions of the following modified geographic weights matrix that
represents the configuration of areal units in the MC, and is used to capture the
covariation among attribute values of one or more georeferenced random variables:

(
I − 11T/n

)
C
(
I − 11T/n

)
, (5.8)

where (I – 11 T/n) is the projection matrix commonly found in conventional multi-
variate and regression analysis that centers the n-by-1 vector of attribute values. The
eigenvectors of this modified form of matrix C are both orthogonal and uncorrelated
(Griffith, 2000c).

Spatial filtering uses the geographic configuration information contained in
expression (5.8) to partition georeferenced data into synthetic spatial variates,
containing the SA, and synthetic aspatial variates that are free of SA. For two geo-
referenced attribute variables X and Y, this decomposition may be written, using
matrix notation, as

Y = μY1 + EcßcY + EuYßuY + εY, (5.9a)

and

X = μX1 + EcßcX + EuXßuX + εX, (5.9b)

where E is an n-by-H matrix for X and an n-by-K matrix for Y (with H and K not
necessarily equal) of selected eigenvectors, subscripts c and u respectively denote
common and unique sets of eigenvectors, ß is a vector of regression coefficients,
and εY and εX respectively are the iid N(0, σ2

εj
), j = X or Y, aspatial variates for

variables X and Y. The linear combinations of eigenvectors are the SFs. These linear
combinations can be constructed with stepwise regression selection procedures.
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5.5.1 Correlation Coefficient Decomposition

Equations (5.9a) and (5.9b) allow a correlation coefficient to be decomposed into
components associated with the eigenfunctions of expression (5.1). To do so,
the product moment correlation coefficient formula can be rewritten so that its
covariance numerator term becomes

(EcßcX + EuX ßuX + εX)T(EcßcY + EuYßuY + εY),

and its two denominator standard deviation terms become

√
(EcßcX + EuXßuX + εX)T(EcßcX + EuXßuX + εX)

and
√

(EcßcY + EuYßuY + εY)T(EcßcY + EuY ßuY + εY).

The respective expected values associated with these terms render⎡

⎢
⎣

K*∑

c=1
ρcXρcY

√
1−R2

X

√
1−R2

Y

+ ρεXεY

⎤

⎥
⎦ σεX

σεY
,

√
σ2
εX

(1 - R2
X)

, and

√
σ2
εY

(1 - R2
Y)

, where ρcX and

ρcYrespectively are the correlations between common eigenvector c and variables
X and Y, R2

X and R2
Y respectively are the SF multiple correlation coefficients for

variables X and Y, σ2
εX

and σ2
εY

respectively are the aspatial variate variances for
variables X and Y, K∗ is the number of common eigenvectors, and ρeXeY is the
correlation between the synthetic aspatial (i.e., SA free) variates. Accordingly,

r =
K*∑

c=1
ρcXρcY + ρεXεY

√
1 − R2

X

√
1 − R2

Y . This result indicates that the range

of possible observed values spans [–1, 1], regardless of the SA free value of r.
This outcome is illustrated in Fig. 5.6a for the case of no common eigenvectors.
Figure 5.6b illustrates that the presence of common eigenvectors shifts the center

of the scatterplot to
K*∑

c=1
ρcXρcY , and shrinks each range of observed correlation

possibilities while spanning a subinterval of [–1, 1]. The general shapes of the

graphs are the same, but with a shift in the interval [–1, 1] when
K*∑

c=1
ρcXρcY 	= 0

that causes some possibilities to be eliminated (i.e., the plot becomes truncated).
This decomposition reveals that SA can both inflate and deflate a correlation

coefficient. If neither of the SFs contains unique eigenvectors, then
K*∑

c=1
ρcXρcY can

introduce considerable inflation. If no eigenvectors are common to the SFs, then SA

deflates the correlation through the product term
√

1 − R2
X

√
1 − R2

Y. In practice, a
mixture of these two effects occurs.

For illustrative purposes again consider the Scottish lip cancer and Murray
smelter site soil pollution data sets, where SF decomposition results appear in
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Fig. 5.6 Relationships between the spatially adjusted correlation coefficient, r, and the spatially
unadjusted correlation coefficient. Left (a): the case of no common eigenvectors in the spatial
filters.Right (b): the case of common eigenvectors in the spatial filter that account for 50% of the
variance

Table 5.7. The correlation between the lip cancer SMR and the percentage of
outdoor labor, for the Scottish lip cancer data set, is 0.54087. But latent SA has
dramatically inflated this coefficient from a value of 0.16077. Each SF contains 5
eigenvectors, of which two are unique. The three common eigenvectors introduce
considerable inflation, accounting for nearly 75% of the value of the observed corre-
lation coefficient. The following are the components of this correlation coefficient:

0.16077
√

0.42485 × 0.48840 + 0.90768
√

0.43487 × 0.44569 + 0
√

0.14028 × 0.06591

+0.28643
√

0.14028 × 0.48840 + (−0.04146)
√

0.42485 × 0.06591.

The correlation between As and Pb contamination concentrations for the Murray
superfund site data set is 0.74775. Here latent SA has modestly inflated this coef-
ficient from a value of 0.64256. One SF contains 19, while the other contains 20,
eigenvectors. Only 11 of these eigenvectors are common to both SFs, accounting for
roughly 40% of the value of the observed correlation coefficient. The following are
the components of this correlation coefficient:

0.64256
√

0.58025 × 0.57275 + 0.94627
√

0.31781 × 0.33324 + 0
√

0.10194 × 0.09401+
0.16646

√
0.10194 × 0.57275 + 0.12480

√
0.58025 × 0.09401.

In each empirical example, the roles of the common and unique SF components
are revealed.

Results of a set of simulation experiments, each involving 10,000 replications,
are summarized in Table 5.8. The estimated SFs were combined with the follow-
ing random error terms: (1) bivariate normally distributed with mean, variance and
correlation of the observed error terms; (2) permutation of the observed error term
pairs; and, (3) resampling, with replacement, of the observed error term pairs (i.e.,
bootstrapping). The results confirm that: (1) the unique parts of SFs deflate the
correlation coefficient (μ̂ru&ε

); (2) the common parts of SFs inflate the correlation
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coefficient (μ̂rc&ε
); and, (3) the estimated aspatial correlation coefficient is reason-

ably well behaved (μ̂rε and σ̂rε ). These results also reveal that: (1) the bootstrap
standard errors for the aspatial correlation coefficient are closer to the standard the-

oretical value given by
√

1−r2

n−2 ; (2) both tails of the sampling distributions tend to
be heavy, which is the source of deviation from normality; (3) the mean of the sam-
pling distribution of the spatially filtered correlation coefficient (μ̂rε) appears to be
unbiased; and, (4) the mean of the sampling distribution of the unfiltered correlation
coefficient (μ̂r) appears to be biased downward.

5.5.2 Variance Inflation

One well-known impact of positive SA is that it inflates the variance of a geo-
referenced variable. With regard to the aspatial variates εY and εX, this inflation

is given by the standard multiple linear regression VIF result of
1

1 – R2
, yielding

σ2
X = σ2

εX

(1 − R2
X)

and σ2
Y = σ2

εY

(1 – R2
Y)

.

The covariation between variables X and Y also can be rewritten in this VIF form
(see Griffith and Zhang, 1999):

σXY = ρεXεYσεXσεY√
(1 − R2

X)
√

(1 – R2
Y)

, (5.10)

Therefore, the aspatial correlation itself is impacted by SA as follows:

r = ρ̂εXεY

√
(1 – R2

X)(1 – R2
Y) (5.11)

The correlation coefficient r is further modified by adding the common eigen-
vectors effect to expression (5.11). In other words, when two georeferenced random
variables X and Y contain no SA, then R2

X = R2
Y = 0, and r = ρ̂εXεY. In contrast, as

the limiting, degenerate case of perfect positive SA (i.e., a constant) is approached,
for either variable X or Y, expression (5.11) goes to 0.

5.6 Discussion

Results reviewed in this chapter emphasize that overlooking latent SA in georefer-
enced data can lead to a misinterpretation of conventional correlation coefficients,
while acknowledging and accounting for SA can help furnish a better understanding
of correlations among spatial processes. Equations (5.4a), (5.4b), and (5.7) illumi-
nate how SA alters conventional degrees of freedom and sample size in a bivariate
context. The mystifying feature of this result that needs to be better understood
is how negative SA can inflate n∗, as seen here with the autoregressive model
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specifications. Interestingly, this finding is not corroborated with spatial filtering
results. Another puzzle that needs to be solved is a reconciliation between n∗ values
obtained with semivariogram and spatial autoregressive model specifications.

Although varying the range, via rd, of a semivariogram model allows variation
in observed correlation coefficients to be monitored, the manner in which the nature
and degree of SA affects correlation coefficients is better illuminated by studying
spatial autoregressive model specification results. By doing so, variance and covari-
ance inflation that is attributable to the presence of SA can be linked explicitly to the
autoregressive parameters ρX and ρY, with a one-to-one correspondence between
each of these parameters and SA.

Spatial filtering allows particular map patterns, reflecting specific natures and
degrees of SA, to be identified and connected to inflation and deflation of correlation
coefficients. This specific dissection furnishes an even better understanding of the
change in sampling distribution variance for r (see Fig. 5.3) induced by SA.

All in all, modern spatial statistics supplies considerable understanding of the
nuances and idiosyncrasies introduced into correlation coefficients by SA.



Chapter 6
Spatially Structured Random Effects: A
Comparison of Three Popular Specifications

6.1 Introduction

Random effects models are increasing in popularity (see, for example, Demidenko,
2004), partially because they have become estimable. One common specification
is for the intercept term to be cast as a random effects, resulting in it representing
variability about the conventional single-value, constant mean. The role of a random
effects in this context may be twofold: (1) supporting inferences beyond the specific
fixed values of covariates employed in an analysis; and, (2) accounting for corre-
lation in a non-random sample of data being analyzed. Including a random effects
term moves a frequentist analysis a bit closer to a Bayesian analysis, given that, for
instance, the intercept term becomes a random variable rather than being a constant,
and has a prior probability distribution (usually normal) attached to it. Nevertheless,
a bone fide Bayesian analysis would have a random variable for each of the n inter-
cept term components comprising such a random effects, maintaining some degree
of differentiation here between the frequentist and Bayesian approaches.

Georeferenced data—data that are tagged to the Earth’s surface—contain spatial
autocorrelation (SA; i.e., nearby values are more related to one another than are
distant values), resulting in the additional feature of spatial structuring of a random
effects. The linear mixed model (LMM) procedure in SAS employs semivariogram
models (see Cressie, 1991), and WinBUGS (see Cowles, 2004) employs a condi-
tional autoregressive (CAR) model, in order to incorporate this type of structuring.
A spatial filter (SF; Griffith, 2000, 2002, 2004) offers an appealing alternative to
either of these formulations, and also can be used with the generalized linear mixed
model (GLMM) procedure of SAS or with WinBUGS. The purpose of this chapter
is to present an assessment of the utility of these three forms of spatial structuring
by summarizing selected empirically-based comparisons between them.

6.2 Modeling Spatial Structure

Various methods for modeling spatial structure have emerged. The first to be devel-
oped was autoregression, which was popularized by Ord (1975), after Cliff and Ord
(1973). A more comprehensive discussion of the full family of auto- models can be

97D.A. Griffith, J.H.P. Paelinck, Non-standard Spatial Statistics and Spatial
Econometrics, Advances in Geographic Information Science 1,
DOI 10.1007/978-3-642-16043-1_6, C© Springer-Verlag Berlin Heidelberg 2011
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found in Besag (1974), who eventually developed the CAR specification, in both
its proper and improper (ICAR1) forms, for hierarchical modeling purposes; this is
the version available in WinBUGS. The initial autoregressive model specification
contains Y on both sides of a regression equation, indicating that observed values
themselves are either directly (i.e., the autoregressive response or spatial lag model)
or indirectly (i.e., the simultaneous autoregressive or autoregressive errors model)
correlated. The hierarchical version embeds SA into a parameter, which is feasi-
ble because the parameter is a variable, rather than having observations directly
correlated; it is a feature of the upper- rather than the lower-level of a two-tier hier-
archical model. More precisely, its common implementation in WinBUGS is with a
random effects. Here spatial structure most often is portrayed by the way a surface
is partitioned into areal units, resulting in it being topological in nature.

In addition, spatial structure can be described with a semivariogram model.
This approach differs from the autoregressive one by focusing on the n-by-n inter-
observation SA covariance matrix, whereas autoregression focuses on the inverse of
this matrix. Modeling begins by calculating squared differences between data val-
ues, and distances between their affiliated location points. Next, these squared data
value differences are aggregated according to bins established with their separat-
ing distances, and then averaged. A semivariogram plot is constructed by graphing
the pairs of averaged grouped squared differences, divided by 2, on the vertical
axis, and their corresponding average grouped distance separation on the horizontal
axis. Several dozen valid semivariogram models are available to describe trend in
this scatterplot. A number of them have been implemented in SAS, including ones
that allow for anisotropy (i.e., both direction and separation distance play an impor-
tant role in dependency structure). Here spatial structure most often is portrayed by
interpoint distances between locations, resulting in it being metric in nature.

Finally, spatial structure can be represented by the eigenfunctions of the afore-
mentioned n-by-n covariance matrix. Because this matrix is symmetric, and one
approach works with it directly while the other works with its inverse, conceptu-
ally the eigenvectors are the same in both cases. In practice, the eigenvectors differ
somewhat because the autoregressive approach tends to be topologically based (i.e.,
determination of neighborhood structure is by areal unit shared common bound-
aries) while the semivariogram approach is distance based (i.e., determination of
neighborhood structure is by distance between areal unit centroids). Nevertheless,
Griffith and Peres-Neto (2006) find that both approaches render equivalent eigen-
function depictions. Spatial filtering seeks to partition a response variable into two
synthetic variates: a spatial structure component, and a nonspatial variate that is free
of spatial dependence. Griffith (e.g., 2000) proposes a transformation procedure that
depends on the eigenfunctions of matrix (I – 11 T/n)C(I – 11 T/n)—where I denotes

1ICAR denotes an intrinsic version—a generalization to support certain types of non-stationarity—
of the conditional autoregressive (CAR) model in which the variance-covariance matrix is positive
semi-definite rather than positive-definite, and has a single parameter to control both the strength
of and total amount of spatial dependence.
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the identity matrix, 1 is an n-by-1 vector of ones, C denotes a geographic connec-
tivity matrix (e.g., cij = 1 if areal units i and j are neighbors, and cij = 0 otherwise),
and T denotes matrix transpose—a term appearing in the numerator of the Moran
Coefficient (MC) SA index, and is based on the following theorem (Griffith, 2003):

The first eigenvector, say E1, is the set of numerical values that has the largest MC
achievable by any set of real values for the spatial arrangement defined by a geographic
connectivity matrix C. The second eigenvector is the set of values that has the largest achiev-
able MC by any set of real values that is uncorrelated with E1. The third eigenvector is the
third such set of values. And so on. This sequential construction of eigenvectors continues
through En, the set of values that has the largest negative MC achievable by any set of real
values that is uncorrelated with the preceding (n–1) eigenvectors.

As such, Griffith (2000a) argues that these eigenvectors furnish distinct map
pattern descriptions of latent SA in georeferenced variables. Each eigenvector’s
corresponding MC-indexed level of SA is given by n

1TC1
times its eigenvalue

(Tiefelsdorf and Boots, 1995). The SF is constructed by using judiciously selected
eigenvectors as regressors (e.g., selected with a stepwise regression routine), which
results in SA being accounted for by a linear combination of mutually orthogonal
and uncorrelated eigenvectors.

6.3 Linear Mixed Models

Consider the geographic distribution of elevation across the island of Puerto Rico
(see Fig. 6.1). Averages (elev) for the island’s 73 municipalities (outlined on the
map in Fig. 6.1) were calculated for modeling purposes. A Box-Cox type of power
transformation results in

(LN(elev + 17.5) ∼ N, or normally distributed,

where LN denotes the natural logarithm, and the probability of the accompanying
Shapiro-Wilk diagnostic statistic is P(S-W) = 0.4758 (a substantial increase from

Fig. 6.1 The geographic distribution of elevation across the island of Puerto Rico, from a USGS
DEM containing 87,358,136 points. Darkness of gray scale is directly proportional to elevation
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< 0.0001 for the raw data). Moderate positive SA is exhibited by these aggregated
data: MC = 0.517; and, Geary Ratio (GR) = 0.621.

The following linear SF, linked to a normal probability model, selected from the
18 candidate (from a set of 72 possible) eigenvectors representing at least weak
positive SA (i.e., MC/MCmax > 0.25, where MCmax denotes the maximum possible
MC value), was constructed for the transformed version of the response variable,
LN(elev + 17.5):

1.71735E2 −1.14043E3 + 2.31266E4 + 1.19040E6 −1.48295E7 + 1.95080E10 +
2.28604E12−1.22260E13−0.92428E14+ 0.72093E15+ 1.12531E16−1.49864E18,

for which MC = 0.655. This SF accounts for roughly 75% of the variance in
LN(elev + 17.5), yielding residuals for which zMC = 2.36, and P(S-W) = 0.1891;
it also accounts for nearly 75% of the variance in the back-transformed version
of elev. Although marginally significant positive SA remains in the residuals, no
evidence could be uncovered indicating the presence of hidden negative SA (see
Griffith, 2006a), based upon the 35 candidate eigenvectors representing at least weak
negative SA.

A linear model description of LN(elev + 17.5) identifies, after centering of each
coordinate axis, the north-south (V), the squared north-south (V2), the squared
east-west (U2), and the crossproduct north-south times east-west (UV) covari-
ates as being statistically significant (accounting for the 3-dimensional elongated
mound shape generated by the island’s east-west oriented mountain chain). A LMM
description of LN(elev + 17.5) as a quadratic function of the geocoding coordinates,
which has spatial structuring of a random effects intercept term induced with a semi-
variogram model, yields the results reported in Table 6.1. Retaining the two squared
and the cross-product geocoding terms—the linear north-south term becomes non-
significant when a random effects term is introduced—results in the following SF
for the linear regression analysis:

1.11020E1 − 0.75483E3 + 2.18301E4 − 1.03904E5 − 1.58150E7 − 0.93133E11 +
1.15186E12 + 1.15631E15 + 0.95847E16 − 0.88066E17 − 0.89963E18,

which shares 7 eigenvectors with the preceding pure SF expression, and has a
MC of 0.688 (GR = 0.294). All five semivariogram specification estimations (see
Table 6.1) based upon inclusion of this SF yield a nugget of 0, a spatial correlation
of 0, and a residual variance component of 0.0553; in other words, the SF essentially
accounts for all of the SA in these data.

Geographic distributions of the unstructured and spatially structured random
effects, which can be written as the sum of the preceding SF and the estimated ran-
dom intercept term, appear in Fig. 6.2a and 6.2b. The estimated random intercept
has a mean of nearly 0, a variance of 0.00005, a P(S-W) of 0.6711, a MC of –0.028
(GR = 0.937), and is almost perfectly uncorrelated with the 14 covariates contained
in the mean response equation. The spatially structured random effects has a mean
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Table 6.1 SAS PROC MIXED summary results for a LMM quadratic gradient description of LN
( elev + 17.5) across Puerto Rico, by municipality

Semivariogram
model None Spherical Expo-nential Gaussian Power Bessela

Variance
(nugget)

– 0.0331 0.2151 0.2210 0.2514 0.2450

Spatial
correlation

– < 0.0001 0.7643 0.5730 0.2702 0.6089

Residual 0.2171 0.1691 < 0.0001 0.0253 < 0.0001 0.0057
b0 6.0799∗∗∗ 6.0799∗∗∗ 6.1569∗∗∗ 6.2009∗∗∗ 6.1569∗∗∗ 6.2022∗∗∗
bu2 –0.3491∗∗∗ –0.3491∗∗∗ –0.4626∗∗∗ –0.4863∗∗∗ –0.4626∗∗∗ –0.4861∗∗∗
buv –0.2626∗∗∗ –0.2626∗∗∗ –0.2539∗∗ –0.2546∗∗ –0.2539∗∗ –0.2566∗∗
bv –0.2695∗∗∗ –0.2695∗∗∗ –0.1142 –0.1684 –0.1142 –0.1678
bv2 –0.5271∗∗∗ –0.5271∗∗∗ –0.5289∗∗∗ –0.5607∗∗∗ –0.5289∗∗∗ –0.5685∗∗∗

∗∗∗, ∗∗, ∗ respectively denote statistical significance at a 1, a 5 and a 10% level
amodified, of 2nd kind
U denotes the east-west geocoding coordinate
V denotes the north-south geocoding coordinate

Fig. 6.2 Geographic distributions of unstructured (left) and spatially structured (right) random
effects. Darkness of gray scale is directly proportional to the magnitude of random effects values.
Top left (a): a quantile map of the normal approximation random effects from SAS.Top right (b):
a quantile map of the normal approximation spatially structured random effects from SAS based
upon a SF. Bottom left (c): A quantile map of the normal approximation mean random effects from
WinBUGS.Bottom right (d): a quantile map of the normal approximation mean spatially structured
random effects from WinBUGS based upon an ICAR model

of almost exactly 0, a variance of 0.22477, and essentially the same level of SA as
displayed by the SF itself.

The hierarchical modeling available via GeoBUGS, in WinBUGS, allows a ran-
dom effects term to be spatially structured with a CAR model. Because explicit
estimation of the autoregressive parameter is excessively numerically intensive, fol-
lowing common practice (see Thomas et al., 2004), an ICAR model was estimated.
This specification sets the autoregressive parameter to its maximum value, and then
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estimates both spatially structured and unstructured random effects terms; their rel-
ative proportion of variance indicates the importance of each term. A Markov chain
Monte Carlo (MCMC) series (i.e., chain) was generated with a burn-in period of
50,000 iterations, followed by 550,000 iterations of which every 1,100th iteration
was retained, yielding 500 sample values. The detected SA accounts for 99.0% of
the relative variance in the combined random effects term, signifying the presence
of marked positive spatial dependence. All chains display good behavior, as is illus-
trated by the time series plot and correlogram for a selected example parameter chain
(the average total random effects by iteration) appearing in Fig. 6.3a, b. Normal
priors with sizeable variance were placed on all regression coefficient parameters;
gamma distribution priors were posited for the variance terms. The resulting mean
of the total random effects is –0.00011, with a variance of 0.38629, a P(S-W) of
0.1263, and a MC of 0.651 (GR = 0.237). Although the geographic distributions
differ to some degree (compare Fig. 6.2b, d), the level of SA in the spatial structur-
ing with an ICAR and a SF model are roughly the same. The regression equation
predicting the SAS term (ξ̂SAS) from the ICAR term (ξ̂GeoBUGS) is

ˆ̂
ξSAS = 0.00006 + 0.57926 ξ̂GeoBUGS, R2 = 0.5767,

which indicates a reasonable, but not close, correspondence between these two
random effects.

The model specification employing the SF constructed with SAS PROC NLMIX
to spatially structure the random effects term also was implemented, and then
its output compared with that from its WinBUGS counterpart. In WinBUGS, a
MCMC chain was constructed with a burn-in period of 25,000 iterations, followed
by 500,000 iterations of which every 1,000th iteration was retained, yielding 500
sample values. Again, all chains display good behavior, as is illustrated by the time
series plot and correlogram for a selected example parameter chain (the average
random effects by iteration) appearing in Fig. 6.3c, d. Results from this analysis
compare very favorably with those from the corresponding SAS analysis: param-
eter estimates are almost identical, and standard errors are not markedly different

Fig. 6.3 Graphical diagnostics of residuals for the GLMM estimated with SAS. Left (a): normal
quantile plot. Right (b): boxplot
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Fig. 6.4 A average random effects term example MCMC chain from a WinBUGS run in which
the random effects intercept was spatially structured. Top left (a): a time series plot from an ICAR
model with a trend line (gray) superimposed. Top right (b): a correlogram from an ICAR model
with a 95% confidence interval (gray) superimposed. Bottom left (c): a time series plot from a SF
model with a trend line (gray) superimposed. Bottom right (d): a correlogram from a SF model
with a 95% confidence interval (gray) superimposed.

(WinBUGS standard errors are –0.6–11.8% larger)—these differences may well
diminish by lengthening the MCMC chain (see Fig. 6.4). Once more, normal priors
with sizeable variance were placed on all regression coefficient parameters; gamma
distribution priors were posited for the variance terms. Summary statistics for the
SAS- and WinBUGS-estimated spatially structured random effects include

Statistic SAS WinBUGS

Mean 0.00000 −0.00021
Variance 0.22477 0.23790
P(S-W) 0.6701 0.6031

The regression equation predicting the SAS term (ξ̂SAS) from the WinBUGS term
(ξ̂WinBUGS) is

ˆ̂
ξSAS = 0.00020 + 0.94182ξ̂WinBUGS, R2 = 0.9388,

which indicates a very close correspondence between these two random effects, but
with more variability being allocated in WinBUGS. The geographic distributions



104 6 Spatially Structured Random Effects: A Comparison of Three Popular Specifications

of the average unstructured and the sum of the average spatially structured and
unstructured random effects appear in Fig. 6.2c, d.

One experimental finding from this section is that semivariogram, conditional
autoregressive and SF models furnish similar-to-equivalent spatial structuring of a
random effects. Advantages of the semivariogram model approach include that it
relates directly to geostatistical theory, and already is implemented in, say, SAS
software. Its principal disadvantage is that even modest sample sizes (e.g., 73 for
the Puerto Rico example) can require considerable amounts of computation time.
Advantages of the ICAR model approach include that it relates directly to auto-
model theory, and already is implemented in, say, GeoBUGS software. Its principal
disadvantage is that the autoregressive parameter rarely can be directly estimated
without enormous amounts of computer resources. Advantages of the SF approach
include that it requires no special software; for example, it can be used directly
with PROC NLMIXED for which a normal probability model is used to describe
data, or equivalently with PROC MIXED. Its principal drawback is that n eigenvec-
tors must be computed, and then screened for identification of relevant ones—both
numerically intensive, but one-time exercises.

One substantive finding from this section is that inclusion of spatial structuring
results in the regression coefficient of the north-south (i.e., V) coordinate becoming
nonsignificant. Meanwhile, comparative results reported in Table 6.2 reveal that the
SF specification renders comparable results for both a frequentist and a Bayesian
approach that utilizes noninformative priors; this situation is similar to the matching
case described by Kass and Wasserman (1996). Similarly, the semivariogram and
ICAR approaches render comparable results, which have noticeably larger standard
errors for their parameter estimates than are obtained with their SF counterparts.

Table 6.2 Comparative parameter estimates for a LMM quadratic gradient description of LN( elev
+ 17.5) across Puerto Rico, by municipality

SAS
semivariogram SAS SF GeoBUGS-ICAR WinBUGS-SF
(Bessel) model (100 weeded replications)

Parameter Estimate se Estimate se Estimate se Estimate se

b0 6.1906 0.2873 6.1101 0.05467 6.5175 0.1683 6.1101 0.0611
bu2 −0.5048 0.1219 −0.3881 0.03148 −0.7507 0.1525 −0.3878 0.0347
buv −0.2229 0.1227 −0.2939 0.03018 −0.2031 0.1006 −0.2920 0.0300
bv2 −0.5314 0.1247 −0.5193 0.03217 −0.5683 0.0607 −0.5190 0.0365
var 0.0055 0.0192 0 − 0.0049 0.0068 0.0305 0.0240
varure 0.2856 0.0912 0.0001 − 0.0047 0.0066 0.0318 0.0248
varssre 0.7205 0.2209 0.0282 − 0.4854 0.0925 0.0301 −
NOTE: varure denotes the variance of the unstructured, and varssre denotes the variance of the
spatially structured, random effects
U denotes the east-west geocoding coordinate
V denotes the north-south geocoding coordinate
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6.4 Generalized Linear Mixed Models

Although LMMs can be implemented as a special case of GLMMs, these latter
specifications enable non-normal probability models to be employed in an analy-
sis, too. Consider the 1973/74 geographic distribution of sugar cane harvest area
density (SC74/A) across Puerto Rico, by municipality. This ratio of areas can
be treated as an empirical probability [i.e., the probability of randomly selecting
a cuerdas (0.9712 acres) in a municipality and having it yielding sugar cane].
As such, the adjusted log-odds ratio transformation for municipality i given by

LN
(

SC74i/Ai + 0.01
1 - 0.47 - (SC74i/Ai + 0.01)

)
results in values that more closely align with a normal

frequency distribution (i.e., S-W increases from 0.79 to 0.91); but, the relatively
large number of 0s (e.g., 18 of 73) prevents even this transformed variable from
achieving an ideal alignment.2 This transformation moves the zero values slightly
above 0, and shrinks the range of values by nearly half in order to better center the
set of empirical probabilities (i.e., transforming the distribution to one better resem-
bling a binomial with p = 0.5, which tends to better mimic a bell-shaped curve). In
other words, a normal approximation essentially fails in this case for the full set of
data, although not for the nonzero subset of data. A better model specification would
be to employ a binomial distribution, since 100×SC74/A is a percentage (when both
the numerator and the denominator are measured in the same units, such as cuerdas).

The raw harvest density yields MC = 0.395 and GR = 0.477; the normal approx-
imation yields MC = 0.519 and GR = 0.469. Consequently, moderate positive SA
is detected in these data. The nature of sugar cane production technology tended to
restrict it to the flatter, coastal lowlands; accordingly, one ecological covariate for
predicting it is elevation—the variable addressed in the preceding section. A con-
ventional binomial SF generalized linear model description of these data, where the
eigenvectors were selected with a stepwise logistic regression procedure, renders

LN[p̂i/(1 − p̂i)] = −1.6164 − 0.0082elev + 4.1761E1 + 3.2220E4,

which is accompanied by considerable overdispersion (the estimated scale param-
eter is 28.7), a pseudo-R2 value of roughly 0.60, a SF (i.e., 4.1761E1 + 3.2220E4)
with MC = 1.005 and GR = 0.139 (representing markedly strong positive SA),
and residuals for which MC = 0.087 and GR = 0.728. Of note is that much of the
small amount of the detected residual SA is attributable to the municipalities having
0 sugar cane production (e.g., MC decreases to 0.016), even though an indicator
variable (I0) differentiating these from the other municipalities is a nonsignificant
covariate (e.g., this covariate accounts for only about 2.5% of the variation in the
empirical probabilities, and is not retained after selection by the stepwise regression
procedure used to construct the preceding SF).

2 The municipalities with no sugar cane harvest comprise the San Juan metropolitan region and
the interior highlands.
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Employing SAS PROC NLMIXED, and constraining 0 harvest to be exactly 0,
yields

p̂i = (1 − I0,i)
exp
[
−1.2867 + ξ̂ − 0.0111elev + 3.064E1 + 3.2182E4

]

1 + exp
[
−1.2867 + ξ̂110.0111elev + 3.0646E1 + 3.2182E4

] ,

where exp denotes the base of the natural logarithm, and ξ̂i denotes the random
effects term for municipality i. Of note is that the common practice of centering the
covariates strictly for estimation purposes is employed here; by construction, the
eigenvectors have a mean of zero. Also of note is that the SAS quadrature algo-
rithm used to estimate the random effects had difficulty converging. The revised
SF (i.e., 3.0646E1 + 3.2182E4) has MC = 0.967 and GR = 0.158, and hence still
represents markedly strong positive SA. A map portraying the geographic distribu-
tion of this estimated random effects term appears in Fig. 6.2a. Descriptive statistics
for this estimated random effects variable are reported in Table 6.3. Moreover, this
estimated random effects term has reasonably good, but not ideal, statistical prop-
erties. The spatially structured random effects obtained by adding the SF and this
random effects term has MC = 0.356 and GR = 0.739, levels of SA similar to those

Table 6.3 Summary measures for the estimated SF GLMM random effects term

SAS NLMIXED WinBUGS (100 weeded replications)

(SF) SF ICAR

statistic Estimate
Standard
error Estimate

Standard
error Estimate

Standard
error

b0 –1.2867 0.2624 –1.3114 0.2852 –1.534 0.2419
belev - elev

–0.0111 0.0013 –0.0110 0.0014 –0.0100 0.0013
bE1 3.0646 1.1559 3.0600 1.3632 ∗∗∗
bE4 3.2182 1.3433 3.0116 1.4256 ∗∗∗
μ̂ξ 0.0015 0.0054 0.0066
σ̂2

ξ 0.7045 0.7144 0.3727
σ̂2

ξ+SS 0.9787 0.9783 0.9583
P(S-W) <0.0001 < 0.0001 < 0.0001
MCss 0.967 0.975 0.787
GRss 0.158 0.154 0.177
MC

ξ̂
0.119 0.132 0.036

GR
ξ̂

1.045 1.000 1.129
MCSS+ξ̂

0.356 0.357 0.388
GRSS+ξ̂

0.739 0.739 0.696
r
ξ̂,elev 0.001 0.001 0.011

r
ξ̂,E1

–0.001 –0.009 ∗∗∗
r
ξ̂,E4

0.001 0.022 ∗∗∗

NOTE: ss denotes “spatially structured”
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measured in p; its geographic distribution appears in Fig. 6.2b. Finally, p and p̂ are
almost identical (e.g., perfect agreement of at least the first three digits to the right
of the decimal point), with their residuals having MC = 0.119 and GR = 0.693; the
inconsistency here primarily is attributable to the presence of two extreme outliers,
one at each end of the distribution of values (see Fig. 6.3). In other words, the ran-
dom effects term essentially is equivalent to the residual term for the conventional
binomial model specification (because repeated measures are not included).

Implementation of this SF model in WinBUGS resulted in the software being
unstable (e.g., repeatedly crashing); a successful execution required 840,000
MCMC iterations, of which 20,000 were used as a burn-in period, with every
8,000th outcome retained, yielding 100 values for estimation purposes; of note
is that 16 iterations failed during generation of the obtained MCMC chain. As
in the LMM analysis, normal priors with sizeable variance were placed on all
regression coefficient parameters; gamma distribution priors were posited for the
variance terms. The resulting MCMC graphics are very similar to those appearing
in Table 6.4. A map portraying the geographic distribution of the arithmetic mean of
this estimated random effects term appears in Fig. 6.5c. Descriptive statistics for this
average estimated random effects variable also are reported in Table 6.3. As before,
the associated, p and p̂ are almost identical, with their residuals having MC = 0.023
and GR = 0.706; again the random effects term essentially is equivalent to the resid-
ual term for the conventional binomial model specification. This estimated random
effects term has reasonably good, but not ideal, statistical properties, deviating more
from a bell-shaped curve but having a mean closer to 0 and slightly less correlation
with covariates than its SAS PROC NLMIXED counterpart. Nevertheless, Fig. 6.6
reveals that it is very similar to its SAS counterpart. In both cases, the spatially
structured random effects contain roughly the same level of SA.

Successful execution of an implementation of an ICAR model in GeoBUGS
required 860,000 MCMC iterations, of which 40,000 were used as a burn-in period,
with every 8,000th outcome retained, yielding 100 values for estimation purposes;
of note is that 15 iterations failed during this estimation exercise, and that slight
but statistically significant first-order serial correlation remained in the two random
effects variance estimates at this point in the MCMC chain (i.e., the sample collected
thus far). Again, normal priors with sizeable variance were placed on all regres-
sion coefficient parameters; gamma distribution priors were posited for the variance
terms. Once more, the resulting MCMC graphics are very similar to those appearing
in Table 6.4. A map portraying the geographic distribution of the arithmetic mean of
this estimated random effects term appears in Fig. 6.5e. Descriptive statistics for this
average estimated random effects variable also are reported in Table 6.3. Again, the
associated, p and p̂ are almost identical, with their residuals having MC = –0.065
and GR = 0.831; as before, the random effects term essentially is equivalent to the
residual term for the conventional binomial model specification. This estimated ran-
dom effects term has reasonably good, but not ideal, statistical properties, more
closely resembling its WinBUGS-generated SF than its SAS PROC NLMIXED
counterpart (see Fig. 6.6). In all three cases, the spatially structured random effects
contains roughly the same level of SA. More precisely for the ICAR model, the
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Fig. 6.5 Quantile maps of geographic distributions of unstructured (US; left) and spatially
structured (SS; right) random effects for a binomial model. Darkness of gray scale is directly
proportional to the magnitude of random effects values. Top left (a): from SAS. Top right (b): SS
random effects from SAS based upon a SF model. Middle left (c): average US random effects from
WinBUGS. Middle right (d): average SS random effects from WinBUGS based upon a SF model.
Bottom left (e): average US random effects from WinBUGS. Bottom right (f): average SS random
effects from WinBUGS based upon an ICAR model

Fig. 6.6 Scatterplot of the SAS and mean WinBUGS estimated spatially structured random effects
term. Top left (a): the SAS versus WinBUGS results based upon SF models. Top right (b): the SAS
SF model results versus the WinBUGS ICAR model results. Bottom left (c): the WinBUGS SF
versus ICAR model results



110 6 Spatially Structured Random Effects: A Comparison of Three Popular Specifications

level of SA is reflected by the relative variance allocated to the ICAR-structured
random effects term, which is roughly 48.2%, suggesting the presence of moderate
positive SA.

6.5 Degrees of Freedom for GLMM Random Effects

One controversy in the literature concerns the number of degrees of freedom asso-
ciated with a random effects term. Spiegelhalter et al. (2002) address this very
problem for complex hierarchical models in which the number of parameters is not
clearly defined because, for instance, of the presences of random effects. They use
an information theoretic argument to approximate the effective number of parame-
ters in a model, which for their Bayesian specification is equivalent to the trace of
the product of the Fisher information and the posterior covariance matrices; this par-
ticular approximation is equivalent to the trace of the ‘hat’ matrix for linear models
with a normally distributed error term.

Here a similar argument is proposed. A random effects term accounts for overdis-
persion in a generalized linear model. For example, a Poisson regression with
overdispersion can be respecified as a negative binomial regression—a Poisson
regression with a nonconstant, gamma-distributed mean—or a Poisson mixed model
regression. In the negative binomial case, an overdispersion parameter is estimated,
causing the deviance statistic to drop to nearly 1. Reformulating the sugar cane pro-
duction analysis in terms of a Poisson random variable approximation (with an area
offset variable) renders the following estimation results:

Statistic Poisson
Negative
binomial

Poisson with
random effects

b0 −1.7901 −0.4865 −1.0923
belev −0.0076 −0.0154 −0.0200
bE1 3.8218 2.9250 7.9217
bE4 2.8974 5.9670 10.0280
η̂ 0 2.6978 0
deviance 854.1165 1.2402 0.1982

Quasi-likelihood techniques can be employed with the initial Poisson model
specification, resulting in a scale parameter of 27.9607 that can be used to adjust for
overdispersion. Meanwhile, the 68 degrees of freedom used to estimate the deviance
in the Poisson GLMM are too many, because the random effects almost always has
more than 1 degree of freedom associated with it. If the negative binomial estima-
tion results are sound, then this single degree of freedom needs to be increased to

58 (i.e., solve
13.6779

73 – 4 – k
= 1.2402 for k); if the deviance statistic is unknown, then
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its theoretical value of 1 could be used (as is the practice in quasi-likelihood esti-
mation), resulting here in an estimate of 55 degrees of freedom associated with the
random effects term. In other words, only 11–14 degrees of freedom remain after
estimation of a GLMM.

Returning to the binomial model specification employed in the preceding section,

the equation to solve becomes
1.4683

73 – 4 – k
= 1, implying that the number of degrees

of freedom associated with the random effects term coupled with the constraint for
p = 0 cases is roughly 67.5; in other words, only about 1 degree of freedom remains.
This result is corroborated to some degree by the near-perfect predictions obtained
by including a random effects term. Because 18 municipalities have a value of 0, the
resulting effective degrees of freedom for the random effects term becomes 67.5 –
18 = 49.5, which is in keeping with the preceding Poisson regression specification
results (of note is that a binomial specification has more constraints than a Poisson
specification, and hence should have fewer degrees of freedom).

The WinBUGS SF model counterpart to the SF SAS results is furnished by pD =
54.8. This value suggests that the average random effects term has 50.8 degrees of
freedom associated with its estimation. This value is of the same order of magnitude
as the preceding one, with part of the difference being attributable to the use of a
Bayesian analysis.

Finally, the WinBUGS ICAR model counterpart to the two SF results is furnished
by pD = 54.9. This value suggests that the average random effects term has 52.9
degrees of freedom associated with its estimation; the ICAR model is accounting
for the 2 degrees of freedom associated with the two SF eigenvector coefficient
estimates. Again, this value is in keeping with the preceding two random effects
degrees of freedom estimates.

Consequently, all three formulations render essentially the same number of
degrees of freedom for the estimated random effects term based upon a binomial
model specification.

6.6 Extensions to Space-Time Data Sets

One way to increase the number of degrees of freedom in the presence of SA, as
well as to move a random effects estimate away from being essentially the model
residuals, is to extend a single map into a space-time series of maps all based on
the same surface partitioning (see, for example, Lahiri, 1996). For the Puerto Rican
sugar cane data example, annual harvest results by municipality are available for
crop years 1958/59 to 1973/74. Sixteen points in time are insufficient for properly
estimating an ARIMA time series model for any location. SF models allow SA to
be described for each separate year (see Table 6.4). Meanwhile, a random effects
term can be employed to account for the serial correlation in the space-time series
under study here. This term is constant through time, and as such is sensible only for
relatively short time series data. The island-wide average level of sugar cane harvest
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Fig. 6.7 Time series plots of cuerdas of harvested sugar cane for the island of Puerto Rico. Left
(a): annual crop year totals for 1938/39–1996/97. Right (b): annual crop year totals for 1958/59–
1973/74

is nonconstant (see Fig. 6.7), suggesting that at least part of the fixed effects terms
in a model specification needs to be year-specific.

According to Table 6.5, the same set of eigenvectors (i.e., E1, E4, E6, and E24)
accounts for SA for the crop years 1965/66 through 1967/68. A model specification
for this very short space-time series should include year-specific intercept terms,
elevation covariate coefficients, and SFs. Estimation results for this dataset appear
in Table 6.4. Now the single random effects term that relates to all three years no
longer is or can be nearly equivalent to the model’s residuals, which vary from year
to year for a given location; pseudo-R2 values have moved only slightly away from
1. Coefficients for the mean elevation covariate and eigenvectors E1 and E24 change
very little across the three years, suggesting that they could be represented by a
single temporal parameter. In contrast, the intercept and coefficients for eigenvectors
E4 and E6 change noticeably from year to year, suggesting that they need to be
represented as year-specific effects. Estimation results for this reduced model appear
in Table 6.6.

Table 6.5 Space-time GLMM estimation results for Puerto Rican sugar cane crop years 1965/66-
1967/68 when all fixed effects are year-specific

Crop year 1965/1966 Crop year 1966/1967 Crop year 1967/1968

Statistic Estimate Standard error Estimate Standard error Estimate Standard error

b0 −1.2291 0.2336 −1.3122 0.2336 −1.4520 0.2336
belev - elev

−0.0065 0.0009 −0.0064 0.0009 −0.0065 0.0009
bE1 4.5040 1.1684 4.5785 1.1684 4.9226 1.1684
bE4 4.9713 1.2432 5.3372 1.2432 5.8053 1.2432
bE6 −4.5091 1.1620 −4.8209 1.1620 −5.0203 1.1621
bE24 −4.0290 1.0994 −3.9657 1.0994 −4.0285 1.0995

Pseudo-R2 0.9950 0.9976 0.9929
MCSS+ξ̂

0.449 0.467 0.493
GRSS+ξ̂

0.580 0.562 0.537
MCresiduals 0.019 0.042 0.009
GRresiduals 0.916 0.839 0.808
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Table 6.6 Space-time GLMM estimation results for Puerto Rican sugar cane crop years 1965/66–
1967/68 when only some fixed effects are year-specific

Statistic

Crop year
1965/1966
estimate

Crop year
1966/1967
estimate

Crop year
1967/1968
estimate

Standard
error

b0 −1.2440 −1.3041 −1.4444 0.2331
belev - elev

−0.0064 0.0009
bE1 1.5506 0.3887
bE4 4.9603 5.3684 5.7511 1.2409
bE6 −4.5313 −4.7943 −5.0193 1.1600
bE24 −1.3330 0.3658
Pseudo-R2 0.9953 0.9975 0.9936
MCSS+ξ̂

0.449 0.468 0.493
GRSS+ξ̂

0.579 0.561 0.537
MCresiduals 0.037 0.070 0.021
GRresiduals 0.924 0.802 0.801

Table 6.7 Space-time GLMM estimation results for Puerto Rican sugar cane crop years 1965/66-
1967/68 when all fixed effects are year-specific

Crop year 1965/1966 Crop year 1966/1967 Crop year 1967/1968

Statistic Estimate Standard error Estimate Standard error Estimate Standard error

b0 −1.2291 0.2336 −1.3122 0.2336 −1.4520 0.2336
belev - elev

−0.0065 0.0009 −0.0064 0.0009 −0.0065 0.0009
bE1 4.5040 1.1684 4.5785 1.1684 4.9226 1.1684
bE4 4.9713 1.2432 5.3372 1.2432 5.8053 1.2432
bE6 −4.5091 1.1620 −4.8209 1.1620 −5.0203 1.1621
bE24 −4.0290 1.0994 −3.9657 1.0994 −4.0285 1.0995
Pseudo-R2 0.9950 0.9976 0.9929
MCSS+ξ̂

0.449 0.467 0.493
GRSS+ξ̂

0.580 0.562 0.537
MCresiduals 0.019 0.042 0.009
GRresiduals 0.916 0.839 0.808

The single random effects term associated with estimation results reported in
Table 6.7 has a mean of 0.0013, a variance of 1.1418, conforms poorly to a bell-
shaped curve [P(S–W) = 0.0091], and may well contain some SA (MC = 0.142,
GR = 0.969); this increase in SA is accompanied by a decrease in the residual SA
for each of the three years. This random effects term is uncorrelated with either mean
elevation (r = 0.001) or any of the four eigenvectors used to construct SFs (r lies
between –0.001 and 0.001). Each of the three spatially structured random effects
reflects approximately the same level of SA displayed by its corresponding sugar
cane area harvest percentage. Maps of these variates appear in Fig. 6.8. Overall, the
estimated random effects term has a mixture of good and bad properties.
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Fig. 6.8 Quantile maps of the geographic distributions of binomial model unstructured (US) and
spatially structured (SS) random effects from SAS by year, for 1966, 1967, and 1968. Darkness of
gray scale is directly proportional to the magnitude of random effects values. Top left (a): random
effects. Top right (b): SS random effects based upon a SF model for crop year 1965/66. Bottom left
(c): SS random effects based upon a SF model for crop year 1966/67. Bottom right (d): SS random
effects based upon a SF model for crop year 1967/68

6.7 Discussion and Implications

Comparisons between three common specifications of spatial structuring—namely,
semivariogram, spatial autoregressive and SF models—for a random effects term
in mixed statistical models reveal that all three perform in an equivalent fashion.
Matching Bayesian model priors with their implicit frequentist counterparts yields
estimation results from both approaches that are essentially the same. Furthermore,
making use of spatially structured random effects tends to furnish an alternative
to quasi-likelihood estimation techniques for binomial probability model specifica-
tions, as well as to a negative binomial substitution for Poisson probability model
specifications.

Semivariogram models offer a geostatistical theoretical basis and have been
implemented in SAS for LMMs. A spatial statistics practitioner with the necessary
computer programming skills can employ WinBUGS in order to utilize them with
GLMMs. Spatial autoregressive modeling also offers a theoretical basis for spatial
structuring, and is available in GeoBUGS, but would be very difficult to trick SAS
into doing. Meanwhile, spatial filtering, which can be derived from spatial autore-
gressive model specifications, tends to be more exploratory in nature (being akin to
principal components analysis), can be implemented in either SAS or WinBUGS for
either LMMs or GLMMs, and can be easily extended to space-time datasets with
either of these software packages.

The illustrative Puerto Rico sugar cane examples presented here tend to have a
random effects term that virtually equates to the corresponding LMM/GLMM resid-
ual variate. But this finding is not always the case, as is highlighted by the extension
of a GLMM specification to a space-time sugar cane dataset. In addition, all of the
estimated random effects terms for the various Puerto Rico examples presented here
tend to be non-normal.
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Finally, once a random effects term has been estimated with a frequentist
approach, using it when calculating a deviance statistic allows its number of degrees
of freedom to be approximated for GLMMs. Although n values are estimated,
because they are correlated, the resulting number of degrees of freedom is less than
n. This particular finding should help spatial statistics practitioners better understand
the cost of employing a statistical mixed model.



Chapter 7
Spatial Filter Versus Conventional Spatial
Model Specifications: Some Comparisons

7.1 Introduction

Spatial statistical analysis of geographically distributed counts data has been
widely undertaken for many years, with initial analyses involving log-Gaussian
approximations because only the normal probability model was first adapted in
an implementable form (Ripley, 1990, pp. 9–10) to handle spatial autocorrela-
tion (SA) effects (i.e., similar values tend to cluster on a map, indicating positive
self-correlation among observations). In more recent years, linear regression tech-
niques have given way to generalized linear model techniques that account for
non-normality (e.g., logistic and Poisson regression), as well as geographic depen-
dence. In very recent years, both linear and generalized linear models have been
supplemented with hierarchical Bayesian models, in part to deal with geographic
regions having small counts. The objective of this chapter is to furnish a comparison
of this variety of principal techniques—both frequentist and Bayesian—available
for map analysis with the newly formulated spatial filtering approach.

7.1.1 Background

Over the years multiple regression based upon a normal probability model has been
one of the most frequently used statistical methods for undertaking map analysis.
More recently the work of McCullagh and Nelder (1983, 1989) has popularized
the success applied statisticians have experienced in devising user-friendly imple-
mentations of probability models beyond that for the normal curve. Meanwhile, but
with a time lag, Wrigley (1985, 2002) helped popularize the use of spatial auto-
versions of these models in geographic analyses. “The central role of the Poisson
distribution with respect to the analysis of counts is analogous to the position of

This material is based upon work supported by the National Science Foundation under Grant
No. BCS-9905213. Any opinions, findings, and conclusions or recommendations expressed in this
material are those of the author and do not necessarily reflect the views of the National Science
Foundation.
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the normal distribution in the context of models for continuous data” (Upton and
Fingleton, 1989, p. 71). But initial development of an auto-Poisson model proved to
be a failure, with this particular model specification being unable to capture the near-
universal case of positive SA (Besag, 1974). Circumventing this restriction has been
achieved in several different ways. First is the use of an auto-log-Gaussian approxi-
mation (e.g., Cressie, 1991), or a Winsorized auto-Poisson specification (Kaiser and
Cressie, 1997). Second is the use of spatial filtering model specifications (Getis and
Griffith, 2002). Third is the use of hierarchical generalized linear models (HGLM1;
e.g., see Lee and Nelder, 2001), which can be implemented with software such
as GeoBUGS (background discussion is furnished in Casella, 1985; Casella and
George, 1992), the add-on spatial statistical module to WinBUGS, the BUGS imple-
mentation of Bayesian models. The primary goal of this chapter is to compare these
principal approaches to the analysis of georeferenced Poisson random variables.

Comparisons are illustrated with the famous geocoded (by district) Scottish lip
cancer data reported by Clayton and Kaldor (1987, pp. 676–677).2 These data com-
prise: cases geographically aggregated by district, offset3 expected values computed
on the basis of age and sex compositions of district populations, the number of
males at risk (reported in Cressie, 1991, p. 537), and the percentage of each district′s
outdoor labor force employed in agriculture, fishing, or forestry. Choropleth maps
(i.e., thematic maps in which areas are shaded or patterned according to attribute
measurements in order to portray their geographic distributions) portraying the geo-
graphic distribution of standardized mortality rates (SMRs) computed with these
data appear in Fig. 7.1; corresponding boxplots and histograms appear in Fig. 7.2.

Fig. 7.1 Geographic distribution of SMR variates by quartiles: the lowest quartile is denoted by
white, the 2nd lowest by light grey, the 2nd highest by dark grey, and the highest by black. Left:
(a) Oi/Ei. Middle: (b) (Oi + 0.5)/(Ei + 0.5). Right: (c) LN[(Oi + 0.5)/(Ei + 0.5)]

1A HGLM is a GLM (e.g., Poisson, binomial, gamma) with multiple levels. The lowest level
posits the probability model for individual observations. Higher levels posit probability models for
parameters (e.g., prior distributions).
2A careful inspection of these data from multiple sources reveals published discrepancies: Cressie
(1999), Waller and Gotway (2004) and GeoBUGS enumerate correct lists of geographic neighbors;
in contrast, Clayton and Kaldor (1987), Breslow and Clayton (1993), Stern and Cressie (1999)—
vis-à-vis Cressie and Guo (1987)—and Lee and Nelder (2001) have the lists of neighbors for
Annandale and Tweeddale switched.
3An offset variable is one whose regression coefficient is known to be, and hence is set equal to, 1.
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Fig. 7.2 Z-score versions of the three measures of SMR: Oi/Ei, (Oi + 0.5)/(Ei + 0.5), and LN[(Oi
+ 0.5)/(Ei + 0.5)]. Left (a) boxplots. Right (b): histograms with normal curves superimposed

Hill et al. (1999) furnish an interesting comparison of focused score tests and
Bayesian hierarchical modeling for detecting spatial disease clustering using these
data. Furthermore, Stern and Cressie (1999) as well as the GeoBUGS tutorial
(Thomas et al., 2004) enumerate these data, but with a markedly different geo-
graphic connectivity structure than is used here; in keeping with Clayton and Kaldor
(1987), district neighbors separated by water—which are not included in some of
the other sources—are included here, resulting in the presence of an additional 30
district-neighbor linkages.
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7.2 Variation and Covariation Considerations for Poisson
Random Variables

The conventional Poisson random variable may be used to describe counts for the
occurrence of rare events, such as the selection of points in a region as locations for
some phenomenon, or the number of cases of some event occurring in a given place.
One feature of a Poisson random variable is that its mean, μ, and its variance are
equal (equidispersion), a property frequently violated by real world data. “Failure
of the Poisson assumption of equidispersion has similar qualitative consequences to
failure of the assumption of homoskedasticity” associated with the Gaussian distri-
bution (Cameron, 1998, p. 77). One standard way of accommodating overdispersion
(the presence of more variation than is expected for a Poisson random variable) is
by replacing a Poisson random variable with a negative binomial random variable—
which can be viewed as a gamma mixture of Poisson random variables (i.e., Poisson
random variables whose means are distributed according to a gamma distribution).
In doing so, the distribution of counts is viewed as either (1) having missing vari-
ables for the mean specification, and/or (2) being dependent (i.e., the occurrence
of an event increases the probability of further events occurring). The most popular
implementation of the negative binomial probability model specifies the variance as
being quadratic in the mean, or

Variance = μ + ημ2 = (1 + ημ)μ,

with the dispersion parameter, η, to be estimated. The magnitude of η may be
interpreted as follows (after Cameron, 1998, p. 79):

η = 0 implies no overdispersion;
η ≈ 1/μ implies a modest degree of overdispersion; and,
η ≈ 2/μ implies considerable overdispersion.

In other words, if 0 ≤ η < 0.5/μ (i.e., the midpoint between the first two target
values), a map analyst may consider overdispersion detected in georeferenced data
to be inconsequential, with little to be gained by replacing a Poisson with a negative
binomial probability model specification. Other indices of overdispersion include
a statistically significant η̂ for a negative binomial model, or a Pearson’s deviance
statistic that is close to or exceeds 2. McCullagh and Nelder (1989, p. 125) suggest
that a researcher always should exercise caution and assume overdispersion—
doing so costs only 1 degree of freedom for the single additional parameter
estimate.

The presence of overdispersion can be attributable to various sources, only one
of which is spatial correlation amongst the geographic distribution of counts (see
Griffith and Haining, 2006). It can result from heterogeneity latent in grouped data.
Because model variance is a function of a model’s mean specification, it can arise
from missing predictors and/or overlooked non-linear/interaction relationships. As
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Fig. 7.3 Dotplot of Poisson counts with increasing levels of positive spatial autocorrelation

with the normal probability model, the presence of outliers can introduce extra-
Poisson variation. And, it can result from the Poisson probability model being a
poor descriptor of a given set of observed counts. With regard to positive SA, which
frequently is detected in geographically distributed counts, the clustering of simi-
lar values on a map tends to result in the appearance of excessive zeroes, as well
as some relatively extreme large counts (i.e., a centripetal force type of effect). In
other words, as positive SA increases, extra-Poisson variation is accompanied by
a frequency distribution whose form increasingly resembles a descretized negative
exponential curve (see Fig. 7.3).

For the Scottish lip cancer data, the raw counts yield 0.5/μ̂ = 0.5/9.5716 ≈
0.0522 << η̂ = 0.5456. A negative binomial (i.e., Poisson-gamma) regression based
upon only the age-sex-adjusted expected values yields η̂ = 0.4895 >> 0.2501, the
maximum value for 0.5/μ̂i. Inclusion of the outdoor labor force covariate reduces
this estimate to η̂ = 0.3989 >> 0.2810, the new maximum value for 0.5/μ̂i. In other
words, these Scottish lip cancer data exhibit considerable overdispersion.

7.2.1 Heterogeneity in Counts Data

As noted in the preceding discussion, the mean and variance of a Poisson random
variable are perfectly positively correlated. One way of stabilizing this non-
constant variance is to apply a transformation so that the re-expressed random
variable approximately conforms to a normal distribution, which has zero corre-
lation between its mean and variance, and constant variance. This result commonly
is achieved by applying a square root (Kuehl, 1994, p. 118) or its finely tuned
Freeman-Tukey counterpart (Cressie, 1991, p. 540)—which increasingly shrinks
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distances separating larger and larger counts—or a logarithmic transformation,
especially in the case of overdispersion, where the variance is greater than the mean
(Bartlett, 1947)—which shrinks distances separating large counts more than the
square root transformation does, while also expanding distances separating small
counts. Either of these two types of transformation can include a translation param-
eter, which compensates for relatively small counts (e.g., ȳ < 3) when a square root
transformation is applied, and for possible over-correction of variance heterogene-
ity when a logarithmic transformation is applied (i.e., using a power transformation
exponent of 0 rather than 0.5). This translation parameter essentially better aligns
one or both of the tails of the empirical distribution with those of a theoretical normal
distribution. A useful diagnostic for monitoring this situation is the Levene statis-
tic (i.e., a non-normailty assuming diagnostic statistic used to assess the equality
of variance in different samples), which is far more robust to a normality assump-
tion violation than the Bartlett test statistic for homogeneity of variance, although it
assumes a continuous random variable. Meanwhile, the overdispersion discussed in
the preceding section pertains to a Poisson random variable whose variance exceeds
its mean. In either case, the nonconstant variance of interest is for attribute counts,
most likely arising from geographic aggregations of large numbers of Bernoulli
random variables with extremely small success probabilities, varying factors gen-
erating the rare events of interest across (sets of) individuals, and/or differences in
the number of individuals in each geographic aggregation.4 A simple heuristic diag-
nostic for this situation is to test equality of variance after categorizing data as being
above/below the sample mean or median number of counts.

Of note is that standardization of an incidence is done by calculating the ratio
of observed to expected values in order to remove effects of differences in con-
founding variables (e.g., age, sex, race/ethnicity). This standardization is based upon
a weighted average calculated by decomposing some general reference popula-
tion into sub-populations (i.e., the standard or benchmark), and enables meaningful
direct comparisons to be made amongst various aggregations of individuals under
study. The purpose of this adjustment is to account for that heterogeneity arising
from various mixtures of sub-populations within each aggregation. In essence, the
expected value, say Ei for areal unit i, functions as a covariate whose regression
coefficient is set to 1; accordingly, it is labeled an offset variable in the general-
ized linear modeling literature. But standardization fails to adjust for variation due
to the range of values in areal unit denominators: small base values result in more
variability than large base values.

The district variable Yi = LN
(

Oi+0.5
Ei+0.5

)
, where Oi denotes the observed counts

for district i, for the Scottish lip cancer data conforms closely to a normal distribu-
tion. But the range of Oi values (from 0 to 39) potentially could continue to induce
nonconstant variance across districts; here this degree of variability seems to be only

4Regardless of the context, regional aggregates with small base populations tend to yield imprecise
standardized ratios, whereas regional aggregates with large base populations almost always yield
significant results.
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problematic for the two districts having 0 cases. Setting these two districts aside
results in 1 + 1

O i accounting for only about 10% of the variation in the location-
to-location variance. Conceptually speaking, transforming a variable to better align
with a normal distribution essentially eliminates correlation between its mean and
variance, and effectively induces constant attribute variance. The transformed val-
ues, Y, approximately display this property, which can be detected by comparing the
variances of Y above and below its mean and its median; these data splits respec-
tively reduce the Levene homogeneity of variance test statistic from 11.67 to 0.61
(p = 0.436), and from 20.81 to 3.80 (p = 0.056).

Because of the spatial nature of georeferenced data, geographic variance hetero-
geneity also is of concern when undertaking a map analysis. Sometimes this data
feature is cast as anisotropy; other times it is cast as geographic landscape hetero-
geneity. One simple diagnostic for this latter situation is to test equality of variance
(by computing the Levene statistic) after regionally grouping data according to, say,
the four quadrants of the plane5, or perhaps some set of natural regions—because
sample variance is a function of (n–1), the number of arbitrary geographic regions
used here will depend upon the total number of areal units, n, contained in a dataset.
Classifying the 56 districts into the four quadrants of the plane (based on georef-
erence coordinate medians) yields a Levene test statistic of 3.65 (p = 0.018) for
Oi+ 0.5
Ei+ 0.5 , which reduces to 0.38 (p = 0.769) for Y.

Yet another source of nonconstant geographic variance arises from the use of data
aggregated by regions forming an irregular surface partitioning (i.e., irregular lattice
data). Because sums of values surrounding a location are used to evaluate SA effects,
Besag et al. (1991) comment that varying numbers of entries in these sums need to
be accounted for. This particular source of variability is problematic with regard
to the conditional autoregressive (CAR) model, whose inverse covariance structure
matrix often is given by (I – ρC), where I is the n-by-n identity matrix, ρ is the SA
parameter, and the n-by-n matrix C is binary and has a cell entry cij = 1 if areal units
(e.g., the 56 districts of Scotland) i and j are neighbors, and cij = 0 otherwise; often
two areal units are considered to be neighbors if they share a common boundary. The

term
n∑

j = 1
cij = ni counts the number of entries in each of the i (= 1, 2, . . ., n) sums.

This particular specification results in a diagonal variance matrix D, where the dii
entries of this matrix are the ni. Premultiplying matrix C by matrix D–1 yields matrix
W, the row-standardized version of the 0–1 binary geographic configuration matrix
C. One appealing feature of this specification is that the autoregressive term WY
renders averages of neighboring values, which stabilizes the geographic variance
arising from summing unequal numbers of neighboring values (i.e., the case of an
irregular surface partitioning). But the spatial inverse covariance matrix must be
symmetric, requiring the specification here to be (I – ρ D–1C)D–1. In other words,

5For the Scottish lip cancer data, latitude and longitude geo-coordinates were retrieved from
Waller and Gotway (see http://www.sph.emory.edu/~lwaller/ch9index.htm), and then refined with
an ArcView script.
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the nonconstant geographic variance incorporated here relates to the inverse of the

number of neighbors of each areal unit (i.e., σ2

ni
), and must be included in order to

satisfy a mathematical requirement of the multivariate normal probability model.
Of note is that this nonconstant variance specification is employed by Breslow and
Clayton (1993, p. 21), Hill et al. (1999, p. 105), and Stern and Cressie (1999, p. 66),
but not by Clayton and Kaldor (1987, p. 678), Cressie (1989, p. 545), or Lee and
Nelder (2001, p. 14). One advantage of this specification is that 0 ≤ ρ̂ ≤ 1 for the
case of positive SA. And, for a regular surface tessellation, for which the number of
neighbors is approximately constant, this geographic variance heterogeneity all but
disappears (although some remains along the edges of a landscape).

The simultaneous autoregressive (SAR) model furnishes an alternative specifica-
tion that frequently is employed with the auto-Gaussian model. Its spatial covariance
structure matrix usually is given by [(I – ρCD–1)(I – ρD–1C)]–1 = [(I – ρWT)
(I – ρW)]–1, where T denotes matrix transpose, and the resulting matrix is symmet-
ric. This specification also deals with averages of neighboring values and restricts
positive values of the autoregressive parameter to the more intuitively interpretable
range of 0 ≤ ρ̂ ≤ 1.

7.2.2 Spatial Autocorrelation in Poisson Random Variables

Including the expected values as an offset variable in Poisson regression is equiv-
alent to dealing with a standardized mortality ratio (SMR), which, for example,
equals the observed divided by the expected number of lip cancer cases for each
district (i.e., Oi/Ei, for district i). Here the SMRs fail to conform to a normal fre-
quency distribution [Shapiro-Wilk, S-W = 0.887; the probability of S-W, P(S-W) <
0.0001], and exhibit moderate positive SA6: the Moran Coefficient (MC) = 0.5391
and the Geary Ratio (GR) = 0.2946.

A Box-Cox type of power transformation (Chinn, 1996)—where in keeping with
a Poisson random variable the exponent7 is assumed to be 0—of the SMRs results in

6The MC is a covariation-based measure that is similar to a Pearson product-moment correlation
coefficient, and has an approximate range of (1/λn, 1/λ2), where λ2 and λn respectively are the
second largest and smallest eigenvalues of matrix C. Its expected value is –1/(n–1). The GR is
a paired comparisons type of index, is inversely related to the MC, has an approximate range of
(0, 2), and has an expected value of 1.
7The non-zero exponent functional form is YN = α + β

[
(Oi + δ)/(Ei + δ)

]γ , which here yields

rounded-off parameter estimates of δ̂ = 0.10 and γ̂ = 0.33 [RESS = 1.48×10–2; P(S-W) =
0.726]. Setting δ = 0.5 yields γ̂ = –0.10 (RESS = 1.71 × 10–2), which is very close to 0.
Setting δ = 0.5 and executing Friendly’s SAS macro boxcox[1].sas (www.math.yorku.ca/SCS/
sasmac/boxcox.html) yields γ̂ = 0.20 (RESS = 2.56 × 10–2), which also is close to 0; setting δ

= 0.1 yields γ̂ = 0.31, which essentially is the same result obtained with the quantile equation.
As an aside, the Freeman-Tukey transformation (Cressie, 1991, p. 540) furnishes an inferior result
with its translation parameter of 1 [P(S-W) = 0.061]; its optimal translation parameter estimate
also is 0.5, which modestly improves its performance here [P(S-W) = 0.131].
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the set of Y values conforming closely to a normal distribution [P(S-W) = 0.196].8

This re-expression of the SMRs was computed by constructing normal scores, say
YN, for the ratio Oi/Ei, using Blom’s formula (1958), and then estimating the three-
parameter nonlinear regression quantile equation (using SAS PROC NLIN)

YN = α + β LN

(
Oi+δ

Ei+δ

)
; relative error sum of squares (RESS) = 3.71 × 10−2.

(7.1)

The estimate calculated for δ is 0.4602, which then was rounded off to 0.5. This
procedure is consistent with arguments presented by Yeo and Johnson (2000, pp.
954–955). The estimated translation parameter, 0.5, is necessary here because
some observed counts equal 0; serendipitously, it equals the commonly used bias-
corrected translation parameter (Snedecor and Cochran, 1967, pp.497, 502–503).
The detected SA changes little when this transformation is applied: MC = 0.4965
and GR = 0.4383. Meanwhile, the Box-Tidwell linearization transformation iden-
tified for the outdoor labor percentage covariate (X1) is LN(X1 + 1.2). Employing
these transformations in a bivariate regression analysis increases the adj-R 2 from
0.210 (Y regressed on X1) to 0.278 [Y regressed on LN(X1 + 1.2)], suggesting
that their use is worthwhile. Furthermore, inclusion of the covariate LN(X1 + 1.2)
reduces SA in the residuals: MC = 0.2687 and GR = 0.7212. But this reduction is
at the expense of normality [P(S-W) = 0.003].

Presumably the non-normality complication that materializes relates to noncon-

stant variance (see Sect. 7.2.1). The variable LN
(

Oi
Ei

)
relates to a non-constant

variance that is proportional to 1 + 1
Oi

(e.g., see Haining, 1990, pp. 365–366). In
the particular lip cancer example explored here, the variance appears to be pro-

portional to 1
3

(
1+ 5

Oi+0.5

)
—adj-R2 = 0.457. Second, the residual-versus-predicted

plot depicts a funnel-shaped scatter of points. Diagnostic evidence suggests that
these complications may be attributable in part to the presences of the two 0-counts
districts.

These diagnostic findings imply that results generated by a simple log-normal
approximation may suffer from specification error. Possible alternatives are a
weighted log-normal approximation, a Poisson regression, or accounting for SA.
But the presence of non-zero SA and overdispersion indicates that a simple Poisson
regression specification is insufficient for describing the Scottish lip cancer data.

8A translation parameter is added to both the numerator and the denominator because Ei is
based upon a sum of the Ois (i.e., the sums of the Eis and the Ois are equal). In the simple
case of each regional expected value being calculated with a landscape-wide rate, for example:

Pi

N∑

i=1
(Oi+δ)

N∑

i=1
Pi

= Pi

N∑

i=1
Oi

N∑

i=1
Pi

+ Pi
N∑

i=1
Pi

Nδ
Pi→Pi−→ δ ⇒ Oi+δ

Ei+δ
, for regional “base populations” Pi in the ith of

N areal units.
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7.2.3 Spatial Autocorrelation-induced Correlation Inflation

The correlation between Y and LN(X1 + 1.2) appears to be moderate and pos-
itive. But the correlation between two georeferenced variables, X and Y, can be
distorted by latent SA, an effect recognized and explored by Clifford et al. (1989),
Dutilleul (1993), and Haining (1991). Additional understanding of this effect can be
gained through spatial filtering, which involves regressing each variable on a set of
synthetic variates representing distinct map patterns that accounts for SA. Griffith
(2000a) develops one form of spatial filtering whose synthetic variates are the set of
n eigenvectors extracted from matrix (I – 11T/n)C(I – 11T/n), the matrix appearing
in the numerator of the MC, where 1 is an n-by-1 vector of ones. This procedure is
similar to executing a principal components analysis in which the covariance matrix
is given by (I – 11T/n)C(I – 11T/n). But rather than using the resulting eigenvectors
to construct linear combinations of attribute variables, the eigenvectors themselves
(instead of principal components scores) are the desired synthetic variates, each
containing n elements, one for each areal unit (e.g., Scottish district). The sequen-
tial construction of these eigenfunctions enables the extreme values of the MC to be
established (de Jong et al., 1984); in other words, this procedure should not be fol-
lowed by an axis rotation like is done in factor analysis. The extracted eigenvector

1√
n
1 relates to the mean response, and the remaining (n–1) extracted eigenvec-

tors relate to distinct map patterns characterizing latent SA—whose MCs are
given by standardizing their corresponding eigenvalues (see Tiefelsdorf and Boots,
1995)—that can materialize with matrix C. Furthermore, for a given geographic
landscape surface partitioning, the eigenvectors represent a fixed effect in that matrix
(I – 11T/n)C(I – 11T/n) does not, and hence they do not, change from one attribute
variable to another. Theory for this type of spatial filtering is presented in Griffith
(2003).

One difficulty associated with this eigenfunction decomposition is that n eigen-
vectors are extracted from matrix (I – 11T/n)C(I – 11T/n). Restricting attention to
only those eigenvectors describing substantive positive (e.g., MC > 0.25)9 SA, when
latent SA is positive, further reduces the candidate set. Supervised stepwise selection
from the remaining eigenvectors is a useful and effective approach to identifying
the subset of eigenvectors that best describes latent SA in a particular georefer-
enced Poisson variable. This procedure begins with only the intercept included in
a regression specification. Next, at each step an eigenvector is considered for addi-
tion to the model specification. For the stepwise linear Gaussian model, commonly
the eigenvector having the largest partial correlation with variable Y is selected, but
only if its corresponding F-ratio achieves or surpasses a prespecified level of signif-
icance; this is the criterion used to establish statistical importance of an eigenvector.

9A value of 0.25 for the MC tends to relate to about 5% of the variance in Y being attributable
to redundant information arising from latent spatial autocorrelation, given a particular areal unit
neighborhood configuration.
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Meanwhile, in stepwise Poisson regression, the eigenvector that produces the great-
est reduction in the log-likelihood function chi-square test statistic is selected, but
only if it produces at least a prespecified minimum reduction; as before, this is the
criterion used to establish statistical importance of an eigenvector. In each statisti-
cal procedure, at each step all eigenvectors previously entered into a spatial filter
(SF) equation are reassessed, with the possibility of removal of vectors added at
an earlier step. The forward/backward stepwise procedure terminates automatically
when some prespecified threshold values (respectively for F-ratios and chi-square
statistics) are encountered for entry and removal of all candidate eigenvectors. The
ultimate inclusion criterion is determined by the MC value of the residuals, which
should indicate an absence of SA. Satisfying this MC condition sometimes requires
supervised backward elimination of marginally selected eigenvectors because their
inclusion has forced the residual MC value to decrease too far below 0. This final
stopping criterion for the linear Gaussian model is relatively easy to implement
because MC distributional theory is known for linear regression residuals; a cor-
responding stopping rule for Poisson regression is far more difficult to implement
because of a lack of such distributional theory.

As mentioned previously, because all attribute variables are collected for the
same surface partitioning of a given geographic landscape, matrix (I – 11T/n)C(I
– 11T/n) and its eigenfunctions do not change from one attribute variable to another.
Employing this eigenfunction analysis approach for a given geographic landscape,
then, a bivariate correlation coefficient (denoted by rXY) can be decomposed into the
following components: (1) a set of eigenvectors that strongly correlates with both
X and Y, and hence is common to the SFs of both X and Y (denoted by Ec); (2)
a set of eigenvectors that correlates strongly with X but very weakly with Y, and
hence is unique to the SF for X (denoted by EuX); (3) a set of eigenvectors that cor-
relates strongly with Y but very weakly with X, and hence is unique to the SF for Y
(denoted by EuY); and, the regression residuals for the full SFs (respectively denoted
by eX and eY, for variables X and Y). For the Scottish lip cancer data example,

Y = 0.03391+ 3.2090E1− 2.4032E2− 1.4216E9+ 1.6042E3+ 1.7929E19+eY,
(7.2a)

and

LN (X1 + 1.2) = 1.95341 + 1.8809E1 − 3.5301E2 − 2.3159E9 − 1.3491E4
+1.1572E34 + eX.

(7.2b)
The set of common eigenvectors (see Fig. 7.4, for the Scottish lip cancer data exam-
ple) will inflate the correlation between X and Y. Because the eigenvectors of matrix
(I – 11T/n)C(I – 11T/n) are mutually orthogonal as well as mutually uncorrelated
(see Griffith, 2003), those appearing in only one of the two SFs will deflate the cor-
relation between X and Y. And, the correlation between residuals from the full SF
models represents pure attribute correlation. This is the correlation coefficient that
is being inflated or deflated.
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Fig. 7.4 Spatial filter map patterns (i.e., eigenvectors E1, E2 and E9) common to Y, LN(X1 + 1.2),
and LN(X2/area – 22.2)

For the Scottish lip cancer data, the various correlation coefficients are as follows:
raw data: rXY = 0.53919, which is the correlation between LN(X1 + 1.2) and Y
SF residuals: reyex = 0.16027, which is the correlation between [Y – (0.03390 +

3.20900E1 – 2.40321E2 + 1.60420E3 – 1.42158E9 + 1.79290E19)] and [LN(X1 +
1.2) – (1.95339 + 1.88087E1 – 3.53007E2 –1.34907E4 – 2.31591E9 + 1.15719E34)]

linear combinations of common eigenvectors: rEc = 0.90595, which is the corre-
lation between (3.20900E1 – 2.40321E2 – 1.42158E9) and (1.88087E1 – 3.53007E2
– 2.31591E9)

linear combinations of unique eigenvectors: rEuX EuY
= 0, which is the correlation

between (–1.34907E4 + 1.15719E34) and (1.60420E3 + 1.79290E19)
cross-correlations of residuals and linear combinations of unique eigenvectors:
rEuY

eX = 0.28620 and rEuX
eY = –0.04224, which are the correlations between,

respectively, (1.60420E3 + 1.79290E19) and [LN(X1 + 1.2) – (1.95339 + 1.88087E1
– 3.53007E2 –1.34907E4 – 2.31591E9 + 1.15719E34)], and (–1.34907E4 +
1.15719E34) and [Y – (0.03390 + 3.20900E1 – 2.40321E2 + 1.60420E3 –
1.42158E9 + 1.79290E19)].

Identification of common and unique eigenvectors for the two Scottish lip can-
cer data SFs, as well as coefficients for the various linear combinations, appear in
Table 7.1. The bivariate correlations reported in Table 7.1 confirm that only those
eigenvectors having the strongest correlations with Y and with LN(X1 + 1.2) appear
in the preceding SFs; eigenvectors unique to a SF have a relatively strong correlation
with their attribute variable, and a relatively weak correlation with the other attribute
variable. These results reveal that the pure attribute correlation between percentage
outdoor labor and the SMR is only 0.16027, with the net effect of SA being an infla-
tion of this correlation to 0.53919. Using results appearing in Table 7.2, the detailed
calculation of coefficient 0.53919 is given by

0.16027
√

(1 − 0.57314) × (1 − 0.51160) + 0.90595
√

0.43423 × 0.44569
+0

√
0.13890 × 0.06591 + 0.28620

√
0.13890 × (1 − 0.51160)

+ (−0.04224)
√

(1 − 0.57314) × 0.06591.

These terms reveal that the common eigenvectors dramatically inflate the cor-
relation coefficient, the unique eigenvectors only modestly deflate the correlation
coefficient, and the cross-correlations add a very modest inflation.
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Table 7.1 Eigenvector
spatial filter regression
coefficients for transformed
standard mortality ratio
(SMR) and percentage
outdoor labor (X1), for
Scottish lip cancer (n = 56)

Eigenvector LN[(Oi + 0.5)/(Ei + 0.5)] LN(X1 + 1.2)

None (intercept) 0.03390 1.95339
Common eigenvectors
E1 3.20900 1.88087
E2 –2.40321 –3.53007
E9 –1.42158 –2.31591

Unique eigenvectors
E3 1.60420
E19 1.79290
E4 –1.34907
E34 1.15719

bivariate correlations coefficients for the eigenvectors and the
attribute variables
E1 0.49712 0.27168
E2 –0.37229 –0.50989
E3 0.24852 0.12119
E4 0.11480 –0.19486
E5 0.06596 –0.01622
E6 –0.03921 –0.11869
E9 –0.22022 –0.33451
E12 –0.04159 0.14997
E15 –0.05538 0.00703
E19 0.27775 0.15996
E24 –0.05534 –0.13554
E28 0.08643 –0.02157
E32 0.05843 –0.04198
E34 0.09146 0.16715

NOTE: Ek denotes eigenvector k. NOTE: X denotes the per-
centage of each district’s outdoor labor force employed in
agriculture, fishing, or forestry (bold denotes 5% significance,
and bold italic denotes 10% significance)

Table 7.2 Eigenvector spatial filter regression results for transformed standard mortality ratio
(SMR) and percentage outdoor labor (X1), for Scottish lip cancer, using a 10% level of significance
selection criterion

Feature LN[(Oi + 0.5)/(Ei + 0.5)] LN(X1 + 1.2)

Common eigenvectors Unadjusted-R2 = 0.43423 Unadjusted-R2 = 0.44569
Unique eigenvectors Unadjusted-R2 = 0.13890 Unadjusted-R2 = 0.06591
All selected eigenvectors Unadjusted-R2 = 0.57314 Unadjusted-R2 = 0.51160
Residual MC zMC ≈ 0.52 zMC ≈ 0.09
P(S-W) 0.949 (p = 0.019) 0.983 (p = 0.590)
MC for linear combination 0.907 0.860

of eigenvectors

The principal finding here is that the relationship between Y and LN(X1 + 1.2) is
weak, rather than moderate, and positive. And, it only may appear to be significant
because of an exaggeration of the relationship attributable to the presence of positive
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SA [t = 4.7, versus = 1.1]! In addition, about half of the information contained in
the geographic distribution of Scottish lip cancer cases by district is redundant.

7.3 Principal Spatial Statistical Model Specifications

Auto- models are models that have the response variable on both the left- (e.g.,
Y) and right-hand (e.g., WY) sides of an equation. These specifications may be
employed when the assumption of independent observations fails to hold. This fea-
ture of data commonly occurs in time series, as well as geographic distributions of
data values. The principal complication of correlated observations is a loss of effi-
ciency (i.e., statistical precision) for conventional parameter estimators, requiring
specially derived, more sophisticated spatial statistical techniques to conduct valid
map analyses. In contrast, SF model specifications allow SA to be accounted for
with synthetic variates in a fashion that enables conventional statistical techniques
to be employed. Two SF models can be posited: (1) a Gaussian-approximation mul-
tiple linear regression specification in which Y is the regressand (Griffith, 2000a),
and both LN(X1 + 1.2) and a judiciously selected subset of eigenvectors (i.e., syn-
thetic variates) extracted from matrix (I – 11T/n)C(I – 11T/n) are the regressors;
and, a Poisson regression specification in which LN(E + 0.5) is an offset variable,
LN(X1 + 1.2) is a covariate, as are judiciously selected eigenvectors (Griffith, 2002).
Meanwhile, random-effects HGLM specifications also can be used to deal with
non-normal data. One appealing feature of this latter approach is that SA in a non-
Gaussian (e.g., Poisson) georeferenced random variable can be captured without
having to derive an explicit multivariate generalization of its distributional form.

7.3.1 The Log-normal Approximation

A SAR model—whose auto- prefix indicates that Y appears on both sides of its
equation—was estimated with the Scottish lip cancer data, yielding, for Y, X∗ =
LN(X1 + 1.2), and spatial covariance structure matrix [(I – ρW)T(I – ρW)]–1,

Ŷ = 0.67202WY−0.31447 (1 − 0.67202) 1+0.20174 (I − 0.67202W)X∗. (7.3)

For this equation, the pseudo-R2 is 0.541, and the residuals contain negligible SA
(MC = –0.05367, GR = 1.05801), fail to conform to a normal distribution [P(S-W)
= 0.0007], and display some nonconstant variance in the weighted residual-versus-
predicted plot. To some degree, the two districts having 0 cases appear to be the
culprits. Classifying the 56 districts into the four quadrants of the plane yields a
Levene test statistic of 1.17 (p = 0.330) for the residuals.

One important finding from this analysis is that latent SA is positive in nature,
reconfirming that the conventional auto-Poisson model specified by Besag (1974)
is inapplicable here. A second important finding is that the regression coefficient
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for LN(X1 + 1.2) is not statistically significant, confirming the spatial filtering-
based conclusion reported in Sect. 7.2.3. A third important finding is that the SA
structure appears to be second-order, rather than first-order. In other words, the esti-
mated SAR model, whose covariance matrix is [(I – 0.67202W)T(I – 0.67202W)]–1,
includes the two spatial-lags terms –1.34404(WT + W) and 0.672022WTW =
0.45161WTW, suggesting that a covariance matrix of the simple form (I – ρC)–1

defined in Sect. 7.2.1 would be inadequate. The term (WT + W) captures 1st-order
spatial dependency effects; the term WTW captures 2nd-order spatial dependency
effects.

7.3.2 A Winsorized Auto-Poisson Model

Winsorizing Poisson counts data involves systematically replacing extremely high
counts with the value of some cut-off count (after Barnet, 1978). It is a compromise
between the infinite sum of a Poisson probability model and utilizing all of the
Poisson-type counts information in some dataset while establishing a most extreme
acceptable count. One advantage of this approach emphasized by Kaiser and Cressie
(1997) is that the Winsorized alternative to the auto-Poisson model is capable of
capturing positive SA, which the auto-Poisson specification is unable to do (Besag,
1974). In other words, the probabilities of excessively large counts, whose Poisson
probabilities of occurring essentially are 0, are set to exactly 0, allowing positive
spatial dependence in counts to be modeled with a distribution exhibiting Poisson-
like behavior. Kaiser and Cressie (1997) also show that the Winsorized alternative
has a relatively simple mean response specification, and has an expected value that
is near that of the regular auto-Poisson version (i.e., these expectations are nearly
the same).

The auto- prefix in the Winsorized auto-Poisson specification refers to a term
appearing in the mean response specification that is a function of the sum of neigh-
boring observed counts. This is similar to the WY term appearing in the SAR model;

here the term is
n∑

j = 1
WijLN

(
Oj + 0.5
Ej + 0.5

)
=

n∑

j = 1
WijYj. Parameter estimation requires

Markov chain Monte Carlo (MCMC) maximum likelihood techniques (MCMC-
MLE; Gilks et al., 1996; Hubbell et al., 2001) employing a Gibbs sampler and, when
necessary, a Metropolis-Hasting algorithm. This procedure frequently is initiated
by computing pseudo-likelihood estimates (PLEs) of the parameters with conven-
tional Poisson regression statistical software, where the mean response specification
includes the WY type of term. These estimates are for the parameters of conditional
Poisson mass functions, whereas of interest is the estimation of parameters for joint
multivariate Poisson mass functions. For the Scottish lip cancer data, negative bino-
mial probability model estimates of these PLEs are: η̂ = 0.0959, α̂ = –0.4497, β̂1 =
0.2551, and ρ̂ = 0.7500.

When count data display overdispersion, the Gibbs sampler involves sampling
from a Poisson-gamma distribution. The gamma distribution has a shape parameter
given by 1

η̂
, where η̂ is the PLE from a negative binomial distribution. If the random
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sampling outcome is denoted by Gi, for district i, then the log-mean for the Scottish
lip cancer situation is given by the expression

LN (Gi) + LN(η̂) + [α̂ + β̂1 LN
(
Xi,1 + 1.2

)+ ρ̂

n∑

j = 1

wijyj+LN (Ei + 0.5)], (7.4)

where η̂, α̂, β̂1, and ρ̂ are the PLEs, and exponentiation of the sum of the sec-
ond and third terms constitutes the gamma distribution scaling parameter. An
initial geographic distribution of Scottish district counts is obtained by randomly
sampling from n = 56 independent Poisson-gamma distributions with shape

parameter 1
η̂

for the gamma distribution, and mean μi = Gi
1
η̂

exp
[
α̂ + β̂1 LN

(
x1,i + 1.2

)+ LN (Ei + 0.5)
]

for the accompanying Poisson distribution; this set

of computations allows ρ̂
n∑

j = 1
wijyj to be calculated in the second iteration. During

each subsequent sampling iteration, each of the 56 Scottish districts is visited in
turn, but in a random order, and the district count in question is replaced by sampling
from a Winsorized Poisson distribution with mean Gi

1
η̂

exp[α̂+β̂1 LN
(
x1,i + 1.2

)+
ρ̂

n∑

j=1
wijyj + LN (Ei + 0.5)]; the Winsorizing threshold employed here is 3Omax,

where Omax is the maximum observed count, and the district-by-district expected
number of cases were rescaled after each random sampling selection to maintain
the equality of observed and expected cases sums. These iterations are repeated

until convergence of the triplet of sufficient statistics (i.e., T1 =
n∑

i = 1
Oi for α̂, T2 =

n∑

i = 1
OiL(xl,i + 0.5) for β̂1, and T3 = Oi

n∑

i = 1

n∑

j = 1
wijyj/2 for ρ̂) is attained.

The first 25,000 of 525,000 iterations executed for a given MCMC chain were
discarded (i.e., the “burn in” period) to remove transient states toward the equilib-
rium distribution for α̂, β̂1, and ρ̂. The remaining 500,000 iterations were weeded
such that the sufficient statistics for only every 100th simulated map were retained,
resulting in chains of length 5,000. Using three independently generated chains
of sufficient statistics, constructed time series plots and correlograms confirms
independence of retained maps, and after arbitrarily dividing each chain into 125
consecutive groups of 40 map results, ANOVA confirms within-chain convergence.
Two-way ANOVA confirms consistency of the three trajectories across the 125
groupings (i.e., between-chain convergence). Summary statistics for these various
diagnostics appearing in Tables 7.3 and 7.410 indicate that the chains are well
behaved and should yield sound estimates (the lowest marginal probability is 0.170;

10The Levene test statistic was used to assess homogeneity of variance across groupings because
the magnitude of the numbers involved allows them to be treated as though they approximate a
continuous random variable. Meanwhile, there is no reason to expect that these sets of numbers
conform to normal distributions, eliminating the possibility of using the Bartlett test statistic. The
R measure is described in Gelman and Rubin (1992).
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Chain #1 Chain #2 Chain #3

Asymptotic Asymptotic Asymptotic
Parameter Estimate standard error Estimate standard error Estimate standard error

α̂ –0.4583 0.0524 –0.4556 0.0465 –0.4631 0.0376
β̂1 0.2527 0.0286 0.2515 0.0254 0.2550 0.0201
ρ̂ 0.8061 0.0622 0.8050 0.0604 0.7985 0.0352

Table 7.3 Diagnostic statistics for the MCMC-generated Winsorized auto-Poisson chains (5000
retained iterations)

Time series
plot slope AR(1) ANOVA

Chain
Sufficient
statistic t Prob t Prob F Prob Levene Prob

1 T1 –0.79 0.428 1.08 0.281 0.71 0.994 1.03 0.404
T2 –0.83 0.404 0.99 0.324 0.70 0.995 1.06 0.315
T3 0.09 0.932 0.11 0.913 0.87 0.851 0.87 0.841

2 T1 –0.25 0.801 0.91 0.361 0.92 0.723 0.92 0.731
T2 –0.35 0.727 0.89 0.376 0.92 0.715 0.90 0.766
T3 –1.37 0.170 0.85 0.396 1.03 0.396 0.99 0.521

3 T1 –0.09 0.931 0.72 0.475 0.98 0.532 0.83 0.921
T2 –0.08 0.938 0.85 0.398 0.95 0.633 0.81 0.938
T3 –0.17 0.866 –0.69 0.492 0.72 0.992 0.83 0.908

NOTE: prob denotes the probability under the null hypothesis of a zero effect; these are two-tail
for the t-statistics

the Gelman-Rubin R indices are greater than but close to 1.2, suggesting that per-
haps the chains could be somewhat longer). The respective MCMC-MLEs and their
approximate asymptotic standard errors11 (Huffer and Wu, 1998, p. 513) are as
follows:

Parameter Average Standard deviation P(S-W) PLE standard error

α̂ –0.4613 0.0033 0.759 0.1765
β̂1 0.2542 0.0017 0.608 0.0853
ρ̂ 0.8039 0.0056 0.908 0.1168

These results were further corroborated by generating 100 additional independent
chains of size 5,000 (35.2 million Winsorizings occurred across these simulations),
using the previously outlined MCMC protocol, and computing the MCMC-MLEs
for each additional chain. Average results for the 100 chains are included in the
following tabulation:

11These computations are based upon the Fisher information matrix.
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Table 7.4 Diagnostics for 3 MCMC-generated Winsorized auto-Poisson chains, each grouped
into 125 batches of 40 weeded iterations (5000 retained iterations)

Two-way ANOVA statistics

Groupings Chains Interaction
Sufficient
statistic F prob F prob F prob Levene Prob

T1 0.79 0.960 0.49 0.610 0.91 0.832 0.92 0.849
T2 0.77 0.972 0.57 0.563 0.90 0.858 0.92 0.851
T3 0.81 0.938 0.67 0.514 0.90 0.861 0.90 0.919

R measures

R(k = 40)

Sufficient
statistic Overall R Mean

Standard
deviation Minimum Maximum # > 1.2

T1 1.189 1.296 0.256 0.992 2.147 70
T2 1.217 1.293 0.253 0.989 2.235 71
T3 1.248 1.298 0.241 0.989 2.066 73

NOTE: prob denotes the probability under the null hypothesis of a zero effect

These standard deviations mat be viewed as the simulation equivalents12 to the
preceding asymptotic standard errors, and indicate that: relatively little variation
occurs across chains, the asymptotic standard errors may be too large (perhaps
because n = 56), and the PLE standard errors are far too large (which commonly is
the case in the presence of positive SA). And, the three individual chain results are
in keeping with these averages, as well as the negative binomial pseudo-likelihood
parameter estimates and their standard errors computed with the 100 simulated maps
from each 525,000th iteration are in keeping with their observed data counterparts.

7.3.3 A Proper CAR Model Specification via GeoBUGS

The following Poisson HGLM with the log link function was estimated using the
Scottish lip cancer data and GeoBUGS:

LN(μi) = LN (Ei + 0.5)+ α + β1LN
(
Xi,1 + 1.2

)+ νi, (7.5)

12Huffer and Wu (1998, p. 514) note that studying the multivariate behavior of MCMC parameter
estimates is a rather complicated and daunting problem, and suggest examining only univariate
aspects of the sampling distributions of the individual MCMC estimates (i.e., each parameter
estimate separately).
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where νi denotes unobserved district-specific log-relative risks. The prior distribu-
tions attached to this log-mean response equation are:

Oi ∼ Poisson(eLN(Ei+0.5)+α+β1LN(Xi,1+1.2)+νi ),

α ~ normal(0, 0.0001),
β1 ~ normal(0, 0.0001),

νi ~ auto-normal(
n∑

j = 1
cijvj/

n∑

j = 1
cij, σ−2

ε /
n∑

j = 1
cij), with a conditional autoregres-

sive model specification corresponding to a proper multivariate Gaussian
distribution with a full-rank covariance matrix (I – ρD–1C)D–1, where
matrices C and D are defined in Sect. 7.2,

σ−2
ε ~ gamma(0.5, 0.0005), and

ρ ~ uniform(1/λ56, 1/λ1), where λ56 and λ1 respectively are the smallest and
largest eigenvalues of matrix D–1/2 CD–1/2,

where ~ denotes “distributed as.” This is a hybrid version of specifications contained
in the GeoBUGS example and in Lee and Nelder (2001). Variable LN(X1 + 1.2) is
used in place of X1/10 to maintain consistency with other analyses summarized in
this chapter. Of note, as before, the translation value of 0.5 added to Ei has been
retained to facilitate comparisons. In part, these priors were selected because counts
tend to conform to a Poisson distribution, sampling distributions of regression coef-
ficients tend to conform to a bell-shaped curve, inverse variance tends to conform
to a gamma distribution, and the SA parameter value is contained in a restricted
interval (see Sect. 7.2.1).

Of a total of 40,000 iterations executed for a given GeoBUGS MCMC chain
(random number generator seeds: 314159 for chain #1, and 50001 for chain #2;
each chain required roughly 30 minutes of execution time), the first 15,000 were
discarded to remove transient states toward the equilibrium distribution for α̂, β̂1, ρ̂,
and σ̂ 2

ε
, where ρ̂ is the estimated CAR spatial autoregression coefficient and σ̂ 2

ε
is

the estimated error variance; these first 15,000 results are the “burn in” period. The
remaining 25,000 iterations were weeded such that the parameter estimates for only
every hundredth simulated map were retained, resulting in chains of length 250.
Using two independently generated chains of parameter estimates, time series plots
and correlograms were constructed to confirm independence of retained maps, and
after arbitrarily dividing each chain into 10 consecutive groups of 25 map results,
ANOVA was performed to confirm within-chain convergence. A two-way ANOVA
was used to confirm consistency of the two trajectories across the 10 groupings (i.e.,
between-chain convergence). Summary statistics for these various diagnostics are
similar to those reported in Tables 7.3, 7.4. Overall these diagnostics indicate that
the chains are well behaved and should yield sound estimates. The respective BUGS
estimates together with their standard errors and normality diagnostics (based on the
S-W test statistic probability) are as follows:

These results compare favorably with their MCMC maximum likelihood coun-
terparts obtained with the Winsorized auto-Poisson analysis (see Sect. 7.3.2). The
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Chain #1 Chain #2

Parameter Average Standard error P(S-W) Average Standard error P(S-W)

α̂ –0.6486 0.4995 <0.0001 –0.7187 0.5844 <0.0001
β̂1 0.3140 0.0991 0.287 0.3262 0.0888 0.002
ρ̂ 0.9630 0.0421 <0.0001 0.9551 0.0471 <0.0001
σ̂ 2

ε
0.4908 0.1984 <0.0001 0.4741 0.2046 <0.0001

value of 0.96 for ρ̂ is very close to its upper limit value of 1, similar to the value
of 0.175 (whose upper limit is 1/5.70803 = 0.17519) reported by Lee and Nelder
(2001, p. 14) based upon D = I. The precision of these estimates could be improved
by increasing the chain lengths, but only at the cost of considerably more computer
execution time

The posterior distribution of the 250 estimates of the covariate coefficient, β̂,
appear to conform to a normal distribution, as is indicated by their S-W test statistic
probabilities, P(S-W). But the two posterior distributions of the 250 intercept term
estimates, α̂, fail to conform to a normal distribution, as is indicated by their S-W test
statistic probabilities. The 250 estimates of the SA parameter, ρ̂, are strongly skewed
by being constrained to be less than its upper limit of 1. Meanwhile, similar to a

product moment correlation coefficient, the LN(0.04 +
√

1+ρ̂
1−ρ̂

) transformed values
conform closely to a normal distribution, indicated by respective S-W test statistic
probabilities of 0.895 and 0.728 (S-W increases from 0.700 to 0.997 for chain #1,
and from 0.718 to 0.996 for chain #2).

One important finding here is that ρ̂ is very close to its upper limit, suggesting that
perhaps a 2nd-order spatial covariance matrix would be more appropriate (see Sect.
7.2.1), or that an improper CAR specification can be employed. Another important
findings is that the percentage of each district′s outdoor labor force employed in
agriculture, fishing, or forestry remains a statistically significant covariate.

7.4 Spatial Filter Model Specifications

SF models are models that include synthetic map pattern variates to account
for the presence of non-zero SA. These specifications may be employed with
conventional statistical theory, usurping spatial dependency effects from model
residuals. Because the synthetic variates are landscape specific, spatial filtering is
semi-parametric in nature.

7.4.1 The Log-normal Approximation Spatial Filter Model

The log-normal approximation SF specification relates directly to the preceding
discussion about inflation and deflation of correlation coefficients (Sect. 7.2.3).
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Because a conventional multiple linear regression model is employed, the eigen-
vectors retain their properties of orthogonality and uncorrelatedness. These two
properties can be compromised if a weighted multiple linear regression analysis
is undertaken.

Part of the SA latent in Scottish lip cancer cases is captured by SA latent in
the outdoor labor percentage covariate. This commonality is made explicit by the
preceding correlation decomposition (see Sect. 7.2.1). A stepwise linear regression
analysis forcing this covariate to be in the equation results in the selected subset of
eigenvectors being from those listed in Table 7.1 (i.e., E1, E2, E3, E4, and E19). The
outdoor labor percentage covariate has a significant regression coefficient, in part
because it completely captures latent SA in lip cancer cases represented by eigen-
vector E9, and hence removes this eigenvector from the regression equation, and
through multicollinearity pulls eigenvector E4 into the regression equation. With
MC = 0.91753, the linear combination of eigenvectors represents strong positive
SA. Both the covariate and this linear combination account for roughly 58 per cent
of the variance in the transform lip cancer cases. The residual MC is nonsignifi-
cant (zMC = 0.64). The residuals fail to conform to a normal distribution [P(S-W)
= 0.008]. And, the cloud of points for the residual-versus-predicted scatterplot
continues to be well-behaved except for one of the two 0-count districts.

7.4.2 A Poisson Spatial Filter Model

Weaknesses of the preceding log-normal approximation, especially those identified
with diagnostic statistics, suggest that changing the underlying probability model
from a bell-shaped curve may be worthwhile. Griffith (2002a) outlines specification
of a SF version of the auto-Poisson model. Adopting this specification is equiva-
lent to maintaining that overdispersion implied by η̂ = 0.3989 (reported in Sect.
7.2) is attributable to the geographically aggregated lip cancer case counts being
dependent—i.e., SA. Hence, the following Poisson specification is posited here:

LN(μi) = LN (Ei + 0.5)+ α + βLN
(
Xi,1 + 1.2

)+
K∑

k = 1

βkEi,k, (7.6)

where Ei,k is the ith element of eigenvector Ek, and βk is the GLM parameter associ-

ated with eigenvector Ek. The linear combination of eigenvectors,
K∑

k = 1
βkEi,k, is the

SF. Of note is that the translation parameter, 0.5, added to the expected values, Ei,
has been retained here to facilitate comparisons with the SAR model. A researcher
most likely would not include this translation value in practice because an expected
count cannot be 0 unless the population at risk is of size 0 (a trivial case).

K = 8 eigenvectors were selected using the stepwise Poisson regression pro-
cedure available in Stata (see Table 7.5). This procedure resulted in selection of
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Table 7.5 Spatial filter generalized linear model parameter estimates

Poisson probability model negative binomial probability model

Variable
Parameter
estimate

Standard
error

χ2

statistic

Probability
of
exceed-
ing
χ2

Parameter
estimate

Standard
error

χ2

statistic

Probability
of
exceed-
ing
χ2

Intercept –0.3296 0.1460 5.10 0.0240 –0.4830 0.1787 7.30 0.0069
LN(X1+1.2) 0.2074 0.0725 8.19 0.0042 0.2873 0.0859 11.18 0.0008
E1 2.3397 0.3720 39.55 <0.0001 2.2760 0.4910 21.48 <0.0001
E2 –1.9282 0.4074 22.40 <0.0001 –1.8397 0.5616 10.73 0.0011
E3 1.0477 0.3690 8.06 0.0045 0.9264 0.4976 3.47 0.0626
E4 0.9763 0.3311 8.69 0.0032 0.9727 0.4547 4.58 0.0324
E9 –0.7188 0.3990 3.25 0.0716
E19 1.6312 0.3521 21.46 <0.0001 1.5853 0.4850 10.69 0.0011
E24 –0.7183 0.3538 4.12 0.0423
E32 0.6117 0.3063 3.99 0.0458
dispersion 0 0.0820 0.0357

those eigenvectors appearing in Table 7.1, as well as the following additional eigen-
vector: E 24. Unfortunately, this additional eigenvector may be a consequence of
losing the orthogonality and uncorrelatedness properties because of the weight-
ing involved in Poisson regression parameter estimation; moreover, collinearity
among the weighted eigenvectors causes some difficulty in estimation. The stan-
dardized Pearson residuals for counts from this analysis display only trace SA (MC
= 0.00508, GR = 0.83780), and predicted counts from this analysis have a pseudo-
R 2 of 0.702, while predicted SMR values have a pseudo-R 2 of 0.603. Although
detected overdispersion has been reduced (the deviance statistic decreases from 3.64
to 2.06), 23 of the district means fail to satisfy the condition η̂ = 0.0820 << 1

μ̂
. But

the decrease in the deviance statistic together with the decrease in η̂ from 0.2621 to
0.0820 support the notion that much of the overdispersion detected in the preceding
analysis is attributable to spatial dependence.

K = 5 eigenvectors were selected using the stepwise negative binomial regression
procedure available in Stata (see Table 7.5). This procedure resulted in selection of
a subset of those Poisson regression eigenvectors appearing in Table 7.5, with E 9, E
24, and E 32 having statistically nonsignificant coefficients here. This specification
yields η̂ = 0.0820, and a deviance statistic of 1.23. Because essentially only the
regression coefficient standard errors are altered by this change in specifications,
with insignificant eigenvectors not being selected by the stepwise procedure, the
pseudo-R2 values changed little; the one for predicted counts decreases to 0.630,
whereas the one for predicted SMR values increases to 0.631. The SA indices also
basically remain unchanged (MC = 0.00572, GR = 0.82068).



7.4 Spatial Filter Model Specifications 139

7.4.3 A Spatial Filter Model Specification via BUGS

The improper (or intrinsic) CAR is one alternative to the proper CAR prior spec-
ification for random effects, where estimation of the SA parameter ρ is replaced
by setting it equal to 1 and then including a second random effects term with an
exchangeable, say normal, prior. Thus, the total random effect for each areal unit
is the sum of two terms: a spatially structured and an unstructured random compo-
nent. Given a ρ̂ value very close to 1, this option offers a reasonable alternative
for the Scottish lip cancer data. This specification is called a convolution prior
(Besag et al., 1991; Mollie, 1996), and is viewed as being more flexible than simply
assuming CAR random effects, because results can be partitioned into those due
to spatially structured variation, and those due to unstructured over-dispersion. The
relative amounts of these two components indicate the comparative importance of
each.

In keeping with the tradition of principal components regression analysis, a SF,
which first is estimated with a conventional stepwise Poisson regression procedure,
also can function as a spatially structured component for random effects, replac-
ing the improper CAR term. Accordingly, its estimated coefficient should be close
to 1. One advantage of this approach is that a spatial autoregressive structure is
not needed; rather, it is replaced by a composite map pattern component specifying
the areal unit means in such a way that spatial structure is introduced into random
effects.

The following SF Poisson HGLM with the log link function was estimated using
the Scottish lip cancer data and BUGS:

LN(μi) = LN (Ei + 0.5) + α + β1LN
(
Xi,1 + 1.2

)+ β2Fi + νi, (7.7)

where Fi =
K∑

k = 1
βkEi,k denotes the SF term for areal unit i. The prior distributions

attached to this log-mean response equation are the same as before for α, β1, and
σ−2
ε , and are as follows for the other parameters:

Oi ∼ Poisson(eLN(Ei+0.5)+α+β1LN(Xi,1+1.2)+β2Fi+νi ),

β2 ∼ normal (0, 0.0001) ,

νi ∼ normal(0, σ−2
ε ).

Of note, as in the preceding section, the translation value of 0.5 added to Ei has
been retained to facilitate comparisons. In part, these priors were selected because
counts tend to conform to a Poisson distribution, sampling distributions of regres-
sion coefficients tend to conform to a bell-shaped curve, and inverse variance tends
to conform to a gamma distribution.
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Of a total of 525,000 iterations executed for a given BUGS MCMC chain (seeds:
314159 for chain #1, and 50001 for chain #2; each chain required roughly 8 min-
utes of execution time), the first 25,000 were discarded to remove transient states
toward the equilibrium distribution for α̂, β̂1, β̂2, and σ̂ 2

ε
, where β̂2 is the estimated

SF regression coefficient; these first 25,000 results are the “burn in” period. The
remaining 500,000 iterations were weeded such that the parameter estimates for
only every hundredth simulated map were retained, resulting in chains of length
5,000. Using two independently generated chains of parameter estimates, time series
plots and correlograms were constructed to confirm independence of retained maps,
and after arbitrarily dividing each chain into 125 consecutive groups of 40 map
results, ANOVA was performed to confirm within-chain convergence. A repeated
measures ANOVA was used to confirm consistency of the two trajectories across
the 125 groupings (i.e., between-chain convergence; repeated measures were used
because chains tended to be nearly identical, regardless of the random number seeds
or the initial parameter estimates used). Summary statistics for these various diag-
nostics are similar to those reported in Tables 7.3 and 7.4. Overall these diagnostics
indicate that the chains are well behaved and should yield sound estimates (the most
problematic chains are for σ̂ 2

ε
). The respective BUGS posterior distribution esti-

mates together with their standard errors and normality diagnostics [based on the
Kolmogorov-Smirnov (K-S) test statistic probabilities, P(K-S)] are as follows:

Chain #1 Chain #2

Parameter Average Standard error P(K-S) Average Standard error P(K-S)

α̂ –0.3735 0.1562 0.023 –0.3735 0.1562 0.025
β̂1 0.2213 0.0745 > 0.150 0.2213 0.0744 > 0.150
β̂2 0.9898 0.1234 > 0.150 0.9898 0.1235 > 0.150
σ̂ 2

ε
0.0511 0.0353 < 0.010 0.0510 0.0353 < 0.010

These results compare favorably with the reported in Table 7.5 (now the β̂2
variance is 0.1371).

7.5 Discussion

This chapter examines a variety of ways to model georeferenced counts data, con-
trasting conventional specifications with SF specifications. In doing so, it highlights
several important issues that arise in this context. Foremost is the use of spa-
tial filtering techniques. Second is the interplay between missing covariates and
an accounting for SA in model specifications. And, third is implications for data
mapping.
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Table 7.6 Cross-validation results for spatial filter model parameter estimates

Poisson parameter estimates
Negative binomial parameter
estimates

Variable Average Standard deviation Average Standard deviation

Deviance/df 2.1020 0.0656 –0.4834 0.0331
Intercept –0.3303 0.0315 0.2874 0.0164
LN(X1+1.2) 0.2078 0.0161 2.2766 0.0712
E1 2.3412 0.0693 –1.8398 0.0854
E2 –1.9306 0.0931 0.9268 0.0701
E3 1.0448 0.0859 0.9731 0.0619
E4 0.9744 0.0675 –0.4834 0.0331
E9 –0.7208 0.0771
E19 1.6302 0.0691 1.5848 0.0615
E24 –0.7164 0.0816
E32 0.6113 0.0655
Dispersion 0 0.0816 0.0055

7.5.1 Cross-validation Results for the Poisson Spatial Filter Model

The SF model results reported in Sect. 7.3.4 were subjected to a cross-validation
analysis (Table 7.6). In other words, leaving out one Scottish district at a time, in
turn, the Poisson SF model was estimated with data for the remaining 55 districts.
This analysis yielded an average pseudo-R2 of 0.704, with a standard error of 0.011.
It also produced a mean squared prediction error of 35.9, which compares favorably
with the model’s predicted mean squared error of 21.2. The correlation between the
predicted and observed values is moderate-to-strong (r = 0.736).

The maximum likelihood parameter estimates and the average cross-validation
parameter estimates are very similar, implying unbiasedness. In addition, cross-
validation standard deviations are relatively small, all being less than 0.1. The
cross-validation ratio of the deviance statistic to the number of degrees of freedom
(i.e., deviance/df) also is very similar to its full model estimated value (i.e., 2.1020).
In both cases the value is very close to 2, which is on the threshold of problem-
atic overdispersion (Hardin, 2001, p. 115). Similar findings were obtained for the
negative binomial model.

7.5.2 A Simulation Experiment Based Upon the Poisson Spatial
Filter Model

Mean responses for area-specific Poisson random variables are given by Eq. (7.6).
These n values can be used to simulate n independent drawings from a Poisson dis-
tribution with the means (which automatically equal the corresponding variances)
defined by Eq. (7.6). Spatial autocorrelation effects captured by Eq. (7.6) are trans-
ferred to the simulated data, resulting in preservation of the SF map pattern. Once
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Table 7.7 Simulation experiment results for spatial filter model parameter estimates

Poisson parameter estimates
Negative binomial parameter
estimates

Variable Average Standard deviation Average Standard deviation

intercept –0.3394 0.1469 –0.4938 0.1250
LN(X1+1.2) 0.2073 0.0727 0.2864 0.0621
E1 2.3477 0.3746 2.2880 0.3535
E2 –1.9353 0.4078 –1.8454 0.4072
E3 1.0466 0.3652 0.9188 0.3838
E4 0.9778 0.3297 0.9746 0.3286
E9 –0.7226 0.4049
E19 1.6371 0.3593 1.6045 0.3734
E24 –0.7091 0.3541
E32 0.5993 0.3110
dispersion 0 0.0018 0.0058

NOTE: the simulation experiment consisted of 10,000 replications; all negative binomial
dispersion parameters less than 0 were replaced with 0

these simulated samples have been drawn, Poisson SF models can be estimated with
each of them, allowing sampling distributions for each of the model parameters to
be simulated. The outcome of this exercise allows assessment of both the parameter
estimates and their accompanying standard errors computed with the observed data.

The first simulation experiment undertaken here consisted of 10,000 drawings of
56 sets of values from independent Poisson distributions. The accompanying 10,000
parameter estimation results are summarized in Table 7.7. The most noticeable dis-
crepancies, albeit modest ones, between the observed data SF results reported in
Table 7.5 and the means and standard deviations calculated with this simulation
exercise (see Table 7.7) are for eigenvector E32’s coefficient, and for the variabil-
ity of eigenvector E19’s coefficient. But none of these differences exceed roughly
2%, suggesting that the simpler Poisson model should be preferable to the negative
binomial model. In other words, an assumption of 56 independent Poisson random
variables whose means (and hence variances) are given by Eq. (7.6) appears reason-
able. The second simulation experiment replicated the first one, but with random
sampling from a Poisson-gamma distribution. Although average parameter esti-
mates are roughly the same as their empirical counterparts, simulation standard
errors for this case (see Tables 7.6 and 7.7) do not agree very well with the empir-
ical results; this inconsistency may be attributable to n = 56 being too small for
agreement with asymptotic results.

This simulation approach has several advantages over the MCMC approach asso-
ciated with a Winsorized auto-Poisson model. First, SA is embedded via the SF
parameterization, resulting in a much simpler simulation procedure that is void of
convergence issues and capable of quickly generating massively large numbers of
maps. Second, estimation results are directly comparable with those obtained for
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generalized linear models. And, third, estimation does not depend upon pseudo-
likelihood estimation results. One disadvantage is that the SF simulation depends
upon the selected set of eigenvectors that is determined with the original sample
data, which may well result in some specification error.

7.5.3 Impacts of Incorporating Additional Information

One appealing feature of map analysis is that SA latent in a georeferenced response
variable can be exploited to compensate for variables missing from a model
specification. In doing so, dealing with redundancies allows considerable informa-
tion invisible to traditional statistical techniques to be extracted from georeferenced
data. Moreover, sums of surrounding nearby values, or the structure of the configu-
ration of georeferenced values, furnish useful surrogate information for a statistical
analysis. As additional variables are measured and included in a model specification,
SA contained in a response variable begins to be accounted for by SA contained in
these covariates (see Sect. 7.2.3). This transfer of map pattern effects from the left-
hand to the right-hand side of an equation reduces the residual redundancies that
can be exploited.

This situation can be illustrated with the number of males at risk (X2) from the
Scottish lip cancer data analysis reported by Cressie (1991, p. 537), whose Box-
Tidwell transformation13 was determined to be LN( X2

area - 22.2). Employing a spatial
filtering decomposition [see Eqs. (7.2a) and (7.2b)], SA latent in this second covari-
ate accounts for roughly half of its variability, and can be described by the six
eigenvectors E1, E2, E9, E12, E15, E19, and E34, whose linear combination rep-
resents moderate-to-strong positive SA (MC = 0.76089). The first three of these
eigenvectors are common to the SFs describing the transformed variables Y and
LN(X1 + 1.2). In addition, vector E19 is common to Y, and vector E34 is common
to LN(X1 + 1.2); E12 and E15 are unique to LN(X2/area – 22.2). The attribute cor-
relation structure for these three georeferenced variables may be summarized as
follows:

Y 1 0.160 –0.213

LN(X1 + 1.2) 0.539 1 –0.210
LN(X2/area – 22.2) –0.540 –0.441 1

Y LN(X1 + 1.2) LN(X2/area – 22.2)

The lower left-hand triangle of this tabulation contains the unadjusted (for SA)
pairwise correlation coefficients; the upper right-hand triangle contains the spatially
filtered correlation coefficients (see Sect. 7.2.3). These results reveal that the natures

13Cressie employs the transformation

√
# of lip cancer cases

# of males at risk +

√
# of lip cancer cases+1

# of males at risk .
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of the attribute relationships are not changed by the presence of spatial depen-
dencies, but that all coefficients are substantially inflated (from roughly 210% to
337%).

Analysis of the following stepwise results for the SAR and negative binomial SF
models illustrates the compensatory feature of SA:

SAR model
specification

Negative binomial spatial filter model
specification

Variable added to a
model ρ̂ Pseudo-R 2 Eigenvector #s η̂ Pseudo-R 2

none/offset NA none 0.4895 0.237
spatial autocorrelation 0.7199 0.541 1–4, 9, 19, 24, 32 0.0772 0.660
LN(X1 + 1.2) 0.6720 0.549 1–4, 9, 19, 32 0.0689 0.663
LN(X2/area – 22.2) 0.6493 0.549 1–4, 9, 19, 32, 34 0.0529 0.689

These results illustrate that including SA in a model specification can have a big
impact, accounting for roughly 50% of the variance in the SAR model specification,
and roughly 42% in the negative binomial SF model specification; overdispersion
is dramatically reduced for this latter model specification, too. Addition of the first
covariate only slightly increases the percentage of variance accounted for, while
slightly reducing the role of the SA component—this is the trade-off, which partly
is determined by the number of eigenvectors common to the response variable and
covariate. Addition of the second covariate again only slightly increases the per-
centage of variance accounted for, while further reducing the magnitude of the SA
component.

One important result emphasized here is that considerable insight into the geo-
graphic distribution of Scottish lip cancer incidence (i.e., the Box-Cox transformed
ratio of observed to expected counts) can be gained simply by exploiting its
latent SA. Another is that different model specifications yield different param-
eter estimates for the same covariates, mostly because of varying distributional
assumptions.

7.5.4 Implications for Data Mapping

Identifying outlier areal units is a primary interest here: cases poorly accounted
for by a model (i.e., either markedly exceed or markedly less than their expected
values), while accounting for redundant information arising from the presence of
SA. Studentized residuals for the SAR model, and Pearson residuals for the var-
ious Poisson model specifications, may be used to statistically establishing local
deviations of Y values from their global map means. Each of these residuals has
constant variance, and because multiple testing is involved, may be compared with
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a t-distribution14 having n-p-1 degrees of freedom using the most liberal Bonferroni-
adjusted critical region of size 0.05/n for each tail. The p+1 values for the respective
Scottish lip cancer models are: 3 for the SAR, 4 for the Winsorized auto-Poisson-
gamma, 8 for the Poisson-gamma SF, 19 for the SF BUGS, and 27 for the PCAR15

BUGS.16

Based upon count residuals, areal units may be classified as hot spots (i.e.,
places where predicted counts are significantly less than their observed counter-
parts), cold spots (i.e., places where predicted counts are significantly greater than
their observed counterparts), or places where predicted counts are as expected
given the socio-economic/demographic composition of their inhabitants. Visual out-
lier identification of Scottish lip cancer counts based upon the preceding criteria

[i.e., (Oi − Ôi)/
√

Ôi] reveals that a single aberrant district (Banff Buchan), due
to its excessively large number of cases, is highlighted by the Poisson SF model.
Meanwhile, Annandale is flagged as a cold spot by the proper CAR HGLM. This
district is one of the two 0-case districts that introduce noticeable specification error
into the log-normal approximation model specification. Because both 0-case dis-
tricts fail to be detected as outliers here, differentiating them with an indicator
variable as coming from a different population than the remaining 54 districts may
be ill-advised. The Winsorized auto-Poisson model reveals Aberdeen as a second
cold spot outlier. No outliers are identified for the other two model specifications
(see Fig. 7.5a). The Bonferroni t-value criterion results in Glasgow and Dundee
being added to the list of potential cold spots by both the SAR and the Windsorized
auto-Poisson residuals.

Based upon SMR ratios, districts also may be classified as hot spots (i.e., places
where predicted SMR values are significantly greater than 1), cold spots (i.e., places
where predicted SMR values are significantly less than 1), or places where SMR
values are as expected given the age and sex composition of their inhabitants. Visual
outlier identification of Scottish lip cancer SMR values based upon the criterion

of Oi+0.5
Ei+0.5 /

Ôi
Ei+0.5 reveals that only the proper CAR HGLM specification uncovers

anomalies (see Fig. 7.5b): Clydebank appears as a hot spot, and Annandale and
Tweeddale (the two 0-count districts) appear as cold spots. But some of the SMR
ratios are substantially more than (by nearly 250%) or less than (by nearly 90%) 1.
Furthermore, if SMR = SM̂R, then SMR/SM̂R = 1. But the variance of this ratio is
less straightforward to compute. Simulation results for the GeoBUGS proper CAR
model, for example, suggest a standard error value of roughly 0.20858–implying
that districts whose observed SMRs are greater than 140% of their predicted SMRs

14The P(S-W) values for the various models are: 0.922 for the SAR, 0.703 for the Winsorized
auto-Poisson, 0.445 for the Poisson spatial filter, 0.067 for the GeoBUGS proper CAR, and 0.575
for the BUGS spatial filter specification.
15PCAR denotes the proper conditional autoregressive model specification, which restricts the
value of the autoregressive parameter to its feasible parameter space.
16Effective degrees of freedom were calculated in BUGS as parameter estimate pD (see
Spiegelhalter et al., 2002).
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Fig. 7.5 Boxplots of deviations produced by the various model specifications. Auto-P: Winsorized
auto-Poisson; BUGS-PCAR: GeoBUGS proper CAR; BUGS-SF: BUGS spatial filter; P-SF:
Poisson spatial filter; and, SAR: simultaneous autoregressive. Left (a) standardized residual counts.
Right (b): ratio of observed to expected SMRs

Fig. 7.6 Geographic
distribution of potential hot
spots (black) and cold spots
(gray)

Fig. 7.7 Spatial structure for random effects. The gray quantile groups go from relatively low,
negative to relatively high, positive values. Left (a): the GeoBUGS output based upon a proper
CAR specification. Right (b) the BUGS output based upon a spatial filter specification
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constitute potential hot spots, and districts whose ratios of these two values are less
than 60% constitute potential cold spots. Because each of the sets of ratio values
also conforms to a normal distribution17, Bonferroni-adjusted t-values again can be
used to uncover hot and cold spots. The results suggest that the list of potential hot
spots include not just Clydebank (identified here by all but the SAR and Winsorized
auto-Poisson models), but also Skye Lochlash (identified here by all but the proper
CAR HGLM), NE Fife and Ettrick (identified here by all but the two HGLMs),
Berwickshire (identified here by the two SF models), and Banff Buchan, Wigtown
and Monklands (identified here only by the Poisson SF model). In addition, the
list of potential cold spots also includes Strathkelvin (identified by the SAR and
Winsorized auto-Poisson models). The map of potential hot and cold spots for the
Scottish lip cancer example appears in Fig. 7.6.

The spatial structure components associated with the HGLM results appear in
Fig. 7.7; these two map patterns are very similar, with a commonality exceeding 75
percent. Posterior distributions of SMRs for the two HGLMs, of which at least 53
of the 56 conform to a normal frequency distribution, reveal no hot or cold spots.
But both of these analyses involve estimating n = 56 random effects terms. These
estimated terms produce multiplicative factors for the more conventional types of
predicted SMRs.

7.6 Concluding Comments

In conclusion, the SAR model implies the presence of moderate positive SA in
the Scottish lip cancer data, while producing the least informative results. Its diag-
nostics suggest the possibility of two different populations for the SMRs, a data
feature unsupported by other analyses. In part, these weaknesses may be attributable
to model assumption violations (e.g., non-normal, heteroskedastic residuals). But
this type of specification has the important advantage of enabling a decompo-
sition of correlation coefficients into spatial and aspatial terms. In contrast, the
Winsorized auto-Poisson specification replaces a log-normal with a Poisson dis-
tribution assumption, which results in a slight increase in its descriptive power (see
Table 7.8).

The Poisson SF specification furnishes additional improvement in descriptive
power. For the Scottish lip cancer SMRs, its diagnostics suggest that the viola-
tion of equidispersion primarily is attributable to latent SA. For the single covariate
specification, its parameter estimates are very similar to those for the SAR model,
and its analytical estimation results appear to be robust. Meanwhile, HGLMs yield
appealing results based upon a Poisson distribution of case counts and a set of spa-
tially structured normal priors. The proper CAR specification shares an auto-normal

17The P(S-W) values for the various models are: 0.401 for the SAR, 0.289 for the Winsorized
auto-Poisson, 0.464 for the Poisson spatial filter, 0.092 for the GeoBUGS proper CAR, and 0.926
for the BUGS spatial filter specification.
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Table 7.8 Bivariate regression results for observed and model-predicted SMRs

HGLM
Back-transformed
SAR

Winsorized
auto-Poisson

Poisson spatial
filter Proper CAR Spatial filter

Statistic Estimate Prob Estimate Prob Estimate Prob Estimate Prob Estimate Prob

Intercept 2.7387 0.009 2.8468 0.004 1.1747 0.219 0.0352 0.932 –0.2201 0.714
Slope 0.5915 <0.0001 0.6681 <0.0001 0.8773 <0.0001 1.0480 <0.0001 1.0411 <0.0001
Pseudo- R2 0.601 ∗∗∗ 0.644 ∗∗∗ 0.702 ∗∗∗ 0.943 ∗∗∗ 0.886 ∗∗∗

specification with the SAR and Winsorized auto-Poisson models, but only for its
n random effects terms. The SF specification shares a mean response specification
with the Poisson SF model. The Poisson SF specification requires numerically inten-
sive eigenfunction calculations, whereas the Winsorized auto- model and HGLMs
require numerically intensive MCMC calculations. The former can be computed
with many standard software packages, while the latter requires specialized software
packages (e.g., GeoBUGS). And, the SF and proper CAR specifications capture SA
through their parameters, rather than through their observed values. Furthermore,
similar to inclusion of a SA term in a model specification, a random effects term
represents missing covariates that need to be uncovered in order to have a more

Fig. 7.8 Scatterplots of model predicted versus observed counts. Top left (a): SAR normal approx-
imation transformed. Top center (b): SAR back-transformed normal approximation. Top right
(c): Winsorized auto-Poisson counts. Bottom left (d): Poisson spatial filter. Bottom center (e):
Geo-BUGS proper CAR HGLM. Bottom right (f): BUGS spatial filter HGLM
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complete understanding of predicted SMRs, an understanding that would support
better delineation of hot and cold spots.

Although the six models fail to agree on which districts are hot spots and which
are cold spots, they do highlight some potential districts for these two categories.
Furthermore, Table 7.8 and Fig. 7.8 summarize bivariate regression results obtained
by regressing observed counts on predicted counts. Overall, predicted counts gen-
erated by HGLMs align best with the observed counts, with the proper CAR
specification outperforming all other specifications in terms of its pseudo-R 2 value,
but at a cost of considerably more degrees of freedom. Alignment for predicted
counts generated by the SAR and Poisson SF models are comparable. The antici-
pated values for the intercept and slope regression coefficients are, respectively, –0.5
[based upon the quantity (Oi + 0.5) used throughout] and 1. The HGLM SF model
specification renders bivariate regression parameter estimates most similar to these
two values.

Findings reported in this chapter imply that a log-normal approximation is least
desirable, a Poisson SF specification offers some useful insights, and a HGLM fur-
nishes useful predictions, when undertaking data mapping. In addition, this case
study should motivate a fuller appreciation of the variety of models researchers
unfamiliar with spatial filtering can employ in their analyses.



Chapter 8
The Role of Spatial Autocorrelation in
Prioritizing Sites Within a Geographic
Landscape

Superfund program legislation—primarily the U.S. Comprehensive Environmental
Response, Compensation and Liability Act—and its public health motivations cata-
pulted environmental contamination issues into the forefront of society’s concerns.
One outcome was a report by the U.S. National Research Council (NRC, 1994)
examining principal methods considered or actually employed by federal and state
government agencies to prioritize the remediation of hazardous waste sites. The
emphasis was on between-site variation among locations, initially overlooking
within-site variation for locations. The purpose of this paper is to extend more recent
work on prioritizing the remediation of subregions within a given hazardous waste
site, emphasizing within-site variation for locations. These extensions are illustrated
with a case study of the Murray superfund site.

8.1 Introduction: The Problem

Because an enormous amount of money and people-years of effort are needed to
complete the necessary environmental restoration targeted by superfund legislation,
prioritizing schemes need to identify those sites in greatest need of remediation,
followed by a determination of the extent to which a selected site needs to be
remediated. The environmental evaluation involved consists of three stages (after
NRC, 1994, p. 66): (1) identification of environmental landscapes and concomitant
biomarkers indexing the risk of exposure; (2) estimation of the sources and magni-
tudes of contamination; and, (3) determination of appropriate remedial actions (e.g.,
soil removal, groundwater treatment). Heavy metal contaminants posing significant
potential threats to human health, due to their known or suspected toxicity and their
abundance at superfund sites, that have been identified by the USEPA’s Office of
Solid Waste and Emergency Response and the Agency for Toxic Substances and
Disease Registry, with some being highlighted by the Centers for Disease Control
(CDC, 2001), include: arsenic (As), barium (Ba), cadmium (Cd), chromium (Cr),
copper (Cu), mercury (Hg), nickel (Ni), lead (Pb), and zinc (Zn). Both As and Pb
are analyzed in the case study presented in this paper. As is naturally present in
groundwater, and sometimes is a residue of industrial production; As is a poison that
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is linked to, among other diseases, cancer and diabetes. Pb is a naturally occurring,
ubiquitous element that human activities geographically concentrate in the envi-
ronment far beyond its natural background level; Pb is a poison that is linked to
neurological and developmental illnesses, especially in children.

The second prioritization stage involves the collection of soil, water and/or air
samples—called extent of contamination samples—whose pollution contents are
measured. If within-site subregions are to be identified, in order to help deter-
mine the extent to which remediation should be undertaken, then samples must
be geocoded. Frequently the implemented geographic sampling design is poor, in
that some subregions (e.g., hot spots—concentrations of excessively high levels of a
pollutant) are oversampled while other subregions are undersampled. This outcome
occurs mainly because the initial objective of sampling often is to find out which
toxic materials are present, and to ascertain the site-wide extent of contamination.
A subregion in which high levels of contamination are detected tends to be over-
sampled in order to verify the clustering of high levels. But budget constraints result
in other subregions of a site being more sparsely sampled, sometimes causing their
evaluations to be based upon too few samples, or even no samples when the wrong
locations have been sampled.

Once measures of a contaminant have been made, the relative level of the con-
taminant can be established. EPA bases its exposure assessment guidelines on the
upper 95% confidence limit (UCL) calculated using the mean and standard devia-
tion of contaminant concentration computed with a site′s sample measures (Bowers
et al., 1996). This criterion could suggest that a site should receive a low priority
score for remediation, when in fact some subregions of the site should be assigned a
high priority score. Or, this criterion could suggest that a site receive a high priority
score, when not every subregion of the site is severely contaminated. Subregional
assessment is further complicated by the presence of spatial autocorrelation (SA)
in the sample data; nearby samples contain redundant contamination information,
which in turn impacts upon the UCL that is calculated.

The research problem addressed here asks:

(1) What is the correct UCL calculation? and
(2) What method should be used to identify high priority subregions of a site?

Formulating answers to these two questions requires the use of both spatial statis-
tics and geographic information systems (GISs). These answers are illustrated here
in terms of the Murray superfund site.

8.2 The Murray Superfund Site: Part I

In all, 253 geocoded aggregated surface (0–2") soil samples—a number of nearly
adjacent soil samples, whose assay results are pooled for a composite measure,
and then tagged with a common georeferencing coordinate—were collected in a
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Fig. 8.1 Location of soil samples in the Murray superfund site. Left (a): division of the site into
the four quadrants of the plane. Right (b): division of the site into the smelter parcel and residential
neighborhoods, and the Thiessen polygon surface partitioning based upon soil sample locations

0.5 square mile area of Murray, Utah, and their concentrations of As and Pb mea-
sured. Of these, 173 were collected in an abandoned lead smelting facility superfund
site, and 80 were collected in two of its adjacent residential neighborhoods located
along the western and southern borders of the smelter site. Airborne emissions and
placement of waste slag from the smelting process polluted this area. Sample Pb
concentrations range from 37 parts per million (ppm) to 33,000 ppm. Sample As
concentrations range from 5 ppm to 7,700 ppm. Besides differentiating geographic
variability between the smelter site and its two adjacent neighborhoods, geographic
variability also can be analyzed in terms of the four quadrants of the plane, which
in counter-clockwise rotation respectively contain 63, 57, 68 and 65 soil sample
locations. The geographic configuration of the sample points can be articulated
with Thiessen polygons. These various features of this geographic landscape are
portrayed in Fig. 8.1.

8.2.1 State-of-the-Art Practice

A considerable amount of effort has been devoted to handling the log-normal nature
of most contamination measures—transforming a set of contamination measures by
replacing them with their logarithm values results in a sample that more closely
mimics a normal frequency distribution. The key analytical benefit here is reducing
specification error attributable to wrongly assuming a normal distribution probabil-
ity model for inferential purposes, one that does not characterize the raw data. The
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key communication complication here is the ability to discuss the UCL, which is
based upon the normal probability model, in terms of the original measurements.
Consequently, substantial effort has been expended on how to calculate accurate
back-transformations (see Armstrong, 1992; Bowers et al., 1996). But whether the
UCL is expressed in logarithm or raw-data measurement terms, it is severely limited
when its calculation fails to accommodate SA that is latent in data.

In recognizing geographic pattern, several studies promote the use of spatial anal-
ysis for identifying high priority subregions of a contaminated site. Ginevan and
Splitstone (1997) outline how kriging can be used to generalize a contamination
surface from a set of sample points. Burmaster and Thompson (1997) outline the
use of Thiessen polygons, with specific reference to incorporating spatial pattern of
contamination into the UCL calculation; more specifically, they calculate a weighted
average whose weights are the inverse areas of the Thiessen polygons.

The state-of-the-art practice illustrated by these researchers is to exploit SA in
order to construct generalized contour maps, but otherwise to overlook SA, although
not necessarily outcomes of the geographic configuration of sample data, in order
to calculate the UCL. The methodology outlined in this paper corrects this sec-
ond deficiency, incorporating SA into the UCL calculation through the use of a
spatial simultaneous autoregressive (SAR) model specification, marries it to krig-
ing based upon a semivariogram model that is consistent with the SAR model, and
extends assessment to a bivariate situation. This extension satisfies Burmaster and
Thompson’s (1997) requirement of preserving the individual spatial patterns of, as
well as the correlation between, two contaminant concentrations.

8.2.2 A Spatial Methodology: Stage 1, Spatial Sampling
Data Collection and Preprocessing

The spatial methodology involves steps ranging from sample selection to identifi-
cation of remediation regions. Sampling should be undertaken with two goals in
mind. First, a site needs to be adequately covered. Second, pollution hot spots need
to be verified. Stehman and Overton (1996) outline how to implement a hexago-
nal tessellation stratified random sample. This design ensures adequate coverage
across a study site. It suggests that the first nearest neighbor statistic should be
around 2, indicating a strong tendency for sample locations to be uniformly spaced;
random selection within a hexagon avoids the sample being geographically system-
atic, and prevents this statistic from equaling its maximum (approximately 2.14).
Often regions surrounding sample locations revealing high levels of a pollutant then
are intensively sampled, in order to verify the existence of a hot spot. This second
stage of the sampling process will further reduce the nearest neighbor statistic. Both
of these stages would be well served by a model-informed sampling strategy that
involves estimation of the nature and degree of latent SA in the geographic dis-
tribution of the pollutant. As sample intensity increases, SA tends to increase. As
SA increases, total sample size should decrease, in order to minimize the collection
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of redundant information. An equilibrium between these two opposing trends is
desirable.

The second step is to identify a variable transformation that converts the pollution
measures into values that closely mimic a bell-shaped frequency distribution. Most
all sample pollution measures exhibit a log-normal type of distribution (Gilbert,
1987; Millard and Neerchal, 2001), or empirically a frequency distribution where
changing each data value to its natural logarithmic counterpart yields a set of val-
ues that conforms to a normal distribution. This frequency distribution tends to
describe pollution measures well because they are bounded below at 0 and usu-
ally are strongly positively skewed. But a heavy metal such as Pb occurs naturally
in all soils, implying that its lower bound may differ from zero, requiring a thresh-
old parameter to be included in the log-normal distribution specification. Pollution
is deposited in a geographic landscape by point source human activities, such as Pb
emissions dispersing from the smoke stack of a smelter. Relatively small amounts
are deposited in most locations, while increasingly larger amounts are deposited in
fewer and fewer locations (perhaps near the smoke stacks). If the process deposit-
ing pollution is repetitive, then with some stochastic fluctuation (e.g., wind pattern
change), each layer of pollution has approximately the same geographic distribution,
resulting in new deposit amounts being proportional to existing deposit amounts at
each location. Thus, the cumulative effect of many layers of small deposits is mul-
tiplicative, resulting in a log-normal distribution, and a transformed variable of the
form

LN (pollution concentration measure + δ) , (8.1)

where LN denotes the natural logarithm, and δ is a translation parameter at least
accounting for the naturally occurring background level of a pollutant.

Often real-world data, especially if they are georeferenced, contain consider-
able heterogeneity. This heterogeneity frequently is related to the magnitude of a
measure. Equation (8.1) is equivalent to a Box-Cox power transformation with an
exponent of zero. This zero exponent transforms positively skewed frequency distri-
butions into ones that are more symmetric; it moves the left-hand frequency bump
to the right, and squashes this bump downward, which forces the two tails to inflate.
With regard to the raw measures, relatively speaking, this transformation shrinks
very large values, magnifies very small values, and preserves intermediate values.
Including the translation parameter, δ, primarily impacts upon one or both tails,
modifying their inflation so that it better corresponds to that of a bell-shaped curve.
At least some additional data heterogeneity can be accounted for by allowing δ to
vary by the size of measures, or

LN
[
pollution concentration measure + δ0 + δ1

( r1

n + 1

)γ1
( r2

n + 1

)γ2
]

, (8.2)

where r1 and r2 respectively are the ascending and descending rankings of the n pol-
lution concentration measures, δ0 is a translation parameter constant, δ1 is a constant
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of proportionality, and γ1 and γ2 are exponents attached to the relative rankings.
Equation (8.1) is the special case of δ1 = 0. The nonconstant translation parame-
ter should have values contained within the range of the data, and should result in
a closer alignment of the empirical and theoretical cumulative frequency distribu-
tions basically by stretching one or both of the tails of the empirical distribution.
Additional heterogeneity can be accounted for by allowing the exponent to vary by
the size of measures, or
[
pollution concentration measure + δ0 + δ1

( r1

n + 1

)γ1
( r2

n + 1

)γ2
]δ2+δ3

(
r1

n + 1

)γ3
(

r2
n + 1

)γ4

,

(8.3)

where the terms of δ2 +δ3
( r1

n + 1

)γ3
( r2

n + 1

)γ4 are defined in a similar fashion to those
for Eq. (8.2). Equation (8.3) will tend to better align both the tails as well as the
center of the empirical frequency distribution. Equations (8.1) and (8.2) are special
case of δ2 = δ3 = 0. Equation (8.3) could have δ1 = 0, hence capturing heterogeneity
solely with a nonconstant exponent. Equation (8.3) is suggested when the translation
parameter values of Eqs. (8.1) and/or (8.2) fall outside the interval (–ymin, ymax),
where ymin and ymax denote the extreme values of Y.

The third step is to krig values—spatial interpolation—and to produce the nec-
essary quantities to calculate UCLs. Statistical analyses engaged in during this
step should be nearly void of specification error, given the accommodation of
assumptions of normality, constant variance, and observation independence. For
remediation purposes, the important consideration is avoiding specification error.
But for communication purposes, the important consideration is expressing deci-
sion criteria in understandable quantitative terms. Hence, this is the step in which a
back-transformation could be calculated for communication purposes. The fourth,
and final, step is to demarcate remediation subregions of a site. These third and
fourth steps are spelled out in more detail in the ensuing sections of this paper.

8.3 The Murray Superfund Site: Part II

Griffith (2002b) reports a 1st nearest neighbor statistic of 0.06208 for the Murray
site, indicating that the sample locations are highly clustered. Visual inspection of
the maps in Fig. 8.1 suggests subregions that are under- or unsampled, subregions
that are oversampled, and some apparent sampling transect.

Equation (8.2) was calibrated for both As and Pb. Normal distribution quantile
plots appear in Fig. 8.2 and show the evolution of the transformed values. Both
pollutants begin with the hooked quantile plot typifying untransformed log-normal
data, and achieve their greatest conformity gains merely by being subjected to a
simple logarithmic transformation. Inclusion of a constant translation parameter
primarily better aligns the lower tails of the empirical cumulative frequency distri-
butions with their theoretical normal cumulative frequency distribution counterpart.
Capturing heterogeneity by letting the translation parameter vary with data value
order ranking essentially aligns all but the largest two As values, and all of the
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Fig. 8.2 Evolution of the pollutant data transformation quantile plots. Left (a): from top to bottom,
raw As values, logarithmic As values, Eq. (8.1) As values, and Eq. (8.2) As values. Right (b): from
top to bottom, raw Pb values, logarithmic Pb values, Eq. (8.1) Pb values, and Eq. (8.2) Pb values

Pb values. These results are corroborated by boxplots for these sequential transfor-
mations, which appear in Fig. 8.3. These latter graphics reveal that the frequency
distribution bumps spread out from lower values toward high values, the highest
values shrink toward the lower values, and improved symmetry emerges. Of note is
that the As analysis is complicated by the presence of 32 measures occurring at the
detection level of 5 ppm.

Geographic distributions of the relative transformation effects appear in Fig. 8.4.
Both for As and Pb, conspicuous clusters of raw values are replaced by swaths
of relatively high values that, for the most part, differentiate between the smelter
site and the residential neighborhoods. Again, little difference is visually detectable
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Fig. 8.3 evolution of the pollutant data transformation box plots: top (a): as results. bottom
(b): pb results

between the application of a simple logarithm transformation and Eqs. (8.1) and
(8.2). A Shapiro-Wilk (S-W) statistic indexing of conformity of these measures with
a normal frequency distribution appears in Table 8.1; the null hypothesis value for
S-W is 1. Each transformation increases S-W, with the largest increase attained by
applying the simple logarithm transformation.

A quantification of geographic variability heterogeneity is summarized in
Table 8.1. Homogeneity of variance for the various As and Pb measurement scales
is evaluated with Bartlett’s and Levene’s (i.e., a non-normailty assuming diagnostic
statistic used to assess the equality of variance in different samples) test statistics for
equality of variance; each has a null hypothesis value of 0. These assessments are in

Fig. 8.4 Evolution of the pollutant data transformation relative values (i.e., proportional circles)
maps. Top (a): from left to right, raw As values, logarithmic As values, Eq. (8.1) As values, and
Eq. (8.2) As values. Bottom (b): from left to right, raw Pb values, logarithmic Pb values, Eq. (8.1)
Pb values, and Eq. (8.2) Pb values
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Table 8.1 Sequential construction of the variable transformations

As (5 ≤ As ≤ 7,700) Pb (37 ≤ Pb ≤ 33,000)

Variable Bartlett Levene S-W R Bartlett Levene S-W

Raw y 221.660∗∗∗ 9.017∗∗∗ 0.348∗∗∗ 0.589 34.161∗∗∗ 16.192∗∗∗ 0.523∗∗∗
221.161∗∗∗ 2.785∗∗∗ 168.109∗∗∗ 6.316∗∗∗

LN(y) 2.731∗∗∗ 23.600∗∗∗ 0.964∗∗∗ 0.740 3.005∗∗∗ 30.413∗∗∗ 0.976∗∗∗
9.011∗∗ 2.871∗∗ 28.067∗∗∗ 10.408∗∗∗

LN(y+δ) 3.201∗∗∗ 27.837∗∗∗ 0.970∗∗∗ 0.739 2.887∗∗∗ 26.912∗∗∗ 0.990∗
10.602∗∗ 2.607∗ 30.298∗∗∗ 10.297∗∗∗

LN[y+δ+f(r)] 2.465∗∗∗ 22.912∗∗∗ 0.972∗∗∗ 0.748 2.521∗∗∗ 19.819∗∗∗ 0.999
7.860∗∗ 3.024∗∗ 28.361∗∗∗ 9.205∗∗∗

SAR residuals 1.842∗∗∗ 12.561∗∗∗ 0.995 0.706 2.236∗∗∗ 20.022∗∗∗ 0.995
13.280∗∗∗ 6.098∗∗∗ 31.520∗∗∗ 13.304∗∗∗

Filter residuals 1.404 5.050∗∗ 0.996 0.688 1.442∗∗ 8.065∗∗∗ 0.991
11.414∗∗ 3.550∗∗ 29.165∗∗∗ 9.702∗∗∗

NOTE 1: ∗∗∗, ∗∗, ∗ denote a significant difference from the null hypothesis value (0 for the Bartlett
and Levene, and 1 for the S-W statistics) at, respectively, the 1, 5% and 10% level
NOTE 2: the first row Bartlett and Levene statistics test variance differences between the smelter
site and neighboring residential neighborhoods
NOTE 3: the second row Bartlett and Levene statistics test variance differences between the four
quadrants of the plane
NOTE 4: no evidence was found to support the presence of a heterogeneous transformation
exponent

terms of both the smelter site/residential regions and the four quadrants of the plane
(see Fig. 8.1). The Eq. (8.2) values display considerably less heterogeneity than do
the raw values, and basically less than the simple logarithmically transformed val-
ues. But nonconstant geographic variance does persist, even though its magnitude is
substantially less.

8.3.1 A Spatial Methodology: Stage 2, Spatial Statistics for
Calculating UCLs

A spatial SAR model was fitted to the transformed data. A suitable surface tessella-
tion for this purpose can be constructed using Thiessen polygons (see Fig. 8.1). The
configuration of points depicted by this surface partitioning can be represented by a
standard binary 0–1 geographic weights matrix, say C, where cij = 1 if two distinct
points i and j share a Thiessen polygon boundary, and cij = 0 otherwise. The SAR
model results allow the SA adjusted calculation of a mean, a standard error, and a
t-statistic.

Calculation of a UCL requires an estimate of the mean, an estimate of the vari-
ance, and the number of degrees of freedom. The simplest, pure SAR model may be
written as

Y = μ (1 − ρ) 1 + ρWY + ε , (8.4)



160 8 The Role of Spatial Autocorrelation

where Y is an n-by-1 vector of georeferenced values, 1 is an n-by-1 vector of ones,
W is the row-standardized version of matrix C, μ is the mean of Y, ρ is a SA parame-
ter, μ(1–ρ) is the mean of (Y – ρWY), and ε is an n-by-1 independent and normally
distributed, constant variance random error vector. An estimate of the mean, cor-
rected for the presence of SA, is given by μ̂ obtained with Eq. (8.4), which actually
is the conditional mean of Y given WiY (the average of surrounding values of Y for
observation i). This interpretation is based upon two features of Eq. (8.4). First, if
ρ = 0, then SA is absent and μ is calculated with independent observation values.
Second, if WiY = 0, then the average of the surrounding values is 0. Although this
second interpretation is weakened when 0 lies outside the range of the data, concep-
tually it is sensible; here the transformed As minimum is close to 0, equaling 0.1,
while the transformed Pb minimum of 2.5 relates to the minimum value inflated
by two-thirds via the translation parameter. While gathering additional sample data
that include 0 would strengthen this latter interpretation of μ̂, such a data collection
exercise often is impractical, if not impossible.

Meanwhile, the variance estimate corrected for the presence of SA is given by

σ̂2 = (Y − μ̂1)T(I − ρ̂W)T(I − ρ̂W)(Y − μ̂1)/(n − 2), (8.5)

where I denotes the identity matrix, T denotes the matrix transpose operation, and
division is by (n–2) because both μ and ρ are estimated. Because positive SA inflates
the variance, the quantity yielded by Eq. (8.5) will tend to be less than its conven-
tional counterpart of s2 = (Y − μ̂1)T(Y − μ̂1)/(n − 1); the variance inflation factor
here is given by TR{[(I − ρ̂W)T(I − ρ̂W)]−1}/n, where TR denotes the matrix trace
operator. This variance inflation plays a critical role in determining the effective
sample size—the number of independent observations to which a set of georefer-
enced observations are equivalent—say n∗. In the presence of SA, as the distance
between two sample locations decreases, their respective attribute values become
increasingly similar, and their information content becomes increasingly redundant.
Overlooking this redundant information introduces specification error into a data
analysis. The purpose of calculating quantities like Eq. (8.5), using equations like
(8.4), is to adjust for or remove impacts of the redundant information.

Next, consider the variance of the sampling distribution of the sample mean of
variable Y, y, when the variance of Y is unknown, which is given by

{1T[(I − ρ̂W)T(I − ρ̂W)]−11/n}σ̂2/n, (8.6)

and which reduces to the conventional σ̂2/n when ρ = 0. Rewriting Eq. (8.6) in terms
of s2 renders the following estimate of effective sample size;

n∗ = n TR{[(I−ρ̂W)T(I−ρ̂W)]−1} /1T[(I − ρ̂W)T(I − ρ̂W)]−11, (8.7)

which reduces to n when ρ = 0, and asymptotically converges on 1 as ρ approaches
1 (see Griffith and Zhang, 1999). Equation (8.7) allows determination of the
appropriate t-statistic, which has n∗–2 degrees of freedom.
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Finally, normal curve theory states that the 95% UCL is given by

y + tn−1,0.95
s√
n

which here translates into

1TY/n + tn∗−2,0.95
({1T[(I − ρ̂W)T(I − ρ̂W)]−11/n}×

[(Y − μ̂1)T(I − ρ̂W)T(I − ρ̂W)(Y − μ̂1)/(n − 2)]
)1/2

/
√

n ,

or

1TY/n + tn∗−2,0.95
(
TR{[(I − ρ̂W)T(I − ρ̂W)]−11/n}×

[(Y − μ̂1)T(I − ρ̂W)T(I − ρ̂W)(Y − μ̂1)/(n − 2)])1/2/
√

n∗

As an aside, 1T[(I − ρ̂W)T(I − ρ̂W)]−11/n} ≈ e0.95ρ̂/(1 - 0.91ρ̂), 0 ≤ ρ̂ < 1, which
allows a quick, easier calculation of these expressions. Ignoring impacts of SA on
the sampling distribution of y results in use of the incorrect expression

1TY/n + tn−2,0.95
(
TR{[(I − ρ̂W)T(I − ρ̂W)]−11/n}×

([(Y − μ̂1)T(I − ρ̂W)T(I − ρ̂W)(Y − μ̂1)/(n − 2)]
)1/2

/
√

n.

This first expression renders UCL boundary values greater than or equal to (when
ρ = 0) those calculated with this second expression. These are the equations used
to calculate entries in Table 8.3.

8.4 The Murray Superfund Site: Part III

Results of fitting Eq. (8.4) to both the As and the Pb data appear in Table 8.2. In both
cases a moderate level of positive SA is detected, with roughly a fifth of the vari-
ance in variable Y accounted for by variable WiY. Residual normality and variance
homogeneity results appear in Table 8.1, and show close conformity with a normal
distribution, but with the continued persistence of nonconstant geographic variance.
The traditional predicted-versus-residual plots appear in Fig. 8.5, and suggest that,
other than for the As = 5 complication, conspicuous deviations from conventional
variance homogeneity are absent.

Table 8.2 Simultaneous autoregressive (SAR) modelling results

As Pb

Residual Residual

ρ̂ Adj-R2 MC GR ρ̂ Adj-R2MC GR

0.532 0.245 –0.030 1.045 0.494 0.208 –0.034 1.085
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Table 8.3 Quantities used to calculate, and the resulting, UCLs

As Pb

Statistic Uncorrected Corrected Uncorrected Corrected

μ̂ 3.46316 3.46316 7.69417 7.69417
standard error of μ̂ 0.13344 0.25459 0.11539 0.20791
n∗ 253 68.9 253 77.6
Df 252 66.9 252 75.6
t-statistic for 0.95 level 1.6509 1.6680 1.6509 1.6653
UCL 3.68346 3.88782 7.88467 8.04040

Fig. 8.5 Conventional homogeneity of variance scatter plots. Left (a): top, for spatial SAR model
describing As; bottom, for spatial filter model describing As. Right (a): top, for spatial SAR model
describing Pb; bottom, for spatial filter model describing Pb

The UCL results appear in Table 8.3. Variance inflation results in both the uncor-
rected means and their standard errors as larger than they should be, consequences
that are compensatory to some degree since the mean is divided by the standard
error. The presence of a moderate degree of positive SA results in effective sample
sizes that are less than a third of n. This result has only a very modest impact upon
the correct t-statistic, though, partially because a t-statistic converges upon a normal
variate z-score as n goes to infinity; the only marked discrepancies are for values
of n or n∗ very close to 1. The overall outcome is a UCL that expands by 2–6%. In
other words, some subregions of the Murray superfund site would be misclassified
as not being high priority remediation locations when in fact they are.
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Geographic impacts of the changes in these UCLs include a shrinkage in area
by about 8.3% of the As, and by about 14.2% of the Pb, subregions that qualify for
remediation in the site. When SA is overlooked, roughly 38.5% of the Murray super-
fund site qualifies for remediation of As contamination, whereas roughly 35.9% of
the site qualifies for remediation of Pb contamination. Respectively each of these
percentages decreases to 35.3% and 30.8% once SA effects are taken into account.
The marginal areas vulnerable to misclassification are located along the borders of
the subregions identified with classical statistics.

8.4.1 A Spatial Methodology: Stage 3, Prioritizing Subregions
for Remediation

The third step of the spatial methodology is to krig values produced by the most
appropriate transformation equation [i.e., (8.1), (8.2), or (8.3)]. The semivariogram
model selected for this spatial interpolation exercise needs to be consistent with the
model selected for the spatial autoregressive analysis. Griffith and Layne (1999)
argue that the SAR and Bessel function geostatistical semivariogram models con-
ceptually and numerically are closely linked. This pair of models is used here to krig
the As and Pb surfaces, and to compute the As and Pb UCLs.

The following Bessel function semivariogram model [Eq. (3.8), Sect. 3.2] was
used to interpolate both the As and the Pb surfaces; the effective range is approx-
imately 4r, where r denotes the range parameter. The graph of Eq. (3.8) displays a
cusp in the neighborhood of d = 0, a characteristic of a second-order SA mech-
anism that also is captured by the spatial SAR model. Equation (3.8) is used to
estimate the covariance (say, using matrix notation, Som) between sample point pol-
lutant measures and unsampled point pollutant measures, which are the ones to be
interpolated. The m interpolated values are given by

Ŷm = μ̂1m + ST
moS−1

oo
(Yo − μ̂1o), (8.8)

where the subscript m denotes values to be interpolated, the subscript o denotes
observed sample values, and Soo denotes the variance-covariance matrix for
observed sample values, the measures to which Eq. (3.8) is fitted (see Griffith and
Layne, 1999). In effect, Eq. (8.8) spreads the information content in a sample over
a map, much like spreading icing over the top of a cake. If SA does not exist
in variable Y, then Soo = I, Som= 0, and Ŷm = μ̂1m; the conventional maximum
likelihood estimate of a univariate missing value is the mean of the observed values.

8.5 The Murray Superfund Site: Part IV

Restricting attention to point pairs within a 1000-foot radius, Eq. (3.8) estimation
results are as follows:
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Fig. 8.6 Observed and Bessel function fitted semivariogram plots. Top (a): As results. Bottom
(b): Pb results

As: γ(d) = 0.4119 + 4.0426
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, RESS = 0.448,

and

Pb:γ (d) = 0.2995 + 3.5355
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)
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(
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122

)]

, RESS = 0.381,

where RESS denotes the relative error sum of squares (the error sum of squares
divided by the total sum of squares adjusted for the mean). The semivariogram plots
for these two situations appear in Fig. 8.6.

The fourth, and sometimes final, spatial methodology step is to demarcate reme-
diation subregions of a site using both the kriged surface and the UCL of the adjusted
mean. While a back-transformation can be used to compute the UCL in terms of the
original pollutant measurement scale, the mapping exercise can and should retain
precision by being done in the transformed variable space. The UCLs reported in
Table 8.3 have been applied to the interpolation results based upon Eqs. (3.8) and
(8.8). As is expected, the visually detectable swaths appearing in Fig. 8.4 reflect
the high priority remediation subregions demarcated in Fig. 8.7. About half of the
smelter site is ranked as high priority for remediation, as is much of the immedi-
ately adjacent residential neighborhoods, both for As and for Pb. Common to these
subregions is a large portion of the western residential neighborhood, the southwest
quadrant of the smelter site, and the northwester corner of the southern residential
neighborhood. An additional feature of the remediation maps is the scattered set of
isolated point UCLs. These locations signify subregions that are prime candidates
for subsequent intensive sampling, but only when they are based upon the UCL
adjusted for SA.

8.5.1 A Spatial Methodology: Stage 4, Covariation
of Contaminants and Joint Pollutant Analyses

When contamination by more than a single pollutant is of concern, several additional
aspects of the remediation prioritizing task arise. Foremost are covariations among
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Fig. 8.7 Remediation subregions based on 95% UCLs. Top, left (a): As results. Top, right (b): Pb
results. Bottom, left (c): map overlay of As and Pb results. Bottom, right (d): joint As and Pb results

pollutants. In a bivariate case, the focus is on correlation between the two pollutants
as well as the SA contained in each pollutant.

Linear correlation measures are impacted upon by the log-normal nature of pollu-
tion data. Hence, correlations calculated with raw data values often do not accurately
capture actual covariations. The more informative correlations are those calculated
with Box-Cox transformed data values.

Meanwhile, SA also can disguise attribute covariations. Removing SA, either
by dealing with the residuals of an SAR model, or the residuals from a spatial fil-
ter model, corrects for spatial dependency effects. Spatial filtering can be based
upon the eigenfunctions of the numerator of the Moran Coefficient (MC) index
of SA (see Griffith, 2000a), given by expression (5.8) [see Sect. 5.5]. Tiefelsdorf
and Boots (1995) show that all of the eigenvalues of matrix expression (5.8) relate
to specific MC values. The eigenvectors of expression (5.8) may be treated as
synthetic variates, and interpreted in the context of map pattern as described in
Sect. 6.2. Hence these n eigenvectors describe the full range of all possible mutually
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orthogonal map patterns, and may be interpreted as synthetic map variables. In the
presence of positive SA, then, an analysis can employ those eigenvectors depicting
map patterns exhibiting consequential levels of positive SA; operationally speaking,
attention can be restricted to eigenvectors having MC ≥ 0.25, say.

One appealing property of expression (5.8) is that matrix C is constant for a given
surface partitioning and adjacency definition, rendering the same set of eigenvec-
tors for all attributes geographically distributed across a given surface partitioning.
Another is that the eigenvectors can be used in a conventional, ordinary least squares
regression analysis to account for SA. In other words,

Y = αY1 + Ekβ + εY, (8.9a)

where k denotes the subset of eigenvectors that accounts for the SA contained in
variable Y, αY is the conditional mean intercept term for variable Y, and εY is an
independent random error term associated with variable Y. The correlation coef-
ficient corrected for spatial dependency effects is calculated between εX and εY,
where

X = αX1 + Ehβ + εX, (8.9b)

and the terms in Eq. (8.9b) are defined like those in Eq. (8.9a), but with regard to X.
The subset of eigenvectors contained in Eh and Ek most likely will not be the same.
Any common eigenvectors will tend to inflate the linear correlation between X and
Y; any non-common eigenvectors will tend to deflate this correlation. Of note is that
these eigenvectors capture the separate X and Y map patterns that Burmaster and
Thompson require to be preserved.

Finally, the joint treatment of X and Y require adjustments to the individ-
ual UCLs. Now two sources of redundant information exist: correlation between
variables, and SA within each variable. Dutilleul (1993) updates the Richardson-
Clifford discussion about how SA impacts upon the correlation coefficient.
Extending his discussion reveals that covariation also has a variance inflation factor
similar to that presented in Eq. (8.6), with this factor largely being compensated for
by the individual variable variance inflation factors when a correlation coefficient
is computed. Moreover, spatial dependency impacts upon a correlation coefficient
increase as the correlation moves away from zero, and decrease again as the correla-
tion approaches ±1. If the correlation between X and Y is zero, then Eqs. (8.9a) and
(8.9b) would contain no common eigenvectors; if the correlation between X and Y
is ±1, then Eqs. (8.9a) and (8.9b) would contain exactly the same set of eigenvec-
tors. Meanwhile, constructing a weighted average of X and Y, say [wX + (1–w)Y]
for 0 ≤ w ≤ 1, yields as the sampling distribution variance for wx + (1 − w)y

w2σ2
X+(1 − w)2σ2

Y+2w(1 − w)ρXYσXσY

n
,
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where σ2
X and σ2

Y respectively denote the variance of variables X and Y, ρXY
denotes the product moment correlation between variables X and Y, and the term
2w(1 − w)ρXYσXσY adjusts for the presence of redundant attribute information in
the bivariate georeferenced dataset.

In this bivariate case, effective sample size becomes a weighted average of
the individual pollutant effective sample sizes that is adjusted for the correlation
between X and Y. The numerator of Eq. (8.7) becomes

w2σ̂2
X+(1 − w)2σ̂2

Y+2w(1 − w)ρ̂XYσ̂Xσ̂Y

w2σ̂2
X+(1 − w)2σ̂2

Y

, (8.10a)

times

w2σ̂2
XTR{[(I − ρ̂XW)T(I − ρ̂XW)]−1} + (1 − w)2σ̂2

Y{[(I − ρ̂YW)T(I − ρ̂YW)]−1},
(8.10b)

and the denominator of Eq. (8.7) becomes

w2σ̂2
X1T[(I − ρ̂XW)T(I − ρ̂XW)]−11 + (1 − w)2σ̂2

Y1T[(I − ρ̂YW)T(I − ρ̂YW)]−11

+ 2w(1 − w)ρ̂XYσ̂Xσ̂Y1T[(I − ρ̂XW)T(I − ρ̂YW)]−11. (8.10c)

where ρ̂X is the SA parameter estimate for variable X, ρ̂Y is the SA parameter esti-
mate for variable Y, and the sample statistics are s2

X = σ̂2
X, s2

Y = σ̂2
Y, and rXY = ρ̂XY.

Therefore, n∗ equals n times expression (8.10a) times expression (8.10b) divided
by expression (8.10c). If ρ̂X = ρ̂Y = 0, then this product of the three expressions
reduces to n. If w = 0, w = 1 or ρ̂X = ρ̂Y, then this product of the three expressions
reduces to Eq. (8.7). In other words, the bivariate effective sample size is a weighted
average of the individual univariate effective sample sizes (i.e., it must be contained
in the interval defined by them). And, as ρ̂X and ρ̂Yapproach 1, n∗ approaches 1. The
weighting is determined by both the relative variances of X and Y and the weights
used in constructing a linear combination of X and Y, and is impacted little by the
value of rXY.

Therefore, Eqs. (8.9a) and (8.9b) can be used to compute ρ̂X, ρ̂Y, rXY, s2
Y

and s2
X, followed by expressions (8.10a)–(8.10c) being used to compute n∗.

Variables X and Y can be averaged if contaminants X and Y are considered to be
equally important for remediation prioritizing, rendering the statistic 1

2 (X + Y) and
the need to construct a UCL for 1

2 (μX +μY), where μX and μY respectively denote
the means for variables X and Y. Results from this analysis identify the high priority
subregions within a site in terms of X and Y jointly, a demarcation that may well
differ from that identified by simply doing a map overlay of the UCL of X and the
UCL of Y.
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8.6 The Murray Superfund Site: Part V

Correlations between As and Pb are reported in Table 8.1. The logarithmic trans-
formation markedly increases the linear correlation estimate from 0.589 to 0.740.
Addition of the constant translation parameter, and then the heterogeneity trans-
lation parameters only slightly changes this result. Adjusting for the presence of
SA in both As and Pb reduces the correlation to roughly 0.706. In addition, given
ρ̂X = 0.532 and ρ̂Y = 0.494 (see Table 8.2), where As and Pb respectively were arbi-
trarily linked to X and Y, the effective sample size is n∗ = 72.5, which is contained
in the interval [68.9, 77.6].

Table 8.4 summarizes stepwise regression results for Eqs. (8.9a) and (8.b).
Fourteen eigenvectors account for approximately 30 percent of the variance in As
and in Pb; a graphical portrayal of these equations appears in Fig. 8.8. Eight of
these eigenvectors are common to Eqs. (8.a) and (8.b); their map patterns appear in
Fig. 8.9. Equations (8.9a) and (8.9b) furnish a modestly better data description than
does the spatial SAR model specified in equation (8.4). The residuals produced by
both Eqs. (8.4) and (8.9) appear to contain only trace levels of SA. Equations (8.9a)
and (8.9b) suggest a slightly weaker correlation between X and Y than is obtained
through the use of Eq. (8.4).

For a bivariate analysis, assuming equal importance of Pb and As for prioritizing
(i.e., w = 0.5), normal curve theory states that the 95% UCL is needed for

[1TX/n +1TY/n ]/2,

Table 8.4 Stepwise spatial filter modeling results

As Pb

Residual Residual

Step
Eigen-
vector

Coefficient
probability Adj-R 2 MC GR

Eigen-
vector

Coefficient
probability Adj-R 2 MC GR

0 ∗∗∗ ∗∗∗ 0 0.321 0.692 ∗∗∗ ∗∗∗ 0 0.255 0.772
1 3 0.000 0.083 0.221 0.776 3 0.000 0.059 0.203 0.826
2 1 0.000 0.129 0.172 0.817 12 0.000 0.111 0.161 0.866
3 28 0.000 0.161 0.152 0.851 28 0.000 0.158 0.132 0.919
4 12 0.004 0.182 0.130 0.868 20 0.000 0.204 0.093 0.974
5 31 0.005 0.202 0.117 0.877 17 0.006 0.222 0.074 0.990
6 10 0.006 0.221 0.095 0.897 6 0.010 0.238 0.052 1.002
7 20 0.014 0.235 0.079 0.917 8 0.013 0.253 0.031 1.018
8 4 0.019 0.249 0.059 0.942 31 0.027 0.264 0.020 1.029
9 17 0.039 0.258 0.047 0.951 2 0.039 0.273 0.002 1.037

10 6 0.045 0.267 0.032 0.960 1 0.049 0.281 −0.014 1.050
11 35 0.045 0.276 0.023 0.970 26 0.060 0.288 −0.024 1.060
12 11 0.047 0.284 0.009 0.983 34 0.062 0.295 −0.033 1.064
13 33 0.082 0.290 0.002 0.992 22 0.072 0.302 −0.043 1.075
14 7 0.091 0.296 –0.011 1.004 24 0.091 0.307 −0.051 1.085

NOTE: common eigenvectors are highlighted with bold numbers
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≈ 3.46 − 9.90 + … + 3.02

≈ 7.69 − 7.30 + … – 2.59

Fig. 8.8 Choropleth maps portraying the spatial filtering equation. Top (a): the As map together
with eigenvector maps of E3 and E7. Bottom (b): the Pb map together with eigenvector maps of E3
and E24

Fig. 8.9 Choropleth maps of common eigenvectors for the As and Pb spatial filter models that are
highlighted in Table 8.4. In clockwise direction, beginning with the top left: E1, E3, E6, E12, E17,
E20, E28, and E31

using the accompanying t-statistic of tn∗–4,0.95. The UCL value here increases from
5.77074 (the calculation result when ignoring latent SA) to 5.87521, an increase of
nearly 2%.

The high priority subregions for remediation appear in Fig. 8.7. Figure 8.7d iden-
tifies those parts of the site whose joint As and Pb contamination meets the joint
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95% UCL criterion. Figure 8.7c is the result of overlaying Figs. 8.7a, b. Of note is
that Fig. 8.7d is not simply the union or intersection of Figs. 8.7a, b, as is Fig. 8.7c.
Furthermore, the differences between Figs. 8.7c, d supports the need to do multi-
variate rather than univariate spatial analyses. The cost of substituting univariate
overlay for multivariate spatial statistics would be undertaking remediation work
on lower priority locations at the expense of consuming resources for undertaking
remediation work on higher priority locations, perhaps even elsewhere.

8.7 Implications

Pollution remediation work within contaminated landscapes, such as superfund
sites, may compromise remediation of only the highest priority polluted locations
if SA latent in pollutants is overlooked. Researchers could believe they have more
statistical information than actually is available to them, as well as more statistical
precision than exists when calculating confidence intervals for demarcating subre-
gions for remediation. The same is true if considerable heterogeneity is overlooked.
In other words, the methodology presented in this paper furnishes an answer to the
question asking what the correct UCL calculation is. In doing so, it highlights that
spatial heterogeneity merits more attention when drawing a model-based geographic
inference, the size of geographic samples generally is misunderstood, and ignoring
SA reveals good but less efficient first-approximation priority subregions.

As is illustrated in the paper using the Murray superfund site, spatial autore-
gressive models or their spatial filtering counterparts can be used to establish the
statistical thresholds for prioritizing remediation of locations. Geostatistical proce-
dures can be used to interpolate pollution surfaces in order to identify subregions for
remediation. And, when more than one heavy metal is of concern, the proper spatial
statistical analysis is more than simply a map overlay exercise; neither the union
nor the intersection of individual contaminant high priority subregions represents
the joint contaminants high priority subregion. In other words, the methodology
presented in this paper also furnishes an answer to the question asking what method
should be used to identify high priority subregions of a polluted site. In doing so, it
highlights that results for multiple contaminants should not be based simply on map
overlays of individual contaminant results.

The most important finding of research summarized in this paper is that spa-
tial statistics coupled with GIS offers an invaluable economic geography tool for
helping allocate the enormous amount of money and people-years of effort needed
to complete the necessary environmental restoration being undertaken by modern
society. In other words, accounting for SA makes a difference!
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Chapter 9
General Conclusions: Spatial Statistics

The original version of our Annals in Regional Science paper enumerates a number
of topics that serve as focal points for the frontiers of spatial statistics and spatial
econometrics. This first part of the book addresses some of these topics, which are
loosely connected, in considerably more detail:

1. The ecological fallacy: Chap. 2
2. spatially adjusted statistical techniques, and quantifying spatial autocorrelation:

Chap. 3
3. exploratory spatial data analysis: Chaps. 4 and 5
4. Bayesian hierarchical models: Chap. 6
5. auto-model specification (normal, Poisson, binomial), and spatial structure as a

covariate (spatial filtering): Chap. 7
6. sampling network structure: design-based inference: Chap. 8

This selected list reflects research preferences of one of the authors, rather than
some rank ordering of importance.

Considerable work still needs to be undertaken about the ecological fallacy. Two
important aspects of this problem highlighted in Chap. 2 are: (1) georeferenced
data are messy—standard statistical model and technique assumptions are not justi-
fied, and (2) sometimes only geographic aggregates can be treated. In this first case,
many relationships are non-linear, which prevents them from being transferred from
individuals to aggregates of individuals in a simple way. This is a critical feature
that interacts with mixtures of non-identical observations, creating heterogeneity
and excessive variation for geographic random variables. Spatial autocorrelation
accounts for only part of this total excess variation. In this second case, rates, for
example, require aggregates of individuals, as do variables such as the rural-urban
dichotomy.

Seminal work establishing linkages between spatial autoregressive and geostatis-
tical models is interesting and illuminating. This articulation needs to be extended
to space-time contexts, as well as to inclusion of other model specifications such as
spatial filtering and geographically varying coefficients. Autocorrelation is the key
concept in these clusters of research; accordingly, spatial autocorrelation is funda-
mental, too. Many space-time datasets are dirty because they contain missing values
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(often in addition to unusual values). Using both spatially and temporally redundant
information latent in a dataset allows imputations to be calculated for such missing
values. This theme constitutes one of the principal problems needing solved by spa-
tial analysis; an urgent need exists for procedures that compute extremely accurate
and precise imputations.

Two facets of exploratory spatial data analysis that merit attention are a better
understanding of frequency distributions constructed with georeferenced data, and
correlations between georeferenced random variables. Frequently spatial scientists
inspect histograms as a first step in data analysis, often finding that these graphs
fail to closely align with any of the numerous existing ideal frequency distributions.
Chap. 4 furnishes basic insights into why this occurs. But a mathematical statistics
theoretical basis needs to be established for the intuition and numerical demonstra-
tions appearing in that chapter. Meanwhile, spatial scientists need to recognize that
correlation coefficients can be dramatically altered by latent spatial autocorrelation;
depending upon prevailing spatial patterns, these coefficients can be inflated toward
1 or −1, or they can be deflated toward 0. In other words, a correlation coefficient
for a pair of georeferenced random variables cannot be taken at face value!

Contemporary statistical methodology allows spatial scientists to approximate
impacts of unmeasured (i.e., latent) variables and/or measurement error by including
a random effects term in a model specification, acknowledging that georeferenced
data are noisy (i.e., contain considerable variability). This spatial statistical topic
is at the forefront of the subdiscipline today. Estimates of these impacts can be
obtained with Bayesian techniques, allowing analysis of a single geographic distri-
bution (positing prior distributions furnishes the necessary ancillary information), or
with frequentist techniques when repeated measures (i.e., multiple geographic dis-
tributions, which furnish ancillary information as repeated measures) are available.
Such random effects almost always have a spatially structured component, which
relates to the spatial autocorrelation displayed by a georeferenced random variable.
Spatial structuring can be captured with an autoregressive model (e.g., the condi-
tional autoregressive model used in Bayesian map analysis), or by a spatial filter
(i.e., regressing a random effects terms on a set of eigenvectors to separate them
into a geographically varying mean response and a random error term).

These preceding discussions raise the question of relationships between spatial
filtering and conventional spatial statistical models, which is the topic of Chap. 7.
Spatial filtering offers the advantage of allowing a spatial scientist to work within the
context of conventional statistical technology. It is consistent with statistical specifi-
cations associated with Bayesian map analysis: it represents spatial autocorrelation
as a feature of model parameters, rather than correlated response variable values;
as such, it casts a model intercept as an observation-specific surrogate for unob-
served variables by expressing it as a spatially structured random deviation from
some global intercept. This conceptualization posits that empirical probabilities are
correct, while simple model parameters are not. In contrast, an auto-model posits
that simple model parameters are correct, while empirical probabilities are condi-
tional on other observations. Consequently, direct dependency between values of
a response variable is replaced by the incorporation of spatial autocorrelation into
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prior parameter distributions, in Bayesian analysis, or a random effects intercept
term, in frequentist analysis.

Finally, as can be surmised from impacts of spatial autocorrelation on histograms
(e.g., Chap. 4) and correlation coefficients (e.g., Chap. 5), spatial autocorrelation
affects prioritizing, say, polluted sites for remediation, based upon unusual values
(e.g., hot spots)—an attribute of dirty data. Any rankings of sets of georeferenced
objects (e.g., the rank size distribution of city sizes) suffer from this same corruption.
This feature of georeferenced data has been recognized for decades, but little work
has been produced while at the same time increasingly more sets of georeferenced
objects have been ranked, some on an annual basis.

In conclusion, our Annals of Regional Science paper emphasizes a sizeable num-
ber of non-standard spatial statistics topics, some of which are treated in more depth
in this book. The comprehensive treatments presented here initialize a quest to susci-
tate interest in the methodologies exposed and possible further applications of these
methodologies.



Part II
Non-standard Spatial Econometrics

“Solem orientem plures adorant quam occidentem. . .”
More people admire the rising rather than the setting sun. . .

Plutarch



Chapter 10
Introduction: Spatial Econometrics

In spatial econometrics, various topics have their own importance: specification,
estimation and testing are the main building blocks of a spatial econometric model.

An economist should attach special importance to the specification stage; experi-
ence has taught that the functioning of spatial economies follows a complex pattern,
and that is the pattern that should be adequately modeled.

In this part, a certain number of working papers are brought together, most of
which have been presented and commented on at special sessions of international
conferences, sessions devoted to spatial econometrics and statistics.

Apparently they stand loose from each other; but, a common thread links them
all together, to wit the necessity of discovering the complex bindings—static or
dynamic—of spatial economic units. Hopefully this may stimulate fresh thinking
about this very important aspect of spatial econometric modeling.

Some non-standard specifications have not been included, as they have been or
are going to be published (e.g. Coutrot et al. 2009; Griffith and Paelinck, 2009).
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Chapter 11
A Mixed Linear-Logarithmic Specification
for Lotka-Volterra Models with Endogenously
Generated SDLS-Variables

In Arbia and Paelinck (2003a, b), a Lotka-Volterra model (LVM) is applied to
the convergence-divergence problem of European regions in terms of incomes
per capita. As the latter have to be non-negative, a double logarithmic version
may be substituted for the original specification, a modification that removes at
least part of the non-linearity of LVMs; this chapter introduces this non-linearity
again. Discussion begins with a general section on LVMs, to go on with a mixed
linear-logarithmic specification, of which the positivity of the (possible) equilib-
rium solution is proved, and for which a (sufficient) stability condition is derived.
Section 11.3 presents an application of the model to the classical four macro-regions
in which the Netherlands is subdivided.

11.1 Lotka-Volterra Models

In this section, generalized Lotka-Volterra models are introduced, and examples
given of some applications, including estimation aspects of the latter.

11.1.1 A General Specification

A generalized LVM can be written in matrix-vector notation as

u̇ = û (A u + a) , (11.1)

where u is a column-vector of (endogenous) variables, û its diagonal matrix version,
A a square matrix, and a is a column-vector of fixed coefficients; the •-notation
denotes the time derivative, ∂/∂t.

Given equation (11.1), the variables u describe a time path that can take all the
characteristics of general continuous dynamic processes (e.g., convergence, diver-
gence, limit circles; see Braun, 1975, §4.9; Gandolfo, 1996, in particular §24.4;
Peschel and Mende, 1986). What can be said about equation (11.1) to converge to
its focus, –A–1 a? Constructing a Lyapunov-function (Hahn, 1963)
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v = (u + A−1a)’(u + A−1a) (11.2)

gives

v = 2(u + A−1a)’û A(û + A−1a) (11.3a)

= (u + A−1a)’ (ûA + A û) (u + A−1a). (11.3b)

In the purely linear case, if the real parts of A’s eigenvalues are negative, v is negative
definite (Hahn, 1965, p. 26; La Salle and Lefschetz, 1961, p. 48), and the sufficient
conditions for asymptotic stability are satisfied. In the LVM case the problem is
more involved; the proof of the above sufficiency conditions still being satisfied is
given in Paelinck (1992, pp. 142–143).

11.1.2 Applications

Originally, special versions of the LVM have been applied to the field of bio-
mathematics, i.a., to build so-called “predator-prey” models. An example is the
following model (all parameters strictly positive):

ẋ = x (a − b y), (11.4a)

ẏ = y(− c + dx). (11.4b)

Here x is the prey, developing at a constant rate a, but preyed upon by the predators
y; the latter, in the absence of prey animals, fade out at a rate c, but are kept alive
by x.

The resulting state diagram in the x-y plane shows a “pseudo-elliptic” closed
curve, and the time-explicit graph shows sinusoidal lagged curves of different
amplitudes.

The model just described was proposed by Samuelson (1971) as a candidate for
dynamic economic analysis, and applied by Dendrinos and Mullaly (1981) to the
evolution of urban populations, although no explicit econometric estimation was
performed. Before presenting some econometric results, an appropriate estimation
method is unfolded here.

The flexibility of the LVM specification is shown by the various time-paths and
singular points resulting from various parameter combinations (presence or absence,
signs); Braun (1975, pp. 590–599) gives examples of this. For instance, if a term –ex
is added to equation (11.4a), and a term–fy to equation (11.4b), both terms repre-
senting competition for limited resources, within the prey and the predator group,
the solution becomes [xo= a/e; yo=0] for c/d > a/e.



11.1 Lotka-Volterra Models 181

11.1.3 Simultaneous Dynamic Least Squares (SDLS) Estimation

Consider a (e.g., sectorally, spatially, dynamically) interdependent econometric
model (Paelinck, 1996b, §2.1)

A u + B x = ε, (11.5)

where u is a column-vector of endogenous variables, x a column-vector of exoge-
nous ones, ε being the usual column-vector of random elements. Equation (11.5)
always can be rewritten as

y = Z β + ε, (11.6)

where Z comprises at the same time endogenous and exogenous variables. The
basic idea of SDLS is to minimize the sum of squared deviations between the
observed and the endogenously computed (shown by caps) values of the endogenous
variables, u; this leads to

u − û = [u − (Z − Ẑβ] − Zβ)], (11.7)

and minimizing as said before gives

β̂ = (Z’Ẑ)−1Z u, (11.8)

where Ẑ includes the computed values of the endogenous variables; a possible
computing process is an iterative one, but Sect. 11.4 presents a specification with
endogenously computed u values.

The following properties hold (Paelinck, 1990b, p. 7–8):

– β is a generalized reduced form estimator;
– if ε ~ N(0, σ2I), then β is a maximum likelihood estimator; and,
– β is a consistent estimator, and plim ββ’ = σ2(Z’Z)–1, for homoscedastic ε.

The method has been applied to a two-equation full-parameter LVM process
for the city of Rotterdam, The Netherlands, and for the time period 1946–1978
(Paelinck, 1996a, §3), the equations being

�’ln xt = a + b xt−1 + c yt−1, (11.9a)

�’ln yt = d + e xt−1 + f yt−1, (11.9b)
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Table 11.1 Parameter values
of the Rotterdam application Parameter Value Student’s t

a −0.8798 −7.68
b 0.0711 7.33
c 0.3988 4.22
d 1.0870 9.49
e −0.0825 −8.51
f −0.5355 −5.67
a∗ 0.0362 1.64
d∗ 0.0538 2.43

where x represents population and y per capita income. Table 11.1 (taken from
Paelinck, 1990a) presents the estimation results, which can be given plausible
interpretations.

Note also the presence of the two parameters a∗ and d∗, which allow the ini-
tial values to be shifted optimally by the computed process with respect to the
observed initial values. Moreover, the resulting relevant eigenvalues lie between –1
and 0, so—abstracting from the discretionarity problem (see Gandolfo, 1996, pp.
411–412)—the process would be asymptotically convergent in terms of population
and per capita income. According to the divergence criterion (Gandolfo, 1996, p.
456) the system is possibly anti-dissipative along certain stretches of its time-path,
although conservative in its non-trivial singular point.

11.2 Mixed Specification

In this section, a combined linear-logarithmic specification is presented.

11.2.1 Equations

Instead of equation (11.1), now consider
ˆ

û−1u = A (u + ln u) + a, (11.10)

for which the equilibrium solution (if it exists) is

uo + ln uo = −A−1a. (11.11)

For each variable ui, the equilibrium solution can be written as

ui
o = bi − ln(ui

o), (11.12)
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where bi is generated by the i-th row of –A–1 times a. Now while ui
o increases

linearly starting from zero, -ln(ui
o) decreases monotonically from +∞ to –∞. Thus,

equation (11.12) should be satisfied for some strictly positive value of ui
o.

11.2.2 Stability

Instead of equations (11.3), consider

v = (u + ln u + A−1a)’(u + ln u + A−1a), (11.13)

from which one can derive

v̇ = 2(u + ln u + A−1a)’(I + û)1/2[(I + û)1/2A (I + û)−1/2](I + û)1/2

(u + ln u + A-1a).
(11.14)

Matrix A has undergone a similarity transformation which keeps the eigenvalues
unchanged (Allen, 1956, p. 468). Again Hahn’s argument quoted at the end of Sect.
11.1.1 can be invoked here, which completes the proof of the fact that a sufficient
condition for the mixed LVM to be stable is the negativity of the real parts of A’s
eigenvalues.

11.3 Application

Model (11.10) has been applied to the relative GDPs of the four classical Dutch
macro-regions; Table 11.2 lists the numbers (N = North; S = South; E = East; W =
West, the latter region being known as the “Rimcity”); see Fig. 11.1. The numbers
are percentages and relate to the years 1988–2000.

SDLS estimates using the numbers in Table 11.2 are obtained by introducing
the following equations (discrete versions of equations (11.10); tildes relate to the
computed SDLS endogenous variables)

ũt = (I + A) ũt−1 + A ln ũt−1 + a, (11.15)

into a mathematical programming model, minimizing the squared residuals of (11.5)
or (11.6). As only the fourth observation (relating to 1991) produces a sum diverging
significantly from 100 (see also Figs. 11.1,1 11.2, 11.3, and 11.4), no extra constraint
was introduced. Furthermore, optimal starting points were computed by optimizing
simultaneously over the starting vector of computed SDLS variables.

1We thank Martijn Smit, Vrije Universiteit Amsterdam (VU University Amsterdam), for furnishing
us with the digital map necessary to construct this figure.
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Table 11.2 Numbers used in the Dutch application

N S E W

10.80984 20.03057 17.32632 51.83327
10.43814 20.19805 17.24065 52.12317
10.41169 20.4517 17.43168 51.70493
10.60662 20.45458 17.50469 51.43412
10.96084 20.45568 17.46016 51.12332
10.62076 20.5621 17.66965 51.14749
10.58301 20.39573 17.88161 51.13965
10.22753 20.68775 17.87189 51.21283
10.06042 20.96244 17.78718 51.18996
10.31112 20.93548 17.71927 51.03413
10.15061 20.71473 17.69594 51.43872
9.74983 20.93522 17.6603 51.65465
9.33526 21.08442 17.85378 51.72653
9.54633 20.99156 17.73859 51.72352

Fig. 11.1 The four Dutch regions
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Fig. 11.2 Shares GDP time-series plot: northern Netherlands

Fig. 11.3 Shares GDP time-series plot: southern Netherlands

Table 11.3 presents the main econometric results.
Every region has been assigned only three parameters: its own influence (a1),

that of the other three regions (a2), and a constant (a3).
A 4x4 matrix can be constructed, dividing each a2 by 3. From the trace (5.5192)

this matrix appears to be non-negative definite (two out of the four ais are positive),
so no mathematical convergence toward the right hand side of equation (11.11) is
present.
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Table 11.3 Econometric results of the Dutch application

Parameters N S E W

a1 −1.2368 0.2450 −0.2108 6.7218
a2 −1.2618 0.4712 0.1072 6.6220
a3 141.1399 −47.4387 −5.4545 −748.6387
Pseudo-R2 0.8870 0.8816 0.8074 0.8894

Figs. 11.2, 11.3, 11.4, and 11.5 present the observed (series 1) and the SDLS-
computed (series 2) series.

Table 11.4 presents simulation results over 20 periods, starting from the value of
the year 2000. One notices a progressive decline in the share of the West (“Rimcity”)
in favor of all other regions; whether this should be taken at its face value is a
problem related to what will be said in the conclusions.

11.4 Conclusion

The method has proven itself to be workable and could be combined with an
appropriate estimation method (SDLS); it has moreover the nice property that, if
convergence is present, it will lead to economically acceptable (positive) equilib-
rium values. This means that discrete LVMs, adapted in the way described, could be
an ever more useful tool for future research in multiregional dynamics.

Inspection of Figs. 11.2, 11.3, 11.4, and 11.5 shows some local discrepancies
between observed and SDLS computed values. Though the specification chosen is
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Table 11.4 Simulation results of the Dutch application

N S E W

9.454351 20.97449 17.81837 51.75279
9.488464 21.08845 17.93343 51.48965
9.513482 21.18737 18.01698 51.28217
9.531703 21.27253 18.07830 51.11747
9.544808 21.34540 18.12382 50.98597
9.554045 21.40749 18.15801 50.88045
9.560352 21.46022 18.18403 50.79539
9.564440 21.50492 18.20409 50.72655
9.566852 21.54275 18.21977 50.67062
9.568005 21.57475 18.23219 50.62505
9.568217 21.60183 18.24217 50.58779
9.567738 21.62474 18.25027 50.55725
9.566758 21.64415 18.25695 50.53215
9.565425 21.66061 18.26250 50.51146
9.563852 21.67460 18.26718 50.49437
9.562128 21.68650 18.27115 50.48022
9.560319 21.69666 18.27455 50.46848
9.558476 21.70534 18.27748 50.45871
9.556637 21.71277 18.28003 50.45056
9.554830 21.71917 18.28226 50.44374
9.553075 21.72468 18.28422 50.43803

already very flexible, it is not the only one. Other candidates (min-algebraic speci-
fications, finite automata; see Chap. 13) are available, and should be tested against
the present specification. Tools are also available (see Chap. 12) and will be used in
future research.



Chapter 12
Selecting Spatial Regimes by Threshold Analysis

The existence of differential spatial regimes has been revealed on different occasions
(see for instance Arbia and Paelinck, 2003a, b; also see Chap. 14). Hence the neces-
sity exists for developing workable specifications to compute possible frontiers or
thresholds between those regimes.

The next section describes one possible method. Sects. 12.2 and 12.3 then apply
it to two spatial models using Dutch data: an income generating model, and an
activity complex model.

12.1 Method

Assume the following model

y = ax, (12.1)

a = a1 | x ≤ x*, (12.2)

a = a2| x ≥ x*. (12.3)

The model can be respecified as follows, for each observation i

yi = a1 ui xi + a2 (1 − ui) xi + εi, (12.4)

(ui − η)(xi − x*) ≤ 0, 0 < η < 1, (12.5)

ui = ui
2, (12.6)

the estimation being, e.g., performed by minimizing ε′ε. This model was first tested
on the following data, appearing in Table 12.1.

The values for a1 and a2 are respectively 2 and 1, the first four observations being
governed by a1. The value of x∗, which is not unique, should lie between 8 and 11.
Estimation reproduced the values of a1 and a2, x∗ = 8,1333, with the uis correctly

189D.A. Griffith, J.H.P. Paelinck, Non-standard Spatial Statistics and Spatial
Econometrics, Advances in Geographic Information Science 1,
DOI 10.1007/978-3-642-16043-1_12, C© Springer-Verlag Berlin Heidelberg 2011
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Table 12.1 Test data for the model defined by Eqs. (12.4)–(12.6)

Variable Values

yi 4 10 12 16 11 13 14 17
xi 2 5 6 8 11 13 14 17

partitioning the observations. The objective function adopted the value zero, and all
restrictions and optimality conditions were satisfied.

If one wants to replace Eq. (12.2) or (12.3) by a strict inequality, the following
specification could be used

(ui − η)(xi − x* − θ) ≥ 0 (12.7)

where η is defined as in Eq. (12.5), and θ is an appropriately chosen small positive
number. If xi – x∗ > θ, ui = 1; if xi – x∗ = θ, ui could be equal to either 0 or 1,
whichever value would give the best estimation result; if xi –x∗ < θ, ui = 0. In both
Eqs. (12.5) and (12.6) the specification (parameter η) prevents ui from being zero if
the second factor of Eq. (12.7) is non-zero (positive or negative, depending on the
case).

12.2 Spatial Income Generating Model

This model was initially developed in Paelinck and Klaassen (1979, pp. 21–23). Its
aim is to measure the spatial interdependence between regional incomes or products.

Let y be the column vector of regional incomes; then the model in its simplest
form is specified as

y = Ay + b, (12.8)

where matrix A integrates some spatial interaction operator. In the present case, a
first-order contiguity matrix, C1, has been selected for matrix A to compute total
incomes over neighboring regions.

As can be seen from Fig. 12.1, in the Netherlands all regions, except for the
provinces of Flevoland and Utrecht, are peripheral, with three purely maritime
(Friesland, Noord- and Zuid-Holland), so five “pseudo-border” correcting (addi-
tive) parameters have been introduced into the model (Paelinck, 1996b, pp. 4–8).
Moreover, the “reaction” parameters a and b have been split, according to Eq. (12.4)
together with constraints (see Appendix).

Table 12.2 presents the data for regional (provincial) products (1987, Dfl 106;
source: van Gastel and Paelinck, 1995, p. 152). Table 12.3 presents the spatial
contiguity structure (degrees of contiguity) for the Netherlands (same source).
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Fig. 12.1 Map of the Dutch provinces

Table 12.2 Provincial products in the Netherlands, 1987

Province Abbreviation Number Product

Groningen Gr 1 22,675
Friesland Fr 2 13,229
Drente Dr 3 11,187
Overijssel Ov 4 25,448
Flevoland Fp 5 3703
Gelderland Gl 6 43,861
Utrecht Ut 7 27,801
Noord-Holland NH 8 77,997
Zuid-Holland ZH 9 102,864
Zeeland Zl 10 10,908
Noord-Brabant NB 11 59,242
Limburg Lb 12 29,036
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Table 12.3 Contiguity structure of the Netherlands

Province Gr Fr Dr Ov Fp Gl Ut NH ZH Zl NB Lb

Gr 0 1 1 2 2 3 3 3 4 5 4 4
Fr 1 0 1 1 1 2 2 2 3 4 3 3
Dr 1 1 0 1 2 2 3 3 3 4 3 3
Ov 2 1 1 0 1 1 2 2 2 3 2 2
Fp 2 1 2 1 0 1 1 1 2 3 2 2
Gl 3 2 2 1 1 0 1 2 1 2 1 1
Ut 3 2 3 2 1 1 0 1 1 2 2 2
NH 3 2 3 2 1 2 1 0 1 2 2 3
ZN 4 3 3 2 2 1 1 1 0 1 1 2
Zl 5 4 4 3 3 2 2 2 1 0 1 2
NB 4 3 3 2 2 1 2 2 1 1 0 1
Lb 4 3 3 2 2 1 2 3 2 2 1 0
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Fig. 12.2 Specifying
condition (12.5): the xr – yr
relation

A typical equation for a region r now may be written as follows

yr = a1urxr + a2(1 − ur)xr + b1zr + b2(1 − zr) + cr + εr, (12.9)

where yr denotes a regional product and xr the sum of products in neighbor-
ing regions (here divided by 10, for reasons of magnitude similarity), ur and zr

are binary variables, and cr denotes the “pseudo-border” coefficients previously
mentioned.

Figure 12.2 hereafter has served to specify the condition referred to in Eq. (12.5).
It suggests replacing xi of Eq. (12.5) by the ratio xr / yr.

Table 12.4 presents the results of the estimation procedure (derived by means of
a constrained gradient method; see Fylstrom et al., 1998). Model (12.8) including
interdependent endogenous variables, an SDLS estimation procedure (see Chap. 11,
Sect. 11.1.3) was used, whose optimization principle, as said there, is the minimiza-
tion of the sum of squared differences between the observed and the endogenously
computed yr variables.

Rather than indicating two regimes, all four combinations of the reaction param-
eters are present: a1–b1 (four times), a2–b1 (five times), a1–b2 (twice) and a2–b2

(once, the case of Flevoland, a recent small new province). The value of the thresh-
old is 0.3486. Corrective constants cr are positive for Noord- and Zuid-Holland (two
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Table 12.4 Results of the estimation procedure of model (12.8)

Province a1 = 3.8934 a2 = 0.8328 b1 = 10378 b2 = –8276 cr yr (est.)

Gr x x 24, 145
Fr x x 220 10, 774
Dr x x 16, 598
Ov x x 22, 945
Fp x x −2473 7052
Gl x x 41, 250
Ut x x −46 36, 258
NH x x 3074 77, 518
ZH x x 1552 102, 061
Zl x x 10, 208
NB x x 57, 831
Lb x 32, 260
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Fig. 12.3 Observed and
computed values of yr

heavily exporting provinces, with important harbors), and negative for Flevoland
(see the remark above), the other corrections being negligible.

Figure 12.3 compares the observed and computed values of the endogenous vari-
ables; Theil’s U (Theil, 1961, p. 32) has value 0.0380, showing the close connection
between observed and computed values.

12.3 A Spatial Activity Complex Model

To subject the model to a more terse test, a so-called “attraction model” (first
developed by Klaassen; see Paelinck and Klaassen, 1979, pp. 23–30) was evaluated.

Let yir represent the production level (or value added) of activity sector i in region
r; the model here is specified as

yir =
∑

j

aijl y*jr + bil, 12.10

where the y∗
jr represent spatially discounted (from Table 12.3) aggregations (poten-

tials) of activity sector production levels (index j). The index l denotes the relevant
regime to which the parameters belong.



194 12 Selecting Spatial Regimes by Threshold Analysis

Table 12.5 Endogenous activity sectors

1. Industry, public utilities and minerals.
2. Building and construction activities.
3. Trade, catering and repairs.
4. Transport and communication activities.
5. Banking and insurance.
6. Realty and business services.
7. Health care and veterinary services.
8. Cultural, sports and recreational activities.
9. Other services.

Nine endogenous sectors were employed (Table 12.5) for the Netherlands case
study.

Appendix 12.5 reports their production (value added) levels. The following sec-
tors have been considered as exogenous: agriculture, forestry and fishery (10), crude
oil and gas plants (11), public sector (12).

Because only 12 observations per activity sector are available, aggregated
explanatory variables were constructed, whereby contiguous regions have been
exogenously discounted at 50%, the aggregation being the following ones: 10, 11;
1, 2; 3 through 9, 12.

Figures 12.4 through 12.7 portray the yir / y∗
jr ratios (inverses of the ratios used

in Sect. 12.2) and the yir /
∑

ryir one for sector 1; they suggest (at least) three
regimes.

Forty-eight binary variables are to be used for only 2 regimes, generating a heavy
0–1 mathematical program; no solution could be reached within 40 hours, so a
different strategy was developed.

Fig. 12.4 Distribution of xt/yt ratios fot the four Dutch regions
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For n observations and k relevant parameters, combining the relative frontiers
between the values of Figs. 12.4, 12.5, 12.6, and 12.7, generates [n(n–1)/2]k simple
quadratic programs. In the present exercise the cut-off points have been selected
visually, so sub-optimal outcomes might be expected.

Coming back to parameters aijl, and bil of Eq. (12.10), some outliers might pro-
duce reverse results compared to a general trend as revealed, e.g., in Fig. 12.2;
therefore an extra condition was introduced, to wit the sign equality of parameters
aijl,, ∀l. A way to impose that constraint would be

abs

(
∑

l

aijl

)

=
∑

l

abs (aijl), (12.11)

or, alternatively, binary conditions such as

aijl*aijm ≥ 0, (12.12)

which would lead to a quadratic program with non-linear constraints. In practice,
and in order to obtain classical results, necessary conditions [like those exposed
through Eqs. (12.11) or (12.12)] have been replaced by inspecting all possible sign
combinations (i.e., 23=8, as the level parameters, bil, were left free).

Finally, to allow for comparability of results, logarithms are used, yielding
non-dimensional elasticities as parameters. Table 12.6 presents the estimation
results.

One finding is that only two sectors (1 and 9) satisfy without constraint the equal
sign condition; they also show great similarity inside each parameter group, and, as
should be expected, the lowest U-values. Sectors with one active constraint number
four, sectors with two number two, and only one sector needed all three constraints.
The sectors needing two constraints also show the highest U-values (the only ones
exceeding 0.05), even higher than the sector needing all three constraints.

At this stage, no SDLS-computations were performed, despite the interdepen-
dent specification of the model. Seven out of nine U-values are sufficiently low that
no further corrections were deemed necessary (the two high U-values are proba-
bly related, to regional accountancy for sector 5, and the requirement of another
specification, in terms of explanatory variables, for sector 8).

No significance magnitudes have been shown. However, they could be computed
deleting the series of variables corresponding to the zero values.

Moreover no detailed study was made of the different combinations of aijl and
bjl parameters as presented in Table 12.6 (nine tables would be necessary for such a
comparison). From that table, however, a remarkable finding can be derived, namely
that parameters a2 l are all non-negative in the solution. As for the other ail param-
eters, five out of nine are non-positive, but in this exploratory study no detailed
analysis has been made of the various cases.
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12.4 Conclusion

A workable method to flexibly select parameter regimes has been presented. It is a
member of a class of non-standard estimators, many of which will be used in fur-
ther spatial econometric work. They are indispensable companions of non-standard
specifications that will also be required in the field of spatial econometrics.

Recent experience has indeed shown that systems of regions often reveal two
regimes. In Coutrot et al. (2009), the introduction of a second regime lifted the
R2 from 0.5156 to 0.9990. Moreover, the regions were behaviorally very different,
which separated the main regional activity poles from the minor centers. Another
example will be provided in Chap. 14.

In the light of this, still limited, experience, it seems that an appropriate
specification-cum-estimation strategy is to systematically test for the presence of
multiple regimes.

12.5 Appendix

Activity production levels

R\S 1 2 3 4 5 6 7 8 9 10 11 12

1 1700 408 951 649 18 1307 605 104 451 294 3691 1067
2 1507 481 1051 418 96 1320 458 159 373 598 515 879
3 1085 316 814 245 33 1031 396 95 293 335 625 664
4 3644 981 2273 818 39 2505 889 187 657 599 99 1663
5 345 129 570 93 2 609 138 45 212 352 0 294
6 5399 1519 4316 1310 291 5034 1631 397 1451 922 29 3318
7 2491 890 3473 1127 473 4138 1202 281 1211 274 4 2032
8 6928 1864 7454 4423 502 8594 2346 957 2154 834 84 4483
9 12,323 2846 8782 5058 881 10,947 2930 830 2914 2121 182 6547

10 1841 301 802 408 9 770 264 64 239 244 0 594
11 10,093 2040 5866 1814 178 6842 1815 496 1481 1119 46 3411
12 4225 786 2308 960 177 2729 1100 237 726 580 5 1632

Source: CBS, StatLine; numbers relate to 1993 and are expressed in 106 EUROS



Chapter 13
Finite Automata

In Paelinck (2002), attention was drawn to a special algebra—called a min-
algebra—that might rule quite a few spatial econometrics specifications; hereafter,
applications of this idea are be presented in the form of finite automata.

A finite automaton specification (for a formal definition, see Linz, 1996, p. 2) can
be viewed as an “if ”-specification; in symbolic terms

y: if(αxi + β < γzi + δ; αxi + β; γzi + δ), (13.1)

which reads as follows: if αxi + β < γ zi + δ, then αxi + β, else γzi + δ.
Hereafter, a two-region example of a dynamic finite automaton is outlined.

13.1 A Finite Automaton Bi-regional Dynamic Model

Consider the following numerical case, for which the variables are defined as
follows

xit: joint location factors (i = 1, 2);
yit: production levels (i = 1, 2).
The model is specified as follows

x1,t + 1: if(y1t/x1t < y2t/x2t; 3; 1), (13.2)

y1,t + 1: if(y1t/x1t < y2t/x2t; 1.05 y1t; 1.02 y1t), (13.3)

x2,t + 1: if(y2t/x2t < y1t/x1t; 1.5; 1.2) (13.4)

y2,t + 1: if(y2t/x2t < y1t/x1t; 1.05 y2t; 1.02 y2t) (13.5)

The logic of the model is as follows: as long as one region has its joint location
factors “undercharged” compared to those of the other one—in the sense that they
are still attractive for further activity locations—, their joint value stays at a higher
level, the growth rate there also being higher, and vice versa.

199D.A. Griffith, J.H.P. Paelinck, Non-standard Spatial Statistics and Spatial
Econometrics, Advances in Geographic Information Science 1,
DOI 10.1007/978-3-642-16043-1_13, C© Springer-Verlag Berlin Heidelberg 2011
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Fig. 13.1 Simulation of a dynamic finite automaton

With the initializing vector

(x10, y10, x20, y20) = (3, 1, 1.2, 1) (13.6)

the resulting simulation is that presented by Fig. 13.1.
This figure portrays a dynamics in which regions at times lose their competitive

edge in attracting activities.
The following problem is that of estimating such a model, possibly using an if-

condition. Eight parameters have to be computed, to wit for each region the two
levels of the location factors, xi and xi

∗, and the growth rates, ρi and ρi
∗, the lower

levels being denoted by asterisks.
An example of an if-constraint is the following

if(y1t/ξ1t < y2t/ξ2t; 1; 0) (13.7)

where ξit is one of the values of xit, xit
∗ determined according to conditions (13.2)

and (13.4). The specification of conditions (13.7) implies the introduction of a norm
for the xit, xit

∗ values. Expression (13.7) was combined with the following term
appearing in the objective function ϕ—sum of some function of those terms, as will
be seen subsequently—for minimization purposes

r1t − λ1tρ1 − (1 − λ1t)ρ1*, (13.8)

where, for region 1 and time t, r1t is the observed growth rate, and λ1t is a binary
variable, the value of which is determined by condition (13.7) for the previous
period, which reproduces condition (13.3) above.

Table 13.1 presents the data used; mark the split of the rit-values in four opposite
groups (e.g., for t=1,. . .4, r1t<r2t, then the reverse occurs).
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Table 13.1 Data for estimating finite automaton parameters

t r1t y1t r2t y2t

1 0.05 1.00 0.02 1.00
2 0.06 1.05 0.01 1.02
3 0.04 1.11 0.03 1.03
4 0.01 1.14 0.06 1.06
5 0.03 1.15 0.05 1.12
6 0.02 1.18 0.04 1.18
7 0.06 1.20 0.01 1.22
8 0.05 1.27 0.03 1.23
9 0.04 1.33 0.02 1.27

10 0.02 1.38 0.04 1.30
11 0.03 1.41 0.06 1.35
12 – 1.45 – 1.43

Table 13.2 Parameter values of the estimated finite automaton

ρ1 ρ1
∗ x1 x1

∗ ρ2 ρ2
∗ x2 x2

∗ ϕ

0.05 0.022 0.8911 1.0022 0.05 0.02 1.0526 1.0541 0.00148

Table 13.2 presents the estimated parameters, ϕ being the obtained minimum of
the objective function, in which expression (13.8) was squared; use was made of a
reduced gradient method (Fylstrom et al., 1998)

The split into four periods mentioned earlier is correctly pictured by the binary
variables λit; to improve the estimates of the parameters, the exercise was repeated
keeping the binary variables stable and endogenizing the yit-values, as is explained
in the ensuing discussion.

Figure 13.2 portrays results of a simulation of the estimated model over the first
twelve time periods. The four-period pattern just mentioned is fully reproduced, but
the values, especially in region 1, deviate from the observed ones.

Fig. 13.2 Simulation of the estimated finite automaton
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A possible alternative to objective function (13.8) is to reformulate the specifica-
tion in terms of the production levels yit, and use SDLS (see Sect. 11.1.3) with the
computation of an optimal starting point for an endogenous simulation (Paelinck,
1990b). This method minimizes some difference between the observed values and
the endogenously simulated values of the yits, those simulated values being at the
same time generated within the estimating procedure. This approach is described
next.

Of note is that condition (13.7) is expressed in terms of strict inequalities, which
implies that if an equality is present, the higher xi and ρi levels automatically are
assigned to the other region. An alternative is furnished by

(λ1t − ω)(y1t/ξ1t − y2t/ξ2t) ≤ 0, (13.9)

with 0 < ω < 1, which adds another degree of freedom (to be taken up by the estima-
tion procedure) when the second factor in expression (13.9) is zero. This procedure
has been applied to the yit data of Table 13.1, again with a quadratic objective func-
tion, and subsequently keeping binary variables—which correctly split the overall
period into four components—stable.

Table 13.3 presents the obtained parameters; ϕψ is the value of the objective
function, ϕρ that of ϕ in Table 13.2.

Figure 13.3 presents the simulated values over the first 12 time periods, again
showing that the four characteristic groups mentioned earlier are still correctly

Table 13.3 Parameter values introducing conditions (13.9)

ρ1 ρ1
∗ x1 x1

∗ ρ2 ρ2
∗ x2 x2

∗ ϕψ ϕρ

0.0483 0.0215 0.9704 1.0134 0.0442 0.0196 .1.0022 1.0139 15.3791 0.0015

Fig. 13.3 Second simulation of the estimated finite automaton, parameters from Table 13.3
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Fig. 13.4 Figure 13.3 results extended over 100 periods, parameters from Table 13.3

represented, as well as that the fit is considerably improved; Fig. 13.4 extends the
projection.

To conclude, in the estimation procedure, dependence on initial conditions and
multiple solutions do seem to be crucial. The latter especially holds for the xit and
xit

∗ values, which is due to the multiplicities that can satisfy conditions like (13.7)
or (13.9). These points are left for further investigation.

13.2 An Empirical Application

To subject the model developed above to an empirical test in a well-documented
case, gross regional product numbers for the Netherlands have been investigated.
They were divided in two macro-regional sets, one for the western provinces
(Noord-Holland, Zuid-Holland, Utrecht, the so-called “Rimcity”), the other one
comprising the data for the remaining provinces (source: CBS, 2003; 109 EUROS).
Given the low inflation rate (in the order of 1% annually) no price correction was
applied. Table 13.4 presents the data.

The data were analyzed with the methodology discussed in Sect. 13.1, using a
quadratic objective function for the product levels, and, alternatively, a binary and
a fuzzy version. Table 13.5 summarizes the results. The λt parameters are gener-
ated by constraints (13.9), and are relative to the Rimcity, their values for the other
provinces being the complements to 1.

The curious finding, at first sight, is the respective values of the growth rates
for the non-Rimcity provinces: whatever the state of their location factors’ attrac-
tiveness, they follow the ups and downs of the Rimcity growth rates. This result is
completely in line with the Rimcity indeed being the “motor” of the Dutch econ-
omy (Paelinck, 1973, pp. 25–40, especially pp. 37–40), imposing its evolutionary
rhythm on the other regions, which corresponds to a sort of Fick diffusion in
thermodynamics (Braun, 1975, pp, 645 a.f.; Philibert, 2005, pp. 2–3).
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Table 13.4 Gross regional product data for two macro-regions in the Netherlands

Years Rimcity Other provinces

1998 111.0 103.7
1990 116.5 110.0
1991 122.4 116.6
1992 127.3 121.6
1993 131.3 125.5
1994 136.9 130.3
1995 142.8 136.1
1996 147.3 141.3
1997 156.5 147.3
1998 166.8 156.5
1999 176.5 164.7
2000 189.8 177.1

Table 13.5 Parameter values of the model defined by Eqs. (13.2), (13.3), (13.4), and (13.5) with
data from Table 13.4

Parameters Values, binary case Values, fuzzy case

ρ1 0.0638 0.0794
ρ1

∗ 0.0385 0.0386
x1 1,8797 1.1099
x1

∗ 00.9001 0.9675
ρ2 0.0409 0.0394
ρ2

∗ 0.0538 0.0705
x2 1.4010 0.9278
x2

∗ 0.6084 0.9564
λ1 1 0.5976
λ2 0 0.1
λ3 0 0.1
λ4 0 0
λ5 0 0
λ6 0 0
λ7 0 0
λ8 1 0.4112
λ9 1 0.6291
λ10 1 0.5021
λ11 1 1
ϕy 16.3326 9.4769

From a technical point of view, the constraint parameter estimates are consistent
with one another, which hints at the adequacy of the binary estimation; the lower
ϕy-value is in line with the Le Châtelier-principle (Samuelson, 1955, pp. 36 a.f.).

Figures 13.5 and 13.6 further down portray the binary and fuzzy cases, respec-
tively.
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Fig. 13.5 Dutch model, binary case

Fig. 13.6 Dutch model, fuzzy case

13.3 Conclusion

It has been shown that finite automata models can be an appropriate specification
for multiregional models; the reason is that the development logic of a multiregional
system needs for its modeling a special algebra, and a corresponding set-up of the
corresponding estimation procedure.

Three more points should still be made.
First, starting an exercise in spatial econometric modeling with a complexity

analysis of the data is advisable; obvious candidates for simple exogenous variables
are their space-time coordinates. An example can be found in Getis and Paelinck
(2004), where regional product data for the Netherlands were analyzed. A model
specification implies the choice of exogenous variables, and possibly endogenous
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ones—in interdependent models—or lagged endogenous variables—in dynamic
models—, therefore, they too should be implied in a complexity approach.

Second, the specifications presented can readily be generalized to three or
more alternatives (regions, test specifications). For the finite automaton version,
for example, the following specification shows how and and or statements can be
added

yi: if ((czi + d < axi + b) and (eui + f < axi + b) ; (czi + d) or (eui + f) ; axi + b)
(13.10)

Finally, one cannot escape from the fact that hypothesis testing is fundamentally
theory-laden (Aznar Grasa, 1989, p. 10). Accordingly, theoretical spatial economics
will remain an indispensable guide to spatial econometric modeling.



Chapter 14
Learning from Residuals

Residuals often are considered as a troublesome noise in spatial—or, for that
matter—non-spatial econometric models. Current practice in spatial econometrics
is to set up a spatial error model, more often than not with an exogenous W spatial
weight matrix, in order to improve the efficiency of the estimators.

Looking closely into the residuals is less common practice. And still, residu-
als can represent extremely precious building blocks for further work, as other
disciplines have shown. Around 1850 the British chemists, Mansfield and Perkin,
had the—for that era of chemistry—strange idea to analyze the composition
of tar, until then exclusively used to improve coverage of roads (John London
McAdam had his name attached to that technique, tarmacadam); the result of the
British chemists’ investigation was the roaring development of a whole branch of
(industrial) chemistry: carbochemistry.

In the next section, a simple spatial econometric example will be treated, after
which further analysis and more results will be presented.

14.1 Residuals

Tables 14.1 and 14.2 present the degrees of contiguity for Belgian regional units,
BRU, (the maximum degree being 3) and their gross regional products (1995, 105

Euros of 2000); the entries of the two tables follow the same order.
Figure 14.1 reproduces the map of those regions.
The regions are the following. From West to East, northern slice: West-

Flanders, East-Flanders, Antwerp, Limburg; same, southern slice: Hainaut, Namur,
Luxembourg, Liège (slightly upwards); right in the middle, from north to south:
Flemish Brabant and Walloon Brabant, with the Brussels Capital region sticking out.

First the products of 1995 were analyzed. The idea was to investigate the effects
of (average) products for different degrees of contiguity (1, 2, 3) on a given GRP, yi.
Hence the equation

yi = ay1i + by2i + cy3i + d + εi, (14.1)

207D.A. Griffith, J.H.P. Paelinck, Non-standard Spatial Statistics and Spatial
Econometrics, Advances in Geographic Information Science 1,
DOI 10.1007/978-3-642-16043-1_14, C© Springer-Verlag Berlin Heidelberg 2011
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Table 14.1 Degrees of contiguity between Belgian regions

BRU A BW VB OV WV LIM H N LU LIE BC

A 0 2 1 1 2 1 2 3 3 2 2
BW 2 0 1 2 2 2 1 1 2 1 2
VB 1 1 0 1 2 1 1 2 2 1 1
OV 1 2 1 0 1 2 1 2 3 2 2
WV 2 2 2 1 0 3 1 2 3 3 3
LIM 1 2 1 2 3 0 2 2 2 1 2
H 2 1 1 1 1 2 0 1 2 2 2
N 3 1 2 2 2 2 1 0 1 1 3
LU 3 2 2 3 3 2 2 1 0 1 3
LIE 2 1 1 2 3 1 2 1 1 0 2
BC 2 2 1 2 3 2 2 3 3 2 0

Same obvious of province abbreviations given also in Table 14.2

Table 14.2 Gross regional products for the Belgian units, 1995

Regional
units A BW VB OV WV LIM H N LU LIE BC

Values 416028 62919 211584 255118 226222 143460 191433 64851 37976 173063 424381

Fig. 14.1 Regional map of Belgium
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Table 14.3 First results for model (14.1)

Parameters Values t- or F-values Probability

a 1.8813 1.8900 0.1007
b 1.4596 1.4349 0.1945
c –0.0378 –0,1198 0.9080
d –411581 –1.0873 0.3129
R2 0.4806 2.1590 0.1810

where y1i, y2i and y3i are the average products for different degrees of contiguity.
Table 14.3 presents the OLS estimation results.
Obviously the results are far from being satisfactory. The residual spatial correla-

tion coefficients, rc
2 (c=1, 2, 3, the observed degrees of contiguity) are respectively

–0.2619, –0.1161 and –0.2426. They are not significant, but show that there is no
completely random field in the residuals.

Accordingly, further analysis is in order.

14.2 Multiple Regimes

The first column of Table 14.4 shows the residuals of the exercise, and compares
them (columns 2 and 3) with the growth rates (averages over 1995–2004) and the
GRP levels.

The following scatter plots (Figs. 14.2 and 14.3) picture the partial relations.
The Kendall-τ (Kendall, 1955) between residuals (+ or –) and growth rates

(above or below the average, 0.0217) is near zero (exactly, 0.0910), and between
residuals and GRPs it is 0.4546, but further investigation is still required.

To prepare the latter, a complexity index has been computed (Getis and Paelinck,
2004), derived from a fourth degree polynomial

Table 14.4 Comparing residuals

Regional
units Residuals

Growth
rates GRP

A 132145 0.0202 416028
BW −159733 0.0335 62919
VB 15140 0.0277 211584
OV 14406 0.0239 255118
WV −50515 0.0207 226222
LIM −103617 0.0194 143460
H −54674 0.0144 191433
N −31766 0.0245 64951
LU 15883 0.0190 37976
LIE 82491 0.0135 173063
BC 140241 0.0221 424381
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Fig. 14.2 Residuals and growth rates from Table 14.4

Fig. 14.3 Residuals and GRP from Table 14.4
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Table 14.5 Polynomial coefficients from Eq. (14.2)

Coeffic-
ients a b c d e f g h i j k

Values 1740457 –2.7E+08 55.7706 1.54E+10 –0.00025 –5903.13 –3.01E+11 –1.45E-11 148311 0.02579 –0.62572

ei = a + b*ri + c*yi + d*ri
2 + e*yi

2 + f*riyi + g*ri
3 + h*yi

3 + i*ri
2yi + j*riyi

2

+ k*ri
2yi

2,
(14.2)

in which the yis are again the GRPs, and the ris the growth rates. Table 14.5 presents
the interpolated coefficients of Eq. (14.2).

Coefficients b, d, and g are extremely high, but they relate to growth rates that
are small numbers. Excluding the relatively small coefficients (smaller than one),
the complexity coefficient can be computed as

C = (v – 1)/(n – 1) = 0.6, (14.3)

where v is the number of maintained coefficients, and n their maximal number (i.e.,
the number of observations).

Given the rule followed, this is a relatively high value (0≤c≤1), and invites
rethinking the model generating the observed residuals, as this model is a very
simple one.

The revealed complexity suggests the need for a possible correction by ri and
yi, but the first correction would not be complete, as shown above, and using yi

would be trivial. A plausible alternative would be to introduce two separate regimes,
leading to the following specification (see Chap. 12):

yi = λi(a*y1i + b*y2i + c*y3i + d) + (1 – λi)(α*y1i+β*y2i+γ*y3i+δ)+εi, (14.4)

where the λis are the binary variables qualifying the spatial regimes.
This produced the results of Table 14.6 hereafter.

Table 14.6 Results with two regimes, Eq. (14.4)

Parameters Values 1995 Values 2004

a 0.6726 0.5894
b 1.6484 1.5462
c –0.7094 –0.7416
d –69490 –763
α 8.5571 2.9617
β 4.7365 1.0460
γ –0.1971 1.2467
δ –2345031 –710212
R2 0.9853a 0.9774a

aComputed for 6 df
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Table 14.7 Regime
allocators for two distant
years

Regional
units 1995 2004

A 1 1
BW 0 0
VB 0 0
OV 1 1
WV 1 1
LI 1 1
H 0 0
N 1 1
LU 1 0
LIE 1 1
BC 0 1

The residual spatial correlation coefficients for contiguities 1, 2 and 3, respec-
tively, are –0.1793, –0.8029 and 0.2938, showing that there is still some specific
spatial autocorrelation, especially of order 2 (coefficient significant at the 0.995
level). Some changes occurred over nine years, as the third column of Table 14.6
shows; this also was the case for the rcs (–0.6702, –0.8223, 0.6428, all significant
at the 0.995 level), the second order spatial autocorrelation still dominating. But the
overall fit is satisfactory, and OLS can be replaced by other estimation methods (see
Sect. 11.1.3).

To test the general properties of the residual fields, two statistics have been
computed:

– a generalized τ-statistic between all residuals (i.e., 55 cross-products are
involved); for 1995 and 2004 they amount to non-significant values –0.1542 and
–0.1523, respectively, excluding any general correlation; and,

– the C-statistics of Eq. (14.3); in both cases they equal 0.9, showing a high degree
of Chaitin-Wolfram complexity (as independent variables, the numbers from 1
through 12 were used in the test polynomial).

The problem now is: though overall randomness seems to be present, spatial rcs
show specific dependency, so some further investigation is in order.

Table 14.7 presents the two vectors of λI estimates.
The pattern is remarkably stable: most regions (7) belong to the same regime,

only the center-south deviating from this.

14.3 Spatial Interpolation

Because there is quite some variability in the coefficients reported in Table 14.6,
the question arises asking whether computing local coefficients could give more
insight in this phenomenon. One possibility is to interpolate the parameters from
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Table 14.8 Results from spatial interpolation to compute the parameters of Eq. (14.1)

Parameter
regional a b c d a b c d

A 2.8428 3.2064 –
0.0712

816849 2.9034 3.0462 –
0.8971

–
983912

BW 1.1572 –
0.4494

0.0776 0 1.0961 –
0.4499

0.0747 0

VB 9.0711 5.0851 –
0.3824

–
2.5058

8.2277 4.6305 –
1.2307

–
2.6980

OV 3.5057 3.6279 –
1.1336

–
1.0209

3.3062 3.2851 –
1.1589

–
1.1109

WV 2.1252 1.0591 –
0.1991

–
410515

1.6838 0.5410 –
0.0943

–
282235

LI 1.5086 2.6832 –
0.5342

–
441860

1.2176 2.2869 –
0.6389

–
380635

H 8.5517 4.7330 1.0080 –
2.3433

6.0211 2,8355 0.7076 –
1.8282

N 6.0664 0.1237 0.3975 –
833866

4.0873 0.1847 0.2981 –
673717

LU –
1.6767

1.0559 –
0.4168

214303 –
1.7254

1.1119 –
0.4436

254356

Lie .6890 1.3824 –
0.5545

–
71376

0.6151 1.2632 –
0.4947

–
76625

BC 9.0717 5.0851 –
0,3822

–
2.5058

8.2277 4.6305 –
1.2307

–
2.8980

v=σ/μ 0.9106 0.7594 –
2.6792

–
1.5842

0.9346 0.7818 –
1.3398

–
1.7597

groups of— possibly neighboring—spatial units. If more than four regions present
themselves as candidates, nearest neighbors—in terms of distances and/or politi-
cal/linguistic proximity—have been selected.

Table 14.8 presents the results. The parameters are those of Eq. (14.1).
The remarkable finding, again, is that the orders of magnitude are the same

for the two years, with some exceptions for the constant d. But the variability is
large between regions (as shown by the coefficients of variation in the last row of
Table 14.8), which suggests the need for further analysis of the available data to
complete the picture.

14.4 Composite Parameters

Because time series from 1995 through 2004 are available, composite parameters
can be computed (Ancot et al., 1978); for instance, parameter a in Eq. (14.1) can be
expanded as

ˆa = a + ar + at, (14.5)
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Table 14.9 Generic and region-specific coefficients according to model (14.5)

Region
Parameter A BW VB OV WV Lim H N Lu Liè BC

a(ar) –
1.26

1.113 0.6643 1.715 1.238 1.249 –0.8 2.055 –
.0486

–
0.230

1.298

b(br) 3.132 –
2.79

0.1305 –
2.39

–
2.39

–
2.88

–
0.93

–
3.27

–
3.59

–
2.40

–
1.92

c(cr) –
0.065

– – –
67.8

0.5279 0.4333 – –
0.493

1.086 0.4754 2.51

d(dr) 132 –97 –
116

–67 6.342 –
212

41 7.877 –22a 0.0326 –
0.337

aTo be multiplied by 103

where a is the generic, ar is the region-specific parameter, and at is the time-specific
parameter. For reasons of identifiability, one spatial unit should be selected as a ker-
nel (not affected by ar or at); the first region, Antwerp, was picked for this purpose,
but any other region would have done.

Table 14.9 hereafter presents the coefficients; the first row, as said above, contains
the generic ones, the following rows the region-specific ones. Sometimes a region-
specific coefficient cr is absent, due to the absence of a third order spatial lag.

The entries of Table 14.9 display a large region-specific parameter variability.
No measure hereof has been computed this time, but a comparison with Table 14.8
confirms this variability.

Table 14.10 presents the time-specific parameter estimates for 1996 through
2004.

The coefficients are of a much smaller order of magnitude, which confirms a
previous remark about the relative constancy of the parameters through time, as
opposed to their interregional variability.

Table 14.10 Time-specific parameters for model (14.5)

Parameter
FUTLa at bt ct

1 −0.0026 0.0094 −0.0153
2 −0.0016 0.0053 −0.0016
3 −0.0097 0.0206 0.0028
4 0.0044 0.0188 −0.0205
5 0.0050 0.0209 −0.0317
6 0.0028 0.0304 −0.0365
7 0.0122 0.0220 −0.0489
8 0.0153 0.0218 −0.0513
9 0.0176 0.0199 −0.0588

aForward Unit Time Lag, from 1995 on
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Table 14.11 Pseudo R2s
Regions Pseudo-R2s

A 0.9538
BW 0.9905
VB 0.9907
OV 0.9650
WV 0.9993
LI 0.9926
H 0.8705
N 0.9861
LU 0.9394
LIE 0.9104
BC 0.9809
Global 0.9735

Finally Table 14.11 presents the partial and global pseudo-R2-values, pseudo-
because the parameters have been computed by least absolute discrepancies to avoid
outliers.

The result is remarkably high for 60 df, with a local exception for Hainaut.

14.5 Conclusion

The doggy-bag principle (“never throw away your leftovers”) has given insight into
a possibly appropriate specification of the spatial econometric models investigated.
This is in line with the clear warning that has been given off for time series analysis
(G. Mizon, A Note to Autocorrelation Correctors: Don’t, Journal of Econometrics,
1995, 69, pp. 267–288).

More research is in order, especially for very large models. But considering resid-
uals as informative should transcend the usual practice of trying to neutralize them.
Meanwhile, pure spatial “randomness” also could be interpreted as spatial complex-
ity, and might encourage continued analysis rather than finishing it by discussing
“ideal” parameter properties.

In the Belgian case, this has lead to deeper insights in spatio-temporal properties
of a static model. Indeed, it appears that each spatial unit possesses its own reaction
coefficients with a great stability over time. Problem however is to find out how
much of that interregional divergence is due to system heterogeneity, and how much
to spatial aggregation. The latter problem is taken up in Chap. 17.



Chapter 15
Verhulst and Poisson Distributions

The logistic curve (or Verhulst sigmoid curve) sometimes is used in spatial econo-
metrics (see, e.g., Domencich and McFadden, 1975; Paelinck and Klaassen, 1979,
pp. 68–72, 156–168). Two examples will be given hereafter, one for estimation in
the binary case, the other for a dynamic specification. A related Poisson distribution
problem is then treated; the latter distribution is less frequently used, because count
data have to be available for econometric treatment.

15.1 Robust Estimation in the Binary Case: A Linear Logistic
Estimator (LLE)

For a binary variable z = 1, let

d1i
�= 1 − (1 + exp (a’xi + bi))

−1, (15.1)

which, for a variable with subscript i,. is the natural distance between 1 and the
logistic curve; equally, for z = 0, let for a variable with subscript j

d0j
�= (1 + exp

(
a’xj + bj

)−1 (15.2)

which is that distance of the logistic curve from 0.
Furthermore let

a’x1i + bi = − ln
(

di1
−1 − 1

)
�= δ1i , (15.3)

and

− a’x0j − bj = − ln
(

d0j
−1 − 1

)
�= δ0j, (15.4)

217D.A. Griffith, J.H.P. Paelinck, Non-standard Spatial Statistics and Spatial
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In both cases, ∂δ/∂d > 0, and if di = dj, then δi =δj.
Minimizing

∑
iδ1i +

∑
j δ0j, and normalizing the vector δ, i being the unit column

vector, namely

min i’δ − λ/2(δ’δ − c), (15.5)

yields

i = λδ = X*a, (15.6)

with

X* =
[

X1
−X0

]
(15.7)

and a including the constant. Because λ < 0, switching the sign of X0 in Eq. (15.7),
replaces i by

i* =
[−i

i

]

A linear estimator of a is given by

a = (X’X)−1X’i, (15.8)

with λ conveniently set equal to –1.
Therefore, for unit λ:

V(a) = (X’X)−1, (15.9)

and hence pseudo-t values can be computed as follows

tk = ak/
√

xkk, (15.10)

The method was applied to the following (unique) explanatory variable: 0.4, 0.5,
0.6, 0.92, 0.95, 0.98; Table 15.1 lists the results (pseudo-t values in parentheses).

The results are graphically presented in Fig. 15.1.

Table 15.1 Estimation
results for model (15.8) Parameters Values

Slope −2.2169 (−40.7040)
Constant 1.1158 (30.3286)
R 2 0.9988
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Fig. 15.1 The logistic resulting from Table 15.1

15.2 A Logistic Dynamic Share Model

Let 0 < aij < 1 be the share of sector i in region j;
∑

iaij = 1, ∀j.
Let the model be specified as follows

aijt =
[
1 + exp

(∑
ijαij,t - 1 + βij

)]−1
(15.11)

a generalized logistic function. The superscripts refer to the subscripts of the left
hand member.

From Eq. (15.11) one can derive

ln(a−1
ijt − 1) =

∑
ijα

ij
ijaij„t - 1 + βij, (15.12)

In equilibrium, a ijt = a ij,t–1 , ∀i,j. Thus,

ln(aijt
−1 − 1) =

∑

ij

αij
ijaijt + β ij (15.13)

= αij
ijaijt + rij, (15.14)
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Fig. 15.2 Equilibrium solutions for (15.13) and (15.14)

where r denotes the remaining terms. There are two possibilities according to the
sign of αij. Figure 15.2 shows how possible solutions look (recall that 0 < aij < 1).

In terms of stability, the following points can be made:

(1) There exists a confiner defined as follows:

max
a

∑

ij

αij
ijaij + βij (15.15)

min
a

∑

ij

αij
ijaij + βij (15.16)

s.t
∑

i
aij = 1, ∀j (15.17)

1 ≥ aij ≥ 0, ∀i, j (15.18)
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Table 15.2 Test numbers for
model (15.11) t a11 a21 a12 a22

1 0.30 0.70 0.65 0.35
2 0.32 0.68 0.64 0.36
3 0.32 0.68 0.64 0.36
4 0.34 0.66 0.62 0.38
5 0.37 0.63 0.62 0.38
6 0.38 0.62 0.61 0.39
7 0.39 0.61 0.59 0.41
8 0.41 0.59 0.57 0.43
9 0.41 0.59 0.57 0.43

10 0.42 0.58 0.56 0.44

(2) One can linearize (Taylor-expansion around 0.5) the left-hand member of
(15.12), yielding

at≈ − 0.25 Aat – 1 − 0.25(b − 2i). (15.19)

Convergence depends on –i < λ(A) < i, whereas divergence is constrained by the
confiner. In the case of convergence, the attractor is:

ao = −0.25(I + 0.25A)−1(b − 2i). (15.20)

However, given the approximation, conditions (15.17) are not necessarily satis-
fied.

The following (fictional) numbers, reported in Table 15.2, have been used to test
the model.

Estimation (see Table 15.3) was performed by minimizing the sum of squares
between the observed aijts and the SDLS endogenously generated ones (see Sect.
11.1.3). The resulting overall R2 is 0.9989, and, moreover, conditions (15.17) are
very closely satisfied in both regions, with erratic divergences not exceeding 2%
[see comments about Eq. (15.20)].

Starting from the last observations, a 24-period simulation was performed.
Table 15.4 shows the results, which again obey conditions (15.17) very closely.
The simulation reveals the inherent dynamics of the model, which could hardly be
deduced from the “observed” series; Figs. 15.3 and 15.4 portray this once more.

15.3 A Linear Poisson Distribution Estimator

The Poisson probability mass function is given by

p(n) = exp(−μ)μn/n!. (15.21)
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Table 15.3 Estimation results from Table 15.2

Features α11 α21 α12 α22

Parameters –6.16267 11.78416 9.939417 –13.3512
4.125329 3.303637 4.513609 –8.34668
–6.61019 2.508025 –7.97125 3.446991
2.07069 –3.84603 –10.9558 6.180226
3.352769 –6.93088 2.237161 6.066311 Conditions (15.17)

SDLS 0.475024 0.505434 0.443078 0.572783 0.980458 1.015861
variables 0.316985 0.680277 0.63812 0.360616 0.997262 0.998736

0.324253 0.675817 0.640868 0.357918 1.000071 0.998786
0.343588 0.656204 0.626998 0.373463 0.999792 1.000461
0.36097 0.640596 0.616677 0.384327 1.001566 1.001004
0.379807 0.620659 0.601062 0.401076 1.000466 1.002138
0.394141 0.608216 0.591866 0.409607 1.002357 1.001473
0.40885 0.590948 0.575795 0.425779 0.999798 1.001574
0.414217 0.587613 0.571102 0.427662 1.00183 0.998764
0.417111 0.57954 0.557563 0.439539 0.996651 0.997101

Conditions 1.64E-09 –5.2E–10 1.2E–09 3.81E–10
(15.12) 1.27E–10 –1.1E–10 –1E–10 2.49E–11

1.1E–10 –1.5E–10 –8.6E–11 3.11E–11
1.37E–10 –6.8E–11 –1.5E–10 –1.3E–10
3.32E–13 –1E–10 –2.9E–10 –1.5E–10
–2.4E–10 1.02E–10 –6.4E–10 –4.1E–10
–1.9E–09 1.23E–10 –4.5E–10 5.47E–10
–1.2E–09 2.86E–10 –7.5E–10 1.23E–11
–3.3E–09 8.85E–11 2.75E–10 2.02E–09

SDLS minus 0.003015 0.000277 0.00188 0.000616
observed aijt 0.004253 0.004183 0.000868 0.002082

0.003588 0.003796 0.006998 0.006537
0.00903 0.010596 0.003323 0.004327
0.000193 0.000659 0.008938 0.011076
0.004141 0.001784 0.001866 0.000393
0.00115 0.000948 0.005795 0.004221
0.004217 0.002387 0.001102 0.002338
0.002889 0.00046 0.002437 0.000461

Its mean μ can be written as a function of various factors, xk; assume a linear
function. Then

ln [p(ni)] = −μi + nilnμiI − ln ni! (15.22)

The first-order maximum likelihood conditions (the second-order ones also are
satisfied, as Eq. (15.22) is concave in the parameters) are, for some parameter a

∑

i

xik =
∑

i

nixik/μi (15.23)
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Table 15.4 Simulation results

t a11 a21 a12 a22 Conditions (15.17)

1 0.42 0.58 0.65 0.35 1 1
2 0.602225 0.445547 0.496556 0.49466 1.047771 0.991216
3 0.671098 0.357977 0.399227 0.585599 1.029075 0.984826
4 0.663613 0.346834 0.367438 0.615801 1.010447 0.983239
5 0.611098 0.384416 0.383735 0.600675 0.995515 0.98441
6 0.537536 0.447841 0.428239 0.559126 0.985378 0.987366
7 0.457233 0.522775 0.487681 0.503906 0.980008 0.991587
8 0.382394 0.596658 0.551243 0.445049 0.979051 0.996292
9 0.325752 0.655956 0.606947 0.393426 0.981708 1.000373

10 0.295642 0.690855 0.644244 0.358716 0.986496 1.00296
11 0.291214 0.700626 0.659679 0.344255 0.99184 1.003934
12 0.304921 0.691703 0.657195 0.346493 0.996625 1.003688
13 0.328039 0.672193 0.643538 0.359153 1.000231 1.002691
14 0.353605 0.648826 0.624817 0.37652 1.002431 1.001337
15 0.376836 0.626439 0.60558 0.394357 1.003274 0.999937
16 0.394782 0.608214 0.588933 0.409789 1.002995 0.998723
17 0.406029 0.595901 0.576753 0.421086 1.001931 0.997839
18 0.410465 0.589988 0.569829 0.427519 1.000452 0.997348
19 0.409008 0.589897 0.568006 0.42923 0.998905 0.997236
20 0.403273 0.59429 0.570392 0.427041 0.997563 0.997433
21 0.395192 0.601406 0.575628 0.422208 0.996599 0.997836
22 0.386659 0.609425 0.582185 0.416144 0.996083 0.998328
23 0.379219 0.616776 0.588645 0.410161 0.995995 0.998806
24 0.373874 0.622369 0.593931 0.40526 0.996243 0.999191
25 0.371017 0.625685 0.597426 0.402014 0.996702 0.99944

If, on average, μi = 1, condition (15.23) also is satisfied on average.
Consequently

μi/ni = 1, ∀i (15.24)

from which an OLS estimator can be derived as

a = (X’X)−1X’i (15.25)

where for the constant term elements ni
–1 appear in X, because each element of the

usual unit column vector has to be divided by the counts observed.
The model has been applied to the data reported in Table 15.5.
Table 15.6 presents the results (pseudo-t values in parentheses) for a one-variable

(xi) with the ni
–1 terms as required.
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Fig. 15.3 First region simulatioins results graphed

Fig. 15.4 Second region, simulation results graphed
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Table 15.5 Data to apply Eq.
(15.25) xi ni

3 1
7 2
8 4

11 5
13 7
17 9

Table 15.6 Estimation
results using data from
Table 15.5

Parameters Values

Slope 0.4796 (5.7466)
Constant –0.4436 (–1.2584)

15.4 Conclusion

Again very robust and simple estimators have been developed for the Verhulst
and Poisson curve parameters. Although the processes might be complex, they are
readily calibrated.

The examples have shown that the obtained estimation results are readily usable
for consistent simulation, which moreover reveals properties that the original series
do not show at once. This demonstrates the utility of longer term extrapolations, as
the function—in this case, the Verhulst function—does not lead to analyses close to
that of classical dynamics (see Chap. 11).



Chapter 16
Qualireg, A Qualitative Regression Method

Circumstances can produce themselves under which no cardinal data are available
(see Ancot and Paelinck, 1990). To allow drawing inferences about at least the
direction of influence of certain potentially explanatory variables, only available as
ordinal data (“rankings”), methods should be developed to treat that problem. The
method described here—QUALIREG—resulted from work on a qualitative multi-
criteria method—QUALIFLEX, originated by Paelinck (1976)—which is detailed
first, after which the logic of QUALIREG will be introduced.

A first application to test the method is then presented, followed by a typical
spatial econometric one, to wit estimating first- and second-order contiguity effects.

16.1 Qualiflex

Suppose three objects, O, to be ranked according to three criteria, C, along which
they can initially only be separately ranked. Table 16.1 presents such a case.

The relative importance of the criteria is known only in an ordinal manner, i.e.,
again their ranking (vector w).

The optimal ranking of O1 through O3 is to be derived out of the 3! = 6 possible
rankings. Those rankings can be classified according to elementary permutations
(i.e., permutations of neighboring objects). Table 16.2 presents those rankings,
starting from [+++, ++, +], with the rankings being denoted by Ri.

A possible measure of the agreement of two rankings is a so-called rank corre-
lation coefficient, denoted τ, and having values in [–1, 1], much like an ordinary
simple correlation coefficient. The easiest choice for attributing values is to divide
the interval in equal parts, in this case 0.66, and hence obtain the values shown in
the last column of Table 16.2. The values of τ are computed with respect to R1.

The observed rankings can be laid out in matrix form as Table 16.3 shows for the
three rankings of Table 16.1; a descending order is rated +1, an ascending one –1.

These tables should obviously be skew-symmetric, i.e., the absolute values of
symmetric terms are equal, but their signs are opposite. τ -values based on these
tables can be computed with respect to R1 (e.g., the upper-triangular sum of the first
ranking of Table 16.3 is 1, which divided by the sum of all positive scores gives 0.33,

227D.A. Griffith, J.H.P. Paelinck, Non-standard Spatial Statistics and Spatial
Econometrics, Advances in Geographic Information Science 1,
DOI 10.1007/978-3-642-16043-1_16, C© Springer-Verlag Berlin Heidelberg 2011
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Table 16.1 A qualitative multicriteria table

w (rankings) C\O O1 O2 O3

+++ C1 ++ +++ +
++ C2 ++ + +++
+ C3 +++ + ++

Table 16.2 Elementary permutations for three elements

R1 +++ ++ + 1
R2 ++ +++ + 0.33
R3 +++ + ++ 0.33
R4 ++ + +++ –0.33
R5 + +++ ++ –0.33
R6 + ++ +++ –1

as in Table 16.2). That part of Table 16.3 also reveals that the maximum correlation
coefficient may be observed permuting O1 and O2 appears, as the ranking then is
identically R1. This that is the very clue that led to the method that follows.

The idea is to find a ranking that has maximum (possibly weighted) correlation
with—or, alternatively, minimum (possibly weighted) so-called Kendall distance
(see Paelinck, 1985, pp. 80–98; it is a linear transform of Kendall’s rank correlation
coefficient; see Sect. 16.2) to—the observed individual rankings This implies con-
structing a new table—or matrix—from the observed ones by summing them with
the appropriate weights, and then—by permuting rows and columns—obtaining a
maximum upper-triangular sum. Consider the three parts of Table 16.3, and suppose
all weights to be equal. Then the resulting sum table (here the tables may be simply
added up) is Table 16.4.

The ranking presented in Table 16.1 is the optimal one. But what if the criteria
are only qualitatively ranked? A first possibility is to inspect the weight triangle (or,
for higher dimensions, the hyper-triangle). Its endpoints are (1, 0, 0), (0.5, 0.5, 0)

Table 16.3 Rankings fot three criteria

Ranking O1 O2 O3

First O1 0 –1 1
O2 1 0 1
O3 –1 –1 0

Second O1 0 1 –1
O2 –1 0 1
O3 1 –1 0

Third O1 0 1 1
O2 –1 0 –1
O3 –1 1 0
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Table 16.4 Sum table from Table 16.3

O i O1 O2 O3

O1 0 1 1
O2 –1 0 1
O3 –1 –1 0

and (0.33, 0.33, 0.33): see Fig. 16.1. This figure is a two-dimensional cut through
the three-dimensional space generated by the weight axes.

For point (1, 0, 0) the optimal ranking is (O2, O1, O3), (see Table 16.1). For
point (0.5, 0.5, 0) the optimal ranking can be calculated (by adding part 1 and 2 of
Table 16.3) to be (O1, O2, O3), and this ranking is optimal again in point (0.33, 0.33,
0.33) as previously mentioned. The conclusion is that for a relatively high weight
attributed to C1, the optimal ranking would be (O2, O1, O3), with O2 the “best” (first
in rank) object; for lower C1-weights, (O1, O2, O3) would be optimal with C1 the
“best” object.

In practice, one can randomly scan the weight triangle and find out the zones
where certain rankings are optimal. Anyway, in each of those points a matrix per-
mutation is necessary, but it can be shown that this is equivalent to a quadratic
assignment problem.

For applications, one can consult Ancot and Paelinck (1982, 1985 and 1986).

Fig. 16.1 Weight triangle for three criteria
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16.2 Qualireg

The problem studied in Sect. 16.1 was to derive an optimal ranking for given rank-
ings and criteria weights. One could ask whether the inverse problem—derive the
weights given the final ranking and the initial rankings—has a meaning.

The solution to this optimal ranking problem is equivalent to qualitative regres-
sion (for first results, again see Ancot and Paelinck, 1986). Consider the equation

yi = a xi + b zi + c, (16.1)

in which parameters a and b have to be estimated. In this case, yi, xi and zi would
be elements of three rankings of the respective variables.

Three rank correlation coefficients, τ (y, x), τ (yz) and τ (xz) can be calculated from
these rankings (see Kendall, 1955). These correlation coefficients can be used in the
classical regression parameter estimation equation, yielding

[
a
b

]
=
[

1 τxz
τxz 1

] [
τyx
τyz

]
(16.2)

The method has been applied to the data reported in Table 16.5 (source: Plante,
2005).

The data of Table 16.5 have been reduced to their rankings, and the above method
applied, rendering the results reported in Table 16.6, which are compared with the
original OLS estimates). Their analysis only shows the workings of QUALIREG,
with no spatial effects, save distances, having been introduced.

Here the signs of OLS and QUALIREG correspond, but not the relative
magnitudes. This result is due, on the one hand to the “data reduction”—
“impoverishment”—previously mentioned, and on the other hand to standardization

Table 16.5 Data for a QUALIREG application

Observations y x z

1 2533 53 19
2 962 18 28
3 426 33 35
4 7226 60 3
5 94 20 46
6 411 17 42
7 101 21 61
8 102 27 70
9 27 19 68

10 158 23 69
11 76 24 63
12 269 16 62

Note: y stands for population densities in Northern Virginia counties,
x for the share of non-agricultural activity in total activity, and z for
distance from Washington
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Table 16.6 QUALIREG and OLS estimation results compared

Parameter region a b R2 ta tb

OLS 0.66 –0.43 0.79 2.50 –2.23
QUALIREG 0.23 –0.66 0.54 0.34 –0.96

of the QUALIREG estimators (i.e., division by the appropriate standard errors, as
correlation coefficients have been used). Moreover, for QUALIREG the parame-
ters R2, ta and tb are “pseudo” test criteria, because they can be computed only by
analogy. These estimators were obtained as follows.

From general OLS analysis

R2 = y,X
,
(X

,
X) – 1Xy/y,y. (16.3)

For normalized variables y and two τ-variables, this equation translates into

R2 =
[
τy, x1

;τy, x2

] [ 1 τx1, x2

τx1, x2 1

] [
τy, x1 ;τ y, x2

]
(16.4)

and

σ = (1 − R2).5. (16.5)

Applying this result to the numbers obtained renders

R2 = 0.5388
σ = 0.6791
ta = 0.3393
tb = –0.9631

As noted previously, these are all “pseudo-values”, because they are simple
“analogs” to the theoretical ones. In this case, though R2 might be significant,
a and b are not; this finding is to be expected, as the original data have been
“impoverished”.

The method finally allows use of even very poor data in order to assess at least
the signs (directions) of the partial relations hypothesized.

16.3 Spatial Setting

Next consider spatial interaction effects.
In order to address these effects, a classical spatial specification has been

selected, to wit the estimation of first- and second-order contiguity effects. An inter-
dependent linear specification has been selected, which has first been estimated by
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Simultaneous Dynamic (here Spatial) Least Squares with endogenously estimated
computed values (see Sect. 11.1.3).

The model is specified as follows

y = aC1y + bC2y + ci, (16.6)

where y is a vector of regional products, C1 and C2 are the first- and second-order
contiguity matrices, i is the unit vector, and a, b and c are parameters to be estimated.

The application concerns the regional products of 11 Belgian regional units, pre-
sented in Table 16.7; with their products (in millions of Euros) for 2002, and also
with the average contiguity products of order 1 and 2. Only 11 units appear, as the
extra-territorial units have been included in the “Brussels Capital” region. The data
quantities and map are those of Chap. 14 and, for the contiguity degrees, they are
taken from Kaashoek et al. (2004; see Table 16.8).

Table 16.7 Belgian regional units and products, 2002

Number Unit Product C1 C2

1 Antwerp 41,483.5 21,307 21,590.1
2 Walloon Brab. 7,639 19,324.2 25,289.1
3 Flem. Brab. 23,232.5 23,908 11,118
4 East Fland. 26,070.5 26,395.8 17,690.7
5 West Fland. 22,766 22,085.9 19,776.8
6 Limburg 14,617.9 27,118.3 17,534
7 Hainaut 18,101.2 17,292.1 23,876.3
8 Namur 6,752.3 11,553.7 21,671.7
9 Luxemburg 3,835.8 11,695.6 15,897.7

10 Liège 16,638.8 11,215.5 32,115.2
11 Bruss. Cap. 42,805.4 23,232.5 23,382.4

Table 16.8 First and second order contiguity degrees for Belgian spatial units

Units 1 2 3 4 5 6 7 8 9 10 11

1 2 1 1 2 1 2 1 2
2 2 1 2 2 2 1 1 2 1 2
3 1 1 1 2 1 1 2 2 1 1
4 1 2 1 1 2 1 2 2 2
5 2 2 2 1 1 2
6 1 2 1 2 2 2 2 1 2
7 2 1 1 1 1 2 1 2 2 2
8 1 2 2 2 2 1 1 1
9 2 2 2 2 1 1

10 2 1 1 2 1 2 1 1 2
11 2 2 1 2 2 2 2
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Table 16.9 Estimation results from Tables 16.7 and 16.8 using model (16.6)

Parameters a ta B tb R2

SSLS 0.7963 1.1558 0.3279 0.4464 0.5237
QUALI1 0.9167 1.0501 0.5031 0.5763 0.5128
QUALI2 0.4459 0.4328 0.2209 0.2114 0.1581

Table 16.9 presents three results: the first is the SSLS estimators obtained from
the original data (the constant has been omitted, because it cannot appear in the fol-
lowing results); and, the other two are QUALIREG estimators. The first of these
latter estimates relates to the average ranks of the contiguity products, whereas
the second relates to the ranking of the C1–C2 numbers in Table 16.7. The sum of
absolute values of residuals has been minimized, rendering very robust estimators.

In this case, not only do the signs correspond, but also the ranking of the values
obtained. QUALI1 furnishes the closest fit. Both of these outcomes are remarkable.

Of note is that the SSLS R2 is not particularly high, despite the low number of df
(the four lowest out of the eleven endogenous regional products have been fixed, as
they had a tendency to turn negative). This finding corresponds to outcomes reported
in Chap. 14, in which each spatial unit (they are the same as in this study) had its
own reaction coefficients. Factors are at least twofold: spatial bias (see Paelinck,
2000b; Paelinck et al., 2005, pp. 25–26) and spatial asymmetry proper (due to the
differences in economic structure of each of the Belgian spatial units; see Chap. 14).

Nevertheless, the present exercise is concerned with studying only the efficiency
of the QUALIREG method.

16.4 Conclusion

It now appears possible to perform spatial econometric exercises with very poor
(read: qualitative, ordinal) data, rankings rather than cardinal data. This is of utmost
importance when working on multiregional problems in developing countries where
the latter sort of information often is not available (for examples, see Ancot and
Paelinck, 1990)

Further experience is certainly required with the method proposed, but the
improvement with the initial Ancot-Paelinck approach (see Ancot and Paelinck,
1986, referred to above) is very clear.



Chapter 17
Filtering Complexity for Observational Errors
and Spatial Bias

In Chap. 12, complexity analysis of spatial data is advocated as a preliminary to spa-
tial econometric regime selection, estimation and testing. That approach assumes
that the endogenous variable—only a one-equation model was considered—was
measure error free. The present chapter is devoted to controlling for that element
of the problem.

Section 17.1 reports on the results obtained earlier; Sect. 17.2 then exposes and
applies the method proposed for filtering out assumed observational errors. As spa-
tial bias is an inherent feature of spatial data, an extra correction for this aspect is
studied and applied in Sect. 17.3.

17.1 Complexity, Estimation and Testing

The problem studied here arose when spatial data were tested for belonging to one
or possibly several possible regimes. In particular a classical linear model and a
min-algebraic one were considered.

A first idea of the relevance of one or another specification is to look into the com-
plexity of the problem, by which we mean computational complexity of the series to
be explained (Chaitin, 1975; Wolfram, 2002, pp. 557–559). This complexity, which
we call conditional complexity—due to the presence of exogenous variables—can
be expressed through the number of parameters necessary to fit the endogenous vari-
able to a polynomial in the exogenous ones. An index whose values are contained
in [0, 1] is the earlier mentioned Getis and Paelinck (2004) statistic

c = (
np − 1

)
/
(
npm − 1

)
(17.1)

where np is the number of non-zero parameters, and npm is the maximum number
of parameters (equal to the length of the series of endogenous variables, i.e., the
sample size. We started by considering especially the endogenous variables as void
of measurement errors, because anyhow the observed values are the only ones of
which we avail.
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Table 17.1 Data for estimation and testing exercise

yi 2 (1) 4 (8) 5 (5) 7 (6) 6 (5) 8 (20) 10 (15) 9 (12) 11 (11) 12 (12)

xi 1 (1) 3 (2) 3 (3) 4 (4) 4 (5) 6 (6) 7 (7) 7 (8) 8 (9) 8 (10)
zi 2 (0) 1 (3) 2 (1) 3 (1) 2 (0) 5 (7) 5 (4) 4 (2) 6 (1) 8 (1)

Table 17.2 Cubic Eq. (17.2) parameters

Variables 1 x z x2 z2 xz x3 z3 x2z xz2

Values –15. 3939
(0)

15.5288
(1)

–4.9045
(2)

–1.7288
(0)

–3.8371
(0)

4.5326
(0)

–0.9061
(0)

4.5326
(0)

–5.7258
(0)

2.2432
(0)

The computation has been applied to the following data (Table 17.1, numbers not
between parentheses).

The analysis resulted in c = 1, meaning that 10 parameters are necessary to
satisfy the cubic equation:

yi = ai + a′ui + ui
′Aui + ui

′B′uiBui, (17.2)

where ui is observation i ’s vector of exogenous variables. If this test is applied to the
numbers between parentheses—generated by yi = xi + 2zi—, only two parameters
(numbers between parentheses in Table 17.2) are necessary, yielding c = 0.11. This
gives a clue to a more complex specification for the first series than would be the
case for the second one. Table 17.2 presents the values of the parameters that satisfy
Eq. (17.2) in both cases.

To test the first series according to this clue, the following model was set up:

yi = θ (axi + bzi + c)+ (1 − θ)min(αxi + β; γzi + δ) + εi, (17.3)

with θ binary and for which ϕ = min Σiε
2
i was chosen as a selection criterion, a

minimal variance one (Theil, 1971, pp. 543–545; Aznar, 1989, p. 133). The rea-
son for this choice becomes clear in the ensuing discussion. The second term on
the right-hand-side of Eq. (17.3) represents a min-algebraic specification (Paelinck,
2002a).

The computation, involving specification (17.3), resulted in the following param-
eter values reported in Table 17.3.

Table 17.3 Parameter values
for Eq. (17.3) Parameters Values

α 1.2801
β 0.9831
γ 5.2934
δ –1.2935
θ 0
ϕ 2.8562
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Table 17.4 Parameter results for fuzzy cases of Eq. (17.3)

Parameters a b c α β γ δ θ ϕ

Fuzzy case 1 1.721 –1.7651 1.7398 1.5274 0.921 1.8276 2.1749 0.1749 1.4805
Fuzzy case 2 2.4032 –1.188 0.5634 2.286 0.632 1.2762 0.901 0.3945 ≈0

Table 17.5 θi
∗-values for Eq. (17.3)

Observation Binary case Fuzzy case 1 Fuzzy case 2

1 1 1 0.9993
2 0 0 0.0260
3 1 1 0.3191
4 1 1 0.5000
5 1 0 0.2172
6 1 1 0.0055
7 1 0 0.1899
8 1 0 0.0589
9 1 1 0.2906

10 1 1 0.1071

Given the complexity analysis performed above, the min-algebraic model is
preferable to the classical linear combination one. Obviously the procedure can be
generalized to more than two competing model specifications.

The reason model (17.3) was set up, is that it naturally leads to a fuzzy gener-
alization, by first relaxing the binary condition on θ to 0 ≤ θ ≤ 1 (case 1). It also
leads to the split between min-regimes (case 2). Further developments of fuzzy spa-
tial econometrics can be found in Paelinck and Klaassen (1979, pp. 136–156). This
leads to the values reported in Table 17.4.

Table 17.5 compares the min-constraint (αxi + β < γzi + δ) parameter values θi
∗

in the binary (Table 17.3) and the fuzzy cases (Table 17.4).
As one can observe, although there is no complete correspondence between the

three cases, but some of the corresponding cases are striking (see, e.g., observations
1, 2 and 8, the latter at least partially).

Finally, if one applies the method to the “exact” case (numbers between paren-
theses in Table 17.4, binary case), there results θ = 1 and the exact equation is
uncovered, with ϕ = 1.96 × 10–13.

17.2 Filtering for Observational Errors

How would be the shift in the complexity results, if one succeeds in somehow fil-
tering out the stochastic elements from some series of variables? In this section we
restrict ourselves to the endogenous variable yi of Table 17.1.
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The model set up has the following specification

min i’p (17.4)

p, y, a
s.t.:

Xp̂a = y (17.5)

(y − y*),(y − y*)/nσ2(y*) = v* (17.6)

i,(y − y*) = 0 (17.7)

pp̂ = p (17.8)

The various symbols in Eqs. (17.4), (17.5), (17.6), (17.7), and (17.8) are denoted
as follows:

X is the matrix of the cubic Eq. (17.3) terms;
p is a column-vector of (binary: see Eq. (17.8)) variables, designed to neutral-

ize certain terms of Eq. (17.3), a cap denoting its transform into a diagonal
matrix;

a is a column-vector of complexity coefficients (corresponding to the ones in
Table 17.2;

y is the column-vector of filtered y∗ variables, the observed endogenous ones;
n and σ 2 are the numbers of observations and the variance of y∗, respectively;
and,

v∗ is the percentage/100 of the residual variance with respect to the variance of
y∗, meant as an indicator of the observational errors present in y∗.

What the model is designed to effectuate is to maximally reduce the complexity
of the given series y∗ [Eqs. (17.4)], given the cubic relations (17.5) and the obser-
vational error indicator (17.6). Equation (17.7) imposes a classical least squares
condition on y and y∗, and Eq. (17.8) is the binary condition on p.

Table 17.6 presents the results of the exercise using the more complex data of
Table 17.1; v∗ has been set at 0.05. Comparing Tables 17.6 and 17.2, the relevant
a-coefficients have been halved, and their values are much smaller. The resulting
degree of complexity is c = 0.4444.

Figure 17.1 hereafter portrays the series y and y∗.
To pursue the investigation, vector y has been subjected to the test characterized

by (Eq. 17.3); the remarkable fact is that the reduction in complexity again does not
select the simpler linear model. Table 17.7 reports the results, which should again
be compared with those of Table 17.3.
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Table 17.6 Observational
error filtering results, model
(17.4), (17.5), (17.6), (17.7),
and (17.8)

Variables and
parameters
observations y a p

1 0.9603 –2.5371 1
2 3.0623 1.5568 1
3 3.9574 –1.0002 1
4 6.1884 – 0
5 5.4122 – 0
6 9.7864 – 0
7 10.8701 – 0
8 10.5721 –0.0073 1
9 11.8998 – 0

10 11.2913 –0.0057 1

Fig. 17.1 The spatial series y and y∗

Table 17.7 Parameters after
error correction Parameters Values

α 1,5664
β –0.4709
γ 4.4263
δ –1.3737
θ 0
ϕ 1.8955
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17.3 Further Filtering for Spatial Bias

The starting point is Paelinck (2000, especially pp. 158–159), but with the simplify-
ing assumption that complete spatial homogeneity is present, the latter being defined
by the identity of all reaction parameters and exogenous variables. The following
example illustrates this point.

Suppose detailed underlying data—of an additive nature—to those (not between
parentheses) of Table 17.1, are located next to each other on a circle or a torus.
Assume that only first- and second-order contiguities are relevant. For underly-
ing micro-regions 3 and 4, the linear equation then is as follows, with only one
exogenous variable being taken into account

y3 = ax3 + b(x2 + x4) + c(x1 + x5) + d, and (17.9a)

y4 = ax4 + b(x3 + x5) + c(x2 + x6) + d. (17.9b)

Accordingly, the meso-regional equation becomes, after aggregation over the two
meso-regions

y*2 = (a + b)x2* + (0.5b + c)(x1* + x3*) + 2d. (17.10)

The second term on the right hand side of Eq. (17.10) would have to be changed
if inequality of the exogenous variables is present [i.e., the factor 0.5 would have to
be replaced by (x1 + x5)/(x1

∗ + x3
∗)].

This result gives a clue to how to specify a bias correction, leaving all the other
sources (e.g., different parameters, different specifications, different number of con-
tiguous regions) for further investigation. Indeed, one could assume that a correction
of the factor 0.5 could be performed by a term proportional to the differences in
exogenous variables between meso-region 2 and meso-regions 1 and 3, multiplied
by the relevant first-order meso-contiguity variables, and that such a term should be
(algebraically) subtracted from the yi

∗-variable. As will be seen subsequently, a test
on the adequacy of the procedure is possible. The model can be generalized easily
to more than one exogenous variable, as will be done in the ensuing example.

The preceding suggested correction suggested now is applied to the previous data
used, for which the following formal model is suggested

min(yc - Xp̂a)’(yc - Xp̂a), (17.11)

with

yc �= y − α�xC1x − β�zC1p (17.12)

s.t.:

p̂p = p. (17.13)
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Table 17.8 Spatial bias
correction results yc a p

0.1846 –4.0275 1
3.1428 0.0388 1
3.19137 –0.3490 0
6.2020 –0.0081 1
5.4098 –0.0092 1
9.7752 2.3698 1
10.9168 0.9007 1
10.3524 –0.1124 1
11.9934 –0.0972 1
11.4396 0.0522 1

Table 17.9 Linear regression
parameters after complete
filtering

Parameters Values F- and t-values

R2 0.9968 386.7782
x∗-intrareg. 1.6249 16.7149
z∗-intrareg. 0.0524 0.5232
x∗-contig. 0.3942 4.5931
z∗-contig. –0.4923 –4.6871

Most variables are defined in Sect. 17.2; yc is the bias-corrected vector generated
in that same section, α and β are the proportionality parameters introduced above,
�x and�z are the net deviations between neighboring variables (standardized), and
C1 is the first-order contiguity matrix.

Table 17.8 summarizes the results.
The value of Eq. (17.11) is ≈ 0; the values for α and β are 1.2474 and –0.7644

respectively. These last two values should have the signs of the corresponding
contiguity coefficients of the linear model (Table 17.3), which is indeed the case
(Table 17.9). With regard to complexity, only one binary variable is zero, but five
other coefficients are smaller than 0.1. Thus, in practice the degree of complexity is
only 0.3333, which pleads indeed in favor of the simple linear model of which the
constant, to be complete, is –1.4242 (–4.5053).

The regression results do not invalidate the assumption that spatial homogeneity
is present after correction. However the sample is too small to test that model against
an alternative, e.g. a min-algebraic model—which would have 10 parameters—so
further investigation with larger samples is in order.

17.4 Conclusions

It appears that filtering for measurement errors followed by spatial bias filtering
can reveal an underlying simple interregional model, so the hint is that observa-
tional errors and spatial bias jointly are responsible for much of the specification
complexity needed to represent the data. Chapter 14 has given an example of the
latter case.



242 17 Filtering Complexity for Observational Errors and Spatial Bias

Some more points are still in order.
A first point to be made is that we again advise spatial scientists to start an

exercise in spatial econometric modeling with a complexity analysis of the data.
Obvious candidates for simple exogenous variables are their space-time coordinates.
An example can be found in Getis and Paelinck (2004), in which regional product
data for the Netherlands are analyzed. A model specification implies the choice of
exogenous variables, and possibly endogenous ones—in interdependent models—
or lagged endogenous variables— in dynamic models—, so that they too should be
implied in a complexity approach.

A second point is that the specifications presented can readily be generalized to
three or more alternatives (e.g., regions, test specifications). For a finite automaton
version, for example, the following expression shows how and and or statements
can be added:

yi: if((czi + d < axi + b) and (eui + f < ax i + b); (czi + d) or (eui + f); axi + b)
(17.14)

Finally, spatial economic phenomena should be given very appropriate spec-
ifications, as non-linearity is a fundamental principle in the exercise of spatial
econometrics.



Chapter 18
General Spatial Econometric Conclusions

What should be clear from the exercises presented is that in most of them, classi-
cal “regression” has been combined with mathematical programming to obtain the
desired estimators.

Most notable is that multiple regimes have been systematically selected. A case
in point appears in Chap. 14, when inspection of residuals leads not only to two
regimes, but to as many of them as there are spatial units, this through the use of
composite parameters.

However, the exploration is far from being finished (Paelinck, 2004). Many ana-
lytical tools, as yet unexplored, lay at our avail, or, better even, wait to be invented.
Several of these “inventions” are presented in the preceding discussion—extended
Lotka-Volterra models, robust linear estimators for logistic and Poisson distribu-
tions, qualitative estimators to treat poor data—but many others, well adapted to
spatial econometrics, could be or are formulated, such as PPFDEs, mentioned in
Chap. 10 (Introduction: spatial econometrics) to this part (Coutrot et al., 2009).

The loose Latin saying Contentum sui operis necesse, maximae sunt divitiae
could be the motto of the spatial econometrician: never been satisfied by his work,
should be his ultimate riches. . .
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Epilogue

The respective contents of Parts I and II might convey to a reader the idea that
the focus of spatial statistics and that of spatial econometrics may well be quite
separate. The widely cited 1988 books by Griffith (Advanced Spatial Statistics,
Dordrecht: Martinus Nijhoff) and by Anselin (Spatial Econometrics: Methods and
Models, Dordrecht: Martinus Nijhoff) may further perpetuate this viewpoint. But
this simply is not the case! Rather, these seemingly different foci reflect histori-
cal developments, with the first high profile spatial statistics books being penned by
Cliff and Ord (Spatial Autocorrelation, Pion, 1973) and by Ripley (Spatial Statistics,
Wiley, 1981), featuring a statistician’s point of view, and the first spatial economet-
rics book being penned by Paelinck and Klaassen (Spatial Econometrics, Saxon
House, 1979), featuring an econometrician’s point of view.

One aspect of both subdisciplines particularly worth stressing is that if mathe-
matical geographers live in a GIS world, spatial econometricians extend a friendly
hand to them through metric topology. In reciprocity, mathematical geographers
extend a friendly hand to spatial econometricians through GIS functions supporting
spatial economics, especially in terms of the new economic geography promoted by
Krugman. An article by one of the authors in the Annals of Operations Research
(Vol. 123, 2003, pp. 371–383) titled “On locations and distances,” where a link is
established in both directions, effectively and convincingly illustrates this two-way
cooperative notion.

This perspective illustrates that joint work on spatial analytical problems always
will be fruitful, which has been a continual experience of both authors over quite a
number of decennia. A reader need only refer to the collection of papers contributed
from both subdisciplines that initiated a large amount of this type of interaction—
including ones by both authors—appearing in

Griffith and R. MacKinnon (1981), Dynamic Spatial Models, Alphen aan den
Rijn: Sijthoff and Noordhoff;

Griffith and A. Lea (1983), Evolving Geographical Structures, The Hague:
Martinus Nijhoff; and,

Griffith and R. Haining (1985), Transformations Through Space and Time, The
Hague: Martinus-Nijhoff.
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These three specific publications were followed by a set of collaborative papers
compiled in Spatial Statistics: Past, Present and Future (edited by D. Griffith,
1990, Ann Arbor, MI: Institute of Mathematical Geography), and then Advances
in Spatial Modelling and Methodology: Essays in Honor of Jean Paelinck (edited
by D. Griffith, C. Amrhein and J.-M. Huriot, 1998, Dordrecht: Kluwer), again with
entries by each of the authors. To this collection of edited volumes can be added the
authors’ recent study entitled “Specifying a joint space-and-time-lag using a bivari-
ate Poisson distribution” (Journal of Geographical Systems, 2009, Vol. 11, No 1,
pp. 23–36), which highlights equivalencies between a spatial statistical and a spatial
econometric solution to a space-time problem. The authors hope to continue their
scientific cooperation over many years to come, and invite others to join them in this
specific type of interdisciplinary endeavors.
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