

Lecture Notes in Computer Science 6366
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Shlomi Dolev Jorge Cobb
Michael Fischer Moti Yung (Eds.)

Stabilization,
Safety, and Security
of Distributed Systems

12th International Symposium, SSS 2010
New York, NY, USA, September 20-22, 2010
Proceedings

13

Volume Editors

Shlomi Dolev
Ben-Gurion University of the Negev, Department of Computer Science
Beer-Sheva, Israel 84105
E-mail: dolev@cs.bgu.ac.il

Jorge Cobb
The University of Texas at Dallas, Department of Computer Science
Richardson, TX 75083-0688, USA
E-mail: cobb@utdallas.edu

Michael Fischer
Yale University, Department of Computer Science
51 Prospect Street, New Haven, CT 06511, USA
E-mail: fischer-michael@cs.yale.edu

Moti Yung
Columbia University, Department of Computer Science
New York, NY 10027, USA
E-mail: moti@cs.columbia.edu

Library of Congress Control Number: 2010934646

CR Subject Classification (1998): C.2.4, C.3, F.1, F.2.2, K.6

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

ISSN 0302-9743
ISBN-10 3-642-16022-0 Springer Berlin Heidelberg New York
ISBN-13 978-3-642-16022-6 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

springer.com

© Springer-Verlag Berlin Heidelberg 2010
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper 06/3180

Preface

The papers in this volume were presented at the 12th International Sympo-
sium on Stabilization, Safety, and Security of Distributed Systems (SSS), held
September 20–22, 2010 at Columbia University, NYC, USA.

The SSS symposium is an international forum for researchers and practition-
ers in the design and development of distributed systems with self-* properties:
(the classical) self-stabilizing, self-configuring, self-organizing, self-managing, self-
repairing, self-healing, self-optimizing, self-adaptive, and self-protecting. Research
in distributed systems is now at a crucial point in its evolution, marked by the
importance of dynamic systems such as peer-to-peer networks, large-scale wire-
less sensor networks, mobile ad hoc networks, cloud computing, robotic networks,
etc. Moreover, new applications such as grid and web services, banking and e-
commerce, e-health and robotics, aerospace and avionics, automotive, industrial
process control, etc., have joined the traditional applications of distributed sys-
tems. SSS started as the Workshop on Self-Stabilizing Systems (WSS), the first
two of which were held in Austin in 1989 and in Las Vegas in 1995. Starting in
1995, the workshop began to be held biennially; it was held in Santa Barbara
(1997), Austin (1999), and Lisbon (2001). As interest grew and the community
expanded, the title of the forum was changed in 2003 to the Symposium on Self-
Stabilizing Systems (SSS). SSS was organized in San Francisco in 2003 and in
Barcelona in 2005. As SSS broadened its scope and attracted researchers from
other communities, a couple of changes were made in 2006. It became an an-
nual event, and the name of the conference was changed to the International
Symposium on Stabilization, Safety, and Security of Distributed Systems (SSS).
The last four SSS conferences were held in Dallas (2006), Paris (2007), Detroit
(2008), and Lyon (2009).

This year the Program Committee was organized into several tracks reflect-
ing most topics related to self-* systems. The tracks were: (i) Self-Stabilization,
(ii) Self-Organization, (iii) Ad-Hoc, Sensor, and Dynamic Networks, (iv) Peer to
Peer, (v) Fault-Tolerance and Dependable Systems, (vi) Safety and Verification,
(vii) Swarm, Amorphous, Spatial, and Complex Systems, (viii) Security, (ix)
Cryptography, and (x) Discrete Distributed Algorithms. The Safety and Veri-
fication track is in Memory of Amir Pnueli. We received 90 submissions. Each
submission was reviewed by at least three Program Committee members with
the help of external reviewers. Out of the 90 submitted papers, 39 papers were
selected for presentation. The symposium also included brief announcements.
Selected papers from the symposium will be published in a special issue of the
Information and Computation journal.

This year, we were fortunate to have three distinguished invited speakers:
Leonid Levin, Mihalis Yannakakis, and Yechiam Yemini.

VI Preface

Among the 39 selected papers, we considered two papers for special awards.
The best paper award was given to Anurag Agarwal, Vijay Garg, and Vinit
Ogale, for “Modeling and Analyzing Periodic Distributed Computations.” The
best student paper award was given to Dana Angluin, James Aspnes, Rida A.
Bazzi, Jiang Chen, David Eisenstat, and Goran Konjevod for “Storage Capacity
of Labeled Graphs.”

On behalf of the Program Committee, we would like to thank all the au-
thors who submitted their work to SSS. We thank all the Program Vice-Chairs
who managed the various tracks, all the members of the Program Committee,
and the external reviewers for their tremendous effort and valuable reviews. We
also thank the members of the Steering Committee for their invaluable advice.
The process of paper submission, selection, and compilation in the proceedings
was greatly simplified due to the strong and friendly interface of the EasyChair
system (http://www.easychair.org). We are grateful to the Organizing Com-
mittee members for their time and invaluable effort, which greatly contributed
to the success of this symposium. The support of the EU FRONTS project and
the NSF is greatly appreciated.

September 2010 Jorge Cobb
Shlomi Dolev

Michael Fischer
Moti Yung

Conference Organization

General Chair

Shlomi Dolev Ben-Gurion University of the Negev, Israel

Program Chairs

Jorge Cobb The University of Texas at Dallas, USA
Michael Fischer Yale University, USA
Moti Yung Google and Columbia University, USA

Program Vice-Chairs

Amotz Bar-Noy City University of New York, USA
Yaneer Bar-Yam NECSI and Harvard University, USA
Jacob Beal BBN Technologies and MIT CSAIL, USA
Kirstie Bellman Aerospace Corporation, USA
Brian Coan Telcordia Technologies, USA
Thomas Fuhrmann Technical University Munich, Germany
Jie Gao Stony Brook University, USA
Benjamin Goldberg New York University, USA
Mohamed Gouda National Science Foundation, USA
Gene Itkis MIT Lincoln Laboratory, USA
Mark Jelasity University of Szeged, Hungary
Jonathan Katz University of Maryland, USA
Sandeep Kulkarni Michigan State University, USA
Franck Petit Laboratoire d’Informatique de Paris 6, France
Charles Rackoff Toronto University, Canada
Sergio Rajsbaum National Autonomous Univ. of Mexico, Mexico
Paul Spirakis University of Patras, Greece
Cédric Tedeschi INRIA, France
Oliver Theel University of Oldenburg, Germany
Philippas Tsigas Chalmers University, Sweden
Rebecca Wright Rutgers University, USA
Lenore Zuck University of Illinois at Chicago, USA

Local Arrangements Chair

Gil Zussman Columbia University, USA

VIII Conference Organization

Publicity Chair

Doina Bein Pennsylvania State University, USA

Publication Chair

Jorge Cobb The University of Texas at Dallas, USA

Administration

Sanya Bolbotinovic Ben-Gurion University of the Negev, Israel
Jessica Rodriguez Columbia University, USA

Program Committee

Self-Stabilization

James Aspnes
Borzoo Bonakdarpour
Alain Cournier
Ajoy Datta
Murat Demirbas
Stéphane Devismes
Ted Herman
Amos Israeli
Colette Johnen

Toshimisu Masuzawa
Franck Petit (Chair)
Elad Michael Schiller
Sébastien Tixeuil
Philippas Tsigas (Chair)
Volker Turau
Koichi Wada
Maurice Tchuente

Self-Organization

Dimiter R. Avresky
Kirstie L. Bellman (Chair)
Yuriy Brun
Carlos Gershenson
Marie-Pierre Gleizes
Michael Grottke
David Hales

Christian Igel
Mark Jelasity (Chair)
Marco Mamei
Alfons Salden
Giovanna Di Marzo Serugendo
Martijn Schut
Praveen Yalagandula

Ad-Hoc, Sensor, and Dynamic Networks

Shigang Chen
Jie Gao (Chair)
Anxiao (Andrew) Jiang
Sandeep Kulkarni (Chair)
Bhaskar Krishnamachari

Nikola Milosavljevic
Calvin Newport
Ravi Prakash
Guiling Wang
Jennifer Wong

Conference Organization IX

Peer to Peer

Olivier Beaumont
Giuseppe Ciaccio
Davide Frey
Thomas Fuhrmann (Chair)
Mark Jelasity
Kendy Kutzner

Erwan Le Merrer
Giancarlo Ruffo
Christian Schindelhauer
Pierre Sens
Georgios Smaragdakis
Cédric Tedeschi (Chair)

Fault-Tolerance and Dependable Systems

Yehuda Afek
Marcos K. Aguilera
Rida Bazzi
Brian Coan (Chair)
Xavier Défago
Hugues Fauconnier
Christof Fetzer
Felix C. Freiling

Seth Gilbert
Fab́ıola Greve
Maurice Herlihy
Jonathan Kirsch
Michael Merritt
Lucia Draque Penso
Sergio Rajsbaum (Chair)

Safety and Verification (in Memory of Amir Pnueli)

Tevfik Bultan
Marsha Chechik
Benjamin Goldberg (Chair)
Holger Hermanns
Warren A. Hunt
Michel Hurfin
Pete Manolios
Achour Mostefaoui

Kedar Namjoshi
Ernst-Rüediger Olderog
Andreas Podelski
Oleg Sokolsky
Neeraj Suri
Oliver E. Theel (Chair)
Lenore Zuck (Chair)

Swarm, Amorphous, Spatial, and Complex Systems

Yaneer Bar-Yam (Chair)
Jacob Beal (Chair)
Dan Braha
Rene Doursat
Chris Dwyer
Yuval Elovici
Peter Gacs
Frederic Gruau

Marco Mamei
Olivier Michel
Rami Puzis
Ulrik Schultz
Antoine Spicher
Mirko Viroli
Justin Werfel

X Conference Organization

Security

Anish Arora
Domagoj Babic
Christian Cachin
Scott Coull
Vinod Ganapathy
Mohamed Gouda (Chair)
Xuxian Jiang

Eunjin Jung
Karl Levitt
Alex Liu
Nasir Memon
Rei Safavi-Naini
Mukesh Singhal
Rebecca Wright (Chair)

Cryptography

Matthias Fitzi
Niv Gilboa
Jonathan Herzog
Gene Itkis (Chair)
Seny Kamara

Jonathan Katz (Chair)
Matt Lepinski
Vladimir Kolesnikov
Moses Liskov
Charles Rackoff (Chair)

Discrete Distributed Algorithms

Amotz Bar-Noy (Chair)
Nikhil Bansal
Mordecai J. Golin
Evangelos Kranakis
Danny Krizanc

Marios Mavronicolas
Sriram Pemmaraju
Janos Simon
Paul Spirakis (Chair)

Steering Committee

Anish Arora Ohio State University, USA
Ajoy K. Datta University of Nevada, USA
Shlomi Dolev Ben-Gurion University of the Negev, Israel
Sukumar Ghosh (Chair) University of Iowa, USA
Mohamed Gouda The University of Texas at Austin, USA
Ted Herman University of Iowa, USA
Toshimitsu Masuzawa Osaka University, Japan
Vincent Villain Université de Picardie, France

Additional Reviewers

Luca Maria Aiello
S. M. Iftekharul Alam
Yaniv Altshuler
Nazareno Andrade
Luciana Arantes
Marin Bertier

Marc Bruenink
Santosh Chandrasekar
Julien Clement
Charles Consel
Alejandro Cornejo
Alexandre Donzé

Swan Dubois
Lionel Eyraud-Dubois
Maria Gradinariu
Sascha Grau
Taisuke Izumi
Hirotsugu Kakugawa

Conference Organization XI

Sayaka Kamei
Yoshiaki Katayama
Jun Kiniwa
Sven Köhler
Ioannis Krontiris
William Leal
Sergey Legtchenko
Stephen McCamant

Marco Milanesio
Sébastien Monnet
Fukuhito Ooshita
Rotem Oshman
André Panisson
Yan Qiao
Ingy Ramzy
Laurent Rosaz

Martin Süßkraut
Rossano Schifanella
Jie Tian
Stefan Weigert
Josef Widder
Philipp Woelfel
Tan Yan
Akka Zemmari

Table of Contents

Invited Talks Abstracts

Arcane Information, Solving Relations, and Church Censorship 1
Leonid A. Levin

Computation of Equilibria and Stable Solutions . 2
Mihalis Yannakakis

A Geometry of Networks . 3
Yechiam Yemini

Contributed Papers

Systematic Correct Construction of Self-stabilizing Systems:
A Case Study . 4

Ananda Basu, Borzoo Bonakdarpour, Marius Bozga, and
Joseph Sifakis

A Fault-Resistant Asynchronous Clock Function . 19
Ezra N. Hoch, Michael Ben-Or, and Danny Dolev

Self-stabilizing Leader Election in Dynamic Networks 35
Ajoy K. Datta, Lawrence L. Larmore, and Hema Piniganti

Loop-Free Super-Stabilizing Spanning Tree Construction 50
Lélia Blin, Maria Gradinariu Potop-Butucaru,
Stephane Rovedakis, and Sébastien Tixeuil

A New Technique for Proving Self-stabilizing under the Distributed
Scheduler . 65

Sven Köhler and Volker Turau

Tranformational Approach for Designing Scheduler-Oblivious
Self-stabilizing Algorithms . 80

Abhishek Dhama and Oliver Theel

On Byzantine Containment Properties of the min+1 Protocol 96
Swan Dubois, Toshimitsu Masuzawa, and Sébastien Tixeuil

Efficient Self-stabilizing Graph Searching in Tree Networks 111
Jean Blair, Fredrik Manne, and Rodica Mihai

Adaptive Containment of Time-Bounded Byzantine Faults 126
Yukiko Yamauchi, Toshimitsu Masuzawa, and Doina Bein

XIV Table of Contents

Brief Announcement: Fast Convergence in Route-Preservation 141
Jorge A. Cobb

Authenticated Broadcast with a Partially Compromised Public-Key
Infrastructure . 144

S. Dov Gordon, Jonathan Katz, Ranjit Kumaresan, and
Arkady Yerukhimovich

On Applicability of Random Graphs for Modeling Random Key
Predistribution for Wireless Sensor Networks . 159

Tuan Manh Vu, Reihaneh Safavi-Naini, and Carey Williamson

“Slow Is Fast” for Wireless Sensor Networks in the Presence of Message
Losses . 176

Mahesh Arumugam, Murat Demirbas, and Sandeep S. Kulkarni

Modeling and Analyzing Periodic Distributed Computations 191
Anurag Agarwal, Vijay K. Garg, and Vinit Ogale

Complexity Issues in Automated Model Revision without Explicit
Legitimate State . 206

Fuad Abujarad and Sandeep S. Kulkarni

Algorithmic Verification of Population Protocols . 221
Ioannis Chatzigiannakis, Othon Michail, and Paul G. Spirakis

Energy Management for Time-Critical Energy Harvesting Wireless
Sensor Networks . 236

Bo Zhang, Robert Simon, and Hakan Aydin

Stably Decidable Graph Languages by Mediated Population
Protocols . 252

Ioannis Chatzigiannakis, Othon Michail, and Paul G. Spirakis

Broadcasting in Sensor Networks of Unknown Topology in the Presence
of Swamping . 267

Evangelos Kranakis and Michel Paquette

Brief Announcement: Configuration of Actuated Camera Networks for
Multi-target Coverage . 282

Matthew P. Johnson, Amotz Bar-Noy, and Mani Srivastava

Brief Announcement: On the Hardness of Topology Inference 285
H.B. Acharya and Mohamed Gouda

Self-stabilizing Algorithm of Two-Hop Conflict Resolution 288
Stéphane Pomportes, Joanna Tomasik, Anthony Busson, and
Véronique Vèque

Table of Contents XV

Low Memory Distributed Protocols for 2-Coloring . 303
Amos Israeli, Mathew D. McCubbins, Ramamohan Paturi, and
Andrea Vattani

Connectivity-Preserving Scattering of Mobile Robots with Limited
Visibility . 319

Taisuke Izumi, Maria Gradinariu Potop-Butucaru, and
Sébastien Tixeuil

Computing in Social Networks . 332
Andrei Giurgiu, Rachid Guerraoui, Kévin Huguenin, and
Anne-Marie Kermarrec

On Transactional Scheduling in Distributed Transactional Memory
Systems . 347

Junwhan Kim and Binoy Ravindran

Recursion in Distributed Computing . 362
Eli Gafni and Sergio Rajsbaum

On Adaptive Renaming under Eventually Limited Contention 377
Damien Imbs and Michel Raynal

RobuSTM: A Robust Software Transactional Memory 388
Jons-Tobias Wamhoff, Torvald Riegel, Christof Fetzer, and
Pascal Felber

A Provably Starvation-Free Distributed Directory Protocol 405
Hagit Attiya, Vincent Gramoli, and Alessia Milani

Lightweight Live Migration for High Availability Cluster Service 420
Bo Jiang, Binoy Ravindran, and Changsoo Kim

Approximation of δ-Timeliness . 435
Carole Delporte-Gallet, Stéphane Devismes, and Hugues Fauconnier

A Framework for Adaptive Optimization of Remote Synchronous
CSCW in the Cloud Computing Era . 452

Ji Lu, Yaoxue Zhang, and Yuezhi Zhou

Chameleon-MAC: Adaptive and Self-� Algorithms for Media Access
Control in Mobile Ad Hoc Networks . 468

Pierre Leone, Marina Papatriantafilou, Elad M. Schiller, and
Gongxi Zhu

A Comparative Study of Rateless Codes for P2P Persistent Storage 489
Heverson B. Ribeiro and Emmanuelle Anceaume

XVI Table of Contents

Dynamically Reconfigurable Filtering Architectures 504
Mathieu Valero, Luciana Arantes,
Maria Gradinariu Potop-Butucaru, and
Pierre Sens

A Quantitative Analysis of Redundancy Schemes for Peer-to-Peer
Storage Systems . 519

Yaser Houri, Johanna Amann, and Thomas Fuhrmann

A Framework for Secure and Private P2P Publish/Subscribe 531
Samuel Bernard, Maria Gradinariu Potop-Butucaru, and
Sébastien Tixeuil

Snap-Stabilizing Linear Message Forwarding . 546
Alain Cournier, Swan Dubois, Anissa Lamani, Franck Petit, and
Vincent Villain

Vulnerability Analysis of High Dimensional Complex Systems 560
Vedant Misra, Dion Harmon, and Yaneer Bar-Yam

Storage Capacity of Labeled Graphs . 573
Dana Angluin, James Aspnes, Rida A. Bazzi, Jiang Chen,
David Eisenstat, and Goran Konjevod

Safe Flocking in Spite of Actuator Faults . 588
Taylor Johnson and Sayan Mitra

Author Index . 603

Arcane Information, Solving Relations, and
Church Censorship

Leonid A. Levin

Boston University
University of Heidelberg
Humboldt Foundation

http://www.cs.bu.edu/fac/lnd

Abstract. Church-Turing Thesis fails for problems that allow multi-
ple answers: many easily solvable problems allow only non-recursive so-
lutions. Its corrected version is: Physical and Mathematical Sequences
have Little Common Information. This requires extending Kolmogorov’s
concept of mutual information to infinite strings. This is tricky; the talk
will survey these and other related issues. Related Information can found
at: http://arxiv.org/abs/cs.CC/0203029.

S. Dolev et al. (Eds.): SSS 2010, LNCS 6366, p. 1, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Computation of Equilibria and Stable Solutions

Mihalis Yannakakis

Department of Computer Science
Columbia University

455 Computer Science Building
1214 Amsterdam Avenue, Mail Code 0401

New York, NY 10027
mihalis@cs.columbia.edu

Abstract. Many models from a variety of areas involve the computation
of an equilibrium or stable solution of some kind. Examples include Nash
equilibria in games; price equilibria in markets; optimal strategies and
the values of competitive dynamic games (stochastic and other games);
stable configurations of neural networks; analysis of stochastic models
like branching processes and recursive Markov chains. It is not known
whether these problems can be solved in polynomial time. Despite their
broad diversity, there are certain common computational principles that
underlie different types of equilibria and connect many of these problems
to each other. In this talk we will discuss some of these common princi-
ples, the corresponding complexity classes that capture them, and their
relationship with other open questions in computation.

S. Dolev et al. (Eds.): SSS 2010, LNCS 6366, p. 2, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

A Geometry of Networks

Yechiam Yemini

Department of Computer Science
Columbia University

450 Computer Science Building
1214 Amsterdam Avenue, Mailcode: 0401

New York, New York 10027-7003
yemini@cs.columbia.edu

Abstract. This presentation will describe a coordinate geometry of net-
works and its applications to mobility, security, overlays and traffic man-
agement. Given a network graph, one can construct an abstract group
and associate elements of the group with graph nodes to provide “co-
ordinates”. Much like Cartesian coordinates, a route may be simply
computed from the coordinates of the source and destination. Given
a metric of link “length” (e.g., delay, utilization), one may easily se-
lect shortest-distance routes. Furthermore, this route selection may vary
for each source-destination stream, or even for each packet. For exam-
ple, unlike current networks, one may pursue dispersion-routing where a
stream of packets is routed over multiple paths to load-balance traffic.
The coordinates geometry admits dynamic topology changes and may
thus be used to support various forms of mobility, including mobile ad-
hoc networks, or dynamic deployment of virtual-machines through cloud
infrastructures. A given network may admit multiple independent geom-
etry overlays. Each such overlay can serve as a VPN to protect access to
respective nodes. Finally, geometry overlays may be flexibly layered over
each other, permitting simple scalability, applications-specific-networks
and flexible private networks.

S. Dolev et al. (Eds.): SSS 2010, LNCS 6366, p. 3, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Systematic Correct Construction of
Self-stabilizing Systems: A Case Study

Ananda Basu2, Borzoo Bonakdarpour1,�, Marius Bozga2, and Joseph Sifakis2

1 Department of Electrical and Computer Engineering
University of Waterloo

200 University Avenue West
Waterloo, Ontario, Canada, N2L 3G1

2 VERIMAG
2 Avenue de Vignate, 38610, Gières, France

Abstract. Design and implementation of distributed algorithms often
involve many subtleties due to their complex structure, non-determinism,
and low atomicity as well as occurrence of unanticipated physical events
such as faults. Thus, constructing correct distributed systems has al-
ways been a challenge and often subject to serious errors. We present
a methodology for component-based modeling, verification, and perfor-
mance evaluation of self-stabilizing systems based on the BIP frame-
work. In BIP, a system is modeled as the composition of a set of atomic
components by using two types of operators: interactions describing syn-
chronization constraints between components, and priorities to specify
scheduling constraints. The methodology involves three steps illustrated
using the distributed reset algorithm due to Arora and Gouda. First, a
high-level model of the algorithm is built in BIP from the set of its
processes by using powerful primitives for multi-party interactions and
scheduling. Then, we use this model for verification of properties of a
self-stabilizing algorithm. Finally, a distributed model which is observa-
tionally equivalent to the high-level model is generated.

Keywords: Component-based modeling, Verification, Self-stabilization,
Distributed algorithms, Reset algorithms.

1 Introduction

Distributed systems are constructed from a set of relatively independent com-
ponents that form a unified, but geographically and functionally diverse entity.
They remain difficult to design, build, and maintain, because of their inherently
concurrent, non-deterministic, and non-atomic structure as well as the occur-
rence of unanticipated physical events such as faults.

We currently lack disciplined methods for rigorous design and correct imple-
mentation of distributed systems. These systems are still being constructed in

� For all correspondence, please contact Borzoo Bonakdarpour at
borzoo@ecemail.uwaterloo.ca.

S. Dolev et al. (Eds.): SSS 2010, LNCS 6366, pp. 4–18, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Systematic Correct Construction of Self-stabilizing Systems: A Case Study 5

an ad-hoc fashion in practice, mainly for two reasons: (1) formal methods are
not easy to use by engineers; and (2) there is a wide gap between modeling for-
malisms and automated verification tools on one side, and practical development
and deployment tools on the other side. In fact, it is not clear how existing re-
sults can be consistently integrated in design and implementation methodologies.
Formalisms such as process algebras [1], I/O automata [13, 17], and Unity [9]
have been used for modeling and reasoning about the correctness of distributed
systems. These methods are either too formal to be used by engineers, or, they
require the designer to specify low-level elements of a distributed system such
as channels and schedulers [17]. Numerous techniques and algorithms have also
been introduced for adding reliability and fault-tolerance to distributed sys-
tems. Moreover, an interest has recently emerged in verification of distributed
algorithms. While these approaches play an important role in formalizing and
achieving correctness of distributed algorithms, we believe that a more practical
systematic approach for modeling, verification, and as importantly deployment
of distributed systems is still required.

In this paper, we apply a methodology which consistently integrates modeling,
verification, and deployment techniques, based on the BIP (Behavior, Interac-
tion, Priority) framework [4,3]. BIP is based on a semantic model encompassing
composition of heterogeneous components. In contrast to all other formalisms
using a single type interaction (e.g., rendezvous, asynchronous message pass-
ing), BIP uses two families of composition operators for expressing coordination
between components: interactions and priorities. Interactions are expressed by
combining two protocols: rendezvous and broadcast, which makes BIP more ex-
pressive than any formalism based on a single type of interaction [5]. Supporting
tools of BIP’s theory include techniques for model verification [15] as well as for
generating from a high-level model an observationally equivalent multi-threaded
or distributed implementation [3, 6,7].

To illustrate our methodology, we focus on self-stabilizing systems. Pioneered
by Dijkstra [10], a self-stabilizing distributed algorithm guarantees that starting
from an arbitrary state, it converges to a legitimate state (from where it satis-
fies its specification) and remains thereafter. As Dijkstra points out in a belated
proof of correctness of his token ring algorithm [11], designing and deploying
correct self-stabilizing algorithms is not a trivial task at all, although it initially
seems straightforward. We describe our methodology to overcome these diffi-
culties using the distributed reset self-stabilizing algorithm [2]. We demonstrate
how refinement of a simple algorithm to a less high-level model involves many
subtleties that may dramatically affect the correctness of the refined model. We
also show how BIP facilitates rigorous modeling, verification, and performance
analysis of the distributed reset algorithm. Our methodology involves three steps:

– The starting point is a high-level BIP model of a distributed system ob-
tained as the composition of a set of components. This model represents
a system with a global state and atomic transitions. Interactions may lead
the system from one global state to another. Modeling a distributed system
in such a high-level model confers numerous advantages such as modularity

6 A. Basu et al.

by using abstract behavioral components and faithfulness as coordination is
directly expressed by using abstract multi-party interactions instead of low-
level primitives. We also show how different functions of a self-stabilizing
system (e.g., normal as well as recovery) can be elegantly modeled in BIP in
an incremental manner.

– We use this compact high-level model for verification of safety and liveness
properties that any self-stabilizing algorithm must satisfy. These properties
include closure, deadlock-freedom, and finite reachability of the set of legit-
imate states. We verify these properties on our BIP model for distributed
reset by using model checking techniques.

– Finally, a multi-threaded or distributed executable C++ code is automati-
cally generated from the high-level model for simulations and experiments
[3, 6, 7]. This C++ code faithfully represents an actual multi-threaded or
distributed implementation of the high-level model. It is obtained by ap-
plying two transformations preserving observational equivalence [3,6,7]: (1)
multi-party interactions are substituted by protocols based on asynchronous
message passing; (2) the state of a component is undefined (due to concur-
rency) when it performs some internal computation.

Organization of the paper. In Section 2, we review the distributed reset
algorithm and basic concepts of the BIP framework. In Section 3, we formally
model distributed reset in BIP. Section 4 is dedicated to verification of distributed
reset. Finally, we conclude in Section 5.

2 Background

2.1 Distributed Reset

Intuitively, distributed reset [2] augments functionality of a distributed system
with a subsystem where each process can initiate a global reset to a predefined
global state. Each process is associated with a set of adjacent processes with
which it can communicate. At any time instant, an alive process may crash
which results in change of the list of adjacent processes. The reset subsystem
consists of the following three layers (see Figure 1-a):

In the tree layer, adjacent processes communicate in order to construct and
maintain a rooted spanning tree throughout the alive processes. Thus, any
changes in the adjacency relationship of processes eventually result in corre-
sponding changes in the structure of the spanning tree. The tree layer is self-
stabilizing in that starting from any arbitrary topology and initial structure,
construction of a rooted spanning tree within a finite number of steps is guaran-
teed. Thus, faults such as process failures and local variable corruptions do not
result in permanent destruction of the spanning tree. Communication among
these processes establish Channel 1 in Figure 1-a.

The application layer may locally choose to initiate a global reset. In this
case, the corresponding local component sends a request to the local wave layer
described next (see Channel 4 in Figure 1-a).

Systematic Correct Construction of Self-stabilizing Systems: A Case Study 7

Process 1

APPLICATION

WAVE

TREE

Process 2

APPLICATION

WAVE

TREE
1

2 2

3

4 4

(a) Two adjacent processes in
distributed reset.

p, v

U : v := Max(v1, v2, v3)
G : true

D1 : v1 := v

p1, v1 p3, v3p2, v2

D3 : v3 := v

D2 : v2 := v

i1 i2 i3
f1() f2() f3()

B1 B2 B3

p1 p2 p3

(b) A simple BIP model.

Fig. 1. Preliminary concepts

When the wave layer receives a reset request from the application layer it
forwards the request to its parent in the current spanning tree until the request
reaches the root. Once the root receives a reset request, it initiates a diffusing
computation as follows. First, the root resets its own state and then initiates
a reset wave. The reset wave travels towards the leaves of the spanning tree
and causes the wave component of each encountered process to reset its state.
When the reset wave reaches a leaf process, it bounces as a completion wave
that travels towards the root process. A process propagates the completion wave
to its parent if all its offsprings are complete (see Channel 3 in Figure 1-a).
When the completion wave reaches the root, the global reset is complete. Each
wave component maintains a session number in order to ensure that concurrent
resets do not interfere. The wave layer is also self-stabilizing in the sense that
starting from any arbitrary configuration of the wave components, the algorithm
guarantees an eventual global reset within a finite number of steps. The wave
layer always assumes the existence of a sound rooted spanning tree. Thus, the
only piece of information that a tree component shares with the corresponding
local wave component is the identity of the parent process in the spanning tree
(see Channel 2 in Figure 1-a).

2.2 The BIP Framework

In the BIP language [16, 4], an architecture is characterized as a hierarchically
structured set of components obtained by composition from a set of atomic
components. Composition is parameterized by sets of interactions between the
composed components. The BIP toolset has a compilation chain allowing the
generation of different types of C++ code (e.g., monolithic, real-time, multi-
threaded, distributed, etc) from BIP models. The generated code is modular
and can be executed on a dedicated middleware consisting of one or more

8 A. Basu et al.

Engines that orchestrate the computation of atomic components by executing
their interactions. Hierarchical description allows incremental reasoning and pro-
gressive design of complex systems. Priorities among interactions allow specify-
ing scheduling policies in BIP.

A BIP component is characterized by its interface and its behavior. An inter-
face consists of a set of external ports used to specify interactions. Each port
p is associated with a set vp of variables which are visible when an interaction
involving p is executed. It is assumed that the ports and associated variables
of atomic components are disjoint. The behavior of atomic components is de-
scribed as a finite state automaton extended with data and functions given in
C++. A transition of the automaton is labeled by (1) a port p through which an
interaction is sought, (2) a function f describing a local computation, and (3)
a guard g on local data. For a given control state, a transition can be executed
if its guard g is true and an interaction involving p is possible (we precisely
define the notion of interactions later in this section). Execution of transitions
is atomic: it is initiated by the interaction and followed by the execution of f .
A component may have internal ports as well. Transitions labeled by internal
ports are executed independently and do not require initiation of an interaction.

Composition consists of applying a set of connectors to a set of components.
A connector is defined by:

1. its support set of ports {p1, . . . , pn} of the composed components;
2. optionally an exported port p by the connector and the associated variables;
3. its set of interactions, that are, subsets of the set {p1, . . . , pn}. Each inter-

action α = {pi1 . . . pik
} is annotated by

(a) a guard G, Boolean expression involving variables associated with the
ports pij involved in the interaction α;

(b) an upstream transfer function U specifying flow of data from variables
associated with the support set of ports towards the associated variables
of the exported port;

(c) and downstream transfer functions Di1 , . . . , Dik
specifying flow of data

from the variables associated with the exported port towards variables
associated with the support set of ports.

When it is clear from the context, we simply denote a connector by only its
support set of ports (i.e., 〈p1 . . . pn〉). The set of interactions associated with a
connector is defined using a typing mechanism of ports in its support set of ports.
We distinguish two types of ports: synchron and trigger. Any set of support ports
that is either maximal or it contains a trigger denotes a valid interaction. Intu-
itively, a synchron is a passive port, and needs synchronization with other ports.
In other words, such a port cannot initiate an interaction without synchronizing
with other ports. However, a special case (such as the one in Figure 1-b) is a
connector that only involves synchrons. Such a connector denotes a rendezvous
and requires all ports to participate. On the other hand, a trigger is an active
port, and can initiate an interaction without synchronizing with other ports. The

Systematic Correct Construction of Self-stabilizing Systems: A Case Study 9

global behavior resulting from the application of a connector to a set of compo-
nents is defined as follows. An interaction α = {pi1 . . . pik

} of the connector is
enabled only if for each one of its ports pij , there exists an enabled transition in
some component labeled by pij . Execution of the interaction involves two steps:

1. a temporary variable v is assigned the value U(vpi1
, . . . , vpik

);
2. the variables vij associated with the ports pij are assigned values Dij (v).

The execution of an interaction is followed by the execution of the local com-
putations of the synchronized transitions. A composite component is recursively
obtained from a set of atomic or sub-components by successive (i.e., acyclic) ap-
plication of connectors. The support set of any connector contains ports exported
either by sub-components or other existing connectors.

In Figure 1-b, we provide a simple composite component. It is composed of
three atomic components B1, B2, and B3. Each atomic component Bk holds
an integer variable vk, exported through an external port pk. Additionally, the
component has an internal port ik which triggers the execution of an internal
computation defined by the function fk. The ternary connector defines the inter-
action {p1, p2, p3} which is a rendezvous among external ports p1, p2, and p3. As
a result of this interaction, following the definition of upstream an downstream
transfer functions, each component receives the maximum of the exported val-
ues. Notice that the exported port of the connector belongs to the interface of
the composite component, that is, it can be used for further interactions.

3 Modeling Distributed Reset in BIP

We model distributed reset according to the BIP system construction methodol-
ogy: (1) designing the behavior of each atomic component (i.e., an automaton
extended by variables and ports), (2) applying synchronization mechanisms for
ensuring coordination of distributed components through interactions, and (3)
specifying scheduling constraints by using priorities. We apply this methodology
to model the wave layer and the tree layer in a modular manner in Subsections 3.1
and 3.2, respectively. Then, we add cross-layer connectors in Subsection 3.3. We
also systematically model normal, recovery, and faulty behaviors of distributed re-
set using independent interactions. From the wave and tree components designed
in this section, one can incrementally build a distributed system equipped with
the distributed reset functionality according to a topology of interest.

3.1 The Wave Layer

The wave layer is only concerned with achieving a self-stabilizing diffusing compu-
tation to accomplish a distributed reset. Each process in the distributed system
contains a wave atomic component.

10 A. Basu et al.

NORMAL

INIT

RESET
pReset

pReset
pRequest

pComplete

pRequest

pComplete

pResetpComplete

myRequest

pReset, index, f, sn pRequest, index, f

pComplete, index, fpPc, index, f

myReset
G: f = index

(a) Behavior and interface

pResetpRequest

pComplete

pReset

pRequest

pReset

pRequest

pComplete pCompletepPc pPc

pPc

pX1 pX2

pY1 pY2

G
:w

2 .f = w
.index

G
:w

1.f
 =

 w
.in

de
x

G
:

w
2 .f ≠ w

.index

G
:

w
1.f

 ≠
 w

.in
de

x

W

W1 W2

G
:(w

2 .f=
w

.index)
 (w

.sn
= w

2 .sn + 1)
D

: w
2 .sn

:= w
2 .sn+1;

G
:

(w
1.f

 =
 w

.in
de

x)

 (w
.sn

=
w

1.s
n

+
1)

D
: w

1.s
n

:=
 w

1.s
n+

1;

(b) Interactions

Fig. 2. Normal operation of the wave layer

Normal Operation. We start with modeling the normal operation of the wave
layer, where each component works correctly in the absence of faults.

Interface and Behavior

– (Exported Ports) A wave component has the following four ports: (1)
pRequest for propagating a reset request from a child to its parent, (2) pReset
for enforcing a child to reset its state by the parent, (3) pComplete for in-
forming a node that its subtree has completed diffusing computation, and
(4) pPc for identifying adjacent processes that are neither a child nor a par-
ent. As can be seen in Figure 2-a, each port is associated with a subset of
variables of the component.

– (Variables) Each component maintains the following variables: (1) an in-
teger index to represent the unique index of the component, (2) an integer
f to keep the index of the parent process in the spanning tree, and (3) an
integer sn for the session number of the current ongoing reset.

– (Automaton) A wave component has three control states : NORMAL, INIT , and
RESET (see Figure 2-a). Initially, all components are in the NORMAL control
state. A wave component may move to INIT by either enabling the myRequest
internal port (e.g., from the application layer of the same process) or when a
reset request is received via the pRequest port. This move occurs during the
request wave. Next, the component moves from INIT to RESET and resets its
state when the port pReset is enabled during the reset wave. A component
may also move from INIT to RESET on port pReset , if it was not involved
in the request wave. Finally, a wave component moves back to NORMAL on
port pComplete , when its subtree has completed the completion wave. A
completed wave component is either in NORMAL control state or in INIT if
another reset has already been initiated in its subtree. The pComplete self-
loop at this control state is added for this reason.

Systematic Correct Construction of Self-stabilizing Systems: A Case Study 11

Interactions
Notice that each process is associated with a set of adjacent processes according
to a topology. The static design of connectors should provide the potential of
communication between any two adjacent processes depending upon the topol-
ogy. Nonetheless, the actual communication in the wave layer should occur only
between processes that are allowed to do so by the parent-child relationship
determined by the tree layer. Let w be a wave component whose adjacent neigh-
bors are w1 · · ·wn. We categorize the interactions based on the three waves of
the wave layer:

– (Request Wave) The first set of connectors is
{〈(w.pRequest)(wi.pRequest)〉 | 1 ≤ i ≤ n}. These connectors allow
the component w at NORMAL to synchronize with a component wi, that is
already in control state INIT : wi synchronizes with w by taking the pRequest
self-loop at control state INIT . Figure 2-b presents an example, where w has
two adjacent processes w1 and w2. The connectors between pRequest ports
are associated with a guard to ensure correct parent-child relationship and
bottom-up flow of requests (e.g., w.index = w1.f). Hence, if two processes
are adjacent due to the topology, but not in any parent-child relationship,
they do not interact to send or receive reset requests. This guard is present
in almost all of the connectors in the wave layer. Symmetric conditions in
adjacent processes (e.g., w1 is parent of w) are omitted from the figure
for simplicity. Recall that since BIP allows us to associate ports with
variables, evaluation of the above guard does not require explicit use of
shared memory.

– (Reset wave) The second set of connectors is {〈(w.pReset)(wi.pReset)〉 | 1 ≤
i ≤ n}. Once the root (of the spanning tree) wave component moves to
INIT , it goes to RESET without synchronizing on port pReset . This is man-
aged through specifying an internal transition from INIT to RESET with guard
(w.f = w.index). Once a process is in RESET , its children can go to RESET

from either NORMAL or INIT by synchronizing on port pReset . In other words,
a child whose parent is in RESET can reset its state regardless of its past
desire to initiate a global reset. A parent synchronizes with its resetting chil-
dren through the pReset self-loop at control state RESET . The guard of these
connectors ensures that the session number of a child is one less than the
session number of its parent. Finally, when the reset connector gets enabled,
it increments sn of the child component to mark the session number of the
current reset wave.

– (Completion wave) A process declares completion only if all its children are
complete (which essentially means its entire subtree is complete). The com-
pletion mechanism inherently requires a multi-party rendezvous. However,
our design should be flexible in that it allows bypassing adjacent processes
that are neither a parent nor a child. To this end, we construct a hierarchi-
cal connector as follows. First, we include a connector between pPc ports
of w and wi, where 1 ≤ i ≤ n, which gets enabled when w and wi are not
in a parent-child relationship. This connector exports the trigger port pX i,

12 A. Basu et al.

NORMAL

INIT

RESET
f

f

fSn

fSn

fSn

sn=(sn + rand())%K

sn=(sn + rand())%K

sn=(sn + rand())%K

d ≥ kd ≥ k d ≥ kd ≥ kG: (rand()%100)<prob

(a) Faulty behavior

NORMAL

INIT

RESET

pRec12

pRec12

pRec11

pRec11

pRec13

pRec13

pRec11, index, f, sn

pRec12, index, f, sn pRec13, index, f, sn

(b) Recovery type 1

NORMAL

INIT

RESET

pRec22
pRec22

pRec22

pRec21

pRec22, index, f, sn

pRec21, index, f, sn

(c) Recovery type 2

Fig. 3. Self-stabilization of the wave layer

which gets enabled when the completion of wi is irrelevant to w. Now, the
pair of pX i and wi.pComplete constructs another connector, which exports
the port pY i. This port is present in the rendezvous that covers all wi compo-
nents. The full interaction can be characterized by the following rendezvous:
〈(w.pComplete)pY 1pY 2 · · · pY n〉, where pY i = 〈(pX i) + (wi.pComplete)〉
and pX i = 〈(w.pPc)(wi.pPc)〉. The ‘+’ operator denotes a choice between
two enabled ports.

The set of legitimate states for two wave components w1 and w2 is the following:

Sw ≡ ∀w1, w2 :: ((w1.f = w2.index ∧ ¬ w2.RESET) ⇒
(¬w1.RESET ∧ w1.sn = w2.sn)) ∧

((w1.f = w2.index ∧ w2.RESET) ⇒
((¬w1.RESET ∧ w2.sn = w1.sn + 1) ∨ w2.sn = w1.sn)).

Faulty Behavior. In distributed reset, faults can lead a process to reach any
arbitrary state in ¬Sw (See Figure 3-a). The transitions labeled by internal port f
cause a process to go to RESET from either INIT or NORMAL without synchronizing
with its parent. Faults labeled by fSn are self-loops that corrupt the session
number of a process by executing the C++ instruction sn = (sn + rand())
% K, where K is the maximum number of processes. To make the occurrence
of faults a random event, we associate the guard of fault transitions with a
probability prob. Notice that the union of transitions in Figures 2-a and 3-a may
lead a wave component to reach any arbitrary state. Finally, fault transitions are
labeled by internal ports making their occurrence independent of synchronization
constraints.

Self-stabilization

Interface and Behavior. We model self-stabilization of the wave layer based
on violation of either conjuncts of Sw. Essentially, the recovery mechanism should
ensure that starting from any state in ¬Sw, the entire distributed system can
reach a state in Sw within a finite number of steps. For the first conjunct

Systematic Correct Construction of Self-stabilizing Systems: A Case Study 13

(see Figure 3-b), first, we consider the case where a parent process is not in
RESET , but one of its children is. To resolve this case, it suffices for the child to
(1) move to the control state where its parent is (i.e., either NORMAL through
synchronization on port pRec11 or INIT through port pRec12), and (2) copy the
session number from the parent to ensure consistency. Then, to resolve the case
where a parent and its child are in the same control state but their session num-
bers differ, the processes synchronize on port pRec13 and the child copies the
parent’s session number.

For the second conjunct (see Figure 3-c), if a process and one of its children
are in RESET , but their session numbers differ, then they synchronize on port
pRec21 and the child copies the session number. Finally, if a process is in RESET ,
but one of its children is not in RESET and the child’s session number is not one
less than its parent’s, then they synchronize on port pRec22 and the child copies
the session number.

Interactions. Recovery connectors define interactions on corresponding ports
between adjacent components. Thus, the set of connectors is
{〈(w.pRecjk)(wi.pRecjk)〉 | (i = 1..n) ∧ (j = 1..2) ∧ (k = 1..3)}, where wi is
adjacent to w.

3.2 The Tree Layer

The tree layer is concerned with a self-stabilizing algorithm for constructing a
rooted spanning tree (see Figures 4-a and 4-b)

Interface and Behavior

– (Exported Ports) Adjacent processes in the tree layer communicate via
three ports: (1) pForest when two adjacent processes identify two different
roots, (2) pNeighbor when two a parent and a child identify an inconsistency
between them (i.e., existence of multiple roots, incorrect shortest distance to
the root, or a root process that is not self-parent), and (3) pPc when a parent
process crashes. Port pCycle is used for cross-layer interactions described in
Subsection 3.3.

– (Variables) Each tree component maintains the following variables: (1) an
integer index to represent the unique index of the component, (2) an integer
f to keep the index of the parent process in the spanning tree, (3) an integer
root that contains the index of the root process, and an integer d whose
value is the distance of the process to the root. The value of index is equal
to that of the corresponding wave component and is specified statically. The
value of f , however, is determined at runtime across the tree layer. Thus, the
tree and wave components of a process need to communicate to maintain
consistency. We address this issue in Subsection 3.3. Each component also
maintains an array N , which contains the index of all adjacent processes.

– (Automaton) Initially, all processes are alive and in the UP control state.
Faults can alter the value of variables f , root , and d arbitrarily through the

14 A. Basu et al.

DOWN

fCrash

fCorrupt

pRepair
pCycle

pForest

pNeighbor

pLocal
G: (root < index)
 (f = index
 (root ≠ index d ≠ 0))
D: root := index;

f := index;
d := 0;

pCycle, index, fpForest, index, f, root, d

pNeighbor, index, f, root, d

pPc

pPc, index, f

pPcUP

G: d ≥ K
D: root := index;
 f := index;

d:=0;

(a) Tree component

pCycle

pNeighbor

t2

w2

pNewParent

process2

G: (t1.f = t2.index) ((t1.root ≠ t2.root) (t1.d ≠ t2.d+1))
D: t1.root := t2.root; t1.d := t2.d+1;

D
: w

2 .f :=
 t2 .f;D

: w
1.f

 :=
 t 1

.f
;

pForest

G: (t1.root < t2.root) ((t1.root = t2.root) t1.d ≠ t2.d+1))
D: t1.root := t2.root; t1.f := t2.f ; t1.d := t2.d+1;

D: w2.f := t2.f;

pCycle

pNeighbor

t1

w1

pNewParent

process1

pForest

D: w1.f := t1.f;

pPc pPc

G:
t1.f = t2.index

D:
t1.f := t1.index;
t1.root := t1.index;

(b) The tree layer and cross-layer inter-
actions

Fig. 4. The tree layer

internal port fCorrupt . Also, each process may crash and go to the control
state DOWN through the internal port fCrash . A crashed process may get
repaired and return to the UP control state through internal port pRepair .
Thus, faults can potentially break a rooted tree into forests, create cycles,
and cause (local or global) inconsistencies. A tree component participates in
resolving the above issues when it is in control state UP. A local inconsistency
is detected in a tree component through the internal port pLocal associated
with a guard which indicates a discrepancy in the value of either root or d.
A cycle can also be detected locally, if the distance of a process to the root is
greater than the maximum number of processes K. A tree component fixes
a local inconsistency and breaks a cycle by setting root = f = index and
d = 0.

Interactions
Let t be a tree component whose adjacent processes are t1..tn. The interactions
between tree components resolve the following issues to construct a rooted span-
ning tree. Recall that interactions between tree components construct Channel
1 of Figure 1-a:

– (Process crashes) The set {〈(t.pPc)(ti.pPc)〉 | 1 ≤ i ≤ n} of connectors
are used to inform a process that its parent has crashed. As can be seen
in Figure 4, this connector is enabled when one participating component
is in UP and the other process is in DOWN control state. The guard of the
connector enforces the parent-child relationship. Execution of this interaction
invalidates the variables of the child process whose parent is crashed.

– (Parental inconsistencies) A connector in the set
{〈(t.pNeighbor)(ti.pNeighbor)〉 | 1 ≤ i ≤ n} is enabled when a child and
its parent either do not agree on the same root, or, the child is not located
one step farther of its parent from the root. In either case, the child simply
fixes the root index and its distance according to the parent through the data

Systematic Correct Construction of Self-stabilizing Systems: A Case Study 15

transfer mechanism of the connector (see the guard G and transfer function
D of the connector in Figure 4-b).

– (Rooted forests) A connector in the set {〈(t.pForest)(ti.pForest)〉 | 1 ≤
i ≤ n} is enabled when multiple roots are detected by a tree component.
This situation occurs when there exists an adjacent process whose root has
a higher index or the process offers a shorter distance to the root. In this
case, the process updates its root , f , and d variables via the data transfer
mechanism (see the guard G and function D of the connector in Figure 4-b).

Finally, we define the set of legitimate states of the tree layer, where a rooted
tree that spans over all alive processes exists, as follows:

St ≡ (k = max{t.index | t.UP}) ∧
(∀t1 | t1.UP:: (t1.index = k ⇒

(t1.index = t1.root ∧ t1.index = t1.f ∧ t1.d = 0)) ∧
(t1.index
= k ⇒

(∃t2 ∈ t1.N :: (t1.f = t2.index ∧ t1.d = t2.d + 1 ∧
∀t3 ∈ t1.N :: t2.d ≤ t3.d)))).

3.3 Building Distributed Reset

Given the tree layer and wave layer components, one can easily compose them
and incrementally build a distributed reset system. To this end, we add cross
layer interactions as follows. When a cycle or multiple forests are detected in the
tree layer, a tree component may choose a new parent from its neighbors. In this
case, the wave component of the same process has to update its parent as well,
so the subsequent resets complete maturely (see Channel 2 in Figure 1-a). Thus,
we augment each wave component with a pNewParent port, which synchronizes
with pCycle or an exported port by the pForest connectors to update its parent
(see Figure 4-b).

4 Model Checking Distributed Reset

For a finite instantiation of the algorithm by a grid topology, we start by con-
structing a finite representation of its overall behavior as a flat labeled transition
systems (Lts) using BIP state-space explorer [4]. States correspond to configu-
rations reached by the algorithm, and transitions taken to move from one con-
figuration to another are labeled by the interactions introduced in Section 3. On
the Lts model, we have evaluated a set of temporal logic formulas encoding the
key properties of distributed reset, using the Evaluator tool of CADP [12, 14].

We express the properties using a generic characterization of interactions (i.e.,
labels). We add a self-loop labeled steady to each legitimate state. For the wave
layer (respectively, tree layer), all these self-loops participate in a global ren-
dezvous interaction whose guard satisfies expression Sw (respectively, St) intro-
duced in Section 3. We label each internal fault transition introduced in Section
3 by fault. This labeling makes the occurrence of a fault an observable event.

16 A. Basu et al.

We label the remaining interactions by prog. This includes recovery as well as
interactions that participate in constructing a spanning tree at the tree layer and
interactions that contribute in achieving a global reset at the wave layer.

We provide the exact definition of properties in regular alternation-free μ-
calculus which is the temporal logic formalism handled by the Evaluator tool.
This logic is an extension of the alternation-free μ-calculus with action formulas
as in ACTL and regular expressions over action sequences as in PDL. The full
syntax and semantics can be found in [14]. We consider the following properties
that any self-stabilizing system must satisfy:

– (closure) legitimate states are preserved by taking non-fault actions (only
faults may reach an illegitimate state from a legitimate state):
φ1 : [any∗] (〈steady〉T⇒ [prog]〈steady〉T)1

– (deadlock-freedom) from any reachable state, there exists an outgoing pro-
gram transition:
φ2 : [any∗]〈prog〉T

– (reachability) starting from any state, a legitimate state can be reached by
taking only program actions (there always exist a path from any state to a
legitimate state):
φ3 : [any∗]〈prog∗〉〈steady〉T

– (convergence) starting from any state, a legitimate state is eventually reached
by taking only program actions (the algorithm never reaches a cycle outside
legitimate states):
φ4 : [any∗]¬νX. (¬〈steady〉T ∧ 〈prog〉X)

In order to reduce the complexity of verification of distributed reset, we utilize a
compositional approach. Specifically, we infer the correctness of the composite
distributed reset algorithm by verifying the correctness of the tree layer and wave
layer individually. However, such compositional verification needs demonstration
of interference-freedom between components. Let C1 and C2 be two components.
We say that C1 and C2 do not interfere with each other if whenever C1 satisfies
some property ϕ and C2 satisfies some property ϕ′, then their “composition”
(e.g., using BIP interactions) satisfies ϕ ∧ ϕ′.

Theorem 1. The composition of the tree layer and wave layer in the distributed
reset algorithm is interference-free for properties φ1...φ4.

The immediate consequence of Theorem 1 is that we can verify the correctness
of the layers of distributed reset independently. In order to generate Lts models
of manageable size for a reasonably large number of processes in the algorithm
we manually applied abstraction, live analysis [8], and we simplified the sequence
of occurrence of faults by allowing multiple types of faults occurring at the same

1 We recall that q |= 〈a〉ϕ iff ∃q
a−→ q′ : q′ |= ϕ, where q and q′ are two states, a−→ is a

transition labeled by a, and ϕ is a formula. Also, q |= [a]ϕ iff ∀q
a−→ q′ : q′ |= ϕ. The

label any denotes any transition label, i.e., {steady , prog , fault}, T denotes logical
true, and ∗ denotes a sequence. Finally, ν and μ respectively denote the largest and
smallest fixpoints in the μ-calculus.

Systematic Correct Construction of Self-stabilizing Systems: A Case Study 17

Table 1. Verifying distributed reset using classic model checking

n states transitions generation time φ1 φ2 φ3 φ4

4 56 649 < 1 < 1 < 1 < 1 < 1
tree 6 7022 81390 29 1 1 2 3

9 2456936 59409357 4000 10 23 19 145
4 996 5840 < 1 < 1 < 1 < 1 < 1

wave 6 27590 189523 36 2 2 3 5
9 1539001 7077649 2500 5 7 6 93

time. Table 1 summarizes the results about the size of the models in terms of
number of processes in the grid. The Lts generation time as well as the time
needed to verify the properties considered are all in seconds. All verification
tasks are run on a PC with a 3.2GHz Intel Xeon processor and 4GB RAM.

5 Conclusion

The paper illustrates the application of a methodology consistently integrating
high-level modeling with verification of functional properties of a distributed im-
plementation in the BIP framework. BIP allows a natural high-level description
of the coordination between atomic components by using structured connec-
tors and multiparty interactions. Consistency is ensured by results guaranteeing
preservation of properties of the initial high-level model by its implementation.
We demonstrated how one can build-up the self-stabilizing distributed reset algo-
rithm [2] by developing a set of independent atomic components and then wiring
them by using connectors by considering functional and recovery tasks indepen-
dently. We also identified and verified a set of safety and liveness properties that
any self-stabilizing algorithm has to satisfy for distributed reset.

Our approach is extremely beneficial for design and implementation of com-
plex concurrency control algorithms. In this context, we are currently working on
a generic component-based framework for modeling and analyzing transactional
memory algorithms using BIP. We are also working on a wide range of trans-
formations from high-level BIP models into low-level actual implementations
such as the Message Passing Interface (MPI), multi-core, and fully distributed
platforms. Another interesting research direction is to automate the procedure
presented in this paper by transforming algorithms in (shared memory) guarded
commands into BIP models.

References

1. Alexander, M., Gardner, W.: Process Algebra for Parallel and Distributed Pro-
cessing. Chapman & Hall/CRC, Boca Raton (2008)

2. Arora, A., Gouda, M.: Distributed reset. IEEE Transactions on Computers 43,
316–331 (1994)

18 A. Basu et al.

3. Basu, A., Bidinger, P., Bozga, M., Sifakis, J.: Distributed semantics and imple-
mentation for systems with interaction and priority. In: Suzuki, K., Higashino, T.,
Yasumoto, K., El-Fakih, K. (eds.) FORTE 2008. LNCS, vol. 5048, pp. 116–133.
Springer, Heidelberg (2008)

4. Basu, A., Bozga, M., Sifakis, J.: Modeling heterogeneous real-time components in
BIP. In: Software Engineering and Formal Methods (SEFM), pp. 3–12 (2006)

5. Bliudze, S., Sifakis, J.: A notion of glue expressiveness for component-based sys-
tems. In: van Breugel, F., Chechik, M. (eds.) CONCUR 2008. LNCS, vol. 5201,
pp. 508–522. Springer, Heidelberg (2008)

6. Bonakdarpour, B., Bozga, M., Jaber, M., Quilbeuf, J., Sifakis, J.: Automated
conflict-free distributed implementation of component-based models. In: IEEE
Symposium on Industrial Embedded Systems, SIES (to appear 2010)

7. Bonakdarpour, B., Bozga, M., Jaber, M., Quilbeuf, J., Sifakis, J.: From high-level
component-based models to distributed implementations. In: ACM International
Conference on Embedded Software, EMSOFT (to appear 2010)

8. Bozga, M., Fernandez, J.-C., Ghirvu, L.: State-space reduction based on live vari-
able analysis. Journal of Science of Computer Programming 47(2-3), 203–220
(2003)

9. Chandy, K.M., Misra, J.: Parallel program design: a foundation. Addison-Wesley
Longman Publishing Co., Inc., Boston (1988)

10. Dijkstra, E.W.: Self-stabilizing systems in spite of distributed control. Communi-
cations of the ACM 17(11), 643–644 (1974)

11. Dijkstra, E.W.: A belated proof of self-stabilization. Distributed Computing 1(1),
5–6 (1986)

12. Garavel, H., Lang, F., Mateescu, R., Serve, W.: CADP 2006: A Toolbox for the
Construction and Analysis of Distributed Processes. In: Damm, W., Hermanns, H.
(eds.) CAV 2007. LNCS, vol. 4590, pp. 158–163. Springer, Heidelberg (2007)

13. Lynch, N.: Distributed Algorithms. Morgan Kaufmann Publishers, San Mateo
(1996)

14. Mateescu, R., Sighireanu, M.: Efficient On-the-Fly Model-Checking for Regular
Alternation-Free Mu-Calculus. Science of Computer Programming 46(3), 255–281
(2003)

15. Bensalem, T.N.S., Bozga, M., Sifakis, J.: D-finder: A tool for compositional dead-
lock detection and verification. In: Bouajjani, A., Maler, O. (eds.) CAV 2009.
LNCS, vol. 5643, pp. 614–619. Springer, Heidelberg (2009)

16. Sifakis, J.: A framework for component-based construction extended abstract. In:
Software Engineering and Formal Methods (SEFM), pp. 293–300 (2005)

17. Tauber, J.A., Lynch, N.A., Tsai, M.J.: Compiling IOA without global synchroniza-
tion. In: Symposium on Network Computing and Applications (NCA), pp. 121–130
(2004)

A Fault-Resistant Asynchronous Clock Function

Ezra N. Hoch, Michael Ben-Or, and Danny Dolev

The Hebrew University of Jerusalem
{ezraho,benor,dolev}@cs.huji.ac.il

Abstract. Consider an asynchronous network in a shared-memory envi-
ronment consisting of n nodes. Assume that up to f of the nodes might
be Byzantine (n > 12f), where the adversary is full-information and
dynamic (sometimes called adaptive). In addition, the non-Byzantine
nodes may undergo transient failures. Nodes advance in atomic steps,
which consist of reading all registers, performing some calculation and
writing to all registers.

The three main contributions of the paper are: first, the clock-function
problem is defined, which is a generalization of the clock synchronization
problem. This generalization encapsulates previous clock synchronization
problem definitions while extending them to the current paper’s model.
Second, a randomized asynchronous self-stabilizing Byzantine tolerant
clock synchronization algorithm is presented.

In the construction of the clock synchronization algorithm, a building
block that ensures different nodes advance at similar rates is developed.
This feature is the third contribution of the paper. It is self-stabilizing
and Byzantine tolerant and can be used as a building block for different
algorithms that operate in an asynchronous self-stabilizing Byzantine
model.

The convergence time of the presented algorithm is exponential. Ob-
serve that in the asynchronous setting the best known full-information
dynamic Byzantine agreement also has an expected exponential conver-
gence time.

1 Introduction

When tackling problems in distributed systems, there are many previously devel-
oped building blocks that assist in solving the problem. Some of these building
blocks allow one to design a solution under “easy” assumptions, then automat-
ically transform them to a more realistic environment. For example, it is easier
to construct an algorithm in the synchronous model, then add an underlying
synchronizer (see [4]) to adapt the solution to an asynchronous model. Sim-
ilarly, developing a self-stabilizing algorithm can be challenging; instead, one
can develop a non-self-stabilizing algorithm, and use a stabilizer ([1]) to address
transient errors.

Among the different models of distributed systems, specific models received
more attention than others; and therefore the availability and versatility of build-
ing blocks differ from one model to another. For example, the synchronous

S. Dolev et al. (Eds.): SSS 2010, LNCS 6366, pp. 19–34, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

20 E.N. Hoch, M. Ben-Or, and D. Dolev

no-failuresmodel can automatically be extended in many different directions: asyn-
chronous no-failures, synchronous self-stabilizing, asynchronous self-stabilizing,
etc. Zooming-in to the world of self-stabilizing, there are various model-convertors:
between shared-memory and message-passing, from an id-based to uniform sys-
tem, etc. (see [11]).

However, when moving away from the commonly researched models, the avail-
ability of such model-converters diminishes. In the current paper we are inter-
ested in an asynchronous network with Byzantine nodes and transient failures.
That is, we aim at solving a problem in a way that is Byzantine tolerant, self-
stabilizing and operates in an asynchronous network. The Byzantine adversary is
assumed to be full-information and dynamic (sometimes called adaptive). There
are few previous works that operate in similar models [20,21,19]. In these works
non-faulty neighbors of Byzantine nodes may reach undesired states. However,
as far as we know, this is the first work operating in such a setting in which non-
Byzantine nodes reach their desired state even if they have Byzantine neighbors.

The problem we solve in the current work is clock-synchronization. Our solu-
tion assumes two simplifying assumptions: a) a “centralized daemon”, i.e., each
node can run the entire algorithm as an atomic step; b) an “en masse scheduler”
that adheres to the following: if p gets scheduled twice, then n− 2f other non-
faulty nodes get scheduled in between (formally defined in Definition 2). Under
these assumptions we define and solve the clock synchronization problem in an
asynchronous network while tolerating both Byzantine and transient faults. The
solution is a randomized algorithm with expected convergence time of O(3n−2f).

Both assumptions can be seen as “building blocks that do not yet exist”.
When constructing a self-stabilizing asynchronous algorithm (without Byzantine
nodes), it is reasonable to assume a centralized daemon due to the mutual exclu-
sion algorithm of Dijkstra (see [8]). Thus, once an equivalent algorithm can be
devised for this paper’s model, the first assumption can be removed. In Section 6
we provide an algorithm that implements the second assumption, thus allowing
its usage without reducing the generality of a solution that uses it.

Due to our dependence on the first assumption, we consider this work as a
step towards a full solution of the clock synchronization in an asynchronous
network that is self-stabilizing and Byzantine tolerant. We hope it leads to fur-
ther research of this model, one which will produce an equivalent of Dijkstra’s
algorithm operating in the current work’s model.

Related Work. Being able to introduce consistent “time” in a distributed
system is an important task, however difficult it may be in some models. For
many distributed tasks the crux of the problem is to synchronize the operations
of the different nodes. One method of doing this is using some sort of “time-
awareness” at each node, ensuring that different “clocks” advance in a relatively
synchronized manner. Therefore, it is interesting to devise such algorithms that
are highly robust.

In the past, various models were considered. Ranging from synchronous sys-
tems (see [10,12,16]), in which all nodes receive a common signal simultaneously
at regular intervals; through bounded-delay systems (see [9,18]), in which only a

A Fault-Resistant Asynchronous Clock Function 21

bound on the message delivery time is given; to completely asynchronous systems
(see [7,14]), in which only an eventual (but not bounded) delivery of messages
is assumed. Independent of the timing model, different fault tolerance assump-
tions are considered: the self-stabilizing fault paradigm, in which all nodes follow
their protocol but may start with arbitrary values of their variables and program
counter (see [11]). Another commonly assumed faults are the Fail-stop faults, in
which some of the nodes may crash and cease to participate in the protocol.
Lastly, Byzantine faults are considered to be the most severe fault model, as
they assume that the faulty nodes can behave arbitrarily and even collude in
trying to keep the system from reaching its designated goals (see [3,17]).

“Knowing what time it is” acquires different flavors in different models. In
systems without any faults, it is usually assumed that each node has a physical
clock, and these clocks differ from node to node. The main issue is to synchro-
nize the different clocks as close as possible. In a synchronous, self-stabilizing
and Byzantine tolerant model, this problem was termed “digital clock synchro-
nization”, and consisted of having all nodes agree on some bounded integer and
increase it every round (see [2,10,12,16]).

The traditional concept of “clock synchronization” does not hold in an asyn-
chronous environment. Therefore, previous work has defined “phase clocks” or
“unison” (see [7,14]), which states that each node has an integer valued clock,
and neighboring nodes should be at most ±1 from each other. It is shown
(for example, see [14]) how such “synchronization” is sufficient in solving many
problems.

Most previous works in the asynchronous model considered self-stabilizing or
Byzantine faults, but not both. In the current work, we consider both fault mod-
els. However, defining what “telling the time” means in an asynchronous, self-
stabilizing and Byzantine tolerant manner is a bit tricky. To address that, a new
notion of “knowing what time it is” is introduced: a clock function.

All previous clock-synchronization (or phase-clock, or unison, etc.) algorithms
can be viewed in the following way: each time a non-faulty node is running, it
executes some piece of code (“function”) that returns a value (“the clock value”)
and there are constraints on the range of different non-faulty nodes’ values.
In the synchronous digital clock synchronization problem, the function returns
an integer value, and we require that all nodes executing the function at the
same round receive exactly the same value and a node executing the function
in consecutive rounds receives consecutive values. In an asynchronous network
(i.e., in [14]), different nodes may execute their clock-functions at different times
and at different rates. The constraint on the returned values can be described
as follows: given a configuration of the system, if p would execute its clock-
function and receive a value v, then any neighbor of p that would execute its
clock-function at the same configuration, would receive a value that differs by
at most ±1 from v.

In the current work it is assumed that the network is fully connected, which
means that every node is connected to every other node. Therefore, the constraint

22 E.N. Hoch, M. Ben-Or, and D. Dolev

of the clock-function is simplified, informally requiring any two non-faulty nodes
that execute the clock-function to receive values that are at most one apart.

In synchronous networks the problem of self-stabilizing Byzantine tolerant
clock synchronization is equivalent to the problem of Byzantine agreement, in
the sense that any solution to the self-stabilizing Byzantine tolerant clock syn-
chronization problem is also a solution to the (non-self-stabilizing) Byzantine
agreement problem. In asynchronous networks the best known full-information
dynamic Byzantine agreement has expected exponential convergence time
(see [5]). While the synchronous equivalence between clock synchronization and
Byzantine agreement does not transfer to the asynchronous setting (as it strongly
uses the fact that all nodes agree on the exact same clock value), it raises the
possibility that improving the result of this paper will require usage of new tech-
niques. That is, it is not known yet if the self-stabilizing clock synchronization
of the current work can be used to solve Byzantine agreement. However, if it can
be used, then improving the exponential convergence of the current work would
lead to an improvement of the best known asynchronous Byzantine agreement
against a dynamic full-information adversary.

Contribution. Our contribution is three-fold. First, we define the clock-function
problem, which is a generalization of the clock synchronization problem. This
definition provides a meaningful extension of the clock synchronization problem
to the asynchronous self-stabilizing Byzantine tolerant model.

Second, we provide an algorithm that solves the clock-function problem in
the above model. Using shared memory, it has an expected O(3n−2f) conver-
gence time, independent of the wraparound value of the clock. Notice that for
synchronous networks, the first two contributions were already presented in [12].
Our contribution is with respect to asynchronous networks.

Lastly, in Section 6 we construct a building block that bounds the relative
rates at which different non-faulty nodes progress with respect to other non-
faulty nodes. More specifically, between any two atomic steps of a non-faulty
node p, there are guaranteed to be atomic steps of n − 2f other non-faulty
nodes. (See the “en masse scheduler” assumption described in the introduction).
We postulate that this building block can be used in other asynchronous self-
stabilizing Byzantine tolerant settings.

Overview. We start by defining the model (see Section 2). A subset of all
possible runs is defined and denoted “en masse” (see Definition 2). Section 3
discusses different aspects of defining clock synchronization in an asynchronous,
self-stabilizing, Byzantine tolerant environment; and defines a clock function,
which is a generalization of the clock synchronization problem.

Section 4 introduces Async-Clock, an algorithm that solves the problem at
hand. Section 5 contains the correctness proof for Async-Clock. Both Section 4
and Section 5 are correct only for en masse runs, for which Async-Clock re-
quires fault redundancy of n > 6f .

In Section 6 the algorithm EnMasse is presented, which transforms any run
into an en masse run. Leading to the correctness of Async-Clock for any run.

A Fault-Resistant Asynchronous Clock Function 23

However, the transformation done by EnMasse increases the fault redundancy
of Async-Clock to n > 12f . Lastly, Section 7 concludes with a discussion of
the results.

2 Distributed Model

The system is composed of a set of n nodes denoted by P . Every pair of nodes
p, q ∈ P communicates via shared memory (i.e., a fully-connected communica-
tion graph), in an asynchronous manner. That is, p and q share two registers:
Rp,q, Rq,p.1 Register Rp,q is written by p and read by q.2 A configuration C de-
scribes the global state of the system and consists of the states of each node
and the state of each register. A run of the system is an infinite sequence of
configurations C0 → C1 → · · · → Cr → · · · , such that the configuration Cr+1 is
reachable from configuration Cr by a single node’s atomic step. In the context
of the current paper, an atomic step consists of reading all registers, performing
some calculation and then writing to all registers.

The system is assumed to start from an arbitrary initial configuration C0. We
show that eventually - in the presence of continuous Byzantine behavior - the
system becomes synchronized.

In addition to transient faults, up to f of the nodes may be Byzantine. The
Byzantine adversary has full information, i.e., it can read the values in every
node’s memory3 and in the shared registers between any two nodes. There are
no private channels and the adversary is computationally unbounded. Moreover,
the adversary is dynamic, which means it may choose to “capture” a non-faulty
node at any stage of the algorithm. However, once the adversary has “captured”
f nodes in some run, it cannot affect other nodes and in a sense becomes static.
The results of this paper can be extended to the setting in which the adversary
continues to be dynamic throughout the run, as long as the adversary is limited
by the rate at which it can release and capture non-faulty nodes. We do not
present this extension in the current paper for the sake of clarity. However, one
can easily be convinced that it applies, once the main points of the work are
explained.

The adversary also has full control of the scheduling of atomic steps and
can use its full information knowledge in this scheduling. However, for a clock
synchronization algorithm to be meaningful, runs in which some of the non-faulty
nodes never get to perform atomic steps should be excluded. Thus, throughout
the paper only fair runs are considered:

Definition 1. A run is fair if every non-faulty node performs infinitely many
atomic steps.

1 Pair-wise communication is used to allow Byzantine nodes to present different values
to different nodes; as opposed to assuming a single register per-node that can be read
by all other nodes.

2 For simpler presentation we assume that p writes and reads Rp,p.
3 Actually, the presented algorithm stores all its state in the shared registers.

24 E.N. Hoch, M. Ben-Or, and D. Dolev

A subset of all fair runs is defined:

Definition 2. A run T is en masse with respect to node p if for any 2
atomic steps p performs during T (say at configurations C and C′, respectively)
there are at least n − 2f non-faulty nodes that perform atomic steps between C
and C′.

A run T is en masse if it is fair and it is en masse with respect to all
non-faulty nodes.

As stated in the overview, en masse runs are needed for Async-Clock to op-
erate correctly. Assuming all runs are en masse runs, the fault tolerance re-
dundancy required is n > 6f . However, in Section 6 we show how to remove
the requirement of en masse runs, at the cost of increasing the fault tolerance
redundancy to n > 12f .

3 Problem Definition

Before formally defining the problem at hand, consider the properties a dis-
tributed clock synchronization algorithm should have in an asynchronous
setting:

1. (clock-value) a means of locally computing the current clock value at any
non-faulty node;

2. (agreement) if different non-faulty nodes compute the clock value close (in
time) to each other, they should obtain similar values;

3. (liveness) if non-faulty nodes continuously recompute clock values, then they
should obtain increasing values.

For example, in a synchronous network, the clock synchronization problem is
usually formulated as: (clock-value) each node p has a bounded integer counter
Clockp; (agreement) for any two non-faulty nodes p, q it holds that Clockp =
Clockq; (liveness) if Clockp = z at round r then Clockp = z + 1 at round
r + 1. Since the clock is bounded, the previous sentence is slightly modified: “if
Clockp = z at round r, then Clockp = z + 1(mod k) at round r + 1”; where k
represents the wrap-around value of the clock.

Notation 31 Denote by a⊕k b the value (a + b mod k).

In an asynchronous setting, it is impossible to ensure that all nodes update
their clocks simultaneously. Thus, the “agreement” property requires a relaxed
version as opposed to the synchronous setting’s stricter version. In addition, the
“liveness” property is somewhat tricky to define, due to the Byzantine presence.
To illustrate the difficulty, consider a set of f Byzantine nodes that “behave
as if” they were non-faulty, and they repeatedly recompute the clock value.
According to the definition above, the clock value will increase continuously,
even though non-faulty nodes did not perform a single step. Therefore, such a
clock synchronization algorithm is useless, as the Byzantine nodes can make it

A Fault-Resistant Asynchronous Clock Function 25

reach any clock value; in other words, the Byzantine nodes “control” the clock
value.

It is not immediately clear how these “benign” Byzantine nodes can be dif-
ferentiated from the non-faulty nodes. The following definitions address such
difficulties, and present a formalization of the clock synchronization problem in
this paper’s model.

Definition 3. A value v′ is at most d ahead of v if there exists j, 0 ≤ j ≤ d,
such that v ⊕k j = v′. Denote “v′ is at most d ahead of v” by v �d v′.

Definition 4 addresses the “clock-value” property:

Definition 4. A clock-function F is an algorithm that when executed during
an atomic step returns a value in the range {0, ..., k − 1}. Denote by Fp(C) the
value returned when p executes F during an atomic step at configuration C.
Consider the “agreement” property: it requires that different non-faulty nodes
that compute the clock value simultaneously, receive similar values. What does
“simultaneously” mean in an asynchronous setting? It can be captured by re-
quirements on the clock values computed in different runs. In addition, the in-
terference caused by Byzantine nodes in different runs needs to be captured.

Informally, “agreement” requires the following from F : given a configuration
C, no matter what the adversary does, if different non-faulty nodes execute F
they receive values that are close to each other. Definition 5, Definition 6 and
Definition 7 formally state the “agreement” requirement. First, “no matter what
the adversary does” is formally defined:

Definition 5. An adversarial move from a configuration C is any configura-
tion reachable by an arbitrary sequence of atomic steps of faulty nodes only.

Second, “different non-faulty nodes execute F” is divided into two cases. Let
p, q be non-faulty nodes. The first case considers the computed value of p (when
calculating F on C) as opposed to the computed value of q (see Definition 6).
The second case considers the computed value of q after p has computed its
value (see Definition 7). Both cases require the computed values of p and q to
be close to each other.

Definition 6. A configuration C is �-well-defined (with respect to some clock-
function F) if there is a value v s.t. for any non-faulty node p and every adver-
sarial move C′ from C it holds that v �� Fp(C′). v is called “a defined value” at
C. (There may be more than one such v).

Informally, Definition 6 says that C is �-well-defined if there is an intrinsic value
v such that any adversarial move cannot increase the clock-value by more than
�. Thus, any two non-faulty nodes p, q (in different run extensions from C) that
execute F on C (no matter what the adversary has done) will receive values in
the range {v, . . . , v + �}; i.e., p and q’s values are at most � apart.

Suppose C0 is �-well-defined with value v, and that a non-faulty node p per-
forms an atomic step at C0 resulting in C1 and then a non-faulty node q performs
an atomic step at C1. Definition 6 does not imply any constraint on the value of
Fp(C0) with respect to Fq(C1), therefore the following definition is required:

26 E.N. Hoch, M. Ben-Or, and D. Dolev

Definition 7. A run is �-well-defined (w.r.t. a clock-function F) if: a) every
configuration C in the run is �-well-defined; b) for two consecutive configurations
C, C′, if v is a defined value of C and v′ is a defined value of C′ then v �� v′.

Definition 7 states that the values of a clock-function F on consecutive con-
figurations cannot be arbitrary. That is, they must be at most � apart from
the previous configuration. However, there is no requirement that they actually
increase; i.e., “liveness” is not captured by the previous definitions.

Definition 8. A run is �-clock-synchronized (w.r.t. some clock-function F),
if it is �-well-defined (w.r.t. F) and the defined values of consecutive configura-
tions change infinitely many times. (I.e., for infinitely many consecutive config-
urations C, C′ the defined values of C differ from the defined values of C′).

Notice that Definition 7 already requires that defined values of consecutive con-
figurations are non-decreasing (assuming that � is sufficiently small with
respect to k). Thus, combined with Definition 8, it implies that in an �-clock-
synchronized run, infinitely many configurations are configurations with increas-
ing defined values (informally, “increasing” means that one defined value is
achieved by adding less than k

2 to a previous defined value).

Remark 1. Definition 7 and Definition 8 impose requirements on the defined val-
ues of consecutive configurations. However, a specific node p might compute a
clock value that is decreasing between consecutive configuration. i.e., p’s clock
might “go backward”. For example, let C, C′ be two consecutive configurations,
and let the defined value of both configurations be v. It is possible that p will
compute the clock value to be v + 1 for C, while computing the clock value to
be v for C′.
However, this possibility is immanent to an asynchronous Byzantine tolerant
clock synchronization that has a wraparound value k. Consider a setting in which
all nodes but one are advanced in a synchronous manner, while a single node p
performs atomic steps only once every k − 1 rounds. In such a setting, p should
update its clock value to be slightly below its previous value (alternatively, it
can be seen as increasing the value by k − 1).

Definition 9. An algorithm A solves the �-clock-synchronization problem
if there is a clock-function F s.t. any fair run starting from any arbitrary con-
figuration has a suffix that is �-clock-synchronized with respect to F .

An ideal protocol would solve the 0-clock-synchronization problem. However,
due to the asynchronous nature of the discussed model, the best that can be
expected is to solve the 1-clock-synchronization problem. We aim at solving the
�-clock-synchronization problem for as many values of � ≥ 1 as possible. Clearly,
if A solves the �1-clock-synchronization problem, then A also solves the �2-clock-
synchronization problem for any k

2 > �2 ≥ �1.
Therefore, the rest thepaper concentrateson solving the5-clock-synchronization

problem; thus, solving the �-clock-synchronization problem for all k
2 > � ≥ 5 . In

Section 7.1we show how to use any k−1
2 -clock-synchronization problem to solve the

A Fault-Resistant Asynchronous Clock Function 27

Algorithm Async-Clock /* executed on node q */

01: do forever:

/* read all registers */
02: for i := 1 to n
03: set vali := read Rpi,q mod k;

/* some internal definitions */
04: let #v denote the number of times v appears in {vali}n

i=1;
05: let count(v, l) denote

∑l
j=0 #(v ⊕k j);

06: let pass(l, a) denote {v|count(v, l) ≥ a};

/* update my val */
07: if pass(0, n − f)
= ∅ then
08: set my valq := 1 ⊕k max{pass(0, n − f)};
09: else if pass(1, n − f)
= ∅ then
10: set my valq := 1 ⊕k max{pass(1, n − f)};
11: else if pass(1, n − 2f)
= ∅ then
12: let low /∈ pass(1, n − 2f) be such that low ⊕k 1 ∈ pass(1, n − 2f);
13: let relative median = min{l|l ≥ 0& count(low, l) > n

2
};

14: set my valq := low ⊕k relative median;
15: else set my valq := randomly select a value from pass(1, n−3f)

⋃{0};

/* write my val to registers */
16: for i := 1 to n
17: write my valq into Rq,pi ;
18: od;

Fig. 1. A self-stabilizing Byzantine tolerant algorithm solving the 5-Clock-
Synchronization problem

1-clock-synchronization problem, thus solving the �-clock-synchronization prob-
lem for all k

2 > � ≥ 1.

4 Solving the 5-Clock-Synchronization Problem

An atomic step consists of reading all registers, performing some calculations
and writing to all registers. Thus, an atomic step consists of executing once an
entire “loop” of Async-Clock (see Figure 1).

Each non-faulty node p has a bounded integer variable, my valp, which repre-
sents the current clock value of p. When p performs an atomic step, it reads all
of its registers, thus getting an impression of the clock values of the other nodes.
It then computes its own new clock value (which is saved in my valp) and writes
my valp to all registers.

Async-Clock operates in a similar fashion to many other Byzantine tolerant
algorithms. It first gathers information regarding the clock value of the other

28 E.N. Hoch, M. Ben-Or, and D. Dolev

nodes in the system. Then it uses various thresholds to decide on the clock value
for the next step. If no threshold works (i.e., no clear majority is found), it
chooses a random value from a small set of options.

To ensure all values read during Line 02-03 are in the range [0, . . . , k − 1],
the algorithm applies “ mod k” to the values read. This is a standard way of
dealing with uninitialized values.

The crux of Async-Clock is in the exact thresholds and their application
(Lines 07-15). In these lines, node p considers different possibilities. Either it sees
a decisive majority towards some clock value (Line 07 and Line 09) in which case
p updates its local clock value to coincide with the majority clock value it has
seen. Alternatively, if no clear majority exists (Line 15), p randomly selects a new
clock value. The interesting case is when p sees a “partial” majority (Line 11),
in which case p takes the relative median of the clock values it has seen. We call
this a “relative median” since the clock values are “ mod k” and thus the median
in not well defined.

The full Async-Clock algorithm appears in Figure 1. Async-Clock solves
the �-Clock-Synchronization problem for � = 5; combined with the discussion at
the end of Section 3, it shows how to solve the �-Clock-Synchronization problem
for any k

2 > � ≥ 5.

5 Correctness Proof

In the following discussion we consider the system only after all transient faults
ended and each non-faulty node has taken at least one atomic step. We consider
only runs of the system that begin after that initial sequence of atomic steps.

Informally, a round is a portion of a run such that each node that is non-faulty
throughout the round performs an atomic step at least once. The first round (of
a run T) is the minimal prefix R of the run T such that each node that is non-
faulty throughout R performs an atomic step at least once. Consider the suffix
T ′ of T after the first round was removed. The second round of T is the first
round of T ′; the definition continues so recursively.

Consider any fair run of the system C0 → C1 → · · · → Cr → · · · , and consider
the transition from configuration Cr to configuration Cr+1, due to some (possibly
faulty) node p’s atomic step. Since we consider only runs after each non-faulty
node q has taken at least one atomic step past the end of the transient faults
events, the value of my valq reflects the latest value written to all of q’s write-
registers. This property is true for all configurations that we consider. Thus,
regarding a non-faulty p that performs an atomic step, for all non-faulty q it
holds that Rq,p = my valq.

Due to space limitations, only an overview of the proof is given. The full proof
can be found at [15].

The proof outline is as follows. First, define a tight configuration:

Definition 10. H(Cr, v, d) is the set containing every non-faulty node q, such
that my valq (in Cr) is at most d ahead of v.

A Fault-Resistant Asynchronous Clock Function 29

A configuration Cr is tight around value v if |H(Cr, v, 1)| ≥ n− 2f ; a config-
uration is tight if it is tight around some value.

Second, we show that if a configuration Cr is tight then so is Cr+1. Third, if Cr is
not tight, then we show that with probability 1

3n−2f some configuration within 2
rounds from Cr will be tight. Concluding that after an expected O(3n−2f) rounds
the system reaches a tight configuration; and all following configurations are tight
as well. At this stage, we need to show that the value v that a configuration is
tight around continuously increases.

To do so, we show that given that all configurations are tight, different non-
faulty nodes that perform atomic steps can have values from a set containing
(at most) 3 consecutive values. Moreover, for consecutive configurations, the
minimal value among these 3 values can increase by at most 3. Lastly, by closely
analyzing the behavior of Async-Clock, we conclude that within 4 rounds the
minimal value above increases. That is, the clock function value changes, and
changes again within at most 4 rounds, i.e., the clock value changes infinitely
many times.

The reason behind the increase of the aforementioned minimal value lies in
the following claim: one of two things can happen, either the minimal value
increases, or all the non-faulty nodes’ clock values become at most 1 apart. In
the second scenario, after one round, the minimal value will increase. Concluding
that the clock value changes infinitely many times, as required.

Remark 2. The en masse property is used in the proof that if Cr is not tight,
then with probability 1

3n−2f a configuration within 2 rounds from Cr will be
tight. Since in an en masse run some set of n− 2f different non-faulty nodes are
required to take atomic steps in a consecutive manner. Together with a claim
stating that each such step has probability of 1

3 to flip a coin “in the right
direction”, we get that with probability 1

3n−2f a tight configuration is reached.

Following is the main result of the paper, which is shown to be true assuming
that the runs are en masse. In the following section en masse runs are constructed
from fair runs. Thus, the theorem can be updated to only require that the run
is fair.

Theorem 1. Async-Clock solves the 5-clock-synchronization problem within
expected O(3n−2f) rounds, for any en masse run and wrap-around value greater
than 6 (i.e., k > 6).

Remark 3. The requirement that k > 6 stems from the analysis of the relative
median and the different updates performed in Async-Clock. Due to lack of
space, we do not go into details. Full details are available in [15].

6 Ensuring En Masse Runs

Our goal is to ensure that if a non-faulty node p performs a step, at least n− 2f
non-faulty nodes have performed a step since p’s last step. That is, given an

30 E.N. Hoch, M. Ben-Or, and D. Dolev

algorithm A we want to ensure that if some non-faulty node performs two steps
of A then there are at least n− 2f different non-faulty nodes that also perform
steps of A. To ensure this, we present an algorithm EnMasse that ensures that
a specific action, denoted “act”, is executed twice by the same non-faulty node
p only if there are at least n−4f other non-faulty nodes that have also executed
“act”. By setting “act” to execute an atomic step of A, we achieve the required
goal. I.e., Async-Clock will be executed entirely every time “act” appears in
EnMasse.

As the algorithm we present ensures only n − 4f nodes execute “act” in
between two “acts” of every non-faulty node, we must reduce the Byzantine
tolerance by half (n > 12f) to use EnMasse as a subcomponent of Async-

Clock. That is, Async-Clock requires a threshold of 2
3n non-faulty nodes

(n−2f threshold for n > 6f); EnMasse ensures a threshold of n−4f . Therefore,
by reducing the fault tolerance to n > 12f we ensure that n − 4f > 2

3n, as
required by Async-Clock.

Our solution borrows many ideas from [13]. Due to our model’s atomicity
assumptions, each node can read all registers and write to all registers in a
single atomic step. Thus, the problems that [13] encounters do not exist in the
current paper at all. However, in the current model there are additional faults
(Byzantine and self-stabilizing) which do not exists in [13]. Interestingly, the
same ideas used in [13] can be adapted to the self-stabilizing Byzantine tolerant
setting.

For each node p, there is a set of labels Labelsp associated with p. In ad-
dition, each node p has a variable labelp from the set Labelsp; Also, p has an
ordering vector orderp, of length |Labelsp|, which induces an order on the labels
in Labelsp. Lastly, each node p has a time-stamp timep, which is a vector of n
entries, consisting of a single label timep[q] ∈ Labelsq for each node q.

Definition 11. A label b is of type p if b ∈ Labelp.

Definition 12. Two labels b, c of type p are compared according to orderp, where
b <p c if b appears before c in the vector orderp. The inequalities ≤p, >p,≥p,=p

are similarly defined.

Definition 13. Given two time-stamps timep, timeq, and a set of nodes I, we
say that timep >I timeq if p, q ∈ I and for every entry i ∈ I, timep[i] ≥i

timeq[i], timep[q] =q timeq[q] and timep[p] >p timeq[p].

To simplify notations, when it is clear from the context, we write p >I q instead of
timep >I timeq. That is, when comparing nodes (according to >I), we actually
compare the nodes’ time stamps.

Definition 14. A set I of nodes is comparable if for any p, q ∈ I either p >I q
or q >I p.

Lemma 1. If I is a comparable set, and p, q, w ∈ I, and p >I q, q >I w then
p >I w.

A Fault-Resistant Asynchronous Clock Function 31

Algorithm EnMasse /* executed on node q */

01: do forever:

/* read all registers and initialize structures */
02: for each node p, read timep and orderp;
03: set I := ∅;
04: for each set W ⊆ P s.t. |W | ≥ n − f and q ∈ W :
05: construct I := {timep | p ∈ W};
06: if W is comparable then I := I ∪ {I};

/* decide whether to execute “update” and whether to execute “act” */
07: if for some I ∈ I, it holds that I#(q) ≥ n − 3f then
08: update timeq, orderq and “act”;
09: if I = ∅ then update timeq, orderq;
10: write timeq and orderq;
11: od;

Updating timeq is done by setting timeq[p] = labelp, for every p ∈ P .
Updating orderq consists of changing the order induced by orderq such that labelq is
first and for other labels the order is preserved.

Fig. 2. A self-stabilizing Byzantine tolerant algorithm ensuring en masse runs

Notice that a comparable set I induces a total order among the elements in I,
therefore we can refer to the index of an element in I.

Definition 15. A node p ∈ I is said to be the kth highest (in I) if
|{q ∈ I|q >I p}| = k − 1. Let I#(p) = k if p ∈ I is the kth highest in I.

The 1st highest in I is the node that is larger than all other nodes. The 2nd
highest node in I is the node that has only one node larger than it; (and so on).

6.1 Algorithm EnMasse

This section proves general properties of comparable sets. It discusses “static”
sets, that do not change over time. The following algorithm considers compara-
ble sets that change from step to step. However, during each atomic step, the
comparable sets that are considered do not change, and the claims from the pre-
vious section hold. That is, when reasoning about the progress of the algorithm,
the comparable sets that are considered are all “static”.

In the following algorithm, instead of storing both labelp and timep, each
node stores just timep and the value of labelp is the entry timep[p]. In addition,
during each atomic step, the entire algorithm is executed, i.e., a node reads all
time stamps and all order vectors of other nodes, and can update its own time
stamp during an atomic step.

32 E.N. Hoch, M. Ben-Or, and D. Dolev

When a node q performs an update, it changes the value of timeq and orderq

in the following way: a) orderq is updated such that timeq[q] is larger than any
other label in Labelsq. b) timeq[p] is set to be timep[p], for all p. Notice that the
new orderq does not affect the relative order of labels in Labelsq that are not
timeq[q]. That is, if l1, l2
= timeq[q] and l1 ≤q l2 before the change of orderq , it
holds that l1 ≤q l2 also after updating the orderq .

Intuitively, the idea of EnMasse is to increase the time stamp of a node q
only if q sees that most of the other nodes are ahead of q. When the time stamp
is increased, q also performs “act”. This leads to the following dynamics: a) If
q has performed an “act” twice, i.e., updated its time stamp twice, then after
the first update, q is ahead of all other nodes. b) However, since q is ahead of
all non-faulty nodes, if q updates its time stamp again it must mean that many
nodes have updated their time stamps after q’s first update. i.e., between two
“act” of q many other nodes have performed “act” as well.

In a similar manner to Section 5, the lemmas and proofs are available in the
full version [15].

We continue with an overview of the proof. First, consider the set of non-faulty
nodes, and consider the set of time stamps of these nodes. The proof shows that
if this set is comparable for some configuration Cr then it is comparable for any
configuration Cr′ where r′ > r. Second, we consider an arbitrary starting state,
and consider the set Yr containing non-faulty nodes that have updated their time
stamp by the end of round r. It is shown that if |Yr| ≥ n−2f then |Yr+1| ≥ n−f .
Moreover, if |Yr| < n− 2f then |Yr+1| ≥ |Yr|+ 1. Thus, we conclude that within
O(n) rounds all non-faulty nodes have performed an update.

Once all non-faulty nodes have performed an update since the starting state,
it holds that the set of all non-faulty nodes’ time stamps is comparable. Thus,
during every round at least 2f nodes perform an update (as they see themselves
in the lower 3f part of the comparable set). This ensures that within n

2f rounds
some node will perform “act” twice. That is, there is no deadlock in the En-

Masse algorithm. To conclude the proof, it is shown that when the set of all
non-faulty nodes values is comparable and some non-faulty node performs “act”
twice, it must be that another n− 4f non-faulty nodes have performed “act” in
between.

Theorem 2. Starting from round n − 2f + 3, between any non-faulty node’s
two consecutive “act”s, there are n − 4f non-faulty nodes that perform “act”.
Moreover, every non-faulty node performs an “act” at least once every n

2f rounds.

Theorem 2 states that using EnMasse one can ensure that nodes executing
Async-Clock will have the following properties: 1) every non-faulty node p
executes an atomic step of Async-Clock once every n

2f rounds; 2) if non-faulty
p executes 2 atomic steps of Async-Clock, then at least n − 4f non-faulty
nodes execute atomic steps of Async-Clock in between. By setting n > 12f ,
these properties ensure that a fair run T is an en-masse run T ′ with respect to
Async-Clock, s.t. each round of T ′ consists of at most n

2f rounds of T .

A Fault-Resistant Asynchronous Clock Function 33

7 Discussion

7.1 Solving the 1-Clock-Synchronization Problem

First, the 5-clock-synchronization problem was solved using Async-Clock while
assuming en masse runs. Second, the assumption of en masse runs was removed
in Section 6. In this subsection we complete the paper’s result by showing how
to transform a 5-clock-synchronization algorithm to a 1-clock-synchronization
algorithm.

Given any algorithm A that solves the �-clock-synchronization problem, one
can construct an algorithm A′ that solves the 1-clock-synchronization problem.
Denote by kA′ the desired wraparound value of A′, and let kA = kA′ · � be the
wraparound value for A.

The construction is simple: each time A′ is executed, it runs A and returns
the clock value of A divided by � (that is, �FA

� �). The intuition behind this
construction is straightforward: A solves the �-clock-synchronization problem,
thus, the values it returns are at most � apart. Therefore, the values that A′

returns are at most 1 apart from each other.

7.2 Future Work

The current paper has a few drawbacks, each of which is interesting to resolve.
First, is it possible to reduce the atomicity requirements; that is, can an atomic

step be defined as a single read or a single write (and not as “read all registers
and write all registers”)?

Second, can the current algorithm be transported into a message passing
model?

Third, can different coin-flipping algorithms that operate in the asynchronous
setting (i.e., [6]) be used to reduce the exponential convergence time to some-
thing more reasonable? Perhaps even expected constant time?

Fourth, can the ratio between Byzantine and non-Byzantine nodes be reduced?
I.e., can n > 3f be achieved?

Fifth, can the problem of asynchronous Byzantine agreement be reduced to
the problem of clock synchronization presented in the current work? (This will
show that the expected exponential convergence time is as good as is currently
known).

Lastly, the building block EnMasse is interesting by itself. It would be inter-
esting to find a polynomial solution to EnMasse.

Acknowledgements

Michael Ben-Or is the incumbent of the Jean and Helena Alfassa Chair in Com-
puter Science, and he was supported in part by the Israeli Science Foundation
(ISF) research grant. Danny Dolev is incumbent of the Berthold Badler Chair
in Computer Science. Danny Dolev was supported in part by the Israeli Science
Foundation (ISF) Grant number 0397373.

34 E.N. Hoch, M. Ben-Or, and D. Dolev

References

1. Afek, Y., Dolev, S.: Local stabilizer. In: Proc. of the 5th Israeli Symposium on
Theory of Computing Systems (ISTCS 1997), Bar-Ilan, Israel (June 1997)

2. Arora, A., Dolev, S., Gouda, M.G.: Maintaining digital clocks in step. Parallel
Processing Letters 1, 11–18 (1991)

3. Attiya, H., Welch, J.: Distributed Computing: Fundamentals, Simulations and Ad-
vanced Topics. John Wiley & Sons, Chichester (2004)

4. Awerbuch, B.: Complexity of network synchronization. J. ACM 32(4), 804–823
(1985)

5. Ben-Or, M.: Another advantage of free choice (extended abstract): Completely
asynchronous agreement protocols. In: PODC 1983, New York, NY, USA, pp. 27–
30 (1983)

6. Canetti, R., Rabin, T.: Fast asynchronous byzantine agreement with optimal re-
silience. In: STOC 1993, pp. 42–51. ACM, New York (1993)

7. Couvreur, J.M., Francez, N., Gouda, M.: Asynchronous unison. In: Proceedings of
the 12th International Conference on Distributed Computing Systems, pp. 486–493
(1992)

8. Dijkstra, W.: Self-stabilization in spite of distributed control. Commun. of the
ACM 17, 643–644 (1974)

9. Dolev, D., Hoch, E.N.: Byzantine self-stabilizing pulse in a bounded-delay model.
In: Masuzawa, T., Tixeuil, S. (eds.) SSS 2007. LNCS, vol. 4838, pp. 234–252.
Springer, Heidelberg (2007)

10. Dolev, D., Hoch, E.N.: On self-stabilizing synchronous actions despite byzantine
attacks. In: Pelc, A. (ed.) DISC 2007. LNCS, vol. 4731, pp. 193–207. Springer,
Heidelberg (2007)

11. Dolev, S.: Self-Stabilization. The MIT Press, Cambridge (2000)
12. Dolev, S., Welch, J.L.: Self-stabilizing clock synchronization in the presence of

byzantine faults. Journal of the ACM 51(5), 780–799 (2004)
13. Dwork, C., Waarts, O.: Simple and efficient bounded concurrent timestamping or

bounded concurrent timestamp systems are comprehensible. In: STOC 1992 (1992)
14. Herman, T.: Phase clocks for transient fault repair. IEEE Transactions on Parallel

and Distributed Systems 11(10), 1048–1057 (2000)
15. Hoch, E.N., Ben-Or, M., Dolev, D.: A fault-resistant asynchronous clock function.

CoRR, abs/1007.1709 (2010)
16. Hoch, E.N., Dolev, D., Daliot, A.: Self-stabilizing byzantine digital clock synchro-

nization. In: Datta, A.K., Gradinariu, M. (eds.) SSS 2006. LNCS, vol. 4280, pp.
350–362. Springer, Heidelberg (2006)

17. Lynch, N.: Distributed Algorithms. Morgan Kaufmann, San Francisco (1996)
18. Malekpour, M.R.: A byzantine-fault tolerant self-stabilizing protocol for distributed

clock synchronization systems. In: Datta, A.K., Gradinariu, M. (eds.) SSS 2006.
LNCS, vol. 4280, pp. 411–427. Springer, Heidelberg (2006)

19. Masuzawa, T., Tixeuil, S.: Bounding the impact of unbounded attacks in stabi-
lization. In: Datta, A.K., Gradinariu, M. (eds.) SSS 2006. LNCS, vol. 4280, pp.
440–453. Springer, Heidelberg (2006)

20. Nesterenko, M., Arora, A.: Tolerance to unbounded byzantine faults. In: SRDS
2002, Washington, DC, USA, p. 22. IEEE Computer Society, Los Alamitos (2002)

21. Sakurai, Y., Ooshita, F., Masuzawa, T.: A self-stabilizing link-coloring protocol
resilient to byzantine faults in tree networks. In: Higashino, T. (ed.) OPODIS
2004. LNCS, vol. 3544, pp. 283–298. Springer, Heidelberg (2005)

Self-stabilizing Leader Election in Dynamic
Networks

Ajoy K. Datta, Lawrence L. Larmore, and Hema Piniganti

School of Computer Science, University of Nevada Las Vegas

Abstract. Three silent self-stabilizing asynchronous distributed algo-
rithms are given for the leader election problem in a dynamic network
with unique IDs, using the composite model of computation. A leader
is elected for each connected component of the network. A BFS tree is
also constructed in each component, rooted at the leader. This election
takes O(Diam) rounds, where Diam is the maximum diameter of any
component. Links and processes can be added or deleted, and data can
be corrupted. After each such topological change or data corruption, the
leader and BFS tree are recomputed if necessary. All three algorithms
work under the unfair daemon.

The three algorithms differ in their leadership stability . The first algo-
rithm, which is the fastest in the worst case, chooses an arbitrary process
as the leader. The second algorithm chooses the process of highest pri-
ority in each component, where priority can be defined in a variety of
ways. The third algorithm has the strictest leadership stability. If the
configuration is legitimate, and then any number of topological faults
occur at the same time but no variables are corrupted, the third algo-
rithm will converge to a new legitimate state in such a manner that no
process changes its choice of leader more than once, and each component
will elect a process which was a leader before the fault, provided there
is at least one former leader in that component.

Keywords: dynamic network, leader election, self-stabilization, silent
algorithm, unfair daemon.

1 Introduction

The leader election problem is one of the fundamental problems in distributed
computing. In static networks, this problem is to select a process among all the
processes in the network to be the leader . In this paper, we deal with leader
election in dynamic networks , where a fault could occur, i.e., data could be
corrupted, or the topology could change, by insertion or deletion of processes or
links, possibly even causing the network to become disconnected, or causing pre-
viously distinct components of the network to become connected. In a dynamic
network, the problem is modified slightly in the following manner: The goal is
elect a leader for each component of the network after any number of concurrent
faults.

An algorithm A is self-stabilizing if, starting from a completely arbitrary
configuration, the network will eventually reach a legitimate configuration. Note

S. Dolev et al. (Eds.): SSS 2010, LNCS 6366, pp. 35–49, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

36 A.K. Datta, L.L. Larmore, and H. Piniganti

that any self-stabilizing leader election algorithm for the static network is also
a solution for the dynamic leader election problem, since when a fault occurs,
we can consider that the algorithm is starting over again from an arbitrary
state. There are a number of such algorithms in the literature which require
large memory in each process, or which take O(n) time to converge, where n is
size of the network. Given the need to conserve time and possibly space, these
algorithms may not be practical for the dynamic leader election problem.

Related Work. There are several leader election algorithms for dynamic net-
works. However, the only self-stabilizing solutions we are aware of are presented
in [5,9]. The algorithm of [9] is simpler (both the pseudo-code and proof of cor-
rectness) and more efficient in terms of messages and message size than the
solution in [5]. However, both solutions suffer from the same drawback, which is
the use of a global clock or the assumption of perfectly synchronized clocks. The
following is quoted from [9]: “The algorithm relies on the nodes having perfectly
synchronized clocks; an interesting open question is to quantify the effect on the
algorithm of approximately synchronized clocks.” One goal of this paper is to
solve the above open problem.

Furthermore, in the execution of the algorithm of [9], a process could change its
choice of leader many times. Our third algorithm, DLEND, has the property that
if a topological change, however great, occurs, but if no variables are corrupted,
no process changes its choice of leader more than once.

There are number of stabilizing leader election algorithms for static networks
in the literature. Arora and Gouda [2] present a silent leader election algorithm in
the shared memory model. Their algorithm requires O(N) rounds and O(log N)
space, where N is a given upper bound on n, the size of the network. Dolev
and Herman [8] give a non-silent leader election algorithm in the shared memory
model. This algorithm takes O(Diam) rounds and uses O(N logN) space. Awer-
buch et al.[3] solve the leader election problem in the message passing model.
Their algorithm takes O(Diam) rounds and uses O(log D logN) space, where
D is a given upper bound on the diameter. Afek and Bremler [1] also give an
algorithm for the leader election problem in the message passing model. Their
algorithm takes O(n) rounds and uses O(log n) bits per process, where n is the
size of the network. They do not claim that their algorithm works under the un-
fair daemon. In [4], we gave a uniform self-stabilizing leader election algorithm.
This algorithm works under an arbitrary, i.e., unfair scheduler (daemon). The
algorithm has an optimal space complexity of O(log n) bits per process. From
an arbitrary initial configuration, the algorithm elects the leader and builds a
BFS tree rooted at the leader within O(n) rounds, and is silent within O(Diam)
additional rounds, where Diam is the diameter of the network. The algorithm
does not require knowledge of any upper bound on either n or Diam.

Our Contributions. Our algorithms have the following combination of features:
they are asynchronous, self-stabilizing, and silent, converge in O(Diam) time,
and use no global clock. They also use only O(1) variables per process; how-
ever, using a technique from [9], one of the variables is an unbounded integer,

Self-stabilizing Leader Election in Dynamic Networks 37

meaning that if the algorithm runs forever, that integer grows without bound.
(The algorithm of [9] also contains an unbounded integer.) We claim that, as a
practical matter, this is of little importance, since the size of that unbounded
integer increases by at most one per step, and thus should not overflow a modest
size memory, even if the algorithm runs for years.

All three of our algorithms elect a leader for each component of the network,
and also build a BFS tree rooted at that leader. In each case, after a fault,
each component of the network elects a leader within O(Diam) rounds, where
Diam is the maximum diameter of any component, provided the variables are
not corrupted.

The space and time complexities of our first algorithm, DLE, are smaller than
those of [9], as DLE requires fewer variables, and converges in only Diam + 1
rounds from an arbitrary configuration, approximately one third the time as the
algorithm of [9]. As in [9], DLE picks an arbitrary process to be the leader of
each component.

Our second algorithm, DLEP, picks the highest priority process of each com-
ponent to be its leader. Priority of a process can be defined as a function of its
ID, its local topology, or any data the process obtains from the application layer.
Since the choice of leader is not arbitrary, DLEP should have greater leadership
stability than DLE, i.e., there should be a tendency for leaders to remain the
same after small topological changes.

Our third algorithm, DLEND, ensures even greater leadership stability than
DLEP. If the network has reached a stable configuration, and if a topological
change, however great, occurs in a given step, and no variables are corrupted,
and then no fault occurs thereafter, every component (under the new topology)
will elect an incumbent , i.e., a leader that was a leader before the topological
change, if possible. In cases where a component contains no incumbent, or more
than one incumbent, DLEND makes a choice based on priority in the same
manner as DLEP.

DLEND has an additional stability feature, which we call no dithering. If the
network has reached a stable configuration, and if a topological change, however
great, occurs in a given step, and then no fault thereafter, then no process will
change its choice of leader more than once.

Model. A self-stabilizing [6,7] system is guaranteed to converge to the intended
behavior in finite time, regardless of the initial state of the system. In particular,
a self-stabilizing distributed algorithm will eventually reach a legitimate state
within finite time, regardless of its initial configuration, and will remain in a
legitimate state forever. A distributed algorithm is called silent if eventually all
execution halts.

We use the composite atomicity model of computation. Each process can
read the variables of its neighbors, but can write only to its own variables. A
process is enabled if it can execute an action. At each step, the scheduler , or
daemon, selects a non-empty set of enabled processes, if there are any, and each
of the selected processes executes an action, which consists of changing its own
variables. We assume that all selected processes perform their actions instantly.

38 A.K. Datta, L.L. Larmore, and H. Piniganti

The daemon is unfair , i.e., it is not required to ever select an enabled process
unless it is the only enabled process [7].

2 Algorithm DLE

Our first algorithm, DLE, is somewhat similar to the algorithm of [9], although it
is asynchronous and works under the unfair daemon. The basic idea is that every
process that detects that it cannot possibly be part of what will become a correct
BFS tree declares itself to be a leader. When several processes in a component
declare themselves to be leaders, one of them will capture the component.

Every process x has a leadership pair , (x.nlp, x.leader), indicating that x has
chosen the process whose ID is x.leader as its leader. The number, x.nlp, is called
a negative leader priority.

When a process � declares itself to be a leader, it chooses a priority number
that is higher than the priority number of its previous leader; but it stores the
negative of this priority in the leadership pair. As in [9], we express this priority
as a negative number because we want the lexically smallest leadership pair to
have priority.

In a legitimate (final) configuration, all processes in any one component C of
the network have the same leadership pair, (nlp, �C), where �C is some process in
the component, the leader of C. In addition, there is a BFS tree of the component
rooted at �C. Each process x has a pointer to its parent in the BFS tree, as well
as a level variable, whose value is the distance from x to �C.

The basic technique of the algorithm is flooding. Under certain conditions, a
process declares itself to be a leader by executing Action A1 (as listed in Table
1), creating a new leadership pair with a higher priority than the priority of
its previous leader, and setting its level to zero. Each self-declared leader then
attempts to capture the entire component by flooding its leadership pair. The
smallest (using lexical ordering), i.e., highest priority, leadership pair captures
the entire component, and the algorithm halts.

The reason a new leader picks a higher priority than its old leader is that,
because of deletion of links, it is possible that the old leader is no longer in the
same component. Giving priority to the “youngest” leader guarantees that the
ID part of the highest priority leadership pair is the actual ID of some process
in the component, provided at least one round has elapsed since any fault.

Variables of DLE. For any process x, we have variables:

1. x.id , the ID of x. We assume that IDs are unique, and that they form an
ordered set. That is, if x, y, and z are distinct processes, then either x.id <
y.id or y.id < x.id ; and if x.id < y.id and y.id < z.id , then x.id < z.id .
By an abuse of notation, we will use the same notation to refer to both a
process and its ID.

2. x.leader , the process that x has selected to be its leader, which we call the
leader of x.

Self-stabilizing Leader Election in Dynamic Networks 39

3. x.level , a non-negative integer which, in a legitimate configuration, is the
distance from x to x.leader .

4. x.nlp, a non-positive integer called the negative leader priority of x. The
value of x.nlp is the negative of the priority that x.leader assigned to itself
when it declared itself to be a leader. As in [9], the value of x.nlp is not
bounded.

5. x.vector = (x.nlp, x.leader , x.level), the vector of x. Vectors are ordered
lexically.
Although we list x.vector as a variable, it is actually an ordered triple of
other variables, and hence requires no extra space.

6. x.parent , the parent of x. In a legitimate configuration, if x is not the leader
of its component, x.parent is that neighbor of x which is the parent of x in
the BFS tree rooted at the leader. If x is the leader, then x.parent = x.
Because of a prior fault, x.parent might not be the ID of x or of any neighbor
of x. In this case, we say that x.parent is unlawful .

Functions of DLE

1. Let N(x) be the neighbors of x, and U(x) = N(x) ∪ {x}.
2. If v = (nlp, �, d) is a vector, we define successor(v) = (nlp, �, d + 1), the

smallest vector that is larger than v.
3. Min Nbr Vector(x) = min {y.vector : y ∈ U(x)}, the minimum neighborhood

vector of x.
4. Local Minimum(x), Boolean, meaning that x is a local minimum, i.e.,

x.vector ≤ Min Nbr Vector(x).
5. Good Root(x), Boolean, meaning that x is a local minimum and its own

leader, and also a local root, i.e., x.leader = x.id , x.level = 0, and x.leader =
x.parent = x.

6. Good Child(x), x is a good child , i.e., x.parent .vector = Min Nbr Vector(x)
and x.vector = successor(Min Nbr Vector(x)).

7. Parent(x) = p ∈ N(x) such that x.vector = successor(p.vector). If there is
more than one such neighbor of x, choose the one with the smallest ID. If
there is no such neighbor of x, define Parent(x) = x.

Table 1. Program of DLE for Process x

A1 Reset Local Minimum(x) −→ x.nlp ← x.nlp − 1
¬Good Root(x) x.leader ← x.id

x.level ← 0
x.parent ← x

A2 Attach ¬Local Minimum(x) −→ vector(x) ←
¬Good Child(x) successor(Min Nbr Vector(x))

x.parent ← Parent(x)

40 A.K. Datta, L.L. Larmore, and H. Piniganti

Legitimate State of the Algorithm DLE. A configuration is legitimate if

1. For any component C of the network, there is exactly one process, �C ∈ C
which is a good root, and every other process in C is a good child.

2. For any component C of the network, x.vector = (�C.nlp, �C, d(x, �C)) for all
x ∈ C, where d is (hop) distance between processes. That is, all processes
in C have the same leadership pair, and level equal to the distance to the
leader of the component.

3 Dynamic Leader Election with Priority

Algorithm DLE, given in Section 2, selects an arbitrary member of each com-
ponent to be a leader of that component. In this section, we introduce the re-
quirement that the elected leader of each component be the best process in the
component, where “best” can be defined any number of ways, depending on the
application. Our method is to define some kind of priority measure on all pro-
cesses, and then make sure that the elected leader is the process which has the
highest priority in the component. For example, the process of highest priority
could be the process of least ID, or of greatest ID, or of greatest degree, i.e.,
number of neighbors.

If no fault occurs for O(Diam) rounds, DLE always chooses a leader for each
component, but this leader could be any process of the component. This leader
is likely not to have been a leader before the fault; it is even possible that the loss
of one link of a component could cause the component to elect a new leader, even
if no processes of the component were lost and no new processes were added.
This behavior could be undesirable in practice. If we define priority of processes
in such a way that it is largely unaffected by small faults, we will decrease the
frequency of leadership changes in practice.

We assume an abstract function Priority(x), the priority of a process x, which
must depend only on the topology of the network, the ID of x, and data obtained
by x from the application layer. In other words, Priority(x) is not affected by
any change of the variables of our algorithm. We also assume that Priority(x)
can be computed by x in O(1) time.

Define Max Priority(S) = max {Priority(x) : x ∈ S}, if S is any non-empty
set of processes, and let Best(S) be that process in S whose priority is equal
to Max Priority(S). Without loss of generality, the choice of Best(S) is unique,
since we can use ID as a tie-breaker. The output condition of DLEP is that, for
any component C of the network, Best(C) will be elected leader of C. DLEP
consists of four phases . The first phase, which elects a preliminary leader �C for
each component C and builds a preliminary BFS tree of C rooted at �C, is exactly
an emulation of the algorithm DLE given in Section 2. The second and third
phases of DLEP make use of the preliminary BFS tree in each component to
compute the final leader and the final BFS tree of that component. The second
phase of DLEP consists of a convergecast wave in the preliminary BFS tree.
Let Tx be the subtree of the preliminary BFS tree rooted at a given process x.
During the second phase, the intermediate leader of each x is computed to be

Self-stabilizing Leader Election in Dynamic Networks 41

Best(Tx). Thus, the intermediate leader of �C is Best(C), which will also be the
final leader of C. The third phase of DLEP consists of a broadcast wave, during
which every process is told the identity of Best(C), and selects that process to
be its final leader. The fourth phase of DLEP consists of a flooding wave from
Best(C) which builds the final BFS tree in C.

Variables of DLEP. For any process x, we have variables, as listed below.

1. These variables are used for the first phase of DLEP, which emulates DLE.
(a) x.p leader , the preliminary leader of x, which corresponds to x.leader in

DLE.
(b) x.nplp, a non-positive integer called the negative preliminary leader pri-

ority of x, which corresponds to x.nlp in DLE. The value of x.nplp is the
negative of the priority that x.p leader assigned to itself when it declared
itself to be a preliminary leader,

(c) x.p level , the preliminary level of x, the distance from x to x.p leader ,
which corresponds to x.level in DLE.

(d) x.p vector = (x.nplp, x.p leader , x.p level), the preliminary vector of x,
which corresponds to x.vector in DLE. Preliminary vectors are ordered
lexically.

(e) x.p parent , the parent of x in the preliminary BFS tree, which corre-
sponds to x.parent in DLE.

2. x.i leader , the intermediate leader of x, whose value in a stable configuration
is Best(Tx).

3. x.ilp, the intermediate leader priority of x, whose value in a stable configu-
ration is Priority(Best(Tx)).

4. x.i vector = (x.ilp, x.i leader), the intermediate vector of x. Intermediate
vectors are ordered lexically.

5. x.f leader , the final leader of x, whose value in a stable configuration is
Best(C), the elected leader of the component C that x belongs to.

6. x.f level , the final level of x, whose value in a stable configuration is the
distance from x to x.f leader .

7. x.f parent , whose value in a stable configuration is the parent of x in the
final BFS tree.
Although we list x.p vector and x.i vector as variables, they are actually
ordered triples of other variables, and hence require no extra space.

Functions of DLEP. As in DLE, some of the functions of DLEP are given names
which are capitalized versions of the names of variables. Is such cases, the value
of the function is what x believes the value of the variable should be.

1. If (nplp, �, d) is a preliminary vector, let successor(nplp, �, d) = (nplp, �, d+1),
the smallest vector that is larger than (nplp, �, d).

2. Min Nbr P Vector(x) = min {y.p vector : y ∈ N(x) ∪ {x}}, the minimum
neighbor preliminary vector of x.

3. Local Minimum(x) ≡ Min Nbr P Vector(x) ≥ x.p vector , Boolean.

42 A.K. Datta, L.L. Larmore, and H. Piniganti

4. Good Root(x) ≡ Local Minimum(x) ∧ (x.p leader = x) ∧ (x.p level = 0),
Boolean.

5. Good Child(x) ≡ x.p vector = successor(x.p parent .p vector), Boolean.
6. P Parent(x) = y ∈ N(x) such that y.p vector = Min Nbr P Vector(x). If

there is more than one such neighbor of x, choose the one with the smallest
ID. If there is no such neighbor of x, define P Parent(x) = x.

7. P Chldrn(x) = {y : Good Child (y) and y.p parent = x}.
8. We define the Boolean function Local P Tree Ok(x) on a process x to mean

that, as far as x can tell by looking at its variables and those of its neighbors,
the preliminary leader and the preliminary BFS tree have been constructed.
More formally, Local P Tree Ok(x) is true if the following conditions hold
for x:

– x is either a good root or a good child.
– x.p level = 0 if and only if x is a good root.
– x.p leader = x if and only if x is a good root.
– y.p leader = x.p leader for all y ∈ N(x).
– |y.p level − x.p level | ≤ 1 for all y ∈ N(x).

9. I Vector(x) = max
{

(Priority(x), x)
max {y.i vector : y ∈ P Chldrn(x)} .

10. F Leader (x) =
{

x.i leader if Good Root(x)
x.p parent .f leader otherwise

11. F Level(x) =
{

0 if x.f leader = x
1 + min {y.f level : y ∈ N(x)} otherwise

12. F Parent(x) = p ∈ N(x) such that 1 + f level (p) = f level(x). If there is
more than one such neighbor of x, choose the one with the smallest ID. If
there is no such neighbor of x, define F Parent(x) = x.

Legitimate Configurations for DLEP. We define a configuration of the network
to be pre-legitimate if

1. For any component C of the network, there is exactly one process, �C ∈ C,
which is a good root; and all other processes of C are good children.

2. For any component C of the network, x.p vector = (�C.nplp, �C, d(x, �C)) for
all x ∈ C, where d(x, �C) is the distance from �C to x. That is, all processes
in C have the same preliminary leadership pair, and preliminary level equal
to the distance to the preliminary leader of the component.

A configuration of the network is legitimate if it is pre-legitimate, and if, for each
component C and for all x ∈ C:

1. x.i vector = (Priority(y), y), where y = Best(Tx).
2. x.f leader = Best(C).
3. x.f level = d(x,Best(C)), the distance from x to Best(C).
4. x.f parent = F Parent(x).

Self-stabilizing Leader Election in Dynamic Networks 43

Table 2. Program of DLEP

A1 Reset Local Minimum(x) −→ x.nplp ← x.nplp − 1
priority 1 ¬Good Root(x) x.p leader ← x.id

x.p level ← 0
x.p parent ← x

A2 Preliminary ¬Local Minimum(x) −→ p vector(x) ←
priority 1 BFS Tree ¬Good Child(x) successor(Min Nbr Vector(x))

x.p parent ← P Parent(x)

A3 Intermediate x.i vector �= I Vector(x) −→ x.i vector ← I Vector(x)
priority 2 Vector Local P Tree Ok(x)

A4 Final x.f leader �= F Leader(x) −→ x.f leader ← F Leader(x)
priority 3 Leader Local P Tree Ok(x)

A5 Final x.f level �= F Level(x) −→ x.f level ← F Level(x)
priority 4 Level Local P Tree Ok(x)

∀y ∈ N(x) :
y.f leader = x.f leader

A6 Final x.f parent �= F Parent(x) −→ x.f parent ← F Parent(x)
priority 5 Parent Local P Tree Ok(x)

∀y ∈ N(x) :
y.f leader = x.f leader

Explanation of Actions. Action A1 corresponds to Action A1 of DLE, while
Action A2 corresponds to Action A2 of DLE. Together, these two actions cause
the preliminary leader �C of each component C to be chosen, and the preliminary
BFS tree to be constructed.

Action A3 is the action of the convergecast wave that chooses the intermediate
vector for each process after the preliminary BFS tree has been constructed. It
is possible for some processes to execute A3 prematurely because they believe,
based on local information, that the preliminary BFS tree is finished; in these
cases, these processes will recompute their intermediate vectors later.

The final leader of the component C, namely, FLC , will be the intermediate
leader of �C . Action A4 is the action of the broadcast wave, starting at �C, that
informs every process of the choice of final leader.

After every process knows the final leader, Actions A5 and A6 construct the
BFS tree, assigning to each process its final level and final parent, in a broadcast
wave starting at FLC .

4 Algorithm DLEND

Post–legitimate Configurations. Suppose that γ is a legitimate configuration for
a distributed algorithm A on a given network G. Suppose G′ is a new network
that is obtained from G by an arbitrary topological change; i.e., the processes
of G′ are the same as those of G, and no variables of any process have been
changed, but the links may be different. This change defines a configuration γ′

on G′, where each process has the same values of its variables as at γ. If a process

44 A.K. Datta, L.L. Larmore, and H. Piniganti

x contains a variable which is a pointer to a process y which is a neighbor of x
in G, and if y is no longer a neighbor of x in γ′, the pointer does not change,
but it has nothing to point to. In this case, we say that that pointer is unlawful
at γ′. We say that γ′ is post–legitimate configuration.

We now present Algorithm DLEND for the dynamic leadership election prob-
lem. DLEND has the following properties:

1. Self Stabilization and Silence: Starting from an arbitrary configuration,
within O(Diam) rounds, a legitimate configuration is reached and there are
no further actions.

2. Incumbent Priority: Starting from a post–legitimate configuration, if a com-
ponent C contains at least one process which was a leader at the previous
legitimate configuration, one of those processes will be elected leader of that
component.

3. No Dithering: Starting from a post–legitimate configuration, no process will
change its choice of leader more than once.

DLEND shares the first property with Algorithms DLE and DLEP. The second
property is an extension of the priority property of DLEP. To achieve the in-
cumbent and no dithering properties, we introduce colors to guide the order of
computation.

DLEND is very much like DLEP, except that, to achieve the no dithering
property, each process is given a color , which is in integer in the range [0 . . . 5].
The color of a process is related to its current role in the computation. The
purpose of the colors is to ensure that the final leader of a process is not computed
too early. In a computation that starts from a post–legitimate configuration, the
processes pass through the following sequence of colors.

0. In a legitimate configuration, x.color = 0 for each process x.
1. Each color changes to 1 when the preliminary BFS tree is being constructed.
2. All processes change color to 2 in a convergecast wave when the preliminary

BFS tree is completed.
3. All processes change color to 3 in a broadcast wave after the preliminary

leader has color 2.
4. All processes change color to 4 in a convergecast wave that computes the

intermediate vector of each process. Each process x chooses as its interme-
diate leader a process in the subtree Tx which was a leader in the previous
legitimate configuration, if any such previous leader exists in Tx.
It is possible for a process to change color to 2, 3, or 4 prematurely, and then
go back to color 1. This can occur when some of the preliminary calculations
of the preliminary BFS tree are incorrect, and need to be redone. However,
when a good root changes its color to 4, the preliminary BFS tree has been
correctly calculated.

5. All processes change color to 5 in a broadcast wave, during which each pro-
cess chooses a new value of the final leader. All processes in a component
choose the same final leader, which is the intermediate leader of the prelim-
inary leader.

Self-stabilizing Leader Election in Dynamic Networks 45

Finally, in a flooding wave starting from the final leader, all processes change
their color to 0. They then construct the final BFS tree, and eventually the
configuration is legitimate and silent.

We define the actions of DLEND in Table 3. DLEND uses variables of DLEP,
as well as

– x.former leader in subtree, Boolean, meaning that Tx contains a process
which was a final leader in the last legitimate configuration.

– x.color ∈ {0, 1, 2, 3, 4, 5}.
– x.i vector = (x.former leader in subtree,Priority(x.i leader), x.i leader)

DLEND uses the functions of DLEP: successor(nplp, �, d) = (nplp, �, d + 1),
where (nplp, �, d) is a preliminary vector, Min Nbr P Vector(x), Good Root(x),
Local Minimum(x), Good Child (x), P Parent(x), P Chldrn(x), Priority(x), and
Local P Tree Ok(x). One function of DLEP is redefined for DLEND, namely

I Vector(x) = max
{

(Is Leader (x),Priority(x), x)
max {y.i vector : y ∈ P Chldrn(x)}

DLEND uses a number of additional functions, as well.

– Local I Vector Ok(x), Boolean, which is true if x.i vector = I Vector(x).
– Local I Leader Ok(x), Boolean, which is true if either x.i leader = x, or

x.i leader = y.i leader for some y ∈ P Chldrn(x). If Local I Vector Ok(x)
then Local I Leader Ok(x), but the converse does not hold.

– Local F Leader Ok(x), Boolean, which is true if x is either a good root and
x.f leader = x.i leader , or a good child and x.f leader = x.p parent .f leader .

– Is Leader(x), Boolean, meaning that x.f leader = x.

– F Level(x) =
{

0 if x.f leader = x
1 + min {y.f level : y ∈ N(x)} otherwise

– F Parent(x) = p ∈ N(x) such that p.color = 0 and 1+f level (p) = f level (x).
If there is more than one such neighbor of x, choose the one with the smallest
ID. If there is no such neighbor of x, define F Parent(x) = x.

– Error(x), Normal Start(x), and Can Start(x), Boolean, defined below:

If x is a good child, we say that x is color compatible with its parent if
x.color , x.parent .color ∈ {1, 2, 3, 4, 5} and x.color = x.parent .color is odd,
x.color is even and |x.parent .color − x.color | ≤ 1, x.color , x.parent .color ∈
{0, 5}, or x.color , x.parent .color ∈ {0, 1}.

Define the Boolean function Color Error(x) to be true if either x is a true
root which is color incompatible with some y ∈ P Chldrn(x), or x is a true child
which is color incompatible with x.p parent .

Define the Boolean function P Error(x) to be true if x.color /∈ {0, 1} and there
is some y ∈ N(x) such that y.p vector > successor(x.p vector), i.e., x perceives
that y is enabled to execute Action A3. Define the Boolean function I Error (x)
to be true if either x.color = 4 and ¬Local I Vector Ok(x) or x.color = 5 and
¬Local I Leader Ok(x).

46 A.K. Datta, L.L. Larmore, and H. Piniganti

Let Error (x) be the disjunction of the previous functions, Color Error (x),
P Error(x), I Error(x).

Let Normal Start(x) be the Boolean function which is true if x.color = 0; and
if either ¬Local I Leader Ok(x), ¬Local F Leader Ok(x), y.color = 1 for some
y ∈ P Chldrn(x), and x is a good root; or a good child and x.p parent .color = 1.

Let Can Start(x) be the Boolean function which is true if x.color
= 1 and
Error(x), or Normal Start(x).

Explanation of Actions. Action A1 changes the color of process to 1, indicating
that computation of the preliminary BFS tree is to start, or restart. A process
x is enabled to execute A1 when it decides, based on the values of its neighbors,
that it must start the computation of the preliminary BFS tree, or that there
has been a fault that cannot be corrected without restarting that computation.
Color 1 is “contagious,” i.e., if x.color = 0 and a neighbor process has color 1,
x can execute A1.

Action A2 corresponds to Action A1 of DLE, while Action A3 corresponds
to Action A2 of DLE. Together, these two actions cause the preliminary leader,
�C of each component C to be chosen, and the preliminary BFS tree to be
constructed. While a process is executing those actions, its color remains 1.

Actions A4 and A5 have no analog in Algorithms DLE and DLEP. All pro-
cesses execute A4 from the bottom of the preliminary BFS tree, changing their
colors to 2, and then top-down in the same tree, changing their colors to 3. No
other variables are changed, so these actions do not contribute to computation of
the preliminary, intermediate, or final leaders. This apparently pointless “waste”
of 2Diam rounds is needed to ensure the no dithering property of DLEND.

Action A6 is the action of the convergecast wave that chooses the intermediate
vector for each process after the preliminary BFS tree has been constructed. As
each process executes A6, its color changes to 4.

It is possible for some processes to execute A6 prematurely because they be-
lieve, based on local information, that the preliminary BFS tree is finished; in
these cases, these processes will recompute their intermediate vectors later. How-
ever, the no dithering property is guaranteed by the fact that, if the computation
started from a post–legitimate state, no good root will ever execute Action A6
unless it is the actual preliminary leader and the preliminary BFS tree has been
correctly constructed.

The final leader of the component C, namely, FLC , will be the intermediate
leader of �C . Action A7 is the action of the broadcast wave, starting at �C, that
informs every process of the choice of final leader. Each process changes its color
to 5 when it executes A7.

When FLC executes A7, it then executes Action A8, changing its color to 0,
starting construction of the final BFS tree. All processes change their color to 0
in a flooding wave starting from FLC , as they execute Action A9.

Actions A10 and A11 complete the construction of the final BFS tree, assign-
ing to each process its final level and final parent.

Self-stabilizing Leader Election in Dynamic Networks 47

Table 3: Program of DLEND

A1 Start Can Start(x) −→ x.color ← 1

priority 1

A2 Declare Local Minimum(x) −→ x.nplp ← x.nplp − 1

priority 2 P–Leader ¬Good Root(x) x.p leader ← x.id

x.p level ← 0

x.color ← 1

x.p parent ← x

A3 P–Attach ¬Local Minimum(x) −→ p vector(x) ←
priority 3 ¬Good Child(x) successor(Min Nbr Vector(x))

x.color ← 1

x.p parent ← P Parent(x)

A4 Wave 2 x.color = 1 −→ x.color ← 2

priority 4 ∀y ∈ N(x) : y.color ∈ {1, 2}
∀y ∈ P Chldrn(x) : y.color = 2

Local P Tree Ok(x)

¬Error(x)

A5 Wave 3 x.color = 2 −→ x.f leader ← F Leader(x)

priority 5 Good Root(x) ∨ x.color ← 3

(x.p parent.color = 3)

∀y ∈ N(x) : y.color ∈ {2, 3}
Local P Tree Ok(x)

¬Error(x)

A6 Convergecast x.color = 3 −→ x.i vector ← I Vector(x)

priority 6 Intermediate ∀y ∈ N(x) : y.color ∈ {3, 4} x.color ← 4

Leader Local P Tree Ok(x)

¬Error(x)

A7 Broadcast x.color = 4 −→ x.f leader ← F Leader(x)

priority 7 Final Good Root(x) ∨ x.color ← 5

Leader (x.p parent.color = 5)

∀y ∈ N(x) : y.color ∈ {4, 5}
Local P Tree Ok(x)

¬Error(x)

A8 Become x.color = 5 −→ x.f level ← 0

priority 8 Final ∀y ∈ N(x) : y.color = 5 x.f parent ← x

Leader x.f leader = x x.color ← 0

Local P Tree Ok(x)

A9 F–Attach x.color = 5 −→ x.f level ← 0

priority 8 ∀y ∈ N(x) : y.color ∈ {5, 0} x.f parent ← F Parent(x)

∃y ∈ N(x) : y.color = 0 x.color ← 0

Local P Tree Ok(x)

¬Error(x)

A10 F–Level x.color = 0 −→ x.f level ← F Level(x)

priority 8 ∀y ∈ N(x) : y.color = 0 x.f parent ← F Parent(x)

x.f level 	= F Level(x)

Local P Tree Ok(x)

¬Error(x)

A11 F–Parent x.color = 0 −→ x.f parent ← F Parent(x)

priority 9 ∀y ∈ N(x) : y.color = 0

x.f parent 	= F Parent(x)

Local P Tree Ok(x)

¬Error(x)

48 A.K. Datta, L.L. Larmore, and H. Piniganti

5 Sketches of Proofs

After one round of a computation of DLE has elapsed, every process is either
a true child or a true root, and, in each component C, the leadership pair of
some true root �C is the minimum leadership pair in that component. Within
Diam additional rounds, a BFS tree is constructed in C rooted at �C. Thus,
DLE converges within O(Diam) rounds, and is silent upon reaching a legitimate
configuration.

A distributed algorithm might be proved to converge in a finite number of
rounds, but still possibly never converge under the unfair daemon, since that
daemon might never select a specific enabled process. We prove that DLE works
under the unfair daemon by proving that every computation of DLE is finite.

For each process x, the value of x.vector cannot decrease, and in fact, at every
step of the computation, x.vector increases for some process x. Furthermore,
from the initial configuration, we can compute an upper bound on the number
of possible future values of x.vector . Thus, x can execute only finitely many
times during the computation, and the computation thus cannot be infinite.

The proof of DLEP uses the convergence stair method. We give a nested
sequence of benchmarks, each a closed predicate, and the last one legitimacy.

There is a morphism from DLEP to DLE, meaning that every configuration of
DLEP maps to a configuration of DLE, and that this mapping is consistent with
the actions of the algorithms. From the fact that DLE is correct and silent under
the unfair daemon, we can thus conclude that every computation of DLEP even-
tually reaches a configuration where first benchmark holds. i.e., the preliminary
BFS tree is complete.

We define the next benchmark to mean that all values of i vector are correct,
the next benchmark to mean that all values of f leader are correct, and the
fourth and last benchmark to mean that the configuration is legitimate.

We can show that it takes O(Diam) rounds to achieve the first benchmark,
and O(Diam) additional rounds to achieve each subsequent benchmark. Thus,
DLEP converges in O(Diam) rounds.

To prove that DLEP works under the unfair daemon, we prove that every
computation of DLEP is finite. Given a computation Γ of DLEP, we have, from
the properties of DLE and the morphism of DLEP to DLE, that Γ contains only
finitely many instances of Actions A1 and A2. We then prove that, after the
last instance of one of those actions, Γ contains only finitely many instances of
Action A3. We then prove that, after the last instance Action A3, there are only
finitely many instances of Action A4. Proceeding in this fashion, we eventually
prove that Γ has only finitely many actions, and thus ends at a configuration
where no process is enabled. We then prove that if no process is enabled, the
configuration is legitimate.

DLEND elects both a preliminary leader and a final leader in each component,
but uses colors to control the order of actions, in order to enforce the incumbent
and no dithering properties.

Consider an action Γ which begins at post–legitimate configuration, which
implies that every process has color 0. If the configuration of a component C

Self-stabilizing Leader Election in Dynamic Networks 49

differs only slightly from legitimate, it could happen that DLEND converges
without changing the color of any process and every process has the same final
leader as initially. Otherwise, we can prove that no process has color 5 until
after the preliminary BFS tree is constructed. After that, each process changes
its color to 5 exactly once, at which time, and no other, it can change its choice
of final leader. All processes in C will choose the same final leader. Each process
of C will then, just once, change its color to 0, after which the final BFS tree is
constructed rooted at the elected final leader.

We can also prove that, starting at any configuration, DLEND is eventually
silent. Suppose Γ is a computation of DLEND. By the result we proved for
DLE, Γ can contain only finitely many instances of a structural action. We then
prove that Error(x) can be true for some process x only finitely many times,
after which there can be only finitely many instances of a color action. Then, all
colors are 0, and the only actions that can be enabled are A10 and A11. After
finitely many steps, the configuration is legitimate, and silent.

6 Conclusion

We have presented three distributed leader election algorithm for dynamic net-
works which work under the unfair daemon, and which use no global clock. For
Algorithm DLEND, if purely topological changes occur after a legitimate state,
an incumbent leader is re-elected, and no process changes leader more than once.

References

1. Afek, Y., Bremler, A.: Self-stabilizing unidirectional network algorithms by power-
supply (extended abstract). In: SODA, pp. 111–120 (1997)

2. Arora, A., Gouda, M.G.: Distributed reset. IEEE Transactions on Computers 43,
1026–1038 (1994)

3. Awerbuch, B., Kutten, S., Mansour, Y., Patt-Shamir, B., Varghese, G.: Time opti-
mal self-stabilizing synchronization. In: Proceedings of the 25th Annual ACM Sym-
posium on Theory of Computing (STOC 1993), pp. 652–661 (1993)

4. Datta, A.K., Larmore, L.L., Vemula, P.: Self-stabilizing leader election in optimal
space. In: Kulkarni, S., Schiper, A. (eds.) SSS 2008. LNCS, vol. 5340, pp. 109–123.
Springer, Heidelberg (2008); Also to appear in Theoretical Computer Science

5. Derhab, A., Badache, N.: A self-stabilizing leader election algorithm in highly dy-
namic ad hoc mobile networks. IEEE Transactions on Parallel and Distributed Sys-
tems 19(7), 926–939 (2008)

6. Dijkstra, E.W.: Self stabilizing systems in spite of distributed control. Communica-
tions of the Association of Computing Machinery 17, 643–644 (1974)

7. Dolev, S.: Self-Stabilization. The MIT Press, Cambridge (2000)
8. Dolev, S., Herman, T.: Superstabilizing protocols for dynamic distributed systems.

Chicago J. Theor. Comput. Sci. (1997)
9. Ingram, R., Shields, P., Walter, J.E., Welch, J.L.: An asynchronous leader election

algorithm for dynamic networks. In: IPDPS, pp. 1–12 (2009)

Loop-Free Super-Stabilizing Spanning Tree
Construction�

Lélia Blin1,3, Maria Gradinariu Potop-Butucaru2,3,4, Stephane Rovedakis1,5,
and Sébastien Tixeuil2,3

1 Université d’Evry-Val d’Essonne, 91000 Evry, France
2 Université Pierre & Marie Curie - Paris 6, 75005 Paris, France

3 LIP6-CNRS UMR 7606, France
{lelia.blin,maria.gradinariu,sebastien.tixeuil}@lip6.fr

4 INRIA REGAL, France
5 Laboratoire IBISC-EA 4526, 91000 Evry, France

stephane.rovedakis@ibisc.fr

Abstract. We propose an univesal scheme to design loop-free and super-
stabilizing protocols for constructing spanning trees optimizing any tree
metrics (not only those that are isomorphic to a shortest path tree).

Our scheme combines a novel super-stabilizing loop-free BFS with
an existing self-stabilizing spanning tree that optimizes a given metric.
The composition result preserves the best properties of both worlds:
super-stabilization, loop-freedom, and optimization of the original met-
ric without any stabilization time penalty. As case study we apply our
composition mechanism to two well known metric-dependent spanning
trees: the maximum-flow tree and the minimum degree spanning tree.

1 Introduction

New distributed emergent networks such as P2P or sensor networks face high
churn (nodes and links creation or destruction) and various privacy and security
attacks that are not easily encapsulated in the existing distributed models. One
of the most versatile techniques to ensure forward recovery of distributed sys-
tems is that of self-stabilization [1,2,3]. A distributed algorithm is self-stabilizing
if after faults and attacks hit the system and place it in some arbitrary global
state, the system recovers from this catastrophic situation without external (e.g.
human) intervention in finite time. A recent trend in self-stabilizing research is to
complement the self-stabilizing abilities of a distributed algorithm with some ad-
ditional safety properties that are guaranteed when the permanent and intermit-
tent failures that hit the system satisfy some conditions. In addition to being self-
stabilizing, a protocol could thus also tolerate crash faults [4,5], nap faults [6,7],
Byzantine faults [8,9,10,11], a limited number of topology changes [12,13,14] and
sustained edge cost changes [15,16].

The last two properties are especially relevant when building optimized span-
ning trees in dynamic networks, since the cost of a particular edge and the
� This work was partially founded by ANR projects SHAMAN and SPADES.

S. Dolev et al. (Eds.): SSS 2010, LNCS 6366, pp. 50–64, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Loop-Free Super-Stabilizing Spanning Tree Construction 51

network topology are likely to evolve through time. If a spanning tree protocol
is only self-stabilizing, it may adjust to the new costs or network topology in
such a way that a previously constructed spanning tree evolves into a discon-
nected or a looping structure (of course, in the absence of network modifica-
tions, the self-stabilization property guarantees that eventually a new spanning
tree is constructed). Now, a packet routing algorithm is loop free [17,18] if at
any point in time the routing tables are free of loops, despite possible modifi-
cation of the edge-weights in the graph (i.e., for any two nodes u and v, the
actual routing tables determines a simple path from u to v, at any time). The
loop-free property [15,16] in self-stabilization gives the following guarantee. A
spanning tree being constructed (not necessarily a “minimal” spanning tree for
some metric), then the self-stabilizing convergence to a “minimal” spanning tree
maintains a spanning tree at all times. Obviously, this spanning tree is not “min-
imal” at all times. The consequence of this safety property in addition to that
of self-stabilization is that the spanning tree structure can still be used (e.g. for
routing) while the protocol is adjusting, and makes it suitable for networks that
undergo such very frequent dynamic changes. In order to deal with the network
churn, super-stabilization captures the quality of services a tree stucture can of-
fer during and after a localized topological change. Super-stabilization [19] is an
extension of self-stabilization for dynamic settings. The idea is to provide some
minimal guarantees (a passage predicate) while the system repairs after a topol-
ogy change. In the case of optimized spanning trees algorithms while converging
to a correct configuration (i.e. an optimized tree) after some topological change,
the system keeps offering the tree service during the stabilization time to all
members that have not been affected by this modification.

Related works. Relatively few works investigate merging self-stabilization and
loop free routing, with the notable exception of [15,16,20]. In [15], Cobb and
Gouda propose a self-stabilizing algorithm which constructs spanning trees with
loop-free property. This algorithm allows to optimize general tree metrics from
a considered root, such as bandwidth, delay, distance, etc ... To this end, each
node maintains a value which reflects its cost from the root for the optimized
metric, for example the maximum amount of bandwith on its path to reach the
root. The basic idea is to allows a node to select a neighbor as its parent if this
one offers a better cost. To avoid loop creation, when the cost of its parent or
the edge-cost to its parent changed a propagation of information is started to
propagate the new value. A node can safely change its parent if its propagation
of information is ended. Thus, a node can not select one of its descendant as its
parent. This algorithm requires a upper bound on the network diameter known
to every participant to detect the presence of a cycle and to reset the states of
the nodes. Each node maintains its distance from the root and a cycle is detected
when the distance of a node is higher than the diameter upper bound.

Johnen and Tixeuil [16] propose another loop-free self-stabilizing algorithm
constructing spanning trees, which makes no assumption on the network. This
algorithm follows the same approach used in [15], that is using propagation
of information in the tree. As in [15], this second algorithm constructs trees

52 L. Blin et al.

optimizing several metrics from a root, e.g., depth first search tree, breadth
first search tree, shortest path tree, etc. Since no upper bound on the network
diameter is used, when a cycle is present in the initial network state the protocol
continues the initiate propagation of information to grow the value of the nodes
in the cycle. The values of these nodes grow until the value of a node reaches a
threshold which is the value of a node out of the cycle. Thus, the node reaching
this threshold discover a neighbor which offers a better value and can select it to
break the cycle. When no cycle is present in the network, the system converges
to a correct state.

Also, both protocols use only a reasonable amount of memory (O(log n) bits
per node) and consider networks with static topology and dynamic edge costs.
However, the metrics that are considered in [15,16] are derivative of the shortest
path (distance graph) metric. It is considered a much easier task in a distributed
setting than that of tree metrics not based on distances, e.g., minimum span-
ning tree, minimum degree spanning tree, maximum leaf spanning tree, etc. In-
deed, the associated metric is locally optimizable [21], allowing essentially locally
greedy approaches to perform well. By contrast, some sort of global optimiza-
tion is needed for tree metrics not based on distances, which often drives higher
complexity costs and thus less flexibility in dynamic networks.

Recently, [20] proposed a loop-free self-stabilizing algorithm to solve the mini-
mum spanning tree problem for networks, assuming a static topology but
dynamic edge costs. None of the previously mentioned works can cope with
both dynamic edge changes (loop-freedom) and dynamic local topology changes
(super-stabilization). Also, previous works are generic only for local tree metrics,
while global tree metrics require ad hoc solutions.

Our contributions. We propose a distributed generic scheme to transform exist-
ing self-stabilizing protocols that construct spanning tree optimizing an
arbitrary tree metric (local or global), adding loop-free and super-stabilizing
properties to the input protocol. Contrary to existing generic protocols [15,16],
our approach provides the loop-free property for any tree metric (global or local,
rather than only local). Our technique also adds super-stabilization, which the
previous works do not guarantee. Our scheme consists in composing a distributed
self-stabilizing spanning tree algorithm (established and proved to be correct for
a given metric) with a novel BFS construction protocol that is both loop-free
and super-stabilizing. The output of our scheme is a loop-free super-stabilizing
spanning tree optimizing the tree metric of the input protocol. Moreover, we
provide complexity analysis for the BFS construction in both static and dy-
namic settings. We examplify our scheme with two case study: the maximum
flow tree and the minimum degree spanning tree. In both cases, the existing self-
stabilizing algorithms can be enhanced via our method with both loop-free and
super-stabilizing properties. Interestingly enough, the stabilization time com-
plexity of the original protocols is not worsen by the transformation.

Loop-Free Super-Stabilizing Spanning Tree Construction 53

2 Model and Notations

We consider an undirected weighted connected network G = (V,E,w) where
V is the set of nodes, E is the set of edges and w : E → R+ is a positive cost
function. Nodes represent processors and edges represent bidirectional communi-
cation links. Additionally, we consider that G = (V,E,w) is a dynamic network
in which the weight of the communication links and the sets of nodes and edges
may change. We consider anonymous networks (i.e., processors have no IDs),
with one distinguished node, called the root1. Throughout the paper, the root is
denoted r. We denote by deg(v) the number of v’s neighbors in G. The deg(v)
edges incident to any node v are labeled from 1 to deg(v), so that a processor
can distinguish the different edges incident to a node.

The processors asynchronously execute their programs consisting of a set of
variables and a finite set of rules. The variables are part of the shared register
which is used to communicate with the neighbors. A processor can read and
write its own registers and can only read the shared registers of its neighbors.
Each processor executes a program consisting of a sequence of guarded rules.
Each rule contains a guard (boolean expression over the variables of a node and
its neighborhood) and an action (update of the node variables only). Any rule
whose guard is true is said to be enabled. A node with one or more enabled rules
is said to be privileged and may make a move executing the action corresponding
to the chosen enabled rule.

A local state of a node is the value of the local variables of the node and the
state of its program counter. A configuration of the system G = (V,E) is the
cross product of the local states of all nodes in the system. The transition from
a configuration to the next one is produced by the execution of an action of at
least one node. We assume a distributed weakly fair scheduler. A computation of
the system is defined as a weakly fair, maximal sequence of configurations, e =
(c0, c1, . . . ci, . . .), where each configuration ci+1 follows from ci by the execution
of a single action of at least one node. During an execution step, one or more
processors execute an action and a processor may take at most one action. Weak
fairness of the sequence means that if any action in G is continuously enabled
along the sequence, it is eventually chosen for execution. Maximality means that
the sequence is either infinite, or it is finite and no action of G is enabled in the
final global state.

In the sequel we consider the system can start in any configuration. That
is, the local state of a node can be corrupted. Note that we don’t make any
assumption on the bound of corrupted nodes. In the worst case all the nodes in
1 Observe that the two self-stabilizing MST algorithms mentioned in the Previous

Work section assume that the nodes have distinct IDs with no distinguished nodes.
Nevertheless, if the nodes have distinct IDs then it is possible to elect one node as a
leader in a self-stabilizing manner. Conversely, if there exists one distinguished node
in an anonymous network, then it is possible to assign distinct IDs to the nodes in a
self-stabilizing manner [2]. Note that it is not possible to compute deterministically a
MST in a fully anonymous network (i.e., without any distinguished node), as proved
in [22].

54 L. Blin et al.

the system may start in a corrupted configuration. In order to tackle these faults
we use self-stabilization techniques.

Definition 1 (self-stabilization). Let LA be a non-empty legitimacy predi-
cate2 of an algorithm A with respect to a specification predicate Spec such that
every configuration satisfying LA satisfies Spec. Algorithm A is self-stabilizing
with respect to Spec iff the following two conditions hold:
(i) Every computation of A starting from a configuration satisfying LA preserves
LA (closure).
(ii) Every computation of A starting from an arbitrary configuration contains a
configuration that satisfies LA (convergence).

We define bellow a loop-free configuration of a system as a configuration which
contains paths with no cycle between any couple of nodes in the system.

Definition 2 (Loop-Free Configuration). In a configuration C, each node
v ∈ V has a parent noted pv (except the node designed as root which has no
parent). Let P (u, v) =< e0, . . . , ek > be the set of edges on the path from u to v,
such that e0 = (u, pu) and ek = (x, px) with px = v in C. Let Cycle(u, v) be the
following predicate defined for two nodes u, v on configuration C:

Cycle(u, v) ≡ ∃P (u, v), P (v, u) : P (u, v) ∩ P (v, u) = ∅.
A loop-free configuration is a configuration of the system which satisfies ∀u, v :
Cycle(u, v) = false.

We use the definition of a loop-free configuration to define a loop-free stabilizing
system.

Definition 3 (Loop-Free Stabilization). An algorithm is called loop-free sta-
bilizing if and only if it is self-stabilizing and there exists a non-empty set of con-
figurations such that the following conditions hold: (i) Every computation starting
from a loop-free configuration remains loop-free (closure). (ii) Every computation
starting from an arbitrary configuration contains a loop-free configuration (con-
vergence).

Definition 4 (Super-stabilization [19]). Algorithm A is super-stabilizing
with respect to a class of topology change events Λ iff the following two con-
ditions hold:
(i) A is self-stabilizing and (ii) for every computation beginning at a legitimate
configuration and containing a single topology change events of type Λ, a passage
predicate holds.

In the sequel we study the problem of constructing a spanning tree optimizing
a desired metric in self-stabilizing manner, while guaranteeing the loop-free and
super-stabilizing properties.

2 A legitimacy predicate is defined over the configurations of a system and is an
indicator of its correct behavior.

Loop-Free Super-Stabilizing Spanning Tree Construction 55

3 Super-Stabilizing Loop-Free BFS

In this section, we describe the extension of the self-stabilizing loop-free al-
gorithm proposed in [16] to dynamic networks. Furthermore, we disscuss the
super-stabilization of new algorithm. Interestingly, our algorithm preserves the
loop-free property without any degradation of the time complexity of the original
solution.

3.1 Algorithm Description

Algorithm Dynamic-LoopFree-BFS constructs a BFS tree and guarantees the
loop-free property for dynamic networks. That is, when topological changes arise
in the network (addition or deletion of nodes or edges) the algorithm maintains
a BFS tree without creating a cycle in the spanning tree. To this end, each
node has two states: Neutral, noted N , and Propagate, noted P . A node in state
N can safely select as parent its neighbor with the smallest distance (in hops)
from the root without creating a cycle. A node in state P has an incoherent
state according to its parent in the spanning tree. In this case, the node must
not select a new parent otherwise a cycle can be created. So, this node has to
inform first its descendants in the tree that an incoherency in the BFS tree
was detected. Then, it corrects when all its subtrees have recovered a coherent
state. Therefore, a node v in state P initiates a propagation of information with
feedback in its subtree. When the propagation is finished the nodes in the subtree
of v (including v) recover a correct distance and the state N .

We consider a particular node r which acts as the root of the BFS tree in
the network. Every node executes the same algorithm, except the root which
uses only Rule RInitRoot to correct its state. In a correct state, the root r of the
BFS tree has no parent, a zero level and the state N . Otherwise, Rule RInitRoot

is executed by r to correct its state.
The other five rules are executed by the other nodes of the network.
Rule RSafeChangeP is used by a node v with the state N if it detects a better

parent, i.e., a neighbor node with a lower level than the level of its actual parent.
In this case, v can execute this rule to update its state in order to select a new
parent without creating a cycle in the tree.

If a node v has the best parent in its neighborhood but an incoherent level
according to its parent, then v executes Rule RLevel++ to change its status to P
and to initiate a propagation of information with feedback which aims to inform
its descendants of its new correct level. A descendant x of node v with state N
with a parent in state P executes Rule RLevel++ to continue the propagation and
to take into account its new level.

When a leaf node x, descendant of v in Status P is reached, x stops the prop-
agation by executing Rule REndPropag to change its state to N and to obtain its
correct level. The end of propagation is pull up in the tree using Rule REndPropag.

Rule RLevelCorrect corrects at node v the variable used to propagate the new
level in the tree (variable NewLevelv) if this variable is lower than the actual
level of v.

56 L. Blin et al.

Rule RDynamic deals with the dynamism of the network. This rule is executed
by a node v when it detects that its parent is no more in the network and it
cannot select with Rule RSafeChangeP a new parent because of its level (otherwise
it may create a cycle). The aim of this rule is to increase the level of node v
using propagations of information as with Rule RLevel++, until v’s level allows v
to select a neighbor as its new parent without creating a cycle.

Figure 2 illustrates the mechanic of Rule RDynamic. In Figure 2(a) is depicted
a part of the constructed BFS tree before the deletion of the node of level 2.
After the deletion of this node, the node v with level 3 executes Rule RDynamic

to increase its level (equal to the lowest neighbor level plus one) in order to
recover a new parent. Figure 2(b) shows the new level of v and the new levels
v’s descendants when the first propagation is ended. However, a level of 5 is not
sufficient to allow v to select a new parent, so a second propagation is started
by v which affects the levels given by Figure 2(c). Note that a descendant of v
can leave v’s subtree to obtain a better level if possible, this can be observed in
Figure 2(c). Finally, v reaches a state with a level which allows v to execute Rule
RSafeChangeP to select its new parent, and v’s descendants execute Rule RLevel++
to correct their levels according to v’s level. Figure 2(d) shows the new levels
computed by the nodes.

Detailed level description. In the following, we describe the variables, the
predicates and the rules used by Algorithm Dynamic-LoopFree-BFS.

Variables: For any node v ∈ V (G), we denote by N(v) the set of all neighbors of
v in G and by Dv the set of sons of v in the tree. We use the following notations:

– pv: the parent of node v in the current spanning tree;
– statusv: the status of node v, P when v is in a propagation phase, N other-

wise;
– levelv: the number of edges from v to the root r in the current spanning tree;
– NewLevelv: the new level in the current spanning tree (used to propagate the

new level).

l̂evelv ≡
{

min{levelu + 1 : u ∈ N(v)} if v
= r
0 otherwise

Minv ≡ min{u : u ∈ N(v) ∧ levelu = l̂evelv − 1 ∧ statusu = N}
̂parentv ≡

{
Minu if ∃u ∈ N(v), levelu = l̂evelv − 1 ∧ statusu = N
⊥ otherwise

Dv ≡ {u : u ∈ N(v) ∧ pu = v ∧ levelu > levelv}
ublv ≡

{
min{levelu − 1 : u ∈ Dv} if Dv
= ∅
∞ otherwise

PropagEnd(v) ≡ (∀u ∈ Dv, statusu = N)
PChange(v) ≡ (l̂evelv < levelv ∨ (levelv = l̂evelv ∧ pv
= ̂parentv)) ∧ ̂parentv
= ⊥
Levelup(v) ≡ levelv
= levelpv

+ 1 ∨ (statuspv
= P ∧ levelv
= NewLevelpv

+ 1)

Fig. 1. Predicates used by the algorithm

Loop-Free Super-Stabilizing Spanning Tree Construction 57

Fig. 2. Correction of the BFS tree after a node deletion

The root of the tree executes only the first rule, named RInitRoot, while the
other nodes execute the five last rules.

RInitRoot : (Root Rule)
if v = r ∧ (pv
= ⊥ ∨ levelv
= 0 ∨ NewLevelv
= 0 ∨ statusv
= N)
then pv := ⊥; levelv := 0; NewLevelv := 0; statusv := N ;

RSafeChangeP : (Safe parent change Rule)
if v
= r ∧ statusv = N ∧PChange(v)
then levelv := l̂evelv; NewLevelv := levelv; pv := ̂parentv;

RLevel++ : (Increment level Rule)
if v
= r ∧ statusv = N ∧ pv ∈ N(v) ∧ ¬PChange(v) ∧ Levelup(v)
then statusv := P ; NewLevelv := NewLevelp

v
+ 1;

REndPropag : (End of propagation Rule)
if v
= r ∧ statusv = P ∧PropagEnd(v) ∧ ublv ≥ NewLevelv
then statusv := N ; levelv := NewLevelv;

RLevelCorrect : (Level correction Rule)
if v
= r ∧NewLevelv < levelv then NewLevelv := levelv;

RDynamic : (Increment level Rule for dynamic networks)
if v
= r ∧ statusv = N ∧ pv
∈ N(v) ∧ ¬PChange(v)
then statusv := P ; NewLevelv := l̂evelv;

3.2 Correctness Proof

The algorithm proposed in the precedent subsection extends the algorithm of
[16] to dynamic network topologies. When the system is static the correctness of
the algorithm directly follows from the results proven in [23]. In the following, we

58 L. Blin et al.

focus only on the case of dynamic topologies, i.e., when nodes/edges of the tree
are deleted or nodes/edges are added in the network. Note that in the following,
we only study the case of an edge failure. A node failure produces the same
consequences, i.e., the spanning tree is splitted and some nodes have no parent.
Moreover, we do not consider edges out of the tree because this does not lead
the system in an illegitimate configuration. After each failure of node or edge in
the tree, we assume the underlying network is always connected.

In [23], a legitimate configuration for the algorithm is defined by the following
predicate satisfied by every node v ∈ V : PrLP

v ≡ [(v = r) ∧ (levelv = 0) ∧
(statusv = N)]∨[(v
= r)∧(levelv = levelv)∧(statusv = N)∧(levelv = levelp

v
+1)],

with ∀v
= r, levelv = min{levelu + 1 : u ∈ N(v)} defines the optimal level of
node v.

Note that after a failure of an edge of the tree T , Predicate PrLP
v is not

satisfied anymore. The tree T splits in a forest F which contains the subtrees of
T . Let Orph be the set of nodes v such that pv
∈ N(v), note that r
∈ Orph.
The following predicate is satisfied by every node v ∈ V, v
∈ Orph

PrLC
v ≡

{
levelp

v
+ 1 ≤ levelv ∧ NewLevelv ≥ levelv if v
= r

levelr = 0 ∧ statusr = N otherwise

We show below that each node with no parent in F starts a propagation of
information in its subtree.

Lemma 1. Let a node v ∈ V, v ∈ Orph. If statusv = N and PChange(v) = false
then status v eventually moves to P .

Proof. Let v ∈ V, v ∈ Orph be a node such that statusv = N and PChange(v) =
false. v can only execute Rules RLevelCorrect or RDynamic, because v can not execute
Rules RSafeChangeP,RLevel++ and REndPropag since statusv = N,PChange(v) = false
and pv
∈ N(v). To change its status from N to P , a node v ∈ Orph must
execute Rule RDynamic. Suppose that v does not execute Rule RDynamic. So v can
only execute Rule RLevelCorrect. However, after execution of Rule RLevelCorrect we
have NewLevelv := levelv and the guard of Rule RLevelCorrect is no more satisfied.
Thus, only the guard of Rule RDynamic is satisfied and v remains enabled until it
performs Rule RDynamic. Therefore, the scheduler eventually selects v to perform
Rule RDynamic. �

According to Lemma 9 in [23], a node v such that statusv = P eventually per-
forms Rule REndPropag to change its status to N . In the following, we show that a
node in Orph (i.e., without a parent in its neighborhood) eventually leaves the
set Orph.

Lemma 2. Let v ∈ V, v ∈ Orph. Eventually, v is not anymore in the set Orph
and selects a parent without creating a cycle.

Proof. We show the lemma by induction on the height of the subtree of v.
Consider the case where a node v ∈ Orph has a neighbor u ∈ N(v) such that
levelu < levelv. We assume that for every node x in F , x
∈ Orph, we have

Loop-Free Super-Stabilizing Spanning Tree Construction 59

levelpx + 1 ≤ levelx. So, u can not be a descendant of v. Thus, v performs Rule
RSafeChangeP to choose u as its parent without creating any cycle in F . Otherwise,
every node u ∈ N(v) is a child of v. According to Lemma 9 in [23] and Lemma
1 (above), the level of every node in the subtree of v increases. Since we assume
the network is always connected, there exists a leaf node x in the subtree of v
such that levelx > levelx = levely, with y ∈ N(x). Thus, x can execute Rule
RSafeChangeP to choose y as its parent and x leaves the subtree of v. Since the
height of the subtree of v is finite, eventually v can choose a neighbor u as its
parent because u is no more in the subtree of v. Therefore, in a finite time a
node v ∈ Orph leaves the set Orph by selecting a parent in its neighborhood
without creating a cycle. �
According to Lemma 2, each node has a parent and no cycle is created. Thus,
the system reaches a configuration where a spanning tree is constructed. So the
analysis given in [23] can be used to show that the system reaches a configu-
ration in which for each node v ∈ V we have levelv = levelv. Since the initial
configuration contains a spanning tree, the algorithm stabilizes to a breadth first
search tree and during the stabilization of the algorithm the loop-free property
is maintained, as showed in [23].

Above we consider only the failure of nodes/edges of the tree, now we discuss
the addition of nodes and edges in the network. In a legitimate configuration,
after the addition of an edge every node v ∈ V always satisfies levelv ≥ levelv.
According to Lemma 12 and Corollary 1 in [23], in a finite time eventually
for every node v ∈ V we have levelv = levelv. In a legitimate configuration,
after the addition of a node v Rule RSafeChangeP is executed by v to select a
neighbor u ∈ N(v) as its parent, there exists such a node u because we assume
that the network is always connected. Therefore, the system is in an arbitrary
configuration where a spanning tree is constructed. Therefore, the analysis given
in [23] can be used to show that in a finite time for every node v ∈ V we
have levelv = levelv. Moreover, in the case of node/edge additions if the initial
configuration contains a spanning tree, thus the loop-free property is maintained
by the algorithm.

In the following, we prove that the presented algorithm has a superstabilizing
property for a particular class of topology change events. We show that a passage
predicate is satisfied during the restabilizing execution of our algorithm. We
define the considered topology change events, noted ε:
– an addition (resp. a removal) of an edge (u, v) in the network noted recovuv

(resp. crashuv);
– an addition (resp. a removal) of a neighbor node u of v in the network noted

recovu (resp. crashu).

In the sequel, we suppose that after every topology change event the network
remains connected. We provide below definitions of the topology change events
class Λ and passage predicate.

Definition 5 (Class Λ of topology change events). crashuv and crashv

compose the class Λ of topology change events.

60 L. Blin et al.

Definition 6 (Passage predicate). Let T = (V,ET) be the constructed span-
ning tree in a legitimate configuration C. After the removal of a node x ∈ V or
an edge e = (y, x) ∈ ET (y is the parent of x), the parent of each node v ∈ V is
not modified iff v does not belong to the subtree rooted at x in T .

Lemma 3. The proposed protocol is superstabilizing for the class Λ of topology
change events, and the passage predicate (Definition 6) continues to be satisfied
while a legitimate configuration is reached.

Proof. Consider a legitimate configuration Δ. Suppose ε is a removal of edge
(u, v) from the network. If (u, v) is not a tree edge then the levels of u and v are
not modified and neither u nor v changes its parent, thus no parent variable is
modified. Otherwise, let pv = u, u’s level and u’s parent are not modified, it is
true for any other node x not contained in the subtree of v since the distance
between x and the root r in the graph is not modified (i.e., Predicate PChange(x)
is not satisfied). However, u is no more a neighbor of v so according to Lemma 1
v executes Rule RDynamic and starts a propagation phase. Moreover, according
to Lemma 2 v selects a new parent without creating a cycle. Therefore, only a
node in the subtree connected by the edge (u, v) may change its parent.

Suppose ε is a removal of node u from the network. Any node x not contained
in the subtree of u do not change its parent relation because the distance between
x and the root node r is not modified (i.e., Predicate PChange(x) is not satisfied).
Consider each edge (u, v) between u and its child v, we can apply the same
argument described above for an edge removal. So only any node contained in
the subtree connected by u may change its parent. �

3.3 Complexity Analysis

In the following we focus on the complexity analysis of our algorithm in both
static and dynamic networks. Note that the original algorithm proposed in [16]
had no complexity analysis. Interestingly, we prove that our extension has a zero
time extra-cost with respect to the original solution.

Lemma 4. Starting from an arbitrary configuration, in at most O(n2) rounds a
breadth first search tree is constructed by the algorithm in a static network under
a distributed scheduler assuming weak fairness.

Proof. To construct a spanning tree, the algorithm must remove all the cycles
present in the starting configuration. So, we first analyze the number of rounds
needed to remove a cycle.

To remove a cycle, a node of the cycle must change its parent to select a
node out of the cycle, such a node is named a break node. A node can change
its parent using Rule RSafeChangeP, but a break node executes Rule RSafeChangeP if
the level of the new parent (out of the cycle) is lower than the level of the break
node. Consider a break node x and the neighbor y of x which must be selected
as the new parent of x. We note Lx and Ly the level of x and y respectively. To
select y as its new parent and to break the cycle, x must have its level Lx such

Loop-Free Super-Stabilizing Spanning Tree Construction 61

that Ly < Lx. In the cycle, a node corrects its level according to its parent by
initiating a propagation of information with Rules RLevel++ and REndPropag. Thus
the number of increments until we have Ly < Lx is equal to � (Lx+1)−Ly

|C| �, with
|C| the size of the cycle C to break. The propagation of information is in order
of the size of C. Thus, O((Lx + 1) − Ly) rounds are needed to have Ly < Lx.
Since we want to construct a breadth first search tree the level of a node cannot
exceed n, with n the size of the network. Thus, we consider that the level of a
node is encoded using logn bits. The biggest value for (Lx +1)−Ly is obtained
when Ly = 1 and therefore we have (Lx + 1)− Ly ≤ n.

Since the maximum number of possible cycles of a network is no more than
n/2, obtained with cycles of size 2, we have that in O(n2) all cycles are removed
in the network and a spanning tree is constructed. In at most O(D) additional
rounds a breadth first tree is constructed, with D the diameter of the network.
Indeed, no cycle is created by the algorithm until reaching a legitimate configu-
ration, since the algorithm guarantee the loop-free property. �

Lemma 5. Starting from a legitimate configuration followed by a topology
change event, in at most O(n2) rounds a breadth first search tree is constructed
by the algorithm under a distributed scheduler assuming weak fairness.

Note that in [24] the authors proposed a BFS super-stabilizing algorithm with a
better complexity time. However, their solution has not the loop-free property.

4 Super-Stabilizing Loop-Free Transformation Scheme

Our objective is to design a generic scheme for the construction of a spanning
trees considering any metric (not only metrics based on distances in the graph)
with loop-free and super-stabilizing properties. The idea is to extend an existing
self-stabilizing spanning tree optimized for a given metric (e.g. MST, minimum
degree spanning tree, max-flow tree etc) with super-stabilizing and loop-free
properties via the composition with a spanning tree construction that already
satisfies these properties. Assume M be the predicate that captures the prop-
erties of the metric to be optimized. Consider A the algorithm that outputs a
self-stabilizing spanning tree and verifiesM. That is, given a graph, A computes
the set of edges SA that satisfies M and is a spanning tree. Consider Algorithm
B an algorithm that outputs a super-stabilizing and loop-free spanning tree SB.
Ideally, if all edges in SA are included in SB then there is no need for further
transformations. However, in most of the cases the two trees are not identical.
Therefore, the idea of our methodology is very simple. Algorithms A and B run
such that the output of A defines the graph input for B. That is, the neighbor-
hood relation used by B is the initial graph filtered by A to satisfy the predicate
M. The principal of this composition is already known in the literature as fair
composition [25]. In our case the ”slave” protocol is protocol A that outputs the
set of edges input for the ”master” protocol B.

The following lemma, direct consequence of the results proven in [25], guar-
anties the correctness of the composition.

62 L. Blin et al.

Lemma 6. Let M be the predicate that captures the properties of the metric to
be optimized. Let A be an algorithm that outputs a self-stabilizing spanning tree
that satisfies M, SA. Let B be a loop-free algorithm that computes a spanning
tree on the topology defined by SA and super-stabilizing for a class of topology
changes Λ. The fair composition of A and B is an algorithm that outputs a
loop-free spanning tree that satisfies M and is super-stabilizing for Λ.

Note that our super-stabilizing loop-free BFS can be used as Algorithm B in
the above composition. The interesting property of the composition is that the
time complexity will be the sum between O(n2) and the complexity time of
the candidate to be transformed. Note that so far, the best time complexity of a
spanning tree optimized for a given metric is O(n2) which leads to the conclusion
that the composition does not alterate the time complexity of the candidate.

In the following, we specify the predicate M for two well known problems:
max-flow trees and minimum degree spanning trees.

Case study 1: Maximum-flow tree The problem of constructing a maximum-
flow tree from a given root node r can be stated as follows. Given a weighted
undirected graph G = (V,E,w), the goal is to construct a spanning tree T =
(V,ET) rooted at r, such that r has a flow equal to ∞ and for every node
v ∈ V the path between r and v has the maximum flow. Formally, let fw(v) =
min(fw(pv), w(pv, v)) the flow for every node v ∈ V (v
= r) in tree T and
mfwv the maximum flow value of v among all spanning trees of G rooted at
r. The maximum-flow tree problem is to compute a spanning tree T , such that
∀v ∈ V, v
= r, fw(v) = mfwv. The max flow tree problem has been studied
e.g. in [21]. In this case, the graph GSA = (VSA ,SA) for the maximum-flow tree
problem must satisfies the following predicate:

M≡ (|SA| = n− 1) ∧ (V = VSA)∧

(∀v ∈ V, fw(v) = max{min(fw(u), w(u, v)) : u ∈ N(v)}).

Case study 2: Minimum degree spanning tree Given an undirected graph G =
(V,E) with |V | = n, the minimum degree spanning tree problem is to construct
a spanning tree T = (V,ET), such that the maximum degree of T is mini-
mum among all spanning trees of G. This is a NP-hard problem. Formally, let
degT (v) the degree of node v ∈ V in the subgraph T and deg(T) the max-
imum degree of subgraph T (i.e., deg(T) = max{degT (v) : v ∈ V }). The
minimum spanning tree problem is to compute a spanning tree T , such that
deg(T) = min{deg(T ′) : T ′ is a spanning tree of G}. A self-stabilizing approxi-
mated solution for this problem has been proposed in [26]. If this solution plays
the slave role in our transformation scheme then the graph GSA = (VSA ,SA)
input for the BFS algorithm satisfies the following predicate:

M≡ (|SA| = n− 1) ∧ (V = VSA)∧

deg(GSA) ≤ min{deg(T ′) : T ′ a spanning tree of G} + 1.

Loop-Free Super-Stabilizing Spanning Tree Construction 63

5 Concluding Remarks

We presented a scheme for constructing loop-free and super-stabilizing protocol
for universal tree metrics, without significant impact on the performance. There
are several open questions raised by our work:

1. Decoupling various added properties (such as loop-freedom or super-
stabilization) seems desirable. As a particular network setting may not need
both properties or temporarily run in conditions where the network is es-
sentially static, some costs could be saved by removing some properties. Of
course, stripping our scheme can trivially result in a generic loop-free trans-
former or to a generic super-stabilizing transformer. Yet, modular design of
features, as well as further enhancements (such as safe convergence [27,28]),
seems an interesting path for future research.

2. The implementation of self-stabilizing protocols recently was helped by com-
pilers that take as input guarded commands and provide as output actual
source code for existing devices [29]. Transformers such as this one would
typically benefit programmers’ toolboxes as they ease the reasoning by keep-
ing the source code intricacies at a very high level. Actual implementation
of our transformer into a programmer’s toolbox is a challenging ingeneering
task.

References

1. Dijkstra, E.W.: Self-stabilizing systems in spite of distributed control. Communi-
cations of the ACM 17(11), 643–644 (1974)

2. Dolev, S.: Self-Stabilization. MIT Press, Cambridge (2000)
3. Tixeuil, S.: Self-stabilizing Algorithms, pp. 26.1–26.45 (November)
4. Gopal, A.S., Perry, K.J.: Unifying self-stabilization and fault-tolerance (preliminary

version). In: PODC, pp. 195–206 (1993)
5. Anagnostou, E., Hadzilacos, V.: Tolerating transient and permanent failures (ex-

tended abstract). In: Schiper, A. (ed.) WDAG 1993. LNCS, vol. 725, pp. 174–188.
Springer, Heidelberg (1993)

6. Dolev, S., Welch, J.L.: Wait-free clock synchronization. Algorithmica 18(4), 486–
511 (1997)

7. Papatriantafilou, M., Tsigas, P.: On self-stabilizing wait-free clock synchronization.
Parallel Processing Letters 7(3), 321–328 (1997)

8. Dolev, S., Welch, J.L.: Self-stabilizing clock synchronization in the presence of
byzantine faults. J. ACM 51(5), 780–799 (2004)

9. Ben-Or, M., Dolev, D., Hoch, E.N.: Fast self-stabilizing byzantine tolerant digital
clock synchronization. In: PODC, pp. 385–394 (2008)

10. Masuzawa, T., Tixeuil, S.: Bounding the impact of unbounded attacks in stabi-
lization. In: Datta, A.K., Gradinariu, M. (eds.) SSS 2006. LNCS, vol. 4280, pp.
440–453. Springer, Heidelberg (2006)

11. Masuzawa, T., Tixeuil, S.: Stabilizing link-coloration of arbitrary networks with
unbounded byzantine faults. International Journal of Principles and Applications
of Information Science and Technology (PAIST) 1(1), 1–13 (2007)

64 L. Blin et al.

12. Dolev, S., Herman, T.: Superstabilizing protocols for dynamic distributed systems.
Chicago J. Theor. Comput. Sci. 1997 (1997)

13. Herman, T.: Superstabilizing mutual exclusion. Distributed Computing 13(1), 1–17
(2000)

14. Katayama, Y., Ueda, E., Fujiwara, H., Masuzawa, T.: A latency optimal super-
stabilizing mutual exclusion protocol in unidirectional rings. J. Parallel Distrib.
Comput. 62(5), 865–884 (2002)

15. Cobb, J.A., Gouda, M.G.: Stabilization of general loop-free routing. J. Parallel
Distrib. Comput. 62(5), 922–944 (2002)

16. Johnen, C., Tixeuil, S.: Route preserving stabilization. In: Self-Stabilizing Systems,
pp. 184–198 (2003)

17. Garcia-Luna-Aceves, J.J.: Loop-free routing using diffusing computations.
IEEE/ACM Trans. Netw. 1(1), 130–141 (1993)

18. Gafni, E.M., Bertsekas, P.: Distributed algorithms for generating loop-free routes
in networks with frequently changing topology. IEEE Transactions on Communi-
cations 29, 11–18 (1981)

19. Dolev, S., Herman, T.: Superstabilizing protocols for dynamic distributed systems.
Chicago J. Theor. Comput. Sci.1997 (1997)

20. Blin, L., Potop-Butucaru, M., Rovedakis, S., Tixeuil, S.: A new self-stabilizing
minimum spanning tree construction with loop-free property. In: Keidar, I. (ed.)
DISC 2009. LNCS, vol. 5805, pp. 407–422. Springer, Heidelberg (2009)

21. Gouda, M.G., Schneider, M.: Stabilization of maximal metric trees. In: WSS, pp.
10–17 (1999)

22. Gupta, S.K.S., Srimani, P.K.: Self-stabilizing multicast protocols for ad hoc net-
works. J. Parallel Distrib. Comput. 63(1), 87–96 (2003)

23. Johnen, C., Tixeuil, S.: Route preserving stabilization. Technical Report 1353, LRI,
Université Paris-Sud XI (2003)

24. Dolev, S., Herman, T.: Superstabilizing protocols for dynamic distributed systems.
Chicago J. Theor. Comput. Sci. 1997 (1997)

25. Dolev, S., Israeli, A., Moran, S.: Self-stabilization of dynamic systems assuming
only read/write atomicity. Distributed Computing 7(1), 3–16 (1993)

26. Blin, L., Potop-Butucaru, M.G., Rovedakis, S.: Self-stabilizing minimum-degree
spanning tree within one from the optimal degree. In: IPDPS, pp. 1–11 (2009)

27. Kakugawa, H., Masuzawa, T.: A self-stabilizing minimal dominating set algorithm
with safe convergence. In: IPDPS (2006)

28. Kamei, S., Kakugawa, H.: A self-stabilizing approximation for the minimum con-
nected dominating set with safe convergence. In: Baker, T.P., Bui, A., Tixeuil, S.
(eds.) OPODIS 2008. LNCS, vol. 5401, pp. 496–511. Springer, Heidelberg (2008)

29. Dalton, A.R., McCartney, W.P., Dastidar, K.G., Hallstrom, J.O., Sridhar, N., Her-
man, T., Leal, W., Arora, A., Gouda, M.G.: Desal alpha: An implementation of
the dynamic embedded sensor-actuator language. In: ICCCN, pp. 541–547 (2008)

A New Technique for Proving Self-stabilizing
under the Distributed Scheduler�

Sven Köhler and Volker Turau

Institute of Telematics
Hamburg University of Technology

Hamburg, Germany
{sven.koehler,turau}@tu-harburg.de

Abstract. Proving stabilization of a complex algorithm under the dis-
tributed scheduler is a non-trivial task. This paper introduces a new
method which allows to extend proofs for the central scheduler to the
distributed scheduler. The practicability of the method is shown by ap-
plying it to two existing algorithms, for which stabilization under the
distributed scheduler was an open problem.

1 Introduction

The notion of self-stabilization was coined by E. W. Dijkstra [2]. Self-stabilizing
distributed systems are guaranteed to converge to a desired state or behaviour
in finite time, regardless of the initial state. Convergence is also guaranteed after
the system is affected by transient faults, no matter their scale or nature. This
makes self-stabilization an elegant and formal approach for non-masking fault-
tolerance.

Self-stabilizing algorithms can be designed with different schedulers in mind.
Possible schedulers include the central scheduler (only one node can make a move
in each step), the distributed scheduler (any number of nodes make a move in
each step), and the synchronous scheduler (all nodes make a move in each step).
In an early manuscript [3] (written 1973), Dijkstra discusses his choice of the
scheduler. Unsure, whether non-trivial algorithms for the distributed scheduler
exist, he decides to design his self-stabilizing algorithms for a “rather powerful
daemon, that may be awkward to implement”: the central scheduler. He points
out that his choice avoids difficulties like oscillation which may easily occur when
using the distributed scheduler.

The model of the central scheduler provides rather strong assumptions. They
make it easy to develop and prove correctness of self-stabilizing algorithms.
On the other hand, the distributed scheduler is the more realistic model. Even
though some algorithms that are designed for the central scheduler also stabilize
under the distributed scheduler, the majority of algorithms does not have this
property. In these cases new algorithms have to be devised or existing algorithms
� This research was funded by the German Research Foundation (DFG), contract

number TU 221/3-1.

S. Dolev et al. (Eds.): SSS 2010, LNCS 6366, pp. 65–79, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

66 S. Köhler and V. Turau

have to be extended. For the latter case, generic methods have been invented:
transformers, for example Mutual Exclusion [1] and Conflict Managers [6]. It is
considered worthwhile (for example in [1]) to design algorithms for the central
scheduler and then transform them to the desired model. But these transforma-
tions come with a time overhead of at least O(Δ).

In case no transformer is applied, the stabilization proofs are usually very
problem-specific and do not allow for generalization. Generic proof techniques
such as potential functions and convergence stairs, that work well for the central
scheduler, are very hard to apply in case of the distributed scheduler. Section 4
provides a generic technique for proving stabilization under the distributed
scheduler by extending existing proofs that assume the central scheduler. The
contribution of this paper is completed by Section 5 in which the technique is
applied to two complex algorithms for which stabilization under the distributed
scheduler has not been proven and it has been an open question, whether this
is feasible at all. Section 6 gives a case study of a protocol to which the proof
technique cannot be applied.

2 Related Work

Common techniques for proving stabilization include variant functions (also
called potential functions) and convergence stairs [4]. In principle, all these do
apply to the distributed scheduler, but these techniques rely on properties of
transitions from one system configuration to another. In case of the distributed
scheduler, transitions are hard to analyse due to the large of number of possible
selections of simultaneously executed moves.

Two transformers that allow algorithms written for the central scheduler
to stabilize under the distributed scheduler are widely known. The first by
Beauquier et al. [1] solves the mutual exclusion problem: (a) at least one pro-
cess is privileged (b) only non-neighboring nodes are privileged (c) any node is
privileged infinitely often. Mutual exclusion allows algorithms designed for a fair
central scheduler to stabilize under an unfair distributed scheduler. The second
by Gradinariu et al. [6] implements the concept of conflict managers: (a) at least
one node is privileged (b) only non-conflicting nodes are privileged. Whether
two nodes are conflicting is defined by the symmetric relation R ⊆ V × V (the
so-called conflict relation). If R is chosen such that neighboring nodes are con-
flicting, then this allows algorithms designed for the central scheduler to stabilize
under the distributed scheduler.

Both transformers are partly based on the idea that the locally central sched-
uler (any number of non-neighboring nodes is privileged in each step) is virtually
identical to the central scheduler, since the behaviour of a node only depends
on the information stored in the node’s neighborhood. Hence, moves of non-
neighboring nodes can make their moves in an arbitrary order, or even simulta-
neously. The resulting configuration is always the same. It is rather restrictive
to demand that any order of moves is equivalent to their simultaneous execu-
tion. For a given set of moves, it suffices to show that one particular sequence is
equivalent. Section 4 extends this idea to a technique, that allows to prove that

A New Technique for Proving Self-stabilizing 67

such a sequence exists for any set of enabled moves in any configuration. The
new proof-technique is directly applied to algorithms themselves, without any
transformer.

Proving probabilistic self-stabilization under the distributed scheduler of pro-
tocols designed for the central scheduler is surprisingly easy. In the fashion of the
scheduler-luck-game [4], one can show that steps in which only non-neighboring
nodes simultaneously make a move exist with positive probability, if each move
depends on the outcome of an independent random experiment. In conclusion,
executions in which this is the case for every step exist with positive probabil-
ity. This has facilitated the construction of the probabilistic conflict manager by
Gradinariu et al. [6] and the transformations by Turau et al. [10] and Herman [7].

3 Model of Computation

A distributed system is represented as an undirected graph (V,E) where V is
the set of nodes and E ⊆ V ×V is the set of edges. Let n = |V | and Δ denote the
maximal degree of the graph. If two nodes are connected by an edge, then they
are called neighbors. The set of neighbors of node v is denoted by N(v) ⊆ V and
N [v] = N(v)∪{v}. Each node stores a set of variables. The values of all variables
constitute the local state of a node. The configuration of a system is the n-tuple
of all local states in the system and Σ denotes the set of all configurations.

Nodes communicate via locally shared memory, that is every node can read
the variables of all its neighbors. Nodes are only allowed to modify their own
variables. Each node v ∈ V executes a protocol consisting of a list of rules. Each
rule consists of a guard and a statement. A guard is a Boolean expression over
the variables of node v and its neighbors. A rule is called enabled if its guard
evaluates to true. A node is called enabled if one of the rules is enabled.

Execution of the statements is controlled by a scheduler which operates in
steps. At the beginning of step i, the scheduler first non-deterministically selects
a non-empty subset Si ⊆ V of enabled nodes. Each node in Si then executes
the statement of its enabled rule. It is said, that the nodes make a move. A
step is finished, if all nodes have completed their moves. Changes made during
the moves become visible to other nodes at the end of the step and not earlier
(composite atomicity).

An execution 〈c0, c1, c2, . . .〉, ci ∈ Σ is a sequence of configurations ci where
c0 is the initial configuration and ci is the configuration of the system after the
i-th step. In other words, if the current configuration is ci and all nodes in Si+1
make a move, then this yields ci+1.

Time is measured in rounds. Let x be an execution and x0 = x. Then x is
partitioned into rounds by induction on i = 0, 1, 2, . . .: round ri is defined to be
the minimal prefix of xi, such that each node v ∈ V has either made a move or
has been disabled at least once within ri. Execution xi+1 is obtained by removing
prefix ri from xi. The intuition is that within a round, each node that is enabled
at the beginning of the round, gets the chance to make a move if it has not
become disabled by a move of its neighbors.

68 S. Köhler and V. Turau

Let P be a protocol and let LegitP denote a Boolean predicate over Σ. If
LegitP (c) is true, then configuration c is called legitimate. P is said to be self-
stabilizing with respect to LegitP , if both the following properties are satisfied.
Convergence: for any execution of P , a legitimate configuration is reached within
a finite number of steps. Closure: for any execution of P it holds that once a
legitimate configuration is reached, all subsequent configurations are also legit-
imate. A self-stabilizing protocol is silent if all nodes are disabled after a finite
number of steps.

3.1 Nonstandard Extensions

The standard model as defined above is extended to a multi-protocol model. An
algorithm is denoted by a set A of protocols. Each node designates a separate
set of variables to each p ∈ A. An instance is a tuple (v, p), v ∈ V and p ∈ A.
M = V ×A is the set of instances. Instance (v, p) is called enabled, if p is enabled
on node v. Node v is called enabled, if any p ∈ A is enabled on v. Two instances
(v1, p1) and (v2, p2) are called neighboring, if v1 ∈ N [v2] or vice versa.

During the i-th step, a scheduler selects a subset Si ⊆M of enabled instances.
In case of the central scheduler it holds |Si| = 1. The distributed scheduler may
chose any non-empty subset Si of enabled instances, even containing several
instances of the same node but distinct protocols. If node v executes a rule by
protocol p ∈ A, then it is said that v has made the move (v, p). No assumptions
on the fairness of the scheduler are made.

An instance (v, p) cannot modify any other variables than the ones designated
to protocol p by node v. Read access is permitted to all variables of all v ∈ N [v],
no matter which protocol they belong to. For any pair of instances (v1, p1) and
(v2, p2) that are being selected during a single step, changes made by (v1, p1)
don’t become visible to (v2, p2) until the end of the step (composite atomicity),
even if v1 = v2. Due to these constraints, the result of a step does not depend
on the order in which the individual moves are executed. This model defines a
natural extension of the notion of rounds. A round is a prefix of an execution,
such that every instance m ∈M has been executed or has been disabled at least
once. This model is identical to the standard model, if |A| = 1. How algorithms
designed for this model can be transformed to the standard single-protocol model
is discussed in Section 5.3.

Without loss of generality, it is assumed that per instance only one guard
can be enabled at a time and that all rules are deterministic. How to widen
the techniques to a non-deterministic or randomized model is discussed in the
concluding remarks. Using the assumption of deterministic protocols, the follow-
ing notations are defined: (c : m) denotes the configuration after the execution of
m ∈ M in c. Similarly, (c : S) denotes the configuration after the simultaneous
execution of all instances S ⊆ M in a single step. The execution of a sequence
of instances is denoted by (c : m1 : m2 : . . . : mx) = ((c : m1 : m2 : . . . : mx−1) :
mx), mi ∈ M, x > 1. These notations are used to describe executions by the
central scheduler or the distributed scheduler. Note that (c : m) and (c : S) are

A New Technique for Proving Self-stabilizing 69

undefined, if m is not enabled in c or if S contains instances that are not enabled
in c respectively.

Furthermore, let c|m denote the part of configuration c which reflects the
values of all variables dedicated to instance m. The expression c � e denotes the
value of expression e in case that the current configuration equals c. Note, that
e can be a variable, function or Boolean predicate.

4 Serialization

To proof stabilization under the distributed scheduler, we first define the notion
of a serialization. A serialization of a set of enabled instances is a sequence
of instances, that can be executed under the central scheduler and yields the
same configuration as executing the set of instances during a single step of the
distributed scheduler.

Definition 1. Let c be a configuration and S ⊆M be a set of instances enabled
in c. A sequence s = 〈m1,m2, . . . ,mk〉, mi ∈ M is called a serialization of S
in c if it satisfies

(c : S) =(c : m1 : m2 : . . . : mk) (1)

S is called serializable in c, if a serialization in c exists.

With respect to S, the serialization contains each instance mi ∈ S at least once.
The simple reason is, that the serialization is required to modify c|mi , which
no instance other than mi is capable of. Apart from that, instances may occur
multiple times within the sequence. Even additional instances that are not in S
may be included, but their effect has to be compensated such that Equation (1)
holds again in the end.

Observation 1. The sequence 〈m1,m2, . . . ,mk〉, mi ∈ M is a serialization of
S ⊆M in c if and only if

(c : S)|mi =(c : m1 : m2 : . . . : mk)|mi ∀i = 1, 2, . . . , k

If m1,m2, . . . ,mk are distinct, then this is equivalent to

(c : S)|mi =(c : m1 : . . . : mi)|mi ∀i = 1, 2, . . . , k

Furthermore, it is clear that (c : S)|mi = (c : mi)|mi .
The rest of this section lays the groundwork for a technique that facilitates the

construction of serializations. First, the notion of a ranking is defined. It assigns
a natural number (the rank) to each enabled instance. The rank describes the
behaviour of an instance (i.e. how it changes the variables) depending on the
current configuration. The goal is to obtain a serialization by sorting instances
by their rank.

70 S. Köhler and V. Turau

Definition 2. The mapping r : M → N ∪ {⊥} is called a ranking, if the
following conditions hold for any configuration:

r(m) = ⊥ if instance m is disabled
r(m) ∈ N otherwise

For a given ranking it remains to show that sorting a set of instances by their
rank actually yields a serialization. As a step towards this, an invariancy relation
on instance/rank-tuples is defined. In general, this relation is not symmetric.

Definition 3. Let r denote a ranking. A tuple (m2, r2) ∈ M× N is called in-
variant under the tuple (m1, r1) ∈M× N, if the following two conditions hold
for all c ∈ Σ that satisfy r1 = c � r(m1) and r2 = c � r(m2):

(c : m1) � r(m2) = c � r(m2)
(c : m1 : m2)|m2 = (c : m2)|m2

If the tuple (m2, r2) is invariant under (m1, r1), then the rank of m2 as well
as the result of the execution of m2 remains the same, no matter whether m1
has been executed prior to m2, or not. Note, that this invariancy holds for all
configurations, in which m2 and m1 have the given ranks r2 and r1 respectively.
The following proposition illustrates, why this is useful.

Proposition 1. Let c be a configuration, r a ranking, and m1, m2, m3 three
distinct enabled instances. If (m2, c � r(m2)) is invariant under (m1, c � r(m1))
and (m3, c � r(m3)) is invariant under both (m1, c � r(m1)) and (m2, c � r(m2)),
then 〈m1,m2,m3〉 is a serialization of {m1,m2,m3} in c.

Proof. By Observation 1 it suffices to prove the following three equations:

(c : m1)|m1 = (c : m1)|m1 (2)
(c : m2)|m2 = (c : m1 : m2)|m2 (3)
(c : m3)|m3 = (c : m1 : m2 : m3)|m3 (4)

Equation (2) is clear. Equation (3) holds, because (m2, c � r(m2)) is invariant
under (m1, c � r(m1)). In order to understand the validity of Equation (4) it is
necessary to take a closer look at the sequential execution of m1, m2, and m3.
Consider the intermediate configuration c′ = (c : m1). Because (m3, c � r(m3)) is
invariant under (m1, c � r(m1)), it holds that (c′ : m3)|m3 = (c : m3)|m3 . In order
for Equation (4) to be satisfied, it must be the case that (c′ : m2 : m3) equals
(c′ : m3). This is true, if (m3, c

′ � r(m3)) is invariant under (m2, c
′ � r(m2)).

This becomes clear, if one considers that c′ � r(m3) = c � r(m3) as well as
c′ � r(m2) = c � r(m2) and that the invariancy of m3 under m2 holds no matter
whether the current configuration is c or c′. ��
Definition 4. A ranking r is called an invariancy-ranking, if

r2 ≥ r1 ⇒ (m2, r2) is invariant under (m1, r1)

holds with respect to r for all m2 �= m1, m2,m1 ∈M, r2, r1 ∈ N.

A New Technique for Proving Self-stabilizing 71

Theorem 1. For an algorithm with an invariancy-ranking, every set of enabled
instances is serializable in any configuration.

Proof. Let r be an invariancy-ranking, c a configuration, S ⊆ M a set of in-
stances enabled in c, and s = 〈m1,m2, . . . ,mk〉 a sequence of all instances of
S sorted in ascending order by their rank with respect to c. Denote by cx the
configuration (c : m1 : m2 : . . . : mx) and c0 = c. By Observation 1 it suffices to
prove cj |mj = (c0 : mj)|mj for j = 1, 2, . . . , k.

In the following, it is shown by induction on i that (ci−1 : mj)|mj = (c0 :
mj)|mj and ci−1 � r(mj) = c0 � r(mj) hold for all i = 1, 2, . . . , k and j =
i, i+ 1, . . . , k. This is obviously true for i = 1. Assume the following for i < k:

ci−1 � r(mj) = c0 � r(mj) ∀j = i, i+ 1, . . . , k
(ci−1 : mj)|mj = (co : mj)|mj ∀j = i, i+ 1, . . . , k

By assumption, (mj , ci−1 � r(mj)) is invariant under (mi, ci−1 � r(mi)) for all
j = i+ 1, i+ 2, . . . , k. Hence, the following is satisfied in ci:

ci � r(mj) = ci−1 � r(mj) = c0 � r(mj) ∀j = i+ 1, i+ 2, . . . , k
(ci : mj)|mj = (ci−1 : mj)|mj = (c0 : mj)|mj ∀j = i+ 1, i+ 2, . . . , k

In particular, it follows that cj |mj = (cj−1 : mj)|mj = (c0 : mj)|mj for all
j = 1, 2, . . . , k. ��
Corollary 1. For any execution e under the distributed scheduler of an algo-
rithm with an invariancy-ranking, there exists an execution e′ under the central
scheduler such that e is a subsequence of e′.

Theorem 2. For an algorithm with an invariancy-ranking, move- and round-
complexity under the central scheduler are upper bounds for the move- and round-
complexity under the distributed scheduler.

Proof. Omitted due to space restrictions. ��

5 Practicability

In the following, the new proof technique is applied to two algorithms, one from [5]
and the other from [8]. Both algorithms are transformers that add fault-containing
properties to any silent self-stabilizing protocol P . Prior to this paper, it has been
an open problem whether these algorithms work under the distributed scheduler.

The overall procedure to first design a ranking of which it is shown that it is
an invariancy-ranking. This is done by inspecting all pairs (r2, r1) of ranks that
satisfy r2 ≥ r1. For each pair, it is shown that all (m2, r2) are invariant under
any (m1, r1). More m2 is called invariant under m1, if (m2, r2) is invariant
under (m1, r1) for all ranks r2, r1 ∈ N. The following observation justifies, that
the proofs only consider the case that m2 and m1 are neighboring.

Observation 2. Let r be a ranking, and let m2 and m1 be two non-neighboring
moves. If r(m2) solely depends on variables in the neighborhood of m2, then m2
is invariant under m1.

72 S. Köhler and V. Turau

5.1 Algorithm A1

First, algorithm A1 = {Q} by Ghosh et al. [5] is analysed. The algorithm is
actually a transformer, that is protocol Q internally calls a given silent self-
stabilizing protocol P and extends P by fault-containment properties. The goal
of fault-containment is to minimize the time that a protocol needs to recover
from small scale faults. This property is combined with self-stabilization which
guarantees recovery from large scale faults. Protocol Q basically is a silent phase
clock, with a limited clock range of [0,M]. During stabilization, the timestamps
are decremented towards 0 in an evenly fashion until every node has reached
0. Along with this decrementation, three protocols are executed: C, P , and B.
Protocol C is executed for upper range timestamps and repairs corrupted P -
variables using backups stored on each neighbor. It consists of three phases that
are executed by Q in a synchronous fashion. For mid-range timestamps, P is
executed by Q and is given enough time to stabilize before B, which is executed
for lower range timestamps, creates the backups. Timestamps are globally reset
to M if an inconsistency or a fault is detected. For details refer to [5].

Protocol Q is implemented in form of two rules. Each node v ∈ V stores its
timestamp in the variable v.t. Rule S1 resets v.t to M , if PorC_inconsistent(v)
or raise(v) is satisfied.

raise(v) ≡ raise1(v) ∨ raise2(v)
raise1(v) ≡ v.t �=M ∧ ∃u ∈ N(v) : v.t− u.t > 1 ∧ u.t < M − n
raise2(v) ≡ v.t < M − n ∧ ∃u ∈ N(v) : u.t =M
PorC_inconsistent(v) ≡ v.t = 0 ∧ (∀u ∈ N(v) : u.t = 0)

∧ (GP (v) ∨ ¬LegitC(v))

The predicate GP (v) is true if and only if P is enabled on v. The predicate
LegitC(v) is true if and only if any backup differs from the current values of
P -variables. If decrement(v) is true, rule S2 first executes a move of C if v.t ∈
[M − 2,M], a move of P if v.t ∈ [3,M −max{n, 3}], or a move of B if v.t = 2
and then decrements v.t by one. The local state of protocol P for node v is held
in the variable v.x which is called primary state.

decrement(v) ≡ decrement1(v) ∨ decrement2(v)
decrement1(v) ≡ v.t > 0 ∧ ∀u ∈ N(v) : 0 ≤ v.t− u.t ≤ 1
decrement2(v) ≡ ∀u ∈ N(v) : v.t ≥ u.t ∧ u.t ≥M − n

To obtain serializations, the following ranking is used:

r(v, p) :=

⎧
⎨

⎩

0 if decrement(v)
M − v.t if raise(v) ∨ PorC_inconsistent(v)
⊥ otherwise

Note, that raise(v)∨PorC_inconsistent(v) implies v.t < M and therebyr(v,Q)>
0. So all instances of rank 0 decrement v.t and all others reset it to M .

A New Technique for Proving Self-stabilizing 73

The ranking r is designed in such a way that decrementations occur first within
a serialization. Their order is not significant since a decrement move does not
disable any neighboring instances. This is due to the pseudo-consistence criteria
as defined in [5]. Next, all raise moves occur within the serialization, sorted by
their timestamp in descending order. The following example illustrates why this
is necessary: Consider a node v which is surrounded by nodes with a timestamp
equal to 0 while v.t =M−n. In this configuration, node v is enabled by raise1(v).
It is possible, that all neighbors of v are enabled by raise2(v). If the neighbors
of v make a raise move before v does, then v.t becomes pseudo-consistent, and
hence v becomes disabled.

Observation 3. decrement1(v) as well as decrement2(v) imply v.t ≥ u.t for all
u ∈ N(v). So if decrement(v) and decrement(u) hold for two neighboring nodes
v and u, then v.t = u.t is true.

Lemma 1. Assume that there exists an invariancy-ranking for each of the pro-
tocols P , C and B. Spreading rank 0 of r according to these invariancy-rankings
(and shifting the higher ranks accordingly) yields an invariancy-ranking for al-
gorithm A1.

Proof. In the following, m2 and m1 denote moves by nodes v2 and v1 respec-
tively. c denotes a configuration such that r2 = c � r(m2) and r1 = c � r(m1).
Furthermore, c′ denotes the configuration (c : m1). Instances m2 and m1 are
assumed to be neighboring. This is justified by Observation 2.

Case a) r2 = r1 = 0: The assumption yields c � decrement(v2) and c �
decrement(v1). From that and Observation 3 it follows that c � v1.t = v2.t and
c′ � v1.t = v2.t− 1. If c � decrement1(v2), then c′ � decrement1(v2). Otherwise
c � (decrement2(v2) ∧ ¬decrement1(v2)) from which c � v2.t > M − n follows
and thereby c′ � v1.t ≥M − n and c′ � decrement2(v2).

Case b) 1 ≤ r2 ≤ M ∧ r1 = 0: Because of r1 = 0, c � decrement(v1) and
thus c � v1.t > 0 must hold. c � PorC_inconsistent(v2) cannot be satisfied,
since it requires c � v1.t = 0. If c � raise1(v2), then there exists some node
w ∈ N(v2) with c � (v2.t − w.t > 1 ∧ w.t < M − n). c � w.t < N − n implies
c � ¬decrement2(w) and c � w.t − v2.t < −1 implies c � ¬decrement1(w).
Hence v1 �= w, c′|w = c|w and thus c′ � raise1(v2). If c � raise2(v2), then
c � v2.t < M − n and there exists some node w ∈ N(v2) with c � w.t = M .
c � w.t − v2.t > 1 implies c � ¬decrement1(w) and v2.t < M − n implies
v � ¬decrement2(w). Hence v1 �= w, c′|w = c|w and thus c′ � raise2(v2).

Case c) 1 ≤ r2 ≤ M ∧ 1 ≤ r1 ≤ r2: If c � v2.t < M − n, then c′ � raise2(v2)
since c′ � v1.t = M . Otherwise c � v2.t ≥ M − n which implies c � ¬raise2(v2)
and c � ¬PorC_inconsistent(v2). and thus c � raise1(v2). Hence there exists
some node w ∈ N(v2) with c � (w.t < v2.t ∧ w.t < M − n). From r1 ≤ r2 it
follows that c � v1.t ≥ v2.t. Hence v1 �= w, c′|w = c|w and thus c′ � raise1(v2).

In all cases c′ � r(m2) = c � r(m2). Furthermore, it is assumed that the
moves of rank 0 are sorted in such a way that the order of m2 and m1 matches
a serialization of either protocol P , C or B, depending on v1.t and v2.t which
are equal by Observation 3. Hence (c′ : m2)|m2 = (c : m2)|m2 in all cases. ��

74 S. Köhler and V. Turau

Theorem 3. If there exists an invariancy-ranking for each of the protocols P , C
and B, then for any execution e of A1 under the distributed scheduler there exists
an execution e′ under the central scheduler such that e is a subsequence of e′.

5.2 Algorithm A2

In this section, algorithm A2 = {Q,R1, R2, . . . , RΔ} by Köhler et al. [8] is
discussed. It implements a different approach to add fault-containment to any
given silent self-stabilizing protocol P . It offers several improvements over algo-
rithmA1: a constant fault-gap (that is the minimal time between two containable
faults), strictly local fault repair without any global effects, and a stabilization
time similar to the original protocol P (besides a constant slow-down factor).

Every node v ∈ V designates one of theΔ protocolsRi to each of its neighbors.
For notational convenience, the algorithm is defined to be a mapping A2 : v �→
{Q} ∪ {Ru | u ∈ N(v)} that assigns a set of protocols to each v ∈ V . In spite
of this notation, algorithm A2 is still uniform. The behaviour of the algorithm
is best described based on the notion of a cell. For v ∈ V , cell v consists of the
instance (v,Q) and the instances (u,Rv), u ∈ N(v). Cells execute cycles of a
simple finite state-machine. During a cycle, cells first repair corrupted variables.
The cycle is always guaranteed to start with the repair, even after a fault. Cells
then check, whether there are any corruptions in their neighboring cells and if
so, they wait for them to become repaired. Only after that, a single move of
P is executed and as a final step backups of the variables of protocol P are
created. To achieve this behaviour, there is a constant dialog between (v,Q) and
all instances of Rv. For details refer to [8].

The instance (v,Q) maintains three variables: v.s, v.q ∈ Z4 and v.p, which
is also called primary state and stores the local state of protocol P for node v.
Each of the variables v.s and v.q can assume one of the four states 0 = Paused,
1 = Repaired, 2 = Executed, and 3 = Copied. If v.s �= v.q, then (v.s, v.q) is
called a query for a transition from state v.s to v.q. An instance (u,Rv) maintains
the following variables: u.rv ∈ Z4, u.dv ∈ Z3, and u.cv. One of the four state
values is assigned u.rv. The so-called decision-variable u.dv assumes one of the
values Keep, Update, and Single. The copy-variable u.cv is used for storing
backups of v.p.

ProtocolQ consists of three rules. If ¬dialogConsistent(v), then instance (v,Q)
resets v.s and v.q to Paused if they do not already have that value (Rule 1). If
dialogPaused(v) ∧ startCondQ(v), then (v,Q) sets v.q to Repaired (Rule 2). If
dialogAcknowledged(v), then (v,Q) calls procedure actionQ(v), sets v.s to v.q,
and if v.q �= Paused, then v.q is incremented (Rule 3). Note, that only one guard
of (v,Q) can be true at a time. Protocol Rv consists two rules. If v.s and v.q
equal Paused, then instance (u,Rv) sets u.rv to Paused if it doesn’t have that
value already (Rule 1). If validQuery(v) is true and predicate waitCondRv (u)
is false, then (u,Rv) sets u.rv to v.q and calls procedure actionRv (u) (Rule 2).
Again, only one guard of (u,Rv) can be true at a time.

A New Technique for Proving Self-stabilizing 75

validQuery(v) ≡ v.q = (v.s+ 1) mod 4
dialogConsistent(v) ≡ (v.q = v.s = Paused ∨ validQuery(v))

∧ ∀u ∈ N(v) : u.rv ∈ {v.s, v.q}
dialogAcknowledged(v) ≡ validQuery(v) ∧ ∀u ∈ N(v) : u.rv = v.q
dialogPaused(v) ≡ v.q = v.s = Paused ∧ ∀u ∈ N(v) : u.rv = Paused

copyConsistent(v) ≡ ∀u ∈ N(v) : u.cv = v.p
repaired(v) ≡ copyConsistent(v) ∨ (dialogConsistent(v)

∧ (v.s = Repaired ∨ v.s = Executed)
∧ ∀u ∈ N(v) : (u.rv = Copied⇒ u.cv = v.p))

startCondQ(v) ≡ ¬copyConsistent(v) ∨GP (v)
waitCondRv (u) ≡ v.q = Executed ∧ ¬repaired(u)

Procedure actionQ(v) performs the following actions: If v.q = Executed, then a
move of protocol P is executed. If v.q = Repaired, then v.p is checked for corrup-
tions by using the backups provided by protocol Rv. If all backups have the same
value and v.p differs, then v.p is updated. If there is only one neighbor u ∈ N(v)
and hence only one backup, then v.p is only updated if u.dv = Update. Procedure
actionRv (u) performs the following: If v.q = Copied, then u.cv is updated with
the value of v.p. If v.q = Repaired, then u.dv is set to either Keep or Update
depending on whether v.p := u.cv would disable P on both u and v.

The case that the network contains a single edge only is not covered by the
above description of actionQ and actionRv . In case of the distributed scheduler,
it needs special treatment like symmetry breaking which is not included in the
original version as given in [8]. The following describes a possible solution: Let u
and v be neighbors and the only nodes of the system. The special value Single,
which is assigned to v.du and u.dv in this case, allows the detection of this
case. The version of protocol actionQ as given [8] would execute both of the
assignments v.p := u.p and u.p := v.p if both v and u are selected in the same
step by the distributed scheduler. Either one of the two assignments leads to a
legitimate configuration, but in most cases the execution of both does not. Let
v be the node with the lower Id. actionQ can be altered in such a way that
v.p := u.p is not executed if u.p := v.p leads to a successful repair.

The following ranking r is used to obtain serializations. For convenience, the
predicate R(x) is used in the definition of r(v, p). It is satisfied if and only if
rule x of instance (v, p) is enabled.

r(v, p) :=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1 if ∃u ∈ N(v) : p = Ru ∧R(2) ∧ u.q = Repaired
2 if ∃u ∈ N(v) : p = Ru ∧ ((R(2) ∧ u.q �= Repaired) ∨R(1))
3 if p = Q ∧R(2)
4 if p = Q ∧R(3) ∧ v.q = Executed
5 if p = Q ∧ ((R(3) ∧ v.q �= Executed) ∨R(1))
⊥ otherwise

76 S. Köhler and V. Turau

With this ranking, any serialization will first execute all moves, that set de-
cision variables. Their value is determined by the evaluation of guards of proto-
col P which references the primary states of various cells. Hence it is important,
that the primary states have not been changed yet (which is only done by in-
stances of rank 4, or 5). Next, all all other moves by instances of protocol Rv
occur within the serialization. These do not reference any of the variables that
have been changed previously. All instances of Q follow. They are categorized
into three different ranks. Instances that are enabled due to rule 2 of Q are ex-
ecuted first to avoid the danger that this rule becomes disabled which is due to
startCondQ(v) that checks whether protocol P is enabled for node v. Instances
of rank 4 follow. They execute a single move of P and hence may change primary
states. The fact that all moves of P fall into the same rank has the advantage,
that invariancy-rankings for protocol P can be used to extent r to an invariancy
ranking for algorithm A2. Last, all instances of rank 5 occur within the serializa-
tion. These moves do not read any primary states and their behaviour is hence
not influenced by any of the changes done by previous instances of Q.

Lemma 2. If cell v is not dialog-consistent, then (v,Q) is invariant under any
(u,Rv) with u ∈ N(v).

Lemma 3. If cell v is dialog-consistent, then (v,Q) is invariant under any
(u,Rv) with u ∈ N(v).

Lemma 4. Let v be a cell. (v,Q) is invariant under any (u,Rw) with u ∈ N [v]
and w �= v.
Lemma 5. Assume, that an invariancy-ranking for protocol P exists. Spreading
rank 4 of r according to this invariancy-ranking (and shifting the higher ranks
accordingly) yields an invariancy-ranking for algorithm A2.

Proof. The proof of case r2 ∈ {3, 4, 5} ∧ r1 ∈ {1, 2} is based on Lemmas 2, 3,
and 4. A detailed proof of those lemmas and a proof covering all other cases of
r2 and r1 has been omitted due to space restrictions. ��
Theorem 4. If there exists an invariancy-ranking for protocols P , then for any
execution e of A2 under the distributed scheduler there exists an execution e′
under the central scheduler such that e is a subsequence of e′.

5.3 Proof Refinement

The results of Theorems 3 and 4 do not only guarantee stabilization under the
distributed scheduler. They guarantee, that the algorithms behave exactly as
under the central scheduler, in all aspects – for example with respect to time-
complexity and fault-containment properties. Yet, Theorems 3 and 4 require
that an invariancy-rankings for protocols P , C, and B exist. This requirements
can be relaxed.

A New Technique for Proving Self-stabilizing 77

Protocol C must show correct behaviour only if the initial configuration is
1-faulty. Such configurations are derived from a legitimate configuration by per-
turbing variables of a single node. Indeed, an invariancy-ranking can be found
under these assumptions. For any other initial configuration, C may show an
arbitrary behaviour. The invariancy ranking for B is simply rB(v, p) := 0. Pro-
tocol B never reads the variables that it writes.

With respect to P , both A1 and A2 solely rely on the property that P ter-
minates after a finite number of steps of the given scheduler. There is no other
requirement concerning the behaviour of P . For each single step Si ⊆M of the
distributed scheduler, the sequence obtained by sorting Si by the rankings given
above yields a configuration that differs from the execution of Si only in the pri-
mary states of those nodes that make a P -move during the execution of Si. In
addition, it can be shown that P successfully progresses towards its termination
during the execution of Si.

Furthermore, it is easy to transform a given algorithm A = {p1, p2, . . . , pk}
for the multi-protocol model into an algorithm As = {q} for the ordinary single-
protocol model. In [8], a composition is used for the case of the central scheduler.
The idea is to sequentially execute the individual pi within a single move of q. Due
to the nature of the central scheduler as defined in the multi-protocol model it is
not a problem that the changes made by pi become visible to pi+1 immediately.
In case of the distributed scheduler, a different transformation is needed. Again,
all of the pi are executed sequentially during a single move of q. But to emulate
composite atomicity, the changes made by any pi are hidden from any pj , j �= i
until the end of the move of q. This may cost some memory overhead which can
be avoided by finding a special invariancy-ranking only for serializing instances
on a single node. In that style, the protocols of algorithm A2 can be executed
in the order 〈R1, R2, . . . , RΔ, Q〉. We would like to emphasize, that one round of
As is equivalent to one round of A.

6 Impossibility

Unfortunately, serializations do not always exist. This is the case for the MIS-
protocol proposed in [9] which has been especially designed for the distributed
scheduler. The proof of stabilization for the distributed scheduler is not straight
forward [9]. In the following, the basic obstacles that prevent the application of
the new proof technique are explained.

The protocol assigns one of the three states OUT, WAIT, and IN to each
node. If a node is in state OUT and does not have a neighbor in state IN, then
its state is changed to IN (Rule 1). A node in state WAIT changes its state to
OUT, if it has a neighbor in state IN (Rule 2). A node in state WAIT changes its
state to IN, if it does not have a neighbor in state IN and all neighbors in state
WAIT have a higher Id (Rule 3). A node in state IN switches to state OUT, if
it has a neighbor in state IN (Rule 4).

As a first example, consider two neighboring nodes v and u, both in state IN,
while all their neighbors are in state OUT. If the distributed scheduler selects
both u and v during a single step, then both simultaneously switch to state to

78 S. Köhler and V. Turau

OUT. Note, that the state of u is the only reason that v is enabled and vice
versa. Under the central scheduler, one of the two nodes becomes disabled after
the first move and remains in state IN. Hence no serialization exists.

Now imagine that v is in state WAIT and u is in state OUT, while all their
neighbors are in state OUT again. Furthermore, assume that the Id of node u is
higher then the Id of v. If the distributed scheduler selects both v and u during
a single step, then v sets its state to IN by Rule 3 and u switches to state WAIT
by Rule 1. Again, there is no serialization because a move by v disables u and
vice versa.

For the sake of optimization, [9] proposes a modified version of Rule 4. Rule 4′
only sets the state to OUT, if there is an IN-neighbor with a lower Id. This allows
serializations of the first example by sorting the moves in descending order by
the Ids. The node with the lowest Id serves as a “final cause” of the moves by
the other nodes. Furthermore, it is possible to modify Rule 1 in such a way
that nodes only switch from OUT to WAIT, if there is no WAIT-neighbor with
a lower Id. Then the second example becomes serializable as well. Obviously,
in order for serializations to exist, situations in which moves disable moves of
neighboring nodes must be avoided or at least, it must be possible to resolve
these conflicts by sorting.

7 Concluding Remarks

This paper has described a new technique for proving self-stabilization under the
distributed scheduler. The task of proving self-stabilization is reduced to the task
of finding an invariancy-ranking. The proof that a given ranking is indeed an
invariancy-ranking is solely based on properties of sequential executions of pairs
of moves under the central scheduler. The new technique has been successfully
applied to two algorithms. Even more, Corollary 1 guarantees, that all properties
of the algorithms are preserved. In particular, by Theorems 3 and 4, the two algo-
rithms are the first transformers for adding fault-containment to self-stabilizing
protocols that are known to work under the distributed scheduler. It has also
been discussed that algorithms exist which stabilize under the distributed sched-
uler, but for which it is impossible to find serializations. Furthermore, rankings
may exist that yield serializations but are not invariancy-rankings. We’re not
aware of any examples for the latter.

It remains to be investigated, how serializations can be found other than sim-
ply by sorting moves. Instances may occur multiple times or additional instances
may be included in the serialization. Randomized protocols or non-deterministic
choices by the scheduler are not a problem. Both issues can be solved by extend-
ing the instance tuple with information about the scheduler’s choice (the rule
number) and the outcome of the random experiment during the move. This way,
the information becomes part of the ranking. Another possibility is to generalize
the notation (c : m) to {c : m} which denotes the set of configurations reachable
from c ∈ Σ by the execution of an instance m ∈ M.

A New Technique for Proving Self-stabilizing 79

References

1. Beauquier, J., Datta, A.K., Gradinariu, M., Magniette, F.: Self-stabilizing local
mutual exclusion and daemon refinement. In: Herlihy, M.P. (ed.) DISC 2000. LNCS,
vol. 1914, pp. 223–237. Springer, Heidelberg (2000)

2. Dijkstra, E.W.: Self-stabilizing systems in spite of distributed control. Communi-
cations of the ACM 17(11), 643–644 (1974)

3. Dijkstra, E.W.: EWD 391, self-stabilization in spite of distributed control. In: Se-
lected Writings on Computing: a Personal Perspective, pp. 41–46. Springer, Berlin
(1982); Originally Written in 1973

4. Dolev, S.: Self-Stabilization. MIT Press, Cambridge (2000)
5. Ghosh, S., Gupta, A., Herman, T., Pemmaraju, S.V.: Fault-containing self-

stabilizing distributed protocols. Distributed Computing 20(1), 53–73 (2007)
6. Gradinariu, M., Tixeuil, S.: Conflict managers for self-stabilization without fair-

ness assumption. In: Proceedings of the 27th IEEE International Conference on
Distributed Computing Systems, p. 45. IEEE Computer Society, Los Alamitos
(2007)

7. Herman, T.: Models of self-stabilization and sensor networks. In: Das, S.R., Das,
S.K. (eds.) IWDC 2003. LNCS, vol. 2918, pp. 205–214. Springer, Heidelberg (2003)

8. Köhler, S., Turau, V.: Fault-containing self-stabilization in asynchronous systems
with constant fault-gap. In: Proceedings of the 30th IEEE International Conference
on Distributed Computing Systems, pp. 418–427. IEEE Computer Society, Los
Alamitos (2010)

9. Turau, V.: Linear self-stabilizing algorithms for the independent and dominating
set problems using an unfair distributed scheduler. Information Processing Let-
ters 103(3), 88–93 (2007)

10. Turau, V., Weyer, C.: Fault tolerance in wireless sensor networks through self-
stabilization. International Journal of Communication Networks and Distributed
Systems 2(1), 78–98 (2009)

A Tranformational Approach for Designing
Scheduler-Oblivious Self-stabilizing Algorithms�

Abhishek Dhama and Oliver Theel

Department of Computer Science,
University of Oldenburg, Germany

{abhishek.dhama,theel}@informatik.uni-oldenburg.de

Abstract. The complexity of designing self-stabilizing systems is of-
ten compounded by the assumptions about the underlying schedulers.
This paper presents a method to transform a self-stabilizing algorithm
working under a given arbitrary, but potentially very restrictive, sched-
uler to a self-stabilizing algorithm under any weakly fair scheduler. The
method presented here implements a progress monitor by exploiting the
knowledge of a ranking function –used for proving convergence under the
original scheduler– to carry out the transformation.

1 Introduction

Self-stabilization is an elegant approach for designing distributed algorithms
which can cope with arbitrary transient faults without any auxiliary compo-
nents. A self-stabilizing distributed algorithm fulfills its specification within a
finite number of execution steps irrespective of its starting state and thus can
operate correctly despite intermittent occurrences of transient faults. This prop-
erty has motivated protocol engineers to design network protocols that exhibit
self-stabilization as in [1].

A critical part of designing a self-stabilizing algorithm is the proof that the
algorithm indeed converges to the behavior outlined in its specification. Such
proofs are, however, not easy to draw and automatic methods to do so do not
scale well enough [2]. A proof of self-stabilization also depends on the underlying
scheduler and the fairness assumption [3]; the increased generality of schedulers –
embodying scheduling strategies and fairness assumptions – makes convergence
proofs progressively complicated.

In order to get around the complexity of proofs due to the underlying sched-
ulers, Gouda and Haddix [4] suggested the use of a so-called “alternator” to
preserve the self-stabilization property under a distributed scheduler and, in
turn, spurred investigation into such transformers. These transformers, how-
ever, require that the original algorithm must be self-stabilizing under all weakly
fair schedulers. While the transformation of the self-stabilization property from
weakly fair sequential schedulers to distributed schedulers is well-studied, meth-
ods required for self-stabilizing algorithms which exhibit convergence under very

� This work was supported by the German Research Foundation (DFG) under grant
SFB/TR 14/2 “AVACS.”

S. Dolev et al. (Eds.): SSS 2010, LNCS 6366, pp. 80–95, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

An Approach for Scheduler-Oblivious Self-stabilizing Algorithms 81

restrictive schedulers, such as weakly-stabilizing algorithms [5], have not been
investigated extensively. As Devismes et al. [6] showed, a weakly-stabilizing algo-
rithm can at best exhibit probabilistic convergence under a distributed random-
ized scheduler. Nonetheless, there is a need for a method to transform probable
convergence to guaranteed convergence.

The crux of the challenge is to identify and enable –in every state of a system
executing the algorithm– processes whose actions are “beneficial” to the overall
convergence of the algorithm. Recently, it has been shown that during the design
phase of a distributed algorithm, the results of verification can be used to trans-
form the algorithm such that the amount of knowledge a process has, determines
whether its actions are enabled or not [7]. This raises the question whether a sim-
ilar approach can be used to design a transformer for self-stabilizing algorithms
under very restrictive schedulers.

Contributions. We suggest the usage of a ranking function, returned as a
by-product of a convergence proof of a distributed algorithm under a specific
(and possibly restrictive) scheduler, to transform a self-stabilizing algorithm.
We present a method to transfer the self-stabilization property of a distributed
algorithm proven under a specific scheduler to any weakly fair scheduler. The
transformation embodies a progress monitor [8] which tracks the progress of a
self-stabilizing algorithm towards its correct behavior.

Outline. The paper is structured as follows. We introduce the definitions and
concepts required for presenting the transformation method together with the
system model in Section 2. The transformation is detailed in Section 3 together
with the proofs and an optimization technique for the transformer. Section 4
provides an overview of related work. The paper concludes with a perspective
on future work in Section 5.

2 System Model

We now present the system model used in this paper along with the necessary
definitions.

Distributed System. A distributed system consists of a set of n processes
Π := {P1, · · · , Pn} which communicate with each other with the help of shared
memory registers. Two processes Pi and Pj are said to be neighbors of each other
if they can communicate with each other directly.

Shared Memory Model. A process communicates with other processors via a
set of communication registers. This set of registers is divided into two classes:
read and write registers. Write registers are owned by a process (i.e., they form
part of this process’ local state space) and are used to inform other processors
about its local state. Read registers are used to gauge the local states of the
neighbors.

Fault Model. A process can be affected by a burst of transient faults. A tran-
sient fault is temporary and changes local variables and write registers owned by
a process arbitrarily, while leaving program code unaffected. It is assumed that
temporal separation between any two bursts of transient faults is long enough
to allow a self-stabilizing algorithm to converge.

82 A. Dhama and O. Theel

Process Model. A process has a system-wide unique identifier –which belongs
to a totally ordered set– and is comprised of write registers, read registers, local
variables and the sub-algorithm it executes. Memory registers used by a process
for internal computation constitute its local variables. They cannot be accessed
by any other process in the system. The communication structure of a distributed
system can be abstracted as a graph such that each process in Π corresponds
to a node in the graph. Each pair of nodes representing processes which can
communicate with each other directly, is connected by a bidirectional edge in
the graph.

Distributed Algorithm. A sub-algorithm Asubx
executed by a process Px com-

prises of guarded commands of the format

〈label〉 :: Gix → actxi

where“〈label〉” is a process-wide unique identifier of a guarded command. Guard
“Gix” is a Boolean expression over local variables and communication registers
of Px. “actxi” is an assignment function that potentially assigns values to local
variables and write registers of Px. A guarded command is enabled if the Boolean
expression in its guard holds true. A guarded command is executed if and only
if the local variables and/or the write registers of a process are modified via the
assignment function. A process is enabled if it has at least one enabled guarded
command. A distributed algorithm is the union of sub-algorithms executed by
all the processes in Π , i.e. A :=

⋃n
x=1 Asubx

.
Global System State. The local state ϑx of a process Px consists of the valuation

of its local variables and write registers. The global system state of a distributed
system is a vector σ = [ϑ1, · · · , ϑn] whose elements are the local states of all
the processes in the system. The set of all possible global system states σ of a
distributed algorithm is called global system state space Σ.

Execution. An execution Ξ of a distributed algorithm A is a sequence of global
system states σi, i.e., Ξ := 〈σ1, σ2, · · · 〉 such that σ1 is the initial state and state
σi+1 is reachable from state σi via execution of a subset of enabled guarded
commands. Such an execution of guarded commands is called an execution step.
An execution Ξ̂ is a maximal execution if 1) Ξ̂ is finite and no guard is enabled
in the last global state or 2) Ξ̂ is infinite.

Scheduler. An implementation of a distributed algorithm might have multiple
processes with enabled guarded commands at any instant of time. This leads to
a potentially non-deterministic system model. A scheduler is thus employed to
produce executions of the system and thereby resolves non-determinism inherent
in such a model. A scheduler D potentially resolves the non-determinism by se-
lecting a subset of enabled processes for each execution step. An enabled process
that is selected for execution by the scheduler is termed as activated. Hence, a
scheduler can be represented by a countable infinite set D = {�1, �2, · · · } such
that an element �i is a (infinite) sequence �i = 〈ρ1, ρ2, · · · 〉 where ρm ⊆ 2Π . ρj

is a subset of enabled processes that is selected for execution by the scheduler in
an execution step j. �i is a sequence in which enabled processes are activated by
the scheduler. �i is synonymously called a (scheduling) strategy of the scheduler.
Since we are only interested in interleaved execution of a system in the scope of

An Approach for Scheduler-Oblivious Self-stabilizing Algorithms 83

this work, we consider schedulers which select exactly one process in each step
if one is enabled, zero otherwise, i.e., ρi = {Px}| ∅, Px ∈ Π .

Fairness. While proving that a distributed algorithm satisfies a certain live-
ness property, a specific subset of executions is discarded by terming it as “not
feasible.” Feasibility is defined with respect to a scheduler and the algorithm
– and thereby often implicitly tied to a certain notion of fairness. A fairness
notion, in general, ensures that actions that have remained enabled sufficiently
long are selected for execution frequently enough by the scheduler [9]. Weak
fairness implies that a continuously enabled process is activated infinitely often
while strong fairness ensures that an infinitely often enabled process is activated
infinitely often by the scheduler.

Self-Stabilizing Algorithm. A distributed algorithm is self-stabilizing with re-
spect to a state predicate P under a scheduler D if and only if it satisfies the
following two conditions [10]: (1) The algorithm is guaranteed to reach a global
state satisfying predicate P irrespective of the initial state. This property is
called convergence. (2) Any execution starting in a state satisfying predicate P
does not contain any state not satisfying predicate P in the absence of failures.
This property is known as closure. Predicate P partitions the state space of a
self-stabilizing algorithm into safe and unsafe states. The set of states satisfying
the predicate P are called safe states and all other states are referred to as unsafe
states. We abuse the terminology in rest of the paper and refer to P as safety
predicate of a self-stabilizing algorithm.

Ranking Function. A ranking function (or variant function) Δ : Σ → Θ is a
function that maps the global system state space of a distributed algorithm Σ
to a well-founded set Θ such that Δ(σj) < Δ(σi) for any two states σi and σj

if σj is reachable from σi via a single execution step. Let δ := Δ(σj) − Δ(σi)
be the difference1 between the values of the ranking function of two such states
σi and σj . The usefulness of a ranking function lies in the fact that it helps to
show that a distributed algorithm satisfies the convergence property. Indeed, the
existence of such a function Δ, such that 1) δ < 0 for any execution step in a
state σi with σi
|= P , and 2) Δ(σi) = inf(Θ) if σi |= P , can be used to prove
convergence of a self-stabilizing algorithm with respect to a predicate P [11,12].

3 Transformation of Self-stabilizing Algorithms

We now present a method to transform an algorithm that is self-stabilizing under
a given scheduler to an algorithm that is self-stabilizing under any weakly fair
scheduler.

3.1 Transformation Method

Let distributed algorithm A be self-stabilizing with respect to a predicate PA un-
der a specific scheduler DA. The convergence property of algorithm A under the
scheduler DA has been proven with the help of a ranking function ΔA. Algorithm
A consists of mx guarded commands GAix , 1 ≤ i ≤ mx in each process Px ∈ Π .

1 We assume that Θ has a minus operator “−” and an ordering relation “<” defined
over it.

84 A. Dhama and O. Theel

We further assume that each process Px ∈ Π has at most one enabled guarded
command in every state. Note that, as shown in [4], this assumption does not re-
strict the class of algorithms. Under these assumptions, the “scheduler-oblivious
transformation” of algorithm A –synonymously referred to as use algorithm– is
defined as follows.
Basic Idea. The transformation essentially implements a “progress monitor” of
use algorithm A which tracks the progress of algorithm A with respect to its
convergence towards the safe states. The transformation ensures that the ac-
tions of the use algorithm are enabled only if they guarantee progress towards
the set of safe states. The progress of a use algorithm is tracked with help of a
ranking function. The ranking function is typically provided by a proof of con-
vergence of the use algorithm under a given scheduler (see e.g. [11,12]). Such
continuous online calculation of a ranking function value, more often than not,
requires global knowledge at each process. This necessitates a global coordina-
tion mechanism to support the functioning of such a ranking function-based
progress monitor. A self-stabilizing mutual exclusion algorithm –as available in
the literature– can be adapted to support the progress monitor for this purpose.
However, self-stabilizing mutual exclusion algorithms require a rooted spanning
tree to work correctly [13,14]. As we neither assume the presence of such a distin-
guished process serving as a root nor a spanning tree, a self-stabilizing spanning
tree algorithm (thereby identifying a unique root) is required for correct exe-
cution of the self-stabilizing mutual exclusion algorithm. The transformation is
carried out in two steps.

In the first step, the use algorithm A is modified by strengthening (i.e., mod-
ifying) its guards in a systematic fashion. In the second step, this modified al-
gorithm –now called– A′ is composed with the self-stabilizing mutual exclusion
algorithm of [10, p. 24–27] and the self-stabilizing spanning tree algorithm of [13].
The self-stabilizing mutex algorithm of [10] is also slightly modified in order to
make the transformation work. Figure 1 shows the components and the layered

Use Algorithm
Modified

Mutual Exclusion Layer

Spanning Tree Layer

token

parent

snapshot

Fig. 1. Layered view of the transformation

architecture of the transformation
along with the flow of informa-
tion between the constituent al-
gorithms. The mutual exclusion
layer uses the variable parenti be-
longing to spanning tree layer to
control the execution of the mod-
ified use algorithm. The modified
use algorithm requires variables
representing a token and a global
snapshot to evaluate and execute
its guarded commands. Each com-
ponent and transformation step is explained in requisite detail in the following.

Spanning Tree Layer. Each sub-algorithm of the self-stabilizing spanning tree
algorithm uses three variables: disi, parenti, and rooti to construct a rooted
spanning tree. The rooti variable of process Pi contains the identifier of the root
node of the spanning tree to which Pi belongs. The shortest distance between the
root node and a process Pi is stored in a variable disi. The variable parenti points

An Approach for Scheduler-Oblivious Self-stabilizing Algorithms 85

to the parent of process Pi in the spanning tree. Every process Pi repeatedly
compares the three variables defining its spanning tree with that of its neighbors.
It requests permission to join the spanning tree of a neighbor if the identifier of
the root of the spanning tree of the neighbor is higher than that of its own. Such
a request to join a spanning tree is routed through the members of the spanning
tree to the root. The requesting node joins the tree when it receives a “grant” to
do so from the neighbor through which it initiated the request. A process marks
itself as “root” if it has the highest identifier in its neighborhood. The algorithm
ensures that multiple spanning trees in a forest merge such that 1) the resultant
spanning tree contains all the processes in the system and 2) the process with the
highest identifier becomes the root of the resultant spanning tree. The algorithm
removes non-existent root identifiers and cycles by running local consistency
checks while processing requests and grants for joining a spanning tree in the
intermediate nodes. The advantage of this algorithm lies in the fact that it does
not require a distinguished process to build a spanning tree. The algorithm
produces a spanning tree under any weakly fair scheduler.

Mutual Exclusion Layer. The mutual exclusion layer is implemented with the
help of the self-stabilizing mutual exclusion algorithm of [10, p. 24–27]. The self-
stabilizing mutual exclusion algorithm ensures that, eventually, in any global
state only one process can access its critical section under any weakly fair sched-
uler. The access to the critical section is regulated with the help of a permission
“token.” A process can enter its critical section if and only if it has this token.
In order to ensure that no process waits indefinitely for access to its critical
section, the token is circulated among all the processes. The self-stabilizing al-
gorithm circulates the token over the spanning tree constructed by the above
described spanning tree layer. The structure of the communication registers used
by the token circulation algorithm is modified for the proposed transformation
to work; the token is used not only for mutual exclusion but also for gathering a
global snapshot in order to the make the modified use algorithm work correctly.

xi
1, x

i
2, · · · , xi

n︸ ︷︷ ︸
snapshoti

tokeni · · ·

Fig. 2. Communication register rij between two
processes Pi and Pj

As shown in Figure 2, a com-
munication register rij between
two neighbor processes Pi and Pj

is modified by adding two parts :
a token part (left) and a global
snapshot part (middle). The right
part represents the original in-
formation communicated through
the register due to use algorithm
A. The token part of a communication register is an integer which is used by
each process to decide whether it has the token and can therefore access the crit-
ical section or not. The global snapshot part is a vector of all those variables of
use algorithm A which are required to calculate a concrete value of the ranking
function ΔA. For instance, if all those local variables and write registers of Pi

which are used in the calculation of ΔA are represented by a vector xi, then a
copy of xi, i = 1, · · · , n, would be an element of the global snapshot vector.

One of the processes in the system –with communication infrastructure modi-
fied as described above– is labeled as“root”and all other processes are labeled as

86 A. Dhama and O. Theel

“non-root” as the result of the stabilization of the spanning tree algorithm exe-
cuted by the lower layer. A non-root process Pi continuously compares the value
of its local variable tokeni with that of its parent process: if it is not equal to that
of its parents, then Pi can access its critical section. Let λi = 〈riu, riv, · · · , riz〉
be a total ordering of communication registers of a non-root process Pi that
induces a total ordering of its children. In order to pass the token to its descen-
dants, process Pi writes the token value of its parent process to the communi-
cation register riu meant for its first child Pu in the spanning tree. A process
returns the token by copying the token value written in riz to the communi-
cation register meant for its parent. A non-root process Pi passes the token
amongst its children by copying the value of the token written by a child Pu to
write register riv meant for the next child Pv. The ordering λi of communication
registers of a process defines the sequence in which its children get the token.

P0

P1 P2

P3 P4 P5 P6

P0

P1

P3

P4

P2

P5

P6

Fig. 3. Token circulation in a system

Let λx = 〈rxi, · · · , rxm〉 be the
ordering of communication regis-
ters of a process Px designated as
root. Process Px accesses its criti-
cal section if the value of its token
is equal to that of its last child
Pm. A root process updates its
token by incrementing it modulo
4n − 5 where n is the total num-
ber of processes in the system. It
passes on the token to other pro-
cesses in the tree in exactly the
same way as a non-root process
does. Figure 3 depicts the traver-
sal of the token in an example
spanning tree (left) along with the
sequence of access to the critical
section (right). The thick lines in the left figure indicate communication regis-
ters also used in the spanning tree whereas the thin lines indicate communication
registers only required by the use algorithm A’s logic.

Modification of the Use Algorithm. The actions of the modified use algorithm
are “embedded” in the mutual exclusion algorithm. The guarded commands of
the modified use algorithm A′ in a process Pi can be executed only if process
Pi possesses the token. Thus, in essence, the algorithm A′ constitutes the “criti-
cal section” guarded by the mutual exclusion algorithm. Furthermore, the set of
guarded commands of the use algorithm is also modified during the transforma-
tion (see Figure 4).

A guarded command Gij of use algorithm A in a process Pi, being selected by
the scheduler, is executed only (1) if it is enabled, (2) Pi has the token and (3)
the execution of Gij leads to a decrease in ΔA in case the safety predicate PA

does not hold (guarded commands of type 1). The term “decrease(ΔA)” func-
tions as a “look-ahead” operator of algorithm A. It is obtained by computing
the sign of the difference between ΔA and ΔAij . ΔAij is obtained from ΔA by
replacing variables in ΔA by their respective assignment expressions in actij .

An Approach for Scheduler-Oblivious Self-stabilizing Algorithms 87

process Pi

local var xi;
have token ≡ ((tokeni
= tokenparenti

) ∧ (parenti
= i) ∧ (rooti
= i))
∨((tokeni = tokenrightsiblingi

) ∧ (parenti = rooti = i));
release token ≡ if(parenti = rooti = i)

tokeni := (tokenrightsiblingi
+ 1)mod(4n − 5)

else
tokeni := tokenparent

paint token ≡ snapshoti.x
i
i := xi;

if(have token)
�G̀ij :: Gij ∧ ¬Gi1 ∧ · · · ∧ ¬Gin ∧ decrease(ΔA) ∧ ¬PA → actij ;paint token; (1)
...
�G̀ip :: Gij ∧ ¬Gi1 ∧ · · · ∧ ¬Gin ∧ PA → actij ;paint token; (2)
...
�G̀iq :: ¬Gi1 ∧ · · · ∧ ¬Gin → skip;paint token; (3)

endif
release token;

Fig. 4. Modified sub-algorithms of A′ with guarded commands of type 1, 2, & 3

The actions actij on the assignment side of guarded commands of algorithm A
remain unchanged. However, before a process Pi passes on the token after hav-
ing executed a guarded command Gij , it writes the updated values of its local
variables (required for the calculation of ΔA) in the snapshot part of the token.
This is achieved through the “paint token” statement. In case the safety predi-
cate PA holds (guarded commands of type 2), then the truth value of guarded
commands and the location of the token in the spanning tree determines the
guarded command to be executed. A process Pi must write the latest values of
its local variables to the snapshot part before passing on the token if none of its
original guarded commands are enabled (guarded commands of type 3).

3.2 Preservation of the Self-stabilization Property

We now show that this transformation of use algorithm A preserves its self-
stabilization property with respect to a predicate PA under any weakly fair
scheduler.

The transformed algorithm T (A) refers to the algorithm resulting from the
composition of the modified use algorithm with the auxiliary algorithms as de-
scribed in Section 3.1. We give some definitions before we proceed with the
proof.

Definition 1 (Projection over Use Algorithm A)
Let Ξ̂ = 〈· · · , σi, σk, · · · , σj , · · · 〉 be a maximal execution of a transformed al-
gorithm T (A) and let σi and σj be the global states where the modified use
algorithm executes one of its enabled guarded commands of type 1 or 2. The
projection Ξ̃A of a maximal execution of T (A) over use algorithm A is obtained

88 A. Dhama and O. Theel

by removing the variables not belonging to use algorithm A from every global
state σi appearing in Ξ̂ in which use algorithm A executed an enabled guarded
command, that is, Ξ̃A := 〈· · · , σi|var(A), σj|var(A), · · · 〉.

The projection of a maximal execution of a transformed algorithm T (A) over a
process Px, Ξ̃Px , is defined in the similar fashion.

Definition 2 (Correct Global Snapshot) Let ϑx|var(A) be the projection of
the local state ϑx of process Px on the use algorithm A obtained by removing
variables not belonging to the use algorithm A from ϑx. The local copy of the
global snapshot at process Py, obtained by inspecting the token, is termed as
correct global snapshot if it contains the current values of ϑx|var(A) for all Px ∈
Π − {Py}.

Definition 3 (1-Step Consistent Global Snapshot)
Let Ξ̃A = 〈· · · , σi|var(A), σj|var(A), · · · 〉 be the projection of a maximal execution
of a transformed algorithm T (A) over the use algorithm A. Let σi be the global
system state where process Py executed an action of use algorithm A most re-
cently. Let σk be the global system state in which some other process Px executed
an action of the use algorithm A such that k is the largest index satisfying the
condition i > k and ϑkx be the local state of a process Px in the global state σk.
The local copy of a global snapshot at a process Py is said to be 1-step consistent
if for every process Px ∈ Π − {Py}, process Py’s copy of the local state of Px is
ϑkx|var(A).

Note that 1-step consistency of a global snapshot as defined above is weaker than
correctness. It captures scenarios where a process’ copy of the global snapshot
might be “outdated” by a single step due to an execution step of some other
processes in the system.

Theorem 1 (based on [10]). Every execution of the transformed algorithm
T (A), irrespective of the starting state, self-stabilizes to a state where there is
exactly one token circulating in the system within O(n2) rounds under any weakly
fair scheduler.

As a result of the self-stabilization of the spanning tree and mutual exclusion
layers (Theorem 1), exactly one of the processes in the system assumes the role
of a root process and coordinates the token circulation (see [10] for the proof).
We refer to this distinguished process as Proot in the following.

Lemma 1. Process Proot has the correct local global snapshot within O(n) rounds
after the transformed algorithm T (A) has self-stabilized to a state with exactly
one circulating token.

Proof. The mutual exclusion algorithm circulates the token on the spanning tree
and the token traverses the tree in a depth-first manner. It defines an Euler tour
(a virtual ring) over the spanning tree. This virtual ring has 2n−2 virtual nodes.
Process Proot gets the token and thereby a chance to access its critical section
at least once every 4n − 4 rounds irrespective of the fact whether the mutual
exclusion algorithm has stabilized or not (Theorem 1). Let σi be the global state

An Approach for Scheduler-Oblivious Self-stabilizing Algorithms 89

in which process Proot gets the token for the first time after the mutual exclusion
algorithm has self-stabilized. The global snapshot that Proot gets along with the
token in global state σi might be incorrect and thus Proot may execute a guarded
command that is enabled with the help of an incorrect global snapshot. How-
ever, the assignment part of each of the guarded commands writes the current
values of the local variables belonging to use algorithm A to the global snapshot
part of the token. Let σj be the global state after Proot executes its guarded
command. Thus, when Proot passes on the token to its first child (defined by the
ordering of outgoing edges in Proot) the global snapshot has the current local
state σjroot |var(A) of Proot.

Let σk be a global state after the state σj such that a non-root process Pz

gets the token from its parent process. It can be argued that –irrespective of the
correctness of the global snapshot which is passed on to process Pz along with
the token– the token has the correct local state σlz|var(A) of Pz, where σl is the
resultant state after the execution of guarded commands of A, when it is passed
on to the descendants of Pz. A process accesses its critical section (and thus
executes use algorithm A) only when it gets the token from its parent process
although it gets the token more than once while routing it through its sub-tree
and back to its parent. This implies that once any process passes on the token
to its descendants, the projection of its local state on the use algorithm does
not change. Let Proot → Px → Py → Pz be the path traversed by the token in
the spanning tree before it reaches process Pz . The argument above can be used
to infer that Pz gets the current values of the local variables of processes Proot,
Px and Pz (belonging to use algorithm A) when it receives the token from its
parent. This argument can be further extended to infer that every process gets
the current values of variables belonging to use algorithm A of processes that
possessed the token before and updates its local state prior to passing the token
to its successors.

Every process gets a chance to access its critical section once in 4n−4 rounds
after the mutual exclusion algorithm has self-stabilized. Let σm be the global
state in which Proot gets the token for the first time after the state σi. All the
other processes update their current local states to the global snapshot between
global states σi and σm and do not change them thereafter. Thus, when Proot gets
the token in σm for the second time, it has the current value of every ϑmx|var(A)
for all x ∈ {1, · · · , n} \ {root}. ��

Lemma 2. Every process in the system has a 1-consistent global snapshot within
O(n) rounds following the state in which the process Proot gets the token exclu-
sively for the second time.

Proof. As stated in the proof of Lemma 1, every process gets a chance to execute
its critical section once in 4n − 4 rounds after the mutual exclusion algorithm
has self-stabilized. Also, process Proot gets the correct global snapshot when it
gets the token exclusively for the second time (Lemma 1). Let σi be the global
state in which Proot has a correct global snapshot. Proot, irrespective of actions of
use algorithm A, updates its current local state ϑjroot |var(A) to the token before
passing it on. Let Pα be the first child of Proot in the spanning tree. Pα gets
the token right after Proot. As a result of token possession, Pα might change its

90 A. Dhama and O. Theel

local state with σα being the resultant global state. This makes the Proot copy of
the local state of Pα outdated. Note that there cannot be an execution sequence
(after the mutual exclusion algorithm has self-stabilized) such that between two
global states σκ and σj where Pα accessed its critical section, no global state
exists where Proot accessed its critical section. Thus, in global state σα, Proot’s
copy of the local state of Pα has the value which corresponds to the global state
σι resulted from the execution of the critical section of Pα and ι is the largest
index such that ι < i.

Let Proot → Pα · · · → Pς → Pβ be the sequence in which the token traverses
the spanning tree after state σi. Let σβ be the global state resulting from the
execution of the critical section of process Pβ . As a result of accessing its critical
section (thereby possibly executing a guarded command of use algorithm A),
Pβ might change its local state. This action will make the copies of the local
state of Pβ outdated in all the processes that possessed the token before Pβ .
However, as we argued above, there cannot be an execution sequence with two
states σ	 and σβ where Pβ accessed its critical section and none of processes in
the set {Proot, · · · , Pς} access their respective critical section. Thus, each process
in {Proot, · · · , Pς} will have σ	β|var(A) as local state of Pβ where � is the largest
index such that � < ι for each ι ∈ {i, α, · · · , ς}. This argument can be extended
inductively for all the non-root process. Hence, it can be inferred that once
process Proot gets the token again after state σi, all the processes in the system
have a 1-step consistent global snapshot. ��

Lemma 3. A process executes an action of the use algorithm A in a global state
with exactly one token if it has a correct global snapshot.

Proof. Let σi be the global state where process Proot receives the correct global
state. Proot also has the token in this state σi (from Lemma 1) which allows Proot
to potentially execute an enabled guarded command of the use algorithm A (by
construction). Thus, Proot executes an action of use algorithm A only if it has a
correct global snapshot. Let Pβ be a process that gets the token in some state
after σi. Pβ gets the correct snapshot when it gets the token (from Lemmata 1
and 2). Possession of the token also enables Pβ to execute an enabled guarded
command of use algorithm A if it has an enabled guarded command when it
receives the token (by construction). This completes the proof. ��

Lemma 4. If an action of use algorithm A is executed by any process in a global
state with exactly one token, then this execution step of the transformed algorithm
T (A) leads to a decrease in the value of the ranking function ΔA.

Proof. A process Pi executes a guarded command of the use algorithm A only
if it has the token (by construction). Also, an action of the use algorithm A is
executed only if Pi has a correct global snapshot (from Lemma 3). The guards
in every process are strengthened such that an assignment statement is executed
only if its execution leads to a decrease in ΔA. This, in conjunction with Lemma
3 completes the proof. ��

Lemma 5. After the root process gets a correct global snapshot for the first time,
the projection of any execution of the transformed algorithm T (A) over the use

An Approach for Scheduler-Oblivious Self-stabilizing Algorithms 91

algorithm A under any weakly fair scheduler is an execution of use algorithm A
under its originally used scheduler DA.

Proof. Use algorithm A has some liveness property under scheduler DA which
is exhibited by the existence of the ranking function ΔA. This implies that 1)
in every state of the system executing use algorithm A there exists at least one
process with an enabled guarded command Gij and 2) in every state at least one
of the processes with enabled guarded commands has a guarded command Gij

enabled such that decrease(ΔA) holds until PA is satisfied. Thus, in every state
of the system executing the transformed algorithm T (A) there exists at least
one process with a modified guarded command G̀ij being enabled until PA holds.
Let ε be a fragment of the projection Ξ̃A of a maximal execution Ξ̂T (A) of
T (A) under any weakly fair scheduler such that its first state is the state where
process Proot gets the correct global snapshot for the first time and PA does not
hold in any state of ε. Let σi|var(A) → σj|var(A) be an execution step of A in ε.
There exists no execution in which a process without the token causes a change
in the values of variables of A (by construction). Only one process can execute a
guarded command of use algorithm A after the mutual exclusion algorithm has
self-stabilized (Theorem 1). Thus, σi|var(A) → σj|var(A) can only realized through
the execution of a guarded command of a single process of use algorithm A.

Let Px be the process which executes the guarded command to do so. Px ex-
ecutes an enabled modified guarded command in σi|var(A) based on latest global
information (Lemma 3), and this step leads to a decrease in ΔA (Lemma 4). As
shown above, the use algorithm A has an enabled guarded command that leads
to a decrease in ΔA in any state under it original scheduler DA. Note that the
assignment statements of use algorithm A remain unchanged in the transforma-
tion. Thus, there exists an execution step of A under DA which corresponds to
σi|var(A) → σj|var(A) under DA. An execution step of A in σi|var(A) is only possible
in process Px. Also note that, Px cannot be denied a token indefinitely because
the mutual exclusion layer ensures that each process gets the token infinitely of-
ten in any execution under any weakly fair scheduler. Hence, an execution step
of A cannot be delayed indefinitely. This argument can be extended to build an
execution of A under DA which corresponds to Ξ̃A until PA holds.

Let Ξ̃A be the projection of a maximal execution of T (A) such that Ξ̃A is
not maximal. Let εPA be a suffix of Ξ̃A such that all states satisfy PA. Thus,
εPA consists of states where a guarded command in a process is enabled but
is never executed. This is, however, not possible because the mutual exclusion
algorithm ensures that each process gets the token infinitely often in any maximal
execution. A process executes an enabled guarded command of use algorithm A
based on the latest global state (Lemma 3) when it gets token. The result of such
an execution is the same as that of use algorithm A under DA as the assignment
parts of the guarded commands remain unchanged in the transformation. ��
Lemma 6. If a use algorithm A converges to a predicate PA under the scheduler
DA, then the transformed algorithm T (A) converges to the predicate PA under
any weakly fair scheduler.

Proof. Let Ξ̃A be the projection of a maximal execution Ξ̂T (A) of the trans-
formed algorithm T (A) over use algorithm A. Let ε be the suffix of Ξ̃A such

92 A. Dhama and O. Theel

that σi is the first state of ε and Proot has a correct global snapshot in σi for the
first time (Lemma 1). ε is a maximal execution of A under DA (Lemma 5). Let
ε have no suffix that converges to a state satisfying PA. This implies that there
exists a maximal execution of use algorithm A under its scheduler DA which does
not converge to a state satisfying the predicate PA. This, however, contradicts
the precondition of the lemma statement. Also, ΔA is a monotonous function
defined over a well-founded domain. Therefore T (A) reaches a state satisfying
PA in a finite number of execution steps. This completes the proof. ��

Theorem 2. The transformed algorithm T (A) is self-stabilizing with respect to
predicate PA under any weakly fair scheduler if PA is closed under any weakly
fair scheduler.

Proof. The convergence of the transformed algorithm T (A) follows from Lemma
6. Its closure follows from Lemma 5. ��

Optimization of the Transformation Method. The method presented so far relies
on global mutual exclusion in order to preserve the self-stabilization property of
a use algorithm. As a result of this transformation, concurrency inherent in the
system is reduced to a bare minimum because in any state exactly one process
can execute a guarded command of the use algorithm. This is optimal for the
scenario where the online calculation of the ranking function needs local state
information of all the processes in the system. However, there may be scenarios
where a process can decide whether an execution of its guarded command is
conducive to convergence of the system or not by inspecting the local states of
the processes in its k-neighborhood where 2 ≤ k < n only. In such scenarios, self-
stabilizing k-local mutual exclusion algorithms (see e.g. [15,16]) can be used for
local coordination instead of the global mutual exclusion algorithm to increase
concurrency while preserving the convergence property of the use algorithm. The
structure of the ranking function can be used to determine the locality of the
k-local mutual exclusion algorithm. We omit the details due to the lack of space.

4 Related Work

The difficulty of designing a self-stabilizing algorithm from scratch has led to
the development of various methods for transforming algorithms that are not
self-stabilizing in the first place into respective self-stabilizing algorithms. A
transformer that employs a supervisor process to reset a global system state
has been proposed in [17]. The supervisor process periodically requests a global
snapshot and resets the system to a pre-defined initial state in case the snapshot
violates some (safety) predicate. This methods assumes the existence of a distin-
guished process in the system. Awerbuch and Varghese [18] presented a trans-
former that converts a synchronous distributed algorithm into an asynchronous
self-stabilizing algorithm via a resynchronizer. A resynchronizer simulates a
synchronous algorithm under an asynchronous environment in a self-stabilizing
manner. The underlying principle of the resynchronizer-based transformer is to
check the output of each process after T rounds, where T is the time complex-
ity of the algorithm, and restart the algorithm if any inconsistency is detected

An Approach for Scheduler-Oblivious Self-stabilizing Algorithms 93

during the checking phase. It has been shown in [19,13] that for some problems,
it is sufficient to check the inconsistency locally. A local stabilizer that trans-
forms online synchronous distributed algorithms into respective self-stabilizing
algorithms is presented in [20]. Each process implementing a local stabilizer
maintains a data structure termed as pyramid ; a pyramid contains d values,
where d is the diameter of the system, such that ith entry represents the local
states of the processes within i hops in t − i rounds. An inconsistent system
state is detected if pyramids of two neighboring processes do not match or if a
process is not able to reconstruct its current local state using relevant entries of
the pyramids of its neighbors. In case an inconsistency is detected, the system
is repaired via pyramids of non-faulty processes. Beauquier et al. presented a
set of transient fault detectors for various families of tasks [21]; a transient fault
detector ensures that eventually, a transient fault is detected by at least one
process in the system. Such a transient fault detector can be composed with a
self-stabilizing reset algorithm [22] to transform a distributed algorithm into a
self-stabilizing algorithm.

A lock-based transformer is presented in [23,24] to transfer the self stabi-
lization property of an algorithm from a sequential scheduler to a distributed
scheduler. The transformer ensures that a process can execute its guarded com-
mand only if it gets the lock. The conflict among multiple processes competing
for the lock is resolved on the basis of timestamps sent along with the request
for the lock. This transformer, however, may not preserve the self-stabilization
property if convergence requires a fair scheduler. Self-stabilizing solutions to the
classical problem of Dining Philosphers [25] have been proposed to transfer the
self-stabilization property of an algorithm proven under a weakly fair scheduler to
a distributed scheduler [26,27,28]. A transformation to preserve self-stabilization
under unfair schedulers via composition is presented in [29]. Beauquier et al. [30]
showed that for a specific class of self-stabilizing algorithms all k-fair schedulers
are equivalent. A self-stabilizing algorithm to implement strong fairness under a
weakly fair scheduler is presented in [31]. This algorithm emulates the behavior
under a strongly fair scheduler by ensuring that whenever a process executes its
guarded command, it does so exclusively in its 2-neighborhood. A maximal algo-
rithm to emulate strong fairness is presented [32] where maximality implies that
the algorithm is able to produce all possible strongly fair scheduling strategies.
However, this algorithm is not self-stabilizing.

5 Conclusion and Future Work

We showed how to transform a self-stabilizing algorithm whose convergence
property has been proven under a given (potentially restrictive) scheduler to
a self-stabilizing algorithm under any weakly fair distributed scheduler. The
transformation was achieved by “embedding” a known ranking function, previ-
ously used to prove convergence under the given scheduler, in the guarded com-
mands of the algorithm. The transformation also preserves self-stabilization in
the read/write atomicity model because it uses lower-layer algorithms designed
for the read/write atomicity model [10, p. 71–73]. We also briefly described how
the structure of a ranking function can be used to fine-tune the transformer.

94 A. Dhama and O. Theel

The transformer presented in this paper can be used to develop a semi-
automatic method to synthesize large self-stabilizing algorithms from smaller
components. Another interesting extension is to see the effect of the transforma-
tion on cost and dependability metrics of the original self-stabilizing algorithm.
In addition, we plan to analyze the effect of the component algorithms in the
additional layers on the convergence time of the transformed algorithm. It is also
be worthwhile to investigate the effect of choice of lower layers algorithms on the
dependability of the transformed algorithm.

References

1. Perlman, R.: Interconnections: bridges, routers, switches, and internetworking pro-
tocols. Addison-Wesley Longman, Amsterdam (1999)

2. Tsuchiya, T., Nagano, S., Paidi, R.B., Kikuno, T.: Symbolic model checking for
self-stabilizing algorithms. IEEE Trans. Parallel Distrib. Syst. 12, 81–95 (2001)

3. Burns, J.E., Gouda, M.G., Miller, R.E.: On Relaxing Interleaving Assumptions.
In: Proc. MCC Workshop on Self-Stabilization. MCC Tech. Rep. STP, pp. 379–
389 (1989)

4. Gouda, M.G., Haddix, F.F.: The alternator. Distributed Computing 20, 21–28
(2007)

5. Gouda, M.G.: The Theory of Weak Stabilization. In: Datta, A.K., Herman, T.
(eds.) WSS 2001. LNCS, vol. 2194, pp. 114–123. Springer, Heidelberg (2001)

6. Devismes, S., Tixeuil, S., Yamashita, M.: Weak vs. Self vs. Probabilistic Stabiliza-
tion. In: ICDCS, pp. 681–688. IEEE Computer Society, Los Alamitos (2008)

7. Basu, A., Bensalem, S., Peled, D., Sifakis, J.: Priority Scheduling of Distributed
Systems Based on Model Checking. In: Bouajjani, A., Maler, O. (eds.) Computer
Aided Verification. LNCS, vol. 5643, pp. 79–93. Springer, Heidelberg (2009)

8. Balaban, I., Pnueli, A., Zuck, L.D.: Modular Ranking Abstraction. Int. J. Found.
Comput. Sci. 18, 5–44 (2007)

9. Völzer, H., Varacca, D., Kindler, E.: Defining Fairness. In: Abadi, M., de Alfaro, L.
(eds.) CONCUR 2005. LNCS, vol. 3653, pp. 458–472. Springer, Heidelberg (2005)

10. Dolev, S.: Self-Stabilization. The MIT Press, Cambridge (2000)
11. Kessels, J.L.W.: An Exercise in Proving Self-Stabilization with a Variant Function.

Inf. Process. Lett. 29, 39–42 (1988)
12. Theel, O.: Exploitation of Ljapunov Theory for Verifying Self-Stabilizing Algo-

rithms. In: Herlihy, M.P. (ed.) DISC 2000. LNCS, vol. 1914, pp. 209–222. Springer,
Heidelberg (2000)

13. Afek, Y., Kutten, S., Yung, M.: The Local Detection Paradigm and Its Application
to Self-Stabilization. Theor. Comput. Sci. 186, 199–229 (1997)

14. Dolev, S., Israeli, A., Moran, S.: Self-Stabilization of Dynamic Systems Assuming
Only Read/Write Atomicity. Distributed Computing 7, 3–16 (1993)

15. Boulinier, C., Petit, F.: Self-stabilizing wavelets and rho-hops coordination. In: Intl.
Sym. Parallel and Distributed Processing, pp. 1–8. IEEE, Los Alamitos (2008)

16. Danturi, P., Nesterenko, M., Tixeuil, S.: Self-Stabilizing Philosophers with Generic
Conflicts. ACM Trans. Autonomous and Adaptive Systems 4 (2009)

17. Katz, S., Perry, K.J.: Self-Stabilizing Extensions for Message-Passing Systems. Dis-
tributed Computing 7, 17–26 (1993)

18. Awerbuch, B., Varghese, G.: Distributed Program Checking: a Paradigm for Build-
ing Self-stabilizing Distributed Protocols. In: FOCS, pp. 258–267 (1991)

19. Awerbuch, B., Patt-Shamir, B., Varghese, G.: Self-Stabilization By Local Checking
and Correction. In: FOCS, pp. 268–277 (1991)

An Approach for Scheduler-Oblivious Self-stabilizing Algorithms 95

20. Afek, Y., Dolev, S.: Local Stabilizer. J. Parallel Distrib. Comput. 62, 745–765 (2002)
21. Beauquier, J., Delaët, S., Dolev, S., Tixeuil, S.: Transient Fault Detectors. In:

Kutten, S. (ed.) DISC 1998. LNCS, vol. 1499, pp. 62–74. Springer, Heidelberg
(1998)

22. Arora, A., Gouda, M.G.: Distributed Reset. IEEE ToC 43, 1026–1038 (1994)
23. Mizuno, M., Kakugawa, H.: A Timestamp Based Transformation of Self-Stabilizing

Programs for Distributed Computing Environments. In: Babaoğlu, Ö., Marzullo,
K. (eds.) WDAG 1996. LNCS, vol. 1151, pp. 304–321. Springer, Heidelberg (1996)

24. Kakugawa, H., Mizuno, M., Nesterenko, M.: Development of Self-Stabilizing Dis-
tributed Algorithms using Transformation: Case Studies. In: WSS, pp. 16–30. Car-
leton University Press (1997)

25. Chandy, K.M., Misra, J.: The Drinking Philosopher’s Problem. ACM ToPLaS 6,
632–646 (1984)

26. Beauquier, J., Datta, A.K., Gradinariu, M., Magniette, F.: Self-Stabilizing Local
Mutual Exclusion and Daemon Refinement. In: Herlihy, M.P. (ed.) DISC 2000.
LNCS, vol. 1914, pp. 223–237. Springer, Heidelberg (2000)

27. Nesterenko, M., Arora, A.: Stabilization-Preserving Atomicity Refinement. J. Par-
allel Distrib. Comput. 62, 766–791 (2002)

28. Boulinier, C., Petit, F., Villain, V.: When Graph Theory helps Self-Stabilization.
In: Proc. 23rd Annual ACM Symposium on Principles of Distributed Computing,
pp. 150–159 (2004)

29. Beauquier, J., Gradinariu, M., Johnen, C.: Cross-Over Composition - Enforcement
of Fairness under Unfair Adversary. In: Datta, A.K., Herman, T. (eds.) WSS 2001.
LNCS, vol. 2194, pp. 19–34. Springer, Heidelberg (2001)

30. Beauquier, J., Johnen, C., Messika, S.: All k -Bounded Policies Are Equivalent for
Self-stabilization. In: Datta, A.K., Gradinariu, M. (eds.) SSS 2006. LNCS, vol. 4280,
pp. 82–94. Springer, Heidelberg (2006)

31. Karaata, M.H.: Self-Stabilizing Strong Fairness under Weak Fairness. IEEE Trans.
Parallel Distrib. Syst. 12, 337–345 (2001)

32. Lang, M., Sivilotti, P.A.G.: A Distributed Maximal Scheduler for Strong Fairness.
In: Pelc, A. (ed.) DISC 2007. LNCS, vol. 4731, pp. 358–372. Springer, Heidelberg
(2007)

On Byzantine Containment Properties of the
min + 1 Protocol�

Swan Dubois1, Toshimitsu Masuzawa2, and Sébastien Tixeuil1

1 LIP6 - UMR 7606 Université Pierre et Marie Curie - Paris 6 & INRIA, France
2 Osaka University, Japan

Abstract. Self-stabilization is a versatile approach to fault-tolerance
since it permits a distributed system to recover from any transient fault
that arbitrarily corrupts the contents of all memories in the system.
Byzantine tolerance is an attractive feature of distributed systems that
permits to cope with arbitrary malicious behaviors.

We consider the well known problem of constructing a breadth-first
spanning tree in this context. Combining these two properties prove dif-
ficult: we demonstrate that it is impossible to contain the impact of
Byzantine processes in a strictly or strongly stabilizing manner. We then
adopt the weaker scheme of topology-aware strict stabilization and we
present a similar weakening of strong stabilization. We prove that the
classical min+1 protocol has optimal Byzantine containment properties
with respect to these criteria.

1 Introduction

The advent of ubiquitous large-scale distributed systems advocates that toler-
ance to various kinds of faults and hazards must be included from the very
early design of such systems. Self-stabilization [1,2,3] is a versatile technique
that permits forward recovery from any kind of transient faults, while Byzantine
Fault-tolerance [4] is traditionally used to mask the effect of a limited number
of malicious faults. Making distributed systems tolerant to both transient and
malicious faults is appealing yet proved difficult [5,6,7] as impossibility results
are expected in many cases.

Two main paths have been followed to study the impact of Byzantine faults
in the context of self-stabilization:

– Byzantine fault masking. In completely connected synchronous systems, one
of the most studied problems in the context of self-stabilization with Byzan-
tine faults is that of clock synchronization. In [8,5], probabilistic self-stabiliz-
ing protocols were proposed for up to one third of Byzantine processes, while
in [9,10] deterministic solutions tolerate up to one fourth and one third of
Byzantine processes, respectively.

� This work has been supported in part by ANR projects SHAMAN, ALADDIN,
SPADES, by MEXT Global COE Program and by JSPS Grant-in-Aid for Scientific
Research ((B) 22300009).

S. Dolev et al. (Eds.): SSS 2010, LNCS 6366, pp. 96–110, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

On Byzantine Containment Properties of the min + 1 Protocol 97

– Byzantine containment. For local tasks (i.e. tasks whose correctness can be
checked locally, such as vertex coloring, link coloring, or dining philosophers),
the notion of strict stabilization was proposed [7,11,12]. Strict stabilization
guarantees that there exists a containment radius outside which the effect of
permanent faults is masked, provided that the problem specification makes
it possible to break the causality chain that is caused by the faults. As many
problems are not local, it turns out that it is impossible to provide strict
stabilization for those.

Our Contribution. In this paper, we investigate the possibility of Byzantine
containment in a self-stabilizing setting for tasks that are global (i.e. for which
there exists a causality chain of size r, where r depends on n the size of the
network), and focus on a global problem, namely breadth-first spanning (BFS)
tree construction. A good survey on self-stabilizing solutions to this problem can
be found in [13]. In particular, one of the simplest solution is known under the
name of min + 1 protocol (see [14,15]). This name is due to the construction
of the protocol itself. Each process has two variables: one pointer to its parent
in the tree and one level in this tree. The protocol is reduced to the following
rule: each process chooses as its parent the neighbor which has the smallest
level (min part) and updates its level in consequence (+1 part). [14] proves that
this protocol is self-stabilizing. In this paper, we propose a complete study of
Byzantine containment properties of this protocol.

First, we study space Byzantine containment properties of this protocol. As
strict stabilization is impossible with such global tasks (see [7]), we use the
weaker scheme of topology-aware strict stabilization (see [16]). In this scheme,
we weaken the containment constraint by relaxing the notion of containment
radius to containment area, that is Byzantine processes may disturb infinitely
often a set of processes which depends on the topology of the system and on the
location of Byzantine processes. We show that the min+1 protocol has optimal
containment area with respect to topology-aware strict stabilization.

Secondly, we study time Byzantine containment properties of this protocol
using the concept of strong stabilization (see [17,18]). We first show that it is
impossible to find a strongly stabilizing solution to the BFS tree construction
problem. It is why we weaken the concept of strong stabilization using the notion
of containment area to obtain topology-aware strong stabilization. We show then
that the min + 1 protocol has also optimal containment area with respect to
topology-aware strong stabilization.

2 Distributed System

A distributed system S = (P,L) consists of a set P = {v1, v2, . . . , vn} of processes
and a set L of bidirectional communication links (simply called links). A link is
an unordered pair of distinct processes. A distributed system S can be seen as a
graph whose vertex set is P and whose link set is L, so we use graph terminology
to describe a distributed system S.

98 S. Dubois, T. Masuzawa, and S. Tixeuil

Processes u and v are called neighbors if (u, v) ∈ L. The set of neighbors of
a process v is denoted by Nv, and its cardinality (the degree of v) is denoted
by Δv(= |Nv|). The degree Δ of a distributed system S = (P,L) is defined as
Δ = max{Δv | v ∈ P}. We do not assume existence of a unique identifier for
each process. Instead we assume each process can distinguish its neighbors from
each other by locally arranging them in some arbitrary order: the k-th neighbor
of a process v is denoted by Nv(k) (1 ≤ k ≤ Δv).

In this paper, we consider distributed systems of arbitrary topology. We as-
sume that a single process is distinguished as a root, and all the other processes
are identical.

We adopt the shared state model as a communication model in this paper,
where each process can directly read the states of its neighbors.

The variables that are maintained by processes denote process states. A pro-
cess may take actions during the execution of the system. An action is simply
a function that is executed in an atomic manner by the process. The actions
executed by each process is described by a finite set of guarded actions of the
form 〈guard〉 −→ 〈statement〉. Each guard of process u is a boolean expression
involving the variables of u and its neighbors.

A global state of a distributed system is called a configuration and is specified
by a product of states of all processes. We define C to be the set of all possi-
ble configurations of a distributed system S. For a process set R ⊆ P and two
configurations ρ and ρ′, we denote ρ

R�→ ρ′ when ρ changes to ρ′ by executing an
action of each process in R simultaneously. Notice that ρ and ρ′ can be different
only in the states of processes in R. For completeness of execution semantics,
we should clarify the configuration resulting from simultaneous actions of neigh-
boring processes. The action of a process depends only on its state at ρ and the
states of its neighbors at ρ, and the result of the action reflects on the state of
the process at ρ′.

We say that a process is enabled in a configuration ρ if the guard of at least
one of its actions is evaluated at true in ρ.

A schedule of a distributed system is an infinite sequence of process sets.
Let Q = R1, R2, . . . be a schedule, where Ri ⊆ P holds for each i (i ≥ 1).
An infinite sequence of configurations e = ρ0, ρ1, . . . is called an execution from

an initial configuration ρ0 by a schedule Q, if e satisfies ρi−1
Ri

�→ ρi for each
i (i ≥ 1). Process actions are executed atomically, and we also assume that a
distributed daemon schedules the actions of processes, i.e. any subset of processes
can simultaneously execute their actions. We say that the daemon is central if
it schedules action of only one process at any step.

The set of all possible executions starting from ρ0 ∈ C is denoted by Eρ0 .
The set of all possible executions is denoted by E, that is, E =

⋃
ρ∈C Eρ. We

consider asynchronous distributed systems where we can make no assumption
on schedules except that any schedule is fair : a process which is infinitely often
enabled in an execution can not be never activated in this execution.

In this paper, we consider (permanent) Byzantine faults : a Byzantine process
(i.e. a Byzantine-faulty process) can make arbitrary behavior independently from

On Byzantine Containment Properties of the min + 1 Protocol 99

its actions. If v is a Byzantine process, v can repeatedly change its variables
arbitrarily.

3 Self-stabilizing Protocol Resilient to Byzantine Faults

Problems considered in this paper are so-called static problems, i.e. they require
the system to find static solutions. For example, the spanning-tree construction
problem is a static problem, while the mutual exclusion problem is not. Some
static problems can be defined by a specification predicate (shortly, specification),
spec(v), for each process v: a configuration is a desired one (with a solution) if
every process v satisfies spec(v). A specification spec(v) is a boolean expression
on variables of Pv (⊆ P) where Pv is the set of processes whose variables appear
in spec(v). The variables appearing in the specification are called output variables
(shortly, O-variables). In what follows, we consider a static problem defined by
specification spec(v).

A self-stabilizing protocol ([1]) is a protocol that eventually reaches a legitimate
configuration, where spec(v) holds at every process v, regardless of the initial
configuration. Once it reaches a legitimate configuration, every process never
changes its O-variables and always satisfies spec(v). From this definition, a self-
stabilizing protocol is expected to tolerate any number and any type of transient
faults since it can eventually recover from any configuration affected by the
transient faults. However, the recovery from any configuration is guaranteed
only when every process correctly executes its actions from the configuration,
i.e., we do not consider existence of permanently faulty processes.

3.1 Strict Stabilization

When (permanent) Byzantine processes exist, Byzantine processes may not sat-
isfy spec(v). In addition, correct processes near the Byzantine processes can be
influenced and may be unable to satisfy spec(v). Nesterenko and Arora [7] define
a strictly stabilizing protocol as a self-stabilizing protocol resilient to unbounded
number of Byzantine processes.

Given an integer c, a c-correct process is a process defined as follows.

Definition 1 (c-correct process). A process is c-correct if it is correct (i.e.
not Byzantine) and located at distance more than c from any Byzantine process.

Definition 2 ((c, f)-containment). A configuration ρ is (c, f)-contained for
specification spec if, given at most f Byzantine processes, in any execution start-
ing from ρ, every c-correct process v always satisfies spec(v) and never changes
its O-variables.

The parameter c of Definition 2 refers to the containment radius defined in [7].
The parameter f refers explicitly to the number of Byzantine processes, while
[7] dealt with unbounded number of Byzantine faults (that is f ∈ {0 . . .n}).

100 S. Dubois, T. Masuzawa, and S. Tixeuil

Definition 3 ((c, f)-strict stabilization). A protocol is (c, f)-strictly stabiliz-
ing for specification spec if, given at most f Byzantine processes, any execution
e = ρ0, ρ1, . . . contains a configuration ρi that is (c, f)-contained for spec.

An important limitation of the model of [7] is the notion of r-restrictive spec-
ifications. Intuitively, a specification is r-restrictive if it prevents two processes
that are at least r hops away to be simultaneously in some given states. An
important consequence related to Byzantine tolerance is that the containment
radius of protocols solving those specifications is at least r. For some problems,
such as the spanning tree construction we consider in this paper, r can not
be bounded by a constant. We can show that there exists no (o(n), 1)-strictly
stabilizing protocol for the spanning tree construction.

3.2 Strong Stabilization

To circumvent the impossibility result, [17] defines a weaker notion than the
strict stabilization. Here, the requirement to the containment radius is relaxed,
i.e. there may exist processes outside the containment radius that invalidate
the specification predicate, due to Byzantine actions. However, the impact of
Byzantine triggered action is limited in times: the set of Byzantine processes
may only impact processes outside the containment radius a bounded number
of times, even if Byzantine processes execute an infinite number of actions.

In the following of this section, we recall the formal definition of strong sta-
bilization adopted in [18]. From the states of c-correct processes, c-legitimate
configurations and c-stable configurations are defined as follows.

Definition 4 (c-legitimate configuration). A configuration ρ is c-legitimate
for spec if every c-correct process v satisfies spec(v).

Definition 5 (c-stable configuration). A configuration ρ is c-stable if every
c-correct process never changes the values of its O-variables as long as Byzantine
processes make no action.

Roughly speaking, the aim of self-stabilization is to guarantee that a distributed
system eventually reaches a c-legitimate and c-stable configuration. However, a
self-stabilizing system can be disturbed by Byzantine processes after reaching a
c-legitimate and c-stable configuration. The c-disruption represents the period
where c-correct processes are disturbed by Byzantine processes and is defined as
follows

Definition 6 (c-disruption). A portion of execution e = ρ0, ρ1, . . . , ρt (t > 1)
is a c-disruption if and only if the following holds: (1) e is finite, (2) e contains
at least one action of a c-correct process for changing the value of an O-variable,
(3) ρ0 is c-legitimate for spec and c-stable, and (4) ρt is the first configuration
after ρ0 such that ρt is c-legitimate for spec and c-stable.

Now we can define a self-stabilizing protocol such that Byzantine processes may
only impact processes outside the containment radius a bounded number of
times, even if Byzantine processes execute an infinite number of actions.

On Byzantine Containment Properties of the min + 1 Protocol 101

Definition 7 ((t, k, c, f)-time contained configuration). A configuration ρ0
is (t, k, c, f)-time contained for spec if given at most f Byzantine processes, the
following properties are satisfied: (1) ρ0 is c-legitimate for spec and c-stable,
(2) every execution starting from ρ0 contains a c-legitimate configuration for
spec after which the values of all the O-variables of c-correct processes remain
unchanged (even when Byzantine processes make actions repeatedly and forever),
(3) every execution starting from ρ0 contains at most t c-disruptions, and (4)
every execution starting from ρ0 contains at most k actions of changing the
values of O-variables for each c-correct process.

Definition 8 ((t, c, f)-strongly stabilizing protocol). A protocol A is
(t, c, f)-strongly stabilizing if and only if starting from any arbitrary config-
uration, every execution involving at most f Byzantine processes contains a
(t, k, c, f)-time contained configuration that is reached after at most l rounds.
Parameters l and k are respectively the (t, c, f)-stabilization time and the (t, c, f)-
process-disruption times of A.

Note that a (t, k, c, f)-time contained configuration is a (c, f)-contained config-
uration when t = k = 0, and thus, a (t, k, c, f)-time contained configuration is a
generalization (relaxation) of a (c, f)-contained configuration. Thus, a strongly
stabilizing protocol is weaker than a strictly stabilizing one (as processes out-
side the containment radius may take incorrect actions due to Byzantine in-
fluence). However, a strongly stabilizing protocol is stronger than a classical
self-stabilizing one (that may never meet their specification in the presence of
Byzantine processes).

The parameters t, k and c are introduced to quantify the strength of fault con-
tainment, we do not require each process to know the values of the parameters.

4 Topology-Aware Byzantine Resilience

4.1 Topology-Aware Strict Stabilization

In Section 3.1, we saw that there exist a number of impossibility results on strict
stabilization due to the notion of r-restrictive specifications. To circumvent this
impossibility result, we describe here a weaker notion than the strict stabiliza-
tion: the topology-aware strict stabilization (denoted by TA strict stabilization
for short) introduced by [16]. Here, the requirement to the containment radius
is relaxed, i.e. the set of processes which may be disturbed by Byzantine ones is
not reduced to the union of c-neighborhood of Byzantine processes but can be
defined depending on the graph and Byzantine processes location.

In the following, we recall the formal definitions of [16]. From now, B denotes
the set of Byzantine processes and SB (which is function of B) denotes a subset of
V (intuitively, this set gathers all processes which may be disturbed by Byzantine
processes).

Definition 9 (SB-correct process). A process is SB-correct if it is a correct
process (i.e. not Byzantine) which not belongs to SB.

102 S. Dubois, T. Masuzawa, and S. Tixeuil

Definition 10 (SB-legitimate configuration). A configuration ρ is SB-legi-
timate for spec if every SB-correct process v is legitimate for spec (i.e. if spec(v)
holds).

Definition 11 ((SB, f)-topology-aware containment). A configuration ρ0
is (SB, f)-topology-aware contained for specification spec if, given at most f
Byzantine processes, in any execution e = ρ0, ρ1, . . ., every configuration is SB-
legitimate and every SB-correct process never changes its O-variables.

The parameter SB of Definition 11 refers to the containment area. Any process
which belongs to this set may be infinitely disturbed by Byzantine processes.
The parameter f refers explicitly to the number of Byzantine processes.

Definition 12 ((SB, f)-topology-aware strict stabilization). A protocol is
(SB, f)-topology-aware strictly stabilizing for specification spec if, given at most
f Byzantine processes, any execution e = ρ0, ρ1, . . . contains a configuration ρi

that is (SB, f)-topology-aware contained for spec.

Note that, if B denotes the set of Byzantine processes and SB = {v ∈
V |min{d(v, b), b ∈ B} ≤ c}, then a (SB , f)-topology-aware strictly stabilizing
protocol is a (c, f)-strictly stabilizing protocol. Then, a TA strictly stabilizing
protocol is generally weaker than a strictly stabilizing one, but stronger than a
classical self-stabilizing protocol (that may never meet their specification in the
presence of Byzantine processes).

The parameter SB is introduced to quantify the strength of fault containment,
we do not require each process to know the actual definition of the set. Actually,
the protocol proposed in this paper assumes no knowledge on the parameter.

4.2 Topology-Aware Strong Stabilization

In the same way as previous, we can weaken the notion of strong stabilization
using the notion of containment area. Then, we obtain the following definition:

Definition 13 (SB-stable configuration). A configuration ρ is SB-stable if
every SB-correct process never changes the values of its O-variables as long as
Byzantine processes make no action.

Definition 14 (SB-TA-disruption). A portion of execution e = ρ0, ρ1, . . . , ρt

(t > 1) is a SB-TA-disruption if and only if the following hold: (1) e is finite, (2)
e contains at least one action of a SB-correct process for changing the value of
an O-variable, (3) ρ0 is SB-legitimate for spec and SB-stable, and (4) ρt is the
first configuration after ρ0 such that ρt is SB-legitimate for spec and SB-stable.

Definition 15 ((t, k, SB, f)-TA time contained configuration). A configu-
ration ρ0 is (t, k, SB, f)-TA time contained for spec if given at most f Byzantine
processes, the following properties are satisfied: (1) ρ0 is SB-legitimate for spec
and SB-stable, (2) every execution starting from ρ0 contains a SB-legitimate
configuration for spec after which the values of all the O-variables of SB-correct

On Byzantine Containment Properties of the min + 1 Protocol 103

processes remain unchanged (even when Byzantine processes make actions re-
peatedly and forever), (3) every execution starting from ρ0 contains at most t
SB-TA-disruptions, and (4) every execution starting from ρ0 contains at most k
actions of changing the values of O-variables for each SB-correct process.

Definition 16 ((t, SB, f)-TA strongly stabilizing protocol). A protocol A
is (t, SB, f)-TA strongly stabilizing if and only if starting from any arbitrary
configuration, every execution involving at most f Byzantine processes contains
a (t, k, SB, f)-TA-time contained configuration that is reached after at most l
actions of each SB-correct process. Parameters l and k are respectively the
(t, SB, f)-stabilization time and the (t, SB, f)-process-disruption time of A.

5 BFS Spanning Tree Construction

In this section, we are interested in the problem of BFS spanning tree construc-
tion. That is, the system has a distinguished process called the root (and denoted
by r) and we want to obtain a BFS spanning tree rooted to this root. We made
the following hypothesis: the root r is never Byzantine.

To solve this problem, each process v has two O-variables: the first is prntv ∈
Nv ∪ {⊥} which is a pointer to the neighbor that is designated to be the parent
of v in the BFS tree and the second is levelv ∈ {0, . . . , D} which stores the
depth of v in this tree. Obviously, Byzantine process may disturb (at least) their
neighbors. For example, a Byzantine process may act as the root. It is why the
specification of the BFS tree construction we adopted states in fact that there
exists a BFS spanning forest such that any root of this forest is either the real
root of the system or a Byzantine process. More formally, we use the following
specification of the problem.

Definition 17 (BFS path). A path (v0, . . . , vk) (k ≥ 1) of S is a BFS path if
and only if:

1. prntv0 = ⊥, levelv0 = 0, and v0 ∈ B ∪ {r},
2. ∀i ∈ {1, . . . , k}, prntvi = vi−1 and levelvi = levelvi−1 + 1, and
3. ∀i ∈ {1, . . . , k}, levelvi−1 = min

u∈Nvi

{levelu}.

We define the specification predicate spec(v) of the BFS spanning tree construc-
tion as follows.

spec(v) :

{
prntv = ⊥ and levelv = 0 if v is the root r

there exists a BFS path (v0, . . . , vk) such that vk = v otherwise

In the case where any process is correct, note that spec implies the existence of
a BFS spanning tree rooted to the real root. The well-known min + 1 protocol
solves this problem in a self-stabilizing way (see [14]). In the following of this
section, we assume that some process may be Byzantine and we study the Byzan-
tine containment properties of this protocol. We show that this self-stabilizing
protocol has moreover optimal Byzantine containment properties.

104 S. Dubois, T. Masuzawa, and S. Tixeuil

In more details, we prove first that there exists neither strictly nor strongly
stabilizing solution to the BFS spanning tree construction (see Theorems 1 and
2). Then, we demonstrate in Theorems 3 and 4 that the min + 1 protocol is
both (SB, f)-TA strictly and (t, S∗

B , f)-TA strongly stabilizing where f ≤ n− 1,
t = nΔ, and

SB =
{
v ∈ V

∣∣∣∣min
b∈B

(d(v, b)) ≤ d(r, v)
}

S∗
B =

{
v ∈ V

∣∣∣∣min
b∈B

(d(v, b)) < d(r, v)
}

Finally, we show that these containment areas are in fact optimal (see Theorems
5 and 6).

5.1 Impossibility Results

Theorem 1. Even under the central daemon, there exists no (c, 1)-strictly stabi-
lizing protocol for BFS spanning tree construction where c is any (finite) integer.

Proof. This result is a direct application of Theorem 4 of [7] (note that the
specification of BFS tree construction is D-restrictive in the worst case where D
is the diameter of the system).

Theorem 2. Even under the central daemon, there exists no (t, c, 1)-strongly
stabilizing protocol for BFS spanning tree construction where t and c are any
(finite) integers.

Proof. Let t and c be (finite) integers. Assume that there exists a (t, c, 1)-strongly
stabilizing protocol P for BFS spanning tree construction under the central dae-
mon. Let S = (V,E) be the following system V = {p0 = r, p1, . . . , p2c+2, p2c+3 =
b} and E = {{pi, pi+1}, i ∈ {0, . . . , 2c + 2}}. Process p0 is the real root and
process b is a Byzantine one.

Assume that the initial configuration ρ0 of S satisfies: levelr = levelb = 0,
prntr = prntb = ⊥ and other variables of b (if any) are identical to those of
r. Assume now that b takes exactly the same actions as r (if any) immediately
after r (note that d(r, b) > c and hence levelr = 0 and prntr = ⊥ still hold by
closure and then levelb = 0 and prntb = ⊥ still hold too). Then, by construction
of the execution and by convergence of P to spec, we can deduce that the system
reaches in a finite time a configuration ρ1 in which: ∀i ∈ {1, . . . , c+1}, levelpi =
i and prntpi = pi−1 and ∀i ∈ {c + 2, . . . , 2c + 2}, levelpi = 2c + 3 − i and
prntpi = pi+1 (because this configuration is the only one in which all correct
process v such that d(v, b) > c satisfies spec(v) when levelr = levelb = 0 and
prntr = prntb = ⊥). Note that ρ1 is 0-legitimate and 0-stable and a fortiori
c-legitimate and c-stable.

Assume now that the Byzantine process acts as a correct process and executes
correctly P . Then, by convergence of P in fault-free systems (remember that a
(t, c, 1)-strongly stabilizing protocol is a special case of self-stabilizing protocol),
we can deduce that the system reaches in a finite time a configuration ρ2 in which:

On Byzantine Containment Properties of the min + 1 Protocol 105

∀i ∈ {1, . . . , 2c + 3}, levelpi = i and prntpi = pi−1 (because this configuration
is the only one in which all process v satisfies spec(v)). Note that the portion
of execution between ρ1 and ρ2 contains at least one c-perturbation (pc+2 is
a c-correct process and modifies at least once its O-variables) and that ρ2 is
0-legitimate and 0-stable and a fortiori c-legitimate and c-stable.

Assume now that the Byzantine process b takes the following state: levelb = 0
and prntb = ⊥. This step brings the system into configuration ρ3. From this
configuration, we can repeat the execution we constructed from ρ0. By the same
token, we obtain an execution of P which contains c-legitimate and c-stable con-
figurations (see ρ1) and an infinite number of c-perturbations which contradicts
the (t, c, 1)-strong stabilization of P .

5.2 Byzantine Containment Properties of the min + 1 Protocol

In the min + 1 protocol, as in many self-stabilizing tree construction protocols,
each process v checks locally the consistence of its levelv variable with respect to
the one of its neighbors. When it detects an inconsistency, it changes its prntv
variable in order to choose a “better” neighbor. The notion of “better” neighbor
is based on the global desired property on the tree (here, the BFS requirement
implies to choose one neighbor with the minimum level).

When the system may contain Byzantine processes, they may disturb their
neighbors by providing alternatively “better” and “worse” states.

The min+1 protocol chooses an arbitrary one of the “better” neighbors (that
is, a neighbor with the minimal level). Actually this strategy allows us to achieve
the (SB, f)-TA strict stabilization but is not sufficient to achieve the (t, S∗

B, f)-
TA strong stabilization. To achieve the (t, S∗

B, f)-TA strong stabilization, we
must bring a slight modification to the protocol: we choose a “better” neighbor
with a round robin order (along the set of its neighbor).

Algorithm 5.2 presents our BFS spanning tree construction protocol SSBFS
which is both (SB, f)-TA strictly and (t, S∗

B , f)-TA strongly stabilizing (where
f ≤ n− 1 and t = nΔ) providing that the root is never Byzantine.

In the following of this section, we provide sketches of proof of topology-aware
strict and strong stabilization of SSBFS1. First at all, remember that the real
root r can not be a Byzantine process by hypothesis. Note that the subsystems
whose set of processes are respectively V \ SB and V \ S∗

B are connected by
construction.

(SB, n− 1)-TA strict stabilization

Given a configuration ρ ∈ C and an integer d ∈ {0, . . . , D}, let us define the
following predicate:

Id(ρ) ≡ ∀v ∈ V, levelv ≥ min

{
d, min

u∈B∪{r}
{d(v, u)}

}
1 Due to the lack of place, complete proofs are omitted but are available in the com-

panion research report (see [19]).

106 S. Dubois, T. Masuzawa, and S. Tixeuil

Algorithm 1. SSBFS: A TA strictly and TA strongly stabilizing protocol for
BFS tree construction
Data:

Nv: totally ordered set of neighbors of v
Variables:

prntv ∈ Nv ∪ {⊥}: pointer on the parent of v in the tree.
levelv ∈ N: integer

Macro:
For any subset A ⊆ Nv , choose(A) returns the first element of A which is bigger
than prntv (in a round-robin fashion).

Rules:
(Rr) :: (v = r) ∧ ((prntv
= ⊥) ∨ (levelv
= 0)) −→ prntv := ⊥; levelv := 0
(Rv) :: (v
= r) ∧

(
(prntv = ⊥) ∨ (levelv
= levelprntv + 1)∨
(levelprntv
= min

q∈Nv

{levelq})
)

−→ prntv := choose

({
p ∈ Nv

∣∣∣∣levelp = min
q∈Nv

{levelq}
})

;

levelv := levelprntv + 1

Let d be an integer such that d ∈ {0, . . . , D}. Let ρ ∈ C be a configuration
such that Id(ρ) = true and ρ′ ∈ C be a configuration such that ρ

R�→ ρ′ is a
step of SSBFS. We can prove that in this case Id(ρ′) = true that induces the
following lemma.

Lemma 1. For any integer d ∈ {0, . . . , D}, the predicate Id is closed.

Let LC be the following set of configurations:

LC = {ρ ∈ C |(ρ is SB-legitimate for spec) ∧ (ID(ρ) = true)}

Let ρ be a configuration of LC. By construction, ρ is SB-legitimate for spec. If
we assume that there exists a process v ∈ V \ SB enabled by a rule of SSBFS
in ρ, then we can prove that the activation of this rule in a step ρ

R�→ ρ′ leads to
ID(ρ′) = false, that contradicts the closure of ID. Then, we can state that:

Lemma 2. Any configuration of LC is (SB, n− 1)-TA contained for spec.

In order to prove the convergence of SSBFS, we prove the following property
by induction on d ∈ {0, . . . , D}:

(Pd): Starting from any configuration, any run of SSBFS reaches a config-
uration ρ such that Id(ρ) = true and in which any process v /∈ SB such that
d(v, r) ≤ d satisfies spec(v).

The initialization part is easy. For the induction part, we assume that (Pd−1)
is true and we define the following set of processes Ed = {v ∈ V |min{d(v, u), u ∈
B ∪ {r}} ≥ d}. Then, we can prove that any process v ∈ Ed such that levelv =
d − 1 is activated in a finite time. In consequence, we can deduce that the

On Byzantine Containment Properties of the min + 1 Protocol 107

system reaches in a finite time a configuration such that Id holds. Then, we
study processes of V \ SB such that d(r, v) = d. We prove that any process of
this set which satisfies spec is never activated and that any process of this set
which does not satisfy spec is activated in a finite time and then satisfies spec.

We can now deduce that (PD) implies the following result.

Lemma 3. Starting from any configuration, any execution of SSBFS reaches
a configuration of LC in a finite time.

Lemmas 2 and 3 prove respectively the closure and the convergence of SSBFS
and imply the following theorem.

Theorem 3. SSBFS is a (SB , n− 1)-TA strictly stabilizing protocol for spec.

(nΔ, S∗
B, n− 1)-TA strong stabilization

Let EB = SB \ S∗
B (i.e. EB is the set of process v such that d(r, v) =

min
b∈B

{d(v, b)}).
The construction of sets LC and EB, the closure of ID and the construction

of the macro choose imply the following result.

Lemma 4. If ρ is a configuration of LC, then any process v ∈ EB is activated
at most Δv) times in any execution starting from ρ.

Let ρ be a configuration of LC and v be a process such that v ∈ EB. Assume
that there exists an execution starting from ρ such that (i) spec(v) is infinitely
often false in e and (ii) v is never activated in e. For any configuration ρ, let us
denote by Pv(ρ) = (v, v1 = prntv, v2 = prntv1 , . . . , vk = prntvk−1 , pv = prntvk

)
the maximal sequence of processes following pointers prnt (maximal means here
that either prntpv = ⊥ or pv is the first process such that there pv = vi for some
i ∈ {1, . . . , k}).

In the case where prntv ∈ V \ SB in ρ, we can prove that spec(v) remains
true in any execution starting from ρ. This contradicts the assumption (i) on e.
In the contrary case, we demonstrate that that there exists at least one process
which is infinitely often activated in e. We can show this leads to a contradiction
with assumption (ii) on e.

These contradictions allow us to state the following lemma.

Lemma 5. If ρ is a configuration of LC and v is a process such that v ∈ EB,
then for any execution e starting from ρ either v is activated in e or there exists
a configuration ρ′ of e such that spec(v) is always satisfied after ρ′.

Let us define: LC∗ = {ρ ∈ C |(ρ is S∗
B-legitimate for spec) ∧ (ID(ρ) = true)}

Note that, as S∗
B ⊆ SB, we can deduce that LC∗ ⊆ LC. Hence, properties of

Lemmas 4 and 5 also apply to configurations of LC∗. In consequence, Lemmas
4 and 5 lead to the following result.

Lemma 6. Any configuration of LC∗ is (nΔ,Δ, S∗
B, n − 1)-TA time contained

for spec.

108 S. Dubois, T. Masuzawa, and S. Tixeuil

Let ρ be an arbitrary configuration. We know by Lemma 3 that any execution
starting from ρ reaches in a finite time a configuration ρ′ of LC. Let v be a
process of EB . By Lemmas 4 and 5, we know that v takes at most Δv actions in
any execution starting from ρ′. Moreover, we know that v satisfies spec(v) after
its last action (otherwise, we obtain a contradiction between the two lemmas).
This implies that any execution starting from ρ′ reaches a configuration ρ′′ such
that any process v of EB satisfies spec(v). It is easy to see that ρ′′ ∈ LC∗. We
can now state that:

Lemma 7. Starting from any configuration, any execution of SSBFS reaches
a configuration of LC∗ in a finite time under a distributed fair scheduler.

Lemmas 6 and 7 prove respectively the closure and the convergence of SSBFS
and imply the following theorem.

Theorem 4. SSBFS is a (nΔ, S∗
B, n − 1)-TA strongly stabilizing protocol for

spec.

5.3 Optimality of Containment Areas of the min + 1 Protocol

Theorem 5. Even under the central daemon, there exists no (AB , 1)-TA strictly
stabilizing protocol for BFS spanning tree construction where AB � S∗

B.

Proof. This is a direct application of the Theorem 2 of [16].

Theorem 6. Even under the central daemon, there exists no (t, AB, 1)-TA
strongly stabilizing protocol for BFS spanning tree construction where AB � SB

and t is any (finite) integer.

Proof. Let P be a (t, AB , 1)-TA strongly stabilizing protocol for BFS spanning
tree construction protocol where AB � S∗

B and t is a finite integer. We must
distinguish the following cases:

Consider the following system: V = {r, u, u′, v, v′, b} and E = {{r, u}, {r, u′},
{u, v}, {u′, v′}, {v, b}, {v′, b}} (b is a Byzantine process). We can see that S∗

B =
{v, v′}. Since AB � S∗

B, we have: v /∈ AB or v′ /∈ AB . Consider now the following
configuration ρ0: prntr = prntb = ⊥, levelr = levelb = 0, prnt and level
variables of other processes are arbitrary (other variables may have arbitrary
values but other variables of b are identical to those of r).

Assume now that b takes exactly the same actions as r (if any) immediately
after r. Then, by symmetry of the execution and by convergence of P to spec, we
can deduce that the system reaches in a finite time a configuration ρ1 in which:
prntr = prntb = ⊥, prntu = prntu′ = r, prntv = prntv′ = b, levelr = levelb = 0
and levelu = levelu′ = levelv = levelv′ = 1 (because this configuration is the
only one in which every correct process v satisfies spec(v) when prntr = prntb =
⊥ and levelr = levelb = 0). Note that ρ1 is AB-legitimate for spec and AB-stable
(whatever AB is).

Assume now that b behaves as a correct process with respect to P . Then, by
convergence of P in a fault-free system starting from ρ1 which is not legitimate

On Byzantine Containment Properties of the min + 1 Protocol 109

(remember that a strictly-stabilizing protocol is a special case of self-stabilizing
protocol), we can deduce that the system reaches in a finite time a configuration
ρ2 in which: prntr = ⊥, prntu = prntu′ = r, prntv = u, prntv′ = u′, prntb = v
(or prntb = v′), levelr = 0, levelu = levelu′ = 1 levelv = levelv′ = 2 and
levelb = 3. Note that processes v and v′ modify their O-variables in the portion
of execution between ρ1 and ρ2 and that ρ2 is AB-legitimate for spec and AB-
stable (whatever AB is). Consequently, this portion of execution contains at least
one AB-TA-disruption (whatever AB is).

Assume now that the Byzantine process b takes the following state: prntb = ⊥
and levelb = 0. This step brings the system into configuration ρ3. From this
configuration, we can repeat the execution we constructed from ρ0. By the same
token, we obtain an execution of P which contains c-legitimate and c-stable
configurations (see ρ1) and an infinite number of AB-TA-disruption (whatever
AB is) which contradicts the (t, AB , 1)-TA strong stabilization of P .

6 Conclusion

In this article, we are interested in the BFS spanning tree construction in pres-
ence of both systemic transient faults and permanent Byzantine failures. As this
task is global, it is impossible to solve it in a strictly stabilizing way. We proved
then that there exists no solution to this problem even if we consider the weaker
notion of strong stabilization.

Then, we provide a study of Byzantine containment properties of the well-
known min + 1 protocol. This protocol is one of the simplest self-stabilizing
protocols for this problem. However, it achieves optimal area containment with
respect to the notion of topology-aware strict and strong stabilization.

Using the result of [20] about r-operators, we can easily extend results of
this paper to some others problems as depth-first search or reliability spanning
trees. This work raises the following open questions. Has any other global static
task as leader election or maximal matching a topology-aware strictly or/and
strongly stabilizing solution ? We can also wonder about non static tasks as
mutual exclusion (recall that local mutual exclusion has a strictly stabilizing
solution provided by [7]).

References

1. Dijkstra, E.W.: Self-stabilizing systems in spite of distributed control. ACM Com-
mun. 17(11), 643–644 (1974)

2. Dolev, S.: Self-stabilization. MIT Press, Cambridge (March 2000)
3. Tixeuil, S.: Self-stabilizing Algorithms. Chapman & Hall/CRC Applied Algorithms

and Data Structures. In: Algorithms and Theory of Computation Handbook, 2nd
edn., 26.1–26.45. pp. CRC Press/ Taylor & Francis Group (2009)

4. Lamport, L., Shostak, R.E., Pease, M.C.: The byzantine generals problem. ACM
Trans. Program. Lang. Syst. 4(3), 382–401 (1982)

5. Dolev, S., Welch, J.L.: Self-stabilizing clock synchronization in the presence of
byzantine faults. J. ACM 51(5), 780–799 (2004)

110 S. Dubois, T. Masuzawa, and S. Tixeuil

6. Daliot, A., Dolev, D.: Self-stabilization of byzantine protocols. In: Tixeuil, S., Her-
man, T. (eds.) SSS 2005. LNCS, vol. 3764, pp. 48–67. Springer, Heidelberg (2005)

7. Nesterenko, M., Arora, A.: Tolerance to unbounded byzantine faults. In: 21st Sym-
posium on Reliable Distributed Systems, p. 22. IEEE Computer Society, Los Alami-
tos (2002)

8. Ben-Or, M., Dolev, D., Hoch, E.N.: Fast self-stabilizing byzantine tolerant digital
clock synchronization. In: Bazzi, R.A., Patt-Shamir, B. (eds.) PODC, pp. 385–394.
ACM, New York (2008)

9. Dolev, D., Hoch, E.N.: On self-stabilizing synchronous actions despite byzantine
attacks. In: Pelc, A. (ed.) DISC 2007. LNCS, vol. 4731, pp. 193–207. Springer,
Heidelberg (2007)

10. Hoch, E.N., Dolev, D., Daliot, A.: Self-stabilizing byzantine digital clock synchro-
nization. In: [21], pp. 350–362

11. Sakurai, Y., Ooshita, F., Masuzawa, T.: A self-stabilizing link-coloring protocol
resilient to byzantine faults in tree networks. In: Higashino, T. (ed.) OPODIS
2004. LNCS, vol. 3544, pp. 283–298. Springer, Heidelberg (2005)

12. Masuzawa, T., Tixeuil, S.: Stabilizing link-coloration of arbitrary networks with
unbounded byzantine faults. International Journal of Principles and Applications
of Information Science and Technology (PAIST) 1(1), 1–13 (2007)

13. Gartner, F.C.: A survey of self-stabilizing spanning-tree construction algorithms.
Technical report ic/2003/38, EPFL (2003)

14. Huang, S.T., Chen, N.S.: A self-stabilizing algorithm for constructing breadth-first
trees. Inf. Process. Lett. 41(2), 109–117 (1992)

15. Dolev, S., Israeli, A., Moran, S.: Self-stabilization of dynamic systems assuming
only read/write atomicity. Distributed Computing 7(1), 3–16 (1993)

16. Dubois, S., Masuzawa, T., Tixeuil, S.: The Impact of Topology on Byzantine Con-
tainment in Stabilization. In: DISC (to appear 2010), Technical report available at
http://hal.inria.fr/inria--00481836/en/

17. Masuzawa, T., Tixeuil, S.: Bounding the impact of unbounded attacks in stabiliza-
tion. In: [21], pp. 440–453

18. Dubois, S., Masuzawa, T., Tixeuil, S.: Self-stabilization with byzantine tol-
erance for global tasks. Research report inria-00484645, INRIA (May 2010),
http://hal.inria.fr/inria-00484645/en/

19. Dubois, S., Masuzawa, T., Tixeuil, S.: On byzantine containment properties
of the min+1 protocol. Research report inria-00487091, INRIA (May 2010),
http://hal.inria.fr/inria-00487091/en/

20. Ducourthial, B., Tixeuil, S.: Self-stabilization with r-operators. Distributed Com-
puting 14(3), 147–162 (2001)

21. Datta, A.K., Gradinariu, M. (eds.): SSS 2006. LNCS, vol. 4280. Springer, Heidel-
berg (2006)

http://hal.inria.fr/inria--00481836/en/
http://hal.inria.fr/inria-00484645/en/
http://hal.inria.fr/inria-00487091/en/

Efficient Self-stabilizing Graph Searching
in Tree Networks

Jean Blair1, Fredrik Manne2, and Rodica Mihai2,�

1 Department of EE and CS, United States Military Academy,
West Point, NY 10996, USA

Jean.Blair@usma.edu
2 Department of Informatics, University of Bergen, N-5020 Bergen, Norway

{fredrikm,rodica}@ii.uib.no

Abstract. The graph search problem asks for a strategy that enables a
minimum sized team of searchers to capture a “fugitive” while it evades
and potentially multiplies through a network. It is motivated by the need
to eliminate fast spreading viruses and other malicious software agents
in computer networks.

The current work improves on previous results with a self-stabilizing
algorithm that clears an n node tree network using only 1+log n searchers
and O(n log n) moves after initialization. Since Θ(log n) searchers are
required to clear some tree networks even in the sequential case, this
is the best that any self-stabilizing algorithm can do. The algorithm is
based on a novel multi-layer traversal of the network.

1 Introduction

Networks of computing devices enable fast communication, pervasive sharing
of information, and effective distributed computations that might otherwise be
infeasible. Unfortunately, this comes at the cost of fast spreading viruses and
malicious software agents. The fact that modern networks are constantly chang-
ing exacerbates the problem. Thus, it is important to regularly search a network
in order to eliminate malicious software.

This setting has been formalized as various graph search problems where one
asks for a strategy that will clear a graph of any unwanted “intruders” typically
using as few operations as possible. One can think of a searcher as a separate
software agent that must be run on the individual network devices in order
to clear it. Thus, minimizing the number of searchers is also important as each
searcher uses resources that the system could otherwise have used for productive
work. One might further want to limit the number of concurrent searchers when
there may be a cost associated with the maximum number used at any given
time, for instance due to software licences.

There is a significant body of work focused on sequential algorithms for com-
puting the minimum number of searchers required to search a graph and the

� Now, International Research Institute of Stavanger, N-5008 Bergen, Norway.

S. Dolev et al. (Eds.): SSS 2010, LNCS 6366, pp. 111–125, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

112 J. Blair, F. Manne, and R. Mihai

corresponding searching strategy. See [4] for an annotated bibliography. Peng
et. al. and Skodinis gave linear-time sequential node and edge searching algo-
rithms for trees [9,10] and in [6,7] it was proven that in general Θ(log n) searchers
are required for tree networks. Distributed graph searching algorithms have also
received considerable attention. See [8] for a list of the most recent works. For
tree networks [3] gives a distributed algorithm to compute the minimum number
of searchers necessary to clear the edges.

The first self-stabilizing algorithm for solving the node search problem in a tree
was introduced in [8]. Given a tree T with n nodes and height h, their algorithm
stabilizes after O(n3) time steps under the distributed adversarial daemon and
the number of searchers used to clear the tree T is h.

In this paper we give an efficient self-stabilizing algorithm that improves on the
results in [8]. Our algorithm is based on integrating two existing self-stabilizing
algorithms with a new search algorithm in order to continuously search a tree
network with n ≥ 2 nodes using only 1 + �logn� searchers and O(n logn) moves
after initialization. As our algorithm is non-silent and self-stabilizing it will adapt
to any transient faults or changes in the configuration of the network. Moreover, if
an intruder is (re)introduced in a cleared network, the algorithm will immediately
clear the network again.

We use the leader election algorithm from [2] for rooting the tree and then ap-
ply the efficient multiwave algorithm introduced in [1] to initialize the tree. This
is then followed by our new search algorithm to clear the tree. The search algo-
rithm works by recursively splitting the graph into smaller components and then
clearing each of these. In this way the algorithm behaves as if it was composed
of a number of layered algorithms each with its own set of variables. However,
the clearing is achieved with just one efficient algorithm and with the number
of variables linear in the size of the graph.

The paper is organized as follows. In Section 2 we give preliminaries, followed
by a presentation and motivation of our algorithm in Section 3. In Section 4 we
show the correctness of our algorithm before concluding in Section 5.

2 Preliminaries

The current focus is on a variant of the graph search problem known as node
searching. A node search strategy for a graph G = (V,E) consists of a sequence
of steps where, at each step, searchers may be both added to and removed from
the nodes of G. A node is cleared once a searcher is placed on it and an edge is
cleared when searchers occupy both of its endpoints at the same time.1 A node
that has a searcher on it is guarded and cannot be recontaminated as long as
the searcher is present on that node. However, cleared edges and cleared nodes
without searchers on them are assumed to be recontaminated instantly iff there
exists a path of unguarded nodes from them to an uncleared node or edge of the

1 As will be discussed in the concluding remarks, our results can easily be adapted to
solve other graph search variants such as edge search or mixed search.

Efficient Self-stabilizing Graph Searching in Tree Networks 113

graph. The graph search problem then asks for a search strategy that ensures
that the entire graph is cleared while using as few searchers as possible.

In our distributed computational model each node of G has a unique identifier
and also stores a number of local variables which it can manipulate. A node can
read the local variables of its neighbors, i.e. the shared memory model. As is
typical, we present our self-stabilizing algorithms as a set of rules where the
predicate of each rule only depends on variables local to a node and those of
its neighbors. Further, we assume that rules can only be executed during fixed
time steps and that a distributed unfair daemon governs which node(s) get to
execute a move at any given time step. This means that any non-empty subset of
enabled rules may execute during a time step. Note that this is the most general
type of daemon. We measure complexity both in terms of the number of rules
that have been executed (moves-complexity) and also in terms of the number
of rounds, where a round is the smallest sub-sequence of an execution in which
every node that was eligible at the beginning of the round either makes a move
or has had its predicate disabled since the beginning of the round.

The goal of a self-stabilizing algorithm is for the global system to reach a
stable configuration (i.e. where no moves can be made) that conforms to a given
specification, independent of its initial configuration and without external in-
tervention. A non-silent self-stabilizing algorithm will also reach a configuration
that conforms to the specification, but will continue to execute indefinitely once
it has done so. Moreover, in the absence of transient faults, the algorithm will
continue to conform to the specification.

3 The Algorithm

The overall graph searching algorithm integrates three separate self-stabilizing
processes. Initially, we use the leader election algorithm from [2] to elect an n/2-
separator as the root r (i.e. no component of G − {r} contains more than n/2
nodes). Moreover, this algorithm ensures that each node knows in which direction
r is. Following this, r uses a variant of the multi-wave Propagate-Information-
with-Feedback (PIF) process from [1] to get the network ready for searching.
This is accomplished by r continuously iterating through a circular list of its
children, and for each iteration concurrently initiating two PIF processes. When
r sets childr to point to a node in N(r) the subtree rooted at childr transitions
to the active state while all other subtrees are either in the sleep state or are
in the process of transitioning to sleep. Only nodes in the active state can
participate in the ensuing search process. When childr signals that the search
of its subtree is complete and the next node in r’s neighbor list signals that it is
sleep, r will advance childr and repeat the process.

The overall process is outlined in Algorithm 1. Loosely speaking, after the
system first reaches line 6 the network will have reached a “normal configuration”
and thereafter the search process behaves as expected. Note that the algorithm
is non-silent.

The entire process uses 5+2δ(u) variables on each node u, where δ(u) = |N(u)|
and N(u) denotes the neighbors of u. For the leader election process we maintain

114 J. Blair, F. Manne, and R. Mihai

Algorithm 1. The overall graph searching process
1: Elect an n/2-separator as root r and set all pu to point towards r; /* L1-L5 */

2: childr ← an arbitrary neighbor of r; /* R1 */

3: Signal all v ∈ N(r) − {childr} to go to sleep; /* consequence of R1 */

4: loop
5: when (Next(childr) is sleep) & (childr signals “search completed”) do
6: prev ← childr ; childr ← Next(childr); /* R2 */

7: do in parallel
8: Transition subtree rooted at childr to active; /* T1-T4 */

9: Transition subtree rooted at prev to sleep; /* T5 */

10: Search the subtree rooted at childr ; /* S1-S4 */

a parent pointer pu and for each neighbor v ∈ N(u) a sizeu(v) value that will hold
the size of the subgraph containing u in the original graph with the edge (u, v)
removed. The results in [2] guarantee that once the election process stabilizes,
all pu and sizeu(v) values are correct. Since those values are not changed in any
other part of the algorithm, in the absence of spurious faults they remain correct
throughout. The remaining 4+δ(u) variables are used in the other two processes
and will be described in the follow-on subsections.

We use the leader election algorithm, which we refer to as the L-algorithm
implemented as rules L1-L5, exactly as specified in [2] and therefore will not
further describe it here. The next subsection explains the transition process and
our implementation of it. Subsection 3.2 describes the new search process.

3.1 Transition - Lines 8 and 9

The transition processes in lines 8 and 9 together implement a full 2-wave PIF
process similar to that designed by Bein, Datta, and Karaata in [1]. For each
wave except the last, their algorithm broadcasts information down from the
root and then propagates feedback up from the leaves. As presented in [1] the
last wave is cut short, only broadcasting down. We, however, include this last
propagation of feedback up, since we need the feedback to guarantee that the
last broadcast reached the leaves before starting the search process.

The complete state-transition process from the perspective of one node u
transitions its variable stateu through a series of five states (sleep→ awake→
csize-up→ csize-down→ active) as depicted in Figure 1. After initialization,
an arbitrary node u rests in the sleep state and expects its parent pu to be in the
sleep state as well. Only when u sees that pu is awake will u transition away
from sleep, moving to the awake state and thereby playing its part in a “wake-
up” broadcast. Following this, u waits in the awake state until all of its children
transition themselves from sleep through awake and finally to csize-up; only
then will u itself transition to csize-up, thereby providing “I’m awake” feedback
to pu. The leaves are the first to switch from the broadcast down state awake

to the feedback up state csize-up, since they have no children. The switch from
this first propagate feedback (“I’m awake”) stage to the second broadcast (“get

Efficient Self-stabilizing Graph Searching in Tree Networks 115

active

“ready

to
search”

sleep

awake
csize

up

csize

down

active

“cleared”

T
1
-
w

a
k
e
-
u
p

b
r
o
a
d
c
a
s
t

T2-awake

feedback

T3-get-ready

broadcast

T
4
-
r
e
a
d
y

f
e
e
d
b
a
c
k

T5-go-to-sleep

broadcast−�Graph Search

(Figure 3)

T
6
-
a
b
n
o
r
m
a
l

T
6
-a
b
n
o
r
m
a
l

T
6-

ab
no

rm
al

T6-abnormal

T6-abnormal

Fig. 1. The T moves process is a PIF process

ready to search”) stage occurs at the root, where once its neighbor childr is in
the csize-up state it effectively moves itself through csize-up to csize-down,
thereby initiating the second wave transitioning all nodes to csize-down once
their parent is csize-down. Again, the leaves turn the broadcast down wave
into “I’m ready to search” feedback by transitioning through csize-down and
to active. Only when all of u’s children are active does u transition itself to
active. Once active, a node is eligible to participate in the search process
described in the next subsection.

If at any point during the search process u sees that pu is no longer active

(i.e., has transitioned to sleep), then u itself will transition to sleep. During
normal processing this will be initiated as a broadcast down wave from the root
only when the entire subtree containing u has been cleared. If, at any point after
leader election is complete, the states that pu, u, and u’s children are in do not
make sense with respect to this transition process, then u will respond to the
abnormal configuration by jumping to sleep.

There are three main tasks that we need the transition process to accomplish in
order to correctly implement the search using only �logn�+1 searchers. First, the
transition process computes in each node the size of the current subtree assuming
the edge between the root and the subtree does not exist. These values are collec-
tively stored in the csize() vectors in exactly the same way as the size() vectors
holds the size of the subtrees of the entire graph. The csize() values are computed
in two waves. During the first feedback (“I’m awake”) wave the size of the subtree
below each node is calculated using the propagated up csize() values from its chil-
dren. Then, during the second broadcast (“get ready to search”) wave the size of
the subtree above each node (i.e., the portion of the subtree reached through the
parent) is calculated using the propagated down csize() values from pu.

116 J. Blair, F. Manne, and R. Mihai

function ParentState (u):
if Root (pu)
then if childpu = u

then if stateu = csize-up

then return csize-down

elseif stateu = sleep

then return awake

else return stateu

else return sleep

else return statepu

function CalculateComponents (u):
foreach v ∈ N(u)

csizeu(v) ← 1 +
∑

x∈N(u)−{v}
csizex(u)

return csizeu

function ReadyToSearch (u):
/* check if leaf */
if |N(u)| = 1
then if csizepu(u) = 0

then return true
else return false

n ← csizeu(pu) + csizepu(u)
if (∀v ∈ N(u), csizev(u) < n/2)
then return true
if (∃v ∈ N(u), csizev(u) > n/2)
then return false
if (∃v ∈ N(u), csizev(u) = n/2)
then if (IDu > IDv)

then return true
else return false

Fig. 2. Auxilliary functions

The second main task that the transition process accomplishes is to initialize,
during the last feedback (“I’m ready to search”) wave, the other variables needed
to begin the search process. Combining these first two tasks with the transition
process from [1] we end up with a six rule implementation that accomplishes the
following. (Red font highlights the difference between our implementation and
the rules given in [1]).

• T1-wake-up (rule iB in [1]): broadcast down a “wake-up” call (i.e., transi-
tion to awake).

• T2-awake (iF, lF): propagate up both “I’m awake” feedback (i.e., transition
to csize-up) and the size of the subtree rooted at u.

• T3-get-ready (iB): broadcast down both a “get ready to search” call (i.e.,
transition to csize-down) and the size of the subtree above.

• T4-ready (iF, lF): propagate up “I’m ready to search” feedback (i.e., tran-
sition to active) and initialize variables needed for the search.

• T5-go-to-sleep (iB, lB): broadcast down a “go to sleep” call (i.e., transi-
tion to sleep).

• T6-abnormal (iCa, lCa): jump to sleep if any state value in the neigh-
borhood does not make sense.

We refer to these six rules as the T-algorithm. Note that for the T-algorithm u
uses 1+δ(u) additional variables: the state variable stateu and for each neighbor
v ∈ N(u), csizeu(v).

The third task that the T-algorithm accomplishes is to admit the search pro-
cess in only one subtree of the root at a time. We accomplish this by using a
ParentState(u) function to report the state of a node u’s parent pu.

If pu is not the root, the function simply returns pu’s state. However, when pu

is the root the state it returns is dependent on whether or not u = childr (see

Efficient Self-stabilizing Graph Searching in Tree Networks 117

active

“ready to
search”

active

“searching”

active

“cleared”

S2-become-searcher

(1 move)

S4-component-cleared

(1 move)

(≤ log n moves)

S1-adjust-csize-values

(≤ Δ moves)

S3-next-child

Fig. 3. The S moves process implements graph search

Figure 2 where red font again highlights differences from the implementation in
[1]). To see how this works, consider a call to ParentState(u) when the parent pu

is the root. Then the return value is sleep if u is not the root’s current childr;
otherwise the return value is the appropriate state in the transition process
relative to u’s current state. For example, if u = childr has not yet begun
transitioning away from sleep then the function returns awake in order to
initiate a “wake-up” broadcast in u’s subtree.

The results in [1] prove that rules T1 - T6 are executed in a well structured
manner, giving the following result.

Lemma 1. When the root initiates a multi-wave broadcast-feedback process in
a subtree C1 after initialization the following properties hold:

(a) Every node in C1 will execute, in order, rules T1, T2, T3, and then T4.
(b) For any v ∈ C1, when v executes T2, all descendants of v will have already

executed T2.
(c) All nodes in C1 will execute T2 before any node in C1 executes T3.
(d) For any v ∈ C1, when v executes T3, all ancestors of v will have already

executed T3.
(e) For any v ∈ C1, when v executes T4, all descendants of v will have already

executed T4.

3.2 Search - Lines 2, 3, 5, 6, and 10

The rules used to implement the search process are divided into two sets called
the R-algorithm (implementing lines 2, 3, 5, and 6) and the S-algorithm (imple-
menting line 10). The R-algorithm executes only on the root and the S-algorithm
executes only on non-root nodes. As mentioned above, the S-algorithm takes
place in one subtree of the root at a time. We call that subtree a component
of the graph and recursively search components by placing a searcher at the
n′/2-separator of the component, where n′ denotes the number of vertices in the
component. We denote such a separator as a center node of the component and
use this to partition the current component into smaller components, searching

118 J. Blair, F. Manne, and R. Mihai

each of these in turn. Once a component is cleared, the last searcher in that
component is released before returning control to a previous level in the recur-
sion. The root always hosts a searcher. It is this recursive behavior of splitting
the graph at its center that admits a graph searching process that uses only
�logn�+ 1 searchers.

The R- and S-algorithms use the remaining 3 variables. Boolean variables
searcheru and clearedu are used respectively to indicate the presence of a searcher
on u and to signal that after u’s most recent T4 move u has been searched and
either currently maintains a searcher as a guard or is cleared and guarded some-
where else. Finally, a pointer childu is used to point to the current neighboring
subcomponent that is being searched. We also assume that each node u has a list
of its neighbors beginning with FirstChild(u) and ending with pu. The function
Next(childu) advances childu through this list.

The S-algorithm includes five rules that systematically progress through the
active state as shown in Figure 3. Details are given as Algorithm 2. Rule S1
adjusts the vector csizeu() using the auxiliary function CalculateComponents
shown in Figure 2. With this the csizeu() values can reflect the reduced size of
the current component. When a node u has up-to-date csizeu() values and it

Algorithm 2. Search process on non-root node u (S-algorithm)
/* S1 - S4 only possible for active non-root with entire neighborhood

active */

S1-adjust-csize-values:

1: if (¬ clearedu) & (∃v ∈ N(u), csizeu(v)
= 1 +
∑

x∈N(u)−{v}
csizex(u)) then

2: csizeu ← CalculateComponents(u);

S2-become-searcher:

1: if (ReadyToSearch(u)) & (¬ clearedu) & (childu = null) then
2: searcheru ← true; clearedu ← true; /* clears u */

3: childu ← FirstChild(u); csizeu(childu) ← 0;

S3-next-child:

1: if (childu
= pu) & (childchildu = u) & (¬ searcherchildu) then
2: childu ← Next(childu); csizeu(childu) ← 0;

S4-component-cleared:

1: if (childu = pu) & (childpu = u) & (searcheru) & (searcherpu) then
2: searcheru ← false; /* edge (u, pu) is cleared; release u’s searcher */

S5-abnormal:

1: if (childu
∈ N(u) ∪ {null}) || ((childu ∈ N(u)) & (csizeu(childu)
= 0))
|| ((childu = null) & (searcheru || clearedu))
|| ((childu ∈ N(u)) & (pchildu = u) & (childchildu = u) & (¬ searcheru)) then

2: childu ← pu; csizeu(pu) ← 0;
3: searcheru ← false; clearedu ← true;

Efficient Self-stabilizing Graph Searching in Tree Networks 119

is the center of the current component, the Boolean function ReadyToSearch
given in Figure 2 evaluates to true and S2 is enabled on u. An S2 move places a
searcher on the node u that is executing the move and starts the search process
in one of its neighboring subcomponents (the one pointed to by childu). The
S3 move is enabled only after the current childu subcomponent is cleared, at
which time u advances its child pointer to the next child. After u has progressed
through each of its non-parent neighbors, S3 is no longer enabled. The S4 move
is used to release the searcher on u only after all children components are cleared
and the parent pu also has a searcher on it to guard u’s cleared component. Note
that just before the S4 move releases the searcher on u, we also know that the
edge (u, pu) has been cleared.

After initialization in the root r’s neighborhood (either explicitly through
execution of R1 or implicitly with initial values in N(r)), the R-algorithm is a
continuous series of R2 moves executed by r, each followed by a period of waiting
until the current childr is cleared. An active childr and the subtree rooted at
childr is considered to be cleared when childchildr = r and childr has released
its searcher (i.e., ¬searcherchildr). Details are given as Algorithm 3.

Algorithm 3. Search process on root node u (R-algorithm)
/* R1 - R2 only possible for root with consistent size values in

neighborhood */

R1-root-initialize:
1: if (¬ searcheru) & (childu
∈ N(u)) & (∃v ∈ N(u), csizeu(v)
= 0) then
2: searcheru ← true; /* clears u */;
3: ∀v ∈ N(u), csizeu(v) ← 0;
4: childu ← FirstChild(u);

R2-root-next-child:

1: if (childchildu = u) & (¬ searcherchildu) & (statechildu = active) &
(stateNext(childu) = sleep) then

2: childu ← Next(childu);

4 Correctness

We show the correctness of our algorithm in five parts. The first part is an
immediate consequence of the results in [2], where they prove that at most O(n2)
time steps (or h rounds, where h is the diameter of G) contain L moves. Thus
if we can show that at any time prior to stabilization of the L-algorithm the R-,
T- and S-algorithms will stabilize given that there are no L moves, then it will
follow that the L-algorithm will stabilize with the n/2-separator as the global
root, designated by r, and with every parent pointer pv set appropriately. The
fact that the R-, T- and S-algorithms stabilize will follow from the remainder of
the correctness proof.

Next we argue in Subsection 4.1 below that the R-algorithm behaves as ex-
pected, assuming the T- and S-algorithms stabilize in the absence of any L- or

120 J. Blair, F. Manne, and R. Mihai

R moves. This argument shows that after stabilization of the L-algorithm r will
begin executing R2 moves and that just prior to any R2 move, statey = sleep

for y = Next(childr). The results in [1] then guarantee that every node in the
subtree rooted at y will be in the sleep state before it begins the T-algorithm
that will be initiated by r with the next R2 move.

We then show in Subsection 4.2 that each R2 move will initiate the T-
algorithm in the subtree rooted at the assigned-in-R2 pointer childr and that
each node in that subtree will have the correct initial values for the S-algorithm
before it is eligible to execute any S move. Subsection 4.3 then addresses the
key correctness result, proving that starting from a normal configuration the
S-algorithm correctly searches the subtree rooted at childr using no more than
�logn� searchers at any point in time. For the final portion of the correctness
proof Subsection 4.4 argues that the T- and S-algorithms will stabilize correctly
in the absence of any L or R moves regardless of the initial configuration and that
before the L-algorithm stabilizes, the R-algorithm will stabilize in the absence
of any L moves.

Note that the premise required for the first part, that before stabilization of
the L-algorithm the R-, T- and S-algorithms stabilize in the absence of any L
moves, follows from these results. That is, the results in Subsections 4.2 and
4.3 ensure, respectively, that starting from a normal configuration the T-, and
S-algorithms stabilize. The results in Subsection 4.4 ensure that before the L-
algorithm stabilizes and/or starting from an abnormal configuration all three
algorithms stabilize.

Due to space limitations we do not give the details of most proofs. Details
are, however, available upon request.

4.1 The R-algorithm

We focus in this subsection on R moves made after the L-algorithm has stabilized
with the n/2-separator as r.

Only a node believing it is r is enabled to execute any R move. Moreover,
since no T- or S move is privileged on r, R moves are the only possible moves
r can make. Furthermore, because the T- and S-algorithms will stabilize (Sub-
sections 4.2 and 4.3), we know that r will be given an opportunity to execute
enabled R moves. In light of this, we prove here the following lemma.

Lemma 2. After the L-algorithm has stabilized:

(a) r will execute R2 with appropriate variable values and
(b) just before any R2 move, statey = sleep for y = Next(childr), ensuring

that every node v in the subtree rooted at y is either in the sleep state or
will transition to sleep before any subsequent S move.

4.2 The T-algorithm

In this subsection we consider what happens just after r executes an R2 move.
Let C be the component of G−{r} containing childr following the R2 move. We

Efficient Self-stabilizing Graph Searching in Tree Networks 121

will show that each v ∈ C will execute the T-algorithm and that, after v’s last T
move, its variables will be correctly initialized for the start of the S-algorithm.
To that end, we say that a csizev(x) value is correct-with-respect-to C if v ∈ C
and csizev(x) is equal to the size of the component in C\{(v, x)} containing v.

From Lemma 2 we know that each node in C will either be in the sleep

state just after r makes the R2 move, or will subsequently transition to sleep

before its parent (and hence it) can begin the T-algorithm. Then it follows from
Lemma 1 that each node in C will perform T1 through T4 in sequence. This is
the foundation needed to prove that the configuration at each v ∈ C following
its T4 move is what is needed before it begins the S-algorithm.

Lemma 3. Starting from a normal configuration, after a vertex v ∈ C makes a
T4 move and before it makes any S move, the following properties hold:

(a) clearedv = false.
(b) searcherv = false.
(c) childv = null.
(d) For all x ∈ N(v), csizev(x) and csizex(v) are correct-with-respect-to C.

4.3 The S-algorithm

In this subsection we will show that once r has executed an R2 move setting
childr = v the subtree C rooted at v will be searched and cleared. Moreover,
the search will stabilize with v’s variable values enabling an R2 move on r, thus
continuing the search in G. We will also show that the process of searching C
never uses more than logn searchers simultaneously and that the total number
of moves is at most O(|C| log |C|).

It follows from the discussion in the previous section that every node in C
will execute the entire T-algorithm before it can start executing the S-algorithm.
Thus even though both the T- and S-algorithms might execute concurrently any
node that has not yet finished the T-algorithm is eligible to continue executing
the T-algorithm. Also, no values that are set by the S-algorithm are used in the
predicates of the T-algorithm. Note in particular that csize() values used by
the T-algorithm are only influenced by other csize() values from nodes where
the T-algorithm is still running. We will therefore assume that the T-algorithm
has run to completion on C when the S-algorithm starts. Thus we assume that
when the S-algorithm starts we know from Lemma 3 that all csize() values are
correct-with-respect-to C, searcherv = false and childv = false for each v ∈ C.
The value of searcherv can only be set to true if v executes an S2 move. To keep
track of the searchers that are used at any given time, we will label a node that
executes an S2 move as an Li searcher where i− 1 is the number of searchers in
C just prior to the move. For completeness we define L0 = r.

It is conceivable that more than one node in C could execute an S2 move
during the same time step and thus we could have more than one Li searcher
at the same time. But, as we will show, only one node in C can execute an
S2 move during any time step. We will also show that the searchers are placed
and removed in a first-in-last-out fashion. Thus every Lj, j < i, will still be a
searcher when Li ceases to be so.

122 J. Blair, F. Manne, and R. Mihai

With these assumptions we define the components of G−{L0, . . . , Li−1} that
are incident on any Li−1 as the Ci components of G. It follows then that C is
a C1 component. Again for completeness we define C0 = G. Additionally, if the
value of childLi−1 is pointing to a node v ∈ Ci ∩N(Li−1) with csizeLi−1(v) = 0,
then we denote the Ci component containing v as the active Ci component. As
we will show all active components are in C and are nested within each other.

The center of a component Ci, denoted by center(Ci), is the |Ci|/2-separator.
Ties are broken using the highest ID. Let Ci be a component and let v ∈ Ci

and x ∈ N(v). Then the actual size of the subtree containing v in Ci − {x}, is
denoted by actualiv(x).

Again, looking at C = C1 it is clear that until r makes a subsequent R2 move,
C1 remains active and that following the T-algorithm csizev(x) = actual1v(x)
for every v ∈ C1. Before proceeding we need the following result about how S1
moves will update the csize() values in an active component.

Lemma 4. Let x0 = Li−1 be incident on an active component Ci and let
x1, x2 · · · , xj be any path in Ci where the following properties hold:

• x1 ∈ N(x0) and csizex0(x1) = 0.
• csizexk

(xk+1) > B for some constant B ≥ |Ci| and each k, 0 < k < j.
• csizey(xk) is correct-with-respect-to Ci − {xk} for each xk, 0 < k ≤ j, and

y ∈ N(xk) where y is not on the path x0, · · · , xj.

Assume further that the only type of moves that are executed on any node are
S1 moves by the nodes x1, x2, · · · , xj. Then for each xk, 0 < k ≤ j:

(a) The S1 moves will stabilize with csizexk
(xk+1) = actualixk

(xk+1).
(b) At each time step prior to the move where csizexk

(xk+1) obtains its final
value csizexk

(xk+1) > B.

Lemma 4 identifies the very structured way in which any csizev(x) value will
evolve with a series of S1 moves in the absence of any other S moves; essentially
they will decrease, jumping from one actual value to some subsequent actual
value, ending when v becomes the center of an active component. As it turns
out, this characteristic of the changing csizev(x) values persists even in the
presence of other S moves within the active components.

We will use the following defined characteristic of an active component when
we later show how searchers are activated.

Definition 1. An active component Ci where |Ci| > 0 is ready-for-searching if
the following is true immediately following the S2 or S3 move by an Li−1 node
that defined Ci:

(a) Every Lj, 0 ≤ j < i, such that there exists an edge (Lj , v) for some v ∈ Ci

has childLj = v and csizeLj(childLj) = 0.
(b) For every v ∈ Ci, clearedv = false.
(c) For each v ∈ Ci let x ∈ N(v) be the neighbor of v on the path from v to

Li−1. Then csizev(x) = actuali−1
v (x).

Efficient Self-stabilizing Graph Searching in Tree Networks 123

(d) For each v ∈ Ci let x ∈ N(v) be a neighbor of v not on the path from v to
Li−1. Then csizev(x) ≥ |Ci|.

Note that following the T-algorithm on C = C1 all csizev() for v ∈ C1 are
correct-with-respect-to C1. Thus the only move that can be executed in C1 is
S2 by center(C1) which then becomes the first (and currently only) L1 node.
If |C1| > 1 then childL1 is set to some v ∈ C1 thus defining one or more C2
components. Since at that time csizeL1(v) = 0 it follows that the C2 component
of C1−{L1} containing v is also active. Moreover, it is not hard to see that this
C2 component is ready-for-searching. Since the csize() values surrounding any
other C2 components have not changed these will remain stable until L1 makes
a subsequent S3 move, changing a csize() value next to the other C2 component.

As the next lemma shows, the S-algorithm will recursively continue to create
new nested components that are ready-for-searching. Moreover, it will do so in
a sequential fashion.

Lemma 5. When the S-algorithm runs on a ready-for-searching component Ci,
i > 1:

(i) The first node in Ci to execute an S2 move will be center(Ci).
(ii) If |Ci| > 1 then the Ci+1 component that childcenter(Ci) points to just after

its S2 move will be ready-for-searching at that time.
(iii) The nodes in Ci − Ci+1 − {center(Ci)} can only execute S1 moves until

center(Ci) makes an S3 move.

Since L1 is the only initial searcher in C1 it follows from Lemma 5 that the
S-algorithm will continue to create new nested components C2, . . . , Ci one at a
time until either a node Li is a leaf or a node Li sets childLi = Lj where j < i. In
both cases, Li then sees |Ci+1| = 0. In the following we show how the recursion
returns and that when it does so each component has been cleared and will not
be recontaminated. First we need the following definition of a subtree that has
been searched.

Definition 2. Let (v, w) ∈ E be where w = pv. The subtree H of G− {w} with
v as its root is cleared-and-guarded if:

• For every x ∈ V (H)− {v} searcherv = true and searcherx = false,
• Every x ∈ V (H) has childx = px, and
• Every x ∈ V (H) has been cleared and no recontamination has occurred.

Note that it is only the node v closest to r that can possibly make a move
in a subtree that is cleared-and-guarded and this can only happen if pv has
childpv = v, at which point v is eligible to execute an S4 move.

We can now show that the S-algorithm, when started correctly on a component
Ci, will return with the entire Ci being cleared-and-guarded.

Lemma 6. Let Ci be a component of G such that Ci is ready-for-searching and
every subgraph of G − Ci adjacent to Ci except possibly the one closest to r

124 J. Blair, F. Manne, and R. Mihai

is cleared-and-guarded. Further, let (v, w) ∈ E be such that v ∈ Ci and w
∈ Ci

while pv = w. Then following the S2 or S3 move that defined Ci, the S-algorithm
will reach a point where the component of G−{w} containing v, will be cleared-
and-guarded. In doing so the algorithm will not use more than �log |Ci|�+1 new
searchers simultaneously.

Because each S2 and S3 move designates exactly one of its adjacent subcompo-
nents to next recursively start the S-algorithm, we can prove the following.

Lemma 7. The number of moves executed by the S-algorithm on a component
Ci which satisfies the conditions for Lemma 6 is O(|Ci| log |Ci|).
Note that the proof of Lemma 7 establishes that, for any v ∈ Ci, the number of
times that v executes each S move is as specified in Figure 3.

4.4 Initialization

In this subsection we show that the algorithm will reach a normal configuration.
We do this by first showing that in the absence of any L, R and T moves the
S-algorithm will stabilize, regardless of the initial configuration. This result,
together with the results in [1], ensures that in the absence of any L or R moves,
the T- and S-algorithms together will stabilize in a normal configuration. Our
other initialization result, Lemma 9, uses this to then show that in the absence
of any L moves, the combined R-, T- and S-algorithms stabilize in a normal
configuration. Since the results in [2] guarantee that as long as this is the case
the L-algorithm will stabilize we will then have proven that the integrated self-
stabilizing algorithm that includes the five L rules, the two R rules, the six T
rules and the five S rules will reach a normal configuration.

Lemma 8. Let H = (VH , EH) be a maximal connected subgraph of G such that
every v ∈ VH has statev = active and let n = |VH |. Then in the absence of any
L, T or R moves, the S-algorithm will stabilize in H using O(n2) moves.

Lemma 9. Let v = FirstChild(r) after an R1 move by r and let C1 be the
component of G−{r} containing v. Then in the absence of any L moves, the T-
and S-algorithms will stabilize in C1 with childv = r and searcherv = false.

4.5 The Integrated Algorithm

We are now ready to prove the final results.

Theorem 1. Starting from an arbitrary configuration the L-, T-, R- and S-
algorithms combined reach a point when the n/2-separator of G is r, all pv point
in the direction of r, and the entire network is in a normal configuration when
the r executes the R2 move.

Proof. Follows from Lemmas 2, 8, 9 and the results in [2] and [1].

Theorem 2. After reaching a normal configuration, following any R2 move on
r the combined L-, T-, R- and S-algorithm will clear all of G in O(n log n) moves
using no more than 1 + �logn� searchers.

Efficient Self-stabilizing Graph Searching in Tree Networks 125

5 Concluding Remarks

We have given an efficient non-silent self-stabilizing algorithm for graph searching
in trees. The algorithm integrates three separate self-stabilizing processes and
ensures that each behaves as expected even in the presence of the other processes.

Although as presented the algorithm addresses the node search problem, it
can be easily modified to perform edge searching or mixed searching. In the edge
search variant searchers are slid through the edges. Let us consider a node u and
its parent v. If v has a searcher on it and u is the next node that will receive
a searcher then instead of placing the searcher directly on u we can place the
searcher on v and then slide it to u. By doing this we can transform the node
search strategy to an edge search strategy.

Due to the sequential nature of our algorithm, the number of rounds for it to
execute could be on the same order as the number of moves.

Our algorithm can be used to solve other types of problems that require
recursive decomposition of the graph by identifying the centers at each level of
the decomposition. For example, it is straight-forward to adapt our algorithm
to find a 2-center of a tree using only O(n) moves after initialization, improving
over the algorithm given in [5].

References

1. Bein, D., Datta, A.K., Karaata, M.H.: An optimal snap-stabilizing multi-wave
algorithm. The Computer Journal 50, 332–340 (2007)

2. Blair, J.R.S., Manne, F.: Efficient self-stabilizing algorithms for tree networks. In:
Proceedings of the 23rd IEEE International Conference on Distributed Computing
Systems (ICDCS), pp. 912–921 (2003)

3. Coudert, D., Huc, F., Mazauric, D.: A distributed algorithm for computing and
updating the process number of a forest. In: Taubenfeld, G. (ed.) DISC 2008.
LNCS, vol. 5218, pp. 500–501. Springer, Heidelberg (2008)

4. Fomin, F.V., Thilikos, D.M.: An annotated bibliography on guaranteed graph
searching. Theor. Comput. Sci. 399, 236–245 (2008)

5. Huang, T.C., Lin, J.C., Chen, H.J.: A self-stabilizing algorithm which finds a 2-
center of a tree. Computers and Mathematics with Applications 40, 607–624 (2000)

6. Kinnersley, N.G.: The vertex separation number of a graph equals its path-width.
Inf. Process. Lett. 42, 345–350 (1992)

7. Korach, E., Solel, N.: Tree-width, path-width, and cutwidth. Discrete Appl.
Math. 43, 97–101 (1993)

8. Mihai, R., Mjelde, M.: A self-stabilizing algorithm for graph searching in trees. In:
Guerraoui, R., Petit, F. (eds.) SSS 2009. LNCS, vol. 5873, pp. 563–577. Springer,
Heidelberg (2009)

9. Peng, S., Ho, C., Hsu, T., Ko, M., Tang, C.: Edge and node searching problems on
trees. Theor. Comput. Sci. 240, 429–446 (2000)

10. Skodinis, K.: Construction of linear tree-layouts which are optimal with respect to
vertex separation in linear time. J. Algorithms 47, 40–59 (2003)

Adaptive Containment of Time-Bounded
Byzantine Faults

Yukiko Yamauchi1, Toshimitsu Masuzawa2, and Doina Bein3

1 Nara Institute of Science and Technology, Japan
2 Osaka University, Japan

3 The Pennsylvania State University, USA
y-yamauchi@is.naist.jp, masuzawa@ist.osaka-u.ac.jp, siona@psu.edu

Abstract. In this paper, we introduce a novel Byzantine fault model
called time-bounded Byzantine fault that imposes an upper bound on the
number of malicious actions of a Byzantine faulty process. We also pro-
pose a new method for adaptive fault-containment against time-bounded
Byzantine faults that guarantees that the number of perturbed processes
depends on the number of malicious actions at Byzantine processes.
The proposed information diffusion method imposes k consecutive state
changes on a process so that the process diffuses information to pro-
cesses at distance k. We present an example of a leader election protocol
to show the adaptive containment of the proposed method.

Keyword: Distributed system, fault-tolerance, self-stabilization, Byzan-
tine fault, fault-containment, leader election.

1 Introduction

A distributed system consists of a collection of processes that communicate with
each other so that the entire system satisfies a given specification. In large-
scale networks such as P2P networks, mobile ad hoc networks, and wireless
sensor networks, it is expected that the system guarantees scalability, reliability,
availability, etc. Fault-tolerance is one of the main challenges in the design of
distributed systems because a distributed system is more prone to faults such as
memory crashes and malicious users as the number of processes increases.

Self-stabilization provides an excellent autonomous adaptability against any
finite number of transient faults. A transient fault changes the memory con-
tents at processes arbitrarily. A self-stabilizing protocol promises that the system
eventually satisfies its specification and after that, it never violates its specifi-
cation. Since Dijkstra first introduced the notion of self-stabilization [4], many
self-stabilizing protocols were proposed [5,12].

Though self-stabilization was originally designed for transient faults, the worst
fault model for self-stabilization is the Byzantine fault that allows arbitrary (ma-
licious) actions at faulty processes [9,10,11,14]. Self-stabilization assumes that
during the convergence, all processes behave according to the protocol while

S. Dolev et al. (Eds.): SSS 2010, LNCS 6366, pp. 126–140, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Adaptive Containment of Time-Bounded Byzantine Faults 127

Byzantine processes continue their malicious actions during and after conver-
gence. Hence, the goal of Byzantine fault resilient self-stabilization is to contain
the effect of malicious actions of Byzantine processes to a bounded number
of non-Byzantine processes. Existing Byzantine fault resilient self-stabilization
protocols are designed for unbounded number of malicious actions at Byzantine
processes [9,10,11].

We focus on a weaker type of Byzantine fault model, called time bounded
Byzantine fault (TB-Byzantine fault, for short) in which the number of mali-
cious actions of a faulty process is finite. It is obvious that a self-stabilizing
protocol eventually satisfies its specification after a finite number of malicious
actions. We focus on the fault-containment against TB-Byzantine processes and
propose an adaptive containment method in which the scale of perturbation
caused by Byzantine faulty processes depends on the number of malicious ac-
tions of Byzantine processes.

Related work. Though self-stabilization is a brilliant design paradigm for reli-
ability against any finite number of transient faults, it allows the effect of a
single transient fault to spread over the entire network. In the context of self-
stabilization, a system configuration satisfying the system specification is called
a legitimate configuration. Many researchers focused on localization of a fault in
a legitimate configuration: time-adaptive self-stabilization [7,3], fault-containing
self-stabilization [6], local stabilizer [1], and fault-local distributed mending [8].
However, these papers focus on a single transient fault in a legitimate configu-
ration that changes the memory contents at process(es) just once.

The challenge against Byzantine processes is how to obtain and keep con-
sensus among correct processes in the presence of Byzantine faulty processes
because each Byzantine faulty process takes malicious actions during and after
convergence. Nesterenko and Arora proposed the notion of strict stabilization
that contains the effect of a Byzantine faulty process to a constant distance
from the process and the remaining processes realize self-stabilization property
[11]. The basic method is to discard fictitious information locally at each pro-
cess. They proposed a strict stabilizing protocol for vertex coloring problem and
dining philosophers problem. Masuzawa and Tixeuil proposed a strict stabiliz-
ing protocol for link coloring protocol [9]. Their strategy is to put a priority on
the communication to delay messages from Byzantine processes and to process
the messages from correct processes first. Masuzawa and Tixeuil also proposed
the notion of strong stabilization by relaxing requirements for strict stabiliza-
tion [10]: permanent influence of Byzantine processes are contained within their
neighbors and temporary influence is allowed to spread over the network. How-
ever, all these papers focus on unbounded Byzantine faults in which a faulty
process permanently takes malicious actions. Additionally, these existing strict
stabilizing protocols except [10] are designed for local distributed problems that
need consensus among direct neighbors.

There exist many variants of Byzantine processes for non-self-stabilizing pro-
tocols, such as mortal Byzantine faults [13] and Byzantine faults with recovery
[2]. They are motivated by the fact that the assumption of classical Byzantine

128 Y. Yamauchi, T. Masuzawa, and D. Bein

fault model is too strong, because once a process takes an arbitrary behavior,
the process is considered to be faulty forever.

Our contribution. In this paper, we first introduce a novel fault model called
time bounded Byzantine fault (TB-Byzantine fault, for short) in which the num-
ber of malicious actions is finite. Then, we propose a novel fault-containment
mechanism against TB-Byzantine faults, called pumping. The proposed proto-
col provides adaptive fault-containment in the sense that when each of f TB-
Byzantine processes changes its state at most k times during recovery, the effect
is contained to at most f · k processes.

The TB-Byzantine fault model is a subclass of the Byzantine fault model.
However, this bounded fault model is worth considering from a practical as-
pect. For a Byzantine process, the number of malicious actions is a critical cost
because if a process repeats malicious actions, then it can be detected by an
outside observer or users of the system. Additionally, in practice, in a wireless
communication network, a message transmission following a malicious action
drains the battery at the TB-Byzantine process and in a cellular network, the
carrier charges fee for bandwidth usage caused by any message transmission.

We focus on the leader election problem on an oriented ring which is a global
distributed problem. More specifically, we focus on information diffusion in the
presence of TB-Byzantine processes. Each process broadcasts its ID to all other
processes and selects as the leader the process with the minimum ID among the
received IDs. However, a TB-Byzantine process may diffuse fictitious minimum
ID to prevent correct processes from electing a leader. To contain the effect of
TB-Byzantine processes, it is necessary to contain the information diffused by
TB-Byzantine faults.

In the proposed method, a novel mechanism called pumping is introduced,
which requires a process to keep on changing its state to diffuse information to
distant processes. When a process wants to diffuse information to a process at
distance k, the process has to change its state k times. Hence, a TB-Byzantine
process has to make k malicious actions to diffuse a fictitious minimum ID to
a process at distance k. By imposing state changes as a cost for diffusing in-
formation, we achieve the containment of the effect of a TB-Byzantine process.
Though we focus on the leader election problem on an oriented ring, the pumping
mechanism is easily applied to any distributed problem on any topology.

Organization of this paper. In Section 2, we define the system model and the
TB-Byzantine fault. In Section 3, we show an adaptive fault-containing leader
election protocol on an oriented ring. The correctness proofs and performance
evaluation are shown in Section 4. We conclude this paper with Section 5.

2 Preliminary

2.1 System Model

A system is represented by a graph G = (V,E) where the vertex set V is the set of
processes and the edge set E ⊆ V × V is the set of bidirectional communication

Adaptive Containment of Time-Bounded Byzantine Faults 129

links. Two processes Pi and Pj are neighboring if (Pi, Pj) ∈ E. The distance
between two processes is the length of the shortest path between the two.

Each process Pi has a unique ID denoted by IDi and maintains a set of local
variables; a subset of the local variables at each process is called the output
variables. The state of a process is an assignment of values to all local variables.
We adopt the state reading model for communication among processes. Process
Pi can read the values of the local variables at its immediate neighbors, while
Pi can change the values of local variables at Pi.

Each process Pi changes its state according to a protocol that consists of a
finite number of guarded actions of the form 〈label〉 : 〈guard〉 → 〈action〉. A
guard is a Boolean expression involving the local variables of the process and of
its neighboring processes. An action is a statement that changes the values of
the local variables at Pi. A guard is enabled if it is evaluated to true. A process
with an enabled guard is called enabled.

A configuration of a system is an assignment of all local variables of all pro-
cesses. A schedule of a distributed system is an infinite sequence of sets of pro-
cesses. Let S = R1, R2, · · · be a schedule where Ri ⊆ V holds for each i (i ≥ 1).
For a process set R and two configurations σ and σ′, we denote σ

R−→ σ′ when
σ changes to σ′ by executing an action of each process in R simultaneously.
If a selected process has no enabled guard then it does not change its state.
On the other hand, if a selected process has multiple enabled guards, then the
process executes the action corresponding to only one of the enabled guards.
We assume that the selection of enabled guards (and its action) is weakly fair,
i.e., a guard enabled infinitely often is selected infinitely often. The evaluation
of guards and the execution of the corresponding action are atomic, i.e., these
computations are done without any interruption. An infinite sequence of config-
urations E = σ0, σ1, · · · is called an execution from an initial configuration σ0

by schedule S if σi
Ri+1

−−−→ σi+1 holds for each i ≥ 0. We say a process in Ri+1 is
activated in configuration σi.

We adopt the distributed daemon as a scheduler that allows any subset of
processes to execute actions simultaneously. The distributed daemon is weakly
fair, that is, if a process is enabled infinitely often, then the process is activated
infinitely often.

A distributed daemon allows asynchronous executions. In an asynchronous
execution, the time is measured by rounds. Let E = σ0, σ1, · · · be an asyn-
chronous execution by schedule S = R1, R2, · · · . The first round σ0, σ1, · · · , σj

is the minimum prefix of E such that
⋃j

i=1 Ri = V . The second round and the
latter rounds are defined recursively by applying the definition of the first round
to the remaining suffix E′ = σj , σj+1, · · · and S′ = Rj+1, Rj+2, · · · .

A Byzantine faulty process behaves arbitrarily and independently from the
protocol. A state change at a process is a malicious action if and only if the
state change does not conform to the protocol, otherwise a normal action. When
a Byzantine process Pi is activated, Pi consumes one normal action or one ma-
licious action. If a Byzantine process does not change its state by ignoring the
behavior of the protocol when it is activated, Pi consumes one malicious action.

130 Y. Yamauchi, T. Masuzawa, and D. Bein

A time-bounded Byzantine fault (TB-Byzantine fault for short) is a subclass
of Byzantine fault model such that the number of malicious actions at each
Byzantine process is finite. An execution E = σ0, σ1, · · · is (f, kf)-faulty if and
only if the number of Byzantine processes is f and the number of malicious
actions at each Byzantine process is at most kf . For an (f, kf)-faulty execution, a
Byzantine process is called kf -TB-Byzantine process. An (f, kf)-faulty execution
contains at most f · kf malicious actions. An execution is correct if it contains
no malicious action.

2.2 Self-stabilization and Fault-Containment

In this paper, we focus on autonomous adaptability of a protocol in two aspects:
self-stabilization and fault-containment. A self-stabilizing protocol guarantees
that in any correct execution, the system eventually satisfies its specification.
Self-stabilization promises autonomous adaptability against any finite number
of any type of faults by considering the configuration obtained by the last fault as
the initial configuration. Hence, the stabilization in the presence of a bounded
number of malicious actions (i.e., TB-Byzantine processes) is clear. However,
self-stabilization guarantees nothing in the presence of faults during convergence,
and even for faults in a legitimate configuration, it does not provide containment
of the effect of the fault.

A problem (task) T is defined by a validity predicate on output variables at all
processes. Intuitively, a configuration of a protocol is legitimate if it satisfies the
validity predicate of T . However, the protocol may have local variables other than
the output variables and the legitimacy of its configuration may depend on the
values of all the local variables (including the output variables). Hence, we define
a legitimate configuration σ of a protocol PT for problem T as the one such that
any configuration (including σ itself) appearing in any correct execution starting
from σ satisfies the validity predicate of T . The set of legitimate configurations
are denoted by CL(PT). (We omit P and T when they are clear.)

Definition 1. Self-stabilization
Protocol P is self-stabilizing for a problem T if the system eventually reaches a
legitimate configuration of P for T in any correct execution starting from any
configuration.

The convergence time is the maximum (worst) number of rounds that is neces-
sary for the system to reach a legitimate configuration in any correct execution
starting from any configuration.

As stated above, any self-stabilizing protocol eventually reaches a legitimate
configuration in any (f, kf)-faulty execution. However, malicious actions during
convergence may delay the convergence to a legitimate configuration. To measure
the disturbance of the convergence by malicious actions, we introduce the disrup-
tion as follows. For an (f, kf)-faulty execution E = σ0, σ1, · · · , the disruption is

Adaptive Containment of Time-Bounded Byzantine Faults 131

the minimal prefix of E, denoted by E′ = σ0, σ1, · · ·σj such that σj is a legitimate
configuration. The disruption of E represents the convergence in spite of or after
malicious actions. A disruption is called (f ′, k′

f)-disruption if it contains malicious
actions of f ′ processes and at most k′

f malicious actions for each of the processes.
Hence, in an (f ′, k′

f)-disruption, there are at most f ′ · k′
f malicious actions. An

(f, kf)-faulty execution can contain an (f ′, k′
f)-disruption for f ′ ≤ f and k′

f ≤ k′
f .

The (f ′, k′
f)-disruption time is the maximum (worst) number of rounds of any

(f ′, k′
f)-disruption. We note that when f ′ · k′

f = 0, the execution is correct and
the disruption time is equal to the convergence time.

We consider fault-containment of TB-Byzantine faults in a legitimate config-
uration. In other words, we consider an (f, kf)-faulty execution that starts from
a legitimate configuration immediately followed by at least one malicious actions
(i.e., the first transition contains at least one malicious action). It is expected
that the effect of TB-Byzantine processes does not spread over the entire system
and is contained to a restricted number (or distance) of processes around the
faulty process.

Consider an (f, kf)-faulty execution E = σ0, σ1, · · · starting from a legiti-
mate configuration σ0 immediately followed by at least one malicious actions.
The perturbation of E is the minimal prefix of E, denoted by E′ = σ0, σ1, · · ·σj

(j ≥ 1) such that σj is a legitimate configuration. We say that a correct process
is perturbed in E′ if and only if the process changes its output in E′. When the
perturbation contains malicious actions of f ′ processes and at most k′

f malicious
actions for each of the processes, we call it (f ′, k′

f)-perturbation. The (f ′, k′
f)-

perturbation number is the maximum (worst) number of perturbed processes in
any (f ′, k′

f)-perturbation. The (f ′, k′
f)-perturbation time is the maximum (worst)

number of rounds of any (f ′, k′
f)-perturbation. Note that we define the pertur-

bation number based only on the output variables.

Definition 2. TB-Byzantine resilient fault-containment
A self-stabilizing protocol P is TB-Byzantine resilient fault-containing if (f ′, k′

f)-
perturbation number depends on min{f ′ ·k′

f , n} and/or (f ′ ·k′
f)-perturbation time

depends on min{f ′ · k′
f , n}.

3 Proposed Method

3.1 Overview

In this paper, we consider the leader election problem on an oriented (but bidi-
rectional) ring based on ID diffusion. The leader election problem is to make all
processes in the system recognize a single process that is called leader. A straight-
forward strategy for the leader election problem is the minimum (or maximum)
ID finding: Each process broadcasts its ID to all other processes and among
received IDs, it selects a process with the minimum (or maximum) ID as the
leader. Our proposed leader election protocol is based on this simple strategy.

132 Y. Yamauchi, T. Masuzawa, and D. Bein

Because we focus on the proposed containment method, for simplicity, we
use an oriented ring G = (V,E) of n processes. Each process Pi in V has two
neighbors Pi−1 mod n and Pi+1 mod n (i ∈ [0..n − 1])1. Pi−1 (Pi+1) is called
predecessor (successor, respectively) of Pi. The output variable at each process
is the leader’s ID variable. Additionally, each process maintains local variables
to store the IDs of other processes in the system. In a legitimate configuration,
each process stores only the IDs of all processes in V and its leader’s ID variable
takes the smallest ID in the ID list of the process. Note that in a legitimate
configuration, no process stores an ID of a non-existent process.

A malicious action at each TB-Byzantine process can perturb the entire net-
work in two ways: First, it can diffuse a fictitious ID of any non-existent process.
If the fictitious ID is smaller than any IDs of existing processes, the ID is chosen
as the leader’s ID at each process and forwarded to the entire network. Sec-
ondly, a TB-Byzantine process can stop forwarding the smallest ID that should
be chosen as the leader’s ID. To avoid choosing an incorrect ID as the leader’s
ID, self-stabilization requires processes to repeatedly check the consistency of
the chosen ID.

To achieve fault-containment, we introduce a mechanism called pumping,
which makes each process keep on changing its state to push an ID further
and further. This forces a TB-Byzantine process to consume a malicious action
in pushing a faulty ID one hop further and in stopping forwarding a received ID.

The proposed leader election protocol PLE is based on an information dif-
fusion part PUMP based on pumping mechanism which is the main challenge
against TB-Byzantine faults in this paper. PLE provides minimum ID finding
among received IDs which also needs careful design for fault-containment.

Our strategy for fault-containment is to impose each process Pi to change its
state k times in order to diffuse IDi to all process at distance at most k. This
pumping method is implemented with a sequence of waves. Each wave generated
at Pi is a message that consists of Pi’s ID and a TTL value that takes a positive
integer. We call Pi as source of the waves with IDi and Pi−1 as tail. Each process
Pi+1, Pi+2, · · · , Pi−1 forwards the message by decrementing TTL until it reaches
zero. The source process repeatedly generates waves of its own ID with increasing
the TTL by one at each generation. (The initial wave has TTL of one.) Hence,
Pi has to generate a sequence of k waves with incrementing the TTL values to
diffuse IDi to process Ps+k. The diffusion is finished when a wave reaches Pi−1.

To achieve self-stabilization, it is necessary that each process diffuses its ID
and removes the locally-stored IDs of non-existent processes. However, both
functionality should be designed carefully because TB-Byzantine processes also
use them. Consider a protocol that allows each process to discard a locally stored
ID if and only if its predecessor does not store the same ID. If one process Pi

removes an ID, then its successor Pi+1 removes that ID. After that, Pi+2 removes
that ID. This behavior becomes global and starts a removal wave that spreads
fast over the entire system. In the proposed protocol, propagation of removal of
locally stored IDs is also implemented with slow waves.

1 For the rest of the paper, we omit mod.

Adaptive Containment of Time-Bounded Byzantine Faults 133

3.2 Pumping Protocol PUMP
The ID diffusion part called PUMP is shown as Protocol 3.1. Given two pro-
cesses, source Ps and tail Pt (s < t) for ID k, PUMP diffuses ID k at Ps to all
processes Pi (s < i ≤ t). Each processes Pi (s < i < t) is called forwarder.
PUMP has four parameters: Ti for local table at Pi, and three predicates

IsSourcei(k), IsForwarderi (k), and IsTaili (k) to define the source, the for-
warders, and the tail for ID k. The Boolean predicate IsSourcei(k) (IsTaili (k))
holds only at the source (tail, respectively) process and IsForwarderi (k) holds
at each forwarder Pi (s < i < t).

Each process maintains a table Ti of received waves. Each entry of Ti is in
the form of (k, �) where k is an ID and � is the counter (i.e., TTL) of the most
recently received wave2. For any entry (k, �) ∈ Ti, the second element is denoted
by Ci(k): for (k, �), Ci(k) returns �. The counter value Ci(k) returns either a
positive integer, ⊥, φ or undef. The value ⊥ is a restart signal that is returned to
the source and φ is an acknowledgment signal that a tail returns to the source. If
Ti does not have an entry with ID of k, Ci(k) returns undef. The output variables
of PUMP at process Pi are the set of IDs in Ti.

There are four operations for each entry of these tables: hold, remove, update,
and comparison. Operation hold((k, �), Ti) creates an entry (k, �) if Ti does not
have an entry with ID of k, otherwise, sets the value of Ci(k) to �. Operation
remove((k, Ci(k)), Ti) removes the entry with ID k from Ti. The update operation
changes the value of Ci(k) of the tuple (k, Ci(k)) in Ti, and is simply described
as an assignment to Ci(k) in Protocol 3.1. The comparison operation on the
value of Ci(k) is also possible. When Ci(k) stores ⊥, φ, or undef, the comparison
operation returns false.

A source process Ps starts the diffusion by executing S1 and S2. Then, Ps+1
changes Cs+1(k) to 0 by executing S5. After that, by executing S3, Ps contin-
ues to generate waves with incrementing TTL values. Then Ps+i forwards the
message with TTL = τ by decrementing the TTL of the received message (S6).
When a wave reaches the tail process Pt, Pt generates an acknowledgement sig-
nal by the execution of S11 and the acknowledgment wave is returned to Ps by
the execution of S9 and S4. When a forwarder process finds inconsistency among
the C values of neighboring processes, it generates a reset signal by executing S7
and the reset signal is returned to Ps by the execution of S8. When Ps receives
the reset wave, it starts with a wave with TTL = 0 (S1).

Figure 1 shows an example of ID diffusion from a source Pi where k = IDi

to a tail Pi−1. The wave (k, 1) generated at Pi is forwarded to Pi+1 and the
wave (k, 3) generated at Pi is forwarded to Pi+2. In this way, the wave (k, n− 1)
generated at Pi is forwarded to Pi−1.

The containment is achieved by the forwarders. In an (f ′, k′
f)-perturbation,

when a TB-Byzantine process starts diffusing a new ID, it should generate a
2 For simplicity, we assume each entry in Ti, has a unique ID value. Hence, for any

k if (k, �) in Ti, no entry (k, �′) with �
= �′ exists in Ti. This is a data structure
consistency problem and a solution for it can be easily implemented and applied to
Ti. We do not address this problem in the paper.

134 Y. Yamauchi, T. Masuzawa, and D. Bein

Protocol 3.1 Protocol PUMP(Ti, IsSourcei(k), IsForwarderi (k), IsTaili (k)) at
process Pi for ID k

Parameters at Pi

Local variable
Ci(k): the counter value of entry (k, Ci(k)) in Ti

Output at Pi

The set of IDs in Ti.
Predicates at Pi

IsSourcei (k): Boolean predicate that takes true if Pi is the source for ID k,
otherwise false.

IsForwarderi (k) ≡ ¬IsSourcei (k) ∧ ¬IsTaili(k) ∧ (k, Ci−1(k)) ∈ Ti−1

IsTaili(k): Boolean predicate that takes true if Pi is the tail for k,
otherwise false.

CntConsi (k) = Ci(k) > 0 ∧ {Ci−1(k) − Ci(k) = 1 ∨ Ci−1(k) − Ci(k) = 2}
AckInconsi (k) = {Ci(k) = ⊥ ∨ 0 ≤ Ci(k)} ∧ Ci−1(k) = φ

Actions at process Pi

// Source
S1 IsSourcei (k)∧

{Ci(k) = ⊥ ∨ Ci(k) = undef ∨ (Ci+1(k) = ⊥ ∧ 1 ≤ Ci(k))∨
(Ci+1(k) = undef ∧ 1 < Ci(k)) ∨ ¬CntConsi (k)}
−→ hold((k, 0), Ti)

S2 IsSourcei (k) ∧ Ci(k) = 0 −→ Ci(k) = 1
S3 IsSourcei (k) ∧ Ci+1(k) − Ci(k) = 1 −→ Ci(k) + +
S4 IsSourcei (k) ∧ Ci+1(k) = φ ∧ 0 < Ci(k) −→ Ci(k) = φ

// Forwarder
S5 IsForwarderi (k) ∧ Ci−1(k) = 1∧

(0 < Ci(k) ∨ Ci(k) = undef ∨ Ci(k) = φ ∨ Ci(k) = ⊥)
−→ hold((k, 0), Ti)

S6 IsForwarderi (k) ∧ Ci−1(k) − Ci(k) = 2∧
{(0 < Ci(k) ∧ Ci+1(k) − Ci(k) = 1) ∨ Ci(k) = 0}
−→ Ci(k) + +

S7 IsForwarderi (k) ∧ {¬CntConsi (k) ∨ AckInconsi (k)∨
(Ci−1(k) − Ci(k) = 2 ∧ Ci(k) − Ci+1(k) = 2)∨
(Ci+1(k) = φ ∧ (¬CntConsi (k) ∨ Ci(k) = 0)∨
(Ci+1(k) = undef ∧ (1 < Ci(k) ∨ Ci(k) = φ))}∨

IsTaili(k) ∧ {¬CntConsi (k) ∨ AckInconsi (k)}
−→ Ci(k) = ⊥

S8 IsForwarderi (k) ∧ (0 ≤ Ci(k) ∨ Ci(k) = φ) ∧ Ci+1(k) = ⊥
−→ Ci(k) = ⊥

S9 IsForwarderi (k) ∧ CntConsi (k) ∧ Ci+1(k) = φ −→ Ci(k) = φ
// Tail

S10 IsTaili(k) ∧ Ci(k) = 1 ∧ Ci(k) = undef −→ hold((k, 0), Ti)
S11 IsTaili(k) ∧ 0 = Ci(k) ∧ CntConsi (k) −→ Ci(k) := φ

Adaptive Containment of Time-Bounded Byzantine Faults 135

(k, 0)

(k, 1)

(k, 2) (k, 0)

(k,3) (k, 1)

(k, 0)

(k, n-1)

(k, n-2)

(k, n-3)

(k, 0)

P
5

P
x

P

Time

Pi Pi+1 Pi+2PPi-1

Fig. 1. Diffusion of waves from Pi

sequence of waves. At each forwarder Pi, the entry for the new ID is created
only when the predecessor Pi−1 receives the head of the wave (i.e., the TTL
value of one) by the execution of S5. Then, Pi forwards a new wave only when
it has received the previous wave. Hence, to diffuse a new ID to a process at
distance k, a TB-Byzantine process has to generate a sequence of waves with
TTL 0, 1, 2, · · · , k. In this way, the diffusion is slowed down by the forwarders.

We say the counter value Ci(k) at Pi is consistent if and only if Ci−1(k) −
Ci(k) = 1 or 2 holds, otherwise inconsistent.

A configuration is legitimate for PUMP for ID k, if the following predicate
�PUMP holds at any process Pi in V :

�PUMP ≡
∀i : s ≤ i ≤ t s.t. IsSources(k) = true and IsTailt (k) = true : Ci(k) = φ

3.3 Leader Election Protocol PLE
Now, we present the leader election protocol PLE as Protocol 3.2. In PLE ,
PUMP is used to propagate ID of each process Pi (where the source is Pi

and the tail is Pi−1) and to propagate removal of fictitious IDs of non-existent
processes. Each process Pi maintains a local variable LID i and two tables of
received waves: a diffusion table DfTi and a removal table RmTi . LID i is the
output variable at Pi that stores leader’s ID. The diffusion table DfTi is used
to diffuse IDs of processes and the removal table RmTi is used to remove IDs.
A wave diffused by using diffusion table is called a diffusion wave and a wave
diffused by using removal table is called a removal wave.

136 Y. Yamauchi, T. Masuzawa, and D. Bein

P
0

P
3

P
1

P
5

P2P4

ID0 = 8

ID1 = 34

ID2 = 3

ID5 = 21

ID4 = 14

ID3 = 9

P
0

P
3

P
1

P
5

P2P4

ID0 = 8

ID1 = 34

ID2 = 3

ID5 = 21

ID4 = 14

ID3 = 9

(8,2)

(34,3)

(9,3)

(14,4)

(21,2)

(3, 5)

(a) Ring of five processes (b) Diffusion waves

Fig. 2. Diffusion waves on a ring in PLE

Figure 2 (b) shows an example of diffusion waves in a ring of five processes
presented in Figure 2 (a). Each process diffuses its ID downstream and when all
diffusions are finished, the LID value at each process is updated.

In PLE , PUMP is executed in S1 for diffusing IDi and also in S2 for removal
waves. The source, forwarder, and the tail for diffusion waves are defined by
the three predicates IsDS i(k), IsDF i(k), and IsDT i(k). IsDS i(k) is evaluated
to true if and only if IDi = k holds. Then, IsDT i(k) is evaluated to true at
Pi−1. The source, forwarder, and the tail for removing waves are defined by the
three predicates IsRS i(k), IsRF i(k), and IsRT i(k). Process Pi is the source for
removal of ID k when it finds its successor Pi+1 stores (k, �) while Ci(k) is undef
at Pi. Process Pi becomes the tail for removal of ID k when it finds it stores
(k, �) while Ci+1(k) is undef at its successor Pi+1.

After the diffusion of removal waves for ID k is finished, ID k is removed
by the execution of S3 at the tail, each forwarder, and the source. When the
suspicious ID is stored locally, it is removed by the execution of S4. Finally, the
removal wave is discarded by S5. The leader’s ID variable is changed only when
the diffusion of IDs and removal waves are finished after the execution of S6.

The self-stabilization of PLE is guaranteed due to the self-stabilization prop-
erty of PUMP. Because each process keeps on diffusing its ID, eventually all
processes receive IDs of all existent processes. IDs of non-existent processes are
also removed during a correct execution.

The fault-containment of PLE is derived from the fault-containment property
of PUMP. Each diffusion wave or a removal wave spreads slowly in PLE and
after a malicious action, the predecessor of a TB-Byzantine process finds incon-
sistency and generates a reset signal for each removed ID or becomes a source
of the removal wave for new ID of non-existent processes. The reset signal for

Adaptive Containment of Time-Bounded Byzantine Faults 137

Protocol 3.2 Protocol PLE at process Pi

Local variables at Pi

IDi: ID of process Pi

LID i: leader’s ID
DCi(k): the counter value of entry (k, DCi(k)) in DfTi

RCi(k): the counter value of entry (k, RCi(k)) in RmTi

Output variable at Pi

LID i

Predicates at Pi

IsDS i(k) ≡ k = IDi

IsDF i(k) ≡ k
= IDi ∧ IDi+1
= k ∧ (k, DCi−1(k)) ∈ DfTi−1

IsDT (k) ≡ IDi+1 = k
IsRS i(k) ≡ DCi(k) = undef ∧ (k, DCi+1(k)) ∈ DfTi+1 ∧ k
= IDi+1

IsRF i(k) ≡ (k, DCi−1(k)) ∈ DfTi−1 ∧ (k, DCi(k)) ∈ DfTi∧
(k, DCi+1(k)) ∈ DfTi+1

IsRT (k) ≡ (k, DCi(k)) ∈ DfTi ∧ DCi+1(k) = undef

Actions at process Pi

// Diffusion wave
S1 true −→

∀k execute PUMP(DfTi , IsDS i(k), IsDF i(k), IsDT i(k))
// Removal wave
S2 ¬{∃k
= IDi : DCi−1(k) = undef ∧ (k, DCi(k)) ∈ DfTi ∧ DCi+1(k) = undef}

−→ ∀k execute PUMP(RmTi , IsRS i(k), IsRF i(k), IsRT i(k))
// Discarding IDs of non-existent processes
S3 ∃k
= IDi : RCi−1(k) = φ ∧ RCi(k) = φ ∧ RCi+1(k) = undef −→

remove((k,DCi(k)),DfTi); remove((k,RCi(k)), RmTi)
// Discarding locally
S4 ∃k
= IDi : DCi−1(k) = undef ∧ (k, DCi(k)) ∈ DfTi ∧ DCi+1(k) = undef

−→ remove((k,DCi(k)),DfTi); remove((k,RCi(k)),RmTi)
// Discarding removal wave
S5 ∃k : (k, RCi(k)) ∈ RmTi ∧ {k = IDi ∨ (RCi−1(k) = undef ∧ ¬IsRS i(k)}

−→ remove((k,RCi(k)),RmTi)
// Selecting leader’s ID
S6 ∀(k, DCi(k)) ∈ DfTi : DCi(k) = φ ∧ RCi(k) = undef −→

LID i = min{k|(k, DCi(k)) ∈ DfTi}

an ID of an existing process causes pumping of n waves, and the recovery may
entail global recomputation.

A configuration is legitimate for PLE , if the following predicate �PLE holds
at any process Pi in V :

�PLE ≡ {∀Pj ∈ V : DCi(IDj) = φ ∧ (IDj , RCi(IDj)) /∈ RmTi}
∧{∀(k,DCi(k)) ∈ DfTi : ∃Pj ∈ V : IDj = k}
∧{LID i = min{ID�|P� ∈ V)}}

138 Y. Yamauchi, T. Masuzawa, and D. Bein

4 Correctness Proof

Before we start correctness proofs, we first show a trivial upper bound of (f ′, k′
f)-

disruption time and (f ′, k′
f)-perturbation time. In the worst case, every malicious

action occurs just before the system reaches a legitimate configuration.

Remark 1. The (f ′, k′
f)-disruption time of a self-stabilizing protocol P with con-

vergence time T is at most (f ′ · k′
f + 1)T and the (f ′, k′

f)-perturbation time of
a TB-Byzantine fault-resilient fault-containing self-stabilizing protocol P with
convergence time T is at most (f ′ · k′

f + 1)T .

We show the correctness proofs and performance evaluation of PUMP and PLE .
In the following, we first show self-stabilization and convergence time of PUMP.
From Protocol 3.1, we obtain the following lemma. (Due to page restriction, we
omit the detailed proof.)

Lemma 1. In any legitimate configuration of PUMP, there exists at least one
enabled process.

Let Ps be a source and Pt be a tail for ID k. The �-th forwarder be the process
Ps+� between Ps and Pt (s < s + � < t). Let Ps+� be a forwarder that satisfies
(i) Ci(k) at Pi and Ci+1(k) at Pi+1 are consistent for all s ≤ i < s + �, and (ii)
Cs+�(k) at Ps+� and Cs+�+1(k) at Ps+�+1 are inconsistent. We call Ps+� as head
of the wave for k.

Lemma 2. In a correct execution, in each (�2 + 5�+ 2)/2 rounds, the head of a
wave at �-th forwarder progresses to (� + 1)-th forwarder.

Proof. Let the head of the wave for ID k be Ps+�. In the worst case, Ps+�

generates a reset signal and after that, the source Ps restarts pumping with
generating (� + 1) waves. Then, the number of rounds for the head at Ps+� to
progress to Ps+�+1 is

� + (1 + 2 + · · ·+ � + (� + 1)) = � +
(� + 1)(� + 2)

2
=

�2 + 5� + 2
2

. ��

From Lemma 1 and Lemma 2, eventually the diffusion is completed and the
system reaches a legitimate configuration.

Theorem 1. PUMP is self-stabilizing and for diffusion from Ps to Pt where
t− s = �, the convergence time is O(�2) rounds.

Next, we show the fault-containment of PUMP. Because the output variables
of PUMP at Pi are the IDs stored in Ti, if Pi stores a new ID, then Pi is
perturbed.

In PUMP, there are two types of waves. The propagation of φ and ⊥ is
implemented with fast waves that are forwarded immediately to the neighbors.
On the other hand, the diffusion of IDs is implemented with slow waves that the
source should keep on generating waves with incrementing the TTL value and
the forwarders allow these waves to propagate in the FIFO order. These slow
waves guarantee the upper bound on the number of perturbed processes.

Adaptive Containment of Time-Bounded Byzantine Faults 139

Consider an (f, kf)-faulty execution E = σ0, σ1, · · · starting from a legitimate
configuration with at least one malicious action. Because of the self-stabilization
property of PUMP, there exists a finite length of disruption in E. Let E′ be
the (f ′, k′

f)-disruption of E. Because each TB-Byzantine process takes at most
k′

f malicious action during E′, it generates at most k′
f waves for each fictitious

ID. Because in a legitimate configuration, there exists no fictitious IDs at any
process, each TB-Byzantine process has to generate � waves to diffuse a fictitious
ID to a process at distance �. In the worst case, correct processes forwards these
waves if IsForwarder is evaluated to true. Hence, in a (f ′, k′

f)-disruption, there
are at most f ′ TB-Byzantine processes each of which perturbs at most k′

f correct
processes. Then, we obtain the following theorem.

Theorem 2. PUMP is TB-Byzantine resilient fault-containing and the
(f ′, k′

f)-perturbation number is min{f ′ · k′
f , n}.

Because PUMP causes the restart of pumping from the source, the disruption
time (perturbation time) depends on the convergence time, f ′, and k′

f for any
(f ′, k′

f)-disruption ((f ′, k′
f)- perturbation, respectively).

Theorem 3. The (f ′, k′
f)-disruption time and the (f ′, k′

f)-perturbation time of
PUMP are O(f ′k′

f �
2) for diffusion from Ps to Pt where t− s = �.

Secondly, we show the correctness proofs of PLE based on the stabilization and
the fault-containment property of PUMP. (Due to page restriction, we omit the
detailed proof.) We showed that PUMP prevents fictitious IDs from spreading
over the entire network by using slow waves. However, PUMP does not remove
these fictitious IDs after it is propagated to a small number of perturbed pro-
cesses. By using PUMP for diffusion waves and removal waves, PLE achieves
self-stabilization and fault-containment for the leader election problem.

Starting from an arbitrary initial configuration, the propagation of removal
waves eventually finishes and each process keeps on pushing its ID until it is
received by all other processes.

Theorem 4. PLE is self-stabilizing.

From the perturbation number shown in Theorem 2, all diffusion waves and
removal waves generated at a TB-Byzantine process reach processes at distance
at most k′

f in any (f ′, k′
f)-disruption. Then, we have the following theorem.

Theorem 5. PLE is TB-Byzantine resilient fault-containing and the (f ′, k′
f)-

perturbation number is min{f ′ · k′
f , n}.

5 Conclusion

In this paper, we proposed a novel fault model called TB-Byzantine fault
and introduce the notion of adaptive containment of TB-Byzantine processes.
The proposed information diffusion method, called pumping, guarantees fault-
containment of TB-Byzantine faults in the sense of perturbation number. We

140 Y. Yamauchi, T. Masuzawa, and D. Bein

note that the pumping method can be easily extended to any arbitrary topology
and any arbitrary problem because the pumping method is implemented on an
arbitrary topology with broadcast waves. Though the perturbation number is
bounded by the number of malicious actions during a disruption, the disruption
time and the perturbation time of the proposed protocol depends on the con-
vergence time and the number of malicious actions. This paper also proposes
to analyze these time complexity measures in the presence of malicious actions.
Our future work is to develop a fast stabilization and containment technique
against TB-Byzantine faults.

Acknowledgment

This work is supported in part by MEXT Global COE Program, JSPS Grant-
in-Aid for Scientific Research ((B)22300009), and JSPS Grant-in-Adi for Young
Scientists (Start-up) (21800031).

References

1. Afek, Y., Dolev, S.: Local stabilizer. Journal of Parallel and Distributed Comput-
ing 62, 745–765 (2002)

2. Biely, M., Huttle, M.: Consensus when all processes may be byzantine for some
time. In: Guerraoui, R., Petit, F. (eds.) SSS 2009. LNCS, vol. 5873, pp. 120–132.
Springer, Heidelberg (2009)

3. Burman, J., Herman, T., Kutten, S., Patt-Shamir, B.: Asynchronous and fully self-
stabilizing time-adaptice majority consensus. In: Anderson, J.H., Prencipe, G.,
Wattenhofer, R. (eds.) OPODIS 2005. LNCS, vol. 3974, pp. 146–160. Springer,
Heidelberg (2006)

4. Dijkstra, E.W.: Self-stabilizing systems in spite of distributed control. Communi-
cations of ACM 17(11), 643–644 (1974)

5. Dolev, S.: Self-Stabilization. MIT Press, Cambridge (2000)
6. Ghosh, S., Gupta, A., Herman, T., Pemmaraju, S.V.: Fault-containing self-

stabilizing algorithms. In: Proceedings of the 15th PODC, pp. 45–54 (May 1996)
7. Kutten, S., Patt-Shamir, B.: Time-adaptive self stabilization. In: Proceedings of

the 16th PODC, pp. 149–158 (1997)
8. Kutten, S., Peleg, D.: Fault-local distributed mending. In: Proceedings of the 14th

PODC, pp. 20–27 (August 1995)
9. Masuzawa, T., Tixeuil, S.: A self-stabilizing link-coloring protocol resilient to un-

bounded byzantine faults in arbitrary networks. In: Anderson, J.H., Prencipe, G.,
Wattenhofer, R. (eds.) OPODIS 2005. LNCS, vol. 3974, pp. 118–129. Springer,
Heidelberg (2006)

10. Masuzawa, T., Tixeuil, S.: Bounding the impact of unbounded attacks in stabi-
lization. In: Datta, A.K., Gradinariu, M. (eds.) SSS 2006. LNCS, vol. 4280, pp.
440–453. Springer, Heidelberg (2006)

11. Nesterenko, M., Arora, A.: Tolerance to unbounded byzantine faults. In: Proceed-
ings of the 21st SRDS, pp. 22–29 (October 2002)

12. Schneider, M.: Self-stabilization. ACM Computing Survey 25(1), 45–67 (1993)
13. Widder, J., Gridling, G., Weiss, B., Blanquart, J.: Synchronous consensus with

mortal byzantines. In: Proceedings of the 37th DSN, pp. 102–112 (June 2007)
14. Zhao, Y., Bastani, F.: A self-adjusting algorithm for byzantine agreement. Dis-

tributed Computing 5, 219–226 (1992)

Brief Announcement: Fast Convergence in
Route-Preservation

Jorge A. Cobb

Department of Computer Science
The University of Texas at Dallas

cobb@utdallas.edu

Introduction. Optimal-routing in a computer network consists of building a
spanning-tree such that two conditions hold: a) the root of the tree is a distin-
guished node, and b) weights are assigned to the network links, and each path
along the tree to the root is optimal with respect to these weights [4]. This differs
from spanning-tree protocols used in leader election, in which any node can be
the root, and usually the tree need not be optimal with respect to link weights.

We have developed a stabilizing routing protocol with the following properties:
a) it is suitable for all maximizable metrics [4], not just strictly-bounded metrics,
b) stabilization time is proportional to L, the longest network path, c) nodes have
no knowledge of an upper bound on L (and hence of the network size) and d)
it is loop-free and suitable for route-preservation. Route-preservation [5], is the
ability to ensure that data messages reach the root irrespective of changes in the
routing tree.

In [2], we presented a stabilizing routing protocol for maximizable metrics
without assuming an upper bound on L, and whose convergence time is bounded
by L. However, it is not suitable for route-preservation because nodes become
temporarily disconnected from the root. We refer to this protocol as the base
protocol.

Adaptive Routing Protocol. We propose running two protocols in parallel,
the base protocol and an adaptive protocol. The purpose of the adaptive protocol
is to adapt its routing tree to match the routing tree of the base protocol, while
maintaining the integrity of its own routing tree (i.e., always be loop-free and
have no disconnected nodes).

Let input u.p̂r contain the parent chosen for node u by the base protocol. The
adaptive protocol is unaware of when the base protocol has converged; it simply
takes the current value of u.p̂r and assigns it to its parent variable u.pr. To
ensure loop-freedom, we perform a diffusing computation before this assignment
takes place, similar to that of other loop-free routing protocols [6].

Each node can be in one of two states: high or low. During steady-state
operation, i.e., when both the adaptive and base routing protocols have the same
tree (u.pr = u.p̂r for all u), all nodes are in the high state. When u.pr
= u.p̂r,
node u changes its state to low, and causes all of its descendants to change their
state to low. Node u can then choose a new parent only if the new parent’s state
is high. The specification of a non-root node u is given below (more details can
be found in [1]).

S. Dolev et al. (Eds.): SSS 2010, LNCS 6366, pp. 141–143, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

142 J.A. Cobb

node u
inp

u.N : set of node id’s {neighbors of u}
u.p̂r : element of u.N {base parent of u}

var
u.pr : element of u.N {parent of u}
u.st : element of {high, low} {state of u}
u.req : boolean {request lowering of descendants}
u.end : subset of u.N {neighbors where diffusion ended}

par
g : element of u.N {any neighbor of u}

begin
{start request if new parent}
u.high ∧ ¬u.req ∧ u.pr
= u.p̂r →

u.req := true; u.end := ∅

{propagate request}
(u.high ∧ ¬u.req) ∧ ((u.pr).high ∧ (u.pr).req) →

u.req := true; u.end := ∅

{add neighbor to end set}
g.pr
= u ∨ g.low →

u.end := u.end
⋃
{g}

{terminate request and lower state}
u.high ∧ u.req ∧ u.end = u.N →

u.st := low

{change to new parent}
u.low ∧ (u.p̂r).high ∧ ¬(u.p̂r).req →

u.pr := u.p̂r;
u.st := high; u.req := false

end

Route Preserving Policy. Similar to [5], we define a routing policy that is
route-preserving. I.e., we define a set of guidelines to route data messages toward
the root, such that, even though edge weights are currently changing, and hence,
the routing tree is changing, data messages are guaranteed to reach the root. We
assume each message has a one-bit flag that is reserved for the routing policy.
The flag is set whenever the message arrives at a node whose state is low, or if
the message is queued at a node whose state transitioned from high to low. Once
the flag is set in a message, it may not be cleared. Once a message is flagged and
has reached a node in the high state, we require the message to continue only
along nodes with a high state. This ensures no parent changes along its path,
and thus, it eventually arrives at the root. More details on this policy may be
found in [1].

Brief Announcement: Fast Convergence in Route-Preservation 143

Stabilization. To stabilize the adaptive protocol, the main obstacle is the
detection and elimination of routing loops, and having nodes that were formerly
in a loop rejoin the routing tree. There are two traditional ways to detect routing
loops. The first is simply not to do anything specific to break loops, provided
the routing metric is strictly-bounded [4], i.e., the metric of nodes along a loop
becomes progressively worse, until the metric of the routing tree is better than
that of the loop. Another approach is to maintain a hop-count to the root, and
the loop is broken if the hop count of a node reaches the upper bound on L [3].

Our approach also uses a hop-count, but without assuming an upper bound on
L. Instead, loops are assumed to exist if the hop-count of a child is not equal to
the hop-count of its parent plus one (note that this condition must always exist
in all loops). To prevent false-positives, during normal operation, the hop-count
of a node must always be consistent with its parent. However, due to the dynamic
structure of the routing tree, this is not possible. Thus, the hop-count is allowed
to be inconsistent at the crossover point between low nodes and high nodes.

A loop may be broken by a node u simply by setting its parent variable u.pr to
itself (u.pr := u). To prevent forming new loops, u must not choose a descendant
as a new parent. This can easily be achieved by u choosing a new parent only if
u has no children (and hence, no descendants). A child v of u can observe that u
has no parent (i.e., u.pr = u), and v can also set its parent to itself (v.pr := v).
Thus, u eventually has no children, and is free to choose any node as its parent.

However, as shown in [1], this can lead to a race-condition. We prevent the
race-condition via an additional diffusing computation. The objective of this new
diffusing computation is to ensure that the subtree of a parent-less node has been
completely disassembled before the parent-less node is allowed to choose a new
parent.

References

1. Cobb, J.A.: Fast convergence in route preservation, Department of Computer Sci-
ence Technical Report, The University of Texas at Dallas (June 2010),
http://www.utdallas.edu/~jcobb/PublishedPapers/TR/RP.pdf

2. Cobb, J.A., Huang, C.T.: Stabilization of maximal-metric routing without knowl-
edge of network size. In: Second International Workshop on Reliability, Availability,
and Security (WRAS 2009), Hiroshima, Japan (2009)

3. Gouda, M.G., Schneider, M.: Maximum flow routing. In: Proceedings of the Second
Workshop on Self-Stabilizing Systems, Technical Report, Department of Computer
Science, University of Nevada, Las Vegas (1995)

4. Gouda, M.G., Schneider, M.: Maximizable routing metrics. IEEE/ACM Trans.
Netw. 11(4), 663–675 (2003)

5. Johnen, C., Tixeuil, S.: Route preserving stabilization. In: Huang, S.-T., Herman,
T. (eds.) SSS 2003. LNCS, vol. 2704, pp. 184–198. Springer, Heidelberg (2003)

6. Merlin, P.M., Segall, A.: A failsafe distributed routing protocol. IEEE Transactions
on Communications COM-27(9) (1979)

http://www.utdallas.edu/~jcobb/PublishedPapers/TR/RP.pdf

Authenticated Broadcast with a Partially
Compromised Public-Key Infrastructure

S. Dov Gordon, Jonathan Katz�, and Ranjit Kumaresan,
and Arkady Yerukhimovich

Dept. of Computer Science
University of Maryland

{gordon,jkatz,ranjit,arkady}@cs.umd.edu

Abstract. Given a public-key infrastructure (PKI) and digital signa-
tures, it is possible to construct broadcast protocols tolerating any num-
ber of corrupted parties. Almost all existing protocols, however, do not
distinguish between corrupted parties (who do not follow the protocol),
and honest parties whose secret (signing) keys have been compromised
(but who continue to behave honestly). We explore conditions under
which it is possible to construct broadcast protocols that still provide
the usual guarantees (i.e., validity/agreement) to the latter.

Consider a network of n parties, where an adversary has compromised
the secret keys of up to tc honest parties and, in addition, fully controls
the behavior of up to ta other parties. We show that for any fixed tc > 0,
and any fixed ta, there exists an efficient protocol for broadcast if and
only if 2ta +min(ta, tc) < n. (When tc = 0, standard results imply feasi-
bility.) We also show that if tc, ta are not fixed, but are only guaranteed
to satisfy the bound above, then broadcast is impossible to achieve ex-
cept for a few specific values of n; for these “exceptional” values of n,
we demonstrate a broadcast protocol. Taken together, our results give a
complete characterization of this problem.

1 Introduction

Although Public Key Infrastructures (PKI) are heavily used in the design of
cryptographic protocols, in practice they are often subject to key leakage, crypt-
analysis and side channel attacks. Such attacks can make the resulting construc-
tion insecure as it’s security depends on the security of the PKI. In this work,
we consider the security that can be guaranteed even with a compromised PKI.
In particular, we study the problem of broadcast in a setting where some of the
honest players’ signatures can be forged.

� Work done in part while visiting IBM. Supported by NSF, the U.S. DoD/ARO
MURI program, and the US Army Research Laboratory and the UK Ministry of
Defence under agreement number W911NF-06-3-0001.

S. Dolev et al. (Eds.): SSS 2010, LNCS 6366, pp. 144–158, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Authenticated Broadcast with a Partially Compromised PKI 145

Broadcast protocols allow a designated player (the dealer) to distribute an
input value to a set of parties such that (1) if the dealer is honest, all honest
parties output the dealer’s value (validity), and (2) even if the dealer is dishon-
est, the outputs of all honest parties agree (agreement). Broadcast protocols
are fundamental for distributed computing and secure computation: they are
crucial for simulating a broadcast channel over a point-to-point network, and
thus form a critical sub-component of various higher-level protocols.

Classical results of Pease, Shostak, and Lamport [12,8] show that broadcast
(and, equivalently, Byzantine agreement) is achievable in a synchronous network
of n parties if and only if the number of corrupted parties t satisfies t < n/3. To go
beyond this bound, some form of set-up is required. The most commonly studied
set-up assumption is the existence of a public-key infrastructure (PKI) such that
each party Pi has a public signing key pki that is known to all other parties (in
addition to the cryptographic assumption that secure digital signatures exist).
In this model, broadcast is possible for any t < n [12,8,1].

With few exceptions [3,5] (see below), prior work in the PKI model treats each
party as either totally honest, or as completely corrupted and under the control of
a single adversary; the assumption is that the adversary cannot forge signatures
of any honest parties. However, in many situations it makes sense to consider a
middle ground: parties who honestly follow the protocol but whose signatures
might be forged (e.g., because their signing keys have been compromised). Most
existing work treats any such party Pi as corrupt, and provides no guarantees
for Pi in this case: the output of Pi may disagree with the output of other honest
parties, and validity is not guaranteed when Pi is the dealer. Clearly, it would be
preferable to ensure agreement and validity for honest parties who have simply
had the misfortune of having their signatures forged.

Here, we consider broadcast protocols providing exactly these guarantees.
Specifically, say ta parties in the network are actively corrupted; as usual, such
parties may behave arbitrarily and we assume their actions are coordinated by a
single adversary A. We also allow for tc parties who follow the protocol honestly,
but whose signatures can be forged by A; this is modeled by simply giving A
their secret keys. We refer to such honest-behaving parties as compromised, and
require agreement and validity to hold even for compromised parties.

Say ta, tc satisfy the threshold condition with respect to some total number of
parties n if 2ta + min(ta, tc) < n. We show:

1. For any n and any ta, tc satisfying the threshold condition with respect to n,
there is an efficient (i.e., polynomial in n) protocol achieving the notion of
broadcast outlined above.

2. When the threshold condition is not satisfied, broadcast protocols meeting
our notion of security are impossible. (With the exception of the “classical”
case where tc = 0; here standard results like [1] imply feasibility.)

3. Except for a few “exceptional” values of n, there is no fixed n-party pro-
tocol that tolerates all ta, tc satisfying the threshold condition with respect
to n. (The positive result mentioned above relies on two different protocols,

146 S.D. Gordon et al.

depending on whether ta ≤ tc.) For the exceptional values of n, we show
protocols that do tolerate any ta, tc satisfying the threshold condition.

Taken together, our results provide a complete characterization of the problem.

Motivating the Problem. Compromised parties are most naturally viewed
as honest parties whose secret (signing) keys have been obtained somehow by
the adversary. E.g., perhaps an adversary was able to hack into an honest user’s
system and obtain their secret key, but subsequently the honest party’s computer
was re-booted and now behaves honestly. Exactly this scenario is addressed by
proactive cryptosystems [11] and leakage-resilient cryptosystems [2], though in
somewhat different contexts.

We remark, however, that our model is meaningful even if such full-scale com-
promise of honest users’ secret keys is deemed unlikely. Specifically, our work pro-
vides important guarantees whenever there is a possibility that an honest user’s
signature might be forged (whether or not the adversary learns the user’s actual
secret key). Signature forgery can potentially occur due to cryptanalysis, poor
implementation of cryptographic protocols [9,10], or side-channel attacks [6,7].
In all these cases, it is likely that an adversary might be able to forge signatures
of a small number of honest parties without being able to forge signatures of
everyone.

Prior Work. Gupta et al. [5] also consider broadcast protocols providing agree-
ment and validity for honest-behaving parties whose secret keys have been com-
promised. Our results improve upon theirs in several respects. First, we construct
efficient protocols whenever 2ta + min(ta, tc) < n, whereas the protocols pre-
sented in the work of Gupta et al. have message complexity exponential in n.
Although Gupta et al. [5] also claim impossibility when 2ta+min(ta, tc) ≥ n, our
impossibility result is simpler and stronger in that it holds relative to a weaker
adversary.1 Finally, Gupta et al. treat ta, tc as known and do not consider the
question of designing a fixed protocol achieving broadcast for any ta, tc satisfying
the threshold condition (as we do in the third result mentioned above).

Fitzi et al. [3] consider broadcast in a model where the adversary can either
corrupt a few players and forge signatures of all parties, or corrupt more players
but forge no signatures. In our notation, their work handles the two extremes
ta < n/3, tc = n and ta < n/2, tc = 0. Our work addresses the intermediate
cases, where an adversary might be able to forge signature of some honest parties
but not others.

Organization. Section 2 introduces our model and provides a formal definition
of broadcast in our setting. In Section 3 we show that for every n, ta, tc satisfying
the threshold condition, there exists an efficient broadcast protocol. We show our
impossibility results in Section 4: namely, broadcast is impossible whenever ta, tc
do not satisfy the threshold condition (except when tc is fixed to 0), and (other

1 In [5], the adversary is assumed to have access to the random coins used by the
compromised parties when running the protocol, whereas we do not make this
assumption.

Authenticated Broadcast with a Partially Compromised PKI 147

than for the exceptional values of n) there does not exist a single, fixed protocol
achieving broadcast for all ta, tc satisfying the threshold condition. In Section 5
we give positive results for the exceptional values of n. Although dealing with
these “outliers” may seem like a minor point, in fact all the exceptional values
of n are small and so are more likely to arise in practice. Furthermore, dealing
with these exceptional values is, in some sense, the most technically challenging
part of our work.

2 Model and Definitions

We consider the standard setting in which n players communicate in synchronous
rounds via authenticated channels in a fully connected, point-to-point network.
(See below for further discussion regarding the assumption of authenticated
channels.) We assume a public-key infrastructure (PKI), established as follows:
each party Pi runs a key-generation algorithm Gen (specified by the protocol)
to obtain public key pki along with the corresponding secret key ski. Then
all parties begin running the protocol holding the same vector of public keys
(pk1, . . . , pkn), and with each Pi holding ski.

A party that is actively corrupted (or “Byzantine”) may behave arbitrarily.
All other parties are called honest, though we further divide the set of honest
parties into those who have been compromised and those who have not been
compromised, as discussed below. We view the set of actively corrupted players
as being under the control of a single adversary A coordinating their actions.
We always assume such parties are rushing, and may wait to see the messages
sent by honest parties in a given round before deciding on their own messages
to send in that round. Actively corrupted parties may choose their public keys
arbitrarily and even dependent on the public keys of honest parties. We continue
to assume, however, that all honest parties hold the same vector of public keys.

Some honest players may be compromised ; if Pi is compromised then the
adversaryA is given that Pi’s secret key ski. We stress that compromised players
follow the protocol as instructed: the only difference is that A is now able to
forge signatures on their behalf. On the other hand, we assume A is unable to
forge signatures of any honest players who have not been compromised.

We assume authenticated point-to-point channels between all honest parties,
even those who have been compromised. In other words, although the adversary
can forge the signature of an honest party Pi who has been compromised, it can-
not falsely inject a point-to-point message on Pi’s behalf. It is worth noting that
this is a common assumption in many previous works relating to information-
theoretic broadcast, byzantine agreement, and secure computation: for each of
these problems, shared cryptographic keys cannot be used to ensure authenti-
cated and/or secret channels against an all-powerful adversary. In practice, au-
thenticated channels would be guaranteed using pairwise symmetric keys (that
are less easily compromised or cryptanalyzed than signing keys), or could also
be ensured via physical means in small-scale networks. Note that without the
assumption of authenticated channels, no meaningful results are possible.

148 S.D. Gordon et al.

Definition 1. A protocol for parties P = {P1, . . . , Pn}, where a distinguished
dealer D ∈ P holds an initial input M , achieves broadcast if the following hold:

Agreement. All honest parties output the same value.

Validity. If the dealer is honest, then all honest parties output M .

We stress that “honest” in the above includes those honest parties who have been
compromised.

Although the above refers to an arbitrary input M for the dealer, we assume for
simplicity that the dealer’s input is a single bit. Broadcast for arbitrary length
messages can be obtained from binary broadcast using standard techniques.

An adversary A is called a (ta, tc)-adversary if A actively corrupts up to
ta parties and additionally compromises up to tc of the honest parties. In a
network of n players, we call A a threshold adversary if A chooses ta, tc subject
to the restriction 2ta + min(ta, tc) < n; actively corrupts up to ta parties; and
compromises up to tc honest parties.

3 Broadcast for (ta, tc)-Adversaries

In this section, we prove the following result:

Theorem 1. Fix n, ta, tc with 2ta +min(ta, tc) < n. Then there exists a protocol
achieving broadcast in the presence of a (ta, tc)-adversary.

The case of ta ≤ tc is easy: ta ≤ tc implies 3ta < n and the parties can thus
run a standard (unauthenticated) broadcast protocol [12,8] where the PKI is
not used at all. (In this case, it makes no difference whether honest players are
compromised or not.) The challenge is to design a protocol for tc < ta, and we
deal with this case for the remainder of this section.

Let DS refer to the Dolev-Strong protocol [1] that achieves broadcast with a
PKI, in the usual sense (i.e., when no honest parties’ keys can be compromised),
for any t < n corrupted parties. (The Dolev-Strong protocol is reviewed in
Appendix A.) We say that Pi calls an execution of the DS protocol dirty if Pi

receives valid signatures by the dealer on two different messages, or never receives
any valid signed messages from the dealer; i.e., if Pi detects that the dealer is
either corrupted or compromised. Pi declares the execution clean otherwise. The
following is easy to prove (the proof is omitted due to lack of space):

Lemma 1. Consider an execution of protocol DS in the presence of ta
adversarial parties and tc compromised honest parties, where ta + tc < n. Then:

1. All honest parties agree on whether an execution of DS is clean or dirty.
2. Agreement holds. (I.e., the outputs of all honest players are identical.)
3. If the dealer is honest and has not been compromised, then validity holds (i.e.,

all honest parties agree on the dealer’s input) and the execution is clean. If
the dealer is honest and the execution is clean, then validity also holds.

Authenticated Broadcast with a Partially Compromised PKI 149

Protocol 1

Inputs: Let D be the dealer, with input bit b.

Computation:

1. D sends b to all other players. Let bi be the value received by Pi from
D in this step (if the dealer sends nothing to Pi, then bi is taken to be
some default value).

2. In parallel, each party Pi acts as the dealer in an execution of DS(bi)
(the original dealer D runs DS(b)). We let |CLEAN0| (resp., |CLEAN1|)
denote the number of executions of DS that are both clean and result
in output 0 (resp., 1).

Output: If |CLEAN0| ≥ |CLEAN1| then all parties output 0; otherwise, all
parties output 1.

Fig. 1. A broadcast protocol for tc < ta and 2ta + tc < n

Thus, DS fails to satisfy Definition 1 only when the dealer is honest but com-
promised. Our protocol (cf. Figure 1) guarantees validity even in this case (while
leaving the other cases unaffected).

Theorem 2. Let A be a (ta, tc)-adversary with tc < ta and 2ta + tc < n. Then
Protocol 1 achieves broadcast in the presence of A.

Proof. We prove agreement and validity. Note that n > ta + tc, so Lemma 1
applies.

Agreement: By Lemma 1, the output of each honest player is the same in
every execution of DS in step 2, and all honest parties agree on whether any
given execution of DS is clean or dirty. So all honest players agree on |CLEAN0|
and |CLEAN1|, and agreement follows.

Validity: Assume the dealer is honest (whether compromised or not). Letting th
denote the number of honest, non-compromised players, we have th+ta+tc = n >
2ta + tc and so th > ta. Thus, there are th honest and non-compromised dealers
in step 2 of Protocol 1, and (since D is honest) each of these runs DS(b) where
b is the initial input of D. By Lemma 1, all honest players output b in (at least)
these th executions, and each of these th executions is clean. Furthermore, there
can be at most ta clean executions resulting in output 1− b, as only adversarial
players will possibly run DS(1 − b) in step 2. The majority value output by the
honest players is therefore always equal to the original dealer’s input b.

4 Impossibility Results

In this section we show two different impossibility results. First, we show that
there is no protocol achieving broadcast in the presence of a (ta, tc)-adversary
when n ≤ 2ta +min(ta, tc) and tc > 0, thus proving that Theorem 1 is tight. We

150 S.D. Gordon et al.

ΠA(1) ΠA(0)

ΠB ΠC

Fig. 2. A mental experiment involving a four-node network

then consider the case when ta, tc are not fixed, but instead all that is guaranteed
is that 2ta +min(ta, tc) < n. (In the previous section, unauthenticated broadcast
was used to handle the case ta ≤ tc and Protocol 1 assumed tc < ta. Here we
seek a single protocol that handles both cases.) We show that in this setting,
broadcast is impossible for almost all n.

4.1 The Three-Player Case

We first present a key lemma that will be useful for the proofs of both results
described above. For this, define a general adversary A as follows:

Definition 2. Let S be a set of pairs {(S1
a, S

1
c), (S2

a, S
2
c), . . .} where Si

a, S
i
c ⊂

{P1, . . . , Pn}. An S-adversary can choose any i, and actively corrupt any subset
of the players in Si

a and additionally compromise the secret keys of any subset
of the players in Si

c.

We restrict our attention to the case of three parties (named A, B, and C) and
S defined as follows:

S =

⎧⎨⎩
({A}, ∅)

({B}, {A})
({C}, {A})

⎫⎬⎭ . (1)

Lemma 2. In the presence of an S-adversary, for S defined as above, there does
not exist a protocol achieving broadcast for dealer A.

Proof. Suppose, towards a contradiction, that there exists a protocol Π for com-
puting broadcast in the presence of an S-adversary when A is the dealer. Let
ΠA, ΠB, ΠC denote the code specified by Π for players A,B, and C, respectively.

Consider an experiment in which four machines are arranged in a rectangle
(see Figure 2). The top left and top right nodes will run ΠB and ΠC , respectively.
The bottom left node will run ΠA using input 1, and the bottom right node will
run ΠA using input 0. Public and secret keys for A,B, and C are generated
honestly, and both executions of ΠA use the same keys.

Claim. In the experiment of Figure 2, ΠB outputs 1.

Proof. Consider an execution in the real network of three players, in the case
where A holds input 1 and the adversary corrupts C and compromises the secret

Authenticated Broadcast with a Partially Compromised PKI 151

key of A. The adversary then simulates the right edge of the rectangle from
Figure 2 while interacting with the (real) honest players A and B (running the
code for ΠA(1) and ΠB, respectively). That is, every time the corrupted player
C receives a message from B the adversary forwards this message to its internal
copy of ΠC , and every time C receives a message from A the adversary forwards
this message to its internal copy of ΠA(0). Similarly, any message sent by ΠC

to ΠB is forwarded to the real player B, and any message sent by ΠA(0) to
ΠA(1) is forwarded to the real player A. (Messages between ΠC and ΠA(0) are
forwarded internally.) This defines a legal S-adversary. If Π is a secure protocol,
validity must hold and so B in the real network (and hence ΠB in the mental
experiment) must output 1.

Claim. In the experiment of Figure 2, ΠC outputs 0.

The proof is the same as above.

Claim. In the experiment of Figure 2, ΠB and ΠC output the same value.

Proof. Consider an execution in the real network of three players when the
adversary corrupts A (and does not further compromise anyone). The adversary
then simulates the bottom edge of the rectangle when interacting with the real
players B and C, in the obvious way. Since this defines a legal S-adversary,
security of Π implies that agreement must hold between B and C in the real
network and so the outputs of ΠB and ΠC must agree in the mental experiment.

The three claims are contradictory, and so we conclude that no secure protocol
Π exists.

We remark that impossibility holds even if we relax our definition of broadcast
and allow agreement/validity to fail with negligible probability.

4.2 Impossibility of Broadcast for 2ta + min(ta, tc) ≥ n

Theorem 3. Fix n, ta, tc with tc > 0 and 2ta + min(ta, tc) ≥ n. There is no
protocol achieving broadcast in the presence of a (ta, tc)-adversary.

Proof. We prove the theorem by demonstrating that a broadcast protocol Π
secure in the presence of a (ta, tc)-adversary with 2ta + min(ta, tc) ≥ n, yields
a protocol Π ′ for 3-player broadcast in the presence of an S-adversary for S as
defined in the previous section. Using Lemma 2, this shows that such a protocol
Π cannot exist. In fact, we show this even assuming the dealer is fixed in advance.

Assume that such a protocol Π exists. We construct a protocol Π ′ for 3-player
broadcast by having each player simulate a subset of the players in the n-player
protocol Π . The simulation proceeds in the obvious way, by having each of the
3 players run the code of the parties they simulate in Π . They forward any
messages sent by the simulated parties to the player simulating the destination
party, who uses these as incoming messages for his simulated players. To provide
a PKI for the simulated protocol we view the keys of each of the 3 players as

152 S.D. Gordon et al.

consisting of multiple keys. Player A’s public key is PKA = (pk1, . . . , pka) and
his secret key is SKA = (sk1, . . . , ska) for some number of simulated players a.
The players in the 3-player protocol determine their outputs from the outputs
of the players they simulate. If all players simulated by A output the same value
b in the simulated protocol, then A outputs b. Otherwise, A outputs a special
value ⊥. Note that an adversarial player can only simulate adversarial players
and an honest but compromised player can only simulate compromised players
since the adversary learns all the secret keys of player A’s simulated players when
A’s key is compromised.

We let A simulate a set of at most min(ta, tc) players, including the dealer,
and let B and C each simulate at most ta players. Since 2ta + min(ta, tc) ≥ n,
it is possible to do this in such a way that each of the n original players is
simulated by one of A,B, or C. We now consider each of the three allowed types
of corruption for the adversary A as per Definition 2, and demonstrate that
the corresponding corruption in the n-player protocol is also “legal”: that is, we
demonstrate that the allowed actions for A translate into adversarial actions for
which the non-faulty players in Π terminate correctly, achieving broadcast in the
simulated n-player protocol. This implies a secure 3-player broadcast protocol
in the presence of A.

Recall that, by assumption, Π is secure against a (ta, tc)-adversary; as long
as no more than ta players are corrupt, and no more than tc are compromised,
Π satisfies the requirements of authenticated broadcast. If A′ chooses the pair
({A}, ∅), all players simulated by A in Π ′ are corrupt and the players simulated
by B and C are honest and non-compromised. Since, min(ta, tc) ≤ ta, this is
an allowed corruption for a (ta, tc)-adversary, and Π executes correctly implying
that Π ′ terminates with the correct output. Next, if A′ chooses ({B}, {A}) this
will result in a (ta,min(ta, tc)) corruption. Since min(ta, tc) ≤ tc, this corruption
type is also permitted in Π , and Π ′ executes correctly. Finally, the corruption
type ({C}, {A}) is handled identically to that of ({B}, {A}). Since we proved in
Lemma 2 that no such protocol Π ′ exists, this proves the theorem.

4.3 Impossibility of Broadcast with a Threshold Adversary

We now turn to the case of the threshold adversary. Recall that in this setting
the exact values of ta and tc used by the adversary are not known; we only know
that they satisfy 2ta +min(ta, tc) < n (and we do allow tc = 0). In what follows,
we show that secure broadcast is impossible if n /∈ {2, 3, 4, 5, 6, 8, 9, 12}. For the
“exceptional” values of n, we demonstrate feasibility in Section 5.

Theorem 4. If n ≤ 2
⌊

n−1
3

⌋
+�n−1

2 �, then there does not exist a secure broadcast
protocol for n players in the presence of a threshold adversary. (Note that n ≤
2

⌊
n−1

3

⌋
+ �n−1

2 � for all n > 1 except n ∈ {2, 3, 4, 5, 6, 8, 9, 12}.)

Proof. Assume there exists a protocol Π for n satisfying the stated inequality.
We show that this implies a protocol Π ′ for broadcast with 3 players in the
presence of the adversary A from Definition 2. By Lemma 2, we conclude that
Π cannot exist. In fact, we show this even assuming the dealer is fixed in advance.

Authenticated Broadcast with a Partially Compromised PKI 153

We construct Π ′ using a player simulation argument as in the previous section.
Let A simulate a set of at most �n−1

2 � players, and including the dealer. B and
C each simulate at most

⌊
n−1

3

⌋
players and at least one player. By the stated

inequality, it is possible to do this in such a way that A, B, and C simulate all
n players. We now show that the three allowed types of corruption for A (in the
3-party network) are also allowed corruption patterns for the n-player threshold
adversary A′.

If A corrupts A, this corresponds to corruption of �n−1
2 � players in Π (and

no compromised players). Since 2�n−1
2 � < n, this is a legal corruption pattern

for a threshold adversary and Π should remain secure. If A corrupts B and
compromises A, this corresponds to ta =

⌊
n−1

3

⌋
players and tc = �n−1

2 � players
in Π . Since 2

⌊
n−1

3

⌋
+ min{

⌊
n−1

3

⌋
, �n−1

2 �} = 3
⌊

n−1
3

⌋
< n, this is again a legal

corruption pattern for a threshold adversary and Π should remain secure. The
case when C is corrupted and A is compromised is exactly analogous.

5 Handling the Exceptional Values of n

We refer to {2, 3, 4, 5, 6, 8, 9, 12} as the set of exceptional values for n. (These are
the only positive, integer values of n for which Theorem 4 does not apply.) We
show for any exceptional value of n a broadcast protocol that is secure against
any threshold adversary. Designing protocols in this setting is more difficult
than in the setting of Section 3, since the honest parties are no longer assumed
to “know” whether ta ≤ tc.

Our protocol, which we refer to as authLSP, is an authenticated version of the
exponential protocol of Lamport et al. [8]; see Figure 3. Although the message
complexity of this protocol is exponential in the number of players, the maximum
number of players considered here is 12. In this full version of this work [4], we
provide a more efficient protocol under the assumption that there is at least one
honest and uncompromised player.

We say a message M is valid if it has the form (v, sP1 , . . . , sPi), where all Pj ’s
are distinct, the string sPj is a valid signature on (v, sP1 , . . . , sPj−1) relative to the
verification key of Pj , and one of the sPj is the signature of the dealer. (We note
that authLSP is defined recursively, and the criteria for deciding if a message is
valid is defined with respect to the dealer of the local execution.) We also assume
implicitly that each message has a tag identifying which execution it belongs to.
These tags (together with uncompromised signatures) will prevent malicious
players from substituting the messages of one execution for those of another
execution. We refer to v as the content of such a message. When we say that an
execution of authLSP satisfies agreement or validity (cf. Definition 1), we mean
that the output is a valid message whose content satisfies these properties. We
note that in the protocol authLSP, it is possible for honest players to have invalid
input. In this case, we change the definition of validity slightly to require that all
honest players (including the dealer) output messages with content 0. Finally,
we let th = n− tc− ta denote the number of honest and uncompromised parties.
One useful observation about threshold adversaries that we will repeatedly use
is that when ta >

⌊
n−1

3

⌋
, it follows that th > ta.

154 S.D. Gordon et al.

Protocol authLSP(m)

Inputs: The protocol is parameterized by an integer m. Let D be the dealer
with input M of the form M = (v, sP1 , . . . , sPi) with 0 ≤ i ≤ n (M is not
necessarily valid).

Case 1: m = 0

1. If the content of M is not in {0, 1}, D sets M = 0.a D sends Md =
(M, SignskD

(M)) to all other players and outputs Md.
2. Letting Mi denote the message received by Pi, Pi ouputs Mi.

Case 2: m > 0

1. If the content of M is not in {0, 1}, D sets M = 0. D sends Md =
(M, SignskD

(M)) to all other players and outputs Md.
2. Let P ′ = P \ {D}. For Pi ∈ P ′, let Mi denote the message received
by Pi from D. Pi plays the dealer in authLSP(m− 1) for the rest of the
players in P ′, using message Mi as its input.

3. Each Pi locally does the following: for each Pj ∈ P ′, let Mj be the
output of Pi when Pj played the dealer in authLSP(m − 1) in step 2.
For each Mj , Pi sets value bj as follows:

bj =
{

the content of Mj if Mj is valid
⊥ otherwise

(We stress that the above also includes the output of Pi when he was
dealer in step 2.) Pi computes b∗ = majority(bj). If there is no value in
strict majority, Pi outputs 0.

4. Pi outputs the first valid message Mj (lexicographically) with con-
tent b∗.

a As mentioned in the text, we assume the dealer also includes the appro-
priate tag identifying which execution M belongs to. We do not mention
this again going forward.

Fig. 3. Protocol authLSP

The next two lemmas follow readily from [8]; we do not prove them here.

Lemma 3. If n > 3m and m ≥ ta, then authLSP(m) achieves validity and
agreement.

Lemma 4. If the dealer D is honest and n > 2ta+m, then authLSP(m) achieves
validity and agreement.

We now prove several additional lemmas about authLSP.

Lemma 5. If the dealer is honest and uncompromised, then authLSP(m)
achieves validity and agreement for any m.

Proof. Let D be the dealer with input that has content bd. (Recall that if bd /∈
{0, 1}, then D switches his input for valid input with content bd = 0.) It follows

Authenticated Broadcast with a Partially Compromised PKI 155

from the protocol description that D outputs a valid message with content bd.
Furthermore, when an honest player is dealer in the recursive call in step 2,
it has input and output with content bd. Therefore, when honest Pi computes
majority(bj) in step 3 of authLSP, it sets the value bi = bd. On the other hand,
since D is honest and uncompromised, the adversary cannot produce a valid
message with content 1 − bd (recall that for a message to be valid, it must
contain the signature of the dealer). It follows then that bj
= 1−bd for all values
used to compute majority in step 3. Validity and agreement follow.

Lemma 6. If the dealer is honest and compromised, and th > ta, then protocol
authLSP(m) achieves validity and agreement for any m.

Proof. It is easy to see that the lemma holds for m = 0. Let us assume the
lemma holds for authLSP(m − 1), and consider authLSP(m). If an honest and
uncompromised player is the dealer in step 2 of authLSP(m) (i.e. in the recursive
call to authLSP(m− 1)), then by Lemma 5 this run achieves validity and agree-
ment. If an honest but compromised player is the dealer in step 2, then it still
holds in the recursive execution that th > ta, since the dealer is not counted in
th, and all other players participate in the execution of authLSP(m− 1); by the
induction hypothesis this execution achieves validity and agreement on output
bd as well. It follows that in step 3 of authLSP(m), for each honest player Pi, at
least n − ta − 1 of the bj values equal bd and at most ta of the bj values equal
(1 − bd). Since n − ta − 1 ≥ th > ta, bd is the majority value for each honest
player, and the lemma follows.

Theorem 5. For any value n ∈ {2, 3, 4, 5, 6, 8, 9, 12} there exists a protocol for
n players that achieves broadcast in the presence of a threshold adversary.

Proof. The case n = 2 is trivial. When n = 3, it follows from our constraints
that ta ≤ 1 and tc = 0, so we can run any authenticated byzantine agreement
protocol. When n = 4, it follows from our constraints that ta ≤ 1, and therefore
that n > 3ta, so we can ignore the PKI and run a protocol that is secure without
authentication. The remainder of the proof deals with n ∈ {5, 6, 8, 9, 12}.

Lemma 7. For n ∈ {5, 6, 8}, authLSP(
⌊

n−1
3

⌋
+ 1) achieves broadcast in the

presence of a threshold adversary.

Proof. We prove the lemma by considering all possible types of dealers. We let
bd denote the input bit of the dealer D.

D is honest and not compromised: This case follows from Lemma 5.

D is honest and compromised: Consider the following two scenarios:

ta ≤ �n−1
3 �: For n ∈ {5, 6, 8}, we have n > 2

⌊
n−1

3

⌋
+

⌊
n−1

3

⌋
+ 1 ≥ 2ta + m,

where the first inequality holds because of our assumption on n, and the second
from our assumption on ta. Applying Lemma 4 we get validity and agreement
as claimed.

156 S.D. Gordon et al.

ta > �n−1
3 �: Since we assume a threshold adversary, in this case we have th > ta

(cf. section 2). Applying Lemma 6, agreement and validity follow.

D is malicious: Since we assume a threshold adversary, we have that n > 2ta.
We note that the malicious dealer is excluded from each of the executions of
authLSP(

⌊
n−1

3

⌋
) in step 2, and therefore, of the n − 1 players that participate

in those executions, only ta − 1 are malicious. The reader can verify that for
n ∈ {5, 6, 8}, n− 1 > 3

⌊
n−1

3

⌋
, and that

⌊
n−1

3

⌋
≥ ta − 1 (recalling that ta < n

2).
Applying Lemma 3, we have agreement in each execution of authLSP(

⌊
n−1

3

⌋
)

in step 2. Agreement in authLSP(
⌊

n−1
3

⌋
+ 1) follows when the players compute

their output in steps 3 and 4.

Lemma 8. For n ∈ {9, 12}, Protocol authLSP(
⌊

n−1
3

⌋
+ 2) achieves broadcast in

the presence of a threshold adversary.

Proof. We prove the lemma by considering all possible types of dealers.

D is honest and uncompromised: This case follows from Lemma 5.

D is honest and compromised: Consider the following two scenarios:

ta ≤ �n−1
3 �: For n ∈ {9, 12}, we have n > 2

⌊
n−1

3

⌋
+

⌊
n−1

3

⌋
+2 ≥ 2ta +m, where

the first inequality holds by our assumption on n, and the second holds by our
assumption on ta. Applying Lemma 4 we get validity and agreement as claimed.

ta > �n−1
3 �: Because we assume a threshold adversary, we have th > ta

(cf. section 2). Applying Lemma 6, agreement and validity follow.

D is malicious: We consider the recursive execution of authLSP(
⌊

n−1
3

⌋
+ 1)

in step 2, and prove agreement for each of the n − 1 dealers. When the dealer
in step 2 is honest and uncompromised, by Lemma 5 we have agreement in
his execution. If the dealer is honest and compromised we consider two further
possibilities. If ta ≤

⌊
n−1

3

⌋
, then among the n − 1 players participating in this

recursive execution, of which at most ta − 1 are malicious, we have

n− 1 > 3
⌊
n− 1

3

⌋
− 1 = 2

(⌊
n− 1

3

⌋
− 1

)
+

(⌊
n− 1

3

⌋
+ 1

)
≥ 2 (ta − 1) +

(⌊
n− 1

3

⌋
+ 1

)
.

By Lemma 4, agreement follows. If the dealer is honest and compromised and
ta >

⌊
n−1

3

⌋
, then th > ta and by Lemma 6 agreement follows. If the dealer in

step 2 is malicious, consider what happens in the next recursive step when the
players execute authLSP(

⌊
n−1

3

⌋
). Now two malicious dealers have been excluded:

both the dealer in authLSP(
⌊

n−1
3

⌋
+ 2) and the dealer in authLSP(

⌊
n−1

3

⌋
+ 1).

Noting that the maximum number of malicious players is 4 when n = 9 and 5
when n = 12 (because we have a threshold adversary), it follows that among the
remaining n−2 players, n−2 > 3(

⌊
n−1

3

⌋
) and

⌊
n−1

3

⌋
≥ ta−2. Applying Lemma 3,

we have agreement for all dealer types in authLSP(
⌊

n−1
3

⌋
), and agreement follows

Authenticated Broadcast with a Partially Compromised PKI 157

for all malicious dealers in the executions of authLSP(
⌊

n−1
3

⌋
+ 1). Since we have

proven agreement for all dealer types in authLSP(
⌊

n−1
3

⌋
+1), we have agreement

in the execution of authLSP(
⌊

n−1
3

⌋
+ 2) as well.

This concludes the proof of Theorem 5.

The views and conclusions contained in this document are those of the authors
and should not be interpreted as representing the official policies, either ex-
pressed or implied, of the US Army Research Laboratory, the US Government,
the UK Ministry of Defense, or the UK Government. The US and UK Gov-
ernments are authorized to reproduce and distribute reprints for Government
purposes, notwithstanding any copyright notation herein.

References

1. Dolev, D., Strong, H.: Authenticated algorithms for Byzantine agreement. SIAM
Journal on Computing 12(4), 656–666 (1983)

2. Dziembowski, S., Pietrzak, K.: Leakage-resilient cryptography. In: 49th Annual
Symposium on Foundations of Computer Science (FOCS), pp. 293–302. IEEE, Los
Alamitos (2008), http://eprint.iacr.org/2008/240

3. Fitzi, M., Holenstein, T., Wullschleger, J.: Multi-party computation with hybrid se-
curity. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027,
pp. 419–438. Springer, Heidelberg (2004)

4. Gordon, S., Katz, J., Kumaresan, R., Yerukhimovich, A.: Authenticated
broadcast with a partially compromised public-key infrastructure (2009),
http://eprint.iacr.org/2009/410

5. Gupta, A., Gopal, P., Bansal, P., Srinathan, K.: Authenticated Byzantine generals
in dual failure model. In: Distributed Computing and Networking (ICDCN). LNCS,
vol. 5935, pp. 79–91. Springer, Heidelberg (2010)

6. Kocher, P.C.: Timing attacks on implementations of Diffie-Hellman, RSA, DSS,
and other systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp.
104–113. Springer, Heidelberg (1996)

7. Kocher, P.C., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999)

8. Lamport, L., Shostak, R.E., Pease, M.C.: The Byzantine generals problem. ACM
Trans. Programming Language Systems 4(3), 382–401 (1982)

9. MS00-008: Incorrect registry setting may allow cryptography key compromise. Mi-
crosoft Help and Support, http://support.microsoft.com/kb/259496

10. Nguyen, P.Q.: Can we trust cryptographic software? Cryptographic flaws in GNU
privacy guard v1.2.3. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004.
LNCS, vol. 3027, pp. 555–570. Springer, Heidelberg (2004)

11. Ostrovsky, R., Yung, M.: How to withstand mobile virus attacks. In: 10th Annual
ACM Symposium on Principles of Distributed Computing (PODC), pp. 51–59.
ACM Press, New York (1991)

12. Pease, M., Shostak, R.E., Lamport, L.: Reaching agreement in the presence of
faults. J. ACM 27(2), 228–234 (1980)

http://eprint.iacr.org/2008/240
http://eprint.iacr.org/2009/410
http://support.microsoft.com/kb/259496

158 S.D. Gordon et al.

A The Dolev-Strong Protocol

For completeness, we present a modified version of the Dolev-Strong [1] protocol
for authenticated broadcast. (See Figure 4.) A message M is called (v, i)-valid
if it was received in round i and has the form (v, sP1 , . . . , sPi), where P1 = D,
all Pj ’s are distinct, and for every j = 1, . . . , i the string sPj is a valid signature
on (v, sP1 , . . . , sPj−1) relative to the verification key of Pj . We refer to v as
the content of a valid message. If the dealer is honest and uncompromised,
there will only be (v, �)-valid messages for a single value v, in which case the
players consider the execution clean. Otherwise, the execution is called dirty.
We note that the protocol differs from the original Dolev-Strong [1] protocol
only in round complexity: we always require n + 1 rounds to ensure that all
players agree whether the run was dirty. We also assume at least one honest and
uncompromised player.

DS

Inputs: Let D be the dealer with input bd ∈ {0, 1}∗ and secret key skD.

1. (Round r = 0) D sends (bd, SignskD
(bd)) to every player.

2. In round r = 1 to n:

1. Every player Pi checks every incoming message and discards any
that are not (·, r)-valid or that already contain Pi’s signature. Pi

orders the remaining messages lexicographically.
– If the content, v, of all remaining messages is identical, Pi

appends its signature to the first message (thus forming a
(v, r + 1)-valid message) and sends the result to all players.

– If there exist 2 messages with different content, Pi appends its
signature to the first 2 such messages and sends the result to
all players.

2. Termination:

1. If Pi ever received valid messages with different content, then it
outputs a default value.

2. If Pi only received valid messages for one value v, then it outputs v.
3. If Pi never received a valid message for either v ∈ {0, 1} then it

outputs a default value.

Fig. 4. The Dolev-Strong protocol for broadcast

On Applicability of Random Graphs for
Modeling Random Key Predistribution for

Wireless Sensor Networks

Tuan Manh Vu, Reihaneh Safavi-Naini, and Carey Williamson

University of Calgary, Calgary, AB, Canada

Abstract. We study the applicability of random graph theory in model-
ing secure connectivity of wireless sensor networks. Specifically, our work
focuses on the highly influential random key predistribution scheme by
Eschenauer and Gligor to examine the appropriateness of the modeling
in finding system parameters for desired connectivity. We use extensive
simulation and theoretical results to identify ranges of the parameters
where i) random graph theory is not applicable, ii) random graph theory
may lead to estimates with excessive errors, and iii) random graph the-
ory gives very accurate results. We also investigate the similarities and
dissimilarities in the structure of random graphs and key graphs (i.e.,
graphs describing key sharing information between sensor nodes). Our
results provide insights into research relying on random graph modeling
to examine behaviors of key graphs.

1 Introduction

Wireless sensor networks (WSNs) are ad-hoc networks that consist of hundreds
to thousands of small sensor nodes communicating wirelessly to collect and de-
liver data to base stations. Generally, sensor networks rely on symmetric key
algorithms to avoid the high computation cost of public key crypto-systems
such as Diffie-Hellman key exchange [3]. Furthermore, traditional methods of
key establishment that use a trusted authority (e.g., Kerberos protocol [16]) are
not suitable due to the frequently used unattended deployments of WSNs.

Eschenauer and Gligor (EG) [6] pioneered an innovative randomized approach
to key establishment that provides an efficient and self-organising way of con-
structing pairwise keys for sensor nodes with guaranteed security. In the EG
scheme, every sensor receives a random subset of m keys called a key ring, from
a key pool of N keys. Once deployed, sensor nodes broadcast the identifiers of
keys in their key rings to discover wireless neighbors with whom they have at
least one key in common, and then establish secure links.

The key graph for a WSN of n sensor nodes is a graph with n vertices in which
each node is represented by a vertex, and two vertices are joined by an edge if
the two corresponding nodes share at least one key. The important question is
how to choose key ring size m and key pool size N so that the key graph is con-
nected with desired probability c. A connected key graph implies that any two

S. Dolev et al. (Eds.): SSS 2010, LNCS 6366, pp. 159–175, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

160 T.M. Vu, R. Safavi-Naini, and C. Williamson

nodes can set up a pairwise key. Eschenauer and Gligor modeled the key graph
as an Erdős-Rényi random graph G(n, p), a graph of n nodes where each possi-
ble edge exists independently with a fixed probability p. This modeling allows
to determine m given N and n such that secure connectivity is guaranteed with
probability c. The EG scheme has generated a flurry of research on key predistri-
bution for WSNs that employ Erdős-Rényi’s theory of random graphs to study
connectivity [2,4,10,13,14,15]. This modeling makes two crucial assumptions:

1. Asymptotic results provide accurate prediction for all network sizes.
Erdős-Rényi[5] studied asymptotic behavior of random graphs, showing that
as n → ∞ there are certain properties that will almost surely appear in
the graph, once the edge probability exceeds a threshold that depends on
the property. Connectivity is one such property; a random graph with edge
probability p = ln(n)−ln(−ln(c))

n is connected with probability c. It is how-
ever unclear if choosing p as above for all possible values of n will achieve
connectivity with probability c.

2. Edge probability in key graphs is fixed and edge probabilities are independent.
In key graphs, although the probability that an edge between two arbitrarily
given nodes exists is fixed, these probabilities are not independent of the
existence of other edges in the graph [17]. For example consider a key graph
for a network with three nodes X , Y , and Z, and key ring size m = 2.
Using the results from [6] for sufficiently large key pool size, say N > 10,
the probability that two nodes share at least one key is less than 50% (see
Equation 5). However, if the two pairs (X,Y) and (Y, Z) each share a key,
then the probability that X and Z have at least one key in common exceeds
50%, regardless of N . This is because both X and Z have at least one key
in a fixed set of two keys (i.e., key ring of Y). This is referred to as the
transitivity property. There are also certain values of (N,m) for which the
key graph is clearly not an Erdős-Rényi random graph. For instance, if each
node has only one key (i.e., m = 1), then the set of all nodes having the
same key forms a complete graph.

The goals of this paper are i) to study the applicability of random graph theory
in estimating key ring size (for desired connectivity probability) in key graphs,
and ii) to compare structural properties of the two families of graphs. The latter
study is motivated by application of random key predistribution in secure group
connectivity in sensor and ad-hoc networks.

1.1 Our Work

We consider the following two questions:

Q1 Can random graphs be always used to model secure connectivity achieved
by random key predistribution systems, and when applicable how accurate
are the estimated key ring sizes?

Q2 How similar are the structural properties of the two graph families?

On Applicability of Random Graphs 161

We provide two types of results: (i) analytical results and (ii) simulation results.
The latter results are obtained by constructing many random instances of key
graphs and determining the relative frequency of instances that have the property
of interest. For this, we developed a simulator [19] that can efficiently generate
key graphs from the prescribed random key assignment process. Using results
from statistics we estimate the measurement error and confidence intervals for
the obtained values.

Our results for Q1: The simulated key ring sizes for a network of size n differ
from the analytical results. The differences can be categorized into four intervals
delineated by three threshold values n

[N,c]
1 , n

[N,c]
2 , n

[N,c]
3 .

1. Interval I: n ≤ n
[N,c]
1 . Random graph theory cannot be used as it results in

p > 1 which is an invalid edge probability. The value n
(N,c)
1 is independent

of key pool size N and is determined only by connectivity c.
2. Interval II: n

[N,c]
1 < n < n

[N,c]
2 . Random graph theory can be used in this

interval, however key ring sizes predicted by random graph modeling are
slight over-estimation. We define over-estimation as the relative error ≥ 5%
and the absolute error > 2 (see Section 3.2 for more details). When the
network size n and connectivity c are fixed, the value of n

[N,c]
2 increases as

N grows. Nevertheless, the empirical simulation results suggest that for wide
ranges of parameters (see Table 2), n

[N,c]
2 never exceeds 100.

3. Interval III: n
[N,c]
2 ≤ n < n

[N,c]
3 . In this interval, random graph modeling

provides very good estimates for m (i.e., compared to key ring sizes obtained
by simulations, either the relative error < 5% or the absolute error ≤ 2), and
the predicted key ring size ≥ 2. The value n

[N,c]
3 depends on connectivity c

and key pool size N .
4. Interval IV: n ≥ n

[N,c]
3 . In this interval, random graph modeling always gives

m = 1. This however does not provide connectivity except for the trivial
case where all nodes have the same key. Simulation results suggest that m
should be 2 instead.

The results suggest that random graph theory, when used within appropriate
parameter ranges, provides very good estimates of key predistribution parame-
ters for achieving desired secure connectivity of WSNs.

Our results for Q2: We consider the following structural properties:

1. Global clustering coefficient.
2. The size of the maximal clique.
3. The number of cliques with respect to clique sizes.

These properties are important in studying key predistribution as well as routing
in WSN. Global clustering is a measure of transitivity that also enables us to
explain behavior of the other two properties. Cliques are used in many ad-hoc
algorithms for constructing group-wise keys, detecting intrusion and choosing

162 T.M. Vu, R. Safavi-Naini, and C. Williamson

group leaders (i.e., clusterheads in WSNs), as well as algorithms for finding
capacity, quality of service, and routing [8,11,12,21]. Our study shows that:

1. Global clustering coefficient of key graphs deviates significantly from that of
random graphs for smaller key ring sizes, but starts to converge as the key
ring size increases.

2. Key graphs contain many more cliques than do random graphs of the same
size.

3. The maximal clique size observed in a key graph is much larger than in
random graphs of the same size.

The rest of this paper is organized as follows. In Section 2, we give background
preliminaries and definitions. Section 3 explains our methodology and results
for estimating key ring size. Structural properties of the two graph families are
compared in Section 4 and finally, Section 5 provides concluding remarks and
directions for future work.

2 Preliminaries

2.1 Random Graph

An Erdős-Rényi random graph, denoted by Gr(n, p), is a graph of size n gener-
ated through the following random process. First, we start with n vertices and
no edges. Next, each of n·(n−1)

2 possible edges between vertex pairs is added to
the graph with probability p, determined by a biased coin flip. A graph obtained
through this random and independent edge generation process is an instance
from a family of random graphs.

Connectivity
The probability of Gr(n, p) being connected is the probability that the random
and independent edge generation process with parameters n and p results in a
connected graph. Erdős and Rény showed that,

lim
n→∞

Pr [Gr (n, p) is connected] = c, where p =
ln(n)− ln(−ln(c))

n
(1)

Global clustering coefficient
Holland and Leinhardt [9] introduced the notion of global clustering coefficient
C. This is an important measurement in studying social and real-world networks
to examine the property, “a friend of my friend is likely to be my friend as well”.
In other words, C implies transitivity relation between pairs of vertices: if there
exists an edge between vertices (X,Y) and an edge between vertices (Y, Z), then
there is a high probability that there is an edge between vertices (X,Z). Global
clustering coefficient is defined as a metric for a particular graph. In the family
of random graphs, since each edge occurs independently, we have

E[C] = p. (2)

On Applicability of Random Graphs 163

Number of cliques
A clique in an undirected graph G is a subset S of vertices such that every two
vertices in S are connected by an edge. Let the random variable Γk(G) denote
the number of cliques of size k in G. Given a subset S of k vertices in Gr(n, p),
the number of pairs of vertices is k·(k−1)

2 , and thus the probability of S being a
clique is pk·(k−1)/2 [1] and

E[Γk(Gr(n, p))] =
(

n
k

)
· pk·(k−1)/2. (3)

Maximal clique size
Let the random variable Υ (G) denote the maximal size of a clique in an undi-
rected graph G. Specifically, Υ (G) = max{k : Γk(G) > 0}. Grimmett and Mc-
Diarmid [7] studied asymptotic behavior of the maximal clique size in random
graphs, showing that

lim
n→∞

Υ (Gr(n, p))
ln(n)

=
2

ln(1/p)
. (4)

2.2 Key Graph

A key graph Gk(n,N,m) describing key sharing information between nodes is
constructed through the following random key assignment process. We start with
n nodes, each with a randomly chosen key ring of size m from a key pool of size
N . For every two nodes X and Y that share at least one key, we add the edge
(X,Y). All instances of graphs corresponding to all possible key assignments
with parameters (n,N,m) define a family of key graphs.

2.3 Modeling Key Graphs Using Erdős-Rényi Random Graph
Theory

Two arbitrary nodes are joined by an edge if their assigned key rings intersect.
As shown by Eschenauer and Gligor [6], this occurs with probability

pkey sharing = 1− ((N −m)!)2

N ! · (N − 2 ·m)!
. (5)

Assuming Gk(n,N,m) is Gr(n, pkey sharing), Equation 1 suggests that to achieve
connectivity c, pkey sharing should be at least ln(n)−ln(−ln(c))

n . This allows key
ring size m to be estimated as a function of n, N , and c.

3 Applicability of Random Graph Theory in Estimating
Key Ring Size

In the following, we give our theoretical results and explain how simulation data
are obtained, and then discuss our observations.

164 T.M. Vu, R. Safavi-Naini, and C. Williamson

3.1 Framework

Using Random Graph Theory: As explained in Section 2.3, for network size
n, key pool size N , and desired connectivity c, key ring size m is estimated as
the smallest integer that satisfies the following

1− ((N −m)!)2

N ! · (N − 2 ·m)!
≥ ln(n)− ln(−ln(c))

n
. (6)

Using Simulation: To find true connectivity probability c for key graphs with
parameters (n,N,m), we need to generate all key graphs with these parameters
and find the ratio of the connected graphs to the total number. The number of
key assignments, however, grows exponentially with n, N , and m, which makes
this calculation infeasible. We therefore use random sampling of the set of key
graphs to estimate connectivity. By selecting a sufficiently large sample size, the
simulation results give, with high confidence, an accurate estimate of c.

We use two algorithms. Algorithm 1 takes inputs n, N , m, and the size S
of the sample set, generates S random instances of Gk(n,N,m), examines their
connectivity, and calculates the ratio of connected key graphs to S. This is the
estimation of connectivity ĉ of Gk(n,N,m). Algorithm 2 performs binary search
on the given interval (i.e., the algorithm inputs) to determine the smallest m
such that ĉ ≥ c. This method works correctly since when network size n and
key pool size N are fixed, connectivity probability c monotonically increases as
key ring size m grows. The pseudocode for both algorithms are given in the
appendix.

Error and Confidence Interval: In the experiments, we use a sample size of
S = 10, 000 to achieve a reasonable statistical behavior. In particular, if ĉ is the
estimated connectivity of Gk(n,N,m) obtained by Algorithm 1, the standard

deviation of ĉ is σ =
√

ĉ·(1−ĉ)
S =

√
ĉ·(1−ĉ)
100 . With the 99% confidence level,

the true connectivity c falls within z∗ · σ from ĉ, where z∗ is the critical value
corresponding to the desired confidence level. For the 99% confidence level, we
have z∗ = 2.58. Table 1 summarizes the confidence intervals for different values
of ĉ, showing that 10,000 random samples give a very good estimate of graph
connectivity. For instance, if Gk(n,N,m) is connected with probability ĉ = 0.8
in the experiment, then the true connectivity c lies in the interval (0.8 ± 0.0103)
99% of the time.

Table 1. Accuracy of graph connectivity simulation results with 99% confidence level

Connectivity Std error Margin of error Confidence
ĉ σ (z∗ · σ = 2.58 · σ) interval

0.500 0.0050 0.0129 0.500 ± 0.0129
0.700 0.0046 0.0119 0.700 ± 0.0119
0.900 0.0030 0.0077 0.900 ± 0.0077
0.999 0.0003 0.0008 0.999 ± 0.0008

On Applicability of Random Graphs 165

Data Sets: We obtain key ring size m theoretically and using simulation over
wide ranges of n, N , and c as indicated in Table 2. Our observations are discussed
in the next section.

Table 2. Data sets

Parameter Range

Network size n {3..100, i · 10j | i = 2..10, j = 2..3}
Key pool size N {10, 1

4
· 10i, 1

2
· 10i, 3

4
· 10i, 10i | i = 2..5}

Desired connectivity c {0.5, 0.6, 0.7, 0.8, 0.9, 0.99, 0.999}

3.2 The Results

We first compare m obtained theoretically and by simulation when both N and c
are fixed, and discuss how the value of n affects the applicability and accuracy of
random graph modeling. We then extend these results to all n, N , and c ≥ 50%.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 1 10 100 1000 10000

K
ey

 r
in

g
si

ze
 (

m
)

Graph size (n)

(I) (II) (III) (IV)

n = 7 n = 10 n = 1167

n = 3
m = 16

Predicted key ring size
Simulated key ring size

Fig. 1. Key ring size with respect to network size when key pool size N = 100 and
desired connectivity c = 99%

Figure 1 plots key ring sizes with respect to network size n when N = 100
and c = 99%. In Figure 1, we can identify four distinct intervals.

Interval I, n ≤ n
[N,c]
1 - Small graphs: Figure 1 does not have the plot for

theoretical key ring size for n ≤ 6. This is because, for n ≤ 6, N = 100, and
c = 99%, random graph theory estimates edge probability p > 1 (see Equa-
tion 1), which cannot be achieved.

Finding n
[N,c]
1 : Random graph theory suggests that p ≥ ln(n)−ln(−ln(c))

n where
connectivity c ∈ (0, 1). Additionally, n ∈ [3,∞) as only networks with at least
three nodes are of interest. We want to determine for which values of c and n
in their respective domains, ln(n)−ln(−ln(c))

n becomes an invalid probability. Due
to the limited space, we do not go into the details but summarize the results
instead. Basically, we examine the variation of p(n) = ln(n)−ln(−ln(c))

n , and find

166 T.M. Vu, R. Safavi-Naini, and C. Williamson

when p(n) is equal to 0 and 1, and reaches the maximum. From that, we make
the following observations.

1. When c is close to 0, there is a bound n
[N,c]
0 of n such that ∀n ∈ [3, n[N,c]

0] :
p(n) < 0. Explicitly, let n

[N,c]
0 be the solution to p(n) = 0, n

[N,c]
0 = −ln(c).

It follows that, n
[N,c]
0 ≥ 3 (i.e., −ln(c) ≥ 3) if and only if c < c† where

c† = e−3 0.05. In short, ∀c < c†, ∀n ∈ [3,−ln(c)] : p(n) < 0. In such
cases, random graph theory suggests that choosing edge probability 0 (i.e.,
key ring size m = 0) will achieve connectivity c. However, if m = 0, the key
graph is surely disconnected, and c is 0. Nevertheless, since c is too small
(i.e., c < 0.05) to be considered in an actual WSN deployment, we are not
interested in this case.

2. When c is close to 1, there is a bound n
[N,c]
1 of n such that ∀n ∈ [3, n[N,c]

1] :
p(n) > 1. That means the edge probability estimated by random graph
theory is larger than 1, which cannot be achieved. This range is noted as (I)
in Figure 1 for the particular parameters N = 100 and c = 0.99. In such
cases, random graph theory is not applicable. We define n

[N,c]
1 as

n
[N,c]
1 = max{n : p(n) > 1 and n ≥ 3}.

The value of n
[N,c]
1 depends on c only, and grows as c increases. Let c∗ be

the solution to ln(3)−ln(−ln(x))
3 = 1, we have c∗ = e−eln(3)−3 .86, and

∀c < c∗, ∀n ≥ 3 : p(n) < 1 (i.e., n
[N,c]
1 does not exist). Some examples of

n
[N,c]
1 are presented in Table 3. One cannot use random graph theory to

estimate m given n and c if c ≥ c∗ and n ∈ [3, n[N,c]
1].

Table 3. Lower bound of network size n with respect to connectivity c

Desired connectivity c n
[N,c]
1 Desired connectivity c n

[N,c]
1

0.8 n/a 0.9 3
0.99 6 0.999 9

Interval II - Over-estimation: We compare the theoretical and simulated
key ring sizes. We define over-estimation when the relative error ≥ 5% and the
absolute error > 2. Both conditions are required since considering only one kind
of error may be misleading. For example, if theoretical and simulated values of
m are 5 and 4, respectively, then the random graph modeling estimate is off by
only one key and we consider it as a good estimation despite the relative error
being 25%. On the other hand, if the two values are 111 and 107, respectively,
then the relative error is less than 4% while the absolute error is 4 keys.

For n ∈ [7, 10), N = 100, and c = 99%, random graph theory results in over-
estimation. For wide ranges of parameters where N is up to 105, n is up to 104,
and c is from 50% to 99.9%, the comparison results suggest that there is a small

On Applicability of Random Graphs 167

interval of n in which using random graph theory gives over-estimation. The left
side of this interval is n

[N,c]
1 + 1 if c ≥ c∗, or 3 otherwise.

Finding n
[N,c]
2 : For fixed c, the right hand side of the interval increases as N

grows but over the ranges of parameters summarized in Table 3, it never exceeds
100. Thus, when n < 100, our simulation results show that an excessive over-
estimation may occur. 1 One can always use the simulator [19] to obtain key ring
size m by simulations for better estimate.

Interval III - Good estimation: Figure 1 shows that when N = 100 and
c = 99%, random graph theory gives accurate estimates for n ∈ [10, 1167).
Specifically, the theoretical key ring sizes perfectly match the simulated ones in
most cases. In other cases, random graph theory over-estimates by only one key.
We did not observe any under-estimation. When n ≥ 1167, the theoretical results
show m = 1, while the simulation experiments yield m = 2. This phenomenon as
well as at which values of n it occurs (e.g., n = 1167 for N = 100 and c = 99%)
is further discussed later in this section.

Let us assume that n
[N,c]
3 , which is a function of c and N , is a lower bound

for n such that random graph modeling estimates m = 1, ∀n ≥ n
[N,c]
3 . We call

the interval [100, n[N,c]
3) safe for using random graph theory for estimating m.

Table 5 presents selected comparison results of key ring sizes for c = 99.9%
and different values of n and N . Aside from the correct estimates and a few
over-estimates with low relative errors, the theoretical key ring size is 1 when
N = 100 for some cases. In these cases, n is outside the safe interval (i.e.,
n ≥ n

[100,0.999]
3). Generally, when the key pool size is large and network size

is small, over-estimation may occur, but the relative error is less than 5%. For
small key pool sizes, if there is an over-estimation, the absolute error is only one
or two keys.

Tables 6a-d in Appendix show the difference between theoretical and simu-
lated key ring sizes with respect to n, N , and c. A light-gray cell represents an
under-estimation while dark-gray cell indicates an over-estimation. Again, we
can see that there is a pattern of under-estimating key ring sizes when n is large
and N is small in all four tables. In those cases, m is estimated by random graph
theory as 1, and n is outside the safe interval. There are rare situations in which
random graph theory under-estimates m when n ∈ [100, n[N,c]

3). One such case
is when n = 1000, N = 50000, and c = 70% as shown in Table 6b. We believe
this is due to statistical error.

As noted earlier, over-estimation occurs when N is very large and n is small;
the relative error in such cases, however, is less than 5%. In general, when n lies in
the safe interval, the data in Tables 6a-d supports the claim that, the estimate for
key ring size based on random graph theory is very precise for n ∈ [100, n[N,c]

3).

1 Over-estimation leads to extra keys in the key rings. In the case of an eavesdropping
adversary, this only results in less efficient (larger key ring size) systems. In the case
of a node capturing adversary, larger key rings result in higher probability of edge
compromise.

168 T.M. Vu, R. Safavi-Naini, and C. Williamson

Interval IV - Large graphs: For a fixed N , the key sharing probability for
m = 1 is 1

N . As the network size n increases, the edge probability p that is
required for connectivity c given by p = ln(n)−ln(−ln(c))

n decreases. For sufficiently
large n, we will have ln(n)−ln(−ln(c))

n ≤ 1
N . Therefore, according to random graph

theory, connectivity c can be achieved with m = 1. In this case, nodes that have
the same key can be grouped together and so the graph can be decomposed into
disjoint cliques. The key graph is connected only if all n nodes have the same
key and this happens with probability 1

Nn−1 , which could be much lower than
desired connectivity c. We define n

[N,c]
3 as follows

n
[N,c]
3 = min{n :

ln(n)− ln(−ln(c))
n

≤ 1
N
}.

Given desired connectivity c and key pool N , random graph theory always gives
incorrect estimate for key ring size (i.e., m is estimated as 1) when n ≥ n

[N,c]
3 .

Figure 2 plots n
[N,c]
3 with respect to key pool size N and connectivity c.

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 0 500 1000 1500 2000

U
pp

er
 b

ou
nd

 o
f g

ra
ph

 s
iz

e
(g

(c
, N

))

Key pool size (N)

c = 0.999
c = 0.99
c = 0.9
c = 0.8
c = 0.7
c = 0.6
c = 0.5

Fig. 2. Upper bounds of network size n with respect to connectivity c and key pool
size N

Summary. Table 4 describes four intervals of network size n for given connec-
tivity c and key pool N . These intervals provide insights into the applicability of
random graph theory in estimating key ring size to achieve connectivity c when
c ≥ 50%. For c < 50%, one would expect similar interval structure.

4 Structural Properties

We examine and compare structural properties of random graphs and key graphs
for given n and p, that is the same network size and the same edge probability.
We use the following approach:

1. For each set of parameters (n,N,m), we calculate the edge probability p
according to Equation 5.

On Applicability of Random Graphs 169

Table 4. Four intervals of network size n with respect to key pool size N and desired
connectivity c

0.5 ≤ c < c∗ c ≥ c∗

n

Interval I n/a [3, n
[N,c]
1]

Interval II [3, 100) (n[N,c]
1 , 100)

Interval III [100, n
[N,c]
3)

Interval IV [n[N,c]
3 , +∞)

2. We then generate α random instances of Gk(n,N,m) and measure the
average value of property X .

3. Finally, we compare the simulation result with the theoretical values ob-
tained for Gr(n, p). The parameters n, N , and m are chosen to achieve
‘reasonable’ edge probability p.

The number of random instances of key graphs in each set of simulation exper-
iments is α = 1, 000. In Figures 3-5, the simulation results are plotted with the
error bars indicating the 99% confidence intervals for the true mean.

4.1 Global Clustering Coefficient

In the first set of simulation experiments, we measure the global clustering co-
efficient C in the two graph families. Recall that in a random graph, each edge
occurs independently, and thus C is always equal to the edge probability. How-
ever, this value in key graphs gives the probability that two nodes share keys if
they both share keys with some common node. In the experiments, we choose
n = 100, N = 1000, and observe C as m varies. Figure 3 provides our comparison
results. It can be seen that for very small values of m, C in key graphs is much
higher than that in random graphs. This is because if nodes X and Y share key
k1, nodes Y and Z share key k2, and m is small, then it is likely that k1 is k2,
which means X and Z have at least one key in common. Nevertheless, when m
is large enough, C in key graphs converges to C in random graphs. In the case
of n = 100 and N = 1000 in our experiments, when the key ring size is 25 or
more, there is hardly any difference between the global clustering coefficients C
in the two graph families.

4.2 Size of the Maximal Clique

In the second set of simulation experiments, we study the maximal clique in key
graphs. The simulations assume that N is 1000 and m is 11 (i.e., edge probability
p 0.1). The comparison results summarized in Figure 4 show that the average
size of the maximal clique in key graphs increases linearly with the network size
n. On the other hand, the expected size of the maximal clique in random graphs
grows very slowly as n increases. In the following, we give a lower bound of the
size of the maximal clique in a key graph, to explain the linear behavior.

170 T.M. Vu, R. Safavi-Naini, and C. Williamson

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30 35 40 45 50

G
lo

ba
l c

lu
st

er
in

g
co

ef
fic

ie
nt

Key ring size

Key graph (simulation)
Random graph (theory)

Fig. 3. Global clustering coefficient with respect to key ring size (n = 100, N = 1000)

 0

 5

 10

 15

 20

 25

 30

 0 100 200 300 400 500 600 700 800 900 1000

S
iz

e
of

 th
e

m
ax

im
al

 c
liq

ue

Network size

Key graph (simulation), p ~ 0.1
Random graph (theory) , p ~ 0.1

f(x) = ceiling(n*m/N)

Fig. 4. Size of the maximal clique with respect to network size (N = 1000, m = 11)

Proposition 1. The maximal clique size a in key graph is at least �n·m
N �.

Proof: Each of n nodes has m keys, and the total number of keys including
duplicated ones is n ·m keys. Since the number of distinct keys is at most N , by
pigeon hole principle, there exists some key k duplicated at least �n·m

N � times. In
other words, at least �n·m

N � nodes have the same key k, hence they form a clique.
Since keys are distributed randomly, the frequencies of occurrence for each key
may vary in a given random key assignment. That is, the number of nodes having
the same key can well exceed �n·m

N �. Furthermore, it is not required that all the
nodes in a clique must have the same key. Thus, �n·m

N � is a loose lower bound
for the size of the maximal clique in a key graph. When N and m are fixed, this
lower bound increases linearly as n increases. That means the actual size of the
maximal clique grows at least linearly with the network size. ��

4.3 Number of Cliques with Respect to Clique Sizes

Figure 5 plots the number of cliques in key graphs and random graphs. In these
experiments, we choose n = 100 and N = 1000. We use the two values of m = 11

On Applicability of Random Graphs 171

 1

 10

 100

 1000

 2 3 4 5 6 7 8 9 10 11

N
um

be
r

of
 c

liq
ue

s

Clique size

Key graph (simulation), p ~ 0.2
Random graph (theory) , p ~ 0.2

Key graph (simulation), p ~ 0.1
Random graph (theory), p ~ 0.1

Fig. 5. Number of cliques in a key graph and a random graph for different edge prob-
abilities when n = 100 and N = 1000

and m = 15 so that edge probability is approximately 0.1 and 0.2, respectively.
The comparison results suggest that given the same number of nodes and the
same edge probability, cliques tend to be larger and more plentiful in key graphs
than in random graphs. Specifically, Gk(100, 1000, 15) contains more than 200
cliques of size 5 on average, while there are fewer than 10 cliques of that size in
a random graph with the same number of nodes and the same edge probability.
Moreover, cliques of size up to 10 can be observed in Gk(100, 1000, 15), as op-
posed to the random graphs where the expected number of cliques of size 6 (or
larger) is negligible.

Explanation of the larger number of cliques in key graphs: Let Sk be the set of
all nodes that have the key k. In key graphs, any set Sk
= ∅, forms a clique
regardless of edge probability. In random graphs, however the expected number
of cliques is a function of n and p (see Equation 3). Additionally, because of
i) the maximal clique in key graphs is much larger than that in random graphs
(see Figure 4), and ii) any non-empty subset of nodes in a clique is also a clique
itself, one expects more cliques in key graphs.

We can also use the global clustering coefficient to explain the formation of
cliques in key graphs. As noted earlier, when m is small, if two nodes have
a common neighbor in the key graph, there is a higher chance that they are
connected by an edge. In general, the more common neighbors that two nodes
X and Y have, the higher the probability that the edge XY exists. Thus, given
a set of nodes such that many pairs of nodes are connected by an edge, the
transitivity property implies there would be even more pairs that are directly
connected, and the probability of this set of nodes being a clique increases. In
contrast, a set of nodes S in random graphs forms a clique only when all the
independent edge formation events between every pair of nodes in S occur at
the same time.

172 T.M. Vu, R. Safavi-Naini, and C. Williamson

5 Conclusions and Future Work

We study the applicability of random graph theory in modeling secure connec-
tivity of wireless sensor networks. We identify ranges of parameters for which
random graph modeling is not applicable and suggest how one can estimate
key predistribution parameters for such cases. Besides, we determine ranges of
parameters for which random graph theory may give estimates with excessive
error, as well as other ranges of parameters where random graph theory pro-
vides very accurate results. We also study various structural properties in two
graph families, observing and discussing the similarities and differences in the
structure of random graphs and key graphs. In future work, we may extend the
study of applicability of random graph modeling when the wireless connectivity
is taken into account. Finally, there are other structural properties that we may
investigate as well.

References

1. Bollobás, B., Erdős, P.: Cliques in Random Graphs. Mathematical Proceedings of
the Cambridge Philosophical Society 80(3), 419–427 (1976)

2. Chan, H., Perrig, A., Song, D.: Random Key Predistribution Schemes for Sensor
Networks. In: Proceedings of IEEE Security and Privacy Symposium, pp. 197–213
(May 2003)

3. Diffie, W., Hellman, M.: New directions in cryptography. IEEE Transactions on
Information Theory 22(6), 644–654 (1976)

4. Du, W., Deng, J., Han, Y., Varshney, P., Katz, J., Khalili, A.: A Pairwise Key
predistribution Scheme for Wireless Sensor Networks. In: Proceedings of 10th ACM
Conference on Computer and Communications Security, pp. 42–51 (October 2003)

5. Erdős, P., Rényi, A.: On Random Graphs. Publicationes Mathematicae 6, 290–297
(1959)

6. Eschenauer, L., Gligor, V.: A Key Management Scheme for Distributed Sensor
Networks. In: Proceedings of the 9th ACM Conference on Computer and Commu-
nication Security, pp. 41–47 (November 2002)

7. Grimmett, G., McDiarmid, C.: On Coloring Random Graphs. Mathematical Pro-
ceedings of the Cambridge Philosophical Society 77, 313–324 (1975)

8. Gupta, R., Musacchio, J., Walrand, J.: Sufficient rate constraints for QoS flows in
ad-hoc networks. Ad-hoc Network 5(4), 429–443 (2007)

9. Holland, P., Leinhardt, S.: Transitivity in Structural Models of Small Groups.
Comparative Group Studies 2, 107–124 (1971)

10. Huang, D., Mehta, M., Medhi, D., Harn, L.: Location-aware key management
scheme for wireless sensor networks. In: Proceedings of the 2nd ACM Workshop
on Security of Ad-hoc and Sensor Networks, pp. 29–42 (October 2004)

11. Huang, X., Bensaou, B.: On Max-min Fairness and Scheduling in Wireless Ad Hoc
Networks: Analytical Framework and Implementation. In: Proceedings of the 2nd
ACM International Symposium on Mobile Ad Hoc Networking and Computing,
pp. 221–231 (October 2001)

12. Huang, Y., Lee, W.: A Cooperative Intrusion Detection System for Ad Hoc Net-
works. In: Proceedings of the 1st ACM Workshop on Security of Ad Hoc and Sensor
Networks, pp. 135–147 (2003)

On Applicability of Random Graphs 173

13. Hwang, J., Kim, Y.: Revisiting random key predistribution schemes for wireless
sensor networks. In: Proceedings of the 2nd ACM Workshop on Security of Ad
Hoc and Sensor Networks, pp. 43–52 (October 2004)

14. Liu, D., Ning, P.: Location-based pairwise key establishments for static sensor
networks. In: Proceedings of the 1st ACM Workshop on Security of Ad-hoc and
Sensor Networks, pp. 72–82 (October 2003)

15. Liu, D., Ning, P., Liu, R.: Establishing Pairwise Keys in Distributed Sensor Net-
works. In: Proceedings of the 10th ACM Conference on Computer and Communi-
cations Security, pp. 52–61 (October 2003)

16. Massachusetts Institute of Technology, Kerberos: The Network Authentication Pro-
tocol, http://web.mit.edu/kerberos/

17. Pietro, R., Mancini, L., Mei, A., Panconesi, A., Radhakrishnan, J.: Redoubtable
Sensor Networks. ACM Transactions on Information and System Security 11(3),
1–22 (2008)

18. Spencer, J.: The Strange Logic of Random Graphs. In: Algorithms and Combina-
torics, vol. 22. Springer, Heidelberg (2000), ISBN 3-540-41654-4

19. Vu, T., Williamson, C., Safavi-Naini, R.: Simulation Modeling of Secure Wireless
Sensor Networks. In: Proceedings of ValueTools 2009, Pisa, Italy (October 2009)

20. Watts, D., Strogatz, S.: Collective Dynamics of ‘Small-world’ Networks. Na-
ture 393, 440–442 (1998)

21. Xue, Y., Li, B., Nahrstedt, K.: Optimal Resource Allocation in Wireless Ad Hoc
Networks: A Price-Based Approach. IEEE Transactions on Mobile Computing 5(4),
347–364 (2006)

Appendix

The attached appendix contains algorithmic details and additional tabular re-
sults for the paper.

Input:
– n: network size
– N : key pool size
– m: key ring size
– S: sample size

Output: connectivity c

counter ← 0
for i ← 1 to S do

construct a key graph Gk(n, N, m)
if Gk(n, N, m) is connected then

counter++
end

end
return counter

S

Algorithm 1: Determining connectivity

http://web.mit.edu/kerberos/

174 T.M. Vu, R. Safavi-Naini, and C. Williamson

Input:
– n: network size
– N : key pool size
– lowerBound: lower bound on key ring size
– upperBound: upper bound on key ring size
– S: sample size in each simulation experiment
– c: desired connectivity

Output: Key ring size m

lBound ← lowerBound
uBound ← upperBound
while uBound − lBound > 1 do

mid ← (uBound + lBound)/2
if connectivity(n, N, mid, S) ≥ c then

uBound ← mid
else

lBound ← mid
end

end
return uBound

Algorithm 2: Binary search for key ring size

Table 5. Theoretical and simulated key ring sizes to achieve connectivity 99.9%

Key pool size N

100 500 1,000 5,000 10,000 50,000 100,000

N
e
tw

o
rk

si
z
e

n

100 4 8 11 25 35 77 107 Simulation

4 8 12 25 35 79 111 Theory

500 2 4 5 12 17 37 51 Simulation

2 4 6 12 17 37 52 Theory

1,000 2 3 4 9 12 26 37 Simulation

2 3 4 9 12 27 38 Theory

5,000 2 2 2 4 6 13 18 Simulation

1 2 2 4 6 13 18 Theory

10,000
2 2 2 3 5 9 13 Simulation

1 1 2 3 5 9 13 Theory

On Applicability of Random Graphs 175

Table 6. Difference between theoretical and simulated key ring sizes

Key pool size N

102 103

2
103 104

2
104 105

2
105

N
e
tw

o
rk

si
z
e

n 102 0 0 0 0 0 0 1
103

2
0 0 0 0 0 0 0

103 -1 0 0 0 0 0 0
104

2
-1 -1 0 0 0 0 0

104 -1 -1 -1 0 0 0 0

Key pool size N

102 103

2
103 104

2
104 105

2
105

N
e
tw

o
rk

si
z
e

n 102 0 0 0 1 1 0 1
103

2
0 0 0 0 0 1 1

103 -1 -1 0 0 0 -1 0
104

2
-1 -1 0 0 0 0 0

104 -1 -1 0 0 0 0 0
(a) Desired connectivity c = 50% (b) Desired connectivity c = 70%

Key pool size N

102 103

2
103 104

2
104 105

2
105

N
e
tw

o
rk

si
z
e

n 102 0 0 0 0 0 1 1
103

2
0 0 0 0 1 0 0

103 -1 0 0 0 0 0 0
104

2
-1 0 0 0 0 0 0

104 -1 -1 0 0 0 0 0

Key pool size N

102 103

2
103 104

2
104 105

2
105

N
e
tw

o
rk

si
z
e

n 102 0 0 0 0 1 2 2
103

2
0 0 0 0 0 1 0

103 0 0 0 0 0 0 1
104

2
-1 0 0 0 0 0 0

104 -1 -1 0 0 0 0 0
(c) Desired connectivity c = 90% (d) Desired connectivity c = 99%

“Slow Is Fast” for Wireless Sensor Networks in
the Presence of Message Losses�

Mahesh Arumugam1, Murat Demirbas2, and Sandeep S. Kulkarni3

1 Cisco Systems Inc., San Jose, CA, 95134
maarumug@cisco.com

2 SUNY Buffalo, Buffalo, NY, 14260
demirbas@cse.buffalo.edu

3 Michigan State University, East Lansing, MI, 48824
sandeep@cse.msu.edu

Abstract. Transformations from shared memory model to wireless sen-
sor networks (WSNs) quickly become inefficient in the presence of preva-
lent message losses in WSNs, and this prohibits their wider adoption.
To address this problem, we propose a variation of the shared memory
model, the SF shared memory model, where the actions of each node
are partitioned into slow actions and fast actions. The traditional shared
memory model consists only of fast actions and a lost message can disable
the nodes from execution. Slow actions, on the other hand, enable the
nodes to use slightly stale state from other nodes, so a message loss does
not prevent the nodes from execution. We quantify over the advantages
of using slow actions under environments with varying message loss prob-
abilities, and find that a slow action has asymptotically better chance
of getting executed than a fast action when the message loss probability
increases. We also present guidelines for helping the protocol designer
identify which actions can be marked as slow so as to enable the trans-
formed program to be more loosely-coupled, and tolerate communication
problems (latency, loss) better.

1 Introduction

Several computation models have been proposed for distributed computing, in-
cluding shared memory model, read/write model, and message passing model.
These models differ with respect to the level of abstraction they provide. Low
level models such as the message passing model permits one to write programs
that are closer to the actual system implementation and, hence, the programs can
potentially be implemented more efficiently. However, since such programs need
to analyze low level communication issues such as channel contention, message
delays, etc, they are difficult to design and prove. Using a high level abstrac-
tion enables the designers to ignore low-level details of process communication
and facilitates the design and verification of the protocols. For example, shared
memory model, which allows a node to simultaneously read all its neighbors and
� This work was partially sponsored by NSF CNS 0914913, NSF 0916504, and Air

Force Contract FA9550-10-1-0178.

S. Dolev et al. (Eds.): SSS 2010, LNCS 6366, pp. 176–190, 2010.
� Springer-Verlag Berlin Heidelberg 2010

“Slow Is Fast” for Wireless Sensor Networks 177

update its own state, has been used extensively in the distributed systems liter-
ature. The drawback of using a high level abstraction model is that the system
implementation requires more effort. While transformations from shared mem-
ory model to read/write model or message passing model have been considered
in the literature [10, 5, 9], the efficiency of the transformed program suffers.

Wireless sensor networks (WSNs) warrant a new computation model due
to their wireless broadcast communication mode, not captured in any of the
above-mentioned models. Write-all-with-collision (WAC) model has been pro-
posed in [6] to capture the important features of wireless broadcast communica-
tion for WSNs. In this model, in one step, a node can write its own state and
communicate it to its neighbors. Due to the nature of shared medium, if one
node is being updated by two (or more) of its neighbors simultaneously then the
update fails (message collisions leads to message loss). While WAC model en-
ables us to analyze the energy efficiency and message cost of protocols in WSNs
more easily, it is not easy to design and prove protocols in WAC model compared
to a higher level model such as the shared memory model.

Transformations from shared memory model to WAC model exist [6,8], how-
ever, these transformations have practical problems prohibiting their wider adop-
tion. Although the shared memory model and the WAC model are similar in
spirit (in that the former allows a node to read all its neighbors whereas the lat-
ter allows the node to write to all its neighbors), direct transformation becomes
inefficient when message losses are considered. In [6], a CSMA based transforma-
tion, Cached Sensornet Transform (CST), from shared memory model to WAC
model has been presented. In CST, a single message loss may violate the cor-
rectness of the resultant concrete program in the WAC model. The proof in [6]
shows that if the abstract program was designed to be self-stabilizing and no
other message loss occurs for a sufficiently long period, the concrete program
will stabilize and start making progress. Thus, given the message loss rates at
WSNs, this transformation incurs heavy correctness and performance loss at
the WAC level. In [8], a transformation from read/write model to WAC model
has been presented, and as we show in Section 3, it also applies for transforma-
tion from shared memory model to WAC model. This transformation employs a
TDMA schedule to reduce message losses in the WAC model, however, due to
interference, fading, or sleeping nodes, message losses are still likely in the real
deployment. Message losses do not violate safety in this transformation, but they
reduce the performance because the loss of a broadcast from a node prevents
the evaluation of the actions at other nodes that depended on that information.

Contributions of the paper. To address the performance problems of trans-
formations to WAC model, we propose a variation of the shared memory model,
the SF shared memory model. In the SF shared memory model, a node is allowed
to read the state of its neighbors and write its own state. However, actions of
each node are partitioned into ‘slow’ actions and ‘fast’ actions. If a node j deter-
mines that a fast action is enabled then j must execute the action immediately
before j’s neighbors change their state. Otherwise, j must verify whether that
action is still enabled the next time it evaluates its guards. On the other hand,

178 M. Arumugam, M. Demirbas, and S.S. Kulkarni

if j determines that a slow action is enabled then j can execute the action at
any point later as long as j does not execute any other action in between. Note
that neighbors of j could change their state in the meanwhile.

We show that the use of SF shared memory model improves the performance of
the transformed program under environments with message loss. The traditional
shared memory model consists only of fast actions, and a lost message can disable
the nodes from execution. Slow actions, on the other hand, enable the nodes to
use slightly stale state from other nodes, so a message loss does not prevent
the node from execution. We show that a slow action has asymptotically better
chance of getting executed than a fast action when the message loss probability
increases. By the same token, SF model also allows us to deal with another aspect
of WSNs where nodes sleep periodically to save energy.

We present guidelines for the protocol designer to identify slow and fast ac-
tions. The designer can mark an action as slow only if 1) guard is stable, 2)
guard depends only on local variables (this covers a rich set of programs), or
3) guard is a “locally stable” predicate. These conditions are increasingly more
general; stable predicate implies locally stable predicates, but not vice versa.
Local stable predicate with respect to j can change after j executes (then other
neighbors can execute as the local stable contract is over at that time).

We also introduce slow-motion execution of fast actions. Under continuous
message losses, fast actions may never get to execute. This results in bad perfor-
mance and also violates strong fairness. In order to ensure strong fairness and
to achieve graceful degradation of performance under environments with high
message loss, we use slow-motion execution. Slow motion execution deliberately
slows down the actions that the fast-action depends on, so that the fast action
can execute as a pseudo-slow action. The fast action does not need to use the
latest state, but it can use a recent consistent state.

Last but not least, our work draws lessons for protocol designers working at
the shared memory model level. In order to preserve performance during the
transformation, the designers should try to write actions as slow actions. This
enables the concrete system to be more loosely-coupled, and tolerate communi-
cation problems (latency, loss) better.
Organization of the paper. First, in Section 2, we introduce the structure of
programs and the computational models considered in this paper. In Section 3,
we present the transformation from shared memory model to WAC model. Then,
in Section 4, we introduce the notion of slow and fast actions. Subsequently, in
Section 5, we provide an illustrative example. And, in Section 6, we analyze the
effect of slow and fast actions. In Section 7, we present an approach for slow-
motion execution of fast actions. In Section 8, we discuss some of the questions
raised by this work, and finally, in Section 9, we make concluding remarks.

2 Preliminaries

A program is specified in terms of its processes. Each process consists of a set of
variables and a set of guarded commands that update a subset of those variables
[4]. Each guarded command (respectively, action) is of the form

“Slow Is Fast” for Wireless Sensor Networks 179

guard −→ statement,

where guard is a predicate over program variables and statement updates the
program variables. An action g −→ st is enabled when g evaluates to true and
to execute that action st is executed. A computation consists of a sequence
s0, s1, . . . , where sl+1 is obtained from sl (0 ≤ l) by executing one or more
actions in the program.

Observe that a process can read variables of other processes while evaluating
guards of its actions. The copies of these variables can be used in updating
the process variables. Hence, we allow declaration of constants in the guard
of an action. Intuitively, these constants save the value of the variable of the
other process so that it can be used in the execution of the statement. As an
illustration, consider a program where there are two processes j and k with
variables x.j and x.k respectively. Hence, an action where j copies the value of
x.k when x.j is less than x.k is specified as follows:

Let y = x.k
x.j < y −→ x.j = y

Note that in a distributed program, for several reasons, it is necessary that a
process can only read the variables of a small subset of processes called the
neighborhood. More precisely, the neighborhood of process j consists of all the
processes whose variables can be read by j.

A computation model limits the variables that an action can read and write.
We now describe shared memory model and WAC model.

Shared memory model. In shared memory model, in one atomic step, a
process can read its state as well as the state of all its neighbors and write its
own state. However, it cannot write the state of other processes.

Write all with collision (WAC) model. In WAC model, each process (or
node) consists of write actions (to be precise, write-all actions). In one atomic
action, a process can update its own state and the state of all its neighbors.
However, if two or more processes simultaneously try to update the state of
another process, say l, then the state of l remains unchanged. Thus, this model
captures the broadcast nature of shared medium.

3 Basic Shared Memory Model to WAC Model

In this section, we present an algorithm (adapted from [8]) for transforming
programs written in shared memory model into programs in WAC model. First,
note that in WAC model, there is no equivalent of read action. Hence, an action
by which node j reads the state of k in shared memory model needs to be modeled
in WAC model by requiring k to write its state at j. When k executes this write
action, no other neighbor of j can execute simultaneously. Otherwise, due to
collision, j remains unchanged. To deal with collisions, TDMA (e.g., [7, 3,2]) is
used to schedule execution of actions. Figure 1 outlines the transformation from

180 M. Arumugam, M. Demirbas, and S.S. Kulkarni

Input: Program p in shared memory model
begin
Step 1: Slot computation

compute TDMA schedule using a slot assignment algorithm (e.g., [7,3,2])
Step 2: Maintain state of neighbors

for each variable v.k at k, node j (k ∈ N.j, where N.j denotes neighbors
of j) maintains a copy copyj .v.k that captures the value of v.k

Step 3: Transformation
if slot s is assigned to node j

for each action gi −→ sti in j
evaluate gi

if gi mentions variable v.k, k �= j
use the copyj .v.k to evaluate gi

end-if
end-for
if some guard gi is enabled

execute sti

else
skip;

end-if
for all neighbors k in N.j

for each variable v.j in j, copyk.v.j = v.j
end-for

end-if
end

Fig. 1. TDMA based transformation algorithm

shared memory model to WAC model. This algorithm assumes that message
losses (other than collisions) do not occur.

In the algorithm, each node maintains a copy of all (public) variables of its
neighbors. And, each node evaluates its guards and executes an enabled action
in the slots assigned to that node. Suppose slot s is assigned to node j. In slot
s, node j first evaluates its guards. If a guard, say g, includes variable v.k of
neighbor k, j uses copyj .v.k to evaluate g. And, if there are some guards that
are enabled then j executes one of the enabled actions. Subsequently, j writes
its state at all its neighbors. Since j updates its neighbors only in its TDMA
slots, collisions do not occur during the write operation.

In this algorithm, under the assumption of no message loss, whenever a node
writes its state at its neighbors, it has an immediate effect. Thus, whenever a
node is about to execute its action, it has fresh information about the state of all
its neighbors. Hence, if node j executes an action based on the copy of the state
of its neighbors then it is utilizing the most recent state. Moreover, the algorithm
in Figure 1 utilizes TDMA and, hence, when node j is executing its action, none
of its neighbors are executing. It follows that even if multiple nodes execute their
shared memory actions at the same time, their effect can be serialized. Thus,

“Slow Is Fast” for Wireless Sensor Networks 181

the execution of one or more nodes in a given time instance is equivalent to a
serial execution of one or more shared memory actions.

Theorem 1. Let p be the given program in shared memory model. And, let p′

be the corresponding program in WAC model transformed using the algorithm
in Figure 1. For every computation of p′ in WAC model there is an equivalent
computation of p in shared memory model. ��

4 Slow and Fast Actions

According to Section 3, when a process executes its shared memory actions, it
utilizes the copy of the neighbors’ state. However, when message losses occur, it
is possible that the information j has is stale. In this section, we discuss how a
node can determine whether it is safe to execute its action.

For the following discussion, let g −→ st be a shared memory action A at
node j. To execute A, j needs to read the state of some of its neighbors to
evaluate g and then execute st if g evaluates to true. Let N denote the set of
neighbors whose values need to be read to evaluate g. In the context of WSNs,
j obtains its neighbors’ values by allowing the neighbors to write the state of j.
In addition to the algorithm in Figure 1, we require the update to be associated
with a timestamp which can be implemented easily and efficiently 1. Next, we
focus on how j can determine whether g evaluates to true.

4.1 When Do We Evaluate the Guard?

The first approach to evaluate g is to ensure that the knowledge j has about
the state of nodes in N is up-to-date. Let Cur denote the current time and let tk
denote the time when k notified j of the state of k. The information j has about
nodes in N is latest iff for every node k in N, k was not assigned any TDMA
timeslot between (tk,Cur).

Definition 1 (Latest). We say that j has the latest information with respect
to action A iff latest(j,A) is true, where

latest(j,A) = (∀k : k ∈ N : k updated the state of j at time tk and
k does not have a TDMA slot in the interval (tk, Cur),
where Cur denotes the current time.)

Clearly, if latest(j,A) is true and g evaluates to true then g is true in the current
global state, and, j can execute action A. Of course, if action A depends upon
several neighbors then in the presence of message loss or sleeping nodes, it is
difficult for j to ensure that g holds true in the current state. For this reason,
we change the algorithm in Figure 1 as follows: Instead of maintaining just
1 In the context of TDMA and the algorithm in Figure 1, the timestamp information

can be relative. Based on the results in Section 6, it would suffice if only 2-4 bits are
maintained for this information.

182 M. Arumugam, M. Demirbas, and S.S. Kulkarni

one copy for its neighbors, j maintains several copies with different time values
(i.e., snapshots). Additionally, whenever a node updates its neighbors, instead
of just including the current time, it includes an interval (t1, t2) during which
this value remains unchanged. Based on these, we define the notion that j has
a consistent information about its neighbors although the information may not
be most recent.

Definition 2 (Consistent). We say that j has consistent information as far
as action A is concerned iff consistent(j, t,A) is true, where
consistent(j, t, A) = (∀k : k ∈ N : k updated the state of j at time tk and

k does not have a TDMA slot in the interval (tk, t))

Observe that if consistent(j, t,A) is true and g evaluates to true based on most
up-to-date information at time t then this implies that it is safe to execute A
at time t. After j executes it can discard the old snapshots, and start collecting
new snapshots. As we show in Section 6, at most 3 or 4 snapshots is enough for
finding a consistent cut, so the memory overhead is low.

Even though satisfying latest(j,A) may be difficult due to message losses
and/or sleeping nodes, satisfying consistent(j, t,A) is easier (cf. Section 6). If j
misses an update from its neighbor, say k, in one timeslot then j may be able
to obtain it in the next timeslot. Moreover, if state of k had not changed in the
interim, j will be able to detect if a guard involving variables of k evaluates to
true. Furthermore, if action A involves several neighbors of j then it is straight-
forward to observe that the probability that consistent(j, t,A) is true for some
t is significantly higher than the probability that latest(j,A) is true.

The notion of consistency can be effectively used in conjunction with sleeping
nodes. If node k is expected to sleep during an interval (t1, t2), it can include
this information when it updates the state of j. This will guarantee j that state
of k will remain unchanged during the interval (t1, t2) thereby making it more
feasible to ensure that it can find a consistent state with respect to its neighbors.

4.2 When Do We Execute the Action?

The problem with the notion of consistency is that even though the guard of
an action evaluated to true at some point in the past, it may no longer be true.
Towards this end, we introduce the notion of a slow action and the notion of a
fast action. (We call the resulting model as SF shared memory model.)

Definition 3 (slow action). Let A be an action of j of the form g −→ st. We
say that A is a slow action iff the following constraint is true:

(g evaluates true at time t) ∧
(j does not execute any action between interval [t, t′])

⇒ (g evaluates true at time t′)

Rule 1: Rule for execution of a slow action. Let A be a slow action of node j.
Node j can execute A provided there exists t such that consistent(j, t,A) is true
and j has not executed any action in the interval [t, Cur) where Cur denotes
the current time.

“Slow Is Fast” for Wireless Sensor Networks 183

Definition 4 (fast action). Let A be an action of j of the form g −→ st. We
say that A is a fast action iff it is not a slow action.

Rule 2: Rule for execution of a fast action. Let A be a fast action of node j.
Node j can execute A provided latest(j,A) is true.

If the algorithm in Figure 1 is modified based on the above two rules, i.e.,
slow actions can be executed when their guard evaluates to true at some time
in the past and fast actions are executed only if their guard evaluates to true in
the current state, then we can prove the following theorems:

Theorem 2. Let j and k be two neighboring nodes with actions A1 and A2
respectively. If both A1 and A2 are slow actions then their execution by Rule 1
is serializable. ��

Theorem 3. Let j and k be two neighboring nodes with actions A1 and A2
respectively. If both A1 and A2 are fast actions then their execution by Rule 2 is
serializable. ��

Theorem 4. Let j and k be two neighboring nodes with actions A1 and A2
respectively. Let A1 be a slow action and let A2 be a fast action. Then, their
execution according to Rules 1 and 2 is serializable. ��

5 An Illustrative Example

In this section, we use the tree program from [1] to illustrate the notion of slow
and fast actions. In this tree program (cf. Figure 2), each node j maintains three
variables: P.j, that denotes the parent of node j, root.j that denotes the node
that j believes to be the root, and color.j that is either green (i.e., the tree is not
broken) or red (i.e., the tree is broken). Each node j also maintains an auxiliary
variable up.j that denotes whether j is up or whether j has failed.

The protocol consists of five actions. The first three are program actions
whereas the last two are environment actions that cause a node to fail and
recover respectively. The first action allows a node to detect that the tree that it
is part of may be broken. In particular, if j finds that its parent has failed then
it sets its color to red. This action also fires if there is a parent and the parent
is colored red. Observe that with the execution of this action, if a node is red
then it will eventually cause its descendents to be red. The second action allows
a red node to separate from the current tree and form a tree by itself provided
it has no children. The third action allows one node to join the tree of another
node. In particular, if j observes that its neighbor k has a higher root value and
both j and k are colored green then j can change its tree by changing P.j to k
and root.j to root.k. The fourth action is a fault action that causes a node to
fail (i.e., up.j = false). Due to the execution of this action, the first action will
be enabled at the children. And, finally, the last action allows a node to recover.
When a node recovers, it sets its color to red.

184 M. Arumugam, M. Demirbas, and S.S. Kulkarni

AC1 : color.j = green∧
(¬up.(P.j) ∨ color.(P.j) = red) −→ color.j = red

AC2 : color.j = red∧
(∀k : k ∈ Nbr.j : P.k �= j) −→ color.j, P.j, root.j = green, j, j

AC3 : Let x = root.k
root.j < x ∧ color.j = green∧
color.k = green −→ P.j, root.j = k, x

AC4 : up.j −→ up.j = false
AC5 : ¬up.j −→ up.j, color.j = true, red

Fig. 2. Coloring tree program

We can make the following observations about this program.

Theorem 5. AC1 and AC2 are slow actions.

Proof. If a node detects that its parent has failed or its parent is red then this
condition is stable until that node (child) separates from the tree by executing
action AC2. Hence, AC1 is a slow action. Likewise, if a node is red and has no
children then it cannot acquire new children based on the guard of AC3. ��

Theorem 6. AC3 is a fast action.

Proof. After j evaluates its own guard for AC3, it is possible that the guard
becomes false subsequently if k changes its color by executing AC1 or if k changes
its root by executing AC3. Hence, AC3 is a fast action. ��

6 Effect of Slow versus Fast Actions during Execution

In this section, we evaluate the execution conditions of slow and fast actions
in the presence of message loss. To execute a fast action, each node j needs to
evaluate whether it has obtained the latest information about the state of its
neighbors. If latest(j,A) evaluates to true for some action then j can evaluate
the guard of that action and execute the corresponding statement. If latest(j,A)
is false for all actions then j must execute a ‘skip’ operation and see if it can
obtain the latest information in the next TDMA round. For the execution of
a slow action, j proceeds in a similar fashion. However, if j obtains consistent
information about its neighbors that is not necessarily from the latest TDMA
round, j can execute its action.

Next, we evaluate the probability that j can obtain the necessary consistent
and latest state information. Let p be the probability of a message loss and let
N denote the number of neighbors whose status needs to be known to evaluate
the guard of the action. If j cannot successfully obtain consistent and/or latest
state information in one TDMA round then it tries to do that in the next round.
Hence, we let m denote the number of TDMA rounds that j tries to obtain the
consistent and/or latest information. Assuming that states of the neighbors do

“Slow Is Fast” for Wireless Sensor Networks 185

not change during these m rounds, we calculate the probability that j can obtain
the required consistent and/or latest state information2.

Probability of obtaining latest information. To obtain the latest infor-
mation in one TDMA round, j needs to successfully receive message from each
of its neighbors. Probability of successfully receiving message from one neighbor
is (1 − p). Hence, the probability of obtaining latest information in one round
is (1 − p)N . And, the probability of not obtaining the latest information in one
round is 1− (1−p)N . Therefore, probability of not obtaining the latest informa-
tion in any one of m rounds is (1− (1− p)N)m. Thus, the probability that j can
obtain the latest information in at least one m rounds is (1− (1− (1− p)N)m).

Probability of obtaining consistent information. To obtain consistent in-
formation in the earliest of m rounds, j needs to obtain information from each
of its neighbors in some round. (Observe that since the nodes include the in-
tervals where their value is unchanged, receiving a message from each node at
some round is enough for identifying the first round as the consistent cut.) The
probability that j does not receive message from one of its neighbors in either of
m rounds is pm. Hence, probability of successfully receiving message from one
neighbor is (1 − pm). Therefore, probability of successfully receiving message
from every neighbor is ((1 − pm))N . Furthermore, there is an additional condi-
tional probability where j fails to get consistent information in the first (earliest)
round but obtains it in the next round. We account for this in our calculations
and graphs, but omit the full formula here for the sake of brevity.

Figures 3-5 show the probabilities for p = 10%, p = 20%, and p = 30% re-
spectively. First, we note that the probability of obtaining latest information
decreases as N increases for different values of m. A given node has to receive
updates from all its neighbors in order to obtain the latest information. Hence, as
N increases, latest probability decreases. Moreover, in a high message loss envi-
ronment (e.g., p = 20% and p = 30%), latest probabilities decrease significantly
as N increases. For small neighborhoods, the probability of getting latest infor-
mation improves as m increases. This suggests that if the neighbors remain silent
for some rounds then the probability of obtaining latest information improves.
On the other hand, although the probability of obtaining consistent information
decreases as N increases, for m ≥ 3, it remains close to 1. By choosing m = 3,
the probability of finding a consistent cut is virtually certain at p = 10%.

Thus, the probability of obtaining the consistent information is significantly
higher than that of latest information. This suggests that it is better to utilize
protocols that have slow actions verses protocols that have fast actions. In par-
ticular, it is better if actions that depend on the value of several neighbors are
slow actions. On the other hand, if protocols must have fast actions, then it is
better if they rely on a small number (preferably 1) of neighbors.
2 We can relax this assumption by requiring the nodes to include their old values

in previous rounds with their broadcast. These values are then used for finding a
consistent cut in the past. Our results show that it suffices for the node to include
values from the last 3 rounds for most cases. Observe that this method does not help
“latest” because learning an older snapshot does not allow executing a fast action.

186 M. Arumugam, M. Demirbas, and S.S. Kulkarni

2 4 6 8 10 12 14 16 18 20

No. of neighbors

0.2

0.4

0.6

0.8

1

P
ro

ba
bi

lit
y

of
 o

bt
ai

ni
ng

 la
te

st
 in

fo
rm

at
io

n

m=1
m=2
m=3
m=4
m=5
m=10

2 4 6 8 10 12 14 16 18 20

No. of neighbors

0.2

0.4

0.6

0.8

1

P
ro

ba
bi

lit
y

of
 o

bt
ai

ni
ng

 c
on

si
st

en
t i

nf
or

m
at

io
n

m=1
m=2
m=3
m=4
m=5

(a) Latest probabilities (b) Consistent probabilities

Fig. 3. Latest and consistent probabilities for p = 10%

2 4 6 8 10 12 14 16 18 20

No. of neighbors

0

0.2

0.4

0.6

0.8

1

P
ro

ba
bi

lit
y

of
 o

bt
ai

ni
ng

 la
te

st
 in

fo
rm

at
io

n

m=1
m=2
m=3
m=4
m=5
m=10

2 4 6 8 10 12 14 16 18 20

No. of neighbors

0

0.2

0.4

0.6

0.8

1

P
ro

ba
bi

lit
y

of
 o

bt
ai

ni
ng

 c
on

si
st

en
t i

nf
or

m
at

io
n

m=1
m=2
m=3
m=4
m=5

(a) Latest probabilities (b) Consistent probabilities

Fig. 4. Latest and consistent probabilities for p = 20%

7 Pseudo-slow Action

The results in Section 6 show that if actions of a program are slow then their
execution is expected to be more successful. Thus, the natural question is what
happens if all program actions were fast? Can we allow such a program to utilize
an old consistent state to evaluate its guard. We show that for a subset of the
original actions, this is feasible if we analyze the original shared memory program
to identify dependent actions.

We illustrate our approach in the context of the tree example in Section 5.
For the sake of discussion, let us assume that all actions are fast actions; this is
reasonable since it adds more restrictions on how each action can be executed.
Furthermore, let us consider the case that we want j to be able to execute AC3
by utilizing a consistent state although not necessarily the latest state. Recall
that action AC3 causes j to join the tree of k. If j is using a consistent state
that is not necessarily the latest state, it is possible that k has changed its state
in the interim. Observe that if k had increased the value of root.k by executing
AC3 then it is still safe for j to execute action AC3. However, if k executes AC1
and changes its color to red, subsequently observes that it has no children and

“Slow Is Fast” for Wireless Sensor Networks 187

2 4 6 8 10 12 14 16 18 20

No. of neighbors

0

0.2

0.4

0.6

0.8

1

P
ro

ba
bi

lit
y

of
 o

bt
ai

ni
ng

 la
te

st
 in

fo
rm

at
io

n

m=1
m=2
m=3
m=4
m=5
m=10

2 4 6 8 10 12 14 16 18 20

No. of neighbors

0

0.2

0.4

0.6

0.8

1

P
ro

ba
bi

lit
y

of
 o

bt
ai

ni
ng

 c
on

si
st

en
t i

nf
or

m
at

io
n

m=1
m=2
m=3
m=4
m=5

(a) Latest probabilities (b) Consistent probabilities

Fig. 5. Latest and consistent probabilities for p = 30%

executes AC2 then it may not be safe for j to join the tree of k. Thus, if we
want to allow j to execute AC3 using a consistent state that is not necessarily
latest then k must be prevented from executing either AC1 or AC2. Again, for
the sake of discussion, let us assume that we want to restrict k from executing
AC2. Hence, in this case, we will say that pseudo-slow execution of AC3.j is
dependent upon slowing down AC2.k.

In this approach, we allow j to utilize consistent snapshots for up to x previous
TDMA rounds (i.e., j can execute AC3.j if it obtains a consistent state that is
no more than x rounds before the current time and evaluates that the guard of
AC3 is true). However, in this case, if k ever wants to execute action AC2 then
it must stay silent for at least x+1 TDMA rounds before executing action AC2.
Note that this will essentially disable execution of action AC3.j (i.e., at the end
of x + 1 silent rounds k knows that j cannot simultaneously execute AC3.j and
interfere with the execution of AC2.k)3.

We generalize this approach in terms of the following 4-step algorithm.

Step 1: Identify pseudo-slow actions. First, the designer needs to identify
the set of actions, �, that are fast actions but it is desired that they can exe-
cute as slow actions, where a node can utilize consistent (but not necessarily the
latest) information about the state of neighbors. The choice of � is application
dependent, i.e., it is based on the designers’ belief/observation that quick exe-
cution of these actions is likely to help execution of the program. We denote the
actions in � as a set of pseudo-slow actions since they are not slow actions but
behave similar to the slow actions.

Step 2: Identify dependent actions. Let Aj be one of the pseudo-slow
actions in � that is to be executed by node j. Let Aj be of the form g −→ st.

3 We can relax this x+1 silent rounds requirement. For this, we modify the algorithm
in Figure 1 slightly where a node, say j, not only notifies its neighbors about its
own state but also includes a timestamp information about messages received from
its neighbors. With this change, k can either execute its action AC2 if it stops
transmitting for x + 1 rounds or if it checks that j is aware of its color being red
and, hence, will not execute action AC3.j.

188 M. Arumugam, M. Demirbas, and S.S. Kulkarni

Since Aj is a fast action, this implies that if the guard of Aj is true in some
state then it can become false by execution of actions of one or more neighbors
of j. Hence, the goal of this step is to identify the set of actions, say A, such that
if (1) g evaluates to true in some state, (2) no action from A is executed, and
(3) no action of j is executed then it is still acceptable to execute the statement
st in the given shared memory program. The value obtained for A is called the
dependent actions of Aj .

In this step, for each action in �, we identify the corresponding set of depen-
dent actions. The dependent actions for � is obtained by taking the union of
these dependent actions. Step 2 is successful if � and its dependent actions are
disjoint. If there is an overlap between these two sets then the set of pseudo-slow
actions needs to be revised until this condition is met.

Step 3: Choosing the delay value. The next step is to identify how much
old information can be used in evaluating the guard of an action. Essentially,
this corresponds to the choice of x in the above example. We denote this as the
delay value of the corresponding action. The delay value x chosen for efficient
implementation of pseudo-slow actions is also user dependent. The value will
generally depend upon the number of neighbors involved in the execution of the
pseudo-slow action. Based on the analysis from Section 6, we expect that a value
of 3-4 is expected to be sufficient for this purpose.

Step 4: Revising the transformation algorithm. The last step of the al-
gorithm is to utilize � identified in Step 1, the corresponding dependent actions
identified in Step 2 and the delay value identified in Step 3 to revise the trans-
formation algorithm. In particular, we allow a pseudo slow action at j to execute
if (1) j obtains consistent state information about its neighbors, (2) j does not
have more recent information about its neighbors than the one it uses, and (3)
no more than x TDMA rounds have passed since obtaining the consistent state.

Additionally, a dependent action at j can execute if j does not transmit its own
state for at least x + 1 rounds. (It is also possible for j to execute a dependent
action earlier based on the knowledge j got about the state of its neighbors.
However, for reasons of space, we omit the details.)

8 Discussion

What is specific to write-all in our transformation algorithm? Why is
this transformation not applicable for message passing?
Write-all-with-collision (i.e., wireless broadcast) model helps a lot for our trans-
formation, but is not strictly necessary. Our transformation is also applicable for
message-passing, if on execution of an action at k at its TDMA slot, its state is
made available to all of its neighbors before the next slot starts. It may not be
easy and inexpensive to guarantee this condition for message passing, whereas
for write-all with TDMA this condition is easily and inexpensively satisfied.
Can we relax the TDMA communication assumption?
The definitions of “latest” and “consistent” depend on the assumption that “k
does not have another (missed) TDMA slot until the cut”. This is used for

“Slow Is Fast” for Wireless Sensor Networks 189

ensuring that k does not execute any action in that interval, so k’s new state is
not out of sync with the cached state in the cut. Without using TDMA, the same
condition can be achieved by using an alternative mechanism to communicate
that k will not update its state for a certain duration. For example k can include
a promise in its message that it will not update its state for some interval (e.g.,
until its next scheduled update, or until its sleep period is over).

Given that our transformation can tolerate message losses in the concrete
model, dropping the TDMA mechanism would not hurt the performance of the
transformed program significantly. The round concept could be used without the
TDMA slots, and the nodes would utilize CSMA to broadcast their messages.
What are the rules of thumb for marking actions as slow?
As mentioned in the Introduction, an action be marked slow only if 1) guard
is a stable predicate, 2) guard depends only on local variables, or 3) guard is
a “locally stable” predicate. While the first two conditions are easy to detect,
the locally stable condition requires reasoning about the program execution. We
expect the protocol designer to understand his program.

A big problem is marking a fast action as slow, as this would violate correct-
ness! It is better to err on the side of safety and mark the action as fast if there
is some doubt about it being a slow action. Marking a slow action as fast does
not violate correctness, but would just reduce the performance.
Do we need to use slow-motion execution for every program?
If the designer can mark all program actions as slow, there is obviously no
need for slow-motion execution as there is no fast action remaining. Even when
there are some fast actions remaining, if most of the actions are slow actions
and message loss rates are not very high, these fast actions may not reduce the
performance of the program significantly. However, if message loss rates increase
further, it could be more beneficial to switch to slow-motion execution than to
suffer from message losses voiding the latest cut and blocking the fast actions.

9 Conclusion

We have presented an extension to the shared memory model, by introducing
the concept of slow action. A slow action is one such that once it is enabled at a
node j, it can be executed at any later point at j provided that j does not exe-
cute another action in between. Slow actions mean that the process can tolerate
slightly stale state from other processes, which enables the concrete system to be
more loosely-coupled, and tolerate communication problems better. We quanti-
fied the improvements possible by using a slow action, and gave practical rules
that help a programmer mark his program actions as slow and fast. For reducing
the performance penalty of fast actions under heavy message loss environments,
we also introduced the notion of slow-motion execution for fast actions.

Our work enables a good performance for transformed programs in realistic
WSN environments with message loss. In future work, we will investigate adaptive
switching to slow-motion execution to curb the performance penalty that mes-
sage losses incur on fast actions. To this end, we will determine the break-even

190 M. Arumugam, M. Demirbas, and S.S. Kulkarni

point for switching to the slow-motion execution mode, and middleware for
switching to and back from the slow-motion mode seamlessly.

References

1. Arora, A.: Efficient reconfiguration of trees: A case study in the methodical design
of nonmasking fault-tolerance. Science of Computer Programming (1996)

2. Arumugam, M.: A distributed and deterministic TDMA algorithm for write-all-
with-collision model. In: Kulkarni, S., Schiper, A. (eds.) SSS 2008. LNCS, vol. 5340,
pp. 4–18. Springer, Heidelberg (2008)

3. Arumugam, M., Kulkarni, S.S.: Self-stabilizing deterministic time division multiple
access for sensor networks. AIAA Journal of Aerospace Computing, Information,
and Communication (JACIC) 3, 403–419 (2006)

4. Dijkstra, E.W.: Self-stabilizing systems in spite of distributed control. Communi-
cations of the ACM 17(11) (1974)

5. Dolev, S., Israeli, A., Moran, S.: Self-stabilization of dynamic systems assuming
only read/write atomicity. Distributed Computing 7, 3–16 (1993)

6. Herman, T.: Models of self-stabilization and sensor networks. In: Das, S.R., Das,
S.K. (eds.) IWDC 2003. LNCS, vol. 2918, pp. 205–214. Springer, Heidelberg (2003)

7. Kulkarni, S.S., Arumugam, M.: SS-TDMA: A self-stabilizing mac for sensor net-
works. In: Sensor Network Operations. Wiley/IEEE Press (2006)

8. Kulkarni, S.S., Arumugam, M.: Transformations for write-all-with-collision model.
Computer Communications 29(2), 183–199 (2006)

9. Mizuno, M., Nesterenko, M.: A transformation of self-stabilizing serial model pro-
grams for asynchronous parallel computing environments. Information Processing
Letters 66(6), 285–290 (1998)

10. Nesterenko, M., Arora, A.: Stabilization-preserving atomicity refinement. Journal
of Parallel and Distributed Computing 62(5), 766–791 (2002)

Modeling and Analyzing Periodic Distributed
Computations

Anurag Agarwal�, Vijay K. Garg��, and Vinit Ogale� � �

The University of Texas at Austin
Austin, TX 78712-1084, USA
garg@ece.utexas.edu

Abstract. The earlier work on predicate detection has assumed that the given
computation is finite. Detecting violation of a liveness predicate requires that
the predicate be evaluated on an infinite computation. In this work, we develop
the theory and associated algorithms for predicate detection in infinite runs. In
practice, an infinite run can be determined in finite time only if it consists of a re-
current behavior with some finite prefix. Therefore, our study is restricted to such
runs. We introduce the concept of d-diagram, which is a finite representation of
infinite directed graphs. Given a d-diagram that represents an infinite distributed
computation, we solve the problem of determining if a global predicate ever be-
came true in the computation. The crucial aspect of this problem is the stopping
rule that tells us when to conclude that the predicate can never become true in
future. We also provide an algorithm to provide vector timestamps to events in
the computation for determining the dependency relationship between any two
events in the infinite run.

1 Introduction

Correctness properties of distributed programs can be classified either as safety prop-
erties or liveness properties. Informally, a safety property states that the program never
enters a bad (or an unsafe) state, and a liveness property states that the program eventu-
ally enters into a good state. For example, in the classical dining philosopher problem
a safety property is that “two neighboring philosophers never eat concurrently” and
a liveness property is that “every hungry philosopher eventually eats.” Assume that a
programmer is interested in monitoring for violation of a correctness property in her
distributed program. It is clear how a runtime monitoring system would check for vi-
olation of a safety property. If it detects that there exists a consistent global state[1] in
which two neighboring philosophers are eating then the safety property is violated. The
literature in the area of global predicate detection deals with the complexity and algo-
rithms for such tasks [2,3]. However, the problem of detecting violation of the liveness

� Currently at Google.
�� Part of the work was performed at the University of Texas at Austin supported in part by the

NSF Grants CNS-0509024, CNS-0718990, Texas Education Board Grant 781, SRC Grant
2006-TJ-1426, and Cullen Trust for Higher Education Endowed Professorship.

� � � Currently at Microsoft.

S. Dolev et al. (Eds.): SSS 2010, LNCS 6366, pp. 191–205, 2010.
© Springer-Verlag Berlin Heidelberg 2010

192 A. Agarwal, V.K. Garg, and V. Ogale

property is harder. At first it appears that detecting violation of a liveness property may
even be impossible. After all, a liveness property requires something to be true eventu-
ally and therefore no finite observation can detect the violation. We show in this paper
a technique that can be used to infer violation of a liveness property in spite of finite
observations. Such a technique would be a basic requirement for detecting a temporal
logic formula[4] on a computation for runtime verification.

There are three important components in our technique. First, we use the notion of
a recurrent global state. Informally, a global state is recurrent in a computation γ if it
occurs more than once in it. Existence of a recurrent global state implies that there exists
an infinite computation δ in which the set of events between two occurrences of can be
repeated ad infinitum. Note that γ may not even be a prefix of δ. The actual behavior
of the program may not follow the execution of δ due to nondeterminism. However, we
know that δ is a legal behavior of the program and therefore violation of the liveness
property in δ shows a bug in the program.

hungryhungry eating
P1

P2

P3

e

f

g

e

f

g

identical global states

P1 does not eat

Fig. 1. A finite distributed computation C of dining philosophers

For example, in figure 1, a global state repeats where the same philosopher P1 is
hungry and has not eaten in between these occurrences. P1 does get to eat after the sec-
ond occurrence of the recurrent global state; and, therefore a check that “every hungry
philosopher gets to eat” does not reveal the bug. It is simple to construct an infinite com-
putation δ from the observed finite computation γ in which P1 never eats. We simply
repeat the execution between the first and the second instance of the recurrent global
state. This example shows that the approach of capturing a periodic part of a compu-
tation can result in detection of bugs that may have gone undetected if the periodic
behavior is not considered.

The second component of our technique is to develop a finite representation of the
infinite behavior γ. Mathematically, we need a finite representation of the infinite but
periodic poset γ. In this paper, we propose the notion of d-diagram to capture infinite
periodic posets. Just as finite directed acyclic graphs (dag’s) have been used to represent
and analyze finite computations, d-diagrams may be used for representing periodic infi-
nite distributed computations for monitoring or logging purposes. The logging may be

Modeling and Analyzing Periodic Distributed Computations 193

g

f

ea

b

c

d e1d1 d2 e2 d3 e3

f 3f 2

g2 g3g1c1

b1

a1

f 1

(b)(a)

Fig. 2. (a) A d-diagram and (b) its corresponding infinite poset

useful for replay or offline analysis of the computation. Figure 2 shows a d-diagram and
the corresponding infinite computation. The formal semantics of a d-diagram is given
in Section 3. Intuitively, the infinite poset corresponds to the infinite unrolling of the
recurrent part of the d-diagram.

The third component of our technique is to develop efficient algorithms for analyzing
the infinite poset given as a d-diagram. Two kinds of computation analysis have been
used in past for finite computations. The first analysis is based on vector clocks which
allows one to answer if two events are dependent or concurrent, for example, works by
Fidge[5] and Mattern[6]. We extend the algorithm for timestamping events of a finite
poset to that for the infinite poset. Of course, since the set of events is infinite, we do
not give explicit timestamp for all events, but only an implicit method that allows effi-
cient calculation of dependency information between any two events when desired. The
second analysis we use is to detect a global predicate B on the infinite poset given as a
d-diagram. In other words, we are interested in determining if there exists a consistent
global state which satisfies B. Since the computation is infinite, we cannot employ the
traditional algorithms [2,3] for predicate detection. Because the behavior is periodic it is
natural that a finite prefix of the infinite poset may be sufficient to analyze. The crucial
problem is to determine the number of times the recurrent part of the d-diagram must
be unrolled so that we can guarantee that B is true in the finite prefix iff it is true in the
infinite computation. We show in this paper that it is sufficient to unroll the d-diagram
N times where N is the number of processes in the system.

We note here that there has been earlier work in detection of temporal logic formulas
on distributed computation, such as [7,8,9,10]. However, the earlier work was restricted
to verifying the temporal logic formula on the finite computation with the interpretation
of liveness predicates modified to work for finite posets. For example, the interpretation
of “a hungry philosopher never gets to eat” was modified to “a hungry philosopher does
not eat by the end of the computation.” This interpretation, although useful in some
cases, is not accurate and may give false positives when employed by the programmer
to detect bugs. This paper is the first one to explicitly analyze the periodic behavior to
ensure that the interpretation of formulas is on the infinite computation.

In summary, this paper makes the following contributions:

– We introduce the notion of recurrent global states in a distributed computation and
propose a method to detect them.

– We introduce and study a finite representation of infinite directed computations
called d-diagrams.

194 A. Agarwal, V.K. Garg, and V. Ogale

– We provide a method of timestamping nodes of a d-diagram so that the happened-
before relation can be efficiently determined between any two events in the given
infinite computation.

– We define the notion of core of a d-diagram that allows us to use any predicate
detection algorithm for finite computations on infinite computations as well.

2 Model of Distributed Computation

We first describe our model of a distributed computation. We assume a message pass-
ing asynchronous system without any shared memory or a global clock. A distributed
program consists of N sequential processes denoted by P = {P1, P2, . . . , PN} com-
municating via asynchronous messages. A local computation of a process is a sequence
of events. An event is either an internal event, a send event or a receive event. The pre-
decessor and successor events of e on the process on which e occurs are denoted by
pred(e) and succ(e).

Generally a distributed computation is modeled as a partial order of a set of events,
called the happened-before relation [11]. In this paper, we instead use directed graphs to
model distributed computations as done in [9]. When the graph is acyclic, it represents
a distributed computation. When the distributed computation is infinite, the directed
graph that models the computation is also infinite. An infinite distributed computation
is periodic if it consists of a subcomputation that is repeated forever.

Given a directed graph G = 〈E,→〉, we define a consistent cut as a set of vertices
such that if the subset contains a vertex then it contains all its incoming neighbors. For
example, the set C = {a1, b1, c1, d1, e1, f1, g1} is a consistent cut for the graph shown
in figure 3(b). The set {a1, b1, c1, d1, e1, g1} is not consistent because it includes g1, but
does not include its incoming neighbor f1. The set of finite consistent cuts for graph G
is denoted by C(G).

In this work we focus only on finite consistent cuts (or finite order ideals [12]) as
they are the ones of interest for distributed computing.

A frontier of a consistent cut is the set of those events of the cut whose successors,
if they exist, are not contained in the cut. Formally,

frontier(C) = {x ∈ C|succ(x) exists ⇒ succ(x)
∈ C}

For the cut C in figure 3(b), frontier(C) = {e1, f1, g1}. A consistent cut is uniquely
characterized by its frontier and in this paper we always identify a consistent cut by its
frontier.

Two events are said to be consistent iff they are contained in the frontier of some
consistent cut, otherwise they are inconsistent. It can be verified that events e and f are
consistent iff there is no path in the computation from succ(e) to f and from succ(f)
to e.

3 Infinite Directed Graphs

From distributed computing perspective, our intention is to provide a model for an in-
finite computation of a distributed system which eventually becomes periodic. To this
end, we introduce the notion of d-diagram (directed graph diagram).

Modeling and Analyzing Periodic Distributed Computations 195

Definition 1 (d-diagram). A d-diagram Q is a tuple (V, F,R,B) where V is a set of
vertices or nodes, F (forward edges) is a subset of V × V , R (recurrent vertices) is
a subset of V , and B (shift edges) is a subset of R × R. A d-diagram must satisfy the
following constraint: If u is a recurrent vertex and (u, v) ∈ F or (u, v) ∈ B, then v is
also recurrent.

Figure 2(a) is an example of a d-diagram. The recurrent vertices and non-recurrent ver-
tices in the d-diagram are represented by hollow circles and filled circles respectively.
The forward edges are represented by solid arrows and the shift-edges by dashed ar-
rows. The recurrent vertices model the computation that is periodic.

Each d-diagram generates an infinite directed graph defined as follows:

Definition 2 (directed graph for a d-diagram). The directed graph G = 〈E,→〉 for
a d-diagram Q is defined as follows:

– E = {u1|u ∈ V } ∪ {ui|i ≥ 2 ∧ u ∈ R}
– The relation→ is the set of edges in E given by:

(1) if (u, v) ∈ F and u ∈ R, then ∀i : ui → vi, and (2) if (u, v) ∈ F and u
∈ R,
then u1 → v1, and (3) if (v, u) ∈ B, then ∀i : vi → ui+1.

The set E contains infinite instances of all recurrent vertices and single instances of
non-recurrent vertices. For a vertex ui, we define its index as i.

It can be easily shown that if the relation F is acyclic, then the resulting directed
graph for the d-diagram is a poset. Figure 2 shows a d-diagram along with a part of the
infinite directed graph generated by it. Two vertices in a directed graph are said to be
concurrent if there is no path from one to other.

Note that acyclic d-diagrams cannot represent all infinite posets. For example, any
poset P defined by an acyclic d-diagram is well-founded. Moreover, there exists a con-
stant k such that every element in P has the size of the set of its upper covers and
lower covers[12] bounded by k. Although acyclic d-diagrams cannot represent all infi-
nite posets, they are sufficient for the purpose of modeling distributed computations. Let
the width of a directed graph be defined as the maximum size of a set of pairwise con-
current vertices. A distributed computation generated by a finite number of processes
has finite width and hence we are interested in only those d-diagrams which generate
finite width directed graphs. The following property of the posets generated by acyclic
d-diagrams is easy to show.

Lemma 1. A poset P defined by an acyclic d-diagram has finite width iff for every re-
current vertex there exists a cycle in the graph (R,F ∪B) which includes a shift-edge.

Proof. Let k > 0 be the number of shift-edges in the shortest cycle involving u ∈ R.
By transitivity we know that there is a path from vertex ui to ui+k in R. Therefore, at
most k − 1 instances of a vertex u ∈ R are concurrent. Since R is finite, the largest set
of concurrent vertices is also finite.

Conversely, if there exists any recurrent vertex v that is not in a cycle involving a
shift-edge, then vi is concurrent with vj for all i, j. Then, the set

{vi|i ≥ 1}

contains an infinite number of concurrent vertices. Thus, G has infinite width.

196 A. Agarwal, V.K. Garg, and V. Ogale

g

f

e

b

c

d

(a) (b)

a
e1d1 d3 e3

f 3f 2

g2 g3c1

f 1

g1

C

d2

a1

b1⊥ ⊥

S1(C, {f, g})

e2

Fig. 3. (a) A d-diagram (b) The computation for the d-diagram showing a cut and the shift of a
cut

Figure 2 shows a d-diagram and the corresponding computation. Note that for any
two events x, y on a process, either there is a path from x to y or from y to x, i.e., two
events on the same process are always ordered.

The notion of shift of a cut is useful for analysis of periodic infinite computations.
Intuitively, the shift of a frontier C produces a new cut by moving the cut C forward
or backward by a certain number of iterations along a set X of recurrent events in C.
Formally,

Definition 3 (d-shift of a cut). Given a frontier C, a set of recurrent events X ⊆ R
and an integer d, a d-shift cut of C with respect to X , is represented by the frontier
Sd(C,X)

{ei|ei ∈ C ∧ e
∈ X} ∪ {em|ei ∈ C ∧ e ∈ X ∧m = max(1, i + d)}

We denote Sd(C,R) simply by Sd(C).

Hence Sd(C,X) contains all events ei that are not in X , and the shifted events for all
elements of X . Note that in the above definition d can be negative. Also, for a consistent
cut C, Sd(C,X) is not guaranteed to be consistent for every X .

As an example, consider the infinite directed graph for the d-diagram in figure 3. Let
C be a cut given by the frontier {e1, f1, g1} and X = {f, g}. Then S1(C,X) is the cut
given by {e1, f2, g2}. Figure 3 shows the cut C and S1(C,X). Similarly for C given
by {a1, f1, g1}, S1(C) = {a1, f2, g2}. Note that in this case, a1 remains in the frontier
of S1(C) and the cut S1(C) is not consistent.

4 Vector Clock Timestamps

In this section, we present algorithms to assign vector timestamps to nodes in the infinite
computation given as a d-diagram. The objective is to determine dependency between
any two events, say ei and f j , based on the vector clocks assigned to these events rather
than exploring the d-diagram. Since there are infinite instances of recurrent events, it is
clear that we can only provide an implicit vector timestamp for the events. The explicit
vector clock can be computed for any specific instance of i and j.

Timestamping events of the computation has many applications in debugging dis-
tributed programs [5]. Given the timestamps of recurrent events e and f , our algorithm
enables answering queries of the form:

Modeling and Analyzing Periodic Distributed Computations 197

c2

d4b1

a2

b2d1

c1 a3 c3

d3
b3d2 b4

c4a4a1

[1,0] [2,0] [3,0] [4,2] [5,2] [6,4] [7,4] [8,6]

[2,3][2,2][0,1] [4,4] [4,5] [6,6] [8,8][6,7]

(a)

b

a

(b)

c

d

Fig. 4. (a) A d-diagram(b) The corresponding computation with vector timestamps

1. Are there any instances of e and f which are concurrent, i.e., are there indices i
and j such that ei is concurrent with f j? For example, when e and f correspond to
entering in the critical section, this query represents violation of the critical section.

2. What is the maximum value of i such that ei happened before a given event such
as f256?

3. Is it true that for all i, ei happened before f i?

We show in this section, that there exists an efficient algorithm to timestamp events in
the d-diagram. As expected, the vectors corresponding to any recurrent event ei even-
tally become periodic. The difficult part is to determine the threshold after which the
vector clock becomes periodic and to determine the period.

We first introduce the concept of shift-diameter of a d-diagram. The shift-diameter
provides us with the threshold after which the dependency of any event becomes
periodic.

Definition 4 (shortest path in a d-diagram). For a d-diagram Q, the shortest path
between any two vertices is a path with the minimum number of shift-edges.

Definition 5 (shift-diameter of a d-diagram). For a d-diagram Q, the shift-diameter
η(Q) is the maximum of the number of shift-edges in the shortest path between any two
vertices in the d-diagram.

When Q is clear from the context, we simply use η to denote η(Q). For the d-diagram
in Figure 3, η = 1. In figure 4, we can see that η = 2. We first give a bound on η.

Lemma 2. For a d-diagram Q corresponding to a computation with N processes,
η(Q) ≤ 2N .

Proof. Consider the shortest path between two vertices e, f ∈ V . Clearly this path does
not have a cycle; otherwise, a shorter path which excludes the cycle exists. Moreover,
all the elements from a process occur consecutively in this path. As a result, the shift-
edges that are between events on the same process are traversed at most once in the
path. Moving from one process to another can have at most one shift-edge. Hence,
η(Q) ≤ 2N .

For an event x ∈ E, we denote by J(x), the least consistent cut which includes x. The
least consistent cut for J(ei) will give us the vector clock for event ei. We first show

198 A. Agarwal, V.K. Garg, and V. Ogale

that the cuts J(ei) stabilize after some iterations i.e. the cut J(ej) can be obtained from
J(ei) by a simple shift for j > i. This allows us to predict the structure of J(ei) after
certain iterations.

The next lemma shows that the cut J(f j) does not contain recurrent events with
iterations very far from j.

Lemma 3. If ei ∈ frontier(J(f j)), e ∈ R, then 0 ≤ j − i ≤ η.

Proof. If ei ∈ frontier(J(f j)), then there exists a path from ei to f j and ∀k > i there
is no path from ek to f j . Therefore the path from ei to f j corresponds to the shortest
path between e and f in the d-diagram. Therefore, by the definition of η, j − i ≤ η.

The following theorem proves the result regarding the stabilization of the cut J(ei).
Intuitively, after a first few iterations the relationship between elements of the compu-
tation depends only on the difference between their iterations.

Theorem 1. For a recurrent vertex e ∈ R, J(eβ+1) = S1(J(eβ)) for all β ≥ η + 1.

Proof. We first show that S1(J(eβ)) ⊆ J(eβ+1). Consider f j ∈ S1(J(eβ)). If f ∈
V \ R (i.e., f is not a recurrent vertex), then f j ∈ J(eβ), because the shift operator
affects only the recurrent vertices. This impies that there is a path from f j to eβ , which
in turn implies the path from f j to eβ+1. Hence, f j ∈ J(eβ+1). If f is recurrent, then
f j ∈ S1(J(eβ)) implies f j−1 ∈ J(eβ). This impies that there is a path from f j−1 to
eβ , which in turn implies the path from f j to eβ+1, from the property of d-diagrams.
Therefore, S1(J(eβ)) ⊆ J(eβ+1).

Now we show that J(eβ+1) ⊆ S1(J(eβ)). Consider f j ∈ J(eβ+1). If j > 1, then
given a path from f j to eβ+1, there is a path from f j−1 to eβ . Hence f j ∈ S1(J(eβ)).
Now, consider the case when j equals 1. f1 ∈ J(eβ+1) implies that there is a path from
f1 to eβ+1. We claim that for β > η, there is also a path from f1 to eβ . Otherwise, the
shortest path from f to e has more than η shift-edges, a contradiction.

When d-diagram generates a poset, Theorem 1 can be used to assign timestamps to
vertices in the d-diagram in a way similar to vector clocks. The difference here is that
a timestamp for a recurrent vertex is a concise way of representing the timestamps of
infinite instances of that vertex.

Each recurrent event, e, has a special p-timestamp (PV (e)) associated with it, which
lets us compute the time stamp for any arbitrary iteration of that event. Therefore, this
result gives us an algorithm for assigning p-timestamp to a recurrent event. The p-
timestamp for a recurrent event e, PV (e) would be a list of the form

(V (e1), . . . , V (eβ); I(e))

where I(e) = V (eβ+1) − V (eβ) and V (ej) is the timestamp assigned by the normal
vector clock algorithm to event ej . Now for any event ej, j > β, V (ej) = V (eβ) +
(j − β) ∗ I(e).

In figure 4, η = 2, β = 3. V (a3) = [5, 2] and V (a4) = [7, 4]. I(a) = [2, 2]. Hence
PV (a) = ([1, 0], [3, 0], [5, 2]; [2, 2]). Now, calculating V (aj) for an arbitrary j is trivial.
For example, if j = 6, then V (a6) = [5, 2] + (6− 3) ∗ [2, 2] = [11, 8].

Modeling and Analyzing Periodic Distributed Computations 199

This algorithm requires O(ηn) space for every recurrent vertex. Once the times-
tamps have been assigned to the vertices, any two instances of recurrent vertices can be
compared in O(n) time.

The notion of vector clock also allows us to keep only the relevant events[13] of the
d-diagram. Any dependency related question on the relevant events can be answered by
simply examining the vector timestamps instead of the entire d-diagram.

5 Detecting Global Predicates

We now consider the problem of detecting predicates in d-diagrams. A predicate is a
property defined on the states of the processes and possibly channels. An example of a
predicate is “more than one philosopher is waiting.”

Given a consistent cut, a predicate is evaluated with respect to the values of the
variables resulting after executing all the events in the cut. If a predicate p evaluates
to true for a consistent cut C, we say that C satisfies p. We further assume that the
truthness of a predicate on a consistent cut is governed only by the labels of the events
in the frontier of the cut. This assumption implies that the predicates do not involve
shared state such as the channel state. We define L : G → L to be an onto mapping
from the set of vertices in d-diagram to a set of labels L with the constraint that ∀e ∈ V :
L(ei) = L(ej). This is in agreement with modeling the recurrent events as repetition
of the same event.

It is easy to see that it does not suffice to detect the predicate on the d-diagram
without unrolling it. As a simple example, consider figure 4, where though {a1, d1} is
not a consistent cut, but {a2, d1} is consistent.

In this section, we define a finite extension of our d-diagram which enables us to de-
tect any property that could be true in the infinite poset corresponding to the d-diagram.
We show that it is sufficient to perform predicate detection on that finite part.

We mainly focus on the recurrent part of the d-diagram as that is the piece which
distinguishes this problem from the case of finite directed graph. We identify certain
properties of the recurrent part which allows us to apply the techniques developed for
finite directed graphs to d-diagrams.

Predicate detection algorithms explore the lattice of global states in BFS order as in
Cooper-Marzullo [2] algorithm, or a particular order of events as in Garg-Waldecker
[14] algorithm. For finite directed graphs, once the exploration reaches the final global
state it signals that the predicate could never become true. In the case of infinite directed
graphs, there is no final global state. So, the key problem is to determine the stopping
rule that guarantees that if the predicate ever becomes true then it would be discovered
before the stopping point. For this purpose, we show that for every cut in the computa-
tion, a subgraph of the computation called the core contains a cut with the same label.
The main result of this section is that the core of the periodic infinite computation is
simply the set of events in the computation with iteration less than or equal to N , the
number of processes.

Definition 6 (core of a computation). For a d-diagram Q corresponding to a compu-
tation with N processes, we define U(Q), the core of Q, as the directed graph given by

200 A. Agarwal, V.K. Garg, and V. Ogale

e1d1

f 2

c1

b1

a1

f 1

g1

e2d2

g2

d3 e3

f 3

d4 e4

f 4

g4

d5 e5

f 5

g5

C

g3

⊥

C (C)

Fig. 5. Compression operation being applied on a cut

the set of events E′ = {ej|e ∈ R ∧ 2 ≤ j ≤ N} ∪ {e1|e ∈ V } and the edges are the
restriction of→ to set E′.

The rest of the section is devoted to proving the completeness of the core of a computa-
tion. The intuition behind the completeness of the core is as follows: For any frontier C,
we can perform a series of shift operations such that the resulting frontier is consistent
and lies in the core. We refer to this operation as a compression operation and the re-
sulting cut is denoted by by the frontier C (C). Figure 5 shows the cut C = {e5, f3, g1}
and the compressed cut C (C) = {e3, f2, g1}.

For proving the completeness of the core, we define the notion of a compression
operation. Intuitively, compressing a consistent cut applies the shift operation multiple
times such that the final cut obtained lies in the core of the computation and has the
same labeling.

Definition 7 (Compression). Given a frontier C and index i , define C (C, i) as shifting
of all events with index greater than i by sufficient iterations such that in the shifted
frontier the event with next higher index than i is i + 1. The cut obtained after all
possible compressions is denoted as C (C).

In Figure 5, consider the cut C = {e5, f3, g1}. When we apply C (C, 1), we shift events
e5 and f3 back by 1. This results in the cut {e4, f2, g1}. The next higher index in the
cut now is 2 in f2. We now apply another compression at index 2, by shifting event
e4, and the compressed cut C (C) = {e3, f2, g1}. As another example, consider a cut
C = {e7, f4, g4}. We first apply C (C, 0) to get the cut {e4, f1, g1}. Applying the
compression at index 1, we finally get {e2, f1, g1}.

Note that the cut resulting from the compression of a cut C has the same labeling as
the cut C. The following lemma shows that it is safe to apply compression operation on
a consistent cut i.e. compressing the gaps in a consistent cut results in another consistent
cut. This is the crucial argument in proving completeness of the core.

Lemma 4. If C is the frontier of a consistent cut, then C (C, l) corresponds to a con-
sistent cut for any index l.

Proof. Let C′ = C (C, l) for convenience. Consider any two events ei, f j ∈ C. If
i ≤ l, j ≤ l or i > l, j > l, then the events corresponding to ei and f j in C′ are also
consistent. When i > l and j > l, events corresponding to ei and f j in C′ get shifted
by the same number of iterations.

Now assume i ≤ l and j > l. Then ei remains unchanged in C′ and f j is mapped
to fa such that a ≤ j. Since i < a, there is no path from succ(fa) to ei. If there is a

Modeling and Analyzing Periodic Distributed Computations 201

path from succ(ei) to fa, then there is also a path from succ(ei) to f j as there is a path
from fa to f j . This contradicts the fact that ei and f j are consistent. Hence, every pair
of vertices in the cut C′ is consistent.

Now we can use the compression operation to compress any consistent cut to a con-
sistent cut in the core. Since the resulting cut has the same labeling as the original cut,
it must satisfy any non-temporal predicate that the original cut satisfies. The following
theorem establishes this result.

Theorem 2. If there is a cut C ∈ C(〈E,→〉), then there exists a cut C′ ∈ C(U(Q))
such that L(C) = L(C ′).

Proof. Let C′ = C (C). By repeated application of the lemma 4, we get that C ′ is a
consistent cut and L(C) = L(C′). Moreover, by repeated compression, no event in C′

has index greater than N . Therefore, C′ ∈ U(Q).

The completeness of the core implies that the algorithms for predicate detection on finite
directed graphs can be used for d-diagrams as well after unrolling the recurrent events
N times. This result holds for any global predicate that is non-temporal (i.e., defined on
a single global state). Suppose that the global predicate B never becomes true in the core
of the computation, then we can assert that there exists an infinite computation in which
B never becomes true (i.e., the program does not satisfy that eventually B becomes
true). Similarly, if a global predicate B is true in the recurrent part of the computation,
it verifies truthness of the temporal predicate that B becomes true infinitely often.

6 Recurrent Global State Detection Algorithm

We now briefly discuss a method to obtain a d-diagram from a finite distributed com-
putation. The local state of a process is the value of all the variables of the process in-
cluding the program counter. The channel state between two processes is the sequence
of messages that have been sent on the channel but not received. A global state of a
computation is defined to be the cross product of local states of all processes and all the
channel states at any cut. Any consistent cut of the computation determines a unique
consistent global state. A global state is recurrent in a computation, if there exist con-
sistent cuts Y and Z such that the global states for Y and Z are identical and Y is a
proper subset of Z . Informally, a global state is recurrent if there are at least two distinct
instances of that global state in the computation.

We now give an algorithm to detect recurrent global states of a computation. We
assume that the system logs the message order and nondeterministic events so that the
distributed computation can be exactly replayed. We also assume that the system sup-
ports a vector clock mechanism.

The first step of our recurrent global state detection (RGSD) algorithm consists of
computing the global state of a distributed system. Assuming FIFO, we could use the
classical Chandy and Lamport’s algorithm[1] for this purpose. Otherwise, we can use
any of the algorithms, such as [15,16,17]. Let the computed global snapshot be G. Let
Z be the vector clock for the global state G.

202 A. Agarwal, V.K. Garg, and V. Ogale

The second step consists of replaying the distributed computation while monitoring
the computation to determine the least consistent cut that matches G. We are guaranteed
to hit such a global state because there exists at least one such global state (at vector
time Z) in the computation. Suppose that the vector clock of the detected global state is
Y . We now have two vector clocks Y and Z corresponding to the global state G. If Y
equals Z , we continue with our computation. Otherwise, we have succeeded in finding
a recurrent global state G.

Note that replaying a distributed computation requires that all nondeterministic events
(including the message order) be recorded during the initial execution [18]. Monitoring
the computation to determine the least consistent cut that matches G can be done using
algorithms for conjunctive predicate detection [3,19].

When the second step fails to find a recurrent global state, the first step of the algo-
rithm is invoked again after certain time interval. We make the following observation
about the recurrent global state detection algorithm.

Theorem 3. If the distributed computation is periodic then the algorithm will detect a
recurrent global state. Conversely, if the algorithm returns a recurrent global state G,
then there exists an infinite computation in which G appears infinitely often.

Proof. The RGSD algorithm is invoked periodically and therefore it will be invoked at
least once in repetitive part of the computation. This invocation will compute a global
state G. Since the computation is now in repetitive mode, the global state G must have
occurred earlier and the RGSD algorithm with declare G as a recurrent global state.

We prove the converse by constructing the infinite computation explicitly. Let Y and
Z be the vector clocks corresponding to the global state recurrent global state G. Our
infinite computation will first execute all events till Y . After that it will execute the
computation that corresponds to events executed between Y and Z . Since Y and Z
have identical global state, the computation after Y is also a legal computation after Z .
By repeatedly executing this computation, we get an infinite legal computation in which
G appears infinitely often.

It is important to note that our algorithm does not guarantee that if there exists any
recurrent global state, it will be detected by the algorithm. It only guarantees that if the
computation is periodic, then it will be detected.

We note here that RGSD algorithm is also useful in debugging applications in which
the distributed program is supposed to be terminating and presence of a recurrent global
state itself indicates a bug.

7 Related Work

A lot of work has been done in identifying the classes of predicates which can be ef-
ficiently detected [7,9]. However, most of the previous work in this area is mainly re-
stricted to finite traces.

Some examples of the predicates for which the predicate detection can be solved
efficiently are: conjunctive [7,20], disjunctive [7], observer-independent [21,7], linear
[7], non-temporal regular [22,9] predicates and temporal [8,23,24].

Modeling and Analyzing Periodic Distributed Computations 203

b2 b3 b4d1 d2 d3b1

c1 c2 c3 a4a3a2a1

Fig. 6. A poset which cannot be captured using MSC graphs or HMSC

Some representations used in verification explicitly model concurrency in the sys-
tem using a partial order semantics. Two such prominent models are message sequence
charts (MSCs) [25] and petri nets [26]. MSCs and related formalisms such as time
sequence diagrams, message flow diagrams, and object interaction diagrams are of-
ten used to specify design requirements for concurrent systems. An MSC represents
one (finite) execution scenario of a protocol; multiple MSCs can be composed to de-
pict more complex scenarios in representations such as MSC graphs and high-level
MSCs (HMSC). These representations capture multiple posets but they cannot be used
to model all the posets (and directed graphs) that can be represented by d-diagrams. In
particular, a message sent in a MSC node must be received in the same node in MSC
graph or HMSC. Therefore, some infinite posets which can be represented through d-
diagrams cannot be represented through MSCs. Therefore, an infinite poset such as the
one shown in figure 6 is not possible to represent through MSCs.

Petri nets [26] are also used to model concurrent systems. Partial order semantics
in petri nets are captured through net unfoldings [27]. Unfortunately, unfoldings are
usually infinite sets and cannot be stored directly. Instead, a finite initial part of the
unfolding, called the finite complete prefix [28] is generally used to represent the un-
folding. McMillan showed that reachability can be checked using the finite prefix itself.
Later Esparza [29] extended this work to use unfoldings to efficiently detect predicates
from a logic involving the EF and AG operators. Petri nets are more suitable to model
the behavior of a complete system whereas d-diagrams are more suitable for modeling
distributing computations in which the set of events executed by a process forms a total
order. They are a simple extension of process-time diagrams[11] which have been used
extensively in distributed computing literature.

8 Conclusion

In this paper, we introduce a method for detecting violation of liveness properties in
spite of observing a finite behavior of the system. Our method is based on (1) determin-
ing recurrent global states, (2) representing the infinite computation by a d-diagram, (3)
computing vector timestamps for determining dependency and (4) computing the core
of the computation for predicate detection. We note here that intermediate steps are of
independent interest. Determining recurrent global states can be used to detect if a ter-
minating system has an infinite trace. Representing an infinite poset with d-diagram is
useful in storing and replaying an infinite computation.

Our method requires that the recurrent events be unrolled N times. For certain
computations, it may not be necessary to unroll recurrent event N times. It would be

204 A. Agarwal, V.K. Garg, and V. Ogale

interesting to develop a method which unrolls each recurrent event just the minimum
number of times required for that prefix of the computation to be core.

In this paper, we have restricted ourselves to very simple unnested temporal logic
formulas. Detecting a general temporal logic formula efficiently in the model of d-
diagram is a future work.

References

1. Chandy, K.M., Lamport, L.: Distributed snapshots: Determining global states of distributed
systems. ACM Transactions on Computer Systems 3(1), 63–75 (1985)

2. Cooper, R., Marzullo, K.: Consistent detection of global predicates. In: Proc. of the Workshop
on Parallel and Distributed Debugging, Santa Cruz, CA, ACM/ONR, pp. 163–173 (1991)

3. Garg, V.K., Waldecker, B.: Detection of weak unstable predicates in distributed programs.
IEEE Trans. on Parallel and Distributed Systems 5(3), 299–307 (1994)

4. Pnueli, A.: The temporal logic of programs. In: Proc. 18th Annual IEEE-ACM Symposium
on Foundations of Computer Science, pp. 46–57 (1977)

5. Fidge, C.J.: Partial orders for parallel debugging. In: Proceedings of the ACM SIG-
PLAN/SIGOPS Workshop on Parallel and Distributed Debugging, vol. 24(1), pp. 183–194
(1989), published in ACM SIGPLAN Notices

6. Mattern, F.: Virtual Time and Global States of Distributed Systems. In: Proc. of the Int’l
Workshop on Parallel and Distributed Algorithms (1989)

7. Garg, V.K.: Elements of Distributed Computing. John Wiley & Sons, Chichester (2002)
8. Sen, A., Garg, V.K.: Detecting temporal logic predicates in distributed programs using com-

putation slicing. In: 7th International Conference on Principles of Distributed Systems, La
Martinique, France (2003)

9. Mittal, N., Garg, V.K.: Computation Slicing: Techniques and Theory. In: Welch, J.L. (ed.)
DISC 2001. LNCS, vol. 2180, p. 78. Springer, Heidelberg (2001)

10. Ogale, V.A., Garg, V.K.: Detecting temporal logic predicates on distributed computations.
In: Pelc, A. (ed.) DISC 2007. LNCS, vol. 4731, pp. 420–434. Springer, Heidelberg (2007)

11. Lamport, L.: Time, Clocks, and the Ordering of Events in a Distributed System. Communi-
cations of the ACM 21(7), 558–565 (1978)

12. Davey, B.A., Priestley, H.A.: Introduction to Lattices and Order. Cambridge University Press,
Cambridge (1990)

13. Agarwal, A., Garg, V.K.: Efficient dependency tracking for relevant events in shared-memory
systems. In: Aguilera, M.K., Aspnes, J. (eds.) PODC, pp. 19–28. ACM, New York (2005)

14. Garg, V.K., Waldecker, B.: Detection of unstable predicates. In: Proc. of the Workshop on
Parallel and Distributed Debugging, Santa Cruz, CA. ACM/ONR (1991)

15. Mattern, F.: Efficient algorithms for distributed snapshots and global virtual time approxima-
tion. Journal of Parallel and Distributed Computing, 423–434 (1993)

16. Garg, R., Garg, V.K., Sabharwal, Y.: Scalable algorithms for global snapshots in distributed
systems. In: Proceedings of the ACM Conference on Supercomputing. ACM, New York
(2006)

17. Kshemkalyani, A.D.: A symmetric o(n log n) message distributed snapshot algorithm for
large-scale systems. In: Cluster, pp. 1–4. IEEE, Los Alamitos (2009)

18. Le Blanc, M.-C.: Debugging parallel programs with instant replay. IEEETC: IEEE Transac-
tions on Computers 36 (1987)

19. Garg, V.K., Chase, C.M., Kilgore, R.B., Mitchell, J.R.: Efficient detection of channel predi-
cates in distributed systems. J. Parallel Distrib. Comput. 45(2), 134–147 (1997)

Modeling and Analyzing Periodic Distributed Computations 205

20. Hurfin, M., Mizuno, M., Raynal, M., Singhal, M.: Efficient detection of conjunctions of local
predicates. IEEE Transactions on Software Engineering 24(8), 664–677 (1998)

21. Charron-Bost, B., Delporte-Gallet, C., Fauconnier, H.: Local and temporal predicates in dis-
tributed systems. ACM Transactions on Programming Languages and Systems 17(1), 157–
179 (1995)

22. Garg, V.K., Mittal, N.: On Slicing a Distributed Computation. In: Proc. of the 15th Int’l
Conference on Distributed Computing Systems, ICDCS (2001)

23. Sen, A., Garg, V.K.: Detecting temporal logic predicates in the happened before model. In:
International Parallel and Distributed Processing Symposium (IPDPS), Florida (2002)

24. Ogale, V.A., Garg, V.K.: Detecting temporal logic predicates on distributed computations.
In: Pelc, A. (ed.) DISC 2007. LNCS, vol. 4731, pp. 420–434. Springer, Heidelberg (2007)

25. Z.120. ITU-TS recommendation Z.120: Message Sequence Chart (MSC) (1996)
26. Petri, C.A.: Kommunikation mit Auto-maten. PhD thesis, Bonn: Institut fuer Instru- mentelle

Mathematik (1962)
27. Nielsen, M., Winskel, G.P., Petri, G.: nets, event structures and domains. Theoretical Com-

puter Science 13(1), 85–108 (1980)
28. McMillan, K.L.: Symbolic Model Checking. Kluwer Academic Publishers, Dordrecht (1993)
29. Esparza, J.: Model checking using net unfoldings. Science of Computer Programming 23(2),

151–195 (1994)

Complexity Issues in
Automated Model Revision without Explicit

Legitimate State�

Fuad Abujarad and Sandeep S. Kulkarni

Department of Computer Science and Engineering
Michigan State University

East Lansing, MI 48824, USA
{abujarad,sandeep}@cse.msu.edu

http://www.cse.msu.edu/~{abujarad,sandeep}

Abstract. Existing algorithms for the automated model revision incur
an impediment that the designers have to identify the legitimate states
of original model. Experience suggests that of the inputs required for
model revision, identifying such legitimate states is the most difficult.
In this paper, we consider the problem of automated model revision
without explicit legitimate states. We note that without the explicit le-
gitimate states, in some instances, the complexity of model revision in-
creases substantially (from P to NP-hard). In spite of this, we find that
this formulation is relatively complete, i.e., if it was possible to perform
model revision with explicit legitimate states then it is also possible to
do so without the explicit identification of the legitimate states. Finally,
we show if the problem of model revision can be solved with explicit
legitimate states then the increased cost of solving it without explicit
legitimate states is very small.

In summary, the results in this paper identify instances of model re-
vision where the explicit knowledge of legitimate state is beneficial and
where it is not very crucial.

Keywords: Model Revision, Program Synthesis.

1 Introduction

There are several instances where one needs to revise an existing model. In
particular, model revision is required to account for bug fixes, newly discovered
faults or changes in the environment. Quite often, model revisions are done man-
ually and, hence, create several concerns. For one, it requires a significant effort
and resources. Also, the new (i.e., revised) model may violate other properties
that the original model provided. Consequently, this approach entails that the
� This work was partially sponsored by the Air Force ContractFA9550-10-1-0178 NSF

CNS 0914913.

S. Dolev et al. (Eds.): SSS 2010, LNCS 6366, pp. 206–220, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

{ abujarad,sandeep}@cse.msu.edu
http://www.cse.msu.edu/~{abujarad, sandeep}

Complexity Issues in Automated Model Revision 207

new model must be rechecked and re-tested to verify if it still preserves the old
properties in addition to the new properties.

Another approach for revising existing models/programs is through automated
model revision. The goal of the automated model revision is to automatically revise
an existing model to generate a new model, which is correct-by-construction [13].
Such model will also preserve the existing model properties and satisfy new prop-
erties. In its basic form, the problem of automated model revision (also known as
incremental synthesis) focuses on modifying an existing model, say p, into a new
model, say p′. It is required that p′ satisfies the new property of interest. Addition-
ally, p′ continues to satisfy existing properties of p using the same transitions that
p used.

Current approaches for automated model revision for revising an existing
model to add fault-tolerance include [7,8,13,15]. These approaches describe the
model as an abstract program. They require the designer to specify (1) the ex-
isting abstract program that is correct in the absence of faults, (2) the program
specification, (3) the faults that have to be tolerated, and (4) the program le-
gitimate states, from where the existing program satisfies its specification (c.f.
Figure 1). We call this problem as the problem of model revision with explicit
legitimate states.

Revised
Model

Original
Model

Specifications

Faults

Automated
Model

Revision

Legitimate
States

Fig. 1. Model Revision with Explicit Le-
gitimate States

Revised
Model

Original
Model

Specifications

Faults

Automated
Model

Revision

Fig. 2. Model Revision without Explicit
Legitimate States

Of these four inputs, the first three are easy to identify and/or unavoidable.
For example, one is expected to utilize model revision only if they have an
existing model that fails to satisfy a required property. Thus, if model revision
is applied in the context of newly identified faults, original model and faults are
already available. Likewise, specification identifies what the model was supposed
to do. Clearly, requiring it is unavoidable.

Identifying the legitimate states from where the fault-intolerant program sat-
isfies its specification is however a difficult task. Our experience in this context
shows that while identifying the other three arguments is often straightforward,
identifying precise legitimate states requires significant effort. With this motiva-
tion, in this paper, we focus on the problem of model revision where the input
only consists of the fault-intolerant program, faults and the specification, i.e., it
does not include the legitimate states. We call this problem as the problem of
model revision without explicit legitimate states (cf. Figure 2).

208 F. Abujarad and S.S. Kulkarni

There are several important questions that have to be addressed for such a
new formulation.

Q. 1 Is the new formulation relatively complete? (i.e., if it is possible to perform
model revision using the problem formulation in Figure 1, is it guaranteed
that it could be solved using the formulation in Figure 2.)
An affirmative answer to this question will indicate that reduction of design-
ers’ burden does not affect the solvability of the corresponding problem.

Q. 2 Is the complexity of both formulations in the same class? (By same class,
we mean polynomial time reducibility, where complexity is computed in the
size of state space.)
An affirmative answer to this question will indicate that the reduction in the
designers’ burden does not significantly affect the complexity.

Q. 3 Is the increased time cost, if any, small comparable to the overall cost of
program revision?
While Question 2 focuses on qualitative complexity, assuming that the an-
swer is affirmative, Question 3 will address the quantitative change in com-
plexity.

The contributions of the paper are as follows:

– We show that the answer to Q. 1 is affirmative (cf. Theorem 1).
– Regarding Q.2, we consider two versions of the problem (partial revision and

total revision):
• We note that the answer to Q.2 is negative for partial revision.
• We show that the answer to Q.2 is affirmative for total revision.
• We show that there is a class of problems where partial revision can be

achieved in polynomial time. This class includes all instances where it
is possible to successfully revise a program based on the formulation in
Figure 1.

– Regarding Q. 3, we show that for instances where the answer to the question
in Figure 1 is affirmative, the extra computation cost of solving the problem
using an approach in Figure 2 is small.

Organization of the paper. The rest of the paper is organized as follows: We
define distributed program and specification in Section 2. In Section 3, we give
the automated model revision problem statement. In Sections, 4, 5 and 6, we
answer the above three questions respectively. We discuss related work in Section
7 and conclude in Section 8.

2 Programs, Specifications and Faults

In this section, we formally define programs, specifications, faults and fault-
tolerance. We also identify the problem of automated program revision with
explicit legitimate states and without legitimate states. Part of those definitions
is based on the ones given by Arora and Gouda [3].

Complexity Issues in Automated Model Revision 209

2.1 Programs and Specifications

Since we focus on the design of distributed programs, we specify the state space
of the program in terms of its variables. Each variable is associated with its
domain. A state of the program is obtained by assigning each of its variables a
value from the respective domain. The state space of the program is the set of
all states. Thus, a program p is a tuple 〈Sp, δp〉 where Sp is a finite set of states
which identifies the program state space, and δp is a subset of SpxSp which
identifies the program transitions. A state predicate, say S, of p(= 〈Sp, δp〉) is
any subset of Sp. Since a state predicate can be characterized by the set of all
states in which its Boolean expression is true, we use sets of states and state
predicates interchangeably. Thus, conjunction, disjunction and negation of sets
are the same as the conjunction, disjunction and negation of the respective state
predicates. We say that the state predicate S is closed in p iff (∀s0, s1 :: s0 ∈
S∧(s0, s1) ∈ δp ⇒ s1 ∈ S). In other words, S is closed in p iff every transition
of p that begins in S also ends in S.

Let σ=〈s0, s1, ...〉 be a sequence of states, then σ is a computation of p(=
〈Sp, δp〉) iff the following two conditions are satisfied:

– ∀j : 0 < j < length(σ) : (sj−1, sj) ∈ δp, where length(σ) = the number of
states in σ,

– if σ is finite and the last state in σ is sl then there does not exist state s
such that (sl, s)∈δp.

Notation. We call δp the transitions of p. When it is clear from context, we use
p and δp interchangeably.

The safety specification, Sfp , for program p is specified in terms of bad states,
SPEC bs, and bad transitions SPEC bt. Thus, σ=〈s0, s1, ...〉 satisfies the safety
specification of p iff the following two conditions are satisfied.

– ∀j : 0 ≤ j < length(σ) : sj
∈SPEC bs, and
– ∀j : 0 < j < length(σ) : (sj−1, sj)
∈SPEC bt.

Let F and T be state predicates, then the liveness specification, Lvp , of program
p is specified in terms of one or more leads-to properties of the form F � T . A
sequence σ = 〈s0, s1, ...〉 satisfies F � T iff ∀j : (F is true in sj ⇒ ∃k : j ≤ k <
length(σ) : T is true in sk).

A specification, say SPEC is a tuple 〈Sfp , Lvp〉, where Sfp is a safety
specification and Lvp is a liveness specification. A sequence σ satisfies SPEC iff
it satisfies Sfp and Lvp . Hence, for brevity, we say that the program specification
is an intersection of a safety specification and a liveness specification.

Let I ⊆ Sp and I
= {} (i.e., the empty set). We say that a program p satisfies
SPEC from I iff the following two conditions are satisfied.

– I is closed in p, and
– every computation of p that starts from a state in I satisfies SPEC .

210 F. Abujarad and S.S. Kulkarni

If p satisfies SPEC from I then we say that I is a legitimate state predicate of p
for SPEC . We use the term “legitimate state predicate” and the corresponding
“set of legitimate states” interchangeably.

Assumption 2 .1 : For simplicity of subsequent definitions, if p satisfies SPEC
from I, we assume that p includes at least one transition from every state in I. If
p does not include a transition from state s then we add the transition (s, s) to p.
Note that this assumption is not restrictive in any way. It simplifies subsequent
definitions, as one does not have to model terminating computations explicitly.

2.2 Faults and Fault-Tolerance

The faults, say f , that a program is subject to are systematically represented
by transitions. Based on the classification of faults from [6], this representation
suffices for physical faults, process faults, message faults, and improper initial-
ization. It is not intended for program bugs (e.g. buffer overflow). However, if
such bugs exhibit behavior such as component crash, it can be modeled using
this approach. As an example, for the case considered in the Introduction, a
sticky gas pedal can be modeled by a variable stuck.j; when this variable is false
the gas pedal behaves normally. But a fault can set it to true thereby preventing
the gas pedal from changing its status. Thus, a fault for p(= 〈Sp, δp〉) is a subset
of SpxSp.

We use ‘p[]f ’ to mean ‘p in the presence of f ’. The transitions of p[]f are
obtained by taking the union of the transitions of p and the transitions of f .
Just as we defined computations of a program in Section 2.1, we define the notion
of program computations in the presence of faults. In particular, a sequence of
states, σ = 〈s0, s1, ...〉, is a computation of p[]f (i.e., a computation of p(=
〈Sp, δp〉) in the presence of f) iff the following three conditions are satisfied:

– ∀j : 0 < j < length(σ) : (sj−1, sj)∈(δp ∪ f), and
– if 〈s0, s1, ...〉 is finite and terminates in state sl then there does not exist

state s such that (sl, s)∈δp,
– if σ is infinite then ∃n : ∀j > n : (sj−1, sj) ∈ δp

Thus, if σ is a computation of p in the presence of f then in each step of σ, either
a transition of p occurs or a transition of f occurs. Additionally, σ is finite only
if it reaches a state from where the program has no outgoing transition. And, if
σ is infinite then σ has a suffix where only program transitions execute. We note
that the last requirement can be relaxed to require that σ has a sufficiently long
subsequence where only program transitions execute. However, to avoid details
such as the length of the subsequence, we require that σ has a suffix where only
program transitions execute. (This assumption is not required for failsafe fault-
tolerance described later in this section.) We use f -span (fault-span) to identify
the set of states reachable by p[]f . In particular, a predicate T is an f -span of p
from I iff I ⇒ T and (∀(s0, s1) : (s0, s1)∈p[]f : (s0∈T ⇒ s1∈T)).

Thus, at each state where I of p is true, f -span T of p from I is also true. Also,
T , like I, is also closed in p. Moreover, if any action in f is executed in a state

Complexity Issues in Automated Model Revision 211

where T is true, the resulting state is also one where T is true. It follows that
for all computations of p that start at states where I is true, T is a boundary in
the state space of p up to which (but not beyond which) the state of p may be
perturbed by the occurrence of the actions in f .

Fault-Tolerance. In the absence of faults, a program, p, satisfies its specifi-
cation and remains in its legitimate states. In the presence of faults, it may be
perturbed to a state outside its legitimate states. By definition, when the pro-
gram is perturbed by faults, its state will be one in the corresponding f -span.
From such a state, it is desired that p does not violate its safety specification.
Furthermore, p recovers to its legitimate states from where p subsequently sat-
isfies both its safety and liveness specification.

Based on this intuition, we now define what it means for a program to be
(masking) fault-tolerant. Let Sfp and Lvp be the safety and liveness specifica-
tions for program p. We say that p is masking fault-tolerant to Sfp and Lvp

from I iff the following two conditions hold.

1. p satisfies Sfp and Lvp from I.
2. ∃ T ::

(a) T is f -span of p from I.
(b) p[]f satisfies Sfp from T .
(c) Every computation of p[]f that starts from a state in T has a state in I.

While masking fault-tolerance is ideal, for reasons of costs and feasibility, a
weaker level of fault-tolerance is often required. Two commonly considered weaker
levels of fault-tolerance include failsafe and nonmasking. In particular, we say
that p is failsafe fault-tolerant [11] if the conditions 1, 2a, and 2b are satisfied in
the above definition. And, we say that p is nonmasking fault-tolerant [12] if the
conditions 1, 2a, and 2c are satisfied in the above definition.

3 Problem Statement

In this section, we formally define the problem of model revision with and with-
out explicit legitimate states.

Model Revision with Explicit Legitimate States (Approach in Figure
1). We formally specify the problem of deriving a fault-tolerant program from a
fault-intolerant program with explicit legitimate states I. The goal of the model
revision is to modify p to p′ by only adding fault-tolerance, i.e., without adding
new behaviors in the absence of faults. Since the correctness of p is known only
from its legitimate states, I, it is required that the legitimate states of p′, say
I ′, cannot include any states that are not in I. Additionally, inside the legiti-
mate states, it cannot include transitions that were not transitions of p. Also, by
Assumption 2.1, p cannot include new terminating states that were not terminat-
ing states of p. Finally, p′ must be fault-tolerant. Thus, the problem statement
(from [13]) for the case where the legitimate states are specified explicitly is as
follows.

212 F. Abujarad and S.S. Kulkarni

Problem Statement 3.1: Revision for Fault-Tolerance with
Explicit Legitimate States.
Given p, I, Sfp , Lvp and f such that p satisfies Sfp and Lvp from I
Identify p′ and I ′ such that: (Respectively, does there exist p′ and I ′ such that)

A1: I ′ ⇒ I.
A2: s0 ∈ I ′ ⇒ ∀s1 :s1 ∈ I ′ : ((s0, s1) ∈ p′ ⇒ (s0, s1) ∈ p).
A3: p′ is f -tolerant to Sfp and Lvp from I ′.

Note that this definition can be instantiated for each level of fault-tolerance
(i.e., masking, failsafe, and nonmsaking). Also, the above problem statement can
be used as a revision problem or a decision problem (with the comments inside
parenthesis).

We call the above problem the problem of ‘partial revision’ because the tran-
sitions of p′ that begin in I ′ are a subset of the transitions of p that begin in I ′.
An alternative formulation is that of ‘total revision’ where the transitions of p′

that begin in I ′ are equal to the transitions of p that begin in I ′. In other words,
the problem of total revision is identical to the problem statement 3.1 except
that A2 is changed to A2′ described next:

A2′: s0 ∈ I ′ ⇒∀s1 : s1 ∈ I ′ : ((s0, s1) ∈ p′ ⇐⇒ (s0, s1) ∈ p)

Modeling Revision without Explicit Legitimate States (Approach in
Figure 2). Now, we formally define the new problem of model revision without
explicit legitimate states. The goal in this problem is to find a fault-tolerant
program, say pr. It is, also, required that there is some set of legitimate states
for p, say I, such that pr does not introduce new behaviors in I. Thus, the
problem statement for partial revision for the case where the legitimate states
are not specified explicitly is as follows.

Problem Statement 3.2: Revision for Fault-Tolerance without
Explicit Legitimate States.
Given p, Sfp and Lvp , and f
Identify pr such that: (Respectively, does there exist pr such that)
(∃I ::

B1: s0 ∈ I ⇒ ∀s1 : s1 ∈ I : ((s0, s1) ∈ pr ⇒ (s0, s1) ∈ p)
B2: pr is a f -tolerant to Sfp and Lvp from I.)

Just like problem statement 3.1, the problem of total revision is obtained from
problem statement 3.2 by changing B1 with B1′ described next:

B1′: s0 ∈ I ⇒ ∀s1 : s1 ∈ I : ((s0, s1) ∈ pr ⇐⇒ (s0, s1) ∈ p)

Complexity Issues in Automated Model Revision 213

Existing algorithms for model revision [8,13,7,15] are based on Problem State-
ment 3.1. Also, the tool SYCRAFT [8] utilizes Problem Statement 3.1 for the
addition of fault-tolerance. However, as stated in Section 1, this requires the
users of SYCRAFT to identify the legitimate states explicitly. The goal of this
paper is evaluate the effect of simplifying the task of the designers by permitting
them to omit explicit identification of legitimate states.

4 Relative Completeness (Q. 1)

In this section, we show that if the problem of model revision can be solved with
explicit legitimate states (Problem Statement 3.1) then it can also be solved
without explicit legitimate states (Problem Statement 3.2). Since each problem
statement can be instantiated with partial or total revision, this requires us to
consider four combinations. We prove this result in Theorem 1.

Theorem 1. If the answer to the decision problem 3.1 is affirmative (i.e., ∃ p′

and I ′ that satisfy the constraints of the Problem 3.1) with input p, Sfp, Lvp,
f , and I, then the answer to the decision problem 3.2 is affirmative (i.e., ∃ pr

that satisfies the constraints of the Problem 3.2) with input p, Sfp, Lvp, and f .

Proof. Intuitively, a slightly revised version of the program that satisfies Problem
3.1 can be used to show that Problem 3.2 can be solved. Specifically, let the transi-
tions of pr to be {(s0, s1)| (s0 ∈ I ′∧s1 ∈ I ′∧(s0, s1) ∈ p) ∨(s0
∈ I ′∧(s0, s1) ∈ p′)
}. For reasons of space we refer the reader to [1] for full proof. ��

Implication of Theorem 1 for Q. 1: From Theorem 1, it follows that answer
to Q. 1 from Introduction is affirmative for both partial and total revision. Hence,
the new formulation (c.f. Figure 2) is relatively complete.

5 Complexity Analysis (Q. 2)

In this section, we focus on the second question and compare the complexity
class for Problem 3.1 with that of Problem 3.2. First, we note that the complex-
ity of partial revision changes from P to NP -Complete if legitimate states are
not specified explicitly. For reasons of space we refer the reader to [1] for full
proof. Then in Section 5.1, we show that for total revision Problem 3.2 can be
reduced to Problem 3.1 in polynomial time. In Section 5.2, we give a heuristic
based approach for partial revision. Furthermore, we show that the heuristic is
guaranteed to work when the answer to the corresponding Problem in Figure 1
is affirmative. Finally, we mention other complexity results in Section 5.3.

5.1 Complexity Comparison for Total Revision

Although the complexity of partial revision increases substantially when legiti-
mate states are not available explicitly, we find that complexity of total revision

214 F. Abujarad and S.S. Kulkarni

effectively remains unchanged. We note that this is the first instance where com-
plexity difference between partial and total revision has been identified. To show
this result, we show that in the context of total revision Problem 3.2 is polyno-
mial time reducible to Problem 3.1 Since the results in this section require the
notion of weakest legitimate state predicate, we define it next. Recall that, we
use the term legitimate state predicate and the corresponding set of legitimate
states interchangeably. Hence, weakest legitimate state predicate corresponds to
the largest set of legitimate states.

Definition. Let Iw = wLsp(p, Sfp, Lvp)) be the weakest legitimate state pred-
icate of p for SPEC (=〈Sfp , Lvp〉) iff:
1: p satisfies SPEC from Iw, and
2: ∀ I :: (p satisfies SPEC from I) ⇒ Iw. ��
Claim. Given p, Sfp and Lvp, it is possible to compute wLsp(p, Sfp, Lvp) in
polynomial time in the state space of p.

This claim was proved in [2] where we have identified an algorithm to compute
weakest legitimate state predicate.

Theorem 2. If the answer to the decision problem 3.2 (with total revision)
is affirmative (i.e., ∃ pr that satisfies the constraints of the Problem 3.2) with
input p, Sfp, Lvp, and f , then the answer to the decision problem 3.1 (with total
or partial revision) is affirmative (i.e., ∃ p′ and I ′ that satisfy the constraints of
the Problem 3.1) with input p, Sfp, Lvp, f , and wLsp(p, Sfp, Lvp).

Proof. Intuitively, the program pr obtained for solving problem statement 3.2
can be used to show that problem 3.1 is satisfied. Specifically, let I2 be the pred-
icate used to show that pr satisfies constraints of Problem 3.2. Then, let p′ = pr

and I ′ = I2. For reasons of space we refer the reader to [1] for
full proof. ��

Theorem 3. For total revision, the revision problem 3.2 is polynomial time
reducible to the revision problem 3.1.

Proof. Given an instance, say X , of the decision problem 3.2 that consists of p,
Sfp, Lvp, and f , the corresponding instance, say Y , for the decision problem 3.1
is p, Sfp, Lvp, f and wLsp(p, Sfp, Lvp). From Theorems 1 and 2 it follows that
answer to X is affirmative iff answer to Y is affirmative. ��

5.2 Heuristic for Polynomial Time Solution for Partial Revision

Theorem 2 utilizes the weakest legitimate state predicate to solve the problem
of total revision without explicit legitimate states. In this section, we show that
a similar approach can be utilized to develop a heuristic for solving the problem
of partial revision in polynomial time. Moreover, if there is an affirmative an-
swer to the revision problem with explicit legitimate states then this heuristic is
guaranteed to find a revised program that satisfies constraints of Problem 3.2.
Towards this end, we present Theorem 4.

Complexity Issues in Automated Model Revision 215

Theorem 4. For partial revision, the revision problem 3.2 consisting of (p, Sfp,
Lvp, f) is polynomial time reducible to the revision problem 3.1 provided there
exists a legitimate states predicate I such that the answer to the decision problem
3.1 for instance (p, I, Sfp, Lvp, f) is affirmative.

Proof. Clearly, if an instance of Problem 3.1 has an affirmative answer then from
Theorem 1, the corresponding instance of Problem 3.2 has an affirmative answer.
Similar to the proof of Theorem 3, we map the instance of Problem 3.2 to an
instance of Problem 3.1 where we use the weakest legitimate state predicate.
Now, from Theorem 1 it follows that the answer to this revised instance of
Problem 3.1 is also affirmative. ��

5.3 Summary of Complexity Results

In summary, the results for complexity comparison are as shown in Table 1.
Results marked with † follow from NP-completeness results from [1] . Results
marked ‡ follow from Section 5.1 and5.2. Results marked � are stated without
proof due reasons of space. Results marked ? indicate that the, complexity of
the corresponding problem is open. And, finally, results marked ∗ are from [13].

Table 1. The complexity of different types of automated revision (NP-C = NP-
Complete). Results marked with asterisk are from [13]. Other results are from in this
paper.

Revision Without Revision With
Explicit Legitimate States Explicit Legitimate States
Partial Total Partial Total

High
Atomicity

Failsafe ? P ‡ P∗ P∗

nonmasking ? P ‡ P∗ P∗

masking NP − C† P ‡ P∗ P∗

Distributed
Programs

Failsafe NP − C� NP − C� NP − C∗ NP − C∗

nonmasking ? ? ? ?
masking NP − C� NP − C� NP − C∗ NP − C∗

6 Relative Computation Cost (Q. 3)

As mentioned in Section 1, the increased cost of model revision in the absence
of explicit legitimate states needs to be studied in two parts: complexity class
and relative increase in the execution time. We considered the former in Section
5. In this section, we consider the latter. The increased cost of model revision is
essentially that of computing wLsp(p, Sfp, Lvp). Hence, we analyze the cost of
computing wLsp(p, Sfp, Lvp) in the context of a case study. We choose a classic
example from the literature namely Byzantine Agreement [14]. We explain this
case study in detail and show the time required to generate the weakest legitimate
state predicate for different numbers of processes. This case study illustrates

216 F. Abujarad and S.S. Kulkarni

that the increased cost when explicit legitimate states are unavailable is very
small compared to the overall time required for the addition of fault-tolerance.
In particular, we show that reducing the burden of the designer in terms of
not requiring the explicit legitimate states increases the computation cost by
approximately 1%.

Throughout this section, the experiments are run on a MacBook Pro with
2.6 Ghz Intel Core 2 Duo processor and 4 GB RAM. The OBDD representation
of the Boolean formula has been done using the C++ interface to the CUDD
package developed at the University of Colorado [16].

Byzantine Agreement Program. Now, we illustrate our algorithm in
the context of the Byzantine agreement program. We start by specifying the
fault-intolerant program. Then we provide the program specification. Finally we
describe the weakest legitimate state predicate generated by our algorithm.

Program. The Byzantine agreement program consists of a “general” and three
or more non-general processes. Each process copies the decision of the general
and finalizes (outputs) that decision. The general process maintains two vari-
ables: the decision d.g with domain {0, 1} and the Byzantine b.g with domain
{true, false}, to indicate whether or not the general is Byzantine. Moreover,
a byzantine process can change its decision arbitrarily. Each of the non-general
processes has the following three variables: the decision d with domain {0, 1,⊥},
where ⊥ denotes that the process did not yet receive any decision from the
general, the Byzantine b with domain {true, false}, and the finalize f with the
domain {true, false} to denote whether or not the process has finalized (out-
putted) its decision. The following are the actions of the Byzantine agreement
program. Of these, the first action allows a non-general to receive a decision from
the general if it has not received it already. The second action allows the non-
general to finalize its decision after it receives it. The third and fourth actions
allow a Byzantine process to change its decision and finalized status. The last
two actions are environment actions.

1 :: (d.j = ⊥) ∧ (f.j = false) −→ d.j := d.g;
2 :: (d.j
= ⊥) ∧ (f.j = false) −→ f.j := true;
3 :: (b.j) −→ d.j := 1|0, f.j := false|true;
4 :: (b.g) −→ d.g := 1|0;

Where j ∈ {1. . .n} and n is the number of non-general processes.

Specification. The safety specification of the Byzantine agreement requires
validity and agreement :

– Validity requires that if the general is non-Byzantine, then the final decision
of a non-Byzantine process must be the same as that of the general. Thus,
validity(j) is defined as follows.
validity(j) = ((¬b.j ∧ ¬b.g ∧ f.j) ⇒ (d.j = d.g))

– Agreement means that the final decision of any two non-Byzantine processes
must be equal. Thus, agreement(j, k) is defined as follows.
agreement(j, k) = ((¬b.j ∧ ¬b.k ∧ f.j ∧ f.k) ⇒ (d.j = d.k))

Complexity Issues in Automated Model Revision 217

– The final decision of a process must be either 0 or 1. Thus, final(j) is defined
as follows.
final(j) = f.j ⇒ (d.j = 0 ∨ d.j = 1)

We formally identify safety specification of the Byzantine agreement in the fol-
lowing set of bad states:

SPEC BAbs
= (∃j, k ∈ {1..n} :: (¬(validity(j) ∧ agreement(j, k) ∧ final(j)))

Observe that SPEC BAbs
can be easily derived based on the specification of the

Byzantine Agreement problem. The liveness specification of the Byzantine agree-
ment requires that eventually every non-Byzantine process finalizes a decision.
Thus the liveness specification is ¬b.j � (f.j).

Application of Our Algorithm. The weakest legitimate state predicate com-
puted (for 3 non-general processes) is as follows. If the general is non-Byzantine
then it is necessary that d.j, where j is also a non-Byzantine, be either d.g or ⊥.
Furthermore, a non-Byzantine process cannot finalize its decision if its decision
equals ⊥. Now, we consider the set of states where the general is Byzantine. In
this case, the general can change its decision arbitrarily. Also, the predicate in-
cludes states where other processes are non-Byzantine and have the same value
that is different from ⊥. Thus, the generated weakest legitimate state predicate
is as follows:

IBA =
(¬b.g ∧ (∀p ∈ {1..n} :: ((¬b.p ∧ f.p) ⇒ d.p
= ⊥) ∧
(¬b.p ⇒ (d.p = ⊥ ∨ d.p = d.g)))) ∨
(b.g ∧ (∀ j, k ∈ {1..n} : j
= k :: (d.j = d.k) ∧ (d.j
= ⊥)))

Observe that IBA cannot be easily derived based on the specification of the
Byzantine Agreement problem. More specifically, the set of states where the
general is Byzantine, are not reachable from the initial states of the program.

The amount of time required for performing the automated model revision
and computing the set of legitimate states for a different number of processes is
as shown in Table 2. Thus, the extra time required when legitimate states are
unavailable is small (about 1%).

Finally, we use this case study to show that a typical algorithm for computing
legitimate states to be reachable states from some initial state(s) does not work.
In particular, we make the following claim:

Claim. An automated model revision approach where one uses legitimate states
to be the set of states reached from the initial states is not relatively complete.

To validate this claim, observe that the initial states of the Byzantine Agree-
ment program equal the states where all processes are non-byzantine and the
decision of all non-general processes is ⊥. States reached by the fault-intolerant
program from these states do not include the states where the general is byzan-
tine. Although, an agreement can be reached among non-general processes even
though the general is Byzantine. And, utilizing these reachable states as the set
of legitimate states is insufficient to obtain the fault-tolerant program.

218 F. Abujarad and S.S. Kulkarni

Table 2. The time required to perform the automated model revision without explicit
set of legitimate states for the Byzantine Agreement program

No.of Reachable Leg. States Total Revision
Process States Generation Time(Sec) Time(Sec)

10 109 0.57 6
20 1015 1.34 199
30 1022 4.38 1836
40 1030 9.25 9366
50 1036 26.34 > 10000
100 1071 267.30 > 10000

7 Related Work

Our work is closely related to the work on controller synthesis (e.g. [9,4,5]) and
game theory (e.g., [10]). In this work, supervisory control of real-time systems
has been studied under the assumption that the existing program (called a plant)
and/or the given specification is deterministic. These techniques require highly
expressive specifications. Hence, the complexity is also high (Exptime-complete
or higher). In addition, these approaches do not address some of the crucial
concerns of fault-tolerance (e.g., providing recovery in the presence of faults)
that are considered in our work.

Algorithms for automatic model revision and addition of fault-tolerance [7,8,
13, 15] add fault-tolerance concerns to existing untimed or real-time programs
in the presence of faults, and guarantee the addition of no new behaviors to the
original program in the absence of faults. Kulkarni and Arora [13] introduce syn-
thesis methods for automated addition of fault-tolerance to untimed centralized
and distributed programs. In particular, they introduce polynomial-time sound
and complete algorithms for adding all levels of fault-tolerance (failsafe, non-
masking, and masking) to centralized programs. The input to these algorithms
is a fault-intolerant centralized program, safety specification, and a set of fault
transitions. The algorithms generate a fault-tolerant program along with the
legitimate states predicate.

8 Conclusion and Future Work

The goal of this work is to simplify the task of model revision and, thereby, make
it easier to apply in practice. Of the inputs required for model revision, existing
model is clearly a must. Moreover, the task required in identifying it is easy, as
model revision is expected to be used in contexts where designers already have
an existing model. Another input, namely specification, is also already available
to the designer when model revision is used in contexts where existing model fails
to satisfy the desired specification. Yet another input is the new property that

Complexity Issues in Automated Model Revision 219

is to be added to the existing model. In the context of fault-tolerance, this
requires the designers to identify the faults that need to be tolerated. Once
again, identifying the fault is easy especially in contexts where the model needs
to be revised due to newly identified faults (e.g., stuck-at gas pedal). While
representing these faults may be somewhat difficult, it is possible to represent
them easily for faults such as stuck-at faults, crash faults, Byzantine faults,
transient faults, message faults, etc.

However, based on our experience, the hardest input to identify is the set
of legitimate states from where the original model satisfies its specification. In
part, it is because of the fact that identifying these legitimate states explicitly is
often not required during the evaluation of the original model. Hence, our goal
in this paper is to focus on the problem of model revision when these legitimate
states are not specified explicitly. Moreover, as shown by the example in Section
6 typical algorithms for computing legitimate states based on initial states do
not work.

We considered three questions in this context: (1) relative completeness, (2)
qualitative complexity class comparison and (3) quantitative change the time
for model revision. We illustrated that our approach for model revision with-
out explicit legitimate states is relatively complete, i.e., if model revision can
be solved with explicit legitimate states then it could also be solved without
explicit legitimate states. This is important since it implies that the reduction
in the human effort required for model revision does not reduce the class of the
problems that could be solved.

Regarding the second question, we found some surprising and counterintu-
itive results. Specifically, for total revision, we found that the complexity class
remains unchanged. However, for partial revision, the complexity class changes
substantially. In particular, we showed that problems that could be solved in P
when legitimate states are available explicitly become NP-complete if explicit
legitimate states are unavailable. This result is especially surprising since this
is the first instance where complexity levels for total and partial revision have
been found to be different. Even though the general problem of partial revision
becomes NP-complete without the explicit legitimate states, we found a subset
of these problems that can be solved in P. Specifically, this subset included all
instances where model revision was possible when legitimate states are specified
explicitly.

Regarding the third question, we showed that the extra computation cost
obtained by reducing the human effort for specifying the legitimate states is
negligible (less than 1%).

References

1. Abujarad, F., Kulkarni, S.S.: Complexity issues in automated model revision with-
out explicit legitimate state. Technical Report MSU-CSE-10-19, Computer Science
and Engineering, Michigan State University, East Lansing, Michigan (July 2010),
Available as Technical Report MSU-CSE-10-19 at,
http://www.cse.msu.edu/cgi-user/web/tech/reports?Year=2010

http://www.cse.msu.edu/cgi-user/web/tech/reports?Year=2010

220 F. Abujarad and S.S. Kulkarni

2. Abujarad, F., Kulkarni, S.S.: Weakest Invariant Generation for Automated Addi-
tion of Fault-Tolerance. Electronic Notes in Theoretical Computer Science 258(2),
3–15 (2009), Available as Technical Report MSU-CSE-09-29 at,
http://www.cse.msu.edu/cgi-user/web/tech/reports?Year=2009

3. Arora, A., Gouda, M.G.: Closure and convergence: A foundation of fault-tolerant
computing. IEEE Transactions on Software Engineering 19(11), 1015–1027 (1993)

4. Asarin, E., Maler, O.: As soon as possible: Time optimal control for timed au-
tomata. In: Vaandrager, F.W., van Schuppen, J.H. (eds.) HSCC 1999. LNCS,
vol. 1569, pp. 19–30. Springer, Heidelberg (1999)

5. Asarin, E., Maler, O., Pnueli, A., Sifakis, J.: Controller synthesis for timed au-
tomata. In: IFAC Symposium on System Structure and Control, pp. 469–474 (1998)

6. Avižienis, A., Laprie, J.C., Randell, B., Landwehr, C.: Basic concepts and taxon-
omy of dependable and secure computing. IEEE Transactions on Dependable and
Secure Computing, 11–33 (2004)

7. Bonakdarpour, B., Kulkarni, S.S.: Exploiting symbolic techniques in automated
synthesis of distributed programs with large state space. In: IEEE International
Conference on Distributed Computing Systems (ICDCS), pp. 3–10 (2007)

8. Bonakdarpour, B., Kulkarni, S.S.: Sycraft: A tool for synthesizing distributed fault-
tolerant programs. In: van Breugel, F., Chechik, M. (eds.) CONCUR 2008. LNCS,
vol. 5201, pp. 167–171. Springer, Heidelberg (2008)

9. Bouyer, P., D’Souza, D., Madhusudan, P., Petit, A.: Timed control with partial
observability. In: Hunt Jr., W.A., Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725,
pp. 180–192. Springer, Heidelberg (2003)

10. Faella, M., LaTorre, S., Murano, A.: Dense real-time games. In: Logic in Computer
Science (LICS), pp. 167–176 (2002)

11. Gärtner, F.C., Jhumka, A.: Automating the addition of fail-safe fault-tolerance:
Beyond fusion-closed specifications. In: FORMATS/FTRTFT, pp. 183–198 (2004)

12. Gartner, F.C.: Fundamentals of fault-tolerant distributed computing in asyn-
chronous environments. ACM Computing Surveys (CSUR) 31(1), 1–26 (1999)

13. Kulkarni, S.S., Arora, A.: Automating the addition of fault-tolerance. In: Joseph,
M. (ed.) FTRTFT 2000. LNCS, vol. 1926, pp. 82–93. Springer, Heidelberg (2000)

14. Lamport, L., Shostak, R., Pease, M.: The Byzantine generals problem. ACM Trans-
actions on Programming Languages and Systems 4(3), 382–401 (1982)

15. Mantel, H., Gärtner, F.C.: A case study in the mechanical verification of fault-
tolerance. Technical Report TUD-BS-1999-08, Department of Computer Science,
Darmstadt University of Technology (1999)

16. Somenzi, F.: CUDD: Colorado University Decision Diagram Package,
http://vlsi.colorado.edu/~fabio/CUDD/cuddIntro.html

http://www.cse.msu.edu/cgi-user/web/tech/reports?Year=2009
http://vlsi.colorado.edu/~fabio/CUDD/cuddIntro.html

Algorithmic Verification of Population
Protocols�

Ioannis Chatzigiannakis1,2, Othon Michail1,2, and Paul G. Spirakis1,2

1 Research Academic Computer Technology Institute (RACTI), Patras, Greece
2 Computer Engineering and Informatics Department (CEID), University of Patras

{ichatz,michailo,spirakis}@cti.gr

Abstract. In this work, we study the Population Protocol model of An-
gluin et al. from the perspective of protocol verification. In particular,
we are interested in algorithmically solving the problem of determining
whether a given population protocol conforms to its specifications. Since
this is the first work on verification of population protocols, we redefine
most notions of population protocols in order to make them suitable for
algorithmic verification. Moreover, we formally define the general veri-
fication problem and some interesting special cases. All these problems
are shown to be NP-hard. We next propose some first algorithmic so-
lutions for a natural special case. Finally, we conduct experiments and
algorithmic engineering in order to improve our verifiers’ running times.

1 Introduction

Pervasive environments of tomorrow will consist of populations of tiny possibly
mobile artifacts that will interact with each other. Such systems will play an
important role in our everyday life and should be correct, reliable and robust.
To achieve these goals, it is necessary to verify the correctness of future systems.
Formal specification helps to obtain not only a better (more modular) descrip-
tion, but also a clear understanding and an abstract view of the system [4].
Given the increasing sophistication of algorithms for pervasive systems and the
difficulty of modifying an algorithm once the network is deployed, there is a clear
need to use formal methods to validate system performance and functionality
prior to implementing such algorithms [20]. Formal analysis requires the use of
models, trusted to behave like a real system. It is therefore critical to find the
correct abstraction layer for the models and to verify the models.

Model checking is an exhaustive state space exploration technique that is
used to validate formally specified system requirements with respect to a for-
mal system description [14]. Such a system is verified for a fixed configuration;
so, in most cases, no general system correctness can be obtained. Using some
high-level formal modelling language, automatically an underlying state space
can be derived, be it implicitly or symbolically. The system requirements are
� This work has been partially supported by the ICT Programmes of the EU under

contracts number ICT-2008-215270 (FRONTS) and ICT-2010-257245 (VITRO).

S. Dolev et al. (Eds.): SSS 2010, LNCS 6366, pp. 221–235, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

222 I. Chatzigiannakis, O. Michail, and P.G. Spirakis

specified using some logical language, like LTL, CTL or extensions thereof [19].
Well-known and widely applied model checking tools are SPIN [18], Uppaal [6]
(for timed systems), and PRISM [17] (for probabilistic systems). The system
specification language can, e.g., be based on process algebra, automata or Petri
nets. However, model checking suffers from the so-called state explosion prob-
lem, meaning that the state space of a specified system grows exponentially with
respect to its number of components. The main challenge for model checking lies
in modelling large-scale dynamic systems.

Towards providing a concrete and realistic model for future sensor networks,
Angluin et al. [1] introduced the notion of a computation by a population pro-
tocol. In their model, individual agents are extremely limited and can be repre-
sented as finite-state machines. The computation is carried out by a collection
of agents, each of which receives a piece of the input. Information can be ex-
changed between two agents whenever they come sufficiently close to each other.
The goal is to ensure that every agent can eventually output the value that is
to be computed. The critical assumption that diversifies the population protocol
model from traditional distributed systems is that the protocol descriptions are
independent of the population size, which is known as the uniformity property
of population protocols. Moreover, population protocols are anonymous since
there is no room in the state of an agent to store a unique identifier. See also
[11,10,16,5,13,7] for population protocol relevant literature. For the interested
reader, [3,12] constitute introductions to the area.

In this work, we provide a tool for computer-aided verification of population
protocols. Our tool can detect errors in the design that are not so easily found
using emulation or testing, and they can be used to establish the correctness
of the design. A very interesting property of population protocols is protocol
composition; one may reduce a protocol into two (or more) protocols of reduced
state space that maintain the same correctness and efficiency properties.

Section 2 provides all necessary definitions. In particular, several population
protocols’ definitions are modified in order to become suitable for algorithmic
verification. Then the verification problems that we study throughout this work
are formally defined. In Section 3, we prove that all verification problems under
consideration are NP-hard. In Section 4, we focus on a particular special case of
the general population protocol verification problem, called BPV ER, in which
the population size on which the protocol runs is provided as part of the ver-
ifier’s input. In particular, we devise three verifiers, two non-complete and one
complete. The complete one is slower but provably guarantees to always provide
the correct answer. We have implemented our verifiers in C++ by building a new
tool named bp-ver. To the best of our knowledge, this is the first verification tool
for population protocols. In Section 5, we conduct experiments concerning our
verifiers’ running times. It turns out that constructing the transition graph is a
dominating factor. We then improve our verifiers by building all the reachable
subgraphs of the transition graph one after the other and not all at once. In
this manner, the running time is greatly improved most of the time and the new
construction is easily parallelizable.

Algorithmic Verification of Population Protocols 223

2 Basic Definitions

2.1 Population Protocols

A Population Protocol (PP) A is a 6-tuple (X,Y,Q, I,O, δ), where X , Y , and Q
are all finite sets and X is the input alphabet, Y is the output alphabet, Q is the
set of states, I : X → Q is the input function, O : Q → Y is the output function,
and δ : Q×Q → Q×Q is the transition function. If δ(qi, qj) = (ql, qt), then when
an agent in state qi interacts as the initiator with an agent in state qj (which is
the responder in this interaction) they update their states deterministically to
δ1(qi, qj) = ql and δ2(qi, qj) = qt, respectively. δ can also be treated as a relation
Δ ⊆ Q4, defined as (qi, qj , ql, qt) ∈ Δ iff δ(qi, qj) = (ql, qt).

A population protocol runs on the nodes (also called agents) of a communica-
tion graph G = (V,E). In this work, we always assume that the communication
graph is a complete digraph, without self-loops and multiple edges (this cor-
responds to the basic population protocol model [1]). We denote by Gk the
complete communication graph of k nodes.

Let k ≡ |V | denote the population size. An input assignment x is a mapping
from V = [k] to X (where [l], for l ∈ ZZ≥1, denotes the set {1, . . . , l}), assigning
an input symbol to each agent of the population. Since the communication graph
is complete, due to symmetry, we can, equivalently, think of an input assignment
as a |X |-vector of integers x = (xi)i∈[|X|], where xi is nonnegative and equal to
the number of agents that receive the symbol σi ∈ X , assuming an ordering on
the input symbols. We denote by X the set of all possible input assignments.
Note that for all x ∈ X it holds that

∑|X|
i=1 xi = k.

A state q ∈ Q is called initial if I(σ) = q for some σ ∈ X . A configuration c
is a mapping from [k] to Q, so, again, it is a |Q|-vector of nonnegative integers
c = (ci)i∈[|Q|] such that

∑|Q|
i=1 ci = k holds. Each input assignment corresponds to

an initial configuration which is indicated by the input function I. In particular,
input assignment x corresponds to the initial configuration c(x) = (ci(x))i∈[|Q|],
where ci(x) is equal to the number of agents that get some input symbols σj for
which I(σj) = qi (qi is the ith state in Q if we assume the existence of an ordering
on the set of states Q). More formally, ci(x) =

∑
j:I(σj)=qi

xj for all i ∈ [|Q|].
By extending I to a mapping from input assignments to configurations we can
write I(x) = c to denote that c is the initial configuration corresponding to input
assignment x. Let C = {(ci)i∈[|Q|] | ci ∈ ZZ≥0 and

∑|Q|
i=1 ci = k} denote the set

of all possible configurations given the population protocol A and Gk. Moreover,
let CI = {c ∈ C | I(x) = c for some x ∈ X} denote the set of all possible initial
configurations. Any r ∈ Δ has four components which are elements from Q and
we denote by ri, where i ∈ [4], the i-th component (i.e. state) of r. r ∈ Q4

belongs to Δ iff δ(r1, r2) = (r3, r4). We say that a configuration c can go in one
step to a configuration c′ via transition r ∈ Δ, and write c

r→ c′, if

– ci ≥ r1,2(i), for all i ∈ [|Q|] for which qi ∈ {r1, r2},
– c′i = ci − r1,2(i) + r3,4(i), for all i ∈ [|Q|] for which qi ∈ {r1, r2, r3, r4}, and
– c′j = cj , for all j ∈ [|Q|] for which qj ∈ Q− {r1, r2, r3, r4},

224 I. Chatzigiannakis, O. Michail, and P.G. Spirakis

where rl,t(i) denotes the number of times state qi appears in (rl, rt). Moreover,
we say that a configuration c can go in one step to a configuration c′, and write
c → c′ if c

r→ c′ for some r ∈ Δ. We say that a configuration c′ is reachable
from a configuration c, denoted c

∗→ c′ if there is a sequence of configurations
c = c0, c1, . . . , ct = c′, such that ci → ci+1 for all i, 0 ≤ i < t, where ci

denotes the (i+1)th configuration of an execution (and not the ith component of
configuration c which is denoted ci). An execution is a finite or infinite sequence
of configurations c0, c1, . . ., so that ci → ci+1. An execution is fair if for all
configurations c, c′ such that c → c′, if c appears infinitely often then so does c′.
A computation is an infinite fair execution. A predicate p : X → {0, 1} is said to
be stably computable by a PP A if, for any input assignment x, any computation
of A contains an output stable configuration in which all agents output p(x). A
configuration c is called output stable if O(c) = O(c′), for all c′ reachable from c
(where O, here, is an extended version of the output function from configurations
to output assignments in Y k). We denote by CF = {c ∈ C | c → c′ ⇒ c′ = c} the
set of all final configurations. We can further extend the output function O to
a mapping from configurations to {−1, 0, 1}, defined as O(c) = 0 if O(c(u)) = 0
for all u ∈ V , O(c) = 1 if O(c(u)) = 1 for all u ∈ V , and O(c) = −1 if ∃u, υ ∈ V
s.t. O(c(u))
= O(c(υ)).

It is known [1,2] that a predicate is stably computable by the PP model iff
it can be defined as a first-order logical formula in Presburger arithmetic. Let
φ be such a formula. There exists some PP that stably computes φ, thus φ
constitutes, in fact, the specifications of that protocol. For example, consider
the formula φ = (Na ≥ 2Nb). φ partitions the set of all input assignments, X ,
to those input assignments that satisfy the predicate (that is, the number of as
assigned is at least two times the number of bs assigned) and to those that do
not. Moreover, φ can be further extended to a mapping from CI to {−1, 0, 1}.
In this case, φ is defined as φ(c) = 0 if φ(x) = 0 for all x ∈ I−1(c), φ(c) = 1 if
φ(x) = 1 for all x ∈ I−1(c), and φ(c) = −1 if ∃x, x′ ∈ I−1(c) s.t. φ(x)
= φ(x′),
where I−1(c) denotes the set of all x ∈ X for which I(x) = c holds (the preimage
of c).

We now define the transition graph, which is similar to that defined in [1],
except for the fact that it contains only those configurations that are reachable
from some initial configuration in CI . Specifically, given a population protocol
A and an integer k ≥ 2 we can define the transition graph of the pair (A, k) as
GA,k = (Cr, Er), where the node set Cr = CI ∪{c ∈ C | c′ ∗→ c for some c′ ∈ CI}
of Gr (we use Gr as a shorthand of GA,k) is the subset of C containing all initial
configurations and all configurations that are reachable from some initial one,
and the edge (or arc) set Er = {(c, c′) | c, c′ ∈ Cr and c → c′} of Gr contains a
directed edge (c, c′) for any two (not necessarily distinct) configurations c and
c′ of Cr for which it holds that c can go in one step to c′. Note that Gr is a
directed (weakly) connected graph with possible self-loops. It was shown in [1]
that, given a computation Ξ, the configurations that appear infinitely often in Ξ
form a final strongly connected component of Gr . We denote by S the collection
of all strongly connected components of Gr. Note that each B ∈ S is simply a

Algorithmic Verification of Population Protocols 225

set of configurations. Moreover, given B,B′ ∈ S we say that B can go in one
step to B′, and write B → B′, if c → c′ for c ∈ B and c′ ∈ B′. B

∗→ B′ is
defined as in the case of configurations. We denote by IS = {B ∈ S | such that
B ∩ CI
= ∅} those components that contain at least one initial configuration,
and by FS = {B ∈ S | such that B → B′ ⇒ B′ = B} the final ones. We can now
extend φ to a mapping from IS to {−1, 0, 1} defined as φ(B) = 0 if φ(c) = 0
for all c ∈ B ∩ CI , φ(B) = 1 if φ(c) = 1 for all c ∈ B ∩ CI , and φ(B) = −1
if ∃c, c′ ∈ B ∩ CI s.t. φ(c)
= φ(c′), and O to a mapping from FS to {−1, 0, 1}
defined as O(B) = 0 if O(c) = 0 for all c ∈ B, O(B) = 1 if O(c) = 1 for all
c ∈ B, and O(B) = −1 otherwise.

2.2 Problems’ Definitions

We begin by defining the most interesting and natural version of the problem
of algorithmically verifying basic population protocols. We call it GBPV ER
(‘G’ standing for “General’, ‘B’ for “Basic”, and ‘P’ for “Predicate”) and its
complement GBPV ER is defined as follows:

Problem 1 (GBPV ER). Given a population protocol A for the basic model
whose output alphabet YA is binary (i.e. YA = {0, 1}) and a first-order logical
formula φ in Presburger arithmetic representing the specifications of A, deter-
mine whether there exists some integer k ≥ 2 and some legal input assignment
x for the complete communication graph of k nodes, Gk, for which not all com-
putations of A on Gk beginning from the initial configuration corresponding to
x stabilize to the correct output w.r.t. φ.

A special case of GBPV ER is BPV ER (its non-general version as revealed by
the missing ‘G’), and is defined as follows.

Problem 2 (BPV ER). Given a population protocol A for the basic model whose
output alphabet YA is binary (i.e. YA = {0, 1}), a first-order logical formula φ in
Presburger arithmetic representing the specifications of A, and an integer k ≥ 2
(in binary) determine whether A conforms to its specifications on Gk.

“Conforms to φ” here means that for any legal input assignment x, which is a
|XA|-vector with nonnegative integer entries that sum up to k, and any com-
putation beginning from the initial configuration corresponding to x on Gk, the
population stabilizes to a configuration in which all agents output the value
φ(x) ∈ {0, 1}.

Problem 3 (BBPV ER). BBPV ER (the additional ‘B’ is from “Binary input
alphabet”) is BPV ER with A’s input alphabet restricted to {0, 1}.

3 Hardness Results

Theorem 1. BPV ER is coNP-hard.

226 I. Chatzigiannakis, O. Michail, and P.G. Spirakis

Proof. We shall present a polynomial-time reduction from HAMPATH = {〈D,
s, t〉 | D is a directed graph with a Hamiltonian path from s to t } to BPV ER.
In other words, we will present a procedure that given an instance 〈D, s, t〉 of
HAMPATH returns in polynomial time an instance 〈A, φ, k〉 of BPV ER, such
that 〈D, s, t〉 ∈ HAMPATH iff 〈A, φ, k〉 ∈ BPV ER. If there is a hamiltonian
path from s to t in D we will return a population protocol A that for some
computation on the complete graph of k nodes fails to conform to its specification
φ, and if there is no such path all computations will conform to φ.

We assume that all nodes in V (D) − {s, t} are named q1, . . . , qn−2, where n
denotes the number of nodes of D (be careful: n does not denote the size of the
population, but the number of nodes of the graph D in HAMPATH ’s instance).
We now construct the protocol A = (X,Y,Q, I,O, δ). The output alphabet Y is
{0, 1} by definition. The input alphabet X is E(D) − ({(·, s)} ∪ {t, ·}), that is,
consists of all edges of D except for those leading into s and those going out of t.
The set of states Q is equal to X∪T∪{r}, where T = {(s, qi, qj , l) | 1 ≤ i, j ≤ n−2
and 1 ≤ l ≤ n − 1} and its usefulness will be explained later. r can be thought
of as being the “reject” state, since we will define it to be the only state giving
the output value 0. Notice that |Q| = O(n3). The input function I : X → Q is
defined as I(x) = x, for all x ∈ X , and for the output function O : Q → {0, 1}
we have O(r) = 0 and O(q) = 1 for all q ∈ Q − {r}. That is, all input symbols
are mapped to themselves, while all states are mapped to the output value 1,
except for r which is the only state giving 0 as output. Thinking of the transition
function δ as a transition matrix Δ it is easy to see that Δ is a |Q| × |Q| matrix
whose entries are elements from Q×Q. Each entry Δq,q′ corresponds to the rhs
of a rule (q, q′) → (z, z′) in δ. Clearly, Δ consists of O(n6) entries, which is again
polynomial in n.

We shall postpone for a while the definition of Δ to first define the remaining
parameters φ and k of BPV ER’s instance. We define formula φ to be a trivial
first-order Presburger arithmetic logical formula that is always false. For exam-
ple, in the natural nontrivial case where X
= ∅ (that is, D has at least one edge
that is not leading into s and not going out of t) we can pick any x ∈ X and set
φ = (Nx < 0) which, for Nx denoting the number of xs appearing in the input
assignment, is obviously always false. It is useful to notice that the only configu-
ration that gives the correct output w.r.t. φ is the one in which all agents are in
state r. φ being always false means that in a correct protocol all computations
must stabilize to the all-zero output, and r is the only state giving output 0.
On the other hand for A not to be correct w.r.t. φ it suffices to show that there
exists some computation in which r cannot appear. Moreover, we set k equal
to n − 1, that is, the communication graph on which A’s correctness has to be
checked by the verifier is the complete digraph of n − 1 nodes (or, equivalently,
agents).

To complete the reduction, it remains to construct the transition function δ:

– (r, ·) → (r, r) and (·, r) → (r, r) (so r is a propagating state, meaning
that once it appears it eventually becomes the state of every agent in the
population)

Algorithmic Verification of Population Protocols 227

– ((qi, qj), (qi, qj)) → (r, r) (if two agents get the same edge of D then the
protocol rejects)

– ((qi, qj), (qi, ql)) → (r, r) (if two agents get edges of D with adjacent tails
then the protocol rejects)

– ((qj , qi), (ql, qi)) → (r, r) (if two agents get edges of D with adjacent heads
then the protocol rejects - it also holds if one of qj and ql is s)

– ((qi, t), (qj , t) → (r, r) (the latter also holds for the sink t)
– ((s, · · ·), (s, · · ·)) → (r, r) (if two agents have both s as the first component

of their states then the protocol rejects)
– ((s, qi), (qi, qj)) → ((s, qi, qj , 2), (qi, qj)) (when s meets an agent υ that con-

tains a successor edge it keeps qj to remember the head of υ’s successor edge
and releases a counter set to 2 - it counts the number of edges encountered
so far on the path trying to reach t from s)

– ((s, qi, qj , i), (qj , ql)) → ((s, qi, ql, i + 1), (qj , ql)), for i < n− 2
– ((s, qi, qj , i), (qj , t)) → (r, r), for i < n − 2 (the protocol rejects if s is con-

nected to t through a directed path with less than n − 1 edges)
– All the transitions not appearing above are identity rules (i.e. they do nothing)

Now we prove that the above, obviously polynomial-time, construction is in fact
the desired reduction. If D contains some hamiltonian path from s to t, then the
n−1 edges of that path form a possible input assignment to protocol A (since its
input symbols are the edges and the population consists of n− 1 agents). When
A gets that input it cannot reject (r cannot appear) for the following reasons:

– no two agents get the same edge of D
– no two agents get edges of D with adjacent tails
– no two agents get edges of D with adjacent heads
– only one (s, · · ·) exists
– s cannot count less than n− 1 edges from itself to t

So, when A gets the input alluded to above, it cannot reach state r, thus, it
cannot reject, which implies that A for that input always stabilizes to the wrong
output w.r.t. φ (which always requires the “reject” output) when runs on the
Gn−1. So, in this case 〈A, φ, k〉 consists of a protocol A that, when runs on Gk,
where k = n − 1, for a specific input it does not conform to its specifications as
described by φ, so clearly it belongs to BPV ER.

For the other direction, if 〈A, φ, k〉 ∈ BPV ER then obviously there exists
some computation of A on the complete graph of k = n − 1 nodes in which r
does not appear at all (if it had appeared once then, due to fairness, the popula-
tion would have stabilized to the all-r configuration, resulting to a computation
conforming to φ). It is helpful to keep in mind that most arguments here hold
because of the fairness condition. Since r cannot appear, every agent (of the
n− 1 in total) must have been assigned a different edge of D. Moreover, no two
of them contain edges with common tails or common heads in D. Note that there
is only one agent with state (s, · · ·) because if there were two of them they would
have rejected when interacted with each other, and if no (s, · · ·) appeared then
two agents would have edges with common tails because there are n − 1 edges

228 I. Chatzigiannakis, O. Michail, and P.G. Spirakis

for n − 2 candidate initiating points (we have not allowed t to be an initiating
point) and the pigeonhole principle applies (and by symmetric arguments only
one with state (· · · , t)). So, in the induced graph formed by the edges that have
been assigned to the agents, s has outdegree 1 and indegree 0, t has indegree 1
and outdegree 0 and all remaining nodes have indegree at most 1 and outdegree
at most 1. This implies that all nodes except for s and t must have indegree
equal to 1 and outdegree equal to 1. If, for example, some node had indegree 0,
then the total indegree could not have been n−1 because n−3 other nodes have
indegree at most 1, t has indegree 1, and s has 0 (the same holds for outdegrees).
Additionally, there is some path initiating from s and ending to t. This holds
because the path initiating from s (s has outdegree 1) cannot fold upon itself
(this would result in a node with indegree greater than 1) and cannot end to any
other node different from t because this would result to some node other than t
with outdegree equal to 0. Finally, that path has at least n − 1 edges (in fact,
precisely n−1 edges), since if it had less the protocol would have rejected. Thus,
it must be clear after the above discussion that in this case there must have been
a hamiltonian path from s to t in D, implying that 〈D, s, t〉 ∈ HAMPATH . ��

Let us denote by BPV ER′ the special case of BPV ER in which the protocol size
is at least the size k of the communication graph. Clearly, the proof of Theorem 1
establishes that this problem is also coNP-hard. The following theorem captures
the hardness of the other two main problems.

Theorem 2. BBPV ER and GBPV ER are coNP-hard.

Proof. The first statement can be proved by arguments similar to those used
in the proof of Theorem 1. We will prove the second statement by presenting a
polynomial-time reduction from BPV ER′ to GBPV ER. Keep in mind that the
input to the machine computing the reduction is 〈A, φ, k〉. Let XA be the input
alphabet of A. Clearly, φ′′ = ¬(

∑
x∈XA Nx = k) is a semilinear predicate if k

is treated as a constant (Nx denotes the number of agents with input x). Thus,
there exists a population protocol A′′ for the basic model that stably computes
φ′′. The population protocol A′′ can be constructed efficiently. Its input alphabet
XA′′ is equal to XA. The construction of the protocol can be found in [1] (in
fact they present there a more general protocol for any linear combination of
variables corresponding to a semilinear predicate). When the number of nodes
of the communication graph is equal to k, A′′ always stabilizes to the all-zero
output (all agents output the value 0) and when it is not equal to k, then A′′

always stabilizes to the all-one output.
We want to construct an instance 〈A′, φ′〉 of GBPV ER. We set φ′ = φ ∨ φ′′.

Moreover, A′ is constructed to be the composition of A and A′′. Obviously,
QA′ = QA × QA′′ . We define its output to be the union of its components’
outputs, that is, O(qA, qA′′) = 1 iff at least one of O(qA) and O(qA′′) is equal
to 1. It is easy to see that the above reduction can be computed in polynomial
time.

We first prove that if 〈A, φ, k〉 ∈ BPV ER′ then 〈A′, φ′〉 ∈ GBPV ER. When
A′ runs on the complete graph of k nodes, the components of its states

Algorithmic Verification of Population Protocols 229

corresponding to A′′ stabilize to the all-zero output, independently of the initial
configuration. Clearly, A′ in this case outputs whatever A outputs. Moreover, for
this communication graph, φ′ is true iff φ is true (because φ′′ = ¬(

∑
x∈XA Nx =

k) is false, and φ′ = φ ∨ φ′′). But there exists some input for which A does not
give the correct output with respect to φ (e.g. φ is true for some input but A
for some computation does not stabilize to the all-one output). Since φ′ expects
the same output as φ and A′ gives the same output as A we conclude that there
exists some erroneous computation of A′ w.r.t. φ′, and the first direction has
been proven.

Now, for the other direction, assume that 〈A′, φ′〉 ∈ GBPV ER. For any
communication graph having a number of nodes not equal to k, φ′ is true and
A′ always stabilizes to the all-one output because of the A′′ component. This
means that the erroneous computation of A′ happens on the Gk. But for that
graph, φ′′ is always false and A′′ always stabilizes its corresponding component
to the all-zero output. Now φ′ is true iff φ is true and A′ outputs whatever A
outputs. But there exists some input and a computation for which A′ does not
stabilize to a configuration in which all agents give the output value that φ′

requires which implies that A does not stabilize to a configuration in which all
agents give the output value required by φ. Since the latter holds for Gk, the
theorem follows. ��

4 Algorithmic Solutions for BPV ER

Our algorithms are search algorithms on the transition graph Gr. The general
idea is that a protocol A does not conform to its specifications φ on k agents, if
one of the following criteria is satisfied:

1. φ(c) = −1 for some c ∈ CI .
2. ∃c, c′ ∈ CI such that c

∗→ c′ and φ(c)
= φ(c′).
3. ∃c ∈ CI and c′ ∈ CF such that c

∗→ c′ and O(c′) = −1.
4. ∃c ∈ CI and c′ ∈ CF such that c

∗→ c′ and φ(c)
= O(c′).
5. ∃B′ ∈ FS such that O(B′) = −1.
6. ∃B ∈ IS and B′ ∈ FS such that B

∗→ B′ and φ(B)
= O(B′) (possibly
B = B′).

Note that any algorithm that correctly checks some of the above criteria is a
possibly non-complete verifier. Such a verifier guarantees that it can discover
an error of a specific kind, thus, we can always trust its “reject” answer. On
the other hand, an “accept” answer is a weaker guarantee, in the sense that it
only informs that the protocol does not have some error of this specific kind.
Of course, it is possible that the protocol has other errors, violating criteria
that are indetectable by this verifier. However, this is a first sign of BPV ER’s
parallelizability.

Theorem 3. Any algorithm checking criteria 1, 5, and 6 decides BPV ER.

230 I. Chatzigiannakis, O. Michail, and P.G. Spirakis

Proof. Let M be such an algorithm. Let 〈A, φ, k〉 ∈ BPV ER. This implies
that, for any input assignment x, any computation of A beginning from the
initial configuration I(x) reaches a final strongly connected component of the
transition graph (consisting of those configurations that appear infinitely often
in the computation, see Lemma 1 in [1] and Theorem 1 in [9]), in which all
configurations have all agents giving the output φ(x). M correctly accepts in
this case because none of the criteria 1, 5, and 6 is satisfied for the following
reasons:

– φ(c) = −1 for some c ∈ CI : if it were, then there would be two input
assignments x and x′, such that φ(x)
= φ(x′) both mapped to the same
configuration c. But then any stable computation beginning from c would
give the wrong output for at least one of x and x′. This would imply that A
does not stably compute k.

– ∃B′ ∈ FS such that O(B′) = −1: B contains at least one initial configuration,
e.g. c. Since B reaches B′ there is a computation leading from c to B′. But
B′ is unstable.

– ∃B ∈ IS and B′ ∈ FS such that B
∗→ B′ and φ(B)
= O(B′) (possibly

B = B′): Here, all initial configurations in B expect a different output from
that given by the configurations in B′. Again, since A stably computes φ
this cannot be the case.

Let, now 〈A, φ, k〉 /∈ BPV ER. By definition, this implies that some initial con-
figuration c is assigned two input assignments that expect different outputs or
that each initial configuration c only expects a single output φ(c) but there exists
some computation beginning from c that either does not stabilize or stabilizes to
some output y
= φ(c). We examine these cases mainly from a transition-graph
perspective.

1. ∃c ∈ CI s.t. φ(c) = −1: This is clearly handled by criterion 1, and M rejects.
2. The computation does not stabilize: Although it doesn’t, c again either be-

longs to or reaches some final strongly connected component B′ (Lemma 1 in
[1]). But in this case, the component B′ contains at least two configurations
that give different outputs, or one configuration in which not all agents give
the same output, which is written in our notation as O(B′) = −1. In both
cases, it holds that B′ ∈ FS , since it is final and reachable from the initial
configuration c, thus, criterion 5 is clearly satisfied and M rejects.

3. The computation stabilizes to y
= φ(c): In this case, a final strongly con-
nected component B′ is reached in which all configurations have all agents
giving the output y. In our notation O(B′) = y
= φ(c). c either belongs to
B′ or belongs to some initial component B that reaches B′. In the former
case φ(B′)
= O(B′) and in the latter φ(B)
= O(B′). In both cases, criterion
6 is satisfied and M rejects.

��

Algorithmic Verification of Population Protocols 231

Algorithm 1. SinkVER
Input: A PP A, a Presburger arithmetic formula φ, and an integer k ≥ 2.
Output: ACCEPT if A is correct w.r.t. its specifications and the criteria 1, 2, 3, and

4 on Gk and REJECT otherwise.

1: CI ←FindCI(A, k)
2: if there exists c ∈ CI such that φ(c) = −1 then
3: return REJECT // Criterion 1 satisfied
4: end if
5: Gr ← ConGr(A, k)
6: for all c ∈ CI do
7: Collect all c′ reachable from c in Gr by BFS or DFS.
8: while searching do
9: if one c′ is found such that c′ ∈ CF and (O(c′) = −1 or φ(c) �= O(c′))

then
10: return REJECT // Criterion 3 or 4 satisfied
11: end if
12: if one c′ is found such that c′ ∈ CI and φ(c) �= φ(c′) then
13: return REJECT // Criterion 2 satisfied
14: end if
15: end while
16: end for
17: return ACCEPT // Tests for criteria 1,2,3, and 4 passed

4.1 Constructing the Transition Graph

Let FindCI(A, k) be a function that given a PP A and an integer k ≥ 2 returns
the set CI of all initial configurations. This is not so hard to be implemented.
FindCI simply iterates over the set of all input assignments X and for each x ∈ X
computes I(x) and puts it in CI . Alternatively, computing CI is equivalent to
finding all distributions of indistinguishable objects (agents) into distinguishable
slots (initial states), and, thus, can be done by Fenichel’s algorithm [15].

The transition graph Gr can be constructed by some procedure, call it ConGr ,
which is a simple application of searching and, thus, we skip it. It takes as input
a population protocol A and the population size k, and returns the transition
graph Gr.

4.2 Non-complete Verifiers

We now present two non-complete verifiers, namely SinkBFS and SinkDFS, that
check all criteria but the last two. Both are presented via procedure SinkVER
(Algorithm 1) and the order in which configurations of Gr are visited determines
whether BFS or DFS is used.

4.3 SolveBPVER: A Complete Verifier

We now construct the procedure SolveBPVER (Algorithm 2) that checks criteria
1, 5, and 6 (and also 2 for some speedup) presented in the beginning of this

232 I. Chatzigiannakis, O. Michail, and P.G. Spirakis

section, and, thus, according to Theorem 3, it correctly solves BPV ER (i.e.
it is a complete verifier). In particular, SolveBPVER takes as input a PP A,
its specifications φ and an integer k ≥ 2, as outlined in the BPV ER problem
description, and returns “accept” if the protocol is correct w.r.t. its specifications
on Gk and “reject” otherwise.

Algorithm 2. SolveBPVER
Input: A PP A, a Presburger arithmetic formula φ, and an integer k ≥ 2.
Output: ACCEPT if the protocol is correct w.r.t. its specifications on Gk and RE-

JECT otherwise.

1: CI ←FindCI(A, k)
2: if there exists c ∈ CI such that φ(c) = −1 then
3: return REJECT
4: end if
5: Gr ← ConGr(A, k)
6: Run one of Tarjan’s or Gabow’s algorithms to compute the collection S of all

strongly connected components of the transition graph Gr.
7: Compute the dag D = (S, A), where (B,B′) ∈ A (where B �= B′) if and only if

B → B′.
8: Compute the collection IS ⊆ S of all connected components B ∈ S that contain

some initial configuration c ∈ CI and the collection FS ⊆ S of all connected
components B ∈ S that have no outgoing edges in A, that is, all final strongly
connected components of Gr.

9: for all B ∈ FS do
10: if O(B) = −1 then
11: return REJECT
12: end if
13: // Otherwise, all configurations c ∈ B output the same value O(B) ∈ {0, 1}.
14: end for
15: for all B ∈ IS do
16: if there exist initial configurations c, c′ ∈ B such that φ(c) �= φ(c′) then
17: return REJECT
18: else
19: // all initial configurations c ∈ B expect the same output φ(B) ∈ {0, 1}.

20: Run BFS or DFS from B in D and collect all B′ ∈ FS s.t. B
∗→ B′

(possibly including B itself).
21: if there exists some reachable B′ ∈ FS for which O(B′) �= φ(B) then
22: return REJECT
23: end if
24: end if
25: end for
26: return ACCEPT

The idea is to use Tarjan’s [21] or Gabow’s (or any other) algorithm for finding
the strongly connected components of Gr. In this manner, we obtain a collection

Algorithmic Verification of Population Protocols 233

S, where each B ∈ S is a strongly connected component of Gr, that is, B ⊆ Cr.
Given S we can easily compress Gr w.r.t. its strongly connected components as
follows. The compression of Gr is a dag D = (S,A), where (B,B′) ∈ A if and
only if there exist c ∈ B and c′ ∈ B′ such that c → c′ (that is, iff B → B′). In
words, the node set of D consists of the strongly connected components of Gr

and there is a directed edge between two components of D if a configuration of
the second component is reachable in one step from a configuration in the first
one.

We have implemented our verifiers in C++. We have named our tool bp-ver
and it can be downloaded from http://ru1.cti.gr/projects/BP-VER. Our imple-
mentation makes use of the boost graph library. In particular, we exploit boost
to store and handle the transition graph and to find its strongly connected com-
ponents. Boost uses Tarjan’s algorithm [21] for the latter. We use Fenichel’s
algorithm [15] in order to find all possible initial configurations, and our imple-
mentation is based on Burkardt’s FORTRAN code [8]. Protocols and formulas
are stored in separate files and simple, natural syntax is used. Formulas are
evaluated with Dijkstra’s Shunting-yard algorithm for evaluating expressions.

5 Experiments and Algorithmic Engineering

As presented so far, all verifiers first construct the transition graph and then
start searching on it, each with its own method, in order to detect some error.
Note also that all algorithms halt when the first error is found, otherwise they
halt when there is nothing left to search.

Our first suspicion was that the time to construct the transition graph must
be a dominating factor in the “reject” case but not in the “accept” case. To see
this for the “reject” case imagine that all verifiers find some error near the first
initial configuration that they examine. For example, they may reach in a few
steps another initial configuration that expects different output. But, even if all
of them reject in a few steps, they still will have paid the construction of the
whole transition graph first, which is usually huge. On the other hand, this must
not be a problem in the “accept” case, because all verifiers have, more or less,
to search the whole transition graph before accepting.

Protocol 3. flocki

1: // i must be at least 1
2: X = Y = {0, 1}, Q = {q0, q1, . . . , qi},
3: I(0) = q0 and I(1) = q1,
4: O(ql) = 0, for 0 ≤ l ≤ i − 1, and O(qi) = 1,
5: δ:

(qk, qj) → (qk+j , q0), if k + j < i

→ (qi, qi), otherwise.

234 I. Chatzigiannakis, O. Michail, and P.G. Spirakis

 0

 20

 40

 60

 80

 100

 120

 140

 0 200 400 600 800 1000 1200 1400 1600

T
im

e(
s)

Population Size

TgExT(s)
SVerBfsExT(s)
SVerDfsExT(s)

BPVerExT(s)

(a) “reject” case.

 0

 20

 40

 60

 80

 100

 120

 0 100 200 300 400 500 600

T
im

e(
s)

Population Size

TgExT(s)
SVerBfsExT(s)
SVerDfsExT(s)

BPVerExT(s)

(b) “accept” case.

Fig. 1. (a): Verifiers executed on erroneous version of flock2 (see Protocol 3, where the
corresponding stably computable predicate is (N1 ≥ i)) w.r.t. formula (N1 ≥ 2). The
dominating factor is the time needed to construct the transition graph. For all n ≥ 4 all
verifiers found some error. (b): Verifiers executed on the correct flock2t w.r.t. formula
(N1 ≥ 2). SinkDFS and SinkBFS verifiers are clearly faster than SolveBPVER in this
case. For all n ≥ 4 all verifiers decided that the protocol is correct.

These speculations are confirmed by our first experiments whose findings are
presented in Figure 1. In particular, we consider the “flock of birds” protocol
that counts whether at least 2 birds in the flock were found infected. The corre-
sponding Presburger formula is (N1 ≥ 2). In Figure 1(a) we introduced a single
error to the protocol’s code that all verifiers would detect. Then we counted
and plotted the time to construct the transition graph and the execution (CPU)
time of all verifiers (until they answer “reject”) for different population sizes. In
Figure 1(b) we did the same for the correct version of the protocol. See Protocol
3 for the code of protocol flocki.

The good news is that our verifiers’ running times can easily be improved.
The idea is to take the initial configurations one after the other and search only
in the subgraph of the transition graph that is reachable from the current initial
configuration. In this manner, we usually avoid in the “reject” case to construct
the whole transition graph. Especially in cases that we are lucky to detect an
error in the first subgraph that we ever visit, and if this subgraph happens to be
small, the running time is greatly improved.

References

1. Angluin, D., Aspnes, J., Diamadi, Z., Fischer, M.J., Peralta, R.: Computation
in networks of passively mobile finite-state sensors. Distributed Computing 18(4),
235–253 (2006); Also in 23rd Annual ACM Symposium on Principles of Distributed
Computing (PODC), pp. 290-299 (2004)

2. Angluin, D., Aspnes, J., Eisenstat, D., Ruppert, E.: The computational power of
population protocols. Distributed Computing 20(4), 279–304 (2007)

3. Aspnes, J., Ruppert, E.: An introduction to population protocols. Bulletin of the
European Association for Theoretical Computer Science 93, 98–117 (2007)

Algorithmic Verification of Population Protocols 235

4. Bakhshi, R., Bonnet, F., Fokkink, W., Haverkort, B.: Formal analysis techniques
for gossiping protocols. ACM SIGOPS Operating Systems Review, Special Issue
on Gossip-Based Networking 41(5), 28–36 (2007)

5. Beauquier, J., Clement, J., Messika, S., Rosaz, L., Rozoy, B.: Self-stabilizing count-
ing in mobile sensor networks. Technical Report 1470, LRI, Université Paris-Sud
11 (2007)

6. Behrmann, G., David, A., Larsen, K.G.: A tutorial on Uppaal. In: Bernardo, M.,
Corradini, F. (eds.) SFM-RT 2004. LNCS, vol. 3185, pp. 200–236. Springer, Hei-
delberg (2004)

7. Bournez, O., Chassaing, P., Cohen, J., Gerin, L., Koegler, X.: On the convergence
of population protocols when population goes to infinity. Applied Mathematics and
Computation 215(4), 1340–1350 (2009)

8. http://people.sc.fsu.edu/~burkardt/f_src/combo/combo.f90

9. Chatzigiannakis, I., Dolev, S., Fekete, S.P., Michail, O., Spirakis, P.G.: Not all
fair probabilistic schedulers are equivalent. In: 13th International Conference on
Principles of DIstributed Systems (OPODIS), pp. 33–47 (2009)

10. Chatzigiannakis, I., Michail, O., Spirakis, P.G.: Brief Announcement: Decidable
graph languages by mediated population protocols. In: Keidar, I. (ed.) DISC 2009.
LNCS, vol. 5805, pp. 239–240. Springer, Heidelberg (2009)

11. Chatzigiannakis, I., Michail, O., Spirakis, P.G.: Mediated population protocols.
In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W.
(eds.) ICALP 2009. LNCS, vol. 5556, pp. 363–374. Springer, Heidelberg (2009)

12. Chatzigiannakis, I., Michail, O., Spirakis, P.G.: Recent advances in population
protocols. In: Královič, R., Niwiński, D. (eds.) MFCS 2009. LNCS, vol. 5734, pp.
56–76. Springer, Heidelberg (2009)

13. Chatzigiannakis, I., Spirakis, P.G.: The dynamics of probabilistic population proto-
cols. In: Taubenfeld, G. (ed.) DISC 2008. LNCS, vol. 5218, pp. 498–499. Springer,
Heidelberg (2008)

14. Clarke, E.M., Grumberg, O., Peled, D.A.: Model checking. MIT Press, Cambridge
(2000)

15. Fenichel, R.: Distribution of indistinguishable objects into distinguishable slots.
Communications of the ACM 11(6), 430 (1968)

16. Guerraoui, R., Ruppert, E.: Names trump malice: Tiny mobile agents can tolerate
byzantine failures. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikolet-
seas, S., Thomas, W. (eds.) ICALP 2009. LNCS, vol. 5556, pp. 484–495. Springer,
Heidelberg (2009)

17. Hinton, A., Kwiatkowska, M.Z., Norman, G., Parker, D.: Prism: A tool for auto-
matic verification of probabilistic systems. In: Hermanns, H., Palsberg, J. (eds.)
TACAS 2006. LNCS, vol. 3920, pp. 441–444. Springer, Heidelberg (2006)

18. Holzmann, G.: The Spin model checker, primer and reference manual. Addison-
Wesley, Reading (2003)

19. Huth, M., Ryan, M.: Logic in Computer Science: Modelling and reasoning about
systems. Cambridge University Press, Cambridge (2004)

20. Olveczky, P.C., Thorvaldsen, S.: Formal modeling and analysis of wireless sensor
network algorithms in Real-Time Maude. In: Proceedings 20th IEEE International
Parallel & Distributed Processing Symposium International, p. 157 (2006)

21. Tarjan, R.: Depth-first search and linear graph algorithms. SIAM Journal on Com-
puting 1(2), 146–160 (1972)

http://people.sc.fsu.edu/~burkardt/f_src/combo/combo.f90

Energy Management for Time-Critical Energy
Harvesting Wireless Sensor Networks

Bo Zhang, Robert Simon, and Hakan Aydin

Department of Computer Science
George Mason University, Fairfax, VA 22030

{bzhang3,simon,aydin}@cs.gmu.edu

Abstract. As Cyber-Physical Systems (CPSs) evolve they will be in-
creasingly relied on to support time-critical monitoring and control ac-
tivities. Further, many CPSs that utilize Wireless Sensor Networking
(WSN) technologies require energy harvesting methods to extend their
lifetimes. For this important system class, there are currently no effec-
tive approaches that balance system lifetime with system performance
under both normal and emergency situations. To address this problem,
we present a set of Harvesting Aware Speed Selection (HASS) algo-
rithms. We use an epoch-based architecture to dynamically adjust CPU
frequencies and radio transmit speeds of sensor nodes, hence regulate
their power consumption. The objective is to maximize the minimum
energy reserve over any node in the network, while meeting application’s
end-to-end deadlines. Through this objective we ensures highly resilient
performance under emergency or fault-driven situation. Through exten-
sive simulations, we show that our algorithms yield significantly higher
energy reserves than the approaches without speed and power control.

1 Introduction

There is an increasing need to effectively support Wireless Sensor Network appli-
cations that have significant data collection and processing requirements. Exam-
ples range from Wireless Network Video Systems for surveillance [19] to Cyber-
Physical Systems such as smart power grid using 802.15.4/Zigbee technology
[14]. These types of systems often have strict timing and performance specifica-
tions. For instance, smart power grid systems need to provide real-time pricing
information, while water distribution systems need to instantly react to a con-
tamination. Further, many of these self−∗, unattended and deeply-embedded
systems will be expected to last for several decades, and therefore must carefully
manage available energy resources. The challenge faced by system designers is
to balance the performance and system availability requirements with energy
management policies that can maximize system lifetime.

One approach for maximizing system lifetime is to use energy harvesting [6].
By harvesting energy from environmental sources such as solar, wind or wa-
ter flow, WSN nodes potentially have perpetual energy supply. However, given
the large energy demands of the computational and communication intensive

S. Dolev et al. (Eds.): SSS 2010, LNCS 6366, pp. 236–251, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Energy Management for Time-Critical Energy Harvesting WSNs 237

WSN applications, and limited availability of environmental power, perpetual
operation of WSN nodes cannot be realized without deliberate energy manage-
ment. This problem is exacerbated if the application has unpredictable spikes in
workload demand, such as a water distribution system reacting to a biological
contamination. The focus of this paper is a coordinated energy management pol-
icy for time-critical WSN applications that use energy harvesting and that must
maintain required performance under emergency or fault-driven situations.

Our approach is to make combined use of two energy saving techniques, Dy-
namic Voltage Scaling (DVS) [2] and Dynamic Modulation Scaling (DMS) [18].
The DVS technique saves computation energy by simultaneously reducing CPU
supply voltage and frequency. The DMS technique saves communication energy
by reducing radio modulation level and hence transmit speed. To take advantage
of these methods we propose a set of Harvesting Aware Speed Selection (HASS)
algorithms that use both DVS and DMS in conjunction with energy harvesting
modules. The purpose of the HASS approach is to maximize energy reserves
while meeting application performance requirements, therefore maximize the
system’s resilience to emergency situations.

One difficulty in managing energy for these systems is that nodes may have
quite different workload demands and available energy sources. This may arise
from natural factors such as differences in nodes energy harvesting opportunities,
or unbalanced distribution of processing workloads or network traffic. Because of
these conflicting design considerations, the HASS approach attempts to maxi-
mize the minimum energy reserve level over any node in the network, while guar-
anteeing required system performance. Specifically, HASS adjusts CPU process-
ing speed and radio transmit speed, with a goal that the harvesting-rich nodes
run faster to allow the harvesting-poor nodes to slow down and save energy,
given tight end to end data collection latency constraint. The reduced energy
consumption will secure higher energy reserves for the poor nodes.

Our specific contributions are summarized as follows: We first provide a basic
architectural description for DVS and DMS nodes that use energy harvesting.
We then propose a general network and performance model for time-critical
WSN applications. Unlike the majority of existing works in energy harvesting
WSN systems which mainly focus on individual nodes, we target a multi-hop
sensor network with an end-to-end performance requirement. Next, we show
how to formulate the problem of maximizing the minimum energy reserve while
maintaining required performance as an optimization problem. We prove that
this problem can be solved optimally and efficiently. We also propose and evalu-
ate both centralized and distributed protocols to implement the HASS solution.
We conducted extensive simulations to evaluate our methods under a variety of
processing, communication and performance requirements. Unlike most existing
works which assuming solar energy as the environmental sources in their simu-
lations, we propose an experimental methodology to simulate energy harvesting
WSN systems utilizing energy harvested from water flow in a water distribu-
tion system. Our results show that both centralized and distributed solutions

238 B. Zhang, R. Simon, and H. Aydin

significantly improve the capacity of time-critical WSN systems to deal with
emergency situations, in addition to meeting performance requirements.

2 Background and Related Work

The joint use of DVS and DMS in wireless embedded systems has been explored
in [7] and [17]. In [7], Kumar et al. addressed a resource allocation problem with
the aim of minimizing energy consumption. They assume a system containing
a mixed set of computation and communication tasks. In [17], the energy man-
agement problem is formulated as a convex optimization problem, which is then
addressed through the use of genetic algorithms. In [18], Yu et al. proposed DMS-
based approach for a multi-hop WSNs. They assume a data collection application
in which a base station periodically collects sensed data from WSN nodes over
a tree-based routing structure. In [21], we proposed a joint DVS-DMS energy
management approach for individual energy harvesting WSN nodes with a goal
of maximizing the minimum energy level over time. Unlike our work, [7], [17],
[18] assume battery-powered system and target prolonging system lifetime by re-
ducing energy consumption, without considering the need of ensuring perpetual
operation through energy harvesting.

Many existing studies explored the design of energy harvesting WSNs. In
[10], Moser et al. proposed the LSA algorithm (Lazy Scheduling Algorithm) for
scheduling real-time tasks in the context of energy harvesting. LSA defers task
execution and hence energy consumption as late as possible so as to reduce the
amount of deadline misses. Liu et al. ([8]) proposed EA-DVFS (Energy-Aware
Dynamic Voltage and Frequency Scaling) which improves the energy efficiency
of LSA by using DVS. Both LSA and EA-DVFS manage only the CPU energy,
while ignoring radio energy. Other related work includes [5] and [12] which aim at
balancing energy supply and energy demand in energy harvesting WSN systems.
Finally, [6], [11] proposed to maximally utilize harvested energy for maximizing
the amount of completed works, and hence system performance. Neither of these
works considered maximizing minimum energy level by using joint DVS-DMS
techniques.

3 System Architecture

This section describes our architecture for energy harvesting WSN systems sup-
porting time-critical applications. It consists of a basic node and device model, a
task-based workload model and energy consumption analysis, and a performance
model. This will provide a systematic methodology for modeling and analyzing
the performance of this type of systems.

3.1 Device Model

Without loss of generality, we assume that each node has several functional
units, including an energy harvester head, an energy storage unit, a DVS capable

Energy Management for Time-Critical Energy Harvesting WSNs 239

CPU, a DMS capable radio, as well as required sensor suites. The harvester
head is energy source-specific, such as solar panel or wind generator. The energy
storage unit (e.g. rechargable battery or super-capacitor) has a maximum energy
capacity of Γmax joules. This unit receives power from the energy harvester, and
delivers power to the sensor node. We take the commonly used approach that the
amount of harvested power is uncontrollable, but reasonably predictable, based
on the source type and harvesting history [6]. To capture the time-varying nature
of environmental energy, time is divided into epochs of length S. Harvested power
is modeled as an epoch-varying function denoted by Ph

i , where i is the epoch
sequence number. P h

i remains constant within the course of each epoch i, but
changes for different epochs. To be precise, Ph

i is the actual power received by
energy storage which incorporating the loss during power transfer from energy
harvester to energy storage, and the power leakage of energy storage. The time
unit used for harvesting prediction is therefore one epoch. The prediction horizon,
H is an interval containing a number of epochs during which predictions can be
reasonably made. Our approach needs to know the harvested power prediction
of only the coming epoch, at the epoch start.

The node consumes power via either processing, radio communication or
sensing. We now describe how to model energy consumption for an individ-
ual node. The basic time interval over which energy consumption is calcu-
lated is called a frame, defined precisely below in Section 3.2. Frames are in-
voked periodically. We assume the DVS-enabled CPU has m discrete frequen-
cies fmin=f1<...<fm=fmax in unit of cycles per second, and the DMS-enabled
radio has n discrete modulation levels, bmin=b1<...<bn=bmax. We use the terms
frequency and compute speed interchangeably. In practice, the modulation level
represents the number of bits encoded in one signal symbol [18]. To understand
this relationship, let R be the fixed symbol rate. Then modulation level b is
associated with communicate speed d and expressed as:

d = R · b (1)

Let esen represents the energy required for each sensing event. Note that esen is a
constant. The computation energy ecp

k in the kth frame is a function of compute
speed fk and supply voltage Vdd,k [2]. The communication energy ecm

k in the kth

frame is a function of communicate speed dk [18]. Then we have:

ecp
k = [αfkV

2
dd,k + P ind,cp] · C

fk
(2)

ecm
k = [βR(2dk/R − 1) + P ind,cm] · M

dk
(3)

Above, C and M are the computation and communication workloads in a frame.
C is the number of CPU cycles to be processed, M is the number of bits to be
transmitted. The α in Eq. (2) is the CPU switching capacitance which is a
constant. The β in Eq. (3) is a constant determined by the transmission quality
and noise level [18]. The terms αfkV

2
dd,k and βR(2dk/R − 1) give the speed-

dependent power of CPU and radio which vary with fk, Vdd,k, and dk respectively.

240 B. Zhang, R. Simon, and H. Aydin

P ind,cp and P ind,cm are two constants representing the speed-independent power
of CPU and radio. By using DVS, the supply voltage Vdd,k can be reduced
linearly alongside with fk to obtain energy saving (i.e. fk ∝ Vdd,k), making
the speed-dependent CPU power a cubic function of fk. Our model assumes a
sufficient level of coordinated sleeping and transmission scheduling, so that the
radio energy consumed by listening channel activities is not a significant factor.
Finally, the total energy consumed in frame k, ec

k equals:

ec
k = esen + ecp

k + ecm
k (4)

3.2 Network and Application Model

The system consists of N sensor nodes and the set of wireless links connecting
them. A sensor node is denoted as Vi. Base stations or control points are denoted
as BS. The N nodes are divided into two types: source nodes perform sensing,
processing and communication operations, while relay nodes only perform pro-
cessing and communication. Our data processing architecture is quite general,
and supports systems that perform some levels of aggregation at each node, as
well as systems that do not allow any aggregation. We represent a time-critical
and performance sensitive WSN application by requiring all source nodes report
their readings, which may or may not be aggregated into other readings, every
π time units. The time interval π is the length of a data collection frame. Such
frame-based data collection mechanism is quite common for WSN applications
[7] [13] [18]. In other words, all sensed, processed or aggregated data must reach
BS by the end of each frame. For example, at the start of the kth frame (i.e.
at time (k − 1) · π), each source node senses the environment and sends sensed
data to BS. The data is routed by other nodes and must reach BS by the end
of that frame, at time k · π. We assume all nodes are time-synchronized so that
they are aware of the same frame start and end times.

On a per-frame basis, energy consuming activities within each node are repre-
sented using a task-based model. In this way, frame-based energy consumption
is determined by examining the energy demands of individual tasks (Eq. (4)).
There are a total of three task types: sensing, computation and communication.
Without loss of generality and in order to simplify the modeling process, we as-
sume the three tasks are executed in the order of sense→compute→communicate.
That is, in each frame, a node performs sensing first, then processes the sensor
reading, then transmits the processed data. The workloads of the computation
and communication tasks of any node Vi are fixed over any frame in a given
epoch, and denoted as Ci and Mi, respectively.

We assume that each node uses standard WSN energy management tech-
niques for transitioning to sleep states when there is no active task. We also
assume that compute and communicate speeds only change at the start of an
epoch. This design decision reduces the required level of control and synchro-
nization overhead. For instance, the modulation level of a node must not change
frequently, since each such change must be conveyed to its receiver in order to
ensure correct demodulation of the transmitted data. Using this analysis we

Energy Management for Time-Critical Energy Harvesting WSNs 241

can calculate the time required by each node Vi to carry out all activities dur-
ing frame k, referred as the per-node latency, li,k. The per-node latency de-
pends upon the compute speed fi,k and the communicate speed di,k. Then li,k is
given by

li,k = tsen +
Ci

fi,k
+

Mi

di,k
(5)

tsen is the sensing time which is a constant. Note that tsen equals zero for relay
nodes. We make a common assumption that the effective data transmission time
dominates the overall communication time while ignoring the carrier sense time
[7], [17], [18]. Thus, the communication time is inversely proportional to di,k.

The system is organized into a data collection and processing tree rooted at
BS, using tree construction algorithms such as [1]. In order to support time-
critical operation we must define and calculate the maximum data collection
latency and individual path latency. These two values are used in the optimiza-
tion formulation in Sections 4 and 5 to ensure that all latency requirements are
maintained. In each frame, a node Vi receives data from a set of child nodes
denoted as Children(Vi). Vi then forwards packets to its parent node, denoted
as Parent(Vi), after received data from all its children. Then the maximum data
collection latency Ltot,k in frame k is the time interval between the start of frame
k, and when BS collects all sensed data, given by

Ltot,k = Max.{Li,k + li,k|Vi ∈ Children(BS)} (6)

Above, Li,k is the latency of the subtree rooted at node Vi, i.e. Li,k = Max.
{Lj,k + lj,k|Vj ∈ Children(Vi)}. The subtree rooted at a leaf node contains only
the leaf itself, and hence incurs zero latency.

Next, we define the path ρi from a node Vi to the root BS as the series of
nodes and wireless links connecting Vi and BS. The notation Vj ∈ ρi signifies
that Vj is an intermediate node on path ρi. The latency Hi,k of ρi is defined as:

Hi,k =
∑

j:Vj∈ρi

lj,k (7)

Note that by resolving the recursion in Eq. (6), Ltot,k actually equals to the
latency of the longest path in the tree, i.e. Max.{Hi,k|∀ρi}.

4 Harvesting Aware Speed Selection

Based on the node and network model presented in Section 3, we now formally
define the Harvesting Aware Speed Selection (HASS) problem. Our goal is to
maintain end-to-end performance while maximizing the system’s resilience to
abnormal or emergency situations. This is accomplished by maximizing the min-
imum energy level of any node.

The compute and communicate speeds at individual nodes are adjusted at
the start of each epoch, and remain fixed throughout that epoch. As defined in

242 B. Zhang, R. Simon, and H. Aydin

Section 3.1, an epoch is a time interval over which an energy harvesting predic-
tion can be reasonably made. For an arbitrary epoch, the energy consumption
ec

i,k and performance latencies Li,k, Hi,k of node Vi are fixed over any frame k.
For simplicity we therefore rewrite them as ec

i , Li and Hi. Then the energy level
Γi of a node Vi at the end of a given epoch is given as:

Γi = Γ init
i + P h

i · S − �S/π� · ec
i (8)

Γ init
i is the starting energy level of Vi in the epoch. Recall that S is the epoch

length. �S/π� gives the number of frames in an epoch. Using this notation, we
define Γmin as

Γmin = Min{Γi|∀Vi} (9)

Then the goal of our approach is to maximize Γmin. The variables of the problem
are the compute and communicate speeds fi, di used by any node Vi in an epoch.
Given N nodes in the tree, there are 2N unknowns in our problem. The optimal
solution to this problem consists of N speed configurations (fi, di), one for each
node which maximize Γmin. The problem HASS is given as:

Max Γmin (10)
s.t. ∀ρi, Hi ≤ π (11)

∀Vi, fi ∈ [fmin, fmax], di ∈ [dmin, dmax] (12)
∀Vi, 0 < Γi ≤ Γmax (13)

The constraint (11) ensures that the latency of any path ρi in the tree is smaller
than the frame period π. As mentioned in Section 3.2, this is equivalent to ensur-
ing that the latency of the entire tree is smaller than π. The constraint (12) gives
the available ranges of f and d. The constraint (13) requires that the energy level
of any node Vi must be confined to the range (0, Γmax]. In [6], the authors intro-
duced the energy neutrality condition, which essentially states that the energy
consumed must be no larger than the energy available, such that Γi will never
drop to zero. This is a necessary condition for an energy harvesting sensor node
to operate non-interruptively and we therefore adopt it as a requirement. The
left hand side of constraint (13) (called the positivity constraint) must hold in
order to ensure energy neutrality, while the right hand side (called the capacity
constraint) is used to model energy storage capacity. Given known and fixed har-
vested power, and fixed speeds and power consumption, the variation of energy
level also fix throughout an epoch, i.e. either monotonically increase or decrease
at a fixed rate. Therefore, ensuring a positive energy level at the end of an epoch
also ensures positive energy level at the end of any frame in that epoch.

5 Centralized and Distributed Solutions

This section provides centralized and distributed solutions to problem HASS.
The centralized version provides an optimal solution, while the distributed ver-
sion is appropriate for systems that need to avoid single control point.

Energy Management for Time-Critical Energy Harvesting WSNs 243

We first give Lemma 1 which states that solving problem HASS with full con-
straint set is equivalent to solving the same problem but without constraint (13).
This enables us to remove constraint (13) and focus on a new problem obtained
in this manner, denoted as HASS-N. Note that the objective function and all
other constraints are retained in HASS-N.

Lemma 1. If in the optimal solution to HASS-N, Γmin is strictly positive, then
the solution to HASS is identical to that of HASS-N. Otherwise, HASS has no
feasible solution.

The proof of Lemma 1 can be found in [20]. In the rest of this paper, we will focus
on solving problem HASS-N. Solving HASS-N requires non-linear optimization
methods, since it has a non-linear objective function (Eq. (10)). Such costly
methods are difficult to implement on resource-constrained sensor nodes. We
will show how to obtain an optimal solution efficiently.

A naive approach to solve HASS-N is to exhaustively search over all possible
solutions. For a system with N nodes where each node has m compute speeds
and n communicate speeds, there are (mn)N possible solutions, making brute
force search impractical. However, we notice that many different solutions yield
identical Γmin. Using this observation we can simply enumerate each possible
Γmin, check if there exists a feasible solution that yields a minimum energy level
(among any node) equaling the enumerated Γmin, while satisfying constraints
(11) and (12). The highest Γmin that passes this check is by definition the max-
imum Γmin that we are looking for.

For each node, mn speed configurations correspond to mn different power
consumption levels. Since each node’s power consumption is fixed throughout
an epoch, a node has exactly mn energy consumption levels over an epoch.
Thus, given a known starting energy level and a fixed prediction for how much
energy can be harvested, a sensor node could end with at most mn possible
energy levels in an epoch. Given N nodes, at the end of an epoch, there could
be at most mnN different energy levels in the network, and Γmin can be only of
these possible values. The set of possible Γmins is referred as EL (Energy Level),
and has a size of mnN .

5.1 Centralized Version

The centralized HASS algorithm is called CHASS, and is presented in Algorithm
1. It runs on the base station, and assumes that BS must collect Γ init from each
node in the system, and is aware of the available speed configurations of sensor
nodes. CHASS first computes the possible energy levels of all the nodes using
Eq. (8) to build the set EL, then sorts EL in non-increasing order (line 1).
CHASS proceeds iteratively over the sorted EL starting from the first element
(i.e. the highest energy level in EL) (line 2). In each iteration p, it solves a
decision problem, called Feasible Solution denoted by FSp, by calling algorithm
Is-Feasible (line 3). The pth element in EL, EL[p] is input to Is-Feasible. The
problem FSp is specified as ”Is there a solution which yields Γmin=EL[p], while
satisfying constraints (11-12)?”

244 B. Zhang, R. Simon, and H. Aydin

The loop in line 2-9 iterates through all the elements in EL. It continues
if the answer to problem FSp, ansp is negative, and terminates once it met
a FSp with positive answer, i.e. in iteration z where FSz is the first problem
encountered with positive answer, z = Min.{p ∈ [1, |EL|]|ansp = TRUE} (line
4-8). By definition of problem HASS-N and FS, and the ordering of EL, EL[z]
is the maximum Γmin that can be achieved (line 5), while satisfying all the
constraints. If CHASS proceeds to the end of EL and never received a positive
answer to any of the FSp, this implies problem HASS-N has no feasible solution.

The algorithm Is-Feasible for solving problem FSp is given in Algorithm 2.
The algorithm has one input, the energy level enumerated in iteration p of
CHASS, EL[p]. It has three returned values, the answer to problem FSp, ansp,
and two speed sets of length N , F ∗, D∗ which contain f and d derived for all
the nodes in the current iteration. F ∗, D∗ are returned only if ans is positive,
otherwise they are empty.

Algorithm 1. CHASS

1. Compute and sort EL (in non-increasing order)
2. for p = 1 to |EL| do
3. [ansp, F ∗

p , D∗
p] = call Is-Feasible(EL[p])

4. if ansp == TRUE then
5. Max Γmin = EL[p]
6. [F opt, Dopt] = [F ∗

p , D∗
p]

7. Break from for-loop
8. end if
9. end for

Algorithm 2. Is-Feasible - Input: EL[p]

1. Γmin = EL[p]
2. for i = 1 to N do
3. (F ∗[i], D∗[i], lmin

i) = call find fastest(Γmin) on Vi

4. end for
5. Compute Hi =

∑
j:Vj∈ρi

lmin
j for any path ρi

6. if ∀ρi, Hi ≤ π then
7. ans = TRUE
8. else
9. ans = FALSE, F ∗, D∗ = ∅

10. end if
11. return [ans, F ∗, D∗]

We now demonstrate that Algorithm 2 is correct. First, by making Γmin =
EL[p] (line 1), Γi ≥ Γmin = EL[p] must hold for any node Vi. Then the algo-
rithm calls function find fastest for each node (line 2-4) to search over all its mn

Energy Management for Time-Critical Energy Harvesting WSNs 245

speed configurations for the fastest one, while yielding Γi ≥ EL[p]. Specifically,
find fastest returns a speed configuration for Vi, (F ∗[i], D∗[i]) which satisfies:

F ∗[i] ∈ [fmin, fmax], D∗[i] ∈ [dmin, dmax] (14)
Γi(F ∗[i], D∗[i]) ≥ EL[p] (15)
∀(f, d), li(F ∗[i], D∗[i]) ≤ li(f, d) (16)

Γi(f, d) and li(f, d) represent the energy level and per-node latency achieved
using speed configuration (f, d). find fastest also returns the per-node latency
lmin
i at Vi achieved by using the derived (F ∗[i], D∗[i]). Note that lmin

i is the least
achievable latency according to Eq. (16). Next, for each path ρi, we compute its
latency Hi by summing up any lmin

j , Vj ∈ ρi (line 5). Since (F ∗, D∗) minimizes
the per-node latency at any node, it also minimizes the latency of any path Hi.
Therefore, if Hi ≤ π, ∀ρi, the constraint (11) is met, then the answer to problem
FSp is positive (line 6-7). Otherwise, constraint (11) can never be met, hence the
answer is negative (line 8-9). Note that it is possible that function find fastest
does not return an answer, as there may exist some nodes having no possible
energy level larger than the input EL[p]. In this case, the algorithm immediately
rejects EL[p]. The speed sets F ∗, D∗ found in iteration z is set to be the optimal
solution to problem HASS-N and also HASS (line 6 in Algorithm 1). EL[z] is
set to be the maximum achievable Γmin (line 5 in Algorithm 1).

It is possible to reduce the runtime of CHASS by implementing the search
for FSz in a binary search fashion. This will reduce the number of iterations in
CHASS from O(|EL|) to O(log(|EL|)). We describe a faster algorithm CHASS∗

implemented in this manner and give a complexity analysis in [20].

5.2 Distributed Version

We next describe the distributed HASS solution called DHASS. The purpose of
the distributed version is to enable any node in the network to act as the base
station, and therefore enable that node to make command and decisions.

The algorithm DHASS proceeds also in binary-search fashion. It requires one
initialization round during which each sensor node sends an initialization mes-
sage containing two pieces of information, its estimated lowest and highest energy
levels at the end of the epoch, denoted as Γ low and Γ high. After the initialization
round, all the nodes agree on the global lowest and highest achievable energy
levels (among the entire tree). The continuous range between the two energy lev-
els is the starting binary search space. Then, it runs for Y computation rounds,
each of which corresponds to one iteration of binary search, and solves one prob-
lem FS using the distributed Is-Feasible. The distributed Is-Feasible requires
accumulative collection of nodes’ latency values, which are in turn used for the
root to calculate the end-to-end latency Ltot. The root then compares Ltot to π
in order to determine the answer to problem FS, and disseminates it to all the
nodes. Note that any node in the network can be the root. The specification of
DHASS is given in [20]. Though DHASS is only a heuristic-based solution, we
demonstrate in [20] that it can closely match the performance of CHASS.

246 B. Zhang, R. Simon, and H. Aydin

6 Performance Evaluation

We performed a series of simulations to evaluate the effectiveness of our HASS
approaches. The goal of the evaluation is to determine how well both the CHASS
and DHASS algorithm maximize the minimum energy level across the system.
The evaluation examined a number of workload scenarios, including several emer-
gency scenarios where there are sudden, unexpected peaks in the demand.

6.1 Experimental Methodology

We evaluated our approaches within a WSN system designed for residential
monitoring of water usage and quality. Each customer (residence) is coupled
to a supply pipe through a water meter. Each water meter is coupled with a
DVS-DMS enabled node. Energy is harvested from the flow of water, using a
device such as the one described in [15]. The amount of harvested energy is
therefore dependent upon the rate at which the customer uses water. To our
best knowledge, we are the first to simulate energy harvesting WSN systems
utilizing water flow as the energy source.

We have developed simulation software combining TOSSIM, the standard
WSN simulator, with EPANET [9], a public domain, water distribution system
modeling program developed by the US Environmental Protection Agency. Our
simulator can take as input a variety of WSN topologies, water distribution
system configurations and customer usage patterns. Based on water utilization
and water quality patterns, the software simulates energy harvesting, and various
WSN processing and communication activities. The presented results are based
upon a 100 node residential water distribution topology. The topology is derived
from an existing suburban area of 100 houses. The 100 nodes installed in the
water meters then form a WSN system. We use the Collection Tree Protocol [1]
to organize the nodes into a data collection tree.

Due to standard repetitive water usage patterns we use a 6 hours cycle, as
specified in EPANET. We fix the harvesting horizon at H=6 hours. A hori-
zon is then divided into 24 epochs with equal length S=15 minutes. We run
EPANET for 48 hours, containing 8 horizons or equivalently 192 epochs, and
obtained hydraulic simulation reports. Using these reports we generate water
energy harvesting profile for each node based on the observed water usage at the
customer. Note that the difference in the amount of water used across residences
will lead to quite different power harvesting profiles across nodes. In [20], we
plotted the harvesting profile of one selected node. The frame period is set to
π=240ms.

Both algorithm CHASS and DHASS were implemented in our simulation en-
vironment. Although there are no schemes that are directly comparable to our
algorithms, we implemented a baseline scheme called No-Power-Management
(NPM). Unlike the HASS approaches, NPM scheme is harvesting-unaware in the
sense that it uses the highest frequency and modulation level for all the nodes in
order to guarantee data collection timing constraint. Our experiments considered
two basic application types: applications that support complete-aggregation and

Energy Management for Time-Critical Energy Harvesting WSNs 247

applications that do not require any aggregation (non-aggregation). By complete-
aggregation, we mean that each node aggregates multiple packets received into
one single packet, while in the non-aggregation case a sensor node forwards all
packets to its parent without aggregation. The packet size is randomly selected
between M=[64, 128] bytes, and the computational workload is randomly se-
lected between C=[0, 3000000] cycles.

The hardware basis for a DVS-DMS capable platform is the widely available
iMote-2 sensor node [16]. The iMote-2 platform has a Intel Xscale PXA27x
CPU [4] and a ChipCon CC2420 radio [3]. PXA27x CPU has 6 frequency and
power levels as specified in [4]. We derived the radio speed-independent power
P cm,ind = 26.5mW, radio symbol rate R = 62.5k symbols/sec, and β = 2.74 ×
10−8 based on CC2420 specification [3] and Eq. (3). We note that the CC2420 is
not DMS-capable, so as in [18] we assume four modulation levels, b = {2, 4, 6, 8}
which give four communicate speeds: d = {125, 250, 375, 500} kbps (Eq. (1)).
The radio energy is calculated using Eq. (3). We assume a light sensor TSL2561
which takes 12ms to get one reading and consume 0.72mW. Each sensor node
uses a rechargeable battery with capacity Γmax = 1000 joules. All nodes start
with the same initial energy level, Γ init = 600 joules.

Nodes operate in either normal or emergency mode. We represent the emer-
gency mode by increasing the frame-based workload by w times upon the normal
mode, where w is a tunable parameter. This reflects the fact that nodes will need
to perform additional duties during those times. We simulate emergency scenar-
ios by introducing contaminant into the system at random time. This can be
done by deteriorating the water quality at the water reservoir or a residence. As
the contaminant spreads out, the water quality in the residences will decrease
and finally been detected by sensor nodes. A sensor node then switches to emer-
gency mode and perform additional workloads over a series of epochs, until the
water quality returns to normal.

We consider three different types of emergency scenarios. The first type is
random (RAND) attack. In this case, nodes fail according to a negative expo-
nential distribution, and are picked according to a random uniform distribution
from among all the nodes still operating in normal mode. The second mode
is a spreading attack (SPRD). This represents an emergency that increases its
area of impact over time. We introduce contaminant into the system from one
randomly selected contamination source node. The contaminant spreads out of
the system with the flow of water, and lasts a few epochs until water valves are
shut off to stop further spreading. The third mode is area instant (INST) attack
under which a large contiguous area of the network is affected. We simulated
one emergency in each horizon, while an emergency started in one horizon may
continue to affect multiple successive horizons.

6.2 Results

In CHASS scheme, the set EL contains 2400 elements, given 6 CPU frequencies,
4 modulation levels, and 100 nodes. The experiment setting of DHASS is given

248 B. Zhang, R. Simon, and H. Aydin

in [20]. We evaluated the performance of our algorithms under normal and all
three emergency modes. We also varied emergency workload levels.

In Fig. 1a-2b, we compared different schemes in term of the achieved Γmin,
while assuming non-aggregating applications. We fix the emergency level w at
3.0 which means the emergency workload is three times the normal workload. In
normal mode (Fig. 1a), the Γmin value can be seen to vary semi-repetitively, i.e.
though it stays close to full capacity at most time, however drops down twice in
every horizon (24 epochs). This is because the workload and energy demand in
normal mode is relatively low, such that the energy level is dominantly affected
by the amount of harvested water energy which varies in repetitive pattern.
However in Fig. 1b-2b, the significantly increased workload demand turns to have
a dominant effect on energy level, therefore one emergency in each horizon leads
to one drop of Γmin in each horizon. This observation demonstrates the effects
of harvested energy and workload demand over energy level when operating in
different work modes.

As seen from all above figures, in normal and all emergency modes, the CHASS
scheme achieves the highest Γmin, followed by DHASS with slightly lower Γmin.
In normal mode (Fig. 1a), NPM scheme is able to support Γmin close to full
capacity, this is because the harvested energy is much larger than energy de-
mand in normal mode which keeps the energy storage at high level. However, as
workload demand increases in emergency mode (Fig. 1b-2b), the performance of
NPM drops dramatically: its achieved Γmin drops to zero after the 61th epoch in
all emergency modes. This implies that at least one node in the network fails to
maintain non-empty energy storage and is forced to stop operation. The failure
of these nodes will cause service interruption to the entire data collection applica-
tion during the rest of the epochs. Such lasting service interruption is apparently
unacceptable to the mission-critical applications. On the other hand, both HASS
approaches achieve much higher Γmin than NPM. In fact, CHASS and DHASS
never drop to zero in RAND and SPRD modes, and only becomes zero during

a. Normal mode b. RAND mode

Fig. 1. Min. energy level Γmin

(Joules)min
1100

1000

900
NPM

800 CHASS

700 DHASS

Ti

600

Time
(epoch
number)

500

1 21 41 61 81 101 121 141 161 181

900

1000 (Joules)min

700

800

600

700 NPM

400

500 CHASS

300
DHASS

100

200

Time
0

1 21 41 61 81 101 121 141 161 181

Time
(epoch
number)

Energy Management for Time-Critical Energy Harvesting WSNs 249

a. SPRD mode b. INST mode

Fig. 2. Min. energy level Γmin

the last ten epochs in INST mode. This is because by using HASS approaches,
the harvesting-rich nodes run at faster speeds to allow the harvesting-poor nodes
to slow down, given tight end-to-end latency constraint. The reduced speeds al-
low the poor nodes to maintain a higher energy storage level, hence enhance the
system’s capacity to deal with emergencies. Although under extremely intensive
emergency, zero Γmin is inevitable even using the HASS approaches, it never-
theless demonstrates the importance of in-network data aggregation with regard
to energy efficiency.

Another observation from our results is that DHASS closely matches the per-
formance of CHASS in term of the value of Γmin. In normal mode (Fig. 1a), the
achieved Γmin of CHASS and DHASS almost overlap. In emergency modes, their
performance difference enlarges slightly due to increased influence of workload
demands over energy level. This observation indicates that DHASS scheme can
achieve near-optimal performance. Also, we observed that DHASS occasionally
achieves higher performance than CHASS, e.g. between the 1st and 21st epoch in
Fig. 2b, this is due to the energy overheads caused by packet collisions and re-
transmissions.

Table 1. Percent of depleted nodes: NPM

w 1 1.5 2.0 2.5 3.0
RAND 0% 0% 7% 10% 10%
SPRD 0% 0% 6% 9% 9%
INST 0% 0% 7% 10% 16%

We then conducted a stress test over the system while using different schemes.
That is, we raise the intensity of emergency by increasing the value of w from
1.5 to 3.0 with an increment of 0.5. The aim of this stress test is to evaluate the
resilience of different schemes to various emergency intensities. We measure the

800

900 (Joules)min

700

800

500

600 NPM

400

500
CHASS

200

300 DHASS

100

200

Time
0

1 21 41 61 81 101 121 141 161 181

Time
(epoch
number)

800

900 (Joules)min

700

800

500

600 NPM

400

500
CHASS

DHASS

200

300
DHASS

100

200

Ti
0

1 21 41 61 81 101 121 141 161 181

Time
(epoch
number)

250 B. Zhang, R. Simon, and H. Aydin

system resilience to emergency in term of the percentage of nodes that ran out
of energy at the epoch which has the lowest Γmin among all 192 epochs. The
smaller the percentage of depleted nodes under the same emergency intensity,
the higher resilience supported by a scheme compared to others. Table 1 gives
the percentage of depleted nodes in all three emergency modes under various
emergency intensities, using NPM scheme. As seen from Table 1, as emergency
intensity increases, the percentage of depleted nodes increases noticeably in all
modes when using NPM, which implying the low resilience of the harvesting-
unaware NPM scheme to emergency situations. While using both CHASS and
DHASS, the same increase in emergency intensity depletes almost no node in
the network, except for the scenario when operating in INST mode with a in-
tensity level w = 3.0. The results of the stress test demonstrates the benefit of
our harvesting-aware approaches in mitigating the impact of emergencies over
the system. We then repeated the same set of experiments above for aggregating
applications, the results can be found in [20]. Due to in-network data aggrega-
tion, the network traffic pattern and workload demands across nodes are quite
different to non-aggregating case, hence it would be very interesting to evaluate
our solutions for this type of applications.

7 Conclusion

This paper presented an epoch-based approach for energy management in perfor-
mance constrained WSNs that utilizing energy harvesting combined with DVS
and DMS. We adjust radio modulation levels and CPU frequencies in order to
satisfy performance requirement, while maximizing the minimum energy reserve
over any node in the network. Through this objective, we ensure highly resilient
performance under both normal and emergency situations. Through extensive
simulations we demonstrated significant performance improvement by using both
our solutions over a baseline scheme.

References

1. Gnawali, O., Fonseca, R., Jamieson, K., Moss, D., Levis, P.: Collection tree proto-
col. In: Proceedings of the 7th ACM Conference on Embedded Networked Sensor
Systems, SenSys 2009, Berkeley, California, November 4-6, pp. 1–14. ACM, New
York (2009)

2. Aydin, H., Melhem, R., Mosse, D., Alvarez, P.M.: Power-aware Scheduling for
Periodic Real-time Tasks. IEEE Transactions on Computers 53(5), 584–600 (2004)

3. Texas Instrument. CC2420 Datasheet,
http://docs.tinyos.net/index.php/CC2420

4. Marvell Technology, Xscale PXA27x Datasheet,
http://www.intel.com/design/intelxscale

5. Gu, Y., Zhu, T., He, T.: ESC: Energy Synchronized Communication in Sustainable
Sensor Networks. In: The 17th International Conference on Network Protocols,
Princeton, NJ (October 2009)

http://docs.tinyos.net/index.php/CC2420
http://www.intel.com/design/intelxscale

Energy Management for Time-Critical Energy Harvesting WSNs 251

6. Kansal, A., Hsu, J., Zahedi, S., Srivastava, M.B.: Power management in energy
harvesting sensor networks. ACM Trans. Embed. Comput. Syst. 6(4), 32 (2007)

7. Kumar, G.S.A., Manimaran, G., Wang, Z.: End-to-End Energy Management in
Networked Real-Time Embedded Systems. IEEE Transactions on Parallel and Dis-
tributed Systems, 1498–1510 (November 2008)

8. Liu, S., Qiu, Q., Wu, Q.: Energy aware dynamic voltage and frequency selection
for real-time systems with energy harvesting. In: Proceedings of the Conference on
Design, Automation and Test in Europe, DATE 2008, Munich, Germany, March
10-14, pp. 236–241. ACM, New York (2008)

9. EPANET 2.0. Water supply and water resources. US EPA (2010)
10. Moser, C., Thiele, L., Benini, L., Brunelli, D.: Real-Time Scheduling with Regen-

erative Energy. In: Proceedings of the 18th Euromicro Conference on Real-Time
Systems, ECRTS, July 5-7, pp. 261–270. IEEE Computer Society, Washington
(2006)

11. Moser, C., Thiele, L., Brunelli, D., Benini, L.: Robust and low complexity rate
control for solar powered sensors. In: Proceedings of the Conference on Design,
Automation and Test in Europe, DATE 2008, Munich, Germany, March 10-14, pp.
230–235. ACM, New York (2008)

12. Noh, D.K., Wang, L., Yang, Y., Le, H.K., Abdelzaher, T.: Minimum Variance
Energy Allocation for a Solar-Powered Sensor System. In: Krishnamachari, B.,
Suri, S., Heinzelman, W., Mitra, U. (eds.) DCOSS 2009. LNCS, vol. 5516, pp.
44–57. Springer, Heidelberg (2009)

13. Madden, S., Franklin, M.J., Hellerstein, J.M., Hong, W.: TAG: a Tiny AGgregation
service for ad-hoc sensor networks. SIGOPS Oper. Syst. Rev. 36, 131–146 (2002)

14. Shah, P., Shaikh, T.H., Ghan, K.P., Shilaskar, S.N.: Power Management Using
ZigBee Wireless Sensor Network. In: Proceedings of the 2008 First International
Conference on Emerging Trends in Engineering and Technology, ICETET, July
16-18, pp. 242–245. IEEE Computer Society, Washington (2008)

15. Pitchford, et al.: Inventors, Systems and methods for generating power through
the flow of water, US Patent 7,605,485 (issued October 20, 2009)

16. Crossbow Technology. iMote2 Datasheet,
http://docs.tinyos.net/index.php/Imote2

17. Yeh, C., Fan, Z., Gao, R.X.: Energy-aware data acquisition in wireless sensor
networks. In: IEEE Instrumentation and Measurement Technology Conference
(2007)

18. Yu, Y., Krishnamachari, B., Prasanna, V.: Energy-latency tradeoffs for data gath-
ering in wireless sensor networks. In: IEEE Infocom (2004)

19. Zamora, N.H., Kao, J., Marculescu, R.: Distributed power-management techniques
for wireless network video systems. In: Proceedings of the Conference on Design,
Automation and Test in Europe, Design, Automation, and Test in Europe. EDA
Consortium, San Jose, CA, Nice, France, April 16-20, pp. 564–569 (2007)

20. Zhang, B., Simon, R., Aydin, H.: Energy management for time-critical energy
harvesting wireless sensor networks,
http://cs.gmu.edu/~simon/tr-2010-ehwsn.pdf

21. Zhang, B., Simon, R., Aydin, H.: Joint Voltage and Modulation Scaling for Energy
Harvesting Sensor Networks. In: International Workshop on Energy Aware Design
and Analysis of Cyber Physical Systems (WEA-CPS), Stockholm, Sweden (April
2010), http://cs.gmu.edu/~simon/weacps10.pdf

http://docs.tinyos.net/index.php/Imote2
http://cs.gmu.edu/~simon/tr-2010-ehwsn.pdf
http://cs.gmu.edu/~simon/weacps10.pdf

Stably Decidable Graph Languages by Mediated
Population Protocols�,��

Ioannis Chatzigiannakis1,2, Othon Michail1,2, and Paul G. Spirakis1,2

1 Research Academic Computer Technology Institute (RACTI)
2 Computer Engineering and Informatics Department (CEID), University of Patras,

26500, Patras, Greece
{ichatz,michailo,spirakis}@cti.gr

Abstract. We work on an extension of the Population Protocol model
of Angluin et al. that allows edges of the communication graph, G, to
have states that belong to a constant size set. In this extension, the so
called Mediated Population Protocol model (MPP), both uniformity and
anonymity are preserved. We study here a simplified version of MPP in
order to capture MPP’s ability to stably compute graph properties. To
understand properties of the communication graph is an important step
in almost any distributed system. We prove that any graph property is
not computable if we allow disconnected communication graphs. As a
result, we focus on studying (at least) weakly connected communication
graphs only and give several examples of computable properties in this
case. To do so, we also prove that the class of computable properties is
closed under complement, union and intersection operations. Node and
edge parity, bounded out-degree by a constant, existence of a node with
more incoming than outgoing neighbors, and existence of some directed
path of length at least k = O(1) are some examples of properties whose
computability is proven. Finally, we prove the existence of symmetry in
two specific communication graphs and, by exploiting this, we prove that
there exists no protocol, whose states eventually stabilize, to determine
whether G contains some directed cycle of length 2.

1 Introduction

Most recent advances in microprocessor, wireless communication and sensor/act-
uator-technologies envision a whole new era of computing, popularly referred to
as pervasive computing. Autonomous, ad-hoc networked, wirelessly communi-
cating and spontaneously interacting computing devices of small size appearing
in great number, and embedded into environments, appliances and objects of ev-
eryday use will deliver services adapted to the person, the time, the place, or the
context of their use. The nature and appearance of devices will change to be hid-
den in the fabric of everyday life and will be augmenting everyday environments
to form a pervasive computing landscape.
� This work has been partially supported by the ICT Programme of the European

Union under contract number ICT-2008-215270 (FRONTS).
�� A preliminary brief version of this work has appeared in [12].

S. Dolev et al. (Eds.): SSS 2010, LNCS 6366, pp. 252–266, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Stably Decidable Graph Languages by Mediated Population Protocols 253

In a seminal paper [2], Angluin et al. introduced the notion of a computation
by a population to model such systems in which individual agents are extremely
limited and can be represented as finite-state machines. In their model, finite-
state, and complex behavior of the system as a whole emerges from simple rules
governing pairwise interaction of the agents. The computation is carried out by
a collection of agents, each of which receives a piece of the input. These agents
move around and information can be exchanged between two agents whenever
they come sufficiently close to each other. The most important innovations of
the model are inarguably the constant memory constraint imposed to the agents
and the nondeterminism inherent to the interaction pattern. These assumptions
provide us with a concrete and realistic model for future systems.

A population protocol A consists of finite input and output alphabets X and Y ,
a finite set of states Q, an input function I : X → Q mapping inputs to states, an
output function O : Q → Y mapping states to outputs, and a transition function
δ : Q × Q → Q × Q. The model assumes a population of n ≡ |V | agents and a
protocol runs on a (simple) directed communication graph G = (V,E). An agent
has a memory of constant size (i.e., O(1) bits) and a control unit that updates
the agent states according to the interactions taking place; the input and output
of the agents may represent a sensor and/or an actuator. Each protocol has a
constant-size description, i.e., independent of n, that can be stored in each agent
of the population. This gives to population protocols two important properties:
uniformity and anonymity; the transition function treats all agents in the same
way and there is no room in the state of an agent to store a unique identifier.

The initial goal of the model was to study the computational limitations of
cooperative systems consisting of many limited devices (agents), imposed to pas-
sive (but fair) communication by some scheduler. Much work showed that there
exists an exact characterization of the computable predicates: they are precisely
the semilinear predicates or equivalently the predicates definable by first-order
logical formulas in Presburger arithmetic [2,3,5,6,7]. Some recent work has con-
centrated on performance, supported by a random scheduling assumption [4].
[10] proposed a generic definition of probabilistic schedulers and a collection
of new fair schedulers, and revealed the need for the protocols to adapt when
natural modifications of the mobility pattern occur. [9,14] considered a huge
population hypothesis (population going to infinity), and studied the dynam-
ics, stability and computational power of probabilistic population protocols by
exploiting the tools of continuous nonlinear dynamics. In [9] it was also proven
that there is a strong relationship between classical finite population protocols
and models given by ordinary differential equations.

There exist a few extensions of the basic model in the relevant literature to
more accurately reflect the requirements of practical systems. In [1] they stud-
ied what properties of restricted communication graphs are stably computable,
gave protocols for some of them, and proposed the model extension with sta-
bilizing inputs. The results of [5] show that again the semilinear predicates are
all that can be computed by this model. Finally, some works incorporated agent

254 I. Chatzigiannakis, O. Michail, and P.G. Spirakis

failures [15] and gave to some agents slightly increased computational power [8]
(heterogeneous systems). For an excellent introduction see [7].

Very recently, a natural variation of the basic model was proposed [13], where
the interactions of the agents can be characterized by a state of constant size.
Essentially the model is augmented to include a Mediator, i.e., a global storage
capable of storing very limited information for each communication link (the
state of the link). When pairs of agents interact, they can read and update the
state of the link. Interestignly, although anonymity and uniformity are preserved,
the presence of a mediator allows us to obtain significant more computational
power ; we can build systems with the ability of computing subgraphs and solve
optimization problems concerning the communication graph. In [13] it was shown
that the new model is capable of computing non-semilinear predicates and that
any stably computable predicate belongs to NSPACE(m), where m denotes
the number of edges of the interaction graph. The latter inclusion was proven in
[11] to hold with equality. Finally, [12] constitutes a preliminary brief version of
this work.

In this work (as [1] did for population protocols), we consider a simplification
of the above model in order to explore one of its most important capabilities:
The computability of graph properties. To understand properties of the com-
munication graph is an important step in almost any distributed system. In
particular, we temporarily disregard the input notion of the population and as-
sume that all agents simply start from a unique initial state (and the same holds
for the edges). We are interested in protocols of the new model, that we call
the GDMPP model, that when executed on any communication graph G, after
a finite number of steps stabilize to a configuration where all agents give 1 as
output if G belongs to a graph language L, and 0 otherwise. This is motivated
by the idea of having protocols that eventually accept all communication graphs
(on which they run) that satisfy a specific property, and eventually reject all
remaining communication graphs. The reason for proposing a simplified model
is that it enables us to study what graph properties are stably computable by
the MPP model without the need to keep in mind its remaining parameters.

2 Our Results - Roadmap

In Section 3, we give a formal definition of the GDMPP model. In Section 4,
we focus on weakly connected communication graphs. We prove that the class
of computable graph properties is closed under complement, union, and inter-
section operations. Node and edge parity, bounded out-degree by a constant,
existence of a node with more incoming than outgoing neighbors, and existence
of some directed path of length at least k = O(1) are some examples of proper-
ties whose computability is proven. Moreover, the existence of symmetry in two
specific communication graphs is revealed and is exploited to prove that there
exists no GDMPP, whose states eventually stabilize, to compute the graph lan-
guage 2C, consisting of all weakly connected communication graphs that contain
some 2-cycle. We leave as an interesting open problem whether 2C isn’t com-
putable in the general case. In Section 5, we focus on the universe of all possible

Stably Decidable Graph Languages by Mediated Population Protocols 255

communication graphs, containing also the disconnected ones. In this case (see
Theorem 10) we prove that any nontrivial graph language (we exclude both the
empty language and its complement) is not computable by the GDMPP model.
As an interesting corollary we get that GDMPP cannot compute connectivity
(Corollary 1). Finally, in Section 6 we discuss some future research directions.

3 The Model

A Graph Decision Mediated Population Protocol (GDMPP) A consists of a bi-
nary output alphabet Y = {0, 1}, a finite set of agent states Q, an output function
O : Q → Y mapping agent states to outputs, a finite set of edge states S, and a
transition function δ : Q× Q× S → Q× Q× S. If δ(a, b, s) = (a′, b′, s′) we call
(a, b, s) → (a′, b′, s′) a transition, and we define δ1(a, b, s) = a′, δ2(a, b, s) = b′

and δ3(a, b, s) = s′.
We assume that all agents are initially in an initial agent state q0 ∈ Q and all

edges in an initial edge state s0 ∈ S. A graph universe (or graph family) is any
set of communication graphs. We denote by H the graph universe consisting of all
possible communication graphs of any finite number of nodes greater or equal to
2 (we do not allow the empty graph, the graph with a unique node and we neither
allow infinite graphs) and by G the subset of H containing the weakly connected
ones. All the following definitions hold w.r.t. some fixed graph universe U . A graph
language L is a subset of U containing communication graphs that possibly share
some common property., e.g. L = {G ∈ U | G contains a directed hamiltonian
path}. A graph language L is said to be nontrivial if L
= ∅ and L
= H.

A GDMPP runs on a graph G = (V,E), where V is a population of |V | = n
agents and E is an irreflexive binary relation on V . The graph on which the
protocol runs is considered as the input graph of the protocol. The input graph
of a GDMPP may be any G ∈ U .

A network configuration (or simply configuration) is a mapping C : V ∪E →
Q ∪ S specifying the agent state of each agent in the population and the edge
state of each edge in the communication graph. Let C and C ′ be network con-
figurations, and let u, υ be distinct agents. We say that C goes to C ′ via en-
counter e = (u, υ), denoted C

e→ C′, if C′(u) = δ1(C(u), C(υ), C(e)), C ′(υ) =
δ2(C(u), C(υ), C(e)), C ′(e) = δ3(C(u), C(υ), C(e)), and C ′(z) = C(z) for all z ∈
(V −{u, υ})∪(E−{e}). We say that C can go to C′ in one step, denoted C → C′,
if C

e→ C′ for some encounter e ∈ E. We write C
∗→ C′ if there is a sequence of

configurations C = C0, C1, . . . , Ct = C′, such that Ci → Ci+1 for all i, 0 ≤ i < t,
in which case we say that C′ is reachable from C.

An execution is a finite or infinite sequence of network configurations C0, C1,
C2, . . ., where C0 is an initial configuration and Ci → Ci+1, for all i ≥ 0. An
infinite execution is fair if for every pair of network configurations C and C′

such that C → C′, if C occurs infinitely often in the execution, then so does C′.
A computation is an infinite fair execution.

At any point during the execution of a GDMPP, each agent’s state determines
its output at that time. The output of any agent u under configuration C is

256 I. Chatzigiannakis, O. Michail, and P.G. Spirakis

O(C(u)). Note also that the code of any GDMPP is of constant size (independent
of the population size) and, thus, can be stored in each agent (device) of the
population.

Definition 1. Let L be a graph language consisting of all G ∈ U for which, in
any computation of a GDMPP A on G, all agents eventually output 1. Then L
is the language stably recognized by A. A graph language is said to be stably
recognizable by the GDMPP model (also called GDMPP -recognizable) if some
GDMPP stably recognizes it.

Thus, any protocol stably recognizes the graph language consisting of those
graphs on which the protocol always answers “accept”, i.e. eventually all agents
output the value 1 (possibly the empty language).

Definition 2. We say that a GDMPP A stably decides a graph language L ⊆ U
(or equivalently a predicate pL : U → {0, 1} defined as pL(G) = 1 iff G ∈ L) if
for any G ∈ U and any computation of A on G, all agents eventually output 1
if G ∈ L and all agents eventually output 0 if G /∈ L. A graph language is said
to be stably decidable by the GDMPP model (also called GDMPP -decidable)
if some GDMPP A stably decides it.

A GDMPP A has stabilizing states if in any computation of A, after a finite
number of interactions, the states of all agents stop changing.

In some cases, a protocol, instead of stably deciding a language L, may provide
some different sort of guarantee. For example, whenever runs on some G ∈ L,
it may forever remain to configurations where at least one agent is in state a,
and when G′ /∈ L no agent will remain in state a. To formalize this, we say
that a GDMPP A guarantees t : Q∗ → {0, 1} w.r.t. L ⊆ U if, for any G ∈ U ,
any computation of A on G eventually reaches a configuration C, s.t. for all C ′,
where C

∗→ C′, it holds that t(C′) = t(C) = 1 if G ∈ L and t(C′) = t(C) = 0,
otherwise.1

4 Weakly Connected Graphs

In this section, we study an interesting case in which the graph universe is
not allowed to contain disconnected graphs. Thus, here the graph universe is
G and, thus, a graph language can only be a subset of G. The main reason
for selecting this specific universe for devising our protocols is that, if we also
allow disconnected graphs, then, as we shall see, it can be proven that no graph
language is stably decidable.

4.1 Decidable Graph Languages

Our goal is to show the stable decidability of some interesting graph languages by
providing protocols for them and proving their correctness. To begin, we prove
some closure results to obtain a useful tool for our purpose.
1 By assuming an ordering on V we can define configurations as strings from Q∗.

Stably Decidable Graph Languages by Mediated Population Protocols 257

Theorem 1. The class of stably decidable graph languages is closed under com-
plement, union and intersection operations.

Proof. We show that for any stably decidable graph languages L1 and L2, L3 =
L1 ∪L2 is also stably decidable. The remaining proofs are similar, so we ommit
them. Let A1 and A2 be GDMPPs that stably decide L1 and L2, respectively
(we know their existence). We let the two protocols operate in parallel, i.e. we
devise a new protocol A3 whose agent and edge states consist of two components,
one for protocol A1 and one for A2. Let O1 and O2 be the output maps of the
two protocols. We define the output map O3 of A3 as O3(q, q′) = 1 iff at least
one of O1(q) and O2(q′) equals to 1, for all q ∈ QA1 and q′ ∈ QA2 . If G ∈ L3
then at least one of the two protocols has eventually all its agent components
giving output 1, thus A3 correctly answers “accept”, while if G /∈ L3 then both
protocols have eventually all their agent components giving output 0, thus A3
correctly answers “reject”. We conclude that A3 stably decides L3 which proves
that L3 is stably decidable. ��

In some cases it is not easy to devise a protocol that respects the predicate
output convention (the predicate output convention was defined in [2] and simply
requires all agents to eventually agree on the correct output value). In such cases,
we can use the following variation of the Composition Theorem (Theorem 6) of
[13] that facilitates the proof of existence of GDMPP protocols that stably decide
a language.

Theorem 2. If there exists a GDMPP A with stabilizing states that w.r.t. to a
language L guarantees a semilinear predicate, then L is GDMPP-decidable.

Proof. Immediate from the proof of the Theorem 6 of [13]. A can be composed
with a provably existing GDMPP B whose stabilizing inputs are A’s agent states
to give a new GDMPP C that stably decides L w.r.t. the predicate output con-
vention. Note that B is in fact a GDMPP, since its stabilizing inputs are not real
inputs (GDMPPs do not have inputs). It simply updates its state components
by taking also into account the eventually stabilizing state components of A.
Thus, their composition, C, is also a GDMPP.

Theorem 3 (Node Parity). The graph languages Neven = {G ∈ G | |V (G)|
is even} and Nodd = Neven are satbly decidable.

Proof. Assume that the initial agent state is 1. Then there is a protocol in [2]
that stably decides Neven in the case where G is complete. But, according to The-
orem 4 in page 295 of [2], there must exist another protocol that stably decides
Neven in the general case, i.e. in any graph G ∈ G, by simply swapping states to
ensure that any two states eventually meet. Thus, L is stably decidable by the
population protocol model that does not use inputs and whose output alphabet
is {0, 1}, and since this model is a special case of the GDMPP model, Neven is
GDMPP-decidable. Moreover, since the class of GDMPP-decidable graph lan-
guages is closed under complement (see Theorem 1), it follows that Nodd = Neven

is also GDMPP- decidable. ��

258 I. Chatzigiannakis, O. Michail, and P.G. Spirakis

Theorem 4 (Edge Parity). The graph languages Eeven = {G ∈ G | |E(G)| is
even} and Eodd = Eeven are stably decidable.

Proof. By exploiting the closure under complement, it suffices to prove that
Eeven is stably decidable by presenting a GDMPP that stably decides it. The
initial agent state is (0, 0) consisting of two components, where the first one is
the data bit and the second the live bit following the idea of the parity protocol
of [2]. An agent with live bit 0 is said to be sleeping and an agent with live
bit equal to 1 is said to be awake. The initial edge state is 1, which similarly
means that all edges are initially awake. We divide the possible interactions in
the following four groups (we also present their effect):

1. Both agents are sleeping and the edge is awake:
– The initiator wakes up, both agents update their data bit to 1, and the

edge becomes sleeping.
2. Both agents are sleeping and the edge is sleeping:

– Nothing happens.
3. One agent is awake and the other is sleeping:

– The sleeping agent becomes awake and the awake sleeping. Both set their
data bits to the modulo 2 sum of the data bit of the agent that was awake
before the interaction and the edge’s state, and if the edge was awake
becomes sleeping.

4. Both agents are awake:
– The responder becomes sleeping, they both set their data bits to the

modulo 2 sum of their data bits and the edge’s state, and if the edge was
awake becomes sleeping.

It is easy to see that the initial modulo 2 sum of the edge bits (initially, they
are all equal to 1) is preserved and is always equal to the modulo 2 sum of the
bits of the awake agents and the awake edges. The first interaction creates the
first awake agent and from that time there is always at least one awake agent
and eventually remains only one. Moreover, all edges eventually become sleeping
which simply means that eventually the one remaining awake agent contains the
modulo 2 sum of the initial edge bits which is 0 iff the number of edges is
even. All the other agents are sleeping, which means that they copy the data bit
of the awake agent, thus eventually they all contain the correct data bit. The
output map is defined as O(0, ·) = 1 (meaning even edge parity) and O(1, ·) = 0
(meaning odd edge parity). ��

Theorem 5 (Constant Neighbors - Some Node). The graph language N out
k

= {G ∈ G | G has some node with at least k outgoing neighbors} is stably
decidable for any k = O(1) (the same holds for N

out

k).

Proof. Initially all agents are in q0 and all edges in 0. The set of agent states
is Q = {q0, . . . , qk} the set of edge states is binary and the output function is
defined as O(qk) = 1 and O(qi) = 0 for all i ∈ {0, . . . , k−1}. We now describe the
transition function. In any interaction through an edge in state 0, the initiator

Stably Decidable Graph Languages by Mediated Population Protocols 259

visits an unvisited outgoing edge, so it marks it by updating the edge’s state
to 1 and increases its own state index by one, e.g. initially (q0, q0, 0) yields
(q1, q0, 1), and, generally, (qi, qj , 0) → (qi+1, qj , 1), if i + 1 < k and j < k, and
(qi, qj , 0) → (qk, qk, 1), otherwise. Whenever two agents meet through a marked
edge they do nothing, except for the case where only one of them is in the special
alert state qk. If the latter holds, then both go to the alert state, since in this
case the protocol has located an agent with at least k outgoing neighbors. To
conclude, all agents count their outgoing edges and initially output 0. Iff one
of them marks its k-th outgoing edge, both end points of that edge go to an
alert state qk that propagates to the whole population and whose output is 1,
indicating that G belongs to Nout

k . ��

Note that N
out

k contains all graphs that have no node with at least k = O(1)
outgoing neighbors, in other words, all nodes have fewer than k outgoing edges,
which is simply the well-known bounded by k out-degree predicate. The same
statement for population protocols appears as Lemma 3 in [1].

Theorem 6 (Constant Neighbors - All Nodes). The graph language Kout
k =

{G ∈ G | Any node in G has at least k outgoing neighbors} is stably decidable
for any k = O(1) (the same holds for K

out

k).

Proof. Note, first of all, that another way to think of Kout
k is Kout

k = {G ∈ G
| No node in G has less than k outgoing neighbors}, for some k = O(1). The
protocol we describe is similar to the one described in the proof of Theorem 5.
The only difference is that when an agent counts its k-th outgoing neighbor as
the initiator of an interaction, it goes to the special alert state qk, but the alert
state is not propagated (e.g. the responder of this interaction keeps its state). It
follows that eventually any node that has marked at least k outgoing edges will
be in the alert state, while any other node that has less than k outgoing edges
will be in some state qi, where i < k. Clearly the protocol has stabilizing states
and provides the following semilinear guarantee:

– If G /∈ Kout
k then at least one agent remains in some state qi, where i < k.

– If G ∈ Kout
k no such state remains.

Thus, Theorem 2 applies, implying that there exists some GDMPP stably de-
ciding Kout

k w.r.t. the predicate output convention. Thus, both Kout
k and K

out

k

are stably decidable and the proof is complete. ��

Theorem 7 (Compare Incoming and Outgoing Neighbors). The graph
language Mout = {G ∈ G | G has some node with more outgoing than incoming
neighbors} is stably decidable (the same holds for Mout).

Proof. Consider the following protocol: Initially all agents are in state 0 which
is the equality state. An agent can also be in state 1 which is the more-outgoing
state. Initially all edges are in state s0 and S contains also o, i and b, where state
o means that the edge has been used by the protocol only as outgoing so far, i

260 I. Chatzigiannakis, O. Michail, and P.G. Spirakis

means only as incoming and b is for “both”. Any agent always remembers if it has
seen so far more outgoing edges or the same number of incoming and outgoing
edges. So, if it is in equality state and is the initiator in an interaction where the
edge has not been used at all (state s0) or has been used only as an incoming
edge (state i), which simply means that only the responder has counted it, then
the agent goes to the more-outgoing state and updates the edge accordingly to
remember that it has counted it. Similarly, if an agent in the more-outgoing state
is the responder of an interaction and the edge is in one of the states s0 or o,
then it goes to the equality state and updates the edge accordingly. If we view
the interaction from the edge’s perspective, then we distinguish the following
cases:

1. The edge is in state s0. Both the initiator and the responder can use it. If
only the initiator uses it (both initiator and responder in equality state),
then the edge goes to state o. If only the responder uses it (both in more-
outgoing state) then the edge goes to state i. If both use it (initiator in
equality and responder in more-outgoing) then it goes to state b. If no one
uses it it remains in s0.

2. The edge is in state o. The initiator cannot use it, since it has already counted
it. If the responder is in more-outgoing state, then it counts it, thus the edge
goes to state b. If, instead, it is in the equality state, the edge remains in
state o.

3. The edge is in state i. The responder cannot use it. If the initiator is in
equality state, then it counts it, thus the edge goes to state b. If, instead, it
is in the more-outgoing state, the edge remains in state i.

4. The edge is in state b. Both the initiator and the responder have used it,
thus nothing happens.

The equality state outputs 0 and the more-outgoing state outputs 1. If there
exists a node with more outgoing edges, then it will eventually remain in the
more-outgoing state giving 1 as output, otherwise all nodes will eventually re-
main in equality state (although some of them may have more incoming edges),
thus giving 0 as output. Computing that at least one more-outgoing state even-
tually remains is semilinear and the protocol, obviously, has stabilizing states,
thus Theorem 2 applies and we conclude that Mout is stably decidable. Closure
under complement implies that Mout is also stably decidable. ��

Remark 1. By symmetry, the corresponding languages N in
k , N

in

k , Kin
k and K

in

k

concerning incoming neighbors, Min = {G ∈ G | G has some node with more
incoming than outgoing neighbors} and M in are also stably decidable.

Theorem 8 (Directed Path of Constant Length). The graph language
Pk = {G ∈ G | G has at least one directed path of at least k edges} is stably
decidable for any k = O(1) (the same holds for P k).

Proof. If k = 1 the protocol that stably decides P1 is trivial, since it accepts iff
at least one interaction happens (in fact it can always accept since all graphs

Stably Decidable Graph Languages by Mediated Population Protocols 261

have at least two nodes and they are weakly connected, and thus P1 = G). We
give a general protocol, DirPath (Protocol 1), that stably decides Pk for any
constant k > 1.

Protocol 1. DirPath

1: Q = {q0, q1, 1, . . . , k}, S = {0, 1},
2: O(k) = 1, O(q) = 0, for all q ∈ Q − {k},
3: δ:

(q0, q0, 0) → (q1, 1, 1)

(q1, x, 1) → (x − 1, q0, 0), if x ≥ 2

→ (q0, q0, 0), if x = 1

(x, q0, 0) → (q1, x + 1, 1), if x + 1 < k

→ (k, k, 0), if x + 1 = k

(k, ·, ·) → (k, k, ·)
(·, k, ·) → (k, k, ·)

Intuitively, the protocol expands non-communicating active paths (they can
interact but the corresponding transitions do nothing, that’s why they are not
appearing in δ). The head of each path counts its length. If the length of an active
path ever becomes equal to k, then a state giving 1 as output is propagated. Note
that, to avoid getting stuck, the protocol keeps backtracking and even totally
releasing the active paths. Fairness condition ensures that if a path of length at
least k exists, then DirPath will eventually find it. ��

4.2 Non Stably Decidable Languages

Now we are about to prove that a specific graph language cannot be stably
decided by GDMPPs with stabilizing states. First we state and prove a useful
lemma.

Lemma 1. For any GDMPP A and any computation (infinite fair execution)
C0, C1, C2, . . . of A on G (Figure 1(a)) there exists a computation C′

0, C
′
1, C

′
2, . . . ,

C′
i, . . . of A on G′ (Figure 1(b)) s.t.

Ci(υ1) = C′
2i(u1) = C′

2i(u3)
Ci(υ2) = C′

2i(u2) = C′
2i(u4)

Ci(e1) = C′
2i(t1) = C′

2i(t3)
Ci(e2) = C′

2i(t2) = C′
2i(t4)

for any finite i ≥ 0.

262 I. Chatzigiannakis, O. Michail, and P.G. Spirakis

Proof. The proof is by induction on i. We assume that initially all nodes are in
q0 and all edges in s0 (initial states). So the base case (for i = 0) holds trivially.
Now we make the following assumption: Whenever the scheduler of A on G (call
it S1) selects the edge e1 we assume that the scheduler, S2, of A on G′ takes two
steps; it first selects t1 and then selects t3. Whenever S1 selects the edge e2, S2

first selects t2 and then t4. Formally, if Ci−1
e1→ Ci then C′

2(i−1)
t1→ C′

2i−1
t3→ C′

2i

and if Ci−1
e2→ Ci then C′

2(i−1)
t2→ C′

2i−1
t4→ C′

2i for every finite i ≥ 1. Obviously,
S2 is not a fair scheduler so to be able to talk about computation we only require
this predetermined behavior to be followed by S2 for a finite number of steps.
After this finite number of steps, S2 goes on arbitrarily but in a fair manner.

Now assume that all conditions are satisfied for some finite step i (inductive
hypothesis). We will prove that the same holds for step i + 1 to complete the
proof (inductive step). There are two cases:

1. Ci
e1→ Ci+1 (i.e. in step i + 1 S1 selects the edge e1): Then we know that S2

first selects t1 and then t3 (in its corresponding steps 2i+1 and 2i+2). That is,
its first transition is C′

2i
t1→ C′

2i+1 and its second is C′
2i+1

t3→ C′
2(i+1). But from

the inductive hypothesis we know that C′
2i(u1) = Ci(υ1), C′

2i(u2) = Ci(υ2)
and C′

2i(t1) = Ci(e1) which simply means that interaction e1 on G has
the same effect as interaction t1 on G′ (u1 has the same state as υ1, u2
as υ2 and t1 as e1). Thus, C′

2i+1(u1) = Ci+1(υ1), C′
2i+1(u2) = Ci+1(υ2)

and C′
2i+1(t1) = Ci+1(e1). Moreover, in this step t3 and both its endpoints

do not change state (since the interaction concerned t1), thus C′
2i+1(u3) =

C′
2i(u3) = Ci(υ1) (the last equation comes from the inductive hypothesis),

C′
2i+1(u4) = C′

2i(u4) = Ci(υ2) and C′
2i+1(t3) = C′

2i(t3) = Ci(e1). When in
the next step S2 selects t3, t1 and both its endpoints do not change state, thus
C′

2(i+1)(u1) = C′
2i+1(u1) = Ci+1(υ1), C′

2(i+1)(u2) = C′
2i+1(u2) = Ci+1(υ2)

and C′
2(i+1)(t1) = C′

2i+1(t1) = Ci+1(e1). Now let’s see what happens to t3
and its endpoints. Before the interaction the state of u3 is Ci(υ1), the state
of u4 is Ci(υ2) and the state of t3 is Ci(e1), which means that, in C′

2(i+1), u3

has gone to Ci+1(υ1), u4 to Ci+1(υ2) and t3 to Ci+1(e1). Finally, t2 and t4
have not participated in any of the two interactions of S2 and thus they have
maintained their states, that is C ′

2(i+1)(t2) = C′
2i(t2) = Ci(e2) = Ci+1(e2)

(the last two equations follow from the inductive hypothesis and the fact
that, in step i + 1, S1 selects e1 which means that e2 maintains its state,
respectively), and similarly C′

2(i+1)(t4) = Ci+1(e2).

2. Ci
e2→ Ci+1 (i.e. in step i + 1 S1 selects the edge e2): This case is symmetric

to the previous one.
��

Let now A be a GDMPP that stably decides the graph language 2C = {G ∈ G
| G has at least two nodes u, υ s.t. both (u, υ), (υ, u) ∈ E(G) (in other words, G
has at least one 2-cycle)}. So for any computation of A on G, after finitely many
steps, both υ1 and υ2 go to some state that outputs 1, since G ∈ 2C, and do not
change their output value in any subsequent step (call the corresponding output

Stably Decidable Graph Languages by Mediated Population Protocols 263

(a) Graph G (b) Graph G′

Fig. 1. G ∈ 2C and G′ /∈ 2C

stable configuration Ci, where i is finite). But according to Lemma 1 there exists
a computation of A on G′ that under configuration C′

2i has u1, u2, u3 and u4
giving output 1. We use this fact to prove the following impossibility result.

Theorem 9. There exists no GDMPP with stabilizing states to stably decide
the graph language 2C = {G ∈ G | G has at least two nodes u, υ s.t. both
(u, υ), (υ, u) ∈ E(G)}.

Proof. Let A be a GDMPP with stablizing states that stably decides 2C. It
follows that when A runs on G (Figure 1(a)) after a finite number of steps υ1 and
υ2 obtain two states w.l.o.g. q1 and q2, respectively, that output 1 (since A stably
decides 2C) and do not change in any subsequent step (since A has stabilizing
states). Assume that at that point e1 is in s1 and e2 in s′1. Assume also that
there exists a subset S1 = {s1, s2, . . . , sk} of S, of edge states that can be reached
by subsequent interactions of the pair (υ1, υ2) and a subset S2 = {s′1, s′2, . . . , s′l}
of S, of edge states that can be reached by subsequent interactions of the pair
(υ2, υ1), where k and l are both constants independent of n (note that S1 and
S2 are not necessarily disjoint). It follows that for all si ∈ S1, (q1, q2, si) →
(q1, q2, sj), where sj ∈ S1, and for all s′i ∈ S2, (q2, q1, s

′
i) → (q2, q1, s

′
j), where

s′j ∈ S2. In words, none of these reachable edge states can be responsible for a
change in some agent’s state. According to Lemma 1 there exists a computation
of A on G′ (Figure 1(b)) such that after a finite number of steps u1, u3 are in q1,
u2, u4 are in q2, t1, t3 are in s1 and t2, t4 are in s′1. Since A stably decides 2C, at
some subsequent finite step (after we let the protocol run in a fair manner in G′),
some agent obtains a new state q3, since if it didn’t then all agents would always
remain to states q1 and q2 that output 1 (but in G′ there is no 2-cycle and such a
decision is wrong). This must happen through some interaction of the following
two forms: (i) (q1, q2, si), where si ∈ S1 and (ii) (q2, q1, s

′
i), where s′i ∈ S2.

But this is a contradiction, since we showed earlier that no such interaction can
modify the state of any of its end points. Intuitively, if there exists some way for
A to modify one of q1 and q2 in G′ then there would also exist some way for A
to modify one of q1 and q2 in G, after the system has obtained stabilizing states
there, which is an obvious contradiction. ��

264 I. Chatzigiannakis, O. Michail, and P.G. Spirakis

5 Graphs Not Even Weakly Connected

In this section, our universe is H and, thus, a graph language can only be a subset
of H. Any disconnected graph G in H consists of (weakly or strongly connected)
components G1, G2, . . . , Gt, where t ≥ 2 (note also that any component must
have at least two nodes, to allow computation).

Lemma 2. For any nontrivial graph language L, there exists some disconnected
graph G in L where at least one component of G does not belong to L or there
exists some disconnected graph G′ in L where at least one component of G′ does
not belong to L (or both).

Proof. Let L be such a nontrivial graph language and assume that the statement
does not hold. Then for any disconnected graph in L, all of its components also
belong to L and for any disconnected graph in L, all of its components also
belong to L. There are two main cases:

1. L contains all connected graphs. But L is nontrivial which means that it
must contain at least one disconnected graph. We know that for any discon-
nected graph in L all of its connected components belong to L, but this is a
contradiction, since all connected graphs belong to L.

2. L does not contain all connected graphs. There are now two possible sub-
cases:
(a) L contains at least one connected graph (but not all). This means that

L contains also at least one connected graph. Let G′ = (V ′, E′) be a
connected graph from L and G′′ = (V ′′, E′′) be a connected graph from
L. The disjoint union of G′ and G′′, U = (V ′ ∪ V

′′
, E′ ∪E

′′
) is a discon-

nected graph consisting of two connected components, one belonging to
L and one to L. U itself must belong in one of L and L implying that all
of its components must belong to L or all to L, which is a contradiction.

(b) L contains no connected graph. Thus, since L is nontrivial, it contains
at least one disconnected graph whose connected components belong to
L. But all connected graphs belong to L which is a contradiction.

��

Theorem 10. Any nontrivial graph language L ⊂ H is not stably decidable by
the GDMPP model.

Proof Idea. The proof of the result is based on the very simple observation that
in disconnected graphs, the various components cannot communicate with each
other. Then Lemma 2 can be used to argue that a language (or its complement)
must contain at least one disconnected graph with a component not in the lan-
guage, so any protocol making some decision on the whole graph would make the
opposite decision on the component (since this component does not belong to the
language and is isolated from the other components), which is contradictory. ��

Stably Decidable Graph Languages by Mediated Population Protocols 265

Proof. Let L be such a language and assume that there exists a GDMPP AL

that stably decides it. Thus, AL has eventually all the agents of G giving output
1 if G ∈ L and all giving output 0 if G /∈ L. Moreover, the protocol AL that has
the output map of AL complemented stably decides L. Those GDMPPs (and
in fact any GDMPP) have no way to transmit data between agents of different
components when run on disconnected graphs. In fact it is trivial to see that,
when run on disconnected graphs, those protocols essentially run individually on
the different components of those graphs. This means that when, for example,
AL runs on a disconnected graph G, where G has at least two components
G1, G2, . . . , Gt, then AL runs in t different copies, one for each component, and
each such copy stably decides the membership of the corresponding component
(on which it runs on) in L. The same holds for AL. By Lemma 2 there exists at
least one disconnected graph in L with at least one component in L or at least
one disconnected graph in L with at least one component in L. If L contains
such a disconnected graph then, obviously, AL when run on this graph, call it G,
has eventually all the nodes of the component(s) in L giving 0 as output. This
is a contradiction, because G ∈ L and AL stably decides L, which means that
all agents should eventually output 1. If L contains such a disconnected graph
then the contradiction is symmetric. ��

As an immediate consequence we get the following corollary:

Corollary 1. The graph language C = {G ∈ H | G is (weakly) connected} is
not GDMPP-decidable.

Proof. C is a nontrivial graph language and Theorem 10 applies. ��

6 Future Work

Whether the graph language 2C (Theorem 9) is not stably decidable by the
GDMPP model in the general case remains an interesting open problem. If it
were, we believe that proving the undecidability of many other properties, like
kC (all graphs with at least one directed cycle of length k) and k-transivity,
would become an easy next step. Our primary focus is to eventually provide a
complete characterization of the class of stably decidable graph languages in the
weakly-connected case. Moreover, consider the variant of the GDMPP model in
which the communication graph G is always complete and an edge initialization
function ι : E → {0, 1} indicates a subgraph of G whose membership in a
language is sought. What are the stably decidable graph languages here?

Acknowledgements

We would like to thank Elias Koutsoupias for bringing to our attention the
importance of the connectivity property.

266 I. Chatzigiannakis, O. Michail, and P.G. Spirakis

References

1. Angluin, D., Aspnes, J., Chan, M., Fischer, M.J., Jiang, H., Peralta, R.: Stably com-
putable properties of network graphs. In: Proc. Distributed Computing in Sensor
Systems: 1st IEEE International Conference, pp. 63–74 (2005)

2. Angluin, D., Aspnes, J., Diamadi, Z., Fischer, M.J., Peralta, R.: Computation in
networks of passively mobile finite-state sensors. In: 23rd Annual ACM Symposium
on Principles of Distributed Computing, PODC, pp. 290–299. ACM, New York
(2004)

3. Angluin, D., Aspnes, J., Diamadi, Z., Fischer, M.J., Peralta, R.: Computation in
networks of passively mobile finite-state sensors. Distributed Computing 18(4),
235–253 (2006)

4. Angluin, D., Aspnes, J., Eisenstat, D.: Fast computation by population protocols
with a leader. Distributed Computing 21(3), 183–199 (2008)

5. Angluin, D., Aspnes, J., Eisenstat, D.: Stably computable predicates are semilinear.
In: Proc. 25th Annual ACM Symposium on Principles of Distributed Computing,
pp. 292–299 (2006)

6. Angluin, D., Aspnes, J., Eisenstat, D., Ruppert, E.: The computational power of
population protocols. Distributed Computing 20(4), 279–304 (2007)

7. Aspnes, J., Ruppert, E.: An introduction to population protocols. Bulletin of
the European Association for Theoretical Computer Science 93, 98–117 (2007);
Mavronicolas, M. (ed.): Columns: Distributed Computing

8. Beauquier, J., Clement, J., Messika, S., Rosaz, L., Rozoy, B.: Self-stabilizing count-
ing in mobile sensor networks. Technical Report 1470, LRI, Université Paris-Sud
11 (2007)

9. Bournez, O., Chassaing, P., Cohen, J., Gerin, L., Koegler, X.: On the convergence
of population protocols when population goes to infinity. Applied Mathematics and
Computation (2009) (to appear)

10. Chatzigiannakis, I., Dolev, S., Fekete, S.P., Michail, O., Spirakis, P.G.: Not all
fair probabilistic schedulers are equivalent. In: 13th International Conference on
Principles of DIstributed Systems (OPODIS), pp. 33–47 (2009)

11. Chatzigiannakis, I., Michail, O., Nikolaou, S., Pavlogiannis, A., Spirakis, P.G.: All
symmetric predicates in NSPACE(n2) are stably computable by the mediated pop-
ulation protocol model. FRONTS Technical Report FRONTS-TR-2010-17 (April
2010), http://fronts.cti.gr/aigaion/?TR=155

12. Chatzigiannakis, I., Michail, O., Spirakis, P.G.: Brief announcement: Decidable
graph languages by mediated population protocols. In: Keidar, I. (ed.) DISC 2009.
LNCS, vol. 5805, pp. 239–240. Springer, Heidelberg (2009)

13. Chatzigiannakis, I., Michail, O., Spirakis, P.G.: Mediated population protocols.
In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W.
(eds.) ICALP 2009. LNCS, vol. 5556, pp. 363–374. Springer, Heidelberg (2009)

14. Chatzigiannakis, I., Spirakis, P.G.: The dynamics of probabilistic population proto-
cols. In: Taubenfeld, G. (ed.) DISC 2008. LNCS, vol. 5218, pp. 498–499. Springer,
Heidelberg (2008)

15. Delporte-Gallet, C., Fauconnier, H., Guerraoui, R., Ruppert, E.: When birds die:
Making population protocols fault-tolerant. In: Proc. 2nd IEEE International Con-
ference on Distributed Computing in Sensor Systems, pp. 51–66 (2006)

http://fronts.cti.gr/aigaion/?TR=155

Broadcasting in Sensor Networks of Unknown
Topology in the Presence of Swamping

Evangelos Kranakis and Michel Paquette

School of Computer Science, Carleton University, Ottawa, Ontario, Canada
kranakis@scs.carleton.ca, mic.paquette@gmail.com

Abstract. In this paper, we address the problem of broadcasting in a
wireless sensor network under a novel communication model: the swamp-
ing communication model. In this model, nodes communicate only with
those nodes at distance greater than s and at most r from them. We con-
sider networks of unknown topology of diameter D, with a lower bound
α on the geometric distance between nodes and a parameter g = 1/α
(granularity). We present broadcast algorithms for networks of nodes
placed on the line and on the plane with respective time complexities
O(D/l + g2) and O(Dg/l + g4), where l ∈ Θ(max{(1 − s), α}).

Keywords: sensor network, broadcasting, unknown topology, faults,
swamping.

1 Introduction

One of the known problems commonly faced by radio transceivers is that of
swamping (cf., e.g., [1,2,10]). When two wireless nodes are at close proximity,
their receivers cannot adapt to strong incoming signals; communication becomes
difficult, even impossible. In contrast to traditional radio communication mod-
els, nodes at close proximity are not able to communicate directly; as many
as Θ(D) intermediate nodes may be needed to relay their messages. Therefore,
communication between nearby nodes can be very time intensive in the presence
of swamping.

In this paper, we study analytically the problem of broadcasting in networks
where nodes may be suffering from swamping. We propose broadcasting algo-
rithms for this novel communication model which successfully broadcast in net-
works of unknown topology.

The paper is structured as follows: in Section 2, we define the model and
the problem addressed; in Section 3, we discuss related work. We present fast
broadcasting algorithms for unknown topology networks of nodes placed on the
line (Section 4) and on the plane (Section 5). Because of space restrictions, most
of the proofs are deferred to the full version of this paper.

2 The Model and Problem Definition

Typical wireless receivers are built from a radio-frequency amplifier, a demod-
ulator and a decoder. The amplifier adapts the strength of the received signal

S. Dolev et al. (Eds.): SSS 2010, LNCS 6366, pp. 267–281, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

268 E. Kranakis and M. Paquette

such that it becomes usable for the demodulator stage. However, this amplifier
is not ideal.

When the received signal strength is too low its output is either too weak or
too noisy to be usable; the first situation occurs when the communication range
of a receiver is exceeded, for instance. When the received signal strength is too
high, its input stage becomes saturated leading to a distorted signal (cf., e.g.,
[11]); in this case, we say that the receiver is swamped (cf., e.g., [1,2,10]). This
occurs when there is a radio transmitter which is too close to a receiver. We
now propose our model for this fault phenomenon. In what follows, whenever
we speak of the distance, it is meant in its geometric sense, unless otherwise
mentioned.

We work in the swamping communication model. Our graphs are built from
a set V of |V | = n nodes, placed on the line (Section 4) or on the plane (Section
5). Nodes are equipped with communication range r and limited by a minimum
distance requirement of s (the swamping distance). Two nodes u, v ∈ V located
at distance dist(u, v) greater than s and at most r from one-another are neigh-
bors and share an undirected link (u, v) ∈ E in the graph G; no other links exist
in G. In each round, each node is either a sender or a receiver. A node u which is
a transmitter in a given round sends a message to the entire set of its neighbors
Γ (u) within the same round; this transmission also makes the receiving of mes-
sages impossible for all nodes within distance s. More formally, for each round
when a node within distance s of it transmits, a node v receives no message; in
this case, only noise is heard by v, indistinguishable from the background noise
heard when no messages are sent. In a fixed round, a node v receives a message
if and only if it is a receiver, exactly one of its neighbors is a sender, and no node
within distance s sends a message. If no neighbor of v is a sender, then there is
no message on the channel which v can receive. If more than one neighbor of v
sends a message, we say that a collision occurs at v and v can only perceive noise
on the channel. Nodes do not have collision detection abilities, i.e., they cannot
distinguish collision noise from background noise (which is apparent when no
messages are heard). For simplicity of presentation, we will let r = 1 throughout
this paper.

The swamping communication model can be viewed as a GRN on which radio
communication is implemented with additional transient reception faults on all
nodes at close proximity of a transmitter, i.e., a node cannot receive messages
at each round when some node within distance s from it transmits. Alternately,
we can say that all incoming links of nodes at close proximity to a transmitter
fail.

Throughout this paper, we study networks of unknown topology where nodes
are placed on the line and on the plane. Nodes are location-aware, i.e., each
node knows its own location with respect to a global reference, but all nodes are
unaware of the location of any other node. We restrict attention to connected
networks where nodes are positioned with some minimum distance α > 0 be-
tween each other. This minimum distance may be due to physical constraints,
such as the size of nodes. Let the parameter g = 1/α be called granularity.

Broadcasting in Sensor Networks of Unknown Topology 269

Nodes are also aware of the parameter α, the swamping distance s, and the
communication distance 1.

We consider the process of broadcasting in a network which can be described
as follows: the process starts with a distinguished node, called source, which has
a message to be sent to all other nodes. The message is sent on the network
links such that it is eventually received by all nodes of the network. We consider
the spontaneous wake up model in which all nodes are considered to be func-
tional when the source begins transmission. Thus nodes may contribute to the
broadcasting process even before receiving the source message, by exchanging
control messages. The nodes have synchronized individual clocks that measure
time steps; we call these time steps rounds. In the sequel, we consider that nodes
execute algorithms in a synchronous way.

We consider deterministic algorithms without global knowledge (Section 4)
and with some knowledge about messages received by nodes close by (Section 5).
The algorithm is known to all nodes and its execution is based solely on the loca-
tion of nodes in the network, the history known to each node, and the granularity
g = 1/α. In Section 5, the algorithm execution is also based on some information
about messages received by nodes surrounding each node.

3 Related Work

Few results are known about fault-tolerant communication in geometric radio
networks. In [8], the authors consider the problem of broadcasting in a fault-free
connected component of a radio network whose nodes are located at grid points of
square grids and can communicate within a square of size r. For an upper bound
t on the number of faulty nodes, in worst-case location, the authors propose
a Θ(D + t)-time oblivious broadcast algorithm and a Θ(D + log(min(r, t)))-
time adaptive broadcast algorithm, both operating on a connected fault-free
component of diameter D. More recently, in [9], an algorithm was demonstrated
to broadcast correctly with probability 1 − ε in faulty random geometric radio
networks of diameter D, in time O(D + log 1/ε).

The question of communication in networks of unknown topology has been
widely studied in recent years. In [3], the authors state that broadcasting algo-
rithms which function in unknown GRNs also function in the resulting fault-
free connected components of faulty GRNs. A basic performance criterion of
broadcasting algorithms is the time necessary for the algorithm to terminate; in
synchronous networks, this time is measured as the number of communication
rounds. For networks whose fault-free part has a diameter D, Ω(D) is a trivial
lower bound on broadcast time, but optimal running time is a function of the
information available to the algorithms (cf., e.g., [4]). For instance, in [4], an al-
gorithm was obtained which accomplishes broadcast in arbitrary GRNs in time
O(D) under the assumption that nodes have a large amount of knowledge about
the network, i.e. given that all nodes have a knowledge radius larger than R, the
largest communication radius. The authors also show that algorithms broad-
casting in time O(D + logn) are asymptotically optimal, for unknown GRNs

270 E. Kranakis and M. Paquette

when nodes communicate spontaneously and either can detect collisions or have
knowledge of node locations at some positive distance ε, arbitrarily small.

In the present paper, we assume that nodes communicate spontaneously, but
know nothing of the network, other than their own location, and cannot detect
collisions. We propose algorithms to broadcast in networks of nodes placed on the
line and on the plane under the swamping communication model. Contrary to
the traditional radio communication model, it is not possible for nodes under the
swamping communication model to directly receive messages from nodes located
at close proximity to them. This contrasts sharply to the SINR model (studied
by Wattenhoffer et al., in [5,6]) whereby a given station can communicate its
message by increasing the power of the transmitted signal.

4 Highway Model

In this section, we analyze the problem of broadcasting along a line segment
of length L where nodes are placed by an adversary. The adversary designs the
network such that it is connected and the distance between any pair of nodes u, v
is at least α. We say that a network is connected if, for any node pair u, v, there
exists a path in the network from node u to node v. Observe that the network
is connected only if α ≤ 1.

In this section, we present a broadcasting algorithm B and show the following
result.

Theorem 1. Algorithm B broadcasts a message m in a network of diameter D
in time O(D/l + g2), where l = max{(1 − s), α}.

Before we are ready to prove the main result of this section, we need several
preparatory lemmas.

Fact 1. For any node u in a connected network, there is at least one node v
within the set Γu.

4.1 Partition P of the Line

We now define a partition, called P , on which our communication algorithm
will operate. For each line segment in the partition below, the segment includes
its leftmost point and excludes its rightmost point so that there will be no
intersection between adjacent segments. We provide a graphical representation
of the partition in Figure 1 and describe it below in detail.

Partition the line into line segments of length 3, called regions. The line con-
tains �L/3� regions, where �L/3� are of length 3 and at most one (the rightmost)
is shorter, and even may consist of a single point.

Further, partition each region into smaller line segments, called blocks, of
length l = max{(1 − s), α}. Here, l ≤ 1 since both α ≤ 1 and 1 − s ≤ 1. Each
region contains μ = �3/l� blocks, where �3/(1 − s)� are of length l and at most

Broadcasting in Sensor Networks of Unknown Topology 271

0 L

3

l = max{(1 − s), α}

α

Fig. 1. Partition P

one (the rightmost) is shorter, and even may consist of a single point. For each
region, label blocks 1, 2, . . . , μ, from left to right.

Partition also each block into line segments of length α, called homes. Each
block contains ν = �l/α� homes, where �l/α� are of length α and at most one
(the rightmost) is shorter, and even may consist of a single point. For each block,
label homes 1, 2, . . . , ν, from left to right.

Partition Properties. We now show communication properties related to the
partition defined above. We first show that transmissions in distinct regions do
not collide, if properly scheduled. We then show that transmissions by a few
distinguished nodes in a part or all of a block can reach all neighbors of nodes
on this block or part of a block. However, before showing these properties, we
observe that since homes are of length at most α, at most one node can occupy
each home. Hence, we have the following lemma.

Lemma 1. Each home contains at most one node.

Lemma 2. Transmissions from unique nodes inside identically labeled blocks in
distinct regions do not collide.

Proof (of Lemma 2). Consider nodes u, v in different regions and identically
labeled blocks. Each region has length 3 and each block has length l ≤ 1. Because
the block labels are identical in each region, the minimum distance between two
identically-labeled blocks (that contain the nodes u, v) is 3−l ≥ 2. Since each line
segment of the partition excludes its rightmost point, there is no point within
distance 1 of both u and v.

Lemma 3. Consider any pair u, v of nodes within distance 1− s. Also consider
the set U of all nodes inclusively located between u and v. We have that ΓU =
Γu ∪ Γv.

Proof. Consider two nodes u, v at distance d ≤ 1 − s from one-another; u is to
the left of v and u is at coordinate 0. Consider the right part of the range of u

272 E. Kranakis and M. Paquette

and v (the argument for the left is symmetric). Then, the range of u to the right
covers the interval (s, 1]. Similarly, the range of v to the right covers the interval
(s + d, 1 + d]. Since d ≤ 1 − s, we have that s + d ≤ s + 1 − s = 1. Hence, the
ranges of u and v overlap and cover the interval (s, 1 + d].

Consider any node w between u and v, i.e., at distance dw from u, with
0 < dw < d. The range of w to the right covers the interval (s + dw, 1 + dw].
Since 0 < dw < d, the range of w to the right is completely included in the
ranges of u and v to the right. The argument is symmetric for the left.

In the following sections, we describe communication procedures that will enable
nodes to broadcast messages to all nodes of their networks.

4.2 Neighborhood Discovery Procedure D∗

We now define procedures used to communicate once from each node to all
other nodes within distance 1 of them. We refer to this process as Neighborhood
Discovery.

Procedure D. We now present Procedure D, in which nodes in distinct homes
inside a region sequentially send a message while other nodes listen. This pro-
cedure is executed in parallel over all regions and for all (block, home) labels
sequentially. All homes with some (block, home) label transmit a message while
all other nodes listen for incoming messages. More formally, refer to the code for
Procedure D. By Lemma 2, no collision occurs in this procedure. Hence we claim

Procedure D
In parallel for all regions
Nu ← ∅ // the set of nodes known to u
Hu ← the (block, home) label of u
for block = 1..μ do

for home = 1..ν do
if Hu = (block, home) then

Transmit hello
else if a hello is heard then

Nu ← Nu ∪ (block, home)

that each node will gain knowledge of all nodes located within its communication
range as a result of Procedure D. We have the following lemma:

Lemma 4. After one execution of Procedure D, nodes know of all nodes within
distance 1 and greater than s of them.

By the previous lemma, since the graph is connected, each node will discover at
least one node within its communication range by the end of procedure D. We
will use this fact in the following subsection to allow all nodes to discover all
other nodes within distance s of them.

Broadcasting in Sensor Networks of Unknown Topology 273

Procedure D∗. Recall that, in our model, it is not possible for any node to
hear messages from nodes within distance s of them. Observe that the length
of the path between two nodes within distance s is only bounded above by the
diameter D, in many cases. We now concentrate on a time-guaranteed procedure
for discovery of nodes within distance 1.

We now consider Procedure D(b,h) by which nodes use the absence of distin-
guishable messages from collisions to discover nodes within distance s of them;
this collision-driven detection scheme was used in Procedure Echo from [7].

Procedure D(b,h)

// Nu is the set of nodes known to u
// Hu is the (block, home) label of u
In parallel for all nodes u ∈ V
for block = 1..μ do

for home = 1..ν do
if Hu = (block, home) OR Hu = (b, h) then

Transmit hello
else if no hello is heard AND (b, h) ∈ Nu then

Nu ← Nu ∪ (block, home)

Lemma 5. By Procedure D(b,h), nodes neighbor to (b, h) know all other nodes
within geometric distance 1 of them in time Θ(g).

Proof. The time complexity of Procedure D(b,h) is in Θ(μν). With α ≤ l ≤ 1,
we have that μ = �3/l� ∈ Θ(1/l) and ν = �l/α� ∈ Θ(l/α). Hence,

μν ∈ Θ((1/l)(l/α)) = Θ(1/α) = Θ(g).

We now prove correctness. Consider the execution of Procedure D(b,h), during
which the node (b, h) will transmit messages at every step. A message from (b, h)
will be heard by u at every step when no collision occurs at u. Furthermore,
when no message can be distinguished, another node within distance 1 of u
must be transmitting from the home with label (block, home) (as defined in the
procedure). Since Procedure D(b,h) schedules all nodes to transmit in pairs with
(b, h), upon completion of this procedure, the node u will have discovered all
nodes w for which the geometric distance du,w from u is at most 1.

Now consider Procedure D∗ consisting of one execution of Procedure D followed
by the execution of Procedure D(b,h) for all (b, h) ∈ {1, 2, . . . , μ}×{1, 2, . . . , ν)}.
In plain words, Procedure D∗ schedules colliding transmissions for all
(block, home) couple pairs

((b, h), (b′, h′)) ∈ {{1, 2, . . . , μ} × {1, 2, . . . , ν)}}2.

More formally, refer to the pseudo code for Procedure D∗.

274 E. Kranakis and M. Paquette

Procedure D∗

Call Procedure D
for b = 1..μ do

for h = 1..ν do
Call Procedure D(b,h)

Lemma 6. By Procedure D∗, nodes know all other nodes within geometric dis-
tance 1 of them in time Θ(g2).

Proof. The time complexity of Procedure D(b,h) is in Θ(μν). Hence, the time
complexity of Procedure D∗ is in Θ(μ2ν2). By the above and by Lemma 5, the
time complexity of Procedure D∗ is therefore in Θ(g2).

We now prove correctness. By Fact 1, for any node u, since the graph is
connected, there exists a node (b, h) such that Lemma 5 will hold. By the above
and by Lemma 5, all nodes know all other nodes that are within distance 1 of
them.

With knowledge of all nodes within distance 1, nodes have the basic tools to
select distinguished nodes to relay messages for all nodes of a block. We discuss
such a procedure in the following subsection.

4.3 Selection of Spokesman Nodes

We now describe a procedure for the selection of distinguished nodes for each
block known as spokesmen. We wish to select these spokesmen in order to avoid
collisions and speed up the broadcasting process. Before we concentrate on the
different cases, we present the following fact.

Fact 2. Given location-awareness, if a sender includes its location inside a mes-
sage, then a receiver can determine all points where the message may be received.

Proof. The sender knows its own location and therefore can incorporate this as
part of his message. The receiver then knows the origin of the received message
and hence can determine the covered region.

Consider the spokesman selection procedure that elects, for each block,

1. right (left) boundary spokesmen: the node in the rightmost (leftmost) home
known to be completely contained within the transmission range of a sender,
if this home is the rightmost (leftmost) home on the block;

2. right (left) range spokesmen: the node in the rightmost (leftmost) home
known to be completely contained in the transmission range of a sender,
if this home is not the rightmost (leftmost) home on the block;

3. right (left) potential spokesmen: the node in the rightmost (leftmost) home
known to be partially contained within the transmission range of a sender.

We now show that the spokesman selection procedure making the above selec-
tions selects unique spokesmen for each type.

Broadcasting in Sensor Networks of Unknown Topology 275

Lemma 7. The spokesman selection procedure selects at most one node for each
spokesman type.

Proof. Given that right and left boundary spokesmen are unique by definition
(those nodes in the home that is closest to the block boundaries), we prove the
lemma for right and left range and boundary spokesmen. In the case when l = α,
there is only one home per block, hence the lemma holds in this case. We now
prove the lemma for the case when l = 1 − s.

Given that the range of a node is of size 1− s = l, the range of a transmitter
always encloses at least one of the homes that is closest to the block boundaries;
call this home a boundary home. For any set S of transmitters whose ranges
enclose a same boundary home, the intersection of their communication ranges
with the block t defines a set I of intervals for which there is a largest interval.
This largest interval is the communication range of a node u ∈ S that includes
all other communication ranges inside of the set I. By Fact 2, all nodes located
inside this interval know the limits of the communication range of u. It follows
that the potential and range spokesmen for the set of nodes S are unique. These
spokesmen are right (left) potential and range spokesmen if the leftmost (right-
most) home of t is completely included in the range of u and not the rightmost
(leftmost) home of t.

It also follows from the above discussion that for any pair of transmitters u
and v whose ranges do not enclose a same boundary home, the spokesmen types
defined will be different (right ws. left spokesmen).

4.4 Broadcasting Algorithm B
We now describe Procedure T which uses the spokesmen to relay the messages
and complete the broadcasting process. In the pseudo code for Procedure T ,
time is reserved for all spokesmen, even those potential spokesmen that may not
be actual spokesmen.

Procedure T
Su ←the label of the block containing u
In parallel for all regions
repeat

for block = 1..μ do
if Su = block then

update spokesman status
Spokesmen transmit the message m sequentially

else
Listen to incoming messages for 6 rounds

until no node has transmitted in an iteration

Lemma 8. Procedure T broadcasts the message correctly through the network
in time O(D/l).

276 E. Kranakis and M. Paquette

Proof. Consider a network G of diameter D built by the adversary under the
swamping model. Consider also the network G′ with the same nodes and links as
G, but where nodes may receive messages from multiple neighbors in one round
without collisions. Let the nodes of G′ execute the broadcasting algorithm F :
when a node receives a message m the first time, it transmits this message to
all its neighbors the next turn. For the network G′, the algorithm F executes
in Θ(D) steps. We prove the lemma statement by comparing the execution of
Procedure T on G to the execution of Algorithm F on G′.

Consider G and the partition P . Since each region has �3/l� blocks, where
l = max{α, (1−s)} and since each block has a constant number of spokesmen, the
broadcast algorithm sequentially makes all spokesmen of a region communicate
every Θ(1/l) turns. From Lemma 2, the process is collision-free. From Lemma 3,
the spokesmen of a block reach all the nodes that can be reached by any node
on their block that do know the message m. It then follows that the message
m being relayed through the network may be slowed down by a factor O(1/l)
with respect to the execution of Algorithm F in G′. Hence, for any network G
of diameter D, the total transmission time is in O(D/l).

Algorithm B
In parallel for all nodes
Call Procedure D∗

Call Procedure T

Proof (of Theorem 1). From Lemma 8, the time of execution of Procedure T is
O(D/l). From Lemma 6, the time of execution of Procedure D∗ is Θ(g2). Adding
these times together, we get a total time of O(D/l + g2).

5 City Model

We now consider the task of broadcasting in a connected network of unknown
topology. In particular, we consider networks of nodes placed on the plane, in
which all nodes are located at least at some distance α from each-other. Each
node u is equipped to communicate with all nodes that are both within distance
1 and at distance greater than some s from it. Hence, in this section, we assume
that r = 1 for simplicity. More formally, the communication range of a node
u is the annulus centered at u with radii s and 1. The adversary designs the
network such that it is connected. The lower bound on the distance between any
pair of nodes u, v is α. We say that a network is connected if, for any node pair
u, v, there exists a path in the network from node u to node v. Observe that the
network is connected only if α ≤ 1.

We wish to complete broadcasting in a collision avoidance scheme. We will
use the assumption of spontaneous wake-up of the nodes, i.e., we assume that all
nodes are awake at the beginning of the broadcasting process and may execute
some preprocessing in order to speed up the broadcasting process.

Broadcasting in Sensor Networks of Unknown Topology 277

In this section, we will assume that nodes know about the transmissions made
within close proximity. We will show the following result.

Theorem 2. Algorithm B2 broadcasts a message m in a network of diameter
D in time O(Dg/l + g4), where l = max{(1 − s)/(3

√
2), α/

√
2}.

5.1 Partition P2 of the Plane

We now define a partition, called P2, on which our communication algorithm
will operate.

Each square in the partition below includes its North border, its West border,
and both its North vertices; it excludes its East border, its South border and
both its South vertices. We provide a graphical representation of the partition
in Figure 2 and now describe it below.

3

3

l

α

α
l

Fig. 2. Partition P2: from left to right, the plane is partitioned into 3×3 squares called
regions; for l = max{(1 − s)/(3

√
2), α/

√
2} regions are partitioned into l × l squares

called blocks; blocks are partitioned into α/
√

2 × α/
√

2 squares called homes

Partition the plane into a mesh of 3 × 3 squares called regions.
Further partition each region into a mesh of l × l squares, called blocks, with

length l = max{(1 − s)/(3
√

2), α/
√

2}. Here, l ≤ 1/
√

2 since both α ≤ 1 and
(1−s)/3 ≤ 1. Each region contains μ = �3/l�2 blocks, where �3/l�2 are of area l2

and at most 2�3/l�+1 are smaller, and even may consist of a single line or point.
For each region, label blocks 1, 2, . . . , μ, from West-East row by row, North to
South.

Partition also each block into a mesh of α/
√

2×α/
√

2 squares, called homes.
Each block contains ν = �

√
2l/α�2 homes, where �

√
2l/α�2 are of area α2/2 and

at most 2�
√

2l/α�+1 are smaller, and even may consist of a single line or point.
For each block, label homes sequentially 1, 2, . . . , ν, from West-East row by row,
North to South.

Partition Properties. In section 4, we showed properties for the partition P .
We now show the validity of lemmas 1 and 2 for the partition P2. For ease of
reading, we now repeat these lemmas.

Lemma 1. Each home contains at most one node.

278 E. Kranakis and M. Paquette

Observe that since homes have diameter at most α, at most one node can occupy
each home. Hence, Lemma 1 holds for partition P2.

Lemma 2. Transmissions from unique nodes inside identically labeled blocks
in distinct regions do not collide.

Consider nodes u, v in different regions and identically labeled blocks. Since each
region has side length 3 and each block has side length l ≤ 1, Lemma 2 holds
for P2.

In the following sections, we describe communication procedures that will
enable nodes to broadcast messages to all nodes of their networks.

5.2 Procedure D for Nodes in Range

Recall Procedure D in which nodes send a message sequentially, based on the
value of their home label. Since Lemma 1 and Lemma 2 both hold for P2, we
have that Lemma 4 also still holds for P2.

Lemma 4. Upon completion of Procedure D, nodes know of all nodes within
distance 1 and greater than s of them.

5.3 Procedure D∗ for Neighborhood Discovery

Recall Procedure D(b,h) by which nodes use collisions to discover nodes within
distance s of them.

By a proof similar to that of Lemma 5, we can show Lemma 9. The difference
in time complexity is caused by the dimensionality of the environment.

Lemma 9. By Procedure D(b,h), nodes neighbor to (b, h) know all other nodes
within geometric distance 1 of them in time Θ(g2).

Recall Procedure D∗ consisting of one execution of Procedure D followed by the
execution of Procedure D(b,h) for all (b, h) ∈ {1, 2, . . . , μ} × {1, 2, . . . , ν)}. For
the plane, Procedure D∗ allows the discovery of nodes within distance 1.

By a proof similar to that of Lemma 6, we can show Lemma 10. The difference
in time complexity is caused by the dimensionality of the environment.

Lemma 10. By Procedure D∗, nodes know all other nodes within geometric
distance 1 of them in time Θ(g4).

With knowledge of all nodes within distance 1, nodes have the basic tools to
select distinguished nodes to relay messages for all nodes of a block. We discuss
such a procedure in the following section.

5.4 Selection of Spokesman Nodes

In this section, we assume that nodes know which nodes of their own block
possess the source message m. The spokesmen nodes are those nodes in each
row, column and diagonal of homes within a block which possess the message
and which are located in the home which is closest to either end of that row,
column or diagonal. We state Lemma 11, the main result of this section.

Broadcasting in Sensor Networks of Unknown Topology 279

Lemma 11. If all spokesmen of a block b transmit in a collision-avoidance
scheme, then all nodes neighbor to any node in b will receive the source
message.

The proof will be given following some preliminary facts and discussion. More
formally, the rules for deciding which nodes are spokesmen are as follows: For a
row (column) i of homes of partition P2, among nodes possessing the message,
those two nodes in homes closest to the West and East (North and South) borders
of a block in P2 are spokesmen, respectively labeled Wi and Ei (Ni and Si). For
a Southeast-Northwest (Southwest-Northeast) diagonal i of homes of partition
P2, among nodes possessing the message, those two nodes in homes closest to
the borders of a block in P2 are spokesmen, respectively labeled SEi and NWi

(SWi and NEi). Spokesmen can be assigned more than one label. We now claim
that only these spokesmen are necessary to broadcast.

First, recall Fact 3.

Fact 3. Consider two vertices A and B and the line AB joining them. The line
l perpendicular to AB and through its center defines two halfplanes HA,B and
HB,A. The halfplane HA,B (resp. HB,A) contains A (B) and has all points closer
to A (B) than to B (A).

We now proceed to the presentation of Lemma 12 in preparation of the proof to
Lemma 11.

Lemma 12. For any point p and any non-spokesman node u, there is always a
spokesman node v that is farther from p than u. The set of spokesmen of a block
is closer to any point p outside the block than any non-spokesman node.

Proof. We prove the first statement. Consider a non-spokesman node u and the
set of all spokesmen in its row, column and diagonals of homes within its block.
For u not to be a spokesman, it must have one spokesman on each side of itself
for its row, column and diagonals. Let these spokesmen be labeled sequentially
u1, u2, . . . , u8 in a clockwise order around the node u. Recall Fact 3. Consider
all halfplanes Hu,ui , i = 1, 2, . . . , 8. These halfplanes contain all those points to
which u is closer than ui, or those from which ui is farther than u. Since the
distance between nodes is at least α and because of the geometry of the partition,
we have that the angle of each sector ui u u(i+1) mod 8 is less than π/2. Therefore,
the union of these halfplanes covers the entire plane. This proves the statement.
See Figure 3a.

We prove the second statement. Consider the halfplanes defined by the vertex
pairs u, ui and u, ui+1 as described in Fact 3. If the node u is closer than ui and
ui+1 to a point p, then p is in the intersection of Hu,ui and Hu,ui+1 . Moreover,
if θ = π/2, then Si ∩Hu,ui ∩Hu,ui+1 is a rectangle contained within the triangle
uiuui+1. As θ decreases, the region Si∩Hu,ui ∩Hu,ui+1 remains contained within
the triangle uiuui+1. See Figure 3b. It follows that all other points of Si are closer
to either ui or ui+1. Hence, the node u is farther from any point in a Si, and
outside the triangle uiuu(i+1) mod 8, than the spokesmen ui and u(i+1) mod 8.
Since the spokesmen are part of the block, the triangle is contained within the
block, proving the statement. See Figure 3a.

280 E. Kranakis and M. Paquette

u

(a) sectors ui u ui+1

θ

A

B
C

θ

A

B
C

θ

A

B
C

(b) triangle ACB = uiuui+1

Fig. 3. For all points outside of the gray region, there is always a spokesman that is
closer than u. For all points, there is always a spokesman that is farther than u.

We are now ready to prove the main lemma of this section.

Proof (of Lemma 11). Fix a node u inside block b. Fix a neighbor v of u. If u
is a spokesman, we are done. Otherwise, show that there is a spokesman w that
shares a link with v.

Let du,v be the distance from u to v. If u is not a spokesman, then from
Lemma 12 there is a spokesman w that is closer to v than u and there is a
spokesman w′ that is farther. For some δ, w is at distance du,v − δ < dv,w < du,v

of v and w′ is at distance du,v < dv,w′ < du,v+δ from v. Since u shares a link with
v, we know that s < du,v < 1. Moreover, for δ < (1−s)/2, either s < du,v−δ < 1
or s < du,v + δ < 1. Since the diameter of a block is (1 − s)/3 < (1 − s)/2, at
least one of w and w′ shares a link with v.

5.5 Broadcasting Algorithm B
Recall Procedure T and Algorithm B. Procedure T is executed in parallel for all
regions. Sequentially for all blocks, we have the set of spokesmen transmit the
message m on a turn basis. Spokesmen send the message only once each and the
procedure ends implicitly when the last message is sent.

By a proof similar to that of Lemma 8, we can show Lemma 13. The difference
in time complexity is caused by the dimensionality of the environment.

Lemma 13. Procedure T broadcasts the message correctly through the network
in time O(Dg/l).

Proof (of Theorem 2). From Lemma 13, the time of execution of Procedure T
is O(Dg/l). From Lemma 6, the time of execution of Procedure D∗ is Θ(g4).
Adding these times together, we get a total time of O(Dg/l + g4).

Acknowledgements

Many thanks to Ioannis Lambadaris for suggesting the swamping paradigm and
useful conversations on this topic as well as to Andrzej Pelc for useful conversa-
tions on broadcasting in networks. Research supported in part by NSERC and
MITACS grants.

Broadcasting in Sensor Networks of Unknown Topology 281

References

1. Berg, P.: Dual Conversion Receivers Are Better Than Single Conversion Re-
ceivers ...Fact or Fiction? (2002), http://www.bergent.net/SC-DC.pdf (accessed
19/03/2010)

2. Industry Canada. Spectrum management and telecommunications: Report on the
national antenna tower policy review (July 2009),
http://ic.gc.ca/eic/site/smt-gst.nsf/eng/sf08347.html

(accessed 19/03/2010)
3. Clementi, A.E.F., Monti, A., Silvestri, R.: Round robin is optimal for fault-tolerant

broadcasting on wireless networks. J. Par. Distrib. Comp. 64, 89–96 (2004)
4. Dessmark, A., Pelc, A.: Broadcasting in geometric radio networks. Journal of Dis-

crete Algorithms 5, 187–201 (2007)
5. Goussevskaia, O., Moscibroda, T., Wattenhofer, R.: Local broadcasting in the phys-

ical interference model. In: DIALM-POMC 2008: Proceedings of the Fifth Inter-
national Workshop on Foundations of Mobile Computing, pp. 35–44. ACM, New
York (2008)

6. Goussevskaia, O., Oswald, Y.A., Wattenhofer, R.: Complexity in geometric SINR.
In: MobiHoc 2007: Proceedings of the 8th ACM International Symposium on Mo-
bile Ad Hoc Networking and Computing, pp. 100–109. ACM, New York (2007)

7. Kowalski, D., Pelc, A.: Deterministic broadcasting time in radio networks of un-
known topology. In: Proc. The 43rd Annual IEEE Symposium on Foundations of
Computer Science, pp. 63–72 (2002)

8. Kranakis, E., Krizanc, D., Pelc, A.: Fault-tolerant broadcasting in radio networks.
Journal of Algorithms 39, 47–67 (2001)

9. Kranakis, E., Paquette, M., Pelc, A.: Communication in random geometric radio
networks with positively correlated random faults. In: Coudert, D., Simplot-Ryl,
D., Stojmenovic, I. (eds.) ADHOC-NOW 2008. LNCS, vol. 5198, pp. 108–121.
Springer, Heidelberg (2008)

10. Radiocontact Ltd. Wireless transmission product installation guide cct2240,
http://www.radcon.com/pdfs/m_cct2440.pdf (accessed 19/03/2010)

11. Sedra, A.S., Smith, K.C.: Microelectronic Circuits, 4th edn. Oxford University
Press, Oxford (1998)

http://www.bergent.net/SC-DC.pdf
http://ic.gc.ca/eic/site/smt-gst.nsf/eng/sf08347.html
http://www.radcon.com/pdfs/m_cct2440.pdf

Brief Announcement: Configuration of Actuated
Camera Networks for Multi-target Coverage

Matthew P. Johnson1, Amotz Bar-Noy1, and Mani Srivastava2

1 City University of New York Graduate Center
2 University of California at Los Angeles

In various domains, including public safety, first-responder, and security appli-
cations, an important task is monitoring a public space for events of interest,
using sensors of various types, including e.g. networks of cameras installed on the
ground or unmanned aerial vehicles (UAVs), which may be either autonomous
or not. In the settings we consider here, cameras are characterized by a family
of parameters, some fixed, some settable, including location, viewing range, and
so on. The task is to deploy the sensors, i.e., set the applicable parameters, in
order to optimize an objective function capturing the quality with which we
observe a set of targets. In a dynamic scenario, we may wish to observe a large
set of targets (or a continuous region) with observation quality passing some
low threshold, sufficient for surveillance; upon request (i.e., when events are de-
tected), we may then be obliged to observe a small number of distinguished
targets to a higher level of quality, sufficient for identification and localization.
An example objective function might maximize the total observation quality of
all targets, conditioned on the hard constraint that each target is observed to
the appropriate minimum quality threshold.

In full generality, the configuration of a camera will be characterized by the
following tuple: < x, y, z, θ, φ, f >. The first three entries indicate the camera’s
location in space. The targets will lie in the plane, but in some cases, as with
UAVs or cameras deployed atop buildings, cameras may look down from on high.
The fourth and fifth are angles indicating orientation. Cameras are directional,
and may swivel (pan φ); in the case of cameras positioned above the ground,
there is a second orientation degree of freedom (tilt θ). Finally, the last indicates
the camera’s focal length or zoom factor. By shrinking a camera’s focal length
(and thus enlarging its field of view), we allow the camera to observe more tar-
get locations, at the cost of correspondingly reducing the quality of the resulting
image; conversely, by zooming in on a small area, the camera will record better
quality images of the targets therein, while sacrificing targets lying outside this
area. (Ideally, these targets will be covered by other cameras.) We now enumer-
ate some example settings lying within this framework, in order of increasing
generality:

– x, y, z > 0, θ, φ fixed; f variable: UAVs hovering at fixed locations, facing
downwards (predepoyed disc-shaped sensors); for each sensor, we choose the
radius.

S. Dolev et al. (Eds.): SSS 2010, LNCS 6366, pp. 282–284, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Brief Announcement: Configuration of Actuated Camera Networks 283

c1

c2

c3

Fig. 1. Three cameras configured to observe many targets

– x, y, z = 0, θ = 90o fixed; φ, f variable: ground-based cameras looking hor-
izontally (predepoyed cone-shaped sensors); for each sensor, we choose the
angle φ and focal length f .

– x, y, z fixed; θ, φ, f variable: For each sensor, we also now choose orientation.
Viewing regions are now conic sections.

– x, y, z, θ, φ, f variable: We now may also choose the sensor locations.

There are orthogonal options vis-a-vis mobility in the case of UAVs. Such vehicles
may be deployable at will to arbitrary locations, or, if the UAVs are obliged to
fulfill other responsibilities or, say, to maintain a certain topology, they may be
limited to certain regions. Alternatively, the UAVs may be cycling over certain
trajectories autonomously over time.

In the remainder of this announcement we describe a specific geometric cov-
erage problem inspired by an application involving cameras and targets, cor-
responding to the first special case listed above: cameras deployed to observe
targets in the field may both swivel and adjust their focal length in order to
observe one or more targets. That is, for each camera we choose an orientation
and a zoom factor (x, y, z, θ are fixed, with z = 0). The objective, informally
speaking, is then configure the cameras in order to observe as many targets as
possible, with the highest possible precision.

Motivation and model. More formally, given are n camera locations in the
field and m target locations to observe. (See Figure 1.) For each camera there are
two parameters to set: the viewing direction φ and the viewing angle ψ, which
assignment will allow the camera to observe all targets in the cone defined by
angles φ−ψ and φ +ψ and the camera position P . The quality of the a camera
c’s observation of a visible target t depends on both the distance between c and
t and on ψ. The specific deterioration function may vary by camera hardware,
but for a camera producing rectilinear images, the field of view is proportional
to the distance between camera and scene, specifically: o

d = i
f . Here f is the

focal length, i is the (constant) image size, and d is the distance. In this case,
the object dimension, i.e., the field of view, is o = di/f . An equation of this
form holds in both horizontal and vertical dimensions. We are interested in the
image quality, which then (for a camera s and a target t) depends on both d
and f : u(s, t) = f2/d(s, t)2. That is, the observation quality varies inversely

284 M.P. Johnson, A. Bar-Noy, and M. Srivastava

with the distance squared and directly with focal length squared. Increasing the
focal length, however, decreases field of view o = di/f . Thus there is a tradeoff
between the angle of the viewing cone and the quality. Narrowing the cone thus
extends the range of imaging at a given quality farther out in the cone.

With this tradeoff between imaging quality and scope in place, we can now
define an optimization problem. Given a set of target locations and a set of
placed cameras, the goal is to configure cameras so as to maximize the total
sensing quality. How to encode the assignments? Each possible direction/angle
assignment for a camera will cover some contiguous subset of the targets. Al-
though there are infinitely many possible angle/focal length choices, only a finite,
polynomial number of such choices need be considered. For each camera, we can
restrict our attention to its O(m2) possible pinned cones, which are camera con-
figurations in which a camera’s cone-shaped viewing range intersects a target
on both its boundaries (possibly the same target), which allows us to obtain
discrete algorithms that space limitations do not permit us to describe.

Related work. The camera configuration problem can be understood as a vari-
ant of the Maximum Coverage problem, a dual problem to Set Cover, in which,
given a set system and an integer bound k, the goal is to choose at most k sets to
cover a maximum-weight set of elements. A hardness of approximation 1 − 1/e
lower bound is known for this problem [3]. Other related problems include the
Multiple-Choice Knapsack problem, the Budgeted Maximum Coverage problem,
and the Generalized Maximum Coverage problem [2]. Recent work treating re-
lated but importantly different coverage problems include [1,4,5].

Acknowledgements. This research was sponsored by US Army Research Lab-
oratory and the UK Ministry of Defence and was accomplished under Agreement
Number W911NF-06-3-0001. The views and conclusions contained in this docu-
ment are those of the authors and should not be interpreted as representing the
official policies, either expressed or implied, of the US Army Research Labora-
tory, the US Government, the UK Ministry of Defence, or the UK Government.
The US and UK Governments are authorized to reproduce and distribute reprints
for Government purposes notwithstanding any copyright notation hereon.

References

1. Berman, P., Jeong, J.K., Kasiviswanathan, S.P., Urgaonkar, B.: Packing to angles
and sectors. In: SPAA, pp. 171–180 (2007)

2. Cohen, R., Katzir, L.: The generalized maximum coverage problem. Inf. Process.
Lett. 108(1), 15–22 (2008)

3. Feige, U.: A threshold of ln for approximating set cover. J. ACM 45(4), 634–652
(1998)

4. Fusco, G., Gupta, H.: Selection and orientation of directional sensors for coverage
maximization. In: IEEE SECON, pp. 1–9 (2009)

5. Fusco, G., Gupta, H.: Placement and orientation of rotating directional sensors. In:
IEEE SECON (2010)

Brief Announcement: On the Hardness of
Topology Inference

H.B. Acharya1 and Mohamed Gouda1,2

1 Department of Computer Science
University of Texas at Austin

2 National Science Foundation
{acharya,gouda}@cs.utexas.edu

Abstract. Many systems require information about the topology of net-
works on the Internet, for purposes like management, efficiency, testing
of new protocols and so on. However, ISPs usually do not share the
actual topology maps with outsiders. Consequently, many systems have
been devised to reconstruct the topology of networks on the Internet from
publicly observable data. Such systems rely on traceroute to provide path
information, and attempt to compute the network topology from these
paths. However, traceroute has the problem that some routers refuse to
reveal their addresses, and appear as anonymous nodes in traces. Previ-
ous research on the problem of topology inference with anonymous nodes
has demonstrated that it is at best NP-complete. We prove a stronger
result. There exists no algorithm that, given an arbitrary trace set with
anonymous nodes, can determine the topology of the network that gen-
erated the trace set. Even the weak version of the problem, which allows
an algorithm to output a “small” set of topologies such that the correct
topology is included in the solution set, is not solvable: there exist trace
sets such that any algorithm guaranteed to output the correct topology
outputs at least an exponential number of networks. We show how to
construct such a pathological case even when the network is known to
have exactly two anonymous nodes.

1 Introduction

Several systems have been developed to reconstruct the topology of networks in
the Internet from publicly available data - [4], [3]. In such systems, Traceroute
[2] is executed on a node, called the source, by specifying the address of a des-
tination node. This execution produces a sequence of identifiers, called a trace,
corresponding to the route taken by packets traveling from the source to the
destination. For example, a trace may be (a, b, c, d, e) where a, b, c, d, e are the
unique identifiers (IP addresses) of nodes in the network. We assume a trace is
undirected, that is, traces (a, b) and (b, a) are equivalent.

A trace set T is generated by repeatedly executing Traceroute over a net-
work N , varying the source and destination. The problem of reconstructing the
topology of the network which generated a trace set, given the trace set, is the
network tracing problem.

S. Dolev et al. (Eds.): SSS 2010, LNCS 6366, pp. 285–287, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

286 H.B. Acharya and M. Gouda

In our earlier work [1], we studied network tracing for the special case where
no node is consistently anonymous, but nodes may be irregular - anonymous in
some traces, but not in others. In this paper, we extend the theory of network
tracing to networks with consistently anonymous nodes.

Clearly, a trace set is generable from a network only if every trace in the trace
set corresponds to a path in the network. However, if we define this as sufficient,
it is trivial to see that a trace set is generable from many different networks. For
example, T = {(a, ∗1, b), (a, ∗2, b)} is generable from any network with nodes
a, b, and at least one anonymous node between a and b.

To mitigate this problem, we add two conditions:

– Complete coverage. Every node and every edge must appear in the trace set.
– Consistent routing. For every two distinct nodes x and y, if x and y occur

in two or more traces in T , then the exact same set of nodes occur between
x and y in every trace in T where both x and y occur.

However, if we modify the trace set slightly to T ′ = {(a, ∗1, b), (a, ∗2, c)}, we see
that T ′ can still be generated from two networks - one where ∗1 and ∗2 are the
same anonymous node, and one where they are distinct. To solve this problem,
we add the assumption that the network that generated a trace set is minimal :
it is the smallest network, measured by node count, from which the trace set is
generable. This forces ∗1 and ∗2 to be the same node.

Clearly, these are strong assumptions; it may be argued that in practical cases,
both consistent routing and the assumption of minimality may fail. However,
even under these assumptions, is the network tracing problem solvable?

Unfortunately, we show in the following section that the answer is negative.

2 The Hardness of Network Tracing

We demonstrate how to construct a trace set which is generable from an expo-
nential number of networks with two anonymous nodes, and no networks with
one or fewer anonymous nodes.

It is of interest to note that our results are derived under a network model
with multiple strong assumptions (stable and symmetric routing, unique iden-
tifiers, and complete coverage). As no algorithm can solve the minimal network
tracing problem, even under the friendly conditions of our model, we conclude
the problem resists the strongest known network tracing techniques (such as
Paris Traceroute to detect artifact paths, and inference of missing links).

We begin by constructing a very simple trace set with only one trace,

T0,0 = {(a, ∗1, b1)}

Next, we introduce a new b-node b2, which is connected to a through an
anonymous node ∗2. To ensure that ∗2 is not a previously seen anonymous node,
we add the trace (b1, ∗3, a, ∗4, b2). By consistent routing, ∗1 = ∗3 and ∗2 = ∗4,
but ∗1
= ∗2. (Note that consistent routing precludes routing loops. As ∗3 and
∗4 occur in the same trace, they cannot be the same node.)

Brief Announcement: On the Hardness of Topology Inference 287

T1,0 = {(a, ∗1, b1), (a, ∗2, b2), (b1, ∗3, a, ∗4, b2)}

We now define operation “Op2”. In Op2, we introduce a new non-anonymous
node (ci). We add traces such that ci is connected to a through an anonymous
node, and is directly connected to all b and c nodes.

A single application of Op2 to the trace set T1,0 produces the trace set T1,1
given below.

T1,1 = {(a, ∗1, b1), (a, ∗2, b2), (b1, ∗3, a, ∗4, b2),
(a, ∗5, c1), (b1, c1), (b2, c1)}

Now, we apply Op2 l times. Every time we apply Op2, we get a new anonymous
identifier. This new identifier can correspond to a new node or to a previously-
seen anonymous node. As we are considering only minimal networks, we know
that this is a previously-seen anonymous node. But there are 2 such nodes to
choose from (∗1 and ∗2), and no information in the trace set to decide which
one to choose. Furthermore, each of these nodes is connected to a different (non-
anonymous) b-node, and is therefore distinct from all other anonymous nodes;
in other words, each choice will produce a distinct topology.

Hence the number of minimal networks from which the trace set T1,l is gen-
erable, is 2l. As the total number of nodes in a minimal network is n, we also
have n = l + 4. Thus the number of networks from which T1,l is generable, is
exponential in n. An algorithm given this trace set must necessarily output this
exponential-sized solution set to ensure it reports the correct topology. Exactly
which topology actually generated the trace set cannot be determined.

References

1. Acharya, H.B., Gouda, M.G.: A theory of network tracing. In: 11th International
Symposium on Stabilization, Safety, and Security of Distributed Systems (November
2009)

2. Cheswick, B., Burch, H., Branigan, S.: Mapping and visualizing the internet. In:
Proceedings of the USENIX Annual Technical Conference, Berkeley, CA, USA, pp.
1–12. USENIX Association (2000)

3. Jin, X., Yiu, W.-P.K., Chan, S.-H.G., Wang, Y.: Network topology inference based
on end-to-end measurements. IEEE Journal on Selected Areas in Communica-
tions 24(12), 2182–2195 (2006)

4. Yao, B., Viswanathan, R., Chang, F., Waddington, D.: Topology inference in the
presence of anonymous routers. In: Twenty-Second Annual Joint Conference of the
IEEE Computer and Communications Societies, March 3, vol. 1, pp. 353–363. IEEE,
Los Alamitos (April 2003)

Self-stabilizing Algorithm of Two-Hop Conflict
Resolution

Stéphane Pomportes1, Joanna Tomasik2, Anthony Busson1,
and Véronique Vèque1

1 Université de Paris-Sud, Institut d’Électronique Fondamentale, Bâtiment 220,
91405 Orsay Cedex, France

{stephane.pomportes,anthony.busson,veronique.veque}@u-psud.fr
2 SUPELEC Systems Sciences (E3S)

Computer Science Department
91192 Gif sur Yvette, France
joanna.tomasik@supelec.fr

Abstract. Ad hoc networks are increasingly used by the civil protection
forces to coordinate their actions in emergency situations. To enable them
to work properly, the satisfaction of the demanded quality of service
(QoS) is crucial. One of the most effective methods of assuring the QoS
is to use multiplexing modes based on a resource reservation like TDMA
or FDMA. The principal demands in terms of QoS concern a guarantee of
connectivity and resource availability. Our idea consists in the separation
of the interference detection mechanism in order to make it independent
of the pure resource allocation algorithm. We present an algorithm which
detects and corrects conflicts of assignment. Our algorithm is proved to
be self-stabilizing and reaches a stable state in up to five rounds.

1 Introduction

Ad hoc networks are increasingly used, particularly by the civil protection forces
(medical staff, firemen, policemen, etc.) to coordinate their actions on emergency
response. To enable them to work properly, the satisfaction of the demanded
quality of service (QoS) is crucial. One of the most effective methods of assuring
the QoS is to use multiplexing modes based on a resource reservation like TDMA
or FDMA. However, the problems related to the QoS such as traffic management,
interference management, and assignment, remain open problems.

We are interested in resource allocation in wireless networks within the con-
text of the RAF project which is also one of the projects of SYSTEM@TIC
PARIS-REGION1 competitiveness cluster. This project focuses on ad hoc net-
works deployed in disaster scenes. The nodes of such networks are rescue work-
ers. The principal demands in terms of quality of service concerns a guarantee

1 SYSTEM@TIC PARIS-REGION and the RAF project are supported by the French
Ministry of Industry, the department Essonne, the department Haut-de-Seine and
the Paris General Council.

S. Dolev et al. (Eds.): SSS 2010, LNCS 6366, pp. 288–302, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Self-stabilizing Algorithm of Two-Hop Conflict Resolution 289

of connectivity and resource availability. The robustness of the networks is a
crucial aspect of the allocation mechanism. At the same time the mechanism
of resource allocation has also to cope with a possible interference (a resource
cannot be assigned if it interferes with another resources). An assignment may
be in an incoherent state, i.e. in which some resources interfere one with another
due to arriving nodes, leaving nodes, nodes’ mobility or allocation errors. These
conflicts must be detected and corrected, and may lead to a reallocation.

Our idea consists in the separation of the interference detection mechanism
in order to make it independent of the pure resource allocation algorithm. We
provide the justification of the proposed approach in Section 2. In Section 3
we formalize our approach in terms of models of connectivity, interference and
communication, and present our algorithm of conflict detection in detail. We
also deal with the definition of the self-stabilization property. Section 4 is the
main section of our paper, where we describe a state automata model together
with its requirements (safety, liveliness). The last subsection is dedicated entirely
to proofs of self-stabilization, safety, and liveliness of the proposed mechanism.
Section 5 contains conclusions and outlines perspectives.

2 Related Work and Justification of Our Approach

Allocation strategies are generally classified according to the underlying mul-
tiplexing methods. These methods, in terms of resource allocation, consist in
cutting the radio medium into elementary resources. Whether these resources
are frequencies (as in FDMA), or timeslots (as in TDMA) does not change the
principle of resource allocation which can be seen as a classical graph coloring
problem in many cases. Therefore, also in terms of resource allocation, many
multiplexing methods can be grouped under a common model. Consequently,
as a criterion, multiplexing is not adapted for classification of allocation strate-
gies. In contrast, the modeling of the network has a significant impact on the
design of algorithms which allocate resources. Most models found in the existing
publications can be defined by: the entity in which the resource allocation has
place, the nature of the links, and the size of the interference area compared to
the transmission area. The resources can be assigned to nodes [1,8,9,12,14] or
to links [13,15,10,11,5]. In the former case, a node can use its resources to com-
municate with all or a subset of its neighbors. Such an assignment is especially
well suited for a broadcast communication. In the latter case, each resource is
assigned to a specific link. The authors of [7] show that this assignment achieves
a higher spatial reuse of resources than a node assignment. Communication be-
tween two nodes can be unidirectional or bidirectional. It is modeled either by
directed links [15,10,11,5] or undirected links [13,1,8,9,12,14]. In directed links,
the transmitters and receivers are clearly identified while in undirected links
each node of a link can be both a transmitter or a receiver. A directed link also
allows for a better modeling of asymmetric communications. The definition of
the area of interference is also important. If it assumed that the interference zone
its equals to the transmission zone, as in [13,1,9,8,12,14], then each transmitter

290 S. Pomportes et al.

can communicate with the receiver with which it interferes. But if we consider
that a signal may be too weak to be received, but still strong enough to interfere
with another signal, we must consider that the interference area is bigger than
the communication area, see [15,10,11,5].

Some previous studies proposed to separate problems of conflict detection and
allocation of resources. The authors of [1] have tried this solution for a resource
assignment in a node with a conflict area and a transmission area of the same
size. In their paper, all nodes have a synchronized execution, which is split into
two parts. In the first one, each node tries to allocate resources concurrently and
then sends a message to its neighbors announcing its new state. In the second
part, which begins only when all messages from the neighborhood have been
received, each node reads concurrently its own allocation and the allocations
of its neighbors. If a conflict is detected, it will be corrected during the next
execution. The article [2] offers an improvement of the described approach by
taking a conflict area twice as large as the transmission area. Unlike the article
[1] where the conflicts occurs only between two neighboring nodes, the article
[2] takes into account a mechanism for relaying information for the detection of
a two-hop conflict.

We agree with the authors of these two articles and believe that the detection
of conflicts should be separated from resource allocation. Based on this sepa-
ration we can study and optimize each of these problems separately. We can
also study the efficiency of allocation heuristics which are built according to the
same acting mechanism to detect conflicts. Nevertheless, contrary to the articles
[1,2], we are interested here in an allocation of resources on the unidirectional
links. The communications are modeled by unidirectional links. In our model, a
conflict may occur between a transmitter and any receiver which is one or two
hops away. To detect and correct conflicts of allocation, our algorithm broad-
casts information concerning the presence of transmitter or receiver within two
hop distance. Specifically, each node has a set of variables, one per slot, called a
channelState. Each of these variables may take one of the eight different values.
Each of these eight states will be described in detail in Section 4. Due to the
self-stabilizing property which we will prove in Section 6, our algorithm allows
the network to achieve a steady state regardless of the initial state of the network
nodes.

3 Model and Assumptions

Network modeling: We assume that there is a contention-based channel like
CSMA/CA allowing nodes to communicate even when TDMA or FDMA chan-
nels are unavailable.

The network is modeled by a directed graph G = (V, E) where V is a set
of nodes and E is a set of directed edges. This graph is called the connectivity
graph in the rest of the paper. Each node models a communication unit and each
arc, (t, r), represents a unidirectional link between a transmitter, t ∈ V and its
associated receiver, r ∈ V . In this paper, we consider only connected graphs. We

Self-stabilizing Algorithm of Two-Hop Conflict Resolution 291

consider that there is a set of channels H attributed to each node from V . In
our model a channel can represent either a frequency or a timeslot.

Interference modeling: Assuming that a signal may be too weak to be received,
but still strong enough to interfere with another signal, we consider that a trans-
mitter can interfere with all its two-hop receivers. We say that two nodes are two
hops away if they are not neighbors but have at least one neighbor in common.
To model interference, we define an undirected graph GC = (VC , EC) which
consists of set of vertices VC and edges EC . The set VC has a one to one relation
with the set edge E of the graph G = (V, E); i.e. for each edge e ∈ E, there
exists a corresponding vertex vc ∈ VC . We call this graph a conflict graph. An
edge (e1,e2) from EC exists only if the transmitter from an arc associated with
one end of this edge and the receiver from the arc of the other end are nodes
which are two hops away. Since each resource is supposed to be independent, we
defined a set of conflict graphs GCi = (VCi, ECi), one graph for each channel i of
H . The set VCi represents the subset of elements of VC which use the channel
i. The set ECi is obviously the subset of edges from EC between two elements of
VCi .

State model: The state model which is used to write the algorithm presented in
the next subsection, is a shared memory system model where all communications
are abstract. It means that there is no direct message exchange between nodes.
Each node executes the same program defined as a set of variables and guarded
actions. In our algorithm, there is one variable per channel for each node. Each
of these variables represents the current state of the associated channel. Each
node can read its own variables and those of its one-hop neighbors. However, it
can only change the value of its own variables.

A guarded action has the form < label >::< guard >→< statement >.
A label is used to identify a guarded action. A guard is a predicate involving
both the local variables and the variables of neighbors. A statement is a set
of instructions operating only on the local variables. When a guard holds, the
corresponding action is said to be enabled. When a node has, at least, one enabled
action it is said to be enabled. An activation of a node consists in executing
simultaneously instructions of all enabled actions of the node. In this paper, we
focus on an assignment of resources on the links, but since the nodes execute the
algorithm, the variables representing the resources need to be located on nodes.

The state of a node is defined by the value of all its variables. The set of
the states of all nodes of a system at a given time is called a configuration.
An execution of a system is the sequence of configurations c1,..., cn where ci+1
is obtained from configuration ci after the activation of at least one node. To
evaluate the time complexity of the algorithm, we use the notion of a round,
defined in [3,6] as the minimal subset of configurations in which each enabled
node is activated at least once.

Self-stabilization: As most systems, a network may be subject to faults like
message loss or node breakdown. When such events occur, the algorithms must

292 S. Pomportes et al.

allow the system to continue operating properly. This property is called fault-
tolerance. For distributed systems, Dijkstra introduced in [4] the notion of self-
stabilization as the ability of a system to converge in a finite time to a legitimate
state when faults occurred.

4 Conflict Resolution Algorithm

4.1 Presentation

The algorithm presented below (Algorithm 1) focuses on the correction of
conflicts for one channel (for instance, a timeslot for a TDMA multiplexing,
a frequency for FDMA). If we assume that all channels are independent, the
execution of the algorithm for each resource corrects all conflicts in a network.
This independence of resources is generally verified in the case of TDMA when
the synchronization is sufficiently strong to avoid any overlap between consecu-
tive slots. In the FDMA context, the independence of resources is assured when
the frequencies are orthogonal.

Table 1. Description of variable channelState

State Scope Meaning

T local slot locally used for transmission

R local slot locally used for reception

NR one hop at least one neighbor uses the slot for reception

NT1 one hop at least one neighbor uses the slot for transmission

NTR one hop slot used by at least one transmitter neighbor and by exactly one re-
ceiver neighbor

NTR+ one hop Slot used by at least one transmitter neighbor and by more than two
receiver neighbors

NT2 two hops Slot used by a transmitter which is two hops away

F — There is no transmitter at distance two and no receiver in neighborhood

Our algorithm uses a node variable called channelState which represents the
state of the considered channel. This variable can be in one of the eight different
states whose meaning is detailed in Table 1. In Figure 1 we illustrate the way in
which a value is chosen for a given variable state. This choice is made according
to the state of the neighbors’ variables. In this figure, the solid lines indicate a
condition which has to exist in the neighborhood. The crossed lines indicate a
condition which is forbidden in the neighborhood. The dotted lines indicate a
condition that is not necessary but which is not conflictual. The arrows indicate
that a transmitter and a receiver have to be associated.

For example, consider the case of a transmitter (Fig. 1, upper left corner). In
the corresponding scheme in Figure 1, an arrow, starting from the transmitter
and ending in the receiver, indicates that the transmitter has to be associated
with a receiver present in its neighborhood. To avoid interference, the considered

Self-stabilizing Algorithm of Two-Hop Conflict Resolution 293

T

R TNS1

R NTR

TR NT1

T

R

NT1

NTR+

NTR F

TR NR

NT2
R

T
NTR+

NT1

NTR

OR

OR
T

R
R NTR

T

R
R NTR+

T

T R
NTR+

NTR

R NTR

NR

Fig. 1. Interactions between neighbors

transmitter and any other receiver should not be one or two hops away. Thus
the neighborhood of the transmitter should be free of nodes in state R (one-hop
conflict), T (two-hop conflict between the studied transmitter and the receiver
associated with the node in the state T), NR and NTR+ (indicating the presence
of receivers two hop aways). The case of NTR is special, this state indicates that
there is a single receiver in the neighborhood of the node in NTR state. This single
receiver may be the associated receiver of the considered transmitter, in which
case there is no conflict. This situation is represented by dotted lines between
the node in NTR state and both, the studied transmitter and its associated
receiver. But the single receiver may be another receiver in which case there
is a conflict. Thus the neighborhood of the transmitter should also be free of
nodes in NTR state. All these forbidden situations are represented by crossed
lines between the transmitters and the nodes in states R, T, NR, NTR, NTR+.
There are six different actions in the algorithm which can be use to update
variables of a node(see Algorithm 1). Each of these actions toggles the values of
a channelState to {NR, NTR, NTR+, NT1, NT2, F}. Since the allocation should
be realized by another algorithm, none of the actions of our algorithm is allowed
to switch the value of channelState to T or R.

If we follow only the definitions given in Table 1, we may enable several values
of channelState simultaneously. For example, a node may be adjacent to a re-
ceiver and two hops away from a transmitter, yet the state of the slot cannot be
NR and NT2 simultaneously. This kind of situation is managed by the predicates
of the algorithm designed to introduce a priority between the different channel-
State values. This priority follows two simple rules. The information about the
neighborhood ({NR, NTR, NTR+, NT1}) as a higher priority over other (NT2, F)

294 S. Pomportes et al.

and the priority increases with the amount of information carried by the value
of the state (NTR+ > NTR > NT1 ≥ NR et NT2 > F).

4.2 Specifications

Here we consider that a system is steady if there is no enabled node in the
system. Our algorithm must verify the following properties:

Safety:

1. There is no conflict in a steady system.
2. In a steady system, any node P in V ::SP ∈ {F,NT2} and without neighbour

in state NR, can establish a link to any neighbor in state F without creating
conflict.

Liveliness:

1. The steady state of any system is reached in up to five rounds whatever the
connectivity graph, the value of channelStates, and the size of the network.

4.3 Proof of Specifications

In this section, we show that our algorithm detects and corrects all conflicts
in up to five rounds. Due to the self-stabilizing property of our algorithm, the
variables may be chosen arbitrarily. We assume that the topology of the network
does not change. We also assume there is no resource allocation before the end of
the five rounds. Let us not forget that when a transmitter communicates with a
receiver we consider that they are associated. A transmitter and a receiver which
do not communicate with each other are called dissociated. An one-hop conflict
occurs when a transmitter and a receiver, which are dissociated, are neighbors. A
two-hop conflict occurs when a transmitter and a receiver, which are dissociated,
are not neighbors but have at least one neighbor in common.

Lemma 1. At least one of the following predicates − Pre-NeighRcvp,
Pre-1HopNeighTransp, Pre-2HopNeighTransp, Pre-NeighTRp, Pre-NeighTR+p,
Pre-Freep − holds

Proof. Let us assume the contrary, i.e. there exists a node A for which none of
these predicates holds.

Since the connectivity graph G = (V, E) is connected, A has at least one
neighbor B. If B is a receiver and A has neither other neighbors nor neighbor
whose channelState is in T state, predicate Pre-NeighRcvp is satisfied. If B is a
receiver and A has at least one neighbor whose channelState is in T state but
no other receiving neighbor (channelState= R), the predicate Pre-NeighTRp

is satisfied. If B is a receiver, and A has at least one transmitting neighbor
(channelState= T) and at least one receiving neighbor (channelState= R), the
predicate Pre-NeighTR+p is satisfied.

Self-stabilizing Algorithm of Two-Hop Conflict Resolution 295

Algorithm 1. Conflict detection and correction
Variables :
StatesSet = {T, R, NR, NTR, NTR+, NT1, NT2, F}
Sp ∈ StatesSet : channelState of node p.
Neighp : set of neighbors of p.
OtherEnd(p) : the node associated to p.

Predicates :
R-Isolatedp ≡ Sp = R ∧ (�q ∈ Neighp :: (Sq = T) ∧ (q = OtherEnd(p))
T-Isolatedp ≡ Sp = T ∧ (�q ∈ Neighp :: (Sq = R) ∧ (q = OtherEnd(p))
T-1HopInterfp ≡ Sp = T ∧ (∃q ∈ Neighp :: Sq = R ∧ q �= OtherEnd(p)))
R-1HopInterfp ≡ Sp = R ∧ (∃q ∈ Neighp :: Sq = T ∧ q �= OtherEnd(p)))
T-2HopInterfp ≡ Sp = T ∧ (∃q ∈ Neighp :: (Sq ∈ {T, NTR+, NR})

∨(Sq = NTR ∧ OtherEnd(p) �∈ Neighq))
R-2HopInterfp ≡ Sp = R ∧ ∃q ∈ Neighp :: (Sq = R)
IncorrectTp ≡ Sp = T ∧ (T -Isolatedp ∨ T -1HopInterfp ∨ T -2HopInterfp)
IncorrectRp ≡ (R-Isolatedp ∨ R-1HopInterfp ∨ R − 2HopInterfp)

Pre-NeighRcvp ≡ ((∃q ∈ Neighp :: Sq = R) ∧ (�q′ ∈ Neighp :: Sq′ = T))
Pre-1HopNeighTransp ≡ ((∃q ∈ Neighp :: Sq = T) ∧ (�q′ ∈ Neighp :: Sq′ = R))
Pre-2HopNeighTransp ≡ ((∃q ∈ Neighp :: Sq ∈ {NT1, NTR, NTR+)

∧(�q′ ∈ Neighp :: Sq′ ∈ {T, R}))
Pre-NeighTRp ≡ ((∃!qR ∈ Neighp :: SqR = R) ∧ (∃qT ∈ Neighp :: SqT = T))
Pre-NeighTR+p ≡ (∃(qT , qR1, qR2) ∈ Neigh3

p :: (SqR1 = SqR2 = R) ∧ (SqT = T))
Pre-Freep ≡ (�q ∈ Neighp :: Sq ∈ States\{NR, NT2, F})

NeighRcvp ≡ Pre-NeighRcvp ∧ (IncorrectTp ∨ IncorrectRp

∨Sp ∈ States\{T, R,NR})
1HopNeighTransp ≡ Pre-1HopNeighTransp ∧ (IncorrectT ∨ IncorrectRp

∨Sp ∈ States\{T, R, NT1})
2HopNeighTransp ≡ Pre-2HopNeighTransp ∧ (IncorrectT ∨ IncorrectRp

∨Sp ∈ States\{T, R, NT2})
NeighTRp ≡ Pre-NeighTRp ∧ (IncorrectT ∨ IncorrectRp

∨Sp ∈ States\{T, R, NTR})
NeighTR+p ≡ Pre-NeighTR +p ∧(IncorrectT ∨ IncorrectRp

∨Sp ∈ States\{T, R, NTR+})
Freep ≡ Pre-Freep ∧ (IncorrectT ∨ IncorrectRp

∨Sp ∈ States\{T, R, F})

Actions :
NR-Actionp :: NeighRcvp −→ Sp := NR

NT1-Actionp :: 1HopNeighTransp −→ Sp := NT1

NT2-Actionp :: 2HopNeighTransp −→ Sp := NT2

NTR-Actionp :: NeighTRp −→ Sp := NTR

NTR+-Actionp :: NeighTR+p −→ Sp := NTR+

F -Actionp :: Free −→p Sp := F

296 S. Pomportes et al.

If B is a receiver and A has no other receiving neighbor (channelState= T), the
predicate Pre-1HopNeighTransp is verified. If B is a receiver and A has exactly
one receiving neighbor, the predicate Pre-NeighTRp is verified. If B is a receiver
and A has at least two receiving neighbors, the predicate Pre-NeighTR+p is
verified. If B is one of the following NT1, NTR or NTR+ states and A has no
neighbor which is either a transmitter or a receiver, Pre-2HopNeighTransp holds.
If the channel State of all the neighbors of A is either NT2 or F , the predicatePre-
Freep holds. So whatever the neighborhood of A, there is always at least one of
the predicates − Pre-NeighRcvp, Pre-1HopNeighTransp, Pre-2HopNeighTransp,
Pre-NeighTRp, Pre-NeighTR+p, Pre-Freep− holds. ��
Lemma 2. There is at most one enabled action in any node.

Proof. There are at least two concurrent enabled action iff their guards hold
concurrently. In our algorithm, at least two guards hold concurrently if at least
two predicates from the set P ={Pre-NeighRcvp, Pre-1HopNeighTransp, Pre-
2HopNeighTransp, Pre-NeighTRp, Pre-NeighTR+p, Pre-Freep} hold
concurrently. Let us assume the contrary, i.e. at least two predicates of the
previous set hold concurrently.

We show here explicitly the first two steps (for the predicates Pre-NeighRcv
and Pre-1HopNeighTrans) we leave the remaining three to be completed by a
reader following the schema we outline.

Let us assume the predicate Pre-NeighRcv is one of the predicates which
belongs to P and which holds concurrently with the other predicates from P . A
receiving neighbor is required in order to satisfy the predicate Pre-NeighRcv. This,
however, is forbidden in the predicates Pre-1HopNeighTrans, Pre-2Hop
NeighTrans, and Pre-Free. Conversely, a transmitting neighbor is forbidden in the
predicate Pre-NeighRcv, but is required to satisfy the predicates Pre-NeighTR and
Pre-NeighTR+. Thus Pre-NeighRcv cannot be true if one of the other predicates
holds.

Let us assume the Pre-1HopNeighTrans is a predicate from P which may be
enabled concurrently with other predicates from P . A transmitting neighbor is
required in the predicate Pre-1HopNeighTrans but is forbidden in the predi-
cates Pre-NeighRcv, Pre-2HopNeighTrans, and Pre-Free. Conversely, a receiving
neighbor is forbidden in the predicate Pre-1HopNeighTrans, but is required in the
predicates Pre-NeighTR and Pre-NeighTR+. Thus Pre-NeighRcv cannot hold if
one of the other predicates hold. ��
Proposition 1. All one-hop conflicts are corrected at the end of the first round.

Proof. Let us assume the contrary, i.e. at the end of the first round a conflict exists
between a transmitter AT and one of its neighbor, a receiver BR (Fig. 2). Accord-
ing to the algorithm, there is no action which allows us to change a channelState
to R or T . Consequently, these two nodes are already in the state T for AT and
R for BR at the beginning of the first round. Since nodes AT and BR are disso-
ciated, the predicates T-1HopInterfAT and R-1HopInterfBR hold. If these predi-
cates hold, the predicates IncorrectTAT and IncorrectRBR will be valid too. Ac-
cording to Lemma 1 and 2, nodes AT and BT have one and only one enabled action

Self-stabilizing Algorithm of Two-Hop Conflict Resolution 297

R T R

A'R

T

AT BR B'T

Fig. 2. One-hop conflict

at the beginning of the first round. Since during a round, each enabled node is
activated, the channelState of node AT (respectively BR) cannot be T (respec-
tively R) at the end of the first round. ��

Proposition 2. All two-hop conflicts are corrected at the end of the second
round.

Proof. Let us assume the contrary, i.e. at the end of the second round a two-
hop conflict exists between a transmitter AT and a receiver BR. Since this is a
two-hop conflict, there exists at least one node, Ci, which is a neighbor of AT

and BR (Fig. 3). We will show that the presence of Ci, regardless of the value
of its channelState variable, allows us to detect and correct the conflict between
A and B before the end of the second round.

Let us assume that Ci is a receiver or a transmitter and it is dissociated from
AT or BR. In this case, there is a one-hop conflict between Ci and AT or BR, which
should have been corrected at the end of the first round (see proposition 1).

Let us assume that Ci is the receiver associated with AT (i.e. Ci is in R
state). In this case, the receivers BR and Ci are neighbors. We know that in a
correct state each receiver has an associated transmitter. Consequently, when
two receivers are neighbors they are in conflict with each other’s associated
transmitter. When this occurs the predicate R-2HopInterf, and therefore the
predicate IncorrectR , of each receiver hold. Since IncorrectR is valid for both
receivers there is one and only one enabled action for these two nodes at the
beginning of the first round. Consequently, none of the channelState values of
these two nodes is in R state at the end of the first round.

Let us assume that Ci is the transmitter associated with BR (i.e. Ci is in T
state). For the same reasons as previously mentioned, there is a conflict between
Ci and AT which is detected by the predicate T-2HopInterf of each transmitter.
Using the same mechanism, these two transmitters are enabled at the beginning
of the first round. Consequently, neither of the channelState variables of these
two nodes is in T state at the end of the first round.

Let us now consider the other cases in which SCi
∈ {T, R}.
Let us assume that Ci has no other receiver than BR in its neighborhood. Since

Ci has a single receiver and at least one transmitter in its neighborhood, the
predicate Pre-NeighTRCi holds. Consequently, the channelState of Ci is in NTR

state at the end of the first round. At the beginning of the second round, since
the node AT has a neighbor whose channelState is in NTR state and the receiver
associated with AT is not in Ci neighborhood, the predicate T-2HopInterfAT

holds. Therefore, IncorrectTAT holds and the node AT is enabled. At the end of
the second round, AT cannot be in state T .

298 S. Pomportes et al.

T ? R

AT Ci BR

Fig. 3. Two-hop conflict

Let us assume that Ci has another receiver than BR in its neighborhood.
Since Ci has at least two receivers and one transmitter in its neighborhood, its
predicate Pre-NeighTR+ holds. Consequently, the channelState of Ci is in NTR+
state at the end of the first round. Since the node AT has a neighbor whose
channelState is in NTR+ state, the predicate T-2HopInterfAT holds. Therefore,
IncorrectTAT holds and the node AT is enabled at the beginning of the second
round. The node AT cannot be in the state T at the end of the second round.

We have shown that whatever the value of the channelState variable of Ci,
the conflict between AT and BR is detected and corrected before the second
round ends. ��

Proposition 3. The sets of nodes whose channelState is R or T is steady at
the end of the second round.

Proof. We consider here that a set is steady iff no element can join or leave this
set. We call EX a set of nodes whose channelState is in X state.

We consider that if a transmitter or a receiver does not have an associated
node, they are isolated. For example, let us assume a transmitter A associated
with the associated receiver B. If the channelState of B changes, due to a conflict
detection, A will become a transmitter without an associated receiver.

Thanks to Proposition 1 we know that all one-hop conflicts are corrected
before the end of the first round. To correct a one-hop conflict, the algorithm
changes the channelState of one or both nodes which are in conflict. These cor-
rected nodes may be associated with other nodes, which find themselves isolated.
Such a situation is detected by the predicates R-Isolate, in the isolated receiver,
and/or T-Isolate, in the isolated transmitter. Since these predicates hold, Incor-
rectR or IncorrectS hold too. Consequently, these isolated nodes are enabled at
the beginning of the second round. These isolated nodes in turn cannot be in
state R nor T at the end of the second round. Proposition 2 shows that two-hop
conflicts are resolved at the end of the second round. The correction of these two-
hop conflicts brings up isolated nodes. For the same reasons as one-hop conflicts,
these isolated nodes are corrected before the end of the third round.

Since all conflicts are corrected at the end of the second round, the receivers
and transmitters which are not isolated cannot be enabled after this second
round. Since all isolated receivers and transmitters are corrected before the end
of the third round, all the receivers or transmitters in the network are associated.
At the end of the third round, there is no receiver and transmitter that can be
enabled. The sets ER and ET are steady. ��

Proposition 4. All nodes in state NR, NTR, NTR+ or NT1 are steady, at the
end of the fourth round.

Self-stabilizing Algorithm of Two-Hop Conflict Resolution 299

Proof. First, we consider the set ENR of nodes whose channelState is NR. We
know that a node can join this group during the fifth round, only if the action NR-
Action is enabled during the fourth one. For this, it is necessary that the predicate
Pre-1HopNeighRcv holds. This predicate depends only on nodes belonging to sets
ET and ER. According to Proposition 3, these sets are steady at the end of the
third round. Consequently, if the Pre-1HopNeighRcv holds during the fourth
round, it already held at the beginning of this fourth round. In such a case, the
node must change its channelState value before the end of the fourth round.

The proof is the same for the other sets ENT R , ENT R+ and ENT1 . Conse-
quently, a node cannot join the sets ENR , ENTR , ENT R+ and ENT1 after the end
of the fourth round.

Let us now assume that a node A leaves the set ENR during the fifth round.
In such a situation A would have had to be activated during the fourth round.
We have just shown that A cannot join the sets ENTR , ENTR+ and ENT1 . Neither
can it join the sets ET and ER, which have been already steady since the end at
the third round. The node A can join only the sets EF of ENT2. Let us assume
that the node A can leave the set ENR and join the sets ENT2 or EF . This can
be done only if the receivers in neighborhood of A disappear during the fourth
round. According to Proposition 3 this is impossible because the set ER has
been steady since the third round. The node A can join neither the set ENT2
nor the set EF .

The node A cannot join another set and consequently, it cannot leave the
set ENR after the end of the fourth round. The proof is the same for the other
sets ENTR , ENT R+ and ENT1 . The nodes can neither leave nor join the sets
ENR , ENTR , ENTR+ and ENT1 after the end of the fourth round, as a result these
sets are steady. ��

Proposition 5. All nodes in state NT2 or F are steady at the end of the fifth
round.

Proof. Let us assume the contrary, i.e. a node A can join or leave the sets EF or
ENT2 during the sixth round. If the channelState of A changes during the sixth
round, one of its actions must be enabled during the fifth one. According to
Propositions 3 and 4, the sets of nodes ET , ER, ENR , ENT R , ENT R+ and ENT1

are steady at the end of the fourth round. Consequently, node A cannot join or
leave these sets during the sixth round. The node A can only leave the set EF

to join the set ENT2 and vice versa.
Let us assume A leaves the set EF to join the set ENT2 during the sixth

round. In such a case, the predicate Pre-2HopNeighTranspA must hold during
the fifth round. Since this predicate depends only on nodes in the sets which
are already steady at the end of the fourth round, Pre-2HopNeighTranspA holds
at the beginning of the fifth round. Consequently, A can only join the set ENT2

before the end of the fifth round. Now, let us assume A leaves the set ENT2 and
joins the set EF . Since the predicate Pre-FreeA depends only on nodes in the
sets that are already steady at the end of the fourth round, the proof is the same
as in the previous case. Finally, the nodes can neither leave nor join the sets EF

300 S. Pomportes et al.

and ENT2 during the sixth round. These sets are steady at the end of the fifth
round. ��

Proof of liveliness: A steady state of any network is reached in up to
five rounds whatever the connectivity graph, values of channelState
and the size of the network.
According to Propositions 3, 4 and 5, all sets of nodes are steady at the end of
the fifth round. Consequently by the end of the fifth round, the all network is
steady.

Proof of safety 1: there is no conflict in a steady network.
If a network is steady, the channelState of any node cannot be changed. Accord-
ing to Propositions 1 and 2, if there is a conflict it will be detected and corrected.
Since the correction needs to change the channelState of nodes, a network cannot
be steady if there is a conflict.

Proof of safety 2: In a steady system, any node P, in V::SP ∈ {F,NT2}
and without a neighbour in state NR, can establish a link to any neigh-
bor in state F without creating conflict.
Let the two nodes AT and BR belong to the set EF . The neighborhood of AT

is free of nodes whose channelState is NR. Let us assume that a conflict occurs
when a channel is assigned from AT to BR in a steady system.

Let us assume this is a one-hop conflict. In such a case, BR is a neighbor
of a transmitter or AT is a neighbor of a receiver. Since the system is steady
the channelState variables of this node cannot be in F state. A one-hop conflict
cannot occur.

T R ?

AT BR

T

CT

Fig. 4. AT is responsible for the conflict

T R?

AT BR

R

CR

Fig. 5. BR undergoes the conflict

Let us assume there is a two-hop conflict:

– If AT is responsible for the conflict, then there is a neighbor CR in R state two
hops away from AT (Fig. 4). In this case, the neighbors of these two nodes
would be in the state NR. According to our assumptions this is impossible.

Self-stabilizing Algorithm of Two-Hop Conflict Resolution 301

– If BR undergoes the conflict, then there is a neighbor CT , in T state, two
hops away from BR (Fig. 5). In this case, the neighbors of these two nodes
would be in the state NT1. This is impossible because in a steady network,
the channelState variable of BR cannot be in state F if one of its neighbor
has the channelState variable in the NT1 state(Action NT2-Actionp should
be enabled).

One-hop and two-hop conflicts are impossible, the second safety rule applies.

5 Conclusion

We propose a conflict resolution algorithm for ad hoc networks. The algorithm
works with networks with unidirectional links, assuming that the interference
range is twice as large as the communication range. We prove this algorithm
reaches a steady state in which there is no conflict, in a maximum of five rounds.
We also prove that each node, which wants to be a transmitter, can identify the
subset of the neighbors with which it can establish a connection. This property is
only true if the system is stable. Since we have created a conflict correction algo-
rithm, our future work will focus on creating resource assignments algorithms.
These algorithms are expected to be simpler than those proposed in existing
studies where assignment and resolution of conflicts are treated simultaneously.
We expect that we will be able to evaluate the performance of the strategies of
each of these resource allocating algorithms, regardless of the conflict detection
and correction mechanism. Another problem arises when there is a change in a
topology (for instance, agents’ movements). It would be interesting to prove or
validate by simulations that despite the agents’ mobility, our algorithm resolves
conflicts locally, in a two-hop neighborhood. For certain applications which re-
quire frequent broadcast communications one might recommend the resource
allocation in a node. In this case it would be interesting to propose an ap-
propriate algorithm of two-hop conflict resolution and to verify whether it is
self-stabilizing.

References

1. Boman, E., Bozdağ, D., Catalyurek, U., Gebremedhin, A., Manne, F.: A Scalable
Parallel Graph Coloring Algorithm for Distributed Memory Computers. In: Cunha,
J.C., Medeiros, P.D. (eds.) Euro-Par 2005. LNCS, vol. 3648, pp. 241–251. Springer,
Heidelberg (2005)

2. Bozdağ, D., Catalyurek, U., Gebremedhin, A., Manne, F., Boman, E., Özgüner, F.:
A Parallel Distance-2 Graph Coloring Algorithm for Distributed Memory Comput-
ers. In: Yang, L.T., Rana, O.F., Di Martino, B., Dongarra, J. (eds.) HPCC 2005.
LNCS, vol. 3726, pp. 796–806. Springer, Heidelberg (2005)

3. Bui, A., Datta, A., Petit, F., Villain, V.: Snap-Stabilization and PIF in Tree Net-
works. Distributed Computing 20(1), 3–19 (2007)

4. Dijkstra, E.: Self-Stabilizing Systems in Spite of Distributed Control. Communica-
tions of the ACM 17(11), 644 (1974)

302 S. Pomportes et al.

5. Djukic, P., Valaee, S.: Link Scheduling for Minimum Delay in Spatial Re-Use
TDMA. In: Proc. of IEEE INFOCOM 2007, pp. 28–36 (May 2007)

6. Dolev, S., Israeli, A., Moran, S.: Uniform Dynamic Self-Stabilizing Leader Election.
Distributed Algorithms, 167–180 (1997)

7. Grönkvist, J.: Assignment Methods for Spatial Reuse TDMA. In: MobiHoc 2000:
Proc. of the 1st ACM International Symposium on Mobile Ad Hoc Networking &
Computing, pp. 119–124. IEEE Press, Piscataway (2000)

8. Herman, T., Tixeuil, S.: A Distributed TDMA Slot Assignment Algorithm for
Wireless Sensor Networks. Algorithmic Aspects of Wireless Sensor Networks, 45–
58 (2004)

9. Kanzaki, A., Uemukai, T., Hara, T., Nishio, S.: Dynamic TDMA Slot Assignment
in ad hoc Networks. In: Proc. of the 17th International Conference on Advanced
Information Networking and Applications, p. 330. IEEE Computer Society, Los
Alamitos (2003)

10. Kodialam, M., Nandagopal, T.: Characterizing the Capacity Region in Multi-Radio
Multi-Channel Wireless Mesh Networks. In: Proceedings of the 11th Annual Inter-
national Conference on Mobile Computing and Networking, pp. 73–87. ACM, New
York (2005)

11. Kumar, V., Marathe, M., Parthasarathy, S., Srinivasan, A.: Algorithmic Aspects
of Capacity in Wireless Networks. In: Proc. of the 2005 ACM SIGMETRICS In-
ternational Conference on Measurement and Modeling of Computer Systems, p.
144. ACM, New York (2005)

12. Rhee, I., Warrier, A., Min, J., Xu, L.: DRAND: Distributed Randomized TDMA
Scheduling for Wireless ad-hoc Networks. In: Proc. of the 7th ACM International
Symposium on Mobile Ad Hoc Networking and Computing, p. 201. ACM, New
York (2006)

13. Salonidis, T., Tassiulas, L., Tassiulas, R.: Distributed on-Line Schedule Adaptation
for Balanced Slot Allocation in Wireless Ad Hoc Networks. Tech. Rep. In: Proc.
IEEE International Workshop on Quality of Service, Montreal,Canada (2002)

14. Sivrikaya, F., Busch, C., Magdon-Ismail, M., Yener, B.: ASAND: Asynchronous
Slot Assignment and Neighbor Discovery Protocol for Wireless Networks. In: OP-
NETWORK 2007, Washington DC, pp. 27–31 (2007)

15. Wang, W., Wang, Y., Li, X., Song, W., Frieder, O.: Efficient Interference-Aware
TDMA Link Scheduling for Static Wireless Networks. In: Proceedings of the 12th
Annual International Conference on Mobile Computing and Networking, pp. 262–
273. ACM, New York (2006)

Low Memory Distributed Protocols for
2-Coloring

Amos Israeli1, Mathew D. McCubbins3,
Ramamohan Paturi2,�, and Andrea Vattani2

1 Netanya Academic College
amos.israeli@netanya.ac.il

2 University of California, San Diego
{paturi,avattani}@cs.ucsd.edu

3 University of Southern California
mmccubbins@marshall.usc.edu

Abstract. In this paper we present new distributed protocols to color
even rings and general bipartite graphs. Our motivation is to provide
algorithmic explanation for human subject experiments that show hu-
man subjects can achieve distributed coordination in the form of 2-
coloring over networks with a simple communication protocol. All our
protocols use low (often constant) memory and reach a solution in fea-
sible (polynomial rounds) and sometimes optimal time. All the proto-
cols also have short message length and use a broadcast communication
strategy. Our contributions include two simple protocols RingGuess

and GraphCoalescing for rings and general bipartite graphs, which
can be viewed as candidates for natural human strategies. We present
two other protocols RingElect and GraphElect which are optimal or
nearly optimal in terms of the number of rounds (proportional to the
diameter of the graph) but require somewhat more complex strategies.
The question of finding simple protocols in the style of RingGuess and
GraphCoalescing that run in time proportional to diameter is open.

1 Introduction

In this paper we present new and simple distributed algorithms for 2-coloring in
a basic model of distributed computing where each node has only local informa-
tion about the network and requires very low memory. Our work is motivated
by recent studies of social networks in which human subject experiments for
achieving distributed coordination were conducted [14,11,12,15,8]. In particular,
the experiments in [11,15,8] focus on the 2-coloring problem. In these experi-
ments, each subject is a node of the underlying network, which is 2-colorable,
and subjects are motivated (in the form of cash payment) to achieve a legal

� This research is supported by NSF grant CCF-0905645 from the Division of Com-
puting and Communication Foundations. Any opinions, findings and conclusions or
recommendations expressed in this material are those of the authors and do not
necessarily reflect the views of the National Science Foundation.

S. Dolev et al. (Eds.): SSS 2010, LNCS 6366, pp. 303–318, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

304 A. Israeli et al.

2-coloring of the network. Each subject communicates with its neighbors us-
ing colored flags, and can change his/her color as many times as he/she wants.
The network topologies considered are bipartite (2-colorable) graphs. Kearns,
Suri and Montfort [11] show that subjects in an experimental setting can in-
deed solve a distributed version of the graph coloring problem using only local
information when they are incentivized to work collectively. McCubbins, Paturi
and Weller [15] extend the work of Kearns et. al. by considering asymmetric
incentives: if a proper coloring is achieved, the participants ending with a specic
color are paid more than the participants ending with the other color. The effect
during the game is that participants are reluctant to leave the special color for
the other one and therefore proper colorings are reached in longer times.

The fact that human subjects are able to achieve proper colorings is some-
what surprising given the limited resources they have at their disposal during
the experiments: in terms of memory, they can only rely on their individual
memorization skills; in terms of knowledge of the network and communication,
they just have a local perspective and can only interact with their immediate
neighbors in the network.

The goal of this paper is to provide an algorithmic interpertation for the
success of the human agents in solving the 2-coloring problem over bipartite
networks. We ask whether there exist protocols that are natural in the sense of
closely representing the experimental conditions. In particular, we ask whether
there exist protocols that rely solely on local information, use small amount
of memory, have no knowledge of the size of the underlying graph, broadcast
messages, and employ simple logic so they can be viewed as candidates for human
strategies.

1.1 Model

We consider a distributed message-passing model which is synchronous, anony-
mous and uniform. That is, nodes in the network do not have distinct identifiers
and do not have knowledge of the size of the network (or other parameters such
as diameter). Moreover, they all run the same protocol.

Given our assumptions of anonymity and uniformity of the network, there
exists no (even randomized) protocol that computes a coloring of the network
and terminates (this impossibility result about termination is famous for the
leader election problem, e.g. [3], and it extends easily to the coloring problem).
However, we observe that the experiments in [11,15] do not require the human
subjects to terminate but only to obtain a proper coloring within the allocated
time. The low memory protocols in [16] for the consensus problem are also not
concerned with guaranteeing termination.

We recall that for synchronous networks the running time of a protocol is
given by the number of communication rounds. In each round a processor re-
ceives messages from its neighbors, performs a local computation, and sends
messages to its neighbors. Finally, we remark that all our protocols work in a sim-
ple broadcast model, where a node sends the same message to all its neighbors.

Low Memory Distributed Protocols for 2-Coloring 305

The broadcast model is more suitable for capturing the setting of the coloring
experiments in [11,15,8]. Indeed, in coloring experiments, the subjects are not
allowed to communicate with each other except that they are allowed to change
their color and observe the changes in the color of a neighbor. Thus, a subject
can only communicate with the neighbors by signaling or broadcasting a color
change.

1.2 Results

Our results consist of constant/low memory protocols to solve the 2-coloring
problem on (even) rings as well as on general bipartite graphs, and to compute
optimal colorings of preferential attachment graphs. We remark that these graphs
encompass most of the topologies considered in the experiments of [11,15,8]. For
the ring, we present two constant-memory protocols. The first one RingGuess

is extremely simple and converges in time quadratic in the size of the network.
RingGuess can be viewed as a candidate for a natural human strategy. The
second protocol RingElect achieves optimality in terms of time (linear number
of rounds) while only requiring constant memory. In addition, this protocol can
elect a leader in optimal time1.

For general bipartite graphs with n nodes and m edges, we present a protocol
GraphCoalescing which can be viewed as a generalization of RingGuess,that
computes a 2-coloring in O(nm2 log n) (or O(Δn2) for Δ-regular graphs) rounds
with ea ch node u using O(log δu) bits of memory2. GraphCoalescing is also
very simple and is a candidate for a human strategy. We also present the protocol
GraphElect which employs a leader election strategy. GraphElect requires
up to O(log n) memory without requiring the knowledge of n. We show that
GraphElect computes 2-coloring in O(log n + D) (essentially optimal) rounds
where D is the diameter of the graph. Finally, for bipartite graphs, we discuss
how asymmetric incentives can slow down the convergence of the protocols.

Recently, Mossel and Schoenebeck [16] have presented low memory protocols
for solving the consensus problem and a variation of it called the majority coor-
dination problem. They analyze the consensus problem in social networks and
parameterize social network computation by the amount of memory allocated to
each node. Although their work is similar in spirit to ours in terms of the focus
on low memory algorithms, their model diverges from ours in several aspects (see
Section 1.1). Our focus on natural strategies calls for simplest possible protocols.

The work by Chaudhuri, Graham and Jamall [6] is also motivated by the
coloring experiments in [11], but their setting is entirely different in that nodes
never change their color. They show that a greedy strategy properly colors a
network with high probability if the number of colors is at least Δ + 2, where Δ
is the maximum degree of the network.

1 To the best of our knowledge, optimal leader election protocols are not known for
our setting. (See section 6.3 of [18] for a summary of leader election protocols. Also
see subsection Model for details about our setting.)

2 Here δu denotes the degree of u.

306 A. Israeli et al.

2 Rings

Rings are among the most studied topologies in distributed coloring experiments
as well as in distributed computing. In this section we analyze two constant-
memory protocols for the ring topology. The first protocol, RingGuess, is nat-
ural and is a plausible candidate for subject strategies in rings. A slight variant
of this protocol is also used in [11] as a comparative tool with respect to human
subject performance3. We show that RingGuess converges to a 2-coloring in
Θ(n2) rounds (in expectation) in a ring with n nodes. The protocol does not
involve any explicit message passing except that each node has access to the
color of its neighbors. Its message complexity defined as the total number of
color changes by all the nodes is bounded by O(n2 log n).

Our analysis of RingGuess raises the question whether there exists a constant
memory protocol that converges in linear number of rounds, which is clearly
optimal for the ring. We present a new protocol, RingElect, to 2-color a ring
which uses constant memory and converges in O(n) rounds. RingElect employs
a leader election strategy, and also elects a leader within the same resource
bounds.

At the end of this section, we discuss how asymmetric incentives will slow
down the protocols.

2.1 A Natural Protocol

Consider a situation that frequently occurs in the experiments of [11,15,8] when
at some point during the game a subject sees a neighbor choosing the same color
as his/hers. In this situation the subject may either change its color or wait for
its neighbor to change its color. One could conceivably use timing strategies to
make the decision. However it is not possible to implement timing strategies in
bounded memory and without the knowledge of the size of the ring. As such, the
most natural action is probably to change color with some (constant) probability.

With this motivation, we introduce protocol RingGuess: Initially, each node
has an arbitrary color. Any node which has the same color as one of its neighbors
repeatedly executes the following 2-round protocol:

1. Change your color with probability p = 1
2 , while memorizing your old color

and the colors of your two neighbors.
2. If any of your neighbors changes its color during the first round, restore the

previous color.

We now present the analysis of protocol RingGuess. Let a conflict be an edge
with nodes of the same color, and the distance between two conflicts be the
3 In [11] the protocol bears the name distributed heuristic and works for any number

c of colors. When restricted to the case c = 2 is essentially RingGuess but is used
asynchronously. They simulate this algorithm on the networks used in human subject
experiments to compare the steps required by the algorithm with the time to solve
the problem by the subjects. No algorithmic analysis is provided in [11].

Low Memory Distributed Protocols for 2-Coloring 307

minimum number of edges that separates them. We observe that since a node
with no conflicts does not change its color, and one with conflicts ends the 2-
round protocol with a different color only if both its neighbors did not change
their color, the total number of conflicts on the ring never increases. The 2-
round protocol RingGuess ‘moves’ the conflicts (clockwise or counterclockwise)
with some probability. Also, when two conflicts have a node in common (i.e., 3
consecutive nodes have the same color), there is a probability of p3 = 1

8 that
the two conflicts vanish – this happens when the middle node is the only one
flipping its color.

The convergence proof of the protocol will make use of random walks. The
following lemma bounds the number of steps for a random walk to terminate.

Lemma 1. Let Wk = (X0, X1, . . .) be a unidimensional random walk on a path
of nodes 1, 2, . . . , k, . . . starting on the the first node (i.e. X0 = 1) and termi-
nating when the k-th node is reached or surpassed. For δ ∈ {1, 2} and j ≥ 1,
consider the following transition probabilities:

Pj→j−δ =
{

qδ if j − δ > 0
0 if j − δ ≤ 0

Pj→j+δ = qδ

Pj→j = 1 −
∑

δ∈{1,2}
(Pj→j−δ + Pj→j+δ)

where Pi→j = Pr[Xt+1 = j|Xt = i], q1, q2 > 0 and 2(q1 + q2) ≤ 1. Then the
expected time for Wk to terminate is at most k2

q1+4q2
.

Proof (sketch). Let hi be the expected value of the random variable representing
the number of steps to reach (or surpass) state k from state i. Then the following
system S∗ of equations holds

h1 = c1 + q1h2 + q2h3 + (1 − q1 − q2)h1
h2 = c2 + q1(h1 + h3) + q2h4 + (1 − 2q1 − q2)h2
hk = 0
hk+1 = 0
For 3 ≤ j ≤ k − 1,
hj = cj + q1(hj−1 + hj+1) + q2(hj−2 + hj+2) + (1 − 2q1 − 2q2)hj

with cj = 1, for 1 ≤ j ≤ k − 1.
Recall that our goal is to show that h1 ≤ k2

q1+4q2
. Let h1 = x∗

1, h2 = x∗
2, . . . ,

hk+1 = x∗
k+1 be the solution of this system S∗, and let h1 = x̃1, h2 = x̃2, . . . ,

hk+1 = x̃k+1 be the solution of the system S̃ obtained by setting c1 = 1, cj = 2,
for 2 ≤ j ≤ k − 1, and replacing equation hk = 0 with hk = k2−(k−1)2

q1+4q2
. We

observe that it has to be x̃j ≥ x∗
j for any 1 ≤ j ≤ k + 1. Using induction, we

show x̃j = k2−(j−1)2

q1+4q2
for 1 ≤ j ≤ k + 1. From this, we conclude that h1 = x∗

1 ≤
x̃1 = k2

q1+4q2
. ��

308 A. Israeli et al.

We apply Lemma 1 to bound the number of rounds required for two conflicts in
a ring to come close to each other. This will be the main ingredient to establish
the main theorem.

Lemma 2. Consider any 2-coloring with m conflicts such that no conflicts are
at distance less than 2. Then, after at most n2

2p2m2 expected number of rounds,
there will be two conflicts at a distance less than 2.

Proof. We observe that after an execution of the 2-round protocol, any conflict
(independently of the others) will move one edge clockwise with probability p2,
one edge counterclockwise with probability p2, and it will not change position
with probability 1 − 2p2. Fix two consecutive conflicts and let D be a random
variable representing the distance between them. After an execution of the 2-
round protocol, D will (a) increase by 2, as well as decrease by 2, with probability
(p2)2 = p4; (b) increase by 1, as well as decrease by 1 with probability 2p2(1 −
2p2) = 2p2 − 4p4; (c) not change with probability 1 − 2(p4 + (2p2 − 4p4)) =
1 − (4p2 − 6p4).

We observe that the behavior of D can be interpreted as the random walk
Wn in Lemma 1 using q1 = 2p2 − 4p4 and q2 = p4 (We use Wn because the
distance between two conflicts is always less than n.) Lemma 1 assures D will
be less than 2 in at most n2

q1+4q2
= n2

2p2 expected number of rounds.
Now, in order to prove the lemma, we will show that the expected time for

two conflicts out of the total m conflicts to be at a distance less than 2 is no
larger than the expected time for a random walk W	n/m
 to terminate. Consider
the Markov chain D̄0, D̄1, . . ., with D̄t = (D(1)

t , D
(2)
t , . . . , D

(m)
t), where D

(i)
t is

the random variable representing the distance between the i-th and (i + 1)-st
conflict on the ring at time t. D

(m)
t represents the distance between the last

and the first conflict at time t. We couple this Markov chain with another one,
Mt = mini D

(i)
t , that keeps track of the distance between the closest pair of

conflicts for t ≥ 0. Now we observe that Mt ≤
⌊

n
m

⌋
, and that Mt approaches a

value less than 2 at least as fast as the random walk W	n/m
 terminates. This
observation along with Lemma 1 concludes the proof. ��

The main theorem of this section follows easily by Lemma 2.

Theorem 1. Protocol RingGuess computes a 2-coloring of the ring in Θ(n2)
expected number of rounds and O(n2 log n) bit complexity.

Proof. By Lemma 2, starting with a configuration with m conflicts, it takes
at most n2

m2 expected number of rounds for two conflicts to be at a distance
less than 2 since p = 1

2 . We observe that when two conflicts are at a distance
less than 2, there is a constant probability that the two conflicts vanish, de-
creasing the total number of conflicts by two. Therefore, the expected num-
ber of rounds for two conflicts to vanish is bounded by O(n2

m2). We conclude
that the expected number of rounds to resolve all the conflicts is bounded by

Low Memory Distributed Protocols for 2-Coloring 309

∑n
m=1 c n2

m2 = O(n2). Analogously the number of messages (or color changes)
is bounded by

∑n
m=1 2cm n2

m2 = O(n2 log n) since the expected number of color
changes in a configuration with m conflicts is 2m. The bound on the num-
ber of rounds is tight since if started with two conflicts at Ω(n) distance, it
takes Θ(n2) expected number of rounds for the conflicts to be at a distance less
than 2. ��

2.2 An Optimal Protocol for Rings

In this section we present an optimal protocol, RingElect, for ring networks:
it uses constant memory and converges in Θ(n) expected number of rounds.
The protocol elects a leader from which a 2-coloring of the ring follows. In its
current form, RingElect is not self-stabilizing. We postpone the discussion on
stabilizing RingElect to the final paper.

We describe RingElect in a more restrictive model, where local orientation
is assumed. Specifically, a node is capable of sending a message only to a specific
neighbor, and on reception of a message can distinguish which of its neighbors
sent that message. This assumption is relaxed later.

The intuition behind the protocol RingElect is the following. We begin in
a configuration where all nodes are leaders. Each leader plays two local leader
elections on the segments of the ring connecting it to its clockwise-next and
counterclockwise-next leaders. A leader losing in both its segments becomes slave
and sends a message notifying that it is conceding the election to the leaders at
the end of its segments. A concede message has the extra function of aborting
all the election messages encountered whilst traversing the segment. A detailed
description of the protocol follows. As mentioned before, we consider two types
of messages, concede and contest. Each message msg has a field msg.type to
denote its type. Concede messages are sent by nodes who became slaves. Contest
messages are generated by leaders (a) during the first round, (b) on reception of
a concede message, and (c) on reception of a contest message. A contest message
msg carries a bit msg.b indicating the position of the leader who sent it and a
“history” msg.h ∈ {�, 0, 1} indicating what generated it: in cases (a) and (b) the
history is set to �; in case (c) the history is set to the election bit contained in
the received contest message.

Each node has the following local variables: status∈ {start,leader,slave} (ini-
tialized with start); for i ∈ {l, r}, msgi to remember the latest message received
from direction i; bi to store the random bit used for the election on the segment
in direction i; losingi to remember whether it is “losing” the election on the
segment in direction i. Each node runs the protocol in figure 1 in each round.

A portion of the ring between nodes u and v form a segment at round t if
at round t, u and v are leaders and all other nodes between u and v are slaves.
At the beginning we have exactly n segments. As the protocol progresses, the
number of segments goes down and the segments get larger. At the point when
there is only one leader, all segments vanish.

310 A. Israeli et al.

Receive messages from both the neighbors and update variables msgi

If status = start then
For both i ∈ {l, r} do Election(i, �)
status := leader

Elsif status = leader then
For both i ∈ {l, r} do

If msgi is received in the current round then
Set losingi to the value of the predicate:
(msgi.type = contest and msgi.b = 1 and msgi.h = 0 and bi = 0)

If losingi = true for both i ∈ {l, r} then
Send concede messages to both neighbors, and status := slave

Else for both i ∈ {l, r} do
If msgi is received in the current round then

If msgi.type = contest then Election(i, msgi.b) else Election(i, �)
Elsif status = slave then

Forward message msgl to neighbor r unless msgl.type = contest
and r sent a concede message in the current or in the previous round
Forward message msgr to neighbor l unless msgr.type = contest
and l sent a concede message in the current or in the previous round

Election(i, h):
bi := random bit
Send a contest message msg with msg.b := bi

and with msg.h = h to neighbor i

Fig. 1. RingElect protocol

Analysis of RingElect

The analysis of the protocol is not trivial. We proceed as follows: first, we observe
some properties of the protocol and give useful definitions; then we give a careful
characterization of the possible configurations of any segment at any round. The
properties of these configurations will imply that the protocol is consistent, that
is, there is always at least a leader at any round. Finally, we prove that the
convergence of the protocol is optimal.

We begin by observing the following properties of the protocol RingElect.
During any round if a node becomes a slave, it will remain a slave for all subse-
quent rounds. For every node and for all i ∈ {l, r}, bi is the same as the bit in
the most recent contest message sent in the direction i. Also u receives contest
messages only from v from the direction of v, and v only from u from the direc-
tion of u for the entire duration u and v are the leaders of a segment. When one
of the two nodes in a segment becomes a slave a concede message will be sent by
the slave toward the other leader of the segment. Any contest message received
by a slave node which has received a concede message in the current or previous
round going in the opposite direction will not be forwarded further.

We say that a message msg is crucial if msg.type = contest, msg.b = 1 and
msg.h = 0. Similarly, a message variable msgi of a leader node is crucial at the
end of round t if it holds a crucial message at the end of round t. For a segment

Low Memory Distributed Protocols for 2-Coloring 311

with left-leader u and right-leader v, the variables of the segment are the variable
msgr of u and the variable msgl of v.

Henceforth, we will say that a message m is on a segment at the end of round
t, if during round t a node u of that segment sent m to another node v of that
segment. The direction of a message is defined by who sent the message and
who received it. We say that two messages m from u to v and m′ from u′ to
v′ on a segment are converging (resp. diverging) if a path u, v, . . . , v′, u′ (resp.
v, u, . . . , u′, v′) is in the segment. Finally, for a segment of leaders u and v, and
for a message m on the segment directed toward u, any message in between m
and v is said to be behind m.

Definition 1. A segment is in a safe configuration at the end of round t if the
following properties hold at the end of round t.

(i) There are one or two concede messages on the segment.
(ii) No variable of the segment is crucial.
(iii) Every crucial contest message on the segment is converging to a concede

message on the segment.
(iv) If there are two concede messages on the segment then they are diverging

and no other message is in between them. If there is only one concede
message on the segment, then there can be only one message behind it.
This message is non-crucial and is traveling in the same direction as the
concede message.

Definition 2. A segment is in a contest configuration at the end of round t if
the following properties hold at the end of round t.

(a) There are exactly two contest messages and no concede messages on the
segment.

(b) At most one variable of the segment is crucial.
(c) Crucial messages on the segment travel in the same direction. Also if a vari-

able of the segment is crucial, crucial messages travel toward the leader hold-
ing that variable.

Lemma 3. At the end of any round t ≥ 1, any segment is either in a safe
configuration or in a contest configuration.

Proof. We prove the lemma by induction on t. During round t = 1 every node
sends a non-crucial contest message per segment, therefore at the end of the
round there will be two non-crucial contest messages (history of messages is set
to �) per segment (also no leader has crucial variables). Therefore, at the end of
round t = 1 each segment is in a contest configuration.

By induction suppose that the lemma holds at the end of round t, and consider
any segment. First suppose that the segment is in a safe configuration at the end
of round t. If no concede messages are received by any of the two leaders at the
beginning of round t+1, it is easy to check that there will be a safe configuration
at the end of round t+1. Otherwise a leader receiving a concede message at the
beginning of round t+1, will send a non-crucial contest message on the segment

312 A. Israeli et al.

(the history of the message is set to �). Therefore at the end of round t + 1 the
segment will be either in a safe configuration (if at least a concede message is
present) or in a contest configuration (if no concede messages are left).

Now suppose that the segment is in a contest configuration at the end of round
t. Consider first the case when no leader of the segment becomes a slave during
round t+1. We want to prove that at the end of round t+1 there will be a contest
configuration. Note that property (a) holds at the end of round t + 1 because
a slave receiving a contest message will forward it, while a leader receiving a
contest message will send another contest message on the segment (recall that
we are assuming that leaders do not become slaves during round t+1). Property
(b) holds at the end of round t + 1 because property (c) guarantees that only
one leader can receive a crucial message at the beginning of round t + 1 (and
always by (c) the other leader cannot have a crucial variable). Property (c) holds
at the end of round t + 1 because a leader that receives a crucial message at the
beginning of round t+1, will send a non-crucial contest message on the segment
(the history of the message will be 1 since the received message is crucial). Now
consider the case when a leader of the segment becomes a slave during round
t + 1. A leader becomes a slave only if both its variables are crucial. Therefore
property (b) implies that only one leader of the segment can become a slave
during round t + 1. Let u be this node, and let v and w be the other leaders of
the two segments of u. Note that since u becomes a slave during round t + 1, it
must be the case that both segments of u are in a contest configuration at the
beginning of round t + 1 (if not, one of u’s variable would not be crucial). We
want to prove that at the end of round t + 1 the new segment defined by the
leaders v and w will be in a safe configuration. Property (i) and (iv) are trivial
since u will send two concede messages on its two sides. By property (b) both
v and w have non-crucial variables at the end of round t, and since all crucial
contest messages are traveling toward u by (c), properties (ii) and (iii) will hold
at the end of round t + 1. ��

From Lemma 3, property (ii) of safe configurations and properties (b)-(c) of
contest configurations, it follows that there is always at least one leader.

Corollary 1. At any round t there exists at least one leader.

We can now prove that the protocol converges in optimal time.

Theorem 2. Protocol RingElect elects a leader and computes a 2-coloring in
O(n) expected number of rounds and O(n log n) bit-complexity.

Proof. Fix a round t. For a leader u, let the scope of u be the union of the two
segments of u (notice that scopes are not disjoint and each scope contains exactly
3 leaders.) Let l〈t〉 be the numbers of leaders at round t. Let T be a maximal
set of node-disjoint scopes. Then it has to be |T | ≥ � l〈t〉

3 �. We observe that at
least (�T

2 � − 1) scopes of T have length at most 6n
l〈t〉 (otherwise the remaining

scopes of T would contain at least (|T |
2 +1) 6n

l〈t〉 > n distinct nodes.) Consider any
of these “short” scopes. Observe that at most every 12n

l〈t〉 rounds either at least

Low Memory Distributed Protocols for 2-Coloring 313

one of the three leaders has become a slave or all the nodes have drawn new
bits for the elections on the two segments of the scope. In each of these phases
there is a constant probability that the central leader of the scope becomes a
slave (note that the two segments are a in contest configuration assuming the
two non-central leaders do not become slaves). Therefore, we can conclude that
in expectation after O(n

l〈t〉) rounds all the short scopes will have lost at least

one leader. Thus, in expectation l〈t+O(n/l〈t〉)〉 ≤ l〈t〉 − (|T |
2 − 1) ≤ l〈t〉

c for some
constant c > 1. That is, the number l〈t〉 of leaders at some round t decreases
by a constant factor of c after a phase of c′ n

l〈t〉 rounds (for some constant c′).
Note that given c′ ≥ 12 we can assume that the election bits in a phase are
independent from the bits of the previous phase because the leaders we consider
are playing in short scopes, and therefore draw new bits every 12n

l〈t〉 rounds. By
iterating this argument, the expected number of rounds in order to reduce the
number of leaders from l to 1 is proportional to n

l

∑logc(l)
i=0 ci = O(n). With a

similar analysis it is possible to show that the expected number of messages is
O(n log l) = O(n log n). The existence of at least one leader is established in
Corollary 1.

We will now explain how a 2-coloring can be achieved. In the first round
every node chooses a color for itself. Every time that a leader receives a concede
message, it will start to propagate its coloring. A slave who receives two non-
compatible colorings by its two neighbors will not propagate any of the two.
When only one leader is left, the coloring of this leader will be propagated
through the entire network (in linear number of rounds). ��

Relaxation of the model. We will briefly describe how to modify the protocol
RingElect so that only broadcast is used. We will still assume that when a node
receives a message, it can distinguish which neighbor broadcast it4. The key prop-
erty that will use is the fact that a slave never receives two messages coming from
the same neighbor in two consecutive rounds. (This property can be shown to hold
inductively.) Using this property we can modify the protocol as follows. A slave
node u will accept (and therefore broadcast) a message m broadcast from a slave
neighbor v iff at least one of these conditions holds: (i) in the previous round u
did not accept m from the other neighbor; (ii) v is broadcasting two messages
(this happens only if in the previous round v accepted the message m from u and
a message m′ from its other neighbor; in this case, if m
= m′, u knows what mes-
sage to ignore, otherwise u will accept any of the two). A slave node u will accept a
message m broadcast from a leader neighbor w iff in the previous round u broad-
cast a message received by the other neighbor. Similar rules can be used for leader
nodes. The only major modification is the following: when a leader accepts two
messages in the same round (coming from the two different segments) and does
not become a slave, it will draw only one bit and use (broadcast) it for both seg-
ments. This modification of the election process does not affect the performance
of the protocol which will still converge in linear time.
4 Note that this is a natural assumption. For example, this assumption holds for the

coloring experiments in [11,15,8].

314 A. Israeli et al.

Asymmetric incentives. As mentioned in the introduction, the experiments
in [15] introduce asymmetric incentives: if a proper coloring is achieved, the
participants ending with a specific color are paid more than the participants
ending with the other color. Longer convergence time has been observed in this
setting.

We wish to quantify the influence of these asymmetric incentives on our pro-
tocols. We model “selfish” participants in the following way. We say that a node
is Byzantine if, when supposed to give up the special color or become a slave, it
does so with probability q strictly less than one. Now consider a ring with (at
least) two Byzantine nodes at odd distance Ω(n). (Note that if we place two
Byzantine nodes at random on the ring, this situation will happen with constant
probability.) Then, with proofs similar to the ones presented, it is possible to
show that the convergence time of the protocols gets slower in the following way:
RingGuess will converge in Θ(n2

q2 + 1
q3) time; and RingElect will converge in

time O(n
q).

An interesting aspect caused by the requirement on constant memory, is that
detection of Byzantine nodes is impossible for the other nodes.

3 General Bipartite Graphs

We now turn our attention to general bipartite graphs. First we present a simple
protocol that computes a 2-coloring of any bipartite graph in poly(n) time. Each
node v uses an amount of memory proportional to the logarithm of its degree.
Secondly, we show that using a little more memory per node, namely O(log n)
bits, we develop a protocol whose convergence time is essentially optimal.

3.1 A Coalescing Particles Protocol

Without loss of generality let the color palette be {0, 1}. Consider the following
simple protocol that we call GraphCoalescing.

In the first round every node chooses a random color b and sends a ”sugges-
tion” b̄, the complement of b, to a random neighbor. In every round t ≥ 2, each
node u receiving at least one suggestion:

(a) randomly chooses a suggestion b among the received ones;
(b) colors itself with b; and
(c) randomly chooses a node w in the set composed of its neighbors and itself;

if w is a neighbor sends suggestion b̄ to w, otherwise re-suggests b to itself
for the next round.

Observe that each node u uses O(log δu) bits of memory to select a random
neighbor.

The idea of this protocol is that every node proposes a coloring. Each proposal
takes a random walk on the graph, and when two (or more) proposals meet, only
one of them will survive (the proposals will coalesce into one) and continue its
random walk. Now suppose that at some point only one proposal is left: then

Low Memory Distributed Protocols for 2-Coloring 315

it will walk randomly through the network, and will lead to a proper coloring
once all nodes have been visited. Viewing proposals as tokens, it follows that the
protocol can also be used to provide a token management scheme (See [10] for a
similar approach). The following theorem borrows heavily from the literature.

Theorem 3. Protocol GraphCoalescing 2-colors any bipartite graph with m
edges in O(m2n log n) expected number of rounds. If the graph is Δ-regular the
expected number of rounds is O(Δn2).

Proof. In the proof we refer to each proposal as a particle. Let G be a (bipartite)
graph. We observe that part (c) of the protocol implies that each particle is
performing a random walk on the graph G′ that is obtained from G by adding
self-loops to each node. Therefore, since G′ is not bipartite, the random walk of
each particle is aperiodic. The expected number of rounds required for coloring
the graph is bounded by the expected number Tcoalesce of rounds for the particles
to coalesce to a single particle, plus the cover time Tcover (that is, the expected
number of rounds for a single particle to visit all the nodes). A classic result
in [1] shows that the cover time of a graph is Tcover = O(mn). By [2, Section
14.3], we have that Tcoalesce = O(Δn2) for Δ-regular graphs, and Tcoalesce =
O(Tcat&mouse log n) for general graphs, where Tcat&mouse is the time required
for two random walks to meet. For non-bipartite graphs it is well-known that
Tcat&mouse = O(m2n). The theorem follows. ��

We observe that the protocol (as it is) is not suitable for a broadcast model
because nodes must be able to send messages to a specific neighbor. We now
argue that this issue can be addressed if we observe the isomorphism between
the coalescing particles process and the voter model. In the voter model each
node starts with an opinion (a proposal in our case). As time passes, nodes
modify their opinions in the following way. At each step, each node changes its
opinion to the opinion of a random neighbor or stick to its opinion where all
the options are equally probable. It is known that the expected time for only
one opinion to survive (the number of opinions can only decrease with time) is
the same as the expected time for all the particles to coalesce (e.g. see [7]). This
observation easily leads to a broadcast protocol with the same guarantees.

3.2 A Time-Optimal Protocol

In this section we present GraphElect, a protocol that uses O(log n) memory
in expectation and computes a 2-coloring of any bipartite graph in O(D + log n)
expected number of rounds, where n and D are size and diameter of the graph
respectively. Any distributed protocol that 2-colors general bipartite graphs re-
quires Ω(D) rounds: therefore GraphElect is time-optimal in graphs of diam-
eter at least Ω(log n).

We now describe the protocol GraphElect. At any given stage, a processor
can be either a leader or a slave. At the beginning of the protocol all processors
are leaders. Each processor presents to its neighbors a variable Leading-Rank
(initial value 0), and its color (initial value either 0 or 1). In addition, each

316 A. Israeli et al.

processor keeps locally a variable Rank (initial value 0). At the beginning of each
round, a processor reads the state variables of all its neighbors and computes
the maximal leading rank among all its neighbors. The processor holding that
maximal leading rank is the processor’s leading neighbor. If there is more than
a single processor holding the maximal leading rank, the leading neighbor is
elected arbitrarily from among the leading processors. If the maximal leading
rank is larger than the processor’s own rank, the processor adjusts its color to
be the opposite color of its leading neighbor, and becomes a slave (if it was a
leader). A slave keeps doing this simple routine forever and never gets a chance
to become a leader again.

In addition to all aforementioned variables, a leader also holds a timer whose
initial value is zero. The nodes counts down from timer value to zero. When
the count goes to 0, if the processor is still a leader, it increments its rank and
leading rank by 1. Then it updates its timer value to be twice the old timer
value, plus a random value in {0, 1}.

The following lemma is pivotal for the analysis of the protocol.

Lemma 4. Let u and v two nodes in the graph. If, at the beginning of a certain
round, u is still a leader and its rank is greater than the rank of v, then for the
rest of the computation there will be some node (possibly u) with rank greater
than the rank of v.

Proof. Let W
〈u〉
k be the value of the timer of u right after the k-th update. W

〈u〉
k =

2 · W
〈u〉
k−1 + B

〈u〉
k (as long as u is a leader), where the B

〈u〉
k ’s are i.i.d. random

variables taking values from {0, 1}. We observe that W
〈u〉
k =

∑k
i=0 2k−iB

〈u〉
k .

Now consider the first round t∗ when the rank of u is greater than the rank
of v. During round t∗, u must have updated its timer, and let this one be its
k-th update. Note that it must be the case that W

〈u〉
j = W

〈v〉
j (and therefore

B
〈u〉
j = B

〈v〉
j) for all j < k−1, and W

〈u〉
k−1 < W

〈v〉
k−1 (and therefore B

〈u〉
k−1 < B

〈v〉
k−1).

Now consider the k-th update for u and v. We have that W
〈u〉
k < W

〈v〉
k since

2W
〈u〉
k−1 + B

〈u〉
k ≤ 2W

〈u〉
k−1 + 1 ≤ 2(W 〈v〉

k−1 − 1) + 1 < 2W
〈v〉
k−1 ≤ 2W

〈v〉
k−1 + B

〈v〉
k .

Therefore, W
〈u〉
k rounds after t∗, u will increase its rank to k +1, while the rank

of v can only increase it to k + 1 after at least 1 + W
〈v〉
k > W

〈u〉
k many rounds

from t∗.
By induction, as long as u is a leader, u will have a rank greater than the

rank of v. If at some point u loses its leadership status, it must be that another
node u′ has a rank greater than the rank of u, and thus greater than the rank
of v. ��

The main theorem of this section is the following.

Theorem 4. Protocol GraphElect elects a leader and computes a 2-coloring
of the graph in O(D+log n) expected number of rounds, where D is the diameter
of the graph.

Low Memory Distributed Protocols for 2-Coloring 317

Proof. We will compute the expected time to have only one leader remaining
in the network. Once this event happens, the coloring propagated by the leader
will be adapted by each node eventually thus producing a 2-coloring. Let t(k)
be the minimum round such that there exists a node that is updating its timer
for the k-th time. In other words t(k) is the round during which one or more
nodes achieve the rank k for the first time and k is the largest rank at round
t(k). Also let Lk be the set of nodes with the largest rank k at round t(k).
By Lemma 4, we have that Lk+1 ⊆ Lk for any k. We want to compute the
expected k∗ such that |Lk∗ | = 1. At the beginning L0 contains all the nodes in
the graph, so |L0| = n. At round t(k) we have Lk nodes which will select i.i.d.
random numbers in {0, 1}: we observe that only the nodes that select 0 will be in
Lk+1. Therefore, in expectation, |Lk+1| = 1

2 |Lk|. We conclude that in O(log n)
expected rounds there will be only one node with the largest rank.

At this point we have only one node of largest rank, call it u∗. However we
can still have multiple leaders: for example u∗ might be very far from some other
leader w, and by the time the leading rank is propagated from u∗ to w, w might
have increased its own rank. Note that this cannot happen when the timer length
of u∗ (and therefore of all the other leaders) is at least D. Since, after O(log n)
rounds the u∗’s timer value will be more than 0 with high probability, and the
timer value doubles at each update, we have that after at most O(log n + D)
rounds from round t(k∗) the u∗’s timer value will be at least D. Thus, after
O(log n + D) expected number of rounds there will be only one leader. ��

References

1. Aleliunas, R., Karp, R.M., Lipton, R.J., Lovász, L., Rackoff, C.: Random Walks,
Universal Traversal Sequences, and the Complexity of Maze Problems. In: FOCS
1979, pp. 218–223 (1979)

2. Aldous, D., Fill, J.: Reversible Markov Chains and Random Walks on Graphs,
http://www.stat.berkeley.edu/~aldous/RWG/book.html

3. Attiya, H., Welch, J.: Distributed Computing; Fundamentals, Simulations and Ad-
vanced Topics, 2nd edn. John Wiley & Sons, Chichester (2004)

4. Barabási, A.L., Albert, R.: Emergence of Scaling in Random Networks. Sci-
ence 286(5439), 509–512 (1999)

5. Bollobás, B., Riordan, O., Spencer, J., Tusnády, G.: The degree sequence of a
scale-free random graph process. Random Structures & Algorithms 18(3) (May
2001)

6. Chaudhuri, K., Chung Graham, F., Jamall, M.S.: A network coloring game. In:
Papadimitriou, C., Zhang, S. (eds.) WINE 2008. LNCS, vol. 5385, pp. 522–530.
Springer, Heidelberg (2008)

7. Cooper, C., Frieze, A., Radzik, T.: Multiple random walks in random regular
graphs. SIAM Journal on Discrete Mathematics 23(4), 1738–1761 (2009)

8. Enemark, D., McCubbins, M., Paturi, R., Weller, N.: Good edge, bad edge: How
network structure affects a group’s ability to coordinate. In: ESORICS (March
2009)

9. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. W.H. Freeman, New York (1979)

http://www.stat.berkeley.edu/~aldous/RWG/book.html

318 A. Israeli et al.

10. Israeli, A., Jalfon, M.: Token Management Schemes and Random Walks Yield Self-
Stabilizing Mutual Exclusion. In: PODC 1990, pp. 119–131 (1990)

11. Kearns, M., Suri, S., Montfort, N.: An experimental study of the coloring problem
on human subject networks. Science 313(5788), 824–827 (2006)

12. Kearns, M., Judd, S., Tan, J., Wortman, J.: Behavioral experiments on biased
voting in networks. National Academy of Science (January 2009)

13. Khot, S.: Improved inapproximability results for maxclique, chromatic number and
approximate graph coloring. In: FOCS 2001, pp. 600–609 (2001)

14. Latané, B., L’Herrou, T.: Spatial clustering in the conformity game: Dynamic social
impact in electronic groups. Journal of Personality and Social Psychology 70(6),
1218–1230 (1996)

15. McCubbins, M.D., Paturi, R., Weller, N.: Connected Coordination: Network Struc-
ture and Group Coordination. American Politics Research 37, 899–920 (2009)

16. Mossel, E., Schoenebeck, G.: Reaching Consensus on Social Networks. In: Innova-
tions in Computer Science, ICS (2009)

17. Peleg, D.: Distributed Computing: A Locally-Sensitive Approach. SIAM Mono-
graphs, Philadelphia (2000)

18. Santoro, N.: Design and Analysis of Distributed Algorithms. John Wiley & Sons,
Inc., Chichester (2007)

Connectivity-Preserving Scattering of
Mobile Robots with Limited Visibility�

Taisuke Izumi1, Maria Gradinariu Potop-Butucaru2, and Sébastien Tixeuil2

1 Graduate School of Engineering, Nagoya Institute of Technology
t-izumi@nitech.ac.jp

2 Université Pierre et Marie Curie - Paris 6, LIP6 CNRS 7606, France
{maria.gradinariu,sebastien.tixeuil}@lip6@fr

Abstract. The scattering problem is a fundamental task for mobile
robots, which requires that no two robots share the same position. We
investigate the scattering problem in the limited-visibility model. In par-
ticular, we focus on connectivity-preservation property. That is, the scat-
tering must be achieved so that the disconnection of the visibility graph
never occurs (in the visibility graph robots are the nodes of the graph
and the edges are their visibility relationship). The algorithm we pro-
pose assumes ATOM (i.e. semi-synchronous) model. In these settings our
algorithm guarantees the connectivity-preserving property, and reaches
a scattered configuration within O(min{n, D2 + log n}) asynchronous
rounds in expectation, where D is the diameter of the initial visibility
graph. Note that the complexity analysis is adaptive since it depends on
D. This implies that our algorithm quickly scatters all robots crowded
in a small-diameter visibility graph. We also provide a lower bound of
Ω(n) for connectivity-preserving scattering. It follows that our algorithm
is optimal in the sense of the non-adaptive analysis.

1 Introduction

Background Algorithmic studies about autonomous mobile robots recently emer-
ged in the distributed computing community. In most of those studies, a robot
is modelled as a point in a Euclidean plane, and its abilities are quite limited:
It is usually assumed that robots are oblivious (i.e. no memory is used to record
past situations), anonymous (i.e. no ID is available to distinguish two robots),
and uniform (i.e. all robots run the same identical algorithm). In addition, it
is also assumed that each robot has no direct means of communication. The
communication between two robots is done in an implicit way by having each
robot observe its environment, which includes the positions of the other robots.

The scattering problem is a fundamental tasks in mobile robotics. In this
task, starting from an arbitrary configuration (i.e. arbitrary initial positions for
the participating robots), eventually no two robots share the same position. The
� This work is supported in part by Grand-in-Aid for Young Scientists ((B)22700010)

of JSPS. Additional support from ANR projects R-Discover, SHAMAN, and AL-
ADDIN.

S. Dolev et al. (Eds.): SSS 2010, LNCS 6366, pp. 319–331, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

320 T. Izumi, M. Gradinariu Potop-Butucaru, and S. Tixeuil

scattering algorithm can be considered as the dual problem of gathering (making
all robots reach a common point), and plays an important role to make pattern
formation algorithms self-stabilizing: The pattern formation problem requires
that all robots in the system organize in some geometric shape such as a line or
a circle. If all robots are initially located at the same point, we have to divide
them into a number of different locations to form the geometric pattern. Thus,
the scattering can be seen as the “preprocessing” part of a pattern formation
protocol.

However, because of the hardness of symmetry breaking, it is trivially im-
possible to construct deterministic scattering algorithms. That is, there is no
deterministic way to separate two robots on the same position into different po-
sitions if both of them execute synchronously. Thus, most of previous approaches
to the scattering problem exploit randomization.

Our contribution. This paper investigates the randomized scattering with con-
nectivity preservation in the ATOM model with restricted visibility. Robots are
anonymous and oblivious and have a limited visibility [7,9,1]. That is, each robot
can see only the robots within the unit visibility range (a.k.a. the unit distance
range). The limited visibility is a practical assumption but makes the design of
algorithms quite difficult because it prevents each robot from obtaining global
position information about all other robots. Furthermore, it also brings another
design issue, called connectivity preservation: Oblivious robots cannot use the
previous history of their execution. Hence, once some robot r1 disappears from
the visibility range of another robot r2, r2 can behave as if r1 does not exist
in the system and vice versa. Since the cooperation between r1 and r2 becomes
impossible, it follows that completing any task starting from those situations is
also impossible. This phenomenon can be formally described by using a visibility
graph, which is the graph induced by the robots (as nodes) and their visibility
relationship (as edges). The requirement we have to guarantee in the limited
visibility model is that any task or sub-task in a protocol must be achieved in a
manner that preserves the connectivity of the visibility graph.

Our contribution is to propose a probabilistic scattering algorithm with the
connectivity-preserving property. To the best of our knowledge, this is the first
attempt and result considering scattering problem in the limited visibility model.
We also give the complexity analysis of the proposed algorithm. Interestingly,
the analysis is adaptive in the sense that it depends on the diameter D of the
visibility graph in the initial configuration. Our algorithm achieves scattering
within O(min{n, D2 + log n}) asynchronous rounds in expectation. This implies
that our algorithm quickly scatters all robots initially crowded within a small
diameter visibility graph (i.e., loss of connectivity due to robot movement is
unlikely).

Another interesting point is that we were able to compute the lower bound for
the round complexity of the scattering problem in our model. In spite of highly-
concurrent behaviour of distributed mobile robots, any scattering algorithm can
be as slow as Ω(n) (where n is the number of robots) rounds in the worst case
if they have to preserve the connectivity of the visibility graph.

Connectivity-Preserving Scattering 321

Related work. While the scattering problem is mentioned in the seminal paper
that originated algorithmic for mobile robots [10], only a limited number of
contributions considered this problem.

The initiating paper by Suzuki and Yamashita [10] introduced the scatter-
ing problem and proposed a deterministic algorithm under the assumption that
clones do not exist. Two robots are considered to be clones of each other if
they have the same local x− y coordinate system and the same initial position,
and they always become active simultaneously. In [5], the authors formalize the
scattering problem, and propose a probabilistic algorithm based on the concept
of Voronoi diagrams (this technique typically requires that robots are endowed
with full system visibility at all times). They also show how the scattering can
be used in solving the pattern formation problem. Furthermore, [4] investigates
the time complexity of scattering, and exhibit a relation between the time com-
plexity and the robots capability to detect the multiplicity (the number of robots
sharing the same position).

Flocchini et al. consider a stronger variant of the scattering problem that
requires all robots to reach different positions uniformly distributed over some
discrete space [6]. This direction is also recently explored by Barrière et al. [2].

The limited visibility model was also considered in a number of previous
papers. The first paper using this model considers the convergence problem [1].
Our algorithm builds on ideas shown in this paper. Two papers by Flocchini et
al. [7] and Souissi et al. [9] follow up research in this model and consider the
gathering problem with different variations of the limited-visibility model.

Structure of the paper. The remainder of this paper is organized as follows. In
Section 2, we describe the system model and the basic terminology. Section 3
provides our scattering algorithm, its correctness and analysis. Section 4 shows
a complexity lower bound. Finally, Section 5 concludes the paper.

2 Preliminaries

2.1 Models

The system consists of n robots, denoted by r0, r1, r2, · · · , rn−1. Robots are
anonymous, oblivious and uniform. That is, each robot has no identifier dis-
tinguishing itself and others, cannot explicitly remember the history of its exe-
cution, and works following a common algorithm independent of the value of n.
In addition, no device for direct communication is equipped. The cooperation of
robots is done in an implicit manner: Each robot has a sensor device to observe
the environment (i.e., the positions of other robots). One robot is modelled as
a point located on a two-dimensional space. Observing environment, each robot
can see the positions of other robots transcripted in its local coordinate system.
We assume limited visibility and local-weak multiplicity detection: Each robot can
see only the robots located within unit distance, and can detect whether some
point is occupied by one or more robots but cannot know the exact number of
robots. These two assumptions imply that any knowledge about the number of

322 T. Izumi, M. Gradinariu Potop-Butucaru, and S. Tixeuil

robots n is not available to the robots in the system. Each robot executes the
deployed algorithm in computational cycles (or briefly cycles). At the beginning
of a cycle, a robot observes the current environment (i.e., the positions of other
robots) and determines the destination point based on the deployed algorithm.
Then, the robot moves toward the computed destination. It is guaranteed that
each robot necessarily reaches the computed destination at the end of the cycle.

As the timing model, we adopt ATOM. Any execution follows a discrete time
1, 2, 3 · · ·. At the beginning of each time unit, each robot is active or inactive.
Active ones perform (and complete) one cycle within one time unit. We assume
that any execution is fair, where all robots become active infinitely often. Since
we consider randomized algorithms, the computation is allowed to use random-
bits. We also assume that the number of random bits each robot can use in a
cycle is one1.

Throughout this paper, we use the following notations and terminology: to
specify the location of each robot consistently, we use the global coordinate
system. Notice that the global coordinate system is introduced only for ease the
explanation, and thus robots are not aware of it. Without explicitly stated, the
sentence “coordinate of a point p” implies p’s global coordinate. A location is
the point where at least one robot exists. We define rj(t) to be the coordinate of
rj at t. We say that a location is single if exactly one robot stays on it. All other
locations are called multiple. For any two coordinates A and B, AB denotes
the segment whose endpoints are A and B, and |AB| denotes its length. A
configuration is the multiset consisting of all robot locations. We define C(t) as
the configuration at t. We also define the point set P (C) of a configuration C
to be the set of all locations without multiplicity. For short, we call P (C(t)) the
point set at t, and it is denoted by P (t).

A visibility graph G(t) is the graph where nodes represent robots and an edge
between two robots implies the visibility between two robots. More formally, the
visibility graph at t consists of n nodes {v0, v1, v2, · · · vn−1}. Nodes vi and vj are
connected if and only if ri and rj are visible to each other.

Scheduler and Asynchronous Round. In this paper, we adopt asynchronous
rounds (or rounds for short) term to evaluate time complexity of algorithms,
which is a standard criterion for asynchronous distributed systems. An asyn-
chronous round is defined as the shortest fragment of an execution in which
each robot in the system executes at least once its cycle.

2.2 Connectivity-Preserving Scattering

The scattering problem requires the system to reach the configuration where all
robots have different locations and their positions never change in the following
execution. In addition, we also require the connectivity-preserving property. That
is, the visibility graph must be connected during the scattering process.

1 This restriction is introduced only for simplicity. It is easy to extend our result on
the model that k random bits are usable.

Connectivity-Preserving Scattering 323

3 Scattering Algorithm

3.1 Blocked Locations

We start the explanation of the algorithm by introducing the notion of blocked
locations. Intuitively, a blocked location is such that deletion of edges in visibility
graph can occur if some robots move.

Definition 1. Let pc be a location, C be the circle centred at pc with diameter
one, and B = {p0,p1,p2, · · ·pj} be the set of all locations on the boundary of
C. The location pc is blocked if no arc of C with a center angle less than π can
contain all locations in B.

Examples illustrating the notion of blocked locations are shown in Fig. 1 (a)
and (b). Intuitively, for a robot ri to be movable while preserving edges of the
visibility graph, its destination must be within distance one from the robots
that ri sees before the movement. For a robot at a blocked location there is
no such destination. Assume the contrary, let ri be blocked and move to some
other point p(
= ri). Then, we take the line l which is orthogonal to the vector
p−ri and passes through ri. This line cuts the circle C into two arcs with center
angle π. From the definition of blocked points, both arcs have at least one robot.
However, the arc in the opposite side of p (about l) is out of ri’s visibility after
the movement to p (see Fig. 1 (c). Thus, if a robot rj is on a blocked location,
it cannot move anywhere without deletion of edges.

3.2 Algorithm CPS

The pseudo-code of our scattering algorithm CPS is shown in Algorithm 3.2.
The key idea of our algorithm is to move all robots at non-blocked locations. If
they move once, at least one blocked location newly becomes non-blocked. Thus,
repeating this process, all robots will eventually become non-blocked. Then, by
dividing the robots on the same location into single ones in a probabilistic way,
scattering is achieved.

Let some non-blocked robot ri be activated at t, and Ri(t) = {r′0, r′1, · · · r′k} be
the set of robots in its visibility range at t. As we mentioned, our algorithm allows
only non-blocked robots to move. In the algorithm, each of non-blocked robot
first determines a vector p which represents the direction and the maximum
distance of destinations, and takes two destination candidates on the segment
pri, Finally, one of two candidates is chosen by using random bits.There are two
cases for deciding the vector p:

– No robot in Ri(t) is on the boundary: ri first calculates the possible travel
length d. It is bounded by the distance between the boundary of ri’s visibil-
ity and the robots in Ri(t), and the distance up to ri’s nearest neighbour.
That is, the value of d is the “safety margin” for preserving connectivity
and avoiding conflict (i.e., two nodes on different locations have the same
destination). Thus, ri takes two points within distance d/3 from its current
positions, and chooses one of them as the destination (by using the random
bit).

324 T. Izumi, M. Gradinariu Potop-Butucaru, and S. Tixeuil

Fig. 1. The illustration of blocked locations

– Some robot in Ri(T) is on the boundary: It takes the minimal arc A of the
visibility border that contains all robots on the boundary. Let C be the chord
of A and L be the half line bisecting the center angle of A, we set p by the
intersection of L and the segment C. Then, its length is reduced by d, where
d is computed in the same way as the first case.

It should be noted that even robots on a single location must move to make
other locations non-blocked. Since robots on the visibility border is a necessary
condition to block the observer robot, the robot on a single point can stop its
movement only when no robot stays on its visibility border.

3.3 Correctness

We show the correctness of the algorithm CPS. First, we prove the connectivity-
preserving property.

Lemma 1. Let ri and rj be two robots that are adjacent in G(t). If either ri or
rj changes its position at t, |ri(t + 1) − rj(t + 1)| < 1 holds.

Proof. Let b = |ri(t) − rj(t)| for short. Since it is trivial if activated robots are
blocked, we assume they are non-blocked.

Connectivity-Preserving Scattering 325

Algorithm 1. Algorithm CPS
1: define:
2: Ri : the set of all visible robots
3: R′

i : the set of all visible robots on the boundary of visible range
4: m : The flag indicating the multiplicity of the current location
5: Rand() : random oracle

6: if ri is not blocked then
7: d = min{min{1 − |r|, |r|} ∣∣ r ∈ (Ri − R′

i) ∪ {ri}}
8: p ← arbitrary vector with unit length
9: if R′

i �= ∅ then
10: Compute the shortest arc A containing all robots in R′

i and its chord C
11: Compute the half line L bisecting the center angle of A
12: p ← (C ∩ L)
13: endif
14: p ← dp
15: if Ri �= ∅ or m = MULTIPLE then
16: if Rand() = 1 then
17: move(p/4)
18: else
19: move(p/2)
20: endif
21: endif
22: endif

– b < 1: If ri is activated at t, the value of d computed by ri does not exceed
1 − b. Thus, the length travelled by ri during [t, t + 1] is less than or equal
to (1 − b)/3. It follows |ri(t + 1) − ri(t)| ≤ (1 − b)/3 (notice that this holds
even if ri is not activated). The same argument also holds for rj , and thus
|rj(t+1)−rj(t)| ≤ (1−b)/3 holds. Consequently, we have |rj(t+1)−ri(t+1)| ≤
|rj(t+1)−rj(t)|+|rj(t)−ri(t)|+|ri(t)−ri(t+1)| ≤ (1−b)/3+b+(1−b)/3) < 1,
which implies ri and rj is adjacent at t + 1.

– b = 1: Let D be the disk whose diameter corresponds to the segment
ri(t)rj(t). We show both rj(t + 1) and ri(t + 1) are contained in D. By
symmetry, it suffice to show ri(t + 1) ∈ D for ri’s activation. For ease of
explanation, we introduce the coordinate system such that the origin is p
computed by ri and L corresponds to its y-axis (the direction to ri(t) is the
positive side). Then, A is in the lower half-space of the x-axis because its
center angle is less than π. It implies that any point on A has a polar angle
larger than π. Since ri(t + 1) is on the segment pri(t), its is π/2. Thus, the
angle formed by ri(t+1) and rj(t) about p is larger than π/2. Consequently,
we obtain (rj(t) − ri(t + 1)) = π/2 and (ri(t) − ri(t + 1)) > π, and thus
(rj(t) − ri(t + 1)) · (ri(t) − ri(t + 1)) < 0 holds2. This implies ri(t + 1) is in
D and not on the boundary.

2 Notice that the the inside of the disk having the segment d1d2 as a diameter is the
set of coordinates v satisfying (d1 − v) · (d2 − v) < 0

326 T. Izumi, M. Gradinariu Potop-Butucaru, and S. Tixeuil

Fig. 2. The illustration used in the proof of Lemma 1

The lemma is proven. ��

Importantly, the above lemma does not only state connectivity preservation,
but also shows that if a non-blocked robot ri is activated at t, any robot in ri’s
visibility range at t is not on ri’s visibility border at t + 1. Furthermore, this
fact holds for any t′ after t. That is, if a robot becomes non-blocked, it remains
non-blocked in the following execution (recall that robots on the boundary is
a necessary condition to block the observing robot). Thus, we can obtain two
following corollaries.

Corollary 1. If two robots ri and rj are adjacent to each other in G(t), they
are also adjacent in G(t + 1).

Corollary 2. If a robot ri is non-blocked at t, it remains non-blocked at t + 1.

Using the above corollaries we show the main theorem.

Theorem 1. The algorithm CPS achieves the connectivity-preserving scattering
within O(n) expected rounds.

Proof. Connectivity-preservation is guaranteed from Corollary 1. Thus, we show
that the following two properties: (1) All locations are non-blocked within O(n)
expected time. (2) After all robots are non-blocked, they are scattered within
O(log n) expected time.

Let t1 and t2 be the beginnings of any two consecutive rounds. From corollary
2, it is sufficient to show that at least one blocked robot becomes non-blocked
during [t1, t2]. We consider the convex hull H of all blocked locations at t1, and
take its corner location p (arbitrarily chosen). Let S1 and S2 be the two border
segments of H connecting to p, and A and Ā be the arcs of p’s visibility border
cut by S1 and S2. Without loss of generality, we assume A is contained in H .

Connectivity-Preserving Scattering 327

From the definition of convex hulls, A has a center angle less than π. It implies
that any robot on Ā is non-blocked. From the lemma 1, any non-blocked robot
on Ā is not on Ā after its activation, and thus we can conclude p becomes
non-blocked.

Next, we show the following corollary. Let k be the first (asynchronous) round
when all robots become non-blocked. It is clear that two robots at different
locations never have the same destination for their simultaneous activations.
That is, if two robots ri and rj are once scattered, they never gather again.
Thus, two robots can have the same position only if they have the same random
input. Conversely, if two robots receive different random inputs, they necessarily
stay at different locations. Let si be the infinite sequence of random inputs that
ri receives. The prefix of si with length T is denoted by si(T). In what follows,
we bound the expectation of T such that si(T)
= sj(T) holds for any i and j,
which implies the bound for the expected number of rounds taken to achieve
scattering because any robot can change its position at each round after k.

For any h, we calculate the probability P (h) such that si(h log n)
= sj(h log n)
holds for any i and j:

P (h) =
2h log n

2h log n
· 2h log n − 1

2h log n
· 2h log n − 2

2h log n
· · · 2h log n − n

2h log n

= 1 ·
(

1 − 1
nh

) (
1 − 2

nh

)
· · ·

(
1 − 1

nh−1

)
≥

(
1 − 1

nh−1

)n−1

≥
(

1 − 1
nh−2

)
Thus, we obtain Pr[T ≥ h logn] ≤ 1/nh−2. Using it, the expectation of T is
bounded as follows:

E[T] ≤
∞∑

t=1

t Pr[T = t]

≤
∞∑

t=1

Pr[T ≥ t]

≤
∞∑

h=1

log n∑
k=1

Pr[T ≥ (h − 1) log n + k]

≤ 3 logn +
∞∑

h=4

log n Pr[T ≥ (h − 1) log n]

≤ 3 logn + log n

∞∑
h=4

1/nh−2

= O(log n)

The lemma is proved. ��

328 T. Izumi, M. Gradinariu Potop-Butucaru, and S. Tixeuil

3.4 Diameter-Sensitive Analysis

The complexity analysis of the previous subsection depends only on the number
of robots n. This section provides another complexity analysis of CPS which is
parametrized by D, the diameter of G(0). The result we show is that O(D2)
rounds are sufficient to make all robots non-blocked.

Lemma 2. All robots are non-blocked at the beginning of the round D2 + 2.

Proof. Let tk be the beginning of round k. Suppose for contradiction that a
robot r0 is still blocked at tD2+2. From Lemma 1, if all robots within dis-
tance one from r0 move once, r0 becomes non-blocked. Thus, there exists one
robot r1 blocked at tD2+1 (because all non-blocked robots move once during
[tD2+1, tD2+2]). Considering r1 in the same way as r0, we can conclude that
some robot r2 (
= r1, r2) is blocked at tD2 . It follows that there exists at least
one chain of robots r0, r1, r2, · · · rD2+1 such that each robot rk is blocked by the
end of round D2 + 1 − k.

Without loss of generality, we assume that r0 is the origin of the global co-
ordinate system. Let wk = rk+1 − rk. The proof idea is that we can choose a
chain satisfying (1) |wk| = 1 and (2) cos(arg(wk)− arg(rk)) ≥ 0 for any k (0 <
k ≤ D2 + 1)3. If the above conditions hold, it is easy to show |rk+1|2 ≥ |rk|2 +1
(see Fig. 3). This implies |rD2+1|2 ≥ (D2 + 1) , which contradicts the fact of
G(0)’s diameter D.

The remaining part of the proof is to show the existence of the chain of length
k satisfying (1) and (2) for k = D2 + 1. We prove it by induction on k.
Basis: Since r0 is blocked, the arc of r0’s visibility border with center angle
[−π/2, π/2] necessarily includes one robot. Thus, we can choose it as r1, which
satisfies the condition (1) and (2).
Inductive step: Suppose as induction hypothesis that we have the chain of
length k. Then, we introduce the coordinate system originated at rk and its
x-axis is directed to the same angle as rk. Then by the same way as the basis,
we can obtain rk+1.

Consequently the lemma is proved. ��

From this lemma, we can obtain a better upper bound for time complexity of
the algorithm CPS:

Theorem 2. The algorithm CPS achieves the connectivity-preserving scattering
within O(min{n, D2 + log n}) expected rounds.

4 Lower Bound

In this section, we show that our O(n)-upper bound is tight: we identify an
initial configuration for which any connectivity-preserving scattering algorithm
takes Ω(n) rounds. We start the proof from the following proposition.
3 This condition implies that the polar angle of wk about rk is in the range of

[−π/2, π/2].

Connectivity-Preserving Scattering 329

Fig. 3. The illustration used in the proof of Lemma 2

Proposition 1. Consider any connectivity-scattering algorithm and the config-
uration of three robots r0, r1, r2 located at (−1, 0), (0, 0), (1, 0). Then if r1 is ac-
tivated, its destination is (0, 0) (i.e., r1 does not move for its activation). Sim-
ilarly, consider the configuration of four robots r0, r1, r2, r3 located at (−1, 0),
(0, 0), (0, 0), (1, 0). Then if either r1 or r2 is activated, its destination is (0, 0).

The above proposition trivially holds because of connectivity-preserving require-
ment will be violated with non-zero probability if r1 (or r2) changes its position.
Using this observation, we construct the worst-case configuration:

Theorem 3. Let C be the configuration of 2n robots where rk is located as
follows:

rk =
{

(k, 0) (0,≤ k ≤ n − 1)
(k − 1, 0) (n ≤ k ≤ 2n)

Then, any scattering algorithm takes Ω(n) rounds if the initial configuration is
C.

Proof. From Proposition 1, two robots on (n−1, 0) never move unless either rn−2
or rn+1 changes its position. Similarly, to make rk (r2n−k) move, rk−1 (r2n−k−1)
must move in advance. Thus if we consider the round-robin schedule where each
robot is activated in the order

rn, rn−1, rn+1, rn−2, · · · , rn+j , rn−j−1, · · · , r2n, r0

only two robots rk and r2n−k can change their positions during round k. This
implies that it takes Ω(n) rounds that rn and rn−1 are scattered. ��

330 T. Izumi, M. Gradinariu Potop-Butucaru, and S. Tixeuil

Fig. 4. The configuration C used in the proof of Theorem 3

5 Concluding Remarks

In this paper, we presented a probabilistic solution to the scattering problem
in the limited visibility model. The proposed algorithm assumes ATOM (i.e.
semi-synchronous) model, and guarantees the connectivity-preserving property.
We also analysed its time complexity. The algorithm achieves scattering within
O(min{n, D2 + log n}) asynchronous rounds in expectation, where D is the di-
ameter of the initial visibility graph. Because of the dependency on D, our
algorithm quickly scatters robots located closely at the initial configuration. We
also presented an initial configuration for which any scattering algorithm would
take Ω(n) rounds in the worst case. In the sense of non-adaptive analysis, our
algorithm is optimal for connectivity-preserving scattering.

There are several interesting open question raised by our work:

1. We only focused on the ATOM semi-synchronous model. Extending our re-
sult to the fully asynchronous CORDA model [8] looks challenging.

2. Combining the constraint of a maximal distance (for connectivity preserva-
tion) and a minimal distance (for evenly scattering the robots as in [6]) is
an intriguing question with respect to the feasibility aspects.

3. The possibility that some robots misbehave (i.e. exhibit Byzantine be-
haviour [3]) has significant impact on connectivity preservation, since a
Byzantine node may unilaterally choose to disconnect the visibility graph
when finding it is an articulation point in this graph. We wish to pursue
research in designing protocols that can cope with such behaviours.

References

1. Ando, H., Oasa, Y., Suzuki, I., Yamashita, M.: Distributed memoryless point con-
vergence algorithm for mobilerobots with limited visibility. IEEE Transactions on
Robotics and Automation 15(5), 818–828 (1999)

2. Barriere, L., Flocchini, P., Mesa-Barrameda, E., Santoro, N.: Uniform scattering
of autonomous mobile robots in a grid. In: International Symposium on Parallel
and Distributed Processing (IPDPS), pp. 1–8 (2009)

3. Bouzid, Z., Potop-Butucaru, M.G., Tixeuil, S.: Optimal byzantine-resilient conver-
gence in unidimensional robot networks. In: Theoretical Computer Science, TCS
(2010)

Connectivity-Preserving Scattering 331

4. Clement, J., Défago, X., Potop-Butucaru, M.G., Izumi, T., Messika, S.: The cost of
probabilistic agreement in oblivious robot networks. Information Processing Let-
ters 110(11), 431–438 (2010)

5. Dieudonné, Y., Petit, F.: Scatter of robots. Parallel Processing Letters 19(1), 175–
184 (2009)

6. Flocchini, P., Prencipe, G., Santoro, N.: Self-deployment of mobile sensors on a
ring. Theor. Comput. Sci. 402(1), 67–80 (2008)

7. Flocchini, P., Prencipe, G., Santoro, N., Widmayer, P.: Gathering of asynchronous
robots with limited visibility. Theoreical Computer Science 337(1-3), 147–168
(2005)

8. Prencipe, G.: Instantaneous actions vs. full asynchronicity: Controlling and coordi-
nating a set of autonomous mobile robots. In: Restivo, A., Ronchi Della Rocca, S.,
Roversi, L. (eds.) ICTCS 2001. LNCS, vol. 2202, pp. 154–171. Springer, Heidelberg
(2001)

9. Souissi, S., Défago, X., Yamashita, M.: Using eventually consistent compasses to
gather memory-less mobile robots with limited visibility. ACM Transactions on
Autonomous and Adaptive Systems 4(1), 1–27 (2009)

10. Suzuki, I., Yamashita, M.: Distributed anonymous mobile robots: Formation of
geometric patterns. SIAM Journal of Computing 28(4), 1347–1363 (1999)

Computing in Social Networks

Andrei Giurgiu1, Rachid Guerraoui1,
Kévin Huguenin2, and Anne-Marie Kermarrec3

1 EPFL
2 Université de Rennes 1 / IRISA

3 INRIA Rennes - Bretagne Atlantique

Abstract. This paper defines the problem of Scalable Secure Comput-
ing in a Social network: we call it the S3 problem. In short, nodes, directly
reflecting on associated users, need to compute a function f : V → U
of their inputs in a set of constant size, in a scalable and secure way.
Scalability means that the message and computational complexity of the
distributed computation is at most O(

√
n · polylog n). Security encom-

passes (1) accuracy and (2) privacy: accuracy holds when the distance
from the output to the ideal result is negligible with respect to the maxi-
mum distance between any two possible results; privacy is characterized
by how the information disclosed by the computation helps faulty nodes
infer inputs of non-faulty nodes.

We present AG-S3, a protocol that S3-computes a class of aggrega-
tion functions, that is that can be expressed as a commutative monoid
operation on U : f(x1, . . . , xn) = x1 ⊕ · · · ⊕ xn, assuming the number
of faulty participants is at most

√
n/ log2 n. Key to our protocol is a

dedicated overlay structure that enables secret sharing and distributed
verifications which leverage the social aspect of the network: nodes care
about their reputation and do not want to be tagged as misbehaving.

1 Introduction

The past few years have witnessed an explosion of online social networks and
the number of users of such networks is still growing regularly by the day, e.g.
Facebook boasts by now more than 400 millions users. These networks consti-
tute huge live platforms that are exploited in many ways, from conducting polls
about political tendencies to gathering thousands of students around an evening
drink. It is clearly appealing to perform large-scale general purpose computa-
tions on such platforms and one might be tempted to use a central authority for
that, namely one provided by the company orchestrating the social network. Yet,
this poses several privacy problems, besides scalability. For instance, there is no
guarantee that Facebook will not make any commercial usage of the personal
information of its users. In 2009, Facebook tried to change its privacy policy to
impose new terms of use, granting the company a perpetual ownership of per-
sonal contents – even if the users decide to delete their account. The new policy
was not adopted eventually, but highlighted the eagerness of such companies to
use personal and sensitive information.

S. Dolev et al. (Eds.): SSS 2010, LNCS 6366, pp. 332–346, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Computing in Social Networks 333

We argue for a decentralized approach where the participants in the social
network keep their own data and perform computations in a distributed fash-
ion without any central authority. A natural question that arises then is what
distributed computations can be performed in such a decentralized setting. Our
primary contribution is to lay the ground for precisely expressing the question.
We refer to the underlying problem as the S3 problem: Scalable Secure Comput-
ing in a Social network. Whereas scalability characterizes the message and com-
putational complexity of the computation, the secure aspect of S3 encompasses
accuracy and privacy. Accuracy refers to the robustness of the computation and
aims at ensuring accurate results in the presence of dishonest participants. This
is crucial in a distributed scheme where dishonest participants might, besides
disrupting their own input, also disrupt any intermediary result for which they
are responsible. The main challenge is to limit the amount of bias caused by
dishonest participants. Privacy is characterized by the amount of information
on the inputs disclosed to other nodes by the computation. Intuitively, achiev-
ing all three requirements seem impossible. Clearly, tolerating dishonest play-
ers and ensuring privacy calls for cryptographic primitives. Yet, cryptographic
schemes, typically used for multi-party computations, involve too high a compu-
tation overhead and rely on higher mathematics and the intractability of certain
computations [1,2,3]. Instead, we leverage users’ concern for reputation using a
information theoretical approach and alleviate the need for cryptographic prim-
itives. A characteristic of the social network context is indeed that the nodes are
in fact users who might not want to reveal their input, nor expose any misbe-
havior. This reputation concern determines the extent to which dishonest nodes
act: up to the point that their misbehavior remains discrete enough not to be
discovered.

Solving the S3 problem is challenging, despite leveraging this reputation con-
cern: to ensure privacy, an algorithm must ensure that even when all the nodes
except one have the same inputs, the information obtained by the coalition of
faulty nodes cannot know which non-faulty node had a different input. This
requires the existence of two configurations of inputs that differ for two nodes,
which with high probability lead to the same sequence of messages received by
the faulty nodes. In turn, this boils down to swapping two nodes’ inputs trans-
parently (from the standpoint of the faulty nodes), which is challenging when the
protocol needs to be also scalable and accurate. The scalability requirement (i.e.,
each node communicates with a limited number of nodes) makes it difficult to
find a chain of messages that can be swapped transparently between two nodes
in the system. The trade-off between privacy and accuracy can be illustrated by
the following paradox: on the one hand verifying that nodes do not corrupt the
messages they receive (without digital signature) requires the verifier to gather
some information about what the verified node received; on the other hand the
more the nodes know about the messages exchanged the more the privacy of the
nodes is compromised.

Our contributions are twofold. Firstly, we define the Scalable Secure Comput-
ing problem in a Social network, namely the S3 problem. Secondly, we present
a distributed protocol, we call AG-S3 (i.e., S3 for AGgregation), that solves the

334 A. Giurgiu et al.

problem for a class of aggregation functions that derive from a monoid operation
on U : f(x1, ..., xn) = x1 ⊕ · · · ⊕ xn, under the assumption that the number of
faulty nodes is upper-bounded by

√
n/ log2 n. At the core of our protocol lie (1)

a structured overlay where nodes are clustered into groups, (2) a secret sharing
scheme that allows the nodes to obfuscate their inputs, and (3) a verification
procedure which potentially tags the profiles of suspected nodes. Beyond these
contributions, our paper can be viewed as a first step toward characterizing what
can be computed in a large scale social network while accounting for the human
nature of its users.

2 Problem

This section defines the problem of Scalable Secure Computing in a Social net-
work : the S3 problem. The problem involves a S3 candidate, namely the function
to be computed, and a set of nodes Π = {p1, . . . , pn}.

2.1 Candidates

Definition 1 (S3 candidate). A S3 candidate is a quadruple (f, V, U, d), where
V is an arbitrary set, f is a function f : V ∗ → U such that f(v1, . . . , vn) =
f(vσ(1), . . . , vσ(n)) for any permutation σ of the inputs, and (U, d) is a metric
space.

Each node in Π has an input value in the set V , and a S3 candidate maps the
inputs of the nodes to a value in a metric space. The function f is assumed to be
symmetric in the sense that the output depends on the multiset of inputs but not
on their assignation to nodes. For example, a binary poll over Π can be modeled
by the S3 candidate ((v1, v2, . . . , vn) → v1 + · · · + vn, {−1, +1}, Z, (z1, z2) →
|z1 − z2|). Consider also a component-wise addition on U = Zd, where V is the
set of all vectors with exactly one nonzero component, which is either +1 or −1.
The distance function is then just the L1 (or Manhattan distance).

The nodes considered in the S3 problem are users of a social network, able to
(1) communicate with private message passing and (2) tag the public profile of
each other. As such, every node directly reflects on the associated user. Nodes
care about their privacy and their reputation: a user wants neither the private
information contained in her input, nor her misbehavior, if any, to be disclosed.
This reputation concern is crucial to make the problem tractable. To ensure
security, part of the computation consists in checking the correctness of other
nodes’ behavior. The output of a node p is a value in U plus a set Fp of nodes
that p detected as faulty. This information is eventually reported on the public
profile of the involved nodes by means of tags of the form “p detected nodes in
Fp as faulty”.

Faulty nodes are considered rational: their goal is only to bias the output of
the computation and infer the inputs of the users taking part in the computation.
As such, their behavior is more restricted than that of Byzantine users [4]. To
achieve their goal, faulty nodes may collude.

Computing in Social Networks 335

In our context, a distributed computation D on the set of nodes Π, is a
sequence of message exchanges and local computations such that any non-faulty
node p eventually outputs a value op. The content of the message and the nodes’
outputs are random variables whose value is determined by the random choices
made by the nodes during the computation. In the following, we define the
desirable properties of a distributed computation in a social network, namely
scalability and security, itself encompassing privacy and accuracy.

2.2 Scalability

Scalability means that the computation is able to handle a large number of
inputs (i.e., large values of n): consequently, the properties are expressed in the
form of asymptotic bounds.

Definition 2 (
√

-Scalability). A distributed computation is said to be
√

-
scalable if the message, spatial and computational complexities at each node are
O(

√
n · polylogn).

The intuition behind the logarithmic factor in the asymptotic bound is that
operations with the nodes’ identifiers and the memory needed to store such
identifiers remain within O(log n).

2.3 Accuracy

The definition of the accuracy of a computation relies on the metric space struc-
ture of the output space U : accuracy is given by the distance between the output
of the computation and the actual value of the output of f . To render it mean-
ingful, we normalize this distance by the diameter of f(V n) for a distributed
computation over n nodes.

Definition 3 (
√

-Accuracy). A distributed computation D is said to
√

-
accurately compute a S3 candidate (f, U, V, d) if:

1
Δ(n)

· max
p non−faulty

d(op, f(v1, . . . , vn)) = O
(

1√
n

)
,

where vi is the input of the i-th node and

Δ(n) = max
(x1, . . . , xn)
(y1, . . . , yn)

d(f(x1, . . . , xn), f(y1, . . . , yn)).

This definition highlights the importance of specifying the distance measure
of a S3 candidate: providing the output space with the coarse grain distance
d(x, y) = 0 if x = y, and 1 otherwise, will restrict the class of S3 computations
to those that output the exact value of f . Meanwhile, for binary polling for
instance Dpol [5], considering the natural distance on relative numbers includes
computations for which the error on the tally is negligible when compared to
the sample size n (i.e., Δ(n) = 2n).

336 A. Giurgiu et al.

2.4 Privacy

Privacy characterizes how the information gained by curious nodes taking part
in the distributed computation enables them to recover the input of a particular
non-faulty node. Clearly, the cases where an input can be inferred from only
the output and the inputs of the faulty nodes are ignored when looking at the
privacy leaks of a computation. In a perfectly private distributed computation,
a coalition of faulty nodes should be able to recover the input of a non-faulty
node if and only if its input can be inferred from the output of the computation
and the inputs of the faulty nodes. Such configurations of inputs are captured
by the notion of trivial inputs. An example of such configuration of inputs is
the case where all non-faulty nodes taking part in a binary poll have the same
input, be it −1 or 1. Since S3 candidates are symmetric by definition, a trivial
input is a configuration where all nodes start with the same input.

Definition 4 (Trivial input). An element v of V ∗ is said to be a trivial input
for a coalition B if there is a node p /∈ B such that for all input configuration v′

that coincides with v for all nodes in B, f(v) = f(v′) implies vp = v′p.

We say in our context that a distributed computation is private if the probability
of recovering the input of a particular non-faulty node (assuming that it cannot
be inferred from the output alone, i.e., the configuration of inputs is non-trivial)
decreases as 1/nα for some positive α. We capture this notion more formally
through the notion of probabilistic anonymity, itself based on the very notion of
message trace.

Definition 5 (Message trace). A message trace (or trace for short) of a
distributed computation is the collection of messages sent in a possible execution
of a program. A trace is said to be compatible with an input configuration v if
the trace can be obtained from v with a nonzero probability. We say that two
traces are equivalent with respect to a coalition of faulty nodes B if each node in
B receives the exact same messages in both traces.

We are ready now to introduce the concept of probabilistic anonymity, which
encapsulates the degree of privacy we require.

Definition 6 (Probabilistic anonymity). A distributed computation D is
said to be probabilistically anonymous if for any coalition of faulty nodes B,
for any non-faulty node p, and for any trace D compatible with a non-trivial
(w.r.t. B) input configuration v, there exists with high probability a trace D′

compatible with an input configuration v′ such that (1) D and D′ are equivalent
w.r.t. B and (2) v and v′ differ on the input value of node p.

The intuition behind this definition is that a coalition of faulty nodes cannot
distinguish, with high probability, different executions of a computation in
which non-faulty nodes had different inputs.

Computing in Social Networks 337

Definition 7 (S3 computation). A distributed computation is said to S3-
compute a S3 candidate if it is

√
-scalable,

√
-accurate and probabilistically

anonymous with respect to the candidate.

3 Protocol

In this section, we focus on a class of aggregation functions and propose a pro-
tocol, namely AG-S3 (S3 for AGgregation), which S3-computes such functions
for |B| ≤

√
n/ log2 n faulty nodes.

3.1 Assumptions

We consider S3 candidates for which the function f is an aggregation func-
tion, i.e. deriving from an associative binary operation on U : f(v1 . . . , vn) =
v1 ⊕ · · · ⊕ vn. Because a S3 candidate must be symmetric, the ’⊕’ operation is
commutative. This induces a commutative monoid structure on (U,⊕) and it
implies that V is a subset of U . We further assume that the ’⊕’ operation is
compatible with the distance measure d in the sense that

d(v1 ⊕ v2, v
′
1 ⊕ v′2) ≤ d(v1, v

′
1) + d(v2, v

′
2) . (1)

As an example, note that the S3 candidate ((v1, v2, . . . , vn) → v1 + · · · +
vn, {−1, +1}, Z, (z1, z2) → |z1 − z2|), introduced in the previous section, satisfies
the compatibility condition described above. A simple example of S3 candidate
which cannot be expressed as an aggregation is the one given by the sum of
products of pairs of inputs, i.e. f(x1, . . . , xn) = x1 · x2 + x1 · x3 + x2 · x3 +
This function is symmetric, and choosing U = Z turns this function into a valid
S3 candidate, but it is clearly not an aggregation function.

We assume the size of the set of possible inputs to be constant and the size of
the output space to be polynomial in n implying that any input or output can
be represented by O(log n) bits. In addition, we assume that the diameter Δ(n)
of the output space is Ω(n). Due to this assumption, bit operators do not fall
into our definition. Finally, we assume that V is closed with respect to inverses:
if v is in the input set V then !v is in V as well, where !v denotes the inverse
of v with respect to the ’⊕’ operation. We denote by δV the diameter of V :
δV = maxv,v′∈V d(v, v′).

3.2 Design Rationale

The main challenge of S3 computing is the trade-off between scalability and
accuracy on the one hand and privacy on the other hand. We describe below
this trade-off and how we address it before describing the protocol in details.

To ensure scalability, we cluster the nodes into groups of size
√

n, and require
that a node sends messages only to other nodes in a small set of neighboring
groups. We introduce two parameters of the protocol, κ and l. A non-faulty

338 A. Giurgiu et al.

node p is allowed to send messages to any other node in its own group, and to
exactly l nodes in each of κ other groups. For scalability, l and κ need to be
low, since they are directly proportional to message complexity. The same for
accuracy: intuitively, the larger l and κ, the more opportunities a node has to
cheat (i.e., corrupt the unique pieces of information it receives before forwarding
them), which entails a higher impact on the output. To preserve privacy (i.e.
probabilistic anonymity), we need a mechanism which, for any node p, transforms
any trace (i.e. input values and messages) into another trace, in such a manner
that all messages received by the coalition of faulty nodes are preserved, and p has
a different input in the two traces. This prevents the coalition from determining
the input value of p. It will become apparent in our proof of privacy that both
κ and l need to be large in order to obtain reasonable privacy requirements. To
summarize, accuracy and scalability require the parameters κ and l to be small,
whereas privacy requires them to be large. As a trade-off, we pick them both to
be Θ(log n), which reasonably ensure the S3 requirements.

3.3 Protocol

We describe AG-S3 which computes general aggregation in a S3 manner: the
protocol is composed of two interleaved components: one computes the aggrega-
tion function while the other checks the behavior of users. The pseudo-code of
all is given in Algorithms 1-4.

Structure. AG-S3 uses a special structure inspired from [6], where the n nodes
are distributed into groups of size

√
n. Such an overlay can be obtained in a

distributed fashion with strong guarantees on the randomness of nodes placement
in the groups even in the presence of malicious users [7]. The groups (or offices)
are placed in a ring, with nodes from a particular group sending messages to
either nodes from the same office (called officemates) or to selected nodes from
the next offices on the ring (called proxies). More specifically, a node is connected
to its

√
n officemates and to l proxies in each of the next κ groups on the ring.

If a node p′ is a proxy of p, then p is said to be a client of p′. The partitioning
into groups and their placement on the ring are chosen uniformly at random.
We further assume a perfect client-proxy matching that ensures that a proxy
has exactly κ · l clients. For example, we can index the nodes inside each group
and assign to the i-th node of a group the nodes i + 1, . . . , i + l mod

√
n as

proxies in each of the next κ groups on the ring. We set κ = 3/2 · �log n� and
l = 5 · |V | · �log n� + 1. These choices are motivated in the next section.

Aggregation. In the first phase, each participant splits its input into κ · l shares
in V and sends them randomly to its assigned proxies. The randomized scheme
ensures that the aggregate of the shares is the input value. The shares are gen-
erated as follows: (κ · l − 1)/2 are chosen uniformly at random, (κ · l − 1)/2 are
the inverses of the randomly chosen shares, and one is the actual input of the
node.

Computing in Social Networks 339

gi

l proxies

. . .

gi+1

.

gi+κ

. . .

gi+κ+1︸ ︷︷ ︸
κ next groups on the ring

Fig. 1. Overview of the overlay

procedure share input(v);1

for i ← 1 to (l · κ − 1)/2 do2

si ←rand V # random values in V ;3

si+(l·κ−1)/2 ← �si;4

sl·κ ← v # the actual input;5

σ ←rand Sl·κ # random permutation to distribute the shares;6

for igroup ← 1 to κ do7

for iproxy ← 1 to l do8

send (share, pigroup,iproxy , sσ(igroup·l+iproxy));9

Algorithm 1. Input sharing

In the counting phase, each proxy aggregates the shares received in the pre-
vious phase to obtain an individual aggregate. Each node then broadcasts its
individual aggregate to all its officemates. Each node computes the aggregate of
the individual aggregates of its officemates and obtains a local aggregate. If all
nodes are non-faulty, then all local aggregates computed in an office are identical.

upon event receive (share, c, s) do1

Verify c is a client;2

Verify s is a valid input in V # s ∈ V ;3

uind = uind ⊕ s;4

Algorithm 2. Individual aggregation

In the forwarding phase, the local aggregates are disseminated to other nodes
thanks to tokens forwarded along the ring, as explained below. The forwarding
phase is bootstrapped by a special group (that can be determined by the social
networking infrastructure at random). The nodes in this special group send a
token containing the local aggregate computed in their group to their proxies
from the next group. The tokens are further forwarded along the ring. The first
time a token reaches a node in a particular group, this node aggregates the local
aggregate to the token and forwards it to its proxies in the next group. When a

340 A. Giurgiu et al.

procedure local count();1

foreach officemate o do2

send (individual agg, o, uind);3

Algorithm 3. Local aggregate broadcast

upon event receive (individual agg, o, u) do1

Verify u is a valid aggregate of κ · l shares;2

d(u, v1 ⊕ · · · ⊕ vκ·l) ≤ κ · l · δV where v1 ⊕ · · · ⊕ vκ·l are random values in3

V ;
ulocal ← ulocal ⊕ u ;4

Algorithm 4. Local aggregation

node receives a token for the second time, the node sets its own output to the
value of the token and forwards it. The third time a node receives a token, it
discards it.

Verifications. The purpose of verifications is to track nodes that deviate from
the protocol. This is achieved by leveraging the value attached by the nodes to
their reputation. The basic mechanism is that misbehaviors are reported by the
participants who discover a faulty node and subsequently tag the latter’s profile.
The verifications are performed in each phase of the protocol. In the sharing
phase, each proxy verifies that the shares received are valid input values. In the
second phase, each node checks whether the distance between the individual
aggregates sent and some random valid individual aggregate is at most κ · l · δV .
The reason for this is that due to the compatibility of the distance function with
the monoid operation, for any v1, . . . , vk, v′1, . . . , v

′
k ∈ V , we have that

d(v1 ⊕ · · · ⊕ vk, v′1 ⊕ · · · ⊕ v′k) ≤ d(v1, v
′
1) + · · · + d(vk, v′k) ≤ k · δV .

The verification in the third phase works as follows: if all the tokens received
by a node in a given round (remember that tokens circulate up to three times
around the ring) are not the same, then an alarm is raised and the profiles of
the involved nodes are tagged. Otherwise, the node broadcasts the unique value
of the tokens it received to its officemates. If it is not the case that all values
broadcast are equal, again an alarm is raised.

3.4 Correctness

We prove here that AG-S3 satisfies the S3 conditions for |B| ≤ √
n/ log2 n.

Theorem 1 (Scalability). The AG-S3 protocol is
√

-scalable.

Proof. The nodes need to maintain a list of officemates, a list of proxies, and a list
of clients. This amounts to O(

√
n · log n) space complexity as nodes’ identifiers

Computing in Social Networks 341

can be represented using O(log n) bits. The message complexity is similarly
O(

√
n) arising from the following components: a node sends κ · l = O(log2 n)

shares during the sharing phase, O(
√

n) copies of its individual aggregate in the
counting phase, and O(

√
n) in the forwarding phase. ��

Theorem 2 (Accuracy). The AG-S3 protocol is
√

-accurate.

Proof. A faulty node can bias the output of the computation by either sending
an invalid set of shares, changing the value of its individual aggregate, or corrupt
the aggregate during the forwarding phase. However, a node never misbehaves
in a way that this is exposed with certainty (by the verifications presented in
the previous section).

Sharing: Not to be detected, a node must send shares in V . Therefore, the
distance between the sum of a node’s shares and a valid input is at most κ · l ·δV .

Counting: Suppose that a faulty node changes its individual aggregate from
v = v1 ⊕ · · · ⊕ vκ·l to some value u. When its officemates receive its individual
aggregate u they compute the distance between this aggregate and an arbitrary
aggregate w = w1 ⊕ · · · ⊕ wκ·l. If this distance is larger than κ · l · δV then
the misbehavior is reported. If the distance is within the bound, the triangular
inequality yields an upper-bound on the maximum impact: d(u, v) ≤ d(u, w) +
d(w, v) ≤ 2κ · l · δV .

Forwarding: To corrupt a token without being detected, the coalition of
faulty nodes must fool (i.e., make a node decide and forward a corrupted token
without raising an alarm) all the non-faulty nodes of a group. Otherwise the
corruption is detected by the verification consisting in a node broadcasting the
token received to its officemates. To fool a single non-faulty node, all the l tokens
it received from its clients (remember that nodes forward tokens only to their
proxies in the next group) must be equal. Since nodes have l proxies in the next
group, f faulty nodes can fool up to f non-faulty nodes. Assuming that a group
contains f non-faulty nodes (and

√
n− f faulty nodes), then corrupting a token

without being detected requires another f faulty nodes in preceding groups.
That is a total of

√
n faulty nodes which cannot happen under the assumption

|B| ≤ √
n/ log2 n. To conclude, the local aggregates cannot be corrupted during

the forwarding phase.
The impact of a faulty node on the output of the computation is bounded by

3κ · l · δv. We have |B| ≤
√

n/ log2 n, κ = O(log n), l = O(log n) and Δ(n) =
Ω(n). Putting everything together, we get that the accuracy of definition 3 is
O(

√
n/ log2 n · log n · log n/n) = O(1/

√
n), which concludes the proof. ��

Theorem 3 (Probabilistic anonymity). The AG-S3 protocol is probabilisti-
cally anonymous.

Proof. We need to show that, with high probability, there exists a mechanism
that for any node p, transforms any trace in such a way that the coalition of
faulty nodes receives the same messages, but p has a different input. We first
give an outline of the proof.

The transformation mechanism consists of changing the values transmitted
between non-faulty nodes, in such a way that any subsequent message sent by

342 A. Giurgiu et al.

non-faulty nodes to the nodes in the coalition does not change. As a result,
the coalition receives the same information. The basic idea of this mechanism
is to swap the inputs of two nodes p1 and p2, provided that there is a non-
compromised group g (a group with no faulty nodes) that contains proxies of
both p1 and p2. In this case, we can modify the shares sent by p1 and p2 to
proxies in g, in such a way that the local aggregate of g is maintained. Since we
assume that all nodes in g are non-faulty, the coalition does not have access to
information exchanged in g during the counting phase. The coalition only sees
what the nodes in g decide to broadcast in the forwarding phase, but that is
identical to what is sent in the original trace. To modify the shares of p1 and p2,
we assume that both send a share containing their own input to some proxies in
g. Each of p1 and p2 has l proxies in g, so the larger l is, the larger the probability
that our assumption is true. Then the aforementioned shares of p1 and p2 are
swapped, resulting a consistent trace, where p1 and p2 swapped input values.

In case there is no such common non-compromised group g for p1 and p2,
we may still find a chain of nodes with endpoints p1 and p2, such that two
consecutive nodes in the chain can swap input values. The larger κ, the larger
the probability that such a chain exists. Afterwards, the nodes can swap shares
along the chain, resulting in a consistent configuration where p1 has as input the
old input value of p2. The rest of the proof is concerned with making our outline
description precise.

Let D be a trace of AG-S3 compatible with a non-trivial input v, B be a
coalition of faulty nodes (|B| ≤

√
n/ log2 n) and p be a non-faulty node. Since

the input is non-trivial, there exists a node p′ whose input is different from the
input of p in v, and we prove that with high probability there exists a trace
equivalent to D compatible with an input configuration v′ which is the same as
v, except that the inputs of p and p′ have been swapped.

We say that a group compromised if it contains at least one faulty node.
The coalition of faulty nodes knows the local aggregates of all the groups, the
individual aggregates of the proxies in the compromised groups, the shares they
received and their own inputs.

We first prove the following lemma.

Lemma 1. The probability that in any sequence of κ − 1 consecutive groups

there is at least one non-compromised group, is at least 1 −
√

n
(

|B|√
n

)κ−1
.

Proof. This probability is minimized if no two faulty nodes lie in the same group,
i.e. there are |B| compromised groups. Fix κ − 1 consecutive groups. The num-
ber of configurations in which these groups are compromised is

(√n−κ+1
|B|−κ+1

)
. The

total number of configurations is
(√

n
|B|

)
, so the probability that all the fixed k

consecutive groups are compromised is given by the ratio of the two binomial
coefficients, which is upper-bounded by (|B|/

√
n)κ−1. We use the union bound

to upper-bound the probability that there is at least one such sequence of κ− 1
consecutive compromised groups. There are

√
n sequences of κ − 1 consecutive

groups, which proves the lemma. ��

Computing in Social Networks 343

Since κ = 3/2 · �log n� and |B| ≤ √
n/ log2 n, we get that the probability of

having κ consecutive compromised groups is at most 1/n.

Lemma 2. Given x ∈ V , the probability that a node sends at least one share of
value x to a proxy situated in a given group, assuming this node has proxies in
that group, is at least 1 − 1/n3.

Proof. The l shares sent to a group by a node are randomly picked from a set
of κ · l shares in which (κ · l − 1)/2 are random, (κ · l − 1)/2 are the inverses of
the random shares, and one is the actual input of the node. At least (l − 1)/2
of them are independent, and drawn uniformly at random from V . Thus, the
probability that a is not one of them is at most (1 − 1/|V |)(l−1)/2. Since (l −
1)/2 = 5/2 · |V | · �log n�, this probability is upper-bounded by 1/n5/2, which
proves the lemma. ��

Let g(·) denote the index of a group in which a node lies. Without loss of gener-
ality, we assume that g(p) = 0. Since we assume that the input v is not trivial,
let p′ be a node such that its input v′p is different from the input of p, i.e.,
vp. Let i1, . . . , iM be a sequence of indexes such that: (1) group gim is non-
compromised for all m, (2) 0 < i1 < κ, (3) 0 < im+1 − im < κ for all m, and
(4) 0 < iM − g(p′) < κ. Such a sequence exists with high probability according
to Lemma 1. For all 1 ≤ m < M , we define pm as an arbitrary non-faulty node
in group gim−1. Additionally, we set p0 = p and pM = p′. Since all nodes have
proxies in the κ groups succeeding them, we have that for all 1 ≤ m ≤ M , pm−1
and pm both have proxies in gim as depicted in Figure 2.

Using Lemma 2 and using an union bound on the 1 ≤ m ≤ M , we get that the
probability that for all 1 ≤ m ≤ M , pm−1 sends a share of value vp to a proxy in
gm and pm sends a share of value vp to a proxy in gm, is at least 1 − 2M/n5/2.
Since M is bounded by the number of groups, namely

√
n, this probability is

lower-bounded by 1 − 2/n2.
Assuming that this event occurs, we exhibit a trace compatible with a config-

uration of inputs where the inputs of p and p′ are swapped: for all 1 ≤ m ≤ M ,
the vp share sent by pm−1 to gim is replaced by v′p and the v′p share sent by pm

to gim is replaced by vp, as illustrated in Figure 2. This trace is equivalent to
D with respect to the coalition B as no share sent to a compromised group is
changed and all local aggregates remain the same.

We complete the proof by showing that this trace is indeed compatible with
the modified configuration of inputs. In the case of AG-S3, compatible means
that the set of shares sent by a node is composed of (κ · l − 1)/2 values of V ,
their inverses, and the actual input of the node. For p and p′, we only change the
value of one share equal to their inputs. Therefore, their set of shares remains
compatible with their new inputs. For the other nodes pm, 0 < m < M , two of
their shares are simply swapped.

We proved that the privacy of a given non-faulty node p is preserved with
probability at least 1− 2/n2, given that the event of Lemma 1 occurs. Since the
probability of this event is large (according to Lemma 1), using Bayes rule it
is clear that 1 − 3/n2 is an upper bound on the probability that privacy of a

344 A. Giurgiu et al.

particular node is preserved. Using a union bound over the whole set of at most
n non-faulty node nodes, we obtain that probabilistic anonymity as defined in
Definition 6 is preserved with probability 1 − 2/n. ��

p

g(p) = 0

vp

. . . p1

gi1−1

v′p

gi1

vp

. . . p2

gi2−1

v′p

gi2

. . .

︸ ︷︷ ︸
≤ κ + 1 groups

. . . pM−1

giM−1−1

v′p

giM−1

vp

. . . p′

g(p′)

v′p
. . .

giM

(a) Initial configuration

p

g(p) = 0

v′p

. . . p1

gi1−1

vp

gi1

v′p

. . . p2

gi2−1

vp

gi2

. . .

︸ ︷︷ ︸
≤ κ + 1 groups

. . . pM−1

giM−1−1

vp

giM−1

v′p

. . . p′

g(p′)

vp
. . .

giM

(b) Swapped configuration

Fig. 2. Illustration of the proof of privacy: pairs of shares sent in the same group can
be swapped ((a) → (b)) leading to an equivalent trace compatible with a different
configuration of inputs.

4 Related Work

Cryptographic primitives and secure multi-party computation [1,2,3] allow to
compute aggregation functions in a secure way. This comes however at the price
of non-scalability. Assuming trust relationships between users of a social network,
Vu et al. [8] proposed an improved secret sharing scheme to protect privacy.
In that scheme, the actual relationships between nodes are used to determine
the trustworthy participants, and the shares are only distributed to those. In
contrast, AG-S3 exploits solely the human nature of social networks without
making any assumptions on the social relationships themselves.

The population protocol model of et al. [9] provides a theoretical framework of
mobile devices with limited memory, which relates to the scalability requirement
of the S3 problem. The model however can only compute first order formulas in
Presburger arithmetic [10] and can tolerate only a constant number of benign
failures [11]. The community protocol model [12] relax the scalability require-
ments on the memory sizes of tiny agents which enables powerful computations
and Byzantine fault-tolerance. Yet, the model breaks anonymity as agents are
assigned unique ids. This illustrates the trade-off between the power and security
of a model on one hand and privacy on the other hand. The problem of privacy
in population protocols was also tackled in [13]. The sharing scheme of AG-S3 is

Computing in Social Networks 345

inspired by the obfuscation mechanism proposed in that paper, namely adding
unit noise (+1 or -1) to their inputs, upon a state exchange. Dpol [5], itself
also inspired by [13], can be be viewed as a restricted form of AG-S3. Dpol is
restricted to binary polling: it aggregates values in {−1, +1} and it uses a rudi-
mentary secret sharing scheme and overly structure that assume (i) a uniform
distribution of inputs, and (ii) a built-in anonymous overlay: these are the two
main difficulties of the privacy challenge as defined in the S3 problem.

Differential privacy [14] and k-anonymity [15] are two common ways to ex-
press privacy in the context of distributed computations on sensitive databases.
Contrary to AG-S3, where faulty nodes take part in the computation, those
techniques aim at protecting the privacy of inputs from an external attacker
that queries the database. Differential privacy characterizes the amount of in-
formation disclosed by the output by bounding the impact of a single input on
the output. It is typically achieved by adding noise to the output. However, as
pointed out in [16], differential privacy does not capture the cases of rare in-
put configurations due to the multiplicative bounds in its formulation, which is
precisely the difficult case we need to address in the S3 problem, i.e., the case
where everybody but one node have the same inputs. The obfuscating technique
consisting in adding noise to intermediate results cannot be used in the context
of S3 computing. The granularity of noise may indeed by high if elements of V
are far away. In addition, it gives more opportunities to faulty nodes to bias the
output of the computation. On the other hand, k-anonymity guarantees that
any input value maps to at least k input nodes. In the S3 problem, privacy can
be seen as 2-anonymity with high probability, expressed in a distributed setting.
With AG-S3, faulty nodes cannot map any input to a restricted subset of nodes
as any two nonfaulty nodes can swap their inputs transparently. It thus ensures
n − B-anonymity with high probability.

5 Conclusion

Social networks constitute now huge platforms on which it is very tempting to
perform large scale computations. Yet, such computations are challenging as one
needs to ensure privacy, scalability and accuracy. We leverage the very fact that,
in such platforms, behind every node lies a respectable user who cares about his
reputation, in order to make the problem tractable. We define what the notion
of computation means in that context and propose a protocol that computes a
class of aggregation functions. This is a first step toward understanding what
can be computed in a social network and many open questions are left open such
as what is the maximum number of faulty nodes a S3 protocol can tolerate and
what else besides aggregation functions can be computed in a S3 manner?

References

1. Benaloh, J.: Secret Sharing Homomorphisms: Keeping Shares of a Secret Secret.
In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 251–260. Springer,
Heidelberg (1987)

346 A. Giurgiu et al.

2. Rivest, R., Shamir, A., Tauman, Y.: How to Share a Secret. CACM 22, 612–613
(1979)

3. Yao, A.C.: Protocols for Secure Computations. In: FOCS, pp. 160–164 (1982)
4. Lamport, L., Shostak, R., Pease, M.: The Byzantine Generals Problem. ACM

TPLS 4(3), 382–401 (1982)
5. Guerraoui, R., Huguenin, K., Kermarrec, A.M., Monod, M.: Decentralized Polling

with Respectable Participants. In: OPODIS, pp. 144–158 (2009)
6. Galil, Z., Yung, M.: Partitioned Encryption and Achieving Simultaneity by Parti-

tioning. Information Processing Letters 26(2), 81–88 (1987)
7. Gupta, I., Birman, K., Linga, P., Demers, A., van Renesse, R.: Kelips: Building

an Efficient and Stable P2P DHT through Increased Memory and Background
Overhead. In: Kaashoek, M.F., Stoica, I. (eds.) IPTPS 2003. LNCS, vol. 2735, pp.
160–169. Springer, Heidelberg (2003)

8. Vu, L.H., Aberer, K., Buchegger, S., Datta, A.: Enabling secure secret sharing in
distributed online social networks. In: ACSAC, pp. 419–428 (2009)

9. Angluin, D., Aspnes, J., Diamadi, Z., Fischer, M.J., Peralta, R.: Computation in
Networks of Passively Mobile Finite-state Sensors. Distributed Computing 4, 235–
253 (2006)

10. Angluin, D., Aspnes, J., Eisenstat, D., Ruppert, E.: The Computational Power of
Population Protocols. Distributed Computing 20, 279–304 (2007)

11. Delporte-Gallet, C., Fauconnier, H., Guerraoui, R., Ruppert, E.: When Birds Die:
Making Population Protocols Fault-tolerant. In: Gibbons, P.B., Abdelzaher, T.,
Aspnes, J., Rao, R. (eds.) DCOSS 2006. LNCS, vol. 4026, pp. 51–66. Springer,
Heidelberg (2006)

12. Guerraoui, R., Ruppert, E.: Names Trump Malice: Tiny Mobile Agents Can Tol-
erate Byzantine Failures. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y.,
Nikoletseas, S., Thomas, W. (eds.) ICALP 2009. LNCS, vol. 5556, pp. 484–495.
Springer, Heidelberg (2009)

13. Delporte-Gallet, C., Fauconnier, H., Guerraoui, R., Ruppert, E.: Secretive Birds:
Privacy in Population Protocols. In: Tovar, E., Tsigas, P., Fouchal, H. (eds.)
OPODIS 2007. LNCS, vol. 4878, pp. 329–342. Springer, Heidelberg (2007)

14. Dwork, C.: Differential Privacy. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener,
I. (eds.) ICALP 2006. LNCS, vol. 4052, pp. 1–12. Springer, Heidelberg (2006)

15. Samarati, P.: Protecting Respondents’ Identities in Microdata Release. TKDE 13,
1010–1027 (2001)

16. Roy, I., Setty, S.T., Kilzer, A., Shmatikov, V., Witchel, E.: Airavat: Security and
Privacy for MapReduce. In: NSDI (2010)

On Transactional Scheduling in
Distributed Transactional Memory Systems

Junwhan Kim and Binoy Ravindran

ECE Department, Virginia Tech, Blacksburg, VA, 24061
{junwhan,binoy}@vt.edu

Abstract. We present a distributed transactional memory (TM) scheduler called
Bi-interval that optimizes the execution order of transactional operations to min-
imize conflicts. Bi-interval categorizes concurrent requests for a shared object
into read and write intervals to maximize the parallelism of reading transactions.
This allows an object to be simultaneously sent to nodes of reading transactions
(in a data flow TM model), improving transactional makespan. We show that Bi-
interval improves the makespan competitive ratio of the Relay distributed TM
cache coherence protocol to O(log(n)) for the worst-case and Θ log(n − k) for
the average-case, for n nodes and k reading transactions. Our implementation
studies confirm Bi-interval’s throughput improvement by as much as 200% ∼
30%, over cache-coherence protocol-only distributed TM.

Keywords: Transactional Memory, Transactional Scheduling, Distributed Sys-
tems, Distributed Cache-Coherence.

1 Introduction

Transactional memory (TM) is an alternative synchronization model for shared in-
memory data objects that promises to alleviate difficulties with lock-based synchro-
nization (e.g., lack of compositionality, deadlocks, lock convoying). A transaction is a
sequence of operations, performed by a single thread, for reading and writing shared
objects. Two transactions conflict if they access the same object and one access is a
write. When that happens, a contention manager (CM) is typically used to resolve the
conflict. The CM resolves conflicts by deciding which transactions to abort and aborting
them, allowing only one transaction to proceed, and thereby ensures atomicity. Aborted
transactions are retried, often immediately. Thus, in the contention management model,
a transaction ends by either committing (i.e., its operations take effect), or by aborting
(i.e., its operations have no effect). Efficient contention management ensures transac-
tional progress—i.e., at any given time, there exists at least one transaction that pro-
ceeds to commit without interruption [19]. TM for multiprocessors has been proposed
in hardware [11], in software [12], and in hardware/software combination [16].

A complimentary approach for dealing with transactional conflicts is transactional
scheduling. Broadly, a transactional scheduler determines the ordering of transactions
so that conflicts are either avoided altogether or minimized. This includes serializing
transaction executions to avoid conflicts based on transactions’ predicted read/write
access sets [8] or collision probability [7]. In addition, conflicts can be minimized by

S. Dolev et al. (Eds.): SSS 2010, LNCS 6366, pp. 347–361, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

348 J. Kim and B. Ravindran

carefully deciding when a transaction that is aborted due to a conflict is resumed [1,7],
or when a transaction that is stalled due to potential for an immediate conflict is later
dispatched [21]. Note that, while contention management is oblivious to transactional
operations, scheduling is operation-aware, and uses that information to avoid/minimize
conflicts. Scheduling is not intended as a replacement for contention management; a
CM is (often) needed and scheduling seeks to enhance TM performance.

Distributed TM promises to alleviate difficulties with lock-based distributed synchro-
nization [13,4,17,15,23]. Several distributed TM models are possible. In the data-flow
model [13], which we also consider, object performance bottlenecks can be reduced by
migrating objects to the invoking transactional node and exploiting locality. Moreover,
if an object is shared by a group of geographically-close clients that are far from the
object’s home, moving the object to the clients can reduce communication costs. Such
a data flow model requires a distributed cache-coherence protocol, which locates an
object’s latest cached copy, and moves a copy to the requesting transaction, while guar-
anteeing one writable copy. Of course, CM is also needed. When an object is attempted
to be migrated, it may be in use. Thus, a CM must mediate object access conflicts. Past
distributed TM efforts present cache coherence protocols (e.g., Ballistic [13], LAC [23],
Relay [22]) and often use a globally consistent CM (e.g., Greedy [9]).

We consider distributed transactional scheduling to enhance distributed TM perfor-
mance. We present a novel distributed transactional scheduler called Bi-interval that
optimizes the execution order of transactional operations to minimize conflicts. We
focus on read-only and read-dominated workloads (i.e., those with only early-write
operations), which are common transactional workloads [10]. Bi-interval categorizes
concurrent requests for a shared object into read and write intervals to maximize the
parallelism of reading transactions. This reduces conflicts between reading transactions,
reducing transactional execution times. Further, it allows an object to be simultaneously
sent to nodes of reading transactions, thereby reducing the total object traveling time.

We evaluate Bi-interval by its makespan competitive ratio—i.e., the ratio of Bi-
interval’s makespan (the last completion time for a given set of transactions) to the
makespan of an optimal transactional scheduler. We show that Bi-interval improves the
makespan competitive ratio of the Relay cache coherence protocol with the Greedy CM
from O(n) [22] to O(log(n)), for n nodes. Also, Bi-interval yields an average-case
makespan competitive ratio of Θ(log(n− k)), for k reading transactions.

We implement Bi-interval in a distributed TM implementation constructed using the
RSTM package [5]. Our experimental studies reveal that Bi-interval improves transac-
tional throughput of Relay by as much as 188% and that of LAC protocols by as much
as 200%. In the worst-case (i.e., without any reading transaction), Bi-interval improves
throughput of Relay and LAC protocols (with the Greedy CM) by as much as 30%.
Thus, the paper’s contribution is the Bi-interval transactional scheduler. To the best of
our knowledge, this is the first ever transactional scheduler for distributed TM.

The rest of the paper is organized as follows. We review past and related work
in Section 2. We describe our system model and definitions in Section 3. Section 4
describes the Bi-interval scheduler, analyzes its performance, and gives a procedural
description. We discuss Bi-interval’s implementation and report experimental evalua-
tion in Section 5. The paper concludes in Section 6.

On Transactional Scheduling in Distributed Transactional Memory Systems 349

2 Related Work

Past works on distributed transactional memory include [4,13,17,15,23]. In [17], the
authors present a page-level distributed concurrency control algorithm, which maintains
several distributed versions of the same data item. In [4], the authors decompose a
set of existing cache-coherent TM designs into a set of design choices, and select a
combination of such choices to support TM for commodity clusters. Three distributed
cache-coherence protocols are compared in [15] based on benchmarks for clusters.

In [13], Herlihy and Sun present a distributed cache-coherence protocol, called Bal-
listic, for metric-space networks, where the communication cost between nodes form
a metric. Ballistic models the cache-coherence problem as a distributed queuing prob-
lem, due to the fundamental similarities between the two problems, and directly uses
an existing distributed queuing protocol, the Arrow protocol [6], for managing transac-
tional contention. Since distributed queuing protocols, including Arrow, do not consider
contention between transactions, Ballistic suffers from a worst-case queue length of
O(n2) for n transactions requesting the same object. Further, its hierarchical structure
degrades its scalability—e.g., whenever a node joins or departs the network, the whole
structure has to be rebuilt. These drawbacks are overcome in the Relay protocol [22],
which reduces the worst-case queue length by considering transactional contention, and
improves scalability by using a peer-to-peer structure.

Zhang and Ravindran present a class of location-aware distributed cache-coherence
(or LAC) protocols in [23]. For LAC protocols, the node which is “closer” to the object
(in terms of the communication cost) always locates the object earlier. When working
with the Greedy CM, LAC protocols improve the makespan competitive ratio.

None of these efforts consider transactional scheduling. However, scheduling has
been explored in a number of multiprocessor TM efforts [8,1,21,7,3]. In [8], Drago-
jević et. al. describe an approach that schedules transactions based on their predicted
read/write access sets. They show that such a scheduler can be 2-competitive with an
optimal scheduler, and design a prediction-based scheduler that dynamically serializes
transactions based on the predicted access sets. In [1], Ansari et. al. discuss the Steal-
On-Abort transaction scheduler, which queues an aborted transaction behind the non-
aborted transaction, and thereby prevent the two transactions from conflicting again
(which they likely would, if the aborted transaction is immediately restarted).

Yoo and Lee present the Adaptive Transaction Scheduler (ATS) [21] that adaptively
controls the number of concurrent transactions based on the contention intensity: when
the intensity is below a threshold, the transaction begins normally; otherwise, the trans-
action stalls and do not begin until dispatched by the scheduler. Dolev et. al. present the
CAR-STM scheduling approach [7], which uses per-core transaction queues and serial-
izes conflicting transactions by aborting one and queueing it on the other’s queue, pre-
venting future conflicts. CAR-STM pre-assigns transactions with high collision proba-
bility (application-described) to the same core, and thereby minimizes conflicts.

Attiya and Milani present the BIMODAL scheduler [3], targeting read-dominated
and bimodal (i.e., those with only early-write and read-only) workloads. BIMODAL
alternates between “writing epochs” and “reading epochs” during which writing and
reading transactions are given priority, respectively, ensuring greater concurrency for

350 J. Kim and B. Ravindran

reading transactions. BIMODAL is shown to significantly outperform its makespan
competitive ratio in read-dominated workloads, and has an O(s) competitive ratio.

Our work is inspired by the BIMODAL scheduler. The main idea of our work is also
to build a read interval, which is an ordered set of reading transactions to simultaneously
visit requesting nodes of those reading transactions. However, there is a fundamental
trade-off between building a read interval and moving an object. If an object visits
only read-requesting nodes, the object moving time may become larger. On the other
hand, if an object visits in the order of the nearest node, we may not fully exploit the
concurrency of reading transactions. Thus, we focus on how to build the read interval,
exploiting this trade-off. Note that this tradeoff does not occur for BIMODAL.

3 Preliminaries

We consider Herlihy and Sun’s data-flow TM model [13]. In this model, transactions
are immobile, but objects move from node to node. A CM module is responsible for
mediating between conflicting accesses to avoid deadlocks and livelocks. We use the
Greedy CM which satisfies the work conserving [2] and pending commit [9] properties.

When a transaction attempts to access an object, the cache-coherence protocol lo-
cates the current cached copy of the object, moves it to the requesting node’s cache,
and invalidates the old copy (e.g., [22,23]). If no conflict occurs, the protocol is re-
sponsible for locating the object for the requesting nodes. Whenever a conflict occurs,
the CM aborts the transaction with the lower priority. The aborted transaction is en-
queued to prevent it from concurrently executing again. When the current transaction
commits, the transactional scheduler should decide in what order the enqueued trans-
actions should execute. We assume that the same scheduler is embedded in all nodes
for consistent scheduling. We only consider read and write operations in transactions:
a transaction that only reads objects is called a reading transaction; otherwise, it is a
writing transaction.

Similar to [13], we consider a metric-space network where the communication costs
between nodes form a metric. We assume a complete undirected graph G = (V, E),
where | V |= n. The cost of an edge e(i, j) is measured by the communication delay
of the shortest path between two nodes i and j. We use dG(i, j) to denote the cost of
e(i, j) in G. Thus, dG(i, j) forms the metric of G.

A node v has to execute a transaction T , which is a sequence of operations on the
objects R1, R2,. . . Rs, where s ≥ 1. Since each transaction is invoked on an individual
node, we use vTj to denote the node that invokes the transaction Tj . We define VT = {
vT1 , vT2 , . . . vTn } indicating the set of nodes requesting the same object. We use
Ti ≺ Tj to represent that transaction Tj is issued a higher priority than Ti by the
Greedy CM. We use τj to denote the duration of a transaction’s execution on node j.

Definition 1. A scheduler A is conservative if it aborts at least one transaction in every
conflict.

Definition 2 (Makespan). Given a scheduler A, makespani(A) is the time that A
needs to complete all the transactions in V Ri

Tn
which require accesses to an object Ri.

On Transactional Scheduling in Distributed Transactional Memory Systems 351

We define two types of makespans: (1) traveling makespan(makespand
i (A)), which is

the total communication delay to move an object; and (2) execution makespan
(makespanτ

A(A)), which is the time duration of transactions’ executions including all
aborted transactions.

Definition 3 (Competitive Ratio). The competitive ratio (CR) of a scheduler A for
V Ri

Tn
is makespani(A)

makespani(OPT) , where OPT is the optimal scheduler.

Definition 4 (Object Moving Time). In a given graph G, the object moving cost
ηA

G(u, V) is the total communication delay for visiting each node from node u hold-
ing an object to all nodes in V , under scheduler A.

We now present bounds on transactional aborts.

Lemma 1. Given n transactions, in the worst-case, the number of aborts of a CM in
V Ri

Tn
is n2.

Proof. Since the CM is assumed to be work-conserving, there exists at least one trans-
action in V Ri

Tn
that will execute uninterruptedly until it commits. A transaction T can be

aborted by another transaction in V Ri

Tn
. In the worst-case, λCM =

∑n−1
m=1 m ≤ n2.

Lemma 2. Given n transactions, in the worst-case, the number of aborts of a conser-
vative scheduler in V Ri

Tn
is n− 1.

Proof. By Lemma 1, we know that a transaction T can be aborted as many times as
the number of elements of V Ri

Tn
. In the worst-case, the number of aborts of T is n − 1.

Thus, a scheduler enqueues the requests that are aborted and an object moves along the
requesting nodes. Hence, in the worst-case, λScheduler =

∑n−1
m=1 1 = n− 1.

We now investigate the makespan for all requests for object Ri by an optimal off-line
scheduler.

Lemma 3. The makespans of the optimal off-line scheduler are bounded as:

makespand
i (OPT) ≥ min dG(vT , V Ri

Tn−1
), makespanτ

i (OPT) ≥
n−1∑
m=1

τm

Proof. Suppose that n concurrent requests are invoked for the same object Ri and n-1
transactions are aborted in the worst-case. The optimal moving makespan is the sum-
mation of the minimum paths for Ri to visit each requested nodes. Ri starts moving
from vT to each node that belongs to V Ri

Tn−1
according to the shortest paths. Once Ri

visits a node, the node holds it during τm for processing.

Lemma 4. The makespans of scheduler A are bounded as:

makespand
i (A) ≤ max ηA

G(vT , V Ri

Tn−1
), makespanτ

i (A) ≤
n−1∑
m=1

τm

Proof. If n−1 requests arrive before the completion of a transaction at vT , conflicts oc-
cur at vT , which currently is Ri’s holding node. The scheduler builds a list of requested
nodes to visit. Once a transaction is aborted, object moving and execution times are
determined using the number of nodes that would be used in the worst case scenario.

352 J. Kim and B. Ravindran

4 The Bi-interval Scheduler

Bi-interval is similar to the BIMODAL scheduler [3] in that it categorizes requests into
read and write intervals. When a request of transaction T2 on node 2 arrives at node 1,
there are two possible cases: 1) if the transaction T1 on node 1 has committed, then the
object will be moved to node 2; 2) if T1 has not committed yet, then a conflict occurs.
For the latter case, two sub-cases are possible. If the queue of aborted transactions is
empty, the (Greedy) CM aborts the newer transaction [9]. If T1 ≺ T2, T1 is aborted. To
handle a conflict between a reading and a writing transaction, a reading transaction is
aborted to concurrently process it with other reading transactions in the future. On the
other hand, if there are aborted transactions in the queue, T1 and the aborted transactions
will be scheduled by node 1. If T1 has been previously scheduled, we use a pessimistic
concurrency control strategy [20]: T2 is aborted and waits until the aborted transactions
are completed. Otherwise, we use the Greedy CM.

When a transaction commits and the aborted transactions wait in the queue, Bi-
interval starts building the read and write intervals.

Write Interval: The scheduler finds the nearest requesting node. If the node has re-
quested an object for a writing transaction, a write interval starts and the scheduler keeps
searching for the next nearest node. When a requesting node for a reading transaction is
found, the write interval ends and a read interval starts. The object is visited according
to the chain of writing transactions in serial order.

Read Interval: When the scheduler finds the nearest node that has requested an object
for a reading transaction, a read interval starts. The scheduler keeps searching for the
next nearest node to build the read interval. If a requesting node for a writing transaction
is found, the scheduler keeps checking the nearest node until a node requesting the
object for a reading transaction appears again. If it appears, the read requesting node
is joined to the read interval, meaning that the previously found requesting node(s) for
a writing transaction is(are) scheduled behind the read interval. Instead of giving up
the benefit of shorter object traveling times by visiting the nearest node, we achieve
the alternative benefit of increased concurrency between reading transactions. Before
the joining procedure to extend the read interval, the scheduler computes the trade-off
between these benefits. If scheduling is completed, the object is simultaneously sent to
all requesting nodes involved in the read interval. If no node for a reading transaction
appears, another write interval is created.

There are two purposes for building a read interval through scheduling. First, the total
execution time decreases due to the concurrent execution of reading transactions. Sec-
ond, an object is simultaneously sent to some requesting nodes for reading transactions.
Thus, the total traveling time in the network decreases. We now illustrate Bi-interval’s
scheduling process with an example.

Figure 1 shows an example of a five-node network. Node 3, where the conflicts
occurs, is responsible for scheduling four requests from nodes 1, 2, 4, and 5. If all
requests involve write operations, node 3 schedules them as the following scheduled
list: 4© → 5© → 1© → 2©. If only nodes 2 and 4 have reading transactions, node 3
yields the following scheduled list: 4©→ 2©→ 1©→ 5©. Node 3 simultaneously sends
a copy of the object to nodes 4 and 2. Once the copy arrives, nodes 4 and 2 process
it. After processing the object, node 4 sends a signal to node 2 letting it know about

On Transactional Scheduling in Distributed Transactional Memory Systems 353

Fig. 1. A Five-Node Network Example for Bi-interval’s Illustration

Fig. 2. An Example of Exploiting Parallelism in a Read Interval

the object availability. At this time, node 2 is processing or has finished processing
the object. After processing it, node 2 sends the object to node 1. The makespan is
improved only when min(τ3, τ4) > ηG(3, 2). In the meantime, if other conflicts occur
while the object is being processed along the scheduled list, aborted transactions (due
to the conflicts) are scheduled behind the list to ensure progress based on pessimistic
concurrency control. This means that those aborted transactions will be handled after
processing the scheduled list.

Figure 2 shows an example of the parallelism in a read interval. Even though the
object is simultaneously sent to nodes 4 and 2, it may not arrive at the same time. Due
to different communication delays of the object and different execution times of each
transaction, nodes 4 and 2 may complete their transactions at different times. According
to the scheduled order, node 4 sends a signal to node 2 and node 2 immediately sends
the object to node 1. Thus, the total makespan at nodes 4 and 2 includes only the worst-
case execution time plus the object moving time. However, the communication delay
between nodes 4 and 1 takes longer because node 2 is not the nearest node of node 4.

4.1 Algorithm Description

Bi-interval starts finding the set of consecutive nearest nodes using a nearest neighbor
algorithm. V Ri

Tm
denotes the set of nodes for reading transactions to obtain an object

Ri, where m ≥ 1. V Ri

Tw
denotes the set of nodes for writing transactions to obtain Ri.

Suppose that the scheduler found the ordered set of V Ri

Tm
and V Ri

Tw
as nearest nodes.

ηG(V Ri

Tm
, vm+1)− ηG(V Ri

Tm
, V Ri

Tw
) < τω (1)

354 J. Kim and B. Ravindran

When a request for a reading transaction from node vm+1 appears after V Ri

Tw
is found,

V Ri

Tw
is switched to vm+1 in the condition of Equation 1 to extend the size of V Ri

Tm
.

Equation 1 shows the condition for a reading request vm+1 to move to the previous
read interval if the difference between the delay from V Ri

Tm
to vm+1 and from V Ri

Tm
to

V Ri

Tw
is less than or equal to τω, where τω is the worst-case execution time of a reading

transaction, and 1 ≤ m ≤ k.

min
1≤Ir≤k

(τω · Ir +
n−k∑
m=1

τm + ηG(vT , V̄ Ri

T)) (2)

Here, Ir is the number of read intervals, k is the number of reading transactions, vT ∈
V Ri

T , and V̄ Ri

T = { vT1 , vT2 , . . . vTn+Ir−k
}.

Equation 2 expresses the minimization of makespan for the execution and object
traveling time, which is Bi-interval’s main objective:

Algorithm 1. Algorithm of Bi-interval

Input: V Ri
Tn

= { vT1 , vT2 , · · · vTn }
Output: LRi

T /* Scheduled List */
W Ri

T ← ∅; LRi
T ← ∅;1

p ←NULL; q ←NULL2

repeat3

p=FindNearestNode(V Ri
Tn

);4

if p is a reading request then5

if q is a writing request and6

DetermineTotal(p,W Ri
T) is not OK

then
A write interval is confirmed;7

LRi
T ← LRi

T ∪ W Ri
T ;8

W Ri
T ← ∅;9

else10

V Ri
Tn

←V Ri
Tn

\ { p};11

LRi
T ← LRi

T ∪ { p };12

else13

V Ri
Tn

←V Ri
Tn

\ { p};14

W Ri
T ← W Ri

T ∪ { p };15

q = p;16

until V Ri
Tn

is ∅ ;17

Boolean DetermineTotal(p,W Ri
T)18

if delay(LRi
T , p)-delay(LRi

T , W Ri
T)< τworst19

then
return OK;20

return Not OK;21

Algorithm 1 shows a detailed description of Bi-interval based on the nearest neighbor
problem [14], which is known to be an NP-complete problem. Algorithm 1 is invoked
when a transaction is committed and aborted requests are accumulated to be scheduled.
In order to solve Equation 2, we consider a greedy approach, where at each stage of the
algorithm, the link with the shortest delay is taken.

On Transactional Scheduling in Distributed Transactional Memory Systems 355

In order to visit k requesting nodes, the path from a starting node to visit k nodes in
V Ri

Tk
is selected. The set of LRi

T is initiated, and the last remaining element is returned
as a result. If the nearest node is found and it is a request for a read operation, the
algorithm checks if a read interval has been started. If a read interval was previously
started, the DetermineTotal function is called. If it returns OK, the read requesting node
is joined to the previous read interval. Otherwise, a new read interval is created. Note
that if a new read interval is started, it means that a write interval is confirmed because
the DetermineTotal function is called only if a read requesting node is found as the
nearest node right after a write requesting node is found in a queue.

The FindNearestNode function finds the smallest delay from node vT to a node in
the set of V Ri

Tk
. Whenever the FindNearestNode function returns a requesting node

p for a reading transaction after finding a requesting node q for a writing transaction,
Algorithm 1 has to check whether a write interval is created (i.e., LRi

T ← LRi

T ∪WRi

T)
by comparing the delay corresponding to the total execution times and communication
delay. The time and message complexity of Algorithm 1 is O(n2).

4.2 Competitive Ratio Analysis

We focus on the analysis of execution and traveling makespan competitive ratios.

Theorem 1. Bi-interval’s execution makespan competitive ratio is 1+ Ir

n−k+1 .

Proof. The optimal off-line algorithm concurrently executes all reading transactions.
So, Bi-interval’s optimal execution makespan (makespanτ

i (OPT)) is
∑n−k+1

m=1 τm.

CRτ
Biinterval ≤

τω · Ir +
∑n−k+1

m=1 τm∑n−k+1
m=1 τm

≈ Ir + n− k + 1
n− k + 1

Theorem 2. Bi-interval’s traveling makespan competitive ratio is log(n+ Ir − k− 1).

Proof. Bi-interval follows the nearest neighbor path to visit each node in the scheduling
list. We define the stretch of a transactional scheduler as the maximum ratio of the mov-

ing time to the communication delay—i.e., Stretchη(vT , V Ri

Tn−1
) = max

ηG(vT ,V
Ri

Tn−1
)

dG(vT ,V
Ri

Tn−1
)

≤ 1
2 log(n− 1) + 1

2 from [18]. Hence, CRd
Biinterval ≤ log(n + Ir − k − 1).

Theorem 3. The total worst-case competitive ratio CRWorst
Biinterval of Bi-interval for

multiple objects is O(log(n)).

Proof. In the worst-case, Ir = k. This means that there are no consecutive read inter-
vals. Thus, makespanOPT and makespanBiinterval satisfy the following, respectively:

makespanOPT =
n−k+1∑
m=1

τm + min dG(vT , V Ri

Tn−k+1
) (3)

makespanBiinterval =
n−1∑
m=1

τm + log(n− 1)max dG(vT , V Ri

Tn−1
) (4)

Hence, CRWorst
Biinterval ≤ log(n− 1).

We now focus on the case Ir < k.

356 J. Kim and B. Ravindran

Theorem 4. When Ir < k, Bi-interval improves the traveling makespan
(makespand

i (Biinterval)) as much as O(| log(1− (k−Ir

n−1)|).

Proof.

max
ηG(vT , V Ri

Tn+Ir−k−1
)

dG(vT , V Ri

Tn−1
)

= max
(ηG(vT , V Ri

Tn−1
)

dG(vT , V Ri

Tn−1
)

+
ε

dG(vT , VTn−1)

)
(5)

≤ 1
2

log(n− k + Ir − 1) +
1
2

When Ir < k, a read interval has at least two reading transactions. We are interested in
the difference between ηG(vT , V Ri

Tn−1
) and ηG(vT , V Ri

Tn+Ir−k−1
). Thus, we define ε as

the difference between two ηG values.

max
ε

dG(vT , VTn−1)
≤ 1

2
log(

n− k + Ir − 1
n− 1

) (6)

In (6), due to Ir < k, n−k+Ir−1
n−1 < 1. Bi-interval is invoked after conflicts occur, so

n �= k. Hence, ε is a negative value, improving the traveling makespan.

The average-case analysis (or, probabilistic analysis) is largely a way to avoid some of
the pessimistic predictions of complexity theory. Bi-interval improves the competitive
ratio when Ir < k. This improvement depends on the size of Ir—i.e., how many read-
ing transactions are consecutively arranged. We are interested in the size of Ir when
there are k reading transactions. We analyze the expected size of Ir using probabilistic
analysis. We assume that k reading transactions are not consecutively arranged (i.e.,
k ≥ 2) when n requests are arranged according to the nearest neighbor algorithm. We
define a probability of actions taken for a given distance and execution time. The action
indicates the satisfaction for the inequality of Equation 1. We focus on the analysis of
the average-case competitive ratios of Bi-interval.

Theorem 5. The expected number of read intervals E(Ir) of Bi-interval is log(k).

Proof. The distribution used in the proof of Theorem 5 is an independent uniform
distribution. p denotes the probability for k reading transactions to be consecutively
arranged.

E(Ir) =
∫ 1

p=0

k∑
Ir=1

(
k

Ir

)
· pk(1− p)k−Ir dp

=
k∑

Ir=1

(k!
Ir! · (k − Ir)!

∫ 1

p=0
pk(1 − p)k−Irdp

)

≈
k∑

Ir=1

k!
Ir !
· k!
(2k − Ir + 1)!

≈ log(k) (7)

We derive Equation 7 using the beta integral.

On Transactional Scheduling in Distributed Transactional Memory Systems 357

Theorem 6. Bi-interval ’s total average-case competitive ratio (CRAverage
Biinterval) is

Θ(log(n− k)).

Proof. We define CRm
Biinterval as the competitive ratio of node m. CRAverage

Biinterval is
defined as the sum of CRm

Biinterval of n + E(Ir)− k + 1 nodes.

CRAverage
Biinterval ≤

n+E(Ir)−k+1∑
m=1

CRm
Biinterval

≤ log(n + E(Ir)− k + 1) ≈ log(n− k)

Since E(Ir) is smaller than k, CRAverage
Biinterval = Θ(log(n− k)).

5 Implementation and Experimental Evaluation

We implemented Bi-interval in an experimental distributed TM implementation, which
was built using the RSTM package [5]. Figure 3 shows the architecture of our dis-
tributed TM implementation. As a C++ TM library, RSTM provides a template that
returns a transaction-enabled wrapper object. We implemented a distributed database
repository that is connected to the template for handling transactional objects. The ar-
chitecture consists of two parts: local TM and remote TM. Algorithm 2 gives detailed
descriptions of these parts. When an object is needed, the local TM is invoked in the
requesting node and the remote TM is invoked in the object holding node.

Fig. 3. Architecture of Experimental Distributed TM System

Experimental Evaluation. The purpose of our experimental evaluation is to measure the
transactional throughput when the Bi-interval scheduler is used to augment a distributed
cache-coherence-based TM. We implemented the LAC and Relay cache coherence pro-
tocols, which can be augmented with Bi-interval. We also included the classical RPC
and distributed shared memory (DSM-L) models, both lock-based, in our experiments,
as baselines. RPC and DSM-L are based on a client-server architecture in which a server
has to hold shared objects, and clients request the object from the server. In contrast, in
distributed TM, a shared object is distributed for each node. The LAC and Relay proto-
cols include a procedure to find a node that holds or will hold an object. However, for

358 J. Kim and B. Ravindran

Algorithm 2. Algorithm of Local and Remote TM

Local TM1

if a requested object is in the local memory2

and it is validated then
return the object;3

else4

send a request message;5

if the response is not an abort message then6

wait for the requested object during a7

timer t

if t is expired then8

resend a request message;9

Remote TM10

if a requested object is validated then11

invalidate and send the object12

else13

a conflict is detected.14

invoke a CM.15

enqueue the aborted request;16

if a transaction is committed then17

invoke the scheduler algorithm;18

(a) Bi-interval-LAC (0%) (b) Bi-interval-LAC (50%) (c) Bi-interval-LAC (100%)

(d) Bi-interval-Relay (0%) (e) Bi-interval-Relay (50%) (f) Bi-interval-Relay
(100%)

Fig. 4. Transactional Throughput Under Increasing Requesting Nodes/Single Object

fair comparison, we assume that all nodes know the location of the shared objects. Each
node runs varying number of transactions, which write to and/or read from the objects.
We used an 18-node testbed in the experimental study.

Two types of transactions were used in the experiments: insertion for a writing
transaction and lookup for a reading transaction in a red-black tree. We measured the
transactional throughput—i.e., the number of completed (committed) transactions per
second under an increasing number of requesting nodes, for the different schemes. Since

On Transactional Scheduling in Distributed Transactional Memory Systems 359

(a) Bi-interval-LAC (0%) (b) Bi-interval-LAC (50%) (c) Bi-interval-LAC (100%)

(d) Bi-interval-Relay (0%) (e) Bi-interval-Relay (50%) (f) Bi-interval-Relay (100%)

Fig. 5. Transactional Throughput Under Multiple Objects and Increasing Operations

the throughput varies depending on the nodes’ locations, we measured the total time to
complete all transactions for each requesting node and computed the average number of
committed transactions per second. We also varied the number of writing transactions.
In the plots, 100% means that all requesting nodes are involved in writing transactions.

Figure 4 shows the transactional throughput under 6, 10, 14, and 18 nodes requesting
an object. (In all the figures, we abbreviate the Greedy CM as GCM.) We observe that
Bi-interval-LAC and GCM-LAC, and Bi-interval-Relay and GCM-Relay exhibit the
same behavior under no conflicts. However, once a conflict occurs, an aborted transac-
tion is not aborted again in Bi-interval-LAC (Relay). In GCM-LAC and GCM-Relay,
the requesting nodes that have been aborted request an object again, so that increases
the communication delay. Unless a request arrives at the object holding node right after
a transaction is committed, the up-to-date copy of the object has to wait until the request
arrives. However, the object holding node with Bi-interval immediately sends the copy
to the requesting node right after it commits. The purpose of the Relay protocol is to
reduce the number of aborts, so GCM-Relay has better performance than GCM-LAC.
If no conflict occurs, Relay performs better than LAC. However, when a conflict oc-
curs, Bi-interval-LAC performs better than Bi-interval-Relay due to the advantage of
the parallelism of the reading transactions involved in the aborts. Bi-interval-LAC (0%)
boosts the performance to the maximum possible transactional throughput.

It is interesting to observe the throughput difference between Bi-interval-LAC
(100%) and Bi-interval-Relay (100%) shown in Figures 4(c) and 4(f), respectively. The
cause of the throughput deterioration of Bi-interval-Relay (100%) is the high object

360 J. Kim and B. Ravindran

moving delay. Even though transactions are aborted less in Relay, the copy of an object
moves along a fixed spanning tree, which may not be the shortest path. Bi-interval-LAC,
which has a relatively higher number of aborts, achieves the nearest node for aborted
transactions.

In DSM-L and RPC, if an object is invalidated, they block new requests to protect the
previous request. Specifically, Bi-interval-LAC and Relay (0%) simultaneously send all
requesting nodes involved in aborted transactions to the object. Thus, they significantly
outperform the other schemes.

We now turn our attention to throughput when a transaction uses multiple objects,
and performs increasing number of object operations, causing longer transaction ex-
ecution times. We measured throughput under 10 and 20 objects and 1000 and 100
operations per transaction. The objects are not related to each other, but the transaction
has to use them together, so a transaction’s execution time is longer. Figure 5 shows
the results. GCM-LAC and GCM-Relay suffer from large number of aborts due to in-
creasing number of objects and operations. They show greater throughput degradation
from the number of aborts than that under shorter transactions. We observe a maximum
improvement of 30% for Bi-interval under 100% updates.

6 Conclusions

Our work shows that the idea of grouping concurrent requests into read and write in-
tervals to exploit concurrency of reading transactions — originally developed in BI-
MODAL for multiprocessor TM — can also be successfully exploited for distributed
TM. Doing so poses a fundamental trade-off, however, one between object moving
times and concurrency of reading transactions. Bi-interval’s design shows how this
trade-off can be exploited towards optimizing transactional throughput.

Several directions for further work exist. First, we do not consider link or node fail-
ures. Second, Bi-interval does not support nested transactions. Additionally, we assume
that transactional objects are unlinked. If objects are part of a linked structure (e.g.,
graph), scalable cache-coherence protocols and schedulers must be designed.

References

1. Ansari, M., et al.: Steal-on-abort: Improving transactional memory performance through dy-
namic transaction reordering. In: Seznec, A., Emer, J., O’Boyle, M., Martonosi, M., Ungerer,
T. (eds.) HiPEAC 2009. LNCS, vol. 5409, pp. 4–18. Springer, Heidelberg (2009)

2. Attiya, H., Epstein, L., Shachnai, H., Tamir, T.: Transactional contention management as a
non-clairvoyant scheduling problem. In: PODC 2006, pp. 308–315 (2006)

3. Attiya, H., Milani, A.: Transactional scheduling for read-dominated workloads. In: OPODIS
2009, pp. 3–17. Springer, Heidelberg (2009)

4. Bocchino, R.L., Adve, V.S., Chamberlain, B.L.: Software transactional memory for large
scale clusters. In: PPoPP 2008, pp. 247–258 (2008)

5. Dalessandro, L., Marathe, V.J., Spear, M.F., Scott, M.L.: Capabilities and limitations of
library-based software transactional memory in c++. In: Proceedings of the 2nd ACM SIG-
PLAN Workshop on Transactional Computing, Portland, OR (August 2007)

On Transactional Scheduling in Distributed Transactional Memory Systems 361

6. Demmer, M.J., Herlihy, M.: The arrow distributed directory protocol. In: Kutten, S. (ed.)
DISC 1998. LNCS, vol. 1499, pp. 119–133. Springer, Heidelberg (1998)

7. Dolev, S., Hendler, D., Suissa, A.: CAR-STM: scheduling-based collision avoidance and
resolution for software transactional memory. In: PODC 2008, pp. 125–134 (2008)

8. Dragojević, A., Guerraoui, R., et al.: Preventing versus curing: avoiding conflicts in transac-
tional memories. In: PODC 2009, pp. 7–16 (2009)

9. Guerraoui, R., Herlihy, M., Pochon, B.: Toward a theory of transactional contention man-
agers. In: PODC 2005, pp. 258–264 (2005)

10. Guerraoui, R., Kapalka, M., Vitek, J.: STMBench7: a benchmark for software transactional
memory. SIGOPS Oper. Syst. Rev. 41(3), 315–324 (2007)

11. Hammond, L., Wong, V., et al.: Transactional memory coherence and consistency. SIGARCH
Comput. Archit. News 32(2), 102 (2004)

12. Herlihy, M., Luchangco, V., Moir, M.: Obstruction-free synchronization: Double-ended
queues as an example. In: ICDCS 2003, p. 522 (2003)

13. Herlihy, M., Sun, Y.: Distributed transactional memory for metric-space networks. Dis-
tributed Computing 20(3), 195–208 (2007)

14. Kleinberg, J., Tardos, E.: Algorithm design (2005)
15. Kotselidis, C., Ansari, M., Jarvis, K., Luján, M., Kirkham, C., Watson, I.: DiSTM: A software

transactional memory framework for clusters. In: ICPP 2008, Washington, DC, USA, pp. 51–
58. IEEE Computer Society, Los Alamitos (2008)

16. Kumar, S., Chu, M., Hughes, C.J., Kundu, P., Nguyen, A.: Hybrid transactional memory. In:
PPoPP 2006, pp. 209–220 (2006)

17. Manassiev, K., Mihailescu, M., Amza, C.: Exploiting distributed version concurrency in a
transactional memory cluster. In: PPoPP 2006, pp. 198–208 (March 2006)

18. Rosenkrantz, D.J., Stearns, R.E., Lewis II, P.M.: An analysis of several heuristics for the
traveling salesman problem. SIAM J. Comput. 6(3), 563–581 (1977)

19. Scherer III, W.N., Scott, M.L.: Advanced contention management for dynamic software
transactional memory. In: PODC 2005, pp. 240–248 (2005)

20. Sonmez, N., Harris, T., Cristal, A., Unsal, O.S., Valero, M.: Taking the heat off transactions:
Dynamic selection of pessimistic concurrency control. In: Parallel and Distributed Processing
Symposium, International, pp. 1–10 (2009)

21. Yoo, R.M., Lee, H.-H.S.: Adaptive transaction scheduling for transactional memory systems.
In: SPAA 2008, pp. 169–178 (2008)

22. Zhang, B., Ravindran, B.: Brief announcement: Relay: A cache-coherence protocol for dis-
tributed transactional memory. In: OPODIS 2009, pp. 48–53 (2009)

23. Zhang, B., Ravindran, B.: Location-aware cache-coherence protocols for distributed trans-
actional contention management in metric-space networks. In: SRDS 2009, pp. 268–277
(2009)

Recursion in Distributed Computing

Eli Gafni1 and Sergio Rajsbaum2,�

1 University of California, Los Angeles,
Computer Science Department,

Los Angeles, CA 90095
eli@ucla.edu

2 Instituto de Matemáticas, Universidad Nacional Autónoma de México
Ciudad Universitaria, D.F. 04510

Mexico
rajsbaum@math.unam.mx

Abstract. The benefits of developing algorithms via recursion are well
known. However, little use of recursion has been done in distributed
algorithms, in spite of the fact that recursive structuring principles for
distributed systems have been advocated since the beginning of the field.
We present several distributed algorithms in a recursive form, which
makes them easier to understand and analyze. Also, we expose several
interesting issues arising in recursive distributed algorithms. Our goal is
to promote the use and study of recursion in distributed algorithms.

1 Introduction

The benefits of designing and analyzing sequential algorithms using recursion
are well known. Recursive algorithms are discussed in most textbooks, notably
in Udi Manber’s book [23]. However, little use of recursion has been done in
distributed algorithms, in spite of the fact that recursive structuring principles
for distributed systems have been advocated since the beginning of the field e.g.
[13,24], and have been used before e.g. [12].

In this paper we describe simple and elegant recursive distributed algorithms
for some important tasks, that illustrate the benefits of using recursion. We con-
sider the following tasks: snapshots [1], immediate snapshots [6,27], renaming
[4], and swap [2,29], and recursive distributed algorithms for each one. We work
with a wait-free shared memory model where any number of processes can fail by
crashing. We hope to convince the reader that thinking recursively is a method-
ology that facilitates the process of designing, analyzing and proving correctness
of distributed algorithms.

We propose that studying recursion in a distributed setting is a worthwhile
aim, although not without its drawbacks. There is no doubt that recursion should
be covered starting with the first year introductory computer science courses,
but it has been suggested recursive programming teaching be postponed until
after iterative programs are well mastered, as recursion can lead to extremely
� Supported by UNAM-PAPIIT.

S. Dolev et al. (Eds.): SSS 2010, LNCS 6366, pp. 362–376, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Recursion in Distributed Computing 363

inefficient solutions e.g. [28]. In distributed algorithms, a well known example is
the original Byzantine Agreement algorithm [21]. It exhibits the case that recur-
sive distributed algorithms can be even more “dangerous” than in the centralized
setting. The recursive algorithm looks simple and convincing, yet to really un-
derstand what it is doing, i.e. to unfold the recursion, took researchers a few
years [5]. Even the seminal distributed spanning tree algorithm of [18], which is
not recursive, can be viewed as a recursive algorithm that has been optimized
[11]. Thus, one of the goals of this paper is to open the discussion of when and
how recursion should be used in distributed algorithms.

There are several interesting issues that appear in recursive distributed algo-
rithms, that do not appear in sequential recursion.

Naming recursive calls. Consider the classical binary search recursive algorithm.
It searches an ordered array for a single element by cutting the array in half with
each pass. It picks a midpoint near the center of the array, compares the data
at that point with the data being searched. If the data is found, it terminates.
Otherwise, there are two cases. (1) the data at the midpoint is greater than the
data being searched for, and the algorithm is called recursively on the left part
of the array, or (2) the data at the midpoint is less than the data being searched
for, and the algorithm is called recursively on the right part of the array. Namely,
only one recursive call is invoked, either (1) or (2), but not both. In contrast, in a
distributed recursive algorithm, there are several processes running concurrently,
and it is possible that both recursive calls are performed, by different processes.
Thus, we need to name the recursive calls so that processes can identify them.

Concurrent branching. In sequential computing, recursive functions can be di-
vided into linear and branched ones, depending on whether they make only one
recursive call to itself (e.g. factorial), or more (e.g. fibonacci). In the first case,
the recursion tree is a simple path, while in the second, it is a general tree.
The distributed algorithms we present here are all of linear recursion, yet the
recursion tree may not be a simple path, because, as explained above, different
processes may invoke different recursive calls. See Figures 2, 4 and 9.

Iterated memory. As in sequential recursion, each distributed recursive call
should be completely independent from the others. Even in the sequential binary
search recursive algorithm, each recursive call (at least theoretically) operates
on a new copy of the array, either the left side or the right side of the array. In
a distributed algorithm, a process has local variables and shared variables. Both
should be local to the recursive invocation. Thus, each recursive invocation has
associated its own shared memory. There are no “side effects” in the sense that
one recursive invocation cannot access the shared memory of another invocation.
Thus, recursive distributed algorithms run on an iterated model of computation,
where the shared memory is divided in sections. Processes run by accessing each
section at most once, and in the same order. Iterated models have been exploited
in the past e.g. [14,11,16,26,25,19].

364 E. Gafni and S. Rajsbaum

Shared objects. In the simplest case, the shared memory that is accessed in
each iteration is a single-writer/multi-reader shared array. Namely, a recursive
distributed algorithm writes to the array, reads each of its elements, and after
some local computation, either produces an output or invokes recursively the
algorithm. Assuming at least one process decides, fewer processes participate
in each recursive invocation (on a new shared array), until at the bottom of
the recursion, only one process participates and decides. More generally, in each
recursive invocation, processes communicate through a shared object that is
more powerful than a single-writer/multi-reader shared array. Such an object is
invoked at most once by each process. We specify the behavior of the object as
a task, essentially, its input/output relation (see Section 2).

Inductive reasoning. As there are no side effects among recursive invocations, we
can logically imagine all processes going in lockstep from a shared object to the
next shared object, just varying the order in which they invoke each one. This
ordering induces a structured set of executions that facilitates an inductive rea-
soning, and greatly simplifies the understanding of distributed algorithms. Also,
the structure of the set of executions is recursive. This property has been useful to
prove lower bounds and impossibility results as it facilitates a topological descrip-
tion of the executions e.g. [8,17,19]. We include Figure 5 to illustrate this point.

While recursion in sequential algorithms is well understood, in the distributed
case we don’t know much. For example, we do not know if in some cases side
effects are unavoidable, and persistent shared objects are required to maintain
information during recursive calls. We don’t know if every recursive algorithm
can be unfolded, and executed in an iterated model (different processes could
invoke tasks in different order).

2 Model

We assume a shared memory distributed computing model, with processes Π =
{p1, . . . , pn}, in an asynchronous wait-free setting, where any number of processes
can crash.

Processes communicate through shared objects that can be invoked at most
once by each process. The input/output specification of an object is in terms
of a task, defined by a set of possible inputs vectors, a set of possible output
vectors, and an input/output relation Δ. A more formal definition of a task is
given e.g. in [20]. Process pi can invoke an instance of an object solving a task
once with the instruction Tasktag(x), and eventually gets back an output value,
such that the vector of outputs satisfies the task’s specification. The subindex
tag identifies the particular instance of the object, and x is the input to the task.

The most basic task we consider is the write/scan task, that is a specification
of a single-writer/multi-reader shared array. An instance tag of this object is
accessed with WScantag(x). Each instance tag has associated its own shared
array SM [1..n], where SM [j] is initialized to ⊥, for each j. When process pi

Recursion in Distributed Computing 365

invokes WScantag(x), the value x is written to SM [i], then pi reads in arbitrary
order SM [j], for each j, and the vector of values read is what the invocation to
WScantag(x) returns.

Also, we are interested in designing distributed algorithms that solve a given
task. The processes start with private input values, and must eventually decide
on output values. For an execution where only a subset of processes participate an
input vector I specifies in its i-th entry, I[i], the input value of each participating
process pi, and ⊥ in the entries of the other processes. Similarly, an output vector
O contains a decision value O[i] for a participating process pi, and ⊥ elsewhere.
If an algorithm solves the task, then O is in Δ(I).

A famous task is consensus. Each process proposes a value and the correct
processes have to decide the same value, which has to be a proposed value. This
task is not wait-free solvable using read/write registers only [22]. We introduce
other tasks as we discuss them.

3 Recursive Distributed Algorithms

We start with two basic forms of recursive distributed algorithms: linear branch-
ing in Section 3.1, and binary branching in Section 3.2. Here we only analyze the
behavior of these algorithms, in later sections we show how they can be used to
solve specific tasks. A multi-way branching version is postponed to Section 5.2,
and a more general multi-way branching version is in Section 6.

3.1 Linear Recursion

Consider the algorithm, called IS, of Figure 1. In line 1 processes communicate
through a single-writer/multi-reader shared array, invoked with the operation
WScan (we omit its tag, because always the invocation is local to the recursive
call). Process pi writes its id i, and stores in view the set of ids read in the
array (the entries different from ⊥). In line 2 the process checks if view con-
tains all n ids. The last process to write to the array sees n such values, i.e.,
|view| = n, it returns view, and terminates the algorithm. Namely, at least one
process terminates the algorithm, but perhaps more than one (all process that
see |view| = n), in each recursive call of the algorithm. In line 3 processes that
have |view| < n invoke the algorithm recursively (each time a different shared
array is used). When n = 1, the single process invoking the algorithm returns a
view that contains only itself.

Algorithm IS(n);
(1) view ← WScan(i);
(2) if |view| = n then return view
(3) else return IS(n − 1)

Fig. 1. Linear recursion (code for pi)

366 E. Gafni and S. Rajsbaum

IS(3)
outputs 1,2,3

outputs 1,2

outputs 1

invoke

invoke

invoke

31
2

1

3

1
2

1

2IS(2)

IS(1)

Fig. 2. Linear recursion, for 3 processes 1, 2, 3

As we shall see in Section 4, this algorithm solves the immediate snapshot
task. For now, we describe only its behavior, as linear recursion. Namely, the
recursion tree is a simple path; one execution of the algorithm is illustrated in
Figure 2 for 3 processes, 1, 2 and 3.

In Figure 2 all three processes invoke IS(3), each one with its own id. In
this example, only process 3 sees all three values after executing WScan, and
exits the algorithm with view 1, 2, 3. Processes 1, 2 invoke IS(2), and a new
read/write object instance through WScan. Namely, in an implementation of
the write/scan task with a shared array, in the first recursive invocation IS(3) a
shared array is used, in the second recursive invocation IS(2), a second shared
array is used, and finally, when process 1 invokes IS(1) alone, it uses a third
shared array, sees only itself, and terminates with view 1.

The total number of read and write steps by a process is O(n2). In more
detail, a process pi that returns a view with |view| = k executes Θ(n(n−k +1))
read/write steps. Process pi returns view during the invocation of IS(k). Thus, it
executed a total of n−k+1 task invocations, one for each recursive call, starting
with IS(n). Each WScan invocation involves one write and n read steps.

3.2 Binary Branching

Let us now consider a small variation of algorithm IS, called algorithm BR in
Figure 3. It uses tag ∈ {L, R, ∅}. The first time the algorithm is invoked by
all n processes, with tag = ∅. Recursive invocations are invoked with smaller
values of n each time, and with tag equal to L or to R. Until at the bottom of
the recursion, the algorithm is invoked with n = 1 by only one process, which
returns with a view that contains only its own id. In line 3, after seeing all n
processes, process pi checks if its own id is the largest it saw, in view. If so,
it terminates the algorithm. If it is not the largest id, it invokes recursively an

Recursion in Distributed Computing 367

instance of BR identified by the tag = R, and size n−1 (at most n−1 processes
invoke it). Line 5 is executed by processes that saw less than n ids in their views
obtained in Line 2; they all invoke the same instance of BR, now identified by
the tag = L, and size n− 1 (at most n− 1 invoke it).

Algorithm BRtag(n);
(1) view ← WScan(i);
(2) if |view| = n then
(3) if i = max view then return view ;
(4) return BRR(n − 1);
(5) else return BRL(n − 1)

Fig. 3. Branching recursion algorithm (code for pi)

This time the recursive structure is a tree, not a path. An execution of the
algorithm for 4 processes is illustrated in Figure 4. Each of the nodes in the tree
has associated its own shared array. In the first recursive call, all processes write
to the first shared array, and processes 3, 4 see only themselves, hence invoke
BRL(3), while processes 1, 2 see all 4 processes, and as neither is the largest
among them, they both invoke BRR(3). The rest of the figure is self-explanatory.

Here we are not interested in the task solved by Algorithm BR, only in that
it has the same recursive structure as the renaming algorithm of Section 5, and
hence the same complexity. Each process executes at most n recursive calls, and
hence at most n invocations to a write/scan task. Thus, the total number of read
and write steps by a process is O(n2).

4 Snaphots

In this section we describe an immediate snapshot [6,27] recursive algorithm.
As the specification of the snapshot [1] task is a weakening of the immediate
snapshot task, the algorithm solves the snapshot task as well.

Immediate snapshot task. An immediate snapshot task IS abstracts a shared
array SM [1..n] with one entry per process. The array is initialized to [⊥, . . . ,⊥],
where ⊥ is a default value that cannot be written by a process. Intuitively, when
a process pi invokes the object, it is as if it instantaneously executes a write oper-
ation followed by a snapshot of the whole shared array. If several processes invoke
the task simultaneously, then their corresponding write operations are executed
concurrently, followed by a concurrent execution of their snapshot operations.

More precisely, in an immediate snapshot task, for each pi, the result of its
invocation satisfies the three following properties, where we assume i is the value
written by pi (without loss of generality) and smi is the set of values or view
it gets back from the task. If SM [k] = ⊥, the value k is not added to smi. We
define smi = ∅, if the process pi never invokes the task. These properties are:

368 E. Gafni and S. Rajsbaum

BR(4)

BRL(3)

123

3
4
1
2

34
1

2

34
1

2

4

BRR(3)

BRL(2) BRL(2)

BRL(1) BRR(1) BRL(1) BRR(1)

Fig. 4. Branching recursion, for 4 processes

– Self-inclusion. ∀i : i ∈ smi.
– Containment. ∀i, j : smi ⊆ smj ∨ smj ⊆ smi.
– Immediacy. ∀i, j : i ∈ smj ⇒ smi ⊆ smj.

The immediacy property can be rewritten as ∀i, j :
(
i ∈ smj ∧ j ∈ smi

)
⇒ smi

= smj . Thus, concurrent invocations of the task obtain the same view. A snap-
shot task is required to satisfy only the first two properties.

The set of all possible views obtained by the processes after invoking an ob-
ject implementing an immediate snapshot task can be represented by a complex,
consisting of sets called simplexes, with the property that if a simplex is included
in the complex, so are all its sub-simplexes. The set of all possible views, for 3
processes, is represented in Figure 5. Each vertex is labeled with a pair i, smi.
The simplexes are the triangles, the edges, and the vertexes. The corners of each
simplex are labeled with compatible views, satisfying the three previous proper-
ties. In the case of 4 processes, the complex would be 3-dimensional, including
sets up to size 4, and so on for any number of processes. For more details about
complexes and their use in distributed computing, see e.g. [20].

Recursive algorithm. A wait-free algorithm solving the immediate snapshot task
was described in [6]. We include it in Appendix A for comparison. We encourage
the reader to try to come up with a correctness proof, before reading the recursive
version, where the proof will be trivial. Actually, algorithm IS of Figure 1 solves
the immediate snapshot task.

Theorem 1. Algorithm IS solves the immediate snapshot task for n processes in
O(n2) steps. Moreover, a process obtains a snapshot of size k from the algorithm
in Θ(n(n− k + 1)) steps.

Proof. The complexity was analyzed in the previous section. Here we prove that
IS solves the immediate snapshot task. Let S be the set of processes that termi-
nate the algorithm in line 2, namely, with |view| = n. Each pi ∈ S, terminates

Recursion in Distributed Computing 369

1,{1}

1,{1,2} 1,{1,3}

2,{2}

2,{1,2}

2,{2,3}

3,{3}

3,{1,3}

3,{1,2,3}

3,{2,3}

2,{1,2,3}

1,{1,2,3}

Fig. 5. All immediate snapshot subdivision views, for 3 processes

the algorithm with a view smi that contains all processes. Thus, for each such
pi, the self-inclusion property holds. Also, for any two pi, pj in S, we have
smi = smj , and the properties of containment and immediacy hold.

By induction hypothesis, the three properties also hold for the other processes,
that call recursively ISn−1. It remains to show that the two last properties of
the immediate snapshot task hold for a pi ∈ S, and a pj �∈ S. First, property
containment holds: clearly smj ⊂ smi, because pi does not participate in the
recursive call. Finally, property immediacy holds: j is in smi (pi sees every
process participating), and we have already seen that smj ⊆ smi. And it is
impossible that i ∈ smj , because pi does not participate in the recursive call.

5 Renaming

In the renaming task [4] each of n processes than can only compare their ids
must choose one of 2n− 1 new distinct names, called slots. It was proved in [20]
that renaming is impossible with less than 2n− 1 slots, except for some special
values of n [10]. The algorithm of [4] solves the problem with 2n− 1 slots, but
is of exponential complexity [15]. Later on, [7] presented a recursive renaming
algorithm based on immediate snapshots, of O(n3) complexity. We restate this
algorithm in Section 5.2, and show that its complexity is actually O(n2). Also, we
present a new renaming algorithm in Section 5.1 that is not based on immediate
snapshots, also of O(n2) complexity; it is very simple, but requires knowledge
of n.

To facilitate the description of a recursive algorithm, the slots are, given an
integer First and Direction ∈ {−1, +1}, the integers in the range First+[0..2n−
2] if Direction = +1, or in the range First + [−(2n− 2)..0] if Direction = −1.
Combining the two, we get slots First+Direction∗[0..2n−2]. Thus, the number
of slots is 2n− 1 as required; i.e., |Last− First|+ 1 = 2n− 1, defining Last =
First + Direction ∗ (2n− 2).

370 E. Gafni and S. Rajsbaum

5.1 Binary Branching Renaming Algorithm

The algorithm has exactly the same structure as the binary branching algo-
rithm of Figure 3, using WScan. It partitions the set of processes into two
subsets, and then solves renaming recursively on each subset. The algorithm
Renaming(n, F irst, Direction) is presented in Figure 6. It uses tags of the
form {←,→}, to represent the intuition of renaming “left to right” and “right
to left” as indicated by the value of Direction. Given First and Direction, the
algorithm is invoked by k processes, where k ≤ n, and each process decides on
a slot in the range First + Direction ∗ [0..2k− 2]. The algorithm ends in line 4,
with a slot selected.

In the algorithm, the processes first write and scan a shared array, in line 1.
According to the size of the view they get back, they are partitioned in 2 sets–
the processes that get back a view of size n and the processes that get back a
view of size less than n. If k processes, k < n, invoke it then, of course, nobody
can get a view of size n. In this case they all go to line 6 and solve the problem
recursively executing Renaming→(n−1, F irst, Direction). Thus, such recursive
calls will be repeated until k = n. The variant of the algorithm described below
evades these repeated calls, using immediate snapshots instead of write/scans.

Consider the case of k = n invoking the algorithm. In this case, some processes
will get a view of size n in line 1. If one of these, say pi, sees that it has the largest
id i in its view Si (line 4), terminates the algorithm with slot Last. The other pro-
cesses, Y , that get a view of size n, will proceed to solve the problem recursively,
in line 5, renaming from slot Last− 1 down (reserving slot Last in case it was
taken by pi), by calling Renaming←(n−1, Last−1,−Direction). The processes
X , that get a view of size less than n, solve the problem recursively in line 6,
going up from position First, by calling Renaming→(n− 1, F irst, Direction).
Thus, we use the arrow in the superscript to distinguish the two distinct recursive
invocations (to the same code). The correctness of the algorithm, in Theorem
1, is a simple counting argument, that consists of the observation that the two
ranges, going down and up, do not overlap.

Theorem 2. Algorithm Renaming solves the renaming task for n processes,
in O(n2) steps.

Proof. Clearly, the algorithm terminates, as it is called with smaller values of
n in each recursive call, until n = 1, when it necessarily terminates. A process
executes at most n recursive calls, and in each one it executes a write/scan.
Each write/scan involves O(n) read and write steps, for a total complexity of
O(n2). If n = 1, then |Si| = 1 in line (1) so the algorithm terminates with slot
Last = First in line (4). At the basis of the recursion, n = 1, the algorithm
terminates correctly, renaming into 1 slot, as Last = First when n = 1.

Assume the algorithm is correct for k less than n. The induction hypothesis
is that when k′ processes, k′ ≤ k, invoke Renaming(k, F irst, Direction), then
they get new names in the range First + Direction ∗ [0..2k′ − 2].

Now, assume the algorithm is invoked as Renaming(n, F irst, Direction),
with n > 1, by k ≤ n processes. Let X be the set of processes that get a view

Recursion in Distributed Computing 371

Algorithm Renaming(n,F irst,Direction);
(1) Si ← WScan(i);
(2) Last ← First + Direction ∗ (2n − 2);
(3) if |Si| = n then
(4) if i = max Si then return Last;
(5) return Renaming←(n − 1, Last − 1,−Direction);
(6) else return Renaming→(n − 1, F irst,Direction)

Fig. 6. Write/scan binary branching renaming (code for pi)

smaller than n in line (1), |X | = x. Notice that 0 ≤ x ≤ n−1. If k < n then all get
a view smaller than n, and they all return Renaming(n− 1, F irst, Direction)
in line (6), terminating correctly. So for the rest of the proof, assume k = n.

Let Y be the set of processes that get a view of size n in line (1), |Y | = y,
excluding the process of largest id. Thus, 0 ≤ y ≤ n− 1.

The processes in X return from Renaming(n − 1, F irst, Direction) in line
(6), with slots in the range First + [0..2x− 2]. The processes in Y return from
Renaming(n− 1, Last− 1, (−1) ∗Direction) in line (5), with slots in the range
[Last− 1− (2y − 2)..Last− 1]. To complete the proof we need to show that

First + 2x− 2 < Last− 1− (2y − 2).

Recall Last = First + Direction ∗ (2n− 2). Thus, we need to show that

2x− 2 < 2n− 2− 1− (2y − 2).

As x + y ≤ n, the previous inequality becomes 2(n) − 2 < 2n − 2 − 1 + 2, and
we are done.

5.2 A Multi-way Branching Renaming Algorithm

In the previous Renamingn algorithm the set of processes, X , that get back a
view of size less than n, will waste recursive calls, calling the algorithm again
and again (with the same values for First and Direction, but smaller values of
n) until n goes down to n′, with n′ = |X |. In this recursive call, Renamingn′ ,
the processes that get back a view of size n′, will do something interesting; that
is, one might get a slot, and the others will invoke recursively Renaming, but
in opposite direction. Therefore, using immediate snapshots, we can rewrite the
Renaming algorithm in the form of Figure 7. This is the renaming algorithm
presented in [7].

Notice that in isRenamingtag the subindex tag is a sequence of integers: in
line 4, the new tag tag · |Si| is the old tag, appending at the end Si. These tags
are a way of naming the recursive calls, so that a set of processes that should
participate in the same execution of isRenaming, can identify using the same

372 E. Gafni and S. Rajsbaum

Algorithm isRenamingtag(First,Direction);
(1) Si ← Immediate Snapshot(i);
(2) Last ← First + Direction ∗ (2|Si| − 2);
(3) if i = max Si then return Last;
(4) return isRenamingtag·|Si|(Last − 1,−Direction)

Fig. 7. Immediate snapshot multi-way branching renaming (code for pi)

tag. The first time isRenaming is called, tag should take some default value,
say the empty set.

Although the analysis in [7] bounded the number of steps by O(n3), we observe
a better bound can be given:

Theorem 3. Algorithm isRenaming solves the renaming task for n processes,
in O(n2) steps.

Proof. As explained above, the algorithm is equivalent to Renaming, and hence
correctness follows from Theorem 2. Now, to show that the complexity is O(n2)
steps we do an amortized analysis, based on Theorem 1: a process obtains a
snapshot of size s from the Immediate Snapshotn algorithm in Θ(n(n−s+1))
steps.

Assume a process runs isRenaming until it obtains a slot, invoking the algo-
rithm recursively k times. In the i-th call, assume it gets a snapshot of size si (in
line 1). For example, if s1 = n, then k = 1, and using the result of Theorem 1,
the number of steps executed is n. In general, the number of steps executed by
a process is n times

[n− s1]+ [(n− s1)− (n− s2)]+ [(n− s2)− (n− s3)]+ · · ·+[(n− sk−1)− (n− sk)]

which gives a total of O(n(n− sk)).

6 SWAP

Here we consider two tasks, Tournamentπ and Swapπ. A process can invoke
these tasks with its input id, where π is an id of a processes that does not invoke
the task, or 0, a special virtual id. Each process gets back another process id,
or π. A process never gets back its own id. Exactly one process gets back π.
We think of this process as the “winner” of the invocation. The induced digraph
consists of all arcs i → j, such that process i received process j as output from
the task; it is guaranteed that the digraph is acyclic. We say that j is the parent
of i. As every vertex has exactly one outgoing arc, except for the root, π, which
has none, there is exactly one directed path from each vertex to the root. The
Swap task always returns a directed path, while the Tournament can return
any acyclic digraph.

Recursion in Distributed Computing 373

Afek et al [2,29] noticed that these two tasks cannot be solved using read/write
registers only, but can be solved if 2-consensus tasks are also available, namely,
tasks that can be used to solve consensus for 2, but not for 3 processes.1 They
presented a wait-free algorithm that solves Swap using read/write registers and
Tournament tasks. The following is a recursive version of this algorithm, of
the same complexity.

The Swap algorithm is in Figure 8. Process pi invokes the algorithm with
Swaptag(i), where tag = 0. In line 1 process i invokes Tournamenttag(i) and
in case it wins, i.e., gets back tag, it returns tag. By the specification of the
tournament task, one, and only one process wins. All others invoke recursively
a Swap task: all processes with the same parent π invoke the same Swapπ(i)
task.

Algorithm Swaptag(i);
(1) π ← Tournamenttag(i);
(2) if tag = π then return π;
(3) else return Swapπ(i)

Fig. 8. The Swap algorithm (code for pi)

Assuming initially for each process pi, πi = 0, we get an invariant: the induced
digraph (arcs from pi to πi) is a directed tree rooted in 0. Initially, all processes
point to 0 directly. Each time Tournamenttag is executed, it is executed by
a set of processes pointing to tag. The result of the execution is that exactly
one process p keeps on pointing to tag, while the others induce a directed graph
rooted at p.

An execution for 5 processes appears in Figure 9. Notice that although it is a
tree, it has a unique topological order, as opposed to the tree of Figure 4. The
result of executing Tournament0 is that 1 wins, 2, 3, 4 point to 1, while 5 point
to 3. The result of executing Tournament1 is that 2 wins, while 3, 4 point to
2. The result of executing Tournament2 is that 3 wins, while 4 point to 3. The
result of executing Tournament3 is that 4 wins, while 5 point to 4. Finally, 5
executes Tournament4 by itself and wins.

For the following theorem, we count as a step either a read or write op-
eration, or a 2-consensus operation, and assume a Tournament task can be
implemented using O(n) steps [2,29].

Theorem 4. Algorithm Swap solves the swap task for n processes, in O(n2)
steps.

Proof. The algorithm terminates, as in each invocation one process returns, the
winner of the Tournament. Also, the basis is easy, as when only one process
invokes the Tournament, it is necessarily the winner. Assume inductively that
1 The task of Afek et al is not exactly the same as ours; for instance, they require a

linearizability property, stating that the winner is first.

374 E. Gafni and S. Rajsbaum

SwAp
0

1

2

3

4

5
3

4
1 2

5

3

5

5

SwAp
1

SwAp
2

SwAp
3

SwAp
4

outputs 0

outputs 1

outputs 2

outputs 3

outputs 4

4
2

34

4

Fig. 9. Branching deterministic recursion, for 5 processes

the algorithm solves swap for less than n processes. Consider an invocation of
Swap, where the winner in line 1 is some process p. Consider the processes W
that get back p in this line. Every other process will get back a descendant of
these processes. Thus, the only processes that invoke Swaptag with tag = p are
the processes in W . Moreover, it is impossible that two processes return the same
tag, say tag = x, because a process that returns x does so during the execution
of swapx, after winning the tournament invocation, and only one process can
win this invocation.

Acknowledgments. We thank Michel Raynal and the anonymous referees for
their comments on an earlier version of this paper.

References

1. Afek, Y., Attiya, H., Dolev, D., Gafni, E., Merritt, M., Shavit, N.: Atomic Snap-
shots of Shared Memory. J. ACM 40(4), 873–890 (1993)

2. Afek, Y., Weisberger, E., Weisman, H.: A Completeness Theorem for a Class of
Synchronization Objects (Extended Abstract). In: Proc. 12th Annual ACM Sym-
posium on Principles of Distributed Computing (PODC), Ithaca, New York, USA,
August 15-18, pp. 159–170 (1993)

3. Attiya, H., Bar-Noy, A., Dolev, D.: Sharing Memory Robustly in Message-Passing
Systems. J. ACM 42(1), 124–142 (1995)

4. Attiya, H., Bar-Noy, A., Dolev, D., Peleg, D., Reischuk, R.: Renaming in an Asyn-
chronous Environment. J. ACM 37(3), 524–548 (1990)

Recursion in Distributed Computing 375

5. Bar-Noy, A., Dolev, D., Dwork, C., Strong, H.R.: Shifting Gears. Changing Algo-
rithms on the Fly to Expedite Byzantine Agreement. Inf. Comput. 97(2), 205–233
(1992)

6. Borowsky, E., Gafni, E.: Generalized FLP Impossibility Results for t-Resilient
Asynchronous Computations. In: Proc. 25th ACM Symposium on the Theory of
Computing (STOC), pp. 91–100. ACM Press, New York (1993)

7. Borowsky, E., Gafni, E.: Immediate Atomic Snapshots and Fast Renaming (Ex-
tended Abstract). In: 12th Annual ACM Symposium on Principles of Distributed
Computing (PODC), Ithaca, New York, USA, August 15-18, pp. 41–51 (1993)

8. Borowsky, E., Gafni, E.: A Simple Algorithmically Reasoned Characterization of
Wait-Free Computations (Extended Abstract). In: Proc. 16th ACM Symposium
on Principles of Distributed Computing (PODC 1997), Santa Barbara, California,
USA, August 21-24, pp. 189–198 (1997)

9. Borowsky, E., Gafni, E., Lynch, N., Rajsbaum, S.: The BG Distributed Simulation
Algorithm. Distributed Computing 14(3), 127–146 (2001)

10. Cañeda, A., Rajsbaum, S.: New combinatorial topology upper and lower bounds
for renaming. In: Proceedings of the 27-th Annual ACM Symposium on Principles
of Distributed Computing (PODC), Toronto, Canada, August 18-21, pp. 295–304
(2008)

11. Chou, C.-T., Gafni, E.: Understanding and Verifying Distributed Algorithms Using
Stratified Decomposition. In: Proceedings of the Seventh Annual ACM Symposium
on Principles of Distributed Computing (PODC), Toronto, Ontario, Canada, Au-
gust 15-17, pp. 44–65 (1988)

12. Coan, B.A., Welch, J.L.: Modular Construction of an Efficient 1-Bit Byzantine
Agreement Protocol. Mathematical Systems Theory 26(1), 131–154 (1993)

13. Dobson, J., Randell, B.: Building Reliable Secure Computing Systems out of Un-
reliable Insecure Components. In: Proc. IEEE Conference on Security and Privacy,
Oakland, USA, pp. 187–193 (1986)

14. Elrad, T., Francez, N.: Decomposition of Distributed Programs into
Communication-Closed Layers. Sci. Comput. Program 2(3), 155–173 (1982)

15. Fouren, A.: Exponential examples for two renaming algorithms (August 1999),
http://www.cs.technion.ac.il/~hagit/publications/expo.ps.gz

16. Gafni, E.: Round-by-Round Fault Detectors, Unifying Synchrony and Asynchrony
(Extendeda Abstract). In: Proc. 17th Annual ACM Symposium on Principles of
Distributed Computing (PODC), Puerto Vallarta, Mexico, June 28-July 2, pp.
143–152 (1998)

17. Gafni, E., Rajsbaum, S., Herlihy, M.: Subconsensus Tasks: Renaming Is Weaker
Than Set Agreement. In: Dolev, S. (ed.) DISC 2006. LNCS, vol. 4167, pp. 329–338.
Springer, Heidelberg (2006)

18. Gallager, R.G., Humblet, P.A., Spira, P.M.: A Distributed Algorithm for Minimum-
Weight Spanning Trees. ACM Trans. Program. Lang. Syst. 5(1), 66–77 (1983)

19. Herlihy, M., Rajsbaum, S.: The Topology of Shared-Memory Adversaries. In: An-
nual ACM Symposium on Principles of Distributed Computing, Proceeding of the
29th ACM SIGACT-SIGOPS Symposium on Principles of Distributed Computing,
Zurich, Switzerland, pp. 105–113 (2010), ISBN: 978-1-60558-888-9

20. Herlihy, M.P., Shavit, N.: The Topological Structure of Asynchronous Computabil-
ity. Journal of the ACM 46(6), 858–923 (1999)

21. Lamport, L., Shostak, R.E., Pease, M.C.: The Byzantine Generals Problem. ACM
Transactions on Programming Languages and Systems 4(3), 382–401 (1982)

http://www.cs.technion.ac.il/~hagit/publications/expo.ps.gz

376 E. Gafni and S. Rajsbaum

22. Loui, M.C., Abu-Amara, H.H.: Memory requirements for agreement among unre-
liable asynchronous processes. In: Preparata, F.P. (ed.) Advances in Computing
Research, vol. 4, pp. 163–183. JAI Press, Greenwich (1987)

23. Manber, U.: Introduction to Algorithms: A Creative Approach. Addison-Wesley,
Reading (1989)

24. Randell: Brian Recursively structured distributed computing systems. In: Proc.
IEEE Symposium on Reliability in Distributed Software and Database Systems,
pp. 3–11 (1983)

25. Rajsbaum, S., Raynal, M., Travers, C.: An impossibility about failure detectors in
the iterated immediate snapshot model. Inf. Process. Lett. 108(3), 160–164 (2008)

26. Rajsbaum, S., Raynal, M., Travers, C.: The Iterated Restricted Immediate Snap-
shot Model. In: Hu, X., Wang, J. (eds.) COCOON 2008. LNCS, vol. 5092, pp.
487–497. Springer, Heidelberg (2008)

27. Saks, M., Zaharoglou, F.: Wait-Free k-Set Agreement is Impossible: The Topology
of Public Knowledge. SIAM Journal on Computing 29(5), 1449–1483 (2000)

28. Stojmenovic, I.: Recursive algorithms in computer science courses: Fibonacci num-
bers and binomial coefficients. IEEE Trans. on Education 43(3), 273–276 (2000)

29. Weisman, H.: Implementing shared memory overwriting objects. Master’s thesis,
Tel Aviv University (May 1994)

A Non-recursive Immediate Snapshots Algorithm

A wait-free algorithm solving the immediate snapshot task was described in [6].
We present it here for comparison with the recursive version presented in Section
4. The algorithm is in Figure 10.

Algorithm Immediate Snapshot(i);
repeat LEVEL[i] ← LEVEL[i] − 1;

for j ∈ {1, . . . , n} do leveli[j] ← LEVEL[j] end for;
viewi ←

{
j : leveli[j] ≤ LEVEL[i]};

until (|viewi| ≥ LEVEL[i]) end repeat;
return({j such that j ∈ viewi})

Fig. 10. Non-recursive one-shot immediate snapshot algorithm (code for pi)

It is argued in [6] that this algorithm solves the immediate snapshot task,
with O(n3) complexity.

On Adaptive Renaming under
Eventually Limited Contention

Damien Imbs and Michel Raynal

IRISA, Université de Rennes 1, 35042 Rennes, France
{damien.imbs,raynal}@irisa.fr

Abstract. The adaptive M -renaming problem consists in designing an algorithm
that allows a set of p ≤ n participating asynchronous processes (where n is the
total number of processes) not known in advance to acquire pair-wise different
new names in a name space whose size M depends on p (and not on n). Adaptive
(2p − 1)-renaming algorithms for read/write shared memory systems have been
designed. These algorithms, which are optimal with respect to the value of M ,
consider the wait-freedom progress condition, which means that any correct par-
ticipant has to acquire a new name whatever the behavior of the other processes
(that can be very slow or even crashed).

This paper addresses the design of an adaptive M -renaming algorithm when
considering the k-obstruction-freedom progress condition. This condition, that
is weaker than wait-freedom, requires that every correct participating process
acquires a new name in all runs where during “long enough periods” at most
k processes execute steps (p-obstruction-freedom and wait-freedom are actually
equivalent). The paper presents an optimal adaptive (p + k − 1)-renaming algo-
rithm and, consequently, contributes to a better understanding of synchronization
and concurrency by showing that weakening the liveness condition from wait-
freedom to k-obstruction-freedom allows the new name space to be reduced from
2p − 1 to min(2p − 1, p + k − 1). Last but not least, the proposed algorithm is
particularly simple, a first class property. This establishes an interesting tradeoff
linking progress conditions with the size of the new name space.

Keywords: Asynchronous system, Fault-Tolerance, Liveness, Obstruction-
freedom, Process crash, Progress condition, Shared memory system, Wait-freedom.

1 Introduction

1.1 Context of the Work

Renaming problem. Renaming is among the basic problems that lie at the core of com-
putability in asynchronous distributed systems prone to process crashes [2]. It consists
in the following. Each of the n processes that define the system has an initial name
taken from a very large domain [1..N] (n << N). Initially a process knows only its
name, the value n and the fact that no two processes have the same initial name. The
processes have to cooperate to choose new names from a name space [1..M] such that
M << N and no two processes have the same new name. Given an integer M , the
problem is called M-renaming.

S. Dolev et al. (Eds.): SSS 2010, LNCS 6366, pp. 377–387, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

378 D. Imbs and M. Raynal

Wait-freedom. This problem, first defined in the context of message-passing systems
[2], has received a lot of attention in the context of asynchronous shared memory made
up of atomic read/write registers. Numerous wait-free renaming algorithms have been
designed (e.g., [5,7]). Wait-free means here that a process that does not crash has to ob-
tain a new name in a finite number of its own computation steps whatever the behavior
of the other processes (that can be very slow of even crashed) [14]. This means that,
t denoting the maximum number of processes that may crash, wait-freedom implies
t = n− 1.

A lower bound. An important theoretical result associated with the renaming problem in
asynchronous read/write systems is the following [16]. Except for some specific values
of n, M = 2n−1 is the lower bound on the size of the new name space. (For the specific
values we have M = 2n− 2. These specific values, characterized in [8], involve sets of
relatively prime integers1.)

Adaptive renaming. A renaming algorithm is adaptive if the size of the new name space
depends only on the number p of processes that ask for a new name (and not on the total
number n of processes). Several adaptive algorithms have been designed such that the
size of the new name space is M = 2p − 1 (e.g., [7]). This means that if “today” p′

processes acquire new names, their new names belong to the interval [1..2p′ − 1]. If
“tomorrow” p′′ additional processes acquire new names, these processes will have their
new names in the interval [1..2p− 1] where p = p′ + p′′.

Renaming in enriched systems. A way to circumvent the adaptive M = 2p− 1 lower
bound consists in enriching the asynchronous crash-prone read/write shared memory
system with base objects stronger than atomic registers (see [20] for a short survey).
Two such objects have received a particular attention. The first is the k-Test&Set object.
Among the processes that access it, such an object ensures that at least one and at
most k obtain value 1 (they win), while the others obtain 0 (they lose). An adaptive
M -renaming algorithm based on k-Test&Set objects and atomic registers for M =
2p− � p

k � is described in [19]2.
The second object that has received attention is the k-set agreement object. This

object allows each process to propose a value and decide a value such that a decided
value is a proposed value and at most k different values are decided. It is shown in [9]
that it exists an adaptive M -renaming algorithm based on k-set agreement objects and
atomic registers for M = p + k − 1. (It is important to recall that [9] shows such an
algorithm exists but does not exhibit it.) In the same vein, enriching the shared memory
system with Compare&Swap objects allows solving adaptive M -renaming with M =
p [20]. More generally, relations between adaptive renaming, k-Test&Set, and k-set
agreement have been investigated in [11,12]. A failure detector suited to the design of
an adaptive (p + k − 1)-renaming algorithm is defined in [21].

1 More precisely, there is a (2n−2)-renaming algorithm for the values of n such that the integers
in the set {(n

i

)
: 1 ≤ i ≤ �n

2
�} are relatively prime [8].

2 The adaptive algorithm presented in [19] is actually based on k-set agreement objects but, as
noticed by Gafni, it can be easily observed that these objects can be replaced by k-Test&Set
objects without affecting the behavior of the algorithm.

On Adaptive Renaming under Eventually Limited Contention 379

1.2 Content of the Paper

Obstruction-freedom and k-obstruction-freedom. Wait-freedom is the strongest possi-
ble liveness condition proposed so far. It is starvation-freedom in presence of failures.
Obstruction-freedom is a weaker progress condition whose definition is concurrency-
oriented. An obstruction-free implementation of an object guarantees that a process that
invokes an operation -and does not crash- returns from that invocation if it runs “long
enough” in isolation [15] (“long enough” is used to capture the arbitrary duration re-
quired by that process to execute the operation; intuitively, it means that the process
cannot run in isolation for an infinite time). While both wait-freedom and obstruction-
freedom are progress conditions whose definition is independent of the failure pat-
tern, the second one guarantees progress only in “favorable” concurrency patterns.
(The interested reader will find in [13] a failure detector-based approach that boosts
obstruction-freedom to wait-freedom.)

k-Obstruction-freedom is a generalization of obstruction-freedom [23]. It guaran-
tees that, for every set of processes P , |P | ≤ k, every process in P -that does not
crash- returns from its operation invocation if no process outside P takes steps for “long
enough”. It is easy to see that k-obstruction-freedom and wait-freedom are equivalent in
an n-process system such that n ≤ k. Differently, when k < n, k-obstruction-freedom
depends on the concurrency pattern while wait-freedom does not.

If we want that all operation invocations issued by correct processes do terminate,
while the liveness condition satisfied by an object implementation is k-obstruction-
freedom, concurrency is the main adversary. Actually, crashes favor the coverage as-
sumption on which k-obstruction relies to become effective.

It is important to notice that a k-obstruction-free implementation has to always guar-
antee the safety property of the object that is built. This means that, while at most k
processes execute for a “long enough” period of time, the others can be stopped at any
point in the execution of an object operation. As wait-freedom, (k)-obstruction-freedom
is a liveness property. Moreover, it is easy to see that no wait-free or k-obstruction-free
implementation can be lock-based.

Content of the paper. When considering the obstruction-freedom liveness condition,
consensus is solvable in asynchronous shared memory read/write systems. Similarly,
it is possible to design an “optimal” adaptive M -renaming algorithm (optimal means
here M = p) when we consider the obstruction-freedom liveness condition. Hence, the
natural question: “Which is the smallest value M(k) that can be attained for adaptive
M(k)-renaming when we consider k-obstruction-freedom?”

This paper answers this question by presenting an adaptive M(k)-renaming algo-
rithm that satisfies this progress condition and is such that M(k) = min(2p−1, p+k−
1). This means that, in all executions whose concurrency degree is eventually bounded
by k (eventual k-bounded concurrency), all correct processes do terminate. It follows
that, when k ≥ p, the algorithm solves (2p− 1)-renaming in a wait-free manner.

As shown in [10,19], one way to ensure k-bounded concurrency is to use a k-set
agreement object. Such an object can be used to reduce parallelism up to k processes. It
follows that by combining such an algorithm and the algorithm described in the paper,
we obtain an adaptive (p+k−1)-renaming algorithm based on a k-set agreement object

380 D. Imbs and M. Raynal

and, consequently, we explicitly provide an optimal algorithm whose existence was
claimed in [9]. Hence, the paper contributes to a better understanding of the renaming
problem by showing that weakening the liveness condition from wait-freedom to k-
obstruction-freedom allows us to reduce the new name space from 2p− 1 to p + k− 1.

1.3 Roadmap

The paper is made up of 5 sections. Section 2 presents the computation model and Sec-
tion 3 defines the adaptive M -renaming problem. Then, Section 4 presents the adaptive
k-obstruction-free M -renaming algorithm with M = min(2p−1, p+k−1), and proves
its correctness and its optimality. Finally, Section 5 concludes the paper.

2 Underlying Shared Memory Model

Process model. The system consists of n processes that we denote p1, . . . , pn. The
integer i is the index of pi. Each process pi has an initial name idi such that idi ∈ [1..N]
(N is arbitrarily large). Moreover, a process does not know the initial names of the other
processes; it only knows that no two processes have the same initial name. A process
can crash. Given an execution, a process that crashes is said to be faulty. Otherwise, it
is correct in that execution. Each process progresses at its own speed, which means that
the system is asynchronous.

Notation. A process can have local registers. Such registers are denoted with lowercase
letters with the process index appearing as a subscript (e.g., propi is a local register
of pi). The notation ⊥ is used to denote a default value. Uppercase letters are used to
denote shared objects.

Communication model. Processes communicate by accessing snapshot objects and ar-
rays of size n of atomic one-writer/multi-reader registers.

As far as an array X [1..n] is concerned, this means that only pi can write X [i], while
any process pj can read the whole array. Such a read, denoted aa ← X [1..n] where
aa is a local variable of the reader, is not atomic. The reader reads asynchronously all
entries of the array in any order.

Snapshot objects have been introduced in [1]. A snapshot object X is an array of size
n (the number of processes) that provides each process pi with two operations denoted
X.updatei(v) and X.snapshoti(). The former assigns v to X [i] (and is consequently
also denoted X [i] ← v). The important point is that only pi can write X [i]. The latter
operation, X.snapshoti(), returns to pi the current value of the array X . The important
point is that all update and snapshot operations appear as if they have been executed
atomically, which means that a snapshot object is linearizable [17]. (These operations
can be wait-free built on top of atomic read/write registers.)

3 Adaptive M -Renaming

Definition. The renaming problem has been informally stated in the introduction [2].
Each process pi has an initial name idi such that no two processes have the same ini-
tial name. These initial names belong to a set {1, . . . , N} such that n << N . Let

On Adaptive Renaming under Eventually Limited Contention 381

new name() be the (only) operation provided by an adaptive M -renaming object, i.e.,
an object that allows processes to obtain new distinct names belonging to the interval
[1..M]. The behavior of this object (that defines the adaptive M -renaming problem)
is defined by the following properties where p denotes the number of processes that
invoke new name() during an execution (the set of participating processes).

– Termination. If a correct process invokes new name() it obtains a new name.
– Agreement. No two processes obtain the same new name.
– Adaptivity. A new name belong to [1..M] where M is a function of p.
– Index independence. The behavior of a process is independent of its index.

The last property states that, if, in a run, a process whose index is i obtains the new
name v, that process would have obtained the very same new name if its index was j.
This means that, from an operational point of view, the indexes define an underlying
communication infrastructure, namely, an addressing mechanism that can be used only
to access entries of shared arrays. Indexes cannot be used to compute new names.

k-Obstruction-free termination. When considering the k-obstruction-freedom progress
condition, it is possible that no process ever terminates if no set P of at most k processes
execute in isolation for a long enough period. The termination property has then to be
weakened as follows.

– Termination. For any subset P of correct processes, with |P | ≤ k, if the processes
of P execute new name() in isolation, each process of P eventually obtains a new
name and terminates its invocation.

”In isolation” means that the processes of P are the only ones to execute the opera-
tion new name(). Let us notice that the previous progress property does not prevent
processes outside P to be active (as long as they do not execute new name()).

4 A k-Obstruction-free Renaming Algorithm

4.1 The Algorithm

Underlying shared objects. The processes cooperate through two arrays of atomic
one-writer/multi-reader registers denoted OLDNAMES [1..n], and LEVEL[1..n], and
a snapshot object denoted NAMES .

– Register OLDNAMES [i], that is initialized to ⊥, is used by pi to store its identity
idi. Hence OLDNAMES [i] �= ⊥ means that pi participates in the renaming.

– Register LEVEL[i] is initialized to 0. In order to obtain a new name, the processes
progress asynchronously from a level (starting from 1) to the next one. LEVEL[i]
contains the current level attained by process pi. As we will see, if during a long
enough period at most k processes take steps, they will stabilize at the same level
and obtain new names.

– NAMES [1..n] is a snapshot object initialized to [⊥, . . . ,⊥]. NAMES [i] contains
the new name that pi tries to acquire. When pi returns from new name(), NAMES [i]
contains its new name.

382 D. Imbs and M. Raynal

Process behavior. Algorithm 1 describes the behavior of a process pi. When it invokes
new name(idi), pi deposits its identity idi in OLDNAMES [i] and proceeds from level
0 to level 1. The local variable propi contains pi’s current proposal for its new name.
Its initial value is ⊥. Then, pi enters a loop (lines 03-21) that it will exit at line 06 with
its new name.

Each time it starts a new execution of the loop body, pi first posts its current name
proposal in NAMES [i] and reads (with a NAMES .snapshot() invocation) the values
of all current proposals (line 04). If its current proposal propi is not ⊥ and no other
process has proposed the same new name (line 05), pi defines its new name as the value
of propi and exits the loop (line 06). Otherwise, there is a conflict: several processes are
trying to acquire the same new name propi. In that case, pi enters lines 08-19 to solve
this conflict. These lines constitute the core of the algorithm.

In case of conflict, pi first reads asynchronously all entries of LEVEL[1..n] and com-
putes the highest level attained (line 07) highest leveli. If its current level is smaller
than highest leveli, pi jumps to that level, indicates it by writing LEVEL[i] (lines
08-09) and proceeds to the next loop iteration.

If its current level is equal to highest leveli , pi computes the set of processes it is
competing with in order to acquire a new name, namely the set contendingi (lines 10-
11). Those are the processes whose level is equal to highest leveli. Then, the behavior
of pi depends on the size of the set contendingi (predicate at line 12).

– If |contendingi| > k, there are too many processes competing when we consider
k-obstruction-freedom. Process pi progresses then to the next level and proceeds to
the next loop iteration (line 13).

– If |contendingi| ≤ k, pi selects a new name proposal before proceeding to the
next iteration. This selection is similar to what is done in other renaming algorithms
(e.g., [5]). As defined at lines 14-15, free denotes the list of names that are currently
available. Accordingly, pi defines its new name proposal as the rth value in the
list free where r is its rank in the set of (at most k) competing processes (hence,
1 ≤ r ≤ k).

4.2 Proof of the Algorithm

Lemma 1. No two processes decide the same new name.

Proof. Let us assume, by way of contradiction, that two processes pi and pj decide the
same new name nm (they decide it at line 06). It follows from the write and snapshot
operations at line 04 and the associated predicate at line 05 that namesi [i] = nm and
namesi [j] �= nm when pi checks the predicate at line 05. Similarly, as pj decides nm
we have namesj [i] = nm and namesj [i] �= nm when it executes line 05. Moreover,
none of pi and pj modifies NAMES after it decides.

On another side, as all snapshot invocations are linearizable, the last invocations
issued by pi and pj are totally ordered. Let us assume without loss of generality that the
snapshot invocation by pi precedes the one by pj . It follows that we have NAMES [i] =
nm when pj invokes NAMES .snapshot(). Hence, the array namesj obtained by pj at
line 04 is such that namesj [i] = nm and namesj [j] = nm. consequently, the predicate

On Adaptive Renaming under Eventually Limited Contention 383

operation new name(idi):
(01) propi ← ⊥; my level i ← 1;
(02) OLDNAMES [i] ← idi; LEVEL[i] ← my level i;
(03) repeat forever
(04) NAMES [i] ← propi; namesi ← NAMES .snapshot();
(05) if

(
(propi �= ⊥) ∧ (∀j �= i : namesi[j] �= propi)

)
(06) then return(propi)
(07) else levelsi ← LEVEL[1..n]; highest leveli ← max({levelsi [j]});
(08) if (my leveli < highest leveli)
(09) then my leveli ← highest leveli ; LEVEL[i] ← my leveli
(10) else oldnamesi ← OLDNAMES [1..n];
(11) contendingi ← {oldnames i[j] | levelsi [j] = highest leveli};
(12) if (|contendingi | > k)
(13) then my leveli ← highest leveli + 1; LEVEL[i] ← my leveli
(14) else let X = {namesi [j] | namesi [j] �= ⊥};
(15) let free = the increasing sequence 1, 2, 3, . . . from which

the integers in X have been suppressed;
(16) let r = rank of idi in contendingi ;
(17) propi ← the rth integer in the increasing sequence free
(18) end if
(19) end if
(20) end if
(21) end repeat.

Algorithm 1. x-Obstruction-free adaptive M -renaming with M = min(2p− 1, p +
k − 1)

checked by pj at line 05 is false which contradicts the initial assumption and concludes
the proof of the lemma. �Lemma 1

Lemma 2. Let p be the number of processes that participate in renaming. The size of
the new name space is M = min(2p− 1, p + x− 1).

Proof. Let us consider a run in which at most p processes participate. Let pi be a
process that returns a new name (line 06). It follows from the text of the algorithm that
this name has been obtained by pi at line 17.

Due to the very definition of the value p, when pi defined its last name proposal,
at most p − 1 other processes have previously defined a name proposal. Moreover,
because it proposes a new name only if |contending | ≤ k (line 12), the rank r of
pi in the set contending (line 16) is such that r ≤ min(p, k). It follows that the last
name proposal computed by pi from the pair (free, r) (lines 14-17) is upper bounded
by (p− 1) + min(p, k). Hence we have M = min(2p− 1, p + k − 1). �Lemma 2

Lemma 3. For any subset P of processes, with |P | ≤ k, if the processes of P run in
isolation long enough, then all correct processes of P execute line 06 (they decide a
new name and terminate).

384 D. Imbs and M. Raynal

Proof. Let us assume, by way of contradiction, that there is an infinite execution of the
algorithm in which, after a finite time τ , all the processes of P take an infinite number
of steps and no process outside P takes any step.

Because |P | ≤ k and all processes in P take an infinite number of steps, there is a
finite time τ ′ ≥ τ from which every process pj of P has set LEVEL[j] to the value
max({LEVEL[j]}1≤j≤n} (lines 07-09) and does not modify LEVEL[j] anymore (test
at line 08). This follows from the fact that the test at line 08 is then always false and,
consequently, line 09 is no longer executed). Hence, LEVEL does not change after τ ′

and all processes in P eventually obtain the same set contending (line 11). It follows
that each process of P eventually obtains a distinct rank in contending .

Let pi be the process of P with the smallest identity idi and r its rank in contending
(this rank is not necessarily 1 because there may be crashed processes outside P that
are in contending). Let z be the r-th integer in the sequence free not taken by a process
outside P (lines 15-18). Because, after τ ′, LEVEL does not change and pi has the
smallest rank among the processes of P , once all the processes of P have executed
lines 15-18 after τ ′, pi will be the only process to propose propi = z (all the other
processes of P will propose greater names). Hence the predicate evaluated by pi at line
05 is eventually satisfied and, consequently, pi terminates at line 06, which contradicts
the initial assumption and completes the poof. �Lemma 3

Theorem 1. Algorithm 1 is an adaptive k-obstruction-free M -renaming algorithm with
M = min(2p− 1, p + k − 1).

Proof. The agreement property follows from Lemma 1. The adaptability property fol-
lows from Lemma 2. The index independence property follows directly from the text of
the algorithm (indexes are used only to address array entries).

The k-obstruction-freedom termination property requires that for any set P of correct
processes such that (1) |P | ≤ k and (2) the processes of P run in isolation long enough,
the processes of P decide a new name. This is exactly what is proved by Lemma 3.

�Theorem 1

4.3 Impossibility and Optimality Results

As mentioned previously, Castañeda and Rajsbaum [8] have recently shown that, for
wait-free non-adaptive M -renaming, there are exceptional numbers n of processes for
which the lower bound on the new name size M of the new name space M = 2n − 2
(while M = 2n−1 for the other values of n). These exceptional values of n correspond
to the cases when the set {

(
n
i

)
: 1 ≤ i ≤ �n

2 �} is relatively prime.
Adaptive (2n−2)-renaming, on the other hand, allows solving (n−1)-set agreement

when t = n − 1 [11]. Solving wait-free (n − 1)-set agreement in shared memory has
been shown to be impossible for any number of processes [7,16,22]. Thus the lower
bound of 2p − 1 on the new name space size for wait-free adaptive renaming of p
processes still holds. This lower bound is used in the proof of the following theorem.

Theorem 2. Let p be the number of processes that participate in the renaming. There
is no k-obstruction-free adaptive M -renaming with M < min(2p− 1, p + k − 1).

On Adaptive Renaming under Eventually Limited Contention 385

Proof. There are two cases: p ≤ k and p > k.

First case: p ≤ k. When less than k processes participate, k-obstruction-freedom is
equivalent to wait-freedom, so this case boils down to wait-free adaptive renaming. The
minimum size of the name space is then 2p− 1 = min(2p− 1, p + k − 1).

Second case: p > k. Consider an execution in which p′ = p− k correct processes in-
voke the renaming and decide new names in a non-concurrent way (one after the other).
The k-obstruction-freedom progress condition requires that all these processes termi-
nate their invocations. These p′ processes will then occupy p′ names that cannot be
decided by processes that will invoke renaming later. After these p′ processes have re-
turned from their invocation, k′ ≤ k of the k remaining processes invoke the renaming
and start executing concurrently. Because only k′ ≤ k processes are executing concur-
rently, k-obstruction-freedom requires that all the correct processes terminate. These k′

processes will then need a new name space of 2k′−1 ≤ 2k−1 (not including the names
of the first p′ processes) in order to obtain new names. The resulting new name space
will then have a size not less than p′ + 2k − 1 = p + k − 1 = min(2p− 1, p + k − 1),
which concludes the proof of the theorem. �Theorem 2

The following corollary is an immediate consequence of Algorithm 1 (sufficiency) and
the previous theorem (necessity).

Corollary 1. Algorithm 1 is optimal with respect to the size of the new name space.

5 Concluding Remarks

Using a non-linearizable object to replace the snapshot object. A process pi accesses
the snapshot object NAMES [1..n] only at line 04 where it first writes NAMES [i] and
then reads atomically the whole array. This object can actually be replaced by an im-
mediate snapshot object as defined in [7]. Such an object provides processes with a
single operation, denoted write snapshot(), that simultaneously writes a value and re-
turns the value of the array (including the written value). In addition to the properties of
a snapshot() operation, the write snapshot() operation allows concurrent invocations
to return the very same array value. Differently from snapshot objects, immediate snap-
shot objects are not required to be linearizable, but only to be set-linearizable (different
operations can be considered as happening at the same point of the time line). Because
of this, their implementation is less expensive.

The other direction. Assuming the k-obstruction-freedom progress condition, the pro-
posed algorithm solves the adaptive (p + k − 1)-renaming problem for any value of k.

Assuming a system in which at most t processes may crash, we have the following
in the other direction. An algorithm is described in [11] that solves the t-set agreement
problem from any solution to the adaptive (p + t− 1)-renaming problem. Another con-
struction is informally described in [10] that, given a k-set agreement algorithm, ensures
that no more than k processes execute concurrently (k-bounded concurrency). It follows
that, given an adaptive (p + t − 1)-renaming algorithm, the stacking of these two con-
structions provides us with a t-concurrent execution, thus satisfying the t-obstruction-
freedom progress condition.

386 D. Imbs and M. Raynal

Design simplicity and efficiency. The proposed algorithm is particularly simple, which
is a first class property. It could be possible to use the (pretty involved) construction
suggested in [10] to obtain a k-obstruction-free adaptive (p+k−1)-renaming algorithm.
The resulting algorithm would be difficult to understand and inefficient. Differently, the
proposed ad-hoc algorithm is particularly simple. Albeit it is partially subjective and
cannot be easily “measured”, simplicity is a first class property.

When we consider sequential computing, it is not because a polynomial problem can
be reduced to an NP-complete problem that simple and efficient solutions have not to
be looked for. The situation is similar for renaming: even if a given size M of the new
name space can be obtained from an “heavy machinery”, simple and efficient solutions
have to be looked for. Moreover, a simple solution is usually very close to the very
essence of the problem.

Acknowledgments

The authors would like to thank the referees for their constructive comments.

References

1. Afek, Y., Attiya, H., Dolev, D., Gafni, E., Merritt, M., Shavit, N.: Atomic Snapshots of Shared
Memory. Journal of the ACM 40(4), 873–890 (1993)

2. Attiya, H., Bar-Noy, A., Dolev, D., Peleg, D., Reischuk, R.: Renaming in an Asynchronous
Environment. Journal of the ACM 37(3), 524–548 (1990)

3. Attiya, H., Guerraoui, R., Ruppert, E.: Partial Snapshot Objects. In: Proc. 20th ACM Sym-
posium on Parallel Architectures and Algorithms (SPAA 2008), pp. 336–343. ACM Press,
New York (2008)

4. Attiya, H., Rachman, O.: Atomic Snapshots in O(n log n) Operations. SIAM Journal on
Computing 27(2), 319–340 (1998)

5. Attiya, H., Welch, J.: Distributed Computing: Fundamentals, Simulations and Advanced Top-
ics, 2nd edn., p. 414. Wiley-Interscience, Hoboken (2004)

6. Borowsky, E., Gafni, E., Generalized, F.L.P.: Impossibility Results for t-Resilient Asyn-
chronous Computations. In: Proc. 25th ACM Symposium on Theory of Computing (STOC
1993), pp. 91–100. ACM Press, New York (1993)

7. Borowsky, E., Gafni, E.: Immediate Atomic Snapshots and Fast Renaming. In: Proc. 12th
ACM Symposium on Principles of Distributed Computing (PODC 1993), pp. 41–51 (1993)

8. Castaneda, A., Rajsbaum, S.: New Combinatorial Topology Upper and Lower Bounds for
Renaming. In: Proc. 27th ACM Symposium on Principles of Distributed Computing (PODC
2008), pp. 295–304. ACM Press, New York (2008)

9. Gafni, E.: Renaming with k-set-consensus: An optimal algorithm into n + k – 1 slots. In:
Shvartsman, M.M.A.A. (ed.) OPODIS 2006. LNCS, vol. 4305, pp. 36–44. Springer, Heidel-
berg (2006)

10. Gafni, E., Guerraoui, R.: Simulating Few by Many (2009) (unpublished manuscript),
http://www.cs.ucla.edu/˜eli/eli/kconc.pdf

11. Gafni, E., Mostéfaoui, A., Raynal, M., Travers, C.: From Adaptive Renaming to Set Agree-
ment. Theoretical Computer Science 410, 1328–1335 (2009)

12. Gafni, E., Raynal, M., Travers, C.: Test&set, Adaptive Renaming and Set Agreement: a
Guided Visit to Asynchronous Computability. In: 26th IEEE Symposium on Reliable Dis-
tributed Systems (SRDS 2007), pp. 93–102. IEEE Computer Press, Los Alamitos (2007)

http://www.cs.ucla.edu/~eli/eli/kconc.pdf

On Adaptive Renaming under Eventually Limited Contention 387

13. Guerraoui, R., Kapalka, M., Kouznetsov, P.: The Weakest Failure Detectors to Boost
Obstruction-Freedom. Distributed Computing 20(6), 415–433 (2008)

14. Herlihy, M.P.: Wait-Free Synchronization. ACM Transactions on Programming Languages
and Systems 13(1), 124–149 (1991)

15. Herlihy, M.P., Luchangco, V., Moir, M.: Obstruction-free Synchronization: Double-ended
Queues as an Example. In: Proc. 23th Int’l IEEE Conference on Distributed Computing
Systems (ICDCS 2003), pp. 522–529 (2003)

16. Herlihy, M.P., Shavit, N.: The Topological Structure of Asynchronous Computability. Journal
of the ACM 46(6), 858–923 (1999)

17. Herlihy, M.P., Wing, J.M.: Linearizability: a correctness condition for concurrent objects.
ACM Transactions on Programming Languages and Systems 12(3), 463–492 (1990)

18. Imbs, D., Raynal, M.: Help when needed, but no more: Efficient Read/Write Partial Snapshot
(33/117). In: Keidar, I. (ed.) DISC 2009. LNCS, vol. 5805, pp. 142–156. Springer, Heidelberg
(2009)

19. Mostefaoui, M., Raynal, M., Travers, C.: Exploring Gafni’s Reduction Land: from Ωk to
Wait-free adaptive (2p−� p

k
�)-renaming via k-set Agreement. In: Dolev, S. (ed.) DISC 2006.

LNCS, vol. 4167, pp. 1–15. Springer, Heidelberg (2006)
20. Raynal, M.: Locks Considered Harmful: a Look at Non-traditional Synchronization. In:

Brinkschulte, U., Givargis, T., Russo, S. (eds.) SEUS 2008. LNCS, vol. 5287, pp. 369–380.
Springer, Heidelberg (2008)

21. Raynal, M., Travers, C.: In Search of the Holy Grail: Looking for the Weakest Failure De-
tector for Wait-free Set Agreement. In: Shvartsman, M.M.A.A. (ed.) OPODIS 2006. LNCS,
vol. 4305, pp. 1–17. Springer, Heidelberg (2006)

22. Saks, M., Zaharoglou, F.: Wait-Free k-Set Agreement is Impossible: The Topology of Public
Knowledge. SIAM Journal on Computing 29(5), 1449–1483 (2000)

23. Taubenfeld, G.: Contention-Sensitive Data Structure and Algorithms. In: Keidar, I. (ed.)
DISC 2009. LNCS, vol. 5805, pp. 157–171. Springer, Heidelberg (2009)

RobuSTM:
A Robust Software Transactional Memory

Jons-Tobias Wamhoff1, Torvald Riegel1, Christof Fetzer1, and Pascal Felber2

1 Dresden University of Technology, Germany
{first.last}@tu-dresden.de

2 University of Neuchâtel, Switzerland
{first.last}@unine.ch

Abstract. For software transactional memory (STM) to be usable in
large applications such as databases, it needs to be robust, i.e., live, effi-
cient, tolerant of crashed and non-terminating transactions, and practi-
cal. In this paper, we study the question of whether one can implement
a robust software transactional memory in an asynchronous system. To
that end, we introduce a system model – the multicore system model
(MSM) – which captures the properties provided by mainstream multi-
core systems. We show how to implement a robust software transactional
memory (RobuSTM) in MSM. Our experimental evaluation indicates
that RobuSTM compares well against existing blocking and nonblocking
software transactional memories in terms of performance while providing
a much higher degree of robustness.

1 Introduction

Software transactional memory (STM) is a promising approach to help program-
mers parallelize their applications: it has the potential to simplify the program-
ming of concurrent applications, when compared to using fine-grained locks. Our
general goal is to investigate the use of STM in large software systems like ap-
plication servers, databases, or operating systems. Such systems are developed
and maintained by hundreds of programmers, and all that code lives in the same
address space of the system’s process. Ensuring the robustness of such applica-
tions requires the use of techniques that guarantee the recovery from situations
in which individual threads crash or behave improperly (e.g., loop infinitely)
while executing critical sections. For example, commercial databases guarantee
such robustness using custom mechanisms for lock-based critical sections [12].

A system that uses transactions to perform certain tasks typically relies on their
completion. Thus, a robust STM must guarantee that all well-behaved transac-
tions will terminate within a finite number of steps. A transaction is well-behaved
if it is neither crashed nor non-terminating. Both crashed and non-terminating
transactions can interfere with the internal synchronization mechanism of the un-
derlying STM implementation, possibly preventing other transactions from mak-
ing progress if not handled correctly. A crashed transaction will stop executing

S. Dolev et al. (Eds.): SSS 2010, LNCS 6366, pp. 388–404, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

RobuSTM: A Robust Software Transactional Memory 389

prematurely, i.e., it executes a finite number of steps and stops before commit-
ting (e.g., due to failure of the associated thread). A non-terminating transaction
executes an infinite number of steps without attempting to commit.

Note that a robust STM provides guarantees that are very similar to a wait-
free STM, which guarantees to commit all concurrent transactions in a bound
number of steps. Yet, the definition of the wait-free property requires the use of
an asynchronous model of computation, but it has been shown recently [10] that
one cannot implement a wait-free STM in an such a system model. However, cur-
rent multicore systems provide stronger guarantees than those postulated in the
asynchronous system model. Therefore, we try to answer the question whether
one can implement a robust STM in today’s multicore computer architectures.

In this paper, we introduce a new multicore system model (MSM). It is asyn-
chronous in the sense that it does not guarantee any bounds on the absolute or
relative speed of threads but additionally reflects the properties of mainstream
multicore systems. We show that one can implement a robust STM (RobuSTM)
in MSM that guarantees progress for individual threads. Our RobuSTM imple-
mentation exhibits performance comparable to state-of-the-art lock-based STMs
on various types of benchmarks. Therefore, we not only show that one can im-
plement robust STMs but also that one can implement them efficiently.

The paper is organized as follows: We first introduce MSM in Section 2.
Section 3 presents the algorithm of RobuSTM. We evaluate our approach in
Section 4 and discuss related work in Section 5. We conclude in Section 6.

2 System Model

Our multicore system model (MSM) satisfies the following nine properties. (1) A
process consists of a non-empty set of threads that share an address space. (2) All
non-crashed threads execute their program code with a non-zero speed. Neither
the absolute nor the relative speed of threads is bounded. (3) Threads can fail by
crashing. A crash can be caused by a programming bug or by a hardware issue.
In the case of a hardware issue, we assume that the process crashes. In case of
a software bug, only a subset of the threads of a process might crash. (4) We
assume that STM is correctly implemented, i.e., crashes of threads are caused by
application bugs and not by the STM itself. The motivation is that a STM has
typically a much smaller code size that is reused amongst multiple applications.
(5) A process can detect the crash of one of its threads. (6) Threads can synchro-
nize using CAS and atomic-or operations (see below). (7) The state of a process
is finite. (8) A thread can clone the address space of the process. (9) Each thread
has a performance counter that counts the number of instructions it executed.
Software Transactional Memory. In our model, we assume that transactions
are executed concurrently by threads. Within transactions, all accesses to shared
state must be redirected to the STM and neither non-transactional accesses to
global data nor external IO operations are permitted. If a thread failed to commit
the transaction, it is retried (see Section 3). We further assume that transactions
are non-deterministic and allow transactions to execute different code paths or
access different memory locations during the retry.

390 J.-T. Wamhoff et al.

Detection mechanisms. Modern operating systems permit the detection of
thread crash failures. A thread can crash for various reasons like an uncaught
exception. To detect the crash of a thread that is mapped to an operating system
process, one can read the list of all processes that currently exist and check
their status or search for missing threads [1]. The MSM assumes the existence
of a thread crash detector that detects within a finite number of steps when a
thread has crashed (i.e., the thread stopped executing steps) and will not wrongly
suspect a correct thread to have crashed. For simplicity, in our implementation
we assume that a signal handler is executed whenever a thread crashes.

Progress mechanisms. Like many concurrent algorithms, the MSM assumes
the existence of a compare-and-swap (CAS) operation: bool CAS(addr, expect,
new). CAS atomically replaces the content of address addr with value new if the
current value is expect. It returns true iff it stored new at addr. A CAS is often
used in loops in which a thread retries until its CAS succeeds (see Figure 1).
Note that sometimes such a loop might contain a contention manager to resolve
a conflict with another thread but in the meantime a third thread might have
successfully changed addr. In other words, a contention manager might not be
able to ensure progress of an individual thread since this thread might have
continuous contention with two or more other threads.

repeat
expect = *addr; � Read current value
new = function(expect); � Get new value

until CAS(addr, expect, new)

Fig. 1. While CAS is wait-free, there is no
guarantee that the CAS will ever succeed,
i.e., that the loop ever terminates

repeat
if has priority() then � Privileged priority

atomic-or(addr, F); � Set fail bit
expect = *addr; � Expect bit in CAS

else � All other threads
expect = *addr & ∼F; � No fail bit

end if
until CAS(addr, expect, new)

Fig. 2. Using an atomic-or, we can make
sure the CAS of the privileged priority
thread always succeeds

The problem is that there is no guarantee that a thread will ever be success-
ful in performing a CAS. To address this issue, the MSM assumes an atomic-or
operation. Note that the x86 architecture supports such an operation: a program-
mer can just add a LOCK prefix to a logical or operation. It is guaranteed, that a
processor will execute the atomic-or operation in a finite number of steps. Also
note that such an operation does not exist on, for example, Sparc processors.

We use the atomic-or to ensure that each correct transaction will eventually
commit. RobuSTM will select at most one thread with a privileged priority
level in the sense that this thread should win all conflicts. To ensure that all
CAS operations performed by a privileged thread succeed, it uses the atomic-or
to make sure that all competing CASes fail. To do so, we reserve a bit (F) in each
word that is used with a CAS (see Figure 2). If a privileged thread performs an
atomic-or just before another thread tries to perform a CAS, the latter will fail
because its expected value assumes the F bit to be cleared.

Our goal is not only to implement wait-free transactions in the face of crash
failures, but also in the face of non-terminating transactions. We assume however

RobuSTM: A Robust Software Transactional Memory 391

that the STM code itself is well-behaved and only application code can crash
or loop infinitely often. For tolerating non-terminating transactions, we assume
two more mechanisms that can be found in current systems. First, the MSM as-
sumes that we can clone a thread, i.e., the operating system copies the address
space of a process (using copy-on-write) and the cloned thread executes in a new
address space fully isolated from all threads of the original process. Second, the
MSM assumes the existence of a performance counter that (1) counts the cycles
executed by a thread, and (2) permits other threads to read this performance
counter. The intuition of the performance counter is as follows. The privileged
thread can keep its privilege for a certain number of cycles (measured by the
performance counter), after which it is not permitted anymore to steal the locks
of other threads. If we can prove that the thread is well-behaved and would have
simply needed more time to terminate, we increase the time quantum given to
the privileged thread. Since the state space of threads is finite (but potentially
very large), there exists a finite threshold S such that each transaction will either
try to commit in at most S steps, or it will never try to commit. The problem
is how to determine an upper bound on this threshold for non-deterministic
transactions (see Section 3). Our system ensures that non-terminating transac-
tions are eventually isolated to ensure the other threads can make progress while
ensuring that long running but correct transactions will eventually commit.

3 Design and Implementation

Our STM algorithm runs in different modes. In this section, we first present
the basic algorithm optimized for the good case with well-behaved transactions
(Mode 1). When conflicts are detected and fairness is at stake, we switch to
Mode 2 by prioritizing transactions. If the system detects a lack of progress, we
switch to Mode 3 for dealing with crashed and non-terminating transactions.
The mode is set for each transaction individually.

3.1 Why a Lock-Based Design?

Our robust STM algorithm uses a lock-based design. The reason for basing our
work on a blocking approach instead of an obstruction-free one is driven by per-
formance considerations. Non-blocking implementations suffer from costly indi-
rections necessary for meeting their obstruction-free progress guarantee [5,4,16].
Although many techniques known from blocking implementations were applied
to avoid indirection under normal operation with little contention, indirection
is still necessary when it comes to conflicts with transactions that are not well-
behaved (see Section 5). Our own experiments (see Section 4) still show a superior
performance of lock-based designs.

Several reasons can explain the good performance of blocking STMs. They
have a simpler fast path and more streamlined implementations of the read/write
operations with no extra indirection. In addition, the combination of invisible
reads and time-based validation [17] provides significant performance benefits.

392 J.-T. Wamhoff et al.

In this paper, we use a C++ version of the publicly-available TinySTM [6] as
the basis for our robust STM algorithm. TinySTM is an efficient lock-based
implementation of the lazy snapshot algorithm (LSA) [17].

3.2 Optimizing for the Good Case

For completeness, we briefly recall here the basic algorithm used by TinySTM.
Like several other word-based STM designs, TinySTM relies upon a shared
array of locks to protect memory from concurrent accesses (see Figure 3). Each
lock covers a portion of the address space. In our implementation, it uses a per-
stripe mapping where addresses are mapped to locks based on a hash function.

Lock array

Owner

Timestamp

Transaction

Start timestamp

Write-set

...

Memory

...

...

Address read

Address written

...

1

0

Lock bit

Read-set

Address read

Fig. 3. Data structures for the lock-based design of TinySTM

Each lock is the size of an address on the target architecture. Its least sig-
nificant bit is used to indicate whether the lock has been acquired by some
transaction. If it is free, the STM stores in the remaining bits a version number
that corresponds to the commit timestamp of the transaction that last wrote to
one of the memory locations covered by the lock. If the lock is taken, the STM
stores in the remaining bits a pointer to an entry in the write-set of the owner
transaction. Note that addresses point to structures that are word-aligned and
their least significant bits are always zero on 64-bit architectures; hence one of
these bits can safely be used as lock bit.

When writing to a memory location, a transaction first identifies the lock
entry that covers the memory address and atomically reads its value. If the lock
bit is set, the transaction checks if it owns the lock using the address stored in the
remaining bits of the entry. In that case, it simply writes the new value into the
transaction-private write set and returns. Otherwise, there is a conflict and the
default contention management policy is to immediately abort the transaction
(we will show how one can change this behavior to provide fairness shortly).

If the lock bit is not set, the transaction tries to acquire the lock using a CAS
operation. Failure indicates that another transaction has acquired the lock in
the meantime and the whole procedure is restarted. If the CAS succeeds, the
transaction becomes the owner of the lock. This basic design thus implements
visible writes with objects being acquired when they are first encountered.

When reading a memory location, a transaction must verify that the lock is
neither owned nor updated concurrently. To that end, the transaction reads the

RobuSTM: A Robust Software Transactional Memory 393

lock, then the memory location, and finally the lock again (obviously, appropriate
memory barriers are used to ensure correct ordering of accesses). If the lock is
not owned and its value (i.e., version number) did not change between both
reads, then the value read is consistent. If the lock is owned by the transaction
itself, the transaction returns the value from its write set. Once a value has been
read, LSA checks if it can be used to construct a consistent snapshot. If that is
not the case and the snapshot cannot be extended, the transaction aborts.

Upon commit, an update transaction that has a valid snapshot acquires a
unique commit timestamp from the shared clock, writes its changes to memory,
and releases the locks (by storing its commit timestamp as version number and
clearing the lock bit). Upon abort, it simply releases any lock it has previously
acquired. Refer to [17] for more details about the LSA algorithm.

3.3 Progress and Fairness

An important observation is that the basic TinySTM algorithm does not provide
liveness guarantees even when considering only well-behaved transactions. In
particular, a set of transactions can repeatedly abort each other, thus creating
livelocks. Furthermore, there is no fairness between transactions: a long-running
transaction might be taken over and aborted many times by shorter update
transactions, in particular if the former performs numerous invisible reads

To address these problems, we introduce two mechanisms that make up Mode 2.
The first one consists of introducing “visible reads” after a transaction has aborted
a given number of times because of failed validation (i.e., due to invisible reads).
To that end, in addition to the WR bit used for writers, we use an additional RD bit
in the lock metadata to indicate that a transaction is reading the associated data
(see Figure 4). Using a different bit for visible readers allows more concurrency be-
cause an invisible reader is still allowed to read data that is locked in read mode.
Other conflicts with visible readers are handled as for writers, i.e., only one trans-
action is allowed to proceed. The use of visible reads makes all conflicts detectable
at the time data is accessed: a well-behaved transaction that wins all conflicts is
guaranteed not to abort.

Owner

Timestamp

1

0

WRRD

0

PR

Owner 01

WR

Lock available

Writer
No stealer

Reader
No stealer

0?

0

0

Owner ??
Reader xor Writer
Stealer1

RDPR

Fig. 4. Free and possibly reserved lock,
owned lock, and owned lock with stealer

init

COMMIT

ABORT

rollback and retry

validation failed

start

commit

co
m

m
it

 fi
n

is
h

ed

lost conflict

validation ok

IDLE

ACTIVE

VALIDATE

killed

Fig. 5. States during the lifetime of a
transaction

394 J.-T. Wamhoff et al.

This mechanism alone is not sufficient to guarantee neither progress nor fair-
ness. Depending on the contention management strategy, transactions can re-
peatedly abort each other, or a transaction might always lose to others and never
commit. To address the fairness problem, we need to be able to prioritize trans-
actions and choose which one to abort upon conflict. That way, we can ensure
that the transaction with the highest priority level wins all its conflicts.

A transaction that cannot commit in Mode 1, first switches to visible reads. If
it still fails to commit after a given number of retries with visible reads enabled,
it tries to enter a privileged priority level that accepts only one thread at a time.
Entry into this priority level is guarded using Lamport’s bakery algorithm [13]
that provides fairness by granting permission in the order in which transactions
try to acquire the bakery lock. Because the number of steps that transactions
are allowed to execute with priority is limited (see Section 3.6), each acquire
attempt will finish in a finite number of steps. The privileged thread can steal
a lock from its current owner by atomic-or ing the PR bit to 1 before acquiring
it. The bit indicates that a transaction is about to steal the lock (see Figure 4).
As explained in Section 2, this will ensure that any other thread attempting to
CAS the lock metadata will fail (because it expects the PR bit to be cleared),
while the privileged thread will succeed.

3.4 Safe Lock Stealing

Due to the lock-based nature of our base STM, being able to safely steal locks
from transactions is necessary to build a robust STM. Our system model eases
this because it requires that STM code is well-behaved and only application code
can crash or loop infinitely often.

To understand how lock stealing works, consider Figure 5 that shows the
different states a transactions can take. The normal path of a transaction is
through states IDLE, ACTIVE (when transaction has started), VALIDATE (upon
validation when entering commit phase), and COMMIT (after successful validation
when releasing locks). A transaction can abort itself upon conflict (from ACTIVE
state), or when validation fails (from VALIDATE state).

An active transaction can also be forcefully aborted (or killed) by another
transaction in privileged priority (dashed arrow in the figure). This happens
when the privileged transaction tx wants to acquire a lock that is already owned,
i.e., with the RD or WR bit set. In that case, tx first reserves this lock for the
privileged transaction by atomic-or ing the PR bit to 1. This wait-free operation
also ensures that other non-privileged transactions will notice the presence of tx
and will not be able to acquire the lock or clear the PR bit anymore (see Figure 2).
In RobuSTM, all lock acquire and release operations must be performed using
CAS, which will fail for non-privileged transactions if the PR bit is set.

After reserving the lock, tx can continue with actually stealing the lock. It
loads the value of the lock again and determines whether there was an owner
transaction. If so and if the owner is in the IDLE state, it can just acquire the
lock. If the owner is in the VALIDATE or COMMIT states, tx waits for the owner
to either abort (e.g., because validation failed) or finish committing. We do

RobuSTM: A Robust Software Transactional Memory 395

not abort validating transactions because they might be close to successfully
committing. Because we assume that STM code is well-behaved and because
read sets are finite, commit attempts execute in a finite number of steps. Note
that a successfully committed transaction releases only the locks whose PR bit
is not set. This process works as long as there is at most one transaction in the
privileged priority level that can steal locks.

If the owner transaction is in ACTIVE state, tx attempts to abort the owner
by using CAS to change the state to ABORT. After that or if the owner is already
in state ABORT, tx acquires the lock using CAS but while doing so expects the
value that the lock had after the atomic-or. The PR bit is only used during lock
stealing and is not set after tx acquired the lock. Transactions check whether
they have been aborted within each STM operation (e.g., loads). Note that a
transaction’s state is versioned to avoid ABA issues on lock owners, i.e., tx can
distinguish if the transaction that previously owned the lock aborted and retried
while performing the lock stealing.

3.5 Dealing with Crashed Transactions

Using a traditional lock-based STM could lead to infinite delays in case a thread
that has acquired some locks crashes. Because RobuSTM supports lock stealing,
the crash of a transaction that is not in privileged priority level and that is not
in the COMMIT state does not prevent other transactions from safe lock stealing
introduced in Section 3.4.

RobuSTM makes use of the crash detector included in the MSM to deal
with crashed transactions. In practice, events that cause a thread to crash (e.g.,
a segmentation fault or an illegal instruction) are detected by the operating sys-
tem and a thread can request to be notified about such events by registering
a signal handler. If a signal is received by a thread that indicates a crash, the
thread will abort itself if it is in the ACTIVE state to speed up future acquisi-
tions by other threads. If the thread is in the COMMIT state and already started
writing its modifications to memory, it will finish comitting. The intention there
is to always keep the shared state consistent and to reduce the contention on
locks. Transactions in privileged priority level that encountered a thread crash
additional release their priority.

3.6 Dealing with Non-terminating Transactions

The main problem that we face when designing a robust STM is how to deal with
non-terminating transactions as the locks they hold can prevent other transac-
tions from making progress. Two different kinds of non-terminating transactions
have to be distinguished: (1) transactions that are in ACTIVE state but stopped
executing STM operations, and (2) transactions that still perform STM oper-
ations (e.g., in an infinite loop). Both correspond to non-crashed threads and
never reach the VALIDATE state.

Let us first consider how RobuSTM handles threads that stopped executing
STM operations (e.g., the thread is stuck in an endless loop). In the simplest

396 J.-T. Wamhoff et al.

case, the thread did not acquire any locks and thus does not prevent other
threads from making progress and can be tolerated by the system. If the non-
terminating transaction already acquired locks, it may run into a conflict with
another thread. Eventually, the conflicting thread will reach the privileged pri-
ority level and again run into a conflict with the non-terminating transaction.
It will then force the non-terminating transaction to abort and steals the lock.
Since the status of a thread is only checked during STM operations, the non-
terminating transaction will not discover the update and will remain in the ABORT
state. Other transactions that encounter a conflict with a transaction in ABORT
state can simply steal the lock.

A non-terminating transaction that still performs STM operations will dis-
cover the update of its state to ABORT. It will roll back and retry its execution.
If, during the retry, it becomes again a non-terminating transaction that owns
locks, it will be killed and retried again. It can therefore enter the privileged pri-
ority level and still behave as a non-terminating transaction, hence preventing
all other transactions from making progress because it wins all conflicts. Since
we assume that the state of a computer is finite, for each well-behaved and priv-
ileged transaction tx there exists a maximum number of steps, maxSteps, such
that tx will execute at most maxSteps before trying to commit. maxSteps is
not known a priori and hence, we cannot reasonably bound the number of steps
that a privileged transaction is permitted to execute without risking to prevent
some well-behaved transactions from committing.

MSM permits us to deal with non-terminating transactions running at the
privileged priority level as follows. The privileged thread th receives a budget of
at most a finite number of steps but at least quantum steps, where quantum is a
dynamically updated value. Initially, quantum is set to some arbitrary value that
we assume to be smaller than maxSteps. The privileged thread th is forced to the
ABORT state after quantum steps (determined with the help of the performance
counters) and is removed from the privileged priority level.

If the formerly privileged transaction th notices that it has been aborted and
exceeded its quantum, it clones its thread. The clone consists of a separate
address space that is copied on write from the parent and a single thread that
runs in isolation. Transactional meta data of all threads in the parent is copied
with the address space. The clone then continues to execute the transaction
in a checker run using the meta data to resolve conflicts. There are two cases
to consider. (1) If th is well-behaved, it will terminate after running for, say,
childSteps. At this point, the child will return success and the parent thread
will increase quantum by setting it to a value of at least childSteps. Then, the
parent thread will re-execute th at privileged priority with at least quantum
steps. If the new quantum was not sufficient , e.g., because of non-determinism,
it will be increased iteratively. (2) If th is not well-behaved, it will not terminate
the checker run. In this case, the parent thread will wait forever for the child
thread to terminate. Because the parent thread has aborted, it will not prevent
any of the well-behaved threads from making progress.

RobuSTM: A Robust Software Transactional Memory 397

4 Evaluation

In this section, we evaluate the performance of RobuSTM. We are specifically
interested in showing that (1) it provides high throughput in good cases with
little contention, (2) it provides fairness by guaranteeing progress of individual
transactions, and (3) it tolerates crashed and non-terminating transactions.

We compare RobuSTM against four state-of-the-art STM implementations:
TinySTM [6]; TinyETL, a C++ implementation of the encounter-time lock-
ing variant of TinySTM; TL2 [4], an STM implementation that uses commit-
time locking; and NB STM [15], which combines efficient features of lock-based
STM implementations with a non-blocking design, as our algorithm does. The
NB STM implementation that we use is a port of the original SPARC imple-
mentation to the x86 architecture.

For our evaluation, we use well-known micro-benchmarks and applications of
the STAMP [2] benchmark suite. The intset micro-benchmarks perform queries
and updates on integer sets implemented as red-black tree and linked list. We
use the bank micro-benchmark to evaluate fairness: some threads perform money
transfers (i.e., one withdrawal followed by a deposit) concurrently with long read-
only transactions that compute the aggregated balance of all accounts. From the
STAMP benchmark suite [2] we chose Vacation, KMeans and Genome. Vacation
emulates a travel reservation system, reading and writing different tables that
are implemented as red-black trees. KMeans clusters a set of points in parallel.
Genome performs gene sequencing using hash sets and string search.

Our tests have been carried out on a dual-socket server with two Intel quad-
cores (Intel XEON Clovertown, executing 64-bit Linux 2.6). We compiled all
micro-benchmarks using the Dresden TM Compiler [3], which parses and trans-
forms C/C++ transaction statements and redirects memory accesses to an
STM.

4.1 Throughput for Well-Behaved Transactions

We first evaluate transaction throughput for lock-based and nonblocking STM
implementations. There are no crashes or non-terminating transactions present.

Figure 6 shows the bank benchmark with low load under different STM
runtimes. The left and middle plots show throughput for both transfer and
aggregate-balance transactions. The lock-based STMs perform significantly faster

 0

 400

 800

 1200

 1600

 2 4 6 8

5% read-all

C
om

m
its

/s
 (

 1
03)

TinyETL
RobuSTM
TinySTM

TL2
NB STM

 0
 100
 200
 300
 400
 500
 600

 2 4 6 8

20% read-all

 .001
 .01

 .1
 1

 10
 100

 1000

 2 4 6 8

100% read-all 1 thread

Number of threads
 1 1 1

Fig. 6. Comparison lock-based vs. nonblocking STM (bank benchmark, 4096 accounts)

398 J.-T. Wamhoff et al.

 0
 5

 10
 15
 20
 25

 2 4 6 8

Red-black Tree - 0% updates

C
om

m
its

/s
 (

 1
06)

TinyETL
RobuSTM
TinySTM

TL2
NB STM

 0
 2
 4
 6
 8

 10

 2 4 6 8

Red-black Tree - 20% updates

 0

 0.05

 0.1

 2 4 6 8

Linked List - 20% updates

 0
 50

 100
 150
 200
 250
 300

 2 4 6 8

Vacation

E
xe

cu
tio

n
tim

e
(s

ec
)

 0

 5

 10

 15

 20

 2 4 6 8

Kmeans

 0

 5

 10

 15

 20

 2 4 6 8

Genome

Number of threads

 1 1 1

 1 1 1

Fig. 7. Comparison of the performance of RobuSTM with micro-benchmarks (4096
initial elements) and STAMP applications (all with high contention)

than NB STM because the chosen nonblocking STM still requires an indirection
step in case of contention. These results show why we would like RobuSTM to
perform as well as blocking STMs. RobuSTM has more runtime overhead than
TinyETL and TinySTM but is on par with TL2. Figure 7 shows performance
results for additional micro-benchmarks and STAMP applications. Results for
NB STM are only presented for the red-black tree because it requires man-
ual instrumentation and it is not supported by the STAMP distribution. These
results are in line with the bank benchmark results, showing that TinySTM

and TinyETL perform best, followed by RobuSTM, then TL2 and finally
NB STM.

The right plot of Figure 6 shows that the fairness that RobuSTM helps
avoid starvation of the long aggregate-balance transactions with visible reads.
In this plot, we only show the throughput of a single thread that is performing
aggregate-balance (read-all) transactions. The guarantee for individual threads
to make progress under MSM provides fairness for transactions that otherwise
would not have a good chance to commit. Other STMs with invisible reads that
simply abort upon conflict do not perform well because the read-only transaction
will be continuously aborted.

4.2 Tolerating Crashes and Non-terminating Transactions

We now evaluate transaction throughput in the presence of crashes or non-
terminating transactions. Ill-behaved transactions are simulated by injecting
faults at the end of a transaction that performed write operations (i.e., it holds
locks). We inject thread crashes by raising a signal and simulate non-terminating
transactions by entering an infinite loop. The infinite loop either performs no
operations on shared memory or continuously executes STM operations (e.g.,
transactional loads).

RobuSTM: A Robust Software Transactional Memory 399

Orthogonal to the robustness that RobuSTM offers for synchronization, ap-
plications must be tolerant against faults of its threads. During the setup of our
experiments we discovered two major problems with the thread-based bench-
marks. (1) Barriers must be tolerant to faulty threads that never reach the
barrier because of a crash or non-terminating code. (2) The workload cannot
be pre-partitioned to the initial number of threads. Instead, it must be assigned
dynamically, e.g., in each loop iteration. Therefore, we chose only a selection
of STAMP applications that could be easily adapted. Using RobuSTM, an
adapted application with initially N threads can tolerate up to N − 1 faults be-
cause even ill-behaved transactions prevent the thread from processing its work.
Increasing the number of tolerated faults would require a change in the pro-
gramming model, e.g., based on a thread pool, and is not in the scope of this
paper.

Figure 8 shows the performance of RobuSTM compared to TinyETL, the
most efficient STM in the previous measurements. In each plot of the figure,
we show the performance when some threads are faulty in the baseline 8-thread

 0
 2
 4
 6
 8

 10

 2 4 6

Red-black Tree - 1% updates

C
om

m
its

/s
 (

 1
06)

TinyETL

Well-behaved

Crashed

Non-Term
no operations

Non-Term
STM operations

 0

 2

 4

 6

 8

 2 4 6

Red-black Tree - 20% updates

 0

 .05

 .1

 2 4 6

Linked List - 20% updates

 0

 50

 100

 150

 2 4 6

Vacation

E
xe

cu
tio

n
tim

e
(s

ec
)

 0

 5

 10

 15

 2 4 6

Kmeans

 0

 5

 10

 15

 20

 2 4 6

Genome

Missing threads (out of 8)

 0 1

 0 1 0 1

 0 1 0 1

 0 1 7 7 7

 7 7 7

Fig. 8. Comparison of the performance for the benchmarks from Figure 7 with injected
crashes and non-terminating transactions executing an infinite loop with or without
STM operations

200 400 600 800 1000 1200 1400 1600 1800

110

0

20

40

60

80

Time (s)

Ev
en

ts Commits

Aborts

Fault Injected Aborted

320.00010.000 100.000 200.000

50.000

0

10.000

20.000

30.000

40.000

Time (s)

Ev
en

ts

Aborts

CommitsFault Injected

Checker RunPriority

Fig. 9. Throughput for the red-black tree over time intervals under the presence of
non-terminating transactions executing an infinite loop without (left) and with (right)
STM operations. Vertical lines mark events of the fault-injected thread.

400 J.-T. Wamhoff et al.

run. TinyETL is a run where faulty threads are simply not started in the
runs, and thus shows the baseline. “Well-behaved” is similar (only well-behaved
transactions), but uses RobuSTM. The other three lines show the performance
in the presence of transactions that are not well-behaved. Faults were injected
as early as possible, except for Genome, where they were injected in the last
phase and can only be compared to the 8-thread runs. The results show that
RobuSTM can ensure progress for an increasing number of injected faults. In
fact, it can even compete with the throughput of the “well-behaved” case for the
considered benchmarks.

To illustrate how RobuSTM behaves when non-terminating transactions are
present, Figure 9 shows the number of commits and aborts over periods of time
for the red-black tree benchmark. In the left graph, the benchmark is executed
with two threads and one transaction enters an infinite loop that does not call
STM operations. The remaining thread runs into a conflict and aborts repeat-
edly until it enters the privileged priority level. It then is allowed to kill the
non-terminating transaction in order to steal its locks. Afterwards, the through-
put picks up to the level of a single threaded execution. The right graph shows a
scenario taken from Figure 8 with eight threads and one transaction that enters
an infinite loop with STM operations. All remaining seven threads abort af-
ter running into a conflict and eventually reach privileged priority. Because the
non-terminating transaction detects that it has been aborted during its STM
operations, it retries. Thus, it must be aborted multiple times until it gains priv-
ileged priority. While the non-terminating transaction executes privileged, other
threads wait and check the quantum of the non-terminating transaction. After
the transaction detects that it was aborted because its quantum expired, it will
clone its thread to enter the checker run. The period between gaining privileged
priority and entering the checker run is much longer than the allowed quantum
because it includes the costly clone of the process. After the initialization of the
checker is finished, all locks are released in the parent process and the other
threads can continue.

The results show that despite several crashed or non-terminating threads,
RobuSTM is able to maintain a good level of commit throughput, effectively
shielding other threads from failed transactions. We tested injecting faults in
other STM implementations to justify our design decisions. Lock-based designs
that acquire locks at commit-time (e.g., TL2) seem promising towards toler-
ating crashes and non-terminating transactions. Problems arise when fairness
is at stake because memory accesses cannot be easily made visible. For im-
plementations with encounter-time locking that simply abort on conflict (e.g.,
TinyETL), transactions that are not well-behaved and own locks lead to dead-
locks. To overcome deadlocks, lock stealing and external abort of transactions
must be supported. This will allow to tolerate crashes but not non-terminating
transactions as they might continuously retry. We found that none of further ex-
isting approaches for contention management (see Section 5) met our robustness
requirements.

RobuSTM: A Robust Software Transactional Memory 401

5 Related Work

Non-blocking concurrent algorithms (e.g., lock-free or wait-free) ensure progress
of some or all remaining threads even if one thread stops making progress. While
many early STMs where non-blocking, most of the recent implementations use
blocking algorithms because of their simpler design and better performance. Re-
cent work on non-blocking STM [16,21] has shown that its performance can be
substantially increased by applying techniques known from blocking STM im-
plementations. This includes (1) timestamp-based conflict detection and (2) a
reduced number of indirections while operating on transactional data by access-
ing memory in place in the common case. Depending on the algorithm, costly
indirection is still required either during commit [16] or when stealing ownership
records on conflict [21]. For the later, deflating the indirection is only possible
after the original owner transaction moved to the abort state, but this might
never happen for transactions that are not well-behaved.

Contention management was originally introduced to increase the throughput
and avoiding possible livelocks (e.g., Polite, Karma, Polka [19,18]). An interest-
ing observation is to back off the losing transaction after a conflict to avoid
encountering the same conflict immediately upon retry. Contention managers
that aim to provide fairness between short and long-running transactions usu-
ally rely on prioritization. The priority can be derived from the time when a
transaction started or the amount of work it has done so far [18,9]. This helps
long-running transactions reach their commit point but can delay short transac-
tions extensively in case of high contention. Furthermore, crashed transactions
will gain a high priority if it is based on the start time. An alternative is to
derive the priority from the number of times the transaction has already been
retried [19] and favor transactions with problems reaching their commit point.

In combination with priorities, simple mechanisms such as recency times-
tamps or liveness flags were introduced to determine the amount of time that
contending transactions should back off. The goal is to increase the likelihood
that a transaction that has already modified a memory location can commit (e.g.,
Timestamp, Published Timestamp [19,18]). These mechanisms are also used by
transactions to show that they are not crashed. However, this approach does
not work for non-terminating transactions because they may well update the
timestamp or flag forever. The length of potential contention intervals can be
reduced if locks are not acquired before commit time [20]. This would allow us
to tolerate non-terminating transactions because they never try to commit [10],
but by detecting conflicts lazily one cannot ensure that a transaction will even-
tually manage to commit (it can be repeatedly forced to abort by concurrent
transactions that commit updates to shared memory).

Contention managers can also try to ensure progress of individual transac-
tions. In the initial proposal of the Greedy contention manager [9], which guar-
antees that every well-behaved transaction commits within a bounded amount
of time, thread failures could prevent global progress (i.e., the property that at
least some thread makes progress). This issue was solved by giving each trans-
action a bounded period of time during which it could not be aborted by other

402 J.-T. Wamhoff et al.

transactions [8]. If a correct transaction exceeds this time limit and is aborted,
it can retry with a longer delay. This approach works for crash failures but not
for non-terminating transactions because the delay can grow arbitrarily large if
the transaction is retried infinitely often.

Fich et al. [7] proposed an algorithm that converts any obstruction-free algo-
rithm [11] into a practically wait-free one. The idea is that, in a semi-synchronous
system, it is impossible to determine if a thread has crashed by observing its ex-
ecuted steps, as a step can take a bounded but unknown amount of time to
complete. Thus, it is not possible to know a priori how long to wait for a possi-
bly crashed transaction. Instead, one has to wait for increasingly longer periods.
To decide if a thread had indeed crashed after expiration of the waiting period,
they observe the instruction counter of the thread used to track progress. This
approach cannot be applied straightforwardly to STMs because transactions can
contain loops or perform operations with variable durations, e.g., allocate mem-
ory, so we cannot automatically and efficiently determine the abstract linear
instruction counter of a running transaction.

Guerraoui and Kapalka were the first to take non-terminating transactions
explicitly into account [10]. Their result is that the strongest progress guarantee
that can be ensured in asynchronous systems is global progress, which is analo-
gous to lock freedom. Since thread crashes and non-terminating transactions are
not detected but tolerated, one cannot give to a single transaction an exclusive
execution right because the thread might gain the right and never release it. We
show in this paper that relying on a different but yet practical system model
(see Section 2) allows us to build robust STMs that avoid these limitations and
work on current multicore systems.

6 Conclusion

Robustness of transactional memory has often been ignored in previous research
as the main focus was on providing performance. Yet, robustness to software bugs
and application failures is an important property if one wants to use transactional
memory in large mission-critical or safety-critical systems.

In this paper, we have introduced the multicore system model (MSM) that is
practical in the sense that it reflects the properties of today’s multicore comput-
ers. We have shown that (1) it is possible to build a robust STM with perfor-
mance comparable to that of non-robust state-of-the-art STMs, and (2) we can
implement such an STM under MSM.

Our experimental evaluation indicates that robustness only has a small addi-
tional overhead in the good case (i.e., no or few ill-behaved transactions), and
performance remains good even when there are crashed and non-terminating
threads. We expect to further improve efficiency by tuning the configuration pa-
rameters at runtime. For RobuSTM, these are especially the number of retries
(1) after which transactions switch to using visible reads and (2) after which
they attempt to run as a privileged transaction. Previous work has shown this
to be very beneficial in the case of other STM configuration parameters [6]. We

RobuSTM: A Robust Software Transactional Memory 403

also expect that pairing this work with operating-system scheduling [14] could
enable interesting optimizations.

Acknowledgements. This work is supported in part by the European Com-
mission FP7 VELOX project (ICT-216852).

References

1. Aguilera, M., Walfish, M.: No time for asynchrony. In: HotOS 2009: Proceedings
of the 12th Workshop on Hot Topics in Operating Systems. USENIX (2009)

2. Cao Minh, C., Chung, J., Kozyrakis, C., Olukotun, K.: STAMP: Stanford transac-
tional applications for multi-processing. In: IISWC 2008: Proceedings of The IEEE
International Symposium on Workload Characterization (2008)

3. Christie, D., Chung, J.-W., Diestelhorst, S., Hohmuth, M., Pohlack, M., Fetzer, C.,
Nowack, M., Riegel, T., Felber, P., Marlier, P., Riviere, E.: Evaluation of AMD’s
advanced synchronization facility within a complete transactional memory stack.
In: EuroSys 2010 (2010)

4. Dice, D., Shalev, O., Shavit, N.: Transactional locking II. In: Dolev, S. (ed.) DISC
2006. LNCS, vol. 4167, pp. 194–208. Springer, Heidelberg (2006)

5. Ennals, R.: Software transactional memory should not be obstruction-free. Tech-
nical report, Intel Research (2006)

6. Felber, P., Fetzer, C., Riegel, T.: Dynamic performance tuning of word-based soft-
ware transactional memory. In: PPoPP 2008: Proceedings of the 13th ACM SIG-
PLAN Symposium on Principles and practice of parallel programming. ACM, New
York (2008)

7. Fich, F., Luchangco, V., Moir, M., Shavit, N.: Obstruction-Free Algorithms can be
Practically Wait-Free. LNCS. Springer, Heidelberg (2005)

8. Guerraoui, R., Herlihy, M., Kapalka, M., Pochon, B.: Robust contention man-
agement in software transactional memory. In: Workshop on Synchronization and
Concurrency in Object-Oriented Languages (2005)

9. Guerraoui, R., Herlihy, M., Pochon, B.: Toward a theory of transactional con-
tention managers. In: PODC 2005: Proceedings of the twenty-fourth annual ACM
symposium on Principles of distributed computing. ACM, New York (2005)

10. Guerraoui, R., Kapalka, M.: How Live Can a Transactional Memory Be? Technical
report, EPFL (2009)

11. Herlihy, M., Luchangco, V., Moir, M., William, I., Scherer, N.: Software-
transactional memory for dynamic-sized data structures. In: Proceedings of the
22nd annual symposium on Principles of distributed computing. ACM, New York
(2003)

12. Lahiri, T., Ganesh, A., Weiss, R., Joshi, A.: Fast-start: quick fault recovery in
oracle. SIGMOD Rec. (2001)

13. Lamport, L.: A new solution of dijkstra’s concurrent programming problem. Com-
mun. ACM 17(8), 453–455 (1974)

14. Maldonado, W., Marlier, P., Felber, P., Suissa, A., Hendler, D., Fedorova, A.,
Lawall, J., Muller, G.: Scheduling support for transactional memory contention
management. In: Proceedings of the 15th ACM SIGPLAN Symposium on Princi-
ples and Practice of Parallel Programming (PPoPP 2010) (January 2010)

15. Marathe, V.J., Moir, M.: Efficient nonblocking software transactional memory.
Technical report, Department of Computer Science, University of Rochester (2008)

404 J.-T. Wamhoff et al.

16. Marathe, V.J., Moir, M.: Toward high performance nonblocking software transac-
tional memory. In: PPoPP 2008: Proceedings of the 13th ACM SIGPLAN Sympo-
sium on Principles and practice of parallel programming. ACM, New York (2008)

17. Riegel, T., Felber, P., Fetzer, C.: A lazy snapshot algorithm with eager validation.
In: Dolev, S. (ed.) DISC 2006. LNCS, vol. 4167, Springer, Heidelberg (2006)

18. Scherer III, W.N., Scott, M.L.: Advanced contention management for dynamic
software transactional memory. In: PODC 2005: Proceedings of the twenty-fourth
annual ACM symposium on Principles of distributed computing. ACM, New York
(2005)

19. Scherer III, W., Scott, M.: Contention Management in Dynamic Software Transac-
tional Memory. In: PODC Workshop on Concurrency and Synchronization in Java
programs (2004)

20. Spear, M.F., Dalessandro, L., Marathe, V.J., Scott, M.L.: A comprehensive strat-
egy for contention management in software transactional memory. In: Proceedings
of the 14th ACM SIGPLAN symposium on Principles and practice of parallel pro-
gramming. ACM, New York (2008)

21. Tabba, F., Moir, M., Goodman, J.R., Hay, A.W., Wang, C.: NZTM: Nonblocking
zero-indirection transactional memory. In: Proceedings of the twenty-first annual
symposium on Parallelism in algorithms and architectures. ACM, New York (2009)

A Provably Starvation-Free Distributed
Directory Protocol�

Hagit Attiya1,2, Vincent Gramoli2,3, and Alessia Milani4

1 Technion, Israel
2 EPFL, Switzerland

3 University of Neuchâtel, Switzerland
4 LIP6, Université Pierre et Marie Curie, France

Abstract. This paper presents Combine, a distributed directory pro-
tocol for shared objects, designed for large-scale distributed systems.
Directory protocols support move requests, allowing to write the object
locally, as well as lookup requests, providing a read-only copy of the ob-
ject. They have been used in distributed shared memory implementations
and in data-flow implementations of distributed software transactional
memory in large-scale systems.

The protocol runs on an overlay tree, whose leaves are the nodes of
the system; it ensures that the cost of serving a request is proportional to
the cost of the shortest path between the requesting node and the serving
node, in the overlay tree. The correctness of the protocol, including star-
vation freedom, is proved, despite asynchrony and concurrent requests.
The protocol avoids race conditions by combining requests that overtake
each other as they pass through the same node. Using an overlay tree
with a good stretch factor yields an efficient protocol, even when requests
are concurrent.

1 Introduction

Distributed applications in large-scale systems aim for good scalability, offering
proportionally better performance as the number of processing nodes increases,
by exploiting communication to access nearby data [19].

An important example is provided by a directory-based consistency proto-
col [7]; in such a protocol, a directory helps to maintain the coherence of objects
among entities sharing them. To access an object, a processor uses the directory
to obtain a copy; when the object changes, the directory either updates or in-
validates the other copies. In a large-scale system, the directory manages copies
of an object, through a communication mechanism supporting the following op-
erations: A writable copy of the object is obtained with a move request, and a
read-only copy of the object is obtained with a lookup request.

A directory-based consistency protocol is better tailored for large-scale dis-
tributed systems, in which remote accesses require expensive communication,
� Hagit Attiya is partially supported by the Israel Science Foundation (grant number

953/06). Alessia Milani is financed by ANR grant R-DISCOVER.

S. Dolev et al. (Eds.): SSS 2010, LNCS 6366, pp. 405–419, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

406 H. Attiya, V. Gramoli, and A. Milani

several orders of magnitude slower than local ones. Reducing the cost of com-
munication with the objects and the number of remote operations is crucial
for achieving good performance in distributed shared memory and transactional
memory implementations. Several directory protocols for maintaining consis-
tency have been presented in the literature, e.g., [1, 6, 7, 9]. (They are discussed
in Section 6.)

In large-scale systems, where the communication cost dominates the latency,
directory protocols must order the potentially large number of requests that
are contending for the same object. Rather than channeling all requests to the
current location of the object, some directory protocols, e.g., [9], implement a
distributed queue, where a request from p gets enqueued until the object gets
acquired and released by some predecessor q, a node that p detects as having
requested the object before.

This paper presents Combine, a new directory protocol based on a distributed
queue, which efficiently accommodates concurrent requests for the same object,
and non-fifo message delivery. Combine is particularly suited for systems in
which the cost of communication is not uniform, that is, some nodes are “closer”
than others. Scalability in Combine is achieved by communicating on an overlay
tree and ensuring that the cost of performing a lookup or a move is therefore
proportional to the cost of the shortest path between the requesting node and
the serving node (its predecessor), in the overlay tree. The simplicity of the
overlay tree, and in particular, the fact that the object is held only by leaf
nodes, facilitates the proof that a node finds a previous node holding the object.

To state the communication cost more precisely, we assume that every pair
of nodes can communicate, and that the cost of communication between pairs
of nodes forms a metric, that is, there is a symmetric positive distance between
nodes, denoted by δ(., .), which satisfies the triangle inequality. The stretch of a
tree is the worst case ratio between the cost of direct communication between
two nodes p and q in the network, that is, δ(p, q), and the cost of communicating
along the shortest tree path between p and q.

The communication cost of Combine is proportional to the cost of the shortest
path between the requesting node and the serving node, times the stretch of the
overlay tree. Thus, the communication cost improves as the stretch of the overlay
tree decreases. Specifically, the cost of a lookup request by node q that is served
by node p is proportional to the cost of the shortest tree path between p and q,
that is, to δ(p, q) times the stretch of the tree. The cost of a move request by
node p is the same, with q being the node that will pass the object to p.

When communication is asynchronous and requests are concurrent, however,
bounding the communication cost does not ensure that a request is eventually
served (starvation-freedom). It remains to show that while p is waiting for the
object from a node q, a finite, acyclic waiting chain is being built between q and
the node owning the object (the head of the queue). Possibly, while the request
of p is waiting at q, many other requests are passing over it and being placed
ahead of it in the queue, so p’s request is never served. We prove that this does

A Provably Starvation-Free Distributed Directory Protocol 407

not happen, providing the first complete proof for a distributed queue protocol,
accommodating asynchrony and concurrent requests.

A pleasing aspect of Combine is in not requiring fifo communication links.
Prior directory protocols [9, 12, 23] assume that links preserve the order of
messages; however, ensuring this property through a link-layer protocol can sig-
nificantly increase message delay. Instead, as its name suggests, Combine han-
dles requests that overtake each other by combining multiple requests that pass
through the same node. Originally used to reduce contention in multistage in-
terconnection networks [16, 20], combining means piggybacking information of
distinct requests in the same message.

Organization: We start with preliminary definitions (Section 2), and then present
Combine in Section 3. The termination proof and analysis of our protocol are
given in Section 4. Section 5 discusses how to construct an overlay tree. Finally,
related work is presented in Section 6 and we conclude in Section 7.

2 Preliminaries

We consider a set of nodes V , each with a unique identifier, communicating
over a complete communication network. If two nodes p and q do not have a
direct physical link between them, then an underlying routing protocol directs
the message from p to q through the physical communication edges.

The cost of communication between nodes is non-uniform, and each edge (p, q)
has a weight which represents the cost for sending a message from p to q, denoted
δ(p, q). We assume that the weight is symmetric, that is, δ(p, q) = δ(q, p), and it
satisfies the triangle inequality, that is, δ(p, q) ≤ δ(p, u) + δ(u, q).

The diameter of the network, denoted Δ, is the maximum of δ(p, q) over all
pairs of nodes.

We assume reliable message delivery, that is, every message sent is eventually
received. A node is able to receive a message, perform a local computation, and
send a message in a single atomic step.

We assume the existence of a rooted overlay tree T , in which all physical
nodes are leaves and inner nodes are mapped to physical nodes.

Let dT (p, q) be the number of hops needed to go from a leaf node p up to the
lowest common ancestor of p and leaf node q in T , and then down to q (or vice
versa); δT (p, q) is the sum of the costs of traversing this path, that is, the sum
of δ(., .) for the edges along this path.

The stretch of an overlay tree T is the ratio between the communication cost
over T and the direct communication cost. That is, stretchT = maxp,q

δT (p,q)
δ(p,q) .

Section 5 presents ways to construct overlay trees with small stretch.
The depth of T , denoted DT , is the number of hops on the longest path from

the root of T to a leaf; the diameter of T , denoted ΔT , is the maximum of
δT (p, q), over all pairs of nodes.

408 H. Attiya, V. Gramoli, and A. Milani

v

v2

u q p w

p1v1

(a) Initially, p owns the
object

v

v2

u q p w

p1v1

(b) Node q issues a move
request

v

v2

u q p w

p1v1

(c) Pointers from the root
lead to q

v

v2

u q p w

p1v1

(d) Previous pointers are
discarded

v

v2

u q p w

p1v1

(e) The request reaches the
predecessor p

v

v2

u q p w

p1v1

(f) Object is moved from p
to q

Fig. 1. A move request initialized by node q when the object is located at p

3 The Combine Protocol

The protocol works on an overlay tree. When the algorithm starts, each node
knows its parent in the overlay tree. Some nodes, in particular, the root of the
overlay tree, also have a downward pointer towards one neighbor (other than its
parent).

The downward pointers create a path in the overlay tree, from the root to
the leaf node initially holding the object; in Figure 1(a), the arrows indicate
downward pointers towards p.

A node requesting the object x tries to find a predecessor : a nearby node
waiting for x or the node currently holding x. Initially, p, the node holding the
object is this predecessor.

We combine multiple requests, by piggybacking information of distinct re-
quests in the same message, to deal with concurrent requests.

– A node q obtains the current value of the object by executing a lookup
request. This request goes up in the overlay tree until it discovers a pointer
towards the downward path to a predecessor; the lookup records its identifier
at each visited node. When the request arrives at this predecessor, it sends
a read-only copy directly to q. Each node stores the information associated
to at most one request for any other node.

– A node q acquires an object by executing a move request. This request goes
up in the overlay tree until it discovers a pointer towards the downward path
to a predecessor. This is represented by the successive steps of a move as in-
dicated in Figure 1. The move sets downward pointers towards q while going

A Provably Starvation-Free Distributed Directory Protocol 409

up the tree, and resets the downward pointers it follows while descending
towards a predecessor. If the move discovers a stored lookup it embeds it
rather than passing over it. When the move and (possibly) its embedded
lookup reach a predecessor p, they wait until p receives the object. After p
receives the object and releases it, p sends the object to q and a read-only
copy of the object to nodes who issued the embedded lookup requests.

Since the downward path to the object may be changing while a lookup (or a
move) is trying to locate the object, the lookup may remain blocked at some
intermediate node u on the path towards the object. Without combining, a
move request could overtake a lookup request and remove the path of pointers,
thus, preventing it from terminating. However, the identifier stored in all the
nodes a lookup visits on its path to the predecessor allows an overtaking move
to embed the lookup. This guarantees termination of concurrent requests, even
when messages are reordered. Information stored at the nodes ensures that a
lookup is not processed multiple times.

We now present the algorithm in more detail. The state of a node appears in
Algorithm 1. Each node knows its parent in the overlay tree, except the root,
whose parent = ⊥. A node might have a pointer towards one of its children
(otherwise it is ⊥); the pointer at the root is not ⊥. Each node also maintains a
variable lookups , holding information useful for combining.

Algorithm 1. State and Message
1: State of a node u:
2: parent ∈ N ∪ {⊥}, representing the parent node in the tree
3: pointer ∈ N ∪ {⊥}, the direction towards the known predecessor, initially ⊥
4: lookups a record (initially empty) of lookup entries with fields:
5: id ∈ N, the identifier of the node initiating the request
6: ts ∈ N, the sequence number of the request
7: status ∈ {not-served, served, passed}, the request status
8: Message type:
9: message a record with fields:

10: phase ∈ {up, down}
11: type ∈ {move, lookup}
12: id ∈ N, the identifier of the request
13: ts ∈ N, the sequence number of the request
14: lookups , a record of embedded lookup entries

The lookup() operation: A lookup request r issued by a node q carries a unique
identifier including its sequence number, say ts = τ , and its initiator, id = q. Its
pseudocode appears in Algorithm 2. A lookup can be in three distinct states: it
is either running and no move overtook it (not-served), it is running and a move
request overtook and embedded it (passed), or it is over (served).

The lookup request proceeds in two subsequent phases. First, its initiator node
sends a message that traverses its ancestors up to the first ancestor whose pointer

410 H. Attiya, V. Gramoli, and A. Milani

Algorithm 2. Lookup of object x at node u

1: Receiving 〈up, lookup, q, τ, ∗〉 from v: � Lookup up phase

2: if �〈q, τ1, ∗〉 ∈ u.lookups : τ1 ≥ τ then � Not a stale message?

3: if ∃rq = 〈q, τ2, ∗〉 ∈ u.lookups : τ2 < τ then � First time we hear about?

4: u.lookups ← u.lookups \ {rq} ∪ {〈q, τ, not-served〉} � Overwrite stored lookup

5: else u.lookups ← u.lookups ∪ {〈q, τ, not-served〉} � Store lookup

6: if u.pointer = ⊥ then
7: send 〈up, lookup, q, τ,⊥〉 to u.parent � Resume up phase

8: else send 〈down, lookup, q, τ,⊥〉 to u.pointer � Start down phase

9: Receiving 〈down, lookup, q, τ, ∗〉 from v: � Lookup down phase

10: if �〈q, τ1, ∗〉 ∈ u.lookups : τ1 ≥ τ then
11: if ∃rq = 〈q, τ2, ∗〉 ∈ u.lookups : τ2 < τ then
12: u.lookups ← u.lookups \ {rq} ∪ {〈q, τ, not-served〉}
13: else u.lookups ← u.lookups ∪ {〈q, τ, not-served〉}
14: if u is a leaf then
15: send xread-only to q � Blocking send (i.e., executes as soon as u releases x)

16: else send 〈down, lookup, q, τ,⊥〉 to u.pointer � Resume down phase

indicates the direction towards a predecessor—this is the up phase (Lines 1–8).
Second, the lookup message follows successively all the downward pointers down
to a predecessor—this is the down phase (Lines 9–16). The protocol guarantees
that there is a downward path of pointers from the root to a predecessor, hence,
the lookup finds it (see Lemma 2).

A node keeps track of the lookups that visited it by recording their identifier in
the field lookups, containing some lookup identifiers (i.e., their initiator identifier
id and their sequence number ts) and their status. The information stored by
the lookup at each visited node ensures that a lookup is embedded at most once
by a move. When a new lookup is received by a node u, u records the request
identifier of this freshly discovered lookup. If u had already stored a previous
lookup from the same initiator, then it overwrites it by the more recent lookup,
thus keeping the amount of stored information bounded (Lines 3–4).

Due to combining, the lookup may reach its predecessor either by itself or
embedded in a move request. If the lookup request r arrives at its predecessor
by itself, then the lookup sends a read-only copy of the object directly to the
requesting node q (Line 15 of Algorithm 2).

The move() operation: The move request, described in Algorithm 3, proceeds in
two phases to find its predecessor, as for the lookup. In the up phase (Lines 1–11),
the message goes up in the tree to the first node whose downward pointer is set.
In the down phase (Lines 12–26), it follows the pointers down to its predecessor.
The difference in the up phase of a move request is that an intermediate node u
receiving the move message from its child v sets its u.pointer down to v (Line 8).
The difference in the down phase of a move request is that each intermediary
node u receiving the message from its parent v resets its u.pointer to ⊥ (Line 16).

A Provably Starvation-Free Distributed Directory Protocol 411

Algorithm 3. Move of object x at node u

1: Receiving m = 〈up, move, q, τ, lookups〉 from v: � Move up phase

2: clean(m)
3: for all ra = 〈a, τ, not-served〉 ∈ u.lookups do
4: if �〈a, τ ′, ∗〉 ∈ m.lookups : τ ′ ≥ τ then
5: m.lookups ← m.lookups ∪ {ra} � Embed non-served lookups

6: u.lookups ← u.lookups \ {ra} ∪ {〈a, τ, served〉} � Mark lookups as served

7: oldpointer ← u.pointer
8: u.pointer ← v � Set downward pointer

9: if oldpointer = ⊥ then
10: send 〈up, move, q, τ,m.lookups〉 to u.parent � Resume up phase

11: else send 〈down, move, q, τ,m.lookups〉 to oldpointer � Start down phase

12: Receiving m = 〈down, move, q, τ, lookups〉 from v: � Move down phase

13: clean(m)
14: if u is not a leaf then � Is predecessor not reached yet?

15: oldpointer ← u.pointer
16: u.pointer ← ⊥ � Unset downward pointer

17: for all ra = 〈a, τ, not-served〉 ∈ u.lookups do
18: if �〈a, τ ′, ∗〉 ∈ m.lookups : τ ′ ≥ τ then
19: m.lookups ← m.lookups ∪ {ra}
20: u.lookups ← u.lookups \ {ra} ∪ {〈a, τ, served〉}
21: send m to oldpointer � Resume down phase

22: else � Predecessor is reached

23: for all 〈a, τ, status〉 ∈ m.lookups : �〈a, τ ′, ∗〉 ∈ u.lookups with τ ′ ≥ τ do
24: send xread-only to a � Blocking send of read-only copy

25: send x to q � Blocking send of object

26: delete(x) � Remove object local copy

27: clean(m): � Clean-up the unused information

28: for all 〈a, τ, not-served〉 ∈ m.lookups do
29: if ∃〈a, τ ′, status〉 ∈ u.lookups : (status = served ∧ τ ′ = τ) ∨ (τ ′ > τ) then
30: m.lookups ← m.lookups \ {〈a, τ, not-served〉}
31: if 〈a, τ, ∗〉 /∈ u.lookups then
32: m.lookups ← m.lookups \ {〈a, τ, not-served〉} ∪ {〈a, τ, passed〉}
33: u.lookups ← u.lookups ∪ {〈a, τ, passed〉}

For each visited node u, the move request embeds all the lookup requests
stored at u that need to be served and marks them as served in u (Lines 3–6,
17–20 of Algorithm 3).

Along its path, the move may discover that either some lookup r it embeds
has been already served or that it overtakes some embedded lookup r′ (Line 29
or Line 31, respectively, of Algorithm 3). In the first case, the move just erases
r from the lookups it embeds, while in the second case the move marks, both in
the tuple it carries and locally at the node, that the lookup r′ has been passed
(Line 30 or Lines 32–33, respectively, of Algorithm 3).

412 H. Attiya, V. Gramoli, and A. Milani

Once obtaining the object at its predecessor, the move request first serves all
the lookup requests that it embeds (Lines 23, 24), then sends the object to the
node that issued the move (Line 25) and finally deletes the object at the current
node (Line 26).

If the object is not at its predecessor when the request arrives, the request is
enqueued and its initiator node will receive the object as soon as the predecessor
releases the object (after having obtained it).

Concurrent request considerations: Note that a lookup may not arrive at its
predecessor because a concurrent move request overtook it and embeds it, that
is, the lookup r found at a node u that u.pointer equals v, later, a move m follows
the same downward pointer to v, but arrives at v before r. The lookup detects
the overtaking by m and stops at node v (Line 13 of Algorithm 3, and Lines 2
and 10 of Algorithm 2). Finally, the move m embeds the lookup r and serves it
once it reaches its predecessor (Lines 23, 24 of Algorithm 3 and Lines 31, 32 of
Algorithm 3).

Additionally, note that no multiple move requests can arrive at the same pre-
decessor node, as a move follows a path of pointers that it immediately removes.
Similarly, no lookup arrives at a node where a move already arrived, unless em-
bedded in it. Finally, observe that no move is issued from a node that is waiting
for the object or that stores the object.

4 Analysis of Combine

A request initiated by node p is served when p receives a copy of the object,
which is read-only in case of a lookup request. This section shows that every
request is eventually served, and analyzes the communication cost. We start by
considering only move requests, and then extend the analysis to lookup requests.

Inspecting the pseudocode of the up phase shows that, for every � > 1, a
move request m sets a downward pointer from a node u at level � to a node u′

at level �− 1 only if it has previously set a downward pointer from u′ to a node
at level �− 2. Thus, assuming no other move request modifies these links, there
is a downward path from u to a leaf node. The proof of the next lemma shows
that this path from u to a leaf exists even if another move request redirects a
pointer set by m at some level �′ ≤ �.

Lemma 1. If there is a downward pointer at a node u, then there is a downward
path from u to a leaf node.

Proof. We prove that if there is a downward pointer at node u at level �, then
there is a path from u to a leaf node. We prove that this path exists even when
move requests may redirect links on this path from u to a leaf node.

The proof is by induction on the highest level �′ such that no pointer is
redirected between levels �′ and �. The base case, �′ = 1, is obvious.

For the inductive step, �′ > 1, assume that there is always a path from u to
a leaf node, even if move requests change any of the pointers set by m at some

A Provably Starvation-Free Distributed Directory Protocol 413

level below �′−1. Let m′ be a move request that redirects the downward pointer
at level �′, that is, m′ redirects the link at node u′ to a node v at level �′ − 1.
(Note that the link redirection is done atomically by assumption, so that two
nodes can not redirect the same link in two different directions.) However, by the
inductive hypothesis (applied to m′), this means that there is a downward path
from v to a leaf node. Hence, there is a downward path from u′ to a leaf node,
and since no pointer is redirected at the levels between �′ and �, the inductive
claim follows. ��

Lemma 2. At any configuration, there is a path of downward pointers from the
root to a leaf node.

Proof. Initially, the invariant is true by assumption. The claim follows from
Lemma 1, since there is always a downward pointer at the root. ��

Observation 1. A move request is not passed by another move request, since
setting of the link and sending the same request in the next step of the path (upon
receiving a move request) happen in an atomic step.

We next argue that a request never backtracks its path towards the object.

Lemma 3. A move request m does not visit the same node twice.

Proof. Assume, by way of contradiction, that m visits some node twice. Clearly,
a move request does not backtrack during its down phase. Then, let u be the
first node that m visits twice during its up phase.

Since m does not visits the same node twice during the down phase, m does
not find a downward link at u, when visiting u for the first time. Thus, m
continues to u′, the parent of u.

If m finds a downward link to u at u′, then we obtain a contradiction, by
Observation 1 and since the only way for this downward link to exist is that
m has been passed by another move request. Otherwise, m does not find a
downward link at u′, and due to the tree structure, this contradicts the fact that
u is the first node that m visits twice. ��

A node p is the predecessor of node q if the move message sent by node p has
reached node q and p is waiting for q to send the object.

Lemma 4. A move request m by node p reaches its predecessor q within dT (p, q)
hops and δT (p, q) total cost.

Proof. Since there is always a downward pointer at the root, Lemma 1 and
Observation 1 imply that the request m eventually reaches its predecessor q.
Moreover, by Lemma 3 and the tree structure, the up-phase eventually com-
pletes by reaching the lowest common ancestor of p and q. Then m follows the
path towards q using only downward pointers. Thus, the total number of hops
traversed by m during both phases is dT (p, q) and the total cost is δT (p, q). ��

414 H. Attiya, V. Gramoli, and A. Milani

This means that DT is an upper bound on the number of hops for a request to
find its predecessor.

Lemma 4 already allows to bound the communication cost of a request issued
by node q, that is, the cost of reaching the node p from which a copy of the
object is sent to q. Observe that once the request reaches p, the object is sent
directly from p to q without traversing the overlay tree.

Theorem 1. The communication cost of a request issued by node q and served
by node p is O(δT (p, q)).

Clearly, embedding lookup requests in move requests does not increase the mes-
sage complexity, but it might increase the bit complexity. In [4], we measure
the total number of bits sent on behalf of a request, and show that combining
does not increase the number of bits transmitted due to a lookup request. (The
argument is straightforward for move requests, which are never embedded.)

Note that finding a predecessor does not immediately imply that the request
of p does not starve, and must be eventually served. It is possible that although
the request reaches the predecessor q, q’s request itself is still on the path to its
own predecessor. During this time, other requests may constantly take over p’s
request and be inserted into the queue ahead of it. We next limit the effect of
this to ensure that a request is eventually served.

For a given configuration, we define a chain of requests starting from the
initiator of a request m. Let u0 be the node that initiated m; the node before u0
is its predecessor, u1. The node before u1 is u1’s predecessor, if u1 has reached
it. The chain ends at a node that does not have a predecessor (yet), or at the
node that holds the object.

The length of the chain is the number of nodes in it. So, the chain ends at a
node whose request is still on its way to its predecessor, or when the node holds
the object. In the last case, where the end of the chain holds the object, we say
that the chain is complete.

Observe that at a configuration, a node appears at most once in a chain, since
a node cannot have two outstanding requests at the same time.

For the rest of the proof, we assume that each message takes at most one time
unit, that is, d hops take at most d time units.

Lemma 5. A chain is complete within at most n · DT time units after m is
issued.

Proof. We show, by induction on k, that after k ·DT time units, the length of the
chain is either at least k, or the chain is complete. Base case, k = 0, is obvious.
For the induction step, consider the head of the chain. If it holds the object,
then the chain is complete and we are done. Otherwise, as it has already issued
a request, by Lemma 4, within at most DT hops, and hence, time units, it finds
its predecessor, implying that the length of the chain grows by one.

Since a node appears at most once in a chain, its length, k, can be at most n,
and hence, the chain is complete within n ·DT time units. ��

A Provably Starvation-Free Distributed Directory Protocol 415

Once a chain is complete, the position of r in the queue is fixed, and the requests
start waiting.

Assume that the time to execute a request at a node is negligible, and that
the object is sent from one node in the chain to its successor within one hop.
Thus, within n hops the object arrives at i0, implying the next theorem.

Theorem 2 (No starvation). A request is served within n ·DT +n time units.

We now discuss how to modify the proof to accommodate a lookup request r.
Lemma 1 (and hence, Lemma 2) does not change since only move requests change
the downward paths. For Lemma 3, the path can be changed only if r is passed
by m, so r stops once at u′. The move request m that embeds r will not visit
u twice, as argued above. Hence, the claim follows. For Lemma 4, if a lookup
request is passed at a node u, then a move request m embeds the lookup at a
node u′, that is, the parent or the child of u, respectively, if m passed the lookup
in the up or down phase. Thus, the move request will reach its predecessor, which
is also the predecessor of the lookup. A read-only copy of the object will be sent
to the lookup before the object is sent to the node that issued the move request
that embeds the lookup.

The lookup and move requests can be used to support read and write opera-
tions, respectively, and provide a linearizable read/write object [14], in a manner
similar to Arrow [9].

5 Constructing an Overlay Tree

Constructing an overlay tree with good stretch is the key to obtaining good
performance in Combine. One approach is a direct construction of an overlay
tree, in a manner similar to [12]. Another approach is to derive an overlay tree
T from any spanning tree ST , without deteriorating the stretch. The rest of this
section describes this approach.

Pick a center u of ST as the root of the overlay tree. (I.e., a node minimizing
the longest hop distance to a leaf node.)

Let k be the level of u in the resulting rooted tree.
By backwards induction, we augment ST with virtual nodes and virtual links

to obtain an overlay tree T where all nodes of ST are leaf nodes, without in-
creasing the stretch of the tree. (See Figure 2.) The depth of T , DT , is k. At level
k − 1 we add to T a duplicate of the root u and create a virtual link between
this duplicate and u itself. Then, for every level � < k − 1, we augment level �
of the spanning tree with a virtual node for each (virtual or physical) node at
level � + 1 and create a virtual link between a node at level � and its duplicate
at level � + 1.

To see why the stretch of the overlay tree T is equal to the stretch of the
underlying spanning tree ST , note that we do not change the structure of the
spanning tree, but augment it with virtual paths consisting of the same node,
so that each becomes a leaf. Since the cost of sending a message from a node u
to itself is negligible compared with the cost of sending a message from u to any

416 H. Attiya, V. Gramoli, and A. Milani

q

u2

wp u

u1w1w

u

p

v

q v

v1

Fig. 2. Deriving an overlay tree from a spanning tree

other node in the system, the cost of these virtual paths (which have at most k
hops) is also negligible.

There are constructions of a spanning tree with low stretch, e.g., [10], which
can be used to derive an overlay tree with the same stretch.

6 Related Work

We start by discussing directory protocols that are implemented in software, and
then turn to hardware protocols.

Arrow [9] is a distributed directory protocol, maintaining a distributed
queue, using path reversal. The protocol operates on spanning tree, where all
nodes (including inner ones) may request the object. Every node holds a pointer
to one of its neighbors in the tree, indicating the direction towards the node
owning the object; the path formed by all the pointers indicates the location
of a sink node either holding the object or that is going to own the object. A
move request redirects the pointers as it follows this path to find the sink, so
the initiator of the request becomes the new sink. In this respect, Arrow and
Combine are quite similar; however, the fact that in Combine only leaf nodes
request the object, allows to provide a complete and relatively simple proof of
the protocol’s behavior, including lack of starvation.

The original paper on Arrow analyzes the protocol under the assumption
that requests are sequential. Herlihy, Tirthapura and Wattenhofer [13] analyze
Arrow assuming concurrent requests in a one-shot situation, where all requests
arrive together; starvation-freedom is obvious under this assumption. Kuhn and
Wattenhofer [17] allow requests at arbitrary times, but assume that the system
is synchronous. They provide a competitive analysis of the distance to the prede-
cessor found by a request (relative to an optimal algorithm aware of all requests,
including future ones); it seems that this analysis also applies to Combine. The
communication cost of Arrow is proportional to the stretch of the spanning
tree used. Herlihy, Kuhn, Tirthapura and Wattenhofer [11] merge these works in
a complex competitive analysis of Arrow for the asynchronous case. The dif-
ference with our analysis is twofold. First, they do not prove starvation freedom
yet they analyze latency by assuming that requests are assigned a fixed loca-
tion in the queue. In contrast, we consider worst-case scenarios where a request

A Provably Starvation-Free Distributed Directory Protocol 417

finds its predecessor before its predecessor finds its own predecessor, in which
the requests order is undefined. Second, they restrict their analysis to exclusive
accesses, and it does not handle the shared read-only requests discussed in [9]—
the reason is that requests get reordered due to message asynchrony, delaying
arbitrarily read-only requests. Combine provides shared and exclusive requests
and we provide a simple proof that they do not starve despite asynchrony.

More recently, Zhang and Ravindran [23] presented Relay, a directory pro-
tocol that also runs on a spanning tree. In Relay, pointers lead to the node
currently holding the object (rather than to a node that is already waiting for
the object), and they are changed only after the object moves from one node to
another. (This is similar to the tree-based mutual exclusion algorithm of Ray-
mond [21].) When requests are concurrent, they are not queued one after the
other, and a request may travel to a distant node currently holding the object,
while it ends up obtaining the object from a nearby node (which is going to
receive the object first). (See [4].)

Ballistic [12] assumes a hierarchical overlay structure, whose leaves are the
physical nodes; this structure is similar to the overlay tree used in Combine,
but it is enriched with shortcuts, so that a node has several parents in the level
above. Requests travel up and down this overlay structure in a manner similar
to Combine; since requests might be going over parallel links, however, perfor-
mance may deteriorate due to concurrent requests. It is possible to construct
a situation where a request travels to the root of the structure, but ends up
obtaining the object from a sibling node (see [4, 22]). Sun’s thesis [22] discusses
this problem and suggests a variant that integrates a mutual exclusion protocol
in each level. The cost of this variant depends on the mutual exclusion algorithm
chosen, but it can be quite high since many nodes may participate in a level.
Sun’s thesis also includes a proof that requests do not starve, but it relies on a
strong synchrony assumption, that all messages on a link incur a fixed delay.

The next table compares the communication cost of a request by node p,
served by node q. In the table, δST (p, q) denotes the (weighted) distance be-
tween p and q on a spanning tree; while ΔST is the (weighter) diameter of the
spanning tree. The construction of Section 5 implies that they are not better
(asymptotically) than the distance and diameter of the overlay tree (δT (p, q)
and ΔT).

Protocol Cost Assumes FIFO
Combine O(δT (p, q)) No
Arrow O(δST (p, q)) Yes
Relay O(ΔST) Yes
Ballistic O(ΔT) Yes

In hardware cache coherent systems, a directory is used to store the memory
addresses of all data that are present in the cache of each node. It maintains
access coherence by allowing cache hits or by (re)reading a block of data from
the memory. In [6], blocks have three states indicating whether they are shared,
exclusive or invalid. A block is either invalidated when some specific action may

418 H. Attiya, V. Gramoli, and A. Milani

violate coherence or upon receiving an invalidation broadcast message [3]. In
addition, the directory can maintain information to restrict the broadcast to
affected nodes, as suggested in [2]. Finally, the directory size can be reduced by
linking the nodes that maintain a copy of the block [15]. Upon invalidation of a
block, a message invalidates successively the caches of all linked nodes.

The design principle of this later approach is similar to the distributed queue
that is maintained by our protocol except that we use it for passing exclusive
accesses and not for invalidating read-only copies.

7 Discussion

We have proposed Combine to efficiently solve a key challenge of a directory
protocol in highly-contended situations: ensuring that all requests eventually
get served. Some prior protocols prove that requests do not starve under the
assumption that requests execute one by one and / or that communication is
synchronous. Others have high communication complexity as they require that
conflicting requests run additional mutual exclusion algorithms or because con-
current requests may result in an unbounded number of message exchanges. Our
combining technique does not incur any communication overhead to handle con-
currency. It can be easily adapted to tolerate unreliable communication, by a
traditional retransmission technique based on timeouts and acknowledgements.

Consistency protocols play an important role in data-flow distributed imple-
mentations of software transactional memory (DTM) in large-scale distributed
memory systems [12]. The consistency protocols of existing DTMs [5, 8, 18]
seem less suited for large-scale systems than directory-based consistency proto-
cols. They follow a lazy conflict detection strategy either by acquiring a global
lock [18] or by broadcasting [5, 8], at commit-time—two techniques that do not
scale well when the number of nodes grow.

We leave to future work the interesting question of integrating the directory
protocol into a full-fledged distributed transactional memory.

References

[1] Agarwal, A., Chaiken, D., Kranz, D., Kubiatowicz, J., Kurihara, K., Maa, G.,
Nussbaum, D., Parkin, M., Yeung, D.: The MIT Alewife machine: A large-scale
distributed-memory multiprocessor. In: Proceedings of Workshop on Scalable
Shared Memory Multiprocessors (1991)

[2] Agarwal, A., Simoni, R., Hennessy, J.L., Horowitz, M.: An evaluation of directory
schemes for cache coherence. In: ISCA, pp. 280–289 (1988)

[3] Archibald, J.K., Baer, J.-L.: An economical solution to the cache coherence prob-
lem. In: ISCA, pp. 355–362 (1984)

[4] Attiya, H., Gramoli, V., Milani, A.: Combine: An improved directory-based con-
sistency protocol. Technical Report LPD-2010-002, EPFL (2010)

[5] Bocchino, R.L., Adve, V.S., Chamberlain, B.L.: Software transactional memory
for large scale clusters. In: PPoPP, pp. 247–258 (2008)

A Provably Starvation-Free Distributed Directory Protocol 419

[6] Censier, L.M., Feautrier, P.: A new solution to coherence problems in multicache
systems. IEEE Trans. on Comp. C-27(12), 1112–1118 (1978)

[7] Chaiken, D., Fields, C., Kurihara, K., Agarwal, A.: Directory-based cache coher-
ence in large-scale multiprocessors. Computer 23(6), 49–58 (1990)

[8] Couceiro, M., Romano, P., Carvalho, N., Rodrigues, L.: D2STM: Dependable dis-
tributed software transactional memory. In: PRDC, pp. 307–313 (2009)

[9] Demmer, M., Herlihy, M.: The Arrow directory protocol. In: Kutten, S. (ed.) DISC
1998. LNCS, vol. 1499, pp. 119–133. Springer, Heidelberg (1998)

[10] Emek, Y., Peleg, D.: Approximating minimum max-stretch spanning trees on un-
weighted graphs. SIAM J. Comput. 38(5), 1761–1781 (2008)

[11] Herlihy, M., Kuhn, F., Tirthapura, S., Wattenhofer, R.: Dynamic analysis of the
arrow distributed protocol. Theory of Computing Systems 39(6) (2006)

[12] Herlihy, M., Sun, Y.: Distributed transactional memory for metric-space networks.
Distributed Computing 20(3), 195–208 (2007)

[13] Herlihy, M., Tirthapura, S., Wattenhofer, R.: Competitive concurrent distributed
queuing. In: PODC, pp. 127–133 (2001)

[14] Herlihy, M., Wing, J.M.: Linearizability: A correctness condition for concurrent
objects. ACM Trans. Prog. Lang. Syst. 12(3), 463–492 (1990)

[15] James, D.V., Laundrie, A.T., Gjessing, S., Sohi, G.: Scalable coherent interface.
Computer 23(6), 74–77 (1990)

[16] Kruskal, C.P., Rudolph, L., Snir, M.: Efficient synchronization of multiprocessors
with shared memory. In: PODC, pp. 218–228 (1986)

[17] Kuhn, F., Wattenhofer, R.: Dynamic analysis of the arrow distributed protocol.
In: SPAA, pp. 294–301 (2004)

[18] Manassiev, K., Mihailescu, M., Amza, C.: Exploiting distributed version concur-
rency in a transactional memory cluster. In: PPoPP, pp. 198–208 (2006)

[19] Nussbaum, D., Agarwal, A.: Scalability of parallel machines. Commun. ACM
(March 1991)

[20] Pfister, G.F., Norton, V.A.: “hot spot” contention and combining in multistage
interconnection networks. IEEE Trans. on Comp. 34(10), 943–948 (1985)

[21] Raymond, K.: A tree-based algorithm for distributed mutual exclusion.
TOCS 7(1), 61–77 (1989)

[22] Sun, Y.: The Ballistic Protocol: Location-aware Distributed Cache Coherence in
Metric-Space Networks. PhD thesis, Brown University (May 2006)

[23] Zhang, B., Ravindran, B.: Relay: A cache-coherence protocol for distributed trans-
actional memory. In: OPODIS, pp. 48–53 (2009)

Lightweight Live Migration for High Availability
Cluster Service�

Bo Jiang1, Binoy Ravindran1, and Changsoo Kim2

1 ECE Dept., Virginia Tech
{bjiang,binoy}@vt.edu

2 ETRI, Daejeon, South Korea
cskim7@etri.re.kr

Abstract. High availability is a critical feature for service clusters and cloud
computing, and is often considered more valuable than performance. One com-
monly used technique to enhance the availability is live migration, which repli-
cates services based on virtualization technology. However, continuous live
migration with checkpointing will introduce significant overhead. In this paper,
we present a lightweight live migration (LLM) mechanism to integrate whole-
system migration and input replay efforts, which aims at reducing the overhead
while providing comparable availability. LLM migrates service requests from
network clients at high frequency during the interval of checkpointing system
updates. Once a failure happens to the primary machine, the backup machine will
continue the service based on the virtual machine image and network inputs at
their respective last migration rounds. We implemented LLM based on Xen and
compared it with Remus—a state-of-the-art effort that enhances the availability
by checkpointing system status updates. Our experimental evaluations show that
LLM clearly outperforms Remus in terms of network delay and overhead. For
certain types of applications, LLM may also be a better alternative in terms of
downtime than Remus. In addition, LLM achieves transaction level consistency
like Remus.

1 Introduction

High availability (HA) is a critical feature of modern enterprise-scale data and ser-
vice clusters. Any downtime that a server cluster experiences may result in severe
loss on both revenue and customer loyalty. Therefore, high availability is often con-
sidered more valuable than performance [1]. Especially along with the development
of cloud computing—one of the most remarkable development opportunities for the
Internet—computation and storage are gradually moving from clients to cluster servers
in a cloud [2]. Thus the availability of the resources in a cloud is essential to the success
of cloud computing. Nowadays, high availability is still a very challenging problem [3],
because there are many failure categories to handle so as to guarantee the continuous
operation. Among the failure models, hardware fail-stop failure is one of the most com-
monly studied [4].

� This work was supported by the IT R&D program of MKE/KEIT, South Korea [2007S01602,
Development of Cost Effective and Large Scale Global Internet Service Solution].

S. Dolev et al. (Eds.): SSS 2010, LNCS 6366, pp. 420–434, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Lightweight Live Migration for High Availability Cluster Service 421

Naturally, replication is an important approach to increase the availability by pro-
viding redundancy—once a failure occurs to a replica, services that run upon it can
be taken over by other replicas [5]. Replication may be realized as several redundancy
types: spatial redundancy, temporal redundancy, and structural (or contextual) redun-
dancy [6]. For example, service migration used in server clusters [7] provides spatial
redundancy, since it requires extra hardware as running space of services.

For any redundancy type, the consistency among multiple replicas needs to be guar-
anteed, in a certain consistency level. Based on Brewer’s CAP theorem [8], the consis-
tency is a competing factor to the availability, i.e., there is a trade-off between them.

By running multiple virtual machines (VM) on a single physical machine, virtual-
ization technology can facilitate the management of services, such as replication via
migration. Virtualization technology separates service applications from physical ma-
chines with a virtual machine monitor (VMM), thus provides increased flexibility and
improved performance [9]. With these advantages, virtualization technology makes it
easy to migrate services across physical machines. Usually we call the machine which
provides regular services as the primary machine, and the one which takes over the
services at a failure as the backup machine.

To achieve high availability, live migration is typically used to minimize the down-
time. Here live migration means executing the migration without suspending the pri-
mary machine. Instead, the primary machine keeps running until the migration is
completed. Live migration was first studied in [7], where the migration is executed
only once and triggered on demand of users. Such a one-time live migration is suitable
for data processing or management purposes. However, it does not work for disaster
recovery because the migration cannot be triggered by a failure event.

In [10], the authors introduced the idea of checkpointing to live migration by pre-
senting Remus—a periodical live migration process for disaster recovery. Using check-
pointing, the primary machine keeps migrating a whole system, including CPU/memory
status updates as well as writes to the file system to the backup machine at config-
ured frequency. Once a failure happens so that the migration data stream is broken,
the backup machine will take over the service immediately starting from the latest stop
point of checkpointing. However, checkpointing at high frequency will introduce sig-
nificant overhead, as plenty of resources such as CPU and memory are consumed by
the migration. In this case clients that request services may experience significantly
long delays. If on the contrary the migration runs at low frequency trying to reduce the
overhead, there maybe many service requests that are duplicately served. Actually this
will produce the same effect of increasing the downtime from the perspective of those
new requests that come after the duplicately served requests.

In fact, there is another approach for service replication—input replay [11]. With
input replay, the data to replicate will be much less than whole-system replication. Al-
though input replay cannot replicate the system status exactly, such a Point-in-Time
consistency is actually very challenging equally for all the replication approaches in
real implementations [12].

Based on input replay, the objective of this paper is to reduce the overhead of whole-
system checkpointing when achieving comparable downtime and the same level

422 B. Jiang, B. Ravindran, and C. Kim

consistency as those of Remus. In this way, we will be able to leverage the advantage
of input replay without suffering from its flaw on consistency.

Based on the checkpointing approach of Remus, we developed an integrated live
migration mechanism, called Lightweight Live Migration (LLM), which consists of
both whole-system checkpointing and input replay. The basic idea is as follows:

1) The primary machine keeps migrating to the backup machine: a) the guest VM
image (including CPU/memory status updates and new writes to the file system) at low
frequency; and b) service requests from network clients at high frequency; and

2) Once a failure happens to the primary machine, the backup machine will continue
the service based on the guest VM image and network inputs at their respective last
migration rounds.

Especially when the network service involves a lot of computation or database up-
dates, CPU/memory status updates and writes to the file system will be a big bulk
of data. Compared with past efforts such as Remus, migrating the guest VM image at
low frequency with input replay as an auxiliary may significantly reduce the migration
overhead.

We compared LLM with Remus in terms of the following metrics: 1) downtime,
which demonstrates the availability; 2) network delay, which reflects the client ex-
perience; and 3) overhead, which is measured with kernel compilation time. The ex-
perimental evaluations show that LLM sharply reduces the overhead of whole-system
checkpointing and network delay on the client side compared with Remus. In addition,
LLM demonstrates a downtime that is comparable, or even better for certain type of
applications, to that of Remus. We also analyzed that LLM achieves transaction level
consistency, which is the same as Remus.

The paper makes the following contributions:

1) We integrate the idea of input replay with whole-system checkpointing mecha-
nism. Such an integrated effort outperforms the existing work with a single effort of
checkpointing, especially for applications with intensive network workload;

2) LLM migrates the service requests from the primary machine independently, in-
stead of depending on a special load balancer hardware. This means we can apply LLM
more generally in practical use; and

3) We developed a fully functional prototype for LLM, which can be used as a basis
for further research and practical application.

The rest of the paper is organized as follows. Related work is discussed in Section 2.
In Section 3, we describe the system model and assumptions. We then introduce the
design and implementation of LLM in Section 4. In Section 5, we report our experiment
environment, benchmarks and the evaluation results. In Section 6, we finally conclude
and discuss the future work.

2 Related Work

In [13], high availability is defined as a system design protocol and associated im-
plementation that ensures a certain degree of operational continuity during a given

Lightweight Live Migration for High Availability Cluster Service 423

measurement period. Based on this definition, the availability may be estimated with a
percentage of continuously operation time in a year, also known as “X nines” (for ex-
ample “five nines”, i.e., 99.999%) [6]. In fact, this percentage is determined by two
factors—the number of failure events and the downtime of each failure event. We
mainly consider the downtime at a failure in this paper.

State migration was studied in many literatures such as [14, 15]. For Xen [16], live
migration was added in [7] to reduce the downtime thereby increasing the availability.
However, this one-time migration effort is not suitable for disaster recovery, which re-
quires frequent checkpointing protection. The wide-area live migration was also studied
in [17]. But it is out of the scope of this paper. We only study the live migration locally
in a cluster.

Checkpointing is a commonly used approach for fault tolerance. The idea of check-
pointing was introduced to live migration by Cully et al. in Remus [10]. Remus is a
remarkable effort on live migration, which aims to handle hardware fail-stop failure on
a single host with whole-system migration. By checkpointing the status updates of a
whole system, Remus can achieve generality, transparency, and seamless failure recov-
ery. It is designed to use pipelined checkpoints, which means the active VM is bounded
by short pauses, in each of which the state change is quickly migrated to the backup ma-
chine. Moreover, both memory and CPU state backup and network/disk buffering were
carefully designed based on live migration [7] and Xen’s intrinsic services. In general,
Remus is a practical effort based on Xen, and most of its functions have already been
merged into Xen.

In terms of shortcomings, though the downtime of Remus can be controlled within
one second, it experiences about 50% performance penalty such as on network delay
and CPU execution time. This penalty comes from data migration at high frequency—
it supports up to 40 times of migration per second. If we decrease the frequency, the
backup machine may serve a lot of service requests that have already been served by
the primary machine.

Input replay is also a commonly studied approach for high availability. In [11], Bres-
soud et al. provided fault tolerance by forwarding the input events and deterministi-
cally replay them. Another example is ReVirt [18], in which VM logging and replay
were discussed yet for intrusion analysis instead of high availability. However like Re-
mus, these efforts also involve a single approach only. On the contrary, we integrate
the efforts of both checkpointing and input replay to provide high availability with re-
duced overhead. Manetho is also an integrated effort including both rollback-recovery
and process replication [19]. However, Manetho requires the clients of replicated ser-
vices to participate in the recovery protocol, which will result in the “visibility” of a
failure to the clients. LLM, unlike Manetho, can fully leverage the fault tolerance of
Internet so as to completely hide the migration as well as the recovery process from
clients.

Xen [16] is an open source virtual machine monitor under the GPL2 license, which
makes it very flexible for the purpose of research. We evaluated LLM on the platform
of Xen.

424 B. Jiang, B. Ravindran, and C. Kim

3 System Model

In this paper, we discuss a whole-system replication. Therefore, for each primary ma-
chine, we assume there is a backup machine as the replica, and there is a high-speed
network connection between the two machines. We also assume that the primary ma-
chine and the backup machine share a single storage, so that we do not have to migrate
the whole file system.

We only consider hardware fail-stop failure model. Fail-stop failure makes the fol-
lowing assumptions: 1) any correct server can detect whether any other server has failed;
and 2) every server employs a stable storage which reflects the last correct service state
of the crashed server. This stable storage can be read by other servers, even if the owner
of the storage has crashed.

We implemented LLM based on the existing codes of Remus, which was developed
on Xen [16]. With Xen, network services run in guest virtual machines (called domain
U or domU in Xen terminology). There is a unique VM for management purpose, called
domain 0 or dom0, which has direct access to all physical hardware. Therefore service
requests go through the back-end driver (called netback) in dom0 first, and then are dis-
tributed to the front-end driver (called netfront) in a specific domU. This will facilitate
our network buffer management and migration.

We do not make any assumptions about the load balancer in a cluster, since a load
balancer is a special hardware which is out of scope of this paper. This means LLM mi-
grates the service requests from the primary machine independently. Moreover, since
we do not consider the application-level migration, we do not distinguish the services
running on a single guest virtual machine. All the migrated service requests are man-
aged in the same manner.

Finally, we assume that there is an algorithm to map each egress response (i.e., a
response from the server to clients) packet to a specific ingress request (i.e., a request
from clients to a server) packet. A straight-forward approach is to append a sequence
number for each ingress request packet and egress response packet, and keep this se-
quence number during the service. Hence, it is easy to pare up the two types of packets
and map them accordingly.

4 Design and Implementation

We design the implementation architecture of LLM as shown in Figure 1. Beyond Re-
mus, we also migrate the change in network driver buffers. The entire process works as
follows:

1) First, on the primary machine, we setup the mapping between the ingress buffer
and the egress buffer, signifying which packets are generated corresponding to which
service request(s), and which requests are yet to be served. Moreover, LLM hooks a
copy for each ingress service request.

2) Second, at each migration pause, LLM migrates the hooked copy as well as the
boundary information to the backup machine asynchronously, using the same migration
socket as the one used by Remus for CPU/memory status updates and writes to the file
system.

Lightweight Live Migration for High Availability Cluster Service 425

Hook

Netback

Remus CP
engine*

Migration
Manager

Netfront

Guest
VM

VMM

Primary Machine

Merge

Netfront

Remus CP
engine*

Migration
Manager

Netback

Guest
VM

Replica

VMM

Backup Machine

Mapping

External Network*CP: Checkpointing

Fig. 1. LLM Architecture

3) Third, all the migrated service requests are buffered in a queue in the “merge”
module. Those buffered requests that have been served will be removed based on the
migrated boundary information. Once a failure occurs on the primary machine that
breaks the migration data stream, the backup machine recovers the migrated memory
image and merges the service requests into the corresponding driver buffers.

In Figure 1, solid lines represent the regular input/output of network packets, dash-
dotted lines show the migration of system status updates, and dashed lines mean the
migration of network buffers.

Next, we will first introduce LLM’s release of egress responses, analyze the con-
sistency, then discuss the function modules in separate subsections: 1) egress response
release and consistency analysis in Section 4.1; 2) mapping and hooking of services in
Section 4.2; 3) asynchronous migration, especially its time sequence, in Section 4.3;
and 4) buffering and merging of requests in Section 4.4.

4.1 Egress Response Release and Consistency Analysis

Unlike the block/commit case used by Remus, LLM releases the response packets im-
mediately after they are generated on VMs. In the block/commit case, all the outputs
are blocked using IMQ [20] until the migration in a checkpointing epoch is acknowl-
edged. This can avoid losing any externally visible state, which helps to maintain the
consistency. However, at low checkpointing frequency, network clients may experience
very long delays with the block/commit mechanism of Remus.

In fact, the immediate release case and the block/commit case can achieve the same
operation correctness on the client side, and the same consistency level on the server
side. First on the client side: 1) for the block/commit case, there won’t be any dupli-
cated response packets. However, network clients may re-transmit requests after the

426 B. Jiang, B. Ravindran, and C. Kim

timer expires; 2) for the immediate release case, on the contrary, there maybe dupli-
cated response packets. Nevertheless, the re-transmission of service requests won’t in-
crement because of the increased delay. Given the fault tolerance of Internet, either
the duplication or the disorder of both service requests and responses, which are intro-
duced by suspended service or multiprocessing, will be handled correctly. Although the
performance that a client experiences in two cases may be different, the correctness is
guaranteed and transparent to the clients.

Then on the server side, LLM achieves the same level of consistency, i.e., transac-
tional consistency, as that of Remus. In Remus, all the service to request packets in the
speculative execution phases will be re-transmitted by the client and re-served by the
backup machine. In fact, this is equivalent to input replay, and the backup machine will
have to recover the status at the failure point by replaying these re-transmitted requests.
Though LLM migrates the requests directly, it recovers the status at the failure point in
the same fashion. The only difference in consistency of LLM from Remus is the work-
load of input replay: as LLM usually runs at low frequency, it produces more requests
to replay.

Therefore with the immediate release of egress response packets, LLM achieves the
same operation correctness on the client side, and the same consistency level on the
server side.

4.2 Hooking and Mapping of Service Requests

Without a special load balancer hardware, LLM has to migrate the service requests
itself. Obviously, the first step of this migration is to make a copy.

Linux, which Xen is built on, provides a netfilter system consisting of a series of
hooks in various points in a protocol stack. Figure 2 shows the netfilter system in the
IPv4 protocol stack. This system makes it easy to copy or filter network packets to and
from a specific guest VM [21].

1 Route 3 4

2

dom0

5

Route

Fig. 2. Netfilter System

There is a netback driver in domain 0 of Xen, which is responsible for routing the
packets to and from the guest VM. Domain “U”s are considered as external network
devices. Thus, all the packets to and from guest VMs are routed through the path from
1 to 3 to 4 in the figure. Along this path, we choose point 3—NF IP FORWARD—to
hook both ingress requests and egress responses.

Lightweight Live Migration for High Availability Cluster Service 427

We implemented this hook function module in two parts: 1) a hook module in the
kernel that copies sk bu f f and sends it up to the user space, and 2) a separate thread
in the user space that receives copies and analyzes (for egress responses) or write them
into the migration buffer (for ingress requests).

In Linux kernel, network packets are managed using sk bu f f . The information in
the sk bu f f header is specific to the local host. Therefore we only copy the contents
between the head pointer and the tail pointer. To recognize the packet header offsets
when the sk bu f f header is absent, we append a metadata in front of the packet con-
tent, which includes the header offsets of each layer as well as the content length. This
metadata will help the backup machine to create a new sk bu f f header.

LLM manages a mapping table in the user space on the primary machine. For each
hooked ingress request, we append an entry in the mapping table including 1) a se-
quence number, 2) a completion flag, and 3) a pointer to memory in the migration
buffer. For each entry, the sequence number helps to distinguish requests from each
other, and setting the completion flag as “True” means the service for this request has
been completed. Then for each hooked egress response packet, we decide which request
packet should be matched with using the algorithm that we assumed. Then we will set
the completion flag of this request packet in the mapping table as appropriate.

4.3 Asynchronous Network Buffer Migration

Checkpointing was used to migrate the ever-changing updates of CPU/memory/disk
to the backup machine by Remus. Only at the beginning of each checkpointing cycle,
the migration occurs in a burst mode after the guest virtual machine resumes. Most
of the time, there is no traffic flowing through the network connection between the
primary machine and the backup machine. During this interval, we can migrate the
service requests at higher frequency than that of checkpointing.

Like the migration of CPU/memory/disk updates, the migration of service requests
is also in an asynchronous manner, i.e., the primary machine can resume its service
without waiting for the acknowledgement from the backup machine.

Figure 3 shows the time sequence of migrating the checkpointed resources and the
incoming service requests at different frequencies on a single network socket. The entire
sequence within an epoch is described as follows:

1) The dashed blocks represent the suspension period when the guest virtual machine
is paused. During this suspension period, all the status updates of CPU/memory/disk are
collected and stored in a migration buffer.

2) Once the guest VM is resumed, the content stored in the migration buffer is mi-
grated first (shown as a block shaded area that is adjacent to the dashed area in the
figure).

3) Then, the network buffer migration starts at high frequency until the guest VM is
suspended again. At the end of each network buffer migration cycle (the thin, shaded
strips in the figure), LLM transmits two boundary sequence numbers for the moment:
one is for the first service request in the current checkpointing period, and the other
is for the first service request that has a “False” completion flag. All the services after
the first boundary need to be replayed on the backup machine for consistency, but only

428 B. Jiang, B. Ravindran, and C. Kim

…...Checkpointing cycles …...

Migration of CPU/memory/
disc updates and network
buffers in each cycle

Fail
Continue the service

++

Fig. 3. Checkpointing Sequence

those after the second boundary need to be responded to the clients. If there is no new
requests, LLM transmits the boundary sequence numbers only.

Anytime a failure happens to a primary machine, the backup machine will 1) continue
the execution of VM from the latest checkpointed status; 2) replay the requests after the
first boundary to achieve consistency; and 3) respond to those un-responded requests
after the second boundary. This recovery process is shown with the “+” combination
signal in the figure.

4.4 Buffering and Merging of Requests

The migrated service requests are first stored in a queue (implemented with a double
linked list as shown in Figure 1) in the user space on the backup machine. With this dou-
ble linked list, the storage can be allocated dynamically and the complexity of insertion
at tail and removal from head will be constant.

Everytime when a network buffer migration burst arrives, the backup machine will
first enqueue the incoming new requests at the tail, then dequeue and free requests from
the head until the one with the first boundary sequence number. In this way, the queue
only stores those needed to recover the system state. These requests will not be released
to the kernel space until the migration data stream is broken.

As on the primary machine, there is also a module running in the kernel space on
the backup machine. This module is responsible for creating a sk bu f f header based
on the metadata and inserting the requests into the queue in the kernel space. As shown
in Figure 2, the requests will also be inserted to point 3, i.e., NF IP FORWARD. In this
way, the protocol stack in the kernel will be able to recognize these migrated requests,
just like local ingress request packets.

5 Evaluation

We evaluated LLM and compared it with Remus in terms of its correctness, downtime,
delay for clients, and overhead under various checkpointing periods. The downtime is
the primary factor to estimate the availability of a cluster, whereas network delay mainly

Lightweight Live Migration for High Availability Cluster Service 429

represents clients’ experience. Finally, the overhead must be considered in the picture so
that the effectiveness of the service will not be overly compromised by checkpointing.

5.1 Experiment Environment

The hardware experiment environment included two machines (one as primary and the
other as backup), each with an IA32 architecture processor and a 3 GB RAM. We
set up a 100 Mbps network connection between the two machines specifically used
for migration. In addition, we used a third PC as a network client to transmit service
requests and examine the results based on responses.

As for the software environment, we built Xen from source which was downloaded
from its unstable tree [22], and let all the protected virtual machines run PV (i.e., par-
avirtualization) guests with Linux 2.6.18. We also downloaded Remus version 0.9 codes
from [23]. Then we allocated 256 MB RAM for each guest virtual machine, the file sys-
tem of which is an image file of 3 GB shared by two machines using NFS (i.e., Network
File System).

5.2 Benchmarks and Measurements

We utilized three network application examples to evaluate the downtime, network de-
lay and overhead of LLM and Remus:

1) Example 1 (HighNet)—The first example is flood ping [24] with the interval of
0.01 second, and there is no significant computation task running on domain U. In this
case, the network load will be extremely high, but the system updates are not significant.
We named it “HighNet” to signify the intensity of network load.

2) Example 2 (HighSys)—In the second example, we designed a simple application
to taint 200 pages (4 KB per page on our platform) per second, and there are no service
requests from external clients. Therefore, this example involves a lot of computation
workload on domain U. The name “HighSys” reflects its intensity on system updates.

3) Example 3 (Kernel Compilation)—We used kernel compilation as the third ex-
ample which involves all the components in a system, including CPU/memory/disk
updates. As part of Xen, we used Linux kernel 2.6.18 directly. Given the limited re-
source on domain U, we cut the configuration to a small subset in order to reduce the
time required to run each experiment.

Here example 1 and 2 represent opposite types of network application, whereas example
3 is a typical application type entailing almost all aspects of system workload.

We measured the downtime and network delay under example 1 and 2, and the over-
head under example 3. The details of each measurement are described below.

The downtime and network delay were measured using ping program on the client
side, and the key index we selected here is the round-trip time of ping packets. We
believe it makes more sense to measure on the client side since the client experience
during a downtime is what actually matters. The flood ping used by example 1 is in
itself a way of measurement. Yet for example 2, since it does not involve network ac-
tivities, we have to use ping as an additional measure. To avoid the extra migration
load, we increased the ping interval to 0.1 second and disabled the hooking function of

430 B. Jiang, B. Ravindran, and C. Kim

LLM for ping packets. For each test case, we stopped the ping program after breaking
the migration data stream. Then, in each ping program log file, we record the last peak
value of the round-trip time as the downtime, since it represents the delay of the first
ping packet at the beginning of the disruption, therefore reflects the wait time of net-
work clients. Lastly, we calculated the average value of round-trip times in a checkpoint
period as the network delay.

Though there is no response for ping requests before the VM that fails is recovered
completely, we are still able to guarantee that no ping packets are lost during the down-
time. This is based on the configurable timer that ping program provides. As long as
this timer does not expire, ping program will wait for the response (the transmission of
following requests will not be influenced) without acknowledging a ping failure. In the
experiments, we configured this timer long enough regarding the downtime that we may
experience, so that each ping request will be responded, sooner or later. In this way, the
response with the longest round-trip time could be used to estimate the downtime.

The overhead was measured using the incremental time (as a percentage) of ker-
nel compilation. Specifically, the baseline, i.e., a 0% overhead, is the kernel compila-
tion time without checkpointing, whereas a 100% overhead, for example, stands for a
doubling of kernel compilation time when checkpointing exists. We measured kernel
compilation time using a stop watch, so that it includes both the execution time and
suspension time of domain U.

Finally, we measured the performance and the overhead under various checkpointing
periods. For Remus, the checkpointing period is the time interval of system updates mi-
gration, whereas for LLM, the checkpointing period represents the interval of network
buffer migration. By configuring the same value for the checkpointing frequency of Re-
mus and the network buffer frequency of LLM, we are able to guarantee the fairness of
the comparison to the greatest extent. Furthermore, we executed our experiments start-
ing from one second of checkpointing period for two reasons. One is that the network
connection specifically between the primary and backup machines has limited band-
width in our experiment environment, thus will increase the migration time in each
period. The other is that the timer in the existing migration implementation used by Re-
mus and Xen is still under experiment. Therefore, at high checkpointing frequency, the
actual checkpointing period is highly likely to exceed what we configured, thus it does
not make sense to set checkpointing period of less than one second in the experiments.

5.3 Evaluation Results

First, we verified the correctness of LLM using two approaches:

1) We verified that the flood ping can be served continuously by the VM which
is taken over by the backup machine after a failure occurs. Moreover, we carefully
examined the sequence numbers, and observed that there was no disruption in the ping
flood; and

2) We verified that the kernel image, which was compiled in domU on the primary
machine during the migration process, can be successfully installed and booted in domU
on the backup machine after being migrated.

Lightweight Live Migration for High Availability Cluster Service 431

1 1.5 2 2.5 3 3.5 4 4.5 5
0

1000

2000

3000

4000

5000

6000

Checkpointing Period (s)

D
ow

nt
im

e
(m

s)

LLM
Remus

Fig. 4. Downtime under HighNet

1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.5

1

1.5

2

2.5

3

3.5
x 10

4

Checkpointing Period (s)

D
ow

nt
im

e
(m

s)

LLM
Remus

Fig. 5. Downtime under HighSys

These two approaches can fully prove that LLM functions correctly after the migration.
Secondly, we measured the downtime under HighNet and HighSys, the results of

which are shown in Figures 4 and 5.
We observe that under HighSys, LLM demonstrates a downtime that is longer than,

yet comparable to, that of Remus. The reason is that LLM runs at low frequency, hence
the migration traffic in each period will be higher than that of Remus. Under HighNet,
the downtime of LLM and Remus show a reverse relationship where LLM outperforms
Remus. This is because, from the client side, there are too many duplicated packets to
be served again by the backup machine in Remus. In LLM, on the contrary, the primary
machine migrates the request packets as well as boundaries to the backup machine, i.e.,
only those packets yet to be served will be served by the backup. Thus the client does
not need to re-transmit the requests, therefore will experience a much shorter downtime.

Thirdly, we evaluated the network delay under HighNet and HighSys as shown in
Figures 6 and 7. In both cases, we observe that LLM significantly reduces the network
delay by removing the egress queue management and releasing responses immediately.

In Figures 6 and 7, we only recorded the average network delay in a migration period.
Next, we show the details of the network delay in a specific migration period in Figure 8,
in which the interval between two adjacent peak values represents one migration period.

1 1.5 2 2.5 3 3.5 4 4.5 5
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

Checkpointing Period (s)

N
et

w
or

k
D

el
ay

 (
m

s)

LLM
Remus

Fig. 6. Network Delay under HighNet

1 1.5 2 2.5 3 3.5 4 4.5 5
0

1000

2000

3000

4000

5000

6000

7000

Checkpointing Period (s)

N
et

w
or

k
D

el
ay

 (
m

s)

LLM
Remus

Fig. 7. Network Delay under HighSys

432 B. Jiang, B. Ravindran, and C. Kim

0 5 10 15 20 25
0

2000

4000

6000

8000

10000

12000

Migration Time (s)

N
et

w
or

k
D

el
ay

 (
m

s)

LLM
Remus

Fig. 8. Detailed Network Delay

0 20 40 60 80 100
0

50

100

150

200

250

Checkpointing Period (s)

O
ve

rh
ea

d
on

 K
er

ne
l C

om
pi

la
tio

n
(%

)

LLM
Remus

Fig. 9. Overhead under Kernel Compilation

We observe that the network delay of Remus decreases linearly within a period but
remains at a plateau. In LLM, on the contrary, the network delay is very high at the
beginning of a period, then quickly decrease to nearly zero after a system update is
over. Therefore, most of the time, LLM demonstrates a much shorter network delay
than Remus.

Finally, Figure 9 shows the overhead under kernel compilation. Actually, the over-
head significantly changes only in the checkpointing period interval of [1,60] seconds,
as shown in the figure. For checkpointing with shorter periods, the migration of system
updates may last longer than a configured checkpointing period, therefore the kernel
compilation time for these cases are almost the same with minor fluctuation. For check-
pointing with longer periods, especially when it is longer than the baseline (i.e., kernel
compilation without any checkpointing), a VM suspension may or may not occur dur-
ing one compilation process. Therefore, the kernel compilation time will be very close
to the baseline, meaning a zero percent overhead. Right in this interval, LLM’s over-
head due to the suspension of domain U is significantly lower than that of Remus, as it
runs at much lower frequency than Remus.

In the experiments above (except for the specific sample shown in Figure 8), each
data point was averaged from five sample values. The reason that we did not provide
standard deviations is that the sample values remain very stable for given application
examples. Generally the standard deviation is less than 5% of the mean value.

In summary, LLM clearly outperforms Remus in terms of network delay and over-
head. For certain types of applications, LLM may also be a better alternative in terms
of downtime than Remus.

6 Conclusions

In this paper, we designed an integrated live migration mechanism consisting of both
whole-system checkpointing and input replay. LLM achieves transactional consistency,
which is in the same level as Remus. From the experimental evaluations, we observed
that LLM can successfully reduce the overhead of whole-system checkpointing and
network delay on the client side while providing comparable downtime. Especially for

Lightweight Live Migration for High Availability Cluster Service 433

HighNet-like application types with intensive network workload, LLM demonstrates
an even shorter downtime than the state-of-the-art efforts. As most services that require
high availability usually involve a lot of network activities, LLM will be more efficient
than other high availability approaches.

Finally, we want to provide some thoughts and clarifications for further discussion
in this topic, namely, load balancer and multiple backup:

1) Load balancer—We did not depend on a special load balancer hardware to mi-
grate the requests. If we do, a load balancer may duplicate the ingress request packets
at the gateway, and distribute them to the primary and backup machines at the same
time. In this way, what we need to migrate besides the system updates will simply be
the boundary information. However, since the network buffer migration happens in the
interval between system updates migration, the savings from the migration traffic may
be negligible compared to the required investment on a load balancer.

2) Multiple backup—There are many scenarios for multiple backup, which involves
the internal architecture of clusters. This is out of scope of this paper, and that is why
we did not evaluate it in the experiment. If there is need to support multiple backup, we
expect the changes to the prototype will not be significant.
The directions of future work include: 1) evaluate the impact of LLM on the consis-
tency; and 2) compare LLM’s performance and overhead in an environment with a load
balancer.

References

1. Kopper, K.: The Linux Enterprise Cluster: build a highly available cluster with commodity
hardware and free software. No Starch Press (2004)

2. Armbrust, M., Fox, A., Griffith, R., Joseph, A.D., Katz, R.H., Konwinski, A., Lee, G., Pat-
terson, D.A., Rabkin, A., Stoica, I., Zaharia, M.: Above the clouds: A berkeley view of cloud
computing. Technical report (2009)

3. Blake, V.: Five nines: A telecom myth. Communications Technology (2009)
4. Poledna, S.: Fault-Tolerant Real-Time Systems: The Problem of Replica Determinism.

Kluwer Academic Publishers, Dordrecht (1996)
5. Mullender, S.: Distributed Systems. Addison Wesley Publishing Company, Reading (1993)
6. Carwardine, J.: Providing open architecture high availability solutions. HA forum (2005)
7. Clark, C., Fraser, K., Hand, S., Hansen, J.G., Jul, E., Limpach, C., Pratt, I., Warfield, A.: Live

migration of virtual machines. In: NSDI 2005: Proceedings of the 2nd conference on Sympo-
sium on Networked Systems Design & Implementation, pp. 273–286. USENIX Association,
Berkeley (2005)

8. Gilbert, S., Lynch, N.: Brewer’s conjecture and the feasibility of consistent, available,
partition-tolerant web services. SIGACT News 33(2), 51–59 (2002)

9. Mergen, M.F., Uhlig, V., Krieger, O., Xenidis, J.: Virtualization for high-performance com-
puting. SIGOPS Oper. Syst. Rev. 40(2), 8–11 (2006)

10. Cully, B., Lefebvre, G., Meyer, D., Feeley, M., Hutchinson, N., Warfield, A.: Remus: high
availability via asynchronous virtual machine replication. In: NSDI 2008: Proceedings of the
5th USENIX Symposium on Networked Systems Design and Implementation, pp. 161–174.
USENIX Association (2008)

11. Bressoud, T.C., Schneider, F.B.: Hypervisor-based fault tolerance. In: SOSP 1995: Proceed-
ings of the fifteenth ACM symposium on Operating systems principles, pp. 1–11. ACM, New
York (1995)

434 B. Jiang, B. Ravindran, and C. Kim

12. Aguilera, M.K., Spence, S., Veitch, A.: Olive: distributed point-in-time branching storage
for real systems. In: NSDI 2006: Proceedings of the 3rd conference on Networked Systems
Design & Implementation, Berkeley, CA, USA, pp. 27–27 (2006)

13. Hawkins, M., Piedad, F.: High Availability: Design, Techniques and Processes. Prentice Hall
PTR, Upper Saddle River (2000)

14. Gray, J., Helland, P., O’Neil, P., Shasha, D.: The dangers of replication and a solution. In:
SIGMOD 1996: Proceedings of the 1996 ACM SIGMOD international conference on Man-
agement of data, pp. 173–182. ACM, New York (1996)

15. Miloj́ičić, D.S., Douglis, F., Paindaveine, Y., Wheeler, R., Zhou, S.: Process migration. ACM
Comput. Surv. 32(3), 241–299 (2000)

16. Barham, P., Dragovic, B., Fraser, K., Hand, S., Harris, T., Ho, A., Neugebauer, R., Pratt, I.,
Warfield, A.: Xen and the art of virtualization. In: SOSP 2003: Proceedings of the nineteenth
ACM symposium on Operating systems principles, pp. 164–177. ACM, New York (2003)

17. Bradford, R., Kotsovinos, E., Feldmann, A., Schiöberg, H.: Live wide-area migration of vir-
tual machines including local persistent state. In: VEE 2007: Proceedings of the 3rd interna-
tional conference on Virtual execution environments, pp. 169–179. ACM, New York (2007)

18. Dunlap, G.W., King, S.T., Cinar, S., Basrai, M.A., Chen, P.M.: Revirt: enabling intrusion
analysis through virtual-machine logging and replay. SIGOPS Oper. Syst. Rev. 36(SI), 211–
224 (2002)

19. Elnozahy, E.N.: Manetho: fault tolerance in distributed systems using rollback-recovery and
process replication. PhD thesis, Houston, TX, USA, Chairman-Zwaenepoel, Willy (1994)

20. Mchardy, P.: Linux imq, http://www.linuximq.net/
21. Russell, R., Welte, H.: Linux netfilter hacking howto,

http://www.iptables.org/documentation/HOWTO/netfilter-hacking-HOWTO.

html

22. Xen Community: Xen unstable source,
http://xenbits.xensource.com/xen-unstable.hg

23. Cully, B., Lefebvre, G., Meyer, D., Feeley, M., Hutchinson, N., Warfield, A.: Remus source
code, http://dsg.cs.ubc.ca/remus/

24. Stevens, W.R.: TCP/IP illustrated. The protocols, vol. 1. Addison-Wesley Longman Publish-
ing Co., Inc., Boston (1993)

http://www.linuximq.net/
http://www.iptables.org/documentation/HOWTO/netfilter-hacking-HOWTO.html
http://www.iptables.org/documentation/HOWTO/netfilter-hacking-HOWTO.html
http://xenbits.xensource.com/xen-unstable.hg
http://dsg.cs.ubc.ca/remus/

Approximation of δ-Timeliness�

Carole Delporte-Gallet1, Stéphane Devismes2, and Hugues Fauconnier1

1 Université Paris Diderot, LIAFA
{Carole.Delporte,Hugues.Fauconnier}@liafa.jussieu.fr

2 Université Joseph Fourier, Grenoble I, VERIMAG UMR 5104
Stephane.Devismes@imag.fr

Abstract. In asynchronous message-passing distributed systems prone to pro-
cess crashes, a communication link is said δ-timely if the communication delay
on this link is bounded by some constant δ. We study here in which way processes
may approximate and find structural properties based on δ-timeliness (e.g., find
δ-timely paths between processes or build a ring between correct processes using
only δ-timely links).

To that end, we define a notion of approximation of predicates. Then, with
help of such approximations, we give a general algorithm that enables to choose
and eventually agree on one of these predicates. Finally, applying this approach
to δ-timeliness, we give conditions and algorithms to approximate δ-timeliness
and dynamically find structural properties using δ-timeliness.

1 Introduction

Assume an asynchronous message-passing system prone to process crash failures and
consider the following problem: we know that after some unknown time there is at
least one path from process p to process q such that every message sent along this path
arrives to process q by δ time units (such a path is said δ-timely). Now, how can we
determine one of these paths or at least one path that is Δ-timely for a Δ close to δ? By
“determine” we mean that eventually all processes agree on the chosen path.

To that end, the processes must be at least able to test the δ-timeliness of paths and
one of the contribution of this paper is to give some necessary and sufficient conditions
to do this. In particular, we prove that without synchronized clocks, the system has to
ensure strong synchrony properties in the sense that there must not only exist δ-timely
paths from p to q but also from q to p.

The δ-timeliness of a path is a property that is only eventually ensured. Moreover,
δ-timeliness of a link can only be approximated by processes. We would like that an
approximation algorithm outputs boolean values in such a way that if the path is truly
δ-timely, then eventually only true is output, and if the path is not δ-timely, then false
is output infinitely often. However as we will see, such approximations of δ-timeliness
are generally too strong because there is some incertitude on the time it takes to go from
p to q on the path. Therefore the approximation algorithm only ensures that if the path
is δ-timely, then true is eventually output forever and if the path is not Δ-timely (with

� This work has been supported in part by the ANR project SHAMAN and the INRIA project
GANG.

S. Dolev et al. (Eds.): SSS 2010, LNCS 6366, pp. 435–451, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

436 C. Delporte-Gallet, S. Devismes, and H. Fauconnier

Δ > δ), then false is output infinitely often. Hence, between δ and Δ the approximation
algorithm may output true or false just as well.

The existence of such approximations enables to answer to our initial problem (but
with the little restriction on δ and Δ): if at least one δ-timely path exists from p to q,
it is then possible to ensure that all processes eventually agree on the same Δ-timely
path from p to q. An algorithm which ensures that all correct processes eventually agree
on the same structure verifying some properties is called an extraction algorithm [7].
Many other problems can be solved in the same way: for example extraction of a tree
containing all correct processes whose all paths from the root are Δ-timely, or a ring
containing all correct processes and whose links are Δ-timely, etc.

Actually, all these aforementioned algorithms use methods very similar to the ones
used, for example, in the eventual leader election problem in [1–4, 9, 11]. In fact, we
prove here that this approach can be expressed in a very general framework. Approxi-
mation of δ-timeliness and extraction of some structures based on the δ-timeliness rela-
tion are special cases of the more general problem of approximating properties on runs
and extracting structures based on these properties. Instead of δ-timeliness, one can
consider more general properties on runs and consider when they are eventually true
forever. Then, assuming approximation algorithms for these predicates, it is possible to
extract (i. e. choose and agree) one of these predicates that is true in the run. More pre-
cisely, as for δ-timeliness, the approximation is defined by pairs of predicates (P, Q),
where P specifies when the approximation has to eventually output true forever and
¬Q when the approximation has not to eventually output true forever (in other words
has to output infinitely often false). Then, given a set of pairs of predicates (Pi, Qi) in-
dexed by some set I , the extraction algorithm, assuming that at least one Pi is true, will
converge to some i0 for all correct processes such that Qi0 is true. This generalization
enables to have the same algorithms for many different problems.

In this way, the extraction of structures based on the δ-timeliness relation is only a
special case of this general case. For example, assuming that processes have a trusting
mechanism (like a failure detector) giving to each processes lists of process supposed
to be alive, and consider the predicate “p is eventually in all lists”, then the extraction
algorithm gives one of such processes. Assuming that these lists are given by failure de-
tector ♦S ([5]) then the extraction algorithm gives an implementation of failure detector
Ω and the algorithm is rather close to algorithm of [6].

Contributions. In this paper, we first define a general framework in which processes
may approximate predicates on runs and give a generic extraction algorithm that en-
ables processes to converge on one of the predicates satisfied in the run. Then, we
apply these concepts by proposing algorithms and impossibility results about the ap-
proximation of δ-timeliness. In particular we give sufficient conditions to approximate
δ-timeliness on links. More precisely, we prove that we need either to have perfectly
synchronized clocks or to assume very strong timeliness requirements. Finally, we give
examples of general extractions based on approximation of link δ-timeliness. These il-
lustrations emphasizes the two mains points of our contribution. Firstly, this general
approach allows to drastically simplify the design of algorithm. Indeed, from a simple
algorithm that approximates a local predicate, like “a link is δ-timely”, we can easily
derive an algorithm to extract a more complex structure such as a δ-timely path or a

Approximation of δ-Timeliness 437

δ-timely ring. Secondly, our algorithms have practical applications, as they can be used
to find efficient routes in a network (that is, δ-timely paths), or efficient overlay such as
δ-timely rings.

Related works. Many works [1–4, 9, 11] on eventual leader election or Ω implementa-
tions uses the same techniques as here. This paper may be also seen as a formalization
and abstraction of these techniques. To the best of our knowledge [7] was the first one to
study timeliness for itself and not as a mean to get information about process crashes.
Note that as link timeliness only means that the communication delay of the link is
bounded, its interest is mainly theoretical.

Roadmap. In Section 2 we present the model. Section 3 gives the basic definitions
for approximations of predicates and the general extraction algorithm. Section 4 gives
conditions for the existence algorithms for approximation of δ-timeliness. In Section 5
we give some examples of applications of extraction algorithms for δ-timeliness.

2 Model

Processes. We consider distributed systems composed of n processes that communicate
by message-passing through directed links. We denote the set of processes by Π =
{p1, ..., pn}. We assume that the communication graph is complete, i.e., for each pair
of distinct processes p, q, there is a directed link from p to q, denoted by (p, q). A
process may fail by crashing, in which case it definitely stops its local algorithm. A
process that never crashes is said to be correct, faulty otherwise.

We assume the existence of a discrete global clock to which processes cannot access.
The range T of the clock’s ticks is the set of natural integers. All correct processes p are
synchronous, i.e., they are able to take step at each clock tick. So, they can accurately
measure time intervals.

As processes can accurately measure time intervals, our algorithms can use local
timers. A process p starts a timer by setting settimer(F) to a positive value. F
is a flag that identifies the timer. The timer F is then decremented until it expires.
When the timer expires, timerexpire(F) becomes true. Note that a timer can be
restarted (by setting settimer(F) to some positive value) before it expires. Finally,
unsettimer(F) allows to disable timer F .

Communication pattern. A communication pattern CP is a function from T ×Π ×Π
to �: CP (τ, p, q) = k means that if process p sends a message to process q at time τ
then the message is received by process q at time τ + k.

Communication between processes is assumed to be reliable and FIFO. Reliable
means that (1) every message sent through a link (p, q) is eventually received by q if q
is correct, also (2) if a message m from p is received by q, then m is received by q at
most once and only if p previously sent m to q. FIFO means that messages from p to
q are received in the order they are sent. The links being reliable, an implementation of
reliable broadcast [8] is possible and in the following reliable broadcast is defined by
two primitives: rbroadcast〈〉 and rdeliver〈〉.

438 C. Delporte-Gallet, S. Devismes, and H. Fauconnier

Runs. An algorithmA consists of n deterministic (infinite) automata, one per process.
The execution of an algorithmA proceeds as a sequence of process steps. Each process
performs its steps atomically. During a step, a process may send and/or receive some
messages and changes its state.

A run R of algorithmA is a tuple R = 〈CP, I, E, S, F 〉 where CP is a communica-
tion pattern, I is the initial state of the processes in Π , E is an infinite sequence of steps
of A, S is a list of increasing time values indicating when each step in E occurred, and
F is a failure pattern, i.e. a non decreasing function from T to 2Π such that F (τ) is
the set of processes that are crashed at time τ . Faulty(R) =

⋃
τ∈T F (τ) is the set of

faulty processes and Correct(R) = Π − Faulty(R) is the set of correct processes.
Process p may take a step at time τ only if it is not crashed at this time. A process

p takes an infinite number of steps if and only if p ∈ Correct(R). Moreover a run
satisfies properties concerning sending and receiving messages according to CP : if
p sends message m to q at time τ , and q is correct then m is received by q at time
τ + CP (τ, p, q).

δ-timeliness. Given some δ and two correct processes p and q, we say that link (p, q)
is δ-timely if and only if there is a time τ such that for all time τ ′ ≥ τ we have
CP (τ ′, p, q) ≤ δ. By convention, if q is faulty then link (p, q) is δ-timely, and if p
is faulty and q is correct, link (p, q) is not δ-timely.

3 Approximation and Extraction

Predicates. Given a run R, the local state of process p in R at time τ is denoted
SR(p, τ). Predicates considered here are defined from functions φ from Π × T to
{true, false} that define the truth value in local states SR(p, τ). We always assume
that φ(p, τ) = true if p is crashed at time τ . By extension, φ(τ) denotes

∧
p∈Π φ(p, τ).

By definition, the predicate associated to φ, denoted Pφ, is true for run R if and only
if there is a time τ0 such that for all time τ ≥ τ0, φ(τ) is true. In this case, we also
say that φ is eventually forever true. In the following, a predicate P on run R is always
associated in this way to some φ. When the context is clear we do not give φ explicitly.

For example let Q be the predicate “the boolean variable v of process p is eventually
forever true”. Q is a predicate on the run for which φ(q, τ) is true if and only if v is true
in SR(p, τ). Remark that ¬Q is true if and only if we have “the boolean variable v of
process p is infinitely often false”. Generally, ¬Pφ is equivalent to for all time τ there
is some τ ′ ≥ τ and some process p such that φ(p, τ ′) is false, that is, there is a process
p such that φ(p, τ) is false infinitely often.

Predicate Pφ is said to be local to process p if and only if for all time τ we have
φ(τ) = φ(p, τ). Let ψp,q be the function defined by ψ(p,q)(r, τ) = true if and only
if CP (τ, p, q) ≤ δ. Pψp,q is the predicate corresponding to the δ-timeliness of the
link (p, q). In the following, Pψ(p,q) will be abbreviated as Tpq(δ). With help of the
assumption made on predicates for faulty processes, this predicate is local to process
q. In the same way, predicate “p is eventually crashed”, denoted Pp is crashed, is local
to p.

Approximation of δ-Timeliness 439

Approximation algorithms. In the following, we are interested in algorithms that ap-
proximate some predicates in the sense that to approximate P we want to get some
variable v such that: P is true if and only if v is eventually forever true. Actually, such
approximations are too strong, so we consider here weaker approximations: we define
the approximation by a pair of predicates (P, Q) such that (1) P ⇒ Q, (2) if P is true
then v must be eventually forever true, and (3) if Q is false then v is not eventually
forever true.

More precisely, consider pair (P, Q) of predicates such that P ⇒ Q, an approxi-
mation algorithm A for process p of predicates (P, Q) is an algorithm with a special
boolean variable local to p OutpA (actually the output of A for p) written only by algo-
rithm A such that:

– if P is true then OutpA is eventually forever true
– if Q is false then OutpA is not eventually forever true (i.e. is infinitely often false)

By convention, we assume that if p is correct then OutpA is written infinitely often (as
processes are synchronous it is always possible). Not that if P is false but Q is true then
OutpA may be eventually true forever or infinitely often false. In this way, for Q ∧ ¬P
there is no requirement on the output of A.

By extension, predicates (P, Q) are local to process p if both P and Q are local
to p. In the case of approximation of predicates (P, Q) local to p, an approximation
algorithm can be implemented for every correct process:

Proposition 1. IfA is an approximation algorithm for p of predicates local to p (P, Q),
then for every correct process q there exists an approximation algorithm for q of predi-
cate (P, Q).

Sketch of Proof. Let A be an approximation algorithm for p of predicates local to p
(P, Q).

Algorithm given in Figure 1 implements an approximation algorithm B of (P, Q)
for every correct process. In this algorithm, each time algorithmA modifies OutpA, (1)
OutpB is written and (2) a message is (reliably) broadcast to inform every process. When
a process q delivers this message, it writes its output value OutqB with the new value. If
this new value is false then true is written again into OutqB .

Assume that p is faulty. Then, by assumption about faulty processes and local pred-
icates, P is true. Also, by definition of the algorithm, every correct process q only
finitely delivers messages from p. As a consequence, OutqB is eventually forever true.

Assume that p is correct. First, by (1) OutpB is eventually forever true if and only if
OutpA is eventually forever true. Then, by (2), for every correct process q �= p, OutqB
is eventually forever true if and only if OutpA is eventually forever true.

Hence, if A is an approximation algorithm for p of predicates local to p (P, Q), then
B is an approximation algorithm for every correct process of predicate (P, Q). ��

The next proposition can be verified using an algorithm very similar to the one given in
Figure 1.

440 C. Delporte-Gallet, S. Devismes, and H. Fauconnier

In Code for A of p:

1: whenever A writes Outp
A with b /∗ b is a boolean value ∗/

2: Outp
B := b;rbroadcast〈(P, b)〉

In Code for process q �= p:

1: whenever rdeliver〈(P,b)〉
2: Outq

B := b

3: if ¬b then Outq
B := true

Fig. 1. B, approximation algorithm of (P, Q) for every correct process

Proposition 2. If AP,Q and AP ′,Q′ are approximation algorithms for correct process
p of predicates (P, Q) and correct process q of predicates (P ′, Q′), respectively, then
for all correct processes r, there are approximation algorithms for r of predicates (P ∧
P ′, Q ∧Q′).

In the following we are only interested in approximation algorithms for all correct pro-
cesses. Then, by default, an approximation algorithm of (P, Q) means an approximation
algorithm for all correct processes.

Given a finite set of indexes I and a set of predicates indexed by I say (Pi, Qi)i∈I ,
the set (Ai)i∈I denotes the set of approximation algorithms of (Pi, Qi)i∈I , that is, for
each i ∈ I , Ai is an approximation algorithm for (Pi, Qi).

Extraction algorithms. Consider a set of predicates indexed by some finite set and as-
sume that at least one of these predicates is true. We would like that all correct processes
choose and converge to the same predicate satisfied in the run. To evaluate these pred-
icates, processes use approximations algorithms as defined just before. Hence, we do
not have sets of single predicates but sets of pair of predicates (Pi, Qi) indexed by some
set in which Pi specifies when the approximation outputs true forever and ¬Qi when
the approximation does not output true forever. Hence, if at least one of the Pi is true,
the extraction algorithm has to converge to one index j such that Qj is true. In this way,
from a property guaranteed in the run for at least one Pi, we find an index i0 such that
Qi0 is true. Of course, if Qi = Pi then the chosen index verifies Pi0 .

More precisely, let (Pi, Qi)i∈I be a set of predicates indexed by I , an extraction
algorithm for (Pi, Qi)i∈I is an algorithm such that in each run R where at least one
Pi is true, all correct processes eventually choose the same index i0 ∈ I such that
Qi0 is true. In other words, each process p has a variable dp and in each run R where∨

i∈I Pi = true, there is an index i0 ∈ I satisfying the following two properties:

– Eventual Agreement: there is a time τ after which for all correct processes p
dp = i0,

– Validity: Qi0 is true.

Let I be a finite set of indexes, and (Pi, Qi)i∈I a set of predicates indexed by I , if
(Ai)i∈I is a set of approximations of (Pi, Qi)i∈I , then the algorithm in Figure 2 is an
extraction algorithm for (Pi, Qi)i∈I .

In this algorithm, each process p associates a (local) counter variable Acc[i] to each
variable OutpAi

. Each time OutpAi
becomes false at p, p increments Acc[i]. Moreover,

Approximation of δ-Timeliness 441

Code for each process p

1: Procedure updateExtracted()
2: d ← i such that (Acc[i], i) = min≺lex

{(Acc[i′], i′) such that i′ ∈ I}

3: On initialization:
4: for all i ∈ I do Acc[i] ← 0
5: updateExtracted()
6: start tasks 1, 2 and 3

7: task 1:
8: loop forever
9: each time Outp

Ai
becomes false

10: Acc[i] ← Acc[i] + 1
11: updateExtracted()

12: task 2:
13: loop forever
14: send〈(ACC, Acc)〉 to every process except p every η /∗ η is a constant ∗/

15: task 3:
16: upon receive〈(ACC, a)〉 do
17: for all i ∈ I do
18: Acc[i] ← max(Acc[i], a[i])
19: updateExtracted()

Fig. 2. Extraction algorithm for (Pi, Qi)i∈I assuming (Ai)i∈I is a set of approximations of
(Pi, Qi)i∈I

each p regularly sends Acc to all other processes. Upon receiving a message containing
the array acc, a process locally updates Acc[i] for all i with the maximum value between
Acc[i] and acc[i]. This way:

– If there is a time after which OutpAi
is true forever for all processes, then the value

of Acc[i] is eventually fixed to the same value for all correct processes.
– If OutqAi

is false infinitely often at some process q, then Acc[i] is incremented
infinitely often by q. Consequently, Acc[i] is unbounded for all correct processes.

If for some j, Pj is true in the run then, as Aj approximates (Pj , Qj), at least Acc[j]
is eventually fixed to the same value for all correct processes. To agree on some i, the
processes call updateExtracted() each time they modify their array: this function sets
the variable d to the index i0 such that Acc[i0] is minimum (we use the order on the
indices to break tie). Hence, if for some j, Pj is true in the run then, eventually the
d-variable of every correct process p is set to the same index i0 such that OutpAi0

is

eventually forever true. As Ai0 approximates (Pi0 , Qi0), Qi0 is true in the run and we
can conclude:

Proposition 3. Let I be a finite set of indexes, and (Pi, Qi)i∈I a set of predicates in-
dexed by I , if (Ai)i∈I is a set of approximation algorithms of (Pi, Qi)i∈I , then there
exists an extraction algorithm for (Pi, Qi)i∈I .

Note that this extraction algorithm has two additional properties: it is self-stabilizing
and may tolerates fair lossy links.

Unfortunately in this extraction algorithm all correct processes send infinitely many
messages and consult infinitely many times all approximation algorithms (Ai). Now, it
is possible to achieve a more efficient extraction concerning communication.

442 C. Delporte-Gallet, S. Devismes, and H. Fauconnier

Let (Ai)i∈I be a set of approximation algorithms of (Pi, Qi)i∈I . The extraction algo-
rithmA obtained with (Ai)i∈I is communication-efficient [10] if: (1)A is an extraction
algorithm for (Pi, Qi)i∈I , and (2) for each run R if at least one Pi of (Pi, Qi)i∈I is true
then there is a time τ after which (a) there exists some j in I such that every correct
process p reads only OutpAj

, and (b) no message is sent by A after τ .
If (Ai)i∈I is a set of approximations of (Pi, Qi)i∈I , then the algorithm in Figure 3

is an efficient extraction algorithm for (Pi, Qi)i∈I .
Again in this algorithm, a counter variable Acc[i] is associated to each variable

OutpAi
. Again, updateExtracted() returns the index i0 such that Acc[i0] is minimum

and the variable d is set to this index. However, to get the efficiency, each process p
now only tests the value of OutpAd

. Each time OutpAd
becomes false, process p blames

d by reliably broadcasting the message (ACC, d) to every process. Upon delivering
(ACC, x), a process increments Acc[x] and calls updateExtracted() to refresh the
value of d.

If for some i, Pi is true in the run then, asAi approximates (Pi, Qi), OutqAi
is eventu-

ally forever true at all correct processes p and the message (ACC, i) can only be finitely
broadcasted. Moreover, by the property of the reliable broadcast, all correct processes
delivers the same number of (ACC, i) messages. Hence, eventually every correct pro-
cess agrees on a fixed value of Acc[i]. As the value in Acc are monotically increasing,
by definitions of updateExtracted() and the reliable broadcast, the d-variables of all
correct processes eventually converge to the same index i0.

Assume now that the d-variables of all correct processes eventually converge to the
same index i0 but OutqAi0

is false infinitely often for some correct process q. In this

case, q continuously tests OutqAi0
and, consequently, (reliably) broadcasts infinitely

many (ACC, i0) messages. So, the value of Acc[i0] grows infinitely often at every
correct process and eventually the d-variables of all correct processes are set to some
other index.

Hence, if for some j, Pj is true in the run then, eventually the d-variable of every
correct process p is set to the same index i0 such that OutpAi0

is eventually forever true.
As Ai0 approximates (Pi0 , Qi0), Qi0 is true and we can conclude:

Proposition 4. If (Ai)i∈I is a set of approximation algorithms of (Pi, Qi)i∈I , then
there exists an communication-efficient extraction algorithm for (Pi, Qi)i∈I .

4 Approximation Algorithms for δ-Timeliness

We now consider the predicates Tqp(δ) on δ-timeliness of links (q, p). We notice that
even in the good case where processes are equipped with perfectly synchronized clocks,
process q has to send a message every tick of time to approximate (Tqp(δ), Tqp(δ)). This
does not seem reasonable, so we consider the predicate (Tqp(δ), Tqp(Δ)) with Δ > δ.
Obviously, we have a good approximation when Δ is close to δ. That is, if there exist
two reasonable constants m and a such that Δ = mδ + a.

We first show that without additional assumptions there is no approximation algo-
rithm for (Tqp(δ), Tqp(Δ)). Then we consider two assumptions that make the problem
solvable: (1) each process is equipped with a perfectly synchronized clock, and (2)

Approximation of δ-Timeliness 443

Code for each process p

1: Procedure updateExtracted()
2: d ← i such that (Acc[i], i) = min≺lex

{(Acc[i′], i′) such that i′ ∈ I}

3: On initialization:
4: for all i ∈ I do Acc[i] ← 0
5: updateExtracted()
6: start tasks 1 and 2

7: task 1:
8: loop forever
9: each time Outp

Ad
becomes false

10: rbroadcast〈(ACC , d)〉
11: task 2:
12: upon rdeliver〈(ACC ,x)〉 do
13: Acc[x] ← Acc[x] + 1
14: updateExtracted()

Fig. 3. Communication-efficient extraction algorithm for (Pi, Qi)i∈I assuming (Ai)i∈I is a set
of approximations of (Pi, Qi)i∈I

there is a Γ -timely path from q to p. We show that in both cases, there exist two con-
stants m and a such that if Δ ≥ mδ + a, then there is an algorithm to approximate
(Tqp(δ), Tqp(Δ)).

4.1 Impossibility Results

If the system does not have additional assumptions, like perfectly synchronized clocks
in processes p and q or a Γ -timely path from q to p, then there is no algorithm to
approximate (Tqp(δ), Tqp(Δ)). This result holds even if we consider a system without
crash failures.

Proposition 5. There is no approximation algorithm for (Tqp(δ), Tqp(Δ)).

Sketch of Proof. In a run, it is possible that p starts executing its code at some time τ0
while q starts at some time τ ′

0. (If we know that p and q start executing their local code
at the same time, then as their local clock can accurately measure the time, they have a
perfect synchronized clock.)

We proceed by contradiction. Assume there is an approximation algorithm A for
(Tqp(δ), Tqp(Δ)). Let R be a run of A in which (i) the link q to p is δ-timely, (ii)
all messages from any process different from q take a time K > Δ + 2, and (iii) all
messages to any process different from p take a time K > Δ + 2. R defines the real
time at which processes takes steps, but by hypothesis processes do not have access to
this time. It is then possible to construct a run RK of A in which (1) process q takes
the same steps at the same time than in R, and (2) for each other process r, r takes
at time τ + K − 1 the step it takes at time τ in R. For every process, R and RK are
indistinguishable. Now, the properties of the approximation algorithm gives that there
is a time after which OutA is forever true in R, and consequently, in RK . However, in
RK , the messages sent by q are received by p with a delay of K − 1 > Δ. That is, the
communication from q to p is not Δ-timely in RK , contradicting the properties of the
approximation algorithm. ��

444 C. Delporte-Gallet, S. Devismes, and H. Fauconnier

Note that when it is possible to design, an approximation algorithm for (Tqp(δ), Tqp(δ))
is really expensive. To see this, assume that q sends a message at time 2τ − 1 and at
time 2τ + 1. These messages are received by process p at 2τ − 1 + δ and 2τ + 1 + δ.
As q has omitted to send a message at time 2τ , we cannot evaluate if CT (2τ, q, p) = δ
or δ + 1. In this latter case, the link is not δ-timely but p cannot observe that. Hence,
follows:

Proposition 6. When an approximation algorithm for (Tqp(δ), Tqp(δ)) can be designed,
then in the algorithm, if q is correct, it must eventually send messages at every clock
tick.

4.2 Approximation Algorithms

Algorithm assuming perfectly synchronized clocks. We first assume that processes are
equipped with perfectly synchronized clocks denoted clock(), i.e., for every time τ ,
every process p and q, we have clockp() = clockq() at time τ . Considering the link
(q, p), a constant K > 1, algorithm given in Figure 4 allows process p to approximate
(Tqp(δ), Tqp(δ +K)). In the algorithm, process p has a boolean variable OutA(q,p) that
is initialized to true and reset to true every η time. This variable remains true until p
learns that a message from q to p may take more than δ + K time units. In this case
OutA(q,p) is set to false. If in the extraction algorithm, p waits that OutA(q,p) is false,
then it is notified.

To test the timeliness of the link, we proceed as follows: every K time, q sends to p
a TIMELY? message where it stores the current value of its local clock. As the clocks
are perfectly synchronized, upon receiving a TIMELY? message tagged with the clock
value c, p knows the exact time the message spends to traverse the link. If the message
spends more that δ time units, p has an evidence that was not timely and, consequently,
sets OutA(q,p) to false. Moreover, we use a timer of period K +δ. If p does not receive
any message from q during a period of K + δ time units, p suspects q and consequently
sets OutA(q,p) to false.

If the link (q, p) is δ-timely, then q is correct. Hence, q sends TIMELY? messages
to p infinitely often and eventually all these messages are received by p on time. So,
eventually p stops setting OutA(q,p) to false. Hence, OutA(q,p) is eventually forever
true.

If the link (q, p) is not (δ + K)-timely, there is two cases to consider:

– If q eventually crashes, the timer guarantees that OutA(q,p) is false infinitely often.
– Assume now that q is correct. If the link is not (δ + K)-timely then for infinitely

many time τ , CT (τ, q, p) > δ + K . Let τ be such a time. There exists τ ′ such that
process q sends (TIMELY?) messages at τ ′ and at τ ′ + K with τ ′ < τ ≤ τ ′ + K .
By the FIFO property on the links, the message sent at τ ′ + K is received after
τ + δ + K + 1 > (τ ′ + K) + δ + 1. Hence, OutA(q,p) is set to false.

In both cases OutA(q,p) is false infinitely often.

Lemma 1. If processes are equipped with perfectly synchronized clocks, algorithm
given in Figure 4 is an approximation algorithm of (Tqp(δ), Tqp(δ +K)) for process p.

Approximation of δ-Timeliness 445

Code for process p

1: Initialization
2: OutA(q,p) ← true

3: settimer(qp) ← K + δ
4: start Task 1, Task 2 and Task 3

5: Task 1
6: upon receive〈TIMELY?, c〉 from q do
7: settimer(qp) ← K + δ
8: if clock()− c > δ then
9: OutA(q,p)

← false /∗ the extraction algorithm at p will notice that OutA(q,p)
isfalse ∗/

10: Task 2
11: upon timerexpire(qp) do
12: settimer(qp) ← K + δ
13: OutA(q,p) ← false /∗ the extraction algorithm at p will notice that OutA(q,p) isfalse ∗/

14: Task 3
15: do every η time /∗ η is a constant ∗/
16: OutA(q,p) ← true

Code for process q

1: Initialization
2: start Task 4

3: Task 4
4: do every K time
5: send〈TIMELY?, clock()〉 to p

Fig. 4. Algorithm for p to approximate (Tqp(δ), Tqp(δ + K)), assuming perfectly synchronized
clocks

With Proposition 1, we obtain:

Theorem 1. If processes are equipped with perfectly synchronized clocks, there is an
algorithm for all processes to approximate (Tqp(δ), Tqp(δ + K)).

Algorithm assuming a Γ -timely path in the reverse side. We now assume that local
clocks may not be synchronized. Instead, we assume that if the link (q, p) is δ-timely,
then there exists a Γ -timely path from p to q, that is, a path such that if p and q are
correct and p sends a message to q at time τ , then there exists some correct processes
r1,...,rk and some time τ1,...,τk such that (1) r1 = p, (2) rk = q, (3) τ1 = τ , (4)
τk ≤ τ + Γ , and (5) for all 1 ≤ i < k, if ri sends a message at time τi, it is received by
ri+1 at time τi+1.

Considering the link from q to p, the algorithm given in Figure 5 allows process p to
approximate the predicate (Tqp(δ), Tqp(2δ + Γ + K)).

In the algorithm, process p has a boolean variable OutA(q,p) that behaves as in the
previous algorithm.

To test the timeliness of (q, p), we proceed by phases. Every K times, p broadcasts
to every other process a TIMELY? message where it stores the current phase number
and a counter value initialized to 0. Then, using the counter, the message is relayed at
most n− 1 times in all directions except p until reaching q. These relays guarantee that
if there exists a Γ -timely path from p to q, then at least one TIMELY? message tagged
with the current phase number arrives to q in less than Γ time units. Upon receiving

446 C. Delporte-Gallet, S. Devismes, and H. Fauconnier

Code for process p

1: Initialization
2: phase qp ← 0
3: OutA(q,p)

← true

4: start Task 1, Task 2, Task 3 and Task4

5: Task 1
6: do every K time
7: phase qp ← phase qp + 1
8: send〈TIMELY?, phase qp, 0〉 to every process except p
9: settimer(phase pq) ← δ + Γ

10: Task 2
11: upon receive〈TIMELY?, �,−〉 from q
12: unsettimer(�)

13: Task 3
14: upon timerexpire(�) do
15: OutA(q,p) ← false /∗ the extraction algorithm at p will notice that OutA(q,p) isfalse ∗/

16: Task 4
17: do every η time /∗ η is a constant ∗/
18: OutA(q,p) ← true

Code for process q

1: Initialization
2: start Task 5

3: Task 5
4: upon receive〈TIMELY?, t, k〉 from any process r do
5: send〈TIMELY?, t, k + 1〉 to p

Code for every process except p and q

1: Initialization
2: start Task 6

3: Task 6
4: upon receive〈TIMELY?, t, k〉 from any process r do
5: if k ≤ n − 1 then
6: send〈TIMELY?, t, k + 1〉 to every process except p

Fig. 5. Algorithm for p to approximate (Tqp(δ), Tqp(2δ + Γ + K)) assuming a Γ -timely path in
the reverse side

such a message, q relays the message a last time to p only. Hence, if (q, p) is δ-timely, p
receives from q at least one TIMELY? message tagged with the current phase number
in less than δ + Γ time units. If p does not receive this message by time δ + Γ , it sets
OutA(q,p) to false. To this end, it uses one timer per phase that is activated when it
sends a TIMELY? message and this timer is disabled if the corresponding TIMELY?
message is received from q on time.

If the link (q, p) is δ-timely, then q is correct. So, there is a time after which, during
every phase, p receives at least one TIMELY? message from q in less than δ + Γ time.
Hence, OutA(q,p) is eventually forever true.

If the link (q, p) is not (2δ + Γ + K)-timely, there is two cases to consider:

– If q eventually crashes, eventually p stops receiving TIMELY? messages and, con-
sequently, sets OutA(q,p) to false infinitely often.

– Assume now that q is correct. If the link is not (2δ + Γ + K)-timely then for
infinitely many time τ , CT (τ, q, p) > 2δ + Γ + K . Let τ be such a time.

Approximation of δ-Timeliness 447

By definition, if q sends a message to p at time τ , then p receives the message at
a time τ ′ such that τ ′ > τ + 2δ + Γ + K . Moreover, the link being FIFO, (1) every
message sent by q to p after time τ is received after time τ ′ > τ + 2δ + Γ + K .

Every K time, p increments ph, sends a message (TIMELY?,ph,0), and starts a
timer identified by ph that will expire δ + Γ times later. In particular, p sends such
a message, say (TIMELY?,phi,0), at a time τi such that τ ≤ τi ≤ τ + K and starts
a timer phi that will expire at the latest at time τ +δ+Γ +K . Moreover, (2) before
time τi no (TIMELY?,phi,−) message exists in the system. So by (1) and (2), p
cannot receive any (TIMELY?,phi,−) message before time τ ′ > τ + 2δ + Γ + K .
Hence, p cannot receive any (TIMELY?,phi,−) message before timer phi expires.
Consequently, p will set OutA(q,p) to false. Hence, if (q, p) is not (2δ + Γ + K)-
timely, p sets OutA(q,p) to false infinitely often.

In both cases OutA(q,p) is false infinitely often.

Lemma 2. If there is a Γ -timely path from p to q, algorithm given in Figure 4 is an
approximation algorithm (Tqp(δ), Tqp(2δ + Γ + K)) for process p.

With Proposition 1, we obtain:

Theorem 2. If there is a Γ -timely path from p to q, then there is an algorithm for all
processes to approximate (Tqp(δ), Tqp(2δ + Γ + K))

δ-timely paths. In the same way it possible to approximate a δ-timely path P from p
to q, (every message sent along the path arrives to process q within δ), we denote this
predicate TP (δ). The algorithms that approximate (TP (δ), TP (Δ)) are similar to those
Figure 4 and Figure 5. Let P be a path from p to q, we have:

Theorem 3. If processes are equipped with perfectly synchronized clocks, there is an
algorithm for all processes to approximate (TP (δ), TP (δ + K)).

Theorem 4. If there is a Γ -timely path from q to p, then there is an algorithm for all
processes to approximate (TP (δ), TP (2δ + Γ + K))

5 Extraction of δ-Timeliness Graphs

In this section, we apply our previous results to extract graphs. To that end, we give few
examples of sets of predicates on graphs. These predicates concern the δ-timeliness of
the edges of the graph. We show that we can extract an element of such sets under some
assumptions. We also exhibit some desirable properties of the extracted graphs.

We begin with some definitions and notations about graphs.

5.1 Graphs

For a directed graph G = 〈N, E〉, Nodes(G) and Edges(G) denote N and E, respec-
tively. The tuple (X, Y) is a directed cut (dicut for short) of G if and only if X and Y
define a partition of Nodes(G) and there is no directed edge (y, x) ∈ Edges(G) such
that x ∈ X and y ∈ Y .

448 C. Delporte-Gallet, S. Devismes, and H. Fauconnier

Lemma 3. For every path p0, . . . pm constituted of Δ-timely links, there exists k ∈
[0 . . .m + 1] such that:

– for all j such that 0 ≤ j < k, pj is a correct process, and
– for all j such that k ≤ j ≤ m, pj is faulty.

Proof: For all i ∈ [0 . . .m − 1], (pi, pi+1) is Δ-timely and, by definition, if pi+1 is
correct then pi is also correct, which proves the lemma. ��

We deduce the following corollary from Lemma 3:

Corollary 1. Let P be a path from p to q constituted of Δ-timely links.

– If p and q are correct, then all processes in P are correct.
– If P is a cycle, then either all processes are correct or all processes are faulty.

5.2 Extracting an Elementary δ-Timely Path from p to q

Let (Pathi)i∈I be the set of all possible elementary paths from p to q. If (Ai)i∈I is a set
of approximation algorithms of (TPathi(δ)), TPathi(Δ))i∈I , then from Proposition 3,
there is an extraction algorithm for (TPathi(δ), TPathi(Δ))i∈I , and from Proposition 4,
there is a communication-efficient extraction algorithm for (TPathi(δ), TPathi(Δ))i∈I .
By Proposition 2 and Theorem 3, assuming perfectly synchronized clocks, there is an
approximation algorithm for (TPathi(δ), TPathi(Δ))i∈I for every Δ > δ. Hence, we
can conclude:

Theorem 5. Assuming perfectly synchronized clocks and Δ > δ, there exists a (commu-
nication-efficient) extraction algorithm for (TPathi(δ), TPathi(Δ))i∈I .

Following a similar reasoning, using Theorem 2, we have:

Theorem 6. Assuming a Γ -timely path in the reverse side, if Δ > 2δ + Γ , there is a
(communication-efficient) algorithm for (TPathi(δ), TPathi(Δ))i∈I .

By Corollary 1, if p and q are correct, then every Δ-timely path from p to q only con-
tains correct processes. Hence, the algorithm we obtained allows to efficiently route
message in the network. Moreover, our approach being modular, one can design a rout-
ing algorithm for only a restricted subset of processes. For example, if we consider a
clustered network, one may want to design an efficient routing algorithm only for the
set of clusterheads (the communication inside a cluster being usually local or managed
using an overlay like a tree).

5.3 Extracting δ-Timely Graphs

We want now to extract δ-timely graphs containing all correct processes. Below, we
give some definitions to formally explain our approach.

Consider the set of all graphs (Gi)i∈I that can be constructed with Nodes(Gi) ⊆ Π
and Edges(Gi) ⊆ Nodes(Gi)×Nodes(Gi).

Approximation of δ-Timeliness 449

Code for process p

1: Initialization
2: start Task 1

3: Task 1
4: do every η time /∗ η is a constant ∗/
5: send〈(ALIV E)〉 to every process except p
6: OutAp ← false /∗ the extraction algorithm at p will notice that OutAp is false ∗/

Code for process q �= p

1: Initialization
2: start Task 2 and Task 3

3: Task 2
4: upon receive〈ALIVE〉 from p do
5: OutAp ← false

6: Task 3
7: do every η time /∗ η is a constant ∗/
8: OutAp ← true

Fig. 6. Algorithm to approximate (Pp is crashed, Pp is crashed)

TGGi(δ) is true in run R if and only if eventually (1) all nodes of Π−Gi are crashed,
and (2) all edges (p, q) of Gi are δ-timely.

By definition, if TGGi(δ) is true in a run R, Gi contains all correct processes. If
(Ai)i∈I is a set of approximations of (TGGi(δ), TGGi(Δ))i∈I , then by Propositions
2, 3, and 4, there is an (efficient) extraction algorithm for (TGGi(δ), TGGi(Δ))i∈I .

To define TGGi(δ) we need a local predicate Pp is crashed that states if a process p
is crashed. A local algorithm that approximates this predicate is given below.

Approximate crashed processes. We can easily design an approximation algorithmAp

for (Pp is crashed, Pp is crashed) at every process q �= p: process p regularly sends mes-
sages. Each time a process receives such a message it sets OutAp to false. Moreover, q
regularly resets OutAp to true. If p is faulty, OutAp is eventually forever true. Other-
wise (p is correct), OutAp is infinitely often false. Hence, follows:

Proposition 7. Algorithm given in Figure 6 allows every process q to approximate
(Pp is crashed, Pp is crashed).

Using Pp is crashed and Te(δ), we can now define TGGi(δ) as follows: TGGi(δ) ≡∧
e∈Edges(Gi) Te(δ) ∧

∧
v/∈Nodes(Gi) Crash(v).

Assuming perfectly synchronized clocks, by Propositions 7, 2, and Theorem 1, there
is an approximation algorithm AGi for (TGGi(δ), TGGi(Δ))i∈I if Δ > δ. By Propo-
sitions 3 and 4, we can conclude:

Theorem 7. Assuming perfectly synchronized clocks and Δ > δ, there exists a (commu-
nicationn-efficient) algorithm that extracts (TGGi(δ), TGGi(Δ))i∈I .

Following a similar reasoning, by Proposition 2, 3, 4, 7, and Theorem 2, we have:

Theorem 8. Assuming a Γ -timely path in the reverse side, if Δ > 2δ + Γ , there is a
(communication-efficient) algorithm that extracts TGGi(δ), TGGi(Δ))i∈I .

450 C. Delporte-Gallet, S. Devismes, and H. Fauconnier

From the previous theorem and Corollary 1, we can deduce the next corollary, which
states that the extracted graph is a dicut between correct and faulty processes. Note that
this property is very useful. For example, one can design an approximation algorithm to
extract a tree. Then, if not all the processes are faulty, the extracted tree will be rooted
at a correct process, the tree will contain all correct processes, and in the tree there will
exist a Δ-timely path from the root to every other correct process. Hence, the algorithm
will allow to communication-efficiently route message from a correct to all others.

Corollary 2. If Gi0 is the extracted graph, Gi0 [Correct(R)], Gi0 [Faulty(R)] is a
directed cut of Gi0

From Corollaries 1 and 2, we have the next corollary, which gives a sufficient condition
to evaluate ♦P , the eventually perfect failure detector [5] that eventually outputs exactly
the set of correct processes.

Corollary 3. If there is at least one correct process and if (Gi)i∈I contains only strongly
connected graphs, the extracted graph Gi0 contains only correct processes.

Extracting a ring containing all correct processes. We now want to extract a δ-timely
ring among all correct processes. Consider the set of all graphs (Ringi)i∈I , that are all
possible rings among any non-empty subset of Π .

TGRingi(δ) is true in run R if and only if eventually (1) all nodes of Π − G are
crashed, and (2) all edges (p, q) of G are δ-timely.

By Corollary 1, if RingG(δ) is true in run R then G contains exactly the set of
correct processes of run R.

Assuming perfectly synchronized clocks, by Propositions 2, 7, and Theorem 1, there
is an approximation algorithms for (TGRingi(δ), TGRingi (Δ))i∈I . By Propositions 3
and 4, we can conclude:

Theorem 9. Assuming perfectly synchronized clocks, if Δ > δ, there exists a (commu-
nication-efficient) extraction algorithm for (TGRingi(δ), TGRingi (Δ))i∈I .

In a ring composed of δ-timely links, each link (p, q) of the ring is δ-timely and there is
a path from q to p that is (n − 1)δ-timely. Then, by Propositions 2, 3, 4, and Theorem
2 , we have:

Theorem 10. If Δ > (n + 1)δ, there is a (communication-efficient) extraction algo-
rithm for (TGRingi(δ), TGRingi(Δ))i∈I .

As noted previously the extracted ring contains exactly the correct processes.

6 Concluding Remarks

In this paper, we studied in which way processes may approximate and agree on struc-
tural properties based on δ-timeliness (e.g., find δ-timely paths between processes or
build a ring between correct processes using only δ-timely links).

We focused on δ-timeliness of the links, however other properties are also interesting
to approximate. For example, with general timeliness defined as the existence of some
unknown bound on communication delays, we can get the same results as in [7]. Ap-
proximation and extraction algorithms may be considered as a first step to dynamically
evaluate predicates expressed in some kind of temporal logic.

Approximation of δ-Timeliness 451

References

1. Aguilera, M.K., Delporte-Gallet, C., Fauconnier, H., Toueg, S.: Stable leader election. In:
Welch, J.L. (ed.) DISC 2001. LNCS, vol. 2180, pp. 108–122. Springer, Heidelberg (2001)

2. Aguilera, M.K., Delporte-Gallet, C., Fauconnier, H., Toueg, S.: On implementing omega
with weak reliability and synchrony assumptions. In: PODC, pp. 306–314 (2003)

3. Aguilera, M.K., Delporte-Gallet, C., Fauconnier, H., Toueg, S.: Communication-efficient
leader election and consensus with limited link synchrony. In: PODC, pp. 328–337. ACM,
New York (2004)

4. Aguilera, M.K., Deporte-Gallet, C., Fauconnier, H., Toueg, S.: On implementing omega in
systems with weak reliability and synchrony assumptions. Distributed Computing 21(4),
285–314 (2008)

5. Chandra, T.D., Toueg, S.: Unreliable failure detectors for reliable distributed systems. Journal
of the ACM 43(2), 225–267 (1996)

6. Chu, F.: Reducing Ω to ♦W . Information Processing Letters 67(6), 298–293 (Sep 1998)
7. Delporte-Gallet, C., Devismes, S., Fauconnier, H., Larrea, M.: Algorithms for extracting

timeliness graphs. In: SIROCC0 (2010)
8. Hadzilacos, V., Toueg, S.: A modular approach to fault-tolerant broadcasts and related prob-

lems. Tech. Rep. TR 94-1425, Department of Computer Science, Cornell University (1994)
9. Hutle, M., Malkhi, D., Schmid, U., Zhou, L.: Chasing the weakest system model for imple-

menting omega and consensus. IEEE Trans. Dependable Sec. Comput. 6(4), 269–281 (2009)
10. Larrea, M., Arévalo, S., Fernández, A.: Efficient algorithms to implement unreliable failure

detectors in partially synchronous systems. In: Jayanti, P. (ed.) DISC 1999. LNCS, vol. 1693,
pp. 34–48. Springer, Heidelberg (1999)

11. Mostéfaoui, A., Mourgaya, E., Raynal, M.: Asynchronous implementation of failure detec-
tors. In: DSN, pp. 351–360. IEEE Computer Society, Los Alamitos (2003)

S. Dolev et al. (Eds.): SSS 2010, LNCS 6366, pp. 452–467, 2010.
© Springer-Verlag Berlin Heidelberg 2010

A Framework for Adaptive Optimization of Remote
Synchronous CSCW in the Cloud Computing Era

Ji Lu, Yaoxue Zhang, and Yuezhi Zhou

Key Laboratory of Pervasive Computing, Ministry of Education
Tsinghua National Laboratory for Information Science and Technology

Department of Computer Science and Technology, Tsinghua University, Beijing, China
luji07@mails.tsinghua.edu.cn

Abstract. The systems for remote synchronous computer supported cooperative
work (CSCW) are significant to facilitate people’s communication and promote
productivity. However, in the Internet, such systems often suffer from the prob-
lems of relatively large latency, low bandwidth and relatively high cost of
wide-area networking. Previous works tried to improve various mechanisms of
communication, but till now we still cannot get rid of these problems due to the
nature of the Internet data transmission mechanism. Rather than making op-
timizations based on the traditional CSCW computing style as previous work did,
this paper proposes an idea of moving appropriate collaborative instances to the
proper computing nodes which are just born in the emerging Cloud computing
environments. Moreover, the paper presents a formal framework AORS to op-
timally organize the collaborative computing upon the emerging computational
resources from the perspectives of both performance and cost. The formulization
of the framework is proposed, and an analytic theory is developed. Directly
solving the modeled problem has to refer to the exhaustive search, which is of
exponential computational complexity; so we develop two heuristics. The ex-
perimental evaluations demonstrate the high efficiency and effectiveness of the
heuristics. Furthermore, we conduct extensive simulation experiments on the
current collaborative computing style and AORS. They illustrate that AORS
brings the CSCW applications better communication quality and lower cost.

1 Introduction

The remote synchronous CSCW systems [1], which denote the systems for geographi-
cally distributed individuals collaboratively computing in the same period of time, have
provided us with a lot of benefit. The important instances include electronic meeting
systems, multiplayer online gaming systems, various real-time groupware, etc. How-
ever, in the Internet environments, the networked collaborations often suffer from the
problems of relatively low quality and relatively high cost of wide-area networking. A
lot of research has been done to address these problems, which can be divided to three
categories. The first category tries to improve the network infrastructure [10][16], few of
which however are adopted in the actual deployment. The works in the second category
concentrate on optimizing the mechanisms or protocols of the communication among

 A Framework for Adaptive Optimization of Remote Synchronous CSCW 453

collaborative instances: [14] speeds-up the slow uplink direction by means of a com-
pression scheme based on a dictionary transmitted through the downlink channel; in [11]
IPComp is proposed as an IP payload compression protocol to reduce the data size in
general IP packet transmission; Fast TCP [4] and UDT [9] enhance on the specific
transport layer protocols, attempting to make better use of the existing resources. The
third category emphasizes on exploring the CSCW-specific approaches: [3] introduces
software design patterns for building optimistic constructs into networked games
through optimistic programming, expecting to reduce the effects of the network latency;
[13] designs a latency prediction system Htrae that allows online game players to cluster
themselves so that those in the same session might have relatively low latency.

Although these works have been proposed, the original problems are still extremely
difficult to solve. The relatively low quality, such as the relatively large delay, stems
from the Internet nature of the multi-hop store-and-forward transmission. And in the
aspect of the cost, Jim Gray examined technological trends in 2003, and concluded that
the cost of wide-area networking had fallen more slowly and still remained relatively
higher than other IT hardware costs [7]. Furthermore, from 2003 to 2008, the
cost/performance improvement of wide-area networking was only 2.7, the least one
among the comparisons with computing and storage, which were 16 and 10, respectively
[2]. Such problems are especially more serious in the emerging mobile device based
CSCW systems. The connection quality and the computing capability of the mobile
devices are generally lower than the common PCs or workstations. Moreover, except the
WiFi-enabled occasions, the price of GPRS or 3G connection is relatively high.

We observe that there is a basic fact: almost all these previous works are based on the
traditional computing style in which all the collaborators (software) are arranged to run
on their pre-defined locations. For example, in a networked collaborative drawing sce-
nario, each collaborator, that is, an instance of collaborative drawing software as well as
the related data, performs on one user’s computer and communicates with others in the
drawing process. So in such current style, we have to bear the relatively large latency
and the relatively high cost of communication because this distributed computing has to
suffer such best-effort long-distance Internet data transmission.

Currently, we begin to reconsider these problems due to a new characteristic,
emerging in the Internet. It is observed that in the Internet some nodes for the public to
compute with enough freedom and capability finally come out. Since the naissance of
computer networks, we could employ some capabilities of other machines. However, so
far such employment has been quite limited actually; for instance, although common
users can publish an essay in a blog server, they could hardly find a place in the Internet
to run a program at their will. The formerly developed Grids mainly focused on the
research and scientific computing, and could hardly be employed freely for the public.
Currently, with the industry zealously promoting Cloud computing [2][17], some nodes
with powerful computing capability, e.g., the datacenter nodes, begin to come out. The
public actually have computing capabilities geographically distributed in the Internet to
carry out tasks with enough computational freedom. In the meantime, the portability of
computational components across different underlying computing nodes could be well
handled by the extensive virtual computing mechanisms.

Instead of computing in the current style, we envision what about moving appropriate
collaborators to the capable and proper computing nodes in the Internet, and more im-
portantly, organizing the CSCW in a better way? Specifically, take a concrete CSCW

454 J. Lu, Y. Zhang, and Y. Zhou

application for example: there are five collaborators {P1, P2, P3, P4, P5}, each of which
consists of the necessary program and associated data; every collaborator belongs to the
corresponding user {U1, U2, U3, U4, U5}. In the traditional/current computing style,
each collaborator resides and computes in one user’s own computer, as the concen-
tric-circles illustrate. However, if some computing nodes with enough computational
freedom and capability exist in the Internet, the collaborator can compute on such
places, namely E, F, G, H, I, J demonstrated in Fig. 1(a). If the volume of the commu-
nication data among the collaborators is so large, all of the five collaborators may mi-
grate to one datacenter, e.g., the node H, to let the communication cost tend to zero.
However, it should be first verified that the migration cost of the collaborators would not
counteract the decrease of the communication cost. Furthermore, it should be guaranteed
that the networking quality between each user node and the node where the corre-
sponding collaborator computes is within the acceptable range. Moreover, the time
consumed for moving the collaborator from its original node to the new computing node
should be beneath the maximal user-bearable threshold. So comprehensively consider-
ing all these goals and constraints, it is likely that the final optimal organization scheme
is just as Fig. 1(b) illustrates. This paper is to formally explore how we can organize the
CSCW computing in an optimal way.

(a) (b)

Fig. 1. Illustration of the organization of CSCW computing

2 Overview of AORS Framework

In a networked CSCW task, as mentioned above, we call each distributed collaborative
instance as a collaborator. Initially, each collaborator resides in its default computing
node. For instance, in a collaborative drawing application, a collaborative instance,
which includes the drawing program and associated data, is a collaborator; the machine
in which the collaborator resides is the collaborator’s default computing node. As a
matter of fact, each collaborator computing at its default computing node is just the
current collaborative computing style. In the network, the emerging computing nodes
capable of hosting the collaborator, such as the datacenters in Cloud computing, are
called candidate computing nodes. Both these two classes, namely, the default com-
puting node and candidate computing nodes are also named qualified computing nodes.

In one CSCW task, there could be several collaborators, which can be either ho-
mogenous or heterogeneous in terms of computational requirements and behavior. In the
networks, for any collaborator, there could be multiple qualified computing nodes that
are capable of hosting it. Facing these various distributed computational entities, the

 A Framework for Adaptive Optimization of Remote Synchronous CSCW 455

goal of the optimal organization of the CSCW computing refers to choosing an optimal
computing node in the networks for each collaborator. Such optimization is considered
from two sides: both the performance and the cost.

Performance View: Through the survey on numerous kinds of collaborative applica-
tions in the Internet, we discover that two aspects are most significant to user experience.
The first is the time for the desired application to be prepared well for use. The main part
of such preparation time here is the collaborator transferring time. So we take this into
account. The second aspect is the connection quality between pairs of collaborators, and
between the users and the collaborators. To characterize such connection quality, we
adopt the metric goodput. Goodput can reflect the real transmission rate between two
nodes in the network, and it is easy to be obtained.

Cost Perspective: The other side is considered in the view of the cost on the utilization
of common computing resources. In contrast, the organization of computing in tradi-
tional related fields, e.g., parallel computing, always involves the adjustment on work-
load, such as load balance. However, the load is not considered in this context, because
most computing nodes emerging currently in reality are born just as super data centers,
aiming at providing any scale-up and scale-down elasticity. Here, the cost does not
directly mean the monetary expenditure. It aims at reflecting the system effort to com-
plete a given task. More specifically, as analyzed in the first section, in general, the
networking becomes the most precious resource in a current computation. So we choose
the cost of data transfer in the Internet as a factor in the optimization.

The framework AORS consists of four main parts: Application Feature Capture En-
gine, Network Characteristic Detection Engine, Optimization Unit and Computing
Support Platform. A high level illustration of the framework is given in Fig. 2. Appli-
cation Feature Capture Engine is responsible for obtaining the characteristics and de-
mands of a collaborative computing application, and Network Characteristic Detection
Engine uses a series of mechanisms to acquire the essential network parameters and
status. All the knowledge above flows to the Optimization Unit to compute the optimal
organization scheme of the distributed entities for the collaborative task. Then according

Fig. 2. The high level view of the AORS framework

456 J. Lu, Y. Zhang, and Y. Zhou

to the optimal scheme, Computing Support Platform will transfer the migratable col-
laborators from their default computing nodes to the optimal candidate computing
nodes, and may also transfer some data back when the task is completed, if needed. No
matter where the collaborator is, (e.g., at the default computing node or at the candidate
computing node), the user, if existing, generally associates with the default computing
node. So if a collaborator is running in a remote candidate computing node, the default
computing node will provide necessary remote output and input function for the user,
acting like a SSH or VNC client.

3 Formulization of AORS

3.1 Application Feature Capture Engine

Application Feature Capture Engine (AFCE) collects the essential features of a col-
laborative computing application that is to be performed in the networks. This process is
completed by AFCE interacting with the application, and cooperating with Network
Characteristic Detection Engine.

The features are obtained through two ways. The first is when a collaborative appli-
cation is going to start, it actively reports the computational parameters to AFCE. The
second is AFCE uses history to predict the value of the parameter which is needed. The
captured features include the collaborator information and the application-specific pa-
rameters, which can be formalized as follows.

In a collaborative computing application, there are m collaborators, which form the
collaborator set { }mkpP k ≤≤= 1| . Initially, these collaborators reside in a set of the

default computing nodes { }mkgG k ≤≤= 1| . Specifically, assume kp is in the node

kg . Besides the initially resident place kg , in the network, there might exist a set of

candidate computing nodes. The default computing node and all the candidate computing
nodes of kp form the set of qualified computing nodes which is of size kn , denoted via

{ }k

k

j

k njdD ≤≤= 1| . So k

k Dg ∈ ; moreover, k

k dg 1= . In particular, in the case that

collaborator kp is not migratable as mentioned previously, 1=kn . If moving the col-

laborator kp from kg to any other qualified computing node k

jd , the data of size kh

should be transferred. At the end of the application, the collaborator which was moved
from the default computing node to one of the candidate computing nodes, might migrate
back, and let the size of data transferred in this process be kv . The above features of the

application are generally easy to be obtained in the optimization phase; however, the size
)(te kk ′′′ of the data that collaborator kp ′ will communicate to kp ′′ during the collaborative

task is relatively difficult to determine, which will be addressed later.

3.2 Network Characteristic Detection Engine

Network Characteristic Detection Engine (NCDE) is responsible for detecting the nec-
essary network information for the collaborative application. NCDE uses three ways to
detect the needed network parameters: the engine actively requests the detected object

 A Framework for Adaptive Optimization of Remote Synchronous CSCW 457

for the needed information; it leverages the history of the corresponding network status
and calculates the current value on their own; in the case of large data centers promul-
gating their parameters, through passively listening to the reports, NCDE updates the
corresponding data.

The characteristics that NCDE detects comprise the particular network connection
parameters, which can be formalized as follows.

k

jjw ′′′ : the cost per unit load transferring from k

jd ′ to k

jd ′′ ;
kk

jj

′′′
′′′χ : the cost per unit load transferring from k

jd ′
′ to k

jd ′′
′′ .

Although the cost per unit load transferring is relatively static, the goodput is likely to
change due to dynamics of networking. Let)(trk

jj ′′′ be the goodput from k

jd ′ to k

jd ′′ , and

)(tr kk

jj

′′′
′′′ be the goodput from k

jd ′
′ to k

jd ′′
′′ .

3.3 Optimization Unit

The optimal scheme can be either computed once before an application starts or re-
computed periodically during a long collaborative computing process in order to take
into account the dynamics of the computing environments. Uniformly, we assume an
optimal scheme is generated for the organization of the collaborative computing in the
next short period of time s.

In both AFCE and NCDE, some needed parameters are obtained through prediction.
So to well handle this, we use Genetic Programming to estimate the tendency of such
parameters, specifically)(te kk ′′′ ,)(trk

jj ′′′ ,)(tr kk

jj

′′′
′′′ , in the next short period of time s.

Define the function
++ Ζ→Ζ:ξ . (1)

More specifically, for)(xy ξ= ,],1[mx ∈ ,],1[xny ∈ . This function establishes a

mapping from the index of collaborator set to the index of computing node set. If given a
collaborator xp ,],1[mx ∈ , the computing node chosen for hosting the computation of

xp can be denoted by x

xd)(ξ .

If we decide to move a collaborator kp from its default computing node to a candi-

date computing node in the networks, the data of size kh will be transferred. In practice,

the time for such transfer is expected to be within a user-acceptable limit. According to
the goodput measured by Network Characteristic Detection Engine, the time t for
transferring the collaborator kp can be computed as follows. First, we have

k

t
k

k htdtr =∫)()(
0

)(1ξ (2)

Let)()(1 tRk

kξ be an antiderivative of)()(1 tr k

kξ on [o, t]. From the fundamental theorem
of calculus, we have

k

k

k

k

k

t
k

k hRtRtdtr =−=∫)0()()()()(1)(1
0

)(1 ξξξ (3)

)0()()(1)(1

k

kk

k

k RhtR ξξ += (4)

458 J. Lu, Y. Zhang, and Y. Zhou

))0(()(1

1

)(1
k

kk

k

k RhRt ξξ += −
 (5)

where
1

)(1

−k

kR ξ is the inverse function of k

kR)(1ξ .
Assuming that all the collaborators which need to be moved begin to migrate at the

same time, we can compute the overall time spent on the migration procedure as ()))0((max)(1

1

)(11

k

kk

k

kmk
RhR ξξ +−

≤≤
. For a given collaborative application, if τ denotes the

maximal user-acceptable collaborator migration time, the following inequality should be
guaranteed.

 () τξξ ≤+−

≤≤
))0((max)(1

1

)(11

k

kk

k

kmk
RhR (6)

As mentioned above, the considered networking quality is the user-to-collaborator
goodput, collaborator-to-user goodput and collaborator-to-collaborator goodput. Users
are generally with the default computing nodes, no matter where the collaborators are
moved to. So the average user-to-collaborator goodput of one user to the corresponding

collaborator kp should be computed as ()))0((max

)()(

)(1

1

)(11

))0((max
)(1

)(1
1

)(1
1

k

kk

k

kmk

s

RhR

k

k

RhRs

tdtr
k

kk
k

k
mk

ξξ

ξ
ξξ

+− −

≤≤

⎟
⎠
⎞

⎜
⎝
⎛ +∫ −

≤≤ . And the col-

laborator-to-collaborator goodput of collaborator kp ′ to kp ′′ can be obtained through

()))0((max

)()(

)(1

1

)(11

))0((max)()(
)(1

1
)(1

1

k

kk

k

kmk

s

RhR

kk

kk

RhRs

tdtr
k

kk
k

k
mk

ξξ

ξξ
ξξ

+− −

≤≤

⎟
⎠
⎞

⎜
⎝
⎛ +∫ −

≤≤ .

For a given collaborative application, let +δ be the minimal allowable average
goodput from the user to the corresponding collaborator, −δ be the minimal allowable
average goodput from the collaborator to its user, and let Ψ be the minimal bearable
average collaborator-to-collaborator goodput. We should make sure the following ine-
quality hold.

()
+

−

≤≤

⎟
⎠
⎞

⎜
⎝
⎛ +

≥
+−

∈∀
∫ −

≤≤ δ
ξξ

ξ
ξξ

))0((max

)()(

],,1[
)(1

1

)(11

))0((max
)(1

)(1
1

)(1
1

k

kk

k

kmk

s

RhR

k

k

RhRs

tdtr

mk
k

kk
k

k
mk (7)

 ()
−

−

≤≤

⎟
⎠
⎞

⎜
⎝
⎛ +

≥
+−

∈∀
∫ −

≤≤ δ
ξξ

ξ
ξξ

))0((max

)()(

],,1[
)(1

1

)(11

))0((max
1)(

)(1
1

)(1
1

k

kk

k

kmk

s

RhR

k

k

RhRs

tdtr

mk
k

kk
k

k
mk (8)

()
Ψ≥

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

+−∑∑
∫

= =
−

≤≤

⎟
⎠
⎞

⎜
⎝
⎛ +

−

≤≤

m

RhRs

tdtr
m

k

m

k
k

kk

k

kmk

s

RhR

kk

kkk
kk

k
k

mk

2

))0((max

)()(

1 1)(1

1

)(11

))0((max)()(
)(1

1
)(1

1

ξξ

ξξ
ξξ

 (9)

Let),,(bawc be the cost of transferring the data of size w from node a to node b. We
define abwbawc σ⋅=),,(, where abσ is the cost per unit load transferring from node a
to node b, which can be presented via different kinds of metrics, such as hops, or the
money paid to the ISP or to the Cloud service provider.

 A Framework for Adaptive Optimization of Remote Synchronous CSCW 459

So it can be obtained that for a given collaborative application, the cost of transferring
all necessary collaborators from their default computing nodes to the chosen candidate
computing nodes is

∑
=

=
m

k

k

kk wh
1

)(1)(ξξψ (10)

And during the collaborative computing,)(te kk ′′′ , the size of the data transferred from
the collaborator kp ′ to kp ′′ at the moment t can be zero, if no communication is needed.
According to abwbawc σ⋅=),,(, we can compute the total cost due to the communica-
tion among all the collaborators

∑∑∫
=′ =′′ ⎟

⎠
⎞

⎜
⎝
⎛ +

′′′
′′′′′′−

≤≤

=
m

k

m

k

s

RhR

kk

kkkkk
kk

k
k

mk

tdte
1 1

))0((max
)()(

)(1
1

)(1
1

)()()(
ξξ

ξξχξϖ (11)

At the end of the application, those collaborators that have left their default com-
puting nodes may need to transfer some parts back or migrate back. The overall cost of
such kind of data movement across the network can be obtained as follows

∑
=

=
m

k

k

kk wv
1

1)()(ξξϕ (12)

Thus, we can compute the total cost of transferring all essential data in the networks.

∑∑∫∑∑
=′ =′′ ⎟

⎠
⎞

⎜
⎝
⎛ +

′′′
′′′′′′

==
−

≤≤

++=

++=
m

k

m

k

s

RhR

kk

kkkk

m

k

k

kk

m

k

k

kk k
kk

k
k

mk

tdtewvwh
1 1

))0((max
)()(

1
1)(

1
)(1

)(1
1

)(1
1

)()(

)()()()(

ξξ
ξξξξ χ

ξϕξϖξωξη
 (13)

According to the surveys on various practical systems and applications, we model the
whole problem into two sub-problems which reflect the main application demands.
Problem A constrains the uplink, downlink and collaborator-to-collaborator data trans-
fer quality, as well as the collaborator migration time, and expects to minimize the total
communication cost that depicts the expenditure on the employment of the current most
precious resource as mentioned above. Problem B aims at maximizing the collabora-
tor-to-collaborator communication quality, which is regarded as the inter-collaborator
communication quality, under the constraints of the maximal acceptable cost, lowest
tolerated quality between the user and the collaborator, as well as the maximal bearable
collaborator migration time.

Problem A.

∑∑∫∑∑
=′ =′′ ⎟

⎠
⎞

⎜
⎝
⎛ +

′′′
′′′′′′

==
−

≤≤

++=
m

k

m

k

s

RhR

kk

kkkk

m

k

k

kk

m

k

k

kk k
kk

k
k

mk

tdtewvwh
1 1

))0((max
)()(

1
1)(

1
)(1

)(1
1

)(1
1

)()()(min
ξξ

ξξξξ χξη

()
Ψ≥

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

+−∑∑
∫

= =
−

≤≤

⎟
⎠
⎞

⎜
⎝
⎛ +

−

≤≤

m

RhRs

tdtr

ts

m

k

m

k
k

kk

k

kmk

s

RhR

kk

kkk
kk

k
k

mk

2

))0((max

)()(

..

1 1)(1

1

)(11

))0((max)()(
)(1

1
)(1

1

ξξ

ξξ
ξξ

()
+

−

≤≤

⎟
⎠
⎞

⎜
⎝
⎛ +

≥
+−

∈∀
∫ −

≤≤ δ
ξξ

ξ
ξξ

))0((max

)()(

],,1[
)(1

1

)(11

))0((max
)(1

)(1

1

)(11

k

kk

k

k
mk

s

RhR

k

k

RhRs

tdtr

mk
k

kk
k

kmk

460 J. Lu, Y. Zhang, and Y. Zhou

()
−

−

≤≤

⎟
⎠
⎞

⎜
⎝
⎛ +

≥
+−

∈∀
∫ −

≤≤ δ
ξξ

ξ
ξξ

))0((max

)()(

],,1[
)(1

1

)(11

))0((max
1)(

)(1

1

)(11

k

kk

k

k
mk

s

RhR

k

k

RhRs

tdtr

mk
k

kk
k

kmk

()

mkkk

nkmk

RhRmk k

kk

k

kmk

≤′′′≤
≤≤∈∀

≤+∈∀ −

≤≤

,,1

)(1],,1[

))0((max],,1[)(1

1

)(11

ξ

τξξ

.

0

0
,

0,,,

⎩
⎨
⎧

′′=′=
′′≠′>

∀

≥

′′′

′′′

′′′
′′′′′′

jjw

jjw
k

veh

k

jj

k

jj

kk

jjkkkk χ

Problem B.

()
m

RhRs

tdtr
m

k

m

k
k

kk

k

kmk

s

RhR

kk

kkk
kk

k
k

mk

2

))0((max

)()(

)(max

1 1)(1

1

)(11

))0((max)()(
)(1

1
)(1

1∑∑
∫

= =
−

≤≤

⎟
⎠
⎞

⎜
⎝
⎛ +

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

+−

=

−

≤≤

ξξ

ξξ
ξξ

ξφ

Ω≤++ ∑∑∫∑∑
=′ =′′ ⎟

⎠
⎞

⎜
⎝
⎛ +

′′′
′′′′′′

==
−

≤≤

m

k

m

k

s

RhR

kk

kkkk

m

k

k

kk

m

k

k

kk k
kk

k
k

mk

tdtewvwhts
1 1

))0((max
)()(

1
1)(

1
)(1

)(1
1

)(1
1

)()(..
ξξ

ξξξξ χ

()
+

−

≤≤

⎟
⎠
⎞

⎜
⎝
⎛ +

≥
+−

∈∀
∫ −

≤≤ δ
ξξ

ξ
ξξ

))0((max

)()(

],,1[
)(1

1

)(11

))0((max
)(1

)(1

1

)(11

k

kk

k

k
mk

s

RhR

k

k

RhRs

tdtr

mk
k

kk
k

kmk

()
−

−

≤≤

⎟
⎠
⎞

⎜
⎝
⎛ +

≥
+−

∈∀
∫ −

≤≤ δ
ξξ

ξ
ξξ

))0((max

)()(

],,1[
)(1

1

)(11

))0((max
1)(

)(1

1

)(11

k

kk

k

k
mk

s

RhR

k

k

RhRs

tdtr

mk
k

kk
k

kmk

()

mkkk

nkmk

RhRmk k

kk

k

kmk

≤′′′≤
≤≤∈∀

≤+∈∀ −

≤≤

,,1

)(1],,1[

))0((max],,1[)(1

1

)(11

ξ

τξξ

.
0

0
,

0,,,

⎩
⎨
⎧

′′=′=
′′≠′>

∀

≥

′′′

′′′

′′′
′′′′′′

jjw

jjw
k

veh

k

jj

k

jj

kk

jjkkkk χ

4 Solving the Optimization Problems

The formulization in Section 3 proposes and formalizes the problem of how to opti-
mally organize the collaborative computing and communication in the Internet; how-
ever, handling either the goal or the constraints of the optimization problem is of great
computational complexity. Specifically, due to the randomness nature of the

 A Framework for Adaptive Optimization of Remote Synchronous CSCW 461

parameters in practice, as the increase of m, the scale of solution space for the problem
expands exponentially.

So, we have to seek efficient heuristics to solve the problems.
Define two new operators x∇ , c

x∇ on ξ :

⎩
⎨
⎧

=
≠∧∈

=∇
∗

∗

∗
xxy

xxmxx
x

],1[)(ξ
ξ (14)

⎩
⎨
⎧

=
≠∧∈

=∇
∗

∗

∗
xxc

xxmxxc

x

],1[)(ξ
ξ (15)

where],1[kny ∈ , and c is a given integer between 1 and kn .

Lemma 1: Assume integer],1[mx ∈],1[)(knx ∈ξ , ∀ ξ , if there exists a positive

integer sequence λ : 1λ , 2λ , 3λ … , in which],1[mi ∈λ ， such that 1≥∀ i

)...()...(
2121

ξηξη λλλλλλλ iiiiiii
∇∇∇<∇∇∇∇

−−−−
, (16)

then the λ sequence is finite.

Proof: Compared to)(ξη ,)(ξη λi
∇ will make every part of η changed: some may

become smaller, while some may go larger. However, because for each operation of ∇
on ξ ,)...()...(

121121
ξηξη λλλλλλλ ∇∇∇<∇∇∇∇

−−−− iiiii
, it can be guaranteed that there will be

no loop in the ∇ operations.
Because there exists a minimum of η , the

iλ∇ operations will end up with η get-
ting a minimum (either the global minimum or local minimum). According to the
process of generating the λ sequence, if

iλ∇ operations will finally end, then we can
obtain that λ sequence is finite.

If following the similar steps, we can obtain the lemma for Problem B.

Lemma 2: Assume integer],1[mx ∈ ,],1[)(knx ∈ξ , ∀ ξ , if there exists a positive

integer sequence λ : 1λ , 2λ , 3λ … , in which],1[mi ∈λ ， such that 1≥∀ i

)...()...(
121121
ξφξφ λλλλλλλ ∇∇∇<∇∇∇∇

−−−− iiiii
, (17)

then the λ sequence is finite.

Theorem 1: Assume integer],1[mx ∈ ,],1[)(knx ∈ξ , ∀ ξ , there exist two positive

integer sequence u , v , which are both empty initially. Moreover, there exists another
positive integer sequence λ , in which

⎩
⎨
⎧

=
≠

=
0mod

0modmod

mim

mimi
iλ . (18)

For 1≥i , if

)...()...(
1111
ξηξη μμμμμμλ ∇∇∇<∇∇∇∇

−− jjjji
 (19)

then add iλ into sequence μ as a new element 1+jμ , and add i into sequence υ as a
new element 1+jυ .

Then, jυ∀ , the following inequality holds

() 1max 1 −≤− − mjj υυ . (20)

462 J. Lu, Y. Zhang, and Y. Zhou

Proof: Suppose there exists an integer r , 1≥r , such that
() 1max 1 −>− − mrr υυ .

So the following inequality will hold.

)...()...(
121121
ξηξη μμμμμμμ ∇∇∇<∇∇∇∇

−−−− rrrrr

Because rυ and 1−rυ are the adjacent elements in the sequence, according to the
approach of constructing the sequences μ and υ , we have:

For ∀ integer),(1 rrs υυ −∈ ,

)...()...(
121121
ξηξη μμμμμμμλ

∇∇∇≥∇∇∇∇
−−−− rrrrs

.

In particular, for mt r −=υ , because rr t υυ ≤≤−1 , it can be obtained that

)...()...(
121121
ξηξη μμμμμμμλ

∇∇∇≥∇∇∇∇
−−−− rrrrt

.

However, because
⎩
⎨
⎧

=
≠

=
0mod

0modmod

mim

mimi
iλ , trr

λμλυ == . This is contrary to

the hypothesis made at the beginning, that is

)...()...(
121121
ξηξη μμμμμμμ ∇∇∇<∇∇∇∇

−−−− rrrrr

Therefore, jυ∀ the inequality holds

() 1max 1 −≤− − mjj υυ .

Theorem 2: Assume integer],1[mx ∈ ,],1[)(knx ∈ξ , ∀ ξ , there exist two positive

integer sequence u , v , which are both empty initially. Moreover, there exists another
positive integer sequence λ , in which

⎩
⎨
⎧

=
≠

=
0mod

0modmod

mim

mimi
iλ . (21)

For 1≥i , if

)...()...(
1111
ξφφ μμμμμμλ ∇∇∇<∇∇∇∇

−− jjjji
f (22)

then add iλ into sequence μ as a new element 1+jμ , and add i into sequence υ as a
new element 1+jυ .

Then, jυ∀ , the following inequality holds

() 1max 1 −≤− − mjj υυ . (23)

The proof to the theorem is similar to that of Theorem 1.
As a matter of fact, Theorem 1 and Theorem 2, as well as Lemma 1 and Lemma 2,

already clearly tell us the effective approach which can quickly approximate the op-
timal solution.

Simply put, we can first consider moving one collaborator while temporarily fixing
the others; if there exist the qualified computing nodes which are more appropriate for
the collaborator to migrate in the perspective of the optimization goal and the con-
straints, choose the most suitable one, and put the collaborator on it. Then we need to
reestablish the relationship among the nodes and recompute the affected parameters.
Following the similar way, we process each of the collaborators in a round-by-round
manner. In this procedure, it is guaranteed by the theoretical proofs that the value of the
goal function will continually decrease.

 A Framework for Adaptive Optimization of Remote Synchronous CSCW 463

Formally, first we increase i , from (18) and (21) we can obtain new iλ . Then
through the method in Theorem 1 or Theorem 2, we can find the new elements jμ and

jυ , as long as)(mii j ≥−∃¬ υ . It is guaranteed by Theorem 1 and 2 that in this
process, the value of the goal function can continually decrease. Thus, we can insis-
tently drive such process. We call the approach has run a round if the value of iλ has
changed m times. More deeply, we can learn from the Theorem 1 and 2 that the value
of the goal function will definitely decrease at lease once in one round, until mi j ≥−υ .
And Lemma 1 and Lemma 2 have proven that this ceasing condition mi j ≥−υ will
finally hold. When ceased, the minimal (or near-minimal) value of the goal function
can be obtained.

5 Evaluation and Results

5.1 Evaluation on Performance of the Heuristics

Experiment Methodology. We conduct a series of simulation experiments to evaluate
the performance of the proposed heuristics in AORS (named AH) against the exhaus-
tive search approach (named EA) which can generate the optimal organization scheme.
The number of the candidate computing nodes for a collaborator follows the uniform
distribution on the interval [1, n]. In the experiment, the time consumed to obtain the
optimal solution via the exhaustive approach increases sharply due to the exponential
expansion of the problem scale when the number of collaborators increases. For ex-
ample, when m= 8, n=9, the time spent is 9035 seconds on a machine with a 2G HZ
dual-core processor and 1GB RAM. So the intensive comparative experiments are
taken in the circumstances of 7≤m . For obtaining the data to draw one point in the
figures, 1000 different networks are generated with the parameters illustrated in the
graph; at last, the average of the data is computed and adopted.

In the evaluation, we focus mainly on two aspects. First, we want to check the overall
status of the results generated by AH compared to the optimal results. Second, we hope
to discover the impact of the number of collaborators and candidate computing nodes on
the performance of AH. To quantify these purposes, two indicators are introduced. For
Problem A, the indicator is the extent to which the cost minimized via AH approximates
the optimal one. For Problem B, the factor is the extent to which the average goodput
maximized by AH approximates the optimal result. Specifically, these two indicators are
formulized as the ratio

)(

)()(
1

*

*

ξη
ξηξη −−=

h

cr
)(

)()(
1

*

*

ξφ
ξφξφ h

gr
−−= (24)

where hξ is the scheme obtained by AH, and ∗ξ is the optimal scheme generated by EA.

Experiment Results. Fig. 3 illustrates the relationship among the number of collabo-
rators, the number of candidate computing nodes and the ratio rc. It presents four cases
of different number of candidate computing nodes in the network, that is, n is equal to
3, 5, 8, 10 and 12, respectively. We can observe that the values of rc of all the points are
beyond 0.93. Although for a fixed number of collaborators the values of rc are slightly
different, the tendency of all the curves representing the different cases of distinct
numbers of candidate computing nodes go upper right when more collaborators join in
the CSCW computing.

464 J. Lu, Y. Zhang, and Y. Zhou

0.5

0.6

0.7

0.8

0.9

1

3 5 8 10 12

Number of Collaborators

r

c

n=3 n=4 n=5

n=6 n=7

0.5

0.6

0.7

0.8

0.9

1

3 4 5 6 7

Number of Collaborators

r

g

n=3 n=4

n=5 n=6

n=7

Fig. 3. Relationship among the number of col-
laborators, candidate computing nodes and rc

Fig. 4. Relationship among the number of
collaborators, candidate computing nodes and rg

In Fig. 4, the studies for the AH performance on the optimization of average goodput

are depicted. The number of candidate computing nodes, n, chooses the value of 3, 4, 5,
6 and 7. It is observed that the lowest value of the ratio rg is 0.95 when n is equal to 3.
While the number of candidate computing nodes increases, the ratio rg changes slightly.
However, similar to the situation in Fig. 3, if we study any circumstances with the given
number of candidate computing nodes, in the application the more collaborators there
are, the larger the ratio rg is. Thus, from both Fig. 3 and Fig. 4, it is presented that even if
the whole solution space expands exponentially as the number of collaborators in-
creases, the scalability of the heuristics is nice.

5.2 Comparative Evaluation between AORS and Current Computing Style

Experiment Methodology. Instead of evaluating the AORS in some individual ap-
plications, we conduct extensive simulation experiments to compare the performance
of AORS and the current CSCW computing style. In the experiment, various scenarios
with distinct collaborator number 3, 6, 15, 25, 45 are thoroughly studied. In each sce-
nario, we further divide and investigate the sub-scenarios which contain 3, 5, 8, 12, 16,
24, 30 candidate computing nodes, respectively. In each sub-scenario, 200 distinct
networks are generated and the average results are computed and analyzed. In any
topology, the default computing nodes are randomly distributed in leaf nodes, while the
candidate computing nodes are distributed in the interior nodes. This is reasonable in
that the default computing nodes, which are associated with users of the collaborative
applications, are generally in the periphery of cyber-space; and as a public computing
provider, a candidate computing node is usually expected to locate at a place with
relatively abundant connections.

The cost of data transfer is concretely defined as the product of the size of transferred
data and the hops between the source and destination. The sizes of data which needs to be
moved from the default computing nodes to the candidate computing nodes follow the
uniform distribution on the interval [1, 2000]MB. The sizes of data which need to be
moved back from the candidate computing nodes to the default computing nodes follow
the uniform distribution on the interval [0, 600] MB. The sizes of communication data
among pairs of the collaborators follow the uniform distribution between 0 and 6000MB,
in that there can be no communication between some pairs of collaborators in practice.

 A Framework for Adaptive Optimization of Remote Synchronous CSCW 465

The goodput between the default computing nodes and candidate computing nodes,
and the goodput between each pair of candidate computing nodes follow the uniform
distribution between 4096kb/s and 80000kb/s. The hop between a candidate computing
node and a default computing node follows the uniform distribution on the interval [5,
20]; the hops between pairs of candidate computing nodes follow the normal distribution
with the mean of 10. Such settings are based on the observation of the current typical
Internet communications.

Using the approaches in this paper above, before each session Optimal Unit of the
AORS simulator computes the optimal organization scheme. During the session, Network
Characteristic Detection Engine monitors the actual sizes of the data transferred; from the
monitored information, on the one hand, the actual communication cost and goodput can
be obtained, which reflect the actual performance of the current collaborative computing
style; on the other hand, Optimal Unit puts the monitored information mentioned in Sec-
tion 3, e.g., the goodput, onto the optimal scheme generated at the beginning of the ses-
sion. So the metrics in the case of adopting the optimal scheme generated via AORS can
be computed. Thus we can compare the communication quality and the cost achieved in
the current collaborative computing style with those achieved in AORS.

Experiment Results. Fig. 5 depicts the relationship among the number of candidate
computing nodes, the number of collaborators and the costs in the two environments.
The vertical axis represents the ratio of the total network cost of the collaborative ap-
plications under AORS to the cost of exactly the same applications running within the
same network environments in the current CSCW computing style. It is shown that all
the points are beneath 1, indicating AORS always provides smaller cost than the current
style. Although more collaborators in the collaborative environments tend to make the
proportion of communication cost reduction smaller, it can be observed that with the
number of candidate computing nodes increasing, the cost ratios always become
smaller, which states that AORS reduces more communication cost.

Fig. 6 discloses the relationship among the number of candidate computing nodes,
the group size and the average communication goodput among the collaborators in two
environments. The vertical-axis indicates the ratio of the average goodput achieved in
AORS to the goodput that the same application achieves in the current computing style.

0.4

0.5

0.6

0.7

0.8

0.9

1

3 5 8 12 16 24 30

Number of Candidate Computing Nodes

R
a
t
i
o

o
f

C
o
s
t

m=3 m=6 m=15

m=25 m=45

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

3 5 8 12 16 24 30

Number of Candidate Computing Nodes

R
a
t
i
o

o
f

G
o
o
d
p
u
t

m=3 m=6

m=15 m=25

m=45

Fig. 5. Comparisons of the costs in AORS
environments and current environments

Fig. 6. Comparisons of the goodput in AORS
environments and current enviroments

466 J. Lu, Y. Zhang, and Y. Zhou

The observation that all the vertical-axis values are above 1 illustrates that AORS always
can provide better goodput to CSCW applications. Although the ratio tends to decrease
as the number of collaborators becomes large, the absolute value of the increased
goodput from what the current computing style provides to what AORS brings con-
stantly goes larger. On the other hand, in any circumstances with a given number of
collaborators, it can be observed that larger amount of candidate computing nodes can
also bring larger goodput for the collaborative applications.

6 Related Work

The most fruitful former studies related to organizing the computing resource in the
large-scale networks are mainly in the domain of Grid computing. The need for the Grid
system's ability to recognize the state of the resources is stressed in [15]. [12] realizes the
significance of data location in job dispatching in Grid. It studies the jobs that use a
single input file and assumes homogeneous sites with a simplified FIFO strategy. Like
previous scheduling algorithms, the Close-to-Files algorithm [6] schedules a job to the
processor close to a site where data is present. Assuming that a job only needs a sin-
gle-file as input data, it uses an exhaustive algorithm to search across all the combina-
tions of computing sites and data sites to find one with the minimal cost. The scheduling
in the case of divisible loads is also analyzed [5]. To avoid performance deterioration
due to the change of the Grid computing environments over time, adaptive scheduling
techniques are proposed [15] [8].

However, these mechanisms can hardly be employed to address the problems in the
current collaborative computing in the Internet. For example, there are few mechanisms
to deal with organizing multiple distributed collaborative instances upon distributed
computing facilities. Furthermore, the previously proposed approaches seldom consider
the user-system interaction quality. The reasons can be ascribed to the orientation of the
grid research. In contrast, this paper starts from analyzing the inherent characteristics of
the current Internet communication, surveying the real problems in the Internet col-
laborative applications, and then models and solves the problem from both the per-
formance perspective and the cost view.

7 Conclusion

Remote synchronous CSCW systems provide us with great opportunities in both our life
and work. However, due to some intrinsic characteristics of the Internet, e.g., the rela-
tively large latency and relatively low bandwidth, the collaborative applications are
often affected or even unusable in present wide-area networks. Rather than making some
improvements on the traditional CSCW computing style as former works did, this paper
proposes an idea of changing the computing style, specifically, moving the proper col-
laborators of the application to appropriate computing nodes provided by the emerging
Cloud computing environment. More importantly, this paper builds up a formal
framework to optimally organize the collaborative computing and communication. A
formulization of the framework is proposed, and an analytic theory of optimizing the
communication quality and cost is developed. However, the solution space of the

 A Framework for Adaptive Optimization of Remote Synchronous CSCW 467

optimization problem scales up exponentially. To solve the problem, this paper develops
two heuristics. The experiment results illustrate that the heuristics are effective and
efficient. We also make extensive simulation experiments on comparing AORS with the
current CSCW computing style. The results present that AORS improves communica-
tion quality, and in the meantime saves a lot of cost.

Acknowledgments. This work has been supported in part by the National High
Technology Research and Development Program of China (Grant No.:
2009AA01Z151) and National Core-High-Base Major Project of China (Grant No.:
2009ZX01039-001-001). We would like to thank the anonymous reviewers for their
helpful comments on this paper.

References

1. Baecker, R.M., Grudin, J., Buxton, W., Greenberg, S.: Readings in Human-Computer In-
teraction: Toward the Year 2000. Morgan Kaufmann Publishers, San Francisco (1995)

2. Armbrust, M., Fox, A., Griffith, R., Joseph, A.D., Katz, R., Konwinski, A., Lee, G., Pat-
terson, D., Rabkin, A., Stoica, I., Zaharia, M.: Above the Clouds: A Berkeley View of Cloud
Computing (2009)

3. Shelley, G., Katchabaw, M.: Patterns of optimism for reducing the effects of latency in
networked multiplayer games. In: FuturePlay (2005)

4. Wei, D.X., Jin, C., Low, S.H., Hegde, S.: FAST TCP: motivation, architecture, algorithms,
performance. IEEE/ACM Trans. on Networking (2007)

5. Cardinale, Y., Casanova, H.: An evaluation of Job Scheduling Strategies for Divisible Loads
on Grid Platforms. In: High Performance Computing and Simulation (2006)

6. Mohamed, H.H., Epema, D.H.J.: An evaluation of the close-to-files processor and data
co-allocation policy in multiclusters. In: IEEE Conference on Cluster Computing (2004)

7. Gray, J.: Distributed Computing Economics. In: ACM Queue (2008)
8. Lee, L., Liang, C., Chang, H.: An adaptive task scheduling system for Grid Computing. In:

6th IEEE international Conference on Computer and information Technology (2006)
9. Gu, Y., Grossman, R.L.: UDT: UDP-based data transfer for high-speed wide area networks.

International Journal of Computer and Telecommunications Networking (2007)
10. Braden, R., Zhang, L., Berson, S., Herzog, S., Jamin, S.: Resource ReSerVation Protocol

(RSVP)—Version 1 Functional Specification. RFC 2208
11. Shacham, A., Monsour, B., Pereira, R., Thomas, M.: IP Payload Compression Protocol,

RFC 3173
12. Foster, I., Ranganathan, K.: Decoupling computation and data scheduling in distributed data

intensive applications. In: 11th Symposium on High Performance Distributed Computing
(2002)

13. Agarwal, S., Lorch, J.R.: Matchmaking for Online Games and Other Latency-Sensitive P2P
Systems. In: ACM SIGCOMM (2009)

14. Mazzini, G.: Asymmetric channel cooperative compression. IEEE Communications Letters
(2008)

15. Othman, A., Dew, P., Djemame, K., Gourlay, K.: Adaptive grid resource brokering. In:
IEEE Internetional Conference on Cluster Computing (2003)

16. Yang, L., Gani, A., Zakaria, O., Anuar, N.B.: Implementing lightweight reservation protocol
for mobile network using crossover router & pointer forwarding scheme. In: WSEAS
Conference on Electronics, Hardware, Wireless and Optical Communication (2009)

17. Amazon Elastic Compute Cloud Site, http://aws.amazon.com/ec2/

Chameleon-MAC: Adaptive and Self-� Algorithms
for Media Access Control in Mobile Ad Hoc

Networks�

Pierre Leone1, Marina Papatriantafilou2, Elad M. Schiller2, and Gongxi Zhu2

1 University of Geneva, (Switzerland)
pierre.leone@unige.ch

2 Chalmers University of Technology, Sweden
{ptrianta,elad,gongxi}@chalmers.se

Abstract. In mobile ad hoc networks (MANETs) mobile nodes do not
have access to a fixed network infrastructure and they set up a commu-
nication network by themselves. MANETs require implementation of a
wireless Medium Access Control (MAC) layer. Existing MAC algorithms
that consider no mobility, solve the problem of eventually guaranteeing
every node with a share of the communications bandwidth. In the context
of MANETs, we ask: Is there an efficient MAC algorithm when mobility
is considered?

MANETs are subject to transient faults, from which self-stabilizing
systems can recover. The self-stabilization design criteria, and related
concepts of self-�, liberate the application designer from dealing with
low-level complications, and provide an important level of abstraction.
Whereas stabilization criteria are important for the development of au-
tonomous systems, adaptation is imperative for coping with a variable
environment. Adapting to a variable environment requires dealing with
a wide range of practical issues, such as relocation of mobile nodes and
changes to the motion patterns.

This work proposes the design and proof of concept implementation of
an adapted MAC algorithm named Chameleon-MAC, which is based
on a self-stabilizing algorithm by Leone et al., and uses self-� methods in
order to further adapt its behavior according to the mobility characteris-
tics of the environment. Moreover, we give an extensive treatment of the
aspects and parameters that can bring the algorithm into the practical
realm and we demonstrate documented behavior on real network stud-
ies (MICAz 2.4 GHz motes) as well as using simulation (TOSSIM [32]),
showing improved overhead and fault-recovery periods than existing al-
gorithms.

We expect that these advantages, besides the contribution in the al-
gorithmic front of research, can enable quicker adoption by practitioners
and faster deployment.

� An extended version appears in [31] as a technical report. This work is partially
supported by the ICT Programme of the European Union under contract number
ICT-2008-215270 (FRONT’S).

S. Dolev et al. (Eds.): SSS 2010, LNCS 6366, pp. 468–488, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Chameleon-MAC: Adaptive and Self-� Algorithms 469

1 Introduction

Mobile ad hoc networks (MANETs) are autonomous and self-organizing systems
where mobile computing devices require networking applications when a fixed
network infrastructure is not available or not preferred to be used. In these
cases, mobile computing devices could set up a possibly short-lived network for
the communication needs of the moment; in other words, an ad hoc network.
MANETs are based on wireless communications that require implementation of
a Medium Access Control (MAC) layer [40]. MAC protocols need to be robust
and have high bandwidth utilization and low communication delay [38]. The
analysis of radio transmissions in ad hoc networks [19] and the relocation anal-
ysis of mobile nodes [30] show that MAC algorithms that employ a scheduled
access strategy, such as in TDMA, might have lower throughput than algorithms
that follow a randomized strategy [such as slotted ALOHA 1, 34]. However, the
scheduled approach offers greater predictability, which can facilitate fairness [21]
and energy conservation. This work proposes the design and proof of concept im-
plementation of an adapted MAC algorithm named Chameleon-MAC, which
is based on a self-stabilizing algorithm [30] and uses new methods and techniques
in order to further adapt its behavior according to the mobility characteristics
of the environment. Through extensive treatment of the aspects and parameters
of the new algorithm, we show that the algorithm in [30] can fit into a practical
realm and we demonstrate documented behavior on real network studies (MICAz
2.4 GHz motes) as well as simulation (TOSSIM [32]), showing improved overhead
and fault-recovery periods when compared with existing algorithms.

1.1 A Case for Adaptive Self-� in MANETs

The dynamic and difficult-to-predict nature of mobile networks gives rise to
many fault-tolerance issues and requires efficient solutions. MANETs, for exam-
ple, are subject to transient faults due to hardware/software temporal malfunc-
tions or short-lived violations of the assumed settings for modeling the location
of the mobile nodes. Fault-tolerant systems that are self-stabilizing [10, 11] can
recover after the occurrence of transient faults, which can cause an arbitrary
corruption of the system state (so long as the program’s code is still intact). The
self-stabilization design criteria, and related concepts of self-� [4], liberate the
application designer from dealing with low-level complications, and provide an
important level of abstraction. Consequently, the application design can easily
focus on its task – and knowledge-driven aspects.

Whereas stabilization criteria (and the related self-� concepts [4]) are impor-
tant for the development of autonomous systems, adaptation is imperative for
coping with a variable environment. In the context of MANETs, adapting to a
variable environment requires dealing with a wide range of practical issues, such
as relocation of mobile nodes, and changes to the rate or pattern by which they
move [17]. Adaptation has additional aspects in the context of fault-tolerance,
such as resource consumption [11, 16]. For example, high rates of churn and
concurrent node relocations can significantly increase the overhead.

470 P. Leone et al.

MANETs require MAC protocols that can provide robustness, high through-
put, and low latency [38]. Broadly speaking, existing implementations of MAC
protocols are based on carrier sense multiple access with collision avoidance
(CSMA/CA) and cannot predictably guarantee these requirements [6, 7]. The
design of the Chameleon-MAC algorithm takes a fresh look at time divi-
sion multiple access (TDMA) algorithms. The Chameleon-MAC algorithm
automatically adjusts the choice of timeslots according to the characteristics of
a variable environment (just as the Chamaeleonidae lizards adapt their chro-
matophore cells according to their surrounding colors). The adaptive design of
the Chameleon-MAC algorithm offers robustness, a greater degree of schedule
predictability than existing CSMA/CA algorithms, and better resource adaptive-
ness than existing TDMA algorithms. Such advantages allow quicker technolog-
ical developments and faster industrial deployment of MANETs.

1.2 Relocation Model

While MAC algorithms have been extensively studied in the context of MANETs,
both numerically and empirically, analytical study has been neglected thus far.
Until now, it has been speculated that existing MAC algorithms (that do not
consider mobility of node) would perform well in MANETs. Alternatively, alge-
braic equations are used for modeling the kinetics of mobile nodes [5]. Kinetic
models are difficult to analyze; it is hard to consider arbitrary behavior of mobile
nodes and transient faults.

We consider an abstraction of model, named relocations analysis, which sim-
plifies the proofs of impossibility results, lower bounds, and algorithms [30].
Models for relocation analysis focus on the location of mobile nodes rather than
emphasizing the “movements of the mobile users” [as in 8]. The location of mobile
nodes changes in discrete steps that are determined by a small set of parameters,
rather than in continuous motion and by complex rules [as in kinetics model of
5]. The analytical results for this abstract model hold for a large set of concrete
mobility models that can implement it. For example, a relocation analysis model
can be used to estimate the throughput of MAC algorithms in realistic highway
scenarios (cf. Section 5.4). Thus the studied model can improve the understand-
ing of MANETs by facilitating an analytical study of its algorithms in system
settings that can represent realistic scenarios.

1.3 Our Contribution

Algorithmic properties and systematic studies. We propose the
Chameleon-MAC algorithm; an adaptive, self-� MAC algorithm that takes
the scheduled approach and adapts to the variable environment of MANETs. We
study the algorithm in an abstract and universal relocation model, and imple-
ment it in a real network of wireless MICAz 2.4 GHz motes. The relocation model
allows us to compare the Chameleon-MAC algorithm to self-stabilizing MAC
algorithms, such as the ones by Leone et al. [30], Herman-Tixeuil [21], slotted
ALOHA [1] and p-persistent CSMA/CA (with and without back-off) [40]. This

Chameleon-MAC: Adaptive and Self-� Algorithms 471

study and proof of concept includes an extensive treatment of the aspects and pa-
rameters that can bring the algorithm into the practical realm and demonstrate
documented behavior on real network studies (MICAz 2.4 GHz motes) as well as
using simulation (TOSSIM [32]). The study also shows that the Chameleon-

MAC algorithm maintains higher throughput than [1, 21, 30, 40], while it also
reveals other properties of interest.

Abstract-study-model properties and possibilities. Thus far, the de-
signers of fault-tolerant algorithms for MANETs have considered a plethora of
mobility models [8] for modeling the location of mobile nodes. Therefore, it is
difficult to compare different MAC algorithms for MANETs. Our study model is
an abstract relocation model used to analytically compare MAC algorithms [as
in 30] or to conduct experimental study and evaluation as we do in this work.
In [30], the properties of the model are briefly explored. The present work demon-
strates further that the relocation model is sufficiently abstract to describe a va-
riety of situations, and detailed enough to allow comparative studies of different
algorithms.

Concrete-study-model scenarios and conclusions for practice. Based on
the abstract relocation model, we show how to describe concrete mobility models
for Vehicular Ad-Hoc Networks (VANETs) that, due to the nodes’ mobility, have
regular and transient radio interferences. We also systematically study the role
of the local estimation of global parameters, because mobile nodes do not have
direct knowledge about the model’s global parameters and their impact on the
throughput. Furthermore, we use the aforementioned models to study the algo-
rithms with varying mobility parameters and demonstrate that the Chameleon-

MAC algorithm adapts in variable environments that have radio interferences.
Namely, the study shows that the Chameleon-MAC algorithm quickly recov-
ers from radio interferences that occur due to the nodes’ mobility in VANETs.
Moreover, even in scenarios with no mobility, the Chameleon-MAC algorithm’s
throughput is higher than the one of existing implementations [1, 21, 30, 40]. We
present measurements, on a real network of MICAz 2.4 GHz motes, that validate
this observation, which we first obtain through TOSSIM [32] implementations.

2 Preliminaries

The system consists of a set of communicating entities, which we call (mobile)
nodes (or (mobile) motes). Denote the set of nodes by P (processors) and every
node by pi ∈ P .

Synchronization. We assume that the MAC protocol is invoked periodically
by synchronized common pulses. The term (broadcasting) timeslot refers to the
period between two consecutive common pulses, tx and tx+1, such that tx+1 =
(tx mod T)+ 1, where T is a predefined constant named the frame size, i.e., the
number of timeslots in a TDMA frame (or broadcasting round).

472 P. Leone et al.

Communication model. We consider a standard radio interference unit (such
as CC2420 [36]) that allows sensing the carrier and reading the energy level
of the communication channel. Sometimes, we simplify the description of our
algorithms and relocation models by considering concepts from graph theory.
Nevertheless, the simulations consider a standard physical layer model [27].

At any instance of time, the ability of any pair of nodes to directly com-
municate is defined by the set, Ni ⊆ P , of neighbors that node pi ∈ P can
communicate with directly. Wireless transmissions are subject to collisions and
we consider the potential of nodes to interfere with each others’ communications.
We say that nodes A ⊆ P broadcast simultaneously if the nodes in A broadcast
within the same timeslot. We denote by Ni = {pk ∈ Nj : pj ∈ Ni ∪ {pi}} \ {pi}
the set of nodes that may interfere with pi’s communications when any nonempty
subset of them, A ⊆ Ni : A �= ∅, transmit simultaneously with pi. We call Ni

the interference neighborhood of node pi ∈ P , and |Ni| the interference degree of
node pi ∈ P .

3 Models for Relocation Analysis

We enhance the abstract relocation model of [30] using geometric properties that
can limit the node velocity, unlike the earlier model [30]. In order to exemplify
concrete models that can implement the proposed abstract one, we consider two
mobility models that are inspired by vehicular ad hoc networks (VANETs).

3.1 Abstract Model Definitions

In [30], the authors use relocation steps, rt, that relocate a random subset of
nodes, Prt , and require that the number of nodes that relocate at time t is at
most α|P |, where α ∈ [0, 1] (relocation rate) and time is assumed to be discrete.
The relocation steps of [30] are random permutations of the locations of the
nodes in Prt . Namely, within one relocation step, a mobile node can relocate to
any location. Thus, the model in [30] does not limit the node velocity.

This work looks into different scenarios in which each mobile node randomly
moves in the Euclidian plane [0, 1]2. Initially, n vertices are placed in [0, 1]2, in-
dependently and uniformly at random. The relocation steps in which a bounded
number of nodes, pi ∈ Pr, change their location, pi(t) = 〈xi(t), yi(t)〉, to a ran-
dom one, pi(t + 1), that is at a distance of at most β ≥ distance(pi(t), pi(t + 1)),
where t is a discrete time instant, β ∈ [0, 1] is a known constant named (max-
imal) relocation distance and distance(pi, pj) =

√
(yj − yi)2 + (xj − xi)2 is the

geometric distance. We note that β limits the node speed in concrete mobile
models that implement the proposed abstract model.

3.2 Concrete Model Definitions

Relocation analysis considers an abstract model that can represent several con-
crete mobility models. We consider two concrete mobility models that are in-
spired by vehicular ad hoc networks (VANETs). The models depict parallel and

Chameleon-MAC: Adaptive and Self-� Algorithms 473

unison motion of vehicles that move at a constant speed and in opposite lanes.
The first model assumes that the mobile nodes are placed on a grid and thus the
radio interferences follow regular patterns. The second model considers vehicle
clusters that pass by each other and thus their radio interferences are transient.

Regular radio interference. This model is inspired by traffic scenarios
in which the vehicles are moving in parallel columns. We consider m rows,
r0, r1, . . . , rm−1, of m nodes each (m = 20 in our experiments). Namely,
rj = pj,0, pj,1, . . . pj,m−1 is the j-th row. In this concrete model, the axes of
the Euclidian plane [0, 1]2 are associated with scales that consider 1

200 as its dis-
tance units. We assume that, at any time, the location, (xi, yi), of a mobile node,
pi, is aligned to the axes’ scale. Namely, 200xi and 200yi are integers. Moreover,
at any time, the distance between pj,k and pj,k+1 (where k, j ∈ [0, m − 2]) and
the distance between pj,k and pj+1,k (where j ∈ [0, m− 2]) is ψ distance units
(ψ = 10 in our experiments). In the initial configuration, the nodes are placed
on a m×m matrix (of parallel and symmetrical lines). At each relocation step,
the nodes in the even rows move a constant distance, speed > 0, to the right.
Moreover, when the nodes move too far to the right, they reappear on the left.
Namely, the rightmost node in the rows, pj,m−1, becomes the leftmost node in
the row when the location of the pj,m−2 is not to the right of the vertical line,
�up,down, that can be stretched between the location of that nodes pup,m−1 and
pdown,m−1, where up = j−1 mod m and down = j +1 mod m. In Section 5, we
show that the radio interferences of this model follow a regular pattern.

Transient radio interference. This model is inspired by two vehicle clusters
that pass each other while moving in opposite lanes. The clusters are formed in a
process that assures a minimal distance of ψ units between any two neighboring
nodes (ψ = 10 in our experiments). Namely, we start by placing the nodes on
a m × m matrix (of parallel and symmetrical lines), and let the nodes move
toward their neighbors in a greedy manner that minimizes the distances among
neighbors (m = 20 in our experiments). Once the clusters are formed, the cluster
on the right moves towards the one on the left in a synchronized manner. At
each relocation step, they reposition themselves to a location that is a constant
number of units distance, speed > 0, from their current location. In Section 5,
we show that the radio interferences of this model are transient.

4 The Chameleon-MAC Algorithm

An adaptive and self-� MAC algorithm for MANETs is presented. The al-
gorithm is based on a non-adaptive, yet self-stabilizing, MAC algorithm for
MANETs [30]. Leone et al. [30] explain how mobile nodes are able to learn
some information about the success of the neighbors’ broadcasts and base their
algorithm on vertex-coloring; nodes avoid broadcasting in the timeslots in which
their neighbors successfully broadcast. Namely, the algorithm assigns each node
a color (timeslot) that is unique to its interference neighborhood.

474 P. Leone et al.

The algorithm by Leone et al. [30] is self-stabilizing; however it is not adap-
tive. For example, the algorithm allows each node to broadcast at most once
in every broadcasting round and assumes that the number of timeslots in the
broadcasting rounds, T , is at least as large as the maximal size of the interference
neighborhoods. Before presenting the Chameleon-MAC algorithm, we explain
some details from [30] that are needed for understanding the new Chameleon-

MAC algorithm.

4.1 Self-stabilizing MAC Algorithm for MANETs

Keeping track of broadcast history is complicated in MANETs, because of
node relocations and transmission collisions. The algorithm by Leone et al. [30]
presents a randomized solution that respects the recent history of the neighbors’
broadcasts based on information that can be inaccurate. However, when the re-
location rate or maximal relocation distance are not too great, the timeslots can
be effectively allocated by the Leone et al. algorithm [30].

This is achieved using a randomized construction that lets every node inform
its interference neighborhood on its broadcasting timeslot and allows the neigh-
bors to record this timeslot as an occupied/unused one. The construction is based
on a randomized competition among neighboring nodes that attempt to broad-
cast within the same timeslot. When there is a single competing node, that node
is guaranteed to win. Namely, the node succeeds in informing its interference
neighborhood on its broadcasting timeslot and letting the interference neighbor-
hood mark its broadcasting timeslot as an occupied one. In the case where there
are x > 1 competing nodes, there might be more than one “winner” (hence caus-
ing collisions). However, the expected number of winners will decrease after each
subsequent round, because of the randomized construction. Why this procedure
is guaranteed to converge is shown in [30]. For self-containment, we include the
pseudo-code description of [30] in Fig. 1.

4.2 The Chameleon-MAC Algorithm

The Chameleon-MAC algorithm adapts to a variable environment in which
relocation parameters, as well as the size of the interference neighborhoods, can
change. Moreover, the algorithm adapts its behavior according to the state of the
allocated resources, i.e., nodes adjust their timeslot allocation strategy according
to the distribution of assigned timeslots. In order to do that, the algorithm
employs new methods and techniques that achieve self-� properties [4].

Definition 1 is required for the presentation of the Chameleon-MAC

algorithm.
Definition 1 (Timeslot properties). Consider the interference neighborhood,
Ni : pi ∈ P , and its timeslot assignment in Ni, which we denote by [νi,s], where
νi,s = {pj ∈ Ni : sj = s}, where sj is the timeslot used by processor pj ∈ Ni.
We say that timeslot s ∈ [0, T − 1] is:
– empty; if no neighbor in Ni transmits in timeslot s, i.e., |νi,s| = 0,

Chameleon-MAC: Adaptive and Self-� Algorithms 475

Variables and external functions
2 MaxRnd = number of rounds in the competition

s:[0, T-1] ∪ {⊥} = next timeslot to broadcast or null (⊥)
4 competing: boolean = competing for the channel

unique: boolean = indicates a unique broadcasting timeslot
6 unused[0,T-1]: boolean = marking unused timeslots

MAC fetch()/MAC deliver(): layer interface
8 broadcast/receive/carrier sense/collision(): media primitives

10 Upon timeslot(t)
if t = 0 then (∗ On the first timeslot perform a test ∗)

12 (∗ Was the previous broadcast unsuccessful? ∗)
if ¬ unique ∨ s = ⊥ then

14 (∗ Choose again the broadcasting timeslot ∗)
s ← get random unused()

16 unique ← false (∗ reset the state of unique ∗)
unused[t] ← true (∗ remove stale information ∗)

18 (∗ Get a new message and sent it if everything is ok ∗)
if s �= ⊥∧ t = s then send(MAC fetch())

20
Upon receive(m) do MAC deliver(m)

Function get random unused() (∗ selects unused timeslots ∗)
24 return select random({ k ∈ [0,T-1] |unused[k] = true })

26 Function send(m)
(competing, unique, k) ← (true, true, 1) (∗ start competing ∗)

28 while k ≤ MaxRnd ∧ competing = true (∗ stop competing? ∗)
with probability 2(−MaxRnd+k) do

30 broadcast(m) (∗ try acquiring the channel ∗)
competing ← false (∗ quit the competition ∗)

32 with probability 1 − 2(−MaxRnd+k) do
wait until the end of the competition time unit

34 k ← k + 1

36 (∗ Stop competing when a neighboring node starts transmitting ∗)
Upon carrier sense(t) (∗ a neighbor is using timeslot t ∗)

38 if competing = true then unique ← false
(competing, unused[t]) ← (false, false)

40
(∗ Collisions indicate unused timeslots ∗)

42 Upon reception error(t) do unused[t] ← true

Fig. 1. The self-stabilizing MAC algorithm for MANETs by Leone et al. [30], code of
processor pi

– congested; if more than one neighbor transmits in timeslot s, i.e., |νi,s| > 1,
– well-used or unique; if exactly one neighbor transmits, i.e., |νi,s| = 1, and
– unused; if no neighbor or more than one neighbor transmits, i.e., |νi,s| �= 1

and thus timeslot s is not properly assigned.

Variable relocation rate and distance. MAC algorithms that follow the
scheduled approach spend some of the communication bandwidth on allocat-
ing timeslots. We consider such algorithms and relocation models with constant
parameters, in order to explain the existence of a trade-off between the through-
put and the convergence time. Then, we explain how to balance this trade-off
by adapting the algorithm’s behavior according to the relocation parameters.

Obviously, there is a trade-off between the throughput, τ , and the communi-
cation overhead, h, because τ +h is bounded by the communication bandwidth.
The throughput of MAC algorithms that follow the scheduled approach is guar-
anteed to converge within a bounded number of broadcasting rounds, �. The rate
by which they converge depends not only on the model’s parameters, but also
on the communication overhead, h. For example, the more bandwidth that the
Leone et al. algorithm [30] is spending on competing for timeslots, the greater
recovery each broadcasting round provides, and consequently, the shorter the
convergence period is. This is a trade-off between the throughput, τ , and the
convergence time, �, which is settled by the communication overhead, h. Com-
plementing the Leone et al. algorithm [30], the Chameleon-MAC algorithm
balances this trade-off.

The Chameleon-MAC algorithm lets nodes adjust the communication over-
head that they spend on competing for their timeslot according to an estimated
number of unique timeslots (cf. Definition 1). The intuition behind the balancing
technique is that the energy level becomes low as the nodes successfully allocate
unique timeslots, because there are fewer collisions. Thus, after a convergence
period, the nodes can reduce the communication overhead, h, by using less of

476 P. Leone et al.

the communication bandwidth on competing for their timeslots. Namely, they
adjust the value of MaxRnd of Figure 1. The eventual value of h depends on the
parameters of the relocation model, because the nodes should not stop dealing
with relocations. Namely, in order to cope with relocations, the nodes should
always deal with events in which their broadcasting timeslots stop being unique
due to the relocation of mobile nodes. Such relocations cause message collisions
and higher energy level in the radio channels. The Chameleon-MAC algorithm
copes with such changes by letting each node gradually adjust the amount of
communication bandwidth it spends competing for timeslots.

Thus, when the relocation parameters are constants, the communication over-
head, h, is set to a value that balances the trade-off between the throughput, τ ,
and convergence period, �.

Variable size of interference neighborhoods. The Chameleon-MAC al-
gorithm follows the scheduled approach because of its greater predictability com-
pared to the random access approach. Namely, the nodes are allocated unique
timeslots from the TDMA frame (cf. Definition 1). The Chameleon-MAC al-
gorithm considers frames of a fixed size and adapts the timeslot allocation ac-
cording to the size of interference neighborhoods complementing the Leone et
al. algorithm [30].

The presentation of the techniques in use is simplified by considering the two
possible cases: (1) the size of pi’s interference neighborhood, Di, is not greater
than the TDMA frame size, T , i.e., Di ≤ T and (2) Di > T (where pi ∈ P is a
node in the system). Notice that the procedures are concurrently executed and
do not require explicit knowledge about Di.

◦ Di ≤ T . In this case, the Chameleon-MAC algorithm allocates to each
node at least one timeslot. Node pi publishes (in its data-packets) the number of
timeslots, Ti ∈ [0, T], that it uses in order to facilitate fairness requirements (i.e.,
attach this information to message m send in line 30 of Figure 1). The fairness
criterion is that |Ti −Mi| ≤ 1, where Mi is the median of timeslots allocated
to the neighbors of pi. The nodes apply this fairness criterion when deciding on
the number of timeslots to use.

◦ Di > T . The algorithm employs two methods for dealing with cases in
which there are more nodes in the neighborhood than TDMA timeslots; one for
facilitating fairness and another for contention control.

Fairness can be facilitated by letting the nodes transmit at most � consecutive
data-packets before allowing other nodes to compete for their (already allocated)
timeslots, where � is a predefined constant.

The contention control technique is inspired by the p-persistent CSMA algo-
rithm [40]. It assures that, at any time, an expected fraction of p ∈ (0, 1) mobile
nodes that do not have unique timeslots would compete for an unused one and
(1−p) of them would defer until a later broadcasting round (cf. Definition 1). i.e.,
each node that needs to change its broadcasting timeslot decides, with probability

Chameleon-MAC: Adaptive and Self-� Algorithms 477

p, to attempt to use the new timeslot in the broadcasting round that immediately
follows [as in the Leone et al. algorithm 30], and with probability (1− p) it skips
that broadcasting round. Namely, the function get random unused() in lines 23 to
24 of Figure 1, returns ⊥ with probability (1− p).

This process can be repeated for several timeslots until the node decides, with
probability p, to attempt to use one of the unused timeslots.

The combination of the methods for facilitating fairness and contention control
aims at allowing nodes to eventually acquire a unique timeslot. The successful
reservation of unique timeslots for the duration of � broadcasting rounds depends,
of course, on the nodes’ relocation.

Adaptive timeslot allocation strategy. The Chameleon-MAC algorithm
employs two methods for adjusting the timeslot allocation according to the al-
location’s distribution.

◦ Luby-algorithm-inspired method. Luby [33] presents a round-based vertex-
coloring algorithm. In each round, every uncolored vertex selects, uniformly at
random, an unused color (cf. Definition 1). In Luby’s settings, each vertex can
accurately tell whether its color is well-used. This is difficult to achieve deter-
ministically in wireless radio communications. However, the nodes can discover
with probability Prtest ∈ [14 , 1

2] whether their broadcasting timeslots are well-
used [see 30, Section 4]. Therefore, a non-uniform selection of unused timeslots
is the result of letting the nodes whose broadcasting timeslot is congested select,
uniformly at random, an unused timeslot (as in line 24 of Figure 1). This is be-
cause a ratio of 1 − Prtest nodes cannot detect that their broadcasting timeslot
is congested, and hence do not change their broadcasting timeslot.

The Luby-algorithm-inspired method prefers empty timeslots to congested
ones when selecting a new broadcasting timeslot from the set of unused ones.

◦ Z̆erovnik-algorithm-inspired method. Z̆erovnik [41] accelerates the stabilization
of vertex-coloring algorithms by favoring colors that are less represented in the
neighborhood. Inspired by Z̆erovnik’s technique, the Chameleon-MAC algo-
rithm employs a method that aims at favoring timeslots that are less frequently
used in the neighborhood when nodes are required to select a new timeslot. The
heuristic favors the selection of congested timeslots with low energy level of the
radio channel over congested timeslots with high level (cf. Definition 1).

In more detail, when node pi ∈ P considers a new timeslot, si, and si hap-
pens to be congested, then with probability Pr(si), pi indeed uses timeslot
s for broadcasting and with probability of 1 − Pr(si) it does not change its
broadcasting timeslot, where Pr(si) = 1 − O(exp(timeslot energy level[si])),
the array timeslot energy leveli[] stores the channel energy level that node
pi recorded during the latest broadcasting round. We note that the value of
timeslot energy leveli[t] is negative in our settings, because of the low energy
used for transmission.

478 P. Leone et al.

5 Experimental Evaluations

Throughput is a basic measure of communication efficiency. It is defined as the
average fraction of time that the channel is employed for useful data propaga-
tion [40]. We study the relationship between the eventual throughput, τ , of
the studied algorithms and the model parameters. The study considers: (1)
simulated throughput, τsimulated, obtained by simulation (TOSSIM [32]), (2)
estimated throughput, τestimated, which is a MATLAB interpolation of the sim-
ulation results and (3) measured throughput, τmeasured, obtained by executing
the Chameleon-MAC algorithm in a real network of wireless MICAz 2.4 GHz
motes. The results of the experiment suggest that the throughput, τ , is a function
that depends on the model parameters.

5.1 System Settings

0.1

0.2

0.2

0.3

0.3

0.3

0.4

0.4

0.4

0.5

0.5

0.5

0.5

0.6

0.6

0.6
0.6

0.
7

0.7

0.7

0.7
0.7

0.8
0.8

0.8
0.8 0.8

0.9
0.9

0.9 0.9 0 9

Average similarity ratio

Relocation rate

M
ax

im
um

 r
el

oc
at

io
n

di
st

an
ce

10% 30% 50% 70% 90%

10%

30%

50%

70%

90%

Fig. 2. Average similarity ratio is
depicted as the function ASR(α, β)
of the relocation rate, α (x-axis),
and the maximal relocation dis-
tance β (y-axis). 5th polynomial in-
terpolation was used.

The simulations were conducted in
TOSSIM/TinyOS 2.1v [32] and consid-
ered 400 motes. We have considered the
default values for TOSSIM’s radio model,
which is based on the CC2420 radio, used in
the MICAz 2.4 GHz and telos [36] motes. In
our simulations, we use timeslots of 2.5 ms.

Radio interference model. TOSSIM/TinyOS
2.1v simulates the ambient noise and RF in-
terference a mote receives, both from other
radio devices as well as outside sources. In
particular, it uses an SNR-based (Signal-to-
Noise Ratio) packet error model with SINR-
based (Signal to Interference-plus-Noise Ratio) interference [32]. Thus, common
issues, such as the hidden terminal problem and the exposed terminal problem,
are considered.

Simulation details. The simulation experiments considered 400 mobile nodes.
Before the system execution, each node had selected its broadcasting timeslot
uniformly at random from the set [0, T − 1] of timeslots. We then let the simu-
lation run for a sufficiently long period (100 broadcasting rounds) during which
the throughput, τ , eventually converges.

Empirical test-bed. This work demonstrates a proof of concept of the
Chameleon-MAC algorithm using a real network of 35 MICAz 2.4 GHz motes,
which are composed of the ATmega128L microcontroller and the CC2420 radio
chip. The motes were placed on a 5× 7 matrix, the distance between two neigh-
boring motes was 22 cm and the radio admission level was −90dBm [9, Section
6.3]. Throughout this particular experiment, the motes were not moved.

Chameleon-MAC: Adaptive and Self-� Algorithms 479

30

35

35

35

40

40

40

40

45
45

45

45

50
50

50

50

55

55

55

55
55

60
60

60

60 60

65

65

65
65 65

70

Eventual Throughput of Chameleon−MAC

Relocation rate

M
ax

im
um

 r
el

oc
at

io
n

di
st

an
ce

10% 20% 30% 40% 50% 60% 70% 80% 90%

10%

20%

30%

40%

50%

60%

70%

80%

90%

20

25
25

25

30
30

30
30

35

35

35

35
35

40

40

40
40 40

45

45

45

45 45

50
50

50

55

55

Eventual Throughput of Leone et al.

Relocation rate
10% 20% 30% 40% 50% 60% 70% 80% 90%

10%

20%

30%

40%

50%

60%

70%

80%

90%

15

20

20
20

25

25

25

25

30

30

30

30
30

35

35

35

35
35

40

40

40
40 40

45

45

45
45 45

50

50

Eventual Throughput of Herman and Tixeuil

Relocation rate
10% 20% 30% 40% 50% 60% 70% 80% 90%

10%

20%

30%

40%

50%

60%

70%

80%

90%

10

20

20

30

30

30
40

40

40
40

50

50

50 50

60

60 60

70
70

Throughput Convergence of Chameleon−MAC

Broadcasting round number, r

A
ve

ra
ge

 s
im

ila
rit

y
ra

tio

0 20 40 60 80 100
10%

20%

30%

40%

50%

60%

70%

80%

90%

25

25
25 25

30 30
30

35 35 35

40

40 40 40

45

45 45 45

50 50 50

55 55 55

Throughput Convergence of Leone et al.

Broadcasting round number, r
0 20 40 60 80 100

10%

20%

30%

40%

50%

60%

70%

80%

90%

10

15

15
20

20

20

20

25

25

25

25

30

30
30

30

35

35
35 35

40

40 40 40

45 45 45

50 50 50
Throughput Convergence of Herman and Tixeuil

Broadcasting round number
0 20 40 60 80 100

10%

20%

30%

40%

50%

60%

70%

80%

90%

Fig. 3. Throughput of the Chameleon-MAC algorithm, τ , is compared to those of
Leone et al. [30] and Herman-Tixeuil [21]. On the top row, the throughput, τ (α, β), is
depicted as a function of the relocation rate, α (x-axis), and the maximal relocation
distance β (y-axis). On the bottom row, the throughput, τ (r, asr), is depicted as a
function of the broadcasting round, r (x-axis), and ASR (y-axis). E.g., suppose that
the ASR is 50%, then the throughput of the Chameleon-MAC algorithm will be
about 20%, 30% and 40% within about 5, 10 and 20 broadcasting rounds, whereas the
throughput of the Herman-Tixeuil [21] will be about 20% and 25% within about 10
and 60 broadcasting rounds. 5th polynomial interpolation was used.

The Chameleon-MAC algorithm assumes that each node has access to an
accurate clock that can facilitate a common pulse. In our test-bed, the common
pulse was emulated by starting every timeslot with a beacon message sent by
the central mote, p3,5.

5.2 Presentation

The relocation rate and distance are global parameters that define the relocation
model. It is not clear how they can be estimated locally by the mobile nodes.
Therefore, we consider the average similarity ratio (ASR) parameter, which can
be calculated locally by the nodes [31].

The definition of the average similarity ratio (ASR) considers the unit disk
graph (UDG); given the disk radius, χ ∈ [0, 1], we define Gt = (P, Et) as the UDG

480 P. Leone et al.

that the mobile nodes induce in time t, where Et = {(pi, pj)|distance(pi, pj) ≤ χ}
is the set of edges at time t and distance(pi, pj) =

√
(yj − yi)2 + (xj − xi)2

is the geometric distance. The ASR is defined by a (non-aggregated) similar-
ity ratio, ASRi = |Ni(Gt)∩Ni(Gt+1)|

|Ni(Gt)| , that considers the neighbors that a mo-
bile node maintains when relocating to a new neighborhood, where Ni(G) is the
set of pi’s neighbors in graph G. The nodes that are placed near the plane’s
borders have a lower (non-aggregated) similarity ratio upon relocation. Hence,
ASR = average({ASRi|pi ∈ P (t)}), considers the set of nodes, P (t) = {pi ∈
P |〈xi(t), yi(t)〉 ∈ [15 , 4

5]2}.
ASR(α, β) depicts ASR as a function of the relocation rate and distance;

see Fig. 2. Contour charts present two parameter functions, e.g., ASR(α, β).
They are often used in geographic maps to join points of the same height above
sea level. Contour lines in Fig. 2 connect values of ASR(α, β) that are the same
(see the text tags along the line).

The term percentage of potential throughput (PPT) is used in the presentation
of the throughput: τsimulated, τestimated or τmeasured. It considers a TDMA
frame in which only data-packets are sent and they are all received correctly. We
define bitpotential as the sum of bits in all the payloads of such a frame. Given a
broadcasting round, r, and a node, pi ∈ P , we define bitactual(r, i) as the number
of bits in the payloads that were sent correctly by pi or received correctly by pi in
r. Given a broadcasting round, r, we define PPT as 1

|P (tr)|
∑

pi∈P (tr)
bitactual(r,i)
bitpotential

,
where tr is the time in which the broadcasting round begins and P (t) = {pi ∈
P |〈xi(t), yi(t)〉 ∈ [15 , 4

5]2}. We note that in our settings, the maximum potential
throughput MPT is 76%, because of the time required for multiplexing and the
transmission of the packet header/footer.

5.3 Throughput

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
10%

20%

30%

40%

50%

60%

70%

80%

Average similarity ratio

P
er

ce
nt

ag
e

of
 p

ot
en

tia
l t

hr
ou

gh
pu

t

Throughput as a Function of the Average Similarity Ratio

Potential throughput

Chameleon-MAC

Leone et al.

Herman and Tixeuil

TOSSIM’s MAC

Fig. 4. Throughput of the Chameleon-

MAC algorithm, τ , is compared to those of
Leone et al. [30], Herman-Tixeuil [21], and
CSMA/CA with back-off

The results of the experiments allow
us to compare the Chameleon-

MAC algorithm to Leone et
al. [30], Herman-Tixeuil [21], slot-
ted ALOHA [1] and p-persistent
CSMA/CA (with and without back-
off) [40] (Fig. 3, Fig. 4 and Fig. 5).

The simulated throughput values
are compared as a function, τ(α, β),
of relocation rate and distance in
Fig. 3-top. The charts show that
the Chameleon-MAC algorithm has
greater throughput than Leone et
al. [30] and Herman-Tixeuil [21].

The simulated throughput values
are depicted as a function, τ(r, asr), of
the broadcasting rounds and the ASR

Chameleon-MAC: Adaptive and Self-� Algorithms 481

in Fig. 3-bottom. The charts show that the Chameleon-MAC algorithm con-
verges within 30 broadcasting rounds, whereas the Herman-Tixeuil [21] converge
period may take more than 100 rounds.

0 10 20 30 40 50 60 70 80 90 100
10%

30%

50%

70%

Broadcasting round

P
er

ce
nt

ag
e

of
 p

ot
en

tia
l t

hr
ou

gh
pu

t

Throughput Convergence of the Chameleon−MAC

Simulated

Measured

Simulated trend

Measured trend

Fig. 5. Simulated and measured through-
put (upper solid line and lower dash-
dot line, respectively) together with
their trends (dotted lines). The x-axes
consider the broadcasting round num-
ber, r. The y-axes consider the per-
centage of potential throughput (PPT).
The simulated throughput’s trend is
τsimulated trend(r) = 0.02r + 0.19 when
r < 25, and 0.57 when r ≥ 25.
The measured throughput’s trend is
τmeasured trend(r) = 0.01r + 0.11 when
r < 37 and 0.70 when r ≥ 37.

The simulated throughput values are
depicted as a function, τ(asr), of the
ASR in Fig. 4. The chart shows that
around asr = 40%, there is a criti-
cal threshold, above which the through-
put of the Chameleon-MAC algo-
rithm is higher than TOSSIM’s native
MAC (CSMA/CA with back-off). We
let TOSSIM’s native MAC (CSMA/CA
with back-off) represent the MAC algo-
rithms that follow the randomized ap-
proach, such as slotted ALOHA [1] and
p-persistent CSMA/CA without back-
off [40], because TOSSIM’s native MAC
has greater throughput than slotted
ALOHA [1] and p-persistent CSMA/CA
without back-off [40]. The results show
that the maximal eventual through-
put of the Chameleon-MAC algo-
rithm is τ = 70.4% when the reloca-
tion model considers no mobility, which
is 92.6% of the maximum potential
throughput (MPT). In general, the in-
terpolated function τestimated(asr) =
0.41(asr)1.353 + 0.29 can be used for
estimating the eventual throughput
of the Chameleon-MAC algorithm
when the ASR is constant.

The simulated and measured
throughput values are compared in Fig. 5. We note that the eventual measured
throughput is about 82% of the simulated one with standard deviations of
2.93% and 1.33%, respectively, which are similar to the throughput deviation
of TOSSIM’s native MAC (CSMA/CA with back-off). Moreover, the measured
convergence is 59%, slower than the simulated one. We attribute these differ-
ences in throughput, stability and convergence to the lack of detail in TOSSIM’s
radio interference model [32].

5.4 Validation of the Abstract Relocation Analysis in Concrete
Mobility Models

We consider the two concrete mobility models for vehicular ad hoc networks
(VANETs) that were presented in Section 2. They validate the abstract reloca-
tion model by showing that, in scenarios that exclude unrealistic situations, the

482 P. Leone et al.

Chameleon-MAC algorithm can maintain throughput that is greater than the
studied algorithms [1, 21, 30, 40] in the presence of regular and transient radio
interference that occurs due to the nodes’ mobility. Moreover, we show that the
throughput of the Chameleon-MAC algorithm in VANETs is correlated to the
function, τestimated(asr), that interpolates eventual throughput (cf. Section 5.3).

10

20
30

30

40

40

50

50

60

60
60

60

70
70

Throughput Convergence of Chameleon−MAC in Regular Radio Interference

S
pe

ed

0 10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

0

0 0

0

0

0

0

5

5

5

10

10

15

15

20

20

25

25

30

30

35

40

4045

4550

Broadcasting round

S
pe

ed

0 10 20 30 40 50 60 70 80 90 100

5

10

15

20

Fig. 6. Simulated and estimated
throughput in VANETs with
regular interference. The top
chart presents the throughput,
τsimulated(r, speed), as a function
of the broadcasting rounds, r
(x-axis), and the speed (y-axis)
in unit distance per broadcasting
round. The bottom chart presents
the residual, τsimulated(r, speed) −
τestimated(ASR(r)), as a function
of the broadcasting rounds, r
(x-axis), and the speed (y-axis)
in unit distance per broadcasting
round.

Regular radio interference. This model is
inspired by traffic scenarios in which vehicles
are moving in parallel columns. The experi-
mental results are presented in Fig. 6. The ex-
periment considers speed ≤ 20 distance units
per broadcasting round, because we exclude
unrealistic situations.

The figure shows that within fewer than 30
broadcasting rounds, the throughput of the
Chameleon-MAC algorithm is greater than
TOSSIM’s native MAC (CSMA/CA with
back-off) and within about 50 broadcasting
rounds, the throughput of the Chameleon-

MAC algorithm converges to a value that is
less than 5% from the eventual value and 50%
greater than TOSSIM’s native MAC.

Transient radio interference. This model
is inspired by two vehicle clusters that pass
each other while moving in opposite lanes.
Fig. 7 considers such transient radio in-
terference. The results show that, in sce-
narios that exclude unrealistic situations,
the Chameleon-MAC algorithm maintains
greater throughput than the studied MAC algorithms [1, 21, 30, 40] in the pres-
ence of transient radio interference and it can quickly recover from such faults.

Fig. 7 considers the simulated throughput, τsimulated(r), estimated through-
put, τestimated(r) = τestimated(ASR(r)) (cf. the interpolated eventual through-
put for a constant ASR in Section 5.3), average similarity ratio, ASR(r), and
the residual, residual(r) = τsimulated(r) − τestimated(r) + 1 (the addition of
the constant 1 allows the reader to visually compare between residual(r) and
ASR(r)). The figure depicts an interference period during the broadcasting
rounds r ∈ [20, 40].

6 Discussion

Though some fundamental ad hoc networking problems remain unsolved or
need optimized solutions, it is believed that ad hoc networks are not very far from

Chameleon-MAC: Adaptive and Self-� Algorithms 483

0 10 20 30 40 50 60

50%

60%

70%

80%

90%

100%

Broadcasting round number

P
er

ce
nt

ag
e

Throughput Convergence of Chameleon−MAC in Transient Radio Interference, speed=5

0 10 20 30 40 50 60

50%

60%

70%

80%

90%

100%

Broadcasting round number

Throughput Convergence of Chameleon−MAC in Transient Radio Interference, speed=10

Simulated - Estimated + 1

Average similarity ratio

Simulated throughput

Estimated throughput

Fig. 7. Simulated throughput, τsimulated(r), estimated throughput, τestimated(r),
average similarity ratio, ASR(r), and the residual, residual(r) = τsimulated(r) −
τestimated(r) + 1, are depicted by the solid line, dash-dot line, dotted line, and dashed
line, respectively in a VANETs with transient interference. The left and right charts
consider speed = 5 and speed = 10, respectively, of distance units per broadcasting
round. The x-axes consider the broadcasting round number, r. The y-axes consider the
percentage of the aforementioned functions.

being deployed on a large-scale commercial basis. For example, the TerraNet
system allows voice and data communications via a peer-to-peer mobile mesh
network comprised of modified handsets that were originally designed for cel-
lular networks [39]. Vehicular ad hoc networks (VANETs) are a type of mobile
network used for communication among mobile vehicles [22]. Nowadays, ma-
jor automakers are developing future applications for vehicular communications
on roads and highways. In sensor MANETs, the motes have joint monitoring
tasks and the nodes’ mobility can help achieve such tasks. Moreover, mobility
can facilitate logistical services, say, by providing network connectivity between
the MANETs’ nodes and other communication endpoints, such as command-
and-control units. Such services and applications can be constructed using the
Virtual Node (VN) abstraction for MANETs [14, 15] without the use of fixed or
stationary infrastructure.

6.1 Related Work

The IEEE 802.11 standard is widely used for wireless communications. Nev-
ertheless, the research field of MAC protocols is very active and has hundreds
of publications per year. In fact, the IEEE 802.11 amendment, IEEE 802.11p,
for wireless access in vehicular environments (WAVE), is scheduled for Novem-
ber 2010. It was shown that the standard’s existing implementations cannot
guarantee channel access before a finite deadline [6, 7]. Therefore, VANETs’
real-time applications cannot predictably meet their deadlines. The design of
the Chameleon-MAC algorithm facilitates MAC protocols that address im-
portant issues, such as predictably [6, 7], fairness [21] and energy conservation.

484 P. Leone et al.

The algorithmic study of MAC protocols is a research area that considers the
analysis of distributed MAC algorithms using theoretical models that represent
the communication environment. The scope of this work includes distributed
MAC algorithms for wireless ad hoc networks and adaptive self-stabilization.

MAC algorithms. ALOHAnet and its synchronized version Slotted ALOHA [1]
are pioneering wireless systems that employ a strategy of “random access”. Time
division multiple access (TDMA) is another early approach where nodes trans-
mit one after the other, each using its own timeslot, say, according to a defined
schedule. The analysis of radio transmissions in ad hoc networks [19] and the
relocation analysis of mobile nodes [30] show that there are scenarios in which
MAC algorithms that employ a scheduled access strategy have lower throughput
than algorithms that follow the random access strategy. However, the scheduled
approach offers greater predictability, which can facilitate fairness [21] and en-
ergy conservation.

◦ Non-self-stabilizing MAC algorithms for wireless ad hoc networks. Watten-
hofer’s fruitful research line of local algorithms considers both theoretical [18, 20,
and references therein] and practical aspects of MAC algorithms [43, and refer-
ences therein] and the related problem of clock synchronization [28, and refer-
ences therein]. For example, the first partly-asynchronous self-organizing local
algorithm for vertex-coloring in wireless ad hoc networks is presented in [37].
However, this line currently does not consider MANETs. An example of a self-
organizing MAC protocol that considers a single hop and no mobility is [35].

◦ Non-self-stabilizing MAC algorithms for MANETs. An abstract MAC layer
was specified for MANETs in [24]. The authors mention algorithms that can
satisfy their specifications (when the mobile nodes very slowly change their lo-
cations). MAC algorithms that use complete information about the nodes’ tra-
jectory are presented in [42, and references therein] (without considering the
practical issues that are related to maintaining the information about the nodes’
trajectories). A self-organizing TDMA algorithm that maintains the topological
structure of its communication neighborhood is considered in [6, 7]. The authors
use computer simulations to study the protocol, assuming that nodes have access
to a global positioning system, and that transmission collisions can be detected.

◦ Self-stabilizing MAC algorithms for wireless ad hoc networks. Two examples
of self-stabilizing TDMA algorithms are presented in [21, 23]. The algorithms
are based on vertex-coloring and consider ad hoc networks (in which the mo-
bile nodes may move very slowly). Recomputation and floating output tech-
niques [11, Section 2.8] are used for converting deterministic local algorithms to
self-stabilizing ones in [29]. However, deterministic MAC algorithms are known
to be inefficient in the context of MANETs, as shown in [30]. There are several
other proposals for self-stabilizing MAC algorithms for sensor networks [such as
2, 3, 25, 26]; however, none of them considers MANETs.

Chameleon-MAC: Adaptive and Self-� Algorithms 485

Adaptive self-stabilization. In the context of self-stabilization, adaptive
resource consumption was considered for communication [16] and memory [cf.
Update algorithm in 11]. Namely, after the convergence period, the algorithm’s
resource consumption is asymptotically optimal [as in 11] or poly-logarithmic
times the optimal [as in 16]. In the context of MANETs, the idea of self-
stabilizing Virtual Node (VN) [13–15] and tokens that perform random walks in
order to adapt to the topological changes [17] was widely adopted by the theory
and practice of MANETs. These concepts can implement a wide range of appli-
cations, such as group communication services [17], and traffic coordination and
safety [44].

6.2 Conclusions

The large number of MAC algorithms and protocols for ad hoc networks man-
ifests both the interest in the problem, as well as the lack of some commonly
accepted and well understood methods that enable balancing the large number
of trade-offs. The proposed adaptive and self-� Chameleon-MAC algorithm
and the systematic study presented here shed light on and bridge this situation:
The extensive study, using the TOSSIM [32] simulation and the actual MICAz
2.4 GHz mote platform, of the aspects and parameters that are of interest in
the practical realm, offer a gnomon to facilitate adoption and deployment in
practice.

The study includes a wide, multi-dimensional range of mobility situations
and demonstrates that the Chameleon-MAC algorithm is an alternative with
improved overhead and fault-recovery periods compared to existing algorithms
in the literature and in practice [1, 21, 30, 40]. To highlight a small example, in
scenarios that exclude unrealistic situations, the Chameleon-MAC algorithm
maintains greater throughput than the studied ones [1, 21, 30, 40], including
TOSSIM’s native MAC (CSMA/CA with back-off).

As a side-result, this work demonstrates that the relocation model is suffi-
ciently abstract to describe a variety of situations (from limited mobility sce-
narios to concrete mobility models for VANETs) and detailed enough to allow
comparative studies of different algorithms.

Another contribution in the paper, which was an intermediate step in our
study and which can be of independent interest, is the analysis of the role of the
local estimation (by the nodes) of the global model parameters and their impact
on the algorithms. Interestingly, we discovered the average similarity ratio (ASR)
that can estimate well the throughput of the studied algorithms.

References

[1] Abramson, N.: Development of the ALOHANET. IEEE Transactions on Informa-
tion Theory 31(2), 119–123 (1985)

[2] Arumugam, M., Kulkarni, S.: Self-stabilizing deterministic time division multiple
access for sensor networks. AIAA Journal of Aerospace Computing, Information,
and Communication (JACIC) 3, 403–419 (2006)

486 P. Leone et al.

[3] Arumugam, M., Kulkarni, S.S.: Self-stabilizing deterministic TDMA for sensor
networks. In: Chakraborty, G. (ed.) ICDCIT 2005. LNCS, vol. 3816, pp. 69–81.
Springer, Heidelberg (2005)

[4] Berns, A., Ghosh, S.: Dissecting self-* properties. In: SASO, pp. 10–19. IEEE
Computer Society, Los Alamitos (2009)

[5] Bettstetter, C.: Smooth is better than sharp: a random mobility model for sim-
ulation of wireless networks. In: Meo, M., Dahlberg, T.A., Donatiello, L. (eds.)
MSWiM, pp. 19–27. ACM, New York (2001)

[6] Bilstrup, K., Uhlemann, E., Ström, E.G., Bilstrup, U.: Evaluation of the IEEE
802.11p MAC method for vehicle-to-vehicle communication. In: VTC Fall, pp.
1–5. IEEE, Los Alamitos (2008)

[7] Bilstrup, K., Uhlemann, E., Ström, E.G., Bilstrup, U.: On the ability of the
802.11p MAC method and STDMA to support real-time vehicle-to-vehicle commu-
nication. EURASIP Journal on Wireless Communications and Networking 2009,
1–13 (2009)

[8] Camp, T., Boleng, J., Davies, V.: A survey of mobility models for ad hoc network
research. Wireless Communications and Mobile Computing 2(5), 483–502 (2002)

[9] Chipcon Products from Texas Instruments, Texas Instruments, Post Office
Box 655303, Dallas, Texas 75265. 2.4GHz IEEE 802.15.4 / ZigBee-ready RF
Transceiver (2008)

[10] Dijkstra, E.W.: Self-stabilizing systems in spite of distributed control. ACM Com-
mun. 17(11), 643–644 (1974)

[11] Dolev, S.: Self-Stabilization. MIT Press, Cambridge (2000)
[12] Dolev, S. (ed.): ALGOSENSORS 2009. LNCS, vol. 5804. Springer, Heidelberg

(2009)
[13] Dolev, S., Gilbert, S., Lynch, N.A., Schiller, E., Shvartsman, A.A., Welch, J.L.:

Brief announcement: virtual mobile nodes for mobile ad hoc networks. In: Chaud-
huri, S., Kutten, S. (eds.) PODC, p. 385. ACM, New York (2004)

[14] Dolev, S., Gilbert, S., Lynch, N.A., Schiller, E., Shvartsman, A.A., Welch, J.L.:
Virtual mobile nodes for mobile ad hoc networks. In: Guerraoui, R. (ed.) DISC
2004. LNCS, vol. 3274, pp. 230–244. Springer, Heidelberg (2004)

[15] Dolev, S., Gilbert, S., Schiller, E., Shvartsman, A.A., Welch, J.L.: Autonomous
virtual mobile nodes. In: DIALM-POMC, pp. 62–69 (2005)

[16] Dolev, S., Schiller, E.: Communication adaptive self-stabilizing group membership
service. IEEE Trans. Parallel Distrib. Syst. 14(7), 709–720 (2003)

[17] Dolev, S., Schiller, E., Welch, J.L.: Random walk for self-stabilizing group com-
munication in ad hoc networks. IEEE Trans. Mob. Comput. 5(7), 893–905 (2006)

[18] Goussevskaia, O., Wattenhofer, R., Halldórsson, M.M., Welzl, E.: Capacity of
arbitrary wireless networks. In: INFOCOM, pp. 1872–1880. IEEE, Los Alamitos
(2009)

[19] Haenggi, M.: Outage, local throughput, and capacity of random wireless networks.
Trans. Wireless. Comm. 8(8), 4350–4359 (2009)

[20] Halldórsson, M.M., Wattenhofer, R.: Wireless communication is in APX. In: Al-
bers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W. (eds.)
ICALP 2009. LNCS, vol. 5555, pp. 525–536. Springer, Heidelberg (2009)

[21] Herman, T., Tixeuil, S.: A distributed TDMA slot assignment algorithm for wire-
less sensor networks. In: Nikoletseas, S.E., Rolim, J.D.P. (eds.) ALGOSENSORS
2004. LNCS, vol. 3121, pp. 45–58. Springer, Heidelberg (2004)

[22] Holfelder, W., Johnson, D.B., Hartenstein, H., Bahl, V. (eds.): Proceedings of
the Third International Workshop on Vehicular Ad Hoc Networks, VANET 2006.
ACM, New York (2006)

Chameleon-MAC: Adaptive and Self-� Algorithms 487

[23] Jhumka, A., Kulkarni, S.S.: On the design of mobility-tolerant TDMA-based me-
dia access control (MAC) protocol for mobile sensor networks. In: Janowski, T.,
Mohanty, H. (eds.) ICDCIT 2007. LNCS, vol. 4882, pp. 42–53. Springer, Heidel-
berg (2007)

[24] Kuhn, F., Lynch, N.A., Newport, C.C.: The abstract MAC layer. In: Keidar, I.
(ed.) DISC 2009. LNCS, vol. 5805, pp. 48–62. Springer, Heidelberg (2009)

[25] Kulkarni, S.S., Arumugam, M.U.: Sensor Network Operations, chapter SS-TDMA:
A self-stabilizing MAC for sensor networks. IEEE Press, Los Alamitos (2006)

[26] Lagemann, A., Nolte, J., Weyer, C., Turau, V.: Mission statement: Applying self-
stabilization to wireless sensor networks. In: Proceedings of the 8th GI/ITG KuVS
Fachgespräch “Drahtlose Sensornetze” (FGSN 2009), pp. 47–49 (2009)

[27] Lee, H., Cerpa, A., Levis, P.: Improving wireless simulation through noise model-
ing. In: Abdelzaher, T.F., Guibas, L.J., Welsh, M. (eds.) IPSN, pp. 21–30. ACM,
New York (2007)

[28] Lenzen, C., Locher, T., Sommer, P., Wattenhofer, R.: Clock Synchronization:
Open Problems in Theory and Practice. In: van Leeuwen, J., Muscholl, A., Peleg,
D., Pokorný, J., Rumpe, B. (eds.) SOFSEM 2010. LNCS, vol. 5901, pp. 61–70.
Springer, Heidelberg (2010)

[29] Lenzen, C., Suomela, J., Wattenhofer, R.: Local algorithms: Self-stabilization on
speed. In: Guerraoui, R., Petit, F. (eds.) SSS 2009. LNCS, vol. 5873, pp. 17–34.
Springer, Heidelberg (2009)

[30] Leone, P., Papatriantafilou, M., Schiller, E.M.: Relocation analysis of stabilizing
MAC algorithms for large-scale mobile ad hoc networks. In: Dolev [12], pp. 203–
217

[31] Leone, P., Papatriantafilou, M., Schiller, E.M., Zhu, G.: Chameleon-MAC: Adap-
tive and stabilizing algorithms for media access control in mobile ad-hoc networks.
Technical Report 2010:02, Chalmers University of Technology (2010), ISSN 1652-
926X

[32] Levis, P., Lee, N., Welsh, M., Culler, D.E.: TOSSIM: accurate and scalable sim-
ulation of entire tinyos applications. In: Akyildiz, I.F., Estrin, D., Culler, D.E.,
Srivastava, M.B. (eds.) SenSys, pp. 126–137. ACM, New York (2003)

[33] Luby, M.: Removing randomness in parallel computation without a processor
penalty. J. Comput. Syst. Sci. 47(2), 250–286 (1993)

[34] Metzner, J.J.: On Improving Utilization in ALOHA Networks. IEEE Transactions
on Communications 24(4), 447–448 (1976)

[35] Patel, A., Degesys, J., Nagpal, R.: Desynchronization: The theory of self-
organizing algorithms for round-robin scheduling. In: SASO, pp. 87–96. IEEE
Computer Society, Los Alamitos (2007)

[36] Polastre, J., Szewczyk, R., Culler, D.E.: Telos: enabling ultra-low power wireless
research. In: IPSN, pp. 364–369. IEEE, Los Alamitos (2005)

[37] Schneider, J., Wattenhofer, R.: Coloring unstructured wireless multi-hop networks.
In: Tirthapura, S., Alvisi, L. (eds.) PODC, pp. 210–219. ACM, New York (2009)

[38] Specifications ASTM, E2213-03. Standard Specification for Telecommunications
and Information Exchange between Roadside and Vehicle Systems - 5 GHz Band
Dedicated Short Range Communications Medium Access Control and Physical
Layer (September 2003)

[39] Stuedi, P., Alonso, G.: Wireless ad hoc VoIP. In: Workshop on Middleware for
Next-generation Converged Networks and Applications, Newport Beach, Califor-
nia, USA (November 2007)

[40] Takagi, H., Kleinrock, L.: Throughput analysis for persistent CSMA systems.
IEEE Transactions on Communications 33(7), 627–638 (1985)

488 P. Leone et al.

[41] Žerovnik, J.: On the convergence of a randomized algorithm frequency assign-
ment problem. Central European Journal for Operations Research and Economics
(CEJORE) 6(1-2), 135–151 (1998)

[42] Viqar, S., Welch, J.L.: Deterministic collision free communication despite contin-
uous motion. In: Dolev [12], pp. 218–229

[43] Wattenhofer, R.: Theory Meets Practice, It’s about Time. In: 36th International
Conference on Current Trends in Theory and Practice of Computer Science (SOF-
SEM), Czech Republic (2010)

[44] Wegener, A., Schiller, E.M., Hellbrück, H., Fekete, S.P., Fischer, S.: Hovering data
clouds: A decentralized and self-organizing information system. In: de Meer, H.,
Sterbenz, J.P.G. (eds.) IWSOS 2006. LNCS, vol. 4124, pp. 243–247. Springer,
Heidelberg (2006)

A Comparative Study of Rateless Codes
for P2P Persistent Storage

Heverson B. Ribeiro1 and Emmanuelle Anceaume2

1 IRISA / INRIA, Rennes Bretagne-Atlantique, France
heverson.ribeiro@inria.fr

2 IRISA / CNRS UMR 6074, France
emmanuelle.anceaume@irisa.fr

Abstract. This paper evaluates the performance of two seminal rate-
less erasure codes, LT Codes and Online Codes. Their properties make
them appropriate for coping with communication channels having an
unbounded loss rate. They are therefore very well suited to peer-to-peer
systems. This evaluation targets two goals. First, it compares the perfor-
mance of both codes in different adversarial environments and in different
application contexts. Second, it helps understanding how the parameters
driving the behavior of the coding impact its complexity. To the best of
our knowledge, this is the first comprehensive study facilitating applica-
tion designers in setting the optimal values for the coding parameters to
best fit their P2P context.

Keywords: peer-to-peer, p2p, storage, rateless codes, fountain codes,
LT codes, online codes, data persistency.

1 Introduction

Typical applications such as file sharing or large scale distribution of data all
have in common the central need for durable access to data. Implementing these
applications over a peer-to-peer system allows to potentially benefit from the
very large storage space globally provided by the many unused or idle machines
connected to the network. In this case, however, great care must be taken since
peers can dynamically and freely join or leave the system. This has led for the
last few years to the deployment of a rich number of distributed storage solutions.
These architectures mainly differ according to their replication scheme and their
failure model. For instance, architectures proposed in [10,13] rely on full replica-
tion, the simplest form of redundancy. Here, full copies of the original data are
stored at several peers, which guarantees optimal download latency. However,
the storage overhead and the bandwidth for storing new replicas when peers leave
may be unacceptable, and thus tend to overwhelm the ease of implementation
and the low download latency of this replication schema. This has motivated
the use of fixed-rate erasure coding as in [2,5]. Fixed-rate erasure codes such
as Reed-Solomon and more recently Tornado codes mainly consist in adding a
specific amount of redundancy to the fragmented original data and storing these

S. Dolev et al. (Eds.): SSS 2010, LNCS 6366, pp. 489–503, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

490 H.B. Ribeiro and E. Anceaume

redundant fragments at multiple peers. The amount of redundancy, computed
according to the assumed failure model, guarantees the same level of availability
as full replication, but with an overhead of only a fraction of the original data,
and coding and decoding operations in linear time (only guaranteed by Tor-
nado codes). Unfortunately, this replication scheme is intrinsically not adapted
to unbounded-loss channels in contrast to Rateless codes (also called Fountain
codes). As a class of erasure codes, they provide natural resilience to losses, and
therefore are fully adapted to dynamic systems. By being rateless, they give
rise to the generation of random, and potentially unlimited number of uniquely
coded symbols, which make them fully adapted to dynamic systems such as peer-
to-peer systems. Two classes of rateless erasure codes exist. Representative of
the first class is the LT coding proposed by Luby [6], and representatives of the
second one are Online codes proposed by Maymounkov [7] and Raptor codes by
Shokrollahi [12]. The latter class differs from the former one by the presence of
a pre-coding phase. A data storage architecture based on a compound of Online
coding and full replication has been recently proposed in [8]. Previous analyses
have shown the benefit of hybrid replication over full replication in terms of data
availability, storage overhead, and bandwidth usage [4,9]. However, for the best
of our knowledge, no experimental study comparing the two classes of fountain
codes has ever been performed.

The objective of the present work is to provide such a comparison. Specifically,
we propose to compare the experimental performance of both LT and Online
codes. Note that Raptor codes [12] could have been analysed as a representative
of the second class of fountain codes; however because part of their coding process
relies on LT codes, we have opted for Online codes. This evaluation seeks not only
to compare the performance of both codes in different adversarial environments,
and in different application contexts (which is modeled through different size of
data), but also to understand the impact of each coding parameter regarding the
space and time complexity of the coding process. As such, this work should be
considered, for the best of our knowledge, as the first comprehensive guideline
that should help application designers to configure these codes with optimal
parameters values.

The remainder of this paper is structured as follows: In Section 2 we present
the main features of erasure codes. Section 3 presents the experiments performed
on LT and Online codes to evaluate their recovery guarantees, their decoding
complexity in terms of xor operations, and their adequacy to varying size of
input data. This section is introduced by a brief description of the architecture
in which these experiments have been run. Section 4 concludes.

2 Backgroung on Rateless Erasure Codes

As previously said in the introduction, the main advantages of rateless erasure
codes over traditional erasure codes are first that the ratio between input and
encoded symbols is not fixed which eliminates the need for estimating the loss-
rate beforehand, and second that the encoded symbols can be independently

A Comparative Study of Rateless Codes for P2P Persistent Storage 491

generated on-the-fly. The following section emphasizes the main features of both
LT and Online codes. An in-depth description can be found in the respective
original papers [6,7].

2.1 Principles of LT Rateless Codes

Coding Process. The LT coding process [6] consists in partitioning the data
item or message to be coded into k = n/l equal size symbols (also called input
blocks), where n is the size of the data-item, and l a parameter that is typically
chosen based on the packet payload to be transmitted. Each encoded symbol ci

(also called check block) is generated by (i) choosing a degree di from a particular
degree distribution (see below), (ii) randomly choosing di distinct input symbols
(called neighbors of ci) among the k input symbols, and (iii) combining the di

neighbors into a check block ci by performing a bitwise xor operation. Note that
the degree and the set of neighbors information di associated with each check
block ci needs to be known during the decoding process. There are different
ways to communicate this information during the coding process. For instance,
a deterministic function may be used to define the degree of each check block and
then both coder and decoder can apply the same function in order to recreate
the information [6]. In the following, any check block cbi is represented as a pair
〈ci, xi〉, where ci is the check block generated by combining di neighbors and xi

is the set of the di combined neighbors. Figure 1(a) shows the LT coding process
represented by a Tanner graph [14]. Specifically, the bipartite graph is such that
the first set of vertices represents input symbols k1, k2 and k3 and the second
set represents the generated check blocks cbA, cbB, cbC , cbD and cbE . Using the
generation procedure described here above, a potentially infinite number of check
blocks can be generated. Later on, we provide the lower bound CB0 on the
number of check blocks that need to be generated in order to guarantee the
success of LT coding with high probability.

(a) (b)

Fig. 1. (a) Check blocks cbA = k1, cbB = k1 ⊕ k2, cbC = k2, cbD = k2 ⊕ k3, and
cbE = k1 ⊕ k3 coded from input symbols k1, k2, and k3. (b) Online two-phase coding
process

Decoding Process. The key idea of the decoding process is to rebuild the
Tanner graph based on the set of received check blocks. Upon receipt of check

492 H.B. Ribeiro and E. Anceaume

blocks, the decoder performs the following iterative procedure: (i) Find any
check block cbi with degree equal to one (i.e. each degree-one check block cbi

has only one input symbol ki as neighbor), (ii) copy the data ci of cbi〈ci, xi〉 to
ki. (i.e. neighbor ki of check block cbi is an exact copy of data ci), (iii) remove
the edge between cbi and ki, and (iv) execute a bitwise xor operation between
ki and any remaining check block cbr that has ki as neighbor (cbr = cbr ⊕ ki),
and remove the edge between cbr and ki. These four steps are repeated until all
k input symbols are successfully recovered.

Soliton Degree Distributions. The key point of LT codes is the design of a
proper degree distribution. The distribution must guarantee the success of the
LT process by using first, as few as possible check blocks to ensure minimum
redundancy among them and second, an average degree as low as possible to
reduce the average number of symbol operations to recover the original data. The
first approach proposed by Luby was to rely on the Ideal Soliton Distribution
inspired by Soliton Waves [11]. The idea behind the Ideal Soliton distribution
is that, at each iteration of the decoding algorithm, the expected number of
degree-one check blocks is equal to one. Specifically, if we denote by ρ(d) the
probability of an encoded symbol to be of degree d (1 ≤ d ≤ k), we have

ρ(d) =
{ 1

k if d = 1
1

d(d−1) if d = 2, . . . , k

Unfortunately, the Ideal Soliton distribution ρ(.) performs poorly in practice
since for any small variation on the expected number of degree-one check blocks
the recovering is bound to fail. This has led to the Robust Soliton Distribution,
referred to as μ(d) in the following. By generating a larger expected number of
degree-one check blocks the Robust Soliton distribution guarantees the success of
LT decoding with high probability. Specifically, the Robust Soliton distribution
is based on three parameters namely k, δ and C, where k is the number of input
symbols to be coded, δ is the failure probability of the LT process and C is
a positive constant that affects the probability of generating degree-one check
blocks. The Robust Soliton distribution μ(d) is the normalized value of the sum
ρ(d) + τ(d) where τ(d) is defined as

τ(d) =

⎧⎪⎨⎪⎩
S
k ·

1
d if d = 1, . . . , (k

S)− 1
S·ln(S

δ)
k if d > k

S

0 if d = k
S

where S, the expected number of degree-one check blocks in the decoding process,
is given by S = C ln(k/δ)

√
k. Luby [6] proved that by setting the estimated

minimum number CB0 of check blocks to

CB0 = k ·
k∑

d=1

ρ(d) + τ(d) (1)

the input symbols are recovered with probability 1− δ, with δ arbitrarily small.

A Comparative Study of Rateless Codes for P2P Persistent Storage 493

2.2 Principles of Online Rateless Codes

Coding Process. The general idea of Online codes [7] is similar to LT codes.
The original data is partitioned into k input fragments and coded to redundant
check blocks. Online codes are characterized by two main parameters ε and q.
Parameter ε, typically satisfying 0.01 ≤ ε ≤ 0.1, infers how many blocks are
needed to recover the original message, while q affects the success probability
of the decoding process (interesting values of q range from 1 to 5 as shown in
the sequel). The main differences between Online and LT codes are the coding
algorithm and the degree distribution. Briefly, in contrast to LT codes, Online
codes are generated through two encoding phases. In the first phase, αεqn aux-
iliary blocks are generated (typically, α is equal to .55). Each auxiliary block is
built by xor-ing q randomly chosen input blocks. The auxiliary blocks are then
appended to the original n blocks message to form the so called composite mes-
sage of size n′ = n(1 + αεq), which is suitable for coding. In the second phase,
composite blocks are used to create check blocks. Similarly to LT codes, each
check block is generated by selecting its degree (i.e. neighbor composite blocks)
from a specific degree distribution. Selected neighbors are xor-ed to form check
blocks. Figure 1(b) illustrates these two phases.

Decoding Process. The decoding process of Online codes performs similarly
to LT codes. The composite blocks are decoded and from these decoded blocks,
the input blocks are recovered.

Online Degree Distribution. The Online distribution only depends on ε.
This parameter is used to calculate an upper bound F on the degree of check
blocks with F = �ln(ε2

4)/ ln(1 − ε
2)�. If we denote by ρ(d) the probability of a

check block to be of degree d, then the probability distribution ρ(d) is defined
as

ρ(d) =

{
1− 1+ 1

F

1+ε if d = 1
[1−ρ(1)]F

(F−1)d(d−1) if d = 2, . . . , F

F is called the degree sample space of distribution ρ(d). Note that in contrast
to LT distribution, the Online distribution ρ(d) does not depend on the number
of input blocks. It has been theoretically shown in [7] that generating

CB0 = n(1 + ε)(1 + αεq) (2)

check blocks is sufficient to decode a fraction (1 − ε
2) of composite blocks, and

to successfully recover the original data with probability 1− (ε
2)q+1.

3 Experimental Results

This section is devoted to an in-depth practical comparison of LT and Online
codes. This comparison has been achieved by implementing both codes in Dat-
aCube, a persistent storage architecture [8]. Prior to comparing both codes per-
formance, we briefly describe the main features of this architecture, and present

494 H.B. Ribeiro and E. Anceaume

the different policies that have been implemented to select and collect check
blocks at the different peers of the system.

3.1 Experimental Platform

DataCube is a data persistent storage architecture robust against highly dy-
namic environments and adversarial behaviors. DataCube relies on the proper-
ties offered by cluster-based DHTs overlays (e.g. [1,3]), and by a compound of
full replication and rateless erasure coding schemes. Briefly, cluster-based struc-
tured overlay networks are such that clusters of peers substitute peers at the
vertices of the graph. Size of each cluster is both lower and upper bounded. The
lower bound � usually satisfies some constraint based on the assumed failure
model. For instance � ≥ 4 allows Byzantine tolerant agreement protocols to be
run among these � peers despite the presence of one Byzantine peer. The upper
bound L is typically in O(logN) where N is the current number of peers in the
system, to meet scalability requirements. Once a cluster size exceeds L, this clus-
ter splits into two smallest clusters, each one populating with the peers that
are closer to each other according to some distance D. Similarly, once a cluster
undershoots its minimal size �, this cluster merges with the closest cluster in its
neighborhood. At cluster level, peers are organized as core and spare members.
Each data-item is replicated at core members. This replication schema guaran-
tees that in presence of a bounded number of malicious peers, data integrity is
guaranteed through Byzantine agreement protocols, and efficient data retrieval
is preserved (retrieval is achieved in O(logN) hops and requires O(logN) mes-
sages, with N the current number of peers in the system). In addition to this
replication schema, each data D is fragmented, coded and spread outside its
original cluster. The identifier cbi of each check block i of D is unique and is
derived by applying a hash-chain mechanism on the key, key(D), of D such that
cbi = H(i)(key(D)). The adjacencies xi of cbi are derived by using a pseudo-
random generator function G(.). The rationale of using G(.) is that any core
member can generate exactly the same check blocks independently from the
other core members. Each check block i is then placed at γ ≥ 2 spare members
of the cluster that matches cbi. This coding schema guarantees that in presence
of targeted attacks (i.e., the adversary manages to adaptively mount collusion
against specific clusters of peers), recovery of the data those clusters were in
charge of is self-triggered. For space reasons we do not give any more detail
regarding the implementation of hybrid replication in DataCube. None of these
details are necessary for the understanding of our present work, as DataCube
will essentially be used as an evaluation platform. Anyway, the interested reader
is invited to read its description in [8].

To evaluate the coding performance of both Online and LT codes in Datacube,
we simulate targeted attacks on a set of clusters. Such attacks prevent any access
to the data these clusters cache. By doing this, we force the retrieval of these data
to be recovered through the decoding process. Let C be one these clusters, and D
be the data some peer q is looking for. Let C′ be the closest cluster to cluster C so
that, by construction of DataCube, cluster C′ is in charge of recovering cluster

A Comparative Study of Rateless Codes for P2P Persistent Storage 495

C data, and in particular data D. Then for any peer pi in the core set of C′,
pi will request and collect sufficiently many check blocks to successfully recover
D. Specifically, from the hash-chain mechanism applied to key(D), pj derives a
set M of m check blocks keys, namely cb1 . . . cbm, with cbi = H(i)(key(D)), and
m = m0 · CB0, where m0 = 1 . . . 5. Then from G(.) pj generates x1 . . . xm, the
respective adjacencies of cb1 . . . cbm. From this set M , pj has the opportunity
to apply different policies to select the check blocks it will collect in DataCube,
these policies differing according to the priority given to the adjacencies degree.
The rational of these policies is to show whether in practice it makes sense to
”help” the decoder by first collecting as many degree-one check blocks as possible
(this is the purpose of both Policies 2 and 3), or on the contrary, whether it is
more efficient to collect random check blocks as theoretically predicted (Role of
Policy 1). Policy 4 implements the optimal decoders behaviors. Specifically,

– Policy 1 (random policy): no priority is given to the adjacencies degrees. That
is, CB0 check blocks identifiers cbi are randomly chosen from set M , and the
corresponding check blocks are collected in DataCube (through lookup(cbi)
operations).

– Policy 2 (degree-one first, random afterwards policy): the priority is given
to degree-one check blocks. That is, all degree-one check blocks identifiers
belonging to M are selected, and if less than CB0 check blocks have been
selected, the remaining ones are randomly selected from M . As for above, the
corresponding check blocks are collected in DataCube through lookup(.)
operations.

– Policy 3 (degree-one-only policy): similar to Policy 2 except that instead of
randomly selected the non degree-one check blocks, degree-two check blocks
that will be reduced thanks to the degree-one check blocks are selected. Note
that less than CB0 check blocks can be selected.

– Policy 4 (optimal policy): the bipartite graph is applied on the elements of
set M , and only necessary check blocks are selected. Comparing to Policy
3, no redundant degree-one check blocks are selected. This makes Policy 4
optimal w.r.t. set M .

If this first phase is not sufficient for the decoding process to recover the input
message M , then pj regenerates a new set M and proceeds as above. It does this
until D is fully recovered.

3.2 Setup

Our experiments are conducted over a Linux-based cluster of 60 dedicated Dell
PowerEdge 1855 and 1955 computers, with 8 gigabytes of memory each, and 400
Bi-pro Intel Xeon processors. We developed a java-based prototype to simulate
DataCube, and to implement both LT and Online coding schemes. Each coding
schema is evaluated with a large range of input parameters. The number k of input
fragments varies from 100 to 10, 000. For Online coding, ε varies from 0.01 to 0.9,
and q is set to integer values from 1 to 5. For LT coding, δ varies from 0.01 to 0.9
and C from 0.1 to 5. All the plotted curves are the average of 50 experiments.

496 H.B. Ribeiro and E. Anceaume

3.3 Degree Distributions

We start by highlighting some differences on the expected behavior of both
coding processes. The design of each degree distribution is the most critical
point for both coding processes to efficiently recover the original data. A good
degree distribution must guarantee the input block coverage, that is, that all the
input blocks have at least one edge to guarantee a successful recovery. In Online
coding, composite blocks are used to ensure this coverage. Low degrees check
blocks, and degree-one in particular, are crucial for the decoding process to start
and keep running. On the other hand, too many low degrees may lead to an over
redundancy of check blocks, and thus are useless. Figure 2(a) shows the degree
distribution of Online codes. Two interesting behaviors can be observed. First,
for ε ≤ 0.1 the degree-one probability is very small (i.e., ≤ 0.09) while for ε > 0.1,
the expected number of degree-one check blocks is greater than 26%. The second
observation is that the range of degrees a check block can be built from (i.e., F
values) drastically augments with decreasing values of ε (i.e., F = 3 for ε = 0.9,
and F = 2114 for ε = 0.01). As will be shown later on, both features have a great
impact on Online coding performance. Figure 2(b) shows the degree distribution
of the LT coding process. The impact of C on check blocks degrees is clearly
shown (i.e., increasing C values augments the probability of degree-one check
blocks). An interesting point to observe is that degree-one probability increases
up to C ≤ 0.5, and abruptly drops for C > 0.5. Interpretation of this behavior
is that combination of these specific values of C (i.e., C > 0.5) and those of k
and δ lead distribution τ(d) to tend to zero, which makes the Robust Soliton
distribution behaving exactly as the Ideal distribution. The value of C for which
this phenomena occurs will be referred to in the following as the cut-off value
of C (for k = 100, and δ = 0.01, the cut-off value equals 0.6). We show in the
following how the cut-off value impacts LT performance. Figures 3(a) and 3(b)
show the degree distribution of LT codes for varying values of δ. We can see that
the influence of δ increases with increasing values of C.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 1 10 100 1000

D
eg

re
e

P
ro

ba
bi

lit
y

Degree

Online Codes
Epsilon: 0.01
Epsilon: 0.05
Epsilon: 0.1
Epsilon: 0.5
Epsilon: 0.9

(a) k = 100

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 1 10 100

D
eg

re
e

P
ro

ba
bi

lit
y

Degree

LT Codes
C: 0.1
C: 0.2
C: 0.3
C: 0.4
C: 0.5
C: 0.6
C: 0.7
C: 0.8
C: 0.9
C: 1.0
C: 2.0
C: 3.0

(b) k = 100, δ = 0.01

Fig. 2. Distributions μ(.) and ρ(.) as a function of the degree

A Comparative Study of Rateless Codes for P2P Persistent Storage 497

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 1 10 100

D
eg

re
e

P
ro

ba
bi

lit
y

Degree

LT Codes
Delta: 0.01
Delta: 0.05
Delta: 0.1
Delta: 0.5
Delta: 0.9

(a) C = 0.1, k = 100

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 1 10 100

D
eg

re
e

P
ro

ba
bi

lit
y

Degree

LT Codes
Delta: 0.01
Delta: 0.05
Delta: 0.1
Delta: 0.5
Delta: 0.9

(b) C = 0.5, k = 100

Fig. 3. Distributions μ(.) as a function of the degree for different values of δ

3.4 Recovery Performance of Coding Processes

This section evaluates the number of check blocks that need to be recovered in
practice to successfully recover the original data D for both coding schemes, and
for the four above described policies. In all the figures shown in this section,
curves are depicted as a function of the fraction of the predicted minimal value
CB0. That is, an abscissa equal to 150 means 1.5 times CB0 check blocks. Arrows
point to the number of check blocks that are needed to recover exactly k input
blocks, that is 100% of D.

We first analyze the results obtained for LT codes using the four above de-
scribed policies. The impacts of both C and δ on LT recovery performance when
Policy 1 is run are illustrated in Figures 4(a) and 4(b). General observations
drawn from Figure 4(a) are first that by randomly collecting check blocks, LT
differs from the theoretical prediction in no more than 30% (for instance, to
recover k = 100 input blocks with C = 0.1, CB0 is equal to 113 (see Relation 1)
while in average 152 check blocks are needed. Moreover, for increasing values of
C, LT behavior progressively degrades with a sharp breakdown when C reaches
its cut-off value (i.e., C = 0.6). Indeed, from C = 0.6 onwards, the Robust Soli-
ton distribution behaves as the Ideal one, which also explain why LT behavior is
independent from C values (i.e., 463 check blocks are necessary to successfully
recover k = 100 input blocks for any C ≥ 0.6). Figure 4(b) shows LT recovery
performance for different values of δ. We can see that the number of check blocks
augments with increasing values of δ. This feature is due to LT distribution μ(.)
since increasing values of δ leads to a diminution of degree-one probability. We
can also observe that with 100% of CB0, the percentage of recovered input
blocks increases with decreasing values of δ. A similar behavior observed for
different values of C tends to confirm that δ highly impacts the probability of
successful recovery. The impact of Policies 2 and 3 on LT is significant as shown
in Figures 4(c) and 4(d). The quasi-exclusive collect of degree-one check blocks
combined with the impact of C on the generation of degree-one check blocks
overwhelms the decoder with too many redundant degree-one check blocks (and

498 H.B. Ribeiro and E. Anceaume

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300 350 400 450A
ve

ra
ge

 P
er

ce
nt

ag
e

of
 R

ec
ov

er
ed

 In
pu

t B
lo

ck
s

Percentage of CB_0

LT - Policy 1

152

152

165162

180

463 463 463 463 463 463 463

C: 0.1
C: 0.2
C: 0.3
C: 0.4
C: 0.5
C: 0.6
C: 0.7
C: 0.8
C: 0.9
C: 1.0
C: 2.0
C: 3.0

(a) k = 100, m0 = 5, and δ = 0.01

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300 350 400 450A
ve

ra
ge

 P
er

ce
nt

ag
e

of
 R

ec
ov

er
ed

 In
pu

t B
lo

ck
s

Percentage of CB_0

LT - Policy 1

180 228 237 262 282

Delta: 0.01
Delta: 0.05
Delta: 0.1
Delta: 0.5
Delta: 0.9

(b) k = 100, m0 = 5, and C = 0.5

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300 350 400 450A
ve

ra
ge

 P
er

ce
nt

ag
e

of
 R

ec
ov

er
ed

 In
pu

t B
lo

ck
s

Percentage of CB_0

LT - Policy 2

283

269

304

395

390

268 268 268 268 268 268 268

C: 0.1
C: 0.2
C: 0.3
C: 0.4
C: 0.5
C: 0.6
C: 0.7
C: 0.8
C: 0.9
C: 1.0
C: 2.0
C: 3.0

(c) k = 100, m0 = 5, and δ = 0.01

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300 350 400 450A
ve

ra
ge

 P
er

ce
nt

ag
e

of
 R

ec
ov

er
ed

 In
pu

t B
lo

ck
s

Percentage of CB_0

LT - Policy 3

328

379

396395

450

361 361 361 361 361361361

C: 0.1
C: 0.2
C: 0.3
C: 0.4
C: 0.5
C: 0.6
C: 0.7
C: 0.8
C: 0.9
C: 1.0
C: 2.0
C: 3.0

(d) k = 100, m0 = 5, and δ = 0.01

Fig. 4. Percentage of recovered input blocks as a function of the number of collected
check blocks expressed as a fraction of CB0 for different values of C

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300 350A
ve

ra
ge

 P
er

ce
nt

ag
e

of
 R

ec
ov

er
ed

 In
pu

t B
lo

ck
s

Percentage of CB_0

Online - Policy 1

299235

165

264390

epsilon: 0.01
epsilon: 0.05
epsilon: 0.1
epsilon: 0.5
epsilon: 0.9

(a) k = 100, q = 1, m0 = 5

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300A
ve

ra
ge

 P
er

ce
nt

ag
e

of
 R

ec
ov

er
ed

 In
pu

t B
lo

ck
s

Percentage of CB_0

Online - Policy 1 (q:5)

291192167276408

epsilon: 0.01
epsilon: 0.05
epsilon: 0.1
epsilon: 0.5
epsilon: 0.9

(b) k = 100, q = 5, m0 = 5

Fig. 5. Percentage of recovered input blocks as a function of the number of collected
check blocks expressed as a fraction of CB0

A Comparative Study of Rateless Codes for P2P Persistent Storage 499

degree-two check blocks for Policy 3) which requires many check blocks (from 269
to 395) to successfully recover k = 100 original input blocks. On the other hand,
when C exceeds its cut-off value, the large amount of degree-one check blocks
collected by both policies is compensated by the very low number of check blocks
generated by the Ideal distribution, leading to better recovery performance than
when C < 0.6. Note that in all these experiments, m0 equals 5 which gives a
large choice for the policies to select check blocks that fit their properties. Fi-
nally, and as expected, the optimal policy behaves perfectly well. This policy
guarantees the full recovery of input blocks in a linear number of check blocks.
Indeed, each check block is the outcome of the bipartite graph decoding process,
and thus each single selected check block is useful for the recovery (for instance,
103 check blocks in average allow to recover k = 100 input blocks. For space
reasons we have not illustrated performance of Policy 4 in this paper).

We now analyze the results obtained for Online coding schema with the four
policies. Policy 1 is illustrated for different values of ε and q in respectively
Figures 5(a) and 5(b). A preliminary observation drawn from Figure 5(a) is that
varying ε leads to a greater range of CB0s values than what is obtained when
one varies parameter C in LT (i.e., with Online, CB0 varies from 106 to 390
while with LT, CB0 varies from 103 to 150). Thus as a first approximation, we
may expect that in average the number of check blocks that need to be collected
for successfully recovering the input blocks is larger with Online than with LT.
Another preliminary comment is that the gap between theoretical predictions
and practical results increases with diminishing values of ε. Surprisingly enough,
the number of check blocks that need to be collected for a successful recovery
does not vary proportionally to ε, that is for extrema values of ε, this number is
respectively equal to 290 and 390, while it decreases to reach its minimum 165
for ε = 0.1. Actually, for ε = 0.9, the number of auxiliary blocks is large (see
Section 2.2) but the space degree F is very small (i.e., equal to 3, see Section 3.3).
Thus a large number of redundant check blocks are a priori collected, which
demands for more check blocks to successfully recover k input blocks. Now for
ε = 0.01, the number of auxiliary blocks is small but they form a complete
bipartite graph with their associated input blocks, which clearly make them
useless. Moreover the probability of having degree-one check blocks is very small
(i.e., 0.01), and the probability of having degree-two is large (i.e., 50%). However
as the space degree F is very large too, the likelihood of having some very high
degree check blocks is not null, and thus a large number of check blocks need
also to be collected. Finally, for ε = 0.1, the distribution of check blocks degrees
is relatively well balanced, in the sense that the proportion of degree-one is
relatively high (i.e., 9%) but not too high to prevent redundancy. The proportion
of degree-two is high (i.e., 47%) which combined with degree-one allows to cover
many input blocks. Finally, degree-three and degree-four check blocks are also
useful (i.e., respectively equal to 15% and 4%). This clearly make this value
of ε optimal, which is confirmed by the fact that 165 check blocks successfully
recover 100 input blocks. The very same argument applies for larger values of
q as shown in Figure 5(b). The impact of Policies 2 and 3 on Online coding

500 H.B. Ribeiro and E. Anceaume

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300 350A
ve

ra
ge

 P
er

ce
nt

ag
e

of
 R

ec
ov

er
ed

 In
pu

t B
lo

ck
s

Percentage of CB_0

Online - Policy 2

256 304279432585

epsilon: 0.01
epsilon: 0.05
epsilon: 0.1
epsilon: 0.5
epsilon: 0.9

(a) k = 100, q = 1, m0 = 5

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300 350A
ve

ra
ge

 P
er

ce
nt

ag
e

of
 R

ec
ov

er
ed

 In
pu

t B
lo

ck
s

Percentage of CB_0

Online - Policy 3

272 368285384487

epsilon: 0.01
epsilon: 0.05
epsilon: 0.1
epsilon: 0.5
epsilon: 0.9

(b) k = 100, q = 1, m0 = 5

Fig. 6. Percentage of recovered input blocks as a function of the number of collected
check blocks expressed as a fraction of CB0

shown in Figures 6(a), and 6(b) is similar to the one obtained on LT, in the
sense that recovering essentially degree-one check blocks cumulates with the high
proportion of degree-one check blocks generated with the degree distributions
(see Section 3.3) and thus, leads to the collect of a large number of redundant
check blocks. Note that sensibility of this phenomena augments with increasing
values of ε.

3.5 Computational Cost in Terms of xor Operations

In this section, we discuss the computational costs of both LT and Online
decoding process. The computational cost is quantified by the number of xor

operations that need to be run to successfully recover the input data when Policy
1 is applied. Note that the unit of xor used by the encoder/decoder matches
the length of an input block.

We first analyze the number of xor operations in both LT and Online coding
schemes as a function of their respective parameters (C, δ), and (ε, q). Results are
depicted in Figures 7(a) and 7(b). The main observation drawn from Figure 7(a)
is that the number of xor operations slowly drops down with increasing values
of C (provided that C cut-off values are not reached (i.e., C = 0.6 for δ = 0.01
and C = 1 for δ = 0.5). Specifically, for small values of C, the probability of
degree-one check blocks is less than 10% and weakly depends on δ values. On
the other hand, for larger values of C, the probability of degree-one check blocks
is equal to respectively 22% and 33% for δ = 0.5 and δ = 0.01 which explain the
negative slopes of both curves, and the increasing gap between both curves for
increasing values of ε.

Now, regarding Online computational cost as a function of ε and q, Figure 7(b)
shows first that ε has a strong impact on the number of xor operations that
need to be performed. Specifically for increasing values of ε, this number dras-
tically decreases, down to the average number of xor operations run with LT
coding. This behavior seems to result from the combination of two phenomena.

A Comparative Study of Rateless Codes for P2P Persistent Storage 501

 3800

 4000

 4200

 4400

 4600

 4800

 5000

 5200

 5400

 5600

 5800

 6000

 0 0.2 0.4 0.6 0.8 1

A
ve

ra
ge

 N
um

be
r

of
 X

O
R

 O
pe

ra
tio

ns

C Parameter

LT Codes
delta: 0.01

delta: 0.5

(a)

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 0 0.2 0.4 0.6 0.8 1

A
ve

ra
ge

 N
um

be
r

of
 X

O
R

 O
pe

ra
tio

ns

Epsilon Parameter

Online Codes
q: 1
q: 5

(b)

Fig. 7. Average number of xor operations to successfully recover k = 100 input blocks
as a function of LT and Online parameters

 1000

 10000

 100000

 1e+06

 1e+07

 0 2000 4000 6000 8000 10000

A
ve

ra
ge

 N
um

be
r

of
 X

O
R

 O
pe

ra
tio

ns

Number k of Input Blocks

Online and LT Codes

LT (Delta: 0.01, C: 0.1)
LT (Delta: 0.01, C: 0.5)

Online (epsilon: 0.01, q: 5)
Online (epsilon: 0.9, q: 1)

(a)

 100

 1000

 10000

 100000

 0 2000 4000 6000 8000 10000

A
ve

ra
ge

 N
um

be
r

of
 C

he
ck

 B
lo

ck
s

Number k of Input Blocks

Online and LT Codes

LT (Delta: 0.01, C:0.1)
LT (Delta: 0.01, C:0.5)

Online (epsilon: 0.01, q:5)
Online (epsilon: 0.9, q:1)

(b)

Fig. 8. (a) Average number of xor operations for respectively LT and Online codes
to successfully recover the input data as a function of the size k of the input data. (b)
Average number of check blocks for respectively LT and Online codes to successfully
recover the input data as a function of the size k of the input data.

For ε = 0.01 . . .0.1, the number of check blocks needed to successfully recover the
input data decreases (as previously observed in Figure 5(a)), and in the mean-
time, F equally decreases with an increasing probability of generating degree-one
and degree-two check blocks. Thus both phenomena cumulate and give rise to
the diminution of the number of xor operations as observed in Figure 7(b)
(recall that degree-one check blocks do not trigger any xor operations). Now,
for ε = 0.1 . . . 0.9, the number of check blocks increases (as previously observed
in Figure 5(a)), and F drastically decreases together with a high probability
of generating degree-one and degree-two check blocks. Thus despite the fact
that a large number of check blocks need to be decoded, most of them have a
degree-one or degree-two, and thus most of them do not trigger xor operations,
which explains the negative gradients of the curves in Figure 7(b). The second

502 H.B. Ribeiro and E. Anceaume

observation drawn from this figure is that the number of xor operations equally
depends on q value. Specifically, for large values of q (e.g., q = 5) the number
of auxiliary blocks is high and their adjacencies degree with the input blocks is
small. Thus these auxiliary blocks are involved in the decoding process and thus
augment the number of xor operations. On the other hand, for small values of
q (e.g., q = 1), the number of auxiliary blocks is small however, these blocks
form a quasi-complete bipartite graph with the input blocks, which makes them
useless for the decoding process. Consequently, they do not impact the compu-
tational cost of Online. Finally, Figures 8(a) and 8(b) depict the computational
cost of both LT and Online as a function of the number of input blocks. The
main observation is that both LT and Online decoding complexity are linear
with k. The second finding is that for increasing values of k, Online decoding
complexity is more sensible to parameters variations than LT is.

4 Conclusion

In the present work, we have evaluated both LT and Online rateless codes in
terms of recovery and computational performance, and scalability properties. Ex-
periments have confirmed that it is more efficient to collect random check blocks
as theoretically predicted than favoring only small degree check blocks. We ex-
pect that this study should allow a good insight into the properties of these codes.
In particular we have confirmed the good behavior of both coders/decoders when
the number of input blocks increases. This is of particular interest for multimedia
and storage applications.

References

1. Anceaume, E., Brasiliero, F., Ludinard, R., Ravoaja, A.: Peercube: an hypercube-
based p2p overlay robust against collusion and churn. In: Proceedings of the IEEE
International Conference on Self Autonomous and Self Organising Systems, SASO
(2008)

2. Bhagwan, R., Tati, K., Cheng, Y.C., Savage, S., Voelker, G.M.: Total Recall:
System support for automated availability management. In: Proceedings of the
USENIX Association Conference on Symposium on Networked Systems Design
and Implementation, NSDI (2004)

3. Fiat, A., Saia, J., Young, M.: Making chord robust to byzantine attacks. In: Bro-
dal, G.S., Leonardi, S. (eds.) ESA 2005. LNCS, vol. 3669, pp. 803–814. Springer,
Heidelberg (2005)

4. Houri, Y., Jobmann, M., Fuhrmann, T.: Self-organized data redundancy manage-
ment for peer-to-peer storage systems. In: Proceedings of the 4th IFIP TC 6 In-
ternational Workshop on Self-Organizing Systems (IWSOS). Springer, Heidelberg
(2009)

5. Kubiatowicz, J., Bindel, D., Chen, Y., Czerwinski, S., Eaton, P., Geels, D., Gum-
madi, R., Rhea, S., Weatherspoon, H., Wells, C., et al.: OceanStore: an architecture
for global-scale persistent storage. In: ACM SIGARCH Computer Architecture, pp.
190–201 (2000)

A Comparative Study of Rateless Codes for P2P Persistent Storage 503

6. Luby, M.: LT codes. In: Proceedings of the IEEE International Symposium on
Foundations of Computer Science, SFCS (2002)

7. Maymounkov, P.: Online codes. Research Report TR2002-833, New York Univer-
sity (2002)

8. Ribeiro, H.B., Anceaume, E.: DataCube: a P2P persistent storage architecture
based on hybrid redundancy schema. In: Proceedings of the IEEE Euromicro In-
ternational Conference on Parallel, Distributed and Network-Based Computing,
PDP (2010)

9. Ribeiro, H.B., Anceaume, E.: Exploiting Rateless Coding in Structured Overlays
to achieve Data Persistence. In: Proceedings of the 24th IEEE International Con-
ference on Advanced Information Networking and Applications, AINA (2010)

10. Rowstron, A., Druschel, P.: Storage management and caching in PAST, a large-
scale, persistent peer-to-peer storage utility. ACM SIGOPS Operating System Re-
view 35(5), 188–201 (2001)

11. Russell, J.S.: Report on waves. In: 14th Meeting of the British Association for the
Advancement of Science, pp. 311–390 (1844)

12. Shokrollahi, A.: Raptor codes. IEEE/ACM Transactions on Networking, 2551–2567
(2006)

13. Sit, E., Haeberlen, A., Dabek, F., Chun, B.G., Weatherspoon, H., Morris, R.,
Kaashoek, M.F., Kubiatowicz, J.: Proactive replication for data durability. In: Pro-
ceedings of the 5rd International Workshop on Peer-to-Peer Systems, IPTPS 2006
(2006)

14. Tanner, R.: A recursive approach to low complexity codes. IEEE Transactions on
Information Theory 27(5), 533–547 (1981)

Dynamically Reconfigurable Filtering Architectures

Mathieu Valero, Luciana Arantes, Maria Gradinariu Potop-Butucaru, and Pierre Sens

LIP6 - University of Paris 6 - INRIA

Abstract. Distributed R-trees (DR-trees) are appealing infrastructures for im-
plementing range queries, content based filtering or k-NN structures since they
inherit the features of R-trees such as logarithmic height, bounded number of
neighbors and balanced shape. Interestingly, the mapping between the DR-tree
logical nodes and the physical nodes has not yet received sufficient attention.
In previous works, this mapping was naively defined either by the order phys-
ical nodes join/leave the system or by their semantics. Therefore, an important
gap in terms of load and latency can be observed while comparing the theoreti-
cal work and the simulation/experimental results. This gap is partially due to the
placement of virtual nodes. A naive placement that totally ignores the hetero-
geneity of the network may generate an unbalanced load of the physical system.
In order to improve the overall system performances, this paper proposes mech-
anisms for placement and dynamic migration of virtual nodes that balances the
load of the network without modifying the DR-tree virtual structure. That is, we
reduce the gap between the theoretical results and the practical ones by inject-
ing (at the middleware level) placement and migration strategies for virtual nodes
that directly exploit the physical characteristics of the network. Extensive sim-
ulation results show that significant performance gain can be obtained with our
mechanisms. Moreover, due to its generality, our approach can be easily extended
to other overlays or P2P applications (e.g. multi-layer overlays or efficient P2P
streaming).

1 Introduction

From the very beginning of the theoretical study of P2P systems, one of the topics that
received a tremendous attention is the way these systems are mapped to the real (physi-
cal) network. Even early DHT-based systems such as Pastry [19] or CAN [18] included
in their design the notion of geographical locality. Later, middlewares designed on top
of DHT-based or DHT-free P2P systems exploit various degrees of similarity between
peers following criteria such as the geographical vicinity or the semantic of their inter-
ests. One of the most relevant example in that sense are content-based publish/subscribe
systems. These communication primitives completely decouple the source of events
(a.k.a. publishers) from their users (a.k.a. subscribers). Their efficient implementations
in P2P settings are optimized with respect to a broad class of metrics such as latency
or load balancing. To this end the similarity between different subscribers is fully ex-
ploited and various logical infrastructures have been recently proposed. Most exploited
architectures are tree-based due to their innate adaptability to easy filter. In the de-
sign of tree-based publish/subscribe there is a trade-off between the maintenance of an
optimized tree infrastructure following various criteria (e.g. bounded degree, max/min

S. Dolev et al. (Eds.): SSS 2010, LNCS 6366, pp. 504–518, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Dynamically Reconfigurable Filtering Architectures 505

number of internal nodes or leaves) and the placement of logical nodes on physical
machines in order to optimize the overall system load or latency.

Our paper follows this research direction by addressing the placement of virtual
nodes in tree-filtering architectures. In particular, we address the case of DR-trees over-
lays where the quality of service of the overlay greatly depends on the way virtual
nodes are mapped on the physical nodes. DR-trees [2] are a distributed P2P version of
R-trees [11] which are used to handle objects with a poly-rectangular representation.
DR-trees are P2P overlays with a bounded degree and search/diffusion time logarith-
mic in size of the network. By their natural construction they are adapted to represent
subscriptions with rectangle shape in content based systems. The efficient construction
of a DR-tree overlay raises several problems. In particular, it should be noted that the
design of DR-trees may bring a single physical machine to be responsible for several
virtual nodes. Therefore, a wrong choice in the placement of virtual nodes may have a
huge impact on overall system performances; in terms of latency, bandwidth etc. . .

Our contribution tends to address this issue. We investigate the problem of placement
and migration of virtual nodes. We define valid migrations (with respect to the logical
topology of the DR-trees) and, using some techniques borrowed from transactional sys-
tems, we propose strategies for solving conflicts generated by concurrent migrations.

2 Related Work

The placement of virtual nodes has been evoked in several works addressing differ-
ent ad hoc issues. In publish-subscribe systems such as Meghdoot [10], Mirinae [7],
Rebeca [20], SCRIBE [6] or Sub-2-Sub [17], virtual nodes correspond to subscrip-
tions and they are mapped on the physical node that created them. In BATON [13]
and VBI [14], two AVL based frameworks, virtual nodes are divided in two categories:
leaves and internal nodes. The former are used for storage while the latter are used
for routing. A structural property of AVL ensures that there there are roughly as much
leaves as internal nodes: each physical node holds one leaf and one internal node. In
a DR-tree, due to its degree (m : M, with m > 1), there are fewer internal nodes than
leaves; each physical node holds exactly one leaf and may hold one or more internal
nodes.

Many publish/subscribe are based on multicast trees where network characteristics
are exploited to build efficient multicast structures in terms of latency and/or bandwidth
([3,1,8,5]). Our approach does not require any extra overlays or structures. Network
characteristics are taken into account through a mechanism of virtual node migrations;
this mechanism was not conceived for a particular evaluation metric. Metrics can be
defined independently making our work more general.

Brushwood [4] is a kd-tree based overlay targeting locality preservation and load
balancing. Each physical node holds one virtual node which corresponds to a k-
dimensional hyperplane. When a physical node joins the network, it is routed to a
physical node. If the joined physical node is overloaded, it will split its hyperplane
and delegate half of it to the new node. In addition, Brushwood provides a sporadical
load evaluation mechanism: overloaded physical nodes may force underloaded ones to
reinsert themself and thus benefit from the join mechanism.

506 M. Valero et al.

Chordal graph [15] is a range queriable overlay. Efficiency of queries is measured
in terms of distance (that could be expressed in terms of latency, bandwidth etc. . .)
between physical nodes. Similarly to SkipNet [12,9], each physical node belongs to
different rings. For each ring, the physical node holds a range of values which can be
dynamically resized to balance load. During joins, physical nodes are routed according
to their relative distance. Conceptually, hyperplanes and ranges are virtual nodes. While
Chordal graph [15] and Brushwood [4] modify virtual nodes during hyperplane splitting
or range scaling while our approach neither modifies virtual nodes nor the DR-tree
structure.

3 Background

In this section we recall some generic definitions and the main characteristics of the
DR-trees [2] overlay. Moreover, we discuss the main issues related to the virtual nodes
distribution.

3.1 Distributed R-trees

R-trees were first introduced in [11] as height-balanced tree handling objects whose
representation can be circumscribed in a poly-space rectangle. Each leaf-node in the
tree is an array of pointers to spatial objects. A R-tree is characterized by the following
structural properties:

– Every non-leaf node has a maximum of M and at least m entries where m≤M/2,
except for the root.

– The minimum number of entries in the root node is two, unless it is a leaf node. In
this case, it may contain zero or one entry.

– All the leaf nodes are at the same level.

Distributed R-trees (DR-trees) introduced in [2] extend the R-tree index structures
where peers are self-organized in a balanced virtual tree overlay based on semantic
relations The structure preserves the R-trees index structure features: bounded degree
per node and search time logarithmic in the size of the network. Moreover, the proposed
overlay copes with the dynamism of the system.

Physical machines connected to the system wille be further referred as p-nodes
(shortcut for physical nodes). A DR-tree is a virtual structure distributed over a set
of p-nodes. In the following, terms related to DR-tree will be prefixed with “v-”. Thus,
DR-trees nodes will be called v-nodes (shortcut for virtual nodes). The root of the DR-
tree is called the v-root while the leaves of the DR-tree are called v-leaves. Except
the v-root, each v-node n has a v-father (v-father(n)), and, if it is not a v-leaf, some
v-children (v-children(n)). These nodes are denoted v−neighbors of n.

The physical interaction graph defined by the mapping of a DR-tree to p− nodes
of the system is a communication graph where there is a p− edge (p,q), p �= q, in
the physical interaction graph if: there is a v-edge (s,t) in the DR-tree, p is the p-node
holding v-node s, and q is the p-node holding v-node t.

Dynamically Reconfigurable Filtering Architectures 507

Figure 1 shows a representation of a DR-tree composed of v-nodes {n0, . . . ,n12}
mapped on p-nodes {p1, . . . , p9}. Dashed boxes represent nodes distribution. There is
a p-edge (p1, p5) in the interaction graph because there is a v-edge (n0,n6) in the DR-
tree, p1 is the p-node holding v-node n0, and p5 is the p-node holding v-node n6.

The key points in the construction of a DR-Tree are the join/leave procedures. When
a p-node joins the system, it creates a v-leaf. Then the p-node contacts another p-node
to insert its v-leaf in the existing DR-tree. During this insertion, some v-nodes may split
and then Algorithm 1 is executed.

Algorithm 1. void onSplit(n:VNode)

1: if n.isV Root() then
2: newV Root = n.createV Node() � newV Root is held by the same p-node than n
3: n.v− f ather = newV Root
4: end if
5: m = selectChildIn(n.v−children)
6: newV Node = m.createV Node() � newV Node is held by the same p-node than m
7: n.v−children,newV Node.v−children = divide(n.v−children)
8: newV Node.v− f ather = n.v− f ather

Distribution Invariants: The following two properties are invariant in the implemen-
tation of DR-tree proposed in [2]:

– Inv1: each p-node holds exactly one v-leaf;
– Inv2: if p-node p holds v-node n, either n is a v-leaf or p holds exactly one v-

children of n.

We denote the top and bottom v-node of a p-node the v-node which is at the top and
bottom of the chain of v-nodes kept by the p-node respectively. The above invariants
ensure that the communication graph is a tree:

– The p-root is the p-node holding the v-root;
– A p-node p is the p-father of the p-node q (p-father(q)) if p holds the v-father of

the v-node at the top of the chain of v-nodes held by q.

For instance in Figure 1a, p-father(p5) = p-father(p7) = p1. The above distribution in-
variants also guarantee that p-nodes have a bounded number of p-neighbors. In a system
with N p-nodes and a DR-tree with degree m−M, the DR-tree height is logm(N); the
p-root holds logm(N) v-nodes. Since each v-node has up to M v-neighbors, the p-root
may have up to M ∗ logm(N) p-neighbors.

3.2 Virtual Nodes Distribution

A DR-tree is a logical structure distributed across a set of physical machines. That is,
each v-node is assigned to a p-node of the system. Figures 1 and 2 show the same
DR-tree differently distributed over the same set of physical nodes {p1, . . . , p9}. The

508 M. Valero et al.

n0

n1

n2

p1

n3

p2

n4

p3

n5

p4

n6

n7

p5

n8

p6

n9

n10

p7

n11

p8

n12

p9

(a) A distribution of a given R-tree

p1

p2 p3 p4 p5

p6

p7

p8 p9

(b) Corresponding physical interaction graph

Fig. 1. A distribution of a given DR-tree and its corresponding physical interaction graph

n0

n1

n2

p1

n3

p2

n4

p3

n5

p4

n6

n7

p5

n8

p6

n9

n10

p7

n11

p8

n12

p9

(a) A second distribution of the same R-tree

p9

p7 p8 p6

p5

p4

p1 p2 p3

(b) Corresponding physical interaction graph

Fig. 2. A second distribution of the same DR-tree leading to a different physical interaction graph

distribution of DR-tree nodes determines the communication interactions between the
physical nodes and thus has a strong impact on system performances.

In [2] the distribution of the DR-tree depends both on the join order of machines and
on the implementation of the join/split procedures (Algorithm 1). This approach has
two main drawbacks. Firstly, the characteristics of the physical machines are not taken
into account in the distribution of the DR-tree nodes. Secondly, this distribution is static.
Virtual nodes are placed at their creation or during join/split operations. Their location
is not changed even if system performances degrade. The first point is problematic in
heterogeneous networks, where system performances are highly related to the distribu-
tion of the DR-tree root (and its “close” neighborhood). For example, if we evaluate
the quality of the system in terms of bandwidth, if p1 has a bad one and p9 a good
one, the mapping proposed in Figure 2a is better than the one proposed in Figure 1a.
Static distribution is problematic if the quality of the communications in the physical
interactions graph evolves over time. Therefore, virtual nodes that are close to the root
of the DR-tree and that are placed on the best possible machines at a given time may
induce poor system performances if their guest machines become less performant.

To address these issues, we propose a mechanism for dynamic migration of DR-tree
nodes over the physical network. It allows to dynamically modify the DR-tree distri-
bution (without any modification of the logical structure) in order to match the perfor-
mance changes of the physical system. Our migration mechanism uses feed-backs from
some cost functions (e.g. load of nodes) based on the physical interaction graph and
also exploits the virtual relations defined by the DR-tree logical structure.

Dynamically Reconfigurable Filtering Architectures 509

4 Migration Mechanism

In this section we analyze the migration of a v-nodes while the DR-tree overlay evolves
over time. We start by explaining which v-nodes are candidate to migrate and which
destination p-nodes can accept the former with respect to distribution invariants de-
scribed in section 3.1. Then, we present our migration protocol and discuss when it is
triggered.

In the following, we denote p
n−→ q the migration of the v-node n from p-node p to

p-node q.

4.1 Migration Policy

Our migration policy prevents migrations that would violate the two invariants of DR-
tree distribution. Note that the invariants can be violated by the wrong choice of both
the v-node to migrate and the destination p-node where the v-node will be placed.

The p-node p can migrate its v-node n provided that the distribution invariants will
still hold if p no longer keeps n, i.e., if the migration of n takes place.

Following migrations of the v-node n would violate one of the two invariants:

– if p holds exactly one v-node n: if p migrates n, p would no longer hold exactly
one leaf (Inv1);

– if p holds at least two v-nodes: if p migrates its bottom v-node, p would no longer
hold exactly one leaf (Inv1); if p migrates a v-node n which is neither its bottom
nor its top v-node, p would no longer hold exactly one child of v-father(n) (Inv2).

However, if p decides to migrate its top v-node n, the distribution invariants continue
to be verified if the top v-node of the destination p-node is the v-child of n. Then, we
define a migrable v-node as follows:

Definition 1. A v-node n of p-node p is migrable if p holds at least two v-nodes and n
is the top v-node of p.

For instance, in Figure 1a, only n0, n6, and n9 are migrable.
Let’s now discuss how to chose a destination p-node, denoted a valid destination,

which ensures that if the migration of n happens the two invariants will still be verified.
Consider that n is a migrable v-node of p and let q be a candidate destination p-node

to receive n. Following cases would violate one of the two invariants:

– if q holds no v-neighbor of n: n would not be a v-leaf of q, and q would hold no
v-children(n) (Inv2);

– if q holds v-father of n: n would not be a v-leaf of q, and q would hold two v-
children(n) (Inv2).

However, if q holds m ∈ v-children(n) and if n was migrated to q, then n would be-
come q’s top v-node. Therefore, we define valid destination of a migrable v-node n as
follows:

Definition 2. A p-node q is a valid destination for v-node n held by p, if q holds a
v-children of n.

510 M. Valero et al.

In Figure 1a, p1 can migrate n0. Valid destinations are p-nodes which hold a v-children
of n0: p5 and p7.

Since the degree of DR-tree is m-M (with m ≥ 2), the p-root may chose between 1
and M-1 migrations while a p-node holding more than one v-node may chose between
m-1 and M-1 migrations.

4.2 Migration Conflict Solver

Our migration policy guarantees a “local” coherency of migrations. However, two
concurrent migrations could lead to invalid configurations. For instance, in Figure 1a,

p1 can decide to execute p1
n0−→ p5 while p5 concurrently decides to execute p5

n6−→
p6. These two migrations are possible according to our migration policy. On the other
hand, executing them concurrently will lead to a configuration where the set of v-
nodes held by p5 is {n0,n7}, which violates Inv2: n0 is not a v-leaf but p5 holds no
v-children(n0).

When a v-node n is migrated from p-node p to p-node q, p and q are obviously
concerned in the migration protocol since they exchange some information for ensur-
ing the migration policy (q can accept or not the migration). In order to avoid incoher-
ent configurations due to concurrent migrations as the one described above, p-nodes
holding some v-neighbors of n must also be involved in the migration protocol. There-
fore, the principle of our migration protocol is that a p-node p that wants to perform
m =p

n−→ q should ask permission for it to p-nodes that could concurrently execute
some migration conflicting with m. The protocol is basically a distributed transaction
where the destination p-node and all p-nodes involved in possible concurrent migrations
must give their agreement in order to commit the migration; otherwise it is aborted.

Defining which p-nodes could execute a conflicting migration with p
n−→ q is in close

relation with our migration policy. As the latter restricts migration, a p-node can only
receive migration requests from its p-father. Therefore, migrations that could conflict
with p

n−→ q are:

– p− f ather(p)
v− f ather(n)−→ p

– q
m∈v−children(n)−→ r (where r holds a v-children of q)

There is some locality in potential conflicts: when p-node p tries to perform a migration,
concurrent conflicts may happen with its p-father or with nodes having p as p-father.

In order to prevent the concurrent execution of conflicting migrations, our protocol
adopts the following strategy: whenever p wants to execute p

n−→ q, the latter is per-
formed if p is the p-root; otherwise p must have the permission of its p-father before
performing p

n−→ q.
Figure 3 illustrates our migration protocol for p

n−→ q which is in fact a best-effort
protocol. p is a non root p-node.

try(p
n−→ q) is invoked by the migration planner process (described bellow) when

the latter wishes to migrate the v-node n from p-node p to the p-node q.
The migration request will be dropped (DROP CASE) if either p is already executing

the migration protocol due to a previous v-node migration request or the p
n−→ q lasts

Dynamically Reconfigurable Filtering Architectures 511

too long (to avoid disturbing too much the application that run on top of it). Dropping
the request will prevent further conflicts. Notice that migrations are expected to be
sporadic and not very frequent for a given p-node. Thus, the drop of a migration request
will be quite rare.

If p
n−→ q is in conflict with another concurrent migration that p has already allowed,

the migration protocol is aborted (ABORT CASE 1). In other words, if p has given its

permission to q
m∈v−children(n)−→ r, p must abort p

n−→ q in order to avoid the concurrent
executions of these two conflicting migrations. On the other hand, if there is no conflict,
p invokes permission(p

n−→ q) asking its p-father if the latter is not trying to perform
any migration that would conflict with p

n−→ q. If it is the case, p will receive a negative
answer (ABORT CASE 2); otherwise, p-father(p) adds p

n−→ q to its set of granted
migrations and returns a positive answer to p which means that it allows p to execute
the migration for which it asked permission. Remark that ABORT CASE 2 happens
when p-node attempts to execute p

n−→ q but its p-father does not gives it permission for

such a migration, i.e., p-father(p) is concurrently executing p− f ather(p)
v− f ather(n)−→ p.

Upon receiving its p-father’s permission, p invokes execute(p
n−→ q) for actually

performing the migration p
n−→ q. If some error happens during p

n−→ q (e.g. technical
issues, timeouts, etc.), the migration protocol aborts (ABORT CASE 3). Otherwise, the
migration is accomplished.

Finally, complete(p
n−→ q) is invoked by p in order to inform its p-father that the

migration p
n−→ q, which it has allowed, was correctly performed. p-father(p) then

removes p
n−→ q from its set of granted migrations.

Fig. 3. A straightforward execution of the migration of n from p to q

4.3 Migration Planner

Migration planner defines the exact time the migration should be executed, i.e., when
the migration protocol must be invoked. Such an invocation can either take place peri-
odically or whenever there is an event that changes the logical structure of the DR-Tree.
Furthermore, an evaluation of the added value of the migration will have on the system
must be taken into account in both cases.

512 M. Valero et al.

In the first case, the migration planner can be implemented as a separated process.
Some cost functions (e.g., load of nodes) may be periodically evaluated and when a
given value is reached, the planner process is woken up in order to invoke the migration
conflict solver. In the second case, the invocation of the migration conflict solver is trig-
gered in reaction to some event that changes the DR-Tree. For instance, when a v-node
split occurs, the migration planner should call the migration conflict solver protocol in
order to try to map the new v-nodes to the most suitable p-nodes. This approach can
also be exploited for the initial placement of the DR-tree.

The migration planner will invoke the migration provided this one improves the per-
formance of the system. Thus, a cost function is evaluated periodically or whenever
a DR-Tree event might induce a migration. If this function signals that a proposed
migration will degrade the system, the migration will not take place.

A cost function can concern one or more different metrics (e.g., message traffic,
capacity of machines, etc.) and p

n−→ q involves p-nodes holding v-neighbors of n, as
described in section 4.1. The cost function called by p is thus evaluated based on the
information about the cost of p’s p-neighbor. p can dynamically update this information
by spoofing or sporadically evaluating the network traffic. An example of cost function
is presented in Section 5.

The lack of global knowledge of a p-node cost function (e.g. it just exchanges infor-
mation with its neighbors at the physical interaction graph) may limit the effectiveness
of our migration mechanism, i.e., some performance enhanced configurations might not
be reachable. For instance, let suppose that in the configuration of Figure 3, p2 has the
best bandwidth; it should hold v-nodes of higher levels of the DR-tree since the lat-
ter are usually more loaded nodes than v-leaves. However, if, according to p1’s cost

function, both p1
n0−→ p5 and p1

n0−→ p7 would degrade the bandwidth of the commu-

nication graph, p1 does not migrate n0. Therefore, while p1 holds n0, p1
n1−→ p2 is

forbidden since it violates the distribution invariants. The local view of cost functions
will not allow the migration of v-nodes to p2, even if such migrations would would
enhance the bandwidth of the communication graph.

5 Evaluation

Our evaluation experiments were conducted on a discrete ad-hoc simulator. At the start
of a cycle, a p-node may check if it can try to improve the performance of the system
by migrating its migrable v-node, if it has one. To this end, the p-node calls a score
function which evaluates the benefit of a possible migration of this v-node.

A migration m=p
n−→ q concerns p-nodes holding v-neighbors of n; let note this

set of p-nodes concerned(m). We assume that p has some knowledge about the cost
between its p-neighbors. To decide whether m is worth or not, we use the following
score function:

score(m) =
concerned(m)

∑
r

cost(p,r)− cost(q,r)

Dynamically Reconfigurable Filtering Architectures 513

If p computes that score(m) > 0 then, according to p, m may enhance system perfor-
mances. Having scores of possible migration of n, p will try to execute the migration
with the best positive score. In our experiments, the metric related to the cost function
is the latency between p-nodes.

One thousand simulations were performed with different configurations of DR-tree,
with the following parameters:

– 500 p-nodes
– DR-tree degree with m = 2 and M = 4
– each experiment lasts 500 cycles
– the probability that a p-node checks for migrations is 1/10

DR-trees were populated with v-leaves represented by 50*50 2D rectangles randomly
distributed in a 1024*1024 map. In order to simulate latency between p-nodes, we use
the Meridian data set [16]; it is a latency matrix that reflects the median of round-trip
times between 2500x2500 physical nodes spreads on Internet. For our experiments, we
extracted a 500x500 sub-matrix.

5.1 Impact of Migrations in All DR-tree Configurations

Impact on latency. We firstly studied the impact of migrations on the latency between
two p-nodes of the interaction graph.

Figure 4a shows the average latency gain due to migrations. Simulations with
different DR-tree configurations were ordered by increasing average latency without
migration (X-axis). Y-axis corresponds to the average latency in millisecond in the com-
munication graph when the system is stabilized, i.e., no more migration takes place.

The average latency obtained without migrations -and thus without taking latency
heterogeneity into account- is highly dependent on the mapping of v-root and its close
neighborhood. In a small number of cases, this mapping was well-suited (resp. bad-
suited), leading to an average latency of 300ms (resp. 1000ms). However, in almost
80% of simulations, the average latency was between 350ms and 600ms.

As we can observe in the same figure, migration of v-nodes clearly enhances average
latency. The peaks of the curve can be similarly explained: in a small number of cases,
many and/or very effective (resp. few and/or less effective) migrations were applied,
leading to an average latency of 150ms (resp. 800ms). In most cases, the gain is around
50%.

Figure 4b shows the gain distribution. X-axis is the percentage of enhancement
reached during a simulation. Y-axis is the percentage of simulations where x gain has
been reached. The gain distribution is quite gaussian: 78.7% of simulations raise a gain
between 40% and 60%.

Stabilization time. Figure 4c shows the distribution of the stabilization time. X-axis
is the last cycle where a migration was executed while Y-axis is the percentage of
simulations where the last migration was executed at time x.

The distribution of stabilization time is also quite gaussian: 92.9% of simulations
converge in a number of cycles between 20 and 40. Even with p-nodes “rarely” checking
if they can perform migrations, stabilization is reached very fast: simulations last 500
cycles and 96.1% of them converge in less than 40 cycles (100% in less than 55 cycles).

514 M. Valero et al.

 0

 200

 400

 600

 800

 1000

 0 100 200 300 400 500 600 700 800 900 1000

A
ve

ra
ge

 la
te

nc
y

Simulation

Without migrations
With migrations

(a) Average latency enhancement

 0

 1

 2

 3

 4

 5

 6

 7

 20 30 40 50 60 70 80

%
 o

f s
im

ul
at

io
ns

% of enhancement

(b) Average latency enhancement distribution

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 15 20 25 30 35 40 45 50 55

%
 o

f s
ta

bi
liz

ed
 s

im
ul

at
io

ns

of cycle

(c) Stabilization time distribution

 0

 50

 100

 150

 200

 0 100 200 300 400 500 600 700 800 900 1000

of

 m
ig

ra
tio

n

Simulation

(d) Number of migrations per simulation

min max avg stddev

15 55 27.494 5.84209

(e) Stabilization time distribution stat

min max avg stddev

127 216 167.793 14.530

(f) Number of migrations per simulation stat

Fig. 4. Measurements on 1000 simulations

Overall number of migrations. Figure 4d shows the number of migrations executed per
simulation.

We observe a relatively stable number of migrations around a third of p-nodes with a
low standard deviation. This suggests that different configurations of DR-tree with the
same degree has low impact on the overall number of migrations. In fact, this number
depends in fact on the distribution of latencies between p-nodes which is fixed in our
experiments.

5.2 Analysis of Migrations in a Given DR-tree Configuration

Among the previous simulations, we have chosen one where the corresponding DR-tree
configuration presents a distribution enhancement of 50% (Figure 4b), a stabilization
time of 25 cycles (Figure 4c), and 173 migrations executions (Figure 4d). Evaluation
results presented in the following are based on this simulation.

Dynamically Reconfigurable Filtering Architectures 515

 0

 1

 2

 3

 4

 5

 0 50 100 150 200 250 300 350 400 450 500

of

 m
ig

ra
tio

n

Physical node

(a) Number of migrations per p-node

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 5 10 15 20 25

A
ve

ra
ge

 la
te

nc
y

Cycle

(b) Average latency evolution over time

 0

 5

 10

 15

 20

 25

 30

 35

 0 5 10 15 20 25

of

 m
ig

ra
tio

ns

Cycle

(c) Number of migrations per cycle

Fig. 5. Measurements on a very “average” simulation

In Figure 5a, we can observe the number of migration per p-node during the refer-
enced simulation. More than half of p-nodes do not participate in any migration and no
p-node participates in more than five migrations. Furthermore, the distribution of per
p-node migrations is relatively well-balanced since no p-node is overloaded by a high
number of migrations and only 4 % of nodes perform more than two migrations.

Figure 5b shows the evolution of average latency between p-nodes in the interaction
graph till stabilization time. All p-nodes start migration planner at the first cycle of the
simulation. However, the first migrations actually occurs at the fourth cycle since our
migration protocol takes four cycles to fully commit a v-node migration. Due to our
migration protocol too, during the first cycles, migrations of high level p-nodes (and
thus v-nodes closer to v-leaves) are likely to be aborted as their respective fathers are
also likely to be executing other migrations. Therefore, the first executed migrations
are more likely to concern lower level p-nodes (and thus low level v-nodes, close to
the v-root) than higher level ones. Furthermore, the further from the v-root a v-node
is, the longer the path to the v-root is, and thus its migration has a higher impact in
the overall average latency. After these first migrations, the others are more likely to be
small adjustments just inducing local communication enhancements which thus do not
reduce average latency.

516 M. Valero et al.

The number of migrations executed per cycle for the same simulation is given in
Figure 5c. Y-axis is the number of executed migrations. The results shown in this figure
confirm our previous analysis of Figure 5b: since all p-nodes start the migration planner
during first cycle, many of them execute migrations during the fourth cycles. Since all
p-node join the system during the first cycle, the higher the number of cycles executed,
the smaller the number of executed migrations.

5.3 Abort Rate

Our migration protocol is based on a best effort approach which implies that attempts
of v-node migration may be aborted. Moreover, abortion of migrations has a cost due
to the messages exchanged by the involved p-nodes till the protocol is aborted.

Figure 6 shows the abort rate distribution. X-axis is the percentage of aborted mi-
grations while Y-axis is the percentage of simulations having x% of aborted migrations.

 0

 5

 10

 15

 20

 25

 0 20 40 60 80 100

%
 o

f s
im

ul
at

io
ns

% of aborted migrations

min max avg stddev

51.929% 64.591% 58.130% 1.969

Fig. 6. Abort rate distribution

The rate of aborted migration is related to both the frequency of p-nodes attempts
for migrating a v-node and the DR-tree degree. The higher this frequency is, the higher
chances are that a p-node and its p-father try to execute concurrently conflicting mi-
grations are. On the other hand, the higher the degree of the DR-tree is, the higher the
chances are that a p-node can execute a migration and thus abort some of its p-neighbors
migration attempts.

5.4 Migration Scheduling Impact

In this section, we compare two migration scheduling strategies for executing the mi-
gration planner: periodical strategy where the planner is executed periodically, and trig-
gered strategy where the planner is executed whenever a v-node is split.

Each simulation is basically composed of two main phases: system building and
system “lifetime”. The former starts at the simulation initialization and ends when the
last p-node has joined the system while the latter starts after the last p-node has joined
the system and ends at the simulation termination. In the periodically (resp. triggered)
strategy, migrations only takes place during the system “lifetime” (resp. building);

Dynamically Reconfigurable Filtering Architectures 517

Figure 7 shows the distribution gain of the two migration scheduling. X-axis is the
percentage of enhancement reached during a simulation while Y-axis is the percentage
of simulations where x gain has been reached. We can observe that both strategies are
rather similar in terms of gain.

 0

 1

 2

 3

 4

 5

 6

 7

 20 30 40 50 60 70 80

%
 o

f s
im

ul
at

io
ns

% of enhancement

Periodical migrations
On split migrations

min max avg stddev

Periodical -23.173 -80.161 -51.998 8.460
Split triggered -25.241 -80.168 -51.979 8.823

Fig. 7. Migration scheduling impact on average latency enhancement

6 Conclusion

Our article has shown that it is very interesting to exploit the relation between the log-
ical structure of a DR-tree [2] and its corresponding physical interaction graph. By ex-
pressing some invariants, a dynamic migration mechanism can modify the distribution
of DR-tree v-nodes over the physical network without modifying its logical structure.
Evaluation results have confirmed that even a very simple best-effort dynamic migra-
tion protocol substantially improves system performance in terms of latency. Finally,
we should point out that our dynamic v-node migration mechanism could be applied
to other logical structures. Concepts such as v-nodes, p-nodes, distribution invariants,
migration policy, migration conflict management, migration planner, etc. can be easily
generalized in order to satisfy other logical structures requirements.

References

1. Baehni, S., Eugster, P.T., Guerraoui, R.: Data-aware multicast. In: DSN, p. 233 (2004)
2. Bianchi, S., Datta, A.K., Felber, P., Gradinariu, M.: Stabilizing peer-to-peer spatial filters. In:

ICDCS 2007, p. 27 (2007)
3. Paris, C., Vana, K.: A topologically-aware overlay tree for efficient and low-latency media

streaming. In: QSHINE, pp. 383–399 (2009)
4. Zhang, R.Y.W.C., Krishnamurthy, A.: Brushwood: Distributed trees in peer-to-peer systems,

pp. 47–57 (2005)
5. Castro, M., Druschel, P., Kermarrec, A.-M., Nandi, A., Rowstron, A.I.T., Singh, A.: Split-

stream: High-bandwidth content distribution in cooperative environments. In: Kaashoek,
M.F., Stoica, I. (eds.) IPTPS 2003. LNCS, vol. 2735, pp. 292–303. Springer, Heidelberg
(2003)

518 M. Valero et al.

6. Chockler, G., Melamed, R., Tock, Y., Vitenberg, R.: Constructing scalable overlays for pub-
sub with many topics. In: PODC, pp. 109–118 (2007)

7. Choi, Y., Park, D.: Mirinae: A peer-to-peer overlay network for large-scale content-based
publish/subscribe systems. In: NOSSDAV, pp. 105–110 (2005)

8. Eugster, P.T., Guerraoui, R., Handurukande, S.B., Kouznetsov, P., Kermarrec, A.-M.:
Lightweight probabilistic broadcast. ACM Trans. Comput. Syst. 21(4), 341–374 (2003)

9. Guerraoui, R., Handurukande, S.B., Huguenin, K., Kermarrec, A.-M., Fessant, F.L., Riviere,
E.: Gosskip, an efficient, fault-tolerant and self organizing overlay using gossip-based con-
struction and skip-lists principles. In: Peer-to-Peer Computing, pp. 12–22 (2006)

10. Gupta, A., Sahin, O.D., Agrawal, D., Abbadi, A.E.: Meghdoot: Content-based pub-
lish/Subscribe over P2P networks. In: Jacobsen, H.-A. (ed.) Middleware 2004. LNCS,
vol. 3231, pp. 254–273. Springer, Heidelberg (2004)

11. Guttman, A.: R-trees: a dynamic index structure for spatial searching. In: ACM SIGMOD,
pp. 47–57 (1984)

12. Harvey, N.J.A., Munro, J.I.: Deterministic skipnet. Inf. Process. Lett. 90(4), 205–208 (2004)
13. Jagadish, H.V., Ooi, B.C., Vu, Q.H.: Baton: a balanced tree structure for peer-to-peer net-

works. In: VLDB, pp. 661–672 (2005)
14. Jagadish, H.V., Ooi, B.C., Vu, Q.H., Zhang, R., Zhou, A.: Vbi-tree: A peer-to-peer framework

for supporting multi-dimensional indexing schemes. In: ICDE, p. 34 (2006)
15. Joung, Y.-J.: Approaching neighbor proximity and load balance for range query in p2p net-

works. Comput. Netw. 52(7), 1451–1472 (2008)
16. Madhyastha, H.V., Anderson, T., Krishnamurthy, A., Spring, N., Venkataramani, A.: A struc-

tural approach to latency prediction. In: IMC, pp. 99–104 (2006)
17. Pujol Ahullo, J., Garcia Lopez, P., Gomez Skarmeta, A.F.: Towards a lightweight content-

based publish/subscribe services for peer-to-peer systems. Int. J. Grid Util. Comput. 1(3),
239–251 (2009)

18. Ratnasamy, S., Francis, P., Handley, M., Karp, R., Schenker, S.: A scalable content-
addressable network. In: SIGCOMM, pp. 161–172 (2001)

19. Rowstron, A., Druschel, P.: Pastry: Scalable, decentralized object location, and routing for
large-scale peer-to-peer systems. In: Guerraoui, R. (ed.) Middleware 2001. LNCS, vol. 2218,
pp. 329–350. Springer, Heidelberg (2001)

20. Terpstra, W.W., Behnel, S., Fiege, L., Zeidler, A., Buchmann, A.P.: A peer-to-peer approach
to content-based publish/subscribe. In: DEBS, pp. 1–8 (2003)

A Quantitative Analysis of Redundancy Schemes
for Peer-to-Peer Storage Systems

Yaser Houri, Johanna Amann, and Thomas Fuhrmann

Technische Universität München

Abstract. Fully decentralized peer-to-peer (P2P) storage systems lack
the reliability guarantees that centralized systems can give. They need
to rely on the system’s statistical properties, only. Nevertheless, such
probabilistic guarantees can lead to highly reliable systems. Moreover,
their statistical nature makes P2P storage systems an ideal supplement
to centralized storage systems, because they fail in entirely different cir-
cumstances than centralized systems.

In this paper, we investigate the behavior of different replication and
erasure code schemes as peers fail. We calculate the data loss probability
and the repairing delay, which is caused by the peers’ limited bandwidth.
Using a Weibull model to describe peer behavior, we show that there are
four different loss processes that affect the availability and durability of
the data: initial loss, diurnal loss, early loss, and longterm loss. They
need to be treated differently to obtain optimal results. Based on this
insight we give general recommendations for the design of redundancy
schemes in P2P storage systems.

1 Introduction

Peer-to-peer systems can provide inexpensive, scalable, and reliable distributed
storage. They can serve a wide field of potential applications. Nomadic users,
for example, can store their personal data in a location transparent manner.
Private users can share their resources and reliably store their personal data
independently, i. e. without having to rely on service providers such as Google or
Amazon.

P2P storage systems must store the data redundantly, because peers may fail
or leave the system at any time. Moreover, as we show, the initial creation of
redundancy is necessary but not sufficient. The system must repair lost redun-
dancy over time. It must do so in time, i. e. before the redundancy is depleted
and the data is permanently lost.

Many peer-to-peer storage systems have been developed in the recent years.
Most of them provide reliable storage on top of unreliably collaborating peers. To
this end, they use different redundancy techniques, typically replication, erasure
coding or combinations of those. They also use different maintenance policies to
ensure data durability.

S. Dolev et al. (Eds.): SSS 2010, LNCS 6366, pp. 519–530, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

t

{houri,ja,fuhrmann}@so.in.tum.de

520 Y. Houri, J. Amann, and T. Fuhrmann

Providing and maintaining redundancy consumes network bandwidth and
storage space. Today’s hard disks provide a huge storage space, but network
bandwidth is typically still a scarce resource for the home user and all the more
for the nomadic user. As we will show, the network bandwidth is indeed the
limiting resource and should thus be used wisely.

Several studies [8, 11, 16] have tried to determine when the repairing process
should be invoked. But to the best of our knowledge no one has considered the
peers’ bandwidth limitation in this context. It causes a delay until the repairing
process completes. During this time more losses can occur, and eventually, the
repair process might even fail.

In this paper, we investigate the behavior of different replication and erasure
codes schemes when peers become unavailable. We calculate the bandwidth costs
and the repairing delay caused by the peers’ bandwidth limitation. Depending on
our calculated parameters (data loss rate, bandwidth consumption, and repairing
delay), we can choose the appropriate redundancy scheme and the proper time
when to invoke the repairing process for our application scenario.

The remainder of this paper is organized as follows. In section 2 we discuss the
relevant related work. In section 3 we analyze the behavior of different redun-
dancy schemes. Finally, we conclude with a summary of our findings in section 4.

2 Related Work

In the course of the recent years many P2P storage systems have been proposed,
which use different techniques to ensure reliable storage. Their authors discuss
the issues of choosing the right data redundancy strategy, fragment placement,
and redundancy maintenance, both analytically and through simulation, mainly
to determine when it becomes necessary to replenish lost redundancy to avoid
permanent data loss.

DHash [7] and pStore[3] both use replication to ensure data availability and
durability. DHash places replica on selected peers and uses an eager repair policy
to maintain that redundancy. Using an eager repair policy wastes storage space
and bandwidth when the temporarily unavailable peers return. Unlike DHash,
pStore[3] places replicas on random peers. Tempo [18] repairs the redundancy
proactively, which overly consumes bandwidth and storage space.

TotalRecall [4] and OceanStore [14] both use erasure coding to reduce stor-
age overhead. They place the data randomly on the participating peers. Unlike
OceanStore, TotalRecall uses a lazy repair policy, which allows the reintegration
of the temporarily unavailable fragments. Carbonite [6] extends this policy to al-
low full reintegration of the temporarily unavailable fragments. It uses a specific
multicast mechanism to monitor the availability of the fragments.

Using a lazy repair policy can reduce the maintenance bandwidth, but it
can also cause data loss if peers do not return as expected. Our paper aims at
clarifying how much eagerness and laziness a redundancy scheme should have.

Besides the choice of the right repair policy, it is also important to con-
sider the effect caused by the peers’ limited bandwidth. Data availability and

A Quantitative Analysis of Redundancy Schemes 521

durability can not be retained when repair process does not finish before too
much redundancy has been lost. To the best of our knowledge, our paper is the
first to address this effect in detail.

The authors in [4, 7, 15, 21] compared replication and erasure codes in terms of
storage overhead. They showed that erasure codes occupy less storage space than
replication while retaining the same reliability level. Lin et al. [15] concluded that
replication strategy is more appropriate for systems with low peers’ availability.

Rodrigues et al. [17] and Utard et al. [20] argued that the maintenance costs
for erasure codes are higher than replication which is a limiting factor for the
scalability of P2P storage system [5]. They suggested a hybrid solution by main-
taining a copy of the data object at one peer, while storing the fragments on
other peers. Their solution creates a bottleneck due to the large number of frag-
ments that should be replaced when peers leave the system. Moreover, ensuring
data objects availability adds great complexity to the system, because it should
maintain two types of redundancy.

Motivated by network coding [2, 13], Dimakis et al. developed a solution to
overcome the complication of the hybrid strategy [9]. They applied the random
linear network coding approach of Ho et al. [13] to a Maximum-Distance Sepa-
rable (MDS) erasure code for storing data. The performance of their proposed
scheme proved to be worse than erasure codes unless the new peers keep all the
data they download.

Acedański et al. showed mathematically and through simulation [1] that ran-
dom linear coding strategy delivers a higher reliability level than erasure codes
while occupying much less storage space. They suggested to cut a file into m
pieces and store k random linear combination of these pieces with their asso-
ciated vectors in each peer. A similar strategy was developed by Gkantsidis et
al. in [12] for content distribution networks. But in both papers, the authors
neglected the cost for repairing the redundancy. Therefore their results come in
favor of random linear coding.

Duminuco et al. [10] showed that using linear coding causes high costs for
redundancy maintenance compared to simple replication. They introduced a new
coding scheme called Hierarchical Codes which offers a trade-off between storage
efficiency and repairing costs. Their coding scheme has much lower reliability
level compared to erasure codes.

3 Redundancy Scheme Analysis

Our work aims at finding the most appropriate redundancy scheme for peer-to-
peer storage systems. In this paper, we consider the most common redundancy
techniques in storage systems: replication and erasure coding. Our analysis re-
flects both, the inevitable churn among the peers and the limited bandwidth of
the peers. We compare the data loss rates of the different redundancy schemes,
their maintenance costs in terms of bandwidth consumption, and the correspond-
ing repair time depending on the peers’ available bandwidth. (We omit the net-
work latency, because it is typically small as compared to the delay caused by
the bandwidth limitation.)

522 Y. Houri, J. Amann, and T. Fuhrmann

In this paper we study the problem mainly analytically. We consider erasure
coding, where a data block is split into m fragments, which are then encoded into n
fragments. We also consider replication, which can be viewed as special case with
m = 1. We assume a large system, so that we can model peer failures by simple
random sampling with replacement. In particular, we assume the number of peers
N to be much larger than the number of redundancy fragments n per data block,
i. e. N ! n. This is a weak assumption that should hold for all practical purposes.

First, we analyze a kind of static scenario, where we do not consider when the
peers join and leave the system. We rather assume that a given fraction of peers
has left, and we need to repair the lost redundancy. This models a case where
suddenly a large number of peers fail in correlation, e. g. , because of network
problems. Luckily, severe network outages that cause such correlated failures
are rare and transient. Thus, we do not seek to propose redundancy schemes
that guard against such failures. (I. e. we do not consider it worth the additional
bandwidth and storage cost.)

We then rather focus on the dynamic process of peer churn. To this end, we
combine the results from the static analysis with a dynamic model, which we
derive from a measurement trace of a peer-to-peer network. Thereby, we obtain
the time-variant loss probabilities and the required repair traffic bandwidth.

Besides our analytical work, we have also confirmed our analysis with simula-
tions. As expected, we have obtained results that deviate only within the statistical
range error. Thus we do not discuss these simulations extensively here.

3.1 Data Loss Probability

Each peer in our model can be either be available (with probability p) or fail (with
probability 1− p). Moreover, we assume that the underlying random process is
independent of the peer and its content. I. e. we assume that there is no adversary
that picks the peers to explicitly kill a data block. Thus, we can model the
peers as independent identically distributed (iid) random variables Xi that are
distributed according to a Bernoulli distribution.

The probability to lose exactly k out of the n fragments or replicas of a data
block follows a binomial distribution:

Pk =
(

n

k

)
(1 − p)kpn−k

The probability to irrecoverably lose data, i. e. the probability to lose more than
m of the n fragments is

P =
n∑

k=m+1

Pk

=
n∑

k=m+1

n!
k!(n− k)!

(1− p)kpn−k

= I1−p(m + 1, n−m)

where I1−p is the incomplete beta function.

A Quantitative Analysis of Redundancy Schemes 523

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

Lo
st

 d
at

a
bl

oc
ks

 [%
]

Unavailable peers [%]

Replication 3
Erasure Code 6:2
Erasure Code 9:3

Erasure Code 12:4
Erasure Code 15:5

(a) Replication vs. Erasure codes

 0.1

 1

 10

 100

 1000

 10000

 0 5 10 15 20 25 30 35 40

Lo
st

 d
at

a
bl

oc
ks

 [p
pm

]

Unavailable peers [%]

Replication 3
Erasure Code 6:2
Erasure Code 9:3

Erasure Code 12:4
Erasure Code 15:5

(b) A closer look at low loss probabili-
ties

Fig. 1. Data Loss with Replication versus Erasure Coding

Figure 1(a) shows the resulting behavior: When using a replication scheme,
the number of unavailable data blocks rises only slowly with the number of
unavailable peers. The curves for erasure coding rise more steeply. The larger the
number of fragments per block, the steeper the gradient. Hence, erasure coding
leads to lower data loss rates when only a few peers have become unavailable,
whereas replication can better handle situations where a large number of peers
have failed.

However, this plot is misleading because it draws the attention to the behavior
at large loss probabilities. Given that a reliable storage system must not lose data
at all, we had rather focus on very small loss probabilities. Figure 1(b) thus shows
a respective close-up. As we can see, here erasure codes outperform replication.
A 15:5 erasure coding scheme loses less than one ’part per million’ (ppm), even
when about 15% of the peers have become unavailable.

3.2 Repair Costs

In practice, most of the peers in a P2P network leave the system again soon
after they have joined. Thus, to ensure the system’s reliability and prevent data
loss, it is important to timely replenish the redundancy that has been lost. But
since some of the peers return after a while, replenishing the redundancy too
early unnecessarily wastes bandwidth.

Let us first analyze the static case: Assume that a fraction x of all peers has
suddenly left the system, and we want to immediately replenish the thereby lost
redundancy. What amount of data do we need to send over the network for the
different redundancy schemes?

For our calculation, we again assume statistical independence, i. e. we assume
that a peer does not store more than one replica or redundancy fragment of the
same data block.

Moreover, we assume that one of the remaining peers of each redundancy
group does the repair, i. e. replenishes the redundancy. In practice, this requires
coordination among the peers, which contributes to the communication

524 Y. Houri, J. Amann, and T. Fuhrmann

overhead. For simplicity, we neglect this overhead, here. We also neglect the
overhead that the respective peer causes in discovering that redundancy has
been lost. However, in both cases the overhead is small as compared to the repair
traffic, because we seek to probe and repair at the right time, i. e. when there
is a significant probability that redundancy has been lost. Thus, there is only a
small number of probes per repair activity, and we can neglect the coordination
and probing overhead as compared to the transfer of the data itself.

As already said, the probability to lose k out of n fragments follows a binomial
distribution. To replenish the redundancy, the repairing peer has to first load
m − 1 other fragments, and then store k of the regenerated fragments in the
network. (A replication scheme has m = 1, i. e. the peer does not need to load
any data.)

Each fragment has the size m−1. If k = 0, there is no need to replenish the
redundancy. If k > n −m, there is not enough redundancy left to successfully
perform the repair process.

Hence, the resulting bandwidth cost C is

C =
m− 1

m

n−m∑
k=1

Pk +
1
m

n−m∑
k=1

kPk

=
1
m

n−m∑
k=1

(m− 1 + k)Pk

Here, C = 1 means that the system transfers an amount of data that is equal to
the stored amount of data. I. e. if a peer has stored 1 GB in the system, C = 1
means that it must fetch and write another 1GB of redundancy data.

Figure 2 shows the resulting effect. The bandwidth costs rise steeply and
peak between 50% and 60% unavailable peers. Beyond that, the costs fall again,
because the system is increasingly unable to replenish the lost redundancy. If
all peers have become unavailable, there is no bandwidth cost at all, because all
data has been irrecoverably lost.

We see that the costs rise more quickly for erasure coding than for replication.
The reason is that erasure codes require the peers to download other fragments
before they can replenish the redundancy. Furthermore, the costs peak higher for
erasure codes than for replication. The reason is that erasure codes withstand
the loss of peers better than replication, i. e. replication has to give up earlier.

Some authors have proposed that there is one peer that stores all fragments of
an erasure coding scheme to be prepared in case it needs to repair the redundancy
later [5]. Such a redundancy scheme is a mixture of replication and erasure
coding. In particular, it introduces an asymmetry among the peers, because
that peer must not fail. If the system has to guard against failures of that peer
too, the redundancy scheme is a again a replication scheme.

3.3 Repair Time

When peers become unavailable, the remaining peers need to replenish the lost
redundancy to avoid permanent data loss. Given that peers have only a limited

A Quantitative Analysis of Redundancy Schemes 525

 0

 0.5

 1

 1.5

 2

 2.5

 0 20 40 60 80 100

T
ra

ffi
c

[S
en

t p
er

 S
to

re
d]

Available peers [%]

Replication 3
Erasure Code 6:2

EC 9:3
EC 12:4
EC 15:5

Fig. 2. Cost to Replenish the Redundancy

bandwidth for download and upload, replenishing the lost redundancy may re-
quire a significant amount of time. During this time, more peers will become
unavailable, so that the system might fail to provide durability of the stored
data.

In general,peer availabilityhas often been found to follow a Weibull distribution
[19], i. e.

p(t) ∝ t−α exp(−βt1−α)

For α = 0 the distribution becomes an exponential distribution. For β = 0 the
distribution becomes a power-law distribution.

Figure 3 shows an autocorrelation analysis of a trace from the Kademlia net-
work [19], which confirms the principal assumption of a Weibull distribution. As
we can see, about 15% of the peers stay for less than one hour in the system.
About half of the peers stay for less than a day. Moreover, we see a strong diurnal
pattern, and weaker weekly pattern. Introducing the diurnal and weekly pattern
into the Weibull model, and introducing a time offset to be able to reflect the
distribution at t = 0, we arrive at the following peer availability function:

p(t) = α1(t + T)−β1eγ1(t+T)1−β1

+ α2(t + T)−β2eγ2(t+T)1−β2 cos(
2πt

24
)

+ α3(t + T)−β3eγ3(t+T)1−β3 cos(
2πt

7 · 24
)

526 Y. Houri, J. Amann, and T. Fuhrmann

 10

 15

 20

 30

 40

 50

 70

 100

 0.1 1 10 100 1000

A
va

ila
bl

e
pe

er
s

[%
]

Time [hours]

Weibull Model
Kademlia Trace

Fig. 3. Autocorrelation of peer availability

Table 1 gives the fitted parameters.

Table 1. Parameters for the Weibull Model

T = 1.00040 ± 3.87% hours

α1 = 0.111133 ± 0.18%
β1 = 0.001198 ± 0.07%
γ1 = 0.728504 ± 0.09%

α2 = 0.105977 ± 2.37%
β2 = 0.001463 ± 0.95%
γ2 = 0.062237 ± 1.12%

α3 = 0.677504 ± 2.21%
β3 = 0.044204 ± 14.73%
γ3 = 0.278142 ± 2.85%

The Kademlia trace and the Weibull model indicate that we have to differen-
tiate between four different loss components: initial loss, early loss, diurnal loss,
and longterm loss.

When a peer stores data in the network, about half of the redundancy is lost
within the first 24 hours. If we tried to replenish the redundancy with an erasure
coding scheme, the resulting traffic would immediately exceed the originally
stored amount of data (cf. fig. 4(a)). The loss probabilities are immediately
above one percent (cf. fig. 4(c)).

In practice, the peers cannot send such an amount of repair traffic instanta-
neously. They would have to equally share their bandwidth between the initially

A Quantitative Analysis of Redundancy Schemes 527

 0

 0.5

 1

 1.5

 2

 2.5

 1 10 100 1000

T
ra

ffi
c

[S
en

t p
er

 S
to

re
d]

Time [hours]

Replication 3
Erasure Code 6:2
Erasure Code 9:3

Erasure Code 12:4
Erasure Code 15:5

(a) Repair traffic w/o extra setup re-
dundancy

 0

 0.5

 1

 1.5

 2

 2.5

 1 10 100 1000

T
ra

ffi
c

[S
en

t p
er

 S
to

re
d]

Time [hours]

Replication 3
Erasure Code 6:2
Erasure Code 9:3

Erasure Code 12:4
Erasure Code 15:5

(b) Repair traffic w/ extra setup re-
dundancy

 0.01

 0.1

 1

 10

 100

 1 10 100 1000

Lo
ss

 [%
]

Time [hours]

Replication 3
Erasure Code 6:2
Erasure Code 9:3

Erasure Code 12:4
Erasure Code 15:5

(c) Loss probability w/o extra setup
redundancy

 0.01

 0.1

 1

 10

 100

 1 10 100 1000

Lo
ss

 [%
]

Time [hours]

Replication 3
Erasure Code 6:2
Erasure Code 9:3

Erasure Code 12:4
Erasure Code 15:5

(d) Loss probability w/ extra setup re-
dundancy

Fig. 4. Extra redundancy at setup time improves reliability

stored data and the repair traffic. Thus, it makes more sense to use the band-
width to initially store more than the required redundancy to avoid the repair
traffic. Thereby, the system can better withstand the initial loss of the replicas
and redundancy fragments. After that, the peers do not become unavailable that
quickly any more, and the repair process can keep pace.

Figs. 4(b) and 4(d) show the example with twice as much initial redundancy.
As we can see, the proposed initial excess redundancy significantly improves
the situation. The probability to lose data during the first day is very low. The
required repair traffic remains well below a ratio of one.

Nevertheless, the extra redundancy cannot entirely avoid applying a repair
process during the ’early days’ of the stored data. Depending on the desired
reliability, the peers have to probe and replenish the redundancy on a time
frame of a few hours. As we will see, the probing frequency can be reduced over
the first days and weeks until it reaches a low, permanent level.

After the first day, the diurnal oscillations begin to dominate the peer churn
process (cf. fig. 5). Data can become unavailable for a few hours until enough
peers have come back again. If the requesting peer follows the diurnal pattern,
i. e. if it stores and retrieves data always at the same time of day, it will not

528 Y. Houri, J. Amann, and T. Fuhrmann

notice the diurnal process. Otherwise, i. e. if the data has to be available all the
time, extra repair effort might be required.

As we can see from fig. 5(a), the diurnal churn rate is similar to the loss
rate during the first day. However, the fraction of nodes that follow the diurnal
process is small (at least in the measured Kademlia network). Thus, most of the
redundancy will be stored on the non-diurnal peers. Furthermore, since most of
the diurnal peers return after a day, the extra repair is typically required only
during the first one or two days. i. e. diurnal replenishment populates the peers
at different phases of the diurnal cycle and can stop afterwards.

-2

 0

 2

 4

 6

 8

 10

 1 5 10 20 50 100 200 500 1000

P
ee

r
lo

ss
 r

at
e

[%
/h

ou
r]

Time [hours]

(a) With diurnal churn component

 0.01

 0.1

 1

 10

 0.1 1 10 100 1000 10000

P
ee

r
lo

ss
 r

at
e

[%
/h

ou
r]

Time [hours]

(b) Without diurnal churn component

Fig. 5. Peer churn rates in the Weibull model

In the long run the replenishment process has to follow the regular pattern
that is dominated by the power-law component of the Weibull model. As we can
see from fig. 5(b), the loss rate drops about two orders of magnitude over the
first days and weeks. Accordingly, the redundancy maintenance rate can also be
reduced in a similar way, i. e. the probing and repair intervals can be extended
following a power-law.

After a few weeks, the exponential component of the Weibull model dominates
the loss process, and the redundancy maintenance rate must be kept at a low,
but constant level.

4 Conclusion

Reliability is important for peer-to-peer storage systems. But so far, the design of
these systems was mainly guided by static considerations: When is the provided
redundancy depleted and needs to be repaired?

In this paper we discuss the question with the dynamical aspect in mind:
When and how must the redundancy be repaired given that the peers have only
a limited bandwidth available? Analyzing data from a Kademlia trace and its
resulting Weibull model we find four different loss components: A large fraction
of peers leaves within the first hours. The corresponding initial loss is best an-
ticipated by an increased initial redundancy. During the first days and weeks

A Quantitative Analysis of Redundancy Schemes 529

the loss rate follows a power-law. It should thus be probed and repaired in in-
creasing intervals. If the peers need to guard against diurnal oscillations, they
must create a small amount of additional redundancy during the first one or two
days. After a few weeks, the loss is dominated by an exponential process, i. e. the
redundancy must be probed and repaired at a low but constant rate.

References

1. Acedański, S., Deb, S., Médard, M., Kötter, R.: How good is random linear coding
based distributed networked storage. In: Proc. of the 1st Workshop on Network
Coding, Theory and Applications (NetCod), Riva del Garda, Italy (April 2005)

2. Ahlswede, R., Cai, N., Li, S.y.R., Yeung, R.W., Member, S.: Network information
flow. IEEE Transactions on Information Theory 46, 1204–1216 (2000)

3. Batten, C., Barr, K., Saraf, A., Trepetin, S.: pStore: A secure peer-to-peer backup
system. Technical Memo MIT-LCS-TM-632, Massachusetts Institute of Technology
Laboratory for Computer Science (October 2002)

4. Bhagwan, R., Tati, K., Cheng, Y.C., Savage, S., Voelker, G.M.: Total recall: Sys-
tem support for automated availability management. In: Proc. of the 1st USENIX
Symposium on Networked Systems Design and Implementation, NSDI 2004 (2004)

5. Blake, C., Rodrigues, R.: High availability, scalable storage, dynamic peer net-
works: pick two. In: Proc. of the 9th USENIX Conference on Hot Topics in Oper-
ating Systems (HOTOS 2003), Lihue, Hawaii (2003)

6. Chun, B.G., Dabek, F., Haeberlen, A., Sit, E., Weatherspoon, H., Kaashoek, M.F.,
Kubiatowicz, J., Morris, R.: Efficient replica maintenance for distributed storage
systems. In: Proc. of the 3rd USENIX Symposium on Networked Systems Design
and Implementation, NSDI 2006 (2006)

7. Dabek, F., Li, J., Sit, E., Robertson, J., Kaashoek, M.F., Morris, R.: Designing a
DHT for low latency and high throughput. In: Proc. of the 1st USENIX Symposium
on Networked Systems Design and Implementation, NSDI 2004 (2004)

8. Datta, A., Aberer, K.: Internet-scale storage systems under churn – a study of the
steady-state using markov models. In: Proc. of the 6th IEEE Intl. Conference on
Peer-to-Peer Computing (P2P 2006), Washington, DC (2006)

9. Dimakis, R.G., Godfrey, P.B., Wainwright, M.J., Ramch, K.: Network coding for
distributed storage systems. In: Proc. of the 26th Annual Joint Conference of the
IEEE Computer and Communications Societies, INFOCOM 2007 (2007)

10. Duminuco, A., Biersack, E.: Hierarchical codes: How to make erasure codes attrac-
tive for peer-to-peer storage systems. In: Proc. of the 8th International Conference
on Peer-to-Peer Computing (P2P 2008), Aachen, Germany (September 2008)

11. Duminuco, A., Biersack, E., En-Najjary, T.: Proactive replication in distributed
storage systems using machine availability estimation. In: Proc. of the 3rd
ACM Intl. Conference on Emerging Networking Experiments and Technologies
(CoNEXT 2007), New York, NY (2007)

12. Gkantsidis, C., Rodriguez, P.R.: Network coding for large scale content distribu-
tion. In: Proc. of the 24th Annual Joint Conference of the IEEE Computer and
Communications Societies (INFOCOM 2005), vol. 4, pp. 2235–2245 (March 2005)

13. Ho, T., Mdard, M., Koetter, R., Karger, D.R., Member, A., Effros, M., Member,
S., Member, S., Member, S., Shi, J., Leong, B.: A random linear network coding
approach to multicast. IEEE Trans. Inform. Theory 52, 4413–4430 (2006)

530 Y. Houri, J. Amann, and T. Fuhrmann

14. Kubiatowicz, J., Bindel, D., Chen, Y., Czerwinski, S., Eaton, P., Geels, D.,
Gummadi, R., Rhea, S., Weatherspoon, H., Weimer, W., Wells, C., Zhao, B.:
OceanStore: An architecture for global-scale persistent storage. In: Proc. of the
9th Intl. Conference on Architectural Support for Programming Languages and
Operating Systems, ASPLOS 2000 (2000)

15. Lin, W.K., Chiu, D.M., Lee, Y.B.: Erasure code replication revisited. In: Proc. of
the 4th International Conference on Peer-to-Peer Computing (P2P 2004), Zurich,
Switzerland (August 2004)

16. Ramabhadran, S.: Analysis of long-running replicated systems. In: Proc. of the 25th
Annual Joint Conference of the IEEE Computer and Communications Societies
(INFOCOM 2006), Barcelona, Spain (2006)

17. Rodrigues, R., Liskov, B.: High availability in DHTs: Erasure coding vs. replication.
In: Castro, M., van Renesse, R. (eds.) IPTPS 2005. LNCS, vol. 3640, pp. 226–239.
Springer, Heidelberg (2005)

18. Sit, E., Haeberlen, A., Dabek, F.,, B.: g. Chun, H. Weatherspoon, R. Morris, M.F.
Kaashoek, J. Kubiatowicz. Proactive replication for data durability. In: Proc. of
the 5th Intl. Workshop on Peer-to-Peer Systems (IPTPS 2006), Santa Barbara,
CA (February 2006)

19. Steiner, M., En-Najjary, T., Biersack, E.W.: Long term study of peer behavior in
the KAD DHT. IEEE/ACM Transactions on Networking 17(5) (October 2009)

20. Utard, G., Vernois, A.: Data durability in peer to peer storage systems. In: Proc.
of the 4th IEEE/ACM International Symposium on Cluster Computing and the
Grid (CCGrid 2004), Chicago, Illinois (April 2004)

21. Weatherspoon, H., Kubiatowicz, J.: Erasure Coding vs. Replication: A Quantita-
tive Comparison. In: Druschel, P., Kaashoek, M.F., Rowstron, A. (eds.) IPTPS
2002. LNCS, vol. 2429, p. 328. Springer, Heidelberg (2002)

A Framework for Secure and Private P2P
Publish/Subscribe

Samuel Bernard, Maria Gradinariu Potop-Butucaru, and Sébastien Tixeuil

UPMC Univ. Paris 6 LIP6/CNRS UMR 7606
samuel.bernard@lip6.fr,

maria.gradinariu@lip6.fr,
sebastien.tixeuil@lip6.fr

Abstract. We propose a novel and totally decentralized strategy for private and
secure data exchange in peer-to-peer systems. Our scheme is particularly appeal-
ing for point-to-point exchanges and use zero-knowledge mechanisms to pre-
serve privacy. Furthermore, we show how to plug our private and secure data
exchange module in existing publish/subscribe architectures. Our proposal en-
riches the original system with security and privacy making it resilient to a broad
class of attacks (e.g. brute-force, eavesdroppers, man-in-the middle or malicious
insiders). Additionally, the original properties of the publish/subscribe system are
preserved without any degradation. A nice feature of our proposal is the reduce
message cost: only one extra message is sent for every message sent in the origi-
nal system. Note that our contribution is more conceptual than experimental and
can be easily exploited by new emergent areas such as P2P Internet Games or
Social Networks where a major trend is to achieve a secure and private commu-
nication without relying on any fixed infrastructure or centralized authority.

1 Introduction

Multi-player Internet Games or Social Networks provide a wide field of applications
that has been very seldom explored by the distributed computing community. Recently,
architecture designers in these systems used distributed middleware and P2P architec-
tures [9,23,11] that do not fully exploit the advances in traditional distributed computing
area. Surprisingly, their motivation is acknowledged to the need of privacy and secu-
rity that is not always a design priority in distributed computing. The most meaningful
examples are publish/subscribe systems. The publish/subscribe paradigm is an effec-
tive technique for building distributed applications in which information has to be dis-
seminated from publishers (event producers) to subscribers (event consumers). Users
express their interests in receiving certain types of events by submitting a filter on the
event content, called a subscription. When a new event is generated and published, the
publish/subscribe infrastructure is responsible for checking the event against all cur-
rent subscriptions and delivering it to all users whose subscriptions match the event.
Content-based publish/subscribe systems allow complex filters on the event content,
enabling the use of constraints such as ranges, prefixes, and suffixes.

Research in Publish/Subscribe systems has been highly active in recent years in the
distributed computing area. The most relevant results deal with the design of infras-
tructures and routing algorithms, having scalability as a major goal. Theoretical work

S. Dolev et al. (Eds.): SSS 2010, LNCS 6366, pp. 531–545, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

532 S. Bernard, M. Gradinariu Potop-Butucaru, and S. Tixeuil

has also appeared, aiming at formally specifying the behaviour of publish/subscribe
systems. In such works a publish/subscribe system is seen as an abstract distributed
system whose behaviour is described in terms of liveness and safety properties. How-
ever, actual deployment of existing publish/subscribe architectures is currently limited
by their lack of security and privacy capabilities. Enhancing a publish/subscribe system
with these capabilities allows an easier deployment and a more flexible adaptation in a
larger spectrum of applications.

Interestingly, secure information dissemination and routing in P2P systems benefited
recently from the full attention of the distributed computing community [29,21,13,7].
The proposed solutions can be easily included in existing publish/subscribe architec-
tures in order to make them secure. However, aspects such as privacy and point-to-point
and secure data exchange with zero knowledge still need further research.

Wang et al.[34] propose an overview of security issues in publish/subscribe
systems. The paper states the open problems and further research directions related to
publish/subscribe security and privacy. Miklòs[25] and Belokosztolszki et al.[8] propose
strategies to control subscriptions in order to deploy payment system in broker based
publish/subscribe systems. Miklòs trusts the entire event-dispatching network which is
improved by Belokosztolszki with different trust level among brokers. Trust manage-
ment is also discussed in Fiege et al.[19] in order to deploy different security policies.

Related to our topic are the security issues in group communication. The similarity
comes from the organization of a publish/subscribe systems. In most of the architec-
tures subscribers gather in groups following various criteria (e.g. similarity of their
subscriptions). The “communication group” may be the set of subscribers interested in
the same event. Since the number of groups may be exponential in the number of sub-
scribers, Opyrchal et Prakash [26] propose a dynamic caching algorithm to deal with
group keys and limits the number of encryptions (a naive solution is to make brokers
encrypt each event with subscriber’s private keys). Srivatsa et Liu. [31] improve the
method by proposing to derive an encryption key into sub-keys which can decrypt a
sub-set of messages the main key can. Then they have a tree of keys, each key repre-
senting a filter. Finally, Khurana [24] proposes solutions for confidentiality, integrity
and authentication for publish/subscribe systems with untrusted brokers. Similarly,
Srivatsa and Liu [30] propose a set of pluggable ”guards” on untrusted brokers, each one
guaranteeing a secure property. They suppose an untrusted event network. These works
are seemingly close to our work. However, the main drawback of their proposal is that
they need a fixed trusted infrastructure while we propose a completely decentralized
solution, making no assumption on the network or the members of the system.

Another related topic is anonymous routing and multicast [18,32]. The above
schemes can be applied in a publish/subscribe context but only in a static context since
they use secure predefined paths. In our case, we assume the network is completely
dynamic therefore we do not rely on any predefined secure path between the publishers
and the subscribers. Moreover, our exchange scheme does not focus on the routing it-
self. Our main focus here is how to cluster peers without revealing their interests. That
is, a peer joins a group of similar peers if and only if it has the same interests as the
other peers in the group. Then the group will exchange events based on the peer-defined
encryption keys.

A Framework for Secure and Private P2P Publish/Subscribe 533

Our contribution. Our contribution is twofold. We first propose a novel strategy for
secure and private data exchange based only on point-to-point interactions. Our scheme
is a conditional key exchange protocol: it provides a private shared key if and only if the
two participants share the same interest (represented by a value). It does not need a third
party and can cope with a broad class of attacks. In particular our scheme is resistant
to attacks of the type ”man-in-the-middle”, i.e. the attacker can listen and alter all the
messages sent and received and also forge new illegal messages. Second we show how
to plug our exchange scheme in a generic architecture for publish/subscribe systems
without any degradation of the original properties of the system.

Our contribution is more conceptual than experimental since we provide a formal
framework that helps in extending existing publish/subscribe systems with privacy and
security properties at a reduced cost. Note that our framework makes use of only one
extra message per application message.

We advocate that our framework by its generality has a broader area of applications
than the one considered in the current paper. Two of these possible applications are the
design of secure and private distributed architectures for Multi-player Internet Games
or Social Networks.

2 Publish/Subscribe Framework

2.1 Publish/Subscribe Model

We consider a finite yet unbounded set of nodes Π . The set is dynamic in the sense
that nodes can join or leave at an arbitrary time. Each node is associated with a unique
identifier. Within the set Π we distinguish two subsets: the set of publishers Πp and
the set of subscribers Πs. These two sets can overlap and possibly span the whole Π .
Each node in Π maintains a subscription list Si. A node pi in Πp can issue a publish
operation (an event generation), while a node si in Πs can issue the subscribe and no-
tify operations. The subscribei(s) operation provokes the insertion of the subscription
s into the subscription list of some nodes (not necessarily pi). This operation requires
in general some time to complete. A subscription is said to be stable when the corre-
sponding subscribe operation has completed. The notify operation sends to the upper
layer the received event.

We consider a publish/subscribe data model [22,1] where both subscriptions and
events use as building blocks a finite, yet unbounded universe of attributes. Each at-
tribute is defined by a unique name, a type (e.g., integer, string, or enumerated), and a
domain (the range of the attribute values). A topic based subscription is a predicate over
the attributes in the system (possibly one single attribute). A content based subscription
or content-based filter is a conjunction of predicates over the attribute fields.

In [3] the authors state that any publish/subscribe system verifies the four properties
below:

Legality. If some node si issues notifyi(e), then si previously issued a subscribei(f),
such that e matches the subscription f .

Validity. If some node si issues notifyi(e), then there exists some node pj that
previously issued publishj(e).

534 S. Bernard, M. Gradinariu Potop-Butucaru, and S. Tixeuil

Fairness. Every node may publish infinitely often.
Event Liveness. If a node issues publishi(e), notifyj(e) will be eventually issued by

all the nodes sj such that subscribej(f) is stable at the moment of the notification
such that e matches the subscription f .

The early publish/subscribe systems were implemented over a network of brokers that
are responsible for routing information or events between publishers and subscribers
[2,14,17]. However, the efficiency of this method has some limitations in dynamic sys-
tems where there is no guarantee that brokers will be permanently connected to the
system. Therefore, recent publish/subscribe architectures adopt a P2P approach where
any node can act as a broker. In these systems subscribers are arranged in a virtual
overlay and actively participate to the information filtering. Solving the notification
problem comes down to (i) efficiently arranging the virtual overlay of subscribers and
propagating events within this overlay and (ii) efficiently matching an event against a
large number of subscriptions.

An extensive analysis of existing publish/subscribe systems [12,35,22,16,15,4,33]
brings the authors of [5] to the conclusion that the implementation of any pub-
lish/subscribe system can be abstracted to two oracles: one helps the efficient sub-
scription while the second targets the efficient event dissemination. Intuitively, a node
that wishes to subscribe with a filter, invokes the subscription oracle to find either its
position on the subscribers overlay or the broker in charge of its subscription. The sub-
scription oracle provides a routing method in charge of revealing the next node to contact
in order to get closer to the goal position. A publisher invokes the dissemination oracle
in order to get partial lists of nodes to whom the publisher should forward its event. This
oracle provides a forward method. As advocated in [5], an efficient implementation of
the forward method should be able to cover all the interested subscribers (that is, all the
nodes interested in the event) while minimizing the number of the oracle invocations.

In [5] the authors propose an oracle based generic architecture that satisfies the
publish/subscribe properties specified above (i.e. legality, validity, fairness and event
liveness). One open question the current work responds is how to extend the generic
architecture proposed in [5] to implement secure and private publish/subscribe systems.
Obviously the oracles identified in the original generic architecture should be extended
in order to deal with the attacks described below.

2.2 Attacks Model

Implementing private and secure Publish/Subscribe systems comes to enhance the
subscription and dissemination oracle with additional power in order to tolerate the
following attacks:

Brute-force attacks. The attacker will use all the computable power he has to break
the security of the system.

Eavesdroppers. The attacker can listen all the messages sent and received.
Man-in-the-middle. The attacker can listen and alter all messages sent and received.

He can also forge new illegal messages.
Malicious Insiders. The attacker is a member of the system, participating to the

protocols but deviating from them in order to break the security.

A Framework for Secure and Private P2P Publish/Subscribe 535

Interestingly all these attacks are effective during point-to-point information exchange.
Therefore, implementing secure and private publish/subscribe systems reduces to the
secure and private point-to-point data exchange. In the following we propose a novel
strategy for data exchange that tolerates the attacks specified above. Furthermore, we
show how to plug the secure and private data exchange module into the generic pub-
lish/subscribe architecture of [5].

3 Secure and Private Data Exchange

In the distributed implementations of publish/subscribe systems nodes exchange infor-
mation (i) to detect if they have common interest, then cluster in order to make efficient
the events dissemination or (ii) for filtering purposes. Each data exchange can be there-
fore decomposed in two phases: the test phase and the secret key exchange phase. The
test phase allows interested parties to verify if they share the same interest. During this
phase none of the participants should learn the topic or the filter of the other parties.
Moreover an eavesdropper or a third-party must not be able to learn the topics or filters
exchanged and neither the result of the exchange. The key exchange phase starts only
if the test phase is positive. That is, if the exchange participants have the same interests
then they need a shared secret key in order to communicate securely.

3.1 Secure and Private Test and Key Exchange

In the following we consider two actors: A with a value a and B with a value b. A
and B would like to test if a and b are equal without revealing their value. To solve
this problem one may use the following algorithm: A and B hash their values plus
a salt value and send it. Then they compute the hash of their value plus the other’s
salt value. If there is an equality with the received hash then the values are equal. The
main drawback of this simple protocol is that one can try to revert the hash function by
brute-force (by hashing every possible value): after the exchange nothing prevents B
(respectively A) to try other values than b (resp a) to guess a (resp b). This brute-force
attack is feasible when the set of possible values is relatively small as in the current
topic based publish/subscribe systems.

We propose a novel algorithm SPTest resilient to this attack, shown as Algorithm 1.
It is particularly efficient as the both phase (test and key exchange) are done simul-
taneously. It uses a commutative cryptographic function and a secure hash function.
A commutative cryptographic function f is a strongly one-way function [20] (easy to
compute but hard to invert) such as for any private keys ka, kb and any input x we have:
fka(fkb

(x)) = fkb
(fka(x)).

As a commutative cryptographic function, we suggest to use the difficulty of dis-
crete logarithms computation on a simple group like Zp where p is a large prime num-
ber (note that any discrete group could work) as no efficient (polynomial) algorithm is
known to solve this problem [28]. To make this function injective we also need that
the key k is smaller than p. Also the exchanged message must be coded by a positive
integer a between 2 and p − 1. Finally based on the Diffie-Hellman scheme [28], our
function f is fk(a) = ak mod p where k is the private key and x the value to encrypt.
This choice is not innocent, since if a = b then the shared secret key will be aka∗kb

536 S. Bernard, M. Gradinariu Potop-Butucaru, and S. Tixeuil

mod p which is also the shared key in the Diffie-Hellman key exchange protocol [28].
However, contrary to the Diffie-Hellman scheme, in our scheme a and b are private
hence it is protected against man-in-the-middle attacks (see lemma 6). Finally, as a
hash function, we use the unbroken SHA-2 family hash function [27].

Note 1. The correctness of SPTest is not limited by a particular function: any commu-
tative cryptographic function or secure hash function could be used instead of the one
we suggest.

Algorithm 1. Secure private equality test and key exchange algorithm (SPTest)

processes A, B
private values

a : value of process A, ka : key of process A
b : value of process B, kb : key of process B

public function
fk(x) : commutative cryptographic function using private key k on value x
h : cryptographic hash function

action
1. A computes ak = fka(a) and send it to B

B computes bk = fkb
(b) and send it to A

2. A computes ha = h(ak + fka(bk)) and send it to B
B computes hb = h(bk + fkb

(ak)) and send it to A
3. A computes h(bk + fka(bk)) and compare it to hb equals iff a = b

B computes h(ak + fkb
(ak)) and compare it to ha equals iff a = b

4. If a = b then fka(bk) = fkb
(ak) is a shared secret key between A and B

3.2 Correctness and Complexity of SPTest

In the following we prove that the algorithm SPTest tests if the input values are equal.
Moreover we show that the algorithm allows the participants to share a secret key if their
input values are equal. Additionally we prove that the algorithm tolerates the attacks
described in Section 2.2.

Lemma 1 (Equality test). Algorithm 1 tests if a = b and when the algorithm stops
both A and B will know the result of the test.

Proof. The proof follows from the commutativity of the cryptographic function f . That
is, for any x and any keys ka, kb, fka(fkb

(x)) = fka(fkb
(x)). Therefore, if a = b then

h(bk+fka(bk)) = hb = h(bk+fkb
(ak)) computed at A returns true and symmetrically

h(ak + fkb
(ak)) = ha = h(ak + fka(bk)) computed at B returns true as well. It

follows that A and B can decide that they share the same private value. Additionally,
A and B can use the key fka(fkb

(b)) = fkb
(fka(a)) as shared secret key for further

communication.

Note that during the exchange fka(fkb
(b)) or fka(fkb

(a)) should not be disclosed since
eavesdroppers must not learn the test result. Therefore A and B compute the hash of
those values added to a deterministic salt they both know which is fka(a) or fkb

(b).

A Framework for Secure and Private P2P Publish/Subscribe 537

Even if the salt is used to have ha �= hb when a = b, any known salt can be used
(please refer to [28] for further details).

Note also that a hash function is not injective so there is a probability that h(bk +
fka(bk)) = hb even if a �= b because of a collision in the hash function. However with
a 256-bits hash function, this is negligible. Moreover if a �= b then A and B will not
have a valid secret key and will not be able to further communicate.

Lemma 2 (Key exchange). SPTest shown as Algorithm 1 allows A and B to ex-
change a secret key if a = b.

Proof. If a = b then A and B both know the value fka(fkb
(x)) = fkb

(fka(x)) which
is secret and may be used as a private secure key.

In the following we prove that our algorithm tolerates the class of attacks specified in
Section 2.2.

Lemma 3 (Brute-force attack tolerance). The messages encrypted by fk cannot be
decrypted without the key k and the hash function is not invertible.

Proof. By hypothesis, f is such a function. And in particular this is the case for the pro-
posed function fk(a) = ak mod p: there is no known algorithm that finds efficiently k
given only a, p, and ak mod p. Then by definition, a secure hash function is not invert-
ible and the proposed SHA-2 function has not been broken. As point by note 1, if one
of the proposed function were no longer secure, it could be replaced without modifying
our scheme.

Lemma 4 (Eavesdroppers attack tolerance). Eavesdroppers cannot learn a, b nor if
a = b.

Proof. First an eavesdropper cannot learn a nor b because he cannot compute them
from ak, bk, ha or hb. Since ak and bk are different even if a = b then ha and hb are
always different and the eavesdropper does not know if a = b. So he cannot know the
result of the test.

Lemma 5 (Insiders attack tolerance). The probability a malicious insider learns the
other’s value is less than 1/n when the size of a group is n.

Proof. The algorithm is symmetric so consider A as the attacker.
If A follows the protocol and behaves as an eavesdropper, A learns nothing related

to b if a �= b.

Assume A lies on a. Thus A may be able to make a guess on b. If A is right then it
will know b. But at each exchange he can make only one guess. That is, A need B to
participate for each guess thus making impossible a brute-force attack: B may have a
limit on the number of SPTest it performs and may refuse to answer (or it can lie) to A
if A asks for too much SPTest. Therefore, in one single exchange A has 1/n chance to
learn b. Notice that no known algorithm can prevent this.

Assume A lies on ha in order to corrupt the result of the test. To make a false neg-
ative, A just has to send a different ha. B will compute h(ak + fkb

(ak)) and will find

538 S. Bernard, M. Gradinariu Potop-Butucaru, and S. Tixeuil

it is different from ha so B decides a �= b. Notice that A can still know the good result
but in any case does not know b (if a �= b).

Furthermore, since A does not know the private key of B, kb, A cannot compute the
result of h(ak + fkb

(ak)). Therefore, A cannot send a false ha which may make B
believe that a = b. So no false positive can be forged. Even if B thinks that is shares b
with A, b is not revealed and A will not be able to read B messages (because they do
not have the same shared key).

Lemma 6 (Man-in-the-middle attack tolerance). In the case of n possible values
(topics) the probability a man-in-the-middle learns a or b is less than 1/n.

Proof. A man-in-the-middle attacker can intercept every message of A or B and can
alter, drop them or even create new messages. If he does not modify any messages then
it acts as an eavesdropper and following Lemma 4: it learns nothing.

If the attacker modifies some messages, it can act like A or B or both in a test between
A and B with just a difference, it does not know neither a nor b. Thus the attacks it can
perform to discover a or b are the same as the one performed by a malicious member
of the system (see Lemma 5). However, in order to leer the result of the test a = b
the attacker has to successfully guess a and b which is impossible (since it is unable to
compute the hash function).

Lemma 7 (Security of the shared secret key). The exchanged secret key is safe and
allows A and B to exchange confidential messages.

Proof. The shared key is fka(bk) = fkb
(ak). Both ak and bk are transmitted unen-

crypted and have to be considered public. At contrary ka and kb are private keys so
preventing other actors than A or B to compute fka(bk) or fkb

(ak).

With our suggested function f , when a = b the shared key is aka∗kb mod p and the
information transiting the network are aka mod p and akb mod p thus making our
key exchange part of the Diffie-Hellman algorithm [28]. However, Diffie-Hellman al-
gorithm is vulnerable to a Man-in-the-middle attack because the generator (represented
by a in our algorithm) is public. In our case, a is private so this attack is no longer
working. Overall, A and B can exchange confidential messages when a = b.

Remark 1. Note that since the hash function is not reversible then it is not possible to
gain information on the key from the step 3 of Algorithm 1.

In the following we evaluate the complexity of our algorithm both in terms of additional
message exchanged and the computational power needed in order to implement the
scheme.

Lemma 8 (Complexity). The complexity in number of messages of Algorithm 1 is 2
per participant. Each participant computes 2 hashes and 2 f functions.

Proof. The protocol is symmetric between A and B. At step 1, A computes one f
function and sends one message. At step 2, it computes one f , one hash and sends one
message. At step 3, it computes just one hash. Step 4 adds no transmission or functional
computation.

A Framework for Secure and Private P2P Publish/Subscribe 539

4 Secure and Private Publish/Subscribe

In the following we extend the Publish/Subscribe specification proposed in Section 2.1
with security and privacy properties. Therefore, in systems prone to attacks, we expect
published/subscribe communication primitive to verify the following additional prop-
erties. Obviously, these properties append to the legality, validity, fairness and event
liveness properties defined in Section 2.1:

Nodes privacy. No one should be able to learn the filters or the topics of a node if the
node does not reveal it explicitly or if they do not have it in common.

Messages privacy. No one should be able to read and modify messages in a group if
he is not a member of this group.

Messages security. No one should be able to insert fake or corrupted messages in a
group if he is not a member of this group.

Group privacy. No one should be able to completely map a group, thus learn who
belongs to this group and how its members are connected.

Group security. No one could join a group if he does not share the same topic or filter
as the rest of the group.

These properties heavily rely on the notion of group: the set of peers sharing the same
filter in the case of content based systems or topic in topic based systems. Note that
the group privacy property holds only for outsiders. In the next section we will discuss
some issues related to how to extend this property to the insiders. In the following we
exclusively address the topic based systems.

4.1 Private Subscription/Dissemination Oracles

In [5] the authors, after extensively studying the most relevant P2P publish/subscribe
systems, propose a generic oracle-based architecture that basically reduces the pub-
lish/subscribe system to the implementation of two abstractions: the subscription or-
acle and the dissemination oracle. The subscription oracle is in charge of efficiently
arranging subscriptions in a P2P overlay while the dissemination oracle is in charge
of efficiently match events against a large number of subscriptions. The subscription
oracle, when invoked by a subscriber, returns a contact point in the virtual overlay.
The dissemination oracle, when invoked by a publisher, returns a subset of nodes inter-
ested in the event. The generic implementation of the architecture proposed in [5] was
targeted to efficiency in terms of reduced message complexity. However, aspects like
security and privacy were left open. In the sequel we extend the work by enhancing the
oracle-based generic architecture for publish/subscribe systems introduced in [5] with
privacy and security features. We also show that adding the new properties, the original
properties suffer no degradation and the message complexity increase with a constant
factor.

Private Subscription Oracle. In the original architecture the subscription oracle pro-
vides the Route method. A subscriber invokes the Route method indicating its identi-
fier and its subscription. The method eventually returns a connection point in the overlay
defined by the subscribers. The connection point has to be either a broker or a sibling for

540 S. Bernard, M. Gradinariu Potop-Butucaru, and S. Tixeuil

the invoking subscriber. The original implementation of this oracle makes its invocation
recursive. That is, at each invocation the subscriber gets closer to its broker or sibling.
This type of invocation can be observed in systems such as Meghdoot [22] or Sub-to-
Sub [33]. In tree-based architectures such as [12,10] a subscriber travels downward the
tree overlay until it finds its group or the most appropriate parent. In such architectures
a subscription oracle will provide the subscriber with the next node in its walk.

Note that for privacy reasons a subscriber invoking a private and secure subscrip-
tion oracle should not reveal its interests. Therefore in our extended architecture the
only information a subscriber provides to the oracle is its own node identifier, pid. The
only information returned by the oracle is only a node identifier. This node can be the
parent of the subscriber in a tree-overlay, the identity of a broker in charge of the sub-
scription or a node on a DHT in charge of storing the subscription. Note that without
additional information on the filter of the subscriber the oracle has low accuracy which
may increase the latency of the system.

Our oracle provides the Private Route method and uses the transitive invoca-
tion of the Private Route defined below.

Definition 1 (Light Transitive Invocation). A sequence of invocations of the
Private Routemethod in which all the invocations in the jth call are done with the
same node identifier returned by the (j−1)th invocation is called a transitive invocation
of Private Route.

Whenever the Private Route method is transitively invoked it should converge. Two
cases may appear: (1) the subscriber finds a sibling or the broker in charge of its filter
and stops the invocation of the oracle. (2) the subscriber has no sibling or broker in the
system and stops the invocation. Formally, the convergence of the transitive invocation
is defined as follows:

Definition 2 (Convergence of the transitive invocation). The Light transitive invoca-
tion of the Private Route converges iff either (i) there exists an integer l such that
the Light transitive invocation of Private Route consists of exactly l invocations
or (ii)there exists an integer l such that the Light transitive invocation of Private
Route consists of at least l invocations and returns the set of nodes Π .

Note that for privacy and security reasons the subscriber may continue to invoke the
subscription oracle even if it finds its broker or sibling. In this way, an observer (internal
or external of the system) cannot deduce the interests of the subscriber by analyzing the
length of its walk in the overlay. Therefore, in safe systems l may be set to infinite.

An effective implementation of a private subscription oracle should satisfy the fol-
lowing two properties:

Convergence: For every initial node identifier, every Light transitive invocation of the
Private Route method converges.

Subscription Privacy: For every initial node identifier, pid, in every transitive invoca-
tion of Private Route method, the pid is the only revealed information.

A naive implementation of the subscription oracle can be done via a random walk. That
is, any time a subscriber invokes the oracle it gets a random node in the overlay. Then

A Framework for Secure and Private P2P Publish/Subscribe 541

the subscriber tests via the algorithm SPTest if the returned node is its sibling. When the
result of the test is positive the subscriber adds the returned node in its neighbours table.
Otherwise it invokes the oracle in order to get another node. This new node can be a
random neighbour of the node returned in the previous invocation. Hence, the recursive
invocation can run forever or can be pruned when the node fills its neighbours table.

A DHT-based implementation of this oracle can take advantage of the already exist-
ing routing methods in DHTs. When the oracle is invoked for the first time it provides
the caller with a random node on the DHT. Then the caller verifies if the given node is
its sibling via the SPTest algorithm. Then it stops the invocation if it finds a sibling or
recursively invokes the oracle until the overlay is completed visited (in Chord-based ar-
chitectures a round trip around the ring terminates the oracle invocation while in CAN-
based architectures for example a walk following a virtual Eulerian circuit would be
sufficient).

In DHT-free architectures a DFS or BFS traversal of the overlay can also be simple
implementations for our subscription oracle. Note that several recent works address
these traversals in dynamic settings. Please refer to [6] for further details.

Private Dissemination Oracle. In the original architecture the dissemination oracle is
in charge of efficiency matching an event against a large number of subscriptions. This
oracle supports the Forward method that takes as input a node identifier(initially the
publisher identifier) and the event to be dispatched. The Forward returns a partial list
of nodes to which the event should be propagated. Obviously, in order to disseminate
the event to all the subscribers in the system the Forward method has to be recursively
invoked.

Note that in a private system the publisher cannot disclose its publication topics
therefore our private dissemination oracle supports the Private Forward method that
takes as input only a node identifier:

PID-LIST Private Forward(in PID pid)

The Private Forwardmethod returns a list of nodes to which the current generated
event should be propagated. Note that for privacy and security reasons the returned list
of nodes should also include nodes that are not interested in the event in order to give
no hint to the caller related to the real interests of the returned nodes.

In order to be effective, an implementation of the private and secure dissemination
oracle is expected to provide the eventually full coverage property. That is, the union of
lists returned by the Private Forward method during any pruned recursive invo-
cation chain for an event e is a super-set of the nodes that during this invocation chain
have a stable subscription with a filter f such that e matches f and the privacy property
below:

Definition 3 (Dissemination Privacy). For any published event e, the only dis-
closed information (revealed or learnt information) during the recursive invocation of
Private Forward method are pid and e. e will be disclosed only to the nodes that
have subscribed with filters that match the event.

As for the case of the private and secure subscription oracle, the private and secure dis-
semination can be easily implemented in a broad class of systems using similar policies

542 S. Bernard, M. Gradinariu Potop-Butucaru, and S. Tixeuil

as described for the case of private and secure subscriptions. Gossip seems to be one the
most appealing since popular publish/subscribe systems use this technique. The BFS
traversals of dynamic overlays is also an alternative to gossip-based inconveniences
such as explosion in terms of message complexity. Alternatively, DHTs via their pre-
defined structure are good candidates for efficient implementations of a dissemination
oracle. That is, a simple diffusion in a ring, tree of grid solve the problem.

4.2 Secure and Private Publish/Subscribe Implementation

A simple and generic implementation of a notification service based on the private and
secure subscription and dissemination oracles described in the previous section can be
as follows: The interface to the notification system at each node pi remembers all the
filters to which pi is subscribed (that is, the application at pi issued a subscribe with
no following unsubscribe). When a node pi invokes the Subscribe(pi) method, the
publish/subscribe service interface contacts the subscription oracle to obtain a connec-
tion point, pj . Then pi and pj start a private exchange in order to test if they have or
not the same interest. To this end, algorithm SPTest is used for the topic based systems.
Note that this algorithm also defines a private secret key which can be further used for
events dissemination. pi continues to invoke the oracle until it finds a similar node (a
node with the same topic). Note that even after finding a similar node, pi may decide to
invoke the oracle in order to not reveal to the oracle any information related to its inter-
ests. In our generic implementation the infinite loop of the subscription phase captures
the later case.

When a node pi invokes the Publish(e) method, the service’s interface first con-
tacts the dissemination oracle to obtain a list of nodes to which the event should be
forwarded; pi then forwards the encrypted event to all these nodes, by a point-to-point
strategy. Every node pj that receives such an encrypted event e for the first time uses its
private key in order to decrypt the message and then checks all the local subscription fil-
ters. If e matches any of them, then e is notified locally. Also, pj invokes (recursively)
the Private Forward method to obtain the next list of nodes, and forwards e to
them.

5 Security Trade-Off Analysis

In the previous section we presented a framework for a secure publish/subscribe system
but we did not discuss the cost of the privacy. This cost is not fixed and depends on the
strength of the privacy. More the system enforces privacy more the search of compatible
nodes is inefficient. Suppose we normalize topics to a fixed length (like 128 bits), for
instance by a secure hash function.

First, if nodes do not reveal a single bit of their topic at the oracle, the oracle cannot
distinguish them and thus cannot provide an efficient search. The result is that in the
worst case, a node has to test every node of the system to find the one it is looking for.
0 bit revealed equals a worst case complexity of n searches.

Secondly, nodes may reveal some bits of their topic. Each bit they reveal can be used
by the oracle to select likely-better nodes for a topic match. For each bit revealed, the
size of the set of potential match is in average divided by two. But in the same way, the

A Framework for Secure and Private P2P Publish/Subscribe 543

privacy of the node is also divided by two, that is it is known it may belong to only half
of the set of topics.

So it is possible to control the trade-off between privacy and performance by setting
the number, and which bits, nodes have to reveal. These values are not necessarily global
as each node may choose them. For instance, a thousand of nodes may share k revealed
bits but are using a lot of different topics. This prevents each one to have their topic be
easily guess. At contrary, with the same combination of revealed bits, there may be a
small group of nodes sharing the same topic. Knowing theses bits leads to know their
topic. So this small group may choose to reveal an other combination of bits to hide in
a larger portion of the system.

6 Conclusions and Discussions

We addressed secure and private data exchange in P2P networks. We propose a novel
data exchange scheme that outperforms the Diffie and Hellman scheme with respect to
its resilience to man in the middle attacks. Our scheme is appealing in systems where
the main priority is to ensure privacy and security in point-to-point interactions without
relying on any fixed infrastructure or central authority. A second contribution of this pa-
per is the proposal of a generic framework to extend architectures for publish/subscribe
systems with secure and private properties. Interestingly the cost of our extension is
only one extra message for any original application message.

Our generic framework opens several research directions. A first important direction
is how to protect a group of subscribers from intruders. That is, the door of a group
of similar peers rely on their topic. If this topic is easy to guess, then attackers may
successfully join the group. In this case, they will be able to read every message that is
transmitted inside the group. Interestingly, with our scheme anonymity is still possible
and the attackers would not know who is the source of an event. A possible solution to
bypass this problem is to have different trust degrees inside a group and to forward only
secret messages to trusted nodes. Another problem that remains open is to bypass the
coalition of attackers which may prevent someone to connect to a group by altering its
equality test making it falsely negative. A third direction would be to extend the study
to content based systems.

References

1. Aguilera, M., Strom, R., Sturman, D., Astley, M., Chandra, T.: Matching events in a content-
based subscription system. In: Proceedings of the 8th ACM Symposium on Principles of
Distributed Computing (PODC 1999), pp. 53–61 (1999)

2. Altinel, M., Franklin, M.: Efficient filtering of XML documents for selective dissemination of
information. In: Proceedings of the 26th International Conference on Very Large Databases
(VLDB 2000), pp. 53–64 (2000)

3. Anceaume, E., Datta, A.K., Gradinariu, M., Simon, G.: Publish/Subscribe Scheme for Mo-
bile Networks. In: Proc. of the Workshop on Principles on Mobile Computing, POMC 2002
(2002)

4. Anceaume, E., Datta, A., Gradinariu, M., Simon, G., Virgillito, A.: A semantic overlay for
self*- peer-to-peer publish subscribe. In: Proceedings of the 26th International Conference
on Distributed Computing Systems, ICDCS 2006 (2006)

544 S. Bernard, M. Gradinariu Potop-Butucaru, and S. Tixeuil

5. Anceaume, E., Friedman, R., Gradinariu, M., Roy, M.: An architecture for dynamic scal-
able self-managed persistent objects. In: Meersman, R., Tari, Z. (eds.) OTM 2004. LNCS,
vol. 3291, pp. 1445–1462. Springer, Heidelberg (2004)

6. Baldoni, R., Bertier, M., Raynal, M., Piergiovanni, S.T.: Looking for a definition of dy-
namic distributed systems. In: Malyshkin, V.E. (ed.) PaCT 2007. LNCS, vol. 4671, pp. 1–14.
Springer, Heidelberg (2007)

7. Baldoni, R., Doria, L., Lodi, G., Querzoni, L.: Managing reputation in contract-based
distributed systems. In: Meersman, R., Dillon, T., Herrero, P. (eds.) OTM 2009. LNCS,
vol. 5870, pp. 760–772. Springer, Heidelberg (2009)

8. Belokosztolszki, A., Eyers, D.M., Pietzuch, P.R., Bacon, J., Moody, K.: Role-based access
control for publish/subscribe middleware architectures. In: DEBS 2003: Proceedings of the
2nd international workshop on Distributed event-based systems, pp. 1–8. ACM, New York
(2003)

9. Bharambe, A., Pang, J., Seshan, S.: Colyseus: a distributed architecture for online multiplayer
games. In: NSDI 2006: Proceedings of the 3rd conference on Networked Systems Design &
Implementation, pp. 12–12 (2006)

10. Bianchi, S., Felber, P., Potop-Butucaru, M.G.: Stabilizing distributed r-trees for peer-to-peer
content routing. IEEE Transactions on Parallel and Distributed Systems 99

11. Botev, J., Hohfeld, A., Schloss, H., Scholtes, I., Sturm, P., Esch, M.: The hyperverse - con-
cepts for a federated and torrent-based “3d web”. Int. J. Adv. Media Commun. 2(4) (2008)

12. Castro, M., Druschel, P., Kermarrec, A.M., Rowston, A.: Scribe: A large-scale and decen-
tralized application-level multicast infrastructure. IEEE Journal on Selected Areas in Com-
munications 20(8) (October 2002)

13. Champel, M.L., Kermarrec, A.M., Scouarnec, N.L.: Fog: Fighting the achilles’ heel of gossip
protocols with fountain codes. In: Guerraoui, R., Petit, F. (eds.) SSS 2009. LNCS, vol. 5873,
pp. 180–194. Springer, Heidelberg (2009)

14. Chan, C.Y., Felber, P., Garofalakis, M., Rastogi, R.: Efficient filtering of XML documents
with XPath expressions. VLDB Journal, Special Issue on XML 1(4), 354–379 (2002)

15. Chand, R., Felber, P.: Semantic peer-to-peer overlays for publish/subscribe networks. In:
Cunha, J.C., Medeiros, P.D. (eds.) Euro-Par 2005. LNCS, vol. 3648, pp. 1194–1204.
Springer, Heidelberg (2005)

16. Costa, P., Migliavacca, M., Picco, G., Cugola, G.: Epidemic algorithms for reliable content-
based publish/subscribe: An evaluation. In: Proc. of the 24th International Conference on
Distributed Computing Systems, ICDCS 2004 (2004)

17. Diao, Y., Fischer, P., Franklin, M., To, R.: YFilter: Efficient and scalable filtering of XML
documents. In: Proceedings of the 18th International Conference on Data Engineering, ICDE
2002 (2002)

18. Dolev, S., Ostrobsky, R.: Xor-trees for efficient anonymous multicast and reception. ACM
Trans. Inf. Syst. Secur. 3(2), 63–84 (2000)

19. Fiege, L., Zeidler, A., Buchmann, A., Darmstadt, T.: Security aspects in publish/subscribe
systems. In: Third Intl. Workshop on Distributed Event-based Systems (DEBS 2004). IEEE,
Los Alamitos (2004)

20. Goldreich, O.: Foundations of cryptography. Basic Tools, vol. 1. Cambridge University Press,
Cambridge (2007)

21. Guerraoui, R., Huguenin, K., Kermarrec, A.M., Monod, M.: Brief announcement: Towards
secured distributed polling in social networks. In: Keidar, I. (ed.) DISC 2009. LNCS,
vol. 5805, pp. 241–242. Springer, Heidelberg (2009)

22. Gupta, A., Sahin, O., Agrawal, D., Abbadi, A.E.: Meghdoot: Content-based pub-
lish:subscribe over p2p networks. In: Jacobsen, H.-A. (ed.) Middleware 2004. LNCS,
vol. 3231, pp. 254–273. Springer, Heidelberg (2004)

A Framework for Secure and Private P2P Publish/Subscribe 545

23. Keller, J., Simon, G.: Solipsis: A massively multi-participant virtual world. In: PDPTA, pp.
262–268 (2003)

24. Khurana, H.: Scalable security and accounting services for content-based publish/subscribe
systems. In: SAC 2005: Proceedings of the 2005 ACM symposium on Applied computing,
pp. 801–807. ACM, New York (2005)

25. Miklos, Z.: Towards an access control mechanism for wide-area publish/subscribe systems.
In: Proceedings of 22nd International Conference on Distributed Computing Systems Work-
shops, pp. 516–521 (2002)

26. Opyrchal, L., Prakash, A.: Secure distribution of events in content-based publish subscribe
systems. In: SSYM 2001: Proceedings of the 10th conference on USENIX Security Sympo-
sium, pp. 21–21. USENIX Association, Berkeley (2001)

27. Sanadhya, S.K., Sarkar, P.: New collision attacks against up to 24-step sha-2. In: Chowdhury,
D.R., Rijmen, V., Das, A. (eds.) INDOCRYPT 2008. LNCS, vol. 5365, pp. 91–103. Springer,
Heidelberg (2008)

28. Schneier, B.: Applied Cryptography: Protocols, Algorithms, and Source Code in C, 2nd edn.
Wiley, Chichester (2007)

29. Serbu, S., Riviere, E., Felber, P.: Network-friendly gossiping. In: Guerraoui, R., Petit, F.
(eds.) SSS 2009. LNCS, vol. 5873, pp. 655–669. Springer, Heidelberg (2009)

30. Srivatsa, M., Liu, L.: Securing publish-subscribe overlay services with eventguard. In: CCS
2005: Proceedings of the 12th ACM conference on Computer and communications security,
pp. 289–298. ACM, New York (2005)

31. Srivatsa, M., Liu, L.: Secure event dissemination in publish-subscribe networks. In: ICDCS
2007: Proceedings of the 27th International Conference on Distributed Computing Systems,
p. 22. IEEE Computer Society, Washington (2007)

32. Syverson, P., Reed, M., Goldschlag, D.: Onion Routing access configurations. In: Proceed-
ings of the DARPA Information Survivability Conference and Exposition (DISCEX 2000),
vol. 1, pp. 34–40 (2000)

33. Voulgaris, S., Rivire, E., Kermarrec, A., van Steen, M.: Sub-2-Sub: Self-organizing content-
based publish subscribe for dynamic large scale collaborative networks. In: Proceedings of
the 5th International Workshop on Peer-to-Peer Systems, IPTPS 2006 (2006)

34. Wang, C., Carzaniga, A., Evans, D., Wolf, A.: Security issues and requirements for internet-
scale publish-subscribe systems. In: Proceedings of the 35th Annual Hawaii International
Conference on System Sciences, HICSS 2002, pp. 3940–3947 (January 2002)

35. Zhuang, S.Q., Zhao, B.Y., Joseph, A.D., Katz, R., Kubiatowicz, J.: Bayeux: An architecture
for scalable and fault-tolerant wide-area data dissemination. In: Proc. of the Int. Workshop
on Network and OS Support for Digital Audio and Video (2001)

Snap-Stabilizing Linear Message Forwarding�

Alain Cournier1, Swan Dubois2, Anissa Lamani1,
Franck Petit2, and Vincent Villain1

1 MIS, Université of Picardie Jules Verne, France
2 LiP6/CNRS/INRIA-REGAL, Université Pierre et Marie Curie - Paris 6, France

Abstract. In this paper, we present the first snap-stabilizing message
forwarding protocol that uses a number of buffers per node being inde-
pendent of any global parameter, that is 4 buffers per link. The proto-
col works on a linear chain of nodes, that is possibly an overlay on a
large-scale and dynamic system, e.g., Peer-to-Peer systems, Grids, etc.
Provided that the topology remains a linear chain and that nodes join
and leave “neatly”, the protocol tolerates topology changes. We expect
that this protocol will be the base to get similar results on more general
topologies.

Keywords: Dynamic Networks, Message Forwarding, Peer-to-Peer,
Scalability, Snap-stabilization.

1 Introduction

These last few years have seen the development of large-scale distributed sys-
tems. Peer-to-peer (P2P) architectures belong to this category. They usually
offer computational services or storage facilities. Two of the most challenging
issues in the development of such large-scale distributed systems are to come up
with scalability and dynamic of the network. Scalability is achieved by design-
ing protocols with performances growing sub-linearly with the number of nodes
(or, processors, participants). Dynamic Network refers to distributed systems in
which topological changes can occur, i.e., nodes may join or leave the system.

Self-stabilization [1] is a general technique to design distributed systems that
can tolerate arbitrary transient faults. Self-stabilization is also well-known to
be suitable for dynamic systems. This is particularly relevant whenever the dis-
tributed (self-stabilizing) protocol does not require any global parameters, like
the number of nodes (n) or the diameter (D) of the network. With such a self-
stabilizing protocol, it is not required to change global parameters in the program
(n, D, etc) when nodes join or leave the system. Note that this property is also
very desirable to achieve scalability.

The end-to-end communication problem consists in delivery in finite time
across the network of a sequence of data items generated at a node called the
sender, to a designated node called the receiver. This problem is generally split

� This work is supported by ANR SPADES grant.

S. Dolev et al. (Eds.): SSS 2010, LNCS 6366, pp. 546–559, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Snap-Stabilizing Linear Message Forwarding 547

into the two following problems: (i) the routing problem, i.e., the determination
of the path followed by the messages to reach their destinations; (ii) the message
forwarding problem that consists in the management of network resources in
order to forward messages. The former problem is strongly related to the problem
of spanning tree construction. Numerous self-stabilizing solutions exist for this
problem, e.g., [2–4].

In this paper, we concentrate on the latter problem, i.e., the message forward-
ing problem. More precisely, it consists in the design of a protocol managing the
mechanism allowing the message to move from a node to another on the path
from the sender A to the receiver B. To enable such a mechanism, each node
on the path from A to B has a reserved memory space called buffers. With a
finite number of buffers, the message forwarding problem consists in avoiding
deadlocks and livelocks (even assuming correct routing tables). Self-stabilizing
solutions for the message forwarding problem are proposed in [5, 6]. Our goal
is to provide a snap-stabilizing solution for this problem. A snap-stabilizing
protocol [7] guarantees that, starting from any configuration, it always behaves
according to its specification, i.e., it is a self-stabilizing algorithm which is opti-
mal in terms of stabilization time since it stabilizes in 0 steps. Considering the
message-forwarding problem, combined with a self-stabilizing routing protocol,
snap-stabilization brings the desirable property that every message sent by the
sender is delivered in finite time to the receiver. By contrast, any self-stabilizing
(but not snap-stabilizing) solution for this problem ensures the same property,
“eventually”.

The problem of minimizing the number of required buffers on each node is a
crucial issue for both dynamic and scalability. The first snap-stabilizing solution
for this problem can be found in [8]. Using n buffers per node, this solution
is not suitable for large-scale system. The number of buffers is reduced to D
in [9], which improves the scalability aspect. However, it works by reserving the
entire sequence of buffers leading from the sender to the receiver. Furthermore,
to tolerate the network dynamic, each time a topology change occurs in the
system, both of them would have to rebuild required data structures, maybe on
the cost of loosing the snap-stabilization property.

In this paper, we present a snap-stabilizing message forwarding protocol that
uses a number of buffers per node being independent of any global parameter,
that is 4 buffers per link. The protocol works on a linear chain of nodes, that
is possibly an overlay on a large-scale and dynamic system e.g., Peer-to-Peer
systems, Grids, etc. Provided that (i) the topology remains a linear chain and
(ii) that nodes join and leave “neatly”, the protocol tolerates topology changes.
By “neatly”, we mean that when a node leaves the system, it makes sure that
the messages it has to send are transmitted, i.e., all its buffers are free. We
expect that this protocol will be the base to get similar results on more general
topologies.

The paper is structured as follow: In Section 2, we define our model and some
useful terms that are used afterwards. In Section 3, we first give an informal
overview of our algorithm, followed by its formal description. In Section 4, we

548 A. Cournier et al.

prove the correctness of our algorithm. Network dynamic is discussed in Sec-
tion 5. We conclude the paper in Section 6.

2 Model and Definitions

Network. We consider a network as an undirected connected graph G = (V, E)
where V is the set of nodes (processors) and E is the set of bidirectional com-
munication links. A link (p, q) exists if and only if the two processors p and q
are neighbours. Note that, every processor is able to distinguish all its links. To
simplify the presentation we refer to the link (p, q) by the label q in the code of
p. In our case we consider that the network is a chain of n processors.

Computational model. We consider in our work the classical local shared
memory model introduced by Dijkstra [10] known as the state model. In this
model communications between neighbours are modelled by direct reading of
variables instead of exchange of messages. The program of every processor con-
sists in a set of shared variables (henceforth referred to as variable) and a finite
number of actions. Each processor can write in its own variables and read its
own variables and those of its neighbours. Each action is constituted as follow:

< Label >::< Guard > → < Statement >

The guard of an action is a boolean expression involving the variables of p and
its neighbours. The statement is an action which updates one or more variables
of p. Note that an action can be executed only if its guard is true. Each execution
is decomposed into steps.

The state of a processor is defined by the value of its variables. The state of
a system is the product of the states of all processors. The local state refers to
the state of a processor and the global state to the state of the system.

We denote by C the set of all configurations of the system. Let y ∈ C and
A an action of p (p ∈ V). A is enabled for p in y if and only if the guard of
A is satisfied by p in y. Processor p is enabled in y if and only if at least one
action is enabled at p in y. Let P be a distributed protocol which is a collection
of binary transition relations denoted by →, on C. An execution of a protocol
P is a maximal sequence of configurations e = y0y1...yiyi+1 . . . such that, ∀
i ≥ 0, yi → yi+1 (called a step) if yi+1 exists, else yi is a terminal configuration.
Maximality means that the sequence is either finite (and no action of P is enabled
in the terminal configuration) or infinite. All executions considered here are
assumed to be maximal. ξ is the set of all executions of P . Each step consists
on two sequential phases atomically executed: (i) Every processor evaluates its
guard; (ii) One or more enabled processors execute at least one of their actions
that are enabled in each algorithm. When the two phases are done, the next step
begins. This execution model is known as the distributed daemon [11]. We assume
that the daemon is weakly fair, meaning that if a processor p is continuously
enabled, then p will be eventually chosen by the daemon to execute an action.

Snap-Stabilizing Linear Message Forwarding 549

In this paper, we use a composition of protocols. We assume that the above
statement (ii) is applicable to every protocol. In other words, each time an
enabled processor p is selected by the daemon, p executes the enabled actions of
every protocol.

Snap-Stabilization. Let Γ be a task, and SΓ a specification of Γ . A protocol
P is snap-stabilizing for SΓ if and only if ∀Γ ∈ ξ, Γ satisfies SΓ .

Message Forwarding Problem. Messages transit in the network in the Store
and Forward model i.e., they are stored temporally in each processor before
being transmitted. Once the message is transmitted it can be deleted from the
previous processor. Note that in order to store messages, each processor use a
space memory called buffer. We assume in our case that each buffer can store a
whole message and each message needs only one buffer to be stored.

It is clear that each processor uses a finite number of buffers for the message
forwarding. Thus the aim is to bound these resources avoiding deadlocks (a
configuration is which in every execution some messages can not be transmitted)
and starvation (a configuration from which, in every execution, some processors
are no longer able to generate messages). Thus some control mechanisms must
be introduced in order to avoid these kind of situations.

The message forwarding problem is formally specified as follows:

Specification 1 (SP). A protocol P satisfies SP if and only if the following
two requirements are satisfied in every execution of P :

1. every message can be generated in finite time;
2. every valid message (generated by a processor) is delivered to its destination

once and only once in finite time.

Buffer Graph. In order to conceive our snap-stabilizing algorithm we will use
a structure called Buffer Graph introduced in [12]. A Buffer Graph is defined
as a directed graph where nodes are a subset of the buffers of the network and
links are arcs connecting some pairs of buffers, indicating permitted message
flow from one buffer to another one. Arcs are permitted only between buffers
in the same node, or between buffers in distinct nodes which are connected by
communication link.

Let us define our buffer graph (refer to Figure 1):
Each processor p has four buffers, two for each link (p, q) such as q ∈ Np (except
for the processors that are at the extremity of the chain that have only two
buffers, since they have only one link). Each processor has two input buffers de-
noted by INp(q), INp(q′) and two output buffers denoted by OUTp(q), OUTp(q′)
such as q, q′ ∈ Np (Np is the set of identities of the neighbours of p) and q �= q′

(one for each neighbour). The generation of a message is always done in the
output buffer of the link (p, q) so that, according to the routing tables, q is the
next processor for the message in order to reach the destination. Let us refer to
nb(m, b) as the next buffer of Message m stored in b, b ∈ {INp(q) ∨ OUTp(q)},
q ∈ Np. We have the following properties:

550 A. Cournier et al.

q P q'

OUT (q)p

IN (q)p OUT (q')p

IN (q')p

C1

C2

UT1UT2

Fig. 1. Buffer Graph

1. nb(m, INp(q)) = OUTq(p), i.e., the next buffer of the message m that is in
the input buffer of p on the link (p, q) is the output buffer of q connected to
p,

2. nb(m, OUTp(q)) = INq(p), i.e., the next buffer of the message m that is in
the output buffer of p on the link (p, q) is the input buffer of q connected
to p.

3 Message Forwarding

In this section, we first give the idea of our snap-stabilizing message forwarding
algorithm in the informal overview, then we give the formal description followed
by the correctness proofs.

3.1 Overview of the Algorithm

In this section, we provide an informal description of our snap-stabilizing message
forwarding algorithm that tolerates the corruption of the routing tables in the
initial configuration.

To ease the reading of the section, we assume that there is no message in the
system whose destination is not in the system. This restriction is not a problem
as we will see in Section 5.

We assume that there is a self-stabilizing algorithm, Rtables, that calculates
the routing tables and runs simultaneously to our algorithm. We assume that
our algorithm has access to the routing tables via the function Nextp(d) which
returns the identity of the neighbour to which p must forward the message to
reach the destination d. To reach our purpose we define a buffer graph on the
chain which consists of two chains, one in each direction (C1 and C2 refer to
Figure 1).

The overall idea of the algorithm is as follows: When a processor wants to gen-
erate a message, it consults the routing tables to determine the next neighbour
by which the message will transit in order to reach the destination. Note that
the generation is always done in the output buffers. Once the message is on the
chain, it follows the buffer chain (according to the direction of the buffer graph).

Snap-Stabilizing Linear Message Forwarding 551

To avoid duplicated deliveries, each message is alternatively labelled by a color.
If the messages can progress enough in the system (move) then it will either
meet its destination and hence it will be consumed in finite time or it will reach
the input buffer of one of the processors that are at the extremity of the chain.
In the latter case, if the processor that is at the extremity of the chain is not the
destination then, that means that the message was in the wrong direction. The
idea is to change the direction of the message by copying it in the output buffer
of the same processor (directly (UT1) or using the extra buffer (UT2), refer to
Figure 1). Let p0 be the processor that is at the extremity of the chain that has
an internal buffer that we call Extra buffer.

Note that if the routing tables are stabilized and if all the messages are in
the right direction then all the messages can move on C1 or C2 only and no
deadlock happens. However, in the opposite case (the routing tables are not
stabilized or some messages are in the wrong direction), deadlocks may happen
if no control is introduced. For instance, suppose that in the initial configuration
all the buffers, uncluding the extra buffer of UT 2, contain different messages
such that no message can be consumed. It is clear that in this case no message
can move and the system is deadlocked. Thus, in order to solve this problem we
have to delete at least one message. However, since we want a snap-stabilizing
solution we cannot delete a message that has been generated. Thus, we have to
introduce some control mechanisms in order to avoid this situation to appear
dynamically (after the first configuration). In our case we decided to use the
PIF algorithm that comprises two main phases: Broadcast (Flooding phase) and
Feedback (acknowledgement phase) to control and avoid deadlock situations.

Before we explain how the PIF algorithm is used, let us focus on the mes-
sage progression again. A buffer is said to be free if and only if it is empty (it
contains no message) or contains the same message as the input buffer before it
in the buffer graph buffer. For instance, if INp(q) = OUTq(p) then OUTq(p) is
a free buffer. In the opposite case, a buffer is said to busy. The transmission of
messages produces the filling and the cleaning of each buffer, i.e., each buffer is
alternatively free and busy. This mechanism clearly induces that free slots move
into the buffer graph, a free slot corresponding to a free buffer at a given instant.
The movement of free slots is shown in Figure 21. Notice that the free slots move
in the opposite direction of the message progression. This is the key feature on
which the PIF control is based.

When there is a message that is in the wrong direction in the input buffer
of the processor p0, p0 copies this message in its extra buffer releasing its input
buffer and it initiates a PIF wave at the same time. The aim of the PIF waves
is to escort the free slot that is in the input buffer of p0 in order to bring it in
the output buffer of p0. Hence the message in the extra buffer can be copied
in the output buffer and becomes in the right direction. Once the PIF wave
is initiated no message can be generated on this free slot, at each time the
Broadcast progresses on the chain the free slot moves as well following the PIF
wave (the free slot moves by transmitting messages on C1 (refer to Figure 1). In

1 Note that in the algorithm, the actions (b) and (c) are executed in the same step.

552 A. Cournier et al.

P p' q

a b c d

Free Buffer

(a) The input buffer of p is free. Node
p can copy the message a.

P p' q

a a b c d

Free Buffer

(b) The output buffer of p′ is free.
Node p′ can copy the message b.

P p' q

a b c d

Free Buffer

(c) The input buffer of p′ is free. Node
p′ can copy the message c.

P p' q

a b c c d

Free Buffer

(d) The output buffer of q is free. Node
q can copy the message d.

Fig. 2. An example showing the free slot movement

the worst case, the free slot is the only one, hence by moving the output buffer
of the other extremity of the chain p becomes free. Depending on the destination
of the message that is in the input buffer of p, either this message is consumed
or copied in the output buffer of p. In both cases the input buffer of p contains
a free slot.

In the same manner during the feedback phase, the free slot that is in the
input buffer of the extremity p will progress at the same time as the feedback
of the PIF wave. Note that this time the free slot moves on C2 (see Figure 1).
Hence at the end of the PIF wave the output buffer that comes just after the
extra buffer contains a free slot. Thus, the message that is in the extra buffer
can be copied in this buffer and deleted from the extra buffer. Note that since
the aim of the PIF wave is to bring the free slot in the output buffer of p0 then
when the PIF wave meets a processor that has a free buffer on C2 the PIF wave
stops escorting the previous free slot and starts the feedback phase with this
second free slot (it escorts the new free slot on C2). Thus, it is not necessary to
reach the other extremity of the chain.

Now, in the case where there is a message in the extra buffer of p0 such as no
PIF wave is executed then we are sure that this message is an invalid message
and can be deleted. In the same manner if there is a PIF wave that is executed
such that at the end of the PIF wave the output buffer of p0 is not free then like
in the previous case we are sure that the message that is in the extra buffer is
invalid and thus, can be deleted. Thus when all the buffers are full such as all
the messages are different and cannot be consumed, then the extra buffer of p0
will be released.

Note that in the description of our algorithm, we assumed the presence of a
special processor p0. This processor has an Extra buffer used to change the di-
rection of messages that are in the input buffer of p0 however their destination is
different from p0. In addition it has the ability to initiate a PIF wave. Note also
that the other processors of the chain do not know where this special processor

Snap-Stabilizing Linear Message Forwarding 553

is. A symmetric solution can also be used (the two processors that are at the
extremity of the chain execute the same algorithm) and hence both have an
extra buffer and can initiate a PIF wave. The two PIF wave initiated at each
extremity of the chain use different variable and are totally independent.

3.2 Formal Description of the Algorithm

We first define in this section the different data and variables that are used in
our algorithm. Next, we present the PIF algorithm and give a formal description
of the linear snap-stabilizing message forwarding algorithm.

Character ’?’ in the predicates and the algorithms means any value.

– Data
• n is a natural integer equal to the number of processors of the chain.
• I = {0, ..., n− 1} is the set of processors’ identities of the chain.
• Np is the set of identities of the neighbours of the processor p.

– Message
• (m, d, c): m contains the message by itself, i.e., the data carried from

the sender to the recipient, and d ∈ I is the identity of the message
recipient. In addition to m and d each message carries an extra field, c,
which is a color number in {0, 1} alternatively given to the messages to
avoid duplicated deliveries.

– Variable
• In the forwarding algorithm

∗ INp(q): The input buffer of p associated to the link (p, q).
∗ OUTp(q): The output buffer of p associated to the link (p, q).
∗ EXTp: The Extra buffer of processor p which is at the extremity of

the chain.
• In the PIF algorithm

∗ Sp = (B ∨ F ∨ C, q) refers to the state of processor p (B, F, and C
refer to Broadcast, Feedback, and Clean, respectively), q is a pointer
to a neighbour of p.

– Input/Output
• Requestp: Boolean, allows the communication with the higher layer, it

is set to true by the application and false by the forwarding protocol.
• PIF -Requestp: Boolean, allows the communication between the PIF and

the forwarding algorithm, it is set to true by the forwarding algorithm
and false by the PIF algorithm.

• The variables of the PIF algorithm are the input of the forwarding
algorithm.

– Procedures
• Nextp(d): refers to the neighbour of p given by the routing table for the

destination d.

554 A. Cournier et al.

• Deliverp(m): delivers the message m to the higher layer of p.
• Choice(c): chooses a color for the message m which is different from the

color of the message that are in the buffers connected to the one that
will contain m.

– Predicates
• Consumptionp(q, m): INp(q) = (m, d, c) ∧ d = p ∧ OUTq(p) �= (m, d, c)
• leafp(q): Sq = (B, ?) ∧ (∀ q′ ∈ Np/{q}, Sq′ �= (B, p) ∧ (consumptionp(q)
∨ OUTp(q′) = ε ∨ OUTp(q′) = INq′(p))).

• NO-PIFp: Sp = (C, NULL) ∧ ∀q ∈ Np, Sq �= (B, ?).
• init-PIF : Sp = (C, NULL) ∧ (∀q ∈ Np, Sq = (C, NULL)) ∧

PIF -Requestp = true.
• Inter-transp(q): INp(q) = (m, d, c) ∧ d �= p ∧ OUTq(p) �= INp(q) ∧

(∃q′ ∈ Np/{q}, OUTp(q′) = ε ∨ OUTp(q′) = INq′(p)).
• internalp(q): p �= p0 ∧ ¬ leafp(q).
• Road-Changep(m): p = p0 ∧ INp(q) = (m, d, c) ∧ d �= p ∧ EXTp = ε ∧

OUTq(p) �= INp(q).
• ∀ TAction ∈ C, B, we define TAction-initiatorp the predicate: p = p0 ∧

(the garde of TAction in p is enabled).
• ∀ Tproc ∈ {internal, leaf} and TAction ∈ {B, F}, T -Action-Tprocp(q)

is defined by the predicate: Tprocp(q) is true ∧ TAction of p is enabled.
• PIF -Synchrop(q): (Bq-internalp ∨ Fq-leafp ∨ Fq-internalp) ∧ Sq =

(B, ?).

– We define a fair pointer that chooses the actions that will be performed on
the output buffer of a processor p. (Generation of a message or an internal
transmission).

Algorithm 1. PIF
– For the initiator (p0)

• B-Action:: init-PIF → Sp := (B,−1), PIF -Requestp := false.
• C-Action:: Sp = (B,−1) ∧ ∀q ∈ Np, Sq = (F, ?) → Sp := (C, NULL).

– For the leaf processors: leafp(q) = true ∨ |Np| = 1
• F-Action:: Sp = (C, NULL) → Sp := (F, q).
• C-Action:: Sp = (F, ?) ∧ ∀q ∈ Np, Sq = (F ∨ C, ?) → Sp := (C, NULL).

– For the processors
• B-Action:: ∃!q ∈ Np, Sq = (B, ?) ∧ Sp = (C, ?) ∧ ∀q′ ∈ Np/{q}, Sq′ = (C, ?) →

Sp := (B, q).
• F-Action:: Sp = (B, q) ∧ Sq = (B, ?) ∧ ∀q′ ∈ Np/{q}, Sq′ = (F, ?) → Sp := (F, q).
• C-Action:: Sp = (F, ?) ∧ ∀q′ ∈ Np, Sq′ = (F ∨ C, ?) → Sp := (C, NULL).

– Correction (For any processor)
• Sp = (B, q) ∧ Sq = (F ∨ C, ?) → Sp := (C, NULL).
• leafp(q) ∧ Sp = (B, q) → Sp := (F, q).

Snap-Stabilizing Linear Message Forwarding 555

Algorithm 2. Message Forwarding
– Message generation (For every processor)

R1:: Requestp ∧ Nextp(d) = q ∧ [OUTp(q) = ε ∨ OUTp(q) = INq(p)] ∧ NO-PIFp →
OUTp(q) := (m, d, choice(c)), Requestp := false.

– Message consumption (For every processor)
R2:: ∃q ∈ Np, ∃m ∈ M; Consumptionp(q, m) → deliverp(m), INp(q) := OUTq(p).

– Internal transmission (For processors having 2 neighbors)
R3:: ∃q ∈ Np, ∃m ∈ M , ∃d ∈ I; Inter-transp(q, m, d) ∧ (NO-PIFp ∨ PIF -Synchrop(q)) →
OUTp(q′) := (m, d, choice(c)), INp(q) := OUTq(p).

– Message transmission from q to p (For processors having 2 neighbors)
R4:: INp(q) = ε ∧ OUTq(p) �= ε ∧ (NO-PIFp ∨ PIF -Synchrop(q)) → INp(q) := OUTq(p).

– Erasing a message after its transmission (For processors having 2 neighbors)
R5:: ∃q ∈ Np, OUTp(q) = INq(p) ∧ (∀q′ ∈ Np \ {q}, INp(q′) = ε) ∧
(NO-PIFp ∨ PIF -Synchrop(q)) → OUTp(q) := ε, INp(q′) := OUTq′ (p).

– Erasing a message after its transmission (For the extremities)
R5’:: Np = {q} ∧ OUTp(q) = INq(p) ∧ INp(q) = ε ∧ ((p = p0) ⇒ (EXTp = ε)) ∧
(NO-PIFp ∨ PIF -Synchrop(q)) → OUTp(q) := ε, INp(q) := OUTq(p).

– Road change (For the extremities)
• R6:: Road-Changep(m) ∧ [OUTp(q) = ε ∨ OUTp(q) = INq(p)] → OUTp(q) :=

(m, d, choice(c)), INp(q) := OUTq(p).
• R7:: Road-Changep(m) ∧ OUTp(q) �= ε ∧ OUTp(q) �= INq(p) ∧ PIF -Requestp = false

→ PIF -Requestp := true.
• R8:: Road-Changep(m) ∧ OUTp(q) �= ε ∧ OUTp(q) �= INq(p) ∧ PIF -Requestp ∧

B-initiator → EXTp := INp(q), INp(q) := OUTq(p).
• R9:: p = p0 ∧ EXTp �= ε ∧ [OUTp(q) = ε ∨ OUTp(q) = INq(p)] ∧ C-Initiator →

OUTp(q) := EXTp, EXTp := ε.
• R10:: p = p0 ∧ EXTp �= ε ∧ OUTp(q) �= ε ∧ OUTp(q) �= INq(p) ∧ C-Initiator →

EXTp := ε.
• R11:: |Np| = 1 ∧ p �= 0 ∧ INp(q) = (m, d, c) ∧ d �= p ∧ OUTp(q) = ε ∧ OUTq(p) �= INp(q)

→ OUTp(q) := (m, d, choice(c)), INp(q) := OUTq(p).

– Correction (For p0)
– R12:: p = p0 ∧ EXTp �= ε ∧ Sp �= (B,−1) → EXTp = ε.
– R13:: p = p0 ∧ Sp = (B, ?) ∧ PIF -Request = true → PIF -Request = false.
– R14:: p = p0 ∧ Sp = (C, ?) ∧ PIF -Request = true ∧ [(INp(q) = (m, d, c) ∧ d = p) ∨

INp(q) = ε] → PIF -Request = false.

4 Proof of Correctness

In this section, we prove the correctness of our algorithm—due to the lack of
space, the formal proofs are omitted2 We first show that starting from an arbi-
trary configuration, our protocol is deadlock free. Next, we show that no node
can be starved of generating a new message. Next, we show the snap-stabilizing
property of our solution by showing that, starting from any arbitrary configu-
ration and even if the routing tables are not stabilized, every valid message is
delivered to its destination once and only once in finite time.

Let us first state the following lemma:

Lemma 1. The PIF protocol (Algorithm 1) is snap-stabilizing.

2 The complete proof can be found in http://arxiv4.library.cornell.edu/abs/

1006.3432

http://arxiv4.library.cornell.edu/abs/1006.3432
http://arxiv4.library.cornell.edu/abs/1006.3432

556 A. Cournier et al.

The proof of Lemma 1 is based on the fact that the PIF algorithm introduced
here is similar to the one proposed in [7]. The only effect of the message for-
warding algorithm on the PIF algorithm (w.r.t. [7]) is that a leaf is no more only
defined in terms of a topology property. Here, a leaf is a dynamic property of any
node. It is easy to check that this change keeps the property of snap-stabilization.

We now show (Lemma 2) that the extra buffer located at p0 cannot be in-
finitely continuously busy. As explained in Section 3, this solves the problem
of deadlocks. We know from Lemma 1 that each time p0 launches a PIF wave,
then this wave terminates. When this happens, there are two cases: If the out-
put buffer of p0 is free, then message in the extra buffer is copied in this buffer.
Otherwise (the output buffer is busy), the message in the extra buffer is deleted.
In both cases, the extra buffer becomes free (a free slot is created).

Lemma 2. If the extra buffer of the processor p0 (EXTp0) which is at the ex-
tremity of the chain contains a message then this buffer becomes free after a
finite time.

We deduce from Lemma 2 that if the routing tables are not stabilized and if
there is a message locking the input buffer of p0, then this message is eventually
copied in the extra buffer. Since the latter is infinitely often empty (Lemma 2
again), the following lemma is proven by induction:

Lemma 3. All the messages progress in the system even if the routing tables
are not stabilized.

Let us call a valid PIF wave every PIF wave that is initiated by the processor
p0 at the same time as executing R8.

Lemma 4. For every valid PIF wave, when the C-Action is executed in the
initiator either OUTp(q) = INq(p) or OUTp(q) = ε.

Proof Outline. The idea of the proof is as follows:

– We prove first that during the broadcast phase there is a synchrony between
the PIF and the forwarding algorithm. Note that when the message that was
in the input buffer of the initiator is copied in the extra buffer, the input
buffer becomes free. The free slot in that buffer progresses in the chain at
the same time as the broadcast of the PIF wave.

– Once the PIF reaches a leaf, a new buffer becomes free in C2 (refer to
Figure 1).

– As in the broadcast phase, there is a synchrony between the PIF and the
forwarding algorithm during the feedback phase. (The feedback will escort
the new free slot on C2 to the output buffer of p0.) ��

In the remainder, we say that a message is in a suitable buffer if the buffer is
on the right direction to its destination. A message is said to be deleted if it is
removed from the system without being delivered.

Snap-Stabilizing Linear Message Forwarding 557

Let us consider messages that are not deleted only. Let m be such a message.
According to Lemma 3, m progresses in the system (no deadlock happens and no
message stays in the same buffer indefinitely). So, if m is in a buffer that is not
suitable for it, then m progresses in the system according to the buffer graph.
Thus, it eventually reaches an extremity, which changes its direction. Hence, m
is ensured to reach its destination, leading to the following lemma:

Lemma 5. For every message that is not in a suitable buffer, it will undergo
exactly a single route change if it not deleted before.

Once the routing tables are stabilized, every new message is generated in a
suitable buffer. So, it is clear from Lemma 5 that the number of messages that
are not in a suitable buffer strictly decreases. The next lemma follows:

Lemma 6. When the routing tables are stabilized and after a finite time, all the
messages are in buffers that are suitable for them.

From there, it is important to show that any processor can generate a message
in finite time. From Lemma 6, all the messages are in suitable buffers in finite
time. Since the PIF waves are used for route changes only, then:

Lemma 7. When the routing tables are stabilized and all the messages are in
suitable buffer, no PIF wave is initiated.

From this point, the fair pointer mechanism cannot be disrupted by the PIF
waves anymore. So, the fairness of message generation guarantees the following
lemma:

Lemma 8. every message can be generated in finite time under a weakly fair
daemon.

Due to the color management (Function Choice(c)), the next lemma follows:

Lemma 9. The forwarding protocol never duplicates a valid message even if
Rtables runs simultaneously.

From Lemma 8, every message can be generated in finite time. From the PIF
mechanism and its synchronization with the forwarding protocol the only mes-
sage that can be deleted is the message that was in the extra buffer at the initial
configuration. Thus:

Lemma 10. Every valid message (that is generated by a processor) is never
deleted unless it is delivered to its destination even if Rtables runs simultane-
ously.

From Lemma 8, every message can be generated in finite time. From Lemma 10,
every valid message is never deleted unless it is delivered to its destination even
if Rtables runs simultaneously. From Lemma 9, no valid message is duplicated.
Hence, the following theorem holds:

558 A. Cournier et al.

Theorem 1. The proposed algorithm (Algorithms 1 and 2) is a snap-stabilizing
message forwarding algorithm (satisfying SP) under a weakly fair daemon.

Note that for any processor p, the protocol delivers at most 4n− 3 invalid mes-
sages. Indeed, the system contains only 4n − 3 buffers and in the worst case,
initially, all the buffers are busy with different invalid messages (that were not
generated).

5 Network Dynamic

In dynamic environments, processors may leave or join the network at any time.
To keep our solution snap-stabilizing we assume that there are no crashes and
if a processor wants to leave the network (disconnect), it releases its buffers
(it sends all the messages it has to send and to wait for their reception by its
neighbours) and accepts no more message before leaving.

In this discussion we assume that the rebuilt network is still a chain. It is
fundamental to see that in dynamic systems the problem of keeping messages
for ghost destinations with the hope they will join the network again and the
lack of congestion are contradictory. If there is no bound on the number of
leavings and joins this problem does not admit any solution. The only way is
to redefine the problem in dynamic settings. For example we can modify the
second point of the specification (SP) as follows: A valid message m generated
by the processor p to the destination q is delivered to q in finite time if m, p and
q are continuously in the same connected component during the forwarding of
the message m. Even if that could appear very strong, this kind of hypothesis is
often implied in practice. However we can remark that this new specification is
equivalent to SP in static environments. Our algorithm can easily be adapted
in order to be snap-stabilizing for this new specification in dynamic chains.

Thus, we can now delete some messages as follows: we suppose that every
message has an additional boolean field initially set to false. When a message
reaches an extremity which is not its destination we have two cases: (i) The
value of the boolean is false, then the processor sets it to true and sends it in
the opposite direction. (ii) The value of the boolean is true, then the processor
deletes it (in this case, if the message is valid, it crossed all the processors of the
chain without meeting its destination).

Finally, in order to avoid starvation of some processors, the speed of joins
and leavings of the processors has to be slow enough to avoid a sequence of PIF
waves that could prevent some processors to generate some messages.

6 Conclusion

In this paper, we presented the first snap-stabilizing message forwarding protocol
that uses a number of buffers per node being independent of any global param-
eter. Our protocol works on a linear chain and uses only 4 buffers per link. It
tolerates topology changes (provided that the topology remains a linear chain).

Snap-Stabilizing Linear Message Forwarding 559

This is a preliminary version to get the same result on more general topologies.
In particular, by combining a snap-stabilizing message forwarding protocol with
any self-stabilizing overlay protocols (e.g., [13] for DHT or [14–16] for tries), we
would get a solution ensuring users to get right answers by querying the overlay
architecture.

References

1. Dolev, S.: Self-stabilization. MIT Press, Cambridge (2000)
2. Huang, S.T., Chen, N.S.: A self-stabilizing algorithm for constructing breadth-first

trees. Inf. Process. Lett. 41(2), 109–117 (1992)
3. Kosowski, A., Kuszner, L.: A self-stabilizing algorithm for finding a spanning tree

in a polynomial number of moves. In: Wyrzykowski, R., Dongarra, J., Meyer, N.,
Waśniewski, J. (eds.) PPAM 2005. LNCS, vol. 3911, pp. 75–82. Springer, Heidel-
berg (2006)

4. Johnen, C., Tixeuil, S.: Route preserving stabilization. In: Huang, S.-T., Herman,
T. (eds.) SSS 2003. LNCS, vol. 2704, pp. 184–198. Springer, Heidelberg (2003)

5. Awerbuch, B., Patt-Shamir, B., Varghese, G.: Self-stabilizing end-to-end commu-
nication. Journal of High Speed Networks 5(4), 365–381 (1996)

6. Kushilevitz, E., Ostrovsky, R., Rosén, A.: Log-space polynomial end-to-end com-
munication. In: STOC 1995: Proceedings of the twenty-seventh annual ACM sym-
posium on Theory of computing, pp. 559–568. ACM, New York (1995)

7. Cournier, A., Dubois, S., Villain, V.: Snap-stabilization and PIF in tree networks.
Distributed Computing 20(1), 3–19 (2007)

8. Cournier, A., Dubois, S., Villain, V.: A snap-stabilizing point-to-point communi-
cation protocol in message-switched networks. In: 23rd IEEE International Sym-
posium on Parallel and Distributed Processing (IPDPS 2009), pp. 1–11 (2009)

9. Cournier, A., Dubois, S., Villain, V.: How to improve snap-stabilizing point-to-
point communication space complexity? In: Guerraoui, R., Petit, F. (eds.) SSS
2009. LNCS, vol. 5873, pp. 195–208. Springer, Heidelberg (2009)

10. Edsger, W., Dijkstra: Self-stabilizing systems in spite of distributed control. ACM
Commum. 17(11), 643–644 (1974)

11. Burns, J., Gouda, M., Miller, R.: On relaxing interleaving assumptions. In: Pro-
ceedings of the MCC Workshop on Self-Stabilizing Systems, MCC Technical Report
No. STP-379-89 (1989)

12. Merlin, P.M., Schweitzer, P.J.: Deadlock avoidance in store-and-forward networks.
In: Jerusalem Conference on Information Technology, pp. 577–581 (1978)

13. Bertier, M., Bonnet, F., Kermarrec, A.M., Leroy, V., Peri, S., Raynal, M.: D2HT:
the best of both worlds, Integrating RPS and DHT. In: European Dependable
Computing Conference (2010)

14. Aspnes, J., Shah, G.: Skip Graphs. In: Fourteenth Annual ACM-SIAM Symposium
on Discrete Algorithms, pp. 384–393 (January 2003)

15. Caron, E., Desprez, F., Petit, F., Tedeschi, C.: Snap-stabilizing Prefix Tree for Peer-
to-Peer Systems. In: Masuzawa, T., Tixeuil, S. (eds.) SSS 2007. LNCS, vol. 4838,
pp. 82–96. Springer, Heidelberg (2007)

16. Caron, E., Datta, A., Petit, F., Tedeschi, C.: Self-stabilization in tree-structured
P2P service discovery systems. In: 27th International Symposium on Reliable Dis-
tributed Systems (SRDS 2008), pp. 207–216. IEEE, Los Alamitos (2008)

Vulnerability Analysis of High Dimensional
Complex Systems

Vedant Misra, Dion Harmon, and Yaneer Bar-Yam

New England Complex Systems Institute
{vedant,dion,yaneer}@necsi.edu

http://www.necsi.edu

Abstract. Complex systems experience dramatic changes in behavior
and can undergo transitions from functional to dysfunctional states. An
unstable system is prone to dysfunctional collective cascades that result
from self-reinforcing behaviors within the system. Because many human
and technological civilian and military systems today are complex sys-
tems, understanding their susceptibility to collective failure is a critical
problem. Understanding vulnerability in complex systems requires an
approach that characterizes the coupled behaviors at multiple scales of
cascading failures. We used neuromorphic methods, which are modeled
on the pattern-recognition circuitry of the brain and can find patterns
in high-dimensional data at multiple scales, to develop a procedure for
identifying the vulnerabilities of complex systems. This procedure was
tested on microdynamic Internet2 network data. The result was a generic
pipeline for identifying extreme events in high dimensional datasets.

Keywords: complex systems, vulnerability detection, stability and in-
stability, high-dimensional, dimensionality reduction, neuromorphic
methods, self-stabilizing systems.

1 Introduction

High dimensional complex systems are comprised of large numbers of interde-
pendent elements [9]. When high dimensional systems perform critical tasks, the
task is shared by and dynamically allocated among the components. The ability
to distribute function dynamically enables robust and self-stabilizing function in
a highly variable environment, but breaks down when collective loads are exces-
sive, or when local failures or allocation process failures lead to cascading failures
of large parts of the system as a whole. Thus, interdependence is necessary for
function, but at the same time leads to dysfunctions associated with collective
breakdowns. Because collective failures are dynamic and emergent, it is essential
to identify when they occur and how to prevent them for the effective operation
of a large number of critical systems.

Predicting the conditions of collective failures typically requires extensive
study of the system and an understanding of both general dynamical charac-
teristics and specific structural details. This is apparent in the limited predic-
tion ability of such well-known collective failures as traffic jams and gridlock in

S. Dolev et al. (Eds.): SSS 2010, LNCS 6366, pp. 560–572, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

http://www.necsi.edu

Vulnerability Analysis of High Dimensional Complex Systems 561

road and highway systems. Similar issues arise in many much less visible sys-
tems, including power grids; water supply systems; communication networks (the
internet); transportation networks (airlines, trains, shipping, etc); the global fi-
nancial system; manufacturing, food and other commodity supply systems; and
social networks and organizations. The potential impact of catastrophic failures
in such systems has led to interest in developing detailed models of the systems,
but not principles for evaluating system vulnerability [16,37].

Generally, interactions among a system’s elements can generate collective dys-
functions, and operating conditions can trigger dramatic changes in the system’s
overall behavior, such as cascading failures. When a system is highly susceptible
to behavioral changes of this sort, it is functionally unstable [20,29].

Vulnerable systems are likely to transition from stability to instability. Like a
pencil on its tip, a vulnerable system will collapse if it experiences a sufficiently
large deviation. By contrast, a stable system can restore itself to its equilibrium
state when perturbed, like a pendulum. A system that is normally stable can be-
come functionally unstable due to changes in global conditions or in relationships
between the system’s constituent elements.

Understanding the vulnerabilities of complex systems is a critical societal
problem because of the many human and technological systems today that rely
on distributed function and that can be characterized as high dimensional com-
plex systems. Currently, responses to failure are reactive instead of proactive
because we do not have a generic pipeline for analyzing high dimensional sys-
tems and anticipating their vulnerabilities. The goal of this paper is to develop a
method for characterizing and anticipating extreme behavior and system failure,
and to test it on a specific case study.

2 Internet2

Transitions from stability to instability are manifest in the Internet, which makes
it a suitable prototype case for studying the dynamical properties of high dimen-
sional systems [11,21,30,32,36]. A central function of the Internet is to enable
any node to communicate with any other node transparently and without signif-
icant delays or lost communication. The Internet is designed as a self-stabiizing
system [6], returning by itself to normal operation despite data errors and equip-
ment failure [31] and despite dynamical deviations from functional states [14].
Nonetheless, the Internet architecture sometimes exhibits collective behaviors
that make transparent end-to-end connectivity impossible. Such aggregate col-
lective phenomena include cascading failures [20,22,29], the largest of which have
been associated with worm attacks [12,35,38], and “route flapping,” which occurs
when a router fluctuates quickly between routes without settling into an effec-
tive routing pattern [24]. Other such phenomena include bottlenecks, storms,
and collective oscillations[10,17,25].

A suitable prototype case for studying the dynamical properties of the Inter-
net is the Internet2 network, backbone hubs of which are depicted in Figure 2.
Internet2 is a collaboration of research institutions and companies that require

562 V. Misra, D. Harmon, and Y. Bar-Yam

-1000

-800

-600

-400

-200

0

-400

-200

0

200

400

600-200

-100

0

100

200

300

Fig. 1. Depiction of the pipeline. Each orange arrow represents one phase of the four-
step process. Step 1, the sensor process, converts high dimensional heterogeneous data
into a structured data stream representation. Step 2, the attention process, determines
an attention trigger, extracts high-dimensional event data, and applies an alignment
algorithm to align events in time. The result is a high-dimensional matrix. Step 3, the
pattern process, employs pattern-discovery algorithms (gray arrow) to convert the high
dimensional input into a lower-dimensional representation. Step 4, the interpretation
process, characterizes the domains in the lower-dimensional representation space and
makes it possible to distinguish normal system operations from system vulnerability
or failure.

Fig. 2. Backbone hubs on the Internet2 network and traffic flow links between them

Vulnerability Analysis of High Dimensional Complex Systems 563

high-speed network infrastructure for communication. The Internet2 network is
similar to the Internet in design and function, but smaller. While Internet2 is
partially isolated from the Internet, it uses the same protocols for routing and is
large enough to manifest collective dysfunction [18]. By design, massive volumes
of network data can be collected through protocols built into the network, so
extensive data about traffic on Internet2 has been archived [1,2,3,4,5,13]. The
availability of historical data makes Internet2 a suitable laboratory for studying
the collective failure of high-dimensional systems [23,33,39].

Internet2 data archives include logs of routing changes in the network issued
by its communications protocol, Border Gateway Protocol (BGP) the same
protocol used by routers on the Internet [34]. Under BGP, each node sends
updates to its neighbors about which routes are most efficient for transmitting
data. As the traffic demand changes, routes can become overloaded. Delays are
detected by network routers that read messages from other routers. When delays
are detected, BGP messages are sent between routers so that they change their
routing tables [34].

Consider what might happen during a speech given by the President that
is broadcast via a live video feed from Washington and is of interest to many
people near Kansas City. Data packets may be transmitted from Washington,
through Atlanta and Houston, to Kansas City (see Fig. 2). The resulting spike
in network traffic may impede traffic from Indianapolis to Washington, which
also passes through Atlanta.

To overcome this problem, Indianapolis traffic may be rerouted through
Chicago and New York. A message from Atlanta to Indianapolis forcing this
routing change constitutes a BGP update. The number of updates per minute
varies from as little as a few dozen to several thousand depending upon the
volume and nature of network activity. System failure occurs if the network
experiences unusually high update volumes without settling into an effective
routing pattern.

A simple example of system failure is one that occurs in self-generated traffic
and route oscillations, where if one route is overloaded, the system dynamically
reroutes traffic. However, rerouted traffic may cause overloading and delays in
the new route while leaving the older route underutilized. Subsequent rerouting
may exacerbate this effect by inducing routing oscillations that never achieve
effective system utilization.

Update logs can in principle enable an observer to understand the network’s
dynamics. However, a single update, or even a large number of updates, are not
indicative of failure. Aggregate behaviors must be characterized using patterns in
the BGP traffic that enable us to distinguish poor resource utilization and failed
communications from effective use of bandwidth and successful communications.

BGP updates are one of several types of records in the Internet2 archives.
A central problem in developing a model that reveals the network’s collec-
tive behaviors is determining which data best represent the system and which
can be ignored. Additionally, understanding vulnerabilities in Internet2 requires
an approach that recognizes the consequences of dependencies between nodes.

564 V. Misra, D. Harmon, and Y. Bar-Yam

Traditional analysis, which focuses on individual variables and pair-wise correla-
tions, is not sufficient to capture the system’s collective behaviors and does little
to help discriminate between useful and irrelevant data streams. Furthermore,
collective behaviors at multiple scales should be described by k-fold correlations
[7,8,15,26,27] that would be difficult to evaluate directly.

3 Neuromorphic Method

We have developed a process for identifying extreme behavior in high-dimensional
systems using neuromorphic pattern discovery methods. This process character-
izes the differences between patterns of collective behavior and uses them to
recognize instability.

Neuromorphic pattern discovery methods are designed to mimic the nervous
system’s pattern-recognition circuitry using computer algorithms. Our approach
consists of four stages: sensor, attention (event detection), pattern finding, and
interpretation (classification). Each of these stages is analogous to a specific
neurobiological function.

This report describes the successful implementation of our approach but does
not describe the multiple methods that have been studied in order to develop
this approach [9,28]. These studies investigated both conceptual and practical
aspects of computational analysis. Some of the implementations tested in order
to identify the strategy used and its refinement were performed on systems other
than the Internet 2 data reported here.

Optimization of the method has been performed at a global rather than a
local scale, which ensures that the neuromorphic method retains essential infor-
mation while eliminating unnecessary or redundant information at each stage of
processing. That the method does not require optimization at each stage is crit-
ical to its widespread applicability. Thus, in this method, no attempt is made at
each phase of the process to isolate a single correct output, because a multiplic-
ity of potential outputs can, after the interpretation process has been applied,
result in the same conclusion.

We ensure that the patterns discovered by the process are meaningful by
requiring that we retain key representative elements of the data stream. High
dimensional data is retained until the penultimate stage. Information selection
at earlier stages is designed to retain a representation of the coupled dynami-
cal processes that underly system failure. The relative timing of events among
multiple units is a critical aspect of the information retained that is often dis-
carded in other forms of analysis. The relative timing data contains the high
order correlations among the components of the system.

We overcome the difficulty faced by pattern recognition methods in resolving
patterns where multiple instances of the same phenomenon do not appear the
same in the input due to transformations such as time or space translation. To
address this limitation, we treat the overall collective dynamics of the system
as a single entity. We implement a symmetry-breaking process that aligns the
events with each other in time. Such a symmetry-breaking process could also
have been done in space, but was not necessary for this application.

Vulnerability Analysis of High Dimensional Complex Systems 565

3.1 Sensor Process

The sensor process refines large volumes of variously structured raw data into
a well-defined and standardized high-dimensional parallel data stream. This is
analogous to the brain converting compressions and rarefactions of air molecules
against the eardrum, or light waves reaching the retina, into neural signals. The
biological examples demonstrate that this stage of the process is system specific–
i.e. the nature of the originating data is specific to the system being considered
(sound or light) and the purpose of the sensory stage is to use a system-specific
mechanism to convert the available information into a formatted data stream.

The 10 TB of available data for Internet2 were refined by a computer program
that processed raw network data into a dynamic measure of network interac-
tions while dealing with complications like data inconsistencies and gaps. The
available data consist of second-resolution logs of various network statistics, in-
cluding netflow data containing a record of IP flows passing through each router,
throughput data consisting of records of the average rate of successful message
delivery, and usage data comprised of logs of system load for individual machines
at each node. The sensor program parsed these data and returned a time series
of the most representative aspects of the data set for the collective behavior with
which we are concerned — a data stream representing the existence of a change
in the router table at a particular router of the system.

3.2 Attention Process

The next phase of processing requires that we specify a “trigger,”—a dynamic
feature of large excursions that we can use to identify when an extreme event
may be happening. The trigger is tuned using historical data to maximize the
number of events identified by the event detection process while excluding false
positives from the data set.

The trigger is based on an aggregate measure of the system’s behavior over
space and time – in the case of Internet2, across major backbone nodes. Event
data is extracted from the data stream using a program that monitors this
aggregate measure. A deviation of the measure from a background value well
above its statistical variation signals an event – we looked for deviations larger
than 3 standard deviations above the moving average – at which point the event’s
data stream is extracted. Figure 3 is a visualization of an aggregate measure of
the behavior of the system, in which each bar represents the number of update
messages per day over seven months. The figure shows that update spikes are
an easily-identified first approximation for what might constitute an appropriate
trigger.

The next phase is to align the event data; this is an essential part of the
attention process because it enables comparison of the intra-event dynamics of
different events. An algorithm extracts a 40-hour window of data surround each
event and examines it to identify the period within that window that best repre-
sents aberrant network activity, and then shifts each window in time according to
the location of the most active period. In the example in Figure 4, the windows
have been shifted to align the largest spikes within the window.

566 V. Misra, D. Harmon, and Y. Bar-Yam

Fig. 3. BGP Updates per day over seven months at an Internet2 node; x-axis is days
since the start of 2008. Arrows indicate days that are visually identifiable as “spikes”
in the number of BGP updates. The attention process in a neuromorphic algorithm
must identify the quantitative signature of such anomalies and use it to extract a data
stream that represents the network’s dynamical properties.

The alignment process outputs a set of 15,000-element vectors, one vector per
event. Each vector represents the behavior at every node over a specific time
frame, with the salient features of each event aligned within the output matrix.

3.3 Pattern Process

To identify details of the dynamics of large excursions, we employ a wide array
of pattern finding algorithms designed for processing high dimensional, high
volume data. Many of these algorithms reduce the dimensionality of the system
description by discarding dimensions that are not essential for characterizing
the system’s overall behavior. A common approach to dimensionality reduction
is to assume that the data lie on an embedded non-linear manifold within the
high-dimensional space defined by the complete dataset. While some techniques
give a mapping from the high dimensional space to the low dimensional space,
others provide only a visualization of the low-dimensional data.

Both types of algorithms are designed to maximize coverage of the lower di-
mensional representation space and minimize the distortion of the projection.
Dimensionality reduction algorithms map high-dimensional data vectors ξi in
an input space of dimension n to lower-dimensional representation vectors xi

in an output space of dimension m << n. The algorithms seek to preserve the
distances between pairs of points. Given metrics dξ and dx that measure dis-
tances between high-dimensional vectors and low-dimensional vectors, respec-
tively, the distances dx(xi, xj) approximate the distances dξ(ξi, ξj). At the same
time the algorithms try to maximize a measure of spatial covering so that the

Vulnerability Analysis of High Dimensional Complex Systems 567

Fig. 4. Aligning events using their dynamic profiles. The window at left depicts the
dynamic profile of an Internet2 node over several months. The windows at right depict
the profiles of individual days during the month that were flagged during event detec-
tion. The alignment process determines what significant characteristic of each event
best correlates to significant characteristics of other events and aligns them using the
resulting criterion.

Fig. 5. Dimensionality-reduced representation of event vectors. Each point represents
an event. This plot represents an attribute space of event parameters found to be
significant by the dimensionality reduction algorithm. Specifically, x1 and x2 are the
two most prominent lower-dimensional parameters. Note the two extreme events, which
appear separate from the large number of rerouting events that did not destabilize the
network.

568 V. Misra, D. Harmon, and Y. Bar-Yam

representation vectors xi represent as much of the high dimension variation in
the lower dimension as possible.

One technique for maximizing spatial covering employed by some dimensional-
ity reduction algorithms is to use an intermediary transformation from the input
space to a feature space in which the underlying structure of the input vectors
is more visible. This enables non-linear methods to be incorporated in an other-
wise linear process. One such method is Kernel Principal Component Analysis
(Kernel PCA), in which the linear operations of PCA are applied to the feature
space with nonlinear mapping. Given a set of input data points ξi, i = 1, 2, . . . , n
in the n-dimensional input space, we would first nonlinearly transform the ith

input vectors ξi into a point Φ(ξi) in an NH dimensional feature space H where
each

Φ(ξi) = (φ1(ξi), . . . , φNH (ξi)) ∈ H, i = 1, 2, . . . , n. (1)

and then use PCA in the feature space H [19]. Carrying out linear PCA in the
feature space then yields a presumably lower-dimensional distance-preserving
representation of the input vectors xi, i = 1, 2, . . . , m, with m < n. The method
we employed was inspired by Kernel PCA; the nonlinear sensor and attention
processes primed the input space for dimensionality reduction, after which linear
methods were sufficient for identifying structure in the data.

The results of nonlinear dimensionality reduction are visualizations of the high
dimensional data in a lower dimensional space that make it possible to uncover
patterns within the data using the coordinates of the resulting points in the low
dimensional space. Figure 5 depicts a scatter plot generated using the results of
dimensionality reduction.

3.4 Interpretation Process

The pattern finding process outputs a representation of the lower-dimensional
space to which high-dimensional input was mapped. Just as in a neural process-
ing system, interpration of this lower-dimensional representation must be guided
by an understanding of the consequences of previous events, either by studying
long term feedback or by training from a previous generation. Similarly, the in-
terpretation of the events in the neuromorphic system can be guided by human
interpretation. Since the dimensionality of this output space is small, our own
interpretive processes can identify the relevant regions of the space from the
historical data.

Extreme events appeared separate from the cluster of background events in
the lower-dimensional output space. They are visible in Figure 5 in the upper-
left. To determine what property of these events separates them from the trend,
we used radar charts that illustrated the node-to-node variation of each event
and temporal plots to visualize the dynamics of the activity.

Figure 6 contains two such plots, along with temporal plots and indications of
where each event falls in Figure 5. The radar chart insets indicate the magnitude
of each event at each node. Clearly visible in the first of the two events, which
manifested at every node but was aberrantly large at only one node, are several

Vulnerability Analysis of High Dimensional Complex Systems 569

Fig. 6. Dynamic profiles for the two events. The insets indicate the magnitude of each
event at each node. Also indicated is where each event appeared on the dimensionality-
reduced plot.

distinct spikes in network activity. This repeated and persistent aberrant activity
is a signature of systemic instability. The second event depicted consisted of
nearly eight hours of large numbers of updates. The entire network was forced
to completely rewire itself every 30 seconds. This is precisely the type of system
failure our method is designed to detect.

The results of our analysis prompted us to revisit the theoretical nature of
vulnerability and failure. Within the context of vulnerable systems, large cas-
cades are common rather than isolated events. System failure is a persistent
and recurrent cascade. Thus, both vulnerability and failure can be identified as
persistent large deviations from normal behavior.

Our analysis shows that self-stabilizing systems can be vulnerable to collec-
tive dysfunctions. While the routing systems can adapt rapidly to changes in
the network and the dynamics of demand, there are conditions of the system
or the demand on the system that can lead to cascades that cause dysfunction.
Recognizing these conditions and detecting extreme events is essential to ex-
panding the domain of effective function.

Our processing pipeline is well-suited to detecting extreme events because of
the attentional trigger which aligns events according to their largest excursion.

570 V. Misra, D. Harmon, and Y. Bar-Yam

All events where the large excursion is sufficiently isolated from other large events
will appear much more similar to each other than they do to events for which
multiple large excursions occur over time and across the network. This ensures
that the pattern recognition algorithms will be able to distinguish between the
two types.

Our method sheds light on the dynamical characteristics of extreme events
and explains why our processing pipeline can distinguish extreme events from
those that do not result in system failure. This new insight provides a general
explanation of how and why real-time detection of extreme events is possible.

4 Conclusion

We have developed a neuromorphic information processing pipeline that can
characterize the vulnerability of complex systems. The process consists of ex-
tracting a dynamic measure of network activity and processing the resulting time
series to find patterns of collective behavior. The process succeeded in identifying
extreme events that are distinct from high demand but otherwise effective system
activity. Novel spatiotemporal analysis and dimensionality reduction techniques
made this result possible. The pipeline can be used quite generally for analyzing
high-dimensional time series and isolating extreme events in real world communi-
cation, transportation and economic systems. This system can be combined with
real-time system monitoring of data streams to identify dysfunctional behaviors
and characterize vulnerabilities or system instabilities as they occur.

Acknowledgments

This work was supported in part by the Defense Advanced Research Projects
Agency, the U. S. Army Research Laboratory, and the U. S. Army Research
Office under contract/grant number W911NF-09-1-0165.

References

1. B.G.P.: routing table analysis. modified (August 2006), http://thyme.apnic.net/
2. BGPmon: Next generation BGP Monitor, http://bgpmon.netsec.colostate.

edu/

3. Border gateway protocol (BGP) data collection standard communities, http://
www.bgp4.as/bgp-data-collection-standard-communities (modified February
23, 2006)

4. New sources of BGP data,
http://inl.info.ucl.ac.be/blogs/08-10-27-new-sources-bgp-data (modi-
fied October 28, 2008)

5. University of Oregon Route Views Project, http://www.routeviews.org/ (modi-
fied January 25, 2005)

6. Adam, C., Stadler, R.: Patterns for routing and self-stabilization. In: Proc
IEEE/IFPS NOMS (2004)

http://thyme.apnic.net/
http://bgpmon.netsec.colostate.edu/
http://bgpmon.netsec.colostate.edu/
http://www.bgp4.as/bgp-data-collection-standard-communities
http://www.bgp4.as/bgp-data-collection-standard-communities
http://inl.info.ucl.ac.be/blogs/08-10-27-new-sources-bgp-data
http://www.routeviews.org/

Vulnerability Analysis of High Dimensional Complex Systems 571

7. Bar-Yam, Y.: Multiscale complexity/entropy. Advances in Complex Systems 7,
47–63

8. Bar-Yam, Y.: Multiscale variety in complex systems. Complexity 9(4), 37–45 (2004)
9. Bar-Yam, Y.: Dynamics of Complex Systems. Perseus Press, Cambridge (1997)

10. Barabási, A.L., de Menezes, M., Balensiefer, S., Brockman, J.: Hot spots and
universality in network dynamics. The European Physical Journal B 38, 169–175
(2004)

11. Cowie, J., Ogielski, A., Premore, B., Yuan, Y.: Global routing instabilities triggered
by Code Red II and Nimda worm attacks

12. Cowie, J., Ogielski, A., Premore, B., Yuan, Y.: Internet worms and global rout-
ing instabilities: scalability and traffic control in IP networks II. In: Proc SPIE,
vol. 4868, pp. 195–199 (2002)

13. Cymru, T.: BGP monitoring, http://www.team-cymru.org/Monitoring/BGP/

(modified 2010)
14. Dolev, S.: Self-stabilization. MIT Press, Cambridge (2000)
15. Gheorghiu-Svirchevski, S., Bar-Yam, Y.: Multiscale analysis of information corre-

lations in an infinite-range, ferromagnetic ising system. Phys. Rev. E 70(066115)
(2004)

16. Hohn, N.: Measuring, understanding, and modelling internet traffic
17. Huberman, B., Lukose, R.: Social dilemmas and internet congestion. Science 277

(1997)
18. Internet2: http://www.internet2.edu
19. Izenman, A.: Modern Multivariate Statistical Techniques. Springer, Heidelberg

(2008)
20. Jr., E.C., Ge, Z., Misra, V., Towsley, D.: Network resilience: exploring cascading

failures within bgp. In: Proceedings of Allerton Conference on Communications,
Computing, and Control (2001)

21. Labovitz, C., Malan, G., Jahanian, F.: Internet routing instability 6(5) (1998)
22. Lakhina, A., Crovella, M., Diot, C.: Mining anomalies using traffic feature distri-

butions. BUCS (002) (2005)
23. M G.:
24. Mao, Z., Govindan, R., Varghese, G., Katz, R.: Route flap damping exacerbates

internet routing convergence. In: Proceedings of ACM SIGCOMM, Pittsburgh, PA,
USA, pp. 221–233 (2002)

25. de Menezes, M., Barabási, A.L.: Fluctuations in network dynamics. Phys. Rev.
Lett. 92(028701) (2008)

26. Metzler, R., Bar-Yam, Y.: Multiscale analysis of correlated gaussians. Phys. Rev.
E 71(046114), 2005 (2005)

27. Metzler, R., Bar-Yam, Y., Kardar, M.: Information flow through a chaotic channel:
prediction and postdiction at finite resolution. Phys. Rev. E 70(020605) (2004)

28. Misra, V., Harmon, D., de Aguiar, M., Epstein, I., Braha, D., Bar-Yam, Y.: Vul-
nerability detection in complex systems. Unpublished report (2009)

29. Motter, A., Lai, Y.C.: Cascade-based attacks on complex networks. Phys. Rev. E
66(065102) (2002)

30. Nicol, D.: Challenges in using simulation to explain global routing instabilities. In:
Conference on Grand Challenges in Simulation (2002)

31. Perlman, R.: Interconnections: Bridges, Routers, Switches and Internetworking
Protocols, 2nd edn. Addison-Wesley Longman, Amsterdam (2001)

32. Valverde, S., Internet’s, R.S.: critical path horizon. The European Physical Journal
B 38(2) (2004)

http://www.team-cymru.org/Monitoring/BGP/
http://www.internet2.edu

572 V. Misra, D. Harmon, and Y. Bar-Yam

33. Siganos, G., Faloutsos, M.: Detection of BGP routing misbehavior against cyber-
terrorism. In: IEEE Military Communications Conference (2005)

34. Smith, R.: The dynamics of internet traffic: self-similarity, self-organization, and
complex phenomena. ArXiV:0806.3374 (2008)

35. Wang, L., Zhao, X., Pei, D., Bush, R., Massey, D., Mankin, A., Wu, S., Zhang,
L.: Observation and analysis of BGP behavior under stress. In: Proceedings of the
2nd ACM SIGCOMM workshop of internet measurement (2002)

36. Wang, Y.: Protecting mission critical networks. Seminar on Network Security Pub-
lications in Telecommunications Software and Multimedia (2001)

37. Yuan, J., Mills, K.: Macroscopic dynamics in large-scale data networks. Complex
Dynamics in Communication Networks (2005)

38. Zou, C.C., Gong, W., Towsley, D.: Code red worm propagation modeling and anal-
ysis. In: Proceedings of the 9th ACM conference on Computer and communications
security (2002)

39. Zou, C., Gao, L., Gong, W., Towsley, D.: Monitoring and early warning for internet
worms. In: Proceedings of the 10th ACM conference on Computer and communi-
cations security (2003)

Storage Capacity of Labeled Graphs

Dana Angluin1,�, James Aspnes1,��, Rida A. Bazzi2, Jiang Chen3,
David Eisenstat4, and Goran Konjevod2

1 Department of Computer Science, Yale University
2 Department of Computer Science and Engineering, Arizona State University

3 Google
4 Department of Computer Science, Brown University

Abstract. We consider the question of how much information can be
stored by labeling the vertices of a connected undirected graph G using
a constant-size set of labels, when isomorphic labelings are not distin-
guishable. An exact information-theoretic bound is easily obtained by
counting the number of isomorphism classes of labelings of G, which
we call the information-theoretic capacity of the graph. More inter-
esting is the effective capacity of members of some class of graphs,
the number of states distinguishable by a Turing machine that uses the
labeled graph itself in place of the usual linear tape. We show that the ef-
fective capacity equals the information-theoretic capacity up to constant
factors for trees, random graphs with polynomial edge probabilities, and
bounded-degree graphs.

1 Introduction

We consider what happens if we replace the linear tape of a standard Turing
machine with some fixed finite connected graph. This gives us a way to represent
self-organizing systems consisting of many communicating finite-state machines,
where at any time, one machine (the location of the Turing machine head) takes a
leadership role. Our main question is how much computing power such machines
can cooperate to achieve. The answer depends on the inherent storage capacity
of the graph, a function of its size (bigger gives more space) and symmetries
(more symmetries makes the space harder to exploit).

In more detail, a graph Turing machine consists of an undirected connected
graph G, each of whose nodes holds a symbol from some finite alphabet, together
with a finite-state controller that can move around the graph and update the
symbols written on nodes. Because there is no built-in sense of direction on an
arbitrary graph, the left and right moves of a standard Turing machine controller
are replaced by moves to adjacent graph nodes with a given symbol. If there is no
such adjacent graph node, the move operation fails, which allows the controller

� Supported in part by NSF grant CCF-0916389.
�� Supported in part by NSF grants CNS-0435201 and CCF-0916389.

S. Dolev et al. (Eds.): SSS 2010, LNCS 6366, pp. 573–587, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

574 D. Angluin et al.

to test its immediate neighborhood for the absence of particular symbols. If
there is more than one such node, which node the controller moves to is chosen
arbitrarily. (A more formal definition of the model is given in Section 3.)

The intent of this model is to represent what computations are feasible in
various classes of simple distributed systems made up of a network of finite-state
machines. Inclusion of an explicit head that can move nondeterministically to
adjacent nodes (thus breaking at least local symmetries in the graph) makes the
model slightly stronger than similar models from the self-stabilization literature
(e.g., Dijkstra’s original model in [8]) or population protocols [5]; we discuss the
connection between our model and these other models in Section 2.

The main limitation on what a graph Turing machine can compute appears
to be the intrinsic storage capacity of its graph. For some graphs (paths,
for example) the storage capacity is essentially equivalent to a Turing machine
tape of the same size. For others (cliques, stars, some trees), the usable storage
capacity may be much less, because symmetries within the graph make it difficult
to distinguish different nodes with the same labeling. We define a notion of
information-theoretic capacity of a graph (Section 4.1) that captures the
number of distinguishable classes of labelings of the graph. Essentially this comes
down to counting equivalence classes of labelings under automorphisms of the
graph; it is related to the notion of the distinguishing number of a graph,
which we discuss further in Section 2.3.

The information-theoretic capacity puts an upper bound on the effective ca-
pacity of the graph, the amount of storage that it provides to the graph Turing
machine head (defined formally in Section 4.2). Extracting usable capacity re-
quires not only that labelings of the graph are distinguishable in principle but
that they are distinguishable to the finite-state controller in a way that allows
it to simulate a classic Turing machine tape. We show that an arbitrary graph
with n nodes provides at least Ω(log n) tape cells worth of effective capacity
(which matches the information-theoretic upper bound for cliques and stars, up
to constant factors). For specific classes of graphs, including trees (Section 7),
random graphs with polynomial edge probabilities (Section 9), and bounded-
degree graphs (Section 8), we show that the effective capacity similarly matches
the information-theoretic capacity.

Notably, these classes of graphs are ones for which testing graph isomorphism
is easy. Whether we can extract the full capacity of a general graph is open, and
appears to be related to whether graph isomorphism for arbitrary graphs can be
solved in LOGSPACE. We discuss this issue in Section 10.

2 Related Work

2.1 Self-stabilizing Models

A graph Turing machine bears a strong resemblance to a network of finite-
state machines, which has been the basis for numerous models of distributed
computing, especially in the self-stabilization literature. Perhaps closest to the
present work is the original self-stabilizing model of Dijkstra [8], where we have a

Storage Capacity of Labeled Graphs 575

collection of finite-state nodes organized as a finite connected undirected graph,
and at each step some node may undergo a transition to a new state that de-
pends on its previous state and the state of its immediate neighbors. The main
difference between the graph Turing machine model and this is the existence
of a unique head, and even more so, its ability to move to a single neighbor of
the current node—these properties break symmetry in ways that are often diffi-
cult in classic self-stabilizing systems. A limitation of the graph Turing machine
model is the restriction on what the head can sense of adjoining nodes: it cannot
distinguish neighbors in the same state, or even detect whether one or many
neighbors is in a particular state.

Itkis and Levin [11] give a general method for doing self-stabilizing computa-
tions in asynchronous general topology networks. Their model is stronger than
ours, in that each node can maintain pointers to its neighbors (in particular, it
can distinguish neighbors in the same state). Nonetheless, we have found some
of the techniques in their paper useful in obtaining our current results.

2.2 Population Protocols

There is also a close connection between our model and the population
protocol model [5], in which a collection of finite-state agents interact pair-
wise, each member of the pair updating its state based on the prior states of
both agents (see [6] for a recent survey on this and related models). This is
especially true for work on population protocols with restricted communication
graphs (for example, [3]). Indeed, it is almost possible to simulate a graph Tur-
ing machine in a population protocol, simply by moving the state of the head
around as part of the state of the node it is placed on, and using interactions with
neighbors to sense the local state. The missing piece in the population protocol
model is that there is no mechanism for detecting the absence of a particular
state in the immediate neighborhood. Although a fairness condition implies that
every neighbor will make itself known eventually, the head node has no way to
tell if this has happened yet. Urn automata [4], a precursor to the population
protocol model in which a finite-state controller manages the population, also
have some similarities to graph Turing machines, especially in the combination
of a classical Turing-machine controller with an unusual data store.

The community protocol model of Guerraoui and Ruppert [9, 10] extends
population protocols by allowing agents to store a constant number of pointers
to other agents that can only be used in limited ways. Despite these restric-
tions, Guerraoui and Ruppert show that community protocols with n agents
can simulate storage modification machines as defined by Schönhage [16],
which consist of a dynamic graph on n nodes updated by a finite-state controller.
Such machines can in turn simulate standard Turing machines with O(n log n)
space. The community protocol and storage modification machine models are
both stronger than our graph Turing machines because they allow for a dynamic
graph, while our machines have to work with the graph they are given.

576 D. Angluin et al.

2.3 Distinguishing Number

The distinguishing number [2] d(G) of a graph G is the minimum number
of colors needed to color the vertices of G so that G has no color-preserving
automorphisms.

If the distinguishing number of a class of graphs is bounded, then we can in
principle color the nodes with a distinguishing coloring that uniquely identifies
each node based on its position in the graph (though it still may require sub-
stantial work to identify a particular node). With a large enough alphabet, we
can use a second component of the state to store the contents of a Turing ma-
chine tape cell. This would give an information-theoretic capacity for the graph
of Θ(n).

Albertson and Collins [2] show that any graph has distinguishing number
O(log(|Aut(G)|)). This implies that the information-theoretic capacity of the
class of graphs with constant-sized automorphism groups is Θ(n) (the effective
capacity may be smaller in some cases). Thus graphs with low information-
theoretic capacity will have large automorphism groups, i.e., lots of symmetry.

Computing distinguishing number exactly appears to be difficult. Some im-
proved characterizations may be found in [15, 1].

3 Graph Turing Machines

Formally, a graph Turing machine is specified by a 4-tuple (Σ, Q, q0, δ) where
Σ is a finite alphabet of tape symbols, Q is a finite set of controller
states, q0 ∈ Q is the initial controller state, and δ : Q × Σ × P(Σ) →
(Q ∪ {qaccept, qreject})×Σ×Σ is the transition function. We assume that the
alphabet Σ contains the special blank symbol −. The graph G on which the
machine runs and the initial position of the controller v0 ∈ V (G) are supplied
separately.

The first argument of the transition function δ is the current state of the
controller, the second argument is the symbol on the current node, and the
third gives the set of symbols that appear on one or more of the neighbors of the
current node. The output of δ gives the new state of the controller, the symbol
to write to the current node, and the symbol indicating which adjacent node to
move to.

The special states qaccept and qreject are accepting and rejecting halting
states, respectively; if the machine enters one of these two halting states, there is
no move to a neighboring node. For transitions that do not enter a halting state,
we require that the target symbol be present in the immediate neighborhood
(i.e., that it is chosen from the set of neighboring symbols). Implicit in this rule
is that, in the unusual event that G contains only a single node v0 and the set
of symbols on neighboring nodes is empty, the machine must halt immediately.

A configuration of a graph Turing machine (Σ, Q, q0, δ) running on a graph
G is a triple (q, v, s) ∈ (Q ∪ {qaccept, qreject}) × V (G) × ΣV (G) where q is the
current state of the controller, v is its current position, and s specifies the current
tape symbol sv on each node v of G. A halting configuration is a configuration

Storage Capacity of Labeled Graphs 577

in which the controller state is either qaccept or qreject; in the former case it is an
accepting configuration and in the latter a rejecting configuration.

We consider (G, v0) to be the input to the graph Turing machine, where
G is a graph and v0 ∈ V (G) is the initial node. Given an input (G, v0), the
initial configuration of the machine is (q0, v0, {−})V (G), i.e., the configuration
in which the controller starts on node v0 in state q0 and all nodes contain the
blank symbol. As with standard Turing machines, we write M(G, v0) for the
machine M operating on input (G, v0).

Given a non-halting configuration (q, v, s), let

(q′, σ1, σ2) = δ (q, sv, {su : (u, v) ∈ E(G)}) .

There is a transition from (q, v, s) to (q′, v′, s′) if (a) s′v = σ1, (b) s′u = su for
all u ∈ V (G) − {v}, and (c) s′v′ = sv′ = σ2. Note that there may be more than
one such transition if there is more than one neighbor v′ with sv′ = σ2, Note
further that there are no transitions from a halting configuration.

Given input (G, v0), a computation path is a sequence of configurations
C0, C1, . . . where C0 is the initial configuration and there is a transition from
Ci to Ci+1 for each i. A graph Turing machine halts on input (G, v0) if every
computation path is finite. A graph Turing machine accepts (rejects) input
(G, v0) if every computation path is finite and ends in an accepting (rejecting)
configuration. The running time of a graph Turing machine with input (G, v0)
is the maximum length of any computation path, or ∞ if no such maximum
exists.

Though most computations of graph Turing machines are inherently nonde-
terministic, we will call a graph Turing machine deterministic if for any input
(G, v0) it either accepts on all computation paths or rejects on all computation
paths. The justification for this unusual usage is that for a deterministic graph
Turing machine, the choice of which of several alternative nodes to move to can
be made arbitrarily—possibly even according to some deterministic tie-breaking
rule (whose inclusion would complicate the model.)

We say that a graph Turing machine M1 with input (G1, v1) simulates a
graph Turing machine M2 with input (G2, v2) if there is a mapping from config-
urations of M1(G1, v1) to configurations of M2(G2, v2) such that every transition
of M1(G1, v1) maps to either a transition of M2(G2, v2) or to a no-op. Often we
will have (G1, v1) = (G2, v2), with the main differences between M1 and M2
being that M2 is a graph Turing machine extended in some way, such as by
adding multiple heads or more built-in storage. The particular case of simu-
lating a standard Turing machine will be used to define effective capacity in
Section 4.2.

4 Storage Capacity of Graphs

In this section, we consider the question of how much information can be stored
in a given graph. We first look at the information-theoretic capacity bound
(Section 4.1), then consider how much of this potential capacity can actually be
extracted (Section 4.2).

578 D. Angluin et al.

4.1 Information-Theoretic Capacity

The information-theoretic capacity of a graph is just the base 2 logarithm of
the number of distinguishable labelings of its nodes, where two labelings are
distinguishable if there is no automorphism of the graph that carries one to the
other and equivalent otherwise. This quantity is in principle computable using
Burnside’s Lemma; the number of distinguishable labelings is

L(G) = |X/ AutG| = 1
|Aut(G)|

∑
g∈Aut(G)

|Xg|,

where X is the set of all labelings, X/ Aut(G) is the quotient set of equivalence
classes of labelings under automorphisms in G, and Xg is the set of labelings
preserved by a particular automorphism g. The information-theoretic capacity
IG of G is then the base 2 logarithm lg L(G) of this quantity.

In practice, computing the number of distinguishable labelings will be easiest
for classes of graphs that have no non-trivial automorphisms, or for which the set
of automorphisms has a particularly simple structure, such as cliques, stars, or
trees. For example, any permutation of the nodes of a clique, or any permutation
of the non-central nodes of a star, is an automorphism of the graph. We can map
one labeling to another by a color-preserving permutation precisely when each
has the same number of nodes with each color (in the case of a star, when this
property holds for the leaves and the central nodes have the same color). It
follows that an equivalence class can be specified by counting the number of
nodes with each color (plus O(1) bits for the central node for a star). In either
case we get Θ(log n) bits of information.

Graphs with constant distinguishing number (see Section 2.3) or for which
a small number of carefully-colored nodes eliminate color-preserving automor-
phisms will have information-theoretic capacity Θ(n). An example would be a
path; by fixing distinct colors of the endpoints, no color-preserving automor-
phisms remain.

The information-theoretic capacity of general trees depends heavily on the
structure of the tree: whether it looks more like a star, with many automor-
phisms, or a path, with few. We discuss this issue in detail in Section 7.

In general, we can bound the information-theoretic capacity of any graph with
n nodes by O(n); this is just the number of bits needed to represent all possible
labelings without considering equivalence.

The usefulness of the information-theoretic capacity is that it puts an upper
bound on how much state can be stored in the graph. Call two configurations of
a graph Turing machine equivalent if

1. The head is in the same state in both configurations.
2. There is a label-preserving automorphism of G that carries the position of

the head in the first configuration to the position of the head in the second
configuration.

Storage Capacity of Labeled Graphs 579

It is not hard to see that equivalent states have equivalent successors, since the
same automorphism can be used after a transition as long as we are careful
to make the heads move to matching locations. It follows that for the pur-
pose of simulating a graph Turing machine, we need only record its state up to
equivalence.

Theorem 1. Fix a graph Turing machine, and suppose it is used to simu-
late a standard Turing machine. When running on graph G with n nodes and
information-theoretic capacity IG, the simulation has at most O(IG) space.

Proof. We can describe a state of the graph Turing machine up to equivalence
by specifying (a) some member of a class of equivalent graph labelings (IG bits);
(b) the state of the finite-state controller (O(1) bits); and (c) the position of
the finite-state controller (log n bits). Summing these quantities gives O(1) +
log n + IG bits, which translates into at most O(log n + IG) tape cells for the
simulated machine. But now observe that any graph has IG = Ω(log n) (provided
the alphabet size is at least 2), since we can obtain at least n + 1 distinct
automorphism classes by labeling k nodes with one symbol and n − k with
another, where k ranges from 0 to n. So O(log n + IG) = O(IG). ��

4.2 Effective Capacity

Our intent is that the effective capacity of a graph is the size of the largest
standard Turing machine tape that can be simulated using the graph. However,
we can in principle make this size arbitrarily large for any fixed graph by in-
creasing the size of the alphabet and the number of states in the finite-state
controller. To avoid this problem, we define effective capacity only for classes of
graphs.

Definition 1. A class of graphs G has effective capacity f(G) if there is a func-
tion f such that for any standard Turing machine M , there is a graph Turing
machine M ′ where for any G in G, and any vertex v0 of G, M ′(G, v0) simulates
M running on an initially blank tape with f(G) tape cells.

Note that because we have not specified alphabet sizes, effective capacity is
defined only up to constants. Furthermore, any particular construction can only
demonstrate a lower bound on effective capacity. For example, we can show that
the class of all graphs has effective capacity Ω(log n), where n is the number of
nodes in the graph. The reason for this is we can use the nodes in the graph
as a unary counter, then use a standard construction [14] to simulate a log(n)-
space Turing machine. However, this does not exclude the possibility that some
subclass of the class of all graphs has higher effective capacity, or that there
might be a construction that obtains Ω(log n) space on general graphs while
doing better on some specific graphs.

An example of a class of graphs with high effective capacity are paths. The
essential idea is that we can use a path directly to simulate a standard Turing
machine tape, with each node in the path representing one cell in the tape. A

580 D. Angluin et al.

minor complication is that a standard Turing machine can tell its left from its
right while a graph Turing machine can only do so if the neighbors of the current
cell have different labels. But we can handle this by adding an extra field in each
node that holds repeating values {0, 1, 2} (this is the slope mechanism from [11]),
with the left neighbor of a node with value x being the one with (x − 1) mod 3
and the right being the one with (x + 1) mod 3. This extra information triples
the size of the alphabet, but that is permitted by the definition.

On the other hand, we can’t do any better than Θ(n). It is immediate from
Definition 1 and Theorem 1 that no class of graphs has an effective capacity that
exceeds the information-theoretic capacity by more than a constant factor.

Definition 1 also does not include a time bound. A natural restriction would be
to consider polynomially-bounded effective capacity, where the simulation
can use at most a polynomial number of steps for each step of the simulated
machine. In our constructions, we are more interested in showing possibility
rather than specific time bounds, but we will state time bounds when we can.

5 Graph Traversal

A fundamental tool for doing computation with a graph Turing machine is the
ability to traverse every node in the graph. In this section, we show how this can
be done regardless of the structure of the graph.

We adapt depth-first search to our needs. Depth-first search requires a stack,
which we can represent by marking the nodes that are on the stack. Unfortu-
nately, because the graph may contain cycles, a simple mark does not suffice to
indicate unambiguously a stack node’s parent. If each node were labeled with
its distance modulo three from the root, then the correct parent node would
be evident from the labels. In order to establish these distance labels, we use
depth-first traversal repeatedly on the previously labeled portion of the graph
to expand the search by one step at a time from the root, as in breadth-first
search.

For the depth-first search method, we assume that every node has the fields
color (which may be black, white or gray) and depth (which may be ∞, 0, 1 or
2). The depth field is calculated modulo 3 to keep the size of the state finite; this
approach is similar to the “centered slope” technique used in [11]. The variable
head refers to the node that is the current position of the graph Turing machine.
In the initial configuration in which every node contains the blank symbol, we
have v.depth = ∞ and v.color = white for every node v. In order to initiate the
process of assigning the depth labels, we set head.color to white and head.depth
to 0.

Because depth-first search will be used in the process of establishing the cor-
rect depth labels, its invariant refers to C, the portion of the graph that has been
successfully depth labeled so far. A node v is in C if and only if v.depth �= ∞.
The depth-first search algorithm is a framework to allow the performance of
some action at every node of C. The action can occur in pre-order or post-order
with respect to the search.

Storage Capacity of Labeled Graphs 581

During the depth-first search, a node v is finished if v.color = black or
v.depth = ∞. A per-node action is safe if it respects the invariant concern-
ing the depth field, leaves the head where it found it, and alters the color or
depth fields of a node only when that node is finished and remains finished after
the alteration.

Invariant: letting C := {v | v.depth �= ∞}, the induced subgraph on C is
connected, root ∈ C, and all nodes v ∈ C have
v.depth = d(root, v) mod 3

Precondition: head = root, and all nodes v with v.depth �= ∞ have
v.color = white

done := false;1

repeat2

if head.color = white then3

head.color := gray;4

// perform a safe per-node action (preorder)

if head has a neighbor w with w.color = white and5

w.depth = (head.depth + 1) mod 3 then head := w;
else6

head.color := black;7

// perform a safe per-node action (postorder)

if head has a neighbor v with v.color = gray and8

v.depth = (head.depth − 1) mod 3 then head := v;
else done := true;9

until done;10

exchange the roles of white and black;11

Postcondition: the precondition holds

Algorithm 1. Depth-first traversal of a distance-labeled subgraph

In each phase of the breadth-first algorithm to establish the depth labels we
use depth-first search to visit every node v in C and perform the safe per-node
operation of changing the depth field of every neighbor w of v with w.depth =∞
to (v.depth+1) mod 3. If at least one node has its depth field modified, then C has
expanded, and the next phase of the breadth-first expansion ensues. Otherwise,
the process of assigning depth labels to all nodes accessible from the root is
complete.

To establish the correctness of the depth-first search, we observe that at any
time, the induced subgraph on the nodes that are white or gray is connected,
and the gray nodes are the nodes along a shortest path from the root to the
location of the head or a predecessor of it. Because the head never moves to a
black node, it is clear that the only way a node fails to have a white or gray
neighbor is if it is the root and it is the last node to be finished. This is the
safety property; the liveness property is that we continue to make progress. If
we continue to go down, eventually there must be a node with no white or gray
children, which will be made black. This in turn establishes the correctness of

582 D. Angluin et al.

Precondition: all nodes v have v.depth = ∞
head.color := white;1

head.depth := 0;2

repeat3

C := {v | v.depth �= ∞};4

// C consists of all nodes within distance k of the starting

node, where k is the number of completed iterations

foreach v ∈ C do5

foreach w in v’s neighbors with w.depth = ∞ do6

w.color := black;7

w.depth := (v.depth + 1) mod 3;8

until no node w with w.depth = ∞ is encountered ;9

Algorithm 2. Breadth-first assignment of distance labels for Algorithm 1

the breadth-first depth labeling process: at each phase all the currently labeled
nodes are visited, and any unlabeled neighbors of them are properly labeled. All
accessible nodes are properly depth labeled if and only if no neighbors of labeled
nodes are unlabeled.

If the graph G has n nodes and m edges accessible from the root, the depth
labeling process completes in O(n2) steps. Once all accessible nodes are depth
labeled, then the depth-first search process can visit every node in O(m) steps.

6 Variants of the Model

In the full paper, we show that the graph Turing machine model is robust against
minor changes, including:

– Expanding the store on the controller to O(log n) bits. This space is rep-
resented in unary across the nodes of the graph, combining the traversal
methods of Section 5 with the classic counter-based Turing machine simula-
tion of Minsky [14].

– Replacing the single head with k heads.
– Removing the controller’s ability to see adjacent nodes. Instead, the con-

troller feels its way through the graph “blindly,” staying put when it at-
tempts to move to a non-existent neighbor.

These are analogous to classic Turing machine results showing that small changes
in the definition do not affect what we can compute.

7 Trees

The question of whether the information-theoretic capacity of a general fam-
ily of graphs is necessarily achievable effectively seems to be tied up with the

Storage Capacity of Labeled Graphs 583

problem of graph isomorphism. For trees, the isomorphism problem is simpler
and can be solved in polynomial time [13]. Moreover, it is possible to place a
total order on classes of isomorphic trees, which can in turn be used to drive a
counter simulation that extracts the full storage capacity of the graph, albeit at
the expense of an exponential slowdown introduced by the embedded counter
machine simulation.

The canonization algorithm of [13] runs in LOGSPACE, so it is tempting
to use the LOGSPACE simulation of Section 6 to execute it directly. Unfor-
tunately, the algorithm assumes that the tree is presented on a read-only work
tape using unique identifiers for each node. We don’t have this in our model.
So instead we describe a new mechanism for comparing labeled trees that works
despite this restriction, while allowing us to compute the next labeling of a tree
in place. Isomorphism and increment can be shown to run in polynomial time.

We consider rooted trees. In the full paper, we show that this does not change
the asymptotic storage capacity of the tree.

7.1 Information-Theoretic Capacity of a Tree

Let T be a tree and let T1, T2, . . . , Td be the subtrees rooted at the children of
the root of T . Let fk map a tree to the number of inequivalent labelings over an
alphabet of size k ≥ 1. Then we have the recurrence

fk(T) = k
∏

i

(
ci + fk(Ui)− 1

fk(Ui)− 1

)
where U1, U2, . . . , U� are the non-isomorphic classes of the Tjs, and ci is the
multiplicity of Ui among the Tjs. Note that the base case is provided by the tree
with one node, whose root has no children.

7.2 Comparing Trees

We define an ordering on (isomorphism classes of) labeled rooted trees by in-
duction. Let T be a tree with root label � and immediate subtrees T1, . . . , Tc;
let T ′ be a tree with root label �′ and immediate subtrees T ′

1, . . . , T
′
d. If � < �′,

then T < T ′. If � > �′, then T > T ′. Otherwise, let C = {T1, . . . , Tc} and
D = {T ′

1, . . . , T
′
d} be multisets. If C = D, then T = T ′, where subtree equality

is defined inductively. If max(C −D) > max(D − C), then T > T ′. Otherwise,
max(D−C) > max(C−D), and T < T ′. It is straightforward to verify that this
relation ≤ on labeled rooted trees is reflexive, transitive, and antisymmetric up
to isomorphism.

In the full paper, we present an algorithm that computes this total ordering.
Here, we give only a brief overview of the algorithm. The algorithm assumes a
graph Turing machine with two heads, one on tree T and one on tree T ′. Each
node has a “removed” bit, which is initially unset. The main invariant is that
removing all subtrees whose removed bits are set does not affect the order.

The algorithm begins by comparing the root labels. Assuming that they are
equal, for each of the immediate subtrees Ti of T , we attempt to find a immediate

584 D. Angluin et al.

subtree of T ′ isomorphic to Ti. If there is such a subtree T ′
j, we set the removed bit

for both Ti and T ′
j; these subtrees offset one another and will not be considered

again. If no match can be made, then we set the removed bit for each T ′
j that

was determined to be less than Ti, as these subtrees cannot be the maximum
in the symmetric difference of the two multisets of subtrees. At the end, if all
immediate subtrees have been removed, then T = T ′. Otherwise, if all immediate
subtrees of T ′ have been removed, then T > T ′, else T < T ′.

7.3 Implementing Counters with Labeled Trees

In this section we simulate counter machines with operations of clear, increment,
and compare counters for equality, which can implement a standard Turing ma-
chine, albeit with exponential slowdown [14].

Given a tree T whose nodes can be labeled 0, . . . , k− 1, we represent counter
values 0, . . . , fk(T) − 1 by the labelings they index in the order defined above.
Zero corresponds to the all-zeros labeling, so clearing a register can be accom-
plished with one traversal. Two counters whose underlying unlabeled trees are
isomorphic can be compared using the isomorphism algorithm. The increment
operation requires a new algorithm.

We assume that each node of the tree has space to save its old label, and the
increment routine will save the previous counter value. To increment a subtree T
with overflow, first save the root label and then increment its immediate subtrees
(saving their respective values). If every subtree overflowed (i.e., is zero), then
increment the root label mod k and overflow if it becomes zero. Otherwise, use
the isomorphism checker to find and mark the minimum nonzero immediate
subtree M . Restore every tree other than M to its original value and then
zero those that are less than M . The call stack for this recursive algorithm
is represented using a state label at each node of the tree.

We prove the correctness of the increment algorithm by induction. Suppose
we are incrementing a labeled tree T with immediate subtrees T1 ≥ . . . ≥ Tc.
Let T ′ be the resulting tree. In case T1, . . . , Tc are already at their respective
maximums, it is straightforward to verify that T ′ is the successor of T . Otherwise,
let U be any relabeling of T such that U > T . We show that T < T ′ ≤ U and
thus that T ′ is the successor of T .

Let T ′
1 ≥ · · · ≥ T ′

c be the immediate subtrees of T ′ and let U1 ≥ · · · ≥ Uc be the
immediate subtrees of U . Note that, on account of the labelings, T ′

i (respectively
Ui) may not correspond to Ti. Given that some Ti is not maximum, then the
root labels of T and T ′ are identical, and the algorithm is able to find a minimum
incremented tree T ′

j, where we choose j to be as large as possible in case of ties.
We have Ti = T ′

i if i < j, and Tj < T ′
j (count the number of trees greater than

or equal to T ′
j). For all i > j, the tree T ′

i is zero. If the root label of U is not
equal to the root label of T then T ′ < U . Otherwise, let � be the least index for
which T� < U�. For all i < �, we have Ui = Ti. If � < j, then U > T ′. Otherwise,
U� has the same shape (disregarding labels) as some tree Ti < T ′

j . Since T ′
j was

the minimum increment, it follows that T ′
j ≤ U� and thus that T ′ ≤ U .

Storage Capacity of Labeled Graphs 585

8 Capacity of a Bounded-Degree Graph

For a bounded-degree graph, we can use the mechanism in [3] (which itself
derives much of its structure from the previous construction in [11]) with only a
few small modifications.

In a graph with degree bound Δ, it is possible to assign each node a label
in {1, . . . , Δ2 + 1} so that each node’s label is unique within a ball of radius 2.
This is a distance two labeling, and it gives each node the ability to identify
its neighbors uniquely. Angluin et al.. [3] construct a distance two labeling non-
deterministically, by having each node adopt a new label if it detects a second-
order neighbor with the same label. In our model, we can construct the labeling
deterministically, by iteratively assigning each node a label that does not conflict
with a second-order neighbor (it is easy to see that each time we do this, we
cannot create any new conflicts, so we converge after O(n) iterations to a correct
labeling).

Using such a labeling, it is straightforward to adapt the traversal routine to
build a spanning tree, which in turn can simulate a Turing machine tape to
provide Θ(n) bits of effective capacity.

9 Random Graphs

Suppose we consider random graphs G drawn from G(n, p), i.e., a graph on n
nodes where each edge uv appears with probability p.1 Suppose further that p
scales as Θ(n−c) for some fixed 0 < c < 1. Then it is possible to achieve an
effective capacity of Θ(n) with high probability2 from graphs in this class. Note
that graphs in this class are connected with high probability.

The basic idea is that if we can compute a total order on nodes, we can use
each node to hold one Turing machine cell, with left and right movements cor-
responding to moving down or up in the ordering. We compute this ordering
by assigning a signature to each node, based on random values stored in its
neighborhood. For simplicity, we assume that the Turing machine simulator can
generate random values. However, we suspect that a more sophisticated applica-
tion of the same basic approach could work using only the randomness inherent
in the graph.

Details are given in the full paper. The key step in the proof is to show that,
if every node in G(n, p) with p = n−c is labeled with a random bit, then the
probability that two nodes u and v have the same number of neighbors with 1 bits
is O(n(c−1)/2, which can be reduced below O(n−3) by repeating the construction
k = O(1) times. The resulting k = O(1) neighborhood counts then give a unique
signature for almost all nodes with high probability, which can be computed and
compared easily by a LOGSPACE controller.

1 See [7,12] for an overview of random graphs.
2 We use with high probability to mean that the probability that the event does

not occur is O(n−c) for any fixed c.

586 D. Angluin et al.

The full result is:

Theorem 2. A member of the family of random graphs G(n, p) where p =
Θ(n−c) for any fixed 0 < c < 1 has effective capacity Θ(n) with high proba-
bility.

10 Conclusion

We have defined a new class of graph-based Turing machines, motivated by
potential applications in self-organizing systems of finite-state automata. We
have shown that this class is robust under natural changes to the model, and that
its power is primarily characterized by the effective capacity of the underlying
graph, which is the amount of usable storage obtained by writing symbols from a
finite alphabet on its nodes. This is at least Ω(log n) bits of space for an arbitrary
n-node graph, and rises to Θ(n) bits for bounded-degree graphs and almost
all random graphs with polynomial edge probabilities. For trees, the effective
capacity ranges from Θ(log n) for trees with many symmetries (stars) to Θ(n)
for trees with few (binary trees, paths). In intermediate cases we have shown
that we can always get within a constant factor of the full information-theoretic
capacity corresponding to the number of non-isomorphic states, although the
time complexity of our algorithm could be significantly improved.

The main open problem remaining is whether it is possible to extract the
full information-theoretic capacity from an arbitrary graph. This seems closely
tied to the problem of computing graph isomorphism, which is not known to
be hard, even for LOGSPACE. The reason is that distinguishing two different
labelings of a graph appears to depend on being able to distinguish between non-
isomorphic subgraphs (since this gives a weak form of orientation to the graph).
However, the problem is not exactly the same, because we have the ability to
supplemental isomorphism testing by using some of our labels as signposts and
we do not need a perfect isomorphism tester as long as we can group subgraphs
into small equivalence classes. So it may be that extracting the full capacity of
an arbitrary graph is possible without solving graph isomorphism in general.

Acknowledgments

The authors would like to thank Yinghua Wu for many useful discussions during
the early stages of this work.

References

1. Albertson, M.O.: Distinguishing Cartesian powers of graphs. Electronic Journal of
Combinatorics 12, N17 (2005)

2. Albertson, M.O., Collins, K.L.: Symmetry breaking in graphs. Electronic Journal
of Combinatorics 3(1), R18 (1996)

Storage Capacity of Labeled Graphs 587

3. Angluin, D., Aspnes, J., Chan, M., Fischer, M.J., Jiang, H., Peralta, R.: Stably
computable properties of network graphs. In: Proc. 1st IEEE International Con-
ference on Distributed Computing in Sensor Systems: pp. 63–74 (2005)

4. Angluin, D., Aspnes, J., Diamadi, Z., Fischer, M.J., Peralta, R.: Urn automata.
Technical Report YALEU/DCS/TR-1280, Yale University Department of Com-
puter Science (November 2003)

5. Angluin, D., Aspnes, J., Diamadi, Z., Fischer, M.J., Peralta, R.: Computation in
networks of passively mobile finite-state sensors. Distributed Computing 18(4),
235–253 (2006)

6. Aspnes, J., Ruppert, E.: An introduction to population protocols. In: Garbinato,
B., Miranda, H., Rodrigues, L. (eds.) Middleware for Network Eccentric and Mobile
Applications, pp. 97–120. Springer, Heidelberg (2009)

7. Bollobás, B.: Random Graphs, 2nd edn. Cambridge University Press, Cambridge
(2001)

8. Dijkstra, E.W.: Self-stabilizing systems in spite of distributed control. Communi-
cations of the ACM 17(11), 643–644 (1974)

9. Guerraoui, R., Ruppert, E.: Even small birds are unique: Population protocols with
identifiers. Technical Report CSE-2007-04, Department of Computer Science and
Engineering, York University (2007)

10. Guerraoui, R., Ruppert, E.: Names trump malice: Tiny mobile agents can tolerate
byzantine failures. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikolet-
seas, S., Thomas, W. (eds.) ICALP 2009. LNCS, vol. 5556, pp. 484–495. Springer,
Heidelberg (2009)

11. Itkis, G., Levin, L.A.: Fast and lean self-stabilizing asynchronous protocols. In:
Proceedings 35th Annual Symposium on Foundations of Computer Science, pp.
226–239 (1994)

12. Janson, S., �Luczak, T., Ruciński, A.: Random Graphs. John Wiley & Sons, Chich-
ester (2000)

13. Lindell, S.: A logspace algorithm for tree canonization (extended abstract). In:
STOC, pp. 400–404. ACM, New York (1992)

14. Minsky, M.L.: Computation: Finite and infinite machines. Prentice-Hall series in
automatic computation. Prentice-Hall, Inc., Englewood Cliffs (1967)

15. Russell, A., Sundaram, R.: A note on the asymptotics and computational com-
plexity of graph distinguishability. Electronic Journal of Combinatorics 5(1), R23
(1998)

16. Schönhage, A.: Storage modification machines. SIAM J. Comput. 9(3), 490–508
(1980)

Safe Flocking in Spite of Actuator Faults

Taylor Johnson and Sayan Mitra

University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA

Abstract. The safe flocking problem requires a collection of N mobile agents
to (a) converge to and maintain an equi-spaced lattice formation, (b) arrive at a
destination, and (c) always maintain a minimum safe separation. Safe flocking
in Euclidean spaces is a well-studied and difficult coordination problem. Moti-
vated by real-world deployment of multi-agent systems, this paper studies one-
dimensional safe flocking, where agents are afflicted by actuator faults. An actu-
ator fault is a new type of failure that causes an affected agent to be stuck moving
with an arbitrary velocity. In this setting, first, a self-stabilizing solution for the
problem is presented. This relies on a failure detector for actuator faults. Next, it
is shown that certain actuator faults cannot be detected, while others may require
O(N) time for detection. Finally, a simple failure detector that achieves the latter
bound is presented. Several simulation results are presented for illustrating the
effects of failures on the progress towards flocking.

Keywords: failure detector, flocking, safety, stabilization, swarming.

1 Introduction

Safe flocking is a distributed coordination problem that requires a collection of mobile
agents situated in a Euclidean space to satisfy three properties, namely to: (a) form and
maintain an equi-spaced lattice structure or a flock, (b) reach a specified destination
or goal position, and (c) always maintain a minimum safe separation. The origins of
this problem can be traced to biological studies aimed at understanding the rules that
govern flocking in nature (see [13,11], for example). More recently, recognizing that
such understanding could aid the design of autonomous robotic platoons or swarms, the
problem as stated above and its variants have been studied in the robotics, control, and
multi-agent systems literature (see [7,5,12,8,14] and references therein). Typically, the
problem is studied for agents with synchronous communication, without failures, and
with double-integrator dynamics—that is, the distributed algorithm sets the acceleration
for each agent. To the best of our knowledge, even in this setting, safe-flocking is an
open problem, as existing algorithms require unbounded accelerations for guaranteeing
safety [12], which cannot be achieved in practice.

In this paper, we study one-dimensional safe-flocking within the realm of synchronous
communication, but with a different set of dynamics and failure assumptions. First, we
assume rectangular single-integrator dynamics. That is, at the beginning of each round,
the algorithm decides a target point ui for agent i based on messages received from i’s
neighbors, and agent i moves with bounded speed ẋi ∈ [vmin, vmax] in the direction
of ui for the duration of that round. This simplifies the dynamics and achieving safety

S. Dolev et al. (Eds.): SSS 2010, LNCS 6366, pp. 588–602, 2010.
© Springer-Verlag Berlin Heidelberg 2010

Safe Flocking in Spite of Actuator Faults 589

becomes relatively easy. Even in this setting however, it is nontrivial to develop and
prove that an algorithm provides collision avoidance, as illustrated by an error—a for-
gotten case for the special dynamics of the rightmost (N th) agent—that we found in
the inductive proof of safety in [7]. To fix the error, the algorithm from [7] requires the
modification presented later in this paper (Figure 3, Line 31). The model obtained with
rectangular dynamics overapproximates any behavior that can be obtained with double
integrator dynamics with bounded acceleration. Our algorithm combines the corrected
algorithm from [7] with Chandy-Lamport’s global snapshot algorithm [3]. The key idea
is that each agent periodically computes its target based on messages received from its
neighbors, then moves toward this target with some arbitrary but bounded velocity. The
targets are computed such that the agents preserve safe separation and eventually form
a weak flock, which remains invariant, and progress is ensured to a tighter strong flock.
Once a strong flock is attained, this property can be detected through the use of a dis-
tributed snapshot algorithm [3]. Once this is detected, the detecting agent moves toward
the destination, sacrificing the strong flock in favor of making progress toward the goal,
but still preserving the weak flock.

Unlike the algorithms in [7,5,8,12] that provide convergence to a flock, we require
the stronger termination. Our algorithm achieves termination through quantization: we
assume that there exists a constant β > 0 such that an agent i moves in a particular
round if and only if the computed target ui is more than β away from the current position
xi. We believe that such quantized control is appropriate for realistic actuators, and
useful for most power-constrained settings where it is undesirable for the agents to
move forever in order to achieve convergence. Quantization affects the type of flock
formation that we can achieve and also makes the proof of termination more interesting.

We allow agents to be affected by actuator faults. This physically corresponds to,
for example, an agent’s motors being stuck at an input voltage or a control surface be-
coming immobile. Actuator faults are permanent and cause the afflicted agents to move
forever with a bounded and constant velocity. Actuator faults are a new class of fail-
ures that we believe are going to be important in designing and analyzing a wide range
of distributed cyber-physical systems [9]. Unlike byzantine faults, behaviors resulting
from actuator faults are constrained by physical laws. Also, unlike crash failures which
typically thwart progress but not safety, actuator faults can also violate safety. A faulty
agent has to be detected (and possibly avoided) by the non-faulty agents. In this paper,
we assume that after an actuator fault, an agent continues to communicate and compute,
but its actuators continue to move with the arbitrary but constant velocity.

Some attention has been given to failure detection in flocking such as [6], which
works with a similar model of actuator faults. While [6] uses the therein developed
motion probes in failure detection scenarios, no bounds are stated on detection time.
Instead, convergence was ensured assuming that failure detection had occurred within
some bounded time, while our work states an O(N) detection time bound.

Our flocking algorithm determines only the direction in which an agent should move,
based on the positions of adjacent agents. The speed with which an agent moves is cho-
sen nondeterministically over a range, making the algorithm implementation indepen-
dent with respect to the lower-level motion controller. Thus, the intuition behind failure
detection is to observe that an agent has moved in the wrong direction. Under some

590 T. Johnson and S. Mitra

assumptions about the system parameters, a simple lower-bound is established, indicat-
ing that no detection algorithm can detect failures in less than O(N) rounds, where N
is the number of agents. A failure detector is presented that utilizes this idea in detecting
certain classes of failures in O(N) rounds. Unfortunately, certain failures lead to a vio-
lation of safety in fewer rounds, so a failure detector which detects failures faster than
O(N) rounds is necessary to ensure safety. However, some failures are undetectable,
such as an agent failing with zero velocity at the goal, and thus we establish that no such
failure detector exists. But, under a restricted class of actuator faults, it is shown that the
failure detector with O(N) detection time can be combined with the flocking algorithm
to guarantee the required safety and progress properties. This requires non-faulty agents
to be able to avoid faulty ones. In one dimension (such as on highways), this is possible
if there are multiple lanes.

In summary, the key contributions of the paper are the following:

(a) Formal introduction of the notion of actuator faults and stabilization in the face of
such faults.

(b) A solution to the one-dimensional safe flocking problem in the face of actuator
faults, quantization, and with bounded control. Our solution brings distributed
computing ideas (self-stabilization and failure detection) to a distributed control
problem.

2 System Model

This section presents a formal model of the distributed flocking algorithm modeled as
a discrete transition system, as well as formal specifications of the system properties to
be analyzed. For K ∈ N, [K] Δ= {1, . . . , K} and for a set S S⊥

Δ= S ∪ {⊥}. A discrete
transition system A is a tuple 〈X, Q, Q0, A,→〉, where (i) X is a set of variables with
associated types, (ii) Q is the set of states, which is the set of all possible valuations of
the variables in X , (iii) Q0 ⊆ Q is the set of start states, (iv) A is a set of transition
labels, and (v)→⊆ Q× A× Q is a set of discrete transitions. An execution fragment
of A is an (possibly infinite) alternating sequence of states and transition names, α =
x0, a1, x1, . . ., such that for each index k appearing in α, (xk, ak+1,xk+1) ∈→. An
execution is an execution fragment with x0 ∈ Q0.

A state x is reachable if there exists a finite execution that ends in x. A stable predi-
cate S ⊆ Q is a set of states closed under→. If a stable predicate S contains Q0, then
it is called an invariant predicate and the reachable states of A are contained in S. A
safety property specified by a predicate S ⊆ Q is satisfied by A if all of its reachable
states are contained in S. Self-stabilization is a property of non-masking fault tolerance
which guarantees that once new failures cease to occur, the system eventually returns
to a legal state [4]. In this paper, we model actuator faults by transitions with the spe-
cial label fail. Given G ⊆ Q, A self-stabilizes to G if (a) G is a stable predicate for A
along execution fragments without fail-transitions, and (b) from every reachable state
of A (including states reached via fail transitions), every fail-free execution fragment
eventually reaches G.

Safe Flocking in Spite of Actuator Faults 591

2.1 Model of Safe Flocking System

The distributed system consists of a set of N mobile agents physically positioned on
NL infinite, parallel lanes. The system can be thought of as a collection of cars in the
lanes on a highway. Refer to Figure 1 for clarity, and Figure 2 shows the system making
progress (reaching the origin as a flock), without indicating lanes, but note that agents 1
through 5 move to lane 2 around round 375 to avoid the failed agent 6. We assume syn-
chrony and the communication graph is complete, regardless of lanes1. That is, agents
have synchronized clocks, message delays are bounded, and computations are instan-
taneous. At each round, each agent exchanges messages bearing state information with
everyone, and note that this means agents in different lanes communicate. Agents then
update their software state and (nondeterministically) choose their velocities, which
they operate with until the beginning of the next round. Under these assumptions, it is
convenient to model the system as a collection of discrete transition systems that in-
teract through shared variables. Let ID Δ= [N] be the set of unique agent identifiers
and LD Δ= [NL] be the set of lane identifiers. The following positive constants are
used throughout the paper: (a) rs: minimum required inter-agent gap or safety distance
in the absence of failures, (b) rr: reduced safety distance in the presence of failures,
(c) rf : desired maximum inter-agent gap which defines a flock, (d) δ: flocking toler-
ance parameter—that is, the maximum deviation from rf agents may be spaced and
constitute a flock, (e) β: quantization parameter, used to prevent agents from moving if
the algorithm decides too small a movement so that eventually the algorithm terminates,
and (f) vmin, vmax: minimum and maximum velocities.

State Variables. The discrete transition system corresponding to Agenti has the fol-
lowing private variables with the type followed by initial value in parentheses: (a) gsf
(Boolean; false): indicates whether the stable predicate detected by the global snap-
shot is satisfied or not, (b) sr (Boolean; false): indicates whether the global snapshot
algorithm has been initiated, (c) failed (Boolean; false): indicates whether or not agent
i has failed, (d) vf (R; ⊥): velocity with which agent i has failed, and (e) L and R
(ID⊥): identifiers of the nearest left and right agents to agent i. The following shared
variables are controlled by agent i, but can also be read by others (type followed by
initial value in parentheses): (a) x and xo (R): current position and position from the
previous round of agent i, (b) u and uo (R; x and xo): target position and target posi-
tion from the previous round of agent i, (c) lane (LD ; 1): the lane currently occupied
by agent i, (d) Suspected (ID⊥; ∅): set of neighbors that agent i believes to have failed.
These variables are shared in the following sense: At the beginning of each round k,
their values are broadcast by Agenti and are used by other agents to update their states
in that round. The discrete transition system modeling the complete ensemble of agents
is called System. We refer to states of System with bold letters x, x′, etc., and Agenti’s
individual state components by x.xi, x.ui, etc.

Actuator Faults and Failure Detection. The failure of agent i’s actuators is modeled by
the occurrence of a transition labeled by faili. This transition is always enabled unless

1 This communication assumption is relaxed to nearby neighbors being able to communicate
synchronously in [9].

592 T. Johnson and S. Mitra

T(x)=8
Lane 2

4 6 7f f

0

H(x)=2
Lane 0

Lane 1

5 13

6 7vf4 vf7

vf1=0

≤rf+δ/2 ≤rf+δ/2 ≤rf+δ

≤rf+δ/2

Fig. 1. System at state x for N = 8, F̄ (x) =
{2, 3, 5, 6, 8}, F (x) = {1, 4, 7}. Failed actu-
ator velocities are labeled vf i and eventually
4 and 7 will diverge. Non-faulty agents have
avoided failed agents by changing lanes. Note
that L(x, 6) = 5. Also, if 4 ∈ Suspected 6,
then LS(x, 6) = L(6) = 5, else LS(x, 6)
= 4. Assuming S(x) = F (x), FlockW (x),
but ¬FlockS (x), since |x.x6 − x.x5 − rf | ≤ δ
(and not δ/2).

0 150 300 450 600 750 900
-100

-50

0

50

100

150

200

250

300

Rounds (k)

A
ge

nt
 P

os
it

io
ns

 (
x i)

x
1

x
2

x
3

x
4

x
5

x
6

Fig. 2. System progressing: eventually the
agents have formed a flock and the failed agent
6 with nonzero velocity has diverged

i has already failed, and as a result of its occurrence, the variable failed i is set to true.
An actuator fault causes the affected agent to move forever with a constant but arbitrary
failure velocity. At state x, F (x) and F̄ (x) denote the sets of faulty and non-faulty
agent identifiers, respectively.

Agents do not have any direct information regarding the failure of other agents’
actuators (i.e., agent i cannot read failed j). Agents rely on timely failure detection
to avoid violating safety or drifting away from the goal by following a faulty agent.
Failure detection at agent i is abstractly captured by the Suspectedi variable and a
transition labeled by suspecti. The suspecti(j) transition models a detection of failure
of some agent j by agent i. Failures are irreversible in our model, and thus so are failure
detector suspicions. For agent i, at any given state Suspectedi ⊆ ID is the set of agent
identifiers that agent i’s failure detector suspects as faulty. Agentj is said to be suspected
if some agent i suspects it, otherwise it is unsuspected. Which particular agent suspects
a faulty agent j is somewhat irrelevant. We assume the failure detectors of all agents
share information through some background gossip, and when one agent suspects agent
i, all other agents also suspect i in the same round2. Denote the sets of suspected and
unsuspected agents by S(x) and S̄(x), respectively.

The detection time is the minimum number of rounds within which every failure is
always suspected. In most parts of Section 3 we will assume that there exists a finite
detection time kd for any failure. In Section 3.3, we will discuss specific conditions

2 This assumption is relaxed to adjacent agents in [9].

Safe Flocking in Spite of Actuator Faults 593

under which kd is in fact finite and then give upper and lower bounds for it. The failure
detection strategy used by our flocking algorithm is encoded as the precondition of the
suspect transition. Note that the precondition assumes that i has access to some of j’s
shared variables, namely xj , xoj , uj and uoj . When the precondition of suspect(j) is
satisfied at Figure 3, j is added to Suspected i. This precondition checks that either j
moved when it should not have, or that j moved in the wrong direction, away from its
computed target. The rationale behind this condition will become clear as we discuss
the flocking algorithm.

1 faili(v), |v| ≤ vmax

pre ¬ failed
3 eff failed := true; vf := v

5 suspecti(j), j ∈ ID
pre j /∈ Suspected ∧ (if |xoj − uoj | ≥ β

7 then sgn (xj − xoj) �= sgn (uoj − xoj)
else |xj − uoj | �= 0)

9 eff Suspected := Suspected ∪ {j}

11 snapStarti
pre L = ⊥∧¬sr

13 eff sr := true // global snapshot invoked

15 snapEndi(GS), GS ∈ {f alse, true}
eff gsf := GS; // global snapshot returns

17 sr := false

updatei
20eff uo := u; xo := x

for each j ∈ ID, Suspected := Suspected ∪ Suspectedj

22Mitigate:
if ¬ failed ∧ (∃ s ∈ Suspected : lanes = lane)

24∧ (∃ L ∈ LD : ∀ j ∈ ID, (lanej = L ⇒
xj /∈ [x − rs − 2vmax, x + rs + 2vmax]))

26then lane := L fi
Target:

28if L = ⊥∧ gsf then u := x − min{x, δ/2};
gsf := f alse

30elseif L = ⊥ then u := x
elseif R = ⊥ then u := (xL + x + rf)/2

32else u := (xL + xR)/2 fi
Quant : if |u − x| < β then u := x fi

34Move: if failed then x := x + vf
else x := x + sgn (x − u) choose [vmin, vmax] fi

Fig. 3. Agenti’s transitions: failure detection, global snapshots, and target updates

Neighbors. At state x, let L(x, i) (and symmetrically R(x, i)) be the nearest non-failed
agent left (resp. right) of Agenti, with ties broken arbitrarily. If no such agent exists,
then L(x, i) and R(x, i) are defined as ⊥. Let LS(x, i) (and symmetrically RS(x, i))
be the nearest unsuspected agent left (resp. right) of Agenti at state x, or ⊥ if no such
agents exist. An unsuspected Agenti with both unsuspected left and right neighbors is a
middle agent. An unsuspected Agenti without an unsuspected left neighbor is the head
agent, and is denoted by the singleton H(x). If Agenti is unsuspected, is not the head,
and does not have an unsuspected right neighbor, it is the tail agent and is denoted by
the singleton T (x).

Flocking Algorithm. The distributed flocking algorithm executed at Agenti uses two
separate processes (threads): (a) a process for taking distributed global snapshots, and
(b) a process for updating the target position for Agenti.

The snapStart and snapEnd transitions model the periodic initialization and termina-
tion of a distributed global snapshot protocol—such as Chandy and Lamport’s snapshot
algorithm [3]—by the head agent. This global snapshot is used for detecting a stable
global predicate, which in turn influences the target computation for the head agent.
Although we have not modeled this explicitly, we assume that the snapStarti transi-
tion is performed periodically by the head agent when the precondition is enabled. If
the global predicate holds, then snapEnd(true) occurs, otherwise snapEnd(f alse) oc-
curs. Chandy-Lamport’s algorithm can be applied since (a) we are detecting a stable

594 T. Johnson and S. Mitra

predicate, (b) the communications graph is complete, and (c) the stable predicate being
detected is reachable. Thus, we assume that in any infinite execution, a snapEndi tran-
sition occurs within O(N) rounds from the occurrence of the corresponding snapStarti
transition.

The update transition models the evolution of all (faulty and non-faulty) agents over
a synchronous round. It is composed of four subroutines: Mitigate , Target , Quant , and
Move , which are executed in this sequence for updating the state of System. The entire
update is instantaneous and atomic; the subroutines are used for clarity of presentation.

To be clear, for x
update→ x′, x′ is obtained by applying each of these subroutines. We

refer to the intermediate states after Mitigate , Target , Quant , and Move as xM , xT ,
xQ, and xV , respectively. That is, xM

Δ= Mitigate(x), xT
Δ= Target(xM), etc., and

note x′ = xV = Move(xQ).
Mitigate is executed by non-faulty agents and may cause them to change lanes, thus

restoring safety and progress properties that may be reduced or violated by failures.
Target determines a new target to move toward. There are three different rules for tar-
get computations based on an agent’s belief of whether it is a head, middle, or tail agent.
For a state x, each middle agent i attempts to maintain the average of the positions of
its nearest unsuspected left and right neighbors (Figure 3, Line 32). Assuming that the
goal is to the left of the tail agent, the tail agent attempts to maintain rf distance from
its nearest unsuspected left neighbor (Figure 3, Line 31). The head agent periodically
invokes a global snapshot and attempts to detect a certain stable global predicate FlockS
(defined below). If this predicate is detected, then the head agent moves towards the goal
(Figure 3, Line 29), otherwise it does not change its target u from its current position
x. As mentioned before, targets are still computed for faulty agents, but their actuators
ignore these new values. Quant is the quantization step which prevents targets ui com-
puted in the Target subroutine from being applied to real positions xi, if the difference
between the two is smaller than the quantization parameter β. It is worth emphasizing
that quantization is a key requirement for any realistic algorithm that actuates the agents
to move with bounded velocities. Without quantization, if the computed target is very
close to the current position of the agent, then the agent may have to move with arbi-
trarily small velocity over that round. Finally, Move moves agent positions xi toward
the quantized targets. Note that Move abstractly captures the physical evolution of the
system over a round; that is, it is the time-abstract transition corresponding to physical
evolution over an interval of time.

2.2 Key Predicates

We now define a set of predicates on the state space of System that capture the key prop-
erties of safe flocking. These will be used for proving that the algorithm described above
solves safe flocking in the presence of actuator faults. We start with safety. A state x of
System satisfies Safety if the distance between every pair of agents on the same lane
is at least the safety distance rs. Formally, Safety(x) Δ= ∀i, j ∈ ID , i �= j,x.lanei =
x.lanej =⇒ |x.xi − x.xj | ≥ rs. When failures occur, a reduced inter-agent gap
of rr will be guaranteed. We call this weaker property reduced safety: SafetyR(x)
Δ= ∀i ∈ F̄ (x), ∀j ∈ ID, i �= j,x.lanei = x.lanej =⇒ |x.xi − x.xj | ≥ rr .

Safe Flocking in Spite of Actuator Faults 595

An ε-flock is where each non-faulty agent with an unsuspected left neighbor (not nec-
essarily in the same lane) is within rf ± ε from that neighbor. Formally, Flock(x, ε) Δ=
∀i ∈ S̄(x), LS(x, i) �= ⊥,

∣∣x.xi − x.xLS(x,i) − rf

∣∣ ≤ ε. In this paper, we will use the
Flock predicate with two specific values of ε, namely δ (the flocking tolerance parame-
ter) and δ

2 . The weak flock and the strong flock predicates are defined as FlockW (x) Δ=
Flock(x, δ), and FlockS (x) Δ= Flock(x, δ

2), respectively.
Related to quantization, we have the no big moves (NBM) predicate, where none of

the agents (except possibly the head agent) have any valid moves, because their com-
puted targets are less than β (quantization constant) away from their current positions.
NBM (x) Δ= ∀i ∈ F̄ (x), LS(x, i) �= ⊥, |xT .ui − x.xi| ≤ β, where xT is the state
following the application of Target subroutine to x. The Goal predicate is satisfied at
states where the head agent is within β distance of the goal (assumed to be the ori-
gin without loss of generality), that is, Goal(x) Δ= x.xH(x) ∈ [0, β). Finally, a state
satisfies the Terminal predicate if it satisfies both Goal and NBM .

3 Analysis

The main result of the paper (Theorem 1) is that the algorithm in Figure 3 achieves
safe flocking in spite of failures provided: (a) there exists a failure detector that detects
actuator faults sufficiently fast, and (b) each non-faulty agent has enough room to jump
to some lane to safely avoid faulty agents and eventually make progress. For the first part
of our analysis, we will simply assume that any failure is detected within kd rounds. In
Section 3.3, we shall examine conditions under which kd is finite and state its lower and
upper bounds. Assumption (b) is trivially satisfied if the number of lanes is greater than
the total number of failures; but it is also satisfied with fewer lanes, provided the failures
are sufficiently apart in space. There are two space requirements for Assumption (b):
the first ensures safety and the second ensure progress by preventing “walls” of faulty
agents from existing forever and ensuring that infinitely often all non-faulty agents may
make progress.

Theorem 1. Suppose there exists a failure detector which suspects any actuator fault
within kd rounds. Suppose further that vmax ≤ (rs − rr)/(2kd). Let α = x0, . . ., xp,
xp+1 be an execution where xp is the state after the last fail transition. Let αff = xp+1,
. . ., be the fail-free suffix of α. Let f be the number of actuator faults. Suppose either
(a) NL > f , or (b) NL ≤ f and along αff , ∀x ∈ αff , ∃L ∈ LD such that ∀i ∈ F̄ (x),
∀j ∈ F (x), x.lanej �= L and |x.xi − x.xj | > rs + 2vmaxkd, and also that infinitely
often, ∀m, n ∈ F (x), m �= n, |x.xm − x.xn| > rs + 2vmax. Then, (a) Every state
in α satisfies the reduced safety property, SafetyR , and (b) Eventually Terminal and
FlockS are satisfied.

In what follows, we state and informally discuss a sequence of lemmas that culminate in
Theorem 1. Under the assumptions and analysis of this section, the following relation-
ships are satisfied: NBM ⊂ FlockS ⊂ FlockW ⊂ Safety ⊂ SafetyR. Detailed proofs
of the lemmas appear in the technical report [10]. We begin with some assumptions.

596 T. Johnson and S. Mitra

Assumptions. Except where noted in Section 3.3, the remainder of the paper utilizes the
assumptions of Theorem 1. Additionally, these assumptions are required throughout the
paper: (a) NL ≥ 2: there are at least 2 lanes, (b) rr < rs < rf : the reduced safety gap
rr required under failures is strictly less than the safety gap rs in the absence of failures,
which in turn is strictly less than the flocking distance, (c) 0 < vmin ≤ vmax ≤ β ≤
δ/(4N), and (d) the communication graph of the non-faulty agents is always fully con-
nected, so the graph of non-faulty agents cannot partition. Assumption (c) bounds the
minimum and maximum velocities, although they may be equal. It then upper bounds
the maximum velocity to be less than or equal to the quantization parameter β. This is
necessary to prevent a violation of safety due to overshooting computed targets. Finally,
β is upper bounded such that NBM ⊆ FlockS . Intuitively, the bound on β is to ensure
that errors from flocking due to quantization do not accumulate along the flock from
the head to the tail. This is used to show that eventually FlockS is satisfied by showing
eventually NBM is reached.

3.1 Safety

First, we establish that System satisfies the safety part of the safe flocking problem.
The following lemma states that in each round, each agent moves by at most vmax, and
follows immediately from the specification of System.

Lemma 1. For any two states x,x′ of System, if x a→ x′ for some transition a, then
for each agent i ∈ ID, |x′.xi − x.xi| ≤ vmax.

The next lemma establishes that, upon changes in which other agents an agent i uses to
compute its target position, safety is not violated.

Lemma 2. For any execution α, for states x,x′ ∈ α such that x a→ x′ for any a ∈ A,
∀i, j ∈ ID, if LS(x, i) �= j and RS(x, j) �= i and LS(x′, i) = j and RS(x′, j) = i
and x.xRS(x,j) − x.xLS(x,i) ≥ c, then x′.xRS(x′,j) − x′.xLS(x′,i) ≥ c, for any c > 0.

Invariant 1 shows the spacing between any two non-faulty agents in any lane is always at
least rr, and the spacing between any non-faulty agent and any other agent in the same
lane is at least rr. There is no result on the spacing between any two faulty agents—they
may collide. The proof is by induction.

Invariant 1. For any reachable state x, SafetyR(x).

3.2 Progress

The progress analysis works with fail-free executions, that is, there are no further faili
transitions. Note that this does not mean F (x) = ∅, only that along such executions
|F (x)| does not change. This is a standard assumption used to show convergence from
an arbitrary state back to a stable set [1], albeit we note that we are dealing with perma-
nent faults instead of transient ones. In this case, the stable set eventually reached are
states where Terminal is satisfied. However, note that the first state in such an execu-
tion is not entirely arbitrary, as Section 3.1 established that such states satisfy at least
SafetyR , and all the following analysis relies on this assumption.

Safe Flocking in Spite of Actuator Faults 597

First observe that, like safety, progress may be violated by failures. Any failed agent
with nonzero velocity diverges by the definition of velocities in Figure 3, Line 34. This
observation also highlights why Flock is quantified over agents with identifiers in the
set of suspected agents S̄(x) and not the set of failed agents F̄ (x) or all agents ID—if
it were quantified over ID, at no future point could Flock(x) be attained if a failed
agent has diverged. Zero velocity failures may also cause progress to be violated, where
a “wall” of non-moving failed agents may be created, but such situations are excluded
by the second part of Assumption (b) in Theorem 1.

Progress along Fail-Free Executions. In the remainder of this section, we show that
once new actuator faults cease occurring, System eventually reaches a state satisfying
Terminal . This is a convergence proof and we will use a Lyapunov-like function to
prove this property. The remainder of this section applies to any infinite fail-free execu-
tion fragment, so fix such a fragment αff .

These descriptions of error dynamics are used in the analysis:

e(x, i) Δ=

{
|x.xi − x.xx.Li − rf | if i is a middle or a tail agent,

0 otherwise,

eu(x, i) Δ=

{
|x.ui − x.ux.Li − rf | if i is a middle or a tail agent,

0 otherwise.

Here e(x, i) gives the error with respect to rf of Agenti and its non-suspected left
neighbor and eu(x, i), with respect to target positions x.ui rather than physical posi-
tions x.xi.

Now, we make the simple observation from Line 35 of Figure 3 that if a non-faulty
agent i moves in some round, then it moves by at least a positive amount vmin. Observe
that an agent may not move in a round if the conditional in Figure 3, Line 33 is satisfied,
but this does not imply vmin = 0. Then, Lemma 3 states that from any reachable state
x which does not satisfy NBM , the maximum error over all non-faulty agents in non-
increasing. This is shown by first noting that only the update transition can cause any
change of e(x, i) or eu(x, i), and then analyzing the change in value of eu(x, i) for
each of the computations of ui in the Target subroutine of the update transition. Then
it is shown that applying the Quant subroutine cannot cause any eu(x, i) to increase,
and finally computing xi in the Move subroutine does not increase any e(x, i).

Lemma 3. For reachable states x,x′, if x a→ x′ and x /∈ NBM , for some a ∈ A, then
max

i∈F̄ (x)
e(x′, i) ≤ max

i∈F̄ (x)
e(x, i).

Next, Lemma 4 shows sets of states satisfying NBM are invariant, a state satisfying
NBM is reached, and gives a bound on the number of rounds required to reach such
a state. Define the candidate Lyapunov function as V (x) Δ=

∑
i∈F̄ (x) e(x, i). Define

the maximum value the candidate Lyapunov function obtained over any state x ∈ αff

satisfying NBM as γ
Δ= sup

x∈NBM
V (x).

Lemma 4. Let xk be the first state of αff , and let the head agent’s position be fixed.
If V (xk) > γ, then the update transition decreases V (xk) by at least a positive

598 T. Johnson and S. Mitra

constant ψ. Furthermore, there exists a finite round c such that V (xc) ≤ γ, where
xc ∈ NBM (x) and k < c ≤ �(V (xk)− γ)/ψ�, where ψ = vmin.

Lemma 4 stated a bound on the time it takes for System to reach the set of states
satisfying NBM . However, to satisfy FlockS (x), all x ∈ NBM must be inside the set
of states that satisfy FlockS , and the following lemma states this. From any state x that
does not satisfy FlockS (x), there exists an agent that computes a control that will satisfy
the quantization constraint and hence make a move towards NBM . This follows from
the assumption that β ≤ δ/(4N).

Lemma 5. If FlockS (x), then V (x) ≤
∑

i∈F̄ (x) e(x, i) = (δ
∣∣F̄ (x)

∣∣)/4.

Now we observe that FlockW is a stable predicate, that is, that once a weak flock is
formed, it remains invariant. This result follows from analyzing the Target subroutine
which computes the new targets for the agents in each round. Note that the head agent
moves by a fixed distance δ

2 , only when FlockS holds, which guarantees that FlockW is
maintained even though FlockS may be violated. This establishes that for any reachable
state x′, if V (x′) > V (x), then V (x′) < (δ

∣∣F̄ (x)
∣∣)/2.

Lemma 6. FlockW is a stable predicate.

The following corollary follows from Lemma 4, as FlockS (x) is violated after becom-
ing satisfied only if the head agent moves, in which case x′.xH(x′) < x.xH(x), which
causes V (x′) ≥ V (x).

Corollary 1. For x ∈ αff such that, if FlockS (x), x a→ x′ ∀a ∈ A, and x.xH(x) =
x′.xH(x′), then FlockS (x′).

The following lemma—with Assumption (b) of Theorem 1 that gives eventually a state
is reached such that non-faulty agents may pass faulty agents—is sufficient to prove
that Terminal is eventually satisfied in spite of failures. After this number of rounds, no
agent j ∈ F̄ (x) believes any i ∈ F (x) is its left or right neighbor, and thereby any failed
agents diverge safely along their individual lanes if |x.vi| > 0 by the observation that
failed agents with nonzero velocity diverge. Particularly, after some agent j has been
suspected by all non-faulty agents, the Mitigate subroutine of the update transition
shows that the non-faulty agents will move to a different lane at the next round. This
shows that mitigation takes at most one additional round after detection, since we have
assumed in Theorem 1 that there is always free space on some lane. This implies that
so long as a failed agent is detected prior to safety being violated, only one additional
round is required to mitigate, so the time of mitigation is a constant factor added to the
time to suspect, resulting in the constant c being linear in the number of agents.

Lemma 7. For any fail-free execution fragment αff , if x.failed i at some state x ∈ αff ,
then for a state x′ ∈ αff at least c rounds from x, ∀j ∈ ID .x′.Lj �= i ∧ x′.Rj �= i.

The next theorem shows that System eventually reaches the goal as a strong flock, that
is, there is a finite round t such that Terminal(xt) and FlockS(xt) and shows that
System is self-stabilizing when combined with a failure detector.

Theorem 2. Let αff be written x0, x1, Consider the infinite sequence of pairs〈
x0.xH(x0), V (x0)

〉
,

〈
x1.xH(x1), V (x1)

〉
, . . .,

〈
xt.xH(xt), V (xt)

〉
, Then, there

Safe Flocking in Spite of Actuator Faults 599

exists t at most

⌈
(V (x0)−|F̄ (x)|δ/4)

vmin

⌉
+

⌈
|F̄ (x)|δ/4

vmin

⌉
max{1,

x0.xH(x0)

vmin
O(N)} rounds

from x0 in αff , such that: (a) xt.xH(xt) = xt+1.xH(xt+1), (b) V (xt) = V (xt+1),
(c) xt.xH(xt) ∈ [0, β], (d) V (xt) ≤

∣∣F̄ (x)
∣∣ δ

4 , (e) Terminal(xt), and (f) FlockS (xt).

3.3 Failure Detection

In the earlier analysis we assumed that it is possible to detect all actuator faults within
finite number of rounds kd. Unfortunately this is not true, as there exist failures which
cannot be detected at all. A trivial example of such an undetectable failures is the failure
of a node with 0 velocity at a terminal state, that is, a state at which all the agents are at
the goal in a flock and therefore are static. While such failures were undetectable in any
number of rounds, these failures do not violate Safety or Terminal . It turns out that
only failures which cause a violation of safety or progress may be detected.

Lower-Bound on Detection Time. While the occurrence of faili(v) may never be de-
tected in some cases as just illustrated, we show a lower-bound on the detection time
for all faili(v) transitions that can be detected. The following lower-bound applies for
executions beginning from states that do not a priori satisfy Terminal. It says that a
failed agent mimicked the actions of its correct non-faulty behavior in such a way that
despite the failure, System still progressed to NBM as was intended. From an arbitrary
state, it takes O(N) rounds to converge to a state satisfying NBM by Lemma 4.

Lemma 8. The detection time lower-bound for any detectable actuator fault is O(N).

Next we show that the the failure detection mechanism incorporated in Figure 3 does
not produce any false positives.

Lemma 9. In any reachable state x, ∀j ∈ x.Suspected i ⇒ x.failed j .

The next lemma shows a partial completeness property [2] of the failure detection mech-
anism incorporated in Figure 3.

Lemma 10. Suppose that x is a state in the fail-free execution fragment αff such that ∃
j ∈ F (x), ∃ i∈ ID, and j is not suspected by i. Suppose that either (a) |x.xoj − x.uoj |
≤ β and |x.xj − x.uoj | �= 0, or (b) |x.xoj − x.uoj | > β and sgn (x.xj − x.xoj) �=
sgn (x.uoj − x.xoj). Then, x

suspecti(j)→ x′.

Now we show an upper-bound on the number of rounds to detect any failure which may
be detected using the failure detection mechanism incorporated in Figure 3 by applying
Lemma 8 with Lemmata 9 and 10, and that agents share suspected sets in Figure 3,
Line 21. This states an O(N) upper-bound on the detection time of our failure detector
and shows that eventually all non-faulty agents know the set of failed agents.

Corollary 2. For any state xk ∈ αff such that xk /∈ Terminal, there exists a round
xs in αff such that ∀i ∈ F̄ (xs), xs.Suspected i = F (x) and k − s is O(N).

600 T. Johnson and S. Mitra

3.4 Simulations

Simulation studies were performed, where flocking convergence time (as by Lemma 4),
goal convergence time (as by Theorem 2), and failure detection time (as by Corollary 2)
were of interest. Unless otherwise noted, the parameters are chosen as N = 6, NL = 2,
rs = 20, rf = 40, δ = 10, β = δ/(4N), vmin = β

2 , vmax = β, the head agent
starts with position at rf , and the goal is chosen as the origin. Figure 4 shows the
value of the Lyapunov function V and maximum agent error from flocking, emax. The
initial state is that each agent is spaced by rs from its left neighbor. Observe that while
moving towards the goal, FlockS is repeatedly satisfied and violated, with invariance of
FlockW .

Figure 5 shows that for a fixed value of vmin, the time to convergence to NBM
is linear in the number of agents. This choice of fixed vmin must be for the largest
number of agents, 12 in this case, as vmin is upper bounded by β = δ

4N which is a
function of N . As vmin is varied the inverse relationship with N is observed, resulting
in a roughly quadratic growth of convergence time to NBM . This illustrates linear
convergence time as well as linear detection time, as this is bounded by the convergence
time from Corollary 2. The initial state was for expansion, so each agent was spaced at
rs from its left neighbor.

In all single-failure simulations, a trend was observed on the detection time. When
failing each agent individually, and with all else held constant (initial conditions, round
of failure, etc.), only one of the detection times for failure velocities of −vmax, 0, or
vmax is ever larger than one round. The frequent occurrence of a single round detection
is interesting. For instance, in the expansion case, each failed agent i except the tail are
detected in one round when vfi �= 0 since a violation of safety occurs. However, detect-
ing that the head agent has failed with zero velocity requires convergence of the system
to a strong flock prior to detection, as does detecting that the tail agent failed with vmax,
as this mimics the desired expansive behavior up to the point where the tail moves be-
yond the flock. In the contraction case, each failed agent i except the tail is detected
in one round when vfi �= 0, since they are at the center of their neighbors positions,
while the tail agent failing with −vmax takes many rounds to detect, since it should be

0 50 100 150 200 250 300 350 400
0

20

40

60

80

100

Rounds (k)

E
rr

or
 V

al
ue

s

e
max

V
Nδδδδ/4
Nδδδδ/2

Fig. 4. Expansion simulation
showing max error emax, Lya-
punov function value V , with
weak and strong flocking con-
stants

2 3 4 5 6 7 8 9 10 11
0

200

400

600

800

1000

1200

1400

1600

1800

N

R
ou

nd
s

(k
)

k vary
k

u
 vary

1e3v
min

k
u
 fix

k fix

Fig. 5. Rounds k (upper
bounded by ku) to reach
Terminal versus number
of agents N with fixed and
varying vmin

2 3 4 5 6 7 8 9
100

300

500

700

900

N

D
et

ec
ti

on
 T

im
e

(k
)

f=1
f=2
f
Avg

=2

f=3
f
Avg

=3

f=4
f
Avg

=4

Fig. 6. Multiple failure simula-
tion with f zero velocity fail-
ures at round 0 from initial state
of 2rf inter-agent spacing

Safe Flocking in Spite of Actuator Faults 601

moving towards its left neighbor to cause the contraction. Thus the observation is, for a
reachable state x, if |F (x)| = 1, let the identifier of the failed agent be i, and consider
the three possibilities of x.vfi = 0, x.vfi ∈ (0, vmax], and x.vfi ∈ [−vmax, 0). Then
along a fail-free execution fragment starting from x, for one of these choices of vfi,
the detection time is greater than 1, and for the other two, the detection time is 1. This
illustrates there is only one potentially “bad” mimicking action which allows mainte-
nance of both safety and progress and takes more than one round to detect. The other
two failure velocity conditions violate either progress or safety immediately and lead to
an immediate detection.

Finally, Figure 6 shows the detection time with varying N and f from a fixed initial
condition of inter-agent spacings at 2rf . The fAvg = i lines show the total detection
time divided by f . Failures were fixed with vfi = 0, failing each combination of agents,
so for f = 2 and N = 3, each combination of {1, 2}, {1, 3}, {2, 3} were failed indi-
vidually, and the detection time is the average over the number of these combinations
for each choice of f and N . The detection time averaged over the number of failure
indicates that the detection time to detect any failure in a multiple failure scenario is on
the same order as that in the single failure case. However, the detection time not aver-
aged over the number of failures indicates that the detection time to detect all failures
increases linearly in f and on the order of N , as predicated by Corollary 2.

4 Conclusion

This paper presented an algorithm for the safe flocking problem—where the desired
properties are safety invariance and eventual progress, that eventually a strong flock is
formed and a destination reached by that flock—in spite of permanent actuator faults.
An O(N) lower-bound was presented for the detection time of actuator faults, as well as
conditions under which the given failure detector can match this bound, although it was
established that this is not always possible. The main result was that the algorithm is
self-stabilizing when combined with a failure detector. Without the failure detector, the
system would not be able to maintain safety as agents could collide, nor make progress
to states satisfying flocking or the destination, since failed agents may diverge, causing
their neighbors to follow and diverge as well. Simulation results served to reiterate the
formal analysis, and demonstrated the influence of certain factors—such as multiple
failures—on the failure detection time.

References

1. Arora, A., Gouda, M.: Closure and convergence: A foundation of fault-tolerant computing.
IEEE Trans. Softw. Eng. 19, 1015–1027 (1993)

2. Chandra, T.D., Toueg, S.: Unreliable failure detectors for reliable distributed systems. J.
ACM 43(2), 225–267 (1996)

3. Chandy, K.M., Lamport, L.: Distributed snapshots: determining global states of distributed
systems. ACM Trans. Comput. Syst. 3(1), 63–75 (1985)

4. Dolev, S.: Self-stabilization. MIT Press, Cambridge (2000)
5. Fax, J., Murray, R.: Information flow and cooperative control of vehicle formations. IEEE

Trans. Autom. Control 49(9), 1465–1476 (2004)

602 T. Johnson and S. Mitra

6. Franceschelli, M., Egerstedt, M., Giua, A.: Motion probes for fault detection and recovery in
networked control systems. In: American Control Conference 2008, pp. 4358–4363 (2008)

7. Gazi, V., Passino, K.M.: Stability of a one-dimensional discrete-time asynchronous swarm.
IEEE Trans. Syst., Man, Cybern. B 35(4), 834–841 (2005)

8. Jadbabaie, A., Lin, J., Morse, A.: Coordination of groups of mobile autonomous agents using
nearest neighbor rules. IEEE Trans. Autom. Control 48(6), 988–1001 (2003)

9. Johnson, T.: Fault-Tolerant Distributed Cyber-Physical Systems: Two Case Studies. Master’s
thesis, Department of Electrical and Computer Engineering, University of Illinois at Urbana-
Champaign, Urbana, IL 61801 (May 2010)

10. Johnson, T., Mitra, S.: Safe and stabilizing distributed flocking in spite of actuator
faults. Tech. Rep. UILU-ENG-10-2204 (CRHC-10-02), University of Illinois at Urbana-
Champaign, Urbana, IL (May 2010)

11. Okubo, A.: Dynamical aspects of animal grouping: Swarms, schools, flocks, and herds. Adv.
Biophys. 22, 1–94 (1986)

12. Olfati-Saber, R.: Flocking for multi-agent dynamic systems: algorithms and theory. IEEE
Trans. Autom. Control 51(3), 401–420 (2006)

13. Shaw, E.: Fish in schools. Natural History 84(8), 40–45 (1975)
14. Tsitsiklis, J., Bertsekas, D., Athans, M.: Distributed asynchronous deterministic and stochas-

tic gradient optimization algorithms. IEEE Trans. Autom. Control 31(9), 803–812 (1986)

Author Index

Abujarad, Fuad 206
Acharya, H.B. 285
Agarwal, Anurag 191
Amann, Johanna 519
Anceaume, Emmanuelle 489
Angluin, Dana 573
Arantes, Luciana 504
Arumugam, Mahesh 176
Aspnes, James 573
Attiya, Hagit 405
Aydin, Hakan 236

Bar-Noy, Amotz 282
Bar-Yam, Yaneer 560
Basu, Ananda 4
Bazzi, Rida A. 573
Bein, Doina 126
Ben-Or, Michael 19
Bernard, Samuel 531
Blair, Jean 111
Blin, Lélia 50
Bonakdarpour, Borzoo 4
Bozga, Marius 4
Busson, Anthony 288

Chatzigiannakis, Ioannis 221, 252
Chen, Jiang 573
Cobb, Jorge A. 141
Cournier, Alain 546

Datta, Ajoy K. 35
Delporte-Gallet, Carole 435
Demirbas, Murat 176
Devismes, Stéphane 435
Dhama, Abhishek 80
Dolev, Danny 19
Dubois, Swan 96, 546

Eisenstat, David 573

Fauconnier, Hugues 435
Felber, Pascal 388
Fetzer, Christof 388
Fuhrmann, Thomas 519

Gafni, Eli 362
Garg, Vijay K. 191
Giurgiu, Andrei 332
Gordon, S. Dov 144
Gouda, Mohamed 285
Gradinariu Potop-Butucaru, Maria 50,

319, 504, 531
Gramoli, Vincent 405
Guerraoui, Rachid 332

Harmon, Dion 560
Hoch, Ezra N. 19
Houri, Yaser 519
Huguenin, Kévin 332

Imbs, Damien 377
Israeli, Amos 303
Izumi, Taisuke 319

Jiang, Bo 420
Johnson, Matthew P. 282
Johnson, Taylor 588

Katz, Jonathan 144
Kermarrec, Anne-Marie 332
Kim, Changsoo 420
Kim, Junwhan 347
Köhler, Sven 65
Konjevod, Goran 573
Kranakis, Evangelos 267
Kulkarni, Sandeep S. 176, 206
Kumaresan, Ranjit 144

Lamani, Anissa 546
Larmore, Lawrence L. 35
Leone, Pierre 468
Levin, Leonid A. 1
Lu, Ji 452

Manne, Fredrik 111
Masuzawa, Toshimitsu 96, 126
McCubbins, Mathew D. 303
Michail, Othon 221, 252
Mihai, Rodica 111
Milani, Alessia 405

604 Author Index

Misra, Vedant 560
Mitra, Sayan 588

Ogale, Vinit 191

Papatriantafilou, Marina 468
Paquette, Michel 267
Paturi, Ramamohan 303
Petit, Franck 546
Piniganti, Hema 35
Pomportes, Stéphane 288

Rajsbaum, Sergio 362
Ravindran, Binoy 347, 420
Raynal, Michel 377
Ribeiro, Heverson B. 489
Riegel, Torvald 388
Rovedakis, Stephane 50

Safavi-Naini, Reihaneh 159
Schiller, Elad M. 468
Sens, Pierre 504
Sifakis, Joseph 4
Simon, Robert 236
Spirakis, Paul G. 221, 252
Srivastava, Mani 282

Theel, Oliver 80
Tixeuil, Sébastien 50, 96, 319, 531
Tomasik, Joanna 288
Turau, Volker 65

Valero, Mathieu 504
Vattani, Andrea 303
Vèque, Véronique 288
Villain, Vincent 546
Vu, Tuan Manh 159

Wamhoff, Jons-Tobias 388
Williamson, Carey 159

Yamauchi, Yukiko 126
Yannakakis, Mihalis 2
Yemini, Yechiam 3
Yerukhimovich, Arkady 144

Zhang, Bo 236
Zhang, Yaoxue 452
Zhou, Yuezhi 452
Zhu, Gongxi 468

	Cover
	Title
	Preface
	Organization
	Table of Contents
	Invited Talks Abstracts
	Arcane Information, Solving Relations, and Church Censorship
	Computation of Equilibria and Stable Solutions
	A Geometry of Networks

	Contributed Papers
	Systematic Correct Construction of Self-stabilizing Systems: A Case Study
	Introduction
	Background
	Distributed Reset
	The BIP Framework

	Modeling Distributed Reset in BIP
	The Wave Layer
	The Tree Layer
	Building Distributed Reset

	Model Checking Distributed Reset
	Conclusion
	References

	A Fault-Resistant Asynchronous Clock Function
	Introduction
	Distributed Model
	Problem Definition
	Solving the 5-Clock-Synchronization Problem
	Correctness Proof
	Ensuring En Masse Runs
	Algorithm EnMasse

	Discussion
	Solving the 1-Clock-Synchronization Problem
	Future Work

	References

	Self-stabilizing Leader Election in Dynamic Networks
	Introduction
	Algorithm DLE
	Dynamic Leader Election with Priority
	Algorithm DLEND
	Sketches of Proofs
	Conclusion
	References

	Loop-Free Super-Stabilizing Spanning Tree Construction
	Introduction
	Model and Notations
	Super-Stabilizing Loop-Free BFS
	Algorithm Description
	Correctness Proof
	Complexity Analysis

	Super-Stabilizing Loop-Free Transformation Scheme
	Concluding Remarks
	References

	A New Technique for Proving Self-stabilizing under the Distributed Scheduler
	Introduction
	Related Work
	Model of Computation
	Nonstandard Extensions

	Serialization
	Practicability
	Algorithm A_1$
	Algorithm A_2$
	Proof Refinement

	Impossibility
	Concluding Remarks
	References

	A Tranformational Approach for Designing Scheduler-Oblivious Self-stabilizing Algorithms
	Introduction
	System Model
	Transformation of Self-stabilizing Algorithms
	Transformation Method
	Preservation of the Self-stabilization Property

	Related Work
	Conclusion and Future Work
	References

	On Byzantine Containment Properties of the min + 1 Protocol
	Introduction
	Distributed System
	Self-stabilizing Protocol Resilient to Byzantine Faults
	Strict Stabilization
	Strong Stabilization

	Topology-Aware Byzantine Resilience
	Topology-Aware Strict Stabilization
	Topology-Aware Strong Stabilization

	BFS Spanning Tree Construction
	Impossibility Results
	Byzantine Containment Properties of the min + 1 Protocol
	Optimality of Containment Areas of the min + 1 Protocol

	Conclusion
	References

	Efficient Self-stabilizing Graph Searching in Tree Networks
	Introduction
	Preliminaries
	The Algorithm
	Transition - Lines 8 and 9
	Search - Lines 2, 3, 5, 6, and 10

	Correctness
	The R-algorithm
	The T-algorithm
	The S-algorithm
	Initialization
	The Integrated Algorithm

	Concluding Remarks
	References

	Adaptive Containment of Time-Bounded Byzantine Faults
	Introduction
	Preliminary
	System Model
	Self-stabilization and Fault-Containment

	Proposed Method
	Overview
	Pumping Protocol PUMP
	Leader Election Protocol PLE

	Correctness Proof
	Conclusion
	References

	Brief Announcement: Fast Convergence in Route-Preservation
	References

	Authenticated Broadcast with a Partially Compromised Public-Key Infrastructure
	Introduction
	Model and Definitions
	Broadcast for (ta,tc)-Adversaries
	Impossibility Results
	The Three-Player Case
	Impossibility of Broadcast for 2ta + min(ta,tc)n
	Impossibility of Broadcast with a Threshold Adversary

	Handling the Exceptional Values of n
	References
	The Dolev-Strong Protocol

	On Applicability of Random Graphs for Modeling Random Key Predistribution for Wireless Sensor Networks
	Introduction
	Our Work

	Preliminaries
	Random Graph
	Key Graph
	Modeling Key Graphs Using Erdős-Rényi Random Graph Theory

	Applicability of Random Graph Theory in Estimating Key Ring Size
	Framework
	The Results

	Structural Properties
	Global Clustering Coefficient
	Size of the Maximal Clique
	Number of Cliques with Respect to Clique Sizes

	Conclusions and Future Work
	References
	Appendix

	“Slow Is Fast” for Wireless Sensor Networks in the Presence of Message Losses
	Introduction
	Preliminaries
	Basic Shared Memory Model to WAC Model
	Slow and Fast Actions
	When Do We Evaluate the Guard?
	When Do We Execute the Action?

	An Illustrative Example
	Effect of Slow versus Fast Actions during Execution
	Pseudo-slow Action
	Discussion
	Conclusion
	References

	Modeling and Analyzing Periodic Distributed Computations
	Introduction
	Model of Distributed Computation
	Infinite Directed Graphs
	Vector Clock Timestamps
	Detecting Global Predicates
	Recurrent Global State Detection Algorithm
	Related Work
	Conclusion
	References

	Complexity Issues in Automated Model Revision without Explicit Legitimate State
	Introduction
	Programs, Specifications and Faults
	Programs and Specifications
	Faults and Fault-Tolerance

	Problem Statement
	Relative Completeness (Q. 1)
	Complexity Analysis (Q. 2)
	Complexity Comparison for Total Revision
	Heuristic for Polynomial Time Solution for Partial Revision
	Summary of Complexity Results

	Relative Computation Cost (Q. 3)
	Related Work
	Conclusion and Future Work
	References

	Algorithmic Verification of Population Protocols
	Introduction
	Basic Definitions
	Population Protocols
	Problems' Definitions

	Hardness Results
	Algorithmic Solutions for BPVER
	Constructing the Transition Graph
	Non-complete Verifiers
	SolveBPVER: A Complete Verifier

	Experiments and Algorithmic Engineering
	References

	Energy Management for Time-Critical Energy Harvesting Wireless Sensor Networks
	Introduction
	Background and Related Work
	System Architecture
	Device Model
	Network and Application Model

	Harvesting Aware Speed Selection
	Centralized and Distributed Solutions
	Centralized Version
	Distributed Version

	Performance Evaluation
	Experimental Methodology
	Results

	Conclusion
	References

	Stably Decidable Graph Languages by Mediated Population Protocols
	Introduction
	Our Results - Roadmap
	The Model
	Weakly Connected Graphs
	Decidable Graph Languages
	Non Stably Decidable Languages

	Graphs Not Even Weakly Connected
	Future Work
	References

	Broadcasting in Sensor Networks of Unknown Topology in the Presence of Swamping
	Introduction
	The Model and Problem Definition
	Related Work
	Highway Model
	Partition P of the Line
	Neighborhood Discovery Procedure D*
	Selection of Spokesman Nodes
	Broadcasting Algorithm B

	City Model
	Partition P2 of the Plane
	Procedure D for Nodes in Range
	Procedure D* for Neighborhood Discovery
	Selection of Spokesman Nodes
	Broadcasting Algorithm B

	References

	Brief Announcement: Configuration of Actuated Camera Networks for Multi-target Coverage
	References

	Brief Announcement: On the Hardness of Topology Inference
	Introduction
	The Hardness of Network Tracing
	References

	Self-stabilizing Algorithm of Two-Hop Conflict Resolution
	Introduction
	Related Work and Justification of Our Approach
	Model and Assumptions
	Conflict Resolution Algorithm
	Presentation
	Specifications
	Proof of Specifications

	Conclusion
	References

	Low Memory Distributed Protocols for 2-Coloring
	Introduction
	Model
	Results

	Rings
	A Natural Protocol
	An Optimal Protocol for Rings

	General Bipartite Graphs
	A Coalescing Particles Protocol
	A Time-Optimal Protocol

	References

	Connectivity-Preserving Scattering of Mobile Robots with Limited Visibility
	Introduction
	Preliminaries
	Models
	Connectivity-Preserving Scattering

	Scattering Algorithm
	Blocked Locations
	Algorithm CPS
	Correctness
	Diameter-Sensitive Analysis

	Lower Bound
	Concluding Remarks
	References

	Computing in Social Networks
	Introduction
	Problem
	Candidates
	Scalability
	Accuracy
	Privacy

	Protocol
	Assumptions
	Design Rationale
	Protocol
	Correctness

	Related Work
	Conclusion
	References

	On Transactional Scheduling in Distributed Transactional Memory Systems
	Introduction
	Related Work
	Preliminaries
	The Bi-interval Scheduler
	Algorithm Description
	Competitive Ratio Analysis

	Implementation and Experimental Evaluation
	Conclusions
	References

	Recursion in Distributed Computing
	Introduction
	Model
	Recursive Distributed Algorithms
	Linear Recursion
	Binary Branching

	Snaphots
	Renaming
	Binary Branching Renaming Algorithm
	A Multi-way Branching Renaming Algorithm

	SWAP
	References
	Non-recursive Immediate Snapshots Algorithm

	On Adaptive Renaming under Eventually Limited Contention
	Introduction
	Context of the Work
	Content of the Paper
	Roadmap

	Underlying Shared Memory Model
	Adaptive M-Renaming
	A k-Obstruction-free Renaming Algorithm
	The Algorithm
	Proof of the Algorithm
	Impossibility and Optimality Results

	Concluding Remarks
	References

	RobuSTM:A Robust Software Transactional Memory
	Introduction
	System Model
	Design and Implementation
	Why a Lock-Based Design?
	Optimizing for the Good Case
	Progress and Fairness
	Safe Lock Stealing
	Dealing with Crashed Transactions
	Dealing with Non-terminating Transactions

	Evaluation
	Throughput for Well-Behaved Transactions
	Tolerating Crashes and Non-terminating Transactions

	Related Work
	Conclusion
	References

	A Provably Starvation-Free Distributed Directory Protocol
	Introduction
	Preliminaries
	The Combine Protocol
	Analysis of Combine
	Constructing an Overlay Tree
	Related Work
	Discussion
	References

	Lightweight Live Migration for High Availability Cluster Service
	Introduction
	Related Work
	System Model
	Design and Implementation
	Egress Response Release and Consistency Analysis
	Hooking and Mapping of Service Requests
	Asynchronous Network Buffer Migration
	Buffering and Merging of Requests

	Evaluation
	Experiment Environment
	Benchmarks and Measurements
	Evaluation Results

	Conclusions
	References

	Approximation of δ-Timeliness
	Introduction
	Model
	Approximation and Extraction
	Approximation Algorithms for δ-Timeliness
	Impossibility Results
	Approximation Algorithms

	Extraction of δ -Timeliness Graphs
	Graphs
	Extracting an Elementary δ -Timely Path from p to q
	Extracting δ -Timely Graphs

	Concluding Remarks
	References

	A Framework for Adaptive Optimization of Remote Synchronous CSCW in the Cloud Computing Era
	Introduction
	Overview of AORS Framework
	Formulization of AORS
	Application Feature Capture Engine
	Network Characteristic Detection Engine
	Optimization Unit

	Solving the Optimization Problems
	Evaluation and Results
	Evaluation on Performance of the Heuristics
	Comparative Evaluation between AORS and Current Computing Style

	Related Work
	Conclusion
	References

	$Chameleon-MAC$: Adaptive and Self-$*$ Algorithms for Media Access Control in Mobile Ad Hoc Networks
	Introduction
	A Case for Adaptive Self-$*$ in MANETs
	Relocation Model
	Our Contribution

	Preliminaries
	Models for Relocation Analysis
	Abstract Model Definitions
	Concrete Model Definitions

	The Chameleon-MAC Algorithm
	Self-stabilizing MAC Algorithm for MANETs
	The Chameleon-MAC Algorithm

	Experimental Evaluations
	System Settings
	Presentation
	Throughput
	Validation of the Abstract Relocation Analysis in Concrete Mobility Models

	Discussion
	Related Work
	Conclusions

	References

	A Comparative Study of Rateless Codes for P2P Persistent Storage
	Introduction
	Backgroung on Rateless Erasure Codes
	Principles of LT Rateless Codes
	Principles of Online Rateless Codes

	Experimental Results
	Experimental Platform
	Setup
	Degree Distributions
	Recovery Performance of Coding Processes
	Computational Cost in Terms of xor Operations

	Conclusion
	References

	Dynamically Reconfigurable Filtering Architectures
	Introduction
	Related Work
	Background
	Distributed R-trees
	Virtual Nodes Distribution

	Migration Mechanism
	Migration Policy
	Migration Conflict Solver
	Migration Planner

	Evaluation
	Impact of Migrations in All DR-tree Configurations
	Analysis of Migrations in a Given DR-tree Configuration
	Abort Rate
	Migration Scheduling Impact

	Conclusion
	References

	A Quantitative Analysis of Redundancy Schemes for Peer-to-Peer Storage Systems
	Introduction
	Related Work
	Redundancy Scheme Analysis
	Data Loss Probability
	Repair Costs
	Repair Time

	Conclusion
	References

	A Framework for Secure and Private P2P Publish/Subscribe
	Introduction
	Publish/Subscribe Framework
	Publish/Subscribe Model
	Attacks Model

	Secure and Private Data Exchange
	Secure and Private Test and Key Exchange
	Correctness and Complexity of SPTest

	Secure and Private Publish/Subscribe
	Private Subscription/Dissemination Oracles
	Secure and Private Publish/Subscribe Implementation

	Security Trade-Off Analysis
	Conclusions and Discussions
	References

	Snap-Stabilizing Linear Message Forwarding
	Introduction
	Model and Definitions
	Message Forwarding
	Overview of the Algorithm
	Formal Description of the Algorithm

	Proof of Correctness
	Network Dynamic
	Conclusion
	References

	Vulnerability Analysis of High Dimensional Complex Systems
	Introduction
	Internet2
	Neuromorphic Method
	Sensor Process
	Attention Process
	Pattern Process
	Interpretation Process

	Conclusion
	References

	Storage Capacity of Labeled Graphs
	Introduction
	Related Work
	Self-stabilizing Models
	Population Protocols
	Distinguishing Number

	Graph Turing Machines
	Storage Capacity of Graphs
	Information-Theoretic Capacity
	Effective Capacity

	Graph Traversal
	Variants of the Model
	Trees
	Information-Theoretic Capacity of a Tree
	Comparing Trees
	Implementing Counters with Labeled Trees

	Capacity of a Bounded-Degree Graph
	Random Graphs
	Conclusion
	References

	Safe Flocking in Spite of Actuator Faults
	Introduction
	System Model
	Model of Safe Flocking System
	Key Predicates

	Analysis
	Safety
	Progress
	Failure Detection
	Simulations

	Conclusion
	References

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

